xref: /openbmc/linux/fs/ext4/inode.c (revision db181ce0)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42 
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u16 csum_lo;
57 	__u16 csum_hi = 0;
58 	__u32 csum;
59 
60 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 	raw->i_checksum_lo = 0;
62 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 		raw->i_checksum_hi = 0;
66 	}
67 
68 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 			   EXT4_INODE_SIZE(inode->i_sb));
70 
71 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
75 
76 	return csum;
77 }
78 
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 				  struct ext4_inode_info *ei)
81 {
82 	__u32 provided, calculated;
83 
84 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 	    cpu_to_le32(EXT4_OS_LINUX) ||
86 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 		return 1;
89 
90 	provided = le16_to_cpu(raw->i_checksum_lo);
91 	calculated = ext4_inode_csum(inode, raw, ei);
92 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 	else
96 		calculated &= 0xFFFF;
97 
98 	return provided == calculated;
99 }
100 
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 				struct ext4_inode_info *ei)
103 {
104 	__u32 csum;
105 
106 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 	    cpu_to_le32(EXT4_OS_LINUX) ||
108 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 		return;
111 
112 	csum = ext4_inode_csum(inode, raw, ei);
113 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118 
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 					      loff_t new_size)
121 {
122 	trace_ext4_begin_ordered_truncate(inode, new_size);
123 	/*
124 	 * If jinode is zero, then we never opened the file for
125 	 * writing, so there's no need to call
126 	 * jbd2_journal_begin_ordered_truncate() since there's no
127 	 * outstanding writes we need to flush.
128 	 */
129 	if (!EXT4_I(inode)->jinode)
130 		return 0;
131 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 						   EXT4_I(inode)->jinode,
133 						   new_size);
134 }
135 
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 				unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 				  int pextents);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150 
151 	if (ext4_has_inline_data(inode))
152 		return 0;
153 
154 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 }
156 
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 				 int nblocks)
164 {
165 	int ret;
166 
167 	/*
168 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 	 * moment, get_block can be called only for blocks inside i_size since
170 	 * page cache has been already dropped and writes are blocked by
171 	 * i_mutex. So we can safely drop the i_data_sem here.
172 	 */
173 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 	jbd_debug(2, "restarting handle %p\n", handle);
175 	up_write(&EXT4_I(inode)->i_data_sem);
176 	ret = ext4_journal_restart(handle, nblocks);
177 	down_write(&EXT4_I(inode)->i_data_sem);
178 	ext4_discard_preallocations(inode);
179 
180 	return ret;
181 }
182 
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188 	handle_t *handle;
189 	int err;
190 
191 	trace_ext4_evict_inode(inode);
192 
193 	if (inode->i_nlink) {
194 		/*
195 		 * When journalling data dirty buffers are tracked only in the
196 		 * journal. So although mm thinks everything is clean and
197 		 * ready for reaping the inode might still have some pages to
198 		 * write in the running transaction or waiting to be
199 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 		 * (via truncate_inode_pages()) to discard these buffers can
201 		 * cause data loss. Also even if we did not discard these
202 		 * buffers, we would have no way to find them after the inode
203 		 * is reaped and thus user could see stale data if he tries to
204 		 * read them before the transaction is checkpointed. So be
205 		 * careful and force everything to disk here... We use
206 		 * ei->i_datasync_tid to store the newest transaction
207 		 * containing inode's data.
208 		 *
209 		 * Note that directories do not have this problem because they
210 		 * don't use page cache.
211 		 */
212 		if (ext4_should_journal_data(inode) &&
213 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214 		    inode->i_ino != EXT4_JOURNAL_INO) {
215 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217 
218 			jbd2_complete_transaction(journal, commit_tid);
219 			filemap_write_and_wait(&inode->i_data);
220 		}
221 		truncate_inode_pages_final(&inode->i_data);
222 
223 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
224 		goto no_delete;
225 	}
226 
227 	if (!is_bad_inode(inode))
228 		dquot_initialize(inode);
229 
230 	if (ext4_should_order_data(inode))
231 		ext4_begin_ordered_truncate(inode, 0);
232 	truncate_inode_pages_final(&inode->i_data);
233 
234 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
235 	if (is_bad_inode(inode))
236 		goto no_delete;
237 
238 	/*
239 	 * Protect us against freezing - iput() caller didn't have to have any
240 	 * protection against it
241 	 */
242 	sb_start_intwrite(inode->i_sb);
243 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244 				    ext4_blocks_for_truncate(inode)+3);
245 	if (IS_ERR(handle)) {
246 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
247 		/*
248 		 * If we're going to skip the normal cleanup, we still need to
249 		 * make sure that the in-core orphan linked list is properly
250 		 * cleaned up.
251 		 */
252 		ext4_orphan_del(NULL, inode);
253 		sb_end_intwrite(inode->i_sb);
254 		goto no_delete;
255 	}
256 
257 	if (IS_SYNC(inode))
258 		ext4_handle_sync(handle);
259 	inode->i_size = 0;
260 	err = ext4_mark_inode_dirty(handle, inode);
261 	if (err) {
262 		ext4_warning(inode->i_sb,
263 			     "couldn't mark inode dirty (err %d)", err);
264 		goto stop_handle;
265 	}
266 	if (inode->i_blocks)
267 		ext4_truncate(inode);
268 
269 	/*
270 	 * ext4_ext_truncate() doesn't reserve any slop when it
271 	 * restarts journal transactions; therefore there may not be
272 	 * enough credits left in the handle to remove the inode from
273 	 * the orphan list and set the dtime field.
274 	 */
275 	if (!ext4_handle_has_enough_credits(handle, 3)) {
276 		err = ext4_journal_extend(handle, 3);
277 		if (err > 0)
278 			err = ext4_journal_restart(handle, 3);
279 		if (err != 0) {
280 			ext4_warning(inode->i_sb,
281 				     "couldn't extend journal (err %d)", err);
282 		stop_handle:
283 			ext4_journal_stop(handle);
284 			ext4_orphan_del(NULL, inode);
285 			sb_end_intwrite(inode->i_sb);
286 			goto no_delete;
287 		}
288 	}
289 
290 	/*
291 	 * Kill off the orphan record which ext4_truncate created.
292 	 * AKPM: I think this can be inside the above `if'.
293 	 * Note that ext4_orphan_del() has to be able to cope with the
294 	 * deletion of a non-existent orphan - this is because we don't
295 	 * know if ext4_truncate() actually created an orphan record.
296 	 * (Well, we could do this if we need to, but heck - it works)
297 	 */
298 	ext4_orphan_del(handle, inode);
299 	EXT4_I(inode)->i_dtime	= get_seconds();
300 
301 	/*
302 	 * One subtle ordering requirement: if anything has gone wrong
303 	 * (transaction abort, IO errors, whatever), then we can still
304 	 * do these next steps (the fs will already have been marked as
305 	 * having errors), but we can't free the inode if the mark_dirty
306 	 * fails.
307 	 */
308 	if (ext4_mark_inode_dirty(handle, inode))
309 		/* If that failed, just do the required in-core inode clear. */
310 		ext4_clear_inode(inode);
311 	else
312 		ext4_free_inode(handle, inode);
313 	ext4_journal_stop(handle);
314 	sb_end_intwrite(inode->i_sb);
315 	return;
316 no_delete:
317 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
318 }
319 
320 #ifdef CONFIG_QUOTA
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
322 {
323 	return &EXT4_I(inode)->i_reserved_quota;
324 }
325 #endif
326 
327 /*
328  * Calculate the number of metadata blocks need to reserve
329  * to allocate a block located at @lblock
330  */
331 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
332 {
333 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
334 		return ext4_ext_calc_metadata_amount(inode, lblock);
335 
336 	return ext4_ind_calc_metadata_amount(inode, lblock);
337 }
338 
339 /*
340  * Called with i_data_sem down, which is important since we can call
341  * ext4_discard_preallocations() from here.
342  */
343 void ext4_da_update_reserve_space(struct inode *inode,
344 					int used, int quota_claim)
345 {
346 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
347 	struct ext4_inode_info *ei = EXT4_I(inode);
348 
349 	spin_lock(&ei->i_block_reservation_lock);
350 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
351 	if (unlikely(used > ei->i_reserved_data_blocks)) {
352 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
353 			 "with only %d reserved data blocks",
354 			 __func__, inode->i_ino, used,
355 			 ei->i_reserved_data_blocks);
356 		WARN_ON(1);
357 		used = ei->i_reserved_data_blocks;
358 	}
359 
360 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
361 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
362 			"with only %d reserved metadata blocks "
363 			"(releasing %d blocks with reserved %d data blocks)",
364 			inode->i_ino, ei->i_allocated_meta_blocks,
365 			     ei->i_reserved_meta_blocks, used,
366 			     ei->i_reserved_data_blocks);
367 		WARN_ON(1);
368 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
369 	}
370 
371 	/* Update per-inode reservations */
372 	ei->i_reserved_data_blocks -= used;
373 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
374 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
375 			   used + ei->i_allocated_meta_blocks);
376 	ei->i_allocated_meta_blocks = 0;
377 
378 	if (ei->i_reserved_data_blocks == 0) {
379 		/*
380 		 * We can release all of the reserved metadata blocks
381 		 * only when we have written all of the delayed
382 		 * allocation blocks.
383 		 */
384 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
385 				   ei->i_reserved_meta_blocks);
386 		ei->i_reserved_meta_blocks = 0;
387 		ei->i_da_metadata_calc_len = 0;
388 	}
389 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
390 
391 	/* Update quota subsystem for data blocks */
392 	if (quota_claim)
393 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
394 	else {
395 		/*
396 		 * We did fallocate with an offset that is already delayed
397 		 * allocated. So on delayed allocated writeback we should
398 		 * not re-claim the quota for fallocated blocks.
399 		 */
400 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
401 	}
402 
403 	/*
404 	 * If we have done all the pending block allocations and if
405 	 * there aren't any writers on the inode, we can discard the
406 	 * inode's preallocations.
407 	 */
408 	if ((ei->i_reserved_data_blocks == 0) &&
409 	    (atomic_read(&inode->i_writecount) == 0))
410 		ext4_discard_preallocations(inode);
411 }
412 
413 static int __check_block_validity(struct inode *inode, const char *func,
414 				unsigned int line,
415 				struct ext4_map_blocks *map)
416 {
417 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
418 				   map->m_len)) {
419 		ext4_error_inode(inode, func, line, map->m_pblk,
420 				 "lblock %lu mapped to illegal pblock "
421 				 "(length %d)", (unsigned long) map->m_lblk,
422 				 map->m_len);
423 		return -EIO;
424 	}
425 	return 0;
426 }
427 
428 #define check_block_validity(inode, map)	\
429 	__check_block_validity((inode), __func__, __LINE__, (map))
430 
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433 				       struct inode *inode,
434 				       struct ext4_map_blocks *es_map,
435 				       struct ext4_map_blocks *map,
436 				       int flags)
437 {
438 	int retval;
439 
440 	map->m_flags = 0;
441 	/*
442 	 * There is a race window that the result is not the same.
443 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
444 	 * is that we lookup a block mapping in extent status tree with
445 	 * out taking i_data_sem.  So at the time the unwritten extent
446 	 * could be converted.
447 	 */
448 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
449 		down_read(&EXT4_I(inode)->i_data_sem);
450 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
451 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
452 					     EXT4_GET_BLOCKS_KEEP_SIZE);
453 	} else {
454 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
455 					     EXT4_GET_BLOCKS_KEEP_SIZE);
456 	}
457 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
458 		up_read((&EXT4_I(inode)->i_data_sem));
459 	/*
460 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
461 	 * because it shouldn't be marked in es_map->m_flags.
462 	 */
463 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
464 
465 	/*
466 	 * We don't check m_len because extent will be collpased in status
467 	 * tree.  So the m_len might not equal.
468 	 */
469 	if (es_map->m_lblk != map->m_lblk ||
470 	    es_map->m_flags != map->m_flags ||
471 	    es_map->m_pblk != map->m_pblk) {
472 		printk("ES cache assertion failed for inode: %lu "
473 		       "es_cached ex [%d/%d/%llu/%x] != "
474 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
475 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
476 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
477 		       map->m_len, map->m_pblk, map->m_flags,
478 		       retval, flags);
479 	}
480 }
481 #endif /* ES_AGGRESSIVE_TEST */
482 
483 /*
484  * The ext4_map_blocks() function tries to look up the requested blocks,
485  * and returns if the blocks are already mapped.
486  *
487  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
488  * and store the allocated blocks in the result buffer head and mark it
489  * mapped.
490  *
491  * If file type is extents based, it will call ext4_ext_map_blocks(),
492  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
493  * based files
494  *
495  * On success, it returns the number of blocks being mapped or allocated.
496  * if create==0 and the blocks are pre-allocated and unwritten block,
497  * the result buffer head is unmapped. If the create ==1, it will make sure
498  * the buffer head is mapped.
499  *
500  * It returns 0 if plain look up failed (blocks have not been allocated), in
501  * that case, buffer head is unmapped
502  *
503  * It returns the error in case of allocation failure.
504  */
505 int ext4_map_blocks(handle_t *handle, struct inode *inode,
506 		    struct ext4_map_blocks *map, int flags)
507 {
508 	struct extent_status es;
509 	int retval;
510 	int ret = 0;
511 #ifdef ES_AGGRESSIVE_TEST
512 	struct ext4_map_blocks orig_map;
513 
514 	memcpy(&orig_map, map, sizeof(*map));
515 #endif
516 
517 	map->m_flags = 0;
518 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
519 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
520 		  (unsigned long) map->m_lblk);
521 
522 	/*
523 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
524 	 */
525 	if (unlikely(map->m_len > INT_MAX))
526 		map->m_len = INT_MAX;
527 
528 	/* We can handle the block number less than EXT_MAX_BLOCKS */
529 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530 		return -EIO;
531 
532 	/* Lookup extent status tree firstly */
533 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
534 		ext4_es_lru_add(inode);
535 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536 			map->m_pblk = ext4_es_pblock(&es) +
537 					map->m_lblk - es.es_lblk;
538 			map->m_flags |= ext4_es_is_written(&es) ?
539 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540 			retval = es.es_len - (map->m_lblk - es.es_lblk);
541 			if (retval > map->m_len)
542 				retval = map->m_len;
543 			map->m_len = retval;
544 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545 			retval = 0;
546 		} else {
547 			BUG_ON(1);
548 		}
549 #ifdef ES_AGGRESSIVE_TEST
550 		ext4_map_blocks_es_recheck(handle, inode, map,
551 					   &orig_map, flags);
552 #endif
553 		goto found;
554 	}
555 
556 	/*
557 	 * Try to see if we can get the block without requesting a new
558 	 * file system block.
559 	 */
560 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
561 		down_read(&EXT4_I(inode)->i_data_sem);
562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
564 					     EXT4_GET_BLOCKS_KEEP_SIZE);
565 	} else {
566 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
567 					     EXT4_GET_BLOCKS_KEEP_SIZE);
568 	}
569 	if (retval > 0) {
570 		unsigned int status;
571 
572 		if (unlikely(retval != map->m_len)) {
573 			ext4_warning(inode->i_sb,
574 				     "ES len assertion failed for inode "
575 				     "%lu: retval %d != map->m_len %d",
576 				     inode->i_ino, retval, map->m_len);
577 			WARN_ON(1);
578 		}
579 
580 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583 		    ext4_find_delalloc_range(inode, map->m_lblk,
584 					     map->m_lblk + map->m_len - 1))
585 			status |= EXTENT_STATUS_DELAYED;
586 		ret = ext4_es_insert_extent(inode, map->m_lblk,
587 					    map->m_len, map->m_pblk, status);
588 		if (ret < 0)
589 			retval = ret;
590 	}
591 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
592 		up_read((&EXT4_I(inode)->i_data_sem));
593 
594 found:
595 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596 		ret = check_block_validity(inode, map);
597 		if (ret != 0)
598 			return ret;
599 	}
600 
601 	/* If it is only a block(s) look up */
602 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 		return retval;
604 
605 	/*
606 	 * Returns if the blocks have already allocated
607 	 *
608 	 * Note that if blocks have been preallocated
609 	 * ext4_ext_get_block() returns the create = 0
610 	 * with buffer head unmapped.
611 	 */
612 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613 		/*
614 		 * If we need to convert extent to unwritten
615 		 * we continue and do the actual work in
616 		 * ext4_ext_map_blocks()
617 		 */
618 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 			return retval;
620 
621 	/*
622 	 * Here we clear m_flags because after allocating an new extent,
623 	 * it will be set again.
624 	 */
625 	map->m_flags &= ~EXT4_MAP_FLAGS;
626 
627 	/*
628 	 * New blocks allocate and/or writing to unwritten extent
629 	 * will possibly result in updating i_data, so we take
630 	 * the write lock of i_data_sem, and call get_blocks()
631 	 * with create == 1 flag.
632 	 */
633 	down_write(&EXT4_I(inode)->i_data_sem);
634 
635 	/*
636 	 * if the caller is from delayed allocation writeout path
637 	 * we have already reserved fs blocks for allocation
638 	 * let the underlying get_block() function know to
639 	 * avoid double accounting
640 	 */
641 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
642 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
643 	/*
644 	 * We need to check for EXT4 here because migrate
645 	 * could have changed the inode type in between
646 	 */
647 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
648 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
649 	} else {
650 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
651 
652 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
653 			/*
654 			 * We allocated new blocks which will result in
655 			 * i_data's format changing.  Force the migrate
656 			 * to fail by clearing migrate flags
657 			 */
658 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
659 		}
660 
661 		/*
662 		 * Update reserved blocks/metadata blocks after successful
663 		 * block allocation which had been deferred till now. We don't
664 		 * support fallocate for non extent files. So we can update
665 		 * reserve space here.
666 		 */
667 		if ((retval > 0) &&
668 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
669 			ext4_da_update_reserve_space(inode, retval, 1);
670 	}
671 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
672 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
673 
674 	if (retval > 0) {
675 		unsigned int status;
676 
677 		if (unlikely(retval != map->m_len)) {
678 			ext4_warning(inode->i_sb,
679 				     "ES len assertion failed for inode "
680 				     "%lu: retval %d != map->m_len %d",
681 				     inode->i_ino, retval, map->m_len);
682 			WARN_ON(1);
683 		}
684 
685 		/*
686 		 * If the extent has been zeroed out, we don't need to update
687 		 * extent status tree.
688 		 */
689 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
690 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
691 			if (ext4_es_is_written(&es))
692 				goto has_zeroout;
693 		}
694 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
695 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
696 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
697 		    ext4_find_delalloc_range(inode, map->m_lblk,
698 					     map->m_lblk + map->m_len - 1))
699 			status |= EXTENT_STATUS_DELAYED;
700 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
701 					    map->m_pblk, status);
702 		if (ret < 0)
703 			retval = ret;
704 	}
705 
706 has_zeroout:
707 	up_write((&EXT4_I(inode)->i_data_sem));
708 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
709 		ret = check_block_validity(inode, map);
710 		if (ret != 0)
711 			return ret;
712 	}
713 	return retval;
714 }
715 
716 /* Maximum number of blocks we map for direct IO at once. */
717 #define DIO_MAX_BLOCKS 4096
718 
719 static int _ext4_get_block(struct inode *inode, sector_t iblock,
720 			   struct buffer_head *bh, int flags)
721 {
722 	handle_t *handle = ext4_journal_current_handle();
723 	struct ext4_map_blocks map;
724 	int ret = 0, started = 0;
725 	int dio_credits;
726 
727 	if (ext4_has_inline_data(inode))
728 		return -ERANGE;
729 
730 	map.m_lblk = iblock;
731 	map.m_len = bh->b_size >> inode->i_blkbits;
732 
733 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
734 		/* Direct IO write... */
735 		if (map.m_len > DIO_MAX_BLOCKS)
736 			map.m_len = DIO_MAX_BLOCKS;
737 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
738 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
739 					    dio_credits);
740 		if (IS_ERR(handle)) {
741 			ret = PTR_ERR(handle);
742 			return ret;
743 		}
744 		started = 1;
745 	}
746 
747 	ret = ext4_map_blocks(handle, inode, &map, flags);
748 	if (ret > 0) {
749 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
750 
751 		map_bh(bh, inode->i_sb, map.m_pblk);
752 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
753 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
754 			set_buffer_defer_completion(bh);
755 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
756 		ret = 0;
757 	}
758 	if (started)
759 		ext4_journal_stop(handle);
760 	return ret;
761 }
762 
763 int ext4_get_block(struct inode *inode, sector_t iblock,
764 		   struct buffer_head *bh, int create)
765 {
766 	return _ext4_get_block(inode, iblock, bh,
767 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
768 }
769 
770 /*
771  * `handle' can be NULL if create is zero
772  */
773 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
774 				ext4_lblk_t block, int create, int *errp)
775 {
776 	struct ext4_map_blocks map;
777 	struct buffer_head *bh;
778 	int fatal = 0, err;
779 
780 	J_ASSERT(handle != NULL || create == 0);
781 
782 	map.m_lblk = block;
783 	map.m_len = 1;
784 	err = ext4_map_blocks(handle, inode, &map,
785 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
786 
787 	/* ensure we send some value back into *errp */
788 	*errp = 0;
789 
790 	if (create && err == 0)
791 		err = -ENOSPC;	/* should never happen */
792 	if (err < 0)
793 		*errp = err;
794 	if (err <= 0)
795 		return NULL;
796 
797 	bh = sb_getblk(inode->i_sb, map.m_pblk);
798 	if (unlikely(!bh)) {
799 		*errp = -ENOMEM;
800 		return NULL;
801 	}
802 	if (map.m_flags & EXT4_MAP_NEW) {
803 		J_ASSERT(create != 0);
804 		J_ASSERT(handle != NULL);
805 
806 		/*
807 		 * Now that we do not always journal data, we should
808 		 * keep in mind whether this should always journal the
809 		 * new buffer as metadata.  For now, regular file
810 		 * writes use ext4_get_block instead, so it's not a
811 		 * problem.
812 		 */
813 		lock_buffer(bh);
814 		BUFFER_TRACE(bh, "call get_create_access");
815 		fatal = ext4_journal_get_create_access(handle, bh);
816 		if (!fatal && !buffer_uptodate(bh)) {
817 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
818 			set_buffer_uptodate(bh);
819 		}
820 		unlock_buffer(bh);
821 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
822 		err = ext4_handle_dirty_metadata(handle, inode, bh);
823 		if (!fatal)
824 			fatal = err;
825 	} else {
826 		BUFFER_TRACE(bh, "not a new buffer");
827 	}
828 	if (fatal) {
829 		*errp = fatal;
830 		brelse(bh);
831 		bh = NULL;
832 	}
833 	return bh;
834 }
835 
836 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
837 			       ext4_lblk_t block, int create, int *err)
838 {
839 	struct buffer_head *bh;
840 
841 	bh = ext4_getblk(handle, inode, block, create, err);
842 	if (!bh)
843 		return bh;
844 	if (buffer_uptodate(bh))
845 		return bh;
846 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
847 	wait_on_buffer(bh);
848 	if (buffer_uptodate(bh))
849 		return bh;
850 	put_bh(bh);
851 	*err = -EIO;
852 	return NULL;
853 }
854 
855 int ext4_walk_page_buffers(handle_t *handle,
856 			   struct buffer_head *head,
857 			   unsigned from,
858 			   unsigned to,
859 			   int *partial,
860 			   int (*fn)(handle_t *handle,
861 				     struct buffer_head *bh))
862 {
863 	struct buffer_head *bh;
864 	unsigned block_start, block_end;
865 	unsigned blocksize = head->b_size;
866 	int err, ret = 0;
867 	struct buffer_head *next;
868 
869 	for (bh = head, block_start = 0;
870 	     ret == 0 && (bh != head || !block_start);
871 	     block_start = block_end, bh = next) {
872 		next = bh->b_this_page;
873 		block_end = block_start + blocksize;
874 		if (block_end <= from || block_start >= to) {
875 			if (partial && !buffer_uptodate(bh))
876 				*partial = 1;
877 			continue;
878 		}
879 		err = (*fn)(handle, bh);
880 		if (!ret)
881 			ret = err;
882 	}
883 	return ret;
884 }
885 
886 /*
887  * To preserve ordering, it is essential that the hole instantiation and
888  * the data write be encapsulated in a single transaction.  We cannot
889  * close off a transaction and start a new one between the ext4_get_block()
890  * and the commit_write().  So doing the jbd2_journal_start at the start of
891  * prepare_write() is the right place.
892  *
893  * Also, this function can nest inside ext4_writepage().  In that case, we
894  * *know* that ext4_writepage() has generated enough buffer credits to do the
895  * whole page.  So we won't block on the journal in that case, which is good,
896  * because the caller may be PF_MEMALLOC.
897  *
898  * By accident, ext4 can be reentered when a transaction is open via
899  * quota file writes.  If we were to commit the transaction while thus
900  * reentered, there can be a deadlock - we would be holding a quota
901  * lock, and the commit would never complete if another thread had a
902  * transaction open and was blocking on the quota lock - a ranking
903  * violation.
904  *
905  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
906  * will _not_ run commit under these circumstances because handle->h_ref
907  * is elevated.  We'll still have enough credits for the tiny quotafile
908  * write.
909  */
910 int do_journal_get_write_access(handle_t *handle,
911 				struct buffer_head *bh)
912 {
913 	int dirty = buffer_dirty(bh);
914 	int ret;
915 
916 	if (!buffer_mapped(bh) || buffer_freed(bh))
917 		return 0;
918 	/*
919 	 * __block_write_begin() could have dirtied some buffers. Clean
920 	 * the dirty bit as jbd2_journal_get_write_access() could complain
921 	 * otherwise about fs integrity issues. Setting of the dirty bit
922 	 * by __block_write_begin() isn't a real problem here as we clear
923 	 * the bit before releasing a page lock and thus writeback cannot
924 	 * ever write the buffer.
925 	 */
926 	if (dirty)
927 		clear_buffer_dirty(bh);
928 	BUFFER_TRACE(bh, "get write access");
929 	ret = ext4_journal_get_write_access(handle, bh);
930 	if (!ret && dirty)
931 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
932 	return ret;
933 }
934 
935 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
936 		   struct buffer_head *bh_result, int create);
937 static int ext4_write_begin(struct file *file, struct address_space *mapping,
938 			    loff_t pos, unsigned len, unsigned flags,
939 			    struct page **pagep, void **fsdata)
940 {
941 	struct inode *inode = mapping->host;
942 	int ret, needed_blocks;
943 	handle_t *handle;
944 	int retries = 0;
945 	struct page *page;
946 	pgoff_t index;
947 	unsigned from, to;
948 
949 	trace_ext4_write_begin(inode, pos, len, flags);
950 	/*
951 	 * Reserve one block more for addition to orphan list in case
952 	 * we allocate blocks but write fails for some reason
953 	 */
954 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
955 	index = pos >> PAGE_CACHE_SHIFT;
956 	from = pos & (PAGE_CACHE_SIZE - 1);
957 	to = from + len;
958 
959 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
960 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
961 						    flags, pagep);
962 		if (ret < 0)
963 			return ret;
964 		if (ret == 1)
965 			return 0;
966 	}
967 
968 	/*
969 	 * grab_cache_page_write_begin() can take a long time if the
970 	 * system is thrashing due to memory pressure, or if the page
971 	 * is being written back.  So grab it first before we start
972 	 * the transaction handle.  This also allows us to allocate
973 	 * the page (if needed) without using GFP_NOFS.
974 	 */
975 retry_grab:
976 	page = grab_cache_page_write_begin(mapping, index, flags);
977 	if (!page)
978 		return -ENOMEM;
979 	unlock_page(page);
980 
981 retry_journal:
982 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
983 	if (IS_ERR(handle)) {
984 		page_cache_release(page);
985 		return PTR_ERR(handle);
986 	}
987 
988 	lock_page(page);
989 	if (page->mapping != mapping) {
990 		/* The page got truncated from under us */
991 		unlock_page(page);
992 		page_cache_release(page);
993 		ext4_journal_stop(handle);
994 		goto retry_grab;
995 	}
996 	/* In case writeback began while the page was unlocked */
997 	wait_for_stable_page(page);
998 
999 	if (ext4_should_dioread_nolock(inode))
1000 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1001 	else
1002 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1003 
1004 	if (!ret && ext4_should_journal_data(inode)) {
1005 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1006 					     from, to, NULL,
1007 					     do_journal_get_write_access);
1008 	}
1009 
1010 	if (ret) {
1011 		unlock_page(page);
1012 		/*
1013 		 * __block_write_begin may have instantiated a few blocks
1014 		 * outside i_size.  Trim these off again. Don't need
1015 		 * i_size_read because we hold i_mutex.
1016 		 *
1017 		 * Add inode to orphan list in case we crash before
1018 		 * truncate finishes
1019 		 */
1020 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1021 			ext4_orphan_add(handle, inode);
1022 
1023 		ext4_journal_stop(handle);
1024 		if (pos + len > inode->i_size) {
1025 			ext4_truncate_failed_write(inode);
1026 			/*
1027 			 * If truncate failed early the inode might
1028 			 * still be on the orphan list; we need to
1029 			 * make sure the inode is removed from the
1030 			 * orphan list in that case.
1031 			 */
1032 			if (inode->i_nlink)
1033 				ext4_orphan_del(NULL, inode);
1034 		}
1035 
1036 		if (ret == -ENOSPC &&
1037 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1038 			goto retry_journal;
1039 		page_cache_release(page);
1040 		return ret;
1041 	}
1042 	*pagep = page;
1043 	return ret;
1044 }
1045 
1046 /* For write_end() in data=journal mode */
1047 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1048 {
1049 	int ret;
1050 	if (!buffer_mapped(bh) || buffer_freed(bh))
1051 		return 0;
1052 	set_buffer_uptodate(bh);
1053 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1054 	clear_buffer_meta(bh);
1055 	clear_buffer_prio(bh);
1056 	return ret;
1057 }
1058 
1059 /*
1060  * We need to pick up the new inode size which generic_commit_write gave us
1061  * `file' can be NULL - eg, when called from page_symlink().
1062  *
1063  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1064  * buffers are managed internally.
1065  */
1066 static int ext4_write_end(struct file *file,
1067 			  struct address_space *mapping,
1068 			  loff_t pos, unsigned len, unsigned copied,
1069 			  struct page *page, void *fsdata)
1070 {
1071 	handle_t *handle = ext4_journal_current_handle();
1072 	struct inode *inode = mapping->host;
1073 	int ret = 0, ret2;
1074 	int i_size_changed = 0;
1075 
1076 	trace_ext4_write_end(inode, pos, len, copied);
1077 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1078 		ret = ext4_jbd2_file_inode(handle, inode);
1079 		if (ret) {
1080 			unlock_page(page);
1081 			page_cache_release(page);
1082 			goto errout;
1083 		}
1084 	}
1085 
1086 	if (ext4_has_inline_data(inode)) {
1087 		ret = ext4_write_inline_data_end(inode, pos, len,
1088 						 copied, page);
1089 		if (ret < 0)
1090 			goto errout;
1091 		copied = ret;
1092 	} else
1093 		copied = block_write_end(file, mapping, pos,
1094 					 len, copied, page, fsdata);
1095 
1096 	/*
1097 	 * No need to use i_size_read() here, the i_size
1098 	 * cannot change under us because we hole i_mutex.
1099 	 *
1100 	 * But it's important to update i_size while still holding page lock:
1101 	 * page writeout could otherwise come in and zero beyond i_size.
1102 	 */
1103 	if (pos + copied > inode->i_size) {
1104 		i_size_write(inode, pos + copied);
1105 		i_size_changed = 1;
1106 	}
1107 
1108 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1109 		/* We need to mark inode dirty even if
1110 		 * new_i_size is less that inode->i_size
1111 		 * but greater than i_disksize. (hint delalloc)
1112 		 */
1113 		ext4_update_i_disksize(inode, (pos + copied));
1114 		i_size_changed = 1;
1115 	}
1116 	unlock_page(page);
1117 	page_cache_release(page);
1118 
1119 	/*
1120 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1121 	 * makes the holding time of page lock longer. Second, it forces lock
1122 	 * ordering of page lock and transaction start for journaling
1123 	 * filesystems.
1124 	 */
1125 	if (i_size_changed)
1126 		ext4_mark_inode_dirty(handle, inode);
1127 
1128 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1129 		/* if we have allocated more blocks and copied
1130 		 * less. We will have blocks allocated outside
1131 		 * inode->i_size. So truncate them
1132 		 */
1133 		ext4_orphan_add(handle, inode);
1134 errout:
1135 	ret2 = ext4_journal_stop(handle);
1136 	if (!ret)
1137 		ret = ret2;
1138 
1139 	if (pos + len > inode->i_size) {
1140 		ext4_truncate_failed_write(inode);
1141 		/*
1142 		 * If truncate failed early the inode might still be
1143 		 * on the orphan list; we need to make sure the inode
1144 		 * is removed from the orphan list in that case.
1145 		 */
1146 		if (inode->i_nlink)
1147 			ext4_orphan_del(NULL, inode);
1148 	}
1149 
1150 	return ret ? ret : copied;
1151 }
1152 
1153 static int ext4_journalled_write_end(struct file *file,
1154 				     struct address_space *mapping,
1155 				     loff_t pos, unsigned len, unsigned copied,
1156 				     struct page *page, void *fsdata)
1157 {
1158 	handle_t *handle = ext4_journal_current_handle();
1159 	struct inode *inode = mapping->host;
1160 	int ret = 0, ret2;
1161 	int partial = 0;
1162 	unsigned from, to;
1163 	loff_t new_i_size;
1164 
1165 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1166 	from = pos & (PAGE_CACHE_SIZE - 1);
1167 	to = from + len;
1168 
1169 	BUG_ON(!ext4_handle_valid(handle));
1170 
1171 	if (ext4_has_inline_data(inode))
1172 		copied = ext4_write_inline_data_end(inode, pos, len,
1173 						    copied, page);
1174 	else {
1175 		if (copied < len) {
1176 			if (!PageUptodate(page))
1177 				copied = 0;
1178 			page_zero_new_buffers(page, from+copied, to);
1179 		}
1180 
1181 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1182 					     to, &partial, write_end_fn);
1183 		if (!partial)
1184 			SetPageUptodate(page);
1185 	}
1186 	new_i_size = pos + copied;
1187 	if (new_i_size > inode->i_size)
1188 		i_size_write(inode, pos+copied);
1189 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1190 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1191 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1192 		ext4_update_i_disksize(inode, new_i_size);
1193 		ret2 = ext4_mark_inode_dirty(handle, inode);
1194 		if (!ret)
1195 			ret = ret2;
1196 	}
1197 
1198 	unlock_page(page);
1199 	page_cache_release(page);
1200 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1201 		/* if we have allocated more blocks and copied
1202 		 * less. We will have blocks allocated outside
1203 		 * inode->i_size. So truncate them
1204 		 */
1205 		ext4_orphan_add(handle, inode);
1206 
1207 	ret2 = ext4_journal_stop(handle);
1208 	if (!ret)
1209 		ret = ret2;
1210 	if (pos + len > inode->i_size) {
1211 		ext4_truncate_failed_write(inode);
1212 		/*
1213 		 * If truncate failed early the inode might still be
1214 		 * on the orphan list; we need to make sure the inode
1215 		 * is removed from the orphan list in that case.
1216 		 */
1217 		if (inode->i_nlink)
1218 			ext4_orphan_del(NULL, inode);
1219 	}
1220 
1221 	return ret ? ret : copied;
1222 }
1223 
1224 /*
1225  * Reserve a metadata for a single block located at lblock
1226  */
1227 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1228 {
1229 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1230 	struct ext4_inode_info *ei = EXT4_I(inode);
1231 	unsigned int md_needed;
1232 	ext4_lblk_t save_last_lblock;
1233 	int save_len;
1234 
1235 	/*
1236 	 * recalculate the amount of metadata blocks to reserve
1237 	 * in order to allocate nrblocks
1238 	 * worse case is one extent per block
1239 	 */
1240 	spin_lock(&ei->i_block_reservation_lock);
1241 	/*
1242 	 * ext4_calc_metadata_amount() has side effects, which we have
1243 	 * to be prepared undo if we fail to claim space.
1244 	 */
1245 	save_len = ei->i_da_metadata_calc_len;
1246 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1247 	md_needed = EXT4_NUM_B2C(sbi,
1248 				 ext4_calc_metadata_amount(inode, lblock));
1249 	trace_ext4_da_reserve_space(inode, md_needed);
1250 
1251 	/*
1252 	 * We do still charge estimated metadata to the sb though;
1253 	 * we cannot afford to run out of free blocks.
1254 	 */
1255 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1256 		ei->i_da_metadata_calc_len = save_len;
1257 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1258 		spin_unlock(&ei->i_block_reservation_lock);
1259 		return -ENOSPC;
1260 	}
1261 	ei->i_reserved_meta_blocks += md_needed;
1262 	spin_unlock(&ei->i_block_reservation_lock);
1263 
1264 	return 0;       /* success */
1265 }
1266 
1267 /*
1268  * Reserve a single cluster located at lblock
1269  */
1270 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1271 {
1272 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1273 	struct ext4_inode_info *ei = EXT4_I(inode);
1274 	unsigned int md_needed;
1275 	int ret;
1276 	ext4_lblk_t save_last_lblock;
1277 	int save_len;
1278 
1279 	/*
1280 	 * We will charge metadata quota at writeout time; this saves
1281 	 * us from metadata over-estimation, though we may go over by
1282 	 * a small amount in the end.  Here we just reserve for data.
1283 	 */
1284 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1285 	if (ret)
1286 		return ret;
1287 
1288 	/*
1289 	 * recalculate the amount of metadata blocks to reserve
1290 	 * in order to allocate nrblocks
1291 	 * worse case is one extent per block
1292 	 */
1293 	spin_lock(&ei->i_block_reservation_lock);
1294 	/*
1295 	 * ext4_calc_metadata_amount() has side effects, which we have
1296 	 * to be prepared undo if we fail to claim space.
1297 	 */
1298 	save_len = ei->i_da_metadata_calc_len;
1299 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1300 	md_needed = EXT4_NUM_B2C(sbi,
1301 				 ext4_calc_metadata_amount(inode, lblock));
1302 	trace_ext4_da_reserve_space(inode, md_needed);
1303 
1304 	/*
1305 	 * We do still charge estimated metadata to the sb though;
1306 	 * we cannot afford to run out of free blocks.
1307 	 */
1308 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1309 		ei->i_da_metadata_calc_len = save_len;
1310 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1311 		spin_unlock(&ei->i_block_reservation_lock);
1312 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1313 		return -ENOSPC;
1314 	}
1315 	ei->i_reserved_data_blocks++;
1316 	ei->i_reserved_meta_blocks += md_needed;
1317 	spin_unlock(&ei->i_block_reservation_lock);
1318 
1319 	return 0;       /* success */
1320 }
1321 
1322 static void ext4_da_release_space(struct inode *inode, int to_free)
1323 {
1324 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1325 	struct ext4_inode_info *ei = EXT4_I(inode);
1326 
1327 	if (!to_free)
1328 		return;		/* Nothing to release, exit */
1329 
1330 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1331 
1332 	trace_ext4_da_release_space(inode, to_free);
1333 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1334 		/*
1335 		 * if there aren't enough reserved blocks, then the
1336 		 * counter is messed up somewhere.  Since this
1337 		 * function is called from invalidate page, it's
1338 		 * harmless to return without any action.
1339 		 */
1340 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1341 			 "ino %lu, to_free %d with only %d reserved "
1342 			 "data blocks", inode->i_ino, to_free,
1343 			 ei->i_reserved_data_blocks);
1344 		WARN_ON(1);
1345 		to_free = ei->i_reserved_data_blocks;
1346 	}
1347 	ei->i_reserved_data_blocks -= to_free;
1348 
1349 	if (ei->i_reserved_data_blocks == 0) {
1350 		/*
1351 		 * We can release all of the reserved metadata blocks
1352 		 * only when we have written all of the delayed
1353 		 * allocation blocks.
1354 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1355 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1356 		 */
1357 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1358 				   ei->i_reserved_meta_blocks);
1359 		ei->i_reserved_meta_blocks = 0;
1360 		ei->i_da_metadata_calc_len = 0;
1361 	}
1362 
1363 	/* update fs dirty data blocks counter */
1364 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1365 
1366 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1367 
1368 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1369 }
1370 
1371 static void ext4_da_page_release_reservation(struct page *page,
1372 					     unsigned int offset,
1373 					     unsigned int length)
1374 {
1375 	int to_release = 0;
1376 	struct buffer_head *head, *bh;
1377 	unsigned int curr_off = 0;
1378 	struct inode *inode = page->mapping->host;
1379 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1380 	unsigned int stop = offset + length;
1381 	int num_clusters;
1382 	ext4_fsblk_t lblk;
1383 
1384 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1385 
1386 	head = page_buffers(page);
1387 	bh = head;
1388 	do {
1389 		unsigned int next_off = curr_off + bh->b_size;
1390 
1391 		if (next_off > stop)
1392 			break;
1393 
1394 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1395 			to_release++;
1396 			clear_buffer_delay(bh);
1397 		}
1398 		curr_off = next_off;
1399 	} while ((bh = bh->b_this_page) != head);
1400 
1401 	if (to_release) {
1402 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1403 		ext4_es_remove_extent(inode, lblk, to_release);
1404 	}
1405 
1406 	/* If we have released all the blocks belonging to a cluster, then we
1407 	 * need to release the reserved space for that cluster. */
1408 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1409 	while (num_clusters > 0) {
1410 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1411 			((num_clusters - 1) << sbi->s_cluster_bits);
1412 		if (sbi->s_cluster_ratio == 1 ||
1413 		    !ext4_find_delalloc_cluster(inode, lblk))
1414 			ext4_da_release_space(inode, 1);
1415 
1416 		num_clusters--;
1417 	}
1418 }
1419 
1420 /*
1421  * Delayed allocation stuff
1422  */
1423 
1424 struct mpage_da_data {
1425 	struct inode *inode;
1426 	struct writeback_control *wbc;
1427 
1428 	pgoff_t first_page;	/* The first page to write */
1429 	pgoff_t next_page;	/* Current page to examine */
1430 	pgoff_t last_page;	/* Last page to examine */
1431 	/*
1432 	 * Extent to map - this can be after first_page because that can be
1433 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1434 	 * is delalloc or unwritten.
1435 	 */
1436 	struct ext4_map_blocks map;
1437 	struct ext4_io_submit io_submit;	/* IO submission data */
1438 };
1439 
1440 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1441 				       bool invalidate)
1442 {
1443 	int nr_pages, i;
1444 	pgoff_t index, end;
1445 	struct pagevec pvec;
1446 	struct inode *inode = mpd->inode;
1447 	struct address_space *mapping = inode->i_mapping;
1448 
1449 	/* This is necessary when next_page == 0. */
1450 	if (mpd->first_page >= mpd->next_page)
1451 		return;
1452 
1453 	index = mpd->first_page;
1454 	end   = mpd->next_page - 1;
1455 	if (invalidate) {
1456 		ext4_lblk_t start, last;
1457 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1458 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1459 		ext4_es_remove_extent(inode, start, last - start + 1);
1460 	}
1461 
1462 	pagevec_init(&pvec, 0);
1463 	while (index <= end) {
1464 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1465 		if (nr_pages == 0)
1466 			break;
1467 		for (i = 0; i < nr_pages; i++) {
1468 			struct page *page = pvec.pages[i];
1469 			if (page->index > end)
1470 				break;
1471 			BUG_ON(!PageLocked(page));
1472 			BUG_ON(PageWriteback(page));
1473 			if (invalidate) {
1474 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1475 				ClearPageUptodate(page);
1476 			}
1477 			unlock_page(page);
1478 		}
1479 		index = pvec.pages[nr_pages - 1]->index + 1;
1480 		pagevec_release(&pvec);
1481 	}
1482 }
1483 
1484 static void ext4_print_free_blocks(struct inode *inode)
1485 {
1486 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1487 	struct super_block *sb = inode->i_sb;
1488 	struct ext4_inode_info *ei = EXT4_I(inode);
1489 
1490 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1491 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1492 			ext4_count_free_clusters(sb)));
1493 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1494 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1495 	       (long long) EXT4_C2B(EXT4_SB(sb),
1496 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1497 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1498 	       (long long) EXT4_C2B(EXT4_SB(sb),
1499 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1500 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1501 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1502 		 ei->i_reserved_data_blocks);
1503 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1504 	       ei->i_reserved_meta_blocks);
1505 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1506 	       ei->i_allocated_meta_blocks);
1507 	return;
1508 }
1509 
1510 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1511 {
1512 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1513 }
1514 
1515 /*
1516  * This function is grabs code from the very beginning of
1517  * ext4_map_blocks, but assumes that the caller is from delayed write
1518  * time. This function looks up the requested blocks and sets the
1519  * buffer delay bit under the protection of i_data_sem.
1520  */
1521 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1522 			      struct ext4_map_blocks *map,
1523 			      struct buffer_head *bh)
1524 {
1525 	struct extent_status es;
1526 	int retval;
1527 	sector_t invalid_block = ~((sector_t) 0xffff);
1528 #ifdef ES_AGGRESSIVE_TEST
1529 	struct ext4_map_blocks orig_map;
1530 
1531 	memcpy(&orig_map, map, sizeof(*map));
1532 #endif
1533 
1534 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1535 		invalid_block = ~0;
1536 
1537 	map->m_flags = 0;
1538 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1539 		  "logical block %lu\n", inode->i_ino, map->m_len,
1540 		  (unsigned long) map->m_lblk);
1541 
1542 	/* Lookup extent status tree firstly */
1543 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1544 		ext4_es_lru_add(inode);
1545 		if (ext4_es_is_hole(&es)) {
1546 			retval = 0;
1547 			down_read(&EXT4_I(inode)->i_data_sem);
1548 			goto add_delayed;
1549 		}
1550 
1551 		/*
1552 		 * Delayed extent could be allocated by fallocate.
1553 		 * So we need to check it.
1554 		 */
1555 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1556 			map_bh(bh, inode->i_sb, invalid_block);
1557 			set_buffer_new(bh);
1558 			set_buffer_delay(bh);
1559 			return 0;
1560 		}
1561 
1562 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1563 		retval = es.es_len - (iblock - es.es_lblk);
1564 		if (retval > map->m_len)
1565 			retval = map->m_len;
1566 		map->m_len = retval;
1567 		if (ext4_es_is_written(&es))
1568 			map->m_flags |= EXT4_MAP_MAPPED;
1569 		else if (ext4_es_is_unwritten(&es))
1570 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1571 		else
1572 			BUG_ON(1);
1573 
1574 #ifdef ES_AGGRESSIVE_TEST
1575 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1576 #endif
1577 		return retval;
1578 	}
1579 
1580 	/*
1581 	 * Try to see if we can get the block without requesting a new
1582 	 * file system block.
1583 	 */
1584 	down_read(&EXT4_I(inode)->i_data_sem);
1585 	if (ext4_has_inline_data(inode)) {
1586 		/*
1587 		 * We will soon create blocks for this page, and let
1588 		 * us pretend as if the blocks aren't allocated yet.
1589 		 * In case of clusters, we have to handle the work
1590 		 * of mapping from cluster so that the reserved space
1591 		 * is calculated properly.
1592 		 */
1593 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1594 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1595 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1596 		retval = 0;
1597 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1598 		retval = ext4_ext_map_blocks(NULL, inode, map,
1599 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1600 	else
1601 		retval = ext4_ind_map_blocks(NULL, inode, map,
1602 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1603 
1604 add_delayed:
1605 	if (retval == 0) {
1606 		int ret;
1607 		/*
1608 		 * XXX: __block_prepare_write() unmaps passed block,
1609 		 * is it OK?
1610 		 */
1611 		/*
1612 		 * If the block was allocated from previously allocated cluster,
1613 		 * then we don't need to reserve it again. However we still need
1614 		 * to reserve metadata for every block we're going to write.
1615 		 */
1616 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1617 			ret = ext4_da_reserve_space(inode, iblock);
1618 			if (ret) {
1619 				/* not enough space to reserve */
1620 				retval = ret;
1621 				goto out_unlock;
1622 			}
1623 		} else {
1624 			ret = ext4_da_reserve_metadata(inode, iblock);
1625 			if (ret) {
1626 				/* not enough space to reserve */
1627 				retval = ret;
1628 				goto out_unlock;
1629 			}
1630 		}
1631 
1632 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1633 					    ~0, EXTENT_STATUS_DELAYED);
1634 		if (ret) {
1635 			retval = ret;
1636 			goto out_unlock;
1637 		}
1638 
1639 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1640 		 * and it should not appear on the bh->b_state.
1641 		 */
1642 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1643 
1644 		map_bh(bh, inode->i_sb, invalid_block);
1645 		set_buffer_new(bh);
1646 		set_buffer_delay(bh);
1647 	} else if (retval > 0) {
1648 		int ret;
1649 		unsigned int status;
1650 
1651 		if (unlikely(retval != map->m_len)) {
1652 			ext4_warning(inode->i_sb,
1653 				     "ES len assertion failed for inode "
1654 				     "%lu: retval %d != map->m_len %d",
1655 				     inode->i_ino, retval, map->m_len);
1656 			WARN_ON(1);
1657 		}
1658 
1659 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1660 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1661 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1662 					    map->m_pblk, status);
1663 		if (ret != 0)
1664 			retval = ret;
1665 	}
1666 
1667 out_unlock:
1668 	up_read((&EXT4_I(inode)->i_data_sem));
1669 
1670 	return retval;
1671 }
1672 
1673 /*
1674  * This is a special get_blocks_t callback which is used by
1675  * ext4_da_write_begin().  It will either return mapped block or
1676  * reserve space for a single block.
1677  *
1678  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1679  * We also have b_blocknr = -1 and b_bdev initialized properly
1680  *
1681  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1682  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1683  * initialized properly.
1684  */
1685 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1686 			   struct buffer_head *bh, int create)
1687 {
1688 	struct ext4_map_blocks map;
1689 	int ret = 0;
1690 
1691 	BUG_ON(create == 0);
1692 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1693 
1694 	map.m_lblk = iblock;
1695 	map.m_len = 1;
1696 
1697 	/*
1698 	 * first, we need to know whether the block is allocated already
1699 	 * preallocated blocks are unmapped but should treated
1700 	 * the same as allocated blocks.
1701 	 */
1702 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1703 	if (ret <= 0)
1704 		return ret;
1705 
1706 	map_bh(bh, inode->i_sb, map.m_pblk);
1707 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1708 
1709 	if (buffer_unwritten(bh)) {
1710 		/* A delayed write to unwritten bh should be marked
1711 		 * new and mapped.  Mapped ensures that we don't do
1712 		 * get_block multiple times when we write to the same
1713 		 * offset and new ensures that we do proper zero out
1714 		 * for partial write.
1715 		 */
1716 		set_buffer_new(bh);
1717 		set_buffer_mapped(bh);
1718 	}
1719 	return 0;
1720 }
1721 
1722 static int bget_one(handle_t *handle, struct buffer_head *bh)
1723 {
1724 	get_bh(bh);
1725 	return 0;
1726 }
1727 
1728 static int bput_one(handle_t *handle, struct buffer_head *bh)
1729 {
1730 	put_bh(bh);
1731 	return 0;
1732 }
1733 
1734 static int __ext4_journalled_writepage(struct page *page,
1735 				       unsigned int len)
1736 {
1737 	struct address_space *mapping = page->mapping;
1738 	struct inode *inode = mapping->host;
1739 	struct buffer_head *page_bufs = NULL;
1740 	handle_t *handle = NULL;
1741 	int ret = 0, err = 0;
1742 	int inline_data = ext4_has_inline_data(inode);
1743 	struct buffer_head *inode_bh = NULL;
1744 
1745 	ClearPageChecked(page);
1746 
1747 	if (inline_data) {
1748 		BUG_ON(page->index != 0);
1749 		BUG_ON(len > ext4_get_max_inline_size(inode));
1750 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1751 		if (inode_bh == NULL)
1752 			goto out;
1753 	} else {
1754 		page_bufs = page_buffers(page);
1755 		if (!page_bufs) {
1756 			BUG();
1757 			goto out;
1758 		}
1759 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1760 				       NULL, bget_one);
1761 	}
1762 	/* As soon as we unlock the page, it can go away, but we have
1763 	 * references to buffers so we are safe */
1764 	unlock_page(page);
1765 
1766 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1767 				    ext4_writepage_trans_blocks(inode));
1768 	if (IS_ERR(handle)) {
1769 		ret = PTR_ERR(handle);
1770 		goto out;
1771 	}
1772 
1773 	BUG_ON(!ext4_handle_valid(handle));
1774 
1775 	if (inline_data) {
1776 		BUFFER_TRACE(inode_bh, "get write access");
1777 		ret = ext4_journal_get_write_access(handle, inode_bh);
1778 
1779 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1780 
1781 	} else {
1782 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1783 					     do_journal_get_write_access);
1784 
1785 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1786 					     write_end_fn);
1787 	}
1788 	if (ret == 0)
1789 		ret = err;
1790 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1791 	err = ext4_journal_stop(handle);
1792 	if (!ret)
1793 		ret = err;
1794 
1795 	if (!ext4_has_inline_data(inode))
1796 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1797 				       NULL, bput_one);
1798 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1799 out:
1800 	brelse(inode_bh);
1801 	return ret;
1802 }
1803 
1804 /*
1805  * Note that we don't need to start a transaction unless we're journaling data
1806  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1807  * need to file the inode to the transaction's list in ordered mode because if
1808  * we are writing back data added by write(), the inode is already there and if
1809  * we are writing back data modified via mmap(), no one guarantees in which
1810  * transaction the data will hit the disk. In case we are journaling data, we
1811  * cannot start transaction directly because transaction start ranks above page
1812  * lock so we have to do some magic.
1813  *
1814  * This function can get called via...
1815  *   - ext4_writepages after taking page lock (have journal handle)
1816  *   - journal_submit_inode_data_buffers (no journal handle)
1817  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1818  *   - grab_page_cache when doing write_begin (have journal handle)
1819  *
1820  * We don't do any block allocation in this function. If we have page with
1821  * multiple blocks we need to write those buffer_heads that are mapped. This
1822  * is important for mmaped based write. So if we do with blocksize 1K
1823  * truncate(f, 1024);
1824  * a = mmap(f, 0, 4096);
1825  * a[0] = 'a';
1826  * truncate(f, 4096);
1827  * we have in the page first buffer_head mapped via page_mkwrite call back
1828  * but other buffer_heads would be unmapped but dirty (dirty done via the
1829  * do_wp_page). So writepage should write the first block. If we modify
1830  * the mmap area beyond 1024 we will again get a page_fault and the
1831  * page_mkwrite callback will do the block allocation and mark the
1832  * buffer_heads mapped.
1833  *
1834  * We redirty the page if we have any buffer_heads that is either delay or
1835  * unwritten in the page.
1836  *
1837  * We can get recursively called as show below.
1838  *
1839  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1840  *		ext4_writepage()
1841  *
1842  * But since we don't do any block allocation we should not deadlock.
1843  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1844  */
1845 static int ext4_writepage(struct page *page,
1846 			  struct writeback_control *wbc)
1847 {
1848 	int ret = 0;
1849 	loff_t size;
1850 	unsigned int len;
1851 	struct buffer_head *page_bufs = NULL;
1852 	struct inode *inode = page->mapping->host;
1853 	struct ext4_io_submit io_submit;
1854 	bool keep_towrite = false;
1855 
1856 	trace_ext4_writepage(page);
1857 	size = i_size_read(inode);
1858 	if (page->index == size >> PAGE_CACHE_SHIFT)
1859 		len = size & ~PAGE_CACHE_MASK;
1860 	else
1861 		len = PAGE_CACHE_SIZE;
1862 
1863 	page_bufs = page_buffers(page);
1864 	/*
1865 	 * We cannot do block allocation or other extent handling in this
1866 	 * function. If there are buffers needing that, we have to redirty
1867 	 * the page. But we may reach here when we do a journal commit via
1868 	 * journal_submit_inode_data_buffers() and in that case we must write
1869 	 * allocated buffers to achieve data=ordered mode guarantees.
1870 	 */
1871 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1872 				   ext4_bh_delay_or_unwritten)) {
1873 		redirty_page_for_writepage(wbc, page);
1874 		if (current->flags & PF_MEMALLOC) {
1875 			/*
1876 			 * For memory cleaning there's no point in writing only
1877 			 * some buffers. So just bail out. Warn if we came here
1878 			 * from direct reclaim.
1879 			 */
1880 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1881 							== PF_MEMALLOC);
1882 			unlock_page(page);
1883 			return 0;
1884 		}
1885 		keep_towrite = true;
1886 	}
1887 
1888 	if (PageChecked(page) && ext4_should_journal_data(inode))
1889 		/*
1890 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1891 		 * doesn't seem much point in redirtying the page here.
1892 		 */
1893 		return __ext4_journalled_writepage(page, len);
1894 
1895 	ext4_io_submit_init(&io_submit, wbc);
1896 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1897 	if (!io_submit.io_end) {
1898 		redirty_page_for_writepage(wbc, page);
1899 		unlock_page(page);
1900 		return -ENOMEM;
1901 	}
1902 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1903 	ext4_io_submit(&io_submit);
1904 	/* Drop io_end reference we got from init */
1905 	ext4_put_io_end_defer(io_submit.io_end);
1906 	return ret;
1907 }
1908 
1909 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1910 {
1911 	int len;
1912 	loff_t size = i_size_read(mpd->inode);
1913 	int err;
1914 
1915 	BUG_ON(page->index != mpd->first_page);
1916 	if (page->index == size >> PAGE_CACHE_SHIFT)
1917 		len = size & ~PAGE_CACHE_MASK;
1918 	else
1919 		len = PAGE_CACHE_SIZE;
1920 	clear_page_dirty_for_io(page);
1921 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1922 	if (!err)
1923 		mpd->wbc->nr_to_write--;
1924 	mpd->first_page++;
1925 
1926 	return err;
1927 }
1928 
1929 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1930 
1931 /*
1932  * mballoc gives us at most this number of blocks...
1933  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1934  * The rest of mballoc seems to handle chunks up to full group size.
1935  */
1936 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1937 
1938 /*
1939  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1940  *
1941  * @mpd - extent of blocks
1942  * @lblk - logical number of the block in the file
1943  * @bh - buffer head we want to add to the extent
1944  *
1945  * The function is used to collect contig. blocks in the same state. If the
1946  * buffer doesn't require mapping for writeback and we haven't started the
1947  * extent of buffers to map yet, the function returns 'true' immediately - the
1948  * caller can write the buffer right away. Otherwise the function returns true
1949  * if the block has been added to the extent, false if the block couldn't be
1950  * added.
1951  */
1952 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1953 				   struct buffer_head *bh)
1954 {
1955 	struct ext4_map_blocks *map = &mpd->map;
1956 
1957 	/* Buffer that doesn't need mapping for writeback? */
1958 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1959 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1960 		/* So far no extent to map => we write the buffer right away */
1961 		if (map->m_len == 0)
1962 			return true;
1963 		return false;
1964 	}
1965 
1966 	/* First block in the extent? */
1967 	if (map->m_len == 0) {
1968 		map->m_lblk = lblk;
1969 		map->m_len = 1;
1970 		map->m_flags = bh->b_state & BH_FLAGS;
1971 		return true;
1972 	}
1973 
1974 	/* Don't go larger than mballoc is willing to allocate */
1975 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1976 		return false;
1977 
1978 	/* Can we merge the block to our big extent? */
1979 	if (lblk == map->m_lblk + map->m_len &&
1980 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1981 		map->m_len++;
1982 		return true;
1983 	}
1984 	return false;
1985 }
1986 
1987 /*
1988  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1989  *
1990  * @mpd - extent of blocks for mapping
1991  * @head - the first buffer in the page
1992  * @bh - buffer we should start processing from
1993  * @lblk - logical number of the block in the file corresponding to @bh
1994  *
1995  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1996  * the page for IO if all buffers in this page were mapped and there's no
1997  * accumulated extent of buffers to map or add buffers in the page to the
1998  * extent of buffers to map. The function returns 1 if the caller can continue
1999  * by processing the next page, 0 if it should stop adding buffers to the
2000  * extent to map because we cannot extend it anymore. It can also return value
2001  * < 0 in case of error during IO submission.
2002  */
2003 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2004 				   struct buffer_head *head,
2005 				   struct buffer_head *bh,
2006 				   ext4_lblk_t lblk)
2007 {
2008 	struct inode *inode = mpd->inode;
2009 	int err;
2010 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2011 							>> inode->i_blkbits;
2012 
2013 	do {
2014 		BUG_ON(buffer_locked(bh));
2015 
2016 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2017 			/* Found extent to map? */
2018 			if (mpd->map.m_len)
2019 				return 0;
2020 			/* Everything mapped so far and we hit EOF */
2021 			break;
2022 		}
2023 	} while (lblk++, (bh = bh->b_this_page) != head);
2024 	/* So far everything mapped? Submit the page for IO. */
2025 	if (mpd->map.m_len == 0) {
2026 		err = mpage_submit_page(mpd, head->b_page);
2027 		if (err < 0)
2028 			return err;
2029 	}
2030 	return lblk < blocks;
2031 }
2032 
2033 /*
2034  * mpage_map_buffers - update buffers corresponding to changed extent and
2035  *		       submit fully mapped pages for IO
2036  *
2037  * @mpd - description of extent to map, on return next extent to map
2038  *
2039  * Scan buffers corresponding to changed extent (we expect corresponding pages
2040  * to be already locked) and update buffer state according to new extent state.
2041  * We map delalloc buffers to their physical location, clear unwritten bits,
2042  * and mark buffers as uninit when we perform writes to unwritten extents
2043  * and do extent conversion after IO is finished. If the last page is not fully
2044  * mapped, we update @map to the next extent in the last page that needs
2045  * mapping. Otherwise we submit the page for IO.
2046  */
2047 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2048 {
2049 	struct pagevec pvec;
2050 	int nr_pages, i;
2051 	struct inode *inode = mpd->inode;
2052 	struct buffer_head *head, *bh;
2053 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2054 	pgoff_t start, end;
2055 	ext4_lblk_t lblk;
2056 	sector_t pblock;
2057 	int err;
2058 
2059 	start = mpd->map.m_lblk >> bpp_bits;
2060 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2061 	lblk = start << bpp_bits;
2062 	pblock = mpd->map.m_pblk;
2063 
2064 	pagevec_init(&pvec, 0);
2065 	while (start <= end) {
2066 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2067 					  PAGEVEC_SIZE);
2068 		if (nr_pages == 0)
2069 			break;
2070 		for (i = 0; i < nr_pages; i++) {
2071 			struct page *page = pvec.pages[i];
2072 
2073 			if (page->index > end)
2074 				break;
2075 			/* Up to 'end' pages must be contiguous */
2076 			BUG_ON(page->index != start);
2077 			bh = head = page_buffers(page);
2078 			do {
2079 				if (lblk < mpd->map.m_lblk)
2080 					continue;
2081 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2082 					/*
2083 					 * Buffer after end of mapped extent.
2084 					 * Find next buffer in the page to map.
2085 					 */
2086 					mpd->map.m_len = 0;
2087 					mpd->map.m_flags = 0;
2088 					/*
2089 					 * FIXME: If dioread_nolock supports
2090 					 * blocksize < pagesize, we need to make
2091 					 * sure we add size mapped so far to
2092 					 * io_end->size as the following call
2093 					 * can submit the page for IO.
2094 					 */
2095 					err = mpage_process_page_bufs(mpd, head,
2096 								      bh, lblk);
2097 					pagevec_release(&pvec);
2098 					if (err > 0)
2099 						err = 0;
2100 					return err;
2101 				}
2102 				if (buffer_delay(bh)) {
2103 					clear_buffer_delay(bh);
2104 					bh->b_blocknr = pblock++;
2105 				}
2106 				clear_buffer_unwritten(bh);
2107 			} while (lblk++, (bh = bh->b_this_page) != head);
2108 
2109 			/*
2110 			 * FIXME: This is going to break if dioread_nolock
2111 			 * supports blocksize < pagesize as we will try to
2112 			 * convert potentially unmapped parts of inode.
2113 			 */
2114 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2115 			/* Page fully mapped - let IO run! */
2116 			err = mpage_submit_page(mpd, page);
2117 			if (err < 0) {
2118 				pagevec_release(&pvec);
2119 				return err;
2120 			}
2121 			start++;
2122 		}
2123 		pagevec_release(&pvec);
2124 	}
2125 	/* Extent fully mapped and matches with page boundary. We are done. */
2126 	mpd->map.m_len = 0;
2127 	mpd->map.m_flags = 0;
2128 	return 0;
2129 }
2130 
2131 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2132 {
2133 	struct inode *inode = mpd->inode;
2134 	struct ext4_map_blocks *map = &mpd->map;
2135 	int get_blocks_flags;
2136 	int err, dioread_nolock;
2137 
2138 	trace_ext4_da_write_pages_extent(inode, map);
2139 	/*
2140 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2141 	 * to convert an unwritten extent to be initialized (in the case
2142 	 * where we have written into one or more preallocated blocks).  It is
2143 	 * possible that we're going to need more metadata blocks than
2144 	 * previously reserved. However we must not fail because we're in
2145 	 * writeback and there is nothing we can do about it so it might result
2146 	 * in data loss.  So use reserved blocks to allocate metadata if
2147 	 * possible.
2148 	 *
2149 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2150 	 * in question are delalloc blocks.  This affects functions in many
2151 	 * different parts of the allocation call path.  This flag exists
2152 	 * primarily because we don't want to change *many* call functions, so
2153 	 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2154 	 * once the inode's allocation semaphore is taken.
2155 	 */
2156 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2157 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2158 	dioread_nolock = ext4_should_dioread_nolock(inode);
2159 	if (dioread_nolock)
2160 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2161 	if (map->m_flags & (1 << BH_Delay))
2162 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2163 
2164 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2165 	if (err < 0)
2166 		return err;
2167 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2168 		if (!mpd->io_submit.io_end->handle &&
2169 		    ext4_handle_valid(handle)) {
2170 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2171 			handle->h_rsv_handle = NULL;
2172 		}
2173 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2174 	}
2175 
2176 	BUG_ON(map->m_len == 0);
2177 	if (map->m_flags & EXT4_MAP_NEW) {
2178 		struct block_device *bdev = inode->i_sb->s_bdev;
2179 		int i;
2180 
2181 		for (i = 0; i < map->m_len; i++)
2182 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2183 	}
2184 	return 0;
2185 }
2186 
2187 /*
2188  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2189  *				 mpd->len and submit pages underlying it for IO
2190  *
2191  * @handle - handle for journal operations
2192  * @mpd - extent to map
2193  * @give_up_on_write - we set this to true iff there is a fatal error and there
2194  *                     is no hope of writing the data. The caller should discard
2195  *                     dirty pages to avoid infinite loops.
2196  *
2197  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2198  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2199  * them to initialized or split the described range from larger unwritten
2200  * extent. Note that we need not map all the described range since allocation
2201  * can return less blocks or the range is covered by more unwritten extents. We
2202  * cannot map more because we are limited by reserved transaction credits. On
2203  * the other hand we always make sure that the last touched page is fully
2204  * mapped so that it can be written out (and thus forward progress is
2205  * guaranteed). After mapping we submit all mapped pages for IO.
2206  */
2207 static int mpage_map_and_submit_extent(handle_t *handle,
2208 				       struct mpage_da_data *mpd,
2209 				       bool *give_up_on_write)
2210 {
2211 	struct inode *inode = mpd->inode;
2212 	struct ext4_map_blocks *map = &mpd->map;
2213 	int err;
2214 	loff_t disksize;
2215 
2216 	mpd->io_submit.io_end->offset =
2217 				((loff_t)map->m_lblk) << inode->i_blkbits;
2218 	do {
2219 		err = mpage_map_one_extent(handle, mpd);
2220 		if (err < 0) {
2221 			struct super_block *sb = inode->i_sb;
2222 
2223 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2224 				goto invalidate_dirty_pages;
2225 			/*
2226 			 * Let the uper layers retry transient errors.
2227 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2228 			 * is non-zero, a commit should free up blocks.
2229 			 */
2230 			if ((err == -ENOMEM) ||
2231 			    (err == -ENOSPC && ext4_count_free_clusters(sb)))
2232 				return err;
2233 			ext4_msg(sb, KERN_CRIT,
2234 				 "Delayed block allocation failed for "
2235 				 "inode %lu at logical offset %llu with"
2236 				 " max blocks %u with error %d",
2237 				 inode->i_ino,
2238 				 (unsigned long long)map->m_lblk,
2239 				 (unsigned)map->m_len, -err);
2240 			ext4_msg(sb, KERN_CRIT,
2241 				 "This should not happen!! Data will "
2242 				 "be lost\n");
2243 			if (err == -ENOSPC)
2244 				ext4_print_free_blocks(inode);
2245 		invalidate_dirty_pages:
2246 			*give_up_on_write = true;
2247 			return err;
2248 		}
2249 		/*
2250 		 * Update buffer state, submit mapped pages, and get us new
2251 		 * extent to map
2252 		 */
2253 		err = mpage_map_and_submit_buffers(mpd);
2254 		if (err < 0)
2255 			return err;
2256 	} while (map->m_len);
2257 
2258 	/*
2259 	 * Update on-disk size after IO is submitted.  Races with
2260 	 * truncate are avoided by checking i_size under i_data_sem.
2261 	 */
2262 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2263 	if (disksize > EXT4_I(inode)->i_disksize) {
2264 		int err2;
2265 		loff_t i_size;
2266 
2267 		down_write(&EXT4_I(inode)->i_data_sem);
2268 		i_size = i_size_read(inode);
2269 		if (disksize > i_size)
2270 			disksize = i_size;
2271 		if (disksize > EXT4_I(inode)->i_disksize)
2272 			EXT4_I(inode)->i_disksize = disksize;
2273 		err2 = ext4_mark_inode_dirty(handle, inode);
2274 		up_write(&EXT4_I(inode)->i_data_sem);
2275 		if (err2)
2276 			ext4_error(inode->i_sb,
2277 				   "Failed to mark inode %lu dirty",
2278 				   inode->i_ino);
2279 		if (!err)
2280 			err = err2;
2281 	}
2282 	return err;
2283 }
2284 
2285 /*
2286  * Calculate the total number of credits to reserve for one writepages
2287  * iteration. This is called from ext4_writepages(). We map an extent of
2288  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2289  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2290  * bpp - 1 blocks in bpp different extents.
2291  */
2292 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2293 {
2294 	int bpp = ext4_journal_blocks_per_page(inode);
2295 
2296 	return ext4_meta_trans_blocks(inode,
2297 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2298 }
2299 
2300 /*
2301  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2302  * 				 and underlying extent to map
2303  *
2304  * @mpd - where to look for pages
2305  *
2306  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2307  * IO immediately. When we find a page which isn't mapped we start accumulating
2308  * extent of buffers underlying these pages that needs mapping (formed by
2309  * either delayed or unwritten buffers). We also lock the pages containing
2310  * these buffers. The extent found is returned in @mpd structure (starting at
2311  * mpd->lblk with length mpd->len blocks).
2312  *
2313  * Note that this function can attach bios to one io_end structure which are
2314  * neither logically nor physically contiguous. Although it may seem as an
2315  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2316  * case as we need to track IO to all buffers underlying a page in one io_end.
2317  */
2318 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2319 {
2320 	struct address_space *mapping = mpd->inode->i_mapping;
2321 	struct pagevec pvec;
2322 	unsigned int nr_pages;
2323 	long left = mpd->wbc->nr_to_write;
2324 	pgoff_t index = mpd->first_page;
2325 	pgoff_t end = mpd->last_page;
2326 	int tag;
2327 	int i, err = 0;
2328 	int blkbits = mpd->inode->i_blkbits;
2329 	ext4_lblk_t lblk;
2330 	struct buffer_head *head;
2331 
2332 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2333 		tag = PAGECACHE_TAG_TOWRITE;
2334 	else
2335 		tag = PAGECACHE_TAG_DIRTY;
2336 
2337 	pagevec_init(&pvec, 0);
2338 	mpd->map.m_len = 0;
2339 	mpd->next_page = index;
2340 	while (index <= end) {
2341 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2342 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2343 		if (nr_pages == 0)
2344 			goto out;
2345 
2346 		for (i = 0; i < nr_pages; i++) {
2347 			struct page *page = pvec.pages[i];
2348 
2349 			/*
2350 			 * At this point, the page may be truncated or
2351 			 * invalidated (changing page->mapping to NULL), or
2352 			 * even swizzled back from swapper_space to tmpfs file
2353 			 * mapping. However, page->index will not change
2354 			 * because we have a reference on the page.
2355 			 */
2356 			if (page->index > end)
2357 				goto out;
2358 
2359 			/*
2360 			 * Accumulated enough dirty pages? This doesn't apply
2361 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2362 			 * keep going because someone may be concurrently
2363 			 * dirtying pages, and we might have synced a lot of
2364 			 * newly appeared dirty pages, but have not synced all
2365 			 * of the old dirty pages.
2366 			 */
2367 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2368 				goto out;
2369 
2370 			/* If we can't merge this page, we are done. */
2371 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2372 				goto out;
2373 
2374 			lock_page(page);
2375 			/*
2376 			 * If the page is no longer dirty, or its mapping no
2377 			 * longer corresponds to inode we are writing (which
2378 			 * means it has been truncated or invalidated), or the
2379 			 * page is already under writeback and we are not doing
2380 			 * a data integrity writeback, skip the page
2381 			 */
2382 			if (!PageDirty(page) ||
2383 			    (PageWriteback(page) &&
2384 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2385 			    unlikely(page->mapping != mapping)) {
2386 				unlock_page(page);
2387 				continue;
2388 			}
2389 
2390 			wait_on_page_writeback(page);
2391 			BUG_ON(PageWriteback(page));
2392 
2393 			if (mpd->map.m_len == 0)
2394 				mpd->first_page = page->index;
2395 			mpd->next_page = page->index + 1;
2396 			/* Add all dirty buffers to mpd */
2397 			lblk = ((ext4_lblk_t)page->index) <<
2398 				(PAGE_CACHE_SHIFT - blkbits);
2399 			head = page_buffers(page);
2400 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2401 			if (err <= 0)
2402 				goto out;
2403 			err = 0;
2404 			left--;
2405 		}
2406 		pagevec_release(&pvec);
2407 		cond_resched();
2408 	}
2409 	return 0;
2410 out:
2411 	pagevec_release(&pvec);
2412 	return err;
2413 }
2414 
2415 static int __writepage(struct page *page, struct writeback_control *wbc,
2416 		       void *data)
2417 {
2418 	struct address_space *mapping = data;
2419 	int ret = ext4_writepage(page, wbc);
2420 	mapping_set_error(mapping, ret);
2421 	return ret;
2422 }
2423 
2424 static int ext4_writepages(struct address_space *mapping,
2425 			   struct writeback_control *wbc)
2426 {
2427 	pgoff_t	writeback_index = 0;
2428 	long nr_to_write = wbc->nr_to_write;
2429 	int range_whole = 0;
2430 	int cycled = 1;
2431 	handle_t *handle = NULL;
2432 	struct mpage_da_data mpd;
2433 	struct inode *inode = mapping->host;
2434 	int needed_blocks, rsv_blocks = 0, ret = 0;
2435 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2436 	bool done;
2437 	struct blk_plug plug;
2438 	bool give_up_on_write = false;
2439 
2440 	trace_ext4_writepages(inode, wbc);
2441 
2442 	/*
2443 	 * No pages to write? This is mainly a kludge to avoid starting
2444 	 * a transaction for special inodes like journal inode on last iput()
2445 	 * because that could violate lock ordering on umount
2446 	 */
2447 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2448 		goto out_writepages;
2449 
2450 	if (ext4_should_journal_data(inode)) {
2451 		struct blk_plug plug;
2452 
2453 		blk_start_plug(&plug);
2454 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2455 		blk_finish_plug(&plug);
2456 		goto out_writepages;
2457 	}
2458 
2459 	/*
2460 	 * If the filesystem has aborted, it is read-only, so return
2461 	 * right away instead of dumping stack traces later on that
2462 	 * will obscure the real source of the problem.  We test
2463 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2464 	 * the latter could be true if the filesystem is mounted
2465 	 * read-only, and in that case, ext4_writepages should
2466 	 * *never* be called, so if that ever happens, we would want
2467 	 * the stack trace.
2468 	 */
2469 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2470 		ret = -EROFS;
2471 		goto out_writepages;
2472 	}
2473 
2474 	if (ext4_should_dioread_nolock(inode)) {
2475 		/*
2476 		 * We may need to convert up to one extent per block in
2477 		 * the page and we may dirty the inode.
2478 		 */
2479 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2480 	}
2481 
2482 	/*
2483 	 * If we have inline data and arrive here, it means that
2484 	 * we will soon create the block for the 1st page, so
2485 	 * we'd better clear the inline data here.
2486 	 */
2487 	if (ext4_has_inline_data(inode)) {
2488 		/* Just inode will be modified... */
2489 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2490 		if (IS_ERR(handle)) {
2491 			ret = PTR_ERR(handle);
2492 			goto out_writepages;
2493 		}
2494 		BUG_ON(ext4_test_inode_state(inode,
2495 				EXT4_STATE_MAY_INLINE_DATA));
2496 		ext4_destroy_inline_data(handle, inode);
2497 		ext4_journal_stop(handle);
2498 	}
2499 
2500 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2501 		range_whole = 1;
2502 
2503 	if (wbc->range_cyclic) {
2504 		writeback_index = mapping->writeback_index;
2505 		if (writeback_index)
2506 			cycled = 0;
2507 		mpd.first_page = writeback_index;
2508 		mpd.last_page = -1;
2509 	} else {
2510 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2511 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2512 	}
2513 
2514 	mpd.inode = inode;
2515 	mpd.wbc = wbc;
2516 	ext4_io_submit_init(&mpd.io_submit, wbc);
2517 retry:
2518 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2519 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2520 	done = false;
2521 	blk_start_plug(&plug);
2522 	while (!done && mpd.first_page <= mpd.last_page) {
2523 		/* For each extent of pages we use new io_end */
2524 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2525 		if (!mpd.io_submit.io_end) {
2526 			ret = -ENOMEM;
2527 			break;
2528 		}
2529 
2530 		/*
2531 		 * We have two constraints: We find one extent to map and we
2532 		 * must always write out whole page (makes a difference when
2533 		 * blocksize < pagesize) so that we don't block on IO when we
2534 		 * try to write out the rest of the page. Journalled mode is
2535 		 * not supported by delalloc.
2536 		 */
2537 		BUG_ON(ext4_should_journal_data(inode));
2538 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2539 
2540 		/* start a new transaction */
2541 		handle = ext4_journal_start_with_reserve(inode,
2542 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2543 		if (IS_ERR(handle)) {
2544 			ret = PTR_ERR(handle);
2545 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2546 			       "%ld pages, ino %lu; err %d", __func__,
2547 				wbc->nr_to_write, inode->i_ino, ret);
2548 			/* Release allocated io_end */
2549 			ext4_put_io_end(mpd.io_submit.io_end);
2550 			break;
2551 		}
2552 
2553 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2554 		ret = mpage_prepare_extent_to_map(&mpd);
2555 		if (!ret) {
2556 			if (mpd.map.m_len)
2557 				ret = mpage_map_and_submit_extent(handle, &mpd,
2558 					&give_up_on_write);
2559 			else {
2560 				/*
2561 				 * We scanned the whole range (or exhausted
2562 				 * nr_to_write), submitted what was mapped and
2563 				 * didn't find anything needing mapping. We are
2564 				 * done.
2565 				 */
2566 				done = true;
2567 			}
2568 		}
2569 		ext4_journal_stop(handle);
2570 		/* Submit prepared bio */
2571 		ext4_io_submit(&mpd.io_submit);
2572 		/* Unlock pages we didn't use */
2573 		mpage_release_unused_pages(&mpd, give_up_on_write);
2574 		/* Drop our io_end reference we got from init */
2575 		ext4_put_io_end(mpd.io_submit.io_end);
2576 
2577 		if (ret == -ENOSPC && sbi->s_journal) {
2578 			/*
2579 			 * Commit the transaction which would
2580 			 * free blocks released in the transaction
2581 			 * and try again
2582 			 */
2583 			jbd2_journal_force_commit_nested(sbi->s_journal);
2584 			ret = 0;
2585 			continue;
2586 		}
2587 		/* Fatal error - ENOMEM, EIO... */
2588 		if (ret)
2589 			break;
2590 	}
2591 	blk_finish_plug(&plug);
2592 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2593 		cycled = 1;
2594 		mpd.last_page = writeback_index - 1;
2595 		mpd.first_page = 0;
2596 		goto retry;
2597 	}
2598 
2599 	/* Update index */
2600 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2601 		/*
2602 		 * Set the writeback_index so that range_cyclic
2603 		 * mode will write it back later
2604 		 */
2605 		mapping->writeback_index = mpd.first_page;
2606 
2607 out_writepages:
2608 	trace_ext4_writepages_result(inode, wbc, ret,
2609 				     nr_to_write - wbc->nr_to_write);
2610 	return ret;
2611 }
2612 
2613 static int ext4_nonda_switch(struct super_block *sb)
2614 {
2615 	s64 free_clusters, dirty_clusters;
2616 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2617 
2618 	/*
2619 	 * switch to non delalloc mode if we are running low
2620 	 * on free block. The free block accounting via percpu
2621 	 * counters can get slightly wrong with percpu_counter_batch getting
2622 	 * accumulated on each CPU without updating global counters
2623 	 * Delalloc need an accurate free block accounting. So switch
2624 	 * to non delalloc when we are near to error range.
2625 	 */
2626 	free_clusters =
2627 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2628 	dirty_clusters =
2629 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2630 	/*
2631 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2632 	 */
2633 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2634 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2635 
2636 	if (2 * free_clusters < 3 * dirty_clusters ||
2637 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2638 		/*
2639 		 * free block count is less than 150% of dirty blocks
2640 		 * or free blocks is less than watermark
2641 		 */
2642 		return 1;
2643 	}
2644 	return 0;
2645 }
2646 
2647 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2648 			       loff_t pos, unsigned len, unsigned flags,
2649 			       struct page **pagep, void **fsdata)
2650 {
2651 	int ret, retries = 0;
2652 	struct page *page;
2653 	pgoff_t index;
2654 	struct inode *inode = mapping->host;
2655 	handle_t *handle;
2656 
2657 	index = pos >> PAGE_CACHE_SHIFT;
2658 
2659 	if (ext4_nonda_switch(inode->i_sb)) {
2660 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2661 		return ext4_write_begin(file, mapping, pos,
2662 					len, flags, pagep, fsdata);
2663 	}
2664 	*fsdata = (void *)0;
2665 	trace_ext4_da_write_begin(inode, pos, len, flags);
2666 
2667 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2668 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2669 						      pos, len, flags,
2670 						      pagep, fsdata);
2671 		if (ret < 0)
2672 			return ret;
2673 		if (ret == 1)
2674 			return 0;
2675 	}
2676 
2677 	/*
2678 	 * grab_cache_page_write_begin() can take a long time if the
2679 	 * system is thrashing due to memory pressure, or if the page
2680 	 * is being written back.  So grab it first before we start
2681 	 * the transaction handle.  This also allows us to allocate
2682 	 * the page (if needed) without using GFP_NOFS.
2683 	 */
2684 retry_grab:
2685 	page = grab_cache_page_write_begin(mapping, index, flags);
2686 	if (!page)
2687 		return -ENOMEM;
2688 	unlock_page(page);
2689 
2690 	/*
2691 	 * With delayed allocation, we don't log the i_disksize update
2692 	 * if there is delayed block allocation. But we still need
2693 	 * to journalling the i_disksize update if writes to the end
2694 	 * of file which has an already mapped buffer.
2695 	 */
2696 retry_journal:
2697 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2698 	if (IS_ERR(handle)) {
2699 		page_cache_release(page);
2700 		return PTR_ERR(handle);
2701 	}
2702 
2703 	lock_page(page);
2704 	if (page->mapping != mapping) {
2705 		/* The page got truncated from under us */
2706 		unlock_page(page);
2707 		page_cache_release(page);
2708 		ext4_journal_stop(handle);
2709 		goto retry_grab;
2710 	}
2711 	/* In case writeback began while the page was unlocked */
2712 	wait_for_stable_page(page);
2713 
2714 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2715 	if (ret < 0) {
2716 		unlock_page(page);
2717 		ext4_journal_stop(handle);
2718 		/*
2719 		 * block_write_begin may have instantiated a few blocks
2720 		 * outside i_size.  Trim these off again. Don't need
2721 		 * i_size_read because we hold i_mutex.
2722 		 */
2723 		if (pos + len > inode->i_size)
2724 			ext4_truncate_failed_write(inode);
2725 
2726 		if (ret == -ENOSPC &&
2727 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2728 			goto retry_journal;
2729 
2730 		page_cache_release(page);
2731 		return ret;
2732 	}
2733 
2734 	*pagep = page;
2735 	return ret;
2736 }
2737 
2738 /*
2739  * Check if we should update i_disksize
2740  * when write to the end of file but not require block allocation
2741  */
2742 static int ext4_da_should_update_i_disksize(struct page *page,
2743 					    unsigned long offset)
2744 {
2745 	struct buffer_head *bh;
2746 	struct inode *inode = page->mapping->host;
2747 	unsigned int idx;
2748 	int i;
2749 
2750 	bh = page_buffers(page);
2751 	idx = offset >> inode->i_blkbits;
2752 
2753 	for (i = 0; i < idx; i++)
2754 		bh = bh->b_this_page;
2755 
2756 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2757 		return 0;
2758 	return 1;
2759 }
2760 
2761 static int ext4_da_write_end(struct file *file,
2762 			     struct address_space *mapping,
2763 			     loff_t pos, unsigned len, unsigned copied,
2764 			     struct page *page, void *fsdata)
2765 {
2766 	struct inode *inode = mapping->host;
2767 	int ret = 0, ret2;
2768 	handle_t *handle = ext4_journal_current_handle();
2769 	loff_t new_i_size;
2770 	unsigned long start, end;
2771 	int write_mode = (int)(unsigned long)fsdata;
2772 
2773 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2774 		return ext4_write_end(file, mapping, pos,
2775 				      len, copied, page, fsdata);
2776 
2777 	trace_ext4_da_write_end(inode, pos, len, copied);
2778 	start = pos & (PAGE_CACHE_SIZE - 1);
2779 	end = start + copied - 1;
2780 
2781 	/*
2782 	 * generic_write_end() will run mark_inode_dirty() if i_size
2783 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2784 	 * into that.
2785 	 */
2786 	new_i_size = pos + copied;
2787 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2788 		if (ext4_has_inline_data(inode) ||
2789 		    ext4_da_should_update_i_disksize(page, end)) {
2790 			down_write(&EXT4_I(inode)->i_data_sem);
2791 			if (new_i_size > EXT4_I(inode)->i_disksize)
2792 				EXT4_I(inode)->i_disksize = new_i_size;
2793 			up_write(&EXT4_I(inode)->i_data_sem);
2794 			/* We need to mark inode dirty even if
2795 			 * new_i_size is less that inode->i_size
2796 			 * bu greater than i_disksize.(hint delalloc)
2797 			 */
2798 			ext4_mark_inode_dirty(handle, inode);
2799 		}
2800 	}
2801 
2802 	if (write_mode != CONVERT_INLINE_DATA &&
2803 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2804 	    ext4_has_inline_data(inode))
2805 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2806 						     page);
2807 	else
2808 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2809 							page, fsdata);
2810 
2811 	copied = ret2;
2812 	if (ret2 < 0)
2813 		ret = ret2;
2814 	ret2 = ext4_journal_stop(handle);
2815 	if (!ret)
2816 		ret = ret2;
2817 
2818 	return ret ? ret : copied;
2819 }
2820 
2821 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2822 				   unsigned int length)
2823 {
2824 	/*
2825 	 * Drop reserved blocks
2826 	 */
2827 	BUG_ON(!PageLocked(page));
2828 	if (!page_has_buffers(page))
2829 		goto out;
2830 
2831 	ext4_da_page_release_reservation(page, offset, length);
2832 
2833 out:
2834 	ext4_invalidatepage(page, offset, length);
2835 
2836 	return;
2837 }
2838 
2839 /*
2840  * Force all delayed allocation blocks to be allocated for a given inode.
2841  */
2842 int ext4_alloc_da_blocks(struct inode *inode)
2843 {
2844 	trace_ext4_alloc_da_blocks(inode);
2845 
2846 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2847 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2848 		return 0;
2849 
2850 	/*
2851 	 * We do something simple for now.  The filemap_flush() will
2852 	 * also start triggering a write of the data blocks, which is
2853 	 * not strictly speaking necessary (and for users of
2854 	 * laptop_mode, not even desirable).  However, to do otherwise
2855 	 * would require replicating code paths in:
2856 	 *
2857 	 * ext4_writepages() ->
2858 	 *    write_cache_pages() ---> (via passed in callback function)
2859 	 *        __mpage_da_writepage() -->
2860 	 *           mpage_add_bh_to_extent()
2861 	 *           mpage_da_map_blocks()
2862 	 *
2863 	 * The problem is that write_cache_pages(), located in
2864 	 * mm/page-writeback.c, marks pages clean in preparation for
2865 	 * doing I/O, which is not desirable if we're not planning on
2866 	 * doing I/O at all.
2867 	 *
2868 	 * We could call write_cache_pages(), and then redirty all of
2869 	 * the pages by calling redirty_page_for_writepage() but that
2870 	 * would be ugly in the extreme.  So instead we would need to
2871 	 * replicate parts of the code in the above functions,
2872 	 * simplifying them because we wouldn't actually intend to
2873 	 * write out the pages, but rather only collect contiguous
2874 	 * logical block extents, call the multi-block allocator, and
2875 	 * then update the buffer heads with the block allocations.
2876 	 *
2877 	 * For now, though, we'll cheat by calling filemap_flush(),
2878 	 * which will map the blocks, and start the I/O, but not
2879 	 * actually wait for the I/O to complete.
2880 	 */
2881 	return filemap_flush(inode->i_mapping);
2882 }
2883 
2884 /*
2885  * bmap() is special.  It gets used by applications such as lilo and by
2886  * the swapper to find the on-disk block of a specific piece of data.
2887  *
2888  * Naturally, this is dangerous if the block concerned is still in the
2889  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2890  * filesystem and enables swap, then they may get a nasty shock when the
2891  * data getting swapped to that swapfile suddenly gets overwritten by
2892  * the original zero's written out previously to the journal and
2893  * awaiting writeback in the kernel's buffer cache.
2894  *
2895  * So, if we see any bmap calls here on a modified, data-journaled file,
2896  * take extra steps to flush any blocks which might be in the cache.
2897  */
2898 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2899 {
2900 	struct inode *inode = mapping->host;
2901 	journal_t *journal;
2902 	int err;
2903 
2904 	/*
2905 	 * We can get here for an inline file via the FIBMAP ioctl
2906 	 */
2907 	if (ext4_has_inline_data(inode))
2908 		return 0;
2909 
2910 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2911 			test_opt(inode->i_sb, DELALLOC)) {
2912 		/*
2913 		 * With delalloc we want to sync the file
2914 		 * so that we can make sure we allocate
2915 		 * blocks for file
2916 		 */
2917 		filemap_write_and_wait(mapping);
2918 	}
2919 
2920 	if (EXT4_JOURNAL(inode) &&
2921 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2922 		/*
2923 		 * This is a REALLY heavyweight approach, but the use of
2924 		 * bmap on dirty files is expected to be extremely rare:
2925 		 * only if we run lilo or swapon on a freshly made file
2926 		 * do we expect this to happen.
2927 		 *
2928 		 * (bmap requires CAP_SYS_RAWIO so this does not
2929 		 * represent an unprivileged user DOS attack --- we'd be
2930 		 * in trouble if mortal users could trigger this path at
2931 		 * will.)
2932 		 *
2933 		 * NB. EXT4_STATE_JDATA is not set on files other than
2934 		 * regular files.  If somebody wants to bmap a directory
2935 		 * or symlink and gets confused because the buffer
2936 		 * hasn't yet been flushed to disk, they deserve
2937 		 * everything they get.
2938 		 */
2939 
2940 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2941 		journal = EXT4_JOURNAL(inode);
2942 		jbd2_journal_lock_updates(journal);
2943 		err = jbd2_journal_flush(journal);
2944 		jbd2_journal_unlock_updates(journal);
2945 
2946 		if (err)
2947 			return 0;
2948 	}
2949 
2950 	return generic_block_bmap(mapping, block, ext4_get_block);
2951 }
2952 
2953 static int ext4_readpage(struct file *file, struct page *page)
2954 {
2955 	int ret = -EAGAIN;
2956 	struct inode *inode = page->mapping->host;
2957 
2958 	trace_ext4_readpage(page);
2959 
2960 	if (ext4_has_inline_data(inode))
2961 		ret = ext4_readpage_inline(inode, page);
2962 
2963 	if (ret == -EAGAIN)
2964 		return mpage_readpage(page, ext4_get_block);
2965 
2966 	return ret;
2967 }
2968 
2969 static int
2970 ext4_readpages(struct file *file, struct address_space *mapping,
2971 		struct list_head *pages, unsigned nr_pages)
2972 {
2973 	struct inode *inode = mapping->host;
2974 
2975 	/* If the file has inline data, no need to do readpages. */
2976 	if (ext4_has_inline_data(inode))
2977 		return 0;
2978 
2979 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2980 }
2981 
2982 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2983 				unsigned int length)
2984 {
2985 	trace_ext4_invalidatepage(page, offset, length);
2986 
2987 	/* No journalling happens on data buffers when this function is used */
2988 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2989 
2990 	block_invalidatepage(page, offset, length);
2991 }
2992 
2993 static int __ext4_journalled_invalidatepage(struct page *page,
2994 					    unsigned int offset,
2995 					    unsigned int length)
2996 {
2997 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2998 
2999 	trace_ext4_journalled_invalidatepage(page, offset, length);
3000 
3001 	/*
3002 	 * If it's a full truncate we just forget about the pending dirtying
3003 	 */
3004 	if (offset == 0 && length == PAGE_CACHE_SIZE)
3005 		ClearPageChecked(page);
3006 
3007 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3008 }
3009 
3010 /* Wrapper for aops... */
3011 static void ext4_journalled_invalidatepage(struct page *page,
3012 					   unsigned int offset,
3013 					   unsigned int length)
3014 {
3015 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3016 }
3017 
3018 static int ext4_releasepage(struct page *page, gfp_t wait)
3019 {
3020 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3021 
3022 	trace_ext4_releasepage(page);
3023 
3024 	/* Page has dirty journalled data -> cannot release */
3025 	if (PageChecked(page))
3026 		return 0;
3027 	if (journal)
3028 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3029 	else
3030 		return try_to_free_buffers(page);
3031 }
3032 
3033 /*
3034  * ext4_get_block used when preparing for a DIO write or buffer write.
3035  * We allocate an uinitialized extent if blocks haven't been allocated.
3036  * The extent will be converted to initialized after the IO is complete.
3037  */
3038 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3039 		   struct buffer_head *bh_result, int create)
3040 {
3041 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3042 		   inode->i_ino, create);
3043 	return _ext4_get_block(inode, iblock, bh_result,
3044 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3045 }
3046 
3047 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3048 		   struct buffer_head *bh_result, int create)
3049 {
3050 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3051 		   inode->i_ino, create);
3052 	return _ext4_get_block(inode, iblock, bh_result,
3053 			       EXT4_GET_BLOCKS_NO_LOCK);
3054 }
3055 
3056 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3057 			    ssize_t size, void *private)
3058 {
3059         ext4_io_end_t *io_end = iocb->private;
3060 
3061 	/* if not async direct IO just return */
3062 	if (!io_end)
3063 		return;
3064 
3065 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3066 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3067  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3068 		  size);
3069 
3070 	iocb->private = NULL;
3071 	io_end->offset = offset;
3072 	io_end->size = size;
3073 	ext4_put_io_end(io_end);
3074 }
3075 
3076 /*
3077  * For ext4 extent files, ext4 will do direct-io write to holes,
3078  * preallocated extents, and those write extend the file, no need to
3079  * fall back to buffered IO.
3080  *
3081  * For holes, we fallocate those blocks, mark them as unwritten
3082  * If those blocks were preallocated, we mark sure they are split, but
3083  * still keep the range to write as unwritten.
3084  *
3085  * The unwritten extents will be converted to written when DIO is completed.
3086  * For async direct IO, since the IO may still pending when return, we
3087  * set up an end_io call back function, which will do the conversion
3088  * when async direct IO completed.
3089  *
3090  * If the O_DIRECT write will extend the file then add this inode to the
3091  * orphan list.  So recovery will truncate it back to the original size
3092  * if the machine crashes during the write.
3093  *
3094  */
3095 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3096 			      struct iov_iter *iter, loff_t offset)
3097 {
3098 	struct file *file = iocb->ki_filp;
3099 	struct inode *inode = file->f_mapping->host;
3100 	ssize_t ret;
3101 	size_t count = iov_iter_count(iter);
3102 	int overwrite = 0;
3103 	get_block_t *get_block_func = NULL;
3104 	int dio_flags = 0;
3105 	loff_t final_size = offset + count;
3106 	ext4_io_end_t *io_end = NULL;
3107 
3108 	/* Use the old path for reads and writes beyond i_size. */
3109 	if (rw != WRITE || final_size > inode->i_size)
3110 		return ext4_ind_direct_IO(rw, iocb, iter, offset);
3111 
3112 	BUG_ON(iocb->private == NULL);
3113 
3114 	/*
3115 	 * Make all waiters for direct IO properly wait also for extent
3116 	 * conversion. This also disallows race between truncate() and
3117 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3118 	 */
3119 	if (rw == WRITE)
3120 		atomic_inc(&inode->i_dio_count);
3121 
3122 	/* If we do a overwrite dio, i_mutex locking can be released */
3123 	overwrite = *((int *)iocb->private);
3124 
3125 	if (overwrite) {
3126 		down_read(&EXT4_I(inode)->i_data_sem);
3127 		mutex_unlock(&inode->i_mutex);
3128 	}
3129 
3130 	/*
3131 	 * We could direct write to holes and fallocate.
3132 	 *
3133 	 * Allocated blocks to fill the hole are marked as
3134 	 * unwritten to prevent parallel buffered read to expose
3135 	 * the stale data before DIO complete the data IO.
3136 	 *
3137 	 * As to previously fallocated extents, ext4 get_block will
3138 	 * just simply mark the buffer mapped but still keep the
3139 	 * extents unwritten.
3140 	 *
3141 	 * For non AIO case, we will convert those unwritten extents
3142 	 * to written after return back from blockdev_direct_IO.
3143 	 *
3144 	 * For async DIO, the conversion needs to be deferred when the
3145 	 * IO is completed. The ext4 end_io callback function will be
3146 	 * called to take care of the conversion work.  Here for async
3147 	 * case, we allocate an io_end structure to hook to the iocb.
3148 	 */
3149 	iocb->private = NULL;
3150 	ext4_inode_aio_set(inode, NULL);
3151 	if (!is_sync_kiocb(iocb)) {
3152 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3153 		if (!io_end) {
3154 			ret = -ENOMEM;
3155 			goto retake_lock;
3156 		}
3157 		/*
3158 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3159 		 */
3160 		iocb->private = ext4_get_io_end(io_end);
3161 		/*
3162 		 * we save the io structure for current async direct
3163 		 * IO, so that later ext4_map_blocks() could flag the
3164 		 * io structure whether there is a unwritten extents
3165 		 * needs to be converted when IO is completed.
3166 		 */
3167 		ext4_inode_aio_set(inode, io_end);
3168 	}
3169 
3170 	if (overwrite) {
3171 		get_block_func = ext4_get_block_write_nolock;
3172 	} else {
3173 		get_block_func = ext4_get_block_write;
3174 		dio_flags = DIO_LOCKING;
3175 	}
3176 	ret = __blockdev_direct_IO(rw, iocb, inode,
3177 				   inode->i_sb->s_bdev, iter,
3178 				   offset,
3179 				   get_block_func,
3180 				   ext4_end_io_dio,
3181 				   NULL,
3182 				   dio_flags);
3183 
3184 	/*
3185 	 * Put our reference to io_end. This can free the io_end structure e.g.
3186 	 * in sync IO case or in case of error. It can even perform extent
3187 	 * conversion if all bios we submitted finished before we got here.
3188 	 * Note that in that case iocb->private can be already set to NULL
3189 	 * here.
3190 	 */
3191 	if (io_end) {
3192 		ext4_inode_aio_set(inode, NULL);
3193 		ext4_put_io_end(io_end);
3194 		/*
3195 		 * When no IO was submitted ext4_end_io_dio() was not
3196 		 * called so we have to put iocb's reference.
3197 		 */
3198 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3199 			WARN_ON(iocb->private != io_end);
3200 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3201 			ext4_put_io_end(io_end);
3202 			iocb->private = NULL;
3203 		}
3204 	}
3205 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3206 						EXT4_STATE_DIO_UNWRITTEN)) {
3207 		int err;
3208 		/*
3209 		 * for non AIO case, since the IO is already
3210 		 * completed, we could do the conversion right here
3211 		 */
3212 		err = ext4_convert_unwritten_extents(NULL, inode,
3213 						     offset, ret);
3214 		if (err < 0)
3215 			ret = err;
3216 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3217 	}
3218 
3219 retake_lock:
3220 	if (rw == WRITE)
3221 		inode_dio_done(inode);
3222 	/* take i_mutex locking again if we do a ovewrite dio */
3223 	if (overwrite) {
3224 		up_read(&EXT4_I(inode)->i_data_sem);
3225 		mutex_lock(&inode->i_mutex);
3226 	}
3227 
3228 	return ret;
3229 }
3230 
3231 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3232 			      struct iov_iter *iter, loff_t offset)
3233 {
3234 	struct file *file = iocb->ki_filp;
3235 	struct inode *inode = file->f_mapping->host;
3236 	size_t count = iov_iter_count(iter);
3237 	ssize_t ret;
3238 
3239 	/*
3240 	 * If we are doing data journalling we don't support O_DIRECT
3241 	 */
3242 	if (ext4_should_journal_data(inode))
3243 		return 0;
3244 
3245 	/* Let buffer I/O handle the inline data case. */
3246 	if (ext4_has_inline_data(inode))
3247 		return 0;
3248 
3249 	trace_ext4_direct_IO_enter(inode, offset, count, rw);
3250 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3251 		ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3252 	else
3253 		ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3254 	trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3255 	return ret;
3256 }
3257 
3258 /*
3259  * Pages can be marked dirty completely asynchronously from ext4's journalling
3260  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3261  * much here because ->set_page_dirty is called under VFS locks.  The page is
3262  * not necessarily locked.
3263  *
3264  * We cannot just dirty the page and leave attached buffers clean, because the
3265  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3266  * or jbddirty because all the journalling code will explode.
3267  *
3268  * So what we do is to mark the page "pending dirty" and next time writepage
3269  * is called, propagate that into the buffers appropriately.
3270  */
3271 static int ext4_journalled_set_page_dirty(struct page *page)
3272 {
3273 	SetPageChecked(page);
3274 	return __set_page_dirty_nobuffers(page);
3275 }
3276 
3277 static const struct address_space_operations ext4_aops = {
3278 	.readpage		= ext4_readpage,
3279 	.readpages		= ext4_readpages,
3280 	.writepage		= ext4_writepage,
3281 	.writepages		= ext4_writepages,
3282 	.write_begin		= ext4_write_begin,
3283 	.write_end		= ext4_write_end,
3284 	.bmap			= ext4_bmap,
3285 	.invalidatepage		= ext4_invalidatepage,
3286 	.releasepage		= ext4_releasepage,
3287 	.direct_IO		= ext4_direct_IO,
3288 	.migratepage		= buffer_migrate_page,
3289 	.is_partially_uptodate  = block_is_partially_uptodate,
3290 	.error_remove_page	= generic_error_remove_page,
3291 };
3292 
3293 static const struct address_space_operations ext4_journalled_aops = {
3294 	.readpage		= ext4_readpage,
3295 	.readpages		= ext4_readpages,
3296 	.writepage		= ext4_writepage,
3297 	.writepages		= ext4_writepages,
3298 	.write_begin		= ext4_write_begin,
3299 	.write_end		= ext4_journalled_write_end,
3300 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3301 	.bmap			= ext4_bmap,
3302 	.invalidatepage		= ext4_journalled_invalidatepage,
3303 	.releasepage		= ext4_releasepage,
3304 	.direct_IO		= ext4_direct_IO,
3305 	.is_partially_uptodate  = block_is_partially_uptodate,
3306 	.error_remove_page	= generic_error_remove_page,
3307 };
3308 
3309 static const struct address_space_operations ext4_da_aops = {
3310 	.readpage		= ext4_readpage,
3311 	.readpages		= ext4_readpages,
3312 	.writepage		= ext4_writepage,
3313 	.writepages		= ext4_writepages,
3314 	.write_begin		= ext4_da_write_begin,
3315 	.write_end		= ext4_da_write_end,
3316 	.bmap			= ext4_bmap,
3317 	.invalidatepage		= ext4_da_invalidatepage,
3318 	.releasepage		= ext4_releasepage,
3319 	.direct_IO		= ext4_direct_IO,
3320 	.migratepage		= buffer_migrate_page,
3321 	.is_partially_uptodate  = block_is_partially_uptodate,
3322 	.error_remove_page	= generic_error_remove_page,
3323 };
3324 
3325 void ext4_set_aops(struct inode *inode)
3326 {
3327 	switch (ext4_inode_journal_mode(inode)) {
3328 	case EXT4_INODE_ORDERED_DATA_MODE:
3329 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3330 		break;
3331 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3332 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3333 		break;
3334 	case EXT4_INODE_JOURNAL_DATA_MODE:
3335 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3336 		return;
3337 	default:
3338 		BUG();
3339 	}
3340 	if (test_opt(inode->i_sb, DELALLOC))
3341 		inode->i_mapping->a_ops = &ext4_da_aops;
3342 	else
3343 		inode->i_mapping->a_ops = &ext4_aops;
3344 }
3345 
3346 /*
3347  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3348  * starting from file offset 'from'.  The range to be zero'd must
3349  * be contained with in one block.  If the specified range exceeds
3350  * the end of the block it will be shortened to end of the block
3351  * that cooresponds to 'from'
3352  */
3353 static int ext4_block_zero_page_range(handle_t *handle,
3354 		struct address_space *mapping, loff_t from, loff_t length)
3355 {
3356 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3357 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3358 	unsigned blocksize, max, pos;
3359 	ext4_lblk_t iblock;
3360 	struct inode *inode = mapping->host;
3361 	struct buffer_head *bh;
3362 	struct page *page;
3363 	int err = 0;
3364 
3365 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3366 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3367 	if (!page)
3368 		return -ENOMEM;
3369 
3370 	blocksize = inode->i_sb->s_blocksize;
3371 	max = blocksize - (offset & (blocksize - 1));
3372 
3373 	/*
3374 	 * correct length if it does not fall between
3375 	 * 'from' and the end of the block
3376 	 */
3377 	if (length > max || length < 0)
3378 		length = max;
3379 
3380 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3381 
3382 	if (!page_has_buffers(page))
3383 		create_empty_buffers(page, blocksize, 0);
3384 
3385 	/* Find the buffer that contains "offset" */
3386 	bh = page_buffers(page);
3387 	pos = blocksize;
3388 	while (offset >= pos) {
3389 		bh = bh->b_this_page;
3390 		iblock++;
3391 		pos += blocksize;
3392 	}
3393 	if (buffer_freed(bh)) {
3394 		BUFFER_TRACE(bh, "freed: skip");
3395 		goto unlock;
3396 	}
3397 	if (!buffer_mapped(bh)) {
3398 		BUFFER_TRACE(bh, "unmapped");
3399 		ext4_get_block(inode, iblock, bh, 0);
3400 		/* unmapped? It's a hole - nothing to do */
3401 		if (!buffer_mapped(bh)) {
3402 			BUFFER_TRACE(bh, "still unmapped");
3403 			goto unlock;
3404 		}
3405 	}
3406 
3407 	/* Ok, it's mapped. Make sure it's up-to-date */
3408 	if (PageUptodate(page))
3409 		set_buffer_uptodate(bh);
3410 
3411 	if (!buffer_uptodate(bh)) {
3412 		err = -EIO;
3413 		ll_rw_block(READ, 1, &bh);
3414 		wait_on_buffer(bh);
3415 		/* Uhhuh. Read error. Complain and punt. */
3416 		if (!buffer_uptodate(bh))
3417 			goto unlock;
3418 	}
3419 	if (ext4_should_journal_data(inode)) {
3420 		BUFFER_TRACE(bh, "get write access");
3421 		err = ext4_journal_get_write_access(handle, bh);
3422 		if (err)
3423 			goto unlock;
3424 	}
3425 	zero_user(page, offset, length);
3426 	BUFFER_TRACE(bh, "zeroed end of block");
3427 
3428 	if (ext4_should_journal_data(inode)) {
3429 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3430 	} else {
3431 		err = 0;
3432 		mark_buffer_dirty(bh);
3433 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3434 			err = ext4_jbd2_file_inode(handle, inode);
3435 	}
3436 
3437 unlock:
3438 	unlock_page(page);
3439 	page_cache_release(page);
3440 	return err;
3441 }
3442 
3443 /*
3444  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3445  * up to the end of the block which corresponds to `from'.
3446  * This required during truncate. We need to physically zero the tail end
3447  * of that block so it doesn't yield old data if the file is later grown.
3448  */
3449 static int ext4_block_truncate_page(handle_t *handle,
3450 		struct address_space *mapping, loff_t from)
3451 {
3452 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3453 	unsigned length;
3454 	unsigned blocksize;
3455 	struct inode *inode = mapping->host;
3456 
3457 	blocksize = inode->i_sb->s_blocksize;
3458 	length = blocksize - (offset & (blocksize - 1));
3459 
3460 	return ext4_block_zero_page_range(handle, mapping, from, length);
3461 }
3462 
3463 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3464 			     loff_t lstart, loff_t length)
3465 {
3466 	struct super_block *sb = inode->i_sb;
3467 	struct address_space *mapping = inode->i_mapping;
3468 	unsigned partial_start, partial_end;
3469 	ext4_fsblk_t start, end;
3470 	loff_t byte_end = (lstart + length - 1);
3471 	int err = 0;
3472 
3473 	partial_start = lstart & (sb->s_blocksize - 1);
3474 	partial_end = byte_end & (sb->s_blocksize - 1);
3475 
3476 	start = lstart >> sb->s_blocksize_bits;
3477 	end = byte_end >> sb->s_blocksize_bits;
3478 
3479 	/* Handle partial zero within the single block */
3480 	if (start == end &&
3481 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3482 		err = ext4_block_zero_page_range(handle, mapping,
3483 						 lstart, length);
3484 		return err;
3485 	}
3486 	/* Handle partial zero out on the start of the range */
3487 	if (partial_start) {
3488 		err = ext4_block_zero_page_range(handle, mapping,
3489 						 lstart, sb->s_blocksize);
3490 		if (err)
3491 			return err;
3492 	}
3493 	/* Handle partial zero out on the end of the range */
3494 	if (partial_end != sb->s_blocksize - 1)
3495 		err = ext4_block_zero_page_range(handle, mapping,
3496 						 byte_end - partial_end,
3497 						 partial_end + 1);
3498 	return err;
3499 }
3500 
3501 int ext4_can_truncate(struct inode *inode)
3502 {
3503 	if (S_ISREG(inode->i_mode))
3504 		return 1;
3505 	if (S_ISDIR(inode->i_mode))
3506 		return 1;
3507 	if (S_ISLNK(inode->i_mode))
3508 		return !ext4_inode_is_fast_symlink(inode);
3509 	return 0;
3510 }
3511 
3512 /*
3513  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3514  * associated with the given offset and length
3515  *
3516  * @inode:  File inode
3517  * @offset: The offset where the hole will begin
3518  * @len:    The length of the hole
3519  *
3520  * Returns: 0 on success or negative on failure
3521  */
3522 
3523 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3524 {
3525 	struct super_block *sb = inode->i_sb;
3526 	ext4_lblk_t first_block, stop_block;
3527 	struct address_space *mapping = inode->i_mapping;
3528 	loff_t first_block_offset, last_block_offset;
3529 	handle_t *handle;
3530 	unsigned int credits;
3531 	int ret = 0;
3532 
3533 	if (!S_ISREG(inode->i_mode))
3534 		return -EOPNOTSUPP;
3535 
3536 	trace_ext4_punch_hole(inode, offset, length, 0);
3537 
3538 	/*
3539 	 * Write out all dirty pages to avoid race conditions
3540 	 * Then release them.
3541 	 */
3542 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3543 		ret = filemap_write_and_wait_range(mapping, offset,
3544 						   offset + length - 1);
3545 		if (ret)
3546 			return ret;
3547 	}
3548 
3549 	mutex_lock(&inode->i_mutex);
3550 
3551 	/* No need to punch hole beyond i_size */
3552 	if (offset >= inode->i_size)
3553 		goto out_mutex;
3554 
3555 	/*
3556 	 * If the hole extends beyond i_size, set the hole
3557 	 * to end after the page that contains i_size
3558 	 */
3559 	if (offset + length > inode->i_size) {
3560 		length = inode->i_size +
3561 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3562 		   offset;
3563 	}
3564 
3565 	if (offset & (sb->s_blocksize - 1) ||
3566 	    (offset + length) & (sb->s_blocksize - 1)) {
3567 		/*
3568 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3569 		 * partial block
3570 		 */
3571 		ret = ext4_inode_attach_jinode(inode);
3572 		if (ret < 0)
3573 			goto out_mutex;
3574 
3575 	}
3576 
3577 	first_block_offset = round_up(offset, sb->s_blocksize);
3578 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3579 
3580 	/* Now release the pages and zero block aligned part of pages*/
3581 	if (last_block_offset > first_block_offset)
3582 		truncate_pagecache_range(inode, first_block_offset,
3583 					 last_block_offset);
3584 
3585 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3586 	ext4_inode_block_unlocked_dio(inode);
3587 	inode_dio_wait(inode);
3588 
3589 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3590 		credits = ext4_writepage_trans_blocks(inode);
3591 	else
3592 		credits = ext4_blocks_for_truncate(inode);
3593 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3594 	if (IS_ERR(handle)) {
3595 		ret = PTR_ERR(handle);
3596 		ext4_std_error(sb, ret);
3597 		goto out_dio;
3598 	}
3599 
3600 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3601 				       length);
3602 	if (ret)
3603 		goto out_stop;
3604 
3605 	first_block = (offset + sb->s_blocksize - 1) >>
3606 		EXT4_BLOCK_SIZE_BITS(sb);
3607 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3608 
3609 	/* If there are no blocks to remove, return now */
3610 	if (first_block >= stop_block)
3611 		goto out_stop;
3612 
3613 	down_write(&EXT4_I(inode)->i_data_sem);
3614 	ext4_discard_preallocations(inode);
3615 
3616 	ret = ext4_es_remove_extent(inode, first_block,
3617 				    stop_block - first_block);
3618 	if (ret) {
3619 		up_write(&EXT4_I(inode)->i_data_sem);
3620 		goto out_stop;
3621 	}
3622 
3623 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3624 		ret = ext4_ext_remove_space(inode, first_block,
3625 					    stop_block - 1);
3626 	else
3627 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3628 					    stop_block);
3629 
3630 	up_write(&EXT4_I(inode)->i_data_sem);
3631 	if (IS_SYNC(inode))
3632 		ext4_handle_sync(handle);
3633 
3634 	/* Now release the pages again to reduce race window */
3635 	if (last_block_offset > first_block_offset)
3636 		truncate_pagecache_range(inode, first_block_offset,
3637 					 last_block_offset);
3638 
3639 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3640 	ext4_mark_inode_dirty(handle, inode);
3641 out_stop:
3642 	ext4_journal_stop(handle);
3643 out_dio:
3644 	ext4_inode_resume_unlocked_dio(inode);
3645 out_mutex:
3646 	mutex_unlock(&inode->i_mutex);
3647 	return ret;
3648 }
3649 
3650 int ext4_inode_attach_jinode(struct inode *inode)
3651 {
3652 	struct ext4_inode_info *ei = EXT4_I(inode);
3653 	struct jbd2_inode *jinode;
3654 
3655 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3656 		return 0;
3657 
3658 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3659 	spin_lock(&inode->i_lock);
3660 	if (!ei->jinode) {
3661 		if (!jinode) {
3662 			spin_unlock(&inode->i_lock);
3663 			return -ENOMEM;
3664 		}
3665 		ei->jinode = jinode;
3666 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3667 		jinode = NULL;
3668 	}
3669 	spin_unlock(&inode->i_lock);
3670 	if (unlikely(jinode != NULL))
3671 		jbd2_free_inode(jinode);
3672 	return 0;
3673 }
3674 
3675 /*
3676  * ext4_truncate()
3677  *
3678  * We block out ext4_get_block() block instantiations across the entire
3679  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3680  * simultaneously on behalf of the same inode.
3681  *
3682  * As we work through the truncate and commit bits of it to the journal there
3683  * is one core, guiding principle: the file's tree must always be consistent on
3684  * disk.  We must be able to restart the truncate after a crash.
3685  *
3686  * The file's tree may be transiently inconsistent in memory (although it
3687  * probably isn't), but whenever we close off and commit a journal transaction,
3688  * the contents of (the filesystem + the journal) must be consistent and
3689  * restartable.  It's pretty simple, really: bottom up, right to left (although
3690  * left-to-right works OK too).
3691  *
3692  * Note that at recovery time, journal replay occurs *before* the restart of
3693  * truncate against the orphan inode list.
3694  *
3695  * The committed inode has the new, desired i_size (which is the same as
3696  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3697  * that this inode's truncate did not complete and it will again call
3698  * ext4_truncate() to have another go.  So there will be instantiated blocks
3699  * to the right of the truncation point in a crashed ext4 filesystem.  But
3700  * that's fine - as long as they are linked from the inode, the post-crash
3701  * ext4_truncate() run will find them and release them.
3702  */
3703 void ext4_truncate(struct inode *inode)
3704 {
3705 	struct ext4_inode_info *ei = EXT4_I(inode);
3706 	unsigned int credits;
3707 	handle_t *handle;
3708 	struct address_space *mapping = inode->i_mapping;
3709 
3710 	/*
3711 	 * There is a possibility that we're either freeing the inode
3712 	 * or it's a completely new inode. In those cases we might not
3713 	 * have i_mutex locked because it's not necessary.
3714 	 */
3715 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3716 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3717 	trace_ext4_truncate_enter(inode);
3718 
3719 	if (!ext4_can_truncate(inode))
3720 		return;
3721 
3722 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3723 
3724 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3725 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3726 
3727 	if (ext4_has_inline_data(inode)) {
3728 		int has_inline = 1;
3729 
3730 		ext4_inline_data_truncate(inode, &has_inline);
3731 		if (has_inline)
3732 			return;
3733 	}
3734 
3735 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3736 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3737 		if (ext4_inode_attach_jinode(inode) < 0)
3738 			return;
3739 	}
3740 
3741 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3742 		credits = ext4_writepage_trans_blocks(inode);
3743 	else
3744 		credits = ext4_blocks_for_truncate(inode);
3745 
3746 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3747 	if (IS_ERR(handle)) {
3748 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3749 		return;
3750 	}
3751 
3752 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3753 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3754 
3755 	/*
3756 	 * We add the inode to the orphan list, so that if this
3757 	 * truncate spans multiple transactions, and we crash, we will
3758 	 * resume the truncate when the filesystem recovers.  It also
3759 	 * marks the inode dirty, to catch the new size.
3760 	 *
3761 	 * Implication: the file must always be in a sane, consistent
3762 	 * truncatable state while each transaction commits.
3763 	 */
3764 	if (ext4_orphan_add(handle, inode))
3765 		goto out_stop;
3766 
3767 	down_write(&EXT4_I(inode)->i_data_sem);
3768 
3769 	ext4_discard_preallocations(inode);
3770 
3771 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3772 		ext4_ext_truncate(handle, inode);
3773 	else
3774 		ext4_ind_truncate(handle, inode);
3775 
3776 	up_write(&ei->i_data_sem);
3777 
3778 	if (IS_SYNC(inode))
3779 		ext4_handle_sync(handle);
3780 
3781 out_stop:
3782 	/*
3783 	 * If this was a simple ftruncate() and the file will remain alive,
3784 	 * then we need to clear up the orphan record which we created above.
3785 	 * However, if this was a real unlink then we were called by
3786 	 * ext4_delete_inode(), and we allow that function to clean up the
3787 	 * orphan info for us.
3788 	 */
3789 	if (inode->i_nlink)
3790 		ext4_orphan_del(handle, inode);
3791 
3792 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3793 	ext4_mark_inode_dirty(handle, inode);
3794 	ext4_journal_stop(handle);
3795 
3796 	trace_ext4_truncate_exit(inode);
3797 }
3798 
3799 /*
3800  * ext4_get_inode_loc returns with an extra refcount against the inode's
3801  * underlying buffer_head on success. If 'in_mem' is true, we have all
3802  * data in memory that is needed to recreate the on-disk version of this
3803  * inode.
3804  */
3805 static int __ext4_get_inode_loc(struct inode *inode,
3806 				struct ext4_iloc *iloc, int in_mem)
3807 {
3808 	struct ext4_group_desc	*gdp;
3809 	struct buffer_head	*bh;
3810 	struct super_block	*sb = inode->i_sb;
3811 	ext4_fsblk_t		block;
3812 	int			inodes_per_block, inode_offset;
3813 
3814 	iloc->bh = NULL;
3815 	if (!ext4_valid_inum(sb, inode->i_ino))
3816 		return -EIO;
3817 
3818 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3819 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3820 	if (!gdp)
3821 		return -EIO;
3822 
3823 	/*
3824 	 * Figure out the offset within the block group inode table
3825 	 */
3826 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3827 	inode_offset = ((inode->i_ino - 1) %
3828 			EXT4_INODES_PER_GROUP(sb));
3829 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3830 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3831 
3832 	bh = sb_getblk(sb, block);
3833 	if (unlikely(!bh))
3834 		return -ENOMEM;
3835 	if (!buffer_uptodate(bh)) {
3836 		lock_buffer(bh);
3837 
3838 		/*
3839 		 * If the buffer has the write error flag, we have failed
3840 		 * to write out another inode in the same block.  In this
3841 		 * case, we don't have to read the block because we may
3842 		 * read the old inode data successfully.
3843 		 */
3844 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3845 			set_buffer_uptodate(bh);
3846 
3847 		if (buffer_uptodate(bh)) {
3848 			/* someone brought it uptodate while we waited */
3849 			unlock_buffer(bh);
3850 			goto has_buffer;
3851 		}
3852 
3853 		/*
3854 		 * If we have all information of the inode in memory and this
3855 		 * is the only valid inode in the block, we need not read the
3856 		 * block.
3857 		 */
3858 		if (in_mem) {
3859 			struct buffer_head *bitmap_bh;
3860 			int i, start;
3861 
3862 			start = inode_offset & ~(inodes_per_block - 1);
3863 
3864 			/* Is the inode bitmap in cache? */
3865 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3866 			if (unlikely(!bitmap_bh))
3867 				goto make_io;
3868 
3869 			/*
3870 			 * If the inode bitmap isn't in cache then the
3871 			 * optimisation may end up performing two reads instead
3872 			 * of one, so skip it.
3873 			 */
3874 			if (!buffer_uptodate(bitmap_bh)) {
3875 				brelse(bitmap_bh);
3876 				goto make_io;
3877 			}
3878 			for (i = start; i < start + inodes_per_block; i++) {
3879 				if (i == inode_offset)
3880 					continue;
3881 				if (ext4_test_bit(i, bitmap_bh->b_data))
3882 					break;
3883 			}
3884 			brelse(bitmap_bh);
3885 			if (i == start + inodes_per_block) {
3886 				/* all other inodes are free, so skip I/O */
3887 				memset(bh->b_data, 0, bh->b_size);
3888 				set_buffer_uptodate(bh);
3889 				unlock_buffer(bh);
3890 				goto has_buffer;
3891 			}
3892 		}
3893 
3894 make_io:
3895 		/*
3896 		 * If we need to do any I/O, try to pre-readahead extra
3897 		 * blocks from the inode table.
3898 		 */
3899 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3900 			ext4_fsblk_t b, end, table;
3901 			unsigned num;
3902 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3903 
3904 			table = ext4_inode_table(sb, gdp);
3905 			/* s_inode_readahead_blks is always a power of 2 */
3906 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3907 			if (table > b)
3908 				b = table;
3909 			end = b + ra_blks;
3910 			num = EXT4_INODES_PER_GROUP(sb);
3911 			if (ext4_has_group_desc_csum(sb))
3912 				num -= ext4_itable_unused_count(sb, gdp);
3913 			table += num / inodes_per_block;
3914 			if (end > table)
3915 				end = table;
3916 			while (b <= end)
3917 				sb_breadahead(sb, b++);
3918 		}
3919 
3920 		/*
3921 		 * There are other valid inodes in the buffer, this inode
3922 		 * has in-inode xattrs, or we don't have this inode in memory.
3923 		 * Read the block from disk.
3924 		 */
3925 		trace_ext4_load_inode(inode);
3926 		get_bh(bh);
3927 		bh->b_end_io = end_buffer_read_sync;
3928 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3929 		wait_on_buffer(bh);
3930 		if (!buffer_uptodate(bh)) {
3931 			EXT4_ERROR_INODE_BLOCK(inode, block,
3932 					       "unable to read itable block");
3933 			brelse(bh);
3934 			return -EIO;
3935 		}
3936 	}
3937 has_buffer:
3938 	iloc->bh = bh;
3939 	return 0;
3940 }
3941 
3942 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3943 {
3944 	/* We have all inode data except xattrs in memory here. */
3945 	return __ext4_get_inode_loc(inode, iloc,
3946 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3947 }
3948 
3949 void ext4_set_inode_flags(struct inode *inode)
3950 {
3951 	unsigned int flags = EXT4_I(inode)->i_flags;
3952 	unsigned int new_fl = 0;
3953 
3954 	if (flags & EXT4_SYNC_FL)
3955 		new_fl |= S_SYNC;
3956 	if (flags & EXT4_APPEND_FL)
3957 		new_fl |= S_APPEND;
3958 	if (flags & EXT4_IMMUTABLE_FL)
3959 		new_fl |= S_IMMUTABLE;
3960 	if (flags & EXT4_NOATIME_FL)
3961 		new_fl |= S_NOATIME;
3962 	if (flags & EXT4_DIRSYNC_FL)
3963 		new_fl |= S_DIRSYNC;
3964 	inode_set_flags(inode, new_fl,
3965 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3966 }
3967 
3968 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3969 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3970 {
3971 	unsigned int vfs_fl;
3972 	unsigned long old_fl, new_fl;
3973 
3974 	do {
3975 		vfs_fl = ei->vfs_inode.i_flags;
3976 		old_fl = ei->i_flags;
3977 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3978 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3979 				EXT4_DIRSYNC_FL);
3980 		if (vfs_fl & S_SYNC)
3981 			new_fl |= EXT4_SYNC_FL;
3982 		if (vfs_fl & S_APPEND)
3983 			new_fl |= EXT4_APPEND_FL;
3984 		if (vfs_fl & S_IMMUTABLE)
3985 			new_fl |= EXT4_IMMUTABLE_FL;
3986 		if (vfs_fl & S_NOATIME)
3987 			new_fl |= EXT4_NOATIME_FL;
3988 		if (vfs_fl & S_DIRSYNC)
3989 			new_fl |= EXT4_DIRSYNC_FL;
3990 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3991 }
3992 
3993 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3994 				  struct ext4_inode_info *ei)
3995 {
3996 	blkcnt_t i_blocks ;
3997 	struct inode *inode = &(ei->vfs_inode);
3998 	struct super_block *sb = inode->i_sb;
3999 
4000 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4001 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4002 		/* we are using combined 48 bit field */
4003 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4004 					le32_to_cpu(raw_inode->i_blocks_lo);
4005 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4006 			/* i_blocks represent file system block size */
4007 			return i_blocks  << (inode->i_blkbits - 9);
4008 		} else {
4009 			return i_blocks;
4010 		}
4011 	} else {
4012 		return le32_to_cpu(raw_inode->i_blocks_lo);
4013 	}
4014 }
4015 
4016 static inline void ext4_iget_extra_inode(struct inode *inode,
4017 					 struct ext4_inode *raw_inode,
4018 					 struct ext4_inode_info *ei)
4019 {
4020 	__le32 *magic = (void *)raw_inode +
4021 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4022 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4023 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4024 		ext4_find_inline_data_nolock(inode);
4025 	} else
4026 		EXT4_I(inode)->i_inline_off = 0;
4027 }
4028 
4029 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4030 {
4031 	struct ext4_iloc iloc;
4032 	struct ext4_inode *raw_inode;
4033 	struct ext4_inode_info *ei;
4034 	struct inode *inode;
4035 	journal_t *journal = EXT4_SB(sb)->s_journal;
4036 	long ret;
4037 	int block;
4038 	uid_t i_uid;
4039 	gid_t i_gid;
4040 
4041 	inode = iget_locked(sb, ino);
4042 	if (!inode)
4043 		return ERR_PTR(-ENOMEM);
4044 	if (!(inode->i_state & I_NEW))
4045 		return inode;
4046 
4047 	ei = EXT4_I(inode);
4048 	iloc.bh = NULL;
4049 
4050 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4051 	if (ret < 0)
4052 		goto bad_inode;
4053 	raw_inode = ext4_raw_inode(&iloc);
4054 
4055 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4056 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4057 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4058 		    EXT4_INODE_SIZE(inode->i_sb)) {
4059 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4060 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4061 				EXT4_INODE_SIZE(inode->i_sb));
4062 			ret = -EIO;
4063 			goto bad_inode;
4064 		}
4065 	} else
4066 		ei->i_extra_isize = 0;
4067 
4068 	/* Precompute checksum seed for inode metadata */
4069 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4070 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4071 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4072 		__u32 csum;
4073 		__le32 inum = cpu_to_le32(inode->i_ino);
4074 		__le32 gen = raw_inode->i_generation;
4075 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4076 				   sizeof(inum));
4077 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4078 					      sizeof(gen));
4079 	}
4080 
4081 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4082 		EXT4_ERROR_INODE(inode, "checksum invalid");
4083 		ret = -EIO;
4084 		goto bad_inode;
4085 	}
4086 
4087 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4088 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4089 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4090 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4091 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4092 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4093 	}
4094 	i_uid_write(inode, i_uid);
4095 	i_gid_write(inode, i_gid);
4096 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4097 
4098 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4099 	ei->i_inline_off = 0;
4100 	ei->i_dir_start_lookup = 0;
4101 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4102 	/* We now have enough fields to check if the inode was active or not.
4103 	 * This is needed because nfsd might try to access dead inodes
4104 	 * the test is that same one that e2fsck uses
4105 	 * NeilBrown 1999oct15
4106 	 */
4107 	if (inode->i_nlink == 0) {
4108 		if ((inode->i_mode == 0 ||
4109 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4110 		    ino != EXT4_BOOT_LOADER_INO) {
4111 			/* this inode is deleted */
4112 			ret = -ESTALE;
4113 			goto bad_inode;
4114 		}
4115 		/* The only unlinked inodes we let through here have
4116 		 * valid i_mode and are being read by the orphan
4117 		 * recovery code: that's fine, we're about to complete
4118 		 * the process of deleting those.
4119 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4120 		 * not initialized on a new filesystem. */
4121 	}
4122 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4123 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4124 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4125 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4126 		ei->i_file_acl |=
4127 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4128 	inode->i_size = ext4_isize(raw_inode);
4129 	ei->i_disksize = inode->i_size;
4130 #ifdef CONFIG_QUOTA
4131 	ei->i_reserved_quota = 0;
4132 #endif
4133 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4134 	ei->i_block_group = iloc.block_group;
4135 	ei->i_last_alloc_group = ~0;
4136 	/*
4137 	 * NOTE! The in-memory inode i_data array is in little-endian order
4138 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4139 	 */
4140 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4141 		ei->i_data[block] = raw_inode->i_block[block];
4142 	INIT_LIST_HEAD(&ei->i_orphan);
4143 
4144 	/*
4145 	 * Set transaction id's of transactions that have to be committed
4146 	 * to finish f[data]sync. We set them to currently running transaction
4147 	 * as we cannot be sure that the inode or some of its metadata isn't
4148 	 * part of the transaction - the inode could have been reclaimed and
4149 	 * now it is reread from disk.
4150 	 */
4151 	if (journal) {
4152 		transaction_t *transaction;
4153 		tid_t tid;
4154 
4155 		read_lock(&journal->j_state_lock);
4156 		if (journal->j_running_transaction)
4157 			transaction = journal->j_running_transaction;
4158 		else
4159 			transaction = journal->j_committing_transaction;
4160 		if (transaction)
4161 			tid = transaction->t_tid;
4162 		else
4163 			tid = journal->j_commit_sequence;
4164 		read_unlock(&journal->j_state_lock);
4165 		ei->i_sync_tid = tid;
4166 		ei->i_datasync_tid = tid;
4167 	}
4168 
4169 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4170 		if (ei->i_extra_isize == 0) {
4171 			/* The extra space is currently unused. Use it. */
4172 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4173 					    EXT4_GOOD_OLD_INODE_SIZE;
4174 		} else {
4175 			ext4_iget_extra_inode(inode, raw_inode, ei);
4176 		}
4177 	}
4178 
4179 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4180 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4181 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4182 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4183 
4184 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4185 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4186 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4187 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4188 				inode->i_version |=
4189 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4190 		}
4191 	}
4192 
4193 	ret = 0;
4194 	if (ei->i_file_acl &&
4195 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4196 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4197 				 ei->i_file_acl);
4198 		ret = -EIO;
4199 		goto bad_inode;
4200 	} else if (!ext4_has_inline_data(inode)) {
4201 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4202 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4203 			    (S_ISLNK(inode->i_mode) &&
4204 			     !ext4_inode_is_fast_symlink(inode))))
4205 				/* Validate extent which is part of inode */
4206 				ret = ext4_ext_check_inode(inode);
4207 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4208 			   (S_ISLNK(inode->i_mode) &&
4209 			    !ext4_inode_is_fast_symlink(inode))) {
4210 			/* Validate block references which are part of inode */
4211 			ret = ext4_ind_check_inode(inode);
4212 		}
4213 	}
4214 	if (ret)
4215 		goto bad_inode;
4216 
4217 	if (S_ISREG(inode->i_mode)) {
4218 		inode->i_op = &ext4_file_inode_operations;
4219 		inode->i_fop = &ext4_file_operations;
4220 		ext4_set_aops(inode);
4221 	} else if (S_ISDIR(inode->i_mode)) {
4222 		inode->i_op = &ext4_dir_inode_operations;
4223 		inode->i_fop = &ext4_dir_operations;
4224 	} else if (S_ISLNK(inode->i_mode)) {
4225 		if (ext4_inode_is_fast_symlink(inode)) {
4226 			inode->i_op = &ext4_fast_symlink_inode_operations;
4227 			nd_terminate_link(ei->i_data, inode->i_size,
4228 				sizeof(ei->i_data) - 1);
4229 		} else {
4230 			inode->i_op = &ext4_symlink_inode_operations;
4231 			ext4_set_aops(inode);
4232 		}
4233 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4234 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4235 		inode->i_op = &ext4_special_inode_operations;
4236 		if (raw_inode->i_block[0])
4237 			init_special_inode(inode, inode->i_mode,
4238 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4239 		else
4240 			init_special_inode(inode, inode->i_mode,
4241 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4242 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4243 		make_bad_inode(inode);
4244 	} else {
4245 		ret = -EIO;
4246 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4247 		goto bad_inode;
4248 	}
4249 	brelse(iloc.bh);
4250 	ext4_set_inode_flags(inode);
4251 	unlock_new_inode(inode);
4252 	return inode;
4253 
4254 bad_inode:
4255 	brelse(iloc.bh);
4256 	iget_failed(inode);
4257 	return ERR_PTR(ret);
4258 }
4259 
4260 static int ext4_inode_blocks_set(handle_t *handle,
4261 				struct ext4_inode *raw_inode,
4262 				struct ext4_inode_info *ei)
4263 {
4264 	struct inode *inode = &(ei->vfs_inode);
4265 	u64 i_blocks = inode->i_blocks;
4266 	struct super_block *sb = inode->i_sb;
4267 
4268 	if (i_blocks <= ~0U) {
4269 		/*
4270 		 * i_blocks can be represented in a 32 bit variable
4271 		 * as multiple of 512 bytes
4272 		 */
4273 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4274 		raw_inode->i_blocks_high = 0;
4275 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4276 		return 0;
4277 	}
4278 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4279 		return -EFBIG;
4280 
4281 	if (i_blocks <= 0xffffffffffffULL) {
4282 		/*
4283 		 * i_blocks can be represented in a 48 bit variable
4284 		 * as multiple of 512 bytes
4285 		 */
4286 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4287 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4288 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4289 	} else {
4290 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4291 		/* i_block is stored in file system block size */
4292 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4293 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4294 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4295 	}
4296 	return 0;
4297 }
4298 
4299 /*
4300  * Post the struct inode info into an on-disk inode location in the
4301  * buffer-cache.  This gobbles the caller's reference to the
4302  * buffer_head in the inode location struct.
4303  *
4304  * The caller must have write access to iloc->bh.
4305  */
4306 static int ext4_do_update_inode(handle_t *handle,
4307 				struct inode *inode,
4308 				struct ext4_iloc *iloc)
4309 {
4310 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4311 	struct ext4_inode_info *ei = EXT4_I(inode);
4312 	struct buffer_head *bh = iloc->bh;
4313 	struct super_block *sb = inode->i_sb;
4314 	int err = 0, rc, block;
4315 	int need_datasync = 0, set_large_file = 0;
4316 	uid_t i_uid;
4317 	gid_t i_gid;
4318 
4319 	spin_lock(&ei->i_raw_lock);
4320 
4321 	/* For fields not tracked in the in-memory inode,
4322 	 * initialise them to zero for new inodes. */
4323 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4324 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4325 
4326 	ext4_get_inode_flags(ei);
4327 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4328 	i_uid = i_uid_read(inode);
4329 	i_gid = i_gid_read(inode);
4330 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4331 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4332 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4333 /*
4334  * Fix up interoperability with old kernels. Otherwise, old inodes get
4335  * re-used with the upper 16 bits of the uid/gid intact
4336  */
4337 		if (!ei->i_dtime) {
4338 			raw_inode->i_uid_high =
4339 				cpu_to_le16(high_16_bits(i_uid));
4340 			raw_inode->i_gid_high =
4341 				cpu_to_le16(high_16_bits(i_gid));
4342 		} else {
4343 			raw_inode->i_uid_high = 0;
4344 			raw_inode->i_gid_high = 0;
4345 		}
4346 	} else {
4347 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4348 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4349 		raw_inode->i_uid_high = 0;
4350 		raw_inode->i_gid_high = 0;
4351 	}
4352 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4353 
4354 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4355 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4356 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4357 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4358 
4359 	if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4360 		spin_unlock(&ei->i_raw_lock);
4361 		goto out_brelse;
4362 	}
4363 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4364 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4365 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4366 		raw_inode->i_file_acl_high =
4367 			cpu_to_le16(ei->i_file_acl >> 32);
4368 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4369 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4370 		ext4_isize_set(raw_inode, ei->i_disksize);
4371 		need_datasync = 1;
4372 	}
4373 	if (ei->i_disksize > 0x7fffffffULL) {
4374 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4375 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4376 				EXT4_SB(sb)->s_es->s_rev_level ==
4377 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4378 			set_large_file = 1;
4379 	}
4380 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4381 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4382 		if (old_valid_dev(inode->i_rdev)) {
4383 			raw_inode->i_block[0] =
4384 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4385 			raw_inode->i_block[1] = 0;
4386 		} else {
4387 			raw_inode->i_block[0] = 0;
4388 			raw_inode->i_block[1] =
4389 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4390 			raw_inode->i_block[2] = 0;
4391 		}
4392 	} else if (!ext4_has_inline_data(inode)) {
4393 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4394 			raw_inode->i_block[block] = ei->i_data[block];
4395 	}
4396 
4397 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4398 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4399 		if (ei->i_extra_isize) {
4400 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4401 				raw_inode->i_version_hi =
4402 					cpu_to_le32(inode->i_version >> 32);
4403 			raw_inode->i_extra_isize =
4404 				cpu_to_le16(ei->i_extra_isize);
4405 		}
4406 	}
4407 
4408 	ext4_inode_csum_set(inode, raw_inode, ei);
4409 
4410 	spin_unlock(&ei->i_raw_lock);
4411 
4412 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4413 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4414 	if (!err)
4415 		err = rc;
4416 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4417 	if (set_large_file) {
4418 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4419 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4420 		if (err)
4421 			goto out_brelse;
4422 		ext4_update_dynamic_rev(sb);
4423 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4424 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4425 		ext4_handle_sync(handle);
4426 		err = ext4_handle_dirty_super(handle, sb);
4427 	}
4428 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4429 out_brelse:
4430 	brelse(bh);
4431 	ext4_std_error(inode->i_sb, err);
4432 	return err;
4433 }
4434 
4435 /*
4436  * ext4_write_inode()
4437  *
4438  * We are called from a few places:
4439  *
4440  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4441  *   Here, there will be no transaction running. We wait for any running
4442  *   transaction to commit.
4443  *
4444  * - Within flush work (sys_sync(), kupdate and such).
4445  *   We wait on commit, if told to.
4446  *
4447  * - Within iput_final() -> write_inode_now()
4448  *   We wait on commit, if told to.
4449  *
4450  * In all cases it is actually safe for us to return without doing anything,
4451  * because the inode has been copied into a raw inode buffer in
4452  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4453  * writeback.
4454  *
4455  * Note that we are absolutely dependent upon all inode dirtiers doing the
4456  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4457  * which we are interested.
4458  *
4459  * It would be a bug for them to not do this.  The code:
4460  *
4461  *	mark_inode_dirty(inode)
4462  *	stuff();
4463  *	inode->i_size = expr;
4464  *
4465  * is in error because write_inode() could occur while `stuff()' is running,
4466  * and the new i_size will be lost.  Plus the inode will no longer be on the
4467  * superblock's dirty inode list.
4468  */
4469 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4470 {
4471 	int err;
4472 
4473 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4474 		return 0;
4475 
4476 	if (EXT4_SB(inode->i_sb)->s_journal) {
4477 		if (ext4_journal_current_handle()) {
4478 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4479 			dump_stack();
4480 			return -EIO;
4481 		}
4482 
4483 		/*
4484 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4485 		 * ext4_sync_fs() will force the commit after everything is
4486 		 * written.
4487 		 */
4488 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4489 			return 0;
4490 
4491 		err = ext4_force_commit(inode->i_sb);
4492 	} else {
4493 		struct ext4_iloc iloc;
4494 
4495 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4496 		if (err)
4497 			return err;
4498 		/*
4499 		 * sync(2) will flush the whole buffer cache. No need to do
4500 		 * it here separately for each inode.
4501 		 */
4502 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4503 			sync_dirty_buffer(iloc.bh);
4504 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4505 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4506 					 "IO error syncing inode");
4507 			err = -EIO;
4508 		}
4509 		brelse(iloc.bh);
4510 	}
4511 	return err;
4512 }
4513 
4514 /*
4515  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4516  * buffers that are attached to a page stradding i_size and are undergoing
4517  * commit. In that case we have to wait for commit to finish and try again.
4518  */
4519 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4520 {
4521 	struct page *page;
4522 	unsigned offset;
4523 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4524 	tid_t commit_tid = 0;
4525 	int ret;
4526 
4527 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4528 	/*
4529 	 * All buffers in the last page remain valid? Then there's nothing to
4530 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4531 	 * blocksize case
4532 	 */
4533 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4534 		return;
4535 	while (1) {
4536 		page = find_lock_page(inode->i_mapping,
4537 				      inode->i_size >> PAGE_CACHE_SHIFT);
4538 		if (!page)
4539 			return;
4540 		ret = __ext4_journalled_invalidatepage(page, offset,
4541 						PAGE_CACHE_SIZE - offset);
4542 		unlock_page(page);
4543 		page_cache_release(page);
4544 		if (ret != -EBUSY)
4545 			return;
4546 		commit_tid = 0;
4547 		read_lock(&journal->j_state_lock);
4548 		if (journal->j_committing_transaction)
4549 			commit_tid = journal->j_committing_transaction->t_tid;
4550 		read_unlock(&journal->j_state_lock);
4551 		if (commit_tid)
4552 			jbd2_log_wait_commit(journal, commit_tid);
4553 	}
4554 }
4555 
4556 /*
4557  * ext4_setattr()
4558  *
4559  * Called from notify_change.
4560  *
4561  * We want to trap VFS attempts to truncate the file as soon as
4562  * possible.  In particular, we want to make sure that when the VFS
4563  * shrinks i_size, we put the inode on the orphan list and modify
4564  * i_disksize immediately, so that during the subsequent flushing of
4565  * dirty pages and freeing of disk blocks, we can guarantee that any
4566  * commit will leave the blocks being flushed in an unused state on
4567  * disk.  (On recovery, the inode will get truncated and the blocks will
4568  * be freed, so we have a strong guarantee that no future commit will
4569  * leave these blocks visible to the user.)
4570  *
4571  * Another thing we have to assure is that if we are in ordered mode
4572  * and inode is still attached to the committing transaction, we must
4573  * we start writeout of all the dirty pages which are being truncated.
4574  * This way we are sure that all the data written in the previous
4575  * transaction are already on disk (truncate waits for pages under
4576  * writeback).
4577  *
4578  * Called with inode->i_mutex down.
4579  */
4580 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4581 {
4582 	struct inode *inode = dentry->d_inode;
4583 	int error, rc = 0;
4584 	int orphan = 0;
4585 	const unsigned int ia_valid = attr->ia_valid;
4586 
4587 	error = inode_change_ok(inode, attr);
4588 	if (error)
4589 		return error;
4590 
4591 	if (is_quota_modification(inode, attr))
4592 		dquot_initialize(inode);
4593 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4594 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4595 		handle_t *handle;
4596 
4597 		/* (user+group)*(old+new) structure, inode write (sb,
4598 		 * inode block, ? - but truncate inode update has it) */
4599 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4600 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4601 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4602 		if (IS_ERR(handle)) {
4603 			error = PTR_ERR(handle);
4604 			goto err_out;
4605 		}
4606 		error = dquot_transfer(inode, attr);
4607 		if (error) {
4608 			ext4_journal_stop(handle);
4609 			return error;
4610 		}
4611 		/* Update corresponding info in inode so that everything is in
4612 		 * one transaction */
4613 		if (attr->ia_valid & ATTR_UID)
4614 			inode->i_uid = attr->ia_uid;
4615 		if (attr->ia_valid & ATTR_GID)
4616 			inode->i_gid = attr->ia_gid;
4617 		error = ext4_mark_inode_dirty(handle, inode);
4618 		ext4_journal_stop(handle);
4619 	}
4620 
4621 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4622 		handle_t *handle;
4623 
4624 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4625 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4626 
4627 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4628 				return -EFBIG;
4629 		}
4630 
4631 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4632 			inode_inc_iversion(inode);
4633 
4634 		if (S_ISREG(inode->i_mode) &&
4635 		    (attr->ia_size < inode->i_size)) {
4636 			if (ext4_should_order_data(inode)) {
4637 				error = ext4_begin_ordered_truncate(inode,
4638 							    attr->ia_size);
4639 				if (error)
4640 					goto err_out;
4641 			}
4642 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4643 			if (IS_ERR(handle)) {
4644 				error = PTR_ERR(handle);
4645 				goto err_out;
4646 			}
4647 			if (ext4_handle_valid(handle)) {
4648 				error = ext4_orphan_add(handle, inode);
4649 				orphan = 1;
4650 			}
4651 			down_write(&EXT4_I(inode)->i_data_sem);
4652 			EXT4_I(inode)->i_disksize = attr->ia_size;
4653 			rc = ext4_mark_inode_dirty(handle, inode);
4654 			if (!error)
4655 				error = rc;
4656 			/*
4657 			 * We have to update i_size under i_data_sem together
4658 			 * with i_disksize to avoid races with writeback code
4659 			 * running ext4_wb_update_i_disksize().
4660 			 */
4661 			if (!error)
4662 				i_size_write(inode, attr->ia_size);
4663 			up_write(&EXT4_I(inode)->i_data_sem);
4664 			ext4_journal_stop(handle);
4665 			if (error) {
4666 				ext4_orphan_del(NULL, inode);
4667 				goto err_out;
4668 			}
4669 		} else
4670 			i_size_write(inode, attr->ia_size);
4671 
4672 		/*
4673 		 * Blocks are going to be removed from the inode. Wait
4674 		 * for dio in flight.  Temporarily disable
4675 		 * dioread_nolock to prevent livelock.
4676 		 */
4677 		if (orphan) {
4678 			if (!ext4_should_journal_data(inode)) {
4679 				ext4_inode_block_unlocked_dio(inode);
4680 				inode_dio_wait(inode);
4681 				ext4_inode_resume_unlocked_dio(inode);
4682 			} else
4683 				ext4_wait_for_tail_page_commit(inode);
4684 		}
4685 		/*
4686 		 * Truncate pagecache after we've waited for commit
4687 		 * in data=journal mode to make pages freeable.
4688 		 */
4689 			truncate_pagecache(inode, inode->i_size);
4690 	}
4691 	/*
4692 	 * We want to call ext4_truncate() even if attr->ia_size ==
4693 	 * inode->i_size for cases like truncation of fallocated space
4694 	 */
4695 	if (attr->ia_valid & ATTR_SIZE)
4696 		ext4_truncate(inode);
4697 
4698 	if (!rc) {
4699 		setattr_copy(inode, attr);
4700 		mark_inode_dirty(inode);
4701 	}
4702 
4703 	/*
4704 	 * If the call to ext4_truncate failed to get a transaction handle at
4705 	 * all, we need to clean up the in-core orphan list manually.
4706 	 */
4707 	if (orphan && inode->i_nlink)
4708 		ext4_orphan_del(NULL, inode);
4709 
4710 	if (!rc && (ia_valid & ATTR_MODE))
4711 		rc = posix_acl_chmod(inode, inode->i_mode);
4712 
4713 err_out:
4714 	ext4_std_error(inode->i_sb, error);
4715 	if (!error)
4716 		error = rc;
4717 	return error;
4718 }
4719 
4720 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4721 		 struct kstat *stat)
4722 {
4723 	struct inode *inode;
4724 	unsigned long long delalloc_blocks;
4725 
4726 	inode = dentry->d_inode;
4727 	generic_fillattr(inode, stat);
4728 
4729 	/*
4730 	 * If there is inline data in the inode, the inode will normally not
4731 	 * have data blocks allocated (it may have an external xattr block).
4732 	 * Report at least one sector for such files, so tools like tar, rsync,
4733 	 * others doen't incorrectly think the file is completely sparse.
4734 	 */
4735 	if (unlikely(ext4_has_inline_data(inode)))
4736 		stat->blocks += (stat->size + 511) >> 9;
4737 
4738 	/*
4739 	 * We can't update i_blocks if the block allocation is delayed
4740 	 * otherwise in the case of system crash before the real block
4741 	 * allocation is done, we will have i_blocks inconsistent with
4742 	 * on-disk file blocks.
4743 	 * We always keep i_blocks updated together with real
4744 	 * allocation. But to not confuse with user, stat
4745 	 * will return the blocks that include the delayed allocation
4746 	 * blocks for this file.
4747 	 */
4748 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4749 				   EXT4_I(inode)->i_reserved_data_blocks);
4750 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4751 	return 0;
4752 }
4753 
4754 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4755 				   int pextents)
4756 {
4757 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4758 		return ext4_ind_trans_blocks(inode, lblocks);
4759 	return ext4_ext_index_trans_blocks(inode, pextents);
4760 }
4761 
4762 /*
4763  * Account for index blocks, block groups bitmaps and block group
4764  * descriptor blocks if modify datablocks and index blocks
4765  * worse case, the indexs blocks spread over different block groups
4766  *
4767  * If datablocks are discontiguous, they are possible to spread over
4768  * different block groups too. If they are contiguous, with flexbg,
4769  * they could still across block group boundary.
4770  *
4771  * Also account for superblock, inode, quota and xattr blocks
4772  */
4773 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4774 				  int pextents)
4775 {
4776 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4777 	int gdpblocks;
4778 	int idxblocks;
4779 	int ret = 0;
4780 
4781 	/*
4782 	 * How many index blocks need to touch to map @lblocks logical blocks
4783 	 * to @pextents physical extents?
4784 	 */
4785 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4786 
4787 	ret = idxblocks;
4788 
4789 	/*
4790 	 * Now let's see how many group bitmaps and group descriptors need
4791 	 * to account
4792 	 */
4793 	groups = idxblocks + pextents;
4794 	gdpblocks = groups;
4795 	if (groups > ngroups)
4796 		groups = ngroups;
4797 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4798 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4799 
4800 	/* bitmaps and block group descriptor blocks */
4801 	ret += groups + gdpblocks;
4802 
4803 	/* Blocks for super block, inode, quota and xattr blocks */
4804 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4805 
4806 	return ret;
4807 }
4808 
4809 /*
4810  * Calculate the total number of credits to reserve to fit
4811  * the modification of a single pages into a single transaction,
4812  * which may include multiple chunks of block allocations.
4813  *
4814  * This could be called via ext4_write_begin()
4815  *
4816  * We need to consider the worse case, when
4817  * one new block per extent.
4818  */
4819 int ext4_writepage_trans_blocks(struct inode *inode)
4820 {
4821 	int bpp = ext4_journal_blocks_per_page(inode);
4822 	int ret;
4823 
4824 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4825 
4826 	/* Account for data blocks for journalled mode */
4827 	if (ext4_should_journal_data(inode))
4828 		ret += bpp;
4829 	return ret;
4830 }
4831 
4832 /*
4833  * Calculate the journal credits for a chunk of data modification.
4834  *
4835  * This is called from DIO, fallocate or whoever calling
4836  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4837  *
4838  * journal buffers for data blocks are not included here, as DIO
4839  * and fallocate do no need to journal data buffers.
4840  */
4841 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4842 {
4843 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4844 }
4845 
4846 /*
4847  * The caller must have previously called ext4_reserve_inode_write().
4848  * Give this, we know that the caller already has write access to iloc->bh.
4849  */
4850 int ext4_mark_iloc_dirty(handle_t *handle,
4851 			 struct inode *inode, struct ext4_iloc *iloc)
4852 {
4853 	int err = 0;
4854 
4855 	if (IS_I_VERSION(inode))
4856 		inode_inc_iversion(inode);
4857 
4858 	/* the do_update_inode consumes one bh->b_count */
4859 	get_bh(iloc->bh);
4860 
4861 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4862 	err = ext4_do_update_inode(handle, inode, iloc);
4863 	put_bh(iloc->bh);
4864 	return err;
4865 }
4866 
4867 /*
4868  * On success, We end up with an outstanding reference count against
4869  * iloc->bh.  This _must_ be cleaned up later.
4870  */
4871 
4872 int
4873 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4874 			 struct ext4_iloc *iloc)
4875 {
4876 	int err;
4877 
4878 	err = ext4_get_inode_loc(inode, iloc);
4879 	if (!err) {
4880 		BUFFER_TRACE(iloc->bh, "get_write_access");
4881 		err = ext4_journal_get_write_access(handle, iloc->bh);
4882 		if (err) {
4883 			brelse(iloc->bh);
4884 			iloc->bh = NULL;
4885 		}
4886 	}
4887 	ext4_std_error(inode->i_sb, err);
4888 	return err;
4889 }
4890 
4891 /*
4892  * Expand an inode by new_extra_isize bytes.
4893  * Returns 0 on success or negative error number on failure.
4894  */
4895 static int ext4_expand_extra_isize(struct inode *inode,
4896 				   unsigned int new_extra_isize,
4897 				   struct ext4_iloc iloc,
4898 				   handle_t *handle)
4899 {
4900 	struct ext4_inode *raw_inode;
4901 	struct ext4_xattr_ibody_header *header;
4902 
4903 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4904 		return 0;
4905 
4906 	raw_inode = ext4_raw_inode(&iloc);
4907 
4908 	header = IHDR(inode, raw_inode);
4909 
4910 	/* No extended attributes present */
4911 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4912 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4913 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4914 			new_extra_isize);
4915 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4916 		return 0;
4917 	}
4918 
4919 	/* try to expand with EAs present */
4920 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4921 					  raw_inode, handle);
4922 }
4923 
4924 /*
4925  * What we do here is to mark the in-core inode as clean with respect to inode
4926  * dirtiness (it may still be data-dirty).
4927  * This means that the in-core inode may be reaped by prune_icache
4928  * without having to perform any I/O.  This is a very good thing,
4929  * because *any* task may call prune_icache - even ones which
4930  * have a transaction open against a different journal.
4931  *
4932  * Is this cheating?  Not really.  Sure, we haven't written the
4933  * inode out, but prune_icache isn't a user-visible syncing function.
4934  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4935  * we start and wait on commits.
4936  */
4937 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4938 {
4939 	struct ext4_iloc iloc;
4940 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4941 	static unsigned int mnt_count;
4942 	int err, ret;
4943 
4944 	might_sleep();
4945 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4946 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4947 	if (ext4_handle_valid(handle) &&
4948 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4949 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4950 		/*
4951 		 * We need extra buffer credits since we may write into EA block
4952 		 * with this same handle. If journal_extend fails, then it will
4953 		 * only result in a minor loss of functionality for that inode.
4954 		 * If this is felt to be critical, then e2fsck should be run to
4955 		 * force a large enough s_min_extra_isize.
4956 		 */
4957 		if ((jbd2_journal_extend(handle,
4958 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4959 			ret = ext4_expand_extra_isize(inode,
4960 						      sbi->s_want_extra_isize,
4961 						      iloc, handle);
4962 			if (ret) {
4963 				ext4_set_inode_state(inode,
4964 						     EXT4_STATE_NO_EXPAND);
4965 				if (mnt_count !=
4966 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4967 					ext4_warning(inode->i_sb,
4968 					"Unable to expand inode %lu. Delete"
4969 					" some EAs or run e2fsck.",
4970 					inode->i_ino);
4971 					mnt_count =
4972 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4973 				}
4974 			}
4975 		}
4976 	}
4977 	if (!err)
4978 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4979 	return err;
4980 }
4981 
4982 /*
4983  * ext4_dirty_inode() is called from __mark_inode_dirty()
4984  *
4985  * We're really interested in the case where a file is being extended.
4986  * i_size has been changed by generic_commit_write() and we thus need
4987  * to include the updated inode in the current transaction.
4988  *
4989  * Also, dquot_alloc_block() will always dirty the inode when blocks
4990  * are allocated to the file.
4991  *
4992  * If the inode is marked synchronous, we don't honour that here - doing
4993  * so would cause a commit on atime updates, which we don't bother doing.
4994  * We handle synchronous inodes at the highest possible level.
4995  */
4996 void ext4_dirty_inode(struct inode *inode, int flags)
4997 {
4998 	handle_t *handle;
4999 
5000 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5001 	if (IS_ERR(handle))
5002 		goto out;
5003 
5004 	ext4_mark_inode_dirty(handle, inode);
5005 
5006 	ext4_journal_stop(handle);
5007 out:
5008 	return;
5009 }
5010 
5011 #if 0
5012 /*
5013  * Bind an inode's backing buffer_head into this transaction, to prevent
5014  * it from being flushed to disk early.  Unlike
5015  * ext4_reserve_inode_write, this leaves behind no bh reference and
5016  * returns no iloc structure, so the caller needs to repeat the iloc
5017  * lookup to mark the inode dirty later.
5018  */
5019 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5020 {
5021 	struct ext4_iloc iloc;
5022 
5023 	int err = 0;
5024 	if (handle) {
5025 		err = ext4_get_inode_loc(inode, &iloc);
5026 		if (!err) {
5027 			BUFFER_TRACE(iloc.bh, "get_write_access");
5028 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5029 			if (!err)
5030 				err = ext4_handle_dirty_metadata(handle,
5031 								 NULL,
5032 								 iloc.bh);
5033 			brelse(iloc.bh);
5034 		}
5035 	}
5036 	ext4_std_error(inode->i_sb, err);
5037 	return err;
5038 }
5039 #endif
5040 
5041 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5042 {
5043 	journal_t *journal;
5044 	handle_t *handle;
5045 	int err;
5046 
5047 	/*
5048 	 * We have to be very careful here: changing a data block's
5049 	 * journaling status dynamically is dangerous.  If we write a
5050 	 * data block to the journal, change the status and then delete
5051 	 * that block, we risk forgetting to revoke the old log record
5052 	 * from the journal and so a subsequent replay can corrupt data.
5053 	 * So, first we make sure that the journal is empty and that
5054 	 * nobody is changing anything.
5055 	 */
5056 
5057 	journal = EXT4_JOURNAL(inode);
5058 	if (!journal)
5059 		return 0;
5060 	if (is_journal_aborted(journal))
5061 		return -EROFS;
5062 	/* We have to allocate physical blocks for delalloc blocks
5063 	 * before flushing journal. otherwise delalloc blocks can not
5064 	 * be allocated any more. even more truncate on delalloc blocks
5065 	 * could trigger BUG by flushing delalloc blocks in journal.
5066 	 * There is no delalloc block in non-journal data mode.
5067 	 */
5068 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5069 		err = ext4_alloc_da_blocks(inode);
5070 		if (err < 0)
5071 			return err;
5072 	}
5073 
5074 	/* Wait for all existing dio workers */
5075 	ext4_inode_block_unlocked_dio(inode);
5076 	inode_dio_wait(inode);
5077 
5078 	jbd2_journal_lock_updates(journal);
5079 
5080 	/*
5081 	 * OK, there are no updates running now, and all cached data is
5082 	 * synced to disk.  We are now in a completely consistent state
5083 	 * which doesn't have anything in the journal, and we know that
5084 	 * no filesystem updates are running, so it is safe to modify
5085 	 * the inode's in-core data-journaling state flag now.
5086 	 */
5087 
5088 	if (val)
5089 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5090 	else {
5091 		jbd2_journal_flush(journal);
5092 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5093 	}
5094 	ext4_set_aops(inode);
5095 
5096 	jbd2_journal_unlock_updates(journal);
5097 	ext4_inode_resume_unlocked_dio(inode);
5098 
5099 	/* Finally we can mark the inode as dirty. */
5100 
5101 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5102 	if (IS_ERR(handle))
5103 		return PTR_ERR(handle);
5104 
5105 	err = ext4_mark_inode_dirty(handle, inode);
5106 	ext4_handle_sync(handle);
5107 	ext4_journal_stop(handle);
5108 	ext4_std_error(inode->i_sb, err);
5109 
5110 	return err;
5111 }
5112 
5113 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5114 {
5115 	return !buffer_mapped(bh);
5116 }
5117 
5118 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5119 {
5120 	struct page *page = vmf->page;
5121 	loff_t size;
5122 	unsigned long len;
5123 	int ret;
5124 	struct file *file = vma->vm_file;
5125 	struct inode *inode = file_inode(file);
5126 	struct address_space *mapping = inode->i_mapping;
5127 	handle_t *handle;
5128 	get_block_t *get_block;
5129 	int retries = 0;
5130 
5131 	sb_start_pagefault(inode->i_sb);
5132 	file_update_time(vma->vm_file);
5133 	/* Delalloc case is easy... */
5134 	if (test_opt(inode->i_sb, DELALLOC) &&
5135 	    !ext4_should_journal_data(inode) &&
5136 	    !ext4_nonda_switch(inode->i_sb)) {
5137 		do {
5138 			ret = __block_page_mkwrite(vma, vmf,
5139 						   ext4_da_get_block_prep);
5140 		} while (ret == -ENOSPC &&
5141 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5142 		goto out_ret;
5143 	}
5144 
5145 	lock_page(page);
5146 	size = i_size_read(inode);
5147 	/* Page got truncated from under us? */
5148 	if (page->mapping != mapping || page_offset(page) > size) {
5149 		unlock_page(page);
5150 		ret = VM_FAULT_NOPAGE;
5151 		goto out;
5152 	}
5153 
5154 	if (page->index == size >> PAGE_CACHE_SHIFT)
5155 		len = size & ~PAGE_CACHE_MASK;
5156 	else
5157 		len = PAGE_CACHE_SIZE;
5158 	/*
5159 	 * Return if we have all the buffers mapped. This avoids the need to do
5160 	 * journal_start/journal_stop which can block and take a long time
5161 	 */
5162 	if (page_has_buffers(page)) {
5163 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5164 					    0, len, NULL,
5165 					    ext4_bh_unmapped)) {
5166 			/* Wait so that we don't change page under IO */
5167 			wait_for_stable_page(page);
5168 			ret = VM_FAULT_LOCKED;
5169 			goto out;
5170 		}
5171 	}
5172 	unlock_page(page);
5173 	/* OK, we need to fill the hole... */
5174 	if (ext4_should_dioread_nolock(inode))
5175 		get_block = ext4_get_block_write;
5176 	else
5177 		get_block = ext4_get_block;
5178 retry_alloc:
5179 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5180 				    ext4_writepage_trans_blocks(inode));
5181 	if (IS_ERR(handle)) {
5182 		ret = VM_FAULT_SIGBUS;
5183 		goto out;
5184 	}
5185 	ret = __block_page_mkwrite(vma, vmf, get_block);
5186 	if (!ret && ext4_should_journal_data(inode)) {
5187 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5188 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5189 			unlock_page(page);
5190 			ret = VM_FAULT_SIGBUS;
5191 			ext4_journal_stop(handle);
5192 			goto out;
5193 		}
5194 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5195 	}
5196 	ext4_journal_stop(handle);
5197 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5198 		goto retry_alloc;
5199 out_ret:
5200 	ret = block_page_mkwrite_return(ret);
5201 out:
5202 	sb_end_pagefault(inode->i_sb);
5203 	return ret;
5204 }
5205