1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u16 csum_lo; 56 __u16 csum_hi = 0; 57 __u32 csum; 58 59 csum_lo = le16_to_cpu(raw->i_checksum_lo); 60 raw->i_checksum_lo = 0; 61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 63 csum_hi = le16_to_cpu(raw->i_checksum_hi); 64 raw->i_checksum_hi = 0; 65 } 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 68 EXT4_INODE_SIZE(inode->i_sb)); 69 70 raw->i_checksum_lo = cpu_to_le16(csum_lo); 71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 73 raw->i_checksum_hi = cpu_to_le16(csum_hi); 74 75 return csum; 76 } 77 78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 79 struct ext4_inode_info *ei) 80 { 81 __u32 provided, calculated; 82 83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 84 cpu_to_le32(EXT4_OS_LINUX) || 85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 109 return; 110 111 csum = ext4_inode_csum(inode, raw, ei); 112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 115 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 116 } 117 118 static inline int ext4_begin_ordered_truncate(struct inode *inode, 119 loff_t new_size) 120 { 121 trace_ext4_begin_ordered_truncate(inode, new_size); 122 /* 123 * If jinode is zero, then we never opened the file for 124 * writing, so there's no need to call 125 * jbd2_journal_begin_ordered_truncate() since there's no 126 * outstanding writes we need to flush. 127 */ 128 if (!EXT4_I(inode)->jinode) 129 return 0; 130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 131 EXT4_I(inode)->jinode, 132 new_size); 133 } 134 135 static void ext4_invalidatepage(struct page *page, unsigned int offset, 136 unsigned int length); 137 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 */ 145 static int ext4_inode_is_fast_symlink(struct inode *inode) 146 { 147 int ea_blocks = EXT4_I(inode)->i_file_acl ? 148 (inode->i_sb->s_blocksize >> 9) : 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages(&inode->i_data, 0); 218 219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 220 goto no_delete; 221 } 222 223 if (!is_bad_inode(inode)) 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages(&inode->i_data, 0); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 if (is_bad_inode(inode)) 232 goto no_delete; 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it 237 */ 238 sb_start_intwrite(inode->i_sb); 239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 240 ext4_blocks_for_truncate(inode)+3); 241 if (IS_ERR(handle)) { 242 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 243 /* 244 * If we're going to skip the normal cleanup, we still need to 245 * make sure that the in-core orphan linked list is properly 246 * cleaned up. 247 */ 248 ext4_orphan_del(NULL, inode); 249 sb_end_intwrite(inode->i_sb); 250 goto no_delete; 251 } 252 253 if (IS_SYNC(inode)) 254 ext4_handle_sync(handle); 255 inode->i_size = 0; 256 err = ext4_mark_inode_dirty(handle, inode); 257 if (err) { 258 ext4_warning(inode->i_sb, 259 "couldn't mark inode dirty (err %d)", err); 260 goto stop_handle; 261 } 262 if (inode->i_blocks) 263 ext4_truncate(inode); 264 265 /* 266 * ext4_ext_truncate() doesn't reserve any slop when it 267 * restarts journal transactions; therefore there may not be 268 * enough credits left in the handle to remove the inode from 269 * the orphan list and set the dtime field. 270 */ 271 if (!ext4_handle_has_enough_credits(handle, 3)) { 272 err = ext4_journal_extend(handle, 3); 273 if (err > 0) 274 err = ext4_journal_restart(handle, 3); 275 if (err != 0) { 276 ext4_warning(inode->i_sb, 277 "couldn't extend journal (err %d)", err); 278 stop_handle: 279 ext4_journal_stop(handle); 280 ext4_orphan_del(NULL, inode); 281 sb_end_intwrite(inode->i_sb); 282 goto no_delete; 283 } 284 } 285 286 /* 287 * Kill off the orphan record which ext4_truncate created. 288 * AKPM: I think this can be inside the above `if'. 289 * Note that ext4_orphan_del() has to be able to cope with the 290 * deletion of a non-existent orphan - this is because we don't 291 * know if ext4_truncate() actually created an orphan record. 292 * (Well, we could do this if we need to, but heck - it works) 293 */ 294 ext4_orphan_del(handle, inode); 295 EXT4_I(inode)->i_dtime = get_seconds(); 296 297 /* 298 * One subtle ordering requirement: if anything has gone wrong 299 * (transaction abort, IO errors, whatever), then we can still 300 * do these next steps (the fs will already have been marked as 301 * having errors), but we can't free the inode if the mark_dirty 302 * fails. 303 */ 304 if (ext4_mark_inode_dirty(handle, inode)) 305 /* If that failed, just do the required in-core inode clear. */ 306 ext4_clear_inode(inode); 307 else 308 ext4_free_inode(handle, inode); 309 ext4_journal_stop(handle); 310 sb_end_intwrite(inode->i_sb); 311 return; 312 no_delete: 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 314 } 315 316 #ifdef CONFIG_QUOTA 317 qsize_t *ext4_get_reserved_space(struct inode *inode) 318 { 319 return &EXT4_I(inode)->i_reserved_quota; 320 } 321 #endif 322 323 /* 324 * Calculate the number of metadata blocks need to reserve 325 * to allocate a block located at @lblock 326 */ 327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 328 { 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 330 return ext4_ext_calc_metadata_amount(inode, lblock); 331 332 return ext4_ind_calc_metadata_amount(inode, lblock); 333 } 334 335 /* 336 * Called with i_data_sem down, which is important since we can call 337 * ext4_discard_preallocations() from here. 338 */ 339 void ext4_da_update_reserve_space(struct inode *inode, 340 int used, int quota_claim) 341 { 342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 343 struct ext4_inode_info *ei = EXT4_I(inode); 344 345 spin_lock(&ei->i_block_reservation_lock); 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 347 if (unlikely(used > ei->i_reserved_data_blocks)) { 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 349 "with only %d reserved data blocks", 350 __func__, inode->i_ino, used, 351 ei->i_reserved_data_blocks); 352 WARN_ON(1); 353 used = ei->i_reserved_data_blocks; 354 } 355 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 357 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 358 "with only %d reserved metadata blocks " 359 "(releasing %d blocks with reserved %d data blocks)", 360 inode->i_ino, ei->i_allocated_meta_blocks, 361 ei->i_reserved_meta_blocks, used, 362 ei->i_reserved_data_blocks); 363 WARN_ON(1); 364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 365 } 366 367 /* Update per-inode reservations */ 368 ei->i_reserved_data_blocks -= used; 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 371 used + ei->i_allocated_meta_blocks); 372 ei->i_allocated_meta_blocks = 0; 373 374 if (ei->i_reserved_data_blocks == 0) { 375 /* 376 * We can release all of the reserved metadata blocks 377 * only when we have written all of the delayed 378 * allocation blocks. 379 */ 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 381 ei->i_reserved_meta_blocks); 382 ei->i_reserved_meta_blocks = 0; 383 ei->i_da_metadata_calc_len = 0; 384 } 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 386 387 /* Update quota subsystem for data blocks */ 388 if (quota_claim) 389 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 390 else { 391 /* 392 * We did fallocate with an offset that is already delayed 393 * allocated. So on delayed allocated writeback we should 394 * not re-claim the quota for fallocated blocks. 395 */ 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 397 } 398 399 /* 400 * If we have done all the pending block allocations and if 401 * there aren't any writers on the inode, we can discard the 402 * inode's preallocations. 403 */ 404 if ((ei->i_reserved_data_blocks == 0) && 405 (atomic_read(&inode->i_writecount) == 0)) 406 ext4_discard_preallocations(inode); 407 } 408 409 static int __check_block_validity(struct inode *inode, const char *func, 410 unsigned int line, 411 struct ext4_map_blocks *map) 412 { 413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 414 map->m_len)) { 415 ext4_error_inode(inode, func, line, map->m_pblk, 416 "lblock %lu mapped to illegal pblock " 417 "(length %d)", (unsigned long) map->m_lblk, 418 map->m_len); 419 return -EIO; 420 } 421 return 0; 422 } 423 424 #define check_block_validity(inode, map) \ 425 __check_block_validity((inode), __func__, __LINE__, (map)) 426 427 #ifdef ES_AGGRESSIVE_TEST 428 static void ext4_map_blocks_es_recheck(handle_t *handle, 429 struct inode *inode, 430 struct ext4_map_blocks *es_map, 431 struct ext4_map_blocks *map, 432 int flags) 433 { 434 int retval; 435 436 map->m_flags = 0; 437 /* 438 * There is a race window that the result is not the same. 439 * e.g. xfstests #223 when dioread_nolock enables. The reason 440 * is that we lookup a block mapping in extent status tree with 441 * out taking i_data_sem. So at the time the unwritten extent 442 * could be converted. 443 */ 444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 445 down_read((&EXT4_I(inode)->i_data_sem)); 446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 447 retval = ext4_ext_map_blocks(handle, inode, map, flags & 448 EXT4_GET_BLOCKS_KEEP_SIZE); 449 } else { 450 retval = ext4_ind_map_blocks(handle, inode, map, flags & 451 EXT4_GET_BLOCKS_KEEP_SIZE); 452 } 453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 454 up_read((&EXT4_I(inode)->i_data_sem)); 455 /* 456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 457 * because it shouldn't be marked in es_map->m_flags. 458 */ 459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 460 461 /* 462 * We don't check m_len because extent will be collpased in status 463 * tree. So the m_len might not equal. 464 */ 465 if (es_map->m_lblk != map->m_lblk || 466 es_map->m_flags != map->m_flags || 467 es_map->m_pblk != map->m_pblk) { 468 printk("ES cache assertion failed for inode: %lu " 469 "es_cached ex [%d/%d/%llu/%x] != " 470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 471 inode->i_ino, es_map->m_lblk, es_map->m_len, 472 es_map->m_pblk, es_map->m_flags, map->m_lblk, 473 map->m_len, map->m_pblk, map->m_flags, 474 retval, flags); 475 } 476 } 477 #endif /* ES_AGGRESSIVE_TEST */ 478 479 /* 480 * The ext4_map_blocks() function tries to look up the requested blocks, 481 * and returns if the blocks are already mapped. 482 * 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 484 * and store the allocated blocks in the result buffer head and mark it 485 * mapped. 486 * 487 * If file type is extents based, it will call ext4_ext_map_blocks(), 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 489 * based files 490 * 491 * On success, it returns the number of blocks being mapped or allocate. 492 * if create==0 and the blocks are pre-allocated and uninitialized block, 493 * the result buffer head is unmapped. If the create ==1, it will make sure 494 * the buffer head is mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, buffer head is unmapped 498 * 499 * It returns the error in case of allocation failure. 500 */ 501 int ext4_map_blocks(handle_t *handle, struct inode *inode, 502 struct ext4_map_blocks *map, int flags) 503 { 504 struct extent_status es; 505 int retval; 506 #ifdef ES_AGGRESSIVE_TEST 507 struct ext4_map_blocks orig_map; 508 509 memcpy(&orig_map, map, sizeof(*map)); 510 #endif 511 512 map->m_flags = 0; 513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 514 "logical block %lu\n", inode->i_ino, flags, map->m_len, 515 (unsigned long) map->m_lblk); 516 517 /* Lookup extent status tree firstly */ 518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 519 ext4_es_lru_add(inode); 520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 521 map->m_pblk = ext4_es_pblock(&es) + 522 map->m_lblk - es.es_lblk; 523 map->m_flags |= ext4_es_is_written(&es) ? 524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 525 retval = es.es_len - (map->m_lblk - es.es_lblk); 526 if (retval > map->m_len) 527 retval = map->m_len; 528 map->m_len = retval; 529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 530 retval = 0; 531 } else { 532 BUG_ON(1); 533 } 534 #ifdef ES_AGGRESSIVE_TEST 535 ext4_map_blocks_es_recheck(handle, inode, map, 536 &orig_map, flags); 537 #endif 538 goto found; 539 } 540 541 /* 542 * Try to see if we can get the block without requesting a new 543 * file system block. 544 */ 545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 546 down_read((&EXT4_I(inode)->i_data_sem)); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, flags & 549 EXT4_GET_BLOCKS_KEEP_SIZE); 550 } else { 551 retval = ext4_ind_map_blocks(handle, inode, map, flags & 552 EXT4_GET_BLOCKS_KEEP_SIZE); 553 } 554 if (retval > 0) { 555 int ret; 556 unsigned int status; 557 558 if (unlikely(retval != map->m_len)) { 559 ext4_warning(inode->i_sb, 560 "ES len assertion failed for inode " 561 "%lu: retval %d != map->m_len %d", 562 inode->i_ino, retval, map->m_len); 563 WARN_ON(1); 564 } 565 566 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 569 ext4_find_delalloc_range(inode, map->m_lblk, 570 map->m_lblk + map->m_len - 1)) 571 status |= EXTENT_STATUS_DELAYED; 572 ret = ext4_es_insert_extent(inode, map->m_lblk, 573 map->m_len, map->m_pblk, status); 574 if (ret < 0) 575 retval = ret; 576 } 577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 578 up_read((&EXT4_I(inode)->i_data_sem)); 579 580 found: 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 582 int ret = check_block_validity(inode, map); 583 if (ret != 0) 584 return ret; 585 } 586 587 /* If it is only a block(s) look up */ 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 589 return retval; 590 591 /* 592 * Returns if the blocks have already allocated 593 * 594 * Note that if blocks have been preallocated 595 * ext4_ext_get_block() returns the create = 0 596 * with buffer head unmapped. 597 */ 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 599 return retval; 600 601 /* 602 * Here we clear m_flags because after allocating an new extent, 603 * it will be set again. 604 */ 605 map->m_flags &= ~EXT4_MAP_FLAGS; 606 607 /* 608 * New blocks allocate and/or writing to uninitialized extent 609 * will possibly result in updating i_data, so we take 610 * the write lock of i_data_sem, and call get_blocks() 611 * with create == 1 flag. 612 */ 613 down_write((&EXT4_I(inode)->i_data_sem)); 614 615 /* 616 * if the caller is from delayed allocation writeout path 617 * we have already reserved fs blocks for allocation 618 * let the underlying get_block() function know to 619 * avoid double accounting 620 */ 621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 623 /* 624 * We need to check for EXT4 here because migrate 625 * could have changed the inode type in between 626 */ 627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 628 retval = ext4_ext_map_blocks(handle, inode, map, flags); 629 } else { 630 retval = ext4_ind_map_blocks(handle, inode, map, flags); 631 632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 633 /* 634 * We allocated new blocks which will result in 635 * i_data's format changing. Force the migrate 636 * to fail by clearing migrate flags 637 */ 638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 639 } 640 641 /* 642 * Update reserved blocks/metadata blocks after successful 643 * block allocation which had been deferred till now. We don't 644 * support fallocate for non extent files. So we can update 645 * reserve space here. 646 */ 647 if ((retval > 0) && 648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 649 ext4_da_update_reserve_space(inode, retval, 1); 650 } 651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 653 654 if (retval > 0) { 655 int ret; 656 unsigned int status; 657 658 if (unlikely(retval != map->m_len)) { 659 ext4_warning(inode->i_sb, 660 "ES len assertion failed for inode " 661 "%lu: retval %d != map->m_len %d", 662 inode->i_ino, retval, map->m_len); 663 WARN_ON(1); 664 } 665 666 /* 667 * If the extent has been zeroed out, we don't need to update 668 * extent status tree. 669 */ 670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 672 if (ext4_es_is_written(&es)) 673 goto has_zeroout; 674 } 675 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 678 ext4_find_delalloc_range(inode, map->m_lblk, 679 map->m_lblk + map->m_len - 1)) 680 status |= EXTENT_STATUS_DELAYED; 681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 682 map->m_pblk, status); 683 if (ret < 0) 684 retval = ret; 685 } 686 687 has_zeroout: 688 up_write((&EXT4_I(inode)->i_data_sem)); 689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 690 int ret = check_block_validity(inode, map); 691 if (ret != 0) 692 return ret; 693 } 694 return retval; 695 } 696 697 /* Maximum number of blocks we map for direct IO at once. */ 698 #define DIO_MAX_BLOCKS 4096 699 700 static int _ext4_get_block(struct inode *inode, sector_t iblock, 701 struct buffer_head *bh, int flags) 702 { 703 handle_t *handle = ext4_journal_current_handle(); 704 struct ext4_map_blocks map; 705 int ret = 0, started = 0; 706 int dio_credits; 707 708 if (ext4_has_inline_data(inode)) 709 return -ERANGE; 710 711 map.m_lblk = iblock; 712 map.m_len = bh->b_size >> inode->i_blkbits; 713 714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 715 /* Direct IO write... */ 716 if (map.m_len > DIO_MAX_BLOCKS) 717 map.m_len = DIO_MAX_BLOCKS; 718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 720 dio_credits); 721 if (IS_ERR(handle)) { 722 ret = PTR_ERR(handle); 723 return ret; 724 } 725 started = 1; 726 } 727 728 ret = ext4_map_blocks(handle, inode, &map, flags); 729 if (ret > 0) { 730 ext4_io_end_t *io_end = ext4_inode_aio(inode); 731 732 map_bh(bh, inode->i_sb, map.m_pblk); 733 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 734 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 735 set_buffer_defer_completion(bh); 736 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 737 ret = 0; 738 } 739 if (started) 740 ext4_journal_stop(handle); 741 return ret; 742 } 743 744 int ext4_get_block(struct inode *inode, sector_t iblock, 745 struct buffer_head *bh, int create) 746 { 747 return _ext4_get_block(inode, iblock, bh, 748 create ? EXT4_GET_BLOCKS_CREATE : 0); 749 } 750 751 /* 752 * `handle' can be NULL if create is zero 753 */ 754 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 755 ext4_lblk_t block, int create, int *errp) 756 { 757 struct ext4_map_blocks map; 758 struct buffer_head *bh; 759 int fatal = 0, err; 760 761 J_ASSERT(handle != NULL || create == 0); 762 763 map.m_lblk = block; 764 map.m_len = 1; 765 err = ext4_map_blocks(handle, inode, &map, 766 create ? EXT4_GET_BLOCKS_CREATE : 0); 767 768 /* ensure we send some value back into *errp */ 769 *errp = 0; 770 771 if (create && err == 0) 772 err = -ENOSPC; /* should never happen */ 773 if (err < 0) 774 *errp = err; 775 if (err <= 0) 776 return NULL; 777 778 bh = sb_getblk(inode->i_sb, map.m_pblk); 779 if (unlikely(!bh)) { 780 *errp = -ENOMEM; 781 return NULL; 782 } 783 if (map.m_flags & EXT4_MAP_NEW) { 784 J_ASSERT(create != 0); 785 J_ASSERT(handle != NULL); 786 787 /* 788 * Now that we do not always journal data, we should 789 * keep in mind whether this should always journal the 790 * new buffer as metadata. For now, regular file 791 * writes use ext4_get_block instead, so it's not a 792 * problem. 793 */ 794 lock_buffer(bh); 795 BUFFER_TRACE(bh, "call get_create_access"); 796 fatal = ext4_journal_get_create_access(handle, bh); 797 if (!fatal && !buffer_uptodate(bh)) { 798 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 799 set_buffer_uptodate(bh); 800 } 801 unlock_buffer(bh); 802 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 803 err = ext4_handle_dirty_metadata(handle, inode, bh); 804 if (!fatal) 805 fatal = err; 806 } else { 807 BUFFER_TRACE(bh, "not a new buffer"); 808 } 809 if (fatal) { 810 *errp = fatal; 811 brelse(bh); 812 bh = NULL; 813 } 814 return bh; 815 } 816 817 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 818 ext4_lblk_t block, int create, int *err) 819 { 820 struct buffer_head *bh; 821 822 bh = ext4_getblk(handle, inode, block, create, err); 823 if (!bh) 824 return bh; 825 if (buffer_uptodate(bh)) 826 return bh; 827 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 828 wait_on_buffer(bh); 829 if (buffer_uptodate(bh)) 830 return bh; 831 put_bh(bh); 832 *err = -EIO; 833 return NULL; 834 } 835 836 int ext4_walk_page_buffers(handle_t *handle, 837 struct buffer_head *head, 838 unsigned from, 839 unsigned to, 840 int *partial, 841 int (*fn)(handle_t *handle, 842 struct buffer_head *bh)) 843 { 844 struct buffer_head *bh; 845 unsigned block_start, block_end; 846 unsigned blocksize = head->b_size; 847 int err, ret = 0; 848 struct buffer_head *next; 849 850 for (bh = head, block_start = 0; 851 ret == 0 && (bh != head || !block_start); 852 block_start = block_end, bh = next) { 853 next = bh->b_this_page; 854 block_end = block_start + blocksize; 855 if (block_end <= from || block_start >= to) { 856 if (partial && !buffer_uptodate(bh)) 857 *partial = 1; 858 continue; 859 } 860 err = (*fn)(handle, bh); 861 if (!ret) 862 ret = err; 863 } 864 return ret; 865 } 866 867 /* 868 * To preserve ordering, it is essential that the hole instantiation and 869 * the data write be encapsulated in a single transaction. We cannot 870 * close off a transaction and start a new one between the ext4_get_block() 871 * and the commit_write(). So doing the jbd2_journal_start at the start of 872 * prepare_write() is the right place. 873 * 874 * Also, this function can nest inside ext4_writepage(). In that case, we 875 * *know* that ext4_writepage() has generated enough buffer credits to do the 876 * whole page. So we won't block on the journal in that case, which is good, 877 * because the caller may be PF_MEMALLOC. 878 * 879 * By accident, ext4 can be reentered when a transaction is open via 880 * quota file writes. If we were to commit the transaction while thus 881 * reentered, there can be a deadlock - we would be holding a quota 882 * lock, and the commit would never complete if another thread had a 883 * transaction open and was blocking on the quota lock - a ranking 884 * violation. 885 * 886 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 887 * will _not_ run commit under these circumstances because handle->h_ref 888 * is elevated. We'll still have enough credits for the tiny quotafile 889 * write. 890 */ 891 int do_journal_get_write_access(handle_t *handle, 892 struct buffer_head *bh) 893 { 894 int dirty = buffer_dirty(bh); 895 int ret; 896 897 if (!buffer_mapped(bh) || buffer_freed(bh)) 898 return 0; 899 /* 900 * __block_write_begin() could have dirtied some buffers. Clean 901 * the dirty bit as jbd2_journal_get_write_access() could complain 902 * otherwise about fs integrity issues. Setting of the dirty bit 903 * by __block_write_begin() isn't a real problem here as we clear 904 * the bit before releasing a page lock and thus writeback cannot 905 * ever write the buffer. 906 */ 907 if (dirty) 908 clear_buffer_dirty(bh); 909 ret = ext4_journal_get_write_access(handle, bh); 910 if (!ret && dirty) 911 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 912 return ret; 913 } 914 915 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 916 struct buffer_head *bh_result, int create); 917 static int ext4_write_begin(struct file *file, struct address_space *mapping, 918 loff_t pos, unsigned len, unsigned flags, 919 struct page **pagep, void **fsdata) 920 { 921 struct inode *inode = mapping->host; 922 int ret, needed_blocks; 923 handle_t *handle; 924 int retries = 0; 925 struct page *page; 926 pgoff_t index; 927 unsigned from, to; 928 929 trace_ext4_write_begin(inode, pos, len, flags); 930 /* 931 * Reserve one block more for addition to orphan list in case 932 * we allocate blocks but write fails for some reason 933 */ 934 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 935 index = pos >> PAGE_CACHE_SHIFT; 936 from = pos & (PAGE_CACHE_SIZE - 1); 937 to = from + len; 938 939 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 940 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 941 flags, pagep); 942 if (ret < 0) 943 return ret; 944 if (ret == 1) 945 return 0; 946 } 947 948 /* 949 * grab_cache_page_write_begin() can take a long time if the 950 * system is thrashing due to memory pressure, or if the page 951 * is being written back. So grab it first before we start 952 * the transaction handle. This also allows us to allocate 953 * the page (if needed) without using GFP_NOFS. 954 */ 955 retry_grab: 956 page = grab_cache_page_write_begin(mapping, index, flags); 957 if (!page) 958 return -ENOMEM; 959 unlock_page(page); 960 961 retry_journal: 962 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 963 if (IS_ERR(handle)) { 964 page_cache_release(page); 965 return PTR_ERR(handle); 966 } 967 968 lock_page(page); 969 if (page->mapping != mapping) { 970 /* The page got truncated from under us */ 971 unlock_page(page); 972 page_cache_release(page); 973 ext4_journal_stop(handle); 974 goto retry_grab; 975 } 976 /* In case writeback began while the page was unlocked */ 977 wait_for_stable_page(page); 978 979 if (ext4_should_dioread_nolock(inode)) 980 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 981 else 982 ret = __block_write_begin(page, pos, len, ext4_get_block); 983 984 if (!ret && ext4_should_journal_data(inode)) { 985 ret = ext4_walk_page_buffers(handle, page_buffers(page), 986 from, to, NULL, 987 do_journal_get_write_access); 988 } 989 990 if (ret) { 991 unlock_page(page); 992 /* 993 * __block_write_begin may have instantiated a few blocks 994 * outside i_size. Trim these off again. Don't need 995 * i_size_read because we hold i_mutex. 996 * 997 * Add inode to orphan list in case we crash before 998 * truncate finishes 999 */ 1000 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1001 ext4_orphan_add(handle, inode); 1002 1003 ext4_journal_stop(handle); 1004 if (pos + len > inode->i_size) { 1005 ext4_truncate_failed_write(inode); 1006 /* 1007 * If truncate failed early the inode might 1008 * still be on the orphan list; we need to 1009 * make sure the inode is removed from the 1010 * orphan list in that case. 1011 */ 1012 if (inode->i_nlink) 1013 ext4_orphan_del(NULL, inode); 1014 } 1015 1016 if (ret == -ENOSPC && 1017 ext4_should_retry_alloc(inode->i_sb, &retries)) 1018 goto retry_journal; 1019 page_cache_release(page); 1020 return ret; 1021 } 1022 *pagep = page; 1023 return ret; 1024 } 1025 1026 /* For write_end() in data=journal mode */ 1027 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1028 { 1029 int ret; 1030 if (!buffer_mapped(bh) || buffer_freed(bh)) 1031 return 0; 1032 set_buffer_uptodate(bh); 1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1034 clear_buffer_meta(bh); 1035 clear_buffer_prio(bh); 1036 return ret; 1037 } 1038 1039 /* 1040 * We need to pick up the new inode size which generic_commit_write gave us 1041 * `file' can be NULL - eg, when called from page_symlink(). 1042 * 1043 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1044 * buffers are managed internally. 1045 */ 1046 static int ext4_write_end(struct file *file, 1047 struct address_space *mapping, 1048 loff_t pos, unsigned len, unsigned copied, 1049 struct page *page, void *fsdata) 1050 { 1051 handle_t *handle = ext4_journal_current_handle(); 1052 struct inode *inode = mapping->host; 1053 int ret = 0, ret2; 1054 int i_size_changed = 0; 1055 1056 trace_ext4_write_end(inode, pos, len, copied); 1057 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1058 ret = ext4_jbd2_file_inode(handle, inode); 1059 if (ret) { 1060 unlock_page(page); 1061 page_cache_release(page); 1062 goto errout; 1063 } 1064 } 1065 1066 if (ext4_has_inline_data(inode)) { 1067 ret = ext4_write_inline_data_end(inode, pos, len, 1068 copied, page); 1069 if (ret < 0) 1070 goto errout; 1071 copied = ret; 1072 } else 1073 copied = block_write_end(file, mapping, pos, 1074 len, copied, page, fsdata); 1075 1076 /* 1077 * No need to use i_size_read() here, the i_size 1078 * cannot change under us because we hole i_mutex. 1079 * 1080 * But it's important to update i_size while still holding page lock: 1081 * page writeout could otherwise come in and zero beyond i_size. 1082 */ 1083 if (pos + copied > inode->i_size) { 1084 i_size_write(inode, pos + copied); 1085 i_size_changed = 1; 1086 } 1087 1088 if (pos + copied > EXT4_I(inode)->i_disksize) { 1089 /* We need to mark inode dirty even if 1090 * new_i_size is less that inode->i_size 1091 * but greater than i_disksize. (hint delalloc) 1092 */ 1093 ext4_update_i_disksize(inode, (pos + copied)); 1094 i_size_changed = 1; 1095 } 1096 unlock_page(page); 1097 page_cache_release(page); 1098 1099 /* 1100 * Don't mark the inode dirty under page lock. First, it unnecessarily 1101 * makes the holding time of page lock longer. Second, it forces lock 1102 * ordering of page lock and transaction start for journaling 1103 * filesystems. 1104 */ 1105 if (i_size_changed) 1106 ext4_mark_inode_dirty(handle, inode); 1107 1108 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1109 /* if we have allocated more blocks and copied 1110 * less. We will have blocks allocated outside 1111 * inode->i_size. So truncate them 1112 */ 1113 ext4_orphan_add(handle, inode); 1114 errout: 1115 ret2 = ext4_journal_stop(handle); 1116 if (!ret) 1117 ret = ret2; 1118 1119 if (pos + len > inode->i_size) { 1120 ext4_truncate_failed_write(inode); 1121 /* 1122 * If truncate failed early the inode might still be 1123 * on the orphan list; we need to make sure the inode 1124 * is removed from the orphan list in that case. 1125 */ 1126 if (inode->i_nlink) 1127 ext4_orphan_del(NULL, inode); 1128 } 1129 1130 return ret ? ret : copied; 1131 } 1132 1133 static int ext4_journalled_write_end(struct file *file, 1134 struct address_space *mapping, 1135 loff_t pos, unsigned len, unsigned copied, 1136 struct page *page, void *fsdata) 1137 { 1138 handle_t *handle = ext4_journal_current_handle(); 1139 struct inode *inode = mapping->host; 1140 int ret = 0, ret2; 1141 int partial = 0; 1142 unsigned from, to; 1143 loff_t new_i_size; 1144 1145 trace_ext4_journalled_write_end(inode, pos, len, copied); 1146 from = pos & (PAGE_CACHE_SIZE - 1); 1147 to = from + len; 1148 1149 BUG_ON(!ext4_handle_valid(handle)); 1150 1151 if (ext4_has_inline_data(inode)) 1152 copied = ext4_write_inline_data_end(inode, pos, len, 1153 copied, page); 1154 else { 1155 if (copied < len) { 1156 if (!PageUptodate(page)) 1157 copied = 0; 1158 page_zero_new_buffers(page, from+copied, to); 1159 } 1160 1161 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1162 to, &partial, write_end_fn); 1163 if (!partial) 1164 SetPageUptodate(page); 1165 } 1166 new_i_size = pos + copied; 1167 if (new_i_size > inode->i_size) 1168 i_size_write(inode, pos+copied); 1169 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1170 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1171 if (new_i_size > EXT4_I(inode)->i_disksize) { 1172 ext4_update_i_disksize(inode, new_i_size); 1173 ret2 = ext4_mark_inode_dirty(handle, inode); 1174 if (!ret) 1175 ret = ret2; 1176 } 1177 1178 unlock_page(page); 1179 page_cache_release(page); 1180 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1181 /* if we have allocated more blocks and copied 1182 * less. We will have blocks allocated outside 1183 * inode->i_size. So truncate them 1184 */ 1185 ext4_orphan_add(handle, inode); 1186 1187 ret2 = ext4_journal_stop(handle); 1188 if (!ret) 1189 ret = ret2; 1190 if (pos + len > inode->i_size) { 1191 ext4_truncate_failed_write(inode); 1192 /* 1193 * If truncate failed early the inode might still be 1194 * on the orphan list; we need to make sure the inode 1195 * is removed from the orphan list in that case. 1196 */ 1197 if (inode->i_nlink) 1198 ext4_orphan_del(NULL, inode); 1199 } 1200 1201 return ret ? ret : copied; 1202 } 1203 1204 /* 1205 * Reserve a metadata for a single block located at lblock 1206 */ 1207 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1208 { 1209 int retries = 0; 1210 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1211 struct ext4_inode_info *ei = EXT4_I(inode); 1212 unsigned int md_needed; 1213 ext4_lblk_t save_last_lblock; 1214 int save_len; 1215 1216 /* 1217 * recalculate the amount of metadata blocks to reserve 1218 * in order to allocate nrblocks 1219 * worse case is one extent per block 1220 */ 1221 repeat: 1222 spin_lock(&ei->i_block_reservation_lock); 1223 /* 1224 * ext4_calc_metadata_amount() has side effects, which we have 1225 * to be prepared undo if we fail to claim space. 1226 */ 1227 save_len = ei->i_da_metadata_calc_len; 1228 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1229 md_needed = EXT4_NUM_B2C(sbi, 1230 ext4_calc_metadata_amount(inode, lblock)); 1231 trace_ext4_da_reserve_space(inode, md_needed); 1232 1233 /* 1234 * We do still charge estimated metadata to the sb though; 1235 * we cannot afford to run out of free blocks. 1236 */ 1237 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1238 ei->i_da_metadata_calc_len = save_len; 1239 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1240 spin_unlock(&ei->i_block_reservation_lock); 1241 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1242 cond_resched(); 1243 goto repeat; 1244 } 1245 return -ENOSPC; 1246 } 1247 ei->i_reserved_meta_blocks += md_needed; 1248 spin_unlock(&ei->i_block_reservation_lock); 1249 1250 return 0; /* success */ 1251 } 1252 1253 /* 1254 * Reserve a single cluster located at lblock 1255 */ 1256 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1257 { 1258 int retries = 0; 1259 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1260 struct ext4_inode_info *ei = EXT4_I(inode); 1261 unsigned int md_needed; 1262 int ret; 1263 ext4_lblk_t save_last_lblock; 1264 int save_len; 1265 1266 /* 1267 * We will charge metadata quota at writeout time; this saves 1268 * us from metadata over-estimation, though we may go over by 1269 * a small amount in the end. Here we just reserve for data. 1270 */ 1271 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1272 if (ret) 1273 return ret; 1274 1275 /* 1276 * recalculate the amount of metadata blocks to reserve 1277 * in order to allocate nrblocks 1278 * worse case is one extent per block 1279 */ 1280 repeat: 1281 spin_lock(&ei->i_block_reservation_lock); 1282 /* 1283 * ext4_calc_metadata_amount() has side effects, which we have 1284 * to be prepared undo if we fail to claim space. 1285 */ 1286 save_len = ei->i_da_metadata_calc_len; 1287 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1288 md_needed = EXT4_NUM_B2C(sbi, 1289 ext4_calc_metadata_amount(inode, lblock)); 1290 trace_ext4_da_reserve_space(inode, md_needed); 1291 1292 /* 1293 * We do still charge estimated metadata to the sb though; 1294 * we cannot afford to run out of free blocks. 1295 */ 1296 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1297 ei->i_da_metadata_calc_len = save_len; 1298 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1299 spin_unlock(&ei->i_block_reservation_lock); 1300 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1301 cond_resched(); 1302 goto repeat; 1303 } 1304 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1305 return -ENOSPC; 1306 } 1307 ei->i_reserved_data_blocks++; 1308 ei->i_reserved_meta_blocks += md_needed; 1309 spin_unlock(&ei->i_block_reservation_lock); 1310 1311 return 0; /* success */ 1312 } 1313 1314 static void ext4_da_release_space(struct inode *inode, int to_free) 1315 { 1316 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1317 struct ext4_inode_info *ei = EXT4_I(inode); 1318 1319 if (!to_free) 1320 return; /* Nothing to release, exit */ 1321 1322 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1323 1324 trace_ext4_da_release_space(inode, to_free); 1325 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1326 /* 1327 * if there aren't enough reserved blocks, then the 1328 * counter is messed up somewhere. Since this 1329 * function is called from invalidate page, it's 1330 * harmless to return without any action. 1331 */ 1332 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1333 "ino %lu, to_free %d with only %d reserved " 1334 "data blocks", inode->i_ino, to_free, 1335 ei->i_reserved_data_blocks); 1336 WARN_ON(1); 1337 to_free = ei->i_reserved_data_blocks; 1338 } 1339 ei->i_reserved_data_blocks -= to_free; 1340 1341 if (ei->i_reserved_data_blocks == 0) { 1342 /* 1343 * We can release all of the reserved metadata blocks 1344 * only when we have written all of the delayed 1345 * allocation blocks. 1346 * Note that in case of bigalloc, i_reserved_meta_blocks, 1347 * i_reserved_data_blocks, etc. refer to number of clusters. 1348 */ 1349 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1350 ei->i_reserved_meta_blocks); 1351 ei->i_reserved_meta_blocks = 0; 1352 ei->i_da_metadata_calc_len = 0; 1353 } 1354 1355 /* update fs dirty data blocks counter */ 1356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1357 1358 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1359 1360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1361 } 1362 1363 static void ext4_da_page_release_reservation(struct page *page, 1364 unsigned int offset, 1365 unsigned int length) 1366 { 1367 int to_release = 0; 1368 struct buffer_head *head, *bh; 1369 unsigned int curr_off = 0; 1370 struct inode *inode = page->mapping->host; 1371 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1372 unsigned int stop = offset + length; 1373 int num_clusters; 1374 ext4_fsblk_t lblk; 1375 1376 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1377 1378 head = page_buffers(page); 1379 bh = head; 1380 do { 1381 unsigned int next_off = curr_off + bh->b_size; 1382 1383 if (next_off > stop) 1384 break; 1385 1386 if ((offset <= curr_off) && (buffer_delay(bh))) { 1387 to_release++; 1388 clear_buffer_delay(bh); 1389 } 1390 curr_off = next_off; 1391 } while ((bh = bh->b_this_page) != head); 1392 1393 if (to_release) { 1394 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1395 ext4_es_remove_extent(inode, lblk, to_release); 1396 } 1397 1398 /* If we have released all the blocks belonging to a cluster, then we 1399 * need to release the reserved space for that cluster. */ 1400 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1401 while (num_clusters > 0) { 1402 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1403 ((num_clusters - 1) << sbi->s_cluster_bits); 1404 if (sbi->s_cluster_ratio == 1 || 1405 !ext4_find_delalloc_cluster(inode, lblk)) 1406 ext4_da_release_space(inode, 1); 1407 1408 num_clusters--; 1409 } 1410 } 1411 1412 /* 1413 * Delayed allocation stuff 1414 */ 1415 1416 struct mpage_da_data { 1417 struct inode *inode; 1418 struct writeback_control *wbc; 1419 1420 pgoff_t first_page; /* The first page to write */ 1421 pgoff_t next_page; /* Current page to examine */ 1422 pgoff_t last_page; /* Last page to examine */ 1423 /* 1424 * Extent to map - this can be after first_page because that can be 1425 * fully mapped. We somewhat abuse m_flags to store whether the extent 1426 * is delalloc or unwritten. 1427 */ 1428 struct ext4_map_blocks map; 1429 struct ext4_io_submit io_submit; /* IO submission data */ 1430 }; 1431 1432 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1433 bool invalidate) 1434 { 1435 int nr_pages, i; 1436 pgoff_t index, end; 1437 struct pagevec pvec; 1438 struct inode *inode = mpd->inode; 1439 struct address_space *mapping = inode->i_mapping; 1440 1441 /* This is necessary when next_page == 0. */ 1442 if (mpd->first_page >= mpd->next_page) 1443 return; 1444 1445 index = mpd->first_page; 1446 end = mpd->next_page - 1; 1447 if (invalidate) { 1448 ext4_lblk_t start, last; 1449 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1450 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1451 ext4_es_remove_extent(inode, start, last - start + 1); 1452 } 1453 1454 pagevec_init(&pvec, 0); 1455 while (index <= end) { 1456 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1457 if (nr_pages == 0) 1458 break; 1459 for (i = 0; i < nr_pages; i++) { 1460 struct page *page = pvec.pages[i]; 1461 if (page->index > end) 1462 break; 1463 BUG_ON(!PageLocked(page)); 1464 BUG_ON(PageWriteback(page)); 1465 if (invalidate) { 1466 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1467 ClearPageUptodate(page); 1468 } 1469 unlock_page(page); 1470 } 1471 index = pvec.pages[nr_pages - 1]->index + 1; 1472 pagevec_release(&pvec); 1473 } 1474 } 1475 1476 static void ext4_print_free_blocks(struct inode *inode) 1477 { 1478 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1479 struct super_block *sb = inode->i_sb; 1480 struct ext4_inode_info *ei = EXT4_I(inode); 1481 1482 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1483 EXT4_C2B(EXT4_SB(inode->i_sb), 1484 ext4_count_free_clusters(sb))); 1485 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1486 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1487 (long long) EXT4_C2B(EXT4_SB(sb), 1488 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1489 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1490 (long long) EXT4_C2B(EXT4_SB(sb), 1491 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1492 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1493 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1494 ei->i_reserved_data_blocks); 1495 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1496 ei->i_reserved_meta_blocks); 1497 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1498 ei->i_allocated_meta_blocks); 1499 return; 1500 } 1501 1502 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1503 { 1504 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1505 } 1506 1507 /* 1508 * This function is grabs code from the very beginning of 1509 * ext4_map_blocks, but assumes that the caller is from delayed write 1510 * time. This function looks up the requested blocks and sets the 1511 * buffer delay bit under the protection of i_data_sem. 1512 */ 1513 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1514 struct ext4_map_blocks *map, 1515 struct buffer_head *bh) 1516 { 1517 struct extent_status es; 1518 int retval; 1519 sector_t invalid_block = ~((sector_t) 0xffff); 1520 #ifdef ES_AGGRESSIVE_TEST 1521 struct ext4_map_blocks orig_map; 1522 1523 memcpy(&orig_map, map, sizeof(*map)); 1524 #endif 1525 1526 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1527 invalid_block = ~0; 1528 1529 map->m_flags = 0; 1530 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1531 "logical block %lu\n", inode->i_ino, map->m_len, 1532 (unsigned long) map->m_lblk); 1533 1534 /* Lookup extent status tree firstly */ 1535 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1536 ext4_es_lru_add(inode); 1537 if (ext4_es_is_hole(&es)) { 1538 retval = 0; 1539 down_read((&EXT4_I(inode)->i_data_sem)); 1540 goto add_delayed; 1541 } 1542 1543 /* 1544 * Delayed extent could be allocated by fallocate. 1545 * So we need to check it. 1546 */ 1547 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1548 map_bh(bh, inode->i_sb, invalid_block); 1549 set_buffer_new(bh); 1550 set_buffer_delay(bh); 1551 return 0; 1552 } 1553 1554 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1555 retval = es.es_len - (iblock - es.es_lblk); 1556 if (retval > map->m_len) 1557 retval = map->m_len; 1558 map->m_len = retval; 1559 if (ext4_es_is_written(&es)) 1560 map->m_flags |= EXT4_MAP_MAPPED; 1561 else if (ext4_es_is_unwritten(&es)) 1562 map->m_flags |= EXT4_MAP_UNWRITTEN; 1563 else 1564 BUG_ON(1); 1565 1566 #ifdef ES_AGGRESSIVE_TEST 1567 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1568 #endif 1569 return retval; 1570 } 1571 1572 /* 1573 * Try to see if we can get the block without requesting a new 1574 * file system block. 1575 */ 1576 down_read((&EXT4_I(inode)->i_data_sem)); 1577 if (ext4_has_inline_data(inode)) { 1578 /* 1579 * We will soon create blocks for this page, and let 1580 * us pretend as if the blocks aren't allocated yet. 1581 * In case of clusters, we have to handle the work 1582 * of mapping from cluster so that the reserved space 1583 * is calculated properly. 1584 */ 1585 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1586 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1587 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1588 retval = 0; 1589 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1590 retval = ext4_ext_map_blocks(NULL, inode, map, 1591 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1592 else 1593 retval = ext4_ind_map_blocks(NULL, inode, map, 1594 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1595 1596 add_delayed: 1597 if (retval == 0) { 1598 int ret; 1599 /* 1600 * XXX: __block_prepare_write() unmaps passed block, 1601 * is it OK? 1602 */ 1603 /* 1604 * If the block was allocated from previously allocated cluster, 1605 * then we don't need to reserve it again. However we still need 1606 * to reserve metadata for every block we're going to write. 1607 */ 1608 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1609 ret = ext4_da_reserve_space(inode, iblock); 1610 if (ret) { 1611 /* not enough space to reserve */ 1612 retval = ret; 1613 goto out_unlock; 1614 } 1615 } else { 1616 ret = ext4_da_reserve_metadata(inode, iblock); 1617 if (ret) { 1618 /* not enough space to reserve */ 1619 retval = ret; 1620 goto out_unlock; 1621 } 1622 } 1623 1624 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1625 ~0, EXTENT_STATUS_DELAYED); 1626 if (ret) { 1627 retval = ret; 1628 goto out_unlock; 1629 } 1630 1631 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1632 * and it should not appear on the bh->b_state. 1633 */ 1634 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1635 1636 map_bh(bh, inode->i_sb, invalid_block); 1637 set_buffer_new(bh); 1638 set_buffer_delay(bh); 1639 } else if (retval > 0) { 1640 int ret; 1641 unsigned int status; 1642 1643 if (unlikely(retval != map->m_len)) { 1644 ext4_warning(inode->i_sb, 1645 "ES len assertion failed for inode " 1646 "%lu: retval %d != map->m_len %d", 1647 inode->i_ino, retval, map->m_len); 1648 WARN_ON(1); 1649 } 1650 1651 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1652 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1653 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1654 map->m_pblk, status); 1655 if (ret != 0) 1656 retval = ret; 1657 } 1658 1659 out_unlock: 1660 up_read((&EXT4_I(inode)->i_data_sem)); 1661 1662 return retval; 1663 } 1664 1665 /* 1666 * This is a special get_blocks_t callback which is used by 1667 * ext4_da_write_begin(). It will either return mapped block or 1668 * reserve space for a single block. 1669 * 1670 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1671 * We also have b_blocknr = -1 and b_bdev initialized properly 1672 * 1673 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1674 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1675 * initialized properly. 1676 */ 1677 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1678 struct buffer_head *bh, int create) 1679 { 1680 struct ext4_map_blocks map; 1681 int ret = 0; 1682 1683 BUG_ON(create == 0); 1684 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1685 1686 map.m_lblk = iblock; 1687 map.m_len = 1; 1688 1689 /* 1690 * first, we need to know whether the block is allocated already 1691 * preallocated blocks are unmapped but should treated 1692 * the same as allocated blocks. 1693 */ 1694 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1695 if (ret <= 0) 1696 return ret; 1697 1698 map_bh(bh, inode->i_sb, map.m_pblk); 1699 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1700 1701 if (buffer_unwritten(bh)) { 1702 /* A delayed write to unwritten bh should be marked 1703 * new and mapped. Mapped ensures that we don't do 1704 * get_block multiple times when we write to the same 1705 * offset and new ensures that we do proper zero out 1706 * for partial write. 1707 */ 1708 set_buffer_new(bh); 1709 set_buffer_mapped(bh); 1710 } 1711 return 0; 1712 } 1713 1714 static int bget_one(handle_t *handle, struct buffer_head *bh) 1715 { 1716 get_bh(bh); 1717 return 0; 1718 } 1719 1720 static int bput_one(handle_t *handle, struct buffer_head *bh) 1721 { 1722 put_bh(bh); 1723 return 0; 1724 } 1725 1726 static int __ext4_journalled_writepage(struct page *page, 1727 unsigned int len) 1728 { 1729 struct address_space *mapping = page->mapping; 1730 struct inode *inode = mapping->host; 1731 struct buffer_head *page_bufs = NULL; 1732 handle_t *handle = NULL; 1733 int ret = 0, err = 0; 1734 int inline_data = ext4_has_inline_data(inode); 1735 struct buffer_head *inode_bh = NULL; 1736 1737 ClearPageChecked(page); 1738 1739 if (inline_data) { 1740 BUG_ON(page->index != 0); 1741 BUG_ON(len > ext4_get_max_inline_size(inode)); 1742 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1743 if (inode_bh == NULL) 1744 goto out; 1745 } else { 1746 page_bufs = page_buffers(page); 1747 if (!page_bufs) { 1748 BUG(); 1749 goto out; 1750 } 1751 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1752 NULL, bget_one); 1753 } 1754 /* As soon as we unlock the page, it can go away, but we have 1755 * references to buffers so we are safe */ 1756 unlock_page(page); 1757 1758 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1759 ext4_writepage_trans_blocks(inode)); 1760 if (IS_ERR(handle)) { 1761 ret = PTR_ERR(handle); 1762 goto out; 1763 } 1764 1765 BUG_ON(!ext4_handle_valid(handle)); 1766 1767 if (inline_data) { 1768 ret = ext4_journal_get_write_access(handle, inode_bh); 1769 1770 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1771 1772 } else { 1773 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1774 do_journal_get_write_access); 1775 1776 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1777 write_end_fn); 1778 } 1779 if (ret == 0) 1780 ret = err; 1781 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1782 err = ext4_journal_stop(handle); 1783 if (!ret) 1784 ret = err; 1785 1786 if (!ext4_has_inline_data(inode)) 1787 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1788 NULL, bput_one); 1789 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1790 out: 1791 brelse(inode_bh); 1792 return ret; 1793 } 1794 1795 /* 1796 * Note that we don't need to start a transaction unless we're journaling data 1797 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1798 * need to file the inode to the transaction's list in ordered mode because if 1799 * we are writing back data added by write(), the inode is already there and if 1800 * we are writing back data modified via mmap(), no one guarantees in which 1801 * transaction the data will hit the disk. In case we are journaling data, we 1802 * cannot start transaction directly because transaction start ranks above page 1803 * lock so we have to do some magic. 1804 * 1805 * This function can get called via... 1806 * - ext4_writepages after taking page lock (have journal handle) 1807 * - journal_submit_inode_data_buffers (no journal handle) 1808 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1809 * - grab_page_cache when doing write_begin (have journal handle) 1810 * 1811 * We don't do any block allocation in this function. If we have page with 1812 * multiple blocks we need to write those buffer_heads that are mapped. This 1813 * is important for mmaped based write. So if we do with blocksize 1K 1814 * truncate(f, 1024); 1815 * a = mmap(f, 0, 4096); 1816 * a[0] = 'a'; 1817 * truncate(f, 4096); 1818 * we have in the page first buffer_head mapped via page_mkwrite call back 1819 * but other buffer_heads would be unmapped but dirty (dirty done via the 1820 * do_wp_page). So writepage should write the first block. If we modify 1821 * the mmap area beyond 1024 we will again get a page_fault and the 1822 * page_mkwrite callback will do the block allocation and mark the 1823 * buffer_heads mapped. 1824 * 1825 * We redirty the page if we have any buffer_heads that is either delay or 1826 * unwritten in the page. 1827 * 1828 * We can get recursively called as show below. 1829 * 1830 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1831 * ext4_writepage() 1832 * 1833 * But since we don't do any block allocation we should not deadlock. 1834 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1835 */ 1836 static int ext4_writepage(struct page *page, 1837 struct writeback_control *wbc) 1838 { 1839 int ret = 0; 1840 loff_t size; 1841 unsigned int len; 1842 struct buffer_head *page_bufs = NULL; 1843 struct inode *inode = page->mapping->host; 1844 struct ext4_io_submit io_submit; 1845 1846 trace_ext4_writepage(page); 1847 size = i_size_read(inode); 1848 if (page->index == size >> PAGE_CACHE_SHIFT) 1849 len = size & ~PAGE_CACHE_MASK; 1850 else 1851 len = PAGE_CACHE_SIZE; 1852 1853 page_bufs = page_buffers(page); 1854 /* 1855 * We cannot do block allocation or other extent handling in this 1856 * function. If there are buffers needing that, we have to redirty 1857 * the page. But we may reach here when we do a journal commit via 1858 * journal_submit_inode_data_buffers() and in that case we must write 1859 * allocated buffers to achieve data=ordered mode guarantees. 1860 */ 1861 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1862 ext4_bh_delay_or_unwritten)) { 1863 redirty_page_for_writepage(wbc, page); 1864 if (current->flags & PF_MEMALLOC) { 1865 /* 1866 * For memory cleaning there's no point in writing only 1867 * some buffers. So just bail out. Warn if we came here 1868 * from direct reclaim. 1869 */ 1870 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1871 == PF_MEMALLOC); 1872 unlock_page(page); 1873 return 0; 1874 } 1875 } 1876 1877 if (PageChecked(page) && ext4_should_journal_data(inode)) 1878 /* 1879 * It's mmapped pagecache. Add buffers and journal it. There 1880 * doesn't seem much point in redirtying the page here. 1881 */ 1882 return __ext4_journalled_writepage(page, len); 1883 1884 ext4_io_submit_init(&io_submit, wbc); 1885 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1886 if (!io_submit.io_end) { 1887 redirty_page_for_writepage(wbc, page); 1888 unlock_page(page); 1889 return -ENOMEM; 1890 } 1891 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 1892 ext4_io_submit(&io_submit); 1893 /* Drop io_end reference we got from init */ 1894 ext4_put_io_end_defer(io_submit.io_end); 1895 return ret; 1896 } 1897 1898 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1899 { 1900 int len; 1901 loff_t size = i_size_read(mpd->inode); 1902 int err; 1903 1904 BUG_ON(page->index != mpd->first_page); 1905 if (page->index == size >> PAGE_CACHE_SHIFT) 1906 len = size & ~PAGE_CACHE_MASK; 1907 else 1908 len = PAGE_CACHE_SIZE; 1909 clear_page_dirty_for_io(page); 1910 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc); 1911 if (!err) 1912 mpd->wbc->nr_to_write--; 1913 mpd->first_page++; 1914 1915 return err; 1916 } 1917 1918 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1919 1920 /* 1921 * mballoc gives us at most this number of blocks... 1922 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1923 * The rest of mballoc seems to handle chunks up to full group size. 1924 */ 1925 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1926 1927 /* 1928 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1929 * 1930 * @mpd - extent of blocks 1931 * @lblk - logical number of the block in the file 1932 * @bh - buffer head we want to add to the extent 1933 * 1934 * The function is used to collect contig. blocks in the same state. If the 1935 * buffer doesn't require mapping for writeback and we haven't started the 1936 * extent of buffers to map yet, the function returns 'true' immediately - the 1937 * caller can write the buffer right away. Otherwise the function returns true 1938 * if the block has been added to the extent, false if the block couldn't be 1939 * added. 1940 */ 1941 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1942 struct buffer_head *bh) 1943 { 1944 struct ext4_map_blocks *map = &mpd->map; 1945 1946 /* Buffer that doesn't need mapping for writeback? */ 1947 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1948 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1949 /* So far no extent to map => we write the buffer right away */ 1950 if (map->m_len == 0) 1951 return true; 1952 return false; 1953 } 1954 1955 /* First block in the extent? */ 1956 if (map->m_len == 0) { 1957 map->m_lblk = lblk; 1958 map->m_len = 1; 1959 map->m_flags = bh->b_state & BH_FLAGS; 1960 return true; 1961 } 1962 1963 /* Don't go larger than mballoc is willing to allocate */ 1964 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1965 return false; 1966 1967 /* Can we merge the block to our big extent? */ 1968 if (lblk == map->m_lblk + map->m_len && 1969 (bh->b_state & BH_FLAGS) == map->m_flags) { 1970 map->m_len++; 1971 return true; 1972 } 1973 return false; 1974 } 1975 1976 /* 1977 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1978 * 1979 * @mpd - extent of blocks for mapping 1980 * @head - the first buffer in the page 1981 * @bh - buffer we should start processing from 1982 * @lblk - logical number of the block in the file corresponding to @bh 1983 * 1984 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1985 * the page for IO if all buffers in this page were mapped and there's no 1986 * accumulated extent of buffers to map or add buffers in the page to the 1987 * extent of buffers to map. The function returns 1 if the caller can continue 1988 * by processing the next page, 0 if it should stop adding buffers to the 1989 * extent to map because we cannot extend it anymore. It can also return value 1990 * < 0 in case of error during IO submission. 1991 */ 1992 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1993 struct buffer_head *head, 1994 struct buffer_head *bh, 1995 ext4_lblk_t lblk) 1996 { 1997 struct inode *inode = mpd->inode; 1998 int err; 1999 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2000 >> inode->i_blkbits; 2001 2002 do { 2003 BUG_ON(buffer_locked(bh)); 2004 2005 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2006 /* Found extent to map? */ 2007 if (mpd->map.m_len) 2008 return 0; 2009 /* Everything mapped so far and we hit EOF */ 2010 break; 2011 } 2012 } while (lblk++, (bh = bh->b_this_page) != head); 2013 /* So far everything mapped? Submit the page for IO. */ 2014 if (mpd->map.m_len == 0) { 2015 err = mpage_submit_page(mpd, head->b_page); 2016 if (err < 0) 2017 return err; 2018 } 2019 return lblk < blocks; 2020 } 2021 2022 /* 2023 * mpage_map_buffers - update buffers corresponding to changed extent and 2024 * submit fully mapped pages for IO 2025 * 2026 * @mpd - description of extent to map, on return next extent to map 2027 * 2028 * Scan buffers corresponding to changed extent (we expect corresponding pages 2029 * to be already locked) and update buffer state according to new extent state. 2030 * We map delalloc buffers to their physical location, clear unwritten bits, 2031 * and mark buffers as uninit when we perform writes to uninitialized extents 2032 * and do extent conversion after IO is finished. If the last page is not fully 2033 * mapped, we update @map to the next extent in the last page that needs 2034 * mapping. Otherwise we submit the page for IO. 2035 */ 2036 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2037 { 2038 struct pagevec pvec; 2039 int nr_pages, i; 2040 struct inode *inode = mpd->inode; 2041 struct buffer_head *head, *bh; 2042 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2043 pgoff_t start, end; 2044 ext4_lblk_t lblk; 2045 sector_t pblock; 2046 int err; 2047 2048 start = mpd->map.m_lblk >> bpp_bits; 2049 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2050 lblk = start << bpp_bits; 2051 pblock = mpd->map.m_pblk; 2052 2053 pagevec_init(&pvec, 0); 2054 while (start <= end) { 2055 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2056 PAGEVEC_SIZE); 2057 if (nr_pages == 0) 2058 break; 2059 for (i = 0; i < nr_pages; i++) { 2060 struct page *page = pvec.pages[i]; 2061 2062 if (page->index > end) 2063 break; 2064 /* Up to 'end' pages must be contiguous */ 2065 BUG_ON(page->index != start); 2066 bh = head = page_buffers(page); 2067 do { 2068 if (lblk < mpd->map.m_lblk) 2069 continue; 2070 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2071 /* 2072 * Buffer after end of mapped extent. 2073 * Find next buffer in the page to map. 2074 */ 2075 mpd->map.m_len = 0; 2076 mpd->map.m_flags = 0; 2077 /* 2078 * FIXME: If dioread_nolock supports 2079 * blocksize < pagesize, we need to make 2080 * sure we add size mapped so far to 2081 * io_end->size as the following call 2082 * can submit the page for IO. 2083 */ 2084 err = mpage_process_page_bufs(mpd, head, 2085 bh, lblk); 2086 pagevec_release(&pvec); 2087 if (err > 0) 2088 err = 0; 2089 return err; 2090 } 2091 if (buffer_delay(bh)) { 2092 clear_buffer_delay(bh); 2093 bh->b_blocknr = pblock++; 2094 } 2095 clear_buffer_unwritten(bh); 2096 } while (lblk++, (bh = bh->b_this_page) != head); 2097 2098 /* 2099 * FIXME: This is going to break if dioread_nolock 2100 * supports blocksize < pagesize as we will try to 2101 * convert potentially unmapped parts of inode. 2102 */ 2103 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2104 /* Page fully mapped - let IO run! */ 2105 err = mpage_submit_page(mpd, page); 2106 if (err < 0) { 2107 pagevec_release(&pvec); 2108 return err; 2109 } 2110 start++; 2111 } 2112 pagevec_release(&pvec); 2113 } 2114 /* Extent fully mapped and matches with page boundary. We are done. */ 2115 mpd->map.m_len = 0; 2116 mpd->map.m_flags = 0; 2117 return 0; 2118 } 2119 2120 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2121 { 2122 struct inode *inode = mpd->inode; 2123 struct ext4_map_blocks *map = &mpd->map; 2124 int get_blocks_flags; 2125 int err; 2126 2127 trace_ext4_da_write_pages_extent(inode, map); 2128 /* 2129 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2130 * to convert an uninitialized extent to be initialized (in the case 2131 * where we have written into one or more preallocated blocks). It is 2132 * possible that we're going to need more metadata blocks than 2133 * previously reserved. However we must not fail because we're in 2134 * writeback and there is nothing we can do about it so it might result 2135 * in data loss. So use reserved blocks to allocate metadata if 2136 * possible. 2137 * 2138 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2139 * in question are delalloc blocks. This affects functions in many 2140 * different parts of the allocation call path. This flag exists 2141 * primarily because we don't want to change *many* call functions, so 2142 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2143 * once the inode's allocation semaphore is taken. 2144 */ 2145 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2146 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2147 if (ext4_should_dioread_nolock(inode)) 2148 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2149 if (map->m_flags & (1 << BH_Delay)) 2150 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2151 2152 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2153 if (err < 0) 2154 return err; 2155 if (map->m_flags & EXT4_MAP_UNINIT) { 2156 if (!mpd->io_submit.io_end->handle && 2157 ext4_handle_valid(handle)) { 2158 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2159 handle->h_rsv_handle = NULL; 2160 } 2161 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2162 } 2163 2164 BUG_ON(map->m_len == 0); 2165 if (map->m_flags & EXT4_MAP_NEW) { 2166 struct block_device *bdev = inode->i_sb->s_bdev; 2167 int i; 2168 2169 for (i = 0; i < map->m_len; i++) 2170 unmap_underlying_metadata(bdev, map->m_pblk + i); 2171 } 2172 return 0; 2173 } 2174 2175 /* 2176 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2177 * mpd->len and submit pages underlying it for IO 2178 * 2179 * @handle - handle for journal operations 2180 * @mpd - extent to map 2181 * 2182 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2183 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2184 * them to initialized or split the described range from larger unwritten 2185 * extent. Note that we need not map all the described range since allocation 2186 * can return less blocks or the range is covered by more unwritten extents. We 2187 * cannot map more because we are limited by reserved transaction credits. On 2188 * the other hand we always make sure that the last touched page is fully 2189 * mapped so that it can be written out (and thus forward progress is 2190 * guaranteed). After mapping we submit all mapped pages for IO. 2191 */ 2192 static int mpage_map_and_submit_extent(handle_t *handle, 2193 struct mpage_da_data *mpd, 2194 bool *give_up_on_write) 2195 { 2196 struct inode *inode = mpd->inode; 2197 struct ext4_map_blocks *map = &mpd->map; 2198 int err; 2199 loff_t disksize; 2200 2201 mpd->io_submit.io_end->offset = 2202 ((loff_t)map->m_lblk) << inode->i_blkbits; 2203 do { 2204 err = mpage_map_one_extent(handle, mpd); 2205 if (err < 0) { 2206 struct super_block *sb = inode->i_sb; 2207 2208 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2209 goto invalidate_dirty_pages; 2210 /* 2211 * Let the uper layers retry transient errors. 2212 * In the case of ENOSPC, if ext4_count_free_blocks() 2213 * is non-zero, a commit should free up blocks. 2214 */ 2215 if ((err == -ENOMEM) || 2216 (err == -ENOSPC && ext4_count_free_clusters(sb))) 2217 return err; 2218 ext4_msg(sb, KERN_CRIT, 2219 "Delayed block allocation failed for " 2220 "inode %lu at logical offset %llu with" 2221 " max blocks %u with error %d", 2222 inode->i_ino, 2223 (unsigned long long)map->m_lblk, 2224 (unsigned)map->m_len, -err); 2225 ext4_msg(sb, KERN_CRIT, 2226 "This should not happen!! Data will " 2227 "be lost\n"); 2228 if (err == -ENOSPC) 2229 ext4_print_free_blocks(inode); 2230 invalidate_dirty_pages: 2231 *give_up_on_write = true; 2232 return err; 2233 } 2234 /* 2235 * Update buffer state, submit mapped pages, and get us new 2236 * extent to map 2237 */ 2238 err = mpage_map_and_submit_buffers(mpd); 2239 if (err < 0) 2240 return err; 2241 } while (map->m_len); 2242 2243 /* Update on-disk size after IO is submitted */ 2244 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2245 if (disksize > EXT4_I(inode)->i_disksize) { 2246 int err2; 2247 2248 ext4_wb_update_i_disksize(inode, disksize); 2249 err2 = ext4_mark_inode_dirty(handle, inode); 2250 if (err2) 2251 ext4_error(inode->i_sb, 2252 "Failed to mark inode %lu dirty", 2253 inode->i_ino); 2254 if (!err) 2255 err = err2; 2256 } 2257 return err; 2258 } 2259 2260 /* 2261 * Calculate the total number of credits to reserve for one writepages 2262 * iteration. This is called from ext4_writepages(). We map an extent of 2263 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2264 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2265 * bpp - 1 blocks in bpp different extents. 2266 */ 2267 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2268 { 2269 int bpp = ext4_journal_blocks_per_page(inode); 2270 2271 return ext4_meta_trans_blocks(inode, 2272 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2273 } 2274 2275 /* 2276 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2277 * and underlying extent to map 2278 * 2279 * @mpd - where to look for pages 2280 * 2281 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2282 * IO immediately. When we find a page which isn't mapped we start accumulating 2283 * extent of buffers underlying these pages that needs mapping (formed by 2284 * either delayed or unwritten buffers). We also lock the pages containing 2285 * these buffers. The extent found is returned in @mpd structure (starting at 2286 * mpd->lblk with length mpd->len blocks). 2287 * 2288 * Note that this function can attach bios to one io_end structure which are 2289 * neither logically nor physically contiguous. Although it may seem as an 2290 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2291 * case as we need to track IO to all buffers underlying a page in one io_end. 2292 */ 2293 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2294 { 2295 struct address_space *mapping = mpd->inode->i_mapping; 2296 struct pagevec pvec; 2297 unsigned int nr_pages; 2298 pgoff_t index = mpd->first_page; 2299 pgoff_t end = mpd->last_page; 2300 int tag; 2301 int i, err = 0; 2302 int blkbits = mpd->inode->i_blkbits; 2303 ext4_lblk_t lblk; 2304 struct buffer_head *head; 2305 2306 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2307 tag = PAGECACHE_TAG_TOWRITE; 2308 else 2309 tag = PAGECACHE_TAG_DIRTY; 2310 2311 pagevec_init(&pvec, 0); 2312 mpd->map.m_len = 0; 2313 mpd->next_page = index; 2314 while (index <= end) { 2315 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2316 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2317 if (nr_pages == 0) 2318 goto out; 2319 2320 for (i = 0; i < nr_pages; i++) { 2321 struct page *page = pvec.pages[i]; 2322 2323 /* 2324 * At this point, the page may be truncated or 2325 * invalidated (changing page->mapping to NULL), or 2326 * even swizzled back from swapper_space to tmpfs file 2327 * mapping. However, page->index will not change 2328 * because we have a reference on the page. 2329 */ 2330 if (page->index > end) 2331 goto out; 2332 2333 /* If we can't merge this page, we are done. */ 2334 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2335 goto out; 2336 2337 lock_page(page); 2338 /* 2339 * If the page is no longer dirty, or its mapping no 2340 * longer corresponds to inode we are writing (which 2341 * means it has been truncated or invalidated), or the 2342 * page is already under writeback and we are not doing 2343 * a data integrity writeback, skip the page 2344 */ 2345 if (!PageDirty(page) || 2346 (PageWriteback(page) && 2347 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2348 unlikely(page->mapping != mapping)) { 2349 unlock_page(page); 2350 continue; 2351 } 2352 2353 wait_on_page_writeback(page); 2354 BUG_ON(PageWriteback(page)); 2355 2356 if (mpd->map.m_len == 0) 2357 mpd->first_page = page->index; 2358 mpd->next_page = page->index + 1; 2359 /* Add all dirty buffers to mpd */ 2360 lblk = ((ext4_lblk_t)page->index) << 2361 (PAGE_CACHE_SHIFT - blkbits); 2362 head = page_buffers(page); 2363 err = mpage_process_page_bufs(mpd, head, head, lblk); 2364 if (err <= 0) 2365 goto out; 2366 err = 0; 2367 2368 /* 2369 * Accumulated enough dirty pages? This doesn't apply 2370 * to WB_SYNC_ALL mode. For integrity sync we have to 2371 * keep going because someone may be concurrently 2372 * dirtying pages, and we might have synced a lot of 2373 * newly appeared dirty pages, but have not synced all 2374 * of the old dirty pages. 2375 */ 2376 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2377 mpd->next_page - mpd->first_page >= 2378 mpd->wbc->nr_to_write) 2379 goto out; 2380 } 2381 pagevec_release(&pvec); 2382 cond_resched(); 2383 } 2384 return 0; 2385 out: 2386 pagevec_release(&pvec); 2387 return err; 2388 } 2389 2390 static int __writepage(struct page *page, struct writeback_control *wbc, 2391 void *data) 2392 { 2393 struct address_space *mapping = data; 2394 int ret = ext4_writepage(page, wbc); 2395 mapping_set_error(mapping, ret); 2396 return ret; 2397 } 2398 2399 static int ext4_writepages(struct address_space *mapping, 2400 struct writeback_control *wbc) 2401 { 2402 pgoff_t writeback_index = 0; 2403 long nr_to_write = wbc->nr_to_write; 2404 int range_whole = 0; 2405 int cycled = 1; 2406 handle_t *handle = NULL; 2407 struct mpage_da_data mpd; 2408 struct inode *inode = mapping->host; 2409 int needed_blocks, rsv_blocks = 0, ret = 0; 2410 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2411 bool done; 2412 struct blk_plug plug; 2413 bool give_up_on_write = false; 2414 2415 trace_ext4_writepages(inode, wbc); 2416 2417 /* 2418 * No pages to write? This is mainly a kludge to avoid starting 2419 * a transaction for special inodes like journal inode on last iput() 2420 * because that could violate lock ordering on umount 2421 */ 2422 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2423 return 0; 2424 2425 if (ext4_should_journal_data(inode)) { 2426 struct blk_plug plug; 2427 int ret; 2428 2429 blk_start_plug(&plug); 2430 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2431 blk_finish_plug(&plug); 2432 return ret; 2433 } 2434 2435 /* 2436 * If the filesystem has aborted, it is read-only, so return 2437 * right away instead of dumping stack traces later on that 2438 * will obscure the real source of the problem. We test 2439 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2440 * the latter could be true if the filesystem is mounted 2441 * read-only, and in that case, ext4_writepages should 2442 * *never* be called, so if that ever happens, we would want 2443 * the stack trace. 2444 */ 2445 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2446 return -EROFS; 2447 2448 if (ext4_should_dioread_nolock(inode)) { 2449 /* 2450 * We may need to convert up to one extent per block in 2451 * the page and we may dirty the inode. 2452 */ 2453 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2454 } 2455 2456 /* 2457 * If we have inline data and arrive here, it means that 2458 * we will soon create the block for the 1st page, so 2459 * we'd better clear the inline data here. 2460 */ 2461 if (ext4_has_inline_data(inode)) { 2462 /* Just inode will be modified... */ 2463 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2464 if (IS_ERR(handle)) { 2465 ret = PTR_ERR(handle); 2466 goto out_writepages; 2467 } 2468 BUG_ON(ext4_test_inode_state(inode, 2469 EXT4_STATE_MAY_INLINE_DATA)); 2470 ext4_destroy_inline_data(handle, inode); 2471 ext4_journal_stop(handle); 2472 } 2473 2474 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2475 range_whole = 1; 2476 2477 if (wbc->range_cyclic) { 2478 writeback_index = mapping->writeback_index; 2479 if (writeback_index) 2480 cycled = 0; 2481 mpd.first_page = writeback_index; 2482 mpd.last_page = -1; 2483 } else { 2484 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2485 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2486 } 2487 2488 mpd.inode = inode; 2489 mpd.wbc = wbc; 2490 ext4_io_submit_init(&mpd.io_submit, wbc); 2491 retry: 2492 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2493 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2494 done = false; 2495 blk_start_plug(&plug); 2496 while (!done && mpd.first_page <= mpd.last_page) { 2497 /* For each extent of pages we use new io_end */ 2498 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2499 if (!mpd.io_submit.io_end) { 2500 ret = -ENOMEM; 2501 break; 2502 } 2503 2504 /* 2505 * We have two constraints: We find one extent to map and we 2506 * must always write out whole page (makes a difference when 2507 * blocksize < pagesize) so that we don't block on IO when we 2508 * try to write out the rest of the page. Journalled mode is 2509 * not supported by delalloc. 2510 */ 2511 BUG_ON(ext4_should_journal_data(inode)); 2512 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2513 2514 /* start a new transaction */ 2515 handle = ext4_journal_start_with_reserve(inode, 2516 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2517 if (IS_ERR(handle)) { 2518 ret = PTR_ERR(handle); 2519 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2520 "%ld pages, ino %lu; err %d", __func__, 2521 wbc->nr_to_write, inode->i_ino, ret); 2522 /* Release allocated io_end */ 2523 ext4_put_io_end(mpd.io_submit.io_end); 2524 break; 2525 } 2526 2527 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2528 ret = mpage_prepare_extent_to_map(&mpd); 2529 if (!ret) { 2530 if (mpd.map.m_len) 2531 ret = mpage_map_and_submit_extent(handle, &mpd, 2532 &give_up_on_write); 2533 else { 2534 /* 2535 * We scanned the whole range (or exhausted 2536 * nr_to_write), submitted what was mapped and 2537 * didn't find anything needing mapping. We are 2538 * done. 2539 */ 2540 done = true; 2541 } 2542 } 2543 ext4_journal_stop(handle); 2544 /* Submit prepared bio */ 2545 ext4_io_submit(&mpd.io_submit); 2546 /* Unlock pages we didn't use */ 2547 mpage_release_unused_pages(&mpd, give_up_on_write); 2548 /* Drop our io_end reference we got from init */ 2549 ext4_put_io_end(mpd.io_submit.io_end); 2550 2551 if (ret == -ENOSPC && sbi->s_journal) { 2552 /* 2553 * Commit the transaction which would 2554 * free blocks released in the transaction 2555 * and try again 2556 */ 2557 jbd2_journal_force_commit_nested(sbi->s_journal); 2558 ret = 0; 2559 continue; 2560 } 2561 /* Fatal error - ENOMEM, EIO... */ 2562 if (ret) 2563 break; 2564 } 2565 blk_finish_plug(&plug); 2566 if (!ret && !cycled && wbc->nr_to_write > 0) { 2567 cycled = 1; 2568 mpd.last_page = writeback_index - 1; 2569 mpd.first_page = 0; 2570 goto retry; 2571 } 2572 2573 /* Update index */ 2574 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2575 /* 2576 * Set the writeback_index so that range_cyclic 2577 * mode will write it back later 2578 */ 2579 mapping->writeback_index = mpd.first_page; 2580 2581 out_writepages: 2582 trace_ext4_writepages_result(inode, wbc, ret, 2583 nr_to_write - wbc->nr_to_write); 2584 return ret; 2585 } 2586 2587 static int ext4_nonda_switch(struct super_block *sb) 2588 { 2589 s64 free_clusters, dirty_clusters; 2590 struct ext4_sb_info *sbi = EXT4_SB(sb); 2591 2592 /* 2593 * switch to non delalloc mode if we are running low 2594 * on free block. The free block accounting via percpu 2595 * counters can get slightly wrong with percpu_counter_batch getting 2596 * accumulated on each CPU without updating global counters 2597 * Delalloc need an accurate free block accounting. So switch 2598 * to non delalloc when we are near to error range. 2599 */ 2600 free_clusters = 2601 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2602 dirty_clusters = 2603 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2604 /* 2605 * Start pushing delalloc when 1/2 of free blocks are dirty. 2606 */ 2607 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2608 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2609 2610 if (2 * free_clusters < 3 * dirty_clusters || 2611 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2612 /* 2613 * free block count is less than 150% of dirty blocks 2614 * or free blocks is less than watermark 2615 */ 2616 return 1; 2617 } 2618 return 0; 2619 } 2620 2621 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2622 loff_t pos, unsigned len, unsigned flags, 2623 struct page **pagep, void **fsdata) 2624 { 2625 int ret, retries = 0; 2626 struct page *page; 2627 pgoff_t index; 2628 struct inode *inode = mapping->host; 2629 handle_t *handle; 2630 2631 index = pos >> PAGE_CACHE_SHIFT; 2632 2633 if (ext4_nonda_switch(inode->i_sb)) { 2634 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2635 return ext4_write_begin(file, mapping, pos, 2636 len, flags, pagep, fsdata); 2637 } 2638 *fsdata = (void *)0; 2639 trace_ext4_da_write_begin(inode, pos, len, flags); 2640 2641 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2642 ret = ext4_da_write_inline_data_begin(mapping, inode, 2643 pos, len, flags, 2644 pagep, fsdata); 2645 if (ret < 0) 2646 return ret; 2647 if (ret == 1) 2648 return 0; 2649 } 2650 2651 /* 2652 * grab_cache_page_write_begin() can take a long time if the 2653 * system is thrashing due to memory pressure, or if the page 2654 * is being written back. So grab it first before we start 2655 * the transaction handle. This also allows us to allocate 2656 * the page (if needed) without using GFP_NOFS. 2657 */ 2658 retry_grab: 2659 page = grab_cache_page_write_begin(mapping, index, flags); 2660 if (!page) 2661 return -ENOMEM; 2662 unlock_page(page); 2663 2664 /* 2665 * With delayed allocation, we don't log the i_disksize update 2666 * if there is delayed block allocation. But we still need 2667 * to journalling the i_disksize update if writes to the end 2668 * of file which has an already mapped buffer. 2669 */ 2670 retry_journal: 2671 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2672 if (IS_ERR(handle)) { 2673 page_cache_release(page); 2674 return PTR_ERR(handle); 2675 } 2676 2677 lock_page(page); 2678 if (page->mapping != mapping) { 2679 /* The page got truncated from under us */ 2680 unlock_page(page); 2681 page_cache_release(page); 2682 ext4_journal_stop(handle); 2683 goto retry_grab; 2684 } 2685 /* In case writeback began while the page was unlocked */ 2686 wait_for_stable_page(page); 2687 2688 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2689 if (ret < 0) { 2690 unlock_page(page); 2691 ext4_journal_stop(handle); 2692 /* 2693 * block_write_begin may have instantiated a few blocks 2694 * outside i_size. Trim these off again. Don't need 2695 * i_size_read because we hold i_mutex. 2696 */ 2697 if (pos + len > inode->i_size) 2698 ext4_truncate_failed_write(inode); 2699 2700 if (ret == -ENOSPC && 2701 ext4_should_retry_alloc(inode->i_sb, &retries)) 2702 goto retry_journal; 2703 2704 page_cache_release(page); 2705 return ret; 2706 } 2707 2708 *pagep = page; 2709 return ret; 2710 } 2711 2712 /* 2713 * Check if we should update i_disksize 2714 * when write to the end of file but not require block allocation 2715 */ 2716 static int ext4_da_should_update_i_disksize(struct page *page, 2717 unsigned long offset) 2718 { 2719 struct buffer_head *bh; 2720 struct inode *inode = page->mapping->host; 2721 unsigned int idx; 2722 int i; 2723 2724 bh = page_buffers(page); 2725 idx = offset >> inode->i_blkbits; 2726 2727 for (i = 0; i < idx; i++) 2728 bh = bh->b_this_page; 2729 2730 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2731 return 0; 2732 return 1; 2733 } 2734 2735 static int ext4_da_write_end(struct file *file, 2736 struct address_space *mapping, 2737 loff_t pos, unsigned len, unsigned copied, 2738 struct page *page, void *fsdata) 2739 { 2740 struct inode *inode = mapping->host; 2741 int ret = 0, ret2; 2742 handle_t *handle = ext4_journal_current_handle(); 2743 loff_t new_i_size; 2744 unsigned long start, end; 2745 int write_mode = (int)(unsigned long)fsdata; 2746 2747 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2748 return ext4_write_end(file, mapping, pos, 2749 len, copied, page, fsdata); 2750 2751 trace_ext4_da_write_end(inode, pos, len, copied); 2752 start = pos & (PAGE_CACHE_SIZE - 1); 2753 end = start + copied - 1; 2754 2755 /* 2756 * generic_write_end() will run mark_inode_dirty() if i_size 2757 * changes. So let's piggyback the i_disksize mark_inode_dirty 2758 * into that. 2759 */ 2760 new_i_size = pos + copied; 2761 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2762 if (ext4_has_inline_data(inode) || 2763 ext4_da_should_update_i_disksize(page, end)) { 2764 down_write(&EXT4_I(inode)->i_data_sem); 2765 if (new_i_size > EXT4_I(inode)->i_disksize) 2766 EXT4_I(inode)->i_disksize = new_i_size; 2767 up_write(&EXT4_I(inode)->i_data_sem); 2768 /* We need to mark inode dirty even if 2769 * new_i_size is less that inode->i_size 2770 * bu greater than i_disksize.(hint delalloc) 2771 */ 2772 ext4_mark_inode_dirty(handle, inode); 2773 } 2774 } 2775 2776 if (write_mode != CONVERT_INLINE_DATA && 2777 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2778 ext4_has_inline_data(inode)) 2779 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2780 page); 2781 else 2782 ret2 = generic_write_end(file, mapping, pos, len, copied, 2783 page, fsdata); 2784 2785 copied = ret2; 2786 if (ret2 < 0) 2787 ret = ret2; 2788 ret2 = ext4_journal_stop(handle); 2789 if (!ret) 2790 ret = ret2; 2791 2792 return ret ? ret : copied; 2793 } 2794 2795 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2796 unsigned int length) 2797 { 2798 /* 2799 * Drop reserved blocks 2800 */ 2801 BUG_ON(!PageLocked(page)); 2802 if (!page_has_buffers(page)) 2803 goto out; 2804 2805 ext4_da_page_release_reservation(page, offset, length); 2806 2807 out: 2808 ext4_invalidatepage(page, offset, length); 2809 2810 return; 2811 } 2812 2813 /* 2814 * Force all delayed allocation blocks to be allocated for a given inode. 2815 */ 2816 int ext4_alloc_da_blocks(struct inode *inode) 2817 { 2818 trace_ext4_alloc_da_blocks(inode); 2819 2820 if (!EXT4_I(inode)->i_reserved_data_blocks && 2821 !EXT4_I(inode)->i_reserved_meta_blocks) 2822 return 0; 2823 2824 /* 2825 * We do something simple for now. The filemap_flush() will 2826 * also start triggering a write of the data blocks, which is 2827 * not strictly speaking necessary (and for users of 2828 * laptop_mode, not even desirable). However, to do otherwise 2829 * would require replicating code paths in: 2830 * 2831 * ext4_writepages() -> 2832 * write_cache_pages() ---> (via passed in callback function) 2833 * __mpage_da_writepage() --> 2834 * mpage_add_bh_to_extent() 2835 * mpage_da_map_blocks() 2836 * 2837 * The problem is that write_cache_pages(), located in 2838 * mm/page-writeback.c, marks pages clean in preparation for 2839 * doing I/O, which is not desirable if we're not planning on 2840 * doing I/O at all. 2841 * 2842 * We could call write_cache_pages(), and then redirty all of 2843 * the pages by calling redirty_page_for_writepage() but that 2844 * would be ugly in the extreme. So instead we would need to 2845 * replicate parts of the code in the above functions, 2846 * simplifying them because we wouldn't actually intend to 2847 * write out the pages, but rather only collect contiguous 2848 * logical block extents, call the multi-block allocator, and 2849 * then update the buffer heads with the block allocations. 2850 * 2851 * For now, though, we'll cheat by calling filemap_flush(), 2852 * which will map the blocks, and start the I/O, but not 2853 * actually wait for the I/O to complete. 2854 */ 2855 return filemap_flush(inode->i_mapping); 2856 } 2857 2858 /* 2859 * bmap() is special. It gets used by applications such as lilo and by 2860 * the swapper to find the on-disk block of a specific piece of data. 2861 * 2862 * Naturally, this is dangerous if the block concerned is still in the 2863 * journal. If somebody makes a swapfile on an ext4 data-journaling 2864 * filesystem and enables swap, then they may get a nasty shock when the 2865 * data getting swapped to that swapfile suddenly gets overwritten by 2866 * the original zero's written out previously to the journal and 2867 * awaiting writeback in the kernel's buffer cache. 2868 * 2869 * So, if we see any bmap calls here on a modified, data-journaled file, 2870 * take extra steps to flush any blocks which might be in the cache. 2871 */ 2872 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2873 { 2874 struct inode *inode = mapping->host; 2875 journal_t *journal; 2876 int err; 2877 2878 /* 2879 * We can get here for an inline file via the FIBMAP ioctl 2880 */ 2881 if (ext4_has_inline_data(inode)) 2882 return 0; 2883 2884 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2885 test_opt(inode->i_sb, DELALLOC)) { 2886 /* 2887 * With delalloc we want to sync the file 2888 * so that we can make sure we allocate 2889 * blocks for file 2890 */ 2891 filemap_write_and_wait(mapping); 2892 } 2893 2894 if (EXT4_JOURNAL(inode) && 2895 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2896 /* 2897 * This is a REALLY heavyweight approach, but the use of 2898 * bmap on dirty files is expected to be extremely rare: 2899 * only if we run lilo or swapon on a freshly made file 2900 * do we expect this to happen. 2901 * 2902 * (bmap requires CAP_SYS_RAWIO so this does not 2903 * represent an unprivileged user DOS attack --- we'd be 2904 * in trouble if mortal users could trigger this path at 2905 * will.) 2906 * 2907 * NB. EXT4_STATE_JDATA is not set on files other than 2908 * regular files. If somebody wants to bmap a directory 2909 * or symlink and gets confused because the buffer 2910 * hasn't yet been flushed to disk, they deserve 2911 * everything they get. 2912 */ 2913 2914 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2915 journal = EXT4_JOURNAL(inode); 2916 jbd2_journal_lock_updates(journal); 2917 err = jbd2_journal_flush(journal); 2918 jbd2_journal_unlock_updates(journal); 2919 2920 if (err) 2921 return 0; 2922 } 2923 2924 return generic_block_bmap(mapping, block, ext4_get_block); 2925 } 2926 2927 static int ext4_readpage(struct file *file, struct page *page) 2928 { 2929 int ret = -EAGAIN; 2930 struct inode *inode = page->mapping->host; 2931 2932 trace_ext4_readpage(page); 2933 2934 if (ext4_has_inline_data(inode)) 2935 ret = ext4_readpage_inline(inode, page); 2936 2937 if (ret == -EAGAIN) 2938 return mpage_readpage(page, ext4_get_block); 2939 2940 return ret; 2941 } 2942 2943 static int 2944 ext4_readpages(struct file *file, struct address_space *mapping, 2945 struct list_head *pages, unsigned nr_pages) 2946 { 2947 struct inode *inode = mapping->host; 2948 2949 /* If the file has inline data, no need to do readpages. */ 2950 if (ext4_has_inline_data(inode)) 2951 return 0; 2952 2953 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2954 } 2955 2956 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2957 unsigned int length) 2958 { 2959 trace_ext4_invalidatepage(page, offset, length); 2960 2961 /* No journalling happens on data buffers when this function is used */ 2962 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2963 2964 block_invalidatepage(page, offset, length); 2965 } 2966 2967 static int __ext4_journalled_invalidatepage(struct page *page, 2968 unsigned int offset, 2969 unsigned int length) 2970 { 2971 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2972 2973 trace_ext4_journalled_invalidatepage(page, offset, length); 2974 2975 /* 2976 * If it's a full truncate we just forget about the pending dirtying 2977 */ 2978 if (offset == 0 && length == PAGE_CACHE_SIZE) 2979 ClearPageChecked(page); 2980 2981 return jbd2_journal_invalidatepage(journal, page, offset, length); 2982 } 2983 2984 /* Wrapper for aops... */ 2985 static void ext4_journalled_invalidatepage(struct page *page, 2986 unsigned int offset, 2987 unsigned int length) 2988 { 2989 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2990 } 2991 2992 static int ext4_releasepage(struct page *page, gfp_t wait) 2993 { 2994 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2995 2996 trace_ext4_releasepage(page); 2997 2998 /* Page has dirty journalled data -> cannot release */ 2999 if (PageChecked(page)) 3000 return 0; 3001 if (journal) 3002 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3003 else 3004 return try_to_free_buffers(page); 3005 } 3006 3007 /* 3008 * ext4_get_block used when preparing for a DIO write or buffer write. 3009 * We allocate an uinitialized extent if blocks haven't been allocated. 3010 * The extent will be converted to initialized after the IO is complete. 3011 */ 3012 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3013 struct buffer_head *bh_result, int create) 3014 { 3015 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3016 inode->i_ino, create); 3017 return _ext4_get_block(inode, iblock, bh_result, 3018 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3019 } 3020 3021 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3022 struct buffer_head *bh_result, int create) 3023 { 3024 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3025 inode->i_ino, create); 3026 return _ext4_get_block(inode, iblock, bh_result, 3027 EXT4_GET_BLOCKS_NO_LOCK); 3028 } 3029 3030 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3031 ssize_t size, void *private) 3032 { 3033 ext4_io_end_t *io_end = iocb->private; 3034 3035 /* if not async direct IO just return */ 3036 if (!io_end) 3037 return; 3038 3039 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3040 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3041 iocb->private, io_end->inode->i_ino, iocb, offset, 3042 size); 3043 3044 iocb->private = NULL; 3045 io_end->offset = offset; 3046 io_end->size = size; 3047 ext4_put_io_end(io_end); 3048 } 3049 3050 /* 3051 * For ext4 extent files, ext4 will do direct-io write to holes, 3052 * preallocated extents, and those write extend the file, no need to 3053 * fall back to buffered IO. 3054 * 3055 * For holes, we fallocate those blocks, mark them as uninitialized 3056 * If those blocks were preallocated, we mark sure they are split, but 3057 * still keep the range to write as uninitialized. 3058 * 3059 * The unwritten extents will be converted to written when DIO is completed. 3060 * For async direct IO, since the IO may still pending when return, we 3061 * set up an end_io call back function, which will do the conversion 3062 * when async direct IO completed. 3063 * 3064 * If the O_DIRECT write will extend the file then add this inode to the 3065 * orphan list. So recovery will truncate it back to the original size 3066 * if the machine crashes during the write. 3067 * 3068 */ 3069 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3070 const struct iovec *iov, loff_t offset, 3071 unsigned long nr_segs) 3072 { 3073 struct file *file = iocb->ki_filp; 3074 struct inode *inode = file->f_mapping->host; 3075 ssize_t ret; 3076 size_t count = iov_length(iov, nr_segs); 3077 int overwrite = 0; 3078 get_block_t *get_block_func = NULL; 3079 int dio_flags = 0; 3080 loff_t final_size = offset + count; 3081 ext4_io_end_t *io_end = NULL; 3082 3083 /* Use the old path for reads and writes beyond i_size. */ 3084 if (rw != WRITE || final_size > inode->i_size) 3085 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3086 3087 BUG_ON(iocb->private == NULL); 3088 3089 /* 3090 * Make all waiters for direct IO properly wait also for extent 3091 * conversion. This also disallows race between truncate() and 3092 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3093 */ 3094 if (rw == WRITE) 3095 atomic_inc(&inode->i_dio_count); 3096 3097 /* If we do a overwrite dio, i_mutex locking can be released */ 3098 overwrite = *((int *)iocb->private); 3099 3100 if (overwrite) { 3101 down_read(&EXT4_I(inode)->i_data_sem); 3102 mutex_unlock(&inode->i_mutex); 3103 } 3104 3105 /* 3106 * We could direct write to holes and fallocate. 3107 * 3108 * Allocated blocks to fill the hole are marked as 3109 * uninitialized to prevent parallel buffered read to expose 3110 * the stale data before DIO complete the data IO. 3111 * 3112 * As to previously fallocated extents, ext4 get_block will 3113 * just simply mark the buffer mapped but still keep the 3114 * extents uninitialized. 3115 * 3116 * For non AIO case, we will convert those unwritten extents 3117 * to written after return back from blockdev_direct_IO. 3118 * 3119 * For async DIO, the conversion needs to be deferred when the 3120 * IO is completed. The ext4 end_io callback function will be 3121 * called to take care of the conversion work. Here for async 3122 * case, we allocate an io_end structure to hook to the iocb. 3123 */ 3124 iocb->private = NULL; 3125 ext4_inode_aio_set(inode, NULL); 3126 if (!is_sync_kiocb(iocb)) { 3127 io_end = ext4_init_io_end(inode, GFP_NOFS); 3128 if (!io_end) { 3129 ret = -ENOMEM; 3130 goto retake_lock; 3131 } 3132 /* 3133 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3134 */ 3135 iocb->private = ext4_get_io_end(io_end); 3136 /* 3137 * we save the io structure for current async direct 3138 * IO, so that later ext4_map_blocks() could flag the 3139 * io structure whether there is a unwritten extents 3140 * needs to be converted when IO is completed. 3141 */ 3142 ext4_inode_aio_set(inode, io_end); 3143 } 3144 3145 if (overwrite) { 3146 get_block_func = ext4_get_block_write_nolock; 3147 } else { 3148 get_block_func = ext4_get_block_write; 3149 dio_flags = DIO_LOCKING; 3150 } 3151 ret = __blockdev_direct_IO(rw, iocb, inode, 3152 inode->i_sb->s_bdev, iov, 3153 offset, nr_segs, 3154 get_block_func, 3155 ext4_end_io_dio, 3156 NULL, 3157 dio_flags); 3158 3159 /* 3160 * Put our reference to io_end. This can free the io_end structure e.g. 3161 * in sync IO case or in case of error. It can even perform extent 3162 * conversion if all bios we submitted finished before we got here. 3163 * Note that in that case iocb->private can be already set to NULL 3164 * here. 3165 */ 3166 if (io_end) { 3167 ext4_inode_aio_set(inode, NULL); 3168 ext4_put_io_end(io_end); 3169 /* 3170 * When no IO was submitted ext4_end_io_dio() was not 3171 * called so we have to put iocb's reference. 3172 */ 3173 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3174 WARN_ON(iocb->private != io_end); 3175 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3176 ext4_put_io_end(io_end); 3177 iocb->private = NULL; 3178 } 3179 } 3180 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3181 EXT4_STATE_DIO_UNWRITTEN)) { 3182 int err; 3183 /* 3184 * for non AIO case, since the IO is already 3185 * completed, we could do the conversion right here 3186 */ 3187 err = ext4_convert_unwritten_extents(NULL, inode, 3188 offset, ret); 3189 if (err < 0) 3190 ret = err; 3191 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3192 } 3193 3194 retake_lock: 3195 if (rw == WRITE) 3196 inode_dio_done(inode); 3197 /* take i_mutex locking again if we do a ovewrite dio */ 3198 if (overwrite) { 3199 up_read(&EXT4_I(inode)->i_data_sem); 3200 mutex_lock(&inode->i_mutex); 3201 } 3202 3203 return ret; 3204 } 3205 3206 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3207 const struct iovec *iov, loff_t offset, 3208 unsigned long nr_segs) 3209 { 3210 struct file *file = iocb->ki_filp; 3211 struct inode *inode = file->f_mapping->host; 3212 ssize_t ret; 3213 3214 /* 3215 * If we are doing data journalling we don't support O_DIRECT 3216 */ 3217 if (ext4_should_journal_data(inode)) 3218 return 0; 3219 3220 /* Let buffer I/O handle the inline data case. */ 3221 if (ext4_has_inline_data(inode)) 3222 return 0; 3223 3224 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3225 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3226 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3227 else 3228 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3229 trace_ext4_direct_IO_exit(inode, offset, 3230 iov_length(iov, nr_segs), rw, ret); 3231 return ret; 3232 } 3233 3234 /* 3235 * Pages can be marked dirty completely asynchronously from ext4's journalling 3236 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3237 * much here because ->set_page_dirty is called under VFS locks. The page is 3238 * not necessarily locked. 3239 * 3240 * We cannot just dirty the page and leave attached buffers clean, because the 3241 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3242 * or jbddirty because all the journalling code will explode. 3243 * 3244 * So what we do is to mark the page "pending dirty" and next time writepage 3245 * is called, propagate that into the buffers appropriately. 3246 */ 3247 static int ext4_journalled_set_page_dirty(struct page *page) 3248 { 3249 SetPageChecked(page); 3250 return __set_page_dirty_nobuffers(page); 3251 } 3252 3253 static const struct address_space_operations ext4_aops = { 3254 .readpage = ext4_readpage, 3255 .readpages = ext4_readpages, 3256 .writepage = ext4_writepage, 3257 .writepages = ext4_writepages, 3258 .write_begin = ext4_write_begin, 3259 .write_end = ext4_write_end, 3260 .bmap = ext4_bmap, 3261 .invalidatepage = ext4_invalidatepage, 3262 .releasepage = ext4_releasepage, 3263 .direct_IO = ext4_direct_IO, 3264 .migratepage = buffer_migrate_page, 3265 .is_partially_uptodate = block_is_partially_uptodate, 3266 .error_remove_page = generic_error_remove_page, 3267 }; 3268 3269 static const struct address_space_operations ext4_journalled_aops = { 3270 .readpage = ext4_readpage, 3271 .readpages = ext4_readpages, 3272 .writepage = ext4_writepage, 3273 .writepages = ext4_writepages, 3274 .write_begin = ext4_write_begin, 3275 .write_end = ext4_journalled_write_end, 3276 .set_page_dirty = ext4_journalled_set_page_dirty, 3277 .bmap = ext4_bmap, 3278 .invalidatepage = ext4_journalled_invalidatepage, 3279 .releasepage = ext4_releasepage, 3280 .direct_IO = ext4_direct_IO, 3281 .is_partially_uptodate = block_is_partially_uptodate, 3282 .error_remove_page = generic_error_remove_page, 3283 }; 3284 3285 static const struct address_space_operations ext4_da_aops = { 3286 .readpage = ext4_readpage, 3287 .readpages = ext4_readpages, 3288 .writepage = ext4_writepage, 3289 .writepages = ext4_writepages, 3290 .write_begin = ext4_da_write_begin, 3291 .write_end = ext4_da_write_end, 3292 .bmap = ext4_bmap, 3293 .invalidatepage = ext4_da_invalidatepage, 3294 .releasepage = ext4_releasepage, 3295 .direct_IO = ext4_direct_IO, 3296 .migratepage = buffer_migrate_page, 3297 .is_partially_uptodate = block_is_partially_uptodate, 3298 .error_remove_page = generic_error_remove_page, 3299 }; 3300 3301 void ext4_set_aops(struct inode *inode) 3302 { 3303 switch (ext4_inode_journal_mode(inode)) { 3304 case EXT4_INODE_ORDERED_DATA_MODE: 3305 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3306 break; 3307 case EXT4_INODE_WRITEBACK_DATA_MODE: 3308 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3309 break; 3310 case EXT4_INODE_JOURNAL_DATA_MODE: 3311 inode->i_mapping->a_ops = &ext4_journalled_aops; 3312 return; 3313 default: 3314 BUG(); 3315 } 3316 if (test_opt(inode->i_sb, DELALLOC)) 3317 inode->i_mapping->a_ops = &ext4_da_aops; 3318 else 3319 inode->i_mapping->a_ops = &ext4_aops; 3320 } 3321 3322 /* 3323 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3324 * up to the end of the block which corresponds to `from'. 3325 * This required during truncate. We need to physically zero the tail end 3326 * of that block so it doesn't yield old data if the file is later grown. 3327 */ 3328 int ext4_block_truncate_page(handle_t *handle, 3329 struct address_space *mapping, loff_t from) 3330 { 3331 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3332 unsigned length; 3333 unsigned blocksize; 3334 struct inode *inode = mapping->host; 3335 3336 blocksize = inode->i_sb->s_blocksize; 3337 length = blocksize - (offset & (blocksize - 1)); 3338 3339 return ext4_block_zero_page_range(handle, mapping, from, length); 3340 } 3341 3342 /* 3343 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3344 * starting from file offset 'from'. The range to be zero'd must 3345 * be contained with in one block. If the specified range exceeds 3346 * the end of the block it will be shortened to end of the block 3347 * that cooresponds to 'from' 3348 */ 3349 int ext4_block_zero_page_range(handle_t *handle, 3350 struct address_space *mapping, loff_t from, loff_t length) 3351 { 3352 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3353 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3354 unsigned blocksize, max, pos; 3355 ext4_lblk_t iblock; 3356 struct inode *inode = mapping->host; 3357 struct buffer_head *bh; 3358 struct page *page; 3359 int err = 0; 3360 3361 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3362 mapping_gfp_mask(mapping) & ~__GFP_FS); 3363 if (!page) 3364 return -ENOMEM; 3365 3366 blocksize = inode->i_sb->s_blocksize; 3367 max = blocksize - (offset & (blocksize - 1)); 3368 3369 /* 3370 * correct length if it does not fall between 3371 * 'from' and the end of the block 3372 */ 3373 if (length > max || length < 0) 3374 length = max; 3375 3376 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3377 3378 if (!page_has_buffers(page)) 3379 create_empty_buffers(page, blocksize, 0); 3380 3381 /* Find the buffer that contains "offset" */ 3382 bh = page_buffers(page); 3383 pos = blocksize; 3384 while (offset >= pos) { 3385 bh = bh->b_this_page; 3386 iblock++; 3387 pos += blocksize; 3388 } 3389 if (buffer_freed(bh)) { 3390 BUFFER_TRACE(bh, "freed: skip"); 3391 goto unlock; 3392 } 3393 if (!buffer_mapped(bh)) { 3394 BUFFER_TRACE(bh, "unmapped"); 3395 ext4_get_block(inode, iblock, bh, 0); 3396 /* unmapped? It's a hole - nothing to do */ 3397 if (!buffer_mapped(bh)) { 3398 BUFFER_TRACE(bh, "still unmapped"); 3399 goto unlock; 3400 } 3401 } 3402 3403 /* Ok, it's mapped. Make sure it's up-to-date */ 3404 if (PageUptodate(page)) 3405 set_buffer_uptodate(bh); 3406 3407 if (!buffer_uptodate(bh)) { 3408 err = -EIO; 3409 ll_rw_block(READ, 1, &bh); 3410 wait_on_buffer(bh); 3411 /* Uhhuh. Read error. Complain and punt. */ 3412 if (!buffer_uptodate(bh)) 3413 goto unlock; 3414 } 3415 if (ext4_should_journal_data(inode)) { 3416 BUFFER_TRACE(bh, "get write access"); 3417 err = ext4_journal_get_write_access(handle, bh); 3418 if (err) 3419 goto unlock; 3420 } 3421 zero_user(page, offset, length); 3422 BUFFER_TRACE(bh, "zeroed end of block"); 3423 3424 if (ext4_should_journal_data(inode)) { 3425 err = ext4_handle_dirty_metadata(handle, inode, bh); 3426 } else { 3427 err = 0; 3428 mark_buffer_dirty(bh); 3429 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3430 err = ext4_jbd2_file_inode(handle, inode); 3431 } 3432 3433 unlock: 3434 unlock_page(page); 3435 page_cache_release(page); 3436 return err; 3437 } 3438 3439 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3440 loff_t lstart, loff_t length) 3441 { 3442 struct super_block *sb = inode->i_sb; 3443 struct address_space *mapping = inode->i_mapping; 3444 unsigned partial_start, partial_end; 3445 ext4_fsblk_t start, end; 3446 loff_t byte_end = (lstart + length - 1); 3447 int err = 0; 3448 3449 partial_start = lstart & (sb->s_blocksize - 1); 3450 partial_end = byte_end & (sb->s_blocksize - 1); 3451 3452 start = lstart >> sb->s_blocksize_bits; 3453 end = byte_end >> sb->s_blocksize_bits; 3454 3455 /* Handle partial zero within the single block */ 3456 if (start == end && 3457 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3458 err = ext4_block_zero_page_range(handle, mapping, 3459 lstart, length); 3460 return err; 3461 } 3462 /* Handle partial zero out on the start of the range */ 3463 if (partial_start) { 3464 err = ext4_block_zero_page_range(handle, mapping, 3465 lstart, sb->s_blocksize); 3466 if (err) 3467 return err; 3468 } 3469 /* Handle partial zero out on the end of the range */ 3470 if (partial_end != sb->s_blocksize - 1) 3471 err = ext4_block_zero_page_range(handle, mapping, 3472 byte_end - partial_end, 3473 partial_end + 1); 3474 return err; 3475 } 3476 3477 int ext4_can_truncate(struct inode *inode) 3478 { 3479 if (S_ISREG(inode->i_mode)) 3480 return 1; 3481 if (S_ISDIR(inode->i_mode)) 3482 return 1; 3483 if (S_ISLNK(inode->i_mode)) 3484 return !ext4_inode_is_fast_symlink(inode); 3485 return 0; 3486 } 3487 3488 /* 3489 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3490 * associated with the given offset and length 3491 * 3492 * @inode: File inode 3493 * @offset: The offset where the hole will begin 3494 * @len: The length of the hole 3495 * 3496 * Returns: 0 on success or negative on failure 3497 */ 3498 3499 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3500 { 3501 struct super_block *sb = inode->i_sb; 3502 ext4_lblk_t first_block, stop_block; 3503 struct address_space *mapping = inode->i_mapping; 3504 loff_t first_block_offset, last_block_offset; 3505 handle_t *handle; 3506 unsigned int credits; 3507 int ret = 0; 3508 3509 if (!S_ISREG(inode->i_mode)) 3510 return -EOPNOTSUPP; 3511 3512 if (EXT4_SB(sb)->s_cluster_ratio > 1) { 3513 /* TODO: Add support for bigalloc file systems */ 3514 return -EOPNOTSUPP; 3515 } 3516 3517 trace_ext4_punch_hole(inode, offset, length); 3518 3519 /* 3520 * Write out all dirty pages to avoid race conditions 3521 * Then release them. 3522 */ 3523 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3524 ret = filemap_write_and_wait_range(mapping, offset, 3525 offset + length - 1); 3526 if (ret) 3527 return ret; 3528 } 3529 3530 mutex_lock(&inode->i_mutex); 3531 /* It's not possible punch hole on append only file */ 3532 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3533 ret = -EPERM; 3534 goto out_mutex; 3535 } 3536 if (IS_SWAPFILE(inode)) { 3537 ret = -ETXTBSY; 3538 goto out_mutex; 3539 } 3540 3541 /* No need to punch hole beyond i_size */ 3542 if (offset >= inode->i_size) 3543 goto out_mutex; 3544 3545 /* 3546 * If the hole extends beyond i_size, set the hole 3547 * to end after the page that contains i_size 3548 */ 3549 if (offset + length > inode->i_size) { 3550 length = inode->i_size + 3551 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3552 offset; 3553 } 3554 3555 if (offset & (sb->s_blocksize - 1) || 3556 (offset + length) & (sb->s_blocksize - 1)) { 3557 /* 3558 * Attach jinode to inode for jbd2 if we do any zeroing of 3559 * partial block 3560 */ 3561 ret = ext4_inode_attach_jinode(inode); 3562 if (ret < 0) 3563 goto out_mutex; 3564 3565 } 3566 3567 first_block_offset = round_up(offset, sb->s_blocksize); 3568 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3569 3570 /* Now release the pages and zero block aligned part of pages*/ 3571 if (last_block_offset > first_block_offset) 3572 truncate_pagecache_range(inode, first_block_offset, 3573 last_block_offset); 3574 3575 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3576 ext4_inode_block_unlocked_dio(inode); 3577 inode_dio_wait(inode); 3578 3579 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3580 credits = ext4_writepage_trans_blocks(inode); 3581 else 3582 credits = ext4_blocks_for_truncate(inode); 3583 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3584 if (IS_ERR(handle)) { 3585 ret = PTR_ERR(handle); 3586 ext4_std_error(sb, ret); 3587 goto out_dio; 3588 } 3589 3590 ret = ext4_zero_partial_blocks(handle, inode, offset, 3591 length); 3592 if (ret) 3593 goto out_stop; 3594 3595 first_block = (offset + sb->s_blocksize - 1) >> 3596 EXT4_BLOCK_SIZE_BITS(sb); 3597 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3598 3599 /* If there are no blocks to remove, return now */ 3600 if (first_block >= stop_block) 3601 goto out_stop; 3602 3603 down_write(&EXT4_I(inode)->i_data_sem); 3604 ext4_discard_preallocations(inode); 3605 3606 ret = ext4_es_remove_extent(inode, first_block, 3607 stop_block - first_block); 3608 if (ret) { 3609 up_write(&EXT4_I(inode)->i_data_sem); 3610 goto out_stop; 3611 } 3612 3613 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3614 ret = ext4_ext_remove_space(inode, first_block, 3615 stop_block - 1); 3616 else 3617 ret = ext4_free_hole_blocks(handle, inode, first_block, 3618 stop_block); 3619 3620 ext4_discard_preallocations(inode); 3621 up_write(&EXT4_I(inode)->i_data_sem); 3622 if (IS_SYNC(inode)) 3623 ext4_handle_sync(handle); 3624 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3625 ext4_mark_inode_dirty(handle, inode); 3626 out_stop: 3627 ext4_journal_stop(handle); 3628 out_dio: 3629 ext4_inode_resume_unlocked_dio(inode); 3630 out_mutex: 3631 mutex_unlock(&inode->i_mutex); 3632 return ret; 3633 } 3634 3635 int ext4_inode_attach_jinode(struct inode *inode) 3636 { 3637 struct ext4_inode_info *ei = EXT4_I(inode); 3638 struct jbd2_inode *jinode; 3639 3640 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3641 return 0; 3642 3643 jinode = jbd2_alloc_inode(GFP_KERNEL); 3644 spin_lock(&inode->i_lock); 3645 if (!ei->jinode) { 3646 if (!jinode) { 3647 spin_unlock(&inode->i_lock); 3648 return -ENOMEM; 3649 } 3650 ei->jinode = jinode; 3651 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3652 jinode = NULL; 3653 } 3654 spin_unlock(&inode->i_lock); 3655 if (unlikely(jinode != NULL)) 3656 jbd2_free_inode(jinode); 3657 return 0; 3658 } 3659 3660 /* 3661 * ext4_truncate() 3662 * 3663 * We block out ext4_get_block() block instantiations across the entire 3664 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3665 * simultaneously on behalf of the same inode. 3666 * 3667 * As we work through the truncate and commit bits of it to the journal there 3668 * is one core, guiding principle: the file's tree must always be consistent on 3669 * disk. We must be able to restart the truncate after a crash. 3670 * 3671 * The file's tree may be transiently inconsistent in memory (although it 3672 * probably isn't), but whenever we close off and commit a journal transaction, 3673 * the contents of (the filesystem + the journal) must be consistent and 3674 * restartable. It's pretty simple, really: bottom up, right to left (although 3675 * left-to-right works OK too). 3676 * 3677 * Note that at recovery time, journal replay occurs *before* the restart of 3678 * truncate against the orphan inode list. 3679 * 3680 * The committed inode has the new, desired i_size (which is the same as 3681 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3682 * that this inode's truncate did not complete and it will again call 3683 * ext4_truncate() to have another go. So there will be instantiated blocks 3684 * to the right of the truncation point in a crashed ext4 filesystem. But 3685 * that's fine - as long as they are linked from the inode, the post-crash 3686 * ext4_truncate() run will find them and release them. 3687 */ 3688 void ext4_truncate(struct inode *inode) 3689 { 3690 struct ext4_inode_info *ei = EXT4_I(inode); 3691 unsigned int credits; 3692 handle_t *handle; 3693 struct address_space *mapping = inode->i_mapping; 3694 3695 /* 3696 * There is a possibility that we're either freeing the inode 3697 * or it completely new indode. In those cases we might not 3698 * have i_mutex locked because it's not necessary. 3699 */ 3700 if (!(inode->i_state & (I_NEW|I_FREEING))) 3701 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3702 trace_ext4_truncate_enter(inode); 3703 3704 if (!ext4_can_truncate(inode)) 3705 return; 3706 3707 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3708 3709 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3710 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3711 3712 if (ext4_has_inline_data(inode)) { 3713 int has_inline = 1; 3714 3715 ext4_inline_data_truncate(inode, &has_inline); 3716 if (has_inline) 3717 return; 3718 } 3719 3720 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3721 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3722 if (ext4_inode_attach_jinode(inode) < 0) 3723 return; 3724 } 3725 3726 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3727 credits = ext4_writepage_trans_blocks(inode); 3728 else 3729 credits = ext4_blocks_for_truncate(inode); 3730 3731 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3732 if (IS_ERR(handle)) { 3733 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3734 return; 3735 } 3736 3737 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3738 ext4_block_truncate_page(handle, mapping, inode->i_size); 3739 3740 /* 3741 * We add the inode to the orphan list, so that if this 3742 * truncate spans multiple transactions, and we crash, we will 3743 * resume the truncate when the filesystem recovers. It also 3744 * marks the inode dirty, to catch the new size. 3745 * 3746 * Implication: the file must always be in a sane, consistent 3747 * truncatable state while each transaction commits. 3748 */ 3749 if (ext4_orphan_add(handle, inode)) 3750 goto out_stop; 3751 3752 down_write(&EXT4_I(inode)->i_data_sem); 3753 3754 ext4_discard_preallocations(inode); 3755 3756 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3757 ext4_ext_truncate(handle, inode); 3758 else 3759 ext4_ind_truncate(handle, inode); 3760 3761 up_write(&ei->i_data_sem); 3762 3763 if (IS_SYNC(inode)) 3764 ext4_handle_sync(handle); 3765 3766 out_stop: 3767 /* 3768 * If this was a simple ftruncate() and the file will remain alive, 3769 * then we need to clear up the orphan record which we created above. 3770 * However, if this was a real unlink then we were called by 3771 * ext4_delete_inode(), and we allow that function to clean up the 3772 * orphan info for us. 3773 */ 3774 if (inode->i_nlink) 3775 ext4_orphan_del(handle, inode); 3776 3777 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3778 ext4_mark_inode_dirty(handle, inode); 3779 ext4_journal_stop(handle); 3780 3781 trace_ext4_truncate_exit(inode); 3782 } 3783 3784 /* 3785 * ext4_get_inode_loc returns with an extra refcount against the inode's 3786 * underlying buffer_head on success. If 'in_mem' is true, we have all 3787 * data in memory that is needed to recreate the on-disk version of this 3788 * inode. 3789 */ 3790 static int __ext4_get_inode_loc(struct inode *inode, 3791 struct ext4_iloc *iloc, int in_mem) 3792 { 3793 struct ext4_group_desc *gdp; 3794 struct buffer_head *bh; 3795 struct super_block *sb = inode->i_sb; 3796 ext4_fsblk_t block; 3797 int inodes_per_block, inode_offset; 3798 3799 iloc->bh = NULL; 3800 if (!ext4_valid_inum(sb, inode->i_ino)) 3801 return -EIO; 3802 3803 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3804 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3805 if (!gdp) 3806 return -EIO; 3807 3808 /* 3809 * Figure out the offset within the block group inode table 3810 */ 3811 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3812 inode_offset = ((inode->i_ino - 1) % 3813 EXT4_INODES_PER_GROUP(sb)); 3814 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3815 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3816 3817 bh = sb_getblk(sb, block); 3818 if (unlikely(!bh)) 3819 return -ENOMEM; 3820 if (!buffer_uptodate(bh)) { 3821 lock_buffer(bh); 3822 3823 /* 3824 * If the buffer has the write error flag, we have failed 3825 * to write out another inode in the same block. In this 3826 * case, we don't have to read the block because we may 3827 * read the old inode data successfully. 3828 */ 3829 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3830 set_buffer_uptodate(bh); 3831 3832 if (buffer_uptodate(bh)) { 3833 /* someone brought it uptodate while we waited */ 3834 unlock_buffer(bh); 3835 goto has_buffer; 3836 } 3837 3838 /* 3839 * If we have all information of the inode in memory and this 3840 * is the only valid inode in the block, we need not read the 3841 * block. 3842 */ 3843 if (in_mem) { 3844 struct buffer_head *bitmap_bh; 3845 int i, start; 3846 3847 start = inode_offset & ~(inodes_per_block - 1); 3848 3849 /* Is the inode bitmap in cache? */ 3850 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3851 if (unlikely(!bitmap_bh)) 3852 goto make_io; 3853 3854 /* 3855 * If the inode bitmap isn't in cache then the 3856 * optimisation may end up performing two reads instead 3857 * of one, so skip it. 3858 */ 3859 if (!buffer_uptodate(bitmap_bh)) { 3860 brelse(bitmap_bh); 3861 goto make_io; 3862 } 3863 for (i = start; i < start + inodes_per_block; i++) { 3864 if (i == inode_offset) 3865 continue; 3866 if (ext4_test_bit(i, bitmap_bh->b_data)) 3867 break; 3868 } 3869 brelse(bitmap_bh); 3870 if (i == start + inodes_per_block) { 3871 /* all other inodes are free, so skip I/O */ 3872 memset(bh->b_data, 0, bh->b_size); 3873 set_buffer_uptodate(bh); 3874 unlock_buffer(bh); 3875 goto has_buffer; 3876 } 3877 } 3878 3879 make_io: 3880 /* 3881 * If we need to do any I/O, try to pre-readahead extra 3882 * blocks from the inode table. 3883 */ 3884 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3885 ext4_fsblk_t b, end, table; 3886 unsigned num; 3887 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3888 3889 table = ext4_inode_table(sb, gdp); 3890 /* s_inode_readahead_blks is always a power of 2 */ 3891 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3892 if (table > b) 3893 b = table; 3894 end = b + ra_blks; 3895 num = EXT4_INODES_PER_GROUP(sb); 3896 if (ext4_has_group_desc_csum(sb)) 3897 num -= ext4_itable_unused_count(sb, gdp); 3898 table += num / inodes_per_block; 3899 if (end > table) 3900 end = table; 3901 while (b <= end) 3902 sb_breadahead(sb, b++); 3903 } 3904 3905 /* 3906 * There are other valid inodes in the buffer, this inode 3907 * has in-inode xattrs, or we don't have this inode in memory. 3908 * Read the block from disk. 3909 */ 3910 trace_ext4_load_inode(inode); 3911 get_bh(bh); 3912 bh->b_end_io = end_buffer_read_sync; 3913 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3914 wait_on_buffer(bh); 3915 if (!buffer_uptodate(bh)) { 3916 EXT4_ERROR_INODE_BLOCK(inode, block, 3917 "unable to read itable block"); 3918 brelse(bh); 3919 return -EIO; 3920 } 3921 } 3922 has_buffer: 3923 iloc->bh = bh; 3924 return 0; 3925 } 3926 3927 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3928 { 3929 /* We have all inode data except xattrs in memory here. */ 3930 return __ext4_get_inode_loc(inode, iloc, 3931 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3932 } 3933 3934 void ext4_set_inode_flags(struct inode *inode) 3935 { 3936 unsigned int flags = EXT4_I(inode)->i_flags; 3937 3938 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3939 if (flags & EXT4_SYNC_FL) 3940 inode->i_flags |= S_SYNC; 3941 if (flags & EXT4_APPEND_FL) 3942 inode->i_flags |= S_APPEND; 3943 if (flags & EXT4_IMMUTABLE_FL) 3944 inode->i_flags |= S_IMMUTABLE; 3945 if (flags & EXT4_NOATIME_FL) 3946 inode->i_flags |= S_NOATIME; 3947 if (flags & EXT4_DIRSYNC_FL) 3948 inode->i_flags |= S_DIRSYNC; 3949 } 3950 3951 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3952 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3953 { 3954 unsigned int vfs_fl; 3955 unsigned long old_fl, new_fl; 3956 3957 do { 3958 vfs_fl = ei->vfs_inode.i_flags; 3959 old_fl = ei->i_flags; 3960 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3961 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3962 EXT4_DIRSYNC_FL); 3963 if (vfs_fl & S_SYNC) 3964 new_fl |= EXT4_SYNC_FL; 3965 if (vfs_fl & S_APPEND) 3966 new_fl |= EXT4_APPEND_FL; 3967 if (vfs_fl & S_IMMUTABLE) 3968 new_fl |= EXT4_IMMUTABLE_FL; 3969 if (vfs_fl & S_NOATIME) 3970 new_fl |= EXT4_NOATIME_FL; 3971 if (vfs_fl & S_DIRSYNC) 3972 new_fl |= EXT4_DIRSYNC_FL; 3973 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3974 } 3975 3976 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3977 struct ext4_inode_info *ei) 3978 { 3979 blkcnt_t i_blocks ; 3980 struct inode *inode = &(ei->vfs_inode); 3981 struct super_block *sb = inode->i_sb; 3982 3983 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3984 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3985 /* we are using combined 48 bit field */ 3986 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3987 le32_to_cpu(raw_inode->i_blocks_lo); 3988 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3989 /* i_blocks represent file system block size */ 3990 return i_blocks << (inode->i_blkbits - 9); 3991 } else { 3992 return i_blocks; 3993 } 3994 } else { 3995 return le32_to_cpu(raw_inode->i_blocks_lo); 3996 } 3997 } 3998 3999 static inline void ext4_iget_extra_inode(struct inode *inode, 4000 struct ext4_inode *raw_inode, 4001 struct ext4_inode_info *ei) 4002 { 4003 __le32 *magic = (void *)raw_inode + 4004 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4005 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4006 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4007 ext4_find_inline_data_nolock(inode); 4008 } else 4009 EXT4_I(inode)->i_inline_off = 0; 4010 } 4011 4012 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4013 { 4014 struct ext4_iloc iloc; 4015 struct ext4_inode *raw_inode; 4016 struct ext4_inode_info *ei; 4017 struct inode *inode; 4018 journal_t *journal = EXT4_SB(sb)->s_journal; 4019 long ret; 4020 int block; 4021 uid_t i_uid; 4022 gid_t i_gid; 4023 4024 inode = iget_locked(sb, ino); 4025 if (!inode) 4026 return ERR_PTR(-ENOMEM); 4027 if (!(inode->i_state & I_NEW)) 4028 return inode; 4029 4030 ei = EXT4_I(inode); 4031 iloc.bh = NULL; 4032 4033 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4034 if (ret < 0) 4035 goto bad_inode; 4036 raw_inode = ext4_raw_inode(&iloc); 4037 4038 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4039 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4040 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4041 EXT4_INODE_SIZE(inode->i_sb)) { 4042 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4043 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4044 EXT4_INODE_SIZE(inode->i_sb)); 4045 ret = -EIO; 4046 goto bad_inode; 4047 } 4048 } else 4049 ei->i_extra_isize = 0; 4050 4051 /* Precompute checksum seed for inode metadata */ 4052 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4053 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 4054 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4055 __u32 csum; 4056 __le32 inum = cpu_to_le32(inode->i_ino); 4057 __le32 gen = raw_inode->i_generation; 4058 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4059 sizeof(inum)); 4060 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4061 sizeof(gen)); 4062 } 4063 4064 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4065 EXT4_ERROR_INODE(inode, "checksum invalid"); 4066 ret = -EIO; 4067 goto bad_inode; 4068 } 4069 4070 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4071 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4072 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4073 if (!(test_opt(inode->i_sb, NO_UID32))) { 4074 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4075 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4076 } 4077 i_uid_write(inode, i_uid); 4078 i_gid_write(inode, i_gid); 4079 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4080 4081 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4082 ei->i_inline_off = 0; 4083 ei->i_dir_start_lookup = 0; 4084 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4085 /* We now have enough fields to check if the inode was active or not. 4086 * This is needed because nfsd might try to access dead inodes 4087 * the test is that same one that e2fsck uses 4088 * NeilBrown 1999oct15 4089 */ 4090 if (inode->i_nlink == 0) { 4091 if ((inode->i_mode == 0 || 4092 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4093 ino != EXT4_BOOT_LOADER_INO) { 4094 /* this inode is deleted */ 4095 ret = -ESTALE; 4096 goto bad_inode; 4097 } 4098 /* The only unlinked inodes we let through here have 4099 * valid i_mode and are being read by the orphan 4100 * recovery code: that's fine, we're about to complete 4101 * the process of deleting those. 4102 * OR it is the EXT4_BOOT_LOADER_INO which is 4103 * not initialized on a new filesystem. */ 4104 } 4105 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4106 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4107 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4108 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4109 ei->i_file_acl |= 4110 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4111 inode->i_size = ext4_isize(raw_inode); 4112 ei->i_disksize = inode->i_size; 4113 #ifdef CONFIG_QUOTA 4114 ei->i_reserved_quota = 0; 4115 #endif 4116 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4117 ei->i_block_group = iloc.block_group; 4118 ei->i_last_alloc_group = ~0; 4119 /* 4120 * NOTE! The in-memory inode i_data array is in little-endian order 4121 * even on big-endian machines: we do NOT byteswap the block numbers! 4122 */ 4123 for (block = 0; block < EXT4_N_BLOCKS; block++) 4124 ei->i_data[block] = raw_inode->i_block[block]; 4125 INIT_LIST_HEAD(&ei->i_orphan); 4126 4127 /* 4128 * Set transaction id's of transactions that have to be committed 4129 * to finish f[data]sync. We set them to currently running transaction 4130 * as we cannot be sure that the inode or some of its metadata isn't 4131 * part of the transaction - the inode could have been reclaimed and 4132 * now it is reread from disk. 4133 */ 4134 if (journal) { 4135 transaction_t *transaction; 4136 tid_t tid; 4137 4138 read_lock(&journal->j_state_lock); 4139 if (journal->j_running_transaction) 4140 transaction = journal->j_running_transaction; 4141 else 4142 transaction = journal->j_committing_transaction; 4143 if (transaction) 4144 tid = transaction->t_tid; 4145 else 4146 tid = journal->j_commit_sequence; 4147 read_unlock(&journal->j_state_lock); 4148 ei->i_sync_tid = tid; 4149 ei->i_datasync_tid = tid; 4150 } 4151 4152 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4153 if (ei->i_extra_isize == 0) { 4154 /* The extra space is currently unused. Use it. */ 4155 ei->i_extra_isize = sizeof(struct ext4_inode) - 4156 EXT4_GOOD_OLD_INODE_SIZE; 4157 } else { 4158 ext4_iget_extra_inode(inode, raw_inode, ei); 4159 } 4160 } 4161 4162 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4163 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4164 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4165 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4166 4167 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4168 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4169 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4170 inode->i_version |= 4171 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4172 } 4173 4174 ret = 0; 4175 if (ei->i_file_acl && 4176 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4177 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4178 ei->i_file_acl); 4179 ret = -EIO; 4180 goto bad_inode; 4181 } else if (!ext4_has_inline_data(inode)) { 4182 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4183 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4184 (S_ISLNK(inode->i_mode) && 4185 !ext4_inode_is_fast_symlink(inode)))) 4186 /* Validate extent which is part of inode */ 4187 ret = ext4_ext_check_inode(inode); 4188 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4189 (S_ISLNK(inode->i_mode) && 4190 !ext4_inode_is_fast_symlink(inode))) { 4191 /* Validate block references which are part of inode */ 4192 ret = ext4_ind_check_inode(inode); 4193 } 4194 } 4195 if (ret) 4196 goto bad_inode; 4197 4198 if (S_ISREG(inode->i_mode)) { 4199 inode->i_op = &ext4_file_inode_operations; 4200 inode->i_fop = &ext4_file_operations; 4201 ext4_set_aops(inode); 4202 } else if (S_ISDIR(inode->i_mode)) { 4203 inode->i_op = &ext4_dir_inode_operations; 4204 inode->i_fop = &ext4_dir_operations; 4205 } else if (S_ISLNK(inode->i_mode)) { 4206 if (ext4_inode_is_fast_symlink(inode)) { 4207 inode->i_op = &ext4_fast_symlink_inode_operations; 4208 nd_terminate_link(ei->i_data, inode->i_size, 4209 sizeof(ei->i_data) - 1); 4210 } else { 4211 inode->i_op = &ext4_symlink_inode_operations; 4212 ext4_set_aops(inode); 4213 } 4214 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4215 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4216 inode->i_op = &ext4_special_inode_operations; 4217 if (raw_inode->i_block[0]) 4218 init_special_inode(inode, inode->i_mode, 4219 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4220 else 4221 init_special_inode(inode, inode->i_mode, 4222 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4223 } else if (ino == EXT4_BOOT_LOADER_INO) { 4224 make_bad_inode(inode); 4225 } else { 4226 ret = -EIO; 4227 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4228 goto bad_inode; 4229 } 4230 brelse(iloc.bh); 4231 ext4_set_inode_flags(inode); 4232 unlock_new_inode(inode); 4233 return inode; 4234 4235 bad_inode: 4236 brelse(iloc.bh); 4237 iget_failed(inode); 4238 return ERR_PTR(ret); 4239 } 4240 4241 static int ext4_inode_blocks_set(handle_t *handle, 4242 struct ext4_inode *raw_inode, 4243 struct ext4_inode_info *ei) 4244 { 4245 struct inode *inode = &(ei->vfs_inode); 4246 u64 i_blocks = inode->i_blocks; 4247 struct super_block *sb = inode->i_sb; 4248 4249 if (i_blocks <= ~0U) { 4250 /* 4251 * i_blocks can be represented in a 32 bit variable 4252 * as multiple of 512 bytes 4253 */ 4254 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4255 raw_inode->i_blocks_high = 0; 4256 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4257 return 0; 4258 } 4259 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4260 return -EFBIG; 4261 4262 if (i_blocks <= 0xffffffffffffULL) { 4263 /* 4264 * i_blocks can be represented in a 48 bit variable 4265 * as multiple of 512 bytes 4266 */ 4267 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4268 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4269 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4270 } else { 4271 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4272 /* i_block is stored in file system block size */ 4273 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4274 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4275 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4276 } 4277 return 0; 4278 } 4279 4280 /* 4281 * Post the struct inode info into an on-disk inode location in the 4282 * buffer-cache. This gobbles the caller's reference to the 4283 * buffer_head in the inode location struct. 4284 * 4285 * The caller must have write access to iloc->bh. 4286 */ 4287 static int ext4_do_update_inode(handle_t *handle, 4288 struct inode *inode, 4289 struct ext4_iloc *iloc) 4290 { 4291 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4292 struct ext4_inode_info *ei = EXT4_I(inode); 4293 struct buffer_head *bh = iloc->bh; 4294 int err = 0, rc, block; 4295 int need_datasync = 0; 4296 uid_t i_uid; 4297 gid_t i_gid; 4298 4299 /* For fields not not tracking in the in-memory inode, 4300 * initialise them to zero for new inodes. */ 4301 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4302 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4303 4304 ext4_get_inode_flags(ei); 4305 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4306 i_uid = i_uid_read(inode); 4307 i_gid = i_gid_read(inode); 4308 if (!(test_opt(inode->i_sb, NO_UID32))) { 4309 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4310 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4311 /* 4312 * Fix up interoperability with old kernels. Otherwise, old inodes get 4313 * re-used with the upper 16 bits of the uid/gid intact 4314 */ 4315 if (!ei->i_dtime) { 4316 raw_inode->i_uid_high = 4317 cpu_to_le16(high_16_bits(i_uid)); 4318 raw_inode->i_gid_high = 4319 cpu_to_le16(high_16_bits(i_gid)); 4320 } else { 4321 raw_inode->i_uid_high = 0; 4322 raw_inode->i_gid_high = 0; 4323 } 4324 } else { 4325 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4326 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4327 raw_inode->i_uid_high = 0; 4328 raw_inode->i_gid_high = 0; 4329 } 4330 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4331 4332 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4333 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4334 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4335 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4336 4337 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4338 goto out_brelse; 4339 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4340 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4341 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4342 cpu_to_le32(EXT4_OS_HURD)) 4343 raw_inode->i_file_acl_high = 4344 cpu_to_le16(ei->i_file_acl >> 32); 4345 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4346 if (ei->i_disksize != ext4_isize(raw_inode)) { 4347 ext4_isize_set(raw_inode, ei->i_disksize); 4348 need_datasync = 1; 4349 } 4350 if (ei->i_disksize > 0x7fffffffULL) { 4351 struct super_block *sb = inode->i_sb; 4352 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4353 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4354 EXT4_SB(sb)->s_es->s_rev_level == 4355 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4356 /* If this is the first large file 4357 * created, add a flag to the superblock. 4358 */ 4359 err = ext4_journal_get_write_access(handle, 4360 EXT4_SB(sb)->s_sbh); 4361 if (err) 4362 goto out_brelse; 4363 ext4_update_dynamic_rev(sb); 4364 EXT4_SET_RO_COMPAT_FEATURE(sb, 4365 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4366 ext4_handle_sync(handle); 4367 err = ext4_handle_dirty_super(handle, sb); 4368 } 4369 } 4370 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4371 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4372 if (old_valid_dev(inode->i_rdev)) { 4373 raw_inode->i_block[0] = 4374 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4375 raw_inode->i_block[1] = 0; 4376 } else { 4377 raw_inode->i_block[0] = 0; 4378 raw_inode->i_block[1] = 4379 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4380 raw_inode->i_block[2] = 0; 4381 } 4382 } else if (!ext4_has_inline_data(inode)) { 4383 for (block = 0; block < EXT4_N_BLOCKS; block++) 4384 raw_inode->i_block[block] = ei->i_data[block]; 4385 } 4386 4387 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4388 if (ei->i_extra_isize) { 4389 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4390 raw_inode->i_version_hi = 4391 cpu_to_le32(inode->i_version >> 32); 4392 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4393 } 4394 4395 ext4_inode_csum_set(inode, raw_inode, ei); 4396 4397 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4398 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4399 if (!err) 4400 err = rc; 4401 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4402 4403 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4404 out_brelse: 4405 brelse(bh); 4406 ext4_std_error(inode->i_sb, err); 4407 return err; 4408 } 4409 4410 /* 4411 * ext4_write_inode() 4412 * 4413 * We are called from a few places: 4414 * 4415 * - Within generic_file_write() for O_SYNC files. 4416 * Here, there will be no transaction running. We wait for any running 4417 * transaction to commit. 4418 * 4419 * - Within sys_sync(), kupdate and such. 4420 * We wait on commit, if tol to. 4421 * 4422 * - Within prune_icache() (PF_MEMALLOC == true) 4423 * Here we simply return. We can't afford to block kswapd on the 4424 * journal commit. 4425 * 4426 * In all cases it is actually safe for us to return without doing anything, 4427 * because the inode has been copied into a raw inode buffer in 4428 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4429 * knfsd. 4430 * 4431 * Note that we are absolutely dependent upon all inode dirtiers doing the 4432 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4433 * which we are interested. 4434 * 4435 * It would be a bug for them to not do this. The code: 4436 * 4437 * mark_inode_dirty(inode) 4438 * stuff(); 4439 * inode->i_size = expr; 4440 * 4441 * is in error because a kswapd-driven write_inode() could occur while 4442 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4443 * will no longer be on the superblock's dirty inode list. 4444 */ 4445 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4446 { 4447 int err; 4448 4449 if (current->flags & PF_MEMALLOC) 4450 return 0; 4451 4452 if (EXT4_SB(inode->i_sb)->s_journal) { 4453 if (ext4_journal_current_handle()) { 4454 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4455 dump_stack(); 4456 return -EIO; 4457 } 4458 4459 if (wbc->sync_mode != WB_SYNC_ALL) 4460 return 0; 4461 4462 err = ext4_force_commit(inode->i_sb); 4463 } else { 4464 struct ext4_iloc iloc; 4465 4466 err = __ext4_get_inode_loc(inode, &iloc, 0); 4467 if (err) 4468 return err; 4469 if (wbc->sync_mode == WB_SYNC_ALL) 4470 sync_dirty_buffer(iloc.bh); 4471 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4472 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4473 "IO error syncing inode"); 4474 err = -EIO; 4475 } 4476 brelse(iloc.bh); 4477 } 4478 return err; 4479 } 4480 4481 /* 4482 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4483 * buffers that are attached to a page stradding i_size and are undergoing 4484 * commit. In that case we have to wait for commit to finish and try again. 4485 */ 4486 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4487 { 4488 struct page *page; 4489 unsigned offset; 4490 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4491 tid_t commit_tid = 0; 4492 int ret; 4493 4494 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4495 /* 4496 * All buffers in the last page remain valid? Then there's nothing to 4497 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4498 * blocksize case 4499 */ 4500 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4501 return; 4502 while (1) { 4503 page = find_lock_page(inode->i_mapping, 4504 inode->i_size >> PAGE_CACHE_SHIFT); 4505 if (!page) 4506 return; 4507 ret = __ext4_journalled_invalidatepage(page, offset, 4508 PAGE_CACHE_SIZE - offset); 4509 unlock_page(page); 4510 page_cache_release(page); 4511 if (ret != -EBUSY) 4512 return; 4513 commit_tid = 0; 4514 read_lock(&journal->j_state_lock); 4515 if (journal->j_committing_transaction) 4516 commit_tid = journal->j_committing_transaction->t_tid; 4517 read_unlock(&journal->j_state_lock); 4518 if (commit_tid) 4519 jbd2_log_wait_commit(journal, commit_tid); 4520 } 4521 } 4522 4523 /* 4524 * ext4_setattr() 4525 * 4526 * Called from notify_change. 4527 * 4528 * We want to trap VFS attempts to truncate the file as soon as 4529 * possible. In particular, we want to make sure that when the VFS 4530 * shrinks i_size, we put the inode on the orphan list and modify 4531 * i_disksize immediately, so that during the subsequent flushing of 4532 * dirty pages and freeing of disk blocks, we can guarantee that any 4533 * commit will leave the blocks being flushed in an unused state on 4534 * disk. (On recovery, the inode will get truncated and the blocks will 4535 * be freed, so we have a strong guarantee that no future commit will 4536 * leave these blocks visible to the user.) 4537 * 4538 * Another thing we have to assure is that if we are in ordered mode 4539 * and inode is still attached to the committing transaction, we must 4540 * we start writeout of all the dirty pages which are being truncated. 4541 * This way we are sure that all the data written in the previous 4542 * transaction are already on disk (truncate waits for pages under 4543 * writeback). 4544 * 4545 * Called with inode->i_mutex down. 4546 */ 4547 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4548 { 4549 struct inode *inode = dentry->d_inode; 4550 int error, rc = 0; 4551 int orphan = 0; 4552 const unsigned int ia_valid = attr->ia_valid; 4553 4554 error = inode_change_ok(inode, attr); 4555 if (error) 4556 return error; 4557 4558 if (is_quota_modification(inode, attr)) 4559 dquot_initialize(inode); 4560 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4561 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4562 handle_t *handle; 4563 4564 /* (user+group)*(old+new) structure, inode write (sb, 4565 * inode block, ? - but truncate inode update has it) */ 4566 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4567 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4568 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4569 if (IS_ERR(handle)) { 4570 error = PTR_ERR(handle); 4571 goto err_out; 4572 } 4573 error = dquot_transfer(inode, attr); 4574 if (error) { 4575 ext4_journal_stop(handle); 4576 return error; 4577 } 4578 /* Update corresponding info in inode so that everything is in 4579 * one transaction */ 4580 if (attr->ia_valid & ATTR_UID) 4581 inode->i_uid = attr->ia_uid; 4582 if (attr->ia_valid & ATTR_GID) 4583 inode->i_gid = attr->ia_gid; 4584 error = ext4_mark_inode_dirty(handle, inode); 4585 ext4_journal_stop(handle); 4586 } 4587 4588 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4589 handle_t *handle; 4590 4591 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4592 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4593 4594 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4595 return -EFBIG; 4596 } 4597 if (S_ISREG(inode->i_mode) && 4598 (attr->ia_size < inode->i_size)) { 4599 if (ext4_should_order_data(inode)) { 4600 error = ext4_begin_ordered_truncate(inode, 4601 attr->ia_size); 4602 if (error) 4603 goto err_out; 4604 } 4605 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4606 if (IS_ERR(handle)) { 4607 error = PTR_ERR(handle); 4608 goto err_out; 4609 } 4610 if (ext4_handle_valid(handle)) { 4611 error = ext4_orphan_add(handle, inode); 4612 orphan = 1; 4613 } 4614 down_write(&EXT4_I(inode)->i_data_sem); 4615 EXT4_I(inode)->i_disksize = attr->ia_size; 4616 rc = ext4_mark_inode_dirty(handle, inode); 4617 if (!error) 4618 error = rc; 4619 /* 4620 * We have to update i_size under i_data_sem together 4621 * with i_disksize to avoid races with writeback code 4622 * running ext4_wb_update_i_disksize(). 4623 */ 4624 if (!error) 4625 i_size_write(inode, attr->ia_size); 4626 up_write(&EXT4_I(inode)->i_data_sem); 4627 ext4_journal_stop(handle); 4628 if (error) { 4629 ext4_orphan_del(NULL, inode); 4630 goto err_out; 4631 } 4632 } else 4633 i_size_write(inode, attr->ia_size); 4634 4635 /* 4636 * Blocks are going to be removed from the inode. Wait 4637 * for dio in flight. Temporarily disable 4638 * dioread_nolock to prevent livelock. 4639 */ 4640 if (orphan) { 4641 if (!ext4_should_journal_data(inode)) { 4642 ext4_inode_block_unlocked_dio(inode); 4643 inode_dio_wait(inode); 4644 ext4_inode_resume_unlocked_dio(inode); 4645 } else 4646 ext4_wait_for_tail_page_commit(inode); 4647 } 4648 /* 4649 * Truncate pagecache after we've waited for commit 4650 * in data=journal mode to make pages freeable. 4651 */ 4652 truncate_pagecache(inode, inode->i_size); 4653 } 4654 /* 4655 * We want to call ext4_truncate() even if attr->ia_size == 4656 * inode->i_size for cases like truncation of fallocated space 4657 */ 4658 if (attr->ia_valid & ATTR_SIZE) 4659 ext4_truncate(inode); 4660 4661 if (!rc) { 4662 setattr_copy(inode, attr); 4663 mark_inode_dirty(inode); 4664 } 4665 4666 /* 4667 * If the call to ext4_truncate failed to get a transaction handle at 4668 * all, we need to clean up the in-core orphan list manually. 4669 */ 4670 if (orphan && inode->i_nlink) 4671 ext4_orphan_del(NULL, inode); 4672 4673 if (!rc && (ia_valid & ATTR_MODE)) 4674 rc = ext4_acl_chmod(inode); 4675 4676 err_out: 4677 ext4_std_error(inode->i_sb, error); 4678 if (!error) 4679 error = rc; 4680 return error; 4681 } 4682 4683 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4684 struct kstat *stat) 4685 { 4686 struct inode *inode; 4687 unsigned long long delalloc_blocks; 4688 4689 inode = dentry->d_inode; 4690 generic_fillattr(inode, stat); 4691 4692 /* 4693 * We can't update i_blocks if the block allocation is delayed 4694 * otherwise in the case of system crash before the real block 4695 * allocation is done, we will have i_blocks inconsistent with 4696 * on-disk file blocks. 4697 * We always keep i_blocks updated together with real 4698 * allocation. But to not confuse with user, stat 4699 * will return the blocks that include the delayed allocation 4700 * blocks for this file. 4701 */ 4702 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4703 EXT4_I(inode)->i_reserved_data_blocks); 4704 4705 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9); 4706 return 0; 4707 } 4708 4709 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4710 int pextents) 4711 { 4712 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4713 return ext4_ind_trans_blocks(inode, lblocks); 4714 return ext4_ext_index_trans_blocks(inode, pextents); 4715 } 4716 4717 /* 4718 * Account for index blocks, block groups bitmaps and block group 4719 * descriptor blocks if modify datablocks and index blocks 4720 * worse case, the indexs blocks spread over different block groups 4721 * 4722 * If datablocks are discontiguous, they are possible to spread over 4723 * different block groups too. If they are contiguous, with flexbg, 4724 * they could still across block group boundary. 4725 * 4726 * Also account for superblock, inode, quota and xattr blocks 4727 */ 4728 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4729 int pextents) 4730 { 4731 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4732 int gdpblocks; 4733 int idxblocks; 4734 int ret = 0; 4735 4736 /* 4737 * How many index blocks need to touch to map @lblocks logical blocks 4738 * to @pextents physical extents? 4739 */ 4740 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4741 4742 ret = idxblocks; 4743 4744 /* 4745 * Now let's see how many group bitmaps and group descriptors need 4746 * to account 4747 */ 4748 groups = idxblocks + pextents; 4749 gdpblocks = groups; 4750 if (groups > ngroups) 4751 groups = ngroups; 4752 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4753 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4754 4755 /* bitmaps and block group descriptor blocks */ 4756 ret += groups + gdpblocks; 4757 4758 /* Blocks for super block, inode, quota and xattr blocks */ 4759 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4760 4761 return ret; 4762 } 4763 4764 /* 4765 * Calculate the total number of credits to reserve to fit 4766 * the modification of a single pages into a single transaction, 4767 * which may include multiple chunks of block allocations. 4768 * 4769 * This could be called via ext4_write_begin() 4770 * 4771 * We need to consider the worse case, when 4772 * one new block per extent. 4773 */ 4774 int ext4_writepage_trans_blocks(struct inode *inode) 4775 { 4776 int bpp = ext4_journal_blocks_per_page(inode); 4777 int ret; 4778 4779 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4780 4781 /* Account for data blocks for journalled mode */ 4782 if (ext4_should_journal_data(inode)) 4783 ret += bpp; 4784 return ret; 4785 } 4786 4787 /* 4788 * Calculate the journal credits for a chunk of data modification. 4789 * 4790 * This is called from DIO, fallocate or whoever calling 4791 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4792 * 4793 * journal buffers for data blocks are not included here, as DIO 4794 * and fallocate do no need to journal data buffers. 4795 */ 4796 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4797 { 4798 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4799 } 4800 4801 /* 4802 * The caller must have previously called ext4_reserve_inode_write(). 4803 * Give this, we know that the caller already has write access to iloc->bh. 4804 */ 4805 int ext4_mark_iloc_dirty(handle_t *handle, 4806 struct inode *inode, struct ext4_iloc *iloc) 4807 { 4808 int err = 0; 4809 4810 if (IS_I_VERSION(inode)) 4811 inode_inc_iversion(inode); 4812 4813 /* the do_update_inode consumes one bh->b_count */ 4814 get_bh(iloc->bh); 4815 4816 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4817 err = ext4_do_update_inode(handle, inode, iloc); 4818 put_bh(iloc->bh); 4819 return err; 4820 } 4821 4822 /* 4823 * On success, We end up with an outstanding reference count against 4824 * iloc->bh. This _must_ be cleaned up later. 4825 */ 4826 4827 int 4828 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4829 struct ext4_iloc *iloc) 4830 { 4831 int err; 4832 4833 err = ext4_get_inode_loc(inode, iloc); 4834 if (!err) { 4835 BUFFER_TRACE(iloc->bh, "get_write_access"); 4836 err = ext4_journal_get_write_access(handle, iloc->bh); 4837 if (err) { 4838 brelse(iloc->bh); 4839 iloc->bh = NULL; 4840 } 4841 } 4842 ext4_std_error(inode->i_sb, err); 4843 return err; 4844 } 4845 4846 /* 4847 * Expand an inode by new_extra_isize bytes. 4848 * Returns 0 on success or negative error number on failure. 4849 */ 4850 static int ext4_expand_extra_isize(struct inode *inode, 4851 unsigned int new_extra_isize, 4852 struct ext4_iloc iloc, 4853 handle_t *handle) 4854 { 4855 struct ext4_inode *raw_inode; 4856 struct ext4_xattr_ibody_header *header; 4857 4858 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4859 return 0; 4860 4861 raw_inode = ext4_raw_inode(&iloc); 4862 4863 header = IHDR(inode, raw_inode); 4864 4865 /* No extended attributes present */ 4866 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4867 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4868 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4869 new_extra_isize); 4870 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4871 return 0; 4872 } 4873 4874 /* try to expand with EAs present */ 4875 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4876 raw_inode, handle); 4877 } 4878 4879 /* 4880 * What we do here is to mark the in-core inode as clean with respect to inode 4881 * dirtiness (it may still be data-dirty). 4882 * This means that the in-core inode may be reaped by prune_icache 4883 * without having to perform any I/O. This is a very good thing, 4884 * because *any* task may call prune_icache - even ones which 4885 * have a transaction open against a different journal. 4886 * 4887 * Is this cheating? Not really. Sure, we haven't written the 4888 * inode out, but prune_icache isn't a user-visible syncing function. 4889 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4890 * we start and wait on commits. 4891 */ 4892 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4893 { 4894 struct ext4_iloc iloc; 4895 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4896 static unsigned int mnt_count; 4897 int err, ret; 4898 4899 might_sleep(); 4900 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4901 err = ext4_reserve_inode_write(handle, inode, &iloc); 4902 if (ext4_handle_valid(handle) && 4903 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4904 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4905 /* 4906 * We need extra buffer credits since we may write into EA block 4907 * with this same handle. If journal_extend fails, then it will 4908 * only result in a minor loss of functionality for that inode. 4909 * If this is felt to be critical, then e2fsck should be run to 4910 * force a large enough s_min_extra_isize. 4911 */ 4912 if ((jbd2_journal_extend(handle, 4913 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4914 ret = ext4_expand_extra_isize(inode, 4915 sbi->s_want_extra_isize, 4916 iloc, handle); 4917 if (ret) { 4918 ext4_set_inode_state(inode, 4919 EXT4_STATE_NO_EXPAND); 4920 if (mnt_count != 4921 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4922 ext4_warning(inode->i_sb, 4923 "Unable to expand inode %lu. Delete" 4924 " some EAs or run e2fsck.", 4925 inode->i_ino); 4926 mnt_count = 4927 le16_to_cpu(sbi->s_es->s_mnt_count); 4928 } 4929 } 4930 } 4931 } 4932 if (!err) 4933 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4934 return err; 4935 } 4936 4937 /* 4938 * ext4_dirty_inode() is called from __mark_inode_dirty() 4939 * 4940 * We're really interested in the case where a file is being extended. 4941 * i_size has been changed by generic_commit_write() and we thus need 4942 * to include the updated inode in the current transaction. 4943 * 4944 * Also, dquot_alloc_block() will always dirty the inode when blocks 4945 * are allocated to the file. 4946 * 4947 * If the inode is marked synchronous, we don't honour that here - doing 4948 * so would cause a commit on atime updates, which we don't bother doing. 4949 * We handle synchronous inodes at the highest possible level. 4950 */ 4951 void ext4_dirty_inode(struct inode *inode, int flags) 4952 { 4953 handle_t *handle; 4954 4955 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4956 if (IS_ERR(handle)) 4957 goto out; 4958 4959 ext4_mark_inode_dirty(handle, inode); 4960 4961 ext4_journal_stop(handle); 4962 out: 4963 return; 4964 } 4965 4966 #if 0 4967 /* 4968 * Bind an inode's backing buffer_head into this transaction, to prevent 4969 * it from being flushed to disk early. Unlike 4970 * ext4_reserve_inode_write, this leaves behind no bh reference and 4971 * returns no iloc structure, so the caller needs to repeat the iloc 4972 * lookup to mark the inode dirty later. 4973 */ 4974 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4975 { 4976 struct ext4_iloc iloc; 4977 4978 int err = 0; 4979 if (handle) { 4980 err = ext4_get_inode_loc(inode, &iloc); 4981 if (!err) { 4982 BUFFER_TRACE(iloc.bh, "get_write_access"); 4983 err = jbd2_journal_get_write_access(handle, iloc.bh); 4984 if (!err) 4985 err = ext4_handle_dirty_metadata(handle, 4986 NULL, 4987 iloc.bh); 4988 brelse(iloc.bh); 4989 } 4990 } 4991 ext4_std_error(inode->i_sb, err); 4992 return err; 4993 } 4994 #endif 4995 4996 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4997 { 4998 journal_t *journal; 4999 handle_t *handle; 5000 int err; 5001 5002 /* 5003 * We have to be very careful here: changing a data block's 5004 * journaling status dynamically is dangerous. If we write a 5005 * data block to the journal, change the status and then delete 5006 * that block, we risk forgetting to revoke the old log record 5007 * from the journal and so a subsequent replay can corrupt data. 5008 * So, first we make sure that the journal is empty and that 5009 * nobody is changing anything. 5010 */ 5011 5012 journal = EXT4_JOURNAL(inode); 5013 if (!journal) 5014 return 0; 5015 if (is_journal_aborted(journal)) 5016 return -EROFS; 5017 /* We have to allocate physical blocks for delalloc blocks 5018 * before flushing journal. otherwise delalloc blocks can not 5019 * be allocated any more. even more truncate on delalloc blocks 5020 * could trigger BUG by flushing delalloc blocks in journal. 5021 * There is no delalloc block in non-journal data mode. 5022 */ 5023 if (val && test_opt(inode->i_sb, DELALLOC)) { 5024 err = ext4_alloc_da_blocks(inode); 5025 if (err < 0) 5026 return err; 5027 } 5028 5029 /* Wait for all existing dio workers */ 5030 ext4_inode_block_unlocked_dio(inode); 5031 inode_dio_wait(inode); 5032 5033 jbd2_journal_lock_updates(journal); 5034 5035 /* 5036 * OK, there are no updates running now, and all cached data is 5037 * synced to disk. We are now in a completely consistent state 5038 * which doesn't have anything in the journal, and we know that 5039 * no filesystem updates are running, so it is safe to modify 5040 * the inode's in-core data-journaling state flag now. 5041 */ 5042 5043 if (val) 5044 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5045 else { 5046 jbd2_journal_flush(journal); 5047 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5048 } 5049 ext4_set_aops(inode); 5050 5051 jbd2_journal_unlock_updates(journal); 5052 ext4_inode_resume_unlocked_dio(inode); 5053 5054 /* Finally we can mark the inode as dirty. */ 5055 5056 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5057 if (IS_ERR(handle)) 5058 return PTR_ERR(handle); 5059 5060 err = ext4_mark_inode_dirty(handle, inode); 5061 ext4_handle_sync(handle); 5062 ext4_journal_stop(handle); 5063 ext4_std_error(inode->i_sb, err); 5064 5065 return err; 5066 } 5067 5068 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5069 { 5070 return !buffer_mapped(bh); 5071 } 5072 5073 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5074 { 5075 struct page *page = vmf->page; 5076 loff_t size; 5077 unsigned long len; 5078 int ret; 5079 struct file *file = vma->vm_file; 5080 struct inode *inode = file_inode(file); 5081 struct address_space *mapping = inode->i_mapping; 5082 handle_t *handle; 5083 get_block_t *get_block; 5084 int retries = 0; 5085 5086 sb_start_pagefault(inode->i_sb); 5087 file_update_time(vma->vm_file); 5088 /* Delalloc case is easy... */ 5089 if (test_opt(inode->i_sb, DELALLOC) && 5090 !ext4_should_journal_data(inode) && 5091 !ext4_nonda_switch(inode->i_sb)) { 5092 do { 5093 ret = __block_page_mkwrite(vma, vmf, 5094 ext4_da_get_block_prep); 5095 } while (ret == -ENOSPC && 5096 ext4_should_retry_alloc(inode->i_sb, &retries)); 5097 goto out_ret; 5098 } 5099 5100 lock_page(page); 5101 size = i_size_read(inode); 5102 /* Page got truncated from under us? */ 5103 if (page->mapping != mapping || page_offset(page) > size) { 5104 unlock_page(page); 5105 ret = VM_FAULT_NOPAGE; 5106 goto out; 5107 } 5108 5109 if (page->index == size >> PAGE_CACHE_SHIFT) 5110 len = size & ~PAGE_CACHE_MASK; 5111 else 5112 len = PAGE_CACHE_SIZE; 5113 /* 5114 * Return if we have all the buffers mapped. This avoids the need to do 5115 * journal_start/journal_stop which can block and take a long time 5116 */ 5117 if (page_has_buffers(page)) { 5118 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5119 0, len, NULL, 5120 ext4_bh_unmapped)) { 5121 /* Wait so that we don't change page under IO */ 5122 wait_for_stable_page(page); 5123 ret = VM_FAULT_LOCKED; 5124 goto out; 5125 } 5126 } 5127 unlock_page(page); 5128 /* OK, we need to fill the hole... */ 5129 if (ext4_should_dioread_nolock(inode)) 5130 get_block = ext4_get_block_write; 5131 else 5132 get_block = ext4_get_block; 5133 retry_alloc: 5134 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5135 ext4_writepage_trans_blocks(inode)); 5136 if (IS_ERR(handle)) { 5137 ret = VM_FAULT_SIGBUS; 5138 goto out; 5139 } 5140 ret = __block_page_mkwrite(vma, vmf, get_block); 5141 if (!ret && ext4_should_journal_data(inode)) { 5142 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5143 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5144 unlock_page(page); 5145 ret = VM_FAULT_SIGBUS; 5146 ext4_journal_stop(handle); 5147 goto out; 5148 } 5149 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5150 } 5151 ext4_journal_stop(handle); 5152 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5153 goto retry_alloc; 5154 out_ret: 5155 ret = block_page_mkwrite_return(ret); 5156 out: 5157 sb_end_pagefault(inode->i_sb); 5158 return ret; 5159 } 5160