1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u16 csum_lo; 56 __u16 csum_hi = 0; 57 __u32 csum; 58 59 csum_lo = le16_to_cpu(raw->i_checksum_lo); 60 raw->i_checksum_lo = 0; 61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 63 csum_hi = le16_to_cpu(raw->i_checksum_hi); 64 raw->i_checksum_hi = 0; 65 } 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 68 EXT4_INODE_SIZE(inode->i_sb)); 69 70 raw->i_checksum_lo = cpu_to_le16(csum_lo); 71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 73 raw->i_checksum_hi = cpu_to_le16(csum_hi); 74 75 return csum; 76 } 77 78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 79 struct ext4_inode_info *ei) 80 { 81 __u32 provided, calculated; 82 83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 84 cpu_to_le32(EXT4_OS_LINUX) || 85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 109 return; 110 111 csum = ext4_inode_csum(inode, raw, ei); 112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 115 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 116 } 117 118 static inline int ext4_begin_ordered_truncate(struct inode *inode, 119 loff_t new_size) 120 { 121 trace_ext4_begin_ordered_truncate(inode, new_size); 122 /* 123 * If jinode is zero, then we never opened the file for 124 * writing, so there's no need to call 125 * jbd2_journal_begin_ordered_truncate() since there's no 126 * outstanding writes we need to flush. 127 */ 128 if (!EXT4_I(inode)->jinode) 129 return 0; 130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 131 EXT4_I(inode)->jinode, 132 new_size); 133 } 134 135 static void ext4_invalidatepage(struct page *page, unsigned long offset); 136 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 138 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 139 struct inode *inode, struct page *page, loff_t from, 140 loff_t length, int flags); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 */ 145 static int ext4_inode_is_fast_symlink(struct inode *inode) 146 { 147 int ea_blocks = EXT4_I(inode)->i_file_acl ? 148 (inode->i_sb->s_blocksize >> 9) : 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages(&inode->i_data, 0); 218 ext4_ioend_shutdown(inode); 219 goto no_delete; 220 } 221 222 if (!is_bad_inode(inode)) 223 dquot_initialize(inode); 224 225 if (ext4_should_order_data(inode)) 226 ext4_begin_ordered_truncate(inode, 0); 227 truncate_inode_pages(&inode->i_data, 0); 228 ext4_ioend_shutdown(inode); 229 230 if (is_bad_inode(inode)) 231 goto no_delete; 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 239 ext4_blocks_for_truncate(inode)+3); 240 if (IS_ERR(handle)) { 241 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 242 /* 243 * If we're going to skip the normal cleanup, we still need to 244 * make sure that the in-core orphan linked list is properly 245 * cleaned up. 246 */ 247 ext4_orphan_del(NULL, inode); 248 sb_end_intwrite(inode->i_sb); 249 goto no_delete; 250 } 251 252 if (IS_SYNC(inode)) 253 ext4_handle_sync(handle); 254 inode->i_size = 0; 255 err = ext4_mark_inode_dirty(handle, inode); 256 if (err) { 257 ext4_warning(inode->i_sb, 258 "couldn't mark inode dirty (err %d)", err); 259 goto stop_handle; 260 } 261 if (inode->i_blocks) 262 ext4_truncate(inode); 263 264 /* 265 * ext4_ext_truncate() doesn't reserve any slop when it 266 * restarts journal transactions; therefore there may not be 267 * enough credits left in the handle to remove the inode from 268 * the orphan list and set the dtime field. 269 */ 270 if (!ext4_handle_has_enough_credits(handle, 3)) { 271 err = ext4_journal_extend(handle, 3); 272 if (err > 0) 273 err = ext4_journal_restart(handle, 3); 274 if (err != 0) { 275 ext4_warning(inode->i_sb, 276 "couldn't extend journal (err %d)", err); 277 stop_handle: 278 ext4_journal_stop(handle); 279 ext4_orphan_del(NULL, inode); 280 sb_end_intwrite(inode->i_sb); 281 goto no_delete; 282 } 283 } 284 285 /* 286 * Kill off the orphan record which ext4_truncate created. 287 * AKPM: I think this can be inside the above `if'. 288 * Note that ext4_orphan_del() has to be able to cope with the 289 * deletion of a non-existent orphan - this is because we don't 290 * know if ext4_truncate() actually created an orphan record. 291 * (Well, we could do this if we need to, but heck - it works) 292 */ 293 ext4_orphan_del(handle, inode); 294 EXT4_I(inode)->i_dtime = get_seconds(); 295 296 /* 297 * One subtle ordering requirement: if anything has gone wrong 298 * (transaction abort, IO errors, whatever), then we can still 299 * do these next steps (the fs will already have been marked as 300 * having errors), but we can't free the inode if the mark_dirty 301 * fails. 302 */ 303 if (ext4_mark_inode_dirty(handle, inode)) 304 /* If that failed, just do the required in-core inode clear. */ 305 ext4_clear_inode(inode); 306 else 307 ext4_free_inode(handle, inode); 308 ext4_journal_stop(handle); 309 sb_end_intwrite(inode->i_sb); 310 return; 311 no_delete: 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 313 } 314 315 #ifdef CONFIG_QUOTA 316 qsize_t *ext4_get_reserved_space(struct inode *inode) 317 { 318 return &EXT4_I(inode)->i_reserved_quota; 319 } 320 #endif 321 322 /* 323 * Calculate the number of metadata blocks need to reserve 324 * to allocate a block located at @lblock 325 */ 326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 327 { 328 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 329 return ext4_ext_calc_metadata_amount(inode, lblock); 330 331 return ext4_ind_calc_metadata_amount(inode, lblock); 332 } 333 334 /* 335 * Called with i_data_sem down, which is important since we can call 336 * ext4_discard_preallocations() from here. 337 */ 338 void ext4_da_update_reserve_space(struct inode *inode, 339 int used, int quota_claim) 340 { 341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 342 struct ext4_inode_info *ei = EXT4_I(inode); 343 344 spin_lock(&ei->i_block_reservation_lock); 345 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 346 if (unlikely(used > ei->i_reserved_data_blocks)) { 347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 348 "with only %d reserved data blocks", 349 __func__, inode->i_ino, used, 350 ei->i_reserved_data_blocks); 351 WARN_ON(1); 352 used = ei->i_reserved_data_blocks; 353 } 354 355 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 356 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 357 "with only %d reserved metadata blocks " 358 "(releasing %d blocks with reserved %d data blocks)", 359 inode->i_ino, ei->i_allocated_meta_blocks, 360 ei->i_reserved_meta_blocks, used, 361 ei->i_reserved_data_blocks); 362 WARN_ON(1); 363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 364 } 365 366 /* Update per-inode reservations */ 367 ei->i_reserved_data_blocks -= used; 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 370 used + ei->i_allocated_meta_blocks); 371 ei->i_allocated_meta_blocks = 0; 372 373 if (ei->i_reserved_data_blocks == 0) { 374 /* 375 * We can release all of the reserved metadata blocks 376 * only when we have written all of the delayed 377 * allocation blocks. 378 */ 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 380 ei->i_reserved_meta_blocks); 381 ei->i_reserved_meta_blocks = 0; 382 ei->i_da_metadata_calc_len = 0; 383 } 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 385 386 /* Update quota subsystem for data blocks */ 387 if (quota_claim) 388 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 389 else { 390 /* 391 * We did fallocate with an offset that is already delayed 392 * allocated. So on delayed allocated writeback we should 393 * not re-claim the quota for fallocated blocks. 394 */ 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 396 } 397 398 /* 399 * If we have done all the pending block allocations and if 400 * there aren't any writers on the inode, we can discard the 401 * inode's preallocations. 402 */ 403 if ((ei->i_reserved_data_blocks == 0) && 404 (atomic_read(&inode->i_writecount) == 0)) 405 ext4_discard_preallocations(inode); 406 } 407 408 static int __check_block_validity(struct inode *inode, const char *func, 409 unsigned int line, 410 struct ext4_map_blocks *map) 411 { 412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 413 map->m_len)) { 414 ext4_error_inode(inode, func, line, map->m_pblk, 415 "lblock %lu mapped to illegal pblock " 416 "(length %d)", (unsigned long) map->m_lblk, 417 map->m_len); 418 return -EIO; 419 } 420 return 0; 421 } 422 423 #define check_block_validity(inode, map) \ 424 __check_block_validity((inode), __func__, __LINE__, (map)) 425 426 /* 427 * Return the number of contiguous dirty pages in a given inode 428 * starting at page frame idx. 429 */ 430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 431 unsigned int max_pages) 432 { 433 struct address_space *mapping = inode->i_mapping; 434 pgoff_t index; 435 struct pagevec pvec; 436 pgoff_t num = 0; 437 int i, nr_pages, done = 0; 438 439 if (max_pages == 0) 440 return 0; 441 pagevec_init(&pvec, 0); 442 while (!done) { 443 index = idx; 444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 445 PAGECACHE_TAG_DIRTY, 446 (pgoff_t)PAGEVEC_SIZE); 447 if (nr_pages == 0) 448 break; 449 for (i = 0; i < nr_pages; i++) { 450 struct page *page = pvec.pages[i]; 451 struct buffer_head *bh, *head; 452 453 lock_page(page); 454 if (unlikely(page->mapping != mapping) || 455 !PageDirty(page) || 456 PageWriteback(page) || 457 page->index != idx) { 458 done = 1; 459 unlock_page(page); 460 break; 461 } 462 if (page_has_buffers(page)) { 463 bh = head = page_buffers(page); 464 do { 465 if (!buffer_delay(bh) && 466 !buffer_unwritten(bh)) 467 done = 1; 468 bh = bh->b_this_page; 469 } while (!done && (bh != head)); 470 } 471 unlock_page(page); 472 if (done) 473 break; 474 idx++; 475 num++; 476 if (num >= max_pages) { 477 done = 1; 478 break; 479 } 480 } 481 pagevec_release(&pvec); 482 } 483 return num; 484 } 485 486 #ifdef ES_AGGRESSIVE_TEST 487 static void ext4_map_blocks_es_recheck(handle_t *handle, 488 struct inode *inode, 489 struct ext4_map_blocks *es_map, 490 struct ext4_map_blocks *map, 491 int flags) 492 { 493 int retval; 494 495 map->m_flags = 0; 496 /* 497 * There is a race window that the result is not the same. 498 * e.g. xfstests #223 when dioread_nolock enables. The reason 499 * is that we lookup a block mapping in extent status tree with 500 * out taking i_data_sem. So at the time the unwritten extent 501 * could be converted. 502 */ 503 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 504 down_read((&EXT4_I(inode)->i_data_sem)); 505 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 506 retval = ext4_ext_map_blocks(handle, inode, map, flags & 507 EXT4_GET_BLOCKS_KEEP_SIZE); 508 } else { 509 retval = ext4_ind_map_blocks(handle, inode, map, flags & 510 EXT4_GET_BLOCKS_KEEP_SIZE); 511 } 512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 513 up_read((&EXT4_I(inode)->i_data_sem)); 514 /* 515 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 516 * because it shouldn't be marked in es_map->m_flags. 517 */ 518 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 519 520 /* 521 * We don't check m_len because extent will be collpased in status 522 * tree. So the m_len might not equal. 523 */ 524 if (es_map->m_lblk != map->m_lblk || 525 es_map->m_flags != map->m_flags || 526 es_map->m_pblk != map->m_pblk) { 527 printk("ES cache assertation failed for inode: %lu " 528 "es_cached ex [%d/%d/%llu/%x] != " 529 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 530 inode->i_ino, es_map->m_lblk, es_map->m_len, 531 es_map->m_pblk, es_map->m_flags, map->m_lblk, 532 map->m_len, map->m_pblk, map->m_flags, 533 retval, flags); 534 } 535 } 536 #endif /* ES_AGGRESSIVE_TEST */ 537 538 /* 539 * The ext4_map_blocks() function tries to look up the requested blocks, 540 * and returns if the blocks are already mapped. 541 * 542 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 543 * and store the allocated blocks in the result buffer head and mark it 544 * mapped. 545 * 546 * If file type is extents based, it will call ext4_ext_map_blocks(), 547 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 548 * based files 549 * 550 * On success, it returns the number of blocks being mapped or allocate. 551 * if create==0 and the blocks are pre-allocated and uninitialized block, 552 * the result buffer head is unmapped. If the create ==1, it will make sure 553 * the buffer head is mapped. 554 * 555 * It returns 0 if plain look up failed (blocks have not been allocated), in 556 * that case, buffer head is unmapped 557 * 558 * It returns the error in case of allocation failure. 559 */ 560 int ext4_map_blocks(handle_t *handle, struct inode *inode, 561 struct ext4_map_blocks *map, int flags) 562 { 563 struct extent_status es; 564 int retval; 565 #ifdef ES_AGGRESSIVE_TEST 566 struct ext4_map_blocks orig_map; 567 568 memcpy(&orig_map, map, sizeof(*map)); 569 #endif 570 571 map->m_flags = 0; 572 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 573 "logical block %lu\n", inode->i_ino, flags, map->m_len, 574 (unsigned long) map->m_lblk); 575 576 /* Lookup extent status tree firstly */ 577 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 578 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 579 map->m_pblk = ext4_es_pblock(&es) + 580 map->m_lblk - es.es_lblk; 581 map->m_flags |= ext4_es_is_written(&es) ? 582 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 583 retval = es.es_len - (map->m_lblk - es.es_lblk); 584 if (retval > map->m_len) 585 retval = map->m_len; 586 map->m_len = retval; 587 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 588 retval = 0; 589 } else { 590 BUG_ON(1); 591 } 592 #ifdef ES_AGGRESSIVE_TEST 593 ext4_map_blocks_es_recheck(handle, inode, map, 594 &orig_map, flags); 595 #endif 596 goto found; 597 } 598 599 /* 600 * Try to see if we can get the block without requesting a new 601 * file system block. 602 */ 603 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 604 down_read((&EXT4_I(inode)->i_data_sem)); 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 606 retval = ext4_ext_map_blocks(handle, inode, map, flags & 607 EXT4_GET_BLOCKS_KEEP_SIZE); 608 } else { 609 retval = ext4_ind_map_blocks(handle, inode, map, flags & 610 EXT4_GET_BLOCKS_KEEP_SIZE); 611 } 612 if (retval > 0) { 613 int ret; 614 unsigned long long status; 615 616 #ifdef ES_AGGRESSIVE_TEST 617 if (retval != map->m_len) { 618 printk("ES len assertation failed for inode: %lu " 619 "retval %d != map->m_len %d " 620 "in %s (lookup)\n", inode->i_ino, retval, 621 map->m_len, __func__); 622 } 623 #endif 624 625 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 626 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 627 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 628 ext4_find_delalloc_range(inode, map->m_lblk, 629 map->m_lblk + map->m_len - 1)) 630 status |= EXTENT_STATUS_DELAYED; 631 ret = ext4_es_insert_extent(inode, map->m_lblk, 632 map->m_len, map->m_pblk, status); 633 if (ret < 0) 634 retval = ret; 635 } 636 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 637 up_read((&EXT4_I(inode)->i_data_sem)); 638 639 found: 640 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 641 int ret = check_block_validity(inode, map); 642 if (ret != 0) 643 return ret; 644 } 645 646 /* If it is only a block(s) look up */ 647 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 648 return retval; 649 650 /* 651 * Returns if the blocks have already allocated 652 * 653 * Note that if blocks have been preallocated 654 * ext4_ext_get_block() returns the create = 0 655 * with buffer head unmapped. 656 */ 657 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 658 return retval; 659 660 /* 661 * Here we clear m_flags because after allocating an new extent, 662 * it will be set again. 663 */ 664 map->m_flags &= ~EXT4_MAP_FLAGS; 665 666 /* 667 * New blocks allocate and/or writing to uninitialized extent 668 * will possibly result in updating i_data, so we take 669 * the write lock of i_data_sem, and call get_blocks() 670 * with create == 1 flag. 671 */ 672 down_write((&EXT4_I(inode)->i_data_sem)); 673 674 /* 675 * if the caller is from delayed allocation writeout path 676 * we have already reserved fs blocks for allocation 677 * let the underlying get_block() function know to 678 * avoid double accounting 679 */ 680 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 681 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 682 /* 683 * We need to check for EXT4 here because migrate 684 * could have changed the inode type in between 685 */ 686 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 687 retval = ext4_ext_map_blocks(handle, inode, map, flags); 688 } else { 689 retval = ext4_ind_map_blocks(handle, inode, map, flags); 690 691 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 692 /* 693 * We allocated new blocks which will result in 694 * i_data's format changing. Force the migrate 695 * to fail by clearing migrate flags 696 */ 697 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 698 } 699 700 /* 701 * Update reserved blocks/metadata blocks after successful 702 * block allocation which had been deferred till now. We don't 703 * support fallocate for non extent files. So we can update 704 * reserve space here. 705 */ 706 if ((retval > 0) && 707 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 708 ext4_da_update_reserve_space(inode, retval, 1); 709 } 710 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 711 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 712 713 if (retval > 0) { 714 int ret; 715 unsigned long long status; 716 717 #ifdef ES_AGGRESSIVE_TEST 718 if (retval != map->m_len) { 719 printk("ES len assertation failed for inode: %lu " 720 "retval %d != map->m_len %d " 721 "in %s (allocation)\n", inode->i_ino, retval, 722 map->m_len, __func__); 723 } 724 #endif 725 726 /* 727 * If the extent has been zeroed out, we don't need to update 728 * extent status tree. 729 */ 730 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 731 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 732 if (ext4_es_is_written(&es)) 733 goto has_zeroout; 734 } 735 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 736 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 737 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 738 ext4_find_delalloc_range(inode, map->m_lblk, 739 map->m_lblk + map->m_len - 1)) 740 status |= EXTENT_STATUS_DELAYED; 741 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 742 map->m_pblk, status); 743 if (ret < 0) 744 retval = ret; 745 } 746 747 has_zeroout: 748 up_write((&EXT4_I(inode)->i_data_sem)); 749 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 750 int ret = check_block_validity(inode, map); 751 if (ret != 0) 752 return ret; 753 } 754 return retval; 755 } 756 757 /* Maximum number of blocks we map for direct IO at once. */ 758 #define DIO_MAX_BLOCKS 4096 759 760 static int _ext4_get_block(struct inode *inode, sector_t iblock, 761 struct buffer_head *bh, int flags) 762 { 763 handle_t *handle = ext4_journal_current_handle(); 764 struct ext4_map_blocks map; 765 int ret = 0, started = 0; 766 int dio_credits; 767 768 if (ext4_has_inline_data(inode)) 769 return -ERANGE; 770 771 map.m_lblk = iblock; 772 map.m_len = bh->b_size >> inode->i_blkbits; 773 774 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 775 /* Direct IO write... */ 776 if (map.m_len > DIO_MAX_BLOCKS) 777 map.m_len = DIO_MAX_BLOCKS; 778 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 779 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 780 dio_credits); 781 if (IS_ERR(handle)) { 782 ret = PTR_ERR(handle); 783 return ret; 784 } 785 started = 1; 786 } 787 788 ret = ext4_map_blocks(handle, inode, &map, flags); 789 if (ret > 0) { 790 map_bh(bh, inode->i_sb, map.m_pblk); 791 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 792 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 793 ret = 0; 794 } 795 if (started) 796 ext4_journal_stop(handle); 797 return ret; 798 } 799 800 int ext4_get_block(struct inode *inode, sector_t iblock, 801 struct buffer_head *bh, int create) 802 { 803 return _ext4_get_block(inode, iblock, bh, 804 create ? EXT4_GET_BLOCKS_CREATE : 0); 805 } 806 807 /* 808 * `handle' can be NULL if create is zero 809 */ 810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 811 ext4_lblk_t block, int create, int *errp) 812 { 813 struct ext4_map_blocks map; 814 struct buffer_head *bh; 815 int fatal = 0, err; 816 817 J_ASSERT(handle != NULL || create == 0); 818 819 map.m_lblk = block; 820 map.m_len = 1; 821 err = ext4_map_blocks(handle, inode, &map, 822 create ? EXT4_GET_BLOCKS_CREATE : 0); 823 824 /* ensure we send some value back into *errp */ 825 *errp = 0; 826 827 if (create && err == 0) 828 err = -ENOSPC; /* should never happen */ 829 if (err < 0) 830 *errp = err; 831 if (err <= 0) 832 return NULL; 833 834 bh = sb_getblk(inode->i_sb, map.m_pblk); 835 if (unlikely(!bh)) { 836 *errp = -ENOMEM; 837 return NULL; 838 } 839 if (map.m_flags & EXT4_MAP_NEW) { 840 J_ASSERT(create != 0); 841 J_ASSERT(handle != NULL); 842 843 /* 844 * Now that we do not always journal data, we should 845 * keep in mind whether this should always journal the 846 * new buffer as metadata. For now, regular file 847 * writes use ext4_get_block instead, so it's not a 848 * problem. 849 */ 850 lock_buffer(bh); 851 BUFFER_TRACE(bh, "call get_create_access"); 852 fatal = ext4_journal_get_create_access(handle, bh); 853 if (!fatal && !buffer_uptodate(bh)) { 854 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 855 set_buffer_uptodate(bh); 856 } 857 unlock_buffer(bh); 858 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 859 err = ext4_handle_dirty_metadata(handle, inode, bh); 860 if (!fatal) 861 fatal = err; 862 } else { 863 BUFFER_TRACE(bh, "not a new buffer"); 864 } 865 if (fatal) { 866 *errp = fatal; 867 brelse(bh); 868 bh = NULL; 869 } 870 return bh; 871 } 872 873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 874 ext4_lblk_t block, int create, int *err) 875 { 876 struct buffer_head *bh; 877 878 bh = ext4_getblk(handle, inode, block, create, err); 879 if (!bh) 880 return bh; 881 if (buffer_uptodate(bh)) 882 return bh; 883 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 884 wait_on_buffer(bh); 885 if (buffer_uptodate(bh)) 886 return bh; 887 put_bh(bh); 888 *err = -EIO; 889 return NULL; 890 } 891 892 int ext4_walk_page_buffers(handle_t *handle, 893 struct buffer_head *head, 894 unsigned from, 895 unsigned to, 896 int *partial, 897 int (*fn)(handle_t *handle, 898 struct buffer_head *bh)) 899 { 900 struct buffer_head *bh; 901 unsigned block_start, block_end; 902 unsigned blocksize = head->b_size; 903 int err, ret = 0; 904 struct buffer_head *next; 905 906 for (bh = head, block_start = 0; 907 ret == 0 && (bh != head || !block_start); 908 block_start = block_end, bh = next) { 909 next = bh->b_this_page; 910 block_end = block_start + blocksize; 911 if (block_end <= from || block_start >= to) { 912 if (partial && !buffer_uptodate(bh)) 913 *partial = 1; 914 continue; 915 } 916 err = (*fn)(handle, bh); 917 if (!ret) 918 ret = err; 919 } 920 return ret; 921 } 922 923 /* 924 * To preserve ordering, it is essential that the hole instantiation and 925 * the data write be encapsulated in a single transaction. We cannot 926 * close off a transaction and start a new one between the ext4_get_block() 927 * and the commit_write(). So doing the jbd2_journal_start at the start of 928 * prepare_write() is the right place. 929 * 930 * Also, this function can nest inside ext4_writepage(). In that case, we 931 * *know* that ext4_writepage() has generated enough buffer credits to do the 932 * whole page. So we won't block on the journal in that case, which is good, 933 * because the caller may be PF_MEMALLOC. 934 * 935 * By accident, ext4 can be reentered when a transaction is open via 936 * quota file writes. If we were to commit the transaction while thus 937 * reentered, there can be a deadlock - we would be holding a quota 938 * lock, and the commit would never complete if another thread had a 939 * transaction open and was blocking on the quota lock - a ranking 940 * violation. 941 * 942 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 943 * will _not_ run commit under these circumstances because handle->h_ref 944 * is elevated. We'll still have enough credits for the tiny quotafile 945 * write. 946 */ 947 int do_journal_get_write_access(handle_t *handle, 948 struct buffer_head *bh) 949 { 950 int dirty = buffer_dirty(bh); 951 int ret; 952 953 if (!buffer_mapped(bh) || buffer_freed(bh)) 954 return 0; 955 /* 956 * __block_write_begin() could have dirtied some buffers. Clean 957 * the dirty bit as jbd2_journal_get_write_access() could complain 958 * otherwise about fs integrity issues. Setting of the dirty bit 959 * by __block_write_begin() isn't a real problem here as we clear 960 * the bit before releasing a page lock and thus writeback cannot 961 * ever write the buffer. 962 */ 963 if (dirty) 964 clear_buffer_dirty(bh); 965 ret = ext4_journal_get_write_access(handle, bh); 966 if (!ret && dirty) 967 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 968 return ret; 969 } 970 971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 972 struct buffer_head *bh_result, int create); 973 static int ext4_write_begin(struct file *file, struct address_space *mapping, 974 loff_t pos, unsigned len, unsigned flags, 975 struct page **pagep, void **fsdata) 976 { 977 struct inode *inode = mapping->host; 978 int ret, needed_blocks; 979 handle_t *handle; 980 int retries = 0; 981 struct page *page; 982 pgoff_t index; 983 unsigned from, to; 984 985 trace_ext4_write_begin(inode, pos, len, flags); 986 /* 987 * Reserve one block more for addition to orphan list in case 988 * we allocate blocks but write fails for some reason 989 */ 990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 991 index = pos >> PAGE_CACHE_SHIFT; 992 from = pos & (PAGE_CACHE_SIZE - 1); 993 to = from + len; 994 995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 997 flags, pagep); 998 if (ret < 0) 999 return ret; 1000 if (ret == 1) 1001 return 0; 1002 } 1003 1004 /* 1005 * grab_cache_page_write_begin() can take a long time if the 1006 * system is thrashing due to memory pressure, or if the page 1007 * is being written back. So grab it first before we start 1008 * the transaction handle. This also allows us to allocate 1009 * the page (if needed) without using GFP_NOFS. 1010 */ 1011 retry_grab: 1012 page = grab_cache_page_write_begin(mapping, index, flags); 1013 if (!page) 1014 return -ENOMEM; 1015 unlock_page(page); 1016 1017 retry_journal: 1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1019 if (IS_ERR(handle)) { 1020 page_cache_release(page); 1021 return PTR_ERR(handle); 1022 } 1023 1024 lock_page(page); 1025 if (page->mapping != mapping) { 1026 /* The page got truncated from under us */ 1027 unlock_page(page); 1028 page_cache_release(page); 1029 ext4_journal_stop(handle); 1030 goto retry_grab; 1031 } 1032 wait_on_page_writeback(page); 1033 1034 if (ext4_should_dioread_nolock(inode)) 1035 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1036 else 1037 ret = __block_write_begin(page, pos, len, ext4_get_block); 1038 1039 if (!ret && ext4_should_journal_data(inode)) { 1040 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1041 from, to, NULL, 1042 do_journal_get_write_access); 1043 } 1044 1045 if (ret) { 1046 unlock_page(page); 1047 /* 1048 * __block_write_begin may have instantiated a few blocks 1049 * outside i_size. Trim these off again. Don't need 1050 * i_size_read because we hold i_mutex. 1051 * 1052 * Add inode to orphan list in case we crash before 1053 * truncate finishes 1054 */ 1055 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1056 ext4_orphan_add(handle, inode); 1057 1058 ext4_journal_stop(handle); 1059 if (pos + len > inode->i_size) { 1060 ext4_truncate_failed_write(inode); 1061 /* 1062 * If truncate failed early the inode might 1063 * still be on the orphan list; we need to 1064 * make sure the inode is removed from the 1065 * orphan list in that case. 1066 */ 1067 if (inode->i_nlink) 1068 ext4_orphan_del(NULL, inode); 1069 } 1070 1071 if (ret == -ENOSPC && 1072 ext4_should_retry_alloc(inode->i_sb, &retries)) 1073 goto retry_journal; 1074 page_cache_release(page); 1075 return ret; 1076 } 1077 *pagep = page; 1078 return ret; 1079 } 1080 1081 /* For write_end() in data=journal mode */ 1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1083 { 1084 int ret; 1085 if (!buffer_mapped(bh) || buffer_freed(bh)) 1086 return 0; 1087 set_buffer_uptodate(bh); 1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1089 clear_buffer_meta(bh); 1090 clear_buffer_prio(bh); 1091 return ret; 1092 } 1093 1094 /* 1095 * We need to pick up the new inode size which generic_commit_write gave us 1096 * `file' can be NULL - eg, when called from page_symlink(). 1097 * 1098 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1099 * buffers are managed internally. 1100 */ 1101 static int ext4_write_end(struct file *file, 1102 struct address_space *mapping, 1103 loff_t pos, unsigned len, unsigned copied, 1104 struct page *page, void *fsdata) 1105 { 1106 handle_t *handle = ext4_journal_current_handle(); 1107 struct inode *inode = mapping->host; 1108 int ret = 0, ret2; 1109 int i_size_changed = 0; 1110 1111 trace_ext4_write_end(inode, pos, len, copied); 1112 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1113 ret = ext4_jbd2_file_inode(handle, inode); 1114 if (ret) { 1115 unlock_page(page); 1116 page_cache_release(page); 1117 goto errout; 1118 } 1119 } 1120 1121 if (ext4_has_inline_data(inode)) 1122 copied = ext4_write_inline_data_end(inode, pos, len, 1123 copied, page); 1124 else 1125 copied = block_write_end(file, mapping, pos, 1126 len, copied, page, fsdata); 1127 1128 /* 1129 * No need to use i_size_read() here, the i_size 1130 * cannot change under us because we hole i_mutex. 1131 * 1132 * But it's important to update i_size while still holding page lock: 1133 * page writeout could otherwise come in and zero beyond i_size. 1134 */ 1135 if (pos + copied > inode->i_size) { 1136 i_size_write(inode, pos + copied); 1137 i_size_changed = 1; 1138 } 1139 1140 if (pos + copied > EXT4_I(inode)->i_disksize) { 1141 /* We need to mark inode dirty even if 1142 * new_i_size is less that inode->i_size 1143 * but greater than i_disksize. (hint delalloc) 1144 */ 1145 ext4_update_i_disksize(inode, (pos + copied)); 1146 i_size_changed = 1; 1147 } 1148 unlock_page(page); 1149 page_cache_release(page); 1150 1151 /* 1152 * Don't mark the inode dirty under page lock. First, it unnecessarily 1153 * makes the holding time of page lock longer. Second, it forces lock 1154 * ordering of page lock and transaction start for journaling 1155 * filesystems. 1156 */ 1157 if (i_size_changed) 1158 ext4_mark_inode_dirty(handle, inode); 1159 1160 if (copied < 0) 1161 ret = copied; 1162 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1163 /* if we have allocated more blocks and copied 1164 * less. We will have blocks allocated outside 1165 * inode->i_size. So truncate them 1166 */ 1167 ext4_orphan_add(handle, inode); 1168 errout: 1169 ret2 = ext4_journal_stop(handle); 1170 if (!ret) 1171 ret = ret2; 1172 1173 if (pos + len > inode->i_size) { 1174 ext4_truncate_failed_write(inode); 1175 /* 1176 * If truncate failed early the inode might still be 1177 * on the orphan list; we need to make sure the inode 1178 * is removed from the orphan list in that case. 1179 */ 1180 if (inode->i_nlink) 1181 ext4_orphan_del(NULL, inode); 1182 } 1183 1184 return ret ? ret : copied; 1185 } 1186 1187 static int ext4_journalled_write_end(struct file *file, 1188 struct address_space *mapping, 1189 loff_t pos, unsigned len, unsigned copied, 1190 struct page *page, void *fsdata) 1191 { 1192 handle_t *handle = ext4_journal_current_handle(); 1193 struct inode *inode = mapping->host; 1194 int ret = 0, ret2; 1195 int partial = 0; 1196 unsigned from, to; 1197 loff_t new_i_size; 1198 1199 trace_ext4_journalled_write_end(inode, pos, len, copied); 1200 from = pos & (PAGE_CACHE_SIZE - 1); 1201 to = from + len; 1202 1203 BUG_ON(!ext4_handle_valid(handle)); 1204 1205 if (ext4_has_inline_data(inode)) 1206 copied = ext4_write_inline_data_end(inode, pos, len, 1207 copied, page); 1208 else { 1209 if (copied < len) { 1210 if (!PageUptodate(page)) 1211 copied = 0; 1212 page_zero_new_buffers(page, from+copied, to); 1213 } 1214 1215 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1216 to, &partial, write_end_fn); 1217 if (!partial) 1218 SetPageUptodate(page); 1219 } 1220 new_i_size = pos + copied; 1221 if (new_i_size > inode->i_size) 1222 i_size_write(inode, pos+copied); 1223 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1224 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1225 if (new_i_size > EXT4_I(inode)->i_disksize) { 1226 ext4_update_i_disksize(inode, new_i_size); 1227 ret2 = ext4_mark_inode_dirty(handle, inode); 1228 if (!ret) 1229 ret = ret2; 1230 } 1231 1232 unlock_page(page); 1233 page_cache_release(page); 1234 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1235 /* if we have allocated more blocks and copied 1236 * less. We will have blocks allocated outside 1237 * inode->i_size. So truncate them 1238 */ 1239 ext4_orphan_add(handle, inode); 1240 1241 ret2 = ext4_journal_stop(handle); 1242 if (!ret) 1243 ret = ret2; 1244 if (pos + len > inode->i_size) { 1245 ext4_truncate_failed_write(inode); 1246 /* 1247 * If truncate failed early the inode might still be 1248 * on the orphan list; we need to make sure the inode 1249 * is removed from the orphan list in that case. 1250 */ 1251 if (inode->i_nlink) 1252 ext4_orphan_del(NULL, inode); 1253 } 1254 1255 return ret ? ret : copied; 1256 } 1257 1258 /* 1259 * Reserve a metadata for a single block located at lblock 1260 */ 1261 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1262 { 1263 int retries = 0; 1264 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1265 struct ext4_inode_info *ei = EXT4_I(inode); 1266 unsigned int md_needed; 1267 ext4_lblk_t save_last_lblock; 1268 int save_len; 1269 1270 /* 1271 * recalculate the amount of metadata blocks to reserve 1272 * in order to allocate nrblocks 1273 * worse case is one extent per block 1274 */ 1275 repeat: 1276 spin_lock(&ei->i_block_reservation_lock); 1277 /* 1278 * ext4_calc_metadata_amount() has side effects, which we have 1279 * to be prepared undo if we fail to claim space. 1280 */ 1281 save_len = ei->i_da_metadata_calc_len; 1282 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1283 md_needed = EXT4_NUM_B2C(sbi, 1284 ext4_calc_metadata_amount(inode, lblock)); 1285 trace_ext4_da_reserve_space(inode, md_needed); 1286 1287 /* 1288 * We do still charge estimated metadata to the sb though; 1289 * we cannot afford to run out of free blocks. 1290 */ 1291 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1292 ei->i_da_metadata_calc_len = save_len; 1293 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1294 spin_unlock(&ei->i_block_reservation_lock); 1295 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1296 cond_resched(); 1297 goto repeat; 1298 } 1299 return -ENOSPC; 1300 } 1301 ei->i_reserved_meta_blocks += md_needed; 1302 spin_unlock(&ei->i_block_reservation_lock); 1303 1304 return 0; /* success */ 1305 } 1306 1307 /* 1308 * Reserve a single cluster located at lblock 1309 */ 1310 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1311 { 1312 int retries = 0; 1313 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1314 struct ext4_inode_info *ei = EXT4_I(inode); 1315 unsigned int md_needed; 1316 int ret; 1317 ext4_lblk_t save_last_lblock; 1318 int save_len; 1319 1320 /* 1321 * We will charge metadata quota at writeout time; this saves 1322 * us from metadata over-estimation, though we may go over by 1323 * a small amount in the end. Here we just reserve for data. 1324 */ 1325 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1326 if (ret) 1327 return ret; 1328 1329 /* 1330 * recalculate the amount of metadata blocks to reserve 1331 * in order to allocate nrblocks 1332 * worse case is one extent per block 1333 */ 1334 repeat: 1335 spin_lock(&ei->i_block_reservation_lock); 1336 /* 1337 * ext4_calc_metadata_amount() has side effects, which we have 1338 * to be prepared undo if we fail to claim space. 1339 */ 1340 save_len = ei->i_da_metadata_calc_len; 1341 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1342 md_needed = EXT4_NUM_B2C(sbi, 1343 ext4_calc_metadata_amount(inode, lblock)); 1344 trace_ext4_da_reserve_space(inode, md_needed); 1345 1346 /* 1347 * We do still charge estimated metadata to the sb though; 1348 * we cannot afford to run out of free blocks. 1349 */ 1350 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1351 ei->i_da_metadata_calc_len = save_len; 1352 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1353 spin_unlock(&ei->i_block_reservation_lock); 1354 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1355 cond_resched(); 1356 goto repeat; 1357 } 1358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1359 return -ENOSPC; 1360 } 1361 ei->i_reserved_data_blocks++; 1362 ei->i_reserved_meta_blocks += md_needed; 1363 spin_unlock(&ei->i_block_reservation_lock); 1364 1365 return 0; /* success */ 1366 } 1367 1368 static void ext4_da_release_space(struct inode *inode, int to_free) 1369 { 1370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1371 struct ext4_inode_info *ei = EXT4_I(inode); 1372 1373 if (!to_free) 1374 return; /* Nothing to release, exit */ 1375 1376 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1377 1378 trace_ext4_da_release_space(inode, to_free); 1379 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1380 /* 1381 * if there aren't enough reserved blocks, then the 1382 * counter is messed up somewhere. Since this 1383 * function is called from invalidate page, it's 1384 * harmless to return without any action. 1385 */ 1386 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1387 "ino %lu, to_free %d with only %d reserved " 1388 "data blocks", inode->i_ino, to_free, 1389 ei->i_reserved_data_blocks); 1390 WARN_ON(1); 1391 to_free = ei->i_reserved_data_blocks; 1392 } 1393 ei->i_reserved_data_blocks -= to_free; 1394 1395 if (ei->i_reserved_data_blocks == 0) { 1396 /* 1397 * We can release all of the reserved metadata blocks 1398 * only when we have written all of the delayed 1399 * allocation blocks. 1400 * Note that in case of bigalloc, i_reserved_meta_blocks, 1401 * i_reserved_data_blocks, etc. refer to number of clusters. 1402 */ 1403 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1404 ei->i_reserved_meta_blocks); 1405 ei->i_reserved_meta_blocks = 0; 1406 ei->i_da_metadata_calc_len = 0; 1407 } 1408 1409 /* update fs dirty data blocks counter */ 1410 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1411 1412 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1413 1414 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1415 } 1416 1417 static void ext4_da_page_release_reservation(struct page *page, 1418 unsigned long offset) 1419 { 1420 int to_release = 0; 1421 struct buffer_head *head, *bh; 1422 unsigned int curr_off = 0; 1423 struct inode *inode = page->mapping->host; 1424 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1425 int num_clusters; 1426 ext4_fsblk_t lblk; 1427 1428 head = page_buffers(page); 1429 bh = head; 1430 do { 1431 unsigned int next_off = curr_off + bh->b_size; 1432 1433 if ((offset <= curr_off) && (buffer_delay(bh))) { 1434 to_release++; 1435 clear_buffer_delay(bh); 1436 } 1437 curr_off = next_off; 1438 } while ((bh = bh->b_this_page) != head); 1439 1440 if (to_release) { 1441 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1442 ext4_es_remove_extent(inode, lblk, to_release); 1443 } 1444 1445 /* If we have released all the blocks belonging to a cluster, then we 1446 * need to release the reserved space for that cluster. */ 1447 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1448 while (num_clusters > 0) { 1449 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1450 ((num_clusters - 1) << sbi->s_cluster_bits); 1451 if (sbi->s_cluster_ratio == 1 || 1452 !ext4_find_delalloc_cluster(inode, lblk)) 1453 ext4_da_release_space(inode, 1); 1454 1455 num_clusters--; 1456 } 1457 } 1458 1459 /* 1460 * Delayed allocation stuff 1461 */ 1462 1463 /* 1464 * mpage_da_submit_io - walks through extent of pages and try to write 1465 * them with writepage() call back 1466 * 1467 * @mpd->inode: inode 1468 * @mpd->first_page: first page of the extent 1469 * @mpd->next_page: page after the last page of the extent 1470 * 1471 * By the time mpage_da_submit_io() is called we expect all blocks 1472 * to be allocated. this may be wrong if allocation failed. 1473 * 1474 * As pages are already locked by write_cache_pages(), we can't use it 1475 */ 1476 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1477 struct ext4_map_blocks *map) 1478 { 1479 struct pagevec pvec; 1480 unsigned long index, end; 1481 int ret = 0, err, nr_pages, i; 1482 struct inode *inode = mpd->inode; 1483 struct address_space *mapping = inode->i_mapping; 1484 loff_t size = i_size_read(inode); 1485 unsigned int len, block_start; 1486 struct buffer_head *bh, *page_bufs = NULL; 1487 sector_t pblock = 0, cur_logical = 0; 1488 struct ext4_io_submit io_submit; 1489 1490 BUG_ON(mpd->next_page <= mpd->first_page); 1491 memset(&io_submit, 0, sizeof(io_submit)); 1492 /* 1493 * We need to start from the first_page to the next_page - 1 1494 * to make sure we also write the mapped dirty buffer_heads. 1495 * If we look at mpd->b_blocknr we would only be looking 1496 * at the currently mapped buffer_heads. 1497 */ 1498 index = mpd->first_page; 1499 end = mpd->next_page - 1; 1500 1501 pagevec_init(&pvec, 0); 1502 while (index <= end) { 1503 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1504 if (nr_pages == 0) 1505 break; 1506 for (i = 0; i < nr_pages; i++) { 1507 int skip_page = 0; 1508 struct page *page = pvec.pages[i]; 1509 1510 index = page->index; 1511 if (index > end) 1512 break; 1513 1514 if (index == size >> PAGE_CACHE_SHIFT) 1515 len = size & ~PAGE_CACHE_MASK; 1516 else 1517 len = PAGE_CACHE_SIZE; 1518 if (map) { 1519 cur_logical = index << (PAGE_CACHE_SHIFT - 1520 inode->i_blkbits); 1521 pblock = map->m_pblk + (cur_logical - 1522 map->m_lblk); 1523 } 1524 index++; 1525 1526 BUG_ON(!PageLocked(page)); 1527 BUG_ON(PageWriteback(page)); 1528 1529 bh = page_bufs = page_buffers(page); 1530 block_start = 0; 1531 do { 1532 if (map && (cur_logical >= map->m_lblk) && 1533 (cur_logical <= (map->m_lblk + 1534 (map->m_len - 1)))) { 1535 if (buffer_delay(bh)) { 1536 clear_buffer_delay(bh); 1537 bh->b_blocknr = pblock; 1538 } 1539 if (buffer_unwritten(bh) || 1540 buffer_mapped(bh)) 1541 BUG_ON(bh->b_blocknr != pblock); 1542 if (map->m_flags & EXT4_MAP_UNINIT) 1543 set_buffer_uninit(bh); 1544 clear_buffer_unwritten(bh); 1545 } 1546 1547 /* 1548 * skip page if block allocation undone and 1549 * block is dirty 1550 */ 1551 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1552 skip_page = 1; 1553 bh = bh->b_this_page; 1554 block_start += bh->b_size; 1555 cur_logical++; 1556 pblock++; 1557 } while (bh != page_bufs); 1558 1559 if (skip_page) { 1560 unlock_page(page); 1561 continue; 1562 } 1563 1564 clear_page_dirty_for_io(page); 1565 err = ext4_bio_write_page(&io_submit, page, len, 1566 mpd->wbc); 1567 if (!err) 1568 mpd->pages_written++; 1569 /* 1570 * In error case, we have to continue because 1571 * remaining pages are still locked 1572 */ 1573 if (ret == 0) 1574 ret = err; 1575 } 1576 pagevec_release(&pvec); 1577 } 1578 ext4_io_submit(&io_submit); 1579 return ret; 1580 } 1581 1582 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1583 { 1584 int nr_pages, i; 1585 pgoff_t index, end; 1586 struct pagevec pvec; 1587 struct inode *inode = mpd->inode; 1588 struct address_space *mapping = inode->i_mapping; 1589 ext4_lblk_t start, last; 1590 1591 index = mpd->first_page; 1592 end = mpd->next_page - 1; 1593 1594 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1595 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1596 ext4_es_remove_extent(inode, start, last - start + 1); 1597 1598 pagevec_init(&pvec, 0); 1599 while (index <= end) { 1600 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1601 if (nr_pages == 0) 1602 break; 1603 for (i = 0; i < nr_pages; i++) { 1604 struct page *page = pvec.pages[i]; 1605 if (page->index > end) 1606 break; 1607 BUG_ON(!PageLocked(page)); 1608 BUG_ON(PageWriteback(page)); 1609 block_invalidatepage(page, 0); 1610 ClearPageUptodate(page); 1611 unlock_page(page); 1612 } 1613 index = pvec.pages[nr_pages - 1]->index + 1; 1614 pagevec_release(&pvec); 1615 } 1616 return; 1617 } 1618 1619 static void ext4_print_free_blocks(struct inode *inode) 1620 { 1621 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1622 struct super_block *sb = inode->i_sb; 1623 struct ext4_inode_info *ei = EXT4_I(inode); 1624 1625 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1626 EXT4_C2B(EXT4_SB(inode->i_sb), 1627 ext4_count_free_clusters(sb))); 1628 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1629 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1630 (long long) EXT4_C2B(EXT4_SB(sb), 1631 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1632 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1633 (long long) EXT4_C2B(EXT4_SB(sb), 1634 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1635 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1636 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1637 ei->i_reserved_data_blocks); 1638 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1639 ei->i_reserved_meta_blocks); 1640 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1641 ei->i_allocated_meta_blocks); 1642 return; 1643 } 1644 1645 /* 1646 * mpage_da_map_and_submit - go through given space, map them 1647 * if necessary, and then submit them for I/O 1648 * 1649 * @mpd - bh describing space 1650 * 1651 * The function skips space we know is already mapped to disk blocks. 1652 * 1653 */ 1654 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1655 { 1656 int err, blks, get_blocks_flags; 1657 struct ext4_map_blocks map, *mapp = NULL; 1658 sector_t next = mpd->b_blocknr; 1659 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1660 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1661 handle_t *handle = NULL; 1662 1663 /* 1664 * If the blocks are mapped already, or we couldn't accumulate 1665 * any blocks, then proceed immediately to the submission stage. 1666 */ 1667 if ((mpd->b_size == 0) || 1668 ((mpd->b_state & (1 << BH_Mapped)) && 1669 !(mpd->b_state & (1 << BH_Delay)) && 1670 !(mpd->b_state & (1 << BH_Unwritten)))) 1671 goto submit_io; 1672 1673 handle = ext4_journal_current_handle(); 1674 BUG_ON(!handle); 1675 1676 /* 1677 * Call ext4_map_blocks() to allocate any delayed allocation 1678 * blocks, or to convert an uninitialized extent to be 1679 * initialized (in the case where we have written into 1680 * one or more preallocated blocks). 1681 * 1682 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1683 * indicate that we are on the delayed allocation path. This 1684 * affects functions in many different parts of the allocation 1685 * call path. This flag exists primarily because we don't 1686 * want to change *many* call functions, so ext4_map_blocks() 1687 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1688 * inode's allocation semaphore is taken. 1689 * 1690 * If the blocks in questions were delalloc blocks, set 1691 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1692 * variables are updated after the blocks have been allocated. 1693 */ 1694 map.m_lblk = next; 1695 map.m_len = max_blocks; 1696 /* 1697 * We're in delalloc path and it is possible that we're going to 1698 * need more metadata blocks than previously reserved. However 1699 * we must not fail because we're in writeback and there is 1700 * nothing we can do about it so it might result in data loss. 1701 * So use reserved blocks to allocate metadata if possible. 1702 */ 1703 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 1704 EXT4_GET_BLOCKS_METADATA_NOFAIL; 1705 if (ext4_should_dioread_nolock(mpd->inode)) 1706 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1707 if (mpd->b_state & (1 << BH_Delay)) 1708 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1709 1710 1711 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1712 if (blks < 0) { 1713 struct super_block *sb = mpd->inode->i_sb; 1714 1715 err = blks; 1716 /* 1717 * If get block returns EAGAIN or ENOSPC and there 1718 * appears to be free blocks we will just let 1719 * mpage_da_submit_io() unlock all of the pages. 1720 */ 1721 if (err == -EAGAIN) 1722 goto submit_io; 1723 1724 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1725 mpd->retval = err; 1726 goto submit_io; 1727 } 1728 1729 /* 1730 * get block failure will cause us to loop in 1731 * writepages, because a_ops->writepage won't be able 1732 * to make progress. The page will be redirtied by 1733 * writepage and writepages will again try to write 1734 * the same. 1735 */ 1736 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1737 ext4_msg(sb, KERN_CRIT, 1738 "delayed block allocation failed for inode %lu " 1739 "at logical offset %llu with max blocks %zd " 1740 "with error %d", mpd->inode->i_ino, 1741 (unsigned long long) next, 1742 mpd->b_size >> mpd->inode->i_blkbits, err); 1743 ext4_msg(sb, KERN_CRIT, 1744 "This should not happen!! Data will be lost"); 1745 if (err == -ENOSPC) 1746 ext4_print_free_blocks(mpd->inode); 1747 } 1748 /* invalidate all the pages */ 1749 ext4_da_block_invalidatepages(mpd); 1750 1751 /* Mark this page range as having been completed */ 1752 mpd->io_done = 1; 1753 return; 1754 } 1755 BUG_ON(blks == 0); 1756 1757 mapp = ↦ 1758 if (map.m_flags & EXT4_MAP_NEW) { 1759 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1760 int i; 1761 1762 for (i = 0; i < map.m_len; i++) 1763 unmap_underlying_metadata(bdev, map.m_pblk + i); 1764 } 1765 1766 /* 1767 * Update on-disk size along with block allocation. 1768 */ 1769 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1770 if (disksize > i_size_read(mpd->inode)) 1771 disksize = i_size_read(mpd->inode); 1772 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1773 ext4_update_i_disksize(mpd->inode, disksize); 1774 err = ext4_mark_inode_dirty(handle, mpd->inode); 1775 if (err) 1776 ext4_error(mpd->inode->i_sb, 1777 "Failed to mark inode %lu dirty", 1778 mpd->inode->i_ino); 1779 } 1780 1781 submit_io: 1782 mpage_da_submit_io(mpd, mapp); 1783 mpd->io_done = 1; 1784 } 1785 1786 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1787 (1 << BH_Delay) | (1 << BH_Unwritten)) 1788 1789 /* 1790 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1791 * 1792 * @mpd->lbh - extent of blocks 1793 * @logical - logical number of the block in the file 1794 * @b_state - b_state of the buffer head added 1795 * 1796 * the function is used to collect contig. blocks in same state 1797 */ 1798 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical, 1799 unsigned long b_state) 1800 { 1801 sector_t next; 1802 int blkbits = mpd->inode->i_blkbits; 1803 int nrblocks = mpd->b_size >> blkbits; 1804 1805 /* 1806 * XXX Don't go larger than mballoc is willing to allocate 1807 * This is a stopgap solution. We eventually need to fold 1808 * mpage_da_submit_io() into this function and then call 1809 * ext4_map_blocks() multiple times in a loop 1810 */ 1811 if (nrblocks >= (8*1024*1024 >> blkbits)) 1812 goto flush_it; 1813 1814 /* check if the reserved journal credits might overflow */ 1815 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) { 1816 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1817 /* 1818 * With non-extent format we are limited by the journal 1819 * credit available. Total credit needed to insert 1820 * nrblocks contiguous blocks is dependent on the 1821 * nrblocks. So limit nrblocks. 1822 */ 1823 goto flush_it; 1824 } 1825 } 1826 /* 1827 * First block in the extent 1828 */ 1829 if (mpd->b_size == 0) { 1830 mpd->b_blocknr = logical; 1831 mpd->b_size = 1 << blkbits; 1832 mpd->b_state = b_state & BH_FLAGS; 1833 return; 1834 } 1835 1836 next = mpd->b_blocknr + nrblocks; 1837 /* 1838 * Can we merge the block to our big extent? 1839 */ 1840 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1841 mpd->b_size += 1 << blkbits; 1842 return; 1843 } 1844 1845 flush_it: 1846 /* 1847 * We couldn't merge the block to our extent, so we 1848 * need to flush current extent and start new one 1849 */ 1850 mpage_da_map_and_submit(mpd); 1851 return; 1852 } 1853 1854 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1855 { 1856 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1857 } 1858 1859 /* 1860 * This function is grabs code from the very beginning of 1861 * ext4_map_blocks, but assumes that the caller is from delayed write 1862 * time. This function looks up the requested blocks and sets the 1863 * buffer delay bit under the protection of i_data_sem. 1864 */ 1865 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1866 struct ext4_map_blocks *map, 1867 struct buffer_head *bh) 1868 { 1869 struct extent_status es; 1870 int retval; 1871 sector_t invalid_block = ~((sector_t) 0xffff); 1872 #ifdef ES_AGGRESSIVE_TEST 1873 struct ext4_map_blocks orig_map; 1874 1875 memcpy(&orig_map, map, sizeof(*map)); 1876 #endif 1877 1878 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1879 invalid_block = ~0; 1880 1881 map->m_flags = 0; 1882 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1883 "logical block %lu\n", inode->i_ino, map->m_len, 1884 (unsigned long) map->m_lblk); 1885 1886 /* Lookup extent status tree firstly */ 1887 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1888 1889 if (ext4_es_is_hole(&es)) { 1890 retval = 0; 1891 down_read((&EXT4_I(inode)->i_data_sem)); 1892 goto add_delayed; 1893 } 1894 1895 /* 1896 * Delayed extent could be allocated by fallocate. 1897 * So we need to check it. 1898 */ 1899 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1900 map_bh(bh, inode->i_sb, invalid_block); 1901 set_buffer_new(bh); 1902 set_buffer_delay(bh); 1903 return 0; 1904 } 1905 1906 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1907 retval = es.es_len - (iblock - es.es_lblk); 1908 if (retval > map->m_len) 1909 retval = map->m_len; 1910 map->m_len = retval; 1911 if (ext4_es_is_written(&es)) 1912 map->m_flags |= EXT4_MAP_MAPPED; 1913 else if (ext4_es_is_unwritten(&es)) 1914 map->m_flags |= EXT4_MAP_UNWRITTEN; 1915 else 1916 BUG_ON(1); 1917 1918 #ifdef ES_AGGRESSIVE_TEST 1919 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1920 #endif 1921 return retval; 1922 } 1923 1924 /* 1925 * Try to see if we can get the block without requesting a new 1926 * file system block. 1927 */ 1928 down_read((&EXT4_I(inode)->i_data_sem)); 1929 if (ext4_has_inline_data(inode)) { 1930 /* 1931 * We will soon create blocks for this page, and let 1932 * us pretend as if the blocks aren't allocated yet. 1933 * In case of clusters, we have to handle the work 1934 * of mapping from cluster so that the reserved space 1935 * is calculated properly. 1936 */ 1937 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1938 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1939 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1940 retval = 0; 1941 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1942 retval = ext4_ext_map_blocks(NULL, inode, map, 1943 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1944 else 1945 retval = ext4_ind_map_blocks(NULL, inode, map, 1946 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1947 1948 add_delayed: 1949 if (retval == 0) { 1950 int ret; 1951 /* 1952 * XXX: __block_prepare_write() unmaps passed block, 1953 * is it OK? 1954 */ 1955 /* 1956 * If the block was allocated from previously allocated cluster, 1957 * then we don't need to reserve it again. However we still need 1958 * to reserve metadata for every block we're going to write. 1959 */ 1960 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1961 ret = ext4_da_reserve_space(inode, iblock); 1962 if (ret) { 1963 /* not enough space to reserve */ 1964 retval = ret; 1965 goto out_unlock; 1966 } 1967 } else { 1968 ret = ext4_da_reserve_metadata(inode, iblock); 1969 if (ret) { 1970 /* not enough space to reserve */ 1971 retval = ret; 1972 goto out_unlock; 1973 } 1974 } 1975 1976 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1977 ~0, EXTENT_STATUS_DELAYED); 1978 if (ret) { 1979 retval = ret; 1980 goto out_unlock; 1981 } 1982 1983 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1984 * and it should not appear on the bh->b_state. 1985 */ 1986 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1987 1988 map_bh(bh, inode->i_sb, invalid_block); 1989 set_buffer_new(bh); 1990 set_buffer_delay(bh); 1991 } else if (retval > 0) { 1992 int ret; 1993 unsigned long long status; 1994 1995 #ifdef ES_AGGRESSIVE_TEST 1996 if (retval != map->m_len) { 1997 printk("ES len assertation failed for inode: %lu " 1998 "retval %d != map->m_len %d " 1999 "in %s (lookup)\n", inode->i_ino, retval, 2000 map->m_len, __func__); 2001 } 2002 #endif 2003 2004 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 2005 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 2006 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 2007 map->m_pblk, status); 2008 if (ret != 0) 2009 retval = ret; 2010 } 2011 2012 out_unlock: 2013 up_read((&EXT4_I(inode)->i_data_sem)); 2014 2015 return retval; 2016 } 2017 2018 /* 2019 * This is a special get_blocks_t callback which is used by 2020 * ext4_da_write_begin(). It will either return mapped block or 2021 * reserve space for a single block. 2022 * 2023 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2024 * We also have b_blocknr = -1 and b_bdev initialized properly 2025 * 2026 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2027 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2028 * initialized properly. 2029 */ 2030 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2031 struct buffer_head *bh, int create) 2032 { 2033 struct ext4_map_blocks map; 2034 int ret = 0; 2035 2036 BUG_ON(create == 0); 2037 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2038 2039 map.m_lblk = iblock; 2040 map.m_len = 1; 2041 2042 /* 2043 * first, we need to know whether the block is allocated already 2044 * preallocated blocks are unmapped but should treated 2045 * the same as allocated blocks. 2046 */ 2047 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 2048 if (ret <= 0) 2049 return ret; 2050 2051 map_bh(bh, inode->i_sb, map.m_pblk); 2052 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2053 2054 if (buffer_unwritten(bh)) { 2055 /* A delayed write to unwritten bh should be marked 2056 * new and mapped. Mapped ensures that we don't do 2057 * get_block multiple times when we write to the same 2058 * offset and new ensures that we do proper zero out 2059 * for partial write. 2060 */ 2061 set_buffer_new(bh); 2062 set_buffer_mapped(bh); 2063 } 2064 return 0; 2065 } 2066 2067 static int bget_one(handle_t *handle, struct buffer_head *bh) 2068 { 2069 get_bh(bh); 2070 return 0; 2071 } 2072 2073 static int bput_one(handle_t *handle, struct buffer_head *bh) 2074 { 2075 put_bh(bh); 2076 return 0; 2077 } 2078 2079 static int __ext4_journalled_writepage(struct page *page, 2080 unsigned int len) 2081 { 2082 struct address_space *mapping = page->mapping; 2083 struct inode *inode = mapping->host; 2084 struct buffer_head *page_bufs = NULL; 2085 handle_t *handle = NULL; 2086 int ret = 0, err = 0; 2087 int inline_data = ext4_has_inline_data(inode); 2088 struct buffer_head *inode_bh = NULL; 2089 2090 ClearPageChecked(page); 2091 2092 if (inline_data) { 2093 BUG_ON(page->index != 0); 2094 BUG_ON(len > ext4_get_max_inline_size(inode)); 2095 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2096 if (inode_bh == NULL) 2097 goto out; 2098 } else { 2099 page_bufs = page_buffers(page); 2100 if (!page_bufs) { 2101 BUG(); 2102 goto out; 2103 } 2104 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2105 NULL, bget_one); 2106 } 2107 /* As soon as we unlock the page, it can go away, but we have 2108 * references to buffers so we are safe */ 2109 unlock_page(page); 2110 2111 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2112 ext4_writepage_trans_blocks(inode)); 2113 if (IS_ERR(handle)) { 2114 ret = PTR_ERR(handle); 2115 goto out; 2116 } 2117 2118 BUG_ON(!ext4_handle_valid(handle)); 2119 2120 if (inline_data) { 2121 ret = ext4_journal_get_write_access(handle, inode_bh); 2122 2123 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2124 2125 } else { 2126 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2127 do_journal_get_write_access); 2128 2129 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2130 write_end_fn); 2131 } 2132 if (ret == 0) 2133 ret = err; 2134 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2135 err = ext4_journal_stop(handle); 2136 if (!ret) 2137 ret = err; 2138 2139 if (!ext4_has_inline_data(inode)) 2140 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2141 NULL, bput_one); 2142 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2143 out: 2144 brelse(inode_bh); 2145 return ret; 2146 } 2147 2148 /* 2149 * Note that we don't need to start a transaction unless we're journaling data 2150 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2151 * need to file the inode to the transaction's list in ordered mode because if 2152 * we are writing back data added by write(), the inode is already there and if 2153 * we are writing back data modified via mmap(), no one guarantees in which 2154 * transaction the data will hit the disk. In case we are journaling data, we 2155 * cannot start transaction directly because transaction start ranks above page 2156 * lock so we have to do some magic. 2157 * 2158 * This function can get called via... 2159 * - ext4_da_writepages after taking page lock (have journal handle) 2160 * - journal_submit_inode_data_buffers (no journal handle) 2161 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2162 * - grab_page_cache when doing write_begin (have journal handle) 2163 * 2164 * We don't do any block allocation in this function. If we have page with 2165 * multiple blocks we need to write those buffer_heads that are mapped. This 2166 * is important for mmaped based write. So if we do with blocksize 1K 2167 * truncate(f, 1024); 2168 * a = mmap(f, 0, 4096); 2169 * a[0] = 'a'; 2170 * truncate(f, 4096); 2171 * we have in the page first buffer_head mapped via page_mkwrite call back 2172 * but other buffer_heads would be unmapped but dirty (dirty done via the 2173 * do_wp_page). So writepage should write the first block. If we modify 2174 * the mmap area beyond 1024 we will again get a page_fault and the 2175 * page_mkwrite callback will do the block allocation and mark the 2176 * buffer_heads mapped. 2177 * 2178 * We redirty the page if we have any buffer_heads that is either delay or 2179 * unwritten in the page. 2180 * 2181 * We can get recursively called as show below. 2182 * 2183 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2184 * ext4_writepage() 2185 * 2186 * But since we don't do any block allocation we should not deadlock. 2187 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2188 */ 2189 static int ext4_writepage(struct page *page, 2190 struct writeback_control *wbc) 2191 { 2192 int ret = 0; 2193 loff_t size; 2194 unsigned int len; 2195 struct buffer_head *page_bufs = NULL; 2196 struct inode *inode = page->mapping->host; 2197 struct ext4_io_submit io_submit; 2198 2199 trace_ext4_writepage(page); 2200 size = i_size_read(inode); 2201 if (page->index == size >> PAGE_CACHE_SHIFT) 2202 len = size & ~PAGE_CACHE_MASK; 2203 else 2204 len = PAGE_CACHE_SIZE; 2205 2206 page_bufs = page_buffers(page); 2207 /* 2208 * We cannot do block allocation or other extent handling in this 2209 * function. If there are buffers needing that, we have to redirty 2210 * the page. But we may reach here when we do a journal commit via 2211 * journal_submit_inode_data_buffers() and in that case we must write 2212 * allocated buffers to achieve data=ordered mode guarantees. 2213 */ 2214 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2215 ext4_bh_delay_or_unwritten)) { 2216 redirty_page_for_writepage(wbc, page); 2217 if (current->flags & PF_MEMALLOC) { 2218 /* 2219 * For memory cleaning there's no point in writing only 2220 * some buffers. So just bail out. Warn if we came here 2221 * from direct reclaim. 2222 */ 2223 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2224 == PF_MEMALLOC); 2225 unlock_page(page); 2226 return 0; 2227 } 2228 } 2229 2230 if (PageChecked(page) && ext4_should_journal_data(inode)) 2231 /* 2232 * It's mmapped pagecache. Add buffers and journal it. There 2233 * doesn't seem much point in redirtying the page here. 2234 */ 2235 return __ext4_journalled_writepage(page, len); 2236 2237 memset(&io_submit, 0, sizeof(io_submit)); 2238 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 2239 ext4_io_submit(&io_submit); 2240 return ret; 2241 } 2242 2243 /* 2244 * This is called via ext4_da_writepages() to 2245 * calculate the total number of credits to reserve to fit 2246 * a single extent allocation into a single transaction, 2247 * ext4_da_writpeages() will loop calling this before 2248 * the block allocation. 2249 */ 2250 2251 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2252 { 2253 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2254 2255 /* 2256 * With non-extent format the journal credit needed to 2257 * insert nrblocks contiguous block is dependent on 2258 * number of contiguous block. So we will limit 2259 * number of contiguous block to a sane value 2260 */ 2261 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2262 (max_blocks > EXT4_MAX_TRANS_DATA)) 2263 max_blocks = EXT4_MAX_TRANS_DATA; 2264 2265 return ext4_chunk_trans_blocks(inode, max_blocks); 2266 } 2267 2268 /* 2269 * write_cache_pages_da - walk the list of dirty pages of the given 2270 * address space and accumulate pages that need writing, and call 2271 * mpage_da_map_and_submit to map a single contiguous memory region 2272 * and then write them. 2273 */ 2274 static int write_cache_pages_da(handle_t *handle, 2275 struct address_space *mapping, 2276 struct writeback_control *wbc, 2277 struct mpage_da_data *mpd, 2278 pgoff_t *done_index) 2279 { 2280 struct buffer_head *bh, *head; 2281 struct inode *inode = mapping->host; 2282 struct pagevec pvec; 2283 unsigned int nr_pages; 2284 sector_t logical; 2285 pgoff_t index, end; 2286 long nr_to_write = wbc->nr_to_write; 2287 int i, tag, ret = 0; 2288 2289 memset(mpd, 0, sizeof(struct mpage_da_data)); 2290 mpd->wbc = wbc; 2291 mpd->inode = inode; 2292 pagevec_init(&pvec, 0); 2293 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2294 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2295 2296 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2297 tag = PAGECACHE_TAG_TOWRITE; 2298 else 2299 tag = PAGECACHE_TAG_DIRTY; 2300 2301 *done_index = index; 2302 while (index <= end) { 2303 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2304 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2305 if (nr_pages == 0) 2306 return 0; 2307 2308 for (i = 0; i < nr_pages; i++) { 2309 struct page *page = pvec.pages[i]; 2310 2311 /* 2312 * At this point, the page may be truncated or 2313 * invalidated (changing page->mapping to NULL), or 2314 * even swizzled back from swapper_space to tmpfs file 2315 * mapping. However, page->index will not change 2316 * because we have a reference on the page. 2317 */ 2318 if (page->index > end) 2319 goto out; 2320 2321 *done_index = page->index + 1; 2322 2323 /* 2324 * If we can't merge this page, and we have 2325 * accumulated an contiguous region, write it 2326 */ 2327 if ((mpd->next_page != page->index) && 2328 (mpd->next_page != mpd->first_page)) { 2329 mpage_da_map_and_submit(mpd); 2330 goto ret_extent_tail; 2331 } 2332 2333 lock_page(page); 2334 2335 /* 2336 * If the page is no longer dirty, or its 2337 * mapping no longer corresponds to inode we 2338 * are writing (which means it has been 2339 * truncated or invalidated), or the page is 2340 * already under writeback and we are not 2341 * doing a data integrity writeback, skip the page 2342 */ 2343 if (!PageDirty(page) || 2344 (PageWriteback(page) && 2345 (wbc->sync_mode == WB_SYNC_NONE)) || 2346 unlikely(page->mapping != mapping)) { 2347 unlock_page(page); 2348 continue; 2349 } 2350 2351 wait_on_page_writeback(page); 2352 BUG_ON(PageWriteback(page)); 2353 2354 /* 2355 * If we have inline data and arrive here, it means that 2356 * we will soon create the block for the 1st page, so 2357 * we'd better clear the inline data here. 2358 */ 2359 if (ext4_has_inline_data(inode)) { 2360 BUG_ON(ext4_test_inode_state(inode, 2361 EXT4_STATE_MAY_INLINE_DATA)); 2362 ext4_destroy_inline_data(handle, inode); 2363 } 2364 2365 if (mpd->next_page != page->index) 2366 mpd->first_page = page->index; 2367 mpd->next_page = page->index + 1; 2368 logical = (sector_t) page->index << 2369 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2370 2371 /* Add all dirty buffers to mpd */ 2372 head = page_buffers(page); 2373 bh = head; 2374 do { 2375 BUG_ON(buffer_locked(bh)); 2376 /* 2377 * We need to try to allocate unmapped blocks 2378 * in the same page. Otherwise we won't make 2379 * progress with the page in ext4_writepage 2380 */ 2381 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2382 mpage_add_bh_to_extent(mpd, logical, 2383 bh->b_state); 2384 if (mpd->io_done) 2385 goto ret_extent_tail; 2386 } else if (buffer_dirty(bh) && 2387 buffer_mapped(bh)) { 2388 /* 2389 * mapped dirty buffer. We need to 2390 * update the b_state because we look 2391 * at b_state in mpage_da_map_blocks. 2392 * We don't update b_size because if we 2393 * find an unmapped buffer_head later 2394 * we need to use the b_state flag of 2395 * that buffer_head. 2396 */ 2397 if (mpd->b_size == 0) 2398 mpd->b_state = 2399 bh->b_state & BH_FLAGS; 2400 } 2401 logical++; 2402 } while ((bh = bh->b_this_page) != head); 2403 2404 if (nr_to_write > 0) { 2405 nr_to_write--; 2406 if (nr_to_write == 0 && 2407 wbc->sync_mode == WB_SYNC_NONE) 2408 /* 2409 * We stop writing back only if we are 2410 * not doing integrity sync. In case of 2411 * integrity sync we have to keep going 2412 * because someone may be concurrently 2413 * dirtying pages, and we might have 2414 * synced a lot of newly appeared dirty 2415 * pages, but have not synced all of the 2416 * old dirty pages. 2417 */ 2418 goto out; 2419 } 2420 } 2421 pagevec_release(&pvec); 2422 cond_resched(); 2423 } 2424 return 0; 2425 ret_extent_tail: 2426 ret = MPAGE_DA_EXTENT_TAIL; 2427 out: 2428 pagevec_release(&pvec); 2429 cond_resched(); 2430 return ret; 2431 } 2432 2433 2434 static int ext4_da_writepages(struct address_space *mapping, 2435 struct writeback_control *wbc) 2436 { 2437 pgoff_t index; 2438 int range_whole = 0; 2439 handle_t *handle = NULL; 2440 struct mpage_da_data mpd; 2441 struct inode *inode = mapping->host; 2442 int pages_written = 0; 2443 unsigned int max_pages; 2444 int range_cyclic, cycled = 1, io_done = 0; 2445 int needed_blocks, ret = 0; 2446 long desired_nr_to_write, nr_to_writebump = 0; 2447 loff_t range_start = wbc->range_start; 2448 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2449 pgoff_t done_index = 0; 2450 pgoff_t end; 2451 struct blk_plug plug; 2452 2453 trace_ext4_da_writepages(inode, wbc); 2454 2455 /* 2456 * No pages to write? This is mainly a kludge to avoid starting 2457 * a transaction for special inodes like journal inode on last iput() 2458 * because that could violate lock ordering on umount 2459 */ 2460 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2461 return 0; 2462 2463 /* 2464 * If the filesystem has aborted, it is read-only, so return 2465 * right away instead of dumping stack traces later on that 2466 * will obscure the real source of the problem. We test 2467 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2468 * the latter could be true if the filesystem is mounted 2469 * read-only, and in that case, ext4_da_writepages should 2470 * *never* be called, so if that ever happens, we would want 2471 * the stack trace. 2472 */ 2473 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2474 return -EROFS; 2475 2476 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2477 range_whole = 1; 2478 2479 range_cyclic = wbc->range_cyclic; 2480 if (wbc->range_cyclic) { 2481 index = mapping->writeback_index; 2482 if (index) 2483 cycled = 0; 2484 wbc->range_start = index << PAGE_CACHE_SHIFT; 2485 wbc->range_end = LLONG_MAX; 2486 wbc->range_cyclic = 0; 2487 end = -1; 2488 } else { 2489 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2490 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2491 } 2492 2493 /* 2494 * This works around two forms of stupidity. The first is in 2495 * the writeback code, which caps the maximum number of pages 2496 * written to be 1024 pages. This is wrong on multiple 2497 * levels; different architectues have a different page size, 2498 * which changes the maximum amount of data which gets 2499 * written. Secondly, 4 megabytes is way too small. XFS 2500 * forces this value to be 16 megabytes by multiplying 2501 * nr_to_write parameter by four, and then relies on its 2502 * allocator to allocate larger extents to make them 2503 * contiguous. Unfortunately this brings us to the second 2504 * stupidity, which is that ext4's mballoc code only allocates 2505 * at most 2048 blocks. So we force contiguous writes up to 2506 * the number of dirty blocks in the inode, or 2507 * sbi->max_writeback_mb_bump whichever is smaller. 2508 */ 2509 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2510 if (!range_cyclic && range_whole) { 2511 if (wbc->nr_to_write == LONG_MAX) 2512 desired_nr_to_write = wbc->nr_to_write; 2513 else 2514 desired_nr_to_write = wbc->nr_to_write * 8; 2515 } else 2516 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2517 max_pages); 2518 if (desired_nr_to_write > max_pages) 2519 desired_nr_to_write = max_pages; 2520 2521 if (wbc->nr_to_write < desired_nr_to_write) { 2522 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2523 wbc->nr_to_write = desired_nr_to_write; 2524 } 2525 2526 retry: 2527 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2528 tag_pages_for_writeback(mapping, index, end); 2529 2530 blk_start_plug(&plug); 2531 while (!ret && wbc->nr_to_write > 0) { 2532 2533 /* 2534 * we insert one extent at a time. So we need 2535 * credit needed for single extent allocation. 2536 * journalled mode is currently not supported 2537 * by delalloc 2538 */ 2539 BUG_ON(ext4_should_journal_data(inode)); 2540 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2541 2542 /* start a new transaction*/ 2543 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2544 needed_blocks); 2545 if (IS_ERR(handle)) { 2546 ret = PTR_ERR(handle); 2547 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2548 "%ld pages, ino %lu; err %d", __func__, 2549 wbc->nr_to_write, inode->i_ino, ret); 2550 blk_finish_plug(&plug); 2551 goto out_writepages; 2552 } 2553 2554 /* 2555 * Now call write_cache_pages_da() to find the next 2556 * contiguous region of logical blocks that need 2557 * blocks to be allocated by ext4 and submit them. 2558 */ 2559 ret = write_cache_pages_da(handle, mapping, 2560 wbc, &mpd, &done_index); 2561 /* 2562 * If we have a contiguous extent of pages and we 2563 * haven't done the I/O yet, map the blocks and submit 2564 * them for I/O. 2565 */ 2566 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2567 mpage_da_map_and_submit(&mpd); 2568 ret = MPAGE_DA_EXTENT_TAIL; 2569 } 2570 trace_ext4_da_write_pages(inode, &mpd); 2571 wbc->nr_to_write -= mpd.pages_written; 2572 2573 ext4_journal_stop(handle); 2574 2575 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2576 /* commit the transaction which would 2577 * free blocks released in the transaction 2578 * and try again 2579 */ 2580 jbd2_journal_force_commit_nested(sbi->s_journal); 2581 ret = 0; 2582 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2583 /* 2584 * Got one extent now try with rest of the pages. 2585 * If mpd.retval is set -EIO, journal is aborted. 2586 * So we don't need to write any more. 2587 */ 2588 pages_written += mpd.pages_written; 2589 ret = mpd.retval; 2590 io_done = 1; 2591 } else if (wbc->nr_to_write) 2592 /* 2593 * There is no more writeout needed 2594 * or we requested for a noblocking writeout 2595 * and we found the device congested 2596 */ 2597 break; 2598 } 2599 blk_finish_plug(&plug); 2600 if (!io_done && !cycled) { 2601 cycled = 1; 2602 index = 0; 2603 wbc->range_start = index << PAGE_CACHE_SHIFT; 2604 wbc->range_end = mapping->writeback_index - 1; 2605 goto retry; 2606 } 2607 2608 /* Update index */ 2609 wbc->range_cyclic = range_cyclic; 2610 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2611 /* 2612 * set the writeback_index so that range_cyclic 2613 * mode will write it back later 2614 */ 2615 mapping->writeback_index = done_index; 2616 2617 out_writepages: 2618 wbc->nr_to_write -= nr_to_writebump; 2619 wbc->range_start = range_start; 2620 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2621 return ret; 2622 } 2623 2624 static int ext4_nonda_switch(struct super_block *sb) 2625 { 2626 s64 free_clusters, dirty_clusters; 2627 struct ext4_sb_info *sbi = EXT4_SB(sb); 2628 2629 /* 2630 * switch to non delalloc mode if we are running low 2631 * on free block. The free block accounting via percpu 2632 * counters can get slightly wrong with percpu_counter_batch getting 2633 * accumulated on each CPU without updating global counters 2634 * Delalloc need an accurate free block accounting. So switch 2635 * to non delalloc when we are near to error range. 2636 */ 2637 free_clusters = 2638 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2639 dirty_clusters = 2640 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2641 /* 2642 * Start pushing delalloc when 1/2 of free blocks are dirty. 2643 */ 2644 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2645 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2646 2647 if (2 * free_clusters < 3 * dirty_clusters || 2648 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2649 /* 2650 * free block count is less than 150% of dirty blocks 2651 * or free blocks is less than watermark 2652 */ 2653 return 1; 2654 } 2655 return 0; 2656 } 2657 2658 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2659 loff_t pos, unsigned len, unsigned flags, 2660 struct page **pagep, void **fsdata) 2661 { 2662 int ret, retries = 0; 2663 struct page *page; 2664 pgoff_t index; 2665 struct inode *inode = mapping->host; 2666 handle_t *handle; 2667 2668 index = pos >> PAGE_CACHE_SHIFT; 2669 2670 if (ext4_nonda_switch(inode->i_sb)) { 2671 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2672 return ext4_write_begin(file, mapping, pos, 2673 len, flags, pagep, fsdata); 2674 } 2675 *fsdata = (void *)0; 2676 trace_ext4_da_write_begin(inode, pos, len, flags); 2677 2678 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2679 ret = ext4_da_write_inline_data_begin(mapping, inode, 2680 pos, len, flags, 2681 pagep, fsdata); 2682 if (ret < 0) 2683 return ret; 2684 if (ret == 1) 2685 return 0; 2686 } 2687 2688 /* 2689 * grab_cache_page_write_begin() can take a long time if the 2690 * system is thrashing due to memory pressure, or if the page 2691 * is being written back. So grab it first before we start 2692 * the transaction handle. This also allows us to allocate 2693 * the page (if needed) without using GFP_NOFS. 2694 */ 2695 retry_grab: 2696 page = grab_cache_page_write_begin(mapping, index, flags); 2697 if (!page) 2698 return -ENOMEM; 2699 unlock_page(page); 2700 2701 /* 2702 * With delayed allocation, we don't log the i_disksize update 2703 * if there is delayed block allocation. But we still need 2704 * to journalling the i_disksize update if writes to the end 2705 * of file which has an already mapped buffer. 2706 */ 2707 retry_journal: 2708 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2709 if (IS_ERR(handle)) { 2710 page_cache_release(page); 2711 return PTR_ERR(handle); 2712 } 2713 2714 lock_page(page); 2715 if (page->mapping != mapping) { 2716 /* The page got truncated from under us */ 2717 unlock_page(page); 2718 page_cache_release(page); 2719 ext4_journal_stop(handle); 2720 goto retry_grab; 2721 } 2722 /* In case writeback began while the page was unlocked */ 2723 wait_on_page_writeback(page); 2724 2725 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2726 if (ret < 0) { 2727 unlock_page(page); 2728 ext4_journal_stop(handle); 2729 /* 2730 * block_write_begin may have instantiated a few blocks 2731 * outside i_size. Trim these off again. Don't need 2732 * i_size_read because we hold i_mutex. 2733 */ 2734 if (pos + len > inode->i_size) 2735 ext4_truncate_failed_write(inode); 2736 2737 if (ret == -ENOSPC && 2738 ext4_should_retry_alloc(inode->i_sb, &retries)) 2739 goto retry_journal; 2740 2741 page_cache_release(page); 2742 return ret; 2743 } 2744 2745 *pagep = page; 2746 return ret; 2747 } 2748 2749 /* 2750 * Check if we should update i_disksize 2751 * when write to the end of file but not require block allocation 2752 */ 2753 static int ext4_da_should_update_i_disksize(struct page *page, 2754 unsigned long offset) 2755 { 2756 struct buffer_head *bh; 2757 struct inode *inode = page->mapping->host; 2758 unsigned int idx; 2759 int i; 2760 2761 bh = page_buffers(page); 2762 idx = offset >> inode->i_blkbits; 2763 2764 for (i = 0; i < idx; i++) 2765 bh = bh->b_this_page; 2766 2767 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2768 return 0; 2769 return 1; 2770 } 2771 2772 static int ext4_da_write_end(struct file *file, 2773 struct address_space *mapping, 2774 loff_t pos, unsigned len, unsigned copied, 2775 struct page *page, void *fsdata) 2776 { 2777 struct inode *inode = mapping->host; 2778 int ret = 0, ret2; 2779 handle_t *handle = ext4_journal_current_handle(); 2780 loff_t new_i_size; 2781 unsigned long start, end; 2782 int write_mode = (int)(unsigned long)fsdata; 2783 2784 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2785 return ext4_write_end(file, mapping, pos, 2786 len, copied, page, fsdata); 2787 2788 trace_ext4_da_write_end(inode, pos, len, copied); 2789 start = pos & (PAGE_CACHE_SIZE - 1); 2790 end = start + copied - 1; 2791 2792 /* 2793 * generic_write_end() will run mark_inode_dirty() if i_size 2794 * changes. So let's piggyback the i_disksize mark_inode_dirty 2795 * into that. 2796 */ 2797 new_i_size = pos + copied; 2798 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2799 if (ext4_has_inline_data(inode) || 2800 ext4_da_should_update_i_disksize(page, end)) { 2801 down_write(&EXT4_I(inode)->i_data_sem); 2802 if (new_i_size > EXT4_I(inode)->i_disksize) 2803 EXT4_I(inode)->i_disksize = new_i_size; 2804 up_write(&EXT4_I(inode)->i_data_sem); 2805 /* We need to mark inode dirty even if 2806 * new_i_size is less that inode->i_size 2807 * bu greater than i_disksize.(hint delalloc) 2808 */ 2809 ext4_mark_inode_dirty(handle, inode); 2810 } 2811 } 2812 2813 if (write_mode != CONVERT_INLINE_DATA && 2814 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2815 ext4_has_inline_data(inode)) 2816 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2817 page); 2818 else 2819 ret2 = generic_write_end(file, mapping, pos, len, copied, 2820 page, fsdata); 2821 2822 copied = ret2; 2823 if (ret2 < 0) 2824 ret = ret2; 2825 ret2 = ext4_journal_stop(handle); 2826 if (!ret) 2827 ret = ret2; 2828 2829 return ret ? ret : copied; 2830 } 2831 2832 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2833 { 2834 /* 2835 * Drop reserved blocks 2836 */ 2837 BUG_ON(!PageLocked(page)); 2838 if (!page_has_buffers(page)) 2839 goto out; 2840 2841 ext4_da_page_release_reservation(page, offset); 2842 2843 out: 2844 ext4_invalidatepage(page, offset); 2845 2846 return; 2847 } 2848 2849 /* 2850 * Force all delayed allocation blocks to be allocated for a given inode. 2851 */ 2852 int ext4_alloc_da_blocks(struct inode *inode) 2853 { 2854 trace_ext4_alloc_da_blocks(inode); 2855 2856 if (!EXT4_I(inode)->i_reserved_data_blocks && 2857 !EXT4_I(inode)->i_reserved_meta_blocks) 2858 return 0; 2859 2860 /* 2861 * We do something simple for now. The filemap_flush() will 2862 * also start triggering a write of the data blocks, which is 2863 * not strictly speaking necessary (and for users of 2864 * laptop_mode, not even desirable). However, to do otherwise 2865 * would require replicating code paths in: 2866 * 2867 * ext4_da_writepages() -> 2868 * write_cache_pages() ---> (via passed in callback function) 2869 * __mpage_da_writepage() --> 2870 * mpage_add_bh_to_extent() 2871 * mpage_da_map_blocks() 2872 * 2873 * The problem is that write_cache_pages(), located in 2874 * mm/page-writeback.c, marks pages clean in preparation for 2875 * doing I/O, which is not desirable if we're not planning on 2876 * doing I/O at all. 2877 * 2878 * We could call write_cache_pages(), and then redirty all of 2879 * the pages by calling redirty_page_for_writepage() but that 2880 * would be ugly in the extreme. So instead we would need to 2881 * replicate parts of the code in the above functions, 2882 * simplifying them because we wouldn't actually intend to 2883 * write out the pages, but rather only collect contiguous 2884 * logical block extents, call the multi-block allocator, and 2885 * then update the buffer heads with the block allocations. 2886 * 2887 * For now, though, we'll cheat by calling filemap_flush(), 2888 * which will map the blocks, and start the I/O, but not 2889 * actually wait for the I/O to complete. 2890 */ 2891 return filemap_flush(inode->i_mapping); 2892 } 2893 2894 /* 2895 * bmap() is special. It gets used by applications such as lilo and by 2896 * the swapper to find the on-disk block of a specific piece of data. 2897 * 2898 * Naturally, this is dangerous if the block concerned is still in the 2899 * journal. If somebody makes a swapfile on an ext4 data-journaling 2900 * filesystem and enables swap, then they may get a nasty shock when the 2901 * data getting swapped to that swapfile suddenly gets overwritten by 2902 * the original zero's written out previously to the journal and 2903 * awaiting writeback in the kernel's buffer cache. 2904 * 2905 * So, if we see any bmap calls here on a modified, data-journaled file, 2906 * take extra steps to flush any blocks which might be in the cache. 2907 */ 2908 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2909 { 2910 struct inode *inode = mapping->host; 2911 journal_t *journal; 2912 int err; 2913 2914 /* 2915 * We can get here for an inline file via the FIBMAP ioctl 2916 */ 2917 if (ext4_has_inline_data(inode)) 2918 return 0; 2919 2920 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2921 test_opt(inode->i_sb, DELALLOC)) { 2922 /* 2923 * With delalloc we want to sync the file 2924 * so that we can make sure we allocate 2925 * blocks for file 2926 */ 2927 filemap_write_and_wait(mapping); 2928 } 2929 2930 if (EXT4_JOURNAL(inode) && 2931 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2932 /* 2933 * This is a REALLY heavyweight approach, but the use of 2934 * bmap on dirty files is expected to be extremely rare: 2935 * only if we run lilo or swapon on a freshly made file 2936 * do we expect this to happen. 2937 * 2938 * (bmap requires CAP_SYS_RAWIO so this does not 2939 * represent an unprivileged user DOS attack --- we'd be 2940 * in trouble if mortal users could trigger this path at 2941 * will.) 2942 * 2943 * NB. EXT4_STATE_JDATA is not set on files other than 2944 * regular files. If somebody wants to bmap a directory 2945 * or symlink and gets confused because the buffer 2946 * hasn't yet been flushed to disk, they deserve 2947 * everything they get. 2948 */ 2949 2950 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2951 journal = EXT4_JOURNAL(inode); 2952 jbd2_journal_lock_updates(journal); 2953 err = jbd2_journal_flush(journal); 2954 jbd2_journal_unlock_updates(journal); 2955 2956 if (err) 2957 return 0; 2958 } 2959 2960 return generic_block_bmap(mapping, block, ext4_get_block); 2961 } 2962 2963 static int ext4_readpage(struct file *file, struct page *page) 2964 { 2965 int ret = -EAGAIN; 2966 struct inode *inode = page->mapping->host; 2967 2968 trace_ext4_readpage(page); 2969 2970 if (ext4_has_inline_data(inode)) 2971 ret = ext4_readpage_inline(inode, page); 2972 2973 if (ret == -EAGAIN) 2974 return mpage_readpage(page, ext4_get_block); 2975 2976 return ret; 2977 } 2978 2979 static int 2980 ext4_readpages(struct file *file, struct address_space *mapping, 2981 struct list_head *pages, unsigned nr_pages) 2982 { 2983 struct inode *inode = mapping->host; 2984 2985 /* If the file has inline data, no need to do readpages. */ 2986 if (ext4_has_inline_data(inode)) 2987 return 0; 2988 2989 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2990 } 2991 2992 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2993 { 2994 trace_ext4_invalidatepage(page, offset); 2995 2996 /* No journalling happens on data buffers when this function is used */ 2997 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2998 2999 block_invalidatepage(page, offset); 3000 } 3001 3002 static int __ext4_journalled_invalidatepage(struct page *page, 3003 unsigned long offset) 3004 { 3005 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3006 3007 trace_ext4_journalled_invalidatepage(page, offset); 3008 3009 /* 3010 * If it's a full truncate we just forget about the pending dirtying 3011 */ 3012 if (offset == 0) 3013 ClearPageChecked(page); 3014 3015 return jbd2_journal_invalidatepage(journal, page, offset); 3016 } 3017 3018 /* Wrapper for aops... */ 3019 static void ext4_journalled_invalidatepage(struct page *page, 3020 unsigned long offset) 3021 { 3022 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0); 3023 } 3024 3025 static int ext4_releasepage(struct page *page, gfp_t wait) 3026 { 3027 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3028 3029 trace_ext4_releasepage(page); 3030 3031 /* Page has dirty journalled data -> cannot release */ 3032 if (PageChecked(page)) 3033 return 0; 3034 if (journal) 3035 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3036 else 3037 return try_to_free_buffers(page); 3038 } 3039 3040 /* 3041 * ext4_get_block used when preparing for a DIO write or buffer write. 3042 * We allocate an uinitialized extent if blocks haven't been allocated. 3043 * The extent will be converted to initialized after the IO is complete. 3044 */ 3045 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3046 struct buffer_head *bh_result, int create) 3047 { 3048 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3049 inode->i_ino, create); 3050 return _ext4_get_block(inode, iblock, bh_result, 3051 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3052 } 3053 3054 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3055 struct buffer_head *bh_result, int create) 3056 { 3057 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3058 inode->i_ino, create); 3059 return _ext4_get_block(inode, iblock, bh_result, 3060 EXT4_GET_BLOCKS_NO_LOCK); 3061 } 3062 3063 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3064 ssize_t size, void *private, int ret, 3065 bool is_async) 3066 { 3067 struct inode *inode = file_inode(iocb->ki_filp); 3068 ext4_io_end_t *io_end = iocb->private; 3069 3070 /* if not async direct IO or dio with 0 bytes write, just return */ 3071 if (!io_end || !size) 3072 goto out; 3073 3074 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3075 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3076 iocb->private, io_end->inode->i_ino, iocb, offset, 3077 size); 3078 3079 iocb->private = NULL; 3080 3081 /* if not aio dio with unwritten extents, just free io and return */ 3082 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 3083 ext4_free_io_end(io_end); 3084 out: 3085 inode_dio_done(inode); 3086 if (is_async) 3087 aio_complete(iocb, ret, 0); 3088 return; 3089 } 3090 3091 io_end->offset = offset; 3092 io_end->size = size; 3093 if (is_async) { 3094 io_end->iocb = iocb; 3095 io_end->result = ret; 3096 } 3097 3098 ext4_add_complete_io(io_end); 3099 } 3100 3101 /* 3102 * For ext4 extent files, ext4 will do direct-io write to holes, 3103 * preallocated extents, and those write extend the file, no need to 3104 * fall back to buffered IO. 3105 * 3106 * For holes, we fallocate those blocks, mark them as uninitialized 3107 * If those blocks were preallocated, we mark sure they are split, but 3108 * still keep the range to write as uninitialized. 3109 * 3110 * The unwritten extents will be converted to written when DIO is completed. 3111 * For async direct IO, since the IO may still pending when return, we 3112 * set up an end_io call back function, which will do the conversion 3113 * when async direct IO completed. 3114 * 3115 * If the O_DIRECT write will extend the file then add this inode to the 3116 * orphan list. So recovery will truncate it back to the original size 3117 * if the machine crashes during the write. 3118 * 3119 */ 3120 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3121 const struct iovec *iov, loff_t offset, 3122 unsigned long nr_segs) 3123 { 3124 struct file *file = iocb->ki_filp; 3125 struct inode *inode = file->f_mapping->host; 3126 ssize_t ret; 3127 size_t count = iov_length(iov, nr_segs); 3128 int overwrite = 0; 3129 get_block_t *get_block_func = NULL; 3130 int dio_flags = 0; 3131 loff_t final_size = offset + count; 3132 3133 /* Use the old path for reads and writes beyond i_size. */ 3134 if (rw != WRITE || final_size > inode->i_size) 3135 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3136 3137 BUG_ON(iocb->private == NULL); 3138 3139 /* If we do a overwrite dio, i_mutex locking can be released */ 3140 overwrite = *((int *)iocb->private); 3141 3142 if (overwrite) { 3143 atomic_inc(&inode->i_dio_count); 3144 down_read(&EXT4_I(inode)->i_data_sem); 3145 mutex_unlock(&inode->i_mutex); 3146 } 3147 3148 /* 3149 * We could direct write to holes and fallocate. 3150 * 3151 * Allocated blocks to fill the hole are marked as 3152 * uninitialized to prevent parallel buffered read to expose 3153 * the stale data before DIO complete the data IO. 3154 * 3155 * As to previously fallocated extents, ext4 get_block will 3156 * just simply mark the buffer mapped but still keep the 3157 * extents uninitialized. 3158 * 3159 * For non AIO case, we will convert those unwritten extents 3160 * to written after return back from blockdev_direct_IO. 3161 * 3162 * For async DIO, the conversion needs to be deferred when the 3163 * IO is completed. The ext4 end_io callback function will be 3164 * called to take care of the conversion work. Here for async 3165 * case, we allocate an io_end structure to hook to the iocb. 3166 */ 3167 iocb->private = NULL; 3168 ext4_inode_aio_set(inode, NULL); 3169 if (!is_sync_kiocb(iocb)) { 3170 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS); 3171 if (!io_end) { 3172 ret = -ENOMEM; 3173 goto retake_lock; 3174 } 3175 io_end->flag |= EXT4_IO_END_DIRECT; 3176 iocb->private = io_end; 3177 /* 3178 * we save the io structure for current async direct 3179 * IO, so that later ext4_map_blocks() could flag the 3180 * io structure whether there is a unwritten extents 3181 * needs to be converted when IO is completed. 3182 */ 3183 ext4_inode_aio_set(inode, io_end); 3184 } 3185 3186 if (overwrite) { 3187 get_block_func = ext4_get_block_write_nolock; 3188 } else { 3189 get_block_func = ext4_get_block_write; 3190 dio_flags = DIO_LOCKING; 3191 } 3192 ret = __blockdev_direct_IO(rw, iocb, inode, 3193 inode->i_sb->s_bdev, iov, 3194 offset, nr_segs, 3195 get_block_func, 3196 ext4_end_io_dio, 3197 NULL, 3198 dio_flags); 3199 3200 if (iocb->private) 3201 ext4_inode_aio_set(inode, NULL); 3202 /* 3203 * The io_end structure takes a reference to the inode, that 3204 * structure needs to be destroyed and the reference to the 3205 * inode need to be dropped, when IO is complete, even with 0 3206 * byte write, or failed. 3207 * 3208 * In the successful AIO DIO case, the io_end structure will 3209 * be destroyed and the reference to the inode will be dropped 3210 * after the end_io call back function is called. 3211 * 3212 * In the case there is 0 byte write, or error case, since VFS 3213 * direct IO won't invoke the end_io call back function, we 3214 * need to free the end_io structure here. 3215 */ 3216 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3217 ext4_free_io_end(iocb->private); 3218 iocb->private = NULL; 3219 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3220 EXT4_STATE_DIO_UNWRITTEN)) { 3221 int err; 3222 /* 3223 * for non AIO case, since the IO is already 3224 * completed, we could do the conversion right here 3225 */ 3226 err = ext4_convert_unwritten_extents(inode, 3227 offset, ret); 3228 if (err < 0) 3229 ret = err; 3230 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3231 } 3232 3233 retake_lock: 3234 /* take i_mutex locking again if we do a ovewrite dio */ 3235 if (overwrite) { 3236 inode_dio_done(inode); 3237 up_read(&EXT4_I(inode)->i_data_sem); 3238 mutex_lock(&inode->i_mutex); 3239 } 3240 3241 return ret; 3242 } 3243 3244 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3245 const struct iovec *iov, loff_t offset, 3246 unsigned long nr_segs) 3247 { 3248 struct file *file = iocb->ki_filp; 3249 struct inode *inode = file->f_mapping->host; 3250 ssize_t ret; 3251 3252 /* 3253 * If we are doing data journalling we don't support O_DIRECT 3254 */ 3255 if (ext4_should_journal_data(inode)) 3256 return 0; 3257 3258 /* Let buffer I/O handle the inline data case. */ 3259 if (ext4_has_inline_data(inode)) 3260 return 0; 3261 3262 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3263 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3264 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3265 else 3266 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3267 trace_ext4_direct_IO_exit(inode, offset, 3268 iov_length(iov, nr_segs), rw, ret); 3269 return ret; 3270 } 3271 3272 /* 3273 * Pages can be marked dirty completely asynchronously from ext4's journalling 3274 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3275 * much here because ->set_page_dirty is called under VFS locks. The page is 3276 * not necessarily locked. 3277 * 3278 * We cannot just dirty the page and leave attached buffers clean, because the 3279 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3280 * or jbddirty because all the journalling code will explode. 3281 * 3282 * So what we do is to mark the page "pending dirty" and next time writepage 3283 * is called, propagate that into the buffers appropriately. 3284 */ 3285 static int ext4_journalled_set_page_dirty(struct page *page) 3286 { 3287 SetPageChecked(page); 3288 return __set_page_dirty_nobuffers(page); 3289 } 3290 3291 static const struct address_space_operations ext4_aops = { 3292 .readpage = ext4_readpage, 3293 .readpages = ext4_readpages, 3294 .writepage = ext4_writepage, 3295 .write_begin = ext4_write_begin, 3296 .write_end = ext4_write_end, 3297 .bmap = ext4_bmap, 3298 .invalidatepage = ext4_invalidatepage, 3299 .releasepage = ext4_releasepage, 3300 .direct_IO = ext4_direct_IO, 3301 .migratepage = buffer_migrate_page, 3302 .is_partially_uptodate = block_is_partially_uptodate, 3303 .error_remove_page = generic_error_remove_page, 3304 }; 3305 3306 static const struct address_space_operations ext4_journalled_aops = { 3307 .readpage = ext4_readpage, 3308 .readpages = ext4_readpages, 3309 .writepage = ext4_writepage, 3310 .write_begin = ext4_write_begin, 3311 .write_end = ext4_journalled_write_end, 3312 .set_page_dirty = ext4_journalled_set_page_dirty, 3313 .bmap = ext4_bmap, 3314 .invalidatepage = ext4_journalled_invalidatepage, 3315 .releasepage = ext4_releasepage, 3316 .direct_IO = ext4_direct_IO, 3317 .is_partially_uptodate = block_is_partially_uptodate, 3318 .error_remove_page = generic_error_remove_page, 3319 }; 3320 3321 static const struct address_space_operations ext4_da_aops = { 3322 .readpage = ext4_readpage, 3323 .readpages = ext4_readpages, 3324 .writepage = ext4_writepage, 3325 .writepages = ext4_da_writepages, 3326 .write_begin = ext4_da_write_begin, 3327 .write_end = ext4_da_write_end, 3328 .bmap = ext4_bmap, 3329 .invalidatepage = ext4_da_invalidatepage, 3330 .releasepage = ext4_releasepage, 3331 .direct_IO = ext4_direct_IO, 3332 .migratepage = buffer_migrate_page, 3333 .is_partially_uptodate = block_is_partially_uptodate, 3334 .error_remove_page = generic_error_remove_page, 3335 }; 3336 3337 void ext4_set_aops(struct inode *inode) 3338 { 3339 switch (ext4_inode_journal_mode(inode)) { 3340 case EXT4_INODE_ORDERED_DATA_MODE: 3341 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3342 break; 3343 case EXT4_INODE_WRITEBACK_DATA_MODE: 3344 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3345 break; 3346 case EXT4_INODE_JOURNAL_DATA_MODE: 3347 inode->i_mapping->a_ops = &ext4_journalled_aops; 3348 return; 3349 default: 3350 BUG(); 3351 } 3352 if (test_opt(inode->i_sb, DELALLOC)) 3353 inode->i_mapping->a_ops = &ext4_da_aops; 3354 else 3355 inode->i_mapping->a_ops = &ext4_aops; 3356 } 3357 3358 3359 /* 3360 * ext4_discard_partial_page_buffers() 3361 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3362 * This function finds and locks the page containing the offset 3363 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3364 * Calling functions that already have the page locked should call 3365 * ext4_discard_partial_page_buffers_no_lock directly. 3366 */ 3367 int ext4_discard_partial_page_buffers(handle_t *handle, 3368 struct address_space *mapping, loff_t from, 3369 loff_t length, int flags) 3370 { 3371 struct inode *inode = mapping->host; 3372 struct page *page; 3373 int err = 0; 3374 3375 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3376 mapping_gfp_mask(mapping) & ~__GFP_FS); 3377 if (!page) 3378 return -ENOMEM; 3379 3380 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3381 from, length, flags); 3382 3383 unlock_page(page); 3384 page_cache_release(page); 3385 return err; 3386 } 3387 3388 /* 3389 * ext4_discard_partial_page_buffers_no_lock() 3390 * Zeros a page range of length 'length' starting from offset 'from'. 3391 * Buffer heads that correspond to the block aligned regions of the 3392 * zeroed range will be unmapped. Unblock aligned regions 3393 * will have the corresponding buffer head mapped if needed so that 3394 * that region of the page can be updated with the partial zero out. 3395 * 3396 * This function assumes that the page has already been locked. The 3397 * The range to be discarded must be contained with in the given page. 3398 * If the specified range exceeds the end of the page it will be shortened 3399 * to the end of the page that corresponds to 'from'. This function is 3400 * appropriate for updating a page and it buffer heads to be unmapped and 3401 * zeroed for blocks that have been either released, or are going to be 3402 * released. 3403 * 3404 * handle: The journal handle 3405 * inode: The files inode 3406 * page: A locked page that contains the offset "from" 3407 * from: The starting byte offset (from the beginning of the file) 3408 * to begin discarding 3409 * len: The length of bytes to discard 3410 * flags: Optional flags that may be used: 3411 * 3412 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3413 * Only zero the regions of the page whose buffer heads 3414 * have already been unmapped. This flag is appropriate 3415 * for updating the contents of a page whose blocks may 3416 * have already been released, and we only want to zero 3417 * out the regions that correspond to those released blocks. 3418 * 3419 * Returns zero on success or negative on failure. 3420 */ 3421 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3422 struct inode *inode, struct page *page, loff_t from, 3423 loff_t length, int flags) 3424 { 3425 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3426 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3427 unsigned int blocksize, max, pos; 3428 ext4_lblk_t iblock; 3429 struct buffer_head *bh; 3430 int err = 0; 3431 3432 blocksize = inode->i_sb->s_blocksize; 3433 max = PAGE_CACHE_SIZE - offset; 3434 3435 if (index != page->index) 3436 return -EINVAL; 3437 3438 /* 3439 * correct length if it does not fall between 3440 * 'from' and the end of the page 3441 */ 3442 if (length > max || length < 0) 3443 length = max; 3444 3445 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3446 3447 if (!page_has_buffers(page)) 3448 create_empty_buffers(page, blocksize, 0); 3449 3450 /* Find the buffer that contains "offset" */ 3451 bh = page_buffers(page); 3452 pos = blocksize; 3453 while (offset >= pos) { 3454 bh = bh->b_this_page; 3455 iblock++; 3456 pos += blocksize; 3457 } 3458 3459 pos = offset; 3460 while (pos < offset + length) { 3461 unsigned int end_of_block, range_to_discard; 3462 3463 err = 0; 3464 3465 /* The length of space left to zero and unmap */ 3466 range_to_discard = offset + length - pos; 3467 3468 /* The length of space until the end of the block */ 3469 end_of_block = blocksize - (pos & (blocksize-1)); 3470 3471 /* 3472 * Do not unmap or zero past end of block 3473 * for this buffer head 3474 */ 3475 if (range_to_discard > end_of_block) 3476 range_to_discard = end_of_block; 3477 3478 3479 /* 3480 * Skip this buffer head if we are only zeroing unampped 3481 * regions of the page 3482 */ 3483 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3484 buffer_mapped(bh)) 3485 goto next; 3486 3487 /* If the range is block aligned, unmap */ 3488 if (range_to_discard == blocksize) { 3489 clear_buffer_dirty(bh); 3490 bh->b_bdev = NULL; 3491 clear_buffer_mapped(bh); 3492 clear_buffer_req(bh); 3493 clear_buffer_new(bh); 3494 clear_buffer_delay(bh); 3495 clear_buffer_unwritten(bh); 3496 clear_buffer_uptodate(bh); 3497 zero_user(page, pos, range_to_discard); 3498 BUFFER_TRACE(bh, "Buffer discarded"); 3499 goto next; 3500 } 3501 3502 /* 3503 * If this block is not completely contained in the range 3504 * to be discarded, then it is not going to be released. Because 3505 * we need to keep this block, we need to make sure this part 3506 * of the page is uptodate before we modify it by writeing 3507 * partial zeros on it. 3508 */ 3509 if (!buffer_mapped(bh)) { 3510 /* 3511 * Buffer head must be mapped before we can read 3512 * from the block 3513 */ 3514 BUFFER_TRACE(bh, "unmapped"); 3515 ext4_get_block(inode, iblock, bh, 0); 3516 /* unmapped? It's a hole - nothing to do */ 3517 if (!buffer_mapped(bh)) { 3518 BUFFER_TRACE(bh, "still unmapped"); 3519 goto next; 3520 } 3521 } 3522 3523 /* Ok, it's mapped. Make sure it's up-to-date */ 3524 if (PageUptodate(page)) 3525 set_buffer_uptodate(bh); 3526 3527 if (!buffer_uptodate(bh)) { 3528 err = -EIO; 3529 ll_rw_block(READ, 1, &bh); 3530 wait_on_buffer(bh); 3531 /* Uhhuh. Read error. Complain and punt.*/ 3532 if (!buffer_uptodate(bh)) 3533 goto next; 3534 } 3535 3536 if (ext4_should_journal_data(inode)) { 3537 BUFFER_TRACE(bh, "get write access"); 3538 err = ext4_journal_get_write_access(handle, bh); 3539 if (err) 3540 goto next; 3541 } 3542 3543 zero_user(page, pos, range_to_discard); 3544 3545 err = 0; 3546 if (ext4_should_journal_data(inode)) { 3547 err = ext4_handle_dirty_metadata(handle, inode, bh); 3548 } else 3549 mark_buffer_dirty(bh); 3550 3551 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3552 next: 3553 bh = bh->b_this_page; 3554 iblock++; 3555 pos += range_to_discard; 3556 } 3557 3558 return err; 3559 } 3560 3561 int ext4_can_truncate(struct inode *inode) 3562 { 3563 if (S_ISREG(inode->i_mode)) 3564 return 1; 3565 if (S_ISDIR(inode->i_mode)) 3566 return 1; 3567 if (S_ISLNK(inode->i_mode)) 3568 return !ext4_inode_is_fast_symlink(inode); 3569 return 0; 3570 } 3571 3572 /* 3573 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3574 * associated with the given offset and length 3575 * 3576 * @inode: File inode 3577 * @offset: The offset where the hole will begin 3578 * @len: The length of the hole 3579 * 3580 * Returns: 0 on success or negative on failure 3581 */ 3582 3583 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3584 { 3585 struct inode *inode = file_inode(file); 3586 struct super_block *sb = inode->i_sb; 3587 ext4_lblk_t first_block, stop_block; 3588 struct address_space *mapping = inode->i_mapping; 3589 loff_t first_page, last_page, page_len; 3590 loff_t first_page_offset, last_page_offset; 3591 handle_t *handle; 3592 unsigned int credits; 3593 int ret = 0; 3594 3595 if (!S_ISREG(inode->i_mode)) 3596 return -EOPNOTSUPP; 3597 3598 if (EXT4_SB(sb)->s_cluster_ratio > 1) { 3599 /* TODO: Add support for bigalloc file systems */ 3600 return -EOPNOTSUPP; 3601 } 3602 3603 trace_ext4_punch_hole(inode, offset, length); 3604 3605 /* 3606 * Write out all dirty pages to avoid race conditions 3607 * Then release them. 3608 */ 3609 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3610 ret = filemap_write_and_wait_range(mapping, offset, 3611 offset + length - 1); 3612 if (ret) 3613 return ret; 3614 } 3615 3616 mutex_lock(&inode->i_mutex); 3617 /* It's not possible punch hole on append only file */ 3618 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3619 ret = -EPERM; 3620 goto out_mutex; 3621 } 3622 if (IS_SWAPFILE(inode)) { 3623 ret = -ETXTBSY; 3624 goto out_mutex; 3625 } 3626 3627 /* No need to punch hole beyond i_size */ 3628 if (offset >= inode->i_size) 3629 goto out_mutex; 3630 3631 /* 3632 * If the hole extends beyond i_size, set the hole 3633 * to end after the page that contains i_size 3634 */ 3635 if (offset + length > inode->i_size) { 3636 length = inode->i_size + 3637 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3638 offset; 3639 } 3640 3641 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 3642 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 3643 3644 first_page_offset = first_page << PAGE_CACHE_SHIFT; 3645 last_page_offset = last_page << PAGE_CACHE_SHIFT; 3646 3647 /* Now release the pages */ 3648 if (last_page_offset > first_page_offset) { 3649 truncate_pagecache_range(inode, first_page_offset, 3650 last_page_offset - 1); 3651 } 3652 3653 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3654 ext4_inode_block_unlocked_dio(inode); 3655 ret = ext4_flush_unwritten_io(inode); 3656 if (ret) 3657 goto out_dio; 3658 inode_dio_wait(inode); 3659 3660 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3661 credits = ext4_writepage_trans_blocks(inode); 3662 else 3663 credits = ext4_blocks_for_truncate(inode); 3664 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3665 if (IS_ERR(handle)) { 3666 ret = PTR_ERR(handle); 3667 ext4_std_error(sb, ret); 3668 goto out_dio; 3669 } 3670 3671 /* 3672 * Now we need to zero out the non-page-aligned data in the 3673 * pages at the start and tail of the hole, and unmap the 3674 * buffer heads for the block aligned regions of the page that 3675 * were completely zeroed. 3676 */ 3677 if (first_page > last_page) { 3678 /* 3679 * If the file space being truncated is contained 3680 * within a page just zero out and unmap the middle of 3681 * that page 3682 */ 3683 ret = ext4_discard_partial_page_buffers(handle, 3684 mapping, offset, length, 0); 3685 3686 if (ret) 3687 goto out_stop; 3688 } else { 3689 /* 3690 * zero out and unmap the partial page that contains 3691 * the start of the hole 3692 */ 3693 page_len = first_page_offset - offset; 3694 if (page_len > 0) { 3695 ret = ext4_discard_partial_page_buffers(handle, mapping, 3696 offset, page_len, 0); 3697 if (ret) 3698 goto out_stop; 3699 } 3700 3701 /* 3702 * zero out and unmap the partial page that contains 3703 * the end of the hole 3704 */ 3705 page_len = offset + length - last_page_offset; 3706 if (page_len > 0) { 3707 ret = ext4_discard_partial_page_buffers(handle, mapping, 3708 last_page_offset, page_len, 0); 3709 if (ret) 3710 goto out_stop; 3711 } 3712 } 3713 3714 /* 3715 * If i_size is contained in the last page, we need to 3716 * unmap and zero the partial page after i_size 3717 */ 3718 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 3719 inode->i_size % PAGE_CACHE_SIZE != 0) { 3720 page_len = PAGE_CACHE_SIZE - 3721 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 3722 3723 if (page_len > 0) { 3724 ret = ext4_discard_partial_page_buffers(handle, 3725 mapping, inode->i_size, page_len, 0); 3726 3727 if (ret) 3728 goto out_stop; 3729 } 3730 } 3731 3732 first_block = (offset + sb->s_blocksize - 1) >> 3733 EXT4_BLOCK_SIZE_BITS(sb); 3734 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3735 3736 /* If there are no blocks to remove, return now */ 3737 if (first_block >= stop_block) 3738 goto out_stop; 3739 3740 down_write(&EXT4_I(inode)->i_data_sem); 3741 ext4_discard_preallocations(inode); 3742 3743 ret = ext4_es_remove_extent(inode, first_block, 3744 stop_block - first_block); 3745 if (ret) { 3746 up_write(&EXT4_I(inode)->i_data_sem); 3747 goto out_stop; 3748 } 3749 3750 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3751 ret = ext4_ext_remove_space(inode, first_block, 3752 stop_block - 1); 3753 else 3754 ret = ext4_free_hole_blocks(handle, inode, first_block, 3755 stop_block); 3756 3757 ext4_discard_preallocations(inode); 3758 up_write(&EXT4_I(inode)->i_data_sem); 3759 if (IS_SYNC(inode)) 3760 ext4_handle_sync(handle); 3761 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3762 ext4_mark_inode_dirty(handle, inode); 3763 out_stop: 3764 ext4_journal_stop(handle); 3765 out_dio: 3766 ext4_inode_resume_unlocked_dio(inode); 3767 out_mutex: 3768 mutex_unlock(&inode->i_mutex); 3769 return ret; 3770 } 3771 3772 /* 3773 * ext4_truncate() 3774 * 3775 * We block out ext4_get_block() block instantiations across the entire 3776 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3777 * simultaneously on behalf of the same inode. 3778 * 3779 * As we work through the truncate and commit bits of it to the journal there 3780 * is one core, guiding principle: the file's tree must always be consistent on 3781 * disk. We must be able to restart the truncate after a crash. 3782 * 3783 * The file's tree may be transiently inconsistent in memory (although it 3784 * probably isn't), but whenever we close off and commit a journal transaction, 3785 * the contents of (the filesystem + the journal) must be consistent and 3786 * restartable. It's pretty simple, really: bottom up, right to left (although 3787 * left-to-right works OK too). 3788 * 3789 * Note that at recovery time, journal replay occurs *before* the restart of 3790 * truncate against the orphan inode list. 3791 * 3792 * The committed inode has the new, desired i_size (which is the same as 3793 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3794 * that this inode's truncate did not complete and it will again call 3795 * ext4_truncate() to have another go. So there will be instantiated blocks 3796 * to the right of the truncation point in a crashed ext4 filesystem. But 3797 * that's fine - as long as they are linked from the inode, the post-crash 3798 * ext4_truncate() run will find them and release them. 3799 */ 3800 void ext4_truncate(struct inode *inode) 3801 { 3802 struct ext4_inode_info *ei = EXT4_I(inode); 3803 unsigned int credits; 3804 handle_t *handle; 3805 struct address_space *mapping = inode->i_mapping; 3806 loff_t page_len; 3807 3808 /* 3809 * There is a possibility that we're either freeing the inode 3810 * or it completely new indode. In those cases we might not 3811 * have i_mutex locked because it's not necessary. 3812 */ 3813 if (!(inode->i_state & (I_NEW|I_FREEING))) 3814 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3815 trace_ext4_truncate_enter(inode); 3816 3817 if (!ext4_can_truncate(inode)) 3818 return; 3819 3820 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3821 3822 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3823 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3824 3825 if (ext4_has_inline_data(inode)) { 3826 int has_inline = 1; 3827 3828 ext4_inline_data_truncate(inode, &has_inline); 3829 if (has_inline) 3830 return; 3831 } 3832 3833 /* 3834 * finish any pending end_io work so we won't run the risk of 3835 * converting any truncated blocks to initialized later 3836 */ 3837 ext4_flush_unwritten_io(inode); 3838 3839 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3840 credits = ext4_writepage_trans_blocks(inode); 3841 else 3842 credits = ext4_blocks_for_truncate(inode); 3843 3844 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3845 if (IS_ERR(handle)) { 3846 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3847 return; 3848 } 3849 3850 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 3851 page_len = PAGE_CACHE_SIZE - 3852 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 3853 3854 if (ext4_discard_partial_page_buffers(handle, 3855 mapping, inode->i_size, page_len, 0)) 3856 goto out_stop; 3857 } 3858 3859 /* 3860 * We add the inode to the orphan list, so that if this 3861 * truncate spans multiple transactions, and we crash, we will 3862 * resume the truncate when the filesystem recovers. It also 3863 * marks the inode dirty, to catch the new size. 3864 * 3865 * Implication: the file must always be in a sane, consistent 3866 * truncatable state while each transaction commits. 3867 */ 3868 if (ext4_orphan_add(handle, inode)) 3869 goto out_stop; 3870 3871 down_write(&EXT4_I(inode)->i_data_sem); 3872 3873 ext4_discard_preallocations(inode); 3874 3875 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3876 ext4_ext_truncate(handle, inode); 3877 else 3878 ext4_ind_truncate(handle, inode); 3879 3880 up_write(&ei->i_data_sem); 3881 3882 if (IS_SYNC(inode)) 3883 ext4_handle_sync(handle); 3884 3885 out_stop: 3886 /* 3887 * If this was a simple ftruncate() and the file will remain alive, 3888 * then we need to clear up the orphan record which we created above. 3889 * However, if this was a real unlink then we were called by 3890 * ext4_delete_inode(), and we allow that function to clean up the 3891 * orphan info for us. 3892 */ 3893 if (inode->i_nlink) 3894 ext4_orphan_del(handle, inode); 3895 3896 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3897 ext4_mark_inode_dirty(handle, inode); 3898 ext4_journal_stop(handle); 3899 3900 trace_ext4_truncate_exit(inode); 3901 } 3902 3903 /* 3904 * ext4_get_inode_loc returns with an extra refcount against the inode's 3905 * underlying buffer_head on success. If 'in_mem' is true, we have all 3906 * data in memory that is needed to recreate the on-disk version of this 3907 * inode. 3908 */ 3909 static int __ext4_get_inode_loc(struct inode *inode, 3910 struct ext4_iloc *iloc, int in_mem) 3911 { 3912 struct ext4_group_desc *gdp; 3913 struct buffer_head *bh; 3914 struct super_block *sb = inode->i_sb; 3915 ext4_fsblk_t block; 3916 int inodes_per_block, inode_offset; 3917 3918 iloc->bh = NULL; 3919 if (!ext4_valid_inum(sb, inode->i_ino)) 3920 return -EIO; 3921 3922 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3923 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3924 if (!gdp) 3925 return -EIO; 3926 3927 /* 3928 * Figure out the offset within the block group inode table 3929 */ 3930 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3931 inode_offset = ((inode->i_ino - 1) % 3932 EXT4_INODES_PER_GROUP(sb)); 3933 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3934 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3935 3936 bh = sb_getblk(sb, block); 3937 if (unlikely(!bh)) 3938 return -ENOMEM; 3939 if (!buffer_uptodate(bh)) { 3940 lock_buffer(bh); 3941 3942 /* 3943 * If the buffer has the write error flag, we have failed 3944 * to write out another inode in the same block. In this 3945 * case, we don't have to read the block because we may 3946 * read the old inode data successfully. 3947 */ 3948 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3949 set_buffer_uptodate(bh); 3950 3951 if (buffer_uptodate(bh)) { 3952 /* someone brought it uptodate while we waited */ 3953 unlock_buffer(bh); 3954 goto has_buffer; 3955 } 3956 3957 /* 3958 * If we have all information of the inode in memory and this 3959 * is the only valid inode in the block, we need not read the 3960 * block. 3961 */ 3962 if (in_mem) { 3963 struct buffer_head *bitmap_bh; 3964 int i, start; 3965 3966 start = inode_offset & ~(inodes_per_block - 1); 3967 3968 /* Is the inode bitmap in cache? */ 3969 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3970 if (unlikely(!bitmap_bh)) 3971 goto make_io; 3972 3973 /* 3974 * If the inode bitmap isn't in cache then the 3975 * optimisation may end up performing two reads instead 3976 * of one, so skip it. 3977 */ 3978 if (!buffer_uptodate(bitmap_bh)) { 3979 brelse(bitmap_bh); 3980 goto make_io; 3981 } 3982 for (i = start; i < start + inodes_per_block; i++) { 3983 if (i == inode_offset) 3984 continue; 3985 if (ext4_test_bit(i, bitmap_bh->b_data)) 3986 break; 3987 } 3988 brelse(bitmap_bh); 3989 if (i == start + inodes_per_block) { 3990 /* all other inodes are free, so skip I/O */ 3991 memset(bh->b_data, 0, bh->b_size); 3992 set_buffer_uptodate(bh); 3993 unlock_buffer(bh); 3994 goto has_buffer; 3995 } 3996 } 3997 3998 make_io: 3999 /* 4000 * If we need to do any I/O, try to pre-readahead extra 4001 * blocks from the inode table. 4002 */ 4003 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4004 ext4_fsblk_t b, end, table; 4005 unsigned num; 4006 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4007 4008 table = ext4_inode_table(sb, gdp); 4009 /* s_inode_readahead_blks is always a power of 2 */ 4010 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4011 if (table > b) 4012 b = table; 4013 end = b + ra_blks; 4014 num = EXT4_INODES_PER_GROUP(sb); 4015 if (ext4_has_group_desc_csum(sb)) 4016 num -= ext4_itable_unused_count(sb, gdp); 4017 table += num / inodes_per_block; 4018 if (end > table) 4019 end = table; 4020 while (b <= end) 4021 sb_breadahead(sb, b++); 4022 } 4023 4024 /* 4025 * There are other valid inodes in the buffer, this inode 4026 * has in-inode xattrs, or we don't have this inode in memory. 4027 * Read the block from disk. 4028 */ 4029 trace_ext4_load_inode(inode); 4030 get_bh(bh); 4031 bh->b_end_io = end_buffer_read_sync; 4032 submit_bh(READ | REQ_META | REQ_PRIO, bh); 4033 wait_on_buffer(bh); 4034 if (!buffer_uptodate(bh)) { 4035 EXT4_ERROR_INODE_BLOCK(inode, block, 4036 "unable to read itable block"); 4037 brelse(bh); 4038 return -EIO; 4039 } 4040 } 4041 has_buffer: 4042 iloc->bh = bh; 4043 return 0; 4044 } 4045 4046 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4047 { 4048 /* We have all inode data except xattrs in memory here. */ 4049 return __ext4_get_inode_loc(inode, iloc, 4050 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4051 } 4052 4053 void ext4_set_inode_flags(struct inode *inode) 4054 { 4055 unsigned int flags = EXT4_I(inode)->i_flags; 4056 4057 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4058 if (flags & EXT4_SYNC_FL) 4059 inode->i_flags |= S_SYNC; 4060 if (flags & EXT4_APPEND_FL) 4061 inode->i_flags |= S_APPEND; 4062 if (flags & EXT4_IMMUTABLE_FL) 4063 inode->i_flags |= S_IMMUTABLE; 4064 if (flags & EXT4_NOATIME_FL) 4065 inode->i_flags |= S_NOATIME; 4066 if (flags & EXT4_DIRSYNC_FL) 4067 inode->i_flags |= S_DIRSYNC; 4068 } 4069 4070 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4071 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4072 { 4073 unsigned int vfs_fl; 4074 unsigned long old_fl, new_fl; 4075 4076 do { 4077 vfs_fl = ei->vfs_inode.i_flags; 4078 old_fl = ei->i_flags; 4079 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4080 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4081 EXT4_DIRSYNC_FL); 4082 if (vfs_fl & S_SYNC) 4083 new_fl |= EXT4_SYNC_FL; 4084 if (vfs_fl & S_APPEND) 4085 new_fl |= EXT4_APPEND_FL; 4086 if (vfs_fl & S_IMMUTABLE) 4087 new_fl |= EXT4_IMMUTABLE_FL; 4088 if (vfs_fl & S_NOATIME) 4089 new_fl |= EXT4_NOATIME_FL; 4090 if (vfs_fl & S_DIRSYNC) 4091 new_fl |= EXT4_DIRSYNC_FL; 4092 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4093 } 4094 4095 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4096 struct ext4_inode_info *ei) 4097 { 4098 blkcnt_t i_blocks ; 4099 struct inode *inode = &(ei->vfs_inode); 4100 struct super_block *sb = inode->i_sb; 4101 4102 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4103 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4104 /* we are using combined 48 bit field */ 4105 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4106 le32_to_cpu(raw_inode->i_blocks_lo); 4107 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4108 /* i_blocks represent file system block size */ 4109 return i_blocks << (inode->i_blkbits - 9); 4110 } else { 4111 return i_blocks; 4112 } 4113 } else { 4114 return le32_to_cpu(raw_inode->i_blocks_lo); 4115 } 4116 } 4117 4118 static inline void ext4_iget_extra_inode(struct inode *inode, 4119 struct ext4_inode *raw_inode, 4120 struct ext4_inode_info *ei) 4121 { 4122 __le32 *magic = (void *)raw_inode + 4123 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4124 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4125 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4126 ext4_find_inline_data_nolock(inode); 4127 } else 4128 EXT4_I(inode)->i_inline_off = 0; 4129 } 4130 4131 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4132 { 4133 struct ext4_iloc iloc; 4134 struct ext4_inode *raw_inode; 4135 struct ext4_inode_info *ei; 4136 struct inode *inode; 4137 journal_t *journal = EXT4_SB(sb)->s_journal; 4138 long ret; 4139 int block; 4140 uid_t i_uid; 4141 gid_t i_gid; 4142 4143 inode = iget_locked(sb, ino); 4144 if (!inode) 4145 return ERR_PTR(-ENOMEM); 4146 if (!(inode->i_state & I_NEW)) 4147 return inode; 4148 4149 ei = EXT4_I(inode); 4150 iloc.bh = NULL; 4151 4152 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4153 if (ret < 0) 4154 goto bad_inode; 4155 raw_inode = ext4_raw_inode(&iloc); 4156 4157 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4158 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4159 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4160 EXT4_INODE_SIZE(inode->i_sb)) { 4161 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4162 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4163 EXT4_INODE_SIZE(inode->i_sb)); 4164 ret = -EIO; 4165 goto bad_inode; 4166 } 4167 } else 4168 ei->i_extra_isize = 0; 4169 4170 /* Precompute checksum seed for inode metadata */ 4171 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4172 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 4173 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4174 __u32 csum; 4175 __le32 inum = cpu_to_le32(inode->i_ino); 4176 __le32 gen = raw_inode->i_generation; 4177 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4178 sizeof(inum)); 4179 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4180 sizeof(gen)); 4181 } 4182 4183 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4184 EXT4_ERROR_INODE(inode, "checksum invalid"); 4185 ret = -EIO; 4186 goto bad_inode; 4187 } 4188 4189 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4190 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4191 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4192 if (!(test_opt(inode->i_sb, NO_UID32))) { 4193 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4194 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4195 } 4196 i_uid_write(inode, i_uid); 4197 i_gid_write(inode, i_gid); 4198 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4199 4200 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4201 ei->i_inline_off = 0; 4202 ei->i_dir_start_lookup = 0; 4203 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4204 /* We now have enough fields to check if the inode was active or not. 4205 * This is needed because nfsd might try to access dead inodes 4206 * the test is that same one that e2fsck uses 4207 * NeilBrown 1999oct15 4208 */ 4209 if (inode->i_nlink == 0) { 4210 if ((inode->i_mode == 0 || 4211 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4212 ino != EXT4_BOOT_LOADER_INO) { 4213 /* this inode is deleted */ 4214 ret = -ESTALE; 4215 goto bad_inode; 4216 } 4217 /* The only unlinked inodes we let through here have 4218 * valid i_mode and are being read by the orphan 4219 * recovery code: that's fine, we're about to complete 4220 * the process of deleting those. 4221 * OR it is the EXT4_BOOT_LOADER_INO which is 4222 * not initialized on a new filesystem. */ 4223 } 4224 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4225 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4226 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4227 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4228 ei->i_file_acl |= 4229 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4230 inode->i_size = ext4_isize(raw_inode); 4231 ei->i_disksize = inode->i_size; 4232 #ifdef CONFIG_QUOTA 4233 ei->i_reserved_quota = 0; 4234 #endif 4235 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4236 ei->i_block_group = iloc.block_group; 4237 ei->i_last_alloc_group = ~0; 4238 /* 4239 * NOTE! The in-memory inode i_data array is in little-endian order 4240 * even on big-endian machines: we do NOT byteswap the block numbers! 4241 */ 4242 for (block = 0; block < EXT4_N_BLOCKS; block++) 4243 ei->i_data[block] = raw_inode->i_block[block]; 4244 INIT_LIST_HEAD(&ei->i_orphan); 4245 4246 /* 4247 * Set transaction id's of transactions that have to be committed 4248 * to finish f[data]sync. We set them to currently running transaction 4249 * as we cannot be sure that the inode or some of its metadata isn't 4250 * part of the transaction - the inode could have been reclaimed and 4251 * now it is reread from disk. 4252 */ 4253 if (journal) { 4254 transaction_t *transaction; 4255 tid_t tid; 4256 4257 read_lock(&journal->j_state_lock); 4258 if (journal->j_running_transaction) 4259 transaction = journal->j_running_transaction; 4260 else 4261 transaction = journal->j_committing_transaction; 4262 if (transaction) 4263 tid = transaction->t_tid; 4264 else 4265 tid = journal->j_commit_sequence; 4266 read_unlock(&journal->j_state_lock); 4267 ei->i_sync_tid = tid; 4268 ei->i_datasync_tid = tid; 4269 } 4270 4271 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4272 if (ei->i_extra_isize == 0) { 4273 /* The extra space is currently unused. Use it. */ 4274 ei->i_extra_isize = sizeof(struct ext4_inode) - 4275 EXT4_GOOD_OLD_INODE_SIZE; 4276 } else { 4277 ext4_iget_extra_inode(inode, raw_inode, ei); 4278 } 4279 } 4280 4281 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4282 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4283 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4284 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4285 4286 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4287 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4288 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4289 inode->i_version |= 4290 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4291 } 4292 4293 ret = 0; 4294 if (ei->i_file_acl && 4295 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4296 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4297 ei->i_file_acl); 4298 ret = -EIO; 4299 goto bad_inode; 4300 } else if (!ext4_has_inline_data(inode)) { 4301 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4302 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4303 (S_ISLNK(inode->i_mode) && 4304 !ext4_inode_is_fast_symlink(inode)))) 4305 /* Validate extent which is part of inode */ 4306 ret = ext4_ext_check_inode(inode); 4307 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4308 (S_ISLNK(inode->i_mode) && 4309 !ext4_inode_is_fast_symlink(inode))) { 4310 /* Validate block references which are part of inode */ 4311 ret = ext4_ind_check_inode(inode); 4312 } 4313 } 4314 if (ret) 4315 goto bad_inode; 4316 4317 if (S_ISREG(inode->i_mode)) { 4318 inode->i_op = &ext4_file_inode_operations; 4319 inode->i_fop = &ext4_file_operations; 4320 ext4_set_aops(inode); 4321 } else if (S_ISDIR(inode->i_mode)) { 4322 inode->i_op = &ext4_dir_inode_operations; 4323 inode->i_fop = &ext4_dir_operations; 4324 } else if (S_ISLNK(inode->i_mode)) { 4325 if (ext4_inode_is_fast_symlink(inode)) { 4326 inode->i_op = &ext4_fast_symlink_inode_operations; 4327 nd_terminate_link(ei->i_data, inode->i_size, 4328 sizeof(ei->i_data) - 1); 4329 } else { 4330 inode->i_op = &ext4_symlink_inode_operations; 4331 ext4_set_aops(inode); 4332 } 4333 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4334 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4335 inode->i_op = &ext4_special_inode_operations; 4336 if (raw_inode->i_block[0]) 4337 init_special_inode(inode, inode->i_mode, 4338 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4339 else 4340 init_special_inode(inode, inode->i_mode, 4341 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4342 } else if (ino == EXT4_BOOT_LOADER_INO) { 4343 make_bad_inode(inode); 4344 } else { 4345 ret = -EIO; 4346 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4347 goto bad_inode; 4348 } 4349 brelse(iloc.bh); 4350 ext4_set_inode_flags(inode); 4351 unlock_new_inode(inode); 4352 return inode; 4353 4354 bad_inode: 4355 brelse(iloc.bh); 4356 iget_failed(inode); 4357 return ERR_PTR(ret); 4358 } 4359 4360 static int ext4_inode_blocks_set(handle_t *handle, 4361 struct ext4_inode *raw_inode, 4362 struct ext4_inode_info *ei) 4363 { 4364 struct inode *inode = &(ei->vfs_inode); 4365 u64 i_blocks = inode->i_blocks; 4366 struct super_block *sb = inode->i_sb; 4367 4368 if (i_blocks <= ~0U) { 4369 /* 4370 * i_blocks can be represented in a 32 bit variable 4371 * as multiple of 512 bytes 4372 */ 4373 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4374 raw_inode->i_blocks_high = 0; 4375 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4376 return 0; 4377 } 4378 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4379 return -EFBIG; 4380 4381 if (i_blocks <= 0xffffffffffffULL) { 4382 /* 4383 * i_blocks can be represented in a 48 bit variable 4384 * as multiple of 512 bytes 4385 */ 4386 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4387 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4388 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4389 } else { 4390 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4391 /* i_block is stored in file system block size */ 4392 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4393 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4394 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4395 } 4396 return 0; 4397 } 4398 4399 /* 4400 * Post the struct inode info into an on-disk inode location in the 4401 * buffer-cache. This gobbles the caller's reference to the 4402 * buffer_head in the inode location struct. 4403 * 4404 * The caller must have write access to iloc->bh. 4405 */ 4406 static int ext4_do_update_inode(handle_t *handle, 4407 struct inode *inode, 4408 struct ext4_iloc *iloc) 4409 { 4410 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4411 struct ext4_inode_info *ei = EXT4_I(inode); 4412 struct buffer_head *bh = iloc->bh; 4413 int err = 0, rc, block; 4414 int need_datasync = 0; 4415 uid_t i_uid; 4416 gid_t i_gid; 4417 4418 /* For fields not not tracking in the in-memory inode, 4419 * initialise them to zero for new inodes. */ 4420 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4421 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4422 4423 ext4_get_inode_flags(ei); 4424 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4425 i_uid = i_uid_read(inode); 4426 i_gid = i_gid_read(inode); 4427 if (!(test_opt(inode->i_sb, NO_UID32))) { 4428 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4429 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4430 /* 4431 * Fix up interoperability with old kernels. Otherwise, old inodes get 4432 * re-used with the upper 16 bits of the uid/gid intact 4433 */ 4434 if (!ei->i_dtime) { 4435 raw_inode->i_uid_high = 4436 cpu_to_le16(high_16_bits(i_uid)); 4437 raw_inode->i_gid_high = 4438 cpu_to_le16(high_16_bits(i_gid)); 4439 } else { 4440 raw_inode->i_uid_high = 0; 4441 raw_inode->i_gid_high = 0; 4442 } 4443 } else { 4444 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4445 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4446 raw_inode->i_uid_high = 0; 4447 raw_inode->i_gid_high = 0; 4448 } 4449 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4450 4451 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4452 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4453 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4454 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4455 4456 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4457 goto out_brelse; 4458 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4459 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4460 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4461 cpu_to_le32(EXT4_OS_HURD)) 4462 raw_inode->i_file_acl_high = 4463 cpu_to_le16(ei->i_file_acl >> 32); 4464 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4465 if (ei->i_disksize != ext4_isize(raw_inode)) { 4466 ext4_isize_set(raw_inode, ei->i_disksize); 4467 need_datasync = 1; 4468 } 4469 if (ei->i_disksize > 0x7fffffffULL) { 4470 struct super_block *sb = inode->i_sb; 4471 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4472 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4473 EXT4_SB(sb)->s_es->s_rev_level == 4474 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4475 /* If this is the first large file 4476 * created, add a flag to the superblock. 4477 */ 4478 err = ext4_journal_get_write_access(handle, 4479 EXT4_SB(sb)->s_sbh); 4480 if (err) 4481 goto out_brelse; 4482 ext4_update_dynamic_rev(sb); 4483 EXT4_SET_RO_COMPAT_FEATURE(sb, 4484 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4485 ext4_handle_sync(handle); 4486 err = ext4_handle_dirty_super(handle, sb); 4487 } 4488 } 4489 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4490 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4491 if (old_valid_dev(inode->i_rdev)) { 4492 raw_inode->i_block[0] = 4493 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4494 raw_inode->i_block[1] = 0; 4495 } else { 4496 raw_inode->i_block[0] = 0; 4497 raw_inode->i_block[1] = 4498 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4499 raw_inode->i_block[2] = 0; 4500 } 4501 } else if (!ext4_has_inline_data(inode)) { 4502 for (block = 0; block < EXT4_N_BLOCKS; block++) 4503 raw_inode->i_block[block] = ei->i_data[block]; 4504 } 4505 4506 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4507 if (ei->i_extra_isize) { 4508 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4509 raw_inode->i_version_hi = 4510 cpu_to_le32(inode->i_version >> 32); 4511 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4512 } 4513 4514 ext4_inode_csum_set(inode, raw_inode, ei); 4515 4516 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4517 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4518 if (!err) 4519 err = rc; 4520 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4521 4522 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4523 out_brelse: 4524 brelse(bh); 4525 ext4_std_error(inode->i_sb, err); 4526 return err; 4527 } 4528 4529 /* 4530 * ext4_write_inode() 4531 * 4532 * We are called from a few places: 4533 * 4534 * - Within generic_file_write() for O_SYNC files. 4535 * Here, there will be no transaction running. We wait for any running 4536 * transaction to commit. 4537 * 4538 * - Within sys_sync(), kupdate and such. 4539 * We wait on commit, if tol to. 4540 * 4541 * - Within prune_icache() (PF_MEMALLOC == true) 4542 * Here we simply return. We can't afford to block kswapd on the 4543 * journal commit. 4544 * 4545 * In all cases it is actually safe for us to return without doing anything, 4546 * because the inode has been copied into a raw inode buffer in 4547 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4548 * knfsd. 4549 * 4550 * Note that we are absolutely dependent upon all inode dirtiers doing the 4551 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4552 * which we are interested. 4553 * 4554 * It would be a bug for them to not do this. The code: 4555 * 4556 * mark_inode_dirty(inode) 4557 * stuff(); 4558 * inode->i_size = expr; 4559 * 4560 * is in error because a kswapd-driven write_inode() could occur while 4561 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4562 * will no longer be on the superblock's dirty inode list. 4563 */ 4564 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4565 { 4566 int err; 4567 4568 if (current->flags & PF_MEMALLOC) 4569 return 0; 4570 4571 if (EXT4_SB(inode->i_sb)->s_journal) { 4572 if (ext4_journal_current_handle()) { 4573 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4574 dump_stack(); 4575 return -EIO; 4576 } 4577 4578 if (wbc->sync_mode != WB_SYNC_ALL) 4579 return 0; 4580 4581 err = ext4_force_commit(inode->i_sb); 4582 } else { 4583 struct ext4_iloc iloc; 4584 4585 err = __ext4_get_inode_loc(inode, &iloc, 0); 4586 if (err) 4587 return err; 4588 if (wbc->sync_mode == WB_SYNC_ALL) 4589 sync_dirty_buffer(iloc.bh); 4590 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4591 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4592 "IO error syncing inode"); 4593 err = -EIO; 4594 } 4595 brelse(iloc.bh); 4596 } 4597 return err; 4598 } 4599 4600 /* 4601 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4602 * buffers that are attached to a page stradding i_size and are undergoing 4603 * commit. In that case we have to wait for commit to finish and try again. 4604 */ 4605 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4606 { 4607 struct page *page; 4608 unsigned offset; 4609 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4610 tid_t commit_tid = 0; 4611 int ret; 4612 4613 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4614 /* 4615 * All buffers in the last page remain valid? Then there's nothing to 4616 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4617 * blocksize case 4618 */ 4619 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4620 return; 4621 while (1) { 4622 page = find_lock_page(inode->i_mapping, 4623 inode->i_size >> PAGE_CACHE_SHIFT); 4624 if (!page) 4625 return; 4626 ret = __ext4_journalled_invalidatepage(page, offset); 4627 unlock_page(page); 4628 page_cache_release(page); 4629 if (ret != -EBUSY) 4630 return; 4631 commit_tid = 0; 4632 read_lock(&journal->j_state_lock); 4633 if (journal->j_committing_transaction) 4634 commit_tid = journal->j_committing_transaction->t_tid; 4635 read_unlock(&journal->j_state_lock); 4636 if (commit_tid) 4637 jbd2_log_wait_commit(journal, commit_tid); 4638 } 4639 } 4640 4641 /* 4642 * ext4_setattr() 4643 * 4644 * Called from notify_change. 4645 * 4646 * We want to trap VFS attempts to truncate the file as soon as 4647 * possible. In particular, we want to make sure that when the VFS 4648 * shrinks i_size, we put the inode on the orphan list and modify 4649 * i_disksize immediately, so that during the subsequent flushing of 4650 * dirty pages and freeing of disk blocks, we can guarantee that any 4651 * commit will leave the blocks being flushed in an unused state on 4652 * disk. (On recovery, the inode will get truncated and the blocks will 4653 * be freed, so we have a strong guarantee that no future commit will 4654 * leave these blocks visible to the user.) 4655 * 4656 * Another thing we have to assure is that if we are in ordered mode 4657 * and inode is still attached to the committing transaction, we must 4658 * we start writeout of all the dirty pages which are being truncated. 4659 * This way we are sure that all the data written in the previous 4660 * transaction are already on disk (truncate waits for pages under 4661 * writeback). 4662 * 4663 * Called with inode->i_mutex down. 4664 */ 4665 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4666 { 4667 struct inode *inode = dentry->d_inode; 4668 int error, rc = 0; 4669 int orphan = 0; 4670 const unsigned int ia_valid = attr->ia_valid; 4671 4672 error = inode_change_ok(inode, attr); 4673 if (error) 4674 return error; 4675 4676 if (is_quota_modification(inode, attr)) 4677 dquot_initialize(inode); 4678 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4679 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4680 handle_t *handle; 4681 4682 /* (user+group)*(old+new) structure, inode write (sb, 4683 * inode block, ? - but truncate inode update has it) */ 4684 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4685 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4686 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4687 if (IS_ERR(handle)) { 4688 error = PTR_ERR(handle); 4689 goto err_out; 4690 } 4691 error = dquot_transfer(inode, attr); 4692 if (error) { 4693 ext4_journal_stop(handle); 4694 return error; 4695 } 4696 /* Update corresponding info in inode so that everything is in 4697 * one transaction */ 4698 if (attr->ia_valid & ATTR_UID) 4699 inode->i_uid = attr->ia_uid; 4700 if (attr->ia_valid & ATTR_GID) 4701 inode->i_gid = attr->ia_gid; 4702 error = ext4_mark_inode_dirty(handle, inode); 4703 ext4_journal_stop(handle); 4704 } 4705 4706 if (attr->ia_valid & ATTR_SIZE) { 4707 4708 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4709 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4710 4711 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4712 return -EFBIG; 4713 } 4714 } 4715 4716 if (S_ISREG(inode->i_mode) && 4717 attr->ia_valid & ATTR_SIZE && 4718 (attr->ia_size < inode->i_size)) { 4719 handle_t *handle; 4720 4721 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4722 if (IS_ERR(handle)) { 4723 error = PTR_ERR(handle); 4724 goto err_out; 4725 } 4726 if (ext4_handle_valid(handle)) { 4727 error = ext4_orphan_add(handle, inode); 4728 orphan = 1; 4729 } 4730 EXT4_I(inode)->i_disksize = attr->ia_size; 4731 rc = ext4_mark_inode_dirty(handle, inode); 4732 if (!error) 4733 error = rc; 4734 ext4_journal_stop(handle); 4735 4736 if (ext4_should_order_data(inode)) { 4737 error = ext4_begin_ordered_truncate(inode, 4738 attr->ia_size); 4739 if (error) { 4740 /* Do as much error cleanup as possible */ 4741 handle = ext4_journal_start(inode, 4742 EXT4_HT_INODE, 3); 4743 if (IS_ERR(handle)) { 4744 ext4_orphan_del(NULL, inode); 4745 goto err_out; 4746 } 4747 ext4_orphan_del(handle, inode); 4748 orphan = 0; 4749 ext4_journal_stop(handle); 4750 goto err_out; 4751 } 4752 } 4753 } 4754 4755 if (attr->ia_valid & ATTR_SIZE) { 4756 if (attr->ia_size != inode->i_size) { 4757 loff_t oldsize = inode->i_size; 4758 4759 i_size_write(inode, attr->ia_size); 4760 /* 4761 * Blocks are going to be removed from the inode. Wait 4762 * for dio in flight. Temporarily disable 4763 * dioread_nolock to prevent livelock. 4764 */ 4765 if (orphan) { 4766 if (!ext4_should_journal_data(inode)) { 4767 ext4_inode_block_unlocked_dio(inode); 4768 inode_dio_wait(inode); 4769 ext4_inode_resume_unlocked_dio(inode); 4770 } else 4771 ext4_wait_for_tail_page_commit(inode); 4772 } 4773 /* 4774 * Truncate pagecache after we've waited for commit 4775 * in data=journal mode to make pages freeable. 4776 */ 4777 truncate_pagecache(inode, oldsize, inode->i_size); 4778 } 4779 ext4_truncate(inode); 4780 } 4781 4782 if (!rc) { 4783 setattr_copy(inode, attr); 4784 mark_inode_dirty(inode); 4785 } 4786 4787 /* 4788 * If the call to ext4_truncate failed to get a transaction handle at 4789 * all, we need to clean up the in-core orphan list manually. 4790 */ 4791 if (orphan && inode->i_nlink) 4792 ext4_orphan_del(NULL, inode); 4793 4794 if (!rc && (ia_valid & ATTR_MODE)) 4795 rc = ext4_acl_chmod(inode); 4796 4797 err_out: 4798 ext4_std_error(inode->i_sb, error); 4799 if (!error) 4800 error = rc; 4801 return error; 4802 } 4803 4804 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4805 struct kstat *stat) 4806 { 4807 struct inode *inode; 4808 unsigned long delalloc_blocks; 4809 4810 inode = dentry->d_inode; 4811 generic_fillattr(inode, stat); 4812 4813 /* 4814 * We can't update i_blocks if the block allocation is delayed 4815 * otherwise in the case of system crash before the real block 4816 * allocation is done, we will have i_blocks inconsistent with 4817 * on-disk file blocks. 4818 * We always keep i_blocks updated together with real 4819 * allocation. But to not confuse with user, stat 4820 * will return the blocks that include the delayed allocation 4821 * blocks for this file. 4822 */ 4823 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4824 EXT4_I(inode)->i_reserved_data_blocks); 4825 4826 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4827 return 0; 4828 } 4829 4830 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4831 { 4832 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4833 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4834 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4835 } 4836 4837 /* 4838 * Account for index blocks, block groups bitmaps and block group 4839 * descriptor blocks if modify datablocks and index blocks 4840 * worse case, the indexs blocks spread over different block groups 4841 * 4842 * If datablocks are discontiguous, they are possible to spread over 4843 * different block groups too. If they are contiguous, with flexbg, 4844 * they could still across block group boundary. 4845 * 4846 * Also account for superblock, inode, quota and xattr blocks 4847 */ 4848 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4849 { 4850 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4851 int gdpblocks; 4852 int idxblocks; 4853 int ret = 0; 4854 4855 /* 4856 * How many index blocks need to touch to modify nrblocks? 4857 * The "Chunk" flag indicating whether the nrblocks is 4858 * physically contiguous on disk 4859 * 4860 * For Direct IO and fallocate, they calls get_block to allocate 4861 * one single extent at a time, so they could set the "Chunk" flag 4862 */ 4863 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4864 4865 ret = idxblocks; 4866 4867 /* 4868 * Now let's see how many group bitmaps and group descriptors need 4869 * to account 4870 */ 4871 groups = idxblocks; 4872 if (chunk) 4873 groups += 1; 4874 else 4875 groups += nrblocks; 4876 4877 gdpblocks = groups; 4878 if (groups > ngroups) 4879 groups = ngroups; 4880 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4881 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4882 4883 /* bitmaps and block group descriptor blocks */ 4884 ret += groups + gdpblocks; 4885 4886 /* Blocks for super block, inode, quota and xattr blocks */ 4887 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4888 4889 return ret; 4890 } 4891 4892 /* 4893 * Calculate the total number of credits to reserve to fit 4894 * the modification of a single pages into a single transaction, 4895 * which may include multiple chunks of block allocations. 4896 * 4897 * This could be called via ext4_write_begin() 4898 * 4899 * We need to consider the worse case, when 4900 * one new block per extent. 4901 */ 4902 int ext4_writepage_trans_blocks(struct inode *inode) 4903 { 4904 int bpp = ext4_journal_blocks_per_page(inode); 4905 int ret; 4906 4907 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4908 4909 /* Account for data blocks for journalled mode */ 4910 if (ext4_should_journal_data(inode)) 4911 ret += bpp; 4912 return ret; 4913 } 4914 4915 /* 4916 * Calculate the journal credits for a chunk of data modification. 4917 * 4918 * This is called from DIO, fallocate or whoever calling 4919 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4920 * 4921 * journal buffers for data blocks are not included here, as DIO 4922 * and fallocate do no need to journal data buffers. 4923 */ 4924 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4925 { 4926 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4927 } 4928 4929 /* 4930 * The caller must have previously called ext4_reserve_inode_write(). 4931 * Give this, we know that the caller already has write access to iloc->bh. 4932 */ 4933 int ext4_mark_iloc_dirty(handle_t *handle, 4934 struct inode *inode, struct ext4_iloc *iloc) 4935 { 4936 int err = 0; 4937 4938 if (IS_I_VERSION(inode)) 4939 inode_inc_iversion(inode); 4940 4941 /* the do_update_inode consumes one bh->b_count */ 4942 get_bh(iloc->bh); 4943 4944 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4945 err = ext4_do_update_inode(handle, inode, iloc); 4946 put_bh(iloc->bh); 4947 return err; 4948 } 4949 4950 /* 4951 * On success, We end up with an outstanding reference count against 4952 * iloc->bh. This _must_ be cleaned up later. 4953 */ 4954 4955 int 4956 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4957 struct ext4_iloc *iloc) 4958 { 4959 int err; 4960 4961 err = ext4_get_inode_loc(inode, iloc); 4962 if (!err) { 4963 BUFFER_TRACE(iloc->bh, "get_write_access"); 4964 err = ext4_journal_get_write_access(handle, iloc->bh); 4965 if (err) { 4966 brelse(iloc->bh); 4967 iloc->bh = NULL; 4968 } 4969 } 4970 ext4_std_error(inode->i_sb, err); 4971 return err; 4972 } 4973 4974 /* 4975 * Expand an inode by new_extra_isize bytes. 4976 * Returns 0 on success or negative error number on failure. 4977 */ 4978 static int ext4_expand_extra_isize(struct inode *inode, 4979 unsigned int new_extra_isize, 4980 struct ext4_iloc iloc, 4981 handle_t *handle) 4982 { 4983 struct ext4_inode *raw_inode; 4984 struct ext4_xattr_ibody_header *header; 4985 4986 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4987 return 0; 4988 4989 raw_inode = ext4_raw_inode(&iloc); 4990 4991 header = IHDR(inode, raw_inode); 4992 4993 /* No extended attributes present */ 4994 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4995 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4996 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4997 new_extra_isize); 4998 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4999 return 0; 5000 } 5001 5002 /* try to expand with EAs present */ 5003 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5004 raw_inode, handle); 5005 } 5006 5007 /* 5008 * What we do here is to mark the in-core inode as clean with respect to inode 5009 * dirtiness (it may still be data-dirty). 5010 * This means that the in-core inode may be reaped by prune_icache 5011 * without having to perform any I/O. This is a very good thing, 5012 * because *any* task may call prune_icache - even ones which 5013 * have a transaction open against a different journal. 5014 * 5015 * Is this cheating? Not really. Sure, we haven't written the 5016 * inode out, but prune_icache isn't a user-visible syncing function. 5017 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5018 * we start and wait on commits. 5019 */ 5020 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5021 { 5022 struct ext4_iloc iloc; 5023 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5024 static unsigned int mnt_count; 5025 int err, ret; 5026 5027 might_sleep(); 5028 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5029 err = ext4_reserve_inode_write(handle, inode, &iloc); 5030 if (ext4_handle_valid(handle) && 5031 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5032 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5033 /* 5034 * We need extra buffer credits since we may write into EA block 5035 * with this same handle. If journal_extend fails, then it will 5036 * only result in a minor loss of functionality for that inode. 5037 * If this is felt to be critical, then e2fsck should be run to 5038 * force a large enough s_min_extra_isize. 5039 */ 5040 if ((jbd2_journal_extend(handle, 5041 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5042 ret = ext4_expand_extra_isize(inode, 5043 sbi->s_want_extra_isize, 5044 iloc, handle); 5045 if (ret) { 5046 ext4_set_inode_state(inode, 5047 EXT4_STATE_NO_EXPAND); 5048 if (mnt_count != 5049 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5050 ext4_warning(inode->i_sb, 5051 "Unable to expand inode %lu. Delete" 5052 " some EAs or run e2fsck.", 5053 inode->i_ino); 5054 mnt_count = 5055 le16_to_cpu(sbi->s_es->s_mnt_count); 5056 } 5057 } 5058 } 5059 } 5060 if (!err) 5061 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5062 return err; 5063 } 5064 5065 /* 5066 * ext4_dirty_inode() is called from __mark_inode_dirty() 5067 * 5068 * We're really interested in the case where a file is being extended. 5069 * i_size has been changed by generic_commit_write() and we thus need 5070 * to include the updated inode in the current transaction. 5071 * 5072 * Also, dquot_alloc_block() will always dirty the inode when blocks 5073 * are allocated to the file. 5074 * 5075 * If the inode is marked synchronous, we don't honour that here - doing 5076 * so would cause a commit on atime updates, which we don't bother doing. 5077 * We handle synchronous inodes at the highest possible level. 5078 */ 5079 void ext4_dirty_inode(struct inode *inode, int flags) 5080 { 5081 handle_t *handle; 5082 5083 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5084 if (IS_ERR(handle)) 5085 goto out; 5086 5087 ext4_mark_inode_dirty(handle, inode); 5088 5089 ext4_journal_stop(handle); 5090 out: 5091 return; 5092 } 5093 5094 #if 0 5095 /* 5096 * Bind an inode's backing buffer_head into this transaction, to prevent 5097 * it from being flushed to disk early. Unlike 5098 * ext4_reserve_inode_write, this leaves behind no bh reference and 5099 * returns no iloc structure, so the caller needs to repeat the iloc 5100 * lookup to mark the inode dirty later. 5101 */ 5102 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5103 { 5104 struct ext4_iloc iloc; 5105 5106 int err = 0; 5107 if (handle) { 5108 err = ext4_get_inode_loc(inode, &iloc); 5109 if (!err) { 5110 BUFFER_TRACE(iloc.bh, "get_write_access"); 5111 err = jbd2_journal_get_write_access(handle, iloc.bh); 5112 if (!err) 5113 err = ext4_handle_dirty_metadata(handle, 5114 NULL, 5115 iloc.bh); 5116 brelse(iloc.bh); 5117 } 5118 } 5119 ext4_std_error(inode->i_sb, err); 5120 return err; 5121 } 5122 #endif 5123 5124 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5125 { 5126 journal_t *journal; 5127 handle_t *handle; 5128 int err; 5129 5130 /* 5131 * We have to be very careful here: changing a data block's 5132 * journaling status dynamically is dangerous. If we write a 5133 * data block to the journal, change the status and then delete 5134 * that block, we risk forgetting to revoke the old log record 5135 * from the journal and so a subsequent replay can corrupt data. 5136 * So, first we make sure that the journal is empty and that 5137 * nobody is changing anything. 5138 */ 5139 5140 journal = EXT4_JOURNAL(inode); 5141 if (!journal) 5142 return 0; 5143 if (is_journal_aborted(journal)) 5144 return -EROFS; 5145 /* We have to allocate physical blocks for delalloc blocks 5146 * before flushing journal. otherwise delalloc blocks can not 5147 * be allocated any more. even more truncate on delalloc blocks 5148 * could trigger BUG by flushing delalloc blocks in journal. 5149 * There is no delalloc block in non-journal data mode. 5150 */ 5151 if (val && test_opt(inode->i_sb, DELALLOC)) { 5152 err = ext4_alloc_da_blocks(inode); 5153 if (err < 0) 5154 return err; 5155 } 5156 5157 /* Wait for all existing dio workers */ 5158 ext4_inode_block_unlocked_dio(inode); 5159 inode_dio_wait(inode); 5160 5161 jbd2_journal_lock_updates(journal); 5162 5163 /* 5164 * OK, there are no updates running now, and all cached data is 5165 * synced to disk. We are now in a completely consistent state 5166 * which doesn't have anything in the journal, and we know that 5167 * no filesystem updates are running, so it is safe to modify 5168 * the inode's in-core data-journaling state flag now. 5169 */ 5170 5171 if (val) 5172 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5173 else { 5174 jbd2_journal_flush(journal); 5175 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5176 } 5177 ext4_set_aops(inode); 5178 5179 jbd2_journal_unlock_updates(journal); 5180 ext4_inode_resume_unlocked_dio(inode); 5181 5182 /* Finally we can mark the inode as dirty. */ 5183 5184 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5185 if (IS_ERR(handle)) 5186 return PTR_ERR(handle); 5187 5188 err = ext4_mark_inode_dirty(handle, inode); 5189 ext4_handle_sync(handle); 5190 ext4_journal_stop(handle); 5191 ext4_std_error(inode->i_sb, err); 5192 5193 return err; 5194 } 5195 5196 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5197 { 5198 return !buffer_mapped(bh); 5199 } 5200 5201 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5202 { 5203 struct page *page = vmf->page; 5204 loff_t size; 5205 unsigned long len; 5206 int ret; 5207 struct file *file = vma->vm_file; 5208 struct inode *inode = file_inode(file); 5209 struct address_space *mapping = inode->i_mapping; 5210 handle_t *handle; 5211 get_block_t *get_block; 5212 int retries = 0; 5213 5214 sb_start_pagefault(inode->i_sb); 5215 file_update_time(vma->vm_file); 5216 /* Delalloc case is easy... */ 5217 if (test_opt(inode->i_sb, DELALLOC) && 5218 !ext4_should_journal_data(inode) && 5219 !ext4_nonda_switch(inode->i_sb)) { 5220 do { 5221 ret = __block_page_mkwrite(vma, vmf, 5222 ext4_da_get_block_prep); 5223 } while (ret == -ENOSPC && 5224 ext4_should_retry_alloc(inode->i_sb, &retries)); 5225 goto out_ret; 5226 } 5227 5228 lock_page(page); 5229 size = i_size_read(inode); 5230 /* Page got truncated from under us? */ 5231 if (page->mapping != mapping || page_offset(page) > size) { 5232 unlock_page(page); 5233 ret = VM_FAULT_NOPAGE; 5234 goto out; 5235 } 5236 5237 if (page->index == size >> PAGE_CACHE_SHIFT) 5238 len = size & ~PAGE_CACHE_MASK; 5239 else 5240 len = PAGE_CACHE_SIZE; 5241 /* 5242 * Return if we have all the buffers mapped. This avoids the need to do 5243 * journal_start/journal_stop which can block and take a long time 5244 */ 5245 if (page_has_buffers(page)) { 5246 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5247 0, len, NULL, 5248 ext4_bh_unmapped)) { 5249 /* Wait so that we don't change page under IO */ 5250 wait_for_stable_page(page); 5251 ret = VM_FAULT_LOCKED; 5252 goto out; 5253 } 5254 } 5255 unlock_page(page); 5256 /* OK, we need to fill the hole... */ 5257 if (ext4_should_dioread_nolock(inode)) 5258 get_block = ext4_get_block_write; 5259 else 5260 get_block = ext4_get_block; 5261 retry_alloc: 5262 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5263 ext4_writepage_trans_blocks(inode)); 5264 if (IS_ERR(handle)) { 5265 ret = VM_FAULT_SIGBUS; 5266 goto out; 5267 } 5268 ret = __block_page_mkwrite(vma, vmf, get_block); 5269 if (!ret && ext4_should_journal_data(inode)) { 5270 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5271 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5272 unlock_page(page); 5273 ret = VM_FAULT_SIGBUS; 5274 ext4_journal_stop(handle); 5275 goto out; 5276 } 5277 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5278 } 5279 ext4_journal_stop(handle); 5280 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5281 goto retry_alloc; 5282 out_ret: 5283 ret = block_page_mkwrite_return(ret); 5284 out: 5285 sb_end_pagefault(inode->i_sb); 5286 return ret; 5287 } 5288