xref: /openbmc/linux/fs/ext4/inode.c (revision cd5d5810)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u16 csum_lo;
56 	__u16 csum_hi = 0;
57 	__u32 csum;
58 
59 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 	raw->i_checksum_lo = 0;
61 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 		raw->i_checksum_hi = 0;
65 	}
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 			   EXT4_INODE_SIZE(inode->i_sb));
69 
70 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 
75 	return csum;
76 }
77 
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 				  struct ext4_inode_info *ei)
80 {
81 	__u32 provided, calculated;
82 
83 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 	    cpu_to_le32(EXT4_OS_LINUX) ||
85 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 		return;
110 
111 	csum = ext4_inode_csum(inode, raw, ei);
112 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117 
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 					      loff_t new_size)
120 {
121 	trace_ext4_begin_ordered_truncate(inode, new_size);
122 	/*
123 	 * If jinode is zero, then we never opened the file for
124 	 * writing, so there's no need to call
125 	 * jbd2_journal_begin_ordered_truncate() since there's no
126 	 * outstanding writes we need to flush.
127 	 */
128 	if (!EXT4_I(inode)->jinode)
129 		return 0;
130 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 						   EXT4_I(inode)->jinode,
132 						   new_size);
133 }
134 
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 				unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 		(inode->i_sb->s_blocksize >> 9) : 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages(&inode->i_data, 0);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (!is_bad_inode(inode))
224 		dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages(&inode->i_data, 0);
229 
230 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 	if (is_bad_inode(inode))
232 		goto no_delete;
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it
237 	 */
238 	sb_start_intwrite(inode->i_sb);
239 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 				    ext4_blocks_for_truncate(inode)+3);
241 	if (IS_ERR(handle)) {
242 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 		/*
244 		 * If we're going to skip the normal cleanup, we still need to
245 		 * make sure that the in-core orphan linked list is properly
246 		 * cleaned up.
247 		 */
248 		ext4_orphan_del(NULL, inode);
249 		sb_end_intwrite(inode->i_sb);
250 		goto no_delete;
251 	}
252 
253 	if (IS_SYNC(inode))
254 		ext4_handle_sync(handle);
255 	inode->i_size = 0;
256 	err = ext4_mark_inode_dirty(handle, inode);
257 	if (err) {
258 		ext4_warning(inode->i_sb,
259 			     "couldn't mark inode dirty (err %d)", err);
260 		goto stop_handle;
261 	}
262 	if (inode->i_blocks)
263 		ext4_truncate(inode);
264 
265 	/*
266 	 * ext4_ext_truncate() doesn't reserve any slop when it
267 	 * restarts journal transactions; therefore there may not be
268 	 * enough credits left in the handle to remove the inode from
269 	 * the orphan list and set the dtime field.
270 	 */
271 	if (!ext4_handle_has_enough_credits(handle, 3)) {
272 		err = ext4_journal_extend(handle, 3);
273 		if (err > 0)
274 			err = ext4_journal_restart(handle, 3);
275 		if (err != 0) {
276 			ext4_warning(inode->i_sb,
277 				     "couldn't extend journal (err %d)", err);
278 		stop_handle:
279 			ext4_journal_stop(handle);
280 			ext4_orphan_del(NULL, inode);
281 			sb_end_intwrite(inode->i_sb);
282 			goto no_delete;
283 		}
284 	}
285 
286 	/*
287 	 * Kill off the orphan record which ext4_truncate created.
288 	 * AKPM: I think this can be inside the above `if'.
289 	 * Note that ext4_orphan_del() has to be able to cope with the
290 	 * deletion of a non-existent orphan - this is because we don't
291 	 * know if ext4_truncate() actually created an orphan record.
292 	 * (Well, we could do this if we need to, but heck - it works)
293 	 */
294 	ext4_orphan_del(handle, inode);
295 	EXT4_I(inode)->i_dtime	= get_seconds();
296 
297 	/*
298 	 * One subtle ordering requirement: if anything has gone wrong
299 	 * (transaction abort, IO errors, whatever), then we can still
300 	 * do these next steps (the fs will already have been marked as
301 	 * having errors), but we can't free the inode if the mark_dirty
302 	 * fails.
303 	 */
304 	if (ext4_mark_inode_dirty(handle, inode))
305 		/* If that failed, just do the required in-core inode clear. */
306 		ext4_clear_inode(inode);
307 	else
308 		ext4_free_inode(handle, inode);
309 	ext4_journal_stop(handle);
310 	sb_end_intwrite(inode->i_sb);
311 	return;
312 no_delete:
313 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
314 }
315 
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 	return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322 
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 		return ext4_ext_calc_metadata_amount(inode, lblock);
331 
332 	return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334 
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 					int used, int quota_claim)
341 {
342 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 	struct ext4_inode_info *ei = EXT4_I(inode);
344 
345 	spin_lock(&ei->i_block_reservation_lock);
346 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 	if (unlikely(used > ei->i_reserved_data_blocks)) {
348 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 			 "with only %d reserved data blocks",
350 			 __func__, inode->i_ino, used,
351 			 ei->i_reserved_data_blocks);
352 		WARN_ON(1);
353 		used = ei->i_reserved_data_blocks;
354 	}
355 
356 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 			"with only %d reserved metadata blocks "
359 			"(releasing %d blocks with reserved %d data blocks)",
360 			inode->i_ino, ei->i_allocated_meta_blocks,
361 			     ei->i_reserved_meta_blocks, used,
362 			     ei->i_reserved_data_blocks);
363 		WARN_ON(1);
364 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 	}
366 
367 	/* Update per-inode reservations */
368 	ei->i_reserved_data_blocks -= used;
369 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 			   used + ei->i_allocated_meta_blocks);
372 	ei->i_allocated_meta_blocks = 0;
373 
374 	if (ei->i_reserved_data_blocks == 0) {
375 		/*
376 		 * We can release all of the reserved metadata blocks
377 		 * only when we have written all of the delayed
378 		 * allocation blocks.
379 		 */
380 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 				   ei->i_reserved_meta_blocks);
382 		ei->i_reserved_meta_blocks = 0;
383 		ei->i_da_metadata_calc_len = 0;
384 	}
385 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386 
387 	/* Update quota subsystem for data blocks */
388 	if (quota_claim)
389 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 	else {
391 		/*
392 		 * We did fallocate with an offset that is already delayed
393 		 * allocated. So on delayed allocated writeback we should
394 		 * not re-claim the quota for fallocated blocks.
395 		 */
396 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 	}
398 
399 	/*
400 	 * If we have done all the pending block allocations and if
401 	 * there aren't any writers on the inode, we can discard the
402 	 * inode's preallocations.
403 	 */
404 	if ((ei->i_reserved_data_blocks == 0) &&
405 	    (atomic_read(&inode->i_writecount) == 0))
406 		ext4_discard_preallocations(inode);
407 }
408 
409 static int __check_block_validity(struct inode *inode, const char *func,
410 				unsigned int line,
411 				struct ext4_map_blocks *map)
412 {
413 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 				   map->m_len)) {
415 		ext4_error_inode(inode, func, line, map->m_pblk,
416 				 "lblock %lu mapped to illegal pblock "
417 				 "(length %d)", (unsigned long) map->m_lblk,
418 				 map->m_len);
419 		return -EIO;
420 	}
421 	return 0;
422 }
423 
424 #define check_block_validity(inode, map)	\
425 	__check_block_validity((inode), __func__, __LINE__, (map))
426 
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429 				       struct inode *inode,
430 				       struct ext4_map_blocks *es_map,
431 				       struct ext4_map_blocks *map,
432 				       int flags)
433 {
434 	int retval;
435 
436 	map->m_flags = 0;
437 	/*
438 	 * There is a race window that the result is not the same.
439 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
440 	 * is that we lookup a block mapping in extent status tree with
441 	 * out taking i_data_sem.  So at the time the unwritten extent
442 	 * could be converted.
443 	 */
444 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 		down_read((&EXT4_I(inode)->i_data_sem));
446 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 					     EXT4_GET_BLOCKS_KEEP_SIZE);
449 	} else {
450 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 					     EXT4_GET_BLOCKS_KEEP_SIZE);
452 	}
453 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 		up_read((&EXT4_I(inode)->i_data_sem));
455 	/*
456 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 	 * because it shouldn't be marked in es_map->m_flags.
458 	 */
459 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertion failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507 	struct ext4_map_blocks orig_map;
508 
509 	memcpy(&orig_map, map, sizeof(*map));
510 #endif
511 
512 	map->m_flags = 0;
513 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 		  (unsigned long) map->m_lblk);
516 
517 	/* Lookup extent status tree firstly */
518 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519 		ext4_es_lru_add(inode);
520 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 			map->m_pblk = ext4_es_pblock(&es) +
522 					map->m_lblk - es.es_lblk;
523 			map->m_flags |= ext4_es_is_written(&es) ?
524 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 			retval = es.es_len - (map->m_lblk - es.es_lblk);
526 			if (retval > map->m_len)
527 				retval = map->m_len;
528 			map->m_len = retval;
529 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 			retval = 0;
531 		} else {
532 			BUG_ON(1);
533 		}
534 #ifdef ES_AGGRESSIVE_TEST
535 		ext4_map_blocks_es_recheck(handle, inode, map,
536 					   &orig_map, flags);
537 #endif
538 		goto found;
539 	}
540 
541 	/*
542 	 * Try to see if we can get the block without requesting a new
543 	 * file system block.
544 	 */
545 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 		down_read((&EXT4_I(inode)->i_data_sem));
547 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 					     EXT4_GET_BLOCKS_KEEP_SIZE);
550 	} else {
551 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 					     EXT4_GET_BLOCKS_KEEP_SIZE);
553 	}
554 	if (retval > 0) {
555 		int ret;
556 		unsigned int status;
557 
558 		if (unlikely(retval != map->m_len)) {
559 			ext4_warning(inode->i_sb,
560 				     "ES len assertion failed for inode "
561 				     "%lu: retval %d != map->m_len %d",
562 				     inode->i_ino, retval, map->m_len);
563 			WARN_ON(1);
564 		}
565 
566 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 		    ext4_find_delalloc_range(inode, map->m_lblk,
570 					     map->m_lblk + map->m_len - 1))
571 			status |= EXTENT_STATUS_DELAYED;
572 		ret = ext4_es_insert_extent(inode, map->m_lblk,
573 					    map->m_len, map->m_pblk, status);
574 		if (ret < 0)
575 			retval = ret;
576 	}
577 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 		up_read((&EXT4_I(inode)->i_data_sem));
579 
580 found:
581 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 		int ret = check_block_validity(inode, map);
583 		if (ret != 0)
584 			return ret;
585 	}
586 
587 	/* If it is only a block(s) look up */
588 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 		return retval;
590 
591 	/*
592 	 * Returns if the blocks have already allocated
593 	 *
594 	 * Note that if blocks have been preallocated
595 	 * ext4_ext_get_block() returns the create = 0
596 	 * with buffer head unmapped.
597 	 */
598 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 		return retval;
600 
601 	/*
602 	 * Here we clear m_flags because after allocating an new extent,
603 	 * it will be set again.
604 	 */
605 	map->m_flags &= ~EXT4_MAP_FLAGS;
606 
607 	/*
608 	 * New blocks allocate and/or writing to uninitialized extent
609 	 * will possibly result in updating i_data, so we take
610 	 * the write lock of i_data_sem, and call get_blocks()
611 	 * with create == 1 flag.
612 	 */
613 	down_write((&EXT4_I(inode)->i_data_sem));
614 
615 	/*
616 	 * if the caller is from delayed allocation writeout path
617 	 * we have already reserved fs blocks for allocation
618 	 * let the underlying get_block() function know to
619 	 * avoid double accounting
620 	 */
621 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623 	/*
624 	 * We need to check for EXT4 here because migrate
625 	 * could have changed the inode type in between
626 	 */
627 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
629 	} else {
630 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
631 
632 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633 			/*
634 			 * We allocated new blocks which will result in
635 			 * i_data's format changing.  Force the migrate
636 			 * to fail by clearing migrate flags
637 			 */
638 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639 		}
640 
641 		/*
642 		 * Update reserved blocks/metadata blocks after successful
643 		 * block allocation which had been deferred till now. We don't
644 		 * support fallocate for non extent files. So we can update
645 		 * reserve space here.
646 		 */
647 		if ((retval > 0) &&
648 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649 			ext4_da_update_reserve_space(inode, retval, 1);
650 	}
651 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653 
654 	if (retval > 0) {
655 		int ret;
656 		unsigned int status;
657 
658 		if (unlikely(retval != map->m_len)) {
659 			ext4_warning(inode->i_sb,
660 				     "ES len assertion failed for inode "
661 				     "%lu: retval %d != map->m_len %d",
662 				     inode->i_ino, retval, map->m_len);
663 			WARN_ON(1);
664 		}
665 
666 		/*
667 		 * If the extent has been zeroed out, we don't need to update
668 		 * extent status tree.
669 		 */
670 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 			if (ext4_es_is_written(&es))
673 				goto has_zeroout;
674 		}
675 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 		    ext4_find_delalloc_range(inode, map->m_lblk,
679 					     map->m_lblk + map->m_len - 1))
680 			status |= EXTENT_STATUS_DELAYED;
681 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 					    map->m_pblk, status);
683 		if (ret < 0)
684 			retval = ret;
685 	}
686 
687 has_zeroout:
688 	up_write((&EXT4_I(inode)->i_data_sem));
689 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690 		int ret = check_block_validity(inode, map);
691 		if (ret != 0)
692 			return ret;
693 	}
694 	return retval;
695 }
696 
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699 
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 			   struct buffer_head *bh, int flags)
702 {
703 	handle_t *handle = ext4_journal_current_handle();
704 	struct ext4_map_blocks map;
705 	int ret = 0, started = 0;
706 	int dio_credits;
707 
708 	if (ext4_has_inline_data(inode))
709 		return -ERANGE;
710 
711 	map.m_lblk = iblock;
712 	map.m_len = bh->b_size >> inode->i_blkbits;
713 
714 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715 		/* Direct IO write... */
716 		if (map.m_len > DIO_MAX_BLOCKS)
717 			map.m_len = DIO_MAX_BLOCKS;
718 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 					    dio_credits);
721 		if (IS_ERR(handle)) {
722 			ret = PTR_ERR(handle);
723 			return ret;
724 		}
725 		started = 1;
726 	}
727 
728 	ret = ext4_map_blocks(handle, inode, &map, flags);
729 	if (ret > 0) {
730 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
731 
732 		map_bh(bh, inode->i_sb, map.m_pblk);
733 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
734 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735 			set_buffer_defer_completion(bh);
736 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737 		ret = 0;
738 	}
739 	if (started)
740 		ext4_journal_stop(handle);
741 	return ret;
742 }
743 
744 int ext4_get_block(struct inode *inode, sector_t iblock,
745 		   struct buffer_head *bh, int create)
746 {
747 	return _ext4_get_block(inode, iblock, bh,
748 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
749 }
750 
751 /*
752  * `handle' can be NULL if create is zero
753  */
754 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
755 				ext4_lblk_t block, int create, int *errp)
756 {
757 	struct ext4_map_blocks map;
758 	struct buffer_head *bh;
759 	int fatal = 0, err;
760 
761 	J_ASSERT(handle != NULL || create == 0);
762 
763 	map.m_lblk = block;
764 	map.m_len = 1;
765 	err = ext4_map_blocks(handle, inode, &map,
766 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
767 
768 	/* ensure we send some value back into *errp */
769 	*errp = 0;
770 
771 	if (create && err == 0)
772 		err = -ENOSPC;	/* should never happen */
773 	if (err < 0)
774 		*errp = err;
775 	if (err <= 0)
776 		return NULL;
777 
778 	bh = sb_getblk(inode->i_sb, map.m_pblk);
779 	if (unlikely(!bh)) {
780 		*errp = -ENOMEM;
781 		return NULL;
782 	}
783 	if (map.m_flags & EXT4_MAP_NEW) {
784 		J_ASSERT(create != 0);
785 		J_ASSERT(handle != NULL);
786 
787 		/*
788 		 * Now that we do not always journal data, we should
789 		 * keep in mind whether this should always journal the
790 		 * new buffer as metadata.  For now, regular file
791 		 * writes use ext4_get_block instead, so it's not a
792 		 * problem.
793 		 */
794 		lock_buffer(bh);
795 		BUFFER_TRACE(bh, "call get_create_access");
796 		fatal = ext4_journal_get_create_access(handle, bh);
797 		if (!fatal && !buffer_uptodate(bh)) {
798 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
799 			set_buffer_uptodate(bh);
800 		}
801 		unlock_buffer(bh);
802 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
803 		err = ext4_handle_dirty_metadata(handle, inode, bh);
804 		if (!fatal)
805 			fatal = err;
806 	} else {
807 		BUFFER_TRACE(bh, "not a new buffer");
808 	}
809 	if (fatal) {
810 		*errp = fatal;
811 		brelse(bh);
812 		bh = NULL;
813 	}
814 	return bh;
815 }
816 
817 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
818 			       ext4_lblk_t block, int create, int *err)
819 {
820 	struct buffer_head *bh;
821 
822 	bh = ext4_getblk(handle, inode, block, create, err);
823 	if (!bh)
824 		return bh;
825 	if (buffer_uptodate(bh))
826 		return bh;
827 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
828 	wait_on_buffer(bh);
829 	if (buffer_uptodate(bh))
830 		return bh;
831 	put_bh(bh);
832 	*err = -EIO;
833 	return NULL;
834 }
835 
836 int ext4_walk_page_buffers(handle_t *handle,
837 			   struct buffer_head *head,
838 			   unsigned from,
839 			   unsigned to,
840 			   int *partial,
841 			   int (*fn)(handle_t *handle,
842 				     struct buffer_head *bh))
843 {
844 	struct buffer_head *bh;
845 	unsigned block_start, block_end;
846 	unsigned blocksize = head->b_size;
847 	int err, ret = 0;
848 	struct buffer_head *next;
849 
850 	for (bh = head, block_start = 0;
851 	     ret == 0 && (bh != head || !block_start);
852 	     block_start = block_end, bh = next) {
853 		next = bh->b_this_page;
854 		block_end = block_start + blocksize;
855 		if (block_end <= from || block_start >= to) {
856 			if (partial && !buffer_uptodate(bh))
857 				*partial = 1;
858 			continue;
859 		}
860 		err = (*fn)(handle, bh);
861 		if (!ret)
862 			ret = err;
863 	}
864 	return ret;
865 }
866 
867 /*
868  * To preserve ordering, it is essential that the hole instantiation and
869  * the data write be encapsulated in a single transaction.  We cannot
870  * close off a transaction and start a new one between the ext4_get_block()
871  * and the commit_write().  So doing the jbd2_journal_start at the start of
872  * prepare_write() is the right place.
873  *
874  * Also, this function can nest inside ext4_writepage().  In that case, we
875  * *know* that ext4_writepage() has generated enough buffer credits to do the
876  * whole page.  So we won't block on the journal in that case, which is good,
877  * because the caller may be PF_MEMALLOC.
878  *
879  * By accident, ext4 can be reentered when a transaction is open via
880  * quota file writes.  If we were to commit the transaction while thus
881  * reentered, there can be a deadlock - we would be holding a quota
882  * lock, and the commit would never complete if another thread had a
883  * transaction open and was blocking on the quota lock - a ranking
884  * violation.
885  *
886  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
887  * will _not_ run commit under these circumstances because handle->h_ref
888  * is elevated.  We'll still have enough credits for the tiny quotafile
889  * write.
890  */
891 int do_journal_get_write_access(handle_t *handle,
892 				struct buffer_head *bh)
893 {
894 	int dirty = buffer_dirty(bh);
895 	int ret;
896 
897 	if (!buffer_mapped(bh) || buffer_freed(bh))
898 		return 0;
899 	/*
900 	 * __block_write_begin() could have dirtied some buffers. Clean
901 	 * the dirty bit as jbd2_journal_get_write_access() could complain
902 	 * otherwise about fs integrity issues. Setting of the dirty bit
903 	 * by __block_write_begin() isn't a real problem here as we clear
904 	 * the bit before releasing a page lock and thus writeback cannot
905 	 * ever write the buffer.
906 	 */
907 	if (dirty)
908 		clear_buffer_dirty(bh);
909 	ret = ext4_journal_get_write_access(handle, bh);
910 	if (!ret && dirty)
911 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
912 	return ret;
913 }
914 
915 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
916 		   struct buffer_head *bh_result, int create);
917 static int ext4_write_begin(struct file *file, struct address_space *mapping,
918 			    loff_t pos, unsigned len, unsigned flags,
919 			    struct page **pagep, void **fsdata)
920 {
921 	struct inode *inode = mapping->host;
922 	int ret, needed_blocks;
923 	handle_t *handle;
924 	int retries = 0;
925 	struct page *page;
926 	pgoff_t index;
927 	unsigned from, to;
928 
929 	trace_ext4_write_begin(inode, pos, len, flags);
930 	/*
931 	 * Reserve one block more for addition to orphan list in case
932 	 * we allocate blocks but write fails for some reason
933 	 */
934 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
935 	index = pos >> PAGE_CACHE_SHIFT;
936 	from = pos & (PAGE_CACHE_SIZE - 1);
937 	to = from + len;
938 
939 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
940 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
941 						    flags, pagep);
942 		if (ret < 0)
943 			return ret;
944 		if (ret == 1)
945 			return 0;
946 	}
947 
948 	/*
949 	 * grab_cache_page_write_begin() can take a long time if the
950 	 * system is thrashing due to memory pressure, or if the page
951 	 * is being written back.  So grab it first before we start
952 	 * the transaction handle.  This also allows us to allocate
953 	 * the page (if needed) without using GFP_NOFS.
954 	 */
955 retry_grab:
956 	page = grab_cache_page_write_begin(mapping, index, flags);
957 	if (!page)
958 		return -ENOMEM;
959 	unlock_page(page);
960 
961 retry_journal:
962 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
963 	if (IS_ERR(handle)) {
964 		page_cache_release(page);
965 		return PTR_ERR(handle);
966 	}
967 
968 	lock_page(page);
969 	if (page->mapping != mapping) {
970 		/* The page got truncated from under us */
971 		unlock_page(page);
972 		page_cache_release(page);
973 		ext4_journal_stop(handle);
974 		goto retry_grab;
975 	}
976 	/* In case writeback began while the page was unlocked */
977 	wait_for_stable_page(page);
978 
979 	if (ext4_should_dioread_nolock(inode))
980 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
981 	else
982 		ret = __block_write_begin(page, pos, len, ext4_get_block);
983 
984 	if (!ret && ext4_should_journal_data(inode)) {
985 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
986 					     from, to, NULL,
987 					     do_journal_get_write_access);
988 	}
989 
990 	if (ret) {
991 		unlock_page(page);
992 		/*
993 		 * __block_write_begin may have instantiated a few blocks
994 		 * outside i_size.  Trim these off again. Don't need
995 		 * i_size_read because we hold i_mutex.
996 		 *
997 		 * Add inode to orphan list in case we crash before
998 		 * truncate finishes
999 		 */
1000 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1001 			ext4_orphan_add(handle, inode);
1002 
1003 		ext4_journal_stop(handle);
1004 		if (pos + len > inode->i_size) {
1005 			ext4_truncate_failed_write(inode);
1006 			/*
1007 			 * If truncate failed early the inode might
1008 			 * still be on the orphan list; we need to
1009 			 * make sure the inode is removed from the
1010 			 * orphan list in that case.
1011 			 */
1012 			if (inode->i_nlink)
1013 				ext4_orphan_del(NULL, inode);
1014 		}
1015 
1016 		if (ret == -ENOSPC &&
1017 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1018 			goto retry_journal;
1019 		page_cache_release(page);
1020 		return ret;
1021 	}
1022 	*pagep = page;
1023 	return ret;
1024 }
1025 
1026 /* For write_end() in data=journal mode */
1027 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1028 {
1029 	int ret;
1030 	if (!buffer_mapped(bh) || buffer_freed(bh))
1031 		return 0;
1032 	set_buffer_uptodate(bh);
1033 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 	clear_buffer_meta(bh);
1035 	clear_buffer_prio(bh);
1036 	return ret;
1037 }
1038 
1039 /*
1040  * We need to pick up the new inode size which generic_commit_write gave us
1041  * `file' can be NULL - eg, when called from page_symlink().
1042  *
1043  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1044  * buffers are managed internally.
1045  */
1046 static int ext4_write_end(struct file *file,
1047 			  struct address_space *mapping,
1048 			  loff_t pos, unsigned len, unsigned copied,
1049 			  struct page *page, void *fsdata)
1050 {
1051 	handle_t *handle = ext4_journal_current_handle();
1052 	struct inode *inode = mapping->host;
1053 	int ret = 0, ret2;
1054 	int i_size_changed = 0;
1055 
1056 	trace_ext4_write_end(inode, pos, len, copied);
1057 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1058 		ret = ext4_jbd2_file_inode(handle, inode);
1059 		if (ret) {
1060 			unlock_page(page);
1061 			page_cache_release(page);
1062 			goto errout;
1063 		}
1064 	}
1065 
1066 	if (ext4_has_inline_data(inode)) {
1067 		ret = ext4_write_inline_data_end(inode, pos, len,
1068 						 copied, page);
1069 		if (ret < 0)
1070 			goto errout;
1071 		copied = ret;
1072 	} else
1073 		copied = block_write_end(file, mapping, pos,
1074 					 len, copied, page, fsdata);
1075 
1076 	/*
1077 	 * No need to use i_size_read() here, the i_size
1078 	 * cannot change under us because we hole i_mutex.
1079 	 *
1080 	 * But it's important to update i_size while still holding page lock:
1081 	 * page writeout could otherwise come in and zero beyond i_size.
1082 	 */
1083 	if (pos + copied > inode->i_size) {
1084 		i_size_write(inode, pos + copied);
1085 		i_size_changed = 1;
1086 	}
1087 
1088 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1089 		/* We need to mark inode dirty even if
1090 		 * new_i_size is less that inode->i_size
1091 		 * but greater than i_disksize. (hint delalloc)
1092 		 */
1093 		ext4_update_i_disksize(inode, (pos + copied));
1094 		i_size_changed = 1;
1095 	}
1096 	unlock_page(page);
1097 	page_cache_release(page);
1098 
1099 	/*
1100 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1101 	 * makes the holding time of page lock longer. Second, it forces lock
1102 	 * ordering of page lock and transaction start for journaling
1103 	 * filesystems.
1104 	 */
1105 	if (i_size_changed)
1106 		ext4_mark_inode_dirty(handle, inode);
1107 
1108 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1109 		/* if we have allocated more blocks and copied
1110 		 * less. We will have blocks allocated outside
1111 		 * inode->i_size. So truncate them
1112 		 */
1113 		ext4_orphan_add(handle, inode);
1114 errout:
1115 	ret2 = ext4_journal_stop(handle);
1116 	if (!ret)
1117 		ret = ret2;
1118 
1119 	if (pos + len > inode->i_size) {
1120 		ext4_truncate_failed_write(inode);
1121 		/*
1122 		 * If truncate failed early the inode might still be
1123 		 * on the orphan list; we need to make sure the inode
1124 		 * is removed from the orphan list in that case.
1125 		 */
1126 		if (inode->i_nlink)
1127 			ext4_orphan_del(NULL, inode);
1128 	}
1129 
1130 	return ret ? ret : copied;
1131 }
1132 
1133 static int ext4_journalled_write_end(struct file *file,
1134 				     struct address_space *mapping,
1135 				     loff_t pos, unsigned len, unsigned copied,
1136 				     struct page *page, void *fsdata)
1137 {
1138 	handle_t *handle = ext4_journal_current_handle();
1139 	struct inode *inode = mapping->host;
1140 	int ret = 0, ret2;
1141 	int partial = 0;
1142 	unsigned from, to;
1143 	loff_t new_i_size;
1144 
1145 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1146 	from = pos & (PAGE_CACHE_SIZE - 1);
1147 	to = from + len;
1148 
1149 	BUG_ON(!ext4_handle_valid(handle));
1150 
1151 	if (ext4_has_inline_data(inode))
1152 		copied = ext4_write_inline_data_end(inode, pos, len,
1153 						    copied, page);
1154 	else {
1155 		if (copied < len) {
1156 			if (!PageUptodate(page))
1157 				copied = 0;
1158 			page_zero_new_buffers(page, from+copied, to);
1159 		}
1160 
1161 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1162 					     to, &partial, write_end_fn);
1163 		if (!partial)
1164 			SetPageUptodate(page);
1165 	}
1166 	new_i_size = pos + copied;
1167 	if (new_i_size > inode->i_size)
1168 		i_size_write(inode, pos+copied);
1169 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1170 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1171 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1172 		ext4_update_i_disksize(inode, new_i_size);
1173 		ret2 = ext4_mark_inode_dirty(handle, inode);
1174 		if (!ret)
1175 			ret = ret2;
1176 	}
1177 
1178 	unlock_page(page);
1179 	page_cache_release(page);
1180 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1181 		/* if we have allocated more blocks and copied
1182 		 * less. We will have blocks allocated outside
1183 		 * inode->i_size. So truncate them
1184 		 */
1185 		ext4_orphan_add(handle, inode);
1186 
1187 	ret2 = ext4_journal_stop(handle);
1188 	if (!ret)
1189 		ret = ret2;
1190 	if (pos + len > inode->i_size) {
1191 		ext4_truncate_failed_write(inode);
1192 		/*
1193 		 * If truncate failed early the inode might still be
1194 		 * on the orphan list; we need to make sure the inode
1195 		 * is removed from the orphan list in that case.
1196 		 */
1197 		if (inode->i_nlink)
1198 			ext4_orphan_del(NULL, inode);
1199 	}
1200 
1201 	return ret ? ret : copied;
1202 }
1203 
1204 /*
1205  * Reserve a metadata for a single block located at lblock
1206  */
1207 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1208 {
1209 	int retries = 0;
1210 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1211 	struct ext4_inode_info *ei = EXT4_I(inode);
1212 	unsigned int md_needed;
1213 	ext4_lblk_t save_last_lblock;
1214 	int save_len;
1215 
1216 	/*
1217 	 * recalculate the amount of metadata blocks to reserve
1218 	 * in order to allocate nrblocks
1219 	 * worse case is one extent per block
1220 	 */
1221 repeat:
1222 	spin_lock(&ei->i_block_reservation_lock);
1223 	/*
1224 	 * ext4_calc_metadata_amount() has side effects, which we have
1225 	 * to be prepared undo if we fail to claim space.
1226 	 */
1227 	save_len = ei->i_da_metadata_calc_len;
1228 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1229 	md_needed = EXT4_NUM_B2C(sbi,
1230 				 ext4_calc_metadata_amount(inode, lblock));
1231 	trace_ext4_da_reserve_space(inode, md_needed);
1232 
1233 	/*
1234 	 * We do still charge estimated metadata to the sb though;
1235 	 * we cannot afford to run out of free blocks.
1236 	 */
1237 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1238 		ei->i_da_metadata_calc_len = save_len;
1239 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1240 		spin_unlock(&ei->i_block_reservation_lock);
1241 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1242 			cond_resched();
1243 			goto repeat;
1244 		}
1245 		return -ENOSPC;
1246 	}
1247 	ei->i_reserved_meta_blocks += md_needed;
1248 	spin_unlock(&ei->i_block_reservation_lock);
1249 
1250 	return 0;       /* success */
1251 }
1252 
1253 /*
1254  * Reserve a single cluster located at lblock
1255  */
1256 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1257 {
1258 	int retries = 0;
1259 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1260 	struct ext4_inode_info *ei = EXT4_I(inode);
1261 	unsigned int md_needed;
1262 	int ret;
1263 	ext4_lblk_t save_last_lblock;
1264 	int save_len;
1265 
1266 	/*
1267 	 * We will charge metadata quota at writeout time; this saves
1268 	 * us from metadata over-estimation, though we may go over by
1269 	 * a small amount in the end.  Here we just reserve for data.
1270 	 */
1271 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1272 	if (ret)
1273 		return ret;
1274 
1275 	/*
1276 	 * recalculate the amount of metadata blocks to reserve
1277 	 * in order to allocate nrblocks
1278 	 * worse case is one extent per block
1279 	 */
1280 repeat:
1281 	spin_lock(&ei->i_block_reservation_lock);
1282 	/*
1283 	 * ext4_calc_metadata_amount() has side effects, which we have
1284 	 * to be prepared undo if we fail to claim space.
1285 	 */
1286 	save_len = ei->i_da_metadata_calc_len;
1287 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1288 	md_needed = EXT4_NUM_B2C(sbi,
1289 				 ext4_calc_metadata_amount(inode, lblock));
1290 	trace_ext4_da_reserve_space(inode, md_needed);
1291 
1292 	/*
1293 	 * We do still charge estimated metadata to the sb though;
1294 	 * we cannot afford to run out of free blocks.
1295 	 */
1296 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1297 		ei->i_da_metadata_calc_len = save_len;
1298 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1299 		spin_unlock(&ei->i_block_reservation_lock);
1300 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1301 			cond_resched();
1302 			goto repeat;
1303 		}
1304 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1305 		return -ENOSPC;
1306 	}
1307 	ei->i_reserved_data_blocks++;
1308 	ei->i_reserved_meta_blocks += md_needed;
1309 	spin_unlock(&ei->i_block_reservation_lock);
1310 
1311 	return 0;       /* success */
1312 }
1313 
1314 static void ext4_da_release_space(struct inode *inode, int to_free)
1315 {
1316 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1317 	struct ext4_inode_info *ei = EXT4_I(inode);
1318 
1319 	if (!to_free)
1320 		return;		/* Nothing to release, exit */
1321 
1322 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1323 
1324 	trace_ext4_da_release_space(inode, to_free);
1325 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1326 		/*
1327 		 * if there aren't enough reserved blocks, then the
1328 		 * counter is messed up somewhere.  Since this
1329 		 * function is called from invalidate page, it's
1330 		 * harmless to return without any action.
1331 		 */
1332 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1333 			 "ino %lu, to_free %d with only %d reserved "
1334 			 "data blocks", inode->i_ino, to_free,
1335 			 ei->i_reserved_data_blocks);
1336 		WARN_ON(1);
1337 		to_free = ei->i_reserved_data_blocks;
1338 	}
1339 	ei->i_reserved_data_blocks -= to_free;
1340 
1341 	if (ei->i_reserved_data_blocks == 0) {
1342 		/*
1343 		 * We can release all of the reserved metadata blocks
1344 		 * only when we have written all of the delayed
1345 		 * allocation blocks.
1346 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1347 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1348 		 */
1349 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1350 				   ei->i_reserved_meta_blocks);
1351 		ei->i_reserved_meta_blocks = 0;
1352 		ei->i_da_metadata_calc_len = 0;
1353 	}
1354 
1355 	/* update fs dirty data blocks counter */
1356 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1357 
1358 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1359 
1360 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1361 }
1362 
1363 static void ext4_da_page_release_reservation(struct page *page,
1364 					     unsigned int offset,
1365 					     unsigned int length)
1366 {
1367 	int to_release = 0;
1368 	struct buffer_head *head, *bh;
1369 	unsigned int curr_off = 0;
1370 	struct inode *inode = page->mapping->host;
1371 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1372 	unsigned int stop = offset + length;
1373 	int num_clusters;
1374 	ext4_fsblk_t lblk;
1375 
1376 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1377 
1378 	head = page_buffers(page);
1379 	bh = head;
1380 	do {
1381 		unsigned int next_off = curr_off + bh->b_size;
1382 
1383 		if (next_off > stop)
1384 			break;
1385 
1386 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1387 			to_release++;
1388 			clear_buffer_delay(bh);
1389 		}
1390 		curr_off = next_off;
1391 	} while ((bh = bh->b_this_page) != head);
1392 
1393 	if (to_release) {
1394 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1395 		ext4_es_remove_extent(inode, lblk, to_release);
1396 	}
1397 
1398 	/* If we have released all the blocks belonging to a cluster, then we
1399 	 * need to release the reserved space for that cluster. */
1400 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1401 	while (num_clusters > 0) {
1402 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1403 			((num_clusters - 1) << sbi->s_cluster_bits);
1404 		if (sbi->s_cluster_ratio == 1 ||
1405 		    !ext4_find_delalloc_cluster(inode, lblk))
1406 			ext4_da_release_space(inode, 1);
1407 
1408 		num_clusters--;
1409 	}
1410 }
1411 
1412 /*
1413  * Delayed allocation stuff
1414  */
1415 
1416 struct mpage_da_data {
1417 	struct inode *inode;
1418 	struct writeback_control *wbc;
1419 
1420 	pgoff_t first_page;	/* The first page to write */
1421 	pgoff_t next_page;	/* Current page to examine */
1422 	pgoff_t last_page;	/* Last page to examine */
1423 	/*
1424 	 * Extent to map - this can be after first_page because that can be
1425 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1426 	 * is delalloc or unwritten.
1427 	 */
1428 	struct ext4_map_blocks map;
1429 	struct ext4_io_submit io_submit;	/* IO submission data */
1430 };
1431 
1432 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1433 				       bool invalidate)
1434 {
1435 	int nr_pages, i;
1436 	pgoff_t index, end;
1437 	struct pagevec pvec;
1438 	struct inode *inode = mpd->inode;
1439 	struct address_space *mapping = inode->i_mapping;
1440 
1441 	/* This is necessary when next_page == 0. */
1442 	if (mpd->first_page >= mpd->next_page)
1443 		return;
1444 
1445 	index = mpd->first_page;
1446 	end   = mpd->next_page - 1;
1447 	if (invalidate) {
1448 		ext4_lblk_t start, last;
1449 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1451 		ext4_es_remove_extent(inode, start, last - start + 1);
1452 	}
1453 
1454 	pagevec_init(&pvec, 0);
1455 	while (index <= end) {
1456 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1457 		if (nr_pages == 0)
1458 			break;
1459 		for (i = 0; i < nr_pages; i++) {
1460 			struct page *page = pvec.pages[i];
1461 			if (page->index > end)
1462 				break;
1463 			BUG_ON(!PageLocked(page));
1464 			BUG_ON(PageWriteback(page));
1465 			if (invalidate) {
1466 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1467 				ClearPageUptodate(page);
1468 			}
1469 			unlock_page(page);
1470 		}
1471 		index = pvec.pages[nr_pages - 1]->index + 1;
1472 		pagevec_release(&pvec);
1473 	}
1474 }
1475 
1476 static void ext4_print_free_blocks(struct inode *inode)
1477 {
1478 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1479 	struct super_block *sb = inode->i_sb;
1480 	struct ext4_inode_info *ei = EXT4_I(inode);
1481 
1482 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1483 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1484 			ext4_count_free_clusters(sb)));
1485 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1486 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1487 	       (long long) EXT4_C2B(EXT4_SB(sb),
1488 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1489 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1490 	       (long long) EXT4_C2B(EXT4_SB(sb),
1491 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1492 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1493 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1494 		 ei->i_reserved_data_blocks);
1495 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1496 	       ei->i_reserved_meta_blocks);
1497 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1498 	       ei->i_allocated_meta_blocks);
1499 	return;
1500 }
1501 
1502 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1503 {
1504 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1505 }
1506 
1507 /*
1508  * This function is grabs code from the very beginning of
1509  * ext4_map_blocks, but assumes that the caller is from delayed write
1510  * time. This function looks up the requested blocks and sets the
1511  * buffer delay bit under the protection of i_data_sem.
1512  */
1513 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1514 			      struct ext4_map_blocks *map,
1515 			      struct buffer_head *bh)
1516 {
1517 	struct extent_status es;
1518 	int retval;
1519 	sector_t invalid_block = ~((sector_t) 0xffff);
1520 #ifdef ES_AGGRESSIVE_TEST
1521 	struct ext4_map_blocks orig_map;
1522 
1523 	memcpy(&orig_map, map, sizeof(*map));
1524 #endif
1525 
1526 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1527 		invalid_block = ~0;
1528 
1529 	map->m_flags = 0;
1530 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1531 		  "logical block %lu\n", inode->i_ino, map->m_len,
1532 		  (unsigned long) map->m_lblk);
1533 
1534 	/* Lookup extent status tree firstly */
1535 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1536 		ext4_es_lru_add(inode);
1537 		if (ext4_es_is_hole(&es)) {
1538 			retval = 0;
1539 			down_read((&EXT4_I(inode)->i_data_sem));
1540 			goto add_delayed;
1541 		}
1542 
1543 		/*
1544 		 * Delayed extent could be allocated by fallocate.
1545 		 * So we need to check it.
1546 		 */
1547 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1548 			map_bh(bh, inode->i_sb, invalid_block);
1549 			set_buffer_new(bh);
1550 			set_buffer_delay(bh);
1551 			return 0;
1552 		}
1553 
1554 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1555 		retval = es.es_len - (iblock - es.es_lblk);
1556 		if (retval > map->m_len)
1557 			retval = map->m_len;
1558 		map->m_len = retval;
1559 		if (ext4_es_is_written(&es))
1560 			map->m_flags |= EXT4_MAP_MAPPED;
1561 		else if (ext4_es_is_unwritten(&es))
1562 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1563 		else
1564 			BUG_ON(1);
1565 
1566 #ifdef ES_AGGRESSIVE_TEST
1567 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1568 #endif
1569 		return retval;
1570 	}
1571 
1572 	/*
1573 	 * Try to see if we can get the block without requesting a new
1574 	 * file system block.
1575 	 */
1576 	down_read((&EXT4_I(inode)->i_data_sem));
1577 	if (ext4_has_inline_data(inode)) {
1578 		/*
1579 		 * We will soon create blocks for this page, and let
1580 		 * us pretend as if the blocks aren't allocated yet.
1581 		 * In case of clusters, we have to handle the work
1582 		 * of mapping from cluster so that the reserved space
1583 		 * is calculated properly.
1584 		 */
1585 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1586 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1587 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1588 		retval = 0;
1589 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1590 		retval = ext4_ext_map_blocks(NULL, inode, map,
1591 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1592 	else
1593 		retval = ext4_ind_map_blocks(NULL, inode, map,
1594 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1595 
1596 add_delayed:
1597 	if (retval == 0) {
1598 		int ret;
1599 		/*
1600 		 * XXX: __block_prepare_write() unmaps passed block,
1601 		 * is it OK?
1602 		 */
1603 		/*
1604 		 * If the block was allocated from previously allocated cluster,
1605 		 * then we don't need to reserve it again. However we still need
1606 		 * to reserve metadata for every block we're going to write.
1607 		 */
1608 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1609 			ret = ext4_da_reserve_space(inode, iblock);
1610 			if (ret) {
1611 				/* not enough space to reserve */
1612 				retval = ret;
1613 				goto out_unlock;
1614 			}
1615 		} else {
1616 			ret = ext4_da_reserve_metadata(inode, iblock);
1617 			if (ret) {
1618 				/* not enough space to reserve */
1619 				retval = ret;
1620 				goto out_unlock;
1621 			}
1622 		}
1623 
1624 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1625 					    ~0, EXTENT_STATUS_DELAYED);
1626 		if (ret) {
1627 			retval = ret;
1628 			goto out_unlock;
1629 		}
1630 
1631 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1632 		 * and it should not appear on the bh->b_state.
1633 		 */
1634 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1635 
1636 		map_bh(bh, inode->i_sb, invalid_block);
1637 		set_buffer_new(bh);
1638 		set_buffer_delay(bh);
1639 	} else if (retval > 0) {
1640 		int ret;
1641 		unsigned int status;
1642 
1643 		if (unlikely(retval != map->m_len)) {
1644 			ext4_warning(inode->i_sb,
1645 				     "ES len assertion failed for inode "
1646 				     "%lu: retval %d != map->m_len %d",
1647 				     inode->i_ino, retval, map->m_len);
1648 			WARN_ON(1);
1649 		}
1650 
1651 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1652 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1653 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1654 					    map->m_pblk, status);
1655 		if (ret != 0)
1656 			retval = ret;
1657 	}
1658 
1659 out_unlock:
1660 	up_read((&EXT4_I(inode)->i_data_sem));
1661 
1662 	return retval;
1663 }
1664 
1665 /*
1666  * This is a special get_blocks_t callback which is used by
1667  * ext4_da_write_begin().  It will either return mapped block or
1668  * reserve space for a single block.
1669  *
1670  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1671  * We also have b_blocknr = -1 and b_bdev initialized properly
1672  *
1673  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1674  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1675  * initialized properly.
1676  */
1677 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1678 			   struct buffer_head *bh, int create)
1679 {
1680 	struct ext4_map_blocks map;
1681 	int ret = 0;
1682 
1683 	BUG_ON(create == 0);
1684 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1685 
1686 	map.m_lblk = iblock;
1687 	map.m_len = 1;
1688 
1689 	/*
1690 	 * first, we need to know whether the block is allocated already
1691 	 * preallocated blocks are unmapped but should treated
1692 	 * the same as allocated blocks.
1693 	 */
1694 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1695 	if (ret <= 0)
1696 		return ret;
1697 
1698 	map_bh(bh, inode->i_sb, map.m_pblk);
1699 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1700 
1701 	if (buffer_unwritten(bh)) {
1702 		/* A delayed write to unwritten bh should be marked
1703 		 * new and mapped.  Mapped ensures that we don't do
1704 		 * get_block multiple times when we write to the same
1705 		 * offset and new ensures that we do proper zero out
1706 		 * for partial write.
1707 		 */
1708 		set_buffer_new(bh);
1709 		set_buffer_mapped(bh);
1710 	}
1711 	return 0;
1712 }
1713 
1714 static int bget_one(handle_t *handle, struct buffer_head *bh)
1715 {
1716 	get_bh(bh);
1717 	return 0;
1718 }
1719 
1720 static int bput_one(handle_t *handle, struct buffer_head *bh)
1721 {
1722 	put_bh(bh);
1723 	return 0;
1724 }
1725 
1726 static int __ext4_journalled_writepage(struct page *page,
1727 				       unsigned int len)
1728 {
1729 	struct address_space *mapping = page->mapping;
1730 	struct inode *inode = mapping->host;
1731 	struct buffer_head *page_bufs = NULL;
1732 	handle_t *handle = NULL;
1733 	int ret = 0, err = 0;
1734 	int inline_data = ext4_has_inline_data(inode);
1735 	struct buffer_head *inode_bh = NULL;
1736 
1737 	ClearPageChecked(page);
1738 
1739 	if (inline_data) {
1740 		BUG_ON(page->index != 0);
1741 		BUG_ON(len > ext4_get_max_inline_size(inode));
1742 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1743 		if (inode_bh == NULL)
1744 			goto out;
1745 	} else {
1746 		page_bufs = page_buffers(page);
1747 		if (!page_bufs) {
1748 			BUG();
1749 			goto out;
1750 		}
1751 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1752 				       NULL, bget_one);
1753 	}
1754 	/* As soon as we unlock the page, it can go away, but we have
1755 	 * references to buffers so we are safe */
1756 	unlock_page(page);
1757 
1758 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1759 				    ext4_writepage_trans_blocks(inode));
1760 	if (IS_ERR(handle)) {
1761 		ret = PTR_ERR(handle);
1762 		goto out;
1763 	}
1764 
1765 	BUG_ON(!ext4_handle_valid(handle));
1766 
1767 	if (inline_data) {
1768 		ret = ext4_journal_get_write_access(handle, inode_bh);
1769 
1770 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1771 
1772 	} else {
1773 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1774 					     do_journal_get_write_access);
1775 
1776 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1777 					     write_end_fn);
1778 	}
1779 	if (ret == 0)
1780 		ret = err;
1781 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1782 	err = ext4_journal_stop(handle);
1783 	if (!ret)
1784 		ret = err;
1785 
1786 	if (!ext4_has_inline_data(inode))
1787 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1788 				       NULL, bput_one);
1789 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1790 out:
1791 	brelse(inode_bh);
1792 	return ret;
1793 }
1794 
1795 /*
1796  * Note that we don't need to start a transaction unless we're journaling data
1797  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1798  * need to file the inode to the transaction's list in ordered mode because if
1799  * we are writing back data added by write(), the inode is already there and if
1800  * we are writing back data modified via mmap(), no one guarantees in which
1801  * transaction the data will hit the disk. In case we are journaling data, we
1802  * cannot start transaction directly because transaction start ranks above page
1803  * lock so we have to do some magic.
1804  *
1805  * This function can get called via...
1806  *   - ext4_writepages after taking page lock (have journal handle)
1807  *   - journal_submit_inode_data_buffers (no journal handle)
1808  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1809  *   - grab_page_cache when doing write_begin (have journal handle)
1810  *
1811  * We don't do any block allocation in this function. If we have page with
1812  * multiple blocks we need to write those buffer_heads that are mapped. This
1813  * is important for mmaped based write. So if we do with blocksize 1K
1814  * truncate(f, 1024);
1815  * a = mmap(f, 0, 4096);
1816  * a[0] = 'a';
1817  * truncate(f, 4096);
1818  * we have in the page first buffer_head mapped via page_mkwrite call back
1819  * but other buffer_heads would be unmapped but dirty (dirty done via the
1820  * do_wp_page). So writepage should write the first block. If we modify
1821  * the mmap area beyond 1024 we will again get a page_fault and the
1822  * page_mkwrite callback will do the block allocation and mark the
1823  * buffer_heads mapped.
1824  *
1825  * We redirty the page if we have any buffer_heads that is either delay or
1826  * unwritten in the page.
1827  *
1828  * We can get recursively called as show below.
1829  *
1830  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1831  *		ext4_writepage()
1832  *
1833  * But since we don't do any block allocation we should not deadlock.
1834  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1835  */
1836 static int ext4_writepage(struct page *page,
1837 			  struct writeback_control *wbc)
1838 {
1839 	int ret = 0;
1840 	loff_t size;
1841 	unsigned int len;
1842 	struct buffer_head *page_bufs = NULL;
1843 	struct inode *inode = page->mapping->host;
1844 	struct ext4_io_submit io_submit;
1845 
1846 	trace_ext4_writepage(page);
1847 	size = i_size_read(inode);
1848 	if (page->index == size >> PAGE_CACHE_SHIFT)
1849 		len = size & ~PAGE_CACHE_MASK;
1850 	else
1851 		len = PAGE_CACHE_SIZE;
1852 
1853 	page_bufs = page_buffers(page);
1854 	/*
1855 	 * We cannot do block allocation or other extent handling in this
1856 	 * function. If there are buffers needing that, we have to redirty
1857 	 * the page. But we may reach here when we do a journal commit via
1858 	 * journal_submit_inode_data_buffers() and in that case we must write
1859 	 * allocated buffers to achieve data=ordered mode guarantees.
1860 	 */
1861 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1862 				   ext4_bh_delay_or_unwritten)) {
1863 		redirty_page_for_writepage(wbc, page);
1864 		if (current->flags & PF_MEMALLOC) {
1865 			/*
1866 			 * For memory cleaning there's no point in writing only
1867 			 * some buffers. So just bail out. Warn if we came here
1868 			 * from direct reclaim.
1869 			 */
1870 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1871 							== PF_MEMALLOC);
1872 			unlock_page(page);
1873 			return 0;
1874 		}
1875 	}
1876 
1877 	if (PageChecked(page) && ext4_should_journal_data(inode))
1878 		/*
1879 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1880 		 * doesn't seem much point in redirtying the page here.
1881 		 */
1882 		return __ext4_journalled_writepage(page, len);
1883 
1884 	ext4_io_submit_init(&io_submit, wbc);
1885 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1886 	if (!io_submit.io_end) {
1887 		redirty_page_for_writepage(wbc, page);
1888 		unlock_page(page);
1889 		return -ENOMEM;
1890 	}
1891 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1892 	ext4_io_submit(&io_submit);
1893 	/* Drop io_end reference we got from init */
1894 	ext4_put_io_end_defer(io_submit.io_end);
1895 	return ret;
1896 }
1897 
1898 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1899 {
1900 	int len;
1901 	loff_t size = i_size_read(mpd->inode);
1902 	int err;
1903 
1904 	BUG_ON(page->index != mpd->first_page);
1905 	if (page->index == size >> PAGE_CACHE_SHIFT)
1906 		len = size & ~PAGE_CACHE_MASK;
1907 	else
1908 		len = PAGE_CACHE_SIZE;
1909 	clear_page_dirty_for_io(page);
1910 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1911 	if (!err)
1912 		mpd->wbc->nr_to_write--;
1913 	mpd->first_page++;
1914 
1915 	return err;
1916 }
1917 
1918 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1919 
1920 /*
1921  * mballoc gives us at most this number of blocks...
1922  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1923  * The rest of mballoc seems to handle chunks up to full group size.
1924  */
1925 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1926 
1927 /*
1928  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1929  *
1930  * @mpd - extent of blocks
1931  * @lblk - logical number of the block in the file
1932  * @bh - buffer head we want to add to the extent
1933  *
1934  * The function is used to collect contig. blocks in the same state. If the
1935  * buffer doesn't require mapping for writeback and we haven't started the
1936  * extent of buffers to map yet, the function returns 'true' immediately - the
1937  * caller can write the buffer right away. Otherwise the function returns true
1938  * if the block has been added to the extent, false if the block couldn't be
1939  * added.
1940  */
1941 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1942 				   struct buffer_head *bh)
1943 {
1944 	struct ext4_map_blocks *map = &mpd->map;
1945 
1946 	/* Buffer that doesn't need mapping for writeback? */
1947 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1948 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1949 		/* So far no extent to map => we write the buffer right away */
1950 		if (map->m_len == 0)
1951 			return true;
1952 		return false;
1953 	}
1954 
1955 	/* First block in the extent? */
1956 	if (map->m_len == 0) {
1957 		map->m_lblk = lblk;
1958 		map->m_len = 1;
1959 		map->m_flags = bh->b_state & BH_FLAGS;
1960 		return true;
1961 	}
1962 
1963 	/* Don't go larger than mballoc is willing to allocate */
1964 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1965 		return false;
1966 
1967 	/* Can we merge the block to our big extent? */
1968 	if (lblk == map->m_lblk + map->m_len &&
1969 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1970 		map->m_len++;
1971 		return true;
1972 	}
1973 	return false;
1974 }
1975 
1976 /*
1977  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1978  *
1979  * @mpd - extent of blocks for mapping
1980  * @head - the first buffer in the page
1981  * @bh - buffer we should start processing from
1982  * @lblk - logical number of the block in the file corresponding to @bh
1983  *
1984  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1985  * the page for IO if all buffers in this page were mapped and there's no
1986  * accumulated extent of buffers to map or add buffers in the page to the
1987  * extent of buffers to map. The function returns 1 if the caller can continue
1988  * by processing the next page, 0 if it should stop adding buffers to the
1989  * extent to map because we cannot extend it anymore. It can also return value
1990  * < 0 in case of error during IO submission.
1991  */
1992 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1993 				   struct buffer_head *head,
1994 				   struct buffer_head *bh,
1995 				   ext4_lblk_t lblk)
1996 {
1997 	struct inode *inode = mpd->inode;
1998 	int err;
1999 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2000 							>> inode->i_blkbits;
2001 
2002 	do {
2003 		BUG_ON(buffer_locked(bh));
2004 
2005 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2006 			/* Found extent to map? */
2007 			if (mpd->map.m_len)
2008 				return 0;
2009 			/* Everything mapped so far and we hit EOF */
2010 			break;
2011 		}
2012 	} while (lblk++, (bh = bh->b_this_page) != head);
2013 	/* So far everything mapped? Submit the page for IO. */
2014 	if (mpd->map.m_len == 0) {
2015 		err = mpage_submit_page(mpd, head->b_page);
2016 		if (err < 0)
2017 			return err;
2018 	}
2019 	return lblk < blocks;
2020 }
2021 
2022 /*
2023  * mpage_map_buffers - update buffers corresponding to changed extent and
2024  *		       submit fully mapped pages for IO
2025  *
2026  * @mpd - description of extent to map, on return next extent to map
2027  *
2028  * Scan buffers corresponding to changed extent (we expect corresponding pages
2029  * to be already locked) and update buffer state according to new extent state.
2030  * We map delalloc buffers to their physical location, clear unwritten bits,
2031  * and mark buffers as uninit when we perform writes to uninitialized extents
2032  * and do extent conversion after IO is finished. If the last page is not fully
2033  * mapped, we update @map to the next extent in the last page that needs
2034  * mapping. Otherwise we submit the page for IO.
2035  */
2036 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2037 {
2038 	struct pagevec pvec;
2039 	int nr_pages, i;
2040 	struct inode *inode = mpd->inode;
2041 	struct buffer_head *head, *bh;
2042 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2043 	pgoff_t start, end;
2044 	ext4_lblk_t lblk;
2045 	sector_t pblock;
2046 	int err;
2047 
2048 	start = mpd->map.m_lblk >> bpp_bits;
2049 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2050 	lblk = start << bpp_bits;
2051 	pblock = mpd->map.m_pblk;
2052 
2053 	pagevec_init(&pvec, 0);
2054 	while (start <= end) {
2055 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2056 					  PAGEVEC_SIZE);
2057 		if (nr_pages == 0)
2058 			break;
2059 		for (i = 0; i < nr_pages; i++) {
2060 			struct page *page = pvec.pages[i];
2061 
2062 			if (page->index > end)
2063 				break;
2064 			/* Up to 'end' pages must be contiguous */
2065 			BUG_ON(page->index != start);
2066 			bh = head = page_buffers(page);
2067 			do {
2068 				if (lblk < mpd->map.m_lblk)
2069 					continue;
2070 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2071 					/*
2072 					 * Buffer after end of mapped extent.
2073 					 * Find next buffer in the page to map.
2074 					 */
2075 					mpd->map.m_len = 0;
2076 					mpd->map.m_flags = 0;
2077 					/*
2078 					 * FIXME: If dioread_nolock supports
2079 					 * blocksize < pagesize, we need to make
2080 					 * sure we add size mapped so far to
2081 					 * io_end->size as the following call
2082 					 * can submit the page for IO.
2083 					 */
2084 					err = mpage_process_page_bufs(mpd, head,
2085 								      bh, lblk);
2086 					pagevec_release(&pvec);
2087 					if (err > 0)
2088 						err = 0;
2089 					return err;
2090 				}
2091 				if (buffer_delay(bh)) {
2092 					clear_buffer_delay(bh);
2093 					bh->b_blocknr = pblock++;
2094 				}
2095 				clear_buffer_unwritten(bh);
2096 			} while (lblk++, (bh = bh->b_this_page) != head);
2097 
2098 			/*
2099 			 * FIXME: This is going to break if dioread_nolock
2100 			 * supports blocksize < pagesize as we will try to
2101 			 * convert potentially unmapped parts of inode.
2102 			 */
2103 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2104 			/* Page fully mapped - let IO run! */
2105 			err = mpage_submit_page(mpd, page);
2106 			if (err < 0) {
2107 				pagevec_release(&pvec);
2108 				return err;
2109 			}
2110 			start++;
2111 		}
2112 		pagevec_release(&pvec);
2113 	}
2114 	/* Extent fully mapped and matches with page boundary. We are done. */
2115 	mpd->map.m_len = 0;
2116 	mpd->map.m_flags = 0;
2117 	return 0;
2118 }
2119 
2120 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2121 {
2122 	struct inode *inode = mpd->inode;
2123 	struct ext4_map_blocks *map = &mpd->map;
2124 	int get_blocks_flags;
2125 	int err;
2126 
2127 	trace_ext4_da_write_pages_extent(inode, map);
2128 	/*
2129 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2130 	 * to convert an uninitialized extent to be initialized (in the case
2131 	 * where we have written into one or more preallocated blocks).  It is
2132 	 * possible that we're going to need more metadata blocks than
2133 	 * previously reserved. However we must not fail because we're in
2134 	 * writeback and there is nothing we can do about it so it might result
2135 	 * in data loss.  So use reserved blocks to allocate metadata if
2136 	 * possible.
2137 	 *
2138 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2139 	 * in question are delalloc blocks.  This affects functions in many
2140 	 * different parts of the allocation call path.  This flag exists
2141 	 * primarily because we don't want to change *many* call functions, so
2142 	 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2143 	 * once the inode's allocation semaphore is taken.
2144 	 */
2145 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2146 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2147 	if (ext4_should_dioread_nolock(inode))
2148 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2149 	if (map->m_flags & (1 << BH_Delay))
2150 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2151 
2152 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2153 	if (err < 0)
2154 		return err;
2155 	if (map->m_flags & EXT4_MAP_UNINIT) {
2156 		if (!mpd->io_submit.io_end->handle &&
2157 		    ext4_handle_valid(handle)) {
2158 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2159 			handle->h_rsv_handle = NULL;
2160 		}
2161 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2162 	}
2163 
2164 	BUG_ON(map->m_len == 0);
2165 	if (map->m_flags & EXT4_MAP_NEW) {
2166 		struct block_device *bdev = inode->i_sb->s_bdev;
2167 		int i;
2168 
2169 		for (i = 0; i < map->m_len; i++)
2170 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2171 	}
2172 	return 0;
2173 }
2174 
2175 /*
2176  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2177  *				 mpd->len and submit pages underlying it for IO
2178  *
2179  * @handle - handle for journal operations
2180  * @mpd - extent to map
2181  *
2182  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2183  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2184  * them to initialized or split the described range from larger unwritten
2185  * extent. Note that we need not map all the described range since allocation
2186  * can return less blocks or the range is covered by more unwritten extents. We
2187  * cannot map more because we are limited by reserved transaction credits. On
2188  * the other hand we always make sure that the last touched page is fully
2189  * mapped so that it can be written out (and thus forward progress is
2190  * guaranteed). After mapping we submit all mapped pages for IO.
2191  */
2192 static int mpage_map_and_submit_extent(handle_t *handle,
2193 				       struct mpage_da_data *mpd,
2194 				       bool *give_up_on_write)
2195 {
2196 	struct inode *inode = mpd->inode;
2197 	struct ext4_map_blocks *map = &mpd->map;
2198 	int err;
2199 	loff_t disksize;
2200 
2201 	mpd->io_submit.io_end->offset =
2202 				((loff_t)map->m_lblk) << inode->i_blkbits;
2203 	do {
2204 		err = mpage_map_one_extent(handle, mpd);
2205 		if (err < 0) {
2206 			struct super_block *sb = inode->i_sb;
2207 
2208 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2209 				goto invalidate_dirty_pages;
2210 			/*
2211 			 * Let the uper layers retry transient errors.
2212 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2213 			 * is non-zero, a commit should free up blocks.
2214 			 */
2215 			if ((err == -ENOMEM) ||
2216 			    (err == -ENOSPC && ext4_count_free_clusters(sb)))
2217 				return err;
2218 			ext4_msg(sb, KERN_CRIT,
2219 				 "Delayed block allocation failed for "
2220 				 "inode %lu at logical offset %llu with"
2221 				 " max blocks %u with error %d",
2222 				 inode->i_ino,
2223 				 (unsigned long long)map->m_lblk,
2224 				 (unsigned)map->m_len, -err);
2225 			ext4_msg(sb, KERN_CRIT,
2226 				 "This should not happen!! Data will "
2227 				 "be lost\n");
2228 			if (err == -ENOSPC)
2229 				ext4_print_free_blocks(inode);
2230 		invalidate_dirty_pages:
2231 			*give_up_on_write = true;
2232 			return err;
2233 		}
2234 		/*
2235 		 * Update buffer state, submit mapped pages, and get us new
2236 		 * extent to map
2237 		 */
2238 		err = mpage_map_and_submit_buffers(mpd);
2239 		if (err < 0)
2240 			return err;
2241 	} while (map->m_len);
2242 
2243 	/* Update on-disk size after IO is submitted */
2244 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2245 	if (disksize > EXT4_I(inode)->i_disksize) {
2246 		int err2;
2247 
2248 		ext4_wb_update_i_disksize(inode, disksize);
2249 		err2 = ext4_mark_inode_dirty(handle, inode);
2250 		if (err2)
2251 			ext4_error(inode->i_sb,
2252 				   "Failed to mark inode %lu dirty",
2253 				   inode->i_ino);
2254 		if (!err)
2255 			err = err2;
2256 	}
2257 	return err;
2258 }
2259 
2260 /*
2261  * Calculate the total number of credits to reserve for one writepages
2262  * iteration. This is called from ext4_writepages(). We map an extent of
2263  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2264  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2265  * bpp - 1 blocks in bpp different extents.
2266  */
2267 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2268 {
2269 	int bpp = ext4_journal_blocks_per_page(inode);
2270 
2271 	return ext4_meta_trans_blocks(inode,
2272 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2273 }
2274 
2275 /*
2276  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2277  * 				 and underlying extent to map
2278  *
2279  * @mpd - where to look for pages
2280  *
2281  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2282  * IO immediately. When we find a page which isn't mapped we start accumulating
2283  * extent of buffers underlying these pages that needs mapping (formed by
2284  * either delayed or unwritten buffers). We also lock the pages containing
2285  * these buffers. The extent found is returned in @mpd structure (starting at
2286  * mpd->lblk with length mpd->len blocks).
2287  *
2288  * Note that this function can attach bios to one io_end structure which are
2289  * neither logically nor physically contiguous. Although it may seem as an
2290  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2291  * case as we need to track IO to all buffers underlying a page in one io_end.
2292  */
2293 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2294 {
2295 	struct address_space *mapping = mpd->inode->i_mapping;
2296 	struct pagevec pvec;
2297 	unsigned int nr_pages;
2298 	pgoff_t index = mpd->first_page;
2299 	pgoff_t end = mpd->last_page;
2300 	int tag;
2301 	int i, err = 0;
2302 	int blkbits = mpd->inode->i_blkbits;
2303 	ext4_lblk_t lblk;
2304 	struct buffer_head *head;
2305 
2306 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2307 		tag = PAGECACHE_TAG_TOWRITE;
2308 	else
2309 		tag = PAGECACHE_TAG_DIRTY;
2310 
2311 	pagevec_init(&pvec, 0);
2312 	mpd->map.m_len = 0;
2313 	mpd->next_page = index;
2314 	while (index <= end) {
2315 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2316 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2317 		if (nr_pages == 0)
2318 			goto out;
2319 
2320 		for (i = 0; i < nr_pages; i++) {
2321 			struct page *page = pvec.pages[i];
2322 
2323 			/*
2324 			 * At this point, the page may be truncated or
2325 			 * invalidated (changing page->mapping to NULL), or
2326 			 * even swizzled back from swapper_space to tmpfs file
2327 			 * mapping. However, page->index will not change
2328 			 * because we have a reference on the page.
2329 			 */
2330 			if (page->index > end)
2331 				goto out;
2332 
2333 			/* If we can't merge this page, we are done. */
2334 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2335 				goto out;
2336 
2337 			lock_page(page);
2338 			/*
2339 			 * If the page is no longer dirty, or its mapping no
2340 			 * longer corresponds to inode we are writing (which
2341 			 * means it has been truncated or invalidated), or the
2342 			 * page is already under writeback and we are not doing
2343 			 * a data integrity writeback, skip the page
2344 			 */
2345 			if (!PageDirty(page) ||
2346 			    (PageWriteback(page) &&
2347 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2348 			    unlikely(page->mapping != mapping)) {
2349 				unlock_page(page);
2350 				continue;
2351 			}
2352 
2353 			wait_on_page_writeback(page);
2354 			BUG_ON(PageWriteback(page));
2355 
2356 			if (mpd->map.m_len == 0)
2357 				mpd->first_page = page->index;
2358 			mpd->next_page = page->index + 1;
2359 			/* Add all dirty buffers to mpd */
2360 			lblk = ((ext4_lblk_t)page->index) <<
2361 				(PAGE_CACHE_SHIFT - blkbits);
2362 			head = page_buffers(page);
2363 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2364 			if (err <= 0)
2365 				goto out;
2366 			err = 0;
2367 
2368 			/*
2369 			 * Accumulated enough dirty pages? This doesn't apply
2370 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2371 			 * keep going because someone may be concurrently
2372 			 * dirtying pages, and we might have synced a lot of
2373 			 * newly appeared dirty pages, but have not synced all
2374 			 * of the old dirty pages.
2375 			 */
2376 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2377 			    mpd->next_page - mpd->first_page >=
2378 							mpd->wbc->nr_to_write)
2379 				goto out;
2380 		}
2381 		pagevec_release(&pvec);
2382 		cond_resched();
2383 	}
2384 	return 0;
2385 out:
2386 	pagevec_release(&pvec);
2387 	return err;
2388 }
2389 
2390 static int __writepage(struct page *page, struct writeback_control *wbc,
2391 		       void *data)
2392 {
2393 	struct address_space *mapping = data;
2394 	int ret = ext4_writepage(page, wbc);
2395 	mapping_set_error(mapping, ret);
2396 	return ret;
2397 }
2398 
2399 static int ext4_writepages(struct address_space *mapping,
2400 			   struct writeback_control *wbc)
2401 {
2402 	pgoff_t	writeback_index = 0;
2403 	long nr_to_write = wbc->nr_to_write;
2404 	int range_whole = 0;
2405 	int cycled = 1;
2406 	handle_t *handle = NULL;
2407 	struct mpage_da_data mpd;
2408 	struct inode *inode = mapping->host;
2409 	int needed_blocks, rsv_blocks = 0, ret = 0;
2410 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2411 	bool done;
2412 	struct blk_plug plug;
2413 	bool give_up_on_write = false;
2414 
2415 	trace_ext4_writepages(inode, wbc);
2416 
2417 	/*
2418 	 * No pages to write? This is mainly a kludge to avoid starting
2419 	 * a transaction for special inodes like journal inode on last iput()
2420 	 * because that could violate lock ordering on umount
2421 	 */
2422 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2423 		return 0;
2424 
2425 	if (ext4_should_journal_data(inode)) {
2426 		struct blk_plug plug;
2427 		int ret;
2428 
2429 		blk_start_plug(&plug);
2430 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2431 		blk_finish_plug(&plug);
2432 		return ret;
2433 	}
2434 
2435 	/*
2436 	 * If the filesystem has aborted, it is read-only, so return
2437 	 * right away instead of dumping stack traces later on that
2438 	 * will obscure the real source of the problem.  We test
2439 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2440 	 * the latter could be true if the filesystem is mounted
2441 	 * read-only, and in that case, ext4_writepages should
2442 	 * *never* be called, so if that ever happens, we would want
2443 	 * the stack trace.
2444 	 */
2445 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2446 		return -EROFS;
2447 
2448 	if (ext4_should_dioread_nolock(inode)) {
2449 		/*
2450 		 * We may need to convert up to one extent per block in
2451 		 * the page and we may dirty the inode.
2452 		 */
2453 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2454 	}
2455 
2456 	/*
2457 	 * If we have inline data and arrive here, it means that
2458 	 * we will soon create the block for the 1st page, so
2459 	 * we'd better clear the inline data here.
2460 	 */
2461 	if (ext4_has_inline_data(inode)) {
2462 		/* Just inode will be modified... */
2463 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2464 		if (IS_ERR(handle)) {
2465 			ret = PTR_ERR(handle);
2466 			goto out_writepages;
2467 		}
2468 		BUG_ON(ext4_test_inode_state(inode,
2469 				EXT4_STATE_MAY_INLINE_DATA));
2470 		ext4_destroy_inline_data(handle, inode);
2471 		ext4_journal_stop(handle);
2472 	}
2473 
2474 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2475 		range_whole = 1;
2476 
2477 	if (wbc->range_cyclic) {
2478 		writeback_index = mapping->writeback_index;
2479 		if (writeback_index)
2480 			cycled = 0;
2481 		mpd.first_page = writeback_index;
2482 		mpd.last_page = -1;
2483 	} else {
2484 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2485 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2486 	}
2487 
2488 	mpd.inode = inode;
2489 	mpd.wbc = wbc;
2490 	ext4_io_submit_init(&mpd.io_submit, wbc);
2491 retry:
2492 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2493 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2494 	done = false;
2495 	blk_start_plug(&plug);
2496 	while (!done && mpd.first_page <= mpd.last_page) {
2497 		/* For each extent of pages we use new io_end */
2498 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2499 		if (!mpd.io_submit.io_end) {
2500 			ret = -ENOMEM;
2501 			break;
2502 		}
2503 
2504 		/*
2505 		 * We have two constraints: We find one extent to map and we
2506 		 * must always write out whole page (makes a difference when
2507 		 * blocksize < pagesize) so that we don't block on IO when we
2508 		 * try to write out the rest of the page. Journalled mode is
2509 		 * not supported by delalloc.
2510 		 */
2511 		BUG_ON(ext4_should_journal_data(inode));
2512 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2513 
2514 		/* start a new transaction */
2515 		handle = ext4_journal_start_with_reserve(inode,
2516 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2517 		if (IS_ERR(handle)) {
2518 			ret = PTR_ERR(handle);
2519 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2520 			       "%ld pages, ino %lu; err %d", __func__,
2521 				wbc->nr_to_write, inode->i_ino, ret);
2522 			/* Release allocated io_end */
2523 			ext4_put_io_end(mpd.io_submit.io_end);
2524 			break;
2525 		}
2526 
2527 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2528 		ret = mpage_prepare_extent_to_map(&mpd);
2529 		if (!ret) {
2530 			if (mpd.map.m_len)
2531 				ret = mpage_map_and_submit_extent(handle, &mpd,
2532 					&give_up_on_write);
2533 			else {
2534 				/*
2535 				 * We scanned the whole range (or exhausted
2536 				 * nr_to_write), submitted what was mapped and
2537 				 * didn't find anything needing mapping. We are
2538 				 * done.
2539 				 */
2540 				done = true;
2541 			}
2542 		}
2543 		ext4_journal_stop(handle);
2544 		/* Submit prepared bio */
2545 		ext4_io_submit(&mpd.io_submit);
2546 		/* Unlock pages we didn't use */
2547 		mpage_release_unused_pages(&mpd, give_up_on_write);
2548 		/* Drop our io_end reference we got from init */
2549 		ext4_put_io_end(mpd.io_submit.io_end);
2550 
2551 		if (ret == -ENOSPC && sbi->s_journal) {
2552 			/*
2553 			 * Commit the transaction which would
2554 			 * free blocks released in the transaction
2555 			 * and try again
2556 			 */
2557 			jbd2_journal_force_commit_nested(sbi->s_journal);
2558 			ret = 0;
2559 			continue;
2560 		}
2561 		/* Fatal error - ENOMEM, EIO... */
2562 		if (ret)
2563 			break;
2564 	}
2565 	blk_finish_plug(&plug);
2566 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2567 		cycled = 1;
2568 		mpd.last_page = writeback_index - 1;
2569 		mpd.first_page = 0;
2570 		goto retry;
2571 	}
2572 
2573 	/* Update index */
2574 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2575 		/*
2576 		 * Set the writeback_index so that range_cyclic
2577 		 * mode will write it back later
2578 		 */
2579 		mapping->writeback_index = mpd.first_page;
2580 
2581 out_writepages:
2582 	trace_ext4_writepages_result(inode, wbc, ret,
2583 				     nr_to_write - wbc->nr_to_write);
2584 	return ret;
2585 }
2586 
2587 static int ext4_nonda_switch(struct super_block *sb)
2588 {
2589 	s64 free_clusters, dirty_clusters;
2590 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2591 
2592 	/*
2593 	 * switch to non delalloc mode if we are running low
2594 	 * on free block. The free block accounting via percpu
2595 	 * counters can get slightly wrong with percpu_counter_batch getting
2596 	 * accumulated on each CPU without updating global counters
2597 	 * Delalloc need an accurate free block accounting. So switch
2598 	 * to non delalloc when we are near to error range.
2599 	 */
2600 	free_clusters =
2601 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2602 	dirty_clusters =
2603 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2604 	/*
2605 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2606 	 */
2607 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2608 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2609 
2610 	if (2 * free_clusters < 3 * dirty_clusters ||
2611 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2612 		/*
2613 		 * free block count is less than 150% of dirty blocks
2614 		 * or free blocks is less than watermark
2615 		 */
2616 		return 1;
2617 	}
2618 	return 0;
2619 }
2620 
2621 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2622 			       loff_t pos, unsigned len, unsigned flags,
2623 			       struct page **pagep, void **fsdata)
2624 {
2625 	int ret, retries = 0;
2626 	struct page *page;
2627 	pgoff_t index;
2628 	struct inode *inode = mapping->host;
2629 	handle_t *handle;
2630 
2631 	index = pos >> PAGE_CACHE_SHIFT;
2632 
2633 	if (ext4_nonda_switch(inode->i_sb)) {
2634 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2635 		return ext4_write_begin(file, mapping, pos,
2636 					len, flags, pagep, fsdata);
2637 	}
2638 	*fsdata = (void *)0;
2639 	trace_ext4_da_write_begin(inode, pos, len, flags);
2640 
2641 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2642 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2643 						      pos, len, flags,
2644 						      pagep, fsdata);
2645 		if (ret < 0)
2646 			return ret;
2647 		if (ret == 1)
2648 			return 0;
2649 	}
2650 
2651 	/*
2652 	 * grab_cache_page_write_begin() can take a long time if the
2653 	 * system is thrashing due to memory pressure, or if the page
2654 	 * is being written back.  So grab it first before we start
2655 	 * the transaction handle.  This also allows us to allocate
2656 	 * the page (if needed) without using GFP_NOFS.
2657 	 */
2658 retry_grab:
2659 	page = grab_cache_page_write_begin(mapping, index, flags);
2660 	if (!page)
2661 		return -ENOMEM;
2662 	unlock_page(page);
2663 
2664 	/*
2665 	 * With delayed allocation, we don't log the i_disksize update
2666 	 * if there is delayed block allocation. But we still need
2667 	 * to journalling the i_disksize update if writes to the end
2668 	 * of file which has an already mapped buffer.
2669 	 */
2670 retry_journal:
2671 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2672 	if (IS_ERR(handle)) {
2673 		page_cache_release(page);
2674 		return PTR_ERR(handle);
2675 	}
2676 
2677 	lock_page(page);
2678 	if (page->mapping != mapping) {
2679 		/* The page got truncated from under us */
2680 		unlock_page(page);
2681 		page_cache_release(page);
2682 		ext4_journal_stop(handle);
2683 		goto retry_grab;
2684 	}
2685 	/* In case writeback began while the page was unlocked */
2686 	wait_for_stable_page(page);
2687 
2688 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2689 	if (ret < 0) {
2690 		unlock_page(page);
2691 		ext4_journal_stop(handle);
2692 		/*
2693 		 * block_write_begin may have instantiated a few blocks
2694 		 * outside i_size.  Trim these off again. Don't need
2695 		 * i_size_read because we hold i_mutex.
2696 		 */
2697 		if (pos + len > inode->i_size)
2698 			ext4_truncate_failed_write(inode);
2699 
2700 		if (ret == -ENOSPC &&
2701 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2702 			goto retry_journal;
2703 
2704 		page_cache_release(page);
2705 		return ret;
2706 	}
2707 
2708 	*pagep = page;
2709 	return ret;
2710 }
2711 
2712 /*
2713  * Check if we should update i_disksize
2714  * when write to the end of file but not require block allocation
2715  */
2716 static int ext4_da_should_update_i_disksize(struct page *page,
2717 					    unsigned long offset)
2718 {
2719 	struct buffer_head *bh;
2720 	struct inode *inode = page->mapping->host;
2721 	unsigned int idx;
2722 	int i;
2723 
2724 	bh = page_buffers(page);
2725 	idx = offset >> inode->i_blkbits;
2726 
2727 	for (i = 0; i < idx; i++)
2728 		bh = bh->b_this_page;
2729 
2730 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2731 		return 0;
2732 	return 1;
2733 }
2734 
2735 static int ext4_da_write_end(struct file *file,
2736 			     struct address_space *mapping,
2737 			     loff_t pos, unsigned len, unsigned copied,
2738 			     struct page *page, void *fsdata)
2739 {
2740 	struct inode *inode = mapping->host;
2741 	int ret = 0, ret2;
2742 	handle_t *handle = ext4_journal_current_handle();
2743 	loff_t new_i_size;
2744 	unsigned long start, end;
2745 	int write_mode = (int)(unsigned long)fsdata;
2746 
2747 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2748 		return ext4_write_end(file, mapping, pos,
2749 				      len, copied, page, fsdata);
2750 
2751 	trace_ext4_da_write_end(inode, pos, len, copied);
2752 	start = pos & (PAGE_CACHE_SIZE - 1);
2753 	end = start + copied - 1;
2754 
2755 	/*
2756 	 * generic_write_end() will run mark_inode_dirty() if i_size
2757 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2758 	 * into that.
2759 	 */
2760 	new_i_size = pos + copied;
2761 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2762 		if (ext4_has_inline_data(inode) ||
2763 		    ext4_da_should_update_i_disksize(page, end)) {
2764 			down_write(&EXT4_I(inode)->i_data_sem);
2765 			if (new_i_size > EXT4_I(inode)->i_disksize)
2766 				EXT4_I(inode)->i_disksize = new_i_size;
2767 			up_write(&EXT4_I(inode)->i_data_sem);
2768 			/* We need to mark inode dirty even if
2769 			 * new_i_size is less that inode->i_size
2770 			 * bu greater than i_disksize.(hint delalloc)
2771 			 */
2772 			ext4_mark_inode_dirty(handle, inode);
2773 		}
2774 	}
2775 
2776 	if (write_mode != CONVERT_INLINE_DATA &&
2777 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2778 	    ext4_has_inline_data(inode))
2779 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2780 						     page);
2781 	else
2782 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2783 							page, fsdata);
2784 
2785 	copied = ret2;
2786 	if (ret2 < 0)
2787 		ret = ret2;
2788 	ret2 = ext4_journal_stop(handle);
2789 	if (!ret)
2790 		ret = ret2;
2791 
2792 	return ret ? ret : copied;
2793 }
2794 
2795 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2796 				   unsigned int length)
2797 {
2798 	/*
2799 	 * Drop reserved blocks
2800 	 */
2801 	BUG_ON(!PageLocked(page));
2802 	if (!page_has_buffers(page))
2803 		goto out;
2804 
2805 	ext4_da_page_release_reservation(page, offset, length);
2806 
2807 out:
2808 	ext4_invalidatepage(page, offset, length);
2809 
2810 	return;
2811 }
2812 
2813 /*
2814  * Force all delayed allocation blocks to be allocated for a given inode.
2815  */
2816 int ext4_alloc_da_blocks(struct inode *inode)
2817 {
2818 	trace_ext4_alloc_da_blocks(inode);
2819 
2820 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2821 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2822 		return 0;
2823 
2824 	/*
2825 	 * We do something simple for now.  The filemap_flush() will
2826 	 * also start triggering a write of the data blocks, which is
2827 	 * not strictly speaking necessary (and for users of
2828 	 * laptop_mode, not even desirable).  However, to do otherwise
2829 	 * would require replicating code paths in:
2830 	 *
2831 	 * ext4_writepages() ->
2832 	 *    write_cache_pages() ---> (via passed in callback function)
2833 	 *        __mpage_da_writepage() -->
2834 	 *           mpage_add_bh_to_extent()
2835 	 *           mpage_da_map_blocks()
2836 	 *
2837 	 * The problem is that write_cache_pages(), located in
2838 	 * mm/page-writeback.c, marks pages clean in preparation for
2839 	 * doing I/O, which is not desirable if we're not planning on
2840 	 * doing I/O at all.
2841 	 *
2842 	 * We could call write_cache_pages(), and then redirty all of
2843 	 * the pages by calling redirty_page_for_writepage() but that
2844 	 * would be ugly in the extreme.  So instead we would need to
2845 	 * replicate parts of the code in the above functions,
2846 	 * simplifying them because we wouldn't actually intend to
2847 	 * write out the pages, but rather only collect contiguous
2848 	 * logical block extents, call the multi-block allocator, and
2849 	 * then update the buffer heads with the block allocations.
2850 	 *
2851 	 * For now, though, we'll cheat by calling filemap_flush(),
2852 	 * which will map the blocks, and start the I/O, but not
2853 	 * actually wait for the I/O to complete.
2854 	 */
2855 	return filemap_flush(inode->i_mapping);
2856 }
2857 
2858 /*
2859  * bmap() is special.  It gets used by applications such as lilo and by
2860  * the swapper to find the on-disk block of a specific piece of data.
2861  *
2862  * Naturally, this is dangerous if the block concerned is still in the
2863  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2864  * filesystem and enables swap, then they may get a nasty shock when the
2865  * data getting swapped to that swapfile suddenly gets overwritten by
2866  * the original zero's written out previously to the journal and
2867  * awaiting writeback in the kernel's buffer cache.
2868  *
2869  * So, if we see any bmap calls here on a modified, data-journaled file,
2870  * take extra steps to flush any blocks which might be in the cache.
2871  */
2872 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2873 {
2874 	struct inode *inode = mapping->host;
2875 	journal_t *journal;
2876 	int err;
2877 
2878 	/*
2879 	 * We can get here for an inline file via the FIBMAP ioctl
2880 	 */
2881 	if (ext4_has_inline_data(inode))
2882 		return 0;
2883 
2884 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2885 			test_opt(inode->i_sb, DELALLOC)) {
2886 		/*
2887 		 * With delalloc we want to sync the file
2888 		 * so that we can make sure we allocate
2889 		 * blocks for file
2890 		 */
2891 		filemap_write_and_wait(mapping);
2892 	}
2893 
2894 	if (EXT4_JOURNAL(inode) &&
2895 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2896 		/*
2897 		 * This is a REALLY heavyweight approach, but the use of
2898 		 * bmap on dirty files is expected to be extremely rare:
2899 		 * only if we run lilo or swapon on a freshly made file
2900 		 * do we expect this to happen.
2901 		 *
2902 		 * (bmap requires CAP_SYS_RAWIO so this does not
2903 		 * represent an unprivileged user DOS attack --- we'd be
2904 		 * in trouble if mortal users could trigger this path at
2905 		 * will.)
2906 		 *
2907 		 * NB. EXT4_STATE_JDATA is not set on files other than
2908 		 * regular files.  If somebody wants to bmap a directory
2909 		 * or symlink and gets confused because the buffer
2910 		 * hasn't yet been flushed to disk, they deserve
2911 		 * everything they get.
2912 		 */
2913 
2914 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2915 		journal = EXT4_JOURNAL(inode);
2916 		jbd2_journal_lock_updates(journal);
2917 		err = jbd2_journal_flush(journal);
2918 		jbd2_journal_unlock_updates(journal);
2919 
2920 		if (err)
2921 			return 0;
2922 	}
2923 
2924 	return generic_block_bmap(mapping, block, ext4_get_block);
2925 }
2926 
2927 static int ext4_readpage(struct file *file, struct page *page)
2928 {
2929 	int ret = -EAGAIN;
2930 	struct inode *inode = page->mapping->host;
2931 
2932 	trace_ext4_readpage(page);
2933 
2934 	if (ext4_has_inline_data(inode))
2935 		ret = ext4_readpage_inline(inode, page);
2936 
2937 	if (ret == -EAGAIN)
2938 		return mpage_readpage(page, ext4_get_block);
2939 
2940 	return ret;
2941 }
2942 
2943 static int
2944 ext4_readpages(struct file *file, struct address_space *mapping,
2945 		struct list_head *pages, unsigned nr_pages)
2946 {
2947 	struct inode *inode = mapping->host;
2948 
2949 	/* If the file has inline data, no need to do readpages. */
2950 	if (ext4_has_inline_data(inode))
2951 		return 0;
2952 
2953 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2954 }
2955 
2956 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2957 				unsigned int length)
2958 {
2959 	trace_ext4_invalidatepage(page, offset, length);
2960 
2961 	/* No journalling happens on data buffers when this function is used */
2962 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2963 
2964 	block_invalidatepage(page, offset, length);
2965 }
2966 
2967 static int __ext4_journalled_invalidatepage(struct page *page,
2968 					    unsigned int offset,
2969 					    unsigned int length)
2970 {
2971 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2972 
2973 	trace_ext4_journalled_invalidatepage(page, offset, length);
2974 
2975 	/*
2976 	 * If it's a full truncate we just forget about the pending dirtying
2977 	 */
2978 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2979 		ClearPageChecked(page);
2980 
2981 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2982 }
2983 
2984 /* Wrapper for aops... */
2985 static void ext4_journalled_invalidatepage(struct page *page,
2986 					   unsigned int offset,
2987 					   unsigned int length)
2988 {
2989 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2990 }
2991 
2992 static int ext4_releasepage(struct page *page, gfp_t wait)
2993 {
2994 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2995 
2996 	trace_ext4_releasepage(page);
2997 
2998 	/* Page has dirty journalled data -> cannot release */
2999 	if (PageChecked(page))
3000 		return 0;
3001 	if (journal)
3002 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3003 	else
3004 		return try_to_free_buffers(page);
3005 }
3006 
3007 /*
3008  * ext4_get_block used when preparing for a DIO write or buffer write.
3009  * We allocate an uinitialized extent if blocks haven't been allocated.
3010  * The extent will be converted to initialized after the IO is complete.
3011  */
3012 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3013 		   struct buffer_head *bh_result, int create)
3014 {
3015 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3016 		   inode->i_ino, create);
3017 	return _ext4_get_block(inode, iblock, bh_result,
3018 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3019 }
3020 
3021 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3022 		   struct buffer_head *bh_result, int create)
3023 {
3024 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3025 		   inode->i_ino, create);
3026 	return _ext4_get_block(inode, iblock, bh_result,
3027 			       EXT4_GET_BLOCKS_NO_LOCK);
3028 }
3029 
3030 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3031 			    ssize_t size, void *private)
3032 {
3033         ext4_io_end_t *io_end = iocb->private;
3034 
3035 	/* if not async direct IO just return */
3036 	if (!io_end)
3037 		return;
3038 
3039 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3040 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3041  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3042 		  size);
3043 
3044 	iocb->private = NULL;
3045 	io_end->offset = offset;
3046 	io_end->size = size;
3047 	ext4_put_io_end(io_end);
3048 }
3049 
3050 /*
3051  * For ext4 extent files, ext4 will do direct-io write to holes,
3052  * preallocated extents, and those write extend the file, no need to
3053  * fall back to buffered IO.
3054  *
3055  * For holes, we fallocate those blocks, mark them as uninitialized
3056  * If those blocks were preallocated, we mark sure they are split, but
3057  * still keep the range to write as uninitialized.
3058  *
3059  * The unwritten extents will be converted to written when DIO is completed.
3060  * For async direct IO, since the IO may still pending when return, we
3061  * set up an end_io call back function, which will do the conversion
3062  * when async direct IO completed.
3063  *
3064  * If the O_DIRECT write will extend the file then add this inode to the
3065  * orphan list.  So recovery will truncate it back to the original size
3066  * if the machine crashes during the write.
3067  *
3068  */
3069 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3070 			      const struct iovec *iov, loff_t offset,
3071 			      unsigned long nr_segs)
3072 {
3073 	struct file *file = iocb->ki_filp;
3074 	struct inode *inode = file->f_mapping->host;
3075 	ssize_t ret;
3076 	size_t count = iov_length(iov, nr_segs);
3077 	int overwrite = 0;
3078 	get_block_t *get_block_func = NULL;
3079 	int dio_flags = 0;
3080 	loff_t final_size = offset + count;
3081 	ext4_io_end_t *io_end = NULL;
3082 
3083 	/* Use the old path for reads and writes beyond i_size. */
3084 	if (rw != WRITE || final_size > inode->i_size)
3085 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3086 
3087 	BUG_ON(iocb->private == NULL);
3088 
3089 	/*
3090 	 * Make all waiters for direct IO properly wait also for extent
3091 	 * conversion. This also disallows race between truncate() and
3092 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3093 	 */
3094 	if (rw == WRITE)
3095 		atomic_inc(&inode->i_dio_count);
3096 
3097 	/* If we do a overwrite dio, i_mutex locking can be released */
3098 	overwrite = *((int *)iocb->private);
3099 
3100 	if (overwrite) {
3101 		down_read(&EXT4_I(inode)->i_data_sem);
3102 		mutex_unlock(&inode->i_mutex);
3103 	}
3104 
3105 	/*
3106 	 * We could direct write to holes and fallocate.
3107 	 *
3108 	 * Allocated blocks to fill the hole are marked as
3109 	 * uninitialized to prevent parallel buffered read to expose
3110 	 * the stale data before DIO complete the data IO.
3111 	 *
3112 	 * As to previously fallocated extents, ext4 get_block will
3113 	 * just simply mark the buffer mapped but still keep the
3114 	 * extents uninitialized.
3115 	 *
3116 	 * For non AIO case, we will convert those unwritten extents
3117 	 * to written after return back from blockdev_direct_IO.
3118 	 *
3119 	 * For async DIO, the conversion needs to be deferred when the
3120 	 * IO is completed. The ext4 end_io callback function will be
3121 	 * called to take care of the conversion work.  Here for async
3122 	 * case, we allocate an io_end structure to hook to the iocb.
3123 	 */
3124 	iocb->private = NULL;
3125 	ext4_inode_aio_set(inode, NULL);
3126 	if (!is_sync_kiocb(iocb)) {
3127 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3128 		if (!io_end) {
3129 			ret = -ENOMEM;
3130 			goto retake_lock;
3131 		}
3132 		/*
3133 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3134 		 */
3135 		iocb->private = ext4_get_io_end(io_end);
3136 		/*
3137 		 * we save the io structure for current async direct
3138 		 * IO, so that later ext4_map_blocks() could flag the
3139 		 * io structure whether there is a unwritten extents
3140 		 * needs to be converted when IO is completed.
3141 		 */
3142 		ext4_inode_aio_set(inode, io_end);
3143 	}
3144 
3145 	if (overwrite) {
3146 		get_block_func = ext4_get_block_write_nolock;
3147 	} else {
3148 		get_block_func = ext4_get_block_write;
3149 		dio_flags = DIO_LOCKING;
3150 	}
3151 	ret = __blockdev_direct_IO(rw, iocb, inode,
3152 				   inode->i_sb->s_bdev, iov,
3153 				   offset, nr_segs,
3154 				   get_block_func,
3155 				   ext4_end_io_dio,
3156 				   NULL,
3157 				   dio_flags);
3158 
3159 	/*
3160 	 * Put our reference to io_end. This can free the io_end structure e.g.
3161 	 * in sync IO case or in case of error. It can even perform extent
3162 	 * conversion if all bios we submitted finished before we got here.
3163 	 * Note that in that case iocb->private can be already set to NULL
3164 	 * here.
3165 	 */
3166 	if (io_end) {
3167 		ext4_inode_aio_set(inode, NULL);
3168 		ext4_put_io_end(io_end);
3169 		/*
3170 		 * When no IO was submitted ext4_end_io_dio() was not
3171 		 * called so we have to put iocb's reference.
3172 		 */
3173 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3174 			WARN_ON(iocb->private != io_end);
3175 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3176 			ext4_put_io_end(io_end);
3177 			iocb->private = NULL;
3178 		}
3179 	}
3180 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3181 						EXT4_STATE_DIO_UNWRITTEN)) {
3182 		int err;
3183 		/*
3184 		 * for non AIO case, since the IO is already
3185 		 * completed, we could do the conversion right here
3186 		 */
3187 		err = ext4_convert_unwritten_extents(NULL, inode,
3188 						     offset, ret);
3189 		if (err < 0)
3190 			ret = err;
3191 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3192 	}
3193 
3194 retake_lock:
3195 	if (rw == WRITE)
3196 		inode_dio_done(inode);
3197 	/* take i_mutex locking again if we do a ovewrite dio */
3198 	if (overwrite) {
3199 		up_read(&EXT4_I(inode)->i_data_sem);
3200 		mutex_lock(&inode->i_mutex);
3201 	}
3202 
3203 	return ret;
3204 }
3205 
3206 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3207 			      const struct iovec *iov, loff_t offset,
3208 			      unsigned long nr_segs)
3209 {
3210 	struct file *file = iocb->ki_filp;
3211 	struct inode *inode = file->f_mapping->host;
3212 	ssize_t ret;
3213 
3214 	/*
3215 	 * If we are doing data journalling we don't support O_DIRECT
3216 	 */
3217 	if (ext4_should_journal_data(inode))
3218 		return 0;
3219 
3220 	/* Let buffer I/O handle the inline data case. */
3221 	if (ext4_has_inline_data(inode))
3222 		return 0;
3223 
3224 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3225 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3226 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3227 	else
3228 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3229 	trace_ext4_direct_IO_exit(inode, offset,
3230 				iov_length(iov, nr_segs), rw, ret);
3231 	return ret;
3232 }
3233 
3234 /*
3235  * Pages can be marked dirty completely asynchronously from ext4's journalling
3236  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3237  * much here because ->set_page_dirty is called under VFS locks.  The page is
3238  * not necessarily locked.
3239  *
3240  * We cannot just dirty the page and leave attached buffers clean, because the
3241  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3242  * or jbddirty because all the journalling code will explode.
3243  *
3244  * So what we do is to mark the page "pending dirty" and next time writepage
3245  * is called, propagate that into the buffers appropriately.
3246  */
3247 static int ext4_journalled_set_page_dirty(struct page *page)
3248 {
3249 	SetPageChecked(page);
3250 	return __set_page_dirty_nobuffers(page);
3251 }
3252 
3253 static const struct address_space_operations ext4_aops = {
3254 	.readpage		= ext4_readpage,
3255 	.readpages		= ext4_readpages,
3256 	.writepage		= ext4_writepage,
3257 	.writepages		= ext4_writepages,
3258 	.write_begin		= ext4_write_begin,
3259 	.write_end		= ext4_write_end,
3260 	.bmap			= ext4_bmap,
3261 	.invalidatepage		= ext4_invalidatepage,
3262 	.releasepage		= ext4_releasepage,
3263 	.direct_IO		= ext4_direct_IO,
3264 	.migratepage		= buffer_migrate_page,
3265 	.is_partially_uptodate  = block_is_partially_uptodate,
3266 	.error_remove_page	= generic_error_remove_page,
3267 };
3268 
3269 static const struct address_space_operations ext4_journalled_aops = {
3270 	.readpage		= ext4_readpage,
3271 	.readpages		= ext4_readpages,
3272 	.writepage		= ext4_writepage,
3273 	.writepages		= ext4_writepages,
3274 	.write_begin		= ext4_write_begin,
3275 	.write_end		= ext4_journalled_write_end,
3276 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3277 	.bmap			= ext4_bmap,
3278 	.invalidatepage		= ext4_journalled_invalidatepage,
3279 	.releasepage		= ext4_releasepage,
3280 	.direct_IO		= ext4_direct_IO,
3281 	.is_partially_uptodate  = block_is_partially_uptodate,
3282 	.error_remove_page	= generic_error_remove_page,
3283 };
3284 
3285 static const struct address_space_operations ext4_da_aops = {
3286 	.readpage		= ext4_readpage,
3287 	.readpages		= ext4_readpages,
3288 	.writepage		= ext4_writepage,
3289 	.writepages		= ext4_writepages,
3290 	.write_begin		= ext4_da_write_begin,
3291 	.write_end		= ext4_da_write_end,
3292 	.bmap			= ext4_bmap,
3293 	.invalidatepage		= ext4_da_invalidatepage,
3294 	.releasepage		= ext4_releasepage,
3295 	.direct_IO		= ext4_direct_IO,
3296 	.migratepage		= buffer_migrate_page,
3297 	.is_partially_uptodate  = block_is_partially_uptodate,
3298 	.error_remove_page	= generic_error_remove_page,
3299 };
3300 
3301 void ext4_set_aops(struct inode *inode)
3302 {
3303 	switch (ext4_inode_journal_mode(inode)) {
3304 	case EXT4_INODE_ORDERED_DATA_MODE:
3305 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3306 		break;
3307 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3308 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3309 		break;
3310 	case EXT4_INODE_JOURNAL_DATA_MODE:
3311 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3312 		return;
3313 	default:
3314 		BUG();
3315 	}
3316 	if (test_opt(inode->i_sb, DELALLOC))
3317 		inode->i_mapping->a_ops = &ext4_da_aops;
3318 	else
3319 		inode->i_mapping->a_ops = &ext4_aops;
3320 }
3321 
3322 /*
3323  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3324  * up to the end of the block which corresponds to `from'.
3325  * This required during truncate. We need to physically zero the tail end
3326  * of that block so it doesn't yield old data if the file is later grown.
3327  */
3328 int ext4_block_truncate_page(handle_t *handle,
3329 		struct address_space *mapping, loff_t from)
3330 {
3331 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3332 	unsigned length;
3333 	unsigned blocksize;
3334 	struct inode *inode = mapping->host;
3335 
3336 	blocksize = inode->i_sb->s_blocksize;
3337 	length = blocksize - (offset & (blocksize - 1));
3338 
3339 	return ext4_block_zero_page_range(handle, mapping, from, length);
3340 }
3341 
3342 /*
3343  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3344  * starting from file offset 'from'.  The range to be zero'd must
3345  * be contained with in one block.  If the specified range exceeds
3346  * the end of the block it will be shortened to end of the block
3347  * that cooresponds to 'from'
3348  */
3349 int ext4_block_zero_page_range(handle_t *handle,
3350 		struct address_space *mapping, loff_t from, loff_t length)
3351 {
3352 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3353 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3354 	unsigned blocksize, max, pos;
3355 	ext4_lblk_t iblock;
3356 	struct inode *inode = mapping->host;
3357 	struct buffer_head *bh;
3358 	struct page *page;
3359 	int err = 0;
3360 
3361 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3362 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3363 	if (!page)
3364 		return -ENOMEM;
3365 
3366 	blocksize = inode->i_sb->s_blocksize;
3367 	max = blocksize - (offset & (blocksize - 1));
3368 
3369 	/*
3370 	 * correct length if it does not fall between
3371 	 * 'from' and the end of the block
3372 	 */
3373 	if (length > max || length < 0)
3374 		length = max;
3375 
3376 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3377 
3378 	if (!page_has_buffers(page))
3379 		create_empty_buffers(page, blocksize, 0);
3380 
3381 	/* Find the buffer that contains "offset" */
3382 	bh = page_buffers(page);
3383 	pos = blocksize;
3384 	while (offset >= pos) {
3385 		bh = bh->b_this_page;
3386 		iblock++;
3387 		pos += blocksize;
3388 	}
3389 	if (buffer_freed(bh)) {
3390 		BUFFER_TRACE(bh, "freed: skip");
3391 		goto unlock;
3392 	}
3393 	if (!buffer_mapped(bh)) {
3394 		BUFFER_TRACE(bh, "unmapped");
3395 		ext4_get_block(inode, iblock, bh, 0);
3396 		/* unmapped? It's a hole - nothing to do */
3397 		if (!buffer_mapped(bh)) {
3398 			BUFFER_TRACE(bh, "still unmapped");
3399 			goto unlock;
3400 		}
3401 	}
3402 
3403 	/* Ok, it's mapped. Make sure it's up-to-date */
3404 	if (PageUptodate(page))
3405 		set_buffer_uptodate(bh);
3406 
3407 	if (!buffer_uptodate(bh)) {
3408 		err = -EIO;
3409 		ll_rw_block(READ, 1, &bh);
3410 		wait_on_buffer(bh);
3411 		/* Uhhuh. Read error. Complain and punt. */
3412 		if (!buffer_uptodate(bh))
3413 			goto unlock;
3414 	}
3415 	if (ext4_should_journal_data(inode)) {
3416 		BUFFER_TRACE(bh, "get write access");
3417 		err = ext4_journal_get_write_access(handle, bh);
3418 		if (err)
3419 			goto unlock;
3420 	}
3421 	zero_user(page, offset, length);
3422 	BUFFER_TRACE(bh, "zeroed end of block");
3423 
3424 	if (ext4_should_journal_data(inode)) {
3425 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3426 	} else {
3427 		err = 0;
3428 		mark_buffer_dirty(bh);
3429 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3430 			err = ext4_jbd2_file_inode(handle, inode);
3431 	}
3432 
3433 unlock:
3434 	unlock_page(page);
3435 	page_cache_release(page);
3436 	return err;
3437 }
3438 
3439 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3440 			     loff_t lstart, loff_t length)
3441 {
3442 	struct super_block *sb = inode->i_sb;
3443 	struct address_space *mapping = inode->i_mapping;
3444 	unsigned partial_start, partial_end;
3445 	ext4_fsblk_t start, end;
3446 	loff_t byte_end = (lstart + length - 1);
3447 	int err = 0;
3448 
3449 	partial_start = lstart & (sb->s_blocksize - 1);
3450 	partial_end = byte_end & (sb->s_blocksize - 1);
3451 
3452 	start = lstart >> sb->s_blocksize_bits;
3453 	end = byte_end >> sb->s_blocksize_bits;
3454 
3455 	/* Handle partial zero within the single block */
3456 	if (start == end &&
3457 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3458 		err = ext4_block_zero_page_range(handle, mapping,
3459 						 lstart, length);
3460 		return err;
3461 	}
3462 	/* Handle partial zero out on the start of the range */
3463 	if (partial_start) {
3464 		err = ext4_block_zero_page_range(handle, mapping,
3465 						 lstart, sb->s_blocksize);
3466 		if (err)
3467 			return err;
3468 	}
3469 	/* Handle partial zero out on the end of the range */
3470 	if (partial_end != sb->s_blocksize - 1)
3471 		err = ext4_block_zero_page_range(handle, mapping,
3472 						 byte_end - partial_end,
3473 						 partial_end + 1);
3474 	return err;
3475 }
3476 
3477 int ext4_can_truncate(struct inode *inode)
3478 {
3479 	if (S_ISREG(inode->i_mode))
3480 		return 1;
3481 	if (S_ISDIR(inode->i_mode))
3482 		return 1;
3483 	if (S_ISLNK(inode->i_mode))
3484 		return !ext4_inode_is_fast_symlink(inode);
3485 	return 0;
3486 }
3487 
3488 /*
3489  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3490  * associated with the given offset and length
3491  *
3492  * @inode:  File inode
3493  * @offset: The offset where the hole will begin
3494  * @len:    The length of the hole
3495  *
3496  * Returns: 0 on success or negative on failure
3497  */
3498 
3499 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3500 {
3501 	struct super_block *sb = inode->i_sb;
3502 	ext4_lblk_t first_block, stop_block;
3503 	struct address_space *mapping = inode->i_mapping;
3504 	loff_t first_block_offset, last_block_offset;
3505 	handle_t *handle;
3506 	unsigned int credits;
3507 	int ret = 0;
3508 
3509 	if (!S_ISREG(inode->i_mode))
3510 		return -EOPNOTSUPP;
3511 
3512 	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3513 		/* TODO: Add support for bigalloc file systems */
3514 		return -EOPNOTSUPP;
3515 	}
3516 
3517 	trace_ext4_punch_hole(inode, offset, length);
3518 
3519 	/*
3520 	 * Write out all dirty pages to avoid race conditions
3521 	 * Then release them.
3522 	 */
3523 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3524 		ret = filemap_write_and_wait_range(mapping, offset,
3525 						   offset + length - 1);
3526 		if (ret)
3527 			return ret;
3528 	}
3529 
3530 	mutex_lock(&inode->i_mutex);
3531 	/* It's not possible punch hole on append only file */
3532 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3533 		ret = -EPERM;
3534 		goto out_mutex;
3535 	}
3536 	if (IS_SWAPFILE(inode)) {
3537 		ret = -ETXTBSY;
3538 		goto out_mutex;
3539 	}
3540 
3541 	/* No need to punch hole beyond i_size */
3542 	if (offset >= inode->i_size)
3543 		goto out_mutex;
3544 
3545 	/*
3546 	 * If the hole extends beyond i_size, set the hole
3547 	 * to end after the page that contains i_size
3548 	 */
3549 	if (offset + length > inode->i_size) {
3550 		length = inode->i_size +
3551 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3552 		   offset;
3553 	}
3554 
3555 	if (offset & (sb->s_blocksize - 1) ||
3556 	    (offset + length) & (sb->s_blocksize - 1)) {
3557 		/*
3558 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3559 		 * partial block
3560 		 */
3561 		ret = ext4_inode_attach_jinode(inode);
3562 		if (ret < 0)
3563 			goto out_mutex;
3564 
3565 	}
3566 
3567 	first_block_offset = round_up(offset, sb->s_blocksize);
3568 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3569 
3570 	/* Now release the pages and zero block aligned part of pages*/
3571 	if (last_block_offset > first_block_offset)
3572 		truncate_pagecache_range(inode, first_block_offset,
3573 					 last_block_offset);
3574 
3575 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3576 	ext4_inode_block_unlocked_dio(inode);
3577 	inode_dio_wait(inode);
3578 
3579 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3580 		credits = ext4_writepage_trans_blocks(inode);
3581 	else
3582 		credits = ext4_blocks_for_truncate(inode);
3583 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3584 	if (IS_ERR(handle)) {
3585 		ret = PTR_ERR(handle);
3586 		ext4_std_error(sb, ret);
3587 		goto out_dio;
3588 	}
3589 
3590 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3591 				       length);
3592 	if (ret)
3593 		goto out_stop;
3594 
3595 	first_block = (offset + sb->s_blocksize - 1) >>
3596 		EXT4_BLOCK_SIZE_BITS(sb);
3597 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3598 
3599 	/* If there are no blocks to remove, return now */
3600 	if (first_block >= stop_block)
3601 		goto out_stop;
3602 
3603 	down_write(&EXT4_I(inode)->i_data_sem);
3604 	ext4_discard_preallocations(inode);
3605 
3606 	ret = ext4_es_remove_extent(inode, first_block,
3607 				    stop_block - first_block);
3608 	if (ret) {
3609 		up_write(&EXT4_I(inode)->i_data_sem);
3610 		goto out_stop;
3611 	}
3612 
3613 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3614 		ret = ext4_ext_remove_space(inode, first_block,
3615 					    stop_block - 1);
3616 	else
3617 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3618 					    stop_block);
3619 
3620 	ext4_discard_preallocations(inode);
3621 	up_write(&EXT4_I(inode)->i_data_sem);
3622 	if (IS_SYNC(inode))
3623 		ext4_handle_sync(handle);
3624 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3625 	ext4_mark_inode_dirty(handle, inode);
3626 out_stop:
3627 	ext4_journal_stop(handle);
3628 out_dio:
3629 	ext4_inode_resume_unlocked_dio(inode);
3630 out_mutex:
3631 	mutex_unlock(&inode->i_mutex);
3632 	return ret;
3633 }
3634 
3635 int ext4_inode_attach_jinode(struct inode *inode)
3636 {
3637 	struct ext4_inode_info *ei = EXT4_I(inode);
3638 	struct jbd2_inode *jinode;
3639 
3640 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3641 		return 0;
3642 
3643 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3644 	spin_lock(&inode->i_lock);
3645 	if (!ei->jinode) {
3646 		if (!jinode) {
3647 			spin_unlock(&inode->i_lock);
3648 			return -ENOMEM;
3649 		}
3650 		ei->jinode = jinode;
3651 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3652 		jinode = NULL;
3653 	}
3654 	spin_unlock(&inode->i_lock);
3655 	if (unlikely(jinode != NULL))
3656 		jbd2_free_inode(jinode);
3657 	return 0;
3658 }
3659 
3660 /*
3661  * ext4_truncate()
3662  *
3663  * We block out ext4_get_block() block instantiations across the entire
3664  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3665  * simultaneously on behalf of the same inode.
3666  *
3667  * As we work through the truncate and commit bits of it to the journal there
3668  * is one core, guiding principle: the file's tree must always be consistent on
3669  * disk.  We must be able to restart the truncate after a crash.
3670  *
3671  * The file's tree may be transiently inconsistent in memory (although it
3672  * probably isn't), but whenever we close off and commit a journal transaction,
3673  * the contents of (the filesystem + the journal) must be consistent and
3674  * restartable.  It's pretty simple, really: bottom up, right to left (although
3675  * left-to-right works OK too).
3676  *
3677  * Note that at recovery time, journal replay occurs *before* the restart of
3678  * truncate against the orphan inode list.
3679  *
3680  * The committed inode has the new, desired i_size (which is the same as
3681  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3682  * that this inode's truncate did not complete and it will again call
3683  * ext4_truncate() to have another go.  So there will be instantiated blocks
3684  * to the right of the truncation point in a crashed ext4 filesystem.  But
3685  * that's fine - as long as they are linked from the inode, the post-crash
3686  * ext4_truncate() run will find them and release them.
3687  */
3688 void ext4_truncate(struct inode *inode)
3689 {
3690 	struct ext4_inode_info *ei = EXT4_I(inode);
3691 	unsigned int credits;
3692 	handle_t *handle;
3693 	struct address_space *mapping = inode->i_mapping;
3694 
3695 	/*
3696 	 * There is a possibility that we're either freeing the inode
3697 	 * or it completely new indode. In those cases we might not
3698 	 * have i_mutex locked because it's not necessary.
3699 	 */
3700 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3701 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3702 	trace_ext4_truncate_enter(inode);
3703 
3704 	if (!ext4_can_truncate(inode))
3705 		return;
3706 
3707 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3708 
3709 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3710 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3711 
3712 	if (ext4_has_inline_data(inode)) {
3713 		int has_inline = 1;
3714 
3715 		ext4_inline_data_truncate(inode, &has_inline);
3716 		if (has_inline)
3717 			return;
3718 	}
3719 
3720 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3721 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3722 		if (ext4_inode_attach_jinode(inode) < 0)
3723 			return;
3724 	}
3725 
3726 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3727 		credits = ext4_writepage_trans_blocks(inode);
3728 	else
3729 		credits = ext4_blocks_for_truncate(inode);
3730 
3731 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3732 	if (IS_ERR(handle)) {
3733 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3734 		return;
3735 	}
3736 
3737 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3738 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3739 
3740 	/*
3741 	 * We add the inode to the orphan list, so that if this
3742 	 * truncate spans multiple transactions, and we crash, we will
3743 	 * resume the truncate when the filesystem recovers.  It also
3744 	 * marks the inode dirty, to catch the new size.
3745 	 *
3746 	 * Implication: the file must always be in a sane, consistent
3747 	 * truncatable state while each transaction commits.
3748 	 */
3749 	if (ext4_orphan_add(handle, inode))
3750 		goto out_stop;
3751 
3752 	down_write(&EXT4_I(inode)->i_data_sem);
3753 
3754 	ext4_discard_preallocations(inode);
3755 
3756 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3757 		ext4_ext_truncate(handle, inode);
3758 	else
3759 		ext4_ind_truncate(handle, inode);
3760 
3761 	up_write(&ei->i_data_sem);
3762 
3763 	if (IS_SYNC(inode))
3764 		ext4_handle_sync(handle);
3765 
3766 out_stop:
3767 	/*
3768 	 * If this was a simple ftruncate() and the file will remain alive,
3769 	 * then we need to clear up the orphan record which we created above.
3770 	 * However, if this was a real unlink then we were called by
3771 	 * ext4_delete_inode(), and we allow that function to clean up the
3772 	 * orphan info for us.
3773 	 */
3774 	if (inode->i_nlink)
3775 		ext4_orphan_del(handle, inode);
3776 
3777 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3778 	ext4_mark_inode_dirty(handle, inode);
3779 	ext4_journal_stop(handle);
3780 
3781 	trace_ext4_truncate_exit(inode);
3782 }
3783 
3784 /*
3785  * ext4_get_inode_loc returns with an extra refcount against the inode's
3786  * underlying buffer_head on success. If 'in_mem' is true, we have all
3787  * data in memory that is needed to recreate the on-disk version of this
3788  * inode.
3789  */
3790 static int __ext4_get_inode_loc(struct inode *inode,
3791 				struct ext4_iloc *iloc, int in_mem)
3792 {
3793 	struct ext4_group_desc	*gdp;
3794 	struct buffer_head	*bh;
3795 	struct super_block	*sb = inode->i_sb;
3796 	ext4_fsblk_t		block;
3797 	int			inodes_per_block, inode_offset;
3798 
3799 	iloc->bh = NULL;
3800 	if (!ext4_valid_inum(sb, inode->i_ino))
3801 		return -EIO;
3802 
3803 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3804 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3805 	if (!gdp)
3806 		return -EIO;
3807 
3808 	/*
3809 	 * Figure out the offset within the block group inode table
3810 	 */
3811 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3812 	inode_offset = ((inode->i_ino - 1) %
3813 			EXT4_INODES_PER_GROUP(sb));
3814 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3815 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3816 
3817 	bh = sb_getblk(sb, block);
3818 	if (unlikely(!bh))
3819 		return -ENOMEM;
3820 	if (!buffer_uptodate(bh)) {
3821 		lock_buffer(bh);
3822 
3823 		/*
3824 		 * If the buffer has the write error flag, we have failed
3825 		 * to write out another inode in the same block.  In this
3826 		 * case, we don't have to read the block because we may
3827 		 * read the old inode data successfully.
3828 		 */
3829 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3830 			set_buffer_uptodate(bh);
3831 
3832 		if (buffer_uptodate(bh)) {
3833 			/* someone brought it uptodate while we waited */
3834 			unlock_buffer(bh);
3835 			goto has_buffer;
3836 		}
3837 
3838 		/*
3839 		 * If we have all information of the inode in memory and this
3840 		 * is the only valid inode in the block, we need not read the
3841 		 * block.
3842 		 */
3843 		if (in_mem) {
3844 			struct buffer_head *bitmap_bh;
3845 			int i, start;
3846 
3847 			start = inode_offset & ~(inodes_per_block - 1);
3848 
3849 			/* Is the inode bitmap in cache? */
3850 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3851 			if (unlikely(!bitmap_bh))
3852 				goto make_io;
3853 
3854 			/*
3855 			 * If the inode bitmap isn't in cache then the
3856 			 * optimisation may end up performing two reads instead
3857 			 * of one, so skip it.
3858 			 */
3859 			if (!buffer_uptodate(bitmap_bh)) {
3860 				brelse(bitmap_bh);
3861 				goto make_io;
3862 			}
3863 			for (i = start; i < start + inodes_per_block; i++) {
3864 				if (i == inode_offset)
3865 					continue;
3866 				if (ext4_test_bit(i, bitmap_bh->b_data))
3867 					break;
3868 			}
3869 			brelse(bitmap_bh);
3870 			if (i == start + inodes_per_block) {
3871 				/* all other inodes are free, so skip I/O */
3872 				memset(bh->b_data, 0, bh->b_size);
3873 				set_buffer_uptodate(bh);
3874 				unlock_buffer(bh);
3875 				goto has_buffer;
3876 			}
3877 		}
3878 
3879 make_io:
3880 		/*
3881 		 * If we need to do any I/O, try to pre-readahead extra
3882 		 * blocks from the inode table.
3883 		 */
3884 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3885 			ext4_fsblk_t b, end, table;
3886 			unsigned num;
3887 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3888 
3889 			table = ext4_inode_table(sb, gdp);
3890 			/* s_inode_readahead_blks is always a power of 2 */
3891 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3892 			if (table > b)
3893 				b = table;
3894 			end = b + ra_blks;
3895 			num = EXT4_INODES_PER_GROUP(sb);
3896 			if (ext4_has_group_desc_csum(sb))
3897 				num -= ext4_itable_unused_count(sb, gdp);
3898 			table += num / inodes_per_block;
3899 			if (end > table)
3900 				end = table;
3901 			while (b <= end)
3902 				sb_breadahead(sb, b++);
3903 		}
3904 
3905 		/*
3906 		 * There are other valid inodes in the buffer, this inode
3907 		 * has in-inode xattrs, or we don't have this inode in memory.
3908 		 * Read the block from disk.
3909 		 */
3910 		trace_ext4_load_inode(inode);
3911 		get_bh(bh);
3912 		bh->b_end_io = end_buffer_read_sync;
3913 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3914 		wait_on_buffer(bh);
3915 		if (!buffer_uptodate(bh)) {
3916 			EXT4_ERROR_INODE_BLOCK(inode, block,
3917 					       "unable to read itable block");
3918 			brelse(bh);
3919 			return -EIO;
3920 		}
3921 	}
3922 has_buffer:
3923 	iloc->bh = bh;
3924 	return 0;
3925 }
3926 
3927 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3928 {
3929 	/* We have all inode data except xattrs in memory here. */
3930 	return __ext4_get_inode_loc(inode, iloc,
3931 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3932 }
3933 
3934 void ext4_set_inode_flags(struct inode *inode)
3935 {
3936 	unsigned int flags = EXT4_I(inode)->i_flags;
3937 
3938 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3939 	if (flags & EXT4_SYNC_FL)
3940 		inode->i_flags |= S_SYNC;
3941 	if (flags & EXT4_APPEND_FL)
3942 		inode->i_flags |= S_APPEND;
3943 	if (flags & EXT4_IMMUTABLE_FL)
3944 		inode->i_flags |= S_IMMUTABLE;
3945 	if (flags & EXT4_NOATIME_FL)
3946 		inode->i_flags |= S_NOATIME;
3947 	if (flags & EXT4_DIRSYNC_FL)
3948 		inode->i_flags |= S_DIRSYNC;
3949 }
3950 
3951 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3952 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3953 {
3954 	unsigned int vfs_fl;
3955 	unsigned long old_fl, new_fl;
3956 
3957 	do {
3958 		vfs_fl = ei->vfs_inode.i_flags;
3959 		old_fl = ei->i_flags;
3960 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3961 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3962 				EXT4_DIRSYNC_FL);
3963 		if (vfs_fl & S_SYNC)
3964 			new_fl |= EXT4_SYNC_FL;
3965 		if (vfs_fl & S_APPEND)
3966 			new_fl |= EXT4_APPEND_FL;
3967 		if (vfs_fl & S_IMMUTABLE)
3968 			new_fl |= EXT4_IMMUTABLE_FL;
3969 		if (vfs_fl & S_NOATIME)
3970 			new_fl |= EXT4_NOATIME_FL;
3971 		if (vfs_fl & S_DIRSYNC)
3972 			new_fl |= EXT4_DIRSYNC_FL;
3973 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3974 }
3975 
3976 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3977 				  struct ext4_inode_info *ei)
3978 {
3979 	blkcnt_t i_blocks ;
3980 	struct inode *inode = &(ei->vfs_inode);
3981 	struct super_block *sb = inode->i_sb;
3982 
3983 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3984 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3985 		/* we are using combined 48 bit field */
3986 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3987 					le32_to_cpu(raw_inode->i_blocks_lo);
3988 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3989 			/* i_blocks represent file system block size */
3990 			return i_blocks  << (inode->i_blkbits - 9);
3991 		} else {
3992 			return i_blocks;
3993 		}
3994 	} else {
3995 		return le32_to_cpu(raw_inode->i_blocks_lo);
3996 	}
3997 }
3998 
3999 static inline void ext4_iget_extra_inode(struct inode *inode,
4000 					 struct ext4_inode *raw_inode,
4001 					 struct ext4_inode_info *ei)
4002 {
4003 	__le32 *magic = (void *)raw_inode +
4004 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4005 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4006 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4007 		ext4_find_inline_data_nolock(inode);
4008 	} else
4009 		EXT4_I(inode)->i_inline_off = 0;
4010 }
4011 
4012 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4013 {
4014 	struct ext4_iloc iloc;
4015 	struct ext4_inode *raw_inode;
4016 	struct ext4_inode_info *ei;
4017 	struct inode *inode;
4018 	journal_t *journal = EXT4_SB(sb)->s_journal;
4019 	long ret;
4020 	int block;
4021 	uid_t i_uid;
4022 	gid_t i_gid;
4023 
4024 	inode = iget_locked(sb, ino);
4025 	if (!inode)
4026 		return ERR_PTR(-ENOMEM);
4027 	if (!(inode->i_state & I_NEW))
4028 		return inode;
4029 
4030 	ei = EXT4_I(inode);
4031 	iloc.bh = NULL;
4032 
4033 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4034 	if (ret < 0)
4035 		goto bad_inode;
4036 	raw_inode = ext4_raw_inode(&iloc);
4037 
4038 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4039 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4040 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4041 		    EXT4_INODE_SIZE(inode->i_sb)) {
4042 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4043 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4044 				EXT4_INODE_SIZE(inode->i_sb));
4045 			ret = -EIO;
4046 			goto bad_inode;
4047 		}
4048 	} else
4049 		ei->i_extra_isize = 0;
4050 
4051 	/* Precompute checksum seed for inode metadata */
4052 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4053 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4054 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4055 		__u32 csum;
4056 		__le32 inum = cpu_to_le32(inode->i_ino);
4057 		__le32 gen = raw_inode->i_generation;
4058 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4059 				   sizeof(inum));
4060 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4061 					      sizeof(gen));
4062 	}
4063 
4064 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4065 		EXT4_ERROR_INODE(inode, "checksum invalid");
4066 		ret = -EIO;
4067 		goto bad_inode;
4068 	}
4069 
4070 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4071 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4072 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4073 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4074 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4075 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4076 	}
4077 	i_uid_write(inode, i_uid);
4078 	i_gid_write(inode, i_gid);
4079 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4080 
4081 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4082 	ei->i_inline_off = 0;
4083 	ei->i_dir_start_lookup = 0;
4084 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4085 	/* We now have enough fields to check if the inode was active or not.
4086 	 * This is needed because nfsd might try to access dead inodes
4087 	 * the test is that same one that e2fsck uses
4088 	 * NeilBrown 1999oct15
4089 	 */
4090 	if (inode->i_nlink == 0) {
4091 		if ((inode->i_mode == 0 ||
4092 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4093 		    ino != EXT4_BOOT_LOADER_INO) {
4094 			/* this inode is deleted */
4095 			ret = -ESTALE;
4096 			goto bad_inode;
4097 		}
4098 		/* The only unlinked inodes we let through here have
4099 		 * valid i_mode and are being read by the orphan
4100 		 * recovery code: that's fine, we're about to complete
4101 		 * the process of deleting those.
4102 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4103 		 * not initialized on a new filesystem. */
4104 	}
4105 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4106 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4107 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4108 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4109 		ei->i_file_acl |=
4110 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4111 	inode->i_size = ext4_isize(raw_inode);
4112 	ei->i_disksize = inode->i_size;
4113 #ifdef CONFIG_QUOTA
4114 	ei->i_reserved_quota = 0;
4115 #endif
4116 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4117 	ei->i_block_group = iloc.block_group;
4118 	ei->i_last_alloc_group = ~0;
4119 	/*
4120 	 * NOTE! The in-memory inode i_data array is in little-endian order
4121 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4122 	 */
4123 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4124 		ei->i_data[block] = raw_inode->i_block[block];
4125 	INIT_LIST_HEAD(&ei->i_orphan);
4126 
4127 	/*
4128 	 * Set transaction id's of transactions that have to be committed
4129 	 * to finish f[data]sync. We set them to currently running transaction
4130 	 * as we cannot be sure that the inode or some of its metadata isn't
4131 	 * part of the transaction - the inode could have been reclaimed and
4132 	 * now it is reread from disk.
4133 	 */
4134 	if (journal) {
4135 		transaction_t *transaction;
4136 		tid_t tid;
4137 
4138 		read_lock(&journal->j_state_lock);
4139 		if (journal->j_running_transaction)
4140 			transaction = journal->j_running_transaction;
4141 		else
4142 			transaction = journal->j_committing_transaction;
4143 		if (transaction)
4144 			tid = transaction->t_tid;
4145 		else
4146 			tid = journal->j_commit_sequence;
4147 		read_unlock(&journal->j_state_lock);
4148 		ei->i_sync_tid = tid;
4149 		ei->i_datasync_tid = tid;
4150 	}
4151 
4152 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4153 		if (ei->i_extra_isize == 0) {
4154 			/* The extra space is currently unused. Use it. */
4155 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4156 					    EXT4_GOOD_OLD_INODE_SIZE;
4157 		} else {
4158 			ext4_iget_extra_inode(inode, raw_inode, ei);
4159 		}
4160 	}
4161 
4162 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4163 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4164 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4165 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4166 
4167 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4168 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4169 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4170 			inode->i_version |=
4171 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4172 	}
4173 
4174 	ret = 0;
4175 	if (ei->i_file_acl &&
4176 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4177 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4178 				 ei->i_file_acl);
4179 		ret = -EIO;
4180 		goto bad_inode;
4181 	} else if (!ext4_has_inline_data(inode)) {
4182 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4183 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4184 			    (S_ISLNK(inode->i_mode) &&
4185 			     !ext4_inode_is_fast_symlink(inode))))
4186 				/* Validate extent which is part of inode */
4187 				ret = ext4_ext_check_inode(inode);
4188 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4189 			   (S_ISLNK(inode->i_mode) &&
4190 			    !ext4_inode_is_fast_symlink(inode))) {
4191 			/* Validate block references which are part of inode */
4192 			ret = ext4_ind_check_inode(inode);
4193 		}
4194 	}
4195 	if (ret)
4196 		goto bad_inode;
4197 
4198 	if (S_ISREG(inode->i_mode)) {
4199 		inode->i_op = &ext4_file_inode_operations;
4200 		inode->i_fop = &ext4_file_operations;
4201 		ext4_set_aops(inode);
4202 	} else if (S_ISDIR(inode->i_mode)) {
4203 		inode->i_op = &ext4_dir_inode_operations;
4204 		inode->i_fop = &ext4_dir_operations;
4205 	} else if (S_ISLNK(inode->i_mode)) {
4206 		if (ext4_inode_is_fast_symlink(inode)) {
4207 			inode->i_op = &ext4_fast_symlink_inode_operations;
4208 			nd_terminate_link(ei->i_data, inode->i_size,
4209 				sizeof(ei->i_data) - 1);
4210 		} else {
4211 			inode->i_op = &ext4_symlink_inode_operations;
4212 			ext4_set_aops(inode);
4213 		}
4214 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4215 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4216 		inode->i_op = &ext4_special_inode_operations;
4217 		if (raw_inode->i_block[0])
4218 			init_special_inode(inode, inode->i_mode,
4219 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4220 		else
4221 			init_special_inode(inode, inode->i_mode,
4222 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4223 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4224 		make_bad_inode(inode);
4225 	} else {
4226 		ret = -EIO;
4227 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4228 		goto bad_inode;
4229 	}
4230 	brelse(iloc.bh);
4231 	ext4_set_inode_flags(inode);
4232 	unlock_new_inode(inode);
4233 	return inode;
4234 
4235 bad_inode:
4236 	brelse(iloc.bh);
4237 	iget_failed(inode);
4238 	return ERR_PTR(ret);
4239 }
4240 
4241 static int ext4_inode_blocks_set(handle_t *handle,
4242 				struct ext4_inode *raw_inode,
4243 				struct ext4_inode_info *ei)
4244 {
4245 	struct inode *inode = &(ei->vfs_inode);
4246 	u64 i_blocks = inode->i_blocks;
4247 	struct super_block *sb = inode->i_sb;
4248 
4249 	if (i_blocks <= ~0U) {
4250 		/*
4251 		 * i_blocks can be represented in a 32 bit variable
4252 		 * as multiple of 512 bytes
4253 		 */
4254 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4255 		raw_inode->i_blocks_high = 0;
4256 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4257 		return 0;
4258 	}
4259 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4260 		return -EFBIG;
4261 
4262 	if (i_blocks <= 0xffffffffffffULL) {
4263 		/*
4264 		 * i_blocks can be represented in a 48 bit variable
4265 		 * as multiple of 512 bytes
4266 		 */
4267 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4268 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4269 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4270 	} else {
4271 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4272 		/* i_block is stored in file system block size */
4273 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4274 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4275 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4276 	}
4277 	return 0;
4278 }
4279 
4280 /*
4281  * Post the struct inode info into an on-disk inode location in the
4282  * buffer-cache.  This gobbles the caller's reference to the
4283  * buffer_head in the inode location struct.
4284  *
4285  * The caller must have write access to iloc->bh.
4286  */
4287 static int ext4_do_update_inode(handle_t *handle,
4288 				struct inode *inode,
4289 				struct ext4_iloc *iloc)
4290 {
4291 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4292 	struct ext4_inode_info *ei = EXT4_I(inode);
4293 	struct buffer_head *bh = iloc->bh;
4294 	int err = 0, rc, block;
4295 	int need_datasync = 0;
4296 	uid_t i_uid;
4297 	gid_t i_gid;
4298 
4299 	/* For fields not not tracking in the in-memory inode,
4300 	 * initialise them to zero for new inodes. */
4301 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4302 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4303 
4304 	ext4_get_inode_flags(ei);
4305 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4306 	i_uid = i_uid_read(inode);
4307 	i_gid = i_gid_read(inode);
4308 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4309 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4310 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4311 /*
4312  * Fix up interoperability with old kernels. Otherwise, old inodes get
4313  * re-used with the upper 16 bits of the uid/gid intact
4314  */
4315 		if (!ei->i_dtime) {
4316 			raw_inode->i_uid_high =
4317 				cpu_to_le16(high_16_bits(i_uid));
4318 			raw_inode->i_gid_high =
4319 				cpu_to_le16(high_16_bits(i_gid));
4320 		} else {
4321 			raw_inode->i_uid_high = 0;
4322 			raw_inode->i_gid_high = 0;
4323 		}
4324 	} else {
4325 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4326 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4327 		raw_inode->i_uid_high = 0;
4328 		raw_inode->i_gid_high = 0;
4329 	}
4330 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4331 
4332 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4333 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4334 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4335 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4336 
4337 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4338 		goto out_brelse;
4339 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4340 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4341 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4342 	    cpu_to_le32(EXT4_OS_HURD))
4343 		raw_inode->i_file_acl_high =
4344 			cpu_to_le16(ei->i_file_acl >> 32);
4345 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4346 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4347 		ext4_isize_set(raw_inode, ei->i_disksize);
4348 		need_datasync = 1;
4349 	}
4350 	if (ei->i_disksize > 0x7fffffffULL) {
4351 		struct super_block *sb = inode->i_sb;
4352 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4353 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4354 				EXT4_SB(sb)->s_es->s_rev_level ==
4355 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4356 			/* If this is the first large file
4357 			 * created, add a flag to the superblock.
4358 			 */
4359 			err = ext4_journal_get_write_access(handle,
4360 					EXT4_SB(sb)->s_sbh);
4361 			if (err)
4362 				goto out_brelse;
4363 			ext4_update_dynamic_rev(sb);
4364 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4365 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4366 			ext4_handle_sync(handle);
4367 			err = ext4_handle_dirty_super(handle, sb);
4368 		}
4369 	}
4370 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4371 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4372 		if (old_valid_dev(inode->i_rdev)) {
4373 			raw_inode->i_block[0] =
4374 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4375 			raw_inode->i_block[1] = 0;
4376 		} else {
4377 			raw_inode->i_block[0] = 0;
4378 			raw_inode->i_block[1] =
4379 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4380 			raw_inode->i_block[2] = 0;
4381 		}
4382 	} else if (!ext4_has_inline_data(inode)) {
4383 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4384 			raw_inode->i_block[block] = ei->i_data[block];
4385 	}
4386 
4387 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4388 	if (ei->i_extra_isize) {
4389 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4390 			raw_inode->i_version_hi =
4391 			cpu_to_le32(inode->i_version >> 32);
4392 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4393 	}
4394 
4395 	ext4_inode_csum_set(inode, raw_inode, ei);
4396 
4397 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4398 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4399 	if (!err)
4400 		err = rc;
4401 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4402 
4403 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4404 out_brelse:
4405 	brelse(bh);
4406 	ext4_std_error(inode->i_sb, err);
4407 	return err;
4408 }
4409 
4410 /*
4411  * ext4_write_inode()
4412  *
4413  * We are called from a few places:
4414  *
4415  * - Within generic_file_write() for O_SYNC files.
4416  *   Here, there will be no transaction running. We wait for any running
4417  *   transaction to commit.
4418  *
4419  * - Within sys_sync(), kupdate and such.
4420  *   We wait on commit, if tol to.
4421  *
4422  * - Within prune_icache() (PF_MEMALLOC == true)
4423  *   Here we simply return.  We can't afford to block kswapd on the
4424  *   journal commit.
4425  *
4426  * In all cases it is actually safe for us to return without doing anything,
4427  * because the inode has been copied into a raw inode buffer in
4428  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4429  * knfsd.
4430  *
4431  * Note that we are absolutely dependent upon all inode dirtiers doing the
4432  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4433  * which we are interested.
4434  *
4435  * It would be a bug for them to not do this.  The code:
4436  *
4437  *	mark_inode_dirty(inode)
4438  *	stuff();
4439  *	inode->i_size = expr;
4440  *
4441  * is in error because a kswapd-driven write_inode() could occur while
4442  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4443  * will no longer be on the superblock's dirty inode list.
4444  */
4445 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4446 {
4447 	int err;
4448 
4449 	if (current->flags & PF_MEMALLOC)
4450 		return 0;
4451 
4452 	if (EXT4_SB(inode->i_sb)->s_journal) {
4453 		if (ext4_journal_current_handle()) {
4454 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4455 			dump_stack();
4456 			return -EIO;
4457 		}
4458 
4459 		if (wbc->sync_mode != WB_SYNC_ALL)
4460 			return 0;
4461 
4462 		err = ext4_force_commit(inode->i_sb);
4463 	} else {
4464 		struct ext4_iloc iloc;
4465 
4466 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4467 		if (err)
4468 			return err;
4469 		if (wbc->sync_mode == WB_SYNC_ALL)
4470 			sync_dirty_buffer(iloc.bh);
4471 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4472 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4473 					 "IO error syncing inode");
4474 			err = -EIO;
4475 		}
4476 		brelse(iloc.bh);
4477 	}
4478 	return err;
4479 }
4480 
4481 /*
4482  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4483  * buffers that are attached to a page stradding i_size and are undergoing
4484  * commit. In that case we have to wait for commit to finish and try again.
4485  */
4486 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4487 {
4488 	struct page *page;
4489 	unsigned offset;
4490 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4491 	tid_t commit_tid = 0;
4492 	int ret;
4493 
4494 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4495 	/*
4496 	 * All buffers in the last page remain valid? Then there's nothing to
4497 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4498 	 * blocksize case
4499 	 */
4500 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4501 		return;
4502 	while (1) {
4503 		page = find_lock_page(inode->i_mapping,
4504 				      inode->i_size >> PAGE_CACHE_SHIFT);
4505 		if (!page)
4506 			return;
4507 		ret = __ext4_journalled_invalidatepage(page, offset,
4508 						PAGE_CACHE_SIZE - offset);
4509 		unlock_page(page);
4510 		page_cache_release(page);
4511 		if (ret != -EBUSY)
4512 			return;
4513 		commit_tid = 0;
4514 		read_lock(&journal->j_state_lock);
4515 		if (journal->j_committing_transaction)
4516 			commit_tid = journal->j_committing_transaction->t_tid;
4517 		read_unlock(&journal->j_state_lock);
4518 		if (commit_tid)
4519 			jbd2_log_wait_commit(journal, commit_tid);
4520 	}
4521 }
4522 
4523 /*
4524  * ext4_setattr()
4525  *
4526  * Called from notify_change.
4527  *
4528  * We want to trap VFS attempts to truncate the file as soon as
4529  * possible.  In particular, we want to make sure that when the VFS
4530  * shrinks i_size, we put the inode on the orphan list and modify
4531  * i_disksize immediately, so that during the subsequent flushing of
4532  * dirty pages and freeing of disk blocks, we can guarantee that any
4533  * commit will leave the blocks being flushed in an unused state on
4534  * disk.  (On recovery, the inode will get truncated and the blocks will
4535  * be freed, so we have a strong guarantee that no future commit will
4536  * leave these blocks visible to the user.)
4537  *
4538  * Another thing we have to assure is that if we are in ordered mode
4539  * and inode is still attached to the committing transaction, we must
4540  * we start writeout of all the dirty pages which are being truncated.
4541  * This way we are sure that all the data written in the previous
4542  * transaction are already on disk (truncate waits for pages under
4543  * writeback).
4544  *
4545  * Called with inode->i_mutex down.
4546  */
4547 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4548 {
4549 	struct inode *inode = dentry->d_inode;
4550 	int error, rc = 0;
4551 	int orphan = 0;
4552 	const unsigned int ia_valid = attr->ia_valid;
4553 
4554 	error = inode_change_ok(inode, attr);
4555 	if (error)
4556 		return error;
4557 
4558 	if (is_quota_modification(inode, attr))
4559 		dquot_initialize(inode);
4560 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4561 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4562 		handle_t *handle;
4563 
4564 		/* (user+group)*(old+new) structure, inode write (sb,
4565 		 * inode block, ? - but truncate inode update has it) */
4566 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4567 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4568 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4569 		if (IS_ERR(handle)) {
4570 			error = PTR_ERR(handle);
4571 			goto err_out;
4572 		}
4573 		error = dquot_transfer(inode, attr);
4574 		if (error) {
4575 			ext4_journal_stop(handle);
4576 			return error;
4577 		}
4578 		/* Update corresponding info in inode so that everything is in
4579 		 * one transaction */
4580 		if (attr->ia_valid & ATTR_UID)
4581 			inode->i_uid = attr->ia_uid;
4582 		if (attr->ia_valid & ATTR_GID)
4583 			inode->i_gid = attr->ia_gid;
4584 		error = ext4_mark_inode_dirty(handle, inode);
4585 		ext4_journal_stop(handle);
4586 	}
4587 
4588 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4589 		handle_t *handle;
4590 
4591 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4592 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4593 
4594 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4595 				return -EFBIG;
4596 		}
4597 		if (S_ISREG(inode->i_mode) &&
4598 		    (attr->ia_size < inode->i_size)) {
4599 			if (ext4_should_order_data(inode)) {
4600 				error = ext4_begin_ordered_truncate(inode,
4601 							    attr->ia_size);
4602 				if (error)
4603 					goto err_out;
4604 			}
4605 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4606 			if (IS_ERR(handle)) {
4607 				error = PTR_ERR(handle);
4608 				goto err_out;
4609 			}
4610 			if (ext4_handle_valid(handle)) {
4611 				error = ext4_orphan_add(handle, inode);
4612 				orphan = 1;
4613 			}
4614 			down_write(&EXT4_I(inode)->i_data_sem);
4615 			EXT4_I(inode)->i_disksize = attr->ia_size;
4616 			rc = ext4_mark_inode_dirty(handle, inode);
4617 			if (!error)
4618 				error = rc;
4619 			/*
4620 			 * We have to update i_size under i_data_sem together
4621 			 * with i_disksize to avoid races with writeback code
4622 			 * running ext4_wb_update_i_disksize().
4623 			 */
4624 			if (!error)
4625 				i_size_write(inode, attr->ia_size);
4626 			up_write(&EXT4_I(inode)->i_data_sem);
4627 			ext4_journal_stop(handle);
4628 			if (error) {
4629 				ext4_orphan_del(NULL, inode);
4630 				goto err_out;
4631 			}
4632 		} else
4633 			i_size_write(inode, attr->ia_size);
4634 
4635 		/*
4636 		 * Blocks are going to be removed from the inode. Wait
4637 		 * for dio in flight.  Temporarily disable
4638 		 * dioread_nolock to prevent livelock.
4639 		 */
4640 		if (orphan) {
4641 			if (!ext4_should_journal_data(inode)) {
4642 				ext4_inode_block_unlocked_dio(inode);
4643 				inode_dio_wait(inode);
4644 				ext4_inode_resume_unlocked_dio(inode);
4645 			} else
4646 				ext4_wait_for_tail_page_commit(inode);
4647 		}
4648 		/*
4649 		 * Truncate pagecache after we've waited for commit
4650 		 * in data=journal mode to make pages freeable.
4651 		 */
4652 			truncate_pagecache(inode, inode->i_size);
4653 	}
4654 	/*
4655 	 * We want to call ext4_truncate() even if attr->ia_size ==
4656 	 * inode->i_size for cases like truncation of fallocated space
4657 	 */
4658 	if (attr->ia_valid & ATTR_SIZE)
4659 		ext4_truncate(inode);
4660 
4661 	if (!rc) {
4662 		setattr_copy(inode, attr);
4663 		mark_inode_dirty(inode);
4664 	}
4665 
4666 	/*
4667 	 * If the call to ext4_truncate failed to get a transaction handle at
4668 	 * all, we need to clean up the in-core orphan list manually.
4669 	 */
4670 	if (orphan && inode->i_nlink)
4671 		ext4_orphan_del(NULL, inode);
4672 
4673 	if (!rc && (ia_valid & ATTR_MODE))
4674 		rc = ext4_acl_chmod(inode);
4675 
4676 err_out:
4677 	ext4_std_error(inode->i_sb, error);
4678 	if (!error)
4679 		error = rc;
4680 	return error;
4681 }
4682 
4683 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4684 		 struct kstat *stat)
4685 {
4686 	struct inode *inode;
4687 	unsigned long long delalloc_blocks;
4688 
4689 	inode = dentry->d_inode;
4690 	generic_fillattr(inode, stat);
4691 
4692 	/*
4693 	 * We can't update i_blocks if the block allocation is delayed
4694 	 * otherwise in the case of system crash before the real block
4695 	 * allocation is done, we will have i_blocks inconsistent with
4696 	 * on-disk file blocks.
4697 	 * We always keep i_blocks updated together with real
4698 	 * allocation. But to not confuse with user, stat
4699 	 * will return the blocks that include the delayed allocation
4700 	 * blocks for this file.
4701 	 */
4702 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4703 				EXT4_I(inode)->i_reserved_data_blocks);
4704 
4705 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4706 	return 0;
4707 }
4708 
4709 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4710 				   int pextents)
4711 {
4712 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4713 		return ext4_ind_trans_blocks(inode, lblocks);
4714 	return ext4_ext_index_trans_blocks(inode, pextents);
4715 }
4716 
4717 /*
4718  * Account for index blocks, block groups bitmaps and block group
4719  * descriptor blocks if modify datablocks and index blocks
4720  * worse case, the indexs blocks spread over different block groups
4721  *
4722  * If datablocks are discontiguous, they are possible to spread over
4723  * different block groups too. If they are contiguous, with flexbg,
4724  * they could still across block group boundary.
4725  *
4726  * Also account for superblock, inode, quota and xattr blocks
4727  */
4728 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4729 				  int pextents)
4730 {
4731 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4732 	int gdpblocks;
4733 	int idxblocks;
4734 	int ret = 0;
4735 
4736 	/*
4737 	 * How many index blocks need to touch to map @lblocks logical blocks
4738 	 * to @pextents physical extents?
4739 	 */
4740 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4741 
4742 	ret = idxblocks;
4743 
4744 	/*
4745 	 * Now let's see how many group bitmaps and group descriptors need
4746 	 * to account
4747 	 */
4748 	groups = idxblocks + pextents;
4749 	gdpblocks = groups;
4750 	if (groups > ngroups)
4751 		groups = ngroups;
4752 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4753 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4754 
4755 	/* bitmaps and block group descriptor blocks */
4756 	ret += groups + gdpblocks;
4757 
4758 	/* Blocks for super block, inode, quota and xattr blocks */
4759 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4760 
4761 	return ret;
4762 }
4763 
4764 /*
4765  * Calculate the total number of credits to reserve to fit
4766  * the modification of a single pages into a single transaction,
4767  * which may include multiple chunks of block allocations.
4768  *
4769  * This could be called via ext4_write_begin()
4770  *
4771  * We need to consider the worse case, when
4772  * one new block per extent.
4773  */
4774 int ext4_writepage_trans_blocks(struct inode *inode)
4775 {
4776 	int bpp = ext4_journal_blocks_per_page(inode);
4777 	int ret;
4778 
4779 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4780 
4781 	/* Account for data blocks for journalled mode */
4782 	if (ext4_should_journal_data(inode))
4783 		ret += bpp;
4784 	return ret;
4785 }
4786 
4787 /*
4788  * Calculate the journal credits for a chunk of data modification.
4789  *
4790  * This is called from DIO, fallocate or whoever calling
4791  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4792  *
4793  * journal buffers for data blocks are not included here, as DIO
4794  * and fallocate do no need to journal data buffers.
4795  */
4796 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4797 {
4798 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4799 }
4800 
4801 /*
4802  * The caller must have previously called ext4_reserve_inode_write().
4803  * Give this, we know that the caller already has write access to iloc->bh.
4804  */
4805 int ext4_mark_iloc_dirty(handle_t *handle,
4806 			 struct inode *inode, struct ext4_iloc *iloc)
4807 {
4808 	int err = 0;
4809 
4810 	if (IS_I_VERSION(inode))
4811 		inode_inc_iversion(inode);
4812 
4813 	/* the do_update_inode consumes one bh->b_count */
4814 	get_bh(iloc->bh);
4815 
4816 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4817 	err = ext4_do_update_inode(handle, inode, iloc);
4818 	put_bh(iloc->bh);
4819 	return err;
4820 }
4821 
4822 /*
4823  * On success, We end up with an outstanding reference count against
4824  * iloc->bh.  This _must_ be cleaned up later.
4825  */
4826 
4827 int
4828 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4829 			 struct ext4_iloc *iloc)
4830 {
4831 	int err;
4832 
4833 	err = ext4_get_inode_loc(inode, iloc);
4834 	if (!err) {
4835 		BUFFER_TRACE(iloc->bh, "get_write_access");
4836 		err = ext4_journal_get_write_access(handle, iloc->bh);
4837 		if (err) {
4838 			brelse(iloc->bh);
4839 			iloc->bh = NULL;
4840 		}
4841 	}
4842 	ext4_std_error(inode->i_sb, err);
4843 	return err;
4844 }
4845 
4846 /*
4847  * Expand an inode by new_extra_isize bytes.
4848  * Returns 0 on success or negative error number on failure.
4849  */
4850 static int ext4_expand_extra_isize(struct inode *inode,
4851 				   unsigned int new_extra_isize,
4852 				   struct ext4_iloc iloc,
4853 				   handle_t *handle)
4854 {
4855 	struct ext4_inode *raw_inode;
4856 	struct ext4_xattr_ibody_header *header;
4857 
4858 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4859 		return 0;
4860 
4861 	raw_inode = ext4_raw_inode(&iloc);
4862 
4863 	header = IHDR(inode, raw_inode);
4864 
4865 	/* No extended attributes present */
4866 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4867 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4868 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4869 			new_extra_isize);
4870 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4871 		return 0;
4872 	}
4873 
4874 	/* try to expand with EAs present */
4875 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4876 					  raw_inode, handle);
4877 }
4878 
4879 /*
4880  * What we do here is to mark the in-core inode as clean with respect to inode
4881  * dirtiness (it may still be data-dirty).
4882  * This means that the in-core inode may be reaped by prune_icache
4883  * without having to perform any I/O.  This is a very good thing,
4884  * because *any* task may call prune_icache - even ones which
4885  * have a transaction open against a different journal.
4886  *
4887  * Is this cheating?  Not really.  Sure, we haven't written the
4888  * inode out, but prune_icache isn't a user-visible syncing function.
4889  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4890  * we start and wait on commits.
4891  */
4892 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4893 {
4894 	struct ext4_iloc iloc;
4895 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4896 	static unsigned int mnt_count;
4897 	int err, ret;
4898 
4899 	might_sleep();
4900 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4901 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4902 	if (ext4_handle_valid(handle) &&
4903 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4904 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4905 		/*
4906 		 * We need extra buffer credits since we may write into EA block
4907 		 * with this same handle. If journal_extend fails, then it will
4908 		 * only result in a minor loss of functionality for that inode.
4909 		 * If this is felt to be critical, then e2fsck should be run to
4910 		 * force a large enough s_min_extra_isize.
4911 		 */
4912 		if ((jbd2_journal_extend(handle,
4913 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4914 			ret = ext4_expand_extra_isize(inode,
4915 						      sbi->s_want_extra_isize,
4916 						      iloc, handle);
4917 			if (ret) {
4918 				ext4_set_inode_state(inode,
4919 						     EXT4_STATE_NO_EXPAND);
4920 				if (mnt_count !=
4921 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4922 					ext4_warning(inode->i_sb,
4923 					"Unable to expand inode %lu. Delete"
4924 					" some EAs or run e2fsck.",
4925 					inode->i_ino);
4926 					mnt_count =
4927 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4928 				}
4929 			}
4930 		}
4931 	}
4932 	if (!err)
4933 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4934 	return err;
4935 }
4936 
4937 /*
4938  * ext4_dirty_inode() is called from __mark_inode_dirty()
4939  *
4940  * We're really interested in the case where a file is being extended.
4941  * i_size has been changed by generic_commit_write() and we thus need
4942  * to include the updated inode in the current transaction.
4943  *
4944  * Also, dquot_alloc_block() will always dirty the inode when blocks
4945  * are allocated to the file.
4946  *
4947  * If the inode is marked synchronous, we don't honour that here - doing
4948  * so would cause a commit on atime updates, which we don't bother doing.
4949  * We handle synchronous inodes at the highest possible level.
4950  */
4951 void ext4_dirty_inode(struct inode *inode, int flags)
4952 {
4953 	handle_t *handle;
4954 
4955 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4956 	if (IS_ERR(handle))
4957 		goto out;
4958 
4959 	ext4_mark_inode_dirty(handle, inode);
4960 
4961 	ext4_journal_stop(handle);
4962 out:
4963 	return;
4964 }
4965 
4966 #if 0
4967 /*
4968  * Bind an inode's backing buffer_head into this transaction, to prevent
4969  * it from being flushed to disk early.  Unlike
4970  * ext4_reserve_inode_write, this leaves behind no bh reference and
4971  * returns no iloc structure, so the caller needs to repeat the iloc
4972  * lookup to mark the inode dirty later.
4973  */
4974 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4975 {
4976 	struct ext4_iloc iloc;
4977 
4978 	int err = 0;
4979 	if (handle) {
4980 		err = ext4_get_inode_loc(inode, &iloc);
4981 		if (!err) {
4982 			BUFFER_TRACE(iloc.bh, "get_write_access");
4983 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4984 			if (!err)
4985 				err = ext4_handle_dirty_metadata(handle,
4986 								 NULL,
4987 								 iloc.bh);
4988 			brelse(iloc.bh);
4989 		}
4990 	}
4991 	ext4_std_error(inode->i_sb, err);
4992 	return err;
4993 }
4994 #endif
4995 
4996 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4997 {
4998 	journal_t *journal;
4999 	handle_t *handle;
5000 	int err;
5001 
5002 	/*
5003 	 * We have to be very careful here: changing a data block's
5004 	 * journaling status dynamically is dangerous.  If we write a
5005 	 * data block to the journal, change the status and then delete
5006 	 * that block, we risk forgetting to revoke the old log record
5007 	 * from the journal and so a subsequent replay can corrupt data.
5008 	 * So, first we make sure that the journal is empty and that
5009 	 * nobody is changing anything.
5010 	 */
5011 
5012 	journal = EXT4_JOURNAL(inode);
5013 	if (!journal)
5014 		return 0;
5015 	if (is_journal_aborted(journal))
5016 		return -EROFS;
5017 	/* We have to allocate physical blocks for delalloc blocks
5018 	 * before flushing journal. otherwise delalloc blocks can not
5019 	 * be allocated any more. even more truncate on delalloc blocks
5020 	 * could trigger BUG by flushing delalloc blocks in journal.
5021 	 * There is no delalloc block in non-journal data mode.
5022 	 */
5023 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5024 		err = ext4_alloc_da_blocks(inode);
5025 		if (err < 0)
5026 			return err;
5027 	}
5028 
5029 	/* Wait for all existing dio workers */
5030 	ext4_inode_block_unlocked_dio(inode);
5031 	inode_dio_wait(inode);
5032 
5033 	jbd2_journal_lock_updates(journal);
5034 
5035 	/*
5036 	 * OK, there are no updates running now, and all cached data is
5037 	 * synced to disk.  We are now in a completely consistent state
5038 	 * which doesn't have anything in the journal, and we know that
5039 	 * no filesystem updates are running, so it is safe to modify
5040 	 * the inode's in-core data-journaling state flag now.
5041 	 */
5042 
5043 	if (val)
5044 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5045 	else {
5046 		jbd2_journal_flush(journal);
5047 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5048 	}
5049 	ext4_set_aops(inode);
5050 
5051 	jbd2_journal_unlock_updates(journal);
5052 	ext4_inode_resume_unlocked_dio(inode);
5053 
5054 	/* Finally we can mark the inode as dirty. */
5055 
5056 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5057 	if (IS_ERR(handle))
5058 		return PTR_ERR(handle);
5059 
5060 	err = ext4_mark_inode_dirty(handle, inode);
5061 	ext4_handle_sync(handle);
5062 	ext4_journal_stop(handle);
5063 	ext4_std_error(inode->i_sb, err);
5064 
5065 	return err;
5066 }
5067 
5068 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5069 {
5070 	return !buffer_mapped(bh);
5071 }
5072 
5073 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5074 {
5075 	struct page *page = vmf->page;
5076 	loff_t size;
5077 	unsigned long len;
5078 	int ret;
5079 	struct file *file = vma->vm_file;
5080 	struct inode *inode = file_inode(file);
5081 	struct address_space *mapping = inode->i_mapping;
5082 	handle_t *handle;
5083 	get_block_t *get_block;
5084 	int retries = 0;
5085 
5086 	sb_start_pagefault(inode->i_sb);
5087 	file_update_time(vma->vm_file);
5088 	/* Delalloc case is easy... */
5089 	if (test_opt(inode->i_sb, DELALLOC) &&
5090 	    !ext4_should_journal_data(inode) &&
5091 	    !ext4_nonda_switch(inode->i_sb)) {
5092 		do {
5093 			ret = __block_page_mkwrite(vma, vmf,
5094 						   ext4_da_get_block_prep);
5095 		} while (ret == -ENOSPC &&
5096 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5097 		goto out_ret;
5098 	}
5099 
5100 	lock_page(page);
5101 	size = i_size_read(inode);
5102 	/* Page got truncated from under us? */
5103 	if (page->mapping != mapping || page_offset(page) > size) {
5104 		unlock_page(page);
5105 		ret = VM_FAULT_NOPAGE;
5106 		goto out;
5107 	}
5108 
5109 	if (page->index == size >> PAGE_CACHE_SHIFT)
5110 		len = size & ~PAGE_CACHE_MASK;
5111 	else
5112 		len = PAGE_CACHE_SIZE;
5113 	/*
5114 	 * Return if we have all the buffers mapped. This avoids the need to do
5115 	 * journal_start/journal_stop which can block and take a long time
5116 	 */
5117 	if (page_has_buffers(page)) {
5118 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5119 					    0, len, NULL,
5120 					    ext4_bh_unmapped)) {
5121 			/* Wait so that we don't change page under IO */
5122 			wait_for_stable_page(page);
5123 			ret = VM_FAULT_LOCKED;
5124 			goto out;
5125 		}
5126 	}
5127 	unlock_page(page);
5128 	/* OK, we need to fill the hole... */
5129 	if (ext4_should_dioread_nolock(inode))
5130 		get_block = ext4_get_block_write;
5131 	else
5132 		get_block = ext4_get_block;
5133 retry_alloc:
5134 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5135 				    ext4_writepage_trans_blocks(inode));
5136 	if (IS_ERR(handle)) {
5137 		ret = VM_FAULT_SIGBUS;
5138 		goto out;
5139 	}
5140 	ret = __block_page_mkwrite(vma, vmf, get_block);
5141 	if (!ret && ext4_should_journal_data(inode)) {
5142 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5143 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5144 			unlock_page(page);
5145 			ret = VM_FAULT_SIGBUS;
5146 			ext4_journal_stop(handle);
5147 			goto out;
5148 		}
5149 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5150 	}
5151 	ext4_journal_stop(handle);
5152 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5153 		goto retry_alloc;
5154 out_ret:
5155 	ret = block_page_mkwrite_return(ret);
5156 out:
5157 	sb_end_pagefault(inode->i_sb);
5158 	return ret;
5159 }
5160