1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include <linux/workqueue.h> 41 #include <linux/kernel.h> 42 #include <linux/printk.h> 43 #include <linux/slab.h> 44 #include <linux/ratelimit.h> 45 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 #include "ext4_extents.h" 50 51 #include <trace/events/ext4.h> 52 53 #define MPAGE_DA_EXTENT_TAIL 0x01 54 55 static inline int ext4_begin_ordered_truncate(struct inode *inode, 56 loff_t new_size) 57 { 58 trace_ext4_begin_ordered_truncate(inode, new_size); 59 /* 60 * If jinode is zero, then we never opened the file for 61 * writing, so there's no need to call 62 * jbd2_journal_begin_ordered_truncate() since there's no 63 * outstanding writes we need to flush. 64 */ 65 if (!EXT4_I(inode)->jinode) 66 return 0; 67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 68 EXT4_I(inode)->jinode, 69 new_size); 70 } 71 72 static void ext4_invalidatepage(struct page *page, unsigned long offset); 73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 74 struct buffer_head *bh_result, int create); 75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 77 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 79 80 /* 81 * Test whether an inode is a fast symlink. 82 */ 83 static int ext4_inode_is_fast_symlink(struct inode *inode) 84 { 85 int ea_blocks = EXT4_I(inode)->i_file_acl ? 86 (inode->i_sb->s_blocksize >> 9) : 0; 87 88 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 89 } 90 91 /* 92 * Work out how many blocks we need to proceed with the next chunk of a 93 * truncate transaction. 94 */ 95 static unsigned long blocks_for_truncate(struct inode *inode) 96 { 97 ext4_lblk_t needed; 98 99 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 100 101 /* Give ourselves just enough room to cope with inodes in which 102 * i_blocks is corrupt: we've seen disk corruptions in the past 103 * which resulted in random data in an inode which looked enough 104 * like a regular file for ext4 to try to delete it. Things 105 * will go a bit crazy if that happens, but at least we should 106 * try not to panic the whole kernel. */ 107 if (needed < 2) 108 needed = 2; 109 110 /* But we need to bound the transaction so we don't overflow the 111 * journal. */ 112 if (needed > EXT4_MAX_TRANS_DATA) 113 needed = EXT4_MAX_TRANS_DATA; 114 115 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 116 } 117 118 /* 119 * Truncate transactions can be complex and absolutely huge. So we need to 120 * be able to restart the transaction at a conventient checkpoint to make 121 * sure we don't overflow the journal. 122 * 123 * start_transaction gets us a new handle for a truncate transaction, 124 * and extend_transaction tries to extend the existing one a bit. If 125 * extend fails, we need to propagate the failure up and restart the 126 * transaction in the top-level truncate loop. --sct 127 */ 128 static handle_t *start_transaction(struct inode *inode) 129 { 130 handle_t *result; 131 132 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 133 if (!IS_ERR(result)) 134 return result; 135 136 ext4_std_error(inode->i_sb, PTR_ERR(result)); 137 return result; 138 } 139 140 /* 141 * Try to extend this transaction for the purposes of truncation. 142 * 143 * Returns 0 if we managed to create more room. If we can't create more 144 * room, and the transaction must be restarted we return 1. 145 */ 146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 147 { 148 if (!ext4_handle_valid(handle)) 149 return 0; 150 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 151 return 0; 152 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 153 return 0; 154 return 1; 155 } 156 157 /* 158 * Restart the transaction associated with *handle. This does a commit, 159 * so before we call here everything must be consistently dirtied against 160 * this transaction. 161 */ 162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 163 int nblocks) 164 { 165 int ret; 166 167 /* 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 169 * moment, get_block can be called only for blocks inside i_size since 170 * page cache has been already dropped and writes are blocked by 171 * i_mutex. So we can safely drop the i_data_sem here. 172 */ 173 BUG_ON(EXT4_JOURNAL(inode) == NULL); 174 jbd_debug(2, "restarting handle %p\n", handle); 175 up_write(&EXT4_I(inode)->i_data_sem); 176 ret = ext4_journal_restart(handle, blocks_for_truncate(inode)); 177 down_write(&EXT4_I(inode)->i_data_sem); 178 ext4_discard_preallocations(inode); 179 180 return ret; 181 } 182 183 /* 184 * Called at the last iput() if i_nlink is zero. 185 */ 186 void ext4_evict_inode(struct inode *inode) 187 { 188 handle_t *handle; 189 int err; 190 191 trace_ext4_evict_inode(inode); 192 if (inode->i_nlink) { 193 truncate_inode_pages(&inode->i_data, 0); 194 goto no_delete; 195 } 196 197 if (!is_bad_inode(inode)) 198 dquot_initialize(inode); 199 200 if (ext4_should_order_data(inode)) 201 ext4_begin_ordered_truncate(inode, 0); 202 truncate_inode_pages(&inode->i_data, 0); 203 204 if (is_bad_inode(inode)) 205 goto no_delete; 206 207 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 208 if (IS_ERR(handle)) { 209 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 210 /* 211 * If we're going to skip the normal cleanup, we still need to 212 * make sure that the in-core orphan linked list is properly 213 * cleaned up. 214 */ 215 ext4_orphan_del(NULL, inode); 216 goto no_delete; 217 } 218 219 if (IS_SYNC(inode)) 220 ext4_handle_sync(handle); 221 inode->i_size = 0; 222 err = ext4_mark_inode_dirty(handle, inode); 223 if (err) { 224 ext4_warning(inode->i_sb, 225 "couldn't mark inode dirty (err %d)", err); 226 goto stop_handle; 227 } 228 if (inode->i_blocks) 229 ext4_truncate(inode); 230 231 /* 232 * ext4_ext_truncate() doesn't reserve any slop when it 233 * restarts journal transactions; therefore there may not be 234 * enough credits left in the handle to remove the inode from 235 * the orphan list and set the dtime field. 236 */ 237 if (!ext4_handle_has_enough_credits(handle, 3)) { 238 err = ext4_journal_extend(handle, 3); 239 if (err > 0) 240 err = ext4_journal_restart(handle, 3); 241 if (err != 0) { 242 ext4_warning(inode->i_sb, 243 "couldn't extend journal (err %d)", err); 244 stop_handle: 245 ext4_journal_stop(handle); 246 ext4_orphan_del(NULL, inode); 247 goto no_delete; 248 } 249 } 250 251 /* 252 * Kill off the orphan record which ext4_truncate created. 253 * AKPM: I think this can be inside the above `if'. 254 * Note that ext4_orphan_del() has to be able to cope with the 255 * deletion of a non-existent orphan - this is because we don't 256 * know if ext4_truncate() actually created an orphan record. 257 * (Well, we could do this if we need to, but heck - it works) 258 */ 259 ext4_orphan_del(handle, inode); 260 EXT4_I(inode)->i_dtime = get_seconds(); 261 262 /* 263 * One subtle ordering requirement: if anything has gone wrong 264 * (transaction abort, IO errors, whatever), then we can still 265 * do these next steps (the fs will already have been marked as 266 * having errors), but we can't free the inode if the mark_dirty 267 * fails. 268 */ 269 if (ext4_mark_inode_dirty(handle, inode)) 270 /* If that failed, just do the required in-core inode clear. */ 271 ext4_clear_inode(inode); 272 else 273 ext4_free_inode(handle, inode); 274 ext4_journal_stop(handle); 275 return; 276 no_delete: 277 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 278 } 279 280 typedef struct { 281 __le32 *p; 282 __le32 key; 283 struct buffer_head *bh; 284 } Indirect; 285 286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 287 { 288 p->key = *(p->p = v); 289 p->bh = bh; 290 } 291 292 /** 293 * ext4_block_to_path - parse the block number into array of offsets 294 * @inode: inode in question (we are only interested in its superblock) 295 * @i_block: block number to be parsed 296 * @offsets: array to store the offsets in 297 * @boundary: set this non-zero if the referred-to block is likely to be 298 * followed (on disk) by an indirect block. 299 * 300 * To store the locations of file's data ext4 uses a data structure common 301 * for UNIX filesystems - tree of pointers anchored in the inode, with 302 * data blocks at leaves and indirect blocks in intermediate nodes. 303 * This function translates the block number into path in that tree - 304 * return value is the path length and @offsets[n] is the offset of 305 * pointer to (n+1)th node in the nth one. If @block is out of range 306 * (negative or too large) warning is printed and zero returned. 307 * 308 * Note: function doesn't find node addresses, so no IO is needed. All 309 * we need to know is the capacity of indirect blocks (taken from the 310 * inode->i_sb). 311 */ 312 313 /* 314 * Portability note: the last comparison (check that we fit into triple 315 * indirect block) is spelled differently, because otherwise on an 316 * architecture with 32-bit longs and 8Kb pages we might get into trouble 317 * if our filesystem had 8Kb blocks. We might use long long, but that would 318 * kill us on x86. Oh, well, at least the sign propagation does not matter - 319 * i_block would have to be negative in the very beginning, so we would not 320 * get there at all. 321 */ 322 323 static int ext4_block_to_path(struct inode *inode, 324 ext4_lblk_t i_block, 325 ext4_lblk_t offsets[4], int *boundary) 326 { 327 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 328 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 329 const long direct_blocks = EXT4_NDIR_BLOCKS, 330 indirect_blocks = ptrs, 331 double_blocks = (1 << (ptrs_bits * 2)); 332 int n = 0; 333 int final = 0; 334 335 if (i_block < direct_blocks) { 336 offsets[n++] = i_block; 337 final = direct_blocks; 338 } else if ((i_block -= direct_blocks) < indirect_blocks) { 339 offsets[n++] = EXT4_IND_BLOCK; 340 offsets[n++] = i_block; 341 final = ptrs; 342 } else if ((i_block -= indirect_blocks) < double_blocks) { 343 offsets[n++] = EXT4_DIND_BLOCK; 344 offsets[n++] = i_block >> ptrs_bits; 345 offsets[n++] = i_block & (ptrs - 1); 346 final = ptrs; 347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 348 offsets[n++] = EXT4_TIND_BLOCK; 349 offsets[n++] = i_block >> (ptrs_bits * 2); 350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 351 offsets[n++] = i_block & (ptrs - 1); 352 final = ptrs; 353 } else { 354 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 355 i_block + direct_blocks + 356 indirect_blocks + double_blocks, inode->i_ino); 357 } 358 if (boundary) 359 *boundary = final - 1 - (i_block & (ptrs - 1)); 360 return n; 361 } 362 363 static int __ext4_check_blockref(const char *function, unsigned int line, 364 struct inode *inode, 365 __le32 *p, unsigned int max) 366 { 367 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 368 __le32 *bref = p; 369 unsigned int blk; 370 371 while (bref < p+max) { 372 blk = le32_to_cpu(*bref++); 373 if (blk && 374 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 375 blk, 1))) { 376 es->s_last_error_block = cpu_to_le64(blk); 377 ext4_error_inode(inode, function, line, blk, 378 "invalid block"); 379 return -EIO; 380 } 381 } 382 return 0; 383 } 384 385 386 #define ext4_check_indirect_blockref(inode, bh) \ 387 __ext4_check_blockref(__func__, __LINE__, inode, \ 388 (__le32 *)(bh)->b_data, \ 389 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 390 391 #define ext4_check_inode_blockref(inode) \ 392 __ext4_check_blockref(__func__, __LINE__, inode, \ 393 EXT4_I(inode)->i_data, \ 394 EXT4_NDIR_BLOCKS) 395 396 /** 397 * ext4_get_branch - read the chain of indirect blocks leading to data 398 * @inode: inode in question 399 * @depth: depth of the chain (1 - direct pointer, etc.) 400 * @offsets: offsets of pointers in inode/indirect blocks 401 * @chain: place to store the result 402 * @err: here we store the error value 403 * 404 * Function fills the array of triples <key, p, bh> and returns %NULL 405 * if everything went OK or the pointer to the last filled triple 406 * (incomplete one) otherwise. Upon the return chain[i].key contains 407 * the number of (i+1)-th block in the chain (as it is stored in memory, 408 * i.e. little-endian 32-bit), chain[i].p contains the address of that 409 * number (it points into struct inode for i==0 and into the bh->b_data 410 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 411 * block for i>0 and NULL for i==0. In other words, it holds the block 412 * numbers of the chain, addresses they were taken from (and where we can 413 * verify that chain did not change) and buffer_heads hosting these 414 * numbers. 415 * 416 * Function stops when it stumbles upon zero pointer (absent block) 417 * (pointer to last triple returned, *@err == 0) 418 * or when it gets an IO error reading an indirect block 419 * (ditto, *@err == -EIO) 420 * or when it reads all @depth-1 indirect blocks successfully and finds 421 * the whole chain, all way to the data (returns %NULL, *err == 0). 422 * 423 * Need to be called with 424 * down_read(&EXT4_I(inode)->i_data_sem) 425 */ 426 static Indirect *ext4_get_branch(struct inode *inode, int depth, 427 ext4_lblk_t *offsets, 428 Indirect chain[4], int *err) 429 { 430 struct super_block *sb = inode->i_sb; 431 Indirect *p = chain; 432 struct buffer_head *bh; 433 434 *err = 0; 435 /* i_data is not going away, no lock needed */ 436 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 437 if (!p->key) 438 goto no_block; 439 while (--depth) { 440 bh = sb_getblk(sb, le32_to_cpu(p->key)); 441 if (unlikely(!bh)) 442 goto failure; 443 444 if (!bh_uptodate_or_lock(bh)) { 445 if (bh_submit_read(bh) < 0) { 446 put_bh(bh); 447 goto failure; 448 } 449 /* validate block references */ 450 if (ext4_check_indirect_blockref(inode, bh)) { 451 put_bh(bh); 452 goto failure; 453 } 454 } 455 456 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 457 /* Reader: end */ 458 if (!p->key) 459 goto no_block; 460 } 461 return NULL; 462 463 failure: 464 *err = -EIO; 465 no_block: 466 return p; 467 } 468 469 /** 470 * ext4_find_near - find a place for allocation with sufficient locality 471 * @inode: owner 472 * @ind: descriptor of indirect block. 473 * 474 * This function returns the preferred place for block allocation. 475 * It is used when heuristic for sequential allocation fails. 476 * Rules are: 477 * + if there is a block to the left of our position - allocate near it. 478 * + if pointer will live in indirect block - allocate near that block. 479 * + if pointer will live in inode - allocate in the same 480 * cylinder group. 481 * 482 * In the latter case we colour the starting block by the callers PID to 483 * prevent it from clashing with concurrent allocations for a different inode 484 * in the same block group. The PID is used here so that functionally related 485 * files will be close-by on-disk. 486 * 487 * Caller must make sure that @ind is valid and will stay that way. 488 */ 489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 490 { 491 struct ext4_inode_info *ei = EXT4_I(inode); 492 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 493 __le32 *p; 494 ext4_fsblk_t bg_start; 495 ext4_fsblk_t last_block; 496 ext4_grpblk_t colour; 497 ext4_group_t block_group; 498 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 499 500 /* Try to find previous block */ 501 for (p = ind->p - 1; p >= start; p--) { 502 if (*p) 503 return le32_to_cpu(*p); 504 } 505 506 /* No such thing, so let's try location of indirect block */ 507 if (ind->bh) 508 return ind->bh->b_blocknr; 509 510 /* 511 * It is going to be referred to from the inode itself? OK, just put it 512 * into the same cylinder group then. 513 */ 514 block_group = ei->i_block_group; 515 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 516 block_group &= ~(flex_size-1); 517 if (S_ISREG(inode->i_mode)) 518 block_group++; 519 } 520 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 521 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 522 523 /* 524 * If we are doing delayed allocation, we don't need take 525 * colour into account. 526 */ 527 if (test_opt(inode->i_sb, DELALLOC)) 528 return bg_start; 529 530 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 531 colour = (current->pid % 16) * 532 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 533 else 534 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 535 return bg_start + colour; 536 } 537 538 /** 539 * ext4_find_goal - find a preferred place for allocation. 540 * @inode: owner 541 * @block: block we want 542 * @partial: pointer to the last triple within a chain 543 * 544 * Normally this function find the preferred place for block allocation, 545 * returns it. 546 * Because this is only used for non-extent files, we limit the block nr 547 * to 32 bits. 548 */ 549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 550 Indirect *partial) 551 { 552 ext4_fsblk_t goal; 553 554 /* 555 * XXX need to get goal block from mballoc's data structures 556 */ 557 558 goal = ext4_find_near(inode, partial); 559 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 560 return goal; 561 } 562 563 /** 564 * ext4_blks_to_allocate - Look up the block map and count the number 565 * of direct blocks need to be allocated for the given branch. 566 * 567 * @branch: chain of indirect blocks 568 * @k: number of blocks need for indirect blocks 569 * @blks: number of data blocks to be mapped. 570 * @blocks_to_boundary: the offset in the indirect block 571 * 572 * return the total number of blocks to be allocate, including the 573 * direct and indirect blocks. 574 */ 575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 576 int blocks_to_boundary) 577 { 578 unsigned int count = 0; 579 580 /* 581 * Simple case, [t,d]Indirect block(s) has not allocated yet 582 * then it's clear blocks on that path have not allocated 583 */ 584 if (k > 0) { 585 /* right now we don't handle cross boundary allocation */ 586 if (blks < blocks_to_boundary + 1) 587 count += blks; 588 else 589 count += blocks_to_boundary + 1; 590 return count; 591 } 592 593 count++; 594 while (count < blks && count <= blocks_to_boundary && 595 le32_to_cpu(*(branch[0].p + count)) == 0) { 596 count++; 597 } 598 return count; 599 } 600 601 /** 602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 603 * @handle: handle for this transaction 604 * @inode: inode which needs allocated blocks 605 * @iblock: the logical block to start allocated at 606 * @goal: preferred physical block of allocation 607 * @indirect_blks: the number of blocks need to allocate for indirect 608 * blocks 609 * @blks: number of desired blocks 610 * @new_blocks: on return it will store the new block numbers for 611 * the indirect blocks(if needed) and the first direct block, 612 * @err: on return it will store the error code 613 * 614 * This function will return the number of blocks allocated as 615 * requested by the passed-in parameters. 616 */ 617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 618 ext4_lblk_t iblock, ext4_fsblk_t goal, 619 int indirect_blks, int blks, 620 ext4_fsblk_t new_blocks[4], int *err) 621 { 622 struct ext4_allocation_request ar; 623 int target, i; 624 unsigned long count = 0, blk_allocated = 0; 625 int index = 0; 626 ext4_fsblk_t current_block = 0; 627 int ret = 0; 628 629 /* 630 * Here we try to allocate the requested multiple blocks at once, 631 * on a best-effort basis. 632 * To build a branch, we should allocate blocks for 633 * the indirect blocks(if not allocated yet), and at least 634 * the first direct block of this branch. That's the 635 * minimum number of blocks need to allocate(required) 636 */ 637 /* first we try to allocate the indirect blocks */ 638 target = indirect_blks; 639 while (target > 0) { 640 count = target; 641 /* allocating blocks for indirect blocks and direct blocks */ 642 current_block = ext4_new_meta_blocks(handle, inode, 643 goal, &count, err); 644 if (*err) 645 goto failed_out; 646 647 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 648 EXT4_ERROR_INODE(inode, 649 "current_block %llu + count %lu > %d!", 650 current_block, count, 651 EXT4_MAX_BLOCK_FILE_PHYS); 652 *err = -EIO; 653 goto failed_out; 654 } 655 656 target -= count; 657 /* allocate blocks for indirect blocks */ 658 while (index < indirect_blks && count) { 659 new_blocks[index++] = current_block++; 660 count--; 661 } 662 if (count > 0) { 663 /* 664 * save the new block number 665 * for the first direct block 666 */ 667 new_blocks[index] = current_block; 668 printk(KERN_INFO "%s returned more blocks than " 669 "requested\n", __func__); 670 WARN_ON(1); 671 break; 672 } 673 } 674 675 target = blks - count ; 676 blk_allocated = count; 677 if (!target) 678 goto allocated; 679 /* Now allocate data blocks */ 680 memset(&ar, 0, sizeof(ar)); 681 ar.inode = inode; 682 ar.goal = goal; 683 ar.len = target; 684 ar.logical = iblock; 685 if (S_ISREG(inode->i_mode)) 686 /* enable in-core preallocation only for regular files */ 687 ar.flags = EXT4_MB_HINT_DATA; 688 689 current_block = ext4_mb_new_blocks(handle, &ar, err); 690 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 691 EXT4_ERROR_INODE(inode, 692 "current_block %llu + ar.len %d > %d!", 693 current_block, ar.len, 694 EXT4_MAX_BLOCK_FILE_PHYS); 695 *err = -EIO; 696 goto failed_out; 697 } 698 699 if (*err && (target == blks)) { 700 /* 701 * if the allocation failed and we didn't allocate 702 * any blocks before 703 */ 704 goto failed_out; 705 } 706 if (!*err) { 707 if (target == blks) { 708 /* 709 * save the new block number 710 * for the first direct block 711 */ 712 new_blocks[index] = current_block; 713 } 714 blk_allocated += ar.len; 715 } 716 allocated: 717 /* total number of blocks allocated for direct blocks */ 718 ret = blk_allocated; 719 *err = 0; 720 return ret; 721 failed_out: 722 for (i = 0; i < index; i++) 723 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 724 return ret; 725 } 726 727 /** 728 * ext4_alloc_branch - allocate and set up a chain of blocks. 729 * @handle: handle for this transaction 730 * @inode: owner 731 * @indirect_blks: number of allocated indirect blocks 732 * @blks: number of allocated direct blocks 733 * @goal: preferred place for allocation 734 * @offsets: offsets (in the blocks) to store the pointers to next. 735 * @branch: place to store the chain in. 736 * 737 * This function allocates blocks, zeroes out all but the last one, 738 * links them into chain and (if we are synchronous) writes them to disk. 739 * In other words, it prepares a branch that can be spliced onto the 740 * inode. It stores the information about that chain in the branch[], in 741 * the same format as ext4_get_branch() would do. We are calling it after 742 * we had read the existing part of chain and partial points to the last 743 * triple of that (one with zero ->key). Upon the exit we have the same 744 * picture as after the successful ext4_get_block(), except that in one 745 * place chain is disconnected - *branch->p is still zero (we did not 746 * set the last link), but branch->key contains the number that should 747 * be placed into *branch->p to fill that gap. 748 * 749 * If allocation fails we free all blocks we've allocated (and forget 750 * their buffer_heads) and return the error value the from failed 751 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 752 * as described above and return 0. 753 */ 754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 755 ext4_lblk_t iblock, int indirect_blks, 756 int *blks, ext4_fsblk_t goal, 757 ext4_lblk_t *offsets, Indirect *branch) 758 { 759 int blocksize = inode->i_sb->s_blocksize; 760 int i, n = 0; 761 int err = 0; 762 struct buffer_head *bh; 763 int num; 764 ext4_fsblk_t new_blocks[4]; 765 ext4_fsblk_t current_block; 766 767 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 768 *blks, new_blocks, &err); 769 if (err) 770 return err; 771 772 branch[0].key = cpu_to_le32(new_blocks[0]); 773 /* 774 * metadata blocks and data blocks are allocated. 775 */ 776 for (n = 1; n <= indirect_blks; n++) { 777 /* 778 * Get buffer_head for parent block, zero it out 779 * and set the pointer to new one, then send 780 * parent to disk. 781 */ 782 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 783 if (unlikely(!bh)) { 784 err = -EIO; 785 goto failed; 786 } 787 788 branch[n].bh = bh; 789 lock_buffer(bh); 790 BUFFER_TRACE(bh, "call get_create_access"); 791 err = ext4_journal_get_create_access(handle, bh); 792 if (err) { 793 /* Don't brelse(bh) here; it's done in 794 * ext4_journal_forget() below */ 795 unlock_buffer(bh); 796 goto failed; 797 } 798 799 memset(bh->b_data, 0, blocksize); 800 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 801 branch[n].key = cpu_to_le32(new_blocks[n]); 802 *branch[n].p = branch[n].key; 803 if (n == indirect_blks) { 804 current_block = new_blocks[n]; 805 /* 806 * End of chain, update the last new metablock of 807 * the chain to point to the new allocated 808 * data blocks numbers 809 */ 810 for (i = 1; i < num; i++) 811 *(branch[n].p + i) = cpu_to_le32(++current_block); 812 } 813 BUFFER_TRACE(bh, "marking uptodate"); 814 set_buffer_uptodate(bh); 815 unlock_buffer(bh); 816 817 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 818 err = ext4_handle_dirty_metadata(handle, inode, bh); 819 if (err) 820 goto failed; 821 } 822 *blks = num; 823 return err; 824 failed: 825 /* Allocation failed, free what we already allocated */ 826 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0); 827 for (i = 1; i <= n ; i++) { 828 /* 829 * branch[i].bh is newly allocated, so there is no 830 * need to revoke the block, which is why we don't 831 * need to set EXT4_FREE_BLOCKS_METADATA. 832 */ 833 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 834 EXT4_FREE_BLOCKS_FORGET); 835 } 836 for (i = n+1; i < indirect_blks; i++) 837 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0); 838 839 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0); 840 841 return err; 842 } 843 844 /** 845 * ext4_splice_branch - splice the allocated branch onto inode. 846 * @handle: handle for this transaction 847 * @inode: owner 848 * @block: (logical) number of block we are adding 849 * @chain: chain of indirect blocks (with a missing link - see 850 * ext4_alloc_branch) 851 * @where: location of missing link 852 * @num: number of indirect blocks we are adding 853 * @blks: number of direct blocks we are adding 854 * 855 * This function fills the missing link and does all housekeeping needed in 856 * inode (->i_blocks, etc.). In case of success we end up with the full 857 * chain to new block and return 0. 858 */ 859 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 860 ext4_lblk_t block, Indirect *where, int num, 861 int blks) 862 { 863 int i; 864 int err = 0; 865 ext4_fsblk_t current_block; 866 867 /* 868 * If we're splicing into a [td]indirect block (as opposed to the 869 * inode) then we need to get write access to the [td]indirect block 870 * before the splice. 871 */ 872 if (where->bh) { 873 BUFFER_TRACE(where->bh, "get_write_access"); 874 err = ext4_journal_get_write_access(handle, where->bh); 875 if (err) 876 goto err_out; 877 } 878 /* That's it */ 879 880 *where->p = where->key; 881 882 /* 883 * Update the host buffer_head or inode to point to more just allocated 884 * direct blocks blocks 885 */ 886 if (num == 0 && blks > 1) { 887 current_block = le32_to_cpu(where->key) + 1; 888 for (i = 1; i < blks; i++) 889 *(where->p + i) = cpu_to_le32(current_block++); 890 } 891 892 /* We are done with atomic stuff, now do the rest of housekeeping */ 893 /* had we spliced it onto indirect block? */ 894 if (where->bh) { 895 /* 896 * If we spliced it onto an indirect block, we haven't 897 * altered the inode. Note however that if it is being spliced 898 * onto an indirect block at the very end of the file (the 899 * file is growing) then we *will* alter the inode to reflect 900 * the new i_size. But that is not done here - it is done in 901 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 902 */ 903 jbd_debug(5, "splicing indirect only\n"); 904 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 905 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 906 if (err) 907 goto err_out; 908 } else { 909 /* 910 * OK, we spliced it into the inode itself on a direct block. 911 */ 912 ext4_mark_inode_dirty(handle, inode); 913 jbd_debug(5, "splicing direct\n"); 914 } 915 return err; 916 917 err_out: 918 for (i = 1; i <= num; i++) { 919 /* 920 * branch[i].bh is newly allocated, so there is no 921 * need to revoke the block, which is why we don't 922 * need to set EXT4_FREE_BLOCKS_METADATA. 923 */ 924 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 925 EXT4_FREE_BLOCKS_FORGET); 926 } 927 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key), 928 blks, 0); 929 930 return err; 931 } 932 933 /* 934 * The ext4_ind_map_blocks() function handles non-extents inodes 935 * (i.e., using the traditional indirect/double-indirect i_blocks 936 * scheme) for ext4_map_blocks(). 937 * 938 * Allocation strategy is simple: if we have to allocate something, we will 939 * have to go the whole way to leaf. So let's do it before attaching anything 940 * to tree, set linkage between the newborn blocks, write them if sync is 941 * required, recheck the path, free and repeat if check fails, otherwise 942 * set the last missing link (that will protect us from any truncate-generated 943 * removals - all blocks on the path are immune now) and possibly force the 944 * write on the parent block. 945 * That has a nice additional property: no special recovery from the failed 946 * allocations is needed - we simply release blocks and do not touch anything 947 * reachable from inode. 948 * 949 * `handle' can be NULL if create == 0. 950 * 951 * return > 0, # of blocks mapped or allocated. 952 * return = 0, if plain lookup failed. 953 * return < 0, error case. 954 * 955 * The ext4_ind_get_blocks() function should be called with 956 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 957 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 958 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 959 * blocks. 960 */ 961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 962 struct ext4_map_blocks *map, 963 int flags) 964 { 965 int err = -EIO; 966 ext4_lblk_t offsets[4]; 967 Indirect chain[4]; 968 Indirect *partial; 969 ext4_fsblk_t goal; 970 int indirect_blks; 971 int blocks_to_boundary = 0; 972 int depth; 973 int count = 0; 974 ext4_fsblk_t first_block = 0; 975 976 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 977 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 978 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 979 &blocks_to_boundary); 980 981 if (depth == 0) 982 goto out; 983 984 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 985 986 /* Simplest case - block found, no allocation needed */ 987 if (!partial) { 988 first_block = le32_to_cpu(chain[depth - 1].key); 989 count++; 990 /*map more blocks*/ 991 while (count < map->m_len && count <= blocks_to_boundary) { 992 ext4_fsblk_t blk; 993 994 blk = le32_to_cpu(*(chain[depth-1].p + count)); 995 996 if (blk == first_block + count) 997 count++; 998 else 999 break; 1000 } 1001 goto got_it; 1002 } 1003 1004 /* Next simple case - plain lookup or failed read of indirect block */ 1005 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 1006 goto cleanup; 1007 1008 /* 1009 * Okay, we need to do block allocation. 1010 */ 1011 goal = ext4_find_goal(inode, map->m_lblk, partial); 1012 1013 /* the number of blocks need to allocate for [d,t]indirect blocks */ 1014 indirect_blks = (chain + depth) - partial - 1; 1015 1016 /* 1017 * Next look up the indirect map to count the totoal number of 1018 * direct blocks to allocate for this branch. 1019 */ 1020 count = ext4_blks_to_allocate(partial, indirect_blks, 1021 map->m_len, blocks_to_boundary); 1022 /* 1023 * Block out ext4_truncate while we alter the tree 1024 */ 1025 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 1026 &count, goal, 1027 offsets + (partial - chain), partial); 1028 1029 /* 1030 * The ext4_splice_branch call will free and forget any buffers 1031 * on the new chain if there is a failure, but that risks using 1032 * up transaction credits, especially for bitmaps where the 1033 * credits cannot be returned. Can we handle this somehow? We 1034 * may need to return -EAGAIN upwards in the worst case. --sct 1035 */ 1036 if (!err) 1037 err = ext4_splice_branch(handle, inode, map->m_lblk, 1038 partial, indirect_blks, count); 1039 if (err) 1040 goto cleanup; 1041 1042 map->m_flags |= EXT4_MAP_NEW; 1043 1044 ext4_update_inode_fsync_trans(handle, inode, 1); 1045 got_it: 1046 map->m_flags |= EXT4_MAP_MAPPED; 1047 map->m_pblk = le32_to_cpu(chain[depth-1].key); 1048 map->m_len = count; 1049 if (count > blocks_to_boundary) 1050 map->m_flags |= EXT4_MAP_BOUNDARY; 1051 err = count; 1052 /* Clean up and exit */ 1053 partial = chain + depth - 1; /* the whole chain */ 1054 cleanup: 1055 while (partial > chain) { 1056 BUFFER_TRACE(partial->bh, "call brelse"); 1057 brelse(partial->bh); 1058 partial--; 1059 } 1060 out: 1061 return err; 1062 } 1063 1064 #ifdef CONFIG_QUOTA 1065 qsize_t *ext4_get_reserved_space(struct inode *inode) 1066 { 1067 return &EXT4_I(inode)->i_reserved_quota; 1068 } 1069 #endif 1070 1071 /* 1072 * Calculate the number of metadata blocks need to reserve 1073 * to allocate a new block at @lblocks for non extent file based file 1074 */ 1075 static int ext4_indirect_calc_metadata_amount(struct inode *inode, 1076 sector_t lblock) 1077 { 1078 struct ext4_inode_info *ei = EXT4_I(inode); 1079 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 1080 int blk_bits; 1081 1082 if (lblock < EXT4_NDIR_BLOCKS) 1083 return 0; 1084 1085 lblock -= EXT4_NDIR_BLOCKS; 1086 1087 if (ei->i_da_metadata_calc_len && 1088 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 1089 ei->i_da_metadata_calc_len++; 1090 return 0; 1091 } 1092 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 1093 ei->i_da_metadata_calc_len = 1; 1094 blk_bits = order_base_2(lblock); 1095 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 1096 } 1097 1098 /* 1099 * Calculate the number of metadata blocks need to reserve 1100 * to allocate a block located at @lblock 1101 */ 1102 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 1103 { 1104 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1105 return ext4_ext_calc_metadata_amount(inode, lblock); 1106 1107 return ext4_indirect_calc_metadata_amount(inode, lblock); 1108 } 1109 1110 /* 1111 * Called with i_data_sem down, which is important since we can call 1112 * ext4_discard_preallocations() from here. 1113 */ 1114 void ext4_da_update_reserve_space(struct inode *inode, 1115 int used, int quota_claim) 1116 { 1117 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1118 struct ext4_inode_info *ei = EXT4_I(inode); 1119 1120 spin_lock(&ei->i_block_reservation_lock); 1121 trace_ext4_da_update_reserve_space(inode, used); 1122 if (unlikely(used > ei->i_reserved_data_blocks)) { 1123 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 1124 "with only %d reserved data blocks\n", 1125 __func__, inode->i_ino, used, 1126 ei->i_reserved_data_blocks); 1127 WARN_ON(1); 1128 used = ei->i_reserved_data_blocks; 1129 } 1130 1131 /* Update per-inode reservations */ 1132 ei->i_reserved_data_blocks -= used; 1133 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 1134 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1135 used + ei->i_allocated_meta_blocks); 1136 ei->i_allocated_meta_blocks = 0; 1137 1138 if (ei->i_reserved_data_blocks == 0) { 1139 /* 1140 * We can release all of the reserved metadata blocks 1141 * only when we have written all of the delayed 1142 * allocation blocks. 1143 */ 1144 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1145 ei->i_reserved_meta_blocks); 1146 ei->i_reserved_meta_blocks = 0; 1147 ei->i_da_metadata_calc_len = 0; 1148 } 1149 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1150 1151 /* Update quota subsystem for data blocks */ 1152 if (quota_claim) 1153 dquot_claim_block(inode, used); 1154 else { 1155 /* 1156 * We did fallocate with an offset that is already delayed 1157 * allocated. So on delayed allocated writeback we should 1158 * not re-claim the quota for fallocated blocks. 1159 */ 1160 dquot_release_reservation_block(inode, used); 1161 } 1162 1163 /* 1164 * If we have done all the pending block allocations and if 1165 * there aren't any writers on the inode, we can discard the 1166 * inode's preallocations. 1167 */ 1168 if ((ei->i_reserved_data_blocks == 0) && 1169 (atomic_read(&inode->i_writecount) == 0)) 1170 ext4_discard_preallocations(inode); 1171 } 1172 1173 static int __check_block_validity(struct inode *inode, const char *func, 1174 unsigned int line, 1175 struct ext4_map_blocks *map) 1176 { 1177 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 1178 map->m_len)) { 1179 ext4_error_inode(inode, func, line, map->m_pblk, 1180 "lblock %lu mapped to illegal pblock " 1181 "(length %d)", (unsigned long) map->m_lblk, 1182 map->m_len); 1183 return -EIO; 1184 } 1185 return 0; 1186 } 1187 1188 #define check_block_validity(inode, map) \ 1189 __check_block_validity((inode), __func__, __LINE__, (map)) 1190 1191 /* 1192 * Return the number of contiguous dirty pages in a given inode 1193 * starting at page frame idx. 1194 */ 1195 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1196 unsigned int max_pages) 1197 { 1198 struct address_space *mapping = inode->i_mapping; 1199 pgoff_t index; 1200 struct pagevec pvec; 1201 pgoff_t num = 0; 1202 int i, nr_pages, done = 0; 1203 1204 if (max_pages == 0) 1205 return 0; 1206 pagevec_init(&pvec, 0); 1207 while (!done) { 1208 index = idx; 1209 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1210 PAGECACHE_TAG_DIRTY, 1211 (pgoff_t)PAGEVEC_SIZE); 1212 if (nr_pages == 0) 1213 break; 1214 for (i = 0; i < nr_pages; i++) { 1215 struct page *page = pvec.pages[i]; 1216 struct buffer_head *bh, *head; 1217 1218 lock_page(page); 1219 if (unlikely(page->mapping != mapping) || 1220 !PageDirty(page) || 1221 PageWriteback(page) || 1222 page->index != idx) { 1223 done = 1; 1224 unlock_page(page); 1225 break; 1226 } 1227 if (page_has_buffers(page)) { 1228 bh = head = page_buffers(page); 1229 do { 1230 if (!buffer_delay(bh) && 1231 !buffer_unwritten(bh)) 1232 done = 1; 1233 bh = bh->b_this_page; 1234 } while (!done && (bh != head)); 1235 } 1236 unlock_page(page); 1237 if (done) 1238 break; 1239 idx++; 1240 num++; 1241 if (num >= max_pages) { 1242 done = 1; 1243 break; 1244 } 1245 } 1246 pagevec_release(&pvec); 1247 } 1248 return num; 1249 } 1250 1251 /* 1252 * The ext4_map_blocks() function tries to look up the requested blocks, 1253 * and returns if the blocks are already mapped. 1254 * 1255 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1256 * and store the allocated blocks in the result buffer head and mark it 1257 * mapped. 1258 * 1259 * If file type is extents based, it will call ext4_ext_map_blocks(), 1260 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 1261 * based files 1262 * 1263 * On success, it returns the number of blocks being mapped or allocate. 1264 * if create==0 and the blocks are pre-allocated and uninitialized block, 1265 * the result buffer head is unmapped. If the create ==1, it will make sure 1266 * the buffer head is mapped. 1267 * 1268 * It returns 0 if plain look up failed (blocks have not been allocated), in 1269 * that casem, buffer head is unmapped 1270 * 1271 * It returns the error in case of allocation failure. 1272 */ 1273 int ext4_map_blocks(handle_t *handle, struct inode *inode, 1274 struct ext4_map_blocks *map, int flags) 1275 { 1276 int retval; 1277 1278 map->m_flags = 0; 1279 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 1280 "logical block %lu\n", inode->i_ino, flags, map->m_len, 1281 (unsigned long) map->m_lblk); 1282 /* 1283 * Try to see if we can get the block without requesting a new 1284 * file system block. 1285 */ 1286 down_read((&EXT4_I(inode)->i_data_sem)); 1287 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1288 retval = ext4_ext_map_blocks(handle, inode, map, 0); 1289 } else { 1290 retval = ext4_ind_map_blocks(handle, inode, map, 0); 1291 } 1292 up_read((&EXT4_I(inode)->i_data_sem)); 1293 1294 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1295 int ret = check_block_validity(inode, map); 1296 if (ret != 0) 1297 return ret; 1298 } 1299 1300 /* If it is only a block(s) look up */ 1301 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1302 return retval; 1303 1304 /* 1305 * Returns if the blocks have already allocated 1306 * 1307 * Note that if blocks have been preallocated 1308 * ext4_ext_get_block() returns th create = 0 1309 * with buffer head unmapped. 1310 */ 1311 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 1312 return retval; 1313 1314 /* 1315 * When we call get_blocks without the create flag, the 1316 * BH_Unwritten flag could have gotten set if the blocks 1317 * requested were part of a uninitialized extent. We need to 1318 * clear this flag now that we are committed to convert all or 1319 * part of the uninitialized extent to be an initialized 1320 * extent. This is because we need to avoid the combination 1321 * of BH_Unwritten and BH_Mapped flags being simultaneously 1322 * set on the buffer_head. 1323 */ 1324 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 1325 1326 /* 1327 * New blocks allocate and/or writing to uninitialized extent 1328 * will possibly result in updating i_data, so we take 1329 * the write lock of i_data_sem, and call get_blocks() 1330 * with create == 1 flag. 1331 */ 1332 down_write((&EXT4_I(inode)->i_data_sem)); 1333 1334 /* 1335 * if the caller is from delayed allocation writeout path 1336 * we have already reserved fs blocks for allocation 1337 * let the underlying get_block() function know to 1338 * avoid double accounting 1339 */ 1340 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1341 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 1342 /* 1343 * We need to check for EXT4 here because migrate 1344 * could have changed the inode type in between 1345 */ 1346 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1347 retval = ext4_ext_map_blocks(handle, inode, map, flags); 1348 } else { 1349 retval = ext4_ind_map_blocks(handle, inode, map, flags); 1350 1351 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 1352 /* 1353 * We allocated new blocks which will result in 1354 * i_data's format changing. Force the migrate 1355 * to fail by clearing migrate flags 1356 */ 1357 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 1358 } 1359 1360 /* 1361 * Update reserved blocks/metadata blocks after successful 1362 * block allocation which had been deferred till now. We don't 1363 * support fallocate for non extent files. So we can update 1364 * reserve space here. 1365 */ 1366 if ((retval > 0) && 1367 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 1368 ext4_da_update_reserve_space(inode, retval, 1); 1369 } 1370 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1371 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 1372 1373 up_write((&EXT4_I(inode)->i_data_sem)); 1374 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1375 int ret = check_block_validity(inode, map); 1376 if (ret != 0) 1377 return ret; 1378 } 1379 return retval; 1380 } 1381 1382 /* Maximum number of blocks we map for direct IO at once. */ 1383 #define DIO_MAX_BLOCKS 4096 1384 1385 static int _ext4_get_block(struct inode *inode, sector_t iblock, 1386 struct buffer_head *bh, int flags) 1387 { 1388 handle_t *handle = ext4_journal_current_handle(); 1389 struct ext4_map_blocks map; 1390 int ret = 0, started = 0; 1391 int dio_credits; 1392 1393 map.m_lblk = iblock; 1394 map.m_len = bh->b_size >> inode->i_blkbits; 1395 1396 if (flags && !handle) { 1397 /* Direct IO write... */ 1398 if (map.m_len > DIO_MAX_BLOCKS) 1399 map.m_len = DIO_MAX_BLOCKS; 1400 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 1401 handle = ext4_journal_start(inode, dio_credits); 1402 if (IS_ERR(handle)) { 1403 ret = PTR_ERR(handle); 1404 return ret; 1405 } 1406 started = 1; 1407 } 1408 1409 ret = ext4_map_blocks(handle, inode, &map, flags); 1410 if (ret > 0) { 1411 map_bh(bh, inode->i_sb, map.m_pblk); 1412 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1413 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 1414 ret = 0; 1415 } 1416 if (started) 1417 ext4_journal_stop(handle); 1418 return ret; 1419 } 1420 1421 int ext4_get_block(struct inode *inode, sector_t iblock, 1422 struct buffer_head *bh, int create) 1423 { 1424 return _ext4_get_block(inode, iblock, bh, 1425 create ? EXT4_GET_BLOCKS_CREATE : 0); 1426 } 1427 1428 /* 1429 * `handle' can be NULL if create is zero 1430 */ 1431 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1432 ext4_lblk_t block, int create, int *errp) 1433 { 1434 struct ext4_map_blocks map; 1435 struct buffer_head *bh; 1436 int fatal = 0, err; 1437 1438 J_ASSERT(handle != NULL || create == 0); 1439 1440 map.m_lblk = block; 1441 map.m_len = 1; 1442 err = ext4_map_blocks(handle, inode, &map, 1443 create ? EXT4_GET_BLOCKS_CREATE : 0); 1444 1445 if (err < 0) 1446 *errp = err; 1447 if (err <= 0) 1448 return NULL; 1449 *errp = 0; 1450 1451 bh = sb_getblk(inode->i_sb, map.m_pblk); 1452 if (!bh) { 1453 *errp = -EIO; 1454 return NULL; 1455 } 1456 if (map.m_flags & EXT4_MAP_NEW) { 1457 J_ASSERT(create != 0); 1458 J_ASSERT(handle != NULL); 1459 1460 /* 1461 * Now that we do not always journal data, we should 1462 * keep in mind whether this should always journal the 1463 * new buffer as metadata. For now, regular file 1464 * writes use ext4_get_block instead, so it's not a 1465 * problem. 1466 */ 1467 lock_buffer(bh); 1468 BUFFER_TRACE(bh, "call get_create_access"); 1469 fatal = ext4_journal_get_create_access(handle, bh); 1470 if (!fatal && !buffer_uptodate(bh)) { 1471 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1472 set_buffer_uptodate(bh); 1473 } 1474 unlock_buffer(bh); 1475 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1476 err = ext4_handle_dirty_metadata(handle, inode, bh); 1477 if (!fatal) 1478 fatal = err; 1479 } else { 1480 BUFFER_TRACE(bh, "not a new buffer"); 1481 } 1482 if (fatal) { 1483 *errp = fatal; 1484 brelse(bh); 1485 bh = NULL; 1486 } 1487 return bh; 1488 } 1489 1490 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1491 ext4_lblk_t block, int create, int *err) 1492 { 1493 struct buffer_head *bh; 1494 1495 bh = ext4_getblk(handle, inode, block, create, err); 1496 if (!bh) 1497 return bh; 1498 if (buffer_uptodate(bh)) 1499 return bh; 1500 ll_rw_block(READ_META, 1, &bh); 1501 wait_on_buffer(bh); 1502 if (buffer_uptodate(bh)) 1503 return bh; 1504 put_bh(bh); 1505 *err = -EIO; 1506 return NULL; 1507 } 1508 1509 static int walk_page_buffers(handle_t *handle, 1510 struct buffer_head *head, 1511 unsigned from, 1512 unsigned to, 1513 int *partial, 1514 int (*fn)(handle_t *handle, 1515 struct buffer_head *bh)) 1516 { 1517 struct buffer_head *bh; 1518 unsigned block_start, block_end; 1519 unsigned blocksize = head->b_size; 1520 int err, ret = 0; 1521 struct buffer_head *next; 1522 1523 for (bh = head, block_start = 0; 1524 ret == 0 && (bh != head || !block_start); 1525 block_start = block_end, bh = next) { 1526 next = bh->b_this_page; 1527 block_end = block_start + blocksize; 1528 if (block_end <= from || block_start >= to) { 1529 if (partial && !buffer_uptodate(bh)) 1530 *partial = 1; 1531 continue; 1532 } 1533 err = (*fn)(handle, bh); 1534 if (!ret) 1535 ret = err; 1536 } 1537 return ret; 1538 } 1539 1540 /* 1541 * To preserve ordering, it is essential that the hole instantiation and 1542 * the data write be encapsulated in a single transaction. We cannot 1543 * close off a transaction and start a new one between the ext4_get_block() 1544 * and the commit_write(). So doing the jbd2_journal_start at the start of 1545 * prepare_write() is the right place. 1546 * 1547 * Also, this function can nest inside ext4_writepage() -> 1548 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1549 * has generated enough buffer credits to do the whole page. So we won't 1550 * block on the journal in that case, which is good, because the caller may 1551 * be PF_MEMALLOC. 1552 * 1553 * By accident, ext4 can be reentered when a transaction is open via 1554 * quota file writes. If we were to commit the transaction while thus 1555 * reentered, there can be a deadlock - we would be holding a quota 1556 * lock, and the commit would never complete if another thread had a 1557 * transaction open and was blocking on the quota lock - a ranking 1558 * violation. 1559 * 1560 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1561 * will _not_ run commit under these circumstances because handle->h_ref 1562 * is elevated. We'll still have enough credits for the tiny quotafile 1563 * write. 1564 */ 1565 static int do_journal_get_write_access(handle_t *handle, 1566 struct buffer_head *bh) 1567 { 1568 int dirty = buffer_dirty(bh); 1569 int ret; 1570 1571 if (!buffer_mapped(bh) || buffer_freed(bh)) 1572 return 0; 1573 /* 1574 * __block_write_begin() could have dirtied some buffers. Clean 1575 * the dirty bit as jbd2_journal_get_write_access() could complain 1576 * otherwise about fs integrity issues. Setting of the dirty bit 1577 * by __block_write_begin() isn't a real problem here as we clear 1578 * the bit before releasing a page lock and thus writeback cannot 1579 * ever write the buffer. 1580 */ 1581 if (dirty) 1582 clear_buffer_dirty(bh); 1583 ret = ext4_journal_get_write_access(handle, bh); 1584 if (!ret && dirty) 1585 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1586 return ret; 1587 } 1588 1589 /* 1590 * Truncate blocks that were not used by write. We have to truncate the 1591 * pagecache as well so that corresponding buffers get properly unmapped. 1592 */ 1593 static void ext4_truncate_failed_write(struct inode *inode) 1594 { 1595 truncate_inode_pages(inode->i_mapping, inode->i_size); 1596 ext4_truncate(inode); 1597 } 1598 1599 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 1600 struct buffer_head *bh_result, int create); 1601 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1602 loff_t pos, unsigned len, unsigned flags, 1603 struct page **pagep, void **fsdata) 1604 { 1605 struct inode *inode = mapping->host; 1606 int ret, needed_blocks; 1607 handle_t *handle; 1608 int retries = 0; 1609 struct page *page; 1610 pgoff_t index; 1611 unsigned from, to; 1612 1613 trace_ext4_write_begin(inode, pos, len, flags); 1614 /* 1615 * Reserve one block more for addition to orphan list in case 1616 * we allocate blocks but write fails for some reason 1617 */ 1618 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1619 index = pos >> PAGE_CACHE_SHIFT; 1620 from = pos & (PAGE_CACHE_SIZE - 1); 1621 to = from + len; 1622 1623 retry: 1624 handle = ext4_journal_start(inode, needed_blocks); 1625 if (IS_ERR(handle)) { 1626 ret = PTR_ERR(handle); 1627 goto out; 1628 } 1629 1630 /* We cannot recurse into the filesystem as the transaction is already 1631 * started */ 1632 flags |= AOP_FLAG_NOFS; 1633 1634 page = grab_cache_page_write_begin(mapping, index, flags); 1635 if (!page) { 1636 ext4_journal_stop(handle); 1637 ret = -ENOMEM; 1638 goto out; 1639 } 1640 *pagep = page; 1641 1642 if (ext4_should_dioread_nolock(inode)) 1643 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1644 else 1645 ret = __block_write_begin(page, pos, len, ext4_get_block); 1646 1647 if (!ret && ext4_should_journal_data(inode)) { 1648 ret = walk_page_buffers(handle, page_buffers(page), 1649 from, to, NULL, do_journal_get_write_access); 1650 } 1651 1652 if (ret) { 1653 unlock_page(page); 1654 page_cache_release(page); 1655 /* 1656 * __block_write_begin may have instantiated a few blocks 1657 * outside i_size. Trim these off again. Don't need 1658 * i_size_read because we hold i_mutex. 1659 * 1660 * Add inode to orphan list in case we crash before 1661 * truncate finishes 1662 */ 1663 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1664 ext4_orphan_add(handle, inode); 1665 1666 ext4_journal_stop(handle); 1667 if (pos + len > inode->i_size) { 1668 ext4_truncate_failed_write(inode); 1669 /* 1670 * If truncate failed early the inode might 1671 * still be on the orphan list; we need to 1672 * make sure the inode is removed from the 1673 * orphan list in that case. 1674 */ 1675 if (inode->i_nlink) 1676 ext4_orphan_del(NULL, inode); 1677 } 1678 } 1679 1680 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1681 goto retry; 1682 out: 1683 return ret; 1684 } 1685 1686 /* For write_end() in data=journal mode */ 1687 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1688 { 1689 if (!buffer_mapped(bh) || buffer_freed(bh)) 1690 return 0; 1691 set_buffer_uptodate(bh); 1692 return ext4_handle_dirty_metadata(handle, NULL, bh); 1693 } 1694 1695 static int ext4_generic_write_end(struct file *file, 1696 struct address_space *mapping, 1697 loff_t pos, unsigned len, unsigned copied, 1698 struct page *page, void *fsdata) 1699 { 1700 int i_size_changed = 0; 1701 struct inode *inode = mapping->host; 1702 handle_t *handle = ext4_journal_current_handle(); 1703 1704 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1705 1706 /* 1707 * No need to use i_size_read() here, the i_size 1708 * cannot change under us because we hold i_mutex. 1709 * 1710 * But it's important to update i_size while still holding page lock: 1711 * page writeout could otherwise come in and zero beyond i_size. 1712 */ 1713 if (pos + copied > inode->i_size) { 1714 i_size_write(inode, pos + copied); 1715 i_size_changed = 1; 1716 } 1717 1718 if (pos + copied > EXT4_I(inode)->i_disksize) { 1719 /* We need to mark inode dirty even if 1720 * new_i_size is less that inode->i_size 1721 * bu greater than i_disksize.(hint delalloc) 1722 */ 1723 ext4_update_i_disksize(inode, (pos + copied)); 1724 i_size_changed = 1; 1725 } 1726 unlock_page(page); 1727 page_cache_release(page); 1728 1729 /* 1730 * Don't mark the inode dirty under page lock. First, it unnecessarily 1731 * makes the holding time of page lock longer. Second, it forces lock 1732 * ordering of page lock and transaction start for journaling 1733 * filesystems. 1734 */ 1735 if (i_size_changed) 1736 ext4_mark_inode_dirty(handle, inode); 1737 1738 return copied; 1739 } 1740 1741 /* 1742 * We need to pick up the new inode size which generic_commit_write gave us 1743 * `file' can be NULL - eg, when called from page_symlink(). 1744 * 1745 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1746 * buffers are managed internally. 1747 */ 1748 static int ext4_ordered_write_end(struct file *file, 1749 struct address_space *mapping, 1750 loff_t pos, unsigned len, unsigned copied, 1751 struct page *page, void *fsdata) 1752 { 1753 handle_t *handle = ext4_journal_current_handle(); 1754 struct inode *inode = mapping->host; 1755 int ret = 0, ret2; 1756 1757 trace_ext4_ordered_write_end(inode, pos, len, copied); 1758 ret = ext4_jbd2_file_inode(handle, inode); 1759 1760 if (ret == 0) { 1761 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1762 page, fsdata); 1763 copied = ret2; 1764 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1765 /* if we have allocated more blocks and copied 1766 * less. We will have blocks allocated outside 1767 * inode->i_size. So truncate them 1768 */ 1769 ext4_orphan_add(handle, inode); 1770 if (ret2 < 0) 1771 ret = ret2; 1772 } 1773 ret2 = ext4_journal_stop(handle); 1774 if (!ret) 1775 ret = ret2; 1776 1777 if (pos + len > inode->i_size) { 1778 ext4_truncate_failed_write(inode); 1779 /* 1780 * If truncate failed early the inode might still be 1781 * on the orphan list; we need to make sure the inode 1782 * is removed from the orphan list in that case. 1783 */ 1784 if (inode->i_nlink) 1785 ext4_orphan_del(NULL, inode); 1786 } 1787 1788 1789 return ret ? ret : copied; 1790 } 1791 1792 static int ext4_writeback_write_end(struct file *file, 1793 struct address_space *mapping, 1794 loff_t pos, unsigned len, unsigned copied, 1795 struct page *page, void *fsdata) 1796 { 1797 handle_t *handle = ext4_journal_current_handle(); 1798 struct inode *inode = mapping->host; 1799 int ret = 0, ret2; 1800 1801 trace_ext4_writeback_write_end(inode, pos, len, copied); 1802 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1803 page, fsdata); 1804 copied = ret2; 1805 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1806 /* if we have allocated more blocks and copied 1807 * less. We will have blocks allocated outside 1808 * inode->i_size. So truncate them 1809 */ 1810 ext4_orphan_add(handle, inode); 1811 1812 if (ret2 < 0) 1813 ret = ret2; 1814 1815 ret2 = ext4_journal_stop(handle); 1816 if (!ret) 1817 ret = ret2; 1818 1819 if (pos + len > inode->i_size) { 1820 ext4_truncate_failed_write(inode); 1821 /* 1822 * If truncate failed early the inode might still be 1823 * on the orphan list; we need to make sure the inode 1824 * is removed from the orphan list in that case. 1825 */ 1826 if (inode->i_nlink) 1827 ext4_orphan_del(NULL, inode); 1828 } 1829 1830 return ret ? ret : copied; 1831 } 1832 1833 static int ext4_journalled_write_end(struct file *file, 1834 struct address_space *mapping, 1835 loff_t pos, unsigned len, unsigned copied, 1836 struct page *page, void *fsdata) 1837 { 1838 handle_t *handle = ext4_journal_current_handle(); 1839 struct inode *inode = mapping->host; 1840 int ret = 0, ret2; 1841 int partial = 0; 1842 unsigned from, to; 1843 loff_t new_i_size; 1844 1845 trace_ext4_journalled_write_end(inode, pos, len, copied); 1846 from = pos & (PAGE_CACHE_SIZE - 1); 1847 to = from + len; 1848 1849 if (copied < len) { 1850 if (!PageUptodate(page)) 1851 copied = 0; 1852 page_zero_new_buffers(page, from+copied, to); 1853 } 1854 1855 ret = walk_page_buffers(handle, page_buffers(page), from, 1856 to, &partial, write_end_fn); 1857 if (!partial) 1858 SetPageUptodate(page); 1859 new_i_size = pos + copied; 1860 if (new_i_size > inode->i_size) 1861 i_size_write(inode, pos+copied); 1862 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1863 if (new_i_size > EXT4_I(inode)->i_disksize) { 1864 ext4_update_i_disksize(inode, new_i_size); 1865 ret2 = ext4_mark_inode_dirty(handle, inode); 1866 if (!ret) 1867 ret = ret2; 1868 } 1869 1870 unlock_page(page); 1871 page_cache_release(page); 1872 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1873 /* if we have allocated more blocks and copied 1874 * less. We will have blocks allocated outside 1875 * inode->i_size. So truncate them 1876 */ 1877 ext4_orphan_add(handle, inode); 1878 1879 ret2 = ext4_journal_stop(handle); 1880 if (!ret) 1881 ret = ret2; 1882 if (pos + len > inode->i_size) { 1883 ext4_truncate_failed_write(inode); 1884 /* 1885 * If truncate failed early the inode might still be 1886 * on the orphan list; we need to make sure the inode 1887 * is removed from the orphan list in that case. 1888 */ 1889 if (inode->i_nlink) 1890 ext4_orphan_del(NULL, inode); 1891 } 1892 1893 return ret ? ret : copied; 1894 } 1895 1896 /* 1897 * Reserve a single block located at lblock 1898 */ 1899 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1900 { 1901 int retries = 0; 1902 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1903 struct ext4_inode_info *ei = EXT4_I(inode); 1904 unsigned long md_needed; 1905 int ret; 1906 1907 /* 1908 * recalculate the amount of metadata blocks to reserve 1909 * in order to allocate nrblocks 1910 * worse case is one extent per block 1911 */ 1912 repeat: 1913 spin_lock(&ei->i_block_reservation_lock); 1914 md_needed = ext4_calc_metadata_amount(inode, lblock); 1915 trace_ext4_da_reserve_space(inode, md_needed); 1916 spin_unlock(&ei->i_block_reservation_lock); 1917 1918 /* 1919 * We will charge metadata quota at writeout time; this saves 1920 * us from metadata over-estimation, though we may go over by 1921 * a small amount in the end. Here we just reserve for data. 1922 */ 1923 ret = dquot_reserve_block(inode, 1); 1924 if (ret) 1925 return ret; 1926 /* 1927 * We do still charge estimated metadata to the sb though; 1928 * we cannot afford to run out of free blocks. 1929 */ 1930 if (ext4_claim_free_blocks(sbi, md_needed + 1)) { 1931 dquot_release_reservation_block(inode, 1); 1932 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1933 yield(); 1934 goto repeat; 1935 } 1936 return -ENOSPC; 1937 } 1938 spin_lock(&ei->i_block_reservation_lock); 1939 ei->i_reserved_data_blocks++; 1940 ei->i_reserved_meta_blocks += md_needed; 1941 spin_unlock(&ei->i_block_reservation_lock); 1942 1943 return 0; /* success */ 1944 } 1945 1946 static void ext4_da_release_space(struct inode *inode, int to_free) 1947 { 1948 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1949 struct ext4_inode_info *ei = EXT4_I(inode); 1950 1951 if (!to_free) 1952 return; /* Nothing to release, exit */ 1953 1954 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1955 1956 trace_ext4_da_release_space(inode, to_free); 1957 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1958 /* 1959 * if there aren't enough reserved blocks, then the 1960 * counter is messed up somewhere. Since this 1961 * function is called from invalidate page, it's 1962 * harmless to return without any action. 1963 */ 1964 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1965 "ino %lu, to_free %d with only %d reserved " 1966 "data blocks\n", inode->i_ino, to_free, 1967 ei->i_reserved_data_blocks); 1968 WARN_ON(1); 1969 to_free = ei->i_reserved_data_blocks; 1970 } 1971 ei->i_reserved_data_blocks -= to_free; 1972 1973 if (ei->i_reserved_data_blocks == 0) { 1974 /* 1975 * We can release all of the reserved metadata blocks 1976 * only when we have written all of the delayed 1977 * allocation blocks. 1978 */ 1979 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1980 ei->i_reserved_meta_blocks); 1981 ei->i_reserved_meta_blocks = 0; 1982 ei->i_da_metadata_calc_len = 0; 1983 } 1984 1985 /* update fs dirty data blocks counter */ 1986 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1987 1988 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1989 1990 dquot_release_reservation_block(inode, to_free); 1991 } 1992 1993 static void ext4_da_page_release_reservation(struct page *page, 1994 unsigned long offset) 1995 { 1996 int to_release = 0; 1997 struct buffer_head *head, *bh; 1998 unsigned int curr_off = 0; 1999 2000 head = page_buffers(page); 2001 bh = head; 2002 do { 2003 unsigned int next_off = curr_off + bh->b_size; 2004 2005 if ((offset <= curr_off) && (buffer_delay(bh))) { 2006 to_release++; 2007 clear_buffer_delay(bh); 2008 } 2009 curr_off = next_off; 2010 } while ((bh = bh->b_this_page) != head); 2011 ext4_da_release_space(page->mapping->host, to_release); 2012 } 2013 2014 /* 2015 * Delayed allocation stuff 2016 */ 2017 2018 /* 2019 * mpage_da_submit_io - walks through extent of pages and try to write 2020 * them with writepage() call back 2021 * 2022 * @mpd->inode: inode 2023 * @mpd->first_page: first page of the extent 2024 * @mpd->next_page: page after the last page of the extent 2025 * 2026 * By the time mpage_da_submit_io() is called we expect all blocks 2027 * to be allocated. this may be wrong if allocation failed. 2028 * 2029 * As pages are already locked by write_cache_pages(), we can't use it 2030 */ 2031 static int mpage_da_submit_io(struct mpage_da_data *mpd, 2032 struct ext4_map_blocks *map) 2033 { 2034 struct pagevec pvec; 2035 unsigned long index, end; 2036 int ret = 0, err, nr_pages, i; 2037 struct inode *inode = mpd->inode; 2038 struct address_space *mapping = inode->i_mapping; 2039 loff_t size = i_size_read(inode); 2040 unsigned int len, block_start; 2041 struct buffer_head *bh, *page_bufs = NULL; 2042 int journal_data = ext4_should_journal_data(inode); 2043 sector_t pblock = 0, cur_logical = 0; 2044 struct ext4_io_submit io_submit; 2045 2046 BUG_ON(mpd->next_page <= mpd->first_page); 2047 memset(&io_submit, 0, sizeof(io_submit)); 2048 /* 2049 * We need to start from the first_page to the next_page - 1 2050 * to make sure we also write the mapped dirty buffer_heads. 2051 * If we look at mpd->b_blocknr we would only be looking 2052 * at the currently mapped buffer_heads. 2053 */ 2054 index = mpd->first_page; 2055 end = mpd->next_page - 1; 2056 2057 pagevec_init(&pvec, 0); 2058 while (index <= end) { 2059 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2060 if (nr_pages == 0) 2061 break; 2062 for (i = 0; i < nr_pages; i++) { 2063 int commit_write = 0, redirty_page = 0; 2064 struct page *page = pvec.pages[i]; 2065 2066 index = page->index; 2067 if (index > end) 2068 break; 2069 2070 if (index == size >> PAGE_CACHE_SHIFT) 2071 len = size & ~PAGE_CACHE_MASK; 2072 else 2073 len = PAGE_CACHE_SIZE; 2074 if (map) { 2075 cur_logical = index << (PAGE_CACHE_SHIFT - 2076 inode->i_blkbits); 2077 pblock = map->m_pblk + (cur_logical - 2078 map->m_lblk); 2079 } 2080 index++; 2081 2082 BUG_ON(!PageLocked(page)); 2083 BUG_ON(PageWriteback(page)); 2084 2085 /* 2086 * If the page does not have buffers (for 2087 * whatever reason), try to create them using 2088 * __block_write_begin. If this fails, 2089 * redirty the page and move on. 2090 */ 2091 if (!page_has_buffers(page)) { 2092 if (__block_write_begin(page, 0, len, 2093 noalloc_get_block_write)) { 2094 redirty_page: 2095 redirty_page_for_writepage(mpd->wbc, 2096 page); 2097 unlock_page(page); 2098 continue; 2099 } 2100 commit_write = 1; 2101 } 2102 2103 bh = page_bufs = page_buffers(page); 2104 block_start = 0; 2105 do { 2106 if (!bh) 2107 goto redirty_page; 2108 if (map && (cur_logical >= map->m_lblk) && 2109 (cur_logical <= (map->m_lblk + 2110 (map->m_len - 1)))) { 2111 if (buffer_delay(bh)) { 2112 clear_buffer_delay(bh); 2113 bh->b_blocknr = pblock; 2114 } 2115 if (buffer_unwritten(bh) || 2116 buffer_mapped(bh)) 2117 BUG_ON(bh->b_blocknr != pblock); 2118 if (map->m_flags & EXT4_MAP_UNINIT) 2119 set_buffer_uninit(bh); 2120 clear_buffer_unwritten(bh); 2121 } 2122 2123 /* redirty page if block allocation undone */ 2124 if (buffer_delay(bh) || buffer_unwritten(bh)) 2125 redirty_page = 1; 2126 bh = bh->b_this_page; 2127 block_start += bh->b_size; 2128 cur_logical++; 2129 pblock++; 2130 } while (bh != page_bufs); 2131 2132 if (redirty_page) 2133 goto redirty_page; 2134 2135 if (commit_write) 2136 /* mark the buffer_heads as dirty & uptodate */ 2137 block_commit_write(page, 0, len); 2138 2139 /* 2140 * Delalloc doesn't support data journalling, 2141 * but eventually maybe we'll lift this 2142 * restriction. 2143 */ 2144 if (unlikely(journal_data && PageChecked(page))) 2145 err = __ext4_journalled_writepage(page, len); 2146 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 2147 err = ext4_bio_write_page(&io_submit, page, 2148 len, mpd->wbc); 2149 else 2150 err = block_write_full_page(page, 2151 noalloc_get_block_write, mpd->wbc); 2152 2153 if (!err) 2154 mpd->pages_written++; 2155 /* 2156 * In error case, we have to continue because 2157 * remaining pages are still locked 2158 */ 2159 if (ret == 0) 2160 ret = err; 2161 } 2162 pagevec_release(&pvec); 2163 } 2164 ext4_io_submit(&io_submit); 2165 return ret; 2166 } 2167 2168 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 2169 sector_t logical, long blk_cnt) 2170 { 2171 int nr_pages, i; 2172 pgoff_t index, end; 2173 struct pagevec pvec; 2174 struct inode *inode = mpd->inode; 2175 struct address_space *mapping = inode->i_mapping; 2176 2177 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 2178 end = (logical + blk_cnt - 1) >> 2179 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2180 while (index <= end) { 2181 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2182 if (nr_pages == 0) 2183 break; 2184 for (i = 0; i < nr_pages; i++) { 2185 struct page *page = pvec.pages[i]; 2186 if (page->index > end) 2187 break; 2188 BUG_ON(!PageLocked(page)); 2189 BUG_ON(PageWriteback(page)); 2190 block_invalidatepage(page, 0); 2191 ClearPageUptodate(page); 2192 unlock_page(page); 2193 } 2194 index = pvec.pages[nr_pages - 1]->index + 1; 2195 pagevec_release(&pvec); 2196 } 2197 return; 2198 } 2199 2200 static void ext4_print_free_blocks(struct inode *inode) 2201 { 2202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2203 printk(KERN_CRIT "Total free blocks count %lld\n", 2204 ext4_count_free_blocks(inode->i_sb)); 2205 printk(KERN_CRIT "Free/Dirty block details\n"); 2206 printk(KERN_CRIT "free_blocks=%lld\n", 2207 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2208 printk(KERN_CRIT "dirty_blocks=%lld\n", 2209 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2210 printk(KERN_CRIT "Block reservation details\n"); 2211 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2212 EXT4_I(inode)->i_reserved_data_blocks); 2213 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2214 EXT4_I(inode)->i_reserved_meta_blocks); 2215 return; 2216 } 2217 2218 /* 2219 * mpage_da_map_and_submit - go through given space, map them 2220 * if necessary, and then submit them for I/O 2221 * 2222 * @mpd - bh describing space 2223 * 2224 * The function skips space we know is already mapped to disk blocks. 2225 * 2226 */ 2227 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 2228 { 2229 int err, blks, get_blocks_flags; 2230 struct ext4_map_blocks map, *mapp = NULL; 2231 sector_t next = mpd->b_blocknr; 2232 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2233 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2234 handle_t *handle = NULL; 2235 2236 /* 2237 * If the blocks are mapped already, or we couldn't accumulate 2238 * any blocks, then proceed immediately to the submission stage. 2239 */ 2240 if ((mpd->b_size == 0) || 2241 ((mpd->b_state & (1 << BH_Mapped)) && 2242 !(mpd->b_state & (1 << BH_Delay)) && 2243 !(mpd->b_state & (1 << BH_Unwritten)))) 2244 goto submit_io; 2245 2246 handle = ext4_journal_current_handle(); 2247 BUG_ON(!handle); 2248 2249 /* 2250 * Call ext4_map_blocks() to allocate any delayed allocation 2251 * blocks, or to convert an uninitialized extent to be 2252 * initialized (in the case where we have written into 2253 * one or more preallocated blocks). 2254 * 2255 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2256 * indicate that we are on the delayed allocation path. This 2257 * affects functions in many different parts of the allocation 2258 * call path. This flag exists primarily because we don't 2259 * want to change *many* call functions, so ext4_map_blocks() 2260 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 2261 * inode's allocation semaphore is taken. 2262 * 2263 * If the blocks in questions were delalloc blocks, set 2264 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2265 * variables are updated after the blocks have been allocated. 2266 */ 2267 map.m_lblk = next; 2268 map.m_len = max_blocks; 2269 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 2270 if (ext4_should_dioread_nolock(mpd->inode)) 2271 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2272 if (mpd->b_state & (1 << BH_Delay)) 2273 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2274 2275 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 2276 if (blks < 0) { 2277 struct super_block *sb = mpd->inode->i_sb; 2278 2279 err = blks; 2280 /* 2281 * If get block returns EAGAIN or ENOSPC and there 2282 * appears to be free blocks we will call 2283 * ext4_writepage() for all of the pages which will 2284 * just redirty the pages. 2285 */ 2286 if (err == -EAGAIN) 2287 goto submit_io; 2288 2289 if (err == -ENOSPC && 2290 ext4_count_free_blocks(sb)) { 2291 mpd->retval = err; 2292 goto submit_io; 2293 } 2294 2295 /* 2296 * get block failure will cause us to loop in 2297 * writepages, because a_ops->writepage won't be able 2298 * to make progress. The page will be redirtied by 2299 * writepage and writepages will again try to write 2300 * the same. 2301 */ 2302 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2303 ext4_msg(sb, KERN_CRIT, 2304 "delayed block allocation failed for inode %lu " 2305 "at logical offset %llu with max blocks %zd " 2306 "with error %d", mpd->inode->i_ino, 2307 (unsigned long long) next, 2308 mpd->b_size >> mpd->inode->i_blkbits, err); 2309 ext4_msg(sb, KERN_CRIT, 2310 "This should not happen!! Data will be lost\n"); 2311 if (err == -ENOSPC) 2312 ext4_print_free_blocks(mpd->inode); 2313 } 2314 /* invalidate all the pages */ 2315 ext4_da_block_invalidatepages(mpd, next, 2316 mpd->b_size >> mpd->inode->i_blkbits); 2317 return; 2318 } 2319 BUG_ON(blks == 0); 2320 2321 mapp = ↦ 2322 if (map.m_flags & EXT4_MAP_NEW) { 2323 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 2324 int i; 2325 2326 for (i = 0; i < map.m_len; i++) 2327 unmap_underlying_metadata(bdev, map.m_pblk + i); 2328 } 2329 2330 if (ext4_should_order_data(mpd->inode)) { 2331 err = ext4_jbd2_file_inode(handle, mpd->inode); 2332 if (err) 2333 /* This only happens if the journal is aborted */ 2334 return; 2335 } 2336 2337 /* 2338 * Update on-disk size along with block allocation. 2339 */ 2340 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2341 if (disksize > i_size_read(mpd->inode)) 2342 disksize = i_size_read(mpd->inode); 2343 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2344 ext4_update_i_disksize(mpd->inode, disksize); 2345 err = ext4_mark_inode_dirty(handle, mpd->inode); 2346 if (err) 2347 ext4_error(mpd->inode->i_sb, 2348 "Failed to mark inode %lu dirty", 2349 mpd->inode->i_ino); 2350 } 2351 2352 submit_io: 2353 mpage_da_submit_io(mpd, mapp); 2354 mpd->io_done = 1; 2355 } 2356 2357 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2358 (1 << BH_Delay) | (1 << BH_Unwritten)) 2359 2360 /* 2361 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2362 * 2363 * @mpd->lbh - extent of blocks 2364 * @logical - logical number of the block in the file 2365 * @bh - bh of the block (used to access block's state) 2366 * 2367 * the function is used to collect contig. blocks in same state 2368 */ 2369 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2370 sector_t logical, size_t b_size, 2371 unsigned long b_state) 2372 { 2373 sector_t next; 2374 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2375 2376 /* 2377 * XXX Don't go larger than mballoc is willing to allocate 2378 * This is a stopgap solution. We eventually need to fold 2379 * mpage_da_submit_io() into this function and then call 2380 * ext4_map_blocks() multiple times in a loop 2381 */ 2382 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 2383 goto flush_it; 2384 2385 /* check if thereserved journal credits might overflow */ 2386 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 2387 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2388 /* 2389 * With non-extent format we are limited by the journal 2390 * credit available. Total credit needed to insert 2391 * nrblocks contiguous blocks is dependent on the 2392 * nrblocks. So limit nrblocks. 2393 */ 2394 goto flush_it; 2395 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2396 EXT4_MAX_TRANS_DATA) { 2397 /* 2398 * Adding the new buffer_head would make it cross the 2399 * allowed limit for which we have journal credit 2400 * reserved. So limit the new bh->b_size 2401 */ 2402 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2403 mpd->inode->i_blkbits; 2404 /* we will do mpage_da_submit_io in the next loop */ 2405 } 2406 } 2407 /* 2408 * First block in the extent 2409 */ 2410 if (mpd->b_size == 0) { 2411 mpd->b_blocknr = logical; 2412 mpd->b_size = b_size; 2413 mpd->b_state = b_state & BH_FLAGS; 2414 return; 2415 } 2416 2417 next = mpd->b_blocknr + nrblocks; 2418 /* 2419 * Can we merge the block to our big extent? 2420 */ 2421 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2422 mpd->b_size += b_size; 2423 return; 2424 } 2425 2426 flush_it: 2427 /* 2428 * We couldn't merge the block to our extent, so we 2429 * need to flush current extent and start new one 2430 */ 2431 mpage_da_map_and_submit(mpd); 2432 return; 2433 } 2434 2435 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2436 { 2437 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2438 } 2439 2440 /* 2441 * __mpage_da_writepage - finds extent of pages and blocks 2442 * 2443 * @page: page to consider 2444 * @wbc: not used, we just follow rules 2445 * @data: context 2446 * 2447 * The function finds extents of pages and scan them for all blocks. 2448 */ 2449 static int __mpage_da_writepage(struct page *page, 2450 struct writeback_control *wbc, 2451 struct mpage_da_data *mpd) 2452 { 2453 struct inode *inode = mpd->inode; 2454 struct buffer_head *bh, *head; 2455 sector_t logical; 2456 2457 /* 2458 * Can we merge this page to current extent? 2459 */ 2460 if (mpd->next_page != page->index) { 2461 /* 2462 * Nope, we can't. So, we map non-allocated blocks 2463 * and start IO on them 2464 */ 2465 if (mpd->next_page != mpd->first_page) { 2466 mpage_da_map_and_submit(mpd); 2467 /* 2468 * skip rest of the page in the page_vec 2469 */ 2470 redirty_page_for_writepage(wbc, page); 2471 unlock_page(page); 2472 return MPAGE_DA_EXTENT_TAIL; 2473 } 2474 2475 /* 2476 * Start next extent of pages ... 2477 */ 2478 mpd->first_page = page->index; 2479 2480 /* 2481 * ... and blocks 2482 */ 2483 mpd->b_size = 0; 2484 mpd->b_state = 0; 2485 mpd->b_blocknr = 0; 2486 } 2487 2488 mpd->next_page = page->index + 1; 2489 logical = (sector_t) page->index << 2490 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2491 2492 if (!page_has_buffers(page)) { 2493 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2494 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2495 if (mpd->io_done) 2496 return MPAGE_DA_EXTENT_TAIL; 2497 } else { 2498 /* 2499 * Page with regular buffer heads, just add all dirty ones 2500 */ 2501 head = page_buffers(page); 2502 bh = head; 2503 do { 2504 BUG_ON(buffer_locked(bh)); 2505 /* 2506 * We need to try to allocate 2507 * unmapped blocks in the same page. 2508 * Otherwise we won't make progress 2509 * with the page in ext4_writepage 2510 */ 2511 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2512 mpage_add_bh_to_extent(mpd, logical, 2513 bh->b_size, 2514 bh->b_state); 2515 if (mpd->io_done) 2516 return MPAGE_DA_EXTENT_TAIL; 2517 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2518 /* 2519 * mapped dirty buffer. We need to update 2520 * the b_state because we look at 2521 * b_state in mpage_da_map_blocks. We don't 2522 * update b_size because if we find an 2523 * unmapped buffer_head later we need to 2524 * use the b_state flag of that buffer_head. 2525 */ 2526 if (mpd->b_size == 0) 2527 mpd->b_state = bh->b_state & BH_FLAGS; 2528 } 2529 logical++; 2530 } while ((bh = bh->b_this_page) != head); 2531 } 2532 2533 return 0; 2534 } 2535 2536 /* 2537 * This is a special get_blocks_t callback which is used by 2538 * ext4_da_write_begin(). It will either return mapped block or 2539 * reserve space for a single block. 2540 * 2541 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2542 * We also have b_blocknr = -1 and b_bdev initialized properly 2543 * 2544 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2545 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2546 * initialized properly. 2547 */ 2548 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2549 struct buffer_head *bh, int create) 2550 { 2551 struct ext4_map_blocks map; 2552 int ret = 0; 2553 sector_t invalid_block = ~((sector_t) 0xffff); 2554 2555 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2556 invalid_block = ~0; 2557 2558 BUG_ON(create == 0); 2559 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2560 2561 map.m_lblk = iblock; 2562 map.m_len = 1; 2563 2564 /* 2565 * first, we need to know whether the block is allocated already 2566 * preallocated blocks are unmapped but should treated 2567 * the same as allocated blocks. 2568 */ 2569 ret = ext4_map_blocks(NULL, inode, &map, 0); 2570 if (ret < 0) 2571 return ret; 2572 if (ret == 0) { 2573 if (buffer_delay(bh)) 2574 return 0; /* Not sure this could or should happen */ 2575 /* 2576 * XXX: __block_write_begin() unmaps passed block, is it OK? 2577 */ 2578 ret = ext4_da_reserve_space(inode, iblock); 2579 if (ret) 2580 /* not enough space to reserve */ 2581 return ret; 2582 2583 map_bh(bh, inode->i_sb, invalid_block); 2584 set_buffer_new(bh); 2585 set_buffer_delay(bh); 2586 return 0; 2587 } 2588 2589 map_bh(bh, inode->i_sb, map.m_pblk); 2590 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2591 2592 if (buffer_unwritten(bh)) { 2593 /* A delayed write to unwritten bh should be marked 2594 * new and mapped. Mapped ensures that we don't do 2595 * get_block multiple times when we write to the same 2596 * offset and new ensures that we do proper zero out 2597 * for partial write. 2598 */ 2599 set_buffer_new(bh); 2600 set_buffer_mapped(bh); 2601 } 2602 return 0; 2603 } 2604 2605 /* 2606 * This function is used as a standard get_block_t calback function 2607 * when there is no desire to allocate any blocks. It is used as a 2608 * callback function for block_write_begin() and block_write_full_page(). 2609 * These functions should only try to map a single block at a time. 2610 * 2611 * Since this function doesn't do block allocations even if the caller 2612 * requests it by passing in create=1, it is critically important that 2613 * any caller checks to make sure that any buffer heads are returned 2614 * by this function are either all already mapped or marked for 2615 * delayed allocation before calling block_write_full_page(). Otherwise, 2616 * b_blocknr could be left unitialized, and the page write functions will 2617 * be taken by surprise. 2618 */ 2619 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2620 struct buffer_head *bh_result, int create) 2621 { 2622 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2623 return _ext4_get_block(inode, iblock, bh_result, 0); 2624 } 2625 2626 static int bget_one(handle_t *handle, struct buffer_head *bh) 2627 { 2628 get_bh(bh); 2629 return 0; 2630 } 2631 2632 static int bput_one(handle_t *handle, struct buffer_head *bh) 2633 { 2634 put_bh(bh); 2635 return 0; 2636 } 2637 2638 static int __ext4_journalled_writepage(struct page *page, 2639 unsigned int len) 2640 { 2641 struct address_space *mapping = page->mapping; 2642 struct inode *inode = mapping->host; 2643 struct buffer_head *page_bufs; 2644 handle_t *handle = NULL; 2645 int ret = 0; 2646 int err; 2647 2648 ClearPageChecked(page); 2649 page_bufs = page_buffers(page); 2650 BUG_ON(!page_bufs); 2651 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2652 /* As soon as we unlock the page, it can go away, but we have 2653 * references to buffers so we are safe */ 2654 unlock_page(page); 2655 2656 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2657 if (IS_ERR(handle)) { 2658 ret = PTR_ERR(handle); 2659 goto out; 2660 } 2661 2662 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2663 do_journal_get_write_access); 2664 2665 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2666 write_end_fn); 2667 if (ret == 0) 2668 ret = err; 2669 err = ext4_journal_stop(handle); 2670 if (!ret) 2671 ret = err; 2672 2673 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2674 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2675 out: 2676 return ret; 2677 } 2678 2679 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 2680 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 2681 2682 /* 2683 * Note that we don't need to start a transaction unless we're journaling data 2684 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2685 * need to file the inode to the transaction's list in ordered mode because if 2686 * we are writing back data added by write(), the inode is already there and if 2687 * we are writing back data modified via mmap(), noone guarantees in which 2688 * transaction the data will hit the disk. In case we are journaling data, we 2689 * cannot start transaction directly because transaction start ranks above page 2690 * lock so we have to do some magic. 2691 * 2692 * This function can get called via... 2693 * - ext4_da_writepages after taking page lock (have journal handle) 2694 * - journal_submit_inode_data_buffers (no journal handle) 2695 * - shrink_page_list via pdflush (no journal handle) 2696 * - grab_page_cache when doing write_begin (have journal handle) 2697 * 2698 * We don't do any block allocation in this function. If we have page with 2699 * multiple blocks we need to write those buffer_heads that are mapped. This 2700 * is important for mmaped based write. So if we do with blocksize 1K 2701 * truncate(f, 1024); 2702 * a = mmap(f, 0, 4096); 2703 * a[0] = 'a'; 2704 * truncate(f, 4096); 2705 * we have in the page first buffer_head mapped via page_mkwrite call back 2706 * but other bufer_heads would be unmapped but dirty(dirty done via the 2707 * do_wp_page). So writepage should write the first block. If we modify 2708 * the mmap area beyond 1024 we will again get a page_fault and the 2709 * page_mkwrite callback will do the block allocation and mark the 2710 * buffer_heads mapped. 2711 * 2712 * We redirty the page if we have any buffer_heads that is either delay or 2713 * unwritten in the page. 2714 * 2715 * We can get recursively called as show below. 2716 * 2717 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2718 * ext4_writepage() 2719 * 2720 * But since we don't do any block allocation we should not deadlock. 2721 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2722 */ 2723 static int ext4_writepage(struct page *page, 2724 struct writeback_control *wbc) 2725 { 2726 int ret = 0, commit_write = 0; 2727 loff_t size; 2728 unsigned int len; 2729 struct buffer_head *page_bufs = NULL; 2730 struct inode *inode = page->mapping->host; 2731 2732 trace_ext4_writepage(inode, page); 2733 size = i_size_read(inode); 2734 if (page->index == size >> PAGE_CACHE_SHIFT) 2735 len = size & ~PAGE_CACHE_MASK; 2736 else 2737 len = PAGE_CACHE_SIZE; 2738 2739 /* 2740 * If the page does not have buffers (for whatever reason), 2741 * try to create them using __block_write_begin. If this 2742 * fails, redirty the page and move on. 2743 */ 2744 if (!page_has_buffers(page)) { 2745 if (__block_write_begin(page, 0, len, 2746 noalloc_get_block_write)) { 2747 redirty_page: 2748 redirty_page_for_writepage(wbc, page); 2749 unlock_page(page); 2750 return 0; 2751 } 2752 commit_write = 1; 2753 } 2754 page_bufs = page_buffers(page); 2755 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2756 ext4_bh_delay_or_unwritten)) { 2757 /* 2758 * We don't want to do block allocation, so redirty 2759 * the page and return. We may reach here when we do 2760 * a journal commit via journal_submit_inode_data_buffers. 2761 * We can also reach here via shrink_page_list 2762 */ 2763 goto redirty_page; 2764 } 2765 if (commit_write) 2766 /* now mark the buffer_heads as dirty and uptodate */ 2767 block_commit_write(page, 0, len); 2768 2769 if (PageChecked(page) && ext4_should_journal_data(inode)) 2770 /* 2771 * It's mmapped pagecache. Add buffers and journal it. There 2772 * doesn't seem much point in redirtying the page here. 2773 */ 2774 return __ext4_journalled_writepage(page, len); 2775 2776 if (buffer_uninit(page_bufs)) { 2777 ext4_set_bh_endio(page_bufs, inode); 2778 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2779 wbc, ext4_end_io_buffer_write); 2780 } else 2781 ret = block_write_full_page(page, noalloc_get_block_write, 2782 wbc); 2783 2784 return ret; 2785 } 2786 2787 /* 2788 * This is called via ext4_da_writepages() to 2789 * calulate the total number of credits to reserve to fit 2790 * a single extent allocation into a single transaction, 2791 * ext4_da_writpeages() will loop calling this before 2792 * the block allocation. 2793 */ 2794 2795 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2796 { 2797 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2798 2799 /* 2800 * With non-extent format the journal credit needed to 2801 * insert nrblocks contiguous block is dependent on 2802 * number of contiguous block. So we will limit 2803 * number of contiguous block to a sane value 2804 */ 2805 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2806 (max_blocks > EXT4_MAX_TRANS_DATA)) 2807 max_blocks = EXT4_MAX_TRANS_DATA; 2808 2809 return ext4_chunk_trans_blocks(inode, max_blocks); 2810 } 2811 2812 /* 2813 * write_cache_pages_da - walk the list of dirty pages of the given 2814 * address space and call the callback function (which usually writes 2815 * the pages). 2816 * 2817 * This is a forked version of write_cache_pages(). Differences: 2818 * Range cyclic is ignored. 2819 * no_nrwrite_index_update is always presumed true 2820 */ 2821 static int write_cache_pages_da(struct address_space *mapping, 2822 struct writeback_control *wbc, 2823 struct mpage_da_data *mpd, 2824 pgoff_t *done_index) 2825 { 2826 int ret = 0; 2827 int done = 0; 2828 struct pagevec pvec; 2829 unsigned nr_pages; 2830 pgoff_t index; 2831 pgoff_t end; /* Inclusive */ 2832 long nr_to_write = wbc->nr_to_write; 2833 int tag; 2834 2835 pagevec_init(&pvec, 0); 2836 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2837 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2838 2839 if (wbc->sync_mode == WB_SYNC_ALL) 2840 tag = PAGECACHE_TAG_TOWRITE; 2841 else 2842 tag = PAGECACHE_TAG_DIRTY; 2843 2844 *done_index = index; 2845 while (!done && (index <= end)) { 2846 int i; 2847 2848 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2849 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2850 if (nr_pages == 0) 2851 break; 2852 2853 for (i = 0; i < nr_pages; i++) { 2854 struct page *page = pvec.pages[i]; 2855 2856 /* 2857 * At this point, the page may be truncated or 2858 * invalidated (changing page->mapping to NULL), or 2859 * even swizzled back from swapper_space to tmpfs file 2860 * mapping. However, page->index will not change 2861 * because we have a reference on the page. 2862 */ 2863 if (page->index > end) { 2864 done = 1; 2865 break; 2866 } 2867 2868 *done_index = page->index + 1; 2869 2870 lock_page(page); 2871 2872 /* 2873 * Page truncated or invalidated. We can freely skip it 2874 * then, even for data integrity operations: the page 2875 * has disappeared concurrently, so there could be no 2876 * real expectation of this data interity operation 2877 * even if there is now a new, dirty page at the same 2878 * pagecache address. 2879 */ 2880 if (unlikely(page->mapping != mapping)) { 2881 continue_unlock: 2882 unlock_page(page); 2883 continue; 2884 } 2885 2886 if (!PageDirty(page)) { 2887 /* someone wrote it for us */ 2888 goto continue_unlock; 2889 } 2890 2891 if (PageWriteback(page)) { 2892 if (wbc->sync_mode != WB_SYNC_NONE) 2893 wait_on_page_writeback(page); 2894 else 2895 goto continue_unlock; 2896 } 2897 2898 BUG_ON(PageWriteback(page)); 2899 if (!clear_page_dirty_for_io(page)) 2900 goto continue_unlock; 2901 2902 ret = __mpage_da_writepage(page, wbc, mpd); 2903 if (unlikely(ret)) { 2904 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2905 unlock_page(page); 2906 ret = 0; 2907 } else { 2908 done = 1; 2909 break; 2910 } 2911 } 2912 2913 if (nr_to_write > 0) { 2914 nr_to_write--; 2915 if (nr_to_write == 0 && 2916 wbc->sync_mode == WB_SYNC_NONE) { 2917 /* 2918 * We stop writing back only if we are 2919 * not doing integrity sync. In case of 2920 * integrity sync we have to keep going 2921 * because someone may be concurrently 2922 * dirtying pages, and we might have 2923 * synced a lot of newly appeared dirty 2924 * pages, but have not synced all of the 2925 * old dirty pages. 2926 */ 2927 done = 1; 2928 break; 2929 } 2930 } 2931 } 2932 pagevec_release(&pvec); 2933 cond_resched(); 2934 } 2935 return ret; 2936 } 2937 2938 2939 static int ext4_da_writepages(struct address_space *mapping, 2940 struct writeback_control *wbc) 2941 { 2942 pgoff_t index; 2943 int range_whole = 0; 2944 handle_t *handle = NULL; 2945 struct mpage_da_data mpd; 2946 struct inode *inode = mapping->host; 2947 int pages_written = 0; 2948 long pages_skipped; 2949 unsigned int max_pages; 2950 int range_cyclic, cycled = 1, io_done = 0; 2951 int needed_blocks, ret = 0; 2952 long desired_nr_to_write, nr_to_writebump = 0; 2953 loff_t range_start = wbc->range_start; 2954 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2955 pgoff_t done_index = 0; 2956 pgoff_t end; 2957 2958 trace_ext4_da_writepages(inode, wbc); 2959 2960 /* 2961 * No pages to write? This is mainly a kludge to avoid starting 2962 * a transaction for special inodes like journal inode on last iput() 2963 * because that could violate lock ordering on umount 2964 */ 2965 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2966 return 0; 2967 2968 /* 2969 * If the filesystem has aborted, it is read-only, so return 2970 * right away instead of dumping stack traces later on that 2971 * will obscure the real source of the problem. We test 2972 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2973 * the latter could be true if the filesystem is mounted 2974 * read-only, and in that case, ext4_da_writepages should 2975 * *never* be called, so if that ever happens, we would want 2976 * the stack trace. 2977 */ 2978 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2979 return -EROFS; 2980 2981 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2982 range_whole = 1; 2983 2984 range_cyclic = wbc->range_cyclic; 2985 if (wbc->range_cyclic) { 2986 index = mapping->writeback_index; 2987 if (index) 2988 cycled = 0; 2989 wbc->range_start = index << PAGE_CACHE_SHIFT; 2990 wbc->range_end = LLONG_MAX; 2991 wbc->range_cyclic = 0; 2992 end = -1; 2993 } else { 2994 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2995 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2996 } 2997 2998 /* 2999 * This works around two forms of stupidity. The first is in 3000 * the writeback code, which caps the maximum number of pages 3001 * written to be 1024 pages. This is wrong on multiple 3002 * levels; different architectues have a different page size, 3003 * which changes the maximum amount of data which gets 3004 * written. Secondly, 4 megabytes is way too small. XFS 3005 * forces this value to be 16 megabytes by multiplying 3006 * nr_to_write parameter by four, and then relies on its 3007 * allocator to allocate larger extents to make them 3008 * contiguous. Unfortunately this brings us to the second 3009 * stupidity, which is that ext4's mballoc code only allocates 3010 * at most 2048 blocks. So we force contiguous writes up to 3011 * the number of dirty blocks in the inode, or 3012 * sbi->max_writeback_mb_bump whichever is smaller. 3013 */ 3014 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 3015 if (!range_cyclic && range_whole) { 3016 if (wbc->nr_to_write == LONG_MAX) 3017 desired_nr_to_write = wbc->nr_to_write; 3018 else 3019 desired_nr_to_write = wbc->nr_to_write * 8; 3020 } else 3021 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 3022 max_pages); 3023 if (desired_nr_to_write > max_pages) 3024 desired_nr_to_write = max_pages; 3025 3026 if (wbc->nr_to_write < desired_nr_to_write) { 3027 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 3028 wbc->nr_to_write = desired_nr_to_write; 3029 } 3030 3031 mpd.wbc = wbc; 3032 mpd.inode = mapping->host; 3033 3034 pages_skipped = wbc->pages_skipped; 3035 3036 retry: 3037 if (wbc->sync_mode == WB_SYNC_ALL) 3038 tag_pages_for_writeback(mapping, index, end); 3039 3040 while (!ret && wbc->nr_to_write > 0) { 3041 3042 /* 3043 * we insert one extent at a time. So we need 3044 * credit needed for single extent allocation. 3045 * journalled mode is currently not supported 3046 * by delalloc 3047 */ 3048 BUG_ON(ext4_should_journal_data(inode)); 3049 needed_blocks = ext4_da_writepages_trans_blocks(inode); 3050 3051 /* start a new transaction*/ 3052 handle = ext4_journal_start(inode, needed_blocks); 3053 if (IS_ERR(handle)) { 3054 ret = PTR_ERR(handle); 3055 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 3056 "%ld pages, ino %lu; err %d", __func__, 3057 wbc->nr_to_write, inode->i_ino, ret); 3058 goto out_writepages; 3059 } 3060 3061 /* 3062 * Now call __mpage_da_writepage to find the next 3063 * contiguous region of logical blocks that need 3064 * blocks to be allocated by ext4. We don't actually 3065 * submit the blocks for I/O here, even though 3066 * write_cache_pages thinks it will, and will set the 3067 * pages as clean for write before calling 3068 * __mpage_da_writepage(). 3069 */ 3070 mpd.b_size = 0; 3071 mpd.b_state = 0; 3072 mpd.b_blocknr = 0; 3073 mpd.first_page = 0; 3074 mpd.next_page = 0; 3075 mpd.io_done = 0; 3076 mpd.pages_written = 0; 3077 mpd.retval = 0; 3078 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 3079 /* 3080 * If we have a contiguous extent of pages and we 3081 * haven't done the I/O yet, map the blocks and submit 3082 * them for I/O. 3083 */ 3084 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 3085 mpage_da_map_and_submit(&mpd); 3086 ret = MPAGE_DA_EXTENT_TAIL; 3087 } 3088 trace_ext4_da_write_pages(inode, &mpd); 3089 wbc->nr_to_write -= mpd.pages_written; 3090 3091 ext4_journal_stop(handle); 3092 3093 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 3094 /* commit the transaction which would 3095 * free blocks released in the transaction 3096 * and try again 3097 */ 3098 jbd2_journal_force_commit_nested(sbi->s_journal); 3099 wbc->pages_skipped = pages_skipped; 3100 ret = 0; 3101 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 3102 /* 3103 * got one extent now try with 3104 * rest of the pages 3105 */ 3106 pages_written += mpd.pages_written; 3107 wbc->pages_skipped = pages_skipped; 3108 ret = 0; 3109 io_done = 1; 3110 } else if (wbc->nr_to_write) 3111 /* 3112 * There is no more writeout needed 3113 * or we requested for a noblocking writeout 3114 * and we found the device congested 3115 */ 3116 break; 3117 } 3118 if (!io_done && !cycled) { 3119 cycled = 1; 3120 index = 0; 3121 wbc->range_start = index << PAGE_CACHE_SHIFT; 3122 wbc->range_end = mapping->writeback_index - 1; 3123 goto retry; 3124 } 3125 if (pages_skipped != wbc->pages_skipped) 3126 ext4_msg(inode->i_sb, KERN_CRIT, 3127 "This should not happen leaving %s " 3128 "with nr_to_write = %ld ret = %d", 3129 __func__, wbc->nr_to_write, ret); 3130 3131 /* Update index */ 3132 wbc->range_cyclic = range_cyclic; 3133 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3134 /* 3135 * set the writeback_index so that range_cyclic 3136 * mode will write it back later 3137 */ 3138 mapping->writeback_index = done_index; 3139 3140 out_writepages: 3141 wbc->nr_to_write -= nr_to_writebump; 3142 wbc->range_start = range_start; 3143 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 3144 return ret; 3145 } 3146 3147 #define FALL_BACK_TO_NONDELALLOC 1 3148 static int ext4_nonda_switch(struct super_block *sb) 3149 { 3150 s64 free_blocks, dirty_blocks; 3151 struct ext4_sb_info *sbi = EXT4_SB(sb); 3152 3153 /* 3154 * switch to non delalloc mode if we are running low 3155 * on free block. The free block accounting via percpu 3156 * counters can get slightly wrong with percpu_counter_batch getting 3157 * accumulated on each CPU without updating global counters 3158 * Delalloc need an accurate free block accounting. So switch 3159 * to non delalloc when we are near to error range. 3160 */ 3161 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 3162 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 3163 if (2 * free_blocks < 3 * dirty_blocks || 3164 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 3165 /* 3166 * free block count is less than 150% of dirty blocks 3167 * or free blocks is less than watermark 3168 */ 3169 return 1; 3170 } 3171 /* 3172 * Even if we don't switch but are nearing capacity, 3173 * start pushing delalloc when 1/2 of free blocks are dirty. 3174 */ 3175 if (free_blocks < 2 * dirty_blocks) 3176 writeback_inodes_sb_if_idle(sb); 3177 3178 return 0; 3179 } 3180 3181 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3182 loff_t pos, unsigned len, unsigned flags, 3183 struct page **pagep, void **fsdata) 3184 { 3185 int ret, retries = 0; 3186 struct page *page; 3187 pgoff_t index; 3188 struct inode *inode = mapping->host; 3189 handle_t *handle; 3190 3191 index = pos >> PAGE_CACHE_SHIFT; 3192 3193 if (ext4_nonda_switch(inode->i_sb)) { 3194 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3195 return ext4_write_begin(file, mapping, pos, 3196 len, flags, pagep, fsdata); 3197 } 3198 *fsdata = (void *)0; 3199 trace_ext4_da_write_begin(inode, pos, len, flags); 3200 retry: 3201 /* 3202 * With delayed allocation, we don't log the i_disksize update 3203 * if there is delayed block allocation. But we still need 3204 * to journalling the i_disksize update if writes to the end 3205 * of file which has an already mapped buffer. 3206 */ 3207 handle = ext4_journal_start(inode, 1); 3208 if (IS_ERR(handle)) { 3209 ret = PTR_ERR(handle); 3210 goto out; 3211 } 3212 /* We cannot recurse into the filesystem as the transaction is already 3213 * started */ 3214 flags |= AOP_FLAG_NOFS; 3215 3216 page = grab_cache_page_write_begin(mapping, index, flags); 3217 if (!page) { 3218 ext4_journal_stop(handle); 3219 ret = -ENOMEM; 3220 goto out; 3221 } 3222 *pagep = page; 3223 3224 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3225 if (ret < 0) { 3226 unlock_page(page); 3227 ext4_journal_stop(handle); 3228 page_cache_release(page); 3229 /* 3230 * block_write_begin may have instantiated a few blocks 3231 * outside i_size. Trim these off again. Don't need 3232 * i_size_read because we hold i_mutex. 3233 */ 3234 if (pos + len > inode->i_size) 3235 ext4_truncate_failed_write(inode); 3236 } 3237 3238 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3239 goto retry; 3240 out: 3241 return ret; 3242 } 3243 3244 /* 3245 * Check if we should update i_disksize 3246 * when write to the end of file but not require block allocation 3247 */ 3248 static int ext4_da_should_update_i_disksize(struct page *page, 3249 unsigned long offset) 3250 { 3251 struct buffer_head *bh; 3252 struct inode *inode = page->mapping->host; 3253 unsigned int idx; 3254 int i; 3255 3256 bh = page_buffers(page); 3257 idx = offset >> inode->i_blkbits; 3258 3259 for (i = 0; i < idx; i++) 3260 bh = bh->b_this_page; 3261 3262 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3263 return 0; 3264 return 1; 3265 } 3266 3267 static int ext4_da_write_end(struct file *file, 3268 struct address_space *mapping, 3269 loff_t pos, unsigned len, unsigned copied, 3270 struct page *page, void *fsdata) 3271 { 3272 struct inode *inode = mapping->host; 3273 int ret = 0, ret2; 3274 handle_t *handle = ext4_journal_current_handle(); 3275 loff_t new_i_size; 3276 unsigned long start, end; 3277 int write_mode = (int)(unsigned long)fsdata; 3278 3279 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3280 if (ext4_should_order_data(inode)) { 3281 return ext4_ordered_write_end(file, mapping, pos, 3282 len, copied, page, fsdata); 3283 } else if (ext4_should_writeback_data(inode)) { 3284 return ext4_writeback_write_end(file, mapping, pos, 3285 len, copied, page, fsdata); 3286 } else { 3287 BUG(); 3288 } 3289 } 3290 3291 trace_ext4_da_write_end(inode, pos, len, copied); 3292 start = pos & (PAGE_CACHE_SIZE - 1); 3293 end = start + copied - 1; 3294 3295 /* 3296 * generic_write_end() will run mark_inode_dirty() if i_size 3297 * changes. So let's piggyback the i_disksize mark_inode_dirty 3298 * into that. 3299 */ 3300 3301 new_i_size = pos + copied; 3302 if (new_i_size > EXT4_I(inode)->i_disksize) { 3303 if (ext4_da_should_update_i_disksize(page, end)) { 3304 down_write(&EXT4_I(inode)->i_data_sem); 3305 if (new_i_size > EXT4_I(inode)->i_disksize) { 3306 /* 3307 * Updating i_disksize when extending file 3308 * without needing block allocation 3309 */ 3310 if (ext4_should_order_data(inode)) 3311 ret = ext4_jbd2_file_inode(handle, 3312 inode); 3313 3314 EXT4_I(inode)->i_disksize = new_i_size; 3315 } 3316 up_write(&EXT4_I(inode)->i_data_sem); 3317 /* We need to mark inode dirty even if 3318 * new_i_size is less that inode->i_size 3319 * bu greater than i_disksize.(hint delalloc) 3320 */ 3321 ext4_mark_inode_dirty(handle, inode); 3322 } 3323 } 3324 ret2 = generic_write_end(file, mapping, pos, len, copied, 3325 page, fsdata); 3326 copied = ret2; 3327 if (ret2 < 0) 3328 ret = ret2; 3329 ret2 = ext4_journal_stop(handle); 3330 if (!ret) 3331 ret = ret2; 3332 3333 return ret ? ret : copied; 3334 } 3335 3336 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3337 { 3338 /* 3339 * Drop reserved blocks 3340 */ 3341 BUG_ON(!PageLocked(page)); 3342 if (!page_has_buffers(page)) 3343 goto out; 3344 3345 ext4_da_page_release_reservation(page, offset); 3346 3347 out: 3348 ext4_invalidatepage(page, offset); 3349 3350 return; 3351 } 3352 3353 /* 3354 * Force all delayed allocation blocks to be allocated for a given inode. 3355 */ 3356 int ext4_alloc_da_blocks(struct inode *inode) 3357 { 3358 trace_ext4_alloc_da_blocks(inode); 3359 3360 if (!EXT4_I(inode)->i_reserved_data_blocks && 3361 !EXT4_I(inode)->i_reserved_meta_blocks) 3362 return 0; 3363 3364 /* 3365 * We do something simple for now. The filemap_flush() will 3366 * also start triggering a write of the data blocks, which is 3367 * not strictly speaking necessary (and for users of 3368 * laptop_mode, not even desirable). However, to do otherwise 3369 * would require replicating code paths in: 3370 * 3371 * ext4_da_writepages() -> 3372 * write_cache_pages() ---> (via passed in callback function) 3373 * __mpage_da_writepage() --> 3374 * mpage_add_bh_to_extent() 3375 * mpage_da_map_blocks() 3376 * 3377 * The problem is that write_cache_pages(), located in 3378 * mm/page-writeback.c, marks pages clean in preparation for 3379 * doing I/O, which is not desirable if we're not planning on 3380 * doing I/O at all. 3381 * 3382 * We could call write_cache_pages(), and then redirty all of 3383 * the pages by calling redirty_page_for_writepage() but that 3384 * would be ugly in the extreme. So instead we would need to 3385 * replicate parts of the code in the above functions, 3386 * simplifying them becuase we wouldn't actually intend to 3387 * write out the pages, but rather only collect contiguous 3388 * logical block extents, call the multi-block allocator, and 3389 * then update the buffer heads with the block allocations. 3390 * 3391 * For now, though, we'll cheat by calling filemap_flush(), 3392 * which will map the blocks, and start the I/O, but not 3393 * actually wait for the I/O to complete. 3394 */ 3395 return filemap_flush(inode->i_mapping); 3396 } 3397 3398 /* 3399 * bmap() is special. It gets used by applications such as lilo and by 3400 * the swapper to find the on-disk block of a specific piece of data. 3401 * 3402 * Naturally, this is dangerous if the block concerned is still in the 3403 * journal. If somebody makes a swapfile on an ext4 data-journaling 3404 * filesystem and enables swap, then they may get a nasty shock when the 3405 * data getting swapped to that swapfile suddenly gets overwritten by 3406 * the original zero's written out previously to the journal and 3407 * awaiting writeback in the kernel's buffer cache. 3408 * 3409 * So, if we see any bmap calls here on a modified, data-journaled file, 3410 * take extra steps to flush any blocks which might be in the cache. 3411 */ 3412 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3413 { 3414 struct inode *inode = mapping->host; 3415 journal_t *journal; 3416 int err; 3417 3418 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3419 test_opt(inode->i_sb, DELALLOC)) { 3420 /* 3421 * With delalloc we want to sync the file 3422 * so that we can make sure we allocate 3423 * blocks for file 3424 */ 3425 filemap_write_and_wait(mapping); 3426 } 3427 3428 if (EXT4_JOURNAL(inode) && 3429 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3430 /* 3431 * This is a REALLY heavyweight approach, but the use of 3432 * bmap on dirty files is expected to be extremely rare: 3433 * only if we run lilo or swapon on a freshly made file 3434 * do we expect this to happen. 3435 * 3436 * (bmap requires CAP_SYS_RAWIO so this does not 3437 * represent an unprivileged user DOS attack --- we'd be 3438 * in trouble if mortal users could trigger this path at 3439 * will.) 3440 * 3441 * NB. EXT4_STATE_JDATA is not set on files other than 3442 * regular files. If somebody wants to bmap a directory 3443 * or symlink and gets confused because the buffer 3444 * hasn't yet been flushed to disk, they deserve 3445 * everything they get. 3446 */ 3447 3448 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3449 journal = EXT4_JOURNAL(inode); 3450 jbd2_journal_lock_updates(journal); 3451 err = jbd2_journal_flush(journal); 3452 jbd2_journal_unlock_updates(journal); 3453 3454 if (err) 3455 return 0; 3456 } 3457 3458 return generic_block_bmap(mapping, block, ext4_get_block); 3459 } 3460 3461 static int ext4_readpage(struct file *file, struct page *page) 3462 { 3463 return mpage_readpage(page, ext4_get_block); 3464 } 3465 3466 static int 3467 ext4_readpages(struct file *file, struct address_space *mapping, 3468 struct list_head *pages, unsigned nr_pages) 3469 { 3470 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3471 } 3472 3473 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 3474 { 3475 struct buffer_head *head, *bh; 3476 unsigned int curr_off = 0; 3477 3478 if (!page_has_buffers(page)) 3479 return; 3480 head = bh = page_buffers(page); 3481 do { 3482 if (offset <= curr_off && test_clear_buffer_uninit(bh) 3483 && bh->b_private) { 3484 ext4_free_io_end(bh->b_private); 3485 bh->b_private = NULL; 3486 bh->b_end_io = NULL; 3487 } 3488 curr_off = curr_off + bh->b_size; 3489 bh = bh->b_this_page; 3490 } while (bh != head); 3491 } 3492 3493 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3494 { 3495 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3496 3497 /* 3498 * free any io_end structure allocated for buffers to be discarded 3499 */ 3500 if (ext4_should_dioread_nolock(page->mapping->host)) 3501 ext4_invalidatepage_free_endio(page, offset); 3502 /* 3503 * If it's a full truncate we just forget about the pending dirtying 3504 */ 3505 if (offset == 0) 3506 ClearPageChecked(page); 3507 3508 if (journal) 3509 jbd2_journal_invalidatepage(journal, page, offset); 3510 else 3511 block_invalidatepage(page, offset); 3512 } 3513 3514 static int ext4_releasepage(struct page *page, gfp_t wait) 3515 { 3516 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3517 3518 WARN_ON(PageChecked(page)); 3519 if (!page_has_buffers(page)) 3520 return 0; 3521 if (journal) 3522 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3523 else 3524 return try_to_free_buffers(page); 3525 } 3526 3527 /* 3528 * O_DIRECT for ext3 (or indirect map) based files 3529 * 3530 * If the O_DIRECT write will extend the file then add this inode to the 3531 * orphan list. So recovery will truncate it back to the original size 3532 * if the machine crashes during the write. 3533 * 3534 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3535 * crashes then stale disk data _may_ be exposed inside the file. But current 3536 * VFS code falls back into buffered path in that case so we are safe. 3537 */ 3538 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3539 const struct iovec *iov, loff_t offset, 3540 unsigned long nr_segs) 3541 { 3542 struct file *file = iocb->ki_filp; 3543 struct inode *inode = file->f_mapping->host; 3544 struct ext4_inode_info *ei = EXT4_I(inode); 3545 handle_t *handle; 3546 ssize_t ret; 3547 int orphan = 0; 3548 size_t count = iov_length(iov, nr_segs); 3549 int retries = 0; 3550 3551 if (rw == WRITE) { 3552 loff_t final_size = offset + count; 3553 3554 if (final_size > inode->i_size) { 3555 /* Credits for sb + inode write */ 3556 handle = ext4_journal_start(inode, 2); 3557 if (IS_ERR(handle)) { 3558 ret = PTR_ERR(handle); 3559 goto out; 3560 } 3561 ret = ext4_orphan_add(handle, inode); 3562 if (ret) { 3563 ext4_journal_stop(handle); 3564 goto out; 3565 } 3566 orphan = 1; 3567 ei->i_disksize = inode->i_size; 3568 ext4_journal_stop(handle); 3569 } 3570 } 3571 3572 retry: 3573 if (rw == READ && ext4_should_dioread_nolock(inode)) 3574 ret = __blockdev_direct_IO(rw, iocb, inode, 3575 inode->i_sb->s_bdev, iov, 3576 offset, nr_segs, 3577 ext4_get_block, NULL, NULL, 0); 3578 else { 3579 ret = blockdev_direct_IO(rw, iocb, inode, 3580 inode->i_sb->s_bdev, iov, 3581 offset, nr_segs, 3582 ext4_get_block, NULL); 3583 3584 if (unlikely((rw & WRITE) && ret < 0)) { 3585 loff_t isize = i_size_read(inode); 3586 loff_t end = offset + iov_length(iov, nr_segs); 3587 3588 if (end > isize) 3589 vmtruncate(inode, isize); 3590 } 3591 } 3592 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3593 goto retry; 3594 3595 if (orphan) { 3596 int err; 3597 3598 /* Credits for sb + inode write */ 3599 handle = ext4_journal_start(inode, 2); 3600 if (IS_ERR(handle)) { 3601 /* This is really bad luck. We've written the data 3602 * but cannot extend i_size. Bail out and pretend 3603 * the write failed... */ 3604 ret = PTR_ERR(handle); 3605 if (inode->i_nlink) 3606 ext4_orphan_del(NULL, inode); 3607 3608 goto out; 3609 } 3610 if (inode->i_nlink) 3611 ext4_orphan_del(handle, inode); 3612 if (ret > 0) { 3613 loff_t end = offset + ret; 3614 if (end > inode->i_size) { 3615 ei->i_disksize = end; 3616 i_size_write(inode, end); 3617 /* 3618 * We're going to return a positive `ret' 3619 * here due to non-zero-length I/O, so there's 3620 * no way of reporting error returns from 3621 * ext4_mark_inode_dirty() to userspace. So 3622 * ignore it. 3623 */ 3624 ext4_mark_inode_dirty(handle, inode); 3625 } 3626 } 3627 err = ext4_journal_stop(handle); 3628 if (ret == 0) 3629 ret = err; 3630 } 3631 out: 3632 return ret; 3633 } 3634 3635 /* 3636 * ext4_get_block used when preparing for a DIO write or buffer write. 3637 * We allocate an uinitialized extent if blocks haven't been allocated. 3638 * The extent will be converted to initialized after the IO is complete. 3639 */ 3640 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 3641 struct buffer_head *bh_result, int create) 3642 { 3643 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3644 inode->i_ino, create); 3645 return _ext4_get_block(inode, iblock, bh_result, 3646 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3647 } 3648 3649 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3650 ssize_t size, void *private, int ret, 3651 bool is_async) 3652 { 3653 ext4_io_end_t *io_end = iocb->private; 3654 struct workqueue_struct *wq; 3655 unsigned long flags; 3656 struct ext4_inode_info *ei; 3657 3658 /* if not async direct IO or dio with 0 bytes write, just return */ 3659 if (!io_end || !size) 3660 goto out; 3661 3662 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3663 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3664 iocb->private, io_end->inode->i_ino, iocb, offset, 3665 size); 3666 3667 /* if not aio dio with unwritten extents, just free io and return */ 3668 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 3669 ext4_free_io_end(io_end); 3670 iocb->private = NULL; 3671 out: 3672 if (is_async) 3673 aio_complete(iocb, ret, 0); 3674 return; 3675 } 3676 3677 io_end->offset = offset; 3678 io_end->size = size; 3679 if (is_async) { 3680 io_end->iocb = iocb; 3681 io_end->result = ret; 3682 } 3683 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3684 3685 /* Add the io_end to per-inode completed aio dio list*/ 3686 ei = EXT4_I(io_end->inode); 3687 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3688 list_add_tail(&io_end->list, &ei->i_completed_io_list); 3689 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3690 3691 /* queue the work to convert unwritten extents to written */ 3692 queue_work(wq, &io_end->work); 3693 iocb->private = NULL; 3694 } 3695 3696 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 3697 { 3698 ext4_io_end_t *io_end = bh->b_private; 3699 struct workqueue_struct *wq; 3700 struct inode *inode; 3701 unsigned long flags; 3702 3703 if (!test_clear_buffer_uninit(bh) || !io_end) 3704 goto out; 3705 3706 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 3707 printk("sb umounted, discard end_io request for inode %lu\n", 3708 io_end->inode->i_ino); 3709 ext4_free_io_end(io_end); 3710 goto out; 3711 } 3712 3713 io_end->flag = EXT4_IO_END_UNWRITTEN; 3714 inode = io_end->inode; 3715 3716 /* Add the io_end to per-inode completed io list*/ 3717 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3718 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 3719 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3720 3721 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 3722 /* queue the work to convert unwritten extents to written */ 3723 queue_work(wq, &io_end->work); 3724 out: 3725 bh->b_private = NULL; 3726 bh->b_end_io = NULL; 3727 clear_buffer_uninit(bh); 3728 end_buffer_async_write(bh, uptodate); 3729 } 3730 3731 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 3732 { 3733 ext4_io_end_t *io_end; 3734 struct page *page = bh->b_page; 3735 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 3736 size_t size = bh->b_size; 3737 3738 retry: 3739 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 3740 if (!io_end) { 3741 pr_warn_ratelimited("%s: allocation fail\n", __func__); 3742 schedule(); 3743 goto retry; 3744 } 3745 io_end->offset = offset; 3746 io_end->size = size; 3747 /* 3748 * We need to hold a reference to the page to make sure it 3749 * doesn't get evicted before ext4_end_io_work() has a chance 3750 * to convert the extent from written to unwritten. 3751 */ 3752 io_end->page = page; 3753 get_page(io_end->page); 3754 3755 bh->b_private = io_end; 3756 bh->b_end_io = ext4_end_io_buffer_write; 3757 return 0; 3758 } 3759 3760 /* 3761 * For ext4 extent files, ext4 will do direct-io write to holes, 3762 * preallocated extents, and those write extend the file, no need to 3763 * fall back to buffered IO. 3764 * 3765 * For holes, we fallocate those blocks, mark them as uninitialized 3766 * If those blocks were preallocated, we mark sure they are splited, but 3767 * still keep the range to write as uninitialized. 3768 * 3769 * The unwrritten extents will be converted to written when DIO is completed. 3770 * For async direct IO, since the IO may still pending when return, we 3771 * set up an end_io call back function, which will do the convertion 3772 * when async direct IO completed. 3773 * 3774 * If the O_DIRECT write will extend the file then add this inode to the 3775 * orphan list. So recovery will truncate it back to the original size 3776 * if the machine crashes during the write. 3777 * 3778 */ 3779 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3780 const struct iovec *iov, loff_t offset, 3781 unsigned long nr_segs) 3782 { 3783 struct file *file = iocb->ki_filp; 3784 struct inode *inode = file->f_mapping->host; 3785 ssize_t ret; 3786 size_t count = iov_length(iov, nr_segs); 3787 3788 loff_t final_size = offset + count; 3789 if (rw == WRITE && final_size <= inode->i_size) { 3790 /* 3791 * We could direct write to holes and fallocate. 3792 * 3793 * Allocated blocks to fill the hole are marked as uninitialized 3794 * to prevent paralel buffered read to expose the stale data 3795 * before DIO complete the data IO. 3796 * 3797 * As to previously fallocated extents, ext4 get_block 3798 * will just simply mark the buffer mapped but still 3799 * keep the extents uninitialized. 3800 * 3801 * for non AIO case, we will convert those unwritten extents 3802 * to written after return back from blockdev_direct_IO. 3803 * 3804 * for async DIO, the conversion needs to be defered when 3805 * the IO is completed. The ext4 end_io callback function 3806 * will be called to take care of the conversion work. 3807 * Here for async case, we allocate an io_end structure to 3808 * hook to the iocb. 3809 */ 3810 iocb->private = NULL; 3811 EXT4_I(inode)->cur_aio_dio = NULL; 3812 if (!is_sync_kiocb(iocb)) { 3813 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 3814 if (!iocb->private) 3815 return -ENOMEM; 3816 /* 3817 * we save the io structure for current async 3818 * direct IO, so that later ext4_map_blocks() 3819 * could flag the io structure whether there 3820 * is a unwritten extents needs to be converted 3821 * when IO is completed. 3822 */ 3823 EXT4_I(inode)->cur_aio_dio = iocb->private; 3824 } 3825 3826 ret = blockdev_direct_IO(rw, iocb, inode, 3827 inode->i_sb->s_bdev, iov, 3828 offset, nr_segs, 3829 ext4_get_block_write, 3830 ext4_end_io_dio); 3831 if (iocb->private) 3832 EXT4_I(inode)->cur_aio_dio = NULL; 3833 /* 3834 * The io_end structure takes a reference to the inode, 3835 * that structure needs to be destroyed and the 3836 * reference to the inode need to be dropped, when IO is 3837 * complete, even with 0 byte write, or failed. 3838 * 3839 * In the successful AIO DIO case, the io_end structure will be 3840 * desctroyed and the reference to the inode will be dropped 3841 * after the end_io call back function is called. 3842 * 3843 * In the case there is 0 byte write, or error case, since 3844 * VFS direct IO won't invoke the end_io call back function, 3845 * we need to free the end_io structure here. 3846 */ 3847 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3848 ext4_free_io_end(iocb->private); 3849 iocb->private = NULL; 3850 } else if (ret > 0 && ext4_test_inode_state(inode, 3851 EXT4_STATE_DIO_UNWRITTEN)) { 3852 int err; 3853 /* 3854 * for non AIO case, since the IO is already 3855 * completed, we could do the convertion right here 3856 */ 3857 err = ext4_convert_unwritten_extents(inode, 3858 offset, ret); 3859 if (err < 0) 3860 ret = err; 3861 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3862 } 3863 return ret; 3864 } 3865 3866 /* for write the the end of file case, we fall back to old way */ 3867 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3868 } 3869 3870 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3871 const struct iovec *iov, loff_t offset, 3872 unsigned long nr_segs) 3873 { 3874 struct file *file = iocb->ki_filp; 3875 struct inode *inode = file->f_mapping->host; 3876 3877 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3878 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3879 3880 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3881 } 3882 3883 /* 3884 * Pages can be marked dirty completely asynchronously from ext4's journalling 3885 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3886 * much here because ->set_page_dirty is called under VFS locks. The page is 3887 * not necessarily locked. 3888 * 3889 * We cannot just dirty the page and leave attached buffers clean, because the 3890 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3891 * or jbddirty because all the journalling code will explode. 3892 * 3893 * So what we do is to mark the page "pending dirty" and next time writepage 3894 * is called, propagate that into the buffers appropriately. 3895 */ 3896 static int ext4_journalled_set_page_dirty(struct page *page) 3897 { 3898 SetPageChecked(page); 3899 return __set_page_dirty_nobuffers(page); 3900 } 3901 3902 static const struct address_space_operations ext4_ordered_aops = { 3903 .readpage = ext4_readpage, 3904 .readpages = ext4_readpages, 3905 .writepage = ext4_writepage, 3906 .sync_page = block_sync_page, 3907 .write_begin = ext4_write_begin, 3908 .write_end = ext4_ordered_write_end, 3909 .bmap = ext4_bmap, 3910 .invalidatepage = ext4_invalidatepage, 3911 .releasepage = ext4_releasepage, 3912 .direct_IO = ext4_direct_IO, 3913 .migratepage = buffer_migrate_page, 3914 .is_partially_uptodate = block_is_partially_uptodate, 3915 .error_remove_page = generic_error_remove_page, 3916 }; 3917 3918 static const struct address_space_operations ext4_writeback_aops = { 3919 .readpage = ext4_readpage, 3920 .readpages = ext4_readpages, 3921 .writepage = ext4_writepage, 3922 .sync_page = block_sync_page, 3923 .write_begin = ext4_write_begin, 3924 .write_end = ext4_writeback_write_end, 3925 .bmap = ext4_bmap, 3926 .invalidatepage = ext4_invalidatepage, 3927 .releasepage = ext4_releasepage, 3928 .direct_IO = ext4_direct_IO, 3929 .migratepage = buffer_migrate_page, 3930 .is_partially_uptodate = block_is_partially_uptodate, 3931 .error_remove_page = generic_error_remove_page, 3932 }; 3933 3934 static const struct address_space_operations ext4_journalled_aops = { 3935 .readpage = ext4_readpage, 3936 .readpages = ext4_readpages, 3937 .writepage = ext4_writepage, 3938 .sync_page = block_sync_page, 3939 .write_begin = ext4_write_begin, 3940 .write_end = ext4_journalled_write_end, 3941 .set_page_dirty = ext4_journalled_set_page_dirty, 3942 .bmap = ext4_bmap, 3943 .invalidatepage = ext4_invalidatepage, 3944 .releasepage = ext4_releasepage, 3945 .is_partially_uptodate = block_is_partially_uptodate, 3946 .error_remove_page = generic_error_remove_page, 3947 }; 3948 3949 static const struct address_space_operations ext4_da_aops = { 3950 .readpage = ext4_readpage, 3951 .readpages = ext4_readpages, 3952 .writepage = ext4_writepage, 3953 .writepages = ext4_da_writepages, 3954 .sync_page = block_sync_page, 3955 .write_begin = ext4_da_write_begin, 3956 .write_end = ext4_da_write_end, 3957 .bmap = ext4_bmap, 3958 .invalidatepage = ext4_da_invalidatepage, 3959 .releasepage = ext4_releasepage, 3960 .direct_IO = ext4_direct_IO, 3961 .migratepage = buffer_migrate_page, 3962 .is_partially_uptodate = block_is_partially_uptodate, 3963 .error_remove_page = generic_error_remove_page, 3964 }; 3965 3966 void ext4_set_aops(struct inode *inode) 3967 { 3968 if (ext4_should_order_data(inode) && 3969 test_opt(inode->i_sb, DELALLOC)) 3970 inode->i_mapping->a_ops = &ext4_da_aops; 3971 else if (ext4_should_order_data(inode)) 3972 inode->i_mapping->a_ops = &ext4_ordered_aops; 3973 else if (ext4_should_writeback_data(inode) && 3974 test_opt(inode->i_sb, DELALLOC)) 3975 inode->i_mapping->a_ops = &ext4_da_aops; 3976 else if (ext4_should_writeback_data(inode)) 3977 inode->i_mapping->a_ops = &ext4_writeback_aops; 3978 else 3979 inode->i_mapping->a_ops = &ext4_journalled_aops; 3980 } 3981 3982 /* 3983 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3984 * up to the end of the block which corresponds to `from'. 3985 * This required during truncate. We need to physically zero the tail end 3986 * of that block so it doesn't yield old data if the file is later grown. 3987 */ 3988 int ext4_block_truncate_page(handle_t *handle, 3989 struct address_space *mapping, loff_t from) 3990 { 3991 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3992 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3993 unsigned blocksize, length, pos; 3994 ext4_lblk_t iblock; 3995 struct inode *inode = mapping->host; 3996 struct buffer_head *bh; 3997 struct page *page; 3998 int err = 0; 3999 4000 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 4001 mapping_gfp_mask(mapping) & ~__GFP_FS); 4002 if (!page) 4003 return -EINVAL; 4004 4005 blocksize = inode->i_sb->s_blocksize; 4006 length = blocksize - (offset & (blocksize - 1)); 4007 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 4008 4009 if (!page_has_buffers(page)) 4010 create_empty_buffers(page, blocksize, 0); 4011 4012 /* Find the buffer that contains "offset" */ 4013 bh = page_buffers(page); 4014 pos = blocksize; 4015 while (offset >= pos) { 4016 bh = bh->b_this_page; 4017 iblock++; 4018 pos += blocksize; 4019 } 4020 4021 err = 0; 4022 if (buffer_freed(bh)) { 4023 BUFFER_TRACE(bh, "freed: skip"); 4024 goto unlock; 4025 } 4026 4027 if (!buffer_mapped(bh)) { 4028 BUFFER_TRACE(bh, "unmapped"); 4029 ext4_get_block(inode, iblock, bh, 0); 4030 /* unmapped? It's a hole - nothing to do */ 4031 if (!buffer_mapped(bh)) { 4032 BUFFER_TRACE(bh, "still unmapped"); 4033 goto unlock; 4034 } 4035 } 4036 4037 /* Ok, it's mapped. Make sure it's up-to-date */ 4038 if (PageUptodate(page)) 4039 set_buffer_uptodate(bh); 4040 4041 if (!buffer_uptodate(bh)) { 4042 err = -EIO; 4043 ll_rw_block(READ, 1, &bh); 4044 wait_on_buffer(bh); 4045 /* Uhhuh. Read error. Complain and punt. */ 4046 if (!buffer_uptodate(bh)) 4047 goto unlock; 4048 } 4049 4050 if (ext4_should_journal_data(inode)) { 4051 BUFFER_TRACE(bh, "get write access"); 4052 err = ext4_journal_get_write_access(handle, bh); 4053 if (err) 4054 goto unlock; 4055 } 4056 4057 zero_user(page, offset, length); 4058 4059 BUFFER_TRACE(bh, "zeroed end of block"); 4060 4061 err = 0; 4062 if (ext4_should_journal_data(inode)) { 4063 err = ext4_handle_dirty_metadata(handle, inode, bh); 4064 } else { 4065 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode) 4066 err = ext4_jbd2_file_inode(handle, inode); 4067 mark_buffer_dirty(bh); 4068 } 4069 4070 unlock: 4071 unlock_page(page); 4072 page_cache_release(page); 4073 return err; 4074 } 4075 4076 /* 4077 * Probably it should be a library function... search for first non-zero word 4078 * or memcmp with zero_page, whatever is better for particular architecture. 4079 * Linus? 4080 */ 4081 static inline int all_zeroes(__le32 *p, __le32 *q) 4082 { 4083 while (p < q) 4084 if (*p++) 4085 return 0; 4086 return 1; 4087 } 4088 4089 /** 4090 * ext4_find_shared - find the indirect blocks for partial truncation. 4091 * @inode: inode in question 4092 * @depth: depth of the affected branch 4093 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4094 * @chain: place to store the pointers to partial indirect blocks 4095 * @top: place to the (detached) top of branch 4096 * 4097 * This is a helper function used by ext4_truncate(). 4098 * 4099 * When we do truncate() we may have to clean the ends of several 4100 * indirect blocks but leave the blocks themselves alive. Block is 4101 * partially truncated if some data below the new i_size is refered 4102 * from it (and it is on the path to the first completely truncated 4103 * data block, indeed). We have to free the top of that path along 4104 * with everything to the right of the path. Since no allocation 4105 * past the truncation point is possible until ext4_truncate() 4106 * finishes, we may safely do the latter, but top of branch may 4107 * require special attention - pageout below the truncation point 4108 * might try to populate it. 4109 * 4110 * We atomically detach the top of branch from the tree, store the 4111 * block number of its root in *@top, pointers to buffer_heads of 4112 * partially truncated blocks - in @chain[].bh and pointers to 4113 * their last elements that should not be removed - in 4114 * @chain[].p. Return value is the pointer to last filled element 4115 * of @chain. 4116 * 4117 * The work left to caller to do the actual freeing of subtrees: 4118 * a) free the subtree starting from *@top 4119 * b) free the subtrees whose roots are stored in 4120 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4121 * c) free the subtrees growing from the inode past the @chain[0]. 4122 * (no partially truncated stuff there). */ 4123 4124 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4125 ext4_lblk_t offsets[4], Indirect chain[4], 4126 __le32 *top) 4127 { 4128 Indirect *partial, *p; 4129 int k, err; 4130 4131 *top = 0; 4132 /* Make k index the deepest non-null offset + 1 */ 4133 for (k = depth; k > 1 && !offsets[k-1]; k--) 4134 ; 4135 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4136 /* Writer: pointers */ 4137 if (!partial) 4138 partial = chain + k-1; 4139 /* 4140 * If the branch acquired continuation since we've looked at it - 4141 * fine, it should all survive and (new) top doesn't belong to us. 4142 */ 4143 if (!partial->key && *partial->p) 4144 /* Writer: end */ 4145 goto no_top; 4146 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4147 ; 4148 /* 4149 * OK, we've found the last block that must survive. The rest of our 4150 * branch should be detached before unlocking. However, if that rest 4151 * of branch is all ours and does not grow immediately from the inode 4152 * it's easier to cheat and just decrement partial->p. 4153 */ 4154 if (p == chain + k - 1 && p > chain) { 4155 p->p--; 4156 } else { 4157 *top = *p->p; 4158 /* Nope, don't do this in ext4. Must leave the tree intact */ 4159 #if 0 4160 *p->p = 0; 4161 #endif 4162 } 4163 /* Writer: end */ 4164 4165 while (partial > p) { 4166 brelse(partial->bh); 4167 partial--; 4168 } 4169 no_top: 4170 return partial; 4171 } 4172 4173 /* 4174 * Zero a number of block pointers in either an inode or an indirect block. 4175 * If we restart the transaction we must again get write access to the 4176 * indirect block for further modification. 4177 * 4178 * We release `count' blocks on disk, but (last - first) may be greater 4179 * than `count' because there can be holes in there. 4180 */ 4181 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 4182 struct buffer_head *bh, 4183 ext4_fsblk_t block_to_free, 4184 unsigned long count, __le32 *first, 4185 __le32 *last) 4186 { 4187 __le32 *p; 4188 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 4189 int err; 4190 4191 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4192 flags |= EXT4_FREE_BLOCKS_METADATA; 4193 4194 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 4195 count)) { 4196 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 4197 "blocks %llu len %lu", 4198 (unsigned long long) block_to_free, count); 4199 return 1; 4200 } 4201 4202 if (try_to_extend_transaction(handle, inode)) { 4203 if (bh) { 4204 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4205 err = ext4_handle_dirty_metadata(handle, inode, bh); 4206 if (unlikely(err)) { 4207 ext4_std_error(inode->i_sb, err); 4208 return 1; 4209 } 4210 } 4211 err = ext4_mark_inode_dirty(handle, inode); 4212 if (unlikely(err)) { 4213 ext4_std_error(inode->i_sb, err); 4214 return 1; 4215 } 4216 err = ext4_truncate_restart_trans(handle, inode, 4217 blocks_for_truncate(inode)); 4218 if (unlikely(err)) { 4219 ext4_std_error(inode->i_sb, err); 4220 return 1; 4221 } 4222 if (bh) { 4223 BUFFER_TRACE(bh, "retaking write access"); 4224 ext4_journal_get_write_access(handle, bh); 4225 } 4226 } 4227 4228 for (p = first; p < last; p++) 4229 *p = 0; 4230 4231 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags); 4232 return 0; 4233 } 4234 4235 /** 4236 * ext4_free_data - free a list of data blocks 4237 * @handle: handle for this transaction 4238 * @inode: inode we are dealing with 4239 * @this_bh: indirect buffer_head which contains *@first and *@last 4240 * @first: array of block numbers 4241 * @last: points immediately past the end of array 4242 * 4243 * We are freeing all blocks refered from that array (numbers are stored as 4244 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4245 * 4246 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4247 * blocks are contiguous then releasing them at one time will only affect one 4248 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4249 * actually use a lot of journal space. 4250 * 4251 * @this_bh will be %NULL if @first and @last point into the inode's direct 4252 * block pointers. 4253 */ 4254 static void ext4_free_data(handle_t *handle, struct inode *inode, 4255 struct buffer_head *this_bh, 4256 __le32 *first, __le32 *last) 4257 { 4258 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4259 unsigned long count = 0; /* Number of blocks in the run */ 4260 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4261 corresponding to 4262 block_to_free */ 4263 ext4_fsblk_t nr; /* Current block # */ 4264 __le32 *p; /* Pointer into inode/ind 4265 for current block */ 4266 int err; 4267 4268 if (this_bh) { /* For indirect block */ 4269 BUFFER_TRACE(this_bh, "get_write_access"); 4270 err = ext4_journal_get_write_access(handle, this_bh); 4271 /* Important: if we can't update the indirect pointers 4272 * to the blocks, we can't free them. */ 4273 if (err) 4274 return; 4275 } 4276 4277 for (p = first; p < last; p++) { 4278 nr = le32_to_cpu(*p); 4279 if (nr) { 4280 /* accumulate blocks to free if they're contiguous */ 4281 if (count == 0) { 4282 block_to_free = nr; 4283 block_to_free_p = p; 4284 count = 1; 4285 } else if (nr == block_to_free + count) { 4286 count++; 4287 } else { 4288 if (ext4_clear_blocks(handle, inode, this_bh, 4289 block_to_free, count, 4290 block_to_free_p, p)) 4291 break; 4292 block_to_free = nr; 4293 block_to_free_p = p; 4294 count = 1; 4295 } 4296 } 4297 } 4298 4299 if (count > 0) 4300 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4301 count, block_to_free_p, p); 4302 4303 if (this_bh) { 4304 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4305 4306 /* 4307 * The buffer head should have an attached journal head at this 4308 * point. However, if the data is corrupted and an indirect 4309 * block pointed to itself, it would have been detached when 4310 * the block was cleared. Check for this instead of OOPSing. 4311 */ 4312 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4313 ext4_handle_dirty_metadata(handle, inode, this_bh); 4314 else 4315 EXT4_ERROR_INODE(inode, 4316 "circular indirect block detected at " 4317 "block %llu", 4318 (unsigned long long) this_bh->b_blocknr); 4319 } 4320 } 4321 4322 /** 4323 * ext4_free_branches - free an array of branches 4324 * @handle: JBD handle for this transaction 4325 * @inode: inode we are dealing with 4326 * @parent_bh: the buffer_head which contains *@first and *@last 4327 * @first: array of block numbers 4328 * @last: pointer immediately past the end of array 4329 * @depth: depth of the branches to free 4330 * 4331 * We are freeing all blocks refered from these branches (numbers are 4332 * stored as little-endian 32-bit) and updating @inode->i_blocks 4333 * appropriately. 4334 */ 4335 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4336 struct buffer_head *parent_bh, 4337 __le32 *first, __le32 *last, int depth) 4338 { 4339 ext4_fsblk_t nr; 4340 __le32 *p; 4341 4342 if (ext4_handle_is_aborted(handle)) 4343 return; 4344 4345 if (depth--) { 4346 struct buffer_head *bh; 4347 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4348 p = last; 4349 while (--p >= first) { 4350 nr = le32_to_cpu(*p); 4351 if (!nr) 4352 continue; /* A hole */ 4353 4354 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 4355 nr, 1)) { 4356 EXT4_ERROR_INODE(inode, 4357 "invalid indirect mapped " 4358 "block %lu (level %d)", 4359 (unsigned long) nr, depth); 4360 break; 4361 } 4362 4363 /* Go read the buffer for the next level down */ 4364 bh = sb_bread(inode->i_sb, nr); 4365 4366 /* 4367 * A read failure? Report error and clear slot 4368 * (should be rare). 4369 */ 4370 if (!bh) { 4371 EXT4_ERROR_INODE_BLOCK(inode, nr, 4372 "Read failure"); 4373 continue; 4374 } 4375 4376 /* This zaps the entire block. Bottom up. */ 4377 BUFFER_TRACE(bh, "free child branches"); 4378 ext4_free_branches(handle, inode, bh, 4379 (__le32 *) bh->b_data, 4380 (__le32 *) bh->b_data + addr_per_block, 4381 depth); 4382 brelse(bh); 4383 4384 /* 4385 * Everything below this this pointer has been 4386 * released. Now let this top-of-subtree go. 4387 * 4388 * We want the freeing of this indirect block to be 4389 * atomic in the journal with the updating of the 4390 * bitmap block which owns it. So make some room in 4391 * the journal. 4392 * 4393 * We zero the parent pointer *after* freeing its 4394 * pointee in the bitmaps, so if extend_transaction() 4395 * for some reason fails to put the bitmap changes and 4396 * the release into the same transaction, recovery 4397 * will merely complain about releasing a free block, 4398 * rather than leaking blocks. 4399 */ 4400 if (ext4_handle_is_aborted(handle)) 4401 return; 4402 if (try_to_extend_transaction(handle, inode)) { 4403 ext4_mark_inode_dirty(handle, inode); 4404 ext4_truncate_restart_trans(handle, inode, 4405 blocks_for_truncate(inode)); 4406 } 4407 4408 /* 4409 * The forget flag here is critical because if 4410 * we are journaling (and not doing data 4411 * journaling), we have to make sure a revoke 4412 * record is written to prevent the journal 4413 * replay from overwriting the (former) 4414 * indirect block if it gets reallocated as a 4415 * data block. This must happen in the same 4416 * transaction where the data blocks are 4417 * actually freed. 4418 */ 4419 ext4_free_blocks(handle, inode, 0, nr, 1, 4420 EXT4_FREE_BLOCKS_METADATA| 4421 EXT4_FREE_BLOCKS_FORGET); 4422 4423 if (parent_bh) { 4424 /* 4425 * The block which we have just freed is 4426 * pointed to by an indirect block: journal it 4427 */ 4428 BUFFER_TRACE(parent_bh, "get_write_access"); 4429 if (!ext4_journal_get_write_access(handle, 4430 parent_bh)){ 4431 *p = 0; 4432 BUFFER_TRACE(parent_bh, 4433 "call ext4_handle_dirty_metadata"); 4434 ext4_handle_dirty_metadata(handle, 4435 inode, 4436 parent_bh); 4437 } 4438 } 4439 } 4440 } else { 4441 /* We have reached the bottom of the tree. */ 4442 BUFFER_TRACE(parent_bh, "free data blocks"); 4443 ext4_free_data(handle, inode, parent_bh, first, last); 4444 } 4445 } 4446 4447 int ext4_can_truncate(struct inode *inode) 4448 { 4449 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4450 return 0; 4451 if (S_ISREG(inode->i_mode)) 4452 return 1; 4453 if (S_ISDIR(inode->i_mode)) 4454 return 1; 4455 if (S_ISLNK(inode->i_mode)) 4456 return !ext4_inode_is_fast_symlink(inode); 4457 return 0; 4458 } 4459 4460 /* 4461 * ext4_truncate() 4462 * 4463 * We block out ext4_get_block() block instantiations across the entire 4464 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4465 * simultaneously on behalf of the same inode. 4466 * 4467 * As we work through the truncate and commmit bits of it to the journal there 4468 * is one core, guiding principle: the file's tree must always be consistent on 4469 * disk. We must be able to restart the truncate after a crash. 4470 * 4471 * The file's tree may be transiently inconsistent in memory (although it 4472 * probably isn't), but whenever we close off and commit a journal transaction, 4473 * the contents of (the filesystem + the journal) must be consistent and 4474 * restartable. It's pretty simple, really: bottom up, right to left (although 4475 * left-to-right works OK too). 4476 * 4477 * Note that at recovery time, journal replay occurs *before* the restart of 4478 * truncate against the orphan inode list. 4479 * 4480 * The committed inode has the new, desired i_size (which is the same as 4481 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4482 * that this inode's truncate did not complete and it will again call 4483 * ext4_truncate() to have another go. So there will be instantiated blocks 4484 * to the right of the truncation point in a crashed ext4 filesystem. But 4485 * that's fine - as long as they are linked from the inode, the post-crash 4486 * ext4_truncate() run will find them and release them. 4487 */ 4488 void ext4_truncate(struct inode *inode) 4489 { 4490 handle_t *handle; 4491 struct ext4_inode_info *ei = EXT4_I(inode); 4492 __le32 *i_data = ei->i_data; 4493 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4494 struct address_space *mapping = inode->i_mapping; 4495 ext4_lblk_t offsets[4]; 4496 Indirect chain[4]; 4497 Indirect *partial; 4498 __le32 nr = 0; 4499 int n; 4500 ext4_lblk_t last_block; 4501 unsigned blocksize = inode->i_sb->s_blocksize; 4502 4503 if (!ext4_can_truncate(inode)) 4504 return; 4505 4506 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4507 4508 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4509 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4510 4511 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4512 ext4_ext_truncate(inode); 4513 return; 4514 } 4515 4516 handle = start_transaction(inode); 4517 if (IS_ERR(handle)) 4518 return; /* AKPM: return what? */ 4519 4520 last_block = (inode->i_size + blocksize-1) 4521 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4522 4523 if (inode->i_size & (blocksize - 1)) 4524 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4525 goto out_stop; 4526 4527 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4528 if (n == 0) 4529 goto out_stop; /* error */ 4530 4531 /* 4532 * OK. This truncate is going to happen. We add the inode to the 4533 * orphan list, so that if this truncate spans multiple transactions, 4534 * and we crash, we will resume the truncate when the filesystem 4535 * recovers. It also marks the inode dirty, to catch the new size. 4536 * 4537 * Implication: the file must always be in a sane, consistent 4538 * truncatable state while each transaction commits. 4539 */ 4540 if (ext4_orphan_add(handle, inode)) 4541 goto out_stop; 4542 4543 /* 4544 * From here we block out all ext4_get_block() callers who want to 4545 * modify the block allocation tree. 4546 */ 4547 down_write(&ei->i_data_sem); 4548 4549 ext4_discard_preallocations(inode); 4550 4551 /* 4552 * The orphan list entry will now protect us from any crash which 4553 * occurs before the truncate completes, so it is now safe to propagate 4554 * the new, shorter inode size (held for now in i_size) into the 4555 * on-disk inode. We do this via i_disksize, which is the value which 4556 * ext4 *really* writes onto the disk inode. 4557 */ 4558 ei->i_disksize = inode->i_size; 4559 4560 if (n == 1) { /* direct blocks */ 4561 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4562 i_data + EXT4_NDIR_BLOCKS); 4563 goto do_indirects; 4564 } 4565 4566 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4567 /* Kill the top of shared branch (not detached) */ 4568 if (nr) { 4569 if (partial == chain) { 4570 /* Shared branch grows from the inode */ 4571 ext4_free_branches(handle, inode, NULL, 4572 &nr, &nr+1, (chain+n-1) - partial); 4573 *partial->p = 0; 4574 /* 4575 * We mark the inode dirty prior to restart, 4576 * and prior to stop. No need for it here. 4577 */ 4578 } else { 4579 /* Shared branch grows from an indirect block */ 4580 BUFFER_TRACE(partial->bh, "get_write_access"); 4581 ext4_free_branches(handle, inode, partial->bh, 4582 partial->p, 4583 partial->p+1, (chain+n-1) - partial); 4584 } 4585 } 4586 /* Clear the ends of indirect blocks on the shared branch */ 4587 while (partial > chain) { 4588 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4589 (__le32*)partial->bh->b_data+addr_per_block, 4590 (chain+n-1) - partial); 4591 BUFFER_TRACE(partial->bh, "call brelse"); 4592 brelse(partial->bh); 4593 partial--; 4594 } 4595 do_indirects: 4596 /* Kill the remaining (whole) subtrees */ 4597 switch (offsets[0]) { 4598 default: 4599 nr = i_data[EXT4_IND_BLOCK]; 4600 if (nr) { 4601 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4602 i_data[EXT4_IND_BLOCK] = 0; 4603 } 4604 case EXT4_IND_BLOCK: 4605 nr = i_data[EXT4_DIND_BLOCK]; 4606 if (nr) { 4607 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4608 i_data[EXT4_DIND_BLOCK] = 0; 4609 } 4610 case EXT4_DIND_BLOCK: 4611 nr = i_data[EXT4_TIND_BLOCK]; 4612 if (nr) { 4613 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4614 i_data[EXT4_TIND_BLOCK] = 0; 4615 } 4616 case EXT4_TIND_BLOCK: 4617 ; 4618 } 4619 4620 up_write(&ei->i_data_sem); 4621 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4622 ext4_mark_inode_dirty(handle, inode); 4623 4624 /* 4625 * In a multi-transaction truncate, we only make the final transaction 4626 * synchronous 4627 */ 4628 if (IS_SYNC(inode)) 4629 ext4_handle_sync(handle); 4630 out_stop: 4631 /* 4632 * If this was a simple ftruncate(), and the file will remain alive 4633 * then we need to clear up the orphan record which we created above. 4634 * However, if this was a real unlink then we were called by 4635 * ext4_delete_inode(), and we allow that function to clean up the 4636 * orphan info for us. 4637 */ 4638 if (inode->i_nlink) 4639 ext4_orphan_del(handle, inode); 4640 4641 ext4_journal_stop(handle); 4642 } 4643 4644 /* 4645 * ext4_get_inode_loc returns with an extra refcount against the inode's 4646 * underlying buffer_head on success. If 'in_mem' is true, we have all 4647 * data in memory that is needed to recreate the on-disk version of this 4648 * inode. 4649 */ 4650 static int __ext4_get_inode_loc(struct inode *inode, 4651 struct ext4_iloc *iloc, int in_mem) 4652 { 4653 struct ext4_group_desc *gdp; 4654 struct buffer_head *bh; 4655 struct super_block *sb = inode->i_sb; 4656 ext4_fsblk_t block; 4657 int inodes_per_block, inode_offset; 4658 4659 iloc->bh = NULL; 4660 if (!ext4_valid_inum(sb, inode->i_ino)) 4661 return -EIO; 4662 4663 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4664 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4665 if (!gdp) 4666 return -EIO; 4667 4668 /* 4669 * Figure out the offset within the block group inode table 4670 */ 4671 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4672 inode_offset = ((inode->i_ino - 1) % 4673 EXT4_INODES_PER_GROUP(sb)); 4674 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4675 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4676 4677 bh = sb_getblk(sb, block); 4678 if (!bh) { 4679 EXT4_ERROR_INODE_BLOCK(inode, block, 4680 "unable to read itable block"); 4681 return -EIO; 4682 } 4683 if (!buffer_uptodate(bh)) { 4684 lock_buffer(bh); 4685 4686 /* 4687 * If the buffer has the write error flag, we have failed 4688 * to write out another inode in the same block. In this 4689 * case, we don't have to read the block because we may 4690 * read the old inode data successfully. 4691 */ 4692 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4693 set_buffer_uptodate(bh); 4694 4695 if (buffer_uptodate(bh)) { 4696 /* someone brought it uptodate while we waited */ 4697 unlock_buffer(bh); 4698 goto has_buffer; 4699 } 4700 4701 /* 4702 * If we have all information of the inode in memory and this 4703 * is the only valid inode in the block, we need not read the 4704 * block. 4705 */ 4706 if (in_mem) { 4707 struct buffer_head *bitmap_bh; 4708 int i, start; 4709 4710 start = inode_offset & ~(inodes_per_block - 1); 4711 4712 /* Is the inode bitmap in cache? */ 4713 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4714 if (!bitmap_bh) 4715 goto make_io; 4716 4717 /* 4718 * If the inode bitmap isn't in cache then the 4719 * optimisation may end up performing two reads instead 4720 * of one, so skip it. 4721 */ 4722 if (!buffer_uptodate(bitmap_bh)) { 4723 brelse(bitmap_bh); 4724 goto make_io; 4725 } 4726 for (i = start; i < start + inodes_per_block; i++) { 4727 if (i == inode_offset) 4728 continue; 4729 if (ext4_test_bit(i, bitmap_bh->b_data)) 4730 break; 4731 } 4732 brelse(bitmap_bh); 4733 if (i == start + inodes_per_block) { 4734 /* all other inodes are free, so skip I/O */ 4735 memset(bh->b_data, 0, bh->b_size); 4736 set_buffer_uptodate(bh); 4737 unlock_buffer(bh); 4738 goto has_buffer; 4739 } 4740 } 4741 4742 make_io: 4743 /* 4744 * If we need to do any I/O, try to pre-readahead extra 4745 * blocks from the inode table. 4746 */ 4747 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4748 ext4_fsblk_t b, end, table; 4749 unsigned num; 4750 4751 table = ext4_inode_table(sb, gdp); 4752 /* s_inode_readahead_blks is always a power of 2 */ 4753 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4754 if (table > b) 4755 b = table; 4756 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4757 num = EXT4_INODES_PER_GROUP(sb); 4758 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4759 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4760 num -= ext4_itable_unused_count(sb, gdp); 4761 table += num / inodes_per_block; 4762 if (end > table) 4763 end = table; 4764 while (b <= end) 4765 sb_breadahead(sb, b++); 4766 } 4767 4768 /* 4769 * There are other valid inodes in the buffer, this inode 4770 * has in-inode xattrs, or we don't have this inode in memory. 4771 * Read the block from disk. 4772 */ 4773 get_bh(bh); 4774 bh->b_end_io = end_buffer_read_sync; 4775 submit_bh(READ_META, bh); 4776 wait_on_buffer(bh); 4777 if (!buffer_uptodate(bh)) { 4778 EXT4_ERROR_INODE_BLOCK(inode, block, 4779 "unable to read itable block"); 4780 brelse(bh); 4781 return -EIO; 4782 } 4783 } 4784 has_buffer: 4785 iloc->bh = bh; 4786 return 0; 4787 } 4788 4789 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4790 { 4791 /* We have all inode data except xattrs in memory here. */ 4792 return __ext4_get_inode_loc(inode, iloc, 4793 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4794 } 4795 4796 void ext4_set_inode_flags(struct inode *inode) 4797 { 4798 unsigned int flags = EXT4_I(inode)->i_flags; 4799 4800 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4801 if (flags & EXT4_SYNC_FL) 4802 inode->i_flags |= S_SYNC; 4803 if (flags & EXT4_APPEND_FL) 4804 inode->i_flags |= S_APPEND; 4805 if (flags & EXT4_IMMUTABLE_FL) 4806 inode->i_flags |= S_IMMUTABLE; 4807 if (flags & EXT4_NOATIME_FL) 4808 inode->i_flags |= S_NOATIME; 4809 if (flags & EXT4_DIRSYNC_FL) 4810 inode->i_flags |= S_DIRSYNC; 4811 } 4812 4813 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4814 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4815 { 4816 unsigned int vfs_fl; 4817 unsigned long old_fl, new_fl; 4818 4819 do { 4820 vfs_fl = ei->vfs_inode.i_flags; 4821 old_fl = ei->i_flags; 4822 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4823 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4824 EXT4_DIRSYNC_FL); 4825 if (vfs_fl & S_SYNC) 4826 new_fl |= EXT4_SYNC_FL; 4827 if (vfs_fl & S_APPEND) 4828 new_fl |= EXT4_APPEND_FL; 4829 if (vfs_fl & S_IMMUTABLE) 4830 new_fl |= EXT4_IMMUTABLE_FL; 4831 if (vfs_fl & S_NOATIME) 4832 new_fl |= EXT4_NOATIME_FL; 4833 if (vfs_fl & S_DIRSYNC) 4834 new_fl |= EXT4_DIRSYNC_FL; 4835 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4836 } 4837 4838 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4839 struct ext4_inode_info *ei) 4840 { 4841 blkcnt_t i_blocks ; 4842 struct inode *inode = &(ei->vfs_inode); 4843 struct super_block *sb = inode->i_sb; 4844 4845 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4846 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4847 /* we are using combined 48 bit field */ 4848 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4849 le32_to_cpu(raw_inode->i_blocks_lo); 4850 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4851 /* i_blocks represent file system block size */ 4852 return i_blocks << (inode->i_blkbits - 9); 4853 } else { 4854 return i_blocks; 4855 } 4856 } else { 4857 return le32_to_cpu(raw_inode->i_blocks_lo); 4858 } 4859 } 4860 4861 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4862 { 4863 struct ext4_iloc iloc; 4864 struct ext4_inode *raw_inode; 4865 struct ext4_inode_info *ei; 4866 struct inode *inode; 4867 journal_t *journal = EXT4_SB(sb)->s_journal; 4868 long ret; 4869 int block; 4870 4871 inode = iget_locked(sb, ino); 4872 if (!inode) 4873 return ERR_PTR(-ENOMEM); 4874 if (!(inode->i_state & I_NEW)) 4875 return inode; 4876 4877 ei = EXT4_I(inode); 4878 iloc.bh = 0; 4879 4880 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4881 if (ret < 0) 4882 goto bad_inode; 4883 raw_inode = ext4_raw_inode(&iloc); 4884 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4885 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4886 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4887 if (!(test_opt(inode->i_sb, NO_UID32))) { 4888 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4889 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4890 } 4891 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4892 4893 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4894 ei->i_dir_start_lookup = 0; 4895 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4896 /* We now have enough fields to check if the inode was active or not. 4897 * This is needed because nfsd might try to access dead inodes 4898 * the test is that same one that e2fsck uses 4899 * NeilBrown 1999oct15 4900 */ 4901 if (inode->i_nlink == 0) { 4902 if (inode->i_mode == 0 || 4903 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4904 /* this inode is deleted */ 4905 ret = -ESTALE; 4906 goto bad_inode; 4907 } 4908 /* The only unlinked inodes we let through here have 4909 * valid i_mode and are being read by the orphan 4910 * recovery code: that's fine, we're about to complete 4911 * the process of deleting those. */ 4912 } 4913 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4914 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4915 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4916 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4917 ei->i_file_acl |= 4918 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4919 inode->i_size = ext4_isize(raw_inode); 4920 ei->i_disksize = inode->i_size; 4921 #ifdef CONFIG_QUOTA 4922 ei->i_reserved_quota = 0; 4923 #endif 4924 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4925 ei->i_block_group = iloc.block_group; 4926 ei->i_last_alloc_group = ~0; 4927 /* 4928 * NOTE! The in-memory inode i_data array is in little-endian order 4929 * even on big-endian machines: we do NOT byteswap the block numbers! 4930 */ 4931 for (block = 0; block < EXT4_N_BLOCKS; block++) 4932 ei->i_data[block] = raw_inode->i_block[block]; 4933 INIT_LIST_HEAD(&ei->i_orphan); 4934 4935 /* 4936 * Set transaction id's of transactions that have to be committed 4937 * to finish f[data]sync. We set them to currently running transaction 4938 * as we cannot be sure that the inode or some of its metadata isn't 4939 * part of the transaction - the inode could have been reclaimed and 4940 * now it is reread from disk. 4941 */ 4942 if (journal) { 4943 transaction_t *transaction; 4944 tid_t tid; 4945 4946 read_lock(&journal->j_state_lock); 4947 if (journal->j_running_transaction) 4948 transaction = journal->j_running_transaction; 4949 else 4950 transaction = journal->j_committing_transaction; 4951 if (transaction) 4952 tid = transaction->t_tid; 4953 else 4954 tid = journal->j_commit_sequence; 4955 read_unlock(&journal->j_state_lock); 4956 ei->i_sync_tid = tid; 4957 ei->i_datasync_tid = tid; 4958 } 4959 4960 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4961 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4962 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4963 EXT4_INODE_SIZE(inode->i_sb)) { 4964 ret = -EIO; 4965 goto bad_inode; 4966 } 4967 if (ei->i_extra_isize == 0) { 4968 /* The extra space is currently unused. Use it. */ 4969 ei->i_extra_isize = sizeof(struct ext4_inode) - 4970 EXT4_GOOD_OLD_INODE_SIZE; 4971 } else { 4972 __le32 *magic = (void *)raw_inode + 4973 EXT4_GOOD_OLD_INODE_SIZE + 4974 ei->i_extra_isize; 4975 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4976 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4977 } 4978 } else 4979 ei->i_extra_isize = 0; 4980 4981 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4982 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4983 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4984 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4985 4986 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4987 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4988 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4989 inode->i_version |= 4990 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4991 } 4992 4993 ret = 0; 4994 if (ei->i_file_acl && 4995 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4996 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4997 ei->i_file_acl); 4998 ret = -EIO; 4999 goto bad_inode; 5000 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 5001 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5002 (S_ISLNK(inode->i_mode) && 5003 !ext4_inode_is_fast_symlink(inode))) 5004 /* Validate extent which is part of inode */ 5005 ret = ext4_ext_check_inode(inode); 5006 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5007 (S_ISLNK(inode->i_mode) && 5008 !ext4_inode_is_fast_symlink(inode))) { 5009 /* Validate block references which are part of inode */ 5010 ret = ext4_check_inode_blockref(inode); 5011 } 5012 if (ret) 5013 goto bad_inode; 5014 5015 if (S_ISREG(inode->i_mode)) { 5016 inode->i_op = &ext4_file_inode_operations; 5017 inode->i_fop = &ext4_file_operations; 5018 ext4_set_aops(inode); 5019 } else if (S_ISDIR(inode->i_mode)) { 5020 inode->i_op = &ext4_dir_inode_operations; 5021 inode->i_fop = &ext4_dir_operations; 5022 } else if (S_ISLNK(inode->i_mode)) { 5023 if (ext4_inode_is_fast_symlink(inode)) { 5024 inode->i_op = &ext4_fast_symlink_inode_operations; 5025 nd_terminate_link(ei->i_data, inode->i_size, 5026 sizeof(ei->i_data) - 1); 5027 } else { 5028 inode->i_op = &ext4_symlink_inode_operations; 5029 ext4_set_aops(inode); 5030 } 5031 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5032 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5033 inode->i_op = &ext4_special_inode_operations; 5034 if (raw_inode->i_block[0]) 5035 init_special_inode(inode, inode->i_mode, 5036 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5037 else 5038 init_special_inode(inode, inode->i_mode, 5039 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5040 } else { 5041 ret = -EIO; 5042 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 5043 goto bad_inode; 5044 } 5045 brelse(iloc.bh); 5046 ext4_set_inode_flags(inode); 5047 unlock_new_inode(inode); 5048 return inode; 5049 5050 bad_inode: 5051 brelse(iloc.bh); 5052 iget_failed(inode); 5053 return ERR_PTR(ret); 5054 } 5055 5056 static int ext4_inode_blocks_set(handle_t *handle, 5057 struct ext4_inode *raw_inode, 5058 struct ext4_inode_info *ei) 5059 { 5060 struct inode *inode = &(ei->vfs_inode); 5061 u64 i_blocks = inode->i_blocks; 5062 struct super_block *sb = inode->i_sb; 5063 5064 if (i_blocks <= ~0U) { 5065 /* 5066 * i_blocks can be represnted in a 32 bit variable 5067 * as multiple of 512 bytes 5068 */ 5069 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5070 raw_inode->i_blocks_high = 0; 5071 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5072 return 0; 5073 } 5074 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 5075 return -EFBIG; 5076 5077 if (i_blocks <= 0xffffffffffffULL) { 5078 /* 5079 * i_blocks can be represented in a 48 bit variable 5080 * as multiple of 512 bytes 5081 */ 5082 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5083 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5084 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5085 } else { 5086 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5087 /* i_block is stored in file system block size */ 5088 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5089 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5090 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5091 } 5092 return 0; 5093 } 5094 5095 /* 5096 * Post the struct inode info into an on-disk inode location in the 5097 * buffer-cache. This gobbles the caller's reference to the 5098 * buffer_head in the inode location struct. 5099 * 5100 * The caller must have write access to iloc->bh. 5101 */ 5102 static int ext4_do_update_inode(handle_t *handle, 5103 struct inode *inode, 5104 struct ext4_iloc *iloc) 5105 { 5106 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5107 struct ext4_inode_info *ei = EXT4_I(inode); 5108 struct buffer_head *bh = iloc->bh; 5109 int err = 0, rc, block; 5110 5111 /* For fields not not tracking in the in-memory inode, 5112 * initialise them to zero for new inodes. */ 5113 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5114 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5115 5116 ext4_get_inode_flags(ei); 5117 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5118 if (!(test_opt(inode->i_sb, NO_UID32))) { 5119 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 5120 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 5121 /* 5122 * Fix up interoperability with old kernels. Otherwise, old inodes get 5123 * re-used with the upper 16 bits of the uid/gid intact 5124 */ 5125 if (!ei->i_dtime) { 5126 raw_inode->i_uid_high = 5127 cpu_to_le16(high_16_bits(inode->i_uid)); 5128 raw_inode->i_gid_high = 5129 cpu_to_le16(high_16_bits(inode->i_gid)); 5130 } else { 5131 raw_inode->i_uid_high = 0; 5132 raw_inode->i_gid_high = 0; 5133 } 5134 } else { 5135 raw_inode->i_uid_low = 5136 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5137 raw_inode->i_gid_low = 5138 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5139 raw_inode->i_uid_high = 0; 5140 raw_inode->i_gid_high = 0; 5141 } 5142 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5143 5144 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5145 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5146 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5147 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5148 5149 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5150 goto out_brelse; 5151 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5152 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5153 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5154 cpu_to_le32(EXT4_OS_HURD)) 5155 raw_inode->i_file_acl_high = 5156 cpu_to_le16(ei->i_file_acl >> 32); 5157 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5158 ext4_isize_set(raw_inode, ei->i_disksize); 5159 if (ei->i_disksize > 0x7fffffffULL) { 5160 struct super_block *sb = inode->i_sb; 5161 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5162 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5163 EXT4_SB(sb)->s_es->s_rev_level == 5164 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5165 /* If this is the first large file 5166 * created, add a flag to the superblock. 5167 */ 5168 err = ext4_journal_get_write_access(handle, 5169 EXT4_SB(sb)->s_sbh); 5170 if (err) 5171 goto out_brelse; 5172 ext4_update_dynamic_rev(sb); 5173 EXT4_SET_RO_COMPAT_FEATURE(sb, 5174 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5175 sb->s_dirt = 1; 5176 ext4_handle_sync(handle); 5177 err = ext4_handle_dirty_metadata(handle, NULL, 5178 EXT4_SB(sb)->s_sbh); 5179 } 5180 } 5181 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5182 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5183 if (old_valid_dev(inode->i_rdev)) { 5184 raw_inode->i_block[0] = 5185 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5186 raw_inode->i_block[1] = 0; 5187 } else { 5188 raw_inode->i_block[0] = 0; 5189 raw_inode->i_block[1] = 5190 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5191 raw_inode->i_block[2] = 0; 5192 } 5193 } else 5194 for (block = 0; block < EXT4_N_BLOCKS; block++) 5195 raw_inode->i_block[block] = ei->i_data[block]; 5196 5197 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5198 if (ei->i_extra_isize) { 5199 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5200 raw_inode->i_version_hi = 5201 cpu_to_le32(inode->i_version >> 32); 5202 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5203 } 5204 5205 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5206 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5207 if (!err) 5208 err = rc; 5209 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5210 5211 ext4_update_inode_fsync_trans(handle, inode, 0); 5212 out_brelse: 5213 brelse(bh); 5214 ext4_std_error(inode->i_sb, err); 5215 return err; 5216 } 5217 5218 /* 5219 * ext4_write_inode() 5220 * 5221 * We are called from a few places: 5222 * 5223 * - Within generic_file_write() for O_SYNC files. 5224 * Here, there will be no transaction running. We wait for any running 5225 * trasnaction to commit. 5226 * 5227 * - Within sys_sync(), kupdate and such. 5228 * We wait on commit, if tol to. 5229 * 5230 * - Within prune_icache() (PF_MEMALLOC == true) 5231 * Here we simply return. We can't afford to block kswapd on the 5232 * journal commit. 5233 * 5234 * In all cases it is actually safe for us to return without doing anything, 5235 * because the inode has been copied into a raw inode buffer in 5236 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5237 * knfsd. 5238 * 5239 * Note that we are absolutely dependent upon all inode dirtiers doing the 5240 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5241 * which we are interested. 5242 * 5243 * It would be a bug for them to not do this. The code: 5244 * 5245 * mark_inode_dirty(inode) 5246 * stuff(); 5247 * inode->i_size = expr; 5248 * 5249 * is in error because a kswapd-driven write_inode() could occur while 5250 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5251 * will no longer be on the superblock's dirty inode list. 5252 */ 5253 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5254 { 5255 int err; 5256 5257 if (current->flags & PF_MEMALLOC) 5258 return 0; 5259 5260 if (EXT4_SB(inode->i_sb)->s_journal) { 5261 if (ext4_journal_current_handle()) { 5262 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5263 dump_stack(); 5264 return -EIO; 5265 } 5266 5267 if (wbc->sync_mode != WB_SYNC_ALL) 5268 return 0; 5269 5270 err = ext4_force_commit(inode->i_sb); 5271 } else { 5272 struct ext4_iloc iloc; 5273 5274 err = __ext4_get_inode_loc(inode, &iloc, 0); 5275 if (err) 5276 return err; 5277 if (wbc->sync_mode == WB_SYNC_ALL) 5278 sync_dirty_buffer(iloc.bh); 5279 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5280 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5281 "IO error syncing inode"); 5282 err = -EIO; 5283 } 5284 brelse(iloc.bh); 5285 } 5286 return err; 5287 } 5288 5289 /* 5290 * ext4_setattr() 5291 * 5292 * Called from notify_change. 5293 * 5294 * We want to trap VFS attempts to truncate the file as soon as 5295 * possible. In particular, we want to make sure that when the VFS 5296 * shrinks i_size, we put the inode on the orphan list and modify 5297 * i_disksize immediately, so that during the subsequent flushing of 5298 * dirty pages and freeing of disk blocks, we can guarantee that any 5299 * commit will leave the blocks being flushed in an unused state on 5300 * disk. (On recovery, the inode will get truncated and the blocks will 5301 * be freed, so we have a strong guarantee that no future commit will 5302 * leave these blocks visible to the user.) 5303 * 5304 * Another thing we have to assure is that if we are in ordered mode 5305 * and inode is still attached to the committing transaction, we must 5306 * we start writeout of all the dirty pages which are being truncated. 5307 * This way we are sure that all the data written in the previous 5308 * transaction are already on disk (truncate waits for pages under 5309 * writeback). 5310 * 5311 * Called with inode->i_mutex down. 5312 */ 5313 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5314 { 5315 struct inode *inode = dentry->d_inode; 5316 int error, rc = 0; 5317 int orphan = 0; 5318 const unsigned int ia_valid = attr->ia_valid; 5319 5320 error = inode_change_ok(inode, attr); 5321 if (error) 5322 return error; 5323 5324 if (is_quota_modification(inode, attr)) 5325 dquot_initialize(inode); 5326 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5327 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5328 handle_t *handle; 5329 5330 /* (user+group)*(old+new) structure, inode write (sb, 5331 * inode block, ? - but truncate inode update has it) */ 5332 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 5333 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 5334 if (IS_ERR(handle)) { 5335 error = PTR_ERR(handle); 5336 goto err_out; 5337 } 5338 error = dquot_transfer(inode, attr); 5339 if (error) { 5340 ext4_journal_stop(handle); 5341 return error; 5342 } 5343 /* Update corresponding info in inode so that everything is in 5344 * one transaction */ 5345 if (attr->ia_valid & ATTR_UID) 5346 inode->i_uid = attr->ia_uid; 5347 if (attr->ia_valid & ATTR_GID) 5348 inode->i_gid = attr->ia_gid; 5349 error = ext4_mark_inode_dirty(handle, inode); 5350 ext4_journal_stop(handle); 5351 } 5352 5353 if (attr->ia_valid & ATTR_SIZE) { 5354 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5355 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5356 5357 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5358 return -EFBIG; 5359 } 5360 } 5361 5362 if (S_ISREG(inode->i_mode) && 5363 attr->ia_valid & ATTR_SIZE && 5364 (attr->ia_size < inode->i_size || 5365 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) { 5366 handle_t *handle; 5367 5368 handle = ext4_journal_start(inode, 3); 5369 if (IS_ERR(handle)) { 5370 error = PTR_ERR(handle); 5371 goto err_out; 5372 } 5373 if (ext4_handle_valid(handle)) { 5374 error = ext4_orphan_add(handle, inode); 5375 orphan = 1; 5376 } 5377 EXT4_I(inode)->i_disksize = attr->ia_size; 5378 rc = ext4_mark_inode_dirty(handle, inode); 5379 if (!error) 5380 error = rc; 5381 ext4_journal_stop(handle); 5382 5383 if (ext4_should_order_data(inode)) { 5384 error = ext4_begin_ordered_truncate(inode, 5385 attr->ia_size); 5386 if (error) { 5387 /* Do as much error cleanup as possible */ 5388 handle = ext4_journal_start(inode, 3); 5389 if (IS_ERR(handle)) { 5390 ext4_orphan_del(NULL, inode); 5391 goto err_out; 5392 } 5393 ext4_orphan_del(handle, inode); 5394 orphan = 0; 5395 ext4_journal_stop(handle); 5396 goto err_out; 5397 } 5398 } 5399 /* ext4_truncate will clear the flag */ 5400 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))) 5401 ext4_truncate(inode); 5402 } 5403 5404 if ((attr->ia_valid & ATTR_SIZE) && 5405 attr->ia_size != i_size_read(inode)) 5406 rc = vmtruncate(inode, attr->ia_size); 5407 5408 if (!rc) { 5409 setattr_copy(inode, attr); 5410 mark_inode_dirty(inode); 5411 } 5412 5413 /* 5414 * If the call to ext4_truncate failed to get a transaction handle at 5415 * all, we need to clean up the in-core orphan list manually. 5416 */ 5417 if (orphan && inode->i_nlink) 5418 ext4_orphan_del(NULL, inode); 5419 5420 if (!rc && (ia_valid & ATTR_MODE)) 5421 rc = ext4_acl_chmod(inode); 5422 5423 err_out: 5424 ext4_std_error(inode->i_sb, error); 5425 if (!error) 5426 error = rc; 5427 return error; 5428 } 5429 5430 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5431 struct kstat *stat) 5432 { 5433 struct inode *inode; 5434 unsigned long delalloc_blocks; 5435 5436 inode = dentry->d_inode; 5437 generic_fillattr(inode, stat); 5438 5439 /* 5440 * We can't update i_blocks if the block allocation is delayed 5441 * otherwise in the case of system crash before the real block 5442 * allocation is done, we will have i_blocks inconsistent with 5443 * on-disk file blocks. 5444 * We always keep i_blocks updated together with real 5445 * allocation. But to not confuse with user, stat 5446 * will return the blocks that include the delayed allocation 5447 * blocks for this file. 5448 */ 5449 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5450 5451 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5452 return 0; 5453 } 5454 5455 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5456 int chunk) 5457 { 5458 int indirects; 5459 5460 /* if nrblocks are contiguous */ 5461 if (chunk) { 5462 /* 5463 * With N contiguous data blocks, it need at most 5464 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 5465 * 2 dindirect blocks 5466 * 1 tindirect block 5467 */ 5468 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 5469 return indirects + 3; 5470 } 5471 /* 5472 * if nrblocks are not contiguous, worse case, each block touch 5473 * a indirect block, and each indirect block touch a double indirect 5474 * block, plus a triple indirect block 5475 */ 5476 indirects = nrblocks * 2 + 1; 5477 return indirects; 5478 } 5479 5480 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5481 { 5482 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5483 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5484 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5485 } 5486 5487 /* 5488 * Account for index blocks, block groups bitmaps and block group 5489 * descriptor blocks if modify datablocks and index blocks 5490 * worse case, the indexs blocks spread over different block groups 5491 * 5492 * If datablocks are discontiguous, they are possible to spread over 5493 * different block groups too. If they are contiuguous, with flexbg, 5494 * they could still across block group boundary. 5495 * 5496 * Also account for superblock, inode, quota and xattr blocks 5497 */ 5498 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5499 { 5500 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5501 int gdpblocks; 5502 int idxblocks; 5503 int ret = 0; 5504 5505 /* 5506 * How many index blocks need to touch to modify nrblocks? 5507 * The "Chunk" flag indicating whether the nrblocks is 5508 * physically contiguous on disk 5509 * 5510 * For Direct IO and fallocate, they calls get_block to allocate 5511 * one single extent at a time, so they could set the "Chunk" flag 5512 */ 5513 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5514 5515 ret = idxblocks; 5516 5517 /* 5518 * Now let's see how many group bitmaps and group descriptors need 5519 * to account 5520 */ 5521 groups = idxblocks; 5522 if (chunk) 5523 groups += 1; 5524 else 5525 groups += nrblocks; 5526 5527 gdpblocks = groups; 5528 if (groups > ngroups) 5529 groups = ngroups; 5530 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5531 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5532 5533 /* bitmaps and block group descriptor blocks */ 5534 ret += groups + gdpblocks; 5535 5536 /* Blocks for super block, inode, quota and xattr blocks */ 5537 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5538 5539 return ret; 5540 } 5541 5542 /* 5543 * Calulate the total number of credits to reserve to fit 5544 * the modification of a single pages into a single transaction, 5545 * which may include multiple chunks of block allocations. 5546 * 5547 * This could be called via ext4_write_begin() 5548 * 5549 * We need to consider the worse case, when 5550 * one new block per extent. 5551 */ 5552 int ext4_writepage_trans_blocks(struct inode *inode) 5553 { 5554 int bpp = ext4_journal_blocks_per_page(inode); 5555 int ret; 5556 5557 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5558 5559 /* Account for data blocks for journalled mode */ 5560 if (ext4_should_journal_data(inode)) 5561 ret += bpp; 5562 return ret; 5563 } 5564 5565 /* 5566 * Calculate the journal credits for a chunk of data modification. 5567 * 5568 * This is called from DIO, fallocate or whoever calling 5569 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5570 * 5571 * journal buffers for data blocks are not included here, as DIO 5572 * and fallocate do no need to journal data buffers. 5573 */ 5574 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5575 { 5576 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5577 } 5578 5579 /* 5580 * The caller must have previously called ext4_reserve_inode_write(). 5581 * Give this, we know that the caller already has write access to iloc->bh. 5582 */ 5583 int ext4_mark_iloc_dirty(handle_t *handle, 5584 struct inode *inode, struct ext4_iloc *iloc) 5585 { 5586 int err = 0; 5587 5588 if (test_opt(inode->i_sb, I_VERSION)) 5589 inode_inc_iversion(inode); 5590 5591 /* the do_update_inode consumes one bh->b_count */ 5592 get_bh(iloc->bh); 5593 5594 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5595 err = ext4_do_update_inode(handle, inode, iloc); 5596 put_bh(iloc->bh); 5597 return err; 5598 } 5599 5600 /* 5601 * On success, We end up with an outstanding reference count against 5602 * iloc->bh. This _must_ be cleaned up later. 5603 */ 5604 5605 int 5606 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5607 struct ext4_iloc *iloc) 5608 { 5609 int err; 5610 5611 err = ext4_get_inode_loc(inode, iloc); 5612 if (!err) { 5613 BUFFER_TRACE(iloc->bh, "get_write_access"); 5614 err = ext4_journal_get_write_access(handle, iloc->bh); 5615 if (err) { 5616 brelse(iloc->bh); 5617 iloc->bh = NULL; 5618 } 5619 } 5620 ext4_std_error(inode->i_sb, err); 5621 return err; 5622 } 5623 5624 /* 5625 * Expand an inode by new_extra_isize bytes. 5626 * Returns 0 on success or negative error number on failure. 5627 */ 5628 static int ext4_expand_extra_isize(struct inode *inode, 5629 unsigned int new_extra_isize, 5630 struct ext4_iloc iloc, 5631 handle_t *handle) 5632 { 5633 struct ext4_inode *raw_inode; 5634 struct ext4_xattr_ibody_header *header; 5635 5636 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5637 return 0; 5638 5639 raw_inode = ext4_raw_inode(&iloc); 5640 5641 header = IHDR(inode, raw_inode); 5642 5643 /* No extended attributes present */ 5644 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5645 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5646 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5647 new_extra_isize); 5648 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5649 return 0; 5650 } 5651 5652 /* try to expand with EAs present */ 5653 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5654 raw_inode, handle); 5655 } 5656 5657 /* 5658 * What we do here is to mark the in-core inode as clean with respect to inode 5659 * dirtiness (it may still be data-dirty). 5660 * This means that the in-core inode may be reaped by prune_icache 5661 * without having to perform any I/O. This is a very good thing, 5662 * because *any* task may call prune_icache - even ones which 5663 * have a transaction open against a different journal. 5664 * 5665 * Is this cheating? Not really. Sure, we haven't written the 5666 * inode out, but prune_icache isn't a user-visible syncing function. 5667 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5668 * we start and wait on commits. 5669 * 5670 * Is this efficient/effective? Well, we're being nice to the system 5671 * by cleaning up our inodes proactively so they can be reaped 5672 * without I/O. But we are potentially leaving up to five seconds' 5673 * worth of inodes floating about which prune_icache wants us to 5674 * write out. One way to fix that would be to get prune_icache() 5675 * to do a write_super() to free up some memory. It has the desired 5676 * effect. 5677 */ 5678 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5679 { 5680 struct ext4_iloc iloc; 5681 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5682 static unsigned int mnt_count; 5683 int err, ret; 5684 5685 might_sleep(); 5686 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5687 err = ext4_reserve_inode_write(handle, inode, &iloc); 5688 if (ext4_handle_valid(handle) && 5689 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5690 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5691 /* 5692 * We need extra buffer credits since we may write into EA block 5693 * with this same handle. If journal_extend fails, then it will 5694 * only result in a minor loss of functionality for that inode. 5695 * If this is felt to be critical, then e2fsck should be run to 5696 * force a large enough s_min_extra_isize. 5697 */ 5698 if ((jbd2_journal_extend(handle, 5699 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5700 ret = ext4_expand_extra_isize(inode, 5701 sbi->s_want_extra_isize, 5702 iloc, handle); 5703 if (ret) { 5704 ext4_set_inode_state(inode, 5705 EXT4_STATE_NO_EXPAND); 5706 if (mnt_count != 5707 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5708 ext4_warning(inode->i_sb, 5709 "Unable to expand inode %lu. Delete" 5710 " some EAs or run e2fsck.", 5711 inode->i_ino); 5712 mnt_count = 5713 le16_to_cpu(sbi->s_es->s_mnt_count); 5714 } 5715 } 5716 } 5717 } 5718 if (!err) 5719 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5720 return err; 5721 } 5722 5723 /* 5724 * ext4_dirty_inode() is called from __mark_inode_dirty() 5725 * 5726 * We're really interested in the case where a file is being extended. 5727 * i_size has been changed by generic_commit_write() and we thus need 5728 * to include the updated inode in the current transaction. 5729 * 5730 * Also, dquot_alloc_block() will always dirty the inode when blocks 5731 * are allocated to the file. 5732 * 5733 * If the inode is marked synchronous, we don't honour that here - doing 5734 * so would cause a commit on atime updates, which we don't bother doing. 5735 * We handle synchronous inodes at the highest possible level. 5736 */ 5737 void ext4_dirty_inode(struct inode *inode) 5738 { 5739 handle_t *handle; 5740 5741 handle = ext4_journal_start(inode, 2); 5742 if (IS_ERR(handle)) 5743 goto out; 5744 5745 ext4_mark_inode_dirty(handle, inode); 5746 5747 ext4_journal_stop(handle); 5748 out: 5749 return; 5750 } 5751 5752 #if 0 5753 /* 5754 * Bind an inode's backing buffer_head into this transaction, to prevent 5755 * it from being flushed to disk early. Unlike 5756 * ext4_reserve_inode_write, this leaves behind no bh reference and 5757 * returns no iloc structure, so the caller needs to repeat the iloc 5758 * lookup to mark the inode dirty later. 5759 */ 5760 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5761 { 5762 struct ext4_iloc iloc; 5763 5764 int err = 0; 5765 if (handle) { 5766 err = ext4_get_inode_loc(inode, &iloc); 5767 if (!err) { 5768 BUFFER_TRACE(iloc.bh, "get_write_access"); 5769 err = jbd2_journal_get_write_access(handle, iloc.bh); 5770 if (!err) 5771 err = ext4_handle_dirty_metadata(handle, 5772 NULL, 5773 iloc.bh); 5774 brelse(iloc.bh); 5775 } 5776 } 5777 ext4_std_error(inode->i_sb, err); 5778 return err; 5779 } 5780 #endif 5781 5782 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5783 { 5784 journal_t *journal; 5785 handle_t *handle; 5786 int err; 5787 5788 /* 5789 * We have to be very careful here: changing a data block's 5790 * journaling status dynamically is dangerous. If we write a 5791 * data block to the journal, change the status and then delete 5792 * that block, we risk forgetting to revoke the old log record 5793 * from the journal and so a subsequent replay can corrupt data. 5794 * So, first we make sure that the journal is empty and that 5795 * nobody is changing anything. 5796 */ 5797 5798 journal = EXT4_JOURNAL(inode); 5799 if (!journal) 5800 return 0; 5801 if (is_journal_aborted(journal)) 5802 return -EROFS; 5803 5804 jbd2_journal_lock_updates(journal); 5805 jbd2_journal_flush(journal); 5806 5807 /* 5808 * OK, there are no updates running now, and all cached data is 5809 * synced to disk. We are now in a completely consistent state 5810 * which doesn't have anything in the journal, and we know that 5811 * no filesystem updates are running, so it is safe to modify 5812 * the inode's in-core data-journaling state flag now. 5813 */ 5814 5815 if (val) 5816 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5817 else 5818 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5819 ext4_set_aops(inode); 5820 5821 jbd2_journal_unlock_updates(journal); 5822 5823 /* Finally we can mark the inode as dirty. */ 5824 5825 handle = ext4_journal_start(inode, 1); 5826 if (IS_ERR(handle)) 5827 return PTR_ERR(handle); 5828 5829 err = ext4_mark_inode_dirty(handle, inode); 5830 ext4_handle_sync(handle); 5831 ext4_journal_stop(handle); 5832 ext4_std_error(inode->i_sb, err); 5833 5834 return err; 5835 } 5836 5837 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5838 { 5839 return !buffer_mapped(bh); 5840 } 5841 5842 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5843 { 5844 struct page *page = vmf->page; 5845 loff_t size; 5846 unsigned long len; 5847 int ret = -EINVAL; 5848 void *fsdata; 5849 struct file *file = vma->vm_file; 5850 struct inode *inode = file->f_path.dentry->d_inode; 5851 struct address_space *mapping = inode->i_mapping; 5852 5853 /* 5854 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5855 * get i_mutex because we are already holding mmap_sem. 5856 */ 5857 down_read(&inode->i_alloc_sem); 5858 size = i_size_read(inode); 5859 if (page->mapping != mapping || size <= page_offset(page) 5860 || !PageUptodate(page)) { 5861 /* page got truncated from under us? */ 5862 goto out_unlock; 5863 } 5864 ret = 0; 5865 if (PageMappedToDisk(page)) 5866 goto out_unlock; 5867 5868 if (page->index == size >> PAGE_CACHE_SHIFT) 5869 len = size & ~PAGE_CACHE_MASK; 5870 else 5871 len = PAGE_CACHE_SIZE; 5872 5873 lock_page(page); 5874 /* 5875 * return if we have all the buffers mapped. This avoid 5876 * the need to call write_begin/write_end which does a 5877 * journal_start/journal_stop which can block and take 5878 * long time 5879 */ 5880 if (page_has_buffers(page)) { 5881 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5882 ext4_bh_unmapped)) { 5883 unlock_page(page); 5884 goto out_unlock; 5885 } 5886 } 5887 unlock_page(page); 5888 /* 5889 * OK, we need to fill the hole... Do write_begin write_end 5890 * to do block allocation/reservation.We are not holding 5891 * inode.i__mutex here. That allow * parallel write_begin, 5892 * write_end call. lock_page prevent this from happening 5893 * on the same page though 5894 */ 5895 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5896 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5897 if (ret < 0) 5898 goto out_unlock; 5899 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5900 len, len, page, fsdata); 5901 if (ret < 0) 5902 goto out_unlock; 5903 ret = 0; 5904 out_unlock: 5905 if (ret) 5906 ret = VM_FAULT_SIGBUS; 5907 up_read(&inode->i_alloc_sem); 5908 return ret; 5909 } 5910