xref: /openbmc/linux/fs/ext4/inode.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 
179 	trace_ext4_evict_inode(inode);
180 
181 	if (inode->i_nlink) {
182 		/*
183 		 * When journalling data dirty buffers are tracked only in the
184 		 * journal. So although mm thinks everything is clean and
185 		 * ready for reaping the inode might still have some pages to
186 		 * write in the running transaction or waiting to be
187 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
188 		 * (via truncate_inode_pages()) to discard these buffers can
189 		 * cause data loss. Also even if we did not discard these
190 		 * buffers, we would have no way to find them after the inode
191 		 * is reaped and thus user could see stale data if he tries to
192 		 * read them before the transaction is checkpointed. So be
193 		 * careful and force everything to disk here... We use
194 		 * ei->i_datasync_tid to store the newest transaction
195 		 * containing inode's data.
196 		 *
197 		 * Note that directories do not have this problem because they
198 		 * don't use page cache.
199 		 */
200 		if (inode->i_ino != EXT4_JOURNAL_INO &&
201 		    ext4_should_journal_data(inode) &&
202 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 		    inode->i_data.nrpages) {
204 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206 
207 			jbd2_complete_transaction(journal, commit_tid);
208 			filemap_write_and_wait(&inode->i_data);
209 		}
210 		truncate_inode_pages_final(&inode->i_data);
211 
212 		goto no_delete;
213 	}
214 
215 	if (is_bad_inode(inode))
216 		goto no_delete;
217 	dquot_initialize(inode);
218 
219 	if (ext4_should_order_data(inode))
220 		ext4_begin_ordered_truncate(inode, 0);
221 	truncate_inode_pages_final(&inode->i_data);
222 
223 	/*
224 	 * Protect us against freezing - iput() caller didn't have to have any
225 	 * protection against it
226 	 */
227 	sb_start_intwrite(inode->i_sb);
228 
229 	if (!IS_NOQUOTA(inode))
230 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
231 
232 	/*
233 	 * Block bitmap, group descriptor, and inode are accounted in both
234 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
235 	 */
236 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
237 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
238 	if (IS_ERR(handle)) {
239 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
240 		/*
241 		 * If we're going to skip the normal cleanup, we still need to
242 		 * make sure that the in-core orphan linked list is properly
243 		 * cleaned up.
244 		 */
245 		ext4_orphan_del(NULL, inode);
246 		sb_end_intwrite(inode->i_sb);
247 		goto no_delete;
248 	}
249 
250 	if (IS_SYNC(inode))
251 		ext4_handle_sync(handle);
252 
253 	/*
254 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
255 	 * special handling of symlinks here because i_size is used to
256 	 * determine whether ext4_inode_info->i_data contains symlink data or
257 	 * block mappings. Setting i_size to 0 will remove its fast symlink
258 	 * status. Erase i_data so that it becomes a valid empty block map.
259 	 */
260 	if (ext4_inode_is_fast_symlink(inode))
261 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
262 	inode->i_size = 0;
263 	err = ext4_mark_inode_dirty(handle, inode);
264 	if (err) {
265 		ext4_warning(inode->i_sb,
266 			     "couldn't mark inode dirty (err %d)", err);
267 		goto stop_handle;
268 	}
269 	if (inode->i_blocks) {
270 		err = ext4_truncate(inode);
271 		if (err) {
272 			ext4_set_errno(inode->i_sb, -err);
273 			ext4_error(inode->i_sb,
274 				   "couldn't truncate inode %lu (err %d)",
275 				   inode->i_ino, err);
276 			goto stop_handle;
277 		}
278 	}
279 
280 	/* Remove xattr references. */
281 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
282 				      extra_credits);
283 	if (err) {
284 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
285 stop_handle:
286 		ext4_journal_stop(handle);
287 		ext4_orphan_del(NULL, inode);
288 		sb_end_intwrite(inode->i_sb);
289 		ext4_xattr_inode_array_free(ea_inode_array);
290 		goto no_delete;
291 	}
292 
293 	/*
294 	 * Kill off the orphan record which ext4_truncate created.
295 	 * AKPM: I think this can be inside the above `if'.
296 	 * Note that ext4_orphan_del() has to be able to cope with the
297 	 * deletion of a non-existent orphan - this is because we don't
298 	 * know if ext4_truncate() actually created an orphan record.
299 	 * (Well, we could do this if we need to, but heck - it works)
300 	 */
301 	ext4_orphan_del(handle, inode);
302 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
303 
304 	/*
305 	 * One subtle ordering requirement: if anything has gone wrong
306 	 * (transaction abort, IO errors, whatever), then we can still
307 	 * do these next steps (the fs will already have been marked as
308 	 * having errors), but we can't free the inode if the mark_dirty
309 	 * fails.
310 	 */
311 	if (ext4_mark_inode_dirty(handle, inode))
312 		/* If that failed, just do the required in-core inode clear. */
313 		ext4_clear_inode(inode);
314 	else
315 		ext4_free_inode(handle, inode);
316 	ext4_journal_stop(handle);
317 	sb_end_intwrite(inode->i_sb);
318 	ext4_xattr_inode_array_free(ea_inode_array);
319 	return;
320 no_delete:
321 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
322 }
323 
324 #ifdef CONFIG_QUOTA
325 qsize_t *ext4_get_reserved_space(struct inode *inode)
326 {
327 	return &EXT4_I(inode)->i_reserved_quota;
328 }
329 #endif
330 
331 /*
332  * Called with i_data_sem down, which is important since we can call
333  * ext4_discard_preallocations() from here.
334  */
335 void ext4_da_update_reserve_space(struct inode *inode,
336 					int used, int quota_claim)
337 {
338 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
339 	struct ext4_inode_info *ei = EXT4_I(inode);
340 
341 	spin_lock(&ei->i_block_reservation_lock);
342 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
343 	if (unlikely(used > ei->i_reserved_data_blocks)) {
344 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
345 			 "with only %d reserved data blocks",
346 			 __func__, inode->i_ino, used,
347 			 ei->i_reserved_data_blocks);
348 		WARN_ON(1);
349 		used = ei->i_reserved_data_blocks;
350 	}
351 
352 	/* Update per-inode reservations */
353 	ei->i_reserved_data_blocks -= used;
354 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
355 
356 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
357 
358 	/* Update quota subsystem for data blocks */
359 	if (quota_claim)
360 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
361 	else {
362 		/*
363 		 * We did fallocate with an offset that is already delayed
364 		 * allocated. So on delayed allocated writeback we should
365 		 * not re-claim the quota for fallocated blocks.
366 		 */
367 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
368 	}
369 
370 	/*
371 	 * If we have done all the pending block allocations and if
372 	 * there aren't any writers on the inode, we can discard the
373 	 * inode's preallocations.
374 	 */
375 	if ((ei->i_reserved_data_blocks == 0) &&
376 	    !inode_is_open_for_write(inode))
377 		ext4_discard_preallocations(inode);
378 }
379 
380 static int __check_block_validity(struct inode *inode, const char *func,
381 				unsigned int line,
382 				struct ext4_map_blocks *map)
383 {
384 	if (ext4_has_feature_journal(inode->i_sb) &&
385 	    (inode->i_ino ==
386 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
387 		return 0;
388 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
389 				   map->m_len)) {
390 		ext4_error_inode(inode, func, line, map->m_pblk,
391 				 "lblock %lu mapped to illegal pblock %llu "
392 				 "(length %d)", (unsigned long) map->m_lblk,
393 				 map->m_pblk, map->m_len);
394 		return -EFSCORRUPTED;
395 	}
396 	return 0;
397 }
398 
399 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
400 		       ext4_lblk_t len)
401 {
402 	int ret;
403 
404 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
405 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
406 
407 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
408 	if (ret > 0)
409 		ret = 0;
410 
411 	return ret;
412 }
413 
414 #define check_block_validity(inode, map)	\
415 	__check_block_validity((inode), __func__, __LINE__, (map))
416 
417 #ifdef ES_AGGRESSIVE_TEST
418 static void ext4_map_blocks_es_recheck(handle_t *handle,
419 				       struct inode *inode,
420 				       struct ext4_map_blocks *es_map,
421 				       struct ext4_map_blocks *map,
422 				       int flags)
423 {
424 	int retval;
425 
426 	map->m_flags = 0;
427 	/*
428 	 * There is a race window that the result is not the same.
429 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
430 	 * is that we lookup a block mapping in extent status tree with
431 	 * out taking i_data_sem.  So at the time the unwritten extent
432 	 * could be converted.
433 	 */
434 	down_read(&EXT4_I(inode)->i_data_sem);
435 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
436 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
437 					     EXT4_GET_BLOCKS_KEEP_SIZE);
438 	} else {
439 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
440 					     EXT4_GET_BLOCKS_KEEP_SIZE);
441 	}
442 	up_read((&EXT4_I(inode)->i_data_sem));
443 
444 	/*
445 	 * We don't check m_len because extent will be collpased in status
446 	 * tree.  So the m_len might not equal.
447 	 */
448 	if (es_map->m_lblk != map->m_lblk ||
449 	    es_map->m_flags != map->m_flags ||
450 	    es_map->m_pblk != map->m_pblk) {
451 		printk("ES cache assertion failed for inode: %lu "
452 		       "es_cached ex [%d/%d/%llu/%x] != "
453 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
454 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
455 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
456 		       map->m_len, map->m_pblk, map->m_flags,
457 		       retval, flags);
458 	}
459 }
460 #endif /* ES_AGGRESSIVE_TEST */
461 
462 /*
463  * The ext4_map_blocks() function tries to look up the requested blocks,
464  * and returns if the blocks are already mapped.
465  *
466  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
467  * and store the allocated blocks in the result buffer head and mark it
468  * mapped.
469  *
470  * If file type is extents based, it will call ext4_ext_map_blocks(),
471  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
472  * based files
473  *
474  * On success, it returns the number of blocks being mapped or allocated.  if
475  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
476  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
477  *
478  * It returns 0 if plain look up failed (blocks have not been allocated), in
479  * that case, @map is returned as unmapped but we still do fill map->m_len to
480  * indicate the length of a hole starting at map->m_lblk.
481  *
482  * It returns the error in case of allocation failure.
483  */
484 int ext4_map_blocks(handle_t *handle, struct inode *inode,
485 		    struct ext4_map_blocks *map, int flags)
486 {
487 	struct extent_status es;
488 	int retval;
489 	int ret = 0;
490 #ifdef ES_AGGRESSIVE_TEST
491 	struct ext4_map_blocks orig_map;
492 
493 	memcpy(&orig_map, map, sizeof(*map));
494 #endif
495 
496 	map->m_flags = 0;
497 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
498 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
499 		  (unsigned long) map->m_lblk);
500 
501 	/*
502 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
503 	 */
504 	if (unlikely(map->m_len > INT_MAX))
505 		map->m_len = INT_MAX;
506 
507 	/* We can handle the block number less than EXT_MAX_BLOCKS */
508 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
509 		return -EFSCORRUPTED;
510 
511 	/* Lookup extent status tree firstly */
512 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
513 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
514 			map->m_pblk = ext4_es_pblock(&es) +
515 					map->m_lblk - es.es_lblk;
516 			map->m_flags |= ext4_es_is_written(&es) ?
517 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
518 			retval = es.es_len - (map->m_lblk - es.es_lblk);
519 			if (retval > map->m_len)
520 				retval = map->m_len;
521 			map->m_len = retval;
522 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
523 			map->m_pblk = 0;
524 			retval = es.es_len - (map->m_lblk - es.es_lblk);
525 			if (retval > map->m_len)
526 				retval = map->m_len;
527 			map->m_len = retval;
528 			retval = 0;
529 		} else {
530 			BUG();
531 		}
532 #ifdef ES_AGGRESSIVE_TEST
533 		ext4_map_blocks_es_recheck(handle, inode, map,
534 					   &orig_map, flags);
535 #endif
536 		goto found;
537 	}
538 
539 	/*
540 	 * Try to see if we can get the block without requesting a new
541 	 * file system block.
542 	 */
543 	down_read(&EXT4_I(inode)->i_data_sem);
544 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
545 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
546 					     EXT4_GET_BLOCKS_KEEP_SIZE);
547 	} else {
548 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
549 					     EXT4_GET_BLOCKS_KEEP_SIZE);
550 	}
551 	if (retval > 0) {
552 		unsigned int status;
553 
554 		if (unlikely(retval != map->m_len)) {
555 			ext4_warning(inode->i_sb,
556 				     "ES len assertion failed for inode "
557 				     "%lu: retval %d != map->m_len %d",
558 				     inode->i_ino, retval, map->m_len);
559 			WARN_ON(1);
560 		}
561 
562 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
563 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
564 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
565 		    !(status & EXTENT_STATUS_WRITTEN) &&
566 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
567 				       map->m_lblk + map->m_len - 1))
568 			status |= EXTENT_STATUS_DELAYED;
569 		ret = ext4_es_insert_extent(inode, map->m_lblk,
570 					    map->m_len, map->m_pblk, status);
571 		if (ret < 0)
572 			retval = ret;
573 	}
574 	up_read((&EXT4_I(inode)->i_data_sem));
575 
576 found:
577 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
578 		ret = check_block_validity(inode, map);
579 		if (ret != 0)
580 			return ret;
581 	}
582 
583 	/* If it is only a block(s) look up */
584 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
585 		return retval;
586 
587 	/*
588 	 * Returns if the blocks have already allocated
589 	 *
590 	 * Note that if blocks have been preallocated
591 	 * ext4_ext_get_block() returns the create = 0
592 	 * with buffer head unmapped.
593 	 */
594 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
595 		/*
596 		 * If we need to convert extent to unwritten
597 		 * we continue and do the actual work in
598 		 * ext4_ext_map_blocks()
599 		 */
600 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
601 			return retval;
602 
603 	/*
604 	 * Here we clear m_flags because after allocating an new extent,
605 	 * it will be set again.
606 	 */
607 	map->m_flags &= ~EXT4_MAP_FLAGS;
608 
609 	/*
610 	 * New blocks allocate and/or writing to unwritten extent
611 	 * will possibly result in updating i_data, so we take
612 	 * the write lock of i_data_sem, and call get_block()
613 	 * with create == 1 flag.
614 	 */
615 	down_write(&EXT4_I(inode)->i_data_sem);
616 
617 	/*
618 	 * We need to check for EXT4 here because migrate
619 	 * could have changed the inode type in between
620 	 */
621 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
622 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
623 	} else {
624 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
625 
626 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
627 			/*
628 			 * We allocated new blocks which will result in
629 			 * i_data's format changing.  Force the migrate
630 			 * to fail by clearing migrate flags
631 			 */
632 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
633 		}
634 
635 		/*
636 		 * Update reserved blocks/metadata blocks after successful
637 		 * block allocation which had been deferred till now. We don't
638 		 * support fallocate for non extent files. So we can update
639 		 * reserve space here.
640 		 */
641 		if ((retval > 0) &&
642 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
643 			ext4_da_update_reserve_space(inode, retval, 1);
644 	}
645 
646 	if (retval > 0) {
647 		unsigned int status;
648 
649 		if (unlikely(retval != map->m_len)) {
650 			ext4_warning(inode->i_sb,
651 				     "ES len assertion failed for inode "
652 				     "%lu: retval %d != map->m_len %d",
653 				     inode->i_ino, retval, map->m_len);
654 			WARN_ON(1);
655 		}
656 
657 		/*
658 		 * We have to zeroout blocks before inserting them into extent
659 		 * status tree. Otherwise someone could look them up there and
660 		 * use them before they are really zeroed. We also have to
661 		 * unmap metadata before zeroing as otherwise writeback can
662 		 * overwrite zeros with stale data from block device.
663 		 */
664 		if (flags & EXT4_GET_BLOCKS_ZERO &&
665 		    map->m_flags & EXT4_MAP_MAPPED &&
666 		    map->m_flags & EXT4_MAP_NEW) {
667 			ret = ext4_issue_zeroout(inode, map->m_lblk,
668 						 map->m_pblk, map->m_len);
669 			if (ret) {
670 				retval = ret;
671 				goto out_sem;
672 			}
673 		}
674 
675 		/*
676 		 * If the extent has been zeroed out, we don't need to update
677 		 * extent status tree.
678 		 */
679 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
680 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
681 			if (ext4_es_is_written(&es))
682 				goto out_sem;
683 		}
684 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
685 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
686 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
687 		    !(status & EXTENT_STATUS_WRITTEN) &&
688 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
689 				       map->m_lblk + map->m_len - 1))
690 			status |= EXTENT_STATUS_DELAYED;
691 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
692 					    map->m_pblk, status);
693 		if (ret < 0) {
694 			retval = ret;
695 			goto out_sem;
696 		}
697 	}
698 
699 out_sem:
700 	up_write((&EXT4_I(inode)->i_data_sem));
701 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
702 		ret = check_block_validity(inode, map);
703 		if (ret != 0)
704 			return ret;
705 
706 		/*
707 		 * Inodes with freshly allocated blocks where contents will be
708 		 * visible after transaction commit must be on transaction's
709 		 * ordered data list.
710 		 */
711 		if (map->m_flags & EXT4_MAP_NEW &&
712 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
713 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
714 		    !ext4_is_quota_file(inode) &&
715 		    ext4_should_order_data(inode)) {
716 			loff_t start_byte =
717 				(loff_t)map->m_lblk << inode->i_blkbits;
718 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
719 
720 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
721 				ret = ext4_jbd2_inode_add_wait(handle, inode,
722 						start_byte, length);
723 			else
724 				ret = ext4_jbd2_inode_add_write(handle, inode,
725 						start_byte, length);
726 			if (ret)
727 				return ret;
728 		}
729 	}
730 	return retval;
731 }
732 
733 /*
734  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
735  * we have to be careful as someone else may be manipulating b_state as well.
736  */
737 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
738 {
739 	unsigned long old_state;
740 	unsigned long new_state;
741 
742 	flags &= EXT4_MAP_FLAGS;
743 
744 	/* Dummy buffer_head? Set non-atomically. */
745 	if (!bh->b_page) {
746 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
747 		return;
748 	}
749 	/*
750 	 * Someone else may be modifying b_state. Be careful! This is ugly but
751 	 * once we get rid of using bh as a container for mapping information
752 	 * to pass to / from get_block functions, this can go away.
753 	 */
754 	do {
755 		old_state = READ_ONCE(bh->b_state);
756 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
757 	} while (unlikely(
758 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
759 }
760 
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762 			   struct buffer_head *bh, int flags)
763 {
764 	struct ext4_map_blocks map;
765 	int ret = 0;
766 
767 	if (ext4_has_inline_data(inode))
768 		return -ERANGE;
769 
770 	map.m_lblk = iblock;
771 	map.m_len = bh->b_size >> inode->i_blkbits;
772 
773 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
774 			      flags);
775 	if (ret > 0) {
776 		map_bh(bh, inode->i_sb, map.m_pblk);
777 		ext4_update_bh_state(bh, map.m_flags);
778 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
779 		ret = 0;
780 	} else if (ret == 0) {
781 		/* hole case, need to fill in bh->b_size */
782 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
783 	}
784 	return ret;
785 }
786 
787 int ext4_get_block(struct inode *inode, sector_t iblock,
788 		   struct buffer_head *bh, int create)
789 {
790 	return _ext4_get_block(inode, iblock, bh,
791 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
792 }
793 
794 /*
795  * Get block function used when preparing for buffered write if we require
796  * creating an unwritten extent if blocks haven't been allocated.  The extent
797  * will be converted to written after the IO is complete.
798  */
799 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
800 			     struct buffer_head *bh_result, int create)
801 {
802 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
803 		   inode->i_ino, create);
804 	return _ext4_get_block(inode, iblock, bh_result,
805 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
806 }
807 
808 /* Maximum number of blocks we map for direct IO at once. */
809 #define DIO_MAX_BLOCKS 4096
810 
811 /*
812  * `handle' can be NULL if create is zero
813  */
814 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
815 				ext4_lblk_t block, int map_flags)
816 {
817 	struct ext4_map_blocks map;
818 	struct buffer_head *bh;
819 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
820 	int err;
821 
822 	J_ASSERT(handle != NULL || create == 0);
823 
824 	map.m_lblk = block;
825 	map.m_len = 1;
826 	err = ext4_map_blocks(handle, inode, &map, map_flags);
827 
828 	if (err == 0)
829 		return create ? ERR_PTR(-ENOSPC) : NULL;
830 	if (err < 0)
831 		return ERR_PTR(err);
832 
833 	bh = sb_getblk(inode->i_sb, map.m_pblk);
834 	if (unlikely(!bh))
835 		return ERR_PTR(-ENOMEM);
836 	if (map.m_flags & EXT4_MAP_NEW) {
837 		J_ASSERT(create != 0);
838 		J_ASSERT(handle != NULL);
839 
840 		/*
841 		 * Now that we do not always journal data, we should
842 		 * keep in mind whether this should always journal the
843 		 * new buffer as metadata.  For now, regular file
844 		 * writes use ext4_get_block instead, so it's not a
845 		 * problem.
846 		 */
847 		lock_buffer(bh);
848 		BUFFER_TRACE(bh, "call get_create_access");
849 		err = ext4_journal_get_create_access(handle, bh);
850 		if (unlikely(err)) {
851 			unlock_buffer(bh);
852 			goto errout;
853 		}
854 		if (!buffer_uptodate(bh)) {
855 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
856 			set_buffer_uptodate(bh);
857 		}
858 		unlock_buffer(bh);
859 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
860 		err = ext4_handle_dirty_metadata(handle, inode, bh);
861 		if (unlikely(err))
862 			goto errout;
863 	} else
864 		BUFFER_TRACE(bh, "not a new buffer");
865 	return bh;
866 errout:
867 	brelse(bh);
868 	return ERR_PTR(err);
869 }
870 
871 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
872 			       ext4_lblk_t block, int map_flags)
873 {
874 	struct buffer_head *bh;
875 
876 	bh = ext4_getblk(handle, inode, block, map_flags);
877 	if (IS_ERR(bh))
878 		return bh;
879 	if (!bh || ext4_buffer_uptodate(bh))
880 		return bh;
881 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
882 	wait_on_buffer(bh);
883 	if (buffer_uptodate(bh))
884 		return bh;
885 	put_bh(bh);
886 	return ERR_PTR(-EIO);
887 }
888 
889 /* Read a contiguous batch of blocks. */
890 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
891 		     bool wait, struct buffer_head **bhs)
892 {
893 	int i, err;
894 
895 	for (i = 0; i < bh_count; i++) {
896 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
897 		if (IS_ERR(bhs[i])) {
898 			err = PTR_ERR(bhs[i]);
899 			bh_count = i;
900 			goto out_brelse;
901 		}
902 	}
903 
904 	for (i = 0; i < bh_count; i++)
905 		/* Note that NULL bhs[i] is valid because of holes. */
906 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
907 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
908 				    &bhs[i]);
909 
910 	if (!wait)
911 		return 0;
912 
913 	for (i = 0; i < bh_count; i++)
914 		if (bhs[i])
915 			wait_on_buffer(bhs[i]);
916 
917 	for (i = 0; i < bh_count; i++) {
918 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
919 			err = -EIO;
920 			goto out_brelse;
921 		}
922 	}
923 	return 0;
924 
925 out_brelse:
926 	for (i = 0; i < bh_count; i++) {
927 		brelse(bhs[i]);
928 		bhs[i] = NULL;
929 	}
930 	return err;
931 }
932 
933 int ext4_walk_page_buffers(handle_t *handle,
934 			   struct buffer_head *head,
935 			   unsigned from,
936 			   unsigned to,
937 			   int *partial,
938 			   int (*fn)(handle_t *handle,
939 				     struct buffer_head *bh))
940 {
941 	struct buffer_head *bh;
942 	unsigned block_start, block_end;
943 	unsigned blocksize = head->b_size;
944 	int err, ret = 0;
945 	struct buffer_head *next;
946 
947 	for (bh = head, block_start = 0;
948 	     ret == 0 && (bh != head || !block_start);
949 	     block_start = block_end, bh = next) {
950 		next = bh->b_this_page;
951 		block_end = block_start + blocksize;
952 		if (block_end <= from || block_start >= to) {
953 			if (partial && !buffer_uptodate(bh))
954 				*partial = 1;
955 			continue;
956 		}
957 		err = (*fn)(handle, bh);
958 		if (!ret)
959 			ret = err;
960 	}
961 	return ret;
962 }
963 
964 /*
965  * To preserve ordering, it is essential that the hole instantiation and
966  * the data write be encapsulated in a single transaction.  We cannot
967  * close off a transaction and start a new one between the ext4_get_block()
968  * and the commit_write().  So doing the jbd2_journal_start at the start of
969  * prepare_write() is the right place.
970  *
971  * Also, this function can nest inside ext4_writepage().  In that case, we
972  * *know* that ext4_writepage() has generated enough buffer credits to do the
973  * whole page.  So we won't block on the journal in that case, which is good,
974  * because the caller may be PF_MEMALLOC.
975  *
976  * By accident, ext4 can be reentered when a transaction is open via
977  * quota file writes.  If we were to commit the transaction while thus
978  * reentered, there can be a deadlock - we would be holding a quota
979  * lock, and the commit would never complete if another thread had a
980  * transaction open and was blocking on the quota lock - a ranking
981  * violation.
982  *
983  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
984  * will _not_ run commit under these circumstances because handle->h_ref
985  * is elevated.  We'll still have enough credits for the tiny quotafile
986  * write.
987  */
988 int do_journal_get_write_access(handle_t *handle,
989 				struct buffer_head *bh)
990 {
991 	int dirty = buffer_dirty(bh);
992 	int ret;
993 
994 	if (!buffer_mapped(bh) || buffer_freed(bh))
995 		return 0;
996 	/*
997 	 * __block_write_begin() could have dirtied some buffers. Clean
998 	 * the dirty bit as jbd2_journal_get_write_access() could complain
999 	 * otherwise about fs integrity issues. Setting of the dirty bit
1000 	 * by __block_write_begin() isn't a real problem here as we clear
1001 	 * the bit before releasing a page lock and thus writeback cannot
1002 	 * ever write the buffer.
1003 	 */
1004 	if (dirty)
1005 		clear_buffer_dirty(bh);
1006 	BUFFER_TRACE(bh, "get write access");
1007 	ret = ext4_journal_get_write_access(handle, bh);
1008 	if (!ret && dirty)
1009 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1010 	return ret;
1011 }
1012 
1013 #ifdef CONFIG_FS_ENCRYPTION
1014 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1015 				  get_block_t *get_block)
1016 {
1017 	unsigned from = pos & (PAGE_SIZE - 1);
1018 	unsigned to = from + len;
1019 	struct inode *inode = page->mapping->host;
1020 	unsigned block_start, block_end;
1021 	sector_t block;
1022 	int err = 0;
1023 	unsigned blocksize = inode->i_sb->s_blocksize;
1024 	unsigned bbits;
1025 	struct buffer_head *bh, *head, *wait[2];
1026 	int nr_wait = 0;
1027 	int i;
1028 
1029 	BUG_ON(!PageLocked(page));
1030 	BUG_ON(from > PAGE_SIZE);
1031 	BUG_ON(to > PAGE_SIZE);
1032 	BUG_ON(from > to);
1033 
1034 	if (!page_has_buffers(page))
1035 		create_empty_buffers(page, blocksize, 0);
1036 	head = page_buffers(page);
1037 	bbits = ilog2(blocksize);
1038 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1039 
1040 	for (bh = head, block_start = 0; bh != head || !block_start;
1041 	    block++, block_start = block_end, bh = bh->b_this_page) {
1042 		block_end = block_start + blocksize;
1043 		if (block_end <= from || block_start >= to) {
1044 			if (PageUptodate(page)) {
1045 				if (!buffer_uptodate(bh))
1046 					set_buffer_uptodate(bh);
1047 			}
1048 			continue;
1049 		}
1050 		if (buffer_new(bh))
1051 			clear_buffer_new(bh);
1052 		if (!buffer_mapped(bh)) {
1053 			WARN_ON(bh->b_size != blocksize);
1054 			err = get_block(inode, block, bh, 1);
1055 			if (err)
1056 				break;
1057 			if (buffer_new(bh)) {
1058 				if (PageUptodate(page)) {
1059 					clear_buffer_new(bh);
1060 					set_buffer_uptodate(bh);
1061 					mark_buffer_dirty(bh);
1062 					continue;
1063 				}
1064 				if (block_end > to || block_start < from)
1065 					zero_user_segments(page, to, block_end,
1066 							   block_start, from);
1067 				continue;
1068 			}
1069 		}
1070 		if (PageUptodate(page)) {
1071 			if (!buffer_uptodate(bh))
1072 				set_buffer_uptodate(bh);
1073 			continue;
1074 		}
1075 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1076 		    !buffer_unwritten(bh) &&
1077 		    (block_start < from || block_end > to)) {
1078 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1079 			wait[nr_wait++] = bh;
1080 		}
1081 	}
1082 	/*
1083 	 * If we issued read requests, let them complete.
1084 	 */
1085 	for (i = 0; i < nr_wait; i++) {
1086 		wait_on_buffer(wait[i]);
1087 		if (!buffer_uptodate(wait[i]))
1088 			err = -EIO;
1089 	}
1090 	if (unlikely(err)) {
1091 		page_zero_new_buffers(page, from, to);
1092 	} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1093 		for (i = 0; i < nr_wait; i++) {
1094 			int err2;
1095 
1096 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1097 								bh_offset(wait[i]));
1098 			if (err2) {
1099 				clear_buffer_uptodate(wait[i]);
1100 				err = err2;
1101 			}
1102 		}
1103 	}
1104 
1105 	return err;
1106 }
1107 #endif
1108 
1109 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1110 			    loff_t pos, unsigned len, unsigned flags,
1111 			    struct page **pagep, void **fsdata)
1112 {
1113 	struct inode *inode = mapping->host;
1114 	int ret, needed_blocks;
1115 	handle_t *handle;
1116 	int retries = 0;
1117 	struct page *page;
1118 	pgoff_t index;
1119 	unsigned from, to;
1120 
1121 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1122 		return -EIO;
1123 
1124 	trace_ext4_write_begin(inode, pos, len, flags);
1125 	/*
1126 	 * Reserve one block more for addition to orphan list in case
1127 	 * we allocate blocks but write fails for some reason
1128 	 */
1129 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1130 	index = pos >> PAGE_SHIFT;
1131 	from = pos & (PAGE_SIZE - 1);
1132 	to = from + len;
1133 
1134 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1135 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1136 						    flags, pagep);
1137 		if (ret < 0)
1138 			return ret;
1139 		if (ret == 1)
1140 			return 0;
1141 	}
1142 
1143 	/*
1144 	 * grab_cache_page_write_begin() can take a long time if the
1145 	 * system is thrashing due to memory pressure, or if the page
1146 	 * is being written back.  So grab it first before we start
1147 	 * the transaction handle.  This also allows us to allocate
1148 	 * the page (if needed) without using GFP_NOFS.
1149 	 */
1150 retry_grab:
1151 	page = grab_cache_page_write_begin(mapping, index, flags);
1152 	if (!page)
1153 		return -ENOMEM;
1154 	unlock_page(page);
1155 
1156 retry_journal:
1157 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1158 	if (IS_ERR(handle)) {
1159 		put_page(page);
1160 		return PTR_ERR(handle);
1161 	}
1162 
1163 	lock_page(page);
1164 	if (page->mapping != mapping) {
1165 		/* The page got truncated from under us */
1166 		unlock_page(page);
1167 		put_page(page);
1168 		ext4_journal_stop(handle);
1169 		goto retry_grab;
1170 	}
1171 	/* In case writeback began while the page was unlocked */
1172 	wait_for_stable_page(page);
1173 
1174 #ifdef CONFIG_FS_ENCRYPTION
1175 	if (ext4_should_dioread_nolock(inode))
1176 		ret = ext4_block_write_begin(page, pos, len,
1177 					     ext4_get_block_unwritten);
1178 	else
1179 		ret = ext4_block_write_begin(page, pos, len,
1180 					     ext4_get_block);
1181 #else
1182 	if (ext4_should_dioread_nolock(inode))
1183 		ret = __block_write_begin(page, pos, len,
1184 					  ext4_get_block_unwritten);
1185 	else
1186 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1187 #endif
1188 	if (!ret && ext4_should_journal_data(inode)) {
1189 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1190 					     from, to, NULL,
1191 					     do_journal_get_write_access);
1192 	}
1193 
1194 	if (ret) {
1195 		bool extended = (pos + len > inode->i_size) &&
1196 				!ext4_verity_in_progress(inode);
1197 
1198 		unlock_page(page);
1199 		/*
1200 		 * __block_write_begin may have instantiated a few blocks
1201 		 * outside i_size.  Trim these off again. Don't need
1202 		 * i_size_read because we hold i_mutex.
1203 		 *
1204 		 * Add inode to orphan list in case we crash before
1205 		 * truncate finishes
1206 		 */
1207 		if (extended && ext4_can_truncate(inode))
1208 			ext4_orphan_add(handle, inode);
1209 
1210 		ext4_journal_stop(handle);
1211 		if (extended) {
1212 			ext4_truncate_failed_write(inode);
1213 			/*
1214 			 * If truncate failed early the inode might
1215 			 * still be on the orphan list; we need to
1216 			 * make sure the inode is removed from the
1217 			 * orphan list in that case.
1218 			 */
1219 			if (inode->i_nlink)
1220 				ext4_orphan_del(NULL, inode);
1221 		}
1222 
1223 		if (ret == -ENOSPC &&
1224 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1225 			goto retry_journal;
1226 		put_page(page);
1227 		return ret;
1228 	}
1229 	*pagep = page;
1230 	return ret;
1231 }
1232 
1233 /* For write_end() in data=journal mode */
1234 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1235 {
1236 	int ret;
1237 	if (!buffer_mapped(bh) || buffer_freed(bh))
1238 		return 0;
1239 	set_buffer_uptodate(bh);
1240 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1241 	clear_buffer_meta(bh);
1242 	clear_buffer_prio(bh);
1243 	return ret;
1244 }
1245 
1246 /*
1247  * We need to pick up the new inode size which generic_commit_write gave us
1248  * `file' can be NULL - eg, when called from page_symlink().
1249  *
1250  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1251  * buffers are managed internally.
1252  */
1253 static int ext4_write_end(struct file *file,
1254 			  struct address_space *mapping,
1255 			  loff_t pos, unsigned len, unsigned copied,
1256 			  struct page *page, void *fsdata)
1257 {
1258 	handle_t *handle = ext4_journal_current_handle();
1259 	struct inode *inode = mapping->host;
1260 	loff_t old_size = inode->i_size;
1261 	int ret = 0, ret2;
1262 	int i_size_changed = 0;
1263 	int inline_data = ext4_has_inline_data(inode);
1264 	bool verity = ext4_verity_in_progress(inode);
1265 
1266 	trace_ext4_write_end(inode, pos, len, copied);
1267 	if (inline_data) {
1268 		ret = ext4_write_inline_data_end(inode, pos, len,
1269 						 copied, page);
1270 		if (ret < 0) {
1271 			unlock_page(page);
1272 			put_page(page);
1273 			goto errout;
1274 		}
1275 		copied = ret;
1276 	} else
1277 		copied = block_write_end(file, mapping, pos,
1278 					 len, copied, page, fsdata);
1279 	/*
1280 	 * it's important to update i_size while still holding page lock:
1281 	 * page writeout could otherwise come in and zero beyond i_size.
1282 	 *
1283 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1284 	 * blocks are being written past EOF, so skip the i_size update.
1285 	 */
1286 	if (!verity)
1287 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1288 	unlock_page(page);
1289 	put_page(page);
1290 
1291 	if (old_size < pos && !verity)
1292 		pagecache_isize_extended(inode, old_size, pos);
1293 	/*
1294 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1295 	 * makes the holding time of page lock longer. Second, it forces lock
1296 	 * ordering of page lock and transaction start for journaling
1297 	 * filesystems.
1298 	 */
1299 	if (i_size_changed || inline_data)
1300 		ext4_mark_inode_dirty(handle, inode);
1301 
1302 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1303 		/* if we have allocated more blocks and copied
1304 		 * less. We will have blocks allocated outside
1305 		 * inode->i_size. So truncate them
1306 		 */
1307 		ext4_orphan_add(handle, inode);
1308 errout:
1309 	ret2 = ext4_journal_stop(handle);
1310 	if (!ret)
1311 		ret = ret2;
1312 
1313 	if (pos + len > inode->i_size && !verity) {
1314 		ext4_truncate_failed_write(inode);
1315 		/*
1316 		 * If truncate failed early the inode might still be
1317 		 * on the orphan list; we need to make sure the inode
1318 		 * is removed from the orphan list in that case.
1319 		 */
1320 		if (inode->i_nlink)
1321 			ext4_orphan_del(NULL, inode);
1322 	}
1323 
1324 	return ret ? ret : copied;
1325 }
1326 
1327 /*
1328  * This is a private version of page_zero_new_buffers() which doesn't
1329  * set the buffer to be dirty, since in data=journalled mode we need
1330  * to call ext4_handle_dirty_metadata() instead.
1331  */
1332 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1333 					    struct page *page,
1334 					    unsigned from, unsigned to)
1335 {
1336 	unsigned int block_start = 0, block_end;
1337 	struct buffer_head *head, *bh;
1338 
1339 	bh = head = page_buffers(page);
1340 	do {
1341 		block_end = block_start + bh->b_size;
1342 		if (buffer_new(bh)) {
1343 			if (block_end > from && block_start < to) {
1344 				if (!PageUptodate(page)) {
1345 					unsigned start, size;
1346 
1347 					start = max(from, block_start);
1348 					size = min(to, block_end) - start;
1349 
1350 					zero_user(page, start, size);
1351 					write_end_fn(handle, bh);
1352 				}
1353 				clear_buffer_new(bh);
1354 			}
1355 		}
1356 		block_start = block_end;
1357 		bh = bh->b_this_page;
1358 	} while (bh != head);
1359 }
1360 
1361 static int ext4_journalled_write_end(struct file *file,
1362 				     struct address_space *mapping,
1363 				     loff_t pos, unsigned len, unsigned copied,
1364 				     struct page *page, void *fsdata)
1365 {
1366 	handle_t *handle = ext4_journal_current_handle();
1367 	struct inode *inode = mapping->host;
1368 	loff_t old_size = inode->i_size;
1369 	int ret = 0, ret2;
1370 	int partial = 0;
1371 	unsigned from, to;
1372 	int size_changed = 0;
1373 	int inline_data = ext4_has_inline_data(inode);
1374 	bool verity = ext4_verity_in_progress(inode);
1375 
1376 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1377 	from = pos & (PAGE_SIZE - 1);
1378 	to = from + len;
1379 
1380 	BUG_ON(!ext4_handle_valid(handle));
1381 
1382 	if (inline_data) {
1383 		ret = ext4_write_inline_data_end(inode, pos, len,
1384 						 copied, page);
1385 		if (ret < 0) {
1386 			unlock_page(page);
1387 			put_page(page);
1388 			goto errout;
1389 		}
1390 		copied = ret;
1391 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1392 		copied = 0;
1393 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1394 	} else {
1395 		if (unlikely(copied < len))
1396 			ext4_journalled_zero_new_buffers(handle, page,
1397 							 from + copied, to);
1398 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1399 					     from + copied, &partial,
1400 					     write_end_fn);
1401 		if (!partial)
1402 			SetPageUptodate(page);
1403 	}
1404 	if (!verity)
1405 		size_changed = ext4_update_inode_size(inode, pos + copied);
1406 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1407 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1408 	unlock_page(page);
1409 	put_page(page);
1410 
1411 	if (old_size < pos && !verity)
1412 		pagecache_isize_extended(inode, old_size, pos);
1413 
1414 	if (size_changed || inline_data) {
1415 		ret2 = ext4_mark_inode_dirty(handle, inode);
1416 		if (!ret)
1417 			ret = ret2;
1418 	}
1419 
1420 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1421 		/* if we have allocated more blocks and copied
1422 		 * less. We will have blocks allocated outside
1423 		 * inode->i_size. So truncate them
1424 		 */
1425 		ext4_orphan_add(handle, inode);
1426 
1427 errout:
1428 	ret2 = ext4_journal_stop(handle);
1429 	if (!ret)
1430 		ret = ret2;
1431 	if (pos + len > inode->i_size && !verity) {
1432 		ext4_truncate_failed_write(inode);
1433 		/*
1434 		 * If truncate failed early the inode might still be
1435 		 * on the orphan list; we need to make sure the inode
1436 		 * is removed from the orphan list in that case.
1437 		 */
1438 		if (inode->i_nlink)
1439 			ext4_orphan_del(NULL, inode);
1440 	}
1441 
1442 	return ret ? ret : copied;
1443 }
1444 
1445 /*
1446  * Reserve space for a single cluster
1447  */
1448 static int ext4_da_reserve_space(struct inode *inode)
1449 {
1450 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1451 	struct ext4_inode_info *ei = EXT4_I(inode);
1452 	int ret;
1453 
1454 	/*
1455 	 * We will charge metadata quota at writeout time; this saves
1456 	 * us from metadata over-estimation, though we may go over by
1457 	 * a small amount in the end.  Here we just reserve for data.
1458 	 */
1459 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1460 	if (ret)
1461 		return ret;
1462 
1463 	spin_lock(&ei->i_block_reservation_lock);
1464 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1465 		spin_unlock(&ei->i_block_reservation_lock);
1466 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1467 		return -ENOSPC;
1468 	}
1469 	ei->i_reserved_data_blocks++;
1470 	trace_ext4_da_reserve_space(inode);
1471 	spin_unlock(&ei->i_block_reservation_lock);
1472 
1473 	return 0;       /* success */
1474 }
1475 
1476 void ext4_da_release_space(struct inode *inode, int to_free)
1477 {
1478 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1479 	struct ext4_inode_info *ei = EXT4_I(inode);
1480 
1481 	if (!to_free)
1482 		return;		/* Nothing to release, exit */
1483 
1484 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1485 
1486 	trace_ext4_da_release_space(inode, to_free);
1487 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1488 		/*
1489 		 * if there aren't enough reserved blocks, then the
1490 		 * counter is messed up somewhere.  Since this
1491 		 * function is called from invalidate page, it's
1492 		 * harmless to return without any action.
1493 		 */
1494 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1495 			 "ino %lu, to_free %d with only %d reserved "
1496 			 "data blocks", inode->i_ino, to_free,
1497 			 ei->i_reserved_data_blocks);
1498 		WARN_ON(1);
1499 		to_free = ei->i_reserved_data_blocks;
1500 	}
1501 	ei->i_reserved_data_blocks -= to_free;
1502 
1503 	/* update fs dirty data blocks counter */
1504 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1505 
1506 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1507 
1508 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1509 }
1510 
1511 /*
1512  * Delayed allocation stuff
1513  */
1514 
1515 struct mpage_da_data {
1516 	struct inode *inode;
1517 	struct writeback_control *wbc;
1518 
1519 	pgoff_t first_page;	/* The first page to write */
1520 	pgoff_t next_page;	/* Current page to examine */
1521 	pgoff_t last_page;	/* Last page to examine */
1522 	/*
1523 	 * Extent to map - this can be after first_page because that can be
1524 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1525 	 * is delalloc or unwritten.
1526 	 */
1527 	struct ext4_map_blocks map;
1528 	struct ext4_io_submit io_submit;	/* IO submission data */
1529 	unsigned int do_map:1;
1530 };
1531 
1532 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1533 				       bool invalidate)
1534 {
1535 	int nr_pages, i;
1536 	pgoff_t index, end;
1537 	struct pagevec pvec;
1538 	struct inode *inode = mpd->inode;
1539 	struct address_space *mapping = inode->i_mapping;
1540 
1541 	/* This is necessary when next_page == 0. */
1542 	if (mpd->first_page >= mpd->next_page)
1543 		return;
1544 
1545 	index = mpd->first_page;
1546 	end   = mpd->next_page - 1;
1547 	if (invalidate) {
1548 		ext4_lblk_t start, last;
1549 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1550 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1551 		ext4_es_remove_extent(inode, start, last - start + 1);
1552 	}
1553 
1554 	pagevec_init(&pvec);
1555 	while (index <= end) {
1556 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1557 		if (nr_pages == 0)
1558 			break;
1559 		for (i = 0; i < nr_pages; i++) {
1560 			struct page *page = pvec.pages[i];
1561 
1562 			BUG_ON(!PageLocked(page));
1563 			BUG_ON(PageWriteback(page));
1564 			if (invalidate) {
1565 				if (page_mapped(page))
1566 					clear_page_dirty_for_io(page);
1567 				block_invalidatepage(page, 0, PAGE_SIZE);
1568 				ClearPageUptodate(page);
1569 			}
1570 			unlock_page(page);
1571 		}
1572 		pagevec_release(&pvec);
1573 	}
1574 }
1575 
1576 static void ext4_print_free_blocks(struct inode *inode)
1577 {
1578 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579 	struct super_block *sb = inode->i_sb;
1580 	struct ext4_inode_info *ei = EXT4_I(inode);
1581 
1582 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1583 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1584 			ext4_count_free_clusters(sb)));
1585 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1586 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1587 	       (long long) EXT4_C2B(EXT4_SB(sb),
1588 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1589 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1590 	       (long long) EXT4_C2B(EXT4_SB(sb),
1591 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1592 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1593 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1594 		 ei->i_reserved_data_blocks);
1595 	return;
1596 }
1597 
1598 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1599 {
1600 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1601 }
1602 
1603 /*
1604  * ext4_insert_delayed_block - adds a delayed block to the extents status
1605  *                             tree, incrementing the reserved cluster/block
1606  *                             count or making a pending reservation
1607  *                             where needed
1608  *
1609  * @inode - file containing the newly added block
1610  * @lblk - logical block to be added
1611  *
1612  * Returns 0 on success, negative error code on failure.
1613  */
1614 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1615 {
1616 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1617 	int ret;
1618 	bool allocated = false;
1619 
1620 	/*
1621 	 * If the cluster containing lblk is shared with a delayed,
1622 	 * written, or unwritten extent in a bigalloc file system, it's
1623 	 * already been accounted for and does not need to be reserved.
1624 	 * A pending reservation must be made for the cluster if it's
1625 	 * shared with a written or unwritten extent and doesn't already
1626 	 * have one.  Written and unwritten extents can be purged from the
1627 	 * extents status tree if the system is under memory pressure, so
1628 	 * it's necessary to examine the extent tree if a search of the
1629 	 * extents status tree doesn't get a match.
1630 	 */
1631 	if (sbi->s_cluster_ratio == 1) {
1632 		ret = ext4_da_reserve_space(inode);
1633 		if (ret != 0)   /* ENOSPC */
1634 			goto errout;
1635 	} else {   /* bigalloc */
1636 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1637 			if (!ext4_es_scan_clu(inode,
1638 					      &ext4_es_is_mapped, lblk)) {
1639 				ret = ext4_clu_mapped(inode,
1640 						      EXT4_B2C(sbi, lblk));
1641 				if (ret < 0)
1642 					goto errout;
1643 				if (ret == 0) {
1644 					ret = ext4_da_reserve_space(inode);
1645 					if (ret != 0)   /* ENOSPC */
1646 						goto errout;
1647 				} else {
1648 					allocated = true;
1649 				}
1650 			} else {
1651 				allocated = true;
1652 			}
1653 		}
1654 	}
1655 
1656 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1657 
1658 errout:
1659 	return ret;
1660 }
1661 
1662 /*
1663  * This function is grabs code from the very beginning of
1664  * ext4_map_blocks, but assumes that the caller is from delayed write
1665  * time. This function looks up the requested blocks and sets the
1666  * buffer delay bit under the protection of i_data_sem.
1667  */
1668 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1669 			      struct ext4_map_blocks *map,
1670 			      struct buffer_head *bh)
1671 {
1672 	struct extent_status es;
1673 	int retval;
1674 	sector_t invalid_block = ~((sector_t) 0xffff);
1675 #ifdef ES_AGGRESSIVE_TEST
1676 	struct ext4_map_blocks orig_map;
1677 
1678 	memcpy(&orig_map, map, sizeof(*map));
1679 #endif
1680 
1681 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1682 		invalid_block = ~0;
1683 
1684 	map->m_flags = 0;
1685 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1686 		  "logical block %lu\n", inode->i_ino, map->m_len,
1687 		  (unsigned long) map->m_lblk);
1688 
1689 	/* Lookup extent status tree firstly */
1690 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1691 		if (ext4_es_is_hole(&es)) {
1692 			retval = 0;
1693 			down_read(&EXT4_I(inode)->i_data_sem);
1694 			goto add_delayed;
1695 		}
1696 
1697 		/*
1698 		 * Delayed extent could be allocated by fallocate.
1699 		 * So we need to check it.
1700 		 */
1701 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1702 			map_bh(bh, inode->i_sb, invalid_block);
1703 			set_buffer_new(bh);
1704 			set_buffer_delay(bh);
1705 			return 0;
1706 		}
1707 
1708 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1709 		retval = es.es_len - (iblock - es.es_lblk);
1710 		if (retval > map->m_len)
1711 			retval = map->m_len;
1712 		map->m_len = retval;
1713 		if (ext4_es_is_written(&es))
1714 			map->m_flags |= EXT4_MAP_MAPPED;
1715 		else if (ext4_es_is_unwritten(&es))
1716 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1717 		else
1718 			BUG();
1719 
1720 #ifdef ES_AGGRESSIVE_TEST
1721 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1722 #endif
1723 		return retval;
1724 	}
1725 
1726 	/*
1727 	 * Try to see if we can get the block without requesting a new
1728 	 * file system block.
1729 	 */
1730 	down_read(&EXT4_I(inode)->i_data_sem);
1731 	if (ext4_has_inline_data(inode))
1732 		retval = 0;
1733 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1734 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1735 	else
1736 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1737 
1738 add_delayed:
1739 	if (retval == 0) {
1740 		int ret;
1741 
1742 		/*
1743 		 * XXX: __block_prepare_write() unmaps passed block,
1744 		 * is it OK?
1745 		 */
1746 
1747 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1748 		if (ret != 0) {
1749 			retval = ret;
1750 			goto out_unlock;
1751 		}
1752 
1753 		map_bh(bh, inode->i_sb, invalid_block);
1754 		set_buffer_new(bh);
1755 		set_buffer_delay(bh);
1756 	} else if (retval > 0) {
1757 		int ret;
1758 		unsigned int status;
1759 
1760 		if (unlikely(retval != map->m_len)) {
1761 			ext4_warning(inode->i_sb,
1762 				     "ES len assertion failed for inode "
1763 				     "%lu: retval %d != map->m_len %d",
1764 				     inode->i_ino, retval, map->m_len);
1765 			WARN_ON(1);
1766 		}
1767 
1768 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1769 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1770 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1771 					    map->m_pblk, status);
1772 		if (ret != 0)
1773 			retval = ret;
1774 	}
1775 
1776 out_unlock:
1777 	up_read((&EXT4_I(inode)->i_data_sem));
1778 
1779 	return retval;
1780 }
1781 
1782 /*
1783  * This is a special get_block_t callback which is used by
1784  * ext4_da_write_begin().  It will either return mapped block or
1785  * reserve space for a single block.
1786  *
1787  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1788  * We also have b_blocknr = -1 and b_bdev initialized properly
1789  *
1790  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1791  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1792  * initialized properly.
1793  */
1794 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1795 			   struct buffer_head *bh, int create)
1796 {
1797 	struct ext4_map_blocks map;
1798 	int ret = 0;
1799 
1800 	BUG_ON(create == 0);
1801 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1802 
1803 	map.m_lblk = iblock;
1804 	map.m_len = 1;
1805 
1806 	/*
1807 	 * first, we need to know whether the block is allocated already
1808 	 * preallocated blocks are unmapped but should treated
1809 	 * the same as allocated blocks.
1810 	 */
1811 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1812 	if (ret <= 0)
1813 		return ret;
1814 
1815 	map_bh(bh, inode->i_sb, map.m_pblk);
1816 	ext4_update_bh_state(bh, map.m_flags);
1817 
1818 	if (buffer_unwritten(bh)) {
1819 		/* A delayed write to unwritten bh should be marked
1820 		 * new and mapped.  Mapped ensures that we don't do
1821 		 * get_block multiple times when we write to the same
1822 		 * offset and new ensures that we do proper zero out
1823 		 * for partial write.
1824 		 */
1825 		set_buffer_new(bh);
1826 		set_buffer_mapped(bh);
1827 	}
1828 	return 0;
1829 }
1830 
1831 static int bget_one(handle_t *handle, struct buffer_head *bh)
1832 {
1833 	get_bh(bh);
1834 	return 0;
1835 }
1836 
1837 static int bput_one(handle_t *handle, struct buffer_head *bh)
1838 {
1839 	put_bh(bh);
1840 	return 0;
1841 }
1842 
1843 static int __ext4_journalled_writepage(struct page *page,
1844 				       unsigned int len)
1845 {
1846 	struct address_space *mapping = page->mapping;
1847 	struct inode *inode = mapping->host;
1848 	struct buffer_head *page_bufs = NULL;
1849 	handle_t *handle = NULL;
1850 	int ret = 0, err = 0;
1851 	int inline_data = ext4_has_inline_data(inode);
1852 	struct buffer_head *inode_bh = NULL;
1853 
1854 	ClearPageChecked(page);
1855 
1856 	if (inline_data) {
1857 		BUG_ON(page->index != 0);
1858 		BUG_ON(len > ext4_get_max_inline_size(inode));
1859 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1860 		if (inode_bh == NULL)
1861 			goto out;
1862 	} else {
1863 		page_bufs = page_buffers(page);
1864 		if (!page_bufs) {
1865 			BUG();
1866 			goto out;
1867 		}
1868 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1869 				       NULL, bget_one);
1870 	}
1871 	/*
1872 	 * We need to release the page lock before we start the
1873 	 * journal, so grab a reference so the page won't disappear
1874 	 * out from under us.
1875 	 */
1876 	get_page(page);
1877 	unlock_page(page);
1878 
1879 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1880 				    ext4_writepage_trans_blocks(inode));
1881 	if (IS_ERR(handle)) {
1882 		ret = PTR_ERR(handle);
1883 		put_page(page);
1884 		goto out_no_pagelock;
1885 	}
1886 	BUG_ON(!ext4_handle_valid(handle));
1887 
1888 	lock_page(page);
1889 	put_page(page);
1890 	if (page->mapping != mapping) {
1891 		/* The page got truncated from under us */
1892 		ext4_journal_stop(handle);
1893 		ret = 0;
1894 		goto out;
1895 	}
1896 
1897 	if (inline_data) {
1898 		ret = ext4_mark_inode_dirty(handle, inode);
1899 	} else {
1900 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1901 					     do_journal_get_write_access);
1902 
1903 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1904 					     write_end_fn);
1905 	}
1906 	if (ret == 0)
1907 		ret = err;
1908 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1909 	err = ext4_journal_stop(handle);
1910 	if (!ret)
1911 		ret = err;
1912 
1913 	if (!ext4_has_inline_data(inode))
1914 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1915 				       NULL, bput_one);
1916 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1917 out:
1918 	unlock_page(page);
1919 out_no_pagelock:
1920 	brelse(inode_bh);
1921 	return ret;
1922 }
1923 
1924 /*
1925  * Note that we don't need to start a transaction unless we're journaling data
1926  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1927  * need to file the inode to the transaction's list in ordered mode because if
1928  * we are writing back data added by write(), the inode is already there and if
1929  * we are writing back data modified via mmap(), no one guarantees in which
1930  * transaction the data will hit the disk. In case we are journaling data, we
1931  * cannot start transaction directly because transaction start ranks above page
1932  * lock so we have to do some magic.
1933  *
1934  * This function can get called via...
1935  *   - ext4_writepages after taking page lock (have journal handle)
1936  *   - journal_submit_inode_data_buffers (no journal handle)
1937  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1938  *   - grab_page_cache when doing write_begin (have journal handle)
1939  *
1940  * We don't do any block allocation in this function. If we have page with
1941  * multiple blocks we need to write those buffer_heads that are mapped. This
1942  * is important for mmaped based write. So if we do with blocksize 1K
1943  * truncate(f, 1024);
1944  * a = mmap(f, 0, 4096);
1945  * a[0] = 'a';
1946  * truncate(f, 4096);
1947  * we have in the page first buffer_head mapped via page_mkwrite call back
1948  * but other buffer_heads would be unmapped but dirty (dirty done via the
1949  * do_wp_page). So writepage should write the first block. If we modify
1950  * the mmap area beyond 1024 we will again get a page_fault and the
1951  * page_mkwrite callback will do the block allocation and mark the
1952  * buffer_heads mapped.
1953  *
1954  * We redirty the page if we have any buffer_heads that is either delay or
1955  * unwritten in the page.
1956  *
1957  * We can get recursively called as show below.
1958  *
1959  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1960  *		ext4_writepage()
1961  *
1962  * But since we don't do any block allocation we should not deadlock.
1963  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1964  */
1965 static int ext4_writepage(struct page *page,
1966 			  struct writeback_control *wbc)
1967 {
1968 	int ret = 0;
1969 	loff_t size;
1970 	unsigned int len;
1971 	struct buffer_head *page_bufs = NULL;
1972 	struct inode *inode = page->mapping->host;
1973 	struct ext4_io_submit io_submit;
1974 	bool keep_towrite = false;
1975 
1976 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1977 		ext4_invalidatepage(page, 0, PAGE_SIZE);
1978 		unlock_page(page);
1979 		return -EIO;
1980 	}
1981 
1982 	trace_ext4_writepage(page);
1983 	size = i_size_read(inode);
1984 	if (page->index == size >> PAGE_SHIFT &&
1985 	    !ext4_verity_in_progress(inode))
1986 		len = size & ~PAGE_MASK;
1987 	else
1988 		len = PAGE_SIZE;
1989 
1990 	page_bufs = page_buffers(page);
1991 	/*
1992 	 * We cannot do block allocation or other extent handling in this
1993 	 * function. If there are buffers needing that, we have to redirty
1994 	 * the page. But we may reach here when we do a journal commit via
1995 	 * journal_submit_inode_data_buffers() and in that case we must write
1996 	 * allocated buffers to achieve data=ordered mode guarantees.
1997 	 *
1998 	 * Also, if there is only one buffer per page (the fs block
1999 	 * size == the page size), if one buffer needs block
2000 	 * allocation or needs to modify the extent tree to clear the
2001 	 * unwritten flag, we know that the page can't be written at
2002 	 * all, so we might as well refuse the write immediately.
2003 	 * Unfortunately if the block size != page size, we can't as
2004 	 * easily detect this case using ext4_walk_page_buffers(), but
2005 	 * for the extremely common case, this is an optimization that
2006 	 * skips a useless round trip through ext4_bio_write_page().
2007 	 */
2008 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2009 				   ext4_bh_delay_or_unwritten)) {
2010 		redirty_page_for_writepage(wbc, page);
2011 		if ((current->flags & PF_MEMALLOC) ||
2012 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2013 			/*
2014 			 * For memory cleaning there's no point in writing only
2015 			 * some buffers. So just bail out. Warn if we came here
2016 			 * from direct reclaim.
2017 			 */
2018 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2019 							== PF_MEMALLOC);
2020 			unlock_page(page);
2021 			return 0;
2022 		}
2023 		keep_towrite = true;
2024 	}
2025 
2026 	if (PageChecked(page) && ext4_should_journal_data(inode))
2027 		/*
2028 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2029 		 * doesn't seem much point in redirtying the page here.
2030 		 */
2031 		return __ext4_journalled_writepage(page, len);
2032 
2033 	ext4_io_submit_init(&io_submit, wbc);
2034 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2035 	if (!io_submit.io_end) {
2036 		redirty_page_for_writepage(wbc, page);
2037 		unlock_page(page);
2038 		return -ENOMEM;
2039 	}
2040 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2041 	ext4_io_submit(&io_submit);
2042 	/* Drop io_end reference we got from init */
2043 	ext4_put_io_end_defer(io_submit.io_end);
2044 	return ret;
2045 }
2046 
2047 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2048 {
2049 	int len;
2050 	loff_t size;
2051 	int err;
2052 
2053 	BUG_ON(page->index != mpd->first_page);
2054 	clear_page_dirty_for_io(page);
2055 	/*
2056 	 * We have to be very careful here!  Nothing protects writeback path
2057 	 * against i_size changes and the page can be writeably mapped into
2058 	 * page tables. So an application can be growing i_size and writing
2059 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2060 	 * write-protects our page in page tables and the page cannot get
2061 	 * written to again until we release page lock. So only after
2062 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2063 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2064 	 * on the barrier provided by TestClearPageDirty in
2065 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2066 	 * after page tables are updated.
2067 	 */
2068 	size = i_size_read(mpd->inode);
2069 	if (page->index == size >> PAGE_SHIFT &&
2070 	    !ext4_verity_in_progress(mpd->inode))
2071 		len = size & ~PAGE_MASK;
2072 	else
2073 		len = PAGE_SIZE;
2074 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2075 	if (!err)
2076 		mpd->wbc->nr_to_write--;
2077 	mpd->first_page++;
2078 
2079 	return err;
2080 }
2081 
2082 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2083 
2084 /*
2085  * mballoc gives us at most this number of blocks...
2086  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2087  * The rest of mballoc seems to handle chunks up to full group size.
2088  */
2089 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2090 
2091 /*
2092  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2093  *
2094  * @mpd - extent of blocks
2095  * @lblk - logical number of the block in the file
2096  * @bh - buffer head we want to add to the extent
2097  *
2098  * The function is used to collect contig. blocks in the same state. If the
2099  * buffer doesn't require mapping for writeback and we haven't started the
2100  * extent of buffers to map yet, the function returns 'true' immediately - the
2101  * caller can write the buffer right away. Otherwise the function returns true
2102  * if the block has been added to the extent, false if the block couldn't be
2103  * added.
2104  */
2105 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2106 				   struct buffer_head *bh)
2107 {
2108 	struct ext4_map_blocks *map = &mpd->map;
2109 
2110 	/* Buffer that doesn't need mapping for writeback? */
2111 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2112 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2113 		/* So far no extent to map => we write the buffer right away */
2114 		if (map->m_len == 0)
2115 			return true;
2116 		return false;
2117 	}
2118 
2119 	/* First block in the extent? */
2120 	if (map->m_len == 0) {
2121 		/* We cannot map unless handle is started... */
2122 		if (!mpd->do_map)
2123 			return false;
2124 		map->m_lblk = lblk;
2125 		map->m_len = 1;
2126 		map->m_flags = bh->b_state & BH_FLAGS;
2127 		return true;
2128 	}
2129 
2130 	/* Don't go larger than mballoc is willing to allocate */
2131 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2132 		return false;
2133 
2134 	/* Can we merge the block to our big extent? */
2135 	if (lblk == map->m_lblk + map->m_len &&
2136 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2137 		map->m_len++;
2138 		return true;
2139 	}
2140 	return false;
2141 }
2142 
2143 /*
2144  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2145  *
2146  * @mpd - extent of blocks for mapping
2147  * @head - the first buffer in the page
2148  * @bh - buffer we should start processing from
2149  * @lblk - logical number of the block in the file corresponding to @bh
2150  *
2151  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2152  * the page for IO if all buffers in this page were mapped and there's no
2153  * accumulated extent of buffers to map or add buffers in the page to the
2154  * extent of buffers to map. The function returns 1 if the caller can continue
2155  * by processing the next page, 0 if it should stop adding buffers to the
2156  * extent to map because we cannot extend it anymore. It can also return value
2157  * < 0 in case of error during IO submission.
2158  */
2159 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2160 				   struct buffer_head *head,
2161 				   struct buffer_head *bh,
2162 				   ext4_lblk_t lblk)
2163 {
2164 	struct inode *inode = mpd->inode;
2165 	int err;
2166 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2167 							>> inode->i_blkbits;
2168 
2169 	if (ext4_verity_in_progress(inode))
2170 		blocks = EXT_MAX_BLOCKS;
2171 
2172 	do {
2173 		BUG_ON(buffer_locked(bh));
2174 
2175 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2176 			/* Found extent to map? */
2177 			if (mpd->map.m_len)
2178 				return 0;
2179 			/* Buffer needs mapping and handle is not started? */
2180 			if (!mpd->do_map)
2181 				return 0;
2182 			/* Everything mapped so far and we hit EOF */
2183 			break;
2184 		}
2185 	} while (lblk++, (bh = bh->b_this_page) != head);
2186 	/* So far everything mapped? Submit the page for IO. */
2187 	if (mpd->map.m_len == 0) {
2188 		err = mpage_submit_page(mpd, head->b_page);
2189 		if (err < 0)
2190 			return err;
2191 	}
2192 	return lblk < blocks;
2193 }
2194 
2195 /*
2196  * mpage_process_page - update page buffers corresponding to changed extent and
2197  *		       may submit fully mapped page for IO
2198  *
2199  * @mpd		- description of extent to map, on return next extent to map
2200  * @m_lblk	- logical block mapping.
2201  * @m_pblk	- corresponding physical mapping.
2202  * @map_bh	- determines on return whether this page requires any further
2203  *		  mapping or not.
2204  * Scan given page buffers corresponding to changed extent and update buffer
2205  * state according to new extent state.
2206  * We map delalloc buffers to their physical location, clear unwritten bits.
2207  * If the given page is not fully mapped, we update @map to the next extent in
2208  * the given page that needs mapping & return @map_bh as true.
2209  */
2210 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2211 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2212 			      bool *map_bh)
2213 {
2214 	struct buffer_head *head, *bh;
2215 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2216 	ext4_lblk_t lblk = *m_lblk;
2217 	ext4_fsblk_t pblock = *m_pblk;
2218 	int err = 0;
2219 	int blkbits = mpd->inode->i_blkbits;
2220 	ssize_t io_end_size = 0;
2221 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2222 
2223 	bh = head = page_buffers(page);
2224 	do {
2225 		if (lblk < mpd->map.m_lblk)
2226 			continue;
2227 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2228 			/*
2229 			 * Buffer after end of mapped extent.
2230 			 * Find next buffer in the page to map.
2231 			 */
2232 			mpd->map.m_len = 0;
2233 			mpd->map.m_flags = 0;
2234 			io_end_vec->size += io_end_size;
2235 			io_end_size = 0;
2236 
2237 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2238 			if (err > 0)
2239 				err = 0;
2240 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2241 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2242 				if (IS_ERR(io_end_vec)) {
2243 					err = PTR_ERR(io_end_vec);
2244 					goto out;
2245 				}
2246 				io_end_vec->offset = mpd->map.m_lblk << blkbits;
2247 			}
2248 			*map_bh = true;
2249 			goto out;
2250 		}
2251 		if (buffer_delay(bh)) {
2252 			clear_buffer_delay(bh);
2253 			bh->b_blocknr = pblock++;
2254 		}
2255 		clear_buffer_unwritten(bh);
2256 		io_end_size += (1 << blkbits);
2257 	} while (lblk++, (bh = bh->b_this_page) != head);
2258 
2259 	io_end_vec->size += io_end_size;
2260 	io_end_size = 0;
2261 	*map_bh = false;
2262 out:
2263 	*m_lblk = lblk;
2264 	*m_pblk = pblock;
2265 	return err;
2266 }
2267 
2268 /*
2269  * mpage_map_buffers - update buffers corresponding to changed extent and
2270  *		       submit fully mapped pages for IO
2271  *
2272  * @mpd - description of extent to map, on return next extent to map
2273  *
2274  * Scan buffers corresponding to changed extent (we expect corresponding pages
2275  * to be already locked) and update buffer state according to new extent state.
2276  * We map delalloc buffers to their physical location, clear unwritten bits,
2277  * and mark buffers as uninit when we perform writes to unwritten extents
2278  * and do extent conversion after IO is finished. If the last page is not fully
2279  * mapped, we update @map to the next extent in the last page that needs
2280  * mapping. Otherwise we submit the page for IO.
2281  */
2282 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2283 {
2284 	struct pagevec pvec;
2285 	int nr_pages, i;
2286 	struct inode *inode = mpd->inode;
2287 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2288 	pgoff_t start, end;
2289 	ext4_lblk_t lblk;
2290 	ext4_fsblk_t pblock;
2291 	int err;
2292 	bool map_bh = false;
2293 
2294 	start = mpd->map.m_lblk >> bpp_bits;
2295 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2296 	lblk = start << bpp_bits;
2297 	pblock = mpd->map.m_pblk;
2298 
2299 	pagevec_init(&pvec);
2300 	while (start <= end) {
2301 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2302 						&start, end);
2303 		if (nr_pages == 0)
2304 			break;
2305 		for (i = 0; i < nr_pages; i++) {
2306 			struct page *page = pvec.pages[i];
2307 
2308 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2309 						 &map_bh);
2310 			/*
2311 			 * If map_bh is true, means page may require further bh
2312 			 * mapping, or maybe the page was submitted for IO.
2313 			 * So we return to call further extent mapping.
2314 			 */
2315 			if (err < 0 || map_bh == true)
2316 				goto out;
2317 			/* Page fully mapped - let IO run! */
2318 			err = mpage_submit_page(mpd, page);
2319 			if (err < 0)
2320 				goto out;
2321 		}
2322 		pagevec_release(&pvec);
2323 	}
2324 	/* Extent fully mapped and matches with page boundary. We are done. */
2325 	mpd->map.m_len = 0;
2326 	mpd->map.m_flags = 0;
2327 	return 0;
2328 out:
2329 	pagevec_release(&pvec);
2330 	return err;
2331 }
2332 
2333 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2334 {
2335 	struct inode *inode = mpd->inode;
2336 	struct ext4_map_blocks *map = &mpd->map;
2337 	int get_blocks_flags;
2338 	int err, dioread_nolock;
2339 
2340 	trace_ext4_da_write_pages_extent(inode, map);
2341 	/*
2342 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2343 	 * to convert an unwritten extent to be initialized (in the case
2344 	 * where we have written into one or more preallocated blocks).  It is
2345 	 * possible that we're going to need more metadata blocks than
2346 	 * previously reserved. However we must not fail because we're in
2347 	 * writeback and there is nothing we can do about it so it might result
2348 	 * in data loss.  So use reserved blocks to allocate metadata if
2349 	 * possible.
2350 	 *
2351 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2352 	 * the blocks in question are delalloc blocks.  This indicates
2353 	 * that the blocks and quotas has already been checked when
2354 	 * the data was copied into the page cache.
2355 	 */
2356 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2357 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2358 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2359 	dioread_nolock = ext4_should_dioread_nolock(inode);
2360 	if (dioread_nolock)
2361 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2362 	if (map->m_flags & (1 << BH_Delay))
2363 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2364 
2365 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2366 	if (err < 0)
2367 		return err;
2368 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2369 		if (!mpd->io_submit.io_end->handle &&
2370 		    ext4_handle_valid(handle)) {
2371 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2372 			handle->h_rsv_handle = NULL;
2373 		}
2374 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2375 	}
2376 
2377 	BUG_ON(map->m_len == 0);
2378 	return 0;
2379 }
2380 
2381 /*
2382  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2383  *				 mpd->len and submit pages underlying it for IO
2384  *
2385  * @handle - handle for journal operations
2386  * @mpd - extent to map
2387  * @give_up_on_write - we set this to true iff there is a fatal error and there
2388  *                     is no hope of writing the data. The caller should discard
2389  *                     dirty pages to avoid infinite loops.
2390  *
2391  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2392  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2393  * them to initialized or split the described range from larger unwritten
2394  * extent. Note that we need not map all the described range since allocation
2395  * can return less blocks or the range is covered by more unwritten extents. We
2396  * cannot map more because we are limited by reserved transaction credits. On
2397  * the other hand we always make sure that the last touched page is fully
2398  * mapped so that it can be written out (and thus forward progress is
2399  * guaranteed). After mapping we submit all mapped pages for IO.
2400  */
2401 static int mpage_map_and_submit_extent(handle_t *handle,
2402 				       struct mpage_da_data *mpd,
2403 				       bool *give_up_on_write)
2404 {
2405 	struct inode *inode = mpd->inode;
2406 	struct ext4_map_blocks *map = &mpd->map;
2407 	int err;
2408 	loff_t disksize;
2409 	int progress = 0;
2410 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2411 	struct ext4_io_end_vec *io_end_vec;
2412 
2413 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2414 	if (IS_ERR(io_end_vec))
2415 		return PTR_ERR(io_end_vec);
2416 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2417 	do {
2418 		err = mpage_map_one_extent(handle, mpd);
2419 		if (err < 0) {
2420 			struct super_block *sb = inode->i_sb;
2421 
2422 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2423 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2424 				goto invalidate_dirty_pages;
2425 			/*
2426 			 * Let the uper layers retry transient errors.
2427 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2428 			 * is non-zero, a commit should free up blocks.
2429 			 */
2430 			if ((err == -ENOMEM) ||
2431 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2432 				if (progress)
2433 					goto update_disksize;
2434 				return err;
2435 			}
2436 			ext4_msg(sb, KERN_CRIT,
2437 				 "Delayed block allocation failed for "
2438 				 "inode %lu at logical offset %llu with"
2439 				 " max blocks %u with error %d",
2440 				 inode->i_ino,
2441 				 (unsigned long long)map->m_lblk,
2442 				 (unsigned)map->m_len, -err);
2443 			ext4_msg(sb, KERN_CRIT,
2444 				 "This should not happen!! Data will "
2445 				 "be lost\n");
2446 			if (err == -ENOSPC)
2447 				ext4_print_free_blocks(inode);
2448 		invalidate_dirty_pages:
2449 			*give_up_on_write = true;
2450 			return err;
2451 		}
2452 		progress = 1;
2453 		/*
2454 		 * Update buffer state, submit mapped pages, and get us new
2455 		 * extent to map
2456 		 */
2457 		err = mpage_map_and_submit_buffers(mpd);
2458 		if (err < 0)
2459 			goto update_disksize;
2460 	} while (map->m_len);
2461 
2462 update_disksize:
2463 	/*
2464 	 * Update on-disk size after IO is submitted.  Races with
2465 	 * truncate are avoided by checking i_size under i_data_sem.
2466 	 */
2467 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2468 	if (disksize > EXT4_I(inode)->i_disksize) {
2469 		int err2;
2470 		loff_t i_size;
2471 
2472 		down_write(&EXT4_I(inode)->i_data_sem);
2473 		i_size = i_size_read(inode);
2474 		if (disksize > i_size)
2475 			disksize = i_size;
2476 		if (disksize > EXT4_I(inode)->i_disksize)
2477 			EXT4_I(inode)->i_disksize = disksize;
2478 		up_write(&EXT4_I(inode)->i_data_sem);
2479 		err2 = ext4_mark_inode_dirty(handle, inode);
2480 		if (err2) {
2481 			ext4_set_errno(inode->i_sb, -err2);
2482 			ext4_error(inode->i_sb,
2483 				   "Failed to mark inode %lu dirty",
2484 				   inode->i_ino);
2485 		}
2486 		if (!err)
2487 			err = err2;
2488 	}
2489 	return err;
2490 }
2491 
2492 /*
2493  * Calculate the total number of credits to reserve for one writepages
2494  * iteration. This is called from ext4_writepages(). We map an extent of
2495  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2496  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2497  * bpp - 1 blocks in bpp different extents.
2498  */
2499 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2500 {
2501 	int bpp = ext4_journal_blocks_per_page(inode);
2502 
2503 	return ext4_meta_trans_blocks(inode,
2504 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2505 }
2506 
2507 /*
2508  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2509  * 				 and underlying extent to map
2510  *
2511  * @mpd - where to look for pages
2512  *
2513  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2514  * IO immediately. When we find a page which isn't mapped we start accumulating
2515  * extent of buffers underlying these pages that needs mapping (formed by
2516  * either delayed or unwritten buffers). We also lock the pages containing
2517  * these buffers. The extent found is returned in @mpd structure (starting at
2518  * mpd->lblk with length mpd->len blocks).
2519  *
2520  * Note that this function can attach bios to one io_end structure which are
2521  * neither logically nor physically contiguous. Although it may seem as an
2522  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2523  * case as we need to track IO to all buffers underlying a page in one io_end.
2524  */
2525 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2526 {
2527 	struct address_space *mapping = mpd->inode->i_mapping;
2528 	struct pagevec pvec;
2529 	unsigned int nr_pages;
2530 	long left = mpd->wbc->nr_to_write;
2531 	pgoff_t index = mpd->first_page;
2532 	pgoff_t end = mpd->last_page;
2533 	xa_mark_t tag;
2534 	int i, err = 0;
2535 	int blkbits = mpd->inode->i_blkbits;
2536 	ext4_lblk_t lblk;
2537 	struct buffer_head *head;
2538 
2539 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2540 		tag = PAGECACHE_TAG_TOWRITE;
2541 	else
2542 		tag = PAGECACHE_TAG_DIRTY;
2543 
2544 	pagevec_init(&pvec);
2545 	mpd->map.m_len = 0;
2546 	mpd->next_page = index;
2547 	while (index <= end) {
2548 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2549 				tag);
2550 		if (nr_pages == 0)
2551 			goto out;
2552 
2553 		for (i = 0; i < nr_pages; i++) {
2554 			struct page *page = pvec.pages[i];
2555 
2556 			/*
2557 			 * Accumulated enough dirty pages? This doesn't apply
2558 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2559 			 * keep going because someone may be concurrently
2560 			 * dirtying pages, and we might have synced a lot of
2561 			 * newly appeared dirty pages, but have not synced all
2562 			 * of the old dirty pages.
2563 			 */
2564 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2565 				goto out;
2566 
2567 			/* If we can't merge this page, we are done. */
2568 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2569 				goto out;
2570 
2571 			lock_page(page);
2572 			/*
2573 			 * If the page is no longer dirty, or its mapping no
2574 			 * longer corresponds to inode we are writing (which
2575 			 * means it has been truncated or invalidated), or the
2576 			 * page is already under writeback and we are not doing
2577 			 * a data integrity writeback, skip the page
2578 			 */
2579 			if (!PageDirty(page) ||
2580 			    (PageWriteback(page) &&
2581 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2582 			    unlikely(page->mapping != mapping)) {
2583 				unlock_page(page);
2584 				continue;
2585 			}
2586 
2587 			wait_on_page_writeback(page);
2588 			BUG_ON(PageWriteback(page));
2589 
2590 			if (mpd->map.m_len == 0)
2591 				mpd->first_page = page->index;
2592 			mpd->next_page = page->index + 1;
2593 			/* Add all dirty buffers to mpd */
2594 			lblk = ((ext4_lblk_t)page->index) <<
2595 				(PAGE_SHIFT - blkbits);
2596 			head = page_buffers(page);
2597 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2598 			if (err <= 0)
2599 				goto out;
2600 			err = 0;
2601 			left--;
2602 		}
2603 		pagevec_release(&pvec);
2604 		cond_resched();
2605 	}
2606 	return 0;
2607 out:
2608 	pagevec_release(&pvec);
2609 	return err;
2610 }
2611 
2612 static int ext4_writepages(struct address_space *mapping,
2613 			   struct writeback_control *wbc)
2614 {
2615 	pgoff_t	writeback_index = 0;
2616 	long nr_to_write = wbc->nr_to_write;
2617 	int range_whole = 0;
2618 	int cycled = 1;
2619 	handle_t *handle = NULL;
2620 	struct mpage_da_data mpd;
2621 	struct inode *inode = mapping->host;
2622 	int needed_blocks, rsv_blocks = 0, ret = 0;
2623 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2624 	bool done;
2625 	struct blk_plug plug;
2626 	bool give_up_on_write = false;
2627 
2628 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2629 		return -EIO;
2630 
2631 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2632 	trace_ext4_writepages(inode, wbc);
2633 
2634 	/*
2635 	 * No pages to write? This is mainly a kludge to avoid starting
2636 	 * a transaction for special inodes like journal inode on last iput()
2637 	 * because that could violate lock ordering on umount
2638 	 */
2639 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2640 		goto out_writepages;
2641 
2642 	if (ext4_should_journal_data(inode)) {
2643 		ret = generic_writepages(mapping, wbc);
2644 		goto out_writepages;
2645 	}
2646 
2647 	/*
2648 	 * If the filesystem has aborted, it is read-only, so return
2649 	 * right away instead of dumping stack traces later on that
2650 	 * will obscure the real source of the problem.  We test
2651 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2652 	 * the latter could be true if the filesystem is mounted
2653 	 * read-only, and in that case, ext4_writepages should
2654 	 * *never* be called, so if that ever happens, we would want
2655 	 * the stack trace.
2656 	 */
2657 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2658 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2659 		ret = -EROFS;
2660 		goto out_writepages;
2661 	}
2662 
2663 	/*
2664 	 * If we have inline data and arrive here, it means that
2665 	 * we will soon create the block for the 1st page, so
2666 	 * we'd better clear the inline data here.
2667 	 */
2668 	if (ext4_has_inline_data(inode)) {
2669 		/* Just inode will be modified... */
2670 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2671 		if (IS_ERR(handle)) {
2672 			ret = PTR_ERR(handle);
2673 			goto out_writepages;
2674 		}
2675 		BUG_ON(ext4_test_inode_state(inode,
2676 				EXT4_STATE_MAY_INLINE_DATA));
2677 		ext4_destroy_inline_data(handle, inode);
2678 		ext4_journal_stop(handle);
2679 	}
2680 
2681 	if (ext4_should_dioread_nolock(inode)) {
2682 		/*
2683 		 * We may need to convert up to one extent per block in
2684 		 * the page and we may dirty the inode.
2685 		 */
2686 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2687 						PAGE_SIZE >> inode->i_blkbits);
2688 	}
2689 
2690 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2691 		range_whole = 1;
2692 
2693 	if (wbc->range_cyclic) {
2694 		writeback_index = mapping->writeback_index;
2695 		if (writeback_index)
2696 			cycled = 0;
2697 		mpd.first_page = writeback_index;
2698 		mpd.last_page = -1;
2699 	} else {
2700 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2701 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2702 	}
2703 
2704 	mpd.inode = inode;
2705 	mpd.wbc = wbc;
2706 	ext4_io_submit_init(&mpd.io_submit, wbc);
2707 retry:
2708 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2709 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2710 	done = false;
2711 	blk_start_plug(&plug);
2712 
2713 	/*
2714 	 * First writeback pages that don't need mapping - we can avoid
2715 	 * starting a transaction unnecessarily and also avoid being blocked
2716 	 * in the block layer on device congestion while having transaction
2717 	 * started.
2718 	 */
2719 	mpd.do_map = 0;
2720 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2721 	if (!mpd.io_submit.io_end) {
2722 		ret = -ENOMEM;
2723 		goto unplug;
2724 	}
2725 	ret = mpage_prepare_extent_to_map(&mpd);
2726 	/* Unlock pages we didn't use */
2727 	mpage_release_unused_pages(&mpd, false);
2728 	/* Submit prepared bio */
2729 	ext4_io_submit(&mpd.io_submit);
2730 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2731 	mpd.io_submit.io_end = NULL;
2732 	if (ret < 0)
2733 		goto unplug;
2734 
2735 	while (!done && mpd.first_page <= mpd.last_page) {
2736 		/* For each extent of pages we use new io_end */
2737 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2738 		if (!mpd.io_submit.io_end) {
2739 			ret = -ENOMEM;
2740 			break;
2741 		}
2742 
2743 		/*
2744 		 * We have two constraints: We find one extent to map and we
2745 		 * must always write out whole page (makes a difference when
2746 		 * blocksize < pagesize) so that we don't block on IO when we
2747 		 * try to write out the rest of the page. Journalled mode is
2748 		 * not supported by delalloc.
2749 		 */
2750 		BUG_ON(ext4_should_journal_data(inode));
2751 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2752 
2753 		/* start a new transaction */
2754 		handle = ext4_journal_start_with_reserve(inode,
2755 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2756 		if (IS_ERR(handle)) {
2757 			ret = PTR_ERR(handle);
2758 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2759 			       "%ld pages, ino %lu; err %d", __func__,
2760 				wbc->nr_to_write, inode->i_ino, ret);
2761 			/* Release allocated io_end */
2762 			ext4_put_io_end(mpd.io_submit.io_end);
2763 			mpd.io_submit.io_end = NULL;
2764 			break;
2765 		}
2766 		mpd.do_map = 1;
2767 
2768 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2769 		ret = mpage_prepare_extent_to_map(&mpd);
2770 		if (!ret) {
2771 			if (mpd.map.m_len)
2772 				ret = mpage_map_and_submit_extent(handle, &mpd,
2773 					&give_up_on_write);
2774 			else {
2775 				/*
2776 				 * We scanned the whole range (or exhausted
2777 				 * nr_to_write), submitted what was mapped and
2778 				 * didn't find anything needing mapping. We are
2779 				 * done.
2780 				 */
2781 				done = true;
2782 			}
2783 		}
2784 		/*
2785 		 * Caution: If the handle is synchronous,
2786 		 * ext4_journal_stop() can wait for transaction commit
2787 		 * to finish which may depend on writeback of pages to
2788 		 * complete or on page lock to be released.  In that
2789 		 * case, we have to wait until after after we have
2790 		 * submitted all the IO, released page locks we hold,
2791 		 * and dropped io_end reference (for extent conversion
2792 		 * to be able to complete) before stopping the handle.
2793 		 */
2794 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2795 			ext4_journal_stop(handle);
2796 			handle = NULL;
2797 			mpd.do_map = 0;
2798 		}
2799 		/* Unlock pages we didn't use */
2800 		mpage_release_unused_pages(&mpd, give_up_on_write);
2801 		/* Submit prepared bio */
2802 		ext4_io_submit(&mpd.io_submit);
2803 
2804 		/*
2805 		 * Drop our io_end reference we got from init. We have
2806 		 * to be careful and use deferred io_end finishing if
2807 		 * we are still holding the transaction as we can
2808 		 * release the last reference to io_end which may end
2809 		 * up doing unwritten extent conversion.
2810 		 */
2811 		if (handle) {
2812 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2813 			ext4_journal_stop(handle);
2814 		} else
2815 			ext4_put_io_end(mpd.io_submit.io_end);
2816 		mpd.io_submit.io_end = NULL;
2817 
2818 		if (ret == -ENOSPC && sbi->s_journal) {
2819 			/*
2820 			 * Commit the transaction which would
2821 			 * free blocks released in the transaction
2822 			 * and try again
2823 			 */
2824 			jbd2_journal_force_commit_nested(sbi->s_journal);
2825 			ret = 0;
2826 			continue;
2827 		}
2828 		/* Fatal error - ENOMEM, EIO... */
2829 		if (ret)
2830 			break;
2831 	}
2832 unplug:
2833 	blk_finish_plug(&plug);
2834 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2835 		cycled = 1;
2836 		mpd.last_page = writeback_index - 1;
2837 		mpd.first_page = 0;
2838 		goto retry;
2839 	}
2840 
2841 	/* Update index */
2842 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2843 		/*
2844 		 * Set the writeback_index so that range_cyclic
2845 		 * mode will write it back later
2846 		 */
2847 		mapping->writeback_index = mpd.first_page;
2848 
2849 out_writepages:
2850 	trace_ext4_writepages_result(inode, wbc, ret,
2851 				     nr_to_write - wbc->nr_to_write);
2852 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2853 	return ret;
2854 }
2855 
2856 static int ext4_dax_writepages(struct address_space *mapping,
2857 			       struct writeback_control *wbc)
2858 {
2859 	int ret;
2860 	long nr_to_write = wbc->nr_to_write;
2861 	struct inode *inode = mapping->host;
2862 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2863 
2864 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2865 		return -EIO;
2866 
2867 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2868 	trace_ext4_writepages(inode, wbc);
2869 
2870 	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2871 	trace_ext4_writepages_result(inode, wbc, ret,
2872 				     nr_to_write - wbc->nr_to_write);
2873 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2874 	return ret;
2875 }
2876 
2877 static int ext4_nonda_switch(struct super_block *sb)
2878 {
2879 	s64 free_clusters, dirty_clusters;
2880 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2881 
2882 	/*
2883 	 * switch to non delalloc mode if we are running low
2884 	 * on free block. The free block accounting via percpu
2885 	 * counters can get slightly wrong with percpu_counter_batch getting
2886 	 * accumulated on each CPU without updating global counters
2887 	 * Delalloc need an accurate free block accounting. So switch
2888 	 * to non delalloc when we are near to error range.
2889 	 */
2890 	free_clusters =
2891 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2892 	dirty_clusters =
2893 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2894 	/*
2895 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2896 	 */
2897 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2898 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2899 
2900 	if (2 * free_clusters < 3 * dirty_clusters ||
2901 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2902 		/*
2903 		 * free block count is less than 150% of dirty blocks
2904 		 * or free blocks is less than watermark
2905 		 */
2906 		return 1;
2907 	}
2908 	return 0;
2909 }
2910 
2911 /* We always reserve for an inode update; the superblock could be there too */
2912 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2913 {
2914 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2915 		return 1;
2916 
2917 	if (pos + len <= 0x7fffffffULL)
2918 		return 1;
2919 
2920 	/* We might need to update the superblock to set LARGE_FILE */
2921 	return 2;
2922 }
2923 
2924 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2925 			       loff_t pos, unsigned len, unsigned flags,
2926 			       struct page **pagep, void **fsdata)
2927 {
2928 	int ret, retries = 0;
2929 	struct page *page;
2930 	pgoff_t index;
2931 	struct inode *inode = mapping->host;
2932 	handle_t *handle;
2933 
2934 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2935 		return -EIO;
2936 
2937 	index = pos >> PAGE_SHIFT;
2938 
2939 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2940 	    ext4_verity_in_progress(inode)) {
2941 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2942 		return ext4_write_begin(file, mapping, pos,
2943 					len, flags, pagep, fsdata);
2944 	}
2945 	*fsdata = (void *)0;
2946 	trace_ext4_da_write_begin(inode, pos, len, flags);
2947 
2948 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2949 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2950 						      pos, len, flags,
2951 						      pagep, fsdata);
2952 		if (ret < 0)
2953 			return ret;
2954 		if (ret == 1)
2955 			return 0;
2956 	}
2957 
2958 	/*
2959 	 * grab_cache_page_write_begin() can take a long time if the
2960 	 * system is thrashing due to memory pressure, or if the page
2961 	 * is being written back.  So grab it first before we start
2962 	 * the transaction handle.  This also allows us to allocate
2963 	 * the page (if needed) without using GFP_NOFS.
2964 	 */
2965 retry_grab:
2966 	page = grab_cache_page_write_begin(mapping, index, flags);
2967 	if (!page)
2968 		return -ENOMEM;
2969 	unlock_page(page);
2970 
2971 	/*
2972 	 * With delayed allocation, we don't log the i_disksize update
2973 	 * if there is delayed block allocation. But we still need
2974 	 * to journalling the i_disksize update if writes to the end
2975 	 * of file which has an already mapped buffer.
2976 	 */
2977 retry_journal:
2978 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2979 				ext4_da_write_credits(inode, pos, len));
2980 	if (IS_ERR(handle)) {
2981 		put_page(page);
2982 		return PTR_ERR(handle);
2983 	}
2984 
2985 	lock_page(page);
2986 	if (page->mapping != mapping) {
2987 		/* The page got truncated from under us */
2988 		unlock_page(page);
2989 		put_page(page);
2990 		ext4_journal_stop(handle);
2991 		goto retry_grab;
2992 	}
2993 	/* In case writeback began while the page was unlocked */
2994 	wait_for_stable_page(page);
2995 
2996 #ifdef CONFIG_FS_ENCRYPTION
2997 	ret = ext4_block_write_begin(page, pos, len,
2998 				     ext4_da_get_block_prep);
2999 #else
3000 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3001 #endif
3002 	if (ret < 0) {
3003 		unlock_page(page);
3004 		ext4_journal_stop(handle);
3005 		/*
3006 		 * block_write_begin may have instantiated a few blocks
3007 		 * outside i_size.  Trim these off again. Don't need
3008 		 * i_size_read because we hold i_mutex.
3009 		 */
3010 		if (pos + len > inode->i_size)
3011 			ext4_truncate_failed_write(inode);
3012 
3013 		if (ret == -ENOSPC &&
3014 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3015 			goto retry_journal;
3016 
3017 		put_page(page);
3018 		return ret;
3019 	}
3020 
3021 	*pagep = page;
3022 	return ret;
3023 }
3024 
3025 /*
3026  * Check if we should update i_disksize
3027  * when write to the end of file but not require block allocation
3028  */
3029 static int ext4_da_should_update_i_disksize(struct page *page,
3030 					    unsigned long offset)
3031 {
3032 	struct buffer_head *bh;
3033 	struct inode *inode = page->mapping->host;
3034 	unsigned int idx;
3035 	int i;
3036 
3037 	bh = page_buffers(page);
3038 	idx = offset >> inode->i_blkbits;
3039 
3040 	for (i = 0; i < idx; i++)
3041 		bh = bh->b_this_page;
3042 
3043 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3044 		return 0;
3045 	return 1;
3046 }
3047 
3048 static int ext4_da_write_end(struct file *file,
3049 			     struct address_space *mapping,
3050 			     loff_t pos, unsigned len, unsigned copied,
3051 			     struct page *page, void *fsdata)
3052 {
3053 	struct inode *inode = mapping->host;
3054 	int ret = 0, ret2;
3055 	handle_t *handle = ext4_journal_current_handle();
3056 	loff_t new_i_size;
3057 	unsigned long start, end;
3058 	int write_mode = (int)(unsigned long)fsdata;
3059 
3060 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3061 		return ext4_write_end(file, mapping, pos,
3062 				      len, copied, page, fsdata);
3063 
3064 	trace_ext4_da_write_end(inode, pos, len, copied);
3065 	start = pos & (PAGE_SIZE - 1);
3066 	end = start + copied - 1;
3067 
3068 	/*
3069 	 * generic_write_end() will run mark_inode_dirty() if i_size
3070 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3071 	 * into that.
3072 	 */
3073 	new_i_size = pos + copied;
3074 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3075 		if (ext4_has_inline_data(inode) ||
3076 		    ext4_da_should_update_i_disksize(page, end)) {
3077 			ext4_update_i_disksize(inode, new_i_size);
3078 			/* We need to mark inode dirty even if
3079 			 * new_i_size is less that inode->i_size
3080 			 * bu greater than i_disksize.(hint delalloc)
3081 			 */
3082 			ext4_mark_inode_dirty(handle, inode);
3083 		}
3084 	}
3085 
3086 	if (write_mode != CONVERT_INLINE_DATA &&
3087 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3088 	    ext4_has_inline_data(inode))
3089 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3090 						     page);
3091 	else
3092 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3093 							page, fsdata);
3094 
3095 	copied = ret2;
3096 	if (ret2 < 0)
3097 		ret = ret2;
3098 	ret2 = ext4_journal_stop(handle);
3099 	if (!ret)
3100 		ret = ret2;
3101 
3102 	return ret ? ret : copied;
3103 }
3104 
3105 /*
3106  * Force all delayed allocation blocks to be allocated for a given inode.
3107  */
3108 int ext4_alloc_da_blocks(struct inode *inode)
3109 {
3110 	trace_ext4_alloc_da_blocks(inode);
3111 
3112 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3113 		return 0;
3114 
3115 	/*
3116 	 * We do something simple for now.  The filemap_flush() will
3117 	 * also start triggering a write of the data blocks, which is
3118 	 * not strictly speaking necessary (and for users of
3119 	 * laptop_mode, not even desirable).  However, to do otherwise
3120 	 * would require replicating code paths in:
3121 	 *
3122 	 * ext4_writepages() ->
3123 	 *    write_cache_pages() ---> (via passed in callback function)
3124 	 *        __mpage_da_writepage() -->
3125 	 *           mpage_add_bh_to_extent()
3126 	 *           mpage_da_map_blocks()
3127 	 *
3128 	 * The problem is that write_cache_pages(), located in
3129 	 * mm/page-writeback.c, marks pages clean in preparation for
3130 	 * doing I/O, which is not desirable if we're not planning on
3131 	 * doing I/O at all.
3132 	 *
3133 	 * We could call write_cache_pages(), and then redirty all of
3134 	 * the pages by calling redirty_page_for_writepage() but that
3135 	 * would be ugly in the extreme.  So instead we would need to
3136 	 * replicate parts of the code in the above functions,
3137 	 * simplifying them because we wouldn't actually intend to
3138 	 * write out the pages, but rather only collect contiguous
3139 	 * logical block extents, call the multi-block allocator, and
3140 	 * then update the buffer heads with the block allocations.
3141 	 *
3142 	 * For now, though, we'll cheat by calling filemap_flush(),
3143 	 * which will map the blocks, and start the I/O, but not
3144 	 * actually wait for the I/O to complete.
3145 	 */
3146 	return filemap_flush(inode->i_mapping);
3147 }
3148 
3149 /*
3150  * bmap() is special.  It gets used by applications such as lilo and by
3151  * the swapper to find the on-disk block of a specific piece of data.
3152  *
3153  * Naturally, this is dangerous if the block concerned is still in the
3154  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3155  * filesystem and enables swap, then they may get a nasty shock when the
3156  * data getting swapped to that swapfile suddenly gets overwritten by
3157  * the original zero's written out previously to the journal and
3158  * awaiting writeback in the kernel's buffer cache.
3159  *
3160  * So, if we see any bmap calls here on a modified, data-journaled file,
3161  * take extra steps to flush any blocks which might be in the cache.
3162  */
3163 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3164 {
3165 	struct inode *inode = mapping->host;
3166 	journal_t *journal;
3167 	int err;
3168 
3169 	/*
3170 	 * We can get here for an inline file via the FIBMAP ioctl
3171 	 */
3172 	if (ext4_has_inline_data(inode))
3173 		return 0;
3174 
3175 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3176 			test_opt(inode->i_sb, DELALLOC)) {
3177 		/*
3178 		 * With delalloc we want to sync the file
3179 		 * so that we can make sure we allocate
3180 		 * blocks for file
3181 		 */
3182 		filemap_write_and_wait(mapping);
3183 	}
3184 
3185 	if (EXT4_JOURNAL(inode) &&
3186 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3187 		/*
3188 		 * This is a REALLY heavyweight approach, but the use of
3189 		 * bmap on dirty files is expected to be extremely rare:
3190 		 * only if we run lilo or swapon on a freshly made file
3191 		 * do we expect this to happen.
3192 		 *
3193 		 * (bmap requires CAP_SYS_RAWIO so this does not
3194 		 * represent an unprivileged user DOS attack --- we'd be
3195 		 * in trouble if mortal users could trigger this path at
3196 		 * will.)
3197 		 *
3198 		 * NB. EXT4_STATE_JDATA is not set on files other than
3199 		 * regular files.  If somebody wants to bmap a directory
3200 		 * or symlink and gets confused because the buffer
3201 		 * hasn't yet been flushed to disk, they deserve
3202 		 * everything they get.
3203 		 */
3204 
3205 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3206 		journal = EXT4_JOURNAL(inode);
3207 		jbd2_journal_lock_updates(journal);
3208 		err = jbd2_journal_flush(journal);
3209 		jbd2_journal_unlock_updates(journal);
3210 
3211 		if (err)
3212 			return 0;
3213 	}
3214 
3215 	return generic_block_bmap(mapping, block, ext4_get_block);
3216 }
3217 
3218 static int ext4_readpage(struct file *file, struct page *page)
3219 {
3220 	int ret = -EAGAIN;
3221 	struct inode *inode = page->mapping->host;
3222 
3223 	trace_ext4_readpage(page);
3224 
3225 	if (ext4_has_inline_data(inode))
3226 		ret = ext4_readpage_inline(inode, page);
3227 
3228 	if (ret == -EAGAIN)
3229 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3230 						false);
3231 
3232 	return ret;
3233 }
3234 
3235 static int
3236 ext4_readpages(struct file *file, struct address_space *mapping,
3237 		struct list_head *pages, unsigned nr_pages)
3238 {
3239 	struct inode *inode = mapping->host;
3240 
3241 	/* If the file has inline data, no need to do readpages. */
3242 	if (ext4_has_inline_data(inode))
3243 		return 0;
3244 
3245 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3246 }
3247 
3248 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3249 				unsigned int length)
3250 {
3251 	trace_ext4_invalidatepage(page, offset, length);
3252 
3253 	/* No journalling happens on data buffers when this function is used */
3254 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3255 
3256 	block_invalidatepage(page, offset, length);
3257 }
3258 
3259 static int __ext4_journalled_invalidatepage(struct page *page,
3260 					    unsigned int offset,
3261 					    unsigned int length)
3262 {
3263 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3264 
3265 	trace_ext4_journalled_invalidatepage(page, offset, length);
3266 
3267 	/*
3268 	 * If it's a full truncate we just forget about the pending dirtying
3269 	 */
3270 	if (offset == 0 && length == PAGE_SIZE)
3271 		ClearPageChecked(page);
3272 
3273 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3274 }
3275 
3276 /* Wrapper for aops... */
3277 static void ext4_journalled_invalidatepage(struct page *page,
3278 					   unsigned int offset,
3279 					   unsigned int length)
3280 {
3281 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3282 }
3283 
3284 static int ext4_releasepage(struct page *page, gfp_t wait)
3285 {
3286 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3287 
3288 	trace_ext4_releasepage(page);
3289 
3290 	/* Page has dirty journalled data -> cannot release */
3291 	if (PageChecked(page))
3292 		return 0;
3293 	if (journal)
3294 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3295 	else
3296 		return try_to_free_buffers(page);
3297 }
3298 
3299 static bool ext4_inode_datasync_dirty(struct inode *inode)
3300 {
3301 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3302 
3303 	if (journal)
3304 		return !jbd2_transaction_committed(journal,
3305 					EXT4_I(inode)->i_datasync_tid);
3306 	/* Any metadata buffers to write? */
3307 	if (!list_empty(&inode->i_mapping->private_list))
3308 		return true;
3309 	return inode->i_state & I_DIRTY_DATASYNC;
3310 }
3311 
3312 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3313 			   struct ext4_map_blocks *map, loff_t offset,
3314 			   loff_t length)
3315 {
3316 	u8 blkbits = inode->i_blkbits;
3317 
3318 	/*
3319 	 * Writes that span EOF might trigger an I/O size update on completion,
3320 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3321 	 * there is no other metadata changes being made or are pending.
3322 	 */
3323 	iomap->flags = 0;
3324 	if (ext4_inode_datasync_dirty(inode) ||
3325 	    offset + length > i_size_read(inode))
3326 		iomap->flags |= IOMAP_F_DIRTY;
3327 
3328 	if (map->m_flags & EXT4_MAP_NEW)
3329 		iomap->flags |= IOMAP_F_NEW;
3330 
3331 	iomap->bdev = inode->i_sb->s_bdev;
3332 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3333 	iomap->offset = (u64) map->m_lblk << blkbits;
3334 	iomap->length = (u64) map->m_len << blkbits;
3335 
3336 	/*
3337 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3338 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3339 	 * set. In order for any allocated unwritten extents to be converted
3340 	 * into written extents correctly within the ->end_io() handler, we
3341 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3342 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3343 	 * been set first.
3344 	 */
3345 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3346 		iomap->type = IOMAP_UNWRITTEN;
3347 		iomap->addr = (u64) map->m_pblk << blkbits;
3348 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3349 		iomap->type = IOMAP_MAPPED;
3350 		iomap->addr = (u64) map->m_pblk << blkbits;
3351 	} else {
3352 		iomap->type = IOMAP_HOLE;
3353 		iomap->addr = IOMAP_NULL_ADDR;
3354 	}
3355 }
3356 
3357 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3358 			    unsigned int flags)
3359 {
3360 	handle_t *handle;
3361 	u8 blkbits = inode->i_blkbits;
3362 	int ret, dio_credits, m_flags = 0, retries = 0;
3363 
3364 	/*
3365 	 * Trim the mapping request to the maximum value that we can map at
3366 	 * once for direct I/O.
3367 	 */
3368 	if (map->m_len > DIO_MAX_BLOCKS)
3369 		map->m_len = DIO_MAX_BLOCKS;
3370 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3371 
3372 retry:
3373 	/*
3374 	 * Either we allocate blocks and then don't get an unwritten extent, so
3375 	 * in that case we have reserved enough credits. Or, the blocks are
3376 	 * already allocated and unwritten. In that case, the extent conversion
3377 	 * fits into the credits as well.
3378 	 */
3379 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3380 	if (IS_ERR(handle))
3381 		return PTR_ERR(handle);
3382 
3383 	/*
3384 	 * DAX and direct I/O are the only two operations that are currently
3385 	 * supported with IOMAP_WRITE.
3386 	 */
3387 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3388 	if (IS_DAX(inode))
3389 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3390 	/*
3391 	 * We use i_size instead of i_disksize here because delalloc writeback
3392 	 * can complete at any point during the I/O and subsequently push the
3393 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3394 	 * happening and thus expose allocated blocks to direct I/O reads.
3395 	 */
3396 	else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3397 		m_flags = EXT4_GET_BLOCKS_CREATE;
3398 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3399 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3400 
3401 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3402 
3403 	/*
3404 	 * We cannot fill holes in indirect tree based inodes as that could
3405 	 * expose stale data in the case of a crash. Use the magic error code
3406 	 * to fallback to buffered I/O.
3407 	 */
3408 	if (!m_flags && !ret)
3409 		ret = -ENOTBLK;
3410 
3411 	ext4_journal_stop(handle);
3412 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3413 		goto retry;
3414 
3415 	return ret;
3416 }
3417 
3418 
3419 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3420 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3421 {
3422 	int ret;
3423 	struct ext4_map_blocks map;
3424 	u8 blkbits = inode->i_blkbits;
3425 
3426 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3427 		return -EINVAL;
3428 
3429 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3430 		return -ERANGE;
3431 
3432 	/*
3433 	 * Calculate the first and last logical blocks respectively.
3434 	 */
3435 	map.m_lblk = offset >> blkbits;
3436 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3437 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3438 
3439 	if (flags & IOMAP_WRITE)
3440 		ret = ext4_iomap_alloc(inode, &map, flags);
3441 	else
3442 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3443 
3444 	if (ret < 0)
3445 		return ret;
3446 
3447 	ext4_set_iomap(inode, iomap, &map, offset, length);
3448 
3449 	return 0;
3450 }
3451 
3452 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3453 		loff_t length, unsigned flags, struct iomap *iomap,
3454 		struct iomap *srcmap)
3455 {
3456 	int ret;
3457 
3458 	/*
3459 	 * Even for writes we don't need to allocate blocks, so just pretend
3460 	 * we are reading to save overhead of starting a transaction.
3461 	 */
3462 	flags &= ~IOMAP_WRITE;
3463 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3464 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3465 	return ret;
3466 }
3467 
3468 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3469 			  ssize_t written, unsigned flags, struct iomap *iomap)
3470 {
3471 	/*
3472 	 * Check to see whether an error occurred while writing out the data to
3473 	 * the allocated blocks. If so, return the magic error code so that we
3474 	 * fallback to buffered I/O and attempt to complete the remainder of
3475 	 * the I/O. Any blocks that may have been allocated in preparation for
3476 	 * the direct I/O will be reused during buffered I/O.
3477 	 */
3478 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3479 		return -ENOTBLK;
3480 
3481 	return 0;
3482 }
3483 
3484 const struct iomap_ops ext4_iomap_ops = {
3485 	.iomap_begin		= ext4_iomap_begin,
3486 	.iomap_end		= ext4_iomap_end,
3487 };
3488 
3489 const struct iomap_ops ext4_iomap_overwrite_ops = {
3490 	.iomap_begin		= ext4_iomap_overwrite_begin,
3491 	.iomap_end		= ext4_iomap_end,
3492 };
3493 
3494 static bool ext4_iomap_is_delalloc(struct inode *inode,
3495 				   struct ext4_map_blocks *map)
3496 {
3497 	struct extent_status es;
3498 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3499 
3500 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3501 				  map->m_lblk, end, &es);
3502 
3503 	if (!es.es_len || es.es_lblk > end)
3504 		return false;
3505 
3506 	if (es.es_lblk > map->m_lblk) {
3507 		map->m_len = es.es_lblk - map->m_lblk;
3508 		return false;
3509 	}
3510 
3511 	offset = map->m_lblk - es.es_lblk;
3512 	map->m_len = es.es_len - offset;
3513 
3514 	return true;
3515 }
3516 
3517 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3518 				   loff_t length, unsigned int flags,
3519 				   struct iomap *iomap, struct iomap *srcmap)
3520 {
3521 	int ret;
3522 	bool delalloc = false;
3523 	struct ext4_map_blocks map;
3524 	u8 blkbits = inode->i_blkbits;
3525 
3526 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3527 		return -EINVAL;
3528 
3529 	if (ext4_has_inline_data(inode)) {
3530 		ret = ext4_inline_data_iomap(inode, iomap);
3531 		if (ret != -EAGAIN) {
3532 			if (ret == 0 && offset >= iomap->length)
3533 				ret = -ENOENT;
3534 			return ret;
3535 		}
3536 	}
3537 
3538 	/*
3539 	 * Calculate the first and last logical block respectively.
3540 	 */
3541 	map.m_lblk = offset >> blkbits;
3542 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3543 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3544 
3545 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3546 	if (ret < 0)
3547 		return ret;
3548 	if (ret == 0)
3549 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3550 
3551 	ext4_set_iomap(inode, iomap, &map, offset, length);
3552 	if (delalloc && iomap->type == IOMAP_HOLE)
3553 		iomap->type = IOMAP_DELALLOC;
3554 
3555 	return 0;
3556 }
3557 
3558 const struct iomap_ops ext4_iomap_report_ops = {
3559 	.iomap_begin = ext4_iomap_begin_report,
3560 };
3561 
3562 /*
3563  * Pages can be marked dirty completely asynchronously from ext4's journalling
3564  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3565  * much here because ->set_page_dirty is called under VFS locks.  The page is
3566  * not necessarily locked.
3567  *
3568  * We cannot just dirty the page and leave attached buffers clean, because the
3569  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3570  * or jbddirty because all the journalling code will explode.
3571  *
3572  * So what we do is to mark the page "pending dirty" and next time writepage
3573  * is called, propagate that into the buffers appropriately.
3574  */
3575 static int ext4_journalled_set_page_dirty(struct page *page)
3576 {
3577 	SetPageChecked(page);
3578 	return __set_page_dirty_nobuffers(page);
3579 }
3580 
3581 static int ext4_set_page_dirty(struct page *page)
3582 {
3583 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3584 	WARN_ON_ONCE(!page_has_buffers(page));
3585 	return __set_page_dirty_buffers(page);
3586 }
3587 
3588 static const struct address_space_operations ext4_aops = {
3589 	.readpage		= ext4_readpage,
3590 	.readpages		= ext4_readpages,
3591 	.writepage		= ext4_writepage,
3592 	.writepages		= ext4_writepages,
3593 	.write_begin		= ext4_write_begin,
3594 	.write_end		= ext4_write_end,
3595 	.set_page_dirty		= ext4_set_page_dirty,
3596 	.bmap			= ext4_bmap,
3597 	.invalidatepage		= ext4_invalidatepage,
3598 	.releasepage		= ext4_releasepage,
3599 	.direct_IO		= noop_direct_IO,
3600 	.migratepage		= buffer_migrate_page,
3601 	.is_partially_uptodate  = block_is_partially_uptodate,
3602 	.error_remove_page	= generic_error_remove_page,
3603 };
3604 
3605 static const struct address_space_operations ext4_journalled_aops = {
3606 	.readpage		= ext4_readpage,
3607 	.readpages		= ext4_readpages,
3608 	.writepage		= ext4_writepage,
3609 	.writepages		= ext4_writepages,
3610 	.write_begin		= ext4_write_begin,
3611 	.write_end		= ext4_journalled_write_end,
3612 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3613 	.bmap			= ext4_bmap,
3614 	.invalidatepage		= ext4_journalled_invalidatepage,
3615 	.releasepage		= ext4_releasepage,
3616 	.direct_IO		= noop_direct_IO,
3617 	.is_partially_uptodate  = block_is_partially_uptodate,
3618 	.error_remove_page	= generic_error_remove_page,
3619 };
3620 
3621 static const struct address_space_operations ext4_da_aops = {
3622 	.readpage		= ext4_readpage,
3623 	.readpages		= ext4_readpages,
3624 	.writepage		= ext4_writepage,
3625 	.writepages		= ext4_writepages,
3626 	.write_begin		= ext4_da_write_begin,
3627 	.write_end		= ext4_da_write_end,
3628 	.set_page_dirty		= ext4_set_page_dirty,
3629 	.bmap			= ext4_bmap,
3630 	.invalidatepage		= ext4_invalidatepage,
3631 	.releasepage		= ext4_releasepage,
3632 	.direct_IO		= noop_direct_IO,
3633 	.migratepage		= buffer_migrate_page,
3634 	.is_partially_uptodate  = block_is_partially_uptodate,
3635 	.error_remove_page	= generic_error_remove_page,
3636 };
3637 
3638 static const struct address_space_operations ext4_dax_aops = {
3639 	.writepages		= ext4_dax_writepages,
3640 	.direct_IO		= noop_direct_IO,
3641 	.set_page_dirty		= noop_set_page_dirty,
3642 	.bmap			= ext4_bmap,
3643 	.invalidatepage		= noop_invalidatepage,
3644 };
3645 
3646 void ext4_set_aops(struct inode *inode)
3647 {
3648 	switch (ext4_inode_journal_mode(inode)) {
3649 	case EXT4_INODE_ORDERED_DATA_MODE:
3650 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3651 		break;
3652 	case EXT4_INODE_JOURNAL_DATA_MODE:
3653 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3654 		return;
3655 	default:
3656 		BUG();
3657 	}
3658 	if (IS_DAX(inode))
3659 		inode->i_mapping->a_ops = &ext4_dax_aops;
3660 	else if (test_opt(inode->i_sb, DELALLOC))
3661 		inode->i_mapping->a_ops = &ext4_da_aops;
3662 	else
3663 		inode->i_mapping->a_ops = &ext4_aops;
3664 }
3665 
3666 static int __ext4_block_zero_page_range(handle_t *handle,
3667 		struct address_space *mapping, loff_t from, loff_t length)
3668 {
3669 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3670 	unsigned offset = from & (PAGE_SIZE-1);
3671 	unsigned blocksize, pos;
3672 	ext4_lblk_t iblock;
3673 	struct inode *inode = mapping->host;
3674 	struct buffer_head *bh;
3675 	struct page *page;
3676 	int err = 0;
3677 
3678 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3679 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3680 	if (!page)
3681 		return -ENOMEM;
3682 
3683 	blocksize = inode->i_sb->s_blocksize;
3684 
3685 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3686 
3687 	if (!page_has_buffers(page))
3688 		create_empty_buffers(page, blocksize, 0);
3689 
3690 	/* Find the buffer that contains "offset" */
3691 	bh = page_buffers(page);
3692 	pos = blocksize;
3693 	while (offset >= pos) {
3694 		bh = bh->b_this_page;
3695 		iblock++;
3696 		pos += blocksize;
3697 	}
3698 	if (buffer_freed(bh)) {
3699 		BUFFER_TRACE(bh, "freed: skip");
3700 		goto unlock;
3701 	}
3702 	if (!buffer_mapped(bh)) {
3703 		BUFFER_TRACE(bh, "unmapped");
3704 		ext4_get_block(inode, iblock, bh, 0);
3705 		/* unmapped? It's a hole - nothing to do */
3706 		if (!buffer_mapped(bh)) {
3707 			BUFFER_TRACE(bh, "still unmapped");
3708 			goto unlock;
3709 		}
3710 	}
3711 
3712 	/* Ok, it's mapped. Make sure it's up-to-date */
3713 	if (PageUptodate(page))
3714 		set_buffer_uptodate(bh);
3715 
3716 	if (!buffer_uptodate(bh)) {
3717 		err = -EIO;
3718 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3719 		wait_on_buffer(bh);
3720 		/* Uhhuh. Read error. Complain and punt. */
3721 		if (!buffer_uptodate(bh))
3722 			goto unlock;
3723 		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3724 			/* We expect the key to be set. */
3725 			BUG_ON(!fscrypt_has_encryption_key(inode));
3726 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3727 							       bh_offset(bh));
3728 			if (err) {
3729 				clear_buffer_uptodate(bh);
3730 				goto unlock;
3731 			}
3732 		}
3733 	}
3734 	if (ext4_should_journal_data(inode)) {
3735 		BUFFER_TRACE(bh, "get write access");
3736 		err = ext4_journal_get_write_access(handle, bh);
3737 		if (err)
3738 			goto unlock;
3739 	}
3740 	zero_user(page, offset, length);
3741 	BUFFER_TRACE(bh, "zeroed end of block");
3742 
3743 	if (ext4_should_journal_data(inode)) {
3744 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3745 	} else {
3746 		err = 0;
3747 		mark_buffer_dirty(bh);
3748 		if (ext4_should_order_data(inode))
3749 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3750 					length);
3751 	}
3752 
3753 unlock:
3754 	unlock_page(page);
3755 	put_page(page);
3756 	return err;
3757 }
3758 
3759 /*
3760  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3761  * starting from file offset 'from'.  The range to be zero'd must
3762  * be contained with in one block.  If the specified range exceeds
3763  * the end of the block it will be shortened to end of the block
3764  * that cooresponds to 'from'
3765  */
3766 static int ext4_block_zero_page_range(handle_t *handle,
3767 		struct address_space *mapping, loff_t from, loff_t length)
3768 {
3769 	struct inode *inode = mapping->host;
3770 	unsigned offset = from & (PAGE_SIZE-1);
3771 	unsigned blocksize = inode->i_sb->s_blocksize;
3772 	unsigned max = blocksize - (offset & (blocksize - 1));
3773 
3774 	/*
3775 	 * correct length if it does not fall between
3776 	 * 'from' and the end of the block
3777 	 */
3778 	if (length > max || length < 0)
3779 		length = max;
3780 
3781 	if (IS_DAX(inode)) {
3782 		return iomap_zero_range(inode, from, length, NULL,
3783 					&ext4_iomap_ops);
3784 	}
3785 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3786 }
3787 
3788 /*
3789  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3790  * up to the end of the block which corresponds to `from'.
3791  * This required during truncate. We need to physically zero the tail end
3792  * of that block so it doesn't yield old data if the file is later grown.
3793  */
3794 static int ext4_block_truncate_page(handle_t *handle,
3795 		struct address_space *mapping, loff_t from)
3796 {
3797 	unsigned offset = from & (PAGE_SIZE-1);
3798 	unsigned length;
3799 	unsigned blocksize;
3800 	struct inode *inode = mapping->host;
3801 
3802 	/* If we are processing an encrypted inode during orphan list handling */
3803 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3804 		return 0;
3805 
3806 	blocksize = inode->i_sb->s_blocksize;
3807 	length = blocksize - (offset & (blocksize - 1));
3808 
3809 	return ext4_block_zero_page_range(handle, mapping, from, length);
3810 }
3811 
3812 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3813 			     loff_t lstart, loff_t length)
3814 {
3815 	struct super_block *sb = inode->i_sb;
3816 	struct address_space *mapping = inode->i_mapping;
3817 	unsigned partial_start, partial_end;
3818 	ext4_fsblk_t start, end;
3819 	loff_t byte_end = (lstart + length - 1);
3820 	int err = 0;
3821 
3822 	partial_start = lstart & (sb->s_blocksize - 1);
3823 	partial_end = byte_end & (sb->s_blocksize - 1);
3824 
3825 	start = lstart >> sb->s_blocksize_bits;
3826 	end = byte_end >> sb->s_blocksize_bits;
3827 
3828 	/* Handle partial zero within the single block */
3829 	if (start == end &&
3830 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3831 		err = ext4_block_zero_page_range(handle, mapping,
3832 						 lstart, length);
3833 		return err;
3834 	}
3835 	/* Handle partial zero out on the start of the range */
3836 	if (partial_start) {
3837 		err = ext4_block_zero_page_range(handle, mapping,
3838 						 lstart, sb->s_blocksize);
3839 		if (err)
3840 			return err;
3841 	}
3842 	/* Handle partial zero out on the end of the range */
3843 	if (partial_end != sb->s_blocksize - 1)
3844 		err = ext4_block_zero_page_range(handle, mapping,
3845 						 byte_end - partial_end,
3846 						 partial_end + 1);
3847 	return err;
3848 }
3849 
3850 int ext4_can_truncate(struct inode *inode)
3851 {
3852 	if (S_ISREG(inode->i_mode))
3853 		return 1;
3854 	if (S_ISDIR(inode->i_mode))
3855 		return 1;
3856 	if (S_ISLNK(inode->i_mode))
3857 		return !ext4_inode_is_fast_symlink(inode);
3858 	return 0;
3859 }
3860 
3861 /*
3862  * We have to make sure i_disksize gets properly updated before we truncate
3863  * page cache due to hole punching or zero range. Otherwise i_disksize update
3864  * can get lost as it may have been postponed to submission of writeback but
3865  * that will never happen after we truncate page cache.
3866  */
3867 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3868 				      loff_t len)
3869 {
3870 	handle_t *handle;
3871 	loff_t size = i_size_read(inode);
3872 
3873 	WARN_ON(!inode_is_locked(inode));
3874 	if (offset > size || offset + len < size)
3875 		return 0;
3876 
3877 	if (EXT4_I(inode)->i_disksize >= size)
3878 		return 0;
3879 
3880 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3881 	if (IS_ERR(handle))
3882 		return PTR_ERR(handle);
3883 	ext4_update_i_disksize(inode, size);
3884 	ext4_mark_inode_dirty(handle, inode);
3885 	ext4_journal_stop(handle);
3886 
3887 	return 0;
3888 }
3889 
3890 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3891 {
3892 	up_write(&ei->i_mmap_sem);
3893 	schedule();
3894 	down_write(&ei->i_mmap_sem);
3895 }
3896 
3897 int ext4_break_layouts(struct inode *inode)
3898 {
3899 	struct ext4_inode_info *ei = EXT4_I(inode);
3900 	struct page *page;
3901 	int error;
3902 
3903 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3904 		return -EINVAL;
3905 
3906 	do {
3907 		page = dax_layout_busy_page(inode->i_mapping);
3908 		if (!page)
3909 			return 0;
3910 
3911 		error = ___wait_var_event(&page->_refcount,
3912 				atomic_read(&page->_refcount) == 1,
3913 				TASK_INTERRUPTIBLE, 0, 0,
3914 				ext4_wait_dax_page(ei));
3915 	} while (error == 0);
3916 
3917 	return error;
3918 }
3919 
3920 /*
3921  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3922  * associated with the given offset and length
3923  *
3924  * @inode:  File inode
3925  * @offset: The offset where the hole will begin
3926  * @len:    The length of the hole
3927  *
3928  * Returns: 0 on success or negative on failure
3929  */
3930 
3931 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3932 {
3933 	struct super_block *sb = inode->i_sb;
3934 	ext4_lblk_t first_block, stop_block;
3935 	struct address_space *mapping = inode->i_mapping;
3936 	loff_t first_block_offset, last_block_offset;
3937 	handle_t *handle;
3938 	unsigned int credits;
3939 	int ret = 0;
3940 
3941 	trace_ext4_punch_hole(inode, offset, length, 0);
3942 
3943 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3944 	if (ext4_has_inline_data(inode)) {
3945 		down_write(&EXT4_I(inode)->i_mmap_sem);
3946 		ret = ext4_convert_inline_data(inode);
3947 		up_write(&EXT4_I(inode)->i_mmap_sem);
3948 		if (ret)
3949 			return ret;
3950 	}
3951 
3952 	/*
3953 	 * Write out all dirty pages to avoid race conditions
3954 	 * Then release them.
3955 	 */
3956 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3957 		ret = filemap_write_and_wait_range(mapping, offset,
3958 						   offset + length - 1);
3959 		if (ret)
3960 			return ret;
3961 	}
3962 
3963 	inode_lock(inode);
3964 
3965 	/* No need to punch hole beyond i_size */
3966 	if (offset >= inode->i_size)
3967 		goto out_mutex;
3968 
3969 	/*
3970 	 * If the hole extends beyond i_size, set the hole
3971 	 * to end after the page that contains i_size
3972 	 */
3973 	if (offset + length > inode->i_size) {
3974 		length = inode->i_size +
3975 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3976 		   offset;
3977 	}
3978 
3979 	if (offset & (sb->s_blocksize - 1) ||
3980 	    (offset + length) & (sb->s_blocksize - 1)) {
3981 		/*
3982 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3983 		 * partial block
3984 		 */
3985 		ret = ext4_inode_attach_jinode(inode);
3986 		if (ret < 0)
3987 			goto out_mutex;
3988 
3989 	}
3990 
3991 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3992 	inode_dio_wait(inode);
3993 
3994 	/*
3995 	 * Prevent page faults from reinstantiating pages we have released from
3996 	 * page cache.
3997 	 */
3998 	down_write(&EXT4_I(inode)->i_mmap_sem);
3999 
4000 	ret = ext4_break_layouts(inode);
4001 	if (ret)
4002 		goto out_dio;
4003 
4004 	first_block_offset = round_up(offset, sb->s_blocksize);
4005 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4006 
4007 	/* Now release the pages and zero block aligned part of pages*/
4008 	if (last_block_offset > first_block_offset) {
4009 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4010 		if (ret)
4011 			goto out_dio;
4012 		truncate_pagecache_range(inode, first_block_offset,
4013 					 last_block_offset);
4014 	}
4015 
4016 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4017 		credits = ext4_writepage_trans_blocks(inode);
4018 	else
4019 		credits = ext4_blocks_for_truncate(inode);
4020 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4021 	if (IS_ERR(handle)) {
4022 		ret = PTR_ERR(handle);
4023 		ext4_std_error(sb, ret);
4024 		goto out_dio;
4025 	}
4026 
4027 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4028 				       length);
4029 	if (ret)
4030 		goto out_stop;
4031 
4032 	first_block = (offset + sb->s_blocksize - 1) >>
4033 		EXT4_BLOCK_SIZE_BITS(sb);
4034 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4035 
4036 	/* If there are blocks to remove, do it */
4037 	if (stop_block > first_block) {
4038 
4039 		down_write(&EXT4_I(inode)->i_data_sem);
4040 		ext4_discard_preallocations(inode);
4041 
4042 		ret = ext4_es_remove_extent(inode, first_block,
4043 					    stop_block - first_block);
4044 		if (ret) {
4045 			up_write(&EXT4_I(inode)->i_data_sem);
4046 			goto out_stop;
4047 		}
4048 
4049 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4050 			ret = ext4_ext_remove_space(inode, first_block,
4051 						    stop_block - 1);
4052 		else
4053 			ret = ext4_ind_remove_space(handle, inode, first_block,
4054 						    stop_block);
4055 
4056 		up_write(&EXT4_I(inode)->i_data_sem);
4057 	}
4058 	if (IS_SYNC(inode))
4059 		ext4_handle_sync(handle);
4060 
4061 	inode->i_mtime = inode->i_ctime = current_time(inode);
4062 	ext4_mark_inode_dirty(handle, inode);
4063 	if (ret >= 0)
4064 		ext4_update_inode_fsync_trans(handle, inode, 1);
4065 out_stop:
4066 	ext4_journal_stop(handle);
4067 out_dio:
4068 	up_write(&EXT4_I(inode)->i_mmap_sem);
4069 out_mutex:
4070 	inode_unlock(inode);
4071 	return ret;
4072 }
4073 
4074 int ext4_inode_attach_jinode(struct inode *inode)
4075 {
4076 	struct ext4_inode_info *ei = EXT4_I(inode);
4077 	struct jbd2_inode *jinode;
4078 
4079 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4080 		return 0;
4081 
4082 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4083 	spin_lock(&inode->i_lock);
4084 	if (!ei->jinode) {
4085 		if (!jinode) {
4086 			spin_unlock(&inode->i_lock);
4087 			return -ENOMEM;
4088 		}
4089 		ei->jinode = jinode;
4090 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4091 		jinode = NULL;
4092 	}
4093 	spin_unlock(&inode->i_lock);
4094 	if (unlikely(jinode != NULL))
4095 		jbd2_free_inode(jinode);
4096 	return 0;
4097 }
4098 
4099 /*
4100  * ext4_truncate()
4101  *
4102  * We block out ext4_get_block() block instantiations across the entire
4103  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4104  * simultaneously on behalf of the same inode.
4105  *
4106  * As we work through the truncate and commit bits of it to the journal there
4107  * is one core, guiding principle: the file's tree must always be consistent on
4108  * disk.  We must be able to restart the truncate after a crash.
4109  *
4110  * The file's tree may be transiently inconsistent in memory (although it
4111  * probably isn't), but whenever we close off and commit a journal transaction,
4112  * the contents of (the filesystem + the journal) must be consistent and
4113  * restartable.  It's pretty simple, really: bottom up, right to left (although
4114  * left-to-right works OK too).
4115  *
4116  * Note that at recovery time, journal replay occurs *before* the restart of
4117  * truncate against the orphan inode list.
4118  *
4119  * The committed inode has the new, desired i_size (which is the same as
4120  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4121  * that this inode's truncate did not complete and it will again call
4122  * ext4_truncate() to have another go.  So there will be instantiated blocks
4123  * to the right of the truncation point in a crashed ext4 filesystem.  But
4124  * that's fine - as long as they are linked from the inode, the post-crash
4125  * ext4_truncate() run will find them and release them.
4126  */
4127 int ext4_truncate(struct inode *inode)
4128 {
4129 	struct ext4_inode_info *ei = EXT4_I(inode);
4130 	unsigned int credits;
4131 	int err = 0;
4132 	handle_t *handle;
4133 	struct address_space *mapping = inode->i_mapping;
4134 
4135 	/*
4136 	 * There is a possibility that we're either freeing the inode
4137 	 * or it's a completely new inode. In those cases we might not
4138 	 * have i_mutex locked because it's not necessary.
4139 	 */
4140 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4141 		WARN_ON(!inode_is_locked(inode));
4142 	trace_ext4_truncate_enter(inode);
4143 
4144 	if (!ext4_can_truncate(inode))
4145 		return 0;
4146 
4147 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4148 
4149 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4150 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4151 
4152 	if (ext4_has_inline_data(inode)) {
4153 		int has_inline = 1;
4154 
4155 		err = ext4_inline_data_truncate(inode, &has_inline);
4156 		if (err)
4157 			return err;
4158 		if (has_inline)
4159 			return 0;
4160 	}
4161 
4162 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4163 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4164 		if (ext4_inode_attach_jinode(inode) < 0)
4165 			return 0;
4166 	}
4167 
4168 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4169 		credits = ext4_writepage_trans_blocks(inode);
4170 	else
4171 		credits = ext4_blocks_for_truncate(inode);
4172 
4173 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4174 	if (IS_ERR(handle))
4175 		return PTR_ERR(handle);
4176 
4177 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4178 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4179 
4180 	/*
4181 	 * We add the inode to the orphan list, so that if this
4182 	 * truncate spans multiple transactions, and we crash, we will
4183 	 * resume the truncate when the filesystem recovers.  It also
4184 	 * marks the inode dirty, to catch the new size.
4185 	 *
4186 	 * Implication: the file must always be in a sane, consistent
4187 	 * truncatable state while each transaction commits.
4188 	 */
4189 	err = ext4_orphan_add(handle, inode);
4190 	if (err)
4191 		goto out_stop;
4192 
4193 	down_write(&EXT4_I(inode)->i_data_sem);
4194 
4195 	ext4_discard_preallocations(inode);
4196 
4197 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4198 		err = ext4_ext_truncate(handle, inode);
4199 	else
4200 		ext4_ind_truncate(handle, inode);
4201 
4202 	up_write(&ei->i_data_sem);
4203 	if (err)
4204 		goto out_stop;
4205 
4206 	if (IS_SYNC(inode))
4207 		ext4_handle_sync(handle);
4208 
4209 out_stop:
4210 	/*
4211 	 * If this was a simple ftruncate() and the file will remain alive,
4212 	 * then we need to clear up the orphan record which we created above.
4213 	 * However, if this was a real unlink then we were called by
4214 	 * ext4_evict_inode(), and we allow that function to clean up the
4215 	 * orphan info for us.
4216 	 */
4217 	if (inode->i_nlink)
4218 		ext4_orphan_del(handle, inode);
4219 
4220 	inode->i_mtime = inode->i_ctime = current_time(inode);
4221 	ext4_mark_inode_dirty(handle, inode);
4222 	ext4_journal_stop(handle);
4223 
4224 	trace_ext4_truncate_exit(inode);
4225 	return err;
4226 }
4227 
4228 /*
4229  * ext4_get_inode_loc returns with an extra refcount against the inode's
4230  * underlying buffer_head on success. If 'in_mem' is true, we have all
4231  * data in memory that is needed to recreate the on-disk version of this
4232  * inode.
4233  */
4234 static int __ext4_get_inode_loc(struct inode *inode,
4235 				struct ext4_iloc *iloc, int in_mem)
4236 {
4237 	struct ext4_group_desc	*gdp;
4238 	struct buffer_head	*bh;
4239 	struct super_block	*sb = inode->i_sb;
4240 	ext4_fsblk_t		block;
4241 	struct blk_plug		plug;
4242 	int			inodes_per_block, inode_offset;
4243 
4244 	iloc->bh = NULL;
4245 	if (inode->i_ino < EXT4_ROOT_INO ||
4246 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4247 		return -EFSCORRUPTED;
4248 
4249 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4250 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4251 	if (!gdp)
4252 		return -EIO;
4253 
4254 	/*
4255 	 * Figure out the offset within the block group inode table
4256 	 */
4257 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4258 	inode_offset = ((inode->i_ino - 1) %
4259 			EXT4_INODES_PER_GROUP(sb));
4260 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4261 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4262 
4263 	bh = sb_getblk(sb, block);
4264 	if (unlikely(!bh))
4265 		return -ENOMEM;
4266 	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4267 		goto simulate_eio;
4268 	if (!buffer_uptodate(bh)) {
4269 		lock_buffer(bh);
4270 
4271 		/*
4272 		 * If the buffer has the write error flag, we have failed
4273 		 * to write out another inode in the same block.  In this
4274 		 * case, we don't have to read the block because we may
4275 		 * read the old inode data successfully.
4276 		 */
4277 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4278 			set_buffer_uptodate(bh);
4279 
4280 		if (buffer_uptodate(bh)) {
4281 			/* someone brought it uptodate while we waited */
4282 			unlock_buffer(bh);
4283 			goto has_buffer;
4284 		}
4285 
4286 		/*
4287 		 * If we have all information of the inode in memory and this
4288 		 * is the only valid inode in the block, we need not read the
4289 		 * block.
4290 		 */
4291 		if (in_mem) {
4292 			struct buffer_head *bitmap_bh;
4293 			int i, start;
4294 
4295 			start = inode_offset & ~(inodes_per_block - 1);
4296 
4297 			/* Is the inode bitmap in cache? */
4298 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4299 			if (unlikely(!bitmap_bh))
4300 				goto make_io;
4301 
4302 			/*
4303 			 * If the inode bitmap isn't in cache then the
4304 			 * optimisation may end up performing two reads instead
4305 			 * of one, so skip it.
4306 			 */
4307 			if (!buffer_uptodate(bitmap_bh)) {
4308 				brelse(bitmap_bh);
4309 				goto make_io;
4310 			}
4311 			for (i = start; i < start + inodes_per_block; i++) {
4312 				if (i == inode_offset)
4313 					continue;
4314 				if (ext4_test_bit(i, bitmap_bh->b_data))
4315 					break;
4316 			}
4317 			brelse(bitmap_bh);
4318 			if (i == start + inodes_per_block) {
4319 				/* all other inodes are free, so skip I/O */
4320 				memset(bh->b_data, 0, bh->b_size);
4321 				set_buffer_uptodate(bh);
4322 				unlock_buffer(bh);
4323 				goto has_buffer;
4324 			}
4325 		}
4326 
4327 make_io:
4328 		/*
4329 		 * If we need to do any I/O, try to pre-readahead extra
4330 		 * blocks from the inode table.
4331 		 */
4332 		blk_start_plug(&plug);
4333 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4334 			ext4_fsblk_t b, end, table;
4335 			unsigned num;
4336 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4337 
4338 			table = ext4_inode_table(sb, gdp);
4339 			/* s_inode_readahead_blks is always a power of 2 */
4340 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4341 			if (table > b)
4342 				b = table;
4343 			end = b + ra_blks;
4344 			num = EXT4_INODES_PER_GROUP(sb);
4345 			if (ext4_has_group_desc_csum(sb))
4346 				num -= ext4_itable_unused_count(sb, gdp);
4347 			table += num / inodes_per_block;
4348 			if (end > table)
4349 				end = table;
4350 			while (b <= end)
4351 				sb_breadahead(sb, b++);
4352 		}
4353 
4354 		/*
4355 		 * There are other valid inodes in the buffer, this inode
4356 		 * has in-inode xattrs, or we don't have this inode in memory.
4357 		 * Read the block from disk.
4358 		 */
4359 		trace_ext4_load_inode(inode);
4360 		get_bh(bh);
4361 		bh->b_end_io = end_buffer_read_sync;
4362 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4363 		blk_finish_plug(&plug);
4364 		wait_on_buffer(bh);
4365 		if (!buffer_uptodate(bh)) {
4366 		simulate_eio:
4367 			ext4_set_errno(inode->i_sb, EIO);
4368 			EXT4_ERROR_INODE_BLOCK(inode, block,
4369 					       "unable to read itable block");
4370 			brelse(bh);
4371 			return -EIO;
4372 		}
4373 	}
4374 has_buffer:
4375 	iloc->bh = bh;
4376 	return 0;
4377 }
4378 
4379 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4380 {
4381 	/* We have all inode data except xattrs in memory here. */
4382 	return __ext4_get_inode_loc(inode, iloc,
4383 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4384 }
4385 
4386 static bool ext4_should_use_dax(struct inode *inode)
4387 {
4388 	if (!test_opt(inode->i_sb, DAX))
4389 		return false;
4390 	if (!S_ISREG(inode->i_mode))
4391 		return false;
4392 	if (ext4_should_journal_data(inode))
4393 		return false;
4394 	if (ext4_has_inline_data(inode))
4395 		return false;
4396 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4397 		return false;
4398 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4399 		return false;
4400 	return true;
4401 }
4402 
4403 void ext4_set_inode_flags(struct inode *inode)
4404 {
4405 	unsigned int flags = EXT4_I(inode)->i_flags;
4406 	unsigned int new_fl = 0;
4407 
4408 	if (flags & EXT4_SYNC_FL)
4409 		new_fl |= S_SYNC;
4410 	if (flags & EXT4_APPEND_FL)
4411 		new_fl |= S_APPEND;
4412 	if (flags & EXT4_IMMUTABLE_FL)
4413 		new_fl |= S_IMMUTABLE;
4414 	if (flags & EXT4_NOATIME_FL)
4415 		new_fl |= S_NOATIME;
4416 	if (flags & EXT4_DIRSYNC_FL)
4417 		new_fl |= S_DIRSYNC;
4418 	if (ext4_should_use_dax(inode))
4419 		new_fl |= S_DAX;
4420 	if (flags & EXT4_ENCRYPT_FL)
4421 		new_fl |= S_ENCRYPTED;
4422 	if (flags & EXT4_CASEFOLD_FL)
4423 		new_fl |= S_CASEFOLD;
4424 	if (flags & EXT4_VERITY_FL)
4425 		new_fl |= S_VERITY;
4426 	inode_set_flags(inode, new_fl,
4427 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4428 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4429 }
4430 
4431 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4432 				  struct ext4_inode_info *ei)
4433 {
4434 	blkcnt_t i_blocks ;
4435 	struct inode *inode = &(ei->vfs_inode);
4436 	struct super_block *sb = inode->i_sb;
4437 
4438 	if (ext4_has_feature_huge_file(sb)) {
4439 		/* we are using combined 48 bit field */
4440 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4441 					le32_to_cpu(raw_inode->i_blocks_lo);
4442 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4443 			/* i_blocks represent file system block size */
4444 			return i_blocks  << (inode->i_blkbits - 9);
4445 		} else {
4446 			return i_blocks;
4447 		}
4448 	} else {
4449 		return le32_to_cpu(raw_inode->i_blocks_lo);
4450 	}
4451 }
4452 
4453 static inline int ext4_iget_extra_inode(struct inode *inode,
4454 					 struct ext4_inode *raw_inode,
4455 					 struct ext4_inode_info *ei)
4456 {
4457 	__le32 *magic = (void *)raw_inode +
4458 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4459 
4460 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4461 	    EXT4_INODE_SIZE(inode->i_sb) &&
4462 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4463 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4464 		return ext4_find_inline_data_nolock(inode);
4465 	} else
4466 		EXT4_I(inode)->i_inline_off = 0;
4467 	return 0;
4468 }
4469 
4470 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4471 {
4472 	if (!ext4_has_feature_project(inode->i_sb))
4473 		return -EOPNOTSUPP;
4474 	*projid = EXT4_I(inode)->i_projid;
4475 	return 0;
4476 }
4477 
4478 /*
4479  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4480  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4481  * set.
4482  */
4483 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4484 {
4485 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4486 		inode_set_iversion_raw(inode, val);
4487 	else
4488 		inode_set_iversion_queried(inode, val);
4489 }
4490 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4491 {
4492 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4493 		return inode_peek_iversion_raw(inode);
4494 	else
4495 		return inode_peek_iversion(inode);
4496 }
4497 
4498 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4499 			  ext4_iget_flags flags, const char *function,
4500 			  unsigned int line)
4501 {
4502 	struct ext4_iloc iloc;
4503 	struct ext4_inode *raw_inode;
4504 	struct ext4_inode_info *ei;
4505 	struct inode *inode;
4506 	journal_t *journal = EXT4_SB(sb)->s_journal;
4507 	long ret;
4508 	loff_t size;
4509 	int block;
4510 	uid_t i_uid;
4511 	gid_t i_gid;
4512 	projid_t i_projid;
4513 
4514 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4515 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4516 	    (ino < EXT4_ROOT_INO) ||
4517 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4518 		if (flags & EXT4_IGET_HANDLE)
4519 			return ERR_PTR(-ESTALE);
4520 		__ext4_error(sb, function, line,
4521 			     "inode #%lu: comm %s: iget: illegal inode #",
4522 			     ino, current->comm);
4523 		return ERR_PTR(-EFSCORRUPTED);
4524 	}
4525 
4526 	inode = iget_locked(sb, ino);
4527 	if (!inode)
4528 		return ERR_PTR(-ENOMEM);
4529 	if (!(inode->i_state & I_NEW))
4530 		return inode;
4531 
4532 	ei = EXT4_I(inode);
4533 	iloc.bh = NULL;
4534 
4535 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4536 	if (ret < 0)
4537 		goto bad_inode;
4538 	raw_inode = ext4_raw_inode(&iloc);
4539 
4540 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4541 		ext4_error_inode(inode, function, line, 0,
4542 				 "iget: root inode unallocated");
4543 		ret = -EFSCORRUPTED;
4544 		goto bad_inode;
4545 	}
4546 
4547 	if ((flags & EXT4_IGET_HANDLE) &&
4548 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4549 		ret = -ESTALE;
4550 		goto bad_inode;
4551 	}
4552 
4553 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4554 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4555 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4556 			EXT4_INODE_SIZE(inode->i_sb) ||
4557 		    (ei->i_extra_isize & 3)) {
4558 			ext4_error_inode(inode, function, line, 0,
4559 					 "iget: bad extra_isize %u "
4560 					 "(inode size %u)",
4561 					 ei->i_extra_isize,
4562 					 EXT4_INODE_SIZE(inode->i_sb));
4563 			ret = -EFSCORRUPTED;
4564 			goto bad_inode;
4565 		}
4566 	} else
4567 		ei->i_extra_isize = 0;
4568 
4569 	/* Precompute checksum seed for inode metadata */
4570 	if (ext4_has_metadata_csum(sb)) {
4571 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4572 		__u32 csum;
4573 		__le32 inum = cpu_to_le32(inode->i_ino);
4574 		__le32 gen = raw_inode->i_generation;
4575 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4576 				   sizeof(inum));
4577 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4578 					      sizeof(gen));
4579 	}
4580 
4581 	if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4582 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4583 		ext4_set_errno(inode->i_sb, EFSBADCRC);
4584 		ext4_error_inode(inode, function, line, 0,
4585 				 "iget: checksum invalid");
4586 		ret = -EFSBADCRC;
4587 		goto bad_inode;
4588 	}
4589 
4590 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4591 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4592 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4593 	if (ext4_has_feature_project(sb) &&
4594 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4595 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4596 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4597 	else
4598 		i_projid = EXT4_DEF_PROJID;
4599 
4600 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4601 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4602 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4603 	}
4604 	i_uid_write(inode, i_uid);
4605 	i_gid_write(inode, i_gid);
4606 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4607 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4608 
4609 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4610 	ei->i_inline_off = 0;
4611 	ei->i_dir_start_lookup = 0;
4612 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4613 	/* We now have enough fields to check if the inode was active or not.
4614 	 * This is needed because nfsd might try to access dead inodes
4615 	 * the test is that same one that e2fsck uses
4616 	 * NeilBrown 1999oct15
4617 	 */
4618 	if (inode->i_nlink == 0) {
4619 		if ((inode->i_mode == 0 ||
4620 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4621 		    ino != EXT4_BOOT_LOADER_INO) {
4622 			/* this inode is deleted */
4623 			ret = -ESTALE;
4624 			goto bad_inode;
4625 		}
4626 		/* The only unlinked inodes we let through here have
4627 		 * valid i_mode and are being read by the orphan
4628 		 * recovery code: that's fine, we're about to complete
4629 		 * the process of deleting those.
4630 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4631 		 * not initialized on a new filesystem. */
4632 	}
4633 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4634 	ext4_set_inode_flags(inode);
4635 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4636 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4637 	if (ext4_has_feature_64bit(sb))
4638 		ei->i_file_acl |=
4639 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4640 	inode->i_size = ext4_isize(sb, raw_inode);
4641 	if ((size = i_size_read(inode)) < 0) {
4642 		ext4_error_inode(inode, function, line, 0,
4643 				 "iget: bad i_size value: %lld", size);
4644 		ret = -EFSCORRUPTED;
4645 		goto bad_inode;
4646 	}
4647 	ei->i_disksize = inode->i_size;
4648 #ifdef CONFIG_QUOTA
4649 	ei->i_reserved_quota = 0;
4650 #endif
4651 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4652 	ei->i_block_group = iloc.block_group;
4653 	ei->i_last_alloc_group = ~0;
4654 	/*
4655 	 * NOTE! The in-memory inode i_data array is in little-endian order
4656 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4657 	 */
4658 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4659 		ei->i_data[block] = raw_inode->i_block[block];
4660 	INIT_LIST_HEAD(&ei->i_orphan);
4661 
4662 	/*
4663 	 * Set transaction id's of transactions that have to be committed
4664 	 * to finish f[data]sync. We set them to currently running transaction
4665 	 * as we cannot be sure that the inode or some of its metadata isn't
4666 	 * part of the transaction - the inode could have been reclaimed and
4667 	 * now it is reread from disk.
4668 	 */
4669 	if (journal) {
4670 		transaction_t *transaction;
4671 		tid_t tid;
4672 
4673 		read_lock(&journal->j_state_lock);
4674 		if (journal->j_running_transaction)
4675 			transaction = journal->j_running_transaction;
4676 		else
4677 			transaction = journal->j_committing_transaction;
4678 		if (transaction)
4679 			tid = transaction->t_tid;
4680 		else
4681 			tid = journal->j_commit_sequence;
4682 		read_unlock(&journal->j_state_lock);
4683 		ei->i_sync_tid = tid;
4684 		ei->i_datasync_tid = tid;
4685 	}
4686 
4687 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4688 		if (ei->i_extra_isize == 0) {
4689 			/* The extra space is currently unused. Use it. */
4690 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4691 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4692 					    EXT4_GOOD_OLD_INODE_SIZE;
4693 		} else {
4694 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4695 			if (ret)
4696 				goto bad_inode;
4697 		}
4698 	}
4699 
4700 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4701 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4702 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4703 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4704 
4705 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4706 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4707 
4708 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4709 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4710 				ivers |=
4711 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4712 		}
4713 		ext4_inode_set_iversion_queried(inode, ivers);
4714 	}
4715 
4716 	ret = 0;
4717 	if (ei->i_file_acl &&
4718 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4719 		ext4_error_inode(inode, function, line, 0,
4720 				 "iget: bad extended attribute block %llu",
4721 				 ei->i_file_acl);
4722 		ret = -EFSCORRUPTED;
4723 		goto bad_inode;
4724 	} else if (!ext4_has_inline_data(inode)) {
4725 		/* validate the block references in the inode */
4726 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4727 		   (S_ISLNK(inode->i_mode) &&
4728 		    !ext4_inode_is_fast_symlink(inode))) {
4729 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4730 				ret = ext4_ext_check_inode(inode);
4731 			else
4732 				ret = ext4_ind_check_inode(inode);
4733 		}
4734 	}
4735 	if (ret)
4736 		goto bad_inode;
4737 
4738 	if (S_ISREG(inode->i_mode)) {
4739 		inode->i_op = &ext4_file_inode_operations;
4740 		inode->i_fop = &ext4_file_operations;
4741 		ext4_set_aops(inode);
4742 	} else if (S_ISDIR(inode->i_mode)) {
4743 		inode->i_op = &ext4_dir_inode_operations;
4744 		inode->i_fop = &ext4_dir_operations;
4745 	} else if (S_ISLNK(inode->i_mode)) {
4746 		/* VFS does not allow setting these so must be corruption */
4747 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4748 			ext4_error_inode(inode, function, line, 0,
4749 					 "iget: immutable or append flags "
4750 					 "not allowed on symlinks");
4751 			ret = -EFSCORRUPTED;
4752 			goto bad_inode;
4753 		}
4754 		if (IS_ENCRYPTED(inode)) {
4755 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4756 			ext4_set_aops(inode);
4757 		} else if (ext4_inode_is_fast_symlink(inode)) {
4758 			inode->i_link = (char *)ei->i_data;
4759 			inode->i_op = &ext4_fast_symlink_inode_operations;
4760 			nd_terminate_link(ei->i_data, inode->i_size,
4761 				sizeof(ei->i_data) - 1);
4762 		} else {
4763 			inode->i_op = &ext4_symlink_inode_operations;
4764 			ext4_set_aops(inode);
4765 		}
4766 		inode_nohighmem(inode);
4767 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4768 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4769 		inode->i_op = &ext4_special_inode_operations;
4770 		if (raw_inode->i_block[0])
4771 			init_special_inode(inode, inode->i_mode,
4772 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4773 		else
4774 			init_special_inode(inode, inode->i_mode,
4775 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4776 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4777 		make_bad_inode(inode);
4778 	} else {
4779 		ret = -EFSCORRUPTED;
4780 		ext4_error_inode(inode, function, line, 0,
4781 				 "iget: bogus i_mode (%o)", inode->i_mode);
4782 		goto bad_inode;
4783 	}
4784 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4785 		ext4_error_inode(inode, function, line, 0,
4786 				 "casefold flag without casefold feature");
4787 	brelse(iloc.bh);
4788 
4789 	unlock_new_inode(inode);
4790 	return inode;
4791 
4792 bad_inode:
4793 	brelse(iloc.bh);
4794 	iget_failed(inode);
4795 	return ERR_PTR(ret);
4796 }
4797 
4798 static int ext4_inode_blocks_set(handle_t *handle,
4799 				struct ext4_inode *raw_inode,
4800 				struct ext4_inode_info *ei)
4801 {
4802 	struct inode *inode = &(ei->vfs_inode);
4803 	u64 i_blocks = inode->i_blocks;
4804 	struct super_block *sb = inode->i_sb;
4805 
4806 	if (i_blocks <= ~0U) {
4807 		/*
4808 		 * i_blocks can be represented in a 32 bit variable
4809 		 * as multiple of 512 bytes
4810 		 */
4811 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4812 		raw_inode->i_blocks_high = 0;
4813 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4814 		return 0;
4815 	}
4816 	if (!ext4_has_feature_huge_file(sb))
4817 		return -EFBIG;
4818 
4819 	if (i_blocks <= 0xffffffffffffULL) {
4820 		/*
4821 		 * i_blocks can be represented in a 48 bit variable
4822 		 * as multiple of 512 bytes
4823 		 */
4824 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4825 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4826 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4827 	} else {
4828 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4829 		/* i_block is stored in file system block size */
4830 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4831 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4832 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4833 	}
4834 	return 0;
4835 }
4836 
4837 struct other_inode {
4838 	unsigned long		orig_ino;
4839 	struct ext4_inode	*raw_inode;
4840 };
4841 
4842 static int other_inode_match(struct inode * inode, unsigned long ino,
4843 			     void *data)
4844 {
4845 	struct other_inode *oi = (struct other_inode *) data;
4846 
4847 	if ((inode->i_ino != ino) ||
4848 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4849 			       I_DIRTY_INODE)) ||
4850 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4851 		return 0;
4852 	spin_lock(&inode->i_lock);
4853 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4854 				I_DIRTY_INODE)) == 0) &&
4855 	    (inode->i_state & I_DIRTY_TIME)) {
4856 		struct ext4_inode_info	*ei = EXT4_I(inode);
4857 
4858 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4859 		spin_unlock(&inode->i_lock);
4860 
4861 		spin_lock(&ei->i_raw_lock);
4862 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4863 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4864 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4865 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4866 		spin_unlock(&ei->i_raw_lock);
4867 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4868 		return -1;
4869 	}
4870 	spin_unlock(&inode->i_lock);
4871 	return -1;
4872 }
4873 
4874 /*
4875  * Opportunistically update the other time fields for other inodes in
4876  * the same inode table block.
4877  */
4878 static void ext4_update_other_inodes_time(struct super_block *sb,
4879 					  unsigned long orig_ino, char *buf)
4880 {
4881 	struct other_inode oi;
4882 	unsigned long ino;
4883 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4884 	int inode_size = EXT4_INODE_SIZE(sb);
4885 
4886 	oi.orig_ino = orig_ino;
4887 	/*
4888 	 * Calculate the first inode in the inode table block.  Inode
4889 	 * numbers are one-based.  That is, the first inode in a block
4890 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4891 	 */
4892 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4893 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4894 		if (ino == orig_ino)
4895 			continue;
4896 		oi.raw_inode = (struct ext4_inode *) buf;
4897 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4898 	}
4899 }
4900 
4901 /*
4902  * Post the struct inode info into an on-disk inode location in the
4903  * buffer-cache.  This gobbles the caller's reference to the
4904  * buffer_head in the inode location struct.
4905  *
4906  * The caller must have write access to iloc->bh.
4907  */
4908 static int ext4_do_update_inode(handle_t *handle,
4909 				struct inode *inode,
4910 				struct ext4_iloc *iloc)
4911 {
4912 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4913 	struct ext4_inode_info *ei = EXT4_I(inode);
4914 	struct buffer_head *bh = iloc->bh;
4915 	struct super_block *sb = inode->i_sb;
4916 	int err = 0, rc, block;
4917 	int need_datasync = 0, set_large_file = 0;
4918 	uid_t i_uid;
4919 	gid_t i_gid;
4920 	projid_t i_projid;
4921 
4922 	spin_lock(&ei->i_raw_lock);
4923 
4924 	/* For fields not tracked in the in-memory inode,
4925 	 * initialise them to zero for new inodes. */
4926 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4927 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4928 
4929 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4930 	i_uid = i_uid_read(inode);
4931 	i_gid = i_gid_read(inode);
4932 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4933 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4934 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4935 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4936 /*
4937  * Fix up interoperability with old kernels. Otherwise, old inodes get
4938  * re-used with the upper 16 bits of the uid/gid intact
4939  */
4940 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4941 			raw_inode->i_uid_high = 0;
4942 			raw_inode->i_gid_high = 0;
4943 		} else {
4944 			raw_inode->i_uid_high =
4945 				cpu_to_le16(high_16_bits(i_uid));
4946 			raw_inode->i_gid_high =
4947 				cpu_to_le16(high_16_bits(i_gid));
4948 		}
4949 	} else {
4950 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4951 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4952 		raw_inode->i_uid_high = 0;
4953 		raw_inode->i_gid_high = 0;
4954 	}
4955 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4956 
4957 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4958 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4959 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4960 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4961 
4962 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4963 	if (err) {
4964 		spin_unlock(&ei->i_raw_lock);
4965 		goto out_brelse;
4966 	}
4967 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4968 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4969 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4970 		raw_inode->i_file_acl_high =
4971 			cpu_to_le16(ei->i_file_acl >> 32);
4972 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4973 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
4974 		ext4_isize_set(raw_inode, ei->i_disksize);
4975 		need_datasync = 1;
4976 	}
4977 	if (ei->i_disksize > 0x7fffffffULL) {
4978 		if (!ext4_has_feature_large_file(sb) ||
4979 				EXT4_SB(sb)->s_es->s_rev_level ==
4980 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4981 			set_large_file = 1;
4982 	}
4983 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4984 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4985 		if (old_valid_dev(inode->i_rdev)) {
4986 			raw_inode->i_block[0] =
4987 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4988 			raw_inode->i_block[1] = 0;
4989 		} else {
4990 			raw_inode->i_block[0] = 0;
4991 			raw_inode->i_block[1] =
4992 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4993 			raw_inode->i_block[2] = 0;
4994 		}
4995 	} else if (!ext4_has_inline_data(inode)) {
4996 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4997 			raw_inode->i_block[block] = ei->i_data[block];
4998 	}
4999 
5000 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5001 		u64 ivers = ext4_inode_peek_iversion(inode);
5002 
5003 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5004 		if (ei->i_extra_isize) {
5005 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5006 				raw_inode->i_version_hi =
5007 					cpu_to_le32(ivers >> 32);
5008 			raw_inode->i_extra_isize =
5009 				cpu_to_le16(ei->i_extra_isize);
5010 		}
5011 	}
5012 
5013 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5014 	       i_projid != EXT4_DEF_PROJID);
5015 
5016 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5017 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5018 		raw_inode->i_projid = cpu_to_le32(i_projid);
5019 
5020 	ext4_inode_csum_set(inode, raw_inode, ei);
5021 	spin_unlock(&ei->i_raw_lock);
5022 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5023 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5024 					      bh->b_data);
5025 
5026 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5027 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5028 	if (!err)
5029 		err = rc;
5030 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5031 	if (set_large_file) {
5032 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5033 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5034 		if (err)
5035 			goto out_brelse;
5036 		ext4_set_feature_large_file(sb);
5037 		ext4_handle_sync(handle);
5038 		err = ext4_handle_dirty_super(handle, sb);
5039 	}
5040 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5041 out_brelse:
5042 	brelse(bh);
5043 	ext4_std_error(inode->i_sb, err);
5044 	return err;
5045 }
5046 
5047 /*
5048  * ext4_write_inode()
5049  *
5050  * We are called from a few places:
5051  *
5052  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5053  *   Here, there will be no transaction running. We wait for any running
5054  *   transaction to commit.
5055  *
5056  * - Within flush work (sys_sync(), kupdate and such).
5057  *   We wait on commit, if told to.
5058  *
5059  * - Within iput_final() -> write_inode_now()
5060  *   We wait on commit, if told to.
5061  *
5062  * In all cases it is actually safe for us to return without doing anything,
5063  * because the inode has been copied into a raw inode buffer in
5064  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5065  * writeback.
5066  *
5067  * Note that we are absolutely dependent upon all inode dirtiers doing the
5068  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5069  * which we are interested.
5070  *
5071  * It would be a bug for them to not do this.  The code:
5072  *
5073  *	mark_inode_dirty(inode)
5074  *	stuff();
5075  *	inode->i_size = expr;
5076  *
5077  * is in error because write_inode() could occur while `stuff()' is running,
5078  * and the new i_size will be lost.  Plus the inode will no longer be on the
5079  * superblock's dirty inode list.
5080  */
5081 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5082 {
5083 	int err;
5084 
5085 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5086 	    sb_rdonly(inode->i_sb))
5087 		return 0;
5088 
5089 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5090 		return -EIO;
5091 
5092 	if (EXT4_SB(inode->i_sb)->s_journal) {
5093 		if (ext4_journal_current_handle()) {
5094 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5095 			dump_stack();
5096 			return -EIO;
5097 		}
5098 
5099 		/*
5100 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5101 		 * ext4_sync_fs() will force the commit after everything is
5102 		 * written.
5103 		 */
5104 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5105 			return 0;
5106 
5107 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5108 						EXT4_I(inode)->i_sync_tid);
5109 	} else {
5110 		struct ext4_iloc iloc;
5111 
5112 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5113 		if (err)
5114 			return err;
5115 		/*
5116 		 * sync(2) will flush the whole buffer cache. No need to do
5117 		 * it here separately for each inode.
5118 		 */
5119 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5120 			sync_dirty_buffer(iloc.bh);
5121 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5122 			ext4_set_errno(inode->i_sb, EIO);
5123 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5124 					 "IO error syncing inode");
5125 			err = -EIO;
5126 		}
5127 		brelse(iloc.bh);
5128 	}
5129 	return err;
5130 }
5131 
5132 /*
5133  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5134  * buffers that are attached to a page stradding i_size and are undergoing
5135  * commit. In that case we have to wait for commit to finish and try again.
5136  */
5137 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5138 {
5139 	struct page *page;
5140 	unsigned offset;
5141 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5142 	tid_t commit_tid = 0;
5143 	int ret;
5144 
5145 	offset = inode->i_size & (PAGE_SIZE - 1);
5146 	/*
5147 	 * If the page is fully truncated, we don't need to wait for any commit
5148 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5149 	 * strip all buffers from the page but keep the page dirty which can then
5150 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5151 	 * buffers). Also we don't need to wait for any commit if all buffers in
5152 	 * the page remain valid. This is most beneficial for the common case of
5153 	 * blocksize == PAGESIZE.
5154 	 */
5155 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5156 		return;
5157 	while (1) {
5158 		page = find_lock_page(inode->i_mapping,
5159 				      inode->i_size >> PAGE_SHIFT);
5160 		if (!page)
5161 			return;
5162 		ret = __ext4_journalled_invalidatepage(page, offset,
5163 						PAGE_SIZE - offset);
5164 		unlock_page(page);
5165 		put_page(page);
5166 		if (ret != -EBUSY)
5167 			return;
5168 		commit_tid = 0;
5169 		read_lock(&journal->j_state_lock);
5170 		if (journal->j_committing_transaction)
5171 			commit_tid = journal->j_committing_transaction->t_tid;
5172 		read_unlock(&journal->j_state_lock);
5173 		if (commit_tid)
5174 			jbd2_log_wait_commit(journal, commit_tid);
5175 	}
5176 }
5177 
5178 /*
5179  * ext4_setattr()
5180  *
5181  * Called from notify_change.
5182  *
5183  * We want to trap VFS attempts to truncate the file as soon as
5184  * possible.  In particular, we want to make sure that when the VFS
5185  * shrinks i_size, we put the inode on the orphan list and modify
5186  * i_disksize immediately, so that during the subsequent flushing of
5187  * dirty pages and freeing of disk blocks, we can guarantee that any
5188  * commit will leave the blocks being flushed in an unused state on
5189  * disk.  (On recovery, the inode will get truncated and the blocks will
5190  * be freed, so we have a strong guarantee that no future commit will
5191  * leave these blocks visible to the user.)
5192  *
5193  * Another thing we have to assure is that if we are in ordered mode
5194  * and inode is still attached to the committing transaction, we must
5195  * we start writeout of all the dirty pages which are being truncated.
5196  * This way we are sure that all the data written in the previous
5197  * transaction are already on disk (truncate waits for pages under
5198  * writeback).
5199  *
5200  * Called with inode->i_mutex down.
5201  */
5202 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5203 {
5204 	struct inode *inode = d_inode(dentry);
5205 	int error, rc = 0;
5206 	int orphan = 0;
5207 	const unsigned int ia_valid = attr->ia_valid;
5208 
5209 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5210 		return -EIO;
5211 
5212 	if (unlikely(IS_IMMUTABLE(inode)))
5213 		return -EPERM;
5214 
5215 	if (unlikely(IS_APPEND(inode) &&
5216 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5217 				  ATTR_GID | ATTR_TIMES_SET))))
5218 		return -EPERM;
5219 
5220 	error = setattr_prepare(dentry, attr);
5221 	if (error)
5222 		return error;
5223 
5224 	error = fscrypt_prepare_setattr(dentry, attr);
5225 	if (error)
5226 		return error;
5227 
5228 	error = fsverity_prepare_setattr(dentry, attr);
5229 	if (error)
5230 		return error;
5231 
5232 	if (is_quota_modification(inode, attr)) {
5233 		error = dquot_initialize(inode);
5234 		if (error)
5235 			return error;
5236 	}
5237 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5238 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5239 		handle_t *handle;
5240 
5241 		/* (user+group)*(old+new) structure, inode write (sb,
5242 		 * inode block, ? - but truncate inode update has it) */
5243 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5244 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5245 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5246 		if (IS_ERR(handle)) {
5247 			error = PTR_ERR(handle);
5248 			goto err_out;
5249 		}
5250 
5251 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5252 		 * counts xattr inode references.
5253 		 */
5254 		down_read(&EXT4_I(inode)->xattr_sem);
5255 		error = dquot_transfer(inode, attr);
5256 		up_read(&EXT4_I(inode)->xattr_sem);
5257 
5258 		if (error) {
5259 			ext4_journal_stop(handle);
5260 			return error;
5261 		}
5262 		/* Update corresponding info in inode so that everything is in
5263 		 * one transaction */
5264 		if (attr->ia_valid & ATTR_UID)
5265 			inode->i_uid = attr->ia_uid;
5266 		if (attr->ia_valid & ATTR_GID)
5267 			inode->i_gid = attr->ia_gid;
5268 		error = ext4_mark_inode_dirty(handle, inode);
5269 		ext4_journal_stop(handle);
5270 	}
5271 
5272 	if (attr->ia_valid & ATTR_SIZE) {
5273 		handle_t *handle;
5274 		loff_t oldsize = inode->i_size;
5275 		int shrink = (attr->ia_size < inode->i_size);
5276 
5277 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5278 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5279 
5280 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5281 				return -EFBIG;
5282 		}
5283 		if (!S_ISREG(inode->i_mode))
5284 			return -EINVAL;
5285 
5286 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5287 			inode_inc_iversion(inode);
5288 
5289 		if (shrink) {
5290 			if (ext4_should_order_data(inode)) {
5291 				error = ext4_begin_ordered_truncate(inode,
5292 							    attr->ia_size);
5293 				if (error)
5294 					goto err_out;
5295 			}
5296 			/*
5297 			 * Blocks are going to be removed from the inode. Wait
5298 			 * for dio in flight.
5299 			 */
5300 			inode_dio_wait(inode);
5301 		}
5302 
5303 		down_write(&EXT4_I(inode)->i_mmap_sem);
5304 
5305 		rc = ext4_break_layouts(inode);
5306 		if (rc) {
5307 			up_write(&EXT4_I(inode)->i_mmap_sem);
5308 			return rc;
5309 		}
5310 
5311 		if (attr->ia_size != inode->i_size) {
5312 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5313 			if (IS_ERR(handle)) {
5314 				error = PTR_ERR(handle);
5315 				goto out_mmap_sem;
5316 			}
5317 			if (ext4_handle_valid(handle) && shrink) {
5318 				error = ext4_orphan_add(handle, inode);
5319 				orphan = 1;
5320 			}
5321 			/*
5322 			 * Update c/mtime on truncate up, ext4_truncate() will
5323 			 * update c/mtime in shrink case below
5324 			 */
5325 			if (!shrink) {
5326 				inode->i_mtime = current_time(inode);
5327 				inode->i_ctime = inode->i_mtime;
5328 			}
5329 			down_write(&EXT4_I(inode)->i_data_sem);
5330 			EXT4_I(inode)->i_disksize = attr->ia_size;
5331 			rc = ext4_mark_inode_dirty(handle, inode);
5332 			if (!error)
5333 				error = rc;
5334 			/*
5335 			 * We have to update i_size under i_data_sem together
5336 			 * with i_disksize to avoid races with writeback code
5337 			 * running ext4_wb_update_i_disksize().
5338 			 */
5339 			if (!error)
5340 				i_size_write(inode, attr->ia_size);
5341 			up_write(&EXT4_I(inode)->i_data_sem);
5342 			ext4_journal_stop(handle);
5343 			if (error)
5344 				goto out_mmap_sem;
5345 			if (!shrink) {
5346 				pagecache_isize_extended(inode, oldsize,
5347 							 inode->i_size);
5348 			} else if (ext4_should_journal_data(inode)) {
5349 				ext4_wait_for_tail_page_commit(inode);
5350 			}
5351 		}
5352 
5353 		/*
5354 		 * Truncate pagecache after we've waited for commit
5355 		 * in data=journal mode to make pages freeable.
5356 		 */
5357 		truncate_pagecache(inode, inode->i_size);
5358 		/*
5359 		 * Call ext4_truncate() even if i_size didn't change to
5360 		 * truncate possible preallocated blocks.
5361 		 */
5362 		if (attr->ia_size <= oldsize) {
5363 			rc = ext4_truncate(inode);
5364 			if (rc)
5365 				error = rc;
5366 		}
5367 out_mmap_sem:
5368 		up_write(&EXT4_I(inode)->i_mmap_sem);
5369 	}
5370 
5371 	if (!error) {
5372 		setattr_copy(inode, attr);
5373 		mark_inode_dirty(inode);
5374 	}
5375 
5376 	/*
5377 	 * If the call to ext4_truncate failed to get a transaction handle at
5378 	 * all, we need to clean up the in-core orphan list manually.
5379 	 */
5380 	if (orphan && inode->i_nlink)
5381 		ext4_orphan_del(NULL, inode);
5382 
5383 	if (!error && (ia_valid & ATTR_MODE))
5384 		rc = posix_acl_chmod(inode, inode->i_mode);
5385 
5386 err_out:
5387 	ext4_std_error(inode->i_sb, error);
5388 	if (!error)
5389 		error = rc;
5390 	return error;
5391 }
5392 
5393 int ext4_getattr(const struct path *path, struct kstat *stat,
5394 		 u32 request_mask, unsigned int query_flags)
5395 {
5396 	struct inode *inode = d_inode(path->dentry);
5397 	struct ext4_inode *raw_inode;
5398 	struct ext4_inode_info *ei = EXT4_I(inode);
5399 	unsigned int flags;
5400 
5401 	if ((request_mask & STATX_BTIME) &&
5402 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5403 		stat->result_mask |= STATX_BTIME;
5404 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5405 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5406 	}
5407 
5408 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5409 	if (flags & EXT4_APPEND_FL)
5410 		stat->attributes |= STATX_ATTR_APPEND;
5411 	if (flags & EXT4_COMPR_FL)
5412 		stat->attributes |= STATX_ATTR_COMPRESSED;
5413 	if (flags & EXT4_ENCRYPT_FL)
5414 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5415 	if (flags & EXT4_IMMUTABLE_FL)
5416 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5417 	if (flags & EXT4_NODUMP_FL)
5418 		stat->attributes |= STATX_ATTR_NODUMP;
5419 	if (flags & EXT4_VERITY_FL)
5420 		stat->attributes |= STATX_ATTR_VERITY;
5421 
5422 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5423 				  STATX_ATTR_COMPRESSED |
5424 				  STATX_ATTR_ENCRYPTED |
5425 				  STATX_ATTR_IMMUTABLE |
5426 				  STATX_ATTR_NODUMP |
5427 				  STATX_ATTR_VERITY);
5428 
5429 	generic_fillattr(inode, stat);
5430 	return 0;
5431 }
5432 
5433 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5434 		      u32 request_mask, unsigned int query_flags)
5435 {
5436 	struct inode *inode = d_inode(path->dentry);
5437 	u64 delalloc_blocks;
5438 
5439 	ext4_getattr(path, stat, request_mask, query_flags);
5440 
5441 	/*
5442 	 * If there is inline data in the inode, the inode will normally not
5443 	 * have data blocks allocated (it may have an external xattr block).
5444 	 * Report at least one sector for such files, so tools like tar, rsync,
5445 	 * others don't incorrectly think the file is completely sparse.
5446 	 */
5447 	if (unlikely(ext4_has_inline_data(inode)))
5448 		stat->blocks += (stat->size + 511) >> 9;
5449 
5450 	/*
5451 	 * We can't update i_blocks if the block allocation is delayed
5452 	 * otherwise in the case of system crash before the real block
5453 	 * allocation is done, we will have i_blocks inconsistent with
5454 	 * on-disk file blocks.
5455 	 * We always keep i_blocks updated together with real
5456 	 * allocation. But to not confuse with user, stat
5457 	 * will return the blocks that include the delayed allocation
5458 	 * blocks for this file.
5459 	 */
5460 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5461 				   EXT4_I(inode)->i_reserved_data_blocks);
5462 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5463 	return 0;
5464 }
5465 
5466 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5467 				   int pextents)
5468 {
5469 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5470 		return ext4_ind_trans_blocks(inode, lblocks);
5471 	return ext4_ext_index_trans_blocks(inode, pextents);
5472 }
5473 
5474 /*
5475  * Account for index blocks, block groups bitmaps and block group
5476  * descriptor blocks if modify datablocks and index blocks
5477  * worse case, the indexs blocks spread over different block groups
5478  *
5479  * If datablocks are discontiguous, they are possible to spread over
5480  * different block groups too. If they are contiguous, with flexbg,
5481  * they could still across block group boundary.
5482  *
5483  * Also account for superblock, inode, quota and xattr blocks
5484  */
5485 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5486 				  int pextents)
5487 {
5488 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5489 	int gdpblocks;
5490 	int idxblocks;
5491 	int ret = 0;
5492 
5493 	/*
5494 	 * How many index blocks need to touch to map @lblocks logical blocks
5495 	 * to @pextents physical extents?
5496 	 */
5497 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5498 
5499 	ret = idxblocks;
5500 
5501 	/*
5502 	 * Now let's see how many group bitmaps and group descriptors need
5503 	 * to account
5504 	 */
5505 	groups = idxblocks + pextents;
5506 	gdpblocks = groups;
5507 	if (groups > ngroups)
5508 		groups = ngroups;
5509 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5510 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5511 
5512 	/* bitmaps and block group descriptor blocks */
5513 	ret += groups + gdpblocks;
5514 
5515 	/* Blocks for super block, inode, quota and xattr blocks */
5516 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5517 
5518 	return ret;
5519 }
5520 
5521 /*
5522  * Calculate the total number of credits to reserve to fit
5523  * the modification of a single pages into a single transaction,
5524  * which may include multiple chunks of block allocations.
5525  *
5526  * This could be called via ext4_write_begin()
5527  *
5528  * We need to consider the worse case, when
5529  * one new block per extent.
5530  */
5531 int ext4_writepage_trans_blocks(struct inode *inode)
5532 {
5533 	int bpp = ext4_journal_blocks_per_page(inode);
5534 	int ret;
5535 
5536 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5537 
5538 	/* Account for data blocks for journalled mode */
5539 	if (ext4_should_journal_data(inode))
5540 		ret += bpp;
5541 	return ret;
5542 }
5543 
5544 /*
5545  * Calculate the journal credits for a chunk of data modification.
5546  *
5547  * This is called from DIO, fallocate or whoever calling
5548  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5549  *
5550  * journal buffers for data blocks are not included here, as DIO
5551  * and fallocate do no need to journal data buffers.
5552  */
5553 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5554 {
5555 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5556 }
5557 
5558 /*
5559  * The caller must have previously called ext4_reserve_inode_write().
5560  * Give this, we know that the caller already has write access to iloc->bh.
5561  */
5562 int ext4_mark_iloc_dirty(handle_t *handle,
5563 			 struct inode *inode, struct ext4_iloc *iloc)
5564 {
5565 	int err = 0;
5566 
5567 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5568 		put_bh(iloc->bh);
5569 		return -EIO;
5570 	}
5571 	if (IS_I_VERSION(inode))
5572 		inode_inc_iversion(inode);
5573 
5574 	/* the do_update_inode consumes one bh->b_count */
5575 	get_bh(iloc->bh);
5576 
5577 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5578 	err = ext4_do_update_inode(handle, inode, iloc);
5579 	put_bh(iloc->bh);
5580 	return err;
5581 }
5582 
5583 /*
5584  * On success, We end up with an outstanding reference count against
5585  * iloc->bh.  This _must_ be cleaned up later.
5586  */
5587 
5588 int
5589 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5590 			 struct ext4_iloc *iloc)
5591 {
5592 	int err;
5593 
5594 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5595 		return -EIO;
5596 
5597 	err = ext4_get_inode_loc(inode, iloc);
5598 	if (!err) {
5599 		BUFFER_TRACE(iloc->bh, "get_write_access");
5600 		err = ext4_journal_get_write_access(handle, iloc->bh);
5601 		if (err) {
5602 			brelse(iloc->bh);
5603 			iloc->bh = NULL;
5604 		}
5605 	}
5606 	ext4_std_error(inode->i_sb, err);
5607 	return err;
5608 }
5609 
5610 static int __ext4_expand_extra_isize(struct inode *inode,
5611 				     unsigned int new_extra_isize,
5612 				     struct ext4_iloc *iloc,
5613 				     handle_t *handle, int *no_expand)
5614 {
5615 	struct ext4_inode *raw_inode;
5616 	struct ext4_xattr_ibody_header *header;
5617 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5618 	struct ext4_inode_info *ei = EXT4_I(inode);
5619 	int error;
5620 
5621 	/* this was checked at iget time, but double check for good measure */
5622 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5623 	    (ei->i_extra_isize & 3)) {
5624 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5625 				 ei->i_extra_isize,
5626 				 EXT4_INODE_SIZE(inode->i_sb));
5627 		return -EFSCORRUPTED;
5628 	}
5629 	if ((new_extra_isize < ei->i_extra_isize) ||
5630 	    (new_extra_isize < 4) ||
5631 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5632 		return -EINVAL;	/* Should never happen */
5633 
5634 	raw_inode = ext4_raw_inode(iloc);
5635 
5636 	header = IHDR(inode, raw_inode);
5637 
5638 	/* No extended attributes present */
5639 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5640 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5641 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5642 		       EXT4_I(inode)->i_extra_isize, 0,
5643 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5644 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5645 		return 0;
5646 	}
5647 
5648 	/* try to expand with EAs present */
5649 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5650 					   raw_inode, handle);
5651 	if (error) {
5652 		/*
5653 		 * Inode size expansion failed; don't try again
5654 		 */
5655 		*no_expand = 1;
5656 	}
5657 
5658 	return error;
5659 }
5660 
5661 /*
5662  * Expand an inode by new_extra_isize bytes.
5663  * Returns 0 on success or negative error number on failure.
5664  */
5665 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5666 					  unsigned int new_extra_isize,
5667 					  struct ext4_iloc iloc,
5668 					  handle_t *handle)
5669 {
5670 	int no_expand;
5671 	int error;
5672 
5673 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5674 		return -EOVERFLOW;
5675 
5676 	/*
5677 	 * In nojournal mode, we can immediately attempt to expand
5678 	 * the inode.  When journaled, we first need to obtain extra
5679 	 * buffer credits since we may write into the EA block
5680 	 * with this same handle. If journal_extend fails, then it will
5681 	 * only result in a minor loss of functionality for that inode.
5682 	 * If this is felt to be critical, then e2fsck should be run to
5683 	 * force a large enough s_min_extra_isize.
5684 	 */
5685 	if (ext4_journal_extend(handle,
5686 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5687 		return -ENOSPC;
5688 
5689 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5690 		return -EBUSY;
5691 
5692 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5693 					  handle, &no_expand);
5694 	ext4_write_unlock_xattr(inode, &no_expand);
5695 
5696 	return error;
5697 }
5698 
5699 int ext4_expand_extra_isize(struct inode *inode,
5700 			    unsigned int new_extra_isize,
5701 			    struct ext4_iloc *iloc)
5702 {
5703 	handle_t *handle;
5704 	int no_expand;
5705 	int error, rc;
5706 
5707 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5708 		brelse(iloc->bh);
5709 		return -EOVERFLOW;
5710 	}
5711 
5712 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5713 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5714 	if (IS_ERR(handle)) {
5715 		error = PTR_ERR(handle);
5716 		brelse(iloc->bh);
5717 		return error;
5718 	}
5719 
5720 	ext4_write_lock_xattr(inode, &no_expand);
5721 
5722 	BUFFER_TRACE(iloc->bh, "get_write_access");
5723 	error = ext4_journal_get_write_access(handle, iloc->bh);
5724 	if (error) {
5725 		brelse(iloc->bh);
5726 		goto out_unlock;
5727 	}
5728 
5729 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5730 					  handle, &no_expand);
5731 
5732 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5733 	if (!error)
5734 		error = rc;
5735 
5736 out_unlock:
5737 	ext4_write_unlock_xattr(inode, &no_expand);
5738 	ext4_journal_stop(handle);
5739 	return error;
5740 }
5741 
5742 /*
5743  * What we do here is to mark the in-core inode as clean with respect to inode
5744  * dirtiness (it may still be data-dirty).
5745  * This means that the in-core inode may be reaped by prune_icache
5746  * without having to perform any I/O.  This is a very good thing,
5747  * because *any* task may call prune_icache - even ones which
5748  * have a transaction open against a different journal.
5749  *
5750  * Is this cheating?  Not really.  Sure, we haven't written the
5751  * inode out, but prune_icache isn't a user-visible syncing function.
5752  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5753  * we start and wait on commits.
5754  */
5755 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5756 {
5757 	struct ext4_iloc iloc;
5758 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5759 	int err;
5760 
5761 	might_sleep();
5762 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5763 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5764 	if (err)
5765 		return err;
5766 
5767 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5768 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5769 					       iloc, handle);
5770 
5771 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5772 }
5773 
5774 /*
5775  * ext4_dirty_inode() is called from __mark_inode_dirty()
5776  *
5777  * We're really interested in the case where a file is being extended.
5778  * i_size has been changed by generic_commit_write() and we thus need
5779  * to include the updated inode in the current transaction.
5780  *
5781  * Also, dquot_alloc_block() will always dirty the inode when blocks
5782  * are allocated to the file.
5783  *
5784  * If the inode is marked synchronous, we don't honour that here - doing
5785  * so would cause a commit on atime updates, which we don't bother doing.
5786  * We handle synchronous inodes at the highest possible level.
5787  *
5788  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5789  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5790  * to copy into the on-disk inode structure are the timestamp files.
5791  */
5792 void ext4_dirty_inode(struct inode *inode, int flags)
5793 {
5794 	handle_t *handle;
5795 
5796 	if (flags == I_DIRTY_TIME)
5797 		return;
5798 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5799 	if (IS_ERR(handle))
5800 		goto out;
5801 
5802 	ext4_mark_inode_dirty(handle, inode);
5803 
5804 	ext4_journal_stop(handle);
5805 out:
5806 	return;
5807 }
5808 
5809 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5810 {
5811 	journal_t *journal;
5812 	handle_t *handle;
5813 	int err;
5814 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5815 
5816 	/*
5817 	 * We have to be very careful here: changing a data block's
5818 	 * journaling status dynamically is dangerous.  If we write a
5819 	 * data block to the journal, change the status and then delete
5820 	 * that block, we risk forgetting to revoke the old log record
5821 	 * from the journal and so a subsequent replay can corrupt data.
5822 	 * So, first we make sure that the journal is empty and that
5823 	 * nobody is changing anything.
5824 	 */
5825 
5826 	journal = EXT4_JOURNAL(inode);
5827 	if (!journal)
5828 		return 0;
5829 	if (is_journal_aborted(journal))
5830 		return -EROFS;
5831 
5832 	/* Wait for all existing dio workers */
5833 	inode_dio_wait(inode);
5834 
5835 	/*
5836 	 * Before flushing the journal and switching inode's aops, we have
5837 	 * to flush all dirty data the inode has. There can be outstanding
5838 	 * delayed allocations, there can be unwritten extents created by
5839 	 * fallocate or buffered writes in dioread_nolock mode covered by
5840 	 * dirty data which can be converted only after flushing the dirty
5841 	 * data (and journalled aops don't know how to handle these cases).
5842 	 */
5843 	if (val) {
5844 		down_write(&EXT4_I(inode)->i_mmap_sem);
5845 		err = filemap_write_and_wait(inode->i_mapping);
5846 		if (err < 0) {
5847 			up_write(&EXT4_I(inode)->i_mmap_sem);
5848 			return err;
5849 		}
5850 	}
5851 
5852 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5853 	jbd2_journal_lock_updates(journal);
5854 
5855 	/*
5856 	 * OK, there are no updates running now, and all cached data is
5857 	 * synced to disk.  We are now in a completely consistent state
5858 	 * which doesn't have anything in the journal, and we know that
5859 	 * no filesystem updates are running, so it is safe to modify
5860 	 * the inode's in-core data-journaling state flag now.
5861 	 */
5862 
5863 	if (val)
5864 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5865 	else {
5866 		err = jbd2_journal_flush(journal);
5867 		if (err < 0) {
5868 			jbd2_journal_unlock_updates(journal);
5869 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5870 			return err;
5871 		}
5872 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5873 	}
5874 	ext4_set_aops(inode);
5875 
5876 	jbd2_journal_unlock_updates(journal);
5877 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5878 
5879 	if (val)
5880 		up_write(&EXT4_I(inode)->i_mmap_sem);
5881 
5882 	/* Finally we can mark the inode as dirty. */
5883 
5884 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5885 	if (IS_ERR(handle))
5886 		return PTR_ERR(handle);
5887 
5888 	err = ext4_mark_inode_dirty(handle, inode);
5889 	ext4_handle_sync(handle);
5890 	ext4_journal_stop(handle);
5891 	ext4_std_error(inode->i_sb, err);
5892 
5893 	return err;
5894 }
5895 
5896 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5897 {
5898 	return !buffer_mapped(bh);
5899 }
5900 
5901 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5902 {
5903 	struct vm_area_struct *vma = vmf->vma;
5904 	struct page *page = vmf->page;
5905 	loff_t size;
5906 	unsigned long len;
5907 	int err;
5908 	vm_fault_t ret;
5909 	struct file *file = vma->vm_file;
5910 	struct inode *inode = file_inode(file);
5911 	struct address_space *mapping = inode->i_mapping;
5912 	handle_t *handle;
5913 	get_block_t *get_block;
5914 	int retries = 0;
5915 
5916 	if (unlikely(IS_IMMUTABLE(inode)))
5917 		return VM_FAULT_SIGBUS;
5918 
5919 	sb_start_pagefault(inode->i_sb);
5920 	file_update_time(vma->vm_file);
5921 
5922 	down_read(&EXT4_I(inode)->i_mmap_sem);
5923 
5924 	err = ext4_convert_inline_data(inode);
5925 	if (err)
5926 		goto out_ret;
5927 
5928 	/* Delalloc case is easy... */
5929 	if (test_opt(inode->i_sb, DELALLOC) &&
5930 	    !ext4_should_journal_data(inode) &&
5931 	    !ext4_nonda_switch(inode->i_sb)) {
5932 		do {
5933 			err = block_page_mkwrite(vma, vmf,
5934 						   ext4_da_get_block_prep);
5935 		} while (err == -ENOSPC &&
5936 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5937 		goto out_ret;
5938 	}
5939 
5940 	lock_page(page);
5941 	size = i_size_read(inode);
5942 	/* Page got truncated from under us? */
5943 	if (page->mapping != mapping || page_offset(page) > size) {
5944 		unlock_page(page);
5945 		ret = VM_FAULT_NOPAGE;
5946 		goto out;
5947 	}
5948 
5949 	if (page->index == size >> PAGE_SHIFT)
5950 		len = size & ~PAGE_MASK;
5951 	else
5952 		len = PAGE_SIZE;
5953 	/*
5954 	 * Return if we have all the buffers mapped. This avoids the need to do
5955 	 * journal_start/journal_stop which can block and take a long time
5956 	 */
5957 	if (page_has_buffers(page)) {
5958 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5959 					    0, len, NULL,
5960 					    ext4_bh_unmapped)) {
5961 			/* Wait so that we don't change page under IO */
5962 			wait_for_stable_page(page);
5963 			ret = VM_FAULT_LOCKED;
5964 			goto out;
5965 		}
5966 	}
5967 	unlock_page(page);
5968 	/* OK, we need to fill the hole... */
5969 	if (ext4_should_dioread_nolock(inode))
5970 		get_block = ext4_get_block_unwritten;
5971 	else
5972 		get_block = ext4_get_block;
5973 retry_alloc:
5974 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5975 				    ext4_writepage_trans_blocks(inode));
5976 	if (IS_ERR(handle)) {
5977 		ret = VM_FAULT_SIGBUS;
5978 		goto out;
5979 	}
5980 	err = block_page_mkwrite(vma, vmf, get_block);
5981 	if (!err && ext4_should_journal_data(inode)) {
5982 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5983 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5984 			unlock_page(page);
5985 			ret = VM_FAULT_SIGBUS;
5986 			ext4_journal_stop(handle);
5987 			goto out;
5988 		}
5989 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5990 	}
5991 	ext4_journal_stop(handle);
5992 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5993 		goto retry_alloc;
5994 out_ret:
5995 	ret = block_page_mkwrite_return(err);
5996 out:
5997 	up_read(&EXT4_I(inode)->i_mmap_sem);
5998 	sb_end_pagefault(inode->i_sb);
5999 	return ret;
6000 }
6001 
6002 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6003 {
6004 	struct inode *inode = file_inode(vmf->vma->vm_file);
6005 	vm_fault_t ret;
6006 
6007 	down_read(&EXT4_I(inode)->i_mmap_sem);
6008 	ret = filemap_fault(vmf);
6009 	up_read(&EXT4_I(inode)->i_mmap_sem);
6010 
6011 	return ret;
6012 }
6013