xref: /openbmc/linux/fs/ext4/inode.c (revision cdfce539)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u16 csum_lo;
56 	__u16 csum_hi = 0;
57 	__u32 csum;
58 
59 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 	raw->i_checksum_lo = 0;
61 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 		raw->i_checksum_hi = 0;
65 	}
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 			   EXT4_INODE_SIZE(inode->i_sb));
69 
70 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 
75 	return csum;
76 }
77 
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 				  struct ext4_inode_info *ei)
80 {
81 	__u32 provided, calculated;
82 
83 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 	    cpu_to_le32(EXT4_OS_LINUX) ||
85 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 		return;
110 
111 	csum = ext4_inode_csum(inode, raw, ei);
112 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117 
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 					      loff_t new_size)
120 {
121 	trace_ext4_begin_ordered_truncate(inode, new_size);
122 	/*
123 	 * If jinode is zero, then we never opened the file for
124 	 * writing, so there's no need to call
125 	 * jbd2_journal_begin_ordered_truncate() since there's no
126 	 * outstanding writes we need to flush.
127 	 */
128 	if (!EXT4_I(inode)->jinode)
129 		return 0;
130 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 						   EXT4_I(inode)->jinode,
132 						   new_size);
133 }
134 
135 static void ext4_invalidatepage(struct page *page, unsigned long offset);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
139 		struct inode *inode, struct page *page, loff_t from,
140 		loff_t length, int flags);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 		(inode->i_sb->s_blocksize >> 9) : 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages(&inode->i_data, 0);
218 		ext4_ioend_shutdown(inode);
219 		goto no_delete;
220 	}
221 
222 	if (!is_bad_inode(inode))
223 		dquot_initialize(inode);
224 
225 	if (ext4_should_order_data(inode))
226 		ext4_begin_ordered_truncate(inode, 0);
227 	truncate_inode_pages(&inode->i_data, 0);
228 	ext4_ioend_shutdown(inode);
229 
230 	if (is_bad_inode(inode))
231 		goto no_delete;
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 				    ext4_blocks_for_truncate(inode)+3);
240 	if (IS_ERR(handle)) {
241 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 		/*
243 		 * If we're going to skip the normal cleanup, we still need to
244 		 * make sure that the in-core orphan linked list is properly
245 		 * cleaned up.
246 		 */
247 		ext4_orphan_del(NULL, inode);
248 		sb_end_intwrite(inode->i_sb);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		ext4_handle_sync(handle);
254 	inode->i_size = 0;
255 	err = ext4_mark_inode_dirty(handle, inode);
256 	if (err) {
257 		ext4_warning(inode->i_sb,
258 			     "couldn't mark inode dirty (err %d)", err);
259 		goto stop_handle;
260 	}
261 	if (inode->i_blocks)
262 		ext4_truncate(inode);
263 
264 	/*
265 	 * ext4_ext_truncate() doesn't reserve any slop when it
266 	 * restarts journal transactions; therefore there may not be
267 	 * enough credits left in the handle to remove the inode from
268 	 * the orphan list and set the dtime field.
269 	 */
270 	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 		err = ext4_journal_extend(handle, 3);
272 		if (err > 0)
273 			err = ext4_journal_restart(handle, 3);
274 		if (err != 0) {
275 			ext4_warning(inode->i_sb,
276 				     "couldn't extend journal (err %d)", err);
277 		stop_handle:
278 			ext4_journal_stop(handle);
279 			ext4_orphan_del(NULL, inode);
280 			sb_end_intwrite(inode->i_sb);
281 			goto no_delete;
282 		}
283 	}
284 
285 	/*
286 	 * Kill off the orphan record which ext4_truncate created.
287 	 * AKPM: I think this can be inside the above `if'.
288 	 * Note that ext4_orphan_del() has to be able to cope with the
289 	 * deletion of a non-existent orphan - this is because we don't
290 	 * know if ext4_truncate() actually created an orphan record.
291 	 * (Well, we could do this if we need to, but heck - it works)
292 	 */
293 	ext4_orphan_del(handle, inode);
294 	EXT4_I(inode)->i_dtime	= get_seconds();
295 
296 	/*
297 	 * One subtle ordering requirement: if anything has gone wrong
298 	 * (transaction abort, IO errors, whatever), then we can still
299 	 * do these next steps (the fs will already have been marked as
300 	 * having errors), but we can't free the inode if the mark_dirty
301 	 * fails.
302 	 */
303 	if (ext4_mark_inode_dirty(handle, inode))
304 		/* If that failed, just do the required in-core inode clear. */
305 		ext4_clear_inode(inode);
306 	else
307 		ext4_free_inode(handle, inode);
308 	ext4_journal_stop(handle);
309 	sb_end_intwrite(inode->i_sb);
310 	return;
311 no_delete:
312 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 }
314 
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 	return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321 
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329 		return ext4_ext_calc_metadata_amount(inode, lblock);
330 
331 	return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333 
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339 					int used, int quota_claim)
340 {
341 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342 	struct ext4_inode_info *ei = EXT4_I(inode);
343 
344 	spin_lock(&ei->i_block_reservation_lock);
345 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346 	if (unlikely(used > ei->i_reserved_data_blocks)) {
347 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348 			 "with only %d reserved data blocks",
349 			 __func__, inode->i_ino, used,
350 			 ei->i_reserved_data_blocks);
351 		WARN_ON(1);
352 		used = ei->i_reserved_data_blocks;
353 	}
354 
355 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357 			"with only %d reserved metadata blocks "
358 			"(releasing %d blocks with reserved %d data blocks)",
359 			inode->i_ino, ei->i_allocated_meta_blocks,
360 			     ei->i_reserved_meta_blocks, used,
361 			     ei->i_reserved_data_blocks);
362 		WARN_ON(1);
363 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 	}
365 
366 	/* Update per-inode reservations */
367 	ei->i_reserved_data_blocks -= used;
368 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370 			   used + ei->i_allocated_meta_blocks);
371 	ei->i_allocated_meta_blocks = 0;
372 
373 	if (ei->i_reserved_data_blocks == 0) {
374 		/*
375 		 * We can release all of the reserved metadata blocks
376 		 * only when we have written all of the delayed
377 		 * allocation blocks.
378 		 */
379 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380 				   ei->i_reserved_meta_blocks);
381 		ei->i_reserved_meta_blocks = 0;
382 		ei->i_da_metadata_calc_len = 0;
383 	}
384 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385 
386 	/* Update quota subsystem for data blocks */
387 	if (quota_claim)
388 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 	else {
390 		/*
391 		 * We did fallocate with an offset that is already delayed
392 		 * allocated. So on delayed allocated writeback we should
393 		 * not re-claim the quota for fallocated blocks.
394 		 */
395 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 	}
397 
398 	/*
399 	 * If we have done all the pending block allocations and if
400 	 * there aren't any writers on the inode, we can discard the
401 	 * inode's preallocations.
402 	 */
403 	if ((ei->i_reserved_data_blocks == 0) &&
404 	    (atomic_read(&inode->i_writecount) == 0))
405 		ext4_discard_preallocations(inode);
406 }
407 
408 static int __check_block_validity(struct inode *inode, const char *func,
409 				unsigned int line,
410 				struct ext4_map_blocks *map)
411 {
412 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 				   map->m_len)) {
414 		ext4_error_inode(inode, func, line, map->m_pblk,
415 				 "lblock %lu mapped to illegal pblock "
416 				 "(length %d)", (unsigned long) map->m_lblk,
417 				 map->m_len);
418 		return -EIO;
419 	}
420 	return 0;
421 }
422 
423 #define check_block_validity(inode, map)	\
424 	__check_block_validity((inode), __func__, __LINE__, (map))
425 
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 				    unsigned int max_pages)
432 {
433 	struct address_space *mapping = inode->i_mapping;
434 	pgoff_t	index;
435 	struct pagevec pvec;
436 	pgoff_t num = 0;
437 	int i, nr_pages, done = 0;
438 
439 	if (max_pages == 0)
440 		return 0;
441 	pagevec_init(&pvec, 0);
442 	while (!done) {
443 		index = idx;
444 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 					      PAGECACHE_TAG_DIRTY,
446 					      (pgoff_t)PAGEVEC_SIZE);
447 		if (nr_pages == 0)
448 			break;
449 		for (i = 0; i < nr_pages; i++) {
450 			struct page *page = pvec.pages[i];
451 			struct buffer_head *bh, *head;
452 
453 			lock_page(page);
454 			if (unlikely(page->mapping != mapping) ||
455 			    !PageDirty(page) ||
456 			    PageWriteback(page) ||
457 			    page->index != idx) {
458 				done = 1;
459 				unlock_page(page);
460 				break;
461 			}
462 			if (page_has_buffers(page)) {
463 				bh = head = page_buffers(page);
464 				do {
465 					if (!buffer_delay(bh) &&
466 					    !buffer_unwritten(bh))
467 						done = 1;
468 					bh = bh->b_this_page;
469 				} while (!done && (bh != head));
470 			}
471 			unlock_page(page);
472 			if (done)
473 				break;
474 			idx++;
475 			num++;
476 			if (num >= max_pages) {
477 				done = 1;
478 				break;
479 			}
480 		}
481 		pagevec_release(&pvec);
482 	}
483 	return num;
484 }
485 
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488 				       struct inode *inode,
489 				       struct ext4_map_blocks *es_map,
490 				       struct ext4_map_blocks *map,
491 				       int flags)
492 {
493 	int retval;
494 
495 	map->m_flags = 0;
496 	/*
497 	 * There is a race window that the result is not the same.
498 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
499 	 * is that we lookup a block mapping in extent status tree with
500 	 * out taking i_data_sem.  So at the time the unwritten extent
501 	 * could be converted.
502 	 */
503 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504 		down_read((&EXT4_I(inode)->i_data_sem));
505 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
507 					     EXT4_GET_BLOCKS_KEEP_SIZE);
508 	} else {
509 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
510 					     EXT4_GET_BLOCKS_KEEP_SIZE);
511 	}
512 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 		up_read((&EXT4_I(inode)->i_data_sem));
514 	/*
515 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516 	 * because it shouldn't be marked in es_map->m_flags.
517 	 */
518 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519 
520 	/*
521 	 * We don't check m_len because extent will be collpased in status
522 	 * tree.  So the m_len might not equal.
523 	 */
524 	if (es_map->m_lblk != map->m_lblk ||
525 	    es_map->m_flags != map->m_flags ||
526 	    es_map->m_pblk != map->m_pblk) {
527 		printk("ES cache assertation failed for inode: %lu "
528 		       "es_cached ex [%d/%d/%llu/%x] != "
529 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
531 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
532 		       map->m_len, map->m_pblk, map->m_flags,
533 		       retval, flags);
534 	}
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537 
538 /*
539  * The ext4_map_blocks() function tries to look up the requested blocks,
540  * and returns if the blocks are already mapped.
541  *
542  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543  * and store the allocated blocks in the result buffer head and mark it
544  * mapped.
545  *
546  * If file type is extents based, it will call ext4_ext_map_blocks(),
547  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548  * based files
549  *
550  * On success, it returns the number of blocks being mapped or allocate.
551  * if create==0 and the blocks are pre-allocated and uninitialized block,
552  * the result buffer head is unmapped. If the create ==1, it will make sure
553  * the buffer head is mapped.
554  *
555  * It returns 0 if plain look up failed (blocks have not been allocated), in
556  * that case, buffer head is unmapped
557  *
558  * It returns the error in case of allocation failure.
559  */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561 		    struct ext4_map_blocks *map, int flags)
562 {
563 	struct extent_status es;
564 	int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566 	struct ext4_map_blocks orig_map;
567 
568 	memcpy(&orig_map, map, sizeof(*map));
569 #endif
570 
571 	map->m_flags = 0;
572 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
574 		  (unsigned long) map->m_lblk);
575 
576 	/* Lookup extent status tree firstly */
577 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579 			map->m_pblk = ext4_es_pblock(&es) +
580 					map->m_lblk - es.es_lblk;
581 			map->m_flags |= ext4_es_is_written(&es) ?
582 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583 			retval = es.es_len - (map->m_lblk - es.es_lblk);
584 			if (retval > map->m_len)
585 				retval = map->m_len;
586 			map->m_len = retval;
587 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588 			retval = 0;
589 		} else {
590 			BUG_ON(1);
591 		}
592 #ifdef ES_AGGRESSIVE_TEST
593 		ext4_map_blocks_es_recheck(handle, inode, map,
594 					   &orig_map, flags);
595 #endif
596 		goto found;
597 	}
598 
599 	/*
600 	 * Try to see if we can get the block without requesting a new
601 	 * file system block.
602 	 */
603 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604 		down_read((&EXT4_I(inode)->i_data_sem));
605 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
607 					     EXT4_GET_BLOCKS_KEEP_SIZE);
608 	} else {
609 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
610 					     EXT4_GET_BLOCKS_KEEP_SIZE);
611 	}
612 	if (retval > 0) {
613 		int ret;
614 		unsigned long long status;
615 
616 #ifdef ES_AGGRESSIVE_TEST
617 		if (retval != map->m_len) {
618 			printk("ES len assertation failed for inode: %lu "
619 			       "retval %d != map->m_len %d "
620 			       "in %s (lookup)\n", inode->i_ino, retval,
621 			       map->m_len, __func__);
622 		}
623 #endif
624 
625 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628 		    ext4_find_delalloc_range(inode, map->m_lblk,
629 					     map->m_lblk + map->m_len - 1))
630 			status |= EXTENT_STATUS_DELAYED;
631 		ret = ext4_es_insert_extent(inode, map->m_lblk,
632 					    map->m_len, map->m_pblk, status);
633 		if (ret < 0)
634 			retval = ret;
635 	}
636 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637 		up_read((&EXT4_I(inode)->i_data_sem));
638 
639 found:
640 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641 		int ret = check_block_validity(inode, map);
642 		if (ret != 0)
643 			return ret;
644 	}
645 
646 	/* If it is only a block(s) look up */
647 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648 		return retval;
649 
650 	/*
651 	 * Returns if the blocks have already allocated
652 	 *
653 	 * Note that if blocks have been preallocated
654 	 * ext4_ext_get_block() returns the create = 0
655 	 * with buffer head unmapped.
656 	 */
657 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658 		return retval;
659 
660 	/*
661 	 * Here we clear m_flags because after allocating an new extent,
662 	 * it will be set again.
663 	 */
664 	map->m_flags &= ~EXT4_MAP_FLAGS;
665 
666 	/*
667 	 * New blocks allocate and/or writing to uninitialized extent
668 	 * will possibly result in updating i_data, so we take
669 	 * the write lock of i_data_sem, and call get_blocks()
670 	 * with create == 1 flag.
671 	 */
672 	down_write((&EXT4_I(inode)->i_data_sem));
673 
674 	/*
675 	 * if the caller is from delayed allocation writeout path
676 	 * we have already reserved fs blocks for allocation
677 	 * let the underlying get_block() function know to
678 	 * avoid double accounting
679 	 */
680 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682 	/*
683 	 * We need to check for EXT4 here because migrate
684 	 * could have changed the inode type in between
685 	 */
686 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
688 	} else {
689 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
690 
691 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692 			/*
693 			 * We allocated new blocks which will result in
694 			 * i_data's format changing.  Force the migrate
695 			 * to fail by clearing migrate flags
696 			 */
697 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698 		}
699 
700 		/*
701 		 * Update reserved blocks/metadata blocks after successful
702 		 * block allocation which had been deferred till now. We don't
703 		 * support fallocate for non extent files. So we can update
704 		 * reserve space here.
705 		 */
706 		if ((retval > 0) &&
707 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708 			ext4_da_update_reserve_space(inode, retval, 1);
709 	}
710 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712 
713 	if (retval > 0) {
714 		int ret;
715 		unsigned long long status;
716 
717 #ifdef ES_AGGRESSIVE_TEST
718 		if (retval != map->m_len) {
719 			printk("ES len assertation failed for inode: %lu "
720 			       "retval %d != map->m_len %d "
721 			       "in %s (allocation)\n", inode->i_ino, retval,
722 			       map->m_len, __func__);
723 		}
724 #endif
725 
726 		/*
727 		 * If the extent has been zeroed out, we don't need to update
728 		 * extent status tree.
729 		 */
730 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732 			if (ext4_es_is_written(&es))
733 				goto has_zeroout;
734 		}
735 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738 		    ext4_find_delalloc_range(inode, map->m_lblk,
739 					     map->m_lblk + map->m_len - 1))
740 			status |= EXTENT_STATUS_DELAYED;
741 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742 					    map->m_pblk, status);
743 		if (ret < 0)
744 			retval = ret;
745 	}
746 
747 has_zeroout:
748 	up_write((&EXT4_I(inode)->i_data_sem));
749 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750 		int ret = check_block_validity(inode, map);
751 		if (ret != 0)
752 			return ret;
753 	}
754 	return retval;
755 }
756 
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759 
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 			   struct buffer_head *bh, int flags)
762 {
763 	handle_t *handle = ext4_journal_current_handle();
764 	struct ext4_map_blocks map;
765 	int ret = 0, started = 0;
766 	int dio_credits;
767 
768 	if (ext4_has_inline_data(inode))
769 		return -ERANGE;
770 
771 	map.m_lblk = iblock;
772 	map.m_len = bh->b_size >> inode->i_blkbits;
773 
774 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775 		/* Direct IO write... */
776 		if (map.m_len > DIO_MAX_BLOCKS)
777 			map.m_len = DIO_MAX_BLOCKS;
778 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780 					    dio_credits);
781 		if (IS_ERR(handle)) {
782 			ret = PTR_ERR(handle);
783 			return ret;
784 		}
785 		started = 1;
786 	}
787 
788 	ret = ext4_map_blocks(handle, inode, &map, flags);
789 	if (ret > 0) {
790 		map_bh(bh, inode->i_sb, map.m_pblk);
791 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 		ret = 0;
794 	}
795 	if (started)
796 		ext4_journal_stop(handle);
797 	return ret;
798 }
799 
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801 		   struct buffer_head *bh, int create)
802 {
803 	return _ext4_get_block(inode, iblock, bh,
804 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806 
807 /*
808  * `handle' can be NULL if create is zero
809  */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811 				ext4_lblk_t block, int create, int *errp)
812 {
813 	struct ext4_map_blocks map;
814 	struct buffer_head *bh;
815 	int fatal = 0, err;
816 
817 	J_ASSERT(handle != NULL || create == 0);
818 
819 	map.m_lblk = block;
820 	map.m_len = 1;
821 	err = ext4_map_blocks(handle, inode, &map,
822 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
823 
824 	/* ensure we send some value back into *errp */
825 	*errp = 0;
826 
827 	if (create && err == 0)
828 		err = -ENOSPC;	/* should never happen */
829 	if (err < 0)
830 		*errp = err;
831 	if (err <= 0)
832 		return NULL;
833 
834 	bh = sb_getblk(inode->i_sb, map.m_pblk);
835 	if (unlikely(!bh)) {
836 		*errp = -ENOMEM;
837 		return NULL;
838 	}
839 	if (map.m_flags & EXT4_MAP_NEW) {
840 		J_ASSERT(create != 0);
841 		J_ASSERT(handle != NULL);
842 
843 		/*
844 		 * Now that we do not always journal data, we should
845 		 * keep in mind whether this should always journal the
846 		 * new buffer as metadata.  For now, regular file
847 		 * writes use ext4_get_block instead, so it's not a
848 		 * problem.
849 		 */
850 		lock_buffer(bh);
851 		BUFFER_TRACE(bh, "call get_create_access");
852 		fatal = ext4_journal_get_create_access(handle, bh);
853 		if (!fatal && !buffer_uptodate(bh)) {
854 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855 			set_buffer_uptodate(bh);
856 		}
857 		unlock_buffer(bh);
858 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859 		err = ext4_handle_dirty_metadata(handle, inode, bh);
860 		if (!fatal)
861 			fatal = err;
862 	} else {
863 		BUFFER_TRACE(bh, "not a new buffer");
864 	}
865 	if (fatal) {
866 		*errp = fatal;
867 		brelse(bh);
868 		bh = NULL;
869 	}
870 	return bh;
871 }
872 
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874 			       ext4_lblk_t block, int create, int *err)
875 {
876 	struct buffer_head *bh;
877 
878 	bh = ext4_getblk(handle, inode, block, create, err);
879 	if (!bh)
880 		return bh;
881 	if (buffer_uptodate(bh))
882 		return bh;
883 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884 	wait_on_buffer(bh);
885 	if (buffer_uptodate(bh))
886 		return bh;
887 	put_bh(bh);
888 	*err = -EIO;
889 	return NULL;
890 }
891 
892 int ext4_walk_page_buffers(handle_t *handle,
893 			   struct buffer_head *head,
894 			   unsigned from,
895 			   unsigned to,
896 			   int *partial,
897 			   int (*fn)(handle_t *handle,
898 				     struct buffer_head *bh))
899 {
900 	struct buffer_head *bh;
901 	unsigned block_start, block_end;
902 	unsigned blocksize = head->b_size;
903 	int err, ret = 0;
904 	struct buffer_head *next;
905 
906 	for (bh = head, block_start = 0;
907 	     ret == 0 && (bh != head || !block_start);
908 	     block_start = block_end, bh = next) {
909 		next = bh->b_this_page;
910 		block_end = block_start + blocksize;
911 		if (block_end <= from || block_start >= to) {
912 			if (partial && !buffer_uptodate(bh))
913 				*partial = 1;
914 			continue;
915 		}
916 		err = (*fn)(handle, bh);
917 		if (!ret)
918 			ret = err;
919 	}
920 	return ret;
921 }
922 
923 /*
924  * To preserve ordering, it is essential that the hole instantiation and
925  * the data write be encapsulated in a single transaction.  We cannot
926  * close off a transaction and start a new one between the ext4_get_block()
927  * and the commit_write().  So doing the jbd2_journal_start at the start of
928  * prepare_write() is the right place.
929  *
930  * Also, this function can nest inside ext4_writepage().  In that case, we
931  * *know* that ext4_writepage() has generated enough buffer credits to do the
932  * whole page.  So we won't block on the journal in that case, which is good,
933  * because the caller may be PF_MEMALLOC.
934  *
935  * By accident, ext4 can be reentered when a transaction is open via
936  * quota file writes.  If we were to commit the transaction while thus
937  * reentered, there can be a deadlock - we would be holding a quota
938  * lock, and the commit would never complete if another thread had a
939  * transaction open and was blocking on the quota lock - a ranking
940  * violation.
941  *
942  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943  * will _not_ run commit under these circumstances because handle->h_ref
944  * is elevated.  We'll still have enough credits for the tiny quotafile
945  * write.
946  */
947 int do_journal_get_write_access(handle_t *handle,
948 				struct buffer_head *bh)
949 {
950 	int dirty = buffer_dirty(bh);
951 	int ret;
952 
953 	if (!buffer_mapped(bh) || buffer_freed(bh))
954 		return 0;
955 	/*
956 	 * __block_write_begin() could have dirtied some buffers. Clean
957 	 * the dirty bit as jbd2_journal_get_write_access() could complain
958 	 * otherwise about fs integrity issues. Setting of the dirty bit
959 	 * by __block_write_begin() isn't a real problem here as we clear
960 	 * the bit before releasing a page lock and thus writeback cannot
961 	 * ever write the buffer.
962 	 */
963 	if (dirty)
964 		clear_buffer_dirty(bh);
965 	ret = ext4_journal_get_write_access(handle, bh);
966 	if (!ret && dirty)
967 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968 	return ret;
969 }
970 
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972 		   struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 			    loff_t pos, unsigned len, unsigned flags,
975 			    struct page **pagep, void **fsdata)
976 {
977 	struct inode *inode = mapping->host;
978 	int ret, needed_blocks;
979 	handle_t *handle;
980 	int retries = 0;
981 	struct page *page;
982 	pgoff_t index;
983 	unsigned from, to;
984 
985 	trace_ext4_write_begin(inode, pos, len, flags);
986 	/*
987 	 * Reserve one block more for addition to orphan list in case
988 	 * we allocate blocks but write fails for some reason
989 	 */
990 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991 	index = pos >> PAGE_CACHE_SHIFT;
992 	from = pos & (PAGE_CACHE_SIZE - 1);
993 	to = from + len;
994 
995 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 						    flags, pagep);
998 		if (ret < 0)
999 			return ret;
1000 		if (ret == 1)
1001 			return 0;
1002 	}
1003 
1004 	/*
1005 	 * grab_cache_page_write_begin() can take a long time if the
1006 	 * system is thrashing due to memory pressure, or if the page
1007 	 * is being written back.  So grab it first before we start
1008 	 * the transaction handle.  This also allows us to allocate
1009 	 * the page (if needed) without using GFP_NOFS.
1010 	 */
1011 retry_grab:
1012 	page = grab_cache_page_write_begin(mapping, index, flags);
1013 	if (!page)
1014 		return -ENOMEM;
1015 	unlock_page(page);
1016 
1017 retry_journal:
1018 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019 	if (IS_ERR(handle)) {
1020 		page_cache_release(page);
1021 		return PTR_ERR(handle);
1022 	}
1023 
1024 	lock_page(page);
1025 	if (page->mapping != mapping) {
1026 		/* The page got truncated from under us */
1027 		unlock_page(page);
1028 		page_cache_release(page);
1029 		ext4_journal_stop(handle);
1030 		goto retry_grab;
1031 	}
1032 	wait_on_page_writeback(page);
1033 
1034 	if (ext4_should_dioread_nolock(inode))
1035 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036 	else
1037 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1038 
1039 	if (!ret && ext4_should_journal_data(inode)) {
1040 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041 					     from, to, NULL,
1042 					     do_journal_get_write_access);
1043 	}
1044 
1045 	if (ret) {
1046 		unlock_page(page);
1047 		/*
1048 		 * __block_write_begin may have instantiated a few blocks
1049 		 * outside i_size.  Trim these off again. Don't need
1050 		 * i_size_read because we hold i_mutex.
1051 		 *
1052 		 * Add inode to orphan list in case we crash before
1053 		 * truncate finishes
1054 		 */
1055 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056 			ext4_orphan_add(handle, inode);
1057 
1058 		ext4_journal_stop(handle);
1059 		if (pos + len > inode->i_size) {
1060 			ext4_truncate_failed_write(inode);
1061 			/*
1062 			 * If truncate failed early the inode might
1063 			 * still be on the orphan list; we need to
1064 			 * make sure the inode is removed from the
1065 			 * orphan list in that case.
1066 			 */
1067 			if (inode->i_nlink)
1068 				ext4_orphan_del(NULL, inode);
1069 		}
1070 
1071 		if (ret == -ENOSPC &&
1072 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1073 			goto retry_journal;
1074 		page_cache_release(page);
1075 		return ret;
1076 	}
1077 	*pagep = page;
1078 	return ret;
1079 }
1080 
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084 	int ret;
1085 	if (!buffer_mapped(bh) || buffer_freed(bh))
1086 		return 0;
1087 	set_buffer_uptodate(bh);
1088 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 	clear_buffer_meta(bh);
1090 	clear_buffer_prio(bh);
1091 	return ret;
1092 }
1093 
1094 /*
1095  * We need to pick up the new inode size which generic_commit_write gave us
1096  * `file' can be NULL - eg, when called from page_symlink().
1097  *
1098  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1099  * buffers are managed internally.
1100  */
1101 static int ext4_write_end(struct file *file,
1102 			  struct address_space *mapping,
1103 			  loff_t pos, unsigned len, unsigned copied,
1104 			  struct page *page, void *fsdata)
1105 {
1106 	handle_t *handle = ext4_journal_current_handle();
1107 	struct inode *inode = mapping->host;
1108 	int ret = 0, ret2;
1109 	int i_size_changed = 0;
1110 
1111 	trace_ext4_write_end(inode, pos, len, copied);
1112 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1113 		ret = ext4_jbd2_file_inode(handle, inode);
1114 		if (ret) {
1115 			unlock_page(page);
1116 			page_cache_release(page);
1117 			goto errout;
1118 		}
1119 	}
1120 
1121 	if (ext4_has_inline_data(inode))
1122 		copied = ext4_write_inline_data_end(inode, pos, len,
1123 						    copied, page);
1124 	else
1125 		copied = block_write_end(file, mapping, pos,
1126 					 len, copied, page, fsdata);
1127 
1128 	/*
1129 	 * No need to use i_size_read() here, the i_size
1130 	 * cannot change under us because we hole i_mutex.
1131 	 *
1132 	 * But it's important to update i_size while still holding page lock:
1133 	 * page writeout could otherwise come in and zero beyond i_size.
1134 	 */
1135 	if (pos + copied > inode->i_size) {
1136 		i_size_write(inode, pos + copied);
1137 		i_size_changed = 1;
1138 	}
1139 
1140 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1141 		/* We need to mark inode dirty even if
1142 		 * new_i_size is less that inode->i_size
1143 		 * but greater than i_disksize. (hint delalloc)
1144 		 */
1145 		ext4_update_i_disksize(inode, (pos + copied));
1146 		i_size_changed = 1;
1147 	}
1148 	unlock_page(page);
1149 	page_cache_release(page);
1150 
1151 	/*
1152 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1153 	 * makes the holding time of page lock longer. Second, it forces lock
1154 	 * ordering of page lock and transaction start for journaling
1155 	 * filesystems.
1156 	 */
1157 	if (i_size_changed)
1158 		ext4_mark_inode_dirty(handle, inode);
1159 
1160 	if (copied < 0)
1161 		ret = copied;
1162 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1163 		/* if we have allocated more blocks and copied
1164 		 * less. We will have blocks allocated outside
1165 		 * inode->i_size. So truncate them
1166 		 */
1167 		ext4_orphan_add(handle, inode);
1168 errout:
1169 	ret2 = ext4_journal_stop(handle);
1170 	if (!ret)
1171 		ret = ret2;
1172 
1173 	if (pos + len > inode->i_size) {
1174 		ext4_truncate_failed_write(inode);
1175 		/*
1176 		 * If truncate failed early the inode might still be
1177 		 * on the orphan list; we need to make sure the inode
1178 		 * is removed from the orphan list in that case.
1179 		 */
1180 		if (inode->i_nlink)
1181 			ext4_orphan_del(NULL, inode);
1182 	}
1183 
1184 	return ret ? ret : copied;
1185 }
1186 
1187 static int ext4_journalled_write_end(struct file *file,
1188 				     struct address_space *mapping,
1189 				     loff_t pos, unsigned len, unsigned copied,
1190 				     struct page *page, void *fsdata)
1191 {
1192 	handle_t *handle = ext4_journal_current_handle();
1193 	struct inode *inode = mapping->host;
1194 	int ret = 0, ret2;
1195 	int partial = 0;
1196 	unsigned from, to;
1197 	loff_t new_i_size;
1198 
1199 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1200 	from = pos & (PAGE_CACHE_SIZE - 1);
1201 	to = from + len;
1202 
1203 	BUG_ON(!ext4_handle_valid(handle));
1204 
1205 	if (ext4_has_inline_data(inode))
1206 		copied = ext4_write_inline_data_end(inode, pos, len,
1207 						    copied, page);
1208 	else {
1209 		if (copied < len) {
1210 			if (!PageUptodate(page))
1211 				copied = 0;
1212 			page_zero_new_buffers(page, from+copied, to);
1213 		}
1214 
1215 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1216 					     to, &partial, write_end_fn);
1217 		if (!partial)
1218 			SetPageUptodate(page);
1219 	}
1220 	new_i_size = pos + copied;
1221 	if (new_i_size > inode->i_size)
1222 		i_size_write(inode, pos+copied);
1223 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1224 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1225 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1226 		ext4_update_i_disksize(inode, new_i_size);
1227 		ret2 = ext4_mark_inode_dirty(handle, inode);
1228 		if (!ret)
1229 			ret = ret2;
1230 	}
1231 
1232 	unlock_page(page);
1233 	page_cache_release(page);
1234 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235 		/* if we have allocated more blocks and copied
1236 		 * less. We will have blocks allocated outside
1237 		 * inode->i_size. So truncate them
1238 		 */
1239 		ext4_orphan_add(handle, inode);
1240 
1241 	ret2 = ext4_journal_stop(handle);
1242 	if (!ret)
1243 		ret = ret2;
1244 	if (pos + len > inode->i_size) {
1245 		ext4_truncate_failed_write(inode);
1246 		/*
1247 		 * If truncate failed early the inode might still be
1248 		 * on the orphan list; we need to make sure the inode
1249 		 * is removed from the orphan list in that case.
1250 		 */
1251 		if (inode->i_nlink)
1252 			ext4_orphan_del(NULL, inode);
1253 	}
1254 
1255 	return ret ? ret : copied;
1256 }
1257 
1258 /*
1259  * Reserve a metadata for a single block located at lblock
1260  */
1261 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1262 {
1263 	int retries = 0;
1264 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1265 	struct ext4_inode_info *ei = EXT4_I(inode);
1266 	unsigned int md_needed;
1267 	ext4_lblk_t save_last_lblock;
1268 	int save_len;
1269 
1270 	/*
1271 	 * recalculate the amount of metadata blocks to reserve
1272 	 * in order to allocate nrblocks
1273 	 * worse case is one extent per block
1274 	 */
1275 repeat:
1276 	spin_lock(&ei->i_block_reservation_lock);
1277 	/*
1278 	 * ext4_calc_metadata_amount() has side effects, which we have
1279 	 * to be prepared undo if we fail to claim space.
1280 	 */
1281 	save_len = ei->i_da_metadata_calc_len;
1282 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1283 	md_needed = EXT4_NUM_B2C(sbi,
1284 				 ext4_calc_metadata_amount(inode, lblock));
1285 	trace_ext4_da_reserve_space(inode, md_needed);
1286 
1287 	/*
1288 	 * We do still charge estimated metadata to the sb though;
1289 	 * we cannot afford to run out of free blocks.
1290 	 */
1291 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1292 		ei->i_da_metadata_calc_len = save_len;
1293 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294 		spin_unlock(&ei->i_block_reservation_lock);
1295 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1296 			cond_resched();
1297 			goto repeat;
1298 		}
1299 		return -ENOSPC;
1300 	}
1301 	ei->i_reserved_meta_blocks += md_needed;
1302 	spin_unlock(&ei->i_block_reservation_lock);
1303 
1304 	return 0;       /* success */
1305 }
1306 
1307 /*
1308  * Reserve a single cluster located at lblock
1309  */
1310 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1311 {
1312 	int retries = 0;
1313 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314 	struct ext4_inode_info *ei = EXT4_I(inode);
1315 	unsigned int md_needed;
1316 	int ret;
1317 	ext4_lblk_t save_last_lblock;
1318 	int save_len;
1319 
1320 	/*
1321 	 * We will charge metadata quota at writeout time; this saves
1322 	 * us from metadata over-estimation, though we may go over by
1323 	 * a small amount in the end.  Here we just reserve for data.
1324 	 */
1325 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1326 	if (ret)
1327 		return ret;
1328 
1329 	/*
1330 	 * recalculate the amount of metadata blocks to reserve
1331 	 * in order to allocate nrblocks
1332 	 * worse case is one extent per block
1333 	 */
1334 repeat:
1335 	spin_lock(&ei->i_block_reservation_lock);
1336 	/*
1337 	 * ext4_calc_metadata_amount() has side effects, which we have
1338 	 * to be prepared undo if we fail to claim space.
1339 	 */
1340 	save_len = ei->i_da_metadata_calc_len;
1341 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1342 	md_needed = EXT4_NUM_B2C(sbi,
1343 				 ext4_calc_metadata_amount(inode, lblock));
1344 	trace_ext4_da_reserve_space(inode, md_needed);
1345 
1346 	/*
1347 	 * We do still charge estimated metadata to the sb though;
1348 	 * we cannot afford to run out of free blocks.
1349 	 */
1350 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1351 		ei->i_da_metadata_calc_len = save_len;
1352 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1353 		spin_unlock(&ei->i_block_reservation_lock);
1354 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1355 			cond_resched();
1356 			goto repeat;
1357 		}
1358 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1359 		return -ENOSPC;
1360 	}
1361 	ei->i_reserved_data_blocks++;
1362 	ei->i_reserved_meta_blocks += md_needed;
1363 	spin_unlock(&ei->i_block_reservation_lock);
1364 
1365 	return 0;       /* success */
1366 }
1367 
1368 static void ext4_da_release_space(struct inode *inode, int to_free)
1369 {
1370 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371 	struct ext4_inode_info *ei = EXT4_I(inode);
1372 
1373 	if (!to_free)
1374 		return;		/* Nothing to release, exit */
1375 
1376 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1377 
1378 	trace_ext4_da_release_space(inode, to_free);
1379 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1380 		/*
1381 		 * if there aren't enough reserved blocks, then the
1382 		 * counter is messed up somewhere.  Since this
1383 		 * function is called from invalidate page, it's
1384 		 * harmless to return without any action.
1385 		 */
1386 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1387 			 "ino %lu, to_free %d with only %d reserved "
1388 			 "data blocks", inode->i_ino, to_free,
1389 			 ei->i_reserved_data_blocks);
1390 		WARN_ON(1);
1391 		to_free = ei->i_reserved_data_blocks;
1392 	}
1393 	ei->i_reserved_data_blocks -= to_free;
1394 
1395 	if (ei->i_reserved_data_blocks == 0) {
1396 		/*
1397 		 * We can release all of the reserved metadata blocks
1398 		 * only when we have written all of the delayed
1399 		 * allocation blocks.
1400 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1401 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1402 		 */
1403 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1404 				   ei->i_reserved_meta_blocks);
1405 		ei->i_reserved_meta_blocks = 0;
1406 		ei->i_da_metadata_calc_len = 0;
1407 	}
1408 
1409 	/* update fs dirty data blocks counter */
1410 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1411 
1412 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1413 
1414 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1415 }
1416 
1417 static void ext4_da_page_release_reservation(struct page *page,
1418 					     unsigned long offset)
1419 {
1420 	int to_release = 0;
1421 	struct buffer_head *head, *bh;
1422 	unsigned int curr_off = 0;
1423 	struct inode *inode = page->mapping->host;
1424 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1425 	int num_clusters;
1426 	ext4_fsblk_t lblk;
1427 
1428 	head = page_buffers(page);
1429 	bh = head;
1430 	do {
1431 		unsigned int next_off = curr_off + bh->b_size;
1432 
1433 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1434 			to_release++;
1435 			clear_buffer_delay(bh);
1436 		}
1437 		curr_off = next_off;
1438 	} while ((bh = bh->b_this_page) != head);
1439 
1440 	if (to_release) {
1441 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1442 		ext4_es_remove_extent(inode, lblk, to_release);
1443 	}
1444 
1445 	/* If we have released all the blocks belonging to a cluster, then we
1446 	 * need to release the reserved space for that cluster. */
1447 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1448 	while (num_clusters > 0) {
1449 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1450 			((num_clusters - 1) << sbi->s_cluster_bits);
1451 		if (sbi->s_cluster_ratio == 1 ||
1452 		    !ext4_find_delalloc_cluster(inode, lblk))
1453 			ext4_da_release_space(inode, 1);
1454 
1455 		num_clusters--;
1456 	}
1457 }
1458 
1459 /*
1460  * Delayed allocation stuff
1461  */
1462 
1463 /*
1464  * mpage_da_submit_io - walks through extent of pages and try to write
1465  * them with writepage() call back
1466  *
1467  * @mpd->inode: inode
1468  * @mpd->first_page: first page of the extent
1469  * @mpd->next_page: page after the last page of the extent
1470  *
1471  * By the time mpage_da_submit_io() is called we expect all blocks
1472  * to be allocated. this may be wrong if allocation failed.
1473  *
1474  * As pages are already locked by write_cache_pages(), we can't use it
1475  */
1476 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1477 			      struct ext4_map_blocks *map)
1478 {
1479 	struct pagevec pvec;
1480 	unsigned long index, end;
1481 	int ret = 0, err, nr_pages, i;
1482 	struct inode *inode = mpd->inode;
1483 	struct address_space *mapping = inode->i_mapping;
1484 	loff_t size = i_size_read(inode);
1485 	unsigned int len, block_start;
1486 	struct buffer_head *bh, *page_bufs = NULL;
1487 	sector_t pblock = 0, cur_logical = 0;
1488 	struct ext4_io_submit io_submit;
1489 
1490 	BUG_ON(mpd->next_page <= mpd->first_page);
1491 	memset(&io_submit, 0, sizeof(io_submit));
1492 	/*
1493 	 * We need to start from the first_page to the next_page - 1
1494 	 * to make sure we also write the mapped dirty buffer_heads.
1495 	 * If we look at mpd->b_blocknr we would only be looking
1496 	 * at the currently mapped buffer_heads.
1497 	 */
1498 	index = mpd->first_page;
1499 	end = mpd->next_page - 1;
1500 
1501 	pagevec_init(&pvec, 0);
1502 	while (index <= end) {
1503 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1504 		if (nr_pages == 0)
1505 			break;
1506 		for (i = 0; i < nr_pages; i++) {
1507 			int skip_page = 0;
1508 			struct page *page = pvec.pages[i];
1509 
1510 			index = page->index;
1511 			if (index > end)
1512 				break;
1513 
1514 			if (index == size >> PAGE_CACHE_SHIFT)
1515 				len = size & ~PAGE_CACHE_MASK;
1516 			else
1517 				len = PAGE_CACHE_SIZE;
1518 			if (map) {
1519 				cur_logical = index << (PAGE_CACHE_SHIFT -
1520 							inode->i_blkbits);
1521 				pblock = map->m_pblk + (cur_logical -
1522 							map->m_lblk);
1523 			}
1524 			index++;
1525 
1526 			BUG_ON(!PageLocked(page));
1527 			BUG_ON(PageWriteback(page));
1528 
1529 			bh = page_bufs = page_buffers(page);
1530 			block_start = 0;
1531 			do {
1532 				if (map && (cur_logical >= map->m_lblk) &&
1533 				    (cur_logical <= (map->m_lblk +
1534 						     (map->m_len - 1)))) {
1535 					if (buffer_delay(bh)) {
1536 						clear_buffer_delay(bh);
1537 						bh->b_blocknr = pblock;
1538 					}
1539 					if (buffer_unwritten(bh) ||
1540 					    buffer_mapped(bh))
1541 						BUG_ON(bh->b_blocknr != pblock);
1542 					if (map->m_flags & EXT4_MAP_UNINIT)
1543 						set_buffer_uninit(bh);
1544 					clear_buffer_unwritten(bh);
1545 				}
1546 
1547 				/*
1548 				 * skip page if block allocation undone and
1549 				 * block is dirty
1550 				 */
1551 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1552 					skip_page = 1;
1553 				bh = bh->b_this_page;
1554 				block_start += bh->b_size;
1555 				cur_logical++;
1556 				pblock++;
1557 			} while (bh != page_bufs);
1558 
1559 			if (skip_page) {
1560 				unlock_page(page);
1561 				continue;
1562 			}
1563 
1564 			clear_page_dirty_for_io(page);
1565 			err = ext4_bio_write_page(&io_submit, page, len,
1566 						  mpd->wbc);
1567 			if (!err)
1568 				mpd->pages_written++;
1569 			/*
1570 			 * In error case, we have to continue because
1571 			 * remaining pages are still locked
1572 			 */
1573 			if (ret == 0)
1574 				ret = err;
1575 		}
1576 		pagevec_release(&pvec);
1577 	}
1578 	ext4_io_submit(&io_submit);
1579 	return ret;
1580 }
1581 
1582 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1583 {
1584 	int nr_pages, i;
1585 	pgoff_t index, end;
1586 	struct pagevec pvec;
1587 	struct inode *inode = mpd->inode;
1588 	struct address_space *mapping = inode->i_mapping;
1589 	ext4_lblk_t start, last;
1590 
1591 	index = mpd->first_page;
1592 	end   = mpd->next_page - 1;
1593 
1594 	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1595 	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1596 	ext4_es_remove_extent(inode, start, last - start + 1);
1597 
1598 	pagevec_init(&pvec, 0);
1599 	while (index <= end) {
1600 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1601 		if (nr_pages == 0)
1602 			break;
1603 		for (i = 0; i < nr_pages; i++) {
1604 			struct page *page = pvec.pages[i];
1605 			if (page->index > end)
1606 				break;
1607 			BUG_ON(!PageLocked(page));
1608 			BUG_ON(PageWriteback(page));
1609 			block_invalidatepage(page, 0);
1610 			ClearPageUptodate(page);
1611 			unlock_page(page);
1612 		}
1613 		index = pvec.pages[nr_pages - 1]->index + 1;
1614 		pagevec_release(&pvec);
1615 	}
1616 	return;
1617 }
1618 
1619 static void ext4_print_free_blocks(struct inode *inode)
1620 {
1621 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622 	struct super_block *sb = inode->i_sb;
1623 	struct ext4_inode_info *ei = EXT4_I(inode);
1624 
1625 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1627 			ext4_count_free_clusters(sb)));
1628 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630 	       (long long) EXT4_C2B(EXT4_SB(sb),
1631 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633 	       (long long) EXT4_C2B(EXT4_SB(sb),
1634 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637 		 ei->i_reserved_data_blocks);
1638 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1639 	       ei->i_reserved_meta_blocks);
1640 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1641 	       ei->i_allocated_meta_blocks);
1642 	return;
1643 }
1644 
1645 /*
1646  * mpage_da_map_and_submit - go through given space, map them
1647  *       if necessary, and then submit them for I/O
1648  *
1649  * @mpd - bh describing space
1650  *
1651  * The function skips space we know is already mapped to disk blocks.
1652  *
1653  */
1654 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1655 {
1656 	int err, blks, get_blocks_flags;
1657 	struct ext4_map_blocks map, *mapp = NULL;
1658 	sector_t next = mpd->b_blocknr;
1659 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1660 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1661 	handle_t *handle = NULL;
1662 
1663 	/*
1664 	 * If the blocks are mapped already, or we couldn't accumulate
1665 	 * any blocks, then proceed immediately to the submission stage.
1666 	 */
1667 	if ((mpd->b_size == 0) ||
1668 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1669 	     !(mpd->b_state & (1 << BH_Delay)) &&
1670 	     !(mpd->b_state & (1 << BH_Unwritten))))
1671 		goto submit_io;
1672 
1673 	handle = ext4_journal_current_handle();
1674 	BUG_ON(!handle);
1675 
1676 	/*
1677 	 * Call ext4_map_blocks() to allocate any delayed allocation
1678 	 * blocks, or to convert an uninitialized extent to be
1679 	 * initialized (in the case where we have written into
1680 	 * one or more preallocated blocks).
1681 	 *
1682 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1683 	 * indicate that we are on the delayed allocation path.  This
1684 	 * affects functions in many different parts of the allocation
1685 	 * call path.  This flag exists primarily because we don't
1686 	 * want to change *many* call functions, so ext4_map_blocks()
1687 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1688 	 * inode's allocation semaphore is taken.
1689 	 *
1690 	 * If the blocks in questions were delalloc blocks, set
1691 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1692 	 * variables are updated after the blocks have been allocated.
1693 	 */
1694 	map.m_lblk = next;
1695 	map.m_len = max_blocks;
1696 	/*
1697 	 * We're in delalloc path and it is possible that we're going to
1698 	 * need more metadata blocks than previously reserved. However
1699 	 * we must not fail because we're in writeback and there is
1700 	 * nothing we can do about it so it might result in data loss.
1701 	 * So use reserved blocks to allocate metadata if possible.
1702 	 */
1703 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1704 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
1705 	if (ext4_should_dioread_nolock(mpd->inode))
1706 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1707 	if (mpd->b_state & (1 << BH_Delay))
1708 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1709 
1710 
1711 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1712 	if (blks < 0) {
1713 		struct super_block *sb = mpd->inode->i_sb;
1714 
1715 		err = blks;
1716 		/*
1717 		 * If get block returns EAGAIN or ENOSPC and there
1718 		 * appears to be free blocks we will just let
1719 		 * mpage_da_submit_io() unlock all of the pages.
1720 		 */
1721 		if (err == -EAGAIN)
1722 			goto submit_io;
1723 
1724 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1725 			mpd->retval = err;
1726 			goto submit_io;
1727 		}
1728 
1729 		/*
1730 		 * get block failure will cause us to loop in
1731 		 * writepages, because a_ops->writepage won't be able
1732 		 * to make progress. The page will be redirtied by
1733 		 * writepage and writepages will again try to write
1734 		 * the same.
1735 		 */
1736 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1737 			ext4_msg(sb, KERN_CRIT,
1738 				 "delayed block allocation failed for inode %lu "
1739 				 "at logical offset %llu with max blocks %zd "
1740 				 "with error %d", mpd->inode->i_ino,
1741 				 (unsigned long long) next,
1742 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1743 			ext4_msg(sb, KERN_CRIT,
1744 				"This should not happen!! Data will be lost");
1745 			if (err == -ENOSPC)
1746 				ext4_print_free_blocks(mpd->inode);
1747 		}
1748 		/* invalidate all the pages */
1749 		ext4_da_block_invalidatepages(mpd);
1750 
1751 		/* Mark this page range as having been completed */
1752 		mpd->io_done = 1;
1753 		return;
1754 	}
1755 	BUG_ON(blks == 0);
1756 
1757 	mapp = &map;
1758 	if (map.m_flags & EXT4_MAP_NEW) {
1759 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1760 		int i;
1761 
1762 		for (i = 0; i < map.m_len; i++)
1763 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1764 	}
1765 
1766 	/*
1767 	 * Update on-disk size along with block allocation.
1768 	 */
1769 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1770 	if (disksize > i_size_read(mpd->inode))
1771 		disksize = i_size_read(mpd->inode);
1772 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1773 		ext4_update_i_disksize(mpd->inode, disksize);
1774 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1775 		if (err)
1776 			ext4_error(mpd->inode->i_sb,
1777 				   "Failed to mark inode %lu dirty",
1778 				   mpd->inode->i_ino);
1779 	}
1780 
1781 submit_io:
1782 	mpage_da_submit_io(mpd, mapp);
1783 	mpd->io_done = 1;
1784 }
1785 
1786 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1787 		(1 << BH_Delay) | (1 << BH_Unwritten))
1788 
1789 /*
1790  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1791  *
1792  * @mpd->lbh - extent of blocks
1793  * @logical - logical number of the block in the file
1794  * @b_state - b_state of the buffer head added
1795  *
1796  * the function is used to collect contig. blocks in same state
1797  */
1798 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1799 				   unsigned long b_state)
1800 {
1801 	sector_t next;
1802 	int blkbits = mpd->inode->i_blkbits;
1803 	int nrblocks = mpd->b_size >> blkbits;
1804 
1805 	/*
1806 	 * XXX Don't go larger than mballoc is willing to allocate
1807 	 * This is a stopgap solution.  We eventually need to fold
1808 	 * mpage_da_submit_io() into this function and then call
1809 	 * ext4_map_blocks() multiple times in a loop
1810 	 */
1811 	if (nrblocks >= (8*1024*1024 >> blkbits))
1812 		goto flush_it;
1813 
1814 	/* check if the reserved journal credits might overflow */
1815 	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1816 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1817 			/*
1818 			 * With non-extent format we are limited by the journal
1819 			 * credit available.  Total credit needed to insert
1820 			 * nrblocks contiguous blocks is dependent on the
1821 			 * nrblocks.  So limit nrblocks.
1822 			 */
1823 			goto flush_it;
1824 		}
1825 	}
1826 	/*
1827 	 * First block in the extent
1828 	 */
1829 	if (mpd->b_size == 0) {
1830 		mpd->b_blocknr = logical;
1831 		mpd->b_size = 1 << blkbits;
1832 		mpd->b_state = b_state & BH_FLAGS;
1833 		return;
1834 	}
1835 
1836 	next = mpd->b_blocknr + nrblocks;
1837 	/*
1838 	 * Can we merge the block to our big extent?
1839 	 */
1840 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1841 		mpd->b_size += 1 << blkbits;
1842 		return;
1843 	}
1844 
1845 flush_it:
1846 	/*
1847 	 * We couldn't merge the block to our extent, so we
1848 	 * need to flush current  extent and start new one
1849 	 */
1850 	mpage_da_map_and_submit(mpd);
1851 	return;
1852 }
1853 
1854 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1855 {
1856 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1857 }
1858 
1859 /*
1860  * This function is grabs code from the very beginning of
1861  * ext4_map_blocks, but assumes that the caller is from delayed write
1862  * time. This function looks up the requested blocks and sets the
1863  * buffer delay bit under the protection of i_data_sem.
1864  */
1865 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1866 			      struct ext4_map_blocks *map,
1867 			      struct buffer_head *bh)
1868 {
1869 	struct extent_status es;
1870 	int retval;
1871 	sector_t invalid_block = ~((sector_t) 0xffff);
1872 #ifdef ES_AGGRESSIVE_TEST
1873 	struct ext4_map_blocks orig_map;
1874 
1875 	memcpy(&orig_map, map, sizeof(*map));
1876 #endif
1877 
1878 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1879 		invalid_block = ~0;
1880 
1881 	map->m_flags = 0;
1882 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1883 		  "logical block %lu\n", inode->i_ino, map->m_len,
1884 		  (unsigned long) map->m_lblk);
1885 
1886 	/* Lookup extent status tree firstly */
1887 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1888 
1889 		if (ext4_es_is_hole(&es)) {
1890 			retval = 0;
1891 			down_read((&EXT4_I(inode)->i_data_sem));
1892 			goto add_delayed;
1893 		}
1894 
1895 		/*
1896 		 * Delayed extent could be allocated by fallocate.
1897 		 * So we need to check it.
1898 		 */
1899 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1900 			map_bh(bh, inode->i_sb, invalid_block);
1901 			set_buffer_new(bh);
1902 			set_buffer_delay(bh);
1903 			return 0;
1904 		}
1905 
1906 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1907 		retval = es.es_len - (iblock - es.es_lblk);
1908 		if (retval > map->m_len)
1909 			retval = map->m_len;
1910 		map->m_len = retval;
1911 		if (ext4_es_is_written(&es))
1912 			map->m_flags |= EXT4_MAP_MAPPED;
1913 		else if (ext4_es_is_unwritten(&es))
1914 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1915 		else
1916 			BUG_ON(1);
1917 
1918 #ifdef ES_AGGRESSIVE_TEST
1919 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1920 #endif
1921 		return retval;
1922 	}
1923 
1924 	/*
1925 	 * Try to see if we can get the block without requesting a new
1926 	 * file system block.
1927 	 */
1928 	down_read((&EXT4_I(inode)->i_data_sem));
1929 	if (ext4_has_inline_data(inode)) {
1930 		/*
1931 		 * We will soon create blocks for this page, and let
1932 		 * us pretend as if the blocks aren't allocated yet.
1933 		 * In case of clusters, we have to handle the work
1934 		 * of mapping from cluster so that the reserved space
1935 		 * is calculated properly.
1936 		 */
1937 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1938 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1939 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1940 		retval = 0;
1941 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1942 		retval = ext4_ext_map_blocks(NULL, inode, map,
1943 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1944 	else
1945 		retval = ext4_ind_map_blocks(NULL, inode, map,
1946 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1947 
1948 add_delayed:
1949 	if (retval == 0) {
1950 		int ret;
1951 		/*
1952 		 * XXX: __block_prepare_write() unmaps passed block,
1953 		 * is it OK?
1954 		 */
1955 		/*
1956 		 * If the block was allocated from previously allocated cluster,
1957 		 * then we don't need to reserve it again. However we still need
1958 		 * to reserve metadata for every block we're going to write.
1959 		 */
1960 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1961 			ret = ext4_da_reserve_space(inode, iblock);
1962 			if (ret) {
1963 				/* not enough space to reserve */
1964 				retval = ret;
1965 				goto out_unlock;
1966 			}
1967 		} else {
1968 			ret = ext4_da_reserve_metadata(inode, iblock);
1969 			if (ret) {
1970 				/* not enough space to reserve */
1971 				retval = ret;
1972 				goto out_unlock;
1973 			}
1974 		}
1975 
1976 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1977 					    ~0, EXTENT_STATUS_DELAYED);
1978 		if (ret) {
1979 			retval = ret;
1980 			goto out_unlock;
1981 		}
1982 
1983 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1984 		 * and it should not appear on the bh->b_state.
1985 		 */
1986 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1987 
1988 		map_bh(bh, inode->i_sb, invalid_block);
1989 		set_buffer_new(bh);
1990 		set_buffer_delay(bh);
1991 	} else if (retval > 0) {
1992 		int ret;
1993 		unsigned long long status;
1994 
1995 #ifdef ES_AGGRESSIVE_TEST
1996 		if (retval != map->m_len) {
1997 			printk("ES len assertation failed for inode: %lu "
1998 			       "retval %d != map->m_len %d "
1999 			       "in %s (lookup)\n", inode->i_ino, retval,
2000 			       map->m_len, __func__);
2001 		}
2002 #endif
2003 
2004 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2005 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2006 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2007 					    map->m_pblk, status);
2008 		if (ret != 0)
2009 			retval = ret;
2010 	}
2011 
2012 out_unlock:
2013 	up_read((&EXT4_I(inode)->i_data_sem));
2014 
2015 	return retval;
2016 }
2017 
2018 /*
2019  * This is a special get_blocks_t callback which is used by
2020  * ext4_da_write_begin().  It will either return mapped block or
2021  * reserve space for a single block.
2022  *
2023  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2024  * We also have b_blocknr = -1 and b_bdev initialized properly
2025  *
2026  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2027  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2028  * initialized properly.
2029  */
2030 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2031 			   struct buffer_head *bh, int create)
2032 {
2033 	struct ext4_map_blocks map;
2034 	int ret = 0;
2035 
2036 	BUG_ON(create == 0);
2037 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2038 
2039 	map.m_lblk = iblock;
2040 	map.m_len = 1;
2041 
2042 	/*
2043 	 * first, we need to know whether the block is allocated already
2044 	 * preallocated blocks are unmapped but should treated
2045 	 * the same as allocated blocks.
2046 	 */
2047 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2048 	if (ret <= 0)
2049 		return ret;
2050 
2051 	map_bh(bh, inode->i_sb, map.m_pblk);
2052 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2053 
2054 	if (buffer_unwritten(bh)) {
2055 		/* A delayed write to unwritten bh should be marked
2056 		 * new and mapped.  Mapped ensures that we don't do
2057 		 * get_block multiple times when we write to the same
2058 		 * offset and new ensures that we do proper zero out
2059 		 * for partial write.
2060 		 */
2061 		set_buffer_new(bh);
2062 		set_buffer_mapped(bh);
2063 	}
2064 	return 0;
2065 }
2066 
2067 static int bget_one(handle_t *handle, struct buffer_head *bh)
2068 {
2069 	get_bh(bh);
2070 	return 0;
2071 }
2072 
2073 static int bput_one(handle_t *handle, struct buffer_head *bh)
2074 {
2075 	put_bh(bh);
2076 	return 0;
2077 }
2078 
2079 static int __ext4_journalled_writepage(struct page *page,
2080 				       unsigned int len)
2081 {
2082 	struct address_space *mapping = page->mapping;
2083 	struct inode *inode = mapping->host;
2084 	struct buffer_head *page_bufs = NULL;
2085 	handle_t *handle = NULL;
2086 	int ret = 0, err = 0;
2087 	int inline_data = ext4_has_inline_data(inode);
2088 	struct buffer_head *inode_bh = NULL;
2089 
2090 	ClearPageChecked(page);
2091 
2092 	if (inline_data) {
2093 		BUG_ON(page->index != 0);
2094 		BUG_ON(len > ext4_get_max_inline_size(inode));
2095 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2096 		if (inode_bh == NULL)
2097 			goto out;
2098 	} else {
2099 		page_bufs = page_buffers(page);
2100 		if (!page_bufs) {
2101 			BUG();
2102 			goto out;
2103 		}
2104 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2105 				       NULL, bget_one);
2106 	}
2107 	/* As soon as we unlock the page, it can go away, but we have
2108 	 * references to buffers so we are safe */
2109 	unlock_page(page);
2110 
2111 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2112 				    ext4_writepage_trans_blocks(inode));
2113 	if (IS_ERR(handle)) {
2114 		ret = PTR_ERR(handle);
2115 		goto out;
2116 	}
2117 
2118 	BUG_ON(!ext4_handle_valid(handle));
2119 
2120 	if (inline_data) {
2121 		ret = ext4_journal_get_write_access(handle, inode_bh);
2122 
2123 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2124 
2125 	} else {
2126 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2127 					     do_journal_get_write_access);
2128 
2129 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2130 					     write_end_fn);
2131 	}
2132 	if (ret == 0)
2133 		ret = err;
2134 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2135 	err = ext4_journal_stop(handle);
2136 	if (!ret)
2137 		ret = err;
2138 
2139 	if (!ext4_has_inline_data(inode))
2140 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2141 				       NULL, bput_one);
2142 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2143 out:
2144 	brelse(inode_bh);
2145 	return ret;
2146 }
2147 
2148 /*
2149  * Note that we don't need to start a transaction unless we're journaling data
2150  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2151  * need to file the inode to the transaction's list in ordered mode because if
2152  * we are writing back data added by write(), the inode is already there and if
2153  * we are writing back data modified via mmap(), no one guarantees in which
2154  * transaction the data will hit the disk. In case we are journaling data, we
2155  * cannot start transaction directly because transaction start ranks above page
2156  * lock so we have to do some magic.
2157  *
2158  * This function can get called via...
2159  *   - ext4_da_writepages after taking page lock (have journal handle)
2160  *   - journal_submit_inode_data_buffers (no journal handle)
2161  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2162  *   - grab_page_cache when doing write_begin (have journal handle)
2163  *
2164  * We don't do any block allocation in this function. If we have page with
2165  * multiple blocks we need to write those buffer_heads that are mapped. This
2166  * is important for mmaped based write. So if we do with blocksize 1K
2167  * truncate(f, 1024);
2168  * a = mmap(f, 0, 4096);
2169  * a[0] = 'a';
2170  * truncate(f, 4096);
2171  * we have in the page first buffer_head mapped via page_mkwrite call back
2172  * but other buffer_heads would be unmapped but dirty (dirty done via the
2173  * do_wp_page). So writepage should write the first block. If we modify
2174  * the mmap area beyond 1024 we will again get a page_fault and the
2175  * page_mkwrite callback will do the block allocation and mark the
2176  * buffer_heads mapped.
2177  *
2178  * We redirty the page if we have any buffer_heads that is either delay or
2179  * unwritten in the page.
2180  *
2181  * We can get recursively called as show below.
2182  *
2183  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2184  *		ext4_writepage()
2185  *
2186  * But since we don't do any block allocation we should not deadlock.
2187  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2188  */
2189 static int ext4_writepage(struct page *page,
2190 			  struct writeback_control *wbc)
2191 {
2192 	int ret = 0;
2193 	loff_t size;
2194 	unsigned int len;
2195 	struct buffer_head *page_bufs = NULL;
2196 	struct inode *inode = page->mapping->host;
2197 	struct ext4_io_submit io_submit;
2198 
2199 	trace_ext4_writepage(page);
2200 	size = i_size_read(inode);
2201 	if (page->index == size >> PAGE_CACHE_SHIFT)
2202 		len = size & ~PAGE_CACHE_MASK;
2203 	else
2204 		len = PAGE_CACHE_SIZE;
2205 
2206 	page_bufs = page_buffers(page);
2207 	/*
2208 	 * We cannot do block allocation or other extent handling in this
2209 	 * function. If there are buffers needing that, we have to redirty
2210 	 * the page. But we may reach here when we do a journal commit via
2211 	 * journal_submit_inode_data_buffers() and in that case we must write
2212 	 * allocated buffers to achieve data=ordered mode guarantees.
2213 	 */
2214 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2215 				   ext4_bh_delay_or_unwritten)) {
2216 		redirty_page_for_writepage(wbc, page);
2217 		if (current->flags & PF_MEMALLOC) {
2218 			/*
2219 			 * For memory cleaning there's no point in writing only
2220 			 * some buffers. So just bail out. Warn if we came here
2221 			 * from direct reclaim.
2222 			 */
2223 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2224 							== PF_MEMALLOC);
2225 			unlock_page(page);
2226 			return 0;
2227 		}
2228 	}
2229 
2230 	if (PageChecked(page) && ext4_should_journal_data(inode))
2231 		/*
2232 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2233 		 * doesn't seem much point in redirtying the page here.
2234 		 */
2235 		return __ext4_journalled_writepage(page, len);
2236 
2237 	memset(&io_submit, 0, sizeof(io_submit));
2238 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2239 	ext4_io_submit(&io_submit);
2240 	return ret;
2241 }
2242 
2243 /*
2244  * This is called via ext4_da_writepages() to
2245  * calculate the total number of credits to reserve to fit
2246  * a single extent allocation into a single transaction,
2247  * ext4_da_writpeages() will loop calling this before
2248  * the block allocation.
2249  */
2250 
2251 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2252 {
2253 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2254 
2255 	/*
2256 	 * With non-extent format the journal credit needed to
2257 	 * insert nrblocks contiguous block is dependent on
2258 	 * number of contiguous block. So we will limit
2259 	 * number of contiguous block to a sane value
2260 	 */
2261 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2262 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2263 		max_blocks = EXT4_MAX_TRANS_DATA;
2264 
2265 	return ext4_chunk_trans_blocks(inode, max_blocks);
2266 }
2267 
2268 /*
2269  * write_cache_pages_da - walk the list of dirty pages of the given
2270  * address space and accumulate pages that need writing, and call
2271  * mpage_da_map_and_submit to map a single contiguous memory region
2272  * and then write them.
2273  */
2274 static int write_cache_pages_da(handle_t *handle,
2275 				struct address_space *mapping,
2276 				struct writeback_control *wbc,
2277 				struct mpage_da_data *mpd,
2278 				pgoff_t *done_index)
2279 {
2280 	struct buffer_head	*bh, *head;
2281 	struct inode		*inode = mapping->host;
2282 	struct pagevec		pvec;
2283 	unsigned int		nr_pages;
2284 	sector_t		logical;
2285 	pgoff_t			index, end;
2286 	long			nr_to_write = wbc->nr_to_write;
2287 	int			i, tag, ret = 0;
2288 
2289 	memset(mpd, 0, sizeof(struct mpage_da_data));
2290 	mpd->wbc = wbc;
2291 	mpd->inode = inode;
2292 	pagevec_init(&pvec, 0);
2293 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2294 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2295 
2296 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2297 		tag = PAGECACHE_TAG_TOWRITE;
2298 	else
2299 		tag = PAGECACHE_TAG_DIRTY;
2300 
2301 	*done_index = index;
2302 	while (index <= end) {
2303 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2304 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2305 		if (nr_pages == 0)
2306 			return 0;
2307 
2308 		for (i = 0; i < nr_pages; i++) {
2309 			struct page *page = pvec.pages[i];
2310 
2311 			/*
2312 			 * At this point, the page may be truncated or
2313 			 * invalidated (changing page->mapping to NULL), or
2314 			 * even swizzled back from swapper_space to tmpfs file
2315 			 * mapping. However, page->index will not change
2316 			 * because we have a reference on the page.
2317 			 */
2318 			if (page->index > end)
2319 				goto out;
2320 
2321 			*done_index = page->index + 1;
2322 
2323 			/*
2324 			 * If we can't merge this page, and we have
2325 			 * accumulated an contiguous region, write it
2326 			 */
2327 			if ((mpd->next_page != page->index) &&
2328 			    (mpd->next_page != mpd->first_page)) {
2329 				mpage_da_map_and_submit(mpd);
2330 				goto ret_extent_tail;
2331 			}
2332 
2333 			lock_page(page);
2334 
2335 			/*
2336 			 * If the page is no longer dirty, or its
2337 			 * mapping no longer corresponds to inode we
2338 			 * are writing (which means it has been
2339 			 * truncated or invalidated), or the page is
2340 			 * already under writeback and we are not
2341 			 * doing a data integrity writeback, skip the page
2342 			 */
2343 			if (!PageDirty(page) ||
2344 			    (PageWriteback(page) &&
2345 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2346 			    unlikely(page->mapping != mapping)) {
2347 				unlock_page(page);
2348 				continue;
2349 			}
2350 
2351 			wait_on_page_writeback(page);
2352 			BUG_ON(PageWriteback(page));
2353 
2354 			/*
2355 			 * If we have inline data and arrive here, it means that
2356 			 * we will soon create the block for the 1st page, so
2357 			 * we'd better clear the inline data here.
2358 			 */
2359 			if (ext4_has_inline_data(inode)) {
2360 				BUG_ON(ext4_test_inode_state(inode,
2361 						EXT4_STATE_MAY_INLINE_DATA));
2362 				ext4_destroy_inline_data(handle, inode);
2363 			}
2364 
2365 			if (mpd->next_page != page->index)
2366 				mpd->first_page = page->index;
2367 			mpd->next_page = page->index + 1;
2368 			logical = (sector_t) page->index <<
2369 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2370 
2371 			/* Add all dirty buffers to mpd */
2372 			head = page_buffers(page);
2373 			bh = head;
2374 			do {
2375 				BUG_ON(buffer_locked(bh));
2376 				/*
2377 				 * We need to try to allocate unmapped blocks
2378 				 * in the same page.  Otherwise we won't make
2379 				 * progress with the page in ext4_writepage
2380 				 */
2381 				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2382 					mpage_add_bh_to_extent(mpd, logical,
2383 							       bh->b_state);
2384 					if (mpd->io_done)
2385 						goto ret_extent_tail;
2386 				} else if (buffer_dirty(bh) &&
2387 					   buffer_mapped(bh)) {
2388 					/*
2389 					 * mapped dirty buffer. We need to
2390 					 * update the b_state because we look
2391 					 * at b_state in mpage_da_map_blocks.
2392 					 * We don't update b_size because if we
2393 					 * find an unmapped buffer_head later
2394 					 * we need to use the b_state flag of
2395 					 * that buffer_head.
2396 					 */
2397 					if (mpd->b_size == 0)
2398 						mpd->b_state =
2399 							bh->b_state & BH_FLAGS;
2400 				}
2401 				logical++;
2402 			} while ((bh = bh->b_this_page) != head);
2403 
2404 			if (nr_to_write > 0) {
2405 				nr_to_write--;
2406 				if (nr_to_write == 0 &&
2407 				    wbc->sync_mode == WB_SYNC_NONE)
2408 					/*
2409 					 * We stop writing back only if we are
2410 					 * not doing integrity sync. In case of
2411 					 * integrity sync we have to keep going
2412 					 * because someone may be concurrently
2413 					 * dirtying pages, and we might have
2414 					 * synced a lot of newly appeared dirty
2415 					 * pages, but have not synced all of the
2416 					 * old dirty pages.
2417 					 */
2418 					goto out;
2419 			}
2420 		}
2421 		pagevec_release(&pvec);
2422 		cond_resched();
2423 	}
2424 	return 0;
2425 ret_extent_tail:
2426 	ret = MPAGE_DA_EXTENT_TAIL;
2427 out:
2428 	pagevec_release(&pvec);
2429 	cond_resched();
2430 	return ret;
2431 }
2432 
2433 
2434 static int ext4_da_writepages(struct address_space *mapping,
2435 			      struct writeback_control *wbc)
2436 {
2437 	pgoff_t	index;
2438 	int range_whole = 0;
2439 	handle_t *handle = NULL;
2440 	struct mpage_da_data mpd;
2441 	struct inode *inode = mapping->host;
2442 	int pages_written = 0;
2443 	unsigned int max_pages;
2444 	int range_cyclic, cycled = 1, io_done = 0;
2445 	int needed_blocks, ret = 0;
2446 	long desired_nr_to_write, nr_to_writebump = 0;
2447 	loff_t range_start = wbc->range_start;
2448 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2449 	pgoff_t done_index = 0;
2450 	pgoff_t end;
2451 	struct blk_plug plug;
2452 
2453 	trace_ext4_da_writepages(inode, wbc);
2454 
2455 	/*
2456 	 * No pages to write? This is mainly a kludge to avoid starting
2457 	 * a transaction for special inodes like journal inode on last iput()
2458 	 * because that could violate lock ordering on umount
2459 	 */
2460 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2461 		return 0;
2462 
2463 	/*
2464 	 * If the filesystem has aborted, it is read-only, so return
2465 	 * right away instead of dumping stack traces later on that
2466 	 * will obscure the real source of the problem.  We test
2467 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2468 	 * the latter could be true if the filesystem is mounted
2469 	 * read-only, and in that case, ext4_da_writepages should
2470 	 * *never* be called, so if that ever happens, we would want
2471 	 * the stack trace.
2472 	 */
2473 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2474 		return -EROFS;
2475 
2476 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2477 		range_whole = 1;
2478 
2479 	range_cyclic = wbc->range_cyclic;
2480 	if (wbc->range_cyclic) {
2481 		index = mapping->writeback_index;
2482 		if (index)
2483 			cycled = 0;
2484 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2485 		wbc->range_end  = LLONG_MAX;
2486 		wbc->range_cyclic = 0;
2487 		end = -1;
2488 	} else {
2489 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2490 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2491 	}
2492 
2493 	/*
2494 	 * This works around two forms of stupidity.  The first is in
2495 	 * the writeback code, which caps the maximum number of pages
2496 	 * written to be 1024 pages.  This is wrong on multiple
2497 	 * levels; different architectues have a different page size,
2498 	 * which changes the maximum amount of data which gets
2499 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2500 	 * forces this value to be 16 megabytes by multiplying
2501 	 * nr_to_write parameter by four, and then relies on its
2502 	 * allocator to allocate larger extents to make them
2503 	 * contiguous.  Unfortunately this brings us to the second
2504 	 * stupidity, which is that ext4's mballoc code only allocates
2505 	 * at most 2048 blocks.  So we force contiguous writes up to
2506 	 * the number of dirty blocks in the inode, or
2507 	 * sbi->max_writeback_mb_bump whichever is smaller.
2508 	 */
2509 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2510 	if (!range_cyclic && range_whole) {
2511 		if (wbc->nr_to_write == LONG_MAX)
2512 			desired_nr_to_write = wbc->nr_to_write;
2513 		else
2514 			desired_nr_to_write = wbc->nr_to_write * 8;
2515 	} else
2516 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2517 							   max_pages);
2518 	if (desired_nr_to_write > max_pages)
2519 		desired_nr_to_write = max_pages;
2520 
2521 	if (wbc->nr_to_write < desired_nr_to_write) {
2522 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2523 		wbc->nr_to_write = desired_nr_to_write;
2524 	}
2525 
2526 retry:
2527 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2528 		tag_pages_for_writeback(mapping, index, end);
2529 
2530 	blk_start_plug(&plug);
2531 	while (!ret && wbc->nr_to_write > 0) {
2532 
2533 		/*
2534 		 * we  insert one extent at a time. So we need
2535 		 * credit needed for single extent allocation.
2536 		 * journalled mode is currently not supported
2537 		 * by delalloc
2538 		 */
2539 		BUG_ON(ext4_should_journal_data(inode));
2540 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2541 
2542 		/* start a new transaction*/
2543 		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2544 					    needed_blocks);
2545 		if (IS_ERR(handle)) {
2546 			ret = PTR_ERR(handle);
2547 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2548 			       "%ld pages, ino %lu; err %d", __func__,
2549 				wbc->nr_to_write, inode->i_ino, ret);
2550 			blk_finish_plug(&plug);
2551 			goto out_writepages;
2552 		}
2553 
2554 		/*
2555 		 * Now call write_cache_pages_da() to find the next
2556 		 * contiguous region of logical blocks that need
2557 		 * blocks to be allocated by ext4 and submit them.
2558 		 */
2559 		ret = write_cache_pages_da(handle, mapping,
2560 					   wbc, &mpd, &done_index);
2561 		/*
2562 		 * If we have a contiguous extent of pages and we
2563 		 * haven't done the I/O yet, map the blocks and submit
2564 		 * them for I/O.
2565 		 */
2566 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2567 			mpage_da_map_and_submit(&mpd);
2568 			ret = MPAGE_DA_EXTENT_TAIL;
2569 		}
2570 		trace_ext4_da_write_pages(inode, &mpd);
2571 		wbc->nr_to_write -= mpd.pages_written;
2572 
2573 		ext4_journal_stop(handle);
2574 
2575 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2576 			/* commit the transaction which would
2577 			 * free blocks released in the transaction
2578 			 * and try again
2579 			 */
2580 			jbd2_journal_force_commit_nested(sbi->s_journal);
2581 			ret = 0;
2582 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2583 			/*
2584 			 * Got one extent now try with rest of the pages.
2585 			 * If mpd.retval is set -EIO, journal is aborted.
2586 			 * So we don't need to write any more.
2587 			 */
2588 			pages_written += mpd.pages_written;
2589 			ret = mpd.retval;
2590 			io_done = 1;
2591 		} else if (wbc->nr_to_write)
2592 			/*
2593 			 * There is no more writeout needed
2594 			 * or we requested for a noblocking writeout
2595 			 * and we found the device congested
2596 			 */
2597 			break;
2598 	}
2599 	blk_finish_plug(&plug);
2600 	if (!io_done && !cycled) {
2601 		cycled = 1;
2602 		index = 0;
2603 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2604 		wbc->range_end  = mapping->writeback_index - 1;
2605 		goto retry;
2606 	}
2607 
2608 	/* Update index */
2609 	wbc->range_cyclic = range_cyclic;
2610 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2611 		/*
2612 		 * set the writeback_index so that range_cyclic
2613 		 * mode will write it back later
2614 		 */
2615 		mapping->writeback_index = done_index;
2616 
2617 out_writepages:
2618 	wbc->nr_to_write -= nr_to_writebump;
2619 	wbc->range_start = range_start;
2620 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2621 	return ret;
2622 }
2623 
2624 static int ext4_nonda_switch(struct super_block *sb)
2625 {
2626 	s64 free_clusters, dirty_clusters;
2627 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2628 
2629 	/*
2630 	 * switch to non delalloc mode if we are running low
2631 	 * on free block. The free block accounting via percpu
2632 	 * counters can get slightly wrong with percpu_counter_batch getting
2633 	 * accumulated on each CPU without updating global counters
2634 	 * Delalloc need an accurate free block accounting. So switch
2635 	 * to non delalloc when we are near to error range.
2636 	 */
2637 	free_clusters =
2638 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2639 	dirty_clusters =
2640 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2641 	/*
2642 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2643 	 */
2644 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2645 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2646 
2647 	if (2 * free_clusters < 3 * dirty_clusters ||
2648 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2649 		/*
2650 		 * free block count is less than 150% of dirty blocks
2651 		 * or free blocks is less than watermark
2652 		 */
2653 		return 1;
2654 	}
2655 	return 0;
2656 }
2657 
2658 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2659 			       loff_t pos, unsigned len, unsigned flags,
2660 			       struct page **pagep, void **fsdata)
2661 {
2662 	int ret, retries = 0;
2663 	struct page *page;
2664 	pgoff_t index;
2665 	struct inode *inode = mapping->host;
2666 	handle_t *handle;
2667 
2668 	index = pos >> PAGE_CACHE_SHIFT;
2669 
2670 	if (ext4_nonda_switch(inode->i_sb)) {
2671 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2672 		return ext4_write_begin(file, mapping, pos,
2673 					len, flags, pagep, fsdata);
2674 	}
2675 	*fsdata = (void *)0;
2676 	trace_ext4_da_write_begin(inode, pos, len, flags);
2677 
2678 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2679 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2680 						      pos, len, flags,
2681 						      pagep, fsdata);
2682 		if (ret < 0)
2683 			return ret;
2684 		if (ret == 1)
2685 			return 0;
2686 	}
2687 
2688 	/*
2689 	 * grab_cache_page_write_begin() can take a long time if the
2690 	 * system is thrashing due to memory pressure, or if the page
2691 	 * is being written back.  So grab it first before we start
2692 	 * the transaction handle.  This also allows us to allocate
2693 	 * the page (if needed) without using GFP_NOFS.
2694 	 */
2695 retry_grab:
2696 	page = grab_cache_page_write_begin(mapping, index, flags);
2697 	if (!page)
2698 		return -ENOMEM;
2699 	unlock_page(page);
2700 
2701 	/*
2702 	 * With delayed allocation, we don't log the i_disksize update
2703 	 * if there is delayed block allocation. But we still need
2704 	 * to journalling the i_disksize update if writes to the end
2705 	 * of file which has an already mapped buffer.
2706 	 */
2707 retry_journal:
2708 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2709 	if (IS_ERR(handle)) {
2710 		page_cache_release(page);
2711 		return PTR_ERR(handle);
2712 	}
2713 
2714 	lock_page(page);
2715 	if (page->mapping != mapping) {
2716 		/* The page got truncated from under us */
2717 		unlock_page(page);
2718 		page_cache_release(page);
2719 		ext4_journal_stop(handle);
2720 		goto retry_grab;
2721 	}
2722 	/* In case writeback began while the page was unlocked */
2723 	wait_on_page_writeback(page);
2724 
2725 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2726 	if (ret < 0) {
2727 		unlock_page(page);
2728 		ext4_journal_stop(handle);
2729 		/*
2730 		 * block_write_begin may have instantiated a few blocks
2731 		 * outside i_size.  Trim these off again. Don't need
2732 		 * i_size_read because we hold i_mutex.
2733 		 */
2734 		if (pos + len > inode->i_size)
2735 			ext4_truncate_failed_write(inode);
2736 
2737 		if (ret == -ENOSPC &&
2738 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2739 			goto retry_journal;
2740 
2741 		page_cache_release(page);
2742 		return ret;
2743 	}
2744 
2745 	*pagep = page;
2746 	return ret;
2747 }
2748 
2749 /*
2750  * Check if we should update i_disksize
2751  * when write to the end of file but not require block allocation
2752  */
2753 static int ext4_da_should_update_i_disksize(struct page *page,
2754 					    unsigned long offset)
2755 {
2756 	struct buffer_head *bh;
2757 	struct inode *inode = page->mapping->host;
2758 	unsigned int idx;
2759 	int i;
2760 
2761 	bh = page_buffers(page);
2762 	idx = offset >> inode->i_blkbits;
2763 
2764 	for (i = 0; i < idx; i++)
2765 		bh = bh->b_this_page;
2766 
2767 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2768 		return 0;
2769 	return 1;
2770 }
2771 
2772 static int ext4_da_write_end(struct file *file,
2773 			     struct address_space *mapping,
2774 			     loff_t pos, unsigned len, unsigned copied,
2775 			     struct page *page, void *fsdata)
2776 {
2777 	struct inode *inode = mapping->host;
2778 	int ret = 0, ret2;
2779 	handle_t *handle = ext4_journal_current_handle();
2780 	loff_t new_i_size;
2781 	unsigned long start, end;
2782 	int write_mode = (int)(unsigned long)fsdata;
2783 
2784 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2785 		return ext4_write_end(file, mapping, pos,
2786 				      len, copied, page, fsdata);
2787 
2788 	trace_ext4_da_write_end(inode, pos, len, copied);
2789 	start = pos & (PAGE_CACHE_SIZE - 1);
2790 	end = start + copied - 1;
2791 
2792 	/*
2793 	 * generic_write_end() will run mark_inode_dirty() if i_size
2794 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2795 	 * into that.
2796 	 */
2797 	new_i_size = pos + copied;
2798 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2799 		if (ext4_has_inline_data(inode) ||
2800 		    ext4_da_should_update_i_disksize(page, end)) {
2801 			down_write(&EXT4_I(inode)->i_data_sem);
2802 			if (new_i_size > EXT4_I(inode)->i_disksize)
2803 				EXT4_I(inode)->i_disksize = new_i_size;
2804 			up_write(&EXT4_I(inode)->i_data_sem);
2805 			/* We need to mark inode dirty even if
2806 			 * new_i_size is less that inode->i_size
2807 			 * bu greater than i_disksize.(hint delalloc)
2808 			 */
2809 			ext4_mark_inode_dirty(handle, inode);
2810 		}
2811 	}
2812 
2813 	if (write_mode != CONVERT_INLINE_DATA &&
2814 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2815 	    ext4_has_inline_data(inode))
2816 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2817 						     page);
2818 	else
2819 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2820 							page, fsdata);
2821 
2822 	copied = ret2;
2823 	if (ret2 < 0)
2824 		ret = ret2;
2825 	ret2 = ext4_journal_stop(handle);
2826 	if (!ret)
2827 		ret = ret2;
2828 
2829 	return ret ? ret : copied;
2830 }
2831 
2832 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2833 {
2834 	/*
2835 	 * Drop reserved blocks
2836 	 */
2837 	BUG_ON(!PageLocked(page));
2838 	if (!page_has_buffers(page))
2839 		goto out;
2840 
2841 	ext4_da_page_release_reservation(page, offset);
2842 
2843 out:
2844 	ext4_invalidatepage(page, offset);
2845 
2846 	return;
2847 }
2848 
2849 /*
2850  * Force all delayed allocation blocks to be allocated for a given inode.
2851  */
2852 int ext4_alloc_da_blocks(struct inode *inode)
2853 {
2854 	trace_ext4_alloc_da_blocks(inode);
2855 
2856 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2857 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2858 		return 0;
2859 
2860 	/*
2861 	 * We do something simple for now.  The filemap_flush() will
2862 	 * also start triggering a write of the data blocks, which is
2863 	 * not strictly speaking necessary (and for users of
2864 	 * laptop_mode, not even desirable).  However, to do otherwise
2865 	 * would require replicating code paths in:
2866 	 *
2867 	 * ext4_da_writepages() ->
2868 	 *    write_cache_pages() ---> (via passed in callback function)
2869 	 *        __mpage_da_writepage() -->
2870 	 *           mpage_add_bh_to_extent()
2871 	 *           mpage_da_map_blocks()
2872 	 *
2873 	 * The problem is that write_cache_pages(), located in
2874 	 * mm/page-writeback.c, marks pages clean in preparation for
2875 	 * doing I/O, which is not desirable if we're not planning on
2876 	 * doing I/O at all.
2877 	 *
2878 	 * We could call write_cache_pages(), and then redirty all of
2879 	 * the pages by calling redirty_page_for_writepage() but that
2880 	 * would be ugly in the extreme.  So instead we would need to
2881 	 * replicate parts of the code in the above functions,
2882 	 * simplifying them because we wouldn't actually intend to
2883 	 * write out the pages, but rather only collect contiguous
2884 	 * logical block extents, call the multi-block allocator, and
2885 	 * then update the buffer heads with the block allocations.
2886 	 *
2887 	 * For now, though, we'll cheat by calling filemap_flush(),
2888 	 * which will map the blocks, and start the I/O, but not
2889 	 * actually wait for the I/O to complete.
2890 	 */
2891 	return filemap_flush(inode->i_mapping);
2892 }
2893 
2894 /*
2895  * bmap() is special.  It gets used by applications such as lilo and by
2896  * the swapper to find the on-disk block of a specific piece of data.
2897  *
2898  * Naturally, this is dangerous if the block concerned is still in the
2899  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2900  * filesystem and enables swap, then they may get a nasty shock when the
2901  * data getting swapped to that swapfile suddenly gets overwritten by
2902  * the original zero's written out previously to the journal and
2903  * awaiting writeback in the kernel's buffer cache.
2904  *
2905  * So, if we see any bmap calls here on a modified, data-journaled file,
2906  * take extra steps to flush any blocks which might be in the cache.
2907  */
2908 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2909 {
2910 	struct inode *inode = mapping->host;
2911 	journal_t *journal;
2912 	int err;
2913 
2914 	/*
2915 	 * We can get here for an inline file via the FIBMAP ioctl
2916 	 */
2917 	if (ext4_has_inline_data(inode))
2918 		return 0;
2919 
2920 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2921 			test_opt(inode->i_sb, DELALLOC)) {
2922 		/*
2923 		 * With delalloc we want to sync the file
2924 		 * so that we can make sure we allocate
2925 		 * blocks for file
2926 		 */
2927 		filemap_write_and_wait(mapping);
2928 	}
2929 
2930 	if (EXT4_JOURNAL(inode) &&
2931 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2932 		/*
2933 		 * This is a REALLY heavyweight approach, but the use of
2934 		 * bmap on dirty files is expected to be extremely rare:
2935 		 * only if we run lilo or swapon on a freshly made file
2936 		 * do we expect this to happen.
2937 		 *
2938 		 * (bmap requires CAP_SYS_RAWIO so this does not
2939 		 * represent an unprivileged user DOS attack --- we'd be
2940 		 * in trouble if mortal users could trigger this path at
2941 		 * will.)
2942 		 *
2943 		 * NB. EXT4_STATE_JDATA is not set on files other than
2944 		 * regular files.  If somebody wants to bmap a directory
2945 		 * or symlink and gets confused because the buffer
2946 		 * hasn't yet been flushed to disk, they deserve
2947 		 * everything they get.
2948 		 */
2949 
2950 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2951 		journal = EXT4_JOURNAL(inode);
2952 		jbd2_journal_lock_updates(journal);
2953 		err = jbd2_journal_flush(journal);
2954 		jbd2_journal_unlock_updates(journal);
2955 
2956 		if (err)
2957 			return 0;
2958 	}
2959 
2960 	return generic_block_bmap(mapping, block, ext4_get_block);
2961 }
2962 
2963 static int ext4_readpage(struct file *file, struct page *page)
2964 {
2965 	int ret = -EAGAIN;
2966 	struct inode *inode = page->mapping->host;
2967 
2968 	trace_ext4_readpage(page);
2969 
2970 	if (ext4_has_inline_data(inode))
2971 		ret = ext4_readpage_inline(inode, page);
2972 
2973 	if (ret == -EAGAIN)
2974 		return mpage_readpage(page, ext4_get_block);
2975 
2976 	return ret;
2977 }
2978 
2979 static int
2980 ext4_readpages(struct file *file, struct address_space *mapping,
2981 		struct list_head *pages, unsigned nr_pages)
2982 {
2983 	struct inode *inode = mapping->host;
2984 
2985 	/* If the file has inline data, no need to do readpages. */
2986 	if (ext4_has_inline_data(inode))
2987 		return 0;
2988 
2989 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2990 }
2991 
2992 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2993 {
2994 	trace_ext4_invalidatepage(page, offset);
2995 
2996 	/* No journalling happens on data buffers when this function is used */
2997 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2998 
2999 	block_invalidatepage(page, offset);
3000 }
3001 
3002 static int __ext4_journalled_invalidatepage(struct page *page,
3003 					    unsigned long offset)
3004 {
3005 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3006 
3007 	trace_ext4_journalled_invalidatepage(page, offset);
3008 
3009 	/*
3010 	 * If it's a full truncate we just forget about the pending dirtying
3011 	 */
3012 	if (offset == 0)
3013 		ClearPageChecked(page);
3014 
3015 	return jbd2_journal_invalidatepage(journal, page, offset);
3016 }
3017 
3018 /* Wrapper for aops... */
3019 static void ext4_journalled_invalidatepage(struct page *page,
3020 					   unsigned long offset)
3021 {
3022 	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3023 }
3024 
3025 static int ext4_releasepage(struct page *page, gfp_t wait)
3026 {
3027 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3028 
3029 	trace_ext4_releasepage(page);
3030 
3031 	/* Page has dirty journalled data -> cannot release */
3032 	if (PageChecked(page))
3033 		return 0;
3034 	if (journal)
3035 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3036 	else
3037 		return try_to_free_buffers(page);
3038 }
3039 
3040 /*
3041  * ext4_get_block used when preparing for a DIO write or buffer write.
3042  * We allocate an uinitialized extent if blocks haven't been allocated.
3043  * The extent will be converted to initialized after the IO is complete.
3044  */
3045 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3046 		   struct buffer_head *bh_result, int create)
3047 {
3048 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3049 		   inode->i_ino, create);
3050 	return _ext4_get_block(inode, iblock, bh_result,
3051 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3052 }
3053 
3054 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3055 		   struct buffer_head *bh_result, int create)
3056 {
3057 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3058 		   inode->i_ino, create);
3059 	return _ext4_get_block(inode, iblock, bh_result,
3060 			       EXT4_GET_BLOCKS_NO_LOCK);
3061 }
3062 
3063 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3064 			    ssize_t size, void *private, int ret,
3065 			    bool is_async)
3066 {
3067 	struct inode *inode = file_inode(iocb->ki_filp);
3068         ext4_io_end_t *io_end = iocb->private;
3069 
3070 	/* if not async direct IO or dio with 0 bytes write, just return */
3071 	if (!io_end || !size)
3072 		goto out;
3073 
3074 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3075 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3076  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3077 		  size);
3078 
3079 	iocb->private = NULL;
3080 
3081 	/* if not aio dio with unwritten extents, just free io and return */
3082 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3083 		ext4_free_io_end(io_end);
3084 out:
3085 		inode_dio_done(inode);
3086 		if (is_async)
3087 			aio_complete(iocb, ret, 0);
3088 		return;
3089 	}
3090 
3091 	io_end->offset = offset;
3092 	io_end->size = size;
3093 	if (is_async) {
3094 		io_end->iocb = iocb;
3095 		io_end->result = ret;
3096 	}
3097 
3098 	ext4_add_complete_io(io_end);
3099 }
3100 
3101 /*
3102  * For ext4 extent files, ext4 will do direct-io write to holes,
3103  * preallocated extents, and those write extend the file, no need to
3104  * fall back to buffered IO.
3105  *
3106  * For holes, we fallocate those blocks, mark them as uninitialized
3107  * If those blocks were preallocated, we mark sure they are split, but
3108  * still keep the range to write as uninitialized.
3109  *
3110  * The unwritten extents will be converted to written when DIO is completed.
3111  * For async direct IO, since the IO may still pending when return, we
3112  * set up an end_io call back function, which will do the conversion
3113  * when async direct IO completed.
3114  *
3115  * If the O_DIRECT write will extend the file then add this inode to the
3116  * orphan list.  So recovery will truncate it back to the original size
3117  * if the machine crashes during the write.
3118  *
3119  */
3120 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3121 			      const struct iovec *iov, loff_t offset,
3122 			      unsigned long nr_segs)
3123 {
3124 	struct file *file = iocb->ki_filp;
3125 	struct inode *inode = file->f_mapping->host;
3126 	ssize_t ret;
3127 	size_t count = iov_length(iov, nr_segs);
3128 	int overwrite = 0;
3129 	get_block_t *get_block_func = NULL;
3130 	int dio_flags = 0;
3131 	loff_t final_size = offset + count;
3132 
3133 	/* Use the old path for reads and writes beyond i_size. */
3134 	if (rw != WRITE || final_size > inode->i_size)
3135 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3136 
3137 	BUG_ON(iocb->private == NULL);
3138 
3139 	/* If we do a overwrite dio, i_mutex locking can be released */
3140 	overwrite = *((int *)iocb->private);
3141 
3142 	if (overwrite) {
3143 		atomic_inc(&inode->i_dio_count);
3144 		down_read(&EXT4_I(inode)->i_data_sem);
3145 		mutex_unlock(&inode->i_mutex);
3146 	}
3147 
3148 	/*
3149 	 * We could direct write to holes and fallocate.
3150 	 *
3151 	 * Allocated blocks to fill the hole are marked as
3152 	 * uninitialized to prevent parallel buffered read to expose
3153 	 * the stale data before DIO complete the data IO.
3154 	 *
3155 	 * As to previously fallocated extents, ext4 get_block will
3156 	 * just simply mark the buffer mapped but still keep the
3157 	 * extents uninitialized.
3158 	 *
3159 	 * For non AIO case, we will convert those unwritten extents
3160 	 * to written after return back from blockdev_direct_IO.
3161 	 *
3162 	 * For async DIO, the conversion needs to be deferred when the
3163 	 * IO is completed. The ext4 end_io callback function will be
3164 	 * called to take care of the conversion work.  Here for async
3165 	 * case, we allocate an io_end structure to hook to the iocb.
3166 	 */
3167 	iocb->private = NULL;
3168 	ext4_inode_aio_set(inode, NULL);
3169 	if (!is_sync_kiocb(iocb)) {
3170 		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3171 		if (!io_end) {
3172 			ret = -ENOMEM;
3173 			goto retake_lock;
3174 		}
3175 		io_end->flag |= EXT4_IO_END_DIRECT;
3176 		iocb->private = io_end;
3177 		/*
3178 		 * we save the io structure for current async direct
3179 		 * IO, so that later ext4_map_blocks() could flag the
3180 		 * io structure whether there is a unwritten extents
3181 		 * needs to be converted when IO is completed.
3182 		 */
3183 		ext4_inode_aio_set(inode, io_end);
3184 	}
3185 
3186 	if (overwrite) {
3187 		get_block_func = ext4_get_block_write_nolock;
3188 	} else {
3189 		get_block_func = ext4_get_block_write;
3190 		dio_flags = DIO_LOCKING;
3191 	}
3192 	ret = __blockdev_direct_IO(rw, iocb, inode,
3193 				   inode->i_sb->s_bdev, iov,
3194 				   offset, nr_segs,
3195 				   get_block_func,
3196 				   ext4_end_io_dio,
3197 				   NULL,
3198 				   dio_flags);
3199 
3200 	if (iocb->private)
3201 		ext4_inode_aio_set(inode, NULL);
3202 	/*
3203 	 * The io_end structure takes a reference to the inode, that
3204 	 * structure needs to be destroyed and the reference to the
3205 	 * inode need to be dropped, when IO is complete, even with 0
3206 	 * byte write, or failed.
3207 	 *
3208 	 * In the successful AIO DIO case, the io_end structure will
3209 	 * be destroyed and the reference to the inode will be dropped
3210 	 * after the end_io call back function is called.
3211 	 *
3212 	 * In the case there is 0 byte write, or error case, since VFS
3213 	 * direct IO won't invoke the end_io call back function, we
3214 	 * need to free the end_io structure here.
3215 	 */
3216 	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3217 		ext4_free_io_end(iocb->private);
3218 		iocb->private = NULL;
3219 	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3220 						EXT4_STATE_DIO_UNWRITTEN)) {
3221 		int err;
3222 		/*
3223 		 * for non AIO case, since the IO is already
3224 		 * completed, we could do the conversion right here
3225 		 */
3226 		err = ext4_convert_unwritten_extents(inode,
3227 						     offset, ret);
3228 		if (err < 0)
3229 			ret = err;
3230 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3231 	}
3232 
3233 retake_lock:
3234 	/* take i_mutex locking again if we do a ovewrite dio */
3235 	if (overwrite) {
3236 		inode_dio_done(inode);
3237 		up_read(&EXT4_I(inode)->i_data_sem);
3238 		mutex_lock(&inode->i_mutex);
3239 	}
3240 
3241 	return ret;
3242 }
3243 
3244 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3245 			      const struct iovec *iov, loff_t offset,
3246 			      unsigned long nr_segs)
3247 {
3248 	struct file *file = iocb->ki_filp;
3249 	struct inode *inode = file->f_mapping->host;
3250 	ssize_t ret;
3251 
3252 	/*
3253 	 * If we are doing data journalling we don't support O_DIRECT
3254 	 */
3255 	if (ext4_should_journal_data(inode))
3256 		return 0;
3257 
3258 	/* Let buffer I/O handle the inline data case. */
3259 	if (ext4_has_inline_data(inode))
3260 		return 0;
3261 
3262 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3263 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3264 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3265 	else
3266 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3267 	trace_ext4_direct_IO_exit(inode, offset,
3268 				iov_length(iov, nr_segs), rw, ret);
3269 	return ret;
3270 }
3271 
3272 /*
3273  * Pages can be marked dirty completely asynchronously from ext4's journalling
3274  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3275  * much here because ->set_page_dirty is called under VFS locks.  The page is
3276  * not necessarily locked.
3277  *
3278  * We cannot just dirty the page and leave attached buffers clean, because the
3279  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3280  * or jbddirty because all the journalling code will explode.
3281  *
3282  * So what we do is to mark the page "pending dirty" and next time writepage
3283  * is called, propagate that into the buffers appropriately.
3284  */
3285 static int ext4_journalled_set_page_dirty(struct page *page)
3286 {
3287 	SetPageChecked(page);
3288 	return __set_page_dirty_nobuffers(page);
3289 }
3290 
3291 static const struct address_space_operations ext4_aops = {
3292 	.readpage		= ext4_readpage,
3293 	.readpages		= ext4_readpages,
3294 	.writepage		= ext4_writepage,
3295 	.write_begin		= ext4_write_begin,
3296 	.write_end		= ext4_write_end,
3297 	.bmap			= ext4_bmap,
3298 	.invalidatepage		= ext4_invalidatepage,
3299 	.releasepage		= ext4_releasepage,
3300 	.direct_IO		= ext4_direct_IO,
3301 	.migratepage		= buffer_migrate_page,
3302 	.is_partially_uptodate  = block_is_partially_uptodate,
3303 	.error_remove_page	= generic_error_remove_page,
3304 };
3305 
3306 static const struct address_space_operations ext4_journalled_aops = {
3307 	.readpage		= ext4_readpage,
3308 	.readpages		= ext4_readpages,
3309 	.writepage		= ext4_writepage,
3310 	.write_begin		= ext4_write_begin,
3311 	.write_end		= ext4_journalled_write_end,
3312 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3313 	.bmap			= ext4_bmap,
3314 	.invalidatepage		= ext4_journalled_invalidatepage,
3315 	.releasepage		= ext4_releasepage,
3316 	.direct_IO		= ext4_direct_IO,
3317 	.is_partially_uptodate  = block_is_partially_uptodate,
3318 	.error_remove_page	= generic_error_remove_page,
3319 };
3320 
3321 static const struct address_space_operations ext4_da_aops = {
3322 	.readpage		= ext4_readpage,
3323 	.readpages		= ext4_readpages,
3324 	.writepage		= ext4_writepage,
3325 	.writepages		= ext4_da_writepages,
3326 	.write_begin		= ext4_da_write_begin,
3327 	.write_end		= ext4_da_write_end,
3328 	.bmap			= ext4_bmap,
3329 	.invalidatepage		= ext4_da_invalidatepage,
3330 	.releasepage		= ext4_releasepage,
3331 	.direct_IO		= ext4_direct_IO,
3332 	.migratepage		= buffer_migrate_page,
3333 	.is_partially_uptodate  = block_is_partially_uptodate,
3334 	.error_remove_page	= generic_error_remove_page,
3335 };
3336 
3337 void ext4_set_aops(struct inode *inode)
3338 {
3339 	switch (ext4_inode_journal_mode(inode)) {
3340 	case EXT4_INODE_ORDERED_DATA_MODE:
3341 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3342 		break;
3343 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3344 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3345 		break;
3346 	case EXT4_INODE_JOURNAL_DATA_MODE:
3347 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3348 		return;
3349 	default:
3350 		BUG();
3351 	}
3352 	if (test_opt(inode->i_sb, DELALLOC))
3353 		inode->i_mapping->a_ops = &ext4_da_aops;
3354 	else
3355 		inode->i_mapping->a_ops = &ext4_aops;
3356 }
3357 
3358 
3359 /*
3360  * ext4_discard_partial_page_buffers()
3361  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3362  * This function finds and locks the page containing the offset
3363  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3364  * Calling functions that already have the page locked should call
3365  * ext4_discard_partial_page_buffers_no_lock directly.
3366  */
3367 int ext4_discard_partial_page_buffers(handle_t *handle,
3368 		struct address_space *mapping, loff_t from,
3369 		loff_t length, int flags)
3370 {
3371 	struct inode *inode = mapping->host;
3372 	struct page *page;
3373 	int err = 0;
3374 
3375 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3376 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3377 	if (!page)
3378 		return -ENOMEM;
3379 
3380 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3381 		from, length, flags);
3382 
3383 	unlock_page(page);
3384 	page_cache_release(page);
3385 	return err;
3386 }
3387 
3388 /*
3389  * ext4_discard_partial_page_buffers_no_lock()
3390  * Zeros a page range of length 'length' starting from offset 'from'.
3391  * Buffer heads that correspond to the block aligned regions of the
3392  * zeroed range will be unmapped.  Unblock aligned regions
3393  * will have the corresponding buffer head mapped if needed so that
3394  * that region of the page can be updated with the partial zero out.
3395  *
3396  * This function assumes that the page has already been  locked.  The
3397  * The range to be discarded must be contained with in the given page.
3398  * If the specified range exceeds the end of the page it will be shortened
3399  * to the end of the page that corresponds to 'from'.  This function is
3400  * appropriate for updating a page and it buffer heads to be unmapped and
3401  * zeroed for blocks that have been either released, or are going to be
3402  * released.
3403  *
3404  * handle: The journal handle
3405  * inode:  The files inode
3406  * page:   A locked page that contains the offset "from"
3407  * from:   The starting byte offset (from the beginning of the file)
3408  *         to begin discarding
3409  * len:    The length of bytes to discard
3410  * flags:  Optional flags that may be used:
3411  *
3412  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3413  *         Only zero the regions of the page whose buffer heads
3414  *         have already been unmapped.  This flag is appropriate
3415  *         for updating the contents of a page whose blocks may
3416  *         have already been released, and we only want to zero
3417  *         out the regions that correspond to those released blocks.
3418  *
3419  * Returns zero on success or negative on failure.
3420  */
3421 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3422 		struct inode *inode, struct page *page, loff_t from,
3423 		loff_t length, int flags)
3424 {
3425 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3426 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3427 	unsigned int blocksize, max, pos;
3428 	ext4_lblk_t iblock;
3429 	struct buffer_head *bh;
3430 	int err = 0;
3431 
3432 	blocksize = inode->i_sb->s_blocksize;
3433 	max = PAGE_CACHE_SIZE - offset;
3434 
3435 	if (index != page->index)
3436 		return -EINVAL;
3437 
3438 	/*
3439 	 * correct length if it does not fall between
3440 	 * 'from' and the end of the page
3441 	 */
3442 	if (length > max || length < 0)
3443 		length = max;
3444 
3445 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3446 
3447 	if (!page_has_buffers(page))
3448 		create_empty_buffers(page, blocksize, 0);
3449 
3450 	/* Find the buffer that contains "offset" */
3451 	bh = page_buffers(page);
3452 	pos = blocksize;
3453 	while (offset >= pos) {
3454 		bh = bh->b_this_page;
3455 		iblock++;
3456 		pos += blocksize;
3457 	}
3458 
3459 	pos = offset;
3460 	while (pos < offset + length) {
3461 		unsigned int end_of_block, range_to_discard;
3462 
3463 		err = 0;
3464 
3465 		/* The length of space left to zero and unmap */
3466 		range_to_discard = offset + length - pos;
3467 
3468 		/* The length of space until the end of the block */
3469 		end_of_block = blocksize - (pos & (blocksize-1));
3470 
3471 		/*
3472 		 * Do not unmap or zero past end of block
3473 		 * for this buffer head
3474 		 */
3475 		if (range_to_discard > end_of_block)
3476 			range_to_discard = end_of_block;
3477 
3478 
3479 		/*
3480 		 * Skip this buffer head if we are only zeroing unampped
3481 		 * regions of the page
3482 		 */
3483 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3484 			buffer_mapped(bh))
3485 				goto next;
3486 
3487 		/* If the range is block aligned, unmap */
3488 		if (range_to_discard == blocksize) {
3489 			clear_buffer_dirty(bh);
3490 			bh->b_bdev = NULL;
3491 			clear_buffer_mapped(bh);
3492 			clear_buffer_req(bh);
3493 			clear_buffer_new(bh);
3494 			clear_buffer_delay(bh);
3495 			clear_buffer_unwritten(bh);
3496 			clear_buffer_uptodate(bh);
3497 			zero_user(page, pos, range_to_discard);
3498 			BUFFER_TRACE(bh, "Buffer discarded");
3499 			goto next;
3500 		}
3501 
3502 		/*
3503 		 * If this block is not completely contained in the range
3504 		 * to be discarded, then it is not going to be released. Because
3505 		 * we need to keep this block, we need to make sure this part
3506 		 * of the page is uptodate before we modify it by writeing
3507 		 * partial zeros on it.
3508 		 */
3509 		if (!buffer_mapped(bh)) {
3510 			/*
3511 			 * Buffer head must be mapped before we can read
3512 			 * from the block
3513 			 */
3514 			BUFFER_TRACE(bh, "unmapped");
3515 			ext4_get_block(inode, iblock, bh, 0);
3516 			/* unmapped? It's a hole - nothing to do */
3517 			if (!buffer_mapped(bh)) {
3518 				BUFFER_TRACE(bh, "still unmapped");
3519 				goto next;
3520 			}
3521 		}
3522 
3523 		/* Ok, it's mapped. Make sure it's up-to-date */
3524 		if (PageUptodate(page))
3525 			set_buffer_uptodate(bh);
3526 
3527 		if (!buffer_uptodate(bh)) {
3528 			err = -EIO;
3529 			ll_rw_block(READ, 1, &bh);
3530 			wait_on_buffer(bh);
3531 			/* Uhhuh. Read error. Complain and punt.*/
3532 			if (!buffer_uptodate(bh))
3533 				goto next;
3534 		}
3535 
3536 		if (ext4_should_journal_data(inode)) {
3537 			BUFFER_TRACE(bh, "get write access");
3538 			err = ext4_journal_get_write_access(handle, bh);
3539 			if (err)
3540 				goto next;
3541 		}
3542 
3543 		zero_user(page, pos, range_to_discard);
3544 
3545 		err = 0;
3546 		if (ext4_should_journal_data(inode)) {
3547 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3548 		} else
3549 			mark_buffer_dirty(bh);
3550 
3551 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3552 next:
3553 		bh = bh->b_this_page;
3554 		iblock++;
3555 		pos += range_to_discard;
3556 	}
3557 
3558 	return err;
3559 }
3560 
3561 int ext4_can_truncate(struct inode *inode)
3562 {
3563 	if (S_ISREG(inode->i_mode))
3564 		return 1;
3565 	if (S_ISDIR(inode->i_mode))
3566 		return 1;
3567 	if (S_ISLNK(inode->i_mode))
3568 		return !ext4_inode_is_fast_symlink(inode);
3569 	return 0;
3570 }
3571 
3572 /*
3573  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3574  * associated with the given offset and length
3575  *
3576  * @inode:  File inode
3577  * @offset: The offset where the hole will begin
3578  * @len:    The length of the hole
3579  *
3580  * Returns: 0 on success or negative on failure
3581  */
3582 
3583 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3584 {
3585 	struct inode *inode = file_inode(file);
3586 	struct super_block *sb = inode->i_sb;
3587 	ext4_lblk_t first_block, stop_block;
3588 	struct address_space *mapping = inode->i_mapping;
3589 	loff_t first_page, last_page, page_len;
3590 	loff_t first_page_offset, last_page_offset;
3591 	handle_t *handle;
3592 	unsigned int credits;
3593 	int ret = 0;
3594 
3595 	if (!S_ISREG(inode->i_mode))
3596 		return -EOPNOTSUPP;
3597 
3598 	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3599 		/* TODO: Add support for bigalloc file systems */
3600 		return -EOPNOTSUPP;
3601 	}
3602 
3603 	trace_ext4_punch_hole(inode, offset, length);
3604 
3605 	/*
3606 	 * Write out all dirty pages to avoid race conditions
3607 	 * Then release them.
3608 	 */
3609 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3610 		ret = filemap_write_and_wait_range(mapping, offset,
3611 						   offset + length - 1);
3612 		if (ret)
3613 			return ret;
3614 	}
3615 
3616 	mutex_lock(&inode->i_mutex);
3617 	/* It's not possible punch hole on append only file */
3618 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3619 		ret = -EPERM;
3620 		goto out_mutex;
3621 	}
3622 	if (IS_SWAPFILE(inode)) {
3623 		ret = -ETXTBSY;
3624 		goto out_mutex;
3625 	}
3626 
3627 	/* No need to punch hole beyond i_size */
3628 	if (offset >= inode->i_size)
3629 		goto out_mutex;
3630 
3631 	/*
3632 	 * If the hole extends beyond i_size, set the hole
3633 	 * to end after the page that contains i_size
3634 	 */
3635 	if (offset + length > inode->i_size) {
3636 		length = inode->i_size +
3637 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3638 		   offset;
3639 	}
3640 
3641 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3642 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3643 
3644 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
3645 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
3646 
3647 	/* Now release the pages */
3648 	if (last_page_offset > first_page_offset) {
3649 		truncate_pagecache_range(inode, first_page_offset,
3650 					 last_page_offset - 1);
3651 	}
3652 
3653 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3654 	ext4_inode_block_unlocked_dio(inode);
3655 	ret = ext4_flush_unwritten_io(inode);
3656 	if (ret)
3657 		goto out_dio;
3658 	inode_dio_wait(inode);
3659 
3660 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3661 		credits = ext4_writepage_trans_blocks(inode);
3662 	else
3663 		credits = ext4_blocks_for_truncate(inode);
3664 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3665 	if (IS_ERR(handle)) {
3666 		ret = PTR_ERR(handle);
3667 		ext4_std_error(sb, ret);
3668 		goto out_dio;
3669 	}
3670 
3671 	/*
3672 	 * Now we need to zero out the non-page-aligned data in the
3673 	 * pages at the start and tail of the hole, and unmap the
3674 	 * buffer heads for the block aligned regions of the page that
3675 	 * were completely zeroed.
3676 	 */
3677 	if (first_page > last_page) {
3678 		/*
3679 		 * If the file space being truncated is contained
3680 		 * within a page just zero out and unmap the middle of
3681 		 * that page
3682 		 */
3683 		ret = ext4_discard_partial_page_buffers(handle,
3684 			mapping, offset, length, 0);
3685 
3686 		if (ret)
3687 			goto out_stop;
3688 	} else {
3689 		/*
3690 		 * zero out and unmap the partial page that contains
3691 		 * the start of the hole
3692 		 */
3693 		page_len = first_page_offset - offset;
3694 		if (page_len > 0) {
3695 			ret = ext4_discard_partial_page_buffers(handle, mapping,
3696 						offset, page_len, 0);
3697 			if (ret)
3698 				goto out_stop;
3699 		}
3700 
3701 		/*
3702 		 * zero out and unmap the partial page that contains
3703 		 * the end of the hole
3704 		 */
3705 		page_len = offset + length - last_page_offset;
3706 		if (page_len > 0) {
3707 			ret = ext4_discard_partial_page_buffers(handle, mapping,
3708 					last_page_offset, page_len, 0);
3709 			if (ret)
3710 				goto out_stop;
3711 		}
3712 	}
3713 
3714 	/*
3715 	 * If i_size is contained in the last page, we need to
3716 	 * unmap and zero the partial page after i_size
3717 	 */
3718 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3719 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
3720 		page_len = PAGE_CACHE_SIZE -
3721 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
3722 
3723 		if (page_len > 0) {
3724 			ret = ext4_discard_partial_page_buffers(handle,
3725 					mapping, inode->i_size, page_len, 0);
3726 
3727 			if (ret)
3728 				goto out_stop;
3729 		}
3730 	}
3731 
3732 	first_block = (offset + sb->s_blocksize - 1) >>
3733 		EXT4_BLOCK_SIZE_BITS(sb);
3734 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3735 
3736 	/* If there are no blocks to remove, return now */
3737 	if (first_block >= stop_block)
3738 		goto out_stop;
3739 
3740 	down_write(&EXT4_I(inode)->i_data_sem);
3741 	ext4_discard_preallocations(inode);
3742 
3743 	ret = ext4_es_remove_extent(inode, first_block,
3744 				    stop_block - first_block);
3745 	if (ret) {
3746 		up_write(&EXT4_I(inode)->i_data_sem);
3747 		goto out_stop;
3748 	}
3749 
3750 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3751 		ret = ext4_ext_remove_space(inode, first_block,
3752 					    stop_block - 1);
3753 	else
3754 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3755 					    stop_block);
3756 
3757 	ext4_discard_preallocations(inode);
3758 	up_write(&EXT4_I(inode)->i_data_sem);
3759 	if (IS_SYNC(inode))
3760 		ext4_handle_sync(handle);
3761 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3762 	ext4_mark_inode_dirty(handle, inode);
3763 out_stop:
3764 	ext4_journal_stop(handle);
3765 out_dio:
3766 	ext4_inode_resume_unlocked_dio(inode);
3767 out_mutex:
3768 	mutex_unlock(&inode->i_mutex);
3769 	return ret;
3770 }
3771 
3772 /*
3773  * ext4_truncate()
3774  *
3775  * We block out ext4_get_block() block instantiations across the entire
3776  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3777  * simultaneously on behalf of the same inode.
3778  *
3779  * As we work through the truncate and commit bits of it to the journal there
3780  * is one core, guiding principle: the file's tree must always be consistent on
3781  * disk.  We must be able to restart the truncate after a crash.
3782  *
3783  * The file's tree may be transiently inconsistent in memory (although it
3784  * probably isn't), but whenever we close off and commit a journal transaction,
3785  * the contents of (the filesystem + the journal) must be consistent and
3786  * restartable.  It's pretty simple, really: bottom up, right to left (although
3787  * left-to-right works OK too).
3788  *
3789  * Note that at recovery time, journal replay occurs *before* the restart of
3790  * truncate against the orphan inode list.
3791  *
3792  * The committed inode has the new, desired i_size (which is the same as
3793  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3794  * that this inode's truncate did not complete and it will again call
3795  * ext4_truncate() to have another go.  So there will be instantiated blocks
3796  * to the right of the truncation point in a crashed ext4 filesystem.  But
3797  * that's fine - as long as they are linked from the inode, the post-crash
3798  * ext4_truncate() run will find them and release them.
3799  */
3800 void ext4_truncate(struct inode *inode)
3801 {
3802 	struct ext4_inode_info *ei = EXT4_I(inode);
3803 	unsigned int credits;
3804 	handle_t *handle;
3805 	struct address_space *mapping = inode->i_mapping;
3806 	loff_t page_len;
3807 
3808 	/*
3809 	 * There is a possibility that we're either freeing the inode
3810 	 * or it completely new indode. In those cases we might not
3811 	 * have i_mutex locked because it's not necessary.
3812 	 */
3813 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3814 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3815 	trace_ext4_truncate_enter(inode);
3816 
3817 	if (!ext4_can_truncate(inode))
3818 		return;
3819 
3820 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3821 
3822 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3823 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3824 
3825 	if (ext4_has_inline_data(inode)) {
3826 		int has_inline = 1;
3827 
3828 		ext4_inline_data_truncate(inode, &has_inline);
3829 		if (has_inline)
3830 			return;
3831 	}
3832 
3833 	/*
3834 	 * finish any pending end_io work so we won't run the risk of
3835 	 * converting any truncated blocks to initialized later
3836 	 */
3837 	ext4_flush_unwritten_io(inode);
3838 
3839 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3840 		credits = ext4_writepage_trans_blocks(inode);
3841 	else
3842 		credits = ext4_blocks_for_truncate(inode);
3843 
3844 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3845 	if (IS_ERR(handle)) {
3846 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3847 		return;
3848 	}
3849 
3850 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3851 		page_len = PAGE_CACHE_SIZE -
3852 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
3853 
3854 		if (ext4_discard_partial_page_buffers(handle,
3855 				mapping, inode->i_size, page_len, 0))
3856 			goto out_stop;
3857 	}
3858 
3859 	/*
3860 	 * We add the inode to the orphan list, so that if this
3861 	 * truncate spans multiple transactions, and we crash, we will
3862 	 * resume the truncate when the filesystem recovers.  It also
3863 	 * marks the inode dirty, to catch the new size.
3864 	 *
3865 	 * Implication: the file must always be in a sane, consistent
3866 	 * truncatable state while each transaction commits.
3867 	 */
3868 	if (ext4_orphan_add(handle, inode))
3869 		goto out_stop;
3870 
3871 	down_write(&EXT4_I(inode)->i_data_sem);
3872 
3873 	ext4_discard_preallocations(inode);
3874 
3875 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3876 		ext4_ext_truncate(handle, inode);
3877 	else
3878 		ext4_ind_truncate(handle, inode);
3879 
3880 	up_write(&ei->i_data_sem);
3881 
3882 	if (IS_SYNC(inode))
3883 		ext4_handle_sync(handle);
3884 
3885 out_stop:
3886 	/*
3887 	 * If this was a simple ftruncate() and the file will remain alive,
3888 	 * then we need to clear up the orphan record which we created above.
3889 	 * However, if this was a real unlink then we were called by
3890 	 * ext4_delete_inode(), and we allow that function to clean up the
3891 	 * orphan info for us.
3892 	 */
3893 	if (inode->i_nlink)
3894 		ext4_orphan_del(handle, inode);
3895 
3896 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3897 	ext4_mark_inode_dirty(handle, inode);
3898 	ext4_journal_stop(handle);
3899 
3900 	trace_ext4_truncate_exit(inode);
3901 }
3902 
3903 /*
3904  * ext4_get_inode_loc returns with an extra refcount against the inode's
3905  * underlying buffer_head on success. If 'in_mem' is true, we have all
3906  * data in memory that is needed to recreate the on-disk version of this
3907  * inode.
3908  */
3909 static int __ext4_get_inode_loc(struct inode *inode,
3910 				struct ext4_iloc *iloc, int in_mem)
3911 {
3912 	struct ext4_group_desc	*gdp;
3913 	struct buffer_head	*bh;
3914 	struct super_block	*sb = inode->i_sb;
3915 	ext4_fsblk_t		block;
3916 	int			inodes_per_block, inode_offset;
3917 
3918 	iloc->bh = NULL;
3919 	if (!ext4_valid_inum(sb, inode->i_ino))
3920 		return -EIO;
3921 
3922 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3923 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3924 	if (!gdp)
3925 		return -EIO;
3926 
3927 	/*
3928 	 * Figure out the offset within the block group inode table
3929 	 */
3930 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3931 	inode_offset = ((inode->i_ino - 1) %
3932 			EXT4_INODES_PER_GROUP(sb));
3933 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3934 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3935 
3936 	bh = sb_getblk(sb, block);
3937 	if (unlikely(!bh))
3938 		return -ENOMEM;
3939 	if (!buffer_uptodate(bh)) {
3940 		lock_buffer(bh);
3941 
3942 		/*
3943 		 * If the buffer has the write error flag, we have failed
3944 		 * to write out another inode in the same block.  In this
3945 		 * case, we don't have to read the block because we may
3946 		 * read the old inode data successfully.
3947 		 */
3948 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3949 			set_buffer_uptodate(bh);
3950 
3951 		if (buffer_uptodate(bh)) {
3952 			/* someone brought it uptodate while we waited */
3953 			unlock_buffer(bh);
3954 			goto has_buffer;
3955 		}
3956 
3957 		/*
3958 		 * If we have all information of the inode in memory and this
3959 		 * is the only valid inode in the block, we need not read the
3960 		 * block.
3961 		 */
3962 		if (in_mem) {
3963 			struct buffer_head *bitmap_bh;
3964 			int i, start;
3965 
3966 			start = inode_offset & ~(inodes_per_block - 1);
3967 
3968 			/* Is the inode bitmap in cache? */
3969 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3970 			if (unlikely(!bitmap_bh))
3971 				goto make_io;
3972 
3973 			/*
3974 			 * If the inode bitmap isn't in cache then the
3975 			 * optimisation may end up performing two reads instead
3976 			 * of one, so skip it.
3977 			 */
3978 			if (!buffer_uptodate(bitmap_bh)) {
3979 				brelse(bitmap_bh);
3980 				goto make_io;
3981 			}
3982 			for (i = start; i < start + inodes_per_block; i++) {
3983 				if (i == inode_offset)
3984 					continue;
3985 				if (ext4_test_bit(i, bitmap_bh->b_data))
3986 					break;
3987 			}
3988 			brelse(bitmap_bh);
3989 			if (i == start + inodes_per_block) {
3990 				/* all other inodes are free, so skip I/O */
3991 				memset(bh->b_data, 0, bh->b_size);
3992 				set_buffer_uptodate(bh);
3993 				unlock_buffer(bh);
3994 				goto has_buffer;
3995 			}
3996 		}
3997 
3998 make_io:
3999 		/*
4000 		 * If we need to do any I/O, try to pre-readahead extra
4001 		 * blocks from the inode table.
4002 		 */
4003 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4004 			ext4_fsblk_t b, end, table;
4005 			unsigned num;
4006 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4007 
4008 			table = ext4_inode_table(sb, gdp);
4009 			/* s_inode_readahead_blks is always a power of 2 */
4010 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4011 			if (table > b)
4012 				b = table;
4013 			end = b + ra_blks;
4014 			num = EXT4_INODES_PER_GROUP(sb);
4015 			if (ext4_has_group_desc_csum(sb))
4016 				num -= ext4_itable_unused_count(sb, gdp);
4017 			table += num / inodes_per_block;
4018 			if (end > table)
4019 				end = table;
4020 			while (b <= end)
4021 				sb_breadahead(sb, b++);
4022 		}
4023 
4024 		/*
4025 		 * There are other valid inodes in the buffer, this inode
4026 		 * has in-inode xattrs, or we don't have this inode in memory.
4027 		 * Read the block from disk.
4028 		 */
4029 		trace_ext4_load_inode(inode);
4030 		get_bh(bh);
4031 		bh->b_end_io = end_buffer_read_sync;
4032 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4033 		wait_on_buffer(bh);
4034 		if (!buffer_uptodate(bh)) {
4035 			EXT4_ERROR_INODE_BLOCK(inode, block,
4036 					       "unable to read itable block");
4037 			brelse(bh);
4038 			return -EIO;
4039 		}
4040 	}
4041 has_buffer:
4042 	iloc->bh = bh;
4043 	return 0;
4044 }
4045 
4046 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4047 {
4048 	/* We have all inode data except xattrs in memory here. */
4049 	return __ext4_get_inode_loc(inode, iloc,
4050 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4051 }
4052 
4053 void ext4_set_inode_flags(struct inode *inode)
4054 {
4055 	unsigned int flags = EXT4_I(inode)->i_flags;
4056 
4057 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4058 	if (flags & EXT4_SYNC_FL)
4059 		inode->i_flags |= S_SYNC;
4060 	if (flags & EXT4_APPEND_FL)
4061 		inode->i_flags |= S_APPEND;
4062 	if (flags & EXT4_IMMUTABLE_FL)
4063 		inode->i_flags |= S_IMMUTABLE;
4064 	if (flags & EXT4_NOATIME_FL)
4065 		inode->i_flags |= S_NOATIME;
4066 	if (flags & EXT4_DIRSYNC_FL)
4067 		inode->i_flags |= S_DIRSYNC;
4068 }
4069 
4070 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4071 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4072 {
4073 	unsigned int vfs_fl;
4074 	unsigned long old_fl, new_fl;
4075 
4076 	do {
4077 		vfs_fl = ei->vfs_inode.i_flags;
4078 		old_fl = ei->i_flags;
4079 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4080 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4081 				EXT4_DIRSYNC_FL);
4082 		if (vfs_fl & S_SYNC)
4083 			new_fl |= EXT4_SYNC_FL;
4084 		if (vfs_fl & S_APPEND)
4085 			new_fl |= EXT4_APPEND_FL;
4086 		if (vfs_fl & S_IMMUTABLE)
4087 			new_fl |= EXT4_IMMUTABLE_FL;
4088 		if (vfs_fl & S_NOATIME)
4089 			new_fl |= EXT4_NOATIME_FL;
4090 		if (vfs_fl & S_DIRSYNC)
4091 			new_fl |= EXT4_DIRSYNC_FL;
4092 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4093 }
4094 
4095 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4096 				  struct ext4_inode_info *ei)
4097 {
4098 	blkcnt_t i_blocks ;
4099 	struct inode *inode = &(ei->vfs_inode);
4100 	struct super_block *sb = inode->i_sb;
4101 
4102 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4103 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4104 		/* we are using combined 48 bit field */
4105 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4106 					le32_to_cpu(raw_inode->i_blocks_lo);
4107 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4108 			/* i_blocks represent file system block size */
4109 			return i_blocks  << (inode->i_blkbits - 9);
4110 		} else {
4111 			return i_blocks;
4112 		}
4113 	} else {
4114 		return le32_to_cpu(raw_inode->i_blocks_lo);
4115 	}
4116 }
4117 
4118 static inline void ext4_iget_extra_inode(struct inode *inode,
4119 					 struct ext4_inode *raw_inode,
4120 					 struct ext4_inode_info *ei)
4121 {
4122 	__le32 *magic = (void *)raw_inode +
4123 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4124 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4125 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4126 		ext4_find_inline_data_nolock(inode);
4127 	} else
4128 		EXT4_I(inode)->i_inline_off = 0;
4129 }
4130 
4131 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4132 {
4133 	struct ext4_iloc iloc;
4134 	struct ext4_inode *raw_inode;
4135 	struct ext4_inode_info *ei;
4136 	struct inode *inode;
4137 	journal_t *journal = EXT4_SB(sb)->s_journal;
4138 	long ret;
4139 	int block;
4140 	uid_t i_uid;
4141 	gid_t i_gid;
4142 
4143 	inode = iget_locked(sb, ino);
4144 	if (!inode)
4145 		return ERR_PTR(-ENOMEM);
4146 	if (!(inode->i_state & I_NEW))
4147 		return inode;
4148 
4149 	ei = EXT4_I(inode);
4150 	iloc.bh = NULL;
4151 
4152 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4153 	if (ret < 0)
4154 		goto bad_inode;
4155 	raw_inode = ext4_raw_inode(&iloc);
4156 
4157 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4158 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4159 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4160 		    EXT4_INODE_SIZE(inode->i_sb)) {
4161 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4162 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4163 				EXT4_INODE_SIZE(inode->i_sb));
4164 			ret = -EIO;
4165 			goto bad_inode;
4166 		}
4167 	} else
4168 		ei->i_extra_isize = 0;
4169 
4170 	/* Precompute checksum seed for inode metadata */
4171 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4172 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4173 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4174 		__u32 csum;
4175 		__le32 inum = cpu_to_le32(inode->i_ino);
4176 		__le32 gen = raw_inode->i_generation;
4177 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4178 				   sizeof(inum));
4179 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4180 					      sizeof(gen));
4181 	}
4182 
4183 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4184 		EXT4_ERROR_INODE(inode, "checksum invalid");
4185 		ret = -EIO;
4186 		goto bad_inode;
4187 	}
4188 
4189 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4190 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4191 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4192 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4193 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4194 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4195 	}
4196 	i_uid_write(inode, i_uid);
4197 	i_gid_write(inode, i_gid);
4198 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4199 
4200 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4201 	ei->i_inline_off = 0;
4202 	ei->i_dir_start_lookup = 0;
4203 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4204 	/* We now have enough fields to check if the inode was active or not.
4205 	 * This is needed because nfsd might try to access dead inodes
4206 	 * the test is that same one that e2fsck uses
4207 	 * NeilBrown 1999oct15
4208 	 */
4209 	if (inode->i_nlink == 0) {
4210 		if ((inode->i_mode == 0 ||
4211 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4212 		    ino != EXT4_BOOT_LOADER_INO) {
4213 			/* this inode is deleted */
4214 			ret = -ESTALE;
4215 			goto bad_inode;
4216 		}
4217 		/* The only unlinked inodes we let through here have
4218 		 * valid i_mode and are being read by the orphan
4219 		 * recovery code: that's fine, we're about to complete
4220 		 * the process of deleting those.
4221 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4222 		 * not initialized on a new filesystem. */
4223 	}
4224 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4225 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4226 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4227 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4228 		ei->i_file_acl |=
4229 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4230 	inode->i_size = ext4_isize(raw_inode);
4231 	ei->i_disksize = inode->i_size;
4232 #ifdef CONFIG_QUOTA
4233 	ei->i_reserved_quota = 0;
4234 #endif
4235 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4236 	ei->i_block_group = iloc.block_group;
4237 	ei->i_last_alloc_group = ~0;
4238 	/*
4239 	 * NOTE! The in-memory inode i_data array is in little-endian order
4240 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4241 	 */
4242 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4243 		ei->i_data[block] = raw_inode->i_block[block];
4244 	INIT_LIST_HEAD(&ei->i_orphan);
4245 
4246 	/*
4247 	 * Set transaction id's of transactions that have to be committed
4248 	 * to finish f[data]sync. We set them to currently running transaction
4249 	 * as we cannot be sure that the inode or some of its metadata isn't
4250 	 * part of the transaction - the inode could have been reclaimed and
4251 	 * now it is reread from disk.
4252 	 */
4253 	if (journal) {
4254 		transaction_t *transaction;
4255 		tid_t tid;
4256 
4257 		read_lock(&journal->j_state_lock);
4258 		if (journal->j_running_transaction)
4259 			transaction = journal->j_running_transaction;
4260 		else
4261 			transaction = journal->j_committing_transaction;
4262 		if (transaction)
4263 			tid = transaction->t_tid;
4264 		else
4265 			tid = journal->j_commit_sequence;
4266 		read_unlock(&journal->j_state_lock);
4267 		ei->i_sync_tid = tid;
4268 		ei->i_datasync_tid = tid;
4269 	}
4270 
4271 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4272 		if (ei->i_extra_isize == 0) {
4273 			/* The extra space is currently unused. Use it. */
4274 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4275 					    EXT4_GOOD_OLD_INODE_SIZE;
4276 		} else {
4277 			ext4_iget_extra_inode(inode, raw_inode, ei);
4278 		}
4279 	}
4280 
4281 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4282 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4283 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4284 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4285 
4286 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4287 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4288 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4289 			inode->i_version |=
4290 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4291 	}
4292 
4293 	ret = 0;
4294 	if (ei->i_file_acl &&
4295 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4296 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4297 				 ei->i_file_acl);
4298 		ret = -EIO;
4299 		goto bad_inode;
4300 	} else if (!ext4_has_inline_data(inode)) {
4301 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4302 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4303 			    (S_ISLNK(inode->i_mode) &&
4304 			     !ext4_inode_is_fast_symlink(inode))))
4305 				/* Validate extent which is part of inode */
4306 				ret = ext4_ext_check_inode(inode);
4307 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4308 			   (S_ISLNK(inode->i_mode) &&
4309 			    !ext4_inode_is_fast_symlink(inode))) {
4310 			/* Validate block references which are part of inode */
4311 			ret = ext4_ind_check_inode(inode);
4312 		}
4313 	}
4314 	if (ret)
4315 		goto bad_inode;
4316 
4317 	if (S_ISREG(inode->i_mode)) {
4318 		inode->i_op = &ext4_file_inode_operations;
4319 		inode->i_fop = &ext4_file_operations;
4320 		ext4_set_aops(inode);
4321 	} else if (S_ISDIR(inode->i_mode)) {
4322 		inode->i_op = &ext4_dir_inode_operations;
4323 		inode->i_fop = &ext4_dir_operations;
4324 	} else if (S_ISLNK(inode->i_mode)) {
4325 		if (ext4_inode_is_fast_symlink(inode)) {
4326 			inode->i_op = &ext4_fast_symlink_inode_operations;
4327 			nd_terminate_link(ei->i_data, inode->i_size,
4328 				sizeof(ei->i_data) - 1);
4329 		} else {
4330 			inode->i_op = &ext4_symlink_inode_operations;
4331 			ext4_set_aops(inode);
4332 		}
4333 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4334 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4335 		inode->i_op = &ext4_special_inode_operations;
4336 		if (raw_inode->i_block[0])
4337 			init_special_inode(inode, inode->i_mode,
4338 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4339 		else
4340 			init_special_inode(inode, inode->i_mode,
4341 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4342 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4343 		make_bad_inode(inode);
4344 	} else {
4345 		ret = -EIO;
4346 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4347 		goto bad_inode;
4348 	}
4349 	brelse(iloc.bh);
4350 	ext4_set_inode_flags(inode);
4351 	unlock_new_inode(inode);
4352 	return inode;
4353 
4354 bad_inode:
4355 	brelse(iloc.bh);
4356 	iget_failed(inode);
4357 	return ERR_PTR(ret);
4358 }
4359 
4360 static int ext4_inode_blocks_set(handle_t *handle,
4361 				struct ext4_inode *raw_inode,
4362 				struct ext4_inode_info *ei)
4363 {
4364 	struct inode *inode = &(ei->vfs_inode);
4365 	u64 i_blocks = inode->i_blocks;
4366 	struct super_block *sb = inode->i_sb;
4367 
4368 	if (i_blocks <= ~0U) {
4369 		/*
4370 		 * i_blocks can be represented in a 32 bit variable
4371 		 * as multiple of 512 bytes
4372 		 */
4373 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4374 		raw_inode->i_blocks_high = 0;
4375 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4376 		return 0;
4377 	}
4378 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4379 		return -EFBIG;
4380 
4381 	if (i_blocks <= 0xffffffffffffULL) {
4382 		/*
4383 		 * i_blocks can be represented in a 48 bit variable
4384 		 * as multiple of 512 bytes
4385 		 */
4386 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4387 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4388 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4389 	} else {
4390 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4391 		/* i_block is stored in file system block size */
4392 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4393 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4394 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4395 	}
4396 	return 0;
4397 }
4398 
4399 /*
4400  * Post the struct inode info into an on-disk inode location in the
4401  * buffer-cache.  This gobbles the caller's reference to the
4402  * buffer_head in the inode location struct.
4403  *
4404  * The caller must have write access to iloc->bh.
4405  */
4406 static int ext4_do_update_inode(handle_t *handle,
4407 				struct inode *inode,
4408 				struct ext4_iloc *iloc)
4409 {
4410 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4411 	struct ext4_inode_info *ei = EXT4_I(inode);
4412 	struct buffer_head *bh = iloc->bh;
4413 	int err = 0, rc, block;
4414 	int need_datasync = 0;
4415 	uid_t i_uid;
4416 	gid_t i_gid;
4417 
4418 	/* For fields not not tracking in the in-memory inode,
4419 	 * initialise them to zero for new inodes. */
4420 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4421 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4422 
4423 	ext4_get_inode_flags(ei);
4424 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4425 	i_uid = i_uid_read(inode);
4426 	i_gid = i_gid_read(inode);
4427 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4428 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4429 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4430 /*
4431  * Fix up interoperability with old kernels. Otherwise, old inodes get
4432  * re-used with the upper 16 bits of the uid/gid intact
4433  */
4434 		if (!ei->i_dtime) {
4435 			raw_inode->i_uid_high =
4436 				cpu_to_le16(high_16_bits(i_uid));
4437 			raw_inode->i_gid_high =
4438 				cpu_to_le16(high_16_bits(i_gid));
4439 		} else {
4440 			raw_inode->i_uid_high = 0;
4441 			raw_inode->i_gid_high = 0;
4442 		}
4443 	} else {
4444 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4445 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4446 		raw_inode->i_uid_high = 0;
4447 		raw_inode->i_gid_high = 0;
4448 	}
4449 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4450 
4451 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4452 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4453 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4454 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4455 
4456 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4457 		goto out_brelse;
4458 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4459 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4460 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4461 	    cpu_to_le32(EXT4_OS_HURD))
4462 		raw_inode->i_file_acl_high =
4463 			cpu_to_le16(ei->i_file_acl >> 32);
4464 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4465 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4466 		ext4_isize_set(raw_inode, ei->i_disksize);
4467 		need_datasync = 1;
4468 	}
4469 	if (ei->i_disksize > 0x7fffffffULL) {
4470 		struct super_block *sb = inode->i_sb;
4471 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4472 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4473 				EXT4_SB(sb)->s_es->s_rev_level ==
4474 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4475 			/* If this is the first large file
4476 			 * created, add a flag to the superblock.
4477 			 */
4478 			err = ext4_journal_get_write_access(handle,
4479 					EXT4_SB(sb)->s_sbh);
4480 			if (err)
4481 				goto out_brelse;
4482 			ext4_update_dynamic_rev(sb);
4483 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4484 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4485 			ext4_handle_sync(handle);
4486 			err = ext4_handle_dirty_super(handle, sb);
4487 		}
4488 	}
4489 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4490 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4491 		if (old_valid_dev(inode->i_rdev)) {
4492 			raw_inode->i_block[0] =
4493 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4494 			raw_inode->i_block[1] = 0;
4495 		} else {
4496 			raw_inode->i_block[0] = 0;
4497 			raw_inode->i_block[1] =
4498 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4499 			raw_inode->i_block[2] = 0;
4500 		}
4501 	} else if (!ext4_has_inline_data(inode)) {
4502 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4503 			raw_inode->i_block[block] = ei->i_data[block];
4504 	}
4505 
4506 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4507 	if (ei->i_extra_isize) {
4508 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4509 			raw_inode->i_version_hi =
4510 			cpu_to_le32(inode->i_version >> 32);
4511 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4512 	}
4513 
4514 	ext4_inode_csum_set(inode, raw_inode, ei);
4515 
4516 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4517 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4518 	if (!err)
4519 		err = rc;
4520 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4521 
4522 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4523 out_brelse:
4524 	brelse(bh);
4525 	ext4_std_error(inode->i_sb, err);
4526 	return err;
4527 }
4528 
4529 /*
4530  * ext4_write_inode()
4531  *
4532  * We are called from a few places:
4533  *
4534  * - Within generic_file_write() for O_SYNC files.
4535  *   Here, there will be no transaction running. We wait for any running
4536  *   transaction to commit.
4537  *
4538  * - Within sys_sync(), kupdate and such.
4539  *   We wait on commit, if tol to.
4540  *
4541  * - Within prune_icache() (PF_MEMALLOC == true)
4542  *   Here we simply return.  We can't afford to block kswapd on the
4543  *   journal commit.
4544  *
4545  * In all cases it is actually safe for us to return without doing anything,
4546  * because the inode has been copied into a raw inode buffer in
4547  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4548  * knfsd.
4549  *
4550  * Note that we are absolutely dependent upon all inode dirtiers doing the
4551  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4552  * which we are interested.
4553  *
4554  * It would be a bug for them to not do this.  The code:
4555  *
4556  *	mark_inode_dirty(inode)
4557  *	stuff();
4558  *	inode->i_size = expr;
4559  *
4560  * is in error because a kswapd-driven write_inode() could occur while
4561  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4562  * will no longer be on the superblock's dirty inode list.
4563  */
4564 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4565 {
4566 	int err;
4567 
4568 	if (current->flags & PF_MEMALLOC)
4569 		return 0;
4570 
4571 	if (EXT4_SB(inode->i_sb)->s_journal) {
4572 		if (ext4_journal_current_handle()) {
4573 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4574 			dump_stack();
4575 			return -EIO;
4576 		}
4577 
4578 		if (wbc->sync_mode != WB_SYNC_ALL)
4579 			return 0;
4580 
4581 		err = ext4_force_commit(inode->i_sb);
4582 	} else {
4583 		struct ext4_iloc iloc;
4584 
4585 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4586 		if (err)
4587 			return err;
4588 		if (wbc->sync_mode == WB_SYNC_ALL)
4589 			sync_dirty_buffer(iloc.bh);
4590 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4591 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4592 					 "IO error syncing inode");
4593 			err = -EIO;
4594 		}
4595 		brelse(iloc.bh);
4596 	}
4597 	return err;
4598 }
4599 
4600 /*
4601  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4602  * buffers that are attached to a page stradding i_size and are undergoing
4603  * commit. In that case we have to wait for commit to finish and try again.
4604  */
4605 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4606 {
4607 	struct page *page;
4608 	unsigned offset;
4609 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4610 	tid_t commit_tid = 0;
4611 	int ret;
4612 
4613 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4614 	/*
4615 	 * All buffers in the last page remain valid? Then there's nothing to
4616 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4617 	 * blocksize case
4618 	 */
4619 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4620 		return;
4621 	while (1) {
4622 		page = find_lock_page(inode->i_mapping,
4623 				      inode->i_size >> PAGE_CACHE_SHIFT);
4624 		if (!page)
4625 			return;
4626 		ret = __ext4_journalled_invalidatepage(page, offset);
4627 		unlock_page(page);
4628 		page_cache_release(page);
4629 		if (ret != -EBUSY)
4630 			return;
4631 		commit_tid = 0;
4632 		read_lock(&journal->j_state_lock);
4633 		if (journal->j_committing_transaction)
4634 			commit_tid = journal->j_committing_transaction->t_tid;
4635 		read_unlock(&journal->j_state_lock);
4636 		if (commit_tid)
4637 			jbd2_log_wait_commit(journal, commit_tid);
4638 	}
4639 }
4640 
4641 /*
4642  * ext4_setattr()
4643  *
4644  * Called from notify_change.
4645  *
4646  * We want to trap VFS attempts to truncate the file as soon as
4647  * possible.  In particular, we want to make sure that when the VFS
4648  * shrinks i_size, we put the inode on the orphan list and modify
4649  * i_disksize immediately, so that during the subsequent flushing of
4650  * dirty pages and freeing of disk blocks, we can guarantee that any
4651  * commit will leave the blocks being flushed in an unused state on
4652  * disk.  (On recovery, the inode will get truncated and the blocks will
4653  * be freed, so we have a strong guarantee that no future commit will
4654  * leave these blocks visible to the user.)
4655  *
4656  * Another thing we have to assure is that if we are in ordered mode
4657  * and inode is still attached to the committing transaction, we must
4658  * we start writeout of all the dirty pages which are being truncated.
4659  * This way we are sure that all the data written in the previous
4660  * transaction are already on disk (truncate waits for pages under
4661  * writeback).
4662  *
4663  * Called with inode->i_mutex down.
4664  */
4665 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4666 {
4667 	struct inode *inode = dentry->d_inode;
4668 	int error, rc = 0;
4669 	int orphan = 0;
4670 	const unsigned int ia_valid = attr->ia_valid;
4671 
4672 	error = inode_change_ok(inode, attr);
4673 	if (error)
4674 		return error;
4675 
4676 	if (is_quota_modification(inode, attr))
4677 		dquot_initialize(inode);
4678 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4679 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4680 		handle_t *handle;
4681 
4682 		/* (user+group)*(old+new) structure, inode write (sb,
4683 		 * inode block, ? - but truncate inode update has it) */
4684 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4685 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4686 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4687 		if (IS_ERR(handle)) {
4688 			error = PTR_ERR(handle);
4689 			goto err_out;
4690 		}
4691 		error = dquot_transfer(inode, attr);
4692 		if (error) {
4693 			ext4_journal_stop(handle);
4694 			return error;
4695 		}
4696 		/* Update corresponding info in inode so that everything is in
4697 		 * one transaction */
4698 		if (attr->ia_valid & ATTR_UID)
4699 			inode->i_uid = attr->ia_uid;
4700 		if (attr->ia_valid & ATTR_GID)
4701 			inode->i_gid = attr->ia_gid;
4702 		error = ext4_mark_inode_dirty(handle, inode);
4703 		ext4_journal_stop(handle);
4704 	}
4705 
4706 	if (attr->ia_valid & ATTR_SIZE) {
4707 
4708 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4709 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4710 
4711 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4712 				return -EFBIG;
4713 		}
4714 	}
4715 
4716 	if (S_ISREG(inode->i_mode) &&
4717 	    attr->ia_valid & ATTR_SIZE &&
4718 	    (attr->ia_size < inode->i_size)) {
4719 		handle_t *handle;
4720 
4721 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4722 		if (IS_ERR(handle)) {
4723 			error = PTR_ERR(handle);
4724 			goto err_out;
4725 		}
4726 		if (ext4_handle_valid(handle)) {
4727 			error = ext4_orphan_add(handle, inode);
4728 			orphan = 1;
4729 		}
4730 		EXT4_I(inode)->i_disksize = attr->ia_size;
4731 		rc = ext4_mark_inode_dirty(handle, inode);
4732 		if (!error)
4733 			error = rc;
4734 		ext4_journal_stop(handle);
4735 
4736 		if (ext4_should_order_data(inode)) {
4737 			error = ext4_begin_ordered_truncate(inode,
4738 							    attr->ia_size);
4739 			if (error) {
4740 				/* Do as much error cleanup as possible */
4741 				handle = ext4_journal_start(inode,
4742 							    EXT4_HT_INODE, 3);
4743 				if (IS_ERR(handle)) {
4744 					ext4_orphan_del(NULL, inode);
4745 					goto err_out;
4746 				}
4747 				ext4_orphan_del(handle, inode);
4748 				orphan = 0;
4749 				ext4_journal_stop(handle);
4750 				goto err_out;
4751 			}
4752 		}
4753 	}
4754 
4755 	if (attr->ia_valid & ATTR_SIZE) {
4756 		if (attr->ia_size != inode->i_size) {
4757 			loff_t oldsize = inode->i_size;
4758 
4759 			i_size_write(inode, attr->ia_size);
4760 			/*
4761 			 * Blocks are going to be removed from the inode. Wait
4762 			 * for dio in flight.  Temporarily disable
4763 			 * dioread_nolock to prevent livelock.
4764 			 */
4765 			if (orphan) {
4766 				if (!ext4_should_journal_data(inode)) {
4767 					ext4_inode_block_unlocked_dio(inode);
4768 					inode_dio_wait(inode);
4769 					ext4_inode_resume_unlocked_dio(inode);
4770 				} else
4771 					ext4_wait_for_tail_page_commit(inode);
4772 			}
4773 			/*
4774 			 * Truncate pagecache after we've waited for commit
4775 			 * in data=journal mode to make pages freeable.
4776 			 */
4777 			truncate_pagecache(inode, oldsize, inode->i_size);
4778 		}
4779 		ext4_truncate(inode);
4780 	}
4781 
4782 	if (!rc) {
4783 		setattr_copy(inode, attr);
4784 		mark_inode_dirty(inode);
4785 	}
4786 
4787 	/*
4788 	 * If the call to ext4_truncate failed to get a transaction handle at
4789 	 * all, we need to clean up the in-core orphan list manually.
4790 	 */
4791 	if (orphan && inode->i_nlink)
4792 		ext4_orphan_del(NULL, inode);
4793 
4794 	if (!rc && (ia_valid & ATTR_MODE))
4795 		rc = ext4_acl_chmod(inode);
4796 
4797 err_out:
4798 	ext4_std_error(inode->i_sb, error);
4799 	if (!error)
4800 		error = rc;
4801 	return error;
4802 }
4803 
4804 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4805 		 struct kstat *stat)
4806 {
4807 	struct inode *inode;
4808 	unsigned long delalloc_blocks;
4809 
4810 	inode = dentry->d_inode;
4811 	generic_fillattr(inode, stat);
4812 
4813 	/*
4814 	 * We can't update i_blocks if the block allocation is delayed
4815 	 * otherwise in the case of system crash before the real block
4816 	 * allocation is done, we will have i_blocks inconsistent with
4817 	 * on-disk file blocks.
4818 	 * We always keep i_blocks updated together with real
4819 	 * allocation. But to not confuse with user, stat
4820 	 * will return the blocks that include the delayed allocation
4821 	 * blocks for this file.
4822 	 */
4823 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4824 				EXT4_I(inode)->i_reserved_data_blocks);
4825 
4826 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4827 	return 0;
4828 }
4829 
4830 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4831 {
4832 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4833 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4834 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4835 }
4836 
4837 /*
4838  * Account for index blocks, block groups bitmaps and block group
4839  * descriptor blocks if modify datablocks and index blocks
4840  * worse case, the indexs blocks spread over different block groups
4841  *
4842  * If datablocks are discontiguous, they are possible to spread over
4843  * different block groups too. If they are contiguous, with flexbg,
4844  * they could still across block group boundary.
4845  *
4846  * Also account for superblock, inode, quota and xattr blocks
4847  */
4848 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4849 {
4850 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4851 	int gdpblocks;
4852 	int idxblocks;
4853 	int ret = 0;
4854 
4855 	/*
4856 	 * How many index blocks need to touch to modify nrblocks?
4857 	 * The "Chunk" flag indicating whether the nrblocks is
4858 	 * physically contiguous on disk
4859 	 *
4860 	 * For Direct IO and fallocate, they calls get_block to allocate
4861 	 * one single extent at a time, so they could set the "Chunk" flag
4862 	 */
4863 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4864 
4865 	ret = idxblocks;
4866 
4867 	/*
4868 	 * Now let's see how many group bitmaps and group descriptors need
4869 	 * to account
4870 	 */
4871 	groups = idxblocks;
4872 	if (chunk)
4873 		groups += 1;
4874 	else
4875 		groups += nrblocks;
4876 
4877 	gdpblocks = groups;
4878 	if (groups > ngroups)
4879 		groups = ngroups;
4880 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4881 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4882 
4883 	/* bitmaps and block group descriptor blocks */
4884 	ret += groups + gdpblocks;
4885 
4886 	/* Blocks for super block, inode, quota and xattr blocks */
4887 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4888 
4889 	return ret;
4890 }
4891 
4892 /*
4893  * Calculate the total number of credits to reserve to fit
4894  * the modification of a single pages into a single transaction,
4895  * which may include multiple chunks of block allocations.
4896  *
4897  * This could be called via ext4_write_begin()
4898  *
4899  * We need to consider the worse case, when
4900  * one new block per extent.
4901  */
4902 int ext4_writepage_trans_blocks(struct inode *inode)
4903 {
4904 	int bpp = ext4_journal_blocks_per_page(inode);
4905 	int ret;
4906 
4907 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4908 
4909 	/* Account for data blocks for journalled mode */
4910 	if (ext4_should_journal_data(inode))
4911 		ret += bpp;
4912 	return ret;
4913 }
4914 
4915 /*
4916  * Calculate the journal credits for a chunk of data modification.
4917  *
4918  * This is called from DIO, fallocate or whoever calling
4919  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4920  *
4921  * journal buffers for data blocks are not included here, as DIO
4922  * and fallocate do no need to journal data buffers.
4923  */
4924 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4925 {
4926 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4927 }
4928 
4929 /*
4930  * The caller must have previously called ext4_reserve_inode_write().
4931  * Give this, we know that the caller already has write access to iloc->bh.
4932  */
4933 int ext4_mark_iloc_dirty(handle_t *handle,
4934 			 struct inode *inode, struct ext4_iloc *iloc)
4935 {
4936 	int err = 0;
4937 
4938 	if (IS_I_VERSION(inode))
4939 		inode_inc_iversion(inode);
4940 
4941 	/* the do_update_inode consumes one bh->b_count */
4942 	get_bh(iloc->bh);
4943 
4944 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4945 	err = ext4_do_update_inode(handle, inode, iloc);
4946 	put_bh(iloc->bh);
4947 	return err;
4948 }
4949 
4950 /*
4951  * On success, We end up with an outstanding reference count against
4952  * iloc->bh.  This _must_ be cleaned up later.
4953  */
4954 
4955 int
4956 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4957 			 struct ext4_iloc *iloc)
4958 {
4959 	int err;
4960 
4961 	err = ext4_get_inode_loc(inode, iloc);
4962 	if (!err) {
4963 		BUFFER_TRACE(iloc->bh, "get_write_access");
4964 		err = ext4_journal_get_write_access(handle, iloc->bh);
4965 		if (err) {
4966 			brelse(iloc->bh);
4967 			iloc->bh = NULL;
4968 		}
4969 	}
4970 	ext4_std_error(inode->i_sb, err);
4971 	return err;
4972 }
4973 
4974 /*
4975  * Expand an inode by new_extra_isize bytes.
4976  * Returns 0 on success or negative error number on failure.
4977  */
4978 static int ext4_expand_extra_isize(struct inode *inode,
4979 				   unsigned int new_extra_isize,
4980 				   struct ext4_iloc iloc,
4981 				   handle_t *handle)
4982 {
4983 	struct ext4_inode *raw_inode;
4984 	struct ext4_xattr_ibody_header *header;
4985 
4986 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4987 		return 0;
4988 
4989 	raw_inode = ext4_raw_inode(&iloc);
4990 
4991 	header = IHDR(inode, raw_inode);
4992 
4993 	/* No extended attributes present */
4994 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4995 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4996 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4997 			new_extra_isize);
4998 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4999 		return 0;
5000 	}
5001 
5002 	/* try to expand with EAs present */
5003 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5004 					  raw_inode, handle);
5005 }
5006 
5007 /*
5008  * What we do here is to mark the in-core inode as clean with respect to inode
5009  * dirtiness (it may still be data-dirty).
5010  * This means that the in-core inode may be reaped by prune_icache
5011  * without having to perform any I/O.  This is a very good thing,
5012  * because *any* task may call prune_icache - even ones which
5013  * have a transaction open against a different journal.
5014  *
5015  * Is this cheating?  Not really.  Sure, we haven't written the
5016  * inode out, but prune_icache isn't a user-visible syncing function.
5017  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5018  * we start and wait on commits.
5019  */
5020 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5021 {
5022 	struct ext4_iloc iloc;
5023 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5024 	static unsigned int mnt_count;
5025 	int err, ret;
5026 
5027 	might_sleep();
5028 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5029 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5030 	if (ext4_handle_valid(handle) &&
5031 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5032 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5033 		/*
5034 		 * We need extra buffer credits since we may write into EA block
5035 		 * with this same handle. If journal_extend fails, then it will
5036 		 * only result in a minor loss of functionality for that inode.
5037 		 * If this is felt to be critical, then e2fsck should be run to
5038 		 * force a large enough s_min_extra_isize.
5039 		 */
5040 		if ((jbd2_journal_extend(handle,
5041 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5042 			ret = ext4_expand_extra_isize(inode,
5043 						      sbi->s_want_extra_isize,
5044 						      iloc, handle);
5045 			if (ret) {
5046 				ext4_set_inode_state(inode,
5047 						     EXT4_STATE_NO_EXPAND);
5048 				if (mnt_count !=
5049 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5050 					ext4_warning(inode->i_sb,
5051 					"Unable to expand inode %lu. Delete"
5052 					" some EAs or run e2fsck.",
5053 					inode->i_ino);
5054 					mnt_count =
5055 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5056 				}
5057 			}
5058 		}
5059 	}
5060 	if (!err)
5061 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5062 	return err;
5063 }
5064 
5065 /*
5066  * ext4_dirty_inode() is called from __mark_inode_dirty()
5067  *
5068  * We're really interested in the case where a file is being extended.
5069  * i_size has been changed by generic_commit_write() and we thus need
5070  * to include the updated inode in the current transaction.
5071  *
5072  * Also, dquot_alloc_block() will always dirty the inode when blocks
5073  * are allocated to the file.
5074  *
5075  * If the inode is marked synchronous, we don't honour that here - doing
5076  * so would cause a commit on atime updates, which we don't bother doing.
5077  * We handle synchronous inodes at the highest possible level.
5078  */
5079 void ext4_dirty_inode(struct inode *inode, int flags)
5080 {
5081 	handle_t *handle;
5082 
5083 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5084 	if (IS_ERR(handle))
5085 		goto out;
5086 
5087 	ext4_mark_inode_dirty(handle, inode);
5088 
5089 	ext4_journal_stop(handle);
5090 out:
5091 	return;
5092 }
5093 
5094 #if 0
5095 /*
5096  * Bind an inode's backing buffer_head into this transaction, to prevent
5097  * it from being flushed to disk early.  Unlike
5098  * ext4_reserve_inode_write, this leaves behind no bh reference and
5099  * returns no iloc structure, so the caller needs to repeat the iloc
5100  * lookup to mark the inode dirty later.
5101  */
5102 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5103 {
5104 	struct ext4_iloc iloc;
5105 
5106 	int err = 0;
5107 	if (handle) {
5108 		err = ext4_get_inode_loc(inode, &iloc);
5109 		if (!err) {
5110 			BUFFER_TRACE(iloc.bh, "get_write_access");
5111 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5112 			if (!err)
5113 				err = ext4_handle_dirty_metadata(handle,
5114 								 NULL,
5115 								 iloc.bh);
5116 			brelse(iloc.bh);
5117 		}
5118 	}
5119 	ext4_std_error(inode->i_sb, err);
5120 	return err;
5121 }
5122 #endif
5123 
5124 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5125 {
5126 	journal_t *journal;
5127 	handle_t *handle;
5128 	int err;
5129 
5130 	/*
5131 	 * We have to be very careful here: changing a data block's
5132 	 * journaling status dynamically is dangerous.  If we write a
5133 	 * data block to the journal, change the status and then delete
5134 	 * that block, we risk forgetting to revoke the old log record
5135 	 * from the journal and so a subsequent replay can corrupt data.
5136 	 * So, first we make sure that the journal is empty and that
5137 	 * nobody is changing anything.
5138 	 */
5139 
5140 	journal = EXT4_JOURNAL(inode);
5141 	if (!journal)
5142 		return 0;
5143 	if (is_journal_aborted(journal))
5144 		return -EROFS;
5145 	/* We have to allocate physical blocks for delalloc blocks
5146 	 * before flushing journal. otherwise delalloc blocks can not
5147 	 * be allocated any more. even more truncate on delalloc blocks
5148 	 * could trigger BUG by flushing delalloc blocks in journal.
5149 	 * There is no delalloc block in non-journal data mode.
5150 	 */
5151 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5152 		err = ext4_alloc_da_blocks(inode);
5153 		if (err < 0)
5154 			return err;
5155 	}
5156 
5157 	/* Wait for all existing dio workers */
5158 	ext4_inode_block_unlocked_dio(inode);
5159 	inode_dio_wait(inode);
5160 
5161 	jbd2_journal_lock_updates(journal);
5162 
5163 	/*
5164 	 * OK, there are no updates running now, and all cached data is
5165 	 * synced to disk.  We are now in a completely consistent state
5166 	 * which doesn't have anything in the journal, and we know that
5167 	 * no filesystem updates are running, so it is safe to modify
5168 	 * the inode's in-core data-journaling state flag now.
5169 	 */
5170 
5171 	if (val)
5172 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5173 	else {
5174 		jbd2_journal_flush(journal);
5175 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5176 	}
5177 	ext4_set_aops(inode);
5178 
5179 	jbd2_journal_unlock_updates(journal);
5180 	ext4_inode_resume_unlocked_dio(inode);
5181 
5182 	/* Finally we can mark the inode as dirty. */
5183 
5184 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5185 	if (IS_ERR(handle))
5186 		return PTR_ERR(handle);
5187 
5188 	err = ext4_mark_inode_dirty(handle, inode);
5189 	ext4_handle_sync(handle);
5190 	ext4_journal_stop(handle);
5191 	ext4_std_error(inode->i_sb, err);
5192 
5193 	return err;
5194 }
5195 
5196 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5197 {
5198 	return !buffer_mapped(bh);
5199 }
5200 
5201 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5202 {
5203 	struct page *page = vmf->page;
5204 	loff_t size;
5205 	unsigned long len;
5206 	int ret;
5207 	struct file *file = vma->vm_file;
5208 	struct inode *inode = file_inode(file);
5209 	struct address_space *mapping = inode->i_mapping;
5210 	handle_t *handle;
5211 	get_block_t *get_block;
5212 	int retries = 0;
5213 
5214 	sb_start_pagefault(inode->i_sb);
5215 	file_update_time(vma->vm_file);
5216 	/* Delalloc case is easy... */
5217 	if (test_opt(inode->i_sb, DELALLOC) &&
5218 	    !ext4_should_journal_data(inode) &&
5219 	    !ext4_nonda_switch(inode->i_sb)) {
5220 		do {
5221 			ret = __block_page_mkwrite(vma, vmf,
5222 						   ext4_da_get_block_prep);
5223 		} while (ret == -ENOSPC &&
5224 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5225 		goto out_ret;
5226 	}
5227 
5228 	lock_page(page);
5229 	size = i_size_read(inode);
5230 	/* Page got truncated from under us? */
5231 	if (page->mapping != mapping || page_offset(page) > size) {
5232 		unlock_page(page);
5233 		ret = VM_FAULT_NOPAGE;
5234 		goto out;
5235 	}
5236 
5237 	if (page->index == size >> PAGE_CACHE_SHIFT)
5238 		len = size & ~PAGE_CACHE_MASK;
5239 	else
5240 		len = PAGE_CACHE_SIZE;
5241 	/*
5242 	 * Return if we have all the buffers mapped. This avoids the need to do
5243 	 * journal_start/journal_stop which can block and take a long time
5244 	 */
5245 	if (page_has_buffers(page)) {
5246 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5247 					    0, len, NULL,
5248 					    ext4_bh_unmapped)) {
5249 			/* Wait so that we don't change page under IO */
5250 			wait_for_stable_page(page);
5251 			ret = VM_FAULT_LOCKED;
5252 			goto out;
5253 		}
5254 	}
5255 	unlock_page(page);
5256 	/* OK, we need to fill the hole... */
5257 	if (ext4_should_dioread_nolock(inode))
5258 		get_block = ext4_get_block_write;
5259 	else
5260 		get_block = ext4_get_block;
5261 retry_alloc:
5262 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5263 				    ext4_writepage_trans_blocks(inode));
5264 	if (IS_ERR(handle)) {
5265 		ret = VM_FAULT_SIGBUS;
5266 		goto out;
5267 	}
5268 	ret = __block_page_mkwrite(vma, vmf, get_block);
5269 	if (!ret && ext4_should_journal_data(inode)) {
5270 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5271 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5272 			unlock_page(page);
5273 			ret = VM_FAULT_SIGBUS;
5274 			ext4_journal_stop(handle);
5275 			goto out;
5276 		}
5277 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5278 	}
5279 	ext4_journal_stop(handle);
5280 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5281 		goto retry_alloc;
5282 out_ret:
5283 	ret = block_page_mkwrite_return(ret);
5284 out:
5285 	sb_end_pagefault(inode->i_sb);
5286 	return ret;
5287 }
5288