xref: /openbmc/linux/fs/ext4/inode.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50 
51 #include <trace/events/ext4.h>
52 
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54 
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 					      loff_t new_size)
57 {
58 	trace_ext4_begin_ordered_truncate(inode, new_size);
59 	/*
60 	 * If jinode is zero, then we never opened the file for
61 	 * writing, so there's no need to call
62 	 * jbd2_journal_begin_ordered_truncate() since there's no
63 	 * outstanding writes we need to flush.
64 	 */
65 	if (!EXT4_I(inode)->jinode)
66 		return 0;
67 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 						   EXT4_I(inode)->jinode,
69 						   new_size);
70 }
71 
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 				   struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79 
80 /*
81  * Test whether an inode is a fast symlink.
82  */
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 		(inode->i_sb->s_blocksize >> 9) : 0;
87 
88 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90 
91 /*
92  * Work out how many blocks we need to proceed with the next chunk of a
93  * truncate transaction.
94  */
95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97 	ext4_lblk_t needed;
98 
99 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100 
101 	/* Give ourselves just enough room to cope with inodes in which
102 	 * i_blocks is corrupt: we've seen disk corruptions in the past
103 	 * which resulted in random data in an inode which looked enough
104 	 * like a regular file for ext4 to try to delete it.  Things
105 	 * will go a bit crazy if that happens, but at least we should
106 	 * try not to panic the whole kernel. */
107 	if (needed < 2)
108 		needed = 2;
109 
110 	/* But we need to bound the transaction so we don't overflow the
111 	 * journal. */
112 	if (needed > EXT4_MAX_TRANS_DATA)
113 		needed = EXT4_MAX_TRANS_DATA;
114 
115 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117 
118 /*
119  * Truncate transactions can be complex and absolutely huge.  So we need to
120  * be able to restart the transaction at a conventient checkpoint to make
121  * sure we don't overflow the journal.
122  *
123  * start_transaction gets us a new handle for a truncate transaction,
124  * and extend_transaction tries to extend the existing one a bit.  If
125  * extend fails, we need to propagate the failure up and restart the
126  * transaction in the top-level truncate loop. --sct
127  */
128 static handle_t *start_transaction(struct inode *inode)
129 {
130 	handle_t *result;
131 
132 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 	if (!IS_ERR(result))
134 		return result;
135 
136 	ext4_std_error(inode->i_sb, PTR_ERR(result));
137 	return result;
138 }
139 
140 /*
141  * Try to extend this transaction for the purposes of truncation.
142  *
143  * Returns 0 if we managed to create more room.  If we can't create more
144  * room, and the transaction must be restarted we return 1.
145  */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148 	if (!ext4_handle_valid(handle))
149 		return 0;
150 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151 		return 0;
152 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 		return 0;
154 	return 1;
155 }
156 
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 				 int nblocks)
164 {
165 	int ret;
166 
167 	/*
168 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 	 * moment, get_block can be called only for blocks inside i_size since
170 	 * page cache has been already dropped and writes are blocked by
171 	 * i_mutex. So we can safely drop the i_data_sem here.
172 	 */
173 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 	jbd_debug(2, "restarting handle %p\n", handle);
175 	up_write(&EXT4_I(inode)->i_data_sem);
176 	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
177 	down_write(&EXT4_I(inode)->i_data_sem);
178 	ext4_discard_preallocations(inode);
179 
180 	return ret;
181 }
182 
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188 	handle_t *handle;
189 	int err;
190 
191 	trace_ext4_evict_inode(inode);
192 	if (inode->i_nlink) {
193 		truncate_inode_pages(&inode->i_data, 0);
194 		goto no_delete;
195 	}
196 
197 	if (!is_bad_inode(inode))
198 		dquot_initialize(inode);
199 
200 	if (ext4_should_order_data(inode))
201 		ext4_begin_ordered_truncate(inode, 0);
202 	truncate_inode_pages(&inode->i_data, 0);
203 
204 	if (is_bad_inode(inode))
205 		goto no_delete;
206 
207 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208 	if (IS_ERR(handle)) {
209 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 		/*
211 		 * If we're going to skip the normal cleanup, we still need to
212 		 * make sure that the in-core orphan linked list is properly
213 		 * cleaned up.
214 		 */
215 		ext4_orphan_del(NULL, inode);
216 		goto no_delete;
217 	}
218 
219 	if (IS_SYNC(inode))
220 		ext4_handle_sync(handle);
221 	inode->i_size = 0;
222 	err = ext4_mark_inode_dirty(handle, inode);
223 	if (err) {
224 		ext4_warning(inode->i_sb,
225 			     "couldn't mark inode dirty (err %d)", err);
226 		goto stop_handle;
227 	}
228 	if (inode->i_blocks)
229 		ext4_truncate(inode);
230 
231 	/*
232 	 * ext4_ext_truncate() doesn't reserve any slop when it
233 	 * restarts journal transactions; therefore there may not be
234 	 * enough credits left in the handle to remove the inode from
235 	 * the orphan list and set the dtime field.
236 	 */
237 	if (!ext4_handle_has_enough_credits(handle, 3)) {
238 		err = ext4_journal_extend(handle, 3);
239 		if (err > 0)
240 			err = ext4_journal_restart(handle, 3);
241 		if (err != 0) {
242 			ext4_warning(inode->i_sb,
243 				     "couldn't extend journal (err %d)", err);
244 		stop_handle:
245 			ext4_journal_stop(handle);
246 			ext4_orphan_del(NULL, inode);
247 			goto no_delete;
248 		}
249 	}
250 
251 	/*
252 	 * Kill off the orphan record which ext4_truncate created.
253 	 * AKPM: I think this can be inside the above `if'.
254 	 * Note that ext4_orphan_del() has to be able to cope with the
255 	 * deletion of a non-existent orphan - this is because we don't
256 	 * know if ext4_truncate() actually created an orphan record.
257 	 * (Well, we could do this if we need to, but heck - it works)
258 	 */
259 	ext4_orphan_del(handle, inode);
260 	EXT4_I(inode)->i_dtime	= get_seconds();
261 
262 	/*
263 	 * One subtle ordering requirement: if anything has gone wrong
264 	 * (transaction abort, IO errors, whatever), then we can still
265 	 * do these next steps (the fs will already have been marked as
266 	 * having errors), but we can't free the inode if the mark_dirty
267 	 * fails.
268 	 */
269 	if (ext4_mark_inode_dirty(handle, inode))
270 		/* If that failed, just do the required in-core inode clear. */
271 		ext4_clear_inode(inode);
272 	else
273 		ext4_free_inode(handle, inode);
274 	ext4_journal_stop(handle);
275 	return;
276 no_delete:
277 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
278 }
279 
280 typedef struct {
281 	__le32	*p;
282 	__le32	key;
283 	struct buffer_head *bh;
284 } Indirect;
285 
286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 {
288 	p->key = *(p->p = v);
289 	p->bh = bh;
290 }
291 
292 /**
293  *	ext4_block_to_path - parse the block number into array of offsets
294  *	@inode: inode in question (we are only interested in its superblock)
295  *	@i_block: block number to be parsed
296  *	@offsets: array to store the offsets in
297  *	@boundary: set this non-zero if the referred-to block is likely to be
298  *	       followed (on disk) by an indirect block.
299  *
300  *	To store the locations of file's data ext4 uses a data structure common
301  *	for UNIX filesystems - tree of pointers anchored in the inode, with
302  *	data blocks at leaves and indirect blocks in intermediate nodes.
303  *	This function translates the block number into path in that tree -
304  *	return value is the path length and @offsets[n] is the offset of
305  *	pointer to (n+1)th node in the nth one. If @block is out of range
306  *	(negative or too large) warning is printed and zero returned.
307  *
308  *	Note: function doesn't find node addresses, so no IO is needed. All
309  *	we need to know is the capacity of indirect blocks (taken from the
310  *	inode->i_sb).
311  */
312 
313 /*
314  * Portability note: the last comparison (check that we fit into triple
315  * indirect block) is spelled differently, because otherwise on an
316  * architecture with 32-bit longs and 8Kb pages we might get into trouble
317  * if our filesystem had 8Kb blocks. We might use long long, but that would
318  * kill us on x86. Oh, well, at least the sign propagation does not matter -
319  * i_block would have to be negative in the very beginning, so we would not
320  * get there at all.
321  */
322 
323 static int ext4_block_to_path(struct inode *inode,
324 			      ext4_lblk_t i_block,
325 			      ext4_lblk_t offsets[4], int *boundary)
326 {
327 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329 	const long direct_blocks = EXT4_NDIR_BLOCKS,
330 		indirect_blocks = ptrs,
331 		double_blocks = (1 << (ptrs_bits * 2));
332 	int n = 0;
333 	int final = 0;
334 
335 	if (i_block < direct_blocks) {
336 		offsets[n++] = i_block;
337 		final = direct_blocks;
338 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339 		offsets[n++] = EXT4_IND_BLOCK;
340 		offsets[n++] = i_block;
341 		final = ptrs;
342 	} else if ((i_block -= indirect_blocks) < double_blocks) {
343 		offsets[n++] = EXT4_DIND_BLOCK;
344 		offsets[n++] = i_block >> ptrs_bits;
345 		offsets[n++] = i_block & (ptrs - 1);
346 		final = ptrs;
347 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348 		offsets[n++] = EXT4_TIND_BLOCK;
349 		offsets[n++] = i_block >> (ptrs_bits * 2);
350 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 		offsets[n++] = i_block & (ptrs - 1);
352 		final = ptrs;
353 	} else {
354 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 			     i_block + direct_blocks +
356 			     indirect_blocks + double_blocks, inode->i_ino);
357 	}
358 	if (boundary)
359 		*boundary = final - 1 - (i_block & (ptrs - 1));
360 	return n;
361 }
362 
363 static int __ext4_check_blockref(const char *function, unsigned int line,
364 				 struct inode *inode,
365 				 __le32 *p, unsigned int max)
366 {
367 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368 	__le32 *bref = p;
369 	unsigned int blk;
370 
371 	while (bref < p+max) {
372 		blk = le32_to_cpu(*bref++);
373 		if (blk &&
374 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375 						    blk, 1))) {
376 			es->s_last_error_block = cpu_to_le64(blk);
377 			ext4_error_inode(inode, function, line, blk,
378 					 "invalid block");
379 			return -EIO;
380 		}
381 	}
382 	return 0;
383 }
384 
385 
386 #define ext4_check_indirect_blockref(inode, bh)                         \
387 	__ext4_check_blockref(__func__, __LINE__, inode,		\
388 			      (__le32 *)(bh)->b_data,			\
389 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
390 
391 #define ext4_check_inode_blockref(inode)                                \
392 	__ext4_check_blockref(__func__, __LINE__, inode,		\
393 			      EXT4_I(inode)->i_data,			\
394 			      EXT4_NDIR_BLOCKS)
395 
396 /**
397  *	ext4_get_branch - read the chain of indirect blocks leading to data
398  *	@inode: inode in question
399  *	@depth: depth of the chain (1 - direct pointer, etc.)
400  *	@offsets: offsets of pointers in inode/indirect blocks
401  *	@chain: place to store the result
402  *	@err: here we store the error value
403  *
404  *	Function fills the array of triples <key, p, bh> and returns %NULL
405  *	if everything went OK or the pointer to the last filled triple
406  *	(incomplete one) otherwise. Upon the return chain[i].key contains
407  *	the number of (i+1)-th block in the chain (as it is stored in memory,
408  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
409  *	number (it points into struct inode for i==0 and into the bh->b_data
410  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411  *	block for i>0 and NULL for i==0. In other words, it holds the block
412  *	numbers of the chain, addresses they were taken from (and where we can
413  *	verify that chain did not change) and buffer_heads hosting these
414  *	numbers.
415  *
416  *	Function stops when it stumbles upon zero pointer (absent block)
417  *		(pointer to last triple returned, *@err == 0)
418  *	or when it gets an IO error reading an indirect block
419  *		(ditto, *@err == -EIO)
420  *	or when it reads all @depth-1 indirect blocks successfully and finds
421  *	the whole chain, all way to the data (returns %NULL, *err == 0).
422  *
423  *      Need to be called with
424  *      down_read(&EXT4_I(inode)->i_data_sem)
425  */
426 static Indirect *ext4_get_branch(struct inode *inode, int depth,
427 				 ext4_lblk_t  *offsets,
428 				 Indirect chain[4], int *err)
429 {
430 	struct super_block *sb = inode->i_sb;
431 	Indirect *p = chain;
432 	struct buffer_head *bh;
433 
434 	*err = 0;
435 	/* i_data is not going away, no lock needed */
436 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437 	if (!p->key)
438 		goto no_block;
439 	while (--depth) {
440 		bh = sb_getblk(sb, le32_to_cpu(p->key));
441 		if (unlikely(!bh))
442 			goto failure;
443 
444 		if (!bh_uptodate_or_lock(bh)) {
445 			if (bh_submit_read(bh) < 0) {
446 				put_bh(bh);
447 				goto failure;
448 			}
449 			/* validate block references */
450 			if (ext4_check_indirect_blockref(inode, bh)) {
451 				put_bh(bh);
452 				goto failure;
453 			}
454 		}
455 
456 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457 		/* Reader: end */
458 		if (!p->key)
459 			goto no_block;
460 	}
461 	return NULL;
462 
463 failure:
464 	*err = -EIO;
465 no_block:
466 	return p;
467 }
468 
469 /**
470  *	ext4_find_near - find a place for allocation with sufficient locality
471  *	@inode: owner
472  *	@ind: descriptor of indirect block.
473  *
474  *	This function returns the preferred place for block allocation.
475  *	It is used when heuristic for sequential allocation fails.
476  *	Rules are:
477  *	  + if there is a block to the left of our position - allocate near it.
478  *	  + if pointer will live in indirect block - allocate near that block.
479  *	  + if pointer will live in inode - allocate in the same
480  *	    cylinder group.
481  *
482  * In the latter case we colour the starting block by the callers PID to
483  * prevent it from clashing with concurrent allocations for a different inode
484  * in the same block group.   The PID is used here so that functionally related
485  * files will be close-by on-disk.
486  *
487  *	Caller must make sure that @ind is valid and will stay that way.
488  */
489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490 {
491 	struct ext4_inode_info *ei = EXT4_I(inode);
492 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493 	__le32 *p;
494 	ext4_fsblk_t bg_start;
495 	ext4_fsblk_t last_block;
496 	ext4_grpblk_t colour;
497 	ext4_group_t block_group;
498 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499 
500 	/* Try to find previous block */
501 	for (p = ind->p - 1; p >= start; p--) {
502 		if (*p)
503 			return le32_to_cpu(*p);
504 	}
505 
506 	/* No such thing, so let's try location of indirect block */
507 	if (ind->bh)
508 		return ind->bh->b_blocknr;
509 
510 	/*
511 	 * It is going to be referred to from the inode itself? OK, just put it
512 	 * into the same cylinder group then.
513 	 */
514 	block_group = ei->i_block_group;
515 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516 		block_group &= ~(flex_size-1);
517 		if (S_ISREG(inode->i_mode))
518 			block_group++;
519 	}
520 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
522 
523 	/*
524 	 * If we are doing delayed allocation, we don't need take
525 	 * colour into account.
526 	 */
527 	if (test_opt(inode->i_sb, DELALLOC))
528 		return bg_start;
529 
530 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531 		colour = (current->pid % 16) *
532 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533 	else
534 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535 	return bg_start + colour;
536 }
537 
538 /**
539  *	ext4_find_goal - find a preferred place for allocation.
540  *	@inode: owner
541  *	@block:  block we want
542  *	@partial: pointer to the last triple within a chain
543  *
544  *	Normally this function find the preferred place for block allocation,
545  *	returns it.
546  *	Because this is only used for non-extent files, we limit the block nr
547  *	to 32 bits.
548  */
549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550 				   Indirect *partial)
551 {
552 	ext4_fsblk_t goal;
553 
554 	/*
555 	 * XXX need to get goal block from mballoc's data structures
556 	 */
557 
558 	goal = ext4_find_near(inode, partial);
559 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560 	return goal;
561 }
562 
563 /**
564  *	ext4_blks_to_allocate - Look up the block map and count the number
565  *	of direct blocks need to be allocated for the given branch.
566  *
567  *	@branch: chain of indirect blocks
568  *	@k: number of blocks need for indirect blocks
569  *	@blks: number of data blocks to be mapped.
570  *	@blocks_to_boundary:  the offset in the indirect block
571  *
572  *	return the total number of blocks to be allocate, including the
573  *	direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 				 int blocks_to_boundary)
577 {
578 	unsigned int count = 0;
579 
580 	/*
581 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 	 * then it's clear blocks on that path have not allocated
583 	 */
584 	if (k > 0) {
585 		/* right now we don't handle cross boundary allocation */
586 		if (blks < blocks_to_boundary + 1)
587 			count += blks;
588 		else
589 			count += blocks_to_boundary + 1;
590 		return count;
591 	}
592 
593 	count++;
594 	while (count < blks && count <= blocks_to_boundary &&
595 		le32_to_cpu(*(branch[0].p + count)) == 0) {
596 		count++;
597 	}
598 	return count;
599 }
600 
601 /**
602  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *	@handle: handle for this transaction
604  *	@inode: inode which needs allocated blocks
605  *	@iblock: the logical block to start allocated at
606  *	@goal: preferred physical block of allocation
607  *	@indirect_blks: the number of blocks need to allocate for indirect
608  *			blocks
609  *	@blks: number of desired blocks
610  *	@new_blocks: on return it will store the new block numbers for
611  *	the indirect blocks(if needed) and the first direct block,
612  *	@err: on return it will store the error code
613  *
614  *	This function will return the number of blocks allocated as
615  *	requested by the passed-in parameters.
616  */
617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
619 			     int indirect_blks, int blks,
620 			     ext4_fsblk_t new_blocks[4], int *err)
621 {
622 	struct ext4_allocation_request ar;
623 	int target, i;
624 	unsigned long count = 0, blk_allocated = 0;
625 	int index = 0;
626 	ext4_fsblk_t current_block = 0;
627 	int ret = 0;
628 
629 	/*
630 	 * Here we try to allocate the requested multiple blocks at once,
631 	 * on a best-effort basis.
632 	 * To build a branch, we should allocate blocks for
633 	 * the indirect blocks(if not allocated yet), and at least
634 	 * the first direct block of this branch.  That's the
635 	 * minimum number of blocks need to allocate(required)
636 	 */
637 	/* first we try to allocate the indirect blocks */
638 	target = indirect_blks;
639 	while (target > 0) {
640 		count = target;
641 		/* allocating blocks for indirect blocks and direct blocks */
642 		current_block = ext4_new_meta_blocks(handle, inode,
643 							goal, &count, err);
644 		if (*err)
645 			goto failed_out;
646 
647 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648 			EXT4_ERROR_INODE(inode,
649 					 "current_block %llu + count %lu > %d!",
650 					 current_block, count,
651 					 EXT4_MAX_BLOCK_FILE_PHYS);
652 			*err = -EIO;
653 			goto failed_out;
654 		}
655 
656 		target -= count;
657 		/* allocate blocks for indirect blocks */
658 		while (index < indirect_blks && count) {
659 			new_blocks[index++] = current_block++;
660 			count--;
661 		}
662 		if (count > 0) {
663 			/*
664 			 * save the new block number
665 			 * for the first direct block
666 			 */
667 			new_blocks[index] = current_block;
668 			printk(KERN_INFO "%s returned more blocks than "
669 						"requested\n", __func__);
670 			WARN_ON(1);
671 			break;
672 		}
673 	}
674 
675 	target = blks - count ;
676 	blk_allocated = count;
677 	if (!target)
678 		goto allocated;
679 	/* Now allocate data blocks */
680 	memset(&ar, 0, sizeof(ar));
681 	ar.inode = inode;
682 	ar.goal = goal;
683 	ar.len = target;
684 	ar.logical = iblock;
685 	if (S_ISREG(inode->i_mode))
686 		/* enable in-core preallocation only for regular files */
687 		ar.flags = EXT4_MB_HINT_DATA;
688 
689 	current_block = ext4_mb_new_blocks(handle, &ar, err);
690 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691 		EXT4_ERROR_INODE(inode,
692 				 "current_block %llu + ar.len %d > %d!",
693 				 current_block, ar.len,
694 				 EXT4_MAX_BLOCK_FILE_PHYS);
695 		*err = -EIO;
696 		goto failed_out;
697 	}
698 
699 	if (*err && (target == blks)) {
700 		/*
701 		 * if the allocation failed and we didn't allocate
702 		 * any blocks before
703 		 */
704 		goto failed_out;
705 	}
706 	if (!*err) {
707 		if (target == blks) {
708 			/*
709 			 * save the new block number
710 			 * for the first direct block
711 			 */
712 			new_blocks[index] = current_block;
713 		}
714 		blk_allocated += ar.len;
715 	}
716 allocated:
717 	/* total number of blocks allocated for direct blocks */
718 	ret = blk_allocated;
719 	*err = 0;
720 	return ret;
721 failed_out:
722 	for (i = 0; i < index; i++)
723 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
724 	return ret;
725 }
726 
727 /**
728  *	ext4_alloc_branch - allocate and set up a chain of blocks.
729  *	@handle: handle for this transaction
730  *	@inode: owner
731  *	@indirect_blks: number of allocated indirect blocks
732  *	@blks: number of allocated direct blocks
733  *	@goal: preferred place for allocation
734  *	@offsets: offsets (in the blocks) to store the pointers to next.
735  *	@branch: place to store the chain in.
736  *
737  *	This function allocates blocks, zeroes out all but the last one,
738  *	links them into chain and (if we are synchronous) writes them to disk.
739  *	In other words, it prepares a branch that can be spliced onto the
740  *	inode. It stores the information about that chain in the branch[], in
741  *	the same format as ext4_get_branch() would do. We are calling it after
742  *	we had read the existing part of chain and partial points to the last
743  *	triple of that (one with zero ->key). Upon the exit we have the same
744  *	picture as after the successful ext4_get_block(), except that in one
745  *	place chain is disconnected - *branch->p is still zero (we did not
746  *	set the last link), but branch->key contains the number that should
747  *	be placed into *branch->p to fill that gap.
748  *
749  *	If allocation fails we free all blocks we've allocated (and forget
750  *	their buffer_heads) and return the error value the from failed
751  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752  *	as described above and return 0.
753  */
754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 			     ext4_lblk_t iblock, int indirect_blks,
756 			     int *blks, ext4_fsblk_t goal,
757 			     ext4_lblk_t *offsets, Indirect *branch)
758 {
759 	int blocksize = inode->i_sb->s_blocksize;
760 	int i, n = 0;
761 	int err = 0;
762 	struct buffer_head *bh;
763 	int num;
764 	ext4_fsblk_t new_blocks[4];
765 	ext4_fsblk_t current_block;
766 
767 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 				*blks, new_blocks, &err);
769 	if (err)
770 		return err;
771 
772 	branch[0].key = cpu_to_le32(new_blocks[0]);
773 	/*
774 	 * metadata blocks and data blocks are allocated.
775 	 */
776 	for (n = 1; n <= indirect_blks;  n++) {
777 		/*
778 		 * Get buffer_head for parent block, zero it out
779 		 * and set the pointer to new one, then send
780 		 * parent to disk.
781 		 */
782 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 		if (unlikely(!bh)) {
784 			err = -EIO;
785 			goto failed;
786 		}
787 
788 		branch[n].bh = bh;
789 		lock_buffer(bh);
790 		BUFFER_TRACE(bh, "call get_create_access");
791 		err = ext4_journal_get_create_access(handle, bh);
792 		if (err) {
793 			/* Don't brelse(bh) here; it's done in
794 			 * ext4_journal_forget() below */
795 			unlock_buffer(bh);
796 			goto failed;
797 		}
798 
799 		memset(bh->b_data, 0, blocksize);
800 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
801 		branch[n].key = cpu_to_le32(new_blocks[n]);
802 		*branch[n].p = branch[n].key;
803 		if (n == indirect_blks) {
804 			current_block = new_blocks[n];
805 			/*
806 			 * End of chain, update the last new metablock of
807 			 * the chain to point to the new allocated
808 			 * data blocks numbers
809 			 */
810 			for (i = 1; i < num; i++)
811 				*(branch[n].p + i) = cpu_to_le32(++current_block);
812 		}
813 		BUFFER_TRACE(bh, "marking uptodate");
814 		set_buffer_uptodate(bh);
815 		unlock_buffer(bh);
816 
817 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818 		err = ext4_handle_dirty_metadata(handle, inode, bh);
819 		if (err)
820 			goto failed;
821 	}
822 	*blks = num;
823 	return err;
824 failed:
825 	/* Allocation failed, free what we already allocated */
826 	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
827 	for (i = 1; i <= n ; i++) {
828 		/*
829 		 * branch[i].bh is newly allocated, so there is no
830 		 * need to revoke the block, which is why we don't
831 		 * need to set EXT4_FREE_BLOCKS_METADATA.
832 		 */
833 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
834 				 EXT4_FREE_BLOCKS_FORGET);
835 	}
836 	for (i = n+1; i < indirect_blks; i++)
837 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
838 
839 	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
840 
841 	return err;
842 }
843 
844 /**
845  * ext4_splice_branch - splice the allocated branch onto inode.
846  * @handle: handle for this transaction
847  * @inode: owner
848  * @block: (logical) number of block we are adding
849  * @chain: chain of indirect blocks (with a missing link - see
850  *	ext4_alloc_branch)
851  * @where: location of missing link
852  * @num:   number of indirect blocks we are adding
853  * @blks:  number of direct blocks we are adding
854  *
855  * This function fills the missing link and does all housekeeping needed in
856  * inode (->i_blocks, etc.). In case of success we end up with the full
857  * chain to new block and return 0.
858  */
859 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860 			      ext4_lblk_t block, Indirect *where, int num,
861 			      int blks)
862 {
863 	int i;
864 	int err = 0;
865 	ext4_fsblk_t current_block;
866 
867 	/*
868 	 * If we're splicing into a [td]indirect block (as opposed to the
869 	 * inode) then we need to get write access to the [td]indirect block
870 	 * before the splice.
871 	 */
872 	if (where->bh) {
873 		BUFFER_TRACE(where->bh, "get_write_access");
874 		err = ext4_journal_get_write_access(handle, where->bh);
875 		if (err)
876 			goto err_out;
877 	}
878 	/* That's it */
879 
880 	*where->p = where->key;
881 
882 	/*
883 	 * Update the host buffer_head or inode to point to more just allocated
884 	 * direct blocks blocks
885 	 */
886 	if (num == 0 && blks > 1) {
887 		current_block = le32_to_cpu(where->key) + 1;
888 		for (i = 1; i < blks; i++)
889 			*(where->p + i) = cpu_to_le32(current_block++);
890 	}
891 
892 	/* We are done with atomic stuff, now do the rest of housekeeping */
893 	/* had we spliced it onto indirect block? */
894 	if (where->bh) {
895 		/*
896 		 * If we spliced it onto an indirect block, we haven't
897 		 * altered the inode.  Note however that if it is being spliced
898 		 * onto an indirect block at the very end of the file (the
899 		 * file is growing) then we *will* alter the inode to reflect
900 		 * the new i_size.  But that is not done here - it is done in
901 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902 		 */
903 		jbd_debug(5, "splicing indirect only\n");
904 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906 		if (err)
907 			goto err_out;
908 	} else {
909 		/*
910 		 * OK, we spliced it into the inode itself on a direct block.
911 		 */
912 		ext4_mark_inode_dirty(handle, inode);
913 		jbd_debug(5, "splicing direct\n");
914 	}
915 	return err;
916 
917 err_out:
918 	for (i = 1; i <= num; i++) {
919 		/*
920 		 * branch[i].bh is newly allocated, so there is no
921 		 * need to revoke the block, which is why we don't
922 		 * need to set EXT4_FREE_BLOCKS_METADATA.
923 		 */
924 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925 				 EXT4_FREE_BLOCKS_FORGET);
926 	}
927 	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
928 			 blks, 0);
929 
930 	return err;
931 }
932 
933 /*
934  * The ext4_ind_map_blocks() function handles non-extents inodes
935  * (i.e., using the traditional indirect/double-indirect i_blocks
936  * scheme) for ext4_map_blocks().
937  *
938  * Allocation strategy is simple: if we have to allocate something, we will
939  * have to go the whole way to leaf. So let's do it before attaching anything
940  * to tree, set linkage between the newborn blocks, write them if sync is
941  * required, recheck the path, free and repeat if check fails, otherwise
942  * set the last missing link (that will protect us from any truncate-generated
943  * removals - all blocks on the path are immune now) and possibly force the
944  * write on the parent block.
945  * That has a nice additional property: no special recovery from the failed
946  * allocations is needed - we simply release blocks and do not touch anything
947  * reachable from inode.
948  *
949  * `handle' can be NULL if create == 0.
950  *
951  * return > 0, # of blocks mapped or allocated.
952  * return = 0, if plain lookup failed.
953  * return < 0, error case.
954  *
955  * The ext4_ind_get_blocks() function should be called with
956  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959  * blocks.
960  */
961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962 			       struct ext4_map_blocks *map,
963 			       int flags)
964 {
965 	int err = -EIO;
966 	ext4_lblk_t offsets[4];
967 	Indirect chain[4];
968 	Indirect *partial;
969 	ext4_fsblk_t goal;
970 	int indirect_blks;
971 	int blocks_to_boundary = 0;
972 	int depth;
973 	int count = 0;
974 	ext4_fsblk_t first_block = 0;
975 
976 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
977 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
978 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
979 				   &blocks_to_boundary);
980 
981 	if (depth == 0)
982 		goto out;
983 
984 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
985 
986 	/* Simplest case - block found, no allocation needed */
987 	if (!partial) {
988 		first_block = le32_to_cpu(chain[depth - 1].key);
989 		count++;
990 		/*map more blocks*/
991 		while (count < map->m_len && count <= blocks_to_boundary) {
992 			ext4_fsblk_t blk;
993 
994 			blk = le32_to_cpu(*(chain[depth-1].p + count));
995 
996 			if (blk == first_block + count)
997 				count++;
998 			else
999 				break;
1000 		}
1001 		goto got_it;
1002 	}
1003 
1004 	/* Next simple case - plain lookup or failed read of indirect block */
1005 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1006 		goto cleanup;
1007 
1008 	/*
1009 	 * Okay, we need to do block allocation.
1010 	*/
1011 	goal = ext4_find_goal(inode, map->m_lblk, partial);
1012 
1013 	/* the number of blocks need to allocate for [d,t]indirect blocks */
1014 	indirect_blks = (chain + depth) - partial - 1;
1015 
1016 	/*
1017 	 * Next look up the indirect map to count the totoal number of
1018 	 * direct blocks to allocate for this branch.
1019 	 */
1020 	count = ext4_blks_to_allocate(partial, indirect_blks,
1021 				      map->m_len, blocks_to_boundary);
1022 	/*
1023 	 * Block out ext4_truncate while we alter the tree
1024 	 */
1025 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1026 				&count, goal,
1027 				offsets + (partial - chain), partial);
1028 
1029 	/*
1030 	 * The ext4_splice_branch call will free and forget any buffers
1031 	 * on the new chain if there is a failure, but that risks using
1032 	 * up transaction credits, especially for bitmaps where the
1033 	 * credits cannot be returned.  Can we handle this somehow?  We
1034 	 * may need to return -EAGAIN upwards in the worst case.  --sct
1035 	 */
1036 	if (!err)
1037 		err = ext4_splice_branch(handle, inode, map->m_lblk,
1038 					 partial, indirect_blks, count);
1039 	if (err)
1040 		goto cleanup;
1041 
1042 	map->m_flags |= EXT4_MAP_NEW;
1043 
1044 	ext4_update_inode_fsync_trans(handle, inode, 1);
1045 got_it:
1046 	map->m_flags |= EXT4_MAP_MAPPED;
1047 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
1048 	map->m_len = count;
1049 	if (count > blocks_to_boundary)
1050 		map->m_flags |= EXT4_MAP_BOUNDARY;
1051 	err = count;
1052 	/* Clean up and exit */
1053 	partial = chain + depth - 1;	/* the whole chain */
1054 cleanup:
1055 	while (partial > chain) {
1056 		BUFFER_TRACE(partial->bh, "call brelse");
1057 		brelse(partial->bh);
1058 		partial--;
1059 	}
1060 out:
1061 	return err;
1062 }
1063 
1064 #ifdef CONFIG_QUOTA
1065 qsize_t *ext4_get_reserved_space(struct inode *inode)
1066 {
1067 	return &EXT4_I(inode)->i_reserved_quota;
1068 }
1069 #endif
1070 
1071 /*
1072  * Calculate the number of metadata blocks need to reserve
1073  * to allocate a new block at @lblocks for non extent file based file
1074  */
1075 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1076 					      sector_t lblock)
1077 {
1078 	struct ext4_inode_info *ei = EXT4_I(inode);
1079 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1080 	int blk_bits;
1081 
1082 	if (lblock < EXT4_NDIR_BLOCKS)
1083 		return 0;
1084 
1085 	lblock -= EXT4_NDIR_BLOCKS;
1086 
1087 	if (ei->i_da_metadata_calc_len &&
1088 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1089 		ei->i_da_metadata_calc_len++;
1090 		return 0;
1091 	}
1092 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1093 	ei->i_da_metadata_calc_len = 1;
1094 	blk_bits = order_base_2(lblock);
1095 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1096 }
1097 
1098 /*
1099  * Calculate the number of metadata blocks need to reserve
1100  * to allocate a block located at @lblock
1101  */
1102 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1103 {
1104 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1105 		return ext4_ext_calc_metadata_amount(inode, lblock);
1106 
1107 	return ext4_indirect_calc_metadata_amount(inode, lblock);
1108 }
1109 
1110 /*
1111  * Called with i_data_sem down, which is important since we can call
1112  * ext4_discard_preallocations() from here.
1113  */
1114 void ext4_da_update_reserve_space(struct inode *inode,
1115 					int used, int quota_claim)
1116 {
1117 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1118 	struct ext4_inode_info *ei = EXT4_I(inode);
1119 
1120 	spin_lock(&ei->i_block_reservation_lock);
1121 	trace_ext4_da_update_reserve_space(inode, used);
1122 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1123 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1124 			 "with only %d reserved data blocks\n",
1125 			 __func__, inode->i_ino, used,
1126 			 ei->i_reserved_data_blocks);
1127 		WARN_ON(1);
1128 		used = ei->i_reserved_data_blocks;
1129 	}
1130 
1131 	/* Update per-inode reservations */
1132 	ei->i_reserved_data_blocks -= used;
1133 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1134 	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1135 			   used + ei->i_allocated_meta_blocks);
1136 	ei->i_allocated_meta_blocks = 0;
1137 
1138 	if (ei->i_reserved_data_blocks == 0) {
1139 		/*
1140 		 * We can release all of the reserved metadata blocks
1141 		 * only when we have written all of the delayed
1142 		 * allocation blocks.
1143 		 */
1144 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1145 				   ei->i_reserved_meta_blocks);
1146 		ei->i_reserved_meta_blocks = 0;
1147 		ei->i_da_metadata_calc_len = 0;
1148 	}
1149 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1150 
1151 	/* Update quota subsystem for data blocks */
1152 	if (quota_claim)
1153 		dquot_claim_block(inode, used);
1154 	else {
1155 		/*
1156 		 * We did fallocate with an offset that is already delayed
1157 		 * allocated. So on delayed allocated writeback we should
1158 		 * not re-claim the quota for fallocated blocks.
1159 		 */
1160 		dquot_release_reservation_block(inode, used);
1161 	}
1162 
1163 	/*
1164 	 * If we have done all the pending block allocations and if
1165 	 * there aren't any writers on the inode, we can discard the
1166 	 * inode's preallocations.
1167 	 */
1168 	if ((ei->i_reserved_data_blocks == 0) &&
1169 	    (atomic_read(&inode->i_writecount) == 0))
1170 		ext4_discard_preallocations(inode);
1171 }
1172 
1173 static int __check_block_validity(struct inode *inode, const char *func,
1174 				unsigned int line,
1175 				struct ext4_map_blocks *map)
1176 {
1177 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1178 				   map->m_len)) {
1179 		ext4_error_inode(inode, func, line, map->m_pblk,
1180 				 "lblock %lu mapped to illegal pblock "
1181 				 "(length %d)", (unsigned long) map->m_lblk,
1182 				 map->m_len);
1183 		return -EIO;
1184 	}
1185 	return 0;
1186 }
1187 
1188 #define check_block_validity(inode, map)	\
1189 	__check_block_validity((inode), __func__, __LINE__, (map))
1190 
1191 /*
1192  * Return the number of contiguous dirty pages in a given inode
1193  * starting at page frame idx.
1194  */
1195 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1196 				    unsigned int max_pages)
1197 {
1198 	struct address_space *mapping = inode->i_mapping;
1199 	pgoff_t	index;
1200 	struct pagevec pvec;
1201 	pgoff_t num = 0;
1202 	int i, nr_pages, done = 0;
1203 
1204 	if (max_pages == 0)
1205 		return 0;
1206 	pagevec_init(&pvec, 0);
1207 	while (!done) {
1208 		index = idx;
1209 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1210 					      PAGECACHE_TAG_DIRTY,
1211 					      (pgoff_t)PAGEVEC_SIZE);
1212 		if (nr_pages == 0)
1213 			break;
1214 		for (i = 0; i < nr_pages; i++) {
1215 			struct page *page = pvec.pages[i];
1216 			struct buffer_head *bh, *head;
1217 
1218 			lock_page(page);
1219 			if (unlikely(page->mapping != mapping) ||
1220 			    !PageDirty(page) ||
1221 			    PageWriteback(page) ||
1222 			    page->index != idx) {
1223 				done = 1;
1224 				unlock_page(page);
1225 				break;
1226 			}
1227 			if (page_has_buffers(page)) {
1228 				bh = head = page_buffers(page);
1229 				do {
1230 					if (!buffer_delay(bh) &&
1231 					    !buffer_unwritten(bh))
1232 						done = 1;
1233 					bh = bh->b_this_page;
1234 				} while (!done && (bh != head));
1235 			}
1236 			unlock_page(page);
1237 			if (done)
1238 				break;
1239 			idx++;
1240 			num++;
1241 			if (num >= max_pages) {
1242 				done = 1;
1243 				break;
1244 			}
1245 		}
1246 		pagevec_release(&pvec);
1247 	}
1248 	return num;
1249 }
1250 
1251 /*
1252  * The ext4_map_blocks() function tries to look up the requested blocks,
1253  * and returns if the blocks are already mapped.
1254  *
1255  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1256  * and store the allocated blocks in the result buffer head and mark it
1257  * mapped.
1258  *
1259  * If file type is extents based, it will call ext4_ext_map_blocks(),
1260  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1261  * based files
1262  *
1263  * On success, it returns the number of blocks being mapped or allocate.
1264  * if create==0 and the blocks are pre-allocated and uninitialized block,
1265  * the result buffer head is unmapped. If the create ==1, it will make sure
1266  * the buffer head is mapped.
1267  *
1268  * It returns 0 if plain look up failed (blocks have not been allocated), in
1269  * that casem, buffer head is unmapped
1270  *
1271  * It returns the error in case of allocation failure.
1272  */
1273 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1274 		    struct ext4_map_blocks *map, int flags)
1275 {
1276 	int retval;
1277 
1278 	map->m_flags = 0;
1279 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1280 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
1281 		  (unsigned long) map->m_lblk);
1282 	/*
1283 	 * Try to see if we can get the block without requesting a new
1284 	 * file system block.
1285 	 */
1286 	down_read((&EXT4_I(inode)->i_data_sem));
1287 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1288 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1289 	} else {
1290 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1291 	}
1292 	up_read((&EXT4_I(inode)->i_data_sem));
1293 
1294 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1295 		int ret = check_block_validity(inode, map);
1296 		if (ret != 0)
1297 			return ret;
1298 	}
1299 
1300 	/* If it is only a block(s) look up */
1301 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1302 		return retval;
1303 
1304 	/*
1305 	 * Returns if the blocks have already allocated
1306 	 *
1307 	 * Note that if blocks have been preallocated
1308 	 * ext4_ext_get_block() returns th create = 0
1309 	 * with buffer head unmapped.
1310 	 */
1311 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1312 		return retval;
1313 
1314 	/*
1315 	 * When we call get_blocks without the create flag, the
1316 	 * BH_Unwritten flag could have gotten set if the blocks
1317 	 * requested were part of a uninitialized extent.  We need to
1318 	 * clear this flag now that we are committed to convert all or
1319 	 * part of the uninitialized extent to be an initialized
1320 	 * extent.  This is because we need to avoid the combination
1321 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1322 	 * set on the buffer_head.
1323 	 */
1324 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1325 
1326 	/*
1327 	 * New blocks allocate and/or writing to uninitialized extent
1328 	 * will possibly result in updating i_data, so we take
1329 	 * the write lock of i_data_sem, and call get_blocks()
1330 	 * with create == 1 flag.
1331 	 */
1332 	down_write((&EXT4_I(inode)->i_data_sem));
1333 
1334 	/*
1335 	 * if the caller is from delayed allocation writeout path
1336 	 * we have already reserved fs blocks for allocation
1337 	 * let the underlying get_block() function know to
1338 	 * avoid double accounting
1339 	 */
1340 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1342 	/*
1343 	 * We need to check for EXT4 here because migrate
1344 	 * could have changed the inode type in between
1345 	 */
1346 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1347 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1348 	} else {
1349 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1350 
1351 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1352 			/*
1353 			 * We allocated new blocks which will result in
1354 			 * i_data's format changing.  Force the migrate
1355 			 * to fail by clearing migrate flags
1356 			 */
1357 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1358 		}
1359 
1360 		/*
1361 		 * Update reserved blocks/metadata blocks after successful
1362 		 * block allocation which had been deferred till now. We don't
1363 		 * support fallocate for non extent files. So we can update
1364 		 * reserve space here.
1365 		 */
1366 		if ((retval > 0) &&
1367 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1368 			ext4_da_update_reserve_space(inode, retval, 1);
1369 	}
1370 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1371 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1372 
1373 	up_write((&EXT4_I(inode)->i_data_sem));
1374 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1375 		int ret = check_block_validity(inode, map);
1376 		if (ret != 0)
1377 			return ret;
1378 	}
1379 	return retval;
1380 }
1381 
1382 /* Maximum number of blocks we map for direct IO at once. */
1383 #define DIO_MAX_BLOCKS 4096
1384 
1385 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1386 			   struct buffer_head *bh, int flags)
1387 {
1388 	handle_t *handle = ext4_journal_current_handle();
1389 	struct ext4_map_blocks map;
1390 	int ret = 0, started = 0;
1391 	int dio_credits;
1392 
1393 	map.m_lblk = iblock;
1394 	map.m_len = bh->b_size >> inode->i_blkbits;
1395 
1396 	if (flags && !handle) {
1397 		/* Direct IO write... */
1398 		if (map.m_len > DIO_MAX_BLOCKS)
1399 			map.m_len = DIO_MAX_BLOCKS;
1400 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1401 		handle = ext4_journal_start(inode, dio_credits);
1402 		if (IS_ERR(handle)) {
1403 			ret = PTR_ERR(handle);
1404 			return ret;
1405 		}
1406 		started = 1;
1407 	}
1408 
1409 	ret = ext4_map_blocks(handle, inode, &map, flags);
1410 	if (ret > 0) {
1411 		map_bh(bh, inode->i_sb, map.m_pblk);
1412 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1413 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1414 		ret = 0;
1415 	}
1416 	if (started)
1417 		ext4_journal_stop(handle);
1418 	return ret;
1419 }
1420 
1421 int ext4_get_block(struct inode *inode, sector_t iblock,
1422 		   struct buffer_head *bh, int create)
1423 {
1424 	return _ext4_get_block(inode, iblock, bh,
1425 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
1426 }
1427 
1428 /*
1429  * `handle' can be NULL if create is zero
1430  */
1431 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1432 				ext4_lblk_t block, int create, int *errp)
1433 {
1434 	struct ext4_map_blocks map;
1435 	struct buffer_head *bh;
1436 	int fatal = 0, err;
1437 
1438 	J_ASSERT(handle != NULL || create == 0);
1439 
1440 	map.m_lblk = block;
1441 	map.m_len = 1;
1442 	err = ext4_map_blocks(handle, inode, &map,
1443 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1444 
1445 	if (err < 0)
1446 		*errp = err;
1447 	if (err <= 0)
1448 		return NULL;
1449 	*errp = 0;
1450 
1451 	bh = sb_getblk(inode->i_sb, map.m_pblk);
1452 	if (!bh) {
1453 		*errp = -EIO;
1454 		return NULL;
1455 	}
1456 	if (map.m_flags & EXT4_MAP_NEW) {
1457 		J_ASSERT(create != 0);
1458 		J_ASSERT(handle != NULL);
1459 
1460 		/*
1461 		 * Now that we do not always journal data, we should
1462 		 * keep in mind whether this should always journal the
1463 		 * new buffer as metadata.  For now, regular file
1464 		 * writes use ext4_get_block instead, so it's not a
1465 		 * problem.
1466 		 */
1467 		lock_buffer(bh);
1468 		BUFFER_TRACE(bh, "call get_create_access");
1469 		fatal = ext4_journal_get_create_access(handle, bh);
1470 		if (!fatal && !buffer_uptodate(bh)) {
1471 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1472 			set_buffer_uptodate(bh);
1473 		}
1474 		unlock_buffer(bh);
1475 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1476 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1477 		if (!fatal)
1478 			fatal = err;
1479 	} else {
1480 		BUFFER_TRACE(bh, "not a new buffer");
1481 	}
1482 	if (fatal) {
1483 		*errp = fatal;
1484 		brelse(bh);
1485 		bh = NULL;
1486 	}
1487 	return bh;
1488 }
1489 
1490 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1491 			       ext4_lblk_t block, int create, int *err)
1492 {
1493 	struct buffer_head *bh;
1494 
1495 	bh = ext4_getblk(handle, inode, block, create, err);
1496 	if (!bh)
1497 		return bh;
1498 	if (buffer_uptodate(bh))
1499 		return bh;
1500 	ll_rw_block(READ_META, 1, &bh);
1501 	wait_on_buffer(bh);
1502 	if (buffer_uptodate(bh))
1503 		return bh;
1504 	put_bh(bh);
1505 	*err = -EIO;
1506 	return NULL;
1507 }
1508 
1509 static int walk_page_buffers(handle_t *handle,
1510 			     struct buffer_head *head,
1511 			     unsigned from,
1512 			     unsigned to,
1513 			     int *partial,
1514 			     int (*fn)(handle_t *handle,
1515 				       struct buffer_head *bh))
1516 {
1517 	struct buffer_head *bh;
1518 	unsigned block_start, block_end;
1519 	unsigned blocksize = head->b_size;
1520 	int err, ret = 0;
1521 	struct buffer_head *next;
1522 
1523 	for (bh = head, block_start = 0;
1524 	     ret == 0 && (bh != head || !block_start);
1525 	     block_start = block_end, bh = next) {
1526 		next = bh->b_this_page;
1527 		block_end = block_start + blocksize;
1528 		if (block_end <= from || block_start >= to) {
1529 			if (partial && !buffer_uptodate(bh))
1530 				*partial = 1;
1531 			continue;
1532 		}
1533 		err = (*fn)(handle, bh);
1534 		if (!ret)
1535 			ret = err;
1536 	}
1537 	return ret;
1538 }
1539 
1540 /*
1541  * To preserve ordering, it is essential that the hole instantiation and
1542  * the data write be encapsulated in a single transaction.  We cannot
1543  * close off a transaction and start a new one between the ext4_get_block()
1544  * and the commit_write().  So doing the jbd2_journal_start at the start of
1545  * prepare_write() is the right place.
1546  *
1547  * Also, this function can nest inside ext4_writepage() ->
1548  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1549  * has generated enough buffer credits to do the whole page.  So we won't
1550  * block on the journal in that case, which is good, because the caller may
1551  * be PF_MEMALLOC.
1552  *
1553  * By accident, ext4 can be reentered when a transaction is open via
1554  * quota file writes.  If we were to commit the transaction while thus
1555  * reentered, there can be a deadlock - we would be holding a quota
1556  * lock, and the commit would never complete if another thread had a
1557  * transaction open and was blocking on the quota lock - a ranking
1558  * violation.
1559  *
1560  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1561  * will _not_ run commit under these circumstances because handle->h_ref
1562  * is elevated.  We'll still have enough credits for the tiny quotafile
1563  * write.
1564  */
1565 static int do_journal_get_write_access(handle_t *handle,
1566 				       struct buffer_head *bh)
1567 {
1568 	int dirty = buffer_dirty(bh);
1569 	int ret;
1570 
1571 	if (!buffer_mapped(bh) || buffer_freed(bh))
1572 		return 0;
1573 	/*
1574 	 * __block_write_begin() could have dirtied some buffers. Clean
1575 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1576 	 * otherwise about fs integrity issues. Setting of the dirty bit
1577 	 * by __block_write_begin() isn't a real problem here as we clear
1578 	 * the bit before releasing a page lock and thus writeback cannot
1579 	 * ever write the buffer.
1580 	 */
1581 	if (dirty)
1582 		clear_buffer_dirty(bh);
1583 	ret = ext4_journal_get_write_access(handle, bh);
1584 	if (!ret && dirty)
1585 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1586 	return ret;
1587 }
1588 
1589 /*
1590  * Truncate blocks that were not used by write. We have to truncate the
1591  * pagecache as well so that corresponding buffers get properly unmapped.
1592  */
1593 static void ext4_truncate_failed_write(struct inode *inode)
1594 {
1595 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1596 	ext4_truncate(inode);
1597 }
1598 
1599 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1600 		   struct buffer_head *bh_result, int create);
1601 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1602 			    loff_t pos, unsigned len, unsigned flags,
1603 			    struct page **pagep, void **fsdata)
1604 {
1605 	struct inode *inode = mapping->host;
1606 	int ret, needed_blocks;
1607 	handle_t *handle;
1608 	int retries = 0;
1609 	struct page *page;
1610 	pgoff_t index;
1611 	unsigned from, to;
1612 
1613 	trace_ext4_write_begin(inode, pos, len, flags);
1614 	/*
1615 	 * Reserve one block more for addition to orphan list in case
1616 	 * we allocate blocks but write fails for some reason
1617 	 */
1618 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1619 	index = pos >> PAGE_CACHE_SHIFT;
1620 	from = pos & (PAGE_CACHE_SIZE - 1);
1621 	to = from + len;
1622 
1623 retry:
1624 	handle = ext4_journal_start(inode, needed_blocks);
1625 	if (IS_ERR(handle)) {
1626 		ret = PTR_ERR(handle);
1627 		goto out;
1628 	}
1629 
1630 	/* We cannot recurse into the filesystem as the transaction is already
1631 	 * started */
1632 	flags |= AOP_FLAG_NOFS;
1633 
1634 	page = grab_cache_page_write_begin(mapping, index, flags);
1635 	if (!page) {
1636 		ext4_journal_stop(handle);
1637 		ret = -ENOMEM;
1638 		goto out;
1639 	}
1640 	*pagep = page;
1641 
1642 	if (ext4_should_dioread_nolock(inode))
1643 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1644 	else
1645 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1646 
1647 	if (!ret && ext4_should_journal_data(inode)) {
1648 		ret = walk_page_buffers(handle, page_buffers(page),
1649 				from, to, NULL, do_journal_get_write_access);
1650 	}
1651 
1652 	if (ret) {
1653 		unlock_page(page);
1654 		page_cache_release(page);
1655 		/*
1656 		 * __block_write_begin may have instantiated a few blocks
1657 		 * outside i_size.  Trim these off again. Don't need
1658 		 * i_size_read because we hold i_mutex.
1659 		 *
1660 		 * Add inode to orphan list in case we crash before
1661 		 * truncate finishes
1662 		 */
1663 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1664 			ext4_orphan_add(handle, inode);
1665 
1666 		ext4_journal_stop(handle);
1667 		if (pos + len > inode->i_size) {
1668 			ext4_truncate_failed_write(inode);
1669 			/*
1670 			 * If truncate failed early the inode might
1671 			 * still be on the orphan list; we need to
1672 			 * make sure the inode is removed from the
1673 			 * orphan list in that case.
1674 			 */
1675 			if (inode->i_nlink)
1676 				ext4_orphan_del(NULL, inode);
1677 		}
1678 	}
1679 
1680 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1681 		goto retry;
1682 out:
1683 	return ret;
1684 }
1685 
1686 /* For write_end() in data=journal mode */
1687 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1688 {
1689 	if (!buffer_mapped(bh) || buffer_freed(bh))
1690 		return 0;
1691 	set_buffer_uptodate(bh);
1692 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1693 }
1694 
1695 static int ext4_generic_write_end(struct file *file,
1696 				  struct address_space *mapping,
1697 				  loff_t pos, unsigned len, unsigned copied,
1698 				  struct page *page, void *fsdata)
1699 {
1700 	int i_size_changed = 0;
1701 	struct inode *inode = mapping->host;
1702 	handle_t *handle = ext4_journal_current_handle();
1703 
1704 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1705 
1706 	/*
1707 	 * No need to use i_size_read() here, the i_size
1708 	 * cannot change under us because we hold i_mutex.
1709 	 *
1710 	 * But it's important to update i_size while still holding page lock:
1711 	 * page writeout could otherwise come in and zero beyond i_size.
1712 	 */
1713 	if (pos + copied > inode->i_size) {
1714 		i_size_write(inode, pos + copied);
1715 		i_size_changed = 1;
1716 	}
1717 
1718 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1719 		/* We need to mark inode dirty even if
1720 		 * new_i_size is less that inode->i_size
1721 		 * bu greater than i_disksize.(hint delalloc)
1722 		 */
1723 		ext4_update_i_disksize(inode, (pos + copied));
1724 		i_size_changed = 1;
1725 	}
1726 	unlock_page(page);
1727 	page_cache_release(page);
1728 
1729 	/*
1730 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1731 	 * makes the holding time of page lock longer. Second, it forces lock
1732 	 * ordering of page lock and transaction start for journaling
1733 	 * filesystems.
1734 	 */
1735 	if (i_size_changed)
1736 		ext4_mark_inode_dirty(handle, inode);
1737 
1738 	return copied;
1739 }
1740 
1741 /*
1742  * We need to pick up the new inode size which generic_commit_write gave us
1743  * `file' can be NULL - eg, when called from page_symlink().
1744  *
1745  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1746  * buffers are managed internally.
1747  */
1748 static int ext4_ordered_write_end(struct file *file,
1749 				  struct address_space *mapping,
1750 				  loff_t pos, unsigned len, unsigned copied,
1751 				  struct page *page, void *fsdata)
1752 {
1753 	handle_t *handle = ext4_journal_current_handle();
1754 	struct inode *inode = mapping->host;
1755 	int ret = 0, ret2;
1756 
1757 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1758 	ret = ext4_jbd2_file_inode(handle, inode);
1759 
1760 	if (ret == 0) {
1761 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1762 							page, fsdata);
1763 		copied = ret2;
1764 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765 			/* if we have allocated more blocks and copied
1766 			 * less. We will have blocks allocated outside
1767 			 * inode->i_size. So truncate them
1768 			 */
1769 			ext4_orphan_add(handle, inode);
1770 		if (ret2 < 0)
1771 			ret = ret2;
1772 	}
1773 	ret2 = ext4_journal_stop(handle);
1774 	if (!ret)
1775 		ret = ret2;
1776 
1777 	if (pos + len > inode->i_size) {
1778 		ext4_truncate_failed_write(inode);
1779 		/*
1780 		 * If truncate failed early the inode might still be
1781 		 * on the orphan list; we need to make sure the inode
1782 		 * is removed from the orphan list in that case.
1783 		 */
1784 		if (inode->i_nlink)
1785 			ext4_orphan_del(NULL, inode);
1786 	}
1787 
1788 
1789 	return ret ? ret : copied;
1790 }
1791 
1792 static int ext4_writeback_write_end(struct file *file,
1793 				    struct address_space *mapping,
1794 				    loff_t pos, unsigned len, unsigned copied,
1795 				    struct page *page, void *fsdata)
1796 {
1797 	handle_t *handle = ext4_journal_current_handle();
1798 	struct inode *inode = mapping->host;
1799 	int ret = 0, ret2;
1800 
1801 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1802 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1803 							page, fsdata);
1804 	copied = ret2;
1805 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1806 		/* if we have allocated more blocks and copied
1807 		 * less. We will have blocks allocated outside
1808 		 * inode->i_size. So truncate them
1809 		 */
1810 		ext4_orphan_add(handle, inode);
1811 
1812 	if (ret2 < 0)
1813 		ret = ret2;
1814 
1815 	ret2 = ext4_journal_stop(handle);
1816 	if (!ret)
1817 		ret = ret2;
1818 
1819 	if (pos + len > inode->i_size) {
1820 		ext4_truncate_failed_write(inode);
1821 		/*
1822 		 * If truncate failed early the inode might still be
1823 		 * on the orphan list; we need to make sure the inode
1824 		 * is removed from the orphan list in that case.
1825 		 */
1826 		if (inode->i_nlink)
1827 			ext4_orphan_del(NULL, inode);
1828 	}
1829 
1830 	return ret ? ret : copied;
1831 }
1832 
1833 static int ext4_journalled_write_end(struct file *file,
1834 				     struct address_space *mapping,
1835 				     loff_t pos, unsigned len, unsigned copied,
1836 				     struct page *page, void *fsdata)
1837 {
1838 	handle_t *handle = ext4_journal_current_handle();
1839 	struct inode *inode = mapping->host;
1840 	int ret = 0, ret2;
1841 	int partial = 0;
1842 	unsigned from, to;
1843 	loff_t new_i_size;
1844 
1845 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1846 	from = pos & (PAGE_CACHE_SIZE - 1);
1847 	to = from + len;
1848 
1849 	if (copied < len) {
1850 		if (!PageUptodate(page))
1851 			copied = 0;
1852 		page_zero_new_buffers(page, from+copied, to);
1853 	}
1854 
1855 	ret = walk_page_buffers(handle, page_buffers(page), from,
1856 				to, &partial, write_end_fn);
1857 	if (!partial)
1858 		SetPageUptodate(page);
1859 	new_i_size = pos + copied;
1860 	if (new_i_size > inode->i_size)
1861 		i_size_write(inode, pos+copied);
1862 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1863 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1864 		ext4_update_i_disksize(inode, new_i_size);
1865 		ret2 = ext4_mark_inode_dirty(handle, inode);
1866 		if (!ret)
1867 			ret = ret2;
1868 	}
1869 
1870 	unlock_page(page);
1871 	page_cache_release(page);
1872 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1873 		/* if we have allocated more blocks and copied
1874 		 * less. We will have blocks allocated outside
1875 		 * inode->i_size. So truncate them
1876 		 */
1877 		ext4_orphan_add(handle, inode);
1878 
1879 	ret2 = ext4_journal_stop(handle);
1880 	if (!ret)
1881 		ret = ret2;
1882 	if (pos + len > inode->i_size) {
1883 		ext4_truncate_failed_write(inode);
1884 		/*
1885 		 * If truncate failed early the inode might still be
1886 		 * on the orphan list; we need to make sure the inode
1887 		 * is removed from the orphan list in that case.
1888 		 */
1889 		if (inode->i_nlink)
1890 			ext4_orphan_del(NULL, inode);
1891 	}
1892 
1893 	return ret ? ret : copied;
1894 }
1895 
1896 /*
1897  * Reserve a single block located at lblock
1898  */
1899 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1900 {
1901 	int retries = 0;
1902 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1903 	struct ext4_inode_info *ei = EXT4_I(inode);
1904 	unsigned long md_needed;
1905 	int ret;
1906 
1907 	/*
1908 	 * recalculate the amount of metadata blocks to reserve
1909 	 * in order to allocate nrblocks
1910 	 * worse case is one extent per block
1911 	 */
1912 repeat:
1913 	spin_lock(&ei->i_block_reservation_lock);
1914 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1915 	trace_ext4_da_reserve_space(inode, md_needed);
1916 	spin_unlock(&ei->i_block_reservation_lock);
1917 
1918 	/*
1919 	 * We will charge metadata quota at writeout time; this saves
1920 	 * us from metadata over-estimation, though we may go over by
1921 	 * a small amount in the end.  Here we just reserve for data.
1922 	 */
1923 	ret = dquot_reserve_block(inode, 1);
1924 	if (ret)
1925 		return ret;
1926 	/*
1927 	 * We do still charge estimated metadata to the sb though;
1928 	 * we cannot afford to run out of free blocks.
1929 	 */
1930 	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1931 		dquot_release_reservation_block(inode, 1);
1932 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1933 			yield();
1934 			goto repeat;
1935 		}
1936 		return -ENOSPC;
1937 	}
1938 	spin_lock(&ei->i_block_reservation_lock);
1939 	ei->i_reserved_data_blocks++;
1940 	ei->i_reserved_meta_blocks += md_needed;
1941 	spin_unlock(&ei->i_block_reservation_lock);
1942 
1943 	return 0;       /* success */
1944 }
1945 
1946 static void ext4_da_release_space(struct inode *inode, int to_free)
1947 {
1948 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1949 	struct ext4_inode_info *ei = EXT4_I(inode);
1950 
1951 	if (!to_free)
1952 		return;		/* Nothing to release, exit */
1953 
1954 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1955 
1956 	trace_ext4_da_release_space(inode, to_free);
1957 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1958 		/*
1959 		 * if there aren't enough reserved blocks, then the
1960 		 * counter is messed up somewhere.  Since this
1961 		 * function is called from invalidate page, it's
1962 		 * harmless to return without any action.
1963 		 */
1964 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1965 			 "ino %lu, to_free %d with only %d reserved "
1966 			 "data blocks\n", inode->i_ino, to_free,
1967 			 ei->i_reserved_data_blocks);
1968 		WARN_ON(1);
1969 		to_free = ei->i_reserved_data_blocks;
1970 	}
1971 	ei->i_reserved_data_blocks -= to_free;
1972 
1973 	if (ei->i_reserved_data_blocks == 0) {
1974 		/*
1975 		 * We can release all of the reserved metadata blocks
1976 		 * only when we have written all of the delayed
1977 		 * allocation blocks.
1978 		 */
1979 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1980 				   ei->i_reserved_meta_blocks);
1981 		ei->i_reserved_meta_blocks = 0;
1982 		ei->i_da_metadata_calc_len = 0;
1983 	}
1984 
1985 	/* update fs dirty data blocks counter */
1986 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1987 
1988 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1989 
1990 	dquot_release_reservation_block(inode, to_free);
1991 }
1992 
1993 static void ext4_da_page_release_reservation(struct page *page,
1994 					     unsigned long offset)
1995 {
1996 	int to_release = 0;
1997 	struct buffer_head *head, *bh;
1998 	unsigned int curr_off = 0;
1999 
2000 	head = page_buffers(page);
2001 	bh = head;
2002 	do {
2003 		unsigned int next_off = curr_off + bh->b_size;
2004 
2005 		if ((offset <= curr_off) && (buffer_delay(bh))) {
2006 			to_release++;
2007 			clear_buffer_delay(bh);
2008 		}
2009 		curr_off = next_off;
2010 	} while ((bh = bh->b_this_page) != head);
2011 	ext4_da_release_space(page->mapping->host, to_release);
2012 }
2013 
2014 /*
2015  * Delayed allocation stuff
2016  */
2017 
2018 /*
2019  * mpage_da_submit_io - walks through extent of pages and try to write
2020  * them with writepage() call back
2021  *
2022  * @mpd->inode: inode
2023  * @mpd->first_page: first page of the extent
2024  * @mpd->next_page: page after the last page of the extent
2025  *
2026  * By the time mpage_da_submit_io() is called we expect all blocks
2027  * to be allocated. this may be wrong if allocation failed.
2028  *
2029  * As pages are already locked by write_cache_pages(), we can't use it
2030  */
2031 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2032 			      struct ext4_map_blocks *map)
2033 {
2034 	struct pagevec pvec;
2035 	unsigned long index, end;
2036 	int ret = 0, err, nr_pages, i;
2037 	struct inode *inode = mpd->inode;
2038 	struct address_space *mapping = inode->i_mapping;
2039 	loff_t size = i_size_read(inode);
2040 	unsigned int len, block_start;
2041 	struct buffer_head *bh, *page_bufs = NULL;
2042 	int journal_data = ext4_should_journal_data(inode);
2043 	sector_t pblock = 0, cur_logical = 0;
2044 	struct ext4_io_submit io_submit;
2045 
2046 	BUG_ON(mpd->next_page <= mpd->first_page);
2047 	memset(&io_submit, 0, sizeof(io_submit));
2048 	/*
2049 	 * We need to start from the first_page to the next_page - 1
2050 	 * to make sure we also write the mapped dirty buffer_heads.
2051 	 * If we look at mpd->b_blocknr we would only be looking
2052 	 * at the currently mapped buffer_heads.
2053 	 */
2054 	index = mpd->first_page;
2055 	end = mpd->next_page - 1;
2056 
2057 	pagevec_init(&pvec, 0);
2058 	while (index <= end) {
2059 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2060 		if (nr_pages == 0)
2061 			break;
2062 		for (i = 0; i < nr_pages; i++) {
2063 			int commit_write = 0, redirty_page = 0;
2064 			struct page *page = pvec.pages[i];
2065 
2066 			index = page->index;
2067 			if (index > end)
2068 				break;
2069 
2070 			if (index == size >> PAGE_CACHE_SHIFT)
2071 				len = size & ~PAGE_CACHE_MASK;
2072 			else
2073 				len = PAGE_CACHE_SIZE;
2074 			if (map) {
2075 				cur_logical = index << (PAGE_CACHE_SHIFT -
2076 							inode->i_blkbits);
2077 				pblock = map->m_pblk + (cur_logical -
2078 							map->m_lblk);
2079 			}
2080 			index++;
2081 
2082 			BUG_ON(!PageLocked(page));
2083 			BUG_ON(PageWriteback(page));
2084 
2085 			/*
2086 			 * If the page does not have buffers (for
2087 			 * whatever reason), try to create them using
2088 			 * __block_write_begin.  If this fails,
2089 			 * redirty the page and move on.
2090 			 */
2091 			if (!page_has_buffers(page)) {
2092 				if (__block_write_begin(page, 0, len,
2093 						noalloc_get_block_write)) {
2094 				redirty_page:
2095 					redirty_page_for_writepage(mpd->wbc,
2096 								   page);
2097 					unlock_page(page);
2098 					continue;
2099 				}
2100 				commit_write = 1;
2101 			}
2102 
2103 			bh = page_bufs = page_buffers(page);
2104 			block_start = 0;
2105 			do {
2106 				if (!bh)
2107 					goto redirty_page;
2108 				if (map && (cur_logical >= map->m_lblk) &&
2109 				    (cur_logical <= (map->m_lblk +
2110 						     (map->m_len - 1)))) {
2111 					if (buffer_delay(bh)) {
2112 						clear_buffer_delay(bh);
2113 						bh->b_blocknr = pblock;
2114 					}
2115 					if (buffer_unwritten(bh) ||
2116 					    buffer_mapped(bh))
2117 						BUG_ON(bh->b_blocknr != pblock);
2118 					if (map->m_flags & EXT4_MAP_UNINIT)
2119 						set_buffer_uninit(bh);
2120 					clear_buffer_unwritten(bh);
2121 				}
2122 
2123 				/* redirty page if block allocation undone */
2124 				if (buffer_delay(bh) || buffer_unwritten(bh))
2125 					redirty_page = 1;
2126 				bh = bh->b_this_page;
2127 				block_start += bh->b_size;
2128 				cur_logical++;
2129 				pblock++;
2130 			} while (bh != page_bufs);
2131 
2132 			if (redirty_page)
2133 				goto redirty_page;
2134 
2135 			if (commit_write)
2136 				/* mark the buffer_heads as dirty & uptodate */
2137 				block_commit_write(page, 0, len);
2138 
2139 			/*
2140 			 * Delalloc doesn't support data journalling,
2141 			 * but eventually maybe we'll lift this
2142 			 * restriction.
2143 			 */
2144 			if (unlikely(journal_data && PageChecked(page)))
2145 				err = __ext4_journalled_writepage(page, len);
2146 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2147 				err = ext4_bio_write_page(&io_submit, page,
2148 							  len, mpd->wbc);
2149 			else
2150 				err = block_write_full_page(page,
2151 					noalloc_get_block_write, mpd->wbc);
2152 
2153 			if (!err)
2154 				mpd->pages_written++;
2155 			/*
2156 			 * In error case, we have to continue because
2157 			 * remaining pages are still locked
2158 			 */
2159 			if (ret == 0)
2160 				ret = err;
2161 		}
2162 		pagevec_release(&pvec);
2163 	}
2164 	ext4_io_submit(&io_submit);
2165 	return ret;
2166 }
2167 
2168 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2169 					sector_t logical, long blk_cnt)
2170 {
2171 	int nr_pages, i;
2172 	pgoff_t index, end;
2173 	struct pagevec pvec;
2174 	struct inode *inode = mpd->inode;
2175 	struct address_space *mapping = inode->i_mapping;
2176 
2177 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2178 	end   = (logical + blk_cnt - 1) >>
2179 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2180 	while (index <= end) {
2181 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2182 		if (nr_pages == 0)
2183 			break;
2184 		for (i = 0; i < nr_pages; i++) {
2185 			struct page *page = pvec.pages[i];
2186 			if (page->index > end)
2187 				break;
2188 			BUG_ON(!PageLocked(page));
2189 			BUG_ON(PageWriteback(page));
2190 			block_invalidatepage(page, 0);
2191 			ClearPageUptodate(page);
2192 			unlock_page(page);
2193 		}
2194 		index = pvec.pages[nr_pages - 1]->index + 1;
2195 		pagevec_release(&pvec);
2196 	}
2197 	return;
2198 }
2199 
2200 static void ext4_print_free_blocks(struct inode *inode)
2201 {
2202 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2203 	printk(KERN_CRIT "Total free blocks count %lld\n",
2204 	       ext4_count_free_blocks(inode->i_sb));
2205 	printk(KERN_CRIT "Free/Dirty block details\n");
2206 	printk(KERN_CRIT "free_blocks=%lld\n",
2207 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2208 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2209 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2210 	printk(KERN_CRIT "Block reservation details\n");
2211 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2212 	       EXT4_I(inode)->i_reserved_data_blocks);
2213 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2214 	       EXT4_I(inode)->i_reserved_meta_blocks);
2215 	return;
2216 }
2217 
2218 /*
2219  * mpage_da_map_and_submit - go through given space, map them
2220  *       if necessary, and then submit them for I/O
2221  *
2222  * @mpd - bh describing space
2223  *
2224  * The function skips space we know is already mapped to disk blocks.
2225  *
2226  */
2227 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2228 {
2229 	int err, blks, get_blocks_flags;
2230 	struct ext4_map_blocks map, *mapp = NULL;
2231 	sector_t next = mpd->b_blocknr;
2232 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2233 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2234 	handle_t *handle = NULL;
2235 
2236 	/*
2237 	 * If the blocks are mapped already, or we couldn't accumulate
2238 	 * any blocks, then proceed immediately to the submission stage.
2239 	 */
2240 	if ((mpd->b_size == 0) ||
2241 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
2242 	     !(mpd->b_state & (1 << BH_Delay)) &&
2243 	     !(mpd->b_state & (1 << BH_Unwritten))))
2244 		goto submit_io;
2245 
2246 	handle = ext4_journal_current_handle();
2247 	BUG_ON(!handle);
2248 
2249 	/*
2250 	 * Call ext4_map_blocks() to allocate any delayed allocation
2251 	 * blocks, or to convert an uninitialized extent to be
2252 	 * initialized (in the case where we have written into
2253 	 * one or more preallocated blocks).
2254 	 *
2255 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2256 	 * indicate that we are on the delayed allocation path.  This
2257 	 * affects functions in many different parts of the allocation
2258 	 * call path.  This flag exists primarily because we don't
2259 	 * want to change *many* call functions, so ext4_map_blocks()
2260 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2261 	 * inode's allocation semaphore is taken.
2262 	 *
2263 	 * If the blocks in questions were delalloc blocks, set
2264 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2265 	 * variables are updated after the blocks have been allocated.
2266 	 */
2267 	map.m_lblk = next;
2268 	map.m_len = max_blocks;
2269 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2270 	if (ext4_should_dioread_nolock(mpd->inode))
2271 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2272 	if (mpd->b_state & (1 << BH_Delay))
2273 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2274 
2275 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2276 	if (blks < 0) {
2277 		struct super_block *sb = mpd->inode->i_sb;
2278 
2279 		err = blks;
2280 		/*
2281 		 * If get block returns EAGAIN or ENOSPC and there
2282 		 * appears to be free blocks we will call
2283 		 * ext4_writepage() for all of the pages which will
2284 		 * just redirty the pages.
2285 		 */
2286 		if (err == -EAGAIN)
2287 			goto submit_io;
2288 
2289 		if (err == -ENOSPC &&
2290 		    ext4_count_free_blocks(sb)) {
2291 			mpd->retval = err;
2292 			goto submit_io;
2293 		}
2294 
2295 		/*
2296 		 * get block failure will cause us to loop in
2297 		 * writepages, because a_ops->writepage won't be able
2298 		 * to make progress. The page will be redirtied by
2299 		 * writepage and writepages will again try to write
2300 		 * the same.
2301 		 */
2302 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2303 			ext4_msg(sb, KERN_CRIT,
2304 				 "delayed block allocation failed for inode %lu "
2305 				 "at logical offset %llu with max blocks %zd "
2306 				 "with error %d", mpd->inode->i_ino,
2307 				 (unsigned long long) next,
2308 				 mpd->b_size >> mpd->inode->i_blkbits, err);
2309 			ext4_msg(sb, KERN_CRIT,
2310 				"This should not happen!! Data will be lost\n");
2311 			if (err == -ENOSPC)
2312 				ext4_print_free_blocks(mpd->inode);
2313 		}
2314 		/* invalidate all the pages */
2315 		ext4_da_block_invalidatepages(mpd, next,
2316 				mpd->b_size >> mpd->inode->i_blkbits);
2317 		return;
2318 	}
2319 	BUG_ON(blks == 0);
2320 
2321 	mapp = &map;
2322 	if (map.m_flags & EXT4_MAP_NEW) {
2323 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2324 		int i;
2325 
2326 		for (i = 0; i < map.m_len; i++)
2327 			unmap_underlying_metadata(bdev, map.m_pblk + i);
2328 	}
2329 
2330 	if (ext4_should_order_data(mpd->inode)) {
2331 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2332 		if (err)
2333 			/* This only happens if the journal is aborted */
2334 			return;
2335 	}
2336 
2337 	/*
2338 	 * Update on-disk size along with block allocation.
2339 	 */
2340 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2341 	if (disksize > i_size_read(mpd->inode))
2342 		disksize = i_size_read(mpd->inode);
2343 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2344 		ext4_update_i_disksize(mpd->inode, disksize);
2345 		err = ext4_mark_inode_dirty(handle, mpd->inode);
2346 		if (err)
2347 			ext4_error(mpd->inode->i_sb,
2348 				   "Failed to mark inode %lu dirty",
2349 				   mpd->inode->i_ino);
2350 	}
2351 
2352 submit_io:
2353 	mpage_da_submit_io(mpd, mapp);
2354 	mpd->io_done = 1;
2355 }
2356 
2357 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2358 		(1 << BH_Delay) | (1 << BH_Unwritten))
2359 
2360 /*
2361  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2362  *
2363  * @mpd->lbh - extent of blocks
2364  * @logical - logical number of the block in the file
2365  * @bh - bh of the block (used to access block's state)
2366  *
2367  * the function is used to collect contig. blocks in same state
2368  */
2369 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2370 				   sector_t logical, size_t b_size,
2371 				   unsigned long b_state)
2372 {
2373 	sector_t next;
2374 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2375 
2376 	/*
2377 	 * XXX Don't go larger than mballoc is willing to allocate
2378 	 * This is a stopgap solution.  We eventually need to fold
2379 	 * mpage_da_submit_io() into this function and then call
2380 	 * ext4_map_blocks() multiple times in a loop
2381 	 */
2382 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2383 		goto flush_it;
2384 
2385 	/* check if thereserved journal credits might overflow */
2386 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2387 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2388 			/*
2389 			 * With non-extent format we are limited by the journal
2390 			 * credit available.  Total credit needed to insert
2391 			 * nrblocks contiguous blocks is dependent on the
2392 			 * nrblocks.  So limit nrblocks.
2393 			 */
2394 			goto flush_it;
2395 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2396 				EXT4_MAX_TRANS_DATA) {
2397 			/*
2398 			 * Adding the new buffer_head would make it cross the
2399 			 * allowed limit for which we have journal credit
2400 			 * reserved. So limit the new bh->b_size
2401 			 */
2402 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2403 						mpd->inode->i_blkbits;
2404 			/* we will do mpage_da_submit_io in the next loop */
2405 		}
2406 	}
2407 	/*
2408 	 * First block in the extent
2409 	 */
2410 	if (mpd->b_size == 0) {
2411 		mpd->b_blocknr = logical;
2412 		mpd->b_size = b_size;
2413 		mpd->b_state = b_state & BH_FLAGS;
2414 		return;
2415 	}
2416 
2417 	next = mpd->b_blocknr + nrblocks;
2418 	/*
2419 	 * Can we merge the block to our big extent?
2420 	 */
2421 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2422 		mpd->b_size += b_size;
2423 		return;
2424 	}
2425 
2426 flush_it:
2427 	/*
2428 	 * We couldn't merge the block to our extent, so we
2429 	 * need to flush current  extent and start new one
2430 	 */
2431 	mpage_da_map_and_submit(mpd);
2432 	return;
2433 }
2434 
2435 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2436 {
2437 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2438 }
2439 
2440 /*
2441  * __mpage_da_writepage - finds extent of pages and blocks
2442  *
2443  * @page: page to consider
2444  * @wbc: not used, we just follow rules
2445  * @data: context
2446  *
2447  * The function finds extents of pages and scan them for all blocks.
2448  */
2449 static int __mpage_da_writepage(struct page *page,
2450 				struct writeback_control *wbc,
2451 				struct mpage_da_data *mpd)
2452 {
2453 	struct inode *inode = mpd->inode;
2454 	struct buffer_head *bh, *head;
2455 	sector_t logical;
2456 
2457 	/*
2458 	 * Can we merge this page to current extent?
2459 	 */
2460 	if (mpd->next_page != page->index) {
2461 		/*
2462 		 * Nope, we can't. So, we map non-allocated blocks
2463 		 * and start IO on them
2464 		 */
2465 		if (mpd->next_page != mpd->first_page) {
2466 			mpage_da_map_and_submit(mpd);
2467 			/*
2468 			 * skip rest of the page in the page_vec
2469 			 */
2470 			redirty_page_for_writepage(wbc, page);
2471 			unlock_page(page);
2472 			return MPAGE_DA_EXTENT_TAIL;
2473 		}
2474 
2475 		/*
2476 		 * Start next extent of pages ...
2477 		 */
2478 		mpd->first_page = page->index;
2479 
2480 		/*
2481 		 * ... and blocks
2482 		 */
2483 		mpd->b_size = 0;
2484 		mpd->b_state = 0;
2485 		mpd->b_blocknr = 0;
2486 	}
2487 
2488 	mpd->next_page = page->index + 1;
2489 	logical = (sector_t) page->index <<
2490 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2491 
2492 	if (!page_has_buffers(page)) {
2493 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2494 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2495 		if (mpd->io_done)
2496 			return MPAGE_DA_EXTENT_TAIL;
2497 	} else {
2498 		/*
2499 		 * Page with regular buffer heads, just add all dirty ones
2500 		 */
2501 		head = page_buffers(page);
2502 		bh = head;
2503 		do {
2504 			BUG_ON(buffer_locked(bh));
2505 			/*
2506 			 * We need to try to allocate
2507 			 * unmapped blocks in the same page.
2508 			 * Otherwise we won't make progress
2509 			 * with the page in ext4_writepage
2510 			 */
2511 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2512 				mpage_add_bh_to_extent(mpd, logical,
2513 						       bh->b_size,
2514 						       bh->b_state);
2515 				if (mpd->io_done)
2516 					return MPAGE_DA_EXTENT_TAIL;
2517 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2518 				/*
2519 				 * mapped dirty buffer. We need to update
2520 				 * the b_state because we look at
2521 				 * b_state in mpage_da_map_blocks. We don't
2522 				 * update b_size because if we find an
2523 				 * unmapped buffer_head later we need to
2524 				 * use the b_state flag of that buffer_head.
2525 				 */
2526 				if (mpd->b_size == 0)
2527 					mpd->b_state = bh->b_state & BH_FLAGS;
2528 			}
2529 			logical++;
2530 		} while ((bh = bh->b_this_page) != head);
2531 	}
2532 
2533 	return 0;
2534 }
2535 
2536 /*
2537  * This is a special get_blocks_t callback which is used by
2538  * ext4_da_write_begin().  It will either return mapped block or
2539  * reserve space for a single block.
2540  *
2541  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2542  * We also have b_blocknr = -1 and b_bdev initialized properly
2543  *
2544  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2545  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2546  * initialized properly.
2547  */
2548 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2549 				  struct buffer_head *bh, int create)
2550 {
2551 	struct ext4_map_blocks map;
2552 	int ret = 0;
2553 	sector_t invalid_block = ~((sector_t) 0xffff);
2554 
2555 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2556 		invalid_block = ~0;
2557 
2558 	BUG_ON(create == 0);
2559 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2560 
2561 	map.m_lblk = iblock;
2562 	map.m_len = 1;
2563 
2564 	/*
2565 	 * first, we need to know whether the block is allocated already
2566 	 * preallocated blocks are unmapped but should treated
2567 	 * the same as allocated blocks.
2568 	 */
2569 	ret = ext4_map_blocks(NULL, inode, &map, 0);
2570 	if (ret < 0)
2571 		return ret;
2572 	if (ret == 0) {
2573 		if (buffer_delay(bh))
2574 			return 0; /* Not sure this could or should happen */
2575 		/*
2576 		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2577 		 */
2578 		ret = ext4_da_reserve_space(inode, iblock);
2579 		if (ret)
2580 			/* not enough space to reserve */
2581 			return ret;
2582 
2583 		map_bh(bh, inode->i_sb, invalid_block);
2584 		set_buffer_new(bh);
2585 		set_buffer_delay(bh);
2586 		return 0;
2587 	}
2588 
2589 	map_bh(bh, inode->i_sb, map.m_pblk);
2590 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2591 
2592 	if (buffer_unwritten(bh)) {
2593 		/* A delayed write to unwritten bh should be marked
2594 		 * new and mapped.  Mapped ensures that we don't do
2595 		 * get_block multiple times when we write to the same
2596 		 * offset and new ensures that we do proper zero out
2597 		 * for partial write.
2598 		 */
2599 		set_buffer_new(bh);
2600 		set_buffer_mapped(bh);
2601 	}
2602 	return 0;
2603 }
2604 
2605 /*
2606  * This function is used as a standard get_block_t calback function
2607  * when there is no desire to allocate any blocks.  It is used as a
2608  * callback function for block_write_begin() and block_write_full_page().
2609  * These functions should only try to map a single block at a time.
2610  *
2611  * Since this function doesn't do block allocations even if the caller
2612  * requests it by passing in create=1, it is critically important that
2613  * any caller checks to make sure that any buffer heads are returned
2614  * by this function are either all already mapped or marked for
2615  * delayed allocation before calling  block_write_full_page().  Otherwise,
2616  * b_blocknr could be left unitialized, and the page write functions will
2617  * be taken by surprise.
2618  */
2619 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2620 				   struct buffer_head *bh_result, int create)
2621 {
2622 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2623 	return _ext4_get_block(inode, iblock, bh_result, 0);
2624 }
2625 
2626 static int bget_one(handle_t *handle, struct buffer_head *bh)
2627 {
2628 	get_bh(bh);
2629 	return 0;
2630 }
2631 
2632 static int bput_one(handle_t *handle, struct buffer_head *bh)
2633 {
2634 	put_bh(bh);
2635 	return 0;
2636 }
2637 
2638 static int __ext4_journalled_writepage(struct page *page,
2639 				       unsigned int len)
2640 {
2641 	struct address_space *mapping = page->mapping;
2642 	struct inode *inode = mapping->host;
2643 	struct buffer_head *page_bufs;
2644 	handle_t *handle = NULL;
2645 	int ret = 0;
2646 	int err;
2647 
2648 	ClearPageChecked(page);
2649 	page_bufs = page_buffers(page);
2650 	BUG_ON(!page_bufs);
2651 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2652 	/* As soon as we unlock the page, it can go away, but we have
2653 	 * references to buffers so we are safe */
2654 	unlock_page(page);
2655 
2656 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2657 	if (IS_ERR(handle)) {
2658 		ret = PTR_ERR(handle);
2659 		goto out;
2660 	}
2661 
2662 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2663 				do_journal_get_write_access);
2664 
2665 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2666 				write_end_fn);
2667 	if (ret == 0)
2668 		ret = err;
2669 	err = ext4_journal_stop(handle);
2670 	if (!ret)
2671 		ret = err;
2672 
2673 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2674 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2675 out:
2676 	return ret;
2677 }
2678 
2679 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2680 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2681 
2682 /*
2683  * Note that we don't need to start a transaction unless we're journaling data
2684  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2685  * need to file the inode to the transaction's list in ordered mode because if
2686  * we are writing back data added by write(), the inode is already there and if
2687  * we are writing back data modified via mmap(), noone guarantees in which
2688  * transaction the data will hit the disk. In case we are journaling data, we
2689  * cannot start transaction directly because transaction start ranks above page
2690  * lock so we have to do some magic.
2691  *
2692  * This function can get called via...
2693  *   - ext4_da_writepages after taking page lock (have journal handle)
2694  *   - journal_submit_inode_data_buffers (no journal handle)
2695  *   - shrink_page_list via pdflush (no journal handle)
2696  *   - grab_page_cache when doing write_begin (have journal handle)
2697  *
2698  * We don't do any block allocation in this function. If we have page with
2699  * multiple blocks we need to write those buffer_heads that are mapped. This
2700  * is important for mmaped based write. So if we do with blocksize 1K
2701  * truncate(f, 1024);
2702  * a = mmap(f, 0, 4096);
2703  * a[0] = 'a';
2704  * truncate(f, 4096);
2705  * we have in the page first buffer_head mapped via page_mkwrite call back
2706  * but other bufer_heads would be unmapped but dirty(dirty done via the
2707  * do_wp_page). So writepage should write the first block. If we modify
2708  * the mmap area beyond 1024 we will again get a page_fault and the
2709  * page_mkwrite callback will do the block allocation and mark the
2710  * buffer_heads mapped.
2711  *
2712  * We redirty the page if we have any buffer_heads that is either delay or
2713  * unwritten in the page.
2714  *
2715  * We can get recursively called as show below.
2716  *
2717  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2718  *		ext4_writepage()
2719  *
2720  * But since we don't do any block allocation we should not deadlock.
2721  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2722  */
2723 static int ext4_writepage(struct page *page,
2724 			  struct writeback_control *wbc)
2725 {
2726 	int ret = 0, commit_write = 0;
2727 	loff_t size;
2728 	unsigned int len;
2729 	struct buffer_head *page_bufs = NULL;
2730 	struct inode *inode = page->mapping->host;
2731 
2732 	trace_ext4_writepage(inode, page);
2733 	size = i_size_read(inode);
2734 	if (page->index == size >> PAGE_CACHE_SHIFT)
2735 		len = size & ~PAGE_CACHE_MASK;
2736 	else
2737 		len = PAGE_CACHE_SIZE;
2738 
2739 	/*
2740 	 * If the page does not have buffers (for whatever reason),
2741 	 * try to create them using __block_write_begin.  If this
2742 	 * fails, redirty the page and move on.
2743 	 */
2744 	if (!page_has_buffers(page)) {
2745 		if (__block_write_begin(page, 0, len,
2746 					noalloc_get_block_write)) {
2747 		redirty_page:
2748 			redirty_page_for_writepage(wbc, page);
2749 			unlock_page(page);
2750 			return 0;
2751 		}
2752 		commit_write = 1;
2753 	}
2754 	page_bufs = page_buffers(page);
2755 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2756 			      ext4_bh_delay_or_unwritten)) {
2757 		/*
2758 		 * We don't want to do block allocation, so redirty
2759 		 * the page and return.  We may reach here when we do
2760 		 * a journal commit via journal_submit_inode_data_buffers.
2761 		 * We can also reach here via shrink_page_list
2762 		 */
2763 		goto redirty_page;
2764 	}
2765 	if (commit_write)
2766 		/* now mark the buffer_heads as dirty and uptodate */
2767 		block_commit_write(page, 0, len);
2768 
2769 	if (PageChecked(page) && ext4_should_journal_data(inode))
2770 		/*
2771 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2772 		 * doesn't seem much point in redirtying the page here.
2773 		 */
2774 		return __ext4_journalled_writepage(page, len);
2775 
2776 	if (buffer_uninit(page_bufs)) {
2777 		ext4_set_bh_endio(page_bufs, inode);
2778 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2779 					    wbc, ext4_end_io_buffer_write);
2780 	} else
2781 		ret = block_write_full_page(page, noalloc_get_block_write,
2782 					    wbc);
2783 
2784 	return ret;
2785 }
2786 
2787 /*
2788  * This is called via ext4_da_writepages() to
2789  * calulate the total number of credits to reserve to fit
2790  * a single extent allocation into a single transaction,
2791  * ext4_da_writpeages() will loop calling this before
2792  * the block allocation.
2793  */
2794 
2795 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2796 {
2797 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2798 
2799 	/*
2800 	 * With non-extent format the journal credit needed to
2801 	 * insert nrblocks contiguous block is dependent on
2802 	 * number of contiguous block. So we will limit
2803 	 * number of contiguous block to a sane value
2804 	 */
2805 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2806 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2807 		max_blocks = EXT4_MAX_TRANS_DATA;
2808 
2809 	return ext4_chunk_trans_blocks(inode, max_blocks);
2810 }
2811 
2812 /*
2813  * write_cache_pages_da - walk the list of dirty pages of the given
2814  * address space and call the callback function (which usually writes
2815  * the pages).
2816  *
2817  * This is a forked version of write_cache_pages().  Differences:
2818  *	Range cyclic is ignored.
2819  *	no_nrwrite_index_update is always presumed true
2820  */
2821 static int write_cache_pages_da(struct address_space *mapping,
2822 				struct writeback_control *wbc,
2823 				struct mpage_da_data *mpd,
2824 				pgoff_t *done_index)
2825 {
2826 	int ret = 0;
2827 	int done = 0;
2828 	struct pagevec pvec;
2829 	unsigned nr_pages;
2830 	pgoff_t index;
2831 	pgoff_t end;		/* Inclusive */
2832 	long nr_to_write = wbc->nr_to_write;
2833 	int tag;
2834 
2835 	pagevec_init(&pvec, 0);
2836 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2837 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2838 
2839 	if (wbc->sync_mode == WB_SYNC_ALL)
2840 		tag = PAGECACHE_TAG_TOWRITE;
2841 	else
2842 		tag = PAGECACHE_TAG_DIRTY;
2843 
2844 	*done_index = index;
2845 	while (!done && (index <= end)) {
2846 		int i;
2847 
2848 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2849 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2850 		if (nr_pages == 0)
2851 			break;
2852 
2853 		for (i = 0; i < nr_pages; i++) {
2854 			struct page *page = pvec.pages[i];
2855 
2856 			/*
2857 			 * At this point, the page may be truncated or
2858 			 * invalidated (changing page->mapping to NULL), or
2859 			 * even swizzled back from swapper_space to tmpfs file
2860 			 * mapping. However, page->index will not change
2861 			 * because we have a reference on the page.
2862 			 */
2863 			if (page->index > end) {
2864 				done = 1;
2865 				break;
2866 			}
2867 
2868 			*done_index = page->index + 1;
2869 
2870 			lock_page(page);
2871 
2872 			/*
2873 			 * Page truncated or invalidated. We can freely skip it
2874 			 * then, even for data integrity operations: the page
2875 			 * has disappeared concurrently, so there could be no
2876 			 * real expectation of this data interity operation
2877 			 * even if there is now a new, dirty page at the same
2878 			 * pagecache address.
2879 			 */
2880 			if (unlikely(page->mapping != mapping)) {
2881 continue_unlock:
2882 				unlock_page(page);
2883 				continue;
2884 			}
2885 
2886 			if (!PageDirty(page)) {
2887 				/* someone wrote it for us */
2888 				goto continue_unlock;
2889 			}
2890 
2891 			if (PageWriteback(page)) {
2892 				if (wbc->sync_mode != WB_SYNC_NONE)
2893 					wait_on_page_writeback(page);
2894 				else
2895 					goto continue_unlock;
2896 			}
2897 
2898 			BUG_ON(PageWriteback(page));
2899 			if (!clear_page_dirty_for_io(page))
2900 				goto continue_unlock;
2901 
2902 			ret = __mpage_da_writepage(page, wbc, mpd);
2903 			if (unlikely(ret)) {
2904 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2905 					unlock_page(page);
2906 					ret = 0;
2907 				} else {
2908 					done = 1;
2909 					break;
2910 				}
2911 			}
2912 
2913 			if (nr_to_write > 0) {
2914 				nr_to_write--;
2915 				if (nr_to_write == 0 &&
2916 				    wbc->sync_mode == WB_SYNC_NONE) {
2917 					/*
2918 					 * We stop writing back only if we are
2919 					 * not doing integrity sync. In case of
2920 					 * integrity sync we have to keep going
2921 					 * because someone may be concurrently
2922 					 * dirtying pages, and we might have
2923 					 * synced a lot of newly appeared dirty
2924 					 * pages, but have not synced all of the
2925 					 * old dirty pages.
2926 					 */
2927 					done = 1;
2928 					break;
2929 				}
2930 			}
2931 		}
2932 		pagevec_release(&pvec);
2933 		cond_resched();
2934 	}
2935 	return ret;
2936 }
2937 
2938 
2939 static int ext4_da_writepages(struct address_space *mapping,
2940 			      struct writeback_control *wbc)
2941 {
2942 	pgoff_t	index;
2943 	int range_whole = 0;
2944 	handle_t *handle = NULL;
2945 	struct mpage_da_data mpd;
2946 	struct inode *inode = mapping->host;
2947 	int pages_written = 0;
2948 	long pages_skipped;
2949 	unsigned int max_pages;
2950 	int range_cyclic, cycled = 1, io_done = 0;
2951 	int needed_blocks, ret = 0;
2952 	long desired_nr_to_write, nr_to_writebump = 0;
2953 	loff_t range_start = wbc->range_start;
2954 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2955 	pgoff_t done_index = 0;
2956 	pgoff_t end;
2957 
2958 	trace_ext4_da_writepages(inode, wbc);
2959 
2960 	/*
2961 	 * No pages to write? This is mainly a kludge to avoid starting
2962 	 * a transaction for special inodes like journal inode on last iput()
2963 	 * because that could violate lock ordering on umount
2964 	 */
2965 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2966 		return 0;
2967 
2968 	/*
2969 	 * If the filesystem has aborted, it is read-only, so return
2970 	 * right away instead of dumping stack traces later on that
2971 	 * will obscure the real source of the problem.  We test
2972 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2973 	 * the latter could be true if the filesystem is mounted
2974 	 * read-only, and in that case, ext4_da_writepages should
2975 	 * *never* be called, so if that ever happens, we would want
2976 	 * the stack trace.
2977 	 */
2978 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2979 		return -EROFS;
2980 
2981 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2982 		range_whole = 1;
2983 
2984 	range_cyclic = wbc->range_cyclic;
2985 	if (wbc->range_cyclic) {
2986 		index = mapping->writeback_index;
2987 		if (index)
2988 			cycled = 0;
2989 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2990 		wbc->range_end  = LLONG_MAX;
2991 		wbc->range_cyclic = 0;
2992 		end = -1;
2993 	} else {
2994 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2995 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2996 	}
2997 
2998 	/*
2999 	 * This works around two forms of stupidity.  The first is in
3000 	 * the writeback code, which caps the maximum number of pages
3001 	 * written to be 1024 pages.  This is wrong on multiple
3002 	 * levels; different architectues have a different page size,
3003 	 * which changes the maximum amount of data which gets
3004 	 * written.  Secondly, 4 megabytes is way too small.  XFS
3005 	 * forces this value to be 16 megabytes by multiplying
3006 	 * nr_to_write parameter by four, and then relies on its
3007 	 * allocator to allocate larger extents to make them
3008 	 * contiguous.  Unfortunately this brings us to the second
3009 	 * stupidity, which is that ext4's mballoc code only allocates
3010 	 * at most 2048 blocks.  So we force contiguous writes up to
3011 	 * the number of dirty blocks in the inode, or
3012 	 * sbi->max_writeback_mb_bump whichever is smaller.
3013 	 */
3014 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3015 	if (!range_cyclic && range_whole) {
3016 		if (wbc->nr_to_write == LONG_MAX)
3017 			desired_nr_to_write = wbc->nr_to_write;
3018 		else
3019 			desired_nr_to_write = wbc->nr_to_write * 8;
3020 	} else
3021 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3022 							   max_pages);
3023 	if (desired_nr_to_write > max_pages)
3024 		desired_nr_to_write = max_pages;
3025 
3026 	if (wbc->nr_to_write < desired_nr_to_write) {
3027 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3028 		wbc->nr_to_write = desired_nr_to_write;
3029 	}
3030 
3031 	mpd.wbc = wbc;
3032 	mpd.inode = mapping->host;
3033 
3034 	pages_skipped = wbc->pages_skipped;
3035 
3036 retry:
3037 	if (wbc->sync_mode == WB_SYNC_ALL)
3038 		tag_pages_for_writeback(mapping, index, end);
3039 
3040 	while (!ret && wbc->nr_to_write > 0) {
3041 
3042 		/*
3043 		 * we  insert one extent at a time. So we need
3044 		 * credit needed for single extent allocation.
3045 		 * journalled mode is currently not supported
3046 		 * by delalloc
3047 		 */
3048 		BUG_ON(ext4_should_journal_data(inode));
3049 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3050 
3051 		/* start a new transaction*/
3052 		handle = ext4_journal_start(inode, needed_blocks);
3053 		if (IS_ERR(handle)) {
3054 			ret = PTR_ERR(handle);
3055 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3056 			       "%ld pages, ino %lu; err %d", __func__,
3057 				wbc->nr_to_write, inode->i_ino, ret);
3058 			goto out_writepages;
3059 		}
3060 
3061 		/*
3062 		 * Now call __mpage_da_writepage to find the next
3063 		 * contiguous region of logical blocks that need
3064 		 * blocks to be allocated by ext4.  We don't actually
3065 		 * submit the blocks for I/O here, even though
3066 		 * write_cache_pages thinks it will, and will set the
3067 		 * pages as clean for write before calling
3068 		 * __mpage_da_writepage().
3069 		 */
3070 		mpd.b_size = 0;
3071 		mpd.b_state = 0;
3072 		mpd.b_blocknr = 0;
3073 		mpd.first_page = 0;
3074 		mpd.next_page = 0;
3075 		mpd.io_done = 0;
3076 		mpd.pages_written = 0;
3077 		mpd.retval = 0;
3078 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3079 		/*
3080 		 * If we have a contiguous extent of pages and we
3081 		 * haven't done the I/O yet, map the blocks and submit
3082 		 * them for I/O.
3083 		 */
3084 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3085 			mpage_da_map_and_submit(&mpd);
3086 			ret = MPAGE_DA_EXTENT_TAIL;
3087 		}
3088 		trace_ext4_da_write_pages(inode, &mpd);
3089 		wbc->nr_to_write -= mpd.pages_written;
3090 
3091 		ext4_journal_stop(handle);
3092 
3093 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3094 			/* commit the transaction which would
3095 			 * free blocks released in the transaction
3096 			 * and try again
3097 			 */
3098 			jbd2_journal_force_commit_nested(sbi->s_journal);
3099 			wbc->pages_skipped = pages_skipped;
3100 			ret = 0;
3101 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3102 			/*
3103 			 * got one extent now try with
3104 			 * rest of the pages
3105 			 */
3106 			pages_written += mpd.pages_written;
3107 			wbc->pages_skipped = pages_skipped;
3108 			ret = 0;
3109 			io_done = 1;
3110 		} else if (wbc->nr_to_write)
3111 			/*
3112 			 * There is no more writeout needed
3113 			 * or we requested for a noblocking writeout
3114 			 * and we found the device congested
3115 			 */
3116 			break;
3117 	}
3118 	if (!io_done && !cycled) {
3119 		cycled = 1;
3120 		index = 0;
3121 		wbc->range_start = index << PAGE_CACHE_SHIFT;
3122 		wbc->range_end  = mapping->writeback_index - 1;
3123 		goto retry;
3124 	}
3125 	if (pages_skipped != wbc->pages_skipped)
3126 		ext4_msg(inode->i_sb, KERN_CRIT,
3127 			 "This should not happen leaving %s "
3128 			 "with nr_to_write = %ld ret = %d",
3129 			 __func__, wbc->nr_to_write, ret);
3130 
3131 	/* Update index */
3132 	wbc->range_cyclic = range_cyclic;
3133 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3134 		/*
3135 		 * set the writeback_index so that range_cyclic
3136 		 * mode will write it back later
3137 		 */
3138 		mapping->writeback_index = done_index;
3139 
3140 out_writepages:
3141 	wbc->nr_to_write -= nr_to_writebump;
3142 	wbc->range_start = range_start;
3143 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3144 	return ret;
3145 }
3146 
3147 #define FALL_BACK_TO_NONDELALLOC 1
3148 static int ext4_nonda_switch(struct super_block *sb)
3149 {
3150 	s64 free_blocks, dirty_blocks;
3151 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3152 
3153 	/*
3154 	 * switch to non delalloc mode if we are running low
3155 	 * on free block. The free block accounting via percpu
3156 	 * counters can get slightly wrong with percpu_counter_batch getting
3157 	 * accumulated on each CPU without updating global counters
3158 	 * Delalloc need an accurate free block accounting. So switch
3159 	 * to non delalloc when we are near to error range.
3160 	 */
3161 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3162 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3163 	if (2 * free_blocks < 3 * dirty_blocks ||
3164 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3165 		/*
3166 		 * free block count is less than 150% of dirty blocks
3167 		 * or free blocks is less than watermark
3168 		 */
3169 		return 1;
3170 	}
3171 	/*
3172 	 * Even if we don't switch but are nearing capacity,
3173 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3174 	 */
3175 	if (free_blocks < 2 * dirty_blocks)
3176 		writeback_inodes_sb_if_idle(sb);
3177 
3178 	return 0;
3179 }
3180 
3181 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3182 			       loff_t pos, unsigned len, unsigned flags,
3183 			       struct page **pagep, void **fsdata)
3184 {
3185 	int ret, retries = 0;
3186 	struct page *page;
3187 	pgoff_t index;
3188 	struct inode *inode = mapping->host;
3189 	handle_t *handle;
3190 
3191 	index = pos >> PAGE_CACHE_SHIFT;
3192 
3193 	if (ext4_nonda_switch(inode->i_sb)) {
3194 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3195 		return ext4_write_begin(file, mapping, pos,
3196 					len, flags, pagep, fsdata);
3197 	}
3198 	*fsdata = (void *)0;
3199 	trace_ext4_da_write_begin(inode, pos, len, flags);
3200 retry:
3201 	/*
3202 	 * With delayed allocation, we don't log the i_disksize update
3203 	 * if there is delayed block allocation. But we still need
3204 	 * to journalling the i_disksize update if writes to the end
3205 	 * of file which has an already mapped buffer.
3206 	 */
3207 	handle = ext4_journal_start(inode, 1);
3208 	if (IS_ERR(handle)) {
3209 		ret = PTR_ERR(handle);
3210 		goto out;
3211 	}
3212 	/* We cannot recurse into the filesystem as the transaction is already
3213 	 * started */
3214 	flags |= AOP_FLAG_NOFS;
3215 
3216 	page = grab_cache_page_write_begin(mapping, index, flags);
3217 	if (!page) {
3218 		ext4_journal_stop(handle);
3219 		ret = -ENOMEM;
3220 		goto out;
3221 	}
3222 	*pagep = page;
3223 
3224 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3225 	if (ret < 0) {
3226 		unlock_page(page);
3227 		ext4_journal_stop(handle);
3228 		page_cache_release(page);
3229 		/*
3230 		 * block_write_begin may have instantiated a few blocks
3231 		 * outside i_size.  Trim these off again. Don't need
3232 		 * i_size_read because we hold i_mutex.
3233 		 */
3234 		if (pos + len > inode->i_size)
3235 			ext4_truncate_failed_write(inode);
3236 	}
3237 
3238 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3239 		goto retry;
3240 out:
3241 	return ret;
3242 }
3243 
3244 /*
3245  * Check if we should update i_disksize
3246  * when write to the end of file but not require block allocation
3247  */
3248 static int ext4_da_should_update_i_disksize(struct page *page,
3249 					    unsigned long offset)
3250 {
3251 	struct buffer_head *bh;
3252 	struct inode *inode = page->mapping->host;
3253 	unsigned int idx;
3254 	int i;
3255 
3256 	bh = page_buffers(page);
3257 	idx = offset >> inode->i_blkbits;
3258 
3259 	for (i = 0; i < idx; i++)
3260 		bh = bh->b_this_page;
3261 
3262 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3263 		return 0;
3264 	return 1;
3265 }
3266 
3267 static int ext4_da_write_end(struct file *file,
3268 			     struct address_space *mapping,
3269 			     loff_t pos, unsigned len, unsigned copied,
3270 			     struct page *page, void *fsdata)
3271 {
3272 	struct inode *inode = mapping->host;
3273 	int ret = 0, ret2;
3274 	handle_t *handle = ext4_journal_current_handle();
3275 	loff_t new_i_size;
3276 	unsigned long start, end;
3277 	int write_mode = (int)(unsigned long)fsdata;
3278 
3279 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3280 		if (ext4_should_order_data(inode)) {
3281 			return ext4_ordered_write_end(file, mapping, pos,
3282 					len, copied, page, fsdata);
3283 		} else if (ext4_should_writeback_data(inode)) {
3284 			return ext4_writeback_write_end(file, mapping, pos,
3285 					len, copied, page, fsdata);
3286 		} else {
3287 			BUG();
3288 		}
3289 	}
3290 
3291 	trace_ext4_da_write_end(inode, pos, len, copied);
3292 	start = pos & (PAGE_CACHE_SIZE - 1);
3293 	end = start + copied - 1;
3294 
3295 	/*
3296 	 * generic_write_end() will run mark_inode_dirty() if i_size
3297 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3298 	 * into that.
3299 	 */
3300 
3301 	new_i_size = pos + copied;
3302 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3303 		if (ext4_da_should_update_i_disksize(page, end)) {
3304 			down_write(&EXT4_I(inode)->i_data_sem);
3305 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3306 				/*
3307 				 * Updating i_disksize when extending file
3308 				 * without needing block allocation
3309 				 */
3310 				if (ext4_should_order_data(inode))
3311 					ret = ext4_jbd2_file_inode(handle,
3312 								   inode);
3313 
3314 				EXT4_I(inode)->i_disksize = new_i_size;
3315 			}
3316 			up_write(&EXT4_I(inode)->i_data_sem);
3317 			/* We need to mark inode dirty even if
3318 			 * new_i_size is less that inode->i_size
3319 			 * bu greater than i_disksize.(hint delalloc)
3320 			 */
3321 			ext4_mark_inode_dirty(handle, inode);
3322 		}
3323 	}
3324 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3325 							page, fsdata);
3326 	copied = ret2;
3327 	if (ret2 < 0)
3328 		ret = ret2;
3329 	ret2 = ext4_journal_stop(handle);
3330 	if (!ret)
3331 		ret = ret2;
3332 
3333 	return ret ? ret : copied;
3334 }
3335 
3336 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3337 {
3338 	/*
3339 	 * Drop reserved blocks
3340 	 */
3341 	BUG_ON(!PageLocked(page));
3342 	if (!page_has_buffers(page))
3343 		goto out;
3344 
3345 	ext4_da_page_release_reservation(page, offset);
3346 
3347 out:
3348 	ext4_invalidatepage(page, offset);
3349 
3350 	return;
3351 }
3352 
3353 /*
3354  * Force all delayed allocation blocks to be allocated for a given inode.
3355  */
3356 int ext4_alloc_da_blocks(struct inode *inode)
3357 {
3358 	trace_ext4_alloc_da_blocks(inode);
3359 
3360 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3361 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3362 		return 0;
3363 
3364 	/*
3365 	 * We do something simple for now.  The filemap_flush() will
3366 	 * also start triggering a write of the data blocks, which is
3367 	 * not strictly speaking necessary (and for users of
3368 	 * laptop_mode, not even desirable).  However, to do otherwise
3369 	 * would require replicating code paths in:
3370 	 *
3371 	 * ext4_da_writepages() ->
3372 	 *    write_cache_pages() ---> (via passed in callback function)
3373 	 *        __mpage_da_writepage() -->
3374 	 *           mpage_add_bh_to_extent()
3375 	 *           mpage_da_map_blocks()
3376 	 *
3377 	 * The problem is that write_cache_pages(), located in
3378 	 * mm/page-writeback.c, marks pages clean in preparation for
3379 	 * doing I/O, which is not desirable if we're not planning on
3380 	 * doing I/O at all.
3381 	 *
3382 	 * We could call write_cache_pages(), and then redirty all of
3383 	 * the pages by calling redirty_page_for_writepage() but that
3384 	 * would be ugly in the extreme.  So instead we would need to
3385 	 * replicate parts of the code in the above functions,
3386 	 * simplifying them becuase we wouldn't actually intend to
3387 	 * write out the pages, but rather only collect contiguous
3388 	 * logical block extents, call the multi-block allocator, and
3389 	 * then update the buffer heads with the block allocations.
3390 	 *
3391 	 * For now, though, we'll cheat by calling filemap_flush(),
3392 	 * which will map the blocks, and start the I/O, but not
3393 	 * actually wait for the I/O to complete.
3394 	 */
3395 	return filemap_flush(inode->i_mapping);
3396 }
3397 
3398 /*
3399  * bmap() is special.  It gets used by applications such as lilo and by
3400  * the swapper to find the on-disk block of a specific piece of data.
3401  *
3402  * Naturally, this is dangerous if the block concerned is still in the
3403  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3404  * filesystem and enables swap, then they may get a nasty shock when the
3405  * data getting swapped to that swapfile suddenly gets overwritten by
3406  * the original zero's written out previously to the journal and
3407  * awaiting writeback in the kernel's buffer cache.
3408  *
3409  * So, if we see any bmap calls here on a modified, data-journaled file,
3410  * take extra steps to flush any blocks which might be in the cache.
3411  */
3412 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3413 {
3414 	struct inode *inode = mapping->host;
3415 	journal_t *journal;
3416 	int err;
3417 
3418 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3419 			test_opt(inode->i_sb, DELALLOC)) {
3420 		/*
3421 		 * With delalloc we want to sync the file
3422 		 * so that we can make sure we allocate
3423 		 * blocks for file
3424 		 */
3425 		filemap_write_and_wait(mapping);
3426 	}
3427 
3428 	if (EXT4_JOURNAL(inode) &&
3429 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3430 		/*
3431 		 * This is a REALLY heavyweight approach, but the use of
3432 		 * bmap on dirty files is expected to be extremely rare:
3433 		 * only if we run lilo or swapon on a freshly made file
3434 		 * do we expect this to happen.
3435 		 *
3436 		 * (bmap requires CAP_SYS_RAWIO so this does not
3437 		 * represent an unprivileged user DOS attack --- we'd be
3438 		 * in trouble if mortal users could trigger this path at
3439 		 * will.)
3440 		 *
3441 		 * NB. EXT4_STATE_JDATA is not set on files other than
3442 		 * regular files.  If somebody wants to bmap a directory
3443 		 * or symlink and gets confused because the buffer
3444 		 * hasn't yet been flushed to disk, they deserve
3445 		 * everything they get.
3446 		 */
3447 
3448 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3449 		journal = EXT4_JOURNAL(inode);
3450 		jbd2_journal_lock_updates(journal);
3451 		err = jbd2_journal_flush(journal);
3452 		jbd2_journal_unlock_updates(journal);
3453 
3454 		if (err)
3455 			return 0;
3456 	}
3457 
3458 	return generic_block_bmap(mapping, block, ext4_get_block);
3459 }
3460 
3461 static int ext4_readpage(struct file *file, struct page *page)
3462 {
3463 	return mpage_readpage(page, ext4_get_block);
3464 }
3465 
3466 static int
3467 ext4_readpages(struct file *file, struct address_space *mapping,
3468 		struct list_head *pages, unsigned nr_pages)
3469 {
3470 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3471 }
3472 
3473 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3474 {
3475 	struct buffer_head *head, *bh;
3476 	unsigned int curr_off = 0;
3477 
3478 	if (!page_has_buffers(page))
3479 		return;
3480 	head = bh = page_buffers(page);
3481 	do {
3482 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
3483 					&& bh->b_private) {
3484 			ext4_free_io_end(bh->b_private);
3485 			bh->b_private = NULL;
3486 			bh->b_end_io = NULL;
3487 		}
3488 		curr_off = curr_off + bh->b_size;
3489 		bh = bh->b_this_page;
3490 	} while (bh != head);
3491 }
3492 
3493 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3494 {
3495 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3496 
3497 	/*
3498 	 * free any io_end structure allocated for buffers to be discarded
3499 	 */
3500 	if (ext4_should_dioread_nolock(page->mapping->host))
3501 		ext4_invalidatepage_free_endio(page, offset);
3502 	/*
3503 	 * If it's a full truncate we just forget about the pending dirtying
3504 	 */
3505 	if (offset == 0)
3506 		ClearPageChecked(page);
3507 
3508 	if (journal)
3509 		jbd2_journal_invalidatepage(journal, page, offset);
3510 	else
3511 		block_invalidatepage(page, offset);
3512 }
3513 
3514 static int ext4_releasepage(struct page *page, gfp_t wait)
3515 {
3516 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3517 
3518 	WARN_ON(PageChecked(page));
3519 	if (!page_has_buffers(page))
3520 		return 0;
3521 	if (journal)
3522 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3523 	else
3524 		return try_to_free_buffers(page);
3525 }
3526 
3527 /*
3528  * O_DIRECT for ext3 (or indirect map) based files
3529  *
3530  * If the O_DIRECT write will extend the file then add this inode to the
3531  * orphan list.  So recovery will truncate it back to the original size
3532  * if the machine crashes during the write.
3533  *
3534  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3535  * crashes then stale disk data _may_ be exposed inside the file. But current
3536  * VFS code falls back into buffered path in that case so we are safe.
3537  */
3538 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3539 			      const struct iovec *iov, loff_t offset,
3540 			      unsigned long nr_segs)
3541 {
3542 	struct file *file = iocb->ki_filp;
3543 	struct inode *inode = file->f_mapping->host;
3544 	struct ext4_inode_info *ei = EXT4_I(inode);
3545 	handle_t *handle;
3546 	ssize_t ret;
3547 	int orphan = 0;
3548 	size_t count = iov_length(iov, nr_segs);
3549 	int retries = 0;
3550 
3551 	if (rw == WRITE) {
3552 		loff_t final_size = offset + count;
3553 
3554 		if (final_size > inode->i_size) {
3555 			/* Credits for sb + inode write */
3556 			handle = ext4_journal_start(inode, 2);
3557 			if (IS_ERR(handle)) {
3558 				ret = PTR_ERR(handle);
3559 				goto out;
3560 			}
3561 			ret = ext4_orphan_add(handle, inode);
3562 			if (ret) {
3563 				ext4_journal_stop(handle);
3564 				goto out;
3565 			}
3566 			orphan = 1;
3567 			ei->i_disksize = inode->i_size;
3568 			ext4_journal_stop(handle);
3569 		}
3570 	}
3571 
3572 retry:
3573 	if (rw == READ && ext4_should_dioread_nolock(inode))
3574 		ret = __blockdev_direct_IO(rw, iocb, inode,
3575 				 inode->i_sb->s_bdev, iov,
3576 				 offset, nr_segs,
3577 				 ext4_get_block, NULL, NULL, 0);
3578 	else {
3579 		ret = blockdev_direct_IO(rw, iocb, inode,
3580 				 inode->i_sb->s_bdev, iov,
3581 				 offset, nr_segs,
3582 				 ext4_get_block, NULL);
3583 
3584 		if (unlikely((rw & WRITE) && ret < 0)) {
3585 			loff_t isize = i_size_read(inode);
3586 			loff_t end = offset + iov_length(iov, nr_segs);
3587 
3588 			if (end > isize)
3589 				vmtruncate(inode, isize);
3590 		}
3591 	}
3592 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3593 		goto retry;
3594 
3595 	if (orphan) {
3596 		int err;
3597 
3598 		/* Credits for sb + inode write */
3599 		handle = ext4_journal_start(inode, 2);
3600 		if (IS_ERR(handle)) {
3601 			/* This is really bad luck. We've written the data
3602 			 * but cannot extend i_size. Bail out and pretend
3603 			 * the write failed... */
3604 			ret = PTR_ERR(handle);
3605 			if (inode->i_nlink)
3606 				ext4_orphan_del(NULL, inode);
3607 
3608 			goto out;
3609 		}
3610 		if (inode->i_nlink)
3611 			ext4_orphan_del(handle, inode);
3612 		if (ret > 0) {
3613 			loff_t end = offset + ret;
3614 			if (end > inode->i_size) {
3615 				ei->i_disksize = end;
3616 				i_size_write(inode, end);
3617 				/*
3618 				 * We're going to return a positive `ret'
3619 				 * here due to non-zero-length I/O, so there's
3620 				 * no way of reporting error returns from
3621 				 * ext4_mark_inode_dirty() to userspace.  So
3622 				 * ignore it.
3623 				 */
3624 				ext4_mark_inode_dirty(handle, inode);
3625 			}
3626 		}
3627 		err = ext4_journal_stop(handle);
3628 		if (ret == 0)
3629 			ret = err;
3630 	}
3631 out:
3632 	return ret;
3633 }
3634 
3635 /*
3636  * ext4_get_block used when preparing for a DIO write or buffer write.
3637  * We allocate an uinitialized extent if blocks haven't been allocated.
3638  * The extent will be converted to initialized after the IO is complete.
3639  */
3640 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3641 		   struct buffer_head *bh_result, int create)
3642 {
3643 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3644 		   inode->i_ino, create);
3645 	return _ext4_get_block(inode, iblock, bh_result,
3646 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3647 }
3648 
3649 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3650 			    ssize_t size, void *private, int ret,
3651 			    bool is_async)
3652 {
3653         ext4_io_end_t *io_end = iocb->private;
3654 	struct workqueue_struct *wq;
3655 	unsigned long flags;
3656 	struct ext4_inode_info *ei;
3657 
3658 	/* if not async direct IO or dio with 0 bytes write, just return */
3659 	if (!io_end || !size)
3660 		goto out;
3661 
3662 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3663 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3664  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3665 		  size);
3666 
3667 	/* if not aio dio with unwritten extents, just free io and return */
3668 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3669 		ext4_free_io_end(io_end);
3670 		iocb->private = NULL;
3671 out:
3672 		if (is_async)
3673 			aio_complete(iocb, ret, 0);
3674 		return;
3675 	}
3676 
3677 	io_end->offset = offset;
3678 	io_end->size = size;
3679 	if (is_async) {
3680 		io_end->iocb = iocb;
3681 		io_end->result = ret;
3682 	}
3683 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3684 
3685 	/* Add the io_end to per-inode completed aio dio list*/
3686 	ei = EXT4_I(io_end->inode);
3687 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3688 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
3689 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3690 
3691 	/* queue the work to convert unwritten extents to written */
3692 	queue_work(wq, &io_end->work);
3693 	iocb->private = NULL;
3694 }
3695 
3696 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3697 {
3698 	ext4_io_end_t *io_end = bh->b_private;
3699 	struct workqueue_struct *wq;
3700 	struct inode *inode;
3701 	unsigned long flags;
3702 
3703 	if (!test_clear_buffer_uninit(bh) || !io_end)
3704 		goto out;
3705 
3706 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3707 		printk("sb umounted, discard end_io request for inode %lu\n",
3708 			io_end->inode->i_ino);
3709 		ext4_free_io_end(io_end);
3710 		goto out;
3711 	}
3712 
3713 	io_end->flag = EXT4_IO_END_UNWRITTEN;
3714 	inode = io_end->inode;
3715 
3716 	/* Add the io_end to per-inode completed io list*/
3717 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3718 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3719 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3720 
3721 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3722 	/* queue the work to convert unwritten extents to written */
3723 	queue_work(wq, &io_end->work);
3724 out:
3725 	bh->b_private = NULL;
3726 	bh->b_end_io = NULL;
3727 	clear_buffer_uninit(bh);
3728 	end_buffer_async_write(bh, uptodate);
3729 }
3730 
3731 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3732 {
3733 	ext4_io_end_t *io_end;
3734 	struct page *page = bh->b_page;
3735 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3736 	size_t size = bh->b_size;
3737 
3738 retry:
3739 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3740 	if (!io_end) {
3741 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
3742 		schedule();
3743 		goto retry;
3744 	}
3745 	io_end->offset = offset;
3746 	io_end->size = size;
3747 	/*
3748 	 * We need to hold a reference to the page to make sure it
3749 	 * doesn't get evicted before ext4_end_io_work() has a chance
3750 	 * to convert the extent from written to unwritten.
3751 	 */
3752 	io_end->page = page;
3753 	get_page(io_end->page);
3754 
3755 	bh->b_private = io_end;
3756 	bh->b_end_io = ext4_end_io_buffer_write;
3757 	return 0;
3758 }
3759 
3760 /*
3761  * For ext4 extent files, ext4 will do direct-io write to holes,
3762  * preallocated extents, and those write extend the file, no need to
3763  * fall back to buffered IO.
3764  *
3765  * For holes, we fallocate those blocks, mark them as uninitialized
3766  * If those blocks were preallocated, we mark sure they are splited, but
3767  * still keep the range to write as uninitialized.
3768  *
3769  * The unwrritten extents will be converted to written when DIO is completed.
3770  * For async direct IO, since the IO may still pending when return, we
3771  * set up an end_io call back function, which will do the convertion
3772  * when async direct IO completed.
3773  *
3774  * If the O_DIRECT write will extend the file then add this inode to the
3775  * orphan list.  So recovery will truncate it back to the original size
3776  * if the machine crashes during the write.
3777  *
3778  */
3779 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3780 			      const struct iovec *iov, loff_t offset,
3781 			      unsigned long nr_segs)
3782 {
3783 	struct file *file = iocb->ki_filp;
3784 	struct inode *inode = file->f_mapping->host;
3785 	ssize_t ret;
3786 	size_t count = iov_length(iov, nr_segs);
3787 
3788 	loff_t final_size = offset + count;
3789 	if (rw == WRITE && final_size <= inode->i_size) {
3790 		/*
3791  		 * We could direct write to holes and fallocate.
3792 		 *
3793  		 * Allocated blocks to fill the hole are marked as uninitialized
3794  		 * to prevent paralel buffered read to expose the stale data
3795  		 * before DIO complete the data IO.
3796 		 *
3797  		 * As to previously fallocated extents, ext4 get_block
3798  		 * will just simply mark the buffer mapped but still
3799  		 * keep the extents uninitialized.
3800  		 *
3801 		 * for non AIO case, we will convert those unwritten extents
3802 		 * to written after return back from blockdev_direct_IO.
3803 		 *
3804 		 * for async DIO, the conversion needs to be defered when
3805 		 * the IO is completed. The ext4 end_io callback function
3806 		 * will be called to take care of the conversion work.
3807 		 * Here for async case, we allocate an io_end structure to
3808 		 * hook to the iocb.
3809  		 */
3810 		iocb->private = NULL;
3811 		EXT4_I(inode)->cur_aio_dio = NULL;
3812 		if (!is_sync_kiocb(iocb)) {
3813 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3814 			if (!iocb->private)
3815 				return -ENOMEM;
3816 			/*
3817 			 * we save the io structure for current async
3818 			 * direct IO, so that later ext4_map_blocks()
3819 			 * could flag the io structure whether there
3820 			 * is a unwritten extents needs to be converted
3821 			 * when IO is completed.
3822 			 */
3823 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3824 		}
3825 
3826 		ret = blockdev_direct_IO(rw, iocb, inode,
3827 					 inode->i_sb->s_bdev, iov,
3828 					 offset, nr_segs,
3829 					 ext4_get_block_write,
3830 					 ext4_end_io_dio);
3831 		if (iocb->private)
3832 			EXT4_I(inode)->cur_aio_dio = NULL;
3833 		/*
3834 		 * The io_end structure takes a reference to the inode,
3835 		 * that structure needs to be destroyed and the
3836 		 * reference to the inode need to be dropped, when IO is
3837 		 * complete, even with 0 byte write, or failed.
3838 		 *
3839 		 * In the successful AIO DIO case, the io_end structure will be
3840 		 * desctroyed and the reference to the inode will be dropped
3841 		 * after the end_io call back function is called.
3842 		 *
3843 		 * In the case there is 0 byte write, or error case, since
3844 		 * VFS direct IO won't invoke the end_io call back function,
3845 		 * we need to free the end_io structure here.
3846 		 */
3847 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3848 			ext4_free_io_end(iocb->private);
3849 			iocb->private = NULL;
3850 		} else if (ret > 0 && ext4_test_inode_state(inode,
3851 						EXT4_STATE_DIO_UNWRITTEN)) {
3852 			int err;
3853 			/*
3854 			 * for non AIO case, since the IO is already
3855 			 * completed, we could do the convertion right here
3856 			 */
3857 			err = ext4_convert_unwritten_extents(inode,
3858 							     offset, ret);
3859 			if (err < 0)
3860 				ret = err;
3861 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3862 		}
3863 		return ret;
3864 	}
3865 
3866 	/* for write the the end of file case, we fall back to old way */
3867 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3868 }
3869 
3870 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3871 			      const struct iovec *iov, loff_t offset,
3872 			      unsigned long nr_segs)
3873 {
3874 	struct file *file = iocb->ki_filp;
3875 	struct inode *inode = file->f_mapping->host;
3876 
3877 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3878 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3879 
3880 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3881 }
3882 
3883 /*
3884  * Pages can be marked dirty completely asynchronously from ext4's journalling
3885  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3886  * much here because ->set_page_dirty is called under VFS locks.  The page is
3887  * not necessarily locked.
3888  *
3889  * We cannot just dirty the page and leave attached buffers clean, because the
3890  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3891  * or jbddirty because all the journalling code will explode.
3892  *
3893  * So what we do is to mark the page "pending dirty" and next time writepage
3894  * is called, propagate that into the buffers appropriately.
3895  */
3896 static int ext4_journalled_set_page_dirty(struct page *page)
3897 {
3898 	SetPageChecked(page);
3899 	return __set_page_dirty_nobuffers(page);
3900 }
3901 
3902 static const struct address_space_operations ext4_ordered_aops = {
3903 	.readpage		= ext4_readpage,
3904 	.readpages		= ext4_readpages,
3905 	.writepage		= ext4_writepage,
3906 	.sync_page		= block_sync_page,
3907 	.write_begin		= ext4_write_begin,
3908 	.write_end		= ext4_ordered_write_end,
3909 	.bmap			= ext4_bmap,
3910 	.invalidatepage		= ext4_invalidatepage,
3911 	.releasepage		= ext4_releasepage,
3912 	.direct_IO		= ext4_direct_IO,
3913 	.migratepage		= buffer_migrate_page,
3914 	.is_partially_uptodate  = block_is_partially_uptodate,
3915 	.error_remove_page	= generic_error_remove_page,
3916 };
3917 
3918 static const struct address_space_operations ext4_writeback_aops = {
3919 	.readpage		= ext4_readpage,
3920 	.readpages		= ext4_readpages,
3921 	.writepage		= ext4_writepage,
3922 	.sync_page		= block_sync_page,
3923 	.write_begin		= ext4_write_begin,
3924 	.write_end		= ext4_writeback_write_end,
3925 	.bmap			= ext4_bmap,
3926 	.invalidatepage		= ext4_invalidatepage,
3927 	.releasepage		= ext4_releasepage,
3928 	.direct_IO		= ext4_direct_IO,
3929 	.migratepage		= buffer_migrate_page,
3930 	.is_partially_uptodate  = block_is_partially_uptodate,
3931 	.error_remove_page	= generic_error_remove_page,
3932 };
3933 
3934 static const struct address_space_operations ext4_journalled_aops = {
3935 	.readpage		= ext4_readpage,
3936 	.readpages		= ext4_readpages,
3937 	.writepage		= ext4_writepage,
3938 	.sync_page		= block_sync_page,
3939 	.write_begin		= ext4_write_begin,
3940 	.write_end		= ext4_journalled_write_end,
3941 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3942 	.bmap			= ext4_bmap,
3943 	.invalidatepage		= ext4_invalidatepage,
3944 	.releasepage		= ext4_releasepage,
3945 	.is_partially_uptodate  = block_is_partially_uptodate,
3946 	.error_remove_page	= generic_error_remove_page,
3947 };
3948 
3949 static const struct address_space_operations ext4_da_aops = {
3950 	.readpage		= ext4_readpage,
3951 	.readpages		= ext4_readpages,
3952 	.writepage		= ext4_writepage,
3953 	.writepages		= ext4_da_writepages,
3954 	.sync_page		= block_sync_page,
3955 	.write_begin		= ext4_da_write_begin,
3956 	.write_end		= ext4_da_write_end,
3957 	.bmap			= ext4_bmap,
3958 	.invalidatepage		= ext4_da_invalidatepage,
3959 	.releasepage		= ext4_releasepage,
3960 	.direct_IO		= ext4_direct_IO,
3961 	.migratepage		= buffer_migrate_page,
3962 	.is_partially_uptodate  = block_is_partially_uptodate,
3963 	.error_remove_page	= generic_error_remove_page,
3964 };
3965 
3966 void ext4_set_aops(struct inode *inode)
3967 {
3968 	if (ext4_should_order_data(inode) &&
3969 		test_opt(inode->i_sb, DELALLOC))
3970 		inode->i_mapping->a_ops = &ext4_da_aops;
3971 	else if (ext4_should_order_data(inode))
3972 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3973 	else if (ext4_should_writeback_data(inode) &&
3974 		 test_opt(inode->i_sb, DELALLOC))
3975 		inode->i_mapping->a_ops = &ext4_da_aops;
3976 	else if (ext4_should_writeback_data(inode))
3977 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3978 	else
3979 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3980 }
3981 
3982 /*
3983  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3984  * up to the end of the block which corresponds to `from'.
3985  * This required during truncate. We need to physically zero the tail end
3986  * of that block so it doesn't yield old data if the file is later grown.
3987  */
3988 int ext4_block_truncate_page(handle_t *handle,
3989 		struct address_space *mapping, loff_t from)
3990 {
3991 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3992 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3993 	unsigned blocksize, length, pos;
3994 	ext4_lblk_t iblock;
3995 	struct inode *inode = mapping->host;
3996 	struct buffer_head *bh;
3997 	struct page *page;
3998 	int err = 0;
3999 
4000 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4001 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4002 	if (!page)
4003 		return -EINVAL;
4004 
4005 	blocksize = inode->i_sb->s_blocksize;
4006 	length = blocksize - (offset & (blocksize - 1));
4007 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4008 
4009 	if (!page_has_buffers(page))
4010 		create_empty_buffers(page, blocksize, 0);
4011 
4012 	/* Find the buffer that contains "offset" */
4013 	bh = page_buffers(page);
4014 	pos = blocksize;
4015 	while (offset >= pos) {
4016 		bh = bh->b_this_page;
4017 		iblock++;
4018 		pos += blocksize;
4019 	}
4020 
4021 	err = 0;
4022 	if (buffer_freed(bh)) {
4023 		BUFFER_TRACE(bh, "freed: skip");
4024 		goto unlock;
4025 	}
4026 
4027 	if (!buffer_mapped(bh)) {
4028 		BUFFER_TRACE(bh, "unmapped");
4029 		ext4_get_block(inode, iblock, bh, 0);
4030 		/* unmapped? It's a hole - nothing to do */
4031 		if (!buffer_mapped(bh)) {
4032 			BUFFER_TRACE(bh, "still unmapped");
4033 			goto unlock;
4034 		}
4035 	}
4036 
4037 	/* Ok, it's mapped. Make sure it's up-to-date */
4038 	if (PageUptodate(page))
4039 		set_buffer_uptodate(bh);
4040 
4041 	if (!buffer_uptodate(bh)) {
4042 		err = -EIO;
4043 		ll_rw_block(READ, 1, &bh);
4044 		wait_on_buffer(bh);
4045 		/* Uhhuh. Read error. Complain and punt. */
4046 		if (!buffer_uptodate(bh))
4047 			goto unlock;
4048 	}
4049 
4050 	if (ext4_should_journal_data(inode)) {
4051 		BUFFER_TRACE(bh, "get write access");
4052 		err = ext4_journal_get_write_access(handle, bh);
4053 		if (err)
4054 			goto unlock;
4055 	}
4056 
4057 	zero_user(page, offset, length);
4058 
4059 	BUFFER_TRACE(bh, "zeroed end of block");
4060 
4061 	err = 0;
4062 	if (ext4_should_journal_data(inode)) {
4063 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4064 	} else {
4065 		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4066 			err = ext4_jbd2_file_inode(handle, inode);
4067 		mark_buffer_dirty(bh);
4068 	}
4069 
4070 unlock:
4071 	unlock_page(page);
4072 	page_cache_release(page);
4073 	return err;
4074 }
4075 
4076 /*
4077  * Probably it should be a library function... search for first non-zero word
4078  * or memcmp with zero_page, whatever is better for particular architecture.
4079  * Linus?
4080  */
4081 static inline int all_zeroes(__le32 *p, __le32 *q)
4082 {
4083 	while (p < q)
4084 		if (*p++)
4085 			return 0;
4086 	return 1;
4087 }
4088 
4089 /**
4090  *	ext4_find_shared - find the indirect blocks for partial truncation.
4091  *	@inode:	  inode in question
4092  *	@depth:	  depth of the affected branch
4093  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4094  *	@chain:	  place to store the pointers to partial indirect blocks
4095  *	@top:	  place to the (detached) top of branch
4096  *
4097  *	This is a helper function used by ext4_truncate().
4098  *
4099  *	When we do truncate() we may have to clean the ends of several
4100  *	indirect blocks but leave the blocks themselves alive. Block is
4101  *	partially truncated if some data below the new i_size is refered
4102  *	from it (and it is on the path to the first completely truncated
4103  *	data block, indeed).  We have to free the top of that path along
4104  *	with everything to the right of the path. Since no allocation
4105  *	past the truncation point is possible until ext4_truncate()
4106  *	finishes, we may safely do the latter, but top of branch may
4107  *	require special attention - pageout below the truncation point
4108  *	might try to populate it.
4109  *
4110  *	We atomically detach the top of branch from the tree, store the
4111  *	block number of its root in *@top, pointers to buffer_heads of
4112  *	partially truncated blocks - in @chain[].bh and pointers to
4113  *	their last elements that should not be removed - in
4114  *	@chain[].p. Return value is the pointer to last filled element
4115  *	of @chain.
4116  *
4117  *	The work left to caller to do the actual freeing of subtrees:
4118  *		a) free the subtree starting from *@top
4119  *		b) free the subtrees whose roots are stored in
4120  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4121  *		c) free the subtrees growing from the inode past the @chain[0].
4122  *			(no partially truncated stuff there).  */
4123 
4124 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4125 				  ext4_lblk_t offsets[4], Indirect chain[4],
4126 				  __le32 *top)
4127 {
4128 	Indirect *partial, *p;
4129 	int k, err;
4130 
4131 	*top = 0;
4132 	/* Make k index the deepest non-null offset + 1 */
4133 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4134 		;
4135 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4136 	/* Writer: pointers */
4137 	if (!partial)
4138 		partial = chain + k-1;
4139 	/*
4140 	 * If the branch acquired continuation since we've looked at it -
4141 	 * fine, it should all survive and (new) top doesn't belong to us.
4142 	 */
4143 	if (!partial->key && *partial->p)
4144 		/* Writer: end */
4145 		goto no_top;
4146 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4147 		;
4148 	/*
4149 	 * OK, we've found the last block that must survive. The rest of our
4150 	 * branch should be detached before unlocking. However, if that rest
4151 	 * of branch is all ours and does not grow immediately from the inode
4152 	 * it's easier to cheat and just decrement partial->p.
4153 	 */
4154 	if (p == chain + k - 1 && p > chain) {
4155 		p->p--;
4156 	} else {
4157 		*top = *p->p;
4158 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4159 #if 0
4160 		*p->p = 0;
4161 #endif
4162 	}
4163 	/* Writer: end */
4164 
4165 	while (partial > p) {
4166 		brelse(partial->bh);
4167 		partial--;
4168 	}
4169 no_top:
4170 	return partial;
4171 }
4172 
4173 /*
4174  * Zero a number of block pointers in either an inode or an indirect block.
4175  * If we restart the transaction we must again get write access to the
4176  * indirect block for further modification.
4177  *
4178  * We release `count' blocks on disk, but (last - first) may be greater
4179  * than `count' because there can be holes in there.
4180  */
4181 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4182 			     struct buffer_head *bh,
4183 			     ext4_fsblk_t block_to_free,
4184 			     unsigned long count, __le32 *first,
4185 			     __le32 *last)
4186 {
4187 	__le32 *p;
4188 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4189 	int	err;
4190 
4191 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4192 		flags |= EXT4_FREE_BLOCKS_METADATA;
4193 
4194 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4195 				   count)) {
4196 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4197 				 "blocks %llu len %lu",
4198 				 (unsigned long long) block_to_free, count);
4199 		return 1;
4200 	}
4201 
4202 	if (try_to_extend_transaction(handle, inode)) {
4203 		if (bh) {
4204 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4205 			err = ext4_handle_dirty_metadata(handle, inode, bh);
4206 			if (unlikely(err)) {
4207 				ext4_std_error(inode->i_sb, err);
4208 				return 1;
4209 			}
4210 		}
4211 		err = ext4_mark_inode_dirty(handle, inode);
4212 		if (unlikely(err)) {
4213 			ext4_std_error(inode->i_sb, err);
4214 			return 1;
4215 		}
4216 		err = ext4_truncate_restart_trans(handle, inode,
4217 						  blocks_for_truncate(inode));
4218 		if (unlikely(err)) {
4219 			ext4_std_error(inode->i_sb, err);
4220 			return 1;
4221 		}
4222 		if (bh) {
4223 			BUFFER_TRACE(bh, "retaking write access");
4224 			ext4_journal_get_write_access(handle, bh);
4225 		}
4226 	}
4227 
4228 	for (p = first; p < last; p++)
4229 		*p = 0;
4230 
4231 	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4232 	return 0;
4233 }
4234 
4235 /**
4236  * ext4_free_data - free a list of data blocks
4237  * @handle:	handle for this transaction
4238  * @inode:	inode we are dealing with
4239  * @this_bh:	indirect buffer_head which contains *@first and *@last
4240  * @first:	array of block numbers
4241  * @last:	points immediately past the end of array
4242  *
4243  * We are freeing all blocks refered from that array (numbers are stored as
4244  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4245  *
4246  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4247  * blocks are contiguous then releasing them at one time will only affect one
4248  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4249  * actually use a lot of journal space.
4250  *
4251  * @this_bh will be %NULL if @first and @last point into the inode's direct
4252  * block pointers.
4253  */
4254 static void ext4_free_data(handle_t *handle, struct inode *inode,
4255 			   struct buffer_head *this_bh,
4256 			   __le32 *first, __le32 *last)
4257 {
4258 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4259 	unsigned long count = 0;	    /* Number of blocks in the run */
4260 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4261 					       corresponding to
4262 					       block_to_free */
4263 	ext4_fsblk_t nr;		    /* Current block # */
4264 	__le32 *p;			    /* Pointer into inode/ind
4265 					       for current block */
4266 	int err;
4267 
4268 	if (this_bh) {				/* For indirect block */
4269 		BUFFER_TRACE(this_bh, "get_write_access");
4270 		err = ext4_journal_get_write_access(handle, this_bh);
4271 		/* Important: if we can't update the indirect pointers
4272 		 * to the blocks, we can't free them. */
4273 		if (err)
4274 			return;
4275 	}
4276 
4277 	for (p = first; p < last; p++) {
4278 		nr = le32_to_cpu(*p);
4279 		if (nr) {
4280 			/* accumulate blocks to free if they're contiguous */
4281 			if (count == 0) {
4282 				block_to_free = nr;
4283 				block_to_free_p = p;
4284 				count = 1;
4285 			} else if (nr == block_to_free + count) {
4286 				count++;
4287 			} else {
4288 				if (ext4_clear_blocks(handle, inode, this_bh,
4289 						      block_to_free, count,
4290 						      block_to_free_p, p))
4291 					break;
4292 				block_to_free = nr;
4293 				block_to_free_p = p;
4294 				count = 1;
4295 			}
4296 		}
4297 	}
4298 
4299 	if (count > 0)
4300 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4301 				  count, block_to_free_p, p);
4302 
4303 	if (this_bh) {
4304 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4305 
4306 		/*
4307 		 * The buffer head should have an attached journal head at this
4308 		 * point. However, if the data is corrupted and an indirect
4309 		 * block pointed to itself, it would have been detached when
4310 		 * the block was cleared. Check for this instead of OOPSing.
4311 		 */
4312 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4313 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4314 		else
4315 			EXT4_ERROR_INODE(inode,
4316 					 "circular indirect block detected at "
4317 					 "block %llu",
4318 				(unsigned long long) this_bh->b_blocknr);
4319 	}
4320 }
4321 
4322 /**
4323  *	ext4_free_branches - free an array of branches
4324  *	@handle: JBD handle for this transaction
4325  *	@inode:	inode we are dealing with
4326  *	@parent_bh: the buffer_head which contains *@first and *@last
4327  *	@first:	array of block numbers
4328  *	@last:	pointer immediately past the end of array
4329  *	@depth:	depth of the branches to free
4330  *
4331  *	We are freeing all blocks refered from these branches (numbers are
4332  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4333  *	appropriately.
4334  */
4335 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4336 			       struct buffer_head *parent_bh,
4337 			       __le32 *first, __le32 *last, int depth)
4338 {
4339 	ext4_fsblk_t nr;
4340 	__le32 *p;
4341 
4342 	if (ext4_handle_is_aborted(handle))
4343 		return;
4344 
4345 	if (depth--) {
4346 		struct buffer_head *bh;
4347 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4348 		p = last;
4349 		while (--p >= first) {
4350 			nr = le32_to_cpu(*p);
4351 			if (!nr)
4352 				continue;		/* A hole */
4353 
4354 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4355 						   nr, 1)) {
4356 				EXT4_ERROR_INODE(inode,
4357 						 "invalid indirect mapped "
4358 						 "block %lu (level %d)",
4359 						 (unsigned long) nr, depth);
4360 				break;
4361 			}
4362 
4363 			/* Go read the buffer for the next level down */
4364 			bh = sb_bread(inode->i_sb, nr);
4365 
4366 			/*
4367 			 * A read failure? Report error and clear slot
4368 			 * (should be rare).
4369 			 */
4370 			if (!bh) {
4371 				EXT4_ERROR_INODE_BLOCK(inode, nr,
4372 						       "Read failure");
4373 				continue;
4374 			}
4375 
4376 			/* This zaps the entire block.  Bottom up. */
4377 			BUFFER_TRACE(bh, "free child branches");
4378 			ext4_free_branches(handle, inode, bh,
4379 					(__le32 *) bh->b_data,
4380 					(__le32 *) bh->b_data + addr_per_block,
4381 					depth);
4382 			brelse(bh);
4383 
4384 			/*
4385 			 * Everything below this this pointer has been
4386 			 * released.  Now let this top-of-subtree go.
4387 			 *
4388 			 * We want the freeing of this indirect block to be
4389 			 * atomic in the journal with the updating of the
4390 			 * bitmap block which owns it.  So make some room in
4391 			 * the journal.
4392 			 *
4393 			 * We zero the parent pointer *after* freeing its
4394 			 * pointee in the bitmaps, so if extend_transaction()
4395 			 * for some reason fails to put the bitmap changes and
4396 			 * the release into the same transaction, recovery
4397 			 * will merely complain about releasing a free block,
4398 			 * rather than leaking blocks.
4399 			 */
4400 			if (ext4_handle_is_aborted(handle))
4401 				return;
4402 			if (try_to_extend_transaction(handle, inode)) {
4403 				ext4_mark_inode_dirty(handle, inode);
4404 				ext4_truncate_restart_trans(handle, inode,
4405 					    blocks_for_truncate(inode));
4406 			}
4407 
4408 			/*
4409 			 * The forget flag here is critical because if
4410 			 * we are journaling (and not doing data
4411 			 * journaling), we have to make sure a revoke
4412 			 * record is written to prevent the journal
4413 			 * replay from overwriting the (former)
4414 			 * indirect block if it gets reallocated as a
4415 			 * data block.  This must happen in the same
4416 			 * transaction where the data blocks are
4417 			 * actually freed.
4418 			 */
4419 			ext4_free_blocks(handle, inode, 0, nr, 1,
4420 					 EXT4_FREE_BLOCKS_METADATA|
4421 					 EXT4_FREE_BLOCKS_FORGET);
4422 
4423 			if (parent_bh) {
4424 				/*
4425 				 * The block which we have just freed is
4426 				 * pointed to by an indirect block: journal it
4427 				 */
4428 				BUFFER_TRACE(parent_bh, "get_write_access");
4429 				if (!ext4_journal_get_write_access(handle,
4430 								   parent_bh)){
4431 					*p = 0;
4432 					BUFFER_TRACE(parent_bh,
4433 					"call ext4_handle_dirty_metadata");
4434 					ext4_handle_dirty_metadata(handle,
4435 								   inode,
4436 								   parent_bh);
4437 				}
4438 			}
4439 		}
4440 	} else {
4441 		/* We have reached the bottom of the tree. */
4442 		BUFFER_TRACE(parent_bh, "free data blocks");
4443 		ext4_free_data(handle, inode, parent_bh, first, last);
4444 	}
4445 }
4446 
4447 int ext4_can_truncate(struct inode *inode)
4448 {
4449 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4450 		return 0;
4451 	if (S_ISREG(inode->i_mode))
4452 		return 1;
4453 	if (S_ISDIR(inode->i_mode))
4454 		return 1;
4455 	if (S_ISLNK(inode->i_mode))
4456 		return !ext4_inode_is_fast_symlink(inode);
4457 	return 0;
4458 }
4459 
4460 /*
4461  * ext4_truncate()
4462  *
4463  * We block out ext4_get_block() block instantiations across the entire
4464  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4465  * simultaneously on behalf of the same inode.
4466  *
4467  * As we work through the truncate and commmit bits of it to the journal there
4468  * is one core, guiding principle: the file's tree must always be consistent on
4469  * disk.  We must be able to restart the truncate after a crash.
4470  *
4471  * The file's tree may be transiently inconsistent in memory (although it
4472  * probably isn't), but whenever we close off and commit a journal transaction,
4473  * the contents of (the filesystem + the journal) must be consistent and
4474  * restartable.  It's pretty simple, really: bottom up, right to left (although
4475  * left-to-right works OK too).
4476  *
4477  * Note that at recovery time, journal replay occurs *before* the restart of
4478  * truncate against the orphan inode list.
4479  *
4480  * The committed inode has the new, desired i_size (which is the same as
4481  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4482  * that this inode's truncate did not complete and it will again call
4483  * ext4_truncate() to have another go.  So there will be instantiated blocks
4484  * to the right of the truncation point in a crashed ext4 filesystem.  But
4485  * that's fine - as long as they are linked from the inode, the post-crash
4486  * ext4_truncate() run will find them and release them.
4487  */
4488 void ext4_truncate(struct inode *inode)
4489 {
4490 	handle_t *handle;
4491 	struct ext4_inode_info *ei = EXT4_I(inode);
4492 	__le32 *i_data = ei->i_data;
4493 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4494 	struct address_space *mapping = inode->i_mapping;
4495 	ext4_lblk_t offsets[4];
4496 	Indirect chain[4];
4497 	Indirect *partial;
4498 	__le32 nr = 0;
4499 	int n;
4500 	ext4_lblk_t last_block;
4501 	unsigned blocksize = inode->i_sb->s_blocksize;
4502 
4503 	if (!ext4_can_truncate(inode))
4504 		return;
4505 
4506 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4507 
4508 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4509 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4510 
4511 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4512 		ext4_ext_truncate(inode);
4513 		return;
4514 	}
4515 
4516 	handle = start_transaction(inode);
4517 	if (IS_ERR(handle))
4518 		return;		/* AKPM: return what? */
4519 
4520 	last_block = (inode->i_size + blocksize-1)
4521 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4522 
4523 	if (inode->i_size & (blocksize - 1))
4524 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4525 			goto out_stop;
4526 
4527 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4528 	if (n == 0)
4529 		goto out_stop;	/* error */
4530 
4531 	/*
4532 	 * OK.  This truncate is going to happen.  We add the inode to the
4533 	 * orphan list, so that if this truncate spans multiple transactions,
4534 	 * and we crash, we will resume the truncate when the filesystem
4535 	 * recovers.  It also marks the inode dirty, to catch the new size.
4536 	 *
4537 	 * Implication: the file must always be in a sane, consistent
4538 	 * truncatable state while each transaction commits.
4539 	 */
4540 	if (ext4_orphan_add(handle, inode))
4541 		goto out_stop;
4542 
4543 	/*
4544 	 * From here we block out all ext4_get_block() callers who want to
4545 	 * modify the block allocation tree.
4546 	 */
4547 	down_write(&ei->i_data_sem);
4548 
4549 	ext4_discard_preallocations(inode);
4550 
4551 	/*
4552 	 * The orphan list entry will now protect us from any crash which
4553 	 * occurs before the truncate completes, so it is now safe to propagate
4554 	 * the new, shorter inode size (held for now in i_size) into the
4555 	 * on-disk inode. We do this via i_disksize, which is the value which
4556 	 * ext4 *really* writes onto the disk inode.
4557 	 */
4558 	ei->i_disksize = inode->i_size;
4559 
4560 	if (n == 1) {		/* direct blocks */
4561 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4562 			       i_data + EXT4_NDIR_BLOCKS);
4563 		goto do_indirects;
4564 	}
4565 
4566 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4567 	/* Kill the top of shared branch (not detached) */
4568 	if (nr) {
4569 		if (partial == chain) {
4570 			/* Shared branch grows from the inode */
4571 			ext4_free_branches(handle, inode, NULL,
4572 					   &nr, &nr+1, (chain+n-1) - partial);
4573 			*partial->p = 0;
4574 			/*
4575 			 * We mark the inode dirty prior to restart,
4576 			 * and prior to stop.  No need for it here.
4577 			 */
4578 		} else {
4579 			/* Shared branch grows from an indirect block */
4580 			BUFFER_TRACE(partial->bh, "get_write_access");
4581 			ext4_free_branches(handle, inode, partial->bh,
4582 					partial->p,
4583 					partial->p+1, (chain+n-1) - partial);
4584 		}
4585 	}
4586 	/* Clear the ends of indirect blocks on the shared branch */
4587 	while (partial > chain) {
4588 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4589 				   (__le32*)partial->bh->b_data+addr_per_block,
4590 				   (chain+n-1) - partial);
4591 		BUFFER_TRACE(partial->bh, "call brelse");
4592 		brelse(partial->bh);
4593 		partial--;
4594 	}
4595 do_indirects:
4596 	/* Kill the remaining (whole) subtrees */
4597 	switch (offsets[0]) {
4598 	default:
4599 		nr = i_data[EXT4_IND_BLOCK];
4600 		if (nr) {
4601 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4602 			i_data[EXT4_IND_BLOCK] = 0;
4603 		}
4604 	case EXT4_IND_BLOCK:
4605 		nr = i_data[EXT4_DIND_BLOCK];
4606 		if (nr) {
4607 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4608 			i_data[EXT4_DIND_BLOCK] = 0;
4609 		}
4610 	case EXT4_DIND_BLOCK:
4611 		nr = i_data[EXT4_TIND_BLOCK];
4612 		if (nr) {
4613 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4614 			i_data[EXT4_TIND_BLOCK] = 0;
4615 		}
4616 	case EXT4_TIND_BLOCK:
4617 		;
4618 	}
4619 
4620 	up_write(&ei->i_data_sem);
4621 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4622 	ext4_mark_inode_dirty(handle, inode);
4623 
4624 	/*
4625 	 * In a multi-transaction truncate, we only make the final transaction
4626 	 * synchronous
4627 	 */
4628 	if (IS_SYNC(inode))
4629 		ext4_handle_sync(handle);
4630 out_stop:
4631 	/*
4632 	 * If this was a simple ftruncate(), and the file will remain alive
4633 	 * then we need to clear up the orphan record which we created above.
4634 	 * However, if this was a real unlink then we were called by
4635 	 * ext4_delete_inode(), and we allow that function to clean up the
4636 	 * orphan info for us.
4637 	 */
4638 	if (inode->i_nlink)
4639 		ext4_orphan_del(handle, inode);
4640 
4641 	ext4_journal_stop(handle);
4642 }
4643 
4644 /*
4645  * ext4_get_inode_loc returns with an extra refcount against the inode's
4646  * underlying buffer_head on success. If 'in_mem' is true, we have all
4647  * data in memory that is needed to recreate the on-disk version of this
4648  * inode.
4649  */
4650 static int __ext4_get_inode_loc(struct inode *inode,
4651 				struct ext4_iloc *iloc, int in_mem)
4652 {
4653 	struct ext4_group_desc	*gdp;
4654 	struct buffer_head	*bh;
4655 	struct super_block	*sb = inode->i_sb;
4656 	ext4_fsblk_t		block;
4657 	int			inodes_per_block, inode_offset;
4658 
4659 	iloc->bh = NULL;
4660 	if (!ext4_valid_inum(sb, inode->i_ino))
4661 		return -EIO;
4662 
4663 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4664 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4665 	if (!gdp)
4666 		return -EIO;
4667 
4668 	/*
4669 	 * Figure out the offset within the block group inode table
4670 	 */
4671 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4672 	inode_offset = ((inode->i_ino - 1) %
4673 			EXT4_INODES_PER_GROUP(sb));
4674 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4675 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4676 
4677 	bh = sb_getblk(sb, block);
4678 	if (!bh) {
4679 		EXT4_ERROR_INODE_BLOCK(inode, block,
4680 				       "unable to read itable block");
4681 		return -EIO;
4682 	}
4683 	if (!buffer_uptodate(bh)) {
4684 		lock_buffer(bh);
4685 
4686 		/*
4687 		 * If the buffer has the write error flag, we have failed
4688 		 * to write out another inode in the same block.  In this
4689 		 * case, we don't have to read the block because we may
4690 		 * read the old inode data successfully.
4691 		 */
4692 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4693 			set_buffer_uptodate(bh);
4694 
4695 		if (buffer_uptodate(bh)) {
4696 			/* someone brought it uptodate while we waited */
4697 			unlock_buffer(bh);
4698 			goto has_buffer;
4699 		}
4700 
4701 		/*
4702 		 * If we have all information of the inode in memory and this
4703 		 * is the only valid inode in the block, we need not read the
4704 		 * block.
4705 		 */
4706 		if (in_mem) {
4707 			struct buffer_head *bitmap_bh;
4708 			int i, start;
4709 
4710 			start = inode_offset & ~(inodes_per_block - 1);
4711 
4712 			/* Is the inode bitmap in cache? */
4713 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4714 			if (!bitmap_bh)
4715 				goto make_io;
4716 
4717 			/*
4718 			 * If the inode bitmap isn't in cache then the
4719 			 * optimisation may end up performing two reads instead
4720 			 * of one, so skip it.
4721 			 */
4722 			if (!buffer_uptodate(bitmap_bh)) {
4723 				brelse(bitmap_bh);
4724 				goto make_io;
4725 			}
4726 			for (i = start; i < start + inodes_per_block; i++) {
4727 				if (i == inode_offset)
4728 					continue;
4729 				if (ext4_test_bit(i, bitmap_bh->b_data))
4730 					break;
4731 			}
4732 			brelse(bitmap_bh);
4733 			if (i == start + inodes_per_block) {
4734 				/* all other inodes are free, so skip I/O */
4735 				memset(bh->b_data, 0, bh->b_size);
4736 				set_buffer_uptodate(bh);
4737 				unlock_buffer(bh);
4738 				goto has_buffer;
4739 			}
4740 		}
4741 
4742 make_io:
4743 		/*
4744 		 * If we need to do any I/O, try to pre-readahead extra
4745 		 * blocks from the inode table.
4746 		 */
4747 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4748 			ext4_fsblk_t b, end, table;
4749 			unsigned num;
4750 
4751 			table = ext4_inode_table(sb, gdp);
4752 			/* s_inode_readahead_blks is always a power of 2 */
4753 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4754 			if (table > b)
4755 				b = table;
4756 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4757 			num = EXT4_INODES_PER_GROUP(sb);
4758 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4759 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4760 				num -= ext4_itable_unused_count(sb, gdp);
4761 			table += num / inodes_per_block;
4762 			if (end > table)
4763 				end = table;
4764 			while (b <= end)
4765 				sb_breadahead(sb, b++);
4766 		}
4767 
4768 		/*
4769 		 * There are other valid inodes in the buffer, this inode
4770 		 * has in-inode xattrs, or we don't have this inode in memory.
4771 		 * Read the block from disk.
4772 		 */
4773 		get_bh(bh);
4774 		bh->b_end_io = end_buffer_read_sync;
4775 		submit_bh(READ_META, bh);
4776 		wait_on_buffer(bh);
4777 		if (!buffer_uptodate(bh)) {
4778 			EXT4_ERROR_INODE_BLOCK(inode, block,
4779 					       "unable to read itable block");
4780 			brelse(bh);
4781 			return -EIO;
4782 		}
4783 	}
4784 has_buffer:
4785 	iloc->bh = bh;
4786 	return 0;
4787 }
4788 
4789 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4790 {
4791 	/* We have all inode data except xattrs in memory here. */
4792 	return __ext4_get_inode_loc(inode, iloc,
4793 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4794 }
4795 
4796 void ext4_set_inode_flags(struct inode *inode)
4797 {
4798 	unsigned int flags = EXT4_I(inode)->i_flags;
4799 
4800 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4801 	if (flags & EXT4_SYNC_FL)
4802 		inode->i_flags |= S_SYNC;
4803 	if (flags & EXT4_APPEND_FL)
4804 		inode->i_flags |= S_APPEND;
4805 	if (flags & EXT4_IMMUTABLE_FL)
4806 		inode->i_flags |= S_IMMUTABLE;
4807 	if (flags & EXT4_NOATIME_FL)
4808 		inode->i_flags |= S_NOATIME;
4809 	if (flags & EXT4_DIRSYNC_FL)
4810 		inode->i_flags |= S_DIRSYNC;
4811 }
4812 
4813 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4814 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4815 {
4816 	unsigned int vfs_fl;
4817 	unsigned long old_fl, new_fl;
4818 
4819 	do {
4820 		vfs_fl = ei->vfs_inode.i_flags;
4821 		old_fl = ei->i_flags;
4822 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4823 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4824 				EXT4_DIRSYNC_FL);
4825 		if (vfs_fl & S_SYNC)
4826 			new_fl |= EXT4_SYNC_FL;
4827 		if (vfs_fl & S_APPEND)
4828 			new_fl |= EXT4_APPEND_FL;
4829 		if (vfs_fl & S_IMMUTABLE)
4830 			new_fl |= EXT4_IMMUTABLE_FL;
4831 		if (vfs_fl & S_NOATIME)
4832 			new_fl |= EXT4_NOATIME_FL;
4833 		if (vfs_fl & S_DIRSYNC)
4834 			new_fl |= EXT4_DIRSYNC_FL;
4835 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4836 }
4837 
4838 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4839 				  struct ext4_inode_info *ei)
4840 {
4841 	blkcnt_t i_blocks ;
4842 	struct inode *inode = &(ei->vfs_inode);
4843 	struct super_block *sb = inode->i_sb;
4844 
4845 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4846 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4847 		/* we are using combined 48 bit field */
4848 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4849 					le32_to_cpu(raw_inode->i_blocks_lo);
4850 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4851 			/* i_blocks represent file system block size */
4852 			return i_blocks  << (inode->i_blkbits - 9);
4853 		} else {
4854 			return i_blocks;
4855 		}
4856 	} else {
4857 		return le32_to_cpu(raw_inode->i_blocks_lo);
4858 	}
4859 }
4860 
4861 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4862 {
4863 	struct ext4_iloc iloc;
4864 	struct ext4_inode *raw_inode;
4865 	struct ext4_inode_info *ei;
4866 	struct inode *inode;
4867 	journal_t *journal = EXT4_SB(sb)->s_journal;
4868 	long ret;
4869 	int block;
4870 
4871 	inode = iget_locked(sb, ino);
4872 	if (!inode)
4873 		return ERR_PTR(-ENOMEM);
4874 	if (!(inode->i_state & I_NEW))
4875 		return inode;
4876 
4877 	ei = EXT4_I(inode);
4878 	iloc.bh = 0;
4879 
4880 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4881 	if (ret < 0)
4882 		goto bad_inode;
4883 	raw_inode = ext4_raw_inode(&iloc);
4884 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4885 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4886 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4887 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4888 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4889 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4890 	}
4891 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4892 
4893 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4894 	ei->i_dir_start_lookup = 0;
4895 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4896 	/* We now have enough fields to check if the inode was active or not.
4897 	 * This is needed because nfsd might try to access dead inodes
4898 	 * the test is that same one that e2fsck uses
4899 	 * NeilBrown 1999oct15
4900 	 */
4901 	if (inode->i_nlink == 0) {
4902 		if (inode->i_mode == 0 ||
4903 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4904 			/* this inode is deleted */
4905 			ret = -ESTALE;
4906 			goto bad_inode;
4907 		}
4908 		/* The only unlinked inodes we let through here have
4909 		 * valid i_mode and are being read by the orphan
4910 		 * recovery code: that's fine, we're about to complete
4911 		 * the process of deleting those. */
4912 	}
4913 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4914 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4915 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4916 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4917 		ei->i_file_acl |=
4918 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4919 	inode->i_size = ext4_isize(raw_inode);
4920 	ei->i_disksize = inode->i_size;
4921 #ifdef CONFIG_QUOTA
4922 	ei->i_reserved_quota = 0;
4923 #endif
4924 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4925 	ei->i_block_group = iloc.block_group;
4926 	ei->i_last_alloc_group = ~0;
4927 	/*
4928 	 * NOTE! The in-memory inode i_data array is in little-endian order
4929 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4930 	 */
4931 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4932 		ei->i_data[block] = raw_inode->i_block[block];
4933 	INIT_LIST_HEAD(&ei->i_orphan);
4934 
4935 	/*
4936 	 * Set transaction id's of transactions that have to be committed
4937 	 * to finish f[data]sync. We set them to currently running transaction
4938 	 * as we cannot be sure that the inode or some of its metadata isn't
4939 	 * part of the transaction - the inode could have been reclaimed and
4940 	 * now it is reread from disk.
4941 	 */
4942 	if (journal) {
4943 		transaction_t *transaction;
4944 		tid_t tid;
4945 
4946 		read_lock(&journal->j_state_lock);
4947 		if (journal->j_running_transaction)
4948 			transaction = journal->j_running_transaction;
4949 		else
4950 			transaction = journal->j_committing_transaction;
4951 		if (transaction)
4952 			tid = transaction->t_tid;
4953 		else
4954 			tid = journal->j_commit_sequence;
4955 		read_unlock(&journal->j_state_lock);
4956 		ei->i_sync_tid = tid;
4957 		ei->i_datasync_tid = tid;
4958 	}
4959 
4960 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4961 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4962 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4963 		    EXT4_INODE_SIZE(inode->i_sb)) {
4964 			ret = -EIO;
4965 			goto bad_inode;
4966 		}
4967 		if (ei->i_extra_isize == 0) {
4968 			/* The extra space is currently unused. Use it. */
4969 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4970 					    EXT4_GOOD_OLD_INODE_SIZE;
4971 		} else {
4972 			__le32 *magic = (void *)raw_inode +
4973 					EXT4_GOOD_OLD_INODE_SIZE +
4974 					ei->i_extra_isize;
4975 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4976 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4977 		}
4978 	} else
4979 		ei->i_extra_isize = 0;
4980 
4981 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4982 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4983 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4984 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4985 
4986 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4987 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4988 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4989 			inode->i_version |=
4990 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4991 	}
4992 
4993 	ret = 0;
4994 	if (ei->i_file_acl &&
4995 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4996 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4997 				 ei->i_file_acl);
4998 		ret = -EIO;
4999 		goto bad_inode;
5000 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5001 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5002 		    (S_ISLNK(inode->i_mode) &&
5003 		     !ext4_inode_is_fast_symlink(inode)))
5004 			/* Validate extent which is part of inode */
5005 			ret = ext4_ext_check_inode(inode);
5006 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5007 		   (S_ISLNK(inode->i_mode) &&
5008 		    !ext4_inode_is_fast_symlink(inode))) {
5009 		/* Validate block references which are part of inode */
5010 		ret = ext4_check_inode_blockref(inode);
5011 	}
5012 	if (ret)
5013 		goto bad_inode;
5014 
5015 	if (S_ISREG(inode->i_mode)) {
5016 		inode->i_op = &ext4_file_inode_operations;
5017 		inode->i_fop = &ext4_file_operations;
5018 		ext4_set_aops(inode);
5019 	} else if (S_ISDIR(inode->i_mode)) {
5020 		inode->i_op = &ext4_dir_inode_operations;
5021 		inode->i_fop = &ext4_dir_operations;
5022 	} else if (S_ISLNK(inode->i_mode)) {
5023 		if (ext4_inode_is_fast_symlink(inode)) {
5024 			inode->i_op = &ext4_fast_symlink_inode_operations;
5025 			nd_terminate_link(ei->i_data, inode->i_size,
5026 				sizeof(ei->i_data) - 1);
5027 		} else {
5028 			inode->i_op = &ext4_symlink_inode_operations;
5029 			ext4_set_aops(inode);
5030 		}
5031 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5032 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5033 		inode->i_op = &ext4_special_inode_operations;
5034 		if (raw_inode->i_block[0])
5035 			init_special_inode(inode, inode->i_mode,
5036 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5037 		else
5038 			init_special_inode(inode, inode->i_mode,
5039 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5040 	} else {
5041 		ret = -EIO;
5042 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5043 		goto bad_inode;
5044 	}
5045 	brelse(iloc.bh);
5046 	ext4_set_inode_flags(inode);
5047 	unlock_new_inode(inode);
5048 	return inode;
5049 
5050 bad_inode:
5051 	brelse(iloc.bh);
5052 	iget_failed(inode);
5053 	return ERR_PTR(ret);
5054 }
5055 
5056 static int ext4_inode_blocks_set(handle_t *handle,
5057 				struct ext4_inode *raw_inode,
5058 				struct ext4_inode_info *ei)
5059 {
5060 	struct inode *inode = &(ei->vfs_inode);
5061 	u64 i_blocks = inode->i_blocks;
5062 	struct super_block *sb = inode->i_sb;
5063 
5064 	if (i_blocks <= ~0U) {
5065 		/*
5066 		 * i_blocks can be represnted in a 32 bit variable
5067 		 * as multiple of 512 bytes
5068 		 */
5069 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5070 		raw_inode->i_blocks_high = 0;
5071 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5072 		return 0;
5073 	}
5074 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5075 		return -EFBIG;
5076 
5077 	if (i_blocks <= 0xffffffffffffULL) {
5078 		/*
5079 		 * i_blocks can be represented in a 48 bit variable
5080 		 * as multiple of 512 bytes
5081 		 */
5082 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5083 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5084 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5085 	} else {
5086 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5087 		/* i_block is stored in file system block size */
5088 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5089 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5090 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5091 	}
5092 	return 0;
5093 }
5094 
5095 /*
5096  * Post the struct inode info into an on-disk inode location in the
5097  * buffer-cache.  This gobbles the caller's reference to the
5098  * buffer_head in the inode location struct.
5099  *
5100  * The caller must have write access to iloc->bh.
5101  */
5102 static int ext4_do_update_inode(handle_t *handle,
5103 				struct inode *inode,
5104 				struct ext4_iloc *iloc)
5105 {
5106 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5107 	struct ext4_inode_info *ei = EXT4_I(inode);
5108 	struct buffer_head *bh = iloc->bh;
5109 	int err = 0, rc, block;
5110 
5111 	/* For fields not not tracking in the in-memory inode,
5112 	 * initialise them to zero for new inodes. */
5113 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5114 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5115 
5116 	ext4_get_inode_flags(ei);
5117 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5118 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5119 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5120 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5121 /*
5122  * Fix up interoperability with old kernels. Otherwise, old inodes get
5123  * re-used with the upper 16 bits of the uid/gid intact
5124  */
5125 		if (!ei->i_dtime) {
5126 			raw_inode->i_uid_high =
5127 				cpu_to_le16(high_16_bits(inode->i_uid));
5128 			raw_inode->i_gid_high =
5129 				cpu_to_le16(high_16_bits(inode->i_gid));
5130 		} else {
5131 			raw_inode->i_uid_high = 0;
5132 			raw_inode->i_gid_high = 0;
5133 		}
5134 	} else {
5135 		raw_inode->i_uid_low =
5136 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5137 		raw_inode->i_gid_low =
5138 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5139 		raw_inode->i_uid_high = 0;
5140 		raw_inode->i_gid_high = 0;
5141 	}
5142 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5143 
5144 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5145 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5146 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5147 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5148 
5149 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5150 		goto out_brelse;
5151 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5152 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5153 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5154 	    cpu_to_le32(EXT4_OS_HURD))
5155 		raw_inode->i_file_acl_high =
5156 			cpu_to_le16(ei->i_file_acl >> 32);
5157 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5158 	ext4_isize_set(raw_inode, ei->i_disksize);
5159 	if (ei->i_disksize > 0x7fffffffULL) {
5160 		struct super_block *sb = inode->i_sb;
5161 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5162 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5163 				EXT4_SB(sb)->s_es->s_rev_level ==
5164 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5165 			/* If this is the first large file
5166 			 * created, add a flag to the superblock.
5167 			 */
5168 			err = ext4_journal_get_write_access(handle,
5169 					EXT4_SB(sb)->s_sbh);
5170 			if (err)
5171 				goto out_brelse;
5172 			ext4_update_dynamic_rev(sb);
5173 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5174 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5175 			sb->s_dirt = 1;
5176 			ext4_handle_sync(handle);
5177 			err = ext4_handle_dirty_metadata(handle, NULL,
5178 					EXT4_SB(sb)->s_sbh);
5179 		}
5180 	}
5181 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5182 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5183 		if (old_valid_dev(inode->i_rdev)) {
5184 			raw_inode->i_block[0] =
5185 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5186 			raw_inode->i_block[1] = 0;
5187 		} else {
5188 			raw_inode->i_block[0] = 0;
5189 			raw_inode->i_block[1] =
5190 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5191 			raw_inode->i_block[2] = 0;
5192 		}
5193 	} else
5194 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5195 			raw_inode->i_block[block] = ei->i_data[block];
5196 
5197 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5198 	if (ei->i_extra_isize) {
5199 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5200 			raw_inode->i_version_hi =
5201 			cpu_to_le32(inode->i_version >> 32);
5202 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5203 	}
5204 
5205 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5206 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5207 	if (!err)
5208 		err = rc;
5209 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5210 
5211 	ext4_update_inode_fsync_trans(handle, inode, 0);
5212 out_brelse:
5213 	brelse(bh);
5214 	ext4_std_error(inode->i_sb, err);
5215 	return err;
5216 }
5217 
5218 /*
5219  * ext4_write_inode()
5220  *
5221  * We are called from a few places:
5222  *
5223  * - Within generic_file_write() for O_SYNC files.
5224  *   Here, there will be no transaction running. We wait for any running
5225  *   trasnaction to commit.
5226  *
5227  * - Within sys_sync(), kupdate and such.
5228  *   We wait on commit, if tol to.
5229  *
5230  * - Within prune_icache() (PF_MEMALLOC == true)
5231  *   Here we simply return.  We can't afford to block kswapd on the
5232  *   journal commit.
5233  *
5234  * In all cases it is actually safe for us to return without doing anything,
5235  * because the inode has been copied into a raw inode buffer in
5236  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5237  * knfsd.
5238  *
5239  * Note that we are absolutely dependent upon all inode dirtiers doing the
5240  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5241  * which we are interested.
5242  *
5243  * It would be a bug for them to not do this.  The code:
5244  *
5245  *	mark_inode_dirty(inode)
5246  *	stuff();
5247  *	inode->i_size = expr;
5248  *
5249  * is in error because a kswapd-driven write_inode() could occur while
5250  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5251  * will no longer be on the superblock's dirty inode list.
5252  */
5253 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5254 {
5255 	int err;
5256 
5257 	if (current->flags & PF_MEMALLOC)
5258 		return 0;
5259 
5260 	if (EXT4_SB(inode->i_sb)->s_journal) {
5261 		if (ext4_journal_current_handle()) {
5262 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5263 			dump_stack();
5264 			return -EIO;
5265 		}
5266 
5267 		if (wbc->sync_mode != WB_SYNC_ALL)
5268 			return 0;
5269 
5270 		err = ext4_force_commit(inode->i_sb);
5271 	} else {
5272 		struct ext4_iloc iloc;
5273 
5274 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5275 		if (err)
5276 			return err;
5277 		if (wbc->sync_mode == WB_SYNC_ALL)
5278 			sync_dirty_buffer(iloc.bh);
5279 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5280 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5281 					 "IO error syncing inode");
5282 			err = -EIO;
5283 		}
5284 		brelse(iloc.bh);
5285 	}
5286 	return err;
5287 }
5288 
5289 /*
5290  * ext4_setattr()
5291  *
5292  * Called from notify_change.
5293  *
5294  * We want to trap VFS attempts to truncate the file as soon as
5295  * possible.  In particular, we want to make sure that when the VFS
5296  * shrinks i_size, we put the inode on the orphan list and modify
5297  * i_disksize immediately, so that during the subsequent flushing of
5298  * dirty pages and freeing of disk blocks, we can guarantee that any
5299  * commit will leave the blocks being flushed in an unused state on
5300  * disk.  (On recovery, the inode will get truncated and the blocks will
5301  * be freed, so we have a strong guarantee that no future commit will
5302  * leave these blocks visible to the user.)
5303  *
5304  * Another thing we have to assure is that if we are in ordered mode
5305  * and inode is still attached to the committing transaction, we must
5306  * we start writeout of all the dirty pages which are being truncated.
5307  * This way we are sure that all the data written in the previous
5308  * transaction are already on disk (truncate waits for pages under
5309  * writeback).
5310  *
5311  * Called with inode->i_mutex down.
5312  */
5313 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5314 {
5315 	struct inode *inode = dentry->d_inode;
5316 	int error, rc = 0;
5317 	int orphan = 0;
5318 	const unsigned int ia_valid = attr->ia_valid;
5319 
5320 	error = inode_change_ok(inode, attr);
5321 	if (error)
5322 		return error;
5323 
5324 	if (is_quota_modification(inode, attr))
5325 		dquot_initialize(inode);
5326 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5327 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5328 		handle_t *handle;
5329 
5330 		/* (user+group)*(old+new) structure, inode write (sb,
5331 		 * inode block, ? - but truncate inode update has it) */
5332 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5333 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5334 		if (IS_ERR(handle)) {
5335 			error = PTR_ERR(handle);
5336 			goto err_out;
5337 		}
5338 		error = dquot_transfer(inode, attr);
5339 		if (error) {
5340 			ext4_journal_stop(handle);
5341 			return error;
5342 		}
5343 		/* Update corresponding info in inode so that everything is in
5344 		 * one transaction */
5345 		if (attr->ia_valid & ATTR_UID)
5346 			inode->i_uid = attr->ia_uid;
5347 		if (attr->ia_valid & ATTR_GID)
5348 			inode->i_gid = attr->ia_gid;
5349 		error = ext4_mark_inode_dirty(handle, inode);
5350 		ext4_journal_stop(handle);
5351 	}
5352 
5353 	if (attr->ia_valid & ATTR_SIZE) {
5354 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5355 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5356 
5357 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5358 				return -EFBIG;
5359 		}
5360 	}
5361 
5362 	if (S_ISREG(inode->i_mode) &&
5363 	    attr->ia_valid & ATTR_SIZE &&
5364 	    (attr->ia_size < inode->i_size ||
5365 	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5366 		handle_t *handle;
5367 
5368 		handle = ext4_journal_start(inode, 3);
5369 		if (IS_ERR(handle)) {
5370 			error = PTR_ERR(handle);
5371 			goto err_out;
5372 		}
5373 		if (ext4_handle_valid(handle)) {
5374 			error = ext4_orphan_add(handle, inode);
5375 			orphan = 1;
5376 		}
5377 		EXT4_I(inode)->i_disksize = attr->ia_size;
5378 		rc = ext4_mark_inode_dirty(handle, inode);
5379 		if (!error)
5380 			error = rc;
5381 		ext4_journal_stop(handle);
5382 
5383 		if (ext4_should_order_data(inode)) {
5384 			error = ext4_begin_ordered_truncate(inode,
5385 							    attr->ia_size);
5386 			if (error) {
5387 				/* Do as much error cleanup as possible */
5388 				handle = ext4_journal_start(inode, 3);
5389 				if (IS_ERR(handle)) {
5390 					ext4_orphan_del(NULL, inode);
5391 					goto err_out;
5392 				}
5393 				ext4_orphan_del(handle, inode);
5394 				orphan = 0;
5395 				ext4_journal_stop(handle);
5396 				goto err_out;
5397 			}
5398 		}
5399 		/* ext4_truncate will clear the flag */
5400 		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5401 			ext4_truncate(inode);
5402 	}
5403 
5404 	if ((attr->ia_valid & ATTR_SIZE) &&
5405 	    attr->ia_size != i_size_read(inode))
5406 		rc = vmtruncate(inode, attr->ia_size);
5407 
5408 	if (!rc) {
5409 		setattr_copy(inode, attr);
5410 		mark_inode_dirty(inode);
5411 	}
5412 
5413 	/*
5414 	 * If the call to ext4_truncate failed to get a transaction handle at
5415 	 * all, we need to clean up the in-core orphan list manually.
5416 	 */
5417 	if (orphan && inode->i_nlink)
5418 		ext4_orphan_del(NULL, inode);
5419 
5420 	if (!rc && (ia_valid & ATTR_MODE))
5421 		rc = ext4_acl_chmod(inode);
5422 
5423 err_out:
5424 	ext4_std_error(inode->i_sb, error);
5425 	if (!error)
5426 		error = rc;
5427 	return error;
5428 }
5429 
5430 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5431 		 struct kstat *stat)
5432 {
5433 	struct inode *inode;
5434 	unsigned long delalloc_blocks;
5435 
5436 	inode = dentry->d_inode;
5437 	generic_fillattr(inode, stat);
5438 
5439 	/*
5440 	 * We can't update i_blocks if the block allocation is delayed
5441 	 * otherwise in the case of system crash before the real block
5442 	 * allocation is done, we will have i_blocks inconsistent with
5443 	 * on-disk file blocks.
5444 	 * We always keep i_blocks updated together with real
5445 	 * allocation. But to not confuse with user, stat
5446 	 * will return the blocks that include the delayed allocation
5447 	 * blocks for this file.
5448 	 */
5449 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5450 
5451 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5452 	return 0;
5453 }
5454 
5455 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5456 				      int chunk)
5457 {
5458 	int indirects;
5459 
5460 	/* if nrblocks are contiguous */
5461 	if (chunk) {
5462 		/*
5463 		 * With N contiguous data blocks, it need at most
5464 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5465 		 * 2 dindirect blocks
5466 		 * 1 tindirect block
5467 		 */
5468 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5469 		return indirects + 3;
5470 	}
5471 	/*
5472 	 * if nrblocks are not contiguous, worse case, each block touch
5473 	 * a indirect block, and each indirect block touch a double indirect
5474 	 * block, plus a triple indirect block
5475 	 */
5476 	indirects = nrblocks * 2 + 1;
5477 	return indirects;
5478 }
5479 
5480 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5481 {
5482 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5483 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5484 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5485 }
5486 
5487 /*
5488  * Account for index blocks, block groups bitmaps and block group
5489  * descriptor blocks if modify datablocks and index blocks
5490  * worse case, the indexs blocks spread over different block groups
5491  *
5492  * If datablocks are discontiguous, they are possible to spread over
5493  * different block groups too. If they are contiuguous, with flexbg,
5494  * they could still across block group boundary.
5495  *
5496  * Also account for superblock, inode, quota and xattr blocks
5497  */
5498 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5499 {
5500 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5501 	int gdpblocks;
5502 	int idxblocks;
5503 	int ret = 0;
5504 
5505 	/*
5506 	 * How many index blocks need to touch to modify nrblocks?
5507 	 * The "Chunk" flag indicating whether the nrblocks is
5508 	 * physically contiguous on disk
5509 	 *
5510 	 * For Direct IO and fallocate, they calls get_block to allocate
5511 	 * one single extent at a time, so they could set the "Chunk" flag
5512 	 */
5513 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5514 
5515 	ret = idxblocks;
5516 
5517 	/*
5518 	 * Now let's see how many group bitmaps and group descriptors need
5519 	 * to account
5520 	 */
5521 	groups = idxblocks;
5522 	if (chunk)
5523 		groups += 1;
5524 	else
5525 		groups += nrblocks;
5526 
5527 	gdpblocks = groups;
5528 	if (groups > ngroups)
5529 		groups = ngroups;
5530 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5531 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5532 
5533 	/* bitmaps and block group descriptor blocks */
5534 	ret += groups + gdpblocks;
5535 
5536 	/* Blocks for super block, inode, quota and xattr blocks */
5537 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5538 
5539 	return ret;
5540 }
5541 
5542 /*
5543  * Calulate the total number of credits to reserve to fit
5544  * the modification of a single pages into a single transaction,
5545  * which may include multiple chunks of block allocations.
5546  *
5547  * This could be called via ext4_write_begin()
5548  *
5549  * We need to consider the worse case, when
5550  * one new block per extent.
5551  */
5552 int ext4_writepage_trans_blocks(struct inode *inode)
5553 {
5554 	int bpp = ext4_journal_blocks_per_page(inode);
5555 	int ret;
5556 
5557 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5558 
5559 	/* Account for data blocks for journalled mode */
5560 	if (ext4_should_journal_data(inode))
5561 		ret += bpp;
5562 	return ret;
5563 }
5564 
5565 /*
5566  * Calculate the journal credits for a chunk of data modification.
5567  *
5568  * This is called from DIO, fallocate or whoever calling
5569  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5570  *
5571  * journal buffers for data blocks are not included here, as DIO
5572  * and fallocate do no need to journal data buffers.
5573  */
5574 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5575 {
5576 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5577 }
5578 
5579 /*
5580  * The caller must have previously called ext4_reserve_inode_write().
5581  * Give this, we know that the caller already has write access to iloc->bh.
5582  */
5583 int ext4_mark_iloc_dirty(handle_t *handle,
5584 			 struct inode *inode, struct ext4_iloc *iloc)
5585 {
5586 	int err = 0;
5587 
5588 	if (test_opt(inode->i_sb, I_VERSION))
5589 		inode_inc_iversion(inode);
5590 
5591 	/* the do_update_inode consumes one bh->b_count */
5592 	get_bh(iloc->bh);
5593 
5594 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5595 	err = ext4_do_update_inode(handle, inode, iloc);
5596 	put_bh(iloc->bh);
5597 	return err;
5598 }
5599 
5600 /*
5601  * On success, We end up with an outstanding reference count against
5602  * iloc->bh.  This _must_ be cleaned up later.
5603  */
5604 
5605 int
5606 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5607 			 struct ext4_iloc *iloc)
5608 {
5609 	int err;
5610 
5611 	err = ext4_get_inode_loc(inode, iloc);
5612 	if (!err) {
5613 		BUFFER_TRACE(iloc->bh, "get_write_access");
5614 		err = ext4_journal_get_write_access(handle, iloc->bh);
5615 		if (err) {
5616 			brelse(iloc->bh);
5617 			iloc->bh = NULL;
5618 		}
5619 	}
5620 	ext4_std_error(inode->i_sb, err);
5621 	return err;
5622 }
5623 
5624 /*
5625  * Expand an inode by new_extra_isize bytes.
5626  * Returns 0 on success or negative error number on failure.
5627  */
5628 static int ext4_expand_extra_isize(struct inode *inode,
5629 				   unsigned int new_extra_isize,
5630 				   struct ext4_iloc iloc,
5631 				   handle_t *handle)
5632 {
5633 	struct ext4_inode *raw_inode;
5634 	struct ext4_xattr_ibody_header *header;
5635 
5636 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5637 		return 0;
5638 
5639 	raw_inode = ext4_raw_inode(&iloc);
5640 
5641 	header = IHDR(inode, raw_inode);
5642 
5643 	/* No extended attributes present */
5644 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5645 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5646 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5647 			new_extra_isize);
5648 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5649 		return 0;
5650 	}
5651 
5652 	/* try to expand with EAs present */
5653 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5654 					  raw_inode, handle);
5655 }
5656 
5657 /*
5658  * What we do here is to mark the in-core inode as clean with respect to inode
5659  * dirtiness (it may still be data-dirty).
5660  * This means that the in-core inode may be reaped by prune_icache
5661  * without having to perform any I/O.  This is a very good thing,
5662  * because *any* task may call prune_icache - even ones which
5663  * have a transaction open against a different journal.
5664  *
5665  * Is this cheating?  Not really.  Sure, we haven't written the
5666  * inode out, but prune_icache isn't a user-visible syncing function.
5667  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5668  * we start and wait on commits.
5669  *
5670  * Is this efficient/effective?  Well, we're being nice to the system
5671  * by cleaning up our inodes proactively so they can be reaped
5672  * without I/O.  But we are potentially leaving up to five seconds'
5673  * worth of inodes floating about which prune_icache wants us to
5674  * write out.  One way to fix that would be to get prune_icache()
5675  * to do a write_super() to free up some memory.  It has the desired
5676  * effect.
5677  */
5678 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5679 {
5680 	struct ext4_iloc iloc;
5681 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5682 	static unsigned int mnt_count;
5683 	int err, ret;
5684 
5685 	might_sleep();
5686 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5687 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5688 	if (ext4_handle_valid(handle) &&
5689 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5690 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5691 		/*
5692 		 * We need extra buffer credits since we may write into EA block
5693 		 * with this same handle. If journal_extend fails, then it will
5694 		 * only result in a minor loss of functionality for that inode.
5695 		 * If this is felt to be critical, then e2fsck should be run to
5696 		 * force a large enough s_min_extra_isize.
5697 		 */
5698 		if ((jbd2_journal_extend(handle,
5699 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5700 			ret = ext4_expand_extra_isize(inode,
5701 						      sbi->s_want_extra_isize,
5702 						      iloc, handle);
5703 			if (ret) {
5704 				ext4_set_inode_state(inode,
5705 						     EXT4_STATE_NO_EXPAND);
5706 				if (mnt_count !=
5707 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5708 					ext4_warning(inode->i_sb,
5709 					"Unable to expand inode %lu. Delete"
5710 					" some EAs or run e2fsck.",
5711 					inode->i_ino);
5712 					mnt_count =
5713 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5714 				}
5715 			}
5716 		}
5717 	}
5718 	if (!err)
5719 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5720 	return err;
5721 }
5722 
5723 /*
5724  * ext4_dirty_inode() is called from __mark_inode_dirty()
5725  *
5726  * We're really interested in the case where a file is being extended.
5727  * i_size has been changed by generic_commit_write() and we thus need
5728  * to include the updated inode in the current transaction.
5729  *
5730  * Also, dquot_alloc_block() will always dirty the inode when blocks
5731  * are allocated to the file.
5732  *
5733  * If the inode is marked synchronous, we don't honour that here - doing
5734  * so would cause a commit on atime updates, which we don't bother doing.
5735  * We handle synchronous inodes at the highest possible level.
5736  */
5737 void ext4_dirty_inode(struct inode *inode)
5738 {
5739 	handle_t *handle;
5740 
5741 	handle = ext4_journal_start(inode, 2);
5742 	if (IS_ERR(handle))
5743 		goto out;
5744 
5745 	ext4_mark_inode_dirty(handle, inode);
5746 
5747 	ext4_journal_stop(handle);
5748 out:
5749 	return;
5750 }
5751 
5752 #if 0
5753 /*
5754  * Bind an inode's backing buffer_head into this transaction, to prevent
5755  * it from being flushed to disk early.  Unlike
5756  * ext4_reserve_inode_write, this leaves behind no bh reference and
5757  * returns no iloc structure, so the caller needs to repeat the iloc
5758  * lookup to mark the inode dirty later.
5759  */
5760 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5761 {
5762 	struct ext4_iloc iloc;
5763 
5764 	int err = 0;
5765 	if (handle) {
5766 		err = ext4_get_inode_loc(inode, &iloc);
5767 		if (!err) {
5768 			BUFFER_TRACE(iloc.bh, "get_write_access");
5769 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5770 			if (!err)
5771 				err = ext4_handle_dirty_metadata(handle,
5772 								 NULL,
5773 								 iloc.bh);
5774 			brelse(iloc.bh);
5775 		}
5776 	}
5777 	ext4_std_error(inode->i_sb, err);
5778 	return err;
5779 }
5780 #endif
5781 
5782 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5783 {
5784 	journal_t *journal;
5785 	handle_t *handle;
5786 	int err;
5787 
5788 	/*
5789 	 * We have to be very careful here: changing a data block's
5790 	 * journaling status dynamically is dangerous.  If we write a
5791 	 * data block to the journal, change the status and then delete
5792 	 * that block, we risk forgetting to revoke the old log record
5793 	 * from the journal and so a subsequent replay can corrupt data.
5794 	 * So, first we make sure that the journal is empty and that
5795 	 * nobody is changing anything.
5796 	 */
5797 
5798 	journal = EXT4_JOURNAL(inode);
5799 	if (!journal)
5800 		return 0;
5801 	if (is_journal_aborted(journal))
5802 		return -EROFS;
5803 
5804 	jbd2_journal_lock_updates(journal);
5805 	jbd2_journal_flush(journal);
5806 
5807 	/*
5808 	 * OK, there are no updates running now, and all cached data is
5809 	 * synced to disk.  We are now in a completely consistent state
5810 	 * which doesn't have anything in the journal, and we know that
5811 	 * no filesystem updates are running, so it is safe to modify
5812 	 * the inode's in-core data-journaling state flag now.
5813 	 */
5814 
5815 	if (val)
5816 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5817 	else
5818 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5819 	ext4_set_aops(inode);
5820 
5821 	jbd2_journal_unlock_updates(journal);
5822 
5823 	/* Finally we can mark the inode as dirty. */
5824 
5825 	handle = ext4_journal_start(inode, 1);
5826 	if (IS_ERR(handle))
5827 		return PTR_ERR(handle);
5828 
5829 	err = ext4_mark_inode_dirty(handle, inode);
5830 	ext4_handle_sync(handle);
5831 	ext4_journal_stop(handle);
5832 	ext4_std_error(inode->i_sb, err);
5833 
5834 	return err;
5835 }
5836 
5837 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5838 {
5839 	return !buffer_mapped(bh);
5840 }
5841 
5842 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5843 {
5844 	struct page *page = vmf->page;
5845 	loff_t size;
5846 	unsigned long len;
5847 	int ret = -EINVAL;
5848 	void *fsdata;
5849 	struct file *file = vma->vm_file;
5850 	struct inode *inode = file->f_path.dentry->d_inode;
5851 	struct address_space *mapping = inode->i_mapping;
5852 
5853 	/*
5854 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5855 	 * get i_mutex because we are already holding mmap_sem.
5856 	 */
5857 	down_read(&inode->i_alloc_sem);
5858 	size = i_size_read(inode);
5859 	if (page->mapping != mapping || size <= page_offset(page)
5860 	    || !PageUptodate(page)) {
5861 		/* page got truncated from under us? */
5862 		goto out_unlock;
5863 	}
5864 	ret = 0;
5865 	if (PageMappedToDisk(page))
5866 		goto out_unlock;
5867 
5868 	if (page->index == size >> PAGE_CACHE_SHIFT)
5869 		len = size & ~PAGE_CACHE_MASK;
5870 	else
5871 		len = PAGE_CACHE_SIZE;
5872 
5873 	lock_page(page);
5874 	/*
5875 	 * return if we have all the buffers mapped. This avoid
5876 	 * the need to call write_begin/write_end which does a
5877 	 * journal_start/journal_stop which can block and take
5878 	 * long time
5879 	 */
5880 	if (page_has_buffers(page)) {
5881 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5882 					ext4_bh_unmapped)) {
5883 			unlock_page(page);
5884 			goto out_unlock;
5885 		}
5886 	}
5887 	unlock_page(page);
5888 	/*
5889 	 * OK, we need to fill the hole... Do write_begin write_end
5890 	 * to do block allocation/reservation.We are not holding
5891 	 * inode.i__mutex here. That allow * parallel write_begin,
5892 	 * write_end call. lock_page prevent this from happening
5893 	 * on the same page though
5894 	 */
5895 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5896 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5897 	if (ret < 0)
5898 		goto out_unlock;
5899 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5900 			len, len, page, fsdata);
5901 	if (ret < 0)
5902 		goto out_unlock;
5903 	ret = 0;
5904 out_unlock:
5905 	if (ret)
5906 		ret = VM_FAULT_SIGBUS;
5907 	up_read(&inode->i_alloc_sem);
5908 	return ret;
5909 }
5910