1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 #include <linux/bitops.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u16 csum_lo; 57 __u16 csum_hi = 0; 58 __u32 csum; 59 60 csum_lo = le16_to_cpu(raw->i_checksum_lo); 61 raw->i_checksum_lo = 0; 62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 64 csum_hi = le16_to_cpu(raw->i_checksum_hi); 65 raw->i_checksum_hi = 0; 66 } 67 68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 69 EXT4_INODE_SIZE(inode->i_sb)); 70 71 raw->i_checksum_lo = cpu_to_le16(csum_lo); 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 74 raw->i_checksum_hi = cpu_to_le16(csum_hi); 75 76 return csum; 77 } 78 79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 80 struct ext4_inode_info *ei) 81 { 82 __u32 provided, calculated; 83 84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 85 cpu_to_le32(EXT4_OS_LINUX) || 86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 88 return 1; 89 90 provided = le16_to_cpu(raw->i_checksum_lo); 91 calculated = ext4_inode_csum(inode, raw, ei); 92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 95 else 96 calculated &= 0xFFFF; 97 98 return provided == calculated; 99 } 100 101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 102 struct ext4_inode_info *ei) 103 { 104 __u32 csum; 105 106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 107 cpu_to_le32(EXT4_OS_LINUX) || 108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 110 return; 111 112 csum = ext4_inode_csum(inode, raw, ei); 113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 116 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 117 } 118 119 static inline int ext4_begin_ordered_truncate(struct inode *inode, 120 loff_t new_size) 121 { 122 trace_ext4_begin_ordered_truncate(inode, new_size); 123 /* 124 * If jinode is zero, then we never opened the file for 125 * writing, so there's no need to call 126 * jbd2_journal_begin_ordered_truncate() since there's no 127 * outstanding writes we need to flush. 128 */ 129 if (!EXT4_I(inode)->jinode) 130 return 0; 131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 132 EXT4_I(inode)->jinode, 133 new_size); 134 } 135 136 static void ext4_invalidatepage(struct page *page, unsigned int offset, 137 unsigned int length); 138 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 141 int pextents); 142 143 /* 144 * Test whether an inode is a fast symlink. 145 */ 146 static int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 int ea_blocks = EXT4_I(inode)->i_file_acl ? 149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 150 151 if (ext4_has_inline_data(inode)) 152 return 0; 153 154 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 155 } 156 157 /* 158 * Restart the transaction associated with *handle. This does a commit, 159 * so before we call here everything must be consistently dirtied against 160 * this transaction. 161 */ 162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 163 int nblocks) 164 { 165 int ret; 166 167 /* 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 169 * moment, get_block can be called only for blocks inside i_size since 170 * page cache has been already dropped and writes are blocked by 171 * i_mutex. So we can safely drop the i_data_sem here. 172 */ 173 BUG_ON(EXT4_JOURNAL(inode) == NULL); 174 jbd_debug(2, "restarting handle %p\n", handle); 175 up_write(&EXT4_I(inode)->i_data_sem); 176 ret = ext4_journal_restart(handle, nblocks); 177 down_write(&EXT4_I(inode)->i_data_sem); 178 ext4_discard_preallocations(inode); 179 180 return ret; 181 } 182 183 /* 184 * Called at the last iput() if i_nlink is zero. 185 */ 186 void ext4_evict_inode(struct inode *inode) 187 { 188 handle_t *handle; 189 int err; 190 191 trace_ext4_evict_inode(inode); 192 193 if (inode->i_nlink) { 194 /* 195 * When journalling data dirty buffers are tracked only in the 196 * journal. So although mm thinks everything is clean and 197 * ready for reaping the inode might still have some pages to 198 * write in the running transaction or waiting to be 199 * checkpointed. Thus calling jbd2_journal_invalidatepage() 200 * (via truncate_inode_pages()) to discard these buffers can 201 * cause data loss. Also even if we did not discard these 202 * buffers, we would have no way to find them after the inode 203 * is reaped and thus user could see stale data if he tries to 204 * read them before the transaction is checkpointed. So be 205 * careful and force everything to disk here... We use 206 * ei->i_datasync_tid to store the newest transaction 207 * containing inode's data. 208 * 209 * Note that directories do not have this problem because they 210 * don't use page cache. 211 */ 212 if (ext4_should_journal_data(inode) && 213 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 214 inode->i_ino != EXT4_JOURNAL_INO) { 215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 217 218 jbd2_complete_transaction(journal, commit_tid); 219 filemap_write_and_wait(&inode->i_data); 220 } 221 truncate_inode_pages_final(&inode->i_data); 222 223 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 224 goto no_delete; 225 } 226 227 if (!is_bad_inode(inode)) 228 dquot_initialize(inode); 229 230 if (ext4_should_order_data(inode)) 231 ext4_begin_ordered_truncate(inode, 0); 232 truncate_inode_pages_final(&inode->i_data); 233 234 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 235 if (is_bad_inode(inode)) 236 goto no_delete; 237 238 /* 239 * Protect us against freezing - iput() caller didn't have to have any 240 * protection against it 241 */ 242 sb_start_intwrite(inode->i_sb); 243 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 244 ext4_blocks_for_truncate(inode)+3); 245 if (IS_ERR(handle)) { 246 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 247 /* 248 * If we're going to skip the normal cleanup, we still need to 249 * make sure that the in-core orphan linked list is properly 250 * cleaned up. 251 */ 252 ext4_orphan_del(NULL, inode); 253 sb_end_intwrite(inode->i_sb); 254 goto no_delete; 255 } 256 257 if (IS_SYNC(inode)) 258 ext4_handle_sync(handle); 259 inode->i_size = 0; 260 err = ext4_mark_inode_dirty(handle, inode); 261 if (err) { 262 ext4_warning(inode->i_sb, 263 "couldn't mark inode dirty (err %d)", err); 264 goto stop_handle; 265 } 266 if (inode->i_blocks) 267 ext4_truncate(inode); 268 269 /* 270 * ext4_ext_truncate() doesn't reserve any slop when it 271 * restarts journal transactions; therefore there may not be 272 * enough credits left in the handle to remove the inode from 273 * the orphan list and set the dtime field. 274 */ 275 if (!ext4_handle_has_enough_credits(handle, 3)) { 276 err = ext4_journal_extend(handle, 3); 277 if (err > 0) 278 err = ext4_journal_restart(handle, 3); 279 if (err != 0) { 280 ext4_warning(inode->i_sb, 281 "couldn't extend journal (err %d)", err); 282 stop_handle: 283 ext4_journal_stop(handle); 284 ext4_orphan_del(NULL, inode); 285 sb_end_intwrite(inode->i_sb); 286 goto no_delete; 287 } 288 } 289 290 /* 291 * Kill off the orphan record which ext4_truncate created. 292 * AKPM: I think this can be inside the above `if'. 293 * Note that ext4_orphan_del() has to be able to cope with the 294 * deletion of a non-existent orphan - this is because we don't 295 * know if ext4_truncate() actually created an orphan record. 296 * (Well, we could do this if we need to, but heck - it works) 297 */ 298 ext4_orphan_del(handle, inode); 299 EXT4_I(inode)->i_dtime = get_seconds(); 300 301 /* 302 * One subtle ordering requirement: if anything has gone wrong 303 * (transaction abort, IO errors, whatever), then we can still 304 * do these next steps (the fs will already have been marked as 305 * having errors), but we can't free the inode if the mark_dirty 306 * fails. 307 */ 308 if (ext4_mark_inode_dirty(handle, inode)) 309 /* If that failed, just do the required in-core inode clear. */ 310 ext4_clear_inode(inode); 311 else 312 ext4_free_inode(handle, inode); 313 ext4_journal_stop(handle); 314 sb_end_intwrite(inode->i_sb); 315 return; 316 no_delete: 317 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 318 } 319 320 #ifdef CONFIG_QUOTA 321 qsize_t *ext4_get_reserved_space(struct inode *inode) 322 { 323 return &EXT4_I(inode)->i_reserved_quota; 324 } 325 #endif 326 327 /* 328 * Calculate the number of metadata blocks need to reserve 329 * to allocate a block located at @lblock 330 */ 331 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 332 { 333 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 334 return ext4_ext_calc_metadata_amount(inode, lblock); 335 336 return ext4_ind_calc_metadata_amount(inode, lblock); 337 } 338 339 /* 340 * Called with i_data_sem down, which is important since we can call 341 * ext4_discard_preallocations() from here. 342 */ 343 void ext4_da_update_reserve_space(struct inode *inode, 344 int used, int quota_claim) 345 { 346 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 347 struct ext4_inode_info *ei = EXT4_I(inode); 348 349 spin_lock(&ei->i_block_reservation_lock); 350 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 351 if (unlikely(used > ei->i_reserved_data_blocks)) { 352 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 353 "with only %d reserved data blocks", 354 __func__, inode->i_ino, used, 355 ei->i_reserved_data_blocks); 356 WARN_ON(1); 357 used = ei->i_reserved_data_blocks; 358 } 359 360 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 361 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 362 "with only %d reserved metadata blocks " 363 "(releasing %d blocks with reserved %d data blocks)", 364 inode->i_ino, ei->i_allocated_meta_blocks, 365 ei->i_reserved_meta_blocks, used, 366 ei->i_reserved_data_blocks); 367 WARN_ON(1); 368 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 369 } 370 371 /* Update per-inode reservations */ 372 ei->i_reserved_data_blocks -= used; 373 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 375 used + ei->i_allocated_meta_blocks); 376 ei->i_allocated_meta_blocks = 0; 377 378 if (ei->i_reserved_data_blocks == 0) { 379 /* 380 * We can release all of the reserved metadata blocks 381 * only when we have written all of the delayed 382 * allocation blocks. 383 */ 384 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 385 ei->i_reserved_meta_blocks); 386 ei->i_reserved_meta_blocks = 0; 387 ei->i_da_metadata_calc_len = 0; 388 } 389 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 390 391 /* Update quota subsystem for data blocks */ 392 if (quota_claim) 393 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 394 else { 395 /* 396 * We did fallocate with an offset that is already delayed 397 * allocated. So on delayed allocated writeback we should 398 * not re-claim the quota for fallocated blocks. 399 */ 400 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 401 } 402 403 /* 404 * If we have done all the pending block allocations and if 405 * there aren't any writers on the inode, we can discard the 406 * inode's preallocations. 407 */ 408 if ((ei->i_reserved_data_blocks == 0) && 409 (atomic_read(&inode->i_writecount) == 0)) 410 ext4_discard_preallocations(inode); 411 } 412 413 static int __check_block_validity(struct inode *inode, const char *func, 414 unsigned int line, 415 struct ext4_map_blocks *map) 416 { 417 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 418 map->m_len)) { 419 ext4_error_inode(inode, func, line, map->m_pblk, 420 "lblock %lu mapped to illegal pblock " 421 "(length %d)", (unsigned long) map->m_lblk, 422 map->m_len); 423 return -EIO; 424 } 425 return 0; 426 } 427 428 #define check_block_validity(inode, map) \ 429 __check_block_validity((inode), __func__, __LINE__, (map)) 430 431 #ifdef ES_AGGRESSIVE_TEST 432 static void ext4_map_blocks_es_recheck(handle_t *handle, 433 struct inode *inode, 434 struct ext4_map_blocks *es_map, 435 struct ext4_map_blocks *map, 436 int flags) 437 { 438 int retval; 439 440 map->m_flags = 0; 441 /* 442 * There is a race window that the result is not the same. 443 * e.g. xfstests #223 when dioread_nolock enables. The reason 444 * is that we lookup a block mapping in extent status tree with 445 * out taking i_data_sem. So at the time the unwritten extent 446 * could be converted. 447 */ 448 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 449 down_read(&EXT4_I(inode)->i_data_sem); 450 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 451 retval = ext4_ext_map_blocks(handle, inode, map, flags & 452 EXT4_GET_BLOCKS_KEEP_SIZE); 453 } else { 454 retval = ext4_ind_map_blocks(handle, inode, map, flags & 455 EXT4_GET_BLOCKS_KEEP_SIZE); 456 } 457 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 458 up_read((&EXT4_I(inode)->i_data_sem)); 459 /* 460 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 461 * because it shouldn't be marked in es_map->m_flags. 462 */ 463 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 464 465 /* 466 * We don't check m_len because extent will be collpased in status 467 * tree. So the m_len might not equal. 468 */ 469 if (es_map->m_lblk != map->m_lblk || 470 es_map->m_flags != map->m_flags || 471 es_map->m_pblk != map->m_pblk) { 472 printk("ES cache assertion failed for inode: %lu " 473 "es_cached ex [%d/%d/%llu/%x] != " 474 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 475 inode->i_ino, es_map->m_lblk, es_map->m_len, 476 es_map->m_pblk, es_map->m_flags, map->m_lblk, 477 map->m_len, map->m_pblk, map->m_flags, 478 retval, flags); 479 } 480 } 481 #endif /* ES_AGGRESSIVE_TEST */ 482 483 /* 484 * The ext4_map_blocks() function tries to look up the requested blocks, 485 * and returns if the blocks are already mapped. 486 * 487 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 488 * and store the allocated blocks in the result buffer head and mark it 489 * mapped. 490 * 491 * If file type is extents based, it will call ext4_ext_map_blocks(), 492 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 493 * based files 494 * 495 * On success, it returns the number of blocks being mapped or allocated. 496 * if create==0 and the blocks are pre-allocated and unwritten block, 497 * the result buffer head is unmapped. If the create ==1, it will make sure 498 * the buffer head is mapped. 499 * 500 * It returns 0 if plain look up failed (blocks have not been allocated), in 501 * that case, buffer head is unmapped 502 * 503 * It returns the error in case of allocation failure. 504 */ 505 int ext4_map_blocks(handle_t *handle, struct inode *inode, 506 struct ext4_map_blocks *map, int flags) 507 { 508 struct extent_status es; 509 int retval; 510 int ret = 0; 511 #ifdef ES_AGGRESSIVE_TEST 512 struct ext4_map_blocks orig_map; 513 514 memcpy(&orig_map, map, sizeof(*map)); 515 #endif 516 517 map->m_flags = 0; 518 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 519 "logical block %lu\n", inode->i_ino, flags, map->m_len, 520 (unsigned long) map->m_lblk); 521 522 /* 523 * ext4_map_blocks returns an int, and m_len is an unsigned int 524 */ 525 if (unlikely(map->m_len > INT_MAX)) 526 map->m_len = INT_MAX; 527 528 /* We can handle the block number less than EXT_MAX_BLOCKS */ 529 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 530 return -EIO; 531 532 /* Lookup extent status tree firstly */ 533 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 534 ext4_es_lru_add(inode); 535 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 536 map->m_pblk = ext4_es_pblock(&es) + 537 map->m_lblk - es.es_lblk; 538 map->m_flags |= ext4_es_is_written(&es) ? 539 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 540 retval = es.es_len - (map->m_lblk - es.es_lblk); 541 if (retval > map->m_len) 542 retval = map->m_len; 543 map->m_len = retval; 544 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 545 retval = 0; 546 } else { 547 BUG_ON(1); 548 } 549 #ifdef ES_AGGRESSIVE_TEST 550 ext4_map_blocks_es_recheck(handle, inode, map, 551 &orig_map, flags); 552 #endif 553 goto found; 554 } 555 556 /* 557 * Try to see if we can get the block without requesting a new 558 * file system block. 559 */ 560 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 561 down_read(&EXT4_I(inode)->i_data_sem); 562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 563 retval = ext4_ext_map_blocks(handle, inode, map, flags & 564 EXT4_GET_BLOCKS_KEEP_SIZE); 565 } else { 566 retval = ext4_ind_map_blocks(handle, inode, map, flags & 567 EXT4_GET_BLOCKS_KEEP_SIZE); 568 } 569 if (retval > 0) { 570 unsigned int status; 571 572 if (unlikely(retval != map->m_len)) { 573 ext4_warning(inode->i_sb, 574 "ES len assertion failed for inode " 575 "%lu: retval %d != map->m_len %d", 576 inode->i_ino, retval, map->m_len); 577 WARN_ON(1); 578 } 579 580 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 581 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 582 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 583 ext4_find_delalloc_range(inode, map->m_lblk, 584 map->m_lblk + map->m_len - 1)) 585 status |= EXTENT_STATUS_DELAYED; 586 ret = ext4_es_insert_extent(inode, map->m_lblk, 587 map->m_len, map->m_pblk, status); 588 if (ret < 0) 589 retval = ret; 590 } 591 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 592 up_read((&EXT4_I(inode)->i_data_sem)); 593 594 found: 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 596 ret = check_block_validity(inode, map); 597 if (ret != 0) 598 return ret; 599 } 600 601 /* If it is only a block(s) look up */ 602 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 603 return retval; 604 605 /* 606 * Returns if the blocks have already allocated 607 * 608 * Note that if blocks have been preallocated 609 * ext4_ext_get_block() returns the create = 0 610 * with buffer head unmapped. 611 */ 612 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 613 /* 614 * If we need to convert extent to unwritten 615 * we continue and do the actual work in 616 * ext4_ext_map_blocks() 617 */ 618 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 619 return retval; 620 621 /* 622 * Here we clear m_flags because after allocating an new extent, 623 * it will be set again. 624 */ 625 map->m_flags &= ~EXT4_MAP_FLAGS; 626 627 /* 628 * New blocks allocate and/or writing to unwritten extent 629 * will possibly result in updating i_data, so we take 630 * the write lock of i_data_sem, and call get_blocks() 631 * with create == 1 flag. 632 */ 633 down_write(&EXT4_I(inode)->i_data_sem); 634 635 /* 636 * if the caller is from delayed allocation writeout path 637 * we have already reserved fs blocks for allocation 638 * let the underlying get_block() function know to 639 * avoid double accounting 640 */ 641 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 642 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 643 /* 644 * We need to check for EXT4 here because migrate 645 * could have changed the inode type in between 646 */ 647 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 648 retval = ext4_ext_map_blocks(handle, inode, map, flags); 649 } else { 650 retval = ext4_ind_map_blocks(handle, inode, map, flags); 651 652 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 653 /* 654 * We allocated new blocks which will result in 655 * i_data's format changing. Force the migrate 656 * to fail by clearing migrate flags 657 */ 658 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 659 } 660 661 /* 662 * Update reserved blocks/metadata blocks after successful 663 * block allocation which had been deferred till now. We don't 664 * support fallocate for non extent files. So we can update 665 * reserve space here. 666 */ 667 if ((retval > 0) && 668 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 669 ext4_da_update_reserve_space(inode, retval, 1); 670 } 671 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 672 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 673 674 if (retval > 0) { 675 unsigned int status; 676 677 if (unlikely(retval != map->m_len)) { 678 ext4_warning(inode->i_sb, 679 "ES len assertion failed for inode " 680 "%lu: retval %d != map->m_len %d", 681 inode->i_ino, retval, map->m_len); 682 WARN_ON(1); 683 } 684 685 /* 686 * If the extent has been zeroed out, we don't need to update 687 * extent status tree. 688 */ 689 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 690 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 691 if (ext4_es_is_written(&es)) 692 goto has_zeroout; 693 } 694 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 695 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 696 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 697 ext4_find_delalloc_range(inode, map->m_lblk, 698 map->m_lblk + map->m_len - 1)) 699 status |= EXTENT_STATUS_DELAYED; 700 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 701 map->m_pblk, status); 702 if (ret < 0) 703 retval = ret; 704 } 705 706 has_zeroout: 707 up_write((&EXT4_I(inode)->i_data_sem)); 708 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 709 ret = check_block_validity(inode, map); 710 if (ret != 0) 711 return ret; 712 } 713 return retval; 714 } 715 716 /* Maximum number of blocks we map for direct IO at once. */ 717 #define DIO_MAX_BLOCKS 4096 718 719 static int _ext4_get_block(struct inode *inode, sector_t iblock, 720 struct buffer_head *bh, int flags) 721 { 722 handle_t *handle = ext4_journal_current_handle(); 723 struct ext4_map_blocks map; 724 int ret = 0, started = 0; 725 int dio_credits; 726 727 if (ext4_has_inline_data(inode)) 728 return -ERANGE; 729 730 map.m_lblk = iblock; 731 map.m_len = bh->b_size >> inode->i_blkbits; 732 733 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 734 /* Direct IO write... */ 735 if (map.m_len > DIO_MAX_BLOCKS) 736 map.m_len = DIO_MAX_BLOCKS; 737 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 738 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 739 dio_credits); 740 if (IS_ERR(handle)) { 741 ret = PTR_ERR(handle); 742 return ret; 743 } 744 started = 1; 745 } 746 747 ret = ext4_map_blocks(handle, inode, &map, flags); 748 if (ret > 0) { 749 ext4_io_end_t *io_end = ext4_inode_aio(inode); 750 751 map_bh(bh, inode->i_sb, map.m_pblk); 752 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 753 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 754 set_buffer_defer_completion(bh); 755 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 756 ret = 0; 757 } 758 if (started) 759 ext4_journal_stop(handle); 760 return ret; 761 } 762 763 int ext4_get_block(struct inode *inode, sector_t iblock, 764 struct buffer_head *bh, int create) 765 { 766 return _ext4_get_block(inode, iblock, bh, 767 create ? EXT4_GET_BLOCKS_CREATE : 0); 768 } 769 770 /* 771 * `handle' can be NULL if create is zero 772 */ 773 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 774 ext4_lblk_t block, int create, int *errp) 775 { 776 struct ext4_map_blocks map; 777 struct buffer_head *bh; 778 int fatal = 0, err; 779 780 J_ASSERT(handle != NULL || create == 0); 781 782 map.m_lblk = block; 783 map.m_len = 1; 784 err = ext4_map_blocks(handle, inode, &map, 785 create ? EXT4_GET_BLOCKS_CREATE : 0); 786 787 /* ensure we send some value back into *errp */ 788 *errp = 0; 789 790 if (create && err == 0) 791 err = -ENOSPC; /* should never happen */ 792 if (err < 0) 793 *errp = err; 794 if (err <= 0) 795 return NULL; 796 797 bh = sb_getblk(inode->i_sb, map.m_pblk); 798 if (unlikely(!bh)) { 799 *errp = -ENOMEM; 800 return NULL; 801 } 802 if (map.m_flags & EXT4_MAP_NEW) { 803 J_ASSERT(create != 0); 804 J_ASSERT(handle != NULL); 805 806 /* 807 * Now that we do not always journal data, we should 808 * keep in mind whether this should always journal the 809 * new buffer as metadata. For now, regular file 810 * writes use ext4_get_block instead, so it's not a 811 * problem. 812 */ 813 lock_buffer(bh); 814 BUFFER_TRACE(bh, "call get_create_access"); 815 fatal = ext4_journal_get_create_access(handle, bh); 816 if (!fatal && !buffer_uptodate(bh)) { 817 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 818 set_buffer_uptodate(bh); 819 } 820 unlock_buffer(bh); 821 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 822 err = ext4_handle_dirty_metadata(handle, inode, bh); 823 if (!fatal) 824 fatal = err; 825 } else { 826 BUFFER_TRACE(bh, "not a new buffer"); 827 } 828 if (fatal) { 829 *errp = fatal; 830 brelse(bh); 831 bh = NULL; 832 } 833 return bh; 834 } 835 836 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 837 ext4_lblk_t block, int create, int *err) 838 { 839 struct buffer_head *bh; 840 841 bh = ext4_getblk(handle, inode, block, create, err); 842 if (!bh) 843 return bh; 844 if (buffer_uptodate(bh)) 845 return bh; 846 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 847 wait_on_buffer(bh); 848 if (buffer_uptodate(bh)) 849 return bh; 850 put_bh(bh); 851 *err = -EIO; 852 return NULL; 853 } 854 855 int ext4_walk_page_buffers(handle_t *handle, 856 struct buffer_head *head, 857 unsigned from, 858 unsigned to, 859 int *partial, 860 int (*fn)(handle_t *handle, 861 struct buffer_head *bh)) 862 { 863 struct buffer_head *bh; 864 unsigned block_start, block_end; 865 unsigned blocksize = head->b_size; 866 int err, ret = 0; 867 struct buffer_head *next; 868 869 for (bh = head, block_start = 0; 870 ret == 0 && (bh != head || !block_start); 871 block_start = block_end, bh = next) { 872 next = bh->b_this_page; 873 block_end = block_start + blocksize; 874 if (block_end <= from || block_start >= to) { 875 if (partial && !buffer_uptodate(bh)) 876 *partial = 1; 877 continue; 878 } 879 err = (*fn)(handle, bh); 880 if (!ret) 881 ret = err; 882 } 883 return ret; 884 } 885 886 /* 887 * To preserve ordering, it is essential that the hole instantiation and 888 * the data write be encapsulated in a single transaction. We cannot 889 * close off a transaction and start a new one between the ext4_get_block() 890 * and the commit_write(). So doing the jbd2_journal_start at the start of 891 * prepare_write() is the right place. 892 * 893 * Also, this function can nest inside ext4_writepage(). In that case, we 894 * *know* that ext4_writepage() has generated enough buffer credits to do the 895 * whole page. So we won't block on the journal in that case, which is good, 896 * because the caller may be PF_MEMALLOC. 897 * 898 * By accident, ext4 can be reentered when a transaction is open via 899 * quota file writes. If we were to commit the transaction while thus 900 * reentered, there can be a deadlock - we would be holding a quota 901 * lock, and the commit would never complete if another thread had a 902 * transaction open and was blocking on the quota lock - a ranking 903 * violation. 904 * 905 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 906 * will _not_ run commit under these circumstances because handle->h_ref 907 * is elevated. We'll still have enough credits for the tiny quotafile 908 * write. 909 */ 910 int do_journal_get_write_access(handle_t *handle, 911 struct buffer_head *bh) 912 { 913 int dirty = buffer_dirty(bh); 914 int ret; 915 916 if (!buffer_mapped(bh) || buffer_freed(bh)) 917 return 0; 918 /* 919 * __block_write_begin() could have dirtied some buffers. Clean 920 * the dirty bit as jbd2_journal_get_write_access() could complain 921 * otherwise about fs integrity issues. Setting of the dirty bit 922 * by __block_write_begin() isn't a real problem here as we clear 923 * the bit before releasing a page lock and thus writeback cannot 924 * ever write the buffer. 925 */ 926 if (dirty) 927 clear_buffer_dirty(bh); 928 BUFFER_TRACE(bh, "get write access"); 929 ret = ext4_journal_get_write_access(handle, bh); 930 if (!ret && dirty) 931 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 932 return ret; 933 } 934 935 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 936 struct buffer_head *bh_result, int create); 937 static int ext4_write_begin(struct file *file, struct address_space *mapping, 938 loff_t pos, unsigned len, unsigned flags, 939 struct page **pagep, void **fsdata) 940 { 941 struct inode *inode = mapping->host; 942 int ret, needed_blocks; 943 handle_t *handle; 944 int retries = 0; 945 struct page *page; 946 pgoff_t index; 947 unsigned from, to; 948 949 trace_ext4_write_begin(inode, pos, len, flags); 950 /* 951 * Reserve one block more for addition to orphan list in case 952 * we allocate blocks but write fails for some reason 953 */ 954 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 955 index = pos >> PAGE_CACHE_SHIFT; 956 from = pos & (PAGE_CACHE_SIZE - 1); 957 to = from + len; 958 959 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 960 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 961 flags, pagep); 962 if (ret < 0) 963 return ret; 964 if (ret == 1) 965 return 0; 966 } 967 968 /* 969 * grab_cache_page_write_begin() can take a long time if the 970 * system is thrashing due to memory pressure, or if the page 971 * is being written back. So grab it first before we start 972 * the transaction handle. This also allows us to allocate 973 * the page (if needed) without using GFP_NOFS. 974 */ 975 retry_grab: 976 page = grab_cache_page_write_begin(mapping, index, flags); 977 if (!page) 978 return -ENOMEM; 979 unlock_page(page); 980 981 retry_journal: 982 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 983 if (IS_ERR(handle)) { 984 page_cache_release(page); 985 return PTR_ERR(handle); 986 } 987 988 lock_page(page); 989 if (page->mapping != mapping) { 990 /* The page got truncated from under us */ 991 unlock_page(page); 992 page_cache_release(page); 993 ext4_journal_stop(handle); 994 goto retry_grab; 995 } 996 /* In case writeback began while the page was unlocked */ 997 wait_for_stable_page(page); 998 999 if (ext4_should_dioread_nolock(inode)) 1000 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1001 else 1002 ret = __block_write_begin(page, pos, len, ext4_get_block); 1003 1004 if (!ret && ext4_should_journal_data(inode)) { 1005 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1006 from, to, NULL, 1007 do_journal_get_write_access); 1008 } 1009 1010 if (ret) { 1011 unlock_page(page); 1012 /* 1013 * __block_write_begin may have instantiated a few blocks 1014 * outside i_size. Trim these off again. Don't need 1015 * i_size_read because we hold i_mutex. 1016 * 1017 * Add inode to orphan list in case we crash before 1018 * truncate finishes 1019 */ 1020 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1021 ext4_orphan_add(handle, inode); 1022 1023 ext4_journal_stop(handle); 1024 if (pos + len > inode->i_size) { 1025 ext4_truncate_failed_write(inode); 1026 /* 1027 * If truncate failed early the inode might 1028 * still be on the orphan list; we need to 1029 * make sure the inode is removed from the 1030 * orphan list in that case. 1031 */ 1032 if (inode->i_nlink) 1033 ext4_orphan_del(NULL, inode); 1034 } 1035 1036 if (ret == -ENOSPC && 1037 ext4_should_retry_alloc(inode->i_sb, &retries)) 1038 goto retry_journal; 1039 page_cache_release(page); 1040 return ret; 1041 } 1042 *pagep = page; 1043 return ret; 1044 } 1045 1046 /* For write_end() in data=journal mode */ 1047 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1048 { 1049 int ret; 1050 if (!buffer_mapped(bh) || buffer_freed(bh)) 1051 return 0; 1052 set_buffer_uptodate(bh); 1053 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1054 clear_buffer_meta(bh); 1055 clear_buffer_prio(bh); 1056 return ret; 1057 } 1058 1059 /* 1060 * We need to pick up the new inode size which generic_commit_write gave us 1061 * `file' can be NULL - eg, when called from page_symlink(). 1062 * 1063 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1064 * buffers are managed internally. 1065 */ 1066 static int ext4_write_end(struct file *file, 1067 struct address_space *mapping, 1068 loff_t pos, unsigned len, unsigned copied, 1069 struct page *page, void *fsdata) 1070 { 1071 handle_t *handle = ext4_journal_current_handle(); 1072 struct inode *inode = mapping->host; 1073 int ret = 0, ret2; 1074 int i_size_changed = 0; 1075 1076 trace_ext4_write_end(inode, pos, len, copied); 1077 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1078 ret = ext4_jbd2_file_inode(handle, inode); 1079 if (ret) { 1080 unlock_page(page); 1081 page_cache_release(page); 1082 goto errout; 1083 } 1084 } 1085 1086 if (ext4_has_inline_data(inode)) { 1087 ret = ext4_write_inline_data_end(inode, pos, len, 1088 copied, page); 1089 if (ret < 0) 1090 goto errout; 1091 copied = ret; 1092 } else 1093 copied = block_write_end(file, mapping, pos, 1094 len, copied, page, fsdata); 1095 1096 /* 1097 * No need to use i_size_read() here, the i_size 1098 * cannot change under us because we hole i_mutex. 1099 * 1100 * But it's important to update i_size while still holding page lock: 1101 * page writeout could otherwise come in and zero beyond i_size. 1102 */ 1103 if (pos + copied > inode->i_size) { 1104 i_size_write(inode, pos + copied); 1105 i_size_changed = 1; 1106 } 1107 1108 if (pos + copied > EXT4_I(inode)->i_disksize) { 1109 /* We need to mark inode dirty even if 1110 * new_i_size is less that inode->i_size 1111 * but greater than i_disksize. (hint delalloc) 1112 */ 1113 ext4_update_i_disksize(inode, (pos + copied)); 1114 i_size_changed = 1; 1115 } 1116 unlock_page(page); 1117 page_cache_release(page); 1118 1119 /* 1120 * Don't mark the inode dirty under page lock. First, it unnecessarily 1121 * makes the holding time of page lock longer. Second, it forces lock 1122 * ordering of page lock and transaction start for journaling 1123 * filesystems. 1124 */ 1125 if (i_size_changed) 1126 ext4_mark_inode_dirty(handle, inode); 1127 1128 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1129 /* if we have allocated more blocks and copied 1130 * less. We will have blocks allocated outside 1131 * inode->i_size. So truncate them 1132 */ 1133 ext4_orphan_add(handle, inode); 1134 errout: 1135 ret2 = ext4_journal_stop(handle); 1136 if (!ret) 1137 ret = ret2; 1138 1139 if (pos + len > inode->i_size) { 1140 ext4_truncate_failed_write(inode); 1141 /* 1142 * If truncate failed early the inode might still be 1143 * on the orphan list; we need to make sure the inode 1144 * is removed from the orphan list in that case. 1145 */ 1146 if (inode->i_nlink) 1147 ext4_orphan_del(NULL, inode); 1148 } 1149 1150 return ret ? ret : copied; 1151 } 1152 1153 static int ext4_journalled_write_end(struct file *file, 1154 struct address_space *mapping, 1155 loff_t pos, unsigned len, unsigned copied, 1156 struct page *page, void *fsdata) 1157 { 1158 handle_t *handle = ext4_journal_current_handle(); 1159 struct inode *inode = mapping->host; 1160 int ret = 0, ret2; 1161 int partial = 0; 1162 unsigned from, to; 1163 loff_t new_i_size; 1164 1165 trace_ext4_journalled_write_end(inode, pos, len, copied); 1166 from = pos & (PAGE_CACHE_SIZE - 1); 1167 to = from + len; 1168 1169 BUG_ON(!ext4_handle_valid(handle)); 1170 1171 if (ext4_has_inline_data(inode)) 1172 copied = ext4_write_inline_data_end(inode, pos, len, 1173 copied, page); 1174 else { 1175 if (copied < len) { 1176 if (!PageUptodate(page)) 1177 copied = 0; 1178 page_zero_new_buffers(page, from+copied, to); 1179 } 1180 1181 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1182 to, &partial, write_end_fn); 1183 if (!partial) 1184 SetPageUptodate(page); 1185 } 1186 new_i_size = pos + copied; 1187 if (new_i_size > inode->i_size) 1188 i_size_write(inode, pos+copied); 1189 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1190 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1191 if (new_i_size > EXT4_I(inode)->i_disksize) { 1192 ext4_update_i_disksize(inode, new_i_size); 1193 ret2 = ext4_mark_inode_dirty(handle, inode); 1194 if (!ret) 1195 ret = ret2; 1196 } 1197 1198 unlock_page(page); 1199 page_cache_release(page); 1200 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1201 /* if we have allocated more blocks and copied 1202 * less. We will have blocks allocated outside 1203 * inode->i_size. So truncate them 1204 */ 1205 ext4_orphan_add(handle, inode); 1206 1207 ret2 = ext4_journal_stop(handle); 1208 if (!ret) 1209 ret = ret2; 1210 if (pos + len > inode->i_size) { 1211 ext4_truncate_failed_write(inode); 1212 /* 1213 * If truncate failed early the inode might still be 1214 * on the orphan list; we need to make sure the inode 1215 * is removed from the orphan list in that case. 1216 */ 1217 if (inode->i_nlink) 1218 ext4_orphan_del(NULL, inode); 1219 } 1220 1221 return ret ? ret : copied; 1222 } 1223 1224 /* 1225 * Reserve a metadata for a single block located at lblock 1226 */ 1227 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1228 { 1229 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1230 struct ext4_inode_info *ei = EXT4_I(inode); 1231 unsigned int md_needed; 1232 ext4_lblk_t save_last_lblock; 1233 int save_len; 1234 1235 /* 1236 * recalculate the amount of metadata blocks to reserve 1237 * in order to allocate nrblocks 1238 * worse case is one extent per block 1239 */ 1240 spin_lock(&ei->i_block_reservation_lock); 1241 /* 1242 * ext4_calc_metadata_amount() has side effects, which we have 1243 * to be prepared undo if we fail to claim space. 1244 */ 1245 save_len = ei->i_da_metadata_calc_len; 1246 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1247 md_needed = EXT4_NUM_B2C(sbi, 1248 ext4_calc_metadata_amount(inode, lblock)); 1249 trace_ext4_da_reserve_space(inode, md_needed); 1250 1251 /* 1252 * We do still charge estimated metadata to the sb though; 1253 * we cannot afford to run out of free blocks. 1254 */ 1255 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1256 ei->i_da_metadata_calc_len = save_len; 1257 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1258 spin_unlock(&ei->i_block_reservation_lock); 1259 return -ENOSPC; 1260 } 1261 ei->i_reserved_meta_blocks += md_needed; 1262 spin_unlock(&ei->i_block_reservation_lock); 1263 1264 return 0; /* success */ 1265 } 1266 1267 /* 1268 * Reserve a single cluster located at lblock 1269 */ 1270 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1271 { 1272 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1273 struct ext4_inode_info *ei = EXT4_I(inode); 1274 unsigned int md_needed; 1275 int ret; 1276 ext4_lblk_t save_last_lblock; 1277 int save_len; 1278 1279 /* 1280 * We will charge metadata quota at writeout time; this saves 1281 * us from metadata over-estimation, though we may go over by 1282 * a small amount in the end. Here we just reserve for data. 1283 */ 1284 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1285 if (ret) 1286 return ret; 1287 1288 /* 1289 * recalculate the amount of metadata blocks to reserve 1290 * in order to allocate nrblocks 1291 * worse case is one extent per block 1292 */ 1293 spin_lock(&ei->i_block_reservation_lock); 1294 /* 1295 * ext4_calc_metadata_amount() has side effects, which we have 1296 * to be prepared undo if we fail to claim space. 1297 */ 1298 save_len = ei->i_da_metadata_calc_len; 1299 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1300 md_needed = EXT4_NUM_B2C(sbi, 1301 ext4_calc_metadata_amount(inode, lblock)); 1302 trace_ext4_da_reserve_space(inode, md_needed); 1303 1304 /* 1305 * We do still charge estimated metadata to the sb though; 1306 * we cannot afford to run out of free blocks. 1307 */ 1308 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1309 ei->i_da_metadata_calc_len = save_len; 1310 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1311 spin_unlock(&ei->i_block_reservation_lock); 1312 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1313 return -ENOSPC; 1314 } 1315 ei->i_reserved_data_blocks++; 1316 ei->i_reserved_meta_blocks += md_needed; 1317 spin_unlock(&ei->i_block_reservation_lock); 1318 1319 return 0; /* success */ 1320 } 1321 1322 static void ext4_da_release_space(struct inode *inode, int to_free) 1323 { 1324 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1325 struct ext4_inode_info *ei = EXT4_I(inode); 1326 1327 if (!to_free) 1328 return; /* Nothing to release, exit */ 1329 1330 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1331 1332 trace_ext4_da_release_space(inode, to_free); 1333 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1334 /* 1335 * if there aren't enough reserved blocks, then the 1336 * counter is messed up somewhere. Since this 1337 * function is called from invalidate page, it's 1338 * harmless to return without any action. 1339 */ 1340 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1341 "ino %lu, to_free %d with only %d reserved " 1342 "data blocks", inode->i_ino, to_free, 1343 ei->i_reserved_data_blocks); 1344 WARN_ON(1); 1345 to_free = ei->i_reserved_data_blocks; 1346 } 1347 ei->i_reserved_data_blocks -= to_free; 1348 1349 if (ei->i_reserved_data_blocks == 0) { 1350 /* 1351 * We can release all of the reserved metadata blocks 1352 * only when we have written all of the delayed 1353 * allocation blocks. 1354 * Note that in case of bigalloc, i_reserved_meta_blocks, 1355 * i_reserved_data_blocks, etc. refer to number of clusters. 1356 */ 1357 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1358 ei->i_reserved_meta_blocks); 1359 ei->i_reserved_meta_blocks = 0; 1360 ei->i_da_metadata_calc_len = 0; 1361 } 1362 1363 /* update fs dirty data blocks counter */ 1364 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1365 1366 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1367 1368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1369 } 1370 1371 static void ext4_da_page_release_reservation(struct page *page, 1372 unsigned int offset, 1373 unsigned int length) 1374 { 1375 int to_release = 0; 1376 struct buffer_head *head, *bh; 1377 unsigned int curr_off = 0; 1378 struct inode *inode = page->mapping->host; 1379 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1380 unsigned int stop = offset + length; 1381 int num_clusters; 1382 ext4_fsblk_t lblk; 1383 1384 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1385 1386 head = page_buffers(page); 1387 bh = head; 1388 do { 1389 unsigned int next_off = curr_off + bh->b_size; 1390 1391 if (next_off > stop) 1392 break; 1393 1394 if ((offset <= curr_off) && (buffer_delay(bh))) { 1395 to_release++; 1396 clear_buffer_delay(bh); 1397 } 1398 curr_off = next_off; 1399 } while ((bh = bh->b_this_page) != head); 1400 1401 if (to_release) { 1402 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1403 ext4_es_remove_extent(inode, lblk, to_release); 1404 } 1405 1406 /* If we have released all the blocks belonging to a cluster, then we 1407 * need to release the reserved space for that cluster. */ 1408 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1409 while (num_clusters > 0) { 1410 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1411 ((num_clusters - 1) << sbi->s_cluster_bits); 1412 if (sbi->s_cluster_ratio == 1 || 1413 !ext4_find_delalloc_cluster(inode, lblk)) 1414 ext4_da_release_space(inode, 1); 1415 1416 num_clusters--; 1417 } 1418 } 1419 1420 /* 1421 * Delayed allocation stuff 1422 */ 1423 1424 struct mpage_da_data { 1425 struct inode *inode; 1426 struct writeback_control *wbc; 1427 1428 pgoff_t first_page; /* The first page to write */ 1429 pgoff_t next_page; /* Current page to examine */ 1430 pgoff_t last_page; /* Last page to examine */ 1431 /* 1432 * Extent to map - this can be after first_page because that can be 1433 * fully mapped. We somewhat abuse m_flags to store whether the extent 1434 * is delalloc or unwritten. 1435 */ 1436 struct ext4_map_blocks map; 1437 struct ext4_io_submit io_submit; /* IO submission data */ 1438 }; 1439 1440 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1441 bool invalidate) 1442 { 1443 int nr_pages, i; 1444 pgoff_t index, end; 1445 struct pagevec pvec; 1446 struct inode *inode = mpd->inode; 1447 struct address_space *mapping = inode->i_mapping; 1448 1449 /* This is necessary when next_page == 0. */ 1450 if (mpd->first_page >= mpd->next_page) 1451 return; 1452 1453 index = mpd->first_page; 1454 end = mpd->next_page - 1; 1455 if (invalidate) { 1456 ext4_lblk_t start, last; 1457 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1458 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1459 ext4_es_remove_extent(inode, start, last - start + 1); 1460 } 1461 1462 pagevec_init(&pvec, 0); 1463 while (index <= end) { 1464 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1465 if (nr_pages == 0) 1466 break; 1467 for (i = 0; i < nr_pages; i++) { 1468 struct page *page = pvec.pages[i]; 1469 if (page->index > end) 1470 break; 1471 BUG_ON(!PageLocked(page)); 1472 BUG_ON(PageWriteback(page)); 1473 if (invalidate) { 1474 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1475 ClearPageUptodate(page); 1476 } 1477 unlock_page(page); 1478 } 1479 index = pvec.pages[nr_pages - 1]->index + 1; 1480 pagevec_release(&pvec); 1481 } 1482 } 1483 1484 static void ext4_print_free_blocks(struct inode *inode) 1485 { 1486 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1487 struct super_block *sb = inode->i_sb; 1488 struct ext4_inode_info *ei = EXT4_I(inode); 1489 1490 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1491 EXT4_C2B(EXT4_SB(inode->i_sb), 1492 ext4_count_free_clusters(sb))); 1493 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1494 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1495 (long long) EXT4_C2B(EXT4_SB(sb), 1496 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1497 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1498 (long long) EXT4_C2B(EXT4_SB(sb), 1499 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1500 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1501 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1502 ei->i_reserved_data_blocks); 1503 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1504 ei->i_reserved_meta_blocks); 1505 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1506 ei->i_allocated_meta_blocks); 1507 return; 1508 } 1509 1510 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1511 { 1512 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1513 } 1514 1515 /* 1516 * This function is grabs code from the very beginning of 1517 * ext4_map_blocks, but assumes that the caller is from delayed write 1518 * time. This function looks up the requested blocks and sets the 1519 * buffer delay bit under the protection of i_data_sem. 1520 */ 1521 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1522 struct ext4_map_blocks *map, 1523 struct buffer_head *bh) 1524 { 1525 struct extent_status es; 1526 int retval; 1527 sector_t invalid_block = ~((sector_t) 0xffff); 1528 #ifdef ES_AGGRESSIVE_TEST 1529 struct ext4_map_blocks orig_map; 1530 1531 memcpy(&orig_map, map, sizeof(*map)); 1532 #endif 1533 1534 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1535 invalid_block = ~0; 1536 1537 map->m_flags = 0; 1538 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1539 "logical block %lu\n", inode->i_ino, map->m_len, 1540 (unsigned long) map->m_lblk); 1541 1542 /* Lookup extent status tree firstly */ 1543 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1544 ext4_es_lru_add(inode); 1545 if (ext4_es_is_hole(&es)) { 1546 retval = 0; 1547 down_read(&EXT4_I(inode)->i_data_sem); 1548 goto add_delayed; 1549 } 1550 1551 /* 1552 * Delayed extent could be allocated by fallocate. 1553 * So we need to check it. 1554 */ 1555 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1556 map_bh(bh, inode->i_sb, invalid_block); 1557 set_buffer_new(bh); 1558 set_buffer_delay(bh); 1559 return 0; 1560 } 1561 1562 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1563 retval = es.es_len - (iblock - es.es_lblk); 1564 if (retval > map->m_len) 1565 retval = map->m_len; 1566 map->m_len = retval; 1567 if (ext4_es_is_written(&es)) 1568 map->m_flags |= EXT4_MAP_MAPPED; 1569 else if (ext4_es_is_unwritten(&es)) 1570 map->m_flags |= EXT4_MAP_UNWRITTEN; 1571 else 1572 BUG_ON(1); 1573 1574 #ifdef ES_AGGRESSIVE_TEST 1575 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1576 #endif 1577 return retval; 1578 } 1579 1580 /* 1581 * Try to see if we can get the block without requesting a new 1582 * file system block. 1583 */ 1584 down_read(&EXT4_I(inode)->i_data_sem); 1585 if (ext4_has_inline_data(inode)) { 1586 /* 1587 * We will soon create blocks for this page, and let 1588 * us pretend as if the blocks aren't allocated yet. 1589 * In case of clusters, we have to handle the work 1590 * of mapping from cluster so that the reserved space 1591 * is calculated properly. 1592 */ 1593 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1594 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1595 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1596 retval = 0; 1597 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1598 retval = ext4_ext_map_blocks(NULL, inode, map, 1599 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1600 else 1601 retval = ext4_ind_map_blocks(NULL, inode, map, 1602 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1603 1604 add_delayed: 1605 if (retval == 0) { 1606 int ret; 1607 /* 1608 * XXX: __block_prepare_write() unmaps passed block, 1609 * is it OK? 1610 */ 1611 /* 1612 * If the block was allocated from previously allocated cluster, 1613 * then we don't need to reserve it again. However we still need 1614 * to reserve metadata for every block we're going to write. 1615 */ 1616 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1617 ret = ext4_da_reserve_space(inode, iblock); 1618 if (ret) { 1619 /* not enough space to reserve */ 1620 retval = ret; 1621 goto out_unlock; 1622 } 1623 } else { 1624 ret = ext4_da_reserve_metadata(inode, iblock); 1625 if (ret) { 1626 /* not enough space to reserve */ 1627 retval = ret; 1628 goto out_unlock; 1629 } 1630 } 1631 1632 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1633 ~0, EXTENT_STATUS_DELAYED); 1634 if (ret) { 1635 retval = ret; 1636 goto out_unlock; 1637 } 1638 1639 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1640 * and it should not appear on the bh->b_state. 1641 */ 1642 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1643 1644 map_bh(bh, inode->i_sb, invalid_block); 1645 set_buffer_new(bh); 1646 set_buffer_delay(bh); 1647 } else if (retval > 0) { 1648 int ret; 1649 unsigned int status; 1650 1651 if (unlikely(retval != map->m_len)) { 1652 ext4_warning(inode->i_sb, 1653 "ES len assertion failed for inode " 1654 "%lu: retval %d != map->m_len %d", 1655 inode->i_ino, retval, map->m_len); 1656 WARN_ON(1); 1657 } 1658 1659 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1660 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1661 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1662 map->m_pblk, status); 1663 if (ret != 0) 1664 retval = ret; 1665 } 1666 1667 out_unlock: 1668 up_read((&EXT4_I(inode)->i_data_sem)); 1669 1670 return retval; 1671 } 1672 1673 /* 1674 * This is a special get_blocks_t callback which is used by 1675 * ext4_da_write_begin(). It will either return mapped block or 1676 * reserve space for a single block. 1677 * 1678 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1679 * We also have b_blocknr = -1 and b_bdev initialized properly 1680 * 1681 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1682 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1683 * initialized properly. 1684 */ 1685 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1686 struct buffer_head *bh, int create) 1687 { 1688 struct ext4_map_blocks map; 1689 int ret = 0; 1690 1691 BUG_ON(create == 0); 1692 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1693 1694 map.m_lblk = iblock; 1695 map.m_len = 1; 1696 1697 /* 1698 * first, we need to know whether the block is allocated already 1699 * preallocated blocks are unmapped but should treated 1700 * the same as allocated blocks. 1701 */ 1702 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1703 if (ret <= 0) 1704 return ret; 1705 1706 map_bh(bh, inode->i_sb, map.m_pblk); 1707 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1708 1709 if (buffer_unwritten(bh)) { 1710 /* A delayed write to unwritten bh should be marked 1711 * new and mapped. Mapped ensures that we don't do 1712 * get_block multiple times when we write to the same 1713 * offset and new ensures that we do proper zero out 1714 * for partial write. 1715 */ 1716 set_buffer_new(bh); 1717 set_buffer_mapped(bh); 1718 } 1719 return 0; 1720 } 1721 1722 static int bget_one(handle_t *handle, struct buffer_head *bh) 1723 { 1724 get_bh(bh); 1725 return 0; 1726 } 1727 1728 static int bput_one(handle_t *handle, struct buffer_head *bh) 1729 { 1730 put_bh(bh); 1731 return 0; 1732 } 1733 1734 static int __ext4_journalled_writepage(struct page *page, 1735 unsigned int len) 1736 { 1737 struct address_space *mapping = page->mapping; 1738 struct inode *inode = mapping->host; 1739 struct buffer_head *page_bufs = NULL; 1740 handle_t *handle = NULL; 1741 int ret = 0, err = 0; 1742 int inline_data = ext4_has_inline_data(inode); 1743 struct buffer_head *inode_bh = NULL; 1744 1745 ClearPageChecked(page); 1746 1747 if (inline_data) { 1748 BUG_ON(page->index != 0); 1749 BUG_ON(len > ext4_get_max_inline_size(inode)); 1750 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1751 if (inode_bh == NULL) 1752 goto out; 1753 } else { 1754 page_bufs = page_buffers(page); 1755 if (!page_bufs) { 1756 BUG(); 1757 goto out; 1758 } 1759 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1760 NULL, bget_one); 1761 } 1762 /* As soon as we unlock the page, it can go away, but we have 1763 * references to buffers so we are safe */ 1764 unlock_page(page); 1765 1766 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1767 ext4_writepage_trans_blocks(inode)); 1768 if (IS_ERR(handle)) { 1769 ret = PTR_ERR(handle); 1770 goto out; 1771 } 1772 1773 BUG_ON(!ext4_handle_valid(handle)); 1774 1775 if (inline_data) { 1776 BUFFER_TRACE(inode_bh, "get write access"); 1777 ret = ext4_journal_get_write_access(handle, inode_bh); 1778 1779 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1780 1781 } else { 1782 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1783 do_journal_get_write_access); 1784 1785 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1786 write_end_fn); 1787 } 1788 if (ret == 0) 1789 ret = err; 1790 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1791 err = ext4_journal_stop(handle); 1792 if (!ret) 1793 ret = err; 1794 1795 if (!ext4_has_inline_data(inode)) 1796 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1797 NULL, bput_one); 1798 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1799 out: 1800 brelse(inode_bh); 1801 return ret; 1802 } 1803 1804 /* 1805 * Note that we don't need to start a transaction unless we're journaling data 1806 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1807 * need to file the inode to the transaction's list in ordered mode because if 1808 * we are writing back data added by write(), the inode is already there and if 1809 * we are writing back data modified via mmap(), no one guarantees in which 1810 * transaction the data will hit the disk. In case we are journaling data, we 1811 * cannot start transaction directly because transaction start ranks above page 1812 * lock so we have to do some magic. 1813 * 1814 * This function can get called via... 1815 * - ext4_writepages after taking page lock (have journal handle) 1816 * - journal_submit_inode_data_buffers (no journal handle) 1817 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1818 * - grab_page_cache when doing write_begin (have journal handle) 1819 * 1820 * We don't do any block allocation in this function. If we have page with 1821 * multiple blocks we need to write those buffer_heads that are mapped. This 1822 * is important for mmaped based write. So if we do with blocksize 1K 1823 * truncate(f, 1024); 1824 * a = mmap(f, 0, 4096); 1825 * a[0] = 'a'; 1826 * truncate(f, 4096); 1827 * we have in the page first buffer_head mapped via page_mkwrite call back 1828 * but other buffer_heads would be unmapped but dirty (dirty done via the 1829 * do_wp_page). So writepage should write the first block. If we modify 1830 * the mmap area beyond 1024 we will again get a page_fault and the 1831 * page_mkwrite callback will do the block allocation and mark the 1832 * buffer_heads mapped. 1833 * 1834 * We redirty the page if we have any buffer_heads that is either delay or 1835 * unwritten in the page. 1836 * 1837 * We can get recursively called as show below. 1838 * 1839 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1840 * ext4_writepage() 1841 * 1842 * But since we don't do any block allocation we should not deadlock. 1843 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1844 */ 1845 static int ext4_writepage(struct page *page, 1846 struct writeback_control *wbc) 1847 { 1848 int ret = 0; 1849 loff_t size; 1850 unsigned int len; 1851 struct buffer_head *page_bufs = NULL; 1852 struct inode *inode = page->mapping->host; 1853 struct ext4_io_submit io_submit; 1854 bool keep_towrite = false; 1855 1856 trace_ext4_writepage(page); 1857 size = i_size_read(inode); 1858 if (page->index == size >> PAGE_CACHE_SHIFT) 1859 len = size & ~PAGE_CACHE_MASK; 1860 else 1861 len = PAGE_CACHE_SIZE; 1862 1863 page_bufs = page_buffers(page); 1864 /* 1865 * We cannot do block allocation or other extent handling in this 1866 * function. If there are buffers needing that, we have to redirty 1867 * the page. But we may reach here when we do a journal commit via 1868 * journal_submit_inode_data_buffers() and in that case we must write 1869 * allocated buffers to achieve data=ordered mode guarantees. 1870 */ 1871 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1872 ext4_bh_delay_or_unwritten)) { 1873 redirty_page_for_writepage(wbc, page); 1874 if (current->flags & PF_MEMALLOC) { 1875 /* 1876 * For memory cleaning there's no point in writing only 1877 * some buffers. So just bail out. Warn if we came here 1878 * from direct reclaim. 1879 */ 1880 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1881 == PF_MEMALLOC); 1882 unlock_page(page); 1883 return 0; 1884 } 1885 keep_towrite = true; 1886 } 1887 1888 if (PageChecked(page) && ext4_should_journal_data(inode)) 1889 /* 1890 * It's mmapped pagecache. Add buffers and journal it. There 1891 * doesn't seem much point in redirtying the page here. 1892 */ 1893 return __ext4_journalled_writepage(page, len); 1894 1895 ext4_io_submit_init(&io_submit, wbc); 1896 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1897 if (!io_submit.io_end) { 1898 redirty_page_for_writepage(wbc, page); 1899 unlock_page(page); 1900 return -ENOMEM; 1901 } 1902 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1903 ext4_io_submit(&io_submit); 1904 /* Drop io_end reference we got from init */ 1905 ext4_put_io_end_defer(io_submit.io_end); 1906 return ret; 1907 } 1908 1909 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1910 { 1911 int len; 1912 loff_t size = i_size_read(mpd->inode); 1913 int err; 1914 1915 BUG_ON(page->index != mpd->first_page); 1916 if (page->index == size >> PAGE_CACHE_SHIFT) 1917 len = size & ~PAGE_CACHE_MASK; 1918 else 1919 len = PAGE_CACHE_SIZE; 1920 clear_page_dirty_for_io(page); 1921 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1922 if (!err) 1923 mpd->wbc->nr_to_write--; 1924 mpd->first_page++; 1925 1926 return err; 1927 } 1928 1929 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1930 1931 /* 1932 * mballoc gives us at most this number of blocks... 1933 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1934 * The rest of mballoc seems to handle chunks up to full group size. 1935 */ 1936 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1937 1938 /* 1939 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1940 * 1941 * @mpd - extent of blocks 1942 * @lblk - logical number of the block in the file 1943 * @bh - buffer head we want to add to the extent 1944 * 1945 * The function is used to collect contig. blocks in the same state. If the 1946 * buffer doesn't require mapping for writeback and we haven't started the 1947 * extent of buffers to map yet, the function returns 'true' immediately - the 1948 * caller can write the buffer right away. Otherwise the function returns true 1949 * if the block has been added to the extent, false if the block couldn't be 1950 * added. 1951 */ 1952 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1953 struct buffer_head *bh) 1954 { 1955 struct ext4_map_blocks *map = &mpd->map; 1956 1957 /* Buffer that doesn't need mapping for writeback? */ 1958 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1959 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1960 /* So far no extent to map => we write the buffer right away */ 1961 if (map->m_len == 0) 1962 return true; 1963 return false; 1964 } 1965 1966 /* First block in the extent? */ 1967 if (map->m_len == 0) { 1968 map->m_lblk = lblk; 1969 map->m_len = 1; 1970 map->m_flags = bh->b_state & BH_FLAGS; 1971 return true; 1972 } 1973 1974 /* Don't go larger than mballoc is willing to allocate */ 1975 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1976 return false; 1977 1978 /* Can we merge the block to our big extent? */ 1979 if (lblk == map->m_lblk + map->m_len && 1980 (bh->b_state & BH_FLAGS) == map->m_flags) { 1981 map->m_len++; 1982 return true; 1983 } 1984 return false; 1985 } 1986 1987 /* 1988 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1989 * 1990 * @mpd - extent of blocks for mapping 1991 * @head - the first buffer in the page 1992 * @bh - buffer we should start processing from 1993 * @lblk - logical number of the block in the file corresponding to @bh 1994 * 1995 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1996 * the page for IO if all buffers in this page were mapped and there's no 1997 * accumulated extent of buffers to map or add buffers in the page to the 1998 * extent of buffers to map. The function returns 1 if the caller can continue 1999 * by processing the next page, 0 if it should stop adding buffers to the 2000 * extent to map because we cannot extend it anymore. It can also return value 2001 * < 0 in case of error during IO submission. 2002 */ 2003 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2004 struct buffer_head *head, 2005 struct buffer_head *bh, 2006 ext4_lblk_t lblk) 2007 { 2008 struct inode *inode = mpd->inode; 2009 int err; 2010 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2011 >> inode->i_blkbits; 2012 2013 do { 2014 BUG_ON(buffer_locked(bh)); 2015 2016 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2017 /* Found extent to map? */ 2018 if (mpd->map.m_len) 2019 return 0; 2020 /* Everything mapped so far and we hit EOF */ 2021 break; 2022 } 2023 } while (lblk++, (bh = bh->b_this_page) != head); 2024 /* So far everything mapped? Submit the page for IO. */ 2025 if (mpd->map.m_len == 0) { 2026 err = mpage_submit_page(mpd, head->b_page); 2027 if (err < 0) 2028 return err; 2029 } 2030 return lblk < blocks; 2031 } 2032 2033 /* 2034 * mpage_map_buffers - update buffers corresponding to changed extent and 2035 * submit fully mapped pages for IO 2036 * 2037 * @mpd - description of extent to map, on return next extent to map 2038 * 2039 * Scan buffers corresponding to changed extent (we expect corresponding pages 2040 * to be already locked) and update buffer state according to new extent state. 2041 * We map delalloc buffers to their physical location, clear unwritten bits, 2042 * and mark buffers as uninit when we perform writes to unwritten extents 2043 * and do extent conversion after IO is finished. If the last page is not fully 2044 * mapped, we update @map to the next extent in the last page that needs 2045 * mapping. Otherwise we submit the page for IO. 2046 */ 2047 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2048 { 2049 struct pagevec pvec; 2050 int nr_pages, i; 2051 struct inode *inode = mpd->inode; 2052 struct buffer_head *head, *bh; 2053 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2054 pgoff_t start, end; 2055 ext4_lblk_t lblk; 2056 sector_t pblock; 2057 int err; 2058 2059 start = mpd->map.m_lblk >> bpp_bits; 2060 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2061 lblk = start << bpp_bits; 2062 pblock = mpd->map.m_pblk; 2063 2064 pagevec_init(&pvec, 0); 2065 while (start <= end) { 2066 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2067 PAGEVEC_SIZE); 2068 if (nr_pages == 0) 2069 break; 2070 for (i = 0; i < nr_pages; i++) { 2071 struct page *page = pvec.pages[i]; 2072 2073 if (page->index > end) 2074 break; 2075 /* Up to 'end' pages must be contiguous */ 2076 BUG_ON(page->index != start); 2077 bh = head = page_buffers(page); 2078 do { 2079 if (lblk < mpd->map.m_lblk) 2080 continue; 2081 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2082 /* 2083 * Buffer after end of mapped extent. 2084 * Find next buffer in the page to map. 2085 */ 2086 mpd->map.m_len = 0; 2087 mpd->map.m_flags = 0; 2088 /* 2089 * FIXME: If dioread_nolock supports 2090 * blocksize < pagesize, we need to make 2091 * sure we add size mapped so far to 2092 * io_end->size as the following call 2093 * can submit the page for IO. 2094 */ 2095 err = mpage_process_page_bufs(mpd, head, 2096 bh, lblk); 2097 pagevec_release(&pvec); 2098 if (err > 0) 2099 err = 0; 2100 return err; 2101 } 2102 if (buffer_delay(bh)) { 2103 clear_buffer_delay(bh); 2104 bh->b_blocknr = pblock++; 2105 } 2106 clear_buffer_unwritten(bh); 2107 } while (lblk++, (bh = bh->b_this_page) != head); 2108 2109 /* 2110 * FIXME: This is going to break if dioread_nolock 2111 * supports blocksize < pagesize as we will try to 2112 * convert potentially unmapped parts of inode. 2113 */ 2114 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2115 /* Page fully mapped - let IO run! */ 2116 err = mpage_submit_page(mpd, page); 2117 if (err < 0) { 2118 pagevec_release(&pvec); 2119 return err; 2120 } 2121 start++; 2122 } 2123 pagevec_release(&pvec); 2124 } 2125 /* Extent fully mapped and matches with page boundary. We are done. */ 2126 mpd->map.m_len = 0; 2127 mpd->map.m_flags = 0; 2128 return 0; 2129 } 2130 2131 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2132 { 2133 struct inode *inode = mpd->inode; 2134 struct ext4_map_blocks *map = &mpd->map; 2135 int get_blocks_flags; 2136 int err, dioread_nolock; 2137 2138 trace_ext4_da_write_pages_extent(inode, map); 2139 /* 2140 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2141 * to convert an unwritten extent to be initialized (in the case 2142 * where we have written into one or more preallocated blocks). It is 2143 * possible that we're going to need more metadata blocks than 2144 * previously reserved. However we must not fail because we're in 2145 * writeback and there is nothing we can do about it so it might result 2146 * in data loss. So use reserved blocks to allocate metadata if 2147 * possible. 2148 * 2149 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2150 * in question are delalloc blocks. This affects functions in many 2151 * different parts of the allocation call path. This flag exists 2152 * primarily because we don't want to change *many* call functions, so 2153 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2154 * once the inode's allocation semaphore is taken. 2155 */ 2156 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2157 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2158 dioread_nolock = ext4_should_dioread_nolock(inode); 2159 if (dioread_nolock) 2160 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2161 if (map->m_flags & (1 << BH_Delay)) 2162 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2163 2164 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2165 if (err < 0) 2166 return err; 2167 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2168 if (!mpd->io_submit.io_end->handle && 2169 ext4_handle_valid(handle)) { 2170 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2171 handle->h_rsv_handle = NULL; 2172 } 2173 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2174 } 2175 2176 BUG_ON(map->m_len == 0); 2177 if (map->m_flags & EXT4_MAP_NEW) { 2178 struct block_device *bdev = inode->i_sb->s_bdev; 2179 int i; 2180 2181 for (i = 0; i < map->m_len; i++) 2182 unmap_underlying_metadata(bdev, map->m_pblk + i); 2183 } 2184 return 0; 2185 } 2186 2187 /* 2188 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2189 * mpd->len and submit pages underlying it for IO 2190 * 2191 * @handle - handle for journal operations 2192 * @mpd - extent to map 2193 * @give_up_on_write - we set this to true iff there is a fatal error and there 2194 * is no hope of writing the data. The caller should discard 2195 * dirty pages to avoid infinite loops. 2196 * 2197 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2198 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2199 * them to initialized or split the described range from larger unwritten 2200 * extent. Note that we need not map all the described range since allocation 2201 * can return less blocks or the range is covered by more unwritten extents. We 2202 * cannot map more because we are limited by reserved transaction credits. On 2203 * the other hand we always make sure that the last touched page is fully 2204 * mapped so that it can be written out (and thus forward progress is 2205 * guaranteed). After mapping we submit all mapped pages for IO. 2206 */ 2207 static int mpage_map_and_submit_extent(handle_t *handle, 2208 struct mpage_da_data *mpd, 2209 bool *give_up_on_write) 2210 { 2211 struct inode *inode = mpd->inode; 2212 struct ext4_map_blocks *map = &mpd->map; 2213 int err; 2214 loff_t disksize; 2215 2216 mpd->io_submit.io_end->offset = 2217 ((loff_t)map->m_lblk) << inode->i_blkbits; 2218 do { 2219 err = mpage_map_one_extent(handle, mpd); 2220 if (err < 0) { 2221 struct super_block *sb = inode->i_sb; 2222 2223 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2224 goto invalidate_dirty_pages; 2225 /* 2226 * Let the uper layers retry transient errors. 2227 * In the case of ENOSPC, if ext4_count_free_blocks() 2228 * is non-zero, a commit should free up blocks. 2229 */ 2230 if ((err == -ENOMEM) || 2231 (err == -ENOSPC && ext4_count_free_clusters(sb))) 2232 return err; 2233 ext4_msg(sb, KERN_CRIT, 2234 "Delayed block allocation failed for " 2235 "inode %lu at logical offset %llu with" 2236 " max blocks %u with error %d", 2237 inode->i_ino, 2238 (unsigned long long)map->m_lblk, 2239 (unsigned)map->m_len, -err); 2240 ext4_msg(sb, KERN_CRIT, 2241 "This should not happen!! Data will " 2242 "be lost\n"); 2243 if (err == -ENOSPC) 2244 ext4_print_free_blocks(inode); 2245 invalidate_dirty_pages: 2246 *give_up_on_write = true; 2247 return err; 2248 } 2249 /* 2250 * Update buffer state, submit mapped pages, and get us new 2251 * extent to map 2252 */ 2253 err = mpage_map_and_submit_buffers(mpd); 2254 if (err < 0) 2255 return err; 2256 } while (map->m_len); 2257 2258 /* 2259 * Update on-disk size after IO is submitted. Races with 2260 * truncate are avoided by checking i_size under i_data_sem. 2261 */ 2262 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2263 if (disksize > EXT4_I(inode)->i_disksize) { 2264 int err2; 2265 loff_t i_size; 2266 2267 down_write(&EXT4_I(inode)->i_data_sem); 2268 i_size = i_size_read(inode); 2269 if (disksize > i_size) 2270 disksize = i_size; 2271 if (disksize > EXT4_I(inode)->i_disksize) 2272 EXT4_I(inode)->i_disksize = disksize; 2273 err2 = ext4_mark_inode_dirty(handle, inode); 2274 up_write(&EXT4_I(inode)->i_data_sem); 2275 if (err2) 2276 ext4_error(inode->i_sb, 2277 "Failed to mark inode %lu dirty", 2278 inode->i_ino); 2279 if (!err) 2280 err = err2; 2281 } 2282 return err; 2283 } 2284 2285 /* 2286 * Calculate the total number of credits to reserve for one writepages 2287 * iteration. This is called from ext4_writepages(). We map an extent of 2288 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2289 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2290 * bpp - 1 blocks in bpp different extents. 2291 */ 2292 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2293 { 2294 int bpp = ext4_journal_blocks_per_page(inode); 2295 2296 return ext4_meta_trans_blocks(inode, 2297 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2298 } 2299 2300 /* 2301 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2302 * and underlying extent to map 2303 * 2304 * @mpd - where to look for pages 2305 * 2306 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2307 * IO immediately. When we find a page which isn't mapped we start accumulating 2308 * extent of buffers underlying these pages that needs mapping (formed by 2309 * either delayed or unwritten buffers). We also lock the pages containing 2310 * these buffers. The extent found is returned in @mpd structure (starting at 2311 * mpd->lblk with length mpd->len blocks). 2312 * 2313 * Note that this function can attach bios to one io_end structure which are 2314 * neither logically nor physically contiguous. Although it may seem as an 2315 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2316 * case as we need to track IO to all buffers underlying a page in one io_end. 2317 */ 2318 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2319 { 2320 struct address_space *mapping = mpd->inode->i_mapping; 2321 struct pagevec pvec; 2322 unsigned int nr_pages; 2323 long left = mpd->wbc->nr_to_write; 2324 pgoff_t index = mpd->first_page; 2325 pgoff_t end = mpd->last_page; 2326 int tag; 2327 int i, err = 0; 2328 int blkbits = mpd->inode->i_blkbits; 2329 ext4_lblk_t lblk; 2330 struct buffer_head *head; 2331 2332 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2333 tag = PAGECACHE_TAG_TOWRITE; 2334 else 2335 tag = PAGECACHE_TAG_DIRTY; 2336 2337 pagevec_init(&pvec, 0); 2338 mpd->map.m_len = 0; 2339 mpd->next_page = index; 2340 while (index <= end) { 2341 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2342 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2343 if (nr_pages == 0) 2344 goto out; 2345 2346 for (i = 0; i < nr_pages; i++) { 2347 struct page *page = pvec.pages[i]; 2348 2349 /* 2350 * At this point, the page may be truncated or 2351 * invalidated (changing page->mapping to NULL), or 2352 * even swizzled back from swapper_space to tmpfs file 2353 * mapping. However, page->index will not change 2354 * because we have a reference on the page. 2355 */ 2356 if (page->index > end) 2357 goto out; 2358 2359 /* 2360 * Accumulated enough dirty pages? This doesn't apply 2361 * to WB_SYNC_ALL mode. For integrity sync we have to 2362 * keep going because someone may be concurrently 2363 * dirtying pages, and we might have synced a lot of 2364 * newly appeared dirty pages, but have not synced all 2365 * of the old dirty pages. 2366 */ 2367 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2368 goto out; 2369 2370 /* If we can't merge this page, we are done. */ 2371 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2372 goto out; 2373 2374 lock_page(page); 2375 /* 2376 * If the page is no longer dirty, or its mapping no 2377 * longer corresponds to inode we are writing (which 2378 * means it has been truncated or invalidated), or the 2379 * page is already under writeback and we are not doing 2380 * a data integrity writeback, skip the page 2381 */ 2382 if (!PageDirty(page) || 2383 (PageWriteback(page) && 2384 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2385 unlikely(page->mapping != mapping)) { 2386 unlock_page(page); 2387 continue; 2388 } 2389 2390 wait_on_page_writeback(page); 2391 BUG_ON(PageWriteback(page)); 2392 2393 if (mpd->map.m_len == 0) 2394 mpd->first_page = page->index; 2395 mpd->next_page = page->index + 1; 2396 /* Add all dirty buffers to mpd */ 2397 lblk = ((ext4_lblk_t)page->index) << 2398 (PAGE_CACHE_SHIFT - blkbits); 2399 head = page_buffers(page); 2400 err = mpage_process_page_bufs(mpd, head, head, lblk); 2401 if (err <= 0) 2402 goto out; 2403 err = 0; 2404 left--; 2405 } 2406 pagevec_release(&pvec); 2407 cond_resched(); 2408 } 2409 return 0; 2410 out: 2411 pagevec_release(&pvec); 2412 return err; 2413 } 2414 2415 static int __writepage(struct page *page, struct writeback_control *wbc, 2416 void *data) 2417 { 2418 struct address_space *mapping = data; 2419 int ret = ext4_writepage(page, wbc); 2420 mapping_set_error(mapping, ret); 2421 return ret; 2422 } 2423 2424 static int ext4_writepages(struct address_space *mapping, 2425 struct writeback_control *wbc) 2426 { 2427 pgoff_t writeback_index = 0; 2428 long nr_to_write = wbc->nr_to_write; 2429 int range_whole = 0; 2430 int cycled = 1; 2431 handle_t *handle = NULL; 2432 struct mpage_da_data mpd; 2433 struct inode *inode = mapping->host; 2434 int needed_blocks, rsv_blocks = 0, ret = 0; 2435 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2436 bool done; 2437 struct blk_plug plug; 2438 bool give_up_on_write = false; 2439 2440 trace_ext4_writepages(inode, wbc); 2441 2442 /* 2443 * No pages to write? This is mainly a kludge to avoid starting 2444 * a transaction for special inodes like journal inode on last iput() 2445 * because that could violate lock ordering on umount 2446 */ 2447 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2448 goto out_writepages; 2449 2450 if (ext4_should_journal_data(inode)) { 2451 struct blk_plug plug; 2452 2453 blk_start_plug(&plug); 2454 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2455 blk_finish_plug(&plug); 2456 goto out_writepages; 2457 } 2458 2459 /* 2460 * If the filesystem has aborted, it is read-only, so return 2461 * right away instead of dumping stack traces later on that 2462 * will obscure the real source of the problem. We test 2463 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2464 * the latter could be true if the filesystem is mounted 2465 * read-only, and in that case, ext4_writepages should 2466 * *never* be called, so if that ever happens, we would want 2467 * the stack trace. 2468 */ 2469 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2470 ret = -EROFS; 2471 goto out_writepages; 2472 } 2473 2474 if (ext4_should_dioread_nolock(inode)) { 2475 /* 2476 * We may need to convert up to one extent per block in 2477 * the page and we may dirty the inode. 2478 */ 2479 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2480 } 2481 2482 /* 2483 * If we have inline data and arrive here, it means that 2484 * we will soon create the block for the 1st page, so 2485 * we'd better clear the inline data here. 2486 */ 2487 if (ext4_has_inline_data(inode)) { 2488 /* Just inode will be modified... */ 2489 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2490 if (IS_ERR(handle)) { 2491 ret = PTR_ERR(handle); 2492 goto out_writepages; 2493 } 2494 BUG_ON(ext4_test_inode_state(inode, 2495 EXT4_STATE_MAY_INLINE_DATA)); 2496 ext4_destroy_inline_data(handle, inode); 2497 ext4_journal_stop(handle); 2498 } 2499 2500 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2501 range_whole = 1; 2502 2503 if (wbc->range_cyclic) { 2504 writeback_index = mapping->writeback_index; 2505 if (writeback_index) 2506 cycled = 0; 2507 mpd.first_page = writeback_index; 2508 mpd.last_page = -1; 2509 } else { 2510 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2511 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2512 } 2513 2514 mpd.inode = inode; 2515 mpd.wbc = wbc; 2516 ext4_io_submit_init(&mpd.io_submit, wbc); 2517 retry: 2518 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2519 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2520 done = false; 2521 blk_start_plug(&plug); 2522 while (!done && mpd.first_page <= mpd.last_page) { 2523 /* For each extent of pages we use new io_end */ 2524 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2525 if (!mpd.io_submit.io_end) { 2526 ret = -ENOMEM; 2527 break; 2528 } 2529 2530 /* 2531 * We have two constraints: We find one extent to map and we 2532 * must always write out whole page (makes a difference when 2533 * blocksize < pagesize) so that we don't block on IO when we 2534 * try to write out the rest of the page. Journalled mode is 2535 * not supported by delalloc. 2536 */ 2537 BUG_ON(ext4_should_journal_data(inode)); 2538 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2539 2540 /* start a new transaction */ 2541 handle = ext4_journal_start_with_reserve(inode, 2542 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2543 if (IS_ERR(handle)) { 2544 ret = PTR_ERR(handle); 2545 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2546 "%ld pages, ino %lu; err %d", __func__, 2547 wbc->nr_to_write, inode->i_ino, ret); 2548 /* Release allocated io_end */ 2549 ext4_put_io_end(mpd.io_submit.io_end); 2550 break; 2551 } 2552 2553 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2554 ret = mpage_prepare_extent_to_map(&mpd); 2555 if (!ret) { 2556 if (mpd.map.m_len) 2557 ret = mpage_map_and_submit_extent(handle, &mpd, 2558 &give_up_on_write); 2559 else { 2560 /* 2561 * We scanned the whole range (or exhausted 2562 * nr_to_write), submitted what was mapped and 2563 * didn't find anything needing mapping. We are 2564 * done. 2565 */ 2566 done = true; 2567 } 2568 } 2569 ext4_journal_stop(handle); 2570 /* Submit prepared bio */ 2571 ext4_io_submit(&mpd.io_submit); 2572 /* Unlock pages we didn't use */ 2573 mpage_release_unused_pages(&mpd, give_up_on_write); 2574 /* Drop our io_end reference we got from init */ 2575 ext4_put_io_end(mpd.io_submit.io_end); 2576 2577 if (ret == -ENOSPC && sbi->s_journal) { 2578 /* 2579 * Commit the transaction which would 2580 * free blocks released in the transaction 2581 * and try again 2582 */ 2583 jbd2_journal_force_commit_nested(sbi->s_journal); 2584 ret = 0; 2585 continue; 2586 } 2587 /* Fatal error - ENOMEM, EIO... */ 2588 if (ret) 2589 break; 2590 } 2591 blk_finish_plug(&plug); 2592 if (!ret && !cycled && wbc->nr_to_write > 0) { 2593 cycled = 1; 2594 mpd.last_page = writeback_index - 1; 2595 mpd.first_page = 0; 2596 goto retry; 2597 } 2598 2599 /* Update index */ 2600 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2601 /* 2602 * Set the writeback_index so that range_cyclic 2603 * mode will write it back later 2604 */ 2605 mapping->writeback_index = mpd.first_page; 2606 2607 out_writepages: 2608 trace_ext4_writepages_result(inode, wbc, ret, 2609 nr_to_write - wbc->nr_to_write); 2610 return ret; 2611 } 2612 2613 static int ext4_nonda_switch(struct super_block *sb) 2614 { 2615 s64 free_clusters, dirty_clusters; 2616 struct ext4_sb_info *sbi = EXT4_SB(sb); 2617 2618 /* 2619 * switch to non delalloc mode if we are running low 2620 * on free block. The free block accounting via percpu 2621 * counters can get slightly wrong with percpu_counter_batch getting 2622 * accumulated on each CPU without updating global counters 2623 * Delalloc need an accurate free block accounting. So switch 2624 * to non delalloc when we are near to error range. 2625 */ 2626 free_clusters = 2627 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2628 dirty_clusters = 2629 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2630 /* 2631 * Start pushing delalloc when 1/2 of free blocks are dirty. 2632 */ 2633 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2634 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2635 2636 if (2 * free_clusters < 3 * dirty_clusters || 2637 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2638 /* 2639 * free block count is less than 150% of dirty blocks 2640 * or free blocks is less than watermark 2641 */ 2642 return 1; 2643 } 2644 return 0; 2645 } 2646 2647 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2648 loff_t pos, unsigned len, unsigned flags, 2649 struct page **pagep, void **fsdata) 2650 { 2651 int ret, retries = 0; 2652 struct page *page; 2653 pgoff_t index; 2654 struct inode *inode = mapping->host; 2655 handle_t *handle; 2656 2657 index = pos >> PAGE_CACHE_SHIFT; 2658 2659 if (ext4_nonda_switch(inode->i_sb)) { 2660 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2661 return ext4_write_begin(file, mapping, pos, 2662 len, flags, pagep, fsdata); 2663 } 2664 *fsdata = (void *)0; 2665 trace_ext4_da_write_begin(inode, pos, len, flags); 2666 2667 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2668 ret = ext4_da_write_inline_data_begin(mapping, inode, 2669 pos, len, flags, 2670 pagep, fsdata); 2671 if (ret < 0) 2672 return ret; 2673 if (ret == 1) 2674 return 0; 2675 } 2676 2677 /* 2678 * grab_cache_page_write_begin() can take a long time if the 2679 * system is thrashing due to memory pressure, or if the page 2680 * is being written back. So grab it first before we start 2681 * the transaction handle. This also allows us to allocate 2682 * the page (if needed) without using GFP_NOFS. 2683 */ 2684 retry_grab: 2685 page = grab_cache_page_write_begin(mapping, index, flags); 2686 if (!page) 2687 return -ENOMEM; 2688 unlock_page(page); 2689 2690 /* 2691 * With delayed allocation, we don't log the i_disksize update 2692 * if there is delayed block allocation. But we still need 2693 * to journalling the i_disksize update if writes to the end 2694 * of file which has an already mapped buffer. 2695 */ 2696 retry_journal: 2697 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2698 if (IS_ERR(handle)) { 2699 page_cache_release(page); 2700 return PTR_ERR(handle); 2701 } 2702 2703 lock_page(page); 2704 if (page->mapping != mapping) { 2705 /* The page got truncated from under us */ 2706 unlock_page(page); 2707 page_cache_release(page); 2708 ext4_journal_stop(handle); 2709 goto retry_grab; 2710 } 2711 /* In case writeback began while the page was unlocked */ 2712 wait_for_stable_page(page); 2713 2714 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2715 if (ret < 0) { 2716 unlock_page(page); 2717 ext4_journal_stop(handle); 2718 /* 2719 * block_write_begin may have instantiated a few blocks 2720 * outside i_size. Trim these off again. Don't need 2721 * i_size_read because we hold i_mutex. 2722 */ 2723 if (pos + len > inode->i_size) 2724 ext4_truncate_failed_write(inode); 2725 2726 if (ret == -ENOSPC && 2727 ext4_should_retry_alloc(inode->i_sb, &retries)) 2728 goto retry_journal; 2729 2730 page_cache_release(page); 2731 return ret; 2732 } 2733 2734 *pagep = page; 2735 return ret; 2736 } 2737 2738 /* 2739 * Check if we should update i_disksize 2740 * when write to the end of file but not require block allocation 2741 */ 2742 static int ext4_da_should_update_i_disksize(struct page *page, 2743 unsigned long offset) 2744 { 2745 struct buffer_head *bh; 2746 struct inode *inode = page->mapping->host; 2747 unsigned int idx; 2748 int i; 2749 2750 bh = page_buffers(page); 2751 idx = offset >> inode->i_blkbits; 2752 2753 for (i = 0; i < idx; i++) 2754 bh = bh->b_this_page; 2755 2756 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2757 return 0; 2758 return 1; 2759 } 2760 2761 static int ext4_da_write_end(struct file *file, 2762 struct address_space *mapping, 2763 loff_t pos, unsigned len, unsigned copied, 2764 struct page *page, void *fsdata) 2765 { 2766 struct inode *inode = mapping->host; 2767 int ret = 0, ret2; 2768 handle_t *handle = ext4_journal_current_handle(); 2769 loff_t new_i_size; 2770 unsigned long start, end; 2771 int write_mode = (int)(unsigned long)fsdata; 2772 2773 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2774 return ext4_write_end(file, mapping, pos, 2775 len, copied, page, fsdata); 2776 2777 trace_ext4_da_write_end(inode, pos, len, copied); 2778 start = pos & (PAGE_CACHE_SIZE - 1); 2779 end = start + copied - 1; 2780 2781 /* 2782 * generic_write_end() will run mark_inode_dirty() if i_size 2783 * changes. So let's piggyback the i_disksize mark_inode_dirty 2784 * into that. 2785 */ 2786 new_i_size = pos + copied; 2787 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2788 if (ext4_has_inline_data(inode) || 2789 ext4_da_should_update_i_disksize(page, end)) { 2790 down_write(&EXT4_I(inode)->i_data_sem); 2791 if (new_i_size > EXT4_I(inode)->i_disksize) 2792 EXT4_I(inode)->i_disksize = new_i_size; 2793 up_write(&EXT4_I(inode)->i_data_sem); 2794 /* We need to mark inode dirty even if 2795 * new_i_size is less that inode->i_size 2796 * bu greater than i_disksize.(hint delalloc) 2797 */ 2798 ext4_mark_inode_dirty(handle, inode); 2799 } 2800 } 2801 2802 if (write_mode != CONVERT_INLINE_DATA && 2803 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2804 ext4_has_inline_data(inode)) 2805 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2806 page); 2807 else 2808 ret2 = generic_write_end(file, mapping, pos, len, copied, 2809 page, fsdata); 2810 2811 copied = ret2; 2812 if (ret2 < 0) 2813 ret = ret2; 2814 ret2 = ext4_journal_stop(handle); 2815 if (!ret) 2816 ret = ret2; 2817 2818 return ret ? ret : copied; 2819 } 2820 2821 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2822 unsigned int length) 2823 { 2824 /* 2825 * Drop reserved blocks 2826 */ 2827 BUG_ON(!PageLocked(page)); 2828 if (!page_has_buffers(page)) 2829 goto out; 2830 2831 ext4_da_page_release_reservation(page, offset, length); 2832 2833 out: 2834 ext4_invalidatepage(page, offset, length); 2835 2836 return; 2837 } 2838 2839 /* 2840 * Force all delayed allocation blocks to be allocated for a given inode. 2841 */ 2842 int ext4_alloc_da_blocks(struct inode *inode) 2843 { 2844 trace_ext4_alloc_da_blocks(inode); 2845 2846 if (!EXT4_I(inode)->i_reserved_data_blocks && 2847 !EXT4_I(inode)->i_reserved_meta_blocks) 2848 return 0; 2849 2850 /* 2851 * We do something simple for now. The filemap_flush() will 2852 * also start triggering a write of the data blocks, which is 2853 * not strictly speaking necessary (and for users of 2854 * laptop_mode, not even desirable). However, to do otherwise 2855 * would require replicating code paths in: 2856 * 2857 * ext4_writepages() -> 2858 * write_cache_pages() ---> (via passed in callback function) 2859 * __mpage_da_writepage() --> 2860 * mpage_add_bh_to_extent() 2861 * mpage_da_map_blocks() 2862 * 2863 * The problem is that write_cache_pages(), located in 2864 * mm/page-writeback.c, marks pages clean in preparation for 2865 * doing I/O, which is not desirable if we're not planning on 2866 * doing I/O at all. 2867 * 2868 * We could call write_cache_pages(), and then redirty all of 2869 * the pages by calling redirty_page_for_writepage() but that 2870 * would be ugly in the extreme. So instead we would need to 2871 * replicate parts of the code in the above functions, 2872 * simplifying them because we wouldn't actually intend to 2873 * write out the pages, but rather only collect contiguous 2874 * logical block extents, call the multi-block allocator, and 2875 * then update the buffer heads with the block allocations. 2876 * 2877 * For now, though, we'll cheat by calling filemap_flush(), 2878 * which will map the blocks, and start the I/O, but not 2879 * actually wait for the I/O to complete. 2880 */ 2881 return filemap_flush(inode->i_mapping); 2882 } 2883 2884 /* 2885 * bmap() is special. It gets used by applications such as lilo and by 2886 * the swapper to find the on-disk block of a specific piece of data. 2887 * 2888 * Naturally, this is dangerous if the block concerned is still in the 2889 * journal. If somebody makes a swapfile on an ext4 data-journaling 2890 * filesystem and enables swap, then they may get a nasty shock when the 2891 * data getting swapped to that swapfile suddenly gets overwritten by 2892 * the original zero's written out previously to the journal and 2893 * awaiting writeback in the kernel's buffer cache. 2894 * 2895 * So, if we see any bmap calls here on a modified, data-journaled file, 2896 * take extra steps to flush any blocks which might be in the cache. 2897 */ 2898 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2899 { 2900 struct inode *inode = mapping->host; 2901 journal_t *journal; 2902 int err; 2903 2904 /* 2905 * We can get here for an inline file via the FIBMAP ioctl 2906 */ 2907 if (ext4_has_inline_data(inode)) 2908 return 0; 2909 2910 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2911 test_opt(inode->i_sb, DELALLOC)) { 2912 /* 2913 * With delalloc we want to sync the file 2914 * so that we can make sure we allocate 2915 * blocks for file 2916 */ 2917 filemap_write_and_wait(mapping); 2918 } 2919 2920 if (EXT4_JOURNAL(inode) && 2921 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2922 /* 2923 * This is a REALLY heavyweight approach, but the use of 2924 * bmap on dirty files is expected to be extremely rare: 2925 * only if we run lilo or swapon on a freshly made file 2926 * do we expect this to happen. 2927 * 2928 * (bmap requires CAP_SYS_RAWIO so this does not 2929 * represent an unprivileged user DOS attack --- we'd be 2930 * in trouble if mortal users could trigger this path at 2931 * will.) 2932 * 2933 * NB. EXT4_STATE_JDATA is not set on files other than 2934 * regular files. If somebody wants to bmap a directory 2935 * or symlink and gets confused because the buffer 2936 * hasn't yet been flushed to disk, they deserve 2937 * everything they get. 2938 */ 2939 2940 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2941 journal = EXT4_JOURNAL(inode); 2942 jbd2_journal_lock_updates(journal); 2943 err = jbd2_journal_flush(journal); 2944 jbd2_journal_unlock_updates(journal); 2945 2946 if (err) 2947 return 0; 2948 } 2949 2950 return generic_block_bmap(mapping, block, ext4_get_block); 2951 } 2952 2953 static int ext4_readpage(struct file *file, struct page *page) 2954 { 2955 int ret = -EAGAIN; 2956 struct inode *inode = page->mapping->host; 2957 2958 trace_ext4_readpage(page); 2959 2960 if (ext4_has_inline_data(inode)) 2961 ret = ext4_readpage_inline(inode, page); 2962 2963 if (ret == -EAGAIN) 2964 return mpage_readpage(page, ext4_get_block); 2965 2966 return ret; 2967 } 2968 2969 static int 2970 ext4_readpages(struct file *file, struct address_space *mapping, 2971 struct list_head *pages, unsigned nr_pages) 2972 { 2973 struct inode *inode = mapping->host; 2974 2975 /* If the file has inline data, no need to do readpages. */ 2976 if (ext4_has_inline_data(inode)) 2977 return 0; 2978 2979 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2980 } 2981 2982 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2983 unsigned int length) 2984 { 2985 trace_ext4_invalidatepage(page, offset, length); 2986 2987 /* No journalling happens on data buffers when this function is used */ 2988 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2989 2990 block_invalidatepage(page, offset, length); 2991 } 2992 2993 static int __ext4_journalled_invalidatepage(struct page *page, 2994 unsigned int offset, 2995 unsigned int length) 2996 { 2997 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2998 2999 trace_ext4_journalled_invalidatepage(page, offset, length); 3000 3001 /* 3002 * If it's a full truncate we just forget about the pending dirtying 3003 */ 3004 if (offset == 0 && length == PAGE_CACHE_SIZE) 3005 ClearPageChecked(page); 3006 3007 return jbd2_journal_invalidatepage(journal, page, offset, length); 3008 } 3009 3010 /* Wrapper for aops... */ 3011 static void ext4_journalled_invalidatepage(struct page *page, 3012 unsigned int offset, 3013 unsigned int length) 3014 { 3015 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3016 } 3017 3018 static int ext4_releasepage(struct page *page, gfp_t wait) 3019 { 3020 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3021 3022 trace_ext4_releasepage(page); 3023 3024 /* Page has dirty journalled data -> cannot release */ 3025 if (PageChecked(page)) 3026 return 0; 3027 if (journal) 3028 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3029 else 3030 return try_to_free_buffers(page); 3031 } 3032 3033 /* 3034 * ext4_get_block used when preparing for a DIO write or buffer write. 3035 * We allocate an uinitialized extent if blocks haven't been allocated. 3036 * The extent will be converted to initialized after the IO is complete. 3037 */ 3038 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3039 struct buffer_head *bh_result, int create) 3040 { 3041 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3042 inode->i_ino, create); 3043 return _ext4_get_block(inode, iblock, bh_result, 3044 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3045 } 3046 3047 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3048 struct buffer_head *bh_result, int create) 3049 { 3050 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3051 inode->i_ino, create); 3052 return _ext4_get_block(inode, iblock, bh_result, 3053 EXT4_GET_BLOCKS_NO_LOCK); 3054 } 3055 3056 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3057 ssize_t size, void *private) 3058 { 3059 ext4_io_end_t *io_end = iocb->private; 3060 3061 /* if not async direct IO just return */ 3062 if (!io_end) 3063 return; 3064 3065 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3066 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3067 iocb->private, io_end->inode->i_ino, iocb, offset, 3068 size); 3069 3070 iocb->private = NULL; 3071 io_end->offset = offset; 3072 io_end->size = size; 3073 ext4_put_io_end(io_end); 3074 } 3075 3076 /* 3077 * For ext4 extent files, ext4 will do direct-io write to holes, 3078 * preallocated extents, and those write extend the file, no need to 3079 * fall back to buffered IO. 3080 * 3081 * For holes, we fallocate those blocks, mark them as unwritten 3082 * If those blocks were preallocated, we mark sure they are split, but 3083 * still keep the range to write as unwritten. 3084 * 3085 * The unwritten extents will be converted to written when DIO is completed. 3086 * For async direct IO, since the IO may still pending when return, we 3087 * set up an end_io call back function, which will do the conversion 3088 * when async direct IO completed. 3089 * 3090 * If the O_DIRECT write will extend the file then add this inode to the 3091 * orphan list. So recovery will truncate it back to the original size 3092 * if the machine crashes during the write. 3093 * 3094 */ 3095 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3096 struct iov_iter *iter, loff_t offset) 3097 { 3098 struct file *file = iocb->ki_filp; 3099 struct inode *inode = file->f_mapping->host; 3100 ssize_t ret; 3101 size_t count = iov_iter_count(iter); 3102 int overwrite = 0; 3103 get_block_t *get_block_func = NULL; 3104 int dio_flags = 0; 3105 loff_t final_size = offset + count; 3106 ext4_io_end_t *io_end = NULL; 3107 3108 /* Use the old path for reads and writes beyond i_size. */ 3109 if (rw != WRITE || final_size > inode->i_size) 3110 return ext4_ind_direct_IO(rw, iocb, iter, offset); 3111 3112 BUG_ON(iocb->private == NULL); 3113 3114 /* 3115 * Make all waiters for direct IO properly wait also for extent 3116 * conversion. This also disallows race between truncate() and 3117 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3118 */ 3119 if (rw == WRITE) 3120 atomic_inc(&inode->i_dio_count); 3121 3122 /* If we do a overwrite dio, i_mutex locking can be released */ 3123 overwrite = *((int *)iocb->private); 3124 3125 if (overwrite) { 3126 down_read(&EXT4_I(inode)->i_data_sem); 3127 mutex_unlock(&inode->i_mutex); 3128 } 3129 3130 /* 3131 * We could direct write to holes and fallocate. 3132 * 3133 * Allocated blocks to fill the hole are marked as 3134 * unwritten to prevent parallel buffered read to expose 3135 * the stale data before DIO complete the data IO. 3136 * 3137 * As to previously fallocated extents, ext4 get_block will 3138 * just simply mark the buffer mapped but still keep the 3139 * extents unwritten. 3140 * 3141 * For non AIO case, we will convert those unwritten extents 3142 * to written after return back from blockdev_direct_IO. 3143 * 3144 * For async DIO, the conversion needs to be deferred when the 3145 * IO is completed. The ext4 end_io callback function will be 3146 * called to take care of the conversion work. Here for async 3147 * case, we allocate an io_end structure to hook to the iocb. 3148 */ 3149 iocb->private = NULL; 3150 ext4_inode_aio_set(inode, NULL); 3151 if (!is_sync_kiocb(iocb)) { 3152 io_end = ext4_init_io_end(inode, GFP_NOFS); 3153 if (!io_end) { 3154 ret = -ENOMEM; 3155 goto retake_lock; 3156 } 3157 /* 3158 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3159 */ 3160 iocb->private = ext4_get_io_end(io_end); 3161 /* 3162 * we save the io structure for current async direct 3163 * IO, so that later ext4_map_blocks() could flag the 3164 * io structure whether there is a unwritten extents 3165 * needs to be converted when IO is completed. 3166 */ 3167 ext4_inode_aio_set(inode, io_end); 3168 } 3169 3170 if (overwrite) { 3171 get_block_func = ext4_get_block_write_nolock; 3172 } else { 3173 get_block_func = ext4_get_block_write; 3174 dio_flags = DIO_LOCKING; 3175 } 3176 ret = __blockdev_direct_IO(rw, iocb, inode, 3177 inode->i_sb->s_bdev, iter, 3178 offset, 3179 get_block_func, 3180 ext4_end_io_dio, 3181 NULL, 3182 dio_flags); 3183 3184 /* 3185 * Put our reference to io_end. This can free the io_end structure e.g. 3186 * in sync IO case or in case of error. It can even perform extent 3187 * conversion if all bios we submitted finished before we got here. 3188 * Note that in that case iocb->private can be already set to NULL 3189 * here. 3190 */ 3191 if (io_end) { 3192 ext4_inode_aio_set(inode, NULL); 3193 ext4_put_io_end(io_end); 3194 /* 3195 * When no IO was submitted ext4_end_io_dio() was not 3196 * called so we have to put iocb's reference. 3197 */ 3198 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3199 WARN_ON(iocb->private != io_end); 3200 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3201 ext4_put_io_end(io_end); 3202 iocb->private = NULL; 3203 } 3204 } 3205 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3206 EXT4_STATE_DIO_UNWRITTEN)) { 3207 int err; 3208 /* 3209 * for non AIO case, since the IO is already 3210 * completed, we could do the conversion right here 3211 */ 3212 err = ext4_convert_unwritten_extents(NULL, inode, 3213 offset, ret); 3214 if (err < 0) 3215 ret = err; 3216 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3217 } 3218 3219 retake_lock: 3220 if (rw == WRITE) 3221 inode_dio_done(inode); 3222 /* take i_mutex locking again if we do a ovewrite dio */ 3223 if (overwrite) { 3224 up_read(&EXT4_I(inode)->i_data_sem); 3225 mutex_lock(&inode->i_mutex); 3226 } 3227 3228 return ret; 3229 } 3230 3231 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3232 struct iov_iter *iter, loff_t offset) 3233 { 3234 struct file *file = iocb->ki_filp; 3235 struct inode *inode = file->f_mapping->host; 3236 size_t count = iov_iter_count(iter); 3237 ssize_t ret; 3238 3239 /* 3240 * If we are doing data journalling we don't support O_DIRECT 3241 */ 3242 if (ext4_should_journal_data(inode)) 3243 return 0; 3244 3245 /* Let buffer I/O handle the inline data case. */ 3246 if (ext4_has_inline_data(inode)) 3247 return 0; 3248 3249 trace_ext4_direct_IO_enter(inode, offset, count, rw); 3250 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3251 ret = ext4_ext_direct_IO(rw, iocb, iter, offset); 3252 else 3253 ret = ext4_ind_direct_IO(rw, iocb, iter, offset); 3254 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret); 3255 return ret; 3256 } 3257 3258 /* 3259 * Pages can be marked dirty completely asynchronously from ext4's journalling 3260 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3261 * much here because ->set_page_dirty is called under VFS locks. The page is 3262 * not necessarily locked. 3263 * 3264 * We cannot just dirty the page and leave attached buffers clean, because the 3265 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3266 * or jbddirty because all the journalling code will explode. 3267 * 3268 * So what we do is to mark the page "pending dirty" and next time writepage 3269 * is called, propagate that into the buffers appropriately. 3270 */ 3271 static int ext4_journalled_set_page_dirty(struct page *page) 3272 { 3273 SetPageChecked(page); 3274 return __set_page_dirty_nobuffers(page); 3275 } 3276 3277 static const struct address_space_operations ext4_aops = { 3278 .readpage = ext4_readpage, 3279 .readpages = ext4_readpages, 3280 .writepage = ext4_writepage, 3281 .writepages = ext4_writepages, 3282 .write_begin = ext4_write_begin, 3283 .write_end = ext4_write_end, 3284 .bmap = ext4_bmap, 3285 .invalidatepage = ext4_invalidatepage, 3286 .releasepage = ext4_releasepage, 3287 .direct_IO = ext4_direct_IO, 3288 .migratepage = buffer_migrate_page, 3289 .is_partially_uptodate = block_is_partially_uptodate, 3290 .error_remove_page = generic_error_remove_page, 3291 }; 3292 3293 static const struct address_space_operations ext4_journalled_aops = { 3294 .readpage = ext4_readpage, 3295 .readpages = ext4_readpages, 3296 .writepage = ext4_writepage, 3297 .writepages = ext4_writepages, 3298 .write_begin = ext4_write_begin, 3299 .write_end = ext4_journalled_write_end, 3300 .set_page_dirty = ext4_journalled_set_page_dirty, 3301 .bmap = ext4_bmap, 3302 .invalidatepage = ext4_journalled_invalidatepage, 3303 .releasepage = ext4_releasepage, 3304 .direct_IO = ext4_direct_IO, 3305 .is_partially_uptodate = block_is_partially_uptodate, 3306 .error_remove_page = generic_error_remove_page, 3307 }; 3308 3309 static const struct address_space_operations ext4_da_aops = { 3310 .readpage = ext4_readpage, 3311 .readpages = ext4_readpages, 3312 .writepage = ext4_writepage, 3313 .writepages = ext4_writepages, 3314 .write_begin = ext4_da_write_begin, 3315 .write_end = ext4_da_write_end, 3316 .bmap = ext4_bmap, 3317 .invalidatepage = ext4_da_invalidatepage, 3318 .releasepage = ext4_releasepage, 3319 .direct_IO = ext4_direct_IO, 3320 .migratepage = buffer_migrate_page, 3321 .is_partially_uptodate = block_is_partially_uptodate, 3322 .error_remove_page = generic_error_remove_page, 3323 }; 3324 3325 void ext4_set_aops(struct inode *inode) 3326 { 3327 switch (ext4_inode_journal_mode(inode)) { 3328 case EXT4_INODE_ORDERED_DATA_MODE: 3329 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3330 break; 3331 case EXT4_INODE_WRITEBACK_DATA_MODE: 3332 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3333 break; 3334 case EXT4_INODE_JOURNAL_DATA_MODE: 3335 inode->i_mapping->a_ops = &ext4_journalled_aops; 3336 return; 3337 default: 3338 BUG(); 3339 } 3340 if (test_opt(inode->i_sb, DELALLOC)) 3341 inode->i_mapping->a_ops = &ext4_da_aops; 3342 else 3343 inode->i_mapping->a_ops = &ext4_aops; 3344 } 3345 3346 /* 3347 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3348 * starting from file offset 'from'. The range to be zero'd must 3349 * be contained with in one block. If the specified range exceeds 3350 * the end of the block it will be shortened to end of the block 3351 * that cooresponds to 'from' 3352 */ 3353 static int ext4_block_zero_page_range(handle_t *handle, 3354 struct address_space *mapping, loff_t from, loff_t length) 3355 { 3356 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3357 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3358 unsigned blocksize, max, pos; 3359 ext4_lblk_t iblock; 3360 struct inode *inode = mapping->host; 3361 struct buffer_head *bh; 3362 struct page *page; 3363 int err = 0; 3364 3365 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3366 mapping_gfp_mask(mapping) & ~__GFP_FS); 3367 if (!page) 3368 return -ENOMEM; 3369 3370 blocksize = inode->i_sb->s_blocksize; 3371 max = blocksize - (offset & (blocksize - 1)); 3372 3373 /* 3374 * correct length if it does not fall between 3375 * 'from' and the end of the block 3376 */ 3377 if (length > max || length < 0) 3378 length = max; 3379 3380 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3381 3382 if (!page_has_buffers(page)) 3383 create_empty_buffers(page, blocksize, 0); 3384 3385 /* Find the buffer that contains "offset" */ 3386 bh = page_buffers(page); 3387 pos = blocksize; 3388 while (offset >= pos) { 3389 bh = bh->b_this_page; 3390 iblock++; 3391 pos += blocksize; 3392 } 3393 if (buffer_freed(bh)) { 3394 BUFFER_TRACE(bh, "freed: skip"); 3395 goto unlock; 3396 } 3397 if (!buffer_mapped(bh)) { 3398 BUFFER_TRACE(bh, "unmapped"); 3399 ext4_get_block(inode, iblock, bh, 0); 3400 /* unmapped? It's a hole - nothing to do */ 3401 if (!buffer_mapped(bh)) { 3402 BUFFER_TRACE(bh, "still unmapped"); 3403 goto unlock; 3404 } 3405 } 3406 3407 /* Ok, it's mapped. Make sure it's up-to-date */ 3408 if (PageUptodate(page)) 3409 set_buffer_uptodate(bh); 3410 3411 if (!buffer_uptodate(bh)) { 3412 err = -EIO; 3413 ll_rw_block(READ, 1, &bh); 3414 wait_on_buffer(bh); 3415 /* Uhhuh. Read error. Complain and punt. */ 3416 if (!buffer_uptodate(bh)) 3417 goto unlock; 3418 } 3419 if (ext4_should_journal_data(inode)) { 3420 BUFFER_TRACE(bh, "get write access"); 3421 err = ext4_journal_get_write_access(handle, bh); 3422 if (err) 3423 goto unlock; 3424 } 3425 zero_user(page, offset, length); 3426 BUFFER_TRACE(bh, "zeroed end of block"); 3427 3428 if (ext4_should_journal_data(inode)) { 3429 err = ext4_handle_dirty_metadata(handle, inode, bh); 3430 } else { 3431 err = 0; 3432 mark_buffer_dirty(bh); 3433 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3434 err = ext4_jbd2_file_inode(handle, inode); 3435 } 3436 3437 unlock: 3438 unlock_page(page); 3439 page_cache_release(page); 3440 return err; 3441 } 3442 3443 /* 3444 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3445 * up to the end of the block which corresponds to `from'. 3446 * This required during truncate. We need to physically zero the tail end 3447 * of that block so it doesn't yield old data if the file is later grown. 3448 */ 3449 static int ext4_block_truncate_page(handle_t *handle, 3450 struct address_space *mapping, loff_t from) 3451 { 3452 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3453 unsigned length; 3454 unsigned blocksize; 3455 struct inode *inode = mapping->host; 3456 3457 blocksize = inode->i_sb->s_blocksize; 3458 length = blocksize - (offset & (blocksize - 1)); 3459 3460 return ext4_block_zero_page_range(handle, mapping, from, length); 3461 } 3462 3463 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3464 loff_t lstart, loff_t length) 3465 { 3466 struct super_block *sb = inode->i_sb; 3467 struct address_space *mapping = inode->i_mapping; 3468 unsigned partial_start, partial_end; 3469 ext4_fsblk_t start, end; 3470 loff_t byte_end = (lstart + length - 1); 3471 int err = 0; 3472 3473 partial_start = lstart & (sb->s_blocksize - 1); 3474 partial_end = byte_end & (sb->s_blocksize - 1); 3475 3476 start = lstart >> sb->s_blocksize_bits; 3477 end = byte_end >> sb->s_blocksize_bits; 3478 3479 /* Handle partial zero within the single block */ 3480 if (start == end && 3481 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3482 err = ext4_block_zero_page_range(handle, mapping, 3483 lstart, length); 3484 return err; 3485 } 3486 /* Handle partial zero out on the start of the range */ 3487 if (partial_start) { 3488 err = ext4_block_zero_page_range(handle, mapping, 3489 lstart, sb->s_blocksize); 3490 if (err) 3491 return err; 3492 } 3493 /* Handle partial zero out on the end of the range */ 3494 if (partial_end != sb->s_blocksize - 1) 3495 err = ext4_block_zero_page_range(handle, mapping, 3496 byte_end - partial_end, 3497 partial_end + 1); 3498 return err; 3499 } 3500 3501 int ext4_can_truncate(struct inode *inode) 3502 { 3503 if (S_ISREG(inode->i_mode)) 3504 return 1; 3505 if (S_ISDIR(inode->i_mode)) 3506 return 1; 3507 if (S_ISLNK(inode->i_mode)) 3508 return !ext4_inode_is_fast_symlink(inode); 3509 return 0; 3510 } 3511 3512 /* 3513 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3514 * associated with the given offset and length 3515 * 3516 * @inode: File inode 3517 * @offset: The offset where the hole will begin 3518 * @len: The length of the hole 3519 * 3520 * Returns: 0 on success or negative on failure 3521 */ 3522 3523 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3524 { 3525 struct super_block *sb = inode->i_sb; 3526 ext4_lblk_t first_block, stop_block; 3527 struct address_space *mapping = inode->i_mapping; 3528 loff_t first_block_offset, last_block_offset; 3529 handle_t *handle; 3530 unsigned int credits; 3531 int ret = 0; 3532 3533 if (!S_ISREG(inode->i_mode)) 3534 return -EOPNOTSUPP; 3535 3536 trace_ext4_punch_hole(inode, offset, length, 0); 3537 3538 /* 3539 * Write out all dirty pages to avoid race conditions 3540 * Then release them. 3541 */ 3542 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3543 ret = filemap_write_and_wait_range(mapping, offset, 3544 offset + length - 1); 3545 if (ret) 3546 return ret; 3547 } 3548 3549 mutex_lock(&inode->i_mutex); 3550 3551 /* No need to punch hole beyond i_size */ 3552 if (offset >= inode->i_size) 3553 goto out_mutex; 3554 3555 /* 3556 * If the hole extends beyond i_size, set the hole 3557 * to end after the page that contains i_size 3558 */ 3559 if (offset + length > inode->i_size) { 3560 length = inode->i_size + 3561 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3562 offset; 3563 } 3564 3565 if (offset & (sb->s_blocksize - 1) || 3566 (offset + length) & (sb->s_blocksize - 1)) { 3567 /* 3568 * Attach jinode to inode for jbd2 if we do any zeroing of 3569 * partial block 3570 */ 3571 ret = ext4_inode_attach_jinode(inode); 3572 if (ret < 0) 3573 goto out_mutex; 3574 3575 } 3576 3577 first_block_offset = round_up(offset, sb->s_blocksize); 3578 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3579 3580 /* Now release the pages and zero block aligned part of pages*/ 3581 if (last_block_offset > first_block_offset) 3582 truncate_pagecache_range(inode, first_block_offset, 3583 last_block_offset); 3584 3585 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3586 ext4_inode_block_unlocked_dio(inode); 3587 inode_dio_wait(inode); 3588 3589 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3590 credits = ext4_writepage_trans_blocks(inode); 3591 else 3592 credits = ext4_blocks_for_truncate(inode); 3593 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3594 if (IS_ERR(handle)) { 3595 ret = PTR_ERR(handle); 3596 ext4_std_error(sb, ret); 3597 goto out_dio; 3598 } 3599 3600 ret = ext4_zero_partial_blocks(handle, inode, offset, 3601 length); 3602 if (ret) 3603 goto out_stop; 3604 3605 first_block = (offset + sb->s_blocksize - 1) >> 3606 EXT4_BLOCK_SIZE_BITS(sb); 3607 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3608 3609 /* If there are no blocks to remove, return now */ 3610 if (first_block >= stop_block) 3611 goto out_stop; 3612 3613 down_write(&EXT4_I(inode)->i_data_sem); 3614 ext4_discard_preallocations(inode); 3615 3616 ret = ext4_es_remove_extent(inode, first_block, 3617 stop_block - first_block); 3618 if (ret) { 3619 up_write(&EXT4_I(inode)->i_data_sem); 3620 goto out_stop; 3621 } 3622 3623 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3624 ret = ext4_ext_remove_space(inode, first_block, 3625 stop_block - 1); 3626 else 3627 ret = ext4_free_hole_blocks(handle, inode, first_block, 3628 stop_block); 3629 3630 up_write(&EXT4_I(inode)->i_data_sem); 3631 if (IS_SYNC(inode)) 3632 ext4_handle_sync(handle); 3633 3634 /* Now release the pages again to reduce race window */ 3635 if (last_block_offset > first_block_offset) 3636 truncate_pagecache_range(inode, first_block_offset, 3637 last_block_offset); 3638 3639 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3640 ext4_mark_inode_dirty(handle, inode); 3641 out_stop: 3642 ext4_journal_stop(handle); 3643 out_dio: 3644 ext4_inode_resume_unlocked_dio(inode); 3645 out_mutex: 3646 mutex_unlock(&inode->i_mutex); 3647 return ret; 3648 } 3649 3650 int ext4_inode_attach_jinode(struct inode *inode) 3651 { 3652 struct ext4_inode_info *ei = EXT4_I(inode); 3653 struct jbd2_inode *jinode; 3654 3655 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3656 return 0; 3657 3658 jinode = jbd2_alloc_inode(GFP_KERNEL); 3659 spin_lock(&inode->i_lock); 3660 if (!ei->jinode) { 3661 if (!jinode) { 3662 spin_unlock(&inode->i_lock); 3663 return -ENOMEM; 3664 } 3665 ei->jinode = jinode; 3666 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3667 jinode = NULL; 3668 } 3669 spin_unlock(&inode->i_lock); 3670 if (unlikely(jinode != NULL)) 3671 jbd2_free_inode(jinode); 3672 return 0; 3673 } 3674 3675 /* 3676 * ext4_truncate() 3677 * 3678 * We block out ext4_get_block() block instantiations across the entire 3679 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3680 * simultaneously on behalf of the same inode. 3681 * 3682 * As we work through the truncate and commit bits of it to the journal there 3683 * is one core, guiding principle: the file's tree must always be consistent on 3684 * disk. We must be able to restart the truncate after a crash. 3685 * 3686 * The file's tree may be transiently inconsistent in memory (although it 3687 * probably isn't), but whenever we close off and commit a journal transaction, 3688 * the contents of (the filesystem + the journal) must be consistent and 3689 * restartable. It's pretty simple, really: bottom up, right to left (although 3690 * left-to-right works OK too). 3691 * 3692 * Note that at recovery time, journal replay occurs *before* the restart of 3693 * truncate against the orphan inode list. 3694 * 3695 * The committed inode has the new, desired i_size (which is the same as 3696 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3697 * that this inode's truncate did not complete and it will again call 3698 * ext4_truncate() to have another go. So there will be instantiated blocks 3699 * to the right of the truncation point in a crashed ext4 filesystem. But 3700 * that's fine - as long as they are linked from the inode, the post-crash 3701 * ext4_truncate() run will find them and release them. 3702 */ 3703 void ext4_truncate(struct inode *inode) 3704 { 3705 struct ext4_inode_info *ei = EXT4_I(inode); 3706 unsigned int credits; 3707 handle_t *handle; 3708 struct address_space *mapping = inode->i_mapping; 3709 3710 /* 3711 * There is a possibility that we're either freeing the inode 3712 * or it's a completely new inode. In those cases we might not 3713 * have i_mutex locked because it's not necessary. 3714 */ 3715 if (!(inode->i_state & (I_NEW|I_FREEING))) 3716 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3717 trace_ext4_truncate_enter(inode); 3718 3719 if (!ext4_can_truncate(inode)) 3720 return; 3721 3722 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3723 3724 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3725 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3726 3727 if (ext4_has_inline_data(inode)) { 3728 int has_inline = 1; 3729 3730 ext4_inline_data_truncate(inode, &has_inline); 3731 if (has_inline) 3732 return; 3733 } 3734 3735 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3736 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3737 if (ext4_inode_attach_jinode(inode) < 0) 3738 return; 3739 } 3740 3741 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3742 credits = ext4_writepage_trans_blocks(inode); 3743 else 3744 credits = ext4_blocks_for_truncate(inode); 3745 3746 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3747 if (IS_ERR(handle)) { 3748 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3749 return; 3750 } 3751 3752 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3753 ext4_block_truncate_page(handle, mapping, inode->i_size); 3754 3755 /* 3756 * We add the inode to the orphan list, so that if this 3757 * truncate spans multiple transactions, and we crash, we will 3758 * resume the truncate when the filesystem recovers. It also 3759 * marks the inode dirty, to catch the new size. 3760 * 3761 * Implication: the file must always be in a sane, consistent 3762 * truncatable state while each transaction commits. 3763 */ 3764 if (ext4_orphan_add(handle, inode)) 3765 goto out_stop; 3766 3767 down_write(&EXT4_I(inode)->i_data_sem); 3768 3769 ext4_discard_preallocations(inode); 3770 3771 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3772 ext4_ext_truncate(handle, inode); 3773 else 3774 ext4_ind_truncate(handle, inode); 3775 3776 up_write(&ei->i_data_sem); 3777 3778 if (IS_SYNC(inode)) 3779 ext4_handle_sync(handle); 3780 3781 out_stop: 3782 /* 3783 * If this was a simple ftruncate() and the file will remain alive, 3784 * then we need to clear up the orphan record which we created above. 3785 * However, if this was a real unlink then we were called by 3786 * ext4_delete_inode(), and we allow that function to clean up the 3787 * orphan info for us. 3788 */ 3789 if (inode->i_nlink) 3790 ext4_orphan_del(handle, inode); 3791 3792 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3793 ext4_mark_inode_dirty(handle, inode); 3794 ext4_journal_stop(handle); 3795 3796 trace_ext4_truncate_exit(inode); 3797 } 3798 3799 /* 3800 * ext4_get_inode_loc returns with an extra refcount against the inode's 3801 * underlying buffer_head on success. If 'in_mem' is true, we have all 3802 * data in memory that is needed to recreate the on-disk version of this 3803 * inode. 3804 */ 3805 static int __ext4_get_inode_loc(struct inode *inode, 3806 struct ext4_iloc *iloc, int in_mem) 3807 { 3808 struct ext4_group_desc *gdp; 3809 struct buffer_head *bh; 3810 struct super_block *sb = inode->i_sb; 3811 ext4_fsblk_t block; 3812 int inodes_per_block, inode_offset; 3813 3814 iloc->bh = NULL; 3815 if (!ext4_valid_inum(sb, inode->i_ino)) 3816 return -EIO; 3817 3818 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3819 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3820 if (!gdp) 3821 return -EIO; 3822 3823 /* 3824 * Figure out the offset within the block group inode table 3825 */ 3826 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3827 inode_offset = ((inode->i_ino - 1) % 3828 EXT4_INODES_PER_GROUP(sb)); 3829 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3830 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3831 3832 bh = sb_getblk(sb, block); 3833 if (unlikely(!bh)) 3834 return -ENOMEM; 3835 if (!buffer_uptodate(bh)) { 3836 lock_buffer(bh); 3837 3838 /* 3839 * If the buffer has the write error flag, we have failed 3840 * to write out another inode in the same block. In this 3841 * case, we don't have to read the block because we may 3842 * read the old inode data successfully. 3843 */ 3844 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3845 set_buffer_uptodate(bh); 3846 3847 if (buffer_uptodate(bh)) { 3848 /* someone brought it uptodate while we waited */ 3849 unlock_buffer(bh); 3850 goto has_buffer; 3851 } 3852 3853 /* 3854 * If we have all information of the inode in memory and this 3855 * is the only valid inode in the block, we need not read the 3856 * block. 3857 */ 3858 if (in_mem) { 3859 struct buffer_head *bitmap_bh; 3860 int i, start; 3861 3862 start = inode_offset & ~(inodes_per_block - 1); 3863 3864 /* Is the inode bitmap in cache? */ 3865 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3866 if (unlikely(!bitmap_bh)) 3867 goto make_io; 3868 3869 /* 3870 * If the inode bitmap isn't in cache then the 3871 * optimisation may end up performing two reads instead 3872 * of one, so skip it. 3873 */ 3874 if (!buffer_uptodate(bitmap_bh)) { 3875 brelse(bitmap_bh); 3876 goto make_io; 3877 } 3878 for (i = start; i < start + inodes_per_block; i++) { 3879 if (i == inode_offset) 3880 continue; 3881 if (ext4_test_bit(i, bitmap_bh->b_data)) 3882 break; 3883 } 3884 brelse(bitmap_bh); 3885 if (i == start + inodes_per_block) { 3886 /* all other inodes are free, so skip I/O */ 3887 memset(bh->b_data, 0, bh->b_size); 3888 set_buffer_uptodate(bh); 3889 unlock_buffer(bh); 3890 goto has_buffer; 3891 } 3892 } 3893 3894 make_io: 3895 /* 3896 * If we need to do any I/O, try to pre-readahead extra 3897 * blocks from the inode table. 3898 */ 3899 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3900 ext4_fsblk_t b, end, table; 3901 unsigned num; 3902 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3903 3904 table = ext4_inode_table(sb, gdp); 3905 /* s_inode_readahead_blks is always a power of 2 */ 3906 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3907 if (table > b) 3908 b = table; 3909 end = b + ra_blks; 3910 num = EXT4_INODES_PER_GROUP(sb); 3911 if (ext4_has_group_desc_csum(sb)) 3912 num -= ext4_itable_unused_count(sb, gdp); 3913 table += num / inodes_per_block; 3914 if (end > table) 3915 end = table; 3916 while (b <= end) 3917 sb_breadahead(sb, b++); 3918 } 3919 3920 /* 3921 * There are other valid inodes in the buffer, this inode 3922 * has in-inode xattrs, or we don't have this inode in memory. 3923 * Read the block from disk. 3924 */ 3925 trace_ext4_load_inode(inode); 3926 get_bh(bh); 3927 bh->b_end_io = end_buffer_read_sync; 3928 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3929 wait_on_buffer(bh); 3930 if (!buffer_uptodate(bh)) { 3931 EXT4_ERROR_INODE_BLOCK(inode, block, 3932 "unable to read itable block"); 3933 brelse(bh); 3934 return -EIO; 3935 } 3936 } 3937 has_buffer: 3938 iloc->bh = bh; 3939 return 0; 3940 } 3941 3942 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3943 { 3944 /* We have all inode data except xattrs in memory here. */ 3945 return __ext4_get_inode_loc(inode, iloc, 3946 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3947 } 3948 3949 void ext4_set_inode_flags(struct inode *inode) 3950 { 3951 unsigned int flags = EXT4_I(inode)->i_flags; 3952 unsigned int new_fl = 0; 3953 3954 if (flags & EXT4_SYNC_FL) 3955 new_fl |= S_SYNC; 3956 if (flags & EXT4_APPEND_FL) 3957 new_fl |= S_APPEND; 3958 if (flags & EXT4_IMMUTABLE_FL) 3959 new_fl |= S_IMMUTABLE; 3960 if (flags & EXT4_NOATIME_FL) 3961 new_fl |= S_NOATIME; 3962 if (flags & EXT4_DIRSYNC_FL) 3963 new_fl |= S_DIRSYNC; 3964 inode_set_flags(inode, new_fl, 3965 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3966 } 3967 3968 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3969 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3970 { 3971 unsigned int vfs_fl; 3972 unsigned long old_fl, new_fl; 3973 3974 do { 3975 vfs_fl = ei->vfs_inode.i_flags; 3976 old_fl = ei->i_flags; 3977 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3978 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3979 EXT4_DIRSYNC_FL); 3980 if (vfs_fl & S_SYNC) 3981 new_fl |= EXT4_SYNC_FL; 3982 if (vfs_fl & S_APPEND) 3983 new_fl |= EXT4_APPEND_FL; 3984 if (vfs_fl & S_IMMUTABLE) 3985 new_fl |= EXT4_IMMUTABLE_FL; 3986 if (vfs_fl & S_NOATIME) 3987 new_fl |= EXT4_NOATIME_FL; 3988 if (vfs_fl & S_DIRSYNC) 3989 new_fl |= EXT4_DIRSYNC_FL; 3990 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3991 } 3992 3993 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3994 struct ext4_inode_info *ei) 3995 { 3996 blkcnt_t i_blocks ; 3997 struct inode *inode = &(ei->vfs_inode); 3998 struct super_block *sb = inode->i_sb; 3999 4000 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4001 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4002 /* we are using combined 48 bit field */ 4003 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4004 le32_to_cpu(raw_inode->i_blocks_lo); 4005 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4006 /* i_blocks represent file system block size */ 4007 return i_blocks << (inode->i_blkbits - 9); 4008 } else { 4009 return i_blocks; 4010 } 4011 } else { 4012 return le32_to_cpu(raw_inode->i_blocks_lo); 4013 } 4014 } 4015 4016 static inline void ext4_iget_extra_inode(struct inode *inode, 4017 struct ext4_inode *raw_inode, 4018 struct ext4_inode_info *ei) 4019 { 4020 __le32 *magic = (void *)raw_inode + 4021 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4022 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4023 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4024 ext4_find_inline_data_nolock(inode); 4025 } else 4026 EXT4_I(inode)->i_inline_off = 0; 4027 } 4028 4029 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4030 { 4031 struct ext4_iloc iloc; 4032 struct ext4_inode *raw_inode; 4033 struct ext4_inode_info *ei; 4034 struct inode *inode; 4035 journal_t *journal = EXT4_SB(sb)->s_journal; 4036 long ret; 4037 int block; 4038 uid_t i_uid; 4039 gid_t i_gid; 4040 4041 inode = iget_locked(sb, ino); 4042 if (!inode) 4043 return ERR_PTR(-ENOMEM); 4044 if (!(inode->i_state & I_NEW)) 4045 return inode; 4046 4047 ei = EXT4_I(inode); 4048 iloc.bh = NULL; 4049 4050 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4051 if (ret < 0) 4052 goto bad_inode; 4053 raw_inode = ext4_raw_inode(&iloc); 4054 4055 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4056 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4057 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4058 EXT4_INODE_SIZE(inode->i_sb)) { 4059 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4060 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4061 EXT4_INODE_SIZE(inode->i_sb)); 4062 ret = -EIO; 4063 goto bad_inode; 4064 } 4065 } else 4066 ei->i_extra_isize = 0; 4067 4068 /* Precompute checksum seed for inode metadata */ 4069 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4070 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 4071 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4072 __u32 csum; 4073 __le32 inum = cpu_to_le32(inode->i_ino); 4074 __le32 gen = raw_inode->i_generation; 4075 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4076 sizeof(inum)); 4077 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4078 sizeof(gen)); 4079 } 4080 4081 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4082 EXT4_ERROR_INODE(inode, "checksum invalid"); 4083 ret = -EIO; 4084 goto bad_inode; 4085 } 4086 4087 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4088 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4089 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4090 if (!(test_opt(inode->i_sb, NO_UID32))) { 4091 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4092 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4093 } 4094 i_uid_write(inode, i_uid); 4095 i_gid_write(inode, i_gid); 4096 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4097 4098 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4099 ei->i_inline_off = 0; 4100 ei->i_dir_start_lookup = 0; 4101 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4102 /* We now have enough fields to check if the inode was active or not. 4103 * This is needed because nfsd might try to access dead inodes 4104 * the test is that same one that e2fsck uses 4105 * NeilBrown 1999oct15 4106 */ 4107 if (inode->i_nlink == 0) { 4108 if ((inode->i_mode == 0 || 4109 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4110 ino != EXT4_BOOT_LOADER_INO) { 4111 /* this inode is deleted */ 4112 ret = -ESTALE; 4113 goto bad_inode; 4114 } 4115 /* The only unlinked inodes we let through here have 4116 * valid i_mode and are being read by the orphan 4117 * recovery code: that's fine, we're about to complete 4118 * the process of deleting those. 4119 * OR it is the EXT4_BOOT_LOADER_INO which is 4120 * not initialized on a new filesystem. */ 4121 } 4122 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4123 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4124 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4125 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4126 ei->i_file_acl |= 4127 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4128 inode->i_size = ext4_isize(raw_inode); 4129 ei->i_disksize = inode->i_size; 4130 #ifdef CONFIG_QUOTA 4131 ei->i_reserved_quota = 0; 4132 #endif 4133 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4134 ei->i_block_group = iloc.block_group; 4135 ei->i_last_alloc_group = ~0; 4136 /* 4137 * NOTE! The in-memory inode i_data array is in little-endian order 4138 * even on big-endian machines: we do NOT byteswap the block numbers! 4139 */ 4140 for (block = 0; block < EXT4_N_BLOCKS; block++) 4141 ei->i_data[block] = raw_inode->i_block[block]; 4142 INIT_LIST_HEAD(&ei->i_orphan); 4143 4144 /* 4145 * Set transaction id's of transactions that have to be committed 4146 * to finish f[data]sync. We set them to currently running transaction 4147 * as we cannot be sure that the inode or some of its metadata isn't 4148 * part of the transaction - the inode could have been reclaimed and 4149 * now it is reread from disk. 4150 */ 4151 if (journal) { 4152 transaction_t *transaction; 4153 tid_t tid; 4154 4155 read_lock(&journal->j_state_lock); 4156 if (journal->j_running_transaction) 4157 transaction = journal->j_running_transaction; 4158 else 4159 transaction = journal->j_committing_transaction; 4160 if (transaction) 4161 tid = transaction->t_tid; 4162 else 4163 tid = journal->j_commit_sequence; 4164 read_unlock(&journal->j_state_lock); 4165 ei->i_sync_tid = tid; 4166 ei->i_datasync_tid = tid; 4167 } 4168 4169 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4170 if (ei->i_extra_isize == 0) { 4171 /* The extra space is currently unused. Use it. */ 4172 ei->i_extra_isize = sizeof(struct ext4_inode) - 4173 EXT4_GOOD_OLD_INODE_SIZE; 4174 } else { 4175 ext4_iget_extra_inode(inode, raw_inode, ei); 4176 } 4177 } 4178 4179 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4180 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4181 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4182 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4183 4184 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4185 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4186 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4187 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4188 inode->i_version |= 4189 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4190 } 4191 } 4192 4193 ret = 0; 4194 if (ei->i_file_acl && 4195 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4196 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4197 ei->i_file_acl); 4198 ret = -EIO; 4199 goto bad_inode; 4200 } else if (!ext4_has_inline_data(inode)) { 4201 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4202 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4203 (S_ISLNK(inode->i_mode) && 4204 !ext4_inode_is_fast_symlink(inode)))) 4205 /* Validate extent which is part of inode */ 4206 ret = ext4_ext_check_inode(inode); 4207 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4208 (S_ISLNK(inode->i_mode) && 4209 !ext4_inode_is_fast_symlink(inode))) { 4210 /* Validate block references which are part of inode */ 4211 ret = ext4_ind_check_inode(inode); 4212 } 4213 } 4214 if (ret) 4215 goto bad_inode; 4216 4217 if (S_ISREG(inode->i_mode)) { 4218 inode->i_op = &ext4_file_inode_operations; 4219 inode->i_fop = &ext4_file_operations; 4220 ext4_set_aops(inode); 4221 } else if (S_ISDIR(inode->i_mode)) { 4222 inode->i_op = &ext4_dir_inode_operations; 4223 inode->i_fop = &ext4_dir_operations; 4224 } else if (S_ISLNK(inode->i_mode)) { 4225 if (ext4_inode_is_fast_symlink(inode)) { 4226 inode->i_op = &ext4_fast_symlink_inode_operations; 4227 nd_terminate_link(ei->i_data, inode->i_size, 4228 sizeof(ei->i_data) - 1); 4229 } else { 4230 inode->i_op = &ext4_symlink_inode_operations; 4231 ext4_set_aops(inode); 4232 } 4233 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4234 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4235 inode->i_op = &ext4_special_inode_operations; 4236 if (raw_inode->i_block[0]) 4237 init_special_inode(inode, inode->i_mode, 4238 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4239 else 4240 init_special_inode(inode, inode->i_mode, 4241 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4242 } else if (ino == EXT4_BOOT_LOADER_INO) { 4243 make_bad_inode(inode); 4244 } else { 4245 ret = -EIO; 4246 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4247 goto bad_inode; 4248 } 4249 brelse(iloc.bh); 4250 ext4_set_inode_flags(inode); 4251 unlock_new_inode(inode); 4252 return inode; 4253 4254 bad_inode: 4255 brelse(iloc.bh); 4256 iget_failed(inode); 4257 return ERR_PTR(ret); 4258 } 4259 4260 static int ext4_inode_blocks_set(handle_t *handle, 4261 struct ext4_inode *raw_inode, 4262 struct ext4_inode_info *ei) 4263 { 4264 struct inode *inode = &(ei->vfs_inode); 4265 u64 i_blocks = inode->i_blocks; 4266 struct super_block *sb = inode->i_sb; 4267 4268 if (i_blocks <= ~0U) { 4269 /* 4270 * i_blocks can be represented in a 32 bit variable 4271 * as multiple of 512 bytes 4272 */ 4273 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4274 raw_inode->i_blocks_high = 0; 4275 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4276 return 0; 4277 } 4278 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4279 return -EFBIG; 4280 4281 if (i_blocks <= 0xffffffffffffULL) { 4282 /* 4283 * i_blocks can be represented in a 48 bit variable 4284 * as multiple of 512 bytes 4285 */ 4286 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4287 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4288 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4289 } else { 4290 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4291 /* i_block is stored in file system block size */ 4292 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4293 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4294 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4295 } 4296 return 0; 4297 } 4298 4299 /* 4300 * Post the struct inode info into an on-disk inode location in the 4301 * buffer-cache. This gobbles the caller's reference to the 4302 * buffer_head in the inode location struct. 4303 * 4304 * The caller must have write access to iloc->bh. 4305 */ 4306 static int ext4_do_update_inode(handle_t *handle, 4307 struct inode *inode, 4308 struct ext4_iloc *iloc) 4309 { 4310 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4311 struct ext4_inode_info *ei = EXT4_I(inode); 4312 struct buffer_head *bh = iloc->bh; 4313 struct super_block *sb = inode->i_sb; 4314 int err = 0, rc, block; 4315 int need_datasync = 0, set_large_file = 0; 4316 uid_t i_uid; 4317 gid_t i_gid; 4318 4319 spin_lock(&ei->i_raw_lock); 4320 4321 /* For fields not tracked in the in-memory inode, 4322 * initialise them to zero for new inodes. */ 4323 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4324 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4325 4326 ext4_get_inode_flags(ei); 4327 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4328 i_uid = i_uid_read(inode); 4329 i_gid = i_gid_read(inode); 4330 if (!(test_opt(inode->i_sb, NO_UID32))) { 4331 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4332 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4333 /* 4334 * Fix up interoperability with old kernels. Otherwise, old inodes get 4335 * re-used with the upper 16 bits of the uid/gid intact 4336 */ 4337 if (!ei->i_dtime) { 4338 raw_inode->i_uid_high = 4339 cpu_to_le16(high_16_bits(i_uid)); 4340 raw_inode->i_gid_high = 4341 cpu_to_le16(high_16_bits(i_gid)); 4342 } else { 4343 raw_inode->i_uid_high = 0; 4344 raw_inode->i_gid_high = 0; 4345 } 4346 } else { 4347 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4348 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4349 raw_inode->i_uid_high = 0; 4350 raw_inode->i_gid_high = 0; 4351 } 4352 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4353 4354 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4355 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4356 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4357 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4358 4359 if (ext4_inode_blocks_set(handle, raw_inode, ei)) { 4360 spin_unlock(&ei->i_raw_lock); 4361 goto out_brelse; 4362 } 4363 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4364 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4365 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4366 raw_inode->i_file_acl_high = 4367 cpu_to_le16(ei->i_file_acl >> 32); 4368 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4369 if (ei->i_disksize != ext4_isize(raw_inode)) { 4370 ext4_isize_set(raw_inode, ei->i_disksize); 4371 need_datasync = 1; 4372 } 4373 if (ei->i_disksize > 0x7fffffffULL) { 4374 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4375 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4376 EXT4_SB(sb)->s_es->s_rev_level == 4377 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4378 set_large_file = 1; 4379 } 4380 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4381 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4382 if (old_valid_dev(inode->i_rdev)) { 4383 raw_inode->i_block[0] = 4384 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4385 raw_inode->i_block[1] = 0; 4386 } else { 4387 raw_inode->i_block[0] = 0; 4388 raw_inode->i_block[1] = 4389 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4390 raw_inode->i_block[2] = 0; 4391 } 4392 } else if (!ext4_has_inline_data(inode)) { 4393 for (block = 0; block < EXT4_N_BLOCKS; block++) 4394 raw_inode->i_block[block] = ei->i_data[block]; 4395 } 4396 4397 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4398 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4399 if (ei->i_extra_isize) { 4400 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4401 raw_inode->i_version_hi = 4402 cpu_to_le32(inode->i_version >> 32); 4403 raw_inode->i_extra_isize = 4404 cpu_to_le16(ei->i_extra_isize); 4405 } 4406 } 4407 4408 ext4_inode_csum_set(inode, raw_inode, ei); 4409 4410 spin_unlock(&ei->i_raw_lock); 4411 4412 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4413 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4414 if (!err) 4415 err = rc; 4416 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4417 if (set_large_file) { 4418 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4419 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4420 if (err) 4421 goto out_brelse; 4422 ext4_update_dynamic_rev(sb); 4423 EXT4_SET_RO_COMPAT_FEATURE(sb, 4424 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4425 ext4_handle_sync(handle); 4426 err = ext4_handle_dirty_super(handle, sb); 4427 } 4428 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4429 out_brelse: 4430 brelse(bh); 4431 ext4_std_error(inode->i_sb, err); 4432 return err; 4433 } 4434 4435 /* 4436 * ext4_write_inode() 4437 * 4438 * We are called from a few places: 4439 * 4440 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4441 * Here, there will be no transaction running. We wait for any running 4442 * transaction to commit. 4443 * 4444 * - Within flush work (sys_sync(), kupdate and such). 4445 * We wait on commit, if told to. 4446 * 4447 * - Within iput_final() -> write_inode_now() 4448 * We wait on commit, if told to. 4449 * 4450 * In all cases it is actually safe for us to return without doing anything, 4451 * because the inode has been copied into a raw inode buffer in 4452 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4453 * writeback. 4454 * 4455 * Note that we are absolutely dependent upon all inode dirtiers doing the 4456 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4457 * which we are interested. 4458 * 4459 * It would be a bug for them to not do this. The code: 4460 * 4461 * mark_inode_dirty(inode) 4462 * stuff(); 4463 * inode->i_size = expr; 4464 * 4465 * is in error because write_inode() could occur while `stuff()' is running, 4466 * and the new i_size will be lost. Plus the inode will no longer be on the 4467 * superblock's dirty inode list. 4468 */ 4469 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4470 { 4471 int err; 4472 4473 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4474 return 0; 4475 4476 if (EXT4_SB(inode->i_sb)->s_journal) { 4477 if (ext4_journal_current_handle()) { 4478 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4479 dump_stack(); 4480 return -EIO; 4481 } 4482 4483 /* 4484 * No need to force transaction in WB_SYNC_NONE mode. Also 4485 * ext4_sync_fs() will force the commit after everything is 4486 * written. 4487 */ 4488 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4489 return 0; 4490 4491 err = ext4_force_commit(inode->i_sb); 4492 } else { 4493 struct ext4_iloc iloc; 4494 4495 err = __ext4_get_inode_loc(inode, &iloc, 0); 4496 if (err) 4497 return err; 4498 /* 4499 * sync(2) will flush the whole buffer cache. No need to do 4500 * it here separately for each inode. 4501 */ 4502 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4503 sync_dirty_buffer(iloc.bh); 4504 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4505 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4506 "IO error syncing inode"); 4507 err = -EIO; 4508 } 4509 brelse(iloc.bh); 4510 } 4511 return err; 4512 } 4513 4514 /* 4515 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4516 * buffers that are attached to a page stradding i_size and are undergoing 4517 * commit. In that case we have to wait for commit to finish and try again. 4518 */ 4519 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4520 { 4521 struct page *page; 4522 unsigned offset; 4523 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4524 tid_t commit_tid = 0; 4525 int ret; 4526 4527 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4528 /* 4529 * All buffers in the last page remain valid? Then there's nothing to 4530 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4531 * blocksize case 4532 */ 4533 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4534 return; 4535 while (1) { 4536 page = find_lock_page(inode->i_mapping, 4537 inode->i_size >> PAGE_CACHE_SHIFT); 4538 if (!page) 4539 return; 4540 ret = __ext4_journalled_invalidatepage(page, offset, 4541 PAGE_CACHE_SIZE - offset); 4542 unlock_page(page); 4543 page_cache_release(page); 4544 if (ret != -EBUSY) 4545 return; 4546 commit_tid = 0; 4547 read_lock(&journal->j_state_lock); 4548 if (journal->j_committing_transaction) 4549 commit_tid = journal->j_committing_transaction->t_tid; 4550 read_unlock(&journal->j_state_lock); 4551 if (commit_tid) 4552 jbd2_log_wait_commit(journal, commit_tid); 4553 } 4554 } 4555 4556 /* 4557 * ext4_setattr() 4558 * 4559 * Called from notify_change. 4560 * 4561 * We want to trap VFS attempts to truncate the file as soon as 4562 * possible. In particular, we want to make sure that when the VFS 4563 * shrinks i_size, we put the inode on the orphan list and modify 4564 * i_disksize immediately, so that during the subsequent flushing of 4565 * dirty pages and freeing of disk blocks, we can guarantee that any 4566 * commit will leave the blocks being flushed in an unused state on 4567 * disk. (On recovery, the inode will get truncated and the blocks will 4568 * be freed, so we have a strong guarantee that no future commit will 4569 * leave these blocks visible to the user.) 4570 * 4571 * Another thing we have to assure is that if we are in ordered mode 4572 * and inode is still attached to the committing transaction, we must 4573 * we start writeout of all the dirty pages which are being truncated. 4574 * This way we are sure that all the data written in the previous 4575 * transaction are already on disk (truncate waits for pages under 4576 * writeback). 4577 * 4578 * Called with inode->i_mutex down. 4579 */ 4580 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4581 { 4582 struct inode *inode = dentry->d_inode; 4583 int error, rc = 0; 4584 int orphan = 0; 4585 const unsigned int ia_valid = attr->ia_valid; 4586 4587 error = inode_change_ok(inode, attr); 4588 if (error) 4589 return error; 4590 4591 if (is_quota_modification(inode, attr)) 4592 dquot_initialize(inode); 4593 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4594 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4595 handle_t *handle; 4596 4597 /* (user+group)*(old+new) structure, inode write (sb, 4598 * inode block, ? - but truncate inode update has it) */ 4599 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4600 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4601 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4602 if (IS_ERR(handle)) { 4603 error = PTR_ERR(handle); 4604 goto err_out; 4605 } 4606 error = dquot_transfer(inode, attr); 4607 if (error) { 4608 ext4_journal_stop(handle); 4609 return error; 4610 } 4611 /* Update corresponding info in inode so that everything is in 4612 * one transaction */ 4613 if (attr->ia_valid & ATTR_UID) 4614 inode->i_uid = attr->ia_uid; 4615 if (attr->ia_valid & ATTR_GID) 4616 inode->i_gid = attr->ia_gid; 4617 error = ext4_mark_inode_dirty(handle, inode); 4618 ext4_journal_stop(handle); 4619 } 4620 4621 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4622 handle_t *handle; 4623 4624 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4625 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4626 4627 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4628 return -EFBIG; 4629 } 4630 4631 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4632 inode_inc_iversion(inode); 4633 4634 if (S_ISREG(inode->i_mode) && 4635 (attr->ia_size < inode->i_size)) { 4636 if (ext4_should_order_data(inode)) { 4637 error = ext4_begin_ordered_truncate(inode, 4638 attr->ia_size); 4639 if (error) 4640 goto err_out; 4641 } 4642 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4643 if (IS_ERR(handle)) { 4644 error = PTR_ERR(handle); 4645 goto err_out; 4646 } 4647 if (ext4_handle_valid(handle)) { 4648 error = ext4_orphan_add(handle, inode); 4649 orphan = 1; 4650 } 4651 down_write(&EXT4_I(inode)->i_data_sem); 4652 EXT4_I(inode)->i_disksize = attr->ia_size; 4653 rc = ext4_mark_inode_dirty(handle, inode); 4654 if (!error) 4655 error = rc; 4656 /* 4657 * We have to update i_size under i_data_sem together 4658 * with i_disksize to avoid races with writeback code 4659 * running ext4_wb_update_i_disksize(). 4660 */ 4661 if (!error) 4662 i_size_write(inode, attr->ia_size); 4663 up_write(&EXT4_I(inode)->i_data_sem); 4664 ext4_journal_stop(handle); 4665 if (error) { 4666 ext4_orphan_del(NULL, inode); 4667 goto err_out; 4668 } 4669 } else 4670 i_size_write(inode, attr->ia_size); 4671 4672 /* 4673 * Blocks are going to be removed from the inode. Wait 4674 * for dio in flight. Temporarily disable 4675 * dioread_nolock to prevent livelock. 4676 */ 4677 if (orphan) { 4678 if (!ext4_should_journal_data(inode)) { 4679 ext4_inode_block_unlocked_dio(inode); 4680 inode_dio_wait(inode); 4681 ext4_inode_resume_unlocked_dio(inode); 4682 } else 4683 ext4_wait_for_tail_page_commit(inode); 4684 } 4685 /* 4686 * Truncate pagecache after we've waited for commit 4687 * in data=journal mode to make pages freeable. 4688 */ 4689 truncate_pagecache(inode, inode->i_size); 4690 } 4691 /* 4692 * We want to call ext4_truncate() even if attr->ia_size == 4693 * inode->i_size for cases like truncation of fallocated space 4694 */ 4695 if (attr->ia_valid & ATTR_SIZE) 4696 ext4_truncate(inode); 4697 4698 if (!rc) { 4699 setattr_copy(inode, attr); 4700 mark_inode_dirty(inode); 4701 } 4702 4703 /* 4704 * If the call to ext4_truncate failed to get a transaction handle at 4705 * all, we need to clean up the in-core orphan list manually. 4706 */ 4707 if (orphan && inode->i_nlink) 4708 ext4_orphan_del(NULL, inode); 4709 4710 if (!rc && (ia_valid & ATTR_MODE)) 4711 rc = posix_acl_chmod(inode, inode->i_mode); 4712 4713 err_out: 4714 ext4_std_error(inode->i_sb, error); 4715 if (!error) 4716 error = rc; 4717 return error; 4718 } 4719 4720 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4721 struct kstat *stat) 4722 { 4723 struct inode *inode; 4724 unsigned long long delalloc_blocks; 4725 4726 inode = dentry->d_inode; 4727 generic_fillattr(inode, stat); 4728 4729 /* 4730 * If there is inline data in the inode, the inode will normally not 4731 * have data blocks allocated (it may have an external xattr block). 4732 * Report at least one sector for such files, so tools like tar, rsync, 4733 * others doen't incorrectly think the file is completely sparse. 4734 */ 4735 if (unlikely(ext4_has_inline_data(inode))) 4736 stat->blocks += (stat->size + 511) >> 9; 4737 4738 /* 4739 * We can't update i_blocks if the block allocation is delayed 4740 * otherwise in the case of system crash before the real block 4741 * allocation is done, we will have i_blocks inconsistent with 4742 * on-disk file blocks. 4743 * We always keep i_blocks updated together with real 4744 * allocation. But to not confuse with user, stat 4745 * will return the blocks that include the delayed allocation 4746 * blocks for this file. 4747 */ 4748 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4749 EXT4_I(inode)->i_reserved_data_blocks); 4750 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4751 return 0; 4752 } 4753 4754 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4755 int pextents) 4756 { 4757 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4758 return ext4_ind_trans_blocks(inode, lblocks); 4759 return ext4_ext_index_trans_blocks(inode, pextents); 4760 } 4761 4762 /* 4763 * Account for index blocks, block groups bitmaps and block group 4764 * descriptor blocks if modify datablocks and index blocks 4765 * worse case, the indexs blocks spread over different block groups 4766 * 4767 * If datablocks are discontiguous, they are possible to spread over 4768 * different block groups too. If they are contiguous, with flexbg, 4769 * they could still across block group boundary. 4770 * 4771 * Also account for superblock, inode, quota and xattr blocks 4772 */ 4773 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4774 int pextents) 4775 { 4776 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4777 int gdpblocks; 4778 int idxblocks; 4779 int ret = 0; 4780 4781 /* 4782 * How many index blocks need to touch to map @lblocks logical blocks 4783 * to @pextents physical extents? 4784 */ 4785 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4786 4787 ret = idxblocks; 4788 4789 /* 4790 * Now let's see how many group bitmaps and group descriptors need 4791 * to account 4792 */ 4793 groups = idxblocks + pextents; 4794 gdpblocks = groups; 4795 if (groups > ngroups) 4796 groups = ngroups; 4797 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4798 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4799 4800 /* bitmaps and block group descriptor blocks */ 4801 ret += groups + gdpblocks; 4802 4803 /* Blocks for super block, inode, quota and xattr blocks */ 4804 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4805 4806 return ret; 4807 } 4808 4809 /* 4810 * Calculate the total number of credits to reserve to fit 4811 * the modification of a single pages into a single transaction, 4812 * which may include multiple chunks of block allocations. 4813 * 4814 * This could be called via ext4_write_begin() 4815 * 4816 * We need to consider the worse case, when 4817 * one new block per extent. 4818 */ 4819 int ext4_writepage_trans_blocks(struct inode *inode) 4820 { 4821 int bpp = ext4_journal_blocks_per_page(inode); 4822 int ret; 4823 4824 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4825 4826 /* Account for data blocks for journalled mode */ 4827 if (ext4_should_journal_data(inode)) 4828 ret += bpp; 4829 return ret; 4830 } 4831 4832 /* 4833 * Calculate the journal credits for a chunk of data modification. 4834 * 4835 * This is called from DIO, fallocate or whoever calling 4836 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4837 * 4838 * journal buffers for data blocks are not included here, as DIO 4839 * and fallocate do no need to journal data buffers. 4840 */ 4841 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4842 { 4843 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4844 } 4845 4846 /* 4847 * The caller must have previously called ext4_reserve_inode_write(). 4848 * Give this, we know that the caller already has write access to iloc->bh. 4849 */ 4850 int ext4_mark_iloc_dirty(handle_t *handle, 4851 struct inode *inode, struct ext4_iloc *iloc) 4852 { 4853 int err = 0; 4854 4855 if (IS_I_VERSION(inode)) 4856 inode_inc_iversion(inode); 4857 4858 /* the do_update_inode consumes one bh->b_count */ 4859 get_bh(iloc->bh); 4860 4861 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4862 err = ext4_do_update_inode(handle, inode, iloc); 4863 put_bh(iloc->bh); 4864 return err; 4865 } 4866 4867 /* 4868 * On success, We end up with an outstanding reference count against 4869 * iloc->bh. This _must_ be cleaned up later. 4870 */ 4871 4872 int 4873 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4874 struct ext4_iloc *iloc) 4875 { 4876 int err; 4877 4878 err = ext4_get_inode_loc(inode, iloc); 4879 if (!err) { 4880 BUFFER_TRACE(iloc->bh, "get_write_access"); 4881 err = ext4_journal_get_write_access(handle, iloc->bh); 4882 if (err) { 4883 brelse(iloc->bh); 4884 iloc->bh = NULL; 4885 } 4886 } 4887 ext4_std_error(inode->i_sb, err); 4888 return err; 4889 } 4890 4891 /* 4892 * Expand an inode by new_extra_isize bytes. 4893 * Returns 0 on success or negative error number on failure. 4894 */ 4895 static int ext4_expand_extra_isize(struct inode *inode, 4896 unsigned int new_extra_isize, 4897 struct ext4_iloc iloc, 4898 handle_t *handle) 4899 { 4900 struct ext4_inode *raw_inode; 4901 struct ext4_xattr_ibody_header *header; 4902 4903 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4904 return 0; 4905 4906 raw_inode = ext4_raw_inode(&iloc); 4907 4908 header = IHDR(inode, raw_inode); 4909 4910 /* No extended attributes present */ 4911 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4912 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4913 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4914 new_extra_isize); 4915 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4916 return 0; 4917 } 4918 4919 /* try to expand with EAs present */ 4920 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4921 raw_inode, handle); 4922 } 4923 4924 /* 4925 * What we do here is to mark the in-core inode as clean with respect to inode 4926 * dirtiness (it may still be data-dirty). 4927 * This means that the in-core inode may be reaped by prune_icache 4928 * without having to perform any I/O. This is a very good thing, 4929 * because *any* task may call prune_icache - even ones which 4930 * have a transaction open against a different journal. 4931 * 4932 * Is this cheating? Not really. Sure, we haven't written the 4933 * inode out, but prune_icache isn't a user-visible syncing function. 4934 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4935 * we start and wait on commits. 4936 */ 4937 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4938 { 4939 struct ext4_iloc iloc; 4940 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4941 static unsigned int mnt_count; 4942 int err, ret; 4943 4944 might_sleep(); 4945 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4946 err = ext4_reserve_inode_write(handle, inode, &iloc); 4947 if (ext4_handle_valid(handle) && 4948 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4949 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4950 /* 4951 * We need extra buffer credits since we may write into EA block 4952 * with this same handle. If journal_extend fails, then it will 4953 * only result in a minor loss of functionality for that inode. 4954 * If this is felt to be critical, then e2fsck should be run to 4955 * force a large enough s_min_extra_isize. 4956 */ 4957 if ((jbd2_journal_extend(handle, 4958 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4959 ret = ext4_expand_extra_isize(inode, 4960 sbi->s_want_extra_isize, 4961 iloc, handle); 4962 if (ret) { 4963 ext4_set_inode_state(inode, 4964 EXT4_STATE_NO_EXPAND); 4965 if (mnt_count != 4966 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4967 ext4_warning(inode->i_sb, 4968 "Unable to expand inode %lu. Delete" 4969 " some EAs or run e2fsck.", 4970 inode->i_ino); 4971 mnt_count = 4972 le16_to_cpu(sbi->s_es->s_mnt_count); 4973 } 4974 } 4975 } 4976 } 4977 if (!err) 4978 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4979 return err; 4980 } 4981 4982 /* 4983 * ext4_dirty_inode() is called from __mark_inode_dirty() 4984 * 4985 * We're really interested in the case where a file is being extended. 4986 * i_size has been changed by generic_commit_write() and we thus need 4987 * to include the updated inode in the current transaction. 4988 * 4989 * Also, dquot_alloc_block() will always dirty the inode when blocks 4990 * are allocated to the file. 4991 * 4992 * If the inode is marked synchronous, we don't honour that here - doing 4993 * so would cause a commit on atime updates, which we don't bother doing. 4994 * We handle synchronous inodes at the highest possible level. 4995 */ 4996 void ext4_dirty_inode(struct inode *inode, int flags) 4997 { 4998 handle_t *handle; 4999 5000 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5001 if (IS_ERR(handle)) 5002 goto out; 5003 5004 ext4_mark_inode_dirty(handle, inode); 5005 5006 ext4_journal_stop(handle); 5007 out: 5008 return; 5009 } 5010 5011 #if 0 5012 /* 5013 * Bind an inode's backing buffer_head into this transaction, to prevent 5014 * it from being flushed to disk early. Unlike 5015 * ext4_reserve_inode_write, this leaves behind no bh reference and 5016 * returns no iloc structure, so the caller needs to repeat the iloc 5017 * lookup to mark the inode dirty later. 5018 */ 5019 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5020 { 5021 struct ext4_iloc iloc; 5022 5023 int err = 0; 5024 if (handle) { 5025 err = ext4_get_inode_loc(inode, &iloc); 5026 if (!err) { 5027 BUFFER_TRACE(iloc.bh, "get_write_access"); 5028 err = jbd2_journal_get_write_access(handle, iloc.bh); 5029 if (!err) 5030 err = ext4_handle_dirty_metadata(handle, 5031 NULL, 5032 iloc.bh); 5033 brelse(iloc.bh); 5034 } 5035 } 5036 ext4_std_error(inode->i_sb, err); 5037 return err; 5038 } 5039 #endif 5040 5041 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5042 { 5043 journal_t *journal; 5044 handle_t *handle; 5045 int err; 5046 5047 /* 5048 * We have to be very careful here: changing a data block's 5049 * journaling status dynamically is dangerous. If we write a 5050 * data block to the journal, change the status and then delete 5051 * that block, we risk forgetting to revoke the old log record 5052 * from the journal and so a subsequent replay can corrupt data. 5053 * So, first we make sure that the journal is empty and that 5054 * nobody is changing anything. 5055 */ 5056 5057 journal = EXT4_JOURNAL(inode); 5058 if (!journal) 5059 return 0; 5060 if (is_journal_aborted(journal)) 5061 return -EROFS; 5062 /* We have to allocate physical blocks for delalloc blocks 5063 * before flushing journal. otherwise delalloc blocks can not 5064 * be allocated any more. even more truncate on delalloc blocks 5065 * could trigger BUG by flushing delalloc blocks in journal. 5066 * There is no delalloc block in non-journal data mode. 5067 */ 5068 if (val && test_opt(inode->i_sb, DELALLOC)) { 5069 err = ext4_alloc_da_blocks(inode); 5070 if (err < 0) 5071 return err; 5072 } 5073 5074 /* Wait for all existing dio workers */ 5075 ext4_inode_block_unlocked_dio(inode); 5076 inode_dio_wait(inode); 5077 5078 jbd2_journal_lock_updates(journal); 5079 5080 /* 5081 * OK, there are no updates running now, and all cached data is 5082 * synced to disk. We are now in a completely consistent state 5083 * which doesn't have anything in the journal, and we know that 5084 * no filesystem updates are running, so it is safe to modify 5085 * the inode's in-core data-journaling state flag now. 5086 */ 5087 5088 if (val) 5089 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5090 else { 5091 jbd2_journal_flush(journal); 5092 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5093 } 5094 ext4_set_aops(inode); 5095 5096 jbd2_journal_unlock_updates(journal); 5097 ext4_inode_resume_unlocked_dio(inode); 5098 5099 /* Finally we can mark the inode as dirty. */ 5100 5101 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5102 if (IS_ERR(handle)) 5103 return PTR_ERR(handle); 5104 5105 err = ext4_mark_inode_dirty(handle, inode); 5106 ext4_handle_sync(handle); 5107 ext4_journal_stop(handle); 5108 ext4_std_error(inode->i_sb, err); 5109 5110 return err; 5111 } 5112 5113 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5114 { 5115 return !buffer_mapped(bh); 5116 } 5117 5118 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5119 { 5120 struct page *page = vmf->page; 5121 loff_t size; 5122 unsigned long len; 5123 int ret; 5124 struct file *file = vma->vm_file; 5125 struct inode *inode = file_inode(file); 5126 struct address_space *mapping = inode->i_mapping; 5127 handle_t *handle; 5128 get_block_t *get_block; 5129 int retries = 0; 5130 5131 sb_start_pagefault(inode->i_sb); 5132 file_update_time(vma->vm_file); 5133 /* Delalloc case is easy... */ 5134 if (test_opt(inode->i_sb, DELALLOC) && 5135 !ext4_should_journal_data(inode) && 5136 !ext4_nonda_switch(inode->i_sb)) { 5137 do { 5138 ret = __block_page_mkwrite(vma, vmf, 5139 ext4_da_get_block_prep); 5140 } while (ret == -ENOSPC && 5141 ext4_should_retry_alloc(inode->i_sb, &retries)); 5142 goto out_ret; 5143 } 5144 5145 lock_page(page); 5146 size = i_size_read(inode); 5147 /* Page got truncated from under us? */ 5148 if (page->mapping != mapping || page_offset(page) > size) { 5149 unlock_page(page); 5150 ret = VM_FAULT_NOPAGE; 5151 goto out; 5152 } 5153 5154 if (page->index == size >> PAGE_CACHE_SHIFT) 5155 len = size & ~PAGE_CACHE_MASK; 5156 else 5157 len = PAGE_CACHE_SIZE; 5158 /* 5159 * Return if we have all the buffers mapped. This avoids the need to do 5160 * journal_start/journal_stop which can block and take a long time 5161 */ 5162 if (page_has_buffers(page)) { 5163 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5164 0, len, NULL, 5165 ext4_bh_unmapped)) { 5166 /* Wait so that we don't change page under IO */ 5167 wait_for_stable_page(page); 5168 ret = VM_FAULT_LOCKED; 5169 goto out; 5170 } 5171 } 5172 unlock_page(page); 5173 /* OK, we need to fill the hole... */ 5174 if (ext4_should_dioread_nolock(inode)) 5175 get_block = ext4_get_block_write; 5176 else 5177 get_block = ext4_get_block; 5178 retry_alloc: 5179 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5180 ext4_writepage_trans_blocks(inode)); 5181 if (IS_ERR(handle)) { 5182 ret = VM_FAULT_SIGBUS; 5183 goto out; 5184 } 5185 ret = __block_page_mkwrite(vma, vmf, get_block); 5186 if (!ret && ext4_should_journal_data(inode)) { 5187 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5188 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5189 unlock_page(page); 5190 ret = VM_FAULT_SIGBUS; 5191 ext4_journal_stop(handle); 5192 goto out; 5193 } 5194 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5195 } 5196 ext4_journal_stop(handle); 5197 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5198 goto retry_alloc; 5199 out_ret: 5200 ret = block_page_mkwrite_return(ret); 5201 out: 5202 sb_end_pagefault(inode->i_sb); 5203 return ret; 5204 } 5205