1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 #include <linux/bitops.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u16 csum_lo; 57 __u16 csum_hi = 0; 58 __u32 csum; 59 60 csum_lo = le16_to_cpu(raw->i_checksum_lo); 61 raw->i_checksum_lo = 0; 62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 64 csum_hi = le16_to_cpu(raw->i_checksum_hi); 65 raw->i_checksum_hi = 0; 66 } 67 68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 69 EXT4_INODE_SIZE(inode->i_sb)); 70 71 raw->i_checksum_lo = cpu_to_le16(csum_lo); 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 74 raw->i_checksum_hi = cpu_to_le16(csum_hi); 75 76 return csum; 77 } 78 79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 80 struct ext4_inode_info *ei) 81 { 82 __u32 provided, calculated; 83 84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 85 cpu_to_le32(EXT4_OS_LINUX) || 86 !ext4_has_metadata_csum(inode->i_sb)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !ext4_has_metadata_csum(inode->i_sb)) 108 return; 109 110 csum = ext4_inode_csum(inode, raw, ei); 111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 114 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 115 } 116 117 static inline int ext4_begin_ordered_truncate(struct inode *inode, 118 loff_t new_size) 119 { 120 trace_ext4_begin_ordered_truncate(inode, new_size); 121 /* 122 * If jinode is zero, then we never opened the file for 123 * writing, so there's no need to call 124 * jbd2_journal_begin_ordered_truncate() since there's no 125 * outstanding writes we need to flush. 126 */ 127 if (!EXT4_I(inode)->jinode) 128 return 0; 129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 130 EXT4_I(inode)->jinode, 131 new_size); 132 } 133 134 static void ext4_invalidatepage(struct page *page, unsigned int offset, 135 unsigned int length); 136 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 139 int pextents); 140 141 /* 142 * Test whether an inode is a fast symlink. 143 */ 144 static int ext4_inode_is_fast_symlink(struct inode *inode) 145 { 146 int ea_blocks = EXT4_I(inode)->i_file_acl ? 147 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 148 149 if (ext4_has_inline_data(inode)) 150 return 0; 151 152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 153 } 154 155 /* 156 * Restart the transaction associated with *handle. This does a commit, 157 * so before we call here everything must be consistently dirtied against 158 * this transaction. 159 */ 160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 161 int nblocks) 162 { 163 int ret; 164 165 /* 166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 167 * moment, get_block can be called only for blocks inside i_size since 168 * page cache has been already dropped and writes are blocked by 169 * i_mutex. So we can safely drop the i_data_sem here. 170 */ 171 BUG_ON(EXT4_JOURNAL(inode) == NULL); 172 jbd_debug(2, "restarting handle %p\n", handle); 173 up_write(&EXT4_I(inode)->i_data_sem); 174 ret = ext4_journal_restart(handle, nblocks); 175 down_write(&EXT4_I(inode)->i_data_sem); 176 ext4_discard_preallocations(inode); 177 178 return ret; 179 } 180 181 /* 182 * Called at the last iput() if i_nlink is zero. 183 */ 184 void ext4_evict_inode(struct inode *inode) 185 { 186 handle_t *handle; 187 int err; 188 189 trace_ext4_evict_inode(inode); 190 191 if (inode->i_nlink) { 192 /* 193 * When journalling data dirty buffers are tracked only in the 194 * journal. So although mm thinks everything is clean and 195 * ready for reaping the inode might still have some pages to 196 * write in the running transaction or waiting to be 197 * checkpointed. Thus calling jbd2_journal_invalidatepage() 198 * (via truncate_inode_pages()) to discard these buffers can 199 * cause data loss. Also even if we did not discard these 200 * buffers, we would have no way to find them after the inode 201 * is reaped and thus user could see stale data if he tries to 202 * read them before the transaction is checkpointed. So be 203 * careful and force everything to disk here... We use 204 * ei->i_datasync_tid to store the newest transaction 205 * containing inode's data. 206 * 207 * Note that directories do not have this problem because they 208 * don't use page cache. 209 */ 210 if (ext4_should_journal_data(inode) && 211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 212 inode->i_ino != EXT4_JOURNAL_INO) { 213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 215 216 jbd2_complete_transaction(journal, commit_tid); 217 filemap_write_and_wait(&inode->i_data); 218 } 219 truncate_inode_pages_final(&inode->i_data); 220 221 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 222 goto no_delete; 223 } 224 225 if (is_bad_inode(inode)) 226 goto no_delete; 227 dquot_initialize(inode); 228 229 if (ext4_should_order_data(inode)) 230 ext4_begin_ordered_truncate(inode, 0); 231 truncate_inode_pages_final(&inode->i_data); 232 233 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 234 235 /* 236 * Protect us against freezing - iput() caller didn't have to have any 237 * protection against it 238 */ 239 sb_start_intwrite(inode->i_sb); 240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 241 ext4_blocks_for_truncate(inode)+3); 242 if (IS_ERR(handle)) { 243 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 244 /* 245 * If we're going to skip the normal cleanup, we still need to 246 * make sure that the in-core orphan linked list is properly 247 * cleaned up. 248 */ 249 ext4_orphan_del(NULL, inode); 250 sb_end_intwrite(inode->i_sb); 251 goto no_delete; 252 } 253 254 if (IS_SYNC(inode)) 255 ext4_handle_sync(handle); 256 inode->i_size = 0; 257 err = ext4_mark_inode_dirty(handle, inode); 258 if (err) { 259 ext4_warning(inode->i_sb, 260 "couldn't mark inode dirty (err %d)", err); 261 goto stop_handle; 262 } 263 if (inode->i_blocks) 264 ext4_truncate(inode); 265 266 /* 267 * ext4_ext_truncate() doesn't reserve any slop when it 268 * restarts journal transactions; therefore there may not be 269 * enough credits left in the handle to remove the inode from 270 * the orphan list and set the dtime field. 271 */ 272 if (!ext4_handle_has_enough_credits(handle, 3)) { 273 err = ext4_journal_extend(handle, 3); 274 if (err > 0) 275 err = ext4_journal_restart(handle, 3); 276 if (err != 0) { 277 ext4_warning(inode->i_sb, 278 "couldn't extend journal (err %d)", err); 279 stop_handle: 280 ext4_journal_stop(handle); 281 ext4_orphan_del(NULL, inode); 282 sb_end_intwrite(inode->i_sb); 283 goto no_delete; 284 } 285 } 286 287 /* 288 * Kill off the orphan record which ext4_truncate created. 289 * AKPM: I think this can be inside the above `if'. 290 * Note that ext4_orphan_del() has to be able to cope with the 291 * deletion of a non-existent orphan - this is because we don't 292 * know if ext4_truncate() actually created an orphan record. 293 * (Well, we could do this if we need to, but heck - it works) 294 */ 295 ext4_orphan_del(handle, inode); 296 EXT4_I(inode)->i_dtime = get_seconds(); 297 298 /* 299 * One subtle ordering requirement: if anything has gone wrong 300 * (transaction abort, IO errors, whatever), then we can still 301 * do these next steps (the fs will already have been marked as 302 * having errors), but we can't free the inode if the mark_dirty 303 * fails. 304 */ 305 if (ext4_mark_inode_dirty(handle, inode)) 306 /* If that failed, just do the required in-core inode clear. */ 307 ext4_clear_inode(inode); 308 else 309 ext4_free_inode(handle, inode); 310 ext4_journal_stop(handle); 311 sb_end_intwrite(inode->i_sb); 312 return; 313 no_delete: 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 315 } 316 317 #ifdef CONFIG_QUOTA 318 qsize_t *ext4_get_reserved_space(struct inode *inode) 319 { 320 return &EXT4_I(inode)->i_reserved_quota; 321 } 322 #endif 323 324 /* 325 * Called with i_data_sem down, which is important since we can call 326 * ext4_discard_preallocations() from here. 327 */ 328 void ext4_da_update_reserve_space(struct inode *inode, 329 int used, int quota_claim) 330 { 331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 332 struct ext4_inode_info *ei = EXT4_I(inode); 333 334 spin_lock(&ei->i_block_reservation_lock); 335 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 336 if (unlikely(used > ei->i_reserved_data_blocks)) { 337 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 338 "with only %d reserved data blocks", 339 __func__, inode->i_ino, used, 340 ei->i_reserved_data_blocks); 341 WARN_ON(1); 342 used = ei->i_reserved_data_blocks; 343 } 344 345 /* Update per-inode reservations */ 346 ei->i_reserved_data_blocks -= used; 347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 348 349 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 350 351 /* Update quota subsystem for data blocks */ 352 if (quota_claim) 353 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 354 else { 355 /* 356 * We did fallocate with an offset that is already delayed 357 * allocated. So on delayed allocated writeback we should 358 * not re-claim the quota for fallocated blocks. 359 */ 360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 361 } 362 363 /* 364 * If we have done all the pending block allocations and if 365 * there aren't any writers on the inode, we can discard the 366 * inode's preallocations. 367 */ 368 if ((ei->i_reserved_data_blocks == 0) && 369 (atomic_read(&inode->i_writecount) == 0)) 370 ext4_discard_preallocations(inode); 371 } 372 373 static int __check_block_validity(struct inode *inode, const char *func, 374 unsigned int line, 375 struct ext4_map_blocks *map) 376 { 377 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 378 map->m_len)) { 379 ext4_error_inode(inode, func, line, map->m_pblk, 380 "lblock %lu mapped to illegal pblock " 381 "(length %d)", (unsigned long) map->m_lblk, 382 map->m_len); 383 return -EIO; 384 } 385 return 0; 386 } 387 388 #define check_block_validity(inode, map) \ 389 __check_block_validity((inode), __func__, __LINE__, (map)) 390 391 #ifdef ES_AGGRESSIVE_TEST 392 static void ext4_map_blocks_es_recheck(handle_t *handle, 393 struct inode *inode, 394 struct ext4_map_blocks *es_map, 395 struct ext4_map_blocks *map, 396 int flags) 397 { 398 int retval; 399 400 map->m_flags = 0; 401 /* 402 * There is a race window that the result is not the same. 403 * e.g. xfstests #223 when dioread_nolock enables. The reason 404 * is that we lookup a block mapping in extent status tree with 405 * out taking i_data_sem. So at the time the unwritten extent 406 * could be converted. 407 */ 408 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 409 down_read(&EXT4_I(inode)->i_data_sem); 410 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 411 retval = ext4_ext_map_blocks(handle, inode, map, flags & 412 EXT4_GET_BLOCKS_KEEP_SIZE); 413 } else { 414 retval = ext4_ind_map_blocks(handle, inode, map, flags & 415 EXT4_GET_BLOCKS_KEEP_SIZE); 416 } 417 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 418 up_read((&EXT4_I(inode)->i_data_sem)); 419 /* 420 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 421 * because it shouldn't be marked in es_map->m_flags. 422 */ 423 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 424 425 /* 426 * We don't check m_len because extent will be collpased in status 427 * tree. So the m_len might not equal. 428 */ 429 if (es_map->m_lblk != map->m_lblk || 430 es_map->m_flags != map->m_flags || 431 es_map->m_pblk != map->m_pblk) { 432 printk("ES cache assertion failed for inode: %lu " 433 "es_cached ex [%d/%d/%llu/%x] != " 434 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 435 inode->i_ino, es_map->m_lblk, es_map->m_len, 436 es_map->m_pblk, es_map->m_flags, map->m_lblk, 437 map->m_len, map->m_pblk, map->m_flags, 438 retval, flags); 439 } 440 } 441 #endif /* ES_AGGRESSIVE_TEST */ 442 443 /* 444 * The ext4_map_blocks() function tries to look up the requested blocks, 445 * and returns if the blocks are already mapped. 446 * 447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 448 * and store the allocated blocks in the result buffer head and mark it 449 * mapped. 450 * 451 * If file type is extents based, it will call ext4_ext_map_blocks(), 452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 453 * based files 454 * 455 * On success, it returns the number of blocks being mapped or allocated. 456 * if create==0 and the blocks are pre-allocated and unwritten block, 457 * the result buffer head is unmapped. If the create ==1, it will make sure 458 * the buffer head is mapped. 459 * 460 * It returns 0 if plain look up failed (blocks have not been allocated), in 461 * that case, buffer head is unmapped 462 * 463 * It returns the error in case of allocation failure. 464 */ 465 int ext4_map_blocks(handle_t *handle, struct inode *inode, 466 struct ext4_map_blocks *map, int flags) 467 { 468 struct extent_status es; 469 int retval; 470 int ret = 0; 471 #ifdef ES_AGGRESSIVE_TEST 472 struct ext4_map_blocks orig_map; 473 474 memcpy(&orig_map, map, sizeof(*map)); 475 #endif 476 477 map->m_flags = 0; 478 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 479 "logical block %lu\n", inode->i_ino, flags, map->m_len, 480 (unsigned long) map->m_lblk); 481 482 /* 483 * ext4_map_blocks returns an int, and m_len is an unsigned int 484 */ 485 if (unlikely(map->m_len > INT_MAX)) 486 map->m_len = INT_MAX; 487 488 /* We can handle the block number less than EXT_MAX_BLOCKS */ 489 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 490 return -EIO; 491 492 /* Lookup extent status tree firstly */ 493 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 494 ext4_es_lru_add(inode); 495 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 496 map->m_pblk = ext4_es_pblock(&es) + 497 map->m_lblk - es.es_lblk; 498 map->m_flags |= ext4_es_is_written(&es) ? 499 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 500 retval = es.es_len - (map->m_lblk - es.es_lblk); 501 if (retval > map->m_len) 502 retval = map->m_len; 503 map->m_len = retval; 504 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 505 retval = 0; 506 } else { 507 BUG_ON(1); 508 } 509 #ifdef ES_AGGRESSIVE_TEST 510 ext4_map_blocks_es_recheck(handle, inode, map, 511 &orig_map, flags); 512 #endif 513 goto found; 514 } 515 516 /* 517 * Try to see if we can get the block without requesting a new 518 * file system block. 519 */ 520 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 521 down_read(&EXT4_I(inode)->i_data_sem); 522 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 523 retval = ext4_ext_map_blocks(handle, inode, map, flags & 524 EXT4_GET_BLOCKS_KEEP_SIZE); 525 } else { 526 retval = ext4_ind_map_blocks(handle, inode, map, flags & 527 EXT4_GET_BLOCKS_KEEP_SIZE); 528 } 529 if (retval > 0) { 530 unsigned int status; 531 532 if (unlikely(retval != map->m_len)) { 533 ext4_warning(inode->i_sb, 534 "ES len assertion failed for inode " 535 "%lu: retval %d != map->m_len %d", 536 inode->i_ino, retval, map->m_len); 537 WARN_ON(1); 538 } 539 540 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 541 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 542 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 543 ext4_find_delalloc_range(inode, map->m_lblk, 544 map->m_lblk + map->m_len - 1)) 545 status |= EXTENT_STATUS_DELAYED; 546 ret = ext4_es_insert_extent(inode, map->m_lblk, 547 map->m_len, map->m_pblk, status); 548 if (ret < 0) 549 retval = ret; 550 } 551 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 552 up_read((&EXT4_I(inode)->i_data_sem)); 553 554 found: 555 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 556 ret = check_block_validity(inode, map); 557 if (ret != 0) 558 return ret; 559 } 560 561 /* If it is only a block(s) look up */ 562 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 563 return retval; 564 565 /* 566 * Returns if the blocks have already allocated 567 * 568 * Note that if blocks have been preallocated 569 * ext4_ext_get_block() returns the create = 0 570 * with buffer head unmapped. 571 */ 572 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 573 /* 574 * If we need to convert extent to unwritten 575 * we continue and do the actual work in 576 * ext4_ext_map_blocks() 577 */ 578 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 579 return retval; 580 581 /* 582 * Here we clear m_flags because after allocating an new extent, 583 * it will be set again. 584 */ 585 map->m_flags &= ~EXT4_MAP_FLAGS; 586 587 /* 588 * New blocks allocate and/or writing to unwritten extent 589 * will possibly result in updating i_data, so we take 590 * the write lock of i_data_sem, and call get_block() 591 * with create == 1 flag. 592 */ 593 down_write(&EXT4_I(inode)->i_data_sem); 594 595 /* 596 * We need to check for EXT4 here because migrate 597 * could have changed the inode type in between 598 */ 599 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 600 retval = ext4_ext_map_blocks(handle, inode, map, flags); 601 } else { 602 retval = ext4_ind_map_blocks(handle, inode, map, flags); 603 604 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 605 /* 606 * We allocated new blocks which will result in 607 * i_data's format changing. Force the migrate 608 * to fail by clearing migrate flags 609 */ 610 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 611 } 612 613 /* 614 * Update reserved blocks/metadata blocks after successful 615 * block allocation which had been deferred till now. We don't 616 * support fallocate for non extent files. So we can update 617 * reserve space here. 618 */ 619 if ((retval > 0) && 620 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 621 ext4_da_update_reserve_space(inode, retval, 1); 622 } 623 624 if (retval > 0) { 625 unsigned int status; 626 627 if (unlikely(retval != map->m_len)) { 628 ext4_warning(inode->i_sb, 629 "ES len assertion failed for inode " 630 "%lu: retval %d != map->m_len %d", 631 inode->i_ino, retval, map->m_len); 632 WARN_ON(1); 633 } 634 635 /* 636 * If the extent has been zeroed out, we don't need to update 637 * extent status tree. 638 */ 639 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 640 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 641 if (ext4_es_is_written(&es)) 642 goto has_zeroout; 643 } 644 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 645 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 646 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 647 ext4_find_delalloc_range(inode, map->m_lblk, 648 map->m_lblk + map->m_len - 1)) 649 status |= EXTENT_STATUS_DELAYED; 650 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 651 map->m_pblk, status); 652 if (ret < 0) 653 retval = ret; 654 } 655 656 has_zeroout: 657 up_write((&EXT4_I(inode)->i_data_sem)); 658 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 659 ret = check_block_validity(inode, map); 660 if (ret != 0) 661 return ret; 662 } 663 return retval; 664 } 665 666 /* Maximum number of blocks we map for direct IO at once. */ 667 #define DIO_MAX_BLOCKS 4096 668 669 static int _ext4_get_block(struct inode *inode, sector_t iblock, 670 struct buffer_head *bh, int flags) 671 { 672 handle_t *handle = ext4_journal_current_handle(); 673 struct ext4_map_blocks map; 674 int ret = 0, started = 0; 675 int dio_credits; 676 677 if (ext4_has_inline_data(inode)) 678 return -ERANGE; 679 680 map.m_lblk = iblock; 681 map.m_len = bh->b_size >> inode->i_blkbits; 682 683 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 684 /* Direct IO write... */ 685 if (map.m_len > DIO_MAX_BLOCKS) 686 map.m_len = DIO_MAX_BLOCKS; 687 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 688 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 689 dio_credits); 690 if (IS_ERR(handle)) { 691 ret = PTR_ERR(handle); 692 return ret; 693 } 694 started = 1; 695 } 696 697 ret = ext4_map_blocks(handle, inode, &map, flags); 698 if (ret > 0) { 699 ext4_io_end_t *io_end = ext4_inode_aio(inode); 700 701 map_bh(bh, inode->i_sb, map.m_pblk); 702 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 703 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 704 set_buffer_defer_completion(bh); 705 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 706 ret = 0; 707 } 708 if (started) 709 ext4_journal_stop(handle); 710 return ret; 711 } 712 713 int ext4_get_block(struct inode *inode, sector_t iblock, 714 struct buffer_head *bh, int create) 715 { 716 return _ext4_get_block(inode, iblock, bh, 717 create ? EXT4_GET_BLOCKS_CREATE : 0); 718 } 719 720 /* 721 * `handle' can be NULL if create is zero 722 */ 723 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 724 ext4_lblk_t block, int create) 725 { 726 struct ext4_map_blocks map; 727 struct buffer_head *bh; 728 int err; 729 730 J_ASSERT(handle != NULL || create == 0); 731 732 map.m_lblk = block; 733 map.m_len = 1; 734 err = ext4_map_blocks(handle, inode, &map, 735 create ? EXT4_GET_BLOCKS_CREATE : 0); 736 737 if (err == 0) 738 return create ? ERR_PTR(-ENOSPC) : NULL; 739 if (err < 0) 740 return ERR_PTR(err); 741 742 bh = sb_getblk(inode->i_sb, map.m_pblk); 743 if (unlikely(!bh)) 744 return ERR_PTR(-ENOMEM); 745 if (map.m_flags & EXT4_MAP_NEW) { 746 J_ASSERT(create != 0); 747 J_ASSERT(handle != NULL); 748 749 /* 750 * Now that we do not always journal data, we should 751 * keep in mind whether this should always journal the 752 * new buffer as metadata. For now, regular file 753 * writes use ext4_get_block instead, so it's not a 754 * problem. 755 */ 756 lock_buffer(bh); 757 BUFFER_TRACE(bh, "call get_create_access"); 758 err = ext4_journal_get_create_access(handle, bh); 759 if (unlikely(err)) { 760 unlock_buffer(bh); 761 goto errout; 762 } 763 if (!buffer_uptodate(bh)) { 764 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 765 set_buffer_uptodate(bh); 766 } 767 unlock_buffer(bh); 768 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 769 err = ext4_handle_dirty_metadata(handle, inode, bh); 770 if (unlikely(err)) 771 goto errout; 772 } else 773 BUFFER_TRACE(bh, "not a new buffer"); 774 return bh; 775 errout: 776 brelse(bh); 777 return ERR_PTR(err); 778 } 779 780 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 781 ext4_lblk_t block, int create) 782 { 783 struct buffer_head *bh; 784 785 bh = ext4_getblk(handle, inode, block, create); 786 if (IS_ERR(bh)) 787 return bh; 788 if (!bh || buffer_uptodate(bh)) 789 return bh; 790 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 791 wait_on_buffer(bh); 792 if (buffer_uptodate(bh)) 793 return bh; 794 put_bh(bh); 795 return ERR_PTR(-EIO); 796 } 797 798 int ext4_walk_page_buffers(handle_t *handle, 799 struct buffer_head *head, 800 unsigned from, 801 unsigned to, 802 int *partial, 803 int (*fn)(handle_t *handle, 804 struct buffer_head *bh)) 805 { 806 struct buffer_head *bh; 807 unsigned block_start, block_end; 808 unsigned blocksize = head->b_size; 809 int err, ret = 0; 810 struct buffer_head *next; 811 812 for (bh = head, block_start = 0; 813 ret == 0 && (bh != head || !block_start); 814 block_start = block_end, bh = next) { 815 next = bh->b_this_page; 816 block_end = block_start + blocksize; 817 if (block_end <= from || block_start >= to) { 818 if (partial && !buffer_uptodate(bh)) 819 *partial = 1; 820 continue; 821 } 822 err = (*fn)(handle, bh); 823 if (!ret) 824 ret = err; 825 } 826 return ret; 827 } 828 829 /* 830 * To preserve ordering, it is essential that the hole instantiation and 831 * the data write be encapsulated in a single transaction. We cannot 832 * close off a transaction and start a new one between the ext4_get_block() 833 * and the commit_write(). So doing the jbd2_journal_start at the start of 834 * prepare_write() is the right place. 835 * 836 * Also, this function can nest inside ext4_writepage(). In that case, we 837 * *know* that ext4_writepage() has generated enough buffer credits to do the 838 * whole page. So we won't block on the journal in that case, which is good, 839 * because the caller may be PF_MEMALLOC. 840 * 841 * By accident, ext4 can be reentered when a transaction is open via 842 * quota file writes. If we were to commit the transaction while thus 843 * reentered, there can be a deadlock - we would be holding a quota 844 * lock, and the commit would never complete if another thread had a 845 * transaction open and was blocking on the quota lock - a ranking 846 * violation. 847 * 848 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 849 * will _not_ run commit under these circumstances because handle->h_ref 850 * is elevated. We'll still have enough credits for the tiny quotafile 851 * write. 852 */ 853 int do_journal_get_write_access(handle_t *handle, 854 struct buffer_head *bh) 855 { 856 int dirty = buffer_dirty(bh); 857 int ret; 858 859 if (!buffer_mapped(bh) || buffer_freed(bh)) 860 return 0; 861 /* 862 * __block_write_begin() could have dirtied some buffers. Clean 863 * the dirty bit as jbd2_journal_get_write_access() could complain 864 * otherwise about fs integrity issues. Setting of the dirty bit 865 * by __block_write_begin() isn't a real problem here as we clear 866 * the bit before releasing a page lock and thus writeback cannot 867 * ever write the buffer. 868 */ 869 if (dirty) 870 clear_buffer_dirty(bh); 871 BUFFER_TRACE(bh, "get write access"); 872 ret = ext4_journal_get_write_access(handle, bh); 873 if (!ret && dirty) 874 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 875 return ret; 876 } 877 878 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 879 struct buffer_head *bh_result, int create); 880 static int ext4_write_begin(struct file *file, struct address_space *mapping, 881 loff_t pos, unsigned len, unsigned flags, 882 struct page **pagep, void **fsdata) 883 { 884 struct inode *inode = mapping->host; 885 int ret, needed_blocks; 886 handle_t *handle; 887 int retries = 0; 888 struct page *page; 889 pgoff_t index; 890 unsigned from, to; 891 892 trace_ext4_write_begin(inode, pos, len, flags); 893 /* 894 * Reserve one block more for addition to orphan list in case 895 * we allocate blocks but write fails for some reason 896 */ 897 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 898 index = pos >> PAGE_CACHE_SHIFT; 899 from = pos & (PAGE_CACHE_SIZE - 1); 900 to = from + len; 901 902 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 903 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 904 flags, pagep); 905 if (ret < 0) 906 return ret; 907 if (ret == 1) 908 return 0; 909 } 910 911 /* 912 * grab_cache_page_write_begin() can take a long time if the 913 * system is thrashing due to memory pressure, or if the page 914 * is being written back. So grab it first before we start 915 * the transaction handle. This also allows us to allocate 916 * the page (if needed) without using GFP_NOFS. 917 */ 918 retry_grab: 919 page = grab_cache_page_write_begin(mapping, index, flags); 920 if (!page) 921 return -ENOMEM; 922 unlock_page(page); 923 924 retry_journal: 925 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 926 if (IS_ERR(handle)) { 927 page_cache_release(page); 928 return PTR_ERR(handle); 929 } 930 931 lock_page(page); 932 if (page->mapping != mapping) { 933 /* The page got truncated from under us */ 934 unlock_page(page); 935 page_cache_release(page); 936 ext4_journal_stop(handle); 937 goto retry_grab; 938 } 939 /* In case writeback began while the page was unlocked */ 940 wait_for_stable_page(page); 941 942 if (ext4_should_dioread_nolock(inode)) 943 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 944 else 945 ret = __block_write_begin(page, pos, len, ext4_get_block); 946 947 if (!ret && ext4_should_journal_data(inode)) { 948 ret = ext4_walk_page_buffers(handle, page_buffers(page), 949 from, to, NULL, 950 do_journal_get_write_access); 951 } 952 953 if (ret) { 954 unlock_page(page); 955 /* 956 * __block_write_begin may have instantiated a few blocks 957 * outside i_size. Trim these off again. Don't need 958 * i_size_read because we hold i_mutex. 959 * 960 * Add inode to orphan list in case we crash before 961 * truncate finishes 962 */ 963 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 964 ext4_orphan_add(handle, inode); 965 966 ext4_journal_stop(handle); 967 if (pos + len > inode->i_size) { 968 ext4_truncate_failed_write(inode); 969 /* 970 * If truncate failed early the inode might 971 * still be on the orphan list; we need to 972 * make sure the inode is removed from the 973 * orphan list in that case. 974 */ 975 if (inode->i_nlink) 976 ext4_orphan_del(NULL, inode); 977 } 978 979 if (ret == -ENOSPC && 980 ext4_should_retry_alloc(inode->i_sb, &retries)) 981 goto retry_journal; 982 page_cache_release(page); 983 return ret; 984 } 985 *pagep = page; 986 return ret; 987 } 988 989 /* For write_end() in data=journal mode */ 990 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 991 { 992 int ret; 993 if (!buffer_mapped(bh) || buffer_freed(bh)) 994 return 0; 995 set_buffer_uptodate(bh); 996 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 997 clear_buffer_meta(bh); 998 clear_buffer_prio(bh); 999 return ret; 1000 } 1001 1002 /* 1003 * We need to pick up the new inode size which generic_commit_write gave us 1004 * `file' can be NULL - eg, when called from page_symlink(). 1005 * 1006 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1007 * buffers are managed internally. 1008 */ 1009 static int ext4_write_end(struct file *file, 1010 struct address_space *mapping, 1011 loff_t pos, unsigned len, unsigned copied, 1012 struct page *page, void *fsdata) 1013 { 1014 handle_t *handle = ext4_journal_current_handle(); 1015 struct inode *inode = mapping->host; 1016 int ret = 0, ret2; 1017 int i_size_changed = 0; 1018 1019 trace_ext4_write_end(inode, pos, len, copied); 1020 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1021 ret = ext4_jbd2_file_inode(handle, inode); 1022 if (ret) { 1023 unlock_page(page); 1024 page_cache_release(page); 1025 goto errout; 1026 } 1027 } 1028 1029 if (ext4_has_inline_data(inode)) { 1030 ret = ext4_write_inline_data_end(inode, pos, len, 1031 copied, page); 1032 if (ret < 0) 1033 goto errout; 1034 copied = ret; 1035 } else 1036 copied = block_write_end(file, mapping, pos, 1037 len, copied, page, fsdata); 1038 /* 1039 * it's important to update i_size while still holding page lock: 1040 * page writeout could otherwise come in and zero beyond i_size. 1041 */ 1042 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1043 unlock_page(page); 1044 page_cache_release(page); 1045 1046 /* 1047 * Don't mark the inode dirty under page lock. First, it unnecessarily 1048 * makes the holding time of page lock longer. Second, it forces lock 1049 * ordering of page lock and transaction start for journaling 1050 * filesystems. 1051 */ 1052 if (i_size_changed) 1053 ext4_mark_inode_dirty(handle, inode); 1054 1055 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1056 /* if we have allocated more blocks and copied 1057 * less. We will have blocks allocated outside 1058 * inode->i_size. So truncate them 1059 */ 1060 ext4_orphan_add(handle, inode); 1061 errout: 1062 ret2 = ext4_journal_stop(handle); 1063 if (!ret) 1064 ret = ret2; 1065 1066 if (pos + len > inode->i_size) { 1067 ext4_truncate_failed_write(inode); 1068 /* 1069 * If truncate failed early the inode might still be 1070 * on the orphan list; we need to make sure the inode 1071 * is removed from the orphan list in that case. 1072 */ 1073 if (inode->i_nlink) 1074 ext4_orphan_del(NULL, inode); 1075 } 1076 1077 return ret ? ret : copied; 1078 } 1079 1080 static int ext4_journalled_write_end(struct file *file, 1081 struct address_space *mapping, 1082 loff_t pos, unsigned len, unsigned copied, 1083 struct page *page, void *fsdata) 1084 { 1085 handle_t *handle = ext4_journal_current_handle(); 1086 struct inode *inode = mapping->host; 1087 int ret = 0, ret2; 1088 int partial = 0; 1089 unsigned from, to; 1090 int size_changed = 0; 1091 1092 trace_ext4_journalled_write_end(inode, pos, len, copied); 1093 from = pos & (PAGE_CACHE_SIZE - 1); 1094 to = from + len; 1095 1096 BUG_ON(!ext4_handle_valid(handle)); 1097 1098 if (ext4_has_inline_data(inode)) 1099 copied = ext4_write_inline_data_end(inode, pos, len, 1100 copied, page); 1101 else { 1102 if (copied < len) { 1103 if (!PageUptodate(page)) 1104 copied = 0; 1105 page_zero_new_buffers(page, from+copied, to); 1106 } 1107 1108 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1109 to, &partial, write_end_fn); 1110 if (!partial) 1111 SetPageUptodate(page); 1112 } 1113 size_changed = ext4_update_inode_size(inode, pos + copied); 1114 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1115 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1116 unlock_page(page); 1117 page_cache_release(page); 1118 1119 if (size_changed) { 1120 ret2 = ext4_mark_inode_dirty(handle, inode); 1121 if (!ret) 1122 ret = ret2; 1123 } 1124 1125 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1126 /* if we have allocated more blocks and copied 1127 * less. We will have blocks allocated outside 1128 * inode->i_size. So truncate them 1129 */ 1130 ext4_orphan_add(handle, inode); 1131 1132 ret2 = ext4_journal_stop(handle); 1133 if (!ret) 1134 ret = ret2; 1135 if (pos + len > inode->i_size) { 1136 ext4_truncate_failed_write(inode); 1137 /* 1138 * If truncate failed early the inode might still be 1139 * on the orphan list; we need to make sure the inode 1140 * is removed from the orphan list in that case. 1141 */ 1142 if (inode->i_nlink) 1143 ext4_orphan_del(NULL, inode); 1144 } 1145 1146 return ret ? ret : copied; 1147 } 1148 1149 /* 1150 * Reserve a single cluster located at lblock 1151 */ 1152 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1153 { 1154 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1155 struct ext4_inode_info *ei = EXT4_I(inode); 1156 unsigned int md_needed; 1157 int ret; 1158 1159 /* 1160 * We will charge metadata quota at writeout time; this saves 1161 * us from metadata over-estimation, though we may go over by 1162 * a small amount in the end. Here we just reserve for data. 1163 */ 1164 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1165 if (ret) 1166 return ret; 1167 1168 /* 1169 * recalculate the amount of metadata blocks to reserve 1170 * in order to allocate nrblocks 1171 * worse case is one extent per block 1172 */ 1173 spin_lock(&ei->i_block_reservation_lock); 1174 /* 1175 * ext4_calc_metadata_amount() has side effects, which we have 1176 * to be prepared undo if we fail to claim space. 1177 */ 1178 md_needed = 0; 1179 trace_ext4_da_reserve_space(inode, 0); 1180 1181 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1182 spin_unlock(&ei->i_block_reservation_lock); 1183 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1184 return -ENOSPC; 1185 } 1186 ei->i_reserved_data_blocks++; 1187 spin_unlock(&ei->i_block_reservation_lock); 1188 1189 return 0; /* success */ 1190 } 1191 1192 static void ext4_da_release_space(struct inode *inode, int to_free) 1193 { 1194 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1195 struct ext4_inode_info *ei = EXT4_I(inode); 1196 1197 if (!to_free) 1198 return; /* Nothing to release, exit */ 1199 1200 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1201 1202 trace_ext4_da_release_space(inode, to_free); 1203 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1204 /* 1205 * if there aren't enough reserved blocks, then the 1206 * counter is messed up somewhere. Since this 1207 * function is called from invalidate page, it's 1208 * harmless to return without any action. 1209 */ 1210 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1211 "ino %lu, to_free %d with only %d reserved " 1212 "data blocks", inode->i_ino, to_free, 1213 ei->i_reserved_data_blocks); 1214 WARN_ON(1); 1215 to_free = ei->i_reserved_data_blocks; 1216 } 1217 ei->i_reserved_data_blocks -= to_free; 1218 1219 /* update fs dirty data blocks counter */ 1220 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1221 1222 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1223 1224 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1225 } 1226 1227 static void ext4_da_page_release_reservation(struct page *page, 1228 unsigned int offset, 1229 unsigned int length) 1230 { 1231 int to_release = 0; 1232 struct buffer_head *head, *bh; 1233 unsigned int curr_off = 0; 1234 struct inode *inode = page->mapping->host; 1235 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1236 unsigned int stop = offset + length; 1237 int num_clusters; 1238 ext4_fsblk_t lblk; 1239 1240 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1241 1242 head = page_buffers(page); 1243 bh = head; 1244 do { 1245 unsigned int next_off = curr_off + bh->b_size; 1246 1247 if (next_off > stop) 1248 break; 1249 1250 if ((offset <= curr_off) && (buffer_delay(bh))) { 1251 to_release++; 1252 clear_buffer_delay(bh); 1253 } 1254 curr_off = next_off; 1255 } while ((bh = bh->b_this_page) != head); 1256 1257 if (to_release) { 1258 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1259 ext4_es_remove_extent(inode, lblk, to_release); 1260 } 1261 1262 /* If we have released all the blocks belonging to a cluster, then we 1263 * need to release the reserved space for that cluster. */ 1264 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1265 while (num_clusters > 0) { 1266 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1267 ((num_clusters - 1) << sbi->s_cluster_bits); 1268 if (sbi->s_cluster_ratio == 1 || 1269 !ext4_find_delalloc_cluster(inode, lblk)) 1270 ext4_da_release_space(inode, 1); 1271 1272 num_clusters--; 1273 } 1274 } 1275 1276 /* 1277 * Delayed allocation stuff 1278 */ 1279 1280 struct mpage_da_data { 1281 struct inode *inode; 1282 struct writeback_control *wbc; 1283 1284 pgoff_t first_page; /* The first page to write */ 1285 pgoff_t next_page; /* Current page to examine */ 1286 pgoff_t last_page; /* Last page to examine */ 1287 /* 1288 * Extent to map - this can be after first_page because that can be 1289 * fully mapped. We somewhat abuse m_flags to store whether the extent 1290 * is delalloc or unwritten. 1291 */ 1292 struct ext4_map_blocks map; 1293 struct ext4_io_submit io_submit; /* IO submission data */ 1294 }; 1295 1296 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1297 bool invalidate) 1298 { 1299 int nr_pages, i; 1300 pgoff_t index, end; 1301 struct pagevec pvec; 1302 struct inode *inode = mpd->inode; 1303 struct address_space *mapping = inode->i_mapping; 1304 1305 /* This is necessary when next_page == 0. */ 1306 if (mpd->first_page >= mpd->next_page) 1307 return; 1308 1309 index = mpd->first_page; 1310 end = mpd->next_page - 1; 1311 if (invalidate) { 1312 ext4_lblk_t start, last; 1313 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1314 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1315 ext4_es_remove_extent(inode, start, last - start + 1); 1316 } 1317 1318 pagevec_init(&pvec, 0); 1319 while (index <= end) { 1320 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1321 if (nr_pages == 0) 1322 break; 1323 for (i = 0; i < nr_pages; i++) { 1324 struct page *page = pvec.pages[i]; 1325 if (page->index > end) 1326 break; 1327 BUG_ON(!PageLocked(page)); 1328 BUG_ON(PageWriteback(page)); 1329 if (invalidate) { 1330 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1331 ClearPageUptodate(page); 1332 } 1333 unlock_page(page); 1334 } 1335 index = pvec.pages[nr_pages - 1]->index + 1; 1336 pagevec_release(&pvec); 1337 } 1338 } 1339 1340 static void ext4_print_free_blocks(struct inode *inode) 1341 { 1342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1343 struct super_block *sb = inode->i_sb; 1344 struct ext4_inode_info *ei = EXT4_I(inode); 1345 1346 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1347 EXT4_C2B(EXT4_SB(inode->i_sb), 1348 ext4_count_free_clusters(sb))); 1349 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1350 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1351 (long long) EXT4_C2B(EXT4_SB(sb), 1352 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1353 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1354 (long long) EXT4_C2B(EXT4_SB(sb), 1355 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1356 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1357 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1358 ei->i_reserved_data_blocks); 1359 return; 1360 } 1361 1362 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1363 { 1364 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1365 } 1366 1367 /* 1368 * This function is grabs code from the very beginning of 1369 * ext4_map_blocks, but assumes that the caller is from delayed write 1370 * time. This function looks up the requested blocks and sets the 1371 * buffer delay bit under the protection of i_data_sem. 1372 */ 1373 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1374 struct ext4_map_blocks *map, 1375 struct buffer_head *bh) 1376 { 1377 struct extent_status es; 1378 int retval; 1379 sector_t invalid_block = ~((sector_t) 0xffff); 1380 #ifdef ES_AGGRESSIVE_TEST 1381 struct ext4_map_blocks orig_map; 1382 1383 memcpy(&orig_map, map, sizeof(*map)); 1384 #endif 1385 1386 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1387 invalid_block = ~0; 1388 1389 map->m_flags = 0; 1390 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1391 "logical block %lu\n", inode->i_ino, map->m_len, 1392 (unsigned long) map->m_lblk); 1393 1394 /* Lookup extent status tree firstly */ 1395 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1396 ext4_es_lru_add(inode); 1397 if (ext4_es_is_hole(&es)) { 1398 retval = 0; 1399 down_read(&EXT4_I(inode)->i_data_sem); 1400 goto add_delayed; 1401 } 1402 1403 /* 1404 * Delayed extent could be allocated by fallocate. 1405 * So we need to check it. 1406 */ 1407 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1408 map_bh(bh, inode->i_sb, invalid_block); 1409 set_buffer_new(bh); 1410 set_buffer_delay(bh); 1411 return 0; 1412 } 1413 1414 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1415 retval = es.es_len - (iblock - es.es_lblk); 1416 if (retval > map->m_len) 1417 retval = map->m_len; 1418 map->m_len = retval; 1419 if (ext4_es_is_written(&es)) 1420 map->m_flags |= EXT4_MAP_MAPPED; 1421 else if (ext4_es_is_unwritten(&es)) 1422 map->m_flags |= EXT4_MAP_UNWRITTEN; 1423 else 1424 BUG_ON(1); 1425 1426 #ifdef ES_AGGRESSIVE_TEST 1427 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1428 #endif 1429 return retval; 1430 } 1431 1432 /* 1433 * Try to see if we can get the block without requesting a new 1434 * file system block. 1435 */ 1436 down_read(&EXT4_I(inode)->i_data_sem); 1437 if (ext4_has_inline_data(inode)) { 1438 /* 1439 * We will soon create blocks for this page, and let 1440 * us pretend as if the blocks aren't allocated yet. 1441 * In case of clusters, we have to handle the work 1442 * of mapping from cluster so that the reserved space 1443 * is calculated properly. 1444 */ 1445 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1446 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1447 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1448 retval = 0; 1449 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1450 retval = ext4_ext_map_blocks(NULL, inode, map, 1451 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1452 else 1453 retval = ext4_ind_map_blocks(NULL, inode, map, 1454 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1455 1456 add_delayed: 1457 if (retval == 0) { 1458 int ret; 1459 /* 1460 * XXX: __block_prepare_write() unmaps passed block, 1461 * is it OK? 1462 */ 1463 /* 1464 * If the block was allocated from previously allocated cluster, 1465 * then we don't need to reserve it again. However we still need 1466 * to reserve metadata for every block we're going to write. 1467 */ 1468 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1469 ret = ext4_da_reserve_space(inode, iblock); 1470 if (ret) { 1471 /* not enough space to reserve */ 1472 retval = ret; 1473 goto out_unlock; 1474 } 1475 } 1476 1477 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1478 ~0, EXTENT_STATUS_DELAYED); 1479 if (ret) { 1480 retval = ret; 1481 goto out_unlock; 1482 } 1483 1484 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1485 * and it should not appear on the bh->b_state. 1486 */ 1487 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1488 1489 map_bh(bh, inode->i_sb, invalid_block); 1490 set_buffer_new(bh); 1491 set_buffer_delay(bh); 1492 } else if (retval > 0) { 1493 int ret; 1494 unsigned int status; 1495 1496 if (unlikely(retval != map->m_len)) { 1497 ext4_warning(inode->i_sb, 1498 "ES len assertion failed for inode " 1499 "%lu: retval %d != map->m_len %d", 1500 inode->i_ino, retval, map->m_len); 1501 WARN_ON(1); 1502 } 1503 1504 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1505 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1506 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1507 map->m_pblk, status); 1508 if (ret != 0) 1509 retval = ret; 1510 } 1511 1512 out_unlock: 1513 up_read((&EXT4_I(inode)->i_data_sem)); 1514 1515 return retval; 1516 } 1517 1518 /* 1519 * This is a special get_block_t callback which is used by 1520 * ext4_da_write_begin(). It will either return mapped block or 1521 * reserve space for a single block. 1522 * 1523 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1524 * We also have b_blocknr = -1 and b_bdev initialized properly 1525 * 1526 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1527 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1528 * initialized properly. 1529 */ 1530 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1531 struct buffer_head *bh, int create) 1532 { 1533 struct ext4_map_blocks map; 1534 int ret = 0; 1535 1536 BUG_ON(create == 0); 1537 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1538 1539 map.m_lblk = iblock; 1540 map.m_len = 1; 1541 1542 /* 1543 * first, we need to know whether the block is allocated already 1544 * preallocated blocks are unmapped but should treated 1545 * the same as allocated blocks. 1546 */ 1547 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1548 if (ret <= 0) 1549 return ret; 1550 1551 map_bh(bh, inode->i_sb, map.m_pblk); 1552 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1553 1554 if (buffer_unwritten(bh)) { 1555 /* A delayed write to unwritten bh should be marked 1556 * new and mapped. Mapped ensures that we don't do 1557 * get_block multiple times when we write to the same 1558 * offset and new ensures that we do proper zero out 1559 * for partial write. 1560 */ 1561 set_buffer_new(bh); 1562 set_buffer_mapped(bh); 1563 } 1564 return 0; 1565 } 1566 1567 static int bget_one(handle_t *handle, struct buffer_head *bh) 1568 { 1569 get_bh(bh); 1570 return 0; 1571 } 1572 1573 static int bput_one(handle_t *handle, struct buffer_head *bh) 1574 { 1575 put_bh(bh); 1576 return 0; 1577 } 1578 1579 static int __ext4_journalled_writepage(struct page *page, 1580 unsigned int len) 1581 { 1582 struct address_space *mapping = page->mapping; 1583 struct inode *inode = mapping->host; 1584 struct buffer_head *page_bufs = NULL; 1585 handle_t *handle = NULL; 1586 int ret = 0, err = 0; 1587 int inline_data = ext4_has_inline_data(inode); 1588 struct buffer_head *inode_bh = NULL; 1589 1590 ClearPageChecked(page); 1591 1592 if (inline_data) { 1593 BUG_ON(page->index != 0); 1594 BUG_ON(len > ext4_get_max_inline_size(inode)); 1595 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1596 if (inode_bh == NULL) 1597 goto out; 1598 } else { 1599 page_bufs = page_buffers(page); 1600 if (!page_bufs) { 1601 BUG(); 1602 goto out; 1603 } 1604 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1605 NULL, bget_one); 1606 } 1607 /* As soon as we unlock the page, it can go away, but we have 1608 * references to buffers so we are safe */ 1609 unlock_page(page); 1610 1611 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1612 ext4_writepage_trans_blocks(inode)); 1613 if (IS_ERR(handle)) { 1614 ret = PTR_ERR(handle); 1615 goto out; 1616 } 1617 1618 BUG_ON(!ext4_handle_valid(handle)); 1619 1620 if (inline_data) { 1621 BUFFER_TRACE(inode_bh, "get write access"); 1622 ret = ext4_journal_get_write_access(handle, inode_bh); 1623 1624 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1625 1626 } else { 1627 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1628 do_journal_get_write_access); 1629 1630 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1631 write_end_fn); 1632 } 1633 if (ret == 0) 1634 ret = err; 1635 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1636 err = ext4_journal_stop(handle); 1637 if (!ret) 1638 ret = err; 1639 1640 if (!ext4_has_inline_data(inode)) 1641 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1642 NULL, bput_one); 1643 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1644 out: 1645 brelse(inode_bh); 1646 return ret; 1647 } 1648 1649 /* 1650 * Note that we don't need to start a transaction unless we're journaling data 1651 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1652 * need to file the inode to the transaction's list in ordered mode because if 1653 * we are writing back data added by write(), the inode is already there and if 1654 * we are writing back data modified via mmap(), no one guarantees in which 1655 * transaction the data will hit the disk. In case we are journaling data, we 1656 * cannot start transaction directly because transaction start ranks above page 1657 * lock so we have to do some magic. 1658 * 1659 * This function can get called via... 1660 * - ext4_writepages after taking page lock (have journal handle) 1661 * - journal_submit_inode_data_buffers (no journal handle) 1662 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1663 * - grab_page_cache when doing write_begin (have journal handle) 1664 * 1665 * We don't do any block allocation in this function. If we have page with 1666 * multiple blocks we need to write those buffer_heads that are mapped. This 1667 * is important for mmaped based write. So if we do with blocksize 1K 1668 * truncate(f, 1024); 1669 * a = mmap(f, 0, 4096); 1670 * a[0] = 'a'; 1671 * truncate(f, 4096); 1672 * we have in the page first buffer_head mapped via page_mkwrite call back 1673 * but other buffer_heads would be unmapped but dirty (dirty done via the 1674 * do_wp_page). So writepage should write the first block. If we modify 1675 * the mmap area beyond 1024 we will again get a page_fault and the 1676 * page_mkwrite callback will do the block allocation and mark the 1677 * buffer_heads mapped. 1678 * 1679 * We redirty the page if we have any buffer_heads that is either delay or 1680 * unwritten in the page. 1681 * 1682 * We can get recursively called as show below. 1683 * 1684 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1685 * ext4_writepage() 1686 * 1687 * But since we don't do any block allocation we should not deadlock. 1688 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1689 */ 1690 static int ext4_writepage(struct page *page, 1691 struct writeback_control *wbc) 1692 { 1693 int ret = 0; 1694 loff_t size; 1695 unsigned int len; 1696 struct buffer_head *page_bufs = NULL; 1697 struct inode *inode = page->mapping->host; 1698 struct ext4_io_submit io_submit; 1699 bool keep_towrite = false; 1700 1701 trace_ext4_writepage(page); 1702 size = i_size_read(inode); 1703 if (page->index == size >> PAGE_CACHE_SHIFT) 1704 len = size & ~PAGE_CACHE_MASK; 1705 else 1706 len = PAGE_CACHE_SIZE; 1707 1708 page_bufs = page_buffers(page); 1709 /* 1710 * We cannot do block allocation or other extent handling in this 1711 * function. If there are buffers needing that, we have to redirty 1712 * the page. But we may reach here when we do a journal commit via 1713 * journal_submit_inode_data_buffers() and in that case we must write 1714 * allocated buffers to achieve data=ordered mode guarantees. 1715 */ 1716 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1717 ext4_bh_delay_or_unwritten)) { 1718 redirty_page_for_writepage(wbc, page); 1719 if (current->flags & PF_MEMALLOC) { 1720 /* 1721 * For memory cleaning there's no point in writing only 1722 * some buffers. So just bail out. Warn if we came here 1723 * from direct reclaim. 1724 */ 1725 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1726 == PF_MEMALLOC); 1727 unlock_page(page); 1728 return 0; 1729 } 1730 keep_towrite = true; 1731 } 1732 1733 if (PageChecked(page) && ext4_should_journal_data(inode)) 1734 /* 1735 * It's mmapped pagecache. Add buffers and journal it. There 1736 * doesn't seem much point in redirtying the page here. 1737 */ 1738 return __ext4_journalled_writepage(page, len); 1739 1740 ext4_io_submit_init(&io_submit, wbc); 1741 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1742 if (!io_submit.io_end) { 1743 redirty_page_for_writepage(wbc, page); 1744 unlock_page(page); 1745 return -ENOMEM; 1746 } 1747 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1748 ext4_io_submit(&io_submit); 1749 /* Drop io_end reference we got from init */ 1750 ext4_put_io_end_defer(io_submit.io_end); 1751 return ret; 1752 } 1753 1754 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1755 { 1756 int len; 1757 loff_t size = i_size_read(mpd->inode); 1758 int err; 1759 1760 BUG_ON(page->index != mpd->first_page); 1761 if (page->index == size >> PAGE_CACHE_SHIFT) 1762 len = size & ~PAGE_CACHE_MASK; 1763 else 1764 len = PAGE_CACHE_SIZE; 1765 clear_page_dirty_for_io(page); 1766 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1767 if (!err) 1768 mpd->wbc->nr_to_write--; 1769 mpd->first_page++; 1770 1771 return err; 1772 } 1773 1774 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1775 1776 /* 1777 * mballoc gives us at most this number of blocks... 1778 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1779 * The rest of mballoc seems to handle chunks up to full group size. 1780 */ 1781 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1782 1783 /* 1784 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1785 * 1786 * @mpd - extent of blocks 1787 * @lblk - logical number of the block in the file 1788 * @bh - buffer head we want to add to the extent 1789 * 1790 * The function is used to collect contig. blocks in the same state. If the 1791 * buffer doesn't require mapping for writeback and we haven't started the 1792 * extent of buffers to map yet, the function returns 'true' immediately - the 1793 * caller can write the buffer right away. Otherwise the function returns true 1794 * if the block has been added to the extent, false if the block couldn't be 1795 * added. 1796 */ 1797 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1798 struct buffer_head *bh) 1799 { 1800 struct ext4_map_blocks *map = &mpd->map; 1801 1802 /* Buffer that doesn't need mapping for writeback? */ 1803 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1804 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1805 /* So far no extent to map => we write the buffer right away */ 1806 if (map->m_len == 0) 1807 return true; 1808 return false; 1809 } 1810 1811 /* First block in the extent? */ 1812 if (map->m_len == 0) { 1813 map->m_lblk = lblk; 1814 map->m_len = 1; 1815 map->m_flags = bh->b_state & BH_FLAGS; 1816 return true; 1817 } 1818 1819 /* Don't go larger than mballoc is willing to allocate */ 1820 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1821 return false; 1822 1823 /* Can we merge the block to our big extent? */ 1824 if (lblk == map->m_lblk + map->m_len && 1825 (bh->b_state & BH_FLAGS) == map->m_flags) { 1826 map->m_len++; 1827 return true; 1828 } 1829 return false; 1830 } 1831 1832 /* 1833 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1834 * 1835 * @mpd - extent of blocks for mapping 1836 * @head - the first buffer in the page 1837 * @bh - buffer we should start processing from 1838 * @lblk - logical number of the block in the file corresponding to @bh 1839 * 1840 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1841 * the page for IO if all buffers in this page were mapped and there's no 1842 * accumulated extent of buffers to map or add buffers in the page to the 1843 * extent of buffers to map. The function returns 1 if the caller can continue 1844 * by processing the next page, 0 if it should stop adding buffers to the 1845 * extent to map because we cannot extend it anymore. It can also return value 1846 * < 0 in case of error during IO submission. 1847 */ 1848 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1849 struct buffer_head *head, 1850 struct buffer_head *bh, 1851 ext4_lblk_t lblk) 1852 { 1853 struct inode *inode = mpd->inode; 1854 int err; 1855 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1856 >> inode->i_blkbits; 1857 1858 do { 1859 BUG_ON(buffer_locked(bh)); 1860 1861 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1862 /* Found extent to map? */ 1863 if (mpd->map.m_len) 1864 return 0; 1865 /* Everything mapped so far and we hit EOF */ 1866 break; 1867 } 1868 } while (lblk++, (bh = bh->b_this_page) != head); 1869 /* So far everything mapped? Submit the page for IO. */ 1870 if (mpd->map.m_len == 0) { 1871 err = mpage_submit_page(mpd, head->b_page); 1872 if (err < 0) 1873 return err; 1874 } 1875 return lblk < blocks; 1876 } 1877 1878 /* 1879 * mpage_map_buffers - update buffers corresponding to changed extent and 1880 * submit fully mapped pages for IO 1881 * 1882 * @mpd - description of extent to map, on return next extent to map 1883 * 1884 * Scan buffers corresponding to changed extent (we expect corresponding pages 1885 * to be already locked) and update buffer state according to new extent state. 1886 * We map delalloc buffers to their physical location, clear unwritten bits, 1887 * and mark buffers as uninit when we perform writes to unwritten extents 1888 * and do extent conversion after IO is finished. If the last page is not fully 1889 * mapped, we update @map to the next extent in the last page that needs 1890 * mapping. Otherwise we submit the page for IO. 1891 */ 1892 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 1893 { 1894 struct pagevec pvec; 1895 int nr_pages, i; 1896 struct inode *inode = mpd->inode; 1897 struct buffer_head *head, *bh; 1898 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 1899 pgoff_t start, end; 1900 ext4_lblk_t lblk; 1901 sector_t pblock; 1902 int err; 1903 1904 start = mpd->map.m_lblk >> bpp_bits; 1905 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 1906 lblk = start << bpp_bits; 1907 pblock = mpd->map.m_pblk; 1908 1909 pagevec_init(&pvec, 0); 1910 while (start <= end) { 1911 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 1912 PAGEVEC_SIZE); 1913 if (nr_pages == 0) 1914 break; 1915 for (i = 0; i < nr_pages; i++) { 1916 struct page *page = pvec.pages[i]; 1917 1918 if (page->index > end) 1919 break; 1920 /* Up to 'end' pages must be contiguous */ 1921 BUG_ON(page->index != start); 1922 bh = head = page_buffers(page); 1923 do { 1924 if (lblk < mpd->map.m_lblk) 1925 continue; 1926 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 1927 /* 1928 * Buffer after end of mapped extent. 1929 * Find next buffer in the page to map. 1930 */ 1931 mpd->map.m_len = 0; 1932 mpd->map.m_flags = 0; 1933 /* 1934 * FIXME: If dioread_nolock supports 1935 * blocksize < pagesize, we need to make 1936 * sure we add size mapped so far to 1937 * io_end->size as the following call 1938 * can submit the page for IO. 1939 */ 1940 err = mpage_process_page_bufs(mpd, head, 1941 bh, lblk); 1942 pagevec_release(&pvec); 1943 if (err > 0) 1944 err = 0; 1945 return err; 1946 } 1947 if (buffer_delay(bh)) { 1948 clear_buffer_delay(bh); 1949 bh->b_blocknr = pblock++; 1950 } 1951 clear_buffer_unwritten(bh); 1952 } while (lblk++, (bh = bh->b_this_page) != head); 1953 1954 /* 1955 * FIXME: This is going to break if dioread_nolock 1956 * supports blocksize < pagesize as we will try to 1957 * convert potentially unmapped parts of inode. 1958 */ 1959 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 1960 /* Page fully mapped - let IO run! */ 1961 err = mpage_submit_page(mpd, page); 1962 if (err < 0) { 1963 pagevec_release(&pvec); 1964 return err; 1965 } 1966 start++; 1967 } 1968 pagevec_release(&pvec); 1969 } 1970 /* Extent fully mapped and matches with page boundary. We are done. */ 1971 mpd->map.m_len = 0; 1972 mpd->map.m_flags = 0; 1973 return 0; 1974 } 1975 1976 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 1977 { 1978 struct inode *inode = mpd->inode; 1979 struct ext4_map_blocks *map = &mpd->map; 1980 int get_blocks_flags; 1981 int err, dioread_nolock; 1982 1983 trace_ext4_da_write_pages_extent(inode, map); 1984 /* 1985 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 1986 * to convert an unwritten extent to be initialized (in the case 1987 * where we have written into one or more preallocated blocks). It is 1988 * possible that we're going to need more metadata blocks than 1989 * previously reserved. However we must not fail because we're in 1990 * writeback and there is nothing we can do about it so it might result 1991 * in data loss. So use reserved blocks to allocate metadata if 1992 * possible. 1993 * 1994 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 1995 * the blocks in question are delalloc blocks. This indicates 1996 * that the blocks and quotas has already been checked when 1997 * the data was copied into the page cache. 1998 */ 1999 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2000 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2001 dioread_nolock = ext4_should_dioread_nolock(inode); 2002 if (dioread_nolock) 2003 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2004 if (map->m_flags & (1 << BH_Delay)) 2005 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2006 2007 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2008 if (err < 0) 2009 return err; 2010 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2011 if (!mpd->io_submit.io_end->handle && 2012 ext4_handle_valid(handle)) { 2013 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2014 handle->h_rsv_handle = NULL; 2015 } 2016 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2017 } 2018 2019 BUG_ON(map->m_len == 0); 2020 if (map->m_flags & EXT4_MAP_NEW) { 2021 struct block_device *bdev = inode->i_sb->s_bdev; 2022 int i; 2023 2024 for (i = 0; i < map->m_len; i++) 2025 unmap_underlying_metadata(bdev, map->m_pblk + i); 2026 } 2027 return 0; 2028 } 2029 2030 /* 2031 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2032 * mpd->len and submit pages underlying it for IO 2033 * 2034 * @handle - handle for journal operations 2035 * @mpd - extent to map 2036 * @give_up_on_write - we set this to true iff there is a fatal error and there 2037 * is no hope of writing the data. The caller should discard 2038 * dirty pages to avoid infinite loops. 2039 * 2040 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2041 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2042 * them to initialized or split the described range from larger unwritten 2043 * extent. Note that we need not map all the described range since allocation 2044 * can return less blocks or the range is covered by more unwritten extents. We 2045 * cannot map more because we are limited by reserved transaction credits. On 2046 * the other hand we always make sure that the last touched page is fully 2047 * mapped so that it can be written out (and thus forward progress is 2048 * guaranteed). After mapping we submit all mapped pages for IO. 2049 */ 2050 static int mpage_map_and_submit_extent(handle_t *handle, 2051 struct mpage_da_data *mpd, 2052 bool *give_up_on_write) 2053 { 2054 struct inode *inode = mpd->inode; 2055 struct ext4_map_blocks *map = &mpd->map; 2056 int err; 2057 loff_t disksize; 2058 int progress = 0; 2059 2060 mpd->io_submit.io_end->offset = 2061 ((loff_t)map->m_lblk) << inode->i_blkbits; 2062 do { 2063 err = mpage_map_one_extent(handle, mpd); 2064 if (err < 0) { 2065 struct super_block *sb = inode->i_sb; 2066 2067 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2068 goto invalidate_dirty_pages; 2069 /* 2070 * Let the uper layers retry transient errors. 2071 * In the case of ENOSPC, if ext4_count_free_blocks() 2072 * is non-zero, a commit should free up blocks. 2073 */ 2074 if ((err == -ENOMEM) || 2075 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2076 if (progress) 2077 goto update_disksize; 2078 return err; 2079 } 2080 ext4_msg(sb, KERN_CRIT, 2081 "Delayed block allocation failed for " 2082 "inode %lu at logical offset %llu with" 2083 " max blocks %u with error %d", 2084 inode->i_ino, 2085 (unsigned long long)map->m_lblk, 2086 (unsigned)map->m_len, -err); 2087 ext4_msg(sb, KERN_CRIT, 2088 "This should not happen!! Data will " 2089 "be lost\n"); 2090 if (err == -ENOSPC) 2091 ext4_print_free_blocks(inode); 2092 invalidate_dirty_pages: 2093 *give_up_on_write = true; 2094 return err; 2095 } 2096 progress = 1; 2097 /* 2098 * Update buffer state, submit mapped pages, and get us new 2099 * extent to map 2100 */ 2101 err = mpage_map_and_submit_buffers(mpd); 2102 if (err < 0) 2103 goto update_disksize; 2104 } while (map->m_len); 2105 2106 update_disksize: 2107 /* 2108 * Update on-disk size after IO is submitted. Races with 2109 * truncate are avoided by checking i_size under i_data_sem. 2110 */ 2111 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2112 if (disksize > EXT4_I(inode)->i_disksize) { 2113 int err2; 2114 loff_t i_size; 2115 2116 down_write(&EXT4_I(inode)->i_data_sem); 2117 i_size = i_size_read(inode); 2118 if (disksize > i_size) 2119 disksize = i_size; 2120 if (disksize > EXT4_I(inode)->i_disksize) 2121 EXT4_I(inode)->i_disksize = disksize; 2122 err2 = ext4_mark_inode_dirty(handle, inode); 2123 up_write(&EXT4_I(inode)->i_data_sem); 2124 if (err2) 2125 ext4_error(inode->i_sb, 2126 "Failed to mark inode %lu dirty", 2127 inode->i_ino); 2128 if (!err) 2129 err = err2; 2130 } 2131 return err; 2132 } 2133 2134 /* 2135 * Calculate the total number of credits to reserve for one writepages 2136 * iteration. This is called from ext4_writepages(). We map an extent of 2137 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2138 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2139 * bpp - 1 blocks in bpp different extents. 2140 */ 2141 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2142 { 2143 int bpp = ext4_journal_blocks_per_page(inode); 2144 2145 return ext4_meta_trans_blocks(inode, 2146 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2147 } 2148 2149 /* 2150 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2151 * and underlying extent to map 2152 * 2153 * @mpd - where to look for pages 2154 * 2155 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2156 * IO immediately. When we find a page which isn't mapped we start accumulating 2157 * extent of buffers underlying these pages that needs mapping (formed by 2158 * either delayed or unwritten buffers). We also lock the pages containing 2159 * these buffers. The extent found is returned in @mpd structure (starting at 2160 * mpd->lblk with length mpd->len blocks). 2161 * 2162 * Note that this function can attach bios to one io_end structure which are 2163 * neither logically nor physically contiguous. Although it may seem as an 2164 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2165 * case as we need to track IO to all buffers underlying a page in one io_end. 2166 */ 2167 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2168 { 2169 struct address_space *mapping = mpd->inode->i_mapping; 2170 struct pagevec pvec; 2171 unsigned int nr_pages; 2172 long left = mpd->wbc->nr_to_write; 2173 pgoff_t index = mpd->first_page; 2174 pgoff_t end = mpd->last_page; 2175 int tag; 2176 int i, err = 0; 2177 int blkbits = mpd->inode->i_blkbits; 2178 ext4_lblk_t lblk; 2179 struct buffer_head *head; 2180 2181 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2182 tag = PAGECACHE_TAG_TOWRITE; 2183 else 2184 tag = PAGECACHE_TAG_DIRTY; 2185 2186 pagevec_init(&pvec, 0); 2187 mpd->map.m_len = 0; 2188 mpd->next_page = index; 2189 while (index <= end) { 2190 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2191 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2192 if (nr_pages == 0) 2193 goto out; 2194 2195 for (i = 0; i < nr_pages; i++) { 2196 struct page *page = pvec.pages[i]; 2197 2198 /* 2199 * At this point, the page may be truncated or 2200 * invalidated (changing page->mapping to NULL), or 2201 * even swizzled back from swapper_space to tmpfs file 2202 * mapping. However, page->index will not change 2203 * because we have a reference on the page. 2204 */ 2205 if (page->index > end) 2206 goto out; 2207 2208 /* 2209 * Accumulated enough dirty pages? This doesn't apply 2210 * to WB_SYNC_ALL mode. For integrity sync we have to 2211 * keep going because someone may be concurrently 2212 * dirtying pages, and we might have synced a lot of 2213 * newly appeared dirty pages, but have not synced all 2214 * of the old dirty pages. 2215 */ 2216 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2217 goto out; 2218 2219 /* If we can't merge this page, we are done. */ 2220 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2221 goto out; 2222 2223 lock_page(page); 2224 /* 2225 * If the page is no longer dirty, or its mapping no 2226 * longer corresponds to inode we are writing (which 2227 * means it has been truncated or invalidated), or the 2228 * page is already under writeback and we are not doing 2229 * a data integrity writeback, skip the page 2230 */ 2231 if (!PageDirty(page) || 2232 (PageWriteback(page) && 2233 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2234 unlikely(page->mapping != mapping)) { 2235 unlock_page(page); 2236 continue; 2237 } 2238 2239 wait_on_page_writeback(page); 2240 BUG_ON(PageWriteback(page)); 2241 2242 if (mpd->map.m_len == 0) 2243 mpd->first_page = page->index; 2244 mpd->next_page = page->index + 1; 2245 /* Add all dirty buffers to mpd */ 2246 lblk = ((ext4_lblk_t)page->index) << 2247 (PAGE_CACHE_SHIFT - blkbits); 2248 head = page_buffers(page); 2249 err = mpage_process_page_bufs(mpd, head, head, lblk); 2250 if (err <= 0) 2251 goto out; 2252 err = 0; 2253 left--; 2254 } 2255 pagevec_release(&pvec); 2256 cond_resched(); 2257 } 2258 return 0; 2259 out: 2260 pagevec_release(&pvec); 2261 return err; 2262 } 2263 2264 static int __writepage(struct page *page, struct writeback_control *wbc, 2265 void *data) 2266 { 2267 struct address_space *mapping = data; 2268 int ret = ext4_writepage(page, wbc); 2269 mapping_set_error(mapping, ret); 2270 return ret; 2271 } 2272 2273 static int ext4_writepages(struct address_space *mapping, 2274 struct writeback_control *wbc) 2275 { 2276 pgoff_t writeback_index = 0; 2277 long nr_to_write = wbc->nr_to_write; 2278 int range_whole = 0; 2279 int cycled = 1; 2280 handle_t *handle = NULL; 2281 struct mpage_da_data mpd; 2282 struct inode *inode = mapping->host; 2283 int needed_blocks, rsv_blocks = 0, ret = 0; 2284 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2285 bool done; 2286 struct blk_plug plug; 2287 bool give_up_on_write = false; 2288 2289 trace_ext4_writepages(inode, wbc); 2290 2291 /* 2292 * No pages to write? This is mainly a kludge to avoid starting 2293 * a transaction for special inodes like journal inode on last iput() 2294 * because that could violate lock ordering on umount 2295 */ 2296 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2297 goto out_writepages; 2298 2299 if (ext4_should_journal_data(inode)) { 2300 struct blk_plug plug; 2301 2302 blk_start_plug(&plug); 2303 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2304 blk_finish_plug(&plug); 2305 goto out_writepages; 2306 } 2307 2308 /* 2309 * If the filesystem has aborted, it is read-only, so return 2310 * right away instead of dumping stack traces later on that 2311 * will obscure the real source of the problem. We test 2312 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2313 * the latter could be true if the filesystem is mounted 2314 * read-only, and in that case, ext4_writepages should 2315 * *never* be called, so if that ever happens, we would want 2316 * the stack trace. 2317 */ 2318 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2319 ret = -EROFS; 2320 goto out_writepages; 2321 } 2322 2323 if (ext4_should_dioread_nolock(inode)) { 2324 /* 2325 * We may need to convert up to one extent per block in 2326 * the page and we may dirty the inode. 2327 */ 2328 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2329 } 2330 2331 /* 2332 * If we have inline data and arrive here, it means that 2333 * we will soon create the block for the 1st page, so 2334 * we'd better clear the inline data here. 2335 */ 2336 if (ext4_has_inline_data(inode)) { 2337 /* Just inode will be modified... */ 2338 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2339 if (IS_ERR(handle)) { 2340 ret = PTR_ERR(handle); 2341 goto out_writepages; 2342 } 2343 BUG_ON(ext4_test_inode_state(inode, 2344 EXT4_STATE_MAY_INLINE_DATA)); 2345 ext4_destroy_inline_data(handle, inode); 2346 ext4_journal_stop(handle); 2347 } 2348 2349 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2350 range_whole = 1; 2351 2352 if (wbc->range_cyclic) { 2353 writeback_index = mapping->writeback_index; 2354 if (writeback_index) 2355 cycled = 0; 2356 mpd.first_page = writeback_index; 2357 mpd.last_page = -1; 2358 } else { 2359 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2360 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2361 } 2362 2363 mpd.inode = inode; 2364 mpd.wbc = wbc; 2365 ext4_io_submit_init(&mpd.io_submit, wbc); 2366 retry: 2367 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2368 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2369 done = false; 2370 blk_start_plug(&plug); 2371 while (!done && mpd.first_page <= mpd.last_page) { 2372 /* For each extent of pages we use new io_end */ 2373 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2374 if (!mpd.io_submit.io_end) { 2375 ret = -ENOMEM; 2376 break; 2377 } 2378 2379 /* 2380 * We have two constraints: We find one extent to map and we 2381 * must always write out whole page (makes a difference when 2382 * blocksize < pagesize) so that we don't block on IO when we 2383 * try to write out the rest of the page. Journalled mode is 2384 * not supported by delalloc. 2385 */ 2386 BUG_ON(ext4_should_journal_data(inode)); 2387 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2388 2389 /* start a new transaction */ 2390 handle = ext4_journal_start_with_reserve(inode, 2391 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2392 if (IS_ERR(handle)) { 2393 ret = PTR_ERR(handle); 2394 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2395 "%ld pages, ino %lu; err %d", __func__, 2396 wbc->nr_to_write, inode->i_ino, ret); 2397 /* Release allocated io_end */ 2398 ext4_put_io_end(mpd.io_submit.io_end); 2399 break; 2400 } 2401 2402 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2403 ret = mpage_prepare_extent_to_map(&mpd); 2404 if (!ret) { 2405 if (mpd.map.m_len) 2406 ret = mpage_map_and_submit_extent(handle, &mpd, 2407 &give_up_on_write); 2408 else { 2409 /* 2410 * We scanned the whole range (or exhausted 2411 * nr_to_write), submitted what was mapped and 2412 * didn't find anything needing mapping. We are 2413 * done. 2414 */ 2415 done = true; 2416 } 2417 } 2418 ext4_journal_stop(handle); 2419 /* Submit prepared bio */ 2420 ext4_io_submit(&mpd.io_submit); 2421 /* Unlock pages we didn't use */ 2422 mpage_release_unused_pages(&mpd, give_up_on_write); 2423 /* Drop our io_end reference we got from init */ 2424 ext4_put_io_end(mpd.io_submit.io_end); 2425 2426 if (ret == -ENOSPC && sbi->s_journal) { 2427 /* 2428 * Commit the transaction which would 2429 * free blocks released in the transaction 2430 * and try again 2431 */ 2432 jbd2_journal_force_commit_nested(sbi->s_journal); 2433 ret = 0; 2434 continue; 2435 } 2436 /* Fatal error - ENOMEM, EIO... */ 2437 if (ret) 2438 break; 2439 } 2440 blk_finish_plug(&plug); 2441 if (!ret && !cycled && wbc->nr_to_write > 0) { 2442 cycled = 1; 2443 mpd.last_page = writeback_index - 1; 2444 mpd.first_page = 0; 2445 goto retry; 2446 } 2447 2448 /* Update index */ 2449 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2450 /* 2451 * Set the writeback_index so that range_cyclic 2452 * mode will write it back later 2453 */ 2454 mapping->writeback_index = mpd.first_page; 2455 2456 out_writepages: 2457 trace_ext4_writepages_result(inode, wbc, ret, 2458 nr_to_write - wbc->nr_to_write); 2459 return ret; 2460 } 2461 2462 static int ext4_nonda_switch(struct super_block *sb) 2463 { 2464 s64 free_clusters, dirty_clusters; 2465 struct ext4_sb_info *sbi = EXT4_SB(sb); 2466 2467 /* 2468 * switch to non delalloc mode if we are running low 2469 * on free block. The free block accounting via percpu 2470 * counters can get slightly wrong with percpu_counter_batch getting 2471 * accumulated on each CPU without updating global counters 2472 * Delalloc need an accurate free block accounting. So switch 2473 * to non delalloc when we are near to error range. 2474 */ 2475 free_clusters = 2476 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2477 dirty_clusters = 2478 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2479 /* 2480 * Start pushing delalloc when 1/2 of free blocks are dirty. 2481 */ 2482 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2483 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2484 2485 if (2 * free_clusters < 3 * dirty_clusters || 2486 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2487 /* 2488 * free block count is less than 150% of dirty blocks 2489 * or free blocks is less than watermark 2490 */ 2491 return 1; 2492 } 2493 return 0; 2494 } 2495 2496 /* We always reserve for an inode update; the superblock could be there too */ 2497 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2498 { 2499 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 2500 EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) 2501 return 1; 2502 2503 if (pos + len <= 0x7fffffffULL) 2504 return 1; 2505 2506 /* We might need to update the superblock to set LARGE_FILE */ 2507 return 2; 2508 } 2509 2510 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2511 loff_t pos, unsigned len, unsigned flags, 2512 struct page **pagep, void **fsdata) 2513 { 2514 int ret, retries = 0; 2515 struct page *page; 2516 pgoff_t index; 2517 struct inode *inode = mapping->host; 2518 handle_t *handle; 2519 2520 index = pos >> PAGE_CACHE_SHIFT; 2521 2522 if (ext4_nonda_switch(inode->i_sb)) { 2523 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2524 return ext4_write_begin(file, mapping, pos, 2525 len, flags, pagep, fsdata); 2526 } 2527 *fsdata = (void *)0; 2528 trace_ext4_da_write_begin(inode, pos, len, flags); 2529 2530 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2531 ret = ext4_da_write_inline_data_begin(mapping, inode, 2532 pos, len, flags, 2533 pagep, fsdata); 2534 if (ret < 0) 2535 return ret; 2536 if (ret == 1) 2537 return 0; 2538 } 2539 2540 /* 2541 * grab_cache_page_write_begin() can take a long time if the 2542 * system is thrashing due to memory pressure, or if the page 2543 * is being written back. So grab it first before we start 2544 * the transaction handle. This also allows us to allocate 2545 * the page (if needed) without using GFP_NOFS. 2546 */ 2547 retry_grab: 2548 page = grab_cache_page_write_begin(mapping, index, flags); 2549 if (!page) 2550 return -ENOMEM; 2551 unlock_page(page); 2552 2553 /* 2554 * With delayed allocation, we don't log the i_disksize update 2555 * if there is delayed block allocation. But we still need 2556 * to journalling the i_disksize update if writes to the end 2557 * of file which has an already mapped buffer. 2558 */ 2559 retry_journal: 2560 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2561 ext4_da_write_credits(inode, pos, len)); 2562 if (IS_ERR(handle)) { 2563 page_cache_release(page); 2564 return PTR_ERR(handle); 2565 } 2566 2567 lock_page(page); 2568 if (page->mapping != mapping) { 2569 /* The page got truncated from under us */ 2570 unlock_page(page); 2571 page_cache_release(page); 2572 ext4_journal_stop(handle); 2573 goto retry_grab; 2574 } 2575 /* In case writeback began while the page was unlocked */ 2576 wait_for_stable_page(page); 2577 2578 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2579 if (ret < 0) { 2580 unlock_page(page); 2581 ext4_journal_stop(handle); 2582 /* 2583 * block_write_begin may have instantiated a few blocks 2584 * outside i_size. Trim these off again. Don't need 2585 * i_size_read because we hold i_mutex. 2586 */ 2587 if (pos + len > inode->i_size) 2588 ext4_truncate_failed_write(inode); 2589 2590 if (ret == -ENOSPC && 2591 ext4_should_retry_alloc(inode->i_sb, &retries)) 2592 goto retry_journal; 2593 2594 page_cache_release(page); 2595 return ret; 2596 } 2597 2598 *pagep = page; 2599 return ret; 2600 } 2601 2602 /* 2603 * Check if we should update i_disksize 2604 * when write to the end of file but not require block allocation 2605 */ 2606 static int ext4_da_should_update_i_disksize(struct page *page, 2607 unsigned long offset) 2608 { 2609 struct buffer_head *bh; 2610 struct inode *inode = page->mapping->host; 2611 unsigned int idx; 2612 int i; 2613 2614 bh = page_buffers(page); 2615 idx = offset >> inode->i_blkbits; 2616 2617 for (i = 0; i < idx; i++) 2618 bh = bh->b_this_page; 2619 2620 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2621 return 0; 2622 return 1; 2623 } 2624 2625 static int ext4_da_write_end(struct file *file, 2626 struct address_space *mapping, 2627 loff_t pos, unsigned len, unsigned copied, 2628 struct page *page, void *fsdata) 2629 { 2630 struct inode *inode = mapping->host; 2631 int ret = 0, ret2; 2632 handle_t *handle = ext4_journal_current_handle(); 2633 loff_t new_i_size; 2634 unsigned long start, end; 2635 int write_mode = (int)(unsigned long)fsdata; 2636 2637 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2638 return ext4_write_end(file, mapping, pos, 2639 len, copied, page, fsdata); 2640 2641 trace_ext4_da_write_end(inode, pos, len, copied); 2642 start = pos & (PAGE_CACHE_SIZE - 1); 2643 end = start + copied - 1; 2644 2645 /* 2646 * generic_write_end() will run mark_inode_dirty() if i_size 2647 * changes. So let's piggyback the i_disksize mark_inode_dirty 2648 * into that. 2649 */ 2650 new_i_size = pos + copied; 2651 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2652 if (ext4_has_inline_data(inode) || 2653 ext4_da_should_update_i_disksize(page, end)) { 2654 ext4_update_i_disksize(inode, new_i_size); 2655 /* We need to mark inode dirty even if 2656 * new_i_size is less that inode->i_size 2657 * bu greater than i_disksize.(hint delalloc) 2658 */ 2659 ext4_mark_inode_dirty(handle, inode); 2660 } 2661 } 2662 2663 if (write_mode != CONVERT_INLINE_DATA && 2664 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2665 ext4_has_inline_data(inode)) 2666 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2667 page); 2668 else 2669 ret2 = generic_write_end(file, mapping, pos, len, copied, 2670 page, fsdata); 2671 2672 copied = ret2; 2673 if (ret2 < 0) 2674 ret = ret2; 2675 ret2 = ext4_journal_stop(handle); 2676 if (!ret) 2677 ret = ret2; 2678 2679 return ret ? ret : copied; 2680 } 2681 2682 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2683 unsigned int length) 2684 { 2685 /* 2686 * Drop reserved blocks 2687 */ 2688 BUG_ON(!PageLocked(page)); 2689 if (!page_has_buffers(page)) 2690 goto out; 2691 2692 ext4_da_page_release_reservation(page, offset, length); 2693 2694 out: 2695 ext4_invalidatepage(page, offset, length); 2696 2697 return; 2698 } 2699 2700 /* 2701 * Force all delayed allocation blocks to be allocated for a given inode. 2702 */ 2703 int ext4_alloc_da_blocks(struct inode *inode) 2704 { 2705 trace_ext4_alloc_da_blocks(inode); 2706 2707 if (!EXT4_I(inode)->i_reserved_data_blocks) 2708 return 0; 2709 2710 /* 2711 * We do something simple for now. The filemap_flush() will 2712 * also start triggering a write of the data blocks, which is 2713 * not strictly speaking necessary (and for users of 2714 * laptop_mode, not even desirable). However, to do otherwise 2715 * would require replicating code paths in: 2716 * 2717 * ext4_writepages() -> 2718 * write_cache_pages() ---> (via passed in callback function) 2719 * __mpage_da_writepage() --> 2720 * mpage_add_bh_to_extent() 2721 * mpage_da_map_blocks() 2722 * 2723 * The problem is that write_cache_pages(), located in 2724 * mm/page-writeback.c, marks pages clean in preparation for 2725 * doing I/O, which is not desirable if we're not planning on 2726 * doing I/O at all. 2727 * 2728 * We could call write_cache_pages(), and then redirty all of 2729 * the pages by calling redirty_page_for_writepage() but that 2730 * would be ugly in the extreme. So instead we would need to 2731 * replicate parts of the code in the above functions, 2732 * simplifying them because we wouldn't actually intend to 2733 * write out the pages, but rather only collect contiguous 2734 * logical block extents, call the multi-block allocator, and 2735 * then update the buffer heads with the block allocations. 2736 * 2737 * For now, though, we'll cheat by calling filemap_flush(), 2738 * which will map the blocks, and start the I/O, but not 2739 * actually wait for the I/O to complete. 2740 */ 2741 return filemap_flush(inode->i_mapping); 2742 } 2743 2744 /* 2745 * bmap() is special. It gets used by applications such as lilo and by 2746 * the swapper to find the on-disk block of a specific piece of data. 2747 * 2748 * Naturally, this is dangerous if the block concerned is still in the 2749 * journal. If somebody makes a swapfile on an ext4 data-journaling 2750 * filesystem and enables swap, then they may get a nasty shock when the 2751 * data getting swapped to that swapfile suddenly gets overwritten by 2752 * the original zero's written out previously to the journal and 2753 * awaiting writeback in the kernel's buffer cache. 2754 * 2755 * So, if we see any bmap calls here on a modified, data-journaled file, 2756 * take extra steps to flush any blocks which might be in the cache. 2757 */ 2758 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2759 { 2760 struct inode *inode = mapping->host; 2761 journal_t *journal; 2762 int err; 2763 2764 /* 2765 * We can get here for an inline file via the FIBMAP ioctl 2766 */ 2767 if (ext4_has_inline_data(inode)) 2768 return 0; 2769 2770 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2771 test_opt(inode->i_sb, DELALLOC)) { 2772 /* 2773 * With delalloc we want to sync the file 2774 * so that we can make sure we allocate 2775 * blocks for file 2776 */ 2777 filemap_write_and_wait(mapping); 2778 } 2779 2780 if (EXT4_JOURNAL(inode) && 2781 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2782 /* 2783 * This is a REALLY heavyweight approach, but the use of 2784 * bmap on dirty files is expected to be extremely rare: 2785 * only if we run lilo or swapon on a freshly made file 2786 * do we expect this to happen. 2787 * 2788 * (bmap requires CAP_SYS_RAWIO so this does not 2789 * represent an unprivileged user DOS attack --- we'd be 2790 * in trouble if mortal users could trigger this path at 2791 * will.) 2792 * 2793 * NB. EXT4_STATE_JDATA is not set on files other than 2794 * regular files. If somebody wants to bmap a directory 2795 * or symlink and gets confused because the buffer 2796 * hasn't yet been flushed to disk, they deserve 2797 * everything they get. 2798 */ 2799 2800 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2801 journal = EXT4_JOURNAL(inode); 2802 jbd2_journal_lock_updates(journal); 2803 err = jbd2_journal_flush(journal); 2804 jbd2_journal_unlock_updates(journal); 2805 2806 if (err) 2807 return 0; 2808 } 2809 2810 return generic_block_bmap(mapping, block, ext4_get_block); 2811 } 2812 2813 static int ext4_readpage(struct file *file, struct page *page) 2814 { 2815 int ret = -EAGAIN; 2816 struct inode *inode = page->mapping->host; 2817 2818 trace_ext4_readpage(page); 2819 2820 if (ext4_has_inline_data(inode)) 2821 ret = ext4_readpage_inline(inode, page); 2822 2823 if (ret == -EAGAIN) 2824 return mpage_readpage(page, ext4_get_block); 2825 2826 return ret; 2827 } 2828 2829 static int 2830 ext4_readpages(struct file *file, struct address_space *mapping, 2831 struct list_head *pages, unsigned nr_pages) 2832 { 2833 struct inode *inode = mapping->host; 2834 2835 /* If the file has inline data, no need to do readpages. */ 2836 if (ext4_has_inline_data(inode)) 2837 return 0; 2838 2839 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2840 } 2841 2842 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2843 unsigned int length) 2844 { 2845 trace_ext4_invalidatepage(page, offset, length); 2846 2847 /* No journalling happens on data buffers when this function is used */ 2848 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2849 2850 block_invalidatepage(page, offset, length); 2851 } 2852 2853 static int __ext4_journalled_invalidatepage(struct page *page, 2854 unsigned int offset, 2855 unsigned int length) 2856 { 2857 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2858 2859 trace_ext4_journalled_invalidatepage(page, offset, length); 2860 2861 /* 2862 * If it's a full truncate we just forget about the pending dirtying 2863 */ 2864 if (offset == 0 && length == PAGE_CACHE_SIZE) 2865 ClearPageChecked(page); 2866 2867 return jbd2_journal_invalidatepage(journal, page, offset, length); 2868 } 2869 2870 /* Wrapper for aops... */ 2871 static void ext4_journalled_invalidatepage(struct page *page, 2872 unsigned int offset, 2873 unsigned int length) 2874 { 2875 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2876 } 2877 2878 static int ext4_releasepage(struct page *page, gfp_t wait) 2879 { 2880 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2881 2882 trace_ext4_releasepage(page); 2883 2884 /* Page has dirty journalled data -> cannot release */ 2885 if (PageChecked(page)) 2886 return 0; 2887 if (journal) 2888 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2889 else 2890 return try_to_free_buffers(page); 2891 } 2892 2893 /* 2894 * ext4_get_block used when preparing for a DIO write or buffer write. 2895 * We allocate an uinitialized extent if blocks haven't been allocated. 2896 * The extent will be converted to initialized after the IO is complete. 2897 */ 2898 int ext4_get_block_write(struct inode *inode, sector_t iblock, 2899 struct buffer_head *bh_result, int create) 2900 { 2901 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2902 inode->i_ino, create); 2903 return _ext4_get_block(inode, iblock, bh_result, 2904 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2905 } 2906 2907 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2908 struct buffer_head *bh_result, int create) 2909 { 2910 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 2911 inode->i_ino, create); 2912 return _ext4_get_block(inode, iblock, bh_result, 2913 EXT4_GET_BLOCKS_NO_LOCK); 2914 } 2915 2916 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2917 ssize_t size, void *private) 2918 { 2919 ext4_io_end_t *io_end = iocb->private; 2920 2921 /* if not async direct IO just return */ 2922 if (!io_end) 2923 return; 2924 2925 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2926 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2927 iocb->private, io_end->inode->i_ino, iocb, offset, 2928 size); 2929 2930 iocb->private = NULL; 2931 io_end->offset = offset; 2932 io_end->size = size; 2933 ext4_put_io_end(io_end); 2934 } 2935 2936 /* 2937 * For ext4 extent files, ext4 will do direct-io write to holes, 2938 * preallocated extents, and those write extend the file, no need to 2939 * fall back to buffered IO. 2940 * 2941 * For holes, we fallocate those blocks, mark them as unwritten 2942 * If those blocks were preallocated, we mark sure they are split, but 2943 * still keep the range to write as unwritten. 2944 * 2945 * The unwritten extents will be converted to written when DIO is completed. 2946 * For async direct IO, since the IO may still pending when return, we 2947 * set up an end_io call back function, which will do the conversion 2948 * when async direct IO completed. 2949 * 2950 * If the O_DIRECT write will extend the file then add this inode to the 2951 * orphan list. So recovery will truncate it back to the original size 2952 * if the machine crashes during the write. 2953 * 2954 */ 2955 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2956 struct iov_iter *iter, loff_t offset) 2957 { 2958 struct file *file = iocb->ki_filp; 2959 struct inode *inode = file->f_mapping->host; 2960 ssize_t ret; 2961 size_t count = iov_iter_count(iter); 2962 int overwrite = 0; 2963 get_block_t *get_block_func = NULL; 2964 int dio_flags = 0; 2965 loff_t final_size = offset + count; 2966 ext4_io_end_t *io_end = NULL; 2967 2968 /* Use the old path for reads and writes beyond i_size. */ 2969 if (rw != WRITE || final_size > inode->i_size) 2970 return ext4_ind_direct_IO(rw, iocb, iter, offset); 2971 2972 BUG_ON(iocb->private == NULL); 2973 2974 /* 2975 * Make all waiters for direct IO properly wait also for extent 2976 * conversion. This also disallows race between truncate() and 2977 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 2978 */ 2979 if (rw == WRITE) 2980 atomic_inc(&inode->i_dio_count); 2981 2982 /* If we do a overwrite dio, i_mutex locking can be released */ 2983 overwrite = *((int *)iocb->private); 2984 2985 if (overwrite) { 2986 down_read(&EXT4_I(inode)->i_data_sem); 2987 mutex_unlock(&inode->i_mutex); 2988 } 2989 2990 /* 2991 * We could direct write to holes and fallocate. 2992 * 2993 * Allocated blocks to fill the hole are marked as 2994 * unwritten to prevent parallel buffered read to expose 2995 * the stale data before DIO complete the data IO. 2996 * 2997 * As to previously fallocated extents, ext4 get_block will 2998 * just simply mark the buffer mapped but still keep the 2999 * extents unwritten. 3000 * 3001 * For non AIO case, we will convert those unwritten extents 3002 * to written after return back from blockdev_direct_IO. 3003 * 3004 * For async DIO, the conversion needs to be deferred when the 3005 * IO is completed. The ext4 end_io callback function will be 3006 * called to take care of the conversion work. Here for async 3007 * case, we allocate an io_end structure to hook to the iocb. 3008 */ 3009 iocb->private = NULL; 3010 ext4_inode_aio_set(inode, NULL); 3011 if (!is_sync_kiocb(iocb)) { 3012 io_end = ext4_init_io_end(inode, GFP_NOFS); 3013 if (!io_end) { 3014 ret = -ENOMEM; 3015 goto retake_lock; 3016 } 3017 /* 3018 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3019 */ 3020 iocb->private = ext4_get_io_end(io_end); 3021 /* 3022 * we save the io structure for current async direct 3023 * IO, so that later ext4_map_blocks() could flag the 3024 * io structure whether there is a unwritten extents 3025 * needs to be converted when IO is completed. 3026 */ 3027 ext4_inode_aio_set(inode, io_end); 3028 } 3029 3030 if (overwrite) { 3031 get_block_func = ext4_get_block_write_nolock; 3032 } else { 3033 get_block_func = ext4_get_block_write; 3034 dio_flags = DIO_LOCKING; 3035 } 3036 ret = __blockdev_direct_IO(rw, iocb, inode, 3037 inode->i_sb->s_bdev, iter, 3038 offset, 3039 get_block_func, 3040 ext4_end_io_dio, 3041 NULL, 3042 dio_flags); 3043 3044 /* 3045 * Put our reference to io_end. This can free the io_end structure e.g. 3046 * in sync IO case or in case of error. It can even perform extent 3047 * conversion if all bios we submitted finished before we got here. 3048 * Note that in that case iocb->private can be already set to NULL 3049 * here. 3050 */ 3051 if (io_end) { 3052 ext4_inode_aio_set(inode, NULL); 3053 ext4_put_io_end(io_end); 3054 /* 3055 * When no IO was submitted ext4_end_io_dio() was not 3056 * called so we have to put iocb's reference. 3057 */ 3058 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3059 WARN_ON(iocb->private != io_end); 3060 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3061 ext4_put_io_end(io_end); 3062 iocb->private = NULL; 3063 } 3064 } 3065 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3066 EXT4_STATE_DIO_UNWRITTEN)) { 3067 int err; 3068 /* 3069 * for non AIO case, since the IO is already 3070 * completed, we could do the conversion right here 3071 */ 3072 err = ext4_convert_unwritten_extents(NULL, inode, 3073 offset, ret); 3074 if (err < 0) 3075 ret = err; 3076 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3077 } 3078 3079 retake_lock: 3080 if (rw == WRITE) 3081 inode_dio_done(inode); 3082 /* take i_mutex locking again if we do a ovewrite dio */ 3083 if (overwrite) { 3084 up_read(&EXT4_I(inode)->i_data_sem); 3085 mutex_lock(&inode->i_mutex); 3086 } 3087 3088 return ret; 3089 } 3090 3091 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3092 struct iov_iter *iter, loff_t offset) 3093 { 3094 struct file *file = iocb->ki_filp; 3095 struct inode *inode = file->f_mapping->host; 3096 size_t count = iov_iter_count(iter); 3097 ssize_t ret; 3098 3099 /* 3100 * If we are doing data journalling we don't support O_DIRECT 3101 */ 3102 if (ext4_should_journal_data(inode)) 3103 return 0; 3104 3105 /* Let buffer I/O handle the inline data case. */ 3106 if (ext4_has_inline_data(inode)) 3107 return 0; 3108 3109 trace_ext4_direct_IO_enter(inode, offset, count, rw); 3110 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3111 ret = ext4_ext_direct_IO(rw, iocb, iter, offset); 3112 else 3113 ret = ext4_ind_direct_IO(rw, iocb, iter, offset); 3114 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret); 3115 return ret; 3116 } 3117 3118 /* 3119 * Pages can be marked dirty completely asynchronously from ext4's journalling 3120 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3121 * much here because ->set_page_dirty is called under VFS locks. The page is 3122 * not necessarily locked. 3123 * 3124 * We cannot just dirty the page and leave attached buffers clean, because the 3125 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3126 * or jbddirty because all the journalling code will explode. 3127 * 3128 * So what we do is to mark the page "pending dirty" and next time writepage 3129 * is called, propagate that into the buffers appropriately. 3130 */ 3131 static int ext4_journalled_set_page_dirty(struct page *page) 3132 { 3133 SetPageChecked(page); 3134 return __set_page_dirty_nobuffers(page); 3135 } 3136 3137 static const struct address_space_operations ext4_aops = { 3138 .readpage = ext4_readpage, 3139 .readpages = ext4_readpages, 3140 .writepage = ext4_writepage, 3141 .writepages = ext4_writepages, 3142 .write_begin = ext4_write_begin, 3143 .write_end = ext4_write_end, 3144 .bmap = ext4_bmap, 3145 .invalidatepage = ext4_invalidatepage, 3146 .releasepage = ext4_releasepage, 3147 .direct_IO = ext4_direct_IO, 3148 .migratepage = buffer_migrate_page, 3149 .is_partially_uptodate = block_is_partially_uptodate, 3150 .error_remove_page = generic_error_remove_page, 3151 }; 3152 3153 static const struct address_space_operations ext4_journalled_aops = { 3154 .readpage = ext4_readpage, 3155 .readpages = ext4_readpages, 3156 .writepage = ext4_writepage, 3157 .writepages = ext4_writepages, 3158 .write_begin = ext4_write_begin, 3159 .write_end = ext4_journalled_write_end, 3160 .set_page_dirty = ext4_journalled_set_page_dirty, 3161 .bmap = ext4_bmap, 3162 .invalidatepage = ext4_journalled_invalidatepage, 3163 .releasepage = ext4_releasepage, 3164 .direct_IO = ext4_direct_IO, 3165 .is_partially_uptodate = block_is_partially_uptodate, 3166 .error_remove_page = generic_error_remove_page, 3167 }; 3168 3169 static const struct address_space_operations ext4_da_aops = { 3170 .readpage = ext4_readpage, 3171 .readpages = ext4_readpages, 3172 .writepage = ext4_writepage, 3173 .writepages = ext4_writepages, 3174 .write_begin = ext4_da_write_begin, 3175 .write_end = ext4_da_write_end, 3176 .bmap = ext4_bmap, 3177 .invalidatepage = ext4_da_invalidatepage, 3178 .releasepage = ext4_releasepage, 3179 .direct_IO = ext4_direct_IO, 3180 .migratepage = buffer_migrate_page, 3181 .is_partially_uptodate = block_is_partially_uptodate, 3182 .error_remove_page = generic_error_remove_page, 3183 }; 3184 3185 void ext4_set_aops(struct inode *inode) 3186 { 3187 switch (ext4_inode_journal_mode(inode)) { 3188 case EXT4_INODE_ORDERED_DATA_MODE: 3189 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3190 break; 3191 case EXT4_INODE_WRITEBACK_DATA_MODE: 3192 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3193 break; 3194 case EXT4_INODE_JOURNAL_DATA_MODE: 3195 inode->i_mapping->a_ops = &ext4_journalled_aops; 3196 return; 3197 default: 3198 BUG(); 3199 } 3200 if (test_opt(inode->i_sb, DELALLOC)) 3201 inode->i_mapping->a_ops = &ext4_da_aops; 3202 else 3203 inode->i_mapping->a_ops = &ext4_aops; 3204 } 3205 3206 /* 3207 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3208 * starting from file offset 'from'. The range to be zero'd must 3209 * be contained with in one block. If the specified range exceeds 3210 * the end of the block it will be shortened to end of the block 3211 * that cooresponds to 'from' 3212 */ 3213 static int ext4_block_zero_page_range(handle_t *handle, 3214 struct address_space *mapping, loff_t from, loff_t length) 3215 { 3216 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3217 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3218 unsigned blocksize, max, pos; 3219 ext4_lblk_t iblock; 3220 struct inode *inode = mapping->host; 3221 struct buffer_head *bh; 3222 struct page *page; 3223 int err = 0; 3224 3225 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3226 mapping_gfp_mask(mapping) & ~__GFP_FS); 3227 if (!page) 3228 return -ENOMEM; 3229 3230 blocksize = inode->i_sb->s_blocksize; 3231 max = blocksize - (offset & (blocksize - 1)); 3232 3233 /* 3234 * correct length if it does not fall between 3235 * 'from' and the end of the block 3236 */ 3237 if (length > max || length < 0) 3238 length = max; 3239 3240 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3241 3242 if (!page_has_buffers(page)) 3243 create_empty_buffers(page, blocksize, 0); 3244 3245 /* Find the buffer that contains "offset" */ 3246 bh = page_buffers(page); 3247 pos = blocksize; 3248 while (offset >= pos) { 3249 bh = bh->b_this_page; 3250 iblock++; 3251 pos += blocksize; 3252 } 3253 if (buffer_freed(bh)) { 3254 BUFFER_TRACE(bh, "freed: skip"); 3255 goto unlock; 3256 } 3257 if (!buffer_mapped(bh)) { 3258 BUFFER_TRACE(bh, "unmapped"); 3259 ext4_get_block(inode, iblock, bh, 0); 3260 /* unmapped? It's a hole - nothing to do */ 3261 if (!buffer_mapped(bh)) { 3262 BUFFER_TRACE(bh, "still unmapped"); 3263 goto unlock; 3264 } 3265 } 3266 3267 /* Ok, it's mapped. Make sure it's up-to-date */ 3268 if (PageUptodate(page)) 3269 set_buffer_uptodate(bh); 3270 3271 if (!buffer_uptodate(bh)) { 3272 err = -EIO; 3273 ll_rw_block(READ, 1, &bh); 3274 wait_on_buffer(bh); 3275 /* Uhhuh. Read error. Complain and punt. */ 3276 if (!buffer_uptodate(bh)) 3277 goto unlock; 3278 } 3279 if (ext4_should_journal_data(inode)) { 3280 BUFFER_TRACE(bh, "get write access"); 3281 err = ext4_journal_get_write_access(handle, bh); 3282 if (err) 3283 goto unlock; 3284 } 3285 zero_user(page, offset, length); 3286 BUFFER_TRACE(bh, "zeroed end of block"); 3287 3288 if (ext4_should_journal_data(inode)) { 3289 err = ext4_handle_dirty_metadata(handle, inode, bh); 3290 } else { 3291 err = 0; 3292 mark_buffer_dirty(bh); 3293 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3294 err = ext4_jbd2_file_inode(handle, inode); 3295 } 3296 3297 unlock: 3298 unlock_page(page); 3299 page_cache_release(page); 3300 return err; 3301 } 3302 3303 /* 3304 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3305 * up to the end of the block which corresponds to `from'. 3306 * This required during truncate. We need to physically zero the tail end 3307 * of that block so it doesn't yield old data if the file is later grown. 3308 */ 3309 static int ext4_block_truncate_page(handle_t *handle, 3310 struct address_space *mapping, loff_t from) 3311 { 3312 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3313 unsigned length; 3314 unsigned blocksize; 3315 struct inode *inode = mapping->host; 3316 3317 blocksize = inode->i_sb->s_blocksize; 3318 length = blocksize - (offset & (blocksize - 1)); 3319 3320 return ext4_block_zero_page_range(handle, mapping, from, length); 3321 } 3322 3323 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3324 loff_t lstart, loff_t length) 3325 { 3326 struct super_block *sb = inode->i_sb; 3327 struct address_space *mapping = inode->i_mapping; 3328 unsigned partial_start, partial_end; 3329 ext4_fsblk_t start, end; 3330 loff_t byte_end = (lstart + length - 1); 3331 int err = 0; 3332 3333 partial_start = lstart & (sb->s_blocksize - 1); 3334 partial_end = byte_end & (sb->s_blocksize - 1); 3335 3336 start = lstart >> sb->s_blocksize_bits; 3337 end = byte_end >> sb->s_blocksize_bits; 3338 3339 /* Handle partial zero within the single block */ 3340 if (start == end && 3341 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3342 err = ext4_block_zero_page_range(handle, mapping, 3343 lstart, length); 3344 return err; 3345 } 3346 /* Handle partial zero out on the start of the range */ 3347 if (partial_start) { 3348 err = ext4_block_zero_page_range(handle, mapping, 3349 lstart, sb->s_blocksize); 3350 if (err) 3351 return err; 3352 } 3353 /* Handle partial zero out on the end of the range */ 3354 if (partial_end != sb->s_blocksize - 1) 3355 err = ext4_block_zero_page_range(handle, mapping, 3356 byte_end - partial_end, 3357 partial_end + 1); 3358 return err; 3359 } 3360 3361 int ext4_can_truncate(struct inode *inode) 3362 { 3363 if (S_ISREG(inode->i_mode)) 3364 return 1; 3365 if (S_ISDIR(inode->i_mode)) 3366 return 1; 3367 if (S_ISLNK(inode->i_mode)) 3368 return !ext4_inode_is_fast_symlink(inode); 3369 return 0; 3370 } 3371 3372 /* 3373 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3374 * associated with the given offset and length 3375 * 3376 * @inode: File inode 3377 * @offset: The offset where the hole will begin 3378 * @len: The length of the hole 3379 * 3380 * Returns: 0 on success or negative on failure 3381 */ 3382 3383 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3384 { 3385 struct super_block *sb = inode->i_sb; 3386 ext4_lblk_t first_block, stop_block; 3387 struct address_space *mapping = inode->i_mapping; 3388 loff_t first_block_offset, last_block_offset; 3389 handle_t *handle; 3390 unsigned int credits; 3391 int ret = 0; 3392 3393 if (!S_ISREG(inode->i_mode)) 3394 return -EOPNOTSUPP; 3395 3396 trace_ext4_punch_hole(inode, offset, length, 0); 3397 3398 /* 3399 * Write out all dirty pages to avoid race conditions 3400 * Then release them. 3401 */ 3402 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3403 ret = filemap_write_and_wait_range(mapping, offset, 3404 offset + length - 1); 3405 if (ret) 3406 return ret; 3407 } 3408 3409 mutex_lock(&inode->i_mutex); 3410 3411 /* No need to punch hole beyond i_size */ 3412 if (offset >= inode->i_size) 3413 goto out_mutex; 3414 3415 /* 3416 * If the hole extends beyond i_size, set the hole 3417 * to end after the page that contains i_size 3418 */ 3419 if (offset + length > inode->i_size) { 3420 length = inode->i_size + 3421 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3422 offset; 3423 } 3424 3425 if (offset & (sb->s_blocksize - 1) || 3426 (offset + length) & (sb->s_blocksize - 1)) { 3427 /* 3428 * Attach jinode to inode for jbd2 if we do any zeroing of 3429 * partial block 3430 */ 3431 ret = ext4_inode_attach_jinode(inode); 3432 if (ret < 0) 3433 goto out_mutex; 3434 3435 } 3436 3437 first_block_offset = round_up(offset, sb->s_blocksize); 3438 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3439 3440 /* Now release the pages and zero block aligned part of pages*/ 3441 if (last_block_offset > first_block_offset) 3442 truncate_pagecache_range(inode, first_block_offset, 3443 last_block_offset); 3444 3445 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3446 ext4_inode_block_unlocked_dio(inode); 3447 inode_dio_wait(inode); 3448 3449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3450 credits = ext4_writepage_trans_blocks(inode); 3451 else 3452 credits = ext4_blocks_for_truncate(inode); 3453 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3454 if (IS_ERR(handle)) { 3455 ret = PTR_ERR(handle); 3456 ext4_std_error(sb, ret); 3457 goto out_dio; 3458 } 3459 3460 ret = ext4_zero_partial_blocks(handle, inode, offset, 3461 length); 3462 if (ret) 3463 goto out_stop; 3464 3465 first_block = (offset + sb->s_blocksize - 1) >> 3466 EXT4_BLOCK_SIZE_BITS(sb); 3467 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3468 3469 /* If there are no blocks to remove, return now */ 3470 if (first_block >= stop_block) 3471 goto out_stop; 3472 3473 down_write(&EXT4_I(inode)->i_data_sem); 3474 ext4_discard_preallocations(inode); 3475 3476 ret = ext4_es_remove_extent(inode, first_block, 3477 stop_block - first_block); 3478 if (ret) { 3479 up_write(&EXT4_I(inode)->i_data_sem); 3480 goto out_stop; 3481 } 3482 3483 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3484 ret = ext4_ext_remove_space(inode, first_block, 3485 stop_block - 1); 3486 else 3487 ret = ext4_ind_remove_space(handle, inode, first_block, 3488 stop_block); 3489 3490 up_write(&EXT4_I(inode)->i_data_sem); 3491 if (IS_SYNC(inode)) 3492 ext4_handle_sync(handle); 3493 3494 /* Now release the pages again to reduce race window */ 3495 if (last_block_offset > first_block_offset) 3496 truncate_pagecache_range(inode, first_block_offset, 3497 last_block_offset); 3498 3499 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3500 ext4_mark_inode_dirty(handle, inode); 3501 out_stop: 3502 ext4_journal_stop(handle); 3503 out_dio: 3504 ext4_inode_resume_unlocked_dio(inode); 3505 out_mutex: 3506 mutex_unlock(&inode->i_mutex); 3507 return ret; 3508 } 3509 3510 int ext4_inode_attach_jinode(struct inode *inode) 3511 { 3512 struct ext4_inode_info *ei = EXT4_I(inode); 3513 struct jbd2_inode *jinode; 3514 3515 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3516 return 0; 3517 3518 jinode = jbd2_alloc_inode(GFP_KERNEL); 3519 spin_lock(&inode->i_lock); 3520 if (!ei->jinode) { 3521 if (!jinode) { 3522 spin_unlock(&inode->i_lock); 3523 return -ENOMEM; 3524 } 3525 ei->jinode = jinode; 3526 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3527 jinode = NULL; 3528 } 3529 spin_unlock(&inode->i_lock); 3530 if (unlikely(jinode != NULL)) 3531 jbd2_free_inode(jinode); 3532 return 0; 3533 } 3534 3535 /* 3536 * ext4_truncate() 3537 * 3538 * We block out ext4_get_block() block instantiations across the entire 3539 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3540 * simultaneously on behalf of the same inode. 3541 * 3542 * As we work through the truncate and commit bits of it to the journal there 3543 * is one core, guiding principle: the file's tree must always be consistent on 3544 * disk. We must be able to restart the truncate after a crash. 3545 * 3546 * The file's tree may be transiently inconsistent in memory (although it 3547 * probably isn't), but whenever we close off and commit a journal transaction, 3548 * the contents of (the filesystem + the journal) must be consistent and 3549 * restartable. It's pretty simple, really: bottom up, right to left (although 3550 * left-to-right works OK too). 3551 * 3552 * Note that at recovery time, journal replay occurs *before* the restart of 3553 * truncate against the orphan inode list. 3554 * 3555 * The committed inode has the new, desired i_size (which is the same as 3556 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3557 * that this inode's truncate did not complete and it will again call 3558 * ext4_truncate() to have another go. So there will be instantiated blocks 3559 * to the right of the truncation point in a crashed ext4 filesystem. But 3560 * that's fine - as long as they are linked from the inode, the post-crash 3561 * ext4_truncate() run will find them and release them. 3562 */ 3563 void ext4_truncate(struct inode *inode) 3564 { 3565 struct ext4_inode_info *ei = EXT4_I(inode); 3566 unsigned int credits; 3567 handle_t *handle; 3568 struct address_space *mapping = inode->i_mapping; 3569 3570 /* 3571 * There is a possibility that we're either freeing the inode 3572 * or it's a completely new inode. In those cases we might not 3573 * have i_mutex locked because it's not necessary. 3574 */ 3575 if (!(inode->i_state & (I_NEW|I_FREEING))) 3576 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3577 trace_ext4_truncate_enter(inode); 3578 3579 if (!ext4_can_truncate(inode)) 3580 return; 3581 3582 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3583 3584 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3585 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3586 3587 if (ext4_has_inline_data(inode)) { 3588 int has_inline = 1; 3589 3590 ext4_inline_data_truncate(inode, &has_inline); 3591 if (has_inline) 3592 return; 3593 } 3594 3595 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3596 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3597 if (ext4_inode_attach_jinode(inode) < 0) 3598 return; 3599 } 3600 3601 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3602 credits = ext4_writepage_trans_blocks(inode); 3603 else 3604 credits = ext4_blocks_for_truncate(inode); 3605 3606 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3607 if (IS_ERR(handle)) { 3608 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3609 return; 3610 } 3611 3612 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3613 ext4_block_truncate_page(handle, mapping, inode->i_size); 3614 3615 /* 3616 * We add the inode to the orphan list, so that if this 3617 * truncate spans multiple transactions, and we crash, we will 3618 * resume the truncate when the filesystem recovers. It also 3619 * marks the inode dirty, to catch the new size. 3620 * 3621 * Implication: the file must always be in a sane, consistent 3622 * truncatable state while each transaction commits. 3623 */ 3624 if (ext4_orphan_add(handle, inode)) 3625 goto out_stop; 3626 3627 down_write(&EXT4_I(inode)->i_data_sem); 3628 3629 ext4_discard_preallocations(inode); 3630 3631 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3632 ext4_ext_truncate(handle, inode); 3633 else 3634 ext4_ind_truncate(handle, inode); 3635 3636 up_write(&ei->i_data_sem); 3637 3638 if (IS_SYNC(inode)) 3639 ext4_handle_sync(handle); 3640 3641 out_stop: 3642 /* 3643 * If this was a simple ftruncate() and the file will remain alive, 3644 * then we need to clear up the orphan record which we created above. 3645 * However, if this was a real unlink then we were called by 3646 * ext4_delete_inode(), and we allow that function to clean up the 3647 * orphan info for us. 3648 */ 3649 if (inode->i_nlink) 3650 ext4_orphan_del(handle, inode); 3651 3652 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3653 ext4_mark_inode_dirty(handle, inode); 3654 ext4_journal_stop(handle); 3655 3656 trace_ext4_truncate_exit(inode); 3657 } 3658 3659 /* 3660 * ext4_get_inode_loc returns with an extra refcount against the inode's 3661 * underlying buffer_head on success. If 'in_mem' is true, we have all 3662 * data in memory that is needed to recreate the on-disk version of this 3663 * inode. 3664 */ 3665 static int __ext4_get_inode_loc(struct inode *inode, 3666 struct ext4_iloc *iloc, int in_mem) 3667 { 3668 struct ext4_group_desc *gdp; 3669 struct buffer_head *bh; 3670 struct super_block *sb = inode->i_sb; 3671 ext4_fsblk_t block; 3672 int inodes_per_block, inode_offset; 3673 3674 iloc->bh = NULL; 3675 if (!ext4_valid_inum(sb, inode->i_ino)) 3676 return -EIO; 3677 3678 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3679 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3680 if (!gdp) 3681 return -EIO; 3682 3683 /* 3684 * Figure out the offset within the block group inode table 3685 */ 3686 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3687 inode_offset = ((inode->i_ino - 1) % 3688 EXT4_INODES_PER_GROUP(sb)); 3689 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3690 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3691 3692 bh = sb_getblk(sb, block); 3693 if (unlikely(!bh)) 3694 return -ENOMEM; 3695 if (!buffer_uptodate(bh)) { 3696 lock_buffer(bh); 3697 3698 /* 3699 * If the buffer has the write error flag, we have failed 3700 * to write out another inode in the same block. In this 3701 * case, we don't have to read the block because we may 3702 * read the old inode data successfully. 3703 */ 3704 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3705 set_buffer_uptodate(bh); 3706 3707 if (buffer_uptodate(bh)) { 3708 /* someone brought it uptodate while we waited */ 3709 unlock_buffer(bh); 3710 goto has_buffer; 3711 } 3712 3713 /* 3714 * If we have all information of the inode in memory and this 3715 * is the only valid inode in the block, we need not read the 3716 * block. 3717 */ 3718 if (in_mem) { 3719 struct buffer_head *bitmap_bh; 3720 int i, start; 3721 3722 start = inode_offset & ~(inodes_per_block - 1); 3723 3724 /* Is the inode bitmap in cache? */ 3725 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3726 if (unlikely(!bitmap_bh)) 3727 goto make_io; 3728 3729 /* 3730 * If the inode bitmap isn't in cache then the 3731 * optimisation may end up performing two reads instead 3732 * of one, so skip it. 3733 */ 3734 if (!buffer_uptodate(bitmap_bh)) { 3735 brelse(bitmap_bh); 3736 goto make_io; 3737 } 3738 for (i = start; i < start + inodes_per_block; i++) { 3739 if (i == inode_offset) 3740 continue; 3741 if (ext4_test_bit(i, bitmap_bh->b_data)) 3742 break; 3743 } 3744 brelse(bitmap_bh); 3745 if (i == start + inodes_per_block) { 3746 /* all other inodes are free, so skip I/O */ 3747 memset(bh->b_data, 0, bh->b_size); 3748 set_buffer_uptodate(bh); 3749 unlock_buffer(bh); 3750 goto has_buffer; 3751 } 3752 } 3753 3754 make_io: 3755 /* 3756 * If we need to do any I/O, try to pre-readahead extra 3757 * blocks from the inode table. 3758 */ 3759 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3760 ext4_fsblk_t b, end, table; 3761 unsigned num; 3762 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3763 3764 table = ext4_inode_table(sb, gdp); 3765 /* s_inode_readahead_blks is always a power of 2 */ 3766 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3767 if (table > b) 3768 b = table; 3769 end = b + ra_blks; 3770 num = EXT4_INODES_PER_GROUP(sb); 3771 if (ext4_has_group_desc_csum(sb)) 3772 num -= ext4_itable_unused_count(sb, gdp); 3773 table += num / inodes_per_block; 3774 if (end > table) 3775 end = table; 3776 while (b <= end) 3777 sb_breadahead(sb, b++); 3778 } 3779 3780 /* 3781 * There are other valid inodes in the buffer, this inode 3782 * has in-inode xattrs, or we don't have this inode in memory. 3783 * Read the block from disk. 3784 */ 3785 trace_ext4_load_inode(inode); 3786 get_bh(bh); 3787 bh->b_end_io = end_buffer_read_sync; 3788 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3789 wait_on_buffer(bh); 3790 if (!buffer_uptodate(bh)) { 3791 EXT4_ERROR_INODE_BLOCK(inode, block, 3792 "unable to read itable block"); 3793 brelse(bh); 3794 return -EIO; 3795 } 3796 } 3797 has_buffer: 3798 iloc->bh = bh; 3799 return 0; 3800 } 3801 3802 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3803 { 3804 /* We have all inode data except xattrs in memory here. */ 3805 return __ext4_get_inode_loc(inode, iloc, 3806 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3807 } 3808 3809 void ext4_set_inode_flags(struct inode *inode) 3810 { 3811 unsigned int flags = EXT4_I(inode)->i_flags; 3812 unsigned int new_fl = 0; 3813 3814 if (flags & EXT4_SYNC_FL) 3815 new_fl |= S_SYNC; 3816 if (flags & EXT4_APPEND_FL) 3817 new_fl |= S_APPEND; 3818 if (flags & EXT4_IMMUTABLE_FL) 3819 new_fl |= S_IMMUTABLE; 3820 if (flags & EXT4_NOATIME_FL) 3821 new_fl |= S_NOATIME; 3822 if (flags & EXT4_DIRSYNC_FL) 3823 new_fl |= S_DIRSYNC; 3824 inode_set_flags(inode, new_fl, 3825 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3826 } 3827 3828 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3829 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3830 { 3831 unsigned int vfs_fl; 3832 unsigned long old_fl, new_fl; 3833 3834 do { 3835 vfs_fl = ei->vfs_inode.i_flags; 3836 old_fl = ei->i_flags; 3837 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3838 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3839 EXT4_DIRSYNC_FL); 3840 if (vfs_fl & S_SYNC) 3841 new_fl |= EXT4_SYNC_FL; 3842 if (vfs_fl & S_APPEND) 3843 new_fl |= EXT4_APPEND_FL; 3844 if (vfs_fl & S_IMMUTABLE) 3845 new_fl |= EXT4_IMMUTABLE_FL; 3846 if (vfs_fl & S_NOATIME) 3847 new_fl |= EXT4_NOATIME_FL; 3848 if (vfs_fl & S_DIRSYNC) 3849 new_fl |= EXT4_DIRSYNC_FL; 3850 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3851 } 3852 3853 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3854 struct ext4_inode_info *ei) 3855 { 3856 blkcnt_t i_blocks ; 3857 struct inode *inode = &(ei->vfs_inode); 3858 struct super_block *sb = inode->i_sb; 3859 3860 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3861 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3862 /* we are using combined 48 bit field */ 3863 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3864 le32_to_cpu(raw_inode->i_blocks_lo); 3865 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3866 /* i_blocks represent file system block size */ 3867 return i_blocks << (inode->i_blkbits - 9); 3868 } else { 3869 return i_blocks; 3870 } 3871 } else { 3872 return le32_to_cpu(raw_inode->i_blocks_lo); 3873 } 3874 } 3875 3876 static inline void ext4_iget_extra_inode(struct inode *inode, 3877 struct ext4_inode *raw_inode, 3878 struct ext4_inode_info *ei) 3879 { 3880 __le32 *magic = (void *)raw_inode + 3881 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3882 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3883 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3884 ext4_find_inline_data_nolock(inode); 3885 } else 3886 EXT4_I(inode)->i_inline_off = 0; 3887 } 3888 3889 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3890 { 3891 struct ext4_iloc iloc; 3892 struct ext4_inode *raw_inode; 3893 struct ext4_inode_info *ei; 3894 struct inode *inode; 3895 journal_t *journal = EXT4_SB(sb)->s_journal; 3896 long ret; 3897 int block; 3898 uid_t i_uid; 3899 gid_t i_gid; 3900 3901 inode = iget_locked(sb, ino); 3902 if (!inode) 3903 return ERR_PTR(-ENOMEM); 3904 if (!(inode->i_state & I_NEW)) 3905 return inode; 3906 3907 ei = EXT4_I(inode); 3908 iloc.bh = NULL; 3909 3910 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3911 if (ret < 0) 3912 goto bad_inode; 3913 raw_inode = ext4_raw_inode(&iloc); 3914 3915 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3916 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3917 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3918 EXT4_INODE_SIZE(inode->i_sb)) { 3919 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3920 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3921 EXT4_INODE_SIZE(inode->i_sb)); 3922 ret = -EIO; 3923 goto bad_inode; 3924 } 3925 } else 3926 ei->i_extra_isize = 0; 3927 3928 /* Precompute checksum seed for inode metadata */ 3929 if (ext4_has_metadata_csum(sb)) { 3930 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3931 __u32 csum; 3932 __le32 inum = cpu_to_le32(inode->i_ino); 3933 __le32 gen = raw_inode->i_generation; 3934 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3935 sizeof(inum)); 3936 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3937 sizeof(gen)); 3938 } 3939 3940 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3941 EXT4_ERROR_INODE(inode, "checksum invalid"); 3942 ret = -EIO; 3943 goto bad_inode; 3944 } 3945 3946 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3947 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3948 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3949 if (!(test_opt(inode->i_sb, NO_UID32))) { 3950 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3951 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3952 } 3953 i_uid_write(inode, i_uid); 3954 i_gid_write(inode, i_gid); 3955 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3956 3957 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3958 ei->i_inline_off = 0; 3959 ei->i_dir_start_lookup = 0; 3960 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3961 /* We now have enough fields to check if the inode was active or not. 3962 * This is needed because nfsd might try to access dead inodes 3963 * the test is that same one that e2fsck uses 3964 * NeilBrown 1999oct15 3965 */ 3966 if (inode->i_nlink == 0) { 3967 if ((inode->i_mode == 0 || 3968 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 3969 ino != EXT4_BOOT_LOADER_INO) { 3970 /* this inode is deleted */ 3971 ret = -ESTALE; 3972 goto bad_inode; 3973 } 3974 /* The only unlinked inodes we let through here have 3975 * valid i_mode and are being read by the orphan 3976 * recovery code: that's fine, we're about to complete 3977 * the process of deleting those. 3978 * OR it is the EXT4_BOOT_LOADER_INO which is 3979 * not initialized on a new filesystem. */ 3980 } 3981 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3982 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3983 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3984 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3985 ei->i_file_acl |= 3986 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3987 inode->i_size = ext4_isize(raw_inode); 3988 ei->i_disksize = inode->i_size; 3989 #ifdef CONFIG_QUOTA 3990 ei->i_reserved_quota = 0; 3991 #endif 3992 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3993 ei->i_block_group = iloc.block_group; 3994 ei->i_last_alloc_group = ~0; 3995 /* 3996 * NOTE! The in-memory inode i_data array is in little-endian order 3997 * even on big-endian machines: we do NOT byteswap the block numbers! 3998 */ 3999 for (block = 0; block < EXT4_N_BLOCKS; block++) 4000 ei->i_data[block] = raw_inode->i_block[block]; 4001 INIT_LIST_HEAD(&ei->i_orphan); 4002 4003 /* 4004 * Set transaction id's of transactions that have to be committed 4005 * to finish f[data]sync. We set them to currently running transaction 4006 * as we cannot be sure that the inode or some of its metadata isn't 4007 * part of the transaction - the inode could have been reclaimed and 4008 * now it is reread from disk. 4009 */ 4010 if (journal) { 4011 transaction_t *transaction; 4012 tid_t tid; 4013 4014 read_lock(&journal->j_state_lock); 4015 if (journal->j_running_transaction) 4016 transaction = journal->j_running_transaction; 4017 else 4018 transaction = journal->j_committing_transaction; 4019 if (transaction) 4020 tid = transaction->t_tid; 4021 else 4022 tid = journal->j_commit_sequence; 4023 read_unlock(&journal->j_state_lock); 4024 ei->i_sync_tid = tid; 4025 ei->i_datasync_tid = tid; 4026 } 4027 4028 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4029 if (ei->i_extra_isize == 0) { 4030 /* The extra space is currently unused. Use it. */ 4031 ei->i_extra_isize = sizeof(struct ext4_inode) - 4032 EXT4_GOOD_OLD_INODE_SIZE; 4033 } else { 4034 ext4_iget_extra_inode(inode, raw_inode, ei); 4035 } 4036 } 4037 4038 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4039 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4040 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4041 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4042 4043 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4044 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4045 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4046 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4047 inode->i_version |= 4048 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4049 } 4050 } 4051 4052 ret = 0; 4053 if (ei->i_file_acl && 4054 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4055 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4056 ei->i_file_acl); 4057 ret = -EIO; 4058 goto bad_inode; 4059 } else if (!ext4_has_inline_data(inode)) { 4060 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4061 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4062 (S_ISLNK(inode->i_mode) && 4063 !ext4_inode_is_fast_symlink(inode)))) 4064 /* Validate extent which is part of inode */ 4065 ret = ext4_ext_check_inode(inode); 4066 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4067 (S_ISLNK(inode->i_mode) && 4068 !ext4_inode_is_fast_symlink(inode))) { 4069 /* Validate block references which are part of inode */ 4070 ret = ext4_ind_check_inode(inode); 4071 } 4072 } 4073 if (ret) 4074 goto bad_inode; 4075 4076 if (S_ISREG(inode->i_mode)) { 4077 inode->i_op = &ext4_file_inode_operations; 4078 inode->i_fop = &ext4_file_operations; 4079 ext4_set_aops(inode); 4080 } else if (S_ISDIR(inode->i_mode)) { 4081 inode->i_op = &ext4_dir_inode_operations; 4082 inode->i_fop = &ext4_dir_operations; 4083 } else if (S_ISLNK(inode->i_mode)) { 4084 if (ext4_inode_is_fast_symlink(inode)) { 4085 inode->i_op = &ext4_fast_symlink_inode_operations; 4086 nd_terminate_link(ei->i_data, inode->i_size, 4087 sizeof(ei->i_data) - 1); 4088 } else { 4089 inode->i_op = &ext4_symlink_inode_operations; 4090 ext4_set_aops(inode); 4091 } 4092 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4093 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4094 inode->i_op = &ext4_special_inode_operations; 4095 if (raw_inode->i_block[0]) 4096 init_special_inode(inode, inode->i_mode, 4097 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4098 else 4099 init_special_inode(inode, inode->i_mode, 4100 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4101 } else if (ino == EXT4_BOOT_LOADER_INO) { 4102 make_bad_inode(inode); 4103 } else { 4104 ret = -EIO; 4105 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4106 goto bad_inode; 4107 } 4108 brelse(iloc.bh); 4109 ext4_set_inode_flags(inode); 4110 unlock_new_inode(inode); 4111 return inode; 4112 4113 bad_inode: 4114 brelse(iloc.bh); 4115 iget_failed(inode); 4116 return ERR_PTR(ret); 4117 } 4118 4119 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4120 { 4121 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4122 return ERR_PTR(-EIO); 4123 return ext4_iget(sb, ino); 4124 } 4125 4126 static int ext4_inode_blocks_set(handle_t *handle, 4127 struct ext4_inode *raw_inode, 4128 struct ext4_inode_info *ei) 4129 { 4130 struct inode *inode = &(ei->vfs_inode); 4131 u64 i_blocks = inode->i_blocks; 4132 struct super_block *sb = inode->i_sb; 4133 4134 if (i_blocks <= ~0U) { 4135 /* 4136 * i_blocks can be represented in a 32 bit variable 4137 * as multiple of 512 bytes 4138 */ 4139 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4140 raw_inode->i_blocks_high = 0; 4141 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4142 return 0; 4143 } 4144 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4145 return -EFBIG; 4146 4147 if (i_blocks <= 0xffffffffffffULL) { 4148 /* 4149 * i_blocks can be represented in a 48 bit variable 4150 * as multiple of 512 bytes 4151 */ 4152 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4153 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4154 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4155 } else { 4156 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4157 /* i_block is stored in file system block size */ 4158 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4159 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4160 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4161 } 4162 return 0; 4163 } 4164 4165 /* 4166 * Post the struct inode info into an on-disk inode location in the 4167 * buffer-cache. This gobbles the caller's reference to the 4168 * buffer_head in the inode location struct. 4169 * 4170 * The caller must have write access to iloc->bh. 4171 */ 4172 static int ext4_do_update_inode(handle_t *handle, 4173 struct inode *inode, 4174 struct ext4_iloc *iloc) 4175 { 4176 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4177 struct ext4_inode_info *ei = EXT4_I(inode); 4178 struct buffer_head *bh = iloc->bh; 4179 struct super_block *sb = inode->i_sb; 4180 int err = 0, rc, block; 4181 int need_datasync = 0, set_large_file = 0; 4182 uid_t i_uid; 4183 gid_t i_gid; 4184 4185 spin_lock(&ei->i_raw_lock); 4186 4187 /* For fields not tracked in the in-memory inode, 4188 * initialise them to zero for new inodes. */ 4189 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4190 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4191 4192 ext4_get_inode_flags(ei); 4193 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4194 i_uid = i_uid_read(inode); 4195 i_gid = i_gid_read(inode); 4196 if (!(test_opt(inode->i_sb, NO_UID32))) { 4197 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4198 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4199 /* 4200 * Fix up interoperability with old kernels. Otherwise, old inodes get 4201 * re-used with the upper 16 bits of the uid/gid intact 4202 */ 4203 if (!ei->i_dtime) { 4204 raw_inode->i_uid_high = 4205 cpu_to_le16(high_16_bits(i_uid)); 4206 raw_inode->i_gid_high = 4207 cpu_to_le16(high_16_bits(i_gid)); 4208 } else { 4209 raw_inode->i_uid_high = 0; 4210 raw_inode->i_gid_high = 0; 4211 } 4212 } else { 4213 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4214 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4215 raw_inode->i_uid_high = 0; 4216 raw_inode->i_gid_high = 0; 4217 } 4218 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4219 4220 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4221 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4222 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4223 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4224 4225 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4226 if (err) { 4227 spin_unlock(&ei->i_raw_lock); 4228 goto out_brelse; 4229 } 4230 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4231 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4232 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4233 raw_inode->i_file_acl_high = 4234 cpu_to_le16(ei->i_file_acl >> 32); 4235 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4236 if (ei->i_disksize != ext4_isize(raw_inode)) { 4237 ext4_isize_set(raw_inode, ei->i_disksize); 4238 need_datasync = 1; 4239 } 4240 if (ei->i_disksize > 0x7fffffffULL) { 4241 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4242 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4243 EXT4_SB(sb)->s_es->s_rev_level == 4244 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4245 set_large_file = 1; 4246 } 4247 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4248 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4249 if (old_valid_dev(inode->i_rdev)) { 4250 raw_inode->i_block[0] = 4251 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4252 raw_inode->i_block[1] = 0; 4253 } else { 4254 raw_inode->i_block[0] = 0; 4255 raw_inode->i_block[1] = 4256 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4257 raw_inode->i_block[2] = 0; 4258 } 4259 } else if (!ext4_has_inline_data(inode)) { 4260 for (block = 0; block < EXT4_N_BLOCKS; block++) 4261 raw_inode->i_block[block] = ei->i_data[block]; 4262 } 4263 4264 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4265 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4266 if (ei->i_extra_isize) { 4267 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4268 raw_inode->i_version_hi = 4269 cpu_to_le32(inode->i_version >> 32); 4270 raw_inode->i_extra_isize = 4271 cpu_to_le16(ei->i_extra_isize); 4272 } 4273 } 4274 4275 ext4_inode_csum_set(inode, raw_inode, ei); 4276 4277 spin_unlock(&ei->i_raw_lock); 4278 4279 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4280 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4281 if (!err) 4282 err = rc; 4283 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4284 if (set_large_file) { 4285 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4286 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4287 if (err) 4288 goto out_brelse; 4289 ext4_update_dynamic_rev(sb); 4290 EXT4_SET_RO_COMPAT_FEATURE(sb, 4291 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4292 ext4_handle_sync(handle); 4293 err = ext4_handle_dirty_super(handle, sb); 4294 } 4295 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4296 out_brelse: 4297 brelse(bh); 4298 ext4_std_error(inode->i_sb, err); 4299 return err; 4300 } 4301 4302 /* 4303 * ext4_write_inode() 4304 * 4305 * We are called from a few places: 4306 * 4307 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4308 * Here, there will be no transaction running. We wait for any running 4309 * transaction to commit. 4310 * 4311 * - Within flush work (sys_sync(), kupdate and such). 4312 * We wait on commit, if told to. 4313 * 4314 * - Within iput_final() -> write_inode_now() 4315 * We wait on commit, if told to. 4316 * 4317 * In all cases it is actually safe for us to return without doing anything, 4318 * because the inode has been copied into a raw inode buffer in 4319 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4320 * writeback. 4321 * 4322 * Note that we are absolutely dependent upon all inode dirtiers doing the 4323 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4324 * which we are interested. 4325 * 4326 * It would be a bug for them to not do this. The code: 4327 * 4328 * mark_inode_dirty(inode) 4329 * stuff(); 4330 * inode->i_size = expr; 4331 * 4332 * is in error because write_inode() could occur while `stuff()' is running, 4333 * and the new i_size will be lost. Plus the inode will no longer be on the 4334 * superblock's dirty inode list. 4335 */ 4336 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4337 { 4338 int err; 4339 4340 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4341 return 0; 4342 4343 if (EXT4_SB(inode->i_sb)->s_journal) { 4344 if (ext4_journal_current_handle()) { 4345 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4346 dump_stack(); 4347 return -EIO; 4348 } 4349 4350 /* 4351 * No need to force transaction in WB_SYNC_NONE mode. Also 4352 * ext4_sync_fs() will force the commit after everything is 4353 * written. 4354 */ 4355 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4356 return 0; 4357 4358 err = ext4_force_commit(inode->i_sb); 4359 } else { 4360 struct ext4_iloc iloc; 4361 4362 err = __ext4_get_inode_loc(inode, &iloc, 0); 4363 if (err) 4364 return err; 4365 /* 4366 * sync(2) will flush the whole buffer cache. No need to do 4367 * it here separately for each inode. 4368 */ 4369 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4370 sync_dirty_buffer(iloc.bh); 4371 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4372 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4373 "IO error syncing inode"); 4374 err = -EIO; 4375 } 4376 brelse(iloc.bh); 4377 } 4378 return err; 4379 } 4380 4381 /* 4382 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4383 * buffers that are attached to a page stradding i_size and are undergoing 4384 * commit. In that case we have to wait for commit to finish and try again. 4385 */ 4386 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4387 { 4388 struct page *page; 4389 unsigned offset; 4390 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4391 tid_t commit_tid = 0; 4392 int ret; 4393 4394 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4395 /* 4396 * All buffers in the last page remain valid? Then there's nothing to 4397 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4398 * blocksize case 4399 */ 4400 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4401 return; 4402 while (1) { 4403 page = find_lock_page(inode->i_mapping, 4404 inode->i_size >> PAGE_CACHE_SHIFT); 4405 if (!page) 4406 return; 4407 ret = __ext4_journalled_invalidatepage(page, offset, 4408 PAGE_CACHE_SIZE - offset); 4409 unlock_page(page); 4410 page_cache_release(page); 4411 if (ret != -EBUSY) 4412 return; 4413 commit_tid = 0; 4414 read_lock(&journal->j_state_lock); 4415 if (journal->j_committing_transaction) 4416 commit_tid = journal->j_committing_transaction->t_tid; 4417 read_unlock(&journal->j_state_lock); 4418 if (commit_tid) 4419 jbd2_log_wait_commit(journal, commit_tid); 4420 } 4421 } 4422 4423 /* 4424 * ext4_setattr() 4425 * 4426 * Called from notify_change. 4427 * 4428 * We want to trap VFS attempts to truncate the file as soon as 4429 * possible. In particular, we want to make sure that when the VFS 4430 * shrinks i_size, we put the inode on the orphan list and modify 4431 * i_disksize immediately, so that during the subsequent flushing of 4432 * dirty pages and freeing of disk blocks, we can guarantee that any 4433 * commit will leave the blocks being flushed in an unused state on 4434 * disk. (On recovery, the inode will get truncated and the blocks will 4435 * be freed, so we have a strong guarantee that no future commit will 4436 * leave these blocks visible to the user.) 4437 * 4438 * Another thing we have to assure is that if we are in ordered mode 4439 * and inode is still attached to the committing transaction, we must 4440 * we start writeout of all the dirty pages which are being truncated. 4441 * This way we are sure that all the data written in the previous 4442 * transaction are already on disk (truncate waits for pages under 4443 * writeback). 4444 * 4445 * Called with inode->i_mutex down. 4446 */ 4447 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4448 { 4449 struct inode *inode = dentry->d_inode; 4450 int error, rc = 0; 4451 int orphan = 0; 4452 const unsigned int ia_valid = attr->ia_valid; 4453 4454 error = inode_change_ok(inode, attr); 4455 if (error) 4456 return error; 4457 4458 if (is_quota_modification(inode, attr)) 4459 dquot_initialize(inode); 4460 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4461 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4462 handle_t *handle; 4463 4464 /* (user+group)*(old+new) structure, inode write (sb, 4465 * inode block, ? - but truncate inode update has it) */ 4466 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4467 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4468 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4469 if (IS_ERR(handle)) { 4470 error = PTR_ERR(handle); 4471 goto err_out; 4472 } 4473 error = dquot_transfer(inode, attr); 4474 if (error) { 4475 ext4_journal_stop(handle); 4476 return error; 4477 } 4478 /* Update corresponding info in inode so that everything is in 4479 * one transaction */ 4480 if (attr->ia_valid & ATTR_UID) 4481 inode->i_uid = attr->ia_uid; 4482 if (attr->ia_valid & ATTR_GID) 4483 inode->i_gid = attr->ia_gid; 4484 error = ext4_mark_inode_dirty(handle, inode); 4485 ext4_journal_stop(handle); 4486 } 4487 4488 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4489 handle_t *handle; 4490 4491 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4492 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4493 4494 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4495 return -EFBIG; 4496 } 4497 4498 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4499 inode_inc_iversion(inode); 4500 4501 if (S_ISREG(inode->i_mode) && 4502 (attr->ia_size < inode->i_size)) { 4503 if (ext4_should_order_data(inode)) { 4504 error = ext4_begin_ordered_truncate(inode, 4505 attr->ia_size); 4506 if (error) 4507 goto err_out; 4508 } 4509 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4510 if (IS_ERR(handle)) { 4511 error = PTR_ERR(handle); 4512 goto err_out; 4513 } 4514 if (ext4_handle_valid(handle)) { 4515 error = ext4_orphan_add(handle, inode); 4516 orphan = 1; 4517 } 4518 down_write(&EXT4_I(inode)->i_data_sem); 4519 EXT4_I(inode)->i_disksize = attr->ia_size; 4520 rc = ext4_mark_inode_dirty(handle, inode); 4521 if (!error) 4522 error = rc; 4523 /* 4524 * We have to update i_size under i_data_sem together 4525 * with i_disksize to avoid races with writeback code 4526 * running ext4_wb_update_i_disksize(). 4527 */ 4528 if (!error) 4529 i_size_write(inode, attr->ia_size); 4530 up_write(&EXT4_I(inode)->i_data_sem); 4531 ext4_journal_stop(handle); 4532 if (error) { 4533 ext4_orphan_del(NULL, inode); 4534 goto err_out; 4535 } 4536 } else { 4537 loff_t oldsize = inode->i_size; 4538 4539 i_size_write(inode, attr->ia_size); 4540 pagecache_isize_extended(inode, oldsize, inode->i_size); 4541 } 4542 4543 /* 4544 * Blocks are going to be removed from the inode. Wait 4545 * for dio in flight. Temporarily disable 4546 * dioread_nolock to prevent livelock. 4547 */ 4548 if (orphan) { 4549 if (!ext4_should_journal_data(inode)) { 4550 ext4_inode_block_unlocked_dio(inode); 4551 inode_dio_wait(inode); 4552 ext4_inode_resume_unlocked_dio(inode); 4553 } else 4554 ext4_wait_for_tail_page_commit(inode); 4555 } 4556 /* 4557 * Truncate pagecache after we've waited for commit 4558 * in data=journal mode to make pages freeable. 4559 */ 4560 truncate_pagecache(inode, inode->i_size); 4561 } 4562 /* 4563 * We want to call ext4_truncate() even if attr->ia_size == 4564 * inode->i_size for cases like truncation of fallocated space 4565 */ 4566 if (attr->ia_valid & ATTR_SIZE) 4567 ext4_truncate(inode); 4568 4569 if (!rc) { 4570 setattr_copy(inode, attr); 4571 mark_inode_dirty(inode); 4572 } 4573 4574 /* 4575 * If the call to ext4_truncate failed to get a transaction handle at 4576 * all, we need to clean up the in-core orphan list manually. 4577 */ 4578 if (orphan && inode->i_nlink) 4579 ext4_orphan_del(NULL, inode); 4580 4581 if (!rc && (ia_valid & ATTR_MODE)) 4582 rc = posix_acl_chmod(inode, inode->i_mode); 4583 4584 err_out: 4585 ext4_std_error(inode->i_sb, error); 4586 if (!error) 4587 error = rc; 4588 return error; 4589 } 4590 4591 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4592 struct kstat *stat) 4593 { 4594 struct inode *inode; 4595 unsigned long long delalloc_blocks; 4596 4597 inode = dentry->d_inode; 4598 generic_fillattr(inode, stat); 4599 4600 /* 4601 * If there is inline data in the inode, the inode will normally not 4602 * have data blocks allocated (it may have an external xattr block). 4603 * Report at least one sector for such files, so tools like tar, rsync, 4604 * others doen't incorrectly think the file is completely sparse. 4605 */ 4606 if (unlikely(ext4_has_inline_data(inode))) 4607 stat->blocks += (stat->size + 511) >> 9; 4608 4609 /* 4610 * We can't update i_blocks if the block allocation is delayed 4611 * otherwise in the case of system crash before the real block 4612 * allocation is done, we will have i_blocks inconsistent with 4613 * on-disk file blocks. 4614 * We always keep i_blocks updated together with real 4615 * allocation. But to not confuse with user, stat 4616 * will return the blocks that include the delayed allocation 4617 * blocks for this file. 4618 */ 4619 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4620 EXT4_I(inode)->i_reserved_data_blocks); 4621 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4622 return 0; 4623 } 4624 4625 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4626 int pextents) 4627 { 4628 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4629 return ext4_ind_trans_blocks(inode, lblocks); 4630 return ext4_ext_index_trans_blocks(inode, pextents); 4631 } 4632 4633 /* 4634 * Account for index blocks, block groups bitmaps and block group 4635 * descriptor blocks if modify datablocks and index blocks 4636 * worse case, the indexs blocks spread over different block groups 4637 * 4638 * If datablocks are discontiguous, they are possible to spread over 4639 * different block groups too. If they are contiguous, with flexbg, 4640 * they could still across block group boundary. 4641 * 4642 * Also account for superblock, inode, quota and xattr blocks 4643 */ 4644 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4645 int pextents) 4646 { 4647 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4648 int gdpblocks; 4649 int idxblocks; 4650 int ret = 0; 4651 4652 /* 4653 * How many index blocks need to touch to map @lblocks logical blocks 4654 * to @pextents physical extents? 4655 */ 4656 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4657 4658 ret = idxblocks; 4659 4660 /* 4661 * Now let's see how many group bitmaps and group descriptors need 4662 * to account 4663 */ 4664 groups = idxblocks + pextents; 4665 gdpblocks = groups; 4666 if (groups > ngroups) 4667 groups = ngroups; 4668 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4669 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4670 4671 /* bitmaps and block group descriptor blocks */ 4672 ret += groups + gdpblocks; 4673 4674 /* Blocks for super block, inode, quota and xattr blocks */ 4675 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4676 4677 return ret; 4678 } 4679 4680 /* 4681 * Calculate the total number of credits to reserve to fit 4682 * the modification of a single pages into a single transaction, 4683 * which may include multiple chunks of block allocations. 4684 * 4685 * This could be called via ext4_write_begin() 4686 * 4687 * We need to consider the worse case, when 4688 * one new block per extent. 4689 */ 4690 int ext4_writepage_trans_blocks(struct inode *inode) 4691 { 4692 int bpp = ext4_journal_blocks_per_page(inode); 4693 int ret; 4694 4695 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4696 4697 /* Account for data blocks for journalled mode */ 4698 if (ext4_should_journal_data(inode)) 4699 ret += bpp; 4700 return ret; 4701 } 4702 4703 /* 4704 * Calculate the journal credits for a chunk of data modification. 4705 * 4706 * This is called from DIO, fallocate or whoever calling 4707 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4708 * 4709 * journal buffers for data blocks are not included here, as DIO 4710 * and fallocate do no need to journal data buffers. 4711 */ 4712 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4713 { 4714 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4715 } 4716 4717 /* 4718 * The caller must have previously called ext4_reserve_inode_write(). 4719 * Give this, we know that the caller already has write access to iloc->bh. 4720 */ 4721 int ext4_mark_iloc_dirty(handle_t *handle, 4722 struct inode *inode, struct ext4_iloc *iloc) 4723 { 4724 int err = 0; 4725 4726 if (IS_I_VERSION(inode)) 4727 inode_inc_iversion(inode); 4728 4729 /* the do_update_inode consumes one bh->b_count */ 4730 get_bh(iloc->bh); 4731 4732 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4733 err = ext4_do_update_inode(handle, inode, iloc); 4734 put_bh(iloc->bh); 4735 return err; 4736 } 4737 4738 /* 4739 * On success, We end up with an outstanding reference count against 4740 * iloc->bh. This _must_ be cleaned up later. 4741 */ 4742 4743 int 4744 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4745 struct ext4_iloc *iloc) 4746 { 4747 int err; 4748 4749 err = ext4_get_inode_loc(inode, iloc); 4750 if (!err) { 4751 BUFFER_TRACE(iloc->bh, "get_write_access"); 4752 err = ext4_journal_get_write_access(handle, iloc->bh); 4753 if (err) { 4754 brelse(iloc->bh); 4755 iloc->bh = NULL; 4756 } 4757 } 4758 ext4_std_error(inode->i_sb, err); 4759 return err; 4760 } 4761 4762 /* 4763 * Expand an inode by new_extra_isize bytes. 4764 * Returns 0 on success or negative error number on failure. 4765 */ 4766 static int ext4_expand_extra_isize(struct inode *inode, 4767 unsigned int new_extra_isize, 4768 struct ext4_iloc iloc, 4769 handle_t *handle) 4770 { 4771 struct ext4_inode *raw_inode; 4772 struct ext4_xattr_ibody_header *header; 4773 4774 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4775 return 0; 4776 4777 raw_inode = ext4_raw_inode(&iloc); 4778 4779 header = IHDR(inode, raw_inode); 4780 4781 /* No extended attributes present */ 4782 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4783 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4784 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4785 new_extra_isize); 4786 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4787 return 0; 4788 } 4789 4790 /* try to expand with EAs present */ 4791 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4792 raw_inode, handle); 4793 } 4794 4795 /* 4796 * What we do here is to mark the in-core inode as clean with respect to inode 4797 * dirtiness (it may still be data-dirty). 4798 * This means that the in-core inode may be reaped by prune_icache 4799 * without having to perform any I/O. This is a very good thing, 4800 * because *any* task may call prune_icache - even ones which 4801 * have a transaction open against a different journal. 4802 * 4803 * Is this cheating? Not really. Sure, we haven't written the 4804 * inode out, but prune_icache isn't a user-visible syncing function. 4805 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4806 * we start and wait on commits. 4807 */ 4808 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4809 { 4810 struct ext4_iloc iloc; 4811 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4812 static unsigned int mnt_count; 4813 int err, ret; 4814 4815 might_sleep(); 4816 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4817 err = ext4_reserve_inode_write(handle, inode, &iloc); 4818 if (ext4_handle_valid(handle) && 4819 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4820 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4821 /* 4822 * We need extra buffer credits since we may write into EA block 4823 * with this same handle. If journal_extend fails, then it will 4824 * only result in a minor loss of functionality for that inode. 4825 * If this is felt to be critical, then e2fsck should be run to 4826 * force a large enough s_min_extra_isize. 4827 */ 4828 if ((jbd2_journal_extend(handle, 4829 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4830 ret = ext4_expand_extra_isize(inode, 4831 sbi->s_want_extra_isize, 4832 iloc, handle); 4833 if (ret) { 4834 ext4_set_inode_state(inode, 4835 EXT4_STATE_NO_EXPAND); 4836 if (mnt_count != 4837 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4838 ext4_warning(inode->i_sb, 4839 "Unable to expand inode %lu. Delete" 4840 " some EAs or run e2fsck.", 4841 inode->i_ino); 4842 mnt_count = 4843 le16_to_cpu(sbi->s_es->s_mnt_count); 4844 } 4845 } 4846 } 4847 } 4848 if (!err) 4849 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4850 return err; 4851 } 4852 4853 /* 4854 * ext4_dirty_inode() is called from __mark_inode_dirty() 4855 * 4856 * We're really interested in the case where a file is being extended. 4857 * i_size has been changed by generic_commit_write() and we thus need 4858 * to include the updated inode in the current transaction. 4859 * 4860 * Also, dquot_alloc_block() will always dirty the inode when blocks 4861 * are allocated to the file. 4862 * 4863 * If the inode is marked synchronous, we don't honour that here - doing 4864 * so would cause a commit on atime updates, which we don't bother doing. 4865 * We handle synchronous inodes at the highest possible level. 4866 */ 4867 void ext4_dirty_inode(struct inode *inode, int flags) 4868 { 4869 handle_t *handle; 4870 4871 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4872 if (IS_ERR(handle)) 4873 goto out; 4874 4875 ext4_mark_inode_dirty(handle, inode); 4876 4877 ext4_journal_stop(handle); 4878 out: 4879 return; 4880 } 4881 4882 #if 0 4883 /* 4884 * Bind an inode's backing buffer_head into this transaction, to prevent 4885 * it from being flushed to disk early. Unlike 4886 * ext4_reserve_inode_write, this leaves behind no bh reference and 4887 * returns no iloc structure, so the caller needs to repeat the iloc 4888 * lookup to mark the inode dirty later. 4889 */ 4890 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4891 { 4892 struct ext4_iloc iloc; 4893 4894 int err = 0; 4895 if (handle) { 4896 err = ext4_get_inode_loc(inode, &iloc); 4897 if (!err) { 4898 BUFFER_TRACE(iloc.bh, "get_write_access"); 4899 err = jbd2_journal_get_write_access(handle, iloc.bh); 4900 if (!err) 4901 err = ext4_handle_dirty_metadata(handle, 4902 NULL, 4903 iloc.bh); 4904 brelse(iloc.bh); 4905 } 4906 } 4907 ext4_std_error(inode->i_sb, err); 4908 return err; 4909 } 4910 #endif 4911 4912 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4913 { 4914 journal_t *journal; 4915 handle_t *handle; 4916 int err; 4917 4918 /* 4919 * We have to be very careful here: changing a data block's 4920 * journaling status dynamically is dangerous. If we write a 4921 * data block to the journal, change the status and then delete 4922 * that block, we risk forgetting to revoke the old log record 4923 * from the journal and so a subsequent replay can corrupt data. 4924 * So, first we make sure that the journal is empty and that 4925 * nobody is changing anything. 4926 */ 4927 4928 journal = EXT4_JOURNAL(inode); 4929 if (!journal) 4930 return 0; 4931 if (is_journal_aborted(journal)) 4932 return -EROFS; 4933 /* We have to allocate physical blocks for delalloc blocks 4934 * before flushing journal. otherwise delalloc blocks can not 4935 * be allocated any more. even more truncate on delalloc blocks 4936 * could trigger BUG by flushing delalloc blocks in journal. 4937 * There is no delalloc block in non-journal data mode. 4938 */ 4939 if (val && test_opt(inode->i_sb, DELALLOC)) { 4940 err = ext4_alloc_da_blocks(inode); 4941 if (err < 0) 4942 return err; 4943 } 4944 4945 /* Wait for all existing dio workers */ 4946 ext4_inode_block_unlocked_dio(inode); 4947 inode_dio_wait(inode); 4948 4949 jbd2_journal_lock_updates(journal); 4950 4951 /* 4952 * OK, there are no updates running now, and all cached data is 4953 * synced to disk. We are now in a completely consistent state 4954 * which doesn't have anything in the journal, and we know that 4955 * no filesystem updates are running, so it is safe to modify 4956 * the inode's in-core data-journaling state flag now. 4957 */ 4958 4959 if (val) 4960 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4961 else { 4962 err = jbd2_journal_flush(journal); 4963 if (err < 0) { 4964 jbd2_journal_unlock_updates(journal); 4965 ext4_inode_resume_unlocked_dio(inode); 4966 return err; 4967 } 4968 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4969 } 4970 ext4_set_aops(inode); 4971 4972 jbd2_journal_unlock_updates(journal); 4973 ext4_inode_resume_unlocked_dio(inode); 4974 4975 /* Finally we can mark the inode as dirty. */ 4976 4977 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 4978 if (IS_ERR(handle)) 4979 return PTR_ERR(handle); 4980 4981 err = ext4_mark_inode_dirty(handle, inode); 4982 ext4_handle_sync(handle); 4983 ext4_journal_stop(handle); 4984 ext4_std_error(inode->i_sb, err); 4985 4986 return err; 4987 } 4988 4989 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4990 { 4991 return !buffer_mapped(bh); 4992 } 4993 4994 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4995 { 4996 struct page *page = vmf->page; 4997 loff_t size; 4998 unsigned long len; 4999 int ret; 5000 struct file *file = vma->vm_file; 5001 struct inode *inode = file_inode(file); 5002 struct address_space *mapping = inode->i_mapping; 5003 handle_t *handle; 5004 get_block_t *get_block; 5005 int retries = 0; 5006 5007 sb_start_pagefault(inode->i_sb); 5008 file_update_time(vma->vm_file); 5009 /* Delalloc case is easy... */ 5010 if (test_opt(inode->i_sb, DELALLOC) && 5011 !ext4_should_journal_data(inode) && 5012 !ext4_nonda_switch(inode->i_sb)) { 5013 do { 5014 ret = __block_page_mkwrite(vma, vmf, 5015 ext4_da_get_block_prep); 5016 } while (ret == -ENOSPC && 5017 ext4_should_retry_alloc(inode->i_sb, &retries)); 5018 goto out_ret; 5019 } 5020 5021 lock_page(page); 5022 size = i_size_read(inode); 5023 /* Page got truncated from under us? */ 5024 if (page->mapping != mapping || page_offset(page) > size) { 5025 unlock_page(page); 5026 ret = VM_FAULT_NOPAGE; 5027 goto out; 5028 } 5029 5030 if (page->index == size >> PAGE_CACHE_SHIFT) 5031 len = size & ~PAGE_CACHE_MASK; 5032 else 5033 len = PAGE_CACHE_SIZE; 5034 /* 5035 * Return if we have all the buffers mapped. This avoids the need to do 5036 * journal_start/journal_stop which can block and take a long time 5037 */ 5038 if (page_has_buffers(page)) { 5039 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5040 0, len, NULL, 5041 ext4_bh_unmapped)) { 5042 /* Wait so that we don't change page under IO */ 5043 wait_for_stable_page(page); 5044 ret = VM_FAULT_LOCKED; 5045 goto out; 5046 } 5047 } 5048 unlock_page(page); 5049 /* OK, we need to fill the hole... */ 5050 if (ext4_should_dioread_nolock(inode)) 5051 get_block = ext4_get_block_write; 5052 else 5053 get_block = ext4_get_block; 5054 retry_alloc: 5055 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5056 ext4_writepage_trans_blocks(inode)); 5057 if (IS_ERR(handle)) { 5058 ret = VM_FAULT_SIGBUS; 5059 goto out; 5060 } 5061 ret = __block_page_mkwrite(vma, vmf, get_block); 5062 if (!ret && ext4_should_journal_data(inode)) { 5063 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5064 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5065 unlock_page(page); 5066 ret = VM_FAULT_SIGBUS; 5067 ext4_journal_stop(handle); 5068 goto out; 5069 } 5070 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5071 } 5072 ext4_journal_stop(handle); 5073 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5074 goto retry_alloc; 5075 out_ret: 5076 ret = block_page_mkwrite_return(ret); 5077 out: 5078 sb_end_pagefault(inode->i_sb); 5079 return ret; 5080 } 5081