1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode, 0); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 /* 457 * The ext4_map_blocks() function tries to look up the requested blocks, 458 * and returns if the blocks are already mapped. 459 * 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 461 * and store the allocated blocks in the result buffer head and mark it 462 * mapped. 463 * 464 * If file type is extents based, it will call ext4_ext_map_blocks(), 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 466 * based files 467 * 468 * On success, it returns the number of blocks being mapped or allocated. if 469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 470 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 471 * 472 * It returns 0 if plain look up failed (blocks have not been allocated), in 473 * that case, @map is returned as unmapped but we still do fill map->m_len to 474 * indicate the length of a hole starting at map->m_lblk. 475 * 476 * It returns the error in case of allocation failure. 477 */ 478 int ext4_map_blocks(handle_t *handle, struct inode *inode, 479 struct ext4_map_blocks *map, int flags) 480 { 481 struct extent_status es; 482 int retval; 483 int ret = 0; 484 #ifdef ES_AGGRESSIVE_TEST 485 struct ext4_map_blocks orig_map; 486 487 memcpy(&orig_map, map, sizeof(*map)); 488 #endif 489 490 map->m_flags = 0; 491 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 492 flags, map->m_len, (unsigned long) map->m_lblk); 493 494 /* 495 * ext4_map_blocks returns an int, and m_len is an unsigned int 496 */ 497 if (unlikely(map->m_len > INT_MAX)) 498 map->m_len = INT_MAX; 499 500 /* We can handle the block number less than EXT_MAX_BLOCKS */ 501 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 502 return -EFSCORRUPTED; 503 504 /* Lookup extent status tree firstly */ 505 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 506 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 507 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 508 map->m_pblk = ext4_es_pblock(&es) + 509 map->m_lblk - es.es_lblk; 510 map->m_flags |= ext4_es_is_written(&es) ? 511 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 512 retval = es.es_len - (map->m_lblk - es.es_lblk); 513 if (retval > map->m_len) 514 retval = map->m_len; 515 map->m_len = retval; 516 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 517 map->m_pblk = 0; 518 retval = es.es_len - (map->m_lblk - es.es_lblk); 519 if (retval > map->m_len) 520 retval = map->m_len; 521 map->m_len = retval; 522 retval = 0; 523 } else { 524 BUG(); 525 } 526 527 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 528 return retval; 529 #ifdef ES_AGGRESSIVE_TEST 530 ext4_map_blocks_es_recheck(handle, inode, map, 531 &orig_map, flags); 532 #endif 533 goto found; 534 } 535 /* 536 * In the query cache no-wait mode, nothing we can do more if we 537 * cannot find extent in the cache. 538 */ 539 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 540 return 0; 541 542 /* 543 * Try to see if we can get the block without requesting a new 544 * file system block. 545 */ 546 down_read(&EXT4_I(inode)->i_data_sem); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, 0); 549 } else { 550 retval = ext4_ind_map_blocks(handle, inode, map, 0); 551 } 552 if (retval > 0) { 553 unsigned int status; 554 555 if (unlikely(retval != map->m_len)) { 556 ext4_warning(inode->i_sb, 557 "ES len assertion failed for inode " 558 "%lu: retval %d != map->m_len %d", 559 inode->i_ino, retval, map->m_len); 560 WARN_ON(1); 561 } 562 563 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 566 !(status & EXTENT_STATUS_WRITTEN) && 567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 568 map->m_lblk + map->m_len - 1)) 569 status |= EXTENT_STATUS_DELAYED; 570 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 571 map->m_pblk, status); 572 } 573 up_read((&EXT4_I(inode)->i_data_sem)); 574 575 found: 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 582 /* If it is only a block(s) look up */ 583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 584 return retval; 585 586 /* 587 * Returns if the blocks have already allocated 588 * 589 * Note that if blocks have been preallocated 590 * ext4_ext_get_block() returns the create = 0 591 * with buffer head unmapped. 592 */ 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 594 /* 595 * If we need to convert extent to unwritten 596 * we continue and do the actual work in 597 * ext4_ext_map_blocks() 598 */ 599 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 600 return retval; 601 602 /* 603 * Here we clear m_flags because after allocating an new extent, 604 * it will be set again. 605 */ 606 map->m_flags &= ~EXT4_MAP_FLAGS; 607 608 /* 609 * New blocks allocate and/or writing to unwritten extent 610 * will possibly result in updating i_data, so we take 611 * the write lock of i_data_sem, and call get_block() 612 * with create == 1 flag. 613 */ 614 down_write(&EXT4_I(inode)->i_data_sem); 615 616 /* 617 * We need to check for EXT4 here because migrate 618 * could have changed the inode type in between 619 */ 620 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 621 retval = ext4_ext_map_blocks(handle, inode, map, flags); 622 } else { 623 retval = ext4_ind_map_blocks(handle, inode, map, flags); 624 625 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 626 /* 627 * We allocated new blocks which will result in 628 * i_data's format changing. Force the migrate 629 * to fail by clearing migrate flags 630 */ 631 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 632 } 633 } 634 635 if (retval > 0) { 636 unsigned int status; 637 638 if (unlikely(retval != map->m_len)) { 639 ext4_warning(inode->i_sb, 640 "ES len assertion failed for inode " 641 "%lu: retval %d != map->m_len %d", 642 inode->i_ino, retval, map->m_len); 643 WARN_ON(1); 644 } 645 646 /* 647 * We have to zeroout blocks before inserting them into extent 648 * status tree. Otherwise someone could look them up there and 649 * use them before they are really zeroed. We also have to 650 * unmap metadata before zeroing as otherwise writeback can 651 * overwrite zeros with stale data from block device. 652 */ 653 if (flags & EXT4_GET_BLOCKS_ZERO && 654 map->m_flags & EXT4_MAP_MAPPED && 655 map->m_flags & EXT4_MAP_NEW) { 656 ret = ext4_issue_zeroout(inode, map->m_lblk, 657 map->m_pblk, map->m_len); 658 if (ret) { 659 retval = ret; 660 goto out_sem; 661 } 662 } 663 664 /* 665 * If the extent has been zeroed out, we don't need to update 666 * extent status tree. 667 */ 668 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 669 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 670 if (ext4_es_is_written(&es)) 671 goto out_sem; 672 } 673 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 674 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 675 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 676 !(status & EXTENT_STATUS_WRITTEN) && 677 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 678 map->m_lblk + map->m_len - 1)) 679 status |= EXTENT_STATUS_DELAYED; 680 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 681 map->m_pblk, status); 682 } 683 684 out_sem: 685 up_write((&EXT4_I(inode)->i_data_sem)); 686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 687 ret = check_block_validity(inode, map); 688 if (ret != 0) 689 return ret; 690 691 /* 692 * Inodes with freshly allocated blocks where contents will be 693 * visible after transaction commit must be on transaction's 694 * ordered data list. 695 */ 696 if (map->m_flags & EXT4_MAP_NEW && 697 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 698 !(flags & EXT4_GET_BLOCKS_ZERO) && 699 !ext4_is_quota_file(inode) && 700 ext4_should_order_data(inode)) { 701 loff_t start_byte = 702 (loff_t)map->m_lblk << inode->i_blkbits; 703 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 704 705 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 706 ret = ext4_jbd2_inode_add_wait(handle, inode, 707 start_byte, length); 708 else 709 ret = ext4_jbd2_inode_add_write(handle, inode, 710 start_byte, length); 711 if (ret) 712 return ret; 713 } 714 } 715 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 716 map->m_flags & EXT4_MAP_MAPPED)) 717 ext4_fc_track_range(handle, inode, map->m_lblk, 718 map->m_lblk + map->m_len - 1); 719 if (retval < 0) 720 ext_debug(inode, "failed with err %d\n", retval); 721 return retval; 722 } 723 724 /* 725 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 726 * we have to be careful as someone else may be manipulating b_state as well. 727 */ 728 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 729 { 730 unsigned long old_state; 731 unsigned long new_state; 732 733 flags &= EXT4_MAP_FLAGS; 734 735 /* Dummy buffer_head? Set non-atomically. */ 736 if (!bh->b_page) { 737 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 738 return; 739 } 740 /* 741 * Someone else may be modifying b_state. Be careful! This is ugly but 742 * once we get rid of using bh as a container for mapping information 743 * to pass to / from get_block functions, this can go away. 744 */ 745 old_state = READ_ONCE(bh->b_state); 746 do { 747 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 748 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 749 } 750 751 static int _ext4_get_block(struct inode *inode, sector_t iblock, 752 struct buffer_head *bh, int flags) 753 { 754 struct ext4_map_blocks map; 755 int ret = 0; 756 757 if (ext4_has_inline_data(inode)) 758 return -ERANGE; 759 760 map.m_lblk = iblock; 761 map.m_len = bh->b_size >> inode->i_blkbits; 762 763 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 764 flags); 765 if (ret > 0) { 766 map_bh(bh, inode->i_sb, map.m_pblk); 767 ext4_update_bh_state(bh, map.m_flags); 768 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 769 ret = 0; 770 } else if (ret == 0) { 771 /* hole case, need to fill in bh->b_size */ 772 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 773 } 774 return ret; 775 } 776 777 int ext4_get_block(struct inode *inode, sector_t iblock, 778 struct buffer_head *bh, int create) 779 { 780 return _ext4_get_block(inode, iblock, bh, 781 create ? EXT4_GET_BLOCKS_CREATE : 0); 782 } 783 784 /* 785 * Get block function used when preparing for buffered write if we require 786 * creating an unwritten extent if blocks haven't been allocated. The extent 787 * will be converted to written after the IO is complete. 788 */ 789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 790 struct buffer_head *bh_result, int create) 791 { 792 int ret = 0; 793 794 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 795 inode->i_ino, create); 796 ret = _ext4_get_block(inode, iblock, bh_result, 797 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 798 799 /* 800 * If the buffer is marked unwritten, mark it as new to make sure it is 801 * zeroed out correctly in case of partial writes. Otherwise, there is 802 * a chance of stale data getting exposed. 803 */ 804 if (ret == 0 && buffer_unwritten(bh_result)) 805 set_buffer_new(bh_result); 806 807 return ret; 808 } 809 810 /* Maximum number of blocks we map for direct IO at once. */ 811 #define DIO_MAX_BLOCKS 4096 812 813 /* 814 * `handle' can be NULL if create is zero 815 */ 816 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 817 ext4_lblk_t block, int map_flags) 818 { 819 struct ext4_map_blocks map; 820 struct buffer_head *bh; 821 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 822 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 823 int err; 824 825 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 826 || handle != NULL || create == 0); 827 ASSERT(create == 0 || !nowait); 828 829 map.m_lblk = block; 830 map.m_len = 1; 831 err = ext4_map_blocks(handle, inode, &map, map_flags); 832 833 if (err == 0) 834 return create ? ERR_PTR(-ENOSPC) : NULL; 835 if (err < 0) 836 return ERR_PTR(err); 837 838 if (nowait) 839 return sb_find_get_block(inode->i_sb, map.m_pblk); 840 841 bh = sb_getblk(inode->i_sb, map.m_pblk); 842 if (unlikely(!bh)) 843 return ERR_PTR(-ENOMEM); 844 if (map.m_flags & EXT4_MAP_NEW) { 845 ASSERT(create != 0); 846 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 847 || (handle != NULL)); 848 849 /* 850 * Now that we do not always journal data, we should 851 * keep in mind whether this should always journal the 852 * new buffer as metadata. For now, regular file 853 * writes use ext4_get_block instead, so it's not a 854 * problem. 855 */ 856 lock_buffer(bh); 857 BUFFER_TRACE(bh, "call get_create_access"); 858 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 859 EXT4_JTR_NONE); 860 if (unlikely(err)) { 861 unlock_buffer(bh); 862 goto errout; 863 } 864 if (!buffer_uptodate(bh)) { 865 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 866 set_buffer_uptodate(bh); 867 } 868 unlock_buffer(bh); 869 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 870 err = ext4_handle_dirty_metadata(handle, inode, bh); 871 if (unlikely(err)) 872 goto errout; 873 } else 874 BUFFER_TRACE(bh, "not a new buffer"); 875 return bh; 876 errout: 877 brelse(bh); 878 return ERR_PTR(err); 879 } 880 881 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 882 ext4_lblk_t block, int map_flags) 883 { 884 struct buffer_head *bh; 885 int ret; 886 887 bh = ext4_getblk(handle, inode, block, map_flags); 888 if (IS_ERR(bh)) 889 return bh; 890 if (!bh || ext4_buffer_uptodate(bh)) 891 return bh; 892 893 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 894 if (ret) { 895 put_bh(bh); 896 return ERR_PTR(ret); 897 } 898 return bh; 899 } 900 901 /* Read a contiguous batch of blocks. */ 902 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 903 bool wait, struct buffer_head **bhs) 904 { 905 int i, err; 906 907 for (i = 0; i < bh_count; i++) { 908 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 909 if (IS_ERR(bhs[i])) { 910 err = PTR_ERR(bhs[i]); 911 bh_count = i; 912 goto out_brelse; 913 } 914 } 915 916 for (i = 0; i < bh_count; i++) 917 /* Note that NULL bhs[i] is valid because of holes. */ 918 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 919 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 920 921 if (!wait) 922 return 0; 923 924 for (i = 0; i < bh_count; i++) 925 if (bhs[i]) 926 wait_on_buffer(bhs[i]); 927 928 for (i = 0; i < bh_count; i++) { 929 if (bhs[i] && !buffer_uptodate(bhs[i])) { 930 err = -EIO; 931 goto out_brelse; 932 } 933 } 934 return 0; 935 936 out_brelse: 937 for (i = 0; i < bh_count; i++) { 938 brelse(bhs[i]); 939 bhs[i] = NULL; 940 } 941 return err; 942 } 943 944 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 945 struct buffer_head *head, 946 unsigned from, 947 unsigned to, 948 int *partial, 949 int (*fn)(handle_t *handle, struct inode *inode, 950 struct buffer_head *bh)) 951 { 952 struct buffer_head *bh; 953 unsigned block_start, block_end; 954 unsigned blocksize = head->b_size; 955 int err, ret = 0; 956 struct buffer_head *next; 957 958 for (bh = head, block_start = 0; 959 ret == 0 && (bh != head || !block_start); 960 block_start = block_end, bh = next) { 961 next = bh->b_this_page; 962 block_end = block_start + blocksize; 963 if (block_end <= from || block_start >= to) { 964 if (partial && !buffer_uptodate(bh)) 965 *partial = 1; 966 continue; 967 } 968 err = (*fn)(handle, inode, bh); 969 if (!ret) 970 ret = err; 971 } 972 return ret; 973 } 974 975 /* 976 * Helper for handling dirtying of journalled data. We also mark the folio as 977 * dirty so that writeback code knows about this page (and inode) contains 978 * dirty data. ext4_writepages() then commits appropriate transaction to 979 * make data stable. 980 */ 981 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 982 { 983 folio_mark_dirty(bh->b_folio); 984 return ext4_handle_dirty_metadata(handle, NULL, bh); 985 } 986 987 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 988 struct buffer_head *bh) 989 { 990 int dirty = buffer_dirty(bh); 991 int ret; 992 993 if (!buffer_mapped(bh) || buffer_freed(bh)) 994 return 0; 995 /* 996 * __block_write_begin() could have dirtied some buffers. Clean 997 * the dirty bit as jbd2_journal_get_write_access() could complain 998 * otherwise about fs integrity issues. Setting of the dirty bit 999 * by __block_write_begin() isn't a real problem here as we clear 1000 * the bit before releasing a page lock and thus writeback cannot 1001 * ever write the buffer. 1002 */ 1003 if (dirty) 1004 clear_buffer_dirty(bh); 1005 BUFFER_TRACE(bh, "get write access"); 1006 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1007 EXT4_JTR_NONE); 1008 if (!ret && dirty) 1009 ret = ext4_dirty_journalled_data(handle, bh); 1010 return ret; 1011 } 1012 1013 #ifdef CONFIG_FS_ENCRYPTION 1014 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1015 get_block_t *get_block) 1016 { 1017 unsigned from = pos & (PAGE_SIZE - 1); 1018 unsigned to = from + len; 1019 struct inode *inode = folio->mapping->host; 1020 unsigned block_start, block_end; 1021 sector_t block; 1022 int err = 0; 1023 unsigned blocksize = inode->i_sb->s_blocksize; 1024 unsigned bbits; 1025 struct buffer_head *bh, *head, *wait[2]; 1026 int nr_wait = 0; 1027 int i; 1028 1029 BUG_ON(!folio_test_locked(folio)); 1030 BUG_ON(from > PAGE_SIZE); 1031 BUG_ON(to > PAGE_SIZE); 1032 BUG_ON(from > to); 1033 1034 head = folio_buffers(folio); 1035 if (!head) { 1036 create_empty_buffers(&folio->page, blocksize, 0); 1037 head = folio_buffers(folio); 1038 } 1039 bbits = ilog2(blocksize); 1040 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1041 1042 for (bh = head, block_start = 0; bh != head || !block_start; 1043 block++, block_start = block_end, bh = bh->b_this_page) { 1044 block_end = block_start + blocksize; 1045 if (block_end <= from || block_start >= to) { 1046 if (folio_test_uptodate(folio)) { 1047 set_buffer_uptodate(bh); 1048 } 1049 continue; 1050 } 1051 if (buffer_new(bh)) 1052 clear_buffer_new(bh); 1053 if (!buffer_mapped(bh)) { 1054 WARN_ON(bh->b_size != blocksize); 1055 err = get_block(inode, block, bh, 1); 1056 if (err) 1057 break; 1058 if (buffer_new(bh)) { 1059 if (folio_test_uptodate(folio)) { 1060 clear_buffer_new(bh); 1061 set_buffer_uptodate(bh); 1062 mark_buffer_dirty(bh); 1063 continue; 1064 } 1065 if (block_end > to || block_start < from) 1066 folio_zero_segments(folio, to, 1067 block_end, 1068 block_start, from); 1069 continue; 1070 } 1071 } 1072 if (folio_test_uptodate(folio)) { 1073 set_buffer_uptodate(bh); 1074 continue; 1075 } 1076 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1077 !buffer_unwritten(bh) && 1078 (block_start < from || block_end > to)) { 1079 ext4_read_bh_lock(bh, 0, false); 1080 wait[nr_wait++] = bh; 1081 } 1082 } 1083 /* 1084 * If we issued read requests, let them complete. 1085 */ 1086 for (i = 0; i < nr_wait; i++) { 1087 wait_on_buffer(wait[i]); 1088 if (!buffer_uptodate(wait[i])) 1089 err = -EIO; 1090 } 1091 if (unlikely(err)) { 1092 folio_zero_new_buffers(folio, from, to); 1093 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1094 for (i = 0; i < nr_wait; i++) { 1095 int err2; 1096 1097 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1098 blocksize, bh_offset(wait[i])); 1099 if (err2) { 1100 clear_buffer_uptodate(wait[i]); 1101 err = err2; 1102 } 1103 } 1104 } 1105 1106 return err; 1107 } 1108 #endif 1109 1110 /* 1111 * To preserve ordering, it is essential that the hole instantiation and 1112 * the data write be encapsulated in a single transaction. We cannot 1113 * close off a transaction and start a new one between the ext4_get_block() 1114 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1115 * ext4_write_begin() is the right place. 1116 */ 1117 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1118 loff_t pos, unsigned len, 1119 struct page **pagep, void **fsdata) 1120 { 1121 struct inode *inode = mapping->host; 1122 int ret, needed_blocks; 1123 handle_t *handle; 1124 int retries = 0; 1125 struct folio *folio; 1126 pgoff_t index; 1127 unsigned from, to; 1128 1129 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1130 return -EIO; 1131 1132 trace_ext4_write_begin(inode, pos, len); 1133 /* 1134 * Reserve one block more for addition to orphan list in case 1135 * we allocate blocks but write fails for some reason 1136 */ 1137 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1138 index = pos >> PAGE_SHIFT; 1139 from = pos & (PAGE_SIZE - 1); 1140 to = from + len; 1141 1142 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1143 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1144 pagep); 1145 if (ret < 0) 1146 return ret; 1147 if (ret == 1) 1148 return 0; 1149 } 1150 1151 /* 1152 * __filemap_get_folio() can take a long time if the 1153 * system is thrashing due to memory pressure, or if the folio 1154 * is being written back. So grab it first before we start 1155 * the transaction handle. This also allows us to allocate 1156 * the folio (if needed) without using GFP_NOFS. 1157 */ 1158 retry_grab: 1159 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1160 mapping_gfp_mask(mapping)); 1161 if (IS_ERR(folio)) 1162 return PTR_ERR(folio); 1163 /* 1164 * The same as page allocation, we prealloc buffer heads before 1165 * starting the handle. 1166 */ 1167 if (!folio_buffers(folio)) 1168 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0); 1169 1170 folio_unlock(folio); 1171 1172 retry_journal: 1173 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1174 if (IS_ERR(handle)) { 1175 folio_put(folio); 1176 return PTR_ERR(handle); 1177 } 1178 1179 folio_lock(folio); 1180 if (folio->mapping != mapping) { 1181 /* The folio got truncated from under us */ 1182 folio_unlock(folio); 1183 folio_put(folio); 1184 ext4_journal_stop(handle); 1185 goto retry_grab; 1186 } 1187 /* In case writeback began while the folio was unlocked */ 1188 folio_wait_stable(folio); 1189 1190 #ifdef CONFIG_FS_ENCRYPTION 1191 if (ext4_should_dioread_nolock(inode)) 1192 ret = ext4_block_write_begin(folio, pos, len, 1193 ext4_get_block_unwritten); 1194 else 1195 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1196 #else 1197 if (ext4_should_dioread_nolock(inode)) 1198 ret = __block_write_begin(&folio->page, pos, len, 1199 ext4_get_block_unwritten); 1200 else 1201 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1202 #endif 1203 if (!ret && ext4_should_journal_data(inode)) { 1204 ret = ext4_walk_page_buffers(handle, inode, 1205 folio_buffers(folio), from, to, 1206 NULL, do_journal_get_write_access); 1207 } 1208 1209 if (ret) { 1210 bool extended = (pos + len > inode->i_size) && 1211 !ext4_verity_in_progress(inode); 1212 1213 folio_unlock(folio); 1214 /* 1215 * __block_write_begin may have instantiated a few blocks 1216 * outside i_size. Trim these off again. Don't need 1217 * i_size_read because we hold i_rwsem. 1218 * 1219 * Add inode to orphan list in case we crash before 1220 * truncate finishes 1221 */ 1222 if (extended && ext4_can_truncate(inode)) 1223 ext4_orphan_add(handle, inode); 1224 1225 ext4_journal_stop(handle); 1226 if (extended) { 1227 ext4_truncate_failed_write(inode); 1228 /* 1229 * If truncate failed early the inode might 1230 * still be on the orphan list; we need to 1231 * make sure the inode is removed from the 1232 * orphan list in that case. 1233 */ 1234 if (inode->i_nlink) 1235 ext4_orphan_del(NULL, inode); 1236 } 1237 1238 if (ret == -ENOSPC && 1239 ext4_should_retry_alloc(inode->i_sb, &retries)) 1240 goto retry_journal; 1241 folio_put(folio); 1242 return ret; 1243 } 1244 *pagep = &folio->page; 1245 return ret; 1246 } 1247 1248 /* For write_end() in data=journal mode */ 1249 static int write_end_fn(handle_t *handle, struct inode *inode, 1250 struct buffer_head *bh) 1251 { 1252 int ret; 1253 if (!buffer_mapped(bh) || buffer_freed(bh)) 1254 return 0; 1255 set_buffer_uptodate(bh); 1256 ret = ext4_dirty_journalled_data(handle, bh); 1257 clear_buffer_meta(bh); 1258 clear_buffer_prio(bh); 1259 return ret; 1260 } 1261 1262 /* 1263 * We need to pick up the new inode size which generic_commit_write gave us 1264 * `file' can be NULL - eg, when called from page_symlink(). 1265 * 1266 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1267 * buffers are managed internally. 1268 */ 1269 static int ext4_write_end(struct file *file, 1270 struct address_space *mapping, 1271 loff_t pos, unsigned len, unsigned copied, 1272 struct page *page, void *fsdata) 1273 { 1274 struct folio *folio = page_folio(page); 1275 handle_t *handle = ext4_journal_current_handle(); 1276 struct inode *inode = mapping->host; 1277 loff_t old_size = inode->i_size; 1278 int ret = 0, ret2; 1279 int i_size_changed = 0; 1280 bool verity = ext4_verity_in_progress(inode); 1281 1282 trace_ext4_write_end(inode, pos, len, copied); 1283 1284 if (ext4_has_inline_data(inode) && 1285 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1286 return ext4_write_inline_data_end(inode, pos, len, copied, 1287 folio); 1288 1289 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1290 /* 1291 * it's important to update i_size while still holding folio lock: 1292 * page writeout could otherwise come in and zero beyond i_size. 1293 * 1294 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1295 * blocks are being written past EOF, so skip the i_size update. 1296 */ 1297 if (!verity) 1298 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1299 folio_unlock(folio); 1300 folio_put(folio); 1301 1302 if (old_size < pos && !verity) 1303 pagecache_isize_extended(inode, old_size, pos); 1304 /* 1305 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1306 * makes the holding time of folio lock longer. Second, it forces lock 1307 * ordering of folio lock and transaction start for journaling 1308 * filesystems. 1309 */ 1310 if (i_size_changed) 1311 ret = ext4_mark_inode_dirty(handle, inode); 1312 1313 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1314 /* if we have allocated more blocks and copied 1315 * less. We will have blocks allocated outside 1316 * inode->i_size. So truncate them 1317 */ 1318 ext4_orphan_add(handle, inode); 1319 1320 ret2 = ext4_journal_stop(handle); 1321 if (!ret) 1322 ret = ret2; 1323 1324 if (pos + len > inode->i_size && !verity) { 1325 ext4_truncate_failed_write(inode); 1326 /* 1327 * If truncate failed early the inode might still be 1328 * on the orphan list; we need to make sure the inode 1329 * is removed from the orphan list in that case. 1330 */ 1331 if (inode->i_nlink) 1332 ext4_orphan_del(NULL, inode); 1333 } 1334 1335 return ret ? ret : copied; 1336 } 1337 1338 /* 1339 * This is a private version of folio_zero_new_buffers() which doesn't 1340 * set the buffer to be dirty, since in data=journalled mode we need 1341 * to call ext4_dirty_journalled_data() instead. 1342 */ 1343 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1344 struct inode *inode, 1345 struct folio *folio, 1346 unsigned from, unsigned to) 1347 { 1348 unsigned int block_start = 0, block_end; 1349 struct buffer_head *head, *bh; 1350 1351 bh = head = folio_buffers(folio); 1352 do { 1353 block_end = block_start + bh->b_size; 1354 if (buffer_new(bh)) { 1355 if (block_end > from && block_start < to) { 1356 if (!folio_test_uptodate(folio)) { 1357 unsigned start, size; 1358 1359 start = max(from, block_start); 1360 size = min(to, block_end) - start; 1361 1362 folio_zero_range(folio, start, size); 1363 write_end_fn(handle, inode, bh); 1364 } 1365 clear_buffer_new(bh); 1366 } 1367 } 1368 block_start = block_end; 1369 bh = bh->b_this_page; 1370 } while (bh != head); 1371 } 1372 1373 static int ext4_journalled_write_end(struct file *file, 1374 struct address_space *mapping, 1375 loff_t pos, unsigned len, unsigned copied, 1376 struct page *page, void *fsdata) 1377 { 1378 struct folio *folio = page_folio(page); 1379 handle_t *handle = ext4_journal_current_handle(); 1380 struct inode *inode = mapping->host; 1381 loff_t old_size = inode->i_size; 1382 int ret = 0, ret2; 1383 int partial = 0; 1384 unsigned from, to; 1385 int size_changed = 0; 1386 bool verity = ext4_verity_in_progress(inode); 1387 1388 trace_ext4_journalled_write_end(inode, pos, len, copied); 1389 from = pos & (PAGE_SIZE - 1); 1390 to = from + len; 1391 1392 BUG_ON(!ext4_handle_valid(handle)); 1393 1394 if (ext4_has_inline_data(inode)) 1395 return ext4_write_inline_data_end(inode, pos, len, copied, 1396 folio); 1397 1398 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1399 copied = 0; 1400 ext4_journalled_zero_new_buffers(handle, inode, folio, 1401 from, to); 1402 } else { 1403 if (unlikely(copied < len)) 1404 ext4_journalled_zero_new_buffers(handle, inode, folio, 1405 from + copied, to); 1406 ret = ext4_walk_page_buffers(handle, inode, 1407 folio_buffers(folio), 1408 from, from + copied, &partial, 1409 write_end_fn); 1410 if (!partial) 1411 folio_mark_uptodate(folio); 1412 } 1413 if (!verity) 1414 size_changed = ext4_update_inode_size(inode, pos + copied); 1415 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1416 folio_unlock(folio); 1417 folio_put(folio); 1418 1419 if (old_size < pos && !verity) 1420 pagecache_isize_extended(inode, old_size, pos); 1421 1422 if (size_changed) { 1423 ret2 = ext4_mark_inode_dirty(handle, inode); 1424 if (!ret) 1425 ret = ret2; 1426 } 1427 1428 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1429 /* if we have allocated more blocks and copied 1430 * less. We will have blocks allocated outside 1431 * inode->i_size. So truncate them 1432 */ 1433 ext4_orphan_add(handle, inode); 1434 1435 ret2 = ext4_journal_stop(handle); 1436 if (!ret) 1437 ret = ret2; 1438 if (pos + len > inode->i_size && !verity) { 1439 ext4_truncate_failed_write(inode); 1440 /* 1441 * If truncate failed early the inode might still be 1442 * on the orphan list; we need to make sure the inode 1443 * is removed from the orphan list in that case. 1444 */ 1445 if (inode->i_nlink) 1446 ext4_orphan_del(NULL, inode); 1447 } 1448 1449 return ret ? ret : copied; 1450 } 1451 1452 /* 1453 * Reserve space for a single cluster 1454 */ 1455 static int ext4_da_reserve_space(struct inode *inode) 1456 { 1457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1458 struct ext4_inode_info *ei = EXT4_I(inode); 1459 int ret; 1460 1461 /* 1462 * We will charge metadata quota at writeout time; this saves 1463 * us from metadata over-estimation, though we may go over by 1464 * a small amount in the end. Here we just reserve for data. 1465 */ 1466 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1467 if (ret) 1468 return ret; 1469 1470 spin_lock(&ei->i_block_reservation_lock); 1471 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1472 spin_unlock(&ei->i_block_reservation_lock); 1473 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1474 return -ENOSPC; 1475 } 1476 ei->i_reserved_data_blocks++; 1477 trace_ext4_da_reserve_space(inode); 1478 spin_unlock(&ei->i_block_reservation_lock); 1479 1480 return 0; /* success */ 1481 } 1482 1483 void ext4_da_release_space(struct inode *inode, int to_free) 1484 { 1485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1486 struct ext4_inode_info *ei = EXT4_I(inode); 1487 1488 if (!to_free) 1489 return; /* Nothing to release, exit */ 1490 1491 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1492 1493 trace_ext4_da_release_space(inode, to_free); 1494 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1495 /* 1496 * if there aren't enough reserved blocks, then the 1497 * counter is messed up somewhere. Since this 1498 * function is called from invalidate page, it's 1499 * harmless to return without any action. 1500 */ 1501 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1502 "ino %lu, to_free %d with only %d reserved " 1503 "data blocks", inode->i_ino, to_free, 1504 ei->i_reserved_data_blocks); 1505 WARN_ON(1); 1506 to_free = ei->i_reserved_data_blocks; 1507 } 1508 ei->i_reserved_data_blocks -= to_free; 1509 1510 /* update fs dirty data blocks counter */ 1511 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1512 1513 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1514 1515 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1516 } 1517 1518 /* 1519 * Delayed allocation stuff 1520 */ 1521 1522 struct mpage_da_data { 1523 /* These are input fields for ext4_do_writepages() */ 1524 struct inode *inode; 1525 struct writeback_control *wbc; 1526 unsigned int can_map:1; /* Can writepages call map blocks? */ 1527 1528 /* These are internal state of ext4_do_writepages() */ 1529 pgoff_t first_page; /* The first page to write */ 1530 pgoff_t next_page; /* Current page to examine */ 1531 pgoff_t last_page; /* Last page to examine */ 1532 /* 1533 * Extent to map - this can be after first_page because that can be 1534 * fully mapped. We somewhat abuse m_flags to store whether the extent 1535 * is delalloc or unwritten. 1536 */ 1537 struct ext4_map_blocks map; 1538 struct ext4_io_submit io_submit; /* IO submission data */ 1539 unsigned int do_map:1; 1540 unsigned int scanned_until_end:1; 1541 unsigned int journalled_more_data:1; 1542 }; 1543 1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1545 bool invalidate) 1546 { 1547 unsigned nr, i; 1548 pgoff_t index, end; 1549 struct folio_batch fbatch; 1550 struct inode *inode = mpd->inode; 1551 struct address_space *mapping = inode->i_mapping; 1552 1553 /* This is necessary when next_page == 0. */ 1554 if (mpd->first_page >= mpd->next_page) 1555 return; 1556 1557 mpd->scanned_until_end = 0; 1558 index = mpd->first_page; 1559 end = mpd->next_page - 1; 1560 if (invalidate) { 1561 ext4_lblk_t start, last; 1562 start = index << (PAGE_SHIFT - inode->i_blkbits); 1563 last = end << (PAGE_SHIFT - inode->i_blkbits); 1564 1565 /* 1566 * avoid racing with extent status tree scans made by 1567 * ext4_insert_delayed_block() 1568 */ 1569 down_write(&EXT4_I(inode)->i_data_sem); 1570 ext4_es_remove_extent(inode, start, last - start + 1); 1571 up_write(&EXT4_I(inode)->i_data_sem); 1572 } 1573 1574 folio_batch_init(&fbatch); 1575 while (index <= end) { 1576 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1577 if (nr == 0) 1578 break; 1579 for (i = 0; i < nr; i++) { 1580 struct folio *folio = fbatch.folios[i]; 1581 1582 if (folio->index < mpd->first_page) 1583 continue; 1584 if (folio_next_index(folio) - 1 > end) 1585 continue; 1586 BUG_ON(!folio_test_locked(folio)); 1587 BUG_ON(folio_test_writeback(folio)); 1588 if (invalidate) { 1589 if (folio_mapped(folio)) 1590 folio_clear_dirty_for_io(folio); 1591 block_invalidate_folio(folio, 0, 1592 folio_size(folio)); 1593 folio_clear_uptodate(folio); 1594 } 1595 folio_unlock(folio); 1596 } 1597 folio_batch_release(&fbatch); 1598 } 1599 } 1600 1601 static void ext4_print_free_blocks(struct inode *inode) 1602 { 1603 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1604 struct super_block *sb = inode->i_sb; 1605 struct ext4_inode_info *ei = EXT4_I(inode); 1606 1607 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1608 EXT4_C2B(EXT4_SB(inode->i_sb), 1609 ext4_count_free_clusters(sb))); 1610 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1611 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1612 (long long) EXT4_C2B(EXT4_SB(sb), 1613 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1614 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1615 (long long) EXT4_C2B(EXT4_SB(sb), 1616 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1617 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1618 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1619 ei->i_reserved_data_blocks); 1620 return; 1621 } 1622 1623 /* 1624 * ext4_insert_delayed_block - adds a delayed block to the extents status 1625 * tree, incrementing the reserved cluster/block 1626 * count or making a pending reservation 1627 * where needed 1628 * 1629 * @inode - file containing the newly added block 1630 * @lblk - logical block to be added 1631 * 1632 * Returns 0 on success, negative error code on failure. 1633 */ 1634 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1635 { 1636 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1637 int ret; 1638 bool allocated = false; 1639 1640 /* 1641 * If the cluster containing lblk is shared with a delayed, 1642 * written, or unwritten extent in a bigalloc file system, it's 1643 * already been accounted for and does not need to be reserved. 1644 * A pending reservation must be made for the cluster if it's 1645 * shared with a written or unwritten extent and doesn't already 1646 * have one. Written and unwritten extents can be purged from the 1647 * extents status tree if the system is under memory pressure, so 1648 * it's necessary to examine the extent tree if a search of the 1649 * extents status tree doesn't get a match. 1650 */ 1651 if (sbi->s_cluster_ratio == 1) { 1652 ret = ext4_da_reserve_space(inode); 1653 if (ret != 0) /* ENOSPC */ 1654 return ret; 1655 } else { /* bigalloc */ 1656 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1657 if (!ext4_es_scan_clu(inode, 1658 &ext4_es_is_mapped, lblk)) { 1659 ret = ext4_clu_mapped(inode, 1660 EXT4_B2C(sbi, lblk)); 1661 if (ret < 0) 1662 return ret; 1663 if (ret == 0) { 1664 ret = ext4_da_reserve_space(inode); 1665 if (ret != 0) /* ENOSPC */ 1666 return ret; 1667 } else { 1668 allocated = true; 1669 } 1670 } else { 1671 allocated = true; 1672 } 1673 } 1674 } 1675 1676 ext4_es_insert_delayed_block(inode, lblk, allocated); 1677 return 0; 1678 } 1679 1680 /* 1681 * This function is grabs code from the very beginning of 1682 * ext4_map_blocks, but assumes that the caller is from delayed write 1683 * time. This function looks up the requested blocks and sets the 1684 * buffer delay bit under the protection of i_data_sem. 1685 */ 1686 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1687 struct ext4_map_blocks *map, 1688 struct buffer_head *bh) 1689 { 1690 struct extent_status es; 1691 int retval; 1692 sector_t invalid_block = ~((sector_t) 0xffff); 1693 #ifdef ES_AGGRESSIVE_TEST 1694 struct ext4_map_blocks orig_map; 1695 1696 memcpy(&orig_map, map, sizeof(*map)); 1697 #endif 1698 1699 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1700 invalid_block = ~0; 1701 1702 map->m_flags = 0; 1703 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1704 (unsigned long) map->m_lblk); 1705 1706 /* Lookup extent status tree firstly */ 1707 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1708 if (ext4_es_is_hole(&es)) { 1709 retval = 0; 1710 down_read(&EXT4_I(inode)->i_data_sem); 1711 goto add_delayed; 1712 } 1713 1714 /* 1715 * Delayed extent could be allocated by fallocate. 1716 * So we need to check it. 1717 */ 1718 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1719 map_bh(bh, inode->i_sb, invalid_block); 1720 set_buffer_new(bh); 1721 set_buffer_delay(bh); 1722 return 0; 1723 } 1724 1725 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1726 retval = es.es_len - (iblock - es.es_lblk); 1727 if (retval > map->m_len) 1728 retval = map->m_len; 1729 map->m_len = retval; 1730 if (ext4_es_is_written(&es)) 1731 map->m_flags |= EXT4_MAP_MAPPED; 1732 else if (ext4_es_is_unwritten(&es)) 1733 map->m_flags |= EXT4_MAP_UNWRITTEN; 1734 else 1735 BUG(); 1736 1737 #ifdef ES_AGGRESSIVE_TEST 1738 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1739 #endif 1740 return retval; 1741 } 1742 1743 /* 1744 * Try to see if we can get the block without requesting a new 1745 * file system block. 1746 */ 1747 down_read(&EXT4_I(inode)->i_data_sem); 1748 if (ext4_has_inline_data(inode)) 1749 retval = 0; 1750 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1751 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1752 else 1753 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1754 1755 add_delayed: 1756 if (retval == 0) { 1757 int ret; 1758 1759 /* 1760 * XXX: __block_prepare_write() unmaps passed block, 1761 * is it OK? 1762 */ 1763 1764 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1765 if (ret != 0) { 1766 retval = ret; 1767 goto out_unlock; 1768 } 1769 1770 map_bh(bh, inode->i_sb, invalid_block); 1771 set_buffer_new(bh); 1772 set_buffer_delay(bh); 1773 } else if (retval > 0) { 1774 unsigned int status; 1775 1776 if (unlikely(retval != map->m_len)) { 1777 ext4_warning(inode->i_sb, 1778 "ES len assertion failed for inode " 1779 "%lu: retval %d != map->m_len %d", 1780 inode->i_ino, retval, map->m_len); 1781 WARN_ON(1); 1782 } 1783 1784 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1785 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1786 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1787 map->m_pblk, status); 1788 } 1789 1790 out_unlock: 1791 up_read((&EXT4_I(inode)->i_data_sem)); 1792 1793 return retval; 1794 } 1795 1796 /* 1797 * This is a special get_block_t callback which is used by 1798 * ext4_da_write_begin(). It will either return mapped block or 1799 * reserve space for a single block. 1800 * 1801 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1802 * We also have b_blocknr = -1 and b_bdev initialized properly 1803 * 1804 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1805 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1806 * initialized properly. 1807 */ 1808 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1809 struct buffer_head *bh, int create) 1810 { 1811 struct ext4_map_blocks map; 1812 int ret = 0; 1813 1814 BUG_ON(create == 0); 1815 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1816 1817 map.m_lblk = iblock; 1818 map.m_len = 1; 1819 1820 /* 1821 * first, we need to know whether the block is allocated already 1822 * preallocated blocks are unmapped but should treated 1823 * the same as allocated blocks. 1824 */ 1825 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1826 if (ret <= 0) 1827 return ret; 1828 1829 map_bh(bh, inode->i_sb, map.m_pblk); 1830 ext4_update_bh_state(bh, map.m_flags); 1831 1832 if (buffer_unwritten(bh)) { 1833 /* A delayed write to unwritten bh should be marked 1834 * new and mapped. Mapped ensures that we don't do 1835 * get_block multiple times when we write to the same 1836 * offset and new ensures that we do proper zero out 1837 * for partial write. 1838 */ 1839 set_buffer_new(bh); 1840 set_buffer_mapped(bh); 1841 } 1842 return 0; 1843 } 1844 1845 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1846 { 1847 mpd->first_page += folio_nr_pages(folio); 1848 folio_unlock(folio); 1849 } 1850 1851 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1852 { 1853 size_t len; 1854 loff_t size; 1855 int err; 1856 1857 BUG_ON(folio->index != mpd->first_page); 1858 folio_clear_dirty_for_io(folio); 1859 /* 1860 * We have to be very careful here! Nothing protects writeback path 1861 * against i_size changes and the page can be writeably mapped into 1862 * page tables. So an application can be growing i_size and writing 1863 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1864 * write-protects our page in page tables and the page cannot get 1865 * written to again until we release folio lock. So only after 1866 * folio_clear_dirty_for_io() we are safe to sample i_size for 1867 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1868 * on the barrier provided by folio_test_clear_dirty() in 1869 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1870 * after page tables are updated. 1871 */ 1872 size = i_size_read(mpd->inode); 1873 len = folio_size(folio); 1874 if (folio_pos(folio) + len > size && 1875 !ext4_verity_in_progress(mpd->inode)) 1876 len = size & ~PAGE_MASK; 1877 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1878 if (!err) 1879 mpd->wbc->nr_to_write--; 1880 1881 return err; 1882 } 1883 1884 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1885 1886 /* 1887 * mballoc gives us at most this number of blocks... 1888 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1889 * The rest of mballoc seems to handle chunks up to full group size. 1890 */ 1891 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1892 1893 /* 1894 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1895 * 1896 * @mpd - extent of blocks 1897 * @lblk - logical number of the block in the file 1898 * @bh - buffer head we want to add to the extent 1899 * 1900 * The function is used to collect contig. blocks in the same state. If the 1901 * buffer doesn't require mapping for writeback and we haven't started the 1902 * extent of buffers to map yet, the function returns 'true' immediately - the 1903 * caller can write the buffer right away. Otherwise the function returns true 1904 * if the block has been added to the extent, false if the block couldn't be 1905 * added. 1906 */ 1907 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1908 struct buffer_head *bh) 1909 { 1910 struct ext4_map_blocks *map = &mpd->map; 1911 1912 /* Buffer that doesn't need mapping for writeback? */ 1913 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1914 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1915 /* So far no extent to map => we write the buffer right away */ 1916 if (map->m_len == 0) 1917 return true; 1918 return false; 1919 } 1920 1921 /* First block in the extent? */ 1922 if (map->m_len == 0) { 1923 /* We cannot map unless handle is started... */ 1924 if (!mpd->do_map) 1925 return false; 1926 map->m_lblk = lblk; 1927 map->m_len = 1; 1928 map->m_flags = bh->b_state & BH_FLAGS; 1929 return true; 1930 } 1931 1932 /* Don't go larger than mballoc is willing to allocate */ 1933 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1934 return false; 1935 1936 /* Can we merge the block to our big extent? */ 1937 if (lblk == map->m_lblk + map->m_len && 1938 (bh->b_state & BH_FLAGS) == map->m_flags) { 1939 map->m_len++; 1940 return true; 1941 } 1942 return false; 1943 } 1944 1945 /* 1946 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1947 * 1948 * @mpd - extent of blocks for mapping 1949 * @head - the first buffer in the page 1950 * @bh - buffer we should start processing from 1951 * @lblk - logical number of the block in the file corresponding to @bh 1952 * 1953 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1954 * the page for IO if all buffers in this page were mapped and there's no 1955 * accumulated extent of buffers to map or add buffers in the page to the 1956 * extent of buffers to map. The function returns 1 if the caller can continue 1957 * by processing the next page, 0 if it should stop adding buffers to the 1958 * extent to map because we cannot extend it anymore. It can also return value 1959 * < 0 in case of error during IO submission. 1960 */ 1961 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1962 struct buffer_head *head, 1963 struct buffer_head *bh, 1964 ext4_lblk_t lblk) 1965 { 1966 struct inode *inode = mpd->inode; 1967 int err; 1968 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1969 >> inode->i_blkbits; 1970 1971 if (ext4_verity_in_progress(inode)) 1972 blocks = EXT_MAX_BLOCKS; 1973 1974 do { 1975 BUG_ON(buffer_locked(bh)); 1976 1977 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1978 /* Found extent to map? */ 1979 if (mpd->map.m_len) 1980 return 0; 1981 /* Buffer needs mapping and handle is not started? */ 1982 if (!mpd->do_map) 1983 return 0; 1984 /* Everything mapped so far and we hit EOF */ 1985 break; 1986 } 1987 } while (lblk++, (bh = bh->b_this_page) != head); 1988 /* So far everything mapped? Submit the page for IO. */ 1989 if (mpd->map.m_len == 0) { 1990 err = mpage_submit_folio(mpd, head->b_folio); 1991 if (err < 0) 1992 return err; 1993 mpage_folio_done(mpd, head->b_folio); 1994 } 1995 if (lblk >= blocks) { 1996 mpd->scanned_until_end = 1; 1997 return 0; 1998 } 1999 return 1; 2000 } 2001 2002 /* 2003 * mpage_process_folio - update folio buffers corresponding to changed extent 2004 * and may submit fully mapped page for IO 2005 * @mpd: description of extent to map, on return next extent to map 2006 * @folio: Contains these buffers. 2007 * @m_lblk: logical block mapping. 2008 * @m_pblk: corresponding physical mapping. 2009 * @map_bh: determines on return whether this page requires any further 2010 * mapping or not. 2011 * 2012 * Scan given folio buffers corresponding to changed extent and update buffer 2013 * state according to new extent state. 2014 * We map delalloc buffers to their physical location, clear unwritten bits. 2015 * If the given folio is not fully mapped, we update @mpd to the next extent in 2016 * the given folio that needs mapping & return @map_bh as true. 2017 */ 2018 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2019 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2020 bool *map_bh) 2021 { 2022 struct buffer_head *head, *bh; 2023 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2024 ext4_lblk_t lblk = *m_lblk; 2025 ext4_fsblk_t pblock = *m_pblk; 2026 int err = 0; 2027 int blkbits = mpd->inode->i_blkbits; 2028 ssize_t io_end_size = 0; 2029 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2030 2031 bh = head = folio_buffers(folio); 2032 do { 2033 if (lblk < mpd->map.m_lblk) 2034 continue; 2035 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2036 /* 2037 * Buffer after end of mapped extent. 2038 * Find next buffer in the folio to map. 2039 */ 2040 mpd->map.m_len = 0; 2041 mpd->map.m_flags = 0; 2042 io_end_vec->size += io_end_size; 2043 2044 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2045 if (err > 0) 2046 err = 0; 2047 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2048 io_end_vec = ext4_alloc_io_end_vec(io_end); 2049 if (IS_ERR(io_end_vec)) { 2050 err = PTR_ERR(io_end_vec); 2051 goto out; 2052 } 2053 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2054 } 2055 *map_bh = true; 2056 goto out; 2057 } 2058 if (buffer_delay(bh)) { 2059 clear_buffer_delay(bh); 2060 bh->b_blocknr = pblock++; 2061 } 2062 clear_buffer_unwritten(bh); 2063 io_end_size += (1 << blkbits); 2064 } while (lblk++, (bh = bh->b_this_page) != head); 2065 2066 io_end_vec->size += io_end_size; 2067 *map_bh = false; 2068 out: 2069 *m_lblk = lblk; 2070 *m_pblk = pblock; 2071 return err; 2072 } 2073 2074 /* 2075 * mpage_map_buffers - update buffers corresponding to changed extent and 2076 * submit fully mapped pages for IO 2077 * 2078 * @mpd - description of extent to map, on return next extent to map 2079 * 2080 * Scan buffers corresponding to changed extent (we expect corresponding pages 2081 * to be already locked) and update buffer state according to new extent state. 2082 * We map delalloc buffers to their physical location, clear unwritten bits, 2083 * and mark buffers as uninit when we perform writes to unwritten extents 2084 * and do extent conversion after IO is finished. If the last page is not fully 2085 * mapped, we update @map to the next extent in the last page that needs 2086 * mapping. Otherwise we submit the page for IO. 2087 */ 2088 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2089 { 2090 struct folio_batch fbatch; 2091 unsigned nr, i; 2092 struct inode *inode = mpd->inode; 2093 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2094 pgoff_t start, end; 2095 ext4_lblk_t lblk; 2096 ext4_fsblk_t pblock; 2097 int err; 2098 bool map_bh = false; 2099 2100 start = mpd->map.m_lblk >> bpp_bits; 2101 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2102 lblk = start << bpp_bits; 2103 pblock = mpd->map.m_pblk; 2104 2105 folio_batch_init(&fbatch); 2106 while (start <= end) { 2107 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2108 if (nr == 0) 2109 break; 2110 for (i = 0; i < nr; i++) { 2111 struct folio *folio = fbatch.folios[i]; 2112 2113 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2114 &map_bh); 2115 /* 2116 * If map_bh is true, means page may require further bh 2117 * mapping, or maybe the page was submitted for IO. 2118 * So we return to call further extent mapping. 2119 */ 2120 if (err < 0 || map_bh) 2121 goto out; 2122 /* Page fully mapped - let IO run! */ 2123 err = mpage_submit_folio(mpd, folio); 2124 if (err < 0) 2125 goto out; 2126 mpage_folio_done(mpd, folio); 2127 } 2128 folio_batch_release(&fbatch); 2129 } 2130 /* Extent fully mapped and matches with page boundary. We are done. */ 2131 mpd->map.m_len = 0; 2132 mpd->map.m_flags = 0; 2133 return 0; 2134 out: 2135 folio_batch_release(&fbatch); 2136 return err; 2137 } 2138 2139 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2140 { 2141 struct inode *inode = mpd->inode; 2142 struct ext4_map_blocks *map = &mpd->map; 2143 int get_blocks_flags; 2144 int err, dioread_nolock; 2145 2146 trace_ext4_da_write_pages_extent(inode, map); 2147 /* 2148 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2149 * to convert an unwritten extent to be initialized (in the case 2150 * where we have written into one or more preallocated blocks). It is 2151 * possible that we're going to need more metadata blocks than 2152 * previously reserved. However we must not fail because we're in 2153 * writeback and there is nothing we can do about it so it might result 2154 * in data loss. So use reserved blocks to allocate metadata if 2155 * possible. 2156 * 2157 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2158 * the blocks in question are delalloc blocks. This indicates 2159 * that the blocks and quotas has already been checked when 2160 * the data was copied into the page cache. 2161 */ 2162 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2163 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2164 EXT4_GET_BLOCKS_IO_SUBMIT; 2165 dioread_nolock = ext4_should_dioread_nolock(inode); 2166 if (dioread_nolock) 2167 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2168 if (map->m_flags & BIT(BH_Delay)) 2169 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2170 2171 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2172 if (err < 0) 2173 return err; 2174 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2175 if (!mpd->io_submit.io_end->handle && 2176 ext4_handle_valid(handle)) { 2177 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2178 handle->h_rsv_handle = NULL; 2179 } 2180 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2181 } 2182 2183 BUG_ON(map->m_len == 0); 2184 return 0; 2185 } 2186 2187 /* 2188 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2189 * mpd->len and submit pages underlying it for IO 2190 * 2191 * @handle - handle for journal operations 2192 * @mpd - extent to map 2193 * @give_up_on_write - we set this to true iff there is a fatal error and there 2194 * is no hope of writing the data. The caller should discard 2195 * dirty pages to avoid infinite loops. 2196 * 2197 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2198 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2199 * them to initialized or split the described range from larger unwritten 2200 * extent. Note that we need not map all the described range since allocation 2201 * can return less blocks or the range is covered by more unwritten extents. We 2202 * cannot map more because we are limited by reserved transaction credits. On 2203 * the other hand we always make sure that the last touched page is fully 2204 * mapped so that it can be written out (and thus forward progress is 2205 * guaranteed). After mapping we submit all mapped pages for IO. 2206 */ 2207 static int mpage_map_and_submit_extent(handle_t *handle, 2208 struct mpage_da_data *mpd, 2209 bool *give_up_on_write) 2210 { 2211 struct inode *inode = mpd->inode; 2212 struct ext4_map_blocks *map = &mpd->map; 2213 int err; 2214 loff_t disksize; 2215 int progress = 0; 2216 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2217 struct ext4_io_end_vec *io_end_vec; 2218 2219 io_end_vec = ext4_alloc_io_end_vec(io_end); 2220 if (IS_ERR(io_end_vec)) 2221 return PTR_ERR(io_end_vec); 2222 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2223 do { 2224 err = mpage_map_one_extent(handle, mpd); 2225 if (err < 0) { 2226 struct super_block *sb = inode->i_sb; 2227 2228 if (ext4_forced_shutdown(sb)) 2229 goto invalidate_dirty_pages; 2230 /* 2231 * Let the uper layers retry transient errors. 2232 * In the case of ENOSPC, if ext4_count_free_blocks() 2233 * is non-zero, a commit should free up blocks. 2234 */ 2235 if ((err == -ENOMEM) || 2236 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2237 if (progress) 2238 goto update_disksize; 2239 return err; 2240 } 2241 ext4_msg(sb, KERN_CRIT, 2242 "Delayed block allocation failed for " 2243 "inode %lu at logical offset %llu with" 2244 " max blocks %u with error %d", 2245 inode->i_ino, 2246 (unsigned long long)map->m_lblk, 2247 (unsigned)map->m_len, -err); 2248 ext4_msg(sb, KERN_CRIT, 2249 "This should not happen!! Data will " 2250 "be lost\n"); 2251 if (err == -ENOSPC) 2252 ext4_print_free_blocks(inode); 2253 invalidate_dirty_pages: 2254 *give_up_on_write = true; 2255 return err; 2256 } 2257 progress = 1; 2258 /* 2259 * Update buffer state, submit mapped pages, and get us new 2260 * extent to map 2261 */ 2262 err = mpage_map_and_submit_buffers(mpd); 2263 if (err < 0) 2264 goto update_disksize; 2265 } while (map->m_len); 2266 2267 update_disksize: 2268 /* 2269 * Update on-disk size after IO is submitted. Races with 2270 * truncate are avoided by checking i_size under i_data_sem. 2271 */ 2272 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2273 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2274 int err2; 2275 loff_t i_size; 2276 2277 down_write(&EXT4_I(inode)->i_data_sem); 2278 i_size = i_size_read(inode); 2279 if (disksize > i_size) 2280 disksize = i_size; 2281 if (disksize > EXT4_I(inode)->i_disksize) 2282 EXT4_I(inode)->i_disksize = disksize; 2283 up_write(&EXT4_I(inode)->i_data_sem); 2284 err2 = ext4_mark_inode_dirty(handle, inode); 2285 if (err2) { 2286 ext4_error_err(inode->i_sb, -err2, 2287 "Failed to mark inode %lu dirty", 2288 inode->i_ino); 2289 } 2290 if (!err) 2291 err = err2; 2292 } 2293 return err; 2294 } 2295 2296 /* 2297 * Calculate the total number of credits to reserve for one writepages 2298 * iteration. This is called from ext4_writepages(). We map an extent of 2299 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2300 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2301 * bpp - 1 blocks in bpp different extents. 2302 */ 2303 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2304 { 2305 int bpp = ext4_journal_blocks_per_page(inode); 2306 2307 return ext4_meta_trans_blocks(inode, 2308 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2309 } 2310 2311 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2312 size_t len) 2313 { 2314 struct buffer_head *page_bufs = folio_buffers(folio); 2315 struct inode *inode = folio->mapping->host; 2316 int ret, err; 2317 2318 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2319 NULL, do_journal_get_write_access); 2320 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2321 NULL, write_end_fn); 2322 if (ret == 0) 2323 ret = err; 2324 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2325 if (ret == 0) 2326 ret = err; 2327 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2328 2329 return ret; 2330 } 2331 2332 static int mpage_journal_page_buffers(handle_t *handle, 2333 struct mpage_da_data *mpd, 2334 struct folio *folio) 2335 { 2336 struct inode *inode = mpd->inode; 2337 loff_t size = i_size_read(inode); 2338 size_t len = folio_size(folio); 2339 2340 folio_clear_checked(folio); 2341 mpd->wbc->nr_to_write--; 2342 2343 if (folio_pos(folio) + len > size && 2344 !ext4_verity_in_progress(inode)) 2345 len = size - folio_pos(folio); 2346 2347 return ext4_journal_folio_buffers(handle, folio, len); 2348 } 2349 2350 /* 2351 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2352 * needing mapping, submit mapped pages 2353 * 2354 * @mpd - where to look for pages 2355 * 2356 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2357 * IO immediately. If we cannot map blocks, we submit just already mapped 2358 * buffers in the page for IO and keep page dirty. When we can map blocks and 2359 * we find a page which isn't mapped we start accumulating extent of buffers 2360 * underlying these pages that needs mapping (formed by either delayed or 2361 * unwritten buffers). We also lock the pages containing these buffers. The 2362 * extent found is returned in @mpd structure (starting at mpd->lblk with 2363 * length mpd->len blocks). 2364 * 2365 * Note that this function can attach bios to one io_end structure which are 2366 * neither logically nor physically contiguous. Although it may seem as an 2367 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2368 * case as we need to track IO to all buffers underlying a page in one io_end. 2369 */ 2370 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2371 { 2372 struct address_space *mapping = mpd->inode->i_mapping; 2373 struct folio_batch fbatch; 2374 unsigned int nr_folios; 2375 pgoff_t index = mpd->first_page; 2376 pgoff_t end = mpd->last_page; 2377 xa_mark_t tag; 2378 int i, err = 0; 2379 int blkbits = mpd->inode->i_blkbits; 2380 ext4_lblk_t lblk; 2381 struct buffer_head *head; 2382 handle_t *handle = NULL; 2383 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2384 2385 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2386 tag = PAGECACHE_TAG_TOWRITE; 2387 else 2388 tag = PAGECACHE_TAG_DIRTY; 2389 2390 mpd->map.m_len = 0; 2391 mpd->next_page = index; 2392 if (ext4_should_journal_data(mpd->inode)) { 2393 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2394 bpp); 2395 if (IS_ERR(handle)) 2396 return PTR_ERR(handle); 2397 } 2398 folio_batch_init(&fbatch); 2399 while (index <= end) { 2400 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2401 tag, &fbatch); 2402 if (nr_folios == 0) 2403 break; 2404 2405 for (i = 0; i < nr_folios; i++) { 2406 struct folio *folio = fbatch.folios[i]; 2407 2408 /* 2409 * Accumulated enough dirty pages? This doesn't apply 2410 * to WB_SYNC_ALL mode. For integrity sync we have to 2411 * keep going because someone may be concurrently 2412 * dirtying pages, and we might have synced a lot of 2413 * newly appeared dirty pages, but have not synced all 2414 * of the old dirty pages. 2415 */ 2416 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2417 mpd->wbc->nr_to_write <= 2418 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2419 goto out; 2420 2421 /* If we can't merge this page, we are done. */ 2422 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2423 goto out; 2424 2425 if (handle) { 2426 err = ext4_journal_ensure_credits(handle, bpp, 2427 0); 2428 if (err < 0) 2429 goto out; 2430 } 2431 2432 folio_lock(folio); 2433 /* 2434 * If the page is no longer dirty, or its mapping no 2435 * longer corresponds to inode we are writing (which 2436 * means it has been truncated or invalidated), or the 2437 * page is already under writeback and we are not doing 2438 * a data integrity writeback, skip the page 2439 */ 2440 if (!folio_test_dirty(folio) || 2441 (folio_test_writeback(folio) && 2442 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2443 unlikely(folio->mapping != mapping)) { 2444 folio_unlock(folio); 2445 continue; 2446 } 2447 2448 folio_wait_writeback(folio); 2449 BUG_ON(folio_test_writeback(folio)); 2450 2451 /* 2452 * Should never happen but for buggy code in 2453 * other subsystems that call 2454 * set_page_dirty() without properly warning 2455 * the file system first. See [1] for more 2456 * information. 2457 * 2458 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2459 */ 2460 if (!folio_buffers(folio)) { 2461 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2462 folio_clear_dirty(folio); 2463 folio_unlock(folio); 2464 continue; 2465 } 2466 2467 if (mpd->map.m_len == 0) 2468 mpd->first_page = folio->index; 2469 mpd->next_page = folio_next_index(folio); 2470 /* 2471 * Writeout when we cannot modify metadata is simple. 2472 * Just submit the page. For data=journal mode we 2473 * first handle writeout of the page for checkpoint and 2474 * only after that handle delayed page dirtying. This 2475 * makes sure current data is checkpointed to the final 2476 * location before possibly journalling it again which 2477 * is desirable when the page is frequently dirtied 2478 * through a pin. 2479 */ 2480 if (!mpd->can_map) { 2481 err = mpage_submit_folio(mpd, folio); 2482 if (err < 0) 2483 goto out; 2484 /* Pending dirtying of journalled data? */ 2485 if (folio_test_checked(folio)) { 2486 err = mpage_journal_page_buffers(handle, 2487 mpd, folio); 2488 if (err < 0) 2489 goto out; 2490 mpd->journalled_more_data = 1; 2491 } 2492 mpage_folio_done(mpd, folio); 2493 } else { 2494 /* Add all dirty buffers to mpd */ 2495 lblk = ((ext4_lblk_t)folio->index) << 2496 (PAGE_SHIFT - blkbits); 2497 head = folio_buffers(folio); 2498 err = mpage_process_page_bufs(mpd, head, head, 2499 lblk); 2500 if (err <= 0) 2501 goto out; 2502 err = 0; 2503 } 2504 } 2505 folio_batch_release(&fbatch); 2506 cond_resched(); 2507 } 2508 mpd->scanned_until_end = 1; 2509 if (handle) 2510 ext4_journal_stop(handle); 2511 return 0; 2512 out: 2513 folio_batch_release(&fbatch); 2514 if (handle) 2515 ext4_journal_stop(handle); 2516 return err; 2517 } 2518 2519 static int ext4_do_writepages(struct mpage_da_data *mpd) 2520 { 2521 struct writeback_control *wbc = mpd->wbc; 2522 pgoff_t writeback_index = 0; 2523 long nr_to_write = wbc->nr_to_write; 2524 int range_whole = 0; 2525 int cycled = 1; 2526 handle_t *handle = NULL; 2527 struct inode *inode = mpd->inode; 2528 struct address_space *mapping = inode->i_mapping; 2529 int needed_blocks, rsv_blocks = 0, ret = 0; 2530 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2531 struct blk_plug plug; 2532 bool give_up_on_write = false; 2533 2534 trace_ext4_writepages(inode, wbc); 2535 2536 /* 2537 * No pages to write? This is mainly a kludge to avoid starting 2538 * a transaction for special inodes like journal inode on last iput() 2539 * because that could violate lock ordering on umount 2540 */ 2541 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2542 goto out_writepages; 2543 2544 /* 2545 * If the filesystem has aborted, it is read-only, so return 2546 * right away instead of dumping stack traces later on that 2547 * will obscure the real source of the problem. We test 2548 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2549 * the latter could be true if the filesystem is mounted 2550 * read-only, and in that case, ext4_writepages should 2551 * *never* be called, so if that ever happens, we would want 2552 * the stack trace. 2553 */ 2554 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2555 ret = -EROFS; 2556 goto out_writepages; 2557 } 2558 2559 /* 2560 * If we have inline data and arrive here, it means that 2561 * we will soon create the block for the 1st page, so 2562 * we'd better clear the inline data here. 2563 */ 2564 if (ext4_has_inline_data(inode)) { 2565 /* Just inode will be modified... */ 2566 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2567 if (IS_ERR(handle)) { 2568 ret = PTR_ERR(handle); 2569 goto out_writepages; 2570 } 2571 BUG_ON(ext4_test_inode_state(inode, 2572 EXT4_STATE_MAY_INLINE_DATA)); 2573 ext4_destroy_inline_data(handle, inode); 2574 ext4_journal_stop(handle); 2575 } 2576 2577 /* 2578 * data=journal mode does not do delalloc so we just need to writeout / 2579 * journal already mapped buffers. On the other hand we need to commit 2580 * transaction to make data stable. We expect all the data to be 2581 * already in the journal (the only exception are DMA pinned pages 2582 * dirtied behind our back) so we commit transaction here and run the 2583 * writeback loop to checkpoint them. The checkpointing is not actually 2584 * necessary to make data persistent *but* quite a few places (extent 2585 * shifting operations, fsverity, ...) depend on being able to drop 2586 * pagecache pages after calling filemap_write_and_wait() and for that 2587 * checkpointing needs to happen. 2588 */ 2589 if (ext4_should_journal_data(inode)) { 2590 mpd->can_map = 0; 2591 if (wbc->sync_mode == WB_SYNC_ALL) 2592 ext4_fc_commit(sbi->s_journal, 2593 EXT4_I(inode)->i_datasync_tid); 2594 } 2595 mpd->journalled_more_data = 0; 2596 2597 if (ext4_should_dioread_nolock(inode)) { 2598 /* 2599 * We may need to convert up to one extent per block in 2600 * the page and we may dirty the inode. 2601 */ 2602 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2603 PAGE_SIZE >> inode->i_blkbits); 2604 } 2605 2606 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2607 range_whole = 1; 2608 2609 if (wbc->range_cyclic) { 2610 writeback_index = mapping->writeback_index; 2611 if (writeback_index) 2612 cycled = 0; 2613 mpd->first_page = writeback_index; 2614 mpd->last_page = -1; 2615 } else { 2616 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2617 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2618 } 2619 2620 ext4_io_submit_init(&mpd->io_submit, wbc); 2621 retry: 2622 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2623 tag_pages_for_writeback(mapping, mpd->first_page, 2624 mpd->last_page); 2625 blk_start_plug(&plug); 2626 2627 /* 2628 * First writeback pages that don't need mapping - we can avoid 2629 * starting a transaction unnecessarily and also avoid being blocked 2630 * in the block layer on device congestion while having transaction 2631 * started. 2632 */ 2633 mpd->do_map = 0; 2634 mpd->scanned_until_end = 0; 2635 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2636 if (!mpd->io_submit.io_end) { 2637 ret = -ENOMEM; 2638 goto unplug; 2639 } 2640 ret = mpage_prepare_extent_to_map(mpd); 2641 /* Unlock pages we didn't use */ 2642 mpage_release_unused_pages(mpd, false); 2643 /* Submit prepared bio */ 2644 ext4_io_submit(&mpd->io_submit); 2645 ext4_put_io_end_defer(mpd->io_submit.io_end); 2646 mpd->io_submit.io_end = NULL; 2647 if (ret < 0) 2648 goto unplug; 2649 2650 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2651 /* For each extent of pages we use new io_end */ 2652 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2653 if (!mpd->io_submit.io_end) { 2654 ret = -ENOMEM; 2655 break; 2656 } 2657 2658 WARN_ON_ONCE(!mpd->can_map); 2659 /* 2660 * We have two constraints: We find one extent to map and we 2661 * must always write out whole page (makes a difference when 2662 * blocksize < pagesize) so that we don't block on IO when we 2663 * try to write out the rest of the page. Journalled mode is 2664 * not supported by delalloc. 2665 */ 2666 BUG_ON(ext4_should_journal_data(inode)); 2667 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2668 2669 /* start a new transaction */ 2670 handle = ext4_journal_start_with_reserve(inode, 2671 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2672 if (IS_ERR(handle)) { 2673 ret = PTR_ERR(handle); 2674 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2675 "%ld pages, ino %lu; err %d", __func__, 2676 wbc->nr_to_write, inode->i_ino, ret); 2677 /* Release allocated io_end */ 2678 ext4_put_io_end(mpd->io_submit.io_end); 2679 mpd->io_submit.io_end = NULL; 2680 break; 2681 } 2682 mpd->do_map = 1; 2683 2684 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2685 ret = mpage_prepare_extent_to_map(mpd); 2686 if (!ret && mpd->map.m_len) 2687 ret = mpage_map_and_submit_extent(handle, mpd, 2688 &give_up_on_write); 2689 /* 2690 * Caution: If the handle is synchronous, 2691 * ext4_journal_stop() can wait for transaction commit 2692 * to finish which may depend on writeback of pages to 2693 * complete or on page lock to be released. In that 2694 * case, we have to wait until after we have 2695 * submitted all the IO, released page locks we hold, 2696 * and dropped io_end reference (for extent conversion 2697 * to be able to complete) before stopping the handle. 2698 */ 2699 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2700 ext4_journal_stop(handle); 2701 handle = NULL; 2702 mpd->do_map = 0; 2703 } 2704 /* Unlock pages we didn't use */ 2705 mpage_release_unused_pages(mpd, give_up_on_write); 2706 /* Submit prepared bio */ 2707 ext4_io_submit(&mpd->io_submit); 2708 2709 /* 2710 * Drop our io_end reference we got from init. We have 2711 * to be careful and use deferred io_end finishing if 2712 * we are still holding the transaction as we can 2713 * release the last reference to io_end which may end 2714 * up doing unwritten extent conversion. 2715 */ 2716 if (handle) { 2717 ext4_put_io_end_defer(mpd->io_submit.io_end); 2718 ext4_journal_stop(handle); 2719 } else 2720 ext4_put_io_end(mpd->io_submit.io_end); 2721 mpd->io_submit.io_end = NULL; 2722 2723 if (ret == -ENOSPC && sbi->s_journal) { 2724 /* 2725 * Commit the transaction which would 2726 * free blocks released in the transaction 2727 * and try again 2728 */ 2729 jbd2_journal_force_commit_nested(sbi->s_journal); 2730 ret = 0; 2731 continue; 2732 } 2733 /* Fatal error - ENOMEM, EIO... */ 2734 if (ret) 2735 break; 2736 } 2737 unplug: 2738 blk_finish_plug(&plug); 2739 if (!ret && !cycled && wbc->nr_to_write > 0) { 2740 cycled = 1; 2741 mpd->last_page = writeback_index - 1; 2742 mpd->first_page = 0; 2743 goto retry; 2744 } 2745 2746 /* Update index */ 2747 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2748 /* 2749 * Set the writeback_index so that range_cyclic 2750 * mode will write it back later 2751 */ 2752 mapping->writeback_index = mpd->first_page; 2753 2754 out_writepages: 2755 trace_ext4_writepages_result(inode, wbc, ret, 2756 nr_to_write - wbc->nr_to_write); 2757 return ret; 2758 } 2759 2760 static int ext4_writepages(struct address_space *mapping, 2761 struct writeback_control *wbc) 2762 { 2763 struct super_block *sb = mapping->host->i_sb; 2764 struct mpage_da_data mpd = { 2765 .inode = mapping->host, 2766 .wbc = wbc, 2767 .can_map = 1, 2768 }; 2769 int ret; 2770 int alloc_ctx; 2771 2772 if (unlikely(ext4_forced_shutdown(sb))) 2773 return -EIO; 2774 2775 alloc_ctx = ext4_writepages_down_read(sb); 2776 ret = ext4_do_writepages(&mpd); 2777 /* 2778 * For data=journal writeback we could have come across pages marked 2779 * for delayed dirtying (PageChecked) which were just added to the 2780 * running transaction. Try once more to get them to stable storage. 2781 */ 2782 if (!ret && mpd.journalled_more_data) 2783 ret = ext4_do_writepages(&mpd); 2784 ext4_writepages_up_read(sb, alloc_ctx); 2785 2786 return ret; 2787 } 2788 2789 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2790 { 2791 struct writeback_control wbc = { 2792 .sync_mode = WB_SYNC_ALL, 2793 .nr_to_write = LONG_MAX, 2794 .range_start = jinode->i_dirty_start, 2795 .range_end = jinode->i_dirty_end, 2796 }; 2797 struct mpage_da_data mpd = { 2798 .inode = jinode->i_vfs_inode, 2799 .wbc = &wbc, 2800 .can_map = 0, 2801 }; 2802 return ext4_do_writepages(&mpd); 2803 } 2804 2805 static int ext4_dax_writepages(struct address_space *mapping, 2806 struct writeback_control *wbc) 2807 { 2808 int ret; 2809 long nr_to_write = wbc->nr_to_write; 2810 struct inode *inode = mapping->host; 2811 int alloc_ctx; 2812 2813 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2814 return -EIO; 2815 2816 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2817 trace_ext4_writepages(inode, wbc); 2818 2819 ret = dax_writeback_mapping_range(mapping, 2820 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2821 trace_ext4_writepages_result(inode, wbc, ret, 2822 nr_to_write - wbc->nr_to_write); 2823 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2824 return ret; 2825 } 2826 2827 static int ext4_nonda_switch(struct super_block *sb) 2828 { 2829 s64 free_clusters, dirty_clusters; 2830 struct ext4_sb_info *sbi = EXT4_SB(sb); 2831 2832 /* 2833 * switch to non delalloc mode if we are running low 2834 * on free block. The free block accounting via percpu 2835 * counters can get slightly wrong with percpu_counter_batch getting 2836 * accumulated on each CPU without updating global counters 2837 * Delalloc need an accurate free block accounting. So switch 2838 * to non delalloc when we are near to error range. 2839 */ 2840 free_clusters = 2841 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2842 dirty_clusters = 2843 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2844 /* 2845 * Start pushing delalloc when 1/2 of free blocks are dirty. 2846 */ 2847 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2848 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2849 2850 if (2 * free_clusters < 3 * dirty_clusters || 2851 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2852 /* 2853 * free block count is less than 150% of dirty blocks 2854 * or free blocks is less than watermark 2855 */ 2856 return 1; 2857 } 2858 return 0; 2859 } 2860 2861 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2862 loff_t pos, unsigned len, 2863 struct page **pagep, void **fsdata) 2864 { 2865 int ret, retries = 0; 2866 struct folio *folio; 2867 pgoff_t index; 2868 struct inode *inode = mapping->host; 2869 2870 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2871 return -EIO; 2872 2873 index = pos >> PAGE_SHIFT; 2874 2875 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2876 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2877 return ext4_write_begin(file, mapping, pos, 2878 len, pagep, fsdata); 2879 } 2880 *fsdata = (void *)0; 2881 trace_ext4_da_write_begin(inode, pos, len); 2882 2883 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2884 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2885 pagep, fsdata); 2886 if (ret < 0) 2887 return ret; 2888 if (ret == 1) 2889 return 0; 2890 } 2891 2892 retry: 2893 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2894 mapping_gfp_mask(mapping)); 2895 if (IS_ERR(folio)) 2896 return PTR_ERR(folio); 2897 2898 /* In case writeback began while the folio was unlocked */ 2899 folio_wait_stable(folio); 2900 2901 #ifdef CONFIG_FS_ENCRYPTION 2902 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2903 #else 2904 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2905 #endif 2906 if (ret < 0) { 2907 folio_unlock(folio); 2908 folio_put(folio); 2909 /* 2910 * block_write_begin may have instantiated a few blocks 2911 * outside i_size. Trim these off again. Don't need 2912 * i_size_read because we hold inode lock. 2913 */ 2914 if (pos + len > inode->i_size) 2915 ext4_truncate_failed_write(inode); 2916 2917 if (ret == -ENOSPC && 2918 ext4_should_retry_alloc(inode->i_sb, &retries)) 2919 goto retry; 2920 return ret; 2921 } 2922 2923 *pagep = &folio->page; 2924 return ret; 2925 } 2926 2927 /* 2928 * Check if we should update i_disksize 2929 * when write to the end of file but not require block allocation 2930 */ 2931 static int ext4_da_should_update_i_disksize(struct folio *folio, 2932 unsigned long offset) 2933 { 2934 struct buffer_head *bh; 2935 struct inode *inode = folio->mapping->host; 2936 unsigned int idx; 2937 int i; 2938 2939 bh = folio_buffers(folio); 2940 idx = offset >> inode->i_blkbits; 2941 2942 for (i = 0; i < idx; i++) 2943 bh = bh->b_this_page; 2944 2945 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2946 return 0; 2947 return 1; 2948 } 2949 2950 static int ext4_da_do_write_end(struct address_space *mapping, 2951 loff_t pos, unsigned len, unsigned copied, 2952 struct page *page) 2953 { 2954 struct inode *inode = mapping->host; 2955 loff_t old_size = inode->i_size; 2956 bool disksize_changed = false; 2957 loff_t new_i_size; 2958 2959 /* 2960 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 2961 * flag, which all that's needed to trigger page writeback. 2962 */ 2963 copied = block_write_end(NULL, mapping, pos, len, copied, page, NULL); 2964 new_i_size = pos + copied; 2965 2966 /* 2967 * It's important to update i_size while still holding page lock, 2968 * because page writeout could otherwise come in and zero beyond 2969 * i_size. 2970 * 2971 * Since we are holding inode lock, we are sure i_disksize <= 2972 * i_size. We also know that if i_disksize < i_size, there are 2973 * delalloc writes pending in the range up to i_size. If the end of 2974 * the current write is <= i_size, there's no need to touch 2975 * i_disksize since writeback will push i_disksize up to i_size 2976 * eventually. If the end of the current write is > i_size and 2977 * inside an allocated block which ext4_da_should_update_i_disksize() 2978 * checked, we need to update i_disksize here as certain 2979 * ext4_writepages() paths not allocating blocks and update i_disksize. 2980 */ 2981 if (new_i_size > inode->i_size) { 2982 unsigned long end; 2983 2984 i_size_write(inode, new_i_size); 2985 end = (new_i_size - 1) & (PAGE_SIZE - 1); 2986 if (copied && ext4_da_should_update_i_disksize(page_folio(page), end)) { 2987 ext4_update_i_disksize(inode, new_i_size); 2988 disksize_changed = true; 2989 } 2990 } 2991 2992 unlock_page(page); 2993 put_page(page); 2994 2995 if (old_size < pos) 2996 pagecache_isize_extended(inode, old_size, pos); 2997 2998 if (disksize_changed) { 2999 handle_t *handle; 3000 3001 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3002 if (IS_ERR(handle)) 3003 return PTR_ERR(handle); 3004 ext4_mark_inode_dirty(handle, inode); 3005 ext4_journal_stop(handle); 3006 } 3007 3008 return copied; 3009 } 3010 3011 static int ext4_da_write_end(struct file *file, 3012 struct address_space *mapping, 3013 loff_t pos, unsigned len, unsigned copied, 3014 struct page *page, void *fsdata) 3015 { 3016 struct inode *inode = mapping->host; 3017 int write_mode = (int)(unsigned long)fsdata; 3018 struct folio *folio = page_folio(page); 3019 3020 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3021 return ext4_write_end(file, mapping, pos, 3022 len, copied, &folio->page, fsdata); 3023 3024 trace_ext4_da_write_end(inode, pos, len, copied); 3025 3026 if (write_mode != CONVERT_INLINE_DATA && 3027 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3028 ext4_has_inline_data(inode)) 3029 return ext4_write_inline_data_end(inode, pos, len, copied, 3030 folio); 3031 3032 if (unlikely(copied < len) && !PageUptodate(page)) 3033 copied = 0; 3034 3035 return ext4_da_do_write_end(mapping, pos, len, copied, &folio->page); 3036 } 3037 3038 /* 3039 * Force all delayed allocation blocks to be allocated for a given inode. 3040 */ 3041 int ext4_alloc_da_blocks(struct inode *inode) 3042 { 3043 trace_ext4_alloc_da_blocks(inode); 3044 3045 if (!EXT4_I(inode)->i_reserved_data_blocks) 3046 return 0; 3047 3048 /* 3049 * We do something simple for now. The filemap_flush() will 3050 * also start triggering a write of the data blocks, which is 3051 * not strictly speaking necessary (and for users of 3052 * laptop_mode, not even desirable). However, to do otherwise 3053 * would require replicating code paths in: 3054 * 3055 * ext4_writepages() -> 3056 * write_cache_pages() ---> (via passed in callback function) 3057 * __mpage_da_writepage() --> 3058 * mpage_add_bh_to_extent() 3059 * mpage_da_map_blocks() 3060 * 3061 * The problem is that write_cache_pages(), located in 3062 * mm/page-writeback.c, marks pages clean in preparation for 3063 * doing I/O, which is not desirable if we're not planning on 3064 * doing I/O at all. 3065 * 3066 * We could call write_cache_pages(), and then redirty all of 3067 * the pages by calling redirty_page_for_writepage() but that 3068 * would be ugly in the extreme. So instead we would need to 3069 * replicate parts of the code in the above functions, 3070 * simplifying them because we wouldn't actually intend to 3071 * write out the pages, but rather only collect contiguous 3072 * logical block extents, call the multi-block allocator, and 3073 * then update the buffer heads with the block allocations. 3074 * 3075 * For now, though, we'll cheat by calling filemap_flush(), 3076 * which will map the blocks, and start the I/O, but not 3077 * actually wait for the I/O to complete. 3078 */ 3079 return filemap_flush(inode->i_mapping); 3080 } 3081 3082 /* 3083 * bmap() is special. It gets used by applications such as lilo and by 3084 * the swapper to find the on-disk block of a specific piece of data. 3085 * 3086 * Naturally, this is dangerous if the block concerned is still in the 3087 * journal. If somebody makes a swapfile on an ext4 data-journaling 3088 * filesystem and enables swap, then they may get a nasty shock when the 3089 * data getting swapped to that swapfile suddenly gets overwritten by 3090 * the original zero's written out previously to the journal and 3091 * awaiting writeback in the kernel's buffer cache. 3092 * 3093 * So, if we see any bmap calls here on a modified, data-journaled file, 3094 * take extra steps to flush any blocks which might be in the cache. 3095 */ 3096 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3097 { 3098 struct inode *inode = mapping->host; 3099 sector_t ret = 0; 3100 3101 inode_lock_shared(inode); 3102 /* 3103 * We can get here for an inline file via the FIBMAP ioctl 3104 */ 3105 if (ext4_has_inline_data(inode)) 3106 goto out; 3107 3108 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3109 (test_opt(inode->i_sb, DELALLOC) || 3110 ext4_should_journal_data(inode))) { 3111 /* 3112 * With delalloc or journalled data we want to sync the file so 3113 * that we can make sure we allocate blocks for file and data 3114 * is in place for the user to see it 3115 */ 3116 filemap_write_and_wait(mapping); 3117 } 3118 3119 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3120 3121 out: 3122 inode_unlock_shared(inode); 3123 return ret; 3124 } 3125 3126 static int ext4_read_folio(struct file *file, struct folio *folio) 3127 { 3128 int ret = -EAGAIN; 3129 struct inode *inode = folio->mapping->host; 3130 3131 trace_ext4_read_folio(inode, folio); 3132 3133 if (ext4_has_inline_data(inode)) 3134 ret = ext4_readpage_inline(inode, folio); 3135 3136 if (ret == -EAGAIN) 3137 return ext4_mpage_readpages(inode, NULL, folio); 3138 3139 return ret; 3140 } 3141 3142 static void ext4_readahead(struct readahead_control *rac) 3143 { 3144 struct inode *inode = rac->mapping->host; 3145 3146 /* If the file has inline data, no need to do readahead. */ 3147 if (ext4_has_inline_data(inode)) 3148 return; 3149 3150 ext4_mpage_readpages(inode, rac, NULL); 3151 } 3152 3153 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3154 size_t length) 3155 { 3156 trace_ext4_invalidate_folio(folio, offset, length); 3157 3158 /* No journalling happens on data buffers when this function is used */ 3159 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3160 3161 block_invalidate_folio(folio, offset, length); 3162 } 3163 3164 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3165 size_t offset, size_t length) 3166 { 3167 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3168 3169 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3170 3171 /* 3172 * If it's a full truncate we just forget about the pending dirtying 3173 */ 3174 if (offset == 0 && length == folio_size(folio)) 3175 folio_clear_checked(folio); 3176 3177 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3178 } 3179 3180 /* Wrapper for aops... */ 3181 static void ext4_journalled_invalidate_folio(struct folio *folio, 3182 size_t offset, 3183 size_t length) 3184 { 3185 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3186 } 3187 3188 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3189 { 3190 struct inode *inode = folio->mapping->host; 3191 journal_t *journal = EXT4_JOURNAL(inode); 3192 3193 trace_ext4_release_folio(inode, folio); 3194 3195 /* Page has dirty journalled data -> cannot release */ 3196 if (folio_test_checked(folio)) 3197 return false; 3198 if (journal) 3199 return jbd2_journal_try_to_free_buffers(journal, folio); 3200 else 3201 return try_to_free_buffers(folio); 3202 } 3203 3204 static bool ext4_inode_datasync_dirty(struct inode *inode) 3205 { 3206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3207 3208 if (journal) { 3209 if (jbd2_transaction_committed(journal, 3210 EXT4_I(inode)->i_datasync_tid)) 3211 return false; 3212 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3213 return !list_empty(&EXT4_I(inode)->i_fc_list); 3214 return true; 3215 } 3216 3217 /* Any metadata buffers to write? */ 3218 if (!list_empty(&inode->i_mapping->private_list)) 3219 return true; 3220 return inode->i_state & I_DIRTY_DATASYNC; 3221 } 3222 3223 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3224 struct ext4_map_blocks *map, loff_t offset, 3225 loff_t length, unsigned int flags) 3226 { 3227 u8 blkbits = inode->i_blkbits; 3228 3229 /* 3230 * Writes that span EOF might trigger an I/O size update on completion, 3231 * so consider them to be dirty for the purpose of O_DSYNC, even if 3232 * there is no other metadata changes being made or are pending. 3233 */ 3234 iomap->flags = 0; 3235 if (ext4_inode_datasync_dirty(inode) || 3236 offset + length > i_size_read(inode)) 3237 iomap->flags |= IOMAP_F_DIRTY; 3238 3239 if (map->m_flags & EXT4_MAP_NEW) 3240 iomap->flags |= IOMAP_F_NEW; 3241 3242 if (flags & IOMAP_DAX) 3243 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3244 else 3245 iomap->bdev = inode->i_sb->s_bdev; 3246 iomap->offset = (u64) map->m_lblk << blkbits; 3247 iomap->length = (u64) map->m_len << blkbits; 3248 3249 if ((map->m_flags & EXT4_MAP_MAPPED) && 3250 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3251 iomap->flags |= IOMAP_F_MERGED; 3252 3253 /* 3254 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3255 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3256 * set. In order for any allocated unwritten extents to be converted 3257 * into written extents correctly within the ->end_io() handler, we 3258 * need to ensure that the iomap->type is set appropriately. Hence, the 3259 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3260 * been set first. 3261 */ 3262 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3263 iomap->type = IOMAP_UNWRITTEN; 3264 iomap->addr = (u64) map->m_pblk << blkbits; 3265 if (flags & IOMAP_DAX) 3266 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3267 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3268 iomap->type = IOMAP_MAPPED; 3269 iomap->addr = (u64) map->m_pblk << blkbits; 3270 if (flags & IOMAP_DAX) 3271 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3272 } else { 3273 iomap->type = IOMAP_HOLE; 3274 iomap->addr = IOMAP_NULL_ADDR; 3275 } 3276 } 3277 3278 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3279 unsigned int flags) 3280 { 3281 handle_t *handle; 3282 u8 blkbits = inode->i_blkbits; 3283 int ret, dio_credits, m_flags = 0, retries = 0; 3284 3285 /* 3286 * Trim the mapping request to the maximum value that we can map at 3287 * once for direct I/O. 3288 */ 3289 if (map->m_len > DIO_MAX_BLOCKS) 3290 map->m_len = DIO_MAX_BLOCKS; 3291 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3292 3293 retry: 3294 /* 3295 * Either we allocate blocks and then don't get an unwritten extent, so 3296 * in that case we have reserved enough credits. Or, the blocks are 3297 * already allocated and unwritten. In that case, the extent conversion 3298 * fits into the credits as well. 3299 */ 3300 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3301 if (IS_ERR(handle)) 3302 return PTR_ERR(handle); 3303 3304 /* 3305 * DAX and direct I/O are the only two operations that are currently 3306 * supported with IOMAP_WRITE. 3307 */ 3308 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3309 if (flags & IOMAP_DAX) 3310 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3311 /* 3312 * We use i_size instead of i_disksize here because delalloc writeback 3313 * can complete at any point during the I/O and subsequently push the 3314 * i_disksize out to i_size. This could be beyond where direct I/O is 3315 * happening and thus expose allocated blocks to direct I/O reads. 3316 */ 3317 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3318 m_flags = EXT4_GET_BLOCKS_CREATE; 3319 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3320 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3321 3322 ret = ext4_map_blocks(handle, inode, map, m_flags); 3323 3324 /* 3325 * We cannot fill holes in indirect tree based inodes as that could 3326 * expose stale data in the case of a crash. Use the magic error code 3327 * to fallback to buffered I/O. 3328 */ 3329 if (!m_flags && !ret) 3330 ret = -ENOTBLK; 3331 3332 ext4_journal_stop(handle); 3333 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3334 goto retry; 3335 3336 return ret; 3337 } 3338 3339 3340 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3341 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3342 { 3343 int ret; 3344 struct ext4_map_blocks map; 3345 u8 blkbits = inode->i_blkbits; 3346 3347 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3348 return -EINVAL; 3349 3350 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3351 return -ERANGE; 3352 3353 /* 3354 * Calculate the first and last logical blocks respectively. 3355 */ 3356 map.m_lblk = offset >> blkbits; 3357 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3358 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3359 3360 if (flags & IOMAP_WRITE) { 3361 /* 3362 * We check here if the blocks are already allocated, then we 3363 * don't need to start a journal txn and we can directly return 3364 * the mapping information. This could boost performance 3365 * especially in multi-threaded overwrite requests. 3366 */ 3367 if (offset + length <= i_size_read(inode)) { 3368 ret = ext4_map_blocks(NULL, inode, &map, 0); 3369 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3370 goto out; 3371 } 3372 ret = ext4_iomap_alloc(inode, &map, flags); 3373 } else { 3374 ret = ext4_map_blocks(NULL, inode, &map, 0); 3375 } 3376 3377 if (ret < 0) 3378 return ret; 3379 out: 3380 /* 3381 * When inline encryption is enabled, sometimes I/O to an encrypted file 3382 * has to be broken up to guarantee DUN contiguity. Handle this by 3383 * limiting the length of the mapping returned. 3384 */ 3385 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3386 3387 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3388 3389 return 0; 3390 } 3391 3392 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3393 loff_t length, unsigned flags, struct iomap *iomap, 3394 struct iomap *srcmap) 3395 { 3396 int ret; 3397 3398 /* 3399 * Even for writes we don't need to allocate blocks, so just pretend 3400 * we are reading to save overhead of starting a transaction. 3401 */ 3402 flags &= ~IOMAP_WRITE; 3403 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3404 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3405 return ret; 3406 } 3407 3408 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3409 ssize_t written, unsigned flags, struct iomap *iomap) 3410 { 3411 /* 3412 * Check to see whether an error occurred while writing out the data to 3413 * the allocated blocks. If so, return the magic error code so that we 3414 * fallback to buffered I/O and attempt to complete the remainder of 3415 * the I/O. Any blocks that may have been allocated in preparation for 3416 * the direct I/O will be reused during buffered I/O. 3417 */ 3418 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3419 return -ENOTBLK; 3420 3421 return 0; 3422 } 3423 3424 const struct iomap_ops ext4_iomap_ops = { 3425 .iomap_begin = ext4_iomap_begin, 3426 .iomap_end = ext4_iomap_end, 3427 }; 3428 3429 const struct iomap_ops ext4_iomap_overwrite_ops = { 3430 .iomap_begin = ext4_iomap_overwrite_begin, 3431 .iomap_end = ext4_iomap_end, 3432 }; 3433 3434 static bool ext4_iomap_is_delalloc(struct inode *inode, 3435 struct ext4_map_blocks *map) 3436 { 3437 struct extent_status es; 3438 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3439 3440 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3441 map->m_lblk, end, &es); 3442 3443 if (!es.es_len || es.es_lblk > end) 3444 return false; 3445 3446 if (es.es_lblk > map->m_lblk) { 3447 map->m_len = es.es_lblk - map->m_lblk; 3448 return false; 3449 } 3450 3451 offset = map->m_lblk - es.es_lblk; 3452 map->m_len = es.es_len - offset; 3453 3454 return true; 3455 } 3456 3457 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3458 loff_t length, unsigned int flags, 3459 struct iomap *iomap, struct iomap *srcmap) 3460 { 3461 int ret; 3462 bool delalloc = false; 3463 struct ext4_map_blocks map; 3464 u8 blkbits = inode->i_blkbits; 3465 3466 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3467 return -EINVAL; 3468 3469 if (ext4_has_inline_data(inode)) { 3470 ret = ext4_inline_data_iomap(inode, iomap); 3471 if (ret != -EAGAIN) { 3472 if (ret == 0 && offset >= iomap->length) 3473 ret = -ENOENT; 3474 return ret; 3475 } 3476 } 3477 3478 /* 3479 * Calculate the first and last logical block respectively. 3480 */ 3481 map.m_lblk = offset >> blkbits; 3482 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3483 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3484 3485 /* 3486 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3487 * So handle it here itself instead of querying ext4_map_blocks(). 3488 * Since ext4_map_blocks() will warn about it and will return 3489 * -EIO error. 3490 */ 3491 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3492 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3493 3494 if (offset >= sbi->s_bitmap_maxbytes) { 3495 map.m_flags = 0; 3496 goto set_iomap; 3497 } 3498 } 3499 3500 ret = ext4_map_blocks(NULL, inode, &map, 0); 3501 if (ret < 0) 3502 return ret; 3503 if (ret == 0) 3504 delalloc = ext4_iomap_is_delalloc(inode, &map); 3505 3506 set_iomap: 3507 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3508 if (delalloc && iomap->type == IOMAP_HOLE) 3509 iomap->type = IOMAP_DELALLOC; 3510 3511 return 0; 3512 } 3513 3514 const struct iomap_ops ext4_iomap_report_ops = { 3515 .iomap_begin = ext4_iomap_begin_report, 3516 }; 3517 3518 /* 3519 * For data=journal mode, folio should be marked dirty only when it was 3520 * writeably mapped. When that happens, it was already attached to the 3521 * transaction and marked as jbddirty (we take care of this in 3522 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3523 * so we should have nothing to do here, except for the case when someone 3524 * had the page pinned and dirtied the page through this pin (e.g. by doing 3525 * direct IO to it). In that case we'd need to attach buffers here to the 3526 * transaction but we cannot due to lock ordering. We cannot just dirty the 3527 * folio and leave attached buffers clean, because the buffers' dirty state is 3528 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3529 * the journalling code will explode. So what we do is to mark the folio 3530 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3531 * to the transaction appropriately. 3532 */ 3533 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3534 struct folio *folio) 3535 { 3536 WARN_ON_ONCE(!folio_buffers(folio)); 3537 if (folio_maybe_dma_pinned(folio)) 3538 folio_set_checked(folio); 3539 return filemap_dirty_folio(mapping, folio); 3540 } 3541 3542 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3543 { 3544 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3545 WARN_ON_ONCE(!folio_buffers(folio)); 3546 return block_dirty_folio(mapping, folio); 3547 } 3548 3549 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3550 struct file *file, sector_t *span) 3551 { 3552 return iomap_swapfile_activate(sis, file, span, 3553 &ext4_iomap_report_ops); 3554 } 3555 3556 static const struct address_space_operations ext4_aops = { 3557 .read_folio = ext4_read_folio, 3558 .readahead = ext4_readahead, 3559 .writepages = ext4_writepages, 3560 .write_begin = ext4_write_begin, 3561 .write_end = ext4_write_end, 3562 .dirty_folio = ext4_dirty_folio, 3563 .bmap = ext4_bmap, 3564 .invalidate_folio = ext4_invalidate_folio, 3565 .release_folio = ext4_release_folio, 3566 .direct_IO = noop_direct_IO, 3567 .migrate_folio = buffer_migrate_folio, 3568 .is_partially_uptodate = block_is_partially_uptodate, 3569 .error_remove_page = generic_error_remove_page, 3570 .swap_activate = ext4_iomap_swap_activate, 3571 }; 3572 3573 static const struct address_space_operations ext4_journalled_aops = { 3574 .read_folio = ext4_read_folio, 3575 .readahead = ext4_readahead, 3576 .writepages = ext4_writepages, 3577 .write_begin = ext4_write_begin, 3578 .write_end = ext4_journalled_write_end, 3579 .dirty_folio = ext4_journalled_dirty_folio, 3580 .bmap = ext4_bmap, 3581 .invalidate_folio = ext4_journalled_invalidate_folio, 3582 .release_folio = ext4_release_folio, 3583 .direct_IO = noop_direct_IO, 3584 .migrate_folio = buffer_migrate_folio_norefs, 3585 .is_partially_uptodate = block_is_partially_uptodate, 3586 .error_remove_page = generic_error_remove_page, 3587 .swap_activate = ext4_iomap_swap_activate, 3588 }; 3589 3590 static const struct address_space_operations ext4_da_aops = { 3591 .read_folio = ext4_read_folio, 3592 .readahead = ext4_readahead, 3593 .writepages = ext4_writepages, 3594 .write_begin = ext4_da_write_begin, 3595 .write_end = ext4_da_write_end, 3596 .dirty_folio = ext4_dirty_folio, 3597 .bmap = ext4_bmap, 3598 .invalidate_folio = ext4_invalidate_folio, 3599 .release_folio = ext4_release_folio, 3600 .direct_IO = noop_direct_IO, 3601 .migrate_folio = buffer_migrate_folio, 3602 .is_partially_uptodate = block_is_partially_uptodate, 3603 .error_remove_page = generic_error_remove_page, 3604 .swap_activate = ext4_iomap_swap_activate, 3605 }; 3606 3607 static const struct address_space_operations ext4_dax_aops = { 3608 .writepages = ext4_dax_writepages, 3609 .direct_IO = noop_direct_IO, 3610 .dirty_folio = noop_dirty_folio, 3611 .bmap = ext4_bmap, 3612 .swap_activate = ext4_iomap_swap_activate, 3613 }; 3614 3615 void ext4_set_aops(struct inode *inode) 3616 { 3617 switch (ext4_inode_journal_mode(inode)) { 3618 case EXT4_INODE_ORDERED_DATA_MODE: 3619 case EXT4_INODE_WRITEBACK_DATA_MODE: 3620 break; 3621 case EXT4_INODE_JOURNAL_DATA_MODE: 3622 inode->i_mapping->a_ops = &ext4_journalled_aops; 3623 return; 3624 default: 3625 BUG(); 3626 } 3627 if (IS_DAX(inode)) 3628 inode->i_mapping->a_ops = &ext4_dax_aops; 3629 else if (test_opt(inode->i_sb, DELALLOC)) 3630 inode->i_mapping->a_ops = &ext4_da_aops; 3631 else 3632 inode->i_mapping->a_ops = &ext4_aops; 3633 } 3634 3635 static int __ext4_block_zero_page_range(handle_t *handle, 3636 struct address_space *mapping, loff_t from, loff_t length) 3637 { 3638 ext4_fsblk_t index = from >> PAGE_SHIFT; 3639 unsigned offset = from & (PAGE_SIZE-1); 3640 unsigned blocksize, pos; 3641 ext4_lblk_t iblock; 3642 struct inode *inode = mapping->host; 3643 struct buffer_head *bh; 3644 struct folio *folio; 3645 int err = 0; 3646 3647 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3648 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3649 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3650 if (IS_ERR(folio)) 3651 return PTR_ERR(folio); 3652 3653 blocksize = inode->i_sb->s_blocksize; 3654 3655 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3656 3657 bh = folio_buffers(folio); 3658 if (!bh) { 3659 create_empty_buffers(&folio->page, blocksize, 0); 3660 bh = folio_buffers(folio); 3661 } 3662 3663 /* Find the buffer that contains "offset" */ 3664 pos = blocksize; 3665 while (offset >= pos) { 3666 bh = bh->b_this_page; 3667 iblock++; 3668 pos += blocksize; 3669 } 3670 if (buffer_freed(bh)) { 3671 BUFFER_TRACE(bh, "freed: skip"); 3672 goto unlock; 3673 } 3674 if (!buffer_mapped(bh)) { 3675 BUFFER_TRACE(bh, "unmapped"); 3676 ext4_get_block(inode, iblock, bh, 0); 3677 /* unmapped? It's a hole - nothing to do */ 3678 if (!buffer_mapped(bh)) { 3679 BUFFER_TRACE(bh, "still unmapped"); 3680 goto unlock; 3681 } 3682 } 3683 3684 /* Ok, it's mapped. Make sure it's up-to-date */ 3685 if (folio_test_uptodate(folio)) 3686 set_buffer_uptodate(bh); 3687 3688 if (!buffer_uptodate(bh)) { 3689 err = ext4_read_bh_lock(bh, 0, true); 3690 if (err) 3691 goto unlock; 3692 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3693 /* We expect the key to be set. */ 3694 BUG_ON(!fscrypt_has_encryption_key(inode)); 3695 err = fscrypt_decrypt_pagecache_blocks(folio, 3696 blocksize, 3697 bh_offset(bh)); 3698 if (err) { 3699 clear_buffer_uptodate(bh); 3700 goto unlock; 3701 } 3702 } 3703 } 3704 if (ext4_should_journal_data(inode)) { 3705 BUFFER_TRACE(bh, "get write access"); 3706 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3707 EXT4_JTR_NONE); 3708 if (err) 3709 goto unlock; 3710 } 3711 folio_zero_range(folio, offset, length); 3712 BUFFER_TRACE(bh, "zeroed end of block"); 3713 3714 if (ext4_should_journal_data(inode)) { 3715 err = ext4_dirty_journalled_data(handle, bh); 3716 } else { 3717 err = 0; 3718 mark_buffer_dirty(bh); 3719 if (ext4_should_order_data(inode)) 3720 err = ext4_jbd2_inode_add_write(handle, inode, from, 3721 length); 3722 } 3723 3724 unlock: 3725 folio_unlock(folio); 3726 folio_put(folio); 3727 return err; 3728 } 3729 3730 /* 3731 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3732 * starting from file offset 'from'. The range to be zero'd must 3733 * be contained with in one block. If the specified range exceeds 3734 * the end of the block it will be shortened to end of the block 3735 * that corresponds to 'from' 3736 */ 3737 static int ext4_block_zero_page_range(handle_t *handle, 3738 struct address_space *mapping, loff_t from, loff_t length) 3739 { 3740 struct inode *inode = mapping->host; 3741 unsigned offset = from & (PAGE_SIZE-1); 3742 unsigned blocksize = inode->i_sb->s_blocksize; 3743 unsigned max = blocksize - (offset & (blocksize - 1)); 3744 3745 /* 3746 * correct length if it does not fall between 3747 * 'from' and the end of the block 3748 */ 3749 if (length > max || length < 0) 3750 length = max; 3751 3752 if (IS_DAX(inode)) { 3753 return dax_zero_range(inode, from, length, NULL, 3754 &ext4_iomap_ops); 3755 } 3756 return __ext4_block_zero_page_range(handle, mapping, from, length); 3757 } 3758 3759 /* 3760 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3761 * up to the end of the block which corresponds to `from'. 3762 * This required during truncate. We need to physically zero the tail end 3763 * of that block so it doesn't yield old data if the file is later grown. 3764 */ 3765 static int ext4_block_truncate_page(handle_t *handle, 3766 struct address_space *mapping, loff_t from) 3767 { 3768 unsigned offset = from & (PAGE_SIZE-1); 3769 unsigned length; 3770 unsigned blocksize; 3771 struct inode *inode = mapping->host; 3772 3773 /* If we are processing an encrypted inode during orphan list handling */ 3774 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3775 return 0; 3776 3777 blocksize = inode->i_sb->s_blocksize; 3778 length = blocksize - (offset & (blocksize - 1)); 3779 3780 return ext4_block_zero_page_range(handle, mapping, from, length); 3781 } 3782 3783 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3784 loff_t lstart, loff_t length) 3785 { 3786 struct super_block *sb = inode->i_sb; 3787 struct address_space *mapping = inode->i_mapping; 3788 unsigned partial_start, partial_end; 3789 ext4_fsblk_t start, end; 3790 loff_t byte_end = (lstart + length - 1); 3791 int err = 0; 3792 3793 partial_start = lstart & (sb->s_blocksize - 1); 3794 partial_end = byte_end & (sb->s_blocksize - 1); 3795 3796 start = lstart >> sb->s_blocksize_bits; 3797 end = byte_end >> sb->s_blocksize_bits; 3798 3799 /* Handle partial zero within the single block */ 3800 if (start == end && 3801 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3802 err = ext4_block_zero_page_range(handle, mapping, 3803 lstart, length); 3804 return err; 3805 } 3806 /* Handle partial zero out on the start of the range */ 3807 if (partial_start) { 3808 err = ext4_block_zero_page_range(handle, mapping, 3809 lstart, sb->s_blocksize); 3810 if (err) 3811 return err; 3812 } 3813 /* Handle partial zero out on the end of the range */ 3814 if (partial_end != sb->s_blocksize - 1) 3815 err = ext4_block_zero_page_range(handle, mapping, 3816 byte_end - partial_end, 3817 partial_end + 1); 3818 return err; 3819 } 3820 3821 int ext4_can_truncate(struct inode *inode) 3822 { 3823 if (S_ISREG(inode->i_mode)) 3824 return 1; 3825 if (S_ISDIR(inode->i_mode)) 3826 return 1; 3827 if (S_ISLNK(inode->i_mode)) 3828 return !ext4_inode_is_fast_symlink(inode); 3829 return 0; 3830 } 3831 3832 /* 3833 * We have to make sure i_disksize gets properly updated before we truncate 3834 * page cache due to hole punching or zero range. Otherwise i_disksize update 3835 * can get lost as it may have been postponed to submission of writeback but 3836 * that will never happen after we truncate page cache. 3837 */ 3838 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3839 loff_t len) 3840 { 3841 handle_t *handle; 3842 int ret; 3843 3844 loff_t size = i_size_read(inode); 3845 3846 WARN_ON(!inode_is_locked(inode)); 3847 if (offset > size || offset + len < size) 3848 return 0; 3849 3850 if (EXT4_I(inode)->i_disksize >= size) 3851 return 0; 3852 3853 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3854 if (IS_ERR(handle)) 3855 return PTR_ERR(handle); 3856 ext4_update_i_disksize(inode, size); 3857 ret = ext4_mark_inode_dirty(handle, inode); 3858 ext4_journal_stop(handle); 3859 3860 return ret; 3861 } 3862 3863 static void ext4_wait_dax_page(struct inode *inode) 3864 { 3865 filemap_invalidate_unlock(inode->i_mapping); 3866 schedule(); 3867 filemap_invalidate_lock(inode->i_mapping); 3868 } 3869 3870 int ext4_break_layouts(struct inode *inode) 3871 { 3872 struct page *page; 3873 int error; 3874 3875 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3876 return -EINVAL; 3877 3878 do { 3879 page = dax_layout_busy_page(inode->i_mapping); 3880 if (!page) 3881 return 0; 3882 3883 error = ___wait_var_event(&page->_refcount, 3884 atomic_read(&page->_refcount) == 1, 3885 TASK_INTERRUPTIBLE, 0, 0, 3886 ext4_wait_dax_page(inode)); 3887 } while (error == 0); 3888 3889 return error; 3890 } 3891 3892 /* 3893 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3894 * associated with the given offset and length 3895 * 3896 * @inode: File inode 3897 * @offset: The offset where the hole will begin 3898 * @len: The length of the hole 3899 * 3900 * Returns: 0 on success or negative on failure 3901 */ 3902 3903 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3904 { 3905 struct inode *inode = file_inode(file); 3906 struct super_block *sb = inode->i_sb; 3907 ext4_lblk_t first_block, stop_block; 3908 struct address_space *mapping = inode->i_mapping; 3909 loff_t first_block_offset, last_block_offset, max_length; 3910 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3911 handle_t *handle; 3912 unsigned int credits; 3913 int ret = 0, ret2 = 0; 3914 3915 trace_ext4_punch_hole(inode, offset, length, 0); 3916 3917 /* 3918 * Write out all dirty pages to avoid race conditions 3919 * Then release them. 3920 */ 3921 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3922 ret = filemap_write_and_wait_range(mapping, offset, 3923 offset + length - 1); 3924 if (ret) 3925 return ret; 3926 } 3927 3928 inode_lock(inode); 3929 3930 /* No need to punch hole beyond i_size */ 3931 if (offset >= inode->i_size) 3932 goto out_mutex; 3933 3934 /* 3935 * If the hole extends beyond i_size, set the hole 3936 * to end after the page that contains i_size 3937 */ 3938 if (offset + length > inode->i_size) { 3939 length = inode->i_size + 3940 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3941 offset; 3942 } 3943 3944 /* 3945 * For punch hole the length + offset needs to be within one block 3946 * before last range. Adjust the length if it goes beyond that limit. 3947 */ 3948 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3949 if (offset + length > max_length) 3950 length = max_length - offset; 3951 3952 if (offset & (sb->s_blocksize - 1) || 3953 (offset + length) & (sb->s_blocksize - 1)) { 3954 /* 3955 * Attach jinode to inode for jbd2 if we do any zeroing of 3956 * partial block 3957 */ 3958 ret = ext4_inode_attach_jinode(inode); 3959 if (ret < 0) 3960 goto out_mutex; 3961 3962 } 3963 3964 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3965 inode_dio_wait(inode); 3966 3967 ret = file_modified(file); 3968 if (ret) 3969 goto out_mutex; 3970 3971 /* 3972 * Prevent page faults from reinstantiating pages we have released from 3973 * page cache. 3974 */ 3975 filemap_invalidate_lock(mapping); 3976 3977 ret = ext4_break_layouts(inode); 3978 if (ret) 3979 goto out_dio; 3980 3981 first_block_offset = round_up(offset, sb->s_blocksize); 3982 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3983 3984 /* Now release the pages and zero block aligned part of pages*/ 3985 if (last_block_offset > first_block_offset) { 3986 ret = ext4_update_disksize_before_punch(inode, offset, length); 3987 if (ret) 3988 goto out_dio; 3989 truncate_pagecache_range(inode, first_block_offset, 3990 last_block_offset); 3991 } 3992 3993 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3994 credits = ext4_writepage_trans_blocks(inode); 3995 else 3996 credits = ext4_blocks_for_truncate(inode); 3997 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3998 if (IS_ERR(handle)) { 3999 ret = PTR_ERR(handle); 4000 ext4_std_error(sb, ret); 4001 goto out_dio; 4002 } 4003 4004 ret = ext4_zero_partial_blocks(handle, inode, offset, 4005 length); 4006 if (ret) 4007 goto out_stop; 4008 4009 first_block = (offset + sb->s_blocksize - 1) >> 4010 EXT4_BLOCK_SIZE_BITS(sb); 4011 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4012 4013 /* If there are blocks to remove, do it */ 4014 if (stop_block > first_block) { 4015 4016 down_write(&EXT4_I(inode)->i_data_sem); 4017 ext4_discard_preallocations(inode, 0); 4018 4019 ext4_es_remove_extent(inode, first_block, 4020 stop_block - first_block); 4021 4022 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4023 ret = ext4_ext_remove_space(inode, first_block, 4024 stop_block - 1); 4025 else 4026 ret = ext4_ind_remove_space(handle, inode, first_block, 4027 stop_block); 4028 4029 up_write(&EXT4_I(inode)->i_data_sem); 4030 } 4031 ext4_fc_track_range(handle, inode, first_block, stop_block); 4032 if (IS_SYNC(inode)) 4033 ext4_handle_sync(handle); 4034 4035 inode->i_mtime = inode_set_ctime_current(inode); 4036 ret2 = ext4_mark_inode_dirty(handle, inode); 4037 if (unlikely(ret2)) 4038 ret = ret2; 4039 if (ret >= 0) 4040 ext4_update_inode_fsync_trans(handle, inode, 1); 4041 out_stop: 4042 ext4_journal_stop(handle); 4043 out_dio: 4044 filemap_invalidate_unlock(mapping); 4045 out_mutex: 4046 inode_unlock(inode); 4047 return ret; 4048 } 4049 4050 int ext4_inode_attach_jinode(struct inode *inode) 4051 { 4052 struct ext4_inode_info *ei = EXT4_I(inode); 4053 struct jbd2_inode *jinode; 4054 4055 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4056 return 0; 4057 4058 jinode = jbd2_alloc_inode(GFP_KERNEL); 4059 spin_lock(&inode->i_lock); 4060 if (!ei->jinode) { 4061 if (!jinode) { 4062 spin_unlock(&inode->i_lock); 4063 return -ENOMEM; 4064 } 4065 ei->jinode = jinode; 4066 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4067 jinode = NULL; 4068 } 4069 spin_unlock(&inode->i_lock); 4070 if (unlikely(jinode != NULL)) 4071 jbd2_free_inode(jinode); 4072 return 0; 4073 } 4074 4075 /* 4076 * ext4_truncate() 4077 * 4078 * We block out ext4_get_block() block instantiations across the entire 4079 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4080 * simultaneously on behalf of the same inode. 4081 * 4082 * As we work through the truncate and commit bits of it to the journal there 4083 * is one core, guiding principle: the file's tree must always be consistent on 4084 * disk. We must be able to restart the truncate after a crash. 4085 * 4086 * The file's tree may be transiently inconsistent in memory (although it 4087 * probably isn't), but whenever we close off and commit a journal transaction, 4088 * the contents of (the filesystem + the journal) must be consistent and 4089 * restartable. It's pretty simple, really: bottom up, right to left (although 4090 * left-to-right works OK too). 4091 * 4092 * Note that at recovery time, journal replay occurs *before* the restart of 4093 * truncate against the orphan inode list. 4094 * 4095 * The committed inode has the new, desired i_size (which is the same as 4096 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4097 * that this inode's truncate did not complete and it will again call 4098 * ext4_truncate() to have another go. So there will be instantiated blocks 4099 * to the right of the truncation point in a crashed ext4 filesystem. But 4100 * that's fine - as long as they are linked from the inode, the post-crash 4101 * ext4_truncate() run will find them and release them. 4102 */ 4103 int ext4_truncate(struct inode *inode) 4104 { 4105 struct ext4_inode_info *ei = EXT4_I(inode); 4106 unsigned int credits; 4107 int err = 0, err2; 4108 handle_t *handle; 4109 struct address_space *mapping = inode->i_mapping; 4110 4111 /* 4112 * There is a possibility that we're either freeing the inode 4113 * or it's a completely new inode. In those cases we might not 4114 * have i_rwsem locked because it's not necessary. 4115 */ 4116 if (!(inode->i_state & (I_NEW|I_FREEING))) 4117 WARN_ON(!inode_is_locked(inode)); 4118 trace_ext4_truncate_enter(inode); 4119 4120 if (!ext4_can_truncate(inode)) 4121 goto out_trace; 4122 4123 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4124 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4125 4126 if (ext4_has_inline_data(inode)) { 4127 int has_inline = 1; 4128 4129 err = ext4_inline_data_truncate(inode, &has_inline); 4130 if (err || has_inline) 4131 goto out_trace; 4132 } 4133 4134 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4135 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4136 err = ext4_inode_attach_jinode(inode); 4137 if (err) 4138 goto out_trace; 4139 } 4140 4141 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4142 credits = ext4_writepage_trans_blocks(inode); 4143 else 4144 credits = ext4_blocks_for_truncate(inode); 4145 4146 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4147 if (IS_ERR(handle)) { 4148 err = PTR_ERR(handle); 4149 goto out_trace; 4150 } 4151 4152 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4153 ext4_block_truncate_page(handle, mapping, inode->i_size); 4154 4155 /* 4156 * We add the inode to the orphan list, so that if this 4157 * truncate spans multiple transactions, and we crash, we will 4158 * resume the truncate when the filesystem recovers. It also 4159 * marks the inode dirty, to catch the new size. 4160 * 4161 * Implication: the file must always be in a sane, consistent 4162 * truncatable state while each transaction commits. 4163 */ 4164 err = ext4_orphan_add(handle, inode); 4165 if (err) 4166 goto out_stop; 4167 4168 down_write(&EXT4_I(inode)->i_data_sem); 4169 4170 ext4_discard_preallocations(inode, 0); 4171 4172 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4173 err = ext4_ext_truncate(handle, inode); 4174 else 4175 ext4_ind_truncate(handle, inode); 4176 4177 up_write(&ei->i_data_sem); 4178 if (err) 4179 goto out_stop; 4180 4181 if (IS_SYNC(inode)) 4182 ext4_handle_sync(handle); 4183 4184 out_stop: 4185 /* 4186 * If this was a simple ftruncate() and the file will remain alive, 4187 * then we need to clear up the orphan record which we created above. 4188 * However, if this was a real unlink then we were called by 4189 * ext4_evict_inode(), and we allow that function to clean up the 4190 * orphan info for us. 4191 */ 4192 if (inode->i_nlink) 4193 ext4_orphan_del(handle, inode); 4194 4195 inode->i_mtime = inode_set_ctime_current(inode); 4196 err2 = ext4_mark_inode_dirty(handle, inode); 4197 if (unlikely(err2 && !err)) 4198 err = err2; 4199 ext4_journal_stop(handle); 4200 4201 out_trace: 4202 trace_ext4_truncate_exit(inode); 4203 return err; 4204 } 4205 4206 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4207 { 4208 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4209 return inode_peek_iversion_raw(inode); 4210 else 4211 return inode_peek_iversion(inode); 4212 } 4213 4214 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4215 struct ext4_inode_info *ei) 4216 { 4217 struct inode *inode = &(ei->vfs_inode); 4218 u64 i_blocks = READ_ONCE(inode->i_blocks); 4219 struct super_block *sb = inode->i_sb; 4220 4221 if (i_blocks <= ~0U) { 4222 /* 4223 * i_blocks can be represented in a 32 bit variable 4224 * as multiple of 512 bytes 4225 */ 4226 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4227 raw_inode->i_blocks_high = 0; 4228 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4229 return 0; 4230 } 4231 4232 /* 4233 * This should never happen since sb->s_maxbytes should not have 4234 * allowed this, sb->s_maxbytes was set according to the huge_file 4235 * feature in ext4_fill_super(). 4236 */ 4237 if (!ext4_has_feature_huge_file(sb)) 4238 return -EFSCORRUPTED; 4239 4240 if (i_blocks <= 0xffffffffffffULL) { 4241 /* 4242 * i_blocks can be represented in a 48 bit variable 4243 * as multiple of 512 bytes 4244 */ 4245 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4246 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4247 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4248 } else { 4249 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4250 /* i_block is stored in file system block size */ 4251 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4252 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4253 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4254 } 4255 return 0; 4256 } 4257 4258 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4259 { 4260 struct ext4_inode_info *ei = EXT4_I(inode); 4261 uid_t i_uid; 4262 gid_t i_gid; 4263 projid_t i_projid; 4264 int block; 4265 int err; 4266 4267 err = ext4_inode_blocks_set(raw_inode, ei); 4268 4269 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4270 i_uid = i_uid_read(inode); 4271 i_gid = i_gid_read(inode); 4272 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4273 if (!(test_opt(inode->i_sb, NO_UID32))) { 4274 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4275 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4276 /* 4277 * Fix up interoperability with old kernels. Otherwise, 4278 * old inodes get re-used with the upper 16 bits of the 4279 * uid/gid intact. 4280 */ 4281 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4282 raw_inode->i_uid_high = 0; 4283 raw_inode->i_gid_high = 0; 4284 } else { 4285 raw_inode->i_uid_high = 4286 cpu_to_le16(high_16_bits(i_uid)); 4287 raw_inode->i_gid_high = 4288 cpu_to_le16(high_16_bits(i_gid)); 4289 } 4290 } else { 4291 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4292 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4293 raw_inode->i_uid_high = 0; 4294 raw_inode->i_gid_high = 0; 4295 } 4296 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4297 4298 EXT4_INODE_SET_CTIME(inode, raw_inode); 4299 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4300 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4301 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4302 4303 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4304 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4305 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4306 raw_inode->i_file_acl_high = 4307 cpu_to_le16(ei->i_file_acl >> 32); 4308 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4309 ext4_isize_set(raw_inode, ei->i_disksize); 4310 4311 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4312 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4313 if (old_valid_dev(inode->i_rdev)) { 4314 raw_inode->i_block[0] = 4315 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4316 raw_inode->i_block[1] = 0; 4317 } else { 4318 raw_inode->i_block[0] = 0; 4319 raw_inode->i_block[1] = 4320 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4321 raw_inode->i_block[2] = 0; 4322 } 4323 } else if (!ext4_has_inline_data(inode)) { 4324 for (block = 0; block < EXT4_N_BLOCKS; block++) 4325 raw_inode->i_block[block] = ei->i_data[block]; 4326 } 4327 4328 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4329 u64 ivers = ext4_inode_peek_iversion(inode); 4330 4331 raw_inode->i_disk_version = cpu_to_le32(ivers); 4332 if (ei->i_extra_isize) { 4333 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4334 raw_inode->i_version_hi = 4335 cpu_to_le32(ivers >> 32); 4336 raw_inode->i_extra_isize = 4337 cpu_to_le16(ei->i_extra_isize); 4338 } 4339 } 4340 4341 if (i_projid != EXT4_DEF_PROJID && 4342 !ext4_has_feature_project(inode->i_sb)) 4343 err = err ?: -EFSCORRUPTED; 4344 4345 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4346 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4347 raw_inode->i_projid = cpu_to_le32(i_projid); 4348 4349 ext4_inode_csum_set(inode, raw_inode, ei); 4350 return err; 4351 } 4352 4353 /* 4354 * ext4_get_inode_loc returns with an extra refcount against the inode's 4355 * underlying buffer_head on success. If we pass 'inode' and it does not 4356 * have in-inode xattr, we have all inode data in memory that is needed 4357 * to recreate the on-disk version of this inode. 4358 */ 4359 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4360 struct inode *inode, struct ext4_iloc *iloc, 4361 ext4_fsblk_t *ret_block) 4362 { 4363 struct ext4_group_desc *gdp; 4364 struct buffer_head *bh; 4365 ext4_fsblk_t block; 4366 struct blk_plug plug; 4367 int inodes_per_block, inode_offset; 4368 4369 iloc->bh = NULL; 4370 if (ino < EXT4_ROOT_INO || 4371 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4372 return -EFSCORRUPTED; 4373 4374 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4375 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4376 if (!gdp) 4377 return -EIO; 4378 4379 /* 4380 * Figure out the offset within the block group inode table 4381 */ 4382 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4383 inode_offset = ((ino - 1) % 4384 EXT4_INODES_PER_GROUP(sb)); 4385 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4386 4387 block = ext4_inode_table(sb, gdp); 4388 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4389 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4390 ext4_error(sb, "Invalid inode table block %llu in " 4391 "block_group %u", block, iloc->block_group); 4392 return -EFSCORRUPTED; 4393 } 4394 block += (inode_offset / inodes_per_block); 4395 4396 bh = sb_getblk(sb, block); 4397 if (unlikely(!bh)) 4398 return -ENOMEM; 4399 if (ext4_buffer_uptodate(bh)) 4400 goto has_buffer; 4401 4402 lock_buffer(bh); 4403 if (ext4_buffer_uptodate(bh)) { 4404 /* Someone brought it uptodate while we waited */ 4405 unlock_buffer(bh); 4406 goto has_buffer; 4407 } 4408 4409 /* 4410 * If we have all information of the inode in memory and this 4411 * is the only valid inode in the block, we need not read the 4412 * block. 4413 */ 4414 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4415 struct buffer_head *bitmap_bh; 4416 int i, start; 4417 4418 start = inode_offset & ~(inodes_per_block - 1); 4419 4420 /* Is the inode bitmap in cache? */ 4421 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4422 if (unlikely(!bitmap_bh)) 4423 goto make_io; 4424 4425 /* 4426 * If the inode bitmap isn't in cache then the 4427 * optimisation may end up performing two reads instead 4428 * of one, so skip it. 4429 */ 4430 if (!buffer_uptodate(bitmap_bh)) { 4431 brelse(bitmap_bh); 4432 goto make_io; 4433 } 4434 for (i = start; i < start + inodes_per_block; i++) { 4435 if (i == inode_offset) 4436 continue; 4437 if (ext4_test_bit(i, bitmap_bh->b_data)) 4438 break; 4439 } 4440 brelse(bitmap_bh); 4441 if (i == start + inodes_per_block) { 4442 struct ext4_inode *raw_inode = 4443 (struct ext4_inode *) (bh->b_data + iloc->offset); 4444 4445 /* all other inodes are free, so skip I/O */ 4446 memset(bh->b_data, 0, bh->b_size); 4447 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4448 ext4_fill_raw_inode(inode, raw_inode); 4449 set_buffer_uptodate(bh); 4450 unlock_buffer(bh); 4451 goto has_buffer; 4452 } 4453 } 4454 4455 make_io: 4456 /* 4457 * If we need to do any I/O, try to pre-readahead extra 4458 * blocks from the inode table. 4459 */ 4460 blk_start_plug(&plug); 4461 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4462 ext4_fsblk_t b, end, table; 4463 unsigned num; 4464 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4465 4466 table = ext4_inode_table(sb, gdp); 4467 /* s_inode_readahead_blks is always a power of 2 */ 4468 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4469 if (table > b) 4470 b = table; 4471 end = b + ra_blks; 4472 num = EXT4_INODES_PER_GROUP(sb); 4473 if (ext4_has_group_desc_csum(sb)) 4474 num -= ext4_itable_unused_count(sb, gdp); 4475 table += num / inodes_per_block; 4476 if (end > table) 4477 end = table; 4478 while (b <= end) 4479 ext4_sb_breadahead_unmovable(sb, b++); 4480 } 4481 4482 /* 4483 * There are other valid inodes in the buffer, this inode 4484 * has in-inode xattrs, or we don't have this inode in memory. 4485 * Read the block from disk. 4486 */ 4487 trace_ext4_load_inode(sb, ino); 4488 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4489 blk_finish_plug(&plug); 4490 wait_on_buffer(bh); 4491 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4492 if (!buffer_uptodate(bh)) { 4493 if (ret_block) 4494 *ret_block = block; 4495 brelse(bh); 4496 return -EIO; 4497 } 4498 has_buffer: 4499 iloc->bh = bh; 4500 return 0; 4501 } 4502 4503 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4504 struct ext4_iloc *iloc) 4505 { 4506 ext4_fsblk_t err_blk = 0; 4507 int ret; 4508 4509 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4510 &err_blk); 4511 4512 if (ret == -EIO) 4513 ext4_error_inode_block(inode, err_blk, EIO, 4514 "unable to read itable block"); 4515 4516 return ret; 4517 } 4518 4519 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4520 { 4521 ext4_fsblk_t err_blk = 0; 4522 int ret; 4523 4524 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4525 &err_blk); 4526 4527 if (ret == -EIO) 4528 ext4_error_inode_block(inode, err_blk, EIO, 4529 "unable to read itable block"); 4530 4531 return ret; 4532 } 4533 4534 4535 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4536 struct ext4_iloc *iloc) 4537 { 4538 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4539 } 4540 4541 static bool ext4_should_enable_dax(struct inode *inode) 4542 { 4543 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4544 4545 if (test_opt2(inode->i_sb, DAX_NEVER)) 4546 return false; 4547 if (!S_ISREG(inode->i_mode)) 4548 return false; 4549 if (ext4_should_journal_data(inode)) 4550 return false; 4551 if (ext4_has_inline_data(inode)) 4552 return false; 4553 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4554 return false; 4555 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4556 return false; 4557 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4558 return false; 4559 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4560 return true; 4561 4562 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4563 } 4564 4565 void ext4_set_inode_flags(struct inode *inode, bool init) 4566 { 4567 unsigned int flags = EXT4_I(inode)->i_flags; 4568 unsigned int new_fl = 0; 4569 4570 WARN_ON_ONCE(IS_DAX(inode) && init); 4571 4572 if (flags & EXT4_SYNC_FL) 4573 new_fl |= S_SYNC; 4574 if (flags & EXT4_APPEND_FL) 4575 new_fl |= S_APPEND; 4576 if (flags & EXT4_IMMUTABLE_FL) 4577 new_fl |= S_IMMUTABLE; 4578 if (flags & EXT4_NOATIME_FL) 4579 new_fl |= S_NOATIME; 4580 if (flags & EXT4_DIRSYNC_FL) 4581 new_fl |= S_DIRSYNC; 4582 4583 /* Because of the way inode_set_flags() works we must preserve S_DAX 4584 * here if already set. */ 4585 new_fl |= (inode->i_flags & S_DAX); 4586 if (init && ext4_should_enable_dax(inode)) 4587 new_fl |= S_DAX; 4588 4589 if (flags & EXT4_ENCRYPT_FL) 4590 new_fl |= S_ENCRYPTED; 4591 if (flags & EXT4_CASEFOLD_FL) 4592 new_fl |= S_CASEFOLD; 4593 if (flags & EXT4_VERITY_FL) 4594 new_fl |= S_VERITY; 4595 inode_set_flags(inode, new_fl, 4596 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4597 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4598 } 4599 4600 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4601 struct ext4_inode_info *ei) 4602 { 4603 blkcnt_t i_blocks ; 4604 struct inode *inode = &(ei->vfs_inode); 4605 struct super_block *sb = inode->i_sb; 4606 4607 if (ext4_has_feature_huge_file(sb)) { 4608 /* we are using combined 48 bit field */ 4609 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4610 le32_to_cpu(raw_inode->i_blocks_lo); 4611 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4612 /* i_blocks represent file system block size */ 4613 return i_blocks << (inode->i_blkbits - 9); 4614 } else { 4615 return i_blocks; 4616 } 4617 } else { 4618 return le32_to_cpu(raw_inode->i_blocks_lo); 4619 } 4620 } 4621 4622 static inline int ext4_iget_extra_inode(struct inode *inode, 4623 struct ext4_inode *raw_inode, 4624 struct ext4_inode_info *ei) 4625 { 4626 __le32 *magic = (void *)raw_inode + 4627 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4628 4629 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4630 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4631 int err; 4632 4633 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4634 err = ext4_find_inline_data_nolock(inode); 4635 if (!err && ext4_has_inline_data(inode)) 4636 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4637 return err; 4638 } else 4639 EXT4_I(inode)->i_inline_off = 0; 4640 return 0; 4641 } 4642 4643 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4644 { 4645 if (!ext4_has_feature_project(inode->i_sb)) 4646 return -EOPNOTSUPP; 4647 *projid = EXT4_I(inode)->i_projid; 4648 return 0; 4649 } 4650 4651 /* 4652 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4653 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4654 * set. 4655 */ 4656 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4657 { 4658 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4659 inode_set_iversion_raw(inode, val); 4660 else 4661 inode_set_iversion_queried(inode, val); 4662 } 4663 4664 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4665 4666 { 4667 if (flags & EXT4_IGET_EA_INODE) { 4668 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4669 return "missing EA_INODE flag"; 4670 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4671 EXT4_I(inode)->i_file_acl) 4672 return "ea_inode with extended attributes"; 4673 } else { 4674 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4675 return "unexpected EA_INODE flag"; 4676 } 4677 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4678 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4679 return NULL; 4680 } 4681 4682 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4683 ext4_iget_flags flags, const char *function, 4684 unsigned int line) 4685 { 4686 struct ext4_iloc iloc; 4687 struct ext4_inode *raw_inode; 4688 struct ext4_inode_info *ei; 4689 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4690 struct inode *inode; 4691 const char *err_str; 4692 journal_t *journal = EXT4_SB(sb)->s_journal; 4693 long ret; 4694 loff_t size; 4695 int block; 4696 uid_t i_uid; 4697 gid_t i_gid; 4698 projid_t i_projid; 4699 4700 if ((!(flags & EXT4_IGET_SPECIAL) && 4701 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4702 ino == le32_to_cpu(es->s_usr_quota_inum) || 4703 ino == le32_to_cpu(es->s_grp_quota_inum) || 4704 ino == le32_to_cpu(es->s_prj_quota_inum) || 4705 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4706 (ino < EXT4_ROOT_INO) || 4707 (ino > le32_to_cpu(es->s_inodes_count))) { 4708 if (flags & EXT4_IGET_HANDLE) 4709 return ERR_PTR(-ESTALE); 4710 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4711 "inode #%lu: comm %s: iget: illegal inode #", 4712 ino, current->comm); 4713 return ERR_PTR(-EFSCORRUPTED); 4714 } 4715 4716 inode = iget_locked(sb, ino); 4717 if (!inode) 4718 return ERR_PTR(-ENOMEM); 4719 if (!(inode->i_state & I_NEW)) { 4720 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4721 ext4_error_inode(inode, function, line, 0, err_str); 4722 iput(inode); 4723 return ERR_PTR(-EFSCORRUPTED); 4724 } 4725 return inode; 4726 } 4727 4728 ei = EXT4_I(inode); 4729 iloc.bh = NULL; 4730 4731 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4732 if (ret < 0) 4733 goto bad_inode; 4734 raw_inode = ext4_raw_inode(&iloc); 4735 4736 if ((flags & EXT4_IGET_HANDLE) && 4737 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4738 ret = -ESTALE; 4739 goto bad_inode; 4740 } 4741 4742 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4743 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4744 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4745 EXT4_INODE_SIZE(inode->i_sb) || 4746 (ei->i_extra_isize & 3)) { 4747 ext4_error_inode(inode, function, line, 0, 4748 "iget: bad extra_isize %u " 4749 "(inode size %u)", 4750 ei->i_extra_isize, 4751 EXT4_INODE_SIZE(inode->i_sb)); 4752 ret = -EFSCORRUPTED; 4753 goto bad_inode; 4754 } 4755 } else 4756 ei->i_extra_isize = 0; 4757 4758 /* Precompute checksum seed for inode metadata */ 4759 if (ext4_has_metadata_csum(sb)) { 4760 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4761 __u32 csum; 4762 __le32 inum = cpu_to_le32(inode->i_ino); 4763 __le32 gen = raw_inode->i_generation; 4764 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4765 sizeof(inum)); 4766 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4767 sizeof(gen)); 4768 } 4769 4770 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4771 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4772 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4773 ext4_error_inode_err(inode, function, line, 0, 4774 EFSBADCRC, "iget: checksum invalid"); 4775 ret = -EFSBADCRC; 4776 goto bad_inode; 4777 } 4778 4779 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4780 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4781 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4782 if (ext4_has_feature_project(sb) && 4783 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4784 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4785 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4786 else 4787 i_projid = EXT4_DEF_PROJID; 4788 4789 if (!(test_opt(inode->i_sb, NO_UID32))) { 4790 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4791 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4792 } 4793 i_uid_write(inode, i_uid); 4794 i_gid_write(inode, i_gid); 4795 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4796 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4797 4798 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4799 ei->i_inline_off = 0; 4800 ei->i_dir_start_lookup = 0; 4801 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4802 /* We now have enough fields to check if the inode was active or not. 4803 * This is needed because nfsd might try to access dead inodes 4804 * the test is that same one that e2fsck uses 4805 * NeilBrown 1999oct15 4806 */ 4807 if (inode->i_nlink == 0) { 4808 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4809 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4810 ino != EXT4_BOOT_LOADER_INO) { 4811 /* this inode is deleted or unallocated */ 4812 if (flags & EXT4_IGET_SPECIAL) { 4813 ext4_error_inode(inode, function, line, 0, 4814 "iget: special inode unallocated"); 4815 ret = -EFSCORRUPTED; 4816 } else 4817 ret = -ESTALE; 4818 goto bad_inode; 4819 } 4820 /* The only unlinked inodes we let through here have 4821 * valid i_mode and are being read by the orphan 4822 * recovery code: that's fine, we're about to complete 4823 * the process of deleting those. 4824 * OR it is the EXT4_BOOT_LOADER_INO which is 4825 * not initialized on a new filesystem. */ 4826 } 4827 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4828 ext4_set_inode_flags(inode, true); 4829 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4830 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4831 if (ext4_has_feature_64bit(sb)) 4832 ei->i_file_acl |= 4833 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4834 inode->i_size = ext4_isize(sb, raw_inode); 4835 if ((size = i_size_read(inode)) < 0) { 4836 ext4_error_inode(inode, function, line, 0, 4837 "iget: bad i_size value: %lld", size); 4838 ret = -EFSCORRUPTED; 4839 goto bad_inode; 4840 } 4841 /* 4842 * If dir_index is not enabled but there's dir with INDEX flag set, 4843 * we'd normally treat htree data as empty space. But with metadata 4844 * checksumming that corrupts checksums so forbid that. 4845 */ 4846 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4847 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4848 ext4_error_inode(inode, function, line, 0, 4849 "iget: Dir with htree data on filesystem without dir_index feature."); 4850 ret = -EFSCORRUPTED; 4851 goto bad_inode; 4852 } 4853 ei->i_disksize = inode->i_size; 4854 #ifdef CONFIG_QUOTA 4855 ei->i_reserved_quota = 0; 4856 #endif 4857 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4858 ei->i_block_group = iloc.block_group; 4859 ei->i_last_alloc_group = ~0; 4860 /* 4861 * NOTE! The in-memory inode i_data array is in little-endian order 4862 * even on big-endian machines: we do NOT byteswap the block numbers! 4863 */ 4864 for (block = 0; block < EXT4_N_BLOCKS; block++) 4865 ei->i_data[block] = raw_inode->i_block[block]; 4866 INIT_LIST_HEAD(&ei->i_orphan); 4867 ext4_fc_init_inode(&ei->vfs_inode); 4868 4869 /* 4870 * Set transaction id's of transactions that have to be committed 4871 * to finish f[data]sync. We set them to currently running transaction 4872 * as we cannot be sure that the inode or some of its metadata isn't 4873 * part of the transaction - the inode could have been reclaimed and 4874 * now it is reread from disk. 4875 */ 4876 if (journal) { 4877 transaction_t *transaction; 4878 tid_t tid; 4879 4880 read_lock(&journal->j_state_lock); 4881 if (journal->j_running_transaction) 4882 transaction = journal->j_running_transaction; 4883 else 4884 transaction = journal->j_committing_transaction; 4885 if (transaction) 4886 tid = transaction->t_tid; 4887 else 4888 tid = journal->j_commit_sequence; 4889 read_unlock(&journal->j_state_lock); 4890 ei->i_sync_tid = tid; 4891 ei->i_datasync_tid = tid; 4892 } 4893 4894 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4895 if (ei->i_extra_isize == 0) { 4896 /* The extra space is currently unused. Use it. */ 4897 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4898 ei->i_extra_isize = sizeof(struct ext4_inode) - 4899 EXT4_GOOD_OLD_INODE_SIZE; 4900 } else { 4901 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4902 if (ret) 4903 goto bad_inode; 4904 } 4905 } 4906 4907 EXT4_INODE_GET_CTIME(inode, raw_inode); 4908 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4909 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4910 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4911 4912 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4913 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4914 4915 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4916 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4917 ivers |= 4918 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4919 } 4920 ext4_inode_set_iversion_queried(inode, ivers); 4921 } 4922 4923 ret = 0; 4924 if (ei->i_file_acl && 4925 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4926 ext4_error_inode(inode, function, line, 0, 4927 "iget: bad extended attribute block %llu", 4928 ei->i_file_acl); 4929 ret = -EFSCORRUPTED; 4930 goto bad_inode; 4931 } else if (!ext4_has_inline_data(inode)) { 4932 /* validate the block references in the inode */ 4933 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4934 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4935 (S_ISLNK(inode->i_mode) && 4936 !ext4_inode_is_fast_symlink(inode)))) { 4937 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4938 ret = ext4_ext_check_inode(inode); 4939 else 4940 ret = ext4_ind_check_inode(inode); 4941 } 4942 } 4943 if (ret) 4944 goto bad_inode; 4945 4946 if (S_ISREG(inode->i_mode)) { 4947 inode->i_op = &ext4_file_inode_operations; 4948 inode->i_fop = &ext4_file_operations; 4949 ext4_set_aops(inode); 4950 } else if (S_ISDIR(inode->i_mode)) { 4951 inode->i_op = &ext4_dir_inode_operations; 4952 inode->i_fop = &ext4_dir_operations; 4953 } else if (S_ISLNK(inode->i_mode)) { 4954 /* VFS does not allow setting these so must be corruption */ 4955 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4956 ext4_error_inode(inode, function, line, 0, 4957 "iget: immutable or append flags " 4958 "not allowed on symlinks"); 4959 ret = -EFSCORRUPTED; 4960 goto bad_inode; 4961 } 4962 if (IS_ENCRYPTED(inode)) { 4963 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4964 } else if (ext4_inode_is_fast_symlink(inode)) { 4965 inode->i_link = (char *)ei->i_data; 4966 inode->i_op = &ext4_fast_symlink_inode_operations; 4967 nd_terminate_link(ei->i_data, inode->i_size, 4968 sizeof(ei->i_data) - 1); 4969 } else { 4970 inode->i_op = &ext4_symlink_inode_operations; 4971 } 4972 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4973 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4974 inode->i_op = &ext4_special_inode_operations; 4975 if (raw_inode->i_block[0]) 4976 init_special_inode(inode, inode->i_mode, 4977 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4978 else 4979 init_special_inode(inode, inode->i_mode, 4980 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4981 } else if (ino == EXT4_BOOT_LOADER_INO) { 4982 make_bad_inode(inode); 4983 } else { 4984 ret = -EFSCORRUPTED; 4985 ext4_error_inode(inode, function, line, 0, 4986 "iget: bogus i_mode (%o)", inode->i_mode); 4987 goto bad_inode; 4988 } 4989 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 4990 ext4_error_inode(inode, function, line, 0, 4991 "casefold flag without casefold feature"); 4992 ret = -EFSCORRUPTED; 4993 goto bad_inode; 4994 } 4995 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4996 ext4_error_inode(inode, function, line, 0, err_str); 4997 ret = -EFSCORRUPTED; 4998 goto bad_inode; 4999 } 5000 5001 brelse(iloc.bh); 5002 unlock_new_inode(inode); 5003 return inode; 5004 5005 bad_inode: 5006 brelse(iloc.bh); 5007 iget_failed(inode); 5008 return ERR_PTR(ret); 5009 } 5010 5011 static void __ext4_update_other_inode_time(struct super_block *sb, 5012 unsigned long orig_ino, 5013 unsigned long ino, 5014 struct ext4_inode *raw_inode) 5015 { 5016 struct inode *inode; 5017 5018 inode = find_inode_by_ino_rcu(sb, ino); 5019 if (!inode) 5020 return; 5021 5022 if (!inode_is_dirtytime_only(inode)) 5023 return; 5024 5025 spin_lock(&inode->i_lock); 5026 if (inode_is_dirtytime_only(inode)) { 5027 struct ext4_inode_info *ei = EXT4_I(inode); 5028 5029 inode->i_state &= ~I_DIRTY_TIME; 5030 spin_unlock(&inode->i_lock); 5031 5032 spin_lock(&ei->i_raw_lock); 5033 EXT4_INODE_SET_CTIME(inode, raw_inode); 5034 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5035 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5036 ext4_inode_csum_set(inode, raw_inode, ei); 5037 spin_unlock(&ei->i_raw_lock); 5038 trace_ext4_other_inode_update_time(inode, orig_ino); 5039 return; 5040 } 5041 spin_unlock(&inode->i_lock); 5042 } 5043 5044 /* 5045 * Opportunistically update the other time fields for other inodes in 5046 * the same inode table block. 5047 */ 5048 static void ext4_update_other_inodes_time(struct super_block *sb, 5049 unsigned long orig_ino, char *buf) 5050 { 5051 unsigned long ino; 5052 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5053 int inode_size = EXT4_INODE_SIZE(sb); 5054 5055 /* 5056 * Calculate the first inode in the inode table block. Inode 5057 * numbers are one-based. That is, the first inode in a block 5058 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5059 */ 5060 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5061 rcu_read_lock(); 5062 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5063 if (ino == orig_ino) 5064 continue; 5065 __ext4_update_other_inode_time(sb, orig_ino, ino, 5066 (struct ext4_inode *)buf); 5067 } 5068 rcu_read_unlock(); 5069 } 5070 5071 /* 5072 * Post the struct inode info into an on-disk inode location in the 5073 * buffer-cache. This gobbles the caller's reference to the 5074 * buffer_head in the inode location struct. 5075 * 5076 * The caller must have write access to iloc->bh. 5077 */ 5078 static int ext4_do_update_inode(handle_t *handle, 5079 struct inode *inode, 5080 struct ext4_iloc *iloc) 5081 { 5082 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5083 struct ext4_inode_info *ei = EXT4_I(inode); 5084 struct buffer_head *bh = iloc->bh; 5085 struct super_block *sb = inode->i_sb; 5086 int err; 5087 int need_datasync = 0, set_large_file = 0; 5088 5089 spin_lock(&ei->i_raw_lock); 5090 5091 /* 5092 * For fields not tracked in the in-memory inode, initialise them 5093 * to zero for new inodes. 5094 */ 5095 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5096 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5097 5098 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5099 need_datasync = 1; 5100 if (ei->i_disksize > 0x7fffffffULL) { 5101 if (!ext4_has_feature_large_file(sb) || 5102 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5103 set_large_file = 1; 5104 } 5105 5106 err = ext4_fill_raw_inode(inode, raw_inode); 5107 spin_unlock(&ei->i_raw_lock); 5108 if (err) { 5109 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5110 goto out_brelse; 5111 } 5112 5113 if (inode->i_sb->s_flags & SB_LAZYTIME) 5114 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5115 bh->b_data); 5116 5117 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5118 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5119 if (err) 5120 goto out_error; 5121 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5122 if (set_large_file) { 5123 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5124 err = ext4_journal_get_write_access(handle, sb, 5125 EXT4_SB(sb)->s_sbh, 5126 EXT4_JTR_NONE); 5127 if (err) 5128 goto out_error; 5129 lock_buffer(EXT4_SB(sb)->s_sbh); 5130 ext4_set_feature_large_file(sb); 5131 ext4_superblock_csum_set(sb); 5132 unlock_buffer(EXT4_SB(sb)->s_sbh); 5133 ext4_handle_sync(handle); 5134 err = ext4_handle_dirty_metadata(handle, NULL, 5135 EXT4_SB(sb)->s_sbh); 5136 } 5137 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5138 out_error: 5139 ext4_std_error(inode->i_sb, err); 5140 out_brelse: 5141 brelse(bh); 5142 return err; 5143 } 5144 5145 /* 5146 * ext4_write_inode() 5147 * 5148 * We are called from a few places: 5149 * 5150 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5151 * Here, there will be no transaction running. We wait for any running 5152 * transaction to commit. 5153 * 5154 * - Within flush work (sys_sync(), kupdate and such). 5155 * We wait on commit, if told to. 5156 * 5157 * - Within iput_final() -> write_inode_now() 5158 * We wait on commit, if told to. 5159 * 5160 * In all cases it is actually safe for us to return without doing anything, 5161 * because the inode has been copied into a raw inode buffer in 5162 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5163 * writeback. 5164 * 5165 * Note that we are absolutely dependent upon all inode dirtiers doing the 5166 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5167 * which we are interested. 5168 * 5169 * It would be a bug for them to not do this. The code: 5170 * 5171 * mark_inode_dirty(inode) 5172 * stuff(); 5173 * inode->i_size = expr; 5174 * 5175 * is in error because write_inode() could occur while `stuff()' is running, 5176 * and the new i_size will be lost. Plus the inode will no longer be on the 5177 * superblock's dirty inode list. 5178 */ 5179 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5180 { 5181 int err; 5182 5183 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5184 return 0; 5185 5186 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5187 return -EIO; 5188 5189 if (EXT4_SB(inode->i_sb)->s_journal) { 5190 if (ext4_journal_current_handle()) { 5191 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5192 dump_stack(); 5193 return -EIO; 5194 } 5195 5196 /* 5197 * No need to force transaction in WB_SYNC_NONE mode. Also 5198 * ext4_sync_fs() will force the commit after everything is 5199 * written. 5200 */ 5201 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5202 return 0; 5203 5204 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5205 EXT4_I(inode)->i_sync_tid); 5206 } else { 5207 struct ext4_iloc iloc; 5208 5209 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5210 if (err) 5211 return err; 5212 /* 5213 * sync(2) will flush the whole buffer cache. No need to do 5214 * it here separately for each inode. 5215 */ 5216 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5217 sync_dirty_buffer(iloc.bh); 5218 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5219 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5220 "IO error syncing inode"); 5221 err = -EIO; 5222 } 5223 brelse(iloc.bh); 5224 } 5225 return err; 5226 } 5227 5228 /* 5229 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5230 * buffers that are attached to a folio straddling i_size and are undergoing 5231 * commit. In that case we have to wait for commit to finish and try again. 5232 */ 5233 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5234 { 5235 unsigned offset; 5236 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5237 tid_t commit_tid = 0; 5238 int ret; 5239 5240 offset = inode->i_size & (PAGE_SIZE - 1); 5241 /* 5242 * If the folio is fully truncated, we don't need to wait for any commit 5243 * (and we even should not as __ext4_journalled_invalidate_folio() may 5244 * strip all buffers from the folio but keep the folio dirty which can then 5245 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5246 * buffers). Also we don't need to wait for any commit if all buffers in 5247 * the folio remain valid. This is most beneficial for the common case of 5248 * blocksize == PAGESIZE. 5249 */ 5250 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5251 return; 5252 while (1) { 5253 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5254 inode->i_size >> PAGE_SHIFT); 5255 if (IS_ERR(folio)) 5256 return; 5257 ret = __ext4_journalled_invalidate_folio(folio, offset, 5258 folio_size(folio) - offset); 5259 folio_unlock(folio); 5260 folio_put(folio); 5261 if (ret != -EBUSY) 5262 return; 5263 commit_tid = 0; 5264 read_lock(&journal->j_state_lock); 5265 if (journal->j_committing_transaction) 5266 commit_tid = journal->j_committing_transaction->t_tid; 5267 read_unlock(&journal->j_state_lock); 5268 if (commit_tid) 5269 jbd2_log_wait_commit(journal, commit_tid); 5270 } 5271 } 5272 5273 /* 5274 * ext4_setattr() 5275 * 5276 * Called from notify_change. 5277 * 5278 * We want to trap VFS attempts to truncate the file as soon as 5279 * possible. In particular, we want to make sure that when the VFS 5280 * shrinks i_size, we put the inode on the orphan list and modify 5281 * i_disksize immediately, so that during the subsequent flushing of 5282 * dirty pages and freeing of disk blocks, we can guarantee that any 5283 * commit will leave the blocks being flushed in an unused state on 5284 * disk. (On recovery, the inode will get truncated and the blocks will 5285 * be freed, so we have a strong guarantee that no future commit will 5286 * leave these blocks visible to the user.) 5287 * 5288 * Another thing we have to assure is that if we are in ordered mode 5289 * and inode is still attached to the committing transaction, we must 5290 * we start writeout of all the dirty pages which are being truncated. 5291 * This way we are sure that all the data written in the previous 5292 * transaction are already on disk (truncate waits for pages under 5293 * writeback). 5294 * 5295 * Called with inode->i_rwsem down. 5296 */ 5297 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5298 struct iattr *attr) 5299 { 5300 struct inode *inode = d_inode(dentry); 5301 int error, rc = 0; 5302 int orphan = 0; 5303 const unsigned int ia_valid = attr->ia_valid; 5304 bool inc_ivers = true; 5305 5306 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5307 return -EIO; 5308 5309 if (unlikely(IS_IMMUTABLE(inode))) 5310 return -EPERM; 5311 5312 if (unlikely(IS_APPEND(inode) && 5313 (ia_valid & (ATTR_MODE | ATTR_UID | 5314 ATTR_GID | ATTR_TIMES_SET)))) 5315 return -EPERM; 5316 5317 error = setattr_prepare(idmap, dentry, attr); 5318 if (error) 5319 return error; 5320 5321 error = fscrypt_prepare_setattr(dentry, attr); 5322 if (error) 5323 return error; 5324 5325 error = fsverity_prepare_setattr(dentry, attr); 5326 if (error) 5327 return error; 5328 5329 if (is_quota_modification(idmap, inode, attr)) { 5330 error = dquot_initialize(inode); 5331 if (error) 5332 return error; 5333 } 5334 5335 if (i_uid_needs_update(idmap, attr, inode) || 5336 i_gid_needs_update(idmap, attr, inode)) { 5337 handle_t *handle; 5338 5339 /* (user+group)*(old+new) structure, inode write (sb, 5340 * inode block, ? - but truncate inode update has it) */ 5341 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5342 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5343 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5344 if (IS_ERR(handle)) { 5345 error = PTR_ERR(handle); 5346 goto err_out; 5347 } 5348 5349 /* dquot_transfer() calls back ext4_get_inode_usage() which 5350 * counts xattr inode references. 5351 */ 5352 down_read(&EXT4_I(inode)->xattr_sem); 5353 error = dquot_transfer(idmap, inode, attr); 5354 up_read(&EXT4_I(inode)->xattr_sem); 5355 5356 if (error) { 5357 ext4_journal_stop(handle); 5358 return error; 5359 } 5360 /* Update corresponding info in inode so that everything is in 5361 * one transaction */ 5362 i_uid_update(idmap, attr, inode); 5363 i_gid_update(idmap, attr, inode); 5364 error = ext4_mark_inode_dirty(handle, inode); 5365 ext4_journal_stop(handle); 5366 if (unlikely(error)) { 5367 return error; 5368 } 5369 } 5370 5371 if (attr->ia_valid & ATTR_SIZE) { 5372 handle_t *handle; 5373 loff_t oldsize = inode->i_size; 5374 loff_t old_disksize; 5375 int shrink = (attr->ia_size < inode->i_size); 5376 5377 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5378 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5379 5380 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5381 return -EFBIG; 5382 } 5383 } 5384 if (!S_ISREG(inode->i_mode)) { 5385 return -EINVAL; 5386 } 5387 5388 if (attr->ia_size == inode->i_size) 5389 inc_ivers = false; 5390 5391 if (shrink) { 5392 if (ext4_should_order_data(inode)) { 5393 error = ext4_begin_ordered_truncate(inode, 5394 attr->ia_size); 5395 if (error) 5396 goto err_out; 5397 } 5398 /* 5399 * Blocks are going to be removed from the inode. Wait 5400 * for dio in flight. 5401 */ 5402 inode_dio_wait(inode); 5403 } 5404 5405 filemap_invalidate_lock(inode->i_mapping); 5406 5407 rc = ext4_break_layouts(inode); 5408 if (rc) { 5409 filemap_invalidate_unlock(inode->i_mapping); 5410 goto err_out; 5411 } 5412 5413 if (attr->ia_size != inode->i_size) { 5414 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5415 if (IS_ERR(handle)) { 5416 error = PTR_ERR(handle); 5417 goto out_mmap_sem; 5418 } 5419 if (ext4_handle_valid(handle) && shrink) { 5420 error = ext4_orphan_add(handle, inode); 5421 orphan = 1; 5422 } 5423 /* 5424 * Update c/mtime on truncate up, ext4_truncate() will 5425 * update c/mtime in shrink case below 5426 */ 5427 if (!shrink) 5428 inode->i_mtime = inode_set_ctime_current(inode); 5429 5430 if (shrink) 5431 ext4_fc_track_range(handle, inode, 5432 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5433 inode->i_sb->s_blocksize_bits, 5434 EXT_MAX_BLOCKS - 1); 5435 else 5436 ext4_fc_track_range( 5437 handle, inode, 5438 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5439 inode->i_sb->s_blocksize_bits, 5440 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5441 inode->i_sb->s_blocksize_bits); 5442 5443 down_write(&EXT4_I(inode)->i_data_sem); 5444 old_disksize = EXT4_I(inode)->i_disksize; 5445 EXT4_I(inode)->i_disksize = attr->ia_size; 5446 rc = ext4_mark_inode_dirty(handle, inode); 5447 if (!error) 5448 error = rc; 5449 /* 5450 * We have to update i_size under i_data_sem together 5451 * with i_disksize to avoid races with writeback code 5452 * running ext4_wb_update_i_disksize(). 5453 */ 5454 if (!error) 5455 i_size_write(inode, attr->ia_size); 5456 else 5457 EXT4_I(inode)->i_disksize = old_disksize; 5458 up_write(&EXT4_I(inode)->i_data_sem); 5459 ext4_journal_stop(handle); 5460 if (error) 5461 goto out_mmap_sem; 5462 if (!shrink) { 5463 pagecache_isize_extended(inode, oldsize, 5464 inode->i_size); 5465 } else if (ext4_should_journal_data(inode)) { 5466 ext4_wait_for_tail_page_commit(inode); 5467 } 5468 } 5469 5470 /* 5471 * Truncate pagecache after we've waited for commit 5472 * in data=journal mode to make pages freeable. 5473 */ 5474 truncate_pagecache(inode, inode->i_size); 5475 /* 5476 * Call ext4_truncate() even if i_size didn't change to 5477 * truncate possible preallocated blocks. 5478 */ 5479 if (attr->ia_size <= oldsize) { 5480 rc = ext4_truncate(inode); 5481 if (rc) 5482 error = rc; 5483 } 5484 out_mmap_sem: 5485 filemap_invalidate_unlock(inode->i_mapping); 5486 } 5487 5488 if (!error) { 5489 if (inc_ivers) 5490 inode_inc_iversion(inode); 5491 setattr_copy(idmap, inode, attr); 5492 mark_inode_dirty(inode); 5493 } 5494 5495 /* 5496 * If the call to ext4_truncate failed to get a transaction handle at 5497 * all, we need to clean up the in-core orphan list manually. 5498 */ 5499 if (orphan && inode->i_nlink) 5500 ext4_orphan_del(NULL, inode); 5501 5502 if (!error && (ia_valid & ATTR_MODE)) 5503 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5504 5505 err_out: 5506 if (error) 5507 ext4_std_error(inode->i_sb, error); 5508 if (!error) 5509 error = rc; 5510 return error; 5511 } 5512 5513 u32 ext4_dio_alignment(struct inode *inode) 5514 { 5515 if (fsverity_active(inode)) 5516 return 0; 5517 if (ext4_should_journal_data(inode)) 5518 return 0; 5519 if (ext4_has_inline_data(inode)) 5520 return 0; 5521 if (IS_ENCRYPTED(inode)) { 5522 if (!fscrypt_dio_supported(inode)) 5523 return 0; 5524 return i_blocksize(inode); 5525 } 5526 return 1; /* use the iomap defaults */ 5527 } 5528 5529 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5530 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5531 { 5532 struct inode *inode = d_inode(path->dentry); 5533 struct ext4_inode *raw_inode; 5534 struct ext4_inode_info *ei = EXT4_I(inode); 5535 unsigned int flags; 5536 5537 if ((request_mask & STATX_BTIME) && 5538 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5539 stat->result_mask |= STATX_BTIME; 5540 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5541 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5542 } 5543 5544 /* 5545 * Return the DIO alignment restrictions if requested. We only return 5546 * this information when requested, since on encrypted files it might 5547 * take a fair bit of work to get if the file wasn't opened recently. 5548 */ 5549 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5550 u32 dio_align = ext4_dio_alignment(inode); 5551 5552 stat->result_mask |= STATX_DIOALIGN; 5553 if (dio_align == 1) { 5554 struct block_device *bdev = inode->i_sb->s_bdev; 5555 5556 /* iomap defaults */ 5557 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5558 stat->dio_offset_align = bdev_logical_block_size(bdev); 5559 } else { 5560 stat->dio_mem_align = dio_align; 5561 stat->dio_offset_align = dio_align; 5562 } 5563 } 5564 5565 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5566 if (flags & EXT4_APPEND_FL) 5567 stat->attributes |= STATX_ATTR_APPEND; 5568 if (flags & EXT4_COMPR_FL) 5569 stat->attributes |= STATX_ATTR_COMPRESSED; 5570 if (flags & EXT4_ENCRYPT_FL) 5571 stat->attributes |= STATX_ATTR_ENCRYPTED; 5572 if (flags & EXT4_IMMUTABLE_FL) 5573 stat->attributes |= STATX_ATTR_IMMUTABLE; 5574 if (flags & EXT4_NODUMP_FL) 5575 stat->attributes |= STATX_ATTR_NODUMP; 5576 if (flags & EXT4_VERITY_FL) 5577 stat->attributes |= STATX_ATTR_VERITY; 5578 5579 stat->attributes_mask |= (STATX_ATTR_APPEND | 5580 STATX_ATTR_COMPRESSED | 5581 STATX_ATTR_ENCRYPTED | 5582 STATX_ATTR_IMMUTABLE | 5583 STATX_ATTR_NODUMP | 5584 STATX_ATTR_VERITY); 5585 5586 generic_fillattr(idmap, request_mask, inode, stat); 5587 return 0; 5588 } 5589 5590 int ext4_file_getattr(struct mnt_idmap *idmap, 5591 const struct path *path, struct kstat *stat, 5592 u32 request_mask, unsigned int query_flags) 5593 { 5594 struct inode *inode = d_inode(path->dentry); 5595 u64 delalloc_blocks; 5596 5597 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5598 5599 /* 5600 * If there is inline data in the inode, the inode will normally not 5601 * have data blocks allocated (it may have an external xattr block). 5602 * Report at least one sector for such files, so tools like tar, rsync, 5603 * others don't incorrectly think the file is completely sparse. 5604 */ 5605 if (unlikely(ext4_has_inline_data(inode))) 5606 stat->blocks += (stat->size + 511) >> 9; 5607 5608 /* 5609 * We can't update i_blocks if the block allocation is delayed 5610 * otherwise in the case of system crash before the real block 5611 * allocation is done, we will have i_blocks inconsistent with 5612 * on-disk file blocks. 5613 * We always keep i_blocks updated together with real 5614 * allocation. But to not confuse with user, stat 5615 * will return the blocks that include the delayed allocation 5616 * blocks for this file. 5617 */ 5618 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5619 EXT4_I(inode)->i_reserved_data_blocks); 5620 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5621 return 0; 5622 } 5623 5624 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5625 int pextents) 5626 { 5627 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5628 return ext4_ind_trans_blocks(inode, lblocks); 5629 return ext4_ext_index_trans_blocks(inode, pextents); 5630 } 5631 5632 /* 5633 * Account for index blocks, block groups bitmaps and block group 5634 * descriptor blocks if modify datablocks and index blocks 5635 * worse case, the indexs blocks spread over different block groups 5636 * 5637 * If datablocks are discontiguous, they are possible to spread over 5638 * different block groups too. If they are contiguous, with flexbg, 5639 * they could still across block group boundary. 5640 * 5641 * Also account for superblock, inode, quota and xattr blocks 5642 */ 5643 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5644 int pextents) 5645 { 5646 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5647 int gdpblocks; 5648 int idxblocks; 5649 int ret; 5650 5651 /* 5652 * How many index blocks need to touch to map @lblocks logical blocks 5653 * to @pextents physical extents? 5654 */ 5655 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5656 5657 ret = idxblocks; 5658 5659 /* 5660 * Now let's see how many group bitmaps and group descriptors need 5661 * to account 5662 */ 5663 groups = idxblocks + pextents; 5664 gdpblocks = groups; 5665 if (groups > ngroups) 5666 groups = ngroups; 5667 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5668 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5669 5670 /* bitmaps and block group descriptor blocks */ 5671 ret += groups + gdpblocks; 5672 5673 /* Blocks for super block, inode, quota and xattr blocks */ 5674 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5675 5676 return ret; 5677 } 5678 5679 /* 5680 * Calculate the total number of credits to reserve to fit 5681 * the modification of a single pages into a single transaction, 5682 * which may include multiple chunks of block allocations. 5683 * 5684 * This could be called via ext4_write_begin() 5685 * 5686 * We need to consider the worse case, when 5687 * one new block per extent. 5688 */ 5689 int ext4_writepage_trans_blocks(struct inode *inode) 5690 { 5691 int bpp = ext4_journal_blocks_per_page(inode); 5692 int ret; 5693 5694 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5695 5696 /* Account for data blocks for journalled mode */ 5697 if (ext4_should_journal_data(inode)) 5698 ret += bpp; 5699 return ret; 5700 } 5701 5702 /* 5703 * Calculate the journal credits for a chunk of data modification. 5704 * 5705 * This is called from DIO, fallocate or whoever calling 5706 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5707 * 5708 * journal buffers for data blocks are not included here, as DIO 5709 * and fallocate do no need to journal data buffers. 5710 */ 5711 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5712 { 5713 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5714 } 5715 5716 /* 5717 * The caller must have previously called ext4_reserve_inode_write(). 5718 * Give this, we know that the caller already has write access to iloc->bh. 5719 */ 5720 int ext4_mark_iloc_dirty(handle_t *handle, 5721 struct inode *inode, struct ext4_iloc *iloc) 5722 { 5723 int err = 0; 5724 5725 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5726 put_bh(iloc->bh); 5727 return -EIO; 5728 } 5729 ext4_fc_track_inode(handle, inode); 5730 5731 /* the do_update_inode consumes one bh->b_count */ 5732 get_bh(iloc->bh); 5733 5734 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5735 err = ext4_do_update_inode(handle, inode, iloc); 5736 put_bh(iloc->bh); 5737 return err; 5738 } 5739 5740 /* 5741 * On success, We end up with an outstanding reference count against 5742 * iloc->bh. This _must_ be cleaned up later. 5743 */ 5744 5745 int 5746 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5747 struct ext4_iloc *iloc) 5748 { 5749 int err; 5750 5751 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5752 return -EIO; 5753 5754 err = ext4_get_inode_loc(inode, iloc); 5755 if (!err) { 5756 BUFFER_TRACE(iloc->bh, "get_write_access"); 5757 err = ext4_journal_get_write_access(handle, inode->i_sb, 5758 iloc->bh, EXT4_JTR_NONE); 5759 if (err) { 5760 brelse(iloc->bh); 5761 iloc->bh = NULL; 5762 } 5763 } 5764 ext4_std_error(inode->i_sb, err); 5765 return err; 5766 } 5767 5768 static int __ext4_expand_extra_isize(struct inode *inode, 5769 unsigned int new_extra_isize, 5770 struct ext4_iloc *iloc, 5771 handle_t *handle, int *no_expand) 5772 { 5773 struct ext4_inode *raw_inode; 5774 struct ext4_xattr_ibody_header *header; 5775 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5776 struct ext4_inode_info *ei = EXT4_I(inode); 5777 int error; 5778 5779 /* this was checked at iget time, but double check for good measure */ 5780 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5781 (ei->i_extra_isize & 3)) { 5782 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5783 ei->i_extra_isize, 5784 EXT4_INODE_SIZE(inode->i_sb)); 5785 return -EFSCORRUPTED; 5786 } 5787 if ((new_extra_isize < ei->i_extra_isize) || 5788 (new_extra_isize < 4) || 5789 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5790 return -EINVAL; /* Should never happen */ 5791 5792 raw_inode = ext4_raw_inode(iloc); 5793 5794 header = IHDR(inode, raw_inode); 5795 5796 /* No extended attributes present */ 5797 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5798 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5799 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5800 EXT4_I(inode)->i_extra_isize, 0, 5801 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5802 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5803 return 0; 5804 } 5805 5806 /* 5807 * We may need to allocate external xattr block so we need quotas 5808 * initialized. Here we can be called with various locks held so we 5809 * cannot affort to initialize quotas ourselves. So just bail. 5810 */ 5811 if (dquot_initialize_needed(inode)) 5812 return -EAGAIN; 5813 5814 /* try to expand with EAs present */ 5815 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5816 raw_inode, handle); 5817 if (error) { 5818 /* 5819 * Inode size expansion failed; don't try again 5820 */ 5821 *no_expand = 1; 5822 } 5823 5824 return error; 5825 } 5826 5827 /* 5828 * Expand an inode by new_extra_isize bytes. 5829 * Returns 0 on success or negative error number on failure. 5830 */ 5831 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5832 unsigned int new_extra_isize, 5833 struct ext4_iloc iloc, 5834 handle_t *handle) 5835 { 5836 int no_expand; 5837 int error; 5838 5839 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5840 return -EOVERFLOW; 5841 5842 /* 5843 * In nojournal mode, we can immediately attempt to expand 5844 * the inode. When journaled, we first need to obtain extra 5845 * buffer credits since we may write into the EA block 5846 * with this same handle. If journal_extend fails, then it will 5847 * only result in a minor loss of functionality for that inode. 5848 * If this is felt to be critical, then e2fsck should be run to 5849 * force a large enough s_min_extra_isize. 5850 */ 5851 if (ext4_journal_extend(handle, 5852 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5853 return -ENOSPC; 5854 5855 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5856 return -EBUSY; 5857 5858 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5859 handle, &no_expand); 5860 ext4_write_unlock_xattr(inode, &no_expand); 5861 5862 return error; 5863 } 5864 5865 int ext4_expand_extra_isize(struct inode *inode, 5866 unsigned int new_extra_isize, 5867 struct ext4_iloc *iloc) 5868 { 5869 handle_t *handle; 5870 int no_expand; 5871 int error, rc; 5872 5873 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5874 brelse(iloc->bh); 5875 return -EOVERFLOW; 5876 } 5877 5878 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5879 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5880 if (IS_ERR(handle)) { 5881 error = PTR_ERR(handle); 5882 brelse(iloc->bh); 5883 return error; 5884 } 5885 5886 ext4_write_lock_xattr(inode, &no_expand); 5887 5888 BUFFER_TRACE(iloc->bh, "get_write_access"); 5889 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5890 EXT4_JTR_NONE); 5891 if (error) { 5892 brelse(iloc->bh); 5893 goto out_unlock; 5894 } 5895 5896 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5897 handle, &no_expand); 5898 5899 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5900 if (!error) 5901 error = rc; 5902 5903 out_unlock: 5904 ext4_write_unlock_xattr(inode, &no_expand); 5905 ext4_journal_stop(handle); 5906 return error; 5907 } 5908 5909 /* 5910 * What we do here is to mark the in-core inode as clean with respect to inode 5911 * dirtiness (it may still be data-dirty). 5912 * This means that the in-core inode may be reaped by prune_icache 5913 * without having to perform any I/O. This is a very good thing, 5914 * because *any* task may call prune_icache - even ones which 5915 * have a transaction open against a different journal. 5916 * 5917 * Is this cheating? Not really. Sure, we haven't written the 5918 * inode out, but prune_icache isn't a user-visible syncing function. 5919 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5920 * we start and wait on commits. 5921 */ 5922 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5923 const char *func, unsigned int line) 5924 { 5925 struct ext4_iloc iloc; 5926 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5927 int err; 5928 5929 might_sleep(); 5930 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5931 err = ext4_reserve_inode_write(handle, inode, &iloc); 5932 if (err) 5933 goto out; 5934 5935 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5936 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5937 iloc, handle); 5938 5939 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5940 out: 5941 if (unlikely(err)) 5942 ext4_error_inode_err(inode, func, line, 0, err, 5943 "mark_inode_dirty error"); 5944 return err; 5945 } 5946 5947 /* 5948 * ext4_dirty_inode() is called from __mark_inode_dirty() 5949 * 5950 * We're really interested in the case where a file is being extended. 5951 * i_size has been changed by generic_commit_write() and we thus need 5952 * to include the updated inode in the current transaction. 5953 * 5954 * Also, dquot_alloc_block() will always dirty the inode when blocks 5955 * are allocated to the file. 5956 * 5957 * If the inode is marked synchronous, we don't honour that here - doing 5958 * so would cause a commit on atime updates, which we don't bother doing. 5959 * We handle synchronous inodes at the highest possible level. 5960 */ 5961 void ext4_dirty_inode(struct inode *inode, int flags) 5962 { 5963 handle_t *handle; 5964 5965 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5966 if (IS_ERR(handle)) 5967 return; 5968 ext4_mark_inode_dirty(handle, inode); 5969 ext4_journal_stop(handle); 5970 } 5971 5972 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5973 { 5974 journal_t *journal; 5975 handle_t *handle; 5976 int err; 5977 int alloc_ctx; 5978 5979 /* 5980 * We have to be very careful here: changing a data block's 5981 * journaling status dynamically is dangerous. If we write a 5982 * data block to the journal, change the status and then delete 5983 * that block, we risk forgetting to revoke the old log record 5984 * from the journal and so a subsequent replay can corrupt data. 5985 * So, first we make sure that the journal is empty and that 5986 * nobody is changing anything. 5987 */ 5988 5989 journal = EXT4_JOURNAL(inode); 5990 if (!journal) 5991 return 0; 5992 if (is_journal_aborted(journal)) 5993 return -EROFS; 5994 5995 /* Wait for all existing dio workers */ 5996 inode_dio_wait(inode); 5997 5998 /* 5999 * Before flushing the journal and switching inode's aops, we have 6000 * to flush all dirty data the inode has. There can be outstanding 6001 * delayed allocations, there can be unwritten extents created by 6002 * fallocate or buffered writes in dioread_nolock mode covered by 6003 * dirty data which can be converted only after flushing the dirty 6004 * data (and journalled aops don't know how to handle these cases). 6005 */ 6006 if (val) { 6007 filemap_invalidate_lock(inode->i_mapping); 6008 err = filemap_write_and_wait(inode->i_mapping); 6009 if (err < 0) { 6010 filemap_invalidate_unlock(inode->i_mapping); 6011 return err; 6012 } 6013 } 6014 6015 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6016 jbd2_journal_lock_updates(journal); 6017 6018 /* 6019 * OK, there are no updates running now, and all cached data is 6020 * synced to disk. We are now in a completely consistent state 6021 * which doesn't have anything in the journal, and we know that 6022 * no filesystem updates are running, so it is safe to modify 6023 * the inode's in-core data-journaling state flag now. 6024 */ 6025 6026 if (val) 6027 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6028 else { 6029 err = jbd2_journal_flush(journal, 0); 6030 if (err < 0) { 6031 jbd2_journal_unlock_updates(journal); 6032 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6033 return err; 6034 } 6035 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6036 } 6037 ext4_set_aops(inode); 6038 6039 jbd2_journal_unlock_updates(journal); 6040 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6041 6042 if (val) 6043 filemap_invalidate_unlock(inode->i_mapping); 6044 6045 /* Finally we can mark the inode as dirty. */ 6046 6047 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6048 if (IS_ERR(handle)) 6049 return PTR_ERR(handle); 6050 6051 ext4_fc_mark_ineligible(inode->i_sb, 6052 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6053 err = ext4_mark_inode_dirty(handle, inode); 6054 ext4_handle_sync(handle); 6055 ext4_journal_stop(handle); 6056 ext4_std_error(inode->i_sb, err); 6057 6058 return err; 6059 } 6060 6061 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6062 struct buffer_head *bh) 6063 { 6064 return !buffer_mapped(bh); 6065 } 6066 6067 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6068 { 6069 struct vm_area_struct *vma = vmf->vma; 6070 struct folio *folio = page_folio(vmf->page); 6071 loff_t size; 6072 unsigned long len; 6073 int err; 6074 vm_fault_t ret; 6075 struct file *file = vma->vm_file; 6076 struct inode *inode = file_inode(file); 6077 struct address_space *mapping = inode->i_mapping; 6078 handle_t *handle; 6079 get_block_t *get_block; 6080 int retries = 0; 6081 6082 if (unlikely(IS_IMMUTABLE(inode))) 6083 return VM_FAULT_SIGBUS; 6084 6085 sb_start_pagefault(inode->i_sb); 6086 file_update_time(vma->vm_file); 6087 6088 filemap_invalidate_lock_shared(mapping); 6089 6090 err = ext4_convert_inline_data(inode); 6091 if (err) 6092 goto out_ret; 6093 6094 /* 6095 * On data journalling we skip straight to the transaction handle: 6096 * there's no delalloc; page truncated will be checked later; the 6097 * early return w/ all buffers mapped (calculates size/len) can't 6098 * be used; and there's no dioread_nolock, so only ext4_get_block. 6099 */ 6100 if (ext4_should_journal_data(inode)) 6101 goto retry_alloc; 6102 6103 /* Delalloc case is easy... */ 6104 if (test_opt(inode->i_sb, DELALLOC) && 6105 !ext4_nonda_switch(inode->i_sb)) { 6106 do { 6107 err = block_page_mkwrite(vma, vmf, 6108 ext4_da_get_block_prep); 6109 } while (err == -ENOSPC && 6110 ext4_should_retry_alloc(inode->i_sb, &retries)); 6111 goto out_ret; 6112 } 6113 6114 folio_lock(folio); 6115 size = i_size_read(inode); 6116 /* Page got truncated from under us? */ 6117 if (folio->mapping != mapping || folio_pos(folio) > size) { 6118 folio_unlock(folio); 6119 ret = VM_FAULT_NOPAGE; 6120 goto out; 6121 } 6122 6123 len = folio_size(folio); 6124 if (folio_pos(folio) + len > size) 6125 len = size - folio_pos(folio); 6126 /* 6127 * Return if we have all the buffers mapped. This avoids the need to do 6128 * journal_start/journal_stop which can block and take a long time 6129 * 6130 * This cannot be done for data journalling, as we have to add the 6131 * inode to the transaction's list to writeprotect pages on commit. 6132 */ 6133 if (folio_buffers(folio)) { 6134 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6135 0, len, NULL, 6136 ext4_bh_unmapped)) { 6137 /* Wait so that we don't change page under IO */ 6138 folio_wait_stable(folio); 6139 ret = VM_FAULT_LOCKED; 6140 goto out; 6141 } 6142 } 6143 folio_unlock(folio); 6144 /* OK, we need to fill the hole... */ 6145 if (ext4_should_dioread_nolock(inode)) 6146 get_block = ext4_get_block_unwritten; 6147 else 6148 get_block = ext4_get_block; 6149 retry_alloc: 6150 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6151 ext4_writepage_trans_blocks(inode)); 6152 if (IS_ERR(handle)) { 6153 ret = VM_FAULT_SIGBUS; 6154 goto out; 6155 } 6156 /* 6157 * Data journalling can't use block_page_mkwrite() because it 6158 * will set_buffer_dirty() before do_journal_get_write_access() 6159 * thus might hit warning messages for dirty metadata buffers. 6160 */ 6161 if (!ext4_should_journal_data(inode)) { 6162 err = block_page_mkwrite(vma, vmf, get_block); 6163 } else { 6164 folio_lock(folio); 6165 size = i_size_read(inode); 6166 /* Page got truncated from under us? */ 6167 if (folio->mapping != mapping || folio_pos(folio) > size) { 6168 ret = VM_FAULT_NOPAGE; 6169 goto out_error; 6170 } 6171 6172 len = folio_size(folio); 6173 if (folio_pos(folio) + len > size) 6174 len = size - folio_pos(folio); 6175 6176 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6177 if (!err) { 6178 ret = VM_FAULT_SIGBUS; 6179 if (ext4_journal_folio_buffers(handle, folio, len)) 6180 goto out_error; 6181 } else { 6182 folio_unlock(folio); 6183 } 6184 } 6185 ext4_journal_stop(handle); 6186 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6187 goto retry_alloc; 6188 out_ret: 6189 ret = vmf_fs_error(err); 6190 out: 6191 filemap_invalidate_unlock_shared(mapping); 6192 sb_end_pagefault(inode->i_sb); 6193 return ret; 6194 out_error: 6195 folio_unlock(folio); 6196 ext4_journal_stop(handle); 6197 goto out; 6198 } 6199