1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static void ext4_invalidatepage(struct page *page, unsigned int offset, 140 unsigned int length); 141 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 144 int pextents); 145 146 /* 147 * Test whether an inode is a fast symlink. 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 149 */ 150 int ext4_inode_is_fast_symlink(struct inode *inode) 151 { 152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 153 int ea_blocks = EXT4_I(inode)->i_file_acl ? 154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 155 156 if (ext4_has_inline_data(inode)) 157 return 0; 158 159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 160 } 161 return S_ISLNK(inode->i_mode) && inode->i_size && 162 (inode->i_size < EXT4_N_BLOCKS * 4); 163 } 164 165 /* 166 * Called at the last iput() if i_nlink is zero. 167 */ 168 void ext4_evict_inode(struct inode *inode) 169 { 170 handle_t *handle; 171 int err; 172 /* 173 * Credits for final inode cleanup and freeing: 174 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 175 * (xattr block freeing), bitmap, group descriptor (inode freeing) 176 */ 177 int extra_credits = 6; 178 struct ext4_xattr_inode_array *ea_inode_array = NULL; 179 bool freeze_protected = false; 180 181 trace_ext4_evict_inode(inode); 182 183 if (inode->i_nlink) { 184 /* 185 * When journalling data dirty buffers are tracked only in the 186 * journal. So although mm thinks everything is clean and 187 * ready for reaping the inode might still have some pages to 188 * write in the running transaction or waiting to be 189 * checkpointed. Thus calling jbd2_journal_invalidatepage() 190 * (via truncate_inode_pages()) to discard these buffers can 191 * cause data loss. Also even if we did not discard these 192 * buffers, we would have no way to find them after the inode 193 * is reaped and thus user could see stale data if he tries to 194 * read them before the transaction is checkpointed. So be 195 * careful and force everything to disk here... We use 196 * ei->i_datasync_tid to store the newest transaction 197 * containing inode's data. 198 * 199 * Note that directories do not have this problem because they 200 * don't use page cache. 201 */ 202 if (inode->i_ino != EXT4_JOURNAL_INO && 203 ext4_should_journal_data(inode) && 204 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 205 inode->i_data.nrpages) { 206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 207 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 208 209 jbd2_complete_transaction(journal, commit_tid); 210 filemap_write_and_wait(&inode->i_data); 211 } 212 truncate_inode_pages_final(&inode->i_data); 213 214 goto no_delete; 215 } 216 217 if (is_bad_inode(inode)) 218 goto no_delete; 219 dquot_initialize(inode); 220 221 if (ext4_should_order_data(inode)) 222 ext4_begin_ordered_truncate(inode, 0); 223 truncate_inode_pages_final(&inode->i_data); 224 225 /* 226 * For inodes with journalled data, transaction commit could have 227 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 228 * flag but we still need to remove the inode from the writeback lists. 229 */ 230 if (!list_empty_careful(&inode->i_io_list)) { 231 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 232 inode_io_list_del(inode); 233 } 234 235 /* 236 * Protect us against freezing - iput() caller didn't have to have any 237 * protection against it. When we are in a running transaction though, 238 * we are already protected against freezing and we cannot grab further 239 * protection due to lock ordering constraints. 240 */ 241 if (!ext4_journal_current_handle()) { 242 sb_start_intwrite(inode->i_sb); 243 freeze_protected = true; 244 } 245 246 if (!IS_NOQUOTA(inode)) 247 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 248 249 /* 250 * Block bitmap, group descriptor, and inode are accounted in both 251 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 252 */ 253 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 254 ext4_blocks_for_truncate(inode) + extra_credits - 3); 255 if (IS_ERR(handle)) { 256 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 257 /* 258 * If we're going to skip the normal cleanup, we still need to 259 * make sure that the in-core orphan linked list is properly 260 * cleaned up. 261 */ 262 ext4_orphan_del(NULL, inode); 263 if (freeze_protected) 264 sb_end_intwrite(inode->i_sb); 265 goto no_delete; 266 } 267 268 if (IS_SYNC(inode)) 269 ext4_handle_sync(handle); 270 271 /* 272 * Set inode->i_size to 0 before calling ext4_truncate(). We need 273 * special handling of symlinks here because i_size is used to 274 * determine whether ext4_inode_info->i_data contains symlink data or 275 * block mappings. Setting i_size to 0 will remove its fast symlink 276 * status. Erase i_data so that it becomes a valid empty block map. 277 */ 278 if (ext4_inode_is_fast_symlink(inode)) 279 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 280 inode->i_size = 0; 281 err = ext4_mark_inode_dirty(handle, inode); 282 if (err) { 283 ext4_warning(inode->i_sb, 284 "couldn't mark inode dirty (err %d)", err); 285 goto stop_handle; 286 } 287 if (inode->i_blocks) { 288 err = ext4_truncate(inode); 289 if (err) { 290 ext4_error_err(inode->i_sb, -err, 291 "couldn't truncate inode %lu (err %d)", 292 inode->i_ino, err); 293 goto stop_handle; 294 } 295 } 296 297 /* Remove xattr references. */ 298 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 299 extra_credits); 300 if (err) { 301 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 302 stop_handle: 303 ext4_journal_stop(handle); 304 ext4_orphan_del(NULL, inode); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 if (freeze_protected) 336 sb_end_intwrite(inode->i_sb); 337 ext4_xattr_inode_array_free(ea_inode_array); 338 return; 339 no_delete: 340 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 341 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM); 342 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 343 } 344 345 #ifdef CONFIG_QUOTA 346 qsize_t *ext4_get_reserved_space(struct inode *inode) 347 { 348 return &EXT4_I(inode)->i_reserved_quota; 349 } 350 #endif 351 352 /* 353 * Called with i_data_sem down, which is important since we can call 354 * ext4_discard_preallocations() from here. 355 */ 356 void ext4_da_update_reserve_space(struct inode *inode, 357 int used, int quota_claim) 358 { 359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 360 struct ext4_inode_info *ei = EXT4_I(inode); 361 362 spin_lock(&ei->i_block_reservation_lock); 363 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 364 if (unlikely(used > ei->i_reserved_data_blocks)) { 365 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 366 "with only %d reserved data blocks", 367 __func__, inode->i_ino, used, 368 ei->i_reserved_data_blocks); 369 WARN_ON(1); 370 used = ei->i_reserved_data_blocks; 371 } 372 373 /* Update per-inode reservations */ 374 ei->i_reserved_data_blocks -= used; 375 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 376 377 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 378 379 /* Update quota subsystem for data blocks */ 380 if (quota_claim) 381 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 382 else { 383 /* 384 * We did fallocate with an offset that is already delayed 385 * allocated. So on delayed allocated writeback we should 386 * not re-claim the quota for fallocated blocks. 387 */ 388 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 389 } 390 391 /* 392 * If we have done all the pending block allocations and if 393 * there aren't any writers on the inode, we can discard the 394 * inode's preallocations. 395 */ 396 if ((ei->i_reserved_data_blocks == 0) && 397 !inode_is_open_for_write(inode)) 398 ext4_discard_preallocations(inode, 0); 399 } 400 401 static int __check_block_validity(struct inode *inode, const char *func, 402 unsigned int line, 403 struct ext4_map_blocks *map) 404 { 405 if (ext4_has_feature_journal(inode->i_sb) && 406 (inode->i_ino == 407 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 408 return 0; 409 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 410 ext4_error_inode(inode, func, line, map->m_pblk, 411 "lblock %lu mapped to illegal pblock %llu " 412 "(length %d)", (unsigned long) map->m_lblk, 413 map->m_pblk, map->m_len); 414 return -EFSCORRUPTED; 415 } 416 return 0; 417 } 418 419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 420 ext4_lblk_t len) 421 { 422 int ret; 423 424 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 425 return fscrypt_zeroout_range(inode, lblk, pblk, len); 426 427 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 428 if (ret > 0) 429 ret = 0; 430 431 return ret; 432 } 433 434 #define check_block_validity(inode, map) \ 435 __check_block_validity((inode), __func__, __LINE__, (map)) 436 437 #ifdef ES_AGGRESSIVE_TEST 438 static void ext4_map_blocks_es_recheck(handle_t *handle, 439 struct inode *inode, 440 struct ext4_map_blocks *es_map, 441 struct ext4_map_blocks *map, 442 int flags) 443 { 444 int retval; 445 446 map->m_flags = 0; 447 /* 448 * There is a race window that the result is not the same. 449 * e.g. xfstests #223 when dioread_nolock enables. The reason 450 * is that we lookup a block mapping in extent status tree with 451 * out taking i_data_sem. So at the time the unwritten extent 452 * could be converted. 453 */ 454 down_read(&EXT4_I(inode)->i_data_sem); 455 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 456 retval = ext4_ext_map_blocks(handle, inode, map, 0); 457 } else { 458 retval = ext4_ind_map_blocks(handle, inode, map, 0); 459 } 460 up_read((&EXT4_I(inode)->i_data_sem)); 461 462 /* 463 * We don't check m_len because extent will be collpased in status 464 * tree. So the m_len might not equal. 465 */ 466 if (es_map->m_lblk != map->m_lblk || 467 es_map->m_flags != map->m_flags || 468 es_map->m_pblk != map->m_pblk) { 469 printk("ES cache assertion failed for inode: %lu " 470 "es_cached ex [%d/%d/%llu/%x] != " 471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 472 inode->i_ino, es_map->m_lblk, es_map->m_len, 473 es_map->m_pblk, es_map->m_flags, map->m_lblk, 474 map->m_len, map->m_pblk, map->m_flags, 475 retval, flags); 476 } 477 } 478 #endif /* ES_AGGRESSIVE_TEST */ 479 480 /* 481 * The ext4_map_blocks() function tries to look up the requested blocks, 482 * and returns if the blocks are already mapped. 483 * 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 485 * and store the allocated blocks in the result buffer head and mark it 486 * mapped. 487 * 488 * If file type is extents based, it will call ext4_ext_map_blocks(), 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 490 * based files 491 * 492 * On success, it returns the number of blocks being mapped or allocated. if 493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 494 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, @map is returned as unmapped but we still do fill map->m_len to 498 * indicate the length of a hole starting at map->m_lblk. 499 * 500 * It returns the error in case of allocation failure. 501 */ 502 int ext4_map_blocks(handle_t *handle, struct inode *inode, 503 struct ext4_map_blocks *map, int flags) 504 { 505 struct extent_status es; 506 int retval; 507 int ret = 0; 508 #ifdef ES_AGGRESSIVE_TEST 509 struct ext4_map_blocks orig_map; 510 511 memcpy(&orig_map, map, sizeof(*map)); 512 #endif 513 514 map->m_flags = 0; 515 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 516 flags, map->m_len, (unsigned long) map->m_lblk); 517 518 /* 519 * ext4_map_blocks returns an int, and m_len is an unsigned int 520 */ 521 if (unlikely(map->m_len > INT_MAX)) 522 map->m_len = INT_MAX; 523 524 /* We can handle the block number less than EXT_MAX_BLOCKS */ 525 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 526 return -EFSCORRUPTED; 527 528 /* Lookup extent status tree firstly */ 529 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 530 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 532 map->m_pblk = ext4_es_pblock(&es) + 533 map->m_lblk - es.es_lblk; 534 map->m_flags |= ext4_es_is_written(&es) ? 535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 536 retval = es.es_len - (map->m_lblk - es.es_lblk); 537 if (retval > map->m_len) 538 retval = map->m_len; 539 map->m_len = retval; 540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 541 map->m_pblk = 0; 542 retval = es.es_len - (map->m_lblk - es.es_lblk); 543 if (retval > map->m_len) 544 retval = map->m_len; 545 map->m_len = retval; 546 retval = 0; 547 } else { 548 BUG(); 549 } 550 #ifdef ES_AGGRESSIVE_TEST 551 ext4_map_blocks_es_recheck(handle, inode, map, 552 &orig_map, flags); 553 #endif 554 goto found; 555 } 556 557 /* 558 * Try to see if we can get the block without requesting a new 559 * file system block. 560 */ 561 down_read(&EXT4_I(inode)->i_data_sem); 562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 563 retval = ext4_ext_map_blocks(handle, inode, map, 0); 564 } else { 565 retval = ext4_ind_map_blocks(handle, inode, map, 0); 566 } 567 if (retval > 0) { 568 unsigned int status; 569 570 if (unlikely(retval != map->m_len)) { 571 ext4_warning(inode->i_sb, 572 "ES len assertion failed for inode " 573 "%lu: retval %d != map->m_len %d", 574 inode->i_ino, retval, map->m_len); 575 WARN_ON(1); 576 } 577 578 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 579 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 580 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 581 !(status & EXTENT_STATUS_WRITTEN) && 582 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 583 map->m_lblk + map->m_len - 1)) 584 status |= EXTENT_STATUS_DELAYED; 585 ret = ext4_es_insert_extent(inode, map->m_lblk, 586 map->m_len, map->m_pblk, status); 587 if (ret < 0) 588 retval = ret; 589 } 590 up_read((&EXT4_I(inode)->i_data_sem)); 591 592 found: 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 594 ret = check_block_validity(inode, map); 595 if (ret != 0) 596 return ret; 597 } 598 599 /* If it is only a block(s) look up */ 600 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 601 return retval; 602 603 /* 604 * Returns if the blocks have already allocated 605 * 606 * Note that if blocks have been preallocated 607 * ext4_ext_get_block() returns the create = 0 608 * with buffer head unmapped. 609 */ 610 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 611 /* 612 * If we need to convert extent to unwritten 613 * we continue and do the actual work in 614 * ext4_ext_map_blocks() 615 */ 616 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 617 return retval; 618 619 /* 620 * Here we clear m_flags because after allocating an new extent, 621 * it will be set again. 622 */ 623 map->m_flags &= ~EXT4_MAP_FLAGS; 624 625 /* 626 * New blocks allocate and/or writing to unwritten extent 627 * will possibly result in updating i_data, so we take 628 * the write lock of i_data_sem, and call get_block() 629 * with create == 1 flag. 630 */ 631 down_write(&EXT4_I(inode)->i_data_sem); 632 633 /* 634 * We need to check for EXT4 here because migrate 635 * could have changed the inode type in between 636 */ 637 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 638 retval = ext4_ext_map_blocks(handle, inode, map, flags); 639 } else { 640 retval = ext4_ind_map_blocks(handle, inode, map, flags); 641 642 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 643 /* 644 * We allocated new blocks which will result in 645 * i_data's format changing. Force the migrate 646 * to fail by clearing migrate flags 647 */ 648 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 649 } 650 651 /* 652 * Update reserved blocks/metadata blocks after successful 653 * block allocation which had been deferred till now. We don't 654 * support fallocate for non extent files. So we can update 655 * reserve space here. 656 */ 657 if ((retval > 0) && 658 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 659 ext4_da_update_reserve_space(inode, retval, 1); 660 } 661 662 if (retval > 0) { 663 unsigned int status; 664 665 if (unlikely(retval != map->m_len)) { 666 ext4_warning(inode->i_sb, 667 "ES len assertion failed for inode " 668 "%lu: retval %d != map->m_len %d", 669 inode->i_ino, retval, map->m_len); 670 WARN_ON(1); 671 } 672 673 /* 674 * We have to zeroout blocks before inserting them into extent 675 * status tree. Otherwise someone could look them up there and 676 * use them before they are really zeroed. We also have to 677 * unmap metadata before zeroing as otherwise writeback can 678 * overwrite zeros with stale data from block device. 679 */ 680 if (flags & EXT4_GET_BLOCKS_ZERO && 681 map->m_flags & EXT4_MAP_MAPPED && 682 map->m_flags & EXT4_MAP_NEW) { 683 ret = ext4_issue_zeroout(inode, map->m_lblk, 684 map->m_pblk, map->m_len); 685 if (ret) { 686 retval = ret; 687 goto out_sem; 688 } 689 } 690 691 /* 692 * If the extent has been zeroed out, we don't need to update 693 * extent status tree. 694 */ 695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 696 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 697 if (ext4_es_is_written(&es)) 698 goto out_sem; 699 } 700 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 703 !(status & EXTENT_STATUS_WRITTEN) && 704 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 705 map->m_lblk + map->m_len - 1)) 706 status |= EXTENT_STATUS_DELAYED; 707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 708 map->m_pblk, status); 709 if (ret < 0) { 710 retval = ret; 711 goto out_sem; 712 } 713 } 714 715 out_sem: 716 up_write((&EXT4_I(inode)->i_data_sem)); 717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 718 ret = check_block_validity(inode, map); 719 if (ret != 0) 720 return ret; 721 722 /* 723 * Inodes with freshly allocated blocks where contents will be 724 * visible after transaction commit must be on transaction's 725 * ordered data list. 726 */ 727 if (map->m_flags & EXT4_MAP_NEW && 728 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 729 !(flags & EXT4_GET_BLOCKS_ZERO) && 730 !ext4_is_quota_file(inode) && 731 ext4_should_order_data(inode)) { 732 loff_t start_byte = 733 (loff_t)map->m_lblk << inode->i_blkbits; 734 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 735 736 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 737 ret = ext4_jbd2_inode_add_wait(handle, inode, 738 start_byte, length); 739 else 740 ret = ext4_jbd2_inode_add_write(handle, inode, 741 start_byte, length); 742 if (ret) 743 return ret; 744 } 745 ext4_fc_track_range(handle, inode, map->m_lblk, 746 map->m_lblk + map->m_len - 1); 747 } 748 749 if (retval < 0) 750 ext_debug(inode, "failed with err %d\n", retval); 751 return retval; 752 } 753 754 /* 755 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 756 * we have to be careful as someone else may be manipulating b_state as well. 757 */ 758 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 759 { 760 unsigned long old_state; 761 unsigned long new_state; 762 763 flags &= EXT4_MAP_FLAGS; 764 765 /* Dummy buffer_head? Set non-atomically. */ 766 if (!bh->b_page) { 767 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 768 return; 769 } 770 /* 771 * Someone else may be modifying b_state. Be careful! This is ugly but 772 * once we get rid of using bh as a container for mapping information 773 * to pass to / from get_block functions, this can go away. 774 */ 775 do { 776 old_state = READ_ONCE(bh->b_state); 777 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 778 } while (unlikely( 779 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 780 } 781 782 static int _ext4_get_block(struct inode *inode, sector_t iblock, 783 struct buffer_head *bh, int flags) 784 { 785 struct ext4_map_blocks map; 786 int ret = 0; 787 788 if (ext4_has_inline_data(inode)) 789 return -ERANGE; 790 791 map.m_lblk = iblock; 792 map.m_len = bh->b_size >> inode->i_blkbits; 793 794 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 795 flags); 796 if (ret > 0) { 797 map_bh(bh, inode->i_sb, map.m_pblk); 798 ext4_update_bh_state(bh, map.m_flags); 799 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 800 ret = 0; 801 } else if (ret == 0) { 802 /* hole case, need to fill in bh->b_size */ 803 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 804 } 805 return ret; 806 } 807 808 int ext4_get_block(struct inode *inode, sector_t iblock, 809 struct buffer_head *bh, int create) 810 { 811 return _ext4_get_block(inode, iblock, bh, 812 create ? EXT4_GET_BLOCKS_CREATE : 0); 813 } 814 815 /* 816 * Get block function used when preparing for buffered write if we require 817 * creating an unwritten extent if blocks haven't been allocated. The extent 818 * will be converted to written after the IO is complete. 819 */ 820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 821 struct buffer_head *bh_result, int create) 822 { 823 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 824 inode->i_ino, create); 825 return _ext4_get_block(inode, iblock, bh_result, 826 EXT4_GET_BLOCKS_IO_CREATE_EXT); 827 } 828 829 /* Maximum number of blocks we map for direct IO at once. */ 830 #define DIO_MAX_BLOCKS 4096 831 832 /* 833 * `handle' can be NULL if create is zero 834 */ 835 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 836 ext4_lblk_t block, int map_flags) 837 { 838 struct ext4_map_blocks map; 839 struct buffer_head *bh; 840 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 841 int err; 842 843 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 844 || handle != NULL || create == 0); 845 846 map.m_lblk = block; 847 map.m_len = 1; 848 err = ext4_map_blocks(handle, inode, &map, map_flags); 849 850 if (err == 0) 851 return create ? ERR_PTR(-ENOSPC) : NULL; 852 if (err < 0) 853 return ERR_PTR(err); 854 855 bh = sb_getblk(inode->i_sb, map.m_pblk); 856 if (unlikely(!bh)) 857 return ERR_PTR(-ENOMEM); 858 if (map.m_flags & EXT4_MAP_NEW) { 859 ASSERT(create != 0); 860 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 861 || (handle != NULL)); 862 863 /* 864 * Now that we do not always journal data, we should 865 * keep in mind whether this should always journal the 866 * new buffer as metadata. For now, regular file 867 * writes use ext4_get_block instead, so it's not a 868 * problem. 869 */ 870 lock_buffer(bh); 871 BUFFER_TRACE(bh, "call get_create_access"); 872 err = ext4_journal_get_create_access(handle, bh); 873 if (unlikely(err)) { 874 unlock_buffer(bh); 875 goto errout; 876 } 877 if (!buffer_uptodate(bh)) { 878 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 879 set_buffer_uptodate(bh); 880 } 881 unlock_buffer(bh); 882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 883 err = ext4_handle_dirty_metadata(handle, inode, bh); 884 if (unlikely(err)) 885 goto errout; 886 } else 887 BUFFER_TRACE(bh, "not a new buffer"); 888 return bh; 889 errout: 890 brelse(bh); 891 return ERR_PTR(err); 892 } 893 894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 895 ext4_lblk_t block, int map_flags) 896 { 897 struct buffer_head *bh; 898 int ret; 899 900 bh = ext4_getblk(handle, inode, block, map_flags); 901 if (IS_ERR(bh)) 902 return bh; 903 if (!bh || ext4_buffer_uptodate(bh)) 904 return bh; 905 906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 907 if (ret) { 908 put_bh(bh); 909 return ERR_PTR(ret); 910 } 911 return bh; 912 } 913 914 /* Read a contiguous batch of blocks. */ 915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 916 bool wait, struct buffer_head **bhs) 917 { 918 int i, err; 919 920 for (i = 0; i < bh_count; i++) { 921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 922 if (IS_ERR(bhs[i])) { 923 err = PTR_ERR(bhs[i]); 924 bh_count = i; 925 goto out_brelse; 926 } 927 } 928 929 for (i = 0; i < bh_count; i++) 930 /* Note that NULL bhs[i] is valid because of holes. */ 931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 933 934 if (!wait) 935 return 0; 936 937 for (i = 0; i < bh_count; i++) 938 if (bhs[i]) 939 wait_on_buffer(bhs[i]); 940 941 for (i = 0; i < bh_count; i++) { 942 if (bhs[i] && !buffer_uptodate(bhs[i])) { 943 err = -EIO; 944 goto out_brelse; 945 } 946 } 947 return 0; 948 949 out_brelse: 950 for (i = 0; i < bh_count; i++) { 951 brelse(bhs[i]); 952 bhs[i] = NULL; 953 } 954 return err; 955 } 956 957 int ext4_walk_page_buffers(handle_t *handle, 958 struct buffer_head *head, 959 unsigned from, 960 unsigned to, 961 int *partial, 962 int (*fn)(handle_t *handle, 963 struct buffer_head *bh)) 964 { 965 struct buffer_head *bh; 966 unsigned block_start, block_end; 967 unsigned blocksize = head->b_size; 968 int err, ret = 0; 969 struct buffer_head *next; 970 971 for (bh = head, block_start = 0; 972 ret == 0 && (bh != head || !block_start); 973 block_start = block_end, bh = next) { 974 next = bh->b_this_page; 975 block_end = block_start + blocksize; 976 if (block_end <= from || block_start >= to) { 977 if (partial && !buffer_uptodate(bh)) 978 *partial = 1; 979 continue; 980 } 981 err = (*fn)(handle, bh); 982 if (!ret) 983 ret = err; 984 } 985 return ret; 986 } 987 988 /* 989 * To preserve ordering, it is essential that the hole instantiation and 990 * the data write be encapsulated in a single transaction. We cannot 991 * close off a transaction and start a new one between the ext4_get_block() 992 * and the commit_write(). So doing the jbd2_journal_start at the start of 993 * prepare_write() is the right place. 994 * 995 * Also, this function can nest inside ext4_writepage(). In that case, we 996 * *know* that ext4_writepage() has generated enough buffer credits to do the 997 * whole page. So we won't block on the journal in that case, which is good, 998 * because the caller may be PF_MEMALLOC. 999 * 1000 * By accident, ext4 can be reentered when a transaction is open via 1001 * quota file writes. If we were to commit the transaction while thus 1002 * reentered, there can be a deadlock - we would be holding a quota 1003 * lock, and the commit would never complete if another thread had a 1004 * transaction open and was blocking on the quota lock - a ranking 1005 * violation. 1006 * 1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1008 * will _not_ run commit under these circumstances because handle->h_ref 1009 * is elevated. We'll still have enough credits for the tiny quotafile 1010 * write. 1011 */ 1012 int do_journal_get_write_access(handle_t *handle, 1013 struct buffer_head *bh) 1014 { 1015 int dirty = buffer_dirty(bh); 1016 int ret; 1017 1018 if (!buffer_mapped(bh) || buffer_freed(bh)) 1019 return 0; 1020 /* 1021 * __block_write_begin() could have dirtied some buffers. Clean 1022 * the dirty bit as jbd2_journal_get_write_access() could complain 1023 * otherwise about fs integrity issues. Setting of the dirty bit 1024 * by __block_write_begin() isn't a real problem here as we clear 1025 * the bit before releasing a page lock and thus writeback cannot 1026 * ever write the buffer. 1027 */ 1028 if (dirty) 1029 clear_buffer_dirty(bh); 1030 BUFFER_TRACE(bh, "get write access"); 1031 ret = ext4_journal_get_write_access(handle, bh); 1032 if (!ret && dirty) 1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1034 return ret; 1035 } 1036 1037 #ifdef CONFIG_FS_ENCRYPTION 1038 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1039 get_block_t *get_block) 1040 { 1041 unsigned from = pos & (PAGE_SIZE - 1); 1042 unsigned to = from + len; 1043 struct inode *inode = page->mapping->host; 1044 unsigned block_start, block_end; 1045 sector_t block; 1046 int err = 0; 1047 unsigned blocksize = inode->i_sb->s_blocksize; 1048 unsigned bbits; 1049 struct buffer_head *bh, *head, *wait[2]; 1050 int nr_wait = 0; 1051 int i; 1052 1053 BUG_ON(!PageLocked(page)); 1054 BUG_ON(from > PAGE_SIZE); 1055 BUG_ON(to > PAGE_SIZE); 1056 BUG_ON(from > to); 1057 1058 if (!page_has_buffers(page)) 1059 create_empty_buffers(page, blocksize, 0); 1060 head = page_buffers(page); 1061 bbits = ilog2(blocksize); 1062 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1063 1064 for (bh = head, block_start = 0; bh != head || !block_start; 1065 block++, block_start = block_end, bh = bh->b_this_page) { 1066 block_end = block_start + blocksize; 1067 if (block_end <= from || block_start >= to) { 1068 if (PageUptodate(page)) { 1069 if (!buffer_uptodate(bh)) 1070 set_buffer_uptodate(bh); 1071 } 1072 continue; 1073 } 1074 if (buffer_new(bh)) 1075 clear_buffer_new(bh); 1076 if (!buffer_mapped(bh)) { 1077 WARN_ON(bh->b_size != blocksize); 1078 err = get_block(inode, block, bh, 1); 1079 if (err) 1080 break; 1081 if (buffer_new(bh)) { 1082 if (PageUptodate(page)) { 1083 clear_buffer_new(bh); 1084 set_buffer_uptodate(bh); 1085 mark_buffer_dirty(bh); 1086 continue; 1087 } 1088 if (block_end > to || block_start < from) 1089 zero_user_segments(page, to, block_end, 1090 block_start, from); 1091 continue; 1092 } 1093 } 1094 if (PageUptodate(page)) { 1095 if (!buffer_uptodate(bh)) 1096 set_buffer_uptodate(bh); 1097 continue; 1098 } 1099 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1100 !buffer_unwritten(bh) && 1101 (block_start < from || block_end > to)) { 1102 ext4_read_bh_lock(bh, 0, false); 1103 wait[nr_wait++] = bh; 1104 } 1105 } 1106 /* 1107 * If we issued read requests, let them complete. 1108 */ 1109 for (i = 0; i < nr_wait; i++) { 1110 wait_on_buffer(wait[i]); 1111 if (!buffer_uptodate(wait[i])) 1112 err = -EIO; 1113 } 1114 if (unlikely(err)) { 1115 page_zero_new_buffers(page, from, to); 1116 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1117 for (i = 0; i < nr_wait; i++) { 1118 int err2; 1119 1120 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1121 bh_offset(wait[i])); 1122 if (err2) { 1123 clear_buffer_uptodate(wait[i]); 1124 err = err2; 1125 } 1126 } 1127 } 1128 1129 return err; 1130 } 1131 #endif 1132 1133 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1134 loff_t pos, unsigned len, unsigned flags, 1135 struct page **pagep, void **fsdata) 1136 { 1137 struct inode *inode = mapping->host; 1138 int ret, needed_blocks; 1139 handle_t *handle; 1140 int retries = 0; 1141 struct page *page; 1142 pgoff_t index; 1143 unsigned from, to; 1144 1145 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1146 return -EIO; 1147 1148 trace_ext4_write_begin(inode, pos, len, flags); 1149 /* 1150 * Reserve one block more for addition to orphan list in case 1151 * we allocate blocks but write fails for some reason 1152 */ 1153 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1154 index = pos >> PAGE_SHIFT; 1155 from = pos & (PAGE_SIZE - 1); 1156 to = from + len; 1157 1158 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1159 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1160 flags, pagep); 1161 if (ret < 0) 1162 return ret; 1163 if (ret == 1) 1164 return 0; 1165 } 1166 1167 /* 1168 * grab_cache_page_write_begin() can take a long time if the 1169 * system is thrashing due to memory pressure, or if the page 1170 * is being written back. So grab it first before we start 1171 * the transaction handle. This also allows us to allocate 1172 * the page (if needed) without using GFP_NOFS. 1173 */ 1174 retry_grab: 1175 page = grab_cache_page_write_begin(mapping, index, flags); 1176 if (!page) 1177 return -ENOMEM; 1178 unlock_page(page); 1179 1180 retry_journal: 1181 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1182 if (IS_ERR(handle)) { 1183 put_page(page); 1184 return PTR_ERR(handle); 1185 } 1186 1187 lock_page(page); 1188 if (page->mapping != mapping) { 1189 /* The page got truncated from under us */ 1190 unlock_page(page); 1191 put_page(page); 1192 ext4_journal_stop(handle); 1193 goto retry_grab; 1194 } 1195 /* In case writeback began while the page was unlocked */ 1196 wait_for_stable_page(page); 1197 1198 #ifdef CONFIG_FS_ENCRYPTION 1199 if (ext4_should_dioread_nolock(inode)) 1200 ret = ext4_block_write_begin(page, pos, len, 1201 ext4_get_block_unwritten); 1202 else 1203 ret = ext4_block_write_begin(page, pos, len, 1204 ext4_get_block); 1205 #else 1206 if (ext4_should_dioread_nolock(inode)) 1207 ret = __block_write_begin(page, pos, len, 1208 ext4_get_block_unwritten); 1209 else 1210 ret = __block_write_begin(page, pos, len, ext4_get_block); 1211 #endif 1212 if (!ret && ext4_should_journal_data(inode)) { 1213 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1214 from, to, NULL, 1215 do_journal_get_write_access); 1216 } 1217 1218 if (ret) { 1219 bool extended = (pos + len > inode->i_size) && 1220 !ext4_verity_in_progress(inode); 1221 1222 unlock_page(page); 1223 /* 1224 * __block_write_begin may have instantiated a few blocks 1225 * outside i_size. Trim these off again. Don't need 1226 * i_size_read because we hold i_mutex. 1227 * 1228 * Add inode to orphan list in case we crash before 1229 * truncate finishes 1230 */ 1231 if (extended && ext4_can_truncate(inode)) 1232 ext4_orphan_add(handle, inode); 1233 1234 ext4_journal_stop(handle); 1235 if (extended) { 1236 ext4_truncate_failed_write(inode); 1237 /* 1238 * If truncate failed early the inode might 1239 * still be on the orphan list; we need to 1240 * make sure the inode is removed from the 1241 * orphan list in that case. 1242 */ 1243 if (inode->i_nlink) 1244 ext4_orphan_del(NULL, inode); 1245 } 1246 1247 if (ret == -ENOSPC && 1248 ext4_should_retry_alloc(inode->i_sb, &retries)) 1249 goto retry_journal; 1250 put_page(page); 1251 return ret; 1252 } 1253 *pagep = page; 1254 return ret; 1255 } 1256 1257 /* For write_end() in data=journal mode */ 1258 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1259 { 1260 int ret; 1261 if (!buffer_mapped(bh) || buffer_freed(bh)) 1262 return 0; 1263 set_buffer_uptodate(bh); 1264 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1265 clear_buffer_meta(bh); 1266 clear_buffer_prio(bh); 1267 return ret; 1268 } 1269 1270 /* 1271 * We need to pick up the new inode size which generic_commit_write gave us 1272 * `file' can be NULL - eg, when called from page_symlink(). 1273 * 1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1275 * buffers are managed internally. 1276 */ 1277 static int ext4_write_end(struct file *file, 1278 struct address_space *mapping, 1279 loff_t pos, unsigned len, unsigned copied, 1280 struct page *page, void *fsdata) 1281 { 1282 handle_t *handle = ext4_journal_current_handle(); 1283 struct inode *inode = mapping->host; 1284 loff_t old_size = inode->i_size; 1285 int ret = 0, ret2; 1286 int i_size_changed = 0; 1287 int inline_data = ext4_has_inline_data(inode); 1288 bool verity = ext4_verity_in_progress(inode); 1289 1290 trace_ext4_write_end(inode, pos, len, copied); 1291 if (inline_data) { 1292 ret = ext4_write_inline_data_end(inode, pos, len, 1293 copied, page); 1294 if (ret < 0) { 1295 unlock_page(page); 1296 put_page(page); 1297 goto errout; 1298 } 1299 copied = ret; 1300 } else 1301 copied = block_write_end(file, mapping, pos, 1302 len, copied, page, fsdata); 1303 /* 1304 * it's important to update i_size while still holding page lock: 1305 * page writeout could otherwise come in and zero beyond i_size. 1306 * 1307 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1308 * blocks are being written past EOF, so skip the i_size update. 1309 */ 1310 if (!verity) 1311 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1312 unlock_page(page); 1313 put_page(page); 1314 1315 if (old_size < pos && !verity) 1316 pagecache_isize_extended(inode, old_size, pos); 1317 /* 1318 * Don't mark the inode dirty under page lock. First, it unnecessarily 1319 * makes the holding time of page lock longer. Second, it forces lock 1320 * ordering of page lock and transaction start for journaling 1321 * filesystems. 1322 */ 1323 if (i_size_changed || inline_data) 1324 ret = ext4_mark_inode_dirty(handle, inode); 1325 1326 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1327 /* if we have allocated more blocks and copied 1328 * less. We will have blocks allocated outside 1329 * inode->i_size. So truncate them 1330 */ 1331 ext4_orphan_add(handle, inode); 1332 errout: 1333 ret2 = ext4_journal_stop(handle); 1334 if (!ret) 1335 ret = ret2; 1336 1337 if (pos + len > inode->i_size && !verity) { 1338 ext4_truncate_failed_write(inode); 1339 /* 1340 * If truncate failed early the inode might still be 1341 * on the orphan list; we need to make sure the inode 1342 * is removed from the orphan list in that case. 1343 */ 1344 if (inode->i_nlink) 1345 ext4_orphan_del(NULL, inode); 1346 } 1347 1348 return ret ? ret : copied; 1349 } 1350 1351 /* 1352 * This is a private version of page_zero_new_buffers() which doesn't 1353 * set the buffer to be dirty, since in data=journalled mode we need 1354 * to call ext4_handle_dirty_metadata() instead. 1355 */ 1356 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1357 struct page *page, 1358 unsigned from, unsigned to) 1359 { 1360 unsigned int block_start = 0, block_end; 1361 struct buffer_head *head, *bh; 1362 1363 bh = head = page_buffers(page); 1364 do { 1365 block_end = block_start + bh->b_size; 1366 if (buffer_new(bh)) { 1367 if (block_end > from && block_start < to) { 1368 if (!PageUptodate(page)) { 1369 unsigned start, size; 1370 1371 start = max(from, block_start); 1372 size = min(to, block_end) - start; 1373 1374 zero_user(page, start, size); 1375 write_end_fn(handle, bh); 1376 } 1377 clear_buffer_new(bh); 1378 } 1379 } 1380 block_start = block_end; 1381 bh = bh->b_this_page; 1382 } while (bh != head); 1383 } 1384 1385 static int ext4_journalled_write_end(struct file *file, 1386 struct address_space *mapping, 1387 loff_t pos, unsigned len, unsigned copied, 1388 struct page *page, void *fsdata) 1389 { 1390 handle_t *handle = ext4_journal_current_handle(); 1391 struct inode *inode = mapping->host; 1392 loff_t old_size = inode->i_size; 1393 int ret = 0, ret2; 1394 int partial = 0; 1395 unsigned from, to; 1396 int size_changed = 0; 1397 int inline_data = ext4_has_inline_data(inode); 1398 bool verity = ext4_verity_in_progress(inode); 1399 1400 trace_ext4_journalled_write_end(inode, pos, len, copied); 1401 from = pos & (PAGE_SIZE - 1); 1402 to = from + len; 1403 1404 BUG_ON(!ext4_handle_valid(handle)); 1405 1406 if (inline_data) { 1407 ret = ext4_write_inline_data_end(inode, pos, len, 1408 copied, page); 1409 if (ret < 0) { 1410 unlock_page(page); 1411 put_page(page); 1412 goto errout; 1413 } 1414 copied = ret; 1415 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1416 copied = 0; 1417 ext4_journalled_zero_new_buffers(handle, page, from, to); 1418 } else { 1419 if (unlikely(copied < len)) 1420 ext4_journalled_zero_new_buffers(handle, page, 1421 from + copied, to); 1422 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1423 from + copied, &partial, 1424 write_end_fn); 1425 if (!partial) 1426 SetPageUptodate(page); 1427 } 1428 if (!verity) 1429 size_changed = ext4_update_inode_size(inode, pos + copied); 1430 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1431 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1432 unlock_page(page); 1433 put_page(page); 1434 1435 if (old_size < pos && !verity) 1436 pagecache_isize_extended(inode, old_size, pos); 1437 1438 if (size_changed || inline_data) { 1439 ret2 = ext4_mark_inode_dirty(handle, inode); 1440 if (!ret) 1441 ret = ret2; 1442 } 1443 1444 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1445 /* if we have allocated more blocks and copied 1446 * less. We will have blocks allocated outside 1447 * inode->i_size. So truncate them 1448 */ 1449 ext4_orphan_add(handle, inode); 1450 1451 errout: 1452 ret2 = ext4_journal_stop(handle); 1453 if (!ret) 1454 ret = ret2; 1455 if (pos + len > inode->i_size && !verity) { 1456 ext4_truncate_failed_write(inode); 1457 /* 1458 * If truncate failed early the inode might still be 1459 * on the orphan list; we need to make sure the inode 1460 * is removed from the orphan list in that case. 1461 */ 1462 if (inode->i_nlink) 1463 ext4_orphan_del(NULL, inode); 1464 } 1465 1466 return ret ? ret : copied; 1467 } 1468 1469 /* 1470 * Reserve space for a single cluster 1471 */ 1472 static int ext4_da_reserve_space(struct inode *inode) 1473 { 1474 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1475 struct ext4_inode_info *ei = EXT4_I(inode); 1476 int ret; 1477 1478 /* 1479 * We will charge metadata quota at writeout time; this saves 1480 * us from metadata over-estimation, though we may go over by 1481 * a small amount in the end. Here we just reserve for data. 1482 */ 1483 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1484 if (ret) 1485 return ret; 1486 1487 spin_lock(&ei->i_block_reservation_lock); 1488 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1489 spin_unlock(&ei->i_block_reservation_lock); 1490 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1491 return -ENOSPC; 1492 } 1493 ei->i_reserved_data_blocks++; 1494 trace_ext4_da_reserve_space(inode); 1495 spin_unlock(&ei->i_block_reservation_lock); 1496 1497 return 0; /* success */ 1498 } 1499 1500 void ext4_da_release_space(struct inode *inode, int to_free) 1501 { 1502 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1503 struct ext4_inode_info *ei = EXT4_I(inode); 1504 1505 if (!to_free) 1506 return; /* Nothing to release, exit */ 1507 1508 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1509 1510 trace_ext4_da_release_space(inode, to_free); 1511 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1512 /* 1513 * if there aren't enough reserved blocks, then the 1514 * counter is messed up somewhere. Since this 1515 * function is called from invalidate page, it's 1516 * harmless to return without any action. 1517 */ 1518 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1519 "ino %lu, to_free %d with only %d reserved " 1520 "data blocks", inode->i_ino, to_free, 1521 ei->i_reserved_data_blocks); 1522 WARN_ON(1); 1523 to_free = ei->i_reserved_data_blocks; 1524 } 1525 ei->i_reserved_data_blocks -= to_free; 1526 1527 /* update fs dirty data blocks counter */ 1528 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1529 1530 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1531 1532 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1533 } 1534 1535 /* 1536 * Delayed allocation stuff 1537 */ 1538 1539 struct mpage_da_data { 1540 struct inode *inode; 1541 struct writeback_control *wbc; 1542 1543 pgoff_t first_page; /* The first page to write */ 1544 pgoff_t next_page; /* Current page to examine */ 1545 pgoff_t last_page; /* Last page to examine */ 1546 /* 1547 * Extent to map - this can be after first_page because that can be 1548 * fully mapped. We somewhat abuse m_flags to store whether the extent 1549 * is delalloc or unwritten. 1550 */ 1551 struct ext4_map_blocks map; 1552 struct ext4_io_submit io_submit; /* IO submission data */ 1553 unsigned int do_map:1; 1554 unsigned int scanned_until_end:1; 1555 }; 1556 1557 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1558 bool invalidate) 1559 { 1560 int nr_pages, i; 1561 pgoff_t index, end; 1562 struct pagevec pvec; 1563 struct inode *inode = mpd->inode; 1564 struct address_space *mapping = inode->i_mapping; 1565 1566 /* This is necessary when next_page == 0. */ 1567 if (mpd->first_page >= mpd->next_page) 1568 return; 1569 1570 mpd->scanned_until_end = 0; 1571 index = mpd->first_page; 1572 end = mpd->next_page - 1; 1573 if (invalidate) { 1574 ext4_lblk_t start, last; 1575 start = index << (PAGE_SHIFT - inode->i_blkbits); 1576 last = end << (PAGE_SHIFT - inode->i_blkbits); 1577 ext4_es_remove_extent(inode, start, last - start + 1); 1578 } 1579 1580 pagevec_init(&pvec); 1581 while (index <= end) { 1582 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1583 if (nr_pages == 0) 1584 break; 1585 for (i = 0; i < nr_pages; i++) { 1586 struct page *page = pvec.pages[i]; 1587 1588 BUG_ON(!PageLocked(page)); 1589 BUG_ON(PageWriteback(page)); 1590 if (invalidate) { 1591 if (page_mapped(page)) 1592 clear_page_dirty_for_io(page); 1593 block_invalidatepage(page, 0, PAGE_SIZE); 1594 ClearPageUptodate(page); 1595 } 1596 unlock_page(page); 1597 } 1598 pagevec_release(&pvec); 1599 } 1600 } 1601 1602 static void ext4_print_free_blocks(struct inode *inode) 1603 { 1604 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1605 struct super_block *sb = inode->i_sb; 1606 struct ext4_inode_info *ei = EXT4_I(inode); 1607 1608 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1609 EXT4_C2B(EXT4_SB(inode->i_sb), 1610 ext4_count_free_clusters(sb))); 1611 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1612 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1613 (long long) EXT4_C2B(EXT4_SB(sb), 1614 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1615 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1616 (long long) EXT4_C2B(EXT4_SB(sb), 1617 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1618 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1619 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1620 ei->i_reserved_data_blocks); 1621 return; 1622 } 1623 1624 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1625 { 1626 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1627 } 1628 1629 /* 1630 * ext4_insert_delayed_block - adds a delayed block to the extents status 1631 * tree, incrementing the reserved cluster/block 1632 * count or making a pending reservation 1633 * where needed 1634 * 1635 * @inode - file containing the newly added block 1636 * @lblk - logical block to be added 1637 * 1638 * Returns 0 on success, negative error code on failure. 1639 */ 1640 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1641 { 1642 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1643 int ret; 1644 bool allocated = false; 1645 1646 /* 1647 * If the cluster containing lblk is shared with a delayed, 1648 * written, or unwritten extent in a bigalloc file system, it's 1649 * already been accounted for and does not need to be reserved. 1650 * A pending reservation must be made for the cluster if it's 1651 * shared with a written or unwritten extent and doesn't already 1652 * have one. Written and unwritten extents can be purged from the 1653 * extents status tree if the system is under memory pressure, so 1654 * it's necessary to examine the extent tree if a search of the 1655 * extents status tree doesn't get a match. 1656 */ 1657 if (sbi->s_cluster_ratio == 1) { 1658 ret = ext4_da_reserve_space(inode); 1659 if (ret != 0) /* ENOSPC */ 1660 goto errout; 1661 } else { /* bigalloc */ 1662 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1663 if (!ext4_es_scan_clu(inode, 1664 &ext4_es_is_mapped, lblk)) { 1665 ret = ext4_clu_mapped(inode, 1666 EXT4_B2C(sbi, lblk)); 1667 if (ret < 0) 1668 goto errout; 1669 if (ret == 0) { 1670 ret = ext4_da_reserve_space(inode); 1671 if (ret != 0) /* ENOSPC */ 1672 goto errout; 1673 } else { 1674 allocated = true; 1675 } 1676 } else { 1677 allocated = true; 1678 } 1679 } 1680 } 1681 1682 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1683 1684 errout: 1685 return ret; 1686 } 1687 1688 /* 1689 * This function is grabs code from the very beginning of 1690 * ext4_map_blocks, but assumes that the caller is from delayed write 1691 * time. This function looks up the requested blocks and sets the 1692 * buffer delay bit under the protection of i_data_sem. 1693 */ 1694 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1695 struct ext4_map_blocks *map, 1696 struct buffer_head *bh) 1697 { 1698 struct extent_status es; 1699 int retval; 1700 sector_t invalid_block = ~((sector_t) 0xffff); 1701 #ifdef ES_AGGRESSIVE_TEST 1702 struct ext4_map_blocks orig_map; 1703 1704 memcpy(&orig_map, map, sizeof(*map)); 1705 #endif 1706 1707 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1708 invalid_block = ~0; 1709 1710 map->m_flags = 0; 1711 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1712 (unsigned long) map->m_lblk); 1713 1714 /* Lookup extent status tree firstly */ 1715 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1716 if (ext4_es_is_hole(&es)) { 1717 retval = 0; 1718 down_read(&EXT4_I(inode)->i_data_sem); 1719 goto add_delayed; 1720 } 1721 1722 /* 1723 * Delayed extent could be allocated by fallocate. 1724 * So we need to check it. 1725 */ 1726 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1727 map_bh(bh, inode->i_sb, invalid_block); 1728 set_buffer_new(bh); 1729 set_buffer_delay(bh); 1730 return 0; 1731 } 1732 1733 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1734 retval = es.es_len - (iblock - es.es_lblk); 1735 if (retval > map->m_len) 1736 retval = map->m_len; 1737 map->m_len = retval; 1738 if (ext4_es_is_written(&es)) 1739 map->m_flags |= EXT4_MAP_MAPPED; 1740 else if (ext4_es_is_unwritten(&es)) 1741 map->m_flags |= EXT4_MAP_UNWRITTEN; 1742 else 1743 BUG(); 1744 1745 #ifdef ES_AGGRESSIVE_TEST 1746 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1747 #endif 1748 return retval; 1749 } 1750 1751 /* 1752 * Try to see if we can get the block without requesting a new 1753 * file system block. 1754 */ 1755 down_read(&EXT4_I(inode)->i_data_sem); 1756 if (ext4_has_inline_data(inode)) 1757 retval = 0; 1758 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1759 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1760 else 1761 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1762 1763 add_delayed: 1764 if (retval == 0) { 1765 int ret; 1766 1767 /* 1768 * XXX: __block_prepare_write() unmaps passed block, 1769 * is it OK? 1770 */ 1771 1772 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1773 if (ret != 0) { 1774 retval = ret; 1775 goto out_unlock; 1776 } 1777 1778 map_bh(bh, inode->i_sb, invalid_block); 1779 set_buffer_new(bh); 1780 set_buffer_delay(bh); 1781 } else if (retval > 0) { 1782 int ret; 1783 unsigned int status; 1784 1785 if (unlikely(retval != map->m_len)) { 1786 ext4_warning(inode->i_sb, 1787 "ES len assertion failed for inode " 1788 "%lu: retval %d != map->m_len %d", 1789 inode->i_ino, retval, map->m_len); 1790 WARN_ON(1); 1791 } 1792 1793 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1794 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1795 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1796 map->m_pblk, status); 1797 if (ret != 0) 1798 retval = ret; 1799 } 1800 1801 out_unlock: 1802 up_read((&EXT4_I(inode)->i_data_sem)); 1803 1804 return retval; 1805 } 1806 1807 /* 1808 * This is a special get_block_t callback which is used by 1809 * ext4_da_write_begin(). It will either return mapped block or 1810 * reserve space for a single block. 1811 * 1812 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1813 * We also have b_blocknr = -1 and b_bdev initialized properly 1814 * 1815 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1816 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1817 * initialized properly. 1818 */ 1819 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1820 struct buffer_head *bh, int create) 1821 { 1822 struct ext4_map_blocks map; 1823 int ret = 0; 1824 1825 BUG_ON(create == 0); 1826 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1827 1828 map.m_lblk = iblock; 1829 map.m_len = 1; 1830 1831 /* 1832 * first, we need to know whether the block is allocated already 1833 * preallocated blocks are unmapped but should treated 1834 * the same as allocated blocks. 1835 */ 1836 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1837 if (ret <= 0) 1838 return ret; 1839 1840 map_bh(bh, inode->i_sb, map.m_pblk); 1841 ext4_update_bh_state(bh, map.m_flags); 1842 1843 if (buffer_unwritten(bh)) { 1844 /* A delayed write to unwritten bh should be marked 1845 * new and mapped. Mapped ensures that we don't do 1846 * get_block multiple times when we write to the same 1847 * offset and new ensures that we do proper zero out 1848 * for partial write. 1849 */ 1850 set_buffer_new(bh); 1851 set_buffer_mapped(bh); 1852 } 1853 return 0; 1854 } 1855 1856 static int bget_one(handle_t *handle, struct buffer_head *bh) 1857 { 1858 get_bh(bh); 1859 return 0; 1860 } 1861 1862 static int bput_one(handle_t *handle, struct buffer_head *bh) 1863 { 1864 put_bh(bh); 1865 return 0; 1866 } 1867 1868 static int __ext4_journalled_writepage(struct page *page, 1869 unsigned int len) 1870 { 1871 struct address_space *mapping = page->mapping; 1872 struct inode *inode = mapping->host; 1873 struct buffer_head *page_bufs = NULL; 1874 handle_t *handle = NULL; 1875 int ret = 0, err = 0; 1876 int inline_data = ext4_has_inline_data(inode); 1877 struct buffer_head *inode_bh = NULL; 1878 1879 ClearPageChecked(page); 1880 1881 if (inline_data) { 1882 BUG_ON(page->index != 0); 1883 BUG_ON(len > ext4_get_max_inline_size(inode)); 1884 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1885 if (inode_bh == NULL) 1886 goto out; 1887 } else { 1888 page_bufs = page_buffers(page); 1889 if (!page_bufs) { 1890 BUG(); 1891 goto out; 1892 } 1893 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1894 NULL, bget_one); 1895 } 1896 /* 1897 * We need to release the page lock before we start the 1898 * journal, so grab a reference so the page won't disappear 1899 * out from under us. 1900 */ 1901 get_page(page); 1902 unlock_page(page); 1903 1904 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1905 ext4_writepage_trans_blocks(inode)); 1906 if (IS_ERR(handle)) { 1907 ret = PTR_ERR(handle); 1908 put_page(page); 1909 goto out_no_pagelock; 1910 } 1911 BUG_ON(!ext4_handle_valid(handle)); 1912 1913 lock_page(page); 1914 put_page(page); 1915 if (page->mapping != mapping) { 1916 /* The page got truncated from under us */ 1917 ext4_journal_stop(handle); 1918 ret = 0; 1919 goto out; 1920 } 1921 1922 if (inline_data) { 1923 ret = ext4_mark_inode_dirty(handle, inode); 1924 } else { 1925 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1926 do_journal_get_write_access); 1927 1928 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1929 write_end_fn); 1930 } 1931 if (ret == 0) 1932 ret = err; 1933 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1934 if (ret == 0) 1935 ret = err; 1936 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1937 err = ext4_journal_stop(handle); 1938 if (!ret) 1939 ret = err; 1940 1941 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1942 out: 1943 unlock_page(page); 1944 out_no_pagelock: 1945 if (!inline_data && page_bufs) 1946 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1947 NULL, bput_one); 1948 brelse(inode_bh); 1949 return ret; 1950 } 1951 1952 /* 1953 * Note that we don't need to start a transaction unless we're journaling data 1954 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1955 * need to file the inode to the transaction's list in ordered mode because if 1956 * we are writing back data added by write(), the inode is already there and if 1957 * we are writing back data modified via mmap(), no one guarantees in which 1958 * transaction the data will hit the disk. In case we are journaling data, we 1959 * cannot start transaction directly because transaction start ranks above page 1960 * lock so we have to do some magic. 1961 * 1962 * This function can get called via... 1963 * - ext4_writepages after taking page lock (have journal handle) 1964 * - journal_submit_inode_data_buffers (no journal handle) 1965 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1966 * - grab_page_cache when doing write_begin (have journal handle) 1967 * 1968 * We don't do any block allocation in this function. If we have page with 1969 * multiple blocks we need to write those buffer_heads that are mapped. This 1970 * is important for mmaped based write. So if we do with blocksize 1K 1971 * truncate(f, 1024); 1972 * a = mmap(f, 0, 4096); 1973 * a[0] = 'a'; 1974 * truncate(f, 4096); 1975 * we have in the page first buffer_head mapped via page_mkwrite call back 1976 * but other buffer_heads would be unmapped but dirty (dirty done via the 1977 * do_wp_page). So writepage should write the first block. If we modify 1978 * the mmap area beyond 1024 we will again get a page_fault and the 1979 * page_mkwrite callback will do the block allocation and mark the 1980 * buffer_heads mapped. 1981 * 1982 * We redirty the page if we have any buffer_heads that is either delay or 1983 * unwritten in the page. 1984 * 1985 * We can get recursively called as show below. 1986 * 1987 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1988 * ext4_writepage() 1989 * 1990 * But since we don't do any block allocation we should not deadlock. 1991 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1992 */ 1993 static int ext4_writepage(struct page *page, 1994 struct writeback_control *wbc) 1995 { 1996 int ret = 0; 1997 loff_t size; 1998 unsigned int len; 1999 struct buffer_head *page_bufs = NULL; 2000 struct inode *inode = page->mapping->host; 2001 struct ext4_io_submit io_submit; 2002 bool keep_towrite = false; 2003 2004 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2005 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 2006 unlock_page(page); 2007 return -EIO; 2008 } 2009 2010 trace_ext4_writepage(page); 2011 size = i_size_read(inode); 2012 if (page->index == size >> PAGE_SHIFT && 2013 !ext4_verity_in_progress(inode)) 2014 len = size & ~PAGE_MASK; 2015 else 2016 len = PAGE_SIZE; 2017 2018 page_bufs = page_buffers(page); 2019 /* 2020 * We cannot do block allocation or other extent handling in this 2021 * function. If there are buffers needing that, we have to redirty 2022 * the page. But we may reach here when we do a journal commit via 2023 * journal_submit_inode_data_buffers() and in that case we must write 2024 * allocated buffers to achieve data=ordered mode guarantees. 2025 * 2026 * Also, if there is only one buffer per page (the fs block 2027 * size == the page size), if one buffer needs block 2028 * allocation or needs to modify the extent tree to clear the 2029 * unwritten flag, we know that the page can't be written at 2030 * all, so we might as well refuse the write immediately. 2031 * Unfortunately if the block size != page size, we can't as 2032 * easily detect this case using ext4_walk_page_buffers(), but 2033 * for the extremely common case, this is an optimization that 2034 * skips a useless round trip through ext4_bio_write_page(). 2035 */ 2036 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2037 ext4_bh_delay_or_unwritten)) { 2038 redirty_page_for_writepage(wbc, page); 2039 if ((current->flags & PF_MEMALLOC) || 2040 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2041 /* 2042 * For memory cleaning there's no point in writing only 2043 * some buffers. So just bail out. Warn if we came here 2044 * from direct reclaim. 2045 */ 2046 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2047 == PF_MEMALLOC); 2048 unlock_page(page); 2049 return 0; 2050 } 2051 keep_towrite = true; 2052 } 2053 2054 if (PageChecked(page) && ext4_should_journal_data(inode)) 2055 /* 2056 * It's mmapped pagecache. Add buffers and journal it. There 2057 * doesn't seem much point in redirtying the page here. 2058 */ 2059 return __ext4_journalled_writepage(page, len); 2060 2061 ext4_io_submit_init(&io_submit, wbc); 2062 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2063 if (!io_submit.io_end) { 2064 redirty_page_for_writepage(wbc, page); 2065 unlock_page(page); 2066 return -ENOMEM; 2067 } 2068 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite); 2069 ext4_io_submit(&io_submit); 2070 /* Drop io_end reference we got from init */ 2071 ext4_put_io_end_defer(io_submit.io_end); 2072 return ret; 2073 } 2074 2075 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2076 { 2077 int len; 2078 loff_t size; 2079 int err; 2080 2081 BUG_ON(page->index != mpd->first_page); 2082 clear_page_dirty_for_io(page); 2083 /* 2084 * We have to be very careful here! Nothing protects writeback path 2085 * against i_size changes and the page can be writeably mapped into 2086 * page tables. So an application can be growing i_size and writing 2087 * data through mmap while writeback runs. clear_page_dirty_for_io() 2088 * write-protects our page in page tables and the page cannot get 2089 * written to again until we release page lock. So only after 2090 * clear_page_dirty_for_io() we are safe to sample i_size for 2091 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2092 * on the barrier provided by TestClearPageDirty in 2093 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2094 * after page tables are updated. 2095 */ 2096 size = i_size_read(mpd->inode); 2097 if (page->index == size >> PAGE_SHIFT && 2098 !ext4_verity_in_progress(mpd->inode)) 2099 len = size & ~PAGE_MASK; 2100 else 2101 len = PAGE_SIZE; 2102 err = ext4_bio_write_page(&mpd->io_submit, page, len, false); 2103 if (!err) 2104 mpd->wbc->nr_to_write--; 2105 mpd->first_page++; 2106 2107 return err; 2108 } 2109 2110 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2111 2112 /* 2113 * mballoc gives us at most this number of blocks... 2114 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2115 * The rest of mballoc seems to handle chunks up to full group size. 2116 */ 2117 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2118 2119 /* 2120 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2121 * 2122 * @mpd - extent of blocks 2123 * @lblk - logical number of the block in the file 2124 * @bh - buffer head we want to add to the extent 2125 * 2126 * The function is used to collect contig. blocks in the same state. If the 2127 * buffer doesn't require mapping for writeback and we haven't started the 2128 * extent of buffers to map yet, the function returns 'true' immediately - the 2129 * caller can write the buffer right away. Otherwise the function returns true 2130 * if the block has been added to the extent, false if the block couldn't be 2131 * added. 2132 */ 2133 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2134 struct buffer_head *bh) 2135 { 2136 struct ext4_map_blocks *map = &mpd->map; 2137 2138 /* Buffer that doesn't need mapping for writeback? */ 2139 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2140 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2141 /* So far no extent to map => we write the buffer right away */ 2142 if (map->m_len == 0) 2143 return true; 2144 return false; 2145 } 2146 2147 /* First block in the extent? */ 2148 if (map->m_len == 0) { 2149 /* We cannot map unless handle is started... */ 2150 if (!mpd->do_map) 2151 return false; 2152 map->m_lblk = lblk; 2153 map->m_len = 1; 2154 map->m_flags = bh->b_state & BH_FLAGS; 2155 return true; 2156 } 2157 2158 /* Don't go larger than mballoc is willing to allocate */ 2159 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2160 return false; 2161 2162 /* Can we merge the block to our big extent? */ 2163 if (lblk == map->m_lblk + map->m_len && 2164 (bh->b_state & BH_FLAGS) == map->m_flags) { 2165 map->m_len++; 2166 return true; 2167 } 2168 return false; 2169 } 2170 2171 /* 2172 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2173 * 2174 * @mpd - extent of blocks for mapping 2175 * @head - the first buffer in the page 2176 * @bh - buffer we should start processing from 2177 * @lblk - logical number of the block in the file corresponding to @bh 2178 * 2179 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2180 * the page for IO if all buffers in this page were mapped and there's no 2181 * accumulated extent of buffers to map or add buffers in the page to the 2182 * extent of buffers to map. The function returns 1 if the caller can continue 2183 * by processing the next page, 0 if it should stop adding buffers to the 2184 * extent to map because we cannot extend it anymore. It can also return value 2185 * < 0 in case of error during IO submission. 2186 */ 2187 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2188 struct buffer_head *head, 2189 struct buffer_head *bh, 2190 ext4_lblk_t lblk) 2191 { 2192 struct inode *inode = mpd->inode; 2193 int err; 2194 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2195 >> inode->i_blkbits; 2196 2197 if (ext4_verity_in_progress(inode)) 2198 blocks = EXT_MAX_BLOCKS; 2199 2200 do { 2201 BUG_ON(buffer_locked(bh)); 2202 2203 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2204 /* Found extent to map? */ 2205 if (mpd->map.m_len) 2206 return 0; 2207 /* Buffer needs mapping and handle is not started? */ 2208 if (!mpd->do_map) 2209 return 0; 2210 /* Everything mapped so far and we hit EOF */ 2211 break; 2212 } 2213 } while (lblk++, (bh = bh->b_this_page) != head); 2214 /* So far everything mapped? Submit the page for IO. */ 2215 if (mpd->map.m_len == 0) { 2216 err = mpage_submit_page(mpd, head->b_page); 2217 if (err < 0) 2218 return err; 2219 } 2220 if (lblk >= blocks) { 2221 mpd->scanned_until_end = 1; 2222 return 0; 2223 } 2224 return 1; 2225 } 2226 2227 /* 2228 * mpage_process_page - update page buffers corresponding to changed extent and 2229 * may submit fully mapped page for IO 2230 * 2231 * @mpd - description of extent to map, on return next extent to map 2232 * @m_lblk - logical block mapping. 2233 * @m_pblk - corresponding physical mapping. 2234 * @map_bh - determines on return whether this page requires any further 2235 * mapping or not. 2236 * Scan given page buffers corresponding to changed extent and update buffer 2237 * state according to new extent state. 2238 * We map delalloc buffers to their physical location, clear unwritten bits. 2239 * If the given page is not fully mapped, we update @map to the next extent in 2240 * the given page that needs mapping & return @map_bh as true. 2241 */ 2242 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2243 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2244 bool *map_bh) 2245 { 2246 struct buffer_head *head, *bh; 2247 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2248 ext4_lblk_t lblk = *m_lblk; 2249 ext4_fsblk_t pblock = *m_pblk; 2250 int err = 0; 2251 int blkbits = mpd->inode->i_blkbits; 2252 ssize_t io_end_size = 0; 2253 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2254 2255 bh = head = page_buffers(page); 2256 do { 2257 if (lblk < mpd->map.m_lblk) 2258 continue; 2259 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2260 /* 2261 * Buffer after end of mapped extent. 2262 * Find next buffer in the page to map. 2263 */ 2264 mpd->map.m_len = 0; 2265 mpd->map.m_flags = 0; 2266 io_end_vec->size += io_end_size; 2267 io_end_size = 0; 2268 2269 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2270 if (err > 0) 2271 err = 0; 2272 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2273 io_end_vec = ext4_alloc_io_end_vec(io_end); 2274 if (IS_ERR(io_end_vec)) { 2275 err = PTR_ERR(io_end_vec); 2276 goto out; 2277 } 2278 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2279 } 2280 *map_bh = true; 2281 goto out; 2282 } 2283 if (buffer_delay(bh)) { 2284 clear_buffer_delay(bh); 2285 bh->b_blocknr = pblock++; 2286 } 2287 clear_buffer_unwritten(bh); 2288 io_end_size += (1 << blkbits); 2289 } while (lblk++, (bh = bh->b_this_page) != head); 2290 2291 io_end_vec->size += io_end_size; 2292 io_end_size = 0; 2293 *map_bh = false; 2294 out: 2295 *m_lblk = lblk; 2296 *m_pblk = pblock; 2297 return err; 2298 } 2299 2300 /* 2301 * mpage_map_buffers - update buffers corresponding to changed extent and 2302 * submit fully mapped pages for IO 2303 * 2304 * @mpd - description of extent to map, on return next extent to map 2305 * 2306 * Scan buffers corresponding to changed extent (we expect corresponding pages 2307 * to be already locked) and update buffer state according to new extent state. 2308 * We map delalloc buffers to their physical location, clear unwritten bits, 2309 * and mark buffers as uninit when we perform writes to unwritten extents 2310 * and do extent conversion after IO is finished. If the last page is not fully 2311 * mapped, we update @map to the next extent in the last page that needs 2312 * mapping. Otherwise we submit the page for IO. 2313 */ 2314 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2315 { 2316 struct pagevec pvec; 2317 int nr_pages, i; 2318 struct inode *inode = mpd->inode; 2319 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2320 pgoff_t start, end; 2321 ext4_lblk_t lblk; 2322 ext4_fsblk_t pblock; 2323 int err; 2324 bool map_bh = false; 2325 2326 start = mpd->map.m_lblk >> bpp_bits; 2327 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2328 lblk = start << bpp_bits; 2329 pblock = mpd->map.m_pblk; 2330 2331 pagevec_init(&pvec); 2332 while (start <= end) { 2333 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2334 &start, end); 2335 if (nr_pages == 0) 2336 break; 2337 for (i = 0; i < nr_pages; i++) { 2338 struct page *page = pvec.pages[i]; 2339 2340 err = mpage_process_page(mpd, page, &lblk, &pblock, 2341 &map_bh); 2342 /* 2343 * If map_bh is true, means page may require further bh 2344 * mapping, or maybe the page was submitted for IO. 2345 * So we return to call further extent mapping. 2346 */ 2347 if (err < 0 || map_bh) 2348 goto out; 2349 /* Page fully mapped - let IO run! */ 2350 err = mpage_submit_page(mpd, page); 2351 if (err < 0) 2352 goto out; 2353 } 2354 pagevec_release(&pvec); 2355 } 2356 /* Extent fully mapped and matches with page boundary. We are done. */ 2357 mpd->map.m_len = 0; 2358 mpd->map.m_flags = 0; 2359 return 0; 2360 out: 2361 pagevec_release(&pvec); 2362 return err; 2363 } 2364 2365 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2366 { 2367 struct inode *inode = mpd->inode; 2368 struct ext4_map_blocks *map = &mpd->map; 2369 int get_blocks_flags; 2370 int err, dioread_nolock; 2371 2372 trace_ext4_da_write_pages_extent(inode, map); 2373 /* 2374 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2375 * to convert an unwritten extent to be initialized (in the case 2376 * where we have written into one or more preallocated blocks). It is 2377 * possible that we're going to need more metadata blocks than 2378 * previously reserved. However we must not fail because we're in 2379 * writeback and there is nothing we can do about it so it might result 2380 * in data loss. So use reserved blocks to allocate metadata if 2381 * possible. 2382 * 2383 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2384 * the blocks in question are delalloc blocks. This indicates 2385 * that the blocks and quotas has already been checked when 2386 * the data was copied into the page cache. 2387 */ 2388 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2389 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2390 EXT4_GET_BLOCKS_IO_SUBMIT; 2391 dioread_nolock = ext4_should_dioread_nolock(inode); 2392 if (dioread_nolock) 2393 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2394 if (map->m_flags & BIT(BH_Delay)) 2395 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2396 2397 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2398 if (err < 0) 2399 return err; 2400 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2401 if (!mpd->io_submit.io_end->handle && 2402 ext4_handle_valid(handle)) { 2403 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2404 handle->h_rsv_handle = NULL; 2405 } 2406 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2407 } 2408 2409 BUG_ON(map->m_len == 0); 2410 return 0; 2411 } 2412 2413 /* 2414 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2415 * mpd->len and submit pages underlying it for IO 2416 * 2417 * @handle - handle for journal operations 2418 * @mpd - extent to map 2419 * @give_up_on_write - we set this to true iff there is a fatal error and there 2420 * is no hope of writing the data. The caller should discard 2421 * dirty pages to avoid infinite loops. 2422 * 2423 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2424 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2425 * them to initialized or split the described range from larger unwritten 2426 * extent. Note that we need not map all the described range since allocation 2427 * can return less blocks or the range is covered by more unwritten extents. We 2428 * cannot map more because we are limited by reserved transaction credits. On 2429 * the other hand we always make sure that the last touched page is fully 2430 * mapped so that it can be written out (and thus forward progress is 2431 * guaranteed). After mapping we submit all mapped pages for IO. 2432 */ 2433 static int mpage_map_and_submit_extent(handle_t *handle, 2434 struct mpage_da_data *mpd, 2435 bool *give_up_on_write) 2436 { 2437 struct inode *inode = mpd->inode; 2438 struct ext4_map_blocks *map = &mpd->map; 2439 int err; 2440 loff_t disksize; 2441 int progress = 0; 2442 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2443 struct ext4_io_end_vec *io_end_vec; 2444 2445 io_end_vec = ext4_alloc_io_end_vec(io_end); 2446 if (IS_ERR(io_end_vec)) 2447 return PTR_ERR(io_end_vec); 2448 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2449 do { 2450 err = mpage_map_one_extent(handle, mpd); 2451 if (err < 0) { 2452 struct super_block *sb = inode->i_sb; 2453 2454 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2455 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2456 goto invalidate_dirty_pages; 2457 /* 2458 * Let the uper layers retry transient errors. 2459 * In the case of ENOSPC, if ext4_count_free_blocks() 2460 * is non-zero, a commit should free up blocks. 2461 */ 2462 if ((err == -ENOMEM) || 2463 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2464 if (progress) 2465 goto update_disksize; 2466 return err; 2467 } 2468 ext4_msg(sb, KERN_CRIT, 2469 "Delayed block allocation failed for " 2470 "inode %lu at logical offset %llu with" 2471 " max blocks %u with error %d", 2472 inode->i_ino, 2473 (unsigned long long)map->m_lblk, 2474 (unsigned)map->m_len, -err); 2475 ext4_msg(sb, KERN_CRIT, 2476 "This should not happen!! Data will " 2477 "be lost\n"); 2478 if (err == -ENOSPC) 2479 ext4_print_free_blocks(inode); 2480 invalidate_dirty_pages: 2481 *give_up_on_write = true; 2482 return err; 2483 } 2484 progress = 1; 2485 /* 2486 * Update buffer state, submit mapped pages, and get us new 2487 * extent to map 2488 */ 2489 err = mpage_map_and_submit_buffers(mpd); 2490 if (err < 0) 2491 goto update_disksize; 2492 } while (map->m_len); 2493 2494 update_disksize: 2495 /* 2496 * Update on-disk size after IO is submitted. Races with 2497 * truncate are avoided by checking i_size under i_data_sem. 2498 */ 2499 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2500 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2501 int err2; 2502 loff_t i_size; 2503 2504 down_write(&EXT4_I(inode)->i_data_sem); 2505 i_size = i_size_read(inode); 2506 if (disksize > i_size) 2507 disksize = i_size; 2508 if (disksize > EXT4_I(inode)->i_disksize) 2509 EXT4_I(inode)->i_disksize = disksize; 2510 up_write(&EXT4_I(inode)->i_data_sem); 2511 err2 = ext4_mark_inode_dirty(handle, inode); 2512 if (err2) { 2513 ext4_error_err(inode->i_sb, -err2, 2514 "Failed to mark inode %lu dirty", 2515 inode->i_ino); 2516 } 2517 if (!err) 2518 err = err2; 2519 } 2520 return err; 2521 } 2522 2523 /* 2524 * Calculate the total number of credits to reserve for one writepages 2525 * iteration. This is called from ext4_writepages(). We map an extent of 2526 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2527 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2528 * bpp - 1 blocks in bpp different extents. 2529 */ 2530 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2531 { 2532 int bpp = ext4_journal_blocks_per_page(inode); 2533 2534 return ext4_meta_trans_blocks(inode, 2535 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2536 } 2537 2538 /* 2539 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2540 * and underlying extent to map 2541 * 2542 * @mpd - where to look for pages 2543 * 2544 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2545 * IO immediately. When we find a page which isn't mapped we start accumulating 2546 * extent of buffers underlying these pages that needs mapping (formed by 2547 * either delayed or unwritten buffers). We also lock the pages containing 2548 * these buffers. The extent found is returned in @mpd structure (starting at 2549 * mpd->lblk with length mpd->len blocks). 2550 * 2551 * Note that this function can attach bios to one io_end structure which are 2552 * neither logically nor physically contiguous. Although it may seem as an 2553 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2554 * case as we need to track IO to all buffers underlying a page in one io_end. 2555 */ 2556 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2557 { 2558 struct address_space *mapping = mpd->inode->i_mapping; 2559 struct pagevec pvec; 2560 unsigned int nr_pages; 2561 long left = mpd->wbc->nr_to_write; 2562 pgoff_t index = mpd->first_page; 2563 pgoff_t end = mpd->last_page; 2564 xa_mark_t tag; 2565 int i, err = 0; 2566 int blkbits = mpd->inode->i_blkbits; 2567 ext4_lblk_t lblk; 2568 struct buffer_head *head; 2569 2570 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2571 tag = PAGECACHE_TAG_TOWRITE; 2572 else 2573 tag = PAGECACHE_TAG_DIRTY; 2574 2575 pagevec_init(&pvec); 2576 mpd->map.m_len = 0; 2577 mpd->next_page = index; 2578 while (index <= end) { 2579 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2580 tag); 2581 if (nr_pages == 0) 2582 break; 2583 2584 for (i = 0; i < nr_pages; i++) { 2585 struct page *page = pvec.pages[i]; 2586 2587 /* 2588 * Accumulated enough dirty pages? This doesn't apply 2589 * to WB_SYNC_ALL mode. For integrity sync we have to 2590 * keep going because someone may be concurrently 2591 * dirtying pages, and we might have synced a lot of 2592 * newly appeared dirty pages, but have not synced all 2593 * of the old dirty pages. 2594 */ 2595 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2596 goto out; 2597 2598 /* If we can't merge this page, we are done. */ 2599 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2600 goto out; 2601 2602 lock_page(page); 2603 /* 2604 * If the page is no longer dirty, or its mapping no 2605 * longer corresponds to inode we are writing (which 2606 * means it has been truncated or invalidated), or the 2607 * page is already under writeback and we are not doing 2608 * a data integrity writeback, skip the page 2609 */ 2610 if (!PageDirty(page) || 2611 (PageWriteback(page) && 2612 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2613 unlikely(page->mapping != mapping)) { 2614 unlock_page(page); 2615 continue; 2616 } 2617 2618 wait_on_page_writeback(page); 2619 BUG_ON(PageWriteback(page)); 2620 2621 if (mpd->map.m_len == 0) 2622 mpd->first_page = page->index; 2623 mpd->next_page = page->index + 1; 2624 /* Add all dirty buffers to mpd */ 2625 lblk = ((ext4_lblk_t)page->index) << 2626 (PAGE_SHIFT - blkbits); 2627 head = page_buffers(page); 2628 err = mpage_process_page_bufs(mpd, head, head, lblk); 2629 if (err <= 0) 2630 goto out; 2631 err = 0; 2632 left--; 2633 } 2634 pagevec_release(&pvec); 2635 cond_resched(); 2636 } 2637 mpd->scanned_until_end = 1; 2638 return 0; 2639 out: 2640 pagevec_release(&pvec); 2641 return err; 2642 } 2643 2644 static int ext4_writepages(struct address_space *mapping, 2645 struct writeback_control *wbc) 2646 { 2647 pgoff_t writeback_index = 0; 2648 long nr_to_write = wbc->nr_to_write; 2649 int range_whole = 0; 2650 int cycled = 1; 2651 handle_t *handle = NULL; 2652 struct mpage_da_data mpd; 2653 struct inode *inode = mapping->host; 2654 int needed_blocks, rsv_blocks = 0, ret = 0; 2655 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2656 struct blk_plug plug; 2657 bool give_up_on_write = false; 2658 2659 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2660 return -EIO; 2661 2662 percpu_down_read(&sbi->s_writepages_rwsem); 2663 trace_ext4_writepages(inode, wbc); 2664 2665 /* 2666 * No pages to write? This is mainly a kludge to avoid starting 2667 * a transaction for special inodes like journal inode on last iput() 2668 * because that could violate lock ordering on umount 2669 */ 2670 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2671 goto out_writepages; 2672 2673 if (ext4_should_journal_data(inode)) { 2674 ret = generic_writepages(mapping, wbc); 2675 goto out_writepages; 2676 } 2677 2678 /* 2679 * If the filesystem has aborted, it is read-only, so return 2680 * right away instead of dumping stack traces later on that 2681 * will obscure the real source of the problem. We test 2682 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2683 * the latter could be true if the filesystem is mounted 2684 * read-only, and in that case, ext4_writepages should 2685 * *never* be called, so if that ever happens, we would want 2686 * the stack trace. 2687 */ 2688 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2689 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2690 ret = -EROFS; 2691 goto out_writepages; 2692 } 2693 2694 /* 2695 * If we have inline data and arrive here, it means that 2696 * we will soon create the block for the 1st page, so 2697 * we'd better clear the inline data here. 2698 */ 2699 if (ext4_has_inline_data(inode)) { 2700 /* Just inode will be modified... */ 2701 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2702 if (IS_ERR(handle)) { 2703 ret = PTR_ERR(handle); 2704 goto out_writepages; 2705 } 2706 BUG_ON(ext4_test_inode_state(inode, 2707 EXT4_STATE_MAY_INLINE_DATA)); 2708 ext4_destroy_inline_data(handle, inode); 2709 ext4_journal_stop(handle); 2710 } 2711 2712 if (ext4_should_dioread_nolock(inode)) { 2713 /* 2714 * We may need to convert up to one extent per block in 2715 * the page and we may dirty the inode. 2716 */ 2717 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2718 PAGE_SIZE >> inode->i_blkbits); 2719 } 2720 2721 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2722 range_whole = 1; 2723 2724 if (wbc->range_cyclic) { 2725 writeback_index = mapping->writeback_index; 2726 if (writeback_index) 2727 cycled = 0; 2728 mpd.first_page = writeback_index; 2729 mpd.last_page = -1; 2730 } else { 2731 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2732 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2733 } 2734 2735 mpd.inode = inode; 2736 mpd.wbc = wbc; 2737 ext4_io_submit_init(&mpd.io_submit, wbc); 2738 retry: 2739 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2740 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2741 blk_start_plug(&plug); 2742 2743 /* 2744 * First writeback pages that don't need mapping - we can avoid 2745 * starting a transaction unnecessarily and also avoid being blocked 2746 * in the block layer on device congestion while having transaction 2747 * started. 2748 */ 2749 mpd.do_map = 0; 2750 mpd.scanned_until_end = 0; 2751 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2752 if (!mpd.io_submit.io_end) { 2753 ret = -ENOMEM; 2754 goto unplug; 2755 } 2756 ret = mpage_prepare_extent_to_map(&mpd); 2757 /* Unlock pages we didn't use */ 2758 mpage_release_unused_pages(&mpd, false); 2759 /* Submit prepared bio */ 2760 ext4_io_submit(&mpd.io_submit); 2761 ext4_put_io_end_defer(mpd.io_submit.io_end); 2762 mpd.io_submit.io_end = NULL; 2763 if (ret < 0) 2764 goto unplug; 2765 2766 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2767 /* For each extent of pages we use new io_end */ 2768 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2769 if (!mpd.io_submit.io_end) { 2770 ret = -ENOMEM; 2771 break; 2772 } 2773 2774 /* 2775 * We have two constraints: We find one extent to map and we 2776 * must always write out whole page (makes a difference when 2777 * blocksize < pagesize) so that we don't block on IO when we 2778 * try to write out the rest of the page. Journalled mode is 2779 * not supported by delalloc. 2780 */ 2781 BUG_ON(ext4_should_journal_data(inode)); 2782 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2783 2784 /* start a new transaction */ 2785 handle = ext4_journal_start_with_reserve(inode, 2786 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2787 if (IS_ERR(handle)) { 2788 ret = PTR_ERR(handle); 2789 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2790 "%ld pages, ino %lu; err %d", __func__, 2791 wbc->nr_to_write, inode->i_ino, ret); 2792 /* Release allocated io_end */ 2793 ext4_put_io_end(mpd.io_submit.io_end); 2794 mpd.io_submit.io_end = NULL; 2795 break; 2796 } 2797 mpd.do_map = 1; 2798 2799 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2800 ret = mpage_prepare_extent_to_map(&mpd); 2801 if (!ret && mpd.map.m_len) 2802 ret = mpage_map_and_submit_extent(handle, &mpd, 2803 &give_up_on_write); 2804 /* 2805 * Caution: If the handle is synchronous, 2806 * ext4_journal_stop() can wait for transaction commit 2807 * to finish which may depend on writeback of pages to 2808 * complete or on page lock to be released. In that 2809 * case, we have to wait until after we have 2810 * submitted all the IO, released page locks we hold, 2811 * and dropped io_end reference (for extent conversion 2812 * to be able to complete) before stopping the handle. 2813 */ 2814 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2815 ext4_journal_stop(handle); 2816 handle = NULL; 2817 mpd.do_map = 0; 2818 } 2819 /* Unlock pages we didn't use */ 2820 mpage_release_unused_pages(&mpd, give_up_on_write); 2821 /* Submit prepared bio */ 2822 ext4_io_submit(&mpd.io_submit); 2823 2824 /* 2825 * Drop our io_end reference we got from init. We have 2826 * to be careful and use deferred io_end finishing if 2827 * we are still holding the transaction as we can 2828 * release the last reference to io_end which may end 2829 * up doing unwritten extent conversion. 2830 */ 2831 if (handle) { 2832 ext4_put_io_end_defer(mpd.io_submit.io_end); 2833 ext4_journal_stop(handle); 2834 } else 2835 ext4_put_io_end(mpd.io_submit.io_end); 2836 mpd.io_submit.io_end = NULL; 2837 2838 if (ret == -ENOSPC && sbi->s_journal) { 2839 /* 2840 * Commit the transaction which would 2841 * free blocks released in the transaction 2842 * and try again 2843 */ 2844 jbd2_journal_force_commit_nested(sbi->s_journal); 2845 ret = 0; 2846 continue; 2847 } 2848 /* Fatal error - ENOMEM, EIO... */ 2849 if (ret) 2850 break; 2851 } 2852 unplug: 2853 blk_finish_plug(&plug); 2854 if (!ret && !cycled && wbc->nr_to_write > 0) { 2855 cycled = 1; 2856 mpd.last_page = writeback_index - 1; 2857 mpd.first_page = 0; 2858 goto retry; 2859 } 2860 2861 /* Update index */ 2862 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2863 /* 2864 * Set the writeback_index so that range_cyclic 2865 * mode will write it back later 2866 */ 2867 mapping->writeback_index = mpd.first_page; 2868 2869 out_writepages: 2870 trace_ext4_writepages_result(inode, wbc, ret, 2871 nr_to_write - wbc->nr_to_write); 2872 percpu_up_read(&sbi->s_writepages_rwsem); 2873 return ret; 2874 } 2875 2876 static int ext4_dax_writepages(struct address_space *mapping, 2877 struct writeback_control *wbc) 2878 { 2879 int ret; 2880 long nr_to_write = wbc->nr_to_write; 2881 struct inode *inode = mapping->host; 2882 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2883 2884 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2885 return -EIO; 2886 2887 percpu_down_read(&sbi->s_writepages_rwsem); 2888 trace_ext4_writepages(inode, wbc); 2889 2890 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2891 trace_ext4_writepages_result(inode, wbc, ret, 2892 nr_to_write - wbc->nr_to_write); 2893 percpu_up_read(&sbi->s_writepages_rwsem); 2894 return ret; 2895 } 2896 2897 static int ext4_nonda_switch(struct super_block *sb) 2898 { 2899 s64 free_clusters, dirty_clusters; 2900 struct ext4_sb_info *sbi = EXT4_SB(sb); 2901 2902 /* 2903 * switch to non delalloc mode if we are running low 2904 * on free block. The free block accounting via percpu 2905 * counters can get slightly wrong with percpu_counter_batch getting 2906 * accumulated on each CPU without updating global counters 2907 * Delalloc need an accurate free block accounting. So switch 2908 * to non delalloc when we are near to error range. 2909 */ 2910 free_clusters = 2911 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2912 dirty_clusters = 2913 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2914 /* 2915 * Start pushing delalloc when 1/2 of free blocks are dirty. 2916 */ 2917 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2918 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2919 2920 if (2 * free_clusters < 3 * dirty_clusters || 2921 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2922 /* 2923 * free block count is less than 150% of dirty blocks 2924 * or free blocks is less than watermark 2925 */ 2926 return 1; 2927 } 2928 return 0; 2929 } 2930 2931 /* We always reserve for an inode update; the superblock could be there too */ 2932 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2933 { 2934 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2935 return 1; 2936 2937 if (pos + len <= 0x7fffffffULL) 2938 return 1; 2939 2940 /* We might need to update the superblock to set LARGE_FILE */ 2941 return 2; 2942 } 2943 2944 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2945 loff_t pos, unsigned len, unsigned flags, 2946 struct page **pagep, void **fsdata) 2947 { 2948 int ret, retries = 0; 2949 struct page *page; 2950 pgoff_t index; 2951 struct inode *inode = mapping->host; 2952 handle_t *handle; 2953 2954 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2955 return -EIO; 2956 2957 index = pos >> PAGE_SHIFT; 2958 2959 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2960 ext4_verity_in_progress(inode)) { 2961 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2962 return ext4_write_begin(file, mapping, pos, 2963 len, flags, pagep, fsdata); 2964 } 2965 *fsdata = (void *)0; 2966 trace_ext4_da_write_begin(inode, pos, len, flags); 2967 2968 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2969 ret = ext4_da_write_inline_data_begin(mapping, inode, 2970 pos, len, flags, 2971 pagep, fsdata); 2972 if (ret < 0) 2973 return ret; 2974 if (ret == 1) 2975 return 0; 2976 } 2977 2978 /* 2979 * grab_cache_page_write_begin() can take a long time if the 2980 * system is thrashing due to memory pressure, or if the page 2981 * is being written back. So grab it first before we start 2982 * the transaction handle. This also allows us to allocate 2983 * the page (if needed) without using GFP_NOFS. 2984 */ 2985 retry_grab: 2986 page = grab_cache_page_write_begin(mapping, index, flags); 2987 if (!page) 2988 return -ENOMEM; 2989 unlock_page(page); 2990 2991 /* 2992 * With delayed allocation, we don't log the i_disksize update 2993 * if there is delayed block allocation. But we still need 2994 * to journalling the i_disksize update if writes to the end 2995 * of file which has an already mapped buffer. 2996 */ 2997 retry_journal: 2998 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2999 ext4_da_write_credits(inode, pos, len)); 3000 if (IS_ERR(handle)) { 3001 put_page(page); 3002 return PTR_ERR(handle); 3003 } 3004 3005 lock_page(page); 3006 if (page->mapping != mapping) { 3007 /* The page got truncated from under us */ 3008 unlock_page(page); 3009 put_page(page); 3010 ext4_journal_stop(handle); 3011 goto retry_grab; 3012 } 3013 /* In case writeback began while the page was unlocked */ 3014 wait_for_stable_page(page); 3015 3016 #ifdef CONFIG_FS_ENCRYPTION 3017 ret = ext4_block_write_begin(page, pos, len, 3018 ext4_da_get_block_prep); 3019 #else 3020 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3021 #endif 3022 if (ret < 0) { 3023 unlock_page(page); 3024 ext4_journal_stop(handle); 3025 /* 3026 * block_write_begin may have instantiated a few blocks 3027 * outside i_size. Trim these off again. Don't need 3028 * i_size_read because we hold i_mutex. 3029 */ 3030 if (pos + len > inode->i_size) 3031 ext4_truncate_failed_write(inode); 3032 3033 if (ret == -ENOSPC && 3034 ext4_should_retry_alloc(inode->i_sb, &retries)) 3035 goto retry_journal; 3036 3037 put_page(page); 3038 return ret; 3039 } 3040 3041 *pagep = page; 3042 return ret; 3043 } 3044 3045 /* 3046 * Check if we should update i_disksize 3047 * when write to the end of file but not require block allocation 3048 */ 3049 static int ext4_da_should_update_i_disksize(struct page *page, 3050 unsigned long offset) 3051 { 3052 struct buffer_head *bh; 3053 struct inode *inode = page->mapping->host; 3054 unsigned int idx; 3055 int i; 3056 3057 bh = page_buffers(page); 3058 idx = offset >> inode->i_blkbits; 3059 3060 for (i = 0; i < idx; i++) 3061 bh = bh->b_this_page; 3062 3063 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3064 return 0; 3065 return 1; 3066 } 3067 3068 static int ext4_da_write_end(struct file *file, 3069 struct address_space *mapping, 3070 loff_t pos, unsigned len, unsigned copied, 3071 struct page *page, void *fsdata) 3072 { 3073 struct inode *inode = mapping->host; 3074 int ret = 0, ret2; 3075 handle_t *handle = ext4_journal_current_handle(); 3076 loff_t new_i_size; 3077 unsigned long start, end; 3078 int write_mode = (int)(unsigned long)fsdata; 3079 3080 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3081 return ext4_write_end(file, mapping, pos, 3082 len, copied, page, fsdata); 3083 3084 trace_ext4_da_write_end(inode, pos, len, copied); 3085 start = pos & (PAGE_SIZE - 1); 3086 end = start + copied - 1; 3087 3088 /* 3089 * generic_write_end() will run mark_inode_dirty() if i_size 3090 * changes. So let's piggyback the i_disksize mark_inode_dirty 3091 * into that. 3092 */ 3093 new_i_size = pos + copied; 3094 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3095 if (ext4_has_inline_data(inode) || 3096 ext4_da_should_update_i_disksize(page, end)) { 3097 ext4_update_i_disksize(inode, new_i_size); 3098 /* We need to mark inode dirty even if 3099 * new_i_size is less that inode->i_size 3100 * bu greater than i_disksize.(hint delalloc) 3101 */ 3102 ret = ext4_mark_inode_dirty(handle, inode); 3103 } 3104 } 3105 3106 if (write_mode != CONVERT_INLINE_DATA && 3107 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3108 ext4_has_inline_data(inode)) 3109 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3110 page); 3111 else 3112 ret2 = generic_write_end(file, mapping, pos, len, copied, 3113 page, fsdata); 3114 3115 copied = ret2; 3116 if (ret2 < 0) 3117 ret = ret2; 3118 ret2 = ext4_journal_stop(handle); 3119 if (unlikely(ret2 && !ret)) 3120 ret = ret2; 3121 3122 return ret ? ret : copied; 3123 } 3124 3125 /* 3126 * Force all delayed allocation blocks to be allocated for a given inode. 3127 */ 3128 int ext4_alloc_da_blocks(struct inode *inode) 3129 { 3130 trace_ext4_alloc_da_blocks(inode); 3131 3132 if (!EXT4_I(inode)->i_reserved_data_blocks) 3133 return 0; 3134 3135 /* 3136 * We do something simple for now. The filemap_flush() will 3137 * also start triggering a write of the data blocks, which is 3138 * not strictly speaking necessary (and for users of 3139 * laptop_mode, not even desirable). However, to do otherwise 3140 * would require replicating code paths in: 3141 * 3142 * ext4_writepages() -> 3143 * write_cache_pages() ---> (via passed in callback function) 3144 * __mpage_da_writepage() --> 3145 * mpage_add_bh_to_extent() 3146 * mpage_da_map_blocks() 3147 * 3148 * The problem is that write_cache_pages(), located in 3149 * mm/page-writeback.c, marks pages clean in preparation for 3150 * doing I/O, which is not desirable if we're not planning on 3151 * doing I/O at all. 3152 * 3153 * We could call write_cache_pages(), and then redirty all of 3154 * the pages by calling redirty_page_for_writepage() but that 3155 * would be ugly in the extreme. So instead we would need to 3156 * replicate parts of the code in the above functions, 3157 * simplifying them because we wouldn't actually intend to 3158 * write out the pages, but rather only collect contiguous 3159 * logical block extents, call the multi-block allocator, and 3160 * then update the buffer heads with the block allocations. 3161 * 3162 * For now, though, we'll cheat by calling filemap_flush(), 3163 * which will map the blocks, and start the I/O, but not 3164 * actually wait for the I/O to complete. 3165 */ 3166 return filemap_flush(inode->i_mapping); 3167 } 3168 3169 /* 3170 * bmap() is special. It gets used by applications such as lilo and by 3171 * the swapper to find the on-disk block of a specific piece of data. 3172 * 3173 * Naturally, this is dangerous if the block concerned is still in the 3174 * journal. If somebody makes a swapfile on an ext4 data-journaling 3175 * filesystem and enables swap, then they may get a nasty shock when the 3176 * data getting swapped to that swapfile suddenly gets overwritten by 3177 * the original zero's written out previously to the journal and 3178 * awaiting writeback in the kernel's buffer cache. 3179 * 3180 * So, if we see any bmap calls here on a modified, data-journaled file, 3181 * take extra steps to flush any blocks which might be in the cache. 3182 */ 3183 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3184 { 3185 struct inode *inode = mapping->host; 3186 journal_t *journal; 3187 int err; 3188 3189 /* 3190 * We can get here for an inline file via the FIBMAP ioctl 3191 */ 3192 if (ext4_has_inline_data(inode)) 3193 return 0; 3194 3195 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3196 test_opt(inode->i_sb, DELALLOC)) { 3197 /* 3198 * With delalloc we want to sync the file 3199 * so that we can make sure we allocate 3200 * blocks for file 3201 */ 3202 filemap_write_and_wait(mapping); 3203 } 3204 3205 if (EXT4_JOURNAL(inode) && 3206 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3207 /* 3208 * This is a REALLY heavyweight approach, but the use of 3209 * bmap on dirty files is expected to be extremely rare: 3210 * only if we run lilo or swapon on a freshly made file 3211 * do we expect this to happen. 3212 * 3213 * (bmap requires CAP_SYS_RAWIO so this does not 3214 * represent an unprivileged user DOS attack --- we'd be 3215 * in trouble if mortal users could trigger this path at 3216 * will.) 3217 * 3218 * NB. EXT4_STATE_JDATA is not set on files other than 3219 * regular files. If somebody wants to bmap a directory 3220 * or symlink and gets confused because the buffer 3221 * hasn't yet been flushed to disk, they deserve 3222 * everything they get. 3223 */ 3224 3225 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3226 journal = EXT4_JOURNAL(inode); 3227 jbd2_journal_lock_updates(journal); 3228 err = jbd2_journal_flush(journal); 3229 jbd2_journal_unlock_updates(journal); 3230 3231 if (err) 3232 return 0; 3233 } 3234 3235 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3236 } 3237 3238 static int ext4_readpage(struct file *file, struct page *page) 3239 { 3240 int ret = -EAGAIN; 3241 struct inode *inode = page->mapping->host; 3242 3243 trace_ext4_readpage(page); 3244 3245 if (ext4_has_inline_data(inode)) 3246 ret = ext4_readpage_inline(inode, page); 3247 3248 if (ret == -EAGAIN) 3249 return ext4_mpage_readpages(inode, NULL, page); 3250 3251 return ret; 3252 } 3253 3254 static void ext4_readahead(struct readahead_control *rac) 3255 { 3256 struct inode *inode = rac->mapping->host; 3257 3258 /* If the file has inline data, no need to do readahead. */ 3259 if (ext4_has_inline_data(inode)) 3260 return; 3261 3262 ext4_mpage_readpages(inode, rac, NULL); 3263 } 3264 3265 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3266 unsigned int length) 3267 { 3268 trace_ext4_invalidatepage(page, offset, length); 3269 3270 /* No journalling happens on data buffers when this function is used */ 3271 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3272 3273 block_invalidatepage(page, offset, length); 3274 } 3275 3276 static int __ext4_journalled_invalidatepage(struct page *page, 3277 unsigned int offset, 3278 unsigned int length) 3279 { 3280 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3281 3282 trace_ext4_journalled_invalidatepage(page, offset, length); 3283 3284 /* 3285 * If it's a full truncate we just forget about the pending dirtying 3286 */ 3287 if (offset == 0 && length == PAGE_SIZE) 3288 ClearPageChecked(page); 3289 3290 return jbd2_journal_invalidatepage(journal, page, offset, length); 3291 } 3292 3293 /* Wrapper for aops... */ 3294 static void ext4_journalled_invalidatepage(struct page *page, 3295 unsigned int offset, 3296 unsigned int length) 3297 { 3298 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3299 } 3300 3301 static int ext4_releasepage(struct page *page, gfp_t wait) 3302 { 3303 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3304 3305 trace_ext4_releasepage(page); 3306 3307 /* Page has dirty journalled data -> cannot release */ 3308 if (PageChecked(page)) 3309 return 0; 3310 if (journal) 3311 return jbd2_journal_try_to_free_buffers(journal, page); 3312 else 3313 return try_to_free_buffers(page); 3314 } 3315 3316 static bool ext4_inode_datasync_dirty(struct inode *inode) 3317 { 3318 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3319 3320 if (journal) { 3321 if (jbd2_transaction_committed(journal, 3322 EXT4_I(inode)->i_datasync_tid)) 3323 return false; 3324 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3325 return !list_empty(&EXT4_I(inode)->i_fc_list); 3326 return true; 3327 } 3328 3329 /* Any metadata buffers to write? */ 3330 if (!list_empty(&inode->i_mapping->private_list)) 3331 return true; 3332 return inode->i_state & I_DIRTY_DATASYNC; 3333 } 3334 3335 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3336 struct ext4_map_blocks *map, loff_t offset, 3337 loff_t length) 3338 { 3339 u8 blkbits = inode->i_blkbits; 3340 3341 /* 3342 * Writes that span EOF might trigger an I/O size update on completion, 3343 * so consider them to be dirty for the purpose of O_DSYNC, even if 3344 * there is no other metadata changes being made or are pending. 3345 */ 3346 iomap->flags = 0; 3347 if (ext4_inode_datasync_dirty(inode) || 3348 offset + length > i_size_read(inode)) 3349 iomap->flags |= IOMAP_F_DIRTY; 3350 3351 if (map->m_flags & EXT4_MAP_NEW) 3352 iomap->flags |= IOMAP_F_NEW; 3353 3354 iomap->bdev = inode->i_sb->s_bdev; 3355 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3356 iomap->offset = (u64) map->m_lblk << blkbits; 3357 iomap->length = (u64) map->m_len << blkbits; 3358 3359 if ((map->m_flags & EXT4_MAP_MAPPED) && 3360 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3361 iomap->flags |= IOMAP_F_MERGED; 3362 3363 /* 3364 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3365 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3366 * set. In order for any allocated unwritten extents to be converted 3367 * into written extents correctly within the ->end_io() handler, we 3368 * need to ensure that the iomap->type is set appropriately. Hence, the 3369 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3370 * been set first. 3371 */ 3372 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3373 iomap->type = IOMAP_UNWRITTEN; 3374 iomap->addr = (u64) map->m_pblk << blkbits; 3375 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3376 iomap->type = IOMAP_MAPPED; 3377 iomap->addr = (u64) map->m_pblk << blkbits; 3378 } else { 3379 iomap->type = IOMAP_HOLE; 3380 iomap->addr = IOMAP_NULL_ADDR; 3381 } 3382 } 3383 3384 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3385 unsigned int flags) 3386 { 3387 handle_t *handle; 3388 u8 blkbits = inode->i_blkbits; 3389 int ret, dio_credits, m_flags = 0, retries = 0; 3390 3391 /* 3392 * Trim the mapping request to the maximum value that we can map at 3393 * once for direct I/O. 3394 */ 3395 if (map->m_len > DIO_MAX_BLOCKS) 3396 map->m_len = DIO_MAX_BLOCKS; 3397 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3398 3399 retry: 3400 /* 3401 * Either we allocate blocks and then don't get an unwritten extent, so 3402 * in that case we have reserved enough credits. Or, the blocks are 3403 * already allocated and unwritten. In that case, the extent conversion 3404 * fits into the credits as well. 3405 */ 3406 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3407 if (IS_ERR(handle)) 3408 return PTR_ERR(handle); 3409 3410 /* 3411 * DAX and direct I/O are the only two operations that are currently 3412 * supported with IOMAP_WRITE. 3413 */ 3414 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3415 if (IS_DAX(inode)) 3416 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3417 /* 3418 * We use i_size instead of i_disksize here because delalloc writeback 3419 * can complete at any point during the I/O and subsequently push the 3420 * i_disksize out to i_size. This could be beyond where direct I/O is 3421 * happening and thus expose allocated blocks to direct I/O reads. 3422 */ 3423 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode)) 3424 m_flags = EXT4_GET_BLOCKS_CREATE; 3425 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3426 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3427 3428 ret = ext4_map_blocks(handle, inode, map, m_flags); 3429 3430 /* 3431 * We cannot fill holes in indirect tree based inodes as that could 3432 * expose stale data in the case of a crash. Use the magic error code 3433 * to fallback to buffered I/O. 3434 */ 3435 if (!m_flags && !ret) 3436 ret = -ENOTBLK; 3437 3438 ext4_journal_stop(handle); 3439 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3440 goto retry; 3441 3442 return ret; 3443 } 3444 3445 3446 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3447 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3448 { 3449 int ret; 3450 struct ext4_map_blocks map; 3451 u8 blkbits = inode->i_blkbits; 3452 3453 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3454 return -EINVAL; 3455 3456 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3457 return -ERANGE; 3458 3459 /* 3460 * Calculate the first and last logical blocks respectively. 3461 */ 3462 map.m_lblk = offset >> blkbits; 3463 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3464 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3465 3466 if (flags & IOMAP_WRITE) { 3467 /* 3468 * We check here if the blocks are already allocated, then we 3469 * don't need to start a journal txn and we can directly return 3470 * the mapping information. This could boost performance 3471 * especially in multi-threaded overwrite requests. 3472 */ 3473 if (offset + length <= i_size_read(inode)) { 3474 ret = ext4_map_blocks(NULL, inode, &map, 0); 3475 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3476 goto out; 3477 } 3478 ret = ext4_iomap_alloc(inode, &map, flags); 3479 } else { 3480 ret = ext4_map_blocks(NULL, inode, &map, 0); 3481 } 3482 3483 if (ret < 0) 3484 return ret; 3485 out: 3486 ext4_set_iomap(inode, iomap, &map, offset, length); 3487 3488 return 0; 3489 } 3490 3491 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3492 loff_t length, unsigned flags, struct iomap *iomap, 3493 struct iomap *srcmap) 3494 { 3495 int ret; 3496 3497 /* 3498 * Even for writes we don't need to allocate blocks, so just pretend 3499 * we are reading to save overhead of starting a transaction. 3500 */ 3501 flags &= ~IOMAP_WRITE; 3502 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3503 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3504 return ret; 3505 } 3506 3507 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3508 ssize_t written, unsigned flags, struct iomap *iomap) 3509 { 3510 /* 3511 * Check to see whether an error occurred while writing out the data to 3512 * the allocated blocks. If so, return the magic error code so that we 3513 * fallback to buffered I/O and attempt to complete the remainder of 3514 * the I/O. Any blocks that may have been allocated in preparation for 3515 * the direct I/O will be reused during buffered I/O. 3516 */ 3517 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3518 return -ENOTBLK; 3519 3520 return 0; 3521 } 3522 3523 const struct iomap_ops ext4_iomap_ops = { 3524 .iomap_begin = ext4_iomap_begin, 3525 .iomap_end = ext4_iomap_end, 3526 }; 3527 3528 const struct iomap_ops ext4_iomap_overwrite_ops = { 3529 .iomap_begin = ext4_iomap_overwrite_begin, 3530 .iomap_end = ext4_iomap_end, 3531 }; 3532 3533 static bool ext4_iomap_is_delalloc(struct inode *inode, 3534 struct ext4_map_blocks *map) 3535 { 3536 struct extent_status es; 3537 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3538 3539 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3540 map->m_lblk, end, &es); 3541 3542 if (!es.es_len || es.es_lblk > end) 3543 return false; 3544 3545 if (es.es_lblk > map->m_lblk) { 3546 map->m_len = es.es_lblk - map->m_lblk; 3547 return false; 3548 } 3549 3550 offset = map->m_lblk - es.es_lblk; 3551 map->m_len = es.es_len - offset; 3552 3553 return true; 3554 } 3555 3556 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3557 loff_t length, unsigned int flags, 3558 struct iomap *iomap, struct iomap *srcmap) 3559 { 3560 int ret; 3561 bool delalloc = false; 3562 struct ext4_map_blocks map; 3563 u8 blkbits = inode->i_blkbits; 3564 3565 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3566 return -EINVAL; 3567 3568 if (ext4_has_inline_data(inode)) { 3569 ret = ext4_inline_data_iomap(inode, iomap); 3570 if (ret != -EAGAIN) { 3571 if (ret == 0 && offset >= iomap->length) 3572 ret = -ENOENT; 3573 return ret; 3574 } 3575 } 3576 3577 /* 3578 * Calculate the first and last logical block respectively. 3579 */ 3580 map.m_lblk = offset >> blkbits; 3581 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3582 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3583 3584 /* 3585 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3586 * So handle it here itself instead of querying ext4_map_blocks(). 3587 * Since ext4_map_blocks() will warn about it and will return 3588 * -EIO error. 3589 */ 3590 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3592 3593 if (offset >= sbi->s_bitmap_maxbytes) { 3594 map.m_flags = 0; 3595 goto set_iomap; 3596 } 3597 } 3598 3599 ret = ext4_map_blocks(NULL, inode, &map, 0); 3600 if (ret < 0) 3601 return ret; 3602 if (ret == 0) 3603 delalloc = ext4_iomap_is_delalloc(inode, &map); 3604 3605 set_iomap: 3606 ext4_set_iomap(inode, iomap, &map, offset, length); 3607 if (delalloc && iomap->type == IOMAP_HOLE) 3608 iomap->type = IOMAP_DELALLOC; 3609 3610 return 0; 3611 } 3612 3613 const struct iomap_ops ext4_iomap_report_ops = { 3614 .iomap_begin = ext4_iomap_begin_report, 3615 }; 3616 3617 /* 3618 * Pages can be marked dirty completely asynchronously from ext4's journalling 3619 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3620 * much here because ->set_page_dirty is called under VFS locks. The page is 3621 * not necessarily locked. 3622 * 3623 * We cannot just dirty the page and leave attached buffers clean, because the 3624 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3625 * or jbddirty because all the journalling code will explode. 3626 * 3627 * So what we do is to mark the page "pending dirty" and next time writepage 3628 * is called, propagate that into the buffers appropriately. 3629 */ 3630 static int ext4_journalled_set_page_dirty(struct page *page) 3631 { 3632 SetPageChecked(page); 3633 return __set_page_dirty_nobuffers(page); 3634 } 3635 3636 static int ext4_set_page_dirty(struct page *page) 3637 { 3638 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3639 WARN_ON_ONCE(!page_has_buffers(page)); 3640 return __set_page_dirty_buffers(page); 3641 } 3642 3643 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3644 struct file *file, sector_t *span) 3645 { 3646 return iomap_swapfile_activate(sis, file, span, 3647 &ext4_iomap_report_ops); 3648 } 3649 3650 static const struct address_space_operations ext4_aops = { 3651 .readpage = ext4_readpage, 3652 .readahead = ext4_readahead, 3653 .writepage = ext4_writepage, 3654 .writepages = ext4_writepages, 3655 .write_begin = ext4_write_begin, 3656 .write_end = ext4_write_end, 3657 .set_page_dirty = ext4_set_page_dirty, 3658 .bmap = ext4_bmap, 3659 .invalidatepage = ext4_invalidatepage, 3660 .releasepage = ext4_releasepage, 3661 .direct_IO = noop_direct_IO, 3662 .migratepage = buffer_migrate_page, 3663 .is_partially_uptodate = block_is_partially_uptodate, 3664 .error_remove_page = generic_error_remove_page, 3665 .swap_activate = ext4_iomap_swap_activate, 3666 }; 3667 3668 static const struct address_space_operations ext4_journalled_aops = { 3669 .readpage = ext4_readpage, 3670 .readahead = ext4_readahead, 3671 .writepage = ext4_writepage, 3672 .writepages = ext4_writepages, 3673 .write_begin = ext4_write_begin, 3674 .write_end = ext4_journalled_write_end, 3675 .set_page_dirty = ext4_journalled_set_page_dirty, 3676 .bmap = ext4_bmap, 3677 .invalidatepage = ext4_journalled_invalidatepage, 3678 .releasepage = ext4_releasepage, 3679 .direct_IO = noop_direct_IO, 3680 .is_partially_uptodate = block_is_partially_uptodate, 3681 .error_remove_page = generic_error_remove_page, 3682 .swap_activate = ext4_iomap_swap_activate, 3683 }; 3684 3685 static const struct address_space_operations ext4_da_aops = { 3686 .readpage = ext4_readpage, 3687 .readahead = ext4_readahead, 3688 .writepage = ext4_writepage, 3689 .writepages = ext4_writepages, 3690 .write_begin = ext4_da_write_begin, 3691 .write_end = ext4_da_write_end, 3692 .set_page_dirty = ext4_set_page_dirty, 3693 .bmap = ext4_bmap, 3694 .invalidatepage = ext4_invalidatepage, 3695 .releasepage = ext4_releasepage, 3696 .direct_IO = noop_direct_IO, 3697 .migratepage = buffer_migrate_page, 3698 .is_partially_uptodate = block_is_partially_uptodate, 3699 .error_remove_page = generic_error_remove_page, 3700 .swap_activate = ext4_iomap_swap_activate, 3701 }; 3702 3703 static const struct address_space_operations ext4_dax_aops = { 3704 .writepages = ext4_dax_writepages, 3705 .direct_IO = noop_direct_IO, 3706 .set_page_dirty = noop_set_page_dirty, 3707 .bmap = ext4_bmap, 3708 .invalidatepage = noop_invalidatepage, 3709 .swap_activate = ext4_iomap_swap_activate, 3710 }; 3711 3712 void ext4_set_aops(struct inode *inode) 3713 { 3714 switch (ext4_inode_journal_mode(inode)) { 3715 case EXT4_INODE_ORDERED_DATA_MODE: 3716 case EXT4_INODE_WRITEBACK_DATA_MODE: 3717 break; 3718 case EXT4_INODE_JOURNAL_DATA_MODE: 3719 inode->i_mapping->a_ops = &ext4_journalled_aops; 3720 return; 3721 default: 3722 BUG(); 3723 } 3724 if (IS_DAX(inode)) 3725 inode->i_mapping->a_ops = &ext4_dax_aops; 3726 else if (test_opt(inode->i_sb, DELALLOC)) 3727 inode->i_mapping->a_ops = &ext4_da_aops; 3728 else 3729 inode->i_mapping->a_ops = &ext4_aops; 3730 } 3731 3732 static int __ext4_block_zero_page_range(handle_t *handle, 3733 struct address_space *mapping, loff_t from, loff_t length) 3734 { 3735 ext4_fsblk_t index = from >> PAGE_SHIFT; 3736 unsigned offset = from & (PAGE_SIZE-1); 3737 unsigned blocksize, pos; 3738 ext4_lblk_t iblock; 3739 struct inode *inode = mapping->host; 3740 struct buffer_head *bh; 3741 struct page *page; 3742 int err = 0; 3743 3744 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3745 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3746 if (!page) 3747 return -ENOMEM; 3748 3749 blocksize = inode->i_sb->s_blocksize; 3750 3751 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3752 3753 if (!page_has_buffers(page)) 3754 create_empty_buffers(page, blocksize, 0); 3755 3756 /* Find the buffer that contains "offset" */ 3757 bh = page_buffers(page); 3758 pos = blocksize; 3759 while (offset >= pos) { 3760 bh = bh->b_this_page; 3761 iblock++; 3762 pos += blocksize; 3763 } 3764 if (buffer_freed(bh)) { 3765 BUFFER_TRACE(bh, "freed: skip"); 3766 goto unlock; 3767 } 3768 if (!buffer_mapped(bh)) { 3769 BUFFER_TRACE(bh, "unmapped"); 3770 ext4_get_block(inode, iblock, bh, 0); 3771 /* unmapped? It's a hole - nothing to do */ 3772 if (!buffer_mapped(bh)) { 3773 BUFFER_TRACE(bh, "still unmapped"); 3774 goto unlock; 3775 } 3776 } 3777 3778 /* Ok, it's mapped. Make sure it's up-to-date */ 3779 if (PageUptodate(page)) 3780 set_buffer_uptodate(bh); 3781 3782 if (!buffer_uptodate(bh)) { 3783 err = ext4_read_bh_lock(bh, 0, true); 3784 if (err) 3785 goto unlock; 3786 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3787 /* We expect the key to be set. */ 3788 BUG_ON(!fscrypt_has_encryption_key(inode)); 3789 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3790 bh_offset(bh)); 3791 if (err) { 3792 clear_buffer_uptodate(bh); 3793 goto unlock; 3794 } 3795 } 3796 } 3797 if (ext4_should_journal_data(inode)) { 3798 BUFFER_TRACE(bh, "get write access"); 3799 err = ext4_journal_get_write_access(handle, bh); 3800 if (err) 3801 goto unlock; 3802 } 3803 zero_user(page, offset, length); 3804 BUFFER_TRACE(bh, "zeroed end of block"); 3805 3806 if (ext4_should_journal_data(inode)) { 3807 err = ext4_handle_dirty_metadata(handle, inode, bh); 3808 } else { 3809 err = 0; 3810 mark_buffer_dirty(bh); 3811 if (ext4_should_order_data(inode)) 3812 err = ext4_jbd2_inode_add_write(handle, inode, from, 3813 length); 3814 } 3815 3816 unlock: 3817 unlock_page(page); 3818 put_page(page); 3819 return err; 3820 } 3821 3822 /* 3823 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3824 * starting from file offset 'from'. The range to be zero'd must 3825 * be contained with in one block. If the specified range exceeds 3826 * the end of the block it will be shortened to end of the block 3827 * that cooresponds to 'from' 3828 */ 3829 static int ext4_block_zero_page_range(handle_t *handle, 3830 struct address_space *mapping, loff_t from, loff_t length) 3831 { 3832 struct inode *inode = mapping->host; 3833 unsigned offset = from & (PAGE_SIZE-1); 3834 unsigned blocksize = inode->i_sb->s_blocksize; 3835 unsigned max = blocksize - (offset & (blocksize - 1)); 3836 3837 /* 3838 * correct length if it does not fall between 3839 * 'from' and the end of the block 3840 */ 3841 if (length > max || length < 0) 3842 length = max; 3843 3844 if (IS_DAX(inode)) { 3845 return iomap_zero_range(inode, from, length, NULL, 3846 &ext4_iomap_ops); 3847 } 3848 return __ext4_block_zero_page_range(handle, mapping, from, length); 3849 } 3850 3851 /* 3852 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3853 * up to the end of the block which corresponds to `from'. 3854 * This required during truncate. We need to physically zero the tail end 3855 * of that block so it doesn't yield old data if the file is later grown. 3856 */ 3857 static int ext4_block_truncate_page(handle_t *handle, 3858 struct address_space *mapping, loff_t from) 3859 { 3860 unsigned offset = from & (PAGE_SIZE-1); 3861 unsigned length; 3862 unsigned blocksize; 3863 struct inode *inode = mapping->host; 3864 3865 /* If we are processing an encrypted inode during orphan list handling */ 3866 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3867 return 0; 3868 3869 blocksize = inode->i_sb->s_blocksize; 3870 length = blocksize - (offset & (blocksize - 1)); 3871 3872 return ext4_block_zero_page_range(handle, mapping, from, length); 3873 } 3874 3875 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3876 loff_t lstart, loff_t length) 3877 { 3878 struct super_block *sb = inode->i_sb; 3879 struct address_space *mapping = inode->i_mapping; 3880 unsigned partial_start, partial_end; 3881 ext4_fsblk_t start, end; 3882 loff_t byte_end = (lstart + length - 1); 3883 int err = 0; 3884 3885 partial_start = lstart & (sb->s_blocksize - 1); 3886 partial_end = byte_end & (sb->s_blocksize - 1); 3887 3888 start = lstart >> sb->s_blocksize_bits; 3889 end = byte_end >> sb->s_blocksize_bits; 3890 3891 /* Handle partial zero within the single block */ 3892 if (start == end && 3893 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3894 err = ext4_block_zero_page_range(handle, mapping, 3895 lstart, length); 3896 return err; 3897 } 3898 /* Handle partial zero out on the start of the range */ 3899 if (partial_start) { 3900 err = ext4_block_zero_page_range(handle, mapping, 3901 lstart, sb->s_blocksize); 3902 if (err) 3903 return err; 3904 } 3905 /* Handle partial zero out on the end of the range */ 3906 if (partial_end != sb->s_blocksize - 1) 3907 err = ext4_block_zero_page_range(handle, mapping, 3908 byte_end - partial_end, 3909 partial_end + 1); 3910 return err; 3911 } 3912 3913 int ext4_can_truncate(struct inode *inode) 3914 { 3915 if (S_ISREG(inode->i_mode)) 3916 return 1; 3917 if (S_ISDIR(inode->i_mode)) 3918 return 1; 3919 if (S_ISLNK(inode->i_mode)) 3920 return !ext4_inode_is_fast_symlink(inode); 3921 return 0; 3922 } 3923 3924 /* 3925 * We have to make sure i_disksize gets properly updated before we truncate 3926 * page cache due to hole punching or zero range. Otherwise i_disksize update 3927 * can get lost as it may have been postponed to submission of writeback but 3928 * that will never happen after we truncate page cache. 3929 */ 3930 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3931 loff_t len) 3932 { 3933 handle_t *handle; 3934 int ret; 3935 3936 loff_t size = i_size_read(inode); 3937 3938 WARN_ON(!inode_is_locked(inode)); 3939 if (offset > size || offset + len < size) 3940 return 0; 3941 3942 if (EXT4_I(inode)->i_disksize >= size) 3943 return 0; 3944 3945 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3946 if (IS_ERR(handle)) 3947 return PTR_ERR(handle); 3948 ext4_update_i_disksize(inode, size); 3949 ret = ext4_mark_inode_dirty(handle, inode); 3950 ext4_journal_stop(handle); 3951 3952 return ret; 3953 } 3954 3955 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 3956 { 3957 up_write(&ei->i_mmap_sem); 3958 schedule(); 3959 down_write(&ei->i_mmap_sem); 3960 } 3961 3962 int ext4_break_layouts(struct inode *inode) 3963 { 3964 struct ext4_inode_info *ei = EXT4_I(inode); 3965 struct page *page; 3966 int error; 3967 3968 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 3969 return -EINVAL; 3970 3971 do { 3972 page = dax_layout_busy_page(inode->i_mapping); 3973 if (!page) 3974 return 0; 3975 3976 error = ___wait_var_event(&page->_refcount, 3977 atomic_read(&page->_refcount) == 1, 3978 TASK_INTERRUPTIBLE, 0, 0, 3979 ext4_wait_dax_page(ei)); 3980 } while (error == 0); 3981 3982 return error; 3983 } 3984 3985 /* 3986 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3987 * associated with the given offset and length 3988 * 3989 * @inode: File inode 3990 * @offset: The offset where the hole will begin 3991 * @len: The length of the hole 3992 * 3993 * Returns: 0 on success or negative on failure 3994 */ 3995 3996 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3997 { 3998 struct super_block *sb = inode->i_sb; 3999 ext4_lblk_t first_block, stop_block; 4000 struct address_space *mapping = inode->i_mapping; 4001 loff_t first_block_offset, last_block_offset; 4002 handle_t *handle; 4003 unsigned int credits; 4004 int ret = 0, ret2 = 0; 4005 4006 trace_ext4_punch_hole(inode, offset, length, 0); 4007 4008 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4009 if (ext4_has_inline_data(inode)) { 4010 down_write(&EXT4_I(inode)->i_mmap_sem); 4011 ret = ext4_convert_inline_data(inode); 4012 up_write(&EXT4_I(inode)->i_mmap_sem); 4013 if (ret) 4014 return ret; 4015 } 4016 4017 /* 4018 * Write out all dirty pages to avoid race conditions 4019 * Then release them. 4020 */ 4021 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4022 ret = filemap_write_and_wait_range(mapping, offset, 4023 offset + length - 1); 4024 if (ret) 4025 return ret; 4026 } 4027 4028 inode_lock(inode); 4029 4030 /* No need to punch hole beyond i_size */ 4031 if (offset >= inode->i_size) 4032 goto out_mutex; 4033 4034 /* 4035 * If the hole extends beyond i_size, set the hole 4036 * to end after the page that contains i_size 4037 */ 4038 if (offset + length > inode->i_size) { 4039 length = inode->i_size + 4040 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4041 offset; 4042 } 4043 4044 if (offset & (sb->s_blocksize - 1) || 4045 (offset + length) & (sb->s_blocksize - 1)) { 4046 /* 4047 * Attach jinode to inode for jbd2 if we do any zeroing of 4048 * partial block 4049 */ 4050 ret = ext4_inode_attach_jinode(inode); 4051 if (ret < 0) 4052 goto out_mutex; 4053 4054 } 4055 4056 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4057 inode_dio_wait(inode); 4058 4059 /* 4060 * Prevent page faults from reinstantiating pages we have released from 4061 * page cache. 4062 */ 4063 down_write(&EXT4_I(inode)->i_mmap_sem); 4064 4065 ret = ext4_break_layouts(inode); 4066 if (ret) 4067 goto out_dio; 4068 4069 first_block_offset = round_up(offset, sb->s_blocksize); 4070 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4071 4072 /* Now release the pages and zero block aligned part of pages*/ 4073 if (last_block_offset > first_block_offset) { 4074 ret = ext4_update_disksize_before_punch(inode, offset, length); 4075 if (ret) 4076 goto out_dio; 4077 truncate_pagecache_range(inode, first_block_offset, 4078 last_block_offset); 4079 } 4080 4081 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4082 credits = ext4_writepage_trans_blocks(inode); 4083 else 4084 credits = ext4_blocks_for_truncate(inode); 4085 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4086 if (IS_ERR(handle)) { 4087 ret = PTR_ERR(handle); 4088 ext4_std_error(sb, ret); 4089 goto out_dio; 4090 } 4091 4092 ret = ext4_zero_partial_blocks(handle, inode, offset, 4093 length); 4094 if (ret) 4095 goto out_stop; 4096 4097 first_block = (offset + sb->s_blocksize - 1) >> 4098 EXT4_BLOCK_SIZE_BITS(sb); 4099 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4100 4101 /* If there are blocks to remove, do it */ 4102 if (stop_block > first_block) { 4103 4104 down_write(&EXT4_I(inode)->i_data_sem); 4105 ext4_discard_preallocations(inode, 0); 4106 4107 ret = ext4_es_remove_extent(inode, first_block, 4108 stop_block - first_block); 4109 if (ret) { 4110 up_write(&EXT4_I(inode)->i_data_sem); 4111 goto out_stop; 4112 } 4113 4114 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4115 ret = ext4_ext_remove_space(inode, first_block, 4116 stop_block - 1); 4117 else 4118 ret = ext4_ind_remove_space(handle, inode, first_block, 4119 stop_block); 4120 4121 up_write(&EXT4_I(inode)->i_data_sem); 4122 } 4123 ext4_fc_track_range(handle, inode, first_block, stop_block); 4124 if (IS_SYNC(inode)) 4125 ext4_handle_sync(handle); 4126 4127 inode->i_mtime = inode->i_ctime = current_time(inode); 4128 ret2 = ext4_mark_inode_dirty(handle, inode); 4129 if (unlikely(ret2)) 4130 ret = ret2; 4131 if (ret >= 0) 4132 ext4_update_inode_fsync_trans(handle, inode, 1); 4133 out_stop: 4134 ext4_journal_stop(handle); 4135 out_dio: 4136 up_write(&EXT4_I(inode)->i_mmap_sem); 4137 out_mutex: 4138 inode_unlock(inode); 4139 return ret; 4140 } 4141 4142 int ext4_inode_attach_jinode(struct inode *inode) 4143 { 4144 struct ext4_inode_info *ei = EXT4_I(inode); 4145 struct jbd2_inode *jinode; 4146 4147 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4148 return 0; 4149 4150 jinode = jbd2_alloc_inode(GFP_KERNEL); 4151 spin_lock(&inode->i_lock); 4152 if (!ei->jinode) { 4153 if (!jinode) { 4154 spin_unlock(&inode->i_lock); 4155 return -ENOMEM; 4156 } 4157 ei->jinode = jinode; 4158 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4159 jinode = NULL; 4160 } 4161 spin_unlock(&inode->i_lock); 4162 if (unlikely(jinode != NULL)) 4163 jbd2_free_inode(jinode); 4164 return 0; 4165 } 4166 4167 /* 4168 * ext4_truncate() 4169 * 4170 * We block out ext4_get_block() block instantiations across the entire 4171 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4172 * simultaneously on behalf of the same inode. 4173 * 4174 * As we work through the truncate and commit bits of it to the journal there 4175 * is one core, guiding principle: the file's tree must always be consistent on 4176 * disk. We must be able to restart the truncate after a crash. 4177 * 4178 * The file's tree may be transiently inconsistent in memory (although it 4179 * probably isn't), but whenever we close off and commit a journal transaction, 4180 * the contents of (the filesystem + the journal) must be consistent and 4181 * restartable. It's pretty simple, really: bottom up, right to left (although 4182 * left-to-right works OK too). 4183 * 4184 * Note that at recovery time, journal replay occurs *before* the restart of 4185 * truncate against the orphan inode list. 4186 * 4187 * The committed inode has the new, desired i_size (which is the same as 4188 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4189 * that this inode's truncate did not complete and it will again call 4190 * ext4_truncate() to have another go. So there will be instantiated blocks 4191 * to the right of the truncation point in a crashed ext4 filesystem. But 4192 * that's fine - as long as they are linked from the inode, the post-crash 4193 * ext4_truncate() run will find them and release them. 4194 */ 4195 int ext4_truncate(struct inode *inode) 4196 { 4197 struct ext4_inode_info *ei = EXT4_I(inode); 4198 unsigned int credits; 4199 int err = 0, err2; 4200 handle_t *handle; 4201 struct address_space *mapping = inode->i_mapping; 4202 4203 /* 4204 * There is a possibility that we're either freeing the inode 4205 * or it's a completely new inode. In those cases we might not 4206 * have i_mutex locked because it's not necessary. 4207 */ 4208 if (!(inode->i_state & (I_NEW|I_FREEING))) 4209 WARN_ON(!inode_is_locked(inode)); 4210 trace_ext4_truncate_enter(inode); 4211 4212 if (!ext4_can_truncate(inode)) 4213 goto out_trace; 4214 4215 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4216 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4217 4218 if (ext4_has_inline_data(inode)) { 4219 int has_inline = 1; 4220 4221 err = ext4_inline_data_truncate(inode, &has_inline); 4222 if (err || has_inline) 4223 goto out_trace; 4224 } 4225 4226 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4227 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4228 if (ext4_inode_attach_jinode(inode) < 0) 4229 goto out_trace; 4230 } 4231 4232 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4233 credits = ext4_writepage_trans_blocks(inode); 4234 else 4235 credits = ext4_blocks_for_truncate(inode); 4236 4237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4238 if (IS_ERR(handle)) { 4239 err = PTR_ERR(handle); 4240 goto out_trace; 4241 } 4242 4243 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4244 ext4_block_truncate_page(handle, mapping, inode->i_size); 4245 4246 /* 4247 * We add the inode to the orphan list, so that if this 4248 * truncate spans multiple transactions, and we crash, we will 4249 * resume the truncate when the filesystem recovers. It also 4250 * marks the inode dirty, to catch the new size. 4251 * 4252 * Implication: the file must always be in a sane, consistent 4253 * truncatable state while each transaction commits. 4254 */ 4255 err = ext4_orphan_add(handle, inode); 4256 if (err) 4257 goto out_stop; 4258 4259 down_write(&EXT4_I(inode)->i_data_sem); 4260 4261 ext4_discard_preallocations(inode, 0); 4262 4263 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4264 err = ext4_ext_truncate(handle, inode); 4265 else 4266 ext4_ind_truncate(handle, inode); 4267 4268 up_write(&ei->i_data_sem); 4269 if (err) 4270 goto out_stop; 4271 4272 if (IS_SYNC(inode)) 4273 ext4_handle_sync(handle); 4274 4275 out_stop: 4276 /* 4277 * If this was a simple ftruncate() and the file will remain alive, 4278 * then we need to clear up the orphan record which we created above. 4279 * However, if this was a real unlink then we were called by 4280 * ext4_evict_inode(), and we allow that function to clean up the 4281 * orphan info for us. 4282 */ 4283 if (inode->i_nlink) 4284 ext4_orphan_del(handle, inode); 4285 4286 inode->i_mtime = inode->i_ctime = current_time(inode); 4287 err2 = ext4_mark_inode_dirty(handle, inode); 4288 if (unlikely(err2 && !err)) 4289 err = err2; 4290 ext4_journal_stop(handle); 4291 4292 out_trace: 4293 trace_ext4_truncate_exit(inode); 4294 return err; 4295 } 4296 4297 /* 4298 * ext4_get_inode_loc returns with an extra refcount against the inode's 4299 * underlying buffer_head on success. If 'in_mem' is true, we have all 4300 * data in memory that is needed to recreate the on-disk version of this 4301 * inode. 4302 */ 4303 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4304 struct ext4_iloc *iloc, int in_mem, 4305 ext4_fsblk_t *ret_block) 4306 { 4307 struct ext4_group_desc *gdp; 4308 struct buffer_head *bh; 4309 ext4_fsblk_t block; 4310 struct blk_plug plug; 4311 int inodes_per_block, inode_offset; 4312 4313 iloc->bh = NULL; 4314 if (ino < EXT4_ROOT_INO || 4315 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4316 return -EFSCORRUPTED; 4317 4318 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4319 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4320 if (!gdp) 4321 return -EIO; 4322 4323 /* 4324 * Figure out the offset within the block group inode table 4325 */ 4326 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4327 inode_offset = ((ino - 1) % 4328 EXT4_INODES_PER_GROUP(sb)); 4329 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4330 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4331 4332 bh = sb_getblk(sb, block); 4333 if (unlikely(!bh)) 4334 return -ENOMEM; 4335 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)) 4336 goto simulate_eio; 4337 if (!buffer_uptodate(bh)) { 4338 lock_buffer(bh); 4339 4340 if (ext4_buffer_uptodate(bh)) { 4341 /* someone brought it uptodate while we waited */ 4342 unlock_buffer(bh); 4343 goto has_buffer; 4344 } 4345 4346 /* 4347 * If we have all information of the inode in memory and this 4348 * is the only valid inode in the block, we need not read the 4349 * block. 4350 */ 4351 if (in_mem) { 4352 struct buffer_head *bitmap_bh; 4353 int i, start; 4354 4355 start = inode_offset & ~(inodes_per_block - 1); 4356 4357 /* Is the inode bitmap in cache? */ 4358 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4359 if (unlikely(!bitmap_bh)) 4360 goto make_io; 4361 4362 /* 4363 * If the inode bitmap isn't in cache then the 4364 * optimisation may end up performing two reads instead 4365 * of one, so skip it. 4366 */ 4367 if (!buffer_uptodate(bitmap_bh)) { 4368 brelse(bitmap_bh); 4369 goto make_io; 4370 } 4371 for (i = start; i < start + inodes_per_block; i++) { 4372 if (i == inode_offset) 4373 continue; 4374 if (ext4_test_bit(i, bitmap_bh->b_data)) 4375 break; 4376 } 4377 brelse(bitmap_bh); 4378 if (i == start + inodes_per_block) { 4379 /* all other inodes are free, so skip I/O */ 4380 memset(bh->b_data, 0, bh->b_size); 4381 set_buffer_uptodate(bh); 4382 unlock_buffer(bh); 4383 goto has_buffer; 4384 } 4385 } 4386 4387 make_io: 4388 /* 4389 * If we need to do any I/O, try to pre-readahead extra 4390 * blocks from the inode table. 4391 */ 4392 blk_start_plug(&plug); 4393 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4394 ext4_fsblk_t b, end, table; 4395 unsigned num; 4396 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4397 4398 table = ext4_inode_table(sb, gdp); 4399 /* s_inode_readahead_blks is always a power of 2 */ 4400 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4401 if (table > b) 4402 b = table; 4403 end = b + ra_blks; 4404 num = EXT4_INODES_PER_GROUP(sb); 4405 if (ext4_has_group_desc_csum(sb)) 4406 num -= ext4_itable_unused_count(sb, gdp); 4407 table += num / inodes_per_block; 4408 if (end > table) 4409 end = table; 4410 while (b <= end) 4411 ext4_sb_breadahead_unmovable(sb, b++); 4412 } 4413 4414 /* 4415 * There are other valid inodes in the buffer, this inode 4416 * has in-inode xattrs, or we don't have this inode in memory. 4417 * Read the block from disk. 4418 */ 4419 trace_ext4_load_inode(sb, ino); 4420 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4421 blk_finish_plug(&plug); 4422 wait_on_buffer(bh); 4423 if (!buffer_uptodate(bh)) { 4424 simulate_eio: 4425 if (ret_block) 4426 *ret_block = block; 4427 brelse(bh); 4428 return -EIO; 4429 } 4430 } 4431 has_buffer: 4432 iloc->bh = bh; 4433 return 0; 4434 } 4435 4436 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4437 struct ext4_iloc *iloc) 4438 { 4439 ext4_fsblk_t err_blk; 4440 int ret; 4441 4442 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0, 4443 &err_blk); 4444 4445 if (ret == -EIO) 4446 ext4_error_inode_block(inode, err_blk, EIO, 4447 "unable to read itable block"); 4448 4449 return ret; 4450 } 4451 4452 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4453 { 4454 ext4_fsblk_t err_blk; 4455 int ret; 4456 4457 /* We have all inode data except xattrs in memory here. */ 4458 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 4459 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk); 4460 4461 if (ret == -EIO) 4462 ext4_error_inode_block(inode, err_blk, EIO, 4463 "unable to read itable block"); 4464 4465 return ret; 4466 } 4467 4468 4469 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4470 struct ext4_iloc *iloc) 4471 { 4472 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL); 4473 } 4474 4475 static bool ext4_should_enable_dax(struct inode *inode) 4476 { 4477 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4478 4479 if (test_opt2(inode->i_sb, DAX_NEVER)) 4480 return false; 4481 if (!S_ISREG(inode->i_mode)) 4482 return false; 4483 if (ext4_should_journal_data(inode)) 4484 return false; 4485 if (ext4_has_inline_data(inode)) 4486 return false; 4487 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4488 return false; 4489 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4490 return false; 4491 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4492 return false; 4493 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4494 return true; 4495 4496 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4497 } 4498 4499 void ext4_set_inode_flags(struct inode *inode, bool init) 4500 { 4501 unsigned int flags = EXT4_I(inode)->i_flags; 4502 unsigned int new_fl = 0; 4503 4504 WARN_ON_ONCE(IS_DAX(inode) && init); 4505 4506 if (flags & EXT4_SYNC_FL) 4507 new_fl |= S_SYNC; 4508 if (flags & EXT4_APPEND_FL) 4509 new_fl |= S_APPEND; 4510 if (flags & EXT4_IMMUTABLE_FL) 4511 new_fl |= S_IMMUTABLE; 4512 if (flags & EXT4_NOATIME_FL) 4513 new_fl |= S_NOATIME; 4514 if (flags & EXT4_DIRSYNC_FL) 4515 new_fl |= S_DIRSYNC; 4516 4517 /* Because of the way inode_set_flags() works we must preserve S_DAX 4518 * here if already set. */ 4519 new_fl |= (inode->i_flags & S_DAX); 4520 if (init && ext4_should_enable_dax(inode)) 4521 new_fl |= S_DAX; 4522 4523 if (flags & EXT4_ENCRYPT_FL) 4524 new_fl |= S_ENCRYPTED; 4525 if (flags & EXT4_CASEFOLD_FL) 4526 new_fl |= S_CASEFOLD; 4527 if (flags & EXT4_VERITY_FL) 4528 new_fl |= S_VERITY; 4529 inode_set_flags(inode, new_fl, 4530 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4531 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4532 } 4533 4534 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4535 struct ext4_inode_info *ei) 4536 { 4537 blkcnt_t i_blocks ; 4538 struct inode *inode = &(ei->vfs_inode); 4539 struct super_block *sb = inode->i_sb; 4540 4541 if (ext4_has_feature_huge_file(sb)) { 4542 /* we are using combined 48 bit field */ 4543 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4544 le32_to_cpu(raw_inode->i_blocks_lo); 4545 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4546 /* i_blocks represent file system block size */ 4547 return i_blocks << (inode->i_blkbits - 9); 4548 } else { 4549 return i_blocks; 4550 } 4551 } else { 4552 return le32_to_cpu(raw_inode->i_blocks_lo); 4553 } 4554 } 4555 4556 static inline int ext4_iget_extra_inode(struct inode *inode, 4557 struct ext4_inode *raw_inode, 4558 struct ext4_inode_info *ei) 4559 { 4560 __le32 *magic = (void *)raw_inode + 4561 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4562 4563 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4564 EXT4_INODE_SIZE(inode->i_sb) && 4565 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4566 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4567 return ext4_find_inline_data_nolock(inode); 4568 } else 4569 EXT4_I(inode)->i_inline_off = 0; 4570 return 0; 4571 } 4572 4573 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4574 { 4575 if (!ext4_has_feature_project(inode->i_sb)) 4576 return -EOPNOTSUPP; 4577 *projid = EXT4_I(inode)->i_projid; 4578 return 0; 4579 } 4580 4581 /* 4582 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4583 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4584 * set. 4585 */ 4586 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4587 { 4588 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4589 inode_set_iversion_raw(inode, val); 4590 else 4591 inode_set_iversion_queried(inode, val); 4592 } 4593 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4594 { 4595 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4596 return inode_peek_iversion_raw(inode); 4597 else 4598 return inode_peek_iversion(inode); 4599 } 4600 4601 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4602 ext4_iget_flags flags, const char *function, 4603 unsigned int line) 4604 { 4605 struct ext4_iloc iloc; 4606 struct ext4_inode *raw_inode; 4607 struct ext4_inode_info *ei; 4608 struct inode *inode; 4609 journal_t *journal = EXT4_SB(sb)->s_journal; 4610 long ret; 4611 loff_t size; 4612 int block; 4613 uid_t i_uid; 4614 gid_t i_gid; 4615 projid_t i_projid; 4616 4617 if ((!(flags & EXT4_IGET_SPECIAL) && 4618 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4619 (ino < EXT4_ROOT_INO) || 4620 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4621 if (flags & EXT4_IGET_HANDLE) 4622 return ERR_PTR(-ESTALE); 4623 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4624 "inode #%lu: comm %s: iget: illegal inode #", 4625 ino, current->comm); 4626 return ERR_PTR(-EFSCORRUPTED); 4627 } 4628 4629 inode = iget_locked(sb, ino); 4630 if (!inode) 4631 return ERR_PTR(-ENOMEM); 4632 if (!(inode->i_state & I_NEW)) 4633 return inode; 4634 4635 ei = EXT4_I(inode); 4636 iloc.bh = NULL; 4637 4638 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4639 if (ret < 0) 4640 goto bad_inode; 4641 raw_inode = ext4_raw_inode(&iloc); 4642 4643 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4644 ext4_error_inode(inode, function, line, 0, 4645 "iget: root inode unallocated"); 4646 ret = -EFSCORRUPTED; 4647 goto bad_inode; 4648 } 4649 4650 if ((flags & EXT4_IGET_HANDLE) && 4651 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4652 ret = -ESTALE; 4653 goto bad_inode; 4654 } 4655 4656 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4657 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4658 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4659 EXT4_INODE_SIZE(inode->i_sb) || 4660 (ei->i_extra_isize & 3)) { 4661 ext4_error_inode(inode, function, line, 0, 4662 "iget: bad extra_isize %u " 4663 "(inode size %u)", 4664 ei->i_extra_isize, 4665 EXT4_INODE_SIZE(inode->i_sb)); 4666 ret = -EFSCORRUPTED; 4667 goto bad_inode; 4668 } 4669 } else 4670 ei->i_extra_isize = 0; 4671 4672 /* Precompute checksum seed for inode metadata */ 4673 if (ext4_has_metadata_csum(sb)) { 4674 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4675 __u32 csum; 4676 __le32 inum = cpu_to_le32(inode->i_ino); 4677 __le32 gen = raw_inode->i_generation; 4678 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4679 sizeof(inum)); 4680 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4681 sizeof(gen)); 4682 } 4683 4684 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4685 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4686 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4687 ext4_error_inode_err(inode, function, line, 0, 4688 EFSBADCRC, "iget: checksum invalid"); 4689 ret = -EFSBADCRC; 4690 goto bad_inode; 4691 } 4692 4693 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4694 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4695 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4696 if (ext4_has_feature_project(sb) && 4697 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4698 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4699 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4700 else 4701 i_projid = EXT4_DEF_PROJID; 4702 4703 if (!(test_opt(inode->i_sb, NO_UID32))) { 4704 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4705 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4706 } 4707 i_uid_write(inode, i_uid); 4708 i_gid_write(inode, i_gid); 4709 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4710 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4711 4712 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4713 ei->i_inline_off = 0; 4714 ei->i_dir_start_lookup = 0; 4715 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4716 /* We now have enough fields to check if the inode was active or not. 4717 * This is needed because nfsd might try to access dead inodes 4718 * the test is that same one that e2fsck uses 4719 * NeilBrown 1999oct15 4720 */ 4721 if (inode->i_nlink == 0) { 4722 if ((inode->i_mode == 0 || 4723 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4724 ino != EXT4_BOOT_LOADER_INO) { 4725 /* this inode is deleted */ 4726 ret = -ESTALE; 4727 goto bad_inode; 4728 } 4729 /* The only unlinked inodes we let through here have 4730 * valid i_mode and are being read by the orphan 4731 * recovery code: that's fine, we're about to complete 4732 * the process of deleting those. 4733 * OR it is the EXT4_BOOT_LOADER_INO which is 4734 * not initialized on a new filesystem. */ 4735 } 4736 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4737 ext4_set_inode_flags(inode, true); 4738 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4739 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4740 if (ext4_has_feature_64bit(sb)) 4741 ei->i_file_acl |= 4742 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4743 inode->i_size = ext4_isize(sb, raw_inode); 4744 if ((size = i_size_read(inode)) < 0) { 4745 ext4_error_inode(inode, function, line, 0, 4746 "iget: bad i_size value: %lld", size); 4747 ret = -EFSCORRUPTED; 4748 goto bad_inode; 4749 } 4750 /* 4751 * If dir_index is not enabled but there's dir with INDEX flag set, 4752 * we'd normally treat htree data as empty space. But with metadata 4753 * checksumming that corrupts checksums so forbid that. 4754 */ 4755 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4756 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4757 ext4_error_inode(inode, function, line, 0, 4758 "iget: Dir with htree data on filesystem without dir_index feature."); 4759 ret = -EFSCORRUPTED; 4760 goto bad_inode; 4761 } 4762 ei->i_disksize = inode->i_size; 4763 #ifdef CONFIG_QUOTA 4764 ei->i_reserved_quota = 0; 4765 #endif 4766 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4767 ei->i_block_group = iloc.block_group; 4768 ei->i_last_alloc_group = ~0; 4769 /* 4770 * NOTE! The in-memory inode i_data array is in little-endian order 4771 * even on big-endian machines: we do NOT byteswap the block numbers! 4772 */ 4773 for (block = 0; block < EXT4_N_BLOCKS; block++) 4774 ei->i_data[block] = raw_inode->i_block[block]; 4775 INIT_LIST_HEAD(&ei->i_orphan); 4776 ext4_fc_init_inode(&ei->vfs_inode); 4777 4778 /* 4779 * Set transaction id's of transactions that have to be committed 4780 * to finish f[data]sync. We set them to currently running transaction 4781 * as we cannot be sure that the inode or some of its metadata isn't 4782 * part of the transaction - the inode could have been reclaimed and 4783 * now it is reread from disk. 4784 */ 4785 if (journal) { 4786 transaction_t *transaction; 4787 tid_t tid; 4788 4789 read_lock(&journal->j_state_lock); 4790 if (journal->j_running_transaction) 4791 transaction = journal->j_running_transaction; 4792 else 4793 transaction = journal->j_committing_transaction; 4794 if (transaction) 4795 tid = transaction->t_tid; 4796 else 4797 tid = journal->j_commit_sequence; 4798 read_unlock(&journal->j_state_lock); 4799 ei->i_sync_tid = tid; 4800 ei->i_datasync_tid = tid; 4801 } 4802 4803 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4804 if (ei->i_extra_isize == 0) { 4805 /* The extra space is currently unused. Use it. */ 4806 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4807 ei->i_extra_isize = sizeof(struct ext4_inode) - 4808 EXT4_GOOD_OLD_INODE_SIZE; 4809 } else { 4810 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4811 if (ret) 4812 goto bad_inode; 4813 } 4814 } 4815 4816 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4817 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4818 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4819 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4820 4821 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4822 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4823 4824 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4825 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4826 ivers |= 4827 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4828 } 4829 ext4_inode_set_iversion_queried(inode, ivers); 4830 } 4831 4832 ret = 0; 4833 if (ei->i_file_acl && 4834 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4835 ext4_error_inode(inode, function, line, 0, 4836 "iget: bad extended attribute block %llu", 4837 ei->i_file_acl); 4838 ret = -EFSCORRUPTED; 4839 goto bad_inode; 4840 } else if (!ext4_has_inline_data(inode)) { 4841 /* validate the block references in the inode */ 4842 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4843 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4844 (S_ISLNK(inode->i_mode) && 4845 !ext4_inode_is_fast_symlink(inode)))) { 4846 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4847 ret = ext4_ext_check_inode(inode); 4848 else 4849 ret = ext4_ind_check_inode(inode); 4850 } 4851 } 4852 if (ret) 4853 goto bad_inode; 4854 4855 if (S_ISREG(inode->i_mode)) { 4856 inode->i_op = &ext4_file_inode_operations; 4857 inode->i_fop = &ext4_file_operations; 4858 ext4_set_aops(inode); 4859 } else if (S_ISDIR(inode->i_mode)) { 4860 inode->i_op = &ext4_dir_inode_operations; 4861 inode->i_fop = &ext4_dir_operations; 4862 } else if (S_ISLNK(inode->i_mode)) { 4863 /* VFS does not allow setting these so must be corruption */ 4864 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4865 ext4_error_inode(inode, function, line, 0, 4866 "iget: immutable or append flags " 4867 "not allowed on symlinks"); 4868 ret = -EFSCORRUPTED; 4869 goto bad_inode; 4870 } 4871 if (IS_ENCRYPTED(inode)) { 4872 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4873 ext4_set_aops(inode); 4874 } else if (ext4_inode_is_fast_symlink(inode)) { 4875 inode->i_link = (char *)ei->i_data; 4876 inode->i_op = &ext4_fast_symlink_inode_operations; 4877 nd_terminate_link(ei->i_data, inode->i_size, 4878 sizeof(ei->i_data) - 1); 4879 } else { 4880 inode->i_op = &ext4_symlink_inode_operations; 4881 ext4_set_aops(inode); 4882 } 4883 inode_nohighmem(inode); 4884 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4885 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4886 inode->i_op = &ext4_special_inode_operations; 4887 if (raw_inode->i_block[0]) 4888 init_special_inode(inode, inode->i_mode, 4889 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4890 else 4891 init_special_inode(inode, inode->i_mode, 4892 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4893 } else if (ino == EXT4_BOOT_LOADER_INO) { 4894 make_bad_inode(inode); 4895 } else { 4896 ret = -EFSCORRUPTED; 4897 ext4_error_inode(inode, function, line, 0, 4898 "iget: bogus i_mode (%o)", inode->i_mode); 4899 goto bad_inode; 4900 } 4901 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4902 ext4_error_inode(inode, function, line, 0, 4903 "casefold flag without casefold feature"); 4904 brelse(iloc.bh); 4905 4906 unlock_new_inode(inode); 4907 return inode; 4908 4909 bad_inode: 4910 brelse(iloc.bh); 4911 iget_failed(inode); 4912 return ERR_PTR(ret); 4913 } 4914 4915 static int ext4_inode_blocks_set(handle_t *handle, 4916 struct ext4_inode *raw_inode, 4917 struct ext4_inode_info *ei) 4918 { 4919 struct inode *inode = &(ei->vfs_inode); 4920 u64 i_blocks = READ_ONCE(inode->i_blocks); 4921 struct super_block *sb = inode->i_sb; 4922 4923 if (i_blocks <= ~0U) { 4924 /* 4925 * i_blocks can be represented in a 32 bit variable 4926 * as multiple of 512 bytes 4927 */ 4928 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4929 raw_inode->i_blocks_high = 0; 4930 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4931 return 0; 4932 } 4933 if (!ext4_has_feature_huge_file(sb)) 4934 return -EFBIG; 4935 4936 if (i_blocks <= 0xffffffffffffULL) { 4937 /* 4938 * i_blocks can be represented in a 48 bit variable 4939 * as multiple of 512 bytes 4940 */ 4941 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4942 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4943 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4944 } else { 4945 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4946 /* i_block is stored in file system block size */ 4947 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4948 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4949 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4950 } 4951 return 0; 4952 } 4953 4954 static void __ext4_update_other_inode_time(struct super_block *sb, 4955 unsigned long orig_ino, 4956 unsigned long ino, 4957 struct ext4_inode *raw_inode) 4958 { 4959 struct inode *inode; 4960 4961 inode = find_inode_by_ino_rcu(sb, ino); 4962 if (!inode) 4963 return; 4964 4965 if (!inode_is_dirtytime_only(inode)) 4966 return; 4967 4968 spin_lock(&inode->i_lock); 4969 if (inode_is_dirtytime_only(inode)) { 4970 struct ext4_inode_info *ei = EXT4_I(inode); 4971 4972 inode->i_state &= ~I_DIRTY_TIME; 4973 spin_unlock(&inode->i_lock); 4974 4975 spin_lock(&ei->i_raw_lock); 4976 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4977 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4978 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4979 ext4_inode_csum_set(inode, raw_inode, ei); 4980 spin_unlock(&ei->i_raw_lock); 4981 trace_ext4_other_inode_update_time(inode, orig_ino); 4982 return; 4983 } 4984 spin_unlock(&inode->i_lock); 4985 } 4986 4987 /* 4988 * Opportunistically update the other time fields for other inodes in 4989 * the same inode table block. 4990 */ 4991 static void ext4_update_other_inodes_time(struct super_block *sb, 4992 unsigned long orig_ino, char *buf) 4993 { 4994 unsigned long ino; 4995 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4996 int inode_size = EXT4_INODE_SIZE(sb); 4997 4998 /* 4999 * Calculate the first inode in the inode table block. Inode 5000 * numbers are one-based. That is, the first inode in a block 5001 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5002 */ 5003 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5004 rcu_read_lock(); 5005 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5006 if (ino == orig_ino) 5007 continue; 5008 __ext4_update_other_inode_time(sb, orig_ino, ino, 5009 (struct ext4_inode *)buf); 5010 } 5011 rcu_read_unlock(); 5012 } 5013 5014 /* 5015 * Post the struct inode info into an on-disk inode location in the 5016 * buffer-cache. This gobbles the caller's reference to the 5017 * buffer_head in the inode location struct. 5018 * 5019 * The caller must have write access to iloc->bh. 5020 */ 5021 static int ext4_do_update_inode(handle_t *handle, 5022 struct inode *inode, 5023 struct ext4_iloc *iloc) 5024 { 5025 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5026 struct ext4_inode_info *ei = EXT4_I(inode); 5027 struct buffer_head *bh = iloc->bh; 5028 struct super_block *sb = inode->i_sb; 5029 int err = 0, block; 5030 int need_datasync = 0, set_large_file = 0; 5031 uid_t i_uid; 5032 gid_t i_gid; 5033 projid_t i_projid; 5034 5035 spin_lock(&ei->i_raw_lock); 5036 5037 /* For fields not tracked in the in-memory inode, 5038 * initialise them to zero for new inodes. */ 5039 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5040 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5041 5042 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5043 if (err) { 5044 spin_unlock(&ei->i_raw_lock); 5045 goto out_brelse; 5046 } 5047 5048 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5049 i_uid = i_uid_read(inode); 5050 i_gid = i_gid_read(inode); 5051 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5052 if (!(test_opt(inode->i_sb, NO_UID32))) { 5053 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5054 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5055 /* 5056 * Fix up interoperability with old kernels. Otherwise, old inodes get 5057 * re-used with the upper 16 bits of the uid/gid intact 5058 */ 5059 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5060 raw_inode->i_uid_high = 0; 5061 raw_inode->i_gid_high = 0; 5062 } else { 5063 raw_inode->i_uid_high = 5064 cpu_to_le16(high_16_bits(i_uid)); 5065 raw_inode->i_gid_high = 5066 cpu_to_le16(high_16_bits(i_gid)); 5067 } 5068 } else { 5069 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5070 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5071 raw_inode->i_uid_high = 0; 5072 raw_inode->i_gid_high = 0; 5073 } 5074 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5075 5076 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5077 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5078 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5079 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5080 5081 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5082 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5083 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5084 raw_inode->i_file_acl_high = 5085 cpu_to_le16(ei->i_file_acl >> 32); 5086 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5087 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) { 5088 ext4_isize_set(raw_inode, ei->i_disksize); 5089 need_datasync = 1; 5090 } 5091 if (ei->i_disksize > 0x7fffffffULL) { 5092 if (!ext4_has_feature_large_file(sb) || 5093 EXT4_SB(sb)->s_es->s_rev_level == 5094 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5095 set_large_file = 1; 5096 } 5097 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5098 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5099 if (old_valid_dev(inode->i_rdev)) { 5100 raw_inode->i_block[0] = 5101 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5102 raw_inode->i_block[1] = 0; 5103 } else { 5104 raw_inode->i_block[0] = 0; 5105 raw_inode->i_block[1] = 5106 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5107 raw_inode->i_block[2] = 0; 5108 } 5109 } else if (!ext4_has_inline_data(inode)) { 5110 for (block = 0; block < EXT4_N_BLOCKS; block++) 5111 raw_inode->i_block[block] = ei->i_data[block]; 5112 } 5113 5114 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5115 u64 ivers = ext4_inode_peek_iversion(inode); 5116 5117 raw_inode->i_disk_version = cpu_to_le32(ivers); 5118 if (ei->i_extra_isize) { 5119 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5120 raw_inode->i_version_hi = 5121 cpu_to_le32(ivers >> 32); 5122 raw_inode->i_extra_isize = 5123 cpu_to_le16(ei->i_extra_isize); 5124 } 5125 } 5126 5127 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5128 i_projid != EXT4_DEF_PROJID); 5129 5130 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5131 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5132 raw_inode->i_projid = cpu_to_le32(i_projid); 5133 5134 ext4_inode_csum_set(inode, raw_inode, ei); 5135 spin_unlock(&ei->i_raw_lock); 5136 if (inode->i_sb->s_flags & SB_LAZYTIME) 5137 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5138 bh->b_data); 5139 5140 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5141 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5142 if (err) 5143 goto out_brelse; 5144 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5145 if (set_large_file) { 5146 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5147 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5148 if (err) 5149 goto out_brelse; 5150 lock_buffer(EXT4_SB(sb)->s_sbh); 5151 ext4_set_feature_large_file(sb); 5152 ext4_superblock_csum_set(sb); 5153 unlock_buffer(EXT4_SB(sb)->s_sbh); 5154 ext4_handle_sync(handle); 5155 err = ext4_handle_dirty_metadata(handle, NULL, 5156 EXT4_SB(sb)->s_sbh); 5157 } 5158 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5159 out_brelse: 5160 brelse(bh); 5161 ext4_std_error(inode->i_sb, err); 5162 return err; 5163 } 5164 5165 /* 5166 * ext4_write_inode() 5167 * 5168 * We are called from a few places: 5169 * 5170 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5171 * Here, there will be no transaction running. We wait for any running 5172 * transaction to commit. 5173 * 5174 * - Within flush work (sys_sync(), kupdate and such). 5175 * We wait on commit, if told to. 5176 * 5177 * - Within iput_final() -> write_inode_now() 5178 * We wait on commit, if told to. 5179 * 5180 * In all cases it is actually safe for us to return without doing anything, 5181 * because the inode has been copied into a raw inode buffer in 5182 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5183 * writeback. 5184 * 5185 * Note that we are absolutely dependent upon all inode dirtiers doing the 5186 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5187 * which we are interested. 5188 * 5189 * It would be a bug for them to not do this. The code: 5190 * 5191 * mark_inode_dirty(inode) 5192 * stuff(); 5193 * inode->i_size = expr; 5194 * 5195 * is in error because write_inode() could occur while `stuff()' is running, 5196 * and the new i_size will be lost. Plus the inode will no longer be on the 5197 * superblock's dirty inode list. 5198 */ 5199 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5200 { 5201 int err; 5202 5203 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5204 sb_rdonly(inode->i_sb)) 5205 return 0; 5206 5207 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5208 return -EIO; 5209 5210 if (EXT4_SB(inode->i_sb)->s_journal) { 5211 if (ext4_journal_current_handle()) { 5212 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5213 dump_stack(); 5214 return -EIO; 5215 } 5216 5217 /* 5218 * No need to force transaction in WB_SYNC_NONE mode. Also 5219 * ext4_sync_fs() will force the commit after everything is 5220 * written. 5221 */ 5222 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5223 return 0; 5224 5225 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5226 EXT4_I(inode)->i_sync_tid); 5227 } else { 5228 struct ext4_iloc iloc; 5229 5230 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5231 if (err) 5232 return err; 5233 /* 5234 * sync(2) will flush the whole buffer cache. No need to do 5235 * it here separately for each inode. 5236 */ 5237 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5238 sync_dirty_buffer(iloc.bh); 5239 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5240 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5241 "IO error syncing inode"); 5242 err = -EIO; 5243 } 5244 brelse(iloc.bh); 5245 } 5246 return err; 5247 } 5248 5249 /* 5250 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5251 * buffers that are attached to a page stradding i_size and are undergoing 5252 * commit. In that case we have to wait for commit to finish and try again. 5253 */ 5254 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5255 { 5256 struct page *page; 5257 unsigned offset; 5258 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5259 tid_t commit_tid = 0; 5260 int ret; 5261 5262 offset = inode->i_size & (PAGE_SIZE - 1); 5263 /* 5264 * If the page is fully truncated, we don't need to wait for any commit 5265 * (and we even should not as __ext4_journalled_invalidatepage() may 5266 * strip all buffers from the page but keep the page dirty which can then 5267 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5268 * buffers). Also we don't need to wait for any commit if all buffers in 5269 * the page remain valid. This is most beneficial for the common case of 5270 * blocksize == PAGESIZE. 5271 */ 5272 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5273 return; 5274 while (1) { 5275 page = find_lock_page(inode->i_mapping, 5276 inode->i_size >> PAGE_SHIFT); 5277 if (!page) 5278 return; 5279 ret = __ext4_journalled_invalidatepage(page, offset, 5280 PAGE_SIZE - offset); 5281 unlock_page(page); 5282 put_page(page); 5283 if (ret != -EBUSY) 5284 return; 5285 commit_tid = 0; 5286 read_lock(&journal->j_state_lock); 5287 if (journal->j_committing_transaction) 5288 commit_tid = journal->j_committing_transaction->t_tid; 5289 read_unlock(&journal->j_state_lock); 5290 if (commit_tid) 5291 jbd2_log_wait_commit(journal, commit_tid); 5292 } 5293 } 5294 5295 /* 5296 * ext4_setattr() 5297 * 5298 * Called from notify_change. 5299 * 5300 * We want to trap VFS attempts to truncate the file as soon as 5301 * possible. In particular, we want to make sure that when the VFS 5302 * shrinks i_size, we put the inode on the orphan list and modify 5303 * i_disksize immediately, so that during the subsequent flushing of 5304 * dirty pages and freeing of disk blocks, we can guarantee that any 5305 * commit will leave the blocks being flushed in an unused state on 5306 * disk. (On recovery, the inode will get truncated and the blocks will 5307 * be freed, so we have a strong guarantee that no future commit will 5308 * leave these blocks visible to the user.) 5309 * 5310 * Another thing we have to assure is that if we are in ordered mode 5311 * and inode is still attached to the committing transaction, we must 5312 * we start writeout of all the dirty pages which are being truncated. 5313 * This way we are sure that all the data written in the previous 5314 * transaction are already on disk (truncate waits for pages under 5315 * writeback). 5316 * 5317 * Called with inode->i_mutex down. 5318 */ 5319 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5320 struct iattr *attr) 5321 { 5322 struct inode *inode = d_inode(dentry); 5323 int error, rc = 0; 5324 int orphan = 0; 5325 const unsigned int ia_valid = attr->ia_valid; 5326 5327 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5328 return -EIO; 5329 5330 if (unlikely(IS_IMMUTABLE(inode))) 5331 return -EPERM; 5332 5333 if (unlikely(IS_APPEND(inode) && 5334 (ia_valid & (ATTR_MODE | ATTR_UID | 5335 ATTR_GID | ATTR_TIMES_SET)))) 5336 return -EPERM; 5337 5338 error = setattr_prepare(mnt_userns, dentry, attr); 5339 if (error) 5340 return error; 5341 5342 error = fscrypt_prepare_setattr(dentry, attr); 5343 if (error) 5344 return error; 5345 5346 error = fsverity_prepare_setattr(dentry, attr); 5347 if (error) 5348 return error; 5349 5350 if (is_quota_modification(inode, attr)) { 5351 error = dquot_initialize(inode); 5352 if (error) 5353 return error; 5354 } 5355 ext4_fc_start_update(inode); 5356 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5357 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5358 handle_t *handle; 5359 5360 /* (user+group)*(old+new) structure, inode write (sb, 5361 * inode block, ? - but truncate inode update has it) */ 5362 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5363 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5364 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5365 if (IS_ERR(handle)) { 5366 error = PTR_ERR(handle); 5367 goto err_out; 5368 } 5369 5370 /* dquot_transfer() calls back ext4_get_inode_usage() which 5371 * counts xattr inode references. 5372 */ 5373 down_read(&EXT4_I(inode)->xattr_sem); 5374 error = dquot_transfer(inode, attr); 5375 up_read(&EXT4_I(inode)->xattr_sem); 5376 5377 if (error) { 5378 ext4_journal_stop(handle); 5379 ext4_fc_stop_update(inode); 5380 return error; 5381 } 5382 /* Update corresponding info in inode so that everything is in 5383 * one transaction */ 5384 if (attr->ia_valid & ATTR_UID) 5385 inode->i_uid = attr->ia_uid; 5386 if (attr->ia_valid & ATTR_GID) 5387 inode->i_gid = attr->ia_gid; 5388 error = ext4_mark_inode_dirty(handle, inode); 5389 ext4_journal_stop(handle); 5390 if (unlikely(error)) { 5391 ext4_fc_stop_update(inode); 5392 return error; 5393 } 5394 } 5395 5396 if (attr->ia_valid & ATTR_SIZE) { 5397 handle_t *handle; 5398 loff_t oldsize = inode->i_size; 5399 int shrink = (attr->ia_size < inode->i_size); 5400 5401 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5402 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5403 5404 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5405 ext4_fc_stop_update(inode); 5406 return -EFBIG; 5407 } 5408 } 5409 if (!S_ISREG(inode->i_mode)) { 5410 ext4_fc_stop_update(inode); 5411 return -EINVAL; 5412 } 5413 5414 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5415 inode_inc_iversion(inode); 5416 5417 if (shrink) { 5418 if (ext4_should_order_data(inode)) { 5419 error = ext4_begin_ordered_truncate(inode, 5420 attr->ia_size); 5421 if (error) 5422 goto err_out; 5423 } 5424 /* 5425 * Blocks are going to be removed from the inode. Wait 5426 * for dio in flight. 5427 */ 5428 inode_dio_wait(inode); 5429 } 5430 5431 down_write(&EXT4_I(inode)->i_mmap_sem); 5432 5433 rc = ext4_break_layouts(inode); 5434 if (rc) { 5435 up_write(&EXT4_I(inode)->i_mmap_sem); 5436 goto err_out; 5437 } 5438 5439 if (attr->ia_size != inode->i_size) { 5440 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5441 if (IS_ERR(handle)) { 5442 error = PTR_ERR(handle); 5443 goto out_mmap_sem; 5444 } 5445 if (ext4_handle_valid(handle) && shrink) { 5446 error = ext4_orphan_add(handle, inode); 5447 orphan = 1; 5448 } 5449 /* 5450 * Update c/mtime on truncate up, ext4_truncate() will 5451 * update c/mtime in shrink case below 5452 */ 5453 if (!shrink) { 5454 inode->i_mtime = current_time(inode); 5455 inode->i_ctime = inode->i_mtime; 5456 } 5457 5458 if (shrink) 5459 ext4_fc_track_range(handle, inode, 5460 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5461 inode->i_sb->s_blocksize_bits, 5462 (oldsize > 0 ? oldsize - 1 : 0) >> 5463 inode->i_sb->s_blocksize_bits); 5464 else 5465 ext4_fc_track_range( 5466 handle, inode, 5467 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5468 inode->i_sb->s_blocksize_bits, 5469 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5470 inode->i_sb->s_blocksize_bits); 5471 5472 down_write(&EXT4_I(inode)->i_data_sem); 5473 EXT4_I(inode)->i_disksize = attr->ia_size; 5474 rc = ext4_mark_inode_dirty(handle, inode); 5475 if (!error) 5476 error = rc; 5477 /* 5478 * We have to update i_size under i_data_sem together 5479 * with i_disksize to avoid races with writeback code 5480 * running ext4_wb_update_i_disksize(). 5481 */ 5482 if (!error) 5483 i_size_write(inode, attr->ia_size); 5484 up_write(&EXT4_I(inode)->i_data_sem); 5485 ext4_journal_stop(handle); 5486 if (error) 5487 goto out_mmap_sem; 5488 if (!shrink) { 5489 pagecache_isize_extended(inode, oldsize, 5490 inode->i_size); 5491 } else if (ext4_should_journal_data(inode)) { 5492 ext4_wait_for_tail_page_commit(inode); 5493 } 5494 } 5495 5496 /* 5497 * Truncate pagecache after we've waited for commit 5498 * in data=journal mode to make pages freeable. 5499 */ 5500 truncate_pagecache(inode, inode->i_size); 5501 /* 5502 * Call ext4_truncate() even if i_size didn't change to 5503 * truncate possible preallocated blocks. 5504 */ 5505 if (attr->ia_size <= oldsize) { 5506 rc = ext4_truncate(inode); 5507 if (rc) 5508 error = rc; 5509 } 5510 out_mmap_sem: 5511 up_write(&EXT4_I(inode)->i_mmap_sem); 5512 } 5513 5514 if (!error) { 5515 setattr_copy(mnt_userns, inode, attr); 5516 mark_inode_dirty(inode); 5517 } 5518 5519 /* 5520 * If the call to ext4_truncate failed to get a transaction handle at 5521 * all, we need to clean up the in-core orphan list manually. 5522 */ 5523 if (orphan && inode->i_nlink) 5524 ext4_orphan_del(NULL, inode); 5525 5526 if (!error && (ia_valid & ATTR_MODE)) 5527 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5528 5529 err_out: 5530 if (error) 5531 ext4_std_error(inode->i_sb, error); 5532 if (!error) 5533 error = rc; 5534 ext4_fc_stop_update(inode); 5535 return error; 5536 } 5537 5538 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5539 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5540 { 5541 struct inode *inode = d_inode(path->dentry); 5542 struct ext4_inode *raw_inode; 5543 struct ext4_inode_info *ei = EXT4_I(inode); 5544 unsigned int flags; 5545 5546 if ((request_mask & STATX_BTIME) && 5547 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5548 stat->result_mask |= STATX_BTIME; 5549 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5550 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5551 } 5552 5553 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5554 if (flags & EXT4_APPEND_FL) 5555 stat->attributes |= STATX_ATTR_APPEND; 5556 if (flags & EXT4_COMPR_FL) 5557 stat->attributes |= STATX_ATTR_COMPRESSED; 5558 if (flags & EXT4_ENCRYPT_FL) 5559 stat->attributes |= STATX_ATTR_ENCRYPTED; 5560 if (flags & EXT4_IMMUTABLE_FL) 5561 stat->attributes |= STATX_ATTR_IMMUTABLE; 5562 if (flags & EXT4_NODUMP_FL) 5563 stat->attributes |= STATX_ATTR_NODUMP; 5564 if (flags & EXT4_VERITY_FL) 5565 stat->attributes |= STATX_ATTR_VERITY; 5566 5567 stat->attributes_mask |= (STATX_ATTR_APPEND | 5568 STATX_ATTR_COMPRESSED | 5569 STATX_ATTR_ENCRYPTED | 5570 STATX_ATTR_IMMUTABLE | 5571 STATX_ATTR_NODUMP | 5572 STATX_ATTR_VERITY); 5573 5574 generic_fillattr(mnt_userns, inode, stat); 5575 return 0; 5576 } 5577 5578 int ext4_file_getattr(struct user_namespace *mnt_userns, 5579 const struct path *path, struct kstat *stat, 5580 u32 request_mask, unsigned int query_flags) 5581 { 5582 struct inode *inode = d_inode(path->dentry); 5583 u64 delalloc_blocks; 5584 5585 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5586 5587 /* 5588 * If there is inline data in the inode, the inode will normally not 5589 * have data blocks allocated (it may have an external xattr block). 5590 * Report at least one sector for such files, so tools like tar, rsync, 5591 * others don't incorrectly think the file is completely sparse. 5592 */ 5593 if (unlikely(ext4_has_inline_data(inode))) 5594 stat->blocks += (stat->size + 511) >> 9; 5595 5596 /* 5597 * We can't update i_blocks if the block allocation is delayed 5598 * otherwise in the case of system crash before the real block 5599 * allocation is done, we will have i_blocks inconsistent with 5600 * on-disk file blocks. 5601 * We always keep i_blocks updated together with real 5602 * allocation. But to not confuse with user, stat 5603 * will return the blocks that include the delayed allocation 5604 * blocks for this file. 5605 */ 5606 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5607 EXT4_I(inode)->i_reserved_data_blocks); 5608 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5609 return 0; 5610 } 5611 5612 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5613 int pextents) 5614 { 5615 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5616 return ext4_ind_trans_blocks(inode, lblocks); 5617 return ext4_ext_index_trans_blocks(inode, pextents); 5618 } 5619 5620 /* 5621 * Account for index blocks, block groups bitmaps and block group 5622 * descriptor blocks if modify datablocks and index blocks 5623 * worse case, the indexs blocks spread over different block groups 5624 * 5625 * If datablocks are discontiguous, they are possible to spread over 5626 * different block groups too. If they are contiguous, with flexbg, 5627 * they could still across block group boundary. 5628 * 5629 * Also account for superblock, inode, quota and xattr blocks 5630 */ 5631 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5632 int pextents) 5633 { 5634 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5635 int gdpblocks; 5636 int idxblocks; 5637 int ret = 0; 5638 5639 /* 5640 * How many index blocks need to touch to map @lblocks logical blocks 5641 * to @pextents physical extents? 5642 */ 5643 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5644 5645 ret = idxblocks; 5646 5647 /* 5648 * Now let's see how many group bitmaps and group descriptors need 5649 * to account 5650 */ 5651 groups = idxblocks + pextents; 5652 gdpblocks = groups; 5653 if (groups > ngroups) 5654 groups = ngroups; 5655 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5656 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5657 5658 /* bitmaps and block group descriptor blocks */ 5659 ret += groups + gdpblocks; 5660 5661 /* Blocks for super block, inode, quota and xattr blocks */ 5662 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5663 5664 return ret; 5665 } 5666 5667 /* 5668 * Calculate the total number of credits to reserve to fit 5669 * the modification of a single pages into a single transaction, 5670 * which may include multiple chunks of block allocations. 5671 * 5672 * This could be called via ext4_write_begin() 5673 * 5674 * We need to consider the worse case, when 5675 * one new block per extent. 5676 */ 5677 int ext4_writepage_trans_blocks(struct inode *inode) 5678 { 5679 int bpp = ext4_journal_blocks_per_page(inode); 5680 int ret; 5681 5682 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5683 5684 /* Account for data blocks for journalled mode */ 5685 if (ext4_should_journal_data(inode)) 5686 ret += bpp; 5687 return ret; 5688 } 5689 5690 /* 5691 * Calculate the journal credits for a chunk of data modification. 5692 * 5693 * This is called from DIO, fallocate or whoever calling 5694 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5695 * 5696 * journal buffers for data blocks are not included here, as DIO 5697 * and fallocate do no need to journal data buffers. 5698 */ 5699 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5700 { 5701 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5702 } 5703 5704 /* 5705 * The caller must have previously called ext4_reserve_inode_write(). 5706 * Give this, we know that the caller already has write access to iloc->bh. 5707 */ 5708 int ext4_mark_iloc_dirty(handle_t *handle, 5709 struct inode *inode, struct ext4_iloc *iloc) 5710 { 5711 int err = 0; 5712 5713 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5714 put_bh(iloc->bh); 5715 return -EIO; 5716 } 5717 ext4_fc_track_inode(handle, inode); 5718 5719 if (IS_I_VERSION(inode)) 5720 inode_inc_iversion(inode); 5721 5722 /* the do_update_inode consumes one bh->b_count */ 5723 get_bh(iloc->bh); 5724 5725 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5726 err = ext4_do_update_inode(handle, inode, iloc); 5727 put_bh(iloc->bh); 5728 return err; 5729 } 5730 5731 /* 5732 * On success, We end up with an outstanding reference count against 5733 * iloc->bh. This _must_ be cleaned up later. 5734 */ 5735 5736 int 5737 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5738 struct ext4_iloc *iloc) 5739 { 5740 int err; 5741 5742 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5743 return -EIO; 5744 5745 err = ext4_get_inode_loc(inode, iloc); 5746 if (!err) { 5747 BUFFER_TRACE(iloc->bh, "get_write_access"); 5748 err = ext4_journal_get_write_access(handle, iloc->bh); 5749 if (err) { 5750 brelse(iloc->bh); 5751 iloc->bh = NULL; 5752 } 5753 } 5754 ext4_std_error(inode->i_sb, err); 5755 return err; 5756 } 5757 5758 static int __ext4_expand_extra_isize(struct inode *inode, 5759 unsigned int new_extra_isize, 5760 struct ext4_iloc *iloc, 5761 handle_t *handle, int *no_expand) 5762 { 5763 struct ext4_inode *raw_inode; 5764 struct ext4_xattr_ibody_header *header; 5765 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5766 struct ext4_inode_info *ei = EXT4_I(inode); 5767 int error; 5768 5769 /* this was checked at iget time, but double check for good measure */ 5770 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5771 (ei->i_extra_isize & 3)) { 5772 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5773 ei->i_extra_isize, 5774 EXT4_INODE_SIZE(inode->i_sb)); 5775 return -EFSCORRUPTED; 5776 } 5777 if ((new_extra_isize < ei->i_extra_isize) || 5778 (new_extra_isize < 4) || 5779 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5780 return -EINVAL; /* Should never happen */ 5781 5782 raw_inode = ext4_raw_inode(iloc); 5783 5784 header = IHDR(inode, raw_inode); 5785 5786 /* No extended attributes present */ 5787 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5788 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5789 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5790 EXT4_I(inode)->i_extra_isize, 0, 5791 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5792 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5793 return 0; 5794 } 5795 5796 /* try to expand with EAs present */ 5797 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5798 raw_inode, handle); 5799 if (error) { 5800 /* 5801 * Inode size expansion failed; don't try again 5802 */ 5803 *no_expand = 1; 5804 } 5805 5806 return error; 5807 } 5808 5809 /* 5810 * Expand an inode by new_extra_isize bytes. 5811 * Returns 0 on success or negative error number on failure. 5812 */ 5813 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5814 unsigned int new_extra_isize, 5815 struct ext4_iloc iloc, 5816 handle_t *handle) 5817 { 5818 int no_expand; 5819 int error; 5820 5821 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5822 return -EOVERFLOW; 5823 5824 /* 5825 * In nojournal mode, we can immediately attempt to expand 5826 * the inode. When journaled, we first need to obtain extra 5827 * buffer credits since we may write into the EA block 5828 * with this same handle. If journal_extend fails, then it will 5829 * only result in a minor loss of functionality for that inode. 5830 * If this is felt to be critical, then e2fsck should be run to 5831 * force a large enough s_min_extra_isize. 5832 */ 5833 if (ext4_journal_extend(handle, 5834 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5835 return -ENOSPC; 5836 5837 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5838 return -EBUSY; 5839 5840 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5841 handle, &no_expand); 5842 ext4_write_unlock_xattr(inode, &no_expand); 5843 5844 return error; 5845 } 5846 5847 int ext4_expand_extra_isize(struct inode *inode, 5848 unsigned int new_extra_isize, 5849 struct ext4_iloc *iloc) 5850 { 5851 handle_t *handle; 5852 int no_expand; 5853 int error, rc; 5854 5855 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5856 brelse(iloc->bh); 5857 return -EOVERFLOW; 5858 } 5859 5860 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5861 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5862 if (IS_ERR(handle)) { 5863 error = PTR_ERR(handle); 5864 brelse(iloc->bh); 5865 return error; 5866 } 5867 5868 ext4_write_lock_xattr(inode, &no_expand); 5869 5870 BUFFER_TRACE(iloc->bh, "get_write_access"); 5871 error = ext4_journal_get_write_access(handle, iloc->bh); 5872 if (error) { 5873 brelse(iloc->bh); 5874 goto out_unlock; 5875 } 5876 5877 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5878 handle, &no_expand); 5879 5880 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5881 if (!error) 5882 error = rc; 5883 5884 out_unlock: 5885 ext4_write_unlock_xattr(inode, &no_expand); 5886 ext4_journal_stop(handle); 5887 return error; 5888 } 5889 5890 /* 5891 * What we do here is to mark the in-core inode as clean with respect to inode 5892 * dirtiness (it may still be data-dirty). 5893 * This means that the in-core inode may be reaped by prune_icache 5894 * without having to perform any I/O. This is a very good thing, 5895 * because *any* task may call prune_icache - even ones which 5896 * have a transaction open against a different journal. 5897 * 5898 * Is this cheating? Not really. Sure, we haven't written the 5899 * inode out, but prune_icache isn't a user-visible syncing function. 5900 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5901 * we start and wait on commits. 5902 */ 5903 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5904 const char *func, unsigned int line) 5905 { 5906 struct ext4_iloc iloc; 5907 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5908 int err; 5909 5910 might_sleep(); 5911 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5912 err = ext4_reserve_inode_write(handle, inode, &iloc); 5913 if (err) 5914 goto out; 5915 5916 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5917 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5918 iloc, handle); 5919 5920 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5921 out: 5922 if (unlikely(err)) 5923 ext4_error_inode_err(inode, func, line, 0, err, 5924 "mark_inode_dirty error"); 5925 return err; 5926 } 5927 5928 /* 5929 * ext4_dirty_inode() is called from __mark_inode_dirty() 5930 * 5931 * We're really interested in the case where a file is being extended. 5932 * i_size has been changed by generic_commit_write() and we thus need 5933 * to include the updated inode in the current transaction. 5934 * 5935 * Also, dquot_alloc_block() will always dirty the inode when blocks 5936 * are allocated to the file. 5937 * 5938 * If the inode is marked synchronous, we don't honour that here - doing 5939 * so would cause a commit on atime updates, which we don't bother doing. 5940 * We handle synchronous inodes at the highest possible level. 5941 */ 5942 void ext4_dirty_inode(struct inode *inode, int flags) 5943 { 5944 handle_t *handle; 5945 5946 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5947 if (IS_ERR(handle)) 5948 return; 5949 ext4_mark_inode_dirty(handle, inode); 5950 ext4_journal_stop(handle); 5951 } 5952 5953 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5954 { 5955 journal_t *journal; 5956 handle_t *handle; 5957 int err; 5958 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5959 5960 /* 5961 * We have to be very careful here: changing a data block's 5962 * journaling status dynamically is dangerous. If we write a 5963 * data block to the journal, change the status and then delete 5964 * that block, we risk forgetting to revoke the old log record 5965 * from the journal and so a subsequent replay can corrupt data. 5966 * So, first we make sure that the journal is empty and that 5967 * nobody is changing anything. 5968 */ 5969 5970 journal = EXT4_JOURNAL(inode); 5971 if (!journal) 5972 return 0; 5973 if (is_journal_aborted(journal)) 5974 return -EROFS; 5975 5976 /* Wait for all existing dio workers */ 5977 inode_dio_wait(inode); 5978 5979 /* 5980 * Before flushing the journal and switching inode's aops, we have 5981 * to flush all dirty data the inode has. There can be outstanding 5982 * delayed allocations, there can be unwritten extents created by 5983 * fallocate or buffered writes in dioread_nolock mode covered by 5984 * dirty data which can be converted only after flushing the dirty 5985 * data (and journalled aops don't know how to handle these cases). 5986 */ 5987 if (val) { 5988 down_write(&EXT4_I(inode)->i_mmap_sem); 5989 err = filemap_write_and_wait(inode->i_mapping); 5990 if (err < 0) { 5991 up_write(&EXT4_I(inode)->i_mmap_sem); 5992 return err; 5993 } 5994 } 5995 5996 percpu_down_write(&sbi->s_writepages_rwsem); 5997 jbd2_journal_lock_updates(journal); 5998 5999 /* 6000 * OK, there are no updates running now, and all cached data is 6001 * synced to disk. We are now in a completely consistent state 6002 * which doesn't have anything in the journal, and we know that 6003 * no filesystem updates are running, so it is safe to modify 6004 * the inode's in-core data-journaling state flag now. 6005 */ 6006 6007 if (val) 6008 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6009 else { 6010 err = jbd2_journal_flush(journal); 6011 if (err < 0) { 6012 jbd2_journal_unlock_updates(journal); 6013 percpu_up_write(&sbi->s_writepages_rwsem); 6014 return err; 6015 } 6016 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6017 } 6018 ext4_set_aops(inode); 6019 6020 jbd2_journal_unlock_updates(journal); 6021 percpu_up_write(&sbi->s_writepages_rwsem); 6022 6023 if (val) 6024 up_write(&EXT4_I(inode)->i_mmap_sem); 6025 6026 /* Finally we can mark the inode as dirty. */ 6027 6028 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6029 if (IS_ERR(handle)) 6030 return PTR_ERR(handle); 6031 6032 ext4_fc_mark_ineligible(inode->i_sb, 6033 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE); 6034 err = ext4_mark_inode_dirty(handle, inode); 6035 ext4_handle_sync(handle); 6036 ext4_journal_stop(handle); 6037 ext4_std_error(inode->i_sb, err); 6038 6039 return err; 6040 } 6041 6042 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6043 { 6044 return !buffer_mapped(bh); 6045 } 6046 6047 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6048 { 6049 struct vm_area_struct *vma = vmf->vma; 6050 struct page *page = vmf->page; 6051 loff_t size; 6052 unsigned long len; 6053 int err; 6054 vm_fault_t ret; 6055 struct file *file = vma->vm_file; 6056 struct inode *inode = file_inode(file); 6057 struct address_space *mapping = inode->i_mapping; 6058 handle_t *handle; 6059 get_block_t *get_block; 6060 int retries = 0; 6061 6062 if (unlikely(IS_IMMUTABLE(inode))) 6063 return VM_FAULT_SIGBUS; 6064 6065 sb_start_pagefault(inode->i_sb); 6066 file_update_time(vma->vm_file); 6067 6068 down_read(&EXT4_I(inode)->i_mmap_sem); 6069 6070 err = ext4_convert_inline_data(inode); 6071 if (err) 6072 goto out_ret; 6073 6074 /* 6075 * On data journalling we skip straight to the transaction handle: 6076 * there's no delalloc; page truncated will be checked later; the 6077 * early return w/ all buffers mapped (calculates size/len) can't 6078 * be used; and there's no dioread_nolock, so only ext4_get_block. 6079 */ 6080 if (ext4_should_journal_data(inode)) 6081 goto retry_alloc; 6082 6083 /* Delalloc case is easy... */ 6084 if (test_opt(inode->i_sb, DELALLOC) && 6085 !ext4_nonda_switch(inode->i_sb)) { 6086 do { 6087 err = block_page_mkwrite(vma, vmf, 6088 ext4_da_get_block_prep); 6089 } while (err == -ENOSPC && 6090 ext4_should_retry_alloc(inode->i_sb, &retries)); 6091 goto out_ret; 6092 } 6093 6094 lock_page(page); 6095 size = i_size_read(inode); 6096 /* Page got truncated from under us? */ 6097 if (page->mapping != mapping || page_offset(page) > size) { 6098 unlock_page(page); 6099 ret = VM_FAULT_NOPAGE; 6100 goto out; 6101 } 6102 6103 if (page->index == size >> PAGE_SHIFT) 6104 len = size & ~PAGE_MASK; 6105 else 6106 len = PAGE_SIZE; 6107 /* 6108 * Return if we have all the buffers mapped. This avoids the need to do 6109 * journal_start/journal_stop which can block and take a long time 6110 * 6111 * This cannot be done for data journalling, as we have to add the 6112 * inode to the transaction's list to writeprotect pages on commit. 6113 */ 6114 if (page_has_buffers(page)) { 6115 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6116 0, len, NULL, 6117 ext4_bh_unmapped)) { 6118 /* Wait so that we don't change page under IO */ 6119 wait_for_stable_page(page); 6120 ret = VM_FAULT_LOCKED; 6121 goto out; 6122 } 6123 } 6124 unlock_page(page); 6125 /* OK, we need to fill the hole... */ 6126 if (ext4_should_dioread_nolock(inode)) 6127 get_block = ext4_get_block_unwritten; 6128 else 6129 get_block = ext4_get_block; 6130 retry_alloc: 6131 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6132 ext4_writepage_trans_blocks(inode)); 6133 if (IS_ERR(handle)) { 6134 ret = VM_FAULT_SIGBUS; 6135 goto out; 6136 } 6137 /* 6138 * Data journalling can't use block_page_mkwrite() because it 6139 * will set_buffer_dirty() before do_journal_get_write_access() 6140 * thus might hit warning messages for dirty metadata buffers. 6141 */ 6142 if (!ext4_should_journal_data(inode)) { 6143 err = block_page_mkwrite(vma, vmf, get_block); 6144 } else { 6145 lock_page(page); 6146 size = i_size_read(inode); 6147 /* Page got truncated from under us? */ 6148 if (page->mapping != mapping || page_offset(page) > size) { 6149 ret = VM_FAULT_NOPAGE; 6150 goto out_error; 6151 } 6152 6153 if (page->index == size >> PAGE_SHIFT) 6154 len = size & ~PAGE_MASK; 6155 else 6156 len = PAGE_SIZE; 6157 6158 err = __block_write_begin(page, 0, len, ext4_get_block); 6159 if (!err) { 6160 ret = VM_FAULT_SIGBUS; 6161 if (ext4_walk_page_buffers(handle, page_buffers(page), 6162 0, len, NULL, do_journal_get_write_access)) 6163 goto out_error; 6164 if (ext4_walk_page_buffers(handle, page_buffers(page), 6165 0, len, NULL, write_end_fn)) 6166 goto out_error; 6167 if (ext4_jbd2_inode_add_write(handle, inode, 6168 page_offset(page), len)) 6169 goto out_error; 6170 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6171 } else { 6172 unlock_page(page); 6173 } 6174 } 6175 ext4_journal_stop(handle); 6176 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6177 goto retry_alloc; 6178 out_ret: 6179 ret = block_page_mkwrite_return(err); 6180 out: 6181 up_read(&EXT4_I(inode)->i_mmap_sem); 6182 sb_end_pagefault(inode->i_sb); 6183 return ret; 6184 out_error: 6185 unlock_page(page); 6186 ext4_journal_stop(handle); 6187 goto out; 6188 } 6189 6190 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6191 { 6192 struct inode *inode = file_inode(vmf->vma->vm_file); 6193 vm_fault_t ret; 6194 6195 down_read(&EXT4_I(inode)->i_mmap_sem); 6196 ret = filemap_fault(vmf); 6197 up_read(&EXT4_I(inode)->i_mmap_sem); 6198 6199 return ret; 6200 } 6201