xref: /openbmc/linux/fs/ext4/inode.c (revision e6c81cce)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
39 
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
44 
45 #include <trace/events/ext4.h>
46 
47 #define MPAGE_DA_EXTENT_TAIL 0x01
48 
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50 			      struct ext4_inode_info *ei)
51 {
52 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 	__u16 csum_lo;
54 	__u16 csum_hi = 0;
55 	__u32 csum;
56 
57 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
58 	raw->i_checksum_lo = 0;
59 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
62 		raw->i_checksum_hi = 0;
63 	}
64 
65 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66 			   EXT4_INODE_SIZE(inode->i_sb));
67 
68 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
69 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
72 
73 	return csum;
74 }
75 
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77 				  struct ext4_inode_info *ei)
78 {
79 	__u32 provided, calculated;
80 
81 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82 	    cpu_to_le32(EXT4_OS_LINUX) ||
83 	    !ext4_has_metadata_csum(inode->i_sb))
84 		return 1;
85 
86 	provided = le16_to_cpu(raw->i_checksum_lo);
87 	calculated = ext4_inode_csum(inode, raw, ei);
88 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91 	else
92 		calculated &= 0xFFFF;
93 
94 	return provided == calculated;
95 }
96 
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98 				struct ext4_inode_info *ei)
99 {
100 	__u32 csum;
101 
102 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103 	    cpu_to_le32(EXT4_OS_LINUX) ||
104 	    !ext4_has_metadata_csum(inode->i_sb))
105 		return;
106 
107 	csum = ext4_inode_csum(inode, raw, ei);
108 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112 }
113 
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115 					      loff_t new_size)
116 {
117 	trace_ext4_begin_ordered_truncate(inode, new_size);
118 	/*
119 	 * If jinode is zero, then we never opened the file for
120 	 * writing, so there's no need to call
121 	 * jbd2_journal_begin_ordered_truncate() since there's no
122 	 * outstanding writes we need to flush.
123 	 */
124 	if (!EXT4_I(inode)->jinode)
125 		return 0;
126 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127 						   EXT4_I(inode)->jinode,
128 						   new_size);
129 }
130 
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132 				unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136 				  int pextents);
137 
138 /*
139  * Test whether an inode is a fast symlink.
140  */
141 int ext4_inode_is_fast_symlink(struct inode *inode)
142 {
143         int ea_blocks = EXT4_I(inode)->i_file_acl ?
144 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145 
146 	if (ext4_has_inline_data(inode))
147 		return 0;
148 
149 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151 
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 				 int nblocks)
159 {
160 	int ret;
161 
162 	/*
163 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 	 * moment, get_block can be called only for blocks inside i_size since
165 	 * page cache has been already dropped and writes are blocked by
166 	 * i_mutex. So we can safely drop the i_data_sem here.
167 	 */
168 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 	jbd_debug(2, "restarting handle %p\n", handle);
170 	up_write(&EXT4_I(inode)->i_data_sem);
171 	ret = ext4_journal_restart(handle, nblocks);
172 	down_write(&EXT4_I(inode)->i_data_sem);
173 	ext4_discard_preallocations(inode);
174 
175 	return ret;
176 }
177 
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183 	handle_t *handle;
184 	int err;
185 
186 	trace_ext4_evict_inode(inode);
187 
188 	if (inode->i_nlink) {
189 		/*
190 		 * When journalling data dirty buffers are tracked only in the
191 		 * journal. So although mm thinks everything is clean and
192 		 * ready for reaping the inode might still have some pages to
193 		 * write in the running transaction or waiting to be
194 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 		 * (via truncate_inode_pages()) to discard these buffers can
196 		 * cause data loss. Also even if we did not discard these
197 		 * buffers, we would have no way to find them after the inode
198 		 * is reaped and thus user could see stale data if he tries to
199 		 * read them before the transaction is checkpointed. So be
200 		 * careful and force everything to disk here... We use
201 		 * ei->i_datasync_tid to store the newest transaction
202 		 * containing inode's data.
203 		 *
204 		 * Note that directories do not have this problem because they
205 		 * don't use page cache.
206 		 */
207 		if (ext4_should_journal_data(inode) &&
208 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 		    inode->i_ino != EXT4_JOURNAL_INO) {
210 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212 
213 			jbd2_complete_transaction(journal, commit_tid);
214 			filemap_write_and_wait(&inode->i_data);
215 		}
216 		truncate_inode_pages_final(&inode->i_data);
217 
218 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219 		goto no_delete;
220 	}
221 
222 	if (is_bad_inode(inode))
223 		goto no_delete;
224 	dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages_final(&inode->i_data);
229 
230 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 
232 	/*
233 	 * Protect us against freezing - iput() caller didn't have to have any
234 	 * protection against it
235 	 */
236 	sb_start_intwrite(inode->i_sb);
237 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 				    ext4_blocks_for_truncate(inode)+3);
239 	if (IS_ERR(handle)) {
240 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 		/*
242 		 * If we're going to skip the normal cleanup, we still need to
243 		 * make sure that the in-core orphan linked list is properly
244 		 * cleaned up.
245 		 */
246 		ext4_orphan_del(NULL, inode);
247 		sb_end_intwrite(inode->i_sb);
248 		goto no_delete;
249 	}
250 
251 	if (IS_SYNC(inode))
252 		ext4_handle_sync(handle);
253 	inode->i_size = 0;
254 	err = ext4_mark_inode_dirty(handle, inode);
255 	if (err) {
256 		ext4_warning(inode->i_sb,
257 			     "couldn't mark inode dirty (err %d)", err);
258 		goto stop_handle;
259 	}
260 	if (inode->i_blocks)
261 		ext4_truncate(inode);
262 
263 	/*
264 	 * ext4_ext_truncate() doesn't reserve any slop when it
265 	 * restarts journal transactions; therefore there may not be
266 	 * enough credits left in the handle to remove the inode from
267 	 * the orphan list and set the dtime field.
268 	 */
269 	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 		err = ext4_journal_extend(handle, 3);
271 		if (err > 0)
272 			err = ext4_journal_restart(handle, 3);
273 		if (err != 0) {
274 			ext4_warning(inode->i_sb,
275 				     "couldn't extend journal (err %d)", err);
276 		stop_handle:
277 			ext4_journal_stop(handle);
278 			ext4_orphan_del(NULL, inode);
279 			sb_end_intwrite(inode->i_sb);
280 			goto no_delete;
281 		}
282 	}
283 
284 	/*
285 	 * Kill off the orphan record which ext4_truncate created.
286 	 * AKPM: I think this can be inside the above `if'.
287 	 * Note that ext4_orphan_del() has to be able to cope with the
288 	 * deletion of a non-existent orphan - this is because we don't
289 	 * know if ext4_truncate() actually created an orphan record.
290 	 * (Well, we could do this if we need to, but heck - it works)
291 	 */
292 	ext4_orphan_del(handle, inode);
293 	EXT4_I(inode)->i_dtime	= get_seconds();
294 
295 	/*
296 	 * One subtle ordering requirement: if anything has gone wrong
297 	 * (transaction abort, IO errors, whatever), then we can still
298 	 * do these next steps (the fs will already have been marked as
299 	 * having errors), but we can't free the inode if the mark_dirty
300 	 * fails.
301 	 */
302 	if (ext4_mark_inode_dirty(handle, inode))
303 		/* If that failed, just do the required in-core inode clear. */
304 		ext4_clear_inode(inode);
305 	else
306 		ext4_free_inode(handle, inode);
307 	ext4_journal_stop(handle);
308 	sb_end_intwrite(inode->i_sb);
309 	return;
310 no_delete:
311 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 }
313 
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317 	return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320 
321 /*
322  * Called with i_data_sem down, which is important since we can call
323  * ext4_discard_preallocations() from here.
324  */
325 void ext4_da_update_reserve_space(struct inode *inode,
326 					int used, int quota_claim)
327 {
328 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329 	struct ext4_inode_info *ei = EXT4_I(inode);
330 
331 	spin_lock(&ei->i_block_reservation_lock);
332 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333 	if (unlikely(used > ei->i_reserved_data_blocks)) {
334 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335 			 "with only %d reserved data blocks",
336 			 __func__, inode->i_ino, used,
337 			 ei->i_reserved_data_blocks);
338 		WARN_ON(1);
339 		used = ei->i_reserved_data_blocks;
340 	}
341 
342 	/* Update per-inode reservations */
343 	ei->i_reserved_data_blocks -= used;
344 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345 
346 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347 
348 	/* Update quota subsystem for data blocks */
349 	if (quota_claim)
350 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
351 	else {
352 		/*
353 		 * We did fallocate with an offset that is already delayed
354 		 * allocated. So on delayed allocated writeback we should
355 		 * not re-claim the quota for fallocated blocks.
356 		 */
357 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358 	}
359 
360 	/*
361 	 * If we have done all the pending block allocations and if
362 	 * there aren't any writers on the inode, we can discard the
363 	 * inode's preallocations.
364 	 */
365 	if ((ei->i_reserved_data_blocks == 0) &&
366 	    (atomic_read(&inode->i_writecount) == 0))
367 		ext4_discard_preallocations(inode);
368 }
369 
370 static int __check_block_validity(struct inode *inode, const char *func,
371 				unsigned int line,
372 				struct ext4_map_blocks *map)
373 {
374 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375 				   map->m_len)) {
376 		ext4_error_inode(inode, func, line, map->m_pblk,
377 				 "lblock %lu mapped to illegal pblock "
378 				 "(length %d)", (unsigned long) map->m_lblk,
379 				 map->m_len);
380 		return -EIO;
381 	}
382 	return 0;
383 }
384 
385 #define check_block_validity(inode, map)	\
386 	__check_block_validity((inode), __func__, __LINE__, (map))
387 
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390 				       struct inode *inode,
391 				       struct ext4_map_blocks *es_map,
392 				       struct ext4_map_blocks *map,
393 				       int flags)
394 {
395 	int retval;
396 
397 	map->m_flags = 0;
398 	/*
399 	 * There is a race window that the result is not the same.
400 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
401 	 * is that we lookup a block mapping in extent status tree with
402 	 * out taking i_data_sem.  So at the time the unwritten extent
403 	 * could be converted.
404 	 */
405 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406 		down_read(&EXT4_I(inode)->i_data_sem);
407 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
409 					     EXT4_GET_BLOCKS_KEEP_SIZE);
410 	} else {
411 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
412 					     EXT4_GET_BLOCKS_KEEP_SIZE);
413 	}
414 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415 		up_read((&EXT4_I(inode)->i_data_sem));
416 
417 	/*
418 	 * We don't check m_len because extent will be collpased in status
419 	 * tree.  So the m_len might not equal.
420 	 */
421 	if (es_map->m_lblk != map->m_lblk ||
422 	    es_map->m_flags != map->m_flags ||
423 	    es_map->m_pblk != map->m_pblk) {
424 		printk("ES cache assertion failed for inode: %lu "
425 		       "es_cached ex [%d/%d/%llu/%x] != "
426 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
428 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
429 		       map->m_len, map->m_pblk, map->m_flags,
430 		       retval, flags);
431 	}
432 }
433 #endif /* ES_AGGRESSIVE_TEST */
434 
435 /*
436  * The ext4_map_blocks() function tries to look up the requested blocks,
437  * and returns if the blocks are already mapped.
438  *
439  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440  * and store the allocated blocks in the result buffer head and mark it
441  * mapped.
442  *
443  * If file type is extents based, it will call ext4_ext_map_blocks(),
444  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445  * based files
446  *
447  * On success, it returns the number of blocks being mapped or allocated.
448  * if create==0 and the blocks are pre-allocated and unwritten block,
449  * the result buffer head is unmapped. If the create ==1, it will make sure
450  * the buffer head is mapped.
451  *
452  * It returns 0 if plain look up failed (blocks have not been allocated), in
453  * that case, buffer head is unmapped
454  *
455  * It returns the error in case of allocation failure.
456  */
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458 		    struct ext4_map_blocks *map, int flags)
459 {
460 	struct extent_status es;
461 	int retval;
462 	int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464 	struct ext4_map_blocks orig_map;
465 
466 	memcpy(&orig_map, map, sizeof(*map));
467 #endif
468 
469 	map->m_flags = 0;
470 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
472 		  (unsigned long) map->m_lblk);
473 
474 	/*
475 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
476 	 */
477 	if (unlikely(map->m_len > INT_MAX))
478 		map->m_len = INT_MAX;
479 
480 	/* We can handle the block number less than EXT_MAX_BLOCKS */
481 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482 		return -EIO;
483 
484 	/* Lookup extent status tree firstly */
485 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487 			map->m_pblk = ext4_es_pblock(&es) +
488 					map->m_lblk - es.es_lblk;
489 			map->m_flags |= ext4_es_is_written(&es) ?
490 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491 			retval = es.es_len - (map->m_lblk - es.es_lblk);
492 			if (retval > map->m_len)
493 				retval = map->m_len;
494 			map->m_len = retval;
495 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496 			retval = 0;
497 		} else {
498 			BUG_ON(1);
499 		}
500 #ifdef ES_AGGRESSIVE_TEST
501 		ext4_map_blocks_es_recheck(handle, inode, map,
502 					   &orig_map, flags);
503 #endif
504 		goto found;
505 	}
506 
507 	/*
508 	 * Try to see if we can get the block without requesting a new
509 	 * file system block.
510 	 */
511 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 		down_read(&EXT4_I(inode)->i_data_sem);
513 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
515 					     EXT4_GET_BLOCKS_KEEP_SIZE);
516 	} else {
517 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
518 					     EXT4_GET_BLOCKS_KEEP_SIZE);
519 	}
520 	if (retval > 0) {
521 		unsigned int status;
522 
523 		if (unlikely(retval != map->m_len)) {
524 			ext4_warning(inode->i_sb,
525 				     "ES len assertion failed for inode "
526 				     "%lu: retval %d != map->m_len %d",
527 				     inode->i_ino, retval, map->m_len);
528 			WARN_ON(1);
529 		}
530 
531 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534 		    ext4_find_delalloc_range(inode, map->m_lblk,
535 					     map->m_lblk + map->m_len - 1))
536 			status |= EXTENT_STATUS_DELAYED;
537 		ret = ext4_es_insert_extent(inode, map->m_lblk,
538 					    map->m_len, map->m_pblk, status);
539 		if (ret < 0)
540 			retval = ret;
541 	}
542 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
543 		up_read((&EXT4_I(inode)->i_data_sem));
544 
545 found:
546 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
547 		ret = check_block_validity(inode, map);
548 		if (ret != 0)
549 			return ret;
550 	}
551 
552 	/* If it is only a block(s) look up */
553 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
554 		return retval;
555 
556 	/*
557 	 * Returns if the blocks have already allocated
558 	 *
559 	 * Note that if blocks have been preallocated
560 	 * ext4_ext_get_block() returns the create = 0
561 	 * with buffer head unmapped.
562 	 */
563 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
564 		/*
565 		 * If we need to convert extent to unwritten
566 		 * we continue and do the actual work in
567 		 * ext4_ext_map_blocks()
568 		 */
569 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
570 			return retval;
571 
572 	/*
573 	 * Here we clear m_flags because after allocating an new extent,
574 	 * it will be set again.
575 	 */
576 	map->m_flags &= ~EXT4_MAP_FLAGS;
577 
578 	/*
579 	 * New blocks allocate and/or writing to unwritten extent
580 	 * will possibly result in updating i_data, so we take
581 	 * the write lock of i_data_sem, and call get_block()
582 	 * with create == 1 flag.
583 	 */
584 	down_write(&EXT4_I(inode)->i_data_sem);
585 
586 	/*
587 	 * We need to check for EXT4 here because migrate
588 	 * could have changed the inode type in between
589 	 */
590 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
591 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
592 	} else {
593 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
594 
595 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
596 			/*
597 			 * We allocated new blocks which will result in
598 			 * i_data's format changing.  Force the migrate
599 			 * to fail by clearing migrate flags
600 			 */
601 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
602 		}
603 
604 		/*
605 		 * Update reserved blocks/metadata blocks after successful
606 		 * block allocation which had been deferred till now. We don't
607 		 * support fallocate for non extent files. So we can update
608 		 * reserve space here.
609 		 */
610 		if ((retval > 0) &&
611 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
612 			ext4_da_update_reserve_space(inode, retval, 1);
613 	}
614 
615 	if (retval > 0) {
616 		unsigned int status;
617 
618 		if (unlikely(retval != map->m_len)) {
619 			ext4_warning(inode->i_sb,
620 				     "ES len assertion failed for inode "
621 				     "%lu: retval %d != map->m_len %d",
622 				     inode->i_ino, retval, map->m_len);
623 			WARN_ON(1);
624 		}
625 
626 		/*
627 		 * If the extent has been zeroed out, we don't need to update
628 		 * extent status tree.
629 		 */
630 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
631 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
632 			if (ext4_es_is_written(&es))
633 				goto has_zeroout;
634 		}
635 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
636 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
637 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
638 		    ext4_find_delalloc_range(inode, map->m_lblk,
639 					     map->m_lblk + map->m_len - 1))
640 			status |= EXTENT_STATUS_DELAYED;
641 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
642 					    map->m_pblk, status);
643 		if (ret < 0)
644 			retval = ret;
645 	}
646 
647 has_zeroout:
648 	up_write((&EXT4_I(inode)->i_data_sem));
649 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
650 		ret = check_block_validity(inode, map);
651 		if (ret != 0)
652 			return ret;
653 	}
654 	return retval;
655 }
656 
657 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
658 {
659 	struct inode *inode = bh->b_assoc_map->host;
660 	/* XXX: breaks on 32-bit > 16GB. Is that even supported? */
661 	loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
662 	int err;
663 	if (!uptodate)
664 		return;
665 	WARN_ON(!buffer_unwritten(bh));
666 	err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
667 }
668 
669 /* Maximum number of blocks we map for direct IO at once. */
670 #define DIO_MAX_BLOCKS 4096
671 
672 static int _ext4_get_block(struct inode *inode, sector_t iblock,
673 			   struct buffer_head *bh, int flags)
674 {
675 	handle_t *handle = ext4_journal_current_handle();
676 	struct ext4_map_blocks map;
677 	int ret = 0, started = 0;
678 	int dio_credits;
679 
680 	if (ext4_has_inline_data(inode))
681 		return -ERANGE;
682 
683 	map.m_lblk = iblock;
684 	map.m_len = bh->b_size >> inode->i_blkbits;
685 
686 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
687 		/* Direct IO write... */
688 		if (map.m_len > DIO_MAX_BLOCKS)
689 			map.m_len = DIO_MAX_BLOCKS;
690 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
692 					    dio_credits);
693 		if (IS_ERR(handle)) {
694 			ret = PTR_ERR(handle);
695 			return ret;
696 		}
697 		started = 1;
698 	}
699 
700 	ret = ext4_map_blocks(handle, inode, &map, flags);
701 	if (ret > 0) {
702 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
703 
704 		map_bh(bh, inode->i_sb, map.m_pblk);
705 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
706 		if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
707 			bh->b_assoc_map = inode->i_mapping;
708 			bh->b_private = (void *)(unsigned long)iblock;
709 			bh->b_end_io = ext4_end_io_unwritten;
710 		}
711 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
712 			set_buffer_defer_completion(bh);
713 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
714 		ret = 0;
715 	}
716 	if (started)
717 		ext4_journal_stop(handle);
718 	return ret;
719 }
720 
721 int ext4_get_block(struct inode *inode, sector_t iblock,
722 		   struct buffer_head *bh, int create)
723 {
724 	return _ext4_get_block(inode, iblock, bh,
725 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
726 }
727 
728 /*
729  * `handle' can be NULL if create is zero
730  */
731 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
732 				ext4_lblk_t block, int create)
733 {
734 	struct ext4_map_blocks map;
735 	struct buffer_head *bh;
736 	int err;
737 
738 	J_ASSERT(handle != NULL || create == 0);
739 
740 	map.m_lblk = block;
741 	map.m_len = 1;
742 	err = ext4_map_blocks(handle, inode, &map,
743 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
744 
745 	if (err == 0)
746 		return create ? ERR_PTR(-ENOSPC) : NULL;
747 	if (err < 0)
748 		return ERR_PTR(err);
749 
750 	bh = sb_getblk(inode->i_sb, map.m_pblk);
751 	if (unlikely(!bh))
752 		return ERR_PTR(-ENOMEM);
753 	if (map.m_flags & EXT4_MAP_NEW) {
754 		J_ASSERT(create != 0);
755 		J_ASSERT(handle != NULL);
756 
757 		/*
758 		 * Now that we do not always journal data, we should
759 		 * keep in mind whether this should always journal the
760 		 * new buffer as metadata.  For now, regular file
761 		 * writes use ext4_get_block instead, so it's not a
762 		 * problem.
763 		 */
764 		lock_buffer(bh);
765 		BUFFER_TRACE(bh, "call get_create_access");
766 		err = ext4_journal_get_create_access(handle, bh);
767 		if (unlikely(err)) {
768 			unlock_buffer(bh);
769 			goto errout;
770 		}
771 		if (!buffer_uptodate(bh)) {
772 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
773 			set_buffer_uptodate(bh);
774 		}
775 		unlock_buffer(bh);
776 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
777 		err = ext4_handle_dirty_metadata(handle, inode, bh);
778 		if (unlikely(err))
779 			goto errout;
780 	} else
781 		BUFFER_TRACE(bh, "not a new buffer");
782 	return bh;
783 errout:
784 	brelse(bh);
785 	return ERR_PTR(err);
786 }
787 
788 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
789 			       ext4_lblk_t block, int create)
790 {
791 	struct buffer_head *bh;
792 
793 	bh = ext4_getblk(handle, inode, block, create);
794 	if (IS_ERR(bh))
795 		return bh;
796 	if (!bh || buffer_uptodate(bh))
797 		return bh;
798 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
799 	wait_on_buffer(bh);
800 	if (buffer_uptodate(bh))
801 		return bh;
802 	put_bh(bh);
803 	return ERR_PTR(-EIO);
804 }
805 
806 int ext4_walk_page_buffers(handle_t *handle,
807 			   struct buffer_head *head,
808 			   unsigned from,
809 			   unsigned to,
810 			   int *partial,
811 			   int (*fn)(handle_t *handle,
812 				     struct buffer_head *bh))
813 {
814 	struct buffer_head *bh;
815 	unsigned block_start, block_end;
816 	unsigned blocksize = head->b_size;
817 	int err, ret = 0;
818 	struct buffer_head *next;
819 
820 	for (bh = head, block_start = 0;
821 	     ret == 0 && (bh != head || !block_start);
822 	     block_start = block_end, bh = next) {
823 		next = bh->b_this_page;
824 		block_end = block_start + blocksize;
825 		if (block_end <= from || block_start >= to) {
826 			if (partial && !buffer_uptodate(bh))
827 				*partial = 1;
828 			continue;
829 		}
830 		err = (*fn)(handle, bh);
831 		if (!ret)
832 			ret = err;
833 	}
834 	return ret;
835 }
836 
837 /*
838  * To preserve ordering, it is essential that the hole instantiation and
839  * the data write be encapsulated in a single transaction.  We cannot
840  * close off a transaction and start a new one between the ext4_get_block()
841  * and the commit_write().  So doing the jbd2_journal_start at the start of
842  * prepare_write() is the right place.
843  *
844  * Also, this function can nest inside ext4_writepage().  In that case, we
845  * *know* that ext4_writepage() has generated enough buffer credits to do the
846  * whole page.  So we won't block on the journal in that case, which is good,
847  * because the caller may be PF_MEMALLOC.
848  *
849  * By accident, ext4 can be reentered when a transaction is open via
850  * quota file writes.  If we were to commit the transaction while thus
851  * reentered, there can be a deadlock - we would be holding a quota
852  * lock, and the commit would never complete if another thread had a
853  * transaction open and was blocking on the quota lock - a ranking
854  * violation.
855  *
856  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
857  * will _not_ run commit under these circumstances because handle->h_ref
858  * is elevated.  We'll still have enough credits for the tiny quotafile
859  * write.
860  */
861 int do_journal_get_write_access(handle_t *handle,
862 				struct buffer_head *bh)
863 {
864 	int dirty = buffer_dirty(bh);
865 	int ret;
866 
867 	if (!buffer_mapped(bh) || buffer_freed(bh))
868 		return 0;
869 	/*
870 	 * __block_write_begin() could have dirtied some buffers. Clean
871 	 * the dirty bit as jbd2_journal_get_write_access() could complain
872 	 * otherwise about fs integrity issues. Setting of the dirty bit
873 	 * by __block_write_begin() isn't a real problem here as we clear
874 	 * the bit before releasing a page lock and thus writeback cannot
875 	 * ever write the buffer.
876 	 */
877 	if (dirty)
878 		clear_buffer_dirty(bh);
879 	BUFFER_TRACE(bh, "get write access");
880 	ret = ext4_journal_get_write_access(handle, bh);
881 	if (!ret && dirty)
882 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
883 	return ret;
884 }
885 
886 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
887 		   struct buffer_head *bh_result, int create);
888 
889 #ifdef CONFIG_EXT4_FS_ENCRYPTION
890 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
891 				  get_block_t *get_block)
892 {
893 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
894 	unsigned to = from + len;
895 	struct inode *inode = page->mapping->host;
896 	unsigned block_start, block_end;
897 	sector_t block;
898 	int err = 0;
899 	unsigned blocksize = inode->i_sb->s_blocksize;
900 	unsigned bbits;
901 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
902 	bool decrypt = false;
903 
904 	BUG_ON(!PageLocked(page));
905 	BUG_ON(from > PAGE_CACHE_SIZE);
906 	BUG_ON(to > PAGE_CACHE_SIZE);
907 	BUG_ON(from > to);
908 
909 	if (!page_has_buffers(page))
910 		create_empty_buffers(page, blocksize, 0);
911 	head = page_buffers(page);
912 	bbits = ilog2(blocksize);
913 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
914 
915 	for (bh = head, block_start = 0; bh != head || !block_start;
916 	    block++, block_start = block_end, bh = bh->b_this_page) {
917 		block_end = block_start + blocksize;
918 		if (block_end <= from || block_start >= to) {
919 			if (PageUptodate(page)) {
920 				if (!buffer_uptodate(bh))
921 					set_buffer_uptodate(bh);
922 			}
923 			continue;
924 		}
925 		if (buffer_new(bh))
926 			clear_buffer_new(bh);
927 		if (!buffer_mapped(bh)) {
928 			WARN_ON(bh->b_size != blocksize);
929 			err = get_block(inode, block, bh, 1);
930 			if (err)
931 				break;
932 			if (buffer_new(bh)) {
933 				unmap_underlying_metadata(bh->b_bdev,
934 							  bh->b_blocknr);
935 				if (PageUptodate(page)) {
936 					clear_buffer_new(bh);
937 					set_buffer_uptodate(bh);
938 					mark_buffer_dirty(bh);
939 					continue;
940 				}
941 				if (block_end > to || block_start < from)
942 					zero_user_segments(page, to, block_end,
943 							   block_start, from);
944 				continue;
945 			}
946 		}
947 		if (PageUptodate(page)) {
948 			if (!buffer_uptodate(bh))
949 				set_buffer_uptodate(bh);
950 			continue;
951 		}
952 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
953 		    !buffer_unwritten(bh) &&
954 		    (block_start < from || block_end > to)) {
955 			ll_rw_block(READ, 1, &bh);
956 			*wait_bh++ = bh;
957 			decrypt = ext4_encrypted_inode(inode) &&
958 				S_ISREG(inode->i_mode);
959 		}
960 	}
961 	/*
962 	 * If we issued read requests, let them complete.
963 	 */
964 	while (wait_bh > wait) {
965 		wait_on_buffer(*--wait_bh);
966 		if (!buffer_uptodate(*wait_bh))
967 			err = -EIO;
968 	}
969 	if (unlikely(err))
970 		page_zero_new_buffers(page, from, to);
971 	else if (decrypt)
972 		err = ext4_decrypt_one(inode, page);
973 	return err;
974 }
975 #endif
976 
977 static int ext4_write_begin(struct file *file, struct address_space *mapping,
978 			    loff_t pos, unsigned len, unsigned flags,
979 			    struct page **pagep, void **fsdata)
980 {
981 	struct inode *inode = mapping->host;
982 	int ret, needed_blocks;
983 	handle_t *handle;
984 	int retries = 0;
985 	struct page *page;
986 	pgoff_t index;
987 	unsigned from, to;
988 
989 	trace_ext4_write_begin(inode, pos, len, flags);
990 	/*
991 	 * Reserve one block more for addition to orphan list in case
992 	 * we allocate blocks but write fails for some reason
993 	 */
994 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
995 	index = pos >> PAGE_CACHE_SHIFT;
996 	from = pos & (PAGE_CACHE_SIZE - 1);
997 	to = from + len;
998 
999 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1000 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1001 						    flags, pagep);
1002 		if (ret < 0)
1003 			return ret;
1004 		if (ret == 1)
1005 			return 0;
1006 	}
1007 
1008 	/*
1009 	 * grab_cache_page_write_begin() can take a long time if the
1010 	 * system is thrashing due to memory pressure, or if the page
1011 	 * is being written back.  So grab it first before we start
1012 	 * the transaction handle.  This also allows us to allocate
1013 	 * the page (if needed) without using GFP_NOFS.
1014 	 */
1015 retry_grab:
1016 	page = grab_cache_page_write_begin(mapping, index, flags);
1017 	if (!page)
1018 		return -ENOMEM;
1019 	unlock_page(page);
1020 
1021 retry_journal:
1022 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1023 	if (IS_ERR(handle)) {
1024 		page_cache_release(page);
1025 		return PTR_ERR(handle);
1026 	}
1027 
1028 	lock_page(page);
1029 	if (page->mapping != mapping) {
1030 		/* The page got truncated from under us */
1031 		unlock_page(page);
1032 		page_cache_release(page);
1033 		ext4_journal_stop(handle);
1034 		goto retry_grab;
1035 	}
1036 	/* In case writeback began while the page was unlocked */
1037 	wait_for_stable_page(page);
1038 
1039 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1040 	if (ext4_should_dioread_nolock(inode))
1041 		ret = ext4_block_write_begin(page, pos, len,
1042 					     ext4_get_block_write);
1043 	else
1044 		ret = ext4_block_write_begin(page, pos, len,
1045 					     ext4_get_block);
1046 #else
1047 	if (ext4_should_dioread_nolock(inode))
1048 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1049 	else
1050 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1051 #endif
1052 	if (!ret && ext4_should_journal_data(inode)) {
1053 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1054 					     from, to, NULL,
1055 					     do_journal_get_write_access);
1056 	}
1057 
1058 	if (ret) {
1059 		unlock_page(page);
1060 		/*
1061 		 * __block_write_begin may have instantiated a few blocks
1062 		 * outside i_size.  Trim these off again. Don't need
1063 		 * i_size_read because we hold i_mutex.
1064 		 *
1065 		 * Add inode to orphan list in case we crash before
1066 		 * truncate finishes
1067 		 */
1068 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1069 			ext4_orphan_add(handle, inode);
1070 
1071 		ext4_journal_stop(handle);
1072 		if (pos + len > inode->i_size) {
1073 			ext4_truncate_failed_write(inode);
1074 			/*
1075 			 * If truncate failed early the inode might
1076 			 * still be on the orphan list; we need to
1077 			 * make sure the inode is removed from the
1078 			 * orphan list in that case.
1079 			 */
1080 			if (inode->i_nlink)
1081 				ext4_orphan_del(NULL, inode);
1082 		}
1083 
1084 		if (ret == -ENOSPC &&
1085 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1086 			goto retry_journal;
1087 		page_cache_release(page);
1088 		return ret;
1089 	}
1090 	*pagep = page;
1091 	return ret;
1092 }
1093 
1094 /* For write_end() in data=journal mode */
1095 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1096 {
1097 	int ret;
1098 	if (!buffer_mapped(bh) || buffer_freed(bh))
1099 		return 0;
1100 	set_buffer_uptodate(bh);
1101 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1102 	clear_buffer_meta(bh);
1103 	clear_buffer_prio(bh);
1104 	return ret;
1105 }
1106 
1107 /*
1108  * We need to pick up the new inode size which generic_commit_write gave us
1109  * `file' can be NULL - eg, when called from page_symlink().
1110  *
1111  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1112  * buffers are managed internally.
1113  */
1114 static int ext4_write_end(struct file *file,
1115 			  struct address_space *mapping,
1116 			  loff_t pos, unsigned len, unsigned copied,
1117 			  struct page *page, void *fsdata)
1118 {
1119 	handle_t *handle = ext4_journal_current_handle();
1120 	struct inode *inode = mapping->host;
1121 	loff_t old_size = inode->i_size;
1122 	int ret = 0, ret2;
1123 	int i_size_changed = 0;
1124 
1125 	trace_ext4_write_end(inode, pos, len, copied);
1126 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1127 		ret = ext4_jbd2_file_inode(handle, inode);
1128 		if (ret) {
1129 			unlock_page(page);
1130 			page_cache_release(page);
1131 			goto errout;
1132 		}
1133 	}
1134 
1135 	if (ext4_has_inline_data(inode)) {
1136 		ret = ext4_write_inline_data_end(inode, pos, len,
1137 						 copied, page);
1138 		if (ret < 0)
1139 			goto errout;
1140 		copied = ret;
1141 	} else
1142 		copied = block_write_end(file, mapping, pos,
1143 					 len, copied, page, fsdata);
1144 	/*
1145 	 * it's important to update i_size while still holding page lock:
1146 	 * page writeout could otherwise come in and zero beyond i_size.
1147 	 */
1148 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1149 	unlock_page(page);
1150 	page_cache_release(page);
1151 
1152 	if (old_size < pos)
1153 		pagecache_isize_extended(inode, old_size, pos);
1154 	/*
1155 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1156 	 * makes the holding time of page lock longer. Second, it forces lock
1157 	 * ordering of page lock and transaction start for journaling
1158 	 * filesystems.
1159 	 */
1160 	if (i_size_changed)
1161 		ext4_mark_inode_dirty(handle, inode);
1162 
1163 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164 		/* if we have allocated more blocks and copied
1165 		 * less. We will have blocks allocated outside
1166 		 * inode->i_size. So truncate them
1167 		 */
1168 		ext4_orphan_add(handle, inode);
1169 errout:
1170 	ret2 = ext4_journal_stop(handle);
1171 	if (!ret)
1172 		ret = ret2;
1173 
1174 	if (pos + len > inode->i_size) {
1175 		ext4_truncate_failed_write(inode);
1176 		/*
1177 		 * If truncate failed early the inode might still be
1178 		 * on the orphan list; we need to make sure the inode
1179 		 * is removed from the orphan list in that case.
1180 		 */
1181 		if (inode->i_nlink)
1182 			ext4_orphan_del(NULL, inode);
1183 	}
1184 
1185 	return ret ? ret : copied;
1186 }
1187 
1188 static int ext4_journalled_write_end(struct file *file,
1189 				     struct address_space *mapping,
1190 				     loff_t pos, unsigned len, unsigned copied,
1191 				     struct page *page, void *fsdata)
1192 {
1193 	handle_t *handle = ext4_journal_current_handle();
1194 	struct inode *inode = mapping->host;
1195 	loff_t old_size = inode->i_size;
1196 	int ret = 0, ret2;
1197 	int partial = 0;
1198 	unsigned from, to;
1199 	int size_changed = 0;
1200 
1201 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1202 	from = pos & (PAGE_CACHE_SIZE - 1);
1203 	to = from + len;
1204 
1205 	BUG_ON(!ext4_handle_valid(handle));
1206 
1207 	if (ext4_has_inline_data(inode))
1208 		copied = ext4_write_inline_data_end(inode, pos, len,
1209 						    copied, page);
1210 	else {
1211 		if (copied < len) {
1212 			if (!PageUptodate(page))
1213 				copied = 0;
1214 			page_zero_new_buffers(page, from+copied, to);
1215 		}
1216 
1217 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1218 					     to, &partial, write_end_fn);
1219 		if (!partial)
1220 			SetPageUptodate(page);
1221 	}
1222 	size_changed = ext4_update_inode_size(inode, pos + copied);
1223 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1224 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1225 	unlock_page(page);
1226 	page_cache_release(page);
1227 
1228 	if (old_size < pos)
1229 		pagecache_isize_extended(inode, old_size, pos);
1230 
1231 	if (size_changed) {
1232 		ret2 = ext4_mark_inode_dirty(handle, inode);
1233 		if (!ret)
1234 			ret = ret2;
1235 	}
1236 
1237 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1238 		/* if we have allocated more blocks and copied
1239 		 * less. We will have blocks allocated outside
1240 		 * inode->i_size. So truncate them
1241 		 */
1242 		ext4_orphan_add(handle, inode);
1243 
1244 	ret2 = ext4_journal_stop(handle);
1245 	if (!ret)
1246 		ret = ret2;
1247 	if (pos + len > inode->i_size) {
1248 		ext4_truncate_failed_write(inode);
1249 		/*
1250 		 * If truncate failed early the inode might still be
1251 		 * on the orphan list; we need to make sure the inode
1252 		 * is removed from the orphan list in that case.
1253 		 */
1254 		if (inode->i_nlink)
1255 			ext4_orphan_del(NULL, inode);
1256 	}
1257 
1258 	return ret ? ret : copied;
1259 }
1260 
1261 /*
1262  * Reserve a single cluster located at lblock
1263  */
1264 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1265 {
1266 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1267 	struct ext4_inode_info *ei = EXT4_I(inode);
1268 	unsigned int md_needed;
1269 	int ret;
1270 
1271 	/*
1272 	 * We will charge metadata quota at writeout time; this saves
1273 	 * us from metadata over-estimation, though we may go over by
1274 	 * a small amount in the end.  Here we just reserve for data.
1275 	 */
1276 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1277 	if (ret)
1278 		return ret;
1279 
1280 	/*
1281 	 * recalculate the amount of metadata blocks to reserve
1282 	 * in order to allocate nrblocks
1283 	 * worse case is one extent per block
1284 	 */
1285 	spin_lock(&ei->i_block_reservation_lock);
1286 	/*
1287 	 * ext4_calc_metadata_amount() has side effects, which we have
1288 	 * to be prepared undo if we fail to claim space.
1289 	 */
1290 	md_needed = 0;
1291 	trace_ext4_da_reserve_space(inode, 0);
1292 
1293 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1294 		spin_unlock(&ei->i_block_reservation_lock);
1295 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1296 		return -ENOSPC;
1297 	}
1298 	ei->i_reserved_data_blocks++;
1299 	spin_unlock(&ei->i_block_reservation_lock);
1300 
1301 	return 0;       /* success */
1302 }
1303 
1304 static void ext4_da_release_space(struct inode *inode, int to_free)
1305 {
1306 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1307 	struct ext4_inode_info *ei = EXT4_I(inode);
1308 
1309 	if (!to_free)
1310 		return;		/* Nothing to release, exit */
1311 
1312 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1313 
1314 	trace_ext4_da_release_space(inode, to_free);
1315 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1316 		/*
1317 		 * if there aren't enough reserved blocks, then the
1318 		 * counter is messed up somewhere.  Since this
1319 		 * function is called from invalidate page, it's
1320 		 * harmless to return without any action.
1321 		 */
1322 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1323 			 "ino %lu, to_free %d with only %d reserved "
1324 			 "data blocks", inode->i_ino, to_free,
1325 			 ei->i_reserved_data_blocks);
1326 		WARN_ON(1);
1327 		to_free = ei->i_reserved_data_blocks;
1328 	}
1329 	ei->i_reserved_data_blocks -= to_free;
1330 
1331 	/* update fs dirty data blocks counter */
1332 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1333 
1334 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1335 
1336 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1337 }
1338 
1339 static void ext4_da_page_release_reservation(struct page *page,
1340 					     unsigned int offset,
1341 					     unsigned int length)
1342 {
1343 	int to_release = 0;
1344 	struct buffer_head *head, *bh;
1345 	unsigned int curr_off = 0;
1346 	struct inode *inode = page->mapping->host;
1347 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1348 	unsigned int stop = offset + length;
1349 	int num_clusters;
1350 	ext4_fsblk_t lblk;
1351 
1352 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1353 
1354 	head = page_buffers(page);
1355 	bh = head;
1356 	do {
1357 		unsigned int next_off = curr_off + bh->b_size;
1358 
1359 		if (next_off > stop)
1360 			break;
1361 
1362 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1363 			to_release++;
1364 			clear_buffer_delay(bh);
1365 		}
1366 		curr_off = next_off;
1367 	} while ((bh = bh->b_this_page) != head);
1368 
1369 	if (to_release) {
1370 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1371 		ext4_es_remove_extent(inode, lblk, to_release);
1372 	}
1373 
1374 	/* If we have released all the blocks belonging to a cluster, then we
1375 	 * need to release the reserved space for that cluster. */
1376 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1377 	while (num_clusters > 0) {
1378 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1379 			((num_clusters - 1) << sbi->s_cluster_bits);
1380 		if (sbi->s_cluster_ratio == 1 ||
1381 		    !ext4_find_delalloc_cluster(inode, lblk))
1382 			ext4_da_release_space(inode, 1);
1383 
1384 		num_clusters--;
1385 	}
1386 }
1387 
1388 /*
1389  * Delayed allocation stuff
1390  */
1391 
1392 struct mpage_da_data {
1393 	struct inode *inode;
1394 	struct writeback_control *wbc;
1395 
1396 	pgoff_t first_page;	/* The first page to write */
1397 	pgoff_t next_page;	/* Current page to examine */
1398 	pgoff_t last_page;	/* Last page to examine */
1399 	/*
1400 	 * Extent to map - this can be after first_page because that can be
1401 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1402 	 * is delalloc or unwritten.
1403 	 */
1404 	struct ext4_map_blocks map;
1405 	struct ext4_io_submit io_submit;	/* IO submission data */
1406 };
1407 
1408 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1409 				       bool invalidate)
1410 {
1411 	int nr_pages, i;
1412 	pgoff_t index, end;
1413 	struct pagevec pvec;
1414 	struct inode *inode = mpd->inode;
1415 	struct address_space *mapping = inode->i_mapping;
1416 
1417 	/* This is necessary when next_page == 0. */
1418 	if (mpd->first_page >= mpd->next_page)
1419 		return;
1420 
1421 	index = mpd->first_page;
1422 	end   = mpd->next_page - 1;
1423 	if (invalidate) {
1424 		ext4_lblk_t start, last;
1425 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1426 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1427 		ext4_es_remove_extent(inode, start, last - start + 1);
1428 	}
1429 
1430 	pagevec_init(&pvec, 0);
1431 	while (index <= end) {
1432 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1433 		if (nr_pages == 0)
1434 			break;
1435 		for (i = 0; i < nr_pages; i++) {
1436 			struct page *page = pvec.pages[i];
1437 			if (page->index > end)
1438 				break;
1439 			BUG_ON(!PageLocked(page));
1440 			BUG_ON(PageWriteback(page));
1441 			if (invalidate) {
1442 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1443 				ClearPageUptodate(page);
1444 			}
1445 			unlock_page(page);
1446 		}
1447 		index = pvec.pages[nr_pages - 1]->index + 1;
1448 		pagevec_release(&pvec);
1449 	}
1450 }
1451 
1452 static void ext4_print_free_blocks(struct inode *inode)
1453 {
1454 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1455 	struct super_block *sb = inode->i_sb;
1456 	struct ext4_inode_info *ei = EXT4_I(inode);
1457 
1458 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1459 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1460 			ext4_count_free_clusters(sb)));
1461 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1462 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1463 	       (long long) EXT4_C2B(EXT4_SB(sb),
1464 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1465 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1466 	       (long long) EXT4_C2B(EXT4_SB(sb),
1467 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1468 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1469 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1470 		 ei->i_reserved_data_blocks);
1471 	return;
1472 }
1473 
1474 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1475 {
1476 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1477 }
1478 
1479 /*
1480  * This function is grabs code from the very beginning of
1481  * ext4_map_blocks, but assumes that the caller is from delayed write
1482  * time. This function looks up the requested blocks and sets the
1483  * buffer delay bit under the protection of i_data_sem.
1484  */
1485 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1486 			      struct ext4_map_blocks *map,
1487 			      struct buffer_head *bh)
1488 {
1489 	struct extent_status es;
1490 	int retval;
1491 	sector_t invalid_block = ~((sector_t) 0xffff);
1492 #ifdef ES_AGGRESSIVE_TEST
1493 	struct ext4_map_blocks orig_map;
1494 
1495 	memcpy(&orig_map, map, sizeof(*map));
1496 #endif
1497 
1498 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1499 		invalid_block = ~0;
1500 
1501 	map->m_flags = 0;
1502 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1503 		  "logical block %lu\n", inode->i_ino, map->m_len,
1504 		  (unsigned long) map->m_lblk);
1505 
1506 	/* Lookup extent status tree firstly */
1507 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1508 		if (ext4_es_is_hole(&es)) {
1509 			retval = 0;
1510 			down_read(&EXT4_I(inode)->i_data_sem);
1511 			goto add_delayed;
1512 		}
1513 
1514 		/*
1515 		 * Delayed extent could be allocated by fallocate.
1516 		 * So we need to check it.
1517 		 */
1518 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1519 			map_bh(bh, inode->i_sb, invalid_block);
1520 			set_buffer_new(bh);
1521 			set_buffer_delay(bh);
1522 			return 0;
1523 		}
1524 
1525 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1526 		retval = es.es_len - (iblock - es.es_lblk);
1527 		if (retval > map->m_len)
1528 			retval = map->m_len;
1529 		map->m_len = retval;
1530 		if (ext4_es_is_written(&es))
1531 			map->m_flags |= EXT4_MAP_MAPPED;
1532 		else if (ext4_es_is_unwritten(&es))
1533 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1534 		else
1535 			BUG_ON(1);
1536 
1537 #ifdef ES_AGGRESSIVE_TEST
1538 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1539 #endif
1540 		return retval;
1541 	}
1542 
1543 	/*
1544 	 * Try to see if we can get the block without requesting a new
1545 	 * file system block.
1546 	 */
1547 	down_read(&EXT4_I(inode)->i_data_sem);
1548 	if (ext4_has_inline_data(inode))
1549 		retval = 0;
1550 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1551 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1552 	else
1553 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1554 
1555 add_delayed:
1556 	if (retval == 0) {
1557 		int ret;
1558 		/*
1559 		 * XXX: __block_prepare_write() unmaps passed block,
1560 		 * is it OK?
1561 		 */
1562 		/*
1563 		 * If the block was allocated from previously allocated cluster,
1564 		 * then we don't need to reserve it again. However we still need
1565 		 * to reserve metadata for every block we're going to write.
1566 		 */
1567 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1568 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1569 			ret = ext4_da_reserve_space(inode, iblock);
1570 			if (ret) {
1571 				/* not enough space to reserve */
1572 				retval = ret;
1573 				goto out_unlock;
1574 			}
1575 		}
1576 
1577 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1578 					    ~0, EXTENT_STATUS_DELAYED);
1579 		if (ret) {
1580 			retval = ret;
1581 			goto out_unlock;
1582 		}
1583 
1584 		map_bh(bh, inode->i_sb, invalid_block);
1585 		set_buffer_new(bh);
1586 		set_buffer_delay(bh);
1587 	} else if (retval > 0) {
1588 		int ret;
1589 		unsigned int status;
1590 
1591 		if (unlikely(retval != map->m_len)) {
1592 			ext4_warning(inode->i_sb,
1593 				     "ES len assertion failed for inode "
1594 				     "%lu: retval %d != map->m_len %d",
1595 				     inode->i_ino, retval, map->m_len);
1596 			WARN_ON(1);
1597 		}
1598 
1599 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1600 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1601 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1602 					    map->m_pblk, status);
1603 		if (ret != 0)
1604 			retval = ret;
1605 	}
1606 
1607 out_unlock:
1608 	up_read((&EXT4_I(inode)->i_data_sem));
1609 
1610 	return retval;
1611 }
1612 
1613 /*
1614  * This is a special get_block_t callback which is used by
1615  * ext4_da_write_begin().  It will either return mapped block or
1616  * reserve space for a single block.
1617  *
1618  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1619  * We also have b_blocknr = -1 and b_bdev initialized properly
1620  *
1621  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1622  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1623  * initialized properly.
1624  */
1625 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1626 			   struct buffer_head *bh, int create)
1627 {
1628 	struct ext4_map_blocks map;
1629 	int ret = 0;
1630 
1631 	BUG_ON(create == 0);
1632 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1633 
1634 	map.m_lblk = iblock;
1635 	map.m_len = 1;
1636 
1637 	/*
1638 	 * first, we need to know whether the block is allocated already
1639 	 * preallocated blocks are unmapped but should treated
1640 	 * the same as allocated blocks.
1641 	 */
1642 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1643 	if (ret <= 0)
1644 		return ret;
1645 
1646 	map_bh(bh, inode->i_sb, map.m_pblk);
1647 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1648 
1649 	if (buffer_unwritten(bh)) {
1650 		/* A delayed write to unwritten bh should be marked
1651 		 * new and mapped.  Mapped ensures that we don't do
1652 		 * get_block multiple times when we write to the same
1653 		 * offset and new ensures that we do proper zero out
1654 		 * for partial write.
1655 		 */
1656 		set_buffer_new(bh);
1657 		set_buffer_mapped(bh);
1658 	}
1659 	return 0;
1660 }
1661 
1662 static int bget_one(handle_t *handle, struct buffer_head *bh)
1663 {
1664 	get_bh(bh);
1665 	return 0;
1666 }
1667 
1668 static int bput_one(handle_t *handle, struct buffer_head *bh)
1669 {
1670 	put_bh(bh);
1671 	return 0;
1672 }
1673 
1674 static int __ext4_journalled_writepage(struct page *page,
1675 				       unsigned int len)
1676 {
1677 	struct address_space *mapping = page->mapping;
1678 	struct inode *inode = mapping->host;
1679 	struct buffer_head *page_bufs = NULL;
1680 	handle_t *handle = NULL;
1681 	int ret = 0, err = 0;
1682 	int inline_data = ext4_has_inline_data(inode);
1683 	struct buffer_head *inode_bh = NULL;
1684 
1685 	ClearPageChecked(page);
1686 
1687 	if (inline_data) {
1688 		BUG_ON(page->index != 0);
1689 		BUG_ON(len > ext4_get_max_inline_size(inode));
1690 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1691 		if (inode_bh == NULL)
1692 			goto out;
1693 	} else {
1694 		page_bufs = page_buffers(page);
1695 		if (!page_bufs) {
1696 			BUG();
1697 			goto out;
1698 		}
1699 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1700 				       NULL, bget_one);
1701 	}
1702 	/* As soon as we unlock the page, it can go away, but we have
1703 	 * references to buffers so we are safe */
1704 	unlock_page(page);
1705 
1706 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1707 				    ext4_writepage_trans_blocks(inode));
1708 	if (IS_ERR(handle)) {
1709 		ret = PTR_ERR(handle);
1710 		goto out;
1711 	}
1712 
1713 	BUG_ON(!ext4_handle_valid(handle));
1714 
1715 	if (inline_data) {
1716 		BUFFER_TRACE(inode_bh, "get write access");
1717 		ret = ext4_journal_get_write_access(handle, inode_bh);
1718 
1719 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1720 
1721 	} else {
1722 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1723 					     do_journal_get_write_access);
1724 
1725 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1726 					     write_end_fn);
1727 	}
1728 	if (ret == 0)
1729 		ret = err;
1730 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1731 	err = ext4_journal_stop(handle);
1732 	if (!ret)
1733 		ret = err;
1734 
1735 	if (!ext4_has_inline_data(inode))
1736 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1737 				       NULL, bput_one);
1738 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1739 out:
1740 	brelse(inode_bh);
1741 	return ret;
1742 }
1743 
1744 /*
1745  * Note that we don't need to start a transaction unless we're journaling data
1746  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1747  * need to file the inode to the transaction's list in ordered mode because if
1748  * we are writing back data added by write(), the inode is already there and if
1749  * we are writing back data modified via mmap(), no one guarantees in which
1750  * transaction the data will hit the disk. In case we are journaling data, we
1751  * cannot start transaction directly because transaction start ranks above page
1752  * lock so we have to do some magic.
1753  *
1754  * This function can get called via...
1755  *   - ext4_writepages after taking page lock (have journal handle)
1756  *   - journal_submit_inode_data_buffers (no journal handle)
1757  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1758  *   - grab_page_cache when doing write_begin (have journal handle)
1759  *
1760  * We don't do any block allocation in this function. If we have page with
1761  * multiple blocks we need to write those buffer_heads that are mapped. This
1762  * is important for mmaped based write. So if we do with blocksize 1K
1763  * truncate(f, 1024);
1764  * a = mmap(f, 0, 4096);
1765  * a[0] = 'a';
1766  * truncate(f, 4096);
1767  * we have in the page first buffer_head mapped via page_mkwrite call back
1768  * but other buffer_heads would be unmapped but dirty (dirty done via the
1769  * do_wp_page). So writepage should write the first block. If we modify
1770  * the mmap area beyond 1024 we will again get a page_fault and the
1771  * page_mkwrite callback will do the block allocation and mark the
1772  * buffer_heads mapped.
1773  *
1774  * We redirty the page if we have any buffer_heads that is either delay or
1775  * unwritten in the page.
1776  *
1777  * We can get recursively called as show below.
1778  *
1779  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1780  *		ext4_writepage()
1781  *
1782  * But since we don't do any block allocation we should not deadlock.
1783  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1784  */
1785 static int ext4_writepage(struct page *page,
1786 			  struct writeback_control *wbc)
1787 {
1788 	int ret = 0;
1789 	loff_t size;
1790 	unsigned int len;
1791 	struct buffer_head *page_bufs = NULL;
1792 	struct inode *inode = page->mapping->host;
1793 	struct ext4_io_submit io_submit;
1794 	bool keep_towrite = false;
1795 
1796 	trace_ext4_writepage(page);
1797 	size = i_size_read(inode);
1798 	if (page->index == size >> PAGE_CACHE_SHIFT)
1799 		len = size & ~PAGE_CACHE_MASK;
1800 	else
1801 		len = PAGE_CACHE_SIZE;
1802 
1803 	page_bufs = page_buffers(page);
1804 	/*
1805 	 * We cannot do block allocation or other extent handling in this
1806 	 * function. If there are buffers needing that, we have to redirty
1807 	 * the page. But we may reach here when we do a journal commit via
1808 	 * journal_submit_inode_data_buffers() and in that case we must write
1809 	 * allocated buffers to achieve data=ordered mode guarantees.
1810 	 */
1811 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1812 				   ext4_bh_delay_or_unwritten)) {
1813 		redirty_page_for_writepage(wbc, page);
1814 		if (current->flags & PF_MEMALLOC) {
1815 			/*
1816 			 * For memory cleaning there's no point in writing only
1817 			 * some buffers. So just bail out. Warn if we came here
1818 			 * from direct reclaim.
1819 			 */
1820 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1821 							== PF_MEMALLOC);
1822 			unlock_page(page);
1823 			return 0;
1824 		}
1825 		keep_towrite = true;
1826 	}
1827 
1828 	if (PageChecked(page) && ext4_should_journal_data(inode))
1829 		/*
1830 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1831 		 * doesn't seem much point in redirtying the page here.
1832 		 */
1833 		return __ext4_journalled_writepage(page, len);
1834 
1835 	ext4_io_submit_init(&io_submit, wbc);
1836 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1837 	if (!io_submit.io_end) {
1838 		redirty_page_for_writepage(wbc, page);
1839 		unlock_page(page);
1840 		return -ENOMEM;
1841 	}
1842 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1843 	ext4_io_submit(&io_submit);
1844 	/* Drop io_end reference we got from init */
1845 	ext4_put_io_end_defer(io_submit.io_end);
1846 	return ret;
1847 }
1848 
1849 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1850 {
1851 	int len;
1852 	loff_t size = i_size_read(mpd->inode);
1853 	int err;
1854 
1855 	BUG_ON(page->index != mpd->first_page);
1856 	if (page->index == size >> PAGE_CACHE_SHIFT)
1857 		len = size & ~PAGE_CACHE_MASK;
1858 	else
1859 		len = PAGE_CACHE_SIZE;
1860 	clear_page_dirty_for_io(page);
1861 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1862 	if (!err)
1863 		mpd->wbc->nr_to_write--;
1864 	mpd->first_page++;
1865 
1866 	return err;
1867 }
1868 
1869 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1870 
1871 /*
1872  * mballoc gives us at most this number of blocks...
1873  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1874  * The rest of mballoc seems to handle chunks up to full group size.
1875  */
1876 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1877 
1878 /*
1879  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1880  *
1881  * @mpd - extent of blocks
1882  * @lblk - logical number of the block in the file
1883  * @bh - buffer head we want to add to the extent
1884  *
1885  * The function is used to collect contig. blocks in the same state. If the
1886  * buffer doesn't require mapping for writeback and we haven't started the
1887  * extent of buffers to map yet, the function returns 'true' immediately - the
1888  * caller can write the buffer right away. Otherwise the function returns true
1889  * if the block has been added to the extent, false if the block couldn't be
1890  * added.
1891  */
1892 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1893 				   struct buffer_head *bh)
1894 {
1895 	struct ext4_map_blocks *map = &mpd->map;
1896 
1897 	/* Buffer that doesn't need mapping for writeback? */
1898 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1899 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1900 		/* So far no extent to map => we write the buffer right away */
1901 		if (map->m_len == 0)
1902 			return true;
1903 		return false;
1904 	}
1905 
1906 	/* First block in the extent? */
1907 	if (map->m_len == 0) {
1908 		map->m_lblk = lblk;
1909 		map->m_len = 1;
1910 		map->m_flags = bh->b_state & BH_FLAGS;
1911 		return true;
1912 	}
1913 
1914 	/* Don't go larger than mballoc is willing to allocate */
1915 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1916 		return false;
1917 
1918 	/* Can we merge the block to our big extent? */
1919 	if (lblk == map->m_lblk + map->m_len &&
1920 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1921 		map->m_len++;
1922 		return true;
1923 	}
1924 	return false;
1925 }
1926 
1927 /*
1928  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1929  *
1930  * @mpd - extent of blocks for mapping
1931  * @head - the first buffer in the page
1932  * @bh - buffer we should start processing from
1933  * @lblk - logical number of the block in the file corresponding to @bh
1934  *
1935  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1936  * the page for IO if all buffers in this page were mapped and there's no
1937  * accumulated extent of buffers to map or add buffers in the page to the
1938  * extent of buffers to map. The function returns 1 if the caller can continue
1939  * by processing the next page, 0 if it should stop adding buffers to the
1940  * extent to map because we cannot extend it anymore. It can also return value
1941  * < 0 in case of error during IO submission.
1942  */
1943 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1944 				   struct buffer_head *head,
1945 				   struct buffer_head *bh,
1946 				   ext4_lblk_t lblk)
1947 {
1948 	struct inode *inode = mpd->inode;
1949 	int err;
1950 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1951 							>> inode->i_blkbits;
1952 
1953 	do {
1954 		BUG_ON(buffer_locked(bh));
1955 
1956 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1957 			/* Found extent to map? */
1958 			if (mpd->map.m_len)
1959 				return 0;
1960 			/* Everything mapped so far and we hit EOF */
1961 			break;
1962 		}
1963 	} while (lblk++, (bh = bh->b_this_page) != head);
1964 	/* So far everything mapped? Submit the page for IO. */
1965 	if (mpd->map.m_len == 0) {
1966 		err = mpage_submit_page(mpd, head->b_page);
1967 		if (err < 0)
1968 			return err;
1969 	}
1970 	return lblk < blocks;
1971 }
1972 
1973 /*
1974  * mpage_map_buffers - update buffers corresponding to changed extent and
1975  *		       submit fully mapped pages for IO
1976  *
1977  * @mpd - description of extent to map, on return next extent to map
1978  *
1979  * Scan buffers corresponding to changed extent (we expect corresponding pages
1980  * to be already locked) and update buffer state according to new extent state.
1981  * We map delalloc buffers to their physical location, clear unwritten bits,
1982  * and mark buffers as uninit when we perform writes to unwritten extents
1983  * and do extent conversion after IO is finished. If the last page is not fully
1984  * mapped, we update @map to the next extent in the last page that needs
1985  * mapping. Otherwise we submit the page for IO.
1986  */
1987 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1988 {
1989 	struct pagevec pvec;
1990 	int nr_pages, i;
1991 	struct inode *inode = mpd->inode;
1992 	struct buffer_head *head, *bh;
1993 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1994 	pgoff_t start, end;
1995 	ext4_lblk_t lblk;
1996 	sector_t pblock;
1997 	int err;
1998 
1999 	start = mpd->map.m_lblk >> bpp_bits;
2000 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2001 	lblk = start << bpp_bits;
2002 	pblock = mpd->map.m_pblk;
2003 
2004 	pagevec_init(&pvec, 0);
2005 	while (start <= end) {
2006 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2007 					  PAGEVEC_SIZE);
2008 		if (nr_pages == 0)
2009 			break;
2010 		for (i = 0; i < nr_pages; i++) {
2011 			struct page *page = pvec.pages[i];
2012 
2013 			if (page->index > end)
2014 				break;
2015 			/* Up to 'end' pages must be contiguous */
2016 			BUG_ON(page->index != start);
2017 			bh = head = page_buffers(page);
2018 			do {
2019 				if (lblk < mpd->map.m_lblk)
2020 					continue;
2021 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2022 					/*
2023 					 * Buffer after end of mapped extent.
2024 					 * Find next buffer in the page to map.
2025 					 */
2026 					mpd->map.m_len = 0;
2027 					mpd->map.m_flags = 0;
2028 					/*
2029 					 * FIXME: If dioread_nolock supports
2030 					 * blocksize < pagesize, we need to make
2031 					 * sure we add size mapped so far to
2032 					 * io_end->size as the following call
2033 					 * can submit the page for IO.
2034 					 */
2035 					err = mpage_process_page_bufs(mpd, head,
2036 								      bh, lblk);
2037 					pagevec_release(&pvec);
2038 					if (err > 0)
2039 						err = 0;
2040 					return err;
2041 				}
2042 				if (buffer_delay(bh)) {
2043 					clear_buffer_delay(bh);
2044 					bh->b_blocknr = pblock++;
2045 				}
2046 				clear_buffer_unwritten(bh);
2047 			} while (lblk++, (bh = bh->b_this_page) != head);
2048 
2049 			/*
2050 			 * FIXME: This is going to break if dioread_nolock
2051 			 * supports blocksize < pagesize as we will try to
2052 			 * convert potentially unmapped parts of inode.
2053 			 */
2054 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2055 			/* Page fully mapped - let IO run! */
2056 			err = mpage_submit_page(mpd, page);
2057 			if (err < 0) {
2058 				pagevec_release(&pvec);
2059 				return err;
2060 			}
2061 			start++;
2062 		}
2063 		pagevec_release(&pvec);
2064 	}
2065 	/* Extent fully mapped and matches with page boundary. We are done. */
2066 	mpd->map.m_len = 0;
2067 	mpd->map.m_flags = 0;
2068 	return 0;
2069 }
2070 
2071 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2072 {
2073 	struct inode *inode = mpd->inode;
2074 	struct ext4_map_blocks *map = &mpd->map;
2075 	int get_blocks_flags;
2076 	int err, dioread_nolock;
2077 
2078 	trace_ext4_da_write_pages_extent(inode, map);
2079 	/*
2080 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2081 	 * to convert an unwritten extent to be initialized (in the case
2082 	 * where we have written into one or more preallocated blocks).  It is
2083 	 * possible that we're going to need more metadata blocks than
2084 	 * previously reserved. However we must not fail because we're in
2085 	 * writeback and there is nothing we can do about it so it might result
2086 	 * in data loss.  So use reserved blocks to allocate metadata if
2087 	 * possible.
2088 	 *
2089 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2090 	 * the blocks in question are delalloc blocks.  This indicates
2091 	 * that the blocks and quotas has already been checked when
2092 	 * the data was copied into the page cache.
2093 	 */
2094 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2095 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2096 	dioread_nolock = ext4_should_dioread_nolock(inode);
2097 	if (dioread_nolock)
2098 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2099 	if (map->m_flags & (1 << BH_Delay))
2100 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2101 
2102 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2103 	if (err < 0)
2104 		return err;
2105 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2106 		if (!mpd->io_submit.io_end->handle &&
2107 		    ext4_handle_valid(handle)) {
2108 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2109 			handle->h_rsv_handle = NULL;
2110 		}
2111 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2112 	}
2113 
2114 	BUG_ON(map->m_len == 0);
2115 	if (map->m_flags & EXT4_MAP_NEW) {
2116 		struct block_device *bdev = inode->i_sb->s_bdev;
2117 		int i;
2118 
2119 		for (i = 0; i < map->m_len; i++)
2120 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2121 	}
2122 	return 0;
2123 }
2124 
2125 /*
2126  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2127  *				 mpd->len and submit pages underlying it for IO
2128  *
2129  * @handle - handle for journal operations
2130  * @mpd - extent to map
2131  * @give_up_on_write - we set this to true iff there is a fatal error and there
2132  *                     is no hope of writing the data. The caller should discard
2133  *                     dirty pages to avoid infinite loops.
2134  *
2135  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2136  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2137  * them to initialized or split the described range from larger unwritten
2138  * extent. Note that we need not map all the described range since allocation
2139  * can return less blocks or the range is covered by more unwritten extents. We
2140  * cannot map more because we are limited by reserved transaction credits. On
2141  * the other hand we always make sure that the last touched page is fully
2142  * mapped so that it can be written out (and thus forward progress is
2143  * guaranteed). After mapping we submit all mapped pages for IO.
2144  */
2145 static int mpage_map_and_submit_extent(handle_t *handle,
2146 				       struct mpage_da_data *mpd,
2147 				       bool *give_up_on_write)
2148 {
2149 	struct inode *inode = mpd->inode;
2150 	struct ext4_map_blocks *map = &mpd->map;
2151 	int err;
2152 	loff_t disksize;
2153 	int progress = 0;
2154 
2155 	mpd->io_submit.io_end->offset =
2156 				((loff_t)map->m_lblk) << inode->i_blkbits;
2157 	do {
2158 		err = mpage_map_one_extent(handle, mpd);
2159 		if (err < 0) {
2160 			struct super_block *sb = inode->i_sb;
2161 
2162 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2163 				goto invalidate_dirty_pages;
2164 			/*
2165 			 * Let the uper layers retry transient errors.
2166 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2167 			 * is non-zero, a commit should free up blocks.
2168 			 */
2169 			if ((err == -ENOMEM) ||
2170 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2171 				if (progress)
2172 					goto update_disksize;
2173 				return err;
2174 			}
2175 			ext4_msg(sb, KERN_CRIT,
2176 				 "Delayed block allocation failed for "
2177 				 "inode %lu at logical offset %llu with"
2178 				 " max blocks %u with error %d",
2179 				 inode->i_ino,
2180 				 (unsigned long long)map->m_lblk,
2181 				 (unsigned)map->m_len, -err);
2182 			ext4_msg(sb, KERN_CRIT,
2183 				 "This should not happen!! Data will "
2184 				 "be lost\n");
2185 			if (err == -ENOSPC)
2186 				ext4_print_free_blocks(inode);
2187 		invalidate_dirty_pages:
2188 			*give_up_on_write = true;
2189 			return err;
2190 		}
2191 		progress = 1;
2192 		/*
2193 		 * Update buffer state, submit mapped pages, and get us new
2194 		 * extent to map
2195 		 */
2196 		err = mpage_map_and_submit_buffers(mpd);
2197 		if (err < 0)
2198 			goto update_disksize;
2199 	} while (map->m_len);
2200 
2201 update_disksize:
2202 	/*
2203 	 * Update on-disk size after IO is submitted.  Races with
2204 	 * truncate are avoided by checking i_size under i_data_sem.
2205 	 */
2206 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2207 	if (disksize > EXT4_I(inode)->i_disksize) {
2208 		int err2;
2209 		loff_t i_size;
2210 
2211 		down_write(&EXT4_I(inode)->i_data_sem);
2212 		i_size = i_size_read(inode);
2213 		if (disksize > i_size)
2214 			disksize = i_size;
2215 		if (disksize > EXT4_I(inode)->i_disksize)
2216 			EXT4_I(inode)->i_disksize = disksize;
2217 		err2 = ext4_mark_inode_dirty(handle, inode);
2218 		up_write(&EXT4_I(inode)->i_data_sem);
2219 		if (err2)
2220 			ext4_error(inode->i_sb,
2221 				   "Failed to mark inode %lu dirty",
2222 				   inode->i_ino);
2223 		if (!err)
2224 			err = err2;
2225 	}
2226 	return err;
2227 }
2228 
2229 /*
2230  * Calculate the total number of credits to reserve for one writepages
2231  * iteration. This is called from ext4_writepages(). We map an extent of
2232  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2233  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2234  * bpp - 1 blocks in bpp different extents.
2235  */
2236 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2237 {
2238 	int bpp = ext4_journal_blocks_per_page(inode);
2239 
2240 	return ext4_meta_trans_blocks(inode,
2241 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2242 }
2243 
2244 /*
2245  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2246  * 				 and underlying extent to map
2247  *
2248  * @mpd - where to look for pages
2249  *
2250  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2251  * IO immediately. When we find a page which isn't mapped we start accumulating
2252  * extent of buffers underlying these pages that needs mapping (formed by
2253  * either delayed or unwritten buffers). We also lock the pages containing
2254  * these buffers. The extent found is returned in @mpd structure (starting at
2255  * mpd->lblk with length mpd->len blocks).
2256  *
2257  * Note that this function can attach bios to one io_end structure which are
2258  * neither logically nor physically contiguous. Although it may seem as an
2259  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2260  * case as we need to track IO to all buffers underlying a page in one io_end.
2261  */
2262 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2263 {
2264 	struct address_space *mapping = mpd->inode->i_mapping;
2265 	struct pagevec pvec;
2266 	unsigned int nr_pages;
2267 	long left = mpd->wbc->nr_to_write;
2268 	pgoff_t index = mpd->first_page;
2269 	pgoff_t end = mpd->last_page;
2270 	int tag;
2271 	int i, err = 0;
2272 	int blkbits = mpd->inode->i_blkbits;
2273 	ext4_lblk_t lblk;
2274 	struct buffer_head *head;
2275 
2276 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2277 		tag = PAGECACHE_TAG_TOWRITE;
2278 	else
2279 		tag = PAGECACHE_TAG_DIRTY;
2280 
2281 	pagevec_init(&pvec, 0);
2282 	mpd->map.m_len = 0;
2283 	mpd->next_page = index;
2284 	while (index <= end) {
2285 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2286 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2287 		if (nr_pages == 0)
2288 			goto out;
2289 
2290 		for (i = 0; i < nr_pages; i++) {
2291 			struct page *page = pvec.pages[i];
2292 
2293 			/*
2294 			 * At this point, the page may be truncated or
2295 			 * invalidated (changing page->mapping to NULL), or
2296 			 * even swizzled back from swapper_space to tmpfs file
2297 			 * mapping. However, page->index will not change
2298 			 * because we have a reference on the page.
2299 			 */
2300 			if (page->index > end)
2301 				goto out;
2302 
2303 			/*
2304 			 * Accumulated enough dirty pages? This doesn't apply
2305 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2306 			 * keep going because someone may be concurrently
2307 			 * dirtying pages, and we might have synced a lot of
2308 			 * newly appeared dirty pages, but have not synced all
2309 			 * of the old dirty pages.
2310 			 */
2311 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2312 				goto out;
2313 
2314 			/* If we can't merge this page, we are done. */
2315 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2316 				goto out;
2317 
2318 			lock_page(page);
2319 			/*
2320 			 * If the page is no longer dirty, or its mapping no
2321 			 * longer corresponds to inode we are writing (which
2322 			 * means it has been truncated or invalidated), or the
2323 			 * page is already under writeback and we are not doing
2324 			 * a data integrity writeback, skip the page
2325 			 */
2326 			if (!PageDirty(page) ||
2327 			    (PageWriteback(page) &&
2328 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2329 			    unlikely(page->mapping != mapping)) {
2330 				unlock_page(page);
2331 				continue;
2332 			}
2333 
2334 			wait_on_page_writeback(page);
2335 			BUG_ON(PageWriteback(page));
2336 
2337 			if (mpd->map.m_len == 0)
2338 				mpd->first_page = page->index;
2339 			mpd->next_page = page->index + 1;
2340 			/* Add all dirty buffers to mpd */
2341 			lblk = ((ext4_lblk_t)page->index) <<
2342 				(PAGE_CACHE_SHIFT - blkbits);
2343 			head = page_buffers(page);
2344 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2345 			if (err <= 0)
2346 				goto out;
2347 			err = 0;
2348 			left--;
2349 		}
2350 		pagevec_release(&pvec);
2351 		cond_resched();
2352 	}
2353 	return 0;
2354 out:
2355 	pagevec_release(&pvec);
2356 	return err;
2357 }
2358 
2359 static int __writepage(struct page *page, struct writeback_control *wbc,
2360 		       void *data)
2361 {
2362 	struct address_space *mapping = data;
2363 	int ret = ext4_writepage(page, wbc);
2364 	mapping_set_error(mapping, ret);
2365 	return ret;
2366 }
2367 
2368 static int ext4_writepages(struct address_space *mapping,
2369 			   struct writeback_control *wbc)
2370 {
2371 	pgoff_t	writeback_index = 0;
2372 	long nr_to_write = wbc->nr_to_write;
2373 	int range_whole = 0;
2374 	int cycled = 1;
2375 	handle_t *handle = NULL;
2376 	struct mpage_da_data mpd;
2377 	struct inode *inode = mapping->host;
2378 	int needed_blocks, rsv_blocks = 0, ret = 0;
2379 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2380 	bool done;
2381 	struct blk_plug plug;
2382 	bool give_up_on_write = false;
2383 
2384 	trace_ext4_writepages(inode, wbc);
2385 
2386 	/*
2387 	 * No pages to write? This is mainly a kludge to avoid starting
2388 	 * a transaction for special inodes like journal inode on last iput()
2389 	 * because that could violate lock ordering on umount
2390 	 */
2391 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2392 		goto out_writepages;
2393 
2394 	if (ext4_should_journal_data(inode)) {
2395 		struct blk_plug plug;
2396 
2397 		blk_start_plug(&plug);
2398 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2399 		blk_finish_plug(&plug);
2400 		goto out_writepages;
2401 	}
2402 
2403 	/*
2404 	 * If the filesystem has aborted, it is read-only, so return
2405 	 * right away instead of dumping stack traces later on that
2406 	 * will obscure the real source of the problem.  We test
2407 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2408 	 * the latter could be true if the filesystem is mounted
2409 	 * read-only, and in that case, ext4_writepages should
2410 	 * *never* be called, so if that ever happens, we would want
2411 	 * the stack trace.
2412 	 */
2413 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2414 		ret = -EROFS;
2415 		goto out_writepages;
2416 	}
2417 
2418 	if (ext4_should_dioread_nolock(inode)) {
2419 		/*
2420 		 * We may need to convert up to one extent per block in
2421 		 * the page and we may dirty the inode.
2422 		 */
2423 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2424 	}
2425 
2426 	/*
2427 	 * If we have inline data and arrive here, it means that
2428 	 * we will soon create the block for the 1st page, so
2429 	 * we'd better clear the inline data here.
2430 	 */
2431 	if (ext4_has_inline_data(inode)) {
2432 		/* Just inode will be modified... */
2433 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2434 		if (IS_ERR(handle)) {
2435 			ret = PTR_ERR(handle);
2436 			goto out_writepages;
2437 		}
2438 		BUG_ON(ext4_test_inode_state(inode,
2439 				EXT4_STATE_MAY_INLINE_DATA));
2440 		ext4_destroy_inline_data(handle, inode);
2441 		ext4_journal_stop(handle);
2442 	}
2443 
2444 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2445 		range_whole = 1;
2446 
2447 	if (wbc->range_cyclic) {
2448 		writeback_index = mapping->writeback_index;
2449 		if (writeback_index)
2450 			cycled = 0;
2451 		mpd.first_page = writeback_index;
2452 		mpd.last_page = -1;
2453 	} else {
2454 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2455 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2456 	}
2457 
2458 	mpd.inode = inode;
2459 	mpd.wbc = wbc;
2460 	ext4_io_submit_init(&mpd.io_submit, wbc);
2461 retry:
2462 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2463 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2464 	done = false;
2465 	blk_start_plug(&plug);
2466 	while (!done && mpd.first_page <= mpd.last_page) {
2467 		/* For each extent of pages we use new io_end */
2468 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2469 		if (!mpd.io_submit.io_end) {
2470 			ret = -ENOMEM;
2471 			break;
2472 		}
2473 
2474 		/*
2475 		 * We have two constraints: We find one extent to map and we
2476 		 * must always write out whole page (makes a difference when
2477 		 * blocksize < pagesize) so that we don't block on IO when we
2478 		 * try to write out the rest of the page. Journalled mode is
2479 		 * not supported by delalloc.
2480 		 */
2481 		BUG_ON(ext4_should_journal_data(inode));
2482 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2483 
2484 		/* start a new transaction */
2485 		handle = ext4_journal_start_with_reserve(inode,
2486 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2487 		if (IS_ERR(handle)) {
2488 			ret = PTR_ERR(handle);
2489 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2490 			       "%ld pages, ino %lu; err %d", __func__,
2491 				wbc->nr_to_write, inode->i_ino, ret);
2492 			/* Release allocated io_end */
2493 			ext4_put_io_end(mpd.io_submit.io_end);
2494 			break;
2495 		}
2496 
2497 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2498 		ret = mpage_prepare_extent_to_map(&mpd);
2499 		if (!ret) {
2500 			if (mpd.map.m_len)
2501 				ret = mpage_map_and_submit_extent(handle, &mpd,
2502 					&give_up_on_write);
2503 			else {
2504 				/*
2505 				 * We scanned the whole range (or exhausted
2506 				 * nr_to_write), submitted what was mapped and
2507 				 * didn't find anything needing mapping. We are
2508 				 * done.
2509 				 */
2510 				done = true;
2511 			}
2512 		}
2513 		ext4_journal_stop(handle);
2514 		/* Submit prepared bio */
2515 		ext4_io_submit(&mpd.io_submit);
2516 		/* Unlock pages we didn't use */
2517 		mpage_release_unused_pages(&mpd, give_up_on_write);
2518 		/* Drop our io_end reference we got from init */
2519 		ext4_put_io_end(mpd.io_submit.io_end);
2520 
2521 		if (ret == -ENOSPC && sbi->s_journal) {
2522 			/*
2523 			 * Commit the transaction which would
2524 			 * free blocks released in the transaction
2525 			 * and try again
2526 			 */
2527 			jbd2_journal_force_commit_nested(sbi->s_journal);
2528 			ret = 0;
2529 			continue;
2530 		}
2531 		/* Fatal error - ENOMEM, EIO... */
2532 		if (ret)
2533 			break;
2534 	}
2535 	blk_finish_plug(&plug);
2536 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2537 		cycled = 1;
2538 		mpd.last_page = writeback_index - 1;
2539 		mpd.first_page = 0;
2540 		goto retry;
2541 	}
2542 
2543 	/* Update index */
2544 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2545 		/*
2546 		 * Set the writeback_index so that range_cyclic
2547 		 * mode will write it back later
2548 		 */
2549 		mapping->writeback_index = mpd.first_page;
2550 
2551 out_writepages:
2552 	trace_ext4_writepages_result(inode, wbc, ret,
2553 				     nr_to_write - wbc->nr_to_write);
2554 	return ret;
2555 }
2556 
2557 static int ext4_nonda_switch(struct super_block *sb)
2558 {
2559 	s64 free_clusters, dirty_clusters;
2560 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2561 
2562 	/*
2563 	 * switch to non delalloc mode if we are running low
2564 	 * on free block. The free block accounting via percpu
2565 	 * counters can get slightly wrong with percpu_counter_batch getting
2566 	 * accumulated on each CPU without updating global counters
2567 	 * Delalloc need an accurate free block accounting. So switch
2568 	 * to non delalloc when we are near to error range.
2569 	 */
2570 	free_clusters =
2571 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2572 	dirty_clusters =
2573 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2574 	/*
2575 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2576 	 */
2577 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2578 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2579 
2580 	if (2 * free_clusters < 3 * dirty_clusters ||
2581 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2582 		/*
2583 		 * free block count is less than 150% of dirty blocks
2584 		 * or free blocks is less than watermark
2585 		 */
2586 		return 1;
2587 	}
2588 	return 0;
2589 }
2590 
2591 /* We always reserve for an inode update; the superblock could be there too */
2592 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2593 {
2594 	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2595 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2596 		return 1;
2597 
2598 	if (pos + len <= 0x7fffffffULL)
2599 		return 1;
2600 
2601 	/* We might need to update the superblock to set LARGE_FILE */
2602 	return 2;
2603 }
2604 
2605 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2606 			       loff_t pos, unsigned len, unsigned flags,
2607 			       struct page **pagep, void **fsdata)
2608 {
2609 	int ret, retries = 0;
2610 	struct page *page;
2611 	pgoff_t index;
2612 	struct inode *inode = mapping->host;
2613 	handle_t *handle;
2614 
2615 	index = pos >> PAGE_CACHE_SHIFT;
2616 
2617 	if (ext4_nonda_switch(inode->i_sb)) {
2618 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2619 		return ext4_write_begin(file, mapping, pos,
2620 					len, flags, pagep, fsdata);
2621 	}
2622 	*fsdata = (void *)0;
2623 	trace_ext4_da_write_begin(inode, pos, len, flags);
2624 
2625 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2626 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2627 						      pos, len, flags,
2628 						      pagep, fsdata);
2629 		if (ret < 0)
2630 			return ret;
2631 		if (ret == 1)
2632 			return 0;
2633 	}
2634 
2635 	/*
2636 	 * grab_cache_page_write_begin() can take a long time if the
2637 	 * system is thrashing due to memory pressure, or if the page
2638 	 * is being written back.  So grab it first before we start
2639 	 * the transaction handle.  This also allows us to allocate
2640 	 * the page (if needed) without using GFP_NOFS.
2641 	 */
2642 retry_grab:
2643 	page = grab_cache_page_write_begin(mapping, index, flags);
2644 	if (!page)
2645 		return -ENOMEM;
2646 	unlock_page(page);
2647 
2648 	/*
2649 	 * With delayed allocation, we don't log the i_disksize update
2650 	 * if there is delayed block allocation. But we still need
2651 	 * to journalling the i_disksize update if writes to the end
2652 	 * of file which has an already mapped buffer.
2653 	 */
2654 retry_journal:
2655 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2656 				ext4_da_write_credits(inode, pos, len));
2657 	if (IS_ERR(handle)) {
2658 		page_cache_release(page);
2659 		return PTR_ERR(handle);
2660 	}
2661 
2662 	lock_page(page);
2663 	if (page->mapping != mapping) {
2664 		/* The page got truncated from under us */
2665 		unlock_page(page);
2666 		page_cache_release(page);
2667 		ext4_journal_stop(handle);
2668 		goto retry_grab;
2669 	}
2670 	/* In case writeback began while the page was unlocked */
2671 	wait_for_stable_page(page);
2672 
2673 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2674 	ret = ext4_block_write_begin(page, pos, len,
2675 				     ext4_da_get_block_prep);
2676 #else
2677 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2678 #endif
2679 	if (ret < 0) {
2680 		unlock_page(page);
2681 		ext4_journal_stop(handle);
2682 		/*
2683 		 * block_write_begin may have instantiated a few blocks
2684 		 * outside i_size.  Trim these off again. Don't need
2685 		 * i_size_read because we hold i_mutex.
2686 		 */
2687 		if (pos + len > inode->i_size)
2688 			ext4_truncate_failed_write(inode);
2689 
2690 		if (ret == -ENOSPC &&
2691 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2692 			goto retry_journal;
2693 
2694 		page_cache_release(page);
2695 		return ret;
2696 	}
2697 
2698 	*pagep = page;
2699 	return ret;
2700 }
2701 
2702 /*
2703  * Check if we should update i_disksize
2704  * when write to the end of file but not require block allocation
2705  */
2706 static int ext4_da_should_update_i_disksize(struct page *page,
2707 					    unsigned long offset)
2708 {
2709 	struct buffer_head *bh;
2710 	struct inode *inode = page->mapping->host;
2711 	unsigned int idx;
2712 	int i;
2713 
2714 	bh = page_buffers(page);
2715 	idx = offset >> inode->i_blkbits;
2716 
2717 	for (i = 0; i < idx; i++)
2718 		bh = bh->b_this_page;
2719 
2720 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2721 		return 0;
2722 	return 1;
2723 }
2724 
2725 static int ext4_da_write_end(struct file *file,
2726 			     struct address_space *mapping,
2727 			     loff_t pos, unsigned len, unsigned copied,
2728 			     struct page *page, void *fsdata)
2729 {
2730 	struct inode *inode = mapping->host;
2731 	int ret = 0, ret2;
2732 	handle_t *handle = ext4_journal_current_handle();
2733 	loff_t new_i_size;
2734 	unsigned long start, end;
2735 	int write_mode = (int)(unsigned long)fsdata;
2736 
2737 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2738 		return ext4_write_end(file, mapping, pos,
2739 				      len, copied, page, fsdata);
2740 
2741 	trace_ext4_da_write_end(inode, pos, len, copied);
2742 	start = pos & (PAGE_CACHE_SIZE - 1);
2743 	end = start + copied - 1;
2744 
2745 	/*
2746 	 * generic_write_end() will run mark_inode_dirty() if i_size
2747 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2748 	 * into that.
2749 	 */
2750 	new_i_size = pos + copied;
2751 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2752 		if (ext4_has_inline_data(inode) ||
2753 		    ext4_da_should_update_i_disksize(page, end)) {
2754 			ext4_update_i_disksize(inode, new_i_size);
2755 			/* We need to mark inode dirty even if
2756 			 * new_i_size is less that inode->i_size
2757 			 * bu greater than i_disksize.(hint delalloc)
2758 			 */
2759 			ext4_mark_inode_dirty(handle, inode);
2760 		}
2761 	}
2762 
2763 	if (write_mode != CONVERT_INLINE_DATA &&
2764 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2765 	    ext4_has_inline_data(inode))
2766 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2767 						     page);
2768 	else
2769 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2770 							page, fsdata);
2771 
2772 	copied = ret2;
2773 	if (ret2 < 0)
2774 		ret = ret2;
2775 	ret2 = ext4_journal_stop(handle);
2776 	if (!ret)
2777 		ret = ret2;
2778 
2779 	return ret ? ret : copied;
2780 }
2781 
2782 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2783 				   unsigned int length)
2784 {
2785 	/*
2786 	 * Drop reserved blocks
2787 	 */
2788 	BUG_ON(!PageLocked(page));
2789 	if (!page_has_buffers(page))
2790 		goto out;
2791 
2792 	ext4_da_page_release_reservation(page, offset, length);
2793 
2794 out:
2795 	ext4_invalidatepage(page, offset, length);
2796 
2797 	return;
2798 }
2799 
2800 /*
2801  * Force all delayed allocation blocks to be allocated for a given inode.
2802  */
2803 int ext4_alloc_da_blocks(struct inode *inode)
2804 {
2805 	trace_ext4_alloc_da_blocks(inode);
2806 
2807 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2808 		return 0;
2809 
2810 	/*
2811 	 * We do something simple for now.  The filemap_flush() will
2812 	 * also start triggering a write of the data blocks, which is
2813 	 * not strictly speaking necessary (and for users of
2814 	 * laptop_mode, not even desirable).  However, to do otherwise
2815 	 * would require replicating code paths in:
2816 	 *
2817 	 * ext4_writepages() ->
2818 	 *    write_cache_pages() ---> (via passed in callback function)
2819 	 *        __mpage_da_writepage() -->
2820 	 *           mpage_add_bh_to_extent()
2821 	 *           mpage_da_map_blocks()
2822 	 *
2823 	 * The problem is that write_cache_pages(), located in
2824 	 * mm/page-writeback.c, marks pages clean in preparation for
2825 	 * doing I/O, which is not desirable if we're not planning on
2826 	 * doing I/O at all.
2827 	 *
2828 	 * We could call write_cache_pages(), and then redirty all of
2829 	 * the pages by calling redirty_page_for_writepage() but that
2830 	 * would be ugly in the extreme.  So instead we would need to
2831 	 * replicate parts of the code in the above functions,
2832 	 * simplifying them because we wouldn't actually intend to
2833 	 * write out the pages, but rather only collect contiguous
2834 	 * logical block extents, call the multi-block allocator, and
2835 	 * then update the buffer heads with the block allocations.
2836 	 *
2837 	 * For now, though, we'll cheat by calling filemap_flush(),
2838 	 * which will map the blocks, and start the I/O, but not
2839 	 * actually wait for the I/O to complete.
2840 	 */
2841 	return filemap_flush(inode->i_mapping);
2842 }
2843 
2844 /*
2845  * bmap() is special.  It gets used by applications such as lilo and by
2846  * the swapper to find the on-disk block of a specific piece of data.
2847  *
2848  * Naturally, this is dangerous if the block concerned is still in the
2849  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2850  * filesystem and enables swap, then they may get a nasty shock when the
2851  * data getting swapped to that swapfile suddenly gets overwritten by
2852  * the original zero's written out previously to the journal and
2853  * awaiting writeback in the kernel's buffer cache.
2854  *
2855  * So, if we see any bmap calls here on a modified, data-journaled file,
2856  * take extra steps to flush any blocks which might be in the cache.
2857  */
2858 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2859 {
2860 	struct inode *inode = mapping->host;
2861 	journal_t *journal;
2862 	int err;
2863 
2864 	/*
2865 	 * We can get here for an inline file via the FIBMAP ioctl
2866 	 */
2867 	if (ext4_has_inline_data(inode))
2868 		return 0;
2869 
2870 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2871 			test_opt(inode->i_sb, DELALLOC)) {
2872 		/*
2873 		 * With delalloc we want to sync the file
2874 		 * so that we can make sure we allocate
2875 		 * blocks for file
2876 		 */
2877 		filemap_write_and_wait(mapping);
2878 	}
2879 
2880 	if (EXT4_JOURNAL(inode) &&
2881 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2882 		/*
2883 		 * This is a REALLY heavyweight approach, but the use of
2884 		 * bmap on dirty files is expected to be extremely rare:
2885 		 * only if we run lilo or swapon on a freshly made file
2886 		 * do we expect this to happen.
2887 		 *
2888 		 * (bmap requires CAP_SYS_RAWIO so this does not
2889 		 * represent an unprivileged user DOS attack --- we'd be
2890 		 * in trouble if mortal users could trigger this path at
2891 		 * will.)
2892 		 *
2893 		 * NB. EXT4_STATE_JDATA is not set on files other than
2894 		 * regular files.  If somebody wants to bmap a directory
2895 		 * or symlink and gets confused because the buffer
2896 		 * hasn't yet been flushed to disk, they deserve
2897 		 * everything they get.
2898 		 */
2899 
2900 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2901 		journal = EXT4_JOURNAL(inode);
2902 		jbd2_journal_lock_updates(journal);
2903 		err = jbd2_journal_flush(journal);
2904 		jbd2_journal_unlock_updates(journal);
2905 
2906 		if (err)
2907 			return 0;
2908 	}
2909 
2910 	return generic_block_bmap(mapping, block, ext4_get_block);
2911 }
2912 
2913 static int ext4_readpage(struct file *file, struct page *page)
2914 {
2915 	int ret = -EAGAIN;
2916 	struct inode *inode = page->mapping->host;
2917 
2918 	trace_ext4_readpage(page);
2919 
2920 	if (ext4_has_inline_data(inode))
2921 		ret = ext4_readpage_inline(inode, page);
2922 
2923 	if (ret == -EAGAIN)
2924 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2925 
2926 	return ret;
2927 }
2928 
2929 static int
2930 ext4_readpages(struct file *file, struct address_space *mapping,
2931 		struct list_head *pages, unsigned nr_pages)
2932 {
2933 	struct inode *inode = mapping->host;
2934 
2935 	/* If the file has inline data, no need to do readpages. */
2936 	if (ext4_has_inline_data(inode))
2937 		return 0;
2938 
2939 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2940 }
2941 
2942 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2943 				unsigned int length)
2944 {
2945 	trace_ext4_invalidatepage(page, offset, length);
2946 
2947 	/* No journalling happens on data buffers when this function is used */
2948 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2949 
2950 	block_invalidatepage(page, offset, length);
2951 }
2952 
2953 static int __ext4_journalled_invalidatepage(struct page *page,
2954 					    unsigned int offset,
2955 					    unsigned int length)
2956 {
2957 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2958 
2959 	trace_ext4_journalled_invalidatepage(page, offset, length);
2960 
2961 	/*
2962 	 * If it's a full truncate we just forget about the pending dirtying
2963 	 */
2964 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2965 		ClearPageChecked(page);
2966 
2967 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2968 }
2969 
2970 /* Wrapper for aops... */
2971 static void ext4_journalled_invalidatepage(struct page *page,
2972 					   unsigned int offset,
2973 					   unsigned int length)
2974 {
2975 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2976 }
2977 
2978 static int ext4_releasepage(struct page *page, gfp_t wait)
2979 {
2980 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2981 
2982 	trace_ext4_releasepage(page);
2983 
2984 	/* Page has dirty journalled data -> cannot release */
2985 	if (PageChecked(page))
2986 		return 0;
2987 	if (journal)
2988 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2989 	else
2990 		return try_to_free_buffers(page);
2991 }
2992 
2993 /*
2994  * ext4_get_block used when preparing for a DIO write or buffer write.
2995  * We allocate an uinitialized extent if blocks haven't been allocated.
2996  * The extent will be converted to initialized after the IO is complete.
2997  */
2998 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2999 		   struct buffer_head *bh_result, int create)
3000 {
3001 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3002 		   inode->i_ino, create);
3003 	return _ext4_get_block(inode, iblock, bh_result,
3004 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3005 }
3006 
3007 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3008 		   struct buffer_head *bh_result, int create)
3009 {
3010 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3011 		   inode->i_ino, create);
3012 	return _ext4_get_block(inode, iblock, bh_result,
3013 			       EXT4_GET_BLOCKS_NO_LOCK);
3014 }
3015 
3016 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3017 			    ssize_t size, void *private)
3018 {
3019         ext4_io_end_t *io_end = iocb->private;
3020 
3021 	/* if not async direct IO just return */
3022 	if (!io_end)
3023 		return;
3024 
3025 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3026 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3027  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3028 		  size);
3029 
3030 	iocb->private = NULL;
3031 	io_end->offset = offset;
3032 	io_end->size = size;
3033 	ext4_put_io_end(io_end);
3034 }
3035 
3036 /*
3037  * For ext4 extent files, ext4 will do direct-io write to holes,
3038  * preallocated extents, and those write extend the file, no need to
3039  * fall back to buffered IO.
3040  *
3041  * For holes, we fallocate those blocks, mark them as unwritten
3042  * If those blocks were preallocated, we mark sure they are split, but
3043  * still keep the range to write as unwritten.
3044  *
3045  * The unwritten extents will be converted to written when DIO is completed.
3046  * For async direct IO, since the IO may still pending when return, we
3047  * set up an end_io call back function, which will do the conversion
3048  * when async direct IO completed.
3049  *
3050  * If the O_DIRECT write will extend the file then add this inode to the
3051  * orphan list.  So recovery will truncate it back to the original size
3052  * if the machine crashes during the write.
3053  *
3054  */
3055 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3056 				  loff_t offset)
3057 {
3058 	struct file *file = iocb->ki_filp;
3059 	struct inode *inode = file->f_mapping->host;
3060 	ssize_t ret;
3061 	size_t count = iov_iter_count(iter);
3062 	int overwrite = 0;
3063 	get_block_t *get_block_func = NULL;
3064 	int dio_flags = 0;
3065 	loff_t final_size = offset + count;
3066 	ext4_io_end_t *io_end = NULL;
3067 
3068 	/* Use the old path for reads and writes beyond i_size. */
3069 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3070 		return ext4_ind_direct_IO(iocb, iter, offset);
3071 
3072 	BUG_ON(iocb->private == NULL);
3073 
3074 	/*
3075 	 * Make all waiters for direct IO properly wait also for extent
3076 	 * conversion. This also disallows race between truncate() and
3077 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3078 	 */
3079 	if (iov_iter_rw(iter) == WRITE)
3080 		atomic_inc(&inode->i_dio_count);
3081 
3082 	/* If we do a overwrite dio, i_mutex locking can be released */
3083 	overwrite = *((int *)iocb->private);
3084 
3085 	if (overwrite) {
3086 		down_read(&EXT4_I(inode)->i_data_sem);
3087 		mutex_unlock(&inode->i_mutex);
3088 	}
3089 
3090 	/*
3091 	 * We could direct write to holes and fallocate.
3092 	 *
3093 	 * Allocated blocks to fill the hole are marked as
3094 	 * unwritten to prevent parallel buffered read to expose
3095 	 * the stale data before DIO complete the data IO.
3096 	 *
3097 	 * As to previously fallocated extents, ext4 get_block will
3098 	 * just simply mark the buffer mapped but still keep the
3099 	 * extents unwritten.
3100 	 *
3101 	 * For non AIO case, we will convert those unwritten extents
3102 	 * to written after return back from blockdev_direct_IO.
3103 	 *
3104 	 * For async DIO, the conversion needs to be deferred when the
3105 	 * IO is completed. The ext4 end_io callback function will be
3106 	 * called to take care of the conversion work.  Here for async
3107 	 * case, we allocate an io_end structure to hook to the iocb.
3108 	 */
3109 	iocb->private = NULL;
3110 	ext4_inode_aio_set(inode, NULL);
3111 	if (!is_sync_kiocb(iocb)) {
3112 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3113 		if (!io_end) {
3114 			ret = -ENOMEM;
3115 			goto retake_lock;
3116 		}
3117 		/*
3118 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3119 		 */
3120 		iocb->private = ext4_get_io_end(io_end);
3121 		/*
3122 		 * we save the io structure for current async direct
3123 		 * IO, so that later ext4_map_blocks() could flag the
3124 		 * io structure whether there is a unwritten extents
3125 		 * needs to be converted when IO is completed.
3126 		 */
3127 		ext4_inode_aio_set(inode, io_end);
3128 	}
3129 
3130 	if (overwrite) {
3131 		get_block_func = ext4_get_block_write_nolock;
3132 	} else {
3133 		get_block_func = ext4_get_block_write;
3134 		dio_flags = DIO_LOCKING;
3135 	}
3136 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3137 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3138 #endif
3139 	if (IS_DAX(inode))
3140 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3141 				ext4_end_io_dio, dio_flags);
3142 	else
3143 		ret = __blockdev_direct_IO(iocb, inode,
3144 					   inode->i_sb->s_bdev, iter, offset,
3145 					   get_block_func,
3146 					   ext4_end_io_dio, NULL, dio_flags);
3147 
3148 	/*
3149 	 * Put our reference to io_end. This can free the io_end structure e.g.
3150 	 * in sync IO case or in case of error. It can even perform extent
3151 	 * conversion if all bios we submitted finished before we got here.
3152 	 * Note that in that case iocb->private can be already set to NULL
3153 	 * here.
3154 	 */
3155 	if (io_end) {
3156 		ext4_inode_aio_set(inode, NULL);
3157 		ext4_put_io_end(io_end);
3158 		/*
3159 		 * When no IO was submitted ext4_end_io_dio() was not
3160 		 * called so we have to put iocb's reference.
3161 		 */
3162 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3163 			WARN_ON(iocb->private != io_end);
3164 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3165 			ext4_put_io_end(io_end);
3166 			iocb->private = NULL;
3167 		}
3168 	}
3169 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3170 						EXT4_STATE_DIO_UNWRITTEN)) {
3171 		int err;
3172 		/*
3173 		 * for non AIO case, since the IO is already
3174 		 * completed, we could do the conversion right here
3175 		 */
3176 		err = ext4_convert_unwritten_extents(NULL, inode,
3177 						     offset, ret);
3178 		if (err < 0)
3179 			ret = err;
3180 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3181 	}
3182 
3183 retake_lock:
3184 	if (iov_iter_rw(iter) == WRITE)
3185 		inode_dio_done(inode);
3186 	/* take i_mutex locking again if we do a ovewrite dio */
3187 	if (overwrite) {
3188 		up_read(&EXT4_I(inode)->i_data_sem);
3189 		mutex_lock(&inode->i_mutex);
3190 	}
3191 
3192 	return ret;
3193 }
3194 
3195 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3196 			      loff_t offset)
3197 {
3198 	struct file *file = iocb->ki_filp;
3199 	struct inode *inode = file->f_mapping->host;
3200 	size_t count = iov_iter_count(iter);
3201 	ssize_t ret;
3202 
3203 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3204 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3205 		return 0;
3206 #endif
3207 
3208 	/*
3209 	 * If we are doing data journalling we don't support O_DIRECT
3210 	 */
3211 	if (ext4_should_journal_data(inode))
3212 		return 0;
3213 
3214 	/* Let buffer I/O handle the inline data case. */
3215 	if (ext4_has_inline_data(inode))
3216 		return 0;
3217 
3218 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3219 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3220 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3221 	else
3222 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3223 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3224 	return ret;
3225 }
3226 
3227 /*
3228  * Pages can be marked dirty completely asynchronously from ext4's journalling
3229  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3230  * much here because ->set_page_dirty is called under VFS locks.  The page is
3231  * not necessarily locked.
3232  *
3233  * We cannot just dirty the page and leave attached buffers clean, because the
3234  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3235  * or jbddirty because all the journalling code will explode.
3236  *
3237  * So what we do is to mark the page "pending dirty" and next time writepage
3238  * is called, propagate that into the buffers appropriately.
3239  */
3240 static int ext4_journalled_set_page_dirty(struct page *page)
3241 {
3242 	SetPageChecked(page);
3243 	return __set_page_dirty_nobuffers(page);
3244 }
3245 
3246 static const struct address_space_operations ext4_aops = {
3247 	.readpage		= ext4_readpage,
3248 	.readpages		= ext4_readpages,
3249 	.writepage		= ext4_writepage,
3250 	.writepages		= ext4_writepages,
3251 	.write_begin		= ext4_write_begin,
3252 	.write_end		= ext4_write_end,
3253 	.bmap			= ext4_bmap,
3254 	.invalidatepage		= ext4_invalidatepage,
3255 	.releasepage		= ext4_releasepage,
3256 	.direct_IO		= ext4_direct_IO,
3257 	.migratepage		= buffer_migrate_page,
3258 	.is_partially_uptodate  = block_is_partially_uptodate,
3259 	.error_remove_page	= generic_error_remove_page,
3260 };
3261 
3262 static const struct address_space_operations ext4_journalled_aops = {
3263 	.readpage		= ext4_readpage,
3264 	.readpages		= ext4_readpages,
3265 	.writepage		= ext4_writepage,
3266 	.writepages		= ext4_writepages,
3267 	.write_begin		= ext4_write_begin,
3268 	.write_end		= ext4_journalled_write_end,
3269 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3270 	.bmap			= ext4_bmap,
3271 	.invalidatepage		= ext4_journalled_invalidatepage,
3272 	.releasepage		= ext4_releasepage,
3273 	.direct_IO		= ext4_direct_IO,
3274 	.is_partially_uptodate  = block_is_partially_uptodate,
3275 	.error_remove_page	= generic_error_remove_page,
3276 };
3277 
3278 static const struct address_space_operations ext4_da_aops = {
3279 	.readpage		= ext4_readpage,
3280 	.readpages		= ext4_readpages,
3281 	.writepage		= ext4_writepage,
3282 	.writepages		= ext4_writepages,
3283 	.write_begin		= ext4_da_write_begin,
3284 	.write_end		= ext4_da_write_end,
3285 	.bmap			= ext4_bmap,
3286 	.invalidatepage		= ext4_da_invalidatepage,
3287 	.releasepage		= ext4_releasepage,
3288 	.direct_IO		= ext4_direct_IO,
3289 	.migratepage		= buffer_migrate_page,
3290 	.is_partially_uptodate  = block_is_partially_uptodate,
3291 	.error_remove_page	= generic_error_remove_page,
3292 };
3293 
3294 void ext4_set_aops(struct inode *inode)
3295 {
3296 	switch (ext4_inode_journal_mode(inode)) {
3297 	case EXT4_INODE_ORDERED_DATA_MODE:
3298 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3299 		break;
3300 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3301 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3302 		break;
3303 	case EXT4_INODE_JOURNAL_DATA_MODE:
3304 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3305 		return;
3306 	default:
3307 		BUG();
3308 	}
3309 	if (test_opt(inode->i_sb, DELALLOC))
3310 		inode->i_mapping->a_ops = &ext4_da_aops;
3311 	else
3312 		inode->i_mapping->a_ops = &ext4_aops;
3313 }
3314 
3315 static int __ext4_block_zero_page_range(handle_t *handle,
3316 		struct address_space *mapping, loff_t from, loff_t length)
3317 {
3318 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3319 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3320 	unsigned blocksize, pos;
3321 	ext4_lblk_t iblock;
3322 	struct inode *inode = mapping->host;
3323 	struct buffer_head *bh;
3324 	struct page *page;
3325 	int err = 0;
3326 
3327 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3328 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3329 	if (!page)
3330 		return -ENOMEM;
3331 
3332 	blocksize = inode->i_sb->s_blocksize;
3333 
3334 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3335 
3336 	if (!page_has_buffers(page))
3337 		create_empty_buffers(page, blocksize, 0);
3338 
3339 	/* Find the buffer that contains "offset" */
3340 	bh = page_buffers(page);
3341 	pos = blocksize;
3342 	while (offset >= pos) {
3343 		bh = bh->b_this_page;
3344 		iblock++;
3345 		pos += blocksize;
3346 	}
3347 	if (buffer_freed(bh)) {
3348 		BUFFER_TRACE(bh, "freed: skip");
3349 		goto unlock;
3350 	}
3351 	if (!buffer_mapped(bh)) {
3352 		BUFFER_TRACE(bh, "unmapped");
3353 		ext4_get_block(inode, iblock, bh, 0);
3354 		/* unmapped? It's a hole - nothing to do */
3355 		if (!buffer_mapped(bh)) {
3356 			BUFFER_TRACE(bh, "still unmapped");
3357 			goto unlock;
3358 		}
3359 	}
3360 
3361 	/* Ok, it's mapped. Make sure it's up-to-date */
3362 	if (PageUptodate(page))
3363 		set_buffer_uptodate(bh);
3364 
3365 	if (!buffer_uptodate(bh)) {
3366 		err = -EIO;
3367 		ll_rw_block(READ, 1, &bh);
3368 		wait_on_buffer(bh);
3369 		/* Uhhuh. Read error. Complain and punt. */
3370 		if (!buffer_uptodate(bh))
3371 			goto unlock;
3372 		if (S_ISREG(inode->i_mode) &&
3373 		    ext4_encrypted_inode(inode)) {
3374 			/* We expect the key to be set. */
3375 			BUG_ON(!ext4_has_encryption_key(inode));
3376 			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3377 			WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3378 		}
3379 	}
3380 	if (ext4_should_journal_data(inode)) {
3381 		BUFFER_TRACE(bh, "get write access");
3382 		err = ext4_journal_get_write_access(handle, bh);
3383 		if (err)
3384 			goto unlock;
3385 	}
3386 	zero_user(page, offset, length);
3387 	BUFFER_TRACE(bh, "zeroed end of block");
3388 
3389 	if (ext4_should_journal_data(inode)) {
3390 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3391 	} else {
3392 		err = 0;
3393 		mark_buffer_dirty(bh);
3394 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3395 			err = ext4_jbd2_file_inode(handle, inode);
3396 	}
3397 
3398 unlock:
3399 	unlock_page(page);
3400 	page_cache_release(page);
3401 	return err;
3402 }
3403 
3404 /*
3405  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3406  * starting from file offset 'from'.  The range to be zero'd must
3407  * be contained with in one block.  If the specified range exceeds
3408  * the end of the block it will be shortened to end of the block
3409  * that cooresponds to 'from'
3410  */
3411 static int ext4_block_zero_page_range(handle_t *handle,
3412 		struct address_space *mapping, loff_t from, loff_t length)
3413 {
3414 	struct inode *inode = mapping->host;
3415 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3416 	unsigned blocksize = inode->i_sb->s_blocksize;
3417 	unsigned max = blocksize - (offset & (blocksize - 1));
3418 
3419 	/*
3420 	 * correct length if it does not fall between
3421 	 * 'from' and the end of the block
3422 	 */
3423 	if (length > max || length < 0)
3424 		length = max;
3425 
3426 	if (IS_DAX(inode))
3427 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3428 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3429 }
3430 
3431 /*
3432  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3433  * up to the end of the block which corresponds to `from'.
3434  * This required during truncate. We need to physically zero the tail end
3435  * of that block so it doesn't yield old data if the file is later grown.
3436  */
3437 static int ext4_block_truncate_page(handle_t *handle,
3438 		struct address_space *mapping, loff_t from)
3439 {
3440 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3441 	unsigned length;
3442 	unsigned blocksize;
3443 	struct inode *inode = mapping->host;
3444 
3445 	blocksize = inode->i_sb->s_blocksize;
3446 	length = blocksize - (offset & (blocksize - 1));
3447 
3448 	return ext4_block_zero_page_range(handle, mapping, from, length);
3449 }
3450 
3451 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3452 			     loff_t lstart, loff_t length)
3453 {
3454 	struct super_block *sb = inode->i_sb;
3455 	struct address_space *mapping = inode->i_mapping;
3456 	unsigned partial_start, partial_end;
3457 	ext4_fsblk_t start, end;
3458 	loff_t byte_end = (lstart + length - 1);
3459 	int err = 0;
3460 
3461 	partial_start = lstart & (sb->s_blocksize - 1);
3462 	partial_end = byte_end & (sb->s_blocksize - 1);
3463 
3464 	start = lstart >> sb->s_blocksize_bits;
3465 	end = byte_end >> sb->s_blocksize_bits;
3466 
3467 	/* Handle partial zero within the single block */
3468 	if (start == end &&
3469 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3470 		err = ext4_block_zero_page_range(handle, mapping,
3471 						 lstart, length);
3472 		return err;
3473 	}
3474 	/* Handle partial zero out on the start of the range */
3475 	if (partial_start) {
3476 		err = ext4_block_zero_page_range(handle, mapping,
3477 						 lstart, sb->s_blocksize);
3478 		if (err)
3479 			return err;
3480 	}
3481 	/* Handle partial zero out on the end of the range */
3482 	if (partial_end != sb->s_blocksize - 1)
3483 		err = ext4_block_zero_page_range(handle, mapping,
3484 						 byte_end - partial_end,
3485 						 partial_end + 1);
3486 	return err;
3487 }
3488 
3489 int ext4_can_truncate(struct inode *inode)
3490 {
3491 	if (S_ISREG(inode->i_mode))
3492 		return 1;
3493 	if (S_ISDIR(inode->i_mode))
3494 		return 1;
3495 	if (S_ISLNK(inode->i_mode))
3496 		return !ext4_inode_is_fast_symlink(inode);
3497 	return 0;
3498 }
3499 
3500 /*
3501  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3502  * associated with the given offset and length
3503  *
3504  * @inode:  File inode
3505  * @offset: The offset where the hole will begin
3506  * @len:    The length of the hole
3507  *
3508  * Returns: 0 on success or negative on failure
3509  */
3510 
3511 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3512 {
3513 	struct super_block *sb = inode->i_sb;
3514 	ext4_lblk_t first_block, stop_block;
3515 	struct address_space *mapping = inode->i_mapping;
3516 	loff_t first_block_offset, last_block_offset;
3517 	handle_t *handle;
3518 	unsigned int credits;
3519 	int ret = 0;
3520 
3521 	if (!S_ISREG(inode->i_mode))
3522 		return -EOPNOTSUPP;
3523 
3524 	trace_ext4_punch_hole(inode, offset, length, 0);
3525 
3526 	/*
3527 	 * Write out all dirty pages to avoid race conditions
3528 	 * Then release them.
3529 	 */
3530 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3531 		ret = filemap_write_and_wait_range(mapping, offset,
3532 						   offset + length - 1);
3533 		if (ret)
3534 			return ret;
3535 	}
3536 
3537 	mutex_lock(&inode->i_mutex);
3538 
3539 	/* No need to punch hole beyond i_size */
3540 	if (offset >= inode->i_size)
3541 		goto out_mutex;
3542 
3543 	/*
3544 	 * If the hole extends beyond i_size, set the hole
3545 	 * to end after the page that contains i_size
3546 	 */
3547 	if (offset + length > inode->i_size) {
3548 		length = inode->i_size +
3549 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3550 		   offset;
3551 	}
3552 
3553 	if (offset & (sb->s_blocksize - 1) ||
3554 	    (offset + length) & (sb->s_blocksize - 1)) {
3555 		/*
3556 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3557 		 * partial block
3558 		 */
3559 		ret = ext4_inode_attach_jinode(inode);
3560 		if (ret < 0)
3561 			goto out_mutex;
3562 
3563 	}
3564 
3565 	first_block_offset = round_up(offset, sb->s_blocksize);
3566 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3567 
3568 	/* Now release the pages and zero block aligned part of pages*/
3569 	if (last_block_offset > first_block_offset)
3570 		truncate_pagecache_range(inode, first_block_offset,
3571 					 last_block_offset);
3572 
3573 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3574 	ext4_inode_block_unlocked_dio(inode);
3575 	inode_dio_wait(inode);
3576 
3577 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3578 		credits = ext4_writepage_trans_blocks(inode);
3579 	else
3580 		credits = ext4_blocks_for_truncate(inode);
3581 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3582 	if (IS_ERR(handle)) {
3583 		ret = PTR_ERR(handle);
3584 		ext4_std_error(sb, ret);
3585 		goto out_dio;
3586 	}
3587 
3588 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3589 				       length);
3590 	if (ret)
3591 		goto out_stop;
3592 
3593 	first_block = (offset + sb->s_blocksize - 1) >>
3594 		EXT4_BLOCK_SIZE_BITS(sb);
3595 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3596 
3597 	/* If there are no blocks to remove, return now */
3598 	if (first_block >= stop_block)
3599 		goto out_stop;
3600 
3601 	down_write(&EXT4_I(inode)->i_data_sem);
3602 	ext4_discard_preallocations(inode);
3603 
3604 	ret = ext4_es_remove_extent(inode, first_block,
3605 				    stop_block - first_block);
3606 	if (ret) {
3607 		up_write(&EXT4_I(inode)->i_data_sem);
3608 		goto out_stop;
3609 	}
3610 
3611 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3612 		ret = ext4_ext_remove_space(inode, first_block,
3613 					    stop_block - 1);
3614 	else
3615 		ret = ext4_ind_remove_space(handle, inode, first_block,
3616 					    stop_block);
3617 
3618 	up_write(&EXT4_I(inode)->i_data_sem);
3619 	if (IS_SYNC(inode))
3620 		ext4_handle_sync(handle);
3621 
3622 	/* Now release the pages again to reduce race window */
3623 	if (last_block_offset > first_block_offset)
3624 		truncate_pagecache_range(inode, first_block_offset,
3625 					 last_block_offset);
3626 
3627 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3628 	ext4_mark_inode_dirty(handle, inode);
3629 out_stop:
3630 	ext4_journal_stop(handle);
3631 out_dio:
3632 	ext4_inode_resume_unlocked_dio(inode);
3633 out_mutex:
3634 	mutex_unlock(&inode->i_mutex);
3635 	return ret;
3636 }
3637 
3638 int ext4_inode_attach_jinode(struct inode *inode)
3639 {
3640 	struct ext4_inode_info *ei = EXT4_I(inode);
3641 	struct jbd2_inode *jinode;
3642 
3643 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3644 		return 0;
3645 
3646 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3647 	spin_lock(&inode->i_lock);
3648 	if (!ei->jinode) {
3649 		if (!jinode) {
3650 			spin_unlock(&inode->i_lock);
3651 			return -ENOMEM;
3652 		}
3653 		ei->jinode = jinode;
3654 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3655 		jinode = NULL;
3656 	}
3657 	spin_unlock(&inode->i_lock);
3658 	if (unlikely(jinode != NULL))
3659 		jbd2_free_inode(jinode);
3660 	return 0;
3661 }
3662 
3663 /*
3664  * ext4_truncate()
3665  *
3666  * We block out ext4_get_block() block instantiations across the entire
3667  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3668  * simultaneously on behalf of the same inode.
3669  *
3670  * As we work through the truncate and commit bits of it to the journal there
3671  * is one core, guiding principle: the file's tree must always be consistent on
3672  * disk.  We must be able to restart the truncate after a crash.
3673  *
3674  * The file's tree may be transiently inconsistent in memory (although it
3675  * probably isn't), but whenever we close off and commit a journal transaction,
3676  * the contents of (the filesystem + the journal) must be consistent and
3677  * restartable.  It's pretty simple, really: bottom up, right to left (although
3678  * left-to-right works OK too).
3679  *
3680  * Note that at recovery time, journal replay occurs *before* the restart of
3681  * truncate against the orphan inode list.
3682  *
3683  * The committed inode has the new, desired i_size (which is the same as
3684  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3685  * that this inode's truncate did not complete and it will again call
3686  * ext4_truncate() to have another go.  So there will be instantiated blocks
3687  * to the right of the truncation point in a crashed ext4 filesystem.  But
3688  * that's fine - as long as they are linked from the inode, the post-crash
3689  * ext4_truncate() run will find them and release them.
3690  */
3691 void ext4_truncate(struct inode *inode)
3692 {
3693 	struct ext4_inode_info *ei = EXT4_I(inode);
3694 	unsigned int credits;
3695 	handle_t *handle;
3696 	struct address_space *mapping = inode->i_mapping;
3697 
3698 	/*
3699 	 * There is a possibility that we're either freeing the inode
3700 	 * or it's a completely new inode. In those cases we might not
3701 	 * have i_mutex locked because it's not necessary.
3702 	 */
3703 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3704 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3705 	trace_ext4_truncate_enter(inode);
3706 
3707 	if (!ext4_can_truncate(inode))
3708 		return;
3709 
3710 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3711 
3712 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3713 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3714 
3715 	if (ext4_has_inline_data(inode)) {
3716 		int has_inline = 1;
3717 
3718 		ext4_inline_data_truncate(inode, &has_inline);
3719 		if (has_inline)
3720 			return;
3721 	}
3722 
3723 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3724 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3725 		if (ext4_inode_attach_jinode(inode) < 0)
3726 			return;
3727 	}
3728 
3729 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3730 		credits = ext4_writepage_trans_blocks(inode);
3731 	else
3732 		credits = ext4_blocks_for_truncate(inode);
3733 
3734 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3735 	if (IS_ERR(handle)) {
3736 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3737 		return;
3738 	}
3739 
3740 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3741 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3742 
3743 	/*
3744 	 * We add the inode to the orphan list, so that if this
3745 	 * truncate spans multiple transactions, and we crash, we will
3746 	 * resume the truncate when the filesystem recovers.  It also
3747 	 * marks the inode dirty, to catch the new size.
3748 	 *
3749 	 * Implication: the file must always be in a sane, consistent
3750 	 * truncatable state while each transaction commits.
3751 	 */
3752 	if (ext4_orphan_add(handle, inode))
3753 		goto out_stop;
3754 
3755 	down_write(&EXT4_I(inode)->i_data_sem);
3756 
3757 	ext4_discard_preallocations(inode);
3758 
3759 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3760 		ext4_ext_truncate(handle, inode);
3761 	else
3762 		ext4_ind_truncate(handle, inode);
3763 
3764 	up_write(&ei->i_data_sem);
3765 
3766 	if (IS_SYNC(inode))
3767 		ext4_handle_sync(handle);
3768 
3769 out_stop:
3770 	/*
3771 	 * If this was a simple ftruncate() and the file will remain alive,
3772 	 * then we need to clear up the orphan record which we created above.
3773 	 * However, if this was a real unlink then we were called by
3774 	 * ext4_evict_inode(), and we allow that function to clean up the
3775 	 * orphan info for us.
3776 	 */
3777 	if (inode->i_nlink)
3778 		ext4_orphan_del(handle, inode);
3779 
3780 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3781 	ext4_mark_inode_dirty(handle, inode);
3782 	ext4_journal_stop(handle);
3783 
3784 	trace_ext4_truncate_exit(inode);
3785 }
3786 
3787 /*
3788  * ext4_get_inode_loc returns with an extra refcount against the inode's
3789  * underlying buffer_head on success. If 'in_mem' is true, we have all
3790  * data in memory that is needed to recreate the on-disk version of this
3791  * inode.
3792  */
3793 static int __ext4_get_inode_loc(struct inode *inode,
3794 				struct ext4_iloc *iloc, int in_mem)
3795 {
3796 	struct ext4_group_desc	*gdp;
3797 	struct buffer_head	*bh;
3798 	struct super_block	*sb = inode->i_sb;
3799 	ext4_fsblk_t		block;
3800 	int			inodes_per_block, inode_offset;
3801 
3802 	iloc->bh = NULL;
3803 	if (!ext4_valid_inum(sb, inode->i_ino))
3804 		return -EIO;
3805 
3806 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3807 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3808 	if (!gdp)
3809 		return -EIO;
3810 
3811 	/*
3812 	 * Figure out the offset within the block group inode table
3813 	 */
3814 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3815 	inode_offset = ((inode->i_ino - 1) %
3816 			EXT4_INODES_PER_GROUP(sb));
3817 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3818 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3819 
3820 	bh = sb_getblk(sb, block);
3821 	if (unlikely(!bh))
3822 		return -ENOMEM;
3823 	if (!buffer_uptodate(bh)) {
3824 		lock_buffer(bh);
3825 
3826 		/*
3827 		 * If the buffer has the write error flag, we have failed
3828 		 * to write out another inode in the same block.  In this
3829 		 * case, we don't have to read the block because we may
3830 		 * read the old inode data successfully.
3831 		 */
3832 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3833 			set_buffer_uptodate(bh);
3834 
3835 		if (buffer_uptodate(bh)) {
3836 			/* someone brought it uptodate while we waited */
3837 			unlock_buffer(bh);
3838 			goto has_buffer;
3839 		}
3840 
3841 		/*
3842 		 * If we have all information of the inode in memory and this
3843 		 * is the only valid inode in the block, we need not read the
3844 		 * block.
3845 		 */
3846 		if (in_mem) {
3847 			struct buffer_head *bitmap_bh;
3848 			int i, start;
3849 
3850 			start = inode_offset & ~(inodes_per_block - 1);
3851 
3852 			/* Is the inode bitmap in cache? */
3853 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3854 			if (unlikely(!bitmap_bh))
3855 				goto make_io;
3856 
3857 			/*
3858 			 * If the inode bitmap isn't in cache then the
3859 			 * optimisation may end up performing two reads instead
3860 			 * of one, so skip it.
3861 			 */
3862 			if (!buffer_uptodate(bitmap_bh)) {
3863 				brelse(bitmap_bh);
3864 				goto make_io;
3865 			}
3866 			for (i = start; i < start + inodes_per_block; i++) {
3867 				if (i == inode_offset)
3868 					continue;
3869 				if (ext4_test_bit(i, bitmap_bh->b_data))
3870 					break;
3871 			}
3872 			brelse(bitmap_bh);
3873 			if (i == start + inodes_per_block) {
3874 				/* all other inodes are free, so skip I/O */
3875 				memset(bh->b_data, 0, bh->b_size);
3876 				set_buffer_uptodate(bh);
3877 				unlock_buffer(bh);
3878 				goto has_buffer;
3879 			}
3880 		}
3881 
3882 make_io:
3883 		/*
3884 		 * If we need to do any I/O, try to pre-readahead extra
3885 		 * blocks from the inode table.
3886 		 */
3887 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3888 			ext4_fsblk_t b, end, table;
3889 			unsigned num;
3890 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3891 
3892 			table = ext4_inode_table(sb, gdp);
3893 			/* s_inode_readahead_blks is always a power of 2 */
3894 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3895 			if (table > b)
3896 				b = table;
3897 			end = b + ra_blks;
3898 			num = EXT4_INODES_PER_GROUP(sb);
3899 			if (ext4_has_group_desc_csum(sb))
3900 				num -= ext4_itable_unused_count(sb, gdp);
3901 			table += num / inodes_per_block;
3902 			if (end > table)
3903 				end = table;
3904 			while (b <= end)
3905 				sb_breadahead(sb, b++);
3906 		}
3907 
3908 		/*
3909 		 * There are other valid inodes in the buffer, this inode
3910 		 * has in-inode xattrs, or we don't have this inode in memory.
3911 		 * Read the block from disk.
3912 		 */
3913 		trace_ext4_load_inode(inode);
3914 		get_bh(bh);
3915 		bh->b_end_io = end_buffer_read_sync;
3916 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3917 		wait_on_buffer(bh);
3918 		if (!buffer_uptodate(bh)) {
3919 			EXT4_ERROR_INODE_BLOCK(inode, block,
3920 					       "unable to read itable block");
3921 			brelse(bh);
3922 			return -EIO;
3923 		}
3924 	}
3925 has_buffer:
3926 	iloc->bh = bh;
3927 	return 0;
3928 }
3929 
3930 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3931 {
3932 	/* We have all inode data except xattrs in memory here. */
3933 	return __ext4_get_inode_loc(inode, iloc,
3934 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3935 }
3936 
3937 void ext4_set_inode_flags(struct inode *inode)
3938 {
3939 	unsigned int flags = EXT4_I(inode)->i_flags;
3940 	unsigned int new_fl = 0;
3941 
3942 	if (flags & EXT4_SYNC_FL)
3943 		new_fl |= S_SYNC;
3944 	if (flags & EXT4_APPEND_FL)
3945 		new_fl |= S_APPEND;
3946 	if (flags & EXT4_IMMUTABLE_FL)
3947 		new_fl |= S_IMMUTABLE;
3948 	if (flags & EXT4_NOATIME_FL)
3949 		new_fl |= S_NOATIME;
3950 	if (flags & EXT4_DIRSYNC_FL)
3951 		new_fl |= S_DIRSYNC;
3952 	if (test_opt(inode->i_sb, DAX))
3953 		new_fl |= S_DAX;
3954 	inode_set_flags(inode, new_fl,
3955 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3956 }
3957 
3958 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3959 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3960 {
3961 	unsigned int vfs_fl;
3962 	unsigned long old_fl, new_fl;
3963 
3964 	do {
3965 		vfs_fl = ei->vfs_inode.i_flags;
3966 		old_fl = ei->i_flags;
3967 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3968 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3969 				EXT4_DIRSYNC_FL);
3970 		if (vfs_fl & S_SYNC)
3971 			new_fl |= EXT4_SYNC_FL;
3972 		if (vfs_fl & S_APPEND)
3973 			new_fl |= EXT4_APPEND_FL;
3974 		if (vfs_fl & S_IMMUTABLE)
3975 			new_fl |= EXT4_IMMUTABLE_FL;
3976 		if (vfs_fl & S_NOATIME)
3977 			new_fl |= EXT4_NOATIME_FL;
3978 		if (vfs_fl & S_DIRSYNC)
3979 			new_fl |= EXT4_DIRSYNC_FL;
3980 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3981 }
3982 
3983 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3984 				  struct ext4_inode_info *ei)
3985 {
3986 	blkcnt_t i_blocks ;
3987 	struct inode *inode = &(ei->vfs_inode);
3988 	struct super_block *sb = inode->i_sb;
3989 
3990 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3991 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3992 		/* we are using combined 48 bit field */
3993 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3994 					le32_to_cpu(raw_inode->i_blocks_lo);
3995 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3996 			/* i_blocks represent file system block size */
3997 			return i_blocks  << (inode->i_blkbits - 9);
3998 		} else {
3999 			return i_blocks;
4000 		}
4001 	} else {
4002 		return le32_to_cpu(raw_inode->i_blocks_lo);
4003 	}
4004 }
4005 
4006 static inline void ext4_iget_extra_inode(struct inode *inode,
4007 					 struct ext4_inode *raw_inode,
4008 					 struct ext4_inode_info *ei)
4009 {
4010 	__le32 *magic = (void *)raw_inode +
4011 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4012 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4013 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4014 		ext4_find_inline_data_nolock(inode);
4015 	} else
4016 		EXT4_I(inode)->i_inline_off = 0;
4017 }
4018 
4019 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4020 {
4021 	struct ext4_iloc iloc;
4022 	struct ext4_inode *raw_inode;
4023 	struct ext4_inode_info *ei;
4024 	struct inode *inode;
4025 	journal_t *journal = EXT4_SB(sb)->s_journal;
4026 	long ret;
4027 	int block;
4028 	uid_t i_uid;
4029 	gid_t i_gid;
4030 
4031 	inode = iget_locked(sb, ino);
4032 	if (!inode)
4033 		return ERR_PTR(-ENOMEM);
4034 	if (!(inode->i_state & I_NEW))
4035 		return inode;
4036 
4037 	ei = EXT4_I(inode);
4038 	iloc.bh = NULL;
4039 
4040 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4041 	if (ret < 0)
4042 		goto bad_inode;
4043 	raw_inode = ext4_raw_inode(&iloc);
4044 
4045 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4046 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4047 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4048 		    EXT4_INODE_SIZE(inode->i_sb)) {
4049 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4050 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4051 				EXT4_INODE_SIZE(inode->i_sb));
4052 			ret = -EIO;
4053 			goto bad_inode;
4054 		}
4055 	} else
4056 		ei->i_extra_isize = 0;
4057 
4058 	/* Precompute checksum seed for inode metadata */
4059 	if (ext4_has_metadata_csum(sb)) {
4060 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4061 		__u32 csum;
4062 		__le32 inum = cpu_to_le32(inode->i_ino);
4063 		__le32 gen = raw_inode->i_generation;
4064 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4065 				   sizeof(inum));
4066 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4067 					      sizeof(gen));
4068 	}
4069 
4070 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4071 		EXT4_ERROR_INODE(inode, "checksum invalid");
4072 		ret = -EIO;
4073 		goto bad_inode;
4074 	}
4075 
4076 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4077 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4078 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4079 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4080 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4081 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4082 	}
4083 	i_uid_write(inode, i_uid);
4084 	i_gid_write(inode, i_gid);
4085 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4086 
4087 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4088 	ei->i_inline_off = 0;
4089 	ei->i_dir_start_lookup = 0;
4090 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4091 	/* We now have enough fields to check if the inode was active or not.
4092 	 * This is needed because nfsd might try to access dead inodes
4093 	 * the test is that same one that e2fsck uses
4094 	 * NeilBrown 1999oct15
4095 	 */
4096 	if (inode->i_nlink == 0) {
4097 		if ((inode->i_mode == 0 ||
4098 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4099 		    ino != EXT4_BOOT_LOADER_INO) {
4100 			/* this inode is deleted */
4101 			ret = -ESTALE;
4102 			goto bad_inode;
4103 		}
4104 		/* The only unlinked inodes we let through here have
4105 		 * valid i_mode and are being read by the orphan
4106 		 * recovery code: that's fine, we're about to complete
4107 		 * the process of deleting those.
4108 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4109 		 * not initialized on a new filesystem. */
4110 	}
4111 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4112 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4113 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4114 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4115 		ei->i_file_acl |=
4116 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4117 	inode->i_size = ext4_isize(raw_inode);
4118 	ei->i_disksize = inode->i_size;
4119 #ifdef CONFIG_QUOTA
4120 	ei->i_reserved_quota = 0;
4121 #endif
4122 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4123 	ei->i_block_group = iloc.block_group;
4124 	ei->i_last_alloc_group = ~0;
4125 	/*
4126 	 * NOTE! The in-memory inode i_data array is in little-endian order
4127 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4128 	 */
4129 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4130 		ei->i_data[block] = raw_inode->i_block[block];
4131 	INIT_LIST_HEAD(&ei->i_orphan);
4132 
4133 	/*
4134 	 * Set transaction id's of transactions that have to be committed
4135 	 * to finish f[data]sync. We set them to currently running transaction
4136 	 * as we cannot be sure that the inode or some of its metadata isn't
4137 	 * part of the transaction - the inode could have been reclaimed and
4138 	 * now it is reread from disk.
4139 	 */
4140 	if (journal) {
4141 		transaction_t *transaction;
4142 		tid_t tid;
4143 
4144 		read_lock(&journal->j_state_lock);
4145 		if (journal->j_running_transaction)
4146 			transaction = journal->j_running_transaction;
4147 		else
4148 			transaction = journal->j_committing_transaction;
4149 		if (transaction)
4150 			tid = transaction->t_tid;
4151 		else
4152 			tid = journal->j_commit_sequence;
4153 		read_unlock(&journal->j_state_lock);
4154 		ei->i_sync_tid = tid;
4155 		ei->i_datasync_tid = tid;
4156 	}
4157 
4158 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4159 		if (ei->i_extra_isize == 0) {
4160 			/* The extra space is currently unused. Use it. */
4161 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4162 					    EXT4_GOOD_OLD_INODE_SIZE;
4163 		} else {
4164 			ext4_iget_extra_inode(inode, raw_inode, ei);
4165 		}
4166 	}
4167 
4168 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4169 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4170 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4171 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4172 
4173 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4174 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4175 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4176 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4177 				inode->i_version |=
4178 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4179 		}
4180 	}
4181 
4182 	ret = 0;
4183 	if (ei->i_file_acl &&
4184 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4185 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4186 				 ei->i_file_acl);
4187 		ret = -EIO;
4188 		goto bad_inode;
4189 	} else if (!ext4_has_inline_data(inode)) {
4190 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4191 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4192 			    (S_ISLNK(inode->i_mode) &&
4193 			     !ext4_inode_is_fast_symlink(inode))))
4194 				/* Validate extent which is part of inode */
4195 				ret = ext4_ext_check_inode(inode);
4196 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4197 			   (S_ISLNK(inode->i_mode) &&
4198 			    !ext4_inode_is_fast_symlink(inode))) {
4199 			/* Validate block references which are part of inode */
4200 			ret = ext4_ind_check_inode(inode);
4201 		}
4202 	}
4203 	if (ret)
4204 		goto bad_inode;
4205 
4206 	if (S_ISREG(inode->i_mode)) {
4207 		inode->i_op = &ext4_file_inode_operations;
4208 		inode->i_fop = &ext4_file_operations;
4209 		ext4_set_aops(inode);
4210 	} else if (S_ISDIR(inode->i_mode)) {
4211 		inode->i_op = &ext4_dir_inode_operations;
4212 		inode->i_fop = &ext4_dir_operations;
4213 	} else if (S_ISLNK(inode->i_mode)) {
4214 		if (ext4_inode_is_fast_symlink(inode) &&
4215 		    !ext4_encrypted_inode(inode)) {
4216 			inode->i_op = &ext4_fast_symlink_inode_operations;
4217 			nd_terminate_link(ei->i_data, inode->i_size,
4218 				sizeof(ei->i_data) - 1);
4219 		} else {
4220 			inode->i_op = &ext4_symlink_inode_operations;
4221 			ext4_set_aops(inode);
4222 		}
4223 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4224 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4225 		inode->i_op = &ext4_special_inode_operations;
4226 		if (raw_inode->i_block[0])
4227 			init_special_inode(inode, inode->i_mode,
4228 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4229 		else
4230 			init_special_inode(inode, inode->i_mode,
4231 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4232 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4233 		make_bad_inode(inode);
4234 	} else {
4235 		ret = -EIO;
4236 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4237 		goto bad_inode;
4238 	}
4239 	brelse(iloc.bh);
4240 	ext4_set_inode_flags(inode);
4241 	unlock_new_inode(inode);
4242 	return inode;
4243 
4244 bad_inode:
4245 	brelse(iloc.bh);
4246 	iget_failed(inode);
4247 	return ERR_PTR(ret);
4248 }
4249 
4250 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4251 {
4252 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4253 		return ERR_PTR(-EIO);
4254 	return ext4_iget(sb, ino);
4255 }
4256 
4257 static int ext4_inode_blocks_set(handle_t *handle,
4258 				struct ext4_inode *raw_inode,
4259 				struct ext4_inode_info *ei)
4260 {
4261 	struct inode *inode = &(ei->vfs_inode);
4262 	u64 i_blocks = inode->i_blocks;
4263 	struct super_block *sb = inode->i_sb;
4264 
4265 	if (i_blocks <= ~0U) {
4266 		/*
4267 		 * i_blocks can be represented in a 32 bit variable
4268 		 * as multiple of 512 bytes
4269 		 */
4270 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4271 		raw_inode->i_blocks_high = 0;
4272 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273 		return 0;
4274 	}
4275 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4276 		return -EFBIG;
4277 
4278 	if (i_blocks <= 0xffffffffffffULL) {
4279 		/*
4280 		 * i_blocks can be represented in a 48 bit variable
4281 		 * as multiple of 512 bytes
4282 		 */
4283 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4284 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4285 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4286 	} else {
4287 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4288 		/* i_block is stored in file system block size */
4289 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4290 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4291 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4292 	}
4293 	return 0;
4294 }
4295 
4296 struct other_inode {
4297 	unsigned long		orig_ino;
4298 	struct ext4_inode	*raw_inode;
4299 };
4300 
4301 static int other_inode_match(struct inode * inode, unsigned long ino,
4302 			     void *data)
4303 {
4304 	struct other_inode *oi = (struct other_inode *) data;
4305 
4306 	if ((inode->i_ino != ino) ||
4307 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4308 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4309 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4310 		return 0;
4311 	spin_lock(&inode->i_lock);
4312 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4313 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4314 	    (inode->i_state & I_DIRTY_TIME)) {
4315 		struct ext4_inode_info	*ei = EXT4_I(inode);
4316 
4317 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4318 		spin_unlock(&inode->i_lock);
4319 
4320 		spin_lock(&ei->i_raw_lock);
4321 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4322 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4323 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4324 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4325 		spin_unlock(&ei->i_raw_lock);
4326 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4327 		return -1;
4328 	}
4329 	spin_unlock(&inode->i_lock);
4330 	return -1;
4331 }
4332 
4333 /*
4334  * Opportunistically update the other time fields for other inodes in
4335  * the same inode table block.
4336  */
4337 static void ext4_update_other_inodes_time(struct super_block *sb,
4338 					  unsigned long orig_ino, char *buf)
4339 {
4340 	struct other_inode oi;
4341 	unsigned long ino;
4342 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4343 	int inode_size = EXT4_INODE_SIZE(sb);
4344 
4345 	oi.orig_ino = orig_ino;
4346 	ino = orig_ino & ~(inodes_per_block - 1);
4347 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4348 		if (ino == orig_ino)
4349 			continue;
4350 		oi.raw_inode = (struct ext4_inode *) buf;
4351 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4352 	}
4353 }
4354 
4355 /*
4356  * Post the struct inode info into an on-disk inode location in the
4357  * buffer-cache.  This gobbles the caller's reference to the
4358  * buffer_head in the inode location struct.
4359  *
4360  * The caller must have write access to iloc->bh.
4361  */
4362 static int ext4_do_update_inode(handle_t *handle,
4363 				struct inode *inode,
4364 				struct ext4_iloc *iloc)
4365 {
4366 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4367 	struct ext4_inode_info *ei = EXT4_I(inode);
4368 	struct buffer_head *bh = iloc->bh;
4369 	struct super_block *sb = inode->i_sb;
4370 	int err = 0, rc, block;
4371 	int need_datasync = 0, set_large_file = 0;
4372 	uid_t i_uid;
4373 	gid_t i_gid;
4374 
4375 	spin_lock(&ei->i_raw_lock);
4376 
4377 	/* For fields not tracked in the in-memory inode,
4378 	 * initialise them to zero for new inodes. */
4379 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4380 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4381 
4382 	ext4_get_inode_flags(ei);
4383 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4384 	i_uid = i_uid_read(inode);
4385 	i_gid = i_gid_read(inode);
4386 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4387 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4388 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4389 /*
4390  * Fix up interoperability with old kernels. Otherwise, old inodes get
4391  * re-used with the upper 16 bits of the uid/gid intact
4392  */
4393 		if (!ei->i_dtime) {
4394 			raw_inode->i_uid_high =
4395 				cpu_to_le16(high_16_bits(i_uid));
4396 			raw_inode->i_gid_high =
4397 				cpu_to_le16(high_16_bits(i_gid));
4398 		} else {
4399 			raw_inode->i_uid_high = 0;
4400 			raw_inode->i_gid_high = 0;
4401 		}
4402 	} else {
4403 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4404 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4405 		raw_inode->i_uid_high = 0;
4406 		raw_inode->i_gid_high = 0;
4407 	}
4408 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4409 
4410 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4411 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4412 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4413 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4414 
4415 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4416 	if (err) {
4417 		spin_unlock(&ei->i_raw_lock);
4418 		goto out_brelse;
4419 	}
4420 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4421 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4422 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4423 		raw_inode->i_file_acl_high =
4424 			cpu_to_le16(ei->i_file_acl >> 32);
4425 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4426 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4427 		ext4_isize_set(raw_inode, ei->i_disksize);
4428 		need_datasync = 1;
4429 	}
4430 	if (ei->i_disksize > 0x7fffffffULL) {
4431 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4432 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4433 				EXT4_SB(sb)->s_es->s_rev_level ==
4434 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4435 			set_large_file = 1;
4436 	}
4437 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4438 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4439 		if (old_valid_dev(inode->i_rdev)) {
4440 			raw_inode->i_block[0] =
4441 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4442 			raw_inode->i_block[1] = 0;
4443 		} else {
4444 			raw_inode->i_block[0] = 0;
4445 			raw_inode->i_block[1] =
4446 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4447 			raw_inode->i_block[2] = 0;
4448 		}
4449 	} else if (!ext4_has_inline_data(inode)) {
4450 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4451 			raw_inode->i_block[block] = ei->i_data[block];
4452 	}
4453 
4454 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4455 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4456 		if (ei->i_extra_isize) {
4457 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4458 				raw_inode->i_version_hi =
4459 					cpu_to_le32(inode->i_version >> 32);
4460 			raw_inode->i_extra_isize =
4461 				cpu_to_le16(ei->i_extra_isize);
4462 		}
4463 	}
4464 	ext4_inode_csum_set(inode, raw_inode, ei);
4465 	spin_unlock(&ei->i_raw_lock);
4466 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4467 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4468 					      bh->b_data);
4469 
4470 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4471 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4472 	if (!err)
4473 		err = rc;
4474 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4475 	if (set_large_file) {
4476 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4477 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4478 		if (err)
4479 			goto out_brelse;
4480 		ext4_update_dynamic_rev(sb);
4481 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4482 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4483 		ext4_handle_sync(handle);
4484 		err = ext4_handle_dirty_super(handle, sb);
4485 	}
4486 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4487 out_brelse:
4488 	brelse(bh);
4489 	ext4_std_error(inode->i_sb, err);
4490 	return err;
4491 }
4492 
4493 /*
4494  * ext4_write_inode()
4495  *
4496  * We are called from a few places:
4497  *
4498  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4499  *   Here, there will be no transaction running. We wait for any running
4500  *   transaction to commit.
4501  *
4502  * - Within flush work (sys_sync(), kupdate and such).
4503  *   We wait on commit, if told to.
4504  *
4505  * - Within iput_final() -> write_inode_now()
4506  *   We wait on commit, if told to.
4507  *
4508  * In all cases it is actually safe for us to return without doing anything,
4509  * because the inode has been copied into a raw inode buffer in
4510  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4511  * writeback.
4512  *
4513  * Note that we are absolutely dependent upon all inode dirtiers doing the
4514  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4515  * which we are interested.
4516  *
4517  * It would be a bug for them to not do this.  The code:
4518  *
4519  *	mark_inode_dirty(inode)
4520  *	stuff();
4521  *	inode->i_size = expr;
4522  *
4523  * is in error because write_inode() could occur while `stuff()' is running,
4524  * and the new i_size will be lost.  Plus the inode will no longer be on the
4525  * superblock's dirty inode list.
4526  */
4527 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4528 {
4529 	int err;
4530 
4531 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4532 		return 0;
4533 
4534 	if (EXT4_SB(inode->i_sb)->s_journal) {
4535 		if (ext4_journal_current_handle()) {
4536 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4537 			dump_stack();
4538 			return -EIO;
4539 		}
4540 
4541 		/*
4542 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4543 		 * ext4_sync_fs() will force the commit after everything is
4544 		 * written.
4545 		 */
4546 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4547 			return 0;
4548 
4549 		err = ext4_force_commit(inode->i_sb);
4550 	} else {
4551 		struct ext4_iloc iloc;
4552 
4553 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4554 		if (err)
4555 			return err;
4556 		/*
4557 		 * sync(2) will flush the whole buffer cache. No need to do
4558 		 * it here separately for each inode.
4559 		 */
4560 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4561 			sync_dirty_buffer(iloc.bh);
4562 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4563 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4564 					 "IO error syncing inode");
4565 			err = -EIO;
4566 		}
4567 		brelse(iloc.bh);
4568 	}
4569 	return err;
4570 }
4571 
4572 /*
4573  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4574  * buffers that are attached to a page stradding i_size and are undergoing
4575  * commit. In that case we have to wait for commit to finish and try again.
4576  */
4577 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4578 {
4579 	struct page *page;
4580 	unsigned offset;
4581 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4582 	tid_t commit_tid = 0;
4583 	int ret;
4584 
4585 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4586 	/*
4587 	 * All buffers in the last page remain valid? Then there's nothing to
4588 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4589 	 * blocksize case
4590 	 */
4591 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4592 		return;
4593 	while (1) {
4594 		page = find_lock_page(inode->i_mapping,
4595 				      inode->i_size >> PAGE_CACHE_SHIFT);
4596 		if (!page)
4597 			return;
4598 		ret = __ext4_journalled_invalidatepage(page, offset,
4599 						PAGE_CACHE_SIZE - offset);
4600 		unlock_page(page);
4601 		page_cache_release(page);
4602 		if (ret != -EBUSY)
4603 			return;
4604 		commit_tid = 0;
4605 		read_lock(&journal->j_state_lock);
4606 		if (journal->j_committing_transaction)
4607 			commit_tid = journal->j_committing_transaction->t_tid;
4608 		read_unlock(&journal->j_state_lock);
4609 		if (commit_tid)
4610 			jbd2_log_wait_commit(journal, commit_tid);
4611 	}
4612 }
4613 
4614 /*
4615  * ext4_setattr()
4616  *
4617  * Called from notify_change.
4618  *
4619  * We want to trap VFS attempts to truncate the file as soon as
4620  * possible.  In particular, we want to make sure that when the VFS
4621  * shrinks i_size, we put the inode on the orphan list and modify
4622  * i_disksize immediately, so that during the subsequent flushing of
4623  * dirty pages and freeing of disk blocks, we can guarantee that any
4624  * commit will leave the blocks being flushed in an unused state on
4625  * disk.  (On recovery, the inode will get truncated and the blocks will
4626  * be freed, so we have a strong guarantee that no future commit will
4627  * leave these blocks visible to the user.)
4628  *
4629  * Another thing we have to assure is that if we are in ordered mode
4630  * and inode is still attached to the committing transaction, we must
4631  * we start writeout of all the dirty pages which are being truncated.
4632  * This way we are sure that all the data written in the previous
4633  * transaction are already on disk (truncate waits for pages under
4634  * writeback).
4635  *
4636  * Called with inode->i_mutex down.
4637  */
4638 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4639 {
4640 	struct inode *inode = dentry->d_inode;
4641 	int error, rc = 0;
4642 	int orphan = 0;
4643 	const unsigned int ia_valid = attr->ia_valid;
4644 
4645 	error = inode_change_ok(inode, attr);
4646 	if (error)
4647 		return error;
4648 
4649 	if (is_quota_modification(inode, attr))
4650 		dquot_initialize(inode);
4651 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4652 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4653 		handle_t *handle;
4654 
4655 		/* (user+group)*(old+new) structure, inode write (sb,
4656 		 * inode block, ? - but truncate inode update has it) */
4657 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4658 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4659 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4660 		if (IS_ERR(handle)) {
4661 			error = PTR_ERR(handle);
4662 			goto err_out;
4663 		}
4664 		error = dquot_transfer(inode, attr);
4665 		if (error) {
4666 			ext4_journal_stop(handle);
4667 			return error;
4668 		}
4669 		/* Update corresponding info in inode so that everything is in
4670 		 * one transaction */
4671 		if (attr->ia_valid & ATTR_UID)
4672 			inode->i_uid = attr->ia_uid;
4673 		if (attr->ia_valid & ATTR_GID)
4674 			inode->i_gid = attr->ia_gid;
4675 		error = ext4_mark_inode_dirty(handle, inode);
4676 		ext4_journal_stop(handle);
4677 	}
4678 
4679 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4680 		handle_t *handle;
4681 
4682 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4683 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4684 
4685 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4686 				return -EFBIG;
4687 		}
4688 
4689 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4690 			inode_inc_iversion(inode);
4691 
4692 		if (S_ISREG(inode->i_mode) &&
4693 		    (attr->ia_size < inode->i_size)) {
4694 			if (ext4_should_order_data(inode)) {
4695 				error = ext4_begin_ordered_truncate(inode,
4696 							    attr->ia_size);
4697 				if (error)
4698 					goto err_out;
4699 			}
4700 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4701 			if (IS_ERR(handle)) {
4702 				error = PTR_ERR(handle);
4703 				goto err_out;
4704 			}
4705 			if (ext4_handle_valid(handle)) {
4706 				error = ext4_orphan_add(handle, inode);
4707 				orphan = 1;
4708 			}
4709 			down_write(&EXT4_I(inode)->i_data_sem);
4710 			EXT4_I(inode)->i_disksize = attr->ia_size;
4711 			rc = ext4_mark_inode_dirty(handle, inode);
4712 			if (!error)
4713 				error = rc;
4714 			/*
4715 			 * We have to update i_size under i_data_sem together
4716 			 * with i_disksize to avoid races with writeback code
4717 			 * running ext4_wb_update_i_disksize().
4718 			 */
4719 			if (!error)
4720 				i_size_write(inode, attr->ia_size);
4721 			up_write(&EXT4_I(inode)->i_data_sem);
4722 			ext4_journal_stop(handle);
4723 			if (error) {
4724 				ext4_orphan_del(NULL, inode);
4725 				goto err_out;
4726 			}
4727 		} else {
4728 			loff_t oldsize = inode->i_size;
4729 
4730 			i_size_write(inode, attr->ia_size);
4731 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4732 		}
4733 
4734 		/*
4735 		 * Blocks are going to be removed from the inode. Wait
4736 		 * for dio in flight.  Temporarily disable
4737 		 * dioread_nolock to prevent livelock.
4738 		 */
4739 		if (orphan) {
4740 			if (!ext4_should_journal_data(inode)) {
4741 				ext4_inode_block_unlocked_dio(inode);
4742 				inode_dio_wait(inode);
4743 				ext4_inode_resume_unlocked_dio(inode);
4744 			} else
4745 				ext4_wait_for_tail_page_commit(inode);
4746 		}
4747 		/*
4748 		 * Truncate pagecache after we've waited for commit
4749 		 * in data=journal mode to make pages freeable.
4750 		 */
4751 		truncate_pagecache(inode, inode->i_size);
4752 	}
4753 	/*
4754 	 * We want to call ext4_truncate() even if attr->ia_size ==
4755 	 * inode->i_size for cases like truncation of fallocated space
4756 	 */
4757 	if (attr->ia_valid & ATTR_SIZE)
4758 		ext4_truncate(inode);
4759 
4760 	if (!rc) {
4761 		setattr_copy(inode, attr);
4762 		mark_inode_dirty(inode);
4763 	}
4764 
4765 	/*
4766 	 * If the call to ext4_truncate failed to get a transaction handle at
4767 	 * all, we need to clean up the in-core orphan list manually.
4768 	 */
4769 	if (orphan && inode->i_nlink)
4770 		ext4_orphan_del(NULL, inode);
4771 
4772 	if (!rc && (ia_valid & ATTR_MODE))
4773 		rc = posix_acl_chmod(inode, inode->i_mode);
4774 
4775 err_out:
4776 	ext4_std_error(inode->i_sb, error);
4777 	if (!error)
4778 		error = rc;
4779 	return error;
4780 }
4781 
4782 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4783 		 struct kstat *stat)
4784 {
4785 	struct inode *inode;
4786 	unsigned long long delalloc_blocks;
4787 
4788 	inode = dentry->d_inode;
4789 	generic_fillattr(inode, stat);
4790 
4791 	/*
4792 	 * If there is inline data in the inode, the inode will normally not
4793 	 * have data blocks allocated (it may have an external xattr block).
4794 	 * Report at least one sector for such files, so tools like tar, rsync,
4795 	 * others doen't incorrectly think the file is completely sparse.
4796 	 */
4797 	if (unlikely(ext4_has_inline_data(inode)))
4798 		stat->blocks += (stat->size + 511) >> 9;
4799 
4800 	/*
4801 	 * We can't update i_blocks if the block allocation is delayed
4802 	 * otherwise in the case of system crash before the real block
4803 	 * allocation is done, we will have i_blocks inconsistent with
4804 	 * on-disk file blocks.
4805 	 * We always keep i_blocks updated together with real
4806 	 * allocation. But to not confuse with user, stat
4807 	 * will return the blocks that include the delayed allocation
4808 	 * blocks for this file.
4809 	 */
4810 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4811 				   EXT4_I(inode)->i_reserved_data_blocks);
4812 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4813 	return 0;
4814 }
4815 
4816 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4817 				   int pextents)
4818 {
4819 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4820 		return ext4_ind_trans_blocks(inode, lblocks);
4821 	return ext4_ext_index_trans_blocks(inode, pextents);
4822 }
4823 
4824 /*
4825  * Account for index blocks, block groups bitmaps and block group
4826  * descriptor blocks if modify datablocks and index blocks
4827  * worse case, the indexs blocks spread over different block groups
4828  *
4829  * If datablocks are discontiguous, they are possible to spread over
4830  * different block groups too. If they are contiguous, with flexbg,
4831  * they could still across block group boundary.
4832  *
4833  * Also account for superblock, inode, quota and xattr blocks
4834  */
4835 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4836 				  int pextents)
4837 {
4838 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4839 	int gdpblocks;
4840 	int idxblocks;
4841 	int ret = 0;
4842 
4843 	/*
4844 	 * How many index blocks need to touch to map @lblocks logical blocks
4845 	 * to @pextents physical extents?
4846 	 */
4847 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4848 
4849 	ret = idxblocks;
4850 
4851 	/*
4852 	 * Now let's see how many group bitmaps and group descriptors need
4853 	 * to account
4854 	 */
4855 	groups = idxblocks + pextents;
4856 	gdpblocks = groups;
4857 	if (groups > ngroups)
4858 		groups = ngroups;
4859 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4860 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4861 
4862 	/* bitmaps and block group descriptor blocks */
4863 	ret += groups + gdpblocks;
4864 
4865 	/* Blocks for super block, inode, quota and xattr blocks */
4866 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4867 
4868 	return ret;
4869 }
4870 
4871 /*
4872  * Calculate the total number of credits to reserve to fit
4873  * the modification of a single pages into a single transaction,
4874  * which may include multiple chunks of block allocations.
4875  *
4876  * This could be called via ext4_write_begin()
4877  *
4878  * We need to consider the worse case, when
4879  * one new block per extent.
4880  */
4881 int ext4_writepage_trans_blocks(struct inode *inode)
4882 {
4883 	int bpp = ext4_journal_blocks_per_page(inode);
4884 	int ret;
4885 
4886 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4887 
4888 	/* Account for data blocks for journalled mode */
4889 	if (ext4_should_journal_data(inode))
4890 		ret += bpp;
4891 	return ret;
4892 }
4893 
4894 /*
4895  * Calculate the journal credits for a chunk of data modification.
4896  *
4897  * This is called from DIO, fallocate or whoever calling
4898  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4899  *
4900  * journal buffers for data blocks are not included here, as DIO
4901  * and fallocate do no need to journal data buffers.
4902  */
4903 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4904 {
4905 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4906 }
4907 
4908 /*
4909  * The caller must have previously called ext4_reserve_inode_write().
4910  * Give this, we know that the caller already has write access to iloc->bh.
4911  */
4912 int ext4_mark_iloc_dirty(handle_t *handle,
4913 			 struct inode *inode, struct ext4_iloc *iloc)
4914 {
4915 	int err = 0;
4916 
4917 	if (IS_I_VERSION(inode))
4918 		inode_inc_iversion(inode);
4919 
4920 	/* the do_update_inode consumes one bh->b_count */
4921 	get_bh(iloc->bh);
4922 
4923 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4924 	err = ext4_do_update_inode(handle, inode, iloc);
4925 	put_bh(iloc->bh);
4926 	return err;
4927 }
4928 
4929 /*
4930  * On success, We end up with an outstanding reference count against
4931  * iloc->bh.  This _must_ be cleaned up later.
4932  */
4933 
4934 int
4935 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4936 			 struct ext4_iloc *iloc)
4937 {
4938 	int err;
4939 
4940 	err = ext4_get_inode_loc(inode, iloc);
4941 	if (!err) {
4942 		BUFFER_TRACE(iloc->bh, "get_write_access");
4943 		err = ext4_journal_get_write_access(handle, iloc->bh);
4944 		if (err) {
4945 			brelse(iloc->bh);
4946 			iloc->bh = NULL;
4947 		}
4948 	}
4949 	ext4_std_error(inode->i_sb, err);
4950 	return err;
4951 }
4952 
4953 /*
4954  * Expand an inode by new_extra_isize bytes.
4955  * Returns 0 on success or negative error number on failure.
4956  */
4957 static int ext4_expand_extra_isize(struct inode *inode,
4958 				   unsigned int new_extra_isize,
4959 				   struct ext4_iloc iloc,
4960 				   handle_t *handle)
4961 {
4962 	struct ext4_inode *raw_inode;
4963 	struct ext4_xattr_ibody_header *header;
4964 
4965 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4966 		return 0;
4967 
4968 	raw_inode = ext4_raw_inode(&iloc);
4969 
4970 	header = IHDR(inode, raw_inode);
4971 
4972 	/* No extended attributes present */
4973 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4974 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4975 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4976 			new_extra_isize);
4977 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4978 		return 0;
4979 	}
4980 
4981 	/* try to expand with EAs present */
4982 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4983 					  raw_inode, handle);
4984 }
4985 
4986 /*
4987  * What we do here is to mark the in-core inode as clean with respect to inode
4988  * dirtiness (it may still be data-dirty).
4989  * This means that the in-core inode may be reaped by prune_icache
4990  * without having to perform any I/O.  This is a very good thing,
4991  * because *any* task may call prune_icache - even ones which
4992  * have a transaction open against a different journal.
4993  *
4994  * Is this cheating?  Not really.  Sure, we haven't written the
4995  * inode out, but prune_icache isn't a user-visible syncing function.
4996  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4997  * we start and wait on commits.
4998  */
4999 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5000 {
5001 	struct ext4_iloc iloc;
5002 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5003 	static unsigned int mnt_count;
5004 	int err, ret;
5005 
5006 	might_sleep();
5007 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5008 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5009 	if (ext4_handle_valid(handle) &&
5010 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5011 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5012 		/*
5013 		 * We need extra buffer credits since we may write into EA block
5014 		 * with this same handle. If journal_extend fails, then it will
5015 		 * only result in a minor loss of functionality for that inode.
5016 		 * If this is felt to be critical, then e2fsck should be run to
5017 		 * force a large enough s_min_extra_isize.
5018 		 */
5019 		if ((jbd2_journal_extend(handle,
5020 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5021 			ret = ext4_expand_extra_isize(inode,
5022 						      sbi->s_want_extra_isize,
5023 						      iloc, handle);
5024 			if (ret) {
5025 				ext4_set_inode_state(inode,
5026 						     EXT4_STATE_NO_EXPAND);
5027 				if (mnt_count !=
5028 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5029 					ext4_warning(inode->i_sb,
5030 					"Unable to expand inode %lu. Delete"
5031 					" some EAs or run e2fsck.",
5032 					inode->i_ino);
5033 					mnt_count =
5034 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5035 				}
5036 			}
5037 		}
5038 	}
5039 	if (!err)
5040 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5041 	return err;
5042 }
5043 
5044 /*
5045  * ext4_dirty_inode() is called from __mark_inode_dirty()
5046  *
5047  * We're really interested in the case where a file is being extended.
5048  * i_size has been changed by generic_commit_write() and we thus need
5049  * to include the updated inode in the current transaction.
5050  *
5051  * Also, dquot_alloc_block() will always dirty the inode when blocks
5052  * are allocated to the file.
5053  *
5054  * If the inode is marked synchronous, we don't honour that here - doing
5055  * so would cause a commit on atime updates, which we don't bother doing.
5056  * We handle synchronous inodes at the highest possible level.
5057  *
5058  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5059  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5060  * to copy into the on-disk inode structure are the timestamp files.
5061  */
5062 void ext4_dirty_inode(struct inode *inode, int flags)
5063 {
5064 	handle_t *handle;
5065 
5066 	if (flags == I_DIRTY_TIME)
5067 		return;
5068 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5069 	if (IS_ERR(handle))
5070 		goto out;
5071 
5072 	ext4_mark_inode_dirty(handle, inode);
5073 
5074 	ext4_journal_stop(handle);
5075 out:
5076 	return;
5077 }
5078 
5079 #if 0
5080 /*
5081  * Bind an inode's backing buffer_head into this transaction, to prevent
5082  * it from being flushed to disk early.  Unlike
5083  * ext4_reserve_inode_write, this leaves behind no bh reference and
5084  * returns no iloc structure, so the caller needs to repeat the iloc
5085  * lookup to mark the inode dirty later.
5086  */
5087 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5088 {
5089 	struct ext4_iloc iloc;
5090 
5091 	int err = 0;
5092 	if (handle) {
5093 		err = ext4_get_inode_loc(inode, &iloc);
5094 		if (!err) {
5095 			BUFFER_TRACE(iloc.bh, "get_write_access");
5096 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5097 			if (!err)
5098 				err = ext4_handle_dirty_metadata(handle,
5099 								 NULL,
5100 								 iloc.bh);
5101 			brelse(iloc.bh);
5102 		}
5103 	}
5104 	ext4_std_error(inode->i_sb, err);
5105 	return err;
5106 }
5107 #endif
5108 
5109 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5110 {
5111 	journal_t *journal;
5112 	handle_t *handle;
5113 	int err;
5114 
5115 	/*
5116 	 * We have to be very careful here: changing a data block's
5117 	 * journaling status dynamically is dangerous.  If we write a
5118 	 * data block to the journal, change the status and then delete
5119 	 * that block, we risk forgetting to revoke the old log record
5120 	 * from the journal and so a subsequent replay can corrupt data.
5121 	 * So, first we make sure that the journal is empty and that
5122 	 * nobody is changing anything.
5123 	 */
5124 
5125 	journal = EXT4_JOURNAL(inode);
5126 	if (!journal)
5127 		return 0;
5128 	if (is_journal_aborted(journal))
5129 		return -EROFS;
5130 	/* We have to allocate physical blocks for delalloc blocks
5131 	 * before flushing journal. otherwise delalloc blocks can not
5132 	 * be allocated any more. even more truncate on delalloc blocks
5133 	 * could trigger BUG by flushing delalloc blocks in journal.
5134 	 * There is no delalloc block in non-journal data mode.
5135 	 */
5136 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5137 		err = ext4_alloc_da_blocks(inode);
5138 		if (err < 0)
5139 			return err;
5140 	}
5141 
5142 	/* Wait for all existing dio workers */
5143 	ext4_inode_block_unlocked_dio(inode);
5144 	inode_dio_wait(inode);
5145 
5146 	jbd2_journal_lock_updates(journal);
5147 
5148 	/*
5149 	 * OK, there are no updates running now, and all cached data is
5150 	 * synced to disk.  We are now in a completely consistent state
5151 	 * which doesn't have anything in the journal, and we know that
5152 	 * no filesystem updates are running, so it is safe to modify
5153 	 * the inode's in-core data-journaling state flag now.
5154 	 */
5155 
5156 	if (val)
5157 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5158 	else {
5159 		err = jbd2_journal_flush(journal);
5160 		if (err < 0) {
5161 			jbd2_journal_unlock_updates(journal);
5162 			ext4_inode_resume_unlocked_dio(inode);
5163 			return err;
5164 		}
5165 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5166 	}
5167 	ext4_set_aops(inode);
5168 
5169 	jbd2_journal_unlock_updates(journal);
5170 	ext4_inode_resume_unlocked_dio(inode);
5171 
5172 	/* Finally we can mark the inode as dirty. */
5173 
5174 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5175 	if (IS_ERR(handle))
5176 		return PTR_ERR(handle);
5177 
5178 	err = ext4_mark_inode_dirty(handle, inode);
5179 	ext4_handle_sync(handle);
5180 	ext4_journal_stop(handle);
5181 	ext4_std_error(inode->i_sb, err);
5182 
5183 	return err;
5184 }
5185 
5186 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5187 {
5188 	return !buffer_mapped(bh);
5189 }
5190 
5191 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5192 {
5193 	struct page *page = vmf->page;
5194 	loff_t size;
5195 	unsigned long len;
5196 	int ret;
5197 	struct file *file = vma->vm_file;
5198 	struct inode *inode = file_inode(file);
5199 	struct address_space *mapping = inode->i_mapping;
5200 	handle_t *handle;
5201 	get_block_t *get_block;
5202 	int retries = 0;
5203 
5204 	sb_start_pagefault(inode->i_sb);
5205 	file_update_time(vma->vm_file);
5206 	/* Delalloc case is easy... */
5207 	if (test_opt(inode->i_sb, DELALLOC) &&
5208 	    !ext4_should_journal_data(inode) &&
5209 	    !ext4_nonda_switch(inode->i_sb)) {
5210 		do {
5211 			ret = __block_page_mkwrite(vma, vmf,
5212 						   ext4_da_get_block_prep);
5213 		} while (ret == -ENOSPC &&
5214 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5215 		goto out_ret;
5216 	}
5217 
5218 	lock_page(page);
5219 	size = i_size_read(inode);
5220 	/* Page got truncated from under us? */
5221 	if (page->mapping != mapping || page_offset(page) > size) {
5222 		unlock_page(page);
5223 		ret = VM_FAULT_NOPAGE;
5224 		goto out;
5225 	}
5226 
5227 	if (page->index == size >> PAGE_CACHE_SHIFT)
5228 		len = size & ~PAGE_CACHE_MASK;
5229 	else
5230 		len = PAGE_CACHE_SIZE;
5231 	/*
5232 	 * Return if we have all the buffers mapped. This avoids the need to do
5233 	 * journal_start/journal_stop which can block and take a long time
5234 	 */
5235 	if (page_has_buffers(page)) {
5236 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5237 					    0, len, NULL,
5238 					    ext4_bh_unmapped)) {
5239 			/* Wait so that we don't change page under IO */
5240 			wait_for_stable_page(page);
5241 			ret = VM_FAULT_LOCKED;
5242 			goto out;
5243 		}
5244 	}
5245 	unlock_page(page);
5246 	/* OK, we need to fill the hole... */
5247 	if (ext4_should_dioread_nolock(inode))
5248 		get_block = ext4_get_block_write;
5249 	else
5250 		get_block = ext4_get_block;
5251 retry_alloc:
5252 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5253 				    ext4_writepage_trans_blocks(inode));
5254 	if (IS_ERR(handle)) {
5255 		ret = VM_FAULT_SIGBUS;
5256 		goto out;
5257 	}
5258 	ret = __block_page_mkwrite(vma, vmf, get_block);
5259 	if (!ret && ext4_should_journal_data(inode)) {
5260 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5261 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5262 			unlock_page(page);
5263 			ret = VM_FAULT_SIGBUS;
5264 			ext4_journal_stop(handle);
5265 			goto out;
5266 		}
5267 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5268 	}
5269 	ext4_journal_stop(handle);
5270 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5271 		goto retry_alloc;
5272 out_ret:
5273 	ret = block_page_mkwrite_return(ret);
5274 out:
5275 	sb_end_pagefault(inode->i_sb);
5276 	return ret;
5277 }
5278