1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 172 int nblocks) 173 { 174 int ret; 175 176 /* 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 178 * moment, get_block can be called only for blocks inside i_size since 179 * page cache has been already dropped and writes are blocked by 180 * i_mutex. So we can safely drop the i_data_sem here. 181 */ 182 BUG_ON(EXT4_JOURNAL(inode) == NULL); 183 jbd_debug(2, "restarting handle %p\n", handle); 184 up_write(&EXT4_I(inode)->i_data_sem); 185 ret = ext4_journal_restart(handle, nblocks); 186 down_write(&EXT4_I(inode)->i_data_sem); 187 ext4_discard_preallocations(inode); 188 189 return ret; 190 } 191 192 /* 193 * Called at the last iput() if i_nlink is zero. 194 */ 195 void ext4_evict_inode(struct inode *inode) 196 { 197 handle_t *handle; 198 int err; 199 int extra_credits = 3; 200 struct ext4_xattr_inode_array *ea_inode_array = NULL; 201 202 trace_ext4_evict_inode(inode); 203 204 if (inode->i_nlink) { 205 /* 206 * When journalling data dirty buffers are tracked only in the 207 * journal. So although mm thinks everything is clean and 208 * ready for reaping the inode might still have some pages to 209 * write in the running transaction or waiting to be 210 * checkpointed. Thus calling jbd2_journal_invalidatepage() 211 * (via truncate_inode_pages()) to discard these buffers can 212 * cause data loss. Also even if we did not discard these 213 * buffers, we would have no way to find them after the inode 214 * is reaped and thus user could see stale data if he tries to 215 * read them before the transaction is checkpointed. So be 216 * careful and force everything to disk here... We use 217 * ei->i_datasync_tid to store the newest transaction 218 * containing inode's data. 219 * 220 * Note that directories do not have this problem because they 221 * don't use page cache. 222 */ 223 if (inode->i_ino != EXT4_JOURNAL_INO && 224 ext4_should_journal_data(inode) && 225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 226 inode->i_data.nrpages) { 227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 229 230 jbd2_complete_transaction(journal, commit_tid); 231 filemap_write_and_wait(&inode->i_data); 232 } 233 truncate_inode_pages_final(&inode->i_data); 234 235 goto no_delete; 236 } 237 238 if (is_bad_inode(inode)) 239 goto no_delete; 240 dquot_initialize(inode); 241 242 if (ext4_should_order_data(inode)) 243 ext4_begin_ordered_truncate(inode, 0); 244 truncate_inode_pages_final(&inode->i_data); 245 246 /* 247 * Protect us against freezing - iput() caller didn't have to have any 248 * protection against it 249 */ 250 sb_start_intwrite(inode->i_sb); 251 252 if (!IS_NOQUOTA(inode)) 253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 254 255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 256 ext4_blocks_for_truncate(inode)+extra_credits); 257 if (IS_ERR(handle)) { 258 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 259 /* 260 * If we're going to skip the normal cleanup, we still need to 261 * make sure that the in-core orphan linked list is properly 262 * cleaned up. 263 */ 264 ext4_orphan_del(NULL, inode); 265 sb_end_intwrite(inode->i_sb); 266 goto no_delete; 267 } 268 269 if (IS_SYNC(inode)) 270 ext4_handle_sync(handle); 271 272 /* 273 * Set inode->i_size to 0 before calling ext4_truncate(). We need 274 * special handling of symlinks here because i_size is used to 275 * determine whether ext4_inode_info->i_data contains symlink data or 276 * block mappings. Setting i_size to 0 will remove its fast symlink 277 * status. Erase i_data so that it becomes a valid empty block map. 278 */ 279 if (ext4_inode_is_fast_symlink(inode)) 280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 281 inode->i_size = 0; 282 err = ext4_mark_inode_dirty(handle, inode); 283 if (err) { 284 ext4_warning(inode->i_sb, 285 "couldn't mark inode dirty (err %d)", err); 286 goto stop_handle; 287 } 288 if (inode->i_blocks) { 289 err = ext4_truncate(inode); 290 if (err) { 291 ext4_error(inode->i_sb, 292 "couldn't truncate inode %lu (err %d)", 293 inode->i_ino, err); 294 goto stop_handle; 295 } 296 } 297 298 /* Remove xattr references. */ 299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 300 extra_credits); 301 if (err) { 302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 303 stop_handle: 304 ext4_journal_stop(handle); 305 ext4_orphan_del(NULL, inode); 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = get_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 340 } 341 342 #ifdef CONFIG_QUOTA 343 qsize_t *ext4_get_reserved_space(struct inode *inode) 344 { 345 return &EXT4_I(inode)->i_reserved_quota; 346 } 347 #endif 348 349 /* 350 * Called with i_data_sem down, which is important since we can call 351 * ext4_discard_preallocations() from here. 352 */ 353 void ext4_da_update_reserve_space(struct inode *inode, 354 int used, int quota_claim) 355 { 356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 357 struct ext4_inode_info *ei = EXT4_I(inode); 358 359 spin_lock(&ei->i_block_reservation_lock); 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 361 if (unlikely(used > ei->i_reserved_data_blocks)) { 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 363 "with only %d reserved data blocks", 364 __func__, inode->i_ino, used, 365 ei->i_reserved_data_blocks); 366 WARN_ON(1); 367 used = ei->i_reserved_data_blocks; 368 } 369 370 /* Update per-inode reservations */ 371 ei->i_reserved_data_blocks -= used; 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 373 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 375 376 /* Update quota subsystem for data blocks */ 377 if (quota_claim) 378 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 379 else { 380 /* 381 * We did fallocate with an offset that is already delayed 382 * allocated. So on delayed allocated writeback we should 383 * not re-claim the quota for fallocated blocks. 384 */ 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 386 } 387 388 /* 389 * If we have done all the pending block allocations and if 390 * there aren't any writers on the inode, we can discard the 391 * inode's preallocations. 392 */ 393 if ((ei->i_reserved_data_blocks == 0) && 394 (atomic_read(&inode->i_writecount) == 0)) 395 ext4_discard_preallocations(inode); 396 } 397 398 static int __check_block_validity(struct inode *inode, const char *func, 399 unsigned int line, 400 struct ext4_map_blocks *map) 401 { 402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 403 map->m_len)) { 404 ext4_error_inode(inode, func, line, map->m_pblk, 405 "lblock %lu mapped to illegal pblock " 406 "(length %d)", (unsigned long) map->m_lblk, 407 map->m_len); 408 return -EFSCORRUPTED; 409 } 410 return 0; 411 } 412 413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 414 ext4_lblk_t len) 415 { 416 int ret; 417 418 if (ext4_encrypted_inode(inode)) 419 return fscrypt_zeroout_range(inode, lblk, pblk, len); 420 421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 422 if (ret > 0) 423 ret = 0; 424 425 return ret; 426 } 427 428 #define check_block_validity(inode, map) \ 429 __check_block_validity((inode), __func__, __LINE__, (map)) 430 431 #ifdef ES_AGGRESSIVE_TEST 432 static void ext4_map_blocks_es_recheck(handle_t *handle, 433 struct inode *inode, 434 struct ext4_map_blocks *es_map, 435 struct ext4_map_blocks *map, 436 int flags) 437 { 438 int retval; 439 440 map->m_flags = 0; 441 /* 442 * There is a race window that the result is not the same. 443 * e.g. xfstests #223 when dioread_nolock enables. The reason 444 * is that we lookup a block mapping in extent status tree with 445 * out taking i_data_sem. So at the time the unwritten extent 446 * could be converted. 447 */ 448 down_read(&EXT4_I(inode)->i_data_sem); 449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 450 retval = ext4_ext_map_blocks(handle, inode, map, flags & 451 EXT4_GET_BLOCKS_KEEP_SIZE); 452 } else { 453 retval = ext4_ind_map_blocks(handle, inode, map, flags & 454 EXT4_GET_BLOCKS_KEEP_SIZE); 455 } 456 up_read((&EXT4_I(inode)->i_data_sem)); 457 458 /* 459 * We don't check m_len because extent will be collpased in status 460 * tree. So the m_len might not equal. 461 */ 462 if (es_map->m_lblk != map->m_lblk || 463 es_map->m_flags != map->m_flags || 464 es_map->m_pblk != map->m_pblk) { 465 printk("ES cache assertion failed for inode: %lu " 466 "es_cached ex [%d/%d/%llu/%x] != " 467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 468 inode->i_ino, es_map->m_lblk, es_map->m_len, 469 es_map->m_pblk, es_map->m_flags, map->m_lblk, 470 map->m_len, map->m_pblk, map->m_flags, 471 retval, flags); 472 } 473 } 474 #endif /* ES_AGGRESSIVE_TEST */ 475 476 /* 477 * The ext4_map_blocks() function tries to look up the requested blocks, 478 * and returns if the blocks are already mapped. 479 * 480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 481 * and store the allocated blocks in the result buffer head and mark it 482 * mapped. 483 * 484 * If file type is extents based, it will call ext4_ext_map_blocks(), 485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 486 * based files 487 * 488 * On success, it returns the number of blocks being mapped or allocated. if 489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 490 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 491 * 492 * It returns 0 if plain look up failed (blocks have not been allocated), in 493 * that case, @map is returned as unmapped but we still do fill map->m_len to 494 * indicate the length of a hole starting at map->m_lblk. 495 * 496 * It returns the error in case of allocation failure. 497 */ 498 int ext4_map_blocks(handle_t *handle, struct inode *inode, 499 struct ext4_map_blocks *map, int flags) 500 { 501 struct extent_status es; 502 int retval; 503 int ret = 0; 504 #ifdef ES_AGGRESSIVE_TEST 505 struct ext4_map_blocks orig_map; 506 507 memcpy(&orig_map, map, sizeof(*map)); 508 #endif 509 510 map->m_flags = 0; 511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 512 "logical block %lu\n", inode->i_ino, flags, map->m_len, 513 (unsigned long) map->m_lblk); 514 515 /* 516 * ext4_map_blocks returns an int, and m_len is an unsigned int 517 */ 518 if (unlikely(map->m_len > INT_MAX)) 519 map->m_len = INT_MAX; 520 521 /* We can handle the block number less than EXT_MAX_BLOCKS */ 522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 523 return -EFSCORRUPTED; 524 525 /* Lookup extent status tree firstly */ 526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 528 map->m_pblk = ext4_es_pblock(&es) + 529 map->m_lblk - es.es_lblk; 530 map->m_flags |= ext4_es_is_written(&es) ? 531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 532 retval = es.es_len - (map->m_lblk - es.es_lblk); 533 if (retval > map->m_len) 534 retval = map->m_len; 535 map->m_len = retval; 536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 537 map->m_pblk = 0; 538 retval = es.es_len - (map->m_lblk - es.es_lblk); 539 if (retval > map->m_len) 540 retval = map->m_len; 541 map->m_len = retval; 542 retval = 0; 543 } else { 544 BUG_ON(1); 545 } 546 #ifdef ES_AGGRESSIVE_TEST 547 ext4_map_blocks_es_recheck(handle, inode, map, 548 &orig_map, flags); 549 #endif 550 goto found; 551 } 552 553 /* 554 * Try to see if we can get the block without requesting a new 555 * file system block. 556 */ 557 down_read(&EXT4_I(inode)->i_data_sem); 558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 559 retval = ext4_ext_map_blocks(handle, inode, map, flags & 560 EXT4_GET_BLOCKS_KEEP_SIZE); 561 } else { 562 retval = ext4_ind_map_blocks(handle, inode, map, flags & 563 EXT4_GET_BLOCKS_KEEP_SIZE); 564 } 565 if (retval > 0) { 566 unsigned int status; 567 568 if (unlikely(retval != map->m_len)) { 569 ext4_warning(inode->i_sb, 570 "ES len assertion failed for inode " 571 "%lu: retval %d != map->m_len %d", 572 inode->i_ino, retval, map->m_len); 573 WARN_ON(1); 574 } 575 576 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 579 !(status & EXTENT_STATUS_WRITTEN) && 580 ext4_find_delalloc_range(inode, map->m_lblk, 581 map->m_lblk + map->m_len - 1)) 582 status |= EXTENT_STATUS_DELAYED; 583 ret = ext4_es_insert_extent(inode, map->m_lblk, 584 map->m_len, map->m_pblk, status); 585 if (ret < 0) 586 retval = ret; 587 } 588 up_read((&EXT4_I(inode)->i_data_sem)); 589 590 found: 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 592 ret = check_block_validity(inode, map); 593 if (ret != 0) 594 return ret; 595 } 596 597 /* If it is only a block(s) look up */ 598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 599 return retval; 600 601 /* 602 * Returns if the blocks have already allocated 603 * 604 * Note that if blocks have been preallocated 605 * ext4_ext_get_block() returns the create = 0 606 * with buffer head unmapped. 607 */ 608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 609 /* 610 * If we need to convert extent to unwritten 611 * we continue and do the actual work in 612 * ext4_ext_map_blocks() 613 */ 614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 615 return retval; 616 617 /* 618 * Here we clear m_flags because after allocating an new extent, 619 * it will be set again. 620 */ 621 map->m_flags &= ~EXT4_MAP_FLAGS; 622 623 /* 624 * New blocks allocate and/or writing to unwritten extent 625 * will possibly result in updating i_data, so we take 626 * the write lock of i_data_sem, and call get_block() 627 * with create == 1 flag. 628 */ 629 down_write(&EXT4_I(inode)->i_data_sem); 630 631 /* 632 * We need to check for EXT4 here because migrate 633 * could have changed the inode type in between 634 */ 635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 636 retval = ext4_ext_map_blocks(handle, inode, map, flags); 637 } else { 638 retval = ext4_ind_map_blocks(handle, inode, map, flags); 639 640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 641 /* 642 * We allocated new blocks which will result in 643 * i_data's format changing. Force the migrate 644 * to fail by clearing migrate flags 645 */ 646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 647 } 648 649 /* 650 * Update reserved blocks/metadata blocks after successful 651 * block allocation which had been deferred till now. We don't 652 * support fallocate for non extent files. So we can update 653 * reserve space here. 654 */ 655 if ((retval > 0) && 656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 657 ext4_da_update_reserve_space(inode, retval, 1); 658 } 659 660 if (retval > 0) { 661 unsigned int status; 662 663 if (unlikely(retval != map->m_len)) { 664 ext4_warning(inode->i_sb, 665 "ES len assertion failed for inode " 666 "%lu: retval %d != map->m_len %d", 667 inode->i_ino, retval, map->m_len); 668 WARN_ON(1); 669 } 670 671 /* 672 * We have to zeroout blocks before inserting them into extent 673 * status tree. Otherwise someone could look them up there and 674 * use them before they are really zeroed. We also have to 675 * unmap metadata before zeroing as otherwise writeback can 676 * overwrite zeros with stale data from block device. 677 */ 678 if (flags & EXT4_GET_BLOCKS_ZERO && 679 map->m_flags & EXT4_MAP_MAPPED && 680 map->m_flags & EXT4_MAP_NEW) { 681 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 682 map->m_len); 683 ret = ext4_issue_zeroout(inode, map->m_lblk, 684 map->m_pblk, map->m_len); 685 if (ret) { 686 retval = ret; 687 goto out_sem; 688 } 689 } 690 691 /* 692 * If the extent has been zeroed out, we don't need to update 693 * extent status tree. 694 */ 695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 696 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 697 if (ext4_es_is_written(&es)) 698 goto out_sem; 699 } 700 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 703 !(status & EXTENT_STATUS_WRITTEN) && 704 ext4_find_delalloc_range(inode, map->m_lblk, 705 map->m_lblk + map->m_len - 1)) 706 status |= EXTENT_STATUS_DELAYED; 707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 708 map->m_pblk, status); 709 if (ret < 0) { 710 retval = ret; 711 goto out_sem; 712 } 713 } 714 715 out_sem: 716 up_write((&EXT4_I(inode)->i_data_sem)); 717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 718 ret = check_block_validity(inode, map); 719 if (ret != 0) 720 return ret; 721 722 /* 723 * Inodes with freshly allocated blocks where contents will be 724 * visible after transaction commit must be on transaction's 725 * ordered data list. 726 */ 727 if (map->m_flags & EXT4_MAP_NEW && 728 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 729 !(flags & EXT4_GET_BLOCKS_ZERO) && 730 !ext4_is_quota_file(inode) && 731 ext4_should_order_data(inode)) { 732 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 733 ret = ext4_jbd2_inode_add_wait(handle, inode); 734 else 735 ret = ext4_jbd2_inode_add_write(handle, inode); 736 if (ret) 737 return ret; 738 } 739 } 740 return retval; 741 } 742 743 /* 744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 745 * we have to be careful as someone else may be manipulating b_state as well. 746 */ 747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 748 { 749 unsigned long old_state; 750 unsigned long new_state; 751 752 flags &= EXT4_MAP_FLAGS; 753 754 /* Dummy buffer_head? Set non-atomically. */ 755 if (!bh->b_page) { 756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 757 return; 758 } 759 /* 760 * Someone else may be modifying b_state. Be careful! This is ugly but 761 * once we get rid of using bh as a container for mapping information 762 * to pass to / from get_block functions, this can go away. 763 */ 764 do { 765 old_state = READ_ONCE(bh->b_state); 766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 767 } while (unlikely( 768 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 769 } 770 771 static int _ext4_get_block(struct inode *inode, sector_t iblock, 772 struct buffer_head *bh, int flags) 773 { 774 struct ext4_map_blocks map; 775 int ret = 0; 776 777 if (ext4_has_inline_data(inode)) 778 return -ERANGE; 779 780 map.m_lblk = iblock; 781 map.m_len = bh->b_size >> inode->i_blkbits; 782 783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 784 flags); 785 if (ret > 0) { 786 map_bh(bh, inode->i_sb, map.m_pblk); 787 ext4_update_bh_state(bh, map.m_flags); 788 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 789 ret = 0; 790 } else if (ret == 0) { 791 /* hole case, need to fill in bh->b_size */ 792 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 793 } 794 return ret; 795 } 796 797 int ext4_get_block(struct inode *inode, sector_t iblock, 798 struct buffer_head *bh, int create) 799 { 800 return _ext4_get_block(inode, iblock, bh, 801 create ? EXT4_GET_BLOCKS_CREATE : 0); 802 } 803 804 /* 805 * Get block function used when preparing for buffered write if we require 806 * creating an unwritten extent if blocks haven't been allocated. The extent 807 * will be converted to written after the IO is complete. 808 */ 809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 810 struct buffer_head *bh_result, int create) 811 { 812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 813 inode->i_ino, create); 814 return _ext4_get_block(inode, iblock, bh_result, 815 EXT4_GET_BLOCKS_IO_CREATE_EXT); 816 } 817 818 /* Maximum number of blocks we map for direct IO at once. */ 819 #define DIO_MAX_BLOCKS 4096 820 821 /* 822 * Get blocks function for the cases that need to start a transaction - 823 * generally difference cases of direct IO and DAX IO. It also handles retries 824 * in case of ENOSPC. 825 */ 826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 827 struct buffer_head *bh_result, int flags) 828 { 829 int dio_credits; 830 handle_t *handle; 831 int retries = 0; 832 int ret; 833 834 /* Trim mapping request to maximum we can map at once for DIO */ 835 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 836 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 837 dio_credits = ext4_chunk_trans_blocks(inode, 838 bh_result->b_size >> inode->i_blkbits); 839 retry: 840 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 841 if (IS_ERR(handle)) 842 return PTR_ERR(handle); 843 844 ret = _ext4_get_block(inode, iblock, bh_result, flags); 845 ext4_journal_stop(handle); 846 847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 848 goto retry; 849 return ret; 850 } 851 852 /* Get block function for DIO reads and writes to inodes without extents */ 853 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 854 struct buffer_head *bh, int create) 855 { 856 /* We don't expect handle for direct IO */ 857 WARN_ON_ONCE(ext4_journal_current_handle()); 858 859 if (!create) 860 return _ext4_get_block(inode, iblock, bh, 0); 861 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 862 } 863 864 /* 865 * Get block function for AIO DIO writes when we create unwritten extent if 866 * blocks are not allocated yet. The extent will be converted to written 867 * after IO is complete. 868 */ 869 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 870 sector_t iblock, struct buffer_head *bh_result, int create) 871 { 872 int ret; 873 874 /* We don't expect handle for direct IO */ 875 WARN_ON_ONCE(ext4_journal_current_handle()); 876 877 ret = ext4_get_block_trans(inode, iblock, bh_result, 878 EXT4_GET_BLOCKS_IO_CREATE_EXT); 879 880 /* 881 * When doing DIO using unwritten extents, we need io_end to convert 882 * unwritten extents to written on IO completion. We allocate io_end 883 * once we spot unwritten extent and store it in b_private. Generic 884 * DIO code keeps b_private set and furthermore passes the value to 885 * our completion callback in 'private' argument. 886 */ 887 if (!ret && buffer_unwritten(bh_result)) { 888 if (!bh_result->b_private) { 889 ext4_io_end_t *io_end; 890 891 io_end = ext4_init_io_end(inode, GFP_KERNEL); 892 if (!io_end) 893 return -ENOMEM; 894 bh_result->b_private = io_end; 895 ext4_set_io_unwritten_flag(inode, io_end); 896 } 897 set_buffer_defer_completion(bh_result); 898 } 899 900 return ret; 901 } 902 903 /* 904 * Get block function for non-AIO DIO writes when we create unwritten extent if 905 * blocks are not allocated yet. The extent will be converted to written 906 * after IO is complete by ext4_direct_IO_write(). 907 */ 908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 909 sector_t iblock, struct buffer_head *bh_result, int create) 910 { 911 int ret; 912 913 /* We don't expect handle for direct IO */ 914 WARN_ON_ONCE(ext4_journal_current_handle()); 915 916 ret = ext4_get_block_trans(inode, iblock, bh_result, 917 EXT4_GET_BLOCKS_IO_CREATE_EXT); 918 919 /* 920 * Mark inode as having pending DIO writes to unwritten extents. 921 * ext4_direct_IO_write() checks this flag and converts extents to 922 * written. 923 */ 924 if (!ret && buffer_unwritten(bh_result)) 925 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 926 927 return ret; 928 } 929 930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 931 struct buffer_head *bh_result, int create) 932 { 933 int ret; 934 935 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 936 inode->i_ino, create); 937 /* We don't expect handle for direct IO */ 938 WARN_ON_ONCE(ext4_journal_current_handle()); 939 940 ret = _ext4_get_block(inode, iblock, bh_result, 0); 941 /* 942 * Blocks should have been preallocated! ext4_file_write_iter() checks 943 * that. 944 */ 945 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 946 947 return ret; 948 } 949 950 951 /* 952 * `handle' can be NULL if create is zero 953 */ 954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 955 ext4_lblk_t block, int map_flags) 956 { 957 struct ext4_map_blocks map; 958 struct buffer_head *bh; 959 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 960 int err; 961 962 J_ASSERT(handle != NULL || create == 0); 963 964 map.m_lblk = block; 965 map.m_len = 1; 966 err = ext4_map_blocks(handle, inode, &map, map_flags); 967 968 if (err == 0) 969 return create ? ERR_PTR(-ENOSPC) : NULL; 970 if (err < 0) 971 return ERR_PTR(err); 972 973 bh = sb_getblk(inode->i_sb, map.m_pblk); 974 if (unlikely(!bh)) 975 return ERR_PTR(-ENOMEM); 976 if (map.m_flags & EXT4_MAP_NEW) { 977 J_ASSERT(create != 0); 978 J_ASSERT(handle != NULL); 979 980 /* 981 * Now that we do not always journal data, we should 982 * keep in mind whether this should always journal the 983 * new buffer as metadata. For now, regular file 984 * writes use ext4_get_block instead, so it's not a 985 * problem. 986 */ 987 lock_buffer(bh); 988 BUFFER_TRACE(bh, "call get_create_access"); 989 err = ext4_journal_get_create_access(handle, bh); 990 if (unlikely(err)) { 991 unlock_buffer(bh); 992 goto errout; 993 } 994 if (!buffer_uptodate(bh)) { 995 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 996 set_buffer_uptodate(bh); 997 } 998 unlock_buffer(bh); 999 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1000 err = ext4_handle_dirty_metadata(handle, inode, bh); 1001 if (unlikely(err)) 1002 goto errout; 1003 } else 1004 BUFFER_TRACE(bh, "not a new buffer"); 1005 return bh; 1006 errout: 1007 brelse(bh); 1008 return ERR_PTR(err); 1009 } 1010 1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1012 ext4_lblk_t block, int map_flags) 1013 { 1014 struct buffer_head *bh; 1015 1016 bh = ext4_getblk(handle, inode, block, map_flags); 1017 if (IS_ERR(bh)) 1018 return bh; 1019 if (!bh || buffer_uptodate(bh)) 1020 return bh; 1021 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1022 wait_on_buffer(bh); 1023 if (buffer_uptodate(bh)) 1024 return bh; 1025 put_bh(bh); 1026 return ERR_PTR(-EIO); 1027 } 1028 1029 /* Read a contiguous batch of blocks. */ 1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1031 bool wait, struct buffer_head **bhs) 1032 { 1033 int i, err; 1034 1035 for (i = 0; i < bh_count; i++) { 1036 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1037 if (IS_ERR(bhs[i])) { 1038 err = PTR_ERR(bhs[i]); 1039 bh_count = i; 1040 goto out_brelse; 1041 } 1042 } 1043 1044 for (i = 0; i < bh_count; i++) 1045 /* Note that NULL bhs[i] is valid because of holes. */ 1046 if (bhs[i] && !buffer_uptodate(bhs[i])) 1047 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1048 &bhs[i]); 1049 1050 if (!wait) 1051 return 0; 1052 1053 for (i = 0; i < bh_count; i++) 1054 if (bhs[i]) 1055 wait_on_buffer(bhs[i]); 1056 1057 for (i = 0; i < bh_count; i++) { 1058 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1059 err = -EIO; 1060 goto out_brelse; 1061 } 1062 } 1063 return 0; 1064 1065 out_brelse: 1066 for (i = 0; i < bh_count; i++) { 1067 brelse(bhs[i]); 1068 bhs[i] = NULL; 1069 } 1070 return err; 1071 } 1072 1073 int ext4_walk_page_buffers(handle_t *handle, 1074 struct buffer_head *head, 1075 unsigned from, 1076 unsigned to, 1077 int *partial, 1078 int (*fn)(handle_t *handle, 1079 struct buffer_head *bh)) 1080 { 1081 struct buffer_head *bh; 1082 unsigned block_start, block_end; 1083 unsigned blocksize = head->b_size; 1084 int err, ret = 0; 1085 struct buffer_head *next; 1086 1087 for (bh = head, block_start = 0; 1088 ret == 0 && (bh != head || !block_start); 1089 block_start = block_end, bh = next) { 1090 next = bh->b_this_page; 1091 block_end = block_start + blocksize; 1092 if (block_end <= from || block_start >= to) { 1093 if (partial && !buffer_uptodate(bh)) 1094 *partial = 1; 1095 continue; 1096 } 1097 err = (*fn)(handle, bh); 1098 if (!ret) 1099 ret = err; 1100 } 1101 return ret; 1102 } 1103 1104 /* 1105 * To preserve ordering, it is essential that the hole instantiation and 1106 * the data write be encapsulated in a single transaction. We cannot 1107 * close off a transaction and start a new one between the ext4_get_block() 1108 * and the commit_write(). So doing the jbd2_journal_start at the start of 1109 * prepare_write() is the right place. 1110 * 1111 * Also, this function can nest inside ext4_writepage(). In that case, we 1112 * *know* that ext4_writepage() has generated enough buffer credits to do the 1113 * whole page. So we won't block on the journal in that case, which is good, 1114 * because the caller may be PF_MEMALLOC. 1115 * 1116 * By accident, ext4 can be reentered when a transaction is open via 1117 * quota file writes. If we were to commit the transaction while thus 1118 * reentered, there can be a deadlock - we would be holding a quota 1119 * lock, and the commit would never complete if another thread had a 1120 * transaction open and was blocking on the quota lock - a ranking 1121 * violation. 1122 * 1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1124 * will _not_ run commit under these circumstances because handle->h_ref 1125 * is elevated. We'll still have enough credits for the tiny quotafile 1126 * write. 1127 */ 1128 int do_journal_get_write_access(handle_t *handle, 1129 struct buffer_head *bh) 1130 { 1131 int dirty = buffer_dirty(bh); 1132 int ret; 1133 1134 if (!buffer_mapped(bh) || buffer_freed(bh)) 1135 return 0; 1136 /* 1137 * __block_write_begin() could have dirtied some buffers. Clean 1138 * the dirty bit as jbd2_journal_get_write_access() could complain 1139 * otherwise about fs integrity issues. Setting of the dirty bit 1140 * by __block_write_begin() isn't a real problem here as we clear 1141 * the bit before releasing a page lock and thus writeback cannot 1142 * ever write the buffer. 1143 */ 1144 if (dirty) 1145 clear_buffer_dirty(bh); 1146 BUFFER_TRACE(bh, "get write access"); 1147 ret = ext4_journal_get_write_access(handle, bh); 1148 if (!ret && dirty) 1149 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1150 return ret; 1151 } 1152 1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1155 get_block_t *get_block) 1156 { 1157 unsigned from = pos & (PAGE_SIZE - 1); 1158 unsigned to = from + len; 1159 struct inode *inode = page->mapping->host; 1160 unsigned block_start, block_end; 1161 sector_t block; 1162 int err = 0; 1163 unsigned blocksize = inode->i_sb->s_blocksize; 1164 unsigned bbits; 1165 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1166 bool decrypt = false; 1167 1168 BUG_ON(!PageLocked(page)); 1169 BUG_ON(from > PAGE_SIZE); 1170 BUG_ON(to > PAGE_SIZE); 1171 BUG_ON(from > to); 1172 1173 if (!page_has_buffers(page)) 1174 create_empty_buffers(page, blocksize, 0); 1175 head = page_buffers(page); 1176 bbits = ilog2(blocksize); 1177 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1178 1179 for (bh = head, block_start = 0; bh != head || !block_start; 1180 block++, block_start = block_end, bh = bh->b_this_page) { 1181 block_end = block_start + blocksize; 1182 if (block_end <= from || block_start >= to) { 1183 if (PageUptodate(page)) { 1184 if (!buffer_uptodate(bh)) 1185 set_buffer_uptodate(bh); 1186 } 1187 continue; 1188 } 1189 if (buffer_new(bh)) 1190 clear_buffer_new(bh); 1191 if (!buffer_mapped(bh)) { 1192 WARN_ON(bh->b_size != blocksize); 1193 err = get_block(inode, block, bh, 1); 1194 if (err) 1195 break; 1196 if (buffer_new(bh)) { 1197 clean_bdev_bh_alias(bh); 1198 if (PageUptodate(page)) { 1199 clear_buffer_new(bh); 1200 set_buffer_uptodate(bh); 1201 mark_buffer_dirty(bh); 1202 continue; 1203 } 1204 if (block_end > to || block_start < from) 1205 zero_user_segments(page, to, block_end, 1206 block_start, from); 1207 continue; 1208 } 1209 } 1210 if (PageUptodate(page)) { 1211 if (!buffer_uptodate(bh)) 1212 set_buffer_uptodate(bh); 1213 continue; 1214 } 1215 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1216 !buffer_unwritten(bh) && 1217 (block_start < from || block_end > to)) { 1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1219 *wait_bh++ = bh; 1220 decrypt = ext4_encrypted_inode(inode) && 1221 S_ISREG(inode->i_mode); 1222 } 1223 } 1224 /* 1225 * If we issued read requests, let them complete. 1226 */ 1227 while (wait_bh > wait) { 1228 wait_on_buffer(*--wait_bh); 1229 if (!buffer_uptodate(*wait_bh)) 1230 err = -EIO; 1231 } 1232 if (unlikely(err)) 1233 page_zero_new_buffers(page, from, to); 1234 else if (decrypt) 1235 err = fscrypt_decrypt_page(page->mapping->host, page, 1236 PAGE_SIZE, 0, page->index); 1237 return err; 1238 } 1239 #endif 1240 1241 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1242 loff_t pos, unsigned len, unsigned flags, 1243 struct page **pagep, void **fsdata) 1244 { 1245 struct inode *inode = mapping->host; 1246 int ret, needed_blocks; 1247 handle_t *handle; 1248 int retries = 0; 1249 struct page *page; 1250 pgoff_t index; 1251 unsigned from, to; 1252 1253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1254 return -EIO; 1255 1256 trace_ext4_write_begin(inode, pos, len, flags); 1257 /* 1258 * Reserve one block more for addition to orphan list in case 1259 * we allocate blocks but write fails for some reason 1260 */ 1261 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1262 index = pos >> PAGE_SHIFT; 1263 from = pos & (PAGE_SIZE - 1); 1264 to = from + len; 1265 1266 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1267 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1268 flags, pagep); 1269 if (ret < 0) 1270 return ret; 1271 if (ret == 1) 1272 return 0; 1273 } 1274 1275 /* 1276 * grab_cache_page_write_begin() can take a long time if the 1277 * system is thrashing due to memory pressure, or if the page 1278 * is being written back. So grab it first before we start 1279 * the transaction handle. This also allows us to allocate 1280 * the page (if needed) without using GFP_NOFS. 1281 */ 1282 retry_grab: 1283 page = grab_cache_page_write_begin(mapping, index, flags); 1284 if (!page) 1285 return -ENOMEM; 1286 unlock_page(page); 1287 1288 retry_journal: 1289 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1290 if (IS_ERR(handle)) { 1291 put_page(page); 1292 return PTR_ERR(handle); 1293 } 1294 1295 lock_page(page); 1296 if (page->mapping != mapping) { 1297 /* The page got truncated from under us */ 1298 unlock_page(page); 1299 put_page(page); 1300 ext4_journal_stop(handle); 1301 goto retry_grab; 1302 } 1303 /* In case writeback began while the page was unlocked */ 1304 wait_for_stable_page(page); 1305 1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1307 if (ext4_should_dioread_nolock(inode)) 1308 ret = ext4_block_write_begin(page, pos, len, 1309 ext4_get_block_unwritten); 1310 else 1311 ret = ext4_block_write_begin(page, pos, len, 1312 ext4_get_block); 1313 #else 1314 if (ext4_should_dioread_nolock(inode)) 1315 ret = __block_write_begin(page, pos, len, 1316 ext4_get_block_unwritten); 1317 else 1318 ret = __block_write_begin(page, pos, len, ext4_get_block); 1319 #endif 1320 if (!ret && ext4_should_journal_data(inode)) { 1321 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1322 from, to, NULL, 1323 do_journal_get_write_access); 1324 } 1325 1326 if (ret) { 1327 unlock_page(page); 1328 /* 1329 * __block_write_begin may have instantiated a few blocks 1330 * outside i_size. Trim these off again. Don't need 1331 * i_size_read because we hold i_mutex. 1332 * 1333 * Add inode to orphan list in case we crash before 1334 * truncate finishes 1335 */ 1336 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1337 ext4_orphan_add(handle, inode); 1338 1339 ext4_journal_stop(handle); 1340 if (pos + len > inode->i_size) { 1341 ext4_truncate_failed_write(inode); 1342 /* 1343 * If truncate failed early the inode might 1344 * still be on the orphan list; we need to 1345 * make sure the inode is removed from the 1346 * orphan list in that case. 1347 */ 1348 if (inode->i_nlink) 1349 ext4_orphan_del(NULL, inode); 1350 } 1351 1352 if (ret == -ENOSPC && 1353 ext4_should_retry_alloc(inode->i_sb, &retries)) 1354 goto retry_journal; 1355 put_page(page); 1356 return ret; 1357 } 1358 *pagep = page; 1359 return ret; 1360 } 1361 1362 /* For write_end() in data=journal mode */ 1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1364 { 1365 int ret; 1366 if (!buffer_mapped(bh) || buffer_freed(bh)) 1367 return 0; 1368 set_buffer_uptodate(bh); 1369 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1370 clear_buffer_meta(bh); 1371 clear_buffer_prio(bh); 1372 return ret; 1373 } 1374 1375 /* 1376 * We need to pick up the new inode size which generic_commit_write gave us 1377 * `file' can be NULL - eg, when called from page_symlink(). 1378 * 1379 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1380 * buffers are managed internally. 1381 */ 1382 static int ext4_write_end(struct file *file, 1383 struct address_space *mapping, 1384 loff_t pos, unsigned len, unsigned copied, 1385 struct page *page, void *fsdata) 1386 { 1387 handle_t *handle = ext4_journal_current_handle(); 1388 struct inode *inode = mapping->host; 1389 loff_t old_size = inode->i_size; 1390 int ret = 0, ret2; 1391 int i_size_changed = 0; 1392 1393 trace_ext4_write_end(inode, pos, len, copied); 1394 if (ext4_has_inline_data(inode)) { 1395 ret = ext4_write_inline_data_end(inode, pos, len, 1396 copied, page); 1397 if (ret < 0) { 1398 unlock_page(page); 1399 put_page(page); 1400 goto errout; 1401 } 1402 copied = ret; 1403 } else 1404 copied = block_write_end(file, mapping, pos, 1405 len, copied, page, fsdata); 1406 /* 1407 * it's important to update i_size while still holding page lock: 1408 * page writeout could otherwise come in and zero beyond i_size. 1409 */ 1410 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1411 unlock_page(page); 1412 put_page(page); 1413 1414 if (old_size < pos) 1415 pagecache_isize_extended(inode, old_size, pos); 1416 /* 1417 * Don't mark the inode dirty under page lock. First, it unnecessarily 1418 * makes the holding time of page lock longer. Second, it forces lock 1419 * ordering of page lock and transaction start for journaling 1420 * filesystems. 1421 */ 1422 if (i_size_changed) 1423 ext4_mark_inode_dirty(handle, inode); 1424 1425 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1426 /* if we have allocated more blocks and copied 1427 * less. We will have blocks allocated outside 1428 * inode->i_size. So truncate them 1429 */ 1430 ext4_orphan_add(handle, inode); 1431 errout: 1432 ret2 = ext4_journal_stop(handle); 1433 if (!ret) 1434 ret = ret2; 1435 1436 if (pos + len > inode->i_size) { 1437 ext4_truncate_failed_write(inode); 1438 /* 1439 * If truncate failed early the inode might still be 1440 * on the orphan list; we need to make sure the inode 1441 * is removed from the orphan list in that case. 1442 */ 1443 if (inode->i_nlink) 1444 ext4_orphan_del(NULL, inode); 1445 } 1446 1447 return ret ? ret : copied; 1448 } 1449 1450 /* 1451 * This is a private version of page_zero_new_buffers() which doesn't 1452 * set the buffer to be dirty, since in data=journalled mode we need 1453 * to call ext4_handle_dirty_metadata() instead. 1454 */ 1455 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1456 struct page *page, 1457 unsigned from, unsigned to) 1458 { 1459 unsigned int block_start = 0, block_end; 1460 struct buffer_head *head, *bh; 1461 1462 bh = head = page_buffers(page); 1463 do { 1464 block_end = block_start + bh->b_size; 1465 if (buffer_new(bh)) { 1466 if (block_end > from && block_start < to) { 1467 if (!PageUptodate(page)) { 1468 unsigned start, size; 1469 1470 start = max(from, block_start); 1471 size = min(to, block_end) - start; 1472 1473 zero_user(page, start, size); 1474 write_end_fn(handle, bh); 1475 } 1476 clear_buffer_new(bh); 1477 } 1478 } 1479 block_start = block_end; 1480 bh = bh->b_this_page; 1481 } while (bh != head); 1482 } 1483 1484 static int ext4_journalled_write_end(struct file *file, 1485 struct address_space *mapping, 1486 loff_t pos, unsigned len, unsigned copied, 1487 struct page *page, void *fsdata) 1488 { 1489 handle_t *handle = ext4_journal_current_handle(); 1490 struct inode *inode = mapping->host; 1491 loff_t old_size = inode->i_size; 1492 int ret = 0, ret2; 1493 int partial = 0; 1494 unsigned from, to; 1495 int size_changed = 0; 1496 1497 trace_ext4_journalled_write_end(inode, pos, len, copied); 1498 from = pos & (PAGE_SIZE - 1); 1499 to = from + len; 1500 1501 BUG_ON(!ext4_handle_valid(handle)); 1502 1503 if (ext4_has_inline_data(inode)) { 1504 ret = ext4_write_inline_data_end(inode, pos, len, 1505 copied, page); 1506 if (ret < 0) { 1507 unlock_page(page); 1508 put_page(page); 1509 goto errout; 1510 } 1511 copied = ret; 1512 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1513 copied = 0; 1514 ext4_journalled_zero_new_buffers(handle, page, from, to); 1515 } else { 1516 if (unlikely(copied < len)) 1517 ext4_journalled_zero_new_buffers(handle, page, 1518 from + copied, to); 1519 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1520 from + copied, &partial, 1521 write_end_fn); 1522 if (!partial) 1523 SetPageUptodate(page); 1524 } 1525 size_changed = ext4_update_inode_size(inode, pos + copied); 1526 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1527 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1528 unlock_page(page); 1529 put_page(page); 1530 1531 if (old_size < pos) 1532 pagecache_isize_extended(inode, old_size, pos); 1533 1534 if (size_changed) { 1535 ret2 = ext4_mark_inode_dirty(handle, inode); 1536 if (!ret) 1537 ret = ret2; 1538 } 1539 1540 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1541 /* if we have allocated more blocks and copied 1542 * less. We will have blocks allocated outside 1543 * inode->i_size. So truncate them 1544 */ 1545 ext4_orphan_add(handle, inode); 1546 1547 errout: 1548 ret2 = ext4_journal_stop(handle); 1549 if (!ret) 1550 ret = ret2; 1551 if (pos + len > inode->i_size) { 1552 ext4_truncate_failed_write(inode); 1553 /* 1554 * If truncate failed early the inode might still be 1555 * on the orphan list; we need to make sure the inode 1556 * is removed from the orphan list in that case. 1557 */ 1558 if (inode->i_nlink) 1559 ext4_orphan_del(NULL, inode); 1560 } 1561 1562 return ret ? ret : copied; 1563 } 1564 1565 /* 1566 * Reserve space for a single cluster 1567 */ 1568 static int ext4_da_reserve_space(struct inode *inode) 1569 { 1570 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1571 struct ext4_inode_info *ei = EXT4_I(inode); 1572 int ret; 1573 1574 /* 1575 * We will charge metadata quota at writeout time; this saves 1576 * us from metadata over-estimation, though we may go over by 1577 * a small amount in the end. Here we just reserve for data. 1578 */ 1579 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1580 if (ret) 1581 return ret; 1582 1583 spin_lock(&ei->i_block_reservation_lock); 1584 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1585 spin_unlock(&ei->i_block_reservation_lock); 1586 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1587 return -ENOSPC; 1588 } 1589 ei->i_reserved_data_blocks++; 1590 trace_ext4_da_reserve_space(inode); 1591 spin_unlock(&ei->i_block_reservation_lock); 1592 1593 return 0; /* success */ 1594 } 1595 1596 static void ext4_da_release_space(struct inode *inode, int to_free) 1597 { 1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1599 struct ext4_inode_info *ei = EXT4_I(inode); 1600 1601 if (!to_free) 1602 return; /* Nothing to release, exit */ 1603 1604 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1605 1606 trace_ext4_da_release_space(inode, to_free); 1607 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1608 /* 1609 * if there aren't enough reserved blocks, then the 1610 * counter is messed up somewhere. Since this 1611 * function is called from invalidate page, it's 1612 * harmless to return without any action. 1613 */ 1614 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1615 "ino %lu, to_free %d with only %d reserved " 1616 "data blocks", inode->i_ino, to_free, 1617 ei->i_reserved_data_blocks); 1618 WARN_ON(1); 1619 to_free = ei->i_reserved_data_blocks; 1620 } 1621 ei->i_reserved_data_blocks -= to_free; 1622 1623 /* update fs dirty data blocks counter */ 1624 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1625 1626 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1627 1628 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1629 } 1630 1631 static void ext4_da_page_release_reservation(struct page *page, 1632 unsigned int offset, 1633 unsigned int length) 1634 { 1635 int to_release = 0, contiguous_blks = 0; 1636 struct buffer_head *head, *bh; 1637 unsigned int curr_off = 0; 1638 struct inode *inode = page->mapping->host; 1639 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1640 unsigned int stop = offset + length; 1641 int num_clusters; 1642 ext4_fsblk_t lblk; 1643 1644 BUG_ON(stop > PAGE_SIZE || stop < length); 1645 1646 head = page_buffers(page); 1647 bh = head; 1648 do { 1649 unsigned int next_off = curr_off + bh->b_size; 1650 1651 if (next_off > stop) 1652 break; 1653 1654 if ((offset <= curr_off) && (buffer_delay(bh))) { 1655 to_release++; 1656 contiguous_blks++; 1657 clear_buffer_delay(bh); 1658 } else if (contiguous_blks) { 1659 lblk = page->index << 1660 (PAGE_SHIFT - inode->i_blkbits); 1661 lblk += (curr_off >> inode->i_blkbits) - 1662 contiguous_blks; 1663 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1664 contiguous_blks = 0; 1665 } 1666 curr_off = next_off; 1667 } while ((bh = bh->b_this_page) != head); 1668 1669 if (contiguous_blks) { 1670 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1671 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1672 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1673 } 1674 1675 /* If we have released all the blocks belonging to a cluster, then we 1676 * need to release the reserved space for that cluster. */ 1677 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1678 while (num_clusters > 0) { 1679 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1680 ((num_clusters - 1) << sbi->s_cluster_bits); 1681 if (sbi->s_cluster_ratio == 1 || 1682 !ext4_find_delalloc_cluster(inode, lblk)) 1683 ext4_da_release_space(inode, 1); 1684 1685 num_clusters--; 1686 } 1687 } 1688 1689 /* 1690 * Delayed allocation stuff 1691 */ 1692 1693 struct mpage_da_data { 1694 struct inode *inode; 1695 struct writeback_control *wbc; 1696 1697 pgoff_t first_page; /* The first page to write */ 1698 pgoff_t next_page; /* Current page to examine */ 1699 pgoff_t last_page; /* Last page to examine */ 1700 /* 1701 * Extent to map - this can be after first_page because that can be 1702 * fully mapped. We somewhat abuse m_flags to store whether the extent 1703 * is delalloc or unwritten. 1704 */ 1705 struct ext4_map_blocks map; 1706 struct ext4_io_submit io_submit; /* IO submission data */ 1707 unsigned int do_map:1; 1708 }; 1709 1710 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1711 bool invalidate) 1712 { 1713 int nr_pages, i; 1714 pgoff_t index, end; 1715 struct pagevec pvec; 1716 struct inode *inode = mpd->inode; 1717 struct address_space *mapping = inode->i_mapping; 1718 1719 /* This is necessary when next_page == 0. */ 1720 if (mpd->first_page >= mpd->next_page) 1721 return; 1722 1723 index = mpd->first_page; 1724 end = mpd->next_page - 1; 1725 if (invalidate) { 1726 ext4_lblk_t start, last; 1727 start = index << (PAGE_SHIFT - inode->i_blkbits); 1728 last = end << (PAGE_SHIFT - inode->i_blkbits); 1729 ext4_es_remove_extent(inode, start, last - start + 1); 1730 } 1731 1732 pagevec_init(&pvec); 1733 while (index <= end) { 1734 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1735 if (nr_pages == 0) 1736 break; 1737 for (i = 0; i < nr_pages; i++) { 1738 struct page *page = pvec.pages[i]; 1739 1740 BUG_ON(!PageLocked(page)); 1741 BUG_ON(PageWriteback(page)); 1742 if (invalidate) { 1743 if (page_mapped(page)) 1744 clear_page_dirty_for_io(page); 1745 block_invalidatepage(page, 0, PAGE_SIZE); 1746 ClearPageUptodate(page); 1747 } 1748 unlock_page(page); 1749 } 1750 pagevec_release(&pvec); 1751 } 1752 } 1753 1754 static void ext4_print_free_blocks(struct inode *inode) 1755 { 1756 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1757 struct super_block *sb = inode->i_sb; 1758 struct ext4_inode_info *ei = EXT4_I(inode); 1759 1760 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1761 EXT4_C2B(EXT4_SB(inode->i_sb), 1762 ext4_count_free_clusters(sb))); 1763 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1764 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1765 (long long) EXT4_C2B(EXT4_SB(sb), 1766 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1767 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1768 (long long) EXT4_C2B(EXT4_SB(sb), 1769 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1770 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1771 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1772 ei->i_reserved_data_blocks); 1773 return; 1774 } 1775 1776 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1777 { 1778 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1779 } 1780 1781 /* 1782 * This function is grabs code from the very beginning of 1783 * ext4_map_blocks, but assumes that the caller is from delayed write 1784 * time. This function looks up the requested blocks and sets the 1785 * buffer delay bit under the protection of i_data_sem. 1786 */ 1787 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1788 struct ext4_map_blocks *map, 1789 struct buffer_head *bh) 1790 { 1791 struct extent_status es; 1792 int retval; 1793 sector_t invalid_block = ~((sector_t) 0xffff); 1794 #ifdef ES_AGGRESSIVE_TEST 1795 struct ext4_map_blocks orig_map; 1796 1797 memcpy(&orig_map, map, sizeof(*map)); 1798 #endif 1799 1800 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1801 invalid_block = ~0; 1802 1803 map->m_flags = 0; 1804 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1805 "logical block %lu\n", inode->i_ino, map->m_len, 1806 (unsigned long) map->m_lblk); 1807 1808 /* Lookup extent status tree firstly */ 1809 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1810 if (ext4_es_is_hole(&es)) { 1811 retval = 0; 1812 down_read(&EXT4_I(inode)->i_data_sem); 1813 goto add_delayed; 1814 } 1815 1816 /* 1817 * Delayed extent could be allocated by fallocate. 1818 * So we need to check it. 1819 */ 1820 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1821 map_bh(bh, inode->i_sb, invalid_block); 1822 set_buffer_new(bh); 1823 set_buffer_delay(bh); 1824 return 0; 1825 } 1826 1827 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1828 retval = es.es_len - (iblock - es.es_lblk); 1829 if (retval > map->m_len) 1830 retval = map->m_len; 1831 map->m_len = retval; 1832 if (ext4_es_is_written(&es)) 1833 map->m_flags |= EXT4_MAP_MAPPED; 1834 else if (ext4_es_is_unwritten(&es)) 1835 map->m_flags |= EXT4_MAP_UNWRITTEN; 1836 else 1837 BUG_ON(1); 1838 1839 #ifdef ES_AGGRESSIVE_TEST 1840 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1841 #endif 1842 return retval; 1843 } 1844 1845 /* 1846 * Try to see if we can get the block without requesting a new 1847 * file system block. 1848 */ 1849 down_read(&EXT4_I(inode)->i_data_sem); 1850 if (ext4_has_inline_data(inode)) 1851 retval = 0; 1852 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1853 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1854 else 1855 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1856 1857 add_delayed: 1858 if (retval == 0) { 1859 int ret; 1860 /* 1861 * XXX: __block_prepare_write() unmaps passed block, 1862 * is it OK? 1863 */ 1864 /* 1865 * If the block was allocated from previously allocated cluster, 1866 * then we don't need to reserve it again. However we still need 1867 * to reserve metadata for every block we're going to write. 1868 */ 1869 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1870 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1871 ret = ext4_da_reserve_space(inode); 1872 if (ret) { 1873 /* not enough space to reserve */ 1874 retval = ret; 1875 goto out_unlock; 1876 } 1877 } 1878 1879 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1880 ~0, EXTENT_STATUS_DELAYED); 1881 if (ret) { 1882 retval = ret; 1883 goto out_unlock; 1884 } 1885 1886 map_bh(bh, inode->i_sb, invalid_block); 1887 set_buffer_new(bh); 1888 set_buffer_delay(bh); 1889 } else if (retval > 0) { 1890 int ret; 1891 unsigned int status; 1892 1893 if (unlikely(retval != map->m_len)) { 1894 ext4_warning(inode->i_sb, 1895 "ES len assertion failed for inode " 1896 "%lu: retval %d != map->m_len %d", 1897 inode->i_ino, retval, map->m_len); 1898 WARN_ON(1); 1899 } 1900 1901 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1902 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1903 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1904 map->m_pblk, status); 1905 if (ret != 0) 1906 retval = ret; 1907 } 1908 1909 out_unlock: 1910 up_read((&EXT4_I(inode)->i_data_sem)); 1911 1912 return retval; 1913 } 1914 1915 /* 1916 * This is a special get_block_t callback which is used by 1917 * ext4_da_write_begin(). It will either return mapped block or 1918 * reserve space for a single block. 1919 * 1920 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1921 * We also have b_blocknr = -1 and b_bdev initialized properly 1922 * 1923 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1924 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1925 * initialized properly. 1926 */ 1927 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1928 struct buffer_head *bh, int create) 1929 { 1930 struct ext4_map_blocks map; 1931 int ret = 0; 1932 1933 BUG_ON(create == 0); 1934 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1935 1936 map.m_lblk = iblock; 1937 map.m_len = 1; 1938 1939 /* 1940 * first, we need to know whether the block is allocated already 1941 * preallocated blocks are unmapped but should treated 1942 * the same as allocated blocks. 1943 */ 1944 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1945 if (ret <= 0) 1946 return ret; 1947 1948 map_bh(bh, inode->i_sb, map.m_pblk); 1949 ext4_update_bh_state(bh, map.m_flags); 1950 1951 if (buffer_unwritten(bh)) { 1952 /* A delayed write to unwritten bh should be marked 1953 * new and mapped. Mapped ensures that we don't do 1954 * get_block multiple times when we write to the same 1955 * offset and new ensures that we do proper zero out 1956 * for partial write. 1957 */ 1958 set_buffer_new(bh); 1959 set_buffer_mapped(bh); 1960 } 1961 return 0; 1962 } 1963 1964 static int bget_one(handle_t *handle, struct buffer_head *bh) 1965 { 1966 get_bh(bh); 1967 return 0; 1968 } 1969 1970 static int bput_one(handle_t *handle, struct buffer_head *bh) 1971 { 1972 put_bh(bh); 1973 return 0; 1974 } 1975 1976 static int __ext4_journalled_writepage(struct page *page, 1977 unsigned int len) 1978 { 1979 struct address_space *mapping = page->mapping; 1980 struct inode *inode = mapping->host; 1981 struct buffer_head *page_bufs = NULL; 1982 handle_t *handle = NULL; 1983 int ret = 0, err = 0; 1984 int inline_data = ext4_has_inline_data(inode); 1985 struct buffer_head *inode_bh = NULL; 1986 1987 ClearPageChecked(page); 1988 1989 if (inline_data) { 1990 BUG_ON(page->index != 0); 1991 BUG_ON(len > ext4_get_max_inline_size(inode)); 1992 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1993 if (inode_bh == NULL) 1994 goto out; 1995 } else { 1996 page_bufs = page_buffers(page); 1997 if (!page_bufs) { 1998 BUG(); 1999 goto out; 2000 } 2001 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2002 NULL, bget_one); 2003 } 2004 /* 2005 * We need to release the page lock before we start the 2006 * journal, so grab a reference so the page won't disappear 2007 * out from under us. 2008 */ 2009 get_page(page); 2010 unlock_page(page); 2011 2012 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2013 ext4_writepage_trans_blocks(inode)); 2014 if (IS_ERR(handle)) { 2015 ret = PTR_ERR(handle); 2016 put_page(page); 2017 goto out_no_pagelock; 2018 } 2019 BUG_ON(!ext4_handle_valid(handle)); 2020 2021 lock_page(page); 2022 put_page(page); 2023 if (page->mapping != mapping) { 2024 /* The page got truncated from under us */ 2025 ext4_journal_stop(handle); 2026 ret = 0; 2027 goto out; 2028 } 2029 2030 if (inline_data) { 2031 BUFFER_TRACE(inode_bh, "get write access"); 2032 ret = ext4_journal_get_write_access(handle, inode_bh); 2033 2034 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2035 2036 } else { 2037 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2038 do_journal_get_write_access); 2039 2040 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2041 write_end_fn); 2042 } 2043 if (ret == 0) 2044 ret = err; 2045 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2046 err = ext4_journal_stop(handle); 2047 if (!ret) 2048 ret = err; 2049 2050 if (!ext4_has_inline_data(inode)) 2051 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2052 NULL, bput_one); 2053 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2054 out: 2055 unlock_page(page); 2056 out_no_pagelock: 2057 brelse(inode_bh); 2058 return ret; 2059 } 2060 2061 /* 2062 * Note that we don't need to start a transaction unless we're journaling data 2063 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2064 * need to file the inode to the transaction's list in ordered mode because if 2065 * we are writing back data added by write(), the inode is already there and if 2066 * we are writing back data modified via mmap(), no one guarantees in which 2067 * transaction the data will hit the disk. In case we are journaling data, we 2068 * cannot start transaction directly because transaction start ranks above page 2069 * lock so we have to do some magic. 2070 * 2071 * This function can get called via... 2072 * - ext4_writepages after taking page lock (have journal handle) 2073 * - journal_submit_inode_data_buffers (no journal handle) 2074 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2075 * - grab_page_cache when doing write_begin (have journal handle) 2076 * 2077 * We don't do any block allocation in this function. If we have page with 2078 * multiple blocks we need to write those buffer_heads that are mapped. This 2079 * is important for mmaped based write. So if we do with blocksize 1K 2080 * truncate(f, 1024); 2081 * a = mmap(f, 0, 4096); 2082 * a[0] = 'a'; 2083 * truncate(f, 4096); 2084 * we have in the page first buffer_head mapped via page_mkwrite call back 2085 * but other buffer_heads would be unmapped but dirty (dirty done via the 2086 * do_wp_page). So writepage should write the first block. If we modify 2087 * the mmap area beyond 1024 we will again get a page_fault and the 2088 * page_mkwrite callback will do the block allocation and mark the 2089 * buffer_heads mapped. 2090 * 2091 * We redirty the page if we have any buffer_heads that is either delay or 2092 * unwritten in the page. 2093 * 2094 * We can get recursively called as show below. 2095 * 2096 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2097 * ext4_writepage() 2098 * 2099 * But since we don't do any block allocation we should not deadlock. 2100 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2101 */ 2102 static int ext4_writepage(struct page *page, 2103 struct writeback_control *wbc) 2104 { 2105 int ret = 0; 2106 loff_t size; 2107 unsigned int len; 2108 struct buffer_head *page_bufs = NULL; 2109 struct inode *inode = page->mapping->host; 2110 struct ext4_io_submit io_submit; 2111 bool keep_towrite = false; 2112 2113 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2114 ext4_invalidatepage(page, 0, PAGE_SIZE); 2115 unlock_page(page); 2116 return -EIO; 2117 } 2118 2119 trace_ext4_writepage(page); 2120 size = i_size_read(inode); 2121 if (page->index == size >> PAGE_SHIFT) 2122 len = size & ~PAGE_MASK; 2123 else 2124 len = PAGE_SIZE; 2125 2126 page_bufs = page_buffers(page); 2127 /* 2128 * We cannot do block allocation or other extent handling in this 2129 * function. If there are buffers needing that, we have to redirty 2130 * the page. But we may reach here when we do a journal commit via 2131 * journal_submit_inode_data_buffers() and in that case we must write 2132 * allocated buffers to achieve data=ordered mode guarantees. 2133 * 2134 * Also, if there is only one buffer per page (the fs block 2135 * size == the page size), if one buffer needs block 2136 * allocation or needs to modify the extent tree to clear the 2137 * unwritten flag, we know that the page can't be written at 2138 * all, so we might as well refuse the write immediately. 2139 * Unfortunately if the block size != page size, we can't as 2140 * easily detect this case using ext4_walk_page_buffers(), but 2141 * for the extremely common case, this is an optimization that 2142 * skips a useless round trip through ext4_bio_write_page(). 2143 */ 2144 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2145 ext4_bh_delay_or_unwritten)) { 2146 redirty_page_for_writepage(wbc, page); 2147 if ((current->flags & PF_MEMALLOC) || 2148 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2149 /* 2150 * For memory cleaning there's no point in writing only 2151 * some buffers. So just bail out. Warn if we came here 2152 * from direct reclaim. 2153 */ 2154 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2155 == PF_MEMALLOC); 2156 unlock_page(page); 2157 return 0; 2158 } 2159 keep_towrite = true; 2160 } 2161 2162 if (PageChecked(page) && ext4_should_journal_data(inode)) 2163 /* 2164 * It's mmapped pagecache. Add buffers and journal it. There 2165 * doesn't seem much point in redirtying the page here. 2166 */ 2167 return __ext4_journalled_writepage(page, len); 2168 2169 ext4_io_submit_init(&io_submit, wbc); 2170 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2171 if (!io_submit.io_end) { 2172 redirty_page_for_writepage(wbc, page); 2173 unlock_page(page); 2174 return -ENOMEM; 2175 } 2176 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2177 ext4_io_submit(&io_submit); 2178 /* Drop io_end reference we got from init */ 2179 ext4_put_io_end_defer(io_submit.io_end); 2180 return ret; 2181 } 2182 2183 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2184 { 2185 int len; 2186 loff_t size; 2187 int err; 2188 2189 BUG_ON(page->index != mpd->first_page); 2190 clear_page_dirty_for_io(page); 2191 /* 2192 * We have to be very careful here! Nothing protects writeback path 2193 * against i_size changes and the page can be writeably mapped into 2194 * page tables. So an application can be growing i_size and writing 2195 * data through mmap while writeback runs. clear_page_dirty_for_io() 2196 * write-protects our page in page tables and the page cannot get 2197 * written to again until we release page lock. So only after 2198 * clear_page_dirty_for_io() we are safe to sample i_size for 2199 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2200 * on the barrier provided by TestClearPageDirty in 2201 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2202 * after page tables are updated. 2203 */ 2204 size = i_size_read(mpd->inode); 2205 if (page->index == size >> PAGE_SHIFT) 2206 len = size & ~PAGE_MASK; 2207 else 2208 len = PAGE_SIZE; 2209 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2210 if (!err) 2211 mpd->wbc->nr_to_write--; 2212 mpd->first_page++; 2213 2214 return err; 2215 } 2216 2217 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2218 2219 /* 2220 * mballoc gives us at most this number of blocks... 2221 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2222 * The rest of mballoc seems to handle chunks up to full group size. 2223 */ 2224 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2225 2226 /* 2227 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2228 * 2229 * @mpd - extent of blocks 2230 * @lblk - logical number of the block in the file 2231 * @bh - buffer head we want to add to the extent 2232 * 2233 * The function is used to collect contig. blocks in the same state. If the 2234 * buffer doesn't require mapping for writeback and we haven't started the 2235 * extent of buffers to map yet, the function returns 'true' immediately - the 2236 * caller can write the buffer right away. Otherwise the function returns true 2237 * if the block has been added to the extent, false if the block couldn't be 2238 * added. 2239 */ 2240 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2241 struct buffer_head *bh) 2242 { 2243 struct ext4_map_blocks *map = &mpd->map; 2244 2245 /* Buffer that doesn't need mapping for writeback? */ 2246 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2247 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2248 /* So far no extent to map => we write the buffer right away */ 2249 if (map->m_len == 0) 2250 return true; 2251 return false; 2252 } 2253 2254 /* First block in the extent? */ 2255 if (map->m_len == 0) { 2256 /* We cannot map unless handle is started... */ 2257 if (!mpd->do_map) 2258 return false; 2259 map->m_lblk = lblk; 2260 map->m_len = 1; 2261 map->m_flags = bh->b_state & BH_FLAGS; 2262 return true; 2263 } 2264 2265 /* Don't go larger than mballoc is willing to allocate */ 2266 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2267 return false; 2268 2269 /* Can we merge the block to our big extent? */ 2270 if (lblk == map->m_lblk + map->m_len && 2271 (bh->b_state & BH_FLAGS) == map->m_flags) { 2272 map->m_len++; 2273 return true; 2274 } 2275 return false; 2276 } 2277 2278 /* 2279 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2280 * 2281 * @mpd - extent of blocks for mapping 2282 * @head - the first buffer in the page 2283 * @bh - buffer we should start processing from 2284 * @lblk - logical number of the block in the file corresponding to @bh 2285 * 2286 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2287 * the page for IO if all buffers in this page were mapped and there's no 2288 * accumulated extent of buffers to map or add buffers in the page to the 2289 * extent of buffers to map. The function returns 1 if the caller can continue 2290 * by processing the next page, 0 if it should stop adding buffers to the 2291 * extent to map because we cannot extend it anymore. It can also return value 2292 * < 0 in case of error during IO submission. 2293 */ 2294 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2295 struct buffer_head *head, 2296 struct buffer_head *bh, 2297 ext4_lblk_t lblk) 2298 { 2299 struct inode *inode = mpd->inode; 2300 int err; 2301 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2302 >> inode->i_blkbits; 2303 2304 do { 2305 BUG_ON(buffer_locked(bh)); 2306 2307 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2308 /* Found extent to map? */ 2309 if (mpd->map.m_len) 2310 return 0; 2311 /* Buffer needs mapping and handle is not started? */ 2312 if (!mpd->do_map) 2313 return 0; 2314 /* Everything mapped so far and we hit EOF */ 2315 break; 2316 } 2317 } while (lblk++, (bh = bh->b_this_page) != head); 2318 /* So far everything mapped? Submit the page for IO. */ 2319 if (mpd->map.m_len == 0) { 2320 err = mpage_submit_page(mpd, head->b_page); 2321 if (err < 0) 2322 return err; 2323 } 2324 return lblk < blocks; 2325 } 2326 2327 /* 2328 * mpage_map_buffers - update buffers corresponding to changed extent and 2329 * submit fully mapped pages for IO 2330 * 2331 * @mpd - description of extent to map, on return next extent to map 2332 * 2333 * Scan buffers corresponding to changed extent (we expect corresponding pages 2334 * to be already locked) and update buffer state according to new extent state. 2335 * We map delalloc buffers to their physical location, clear unwritten bits, 2336 * and mark buffers as uninit when we perform writes to unwritten extents 2337 * and do extent conversion after IO is finished. If the last page is not fully 2338 * mapped, we update @map to the next extent in the last page that needs 2339 * mapping. Otherwise we submit the page for IO. 2340 */ 2341 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2342 { 2343 struct pagevec pvec; 2344 int nr_pages, i; 2345 struct inode *inode = mpd->inode; 2346 struct buffer_head *head, *bh; 2347 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2348 pgoff_t start, end; 2349 ext4_lblk_t lblk; 2350 sector_t pblock; 2351 int err; 2352 2353 start = mpd->map.m_lblk >> bpp_bits; 2354 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2355 lblk = start << bpp_bits; 2356 pblock = mpd->map.m_pblk; 2357 2358 pagevec_init(&pvec); 2359 while (start <= end) { 2360 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2361 &start, end); 2362 if (nr_pages == 0) 2363 break; 2364 for (i = 0; i < nr_pages; i++) { 2365 struct page *page = pvec.pages[i]; 2366 2367 bh = head = page_buffers(page); 2368 do { 2369 if (lblk < mpd->map.m_lblk) 2370 continue; 2371 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2372 /* 2373 * Buffer after end of mapped extent. 2374 * Find next buffer in the page to map. 2375 */ 2376 mpd->map.m_len = 0; 2377 mpd->map.m_flags = 0; 2378 /* 2379 * FIXME: If dioread_nolock supports 2380 * blocksize < pagesize, we need to make 2381 * sure we add size mapped so far to 2382 * io_end->size as the following call 2383 * can submit the page for IO. 2384 */ 2385 err = mpage_process_page_bufs(mpd, head, 2386 bh, lblk); 2387 pagevec_release(&pvec); 2388 if (err > 0) 2389 err = 0; 2390 return err; 2391 } 2392 if (buffer_delay(bh)) { 2393 clear_buffer_delay(bh); 2394 bh->b_blocknr = pblock++; 2395 } 2396 clear_buffer_unwritten(bh); 2397 } while (lblk++, (bh = bh->b_this_page) != head); 2398 2399 /* 2400 * FIXME: This is going to break if dioread_nolock 2401 * supports blocksize < pagesize as we will try to 2402 * convert potentially unmapped parts of inode. 2403 */ 2404 mpd->io_submit.io_end->size += PAGE_SIZE; 2405 /* Page fully mapped - let IO run! */ 2406 err = mpage_submit_page(mpd, page); 2407 if (err < 0) { 2408 pagevec_release(&pvec); 2409 return err; 2410 } 2411 } 2412 pagevec_release(&pvec); 2413 } 2414 /* Extent fully mapped and matches with page boundary. We are done. */ 2415 mpd->map.m_len = 0; 2416 mpd->map.m_flags = 0; 2417 return 0; 2418 } 2419 2420 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2421 { 2422 struct inode *inode = mpd->inode; 2423 struct ext4_map_blocks *map = &mpd->map; 2424 int get_blocks_flags; 2425 int err, dioread_nolock; 2426 2427 trace_ext4_da_write_pages_extent(inode, map); 2428 /* 2429 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2430 * to convert an unwritten extent to be initialized (in the case 2431 * where we have written into one or more preallocated blocks). It is 2432 * possible that we're going to need more metadata blocks than 2433 * previously reserved. However we must not fail because we're in 2434 * writeback and there is nothing we can do about it so it might result 2435 * in data loss. So use reserved blocks to allocate metadata if 2436 * possible. 2437 * 2438 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2439 * the blocks in question are delalloc blocks. This indicates 2440 * that the blocks and quotas has already been checked when 2441 * the data was copied into the page cache. 2442 */ 2443 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2444 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2445 EXT4_GET_BLOCKS_IO_SUBMIT; 2446 dioread_nolock = ext4_should_dioread_nolock(inode); 2447 if (dioread_nolock) 2448 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2449 if (map->m_flags & (1 << BH_Delay)) 2450 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2451 2452 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2453 if (err < 0) 2454 return err; 2455 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2456 if (!mpd->io_submit.io_end->handle && 2457 ext4_handle_valid(handle)) { 2458 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2459 handle->h_rsv_handle = NULL; 2460 } 2461 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2462 } 2463 2464 BUG_ON(map->m_len == 0); 2465 if (map->m_flags & EXT4_MAP_NEW) { 2466 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2467 map->m_len); 2468 } 2469 return 0; 2470 } 2471 2472 /* 2473 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2474 * mpd->len and submit pages underlying it for IO 2475 * 2476 * @handle - handle for journal operations 2477 * @mpd - extent to map 2478 * @give_up_on_write - we set this to true iff there is a fatal error and there 2479 * is no hope of writing the data. The caller should discard 2480 * dirty pages to avoid infinite loops. 2481 * 2482 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2483 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2484 * them to initialized or split the described range from larger unwritten 2485 * extent. Note that we need not map all the described range since allocation 2486 * can return less blocks or the range is covered by more unwritten extents. We 2487 * cannot map more because we are limited by reserved transaction credits. On 2488 * the other hand we always make sure that the last touched page is fully 2489 * mapped so that it can be written out (and thus forward progress is 2490 * guaranteed). After mapping we submit all mapped pages for IO. 2491 */ 2492 static int mpage_map_and_submit_extent(handle_t *handle, 2493 struct mpage_da_data *mpd, 2494 bool *give_up_on_write) 2495 { 2496 struct inode *inode = mpd->inode; 2497 struct ext4_map_blocks *map = &mpd->map; 2498 int err; 2499 loff_t disksize; 2500 int progress = 0; 2501 2502 mpd->io_submit.io_end->offset = 2503 ((loff_t)map->m_lblk) << inode->i_blkbits; 2504 do { 2505 err = mpage_map_one_extent(handle, mpd); 2506 if (err < 0) { 2507 struct super_block *sb = inode->i_sb; 2508 2509 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2510 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2511 goto invalidate_dirty_pages; 2512 /* 2513 * Let the uper layers retry transient errors. 2514 * In the case of ENOSPC, if ext4_count_free_blocks() 2515 * is non-zero, a commit should free up blocks. 2516 */ 2517 if ((err == -ENOMEM) || 2518 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2519 if (progress) 2520 goto update_disksize; 2521 return err; 2522 } 2523 ext4_msg(sb, KERN_CRIT, 2524 "Delayed block allocation failed for " 2525 "inode %lu at logical offset %llu with" 2526 " max blocks %u with error %d", 2527 inode->i_ino, 2528 (unsigned long long)map->m_lblk, 2529 (unsigned)map->m_len, -err); 2530 ext4_msg(sb, KERN_CRIT, 2531 "This should not happen!! Data will " 2532 "be lost\n"); 2533 if (err == -ENOSPC) 2534 ext4_print_free_blocks(inode); 2535 invalidate_dirty_pages: 2536 *give_up_on_write = true; 2537 return err; 2538 } 2539 progress = 1; 2540 /* 2541 * Update buffer state, submit mapped pages, and get us new 2542 * extent to map 2543 */ 2544 err = mpage_map_and_submit_buffers(mpd); 2545 if (err < 0) 2546 goto update_disksize; 2547 } while (map->m_len); 2548 2549 update_disksize: 2550 /* 2551 * Update on-disk size after IO is submitted. Races with 2552 * truncate are avoided by checking i_size under i_data_sem. 2553 */ 2554 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2555 if (disksize > EXT4_I(inode)->i_disksize) { 2556 int err2; 2557 loff_t i_size; 2558 2559 down_write(&EXT4_I(inode)->i_data_sem); 2560 i_size = i_size_read(inode); 2561 if (disksize > i_size) 2562 disksize = i_size; 2563 if (disksize > EXT4_I(inode)->i_disksize) 2564 EXT4_I(inode)->i_disksize = disksize; 2565 up_write(&EXT4_I(inode)->i_data_sem); 2566 err2 = ext4_mark_inode_dirty(handle, inode); 2567 if (err2) 2568 ext4_error(inode->i_sb, 2569 "Failed to mark inode %lu dirty", 2570 inode->i_ino); 2571 if (!err) 2572 err = err2; 2573 } 2574 return err; 2575 } 2576 2577 /* 2578 * Calculate the total number of credits to reserve for one writepages 2579 * iteration. This is called from ext4_writepages(). We map an extent of 2580 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2581 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2582 * bpp - 1 blocks in bpp different extents. 2583 */ 2584 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2585 { 2586 int bpp = ext4_journal_blocks_per_page(inode); 2587 2588 return ext4_meta_trans_blocks(inode, 2589 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2590 } 2591 2592 /* 2593 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2594 * and underlying extent to map 2595 * 2596 * @mpd - where to look for pages 2597 * 2598 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2599 * IO immediately. When we find a page which isn't mapped we start accumulating 2600 * extent of buffers underlying these pages that needs mapping (formed by 2601 * either delayed or unwritten buffers). We also lock the pages containing 2602 * these buffers. The extent found is returned in @mpd structure (starting at 2603 * mpd->lblk with length mpd->len blocks). 2604 * 2605 * Note that this function can attach bios to one io_end structure which are 2606 * neither logically nor physically contiguous. Although it may seem as an 2607 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2608 * case as we need to track IO to all buffers underlying a page in one io_end. 2609 */ 2610 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2611 { 2612 struct address_space *mapping = mpd->inode->i_mapping; 2613 struct pagevec pvec; 2614 unsigned int nr_pages; 2615 long left = mpd->wbc->nr_to_write; 2616 pgoff_t index = mpd->first_page; 2617 pgoff_t end = mpd->last_page; 2618 int tag; 2619 int i, err = 0; 2620 int blkbits = mpd->inode->i_blkbits; 2621 ext4_lblk_t lblk; 2622 struct buffer_head *head; 2623 2624 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2625 tag = PAGECACHE_TAG_TOWRITE; 2626 else 2627 tag = PAGECACHE_TAG_DIRTY; 2628 2629 pagevec_init(&pvec); 2630 mpd->map.m_len = 0; 2631 mpd->next_page = index; 2632 while (index <= end) { 2633 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2634 tag); 2635 if (nr_pages == 0) 2636 goto out; 2637 2638 for (i = 0; i < nr_pages; i++) { 2639 struct page *page = pvec.pages[i]; 2640 2641 /* 2642 * Accumulated enough dirty pages? This doesn't apply 2643 * to WB_SYNC_ALL mode. For integrity sync we have to 2644 * keep going because someone may be concurrently 2645 * dirtying pages, and we might have synced a lot of 2646 * newly appeared dirty pages, but have not synced all 2647 * of the old dirty pages. 2648 */ 2649 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2650 goto out; 2651 2652 /* If we can't merge this page, we are done. */ 2653 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2654 goto out; 2655 2656 lock_page(page); 2657 /* 2658 * If the page is no longer dirty, or its mapping no 2659 * longer corresponds to inode we are writing (which 2660 * means it has been truncated or invalidated), or the 2661 * page is already under writeback and we are not doing 2662 * a data integrity writeback, skip the page 2663 */ 2664 if (!PageDirty(page) || 2665 (PageWriteback(page) && 2666 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2667 unlikely(page->mapping != mapping)) { 2668 unlock_page(page); 2669 continue; 2670 } 2671 2672 wait_on_page_writeback(page); 2673 BUG_ON(PageWriteback(page)); 2674 2675 if (mpd->map.m_len == 0) 2676 mpd->first_page = page->index; 2677 mpd->next_page = page->index + 1; 2678 /* Add all dirty buffers to mpd */ 2679 lblk = ((ext4_lblk_t)page->index) << 2680 (PAGE_SHIFT - blkbits); 2681 head = page_buffers(page); 2682 err = mpage_process_page_bufs(mpd, head, head, lblk); 2683 if (err <= 0) 2684 goto out; 2685 err = 0; 2686 left--; 2687 } 2688 pagevec_release(&pvec); 2689 cond_resched(); 2690 } 2691 return 0; 2692 out: 2693 pagevec_release(&pvec); 2694 return err; 2695 } 2696 2697 static int __writepage(struct page *page, struct writeback_control *wbc, 2698 void *data) 2699 { 2700 struct address_space *mapping = data; 2701 int ret = ext4_writepage(page, wbc); 2702 mapping_set_error(mapping, ret); 2703 return ret; 2704 } 2705 2706 static int ext4_writepages(struct address_space *mapping, 2707 struct writeback_control *wbc) 2708 { 2709 pgoff_t writeback_index = 0; 2710 long nr_to_write = wbc->nr_to_write; 2711 int range_whole = 0; 2712 int cycled = 1; 2713 handle_t *handle = NULL; 2714 struct mpage_da_data mpd; 2715 struct inode *inode = mapping->host; 2716 int needed_blocks, rsv_blocks = 0, ret = 0; 2717 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2718 bool done; 2719 struct blk_plug plug; 2720 bool give_up_on_write = false; 2721 2722 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2723 return -EIO; 2724 2725 percpu_down_read(&sbi->s_journal_flag_rwsem); 2726 trace_ext4_writepages(inode, wbc); 2727 2728 if (dax_mapping(mapping)) { 2729 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2730 wbc); 2731 goto out_writepages; 2732 } 2733 2734 /* 2735 * No pages to write? This is mainly a kludge to avoid starting 2736 * a transaction for special inodes like journal inode on last iput() 2737 * because that could violate lock ordering on umount 2738 */ 2739 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2740 goto out_writepages; 2741 2742 if (ext4_should_journal_data(inode)) { 2743 struct blk_plug plug; 2744 2745 blk_start_plug(&plug); 2746 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2747 blk_finish_plug(&plug); 2748 goto out_writepages; 2749 } 2750 2751 /* 2752 * If the filesystem has aborted, it is read-only, so return 2753 * right away instead of dumping stack traces later on that 2754 * will obscure the real source of the problem. We test 2755 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2756 * the latter could be true if the filesystem is mounted 2757 * read-only, and in that case, ext4_writepages should 2758 * *never* be called, so if that ever happens, we would want 2759 * the stack trace. 2760 */ 2761 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2762 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2763 ret = -EROFS; 2764 goto out_writepages; 2765 } 2766 2767 if (ext4_should_dioread_nolock(inode)) { 2768 /* 2769 * We may need to convert up to one extent per block in 2770 * the page and we may dirty the inode. 2771 */ 2772 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2773 } 2774 2775 /* 2776 * If we have inline data and arrive here, it means that 2777 * we will soon create the block for the 1st page, so 2778 * we'd better clear the inline data here. 2779 */ 2780 if (ext4_has_inline_data(inode)) { 2781 /* Just inode will be modified... */ 2782 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2783 if (IS_ERR(handle)) { 2784 ret = PTR_ERR(handle); 2785 goto out_writepages; 2786 } 2787 BUG_ON(ext4_test_inode_state(inode, 2788 EXT4_STATE_MAY_INLINE_DATA)); 2789 ext4_destroy_inline_data(handle, inode); 2790 ext4_journal_stop(handle); 2791 } 2792 2793 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2794 range_whole = 1; 2795 2796 if (wbc->range_cyclic) { 2797 writeback_index = mapping->writeback_index; 2798 if (writeback_index) 2799 cycled = 0; 2800 mpd.first_page = writeback_index; 2801 mpd.last_page = -1; 2802 } else { 2803 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2804 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2805 } 2806 2807 mpd.inode = inode; 2808 mpd.wbc = wbc; 2809 ext4_io_submit_init(&mpd.io_submit, wbc); 2810 retry: 2811 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2812 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2813 done = false; 2814 blk_start_plug(&plug); 2815 2816 /* 2817 * First writeback pages that don't need mapping - we can avoid 2818 * starting a transaction unnecessarily and also avoid being blocked 2819 * in the block layer on device congestion while having transaction 2820 * started. 2821 */ 2822 mpd.do_map = 0; 2823 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2824 if (!mpd.io_submit.io_end) { 2825 ret = -ENOMEM; 2826 goto unplug; 2827 } 2828 ret = mpage_prepare_extent_to_map(&mpd); 2829 /* Submit prepared bio */ 2830 ext4_io_submit(&mpd.io_submit); 2831 ext4_put_io_end_defer(mpd.io_submit.io_end); 2832 mpd.io_submit.io_end = NULL; 2833 /* Unlock pages we didn't use */ 2834 mpage_release_unused_pages(&mpd, false); 2835 if (ret < 0) 2836 goto unplug; 2837 2838 while (!done && mpd.first_page <= mpd.last_page) { 2839 /* For each extent of pages we use new io_end */ 2840 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2841 if (!mpd.io_submit.io_end) { 2842 ret = -ENOMEM; 2843 break; 2844 } 2845 2846 /* 2847 * We have two constraints: We find one extent to map and we 2848 * must always write out whole page (makes a difference when 2849 * blocksize < pagesize) so that we don't block on IO when we 2850 * try to write out the rest of the page. Journalled mode is 2851 * not supported by delalloc. 2852 */ 2853 BUG_ON(ext4_should_journal_data(inode)); 2854 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2855 2856 /* start a new transaction */ 2857 handle = ext4_journal_start_with_reserve(inode, 2858 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2859 if (IS_ERR(handle)) { 2860 ret = PTR_ERR(handle); 2861 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2862 "%ld pages, ino %lu; err %d", __func__, 2863 wbc->nr_to_write, inode->i_ino, ret); 2864 /* Release allocated io_end */ 2865 ext4_put_io_end(mpd.io_submit.io_end); 2866 mpd.io_submit.io_end = NULL; 2867 break; 2868 } 2869 mpd.do_map = 1; 2870 2871 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2872 ret = mpage_prepare_extent_to_map(&mpd); 2873 if (!ret) { 2874 if (mpd.map.m_len) 2875 ret = mpage_map_and_submit_extent(handle, &mpd, 2876 &give_up_on_write); 2877 else { 2878 /* 2879 * We scanned the whole range (or exhausted 2880 * nr_to_write), submitted what was mapped and 2881 * didn't find anything needing mapping. We are 2882 * done. 2883 */ 2884 done = true; 2885 } 2886 } 2887 /* 2888 * Caution: If the handle is synchronous, 2889 * ext4_journal_stop() can wait for transaction commit 2890 * to finish which may depend on writeback of pages to 2891 * complete or on page lock to be released. In that 2892 * case, we have to wait until after after we have 2893 * submitted all the IO, released page locks we hold, 2894 * and dropped io_end reference (for extent conversion 2895 * to be able to complete) before stopping the handle. 2896 */ 2897 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2898 ext4_journal_stop(handle); 2899 handle = NULL; 2900 mpd.do_map = 0; 2901 } 2902 /* Submit prepared bio */ 2903 ext4_io_submit(&mpd.io_submit); 2904 /* Unlock pages we didn't use */ 2905 mpage_release_unused_pages(&mpd, give_up_on_write); 2906 /* 2907 * Drop our io_end reference we got from init. We have 2908 * to be careful and use deferred io_end finishing if 2909 * we are still holding the transaction as we can 2910 * release the last reference to io_end which may end 2911 * up doing unwritten extent conversion. 2912 */ 2913 if (handle) { 2914 ext4_put_io_end_defer(mpd.io_submit.io_end); 2915 ext4_journal_stop(handle); 2916 } else 2917 ext4_put_io_end(mpd.io_submit.io_end); 2918 mpd.io_submit.io_end = NULL; 2919 2920 if (ret == -ENOSPC && sbi->s_journal) { 2921 /* 2922 * Commit the transaction which would 2923 * free blocks released in the transaction 2924 * and try again 2925 */ 2926 jbd2_journal_force_commit_nested(sbi->s_journal); 2927 ret = 0; 2928 continue; 2929 } 2930 /* Fatal error - ENOMEM, EIO... */ 2931 if (ret) 2932 break; 2933 } 2934 unplug: 2935 blk_finish_plug(&plug); 2936 if (!ret && !cycled && wbc->nr_to_write > 0) { 2937 cycled = 1; 2938 mpd.last_page = writeback_index - 1; 2939 mpd.first_page = 0; 2940 goto retry; 2941 } 2942 2943 /* Update index */ 2944 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2945 /* 2946 * Set the writeback_index so that range_cyclic 2947 * mode will write it back later 2948 */ 2949 mapping->writeback_index = mpd.first_page; 2950 2951 out_writepages: 2952 trace_ext4_writepages_result(inode, wbc, ret, 2953 nr_to_write - wbc->nr_to_write); 2954 percpu_up_read(&sbi->s_journal_flag_rwsem); 2955 return ret; 2956 } 2957 2958 static int ext4_nonda_switch(struct super_block *sb) 2959 { 2960 s64 free_clusters, dirty_clusters; 2961 struct ext4_sb_info *sbi = EXT4_SB(sb); 2962 2963 /* 2964 * switch to non delalloc mode if we are running low 2965 * on free block. The free block accounting via percpu 2966 * counters can get slightly wrong with percpu_counter_batch getting 2967 * accumulated on each CPU without updating global counters 2968 * Delalloc need an accurate free block accounting. So switch 2969 * to non delalloc when we are near to error range. 2970 */ 2971 free_clusters = 2972 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2973 dirty_clusters = 2974 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2975 /* 2976 * Start pushing delalloc when 1/2 of free blocks are dirty. 2977 */ 2978 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2979 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2980 2981 if (2 * free_clusters < 3 * dirty_clusters || 2982 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2983 /* 2984 * free block count is less than 150% of dirty blocks 2985 * or free blocks is less than watermark 2986 */ 2987 return 1; 2988 } 2989 return 0; 2990 } 2991 2992 /* We always reserve for an inode update; the superblock could be there too */ 2993 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2994 { 2995 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2996 return 1; 2997 2998 if (pos + len <= 0x7fffffffULL) 2999 return 1; 3000 3001 /* We might need to update the superblock to set LARGE_FILE */ 3002 return 2; 3003 } 3004 3005 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3006 loff_t pos, unsigned len, unsigned flags, 3007 struct page **pagep, void **fsdata) 3008 { 3009 int ret, retries = 0; 3010 struct page *page; 3011 pgoff_t index; 3012 struct inode *inode = mapping->host; 3013 handle_t *handle; 3014 3015 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3016 return -EIO; 3017 3018 index = pos >> PAGE_SHIFT; 3019 3020 if (ext4_nonda_switch(inode->i_sb) || 3021 S_ISLNK(inode->i_mode)) { 3022 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3023 return ext4_write_begin(file, mapping, pos, 3024 len, flags, pagep, fsdata); 3025 } 3026 *fsdata = (void *)0; 3027 trace_ext4_da_write_begin(inode, pos, len, flags); 3028 3029 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3030 ret = ext4_da_write_inline_data_begin(mapping, inode, 3031 pos, len, flags, 3032 pagep, fsdata); 3033 if (ret < 0) 3034 return ret; 3035 if (ret == 1) 3036 return 0; 3037 } 3038 3039 /* 3040 * grab_cache_page_write_begin() can take a long time if the 3041 * system is thrashing due to memory pressure, or if the page 3042 * is being written back. So grab it first before we start 3043 * the transaction handle. This also allows us to allocate 3044 * the page (if needed) without using GFP_NOFS. 3045 */ 3046 retry_grab: 3047 page = grab_cache_page_write_begin(mapping, index, flags); 3048 if (!page) 3049 return -ENOMEM; 3050 unlock_page(page); 3051 3052 /* 3053 * With delayed allocation, we don't log the i_disksize update 3054 * if there is delayed block allocation. But we still need 3055 * to journalling the i_disksize update if writes to the end 3056 * of file which has an already mapped buffer. 3057 */ 3058 retry_journal: 3059 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3060 ext4_da_write_credits(inode, pos, len)); 3061 if (IS_ERR(handle)) { 3062 put_page(page); 3063 return PTR_ERR(handle); 3064 } 3065 3066 lock_page(page); 3067 if (page->mapping != mapping) { 3068 /* The page got truncated from under us */ 3069 unlock_page(page); 3070 put_page(page); 3071 ext4_journal_stop(handle); 3072 goto retry_grab; 3073 } 3074 /* In case writeback began while the page was unlocked */ 3075 wait_for_stable_page(page); 3076 3077 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3078 ret = ext4_block_write_begin(page, pos, len, 3079 ext4_da_get_block_prep); 3080 #else 3081 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3082 #endif 3083 if (ret < 0) { 3084 unlock_page(page); 3085 ext4_journal_stop(handle); 3086 /* 3087 * block_write_begin may have instantiated a few blocks 3088 * outside i_size. Trim these off again. Don't need 3089 * i_size_read because we hold i_mutex. 3090 */ 3091 if (pos + len > inode->i_size) 3092 ext4_truncate_failed_write(inode); 3093 3094 if (ret == -ENOSPC && 3095 ext4_should_retry_alloc(inode->i_sb, &retries)) 3096 goto retry_journal; 3097 3098 put_page(page); 3099 return ret; 3100 } 3101 3102 *pagep = page; 3103 return ret; 3104 } 3105 3106 /* 3107 * Check if we should update i_disksize 3108 * when write to the end of file but not require block allocation 3109 */ 3110 static int ext4_da_should_update_i_disksize(struct page *page, 3111 unsigned long offset) 3112 { 3113 struct buffer_head *bh; 3114 struct inode *inode = page->mapping->host; 3115 unsigned int idx; 3116 int i; 3117 3118 bh = page_buffers(page); 3119 idx = offset >> inode->i_blkbits; 3120 3121 for (i = 0; i < idx; i++) 3122 bh = bh->b_this_page; 3123 3124 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3125 return 0; 3126 return 1; 3127 } 3128 3129 static int ext4_da_write_end(struct file *file, 3130 struct address_space *mapping, 3131 loff_t pos, unsigned len, unsigned copied, 3132 struct page *page, void *fsdata) 3133 { 3134 struct inode *inode = mapping->host; 3135 int ret = 0, ret2; 3136 handle_t *handle = ext4_journal_current_handle(); 3137 loff_t new_i_size; 3138 unsigned long start, end; 3139 int write_mode = (int)(unsigned long)fsdata; 3140 3141 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3142 return ext4_write_end(file, mapping, pos, 3143 len, copied, page, fsdata); 3144 3145 trace_ext4_da_write_end(inode, pos, len, copied); 3146 start = pos & (PAGE_SIZE - 1); 3147 end = start + copied - 1; 3148 3149 /* 3150 * generic_write_end() will run mark_inode_dirty() if i_size 3151 * changes. So let's piggyback the i_disksize mark_inode_dirty 3152 * into that. 3153 */ 3154 new_i_size = pos + copied; 3155 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3156 if (ext4_has_inline_data(inode) || 3157 ext4_da_should_update_i_disksize(page, end)) { 3158 ext4_update_i_disksize(inode, new_i_size); 3159 /* We need to mark inode dirty even if 3160 * new_i_size is less that inode->i_size 3161 * bu greater than i_disksize.(hint delalloc) 3162 */ 3163 ext4_mark_inode_dirty(handle, inode); 3164 } 3165 } 3166 3167 if (write_mode != CONVERT_INLINE_DATA && 3168 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3169 ext4_has_inline_data(inode)) 3170 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3171 page); 3172 else 3173 ret2 = generic_write_end(file, mapping, pos, len, copied, 3174 page, fsdata); 3175 3176 copied = ret2; 3177 if (ret2 < 0) 3178 ret = ret2; 3179 ret2 = ext4_journal_stop(handle); 3180 if (!ret) 3181 ret = ret2; 3182 3183 return ret ? ret : copied; 3184 } 3185 3186 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3187 unsigned int length) 3188 { 3189 /* 3190 * Drop reserved blocks 3191 */ 3192 BUG_ON(!PageLocked(page)); 3193 if (!page_has_buffers(page)) 3194 goto out; 3195 3196 ext4_da_page_release_reservation(page, offset, length); 3197 3198 out: 3199 ext4_invalidatepage(page, offset, length); 3200 3201 return; 3202 } 3203 3204 /* 3205 * Force all delayed allocation blocks to be allocated for a given inode. 3206 */ 3207 int ext4_alloc_da_blocks(struct inode *inode) 3208 { 3209 trace_ext4_alloc_da_blocks(inode); 3210 3211 if (!EXT4_I(inode)->i_reserved_data_blocks) 3212 return 0; 3213 3214 /* 3215 * We do something simple for now. The filemap_flush() will 3216 * also start triggering a write of the data blocks, which is 3217 * not strictly speaking necessary (and for users of 3218 * laptop_mode, not even desirable). However, to do otherwise 3219 * would require replicating code paths in: 3220 * 3221 * ext4_writepages() -> 3222 * write_cache_pages() ---> (via passed in callback function) 3223 * __mpage_da_writepage() --> 3224 * mpage_add_bh_to_extent() 3225 * mpage_da_map_blocks() 3226 * 3227 * The problem is that write_cache_pages(), located in 3228 * mm/page-writeback.c, marks pages clean in preparation for 3229 * doing I/O, which is not desirable if we're not planning on 3230 * doing I/O at all. 3231 * 3232 * We could call write_cache_pages(), and then redirty all of 3233 * the pages by calling redirty_page_for_writepage() but that 3234 * would be ugly in the extreme. So instead we would need to 3235 * replicate parts of the code in the above functions, 3236 * simplifying them because we wouldn't actually intend to 3237 * write out the pages, but rather only collect contiguous 3238 * logical block extents, call the multi-block allocator, and 3239 * then update the buffer heads with the block allocations. 3240 * 3241 * For now, though, we'll cheat by calling filemap_flush(), 3242 * which will map the blocks, and start the I/O, but not 3243 * actually wait for the I/O to complete. 3244 */ 3245 return filemap_flush(inode->i_mapping); 3246 } 3247 3248 /* 3249 * bmap() is special. It gets used by applications such as lilo and by 3250 * the swapper to find the on-disk block of a specific piece of data. 3251 * 3252 * Naturally, this is dangerous if the block concerned is still in the 3253 * journal. If somebody makes a swapfile on an ext4 data-journaling 3254 * filesystem and enables swap, then they may get a nasty shock when the 3255 * data getting swapped to that swapfile suddenly gets overwritten by 3256 * the original zero's written out previously to the journal and 3257 * awaiting writeback in the kernel's buffer cache. 3258 * 3259 * So, if we see any bmap calls here on a modified, data-journaled file, 3260 * take extra steps to flush any blocks which might be in the cache. 3261 */ 3262 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3263 { 3264 struct inode *inode = mapping->host; 3265 journal_t *journal; 3266 int err; 3267 3268 /* 3269 * We can get here for an inline file via the FIBMAP ioctl 3270 */ 3271 if (ext4_has_inline_data(inode)) 3272 return 0; 3273 3274 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3275 test_opt(inode->i_sb, DELALLOC)) { 3276 /* 3277 * With delalloc we want to sync the file 3278 * so that we can make sure we allocate 3279 * blocks for file 3280 */ 3281 filemap_write_and_wait(mapping); 3282 } 3283 3284 if (EXT4_JOURNAL(inode) && 3285 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3286 /* 3287 * This is a REALLY heavyweight approach, but the use of 3288 * bmap on dirty files is expected to be extremely rare: 3289 * only if we run lilo or swapon on a freshly made file 3290 * do we expect this to happen. 3291 * 3292 * (bmap requires CAP_SYS_RAWIO so this does not 3293 * represent an unprivileged user DOS attack --- we'd be 3294 * in trouble if mortal users could trigger this path at 3295 * will.) 3296 * 3297 * NB. EXT4_STATE_JDATA is not set on files other than 3298 * regular files. If somebody wants to bmap a directory 3299 * or symlink and gets confused because the buffer 3300 * hasn't yet been flushed to disk, they deserve 3301 * everything they get. 3302 */ 3303 3304 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3305 journal = EXT4_JOURNAL(inode); 3306 jbd2_journal_lock_updates(journal); 3307 err = jbd2_journal_flush(journal); 3308 jbd2_journal_unlock_updates(journal); 3309 3310 if (err) 3311 return 0; 3312 } 3313 3314 return generic_block_bmap(mapping, block, ext4_get_block); 3315 } 3316 3317 static int ext4_readpage(struct file *file, struct page *page) 3318 { 3319 int ret = -EAGAIN; 3320 struct inode *inode = page->mapping->host; 3321 3322 trace_ext4_readpage(page); 3323 3324 if (ext4_has_inline_data(inode)) 3325 ret = ext4_readpage_inline(inode, page); 3326 3327 if (ret == -EAGAIN) 3328 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3329 3330 return ret; 3331 } 3332 3333 static int 3334 ext4_readpages(struct file *file, struct address_space *mapping, 3335 struct list_head *pages, unsigned nr_pages) 3336 { 3337 struct inode *inode = mapping->host; 3338 3339 /* If the file has inline data, no need to do readpages. */ 3340 if (ext4_has_inline_data(inode)) 3341 return 0; 3342 3343 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3344 } 3345 3346 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3347 unsigned int length) 3348 { 3349 trace_ext4_invalidatepage(page, offset, length); 3350 3351 /* No journalling happens on data buffers when this function is used */ 3352 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3353 3354 block_invalidatepage(page, offset, length); 3355 } 3356 3357 static int __ext4_journalled_invalidatepage(struct page *page, 3358 unsigned int offset, 3359 unsigned int length) 3360 { 3361 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3362 3363 trace_ext4_journalled_invalidatepage(page, offset, length); 3364 3365 /* 3366 * If it's a full truncate we just forget about the pending dirtying 3367 */ 3368 if (offset == 0 && length == PAGE_SIZE) 3369 ClearPageChecked(page); 3370 3371 return jbd2_journal_invalidatepage(journal, page, offset, length); 3372 } 3373 3374 /* Wrapper for aops... */ 3375 static void ext4_journalled_invalidatepage(struct page *page, 3376 unsigned int offset, 3377 unsigned int length) 3378 { 3379 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3380 } 3381 3382 static int ext4_releasepage(struct page *page, gfp_t wait) 3383 { 3384 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3385 3386 trace_ext4_releasepage(page); 3387 3388 /* Page has dirty journalled data -> cannot release */ 3389 if (PageChecked(page)) 3390 return 0; 3391 if (journal) 3392 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3393 else 3394 return try_to_free_buffers(page); 3395 } 3396 3397 static bool ext4_inode_datasync_dirty(struct inode *inode) 3398 { 3399 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3400 3401 if (journal) 3402 return !jbd2_transaction_committed(journal, 3403 EXT4_I(inode)->i_datasync_tid); 3404 /* Any metadata buffers to write? */ 3405 if (!list_empty(&inode->i_mapping->private_list)) 3406 return true; 3407 return inode->i_state & I_DIRTY_DATASYNC; 3408 } 3409 3410 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3411 unsigned flags, struct iomap *iomap) 3412 { 3413 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3414 unsigned int blkbits = inode->i_blkbits; 3415 unsigned long first_block = offset >> blkbits; 3416 unsigned long last_block = (offset + length - 1) >> blkbits; 3417 struct ext4_map_blocks map; 3418 bool delalloc = false; 3419 int ret; 3420 3421 3422 if (flags & IOMAP_REPORT) { 3423 if (ext4_has_inline_data(inode)) { 3424 ret = ext4_inline_data_iomap(inode, iomap); 3425 if (ret != -EAGAIN) { 3426 if (ret == 0 && offset >= iomap->length) 3427 ret = -ENOENT; 3428 return ret; 3429 } 3430 } 3431 } else { 3432 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3433 return -ERANGE; 3434 } 3435 3436 map.m_lblk = first_block; 3437 map.m_len = last_block - first_block + 1; 3438 3439 if (flags & IOMAP_REPORT) { 3440 ret = ext4_map_blocks(NULL, inode, &map, 0); 3441 if (ret < 0) 3442 return ret; 3443 3444 if (ret == 0) { 3445 ext4_lblk_t end = map.m_lblk + map.m_len - 1; 3446 struct extent_status es; 3447 3448 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es); 3449 3450 if (!es.es_len || es.es_lblk > end) { 3451 /* entire range is a hole */ 3452 } else if (es.es_lblk > map.m_lblk) { 3453 /* range starts with a hole */ 3454 map.m_len = es.es_lblk - map.m_lblk; 3455 } else { 3456 ext4_lblk_t offs = 0; 3457 3458 if (es.es_lblk < map.m_lblk) 3459 offs = map.m_lblk - es.es_lblk; 3460 map.m_lblk = es.es_lblk + offs; 3461 map.m_len = es.es_len - offs; 3462 delalloc = true; 3463 } 3464 } 3465 } else if (flags & IOMAP_WRITE) { 3466 int dio_credits; 3467 handle_t *handle; 3468 int retries = 0; 3469 3470 /* Trim mapping request to maximum we can map at once for DIO */ 3471 if (map.m_len > DIO_MAX_BLOCKS) 3472 map.m_len = DIO_MAX_BLOCKS; 3473 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3474 retry: 3475 /* 3476 * Either we allocate blocks and then we don't get unwritten 3477 * extent so we have reserved enough credits, or the blocks 3478 * are already allocated and unwritten and in that case 3479 * extent conversion fits in the credits as well. 3480 */ 3481 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3482 dio_credits); 3483 if (IS_ERR(handle)) 3484 return PTR_ERR(handle); 3485 3486 ret = ext4_map_blocks(handle, inode, &map, 3487 EXT4_GET_BLOCKS_CREATE_ZERO); 3488 if (ret < 0) { 3489 ext4_journal_stop(handle); 3490 if (ret == -ENOSPC && 3491 ext4_should_retry_alloc(inode->i_sb, &retries)) 3492 goto retry; 3493 return ret; 3494 } 3495 3496 /* 3497 * If we added blocks beyond i_size, we need to make sure they 3498 * will get truncated if we crash before updating i_size in 3499 * ext4_iomap_end(). For faults we don't need to do that (and 3500 * even cannot because for orphan list operations inode_lock is 3501 * required) - if we happen to instantiate block beyond i_size, 3502 * it is because we race with truncate which has already added 3503 * the inode to the orphan list. 3504 */ 3505 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3506 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3507 int err; 3508 3509 err = ext4_orphan_add(handle, inode); 3510 if (err < 0) { 3511 ext4_journal_stop(handle); 3512 return err; 3513 } 3514 } 3515 ext4_journal_stop(handle); 3516 } else { 3517 ret = ext4_map_blocks(NULL, inode, &map, 0); 3518 if (ret < 0) 3519 return ret; 3520 } 3521 3522 iomap->flags = 0; 3523 if (ext4_inode_datasync_dirty(inode)) 3524 iomap->flags |= IOMAP_F_DIRTY; 3525 iomap->bdev = inode->i_sb->s_bdev; 3526 iomap->dax_dev = sbi->s_daxdev; 3527 iomap->offset = first_block << blkbits; 3528 iomap->length = (u64)map.m_len << blkbits; 3529 3530 if (ret == 0) { 3531 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; 3532 iomap->addr = IOMAP_NULL_ADDR; 3533 } else { 3534 if (map.m_flags & EXT4_MAP_MAPPED) { 3535 iomap->type = IOMAP_MAPPED; 3536 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3537 iomap->type = IOMAP_UNWRITTEN; 3538 } else { 3539 WARN_ON_ONCE(1); 3540 return -EIO; 3541 } 3542 iomap->addr = (u64)map.m_pblk << blkbits; 3543 } 3544 3545 if (map.m_flags & EXT4_MAP_NEW) 3546 iomap->flags |= IOMAP_F_NEW; 3547 3548 return 0; 3549 } 3550 3551 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3552 ssize_t written, unsigned flags, struct iomap *iomap) 3553 { 3554 int ret = 0; 3555 handle_t *handle; 3556 int blkbits = inode->i_blkbits; 3557 bool truncate = false; 3558 3559 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3560 return 0; 3561 3562 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3563 if (IS_ERR(handle)) { 3564 ret = PTR_ERR(handle); 3565 goto orphan_del; 3566 } 3567 if (ext4_update_inode_size(inode, offset + written)) 3568 ext4_mark_inode_dirty(handle, inode); 3569 /* 3570 * We may need to truncate allocated but not written blocks beyond EOF. 3571 */ 3572 if (iomap->offset + iomap->length > 3573 ALIGN(inode->i_size, 1 << blkbits)) { 3574 ext4_lblk_t written_blk, end_blk; 3575 3576 written_blk = (offset + written) >> blkbits; 3577 end_blk = (offset + length) >> blkbits; 3578 if (written_blk < end_blk && ext4_can_truncate(inode)) 3579 truncate = true; 3580 } 3581 /* 3582 * Remove inode from orphan list if we were extending a inode and 3583 * everything went fine. 3584 */ 3585 if (!truncate && inode->i_nlink && 3586 !list_empty(&EXT4_I(inode)->i_orphan)) 3587 ext4_orphan_del(handle, inode); 3588 ext4_journal_stop(handle); 3589 if (truncate) { 3590 ext4_truncate_failed_write(inode); 3591 orphan_del: 3592 /* 3593 * If truncate failed early the inode might still be on the 3594 * orphan list; we need to make sure the inode is removed from 3595 * the orphan list in that case. 3596 */ 3597 if (inode->i_nlink) 3598 ext4_orphan_del(NULL, inode); 3599 } 3600 return ret; 3601 } 3602 3603 const struct iomap_ops ext4_iomap_ops = { 3604 .iomap_begin = ext4_iomap_begin, 3605 .iomap_end = ext4_iomap_end, 3606 }; 3607 3608 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3609 ssize_t size, void *private) 3610 { 3611 ext4_io_end_t *io_end = private; 3612 3613 /* if not async direct IO just return */ 3614 if (!io_end) 3615 return 0; 3616 3617 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3618 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3619 io_end, io_end->inode->i_ino, iocb, offset, size); 3620 3621 /* 3622 * Error during AIO DIO. We cannot convert unwritten extents as the 3623 * data was not written. Just clear the unwritten flag and drop io_end. 3624 */ 3625 if (size <= 0) { 3626 ext4_clear_io_unwritten_flag(io_end); 3627 size = 0; 3628 } 3629 io_end->offset = offset; 3630 io_end->size = size; 3631 ext4_put_io_end(io_end); 3632 3633 return 0; 3634 } 3635 3636 /* 3637 * Handling of direct IO writes. 3638 * 3639 * For ext4 extent files, ext4 will do direct-io write even to holes, 3640 * preallocated extents, and those write extend the file, no need to 3641 * fall back to buffered IO. 3642 * 3643 * For holes, we fallocate those blocks, mark them as unwritten 3644 * If those blocks were preallocated, we mark sure they are split, but 3645 * still keep the range to write as unwritten. 3646 * 3647 * The unwritten extents will be converted to written when DIO is completed. 3648 * For async direct IO, since the IO may still pending when return, we 3649 * set up an end_io call back function, which will do the conversion 3650 * when async direct IO completed. 3651 * 3652 * If the O_DIRECT write will extend the file then add this inode to the 3653 * orphan list. So recovery will truncate it back to the original size 3654 * if the machine crashes during the write. 3655 * 3656 */ 3657 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3658 { 3659 struct file *file = iocb->ki_filp; 3660 struct inode *inode = file->f_mapping->host; 3661 struct ext4_inode_info *ei = EXT4_I(inode); 3662 ssize_t ret; 3663 loff_t offset = iocb->ki_pos; 3664 size_t count = iov_iter_count(iter); 3665 int overwrite = 0; 3666 get_block_t *get_block_func = NULL; 3667 int dio_flags = 0; 3668 loff_t final_size = offset + count; 3669 int orphan = 0; 3670 handle_t *handle; 3671 3672 if (final_size > inode->i_size) { 3673 /* Credits for sb + inode write */ 3674 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3675 if (IS_ERR(handle)) { 3676 ret = PTR_ERR(handle); 3677 goto out; 3678 } 3679 ret = ext4_orphan_add(handle, inode); 3680 if (ret) { 3681 ext4_journal_stop(handle); 3682 goto out; 3683 } 3684 orphan = 1; 3685 ei->i_disksize = inode->i_size; 3686 ext4_journal_stop(handle); 3687 } 3688 3689 BUG_ON(iocb->private == NULL); 3690 3691 /* 3692 * Make all waiters for direct IO properly wait also for extent 3693 * conversion. This also disallows race between truncate() and 3694 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3695 */ 3696 inode_dio_begin(inode); 3697 3698 /* If we do a overwrite dio, i_mutex locking can be released */ 3699 overwrite = *((int *)iocb->private); 3700 3701 if (overwrite) 3702 inode_unlock(inode); 3703 3704 /* 3705 * For extent mapped files we could direct write to holes and fallocate. 3706 * 3707 * Allocated blocks to fill the hole are marked as unwritten to prevent 3708 * parallel buffered read to expose the stale data before DIO complete 3709 * the data IO. 3710 * 3711 * As to previously fallocated extents, ext4 get_block will just simply 3712 * mark the buffer mapped but still keep the extents unwritten. 3713 * 3714 * For non AIO case, we will convert those unwritten extents to written 3715 * after return back from blockdev_direct_IO. That way we save us from 3716 * allocating io_end structure and also the overhead of offloading 3717 * the extent convertion to a workqueue. 3718 * 3719 * For async DIO, the conversion needs to be deferred when the 3720 * IO is completed. The ext4 end_io callback function will be 3721 * called to take care of the conversion work. Here for async 3722 * case, we allocate an io_end structure to hook to the iocb. 3723 */ 3724 iocb->private = NULL; 3725 if (overwrite) 3726 get_block_func = ext4_dio_get_block_overwrite; 3727 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3728 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3729 get_block_func = ext4_dio_get_block; 3730 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3731 } else if (is_sync_kiocb(iocb)) { 3732 get_block_func = ext4_dio_get_block_unwritten_sync; 3733 dio_flags = DIO_LOCKING; 3734 } else { 3735 get_block_func = ext4_dio_get_block_unwritten_async; 3736 dio_flags = DIO_LOCKING; 3737 } 3738 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3739 get_block_func, ext4_end_io_dio, NULL, 3740 dio_flags); 3741 3742 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3743 EXT4_STATE_DIO_UNWRITTEN)) { 3744 int err; 3745 /* 3746 * for non AIO case, since the IO is already 3747 * completed, we could do the conversion right here 3748 */ 3749 err = ext4_convert_unwritten_extents(NULL, inode, 3750 offset, ret); 3751 if (err < 0) 3752 ret = err; 3753 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3754 } 3755 3756 inode_dio_end(inode); 3757 /* take i_mutex locking again if we do a ovewrite dio */ 3758 if (overwrite) 3759 inode_lock(inode); 3760 3761 if (ret < 0 && final_size > inode->i_size) 3762 ext4_truncate_failed_write(inode); 3763 3764 /* Handle extending of i_size after direct IO write */ 3765 if (orphan) { 3766 int err; 3767 3768 /* Credits for sb + inode write */ 3769 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3770 if (IS_ERR(handle)) { 3771 /* 3772 * We wrote the data but cannot extend 3773 * i_size. Bail out. In async io case, we do 3774 * not return error here because we have 3775 * already submmitted the corresponding 3776 * bio. Returning error here makes the caller 3777 * think that this IO is done and failed 3778 * resulting in race with bio's completion 3779 * handler. 3780 */ 3781 if (!ret) 3782 ret = PTR_ERR(handle); 3783 if (inode->i_nlink) 3784 ext4_orphan_del(NULL, inode); 3785 3786 goto out; 3787 } 3788 if (inode->i_nlink) 3789 ext4_orphan_del(handle, inode); 3790 if (ret > 0) { 3791 loff_t end = offset + ret; 3792 if (end > inode->i_size) { 3793 ei->i_disksize = end; 3794 i_size_write(inode, end); 3795 /* 3796 * We're going to return a positive `ret' 3797 * here due to non-zero-length I/O, so there's 3798 * no way of reporting error returns from 3799 * ext4_mark_inode_dirty() to userspace. So 3800 * ignore it. 3801 */ 3802 ext4_mark_inode_dirty(handle, inode); 3803 } 3804 } 3805 err = ext4_journal_stop(handle); 3806 if (ret == 0) 3807 ret = err; 3808 } 3809 out: 3810 return ret; 3811 } 3812 3813 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3814 { 3815 struct address_space *mapping = iocb->ki_filp->f_mapping; 3816 struct inode *inode = mapping->host; 3817 size_t count = iov_iter_count(iter); 3818 ssize_t ret; 3819 3820 /* 3821 * Shared inode_lock is enough for us - it protects against concurrent 3822 * writes & truncates and since we take care of writing back page cache, 3823 * we are protected against page writeback as well. 3824 */ 3825 inode_lock_shared(inode); 3826 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3827 iocb->ki_pos + count - 1); 3828 if (ret) 3829 goto out_unlock; 3830 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3831 iter, ext4_dio_get_block, NULL, NULL, 0); 3832 out_unlock: 3833 inode_unlock_shared(inode); 3834 return ret; 3835 } 3836 3837 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3838 { 3839 struct file *file = iocb->ki_filp; 3840 struct inode *inode = file->f_mapping->host; 3841 size_t count = iov_iter_count(iter); 3842 loff_t offset = iocb->ki_pos; 3843 ssize_t ret; 3844 3845 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3846 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3847 return 0; 3848 #endif 3849 3850 /* 3851 * If we are doing data journalling we don't support O_DIRECT 3852 */ 3853 if (ext4_should_journal_data(inode)) 3854 return 0; 3855 3856 /* Let buffer I/O handle the inline data case. */ 3857 if (ext4_has_inline_data(inode)) 3858 return 0; 3859 3860 /* DAX uses iomap path now */ 3861 if (WARN_ON_ONCE(IS_DAX(inode))) 3862 return 0; 3863 3864 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3865 if (iov_iter_rw(iter) == READ) 3866 ret = ext4_direct_IO_read(iocb, iter); 3867 else 3868 ret = ext4_direct_IO_write(iocb, iter); 3869 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3870 return ret; 3871 } 3872 3873 /* 3874 * Pages can be marked dirty completely asynchronously from ext4's journalling 3875 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3876 * much here because ->set_page_dirty is called under VFS locks. The page is 3877 * not necessarily locked. 3878 * 3879 * We cannot just dirty the page and leave attached buffers clean, because the 3880 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3881 * or jbddirty because all the journalling code will explode. 3882 * 3883 * So what we do is to mark the page "pending dirty" and next time writepage 3884 * is called, propagate that into the buffers appropriately. 3885 */ 3886 static int ext4_journalled_set_page_dirty(struct page *page) 3887 { 3888 SetPageChecked(page); 3889 return __set_page_dirty_nobuffers(page); 3890 } 3891 3892 static int ext4_set_page_dirty(struct page *page) 3893 { 3894 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3895 WARN_ON_ONCE(!page_has_buffers(page)); 3896 return __set_page_dirty_buffers(page); 3897 } 3898 3899 static const struct address_space_operations ext4_aops = { 3900 .readpage = ext4_readpage, 3901 .readpages = ext4_readpages, 3902 .writepage = ext4_writepage, 3903 .writepages = ext4_writepages, 3904 .write_begin = ext4_write_begin, 3905 .write_end = ext4_write_end, 3906 .set_page_dirty = ext4_set_page_dirty, 3907 .bmap = ext4_bmap, 3908 .invalidatepage = ext4_invalidatepage, 3909 .releasepage = ext4_releasepage, 3910 .direct_IO = ext4_direct_IO, 3911 .migratepage = buffer_migrate_page, 3912 .is_partially_uptodate = block_is_partially_uptodate, 3913 .error_remove_page = generic_error_remove_page, 3914 }; 3915 3916 static const struct address_space_operations ext4_journalled_aops = { 3917 .readpage = ext4_readpage, 3918 .readpages = ext4_readpages, 3919 .writepage = ext4_writepage, 3920 .writepages = ext4_writepages, 3921 .write_begin = ext4_write_begin, 3922 .write_end = ext4_journalled_write_end, 3923 .set_page_dirty = ext4_journalled_set_page_dirty, 3924 .bmap = ext4_bmap, 3925 .invalidatepage = ext4_journalled_invalidatepage, 3926 .releasepage = ext4_releasepage, 3927 .direct_IO = ext4_direct_IO, 3928 .is_partially_uptodate = block_is_partially_uptodate, 3929 .error_remove_page = generic_error_remove_page, 3930 }; 3931 3932 static const struct address_space_operations ext4_da_aops = { 3933 .readpage = ext4_readpage, 3934 .readpages = ext4_readpages, 3935 .writepage = ext4_writepage, 3936 .writepages = ext4_writepages, 3937 .write_begin = ext4_da_write_begin, 3938 .write_end = ext4_da_write_end, 3939 .set_page_dirty = ext4_set_page_dirty, 3940 .bmap = ext4_bmap, 3941 .invalidatepage = ext4_da_invalidatepage, 3942 .releasepage = ext4_releasepage, 3943 .direct_IO = ext4_direct_IO, 3944 .migratepage = buffer_migrate_page, 3945 .is_partially_uptodate = block_is_partially_uptodate, 3946 .error_remove_page = generic_error_remove_page, 3947 }; 3948 3949 void ext4_set_aops(struct inode *inode) 3950 { 3951 switch (ext4_inode_journal_mode(inode)) { 3952 case EXT4_INODE_ORDERED_DATA_MODE: 3953 case EXT4_INODE_WRITEBACK_DATA_MODE: 3954 break; 3955 case EXT4_INODE_JOURNAL_DATA_MODE: 3956 inode->i_mapping->a_ops = &ext4_journalled_aops; 3957 return; 3958 default: 3959 BUG(); 3960 } 3961 if (test_opt(inode->i_sb, DELALLOC)) 3962 inode->i_mapping->a_ops = &ext4_da_aops; 3963 else 3964 inode->i_mapping->a_ops = &ext4_aops; 3965 } 3966 3967 static int __ext4_block_zero_page_range(handle_t *handle, 3968 struct address_space *mapping, loff_t from, loff_t length) 3969 { 3970 ext4_fsblk_t index = from >> PAGE_SHIFT; 3971 unsigned offset = from & (PAGE_SIZE-1); 3972 unsigned blocksize, pos; 3973 ext4_lblk_t iblock; 3974 struct inode *inode = mapping->host; 3975 struct buffer_head *bh; 3976 struct page *page; 3977 int err = 0; 3978 3979 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3980 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3981 if (!page) 3982 return -ENOMEM; 3983 3984 blocksize = inode->i_sb->s_blocksize; 3985 3986 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3987 3988 if (!page_has_buffers(page)) 3989 create_empty_buffers(page, blocksize, 0); 3990 3991 /* Find the buffer that contains "offset" */ 3992 bh = page_buffers(page); 3993 pos = blocksize; 3994 while (offset >= pos) { 3995 bh = bh->b_this_page; 3996 iblock++; 3997 pos += blocksize; 3998 } 3999 if (buffer_freed(bh)) { 4000 BUFFER_TRACE(bh, "freed: skip"); 4001 goto unlock; 4002 } 4003 if (!buffer_mapped(bh)) { 4004 BUFFER_TRACE(bh, "unmapped"); 4005 ext4_get_block(inode, iblock, bh, 0); 4006 /* unmapped? It's a hole - nothing to do */ 4007 if (!buffer_mapped(bh)) { 4008 BUFFER_TRACE(bh, "still unmapped"); 4009 goto unlock; 4010 } 4011 } 4012 4013 /* Ok, it's mapped. Make sure it's up-to-date */ 4014 if (PageUptodate(page)) 4015 set_buffer_uptodate(bh); 4016 4017 if (!buffer_uptodate(bh)) { 4018 err = -EIO; 4019 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 4020 wait_on_buffer(bh); 4021 /* Uhhuh. Read error. Complain and punt. */ 4022 if (!buffer_uptodate(bh)) 4023 goto unlock; 4024 if (S_ISREG(inode->i_mode) && 4025 ext4_encrypted_inode(inode)) { 4026 /* We expect the key to be set. */ 4027 BUG_ON(!fscrypt_has_encryption_key(inode)); 4028 BUG_ON(blocksize != PAGE_SIZE); 4029 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 4030 page, PAGE_SIZE, 0, page->index)); 4031 } 4032 } 4033 if (ext4_should_journal_data(inode)) { 4034 BUFFER_TRACE(bh, "get write access"); 4035 err = ext4_journal_get_write_access(handle, bh); 4036 if (err) 4037 goto unlock; 4038 } 4039 zero_user(page, offset, length); 4040 BUFFER_TRACE(bh, "zeroed end of block"); 4041 4042 if (ext4_should_journal_data(inode)) { 4043 err = ext4_handle_dirty_metadata(handle, inode, bh); 4044 } else { 4045 err = 0; 4046 mark_buffer_dirty(bh); 4047 if (ext4_should_order_data(inode)) 4048 err = ext4_jbd2_inode_add_write(handle, inode); 4049 } 4050 4051 unlock: 4052 unlock_page(page); 4053 put_page(page); 4054 return err; 4055 } 4056 4057 /* 4058 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4059 * starting from file offset 'from'. The range to be zero'd must 4060 * be contained with in one block. If the specified range exceeds 4061 * the end of the block it will be shortened to end of the block 4062 * that cooresponds to 'from' 4063 */ 4064 static int ext4_block_zero_page_range(handle_t *handle, 4065 struct address_space *mapping, loff_t from, loff_t length) 4066 { 4067 struct inode *inode = mapping->host; 4068 unsigned offset = from & (PAGE_SIZE-1); 4069 unsigned blocksize = inode->i_sb->s_blocksize; 4070 unsigned max = blocksize - (offset & (blocksize - 1)); 4071 4072 /* 4073 * correct length if it does not fall between 4074 * 'from' and the end of the block 4075 */ 4076 if (length > max || length < 0) 4077 length = max; 4078 4079 if (IS_DAX(inode)) { 4080 return iomap_zero_range(inode, from, length, NULL, 4081 &ext4_iomap_ops); 4082 } 4083 return __ext4_block_zero_page_range(handle, mapping, from, length); 4084 } 4085 4086 /* 4087 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4088 * up to the end of the block which corresponds to `from'. 4089 * This required during truncate. We need to physically zero the tail end 4090 * of that block so it doesn't yield old data if the file is later grown. 4091 */ 4092 static int ext4_block_truncate_page(handle_t *handle, 4093 struct address_space *mapping, loff_t from) 4094 { 4095 unsigned offset = from & (PAGE_SIZE-1); 4096 unsigned length; 4097 unsigned blocksize; 4098 struct inode *inode = mapping->host; 4099 4100 /* If we are processing an encrypted inode during orphan list handling */ 4101 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode)) 4102 return 0; 4103 4104 blocksize = inode->i_sb->s_blocksize; 4105 length = blocksize - (offset & (blocksize - 1)); 4106 4107 return ext4_block_zero_page_range(handle, mapping, from, length); 4108 } 4109 4110 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4111 loff_t lstart, loff_t length) 4112 { 4113 struct super_block *sb = inode->i_sb; 4114 struct address_space *mapping = inode->i_mapping; 4115 unsigned partial_start, partial_end; 4116 ext4_fsblk_t start, end; 4117 loff_t byte_end = (lstart + length - 1); 4118 int err = 0; 4119 4120 partial_start = lstart & (sb->s_blocksize - 1); 4121 partial_end = byte_end & (sb->s_blocksize - 1); 4122 4123 start = lstart >> sb->s_blocksize_bits; 4124 end = byte_end >> sb->s_blocksize_bits; 4125 4126 /* Handle partial zero within the single block */ 4127 if (start == end && 4128 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4129 err = ext4_block_zero_page_range(handle, mapping, 4130 lstart, length); 4131 return err; 4132 } 4133 /* Handle partial zero out on the start of the range */ 4134 if (partial_start) { 4135 err = ext4_block_zero_page_range(handle, mapping, 4136 lstart, sb->s_blocksize); 4137 if (err) 4138 return err; 4139 } 4140 /* Handle partial zero out on the end of the range */ 4141 if (partial_end != sb->s_blocksize - 1) 4142 err = ext4_block_zero_page_range(handle, mapping, 4143 byte_end - partial_end, 4144 partial_end + 1); 4145 return err; 4146 } 4147 4148 int ext4_can_truncate(struct inode *inode) 4149 { 4150 if (S_ISREG(inode->i_mode)) 4151 return 1; 4152 if (S_ISDIR(inode->i_mode)) 4153 return 1; 4154 if (S_ISLNK(inode->i_mode)) 4155 return !ext4_inode_is_fast_symlink(inode); 4156 return 0; 4157 } 4158 4159 /* 4160 * We have to make sure i_disksize gets properly updated before we truncate 4161 * page cache due to hole punching or zero range. Otherwise i_disksize update 4162 * can get lost as it may have been postponed to submission of writeback but 4163 * that will never happen after we truncate page cache. 4164 */ 4165 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4166 loff_t len) 4167 { 4168 handle_t *handle; 4169 loff_t size = i_size_read(inode); 4170 4171 WARN_ON(!inode_is_locked(inode)); 4172 if (offset > size || offset + len < size) 4173 return 0; 4174 4175 if (EXT4_I(inode)->i_disksize >= size) 4176 return 0; 4177 4178 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4179 if (IS_ERR(handle)) 4180 return PTR_ERR(handle); 4181 ext4_update_i_disksize(inode, size); 4182 ext4_mark_inode_dirty(handle, inode); 4183 ext4_journal_stop(handle); 4184 4185 return 0; 4186 } 4187 4188 /* 4189 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4190 * associated with the given offset and length 4191 * 4192 * @inode: File inode 4193 * @offset: The offset where the hole will begin 4194 * @len: The length of the hole 4195 * 4196 * Returns: 0 on success or negative on failure 4197 */ 4198 4199 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4200 { 4201 struct super_block *sb = inode->i_sb; 4202 ext4_lblk_t first_block, stop_block; 4203 struct address_space *mapping = inode->i_mapping; 4204 loff_t first_block_offset, last_block_offset; 4205 handle_t *handle; 4206 unsigned int credits; 4207 int ret = 0; 4208 4209 if (!S_ISREG(inode->i_mode)) 4210 return -EOPNOTSUPP; 4211 4212 trace_ext4_punch_hole(inode, offset, length, 0); 4213 4214 /* 4215 * Write out all dirty pages to avoid race conditions 4216 * Then release them. 4217 */ 4218 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4219 ret = filemap_write_and_wait_range(mapping, offset, 4220 offset + length - 1); 4221 if (ret) 4222 return ret; 4223 } 4224 4225 inode_lock(inode); 4226 4227 /* No need to punch hole beyond i_size */ 4228 if (offset >= inode->i_size) 4229 goto out_mutex; 4230 4231 /* 4232 * If the hole extends beyond i_size, set the hole 4233 * to end after the page that contains i_size 4234 */ 4235 if (offset + length > inode->i_size) { 4236 length = inode->i_size + 4237 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4238 offset; 4239 } 4240 4241 if (offset & (sb->s_blocksize - 1) || 4242 (offset + length) & (sb->s_blocksize - 1)) { 4243 /* 4244 * Attach jinode to inode for jbd2 if we do any zeroing of 4245 * partial block 4246 */ 4247 ret = ext4_inode_attach_jinode(inode); 4248 if (ret < 0) 4249 goto out_mutex; 4250 4251 } 4252 4253 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4254 ext4_inode_block_unlocked_dio(inode); 4255 inode_dio_wait(inode); 4256 4257 /* 4258 * Prevent page faults from reinstantiating pages we have released from 4259 * page cache. 4260 */ 4261 down_write(&EXT4_I(inode)->i_mmap_sem); 4262 first_block_offset = round_up(offset, sb->s_blocksize); 4263 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4264 4265 /* Now release the pages and zero block aligned part of pages*/ 4266 if (last_block_offset > first_block_offset) { 4267 ret = ext4_update_disksize_before_punch(inode, offset, length); 4268 if (ret) 4269 goto out_dio; 4270 truncate_pagecache_range(inode, first_block_offset, 4271 last_block_offset); 4272 } 4273 4274 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4275 credits = ext4_writepage_trans_blocks(inode); 4276 else 4277 credits = ext4_blocks_for_truncate(inode); 4278 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4279 if (IS_ERR(handle)) { 4280 ret = PTR_ERR(handle); 4281 ext4_std_error(sb, ret); 4282 goto out_dio; 4283 } 4284 4285 ret = ext4_zero_partial_blocks(handle, inode, offset, 4286 length); 4287 if (ret) 4288 goto out_stop; 4289 4290 first_block = (offset + sb->s_blocksize - 1) >> 4291 EXT4_BLOCK_SIZE_BITS(sb); 4292 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4293 4294 /* If there are no blocks to remove, return now */ 4295 if (first_block >= stop_block) 4296 goto out_stop; 4297 4298 down_write(&EXT4_I(inode)->i_data_sem); 4299 ext4_discard_preallocations(inode); 4300 4301 ret = ext4_es_remove_extent(inode, first_block, 4302 stop_block - first_block); 4303 if (ret) { 4304 up_write(&EXT4_I(inode)->i_data_sem); 4305 goto out_stop; 4306 } 4307 4308 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4309 ret = ext4_ext_remove_space(inode, first_block, 4310 stop_block - 1); 4311 else 4312 ret = ext4_ind_remove_space(handle, inode, first_block, 4313 stop_block); 4314 4315 up_write(&EXT4_I(inode)->i_data_sem); 4316 if (IS_SYNC(inode)) 4317 ext4_handle_sync(handle); 4318 4319 inode->i_mtime = inode->i_ctime = current_time(inode); 4320 ext4_mark_inode_dirty(handle, inode); 4321 if (ret >= 0) 4322 ext4_update_inode_fsync_trans(handle, inode, 1); 4323 out_stop: 4324 ext4_journal_stop(handle); 4325 out_dio: 4326 up_write(&EXT4_I(inode)->i_mmap_sem); 4327 ext4_inode_resume_unlocked_dio(inode); 4328 out_mutex: 4329 inode_unlock(inode); 4330 return ret; 4331 } 4332 4333 int ext4_inode_attach_jinode(struct inode *inode) 4334 { 4335 struct ext4_inode_info *ei = EXT4_I(inode); 4336 struct jbd2_inode *jinode; 4337 4338 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4339 return 0; 4340 4341 jinode = jbd2_alloc_inode(GFP_KERNEL); 4342 spin_lock(&inode->i_lock); 4343 if (!ei->jinode) { 4344 if (!jinode) { 4345 spin_unlock(&inode->i_lock); 4346 return -ENOMEM; 4347 } 4348 ei->jinode = jinode; 4349 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4350 jinode = NULL; 4351 } 4352 spin_unlock(&inode->i_lock); 4353 if (unlikely(jinode != NULL)) 4354 jbd2_free_inode(jinode); 4355 return 0; 4356 } 4357 4358 /* 4359 * ext4_truncate() 4360 * 4361 * We block out ext4_get_block() block instantiations across the entire 4362 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4363 * simultaneously on behalf of the same inode. 4364 * 4365 * As we work through the truncate and commit bits of it to the journal there 4366 * is one core, guiding principle: the file's tree must always be consistent on 4367 * disk. We must be able to restart the truncate after a crash. 4368 * 4369 * The file's tree may be transiently inconsistent in memory (although it 4370 * probably isn't), but whenever we close off and commit a journal transaction, 4371 * the contents of (the filesystem + the journal) must be consistent and 4372 * restartable. It's pretty simple, really: bottom up, right to left (although 4373 * left-to-right works OK too). 4374 * 4375 * Note that at recovery time, journal replay occurs *before* the restart of 4376 * truncate against the orphan inode list. 4377 * 4378 * The committed inode has the new, desired i_size (which is the same as 4379 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4380 * that this inode's truncate did not complete and it will again call 4381 * ext4_truncate() to have another go. So there will be instantiated blocks 4382 * to the right of the truncation point in a crashed ext4 filesystem. But 4383 * that's fine - as long as they are linked from the inode, the post-crash 4384 * ext4_truncate() run will find them and release them. 4385 */ 4386 int ext4_truncate(struct inode *inode) 4387 { 4388 struct ext4_inode_info *ei = EXT4_I(inode); 4389 unsigned int credits; 4390 int err = 0; 4391 handle_t *handle; 4392 struct address_space *mapping = inode->i_mapping; 4393 4394 /* 4395 * There is a possibility that we're either freeing the inode 4396 * or it's a completely new inode. In those cases we might not 4397 * have i_mutex locked because it's not necessary. 4398 */ 4399 if (!(inode->i_state & (I_NEW|I_FREEING))) 4400 WARN_ON(!inode_is_locked(inode)); 4401 trace_ext4_truncate_enter(inode); 4402 4403 if (!ext4_can_truncate(inode)) 4404 return 0; 4405 4406 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4407 4408 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4409 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4410 4411 if (ext4_has_inline_data(inode)) { 4412 int has_inline = 1; 4413 4414 err = ext4_inline_data_truncate(inode, &has_inline); 4415 if (err) 4416 return err; 4417 if (has_inline) 4418 return 0; 4419 } 4420 4421 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4422 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4423 if (ext4_inode_attach_jinode(inode) < 0) 4424 return 0; 4425 } 4426 4427 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4428 credits = ext4_writepage_trans_blocks(inode); 4429 else 4430 credits = ext4_blocks_for_truncate(inode); 4431 4432 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4433 if (IS_ERR(handle)) 4434 return PTR_ERR(handle); 4435 4436 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4437 ext4_block_truncate_page(handle, mapping, inode->i_size); 4438 4439 /* 4440 * We add the inode to the orphan list, so that if this 4441 * truncate spans multiple transactions, and we crash, we will 4442 * resume the truncate when the filesystem recovers. It also 4443 * marks the inode dirty, to catch the new size. 4444 * 4445 * Implication: the file must always be in a sane, consistent 4446 * truncatable state while each transaction commits. 4447 */ 4448 err = ext4_orphan_add(handle, inode); 4449 if (err) 4450 goto out_stop; 4451 4452 down_write(&EXT4_I(inode)->i_data_sem); 4453 4454 ext4_discard_preallocations(inode); 4455 4456 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4457 err = ext4_ext_truncate(handle, inode); 4458 else 4459 ext4_ind_truncate(handle, inode); 4460 4461 up_write(&ei->i_data_sem); 4462 if (err) 4463 goto out_stop; 4464 4465 if (IS_SYNC(inode)) 4466 ext4_handle_sync(handle); 4467 4468 out_stop: 4469 /* 4470 * If this was a simple ftruncate() and the file will remain alive, 4471 * then we need to clear up the orphan record which we created above. 4472 * However, if this was a real unlink then we were called by 4473 * ext4_evict_inode(), and we allow that function to clean up the 4474 * orphan info for us. 4475 */ 4476 if (inode->i_nlink) 4477 ext4_orphan_del(handle, inode); 4478 4479 inode->i_mtime = inode->i_ctime = current_time(inode); 4480 ext4_mark_inode_dirty(handle, inode); 4481 ext4_journal_stop(handle); 4482 4483 trace_ext4_truncate_exit(inode); 4484 return err; 4485 } 4486 4487 /* 4488 * ext4_get_inode_loc returns with an extra refcount against the inode's 4489 * underlying buffer_head on success. If 'in_mem' is true, we have all 4490 * data in memory that is needed to recreate the on-disk version of this 4491 * inode. 4492 */ 4493 static int __ext4_get_inode_loc(struct inode *inode, 4494 struct ext4_iloc *iloc, int in_mem) 4495 { 4496 struct ext4_group_desc *gdp; 4497 struct buffer_head *bh; 4498 struct super_block *sb = inode->i_sb; 4499 ext4_fsblk_t block; 4500 int inodes_per_block, inode_offset; 4501 4502 iloc->bh = NULL; 4503 if (!ext4_valid_inum(sb, inode->i_ino)) 4504 return -EFSCORRUPTED; 4505 4506 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4507 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4508 if (!gdp) 4509 return -EIO; 4510 4511 /* 4512 * Figure out the offset within the block group inode table 4513 */ 4514 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4515 inode_offset = ((inode->i_ino - 1) % 4516 EXT4_INODES_PER_GROUP(sb)); 4517 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4518 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4519 4520 bh = sb_getblk(sb, block); 4521 if (unlikely(!bh)) 4522 return -ENOMEM; 4523 if (!buffer_uptodate(bh)) { 4524 lock_buffer(bh); 4525 4526 /* 4527 * If the buffer has the write error flag, we have failed 4528 * to write out another inode in the same block. In this 4529 * case, we don't have to read the block because we may 4530 * read the old inode data successfully. 4531 */ 4532 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4533 set_buffer_uptodate(bh); 4534 4535 if (buffer_uptodate(bh)) { 4536 /* someone brought it uptodate while we waited */ 4537 unlock_buffer(bh); 4538 goto has_buffer; 4539 } 4540 4541 /* 4542 * If we have all information of the inode in memory and this 4543 * is the only valid inode in the block, we need not read the 4544 * block. 4545 */ 4546 if (in_mem) { 4547 struct buffer_head *bitmap_bh; 4548 int i, start; 4549 4550 start = inode_offset & ~(inodes_per_block - 1); 4551 4552 /* Is the inode bitmap in cache? */ 4553 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4554 if (unlikely(!bitmap_bh)) 4555 goto make_io; 4556 4557 /* 4558 * If the inode bitmap isn't in cache then the 4559 * optimisation may end up performing two reads instead 4560 * of one, so skip it. 4561 */ 4562 if (!buffer_uptodate(bitmap_bh)) { 4563 brelse(bitmap_bh); 4564 goto make_io; 4565 } 4566 for (i = start; i < start + inodes_per_block; i++) { 4567 if (i == inode_offset) 4568 continue; 4569 if (ext4_test_bit(i, bitmap_bh->b_data)) 4570 break; 4571 } 4572 brelse(bitmap_bh); 4573 if (i == start + inodes_per_block) { 4574 /* all other inodes are free, so skip I/O */ 4575 memset(bh->b_data, 0, bh->b_size); 4576 set_buffer_uptodate(bh); 4577 unlock_buffer(bh); 4578 goto has_buffer; 4579 } 4580 } 4581 4582 make_io: 4583 /* 4584 * If we need to do any I/O, try to pre-readahead extra 4585 * blocks from the inode table. 4586 */ 4587 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4588 ext4_fsblk_t b, end, table; 4589 unsigned num; 4590 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4591 4592 table = ext4_inode_table(sb, gdp); 4593 /* s_inode_readahead_blks is always a power of 2 */ 4594 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4595 if (table > b) 4596 b = table; 4597 end = b + ra_blks; 4598 num = EXT4_INODES_PER_GROUP(sb); 4599 if (ext4_has_group_desc_csum(sb)) 4600 num -= ext4_itable_unused_count(sb, gdp); 4601 table += num / inodes_per_block; 4602 if (end > table) 4603 end = table; 4604 while (b <= end) 4605 sb_breadahead(sb, b++); 4606 } 4607 4608 /* 4609 * There are other valid inodes in the buffer, this inode 4610 * has in-inode xattrs, or we don't have this inode in memory. 4611 * Read the block from disk. 4612 */ 4613 trace_ext4_load_inode(inode); 4614 get_bh(bh); 4615 bh->b_end_io = end_buffer_read_sync; 4616 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4617 wait_on_buffer(bh); 4618 if (!buffer_uptodate(bh)) { 4619 EXT4_ERROR_INODE_BLOCK(inode, block, 4620 "unable to read itable block"); 4621 brelse(bh); 4622 return -EIO; 4623 } 4624 } 4625 has_buffer: 4626 iloc->bh = bh; 4627 return 0; 4628 } 4629 4630 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4631 { 4632 /* We have all inode data except xattrs in memory here. */ 4633 return __ext4_get_inode_loc(inode, iloc, 4634 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4635 } 4636 4637 static bool ext4_should_use_dax(struct inode *inode) 4638 { 4639 if (!test_opt(inode->i_sb, DAX)) 4640 return false; 4641 if (!S_ISREG(inode->i_mode)) 4642 return false; 4643 if (ext4_should_journal_data(inode)) 4644 return false; 4645 if (ext4_has_inline_data(inode)) 4646 return false; 4647 if (ext4_encrypted_inode(inode)) 4648 return false; 4649 return true; 4650 } 4651 4652 void ext4_set_inode_flags(struct inode *inode) 4653 { 4654 unsigned int flags = EXT4_I(inode)->i_flags; 4655 unsigned int new_fl = 0; 4656 4657 if (flags & EXT4_SYNC_FL) 4658 new_fl |= S_SYNC; 4659 if (flags & EXT4_APPEND_FL) 4660 new_fl |= S_APPEND; 4661 if (flags & EXT4_IMMUTABLE_FL) 4662 new_fl |= S_IMMUTABLE; 4663 if (flags & EXT4_NOATIME_FL) 4664 new_fl |= S_NOATIME; 4665 if (flags & EXT4_DIRSYNC_FL) 4666 new_fl |= S_DIRSYNC; 4667 if (ext4_should_use_dax(inode)) 4668 new_fl |= S_DAX; 4669 if (flags & EXT4_ENCRYPT_FL) 4670 new_fl |= S_ENCRYPTED; 4671 inode_set_flags(inode, new_fl, 4672 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4673 S_ENCRYPTED); 4674 } 4675 4676 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4677 struct ext4_inode_info *ei) 4678 { 4679 blkcnt_t i_blocks ; 4680 struct inode *inode = &(ei->vfs_inode); 4681 struct super_block *sb = inode->i_sb; 4682 4683 if (ext4_has_feature_huge_file(sb)) { 4684 /* we are using combined 48 bit field */ 4685 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4686 le32_to_cpu(raw_inode->i_blocks_lo); 4687 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4688 /* i_blocks represent file system block size */ 4689 return i_blocks << (inode->i_blkbits - 9); 4690 } else { 4691 return i_blocks; 4692 } 4693 } else { 4694 return le32_to_cpu(raw_inode->i_blocks_lo); 4695 } 4696 } 4697 4698 static inline void ext4_iget_extra_inode(struct inode *inode, 4699 struct ext4_inode *raw_inode, 4700 struct ext4_inode_info *ei) 4701 { 4702 __le32 *magic = (void *)raw_inode + 4703 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4704 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4705 EXT4_INODE_SIZE(inode->i_sb) && 4706 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4707 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4708 ext4_find_inline_data_nolock(inode); 4709 } else 4710 EXT4_I(inode)->i_inline_off = 0; 4711 } 4712 4713 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4714 { 4715 if (!ext4_has_feature_project(inode->i_sb)) 4716 return -EOPNOTSUPP; 4717 *projid = EXT4_I(inode)->i_projid; 4718 return 0; 4719 } 4720 4721 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4722 { 4723 struct ext4_iloc iloc; 4724 struct ext4_inode *raw_inode; 4725 struct ext4_inode_info *ei; 4726 struct inode *inode; 4727 journal_t *journal = EXT4_SB(sb)->s_journal; 4728 long ret; 4729 loff_t size; 4730 int block; 4731 uid_t i_uid; 4732 gid_t i_gid; 4733 projid_t i_projid; 4734 4735 inode = iget_locked(sb, ino); 4736 if (!inode) 4737 return ERR_PTR(-ENOMEM); 4738 if (!(inode->i_state & I_NEW)) 4739 return inode; 4740 4741 ei = EXT4_I(inode); 4742 iloc.bh = NULL; 4743 4744 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4745 if (ret < 0) 4746 goto bad_inode; 4747 raw_inode = ext4_raw_inode(&iloc); 4748 4749 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4750 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4751 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4752 EXT4_INODE_SIZE(inode->i_sb) || 4753 (ei->i_extra_isize & 3)) { 4754 EXT4_ERROR_INODE(inode, 4755 "bad extra_isize %u (inode size %u)", 4756 ei->i_extra_isize, 4757 EXT4_INODE_SIZE(inode->i_sb)); 4758 ret = -EFSCORRUPTED; 4759 goto bad_inode; 4760 } 4761 } else 4762 ei->i_extra_isize = 0; 4763 4764 /* Precompute checksum seed for inode metadata */ 4765 if (ext4_has_metadata_csum(sb)) { 4766 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4767 __u32 csum; 4768 __le32 inum = cpu_to_le32(inode->i_ino); 4769 __le32 gen = raw_inode->i_generation; 4770 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4771 sizeof(inum)); 4772 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4773 sizeof(gen)); 4774 } 4775 4776 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4777 EXT4_ERROR_INODE(inode, "checksum invalid"); 4778 ret = -EFSBADCRC; 4779 goto bad_inode; 4780 } 4781 4782 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4783 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4784 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4785 if (ext4_has_feature_project(sb) && 4786 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4787 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4788 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4789 else 4790 i_projid = EXT4_DEF_PROJID; 4791 4792 if (!(test_opt(inode->i_sb, NO_UID32))) { 4793 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4794 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4795 } 4796 i_uid_write(inode, i_uid); 4797 i_gid_write(inode, i_gid); 4798 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4799 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4800 4801 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4802 ei->i_inline_off = 0; 4803 ei->i_dir_start_lookup = 0; 4804 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4805 /* We now have enough fields to check if the inode was active or not. 4806 * This is needed because nfsd might try to access dead inodes 4807 * the test is that same one that e2fsck uses 4808 * NeilBrown 1999oct15 4809 */ 4810 if (inode->i_nlink == 0) { 4811 if ((inode->i_mode == 0 || 4812 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4813 ino != EXT4_BOOT_LOADER_INO) { 4814 /* this inode is deleted */ 4815 ret = -ESTALE; 4816 goto bad_inode; 4817 } 4818 /* The only unlinked inodes we let through here have 4819 * valid i_mode and are being read by the orphan 4820 * recovery code: that's fine, we're about to complete 4821 * the process of deleting those. 4822 * OR it is the EXT4_BOOT_LOADER_INO which is 4823 * not initialized on a new filesystem. */ 4824 } 4825 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4826 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4827 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4828 if (ext4_has_feature_64bit(sb)) 4829 ei->i_file_acl |= 4830 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4831 inode->i_size = ext4_isize(sb, raw_inode); 4832 if ((size = i_size_read(inode)) < 0) { 4833 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4834 ret = -EFSCORRUPTED; 4835 goto bad_inode; 4836 } 4837 ei->i_disksize = inode->i_size; 4838 #ifdef CONFIG_QUOTA 4839 ei->i_reserved_quota = 0; 4840 #endif 4841 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4842 ei->i_block_group = iloc.block_group; 4843 ei->i_last_alloc_group = ~0; 4844 /* 4845 * NOTE! The in-memory inode i_data array is in little-endian order 4846 * even on big-endian machines: we do NOT byteswap the block numbers! 4847 */ 4848 for (block = 0; block < EXT4_N_BLOCKS; block++) 4849 ei->i_data[block] = raw_inode->i_block[block]; 4850 INIT_LIST_HEAD(&ei->i_orphan); 4851 4852 /* 4853 * Set transaction id's of transactions that have to be committed 4854 * to finish f[data]sync. We set them to currently running transaction 4855 * as we cannot be sure that the inode or some of its metadata isn't 4856 * part of the transaction - the inode could have been reclaimed and 4857 * now it is reread from disk. 4858 */ 4859 if (journal) { 4860 transaction_t *transaction; 4861 tid_t tid; 4862 4863 read_lock(&journal->j_state_lock); 4864 if (journal->j_running_transaction) 4865 transaction = journal->j_running_transaction; 4866 else 4867 transaction = journal->j_committing_transaction; 4868 if (transaction) 4869 tid = transaction->t_tid; 4870 else 4871 tid = journal->j_commit_sequence; 4872 read_unlock(&journal->j_state_lock); 4873 ei->i_sync_tid = tid; 4874 ei->i_datasync_tid = tid; 4875 } 4876 4877 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4878 if (ei->i_extra_isize == 0) { 4879 /* The extra space is currently unused. Use it. */ 4880 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4881 ei->i_extra_isize = sizeof(struct ext4_inode) - 4882 EXT4_GOOD_OLD_INODE_SIZE; 4883 } else { 4884 ext4_iget_extra_inode(inode, raw_inode, ei); 4885 } 4886 } 4887 4888 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4889 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4890 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4891 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4892 4893 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4894 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4895 4896 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4897 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4898 ivers |= 4899 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4900 } 4901 inode_set_iversion_queried(inode, ivers); 4902 } 4903 4904 ret = 0; 4905 if (ei->i_file_acl && 4906 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4907 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4908 ei->i_file_acl); 4909 ret = -EFSCORRUPTED; 4910 goto bad_inode; 4911 } else if (!ext4_has_inline_data(inode)) { 4912 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4913 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4914 (S_ISLNK(inode->i_mode) && 4915 !ext4_inode_is_fast_symlink(inode)))) 4916 /* Validate extent which is part of inode */ 4917 ret = ext4_ext_check_inode(inode); 4918 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4919 (S_ISLNK(inode->i_mode) && 4920 !ext4_inode_is_fast_symlink(inode))) { 4921 /* Validate block references which are part of inode */ 4922 ret = ext4_ind_check_inode(inode); 4923 } 4924 } 4925 if (ret) 4926 goto bad_inode; 4927 4928 if (S_ISREG(inode->i_mode)) { 4929 inode->i_op = &ext4_file_inode_operations; 4930 inode->i_fop = &ext4_file_operations; 4931 ext4_set_aops(inode); 4932 } else if (S_ISDIR(inode->i_mode)) { 4933 inode->i_op = &ext4_dir_inode_operations; 4934 inode->i_fop = &ext4_dir_operations; 4935 } else if (S_ISLNK(inode->i_mode)) { 4936 if (ext4_encrypted_inode(inode)) { 4937 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4938 ext4_set_aops(inode); 4939 } else if (ext4_inode_is_fast_symlink(inode)) { 4940 inode->i_link = (char *)ei->i_data; 4941 inode->i_op = &ext4_fast_symlink_inode_operations; 4942 nd_terminate_link(ei->i_data, inode->i_size, 4943 sizeof(ei->i_data) - 1); 4944 } else { 4945 inode->i_op = &ext4_symlink_inode_operations; 4946 ext4_set_aops(inode); 4947 } 4948 inode_nohighmem(inode); 4949 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4950 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4951 inode->i_op = &ext4_special_inode_operations; 4952 if (raw_inode->i_block[0]) 4953 init_special_inode(inode, inode->i_mode, 4954 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4955 else 4956 init_special_inode(inode, inode->i_mode, 4957 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4958 } else if (ino == EXT4_BOOT_LOADER_INO) { 4959 make_bad_inode(inode); 4960 } else { 4961 ret = -EFSCORRUPTED; 4962 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4963 goto bad_inode; 4964 } 4965 brelse(iloc.bh); 4966 ext4_set_inode_flags(inode); 4967 4968 unlock_new_inode(inode); 4969 return inode; 4970 4971 bad_inode: 4972 brelse(iloc.bh); 4973 iget_failed(inode); 4974 return ERR_PTR(ret); 4975 } 4976 4977 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4978 { 4979 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4980 return ERR_PTR(-EFSCORRUPTED); 4981 return ext4_iget(sb, ino); 4982 } 4983 4984 static int ext4_inode_blocks_set(handle_t *handle, 4985 struct ext4_inode *raw_inode, 4986 struct ext4_inode_info *ei) 4987 { 4988 struct inode *inode = &(ei->vfs_inode); 4989 u64 i_blocks = inode->i_blocks; 4990 struct super_block *sb = inode->i_sb; 4991 4992 if (i_blocks <= ~0U) { 4993 /* 4994 * i_blocks can be represented in a 32 bit variable 4995 * as multiple of 512 bytes 4996 */ 4997 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4998 raw_inode->i_blocks_high = 0; 4999 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5000 return 0; 5001 } 5002 if (!ext4_has_feature_huge_file(sb)) 5003 return -EFBIG; 5004 5005 if (i_blocks <= 0xffffffffffffULL) { 5006 /* 5007 * i_blocks can be represented in a 48 bit variable 5008 * as multiple of 512 bytes 5009 */ 5010 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5011 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5012 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5013 } else { 5014 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5015 /* i_block is stored in file system block size */ 5016 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5017 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5018 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5019 } 5020 return 0; 5021 } 5022 5023 struct other_inode { 5024 unsigned long orig_ino; 5025 struct ext4_inode *raw_inode; 5026 }; 5027 5028 static int other_inode_match(struct inode * inode, unsigned long ino, 5029 void *data) 5030 { 5031 struct other_inode *oi = (struct other_inode *) data; 5032 5033 if ((inode->i_ino != ino) || 5034 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5035 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 5036 ((inode->i_state & I_DIRTY_TIME) == 0)) 5037 return 0; 5038 spin_lock(&inode->i_lock); 5039 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5040 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 5041 (inode->i_state & I_DIRTY_TIME)) { 5042 struct ext4_inode_info *ei = EXT4_I(inode); 5043 5044 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5045 spin_unlock(&inode->i_lock); 5046 5047 spin_lock(&ei->i_raw_lock); 5048 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5049 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5050 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5051 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5052 spin_unlock(&ei->i_raw_lock); 5053 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5054 return -1; 5055 } 5056 spin_unlock(&inode->i_lock); 5057 return -1; 5058 } 5059 5060 /* 5061 * Opportunistically update the other time fields for other inodes in 5062 * the same inode table block. 5063 */ 5064 static void ext4_update_other_inodes_time(struct super_block *sb, 5065 unsigned long orig_ino, char *buf) 5066 { 5067 struct other_inode oi; 5068 unsigned long ino; 5069 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5070 int inode_size = EXT4_INODE_SIZE(sb); 5071 5072 oi.orig_ino = orig_ino; 5073 /* 5074 * Calculate the first inode in the inode table block. Inode 5075 * numbers are one-based. That is, the first inode in a block 5076 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5077 */ 5078 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5079 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5080 if (ino == orig_ino) 5081 continue; 5082 oi.raw_inode = (struct ext4_inode *) buf; 5083 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5084 } 5085 } 5086 5087 /* 5088 * Post the struct inode info into an on-disk inode location in the 5089 * buffer-cache. This gobbles the caller's reference to the 5090 * buffer_head in the inode location struct. 5091 * 5092 * The caller must have write access to iloc->bh. 5093 */ 5094 static int ext4_do_update_inode(handle_t *handle, 5095 struct inode *inode, 5096 struct ext4_iloc *iloc) 5097 { 5098 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5099 struct ext4_inode_info *ei = EXT4_I(inode); 5100 struct buffer_head *bh = iloc->bh; 5101 struct super_block *sb = inode->i_sb; 5102 int err = 0, rc, block; 5103 int need_datasync = 0, set_large_file = 0; 5104 uid_t i_uid; 5105 gid_t i_gid; 5106 projid_t i_projid; 5107 5108 spin_lock(&ei->i_raw_lock); 5109 5110 /* For fields not tracked in the in-memory inode, 5111 * initialise them to zero for new inodes. */ 5112 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5113 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5114 5115 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5116 i_uid = i_uid_read(inode); 5117 i_gid = i_gid_read(inode); 5118 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5119 if (!(test_opt(inode->i_sb, NO_UID32))) { 5120 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5121 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5122 /* 5123 * Fix up interoperability with old kernels. Otherwise, old inodes get 5124 * re-used with the upper 16 bits of the uid/gid intact 5125 */ 5126 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5127 raw_inode->i_uid_high = 0; 5128 raw_inode->i_gid_high = 0; 5129 } else { 5130 raw_inode->i_uid_high = 5131 cpu_to_le16(high_16_bits(i_uid)); 5132 raw_inode->i_gid_high = 5133 cpu_to_le16(high_16_bits(i_gid)); 5134 } 5135 } else { 5136 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5137 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5138 raw_inode->i_uid_high = 0; 5139 raw_inode->i_gid_high = 0; 5140 } 5141 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5142 5143 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5144 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5145 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5146 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5147 5148 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5149 if (err) { 5150 spin_unlock(&ei->i_raw_lock); 5151 goto out_brelse; 5152 } 5153 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5154 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5155 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5156 raw_inode->i_file_acl_high = 5157 cpu_to_le16(ei->i_file_acl >> 32); 5158 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5159 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5160 ext4_isize_set(raw_inode, ei->i_disksize); 5161 need_datasync = 1; 5162 } 5163 if (ei->i_disksize > 0x7fffffffULL) { 5164 if (!ext4_has_feature_large_file(sb) || 5165 EXT4_SB(sb)->s_es->s_rev_level == 5166 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5167 set_large_file = 1; 5168 } 5169 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5170 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5171 if (old_valid_dev(inode->i_rdev)) { 5172 raw_inode->i_block[0] = 5173 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5174 raw_inode->i_block[1] = 0; 5175 } else { 5176 raw_inode->i_block[0] = 0; 5177 raw_inode->i_block[1] = 5178 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5179 raw_inode->i_block[2] = 0; 5180 } 5181 } else if (!ext4_has_inline_data(inode)) { 5182 for (block = 0; block < EXT4_N_BLOCKS; block++) 5183 raw_inode->i_block[block] = ei->i_data[block]; 5184 } 5185 5186 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5187 u64 ivers = inode_peek_iversion(inode); 5188 5189 raw_inode->i_disk_version = cpu_to_le32(ivers); 5190 if (ei->i_extra_isize) { 5191 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5192 raw_inode->i_version_hi = 5193 cpu_to_le32(ivers >> 32); 5194 raw_inode->i_extra_isize = 5195 cpu_to_le16(ei->i_extra_isize); 5196 } 5197 } 5198 5199 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5200 i_projid != EXT4_DEF_PROJID); 5201 5202 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5203 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5204 raw_inode->i_projid = cpu_to_le32(i_projid); 5205 5206 ext4_inode_csum_set(inode, raw_inode, ei); 5207 spin_unlock(&ei->i_raw_lock); 5208 if (inode->i_sb->s_flags & SB_LAZYTIME) 5209 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5210 bh->b_data); 5211 5212 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5213 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5214 if (!err) 5215 err = rc; 5216 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5217 if (set_large_file) { 5218 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5219 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5220 if (err) 5221 goto out_brelse; 5222 ext4_update_dynamic_rev(sb); 5223 ext4_set_feature_large_file(sb); 5224 ext4_handle_sync(handle); 5225 err = ext4_handle_dirty_super(handle, sb); 5226 } 5227 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5228 out_brelse: 5229 brelse(bh); 5230 ext4_std_error(inode->i_sb, err); 5231 return err; 5232 } 5233 5234 /* 5235 * ext4_write_inode() 5236 * 5237 * We are called from a few places: 5238 * 5239 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5240 * Here, there will be no transaction running. We wait for any running 5241 * transaction to commit. 5242 * 5243 * - Within flush work (sys_sync(), kupdate and such). 5244 * We wait on commit, if told to. 5245 * 5246 * - Within iput_final() -> write_inode_now() 5247 * We wait on commit, if told to. 5248 * 5249 * In all cases it is actually safe for us to return without doing anything, 5250 * because the inode has been copied into a raw inode buffer in 5251 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5252 * writeback. 5253 * 5254 * Note that we are absolutely dependent upon all inode dirtiers doing the 5255 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5256 * which we are interested. 5257 * 5258 * It would be a bug for them to not do this. The code: 5259 * 5260 * mark_inode_dirty(inode) 5261 * stuff(); 5262 * inode->i_size = expr; 5263 * 5264 * is in error because write_inode() could occur while `stuff()' is running, 5265 * and the new i_size will be lost. Plus the inode will no longer be on the 5266 * superblock's dirty inode list. 5267 */ 5268 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5269 { 5270 int err; 5271 5272 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5273 return 0; 5274 5275 if (EXT4_SB(inode->i_sb)->s_journal) { 5276 if (ext4_journal_current_handle()) { 5277 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5278 dump_stack(); 5279 return -EIO; 5280 } 5281 5282 /* 5283 * No need to force transaction in WB_SYNC_NONE mode. Also 5284 * ext4_sync_fs() will force the commit after everything is 5285 * written. 5286 */ 5287 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5288 return 0; 5289 5290 err = ext4_force_commit(inode->i_sb); 5291 } else { 5292 struct ext4_iloc iloc; 5293 5294 err = __ext4_get_inode_loc(inode, &iloc, 0); 5295 if (err) 5296 return err; 5297 /* 5298 * sync(2) will flush the whole buffer cache. No need to do 5299 * it here separately for each inode. 5300 */ 5301 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5302 sync_dirty_buffer(iloc.bh); 5303 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5304 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5305 "IO error syncing inode"); 5306 err = -EIO; 5307 } 5308 brelse(iloc.bh); 5309 } 5310 return err; 5311 } 5312 5313 /* 5314 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5315 * buffers that are attached to a page stradding i_size and are undergoing 5316 * commit. In that case we have to wait for commit to finish and try again. 5317 */ 5318 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5319 { 5320 struct page *page; 5321 unsigned offset; 5322 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5323 tid_t commit_tid = 0; 5324 int ret; 5325 5326 offset = inode->i_size & (PAGE_SIZE - 1); 5327 /* 5328 * All buffers in the last page remain valid? Then there's nothing to 5329 * do. We do the check mainly to optimize the common PAGE_SIZE == 5330 * blocksize case 5331 */ 5332 if (offset > PAGE_SIZE - i_blocksize(inode)) 5333 return; 5334 while (1) { 5335 page = find_lock_page(inode->i_mapping, 5336 inode->i_size >> PAGE_SHIFT); 5337 if (!page) 5338 return; 5339 ret = __ext4_journalled_invalidatepage(page, offset, 5340 PAGE_SIZE - offset); 5341 unlock_page(page); 5342 put_page(page); 5343 if (ret != -EBUSY) 5344 return; 5345 commit_tid = 0; 5346 read_lock(&journal->j_state_lock); 5347 if (journal->j_committing_transaction) 5348 commit_tid = journal->j_committing_transaction->t_tid; 5349 read_unlock(&journal->j_state_lock); 5350 if (commit_tid) 5351 jbd2_log_wait_commit(journal, commit_tid); 5352 } 5353 } 5354 5355 /* 5356 * ext4_setattr() 5357 * 5358 * Called from notify_change. 5359 * 5360 * We want to trap VFS attempts to truncate the file as soon as 5361 * possible. In particular, we want to make sure that when the VFS 5362 * shrinks i_size, we put the inode on the orphan list and modify 5363 * i_disksize immediately, so that during the subsequent flushing of 5364 * dirty pages and freeing of disk blocks, we can guarantee that any 5365 * commit will leave the blocks being flushed in an unused state on 5366 * disk. (On recovery, the inode will get truncated and the blocks will 5367 * be freed, so we have a strong guarantee that no future commit will 5368 * leave these blocks visible to the user.) 5369 * 5370 * Another thing we have to assure is that if we are in ordered mode 5371 * and inode is still attached to the committing transaction, we must 5372 * we start writeout of all the dirty pages which are being truncated. 5373 * This way we are sure that all the data written in the previous 5374 * transaction are already on disk (truncate waits for pages under 5375 * writeback). 5376 * 5377 * Called with inode->i_mutex down. 5378 */ 5379 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5380 { 5381 struct inode *inode = d_inode(dentry); 5382 int error, rc = 0; 5383 int orphan = 0; 5384 const unsigned int ia_valid = attr->ia_valid; 5385 5386 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5387 return -EIO; 5388 5389 error = setattr_prepare(dentry, attr); 5390 if (error) 5391 return error; 5392 5393 error = fscrypt_prepare_setattr(dentry, attr); 5394 if (error) 5395 return error; 5396 5397 if (is_quota_modification(inode, attr)) { 5398 error = dquot_initialize(inode); 5399 if (error) 5400 return error; 5401 } 5402 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5403 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5404 handle_t *handle; 5405 5406 /* (user+group)*(old+new) structure, inode write (sb, 5407 * inode block, ? - but truncate inode update has it) */ 5408 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5409 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5410 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5411 if (IS_ERR(handle)) { 5412 error = PTR_ERR(handle); 5413 goto err_out; 5414 } 5415 5416 /* dquot_transfer() calls back ext4_get_inode_usage() which 5417 * counts xattr inode references. 5418 */ 5419 down_read(&EXT4_I(inode)->xattr_sem); 5420 error = dquot_transfer(inode, attr); 5421 up_read(&EXT4_I(inode)->xattr_sem); 5422 5423 if (error) { 5424 ext4_journal_stop(handle); 5425 return error; 5426 } 5427 /* Update corresponding info in inode so that everything is in 5428 * one transaction */ 5429 if (attr->ia_valid & ATTR_UID) 5430 inode->i_uid = attr->ia_uid; 5431 if (attr->ia_valid & ATTR_GID) 5432 inode->i_gid = attr->ia_gid; 5433 error = ext4_mark_inode_dirty(handle, inode); 5434 ext4_journal_stop(handle); 5435 } 5436 5437 if (attr->ia_valid & ATTR_SIZE) { 5438 handle_t *handle; 5439 loff_t oldsize = inode->i_size; 5440 int shrink = (attr->ia_size <= inode->i_size); 5441 5442 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5443 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5444 5445 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5446 return -EFBIG; 5447 } 5448 if (!S_ISREG(inode->i_mode)) 5449 return -EINVAL; 5450 5451 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5452 inode_inc_iversion(inode); 5453 5454 if (ext4_should_order_data(inode) && 5455 (attr->ia_size < inode->i_size)) { 5456 error = ext4_begin_ordered_truncate(inode, 5457 attr->ia_size); 5458 if (error) 5459 goto err_out; 5460 } 5461 if (attr->ia_size != inode->i_size) { 5462 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5463 if (IS_ERR(handle)) { 5464 error = PTR_ERR(handle); 5465 goto err_out; 5466 } 5467 if (ext4_handle_valid(handle) && shrink) { 5468 error = ext4_orphan_add(handle, inode); 5469 orphan = 1; 5470 } 5471 /* 5472 * Update c/mtime on truncate up, ext4_truncate() will 5473 * update c/mtime in shrink case below 5474 */ 5475 if (!shrink) { 5476 inode->i_mtime = current_time(inode); 5477 inode->i_ctime = inode->i_mtime; 5478 } 5479 down_write(&EXT4_I(inode)->i_data_sem); 5480 EXT4_I(inode)->i_disksize = attr->ia_size; 5481 rc = ext4_mark_inode_dirty(handle, inode); 5482 if (!error) 5483 error = rc; 5484 /* 5485 * We have to update i_size under i_data_sem together 5486 * with i_disksize to avoid races with writeback code 5487 * running ext4_wb_update_i_disksize(). 5488 */ 5489 if (!error) 5490 i_size_write(inode, attr->ia_size); 5491 up_write(&EXT4_I(inode)->i_data_sem); 5492 ext4_journal_stop(handle); 5493 if (error) { 5494 if (orphan) 5495 ext4_orphan_del(NULL, inode); 5496 goto err_out; 5497 } 5498 } 5499 if (!shrink) 5500 pagecache_isize_extended(inode, oldsize, inode->i_size); 5501 5502 /* 5503 * Blocks are going to be removed from the inode. Wait 5504 * for dio in flight. Temporarily disable 5505 * dioread_nolock to prevent livelock. 5506 */ 5507 if (orphan) { 5508 if (!ext4_should_journal_data(inode)) { 5509 ext4_inode_block_unlocked_dio(inode); 5510 inode_dio_wait(inode); 5511 ext4_inode_resume_unlocked_dio(inode); 5512 } else 5513 ext4_wait_for_tail_page_commit(inode); 5514 } 5515 down_write(&EXT4_I(inode)->i_mmap_sem); 5516 /* 5517 * Truncate pagecache after we've waited for commit 5518 * in data=journal mode to make pages freeable. 5519 */ 5520 truncate_pagecache(inode, inode->i_size); 5521 if (shrink) { 5522 rc = ext4_truncate(inode); 5523 if (rc) 5524 error = rc; 5525 } 5526 up_write(&EXT4_I(inode)->i_mmap_sem); 5527 } 5528 5529 if (!error) { 5530 setattr_copy(inode, attr); 5531 mark_inode_dirty(inode); 5532 } 5533 5534 /* 5535 * If the call to ext4_truncate failed to get a transaction handle at 5536 * all, we need to clean up the in-core orphan list manually. 5537 */ 5538 if (orphan && inode->i_nlink) 5539 ext4_orphan_del(NULL, inode); 5540 5541 if (!error && (ia_valid & ATTR_MODE)) 5542 rc = posix_acl_chmod(inode, inode->i_mode); 5543 5544 err_out: 5545 ext4_std_error(inode->i_sb, error); 5546 if (!error) 5547 error = rc; 5548 return error; 5549 } 5550 5551 int ext4_getattr(const struct path *path, struct kstat *stat, 5552 u32 request_mask, unsigned int query_flags) 5553 { 5554 struct inode *inode = d_inode(path->dentry); 5555 struct ext4_inode *raw_inode; 5556 struct ext4_inode_info *ei = EXT4_I(inode); 5557 unsigned int flags; 5558 5559 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5560 stat->result_mask |= STATX_BTIME; 5561 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5562 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5563 } 5564 5565 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5566 if (flags & EXT4_APPEND_FL) 5567 stat->attributes |= STATX_ATTR_APPEND; 5568 if (flags & EXT4_COMPR_FL) 5569 stat->attributes |= STATX_ATTR_COMPRESSED; 5570 if (flags & EXT4_ENCRYPT_FL) 5571 stat->attributes |= STATX_ATTR_ENCRYPTED; 5572 if (flags & EXT4_IMMUTABLE_FL) 5573 stat->attributes |= STATX_ATTR_IMMUTABLE; 5574 if (flags & EXT4_NODUMP_FL) 5575 stat->attributes |= STATX_ATTR_NODUMP; 5576 5577 stat->attributes_mask |= (STATX_ATTR_APPEND | 5578 STATX_ATTR_COMPRESSED | 5579 STATX_ATTR_ENCRYPTED | 5580 STATX_ATTR_IMMUTABLE | 5581 STATX_ATTR_NODUMP); 5582 5583 generic_fillattr(inode, stat); 5584 return 0; 5585 } 5586 5587 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5588 u32 request_mask, unsigned int query_flags) 5589 { 5590 struct inode *inode = d_inode(path->dentry); 5591 u64 delalloc_blocks; 5592 5593 ext4_getattr(path, stat, request_mask, query_flags); 5594 5595 /* 5596 * If there is inline data in the inode, the inode will normally not 5597 * have data blocks allocated (it may have an external xattr block). 5598 * Report at least one sector for such files, so tools like tar, rsync, 5599 * others don't incorrectly think the file is completely sparse. 5600 */ 5601 if (unlikely(ext4_has_inline_data(inode))) 5602 stat->blocks += (stat->size + 511) >> 9; 5603 5604 /* 5605 * We can't update i_blocks if the block allocation is delayed 5606 * otherwise in the case of system crash before the real block 5607 * allocation is done, we will have i_blocks inconsistent with 5608 * on-disk file blocks. 5609 * We always keep i_blocks updated together with real 5610 * allocation. But to not confuse with user, stat 5611 * will return the blocks that include the delayed allocation 5612 * blocks for this file. 5613 */ 5614 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5615 EXT4_I(inode)->i_reserved_data_blocks); 5616 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5617 return 0; 5618 } 5619 5620 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5621 int pextents) 5622 { 5623 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5624 return ext4_ind_trans_blocks(inode, lblocks); 5625 return ext4_ext_index_trans_blocks(inode, pextents); 5626 } 5627 5628 /* 5629 * Account for index blocks, block groups bitmaps and block group 5630 * descriptor blocks if modify datablocks and index blocks 5631 * worse case, the indexs blocks spread over different block groups 5632 * 5633 * If datablocks are discontiguous, they are possible to spread over 5634 * different block groups too. If they are contiguous, with flexbg, 5635 * they could still across block group boundary. 5636 * 5637 * Also account for superblock, inode, quota and xattr blocks 5638 */ 5639 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5640 int pextents) 5641 { 5642 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5643 int gdpblocks; 5644 int idxblocks; 5645 int ret = 0; 5646 5647 /* 5648 * How many index blocks need to touch to map @lblocks logical blocks 5649 * to @pextents physical extents? 5650 */ 5651 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5652 5653 ret = idxblocks; 5654 5655 /* 5656 * Now let's see how many group bitmaps and group descriptors need 5657 * to account 5658 */ 5659 groups = idxblocks + pextents; 5660 gdpblocks = groups; 5661 if (groups > ngroups) 5662 groups = ngroups; 5663 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5664 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5665 5666 /* bitmaps and block group descriptor blocks */ 5667 ret += groups + gdpblocks; 5668 5669 /* Blocks for super block, inode, quota and xattr blocks */ 5670 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5671 5672 return ret; 5673 } 5674 5675 /* 5676 * Calculate the total number of credits to reserve to fit 5677 * the modification of a single pages into a single transaction, 5678 * which may include multiple chunks of block allocations. 5679 * 5680 * This could be called via ext4_write_begin() 5681 * 5682 * We need to consider the worse case, when 5683 * one new block per extent. 5684 */ 5685 int ext4_writepage_trans_blocks(struct inode *inode) 5686 { 5687 int bpp = ext4_journal_blocks_per_page(inode); 5688 int ret; 5689 5690 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5691 5692 /* Account for data blocks for journalled mode */ 5693 if (ext4_should_journal_data(inode)) 5694 ret += bpp; 5695 return ret; 5696 } 5697 5698 /* 5699 * Calculate the journal credits for a chunk of data modification. 5700 * 5701 * This is called from DIO, fallocate or whoever calling 5702 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5703 * 5704 * journal buffers for data blocks are not included here, as DIO 5705 * and fallocate do no need to journal data buffers. 5706 */ 5707 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5708 { 5709 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5710 } 5711 5712 /* 5713 * The caller must have previously called ext4_reserve_inode_write(). 5714 * Give this, we know that the caller already has write access to iloc->bh. 5715 */ 5716 int ext4_mark_iloc_dirty(handle_t *handle, 5717 struct inode *inode, struct ext4_iloc *iloc) 5718 { 5719 int err = 0; 5720 5721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5722 return -EIO; 5723 5724 if (IS_I_VERSION(inode)) 5725 inode_inc_iversion(inode); 5726 5727 /* the do_update_inode consumes one bh->b_count */ 5728 get_bh(iloc->bh); 5729 5730 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5731 err = ext4_do_update_inode(handle, inode, iloc); 5732 put_bh(iloc->bh); 5733 return err; 5734 } 5735 5736 /* 5737 * On success, We end up with an outstanding reference count against 5738 * iloc->bh. This _must_ be cleaned up later. 5739 */ 5740 5741 int 5742 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5743 struct ext4_iloc *iloc) 5744 { 5745 int err; 5746 5747 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5748 return -EIO; 5749 5750 err = ext4_get_inode_loc(inode, iloc); 5751 if (!err) { 5752 BUFFER_TRACE(iloc->bh, "get_write_access"); 5753 err = ext4_journal_get_write_access(handle, iloc->bh); 5754 if (err) { 5755 brelse(iloc->bh); 5756 iloc->bh = NULL; 5757 } 5758 } 5759 ext4_std_error(inode->i_sb, err); 5760 return err; 5761 } 5762 5763 static int __ext4_expand_extra_isize(struct inode *inode, 5764 unsigned int new_extra_isize, 5765 struct ext4_iloc *iloc, 5766 handle_t *handle, int *no_expand) 5767 { 5768 struct ext4_inode *raw_inode; 5769 struct ext4_xattr_ibody_header *header; 5770 int error; 5771 5772 raw_inode = ext4_raw_inode(iloc); 5773 5774 header = IHDR(inode, raw_inode); 5775 5776 /* No extended attributes present */ 5777 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5778 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5779 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5780 EXT4_I(inode)->i_extra_isize, 0, 5781 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5782 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5783 return 0; 5784 } 5785 5786 /* try to expand with EAs present */ 5787 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5788 raw_inode, handle); 5789 if (error) { 5790 /* 5791 * Inode size expansion failed; don't try again 5792 */ 5793 *no_expand = 1; 5794 } 5795 5796 return error; 5797 } 5798 5799 /* 5800 * Expand an inode by new_extra_isize bytes. 5801 * Returns 0 on success or negative error number on failure. 5802 */ 5803 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5804 unsigned int new_extra_isize, 5805 struct ext4_iloc iloc, 5806 handle_t *handle) 5807 { 5808 int no_expand; 5809 int error; 5810 5811 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5812 return -EOVERFLOW; 5813 5814 /* 5815 * In nojournal mode, we can immediately attempt to expand 5816 * the inode. When journaled, we first need to obtain extra 5817 * buffer credits since we may write into the EA block 5818 * with this same handle. If journal_extend fails, then it will 5819 * only result in a minor loss of functionality for that inode. 5820 * If this is felt to be critical, then e2fsck should be run to 5821 * force a large enough s_min_extra_isize. 5822 */ 5823 if (ext4_handle_valid(handle) && 5824 jbd2_journal_extend(handle, 5825 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5826 return -ENOSPC; 5827 5828 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5829 return -EBUSY; 5830 5831 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5832 handle, &no_expand); 5833 ext4_write_unlock_xattr(inode, &no_expand); 5834 5835 return error; 5836 } 5837 5838 int ext4_expand_extra_isize(struct inode *inode, 5839 unsigned int new_extra_isize, 5840 struct ext4_iloc *iloc) 5841 { 5842 handle_t *handle; 5843 int no_expand; 5844 int error, rc; 5845 5846 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5847 brelse(iloc->bh); 5848 return -EOVERFLOW; 5849 } 5850 5851 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5852 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5853 if (IS_ERR(handle)) { 5854 error = PTR_ERR(handle); 5855 brelse(iloc->bh); 5856 return error; 5857 } 5858 5859 ext4_write_lock_xattr(inode, &no_expand); 5860 5861 BUFFER_TRACE(iloc.bh, "get_write_access"); 5862 error = ext4_journal_get_write_access(handle, iloc->bh); 5863 if (error) { 5864 brelse(iloc->bh); 5865 goto out_stop; 5866 } 5867 5868 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5869 handle, &no_expand); 5870 5871 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5872 if (!error) 5873 error = rc; 5874 5875 ext4_write_unlock_xattr(inode, &no_expand); 5876 out_stop: 5877 ext4_journal_stop(handle); 5878 return error; 5879 } 5880 5881 /* 5882 * What we do here is to mark the in-core inode as clean with respect to inode 5883 * dirtiness (it may still be data-dirty). 5884 * This means that the in-core inode may be reaped by prune_icache 5885 * without having to perform any I/O. This is a very good thing, 5886 * because *any* task may call prune_icache - even ones which 5887 * have a transaction open against a different journal. 5888 * 5889 * Is this cheating? Not really. Sure, we haven't written the 5890 * inode out, but prune_icache isn't a user-visible syncing function. 5891 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5892 * we start and wait on commits. 5893 */ 5894 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5895 { 5896 struct ext4_iloc iloc; 5897 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5898 int err; 5899 5900 might_sleep(); 5901 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5902 err = ext4_reserve_inode_write(handle, inode, &iloc); 5903 if (err) 5904 return err; 5905 5906 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5907 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5908 iloc, handle); 5909 5910 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5911 } 5912 5913 /* 5914 * ext4_dirty_inode() is called from __mark_inode_dirty() 5915 * 5916 * We're really interested in the case where a file is being extended. 5917 * i_size has been changed by generic_commit_write() and we thus need 5918 * to include the updated inode in the current transaction. 5919 * 5920 * Also, dquot_alloc_block() will always dirty the inode when blocks 5921 * are allocated to the file. 5922 * 5923 * If the inode is marked synchronous, we don't honour that here - doing 5924 * so would cause a commit on atime updates, which we don't bother doing. 5925 * We handle synchronous inodes at the highest possible level. 5926 * 5927 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5928 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5929 * to copy into the on-disk inode structure are the timestamp files. 5930 */ 5931 void ext4_dirty_inode(struct inode *inode, int flags) 5932 { 5933 handle_t *handle; 5934 5935 if (flags == I_DIRTY_TIME) 5936 return; 5937 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5938 if (IS_ERR(handle)) 5939 goto out; 5940 5941 ext4_mark_inode_dirty(handle, inode); 5942 5943 ext4_journal_stop(handle); 5944 out: 5945 return; 5946 } 5947 5948 #if 0 5949 /* 5950 * Bind an inode's backing buffer_head into this transaction, to prevent 5951 * it from being flushed to disk early. Unlike 5952 * ext4_reserve_inode_write, this leaves behind no bh reference and 5953 * returns no iloc structure, so the caller needs to repeat the iloc 5954 * lookup to mark the inode dirty later. 5955 */ 5956 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5957 { 5958 struct ext4_iloc iloc; 5959 5960 int err = 0; 5961 if (handle) { 5962 err = ext4_get_inode_loc(inode, &iloc); 5963 if (!err) { 5964 BUFFER_TRACE(iloc.bh, "get_write_access"); 5965 err = jbd2_journal_get_write_access(handle, iloc.bh); 5966 if (!err) 5967 err = ext4_handle_dirty_metadata(handle, 5968 NULL, 5969 iloc.bh); 5970 brelse(iloc.bh); 5971 } 5972 } 5973 ext4_std_error(inode->i_sb, err); 5974 return err; 5975 } 5976 #endif 5977 5978 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5979 { 5980 journal_t *journal; 5981 handle_t *handle; 5982 int err; 5983 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5984 5985 /* 5986 * We have to be very careful here: changing a data block's 5987 * journaling status dynamically is dangerous. If we write a 5988 * data block to the journal, change the status and then delete 5989 * that block, we risk forgetting to revoke the old log record 5990 * from the journal and so a subsequent replay can corrupt data. 5991 * So, first we make sure that the journal is empty and that 5992 * nobody is changing anything. 5993 */ 5994 5995 journal = EXT4_JOURNAL(inode); 5996 if (!journal) 5997 return 0; 5998 if (is_journal_aborted(journal)) 5999 return -EROFS; 6000 6001 /* Wait for all existing dio workers */ 6002 ext4_inode_block_unlocked_dio(inode); 6003 inode_dio_wait(inode); 6004 6005 /* 6006 * Before flushing the journal and switching inode's aops, we have 6007 * to flush all dirty data the inode has. There can be outstanding 6008 * delayed allocations, there can be unwritten extents created by 6009 * fallocate or buffered writes in dioread_nolock mode covered by 6010 * dirty data which can be converted only after flushing the dirty 6011 * data (and journalled aops don't know how to handle these cases). 6012 */ 6013 if (val) { 6014 down_write(&EXT4_I(inode)->i_mmap_sem); 6015 err = filemap_write_and_wait(inode->i_mapping); 6016 if (err < 0) { 6017 up_write(&EXT4_I(inode)->i_mmap_sem); 6018 ext4_inode_resume_unlocked_dio(inode); 6019 return err; 6020 } 6021 } 6022 6023 percpu_down_write(&sbi->s_journal_flag_rwsem); 6024 jbd2_journal_lock_updates(journal); 6025 6026 /* 6027 * OK, there are no updates running now, and all cached data is 6028 * synced to disk. We are now in a completely consistent state 6029 * which doesn't have anything in the journal, and we know that 6030 * no filesystem updates are running, so it is safe to modify 6031 * the inode's in-core data-journaling state flag now. 6032 */ 6033 6034 if (val) 6035 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6036 else { 6037 err = jbd2_journal_flush(journal); 6038 if (err < 0) { 6039 jbd2_journal_unlock_updates(journal); 6040 percpu_up_write(&sbi->s_journal_flag_rwsem); 6041 ext4_inode_resume_unlocked_dio(inode); 6042 return err; 6043 } 6044 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6045 } 6046 ext4_set_aops(inode); 6047 6048 jbd2_journal_unlock_updates(journal); 6049 percpu_up_write(&sbi->s_journal_flag_rwsem); 6050 6051 if (val) 6052 up_write(&EXT4_I(inode)->i_mmap_sem); 6053 ext4_inode_resume_unlocked_dio(inode); 6054 6055 /* Finally we can mark the inode as dirty. */ 6056 6057 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6058 if (IS_ERR(handle)) 6059 return PTR_ERR(handle); 6060 6061 err = ext4_mark_inode_dirty(handle, inode); 6062 ext4_handle_sync(handle); 6063 ext4_journal_stop(handle); 6064 ext4_std_error(inode->i_sb, err); 6065 6066 return err; 6067 } 6068 6069 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6070 { 6071 return !buffer_mapped(bh); 6072 } 6073 6074 int ext4_page_mkwrite(struct vm_fault *vmf) 6075 { 6076 struct vm_area_struct *vma = vmf->vma; 6077 struct page *page = vmf->page; 6078 loff_t size; 6079 unsigned long len; 6080 int ret; 6081 struct file *file = vma->vm_file; 6082 struct inode *inode = file_inode(file); 6083 struct address_space *mapping = inode->i_mapping; 6084 handle_t *handle; 6085 get_block_t *get_block; 6086 int retries = 0; 6087 6088 sb_start_pagefault(inode->i_sb); 6089 file_update_time(vma->vm_file); 6090 6091 down_read(&EXT4_I(inode)->i_mmap_sem); 6092 6093 ret = ext4_convert_inline_data(inode); 6094 if (ret) 6095 goto out_ret; 6096 6097 /* Delalloc case is easy... */ 6098 if (test_opt(inode->i_sb, DELALLOC) && 6099 !ext4_should_journal_data(inode) && 6100 !ext4_nonda_switch(inode->i_sb)) { 6101 do { 6102 ret = block_page_mkwrite(vma, vmf, 6103 ext4_da_get_block_prep); 6104 } while (ret == -ENOSPC && 6105 ext4_should_retry_alloc(inode->i_sb, &retries)); 6106 goto out_ret; 6107 } 6108 6109 lock_page(page); 6110 size = i_size_read(inode); 6111 /* Page got truncated from under us? */ 6112 if (page->mapping != mapping || page_offset(page) > size) { 6113 unlock_page(page); 6114 ret = VM_FAULT_NOPAGE; 6115 goto out; 6116 } 6117 6118 if (page->index == size >> PAGE_SHIFT) 6119 len = size & ~PAGE_MASK; 6120 else 6121 len = PAGE_SIZE; 6122 /* 6123 * Return if we have all the buffers mapped. This avoids the need to do 6124 * journal_start/journal_stop which can block and take a long time 6125 */ 6126 if (page_has_buffers(page)) { 6127 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6128 0, len, NULL, 6129 ext4_bh_unmapped)) { 6130 /* Wait so that we don't change page under IO */ 6131 wait_for_stable_page(page); 6132 ret = VM_FAULT_LOCKED; 6133 goto out; 6134 } 6135 } 6136 unlock_page(page); 6137 /* OK, we need to fill the hole... */ 6138 if (ext4_should_dioread_nolock(inode)) 6139 get_block = ext4_get_block_unwritten; 6140 else 6141 get_block = ext4_get_block; 6142 retry_alloc: 6143 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6144 ext4_writepage_trans_blocks(inode)); 6145 if (IS_ERR(handle)) { 6146 ret = VM_FAULT_SIGBUS; 6147 goto out; 6148 } 6149 ret = block_page_mkwrite(vma, vmf, get_block); 6150 if (!ret && ext4_should_journal_data(inode)) { 6151 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6152 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6153 unlock_page(page); 6154 ret = VM_FAULT_SIGBUS; 6155 ext4_journal_stop(handle); 6156 goto out; 6157 } 6158 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6159 } 6160 ext4_journal_stop(handle); 6161 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6162 goto retry_alloc; 6163 out_ret: 6164 ret = block_page_mkwrite_return(ret); 6165 out: 6166 up_read(&EXT4_I(inode)->i_mmap_sem); 6167 sb_end_pagefault(inode->i_sb); 6168 return ret; 6169 } 6170 6171 int ext4_filemap_fault(struct vm_fault *vmf) 6172 { 6173 struct inode *inode = file_inode(vmf->vma->vm_file); 6174 int err; 6175 6176 down_read(&EXT4_I(inode)->i_mmap_sem); 6177 err = filemap_fault(vmf); 6178 up_read(&EXT4_I(inode)->i_mmap_sem); 6179 6180 return err; 6181 } 6182