xref: /openbmc/linux/fs/ext4/inode.c (revision cc8bbe1a)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !ext4_has_metadata_csum(inode->i_sb))
85 		return 1;
86 
87 	provided = le16_to_cpu(raw->i_checksum_lo);
88 	calculated = ext4_inode_csum(inode, raw, ei);
89 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 	else
93 		calculated &= 0xFFFF;
94 
95 	return provided == calculated;
96 }
97 
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 				struct ext4_inode_info *ei)
100 {
101 	__u32 csum;
102 
103 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 	    cpu_to_le32(EXT4_OS_LINUX) ||
105 	    !ext4_has_metadata_csum(inode->i_sb))
106 		return;
107 
108 	csum = ext4_inode_csum(inode, raw, ei);
109 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114 
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 					      loff_t new_size)
117 {
118 	trace_ext4_begin_ordered_truncate(inode, new_size);
119 	/*
120 	 * If jinode is zero, then we never opened the file for
121 	 * writing, so there's no need to call
122 	 * jbd2_journal_begin_ordered_truncate() since there's no
123 	 * outstanding writes we need to flush.
124 	 */
125 	if (!EXT4_I(inode)->jinode)
126 		return 0;
127 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 						   EXT4_I(inode)->jinode,
129 						   new_size);
130 }
131 
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 				unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 				  int pextents);
138 
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146 
147 	if (ext4_has_inline_data(inode))
148 		return 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages_final(&inode->i_data);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (is_bad_inode(inode))
224 		goto no_delete;
225 	dquot_initialize(inode);
226 
227 	if (ext4_should_order_data(inode))
228 		ext4_begin_ordered_truncate(inode, 0);
229 	truncate_inode_pages_final(&inode->i_data);
230 
231 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 				    ext4_blocks_for_truncate(inode)+3);
240 	if (IS_ERR(handle)) {
241 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 		/*
243 		 * If we're going to skip the normal cleanup, we still need to
244 		 * make sure that the in-core orphan linked list is properly
245 		 * cleaned up.
246 		 */
247 		ext4_orphan_del(NULL, inode);
248 		sb_end_intwrite(inode->i_sb);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		ext4_handle_sync(handle);
254 	inode->i_size = 0;
255 	err = ext4_mark_inode_dirty(handle, inode);
256 	if (err) {
257 		ext4_warning(inode->i_sb,
258 			     "couldn't mark inode dirty (err %d)", err);
259 		goto stop_handle;
260 	}
261 	if (inode->i_blocks)
262 		ext4_truncate(inode);
263 
264 	/*
265 	 * ext4_ext_truncate() doesn't reserve any slop when it
266 	 * restarts journal transactions; therefore there may not be
267 	 * enough credits left in the handle to remove the inode from
268 	 * the orphan list and set the dtime field.
269 	 */
270 	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 		err = ext4_journal_extend(handle, 3);
272 		if (err > 0)
273 			err = ext4_journal_restart(handle, 3);
274 		if (err != 0) {
275 			ext4_warning(inode->i_sb,
276 				     "couldn't extend journal (err %d)", err);
277 		stop_handle:
278 			ext4_journal_stop(handle);
279 			ext4_orphan_del(NULL, inode);
280 			sb_end_intwrite(inode->i_sb);
281 			goto no_delete;
282 		}
283 	}
284 
285 	/*
286 	 * Kill off the orphan record which ext4_truncate created.
287 	 * AKPM: I think this can be inside the above `if'.
288 	 * Note that ext4_orphan_del() has to be able to cope with the
289 	 * deletion of a non-existent orphan - this is because we don't
290 	 * know if ext4_truncate() actually created an orphan record.
291 	 * (Well, we could do this if we need to, but heck - it works)
292 	 */
293 	ext4_orphan_del(handle, inode);
294 	EXT4_I(inode)->i_dtime	= get_seconds();
295 
296 	/*
297 	 * One subtle ordering requirement: if anything has gone wrong
298 	 * (transaction abort, IO errors, whatever), then we can still
299 	 * do these next steps (the fs will already have been marked as
300 	 * having errors), but we can't free the inode if the mark_dirty
301 	 * fails.
302 	 */
303 	if (ext4_mark_inode_dirty(handle, inode))
304 		/* If that failed, just do the required in-core inode clear. */
305 		ext4_clear_inode(inode);
306 	else
307 		ext4_free_inode(handle, inode);
308 	ext4_journal_stop(handle);
309 	sb_end_intwrite(inode->i_sb);
310 	return;
311 no_delete:
312 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 }
314 
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 	return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321 
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327 					int used, int quota_claim)
328 {
329 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330 	struct ext4_inode_info *ei = EXT4_I(inode);
331 
332 	spin_lock(&ei->i_block_reservation_lock);
333 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334 	if (unlikely(used > ei->i_reserved_data_blocks)) {
335 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336 			 "with only %d reserved data blocks",
337 			 __func__, inode->i_ino, used,
338 			 ei->i_reserved_data_blocks);
339 		WARN_ON(1);
340 		used = ei->i_reserved_data_blocks;
341 	}
342 
343 	/* Update per-inode reservations */
344 	ei->i_reserved_data_blocks -= used;
345 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346 
347 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348 
349 	/* Update quota subsystem for data blocks */
350 	if (quota_claim)
351 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
352 	else {
353 		/*
354 		 * We did fallocate with an offset that is already delayed
355 		 * allocated. So on delayed allocated writeback we should
356 		 * not re-claim the quota for fallocated blocks.
357 		 */
358 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359 	}
360 
361 	/*
362 	 * If we have done all the pending block allocations and if
363 	 * there aren't any writers on the inode, we can discard the
364 	 * inode's preallocations.
365 	 */
366 	if ((ei->i_reserved_data_blocks == 0) &&
367 	    (atomic_read(&inode->i_writecount) == 0))
368 		ext4_discard_preallocations(inode);
369 }
370 
371 static int __check_block_validity(struct inode *inode, const char *func,
372 				unsigned int line,
373 				struct ext4_map_blocks *map)
374 {
375 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 				   map->m_len)) {
377 		ext4_error_inode(inode, func, line, map->m_pblk,
378 				 "lblock %lu mapped to illegal pblock "
379 				 "(length %d)", (unsigned long) map->m_lblk,
380 				 map->m_len);
381 		return -EFSCORRUPTED;
382 	}
383 	return 0;
384 }
385 
386 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
387 		       ext4_lblk_t len)
388 {
389 	int ret;
390 
391 	if (ext4_encrypted_inode(inode))
392 		return ext4_encrypted_zeroout(inode, lblk, pblk, len);
393 
394 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
395 	if (ret > 0)
396 		ret = 0;
397 
398 	return ret;
399 }
400 
401 #define check_block_validity(inode, map)	\
402 	__check_block_validity((inode), __func__, __LINE__, (map))
403 
404 #ifdef ES_AGGRESSIVE_TEST
405 static void ext4_map_blocks_es_recheck(handle_t *handle,
406 				       struct inode *inode,
407 				       struct ext4_map_blocks *es_map,
408 				       struct ext4_map_blocks *map,
409 				       int flags)
410 {
411 	int retval;
412 
413 	map->m_flags = 0;
414 	/*
415 	 * There is a race window that the result is not the same.
416 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
417 	 * is that we lookup a block mapping in extent status tree with
418 	 * out taking i_data_sem.  So at the time the unwritten extent
419 	 * could be converted.
420 	 */
421 	down_read(&EXT4_I(inode)->i_data_sem);
422 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
423 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
424 					     EXT4_GET_BLOCKS_KEEP_SIZE);
425 	} else {
426 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
427 					     EXT4_GET_BLOCKS_KEEP_SIZE);
428 	}
429 	up_read((&EXT4_I(inode)->i_data_sem));
430 
431 	/*
432 	 * We don't check m_len because extent will be collpased in status
433 	 * tree.  So the m_len might not equal.
434 	 */
435 	if (es_map->m_lblk != map->m_lblk ||
436 	    es_map->m_flags != map->m_flags ||
437 	    es_map->m_pblk != map->m_pblk) {
438 		printk("ES cache assertion failed for inode: %lu "
439 		       "es_cached ex [%d/%d/%llu/%x] != "
440 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
441 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
442 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
443 		       map->m_len, map->m_pblk, map->m_flags,
444 		       retval, flags);
445 	}
446 }
447 #endif /* ES_AGGRESSIVE_TEST */
448 
449 /*
450  * The ext4_map_blocks() function tries to look up the requested blocks,
451  * and returns if the blocks are already mapped.
452  *
453  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
454  * and store the allocated blocks in the result buffer head and mark it
455  * mapped.
456  *
457  * If file type is extents based, it will call ext4_ext_map_blocks(),
458  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
459  * based files
460  *
461  * On success, it returns the number of blocks being mapped or allocated.
462  * if create==0 and the blocks are pre-allocated and unwritten block,
463  * the result buffer head is unmapped. If the create ==1, it will make sure
464  * the buffer head is mapped.
465  *
466  * It returns 0 if plain look up failed (blocks have not been allocated), in
467  * that case, buffer head is unmapped
468  *
469  * It returns the error in case of allocation failure.
470  */
471 int ext4_map_blocks(handle_t *handle, struct inode *inode,
472 		    struct ext4_map_blocks *map, int flags)
473 {
474 	struct extent_status es;
475 	int retval;
476 	int ret = 0;
477 #ifdef ES_AGGRESSIVE_TEST
478 	struct ext4_map_blocks orig_map;
479 
480 	memcpy(&orig_map, map, sizeof(*map));
481 #endif
482 
483 	map->m_flags = 0;
484 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
485 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
486 		  (unsigned long) map->m_lblk);
487 
488 	/*
489 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
490 	 */
491 	if (unlikely(map->m_len > INT_MAX))
492 		map->m_len = INT_MAX;
493 
494 	/* We can handle the block number less than EXT_MAX_BLOCKS */
495 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
496 		return -EFSCORRUPTED;
497 
498 	/* Lookup extent status tree firstly */
499 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
500 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
501 			map->m_pblk = ext4_es_pblock(&es) +
502 					map->m_lblk - es.es_lblk;
503 			map->m_flags |= ext4_es_is_written(&es) ?
504 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
505 			retval = es.es_len - (map->m_lblk - es.es_lblk);
506 			if (retval > map->m_len)
507 				retval = map->m_len;
508 			map->m_len = retval;
509 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
510 			retval = 0;
511 		} else {
512 			BUG_ON(1);
513 		}
514 #ifdef ES_AGGRESSIVE_TEST
515 		ext4_map_blocks_es_recheck(handle, inode, map,
516 					   &orig_map, flags);
517 #endif
518 		goto found;
519 	}
520 
521 	/*
522 	 * Try to see if we can get the block without requesting a new
523 	 * file system block.
524 	 */
525 	down_read(&EXT4_I(inode)->i_data_sem);
526 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
527 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
528 					     EXT4_GET_BLOCKS_KEEP_SIZE);
529 	} else {
530 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
531 					     EXT4_GET_BLOCKS_KEEP_SIZE);
532 	}
533 	if (retval > 0) {
534 		unsigned int status;
535 
536 		if (unlikely(retval != map->m_len)) {
537 			ext4_warning(inode->i_sb,
538 				     "ES len assertion failed for inode "
539 				     "%lu: retval %d != map->m_len %d",
540 				     inode->i_ino, retval, map->m_len);
541 			WARN_ON(1);
542 		}
543 
544 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
545 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
546 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
547 		    !(status & EXTENT_STATUS_WRITTEN) &&
548 		    ext4_find_delalloc_range(inode, map->m_lblk,
549 					     map->m_lblk + map->m_len - 1))
550 			status |= EXTENT_STATUS_DELAYED;
551 		ret = ext4_es_insert_extent(inode, map->m_lblk,
552 					    map->m_len, map->m_pblk, status);
553 		if (ret < 0)
554 			retval = ret;
555 	}
556 	up_read((&EXT4_I(inode)->i_data_sem));
557 
558 found:
559 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
560 		ret = check_block_validity(inode, map);
561 		if (ret != 0)
562 			return ret;
563 	}
564 
565 	/* If it is only a block(s) look up */
566 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
567 		return retval;
568 
569 	/*
570 	 * Returns if the blocks have already allocated
571 	 *
572 	 * Note that if blocks have been preallocated
573 	 * ext4_ext_get_block() returns the create = 0
574 	 * with buffer head unmapped.
575 	 */
576 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
577 		/*
578 		 * If we need to convert extent to unwritten
579 		 * we continue and do the actual work in
580 		 * ext4_ext_map_blocks()
581 		 */
582 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
583 			return retval;
584 
585 	/*
586 	 * Here we clear m_flags because after allocating an new extent,
587 	 * it will be set again.
588 	 */
589 	map->m_flags &= ~EXT4_MAP_FLAGS;
590 
591 	/*
592 	 * New blocks allocate and/or writing to unwritten extent
593 	 * will possibly result in updating i_data, so we take
594 	 * the write lock of i_data_sem, and call get_block()
595 	 * with create == 1 flag.
596 	 */
597 	down_write(&EXT4_I(inode)->i_data_sem);
598 
599 	/*
600 	 * We need to check for EXT4 here because migrate
601 	 * could have changed the inode type in between
602 	 */
603 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
604 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
605 	} else {
606 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
607 
608 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
609 			/*
610 			 * We allocated new blocks which will result in
611 			 * i_data's format changing.  Force the migrate
612 			 * to fail by clearing migrate flags
613 			 */
614 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
615 		}
616 
617 		/*
618 		 * Update reserved blocks/metadata blocks after successful
619 		 * block allocation which had been deferred till now. We don't
620 		 * support fallocate for non extent files. So we can update
621 		 * reserve space here.
622 		 */
623 		if ((retval > 0) &&
624 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
625 			ext4_da_update_reserve_space(inode, retval, 1);
626 	}
627 
628 	if (retval > 0) {
629 		unsigned int status;
630 
631 		if (unlikely(retval != map->m_len)) {
632 			ext4_warning(inode->i_sb,
633 				     "ES len assertion failed for inode "
634 				     "%lu: retval %d != map->m_len %d",
635 				     inode->i_ino, retval, map->m_len);
636 			WARN_ON(1);
637 		}
638 
639 		/*
640 		 * We have to zeroout blocks before inserting them into extent
641 		 * status tree. Otherwise someone could look them up there and
642 		 * use them before they are really zeroed.
643 		 */
644 		if (flags & EXT4_GET_BLOCKS_ZERO &&
645 		    map->m_flags & EXT4_MAP_MAPPED &&
646 		    map->m_flags & EXT4_MAP_NEW) {
647 			ret = ext4_issue_zeroout(inode, map->m_lblk,
648 						 map->m_pblk, map->m_len);
649 			if (ret) {
650 				retval = ret;
651 				goto out_sem;
652 			}
653 		}
654 
655 		/*
656 		 * If the extent has been zeroed out, we don't need to update
657 		 * extent status tree.
658 		 */
659 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
660 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
661 			if (ext4_es_is_written(&es))
662 				goto out_sem;
663 		}
664 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
665 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
666 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
667 		    !(status & EXTENT_STATUS_WRITTEN) &&
668 		    ext4_find_delalloc_range(inode, map->m_lblk,
669 					     map->m_lblk + map->m_len - 1))
670 			status |= EXTENT_STATUS_DELAYED;
671 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
672 					    map->m_pblk, status);
673 		if (ret < 0) {
674 			retval = ret;
675 			goto out_sem;
676 		}
677 	}
678 
679 out_sem:
680 	up_write((&EXT4_I(inode)->i_data_sem));
681 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
682 		ret = check_block_validity(inode, map);
683 		if (ret != 0)
684 			return ret;
685 	}
686 	return retval;
687 }
688 
689 /*
690  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
691  * we have to be careful as someone else may be manipulating b_state as well.
692  */
693 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
694 {
695 	unsigned long old_state;
696 	unsigned long new_state;
697 
698 	flags &= EXT4_MAP_FLAGS;
699 
700 	/* Dummy buffer_head? Set non-atomically. */
701 	if (!bh->b_page) {
702 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
703 		return;
704 	}
705 	/*
706 	 * Someone else may be modifying b_state. Be careful! This is ugly but
707 	 * once we get rid of using bh as a container for mapping information
708 	 * to pass to / from get_block functions, this can go away.
709 	 */
710 	do {
711 		old_state = READ_ONCE(bh->b_state);
712 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
713 	} while (unlikely(
714 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
715 }
716 
717 /* Maximum number of blocks we map for direct IO at once. */
718 #define DIO_MAX_BLOCKS 4096
719 
720 static int _ext4_get_block(struct inode *inode, sector_t iblock,
721 			   struct buffer_head *bh, int flags)
722 {
723 	handle_t *handle = ext4_journal_current_handle();
724 	struct ext4_map_blocks map;
725 	int ret = 0, started = 0;
726 	int dio_credits;
727 
728 	if (ext4_has_inline_data(inode))
729 		return -ERANGE;
730 
731 	map.m_lblk = iblock;
732 	map.m_len = bh->b_size >> inode->i_blkbits;
733 
734 	if (flags && !handle) {
735 		/* Direct IO write... */
736 		if (map.m_len > DIO_MAX_BLOCKS)
737 			map.m_len = DIO_MAX_BLOCKS;
738 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
739 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
740 					    dio_credits);
741 		if (IS_ERR(handle)) {
742 			ret = PTR_ERR(handle);
743 			return ret;
744 		}
745 		started = 1;
746 	}
747 
748 	ret = ext4_map_blocks(handle, inode, &map, flags);
749 	if (ret > 0) {
750 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
751 
752 		map_bh(bh, inode->i_sb, map.m_pblk);
753 		ext4_update_bh_state(bh, map.m_flags);
754 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
755 			set_buffer_defer_completion(bh);
756 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
757 		ret = 0;
758 	}
759 	if (started)
760 		ext4_journal_stop(handle);
761 	return ret;
762 }
763 
764 int ext4_get_block(struct inode *inode, sector_t iblock,
765 		   struct buffer_head *bh, int create)
766 {
767 	return _ext4_get_block(inode, iblock, bh,
768 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
769 }
770 
771 /*
772  * `handle' can be NULL if create is zero
773  */
774 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
775 				ext4_lblk_t block, int map_flags)
776 {
777 	struct ext4_map_blocks map;
778 	struct buffer_head *bh;
779 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
780 	int err;
781 
782 	J_ASSERT(handle != NULL || create == 0);
783 
784 	map.m_lblk = block;
785 	map.m_len = 1;
786 	err = ext4_map_blocks(handle, inode, &map, map_flags);
787 
788 	if (err == 0)
789 		return create ? ERR_PTR(-ENOSPC) : NULL;
790 	if (err < 0)
791 		return ERR_PTR(err);
792 
793 	bh = sb_getblk(inode->i_sb, map.m_pblk);
794 	if (unlikely(!bh))
795 		return ERR_PTR(-ENOMEM);
796 	if (map.m_flags & EXT4_MAP_NEW) {
797 		J_ASSERT(create != 0);
798 		J_ASSERT(handle != NULL);
799 
800 		/*
801 		 * Now that we do not always journal data, we should
802 		 * keep in mind whether this should always journal the
803 		 * new buffer as metadata.  For now, regular file
804 		 * writes use ext4_get_block instead, so it's not a
805 		 * problem.
806 		 */
807 		lock_buffer(bh);
808 		BUFFER_TRACE(bh, "call get_create_access");
809 		err = ext4_journal_get_create_access(handle, bh);
810 		if (unlikely(err)) {
811 			unlock_buffer(bh);
812 			goto errout;
813 		}
814 		if (!buffer_uptodate(bh)) {
815 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
816 			set_buffer_uptodate(bh);
817 		}
818 		unlock_buffer(bh);
819 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
820 		err = ext4_handle_dirty_metadata(handle, inode, bh);
821 		if (unlikely(err))
822 			goto errout;
823 	} else
824 		BUFFER_TRACE(bh, "not a new buffer");
825 	return bh;
826 errout:
827 	brelse(bh);
828 	return ERR_PTR(err);
829 }
830 
831 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
832 			       ext4_lblk_t block, int map_flags)
833 {
834 	struct buffer_head *bh;
835 
836 	bh = ext4_getblk(handle, inode, block, map_flags);
837 	if (IS_ERR(bh))
838 		return bh;
839 	if (!bh || buffer_uptodate(bh))
840 		return bh;
841 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
842 	wait_on_buffer(bh);
843 	if (buffer_uptodate(bh))
844 		return bh;
845 	put_bh(bh);
846 	return ERR_PTR(-EIO);
847 }
848 
849 int ext4_walk_page_buffers(handle_t *handle,
850 			   struct buffer_head *head,
851 			   unsigned from,
852 			   unsigned to,
853 			   int *partial,
854 			   int (*fn)(handle_t *handle,
855 				     struct buffer_head *bh))
856 {
857 	struct buffer_head *bh;
858 	unsigned block_start, block_end;
859 	unsigned blocksize = head->b_size;
860 	int err, ret = 0;
861 	struct buffer_head *next;
862 
863 	for (bh = head, block_start = 0;
864 	     ret == 0 && (bh != head || !block_start);
865 	     block_start = block_end, bh = next) {
866 		next = bh->b_this_page;
867 		block_end = block_start + blocksize;
868 		if (block_end <= from || block_start >= to) {
869 			if (partial && !buffer_uptodate(bh))
870 				*partial = 1;
871 			continue;
872 		}
873 		err = (*fn)(handle, bh);
874 		if (!ret)
875 			ret = err;
876 	}
877 	return ret;
878 }
879 
880 /*
881  * To preserve ordering, it is essential that the hole instantiation and
882  * the data write be encapsulated in a single transaction.  We cannot
883  * close off a transaction and start a new one between the ext4_get_block()
884  * and the commit_write().  So doing the jbd2_journal_start at the start of
885  * prepare_write() is the right place.
886  *
887  * Also, this function can nest inside ext4_writepage().  In that case, we
888  * *know* that ext4_writepage() has generated enough buffer credits to do the
889  * whole page.  So we won't block on the journal in that case, which is good,
890  * because the caller may be PF_MEMALLOC.
891  *
892  * By accident, ext4 can be reentered when a transaction is open via
893  * quota file writes.  If we were to commit the transaction while thus
894  * reentered, there can be a deadlock - we would be holding a quota
895  * lock, and the commit would never complete if another thread had a
896  * transaction open and was blocking on the quota lock - a ranking
897  * violation.
898  *
899  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
900  * will _not_ run commit under these circumstances because handle->h_ref
901  * is elevated.  We'll still have enough credits for the tiny quotafile
902  * write.
903  */
904 int do_journal_get_write_access(handle_t *handle,
905 				struct buffer_head *bh)
906 {
907 	int dirty = buffer_dirty(bh);
908 	int ret;
909 
910 	if (!buffer_mapped(bh) || buffer_freed(bh))
911 		return 0;
912 	/*
913 	 * __block_write_begin() could have dirtied some buffers. Clean
914 	 * the dirty bit as jbd2_journal_get_write_access() could complain
915 	 * otherwise about fs integrity issues. Setting of the dirty bit
916 	 * by __block_write_begin() isn't a real problem here as we clear
917 	 * the bit before releasing a page lock and thus writeback cannot
918 	 * ever write the buffer.
919 	 */
920 	if (dirty)
921 		clear_buffer_dirty(bh);
922 	BUFFER_TRACE(bh, "get write access");
923 	ret = ext4_journal_get_write_access(handle, bh);
924 	if (!ret && dirty)
925 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
926 	return ret;
927 }
928 
929 #ifdef CONFIG_EXT4_FS_ENCRYPTION
930 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
931 				  get_block_t *get_block)
932 {
933 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
934 	unsigned to = from + len;
935 	struct inode *inode = page->mapping->host;
936 	unsigned block_start, block_end;
937 	sector_t block;
938 	int err = 0;
939 	unsigned blocksize = inode->i_sb->s_blocksize;
940 	unsigned bbits;
941 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
942 	bool decrypt = false;
943 
944 	BUG_ON(!PageLocked(page));
945 	BUG_ON(from > PAGE_CACHE_SIZE);
946 	BUG_ON(to > PAGE_CACHE_SIZE);
947 	BUG_ON(from > to);
948 
949 	if (!page_has_buffers(page))
950 		create_empty_buffers(page, blocksize, 0);
951 	head = page_buffers(page);
952 	bbits = ilog2(blocksize);
953 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
954 
955 	for (bh = head, block_start = 0; bh != head || !block_start;
956 	    block++, block_start = block_end, bh = bh->b_this_page) {
957 		block_end = block_start + blocksize;
958 		if (block_end <= from || block_start >= to) {
959 			if (PageUptodate(page)) {
960 				if (!buffer_uptodate(bh))
961 					set_buffer_uptodate(bh);
962 			}
963 			continue;
964 		}
965 		if (buffer_new(bh))
966 			clear_buffer_new(bh);
967 		if (!buffer_mapped(bh)) {
968 			WARN_ON(bh->b_size != blocksize);
969 			err = get_block(inode, block, bh, 1);
970 			if (err)
971 				break;
972 			if (buffer_new(bh)) {
973 				unmap_underlying_metadata(bh->b_bdev,
974 							  bh->b_blocknr);
975 				if (PageUptodate(page)) {
976 					clear_buffer_new(bh);
977 					set_buffer_uptodate(bh);
978 					mark_buffer_dirty(bh);
979 					continue;
980 				}
981 				if (block_end > to || block_start < from)
982 					zero_user_segments(page, to, block_end,
983 							   block_start, from);
984 				continue;
985 			}
986 		}
987 		if (PageUptodate(page)) {
988 			if (!buffer_uptodate(bh))
989 				set_buffer_uptodate(bh);
990 			continue;
991 		}
992 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
993 		    !buffer_unwritten(bh) &&
994 		    (block_start < from || block_end > to)) {
995 			ll_rw_block(READ, 1, &bh);
996 			*wait_bh++ = bh;
997 			decrypt = ext4_encrypted_inode(inode) &&
998 				S_ISREG(inode->i_mode);
999 		}
1000 	}
1001 	/*
1002 	 * If we issued read requests, let them complete.
1003 	 */
1004 	while (wait_bh > wait) {
1005 		wait_on_buffer(*--wait_bh);
1006 		if (!buffer_uptodate(*wait_bh))
1007 			err = -EIO;
1008 	}
1009 	if (unlikely(err))
1010 		page_zero_new_buffers(page, from, to);
1011 	else if (decrypt)
1012 		err = ext4_decrypt(page);
1013 	return err;
1014 }
1015 #endif
1016 
1017 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1018 			    loff_t pos, unsigned len, unsigned flags,
1019 			    struct page **pagep, void **fsdata)
1020 {
1021 	struct inode *inode = mapping->host;
1022 	int ret, needed_blocks;
1023 	handle_t *handle;
1024 	int retries = 0;
1025 	struct page *page;
1026 	pgoff_t index;
1027 	unsigned from, to;
1028 
1029 	trace_ext4_write_begin(inode, pos, len, flags);
1030 	/*
1031 	 * Reserve one block more for addition to orphan list in case
1032 	 * we allocate blocks but write fails for some reason
1033 	 */
1034 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1035 	index = pos >> PAGE_CACHE_SHIFT;
1036 	from = pos & (PAGE_CACHE_SIZE - 1);
1037 	to = from + len;
1038 
1039 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1040 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1041 						    flags, pagep);
1042 		if (ret < 0)
1043 			return ret;
1044 		if (ret == 1)
1045 			return 0;
1046 	}
1047 
1048 	/*
1049 	 * grab_cache_page_write_begin() can take a long time if the
1050 	 * system is thrashing due to memory pressure, or if the page
1051 	 * is being written back.  So grab it first before we start
1052 	 * the transaction handle.  This also allows us to allocate
1053 	 * the page (if needed) without using GFP_NOFS.
1054 	 */
1055 retry_grab:
1056 	page = grab_cache_page_write_begin(mapping, index, flags);
1057 	if (!page)
1058 		return -ENOMEM;
1059 	unlock_page(page);
1060 
1061 retry_journal:
1062 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1063 	if (IS_ERR(handle)) {
1064 		page_cache_release(page);
1065 		return PTR_ERR(handle);
1066 	}
1067 
1068 	lock_page(page);
1069 	if (page->mapping != mapping) {
1070 		/* The page got truncated from under us */
1071 		unlock_page(page);
1072 		page_cache_release(page);
1073 		ext4_journal_stop(handle);
1074 		goto retry_grab;
1075 	}
1076 	/* In case writeback began while the page was unlocked */
1077 	wait_for_stable_page(page);
1078 
1079 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1080 	if (ext4_should_dioread_nolock(inode))
1081 		ret = ext4_block_write_begin(page, pos, len,
1082 					     ext4_get_block_write);
1083 	else
1084 		ret = ext4_block_write_begin(page, pos, len,
1085 					     ext4_get_block);
1086 #else
1087 	if (ext4_should_dioread_nolock(inode))
1088 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1089 	else
1090 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1091 #endif
1092 	if (!ret && ext4_should_journal_data(inode)) {
1093 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1094 					     from, to, NULL,
1095 					     do_journal_get_write_access);
1096 	}
1097 
1098 	if (ret) {
1099 		unlock_page(page);
1100 		/*
1101 		 * __block_write_begin may have instantiated a few blocks
1102 		 * outside i_size.  Trim these off again. Don't need
1103 		 * i_size_read because we hold i_mutex.
1104 		 *
1105 		 * Add inode to orphan list in case we crash before
1106 		 * truncate finishes
1107 		 */
1108 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1109 			ext4_orphan_add(handle, inode);
1110 
1111 		ext4_journal_stop(handle);
1112 		if (pos + len > inode->i_size) {
1113 			ext4_truncate_failed_write(inode);
1114 			/*
1115 			 * If truncate failed early the inode might
1116 			 * still be on the orphan list; we need to
1117 			 * make sure the inode is removed from the
1118 			 * orphan list in that case.
1119 			 */
1120 			if (inode->i_nlink)
1121 				ext4_orphan_del(NULL, inode);
1122 		}
1123 
1124 		if (ret == -ENOSPC &&
1125 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1126 			goto retry_journal;
1127 		page_cache_release(page);
1128 		return ret;
1129 	}
1130 	*pagep = page;
1131 	return ret;
1132 }
1133 
1134 /* For write_end() in data=journal mode */
1135 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1136 {
1137 	int ret;
1138 	if (!buffer_mapped(bh) || buffer_freed(bh))
1139 		return 0;
1140 	set_buffer_uptodate(bh);
1141 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1142 	clear_buffer_meta(bh);
1143 	clear_buffer_prio(bh);
1144 	return ret;
1145 }
1146 
1147 /*
1148  * We need to pick up the new inode size which generic_commit_write gave us
1149  * `file' can be NULL - eg, when called from page_symlink().
1150  *
1151  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1152  * buffers are managed internally.
1153  */
1154 static int ext4_write_end(struct file *file,
1155 			  struct address_space *mapping,
1156 			  loff_t pos, unsigned len, unsigned copied,
1157 			  struct page *page, void *fsdata)
1158 {
1159 	handle_t *handle = ext4_journal_current_handle();
1160 	struct inode *inode = mapping->host;
1161 	loff_t old_size = inode->i_size;
1162 	int ret = 0, ret2;
1163 	int i_size_changed = 0;
1164 
1165 	trace_ext4_write_end(inode, pos, len, copied);
1166 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1167 		ret = ext4_jbd2_file_inode(handle, inode);
1168 		if (ret) {
1169 			unlock_page(page);
1170 			page_cache_release(page);
1171 			goto errout;
1172 		}
1173 	}
1174 
1175 	if (ext4_has_inline_data(inode)) {
1176 		ret = ext4_write_inline_data_end(inode, pos, len,
1177 						 copied, page);
1178 		if (ret < 0)
1179 			goto errout;
1180 		copied = ret;
1181 	} else
1182 		copied = block_write_end(file, mapping, pos,
1183 					 len, copied, page, fsdata);
1184 	/*
1185 	 * it's important to update i_size while still holding page lock:
1186 	 * page writeout could otherwise come in and zero beyond i_size.
1187 	 */
1188 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1189 	unlock_page(page);
1190 	page_cache_release(page);
1191 
1192 	if (old_size < pos)
1193 		pagecache_isize_extended(inode, old_size, pos);
1194 	/*
1195 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1196 	 * makes the holding time of page lock longer. Second, it forces lock
1197 	 * ordering of page lock and transaction start for journaling
1198 	 * filesystems.
1199 	 */
1200 	if (i_size_changed)
1201 		ext4_mark_inode_dirty(handle, inode);
1202 
1203 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1204 		/* if we have allocated more blocks and copied
1205 		 * less. We will have blocks allocated outside
1206 		 * inode->i_size. So truncate them
1207 		 */
1208 		ext4_orphan_add(handle, inode);
1209 errout:
1210 	ret2 = ext4_journal_stop(handle);
1211 	if (!ret)
1212 		ret = ret2;
1213 
1214 	if (pos + len > inode->i_size) {
1215 		ext4_truncate_failed_write(inode);
1216 		/*
1217 		 * If truncate failed early the inode might still be
1218 		 * on the orphan list; we need to make sure the inode
1219 		 * is removed from the orphan list in that case.
1220 		 */
1221 		if (inode->i_nlink)
1222 			ext4_orphan_del(NULL, inode);
1223 	}
1224 
1225 	return ret ? ret : copied;
1226 }
1227 
1228 /*
1229  * This is a private version of page_zero_new_buffers() which doesn't
1230  * set the buffer to be dirty, since in data=journalled mode we need
1231  * to call ext4_handle_dirty_metadata() instead.
1232  */
1233 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1234 {
1235 	unsigned int block_start = 0, block_end;
1236 	struct buffer_head *head, *bh;
1237 
1238 	bh = head = page_buffers(page);
1239 	do {
1240 		block_end = block_start + bh->b_size;
1241 		if (buffer_new(bh)) {
1242 			if (block_end > from && block_start < to) {
1243 				if (!PageUptodate(page)) {
1244 					unsigned start, size;
1245 
1246 					start = max(from, block_start);
1247 					size = min(to, block_end) - start;
1248 
1249 					zero_user(page, start, size);
1250 					set_buffer_uptodate(bh);
1251 				}
1252 				clear_buffer_new(bh);
1253 			}
1254 		}
1255 		block_start = block_end;
1256 		bh = bh->b_this_page;
1257 	} while (bh != head);
1258 }
1259 
1260 static int ext4_journalled_write_end(struct file *file,
1261 				     struct address_space *mapping,
1262 				     loff_t pos, unsigned len, unsigned copied,
1263 				     struct page *page, void *fsdata)
1264 {
1265 	handle_t *handle = ext4_journal_current_handle();
1266 	struct inode *inode = mapping->host;
1267 	loff_t old_size = inode->i_size;
1268 	int ret = 0, ret2;
1269 	int partial = 0;
1270 	unsigned from, to;
1271 	int size_changed = 0;
1272 
1273 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1274 	from = pos & (PAGE_CACHE_SIZE - 1);
1275 	to = from + len;
1276 
1277 	BUG_ON(!ext4_handle_valid(handle));
1278 
1279 	if (ext4_has_inline_data(inode))
1280 		copied = ext4_write_inline_data_end(inode, pos, len,
1281 						    copied, page);
1282 	else {
1283 		if (copied < len) {
1284 			if (!PageUptodate(page))
1285 				copied = 0;
1286 			zero_new_buffers(page, from+copied, to);
1287 		}
1288 
1289 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1290 					     to, &partial, write_end_fn);
1291 		if (!partial)
1292 			SetPageUptodate(page);
1293 	}
1294 	size_changed = ext4_update_inode_size(inode, pos + copied);
1295 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1296 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1297 	unlock_page(page);
1298 	page_cache_release(page);
1299 
1300 	if (old_size < pos)
1301 		pagecache_isize_extended(inode, old_size, pos);
1302 
1303 	if (size_changed) {
1304 		ret2 = ext4_mark_inode_dirty(handle, inode);
1305 		if (!ret)
1306 			ret = ret2;
1307 	}
1308 
1309 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1310 		/* if we have allocated more blocks and copied
1311 		 * less. We will have blocks allocated outside
1312 		 * inode->i_size. So truncate them
1313 		 */
1314 		ext4_orphan_add(handle, inode);
1315 
1316 	ret2 = ext4_journal_stop(handle);
1317 	if (!ret)
1318 		ret = ret2;
1319 	if (pos + len > inode->i_size) {
1320 		ext4_truncate_failed_write(inode);
1321 		/*
1322 		 * If truncate failed early the inode might still be
1323 		 * on the orphan list; we need to make sure the inode
1324 		 * is removed from the orphan list in that case.
1325 		 */
1326 		if (inode->i_nlink)
1327 			ext4_orphan_del(NULL, inode);
1328 	}
1329 
1330 	return ret ? ret : copied;
1331 }
1332 
1333 /*
1334  * Reserve space for a single cluster
1335  */
1336 static int ext4_da_reserve_space(struct inode *inode)
1337 {
1338 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1339 	struct ext4_inode_info *ei = EXT4_I(inode);
1340 	int ret;
1341 
1342 	/*
1343 	 * We will charge metadata quota at writeout time; this saves
1344 	 * us from metadata over-estimation, though we may go over by
1345 	 * a small amount in the end.  Here we just reserve for data.
1346 	 */
1347 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1348 	if (ret)
1349 		return ret;
1350 
1351 	spin_lock(&ei->i_block_reservation_lock);
1352 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1353 		spin_unlock(&ei->i_block_reservation_lock);
1354 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1355 		return -ENOSPC;
1356 	}
1357 	ei->i_reserved_data_blocks++;
1358 	trace_ext4_da_reserve_space(inode);
1359 	spin_unlock(&ei->i_block_reservation_lock);
1360 
1361 	return 0;       /* success */
1362 }
1363 
1364 static void ext4_da_release_space(struct inode *inode, int to_free)
1365 {
1366 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367 	struct ext4_inode_info *ei = EXT4_I(inode);
1368 
1369 	if (!to_free)
1370 		return;		/* Nothing to release, exit */
1371 
1372 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1373 
1374 	trace_ext4_da_release_space(inode, to_free);
1375 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1376 		/*
1377 		 * if there aren't enough reserved blocks, then the
1378 		 * counter is messed up somewhere.  Since this
1379 		 * function is called from invalidate page, it's
1380 		 * harmless to return without any action.
1381 		 */
1382 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1383 			 "ino %lu, to_free %d with only %d reserved "
1384 			 "data blocks", inode->i_ino, to_free,
1385 			 ei->i_reserved_data_blocks);
1386 		WARN_ON(1);
1387 		to_free = ei->i_reserved_data_blocks;
1388 	}
1389 	ei->i_reserved_data_blocks -= to_free;
1390 
1391 	/* update fs dirty data blocks counter */
1392 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1393 
1394 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1395 
1396 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1397 }
1398 
1399 static void ext4_da_page_release_reservation(struct page *page,
1400 					     unsigned int offset,
1401 					     unsigned int length)
1402 {
1403 	int to_release = 0, contiguous_blks = 0;
1404 	struct buffer_head *head, *bh;
1405 	unsigned int curr_off = 0;
1406 	struct inode *inode = page->mapping->host;
1407 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1408 	unsigned int stop = offset + length;
1409 	int num_clusters;
1410 	ext4_fsblk_t lblk;
1411 
1412 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1413 
1414 	head = page_buffers(page);
1415 	bh = head;
1416 	do {
1417 		unsigned int next_off = curr_off + bh->b_size;
1418 
1419 		if (next_off > stop)
1420 			break;
1421 
1422 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1423 			to_release++;
1424 			contiguous_blks++;
1425 			clear_buffer_delay(bh);
1426 		} else if (contiguous_blks) {
1427 			lblk = page->index <<
1428 			       (PAGE_CACHE_SHIFT - inode->i_blkbits);
1429 			lblk += (curr_off >> inode->i_blkbits) -
1430 				contiguous_blks;
1431 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1432 			contiguous_blks = 0;
1433 		}
1434 		curr_off = next_off;
1435 	} while ((bh = bh->b_this_page) != head);
1436 
1437 	if (contiguous_blks) {
1438 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1439 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1440 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1441 	}
1442 
1443 	/* If we have released all the blocks belonging to a cluster, then we
1444 	 * need to release the reserved space for that cluster. */
1445 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1446 	while (num_clusters > 0) {
1447 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1448 			((num_clusters - 1) << sbi->s_cluster_bits);
1449 		if (sbi->s_cluster_ratio == 1 ||
1450 		    !ext4_find_delalloc_cluster(inode, lblk))
1451 			ext4_da_release_space(inode, 1);
1452 
1453 		num_clusters--;
1454 	}
1455 }
1456 
1457 /*
1458  * Delayed allocation stuff
1459  */
1460 
1461 struct mpage_da_data {
1462 	struct inode *inode;
1463 	struct writeback_control *wbc;
1464 
1465 	pgoff_t first_page;	/* The first page to write */
1466 	pgoff_t next_page;	/* Current page to examine */
1467 	pgoff_t last_page;	/* Last page to examine */
1468 	/*
1469 	 * Extent to map - this can be after first_page because that can be
1470 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1471 	 * is delalloc or unwritten.
1472 	 */
1473 	struct ext4_map_blocks map;
1474 	struct ext4_io_submit io_submit;	/* IO submission data */
1475 };
1476 
1477 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1478 				       bool invalidate)
1479 {
1480 	int nr_pages, i;
1481 	pgoff_t index, end;
1482 	struct pagevec pvec;
1483 	struct inode *inode = mpd->inode;
1484 	struct address_space *mapping = inode->i_mapping;
1485 
1486 	/* This is necessary when next_page == 0. */
1487 	if (mpd->first_page >= mpd->next_page)
1488 		return;
1489 
1490 	index = mpd->first_page;
1491 	end   = mpd->next_page - 1;
1492 	if (invalidate) {
1493 		ext4_lblk_t start, last;
1494 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1495 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1496 		ext4_es_remove_extent(inode, start, last - start + 1);
1497 	}
1498 
1499 	pagevec_init(&pvec, 0);
1500 	while (index <= end) {
1501 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1502 		if (nr_pages == 0)
1503 			break;
1504 		for (i = 0; i < nr_pages; i++) {
1505 			struct page *page = pvec.pages[i];
1506 			if (page->index > end)
1507 				break;
1508 			BUG_ON(!PageLocked(page));
1509 			BUG_ON(PageWriteback(page));
1510 			if (invalidate) {
1511 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1512 				ClearPageUptodate(page);
1513 			}
1514 			unlock_page(page);
1515 		}
1516 		index = pvec.pages[nr_pages - 1]->index + 1;
1517 		pagevec_release(&pvec);
1518 	}
1519 }
1520 
1521 static void ext4_print_free_blocks(struct inode *inode)
1522 {
1523 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1524 	struct super_block *sb = inode->i_sb;
1525 	struct ext4_inode_info *ei = EXT4_I(inode);
1526 
1527 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1528 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1529 			ext4_count_free_clusters(sb)));
1530 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1531 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1532 	       (long long) EXT4_C2B(EXT4_SB(sb),
1533 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1534 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1535 	       (long long) EXT4_C2B(EXT4_SB(sb),
1536 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1537 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1538 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1539 		 ei->i_reserved_data_blocks);
1540 	return;
1541 }
1542 
1543 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1544 {
1545 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1546 }
1547 
1548 /*
1549  * This function is grabs code from the very beginning of
1550  * ext4_map_blocks, but assumes that the caller is from delayed write
1551  * time. This function looks up the requested blocks and sets the
1552  * buffer delay bit under the protection of i_data_sem.
1553  */
1554 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1555 			      struct ext4_map_blocks *map,
1556 			      struct buffer_head *bh)
1557 {
1558 	struct extent_status es;
1559 	int retval;
1560 	sector_t invalid_block = ~((sector_t) 0xffff);
1561 #ifdef ES_AGGRESSIVE_TEST
1562 	struct ext4_map_blocks orig_map;
1563 
1564 	memcpy(&orig_map, map, sizeof(*map));
1565 #endif
1566 
1567 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1568 		invalid_block = ~0;
1569 
1570 	map->m_flags = 0;
1571 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1572 		  "logical block %lu\n", inode->i_ino, map->m_len,
1573 		  (unsigned long) map->m_lblk);
1574 
1575 	/* Lookup extent status tree firstly */
1576 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1577 		if (ext4_es_is_hole(&es)) {
1578 			retval = 0;
1579 			down_read(&EXT4_I(inode)->i_data_sem);
1580 			goto add_delayed;
1581 		}
1582 
1583 		/*
1584 		 * Delayed extent could be allocated by fallocate.
1585 		 * So we need to check it.
1586 		 */
1587 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1588 			map_bh(bh, inode->i_sb, invalid_block);
1589 			set_buffer_new(bh);
1590 			set_buffer_delay(bh);
1591 			return 0;
1592 		}
1593 
1594 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1595 		retval = es.es_len - (iblock - es.es_lblk);
1596 		if (retval > map->m_len)
1597 			retval = map->m_len;
1598 		map->m_len = retval;
1599 		if (ext4_es_is_written(&es))
1600 			map->m_flags |= EXT4_MAP_MAPPED;
1601 		else if (ext4_es_is_unwritten(&es))
1602 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1603 		else
1604 			BUG_ON(1);
1605 
1606 #ifdef ES_AGGRESSIVE_TEST
1607 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1608 #endif
1609 		return retval;
1610 	}
1611 
1612 	/*
1613 	 * Try to see if we can get the block without requesting a new
1614 	 * file system block.
1615 	 */
1616 	down_read(&EXT4_I(inode)->i_data_sem);
1617 	if (ext4_has_inline_data(inode))
1618 		retval = 0;
1619 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1620 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1621 	else
1622 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1623 
1624 add_delayed:
1625 	if (retval == 0) {
1626 		int ret;
1627 		/*
1628 		 * XXX: __block_prepare_write() unmaps passed block,
1629 		 * is it OK?
1630 		 */
1631 		/*
1632 		 * If the block was allocated from previously allocated cluster,
1633 		 * then we don't need to reserve it again. However we still need
1634 		 * to reserve metadata for every block we're going to write.
1635 		 */
1636 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1637 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1638 			ret = ext4_da_reserve_space(inode);
1639 			if (ret) {
1640 				/* not enough space to reserve */
1641 				retval = ret;
1642 				goto out_unlock;
1643 			}
1644 		}
1645 
1646 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1647 					    ~0, EXTENT_STATUS_DELAYED);
1648 		if (ret) {
1649 			retval = ret;
1650 			goto out_unlock;
1651 		}
1652 
1653 		map_bh(bh, inode->i_sb, invalid_block);
1654 		set_buffer_new(bh);
1655 		set_buffer_delay(bh);
1656 	} else if (retval > 0) {
1657 		int ret;
1658 		unsigned int status;
1659 
1660 		if (unlikely(retval != map->m_len)) {
1661 			ext4_warning(inode->i_sb,
1662 				     "ES len assertion failed for inode "
1663 				     "%lu: retval %d != map->m_len %d",
1664 				     inode->i_ino, retval, map->m_len);
1665 			WARN_ON(1);
1666 		}
1667 
1668 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1669 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1670 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1671 					    map->m_pblk, status);
1672 		if (ret != 0)
1673 			retval = ret;
1674 	}
1675 
1676 out_unlock:
1677 	up_read((&EXT4_I(inode)->i_data_sem));
1678 
1679 	return retval;
1680 }
1681 
1682 /*
1683  * This is a special get_block_t callback which is used by
1684  * ext4_da_write_begin().  It will either return mapped block or
1685  * reserve space for a single block.
1686  *
1687  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1688  * We also have b_blocknr = -1 and b_bdev initialized properly
1689  *
1690  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1691  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1692  * initialized properly.
1693  */
1694 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1695 			   struct buffer_head *bh, int create)
1696 {
1697 	struct ext4_map_blocks map;
1698 	int ret = 0;
1699 
1700 	BUG_ON(create == 0);
1701 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1702 
1703 	map.m_lblk = iblock;
1704 	map.m_len = 1;
1705 
1706 	/*
1707 	 * first, we need to know whether the block is allocated already
1708 	 * preallocated blocks are unmapped but should treated
1709 	 * the same as allocated blocks.
1710 	 */
1711 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1712 	if (ret <= 0)
1713 		return ret;
1714 
1715 	map_bh(bh, inode->i_sb, map.m_pblk);
1716 	ext4_update_bh_state(bh, map.m_flags);
1717 
1718 	if (buffer_unwritten(bh)) {
1719 		/* A delayed write to unwritten bh should be marked
1720 		 * new and mapped.  Mapped ensures that we don't do
1721 		 * get_block multiple times when we write to the same
1722 		 * offset and new ensures that we do proper zero out
1723 		 * for partial write.
1724 		 */
1725 		set_buffer_new(bh);
1726 		set_buffer_mapped(bh);
1727 	}
1728 	return 0;
1729 }
1730 
1731 static int bget_one(handle_t *handle, struct buffer_head *bh)
1732 {
1733 	get_bh(bh);
1734 	return 0;
1735 }
1736 
1737 static int bput_one(handle_t *handle, struct buffer_head *bh)
1738 {
1739 	put_bh(bh);
1740 	return 0;
1741 }
1742 
1743 static int __ext4_journalled_writepage(struct page *page,
1744 				       unsigned int len)
1745 {
1746 	struct address_space *mapping = page->mapping;
1747 	struct inode *inode = mapping->host;
1748 	struct buffer_head *page_bufs = NULL;
1749 	handle_t *handle = NULL;
1750 	int ret = 0, err = 0;
1751 	int inline_data = ext4_has_inline_data(inode);
1752 	struct buffer_head *inode_bh = NULL;
1753 
1754 	ClearPageChecked(page);
1755 
1756 	if (inline_data) {
1757 		BUG_ON(page->index != 0);
1758 		BUG_ON(len > ext4_get_max_inline_size(inode));
1759 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1760 		if (inode_bh == NULL)
1761 			goto out;
1762 	} else {
1763 		page_bufs = page_buffers(page);
1764 		if (!page_bufs) {
1765 			BUG();
1766 			goto out;
1767 		}
1768 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1769 				       NULL, bget_one);
1770 	}
1771 	/*
1772 	 * We need to release the page lock before we start the
1773 	 * journal, so grab a reference so the page won't disappear
1774 	 * out from under us.
1775 	 */
1776 	get_page(page);
1777 	unlock_page(page);
1778 
1779 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1780 				    ext4_writepage_trans_blocks(inode));
1781 	if (IS_ERR(handle)) {
1782 		ret = PTR_ERR(handle);
1783 		put_page(page);
1784 		goto out_no_pagelock;
1785 	}
1786 	BUG_ON(!ext4_handle_valid(handle));
1787 
1788 	lock_page(page);
1789 	put_page(page);
1790 	if (page->mapping != mapping) {
1791 		/* The page got truncated from under us */
1792 		ext4_journal_stop(handle);
1793 		ret = 0;
1794 		goto out;
1795 	}
1796 
1797 	if (inline_data) {
1798 		BUFFER_TRACE(inode_bh, "get write access");
1799 		ret = ext4_journal_get_write_access(handle, inode_bh);
1800 
1801 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1802 
1803 	} else {
1804 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1805 					     do_journal_get_write_access);
1806 
1807 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1808 					     write_end_fn);
1809 	}
1810 	if (ret == 0)
1811 		ret = err;
1812 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1813 	err = ext4_journal_stop(handle);
1814 	if (!ret)
1815 		ret = err;
1816 
1817 	if (!ext4_has_inline_data(inode))
1818 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1819 				       NULL, bput_one);
1820 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1821 out:
1822 	unlock_page(page);
1823 out_no_pagelock:
1824 	brelse(inode_bh);
1825 	return ret;
1826 }
1827 
1828 /*
1829  * Note that we don't need to start a transaction unless we're journaling data
1830  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1831  * need to file the inode to the transaction's list in ordered mode because if
1832  * we are writing back data added by write(), the inode is already there and if
1833  * we are writing back data modified via mmap(), no one guarantees in which
1834  * transaction the data will hit the disk. In case we are journaling data, we
1835  * cannot start transaction directly because transaction start ranks above page
1836  * lock so we have to do some magic.
1837  *
1838  * This function can get called via...
1839  *   - ext4_writepages after taking page lock (have journal handle)
1840  *   - journal_submit_inode_data_buffers (no journal handle)
1841  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1842  *   - grab_page_cache when doing write_begin (have journal handle)
1843  *
1844  * We don't do any block allocation in this function. If we have page with
1845  * multiple blocks we need to write those buffer_heads that are mapped. This
1846  * is important for mmaped based write. So if we do with blocksize 1K
1847  * truncate(f, 1024);
1848  * a = mmap(f, 0, 4096);
1849  * a[0] = 'a';
1850  * truncate(f, 4096);
1851  * we have in the page first buffer_head mapped via page_mkwrite call back
1852  * but other buffer_heads would be unmapped but dirty (dirty done via the
1853  * do_wp_page). So writepage should write the first block. If we modify
1854  * the mmap area beyond 1024 we will again get a page_fault and the
1855  * page_mkwrite callback will do the block allocation and mark the
1856  * buffer_heads mapped.
1857  *
1858  * We redirty the page if we have any buffer_heads that is either delay or
1859  * unwritten in the page.
1860  *
1861  * We can get recursively called as show below.
1862  *
1863  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1864  *		ext4_writepage()
1865  *
1866  * But since we don't do any block allocation we should not deadlock.
1867  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1868  */
1869 static int ext4_writepage(struct page *page,
1870 			  struct writeback_control *wbc)
1871 {
1872 	int ret = 0;
1873 	loff_t size;
1874 	unsigned int len;
1875 	struct buffer_head *page_bufs = NULL;
1876 	struct inode *inode = page->mapping->host;
1877 	struct ext4_io_submit io_submit;
1878 	bool keep_towrite = false;
1879 
1880 	trace_ext4_writepage(page);
1881 	size = i_size_read(inode);
1882 	if (page->index == size >> PAGE_CACHE_SHIFT)
1883 		len = size & ~PAGE_CACHE_MASK;
1884 	else
1885 		len = PAGE_CACHE_SIZE;
1886 
1887 	page_bufs = page_buffers(page);
1888 	/*
1889 	 * We cannot do block allocation or other extent handling in this
1890 	 * function. If there are buffers needing that, we have to redirty
1891 	 * the page. But we may reach here when we do a journal commit via
1892 	 * journal_submit_inode_data_buffers() and in that case we must write
1893 	 * allocated buffers to achieve data=ordered mode guarantees.
1894 	 *
1895 	 * Also, if there is only one buffer per page (the fs block
1896 	 * size == the page size), if one buffer needs block
1897 	 * allocation or needs to modify the extent tree to clear the
1898 	 * unwritten flag, we know that the page can't be written at
1899 	 * all, so we might as well refuse the write immediately.
1900 	 * Unfortunately if the block size != page size, we can't as
1901 	 * easily detect this case using ext4_walk_page_buffers(), but
1902 	 * for the extremely common case, this is an optimization that
1903 	 * skips a useless round trip through ext4_bio_write_page().
1904 	 */
1905 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1906 				   ext4_bh_delay_or_unwritten)) {
1907 		redirty_page_for_writepage(wbc, page);
1908 		if ((current->flags & PF_MEMALLOC) ||
1909 		    (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1910 			/*
1911 			 * For memory cleaning there's no point in writing only
1912 			 * some buffers. So just bail out. Warn if we came here
1913 			 * from direct reclaim.
1914 			 */
1915 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1916 							== PF_MEMALLOC);
1917 			unlock_page(page);
1918 			return 0;
1919 		}
1920 		keep_towrite = true;
1921 	}
1922 
1923 	if (PageChecked(page) && ext4_should_journal_data(inode))
1924 		/*
1925 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1926 		 * doesn't seem much point in redirtying the page here.
1927 		 */
1928 		return __ext4_journalled_writepage(page, len);
1929 
1930 	ext4_io_submit_init(&io_submit, wbc);
1931 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1932 	if (!io_submit.io_end) {
1933 		redirty_page_for_writepage(wbc, page);
1934 		unlock_page(page);
1935 		return -ENOMEM;
1936 	}
1937 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1938 	ext4_io_submit(&io_submit);
1939 	/* Drop io_end reference we got from init */
1940 	ext4_put_io_end_defer(io_submit.io_end);
1941 	return ret;
1942 }
1943 
1944 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1945 {
1946 	int len;
1947 	loff_t size = i_size_read(mpd->inode);
1948 	int err;
1949 
1950 	BUG_ON(page->index != mpd->first_page);
1951 	if (page->index == size >> PAGE_CACHE_SHIFT)
1952 		len = size & ~PAGE_CACHE_MASK;
1953 	else
1954 		len = PAGE_CACHE_SIZE;
1955 	clear_page_dirty_for_io(page);
1956 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1957 	if (!err)
1958 		mpd->wbc->nr_to_write--;
1959 	mpd->first_page++;
1960 
1961 	return err;
1962 }
1963 
1964 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1965 
1966 /*
1967  * mballoc gives us at most this number of blocks...
1968  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1969  * The rest of mballoc seems to handle chunks up to full group size.
1970  */
1971 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1972 
1973 /*
1974  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1975  *
1976  * @mpd - extent of blocks
1977  * @lblk - logical number of the block in the file
1978  * @bh - buffer head we want to add to the extent
1979  *
1980  * The function is used to collect contig. blocks in the same state. If the
1981  * buffer doesn't require mapping for writeback and we haven't started the
1982  * extent of buffers to map yet, the function returns 'true' immediately - the
1983  * caller can write the buffer right away. Otherwise the function returns true
1984  * if the block has been added to the extent, false if the block couldn't be
1985  * added.
1986  */
1987 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1988 				   struct buffer_head *bh)
1989 {
1990 	struct ext4_map_blocks *map = &mpd->map;
1991 
1992 	/* Buffer that doesn't need mapping for writeback? */
1993 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1994 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1995 		/* So far no extent to map => we write the buffer right away */
1996 		if (map->m_len == 0)
1997 			return true;
1998 		return false;
1999 	}
2000 
2001 	/* First block in the extent? */
2002 	if (map->m_len == 0) {
2003 		map->m_lblk = lblk;
2004 		map->m_len = 1;
2005 		map->m_flags = bh->b_state & BH_FLAGS;
2006 		return true;
2007 	}
2008 
2009 	/* Don't go larger than mballoc is willing to allocate */
2010 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2011 		return false;
2012 
2013 	/* Can we merge the block to our big extent? */
2014 	if (lblk == map->m_lblk + map->m_len &&
2015 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2016 		map->m_len++;
2017 		return true;
2018 	}
2019 	return false;
2020 }
2021 
2022 /*
2023  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2024  *
2025  * @mpd - extent of blocks for mapping
2026  * @head - the first buffer in the page
2027  * @bh - buffer we should start processing from
2028  * @lblk - logical number of the block in the file corresponding to @bh
2029  *
2030  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2031  * the page for IO if all buffers in this page were mapped and there's no
2032  * accumulated extent of buffers to map or add buffers in the page to the
2033  * extent of buffers to map. The function returns 1 if the caller can continue
2034  * by processing the next page, 0 if it should stop adding buffers to the
2035  * extent to map because we cannot extend it anymore. It can also return value
2036  * < 0 in case of error during IO submission.
2037  */
2038 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2039 				   struct buffer_head *head,
2040 				   struct buffer_head *bh,
2041 				   ext4_lblk_t lblk)
2042 {
2043 	struct inode *inode = mpd->inode;
2044 	int err;
2045 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2046 							>> inode->i_blkbits;
2047 
2048 	do {
2049 		BUG_ON(buffer_locked(bh));
2050 
2051 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2052 			/* Found extent to map? */
2053 			if (mpd->map.m_len)
2054 				return 0;
2055 			/* Everything mapped so far and we hit EOF */
2056 			break;
2057 		}
2058 	} while (lblk++, (bh = bh->b_this_page) != head);
2059 	/* So far everything mapped? Submit the page for IO. */
2060 	if (mpd->map.m_len == 0) {
2061 		err = mpage_submit_page(mpd, head->b_page);
2062 		if (err < 0)
2063 			return err;
2064 	}
2065 	return lblk < blocks;
2066 }
2067 
2068 /*
2069  * mpage_map_buffers - update buffers corresponding to changed extent and
2070  *		       submit fully mapped pages for IO
2071  *
2072  * @mpd - description of extent to map, on return next extent to map
2073  *
2074  * Scan buffers corresponding to changed extent (we expect corresponding pages
2075  * to be already locked) and update buffer state according to new extent state.
2076  * We map delalloc buffers to their physical location, clear unwritten bits,
2077  * and mark buffers as uninit when we perform writes to unwritten extents
2078  * and do extent conversion after IO is finished. If the last page is not fully
2079  * mapped, we update @map to the next extent in the last page that needs
2080  * mapping. Otherwise we submit the page for IO.
2081  */
2082 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2083 {
2084 	struct pagevec pvec;
2085 	int nr_pages, i;
2086 	struct inode *inode = mpd->inode;
2087 	struct buffer_head *head, *bh;
2088 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2089 	pgoff_t start, end;
2090 	ext4_lblk_t lblk;
2091 	sector_t pblock;
2092 	int err;
2093 
2094 	start = mpd->map.m_lblk >> bpp_bits;
2095 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2096 	lblk = start << bpp_bits;
2097 	pblock = mpd->map.m_pblk;
2098 
2099 	pagevec_init(&pvec, 0);
2100 	while (start <= end) {
2101 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2102 					  PAGEVEC_SIZE);
2103 		if (nr_pages == 0)
2104 			break;
2105 		for (i = 0; i < nr_pages; i++) {
2106 			struct page *page = pvec.pages[i];
2107 
2108 			if (page->index > end)
2109 				break;
2110 			/* Up to 'end' pages must be contiguous */
2111 			BUG_ON(page->index != start);
2112 			bh = head = page_buffers(page);
2113 			do {
2114 				if (lblk < mpd->map.m_lblk)
2115 					continue;
2116 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2117 					/*
2118 					 * Buffer after end of mapped extent.
2119 					 * Find next buffer in the page to map.
2120 					 */
2121 					mpd->map.m_len = 0;
2122 					mpd->map.m_flags = 0;
2123 					/*
2124 					 * FIXME: If dioread_nolock supports
2125 					 * blocksize < pagesize, we need to make
2126 					 * sure we add size mapped so far to
2127 					 * io_end->size as the following call
2128 					 * can submit the page for IO.
2129 					 */
2130 					err = mpage_process_page_bufs(mpd, head,
2131 								      bh, lblk);
2132 					pagevec_release(&pvec);
2133 					if (err > 0)
2134 						err = 0;
2135 					return err;
2136 				}
2137 				if (buffer_delay(bh)) {
2138 					clear_buffer_delay(bh);
2139 					bh->b_blocknr = pblock++;
2140 				}
2141 				clear_buffer_unwritten(bh);
2142 			} while (lblk++, (bh = bh->b_this_page) != head);
2143 
2144 			/*
2145 			 * FIXME: This is going to break if dioread_nolock
2146 			 * supports blocksize < pagesize as we will try to
2147 			 * convert potentially unmapped parts of inode.
2148 			 */
2149 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2150 			/* Page fully mapped - let IO run! */
2151 			err = mpage_submit_page(mpd, page);
2152 			if (err < 0) {
2153 				pagevec_release(&pvec);
2154 				return err;
2155 			}
2156 			start++;
2157 		}
2158 		pagevec_release(&pvec);
2159 	}
2160 	/* Extent fully mapped and matches with page boundary. We are done. */
2161 	mpd->map.m_len = 0;
2162 	mpd->map.m_flags = 0;
2163 	return 0;
2164 }
2165 
2166 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2167 {
2168 	struct inode *inode = mpd->inode;
2169 	struct ext4_map_blocks *map = &mpd->map;
2170 	int get_blocks_flags;
2171 	int err, dioread_nolock;
2172 
2173 	trace_ext4_da_write_pages_extent(inode, map);
2174 	/*
2175 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2176 	 * to convert an unwritten extent to be initialized (in the case
2177 	 * where we have written into one or more preallocated blocks).  It is
2178 	 * possible that we're going to need more metadata blocks than
2179 	 * previously reserved. However we must not fail because we're in
2180 	 * writeback and there is nothing we can do about it so it might result
2181 	 * in data loss.  So use reserved blocks to allocate metadata if
2182 	 * possible.
2183 	 *
2184 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2185 	 * the blocks in question are delalloc blocks.  This indicates
2186 	 * that the blocks and quotas has already been checked when
2187 	 * the data was copied into the page cache.
2188 	 */
2189 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2190 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2191 	dioread_nolock = ext4_should_dioread_nolock(inode);
2192 	if (dioread_nolock)
2193 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2194 	if (map->m_flags & (1 << BH_Delay))
2195 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2196 
2197 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2198 	if (err < 0)
2199 		return err;
2200 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2201 		if (!mpd->io_submit.io_end->handle &&
2202 		    ext4_handle_valid(handle)) {
2203 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2204 			handle->h_rsv_handle = NULL;
2205 		}
2206 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2207 	}
2208 
2209 	BUG_ON(map->m_len == 0);
2210 	if (map->m_flags & EXT4_MAP_NEW) {
2211 		struct block_device *bdev = inode->i_sb->s_bdev;
2212 		int i;
2213 
2214 		for (i = 0; i < map->m_len; i++)
2215 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2216 	}
2217 	return 0;
2218 }
2219 
2220 /*
2221  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2222  *				 mpd->len and submit pages underlying it for IO
2223  *
2224  * @handle - handle for journal operations
2225  * @mpd - extent to map
2226  * @give_up_on_write - we set this to true iff there is a fatal error and there
2227  *                     is no hope of writing the data. The caller should discard
2228  *                     dirty pages to avoid infinite loops.
2229  *
2230  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2231  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2232  * them to initialized or split the described range from larger unwritten
2233  * extent. Note that we need not map all the described range since allocation
2234  * can return less blocks or the range is covered by more unwritten extents. We
2235  * cannot map more because we are limited by reserved transaction credits. On
2236  * the other hand we always make sure that the last touched page is fully
2237  * mapped so that it can be written out (and thus forward progress is
2238  * guaranteed). After mapping we submit all mapped pages for IO.
2239  */
2240 static int mpage_map_and_submit_extent(handle_t *handle,
2241 				       struct mpage_da_data *mpd,
2242 				       bool *give_up_on_write)
2243 {
2244 	struct inode *inode = mpd->inode;
2245 	struct ext4_map_blocks *map = &mpd->map;
2246 	int err;
2247 	loff_t disksize;
2248 	int progress = 0;
2249 
2250 	mpd->io_submit.io_end->offset =
2251 				((loff_t)map->m_lblk) << inode->i_blkbits;
2252 	do {
2253 		err = mpage_map_one_extent(handle, mpd);
2254 		if (err < 0) {
2255 			struct super_block *sb = inode->i_sb;
2256 
2257 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2258 				goto invalidate_dirty_pages;
2259 			/*
2260 			 * Let the uper layers retry transient errors.
2261 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2262 			 * is non-zero, a commit should free up blocks.
2263 			 */
2264 			if ((err == -ENOMEM) ||
2265 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2266 				if (progress)
2267 					goto update_disksize;
2268 				return err;
2269 			}
2270 			ext4_msg(sb, KERN_CRIT,
2271 				 "Delayed block allocation failed for "
2272 				 "inode %lu at logical offset %llu with"
2273 				 " max blocks %u with error %d",
2274 				 inode->i_ino,
2275 				 (unsigned long long)map->m_lblk,
2276 				 (unsigned)map->m_len, -err);
2277 			ext4_msg(sb, KERN_CRIT,
2278 				 "This should not happen!! Data will "
2279 				 "be lost\n");
2280 			if (err == -ENOSPC)
2281 				ext4_print_free_blocks(inode);
2282 		invalidate_dirty_pages:
2283 			*give_up_on_write = true;
2284 			return err;
2285 		}
2286 		progress = 1;
2287 		/*
2288 		 * Update buffer state, submit mapped pages, and get us new
2289 		 * extent to map
2290 		 */
2291 		err = mpage_map_and_submit_buffers(mpd);
2292 		if (err < 0)
2293 			goto update_disksize;
2294 	} while (map->m_len);
2295 
2296 update_disksize:
2297 	/*
2298 	 * Update on-disk size after IO is submitted.  Races with
2299 	 * truncate are avoided by checking i_size under i_data_sem.
2300 	 */
2301 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2302 	if (disksize > EXT4_I(inode)->i_disksize) {
2303 		int err2;
2304 		loff_t i_size;
2305 
2306 		down_write(&EXT4_I(inode)->i_data_sem);
2307 		i_size = i_size_read(inode);
2308 		if (disksize > i_size)
2309 			disksize = i_size;
2310 		if (disksize > EXT4_I(inode)->i_disksize)
2311 			EXT4_I(inode)->i_disksize = disksize;
2312 		err2 = ext4_mark_inode_dirty(handle, inode);
2313 		up_write(&EXT4_I(inode)->i_data_sem);
2314 		if (err2)
2315 			ext4_error(inode->i_sb,
2316 				   "Failed to mark inode %lu dirty",
2317 				   inode->i_ino);
2318 		if (!err)
2319 			err = err2;
2320 	}
2321 	return err;
2322 }
2323 
2324 /*
2325  * Calculate the total number of credits to reserve for one writepages
2326  * iteration. This is called from ext4_writepages(). We map an extent of
2327  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2328  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2329  * bpp - 1 blocks in bpp different extents.
2330  */
2331 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2332 {
2333 	int bpp = ext4_journal_blocks_per_page(inode);
2334 
2335 	return ext4_meta_trans_blocks(inode,
2336 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2337 }
2338 
2339 /*
2340  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2341  * 				 and underlying extent to map
2342  *
2343  * @mpd - where to look for pages
2344  *
2345  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2346  * IO immediately. When we find a page which isn't mapped we start accumulating
2347  * extent of buffers underlying these pages that needs mapping (formed by
2348  * either delayed or unwritten buffers). We also lock the pages containing
2349  * these buffers. The extent found is returned in @mpd structure (starting at
2350  * mpd->lblk with length mpd->len blocks).
2351  *
2352  * Note that this function can attach bios to one io_end structure which are
2353  * neither logically nor physically contiguous. Although it may seem as an
2354  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2355  * case as we need to track IO to all buffers underlying a page in one io_end.
2356  */
2357 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2358 {
2359 	struct address_space *mapping = mpd->inode->i_mapping;
2360 	struct pagevec pvec;
2361 	unsigned int nr_pages;
2362 	long left = mpd->wbc->nr_to_write;
2363 	pgoff_t index = mpd->first_page;
2364 	pgoff_t end = mpd->last_page;
2365 	int tag;
2366 	int i, err = 0;
2367 	int blkbits = mpd->inode->i_blkbits;
2368 	ext4_lblk_t lblk;
2369 	struct buffer_head *head;
2370 
2371 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2372 		tag = PAGECACHE_TAG_TOWRITE;
2373 	else
2374 		tag = PAGECACHE_TAG_DIRTY;
2375 
2376 	pagevec_init(&pvec, 0);
2377 	mpd->map.m_len = 0;
2378 	mpd->next_page = index;
2379 	while (index <= end) {
2380 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2381 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2382 		if (nr_pages == 0)
2383 			goto out;
2384 
2385 		for (i = 0; i < nr_pages; i++) {
2386 			struct page *page = pvec.pages[i];
2387 
2388 			/*
2389 			 * At this point, the page may be truncated or
2390 			 * invalidated (changing page->mapping to NULL), or
2391 			 * even swizzled back from swapper_space to tmpfs file
2392 			 * mapping. However, page->index will not change
2393 			 * because we have a reference on the page.
2394 			 */
2395 			if (page->index > end)
2396 				goto out;
2397 
2398 			/*
2399 			 * Accumulated enough dirty pages? This doesn't apply
2400 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2401 			 * keep going because someone may be concurrently
2402 			 * dirtying pages, and we might have synced a lot of
2403 			 * newly appeared dirty pages, but have not synced all
2404 			 * of the old dirty pages.
2405 			 */
2406 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2407 				goto out;
2408 
2409 			/* If we can't merge this page, we are done. */
2410 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2411 				goto out;
2412 
2413 			lock_page(page);
2414 			/*
2415 			 * If the page is no longer dirty, or its mapping no
2416 			 * longer corresponds to inode we are writing (which
2417 			 * means it has been truncated or invalidated), or the
2418 			 * page is already under writeback and we are not doing
2419 			 * a data integrity writeback, skip the page
2420 			 */
2421 			if (!PageDirty(page) ||
2422 			    (PageWriteback(page) &&
2423 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2424 			    unlikely(page->mapping != mapping)) {
2425 				unlock_page(page);
2426 				continue;
2427 			}
2428 
2429 			wait_on_page_writeback(page);
2430 			BUG_ON(PageWriteback(page));
2431 
2432 			if (mpd->map.m_len == 0)
2433 				mpd->first_page = page->index;
2434 			mpd->next_page = page->index + 1;
2435 			/* Add all dirty buffers to mpd */
2436 			lblk = ((ext4_lblk_t)page->index) <<
2437 				(PAGE_CACHE_SHIFT - blkbits);
2438 			head = page_buffers(page);
2439 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2440 			if (err <= 0)
2441 				goto out;
2442 			err = 0;
2443 			left--;
2444 		}
2445 		pagevec_release(&pvec);
2446 		cond_resched();
2447 	}
2448 	return 0;
2449 out:
2450 	pagevec_release(&pvec);
2451 	return err;
2452 }
2453 
2454 static int __writepage(struct page *page, struct writeback_control *wbc,
2455 		       void *data)
2456 {
2457 	struct address_space *mapping = data;
2458 	int ret = ext4_writepage(page, wbc);
2459 	mapping_set_error(mapping, ret);
2460 	return ret;
2461 }
2462 
2463 static int ext4_writepages(struct address_space *mapping,
2464 			   struct writeback_control *wbc)
2465 {
2466 	pgoff_t	writeback_index = 0;
2467 	long nr_to_write = wbc->nr_to_write;
2468 	int range_whole = 0;
2469 	int cycled = 1;
2470 	handle_t *handle = NULL;
2471 	struct mpage_da_data mpd;
2472 	struct inode *inode = mapping->host;
2473 	int needed_blocks, rsv_blocks = 0, ret = 0;
2474 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2475 	bool done;
2476 	struct blk_plug plug;
2477 	bool give_up_on_write = false;
2478 
2479 	trace_ext4_writepages(inode, wbc);
2480 
2481 	/*
2482 	 * No pages to write? This is mainly a kludge to avoid starting
2483 	 * a transaction for special inodes like journal inode on last iput()
2484 	 * because that could violate lock ordering on umount
2485 	 */
2486 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2487 		goto out_writepages;
2488 
2489 	if (ext4_should_journal_data(inode)) {
2490 		struct blk_plug plug;
2491 
2492 		blk_start_plug(&plug);
2493 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2494 		blk_finish_plug(&plug);
2495 		goto out_writepages;
2496 	}
2497 
2498 	/*
2499 	 * If the filesystem has aborted, it is read-only, so return
2500 	 * right away instead of dumping stack traces later on that
2501 	 * will obscure the real source of the problem.  We test
2502 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2503 	 * the latter could be true if the filesystem is mounted
2504 	 * read-only, and in that case, ext4_writepages should
2505 	 * *never* be called, so if that ever happens, we would want
2506 	 * the stack trace.
2507 	 */
2508 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2509 		ret = -EROFS;
2510 		goto out_writepages;
2511 	}
2512 
2513 	if (ext4_should_dioread_nolock(inode)) {
2514 		/*
2515 		 * We may need to convert up to one extent per block in
2516 		 * the page and we may dirty the inode.
2517 		 */
2518 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2519 	}
2520 
2521 	/*
2522 	 * If we have inline data and arrive here, it means that
2523 	 * we will soon create the block for the 1st page, so
2524 	 * we'd better clear the inline data here.
2525 	 */
2526 	if (ext4_has_inline_data(inode)) {
2527 		/* Just inode will be modified... */
2528 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2529 		if (IS_ERR(handle)) {
2530 			ret = PTR_ERR(handle);
2531 			goto out_writepages;
2532 		}
2533 		BUG_ON(ext4_test_inode_state(inode,
2534 				EXT4_STATE_MAY_INLINE_DATA));
2535 		ext4_destroy_inline_data(handle, inode);
2536 		ext4_journal_stop(handle);
2537 	}
2538 
2539 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2540 		range_whole = 1;
2541 
2542 	if (wbc->range_cyclic) {
2543 		writeback_index = mapping->writeback_index;
2544 		if (writeback_index)
2545 			cycled = 0;
2546 		mpd.first_page = writeback_index;
2547 		mpd.last_page = -1;
2548 	} else {
2549 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2550 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2551 	}
2552 
2553 	mpd.inode = inode;
2554 	mpd.wbc = wbc;
2555 	ext4_io_submit_init(&mpd.io_submit, wbc);
2556 retry:
2557 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2558 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2559 	done = false;
2560 	blk_start_plug(&plug);
2561 	while (!done && mpd.first_page <= mpd.last_page) {
2562 		/* For each extent of pages we use new io_end */
2563 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2564 		if (!mpd.io_submit.io_end) {
2565 			ret = -ENOMEM;
2566 			break;
2567 		}
2568 
2569 		/*
2570 		 * We have two constraints: We find one extent to map and we
2571 		 * must always write out whole page (makes a difference when
2572 		 * blocksize < pagesize) so that we don't block on IO when we
2573 		 * try to write out the rest of the page. Journalled mode is
2574 		 * not supported by delalloc.
2575 		 */
2576 		BUG_ON(ext4_should_journal_data(inode));
2577 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2578 
2579 		/* start a new transaction */
2580 		handle = ext4_journal_start_with_reserve(inode,
2581 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2582 		if (IS_ERR(handle)) {
2583 			ret = PTR_ERR(handle);
2584 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2585 			       "%ld pages, ino %lu; err %d", __func__,
2586 				wbc->nr_to_write, inode->i_ino, ret);
2587 			/* Release allocated io_end */
2588 			ext4_put_io_end(mpd.io_submit.io_end);
2589 			break;
2590 		}
2591 
2592 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2593 		ret = mpage_prepare_extent_to_map(&mpd);
2594 		if (!ret) {
2595 			if (mpd.map.m_len)
2596 				ret = mpage_map_and_submit_extent(handle, &mpd,
2597 					&give_up_on_write);
2598 			else {
2599 				/*
2600 				 * We scanned the whole range (or exhausted
2601 				 * nr_to_write), submitted what was mapped and
2602 				 * didn't find anything needing mapping. We are
2603 				 * done.
2604 				 */
2605 				done = true;
2606 			}
2607 		}
2608 		ext4_journal_stop(handle);
2609 		/* Submit prepared bio */
2610 		ext4_io_submit(&mpd.io_submit);
2611 		/* Unlock pages we didn't use */
2612 		mpage_release_unused_pages(&mpd, give_up_on_write);
2613 		/* Drop our io_end reference we got from init */
2614 		ext4_put_io_end(mpd.io_submit.io_end);
2615 
2616 		if (ret == -ENOSPC && sbi->s_journal) {
2617 			/*
2618 			 * Commit the transaction which would
2619 			 * free blocks released in the transaction
2620 			 * and try again
2621 			 */
2622 			jbd2_journal_force_commit_nested(sbi->s_journal);
2623 			ret = 0;
2624 			continue;
2625 		}
2626 		/* Fatal error - ENOMEM, EIO... */
2627 		if (ret)
2628 			break;
2629 	}
2630 	blk_finish_plug(&plug);
2631 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2632 		cycled = 1;
2633 		mpd.last_page = writeback_index - 1;
2634 		mpd.first_page = 0;
2635 		goto retry;
2636 	}
2637 
2638 	/* Update index */
2639 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2640 		/*
2641 		 * Set the writeback_index so that range_cyclic
2642 		 * mode will write it back later
2643 		 */
2644 		mapping->writeback_index = mpd.first_page;
2645 
2646 out_writepages:
2647 	trace_ext4_writepages_result(inode, wbc, ret,
2648 				     nr_to_write - wbc->nr_to_write);
2649 	return ret;
2650 }
2651 
2652 static int ext4_nonda_switch(struct super_block *sb)
2653 {
2654 	s64 free_clusters, dirty_clusters;
2655 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2656 
2657 	/*
2658 	 * switch to non delalloc mode if we are running low
2659 	 * on free block. The free block accounting via percpu
2660 	 * counters can get slightly wrong with percpu_counter_batch getting
2661 	 * accumulated on each CPU without updating global counters
2662 	 * Delalloc need an accurate free block accounting. So switch
2663 	 * to non delalloc when we are near to error range.
2664 	 */
2665 	free_clusters =
2666 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2667 	dirty_clusters =
2668 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2669 	/*
2670 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2671 	 */
2672 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2673 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2674 
2675 	if (2 * free_clusters < 3 * dirty_clusters ||
2676 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2677 		/*
2678 		 * free block count is less than 150% of dirty blocks
2679 		 * or free blocks is less than watermark
2680 		 */
2681 		return 1;
2682 	}
2683 	return 0;
2684 }
2685 
2686 /* We always reserve for an inode update; the superblock could be there too */
2687 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2688 {
2689 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2690 		return 1;
2691 
2692 	if (pos + len <= 0x7fffffffULL)
2693 		return 1;
2694 
2695 	/* We might need to update the superblock to set LARGE_FILE */
2696 	return 2;
2697 }
2698 
2699 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2700 			       loff_t pos, unsigned len, unsigned flags,
2701 			       struct page **pagep, void **fsdata)
2702 {
2703 	int ret, retries = 0;
2704 	struct page *page;
2705 	pgoff_t index;
2706 	struct inode *inode = mapping->host;
2707 	handle_t *handle;
2708 
2709 	index = pos >> PAGE_CACHE_SHIFT;
2710 
2711 	if (ext4_nonda_switch(inode->i_sb)) {
2712 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2713 		return ext4_write_begin(file, mapping, pos,
2714 					len, flags, pagep, fsdata);
2715 	}
2716 	*fsdata = (void *)0;
2717 	trace_ext4_da_write_begin(inode, pos, len, flags);
2718 
2719 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2720 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2721 						      pos, len, flags,
2722 						      pagep, fsdata);
2723 		if (ret < 0)
2724 			return ret;
2725 		if (ret == 1)
2726 			return 0;
2727 	}
2728 
2729 	/*
2730 	 * grab_cache_page_write_begin() can take a long time if the
2731 	 * system is thrashing due to memory pressure, or if the page
2732 	 * is being written back.  So grab it first before we start
2733 	 * the transaction handle.  This also allows us to allocate
2734 	 * the page (if needed) without using GFP_NOFS.
2735 	 */
2736 retry_grab:
2737 	page = grab_cache_page_write_begin(mapping, index, flags);
2738 	if (!page)
2739 		return -ENOMEM;
2740 	unlock_page(page);
2741 
2742 	/*
2743 	 * With delayed allocation, we don't log the i_disksize update
2744 	 * if there is delayed block allocation. But we still need
2745 	 * to journalling the i_disksize update if writes to the end
2746 	 * of file which has an already mapped buffer.
2747 	 */
2748 retry_journal:
2749 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2750 				ext4_da_write_credits(inode, pos, len));
2751 	if (IS_ERR(handle)) {
2752 		page_cache_release(page);
2753 		return PTR_ERR(handle);
2754 	}
2755 
2756 	lock_page(page);
2757 	if (page->mapping != mapping) {
2758 		/* The page got truncated from under us */
2759 		unlock_page(page);
2760 		page_cache_release(page);
2761 		ext4_journal_stop(handle);
2762 		goto retry_grab;
2763 	}
2764 	/* In case writeback began while the page was unlocked */
2765 	wait_for_stable_page(page);
2766 
2767 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2768 	ret = ext4_block_write_begin(page, pos, len,
2769 				     ext4_da_get_block_prep);
2770 #else
2771 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2772 #endif
2773 	if (ret < 0) {
2774 		unlock_page(page);
2775 		ext4_journal_stop(handle);
2776 		/*
2777 		 * block_write_begin may have instantiated a few blocks
2778 		 * outside i_size.  Trim these off again. Don't need
2779 		 * i_size_read because we hold i_mutex.
2780 		 */
2781 		if (pos + len > inode->i_size)
2782 			ext4_truncate_failed_write(inode);
2783 
2784 		if (ret == -ENOSPC &&
2785 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2786 			goto retry_journal;
2787 
2788 		page_cache_release(page);
2789 		return ret;
2790 	}
2791 
2792 	*pagep = page;
2793 	return ret;
2794 }
2795 
2796 /*
2797  * Check if we should update i_disksize
2798  * when write to the end of file but not require block allocation
2799  */
2800 static int ext4_da_should_update_i_disksize(struct page *page,
2801 					    unsigned long offset)
2802 {
2803 	struct buffer_head *bh;
2804 	struct inode *inode = page->mapping->host;
2805 	unsigned int idx;
2806 	int i;
2807 
2808 	bh = page_buffers(page);
2809 	idx = offset >> inode->i_blkbits;
2810 
2811 	for (i = 0; i < idx; i++)
2812 		bh = bh->b_this_page;
2813 
2814 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2815 		return 0;
2816 	return 1;
2817 }
2818 
2819 static int ext4_da_write_end(struct file *file,
2820 			     struct address_space *mapping,
2821 			     loff_t pos, unsigned len, unsigned copied,
2822 			     struct page *page, void *fsdata)
2823 {
2824 	struct inode *inode = mapping->host;
2825 	int ret = 0, ret2;
2826 	handle_t *handle = ext4_journal_current_handle();
2827 	loff_t new_i_size;
2828 	unsigned long start, end;
2829 	int write_mode = (int)(unsigned long)fsdata;
2830 
2831 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2832 		return ext4_write_end(file, mapping, pos,
2833 				      len, copied, page, fsdata);
2834 
2835 	trace_ext4_da_write_end(inode, pos, len, copied);
2836 	start = pos & (PAGE_CACHE_SIZE - 1);
2837 	end = start + copied - 1;
2838 
2839 	/*
2840 	 * generic_write_end() will run mark_inode_dirty() if i_size
2841 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2842 	 * into that.
2843 	 */
2844 	new_i_size = pos + copied;
2845 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2846 		if (ext4_has_inline_data(inode) ||
2847 		    ext4_da_should_update_i_disksize(page, end)) {
2848 			ext4_update_i_disksize(inode, new_i_size);
2849 			/* We need to mark inode dirty even if
2850 			 * new_i_size is less that inode->i_size
2851 			 * bu greater than i_disksize.(hint delalloc)
2852 			 */
2853 			ext4_mark_inode_dirty(handle, inode);
2854 		}
2855 	}
2856 
2857 	if (write_mode != CONVERT_INLINE_DATA &&
2858 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2859 	    ext4_has_inline_data(inode))
2860 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2861 						     page);
2862 	else
2863 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2864 							page, fsdata);
2865 
2866 	copied = ret2;
2867 	if (ret2 < 0)
2868 		ret = ret2;
2869 	ret2 = ext4_journal_stop(handle);
2870 	if (!ret)
2871 		ret = ret2;
2872 
2873 	return ret ? ret : copied;
2874 }
2875 
2876 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2877 				   unsigned int length)
2878 {
2879 	/*
2880 	 * Drop reserved blocks
2881 	 */
2882 	BUG_ON(!PageLocked(page));
2883 	if (!page_has_buffers(page))
2884 		goto out;
2885 
2886 	ext4_da_page_release_reservation(page, offset, length);
2887 
2888 out:
2889 	ext4_invalidatepage(page, offset, length);
2890 
2891 	return;
2892 }
2893 
2894 /*
2895  * Force all delayed allocation blocks to be allocated for a given inode.
2896  */
2897 int ext4_alloc_da_blocks(struct inode *inode)
2898 {
2899 	trace_ext4_alloc_da_blocks(inode);
2900 
2901 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2902 		return 0;
2903 
2904 	/*
2905 	 * We do something simple for now.  The filemap_flush() will
2906 	 * also start triggering a write of the data blocks, which is
2907 	 * not strictly speaking necessary (and for users of
2908 	 * laptop_mode, not even desirable).  However, to do otherwise
2909 	 * would require replicating code paths in:
2910 	 *
2911 	 * ext4_writepages() ->
2912 	 *    write_cache_pages() ---> (via passed in callback function)
2913 	 *        __mpage_da_writepage() -->
2914 	 *           mpage_add_bh_to_extent()
2915 	 *           mpage_da_map_blocks()
2916 	 *
2917 	 * The problem is that write_cache_pages(), located in
2918 	 * mm/page-writeback.c, marks pages clean in preparation for
2919 	 * doing I/O, which is not desirable if we're not planning on
2920 	 * doing I/O at all.
2921 	 *
2922 	 * We could call write_cache_pages(), and then redirty all of
2923 	 * the pages by calling redirty_page_for_writepage() but that
2924 	 * would be ugly in the extreme.  So instead we would need to
2925 	 * replicate parts of the code in the above functions,
2926 	 * simplifying them because we wouldn't actually intend to
2927 	 * write out the pages, but rather only collect contiguous
2928 	 * logical block extents, call the multi-block allocator, and
2929 	 * then update the buffer heads with the block allocations.
2930 	 *
2931 	 * For now, though, we'll cheat by calling filemap_flush(),
2932 	 * which will map the blocks, and start the I/O, but not
2933 	 * actually wait for the I/O to complete.
2934 	 */
2935 	return filemap_flush(inode->i_mapping);
2936 }
2937 
2938 /*
2939  * bmap() is special.  It gets used by applications such as lilo and by
2940  * the swapper to find the on-disk block of a specific piece of data.
2941  *
2942  * Naturally, this is dangerous if the block concerned is still in the
2943  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2944  * filesystem and enables swap, then they may get a nasty shock when the
2945  * data getting swapped to that swapfile suddenly gets overwritten by
2946  * the original zero's written out previously to the journal and
2947  * awaiting writeback in the kernel's buffer cache.
2948  *
2949  * So, if we see any bmap calls here on a modified, data-journaled file,
2950  * take extra steps to flush any blocks which might be in the cache.
2951  */
2952 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2953 {
2954 	struct inode *inode = mapping->host;
2955 	journal_t *journal;
2956 	int err;
2957 
2958 	/*
2959 	 * We can get here for an inline file via the FIBMAP ioctl
2960 	 */
2961 	if (ext4_has_inline_data(inode))
2962 		return 0;
2963 
2964 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2965 			test_opt(inode->i_sb, DELALLOC)) {
2966 		/*
2967 		 * With delalloc we want to sync the file
2968 		 * so that we can make sure we allocate
2969 		 * blocks for file
2970 		 */
2971 		filemap_write_and_wait(mapping);
2972 	}
2973 
2974 	if (EXT4_JOURNAL(inode) &&
2975 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2976 		/*
2977 		 * This is a REALLY heavyweight approach, but the use of
2978 		 * bmap on dirty files is expected to be extremely rare:
2979 		 * only if we run lilo or swapon on a freshly made file
2980 		 * do we expect this to happen.
2981 		 *
2982 		 * (bmap requires CAP_SYS_RAWIO so this does not
2983 		 * represent an unprivileged user DOS attack --- we'd be
2984 		 * in trouble if mortal users could trigger this path at
2985 		 * will.)
2986 		 *
2987 		 * NB. EXT4_STATE_JDATA is not set on files other than
2988 		 * regular files.  If somebody wants to bmap a directory
2989 		 * or symlink and gets confused because the buffer
2990 		 * hasn't yet been flushed to disk, they deserve
2991 		 * everything they get.
2992 		 */
2993 
2994 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2995 		journal = EXT4_JOURNAL(inode);
2996 		jbd2_journal_lock_updates(journal);
2997 		err = jbd2_journal_flush(journal);
2998 		jbd2_journal_unlock_updates(journal);
2999 
3000 		if (err)
3001 			return 0;
3002 	}
3003 
3004 	return generic_block_bmap(mapping, block, ext4_get_block);
3005 }
3006 
3007 static int ext4_readpage(struct file *file, struct page *page)
3008 {
3009 	int ret = -EAGAIN;
3010 	struct inode *inode = page->mapping->host;
3011 
3012 	trace_ext4_readpage(page);
3013 
3014 	if (ext4_has_inline_data(inode))
3015 		ret = ext4_readpage_inline(inode, page);
3016 
3017 	if (ret == -EAGAIN)
3018 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3019 
3020 	return ret;
3021 }
3022 
3023 static int
3024 ext4_readpages(struct file *file, struct address_space *mapping,
3025 		struct list_head *pages, unsigned nr_pages)
3026 {
3027 	struct inode *inode = mapping->host;
3028 
3029 	/* If the file has inline data, no need to do readpages. */
3030 	if (ext4_has_inline_data(inode))
3031 		return 0;
3032 
3033 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3034 }
3035 
3036 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3037 				unsigned int length)
3038 {
3039 	trace_ext4_invalidatepage(page, offset, length);
3040 
3041 	/* No journalling happens on data buffers when this function is used */
3042 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3043 
3044 	block_invalidatepage(page, offset, length);
3045 }
3046 
3047 static int __ext4_journalled_invalidatepage(struct page *page,
3048 					    unsigned int offset,
3049 					    unsigned int length)
3050 {
3051 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3052 
3053 	trace_ext4_journalled_invalidatepage(page, offset, length);
3054 
3055 	/*
3056 	 * If it's a full truncate we just forget about the pending dirtying
3057 	 */
3058 	if (offset == 0 && length == PAGE_CACHE_SIZE)
3059 		ClearPageChecked(page);
3060 
3061 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3062 }
3063 
3064 /* Wrapper for aops... */
3065 static void ext4_journalled_invalidatepage(struct page *page,
3066 					   unsigned int offset,
3067 					   unsigned int length)
3068 {
3069 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3070 }
3071 
3072 static int ext4_releasepage(struct page *page, gfp_t wait)
3073 {
3074 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3075 
3076 	trace_ext4_releasepage(page);
3077 
3078 	/* Page has dirty journalled data -> cannot release */
3079 	if (PageChecked(page))
3080 		return 0;
3081 	if (journal)
3082 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3083 	else
3084 		return try_to_free_buffers(page);
3085 }
3086 
3087 /*
3088  * ext4_get_block used when preparing for a DIO write or buffer write.
3089  * We allocate an uinitialized extent if blocks haven't been allocated.
3090  * The extent will be converted to initialized after the IO is complete.
3091  */
3092 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3093 		   struct buffer_head *bh_result, int create)
3094 {
3095 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3096 		   inode->i_ino, create);
3097 	return _ext4_get_block(inode, iblock, bh_result,
3098 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3099 }
3100 
3101 static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock,
3102 		   struct buffer_head *bh_result, int create)
3103 {
3104 	int ret;
3105 
3106 	ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n",
3107 		   inode->i_ino, create);
3108 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
3109 	/*
3110 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
3111 	 * that.
3112 	 */
3113 	WARN_ON_ONCE(!buffer_mapped(bh_result));
3114 
3115 	return ret;
3116 }
3117 
3118 #ifdef CONFIG_FS_DAX
3119 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3120 			    struct buffer_head *bh_result, int create)
3121 {
3122 	int ret, err;
3123 	int credits;
3124 	struct ext4_map_blocks map;
3125 	handle_t *handle = NULL;
3126 	int flags = 0;
3127 
3128 	ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3129 		   inode->i_ino, create);
3130 	map.m_lblk = iblock;
3131 	map.m_len = bh_result->b_size >> inode->i_blkbits;
3132 	credits = ext4_chunk_trans_blocks(inode, map.m_len);
3133 	if (create) {
3134 		flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3135 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3136 		if (IS_ERR(handle)) {
3137 			ret = PTR_ERR(handle);
3138 			return ret;
3139 		}
3140 	}
3141 
3142 	ret = ext4_map_blocks(handle, inode, &map, flags);
3143 	if (create) {
3144 		err = ext4_journal_stop(handle);
3145 		if (ret >= 0 && err < 0)
3146 			ret = err;
3147 	}
3148 	if (ret <= 0)
3149 		goto out;
3150 	if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3151 		int err2;
3152 
3153 		/*
3154 		 * We are protected by i_mmap_sem so we know block cannot go
3155 		 * away from under us even though we dropped i_data_sem.
3156 		 * Convert extent to written and write zeros there.
3157 		 *
3158 		 * Note: We may get here even when create == 0.
3159 		 */
3160 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3161 		if (IS_ERR(handle)) {
3162 			ret = PTR_ERR(handle);
3163 			goto out;
3164 		}
3165 
3166 		err = ext4_map_blocks(handle, inode, &map,
3167 		      EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3168 		if (err < 0)
3169 			ret = err;
3170 		err2 = ext4_journal_stop(handle);
3171 		if (err2 < 0 && ret > 0)
3172 			ret = err2;
3173 	}
3174 out:
3175 	WARN_ON_ONCE(ret == 0 && create);
3176 	if (ret > 0) {
3177 		map_bh(bh_result, inode->i_sb, map.m_pblk);
3178 		bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
3179 					map.m_flags;
3180 		/*
3181 		 * At least for now we have to clear BH_New so that DAX code
3182 		 * doesn't attempt to zero blocks again in a racy way.
3183 		 */
3184 		bh_result->b_state &= ~(1 << BH_New);
3185 		bh_result->b_size = map.m_len << inode->i_blkbits;
3186 		ret = 0;
3187 	}
3188 	return ret;
3189 }
3190 #endif
3191 
3192 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3193 			    ssize_t size, void *private)
3194 {
3195         ext4_io_end_t *io_end = iocb->private;
3196 
3197 	/* if not async direct IO just return */
3198 	if (!io_end)
3199 		return;
3200 
3201 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3202 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3203  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3204 		  size);
3205 
3206 	iocb->private = NULL;
3207 	io_end->offset = offset;
3208 	io_end->size = size;
3209 	ext4_put_io_end(io_end);
3210 }
3211 
3212 /*
3213  * For ext4 extent files, ext4 will do direct-io write to holes,
3214  * preallocated extents, and those write extend the file, no need to
3215  * fall back to buffered IO.
3216  *
3217  * For holes, we fallocate those blocks, mark them as unwritten
3218  * If those blocks were preallocated, we mark sure they are split, but
3219  * still keep the range to write as unwritten.
3220  *
3221  * The unwritten extents will be converted to written when DIO is completed.
3222  * For async direct IO, since the IO may still pending when return, we
3223  * set up an end_io call back function, which will do the conversion
3224  * when async direct IO completed.
3225  *
3226  * If the O_DIRECT write will extend the file then add this inode to the
3227  * orphan list.  So recovery will truncate it back to the original size
3228  * if the machine crashes during the write.
3229  *
3230  */
3231 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3232 				  loff_t offset)
3233 {
3234 	struct file *file = iocb->ki_filp;
3235 	struct inode *inode = file->f_mapping->host;
3236 	ssize_t ret;
3237 	size_t count = iov_iter_count(iter);
3238 	int overwrite = 0;
3239 	get_block_t *get_block_func = NULL;
3240 	int dio_flags = 0;
3241 	loff_t final_size = offset + count;
3242 	ext4_io_end_t *io_end = NULL;
3243 
3244 	/* Use the old path for reads and writes beyond i_size. */
3245 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3246 		return ext4_ind_direct_IO(iocb, iter, offset);
3247 
3248 	BUG_ON(iocb->private == NULL);
3249 
3250 	/*
3251 	 * Make all waiters for direct IO properly wait also for extent
3252 	 * conversion. This also disallows race between truncate() and
3253 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3254 	 */
3255 	if (iov_iter_rw(iter) == WRITE)
3256 		inode_dio_begin(inode);
3257 
3258 	/* If we do a overwrite dio, i_mutex locking can be released */
3259 	overwrite = *((int *)iocb->private);
3260 
3261 	if (overwrite)
3262 		inode_unlock(inode);
3263 
3264 	/*
3265 	 * We could direct write to holes and fallocate.
3266 	 *
3267 	 * Allocated blocks to fill the hole are marked as
3268 	 * unwritten to prevent parallel buffered read to expose
3269 	 * the stale data before DIO complete the data IO.
3270 	 *
3271 	 * As to previously fallocated extents, ext4 get_block will
3272 	 * just simply mark the buffer mapped but still keep the
3273 	 * extents unwritten.
3274 	 *
3275 	 * For non AIO case, we will convert those unwritten extents
3276 	 * to written after return back from blockdev_direct_IO.
3277 	 *
3278 	 * For async DIO, the conversion needs to be deferred when the
3279 	 * IO is completed. The ext4 end_io callback function will be
3280 	 * called to take care of the conversion work.  Here for async
3281 	 * case, we allocate an io_end structure to hook to the iocb.
3282 	 */
3283 	iocb->private = NULL;
3284 	if (overwrite) {
3285 		get_block_func = ext4_get_block_overwrite;
3286 	} else {
3287 		ext4_inode_aio_set(inode, NULL);
3288 		if (!is_sync_kiocb(iocb)) {
3289 			io_end = ext4_init_io_end(inode, GFP_NOFS);
3290 			if (!io_end) {
3291 				ret = -ENOMEM;
3292 				goto retake_lock;
3293 			}
3294 			/*
3295 			 * Grab reference for DIO. Will be dropped in
3296 			 * ext4_end_io_dio()
3297 			 */
3298 			iocb->private = ext4_get_io_end(io_end);
3299 			/*
3300 			 * we save the io structure for current async direct
3301 			 * IO, so that later ext4_map_blocks() could flag the
3302 			 * io structure whether there is a unwritten extents
3303 			 * needs to be converted when IO is completed.
3304 			 */
3305 			ext4_inode_aio_set(inode, io_end);
3306 		}
3307 		get_block_func = ext4_get_block_write;
3308 		dio_flags = DIO_LOCKING;
3309 	}
3310 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3311 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3312 #endif
3313 	if (IS_DAX(inode))
3314 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3315 				ext4_end_io_dio, dio_flags);
3316 	else
3317 		ret = __blockdev_direct_IO(iocb, inode,
3318 					   inode->i_sb->s_bdev, iter, offset,
3319 					   get_block_func,
3320 					   ext4_end_io_dio, NULL, dio_flags);
3321 
3322 	/*
3323 	 * Put our reference to io_end. This can free the io_end structure e.g.
3324 	 * in sync IO case or in case of error. It can even perform extent
3325 	 * conversion if all bios we submitted finished before we got here.
3326 	 * Note that in that case iocb->private can be already set to NULL
3327 	 * here.
3328 	 */
3329 	if (io_end) {
3330 		ext4_inode_aio_set(inode, NULL);
3331 		ext4_put_io_end(io_end);
3332 		/*
3333 		 * When no IO was submitted ext4_end_io_dio() was not
3334 		 * called so we have to put iocb's reference.
3335 		 */
3336 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3337 			WARN_ON(iocb->private != io_end);
3338 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3339 			ext4_put_io_end(io_end);
3340 			iocb->private = NULL;
3341 		}
3342 	}
3343 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3344 						EXT4_STATE_DIO_UNWRITTEN)) {
3345 		int err;
3346 		/*
3347 		 * for non AIO case, since the IO is already
3348 		 * completed, we could do the conversion right here
3349 		 */
3350 		err = ext4_convert_unwritten_extents(NULL, inode,
3351 						     offset, ret);
3352 		if (err < 0)
3353 			ret = err;
3354 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3355 	}
3356 
3357 retake_lock:
3358 	if (iov_iter_rw(iter) == WRITE)
3359 		inode_dio_end(inode);
3360 	/* take i_mutex locking again if we do a ovewrite dio */
3361 	if (overwrite)
3362 		inode_lock(inode);
3363 
3364 	return ret;
3365 }
3366 
3367 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3368 			      loff_t offset)
3369 {
3370 	struct file *file = iocb->ki_filp;
3371 	struct inode *inode = file->f_mapping->host;
3372 	size_t count = iov_iter_count(iter);
3373 	ssize_t ret;
3374 
3375 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3376 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3377 		return 0;
3378 #endif
3379 
3380 	/*
3381 	 * If we are doing data journalling we don't support O_DIRECT
3382 	 */
3383 	if (ext4_should_journal_data(inode))
3384 		return 0;
3385 
3386 	/* Let buffer I/O handle the inline data case. */
3387 	if (ext4_has_inline_data(inode))
3388 		return 0;
3389 
3390 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3391 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3392 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3393 	else
3394 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3395 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3396 	return ret;
3397 }
3398 
3399 /*
3400  * Pages can be marked dirty completely asynchronously from ext4's journalling
3401  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3402  * much here because ->set_page_dirty is called under VFS locks.  The page is
3403  * not necessarily locked.
3404  *
3405  * We cannot just dirty the page and leave attached buffers clean, because the
3406  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3407  * or jbddirty because all the journalling code will explode.
3408  *
3409  * So what we do is to mark the page "pending dirty" and next time writepage
3410  * is called, propagate that into the buffers appropriately.
3411  */
3412 static int ext4_journalled_set_page_dirty(struct page *page)
3413 {
3414 	SetPageChecked(page);
3415 	return __set_page_dirty_nobuffers(page);
3416 }
3417 
3418 static const struct address_space_operations ext4_aops = {
3419 	.readpage		= ext4_readpage,
3420 	.readpages		= ext4_readpages,
3421 	.writepage		= ext4_writepage,
3422 	.writepages		= ext4_writepages,
3423 	.write_begin		= ext4_write_begin,
3424 	.write_end		= ext4_write_end,
3425 	.bmap			= ext4_bmap,
3426 	.invalidatepage		= ext4_invalidatepage,
3427 	.releasepage		= ext4_releasepage,
3428 	.direct_IO		= ext4_direct_IO,
3429 	.migratepage		= buffer_migrate_page,
3430 	.is_partially_uptodate  = block_is_partially_uptodate,
3431 	.error_remove_page	= generic_error_remove_page,
3432 };
3433 
3434 static const struct address_space_operations ext4_journalled_aops = {
3435 	.readpage		= ext4_readpage,
3436 	.readpages		= ext4_readpages,
3437 	.writepage		= ext4_writepage,
3438 	.writepages		= ext4_writepages,
3439 	.write_begin		= ext4_write_begin,
3440 	.write_end		= ext4_journalled_write_end,
3441 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3442 	.bmap			= ext4_bmap,
3443 	.invalidatepage		= ext4_journalled_invalidatepage,
3444 	.releasepage		= ext4_releasepage,
3445 	.direct_IO		= ext4_direct_IO,
3446 	.is_partially_uptodate  = block_is_partially_uptodate,
3447 	.error_remove_page	= generic_error_remove_page,
3448 };
3449 
3450 static const struct address_space_operations ext4_da_aops = {
3451 	.readpage		= ext4_readpage,
3452 	.readpages		= ext4_readpages,
3453 	.writepage		= ext4_writepage,
3454 	.writepages		= ext4_writepages,
3455 	.write_begin		= ext4_da_write_begin,
3456 	.write_end		= ext4_da_write_end,
3457 	.bmap			= ext4_bmap,
3458 	.invalidatepage		= ext4_da_invalidatepage,
3459 	.releasepage		= ext4_releasepage,
3460 	.direct_IO		= ext4_direct_IO,
3461 	.migratepage		= buffer_migrate_page,
3462 	.is_partially_uptodate  = block_is_partially_uptodate,
3463 	.error_remove_page	= generic_error_remove_page,
3464 };
3465 
3466 void ext4_set_aops(struct inode *inode)
3467 {
3468 	switch (ext4_inode_journal_mode(inode)) {
3469 	case EXT4_INODE_ORDERED_DATA_MODE:
3470 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3471 		break;
3472 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3473 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3474 		break;
3475 	case EXT4_INODE_JOURNAL_DATA_MODE:
3476 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3477 		return;
3478 	default:
3479 		BUG();
3480 	}
3481 	if (test_opt(inode->i_sb, DELALLOC))
3482 		inode->i_mapping->a_ops = &ext4_da_aops;
3483 	else
3484 		inode->i_mapping->a_ops = &ext4_aops;
3485 }
3486 
3487 static int __ext4_block_zero_page_range(handle_t *handle,
3488 		struct address_space *mapping, loff_t from, loff_t length)
3489 {
3490 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3491 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3492 	unsigned blocksize, pos;
3493 	ext4_lblk_t iblock;
3494 	struct inode *inode = mapping->host;
3495 	struct buffer_head *bh;
3496 	struct page *page;
3497 	int err = 0;
3498 
3499 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3500 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3501 	if (!page)
3502 		return -ENOMEM;
3503 
3504 	blocksize = inode->i_sb->s_blocksize;
3505 
3506 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3507 
3508 	if (!page_has_buffers(page))
3509 		create_empty_buffers(page, blocksize, 0);
3510 
3511 	/* Find the buffer that contains "offset" */
3512 	bh = page_buffers(page);
3513 	pos = blocksize;
3514 	while (offset >= pos) {
3515 		bh = bh->b_this_page;
3516 		iblock++;
3517 		pos += blocksize;
3518 	}
3519 	if (buffer_freed(bh)) {
3520 		BUFFER_TRACE(bh, "freed: skip");
3521 		goto unlock;
3522 	}
3523 	if (!buffer_mapped(bh)) {
3524 		BUFFER_TRACE(bh, "unmapped");
3525 		ext4_get_block(inode, iblock, bh, 0);
3526 		/* unmapped? It's a hole - nothing to do */
3527 		if (!buffer_mapped(bh)) {
3528 			BUFFER_TRACE(bh, "still unmapped");
3529 			goto unlock;
3530 		}
3531 	}
3532 
3533 	/* Ok, it's mapped. Make sure it's up-to-date */
3534 	if (PageUptodate(page))
3535 		set_buffer_uptodate(bh);
3536 
3537 	if (!buffer_uptodate(bh)) {
3538 		err = -EIO;
3539 		ll_rw_block(READ, 1, &bh);
3540 		wait_on_buffer(bh);
3541 		/* Uhhuh. Read error. Complain and punt. */
3542 		if (!buffer_uptodate(bh))
3543 			goto unlock;
3544 		if (S_ISREG(inode->i_mode) &&
3545 		    ext4_encrypted_inode(inode)) {
3546 			/* We expect the key to be set. */
3547 			BUG_ON(!ext4_has_encryption_key(inode));
3548 			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3549 			WARN_ON_ONCE(ext4_decrypt(page));
3550 		}
3551 	}
3552 	if (ext4_should_journal_data(inode)) {
3553 		BUFFER_TRACE(bh, "get write access");
3554 		err = ext4_journal_get_write_access(handle, bh);
3555 		if (err)
3556 			goto unlock;
3557 	}
3558 	zero_user(page, offset, length);
3559 	BUFFER_TRACE(bh, "zeroed end of block");
3560 
3561 	if (ext4_should_journal_data(inode)) {
3562 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3563 	} else {
3564 		err = 0;
3565 		mark_buffer_dirty(bh);
3566 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3567 			err = ext4_jbd2_file_inode(handle, inode);
3568 	}
3569 
3570 unlock:
3571 	unlock_page(page);
3572 	page_cache_release(page);
3573 	return err;
3574 }
3575 
3576 /*
3577  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3578  * starting from file offset 'from'.  The range to be zero'd must
3579  * be contained with in one block.  If the specified range exceeds
3580  * the end of the block it will be shortened to end of the block
3581  * that cooresponds to 'from'
3582  */
3583 static int ext4_block_zero_page_range(handle_t *handle,
3584 		struct address_space *mapping, loff_t from, loff_t length)
3585 {
3586 	struct inode *inode = mapping->host;
3587 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3588 	unsigned blocksize = inode->i_sb->s_blocksize;
3589 	unsigned max = blocksize - (offset & (blocksize - 1));
3590 
3591 	/*
3592 	 * correct length if it does not fall between
3593 	 * 'from' and the end of the block
3594 	 */
3595 	if (length > max || length < 0)
3596 		length = max;
3597 
3598 	if (IS_DAX(inode))
3599 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3600 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3601 }
3602 
3603 /*
3604  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3605  * up to the end of the block which corresponds to `from'.
3606  * This required during truncate. We need to physically zero the tail end
3607  * of that block so it doesn't yield old data if the file is later grown.
3608  */
3609 static int ext4_block_truncate_page(handle_t *handle,
3610 		struct address_space *mapping, loff_t from)
3611 {
3612 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3613 	unsigned length;
3614 	unsigned blocksize;
3615 	struct inode *inode = mapping->host;
3616 
3617 	blocksize = inode->i_sb->s_blocksize;
3618 	length = blocksize - (offset & (blocksize - 1));
3619 
3620 	return ext4_block_zero_page_range(handle, mapping, from, length);
3621 }
3622 
3623 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3624 			     loff_t lstart, loff_t length)
3625 {
3626 	struct super_block *sb = inode->i_sb;
3627 	struct address_space *mapping = inode->i_mapping;
3628 	unsigned partial_start, partial_end;
3629 	ext4_fsblk_t start, end;
3630 	loff_t byte_end = (lstart + length - 1);
3631 	int err = 0;
3632 
3633 	partial_start = lstart & (sb->s_blocksize - 1);
3634 	partial_end = byte_end & (sb->s_blocksize - 1);
3635 
3636 	start = lstart >> sb->s_blocksize_bits;
3637 	end = byte_end >> sb->s_blocksize_bits;
3638 
3639 	/* Handle partial zero within the single block */
3640 	if (start == end &&
3641 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3642 		err = ext4_block_zero_page_range(handle, mapping,
3643 						 lstart, length);
3644 		return err;
3645 	}
3646 	/* Handle partial zero out on the start of the range */
3647 	if (partial_start) {
3648 		err = ext4_block_zero_page_range(handle, mapping,
3649 						 lstart, sb->s_blocksize);
3650 		if (err)
3651 			return err;
3652 	}
3653 	/* Handle partial zero out on the end of the range */
3654 	if (partial_end != sb->s_blocksize - 1)
3655 		err = ext4_block_zero_page_range(handle, mapping,
3656 						 byte_end - partial_end,
3657 						 partial_end + 1);
3658 	return err;
3659 }
3660 
3661 int ext4_can_truncate(struct inode *inode)
3662 {
3663 	if (S_ISREG(inode->i_mode))
3664 		return 1;
3665 	if (S_ISDIR(inode->i_mode))
3666 		return 1;
3667 	if (S_ISLNK(inode->i_mode))
3668 		return !ext4_inode_is_fast_symlink(inode);
3669 	return 0;
3670 }
3671 
3672 /*
3673  * We have to make sure i_disksize gets properly updated before we truncate
3674  * page cache due to hole punching or zero range. Otherwise i_disksize update
3675  * can get lost as it may have been postponed to submission of writeback but
3676  * that will never happen after we truncate page cache.
3677  */
3678 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3679 				      loff_t len)
3680 {
3681 	handle_t *handle;
3682 	loff_t size = i_size_read(inode);
3683 
3684 	WARN_ON(!inode_is_locked(inode));
3685 	if (offset > size || offset + len < size)
3686 		return 0;
3687 
3688 	if (EXT4_I(inode)->i_disksize >= size)
3689 		return 0;
3690 
3691 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3692 	if (IS_ERR(handle))
3693 		return PTR_ERR(handle);
3694 	ext4_update_i_disksize(inode, size);
3695 	ext4_mark_inode_dirty(handle, inode);
3696 	ext4_journal_stop(handle);
3697 
3698 	return 0;
3699 }
3700 
3701 /*
3702  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3703  * associated with the given offset and length
3704  *
3705  * @inode:  File inode
3706  * @offset: The offset where the hole will begin
3707  * @len:    The length of the hole
3708  *
3709  * Returns: 0 on success or negative on failure
3710  */
3711 
3712 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3713 {
3714 	struct super_block *sb = inode->i_sb;
3715 	ext4_lblk_t first_block, stop_block;
3716 	struct address_space *mapping = inode->i_mapping;
3717 	loff_t first_block_offset, last_block_offset;
3718 	handle_t *handle;
3719 	unsigned int credits;
3720 	int ret = 0;
3721 
3722 	if (!S_ISREG(inode->i_mode))
3723 		return -EOPNOTSUPP;
3724 
3725 	trace_ext4_punch_hole(inode, offset, length, 0);
3726 
3727 	/*
3728 	 * Write out all dirty pages to avoid race conditions
3729 	 * Then release them.
3730 	 */
3731 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3732 		ret = filemap_write_and_wait_range(mapping, offset,
3733 						   offset + length - 1);
3734 		if (ret)
3735 			return ret;
3736 	}
3737 
3738 	inode_lock(inode);
3739 
3740 	/* No need to punch hole beyond i_size */
3741 	if (offset >= inode->i_size)
3742 		goto out_mutex;
3743 
3744 	/*
3745 	 * If the hole extends beyond i_size, set the hole
3746 	 * to end after the page that contains i_size
3747 	 */
3748 	if (offset + length > inode->i_size) {
3749 		length = inode->i_size +
3750 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3751 		   offset;
3752 	}
3753 
3754 	if (offset & (sb->s_blocksize - 1) ||
3755 	    (offset + length) & (sb->s_blocksize - 1)) {
3756 		/*
3757 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3758 		 * partial block
3759 		 */
3760 		ret = ext4_inode_attach_jinode(inode);
3761 		if (ret < 0)
3762 			goto out_mutex;
3763 
3764 	}
3765 
3766 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3767 	ext4_inode_block_unlocked_dio(inode);
3768 	inode_dio_wait(inode);
3769 
3770 	/*
3771 	 * Prevent page faults from reinstantiating pages we have released from
3772 	 * page cache.
3773 	 */
3774 	down_write(&EXT4_I(inode)->i_mmap_sem);
3775 	first_block_offset = round_up(offset, sb->s_blocksize);
3776 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3777 
3778 	/* Now release the pages and zero block aligned part of pages*/
3779 	if (last_block_offset > first_block_offset) {
3780 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3781 		if (ret)
3782 			goto out_dio;
3783 		truncate_pagecache_range(inode, first_block_offset,
3784 					 last_block_offset);
3785 	}
3786 
3787 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3788 		credits = ext4_writepage_trans_blocks(inode);
3789 	else
3790 		credits = ext4_blocks_for_truncate(inode);
3791 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3792 	if (IS_ERR(handle)) {
3793 		ret = PTR_ERR(handle);
3794 		ext4_std_error(sb, ret);
3795 		goto out_dio;
3796 	}
3797 
3798 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3799 				       length);
3800 	if (ret)
3801 		goto out_stop;
3802 
3803 	first_block = (offset + sb->s_blocksize - 1) >>
3804 		EXT4_BLOCK_SIZE_BITS(sb);
3805 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3806 
3807 	/* If there are no blocks to remove, return now */
3808 	if (first_block >= stop_block)
3809 		goto out_stop;
3810 
3811 	down_write(&EXT4_I(inode)->i_data_sem);
3812 	ext4_discard_preallocations(inode);
3813 
3814 	ret = ext4_es_remove_extent(inode, first_block,
3815 				    stop_block - first_block);
3816 	if (ret) {
3817 		up_write(&EXT4_I(inode)->i_data_sem);
3818 		goto out_stop;
3819 	}
3820 
3821 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3822 		ret = ext4_ext_remove_space(inode, first_block,
3823 					    stop_block - 1);
3824 	else
3825 		ret = ext4_ind_remove_space(handle, inode, first_block,
3826 					    stop_block);
3827 
3828 	up_write(&EXT4_I(inode)->i_data_sem);
3829 	if (IS_SYNC(inode))
3830 		ext4_handle_sync(handle);
3831 
3832 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3833 	ext4_mark_inode_dirty(handle, inode);
3834 out_stop:
3835 	ext4_journal_stop(handle);
3836 out_dio:
3837 	up_write(&EXT4_I(inode)->i_mmap_sem);
3838 	ext4_inode_resume_unlocked_dio(inode);
3839 out_mutex:
3840 	inode_unlock(inode);
3841 	return ret;
3842 }
3843 
3844 int ext4_inode_attach_jinode(struct inode *inode)
3845 {
3846 	struct ext4_inode_info *ei = EXT4_I(inode);
3847 	struct jbd2_inode *jinode;
3848 
3849 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3850 		return 0;
3851 
3852 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3853 	spin_lock(&inode->i_lock);
3854 	if (!ei->jinode) {
3855 		if (!jinode) {
3856 			spin_unlock(&inode->i_lock);
3857 			return -ENOMEM;
3858 		}
3859 		ei->jinode = jinode;
3860 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3861 		jinode = NULL;
3862 	}
3863 	spin_unlock(&inode->i_lock);
3864 	if (unlikely(jinode != NULL))
3865 		jbd2_free_inode(jinode);
3866 	return 0;
3867 }
3868 
3869 /*
3870  * ext4_truncate()
3871  *
3872  * We block out ext4_get_block() block instantiations across the entire
3873  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3874  * simultaneously on behalf of the same inode.
3875  *
3876  * As we work through the truncate and commit bits of it to the journal there
3877  * is one core, guiding principle: the file's tree must always be consistent on
3878  * disk.  We must be able to restart the truncate after a crash.
3879  *
3880  * The file's tree may be transiently inconsistent in memory (although it
3881  * probably isn't), but whenever we close off and commit a journal transaction,
3882  * the contents of (the filesystem + the journal) must be consistent and
3883  * restartable.  It's pretty simple, really: bottom up, right to left (although
3884  * left-to-right works OK too).
3885  *
3886  * Note that at recovery time, journal replay occurs *before* the restart of
3887  * truncate against the orphan inode list.
3888  *
3889  * The committed inode has the new, desired i_size (which is the same as
3890  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3891  * that this inode's truncate did not complete and it will again call
3892  * ext4_truncate() to have another go.  So there will be instantiated blocks
3893  * to the right of the truncation point in a crashed ext4 filesystem.  But
3894  * that's fine - as long as they are linked from the inode, the post-crash
3895  * ext4_truncate() run will find them and release them.
3896  */
3897 void ext4_truncate(struct inode *inode)
3898 {
3899 	struct ext4_inode_info *ei = EXT4_I(inode);
3900 	unsigned int credits;
3901 	handle_t *handle;
3902 	struct address_space *mapping = inode->i_mapping;
3903 
3904 	/*
3905 	 * There is a possibility that we're either freeing the inode
3906 	 * or it's a completely new inode. In those cases we might not
3907 	 * have i_mutex locked because it's not necessary.
3908 	 */
3909 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3910 		WARN_ON(!inode_is_locked(inode));
3911 	trace_ext4_truncate_enter(inode);
3912 
3913 	if (!ext4_can_truncate(inode))
3914 		return;
3915 
3916 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3917 
3918 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3919 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3920 
3921 	if (ext4_has_inline_data(inode)) {
3922 		int has_inline = 1;
3923 
3924 		ext4_inline_data_truncate(inode, &has_inline);
3925 		if (has_inline)
3926 			return;
3927 	}
3928 
3929 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3930 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3931 		if (ext4_inode_attach_jinode(inode) < 0)
3932 			return;
3933 	}
3934 
3935 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3936 		credits = ext4_writepage_trans_blocks(inode);
3937 	else
3938 		credits = ext4_blocks_for_truncate(inode);
3939 
3940 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3941 	if (IS_ERR(handle)) {
3942 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3943 		return;
3944 	}
3945 
3946 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3947 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3948 
3949 	/*
3950 	 * We add the inode to the orphan list, so that if this
3951 	 * truncate spans multiple transactions, and we crash, we will
3952 	 * resume the truncate when the filesystem recovers.  It also
3953 	 * marks the inode dirty, to catch the new size.
3954 	 *
3955 	 * Implication: the file must always be in a sane, consistent
3956 	 * truncatable state while each transaction commits.
3957 	 */
3958 	if (ext4_orphan_add(handle, inode))
3959 		goto out_stop;
3960 
3961 	down_write(&EXT4_I(inode)->i_data_sem);
3962 
3963 	ext4_discard_preallocations(inode);
3964 
3965 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3966 		ext4_ext_truncate(handle, inode);
3967 	else
3968 		ext4_ind_truncate(handle, inode);
3969 
3970 	up_write(&ei->i_data_sem);
3971 
3972 	if (IS_SYNC(inode))
3973 		ext4_handle_sync(handle);
3974 
3975 out_stop:
3976 	/*
3977 	 * If this was a simple ftruncate() and the file will remain alive,
3978 	 * then we need to clear up the orphan record which we created above.
3979 	 * However, if this was a real unlink then we were called by
3980 	 * ext4_evict_inode(), and we allow that function to clean up the
3981 	 * orphan info for us.
3982 	 */
3983 	if (inode->i_nlink)
3984 		ext4_orphan_del(handle, inode);
3985 
3986 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3987 	ext4_mark_inode_dirty(handle, inode);
3988 	ext4_journal_stop(handle);
3989 
3990 	trace_ext4_truncate_exit(inode);
3991 }
3992 
3993 /*
3994  * ext4_get_inode_loc returns with an extra refcount against the inode's
3995  * underlying buffer_head on success. If 'in_mem' is true, we have all
3996  * data in memory that is needed to recreate the on-disk version of this
3997  * inode.
3998  */
3999 static int __ext4_get_inode_loc(struct inode *inode,
4000 				struct ext4_iloc *iloc, int in_mem)
4001 {
4002 	struct ext4_group_desc	*gdp;
4003 	struct buffer_head	*bh;
4004 	struct super_block	*sb = inode->i_sb;
4005 	ext4_fsblk_t		block;
4006 	int			inodes_per_block, inode_offset;
4007 
4008 	iloc->bh = NULL;
4009 	if (!ext4_valid_inum(sb, inode->i_ino))
4010 		return -EFSCORRUPTED;
4011 
4012 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4013 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4014 	if (!gdp)
4015 		return -EIO;
4016 
4017 	/*
4018 	 * Figure out the offset within the block group inode table
4019 	 */
4020 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4021 	inode_offset = ((inode->i_ino - 1) %
4022 			EXT4_INODES_PER_GROUP(sb));
4023 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4024 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4025 
4026 	bh = sb_getblk(sb, block);
4027 	if (unlikely(!bh))
4028 		return -ENOMEM;
4029 	if (!buffer_uptodate(bh)) {
4030 		lock_buffer(bh);
4031 
4032 		/*
4033 		 * If the buffer has the write error flag, we have failed
4034 		 * to write out another inode in the same block.  In this
4035 		 * case, we don't have to read the block because we may
4036 		 * read the old inode data successfully.
4037 		 */
4038 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4039 			set_buffer_uptodate(bh);
4040 
4041 		if (buffer_uptodate(bh)) {
4042 			/* someone brought it uptodate while we waited */
4043 			unlock_buffer(bh);
4044 			goto has_buffer;
4045 		}
4046 
4047 		/*
4048 		 * If we have all information of the inode in memory and this
4049 		 * is the only valid inode in the block, we need not read the
4050 		 * block.
4051 		 */
4052 		if (in_mem) {
4053 			struct buffer_head *bitmap_bh;
4054 			int i, start;
4055 
4056 			start = inode_offset & ~(inodes_per_block - 1);
4057 
4058 			/* Is the inode bitmap in cache? */
4059 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4060 			if (unlikely(!bitmap_bh))
4061 				goto make_io;
4062 
4063 			/*
4064 			 * If the inode bitmap isn't in cache then the
4065 			 * optimisation may end up performing two reads instead
4066 			 * of one, so skip it.
4067 			 */
4068 			if (!buffer_uptodate(bitmap_bh)) {
4069 				brelse(bitmap_bh);
4070 				goto make_io;
4071 			}
4072 			for (i = start; i < start + inodes_per_block; i++) {
4073 				if (i == inode_offset)
4074 					continue;
4075 				if (ext4_test_bit(i, bitmap_bh->b_data))
4076 					break;
4077 			}
4078 			brelse(bitmap_bh);
4079 			if (i == start + inodes_per_block) {
4080 				/* all other inodes are free, so skip I/O */
4081 				memset(bh->b_data, 0, bh->b_size);
4082 				set_buffer_uptodate(bh);
4083 				unlock_buffer(bh);
4084 				goto has_buffer;
4085 			}
4086 		}
4087 
4088 make_io:
4089 		/*
4090 		 * If we need to do any I/O, try to pre-readahead extra
4091 		 * blocks from the inode table.
4092 		 */
4093 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4094 			ext4_fsblk_t b, end, table;
4095 			unsigned num;
4096 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4097 
4098 			table = ext4_inode_table(sb, gdp);
4099 			/* s_inode_readahead_blks is always a power of 2 */
4100 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4101 			if (table > b)
4102 				b = table;
4103 			end = b + ra_blks;
4104 			num = EXT4_INODES_PER_GROUP(sb);
4105 			if (ext4_has_group_desc_csum(sb))
4106 				num -= ext4_itable_unused_count(sb, gdp);
4107 			table += num / inodes_per_block;
4108 			if (end > table)
4109 				end = table;
4110 			while (b <= end)
4111 				sb_breadahead(sb, b++);
4112 		}
4113 
4114 		/*
4115 		 * There are other valid inodes in the buffer, this inode
4116 		 * has in-inode xattrs, or we don't have this inode in memory.
4117 		 * Read the block from disk.
4118 		 */
4119 		trace_ext4_load_inode(inode);
4120 		get_bh(bh);
4121 		bh->b_end_io = end_buffer_read_sync;
4122 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4123 		wait_on_buffer(bh);
4124 		if (!buffer_uptodate(bh)) {
4125 			EXT4_ERROR_INODE_BLOCK(inode, block,
4126 					       "unable to read itable block");
4127 			brelse(bh);
4128 			return -EIO;
4129 		}
4130 	}
4131 has_buffer:
4132 	iloc->bh = bh;
4133 	return 0;
4134 }
4135 
4136 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4137 {
4138 	/* We have all inode data except xattrs in memory here. */
4139 	return __ext4_get_inode_loc(inode, iloc,
4140 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4141 }
4142 
4143 void ext4_set_inode_flags(struct inode *inode)
4144 {
4145 	unsigned int flags = EXT4_I(inode)->i_flags;
4146 	unsigned int new_fl = 0;
4147 
4148 	if (flags & EXT4_SYNC_FL)
4149 		new_fl |= S_SYNC;
4150 	if (flags & EXT4_APPEND_FL)
4151 		new_fl |= S_APPEND;
4152 	if (flags & EXT4_IMMUTABLE_FL)
4153 		new_fl |= S_IMMUTABLE;
4154 	if (flags & EXT4_NOATIME_FL)
4155 		new_fl |= S_NOATIME;
4156 	if (flags & EXT4_DIRSYNC_FL)
4157 		new_fl |= S_DIRSYNC;
4158 	if (test_opt(inode->i_sb, DAX))
4159 		new_fl |= S_DAX;
4160 	inode_set_flags(inode, new_fl,
4161 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4162 }
4163 
4164 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4165 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4166 {
4167 	unsigned int vfs_fl;
4168 	unsigned long old_fl, new_fl;
4169 
4170 	do {
4171 		vfs_fl = ei->vfs_inode.i_flags;
4172 		old_fl = ei->i_flags;
4173 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4174 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4175 				EXT4_DIRSYNC_FL);
4176 		if (vfs_fl & S_SYNC)
4177 			new_fl |= EXT4_SYNC_FL;
4178 		if (vfs_fl & S_APPEND)
4179 			new_fl |= EXT4_APPEND_FL;
4180 		if (vfs_fl & S_IMMUTABLE)
4181 			new_fl |= EXT4_IMMUTABLE_FL;
4182 		if (vfs_fl & S_NOATIME)
4183 			new_fl |= EXT4_NOATIME_FL;
4184 		if (vfs_fl & S_DIRSYNC)
4185 			new_fl |= EXT4_DIRSYNC_FL;
4186 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4187 }
4188 
4189 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4190 				  struct ext4_inode_info *ei)
4191 {
4192 	blkcnt_t i_blocks ;
4193 	struct inode *inode = &(ei->vfs_inode);
4194 	struct super_block *sb = inode->i_sb;
4195 
4196 	if (ext4_has_feature_huge_file(sb)) {
4197 		/* we are using combined 48 bit field */
4198 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4199 					le32_to_cpu(raw_inode->i_blocks_lo);
4200 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4201 			/* i_blocks represent file system block size */
4202 			return i_blocks  << (inode->i_blkbits - 9);
4203 		} else {
4204 			return i_blocks;
4205 		}
4206 	} else {
4207 		return le32_to_cpu(raw_inode->i_blocks_lo);
4208 	}
4209 }
4210 
4211 static inline void ext4_iget_extra_inode(struct inode *inode,
4212 					 struct ext4_inode *raw_inode,
4213 					 struct ext4_inode_info *ei)
4214 {
4215 	__le32 *magic = (void *)raw_inode +
4216 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4217 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4218 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4219 		ext4_find_inline_data_nolock(inode);
4220 	} else
4221 		EXT4_I(inode)->i_inline_off = 0;
4222 }
4223 
4224 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4225 {
4226 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4227 		return -EOPNOTSUPP;
4228 	*projid = EXT4_I(inode)->i_projid;
4229 	return 0;
4230 }
4231 
4232 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4233 {
4234 	struct ext4_iloc iloc;
4235 	struct ext4_inode *raw_inode;
4236 	struct ext4_inode_info *ei;
4237 	struct inode *inode;
4238 	journal_t *journal = EXT4_SB(sb)->s_journal;
4239 	long ret;
4240 	int block;
4241 	uid_t i_uid;
4242 	gid_t i_gid;
4243 	projid_t i_projid;
4244 
4245 	inode = iget_locked(sb, ino);
4246 	if (!inode)
4247 		return ERR_PTR(-ENOMEM);
4248 	if (!(inode->i_state & I_NEW))
4249 		return inode;
4250 
4251 	ei = EXT4_I(inode);
4252 	iloc.bh = NULL;
4253 
4254 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4255 	if (ret < 0)
4256 		goto bad_inode;
4257 	raw_inode = ext4_raw_inode(&iloc);
4258 
4259 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4260 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4261 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4262 		    EXT4_INODE_SIZE(inode->i_sb)) {
4263 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4264 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4265 				EXT4_INODE_SIZE(inode->i_sb));
4266 			ret = -EFSCORRUPTED;
4267 			goto bad_inode;
4268 		}
4269 	} else
4270 		ei->i_extra_isize = 0;
4271 
4272 	/* Precompute checksum seed for inode metadata */
4273 	if (ext4_has_metadata_csum(sb)) {
4274 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4275 		__u32 csum;
4276 		__le32 inum = cpu_to_le32(inode->i_ino);
4277 		__le32 gen = raw_inode->i_generation;
4278 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4279 				   sizeof(inum));
4280 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4281 					      sizeof(gen));
4282 	}
4283 
4284 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4285 		EXT4_ERROR_INODE(inode, "checksum invalid");
4286 		ret = -EFSBADCRC;
4287 		goto bad_inode;
4288 	}
4289 
4290 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4291 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4292 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4293 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4294 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4295 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4296 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4297 	else
4298 		i_projid = EXT4_DEF_PROJID;
4299 
4300 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4301 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4302 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4303 	}
4304 	i_uid_write(inode, i_uid);
4305 	i_gid_write(inode, i_gid);
4306 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4307 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4308 
4309 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4310 	ei->i_inline_off = 0;
4311 	ei->i_dir_start_lookup = 0;
4312 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4313 	/* We now have enough fields to check if the inode was active or not.
4314 	 * This is needed because nfsd might try to access dead inodes
4315 	 * the test is that same one that e2fsck uses
4316 	 * NeilBrown 1999oct15
4317 	 */
4318 	if (inode->i_nlink == 0) {
4319 		if ((inode->i_mode == 0 ||
4320 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4321 		    ino != EXT4_BOOT_LOADER_INO) {
4322 			/* this inode is deleted */
4323 			ret = -ESTALE;
4324 			goto bad_inode;
4325 		}
4326 		/* The only unlinked inodes we let through here have
4327 		 * valid i_mode and are being read by the orphan
4328 		 * recovery code: that's fine, we're about to complete
4329 		 * the process of deleting those.
4330 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4331 		 * not initialized on a new filesystem. */
4332 	}
4333 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4334 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4335 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4336 	if (ext4_has_feature_64bit(sb))
4337 		ei->i_file_acl |=
4338 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4339 	inode->i_size = ext4_isize(raw_inode);
4340 	ei->i_disksize = inode->i_size;
4341 #ifdef CONFIG_QUOTA
4342 	ei->i_reserved_quota = 0;
4343 #endif
4344 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4345 	ei->i_block_group = iloc.block_group;
4346 	ei->i_last_alloc_group = ~0;
4347 	/*
4348 	 * NOTE! The in-memory inode i_data array is in little-endian order
4349 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4350 	 */
4351 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4352 		ei->i_data[block] = raw_inode->i_block[block];
4353 	INIT_LIST_HEAD(&ei->i_orphan);
4354 
4355 	/*
4356 	 * Set transaction id's of transactions that have to be committed
4357 	 * to finish f[data]sync. We set them to currently running transaction
4358 	 * as we cannot be sure that the inode or some of its metadata isn't
4359 	 * part of the transaction - the inode could have been reclaimed and
4360 	 * now it is reread from disk.
4361 	 */
4362 	if (journal) {
4363 		transaction_t *transaction;
4364 		tid_t tid;
4365 
4366 		read_lock(&journal->j_state_lock);
4367 		if (journal->j_running_transaction)
4368 			transaction = journal->j_running_transaction;
4369 		else
4370 			transaction = journal->j_committing_transaction;
4371 		if (transaction)
4372 			tid = transaction->t_tid;
4373 		else
4374 			tid = journal->j_commit_sequence;
4375 		read_unlock(&journal->j_state_lock);
4376 		ei->i_sync_tid = tid;
4377 		ei->i_datasync_tid = tid;
4378 	}
4379 
4380 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4381 		if (ei->i_extra_isize == 0) {
4382 			/* The extra space is currently unused. Use it. */
4383 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4384 					    EXT4_GOOD_OLD_INODE_SIZE;
4385 		} else {
4386 			ext4_iget_extra_inode(inode, raw_inode, ei);
4387 		}
4388 	}
4389 
4390 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4391 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4392 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4393 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4394 
4395 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4396 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4397 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4398 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4399 				inode->i_version |=
4400 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4401 		}
4402 	}
4403 
4404 	ret = 0;
4405 	if (ei->i_file_acl &&
4406 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4407 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4408 				 ei->i_file_acl);
4409 		ret = -EFSCORRUPTED;
4410 		goto bad_inode;
4411 	} else if (!ext4_has_inline_data(inode)) {
4412 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4413 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4414 			    (S_ISLNK(inode->i_mode) &&
4415 			     !ext4_inode_is_fast_symlink(inode))))
4416 				/* Validate extent which is part of inode */
4417 				ret = ext4_ext_check_inode(inode);
4418 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4419 			   (S_ISLNK(inode->i_mode) &&
4420 			    !ext4_inode_is_fast_symlink(inode))) {
4421 			/* Validate block references which are part of inode */
4422 			ret = ext4_ind_check_inode(inode);
4423 		}
4424 	}
4425 	if (ret)
4426 		goto bad_inode;
4427 
4428 	if (S_ISREG(inode->i_mode)) {
4429 		inode->i_op = &ext4_file_inode_operations;
4430 		inode->i_fop = &ext4_file_operations;
4431 		ext4_set_aops(inode);
4432 	} else if (S_ISDIR(inode->i_mode)) {
4433 		inode->i_op = &ext4_dir_inode_operations;
4434 		inode->i_fop = &ext4_dir_operations;
4435 	} else if (S_ISLNK(inode->i_mode)) {
4436 		if (ext4_encrypted_inode(inode)) {
4437 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4438 			ext4_set_aops(inode);
4439 		} else if (ext4_inode_is_fast_symlink(inode)) {
4440 			inode->i_link = (char *)ei->i_data;
4441 			inode->i_op = &ext4_fast_symlink_inode_operations;
4442 			nd_terminate_link(ei->i_data, inode->i_size,
4443 				sizeof(ei->i_data) - 1);
4444 		} else {
4445 			inode->i_op = &ext4_symlink_inode_operations;
4446 			ext4_set_aops(inode);
4447 		}
4448 		inode_nohighmem(inode);
4449 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4450 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4451 		inode->i_op = &ext4_special_inode_operations;
4452 		if (raw_inode->i_block[0])
4453 			init_special_inode(inode, inode->i_mode,
4454 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4455 		else
4456 			init_special_inode(inode, inode->i_mode,
4457 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4458 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4459 		make_bad_inode(inode);
4460 	} else {
4461 		ret = -EFSCORRUPTED;
4462 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4463 		goto bad_inode;
4464 	}
4465 	brelse(iloc.bh);
4466 	ext4_set_inode_flags(inode);
4467 	unlock_new_inode(inode);
4468 	return inode;
4469 
4470 bad_inode:
4471 	brelse(iloc.bh);
4472 	iget_failed(inode);
4473 	return ERR_PTR(ret);
4474 }
4475 
4476 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4477 {
4478 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4479 		return ERR_PTR(-EFSCORRUPTED);
4480 	return ext4_iget(sb, ino);
4481 }
4482 
4483 static int ext4_inode_blocks_set(handle_t *handle,
4484 				struct ext4_inode *raw_inode,
4485 				struct ext4_inode_info *ei)
4486 {
4487 	struct inode *inode = &(ei->vfs_inode);
4488 	u64 i_blocks = inode->i_blocks;
4489 	struct super_block *sb = inode->i_sb;
4490 
4491 	if (i_blocks <= ~0U) {
4492 		/*
4493 		 * i_blocks can be represented in a 32 bit variable
4494 		 * as multiple of 512 bytes
4495 		 */
4496 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4497 		raw_inode->i_blocks_high = 0;
4498 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4499 		return 0;
4500 	}
4501 	if (!ext4_has_feature_huge_file(sb))
4502 		return -EFBIG;
4503 
4504 	if (i_blocks <= 0xffffffffffffULL) {
4505 		/*
4506 		 * i_blocks can be represented in a 48 bit variable
4507 		 * as multiple of 512 bytes
4508 		 */
4509 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4510 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4511 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4512 	} else {
4513 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4514 		/* i_block is stored in file system block size */
4515 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4516 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4517 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4518 	}
4519 	return 0;
4520 }
4521 
4522 struct other_inode {
4523 	unsigned long		orig_ino;
4524 	struct ext4_inode	*raw_inode;
4525 };
4526 
4527 static int other_inode_match(struct inode * inode, unsigned long ino,
4528 			     void *data)
4529 {
4530 	struct other_inode *oi = (struct other_inode *) data;
4531 
4532 	if ((inode->i_ino != ino) ||
4533 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4534 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4535 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4536 		return 0;
4537 	spin_lock(&inode->i_lock);
4538 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4539 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4540 	    (inode->i_state & I_DIRTY_TIME)) {
4541 		struct ext4_inode_info	*ei = EXT4_I(inode);
4542 
4543 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4544 		spin_unlock(&inode->i_lock);
4545 
4546 		spin_lock(&ei->i_raw_lock);
4547 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4548 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4549 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4550 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4551 		spin_unlock(&ei->i_raw_lock);
4552 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4553 		return -1;
4554 	}
4555 	spin_unlock(&inode->i_lock);
4556 	return -1;
4557 }
4558 
4559 /*
4560  * Opportunistically update the other time fields for other inodes in
4561  * the same inode table block.
4562  */
4563 static void ext4_update_other_inodes_time(struct super_block *sb,
4564 					  unsigned long orig_ino, char *buf)
4565 {
4566 	struct other_inode oi;
4567 	unsigned long ino;
4568 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4569 	int inode_size = EXT4_INODE_SIZE(sb);
4570 
4571 	oi.orig_ino = orig_ino;
4572 	/*
4573 	 * Calculate the first inode in the inode table block.  Inode
4574 	 * numbers are one-based.  That is, the first inode in a block
4575 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4576 	 */
4577 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4578 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4579 		if (ino == orig_ino)
4580 			continue;
4581 		oi.raw_inode = (struct ext4_inode *) buf;
4582 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4583 	}
4584 }
4585 
4586 /*
4587  * Post the struct inode info into an on-disk inode location in the
4588  * buffer-cache.  This gobbles the caller's reference to the
4589  * buffer_head in the inode location struct.
4590  *
4591  * The caller must have write access to iloc->bh.
4592  */
4593 static int ext4_do_update_inode(handle_t *handle,
4594 				struct inode *inode,
4595 				struct ext4_iloc *iloc)
4596 {
4597 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4598 	struct ext4_inode_info *ei = EXT4_I(inode);
4599 	struct buffer_head *bh = iloc->bh;
4600 	struct super_block *sb = inode->i_sb;
4601 	int err = 0, rc, block;
4602 	int need_datasync = 0, set_large_file = 0;
4603 	uid_t i_uid;
4604 	gid_t i_gid;
4605 	projid_t i_projid;
4606 
4607 	spin_lock(&ei->i_raw_lock);
4608 
4609 	/* For fields not tracked in the in-memory inode,
4610 	 * initialise them to zero for new inodes. */
4611 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4612 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4613 
4614 	ext4_get_inode_flags(ei);
4615 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4616 	i_uid = i_uid_read(inode);
4617 	i_gid = i_gid_read(inode);
4618 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4619 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4620 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4621 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4622 /*
4623  * Fix up interoperability with old kernels. Otherwise, old inodes get
4624  * re-used with the upper 16 bits of the uid/gid intact
4625  */
4626 		if (!ei->i_dtime) {
4627 			raw_inode->i_uid_high =
4628 				cpu_to_le16(high_16_bits(i_uid));
4629 			raw_inode->i_gid_high =
4630 				cpu_to_le16(high_16_bits(i_gid));
4631 		} else {
4632 			raw_inode->i_uid_high = 0;
4633 			raw_inode->i_gid_high = 0;
4634 		}
4635 	} else {
4636 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4637 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4638 		raw_inode->i_uid_high = 0;
4639 		raw_inode->i_gid_high = 0;
4640 	}
4641 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4642 
4643 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4644 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4645 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4646 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4647 
4648 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4649 	if (err) {
4650 		spin_unlock(&ei->i_raw_lock);
4651 		goto out_brelse;
4652 	}
4653 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4654 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4655 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4656 		raw_inode->i_file_acl_high =
4657 			cpu_to_le16(ei->i_file_acl >> 32);
4658 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4659 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4660 		ext4_isize_set(raw_inode, ei->i_disksize);
4661 		need_datasync = 1;
4662 	}
4663 	if (ei->i_disksize > 0x7fffffffULL) {
4664 		if (!ext4_has_feature_large_file(sb) ||
4665 				EXT4_SB(sb)->s_es->s_rev_level ==
4666 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4667 			set_large_file = 1;
4668 	}
4669 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4670 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4671 		if (old_valid_dev(inode->i_rdev)) {
4672 			raw_inode->i_block[0] =
4673 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4674 			raw_inode->i_block[1] = 0;
4675 		} else {
4676 			raw_inode->i_block[0] = 0;
4677 			raw_inode->i_block[1] =
4678 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4679 			raw_inode->i_block[2] = 0;
4680 		}
4681 	} else if (!ext4_has_inline_data(inode)) {
4682 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4683 			raw_inode->i_block[block] = ei->i_data[block];
4684 	}
4685 
4686 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4687 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4688 		if (ei->i_extra_isize) {
4689 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4690 				raw_inode->i_version_hi =
4691 					cpu_to_le32(inode->i_version >> 32);
4692 			raw_inode->i_extra_isize =
4693 				cpu_to_le16(ei->i_extra_isize);
4694 		}
4695 	}
4696 
4697 	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4698 			EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4699 	       i_projid != EXT4_DEF_PROJID);
4700 
4701 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4702 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4703 		raw_inode->i_projid = cpu_to_le32(i_projid);
4704 
4705 	ext4_inode_csum_set(inode, raw_inode, ei);
4706 	spin_unlock(&ei->i_raw_lock);
4707 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4708 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4709 					      bh->b_data);
4710 
4711 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4712 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4713 	if (!err)
4714 		err = rc;
4715 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4716 	if (set_large_file) {
4717 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4718 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4719 		if (err)
4720 			goto out_brelse;
4721 		ext4_update_dynamic_rev(sb);
4722 		ext4_set_feature_large_file(sb);
4723 		ext4_handle_sync(handle);
4724 		err = ext4_handle_dirty_super(handle, sb);
4725 	}
4726 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4727 out_brelse:
4728 	brelse(bh);
4729 	ext4_std_error(inode->i_sb, err);
4730 	return err;
4731 }
4732 
4733 /*
4734  * ext4_write_inode()
4735  *
4736  * We are called from a few places:
4737  *
4738  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4739  *   Here, there will be no transaction running. We wait for any running
4740  *   transaction to commit.
4741  *
4742  * - Within flush work (sys_sync(), kupdate and such).
4743  *   We wait on commit, if told to.
4744  *
4745  * - Within iput_final() -> write_inode_now()
4746  *   We wait on commit, if told to.
4747  *
4748  * In all cases it is actually safe for us to return without doing anything,
4749  * because the inode has been copied into a raw inode buffer in
4750  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4751  * writeback.
4752  *
4753  * Note that we are absolutely dependent upon all inode dirtiers doing the
4754  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4755  * which we are interested.
4756  *
4757  * It would be a bug for them to not do this.  The code:
4758  *
4759  *	mark_inode_dirty(inode)
4760  *	stuff();
4761  *	inode->i_size = expr;
4762  *
4763  * is in error because write_inode() could occur while `stuff()' is running,
4764  * and the new i_size will be lost.  Plus the inode will no longer be on the
4765  * superblock's dirty inode list.
4766  */
4767 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4768 {
4769 	int err;
4770 
4771 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4772 		return 0;
4773 
4774 	if (EXT4_SB(inode->i_sb)->s_journal) {
4775 		if (ext4_journal_current_handle()) {
4776 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4777 			dump_stack();
4778 			return -EIO;
4779 		}
4780 
4781 		/*
4782 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4783 		 * ext4_sync_fs() will force the commit after everything is
4784 		 * written.
4785 		 */
4786 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4787 			return 0;
4788 
4789 		err = ext4_force_commit(inode->i_sb);
4790 	} else {
4791 		struct ext4_iloc iloc;
4792 
4793 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4794 		if (err)
4795 			return err;
4796 		/*
4797 		 * sync(2) will flush the whole buffer cache. No need to do
4798 		 * it here separately for each inode.
4799 		 */
4800 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4801 			sync_dirty_buffer(iloc.bh);
4802 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4803 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4804 					 "IO error syncing inode");
4805 			err = -EIO;
4806 		}
4807 		brelse(iloc.bh);
4808 	}
4809 	return err;
4810 }
4811 
4812 /*
4813  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4814  * buffers that are attached to a page stradding i_size and are undergoing
4815  * commit. In that case we have to wait for commit to finish and try again.
4816  */
4817 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4818 {
4819 	struct page *page;
4820 	unsigned offset;
4821 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4822 	tid_t commit_tid = 0;
4823 	int ret;
4824 
4825 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4826 	/*
4827 	 * All buffers in the last page remain valid? Then there's nothing to
4828 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4829 	 * blocksize case
4830 	 */
4831 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4832 		return;
4833 	while (1) {
4834 		page = find_lock_page(inode->i_mapping,
4835 				      inode->i_size >> PAGE_CACHE_SHIFT);
4836 		if (!page)
4837 			return;
4838 		ret = __ext4_journalled_invalidatepage(page, offset,
4839 						PAGE_CACHE_SIZE - offset);
4840 		unlock_page(page);
4841 		page_cache_release(page);
4842 		if (ret != -EBUSY)
4843 			return;
4844 		commit_tid = 0;
4845 		read_lock(&journal->j_state_lock);
4846 		if (journal->j_committing_transaction)
4847 			commit_tid = journal->j_committing_transaction->t_tid;
4848 		read_unlock(&journal->j_state_lock);
4849 		if (commit_tid)
4850 			jbd2_log_wait_commit(journal, commit_tid);
4851 	}
4852 }
4853 
4854 /*
4855  * ext4_setattr()
4856  *
4857  * Called from notify_change.
4858  *
4859  * We want to trap VFS attempts to truncate the file as soon as
4860  * possible.  In particular, we want to make sure that when the VFS
4861  * shrinks i_size, we put the inode on the orphan list and modify
4862  * i_disksize immediately, so that during the subsequent flushing of
4863  * dirty pages and freeing of disk blocks, we can guarantee that any
4864  * commit will leave the blocks being flushed in an unused state on
4865  * disk.  (On recovery, the inode will get truncated and the blocks will
4866  * be freed, so we have a strong guarantee that no future commit will
4867  * leave these blocks visible to the user.)
4868  *
4869  * Another thing we have to assure is that if we are in ordered mode
4870  * and inode is still attached to the committing transaction, we must
4871  * we start writeout of all the dirty pages which are being truncated.
4872  * This way we are sure that all the data written in the previous
4873  * transaction are already on disk (truncate waits for pages under
4874  * writeback).
4875  *
4876  * Called with inode->i_mutex down.
4877  */
4878 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4879 {
4880 	struct inode *inode = d_inode(dentry);
4881 	int error, rc = 0;
4882 	int orphan = 0;
4883 	const unsigned int ia_valid = attr->ia_valid;
4884 
4885 	error = inode_change_ok(inode, attr);
4886 	if (error)
4887 		return error;
4888 
4889 	if (is_quota_modification(inode, attr)) {
4890 		error = dquot_initialize(inode);
4891 		if (error)
4892 			return error;
4893 	}
4894 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4895 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4896 		handle_t *handle;
4897 
4898 		/* (user+group)*(old+new) structure, inode write (sb,
4899 		 * inode block, ? - but truncate inode update has it) */
4900 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4901 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4902 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4903 		if (IS_ERR(handle)) {
4904 			error = PTR_ERR(handle);
4905 			goto err_out;
4906 		}
4907 		error = dquot_transfer(inode, attr);
4908 		if (error) {
4909 			ext4_journal_stop(handle);
4910 			return error;
4911 		}
4912 		/* Update corresponding info in inode so that everything is in
4913 		 * one transaction */
4914 		if (attr->ia_valid & ATTR_UID)
4915 			inode->i_uid = attr->ia_uid;
4916 		if (attr->ia_valid & ATTR_GID)
4917 			inode->i_gid = attr->ia_gid;
4918 		error = ext4_mark_inode_dirty(handle, inode);
4919 		ext4_journal_stop(handle);
4920 	}
4921 
4922 	if (attr->ia_valid & ATTR_SIZE) {
4923 		handle_t *handle;
4924 		loff_t oldsize = inode->i_size;
4925 		int shrink = (attr->ia_size <= inode->i_size);
4926 
4927 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4928 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4929 
4930 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4931 				return -EFBIG;
4932 		}
4933 		if (!S_ISREG(inode->i_mode))
4934 			return -EINVAL;
4935 
4936 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4937 			inode_inc_iversion(inode);
4938 
4939 		if (ext4_should_order_data(inode) &&
4940 		    (attr->ia_size < inode->i_size)) {
4941 			error = ext4_begin_ordered_truncate(inode,
4942 							    attr->ia_size);
4943 			if (error)
4944 				goto err_out;
4945 		}
4946 		if (attr->ia_size != inode->i_size) {
4947 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4948 			if (IS_ERR(handle)) {
4949 				error = PTR_ERR(handle);
4950 				goto err_out;
4951 			}
4952 			if (ext4_handle_valid(handle) && shrink) {
4953 				error = ext4_orphan_add(handle, inode);
4954 				orphan = 1;
4955 			}
4956 			/*
4957 			 * Update c/mtime on truncate up, ext4_truncate() will
4958 			 * update c/mtime in shrink case below
4959 			 */
4960 			if (!shrink) {
4961 				inode->i_mtime = ext4_current_time(inode);
4962 				inode->i_ctime = inode->i_mtime;
4963 			}
4964 			down_write(&EXT4_I(inode)->i_data_sem);
4965 			EXT4_I(inode)->i_disksize = attr->ia_size;
4966 			rc = ext4_mark_inode_dirty(handle, inode);
4967 			if (!error)
4968 				error = rc;
4969 			/*
4970 			 * We have to update i_size under i_data_sem together
4971 			 * with i_disksize to avoid races with writeback code
4972 			 * running ext4_wb_update_i_disksize().
4973 			 */
4974 			if (!error)
4975 				i_size_write(inode, attr->ia_size);
4976 			up_write(&EXT4_I(inode)->i_data_sem);
4977 			ext4_journal_stop(handle);
4978 			if (error) {
4979 				if (orphan)
4980 					ext4_orphan_del(NULL, inode);
4981 				goto err_out;
4982 			}
4983 		}
4984 		if (!shrink)
4985 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4986 
4987 		/*
4988 		 * Blocks are going to be removed from the inode. Wait
4989 		 * for dio in flight.  Temporarily disable
4990 		 * dioread_nolock to prevent livelock.
4991 		 */
4992 		if (orphan) {
4993 			if (!ext4_should_journal_data(inode)) {
4994 				ext4_inode_block_unlocked_dio(inode);
4995 				inode_dio_wait(inode);
4996 				ext4_inode_resume_unlocked_dio(inode);
4997 			} else
4998 				ext4_wait_for_tail_page_commit(inode);
4999 		}
5000 		down_write(&EXT4_I(inode)->i_mmap_sem);
5001 		/*
5002 		 * Truncate pagecache after we've waited for commit
5003 		 * in data=journal mode to make pages freeable.
5004 		 */
5005 		truncate_pagecache(inode, inode->i_size);
5006 		if (shrink)
5007 			ext4_truncate(inode);
5008 		up_write(&EXT4_I(inode)->i_mmap_sem);
5009 	}
5010 
5011 	if (!rc) {
5012 		setattr_copy(inode, attr);
5013 		mark_inode_dirty(inode);
5014 	}
5015 
5016 	/*
5017 	 * If the call to ext4_truncate failed to get a transaction handle at
5018 	 * all, we need to clean up the in-core orphan list manually.
5019 	 */
5020 	if (orphan && inode->i_nlink)
5021 		ext4_orphan_del(NULL, inode);
5022 
5023 	if (!rc && (ia_valid & ATTR_MODE))
5024 		rc = posix_acl_chmod(inode, inode->i_mode);
5025 
5026 err_out:
5027 	ext4_std_error(inode->i_sb, error);
5028 	if (!error)
5029 		error = rc;
5030 	return error;
5031 }
5032 
5033 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5034 		 struct kstat *stat)
5035 {
5036 	struct inode *inode;
5037 	unsigned long long delalloc_blocks;
5038 
5039 	inode = d_inode(dentry);
5040 	generic_fillattr(inode, stat);
5041 
5042 	/*
5043 	 * If there is inline data in the inode, the inode will normally not
5044 	 * have data blocks allocated (it may have an external xattr block).
5045 	 * Report at least one sector for such files, so tools like tar, rsync,
5046 	 * others doen't incorrectly think the file is completely sparse.
5047 	 */
5048 	if (unlikely(ext4_has_inline_data(inode)))
5049 		stat->blocks += (stat->size + 511) >> 9;
5050 
5051 	/*
5052 	 * We can't update i_blocks if the block allocation is delayed
5053 	 * otherwise in the case of system crash before the real block
5054 	 * allocation is done, we will have i_blocks inconsistent with
5055 	 * on-disk file blocks.
5056 	 * We always keep i_blocks updated together with real
5057 	 * allocation. But to not confuse with user, stat
5058 	 * will return the blocks that include the delayed allocation
5059 	 * blocks for this file.
5060 	 */
5061 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5062 				   EXT4_I(inode)->i_reserved_data_blocks);
5063 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5064 	return 0;
5065 }
5066 
5067 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5068 				   int pextents)
5069 {
5070 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5071 		return ext4_ind_trans_blocks(inode, lblocks);
5072 	return ext4_ext_index_trans_blocks(inode, pextents);
5073 }
5074 
5075 /*
5076  * Account for index blocks, block groups bitmaps and block group
5077  * descriptor blocks if modify datablocks and index blocks
5078  * worse case, the indexs blocks spread over different block groups
5079  *
5080  * If datablocks are discontiguous, they are possible to spread over
5081  * different block groups too. If they are contiguous, with flexbg,
5082  * they could still across block group boundary.
5083  *
5084  * Also account for superblock, inode, quota and xattr blocks
5085  */
5086 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5087 				  int pextents)
5088 {
5089 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5090 	int gdpblocks;
5091 	int idxblocks;
5092 	int ret = 0;
5093 
5094 	/*
5095 	 * How many index blocks need to touch to map @lblocks logical blocks
5096 	 * to @pextents physical extents?
5097 	 */
5098 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5099 
5100 	ret = idxblocks;
5101 
5102 	/*
5103 	 * Now let's see how many group bitmaps and group descriptors need
5104 	 * to account
5105 	 */
5106 	groups = idxblocks + pextents;
5107 	gdpblocks = groups;
5108 	if (groups > ngroups)
5109 		groups = ngroups;
5110 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5111 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5112 
5113 	/* bitmaps and block group descriptor blocks */
5114 	ret += groups + gdpblocks;
5115 
5116 	/* Blocks for super block, inode, quota and xattr blocks */
5117 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5118 
5119 	return ret;
5120 }
5121 
5122 /*
5123  * Calculate the total number of credits to reserve to fit
5124  * the modification of a single pages into a single transaction,
5125  * which may include multiple chunks of block allocations.
5126  *
5127  * This could be called via ext4_write_begin()
5128  *
5129  * We need to consider the worse case, when
5130  * one new block per extent.
5131  */
5132 int ext4_writepage_trans_blocks(struct inode *inode)
5133 {
5134 	int bpp = ext4_journal_blocks_per_page(inode);
5135 	int ret;
5136 
5137 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5138 
5139 	/* Account for data blocks for journalled mode */
5140 	if (ext4_should_journal_data(inode))
5141 		ret += bpp;
5142 	return ret;
5143 }
5144 
5145 /*
5146  * Calculate the journal credits for a chunk of data modification.
5147  *
5148  * This is called from DIO, fallocate or whoever calling
5149  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5150  *
5151  * journal buffers for data blocks are not included here, as DIO
5152  * and fallocate do no need to journal data buffers.
5153  */
5154 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5155 {
5156 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5157 }
5158 
5159 /*
5160  * The caller must have previously called ext4_reserve_inode_write().
5161  * Give this, we know that the caller already has write access to iloc->bh.
5162  */
5163 int ext4_mark_iloc_dirty(handle_t *handle,
5164 			 struct inode *inode, struct ext4_iloc *iloc)
5165 {
5166 	int err = 0;
5167 
5168 	if (IS_I_VERSION(inode))
5169 		inode_inc_iversion(inode);
5170 
5171 	/* the do_update_inode consumes one bh->b_count */
5172 	get_bh(iloc->bh);
5173 
5174 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5175 	err = ext4_do_update_inode(handle, inode, iloc);
5176 	put_bh(iloc->bh);
5177 	return err;
5178 }
5179 
5180 /*
5181  * On success, We end up with an outstanding reference count against
5182  * iloc->bh.  This _must_ be cleaned up later.
5183  */
5184 
5185 int
5186 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5187 			 struct ext4_iloc *iloc)
5188 {
5189 	int err;
5190 
5191 	err = ext4_get_inode_loc(inode, iloc);
5192 	if (!err) {
5193 		BUFFER_TRACE(iloc->bh, "get_write_access");
5194 		err = ext4_journal_get_write_access(handle, iloc->bh);
5195 		if (err) {
5196 			brelse(iloc->bh);
5197 			iloc->bh = NULL;
5198 		}
5199 	}
5200 	ext4_std_error(inode->i_sb, err);
5201 	return err;
5202 }
5203 
5204 /*
5205  * Expand an inode by new_extra_isize bytes.
5206  * Returns 0 on success or negative error number on failure.
5207  */
5208 static int ext4_expand_extra_isize(struct inode *inode,
5209 				   unsigned int new_extra_isize,
5210 				   struct ext4_iloc iloc,
5211 				   handle_t *handle)
5212 {
5213 	struct ext4_inode *raw_inode;
5214 	struct ext4_xattr_ibody_header *header;
5215 
5216 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5217 		return 0;
5218 
5219 	raw_inode = ext4_raw_inode(&iloc);
5220 
5221 	header = IHDR(inode, raw_inode);
5222 
5223 	/* No extended attributes present */
5224 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5225 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5226 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5227 			new_extra_isize);
5228 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5229 		return 0;
5230 	}
5231 
5232 	/* try to expand with EAs present */
5233 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5234 					  raw_inode, handle);
5235 }
5236 
5237 /*
5238  * What we do here is to mark the in-core inode as clean with respect to inode
5239  * dirtiness (it may still be data-dirty).
5240  * This means that the in-core inode may be reaped by prune_icache
5241  * without having to perform any I/O.  This is a very good thing,
5242  * because *any* task may call prune_icache - even ones which
5243  * have a transaction open against a different journal.
5244  *
5245  * Is this cheating?  Not really.  Sure, we haven't written the
5246  * inode out, but prune_icache isn't a user-visible syncing function.
5247  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5248  * we start and wait on commits.
5249  */
5250 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5251 {
5252 	struct ext4_iloc iloc;
5253 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5254 	static unsigned int mnt_count;
5255 	int err, ret;
5256 
5257 	might_sleep();
5258 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5259 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5260 	if (ext4_handle_valid(handle) &&
5261 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5262 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5263 		/*
5264 		 * We need extra buffer credits since we may write into EA block
5265 		 * with this same handle. If journal_extend fails, then it will
5266 		 * only result in a minor loss of functionality for that inode.
5267 		 * If this is felt to be critical, then e2fsck should be run to
5268 		 * force a large enough s_min_extra_isize.
5269 		 */
5270 		if ((jbd2_journal_extend(handle,
5271 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5272 			ret = ext4_expand_extra_isize(inode,
5273 						      sbi->s_want_extra_isize,
5274 						      iloc, handle);
5275 			if (ret) {
5276 				ext4_set_inode_state(inode,
5277 						     EXT4_STATE_NO_EXPAND);
5278 				if (mnt_count !=
5279 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5280 					ext4_warning(inode->i_sb,
5281 					"Unable to expand inode %lu. Delete"
5282 					" some EAs or run e2fsck.",
5283 					inode->i_ino);
5284 					mnt_count =
5285 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5286 				}
5287 			}
5288 		}
5289 	}
5290 	if (!err)
5291 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5292 	return err;
5293 }
5294 
5295 /*
5296  * ext4_dirty_inode() is called from __mark_inode_dirty()
5297  *
5298  * We're really interested in the case where a file is being extended.
5299  * i_size has been changed by generic_commit_write() and we thus need
5300  * to include the updated inode in the current transaction.
5301  *
5302  * Also, dquot_alloc_block() will always dirty the inode when blocks
5303  * are allocated to the file.
5304  *
5305  * If the inode is marked synchronous, we don't honour that here - doing
5306  * so would cause a commit on atime updates, which we don't bother doing.
5307  * We handle synchronous inodes at the highest possible level.
5308  *
5309  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5310  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5311  * to copy into the on-disk inode structure are the timestamp files.
5312  */
5313 void ext4_dirty_inode(struct inode *inode, int flags)
5314 {
5315 	handle_t *handle;
5316 
5317 	if (flags == I_DIRTY_TIME)
5318 		return;
5319 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5320 	if (IS_ERR(handle))
5321 		goto out;
5322 
5323 	ext4_mark_inode_dirty(handle, inode);
5324 
5325 	ext4_journal_stop(handle);
5326 out:
5327 	return;
5328 }
5329 
5330 #if 0
5331 /*
5332  * Bind an inode's backing buffer_head into this transaction, to prevent
5333  * it from being flushed to disk early.  Unlike
5334  * ext4_reserve_inode_write, this leaves behind no bh reference and
5335  * returns no iloc structure, so the caller needs to repeat the iloc
5336  * lookup to mark the inode dirty later.
5337  */
5338 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5339 {
5340 	struct ext4_iloc iloc;
5341 
5342 	int err = 0;
5343 	if (handle) {
5344 		err = ext4_get_inode_loc(inode, &iloc);
5345 		if (!err) {
5346 			BUFFER_TRACE(iloc.bh, "get_write_access");
5347 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5348 			if (!err)
5349 				err = ext4_handle_dirty_metadata(handle,
5350 								 NULL,
5351 								 iloc.bh);
5352 			brelse(iloc.bh);
5353 		}
5354 	}
5355 	ext4_std_error(inode->i_sb, err);
5356 	return err;
5357 }
5358 #endif
5359 
5360 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5361 {
5362 	journal_t *journal;
5363 	handle_t *handle;
5364 	int err;
5365 
5366 	/*
5367 	 * We have to be very careful here: changing a data block's
5368 	 * journaling status dynamically is dangerous.  If we write a
5369 	 * data block to the journal, change the status and then delete
5370 	 * that block, we risk forgetting to revoke the old log record
5371 	 * from the journal and so a subsequent replay can corrupt data.
5372 	 * So, first we make sure that the journal is empty and that
5373 	 * nobody is changing anything.
5374 	 */
5375 
5376 	journal = EXT4_JOURNAL(inode);
5377 	if (!journal)
5378 		return 0;
5379 	if (is_journal_aborted(journal))
5380 		return -EROFS;
5381 	/* We have to allocate physical blocks for delalloc blocks
5382 	 * before flushing journal. otherwise delalloc blocks can not
5383 	 * be allocated any more. even more truncate on delalloc blocks
5384 	 * could trigger BUG by flushing delalloc blocks in journal.
5385 	 * There is no delalloc block in non-journal data mode.
5386 	 */
5387 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5388 		err = ext4_alloc_da_blocks(inode);
5389 		if (err < 0)
5390 			return err;
5391 	}
5392 
5393 	/* Wait for all existing dio workers */
5394 	ext4_inode_block_unlocked_dio(inode);
5395 	inode_dio_wait(inode);
5396 
5397 	jbd2_journal_lock_updates(journal);
5398 
5399 	/*
5400 	 * OK, there are no updates running now, and all cached data is
5401 	 * synced to disk.  We are now in a completely consistent state
5402 	 * which doesn't have anything in the journal, and we know that
5403 	 * no filesystem updates are running, so it is safe to modify
5404 	 * the inode's in-core data-journaling state flag now.
5405 	 */
5406 
5407 	if (val)
5408 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5409 	else {
5410 		err = jbd2_journal_flush(journal);
5411 		if (err < 0) {
5412 			jbd2_journal_unlock_updates(journal);
5413 			ext4_inode_resume_unlocked_dio(inode);
5414 			return err;
5415 		}
5416 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5417 	}
5418 	ext4_set_aops(inode);
5419 
5420 	jbd2_journal_unlock_updates(journal);
5421 	ext4_inode_resume_unlocked_dio(inode);
5422 
5423 	/* Finally we can mark the inode as dirty. */
5424 
5425 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5426 	if (IS_ERR(handle))
5427 		return PTR_ERR(handle);
5428 
5429 	err = ext4_mark_inode_dirty(handle, inode);
5430 	ext4_handle_sync(handle);
5431 	ext4_journal_stop(handle);
5432 	ext4_std_error(inode->i_sb, err);
5433 
5434 	return err;
5435 }
5436 
5437 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5438 {
5439 	return !buffer_mapped(bh);
5440 }
5441 
5442 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5443 {
5444 	struct page *page = vmf->page;
5445 	loff_t size;
5446 	unsigned long len;
5447 	int ret;
5448 	struct file *file = vma->vm_file;
5449 	struct inode *inode = file_inode(file);
5450 	struct address_space *mapping = inode->i_mapping;
5451 	handle_t *handle;
5452 	get_block_t *get_block;
5453 	int retries = 0;
5454 
5455 	sb_start_pagefault(inode->i_sb);
5456 	file_update_time(vma->vm_file);
5457 
5458 	down_read(&EXT4_I(inode)->i_mmap_sem);
5459 	/* Delalloc case is easy... */
5460 	if (test_opt(inode->i_sb, DELALLOC) &&
5461 	    !ext4_should_journal_data(inode) &&
5462 	    !ext4_nonda_switch(inode->i_sb)) {
5463 		do {
5464 			ret = block_page_mkwrite(vma, vmf,
5465 						   ext4_da_get_block_prep);
5466 		} while (ret == -ENOSPC &&
5467 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5468 		goto out_ret;
5469 	}
5470 
5471 	lock_page(page);
5472 	size = i_size_read(inode);
5473 	/* Page got truncated from under us? */
5474 	if (page->mapping != mapping || page_offset(page) > size) {
5475 		unlock_page(page);
5476 		ret = VM_FAULT_NOPAGE;
5477 		goto out;
5478 	}
5479 
5480 	if (page->index == size >> PAGE_CACHE_SHIFT)
5481 		len = size & ~PAGE_CACHE_MASK;
5482 	else
5483 		len = PAGE_CACHE_SIZE;
5484 	/*
5485 	 * Return if we have all the buffers mapped. This avoids the need to do
5486 	 * journal_start/journal_stop which can block and take a long time
5487 	 */
5488 	if (page_has_buffers(page)) {
5489 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5490 					    0, len, NULL,
5491 					    ext4_bh_unmapped)) {
5492 			/* Wait so that we don't change page under IO */
5493 			wait_for_stable_page(page);
5494 			ret = VM_FAULT_LOCKED;
5495 			goto out;
5496 		}
5497 	}
5498 	unlock_page(page);
5499 	/* OK, we need to fill the hole... */
5500 	if (ext4_should_dioread_nolock(inode))
5501 		get_block = ext4_get_block_write;
5502 	else
5503 		get_block = ext4_get_block;
5504 retry_alloc:
5505 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5506 				    ext4_writepage_trans_blocks(inode));
5507 	if (IS_ERR(handle)) {
5508 		ret = VM_FAULT_SIGBUS;
5509 		goto out;
5510 	}
5511 	ret = block_page_mkwrite(vma, vmf, get_block);
5512 	if (!ret && ext4_should_journal_data(inode)) {
5513 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5514 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5515 			unlock_page(page);
5516 			ret = VM_FAULT_SIGBUS;
5517 			ext4_journal_stop(handle);
5518 			goto out;
5519 		}
5520 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5521 	}
5522 	ext4_journal_stop(handle);
5523 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5524 		goto retry_alloc;
5525 out_ret:
5526 	ret = block_page_mkwrite_return(ret);
5527 out:
5528 	up_read(&EXT4_I(inode)->i_mmap_sem);
5529 	sb_end_pagefault(inode->i_sb);
5530 	return ret;
5531 }
5532 
5533 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5534 {
5535 	struct inode *inode = file_inode(vma->vm_file);
5536 	int err;
5537 
5538 	down_read(&EXT4_I(inode)->i_mmap_sem);
5539 	err = filemap_fault(vma, vmf);
5540 	up_read(&EXT4_I(inode)->i_mmap_sem);
5541 
5542 	return err;
5543 }
5544