xref: /openbmc/linux/fs/ext4/inode.c (revision d3597236)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
39 
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
44 
45 #include <trace/events/ext4.h>
46 
47 #define MPAGE_DA_EXTENT_TAIL 0x01
48 
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50 			      struct ext4_inode_info *ei)
51 {
52 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 	__u16 csum_lo;
54 	__u16 csum_hi = 0;
55 	__u32 csum;
56 
57 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
58 	raw->i_checksum_lo = 0;
59 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
62 		raw->i_checksum_hi = 0;
63 	}
64 
65 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66 			   EXT4_INODE_SIZE(inode->i_sb));
67 
68 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
69 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
72 
73 	return csum;
74 }
75 
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77 				  struct ext4_inode_info *ei)
78 {
79 	__u32 provided, calculated;
80 
81 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82 	    cpu_to_le32(EXT4_OS_LINUX) ||
83 	    !ext4_has_metadata_csum(inode->i_sb))
84 		return 1;
85 
86 	provided = le16_to_cpu(raw->i_checksum_lo);
87 	calculated = ext4_inode_csum(inode, raw, ei);
88 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91 	else
92 		calculated &= 0xFFFF;
93 
94 	return provided == calculated;
95 }
96 
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98 				struct ext4_inode_info *ei)
99 {
100 	__u32 csum;
101 
102 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103 	    cpu_to_le32(EXT4_OS_LINUX) ||
104 	    !ext4_has_metadata_csum(inode->i_sb))
105 		return;
106 
107 	csum = ext4_inode_csum(inode, raw, ei);
108 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112 }
113 
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115 					      loff_t new_size)
116 {
117 	trace_ext4_begin_ordered_truncate(inode, new_size);
118 	/*
119 	 * If jinode is zero, then we never opened the file for
120 	 * writing, so there's no need to call
121 	 * jbd2_journal_begin_ordered_truncate() since there's no
122 	 * outstanding writes we need to flush.
123 	 */
124 	if (!EXT4_I(inode)->jinode)
125 		return 0;
126 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127 						   EXT4_I(inode)->jinode,
128 						   new_size);
129 }
130 
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132 				unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136 				  int pextents);
137 
138 /*
139  * Test whether an inode is a fast symlink.
140  */
141 int ext4_inode_is_fast_symlink(struct inode *inode)
142 {
143         int ea_blocks = EXT4_I(inode)->i_file_acl ?
144 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145 
146 	if (ext4_has_inline_data(inode))
147 		return 0;
148 
149 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151 
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 				 int nblocks)
159 {
160 	int ret;
161 
162 	/*
163 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 	 * moment, get_block can be called only for blocks inside i_size since
165 	 * page cache has been already dropped and writes are blocked by
166 	 * i_mutex. So we can safely drop the i_data_sem here.
167 	 */
168 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 	jbd_debug(2, "restarting handle %p\n", handle);
170 	up_write(&EXT4_I(inode)->i_data_sem);
171 	ret = ext4_journal_restart(handle, nblocks);
172 	down_write(&EXT4_I(inode)->i_data_sem);
173 	ext4_discard_preallocations(inode);
174 
175 	return ret;
176 }
177 
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183 	handle_t *handle;
184 	int err;
185 
186 	trace_ext4_evict_inode(inode);
187 
188 	if (inode->i_nlink) {
189 		/*
190 		 * When journalling data dirty buffers are tracked only in the
191 		 * journal. So although mm thinks everything is clean and
192 		 * ready for reaping the inode might still have some pages to
193 		 * write in the running transaction or waiting to be
194 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 		 * (via truncate_inode_pages()) to discard these buffers can
196 		 * cause data loss. Also even if we did not discard these
197 		 * buffers, we would have no way to find them after the inode
198 		 * is reaped and thus user could see stale data if he tries to
199 		 * read them before the transaction is checkpointed. So be
200 		 * careful and force everything to disk here... We use
201 		 * ei->i_datasync_tid to store the newest transaction
202 		 * containing inode's data.
203 		 *
204 		 * Note that directories do not have this problem because they
205 		 * don't use page cache.
206 		 */
207 		if (ext4_should_journal_data(inode) &&
208 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 		    inode->i_ino != EXT4_JOURNAL_INO) {
210 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212 
213 			jbd2_complete_transaction(journal, commit_tid);
214 			filemap_write_and_wait(&inode->i_data);
215 		}
216 		truncate_inode_pages_final(&inode->i_data);
217 
218 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219 		goto no_delete;
220 	}
221 
222 	if (is_bad_inode(inode))
223 		goto no_delete;
224 	dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages_final(&inode->i_data);
229 
230 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 
232 	/*
233 	 * Protect us against freezing - iput() caller didn't have to have any
234 	 * protection against it
235 	 */
236 	sb_start_intwrite(inode->i_sb);
237 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 				    ext4_blocks_for_truncate(inode)+3);
239 	if (IS_ERR(handle)) {
240 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 		/*
242 		 * If we're going to skip the normal cleanup, we still need to
243 		 * make sure that the in-core orphan linked list is properly
244 		 * cleaned up.
245 		 */
246 		ext4_orphan_del(NULL, inode);
247 		sb_end_intwrite(inode->i_sb);
248 		goto no_delete;
249 	}
250 
251 	if (IS_SYNC(inode))
252 		ext4_handle_sync(handle);
253 	inode->i_size = 0;
254 	err = ext4_mark_inode_dirty(handle, inode);
255 	if (err) {
256 		ext4_warning(inode->i_sb,
257 			     "couldn't mark inode dirty (err %d)", err);
258 		goto stop_handle;
259 	}
260 	if (inode->i_blocks)
261 		ext4_truncate(inode);
262 
263 	/*
264 	 * ext4_ext_truncate() doesn't reserve any slop when it
265 	 * restarts journal transactions; therefore there may not be
266 	 * enough credits left in the handle to remove the inode from
267 	 * the orphan list and set the dtime field.
268 	 */
269 	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 		err = ext4_journal_extend(handle, 3);
271 		if (err > 0)
272 			err = ext4_journal_restart(handle, 3);
273 		if (err != 0) {
274 			ext4_warning(inode->i_sb,
275 				     "couldn't extend journal (err %d)", err);
276 		stop_handle:
277 			ext4_journal_stop(handle);
278 			ext4_orphan_del(NULL, inode);
279 			sb_end_intwrite(inode->i_sb);
280 			goto no_delete;
281 		}
282 	}
283 
284 	/*
285 	 * Kill off the orphan record which ext4_truncate created.
286 	 * AKPM: I think this can be inside the above `if'.
287 	 * Note that ext4_orphan_del() has to be able to cope with the
288 	 * deletion of a non-existent orphan - this is because we don't
289 	 * know if ext4_truncate() actually created an orphan record.
290 	 * (Well, we could do this if we need to, but heck - it works)
291 	 */
292 	ext4_orphan_del(handle, inode);
293 	EXT4_I(inode)->i_dtime	= get_seconds();
294 
295 	/*
296 	 * One subtle ordering requirement: if anything has gone wrong
297 	 * (transaction abort, IO errors, whatever), then we can still
298 	 * do these next steps (the fs will already have been marked as
299 	 * having errors), but we can't free the inode if the mark_dirty
300 	 * fails.
301 	 */
302 	if (ext4_mark_inode_dirty(handle, inode))
303 		/* If that failed, just do the required in-core inode clear. */
304 		ext4_clear_inode(inode);
305 	else
306 		ext4_free_inode(handle, inode);
307 	ext4_journal_stop(handle);
308 	sb_end_intwrite(inode->i_sb);
309 	return;
310 no_delete:
311 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 }
313 
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317 	return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320 
321 /*
322  * Called with i_data_sem down, which is important since we can call
323  * ext4_discard_preallocations() from here.
324  */
325 void ext4_da_update_reserve_space(struct inode *inode,
326 					int used, int quota_claim)
327 {
328 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329 	struct ext4_inode_info *ei = EXT4_I(inode);
330 
331 	spin_lock(&ei->i_block_reservation_lock);
332 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333 	if (unlikely(used > ei->i_reserved_data_blocks)) {
334 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335 			 "with only %d reserved data blocks",
336 			 __func__, inode->i_ino, used,
337 			 ei->i_reserved_data_blocks);
338 		WARN_ON(1);
339 		used = ei->i_reserved_data_blocks;
340 	}
341 
342 	/* Update per-inode reservations */
343 	ei->i_reserved_data_blocks -= used;
344 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345 
346 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347 
348 	/* Update quota subsystem for data blocks */
349 	if (quota_claim)
350 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
351 	else {
352 		/*
353 		 * We did fallocate with an offset that is already delayed
354 		 * allocated. So on delayed allocated writeback we should
355 		 * not re-claim the quota for fallocated blocks.
356 		 */
357 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358 	}
359 
360 	/*
361 	 * If we have done all the pending block allocations and if
362 	 * there aren't any writers on the inode, we can discard the
363 	 * inode's preallocations.
364 	 */
365 	if ((ei->i_reserved_data_blocks == 0) &&
366 	    (atomic_read(&inode->i_writecount) == 0))
367 		ext4_discard_preallocations(inode);
368 }
369 
370 static int __check_block_validity(struct inode *inode, const char *func,
371 				unsigned int line,
372 				struct ext4_map_blocks *map)
373 {
374 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375 				   map->m_len)) {
376 		ext4_error_inode(inode, func, line, map->m_pblk,
377 				 "lblock %lu mapped to illegal pblock "
378 				 "(length %d)", (unsigned long) map->m_lblk,
379 				 map->m_len);
380 		return -EIO;
381 	}
382 	return 0;
383 }
384 
385 #define check_block_validity(inode, map)	\
386 	__check_block_validity((inode), __func__, __LINE__, (map))
387 
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390 				       struct inode *inode,
391 				       struct ext4_map_blocks *es_map,
392 				       struct ext4_map_blocks *map,
393 				       int flags)
394 {
395 	int retval;
396 
397 	map->m_flags = 0;
398 	/*
399 	 * There is a race window that the result is not the same.
400 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
401 	 * is that we lookup a block mapping in extent status tree with
402 	 * out taking i_data_sem.  So at the time the unwritten extent
403 	 * could be converted.
404 	 */
405 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406 		down_read(&EXT4_I(inode)->i_data_sem);
407 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
409 					     EXT4_GET_BLOCKS_KEEP_SIZE);
410 	} else {
411 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
412 					     EXT4_GET_BLOCKS_KEEP_SIZE);
413 	}
414 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415 		up_read((&EXT4_I(inode)->i_data_sem));
416 
417 	/*
418 	 * We don't check m_len because extent will be collpased in status
419 	 * tree.  So the m_len might not equal.
420 	 */
421 	if (es_map->m_lblk != map->m_lblk ||
422 	    es_map->m_flags != map->m_flags ||
423 	    es_map->m_pblk != map->m_pblk) {
424 		printk("ES cache assertion failed for inode: %lu "
425 		       "es_cached ex [%d/%d/%llu/%x] != "
426 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
428 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
429 		       map->m_len, map->m_pblk, map->m_flags,
430 		       retval, flags);
431 	}
432 }
433 #endif /* ES_AGGRESSIVE_TEST */
434 
435 /*
436  * The ext4_map_blocks() function tries to look up the requested blocks,
437  * and returns if the blocks are already mapped.
438  *
439  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440  * and store the allocated blocks in the result buffer head and mark it
441  * mapped.
442  *
443  * If file type is extents based, it will call ext4_ext_map_blocks(),
444  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445  * based files
446  *
447  * On success, it returns the number of blocks being mapped or allocated.
448  * if create==0 and the blocks are pre-allocated and unwritten block,
449  * the result buffer head is unmapped. If the create ==1, it will make sure
450  * the buffer head is mapped.
451  *
452  * It returns 0 if plain look up failed (blocks have not been allocated), in
453  * that case, buffer head is unmapped
454  *
455  * It returns the error in case of allocation failure.
456  */
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458 		    struct ext4_map_blocks *map, int flags)
459 {
460 	struct extent_status es;
461 	int retval;
462 	int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464 	struct ext4_map_blocks orig_map;
465 
466 	memcpy(&orig_map, map, sizeof(*map));
467 #endif
468 
469 	map->m_flags = 0;
470 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
472 		  (unsigned long) map->m_lblk);
473 
474 	/*
475 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
476 	 */
477 	if (unlikely(map->m_len > INT_MAX))
478 		map->m_len = INT_MAX;
479 
480 	/* We can handle the block number less than EXT_MAX_BLOCKS */
481 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482 		return -EIO;
483 
484 	/* Lookup extent status tree firstly */
485 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487 			map->m_pblk = ext4_es_pblock(&es) +
488 					map->m_lblk - es.es_lblk;
489 			map->m_flags |= ext4_es_is_written(&es) ?
490 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491 			retval = es.es_len - (map->m_lblk - es.es_lblk);
492 			if (retval > map->m_len)
493 				retval = map->m_len;
494 			map->m_len = retval;
495 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496 			retval = 0;
497 		} else {
498 			BUG_ON(1);
499 		}
500 #ifdef ES_AGGRESSIVE_TEST
501 		ext4_map_blocks_es_recheck(handle, inode, map,
502 					   &orig_map, flags);
503 #endif
504 		goto found;
505 	}
506 
507 	/*
508 	 * Try to see if we can get the block without requesting a new
509 	 * file system block.
510 	 */
511 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 		down_read(&EXT4_I(inode)->i_data_sem);
513 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
515 					     EXT4_GET_BLOCKS_KEEP_SIZE);
516 	} else {
517 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
518 					     EXT4_GET_BLOCKS_KEEP_SIZE);
519 	}
520 	if (retval > 0) {
521 		unsigned int status;
522 
523 		if (unlikely(retval != map->m_len)) {
524 			ext4_warning(inode->i_sb,
525 				     "ES len assertion failed for inode "
526 				     "%lu: retval %d != map->m_len %d",
527 				     inode->i_ino, retval, map->m_len);
528 			WARN_ON(1);
529 		}
530 
531 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534 		    !(status & EXTENT_STATUS_WRITTEN) &&
535 		    ext4_find_delalloc_range(inode, map->m_lblk,
536 					     map->m_lblk + map->m_len - 1))
537 			status |= EXTENT_STATUS_DELAYED;
538 		ret = ext4_es_insert_extent(inode, map->m_lblk,
539 					    map->m_len, map->m_pblk, status);
540 		if (ret < 0)
541 			retval = ret;
542 	}
543 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 		up_read((&EXT4_I(inode)->i_data_sem));
545 
546 found:
547 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548 		ret = check_block_validity(inode, map);
549 		if (ret != 0)
550 			return ret;
551 	}
552 
553 	/* If it is only a block(s) look up */
554 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555 		return retval;
556 
557 	/*
558 	 * Returns if the blocks have already allocated
559 	 *
560 	 * Note that if blocks have been preallocated
561 	 * ext4_ext_get_block() returns the create = 0
562 	 * with buffer head unmapped.
563 	 */
564 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565 		/*
566 		 * If we need to convert extent to unwritten
567 		 * we continue and do the actual work in
568 		 * ext4_ext_map_blocks()
569 		 */
570 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571 			return retval;
572 
573 	/*
574 	 * Here we clear m_flags because after allocating an new extent,
575 	 * it will be set again.
576 	 */
577 	map->m_flags &= ~EXT4_MAP_FLAGS;
578 
579 	/*
580 	 * New blocks allocate and/or writing to unwritten extent
581 	 * will possibly result in updating i_data, so we take
582 	 * the write lock of i_data_sem, and call get_block()
583 	 * with create == 1 flag.
584 	 */
585 	down_write(&EXT4_I(inode)->i_data_sem);
586 
587 	/*
588 	 * We need to check for EXT4 here because migrate
589 	 * could have changed the inode type in between
590 	 */
591 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
593 	} else {
594 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
595 
596 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597 			/*
598 			 * We allocated new blocks which will result in
599 			 * i_data's format changing.  Force the migrate
600 			 * to fail by clearing migrate flags
601 			 */
602 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603 		}
604 
605 		/*
606 		 * Update reserved blocks/metadata blocks after successful
607 		 * block allocation which had been deferred till now. We don't
608 		 * support fallocate for non extent files. So we can update
609 		 * reserve space here.
610 		 */
611 		if ((retval > 0) &&
612 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613 			ext4_da_update_reserve_space(inode, retval, 1);
614 	}
615 
616 	if (retval > 0) {
617 		unsigned int status;
618 
619 		if (unlikely(retval != map->m_len)) {
620 			ext4_warning(inode->i_sb,
621 				     "ES len assertion failed for inode "
622 				     "%lu: retval %d != map->m_len %d",
623 				     inode->i_ino, retval, map->m_len);
624 			WARN_ON(1);
625 		}
626 
627 		/*
628 		 * If the extent has been zeroed out, we don't need to update
629 		 * extent status tree.
630 		 */
631 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633 			if (ext4_es_is_written(&es))
634 				goto has_zeroout;
635 		}
636 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639 		    !(status & EXTENT_STATUS_WRITTEN) &&
640 		    ext4_find_delalloc_range(inode, map->m_lblk,
641 					     map->m_lblk + map->m_len - 1))
642 			status |= EXTENT_STATUS_DELAYED;
643 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644 					    map->m_pblk, status);
645 		if (ret < 0)
646 			retval = ret;
647 	}
648 
649 has_zeroout:
650 	up_write((&EXT4_I(inode)->i_data_sem));
651 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652 		ret = check_block_validity(inode, map);
653 		if (ret != 0)
654 			return ret;
655 	}
656 	return retval;
657 }
658 
659 /* Maximum number of blocks we map for direct IO at once. */
660 #define DIO_MAX_BLOCKS 4096
661 
662 static int _ext4_get_block(struct inode *inode, sector_t iblock,
663 			   struct buffer_head *bh, int flags)
664 {
665 	handle_t *handle = ext4_journal_current_handle();
666 	struct ext4_map_blocks map;
667 	int ret = 0, started = 0;
668 	int dio_credits;
669 
670 	if (ext4_has_inline_data(inode))
671 		return -ERANGE;
672 
673 	map.m_lblk = iblock;
674 	map.m_len = bh->b_size >> inode->i_blkbits;
675 
676 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
677 		/* Direct IO write... */
678 		if (map.m_len > DIO_MAX_BLOCKS)
679 			map.m_len = DIO_MAX_BLOCKS;
680 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
681 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
682 					    dio_credits);
683 		if (IS_ERR(handle)) {
684 			ret = PTR_ERR(handle);
685 			return ret;
686 		}
687 		started = 1;
688 	}
689 
690 	ret = ext4_map_blocks(handle, inode, &map, flags);
691 	if (ret > 0) {
692 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
693 
694 		map_bh(bh, inode->i_sb, map.m_pblk);
695 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
696 		if (IS_DAX(inode) && buffer_unwritten(bh)) {
697 			/*
698 			 * dgc: I suspect unwritten conversion on ext4+DAX is
699 			 * fundamentally broken here when there are concurrent
700 			 * read/write in progress on this inode.
701 			 */
702 			WARN_ON_ONCE(io_end);
703 			bh->b_assoc_map = inode->i_mapping;
704 			bh->b_private = (void *)(unsigned long)iblock;
705 		}
706 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
707 			set_buffer_defer_completion(bh);
708 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
709 		ret = 0;
710 	}
711 	if (started)
712 		ext4_journal_stop(handle);
713 	return ret;
714 }
715 
716 int ext4_get_block(struct inode *inode, sector_t iblock,
717 		   struct buffer_head *bh, int create)
718 {
719 	return _ext4_get_block(inode, iblock, bh,
720 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
721 }
722 
723 /*
724  * `handle' can be NULL if create is zero
725  */
726 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
727 				ext4_lblk_t block, int map_flags)
728 {
729 	struct ext4_map_blocks map;
730 	struct buffer_head *bh;
731 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
732 	int err;
733 
734 	J_ASSERT(handle != NULL || create == 0);
735 
736 	map.m_lblk = block;
737 	map.m_len = 1;
738 	err = ext4_map_blocks(handle, inode, &map, map_flags);
739 
740 	if (err == 0)
741 		return create ? ERR_PTR(-ENOSPC) : NULL;
742 	if (err < 0)
743 		return ERR_PTR(err);
744 
745 	bh = sb_getblk(inode->i_sb, map.m_pblk);
746 	if (unlikely(!bh))
747 		return ERR_PTR(-ENOMEM);
748 	if (map.m_flags & EXT4_MAP_NEW) {
749 		J_ASSERT(create != 0);
750 		J_ASSERT(handle != NULL);
751 
752 		/*
753 		 * Now that we do not always journal data, we should
754 		 * keep in mind whether this should always journal the
755 		 * new buffer as metadata.  For now, regular file
756 		 * writes use ext4_get_block instead, so it's not a
757 		 * problem.
758 		 */
759 		lock_buffer(bh);
760 		BUFFER_TRACE(bh, "call get_create_access");
761 		err = ext4_journal_get_create_access(handle, bh);
762 		if (unlikely(err)) {
763 			unlock_buffer(bh);
764 			goto errout;
765 		}
766 		if (!buffer_uptodate(bh)) {
767 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
768 			set_buffer_uptodate(bh);
769 		}
770 		unlock_buffer(bh);
771 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
772 		err = ext4_handle_dirty_metadata(handle, inode, bh);
773 		if (unlikely(err))
774 			goto errout;
775 	} else
776 		BUFFER_TRACE(bh, "not a new buffer");
777 	return bh;
778 errout:
779 	brelse(bh);
780 	return ERR_PTR(err);
781 }
782 
783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
784 			       ext4_lblk_t block, int map_flags)
785 {
786 	struct buffer_head *bh;
787 
788 	bh = ext4_getblk(handle, inode, block, map_flags);
789 	if (IS_ERR(bh))
790 		return bh;
791 	if (!bh || buffer_uptodate(bh))
792 		return bh;
793 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
794 	wait_on_buffer(bh);
795 	if (buffer_uptodate(bh))
796 		return bh;
797 	put_bh(bh);
798 	return ERR_PTR(-EIO);
799 }
800 
801 int ext4_walk_page_buffers(handle_t *handle,
802 			   struct buffer_head *head,
803 			   unsigned from,
804 			   unsigned to,
805 			   int *partial,
806 			   int (*fn)(handle_t *handle,
807 				     struct buffer_head *bh))
808 {
809 	struct buffer_head *bh;
810 	unsigned block_start, block_end;
811 	unsigned blocksize = head->b_size;
812 	int err, ret = 0;
813 	struct buffer_head *next;
814 
815 	for (bh = head, block_start = 0;
816 	     ret == 0 && (bh != head || !block_start);
817 	     block_start = block_end, bh = next) {
818 		next = bh->b_this_page;
819 		block_end = block_start + blocksize;
820 		if (block_end <= from || block_start >= to) {
821 			if (partial && !buffer_uptodate(bh))
822 				*partial = 1;
823 			continue;
824 		}
825 		err = (*fn)(handle, bh);
826 		if (!ret)
827 			ret = err;
828 	}
829 	return ret;
830 }
831 
832 /*
833  * To preserve ordering, it is essential that the hole instantiation and
834  * the data write be encapsulated in a single transaction.  We cannot
835  * close off a transaction and start a new one between the ext4_get_block()
836  * and the commit_write().  So doing the jbd2_journal_start at the start of
837  * prepare_write() is the right place.
838  *
839  * Also, this function can nest inside ext4_writepage().  In that case, we
840  * *know* that ext4_writepage() has generated enough buffer credits to do the
841  * whole page.  So we won't block on the journal in that case, which is good,
842  * because the caller may be PF_MEMALLOC.
843  *
844  * By accident, ext4 can be reentered when a transaction is open via
845  * quota file writes.  If we were to commit the transaction while thus
846  * reentered, there can be a deadlock - we would be holding a quota
847  * lock, and the commit would never complete if another thread had a
848  * transaction open and was blocking on the quota lock - a ranking
849  * violation.
850  *
851  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
852  * will _not_ run commit under these circumstances because handle->h_ref
853  * is elevated.  We'll still have enough credits for the tiny quotafile
854  * write.
855  */
856 int do_journal_get_write_access(handle_t *handle,
857 				struct buffer_head *bh)
858 {
859 	int dirty = buffer_dirty(bh);
860 	int ret;
861 
862 	if (!buffer_mapped(bh) || buffer_freed(bh))
863 		return 0;
864 	/*
865 	 * __block_write_begin() could have dirtied some buffers. Clean
866 	 * the dirty bit as jbd2_journal_get_write_access() could complain
867 	 * otherwise about fs integrity issues. Setting of the dirty bit
868 	 * by __block_write_begin() isn't a real problem here as we clear
869 	 * the bit before releasing a page lock and thus writeback cannot
870 	 * ever write the buffer.
871 	 */
872 	if (dirty)
873 		clear_buffer_dirty(bh);
874 	BUFFER_TRACE(bh, "get write access");
875 	ret = ext4_journal_get_write_access(handle, bh);
876 	if (!ret && dirty)
877 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878 	return ret;
879 }
880 
881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882 		   struct buffer_head *bh_result, int create);
883 
884 #ifdef CONFIG_EXT4_FS_ENCRYPTION
885 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
886 				  get_block_t *get_block)
887 {
888 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
889 	unsigned to = from + len;
890 	struct inode *inode = page->mapping->host;
891 	unsigned block_start, block_end;
892 	sector_t block;
893 	int err = 0;
894 	unsigned blocksize = inode->i_sb->s_blocksize;
895 	unsigned bbits;
896 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
897 	bool decrypt = false;
898 
899 	BUG_ON(!PageLocked(page));
900 	BUG_ON(from > PAGE_CACHE_SIZE);
901 	BUG_ON(to > PAGE_CACHE_SIZE);
902 	BUG_ON(from > to);
903 
904 	if (!page_has_buffers(page))
905 		create_empty_buffers(page, blocksize, 0);
906 	head = page_buffers(page);
907 	bbits = ilog2(blocksize);
908 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
909 
910 	for (bh = head, block_start = 0; bh != head || !block_start;
911 	    block++, block_start = block_end, bh = bh->b_this_page) {
912 		block_end = block_start + blocksize;
913 		if (block_end <= from || block_start >= to) {
914 			if (PageUptodate(page)) {
915 				if (!buffer_uptodate(bh))
916 					set_buffer_uptodate(bh);
917 			}
918 			continue;
919 		}
920 		if (buffer_new(bh))
921 			clear_buffer_new(bh);
922 		if (!buffer_mapped(bh)) {
923 			WARN_ON(bh->b_size != blocksize);
924 			err = get_block(inode, block, bh, 1);
925 			if (err)
926 				break;
927 			if (buffer_new(bh)) {
928 				unmap_underlying_metadata(bh->b_bdev,
929 							  bh->b_blocknr);
930 				if (PageUptodate(page)) {
931 					clear_buffer_new(bh);
932 					set_buffer_uptodate(bh);
933 					mark_buffer_dirty(bh);
934 					continue;
935 				}
936 				if (block_end > to || block_start < from)
937 					zero_user_segments(page, to, block_end,
938 							   block_start, from);
939 				continue;
940 			}
941 		}
942 		if (PageUptodate(page)) {
943 			if (!buffer_uptodate(bh))
944 				set_buffer_uptodate(bh);
945 			continue;
946 		}
947 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
948 		    !buffer_unwritten(bh) &&
949 		    (block_start < from || block_end > to)) {
950 			ll_rw_block(READ, 1, &bh);
951 			*wait_bh++ = bh;
952 			decrypt = ext4_encrypted_inode(inode) &&
953 				S_ISREG(inode->i_mode);
954 		}
955 	}
956 	/*
957 	 * If we issued read requests, let them complete.
958 	 */
959 	while (wait_bh > wait) {
960 		wait_on_buffer(*--wait_bh);
961 		if (!buffer_uptodate(*wait_bh))
962 			err = -EIO;
963 	}
964 	if (unlikely(err))
965 		page_zero_new_buffers(page, from, to);
966 	else if (decrypt)
967 		err = ext4_decrypt_one(inode, page);
968 	return err;
969 }
970 #endif
971 
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973 			    loff_t pos, unsigned len, unsigned flags,
974 			    struct page **pagep, void **fsdata)
975 {
976 	struct inode *inode = mapping->host;
977 	int ret, needed_blocks;
978 	handle_t *handle;
979 	int retries = 0;
980 	struct page *page;
981 	pgoff_t index;
982 	unsigned from, to;
983 
984 	trace_ext4_write_begin(inode, pos, len, flags);
985 	/*
986 	 * Reserve one block more for addition to orphan list in case
987 	 * we allocate blocks but write fails for some reason
988 	 */
989 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990 	index = pos >> PAGE_CACHE_SHIFT;
991 	from = pos & (PAGE_CACHE_SIZE - 1);
992 	to = from + len;
993 
994 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996 						    flags, pagep);
997 		if (ret < 0)
998 			return ret;
999 		if (ret == 1)
1000 			return 0;
1001 	}
1002 
1003 	/*
1004 	 * grab_cache_page_write_begin() can take a long time if the
1005 	 * system is thrashing due to memory pressure, or if the page
1006 	 * is being written back.  So grab it first before we start
1007 	 * the transaction handle.  This also allows us to allocate
1008 	 * the page (if needed) without using GFP_NOFS.
1009 	 */
1010 retry_grab:
1011 	page = grab_cache_page_write_begin(mapping, index, flags);
1012 	if (!page)
1013 		return -ENOMEM;
1014 	unlock_page(page);
1015 
1016 retry_journal:
1017 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018 	if (IS_ERR(handle)) {
1019 		page_cache_release(page);
1020 		return PTR_ERR(handle);
1021 	}
1022 
1023 	lock_page(page);
1024 	if (page->mapping != mapping) {
1025 		/* The page got truncated from under us */
1026 		unlock_page(page);
1027 		page_cache_release(page);
1028 		ext4_journal_stop(handle);
1029 		goto retry_grab;
1030 	}
1031 	/* In case writeback began while the page was unlocked */
1032 	wait_for_stable_page(page);
1033 
1034 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1035 	if (ext4_should_dioread_nolock(inode))
1036 		ret = ext4_block_write_begin(page, pos, len,
1037 					     ext4_get_block_write);
1038 	else
1039 		ret = ext4_block_write_begin(page, pos, len,
1040 					     ext4_get_block);
1041 #else
1042 	if (ext4_should_dioread_nolock(inode))
1043 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1044 	else
1045 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1046 #endif
1047 	if (!ret && ext4_should_journal_data(inode)) {
1048 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1049 					     from, to, NULL,
1050 					     do_journal_get_write_access);
1051 	}
1052 
1053 	if (ret) {
1054 		unlock_page(page);
1055 		/*
1056 		 * __block_write_begin may have instantiated a few blocks
1057 		 * outside i_size.  Trim these off again. Don't need
1058 		 * i_size_read because we hold i_mutex.
1059 		 *
1060 		 * Add inode to orphan list in case we crash before
1061 		 * truncate finishes
1062 		 */
1063 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1064 			ext4_orphan_add(handle, inode);
1065 
1066 		ext4_journal_stop(handle);
1067 		if (pos + len > inode->i_size) {
1068 			ext4_truncate_failed_write(inode);
1069 			/*
1070 			 * If truncate failed early the inode might
1071 			 * still be on the orphan list; we need to
1072 			 * make sure the inode is removed from the
1073 			 * orphan list in that case.
1074 			 */
1075 			if (inode->i_nlink)
1076 				ext4_orphan_del(NULL, inode);
1077 		}
1078 
1079 		if (ret == -ENOSPC &&
1080 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1081 			goto retry_journal;
1082 		page_cache_release(page);
1083 		return ret;
1084 	}
1085 	*pagep = page;
1086 	return ret;
1087 }
1088 
1089 /* For write_end() in data=journal mode */
1090 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1091 {
1092 	int ret;
1093 	if (!buffer_mapped(bh) || buffer_freed(bh))
1094 		return 0;
1095 	set_buffer_uptodate(bh);
1096 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1097 	clear_buffer_meta(bh);
1098 	clear_buffer_prio(bh);
1099 	return ret;
1100 }
1101 
1102 /*
1103  * We need to pick up the new inode size which generic_commit_write gave us
1104  * `file' can be NULL - eg, when called from page_symlink().
1105  *
1106  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1107  * buffers are managed internally.
1108  */
1109 static int ext4_write_end(struct file *file,
1110 			  struct address_space *mapping,
1111 			  loff_t pos, unsigned len, unsigned copied,
1112 			  struct page *page, void *fsdata)
1113 {
1114 	handle_t *handle = ext4_journal_current_handle();
1115 	struct inode *inode = mapping->host;
1116 	loff_t old_size = inode->i_size;
1117 	int ret = 0, ret2;
1118 	int i_size_changed = 0;
1119 
1120 	trace_ext4_write_end(inode, pos, len, copied);
1121 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1122 		ret = ext4_jbd2_file_inode(handle, inode);
1123 		if (ret) {
1124 			unlock_page(page);
1125 			page_cache_release(page);
1126 			goto errout;
1127 		}
1128 	}
1129 
1130 	if (ext4_has_inline_data(inode)) {
1131 		ret = ext4_write_inline_data_end(inode, pos, len,
1132 						 copied, page);
1133 		if (ret < 0)
1134 			goto errout;
1135 		copied = ret;
1136 	} else
1137 		copied = block_write_end(file, mapping, pos,
1138 					 len, copied, page, fsdata);
1139 	/*
1140 	 * it's important to update i_size while still holding page lock:
1141 	 * page writeout could otherwise come in and zero beyond i_size.
1142 	 */
1143 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1144 	unlock_page(page);
1145 	page_cache_release(page);
1146 
1147 	if (old_size < pos)
1148 		pagecache_isize_extended(inode, old_size, pos);
1149 	/*
1150 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1151 	 * makes the holding time of page lock longer. Second, it forces lock
1152 	 * ordering of page lock and transaction start for journaling
1153 	 * filesystems.
1154 	 */
1155 	if (i_size_changed)
1156 		ext4_mark_inode_dirty(handle, inode);
1157 
1158 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1159 		/* if we have allocated more blocks and copied
1160 		 * less. We will have blocks allocated outside
1161 		 * inode->i_size. So truncate them
1162 		 */
1163 		ext4_orphan_add(handle, inode);
1164 errout:
1165 	ret2 = ext4_journal_stop(handle);
1166 	if (!ret)
1167 		ret = ret2;
1168 
1169 	if (pos + len > inode->i_size) {
1170 		ext4_truncate_failed_write(inode);
1171 		/*
1172 		 * If truncate failed early the inode might still be
1173 		 * on the orphan list; we need to make sure the inode
1174 		 * is removed from the orphan list in that case.
1175 		 */
1176 		if (inode->i_nlink)
1177 			ext4_orphan_del(NULL, inode);
1178 	}
1179 
1180 	return ret ? ret : copied;
1181 }
1182 
1183 static int ext4_journalled_write_end(struct file *file,
1184 				     struct address_space *mapping,
1185 				     loff_t pos, unsigned len, unsigned copied,
1186 				     struct page *page, void *fsdata)
1187 {
1188 	handle_t *handle = ext4_journal_current_handle();
1189 	struct inode *inode = mapping->host;
1190 	loff_t old_size = inode->i_size;
1191 	int ret = 0, ret2;
1192 	int partial = 0;
1193 	unsigned from, to;
1194 	int size_changed = 0;
1195 
1196 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1197 	from = pos & (PAGE_CACHE_SIZE - 1);
1198 	to = from + len;
1199 
1200 	BUG_ON(!ext4_handle_valid(handle));
1201 
1202 	if (ext4_has_inline_data(inode))
1203 		copied = ext4_write_inline_data_end(inode, pos, len,
1204 						    copied, page);
1205 	else {
1206 		if (copied < len) {
1207 			if (!PageUptodate(page))
1208 				copied = 0;
1209 			page_zero_new_buffers(page, from+copied, to);
1210 		}
1211 
1212 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1213 					     to, &partial, write_end_fn);
1214 		if (!partial)
1215 			SetPageUptodate(page);
1216 	}
1217 	size_changed = ext4_update_inode_size(inode, pos + copied);
1218 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1219 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1220 	unlock_page(page);
1221 	page_cache_release(page);
1222 
1223 	if (old_size < pos)
1224 		pagecache_isize_extended(inode, old_size, pos);
1225 
1226 	if (size_changed) {
1227 		ret2 = ext4_mark_inode_dirty(handle, inode);
1228 		if (!ret)
1229 			ret = ret2;
1230 	}
1231 
1232 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1233 		/* if we have allocated more blocks and copied
1234 		 * less. We will have blocks allocated outside
1235 		 * inode->i_size. So truncate them
1236 		 */
1237 		ext4_orphan_add(handle, inode);
1238 
1239 	ret2 = ext4_journal_stop(handle);
1240 	if (!ret)
1241 		ret = ret2;
1242 	if (pos + len > inode->i_size) {
1243 		ext4_truncate_failed_write(inode);
1244 		/*
1245 		 * If truncate failed early the inode might still be
1246 		 * on the orphan list; we need to make sure the inode
1247 		 * is removed from the orphan list in that case.
1248 		 */
1249 		if (inode->i_nlink)
1250 			ext4_orphan_del(NULL, inode);
1251 	}
1252 
1253 	return ret ? ret : copied;
1254 }
1255 
1256 /*
1257  * Reserve space for a single cluster
1258  */
1259 static int ext4_da_reserve_space(struct inode *inode)
1260 {
1261 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1262 	struct ext4_inode_info *ei = EXT4_I(inode);
1263 	int ret;
1264 
1265 	/*
1266 	 * We will charge metadata quota at writeout time; this saves
1267 	 * us from metadata over-estimation, though we may go over by
1268 	 * a small amount in the end.  Here we just reserve for data.
1269 	 */
1270 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1271 	if (ret)
1272 		return ret;
1273 
1274 	spin_lock(&ei->i_block_reservation_lock);
1275 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1276 		spin_unlock(&ei->i_block_reservation_lock);
1277 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1278 		return -ENOSPC;
1279 	}
1280 	ei->i_reserved_data_blocks++;
1281 	trace_ext4_da_reserve_space(inode);
1282 	spin_unlock(&ei->i_block_reservation_lock);
1283 
1284 	return 0;       /* success */
1285 }
1286 
1287 static void ext4_da_release_space(struct inode *inode, int to_free)
1288 {
1289 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1290 	struct ext4_inode_info *ei = EXT4_I(inode);
1291 
1292 	if (!to_free)
1293 		return;		/* Nothing to release, exit */
1294 
1295 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1296 
1297 	trace_ext4_da_release_space(inode, to_free);
1298 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1299 		/*
1300 		 * if there aren't enough reserved blocks, then the
1301 		 * counter is messed up somewhere.  Since this
1302 		 * function is called from invalidate page, it's
1303 		 * harmless to return without any action.
1304 		 */
1305 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1306 			 "ino %lu, to_free %d with only %d reserved "
1307 			 "data blocks", inode->i_ino, to_free,
1308 			 ei->i_reserved_data_blocks);
1309 		WARN_ON(1);
1310 		to_free = ei->i_reserved_data_blocks;
1311 	}
1312 	ei->i_reserved_data_blocks -= to_free;
1313 
1314 	/* update fs dirty data blocks counter */
1315 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1316 
1317 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1318 
1319 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1320 }
1321 
1322 static void ext4_da_page_release_reservation(struct page *page,
1323 					     unsigned int offset,
1324 					     unsigned int length)
1325 {
1326 	int to_release = 0;
1327 	struct buffer_head *head, *bh;
1328 	unsigned int curr_off = 0;
1329 	struct inode *inode = page->mapping->host;
1330 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1331 	unsigned int stop = offset + length;
1332 	int num_clusters;
1333 	ext4_fsblk_t lblk;
1334 
1335 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1336 
1337 	head = page_buffers(page);
1338 	bh = head;
1339 	do {
1340 		unsigned int next_off = curr_off + bh->b_size;
1341 
1342 		if (next_off > stop)
1343 			break;
1344 
1345 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1346 			to_release++;
1347 			clear_buffer_delay(bh);
1348 		}
1349 		curr_off = next_off;
1350 	} while ((bh = bh->b_this_page) != head);
1351 
1352 	if (to_release) {
1353 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1354 		ext4_es_remove_extent(inode, lblk, to_release);
1355 	}
1356 
1357 	/* If we have released all the blocks belonging to a cluster, then we
1358 	 * need to release the reserved space for that cluster. */
1359 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1360 	while (num_clusters > 0) {
1361 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1362 			((num_clusters - 1) << sbi->s_cluster_bits);
1363 		if (sbi->s_cluster_ratio == 1 ||
1364 		    !ext4_find_delalloc_cluster(inode, lblk))
1365 			ext4_da_release_space(inode, 1);
1366 
1367 		num_clusters--;
1368 	}
1369 }
1370 
1371 /*
1372  * Delayed allocation stuff
1373  */
1374 
1375 struct mpage_da_data {
1376 	struct inode *inode;
1377 	struct writeback_control *wbc;
1378 
1379 	pgoff_t first_page;	/* The first page to write */
1380 	pgoff_t next_page;	/* Current page to examine */
1381 	pgoff_t last_page;	/* Last page to examine */
1382 	/*
1383 	 * Extent to map - this can be after first_page because that can be
1384 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1385 	 * is delalloc or unwritten.
1386 	 */
1387 	struct ext4_map_blocks map;
1388 	struct ext4_io_submit io_submit;	/* IO submission data */
1389 };
1390 
1391 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1392 				       bool invalidate)
1393 {
1394 	int nr_pages, i;
1395 	pgoff_t index, end;
1396 	struct pagevec pvec;
1397 	struct inode *inode = mpd->inode;
1398 	struct address_space *mapping = inode->i_mapping;
1399 
1400 	/* This is necessary when next_page == 0. */
1401 	if (mpd->first_page >= mpd->next_page)
1402 		return;
1403 
1404 	index = mpd->first_page;
1405 	end   = mpd->next_page - 1;
1406 	if (invalidate) {
1407 		ext4_lblk_t start, last;
1408 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1409 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1410 		ext4_es_remove_extent(inode, start, last - start + 1);
1411 	}
1412 
1413 	pagevec_init(&pvec, 0);
1414 	while (index <= end) {
1415 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1416 		if (nr_pages == 0)
1417 			break;
1418 		for (i = 0; i < nr_pages; i++) {
1419 			struct page *page = pvec.pages[i];
1420 			if (page->index > end)
1421 				break;
1422 			BUG_ON(!PageLocked(page));
1423 			BUG_ON(PageWriteback(page));
1424 			if (invalidate) {
1425 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1426 				ClearPageUptodate(page);
1427 			}
1428 			unlock_page(page);
1429 		}
1430 		index = pvec.pages[nr_pages - 1]->index + 1;
1431 		pagevec_release(&pvec);
1432 	}
1433 }
1434 
1435 static void ext4_print_free_blocks(struct inode *inode)
1436 {
1437 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1438 	struct super_block *sb = inode->i_sb;
1439 	struct ext4_inode_info *ei = EXT4_I(inode);
1440 
1441 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1442 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1443 			ext4_count_free_clusters(sb)));
1444 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1445 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1446 	       (long long) EXT4_C2B(EXT4_SB(sb),
1447 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1448 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1449 	       (long long) EXT4_C2B(EXT4_SB(sb),
1450 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1451 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1452 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1453 		 ei->i_reserved_data_blocks);
1454 	return;
1455 }
1456 
1457 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1458 {
1459 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1460 }
1461 
1462 /*
1463  * This function is grabs code from the very beginning of
1464  * ext4_map_blocks, but assumes that the caller is from delayed write
1465  * time. This function looks up the requested blocks and sets the
1466  * buffer delay bit under the protection of i_data_sem.
1467  */
1468 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1469 			      struct ext4_map_blocks *map,
1470 			      struct buffer_head *bh)
1471 {
1472 	struct extent_status es;
1473 	int retval;
1474 	sector_t invalid_block = ~((sector_t) 0xffff);
1475 #ifdef ES_AGGRESSIVE_TEST
1476 	struct ext4_map_blocks orig_map;
1477 
1478 	memcpy(&orig_map, map, sizeof(*map));
1479 #endif
1480 
1481 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1482 		invalid_block = ~0;
1483 
1484 	map->m_flags = 0;
1485 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1486 		  "logical block %lu\n", inode->i_ino, map->m_len,
1487 		  (unsigned long) map->m_lblk);
1488 
1489 	/* Lookup extent status tree firstly */
1490 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1491 		if (ext4_es_is_hole(&es)) {
1492 			retval = 0;
1493 			down_read(&EXT4_I(inode)->i_data_sem);
1494 			goto add_delayed;
1495 		}
1496 
1497 		/*
1498 		 * Delayed extent could be allocated by fallocate.
1499 		 * So we need to check it.
1500 		 */
1501 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1502 			map_bh(bh, inode->i_sb, invalid_block);
1503 			set_buffer_new(bh);
1504 			set_buffer_delay(bh);
1505 			return 0;
1506 		}
1507 
1508 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1509 		retval = es.es_len - (iblock - es.es_lblk);
1510 		if (retval > map->m_len)
1511 			retval = map->m_len;
1512 		map->m_len = retval;
1513 		if (ext4_es_is_written(&es))
1514 			map->m_flags |= EXT4_MAP_MAPPED;
1515 		else if (ext4_es_is_unwritten(&es))
1516 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1517 		else
1518 			BUG_ON(1);
1519 
1520 #ifdef ES_AGGRESSIVE_TEST
1521 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1522 #endif
1523 		return retval;
1524 	}
1525 
1526 	/*
1527 	 * Try to see if we can get the block without requesting a new
1528 	 * file system block.
1529 	 */
1530 	down_read(&EXT4_I(inode)->i_data_sem);
1531 	if (ext4_has_inline_data(inode))
1532 		retval = 0;
1533 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1534 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1535 	else
1536 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1537 
1538 add_delayed:
1539 	if (retval == 0) {
1540 		int ret;
1541 		/*
1542 		 * XXX: __block_prepare_write() unmaps passed block,
1543 		 * is it OK?
1544 		 */
1545 		/*
1546 		 * If the block was allocated from previously allocated cluster,
1547 		 * then we don't need to reserve it again. However we still need
1548 		 * to reserve metadata for every block we're going to write.
1549 		 */
1550 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1551 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1552 			ret = ext4_da_reserve_space(inode);
1553 			if (ret) {
1554 				/* not enough space to reserve */
1555 				retval = ret;
1556 				goto out_unlock;
1557 			}
1558 		}
1559 
1560 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1561 					    ~0, EXTENT_STATUS_DELAYED);
1562 		if (ret) {
1563 			retval = ret;
1564 			goto out_unlock;
1565 		}
1566 
1567 		map_bh(bh, inode->i_sb, invalid_block);
1568 		set_buffer_new(bh);
1569 		set_buffer_delay(bh);
1570 	} else if (retval > 0) {
1571 		int ret;
1572 		unsigned int status;
1573 
1574 		if (unlikely(retval != map->m_len)) {
1575 			ext4_warning(inode->i_sb,
1576 				     "ES len assertion failed for inode "
1577 				     "%lu: retval %d != map->m_len %d",
1578 				     inode->i_ino, retval, map->m_len);
1579 			WARN_ON(1);
1580 		}
1581 
1582 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1583 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1584 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1585 					    map->m_pblk, status);
1586 		if (ret != 0)
1587 			retval = ret;
1588 	}
1589 
1590 out_unlock:
1591 	up_read((&EXT4_I(inode)->i_data_sem));
1592 
1593 	return retval;
1594 }
1595 
1596 /*
1597  * This is a special get_block_t callback which is used by
1598  * ext4_da_write_begin().  It will either return mapped block or
1599  * reserve space for a single block.
1600  *
1601  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1602  * We also have b_blocknr = -1 and b_bdev initialized properly
1603  *
1604  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1605  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1606  * initialized properly.
1607  */
1608 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1609 			   struct buffer_head *bh, int create)
1610 {
1611 	struct ext4_map_blocks map;
1612 	int ret = 0;
1613 
1614 	BUG_ON(create == 0);
1615 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1616 
1617 	map.m_lblk = iblock;
1618 	map.m_len = 1;
1619 
1620 	/*
1621 	 * first, we need to know whether the block is allocated already
1622 	 * preallocated blocks are unmapped but should treated
1623 	 * the same as allocated blocks.
1624 	 */
1625 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1626 	if (ret <= 0)
1627 		return ret;
1628 
1629 	map_bh(bh, inode->i_sb, map.m_pblk);
1630 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1631 
1632 	if (buffer_unwritten(bh)) {
1633 		/* A delayed write to unwritten bh should be marked
1634 		 * new and mapped.  Mapped ensures that we don't do
1635 		 * get_block multiple times when we write to the same
1636 		 * offset and new ensures that we do proper zero out
1637 		 * for partial write.
1638 		 */
1639 		set_buffer_new(bh);
1640 		set_buffer_mapped(bh);
1641 	}
1642 	return 0;
1643 }
1644 
1645 static int bget_one(handle_t *handle, struct buffer_head *bh)
1646 {
1647 	get_bh(bh);
1648 	return 0;
1649 }
1650 
1651 static int bput_one(handle_t *handle, struct buffer_head *bh)
1652 {
1653 	put_bh(bh);
1654 	return 0;
1655 }
1656 
1657 static int __ext4_journalled_writepage(struct page *page,
1658 				       unsigned int len)
1659 {
1660 	struct address_space *mapping = page->mapping;
1661 	struct inode *inode = mapping->host;
1662 	struct buffer_head *page_bufs = NULL;
1663 	handle_t *handle = NULL;
1664 	int ret = 0, err = 0;
1665 	int inline_data = ext4_has_inline_data(inode);
1666 	struct buffer_head *inode_bh = NULL;
1667 
1668 	ClearPageChecked(page);
1669 
1670 	if (inline_data) {
1671 		BUG_ON(page->index != 0);
1672 		BUG_ON(len > ext4_get_max_inline_size(inode));
1673 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1674 		if (inode_bh == NULL)
1675 			goto out;
1676 	} else {
1677 		page_bufs = page_buffers(page);
1678 		if (!page_bufs) {
1679 			BUG();
1680 			goto out;
1681 		}
1682 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1683 				       NULL, bget_one);
1684 	}
1685 	/*
1686 	 * We need to release the page lock before we start the
1687 	 * journal, so grab a reference so the page won't disappear
1688 	 * out from under us.
1689 	 */
1690 	get_page(page);
1691 	unlock_page(page);
1692 
1693 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1694 				    ext4_writepage_trans_blocks(inode));
1695 	if (IS_ERR(handle)) {
1696 		ret = PTR_ERR(handle);
1697 		put_page(page);
1698 		goto out_no_pagelock;
1699 	}
1700 	BUG_ON(!ext4_handle_valid(handle));
1701 
1702 	lock_page(page);
1703 	put_page(page);
1704 	if (page->mapping != mapping) {
1705 		/* The page got truncated from under us */
1706 		ext4_journal_stop(handle);
1707 		ret = 0;
1708 		goto out;
1709 	}
1710 
1711 	if (inline_data) {
1712 		BUFFER_TRACE(inode_bh, "get write access");
1713 		ret = ext4_journal_get_write_access(handle, inode_bh);
1714 
1715 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1716 
1717 	} else {
1718 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1719 					     do_journal_get_write_access);
1720 
1721 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1722 					     write_end_fn);
1723 	}
1724 	if (ret == 0)
1725 		ret = err;
1726 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1727 	err = ext4_journal_stop(handle);
1728 	if (!ret)
1729 		ret = err;
1730 
1731 	if (!ext4_has_inline_data(inode))
1732 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1733 				       NULL, bput_one);
1734 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1735 out:
1736 	unlock_page(page);
1737 out_no_pagelock:
1738 	brelse(inode_bh);
1739 	return ret;
1740 }
1741 
1742 /*
1743  * Note that we don't need to start a transaction unless we're journaling data
1744  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1745  * need to file the inode to the transaction's list in ordered mode because if
1746  * we are writing back data added by write(), the inode is already there and if
1747  * we are writing back data modified via mmap(), no one guarantees in which
1748  * transaction the data will hit the disk. In case we are journaling data, we
1749  * cannot start transaction directly because transaction start ranks above page
1750  * lock so we have to do some magic.
1751  *
1752  * This function can get called via...
1753  *   - ext4_writepages after taking page lock (have journal handle)
1754  *   - journal_submit_inode_data_buffers (no journal handle)
1755  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1756  *   - grab_page_cache when doing write_begin (have journal handle)
1757  *
1758  * We don't do any block allocation in this function. If we have page with
1759  * multiple blocks we need to write those buffer_heads that are mapped. This
1760  * is important for mmaped based write. So if we do with blocksize 1K
1761  * truncate(f, 1024);
1762  * a = mmap(f, 0, 4096);
1763  * a[0] = 'a';
1764  * truncate(f, 4096);
1765  * we have in the page first buffer_head mapped via page_mkwrite call back
1766  * but other buffer_heads would be unmapped but dirty (dirty done via the
1767  * do_wp_page). So writepage should write the first block. If we modify
1768  * the mmap area beyond 1024 we will again get a page_fault and the
1769  * page_mkwrite callback will do the block allocation and mark the
1770  * buffer_heads mapped.
1771  *
1772  * We redirty the page if we have any buffer_heads that is either delay or
1773  * unwritten in the page.
1774  *
1775  * We can get recursively called as show below.
1776  *
1777  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1778  *		ext4_writepage()
1779  *
1780  * But since we don't do any block allocation we should not deadlock.
1781  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1782  */
1783 static int ext4_writepage(struct page *page,
1784 			  struct writeback_control *wbc)
1785 {
1786 	int ret = 0;
1787 	loff_t size;
1788 	unsigned int len;
1789 	struct buffer_head *page_bufs = NULL;
1790 	struct inode *inode = page->mapping->host;
1791 	struct ext4_io_submit io_submit;
1792 	bool keep_towrite = false;
1793 
1794 	trace_ext4_writepage(page);
1795 	size = i_size_read(inode);
1796 	if (page->index == size >> PAGE_CACHE_SHIFT)
1797 		len = size & ~PAGE_CACHE_MASK;
1798 	else
1799 		len = PAGE_CACHE_SIZE;
1800 
1801 	page_bufs = page_buffers(page);
1802 	/*
1803 	 * We cannot do block allocation or other extent handling in this
1804 	 * function. If there are buffers needing that, we have to redirty
1805 	 * the page. But we may reach here when we do a journal commit via
1806 	 * journal_submit_inode_data_buffers() and in that case we must write
1807 	 * allocated buffers to achieve data=ordered mode guarantees.
1808 	 */
1809 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1810 				   ext4_bh_delay_or_unwritten)) {
1811 		redirty_page_for_writepage(wbc, page);
1812 		if (current->flags & PF_MEMALLOC) {
1813 			/*
1814 			 * For memory cleaning there's no point in writing only
1815 			 * some buffers. So just bail out. Warn if we came here
1816 			 * from direct reclaim.
1817 			 */
1818 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1819 							== PF_MEMALLOC);
1820 			unlock_page(page);
1821 			return 0;
1822 		}
1823 		keep_towrite = true;
1824 	}
1825 
1826 	if (PageChecked(page) && ext4_should_journal_data(inode))
1827 		/*
1828 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1829 		 * doesn't seem much point in redirtying the page here.
1830 		 */
1831 		return __ext4_journalled_writepage(page, len);
1832 
1833 	ext4_io_submit_init(&io_submit, wbc);
1834 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1835 	if (!io_submit.io_end) {
1836 		redirty_page_for_writepage(wbc, page);
1837 		unlock_page(page);
1838 		return -ENOMEM;
1839 	}
1840 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1841 	ext4_io_submit(&io_submit);
1842 	/* Drop io_end reference we got from init */
1843 	ext4_put_io_end_defer(io_submit.io_end);
1844 	return ret;
1845 }
1846 
1847 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1848 {
1849 	int len;
1850 	loff_t size = i_size_read(mpd->inode);
1851 	int err;
1852 
1853 	BUG_ON(page->index != mpd->first_page);
1854 	if (page->index == size >> PAGE_CACHE_SHIFT)
1855 		len = size & ~PAGE_CACHE_MASK;
1856 	else
1857 		len = PAGE_CACHE_SIZE;
1858 	clear_page_dirty_for_io(page);
1859 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1860 	if (!err)
1861 		mpd->wbc->nr_to_write--;
1862 	mpd->first_page++;
1863 
1864 	return err;
1865 }
1866 
1867 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1868 
1869 /*
1870  * mballoc gives us at most this number of blocks...
1871  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1872  * The rest of mballoc seems to handle chunks up to full group size.
1873  */
1874 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1875 
1876 /*
1877  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1878  *
1879  * @mpd - extent of blocks
1880  * @lblk - logical number of the block in the file
1881  * @bh - buffer head we want to add to the extent
1882  *
1883  * The function is used to collect contig. blocks in the same state. If the
1884  * buffer doesn't require mapping for writeback and we haven't started the
1885  * extent of buffers to map yet, the function returns 'true' immediately - the
1886  * caller can write the buffer right away. Otherwise the function returns true
1887  * if the block has been added to the extent, false if the block couldn't be
1888  * added.
1889  */
1890 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1891 				   struct buffer_head *bh)
1892 {
1893 	struct ext4_map_blocks *map = &mpd->map;
1894 
1895 	/* Buffer that doesn't need mapping for writeback? */
1896 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1897 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1898 		/* So far no extent to map => we write the buffer right away */
1899 		if (map->m_len == 0)
1900 			return true;
1901 		return false;
1902 	}
1903 
1904 	/* First block in the extent? */
1905 	if (map->m_len == 0) {
1906 		map->m_lblk = lblk;
1907 		map->m_len = 1;
1908 		map->m_flags = bh->b_state & BH_FLAGS;
1909 		return true;
1910 	}
1911 
1912 	/* Don't go larger than mballoc is willing to allocate */
1913 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1914 		return false;
1915 
1916 	/* Can we merge the block to our big extent? */
1917 	if (lblk == map->m_lblk + map->m_len &&
1918 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1919 		map->m_len++;
1920 		return true;
1921 	}
1922 	return false;
1923 }
1924 
1925 /*
1926  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1927  *
1928  * @mpd - extent of blocks for mapping
1929  * @head - the first buffer in the page
1930  * @bh - buffer we should start processing from
1931  * @lblk - logical number of the block in the file corresponding to @bh
1932  *
1933  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1934  * the page for IO if all buffers in this page were mapped and there's no
1935  * accumulated extent of buffers to map or add buffers in the page to the
1936  * extent of buffers to map. The function returns 1 if the caller can continue
1937  * by processing the next page, 0 if it should stop adding buffers to the
1938  * extent to map because we cannot extend it anymore. It can also return value
1939  * < 0 in case of error during IO submission.
1940  */
1941 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1942 				   struct buffer_head *head,
1943 				   struct buffer_head *bh,
1944 				   ext4_lblk_t lblk)
1945 {
1946 	struct inode *inode = mpd->inode;
1947 	int err;
1948 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1949 							>> inode->i_blkbits;
1950 
1951 	do {
1952 		BUG_ON(buffer_locked(bh));
1953 
1954 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1955 			/* Found extent to map? */
1956 			if (mpd->map.m_len)
1957 				return 0;
1958 			/* Everything mapped so far and we hit EOF */
1959 			break;
1960 		}
1961 	} while (lblk++, (bh = bh->b_this_page) != head);
1962 	/* So far everything mapped? Submit the page for IO. */
1963 	if (mpd->map.m_len == 0) {
1964 		err = mpage_submit_page(mpd, head->b_page);
1965 		if (err < 0)
1966 			return err;
1967 	}
1968 	return lblk < blocks;
1969 }
1970 
1971 /*
1972  * mpage_map_buffers - update buffers corresponding to changed extent and
1973  *		       submit fully mapped pages for IO
1974  *
1975  * @mpd - description of extent to map, on return next extent to map
1976  *
1977  * Scan buffers corresponding to changed extent (we expect corresponding pages
1978  * to be already locked) and update buffer state according to new extent state.
1979  * We map delalloc buffers to their physical location, clear unwritten bits,
1980  * and mark buffers as uninit when we perform writes to unwritten extents
1981  * and do extent conversion after IO is finished. If the last page is not fully
1982  * mapped, we update @map to the next extent in the last page that needs
1983  * mapping. Otherwise we submit the page for IO.
1984  */
1985 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1986 {
1987 	struct pagevec pvec;
1988 	int nr_pages, i;
1989 	struct inode *inode = mpd->inode;
1990 	struct buffer_head *head, *bh;
1991 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1992 	pgoff_t start, end;
1993 	ext4_lblk_t lblk;
1994 	sector_t pblock;
1995 	int err;
1996 
1997 	start = mpd->map.m_lblk >> bpp_bits;
1998 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1999 	lblk = start << bpp_bits;
2000 	pblock = mpd->map.m_pblk;
2001 
2002 	pagevec_init(&pvec, 0);
2003 	while (start <= end) {
2004 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2005 					  PAGEVEC_SIZE);
2006 		if (nr_pages == 0)
2007 			break;
2008 		for (i = 0; i < nr_pages; i++) {
2009 			struct page *page = pvec.pages[i];
2010 
2011 			if (page->index > end)
2012 				break;
2013 			/* Up to 'end' pages must be contiguous */
2014 			BUG_ON(page->index != start);
2015 			bh = head = page_buffers(page);
2016 			do {
2017 				if (lblk < mpd->map.m_lblk)
2018 					continue;
2019 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2020 					/*
2021 					 * Buffer after end of mapped extent.
2022 					 * Find next buffer in the page to map.
2023 					 */
2024 					mpd->map.m_len = 0;
2025 					mpd->map.m_flags = 0;
2026 					/*
2027 					 * FIXME: If dioread_nolock supports
2028 					 * blocksize < pagesize, we need to make
2029 					 * sure we add size mapped so far to
2030 					 * io_end->size as the following call
2031 					 * can submit the page for IO.
2032 					 */
2033 					err = mpage_process_page_bufs(mpd, head,
2034 								      bh, lblk);
2035 					pagevec_release(&pvec);
2036 					if (err > 0)
2037 						err = 0;
2038 					return err;
2039 				}
2040 				if (buffer_delay(bh)) {
2041 					clear_buffer_delay(bh);
2042 					bh->b_blocknr = pblock++;
2043 				}
2044 				clear_buffer_unwritten(bh);
2045 			} while (lblk++, (bh = bh->b_this_page) != head);
2046 
2047 			/*
2048 			 * FIXME: This is going to break if dioread_nolock
2049 			 * supports blocksize < pagesize as we will try to
2050 			 * convert potentially unmapped parts of inode.
2051 			 */
2052 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2053 			/* Page fully mapped - let IO run! */
2054 			err = mpage_submit_page(mpd, page);
2055 			if (err < 0) {
2056 				pagevec_release(&pvec);
2057 				return err;
2058 			}
2059 			start++;
2060 		}
2061 		pagevec_release(&pvec);
2062 	}
2063 	/* Extent fully mapped and matches with page boundary. We are done. */
2064 	mpd->map.m_len = 0;
2065 	mpd->map.m_flags = 0;
2066 	return 0;
2067 }
2068 
2069 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2070 {
2071 	struct inode *inode = mpd->inode;
2072 	struct ext4_map_blocks *map = &mpd->map;
2073 	int get_blocks_flags;
2074 	int err, dioread_nolock;
2075 
2076 	trace_ext4_da_write_pages_extent(inode, map);
2077 	/*
2078 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2079 	 * to convert an unwritten extent to be initialized (in the case
2080 	 * where we have written into one or more preallocated blocks).  It is
2081 	 * possible that we're going to need more metadata blocks than
2082 	 * previously reserved. However we must not fail because we're in
2083 	 * writeback and there is nothing we can do about it so it might result
2084 	 * in data loss.  So use reserved blocks to allocate metadata if
2085 	 * possible.
2086 	 *
2087 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2088 	 * the blocks in question are delalloc blocks.  This indicates
2089 	 * that the blocks and quotas has already been checked when
2090 	 * the data was copied into the page cache.
2091 	 */
2092 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2093 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2094 	dioread_nolock = ext4_should_dioread_nolock(inode);
2095 	if (dioread_nolock)
2096 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2097 	if (map->m_flags & (1 << BH_Delay))
2098 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2099 
2100 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2101 	if (err < 0)
2102 		return err;
2103 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2104 		if (!mpd->io_submit.io_end->handle &&
2105 		    ext4_handle_valid(handle)) {
2106 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2107 			handle->h_rsv_handle = NULL;
2108 		}
2109 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2110 	}
2111 
2112 	BUG_ON(map->m_len == 0);
2113 	if (map->m_flags & EXT4_MAP_NEW) {
2114 		struct block_device *bdev = inode->i_sb->s_bdev;
2115 		int i;
2116 
2117 		for (i = 0; i < map->m_len; i++)
2118 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2119 	}
2120 	return 0;
2121 }
2122 
2123 /*
2124  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2125  *				 mpd->len and submit pages underlying it for IO
2126  *
2127  * @handle - handle for journal operations
2128  * @mpd - extent to map
2129  * @give_up_on_write - we set this to true iff there is a fatal error and there
2130  *                     is no hope of writing the data. The caller should discard
2131  *                     dirty pages to avoid infinite loops.
2132  *
2133  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2134  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2135  * them to initialized or split the described range from larger unwritten
2136  * extent. Note that we need not map all the described range since allocation
2137  * can return less blocks or the range is covered by more unwritten extents. We
2138  * cannot map more because we are limited by reserved transaction credits. On
2139  * the other hand we always make sure that the last touched page is fully
2140  * mapped so that it can be written out (and thus forward progress is
2141  * guaranteed). After mapping we submit all mapped pages for IO.
2142  */
2143 static int mpage_map_and_submit_extent(handle_t *handle,
2144 				       struct mpage_da_data *mpd,
2145 				       bool *give_up_on_write)
2146 {
2147 	struct inode *inode = mpd->inode;
2148 	struct ext4_map_blocks *map = &mpd->map;
2149 	int err;
2150 	loff_t disksize;
2151 	int progress = 0;
2152 
2153 	mpd->io_submit.io_end->offset =
2154 				((loff_t)map->m_lblk) << inode->i_blkbits;
2155 	do {
2156 		err = mpage_map_one_extent(handle, mpd);
2157 		if (err < 0) {
2158 			struct super_block *sb = inode->i_sb;
2159 
2160 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2161 				goto invalidate_dirty_pages;
2162 			/*
2163 			 * Let the uper layers retry transient errors.
2164 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2165 			 * is non-zero, a commit should free up blocks.
2166 			 */
2167 			if ((err == -ENOMEM) ||
2168 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2169 				if (progress)
2170 					goto update_disksize;
2171 				return err;
2172 			}
2173 			ext4_msg(sb, KERN_CRIT,
2174 				 "Delayed block allocation failed for "
2175 				 "inode %lu at logical offset %llu with"
2176 				 " max blocks %u with error %d",
2177 				 inode->i_ino,
2178 				 (unsigned long long)map->m_lblk,
2179 				 (unsigned)map->m_len, -err);
2180 			ext4_msg(sb, KERN_CRIT,
2181 				 "This should not happen!! Data will "
2182 				 "be lost\n");
2183 			if (err == -ENOSPC)
2184 				ext4_print_free_blocks(inode);
2185 		invalidate_dirty_pages:
2186 			*give_up_on_write = true;
2187 			return err;
2188 		}
2189 		progress = 1;
2190 		/*
2191 		 * Update buffer state, submit mapped pages, and get us new
2192 		 * extent to map
2193 		 */
2194 		err = mpage_map_and_submit_buffers(mpd);
2195 		if (err < 0)
2196 			goto update_disksize;
2197 	} while (map->m_len);
2198 
2199 update_disksize:
2200 	/*
2201 	 * Update on-disk size after IO is submitted.  Races with
2202 	 * truncate are avoided by checking i_size under i_data_sem.
2203 	 */
2204 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2205 	if (disksize > EXT4_I(inode)->i_disksize) {
2206 		int err2;
2207 		loff_t i_size;
2208 
2209 		down_write(&EXT4_I(inode)->i_data_sem);
2210 		i_size = i_size_read(inode);
2211 		if (disksize > i_size)
2212 			disksize = i_size;
2213 		if (disksize > EXT4_I(inode)->i_disksize)
2214 			EXT4_I(inode)->i_disksize = disksize;
2215 		err2 = ext4_mark_inode_dirty(handle, inode);
2216 		up_write(&EXT4_I(inode)->i_data_sem);
2217 		if (err2)
2218 			ext4_error(inode->i_sb,
2219 				   "Failed to mark inode %lu dirty",
2220 				   inode->i_ino);
2221 		if (!err)
2222 			err = err2;
2223 	}
2224 	return err;
2225 }
2226 
2227 /*
2228  * Calculate the total number of credits to reserve for one writepages
2229  * iteration. This is called from ext4_writepages(). We map an extent of
2230  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2231  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2232  * bpp - 1 blocks in bpp different extents.
2233  */
2234 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2235 {
2236 	int bpp = ext4_journal_blocks_per_page(inode);
2237 
2238 	return ext4_meta_trans_blocks(inode,
2239 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2240 }
2241 
2242 /*
2243  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2244  * 				 and underlying extent to map
2245  *
2246  * @mpd - where to look for pages
2247  *
2248  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2249  * IO immediately. When we find a page which isn't mapped we start accumulating
2250  * extent of buffers underlying these pages that needs mapping (formed by
2251  * either delayed or unwritten buffers). We also lock the pages containing
2252  * these buffers. The extent found is returned in @mpd structure (starting at
2253  * mpd->lblk with length mpd->len blocks).
2254  *
2255  * Note that this function can attach bios to one io_end structure which are
2256  * neither logically nor physically contiguous. Although it may seem as an
2257  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2258  * case as we need to track IO to all buffers underlying a page in one io_end.
2259  */
2260 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2261 {
2262 	struct address_space *mapping = mpd->inode->i_mapping;
2263 	struct pagevec pvec;
2264 	unsigned int nr_pages;
2265 	long left = mpd->wbc->nr_to_write;
2266 	pgoff_t index = mpd->first_page;
2267 	pgoff_t end = mpd->last_page;
2268 	int tag;
2269 	int i, err = 0;
2270 	int blkbits = mpd->inode->i_blkbits;
2271 	ext4_lblk_t lblk;
2272 	struct buffer_head *head;
2273 
2274 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2275 		tag = PAGECACHE_TAG_TOWRITE;
2276 	else
2277 		tag = PAGECACHE_TAG_DIRTY;
2278 
2279 	pagevec_init(&pvec, 0);
2280 	mpd->map.m_len = 0;
2281 	mpd->next_page = index;
2282 	while (index <= end) {
2283 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2284 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2285 		if (nr_pages == 0)
2286 			goto out;
2287 
2288 		for (i = 0; i < nr_pages; i++) {
2289 			struct page *page = pvec.pages[i];
2290 
2291 			/*
2292 			 * At this point, the page may be truncated or
2293 			 * invalidated (changing page->mapping to NULL), or
2294 			 * even swizzled back from swapper_space to tmpfs file
2295 			 * mapping. However, page->index will not change
2296 			 * because we have a reference on the page.
2297 			 */
2298 			if (page->index > end)
2299 				goto out;
2300 
2301 			/*
2302 			 * Accumulated enough dirty pages? This doesn't apply
2303 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2304 			 * keep going because someone may be concurrently
2305 			 * dirtying pages, and we might have synced a lot of
2306 			 * newly appeared dirty pages, but have not synced all
2307 			 * of the old dirty pages.
2308 			 */
2309 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2310 				goto out;
2311 
2312 			/* If we can't merge this page, we are done. */
2313 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2314 				goto out;
2315 
2316 			lock_page(page);
2317 			/*
2318 			 * If the page is no longer dirty, or its mapping no
2319 			 * longer corresponds to inode we are writing (which
2320 			 * means it has been truncated or invalidated), or the
2321 			 * page is already under writeback and we are not doing
2322 			 * a data integrity writeback, skip the page
2323 			 */
2324 			if (!PageDirty(page) ||
2325 			    (PageWriteback(page) &&
2326 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2327 			    unlikely(page->mapping != mapping)) {
2328 				unlock_page(page);
2329 				continue;
2330 			}
2331 
2332 			wait_on_page_writeback(page);
2333 			BUG_ON(PageWriteback(page));
2334 
2335 			if (mpd->map.m_len == 0)
2336 				mpd->first_page = page->index;
2337 			mpd->next_page = page->index + 1;
2338 			/* Add all dirty buffers to mpd */
2339 			lblk = ((ext4_lblk_t)page->index) <<
2340 				(PAGE_CACHE_SHIFT - blkbits);
2341 			head = page_buffers(page);
2342 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2343 			if (err <= 0)
2344 				goto out;
2345 			err = 0;
2346 			left--;
2347 		}
2348 		pagevec_release(&pvec);
2349 		cond_resched();
2350 	}
2351 	return 0;
2352 out:
2353 	pagevec_release(&pvec);
2354 	return err;
2355 }
2356 
2357 static int __writepage(struct page *page, struct writeback_control *wbc,
2358 		       void *data)
2359 {
2360 	struct address_space *mapping = data;
2361 	int ret = ext4_writepage(page, wbc);
2362 	mapping_set_error(mapping, ret);
2363 	return ret;
2364 }
2365 
2366 static int ext4_writepages(struct address_space *mapping,
2367 			   struct writeback_control *wbc)
2368 {
2369 	pgoff_t	writeback_index = 0;
2370 	long nr_to_write = wbc->nr_to_write;
2371 	int range_whole = 0;
2372 	int cycled = 1;
2373 	handle_t *handle = NULL;
2374 	struct mpage_da_data mpd;
2375 	struct inode *inode = mapping->host;
2376 	int needed_blocks, rsv_blocks = 0, ret = 0;
2377 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2378 	bool done;
2379 	struct blk_plug plug;
2380 	bool give_up_on_write = false;
2381 
2382 	trace_ext4_writepages(inode, wbc);
2383 
2384 	/*
2385 	 * No pages to write? This is mainly a kludge to avoid starting
2386 	 * a transaction for special inodes like journal inode on last iput()
2387 	 * because that could violate lock ordering on umount
2388 	 */
2389 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2390 		goto out_writepages;
2391 
2392 	if (ext4_should_journal_data(inode)) {
2393 		struct blk_plug plug;
2394 
2395 		blk_start_plug(&plug);
2396 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2397 		blk_finish_plug(&plug);
2398 		goto out_writepages;
2399 	}
2400 
2401 	/*
2402 	 * If the filesystem has aborted, it is read-only, so return
2403 	 * right away instead of dumping stack traces later on that
2404 	 * will obscure the real source of the problem.  We test
2405 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2406 	 * the latter could be true if the filesystem is mounted
2407 	 * read-only, and in that case, ext4_writepages should
2408 	 * *never* be called, so if that ever happens, we would want
2409 	 * the stack trace.
2410 	 */
2411 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2412 		ret = -EROFS;
2413 		goto out_writepages;
2414 	}
2415 
2416 	if (ext4_should_dioread_nolock(inode)) {
2417 		/*
2418 		 * We may need to convert up to one extent per block in
2419 		 * the page and we may dirty the inode.
2420 		 */
2421 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2422 	}
2423 
2424 	/*
2425 	 * If we have inline data and arrive here, it means that
2426 	 * we will soon create the block for the 1st page, so
2427 	 * we'd better clear the inline data here.
2428 	 */
2429 	if (ext4_has_inline_data(inode)) {
2430 		/* Just inode will be modified... */
2431 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2432 		if (IS_ERR(handle)) {
2433 			ret = PTR_ERR(handle);
2434 			goto out_writepages;
2435 		}
2436 		BUG_ON(ext4_test_inode_state(inode,
2437 				EXT4_STATE_MAY_INLINE_DATA));
2438 		ext4_destroy_inline_data(handle, inode);
2439 		ext4_journal_stop(handle);
2440 	}
2441 
2442 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2443 		range_whole = 1;
2444 
2445 	if (wbc->range_cyclic) {
2446 		writeback_index = mapping->writeback_index;
2447 		if (writeback_index)
2448 			cycled = 0;
2449 		mpd.first_page = writeback_index;
2450 		mpd.last_page = -1;
2451 	} else {
2452 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2453 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2454 	}
2455 
2456 	mpd.inode = inode;
2457 	mpd.wbc = wbc;
2458 	ext4_io_submit_init(&mpd.io_submit, wbc);
2459 retry:
2460 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2461 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2462 	done = false;
2463 	blk_start_plug(&plug);
2464 	while (!done && mpd.first_page <= mpd.last_page) {
2465 		/* For each extent of pages we use new io_end */
2466 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2467 		if (!mpd.io_submit.io_end) {
2468 			ret = -ENOMEM;
2469 			break;
2470 		}
2471 
2472 		/*
2473 		 * We have two constraints: We find one extent to map and we
2474 		 * must always write out whole page (makes a difference when
2475 		 * blocksize < pagesize) so that we don't block on IO when we
2476 		 * try to write out the rest of the page. Journalled mode is
2477 		 * not supported by delalloc.
2478 		 */
2479 		BUG_ON(ext4_should_journal_data(inode));
2480 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2481 
2482 		/* start a new transaction */
2483 		handle = ext4_journal_start_with_reserve(inode,
2484 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2485 		if (IS_ERR(handle)) {
2486 			ret = PTR_ERR(handle);
2487 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2488 			       "%ld pages, ino %lu; err %d", __func__,
2489 				wbc->nr_to_write, inode->i_ino, ret);
2490 			/* Release allocated io_end */
2491 			ext4_put_io_end(mpd.io_submit.io_end);
2492 			break;
2493 		}
2494 
2495 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2496 		ret = mpage_prepare_extent_to_map(&mpd);
2497 		if (!ret) {
2498 			if (mpd.map.m_len)
2499 				ret = mpage_map_and_submit_extent(handle, &mpd,
2500 					&give_up_on_write);
2501 			else {
2502 				/*
2503 				 * We scanned the whole range (or exhausted
2504 				 * nr_to_write), submitted what was mapped and
2505 				 * didn't find anything needing mapping. We are
2506 				 * done.
2507 				 */
2508 				done = true;
2509 			}
2510 		}
2511 		ext4_journal_stop(handle);
2512 		/* Submit prepared bio */
2513 		ext4_io_submit(&mpd.io_submit);
2514 		/* Unlock pages we didn't use */
2515 		mpage_release_unused_pages(&mpd, give_up_on_write);
2516 		/* Drop our io_end reference we got from init */
2517 		ext4_put_io_end(mpd.io_submit.io_end);
2518 
2519 		if (ret == -ENOSPC && sbi->s_journal) {
2520 			/*
2521 			 * Commit the transaction which would
2522 			 * free blocks released in the transaction
2523 			 * and try again
2524 			 */
2525 			jbd2_journal_force_commit_nested(sbi->s_journal);
2526 			ret = 0;
2527 			continue;
2528 		}
2529 		/* Fatal error - ENOMEM, EIO... */
2530 		if (ret)
2531 			break;
2532 	}
2533 	blk_finish_plug(&plug);
2534 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2535 		cycled = 1;
2536 		mpd.last_page = writeback_index - 1;
2537 		mpd.first_page = 0;
2538 		goto retry;
2539 	}
2540 
2541 	/* Update index */
2542 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2543 		/*
2544 		 * Set the writeback_index so that range_cyclic
2545 		 * mode will write it back later
2546 		 */
2547 		mapping->writeback_index = mpd.first_page;
2548 
2549 out_writepages:
2550 	trace_ext4_writepages_result(inode, wbc, ret,
2551 				     nr_to_write - wbc->nr_to_write);
2552 	return ret;
2553 }
2554 
2555 static int ext4_nonda_switch(struct super_block *sb)
2556 {
2557 	s64 free_clusters, dirty_clusters;
2558 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2559 
2560 	/*
2561 	 * switch to non delalloc mode if we are running low
2562 	 * on free block. The free block accounting via percpu
2563 	 * counters can get slightly wrong with percpu_counter_batch getting
2564 	 * accumulated on each CPU without updating global counters
2565 	 * Delalloc need an accurate free block accounting. So switch
2566 	 * to non delalloc when we are near to error range.
2567 	 */
2568 	free_clusters =
2569 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2570 	dirty_clusters =
2571 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2572 	/*
2573 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2574 	 */
2575 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2576 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2577 
2578 	if (2 * free_clusters < 3 * dirty_clusters ||
2579 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2580 		/*
2581 		 * free block count is less than 150% of dirty blocks
2582 		 * or free blocks is less than watermark
2583 		 */
2584 		return 1;
2585 	}
2586 	return 0;
2587 }
2588 
2589 /* We always reserve for an inode update; the superblock could be there too */
2590 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2591 {
2592 	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2593 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2594 		return 1;
2595 
2596 	if (pos + len <= 0x7fffffffULL)
2597 		return 1;
2598 
2599 	/* We might need to update the superblock to set LARGE_FILE */
2600 	return 2;
2601 }
2602 
2603 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2604 			       loff_t pos, unsigned len, unsigned flags,
2605 			       struct page **pagep, void **fsdata)
2606 {
2607 	int ret, retries = 0;
2608 	struct page *page;
2609 	pgoff_t index;
2610 	struct inode *inode = mapping->host;
2611 	handle_t *handle;
2612 
2613 	index = pos >> PAGE_CACHE_SHIFT;
2614 
2615 	if (ext4_nonda_switch(inode->i_sb)) {
2616 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2617 		return ext4_write_begin(file, mapping, pos,
2618 					len, flags, pagep, fsdata);
2619 	}
2620 	*fsdata = (void *)0;
2621 	trace_ext4_da_write_begin(inode, pos, len, flags);
2622 
2623 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2624 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2625 						      pos, len, flags,
2626 						      pagep, fsdata);
2627 		if (ret < 0)
2628 			return ret;
2629 		if (ret == 1)
2630 			return 0;
2631 	}
2632 
2633 	/*
2634 	 * grab_cache_page_write_begin() can take a long time if the
2635 	 * system is thrashing due to memory pressure, or if the page
2636 	 * is being written back.  So grab it first before we start
2637 	 * the transaction handle.  This also allows us to allocate
2638 	 * the page (if needed) without using GFP_NOFS.
2639 	 */
2640 retry_grab:
2641 	page = grab_cache_page_write_begin(mapping, index, flags);
2642 	if (!page)
2643 		return -ENOMEM;
2644 	unlock_page(page);
2645 
2646 	/*
2647 	 * With delayed allocation, we don't log the i_disksize update
2648 	 * if there is delayed block allocation. But we still need
2649 	 * to journalling the i_disksize update if writes to the end
2650 	 * of file which has an already mapped buffer.
2651 	 */
2652 retry_journal:
2653 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2654 				ext4_da_write_credits(inode, pos, len));
2655 	if (IS_ERR(handle)) {
2656 		page_cache_release(page);
2657 		return PTR_ERR(handle);
2658 	}
2659 
2660 	lock_page(page);
2661 	if (page->mapping != mapping) {
2662 		/* The page got truncated from under us */
2663 		unlock_page(page);
2664 		page_cache_release(page);
2665 		ext4_journal_stop(handle);
2666 		goto retry_grab;
2667 	}
2668 	/* In case writeback began while the page was unlocked */
2669 	wait_for_stable_page(page);
2670 
2671 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2672 	ret = ext4_block_write_begin(page, pos, len,
2673 				     ext4_da_get_block_prep);
2674 #else
2675 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2676 #endif
2677 	if (ret < 0) {
2678 		unlock_page(page);
2679 		ext4_journal_stop(handle);
2680 		/*
2681 		 * block_write_begin may have instantiated a few blocks
2682 		 * outside i_size.  Trim these off again. Don't need
2683 		 * i_size_read because we hold i_mutex.
2684 		 */
2685 		if (pos + len > inode->i_size)
2686 			ext4_truncate_failed_write(inode);
2687 
2688 		if (ret == -ENOSPC &&
2689 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2690 			goto retry_journal;
2691 
2692 		page_cache_release(page);
2693 		return ret;
2694 	}
2695 
2696 	*pagep = page;
2697 	return ret;
2698 }
2699 
2700 /*
2701  * Check if we should update i_disksize
2702  * when write to the end of file but not require block allocation
2703  */
2704 static int ext4_da_should_update_i_disksize(struct page *page,
2705 					    unsigned long offset)
2706 {
2707 	struct buffer_head *bh;
2708 	struct inode *inode = page->mapping->host;
2709 	unsigned int idx;
2710 	int i;
2711 
2712 	bh = page_buffers(page);
2713 	idx = offset >> inode->i_blkbits;
2714 
2715 	for (i = 0; i < idx; i++)
2716 		bh = bh->b_this_page;
2717 
2718 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2719 		return 0;
2720 	return 1;
2721 }
2722 
2723 static int ext4_da_write_end(struct file *file,
2724 			     struct address_space *mapping,
2725 			     loff_t pos, unsigned len, unsigned copied,
2726 			     struct page *page, void *fsdata)
2727 {
2728 	struct inode *inode = mapping->host;
2729 	int ret = 0, ret2;
2730 	handle_t *handle = ext4_journal_current_handle();
2731 	loff_t new_i_size;
2732 	unsigned long start, end;
2733 	int write_mode = (int)(unsigned long)fsdata;
2734 
2735 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2736 		return ext4_write_end(file, mapping, pos,
2737 				      len, copied, page, fsdata);
2738 
2739 	trace_ext4_da_write_end(inode, pos, len, copied);
2740 	start = pos & (PAGE_CACHE_SIZE - 1);
2741 	end = start + copied - 1;
2742 
2743 	/*
2744 	 * generic_write_end() will run mark_inode_dirty() if i_size
2745 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2746 	 * into that.
2747 	 */
2748 	new_i_size = pos + copied;
2749 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2750 		if (ext4_has_inline_data(inode) ||
2751 		    ext4_da_should_update_i_disksize(page, end)) {
2752 			ext4_update_i_disksize(inode, new_i_size);
2753 			/* We need to mark inode dirty even if
2754 			 * new_i_size is less that inode->i_size
2755 			 * bu greater than i_disksize.(hint delalloc)
2756 			 */
2757 			ext4_mark_inode_dirty(handle, inode);
2758 		}
2759 	}
2760 
2761 	if (write_mode != CONVERT_INLINE_DATA &&
2762 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2763 	    ext4_has_inline_data(inode))
2764 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2765 						     page);
2766 	else
2767 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2768 							page, fsdata);
2769 
2770 	copied = ret2;
2771 	if (ret2 < 0)
2772 		ret = ret2;
2773 	ret2 = ext4_journal_stop(handle);
2774 	if (!ret)
2775 		ret = ret2;
2776 
2777 	return ret ? ret : copied;
2778 }
2779 
2780 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2781 				   unsigned int length)
2782 {
2783 	/*
2784 	 * Drop reserved blocks
2785 	 */
2786 	BUG_ON(!PageLocked(page));
2787 	if (!page_has_buffers(page))
2788 		goto out;
2789 
2790 	ext4_da_page_release_reservation(page, offset, length);
2791 
2792 out:
2793 	ext4_invalidatepage(page, offset, length);
2794 
2795 	return;
2796 }
2797 
2798 /*
2799  * Force all delayed allocation blocks to be allocated for a given inode.
2800  */
2801 int ext4_alloc_da_blocks(struct inode *inode)
2802 {
2803 	trace_ext4_alloc_da_blocks(inode);
2804 
2805 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2806 		return 0;
2807 
2808 	/*
2809 	 * We do something simple for now.  The filemap_flush() will
2810 	 * also start triggering a write of the data blocks, which is
2811 	 * not strictly speaking necessary (and for users of
2812 	 * laptop_mode, not even desirable).  However, to do otherwise
2813 	 * would require replicating code paths in:
2814 	 *
2815 	 * ext4_writepages() ->
2816 	 *    write_cache_pages() ---> (via passed in callback function)
2817 	 *        __mpage_da_writepage() -->
2818 	 *           mpage_add_bh_to_extent()
2819 	 *           mpage_da_map_blocks()
2820 	 *
2821 	 * The problem is that write_cache_pages(), located in
2822 	 * mm/page-writeback.c, marks pages clean in preparation for
2823 	 * doing I/O, which is not desirable if we're not planning on
2824 	 * doing I/O at all.
2825 	 *
2826 	 * We could call write_cache_pages(), and then redirty all of
2827 	 * the pages by calling redirty_page_for_writepage() but that
2828 	 * would be ugly in the extreme.  So instead we would need to
2829 	 * replicate parts of the code in the above functions,
2830 	 * simplifying them because we wouldn't actually intend to
2831 	 * write out the pages, but rather only collect contiguous
2832 	 * logical block extents, call the multi-block allocator, and
2833 	 * then update the buffer heads with the block allocations.
2834 	 *
2835 	 * For now, though, we'll cheat by calling filemap_flush(),
2836 	 * which will map the blocks, and start the I/O, but not
2837 	 * actually wait for the I/O to complete.
2838 	 */
2839 	return filemap_flush(inode->i_mapping);
2840 }
2841 
2842 /*
2843  * bmap() is special.  It gets used by applications such as lilo and by
2844  * the swapper to find the on-disk block of a specific piece of data.
2845  *
2846  * Naturally, this is dangerous if the block concerned is still in the
2847  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2848  * filesystem and enables swap, then they may get a nasty shock when the
2849  * data getting swapped to that swapfile suddenly gets overwritten by
2850  * the original zero's written out previously to the journal and
2851  * awaiting writeback in the kernel's buffer cache.
2852  *
2853  * So, if we see any bmap calls here on a modified, data-journaled file,
2854  * take extra steps to flush any blocks which might be in the cache.
2855  */
2856 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2857 {
2858 	struct inode *inode = mapping->host;
2859 	journal_t *journal;
2860 	int err;
2861 
2862 	/*
2863 	 * We can get here for an inline file via the FIBMAP ioctl
2864 	 */
2865 	if (ext4_has_inline_data(inode))
2866 		return 0;
2867 
2868 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2869 			test_opt(inode->i_sb, DELALLOC)) {
2870 		/*
2871 		 * With delalloc we want to sync the file
2872 		 * so that we can make sure we allocate
2873 		 * blocks for file
2874 		 */
2875 		filemap_write_and_wait(mapping);
2876 	}
2877 
2878 	if (EXT4_JOURNAL(inode) &&
2879 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2880 		/*
2881 		 * This is a REALLY heavyweight approach, but the use of
2882 		 * bmap on dirty files is expected to be extremely rare:
2883 		 * only if we run lilo or swapon on a freshly made file
2884 		 * do we expect this to happen.
2885 		 *
2886 		 * (bmap requires CAP_SYS_RAWIO so this does not
2887 		 * represent an unprivileged user DOS attack --- we'd be
2888 		 * in trouble if mortal users could trigger this path at
2889 		 * will.)
2890 		 *
2891 		 * NB. EXT4_STATE_JDATA is not set on files other than
2892 		 * regular files.  If somebody wants to bmap a directory
2893 		 * or symlink and gets confused because the buffer
2894 		 * hasn't yet been flushed to disk, they deserve
2895 		 * everything they get.
2896 		 */
2897 
2898 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2899 		journal = EXT4_JOURNAL(inode);
2900 		jbd2_journal_lock_updates(journal);
2901 		err = jbd2_journal_flush(journal);
2902 		jbd2_journal_unlock_updates(journal);
2903 
2904 		if (err)
2905 			return 0;
2906 	}
2907 
2908 	return generic_block_bmap(mapping, block, ext4_get_block);
2909 }
2910 
2911 static int ext4_readpage(struct file *file, struct page *page)
2912 {
2913 	int ret = -EAGAIN;
2914 	struct inode *inode = page->mapping->host;
2915 
2916 	trace_ext4_readpage(page);
2917 
2918 	if (ext4_has_inline_data(inode))
2919 		ret = ext4_readpage_inline(inode, page);
2920 
2921 	if (ret == -EAGAIN)
2922 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2923 
2924 	return ret;
2925 }
2926 
2927 static int
2928 ext4_readpages(struct file *file, struct address_space *mapping,
2929 		struct list_head *pages, unsigned nr_pages)
2930 {
2931 	struct inode *inode = mapping->host;
2932 
2933 	/* If the file has inline data, no need to do readpages. */
2934 	if (ext4_has_inline_data(inode))
2935 		return 0;
2936 
2937 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2938 }
2939 
2940 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2941 				unsigned int length)
2942 {
2943 	trace_ext4_invalidatepage(page, offset, length);
2944 
2945 	/* No journalling happens on data buffers when this function is used */
2946 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2947 
2948 	block_invalidatepage(page, offset, length);
2949 }
2950 
2951 static int __ext4_journalled_invalidatepage(struct page *page,
2952 					    unsigned int offset,
2953 					    unsigned int length)
2954 {
2955 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2956 
2957 	trace_ext4_journalled_invalidatepage(page, offset, length);
2958 
2959 	/*
2960 	 * If it's a full truncate we just forget about the pending dirtying
2961 	 */
2962 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2963 		ClearPageChecked(page);
2964 
2965 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2966 }
2967 
2968 /* Wrapper for aops... */
2969 static void ext4_journalled_invalidatepage(struct page *page,
2970 					   unsigned int offset,
2971 					   unsigned int length)
2972 {
2973 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2974 }
2975 
2976 static int ext4_releasepage(struct page *page, gfp_t wait)
2977 {
2978 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2979 
2980 	trace_ext4_releasepage(page);
2981 
2982 	/* Page has dirty journalled data -> cannot release */
2983 	if (PageChecked(page))
2984 		return 0;
2985 	if (journal)
2986 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2987 	else
2988 		return try_to_free_buffers(page);
2989 }
2990 
2991 /*
2992  * ext4_get_block used when preparing for a DIO write or buffer write.
2993  * We allocate an uinitialized extent if blocks haven't been allocated.
2994  * The extent will be converted to initialized after the IO is complete.
2995  */
2996 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2997 		   struct buffer_head *bh_result, int create)
2998 {
2999 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3000 		   inode->i_ino, create);
3001 	return _ext4_get_block(inode, iblock, bh_result,
3002 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3003 }
3004 
3005 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3006 		   struct buffer_head *bh_result, int create)
3007 {
3008 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3009 		   inode->i_ino, create);
3010 	return _ext4_get_block(inode, iblock, bh_result,
3011 			       EXT4_GET_BLOCKS_NO_LOCK);
3012 }
3013 
3014 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3015 			    ssize_t size, void *private)
3016 {
3017         ext4_io_end_t *io_end = iocb->private;
3018 
3019 	/* if not async direct IO just return */
3020 	if (!io_end)
3021 		return;
3022 
3023 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3024 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3025  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3026 		  size);
3027 
3028 	iocb->private = NULL;
3029 	io_end->offset = offset;
3030 	io_end->size = size;
3031 	ext4_put_io_end(io_end);
3032 }
3033 
3034 /*
3035  * For ext4 extent files, ext4 will do direct-io write to holes,
3036  * preallocated extents, and those write extend the file, no need to
3037  * fall back to buffered IO.
3038  *
3039  * For holes, we fallocate those blocks, mark them as unwritten
3040  * If those blocks were preallocated, we mark sure they are split, but
3041  * still keep the range to write as unwritten.
3042  *
3043  * The unwritten extents will be converted to written when DIO is completed.
3044  * For async direct IO, since the IO may still pending when return, we
3045  * set up an end_io call back function, which will do the conversion
3046  * when async direct IO completed.
3047  *
3048  * If the O_DIRECT write will extend the file then add this inode to the
3049  * orphan list.  So recovery will truncate it back to the original size
3050  * if the machine crashes during the write.
3051  *
3052  */
3053 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3054 				  loff_t offset)
3055 {
3056 	struct file *file = iocb->ki_filp;
3057 	struct inode *inode = file->f_mapping->host;
3058 	ssize_t ret;
3059 	size_t count = iov_iter_count(iter);
3060 	int overwrite = 0;
3061 	get_block_t *get_block_func = NULL;
3062 	int dio_flags = 0;
3063 	loff_t final_size = offset + count;
3064 	ext4_io_end_t *io_end = NULL;
3065 
3066 	/* Use the old path for reads and writes beyond i_size. */
3067 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3068 		return ext4_ind_direct_IO(iocb, iter, offset);
3069 
3070 	BUG_ON(iocb->private == NULL);
3071 
3072 	/*
3073 	 * Make all waiters for direct IO properly wait also for extent
3074 	 * conversion. This also disallows race between truncate() and
3075 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3076 	 */
3077 	if (iov_iter_rw(iter) == WRITE)
3078 		inode_dio_begin(inode);
3079 
3080 	/* If we do a overwrite dio, i_mutex locking can be released */
3081 	overwrite = *((int *)iocb->private);
3082 
3083 	if (overwrite) {
3084 		down_read(&EXT4_I(inode)->i_data_sem);
3085 		mutex_unlock(&inode->i_mutex);
3086 	}
3087 
3088 	/*
3089 	 * We could direct write to holes and fallocate.
3090 	 *
3091 	 * Allocated blocks to fill the hole are marked as
3092 	 * unwritten to prevent parallel buffered read to expose
3093 	 * the stale data before DIO complete the data IO.
3094 	 *
3095 	 * As to previously fallocated extents, ext4 get_block will
3096 	 * just simply mark the buffer mapped but still keep the
3097 	 * extents unwritten.
3098 	 *
3099 	 * For non AIO case, we will convert those unwritten extents
3100 	 * to written after return back from blockdev_direct_IO.
3101 	 *
3102 	 * For async DIO, the conversion needs to be deferred when the
3103 	 * IO is completed. The ext4 end_io callback function will be
3104 	 * called to take care of the conversion work.  Here for async
3105 	 * case, we allocate an io_end structure to hook to the iocb.
3106 	 */
3107 	iocb->private = NULL;
3108 	ext4_inode_aio_set(inode, NULL);
3109 	if (!is_sync_kiocb(iocb)) {
3110 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3111 		if (!io_end) {
3112 			ret = -ENOMEM;
3113 			goto retake_lock;
3114 		}
3115 		/*
3116 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3117 		 */
3118 		iocb->private = ext4_get_io_end(io_end);
3119 		/*
3120 		 * we save the io structure for current async direct
3121 		 * IO, so that later ext4_map_blocks() could flag the
3122 		 * io structure whether there is a unwritten extents
3123 		 * needs to be converted when IO is completed.
3124 		 */
3125 		ext4_inode_aio_set(inode, io_end);
3126 	}
3127 
3128 	if (overwrite) {
3129 		get_block_func = ext4_get_block_write_nolock;
3130 	} else {
3131 		get_block_func = ext4_get_block_write;
3132 		dio_flags = DIO_LOCKING;
3133 	}
3134 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3135 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3136 #endif
3137 	if (IS_DAX(inode))
3138 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3139 				ext4_end_io_dio, dio_flags);
3140 	else
3141 		ret = __blockdev_direct_IO(iocb, inode,
3142 					   inode->i_sb->s_bdev, iter, offset,
3143 					   get_block_func,
3144 					   ext4_end_io_dio, NULL, dio_flags);
3145 
3146 	/*
3147 	 * Put our reference to io_end. This can free the io_end structure e.g.
3148 	 * in sync IO case or in case of error. It can even perform extent
3149 	 * conversion if all bios we submitted finished before we got here.
3150 	 * Note that in that case iocb->private can be already set to NULL
3151 	 * here.
3152 	 */
3153 	if (io_end) {
3154 		ext4_inode_aio_set(inode, NULL);
3155 		ext4_put_io_end(io_end);
3156 		/*
3157 		 * When no IO was submitted ext4_end_io_dio() was not
3158 		 * called so we have to put iocb's reference.
3159 		 */
3160 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3161 			WARN_ON(iocb->private != io_end);
3162 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3163 			ext4_put_io_end(io_end);
3164 			iocb->private = NULL;
3165 		}
3166 	}
3167 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3168 						EXT4_STATE_DIO_UNWRITTEN)) {
3169 		int err;
3170 		/*
3171 		 * for non AIO case, since the IO is already
3172 		 * completed, we could do the conversion right here
3173 		 */
3174 		err = ext4_convert_unwritten_extents(NULL, inode,
3175 						     offset, ret);
3176 		if (err < 0)
3177 			ret = err;
3178 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3179 	}
3180 
3181 retake_lock:
3182 	if (iov_iter_rw(iter) == WRITE)
3183 		inode_dio_end(inode);
3184 	/* take i_mutex locking again if we do a ovewrite dio */
3185 	if (overwrite) {
3186 		up_read(&EXT4_I(inode)->i_data_sem);
3187 		mutex_lock(&inode->i_mutex);
3188 	}
3189 
3190 	return ret;
3191 }
3192 
3193 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3194 			      loff_t offset)
3195 {
3196 	struct file *file = iocb->ki_filp;
3197 	struct inode *inode = file->f_mapping->host;
3198 	size_t count = iov_iter_count(iter);
3199 	ssize_t ret;
3200 
3201 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3202 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3203 		return 0;
3204 #endif
3205 
3206 	/*
3207 	 * If we are doing data journalling we don't support O_DIRECT
3208 	 */
3209 	if (ext4_should_journal_data(inode))
3210 		return 0;
3211 
3212 	/* Let buffer I/O handle the inline data case. */
3213 	if (ext4_has_inline_data(inode))
3214 		return 0;
3215 
3216 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3217 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3218 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3219 	else
3220 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3221 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3222 	return ret;
3223 }
3224 
3225 /*
3226  * Pages can be marked dirty completely asynchronously from ext4's journalling
3227  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3228  * much here because ->set_page_dirty is called under VFS locks.  The page is
3229  * not necessarily locked.
3230  *
3231  * We cannot just dirty the page and leave attached buffers clean, because the
3232  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3233  * or jbddirty because all the journalling code will explode.
3234  *
3235  * So what we do is to mark the page "pending dirty" and next time writepage
3236  * is called, propagate that into the buffers appropriately.
3237  */
3238 static int ext4_journalled_set_page_dirty(struct page *page)
3239 {
3240 	SetPageChecked(page);
3241 	return __set_page_dirty_nobuffers(page);
3242 }
3243 
3244 static const struct address_space_operations ext4_aops = {
3245 	.readpage		= ext4_readpage,
3246 	.readpages		= ext4_readpages,
3247 	.writepage		= ext4_writepage,
3248 	.writepages		= ext4_writepages,
3249 	.write_begin		= ext4_write_begin,
3250 	.write_end		= ext4_write_end,
3251 	.bmap			= ext4_bmap,
3252 	.invalidatepage		= ext4_invalidatepage,
3253 	.releasepage		= ext4_releasepage,
3254 	.direct_IO		= ext4_direct_IO,
3255 	.migratepage		= buffer_migrate_page,
3256 	.is_partially_uptodate  = block_is_partially_uptodate,
3257 	.error_remove_page	= generic_error_remove_page,
3258 };
3259 
3260 static const struct address_space_operations ext4_journalled_aops = {
3261 	.readpage		= ext4_readpage,
3262 	.readpages		= ext4_readpages,
3263 	.writepage		= ext4_writepage,
3264 	.writepages		= ext4_writepages,
3265 	.write_begin		= ext4_write_begin,
3266 	.write_end		= ext4_journalled_write_end,
3267 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3268 	.bmap			= ext4_bmap,
3269 	.invalidatepage		= ext4_journalled_invalidatepage,
3270 	.releasepage		= ext4_releasepage,
3271 	.direct_IO		= ext4_direct_IO,
3272 	.is_partially_uptodate  = block_is_partially_uptodate,
3273 	.error_remove_page	= generic_error_remove_page,
3274 };
3275 
3276 static const struct address_space_operations ext4_da_aops = {
3277 	.readpage		= ext4_readpage,
3278 	.readpages		= ext4_readpages,
3279 	.writepage		= ext4_writepage,
3280 	.writepages		= ext4_writepages,
3281 	.write_begin		= ext4_da_write_begin,
3282 	.write_end		= ext4_da_write_end,
3283 	.bmap			= ext4_bmap,
3284 	.invalidatepage		= ext4_da_invalidatepage,
3285 	.releasepage		= ext4_releasepage,
3286 	.direct_IO		= ext4_direct_IO,
3287 	.migratepage		= buffer_migrate_page,
3288 	.is_partially_uptodate  = block_is_partially_uptodate,
3289 	.error_remove_page	= generic_error_remove_page,
3290 };
3291 
3292 void ext4_set_aops(struct inode *inode)
3293 {
3294 	switch (ext4_inode_journal_mode(inode)) {
3295 	case EXT4_INODE_ORDERED_DATA_MODE:
3296 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3297 		break;
3298 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3299 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3300 		break;
3301 	case EXT4_INODE_JOURNAL_DATA_MODE:
3302 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3303 		return;
3304 	default:
3305 		BUG();
3306 	}
3307 	if (test_opt(inode->i_sb, DELALLOC))
3308 		inode->i_mapping->a_ops = &ext4_da_aops;
3309 	else
3310 		inode->i_mapping->a_ops = &ext4_aops;
3311 }
3312 
3313 static int __ext4_block_zero_page_range(handle_t *handle,
3314 		struct address_space *mapping, loff_t from, loff_t length)
3315 {
3316 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3317 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3318 	unsigned blocksize, pos;
3319 	ext4_lblk_t iblock;
3320 	struct inode *inode = mapping->host;
3321 	struct buffer_head *bh;
3322 	struct page *page;
3323 	int err = 0;
3324 
3325 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3326 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3327 	if (!page)
3328 		return -ENOMEM;
3329 
3330 	blocksize = inode->i_sb->s_blocksize;
3331 
3332 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3333 
3334 	if (!page_has_buffers(page))
3335 		create_empty_buffers(page, blocksize, 0);
3336 
3337 	/* Find the buffer that contains "offset" */
3338 	bh = page_buffers(page);
3339 	pos = blocksize;
3340 	while (offset >= pos) {
3341 		bh = bh->b_this_page;
3342 		iblock++;
3343 		pos += blocksize;
3344 	}
3345 	if (buffer_freed(bh)) {
3346 		BUFFER_TRACE(bh, "freed: skip");
3347 		goto unlock;
3348 	}
3349 	if (!buffer_mapped(bh)) {
3350 		BUFFER_TRACE(bh, "unmapped");
3351 		ext4_get_block(inode, iblock, bh, 0);
3352 		/* unmapped? It's a hole - nothing to do */
3353 		if (!buffer_mapped(bh)) {
3354 			BUFFER_TRACE(bh, "still unmapped");
3355 			goto unlock;
3356 		}
3357 	}
3358 
3359 	/* Ok, it's mapped. Make sure it's up-to-date */
3360 	if (PageUptodate(page))
3361 		set_buffer_uptodate(bh);
3362 
3363 	if (!buffer_uptodate(bh)) {
3364 		err = -EIO;
3365 		ll_rw_block(READ, 1, &bh);
3366 		wait_on_buffer(bh);
3367 		/* Uhhuh. Read error. Complain and punt. */
3368 		if (!buffer_uptodate(bh))
3369 			goto unlock;
3370 		if (S_ISREG(inode->i_mode) &&
3371 		    ext4_encrypted_inode(inode)) {
3372 			/* We expect the key to be set. */
3373 			BUG_ON(!ext4_has_encryption_key(inode));
3374 			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3375 			WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3376 		}
3377 	}
3378 	if (ext4_should_journal_data(inode)) {
3379 		BUFFER_TRACE(bh, "get write access");
3380 		err = ext4_journal_get_write_access(handle, bh);
3381 		if (err)
3382 			goto unlock;
3383 	}
3384 	zero_user(page, offset, length);
3385 	BUFFER_TRACE(bh, "zeroed end of block");
3386 
3387 	if (ext4_should_journal_data(inode)) {
3388 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3389 	} else {
3390 		err = 0;
3391 		mark_buffer_dirty(bh);
3392 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3393 			err = ext4_jbd2_file_inode(handle, inode);
3394 	}
3395 
3396 unlock:
3397 	unlock_page(page);
3398 	page_cache_release(page);
3399 	return err;
3400 }
3401 
3402 /*
3403  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3404  * starting from file offset 'from'.  The range to be zero'd must
3405  * be contained with in one block.  If the specified range exceeds
3406  * the end of the block it will be shortened to end of the block
3407  * that cooresponds to 'from'
3408  */
3409 static int ext4_block_zero_page_range(handle_t *handle,
3410 		struct address_space *mapping, loff_t from, loff_t length)
3411 {
3412 	struct inode *inode = mapping->host;
3413 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3414 	unsigned blocksize = inode->i_sb->s_blocksize;
3415 	unsigned max = blocksize - (offset & (blocksize - 1));
3416 
3417 	/*
3418 	 * correct length if it does not fall between
3419 	 * 'from' and the end of the block
3420 	 */
3421 	if (length > max || length < 0)
3422 		length = max;
3423 
3424 	if (IS_DAX(inode))
3425 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3426 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3427 }
3428 
3429 /*
3430  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3431  * up to the end of the block which corresponds to `from'.
3432  * This required during truncate. We need to physically zero the tail end
3433  * of that block so it doesn't yield old data if the file is later grown.
3434  */
3435 static int ext4_block_truncate_page(handle_t *handle,
3436 		struct address_space *mapping, loff_t from)
3437 {
3438 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3439 	unsigned length;
3440 	unsigned blocksize;
3441 	struct inode *inode = mapping->host;
3442 
3443 	blocksize = inode->i_sb->s_blocksize;
3444 	length = blocksize - (offset & (blocksize - 1));
3445 
3446 	return ext4_block_zero_page_range(handle, mapping, from, length);
3447 }
3448 
3449 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3450 			     loff_t lstart, loff_t length)
3451 {
3452 	struct super_block *sb = inode->i_sb;
3453 	struct address_space *mapping = inode->i_mapping;
3454 	unsigned partial_start, partial_end;
3455 	ext4_fsblk_t start, end;
3456 	loff_t byte_end = (lstart + length - 1);
3457 	int err = 0;
3458 
3459 	partial_start = lstart & (sb->s_blocksize - 1);
3460 	partial_end = byte_end & (sb->s_blocksize - 1);
3461 
3462 	start = lstart >> sb->s_blocksize_bits;
3463 	end = byte_end >> sb->s_blocksize_bits;
3464 
3465 	/* Handle partial zero within the single block */
3466 	if (start == end &&
3467 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3468 		err = ext4_block_zero_page_range(handle, mapping,
3469 						 lstart, length);
3470 		return err;
3471 	}
3472 	/* Handle partial zero out on the start of the range */
3473 	if (partial_start) {
3474 		err = ext4_block_zero_page_range(handle, mapping,
3475 						 lstart, sb->s_blocksize);
3476 		if (err)
3477 			return err;
3478 	}
3479 	/* Handle partial zero out on the end of the range */
3480 	if (partial_end != sb->s_blocksize - 1)
3481 		err = ext4_block_zero_page_range(handle, mapping,
3482 						 byte_end - partial_end,
3483 						 partial_end + 1);
3484 	return err;
3485 }
3486 
3487 int ext4_can_truncate(struct inode *inode)
3488 {
3489 	if (S_ISREG(inode->i_mode))
3490 		return 1;
3491 	if (S_ISDIR(inode->i_mode))
3492 		return 1;
3493 	if (S_ISLNK(inode->i_mode))
3494 		return !ext4_inode_is_fast_symlink(inode);
3495 	return 0;
3496 }
3497 
3498 /*
3499  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3500  * associated with the given offset and length
3501  *
3502  * @inode:  File inode
3503  * @offset: The offset where the hole will begin
3504  * @len:    The length of the hole
3505  *
3506  * Returns: 0 on success or negative on failure
3507  */
3508 
3509 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3510 {
3511 	struct super_block *sb = inode->i_sb;
3512 	ext4_lblk_t first_block, stop_block;
3513 	struct address_space *mapping = inode->i_mapping;
3514 	loff_t first_block_offset, last_block_offset;
3515 	handle_t *handle;
3516 	unsigned int credits;
3517 	int ret = 0;
3518 
3519 	if (!S_ISREG(inode->i_mode))
3520 		return -EOPNOTSUPP;
3521 
3522 	trace_ext4_punch_hole(inode, offset, length, 0);
3523 
3524 	/*
3525 	 * Write out all dirty pages to avoid race conditions
3526 	 * Then release them.
3527 	 */
3528 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3529 		ret = filemap_write_and_wait_range(mapping, offset,
3530 						   offset + length - 1);
3531 		if (ret)
3532 			return ret;
3533 	}
3534 
3535 	mutex_lock(&inode->i_mutex);
3536 
3537 	/* No need to punch hole beyond i_size */
3538 	if (offset >= inode->i_size)
3539 		goto out_mutex;
3540 
3541 	/*
3542 	 * If the hole extends beyond i_size, set the hole
3543 	 * to end after the page that contains i_size
3544 	 */
3545 	if (offset + length > inode->i_size) {
3546 		length = inode->i_size +
3547 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3548 		   offset;
3549 	}
3550 
3551 	if (offset & (sb->s_blocksize - 1) ||
3552 	    (offset + length) & (sb->s_blocksize - 1)) {
3553 		/*
3554 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3555 		 * partial block
3556 		 */
3557 		ret = ext4_inode_attach_jinode(inode);
3558 		if (ret < 0)
3559 			goto out_mutex;
3560 
3561 	}
3562 
3563 	first_block_offset = round_up(offset, sb->s_blocksize);
3564 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3565 
3566 	/* Now release the pages and zero block aligned part of pages*/
3567 	if (last_block_offset > first_block_offset)
3568 		truncate_pagecache_range(inode, first_block_offset,
3569 					 last_block_offset);
3570 
3571 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3572 	ext4_inode_block_unlocked_dio(inode);
3573 	inode_dio_wait(inode);
3574 
3575 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3576 		credits = ext4_writepage_trans_blocks(inode);
3577 	else
3578 		credits = ext4_blocks_for_truncate(inode);
3579 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3580 	if (IS_ERR(handle)) {
3581 		ret = PTR_ERR(handle);
3582 		ext4_std_error(sb, ret);
3583 		goto out_dio;
3584 	}
3585 
3586 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3587 				       length);
3588 	if (ret)
3589 		goto out_stop;
3590 
3591 	first_block = (offset + sb->s_blocksize - 1) >>
3592 		EXT4_BLOCK_SIZE_BITS(sb);
3593 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3594 
3595 	/* If there are no blocks to remove, return now */
3596 	if (first_block >= stop_block)
3597 		goto out_stop;
3598 
3599 	down_write(&EXT4_I(inode)->i_data_sem);
3600 	ext4_discard_preallocations(inode);
3601 
3602 	ret = ext4_es_remove_extent(inode, first_block,
3603 				    stop_block - first_block);
3604 	if (ret) {
3605 		up_write(&EXT4_I(inode)->i_data_sem);
3606 		goto out_stop;
3607 	}
3608 
3609 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3610 		ret = ext4_ext_remove_space(inode, first_block,
3611 					    stop_block - 1);
3612 	else
3613 		ret = ext4_ind_remove_space(handle, inode, first_block,
3614 					    stop_block);
3615 
3616 	up_write(&EXT4_I(inode)->i_data_sem);
3617 	if (IS_SYNC(inode))
3618 		ext4_handle_sync(handle);
3619 
3620 	/* Now release the pages again to reduce race window */
3621 	if (last_block_offset > first_block_offset)
3622 		truncate_pagecache_range(inode, first_block_offset,
3623 					 last_block_offset);
3624 
3625 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3626 	ext4_mark_inode_dirty(handle, inode);
3627 out_stop:
3628 	ext4_journal_stop(handle);
3629 out_dio:
3630 	ext4_inode_resume_unlocked_dio(inode);
3631 out_mutex:
3632 	mutex_unlock(&inode->i_mutex);
3633 	return ret;
3634 }
3635 
3636 int ext4_inode_attach_jinode(struct inode *inode)
3637 {
3638 	struct ext4_inode_info *ei = EXT4_I(inode);
3639 	struct jbd2_inode *jinode;
3640 
3641 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3642 		return 0;
3643 
3644 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3645 	spin_lock(&inode->i_lock);
3646 	if (!ei->jinode) {
3647 		if (!jinode) {
3648 			spin_unlock(&inode->i_lock);
3649 			return -ENOMEM;
3650 		}
3651 		ei->jinode = jinode;
3652 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3653 		jinode = NULL;
3654 	}
3655 	spin_unlock(&inode->i_lock);
3656 	if (unlikely(jinode != NULL))
3657 		jbd2_free_inode(jinode);
3658 	return 0;
3659 }
3660 
3661 /*
3662  * ext4_truncate()
3663  *
3664  * We block out ext4_get_block() block instantiations across the entire
3665  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3666  * simultaneously on behalf of the same inode.
3667  *
3668  * As we work through the truncate and commit bits of it to the journal there
3669  * is one core, guiding principle: the file's tree must always be consistent on
3670  * disk.  We must be able to restart the truncate after a crash.
3671  *
3672  * The file's tree may be transiently inconsistent in memory (although it
3673  * probably isn't), but whenever we close off and commit a journal transaction,
3674  * the contents of (the filesystem + the journal) must be consistent and
3675  * restartable.  It's pretty simple, really: bottom up, right to left (although
3676  * left-to-right works OK too).
3677  *
3678  * Note that at recovery time, journal replay occurs *before* the restart of
3679  * truncate against the orphan inode list.
3680  *
3681  * The committed inode has the new, desired i_size (which is the same as
3682  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3683  * that this inode's truncate did not complete and it will again call
3684  * ext4_truncate() to have another go.  So there will be instantiated blocks
3685  * to the right of the truncation point in a crashed ext4 filesystem.  But
3686  * that's fine - as long as they are linked from the inode, the post-crash
3687  * ext4_truncate() run will find them and release them.
3688  */
3689 void ext4_truncate(struct inode *inode)
3690 {
3691 	struct ext4_inode_info *ei = EXT4_I(inode);
3692 	unsigned int credits;
3693 	handle_t *handle;
3694 	struct address_space *mapping = inode->i_mapping;
3695 
3696 	/*
3697 	 * There is a possibility that we're either freeing the inode
3698 	 * or it's a completely new inode. In those cases we might not
3699 	 * have i_mutex locked because it's not necessary.
3700 	 */
3701 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3702 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3703 	trace_ext4_truncate_enter(inode);
3704 
3705 	if (!ext4_can_truncate(inode))
3706 		return;
3707 
3708 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3709 
3710 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3711 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3712 
3713 	if (ext4_has_inline_data(inode)) {
3714 		int has_inline = 1;
3715 
3716 		ext4_inline_data_truncate(inode, &has_inline);
3717 		if (has_inline)
3718 			return;
3719 	}
3720 
3721 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3722 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3723 		if (ext4_inode_attach_jinode(inode) < 0)
3724 			return;
3725 	}
3726 
3727 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3728 		credits = ext4_writepage_trans_blocks(inode);
3729 	else
3730 		credits = ext4_blocks_for_truncate(inode);
3731 
3732 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3733 	if (IS_ERR(handle)) {
3734 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3735 		return;
3736 	}
3737 
3738 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3739 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3740 
3741 	/*
3742 	 * We add the inode to the orphan list, so that if this
3743 	 * truncate spans multiple transactions, and we crash, we will
3744 	 * resume the truncate when the filesystem recovers.  It also
3745 	 * marks the inode dirty, to catch the new size.
3746 	 *
3747 	 * Implication: the file must always be in a sane, consistent
3748 	 * truncatable state while each transaction commits.
3749 	 */
3750 	if (ext4_orphan_add(handle, inode))
3751 		goto out_stop;
3752 
3753 	down_write(&EXT4_I(inode)->i_data_sem);
3754 
3755 	ext4_discard_preallocations(inode);
3756 
3757 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3758 		ext4_ext_truncate(handle, inode);
3759 	else
3760 		ext4_ind_truncate(handle, inode);
3761 
3762 	up_write(&ei->i_data_sem);
3763 
3764 	if (IS_SYNC(inode))
3765 		ext4_handle_sync(handle);
3766 
3767 out_stop:
3768 	/*
3769 	 * If this was a simple ftruncate() and the file will remain alive,
3770 	 * then we need to clear up the orphan record which we created above.
3771 	 * However, if this was a real unlink then we were called by
3772 	 * ext4_evict_inode(), and we allow that function to clean up the
3773 	 * orphan info for us.
3774 	 */
3775 	if (inode->i_nlink)
3776 		ext4_orphan_del(handle, inode);
3777 
3778 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3779 	ext4_mark_inode_dirty(handle, inode);
3780 	ext4_journal_stop(handle);
3781 
3782 	trace_ext4_truncate_exit(inode);
3783 }
3784 
3785 /*
3786  * ext4_get_inode_loc returns with an extra refcount against the inode's
3787  * underlying buffer_head on success. If 'in_mem' is true, we have all
3788  * data in memory that is needed to recreate the on-disk version of this
3789  * inode.
3790  */
3791 static int __ext4_get_inode_loc(struct inode *inode,
3792 				struct ext4_iloc *iloc, int in_mem)
3793 {
3794 	struct ext4_group_desc	*gdp;
3795 	struct buffer_head	*bh;
3796 	struct super_block	*sb = inode->i_sb;
3797 	ext4_fsblk_t		block;
3798 	int			inodes_per_block, inode_offset;
3799 
3800 	iloc->bh = NULL;
3801 	if (!ext4_valid_inum(sb, inode->i_ino))
3802 		return -EIO;
3803 
3804 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3805 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3806 	if (!gdp)
3807 		return -EIO;
3808 
3809 	/*
3810 	 * Figure out the offset within the block group inode table
3811 	 */
3812 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3813 	inode_offset = ((inode->i_ino - 1) %
3814 			EXT4_INODES_PER_GROUP(sb));
3815 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3816 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3817 
3818 	bh = sb_getblk(sb, block);
3819 	if (unlikely(!bh))
3820 		return -ENOMEM;
3821 	if (!buffer_uptodate(bh)) {
3822 		lock_buffer(bh);
3823 
3824 		/*
3825 		 * If the buffer has the write error flag, we have failed
3826 		 * to write out another inode in the same block.  In this
3827 		 * case, we don't have to read the block because we may
3828 		 * read the old inode data successfully.
3829 		 */
3830 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3831 			set_buffer_uptodate(bh);
3832 
3833 		if (buffer_uptodate(bh)) {
3834 			/* someone brought it uptodate while we waited */
3835 			unlock_buffer(bh);
3836 			goto has_buffer;
3837 		}
3838 
3839 		/*
3840 		 * If we have all information of the inode in memory and this
3841 		 * is the only valid inode in the block, we need not read the
3842 		 * block.
3843 		 */
3844 		if (in_mem) {
3845 			struct buffer_head *bitmap_bh;
3846 			int i, start;
3847 
3848 			start = inode_offset & ~(inodes_per_block - 1);
3849 
3850 			/* Is the inode bitmap in cache? */
3851 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3852 			if (unlikely(!bitmap_bh))
3853 				goto make_io;
3854 
3855 			/*
3856 			 * If the inode bitmap isn't in cache then the
3857 			 * optimisation may end up performing two reads instead
3858 			 * of one, so skip it.
3859 			 */
3860 			if (!buffer_uptodate(bitmap_bh)) {
3861 				brelse(bitmap_bh);
3862 				goto make_io;
3863 			}
3864 			for (i = start; i < start + inodes_per_block; i++) {
3865 				if (i == inode_offset)
3866 					continue;
3867 				if (ext4_test_bit(i, bitmap_bh->b_data))
3868 					break;
3869 			}
3870 			brelse(bitmap_bh);
3871 			if (i == start + inodes_per_block) {
3872 				/* all other inodes are free, so skip I/O */
3873 				memset(bh->b_data, 0, bh->b_size);
3874 				set_buffer_uptodate(bh);
3875 				unlock_buffer(bh);
3876 				goto has_buffer;
3877 			}
3878 		}
3879 
3880 make_io:
3881 		/*
3882 		 * If we need to do any I/O, try to pre-readahead extra
3883 		 * blocks from the inode table.
3884 		 */
3885 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3886 			ext4_fsblk_t b, end, table;
3887 			unsigned num;
3888 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3889 
3890 			table = ext4_inode_table(sb, gdp);
3891 			/* s_inode_readahead_blks is always a power of 2 */
3892 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3893 			if (table > b)
3894 				b = table;
3895 			end = b + ra_blks;
3896 			num = EXT4_INODES_PER_GROUP(sb);
3897 			if (ext4_has_group_desc_csum(sb))
3898 				num -= ext4_itable_unused_count(sb, gdp);
3899 			table += num / inodes_per_block;
3900 			if (end > table)
3901 				end = table;
3902 			while (b <= end)
3903 				sb_breadahead(sb, b++);
3904 		}
3905 
3906 		/*
3907 		 * There are other valid inodes in the buffer, this inode
3908 		 * has in-inode xattrs, or we don't have this inode in memory.
3909 		 * Read the block from disk.
3910 		 */
3911 		trace_ext4_load_inode(inode);
3912 		get_bh(bh);
3913 		bh->b_end_io = end_buffer_read_sync;
3914 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3915 		wait_on_buffer(bh);
3916 		if (!buffer_uptodate(bh)) {
3917 			EXT4_ERROR_INODE_BLOCK(inode, block,
3918 					       "unable to read itable block");
3919 			brelse(bh);
3920 			return -EIO;
3921 		}
3922 	}
3923 has_buffer:
3924 	iloc->bh = bh;
3925 	return 0;
3926 }
3927 
3928 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3929 {
3930 	/* We have all inode data except xattrs in memory here. */
3931 	return __ext4_get_inode_loc(inode, iloc,
3932 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3933 }
3934 
3935 void ext4_set_inode_flags(struct inode *inode)
3936 {
3937 	unsigned int flags = EXT4_I(inode)->i_flags;
3938 	unsigned int new_fl = 0;
3939 
3940 	if (flags & EXT4_SYNC_FL)
3941 		new_fl |= S_SYNC;
3942 	if (flags & EXT4_APPEND_FL)
3943 		new_fl |= S_APPEND;
3944 	if (flags & EXT4_IMMUTABLE_FL)
3945 		new_fl |= S_IMMUTABLE;
3946 	if (flags & EXT4_NOATIME_FL)
3947 		new_fl |= S_NOATIME;
3948 	if (flags & EXT4_DIRSYNC_FL)
3949 		new_fl |= S_DIRSYNC;
3950 	if (test_opt(inode->i_sb, DAX))
3951 		new_fl |= S_DAX;
3952 	inode_set_flags(inode, new_fl,
3953 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3954 }
3955 
3956 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3957 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3958 {
3959 	unsigned int vfs_fl;
3960 	unsigned long old_fl, new_fl;
3961 
3962 	do {
3963 		vfs_fl = ei->vfs_inode.i_flags;
3964 		old_fl = ei->i_flags;
3965 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3966 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3967 				EXT4_DIRSYNC_FL);
3968 		if (vfs_fl & S_SYNC)
3969 			new_fl |= EXT4_SYNC_FL;
3970 		if (vfs_fl & S_APPEND)
3971 			new_fl |= EXT4_APPEND_FL;
3972 		if (vfs_fl & S_IMMUTABLE)
3973 			new_fl |= EXT4_IMMUTABLE_FL;
3974 		if (vfs_fl & S_NOATIME)
3975 			new_fl |= EXT4_NOATIME_FL;
3976 		if (vfs_fl & S_DIRSYNC)
3977 			new_fl |= EXT4_DIRSYNC_FL;
3978 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3979 }
3980 
3981 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3982 				  struct ext4_inode_info *ei)
3983 {
3984 	blkcnt_t i_blocks ;
3985 	struct inode *inode = &(ei->vfs_inode);
3986 	struct super_block *sb = inode->i_sb;
3987 
3988 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3989 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3990 		/* we are using combined 48 bit field */
3991 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3992 					le32_to_cpu(raw_inode->i_blocks_lo);
3993 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3994 			/* i_blocks represent file system block size */
3995 			return i_blocks  << (inode->i_blkbits - 9);
3996 		} else {
3997 			return i_blocks;
3998 		}
3999 	} else {
4000 		return le32_to_cpu(raw_inode->i_blocks_lo);
4001 	}
4002 }
4003 
4004 static inline void ext4_iget_extra_inode(struct inode *inode,
4005 					 struct ext4_inode *raw_inode,
4006 					 struct ext4_inode_info *ei)
4007 {
4008 	__le32 *magic = (void *)raw_inode +
4009 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4010 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4011 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4012 		ext4_find_inline_data_nolock(inode);
4013 	} else
4014 		EXT4_I(inode)->i_inline_off = 0;
4015 }
4016 
4017 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4018 {
4019 	struct ext4_iloc iloc;
4020 	struct ext4_inode *raw_inode;
4021 	struct ext4_inode_info *ei;
4022 	struct inode *inode;
4023 	journal_t *journal = EXT4_SB(sb)->s_journal;
4024 	long ret;
4025 	int block;
4026 	uid_t i_uid;
4027 	gid_t i_gid;
4028 
4029 	inode = iget_locked(sb, ino);
4030 	if (!inode)
4031 		return ERR_PTR(-ENOMEM);
4032 	if (!(inode->i_state & I_NEW))
4033 		return inode;
4034 
4035 	ei = EXT4_I(inode);
4036 	iloc.bh = NULL;
4037 
4038 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4039 	if (ret < 0)
4040 		goto bad_inode;
4041 	raw_inode = ext4_raw_inode(&iloc);
4042 
4043 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4044 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4045 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4046 		    EXT4_INODE_SIZE(inode->i_sb)) {
4047 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4048 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4049 				EXT4_INODE_SIZE(inode->i_sb));
4050 			ret = -EIO;
4051 			goto bad_inode;
4052 		}
4053 	} else
4054 		ei->i_extra_isize = 0;
4055 
4056 	/* Precompute checksum seed for inode metadata */
4057 	if (ext4_has_metadata_csum(sb)) {
4058 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4059 		__u32 csum;
4060 		__le32 inum = cpu_to_le32(inode->i_ino);
4061 		__le32 gen = raw_inode->i_generation;
4062 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4063 				   sizeof(inum));
4064 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4065 					      sizeof(gen));
4066 	}
4067 
4068 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4069 		EXT4_ERROR_INODE(inode, "checksum invalid");
4070 		ret = -EIO;
4071 		goto bad_inode;
4072 	}
4073 
4074 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4075 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4076 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4077 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4078 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4079 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4080 	}
4081 	i_uid_write(inode, i_uid);
4082 	i_gid_write(inode, i_gid);
4083 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4084 
4085 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4086 	ei->i_inline_off = 0;
4087 	ei->i_dir_start_lookup = 0;
4088 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4089 	/* We now have enough fields to check if the inode was active or not.
4090 	 * This is needed because nfsd might try to access dead inodes
4091 	 * the test is that same one that e2fsck uses
4092 	 * NeilBrown 1999oct15
4093 	 */
4094 	if (inode->i_nlink == 0) {
4095 		if ((inode->i_mode == 0 ||
4096 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4097 		    ino != EXT4_BOOT_LOADER_INO) {
4098 			/* this inode is deleted */
4099 			ret = -ESTALE;
4100 			goto bad_inode;
4101 		}
4102 		/* The only unlinked inodes we let through here have
4103 		 * valid i_mode and are being read by the orphan
4104 		 * recovery code: that's fine, we're about to complete
4105 		 * the process of deleting those.
4106 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4107 		 * not initialized on a new filesystem. */
4108 	}
4109 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4110 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4111 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4112 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4113 		ei->i_file_acl |=
4114 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4115 	inode->i_size = ext4_isize(raw_inode);
4116 	ei->i_disksize = inode->i_size;
4117 #ifdef CONFIG_QUOTA
4118 	ei->i_reserved_quota = 0;
4119 #endif
4120 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4121 	ei->i_block_group = iloc.block_group;
4122 	ei->i_last_alloc_group = ~0;
4123 	/*
4124 	 * NOTE! The in-memory inode i_data array is in little-endian order
4125 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4126 	 */
4127 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4128 		ei->i_data[block] = raw_inode->i_block[block];
4129 	INIT_LIST_HEAD(&ei->i_orphan);
4130 
4131 	/*
4132 	 * Set transaction id's of transactions that have to be committed
4133 	 * to finish f[data]sync. We set them to currently running transaction
4134 	 * as we cannot be sure that the inode or some of its metadata isn't
4135 	 * part of the transaction - the inode could have been reclaimed and
4136 	 * now it is reread from disk.
4137 	 */
4138 	if (journal) {
4139 		transaction_t *transaction;
4140 		tid_t tid;
4141 
4142 		read_lock(&journal->j_state_lock);
4143 		if (journal->j_running_transaction)
4144 			transaction = journal->j_running_transaction;
4145 		else
4146 			transaction = journal->j_committing_transaction;
4147 		if (transaction)
4148 			tid = transaction->t_tid;
4149 		else
4150 			tid = journal->j_commit_sequence;
4151 		read_unlock(&journal->j_state_lock);
4152 		ei->i_sync_tid = tid;
4153 		ei->i_datasync_tid = tid;
4154 	}
4155 
4156 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4157 		if (ei->i_extra_isize == 0) {
4158 			/* The extra space is currently unused. Use it. */
4159 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4160 					    EXT4_GOOD_OLD_INODE_SIZE;
4161 		} else {
4162 			ext4_iget_extra_inode(inode, raw_inode, ei);
4163 		}
4164 	}
4165 
4166 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4167 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4168 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4169 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4170 
4171 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4172 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4173 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4174 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4175 				inode->i_version |=
4176 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4177 		}
4178 	}
4179 
4180 	ret = 0;
4181 	if (ei->i_file_acl &&
4182 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4183 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4184 				 ei->i_file_acl);
4185 		ret = -EIO;
4186 		goto bad_inode;
4187 	} else if (!ext4_has_inline_data(inode)) {
4188 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4189 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4190 			    (S_ISLNK(inode->i_mode) &&
4191 			     !ext4_inode_is_fast_symlink(inode))))
4192 				/* Validate extent which is part of inode */
4193 				ret = ext4_ext_check_inode(inode);
4194 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4195 			   (S_ISLNK(inode->i_mode) &&
4196 			    !ext4_inode_is_fast_symlink(inode))) {
4197 			/* Validate block references which are part of inode */
4198 			ret = ext4_ind_check_inode(inode);
4199 		}
4200 	}
4201 	if (ret)
4202 		goto bad_inode;
4203 
4204 	if (S_ISREG(inode->i_mode)) {
4205 		inode->i_op = &ext4_file_inode_operations;
4206 		inode->i_fop = &ext4_file_operations;
4207 		ext4_set_aops(inode);
4208 	} else if (S_ISDIR(inode->i_mode)) {
4209 		inode->i_op = &ext4_dir_inode_operations;
4210 		inode->i_fop = &ext4_dir_operations;
4211 	} else if (S_ISLNK(inode->i_mode)) {
4212 		if (ext4_encrypted_inode(inode)) {
4213 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4214 			ext4_set_aops(inode);
4215 		} else if (ext4_inode_is_fast_symlink(inode)) {
4216 			inode->i_link = (char *)ei->i_data;
4217 			inode->i_op = &ext4_fast_symlink_inode_operations;
4218 			nd_terminate_link(ei->i_data, inode->i_size,
4219 				sizeof(ei->i_data) - 1);
4220 		} else {
4221 			inode->i_op = &ext4_symlink_inode_operations;
4222 			ext4_set_aops(inode);
4223 		}
4224 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4225 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4226 		inode->i_op = &ext4_special_inode_operations;
4227 		if (raw_inode->i_block[0])
4228 			init_special_inode(inode, inode->i_mode,
4229 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4230 		else
4231 			init_special_inode(inode, inode->i_mode,
4232 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4233 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4234 		make_bad_inode(inode);
4235 	} else {
4236 		ret = -EIO;
4237 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4238 		goto bad_inode;
4239 	}
4240 	brelse(iloc.bh);
4241 	ext4_set_inode_flags(inode);
4242 	unlock_new_inode(inode);
4243 	return inode;
4244 
4245 bad_inode:
4246 	brelse(iloc.bh);
4247 	iget_failed(inode);
4248 	return ERR_PTR(ret);
4249 }
4250 
4251 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4252 {
4253 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4254 		return ERR_PTR(-EIO);
4255 	return ext4_iget(sb, ino);
4256 }
4257 
4258 static int ext4_inode_blocks_set(handle_t *handle,
4259 				struct ext4_inode *raw_inode,
4260 				struct ext4_inode_info *ei)
4261 {
4262 	struct inode *inode = &(ei->vfs_inode);
4263 	u64 i_blocks = inode->i_blocks;
4264 	struct super_block *sb = inode->i_sb;
4265 
4266 	if (i_blocks <= ~0U) {
4267 		/*
4268 		 * i_blocks can be represented in a 32 bit variable
4269 		 * as multiple of 512 bytes
4270 		 */
4271 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4272 		raw_inode->i_blocks_high = 0;
4273 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4274 		return 0;
4275 	}
4276 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4277 		return -EFBIG;
4278 
4279 	if (i_blocks <= 0xffffffffffffULL) {
4280 		/*
4281 		 * i_blocks can be represented in a 48 bit variable
4282 		 * as multiple of 512 bytes
4283 		 */
4284 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4285 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4286 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4287 	} else {
4288 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4289 		/* i_block is stored in file system block size */
4290 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4291 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4292 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4293 	}
4294 	return 0;
4295 }
4296 
4297 struct other_inode {
4298 	unsigned long		orig_ino;
4299 	struct ext4_inode	*raw_inode;
4300 };
4301 
4302 static int other_inode_match(struct inode * inode, unsigned long ino,
4303 			     void *data)
4304 {
4305 	struct other_inode *oi = (struct other_inode *) data;
4306 
4307 	if ((inode->i_ino != ino) ||
4308 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4309 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4310 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4311 		return 0;
4312 	spin_lock(&inode->i_lock);
4313 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4314 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4315 	    (inode->i_state & I_DIRTY_TIME)) {
4316 		struct ext4_inode_info	*ei = EXT4_I(inode);
4317 
4318 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4319 		spin_unlock(&inode->i_lock);
4320 
4321 		spin_lock(&ei->i_raw_lock);
4322 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4323 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4324 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4325 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4326 		spin_unlock(&ei->i_raw_lock);
4327 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4328 		return -1;
4329 	}
4330 	spin_unlock(&inode->i_lock);
4331 	return -1;
4332 }
4333 
4334 /*
4335  * Opportunistically update the other time fields for other inodes in
4336  * the same inode table block.
4337  */
4338 static void ext4_update_other_inodes_time(struct super_block *sb,
4339 					  unsigned long orig_ino, char *buf)
4340 {
4341 	struct other_inode oi;
4342 	unsigned long ino;
4343 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4344 	int inode_size = EXT4_INODE_SIZE(sb);
4345 
4346 	oi.orig_ino = orig_ino;
4347 	ino = (orig_ino & ~(inodes_per_block - 1)) + 1;
4348 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4349 		if (ino == orig_ino)
4350 			continue;
4351 		oi.raw_inode = (struct ext4_inode *) buf;
4352 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4353 	}
4354 }
4355 
4356 /*
4357  * Post the struct inode info into an on-disk inode location in the
4358  * buffer-cache.  This gobbles the caller's reference to the
4359  * buffer_head in the inode location struct.
4360  *
4361  * The caller must have write access to iloc->bh.
4362  */
4363 static int ext4_do_update_inode(handle_t *handle,
4364 				struct inode *inode,
4365 				struct ext4_iloc *iloc)
4366 {
4367 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4368 	struct ext4_inode_info *ei = EXT4_I(inode);
4369 	struct buffer_head *bh = iloc->bh;
4370 	struct super_block *sb = inode->i_sb;
4371 	int err = 0, rc, block;
4372 	int need_datasync = 0, set_large_file = 0;
4373 	uid_t i_uid;
4374 	gid_t i_gid;
4375 
4376 	spin_lock(&ei->i_raw_lock);
4377 
4378 	/* For fields not tracked in the in-memory inode,
4379 	 * initialise them to zero for new inodes. */
4380 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4381 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4382 
4383 	ext4_get_inode_flags(ei);
4384 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4385 	i_uid = i_uid_read(inode);
4386 	i_gid = i_gid_read(inode);
4387 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4388 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4389 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4390 /*
4391  * Fix up interoperability with old kernels. Otherwise, old inodes get
4392  * re-used with the upper 16 bits of the uid/gid intact
4393  */
4394 		if (!ei->i_dtime) {
4395 			raw_inode->i_uid_high =
4396 				cpu_to_le16(high_16_bits(i_uid));
4397 			raw_inode->i_gid_high =
4398 				cpu_to_le16(high_16_bits(i_gid));
4399 		} else {
4400 			raw_inode->i_uid_high = 0;
4401 			raw_inode->i_gid_high = 0;
4402 		}
4403 	} else {
4404 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4405 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4406 		raw_inode->i_uid_high = 0;
4407 		raw_inode->i_gid_high = 0;
4408 	}
4409 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4410 
4411 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4412 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4413 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4414 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4415 
4416 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4417 	if (err) {
4418 		spin_unlock(&ei->i_raw_lock);
4419 		goto out_brelse;
4420 	}
4421 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4422 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4423 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4424 		raw_inode->i_file_acl_high =
4425 			cpu_to_le16(ei->i_file_acl >> 32);
4426 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4427 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4428 		ext4_isize_set(raw_inode, ei->i_disksize);
4429 		need_datasync = 1;
4430 	}
4431 	if (ei->i_disksize > 0x7fffffffULL) {
4432 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4433 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4434 				EXT4_SB(sb)->s_es->s_rev_level ==
4435 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4436 			set_large_file = 1;
4437 	}
4438 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4439 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4440 		if (old_valid_dev(inode->i_rdev)) {
4441 			raw_inode->i_block[0] =
4442 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4443 			raw_inode->i_block[1] = 0;
4444 		} else {
4445 			raw_inode->i_block[0] = 0;
4446 			raw_inode->i_block[1] =
4447 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4448 			raw_inode->i_block[2] = 0;
4449 		}
4450 	} else if (!ext4_has_inline_data(inode)) {
4451 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4452 			raw_inode->i_block[block] = ei->i_data[block];
4453 	}
4454 
4455 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4456 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4457 		if (ei->i_extra_isize) {
4458 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4459 				raw_inode->i_version_hi =
4460 					cpu_to_le32(inode->i_version >> 32);
4461 			raw_inode->i_extra_isize =
4462 				cpu_to_le16(ei->i_extra_isize);
4463 		}
4464 	}
4465 	ext4_inode_csum_set(inode, raw_inode, ei);
4466 	spin_unlock(&ei->i_raw_lock);
4467 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4468 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4469 					      bh->b_data);
4470 
4471 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4472 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4473 	if (!err)
4474 		err = rc;
4475 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4476 	if (set_large_file) {
4477 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4478 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4479 		if (err)
4480 			goto out_brelse;
4481 		ext4_update_dynamic_rev(sb);
4482 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4483 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4484 		ext4_handle_sync(handle);
4485 		err = ext4_handle_dirty_super(handle, sb);
4486 	}
4487 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4488 out_brelse:
4489 	brelse(bh);
4490 	ext4_std_error(inode->i_sb, err);
4491 	return err;
4492 }
4493 
4494 /*
4495  * ext4_write_inode()
4496  *
4497  * We are called from a few places:
4498  *
4499  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4500  *   Here, there will be no transaction running. We wait for any running
4501  *   transaction to commit.
4502  *
4503  * - Within flush work (sys_sync(), kupdate and such).
4504  *   We wait on commit, if told to.
4505  *
4506  * - Within iput_final() -> write_inode_now()
4507  *   We wait on commit, if told to.
4508  *
4509  * In all cases it is actually safe for us to return without doing anything,
4510  * because the inode has been copied into a raw inode buffer in
4511  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4512  * writeback.
4513  *
4514  * Note that we are absolutely dependent upon all inode dirtiers doing the
4515  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4516  * which we are interested.
4517  *
4518  * It would be a bug for them to not do this.  The code:
4519  *
4520  *	mark_inode_dirty(inode)
4521  *	stuff();
4522  *	inode->i_size = expr;
4523  *
4524  * is in error because write_inode() could occur while `stuff()' is running,
4525  * and the new i_size will be lost.  Plus the inode will no longer be on the
4526  * superblock's dirty inode list.
4527  */
4528 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4529 {
4530 	int err;
4531 
4532 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4533 		return 0;
4534 
4535 	if (EXT4_SB(inode->i_sb)->s_journal) {
4536 		if (ext4_journal_current_handle()) {
4537 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4538 			dump_stack();
4539 			return -EIO;
4540 		}
4541 
4542 		/*
4543 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4544 		 * ext4_sync_fs() will force the commit after everything is
4545 		 * written.
4546 		 */
4547 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4548 			return 0;
4549 
4550 		err = ext4_force_commit(inode->i_sb);
4551 	} else {
4552 		struct ext4_iloc iloc;
4553 
4554 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4555 		if (err)
4556 			return err;
4557 		/*
4558 		 * sync(2) will flush the whole buffer cache. No need to do
4559 		 * it here separately for each inode.
4560 		 */
4561 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4562 			sync_dirty_buffer(iloc.bh);
4563 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4564 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4565 					 "IO error syncing inode");
4566 			err = -EIO;
4567 		}
4568 		brelse(iloc.bh);
4569 	}
4570 	return err;
4571 }
4572 
4573 /*
4574  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4575  * buffers that are attached to a page stradding i_size and are undergoing
4576  * commit. In that case we have to wait for commit to finish and try again.
4577  */
4578 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4579 {
4580 	struct page *page;
4581 	unsigned offset;
4582 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4583 	tid_t commit_tid = 0;
4584 	int ret;
4585 
4586 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4587 	/*
4588 	 * All buffers in the last page remain valid? Then there's nothing to
4589 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4590 	 * blocksize case
4591 	 */
4592 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4593 		return;
4594 	while (1) {
4595 		page = find_lock_page(inode->i_mapping,
4596 				      inode->i_size >> PAGE_CACHE_SHIFT);
4597 		if (!page)
4598 			return;
4599 		ret = __ext4_journalled_invalidatepage(page, offset,
4600 						PAGE_CACHE_SIZE - offset);
4601 		unlock_page(page);
4602 		page_cache_release(page);
4603 		if (ret != -EBUSY)
4604 			return;
4605 		commit_tid = 0;
4606 		read_lock(&journal->j_state_lock);
4607 		if (journal->j_committing_transaction)
4608 			commit_tid = journal->j_committing_transaction->t_tid;
4609 		read_unlock(&journal->j_state_lock);
4610 		if (commit_tid)
4611 			jbd2_log_wait_commit(journal, commit_tid);
4612 	}
4613 }
4614 
4615 /*
4616  * ext4_setattr()
4617  *
4618  * Called from notify_change.
4619  *
4620  * We want to trap VFS attempts to truncate the file as soon as
4621  * possible.  In particular, we want to make sure that when the VFS
4622  * shrinks i_size, we put the inode on the orphan list and modify
4623  * i_disksize immediately, so that during the subsequent flushing of
4624  * dirty pages and freeing of disk blocks, we can guarantee that any
4625  * commit will leave the blocks being flushed in an unused state on
4626  * disk.  (On recovery, the inode will get truncated and the blocks will
4627  * be freed, so we have a strong guarantee that no future commit will
4628  * leave these blocks visible to the user.)
4629  *
4630  * Another thing we have to assure is that if we are in ordered mode
4631  * and inode is still attached to the committing transaction, we must
4632  * we start writeout of all the dirty pages which are being truncated.
4633  * This way we are sure that all the data written in the previous
4634  * transaction are already on disk (truncate waits for pages under
4635  * writeback).
4636  *
4637  * Called with inode->i_mutex down.
4638  */
4639 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4640 {
4641 	struct inode *inode = d_inode(dentry);
4642 	int error, rc = 0;
4643 	int orphan = 0;
4644 	const unsigned int ia_valid = attr->ia_valid;
4645 
4646 	error = inode_change_ok(inode, attr);
4647 	if (error)
4648 		return error;
4649 
4650 	if (is_quota_modification(inode, attr))
4651 		dquot_initialize(inode);
4652 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4653 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4654 		handle_t *handle;
4655 
4656 		/* (user+group)*(old+new) structure, inode write (sb,
4657 		 * inode block, ? - but truncate inode update has it) */
4658 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4659 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4660 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4661 		if (IS_ERR(handle)) {
4662 			error = PTR_ERR(handle);
4663 			goto err_out;
4664 		}
4665 		error = dquot_transfer(inode, attr);
4666 		if (error) {
4667 			ext4_journal_stop(handle);
4668 			return error;
4669 		}
4670 		/* Update corresponding info in inode so that everything is in
4671 		 * one transaction */
4672 		if (attr->ia_valid & ATTR_UID)
4673 			inode->i_uid = attr->ia_uid;
4674 		if (attr->ia_valid & ATTR_GID)
4675 			inode->i_gid = attr->ia_gid;
4676 		error = ext4_mark_inode_dirty(handle, inode);
4677 		ext4_journal_stop(handle);
4678 	}
4679 
4680 	if (attr->ia_valid & ATTR_SIZE) {
4681 		handle_t *handle;
4682 		loff_t oldsize = inode->i_size;
4683 		int shrink = (attr->ia_size <= inode->i_size);
4684 
4685 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4686 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4687 
4688 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4689 				return -EFBIG;
4690 		}
4691 		if (!S_ISREG(inode->i_mode))
4692 			return -EINVAL;
4693 
4694 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4695 			inode_inc_iversion(inode);
4696 
4697 		if (ext4_should_order_data(inode) &&
4698 		    (attr->ia_size < inode->i_size)) {
4699 			error = ext4_begin_ordered_truncate(inode,
4700 							    attr->ia_size);
4701 			if (error)
4702 				goto err_out;
4703 		}
4704 		if (attr->ia_size != inode->i_size) {
4705 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4706 			if (IS_ERR(handle)) {
4707 				error = PTR_ERR(handle);
4708 				goto err_out;
4709 			}
4710 			if (ext4_handle_valid(handle) && shrink) {
4711 				error = ext4_orphan_add(handle, inode);
4712 				orphan = 1;
4713 			}
4714 			down_write(&EXT4_I(inode)->i_data_sem);
4715 			EXT4_I(inode)->i_disksize = attr->ia_size;
4716 			rc = ext4_mark_inode_dirty(handle, inode);
4717 			if (!error)
4718 				error = rc;
4719 			/*
4720 			 * We have to update i_size under i_data_sem together
4721 			 * with i_disksize to avoid races with writeback code
4722 			 * running ext4_wb_update_i_disksize().
4723 			 */
4724 			if (!error)
4725 				i_size_write(inode, attr->ia_size);
4726 			up_write(&EXT4_I(inode)->i_data_sem);
4727 			ext4_journal_stop(handle);
4728 			if (error) {
4729 				if (orphan)
4730 					ext4_orphan_del(NULL, inode);
4731 				goto err_out;
4732 			}
4733 		}
4734 		if (!shrink)
4735 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4736 
4737 		/*
4738 		 * Blocks are going to be removed from the inode. Wait
4739 		 * for dio in flight.  Temporarily disable
4740 		 * dioread_nolock to prevent livelock.
4741 		 */
4742 		if (orphan) {
4743 			if (!ext4_should_journal_data(inode)) {
4744 				ext4_inode_block_unlocked_dio(inode);
4745 				inode_dio_wait(inode);
4746 				ext4_inode_resume_unlocked_dio(inode);
4747 			} else
4748 				ext4_wait_for_tail_page_commit(inode);
4749 		}
4750 		/*
4751 		 * Truncate pagecache after we've waited for commit
4752 		 * in data=journal mode to make pages freeable.
4753 		 */
4754 		truncate_pagecache(inode, inode->i_size);
4755 		if (shrink)
4756 			ext4_truncate(inode);
4757 	}
4758 
4759 	if (!rc) {
4760 		setattr_copy(inode, attr);
4761 		mark_inode_dirty(inode);
4762 	}
4763 
4764 	/*
4765 	 * If the call to ext4_truncate failed to get a transaction handle at
4766 	 * all, we need to clean up the in-core orphan list manually.
4767 	 */
4768 	if (orphan && inode->i_nlink)
4769 		ext4_orphan_del(NULL, inode);
4770 
4771 	if (!rc && (ia_valid & ATTR_MODE))
4772 		rc = posix_acl_chmod(inode, inode->i_mode);
4773 
4774 err_out:
4775 	ext4_std_error(inode->i_sb, error);
4776 	if (!error)
4777 		error = rc;
4778 	return error;
4779 }
4780 
4781 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4782 		 struct kstat *stat)
4783 {
4784 	struct inode *inode;
4785 	unsigned long long delalloc_blocks;
4786 
4787 	inode = d_inode(dentry);
4788 	generic_fillattr(inode, stat);
4789 
4790 	/*
4791 	 * If there is inline data in the inode, the inode will normally not
4792 	 * have data blocks allocated (it may have an external xattr block).
4793 	 * Report at least one sector for such files, so tools like tar, rsync,
4794 	 * others doen't incorrectly think the file is completely sparse.
4795 	 */
4796 	if (unlikely(ext4_has_inline_data(inode)))
4797 		stat->blocks += (stat->size + 511) >> 9;
4798 
4799 	/*
4800 	 * We can't update i_blocks if the block allocation is delayed
4801 	 * otherwise in the case of system crash before the real block
4802 	 * allocation is done, we will have i_blocks inconsistent with
4803 	 * on-disk file blocks.
4804 	 * We always keep i_blocks updated together with real
4805 	 * allocation. But to not confuse with user, stat
4806 	 * will return the blocks that include the delayed allocation
4807 	 * blocks for this file.
4808 	 */
4809 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4810 				   EXT4_I(inode)->i_reserved_data_blocks);
4811 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4812 	return 0;
4813 }
4814 
4815 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4816 				   int pextents)
4817 {
4818 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4819 		return ext4_ind_trans_blocks(inode, lblocks);
4820 	return ext4_ext_index_trans_blocks(inode, pextents);
4821 }
4822 
4823 /*
4824  * Account for index blocks, block groups bitmaps and block group
4825  * descriptor blocks if modify datablocks and index blocks
4826  * worse case, the indexs blocks spread over different block groups
4827  *
4828  * If datablocks are discontiguous, they are possible to spread over
4829  * different block groups too. If they are contiguous, with flexbg,
4830  * they could still across block group boundary.
4831  *
4832  * Also account for superblock, inode, quota and xattr blocks
4833  */
4834 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4835 				  int pextents)
4836 {
4837 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4838 	int gdpblocks;
4839 	int idxblocks;
4840 	int ret = 0;
4841 
4842 	/*
4843 	 * How many index blocks need to touch to map @lblocks logical blocks
4844 	 * to @pextents physical extents?
4845 	 */
4846 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4847 
4848 	ret = idxblocks;
4849 
4850 	/*
4851 	 * Now let's see how many group bitmaps and group descriptors need
4852 	 * to account
4853 	 */
4854 	groups = idxblocks + pextents;
4855 	gdpblocks = groups;
4856 	if (groups > ngroups)
4857 		groups = ngroups;
4858 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4859 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4860 
4861 	/* bitmaps and block group descriptor blocks */
4862 	ret += groups + gdpblocks;
4863 
4864 	/* Blocks for super block, inode, quota and xattr blocks */
4865 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4866 
4867 	return ret;
4868 }
4869 
4870 /*
4871  * Calculate the total number of credits to reserve to fit
4872  * the modification of a single pages into a single transaction,
4873  * which may include multiple chunks of block allocations.
4874  *
4875  * This could be called via ext4_write_begin()
4876  *
4877  * We need to consider the worse case, when
4878  * one new block per extent.
4879  */
4880 int ext4_writepage_trans_blocks(struct inode *inode)
4881 {
4882 	int bpp = ext4_journal_blocks_per_page(inode);
4883 	int ret;
4884 
4885 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4886 
4887 	/* Account for data blocks for journalled mode */
4888 	if (ext4_should_journal_data(inode))
4889 		ret += bpp;
4890 	return ret;
4891 }
4892 
4893 /*
4894  * Calculate the journal credits for a chunk of data modification.
4895  *
4896  * This is called from DIO, fallocate or whoever calling
4897  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4898  *
4899  * journal buffers for data blocks are not included here, as DIO
4900  * and fallocate do no need to journal data buffers.
4901  */
4902 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4903 {
4904 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4905 }
4906 
4907 /*
4908  * The caller must have previously called ext4_reserve_inode_write().
4909  * Give this, we know that the caller already has write access to iloc->bh.
4910  */
4911 int ext4_mark_iloc_dirty(handle_t *handle,
4912 			 struct inode *inode, struct ext4_iloc *iloc)
4913 {
4914 	int err = 0;
4915 
4916 	if (IS_I_VERSION(inode))
4917 		inode_inc_iversion(inode);
4918 
4919 	/* the do_update_inode consumes one bh->b_count */
4920 	get_bh(iloc->bh);
4921 
4922 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4923 	err = ext4_do_update_inode(handle, inode, iloc);
4924 	put_bh(iloc->bh);
4925 	return err;
4926 }
4927 
4928 /*
4929  * On success, We end up with an outstanding reference count against
4930  * iloc->bh.  This _must_ be cleaned up later.
4931  */
4932 
4933 int
4934 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4935 			 struct ext4_iloc *iloc)
4936 {
4937 	int err;
4938 
4939 	err = ext4_get_inode_loc(inode, iloc);
4940 	if (!err) {
4941 		BUFFER_TRACE(iloc->bh, "get_write_access");
4942 		err = ext4_journal_get_write_access(handle, iloc->bh);
4943 		if (err) {
4944 			brelse(iloc->bh);
4945 			iloc->bh = NULL;
4946 		}
4947 	}
4948 	ext4_std_error(inode->i_sb, err);
4949 	return err;
4950 }
4951 
4952 /*
4953  * Expand an inode by new_extra_isize bytes.
4954  * Returns 0 on success or negative error number on failure.
4955  */
4956 static int ext4_expand_extra_isize(struct inode *inode,
4957 				   unsigned int new_extra_isize,
4958 				   struct ext4_iloc iloc,
4959 				   handle_t *handle)
4960 {
4961 	struct ext4_inode *raw_inode;
4962 	struct ext4_xattr_ibody_header *header;
4963 
4964 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4965 		return 0;
4966 
4967 	raw_inode = ext4_raw_inode(&iloc);
4968 
4969 	header = IHDR(inode, raw_inode);
4970 
4971 	/* No extended attributes present */
4972 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4973 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4974 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4975 			new_extra_isize);
4976 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4977 		return 0;
4978 	}
4979 
4980 	/* try to expand with EAs present */
4981 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4982 					  raw_inode, handle);
4983 }
4984 
4985 /*
4986  * What we do here is to mark the in-core inode as clean with respect to inode
4987  * dirtiness (it may still be data-dirty).
4988  * This means that the in-core inode may be reaped by prune_icache
4989  * without having to perform any I/O.  This is a very good thing,
4990  * because *any* task may call prune_icache - even ones which
4991  * have a transaction open against a different journal.
4992  *
4993  * Is this cheating?  Not really.  Sure, we haven't written the
4994  * inode out, but prune_icache isn't a user-visible syncing function.
4995  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4996  * we start and wait on commits.
4997  */
4998 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4999 {
5000 	struct ext4_iloc iloc;
5001 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5002 	static unsigned int mnt_count;
5003 	int err, ret;
5004 
5005 	might_sleep();
5006 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5007 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5008 	if (ext4_handle_valid(handle) &&
5009 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5010 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5011 		/*
5012 		 * We need extra buffer credits since we may write into EA block
5013 		 * with this same handle. If journal_extend fails, then it will
5014 		 * only result in a minor loss of functionality for that inode.
5015 		 * If this is felt to be critical, then e2fsck should be run to
5016 		 * force a large enough s_min_extra_isize.
5017 		 */
5018 		if ((jbd2_journal_extend(handle,
5019 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5020 			ret = ext4_expand_extra_isize(inode,
5021 						      sbi->s_want_extra_isize,
5022 						      iloc, handle);
5023 			if (ret) {
5024 				ext4_set_inode_state(inode,
5025 						     EXT4_STATE_NO_EXPAND);
5026 				if (mnt_count !=
5027 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5028 					ext4_warning(inode->i_sb,
5029 					"Unable to expand inode %lu. Delete"
5030 					" some EAs or run e2fsck.",
5031 					inode->i_ino);
5032 					mnt_count =
5033 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5034 				}
5035 			}
5036 		}
5037 	}
5038 	if (!err)
5039 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5040 	return err;
5041 }
5042 
5043 /*
5044  * ext4_dirty_inode() is called from __mark_inode_dirty()
5045  *
5046  * We're really interested in the case where a file is being extended.
5047  * i_size has been changed by generic_commit_write() and we thus need
5048  * to include the updated inode in the current transaction.
5049  *
5050  * Also, dquot_alloc_block() will always dirty the inode when blocks
5051  * are allocated to the file.
5052  *
5053  * If the inode is marked synchronous, we don't honour that here - doing
5054  * so would cause a commit on atime updates, which we don't bother doing.
5055  * We handle synchronous inodes at the highest possible level.
5056  *
5057  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5058  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5059  * to copy into the on-disk inode structure are the timestamp files.
5060  */
5061 void ext4_dirty_inode(struct inode *inode, int flags)
5062 {
5063 	handle_t *handle;
5064 
5065 	if (flags == I_DIRTY_TIME)
5066 		return;
5067 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5068 	if (IS_ERR(handle))
5069 		goto out;
5070 
5071 	ext4_mark_inode_dirty(handle, inode);
5072 
5073 	ext4_journal_stop(handle);
5074 out:
5075 	return;
5076 }
5077 
5078 #if 0
5079 /*
5080  * Bind an inode's backing buffer_head into this transaction, to prevent
5081  * it from being flushed to disk early.  Unlike
5082  * ext4_reserve_inode_write, this leaves behind no bh reference and
5083  * returns no iloc structure, so the caller needs to repeat the iloc
5084  * lookup to mark the inode dirty later.
5085  */
5086 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5087 {
5088 	struct ext4_iloc iloc;
5089 
5090 	int err = 0;
5091 	if (handle) {
5092 		err = ext4_get_inode_loc(inode, &iloc);
5093 		if (!err) {
5094 			BUFFER_TRACE(iloc.bh, "get_write_access");
5095 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5096 			if (!err)
5097 				err = ext4_handle_dirty_metadata(handle,
5098 								 NULL,
5099 								 iloc.bh);
5100 			brelse(iloc.bh);
5101 		}
5102 	}
5103 	ext4_std_error(inode->i_sb, err);
5104 	return err;
5105 }
5106 #endif
5107 
5108 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5109 {
5110 	journal_t *journal;
5111 	handle_t *handle;
5112 	int err;
5113 
5114 	/*
5115 	 * We have to be very careful here: changing a data block's
5116 	 * journaling status dynamically is dangerous.  If we write a
5117 	 * data block to the journal, change the status and then delete
5118 	 * that block, we risk forgetting to revoke the old log record
5119 	 * from the journal and so a subsequent replay can corrupt data.
5120 	 * So, first we make sure that the journal is empty and that
5121 	 * nobody is changing anything.
5122 	 */
5123 
5124 	journal = EXT4_JOURNAL(inode);
5125 	if (!journal)
5126 		return 0;
5127 	if (is_journal_aborted(journal))
5128 		return -EROFS;
5129 	/* We have to allocate physical blocks for delalloc blocks
5130 	 * before flushing journal. otherwise delalloc blocks can not
5131 	 * be allocated any more. even more truncate on delalloc blocks
5132 	 * could trigger BUG by flushing delalloc blocks in journal.
5133 	 * There is no delalloc block in non-journal data mode.
5134 	 */
5135 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5136 		err = ext4_alloc_da_blocks(inode);
5137 		if (err < 0)
5138 			return err;
5139 	}
5140 
5141 	/* Wait for all existing dio workers */
5142 	ext4_inode_block_unlocked_dio(inode);
5143 	inode_dio_wait(inode);
5144 
5145 	jbd2_journal_lock_updates(journal);
5146 
5147 	/*
5148 	 * OK, there are no updates running now, and all cached data is
5149 	 * synced to disk.  We are now in a completely consistent state
5150 	 * which doesn't have anything in the journal, and we know that
5151 	 * no filesystem updates are running, so it is safe to modify
5152 	 * the inode's in-core data-journaling state flag now.
5153 	 */
5154 
5155 	if (val)
5156 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5157 	else {
5158 		err = jbd2_journal_flush(journal);
5159 		if (err < 0) {
5160 			jbd2_journal_unlock_updates(journal);
5161 			ext4_inode_resume_unlocked_dio(inode);
5162 			return err;
5163 		}
5164 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5165 	}
5166 	ext4_set_aops(inode);
5167 
5168 	jbd2_journal_unlock_updates(journal);
5169 	ext4_inode_resume_unlocked_dio(inode);
5170 
5171 	/* Finally we can mark the inode as dirty. */
5172 
5173 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5174 	if (IS_ERR(handle))
5175 		return PTR_ERR(handle);
5176 
5177 	err = ext4_mark_inode_dirty(handle, inode);
5178 	ext4_handle_sync(handle);
5179 	ext4_journal_stop(handle);
5180 	ext4_std_error(inode->i_sb, err);
5181 
5182 	return err;
5183 }
5184 
5185 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5186 {
5187 	return !buffer_mapped(bh);
5188 }
5189 
5190 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5191 {
5192 	struct page *page = vmf->page;
5193 	loff_t size;
5194 	unsigned long len;
5195 	int ret;
5196 	struct file *file = vma->vm_file;
5197 	struct inode *inode = file_inode(file);
5198 	struct address_space *mapping = inode->i_mapping;
5199 	handle_t *handle;
5200 	get_block_t *get_block;
5201 	int retries = 0;
5202 
5203 	sb_start_pagefault(inode->i_sb);
5204 	file_update_time(vma->vm_file);
5205 	/* Delalloc case is easy... */
5206 	if (test_opt(inode->i_sb, DELALLOC) &&
5207 	    !ext4_should_journal_data(inode) &&
5208 	    !ext4_nonda_switch(inode->i_sb)) {
5209 		do {
5210 			ret = __block_page_mkwrite(vma, vmf,
5211 						   ext4_da_get_block_prep);
5212 		} while (ret == -ENOSPC &&
5213 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5214 		goto out_ret;
5215 	}
5216 
5217 	lock_page(page);
5218 	size = i_size_read(inode);
5219 	/* Page got truncated from under us? */
5220 	if (page->mapping != mapping || page_offset(page) > size) {
5221 		unlock_page(page);
5222 		ret = VM_FAULT_NOPAGE;
5223 		goto out;
5224 	}
5225 
5226 	if (page->index == size >> PAGE_CACHE_SHIFT)
5227 		len = size & ~PAGE_CACHE_MASK;
5228 	else
5229 		len = PAGE_CACHE_SIZE;
5230 	/*
5231 	 * Return if we have all the buffers mapped. This avoids the need to do
5232 	 * journal_start/journal_stop which can block and take a long time
5233 	 */
5234 	if (page_has_buffers(page)) {
5235 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5236 					    0, len, NULL,
5237 					    ext4_bh_unmapped)) {
5238 			/* Wait so that we don't change page under IO */
5239 			wait_for_stable_page(page);
5240 			ret = VM_FAULT_LOCKED;
5241 			goto out;
5242 		}
5243 	}
5244 	unlock_page(page);
5245 	/* OK, we need to fill the hole... */
5246 	if (ext4_should_dioread_nolock(inode))
5247 		get_block = ext4_get_block_write;
5248 	else
5249 		get_block = ext4_get_block;
5250 retry_alloc:
5251 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5252 				    ext4_writepage_trans_blocks(inode));
5253 	if (IS_ERR(handle)) {
5254 		ret = VM_FAULT_SIGBUS;
5255 		goto out;
5256 	}
5257 	ret = __block_page_mkwrite(vma, vmf, get_block);
5258 	if (!ret && ext4_should_journal_data(inode)) {
5259 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5260 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5261 			unlock_page(page);
5262 			ret = VM_FAULT_SIGBUS;
5263 			ext4_journal_stop(handle);
5264 			goto out;
5265 		}
5266 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5267 	}
5268 	ext4_journal_stop(handle);
5269 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5270 		goto retry_alloc;
5271 out_ret:
5272 	ret = block_page_mkwrite_return(ret);
5273 out:
5274 	sb_end_pagefault(inode->i_sb);
5275 	return ret;
5276 }
5277