xref: /openbmc/linux/fs/ext4/inode.c (revision ca460cc2)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42 
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u16 csum_lo;
57 	__u16 csum_hi = 0;
58 	__u32 csum;
59 
60 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 	raw->i_checksum_lo = 0;
62 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 		raw->i_checksum_hi = 0;
66 	}
67 
68 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 			   EXT4_INODE_SIZE(inode->i_sb));
70 
71 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
75 
76 	return csum;
77 }
78 
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 				  struct ext4_inode_info *ei)
81 {
82 	__u32 provided, calculated;
83 
84 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 	    cpu_to_le32(EXT4_OS_LINUX) ||
86 	    !ext4_has_metadata_csum(inode->i_sb))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !ext4_has_metadata_csum(inode->i_sb))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135 				unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139 				  int pextents);
140 
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148 
149 	if (ext4_has_inline_data(inode))
150 		return 0;
151 
152 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154 
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 				 int nblocks)
162 {
163 	int ret;
164 
165 	/*
166 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167 	 * moment, get_block can be called only for blocks inside i_size since
168 	 * page cache has been already dropped and writes are blocked by
169 	 * i_mutex. So we can safely drop the i_data_sem here.
170 	 */
171 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 	jbd_debug(2, "restarting handle %p\n", handle);
173 	up_write(&EXT4_I(inode)->i_data_sem);
174 	ret = ext4_journal_restart(handle, nblocks);
175 	down_write(&EXT4_I(inode)->i_data_sem);
176 	ext4_discard_preallocations(inode);
177 
178 	return ret;
179 }
180 
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 	handle_t *handle;
187 	int err;
188 
189 	trace_ext4_evict_inode(inode);
190 
191 	if (inode->i_nlink) {
192 		/*
193 		 * When journalling data dirty buffers are tracked only in the
194 		 * journal. So although mm thinks everything is clean and
195 		 * ready for reaping the inode might still have some pages to
196 		 * write in the running transaction or waiting to be
197 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 		 * (via truncate_inode_pages()) to discard these buffers can
199 		 * cause data loss. Also even if we did not discard these
200 		 * buffers, we would have no way to find them after the inode
201 		 * is reaped and thus user could see stale data if he tries to
202 		 * read them before the transaction is checkpointed. So be
203 		 * careful and force everything to disk here... We use
204 		 * ei->i_datasync_tid to store the newest transaction
205 		 * containing inode's data.
206 		 *
207 		 * Note that directories do not have this problem because they
208 		 * don't use page cache.
209 		 */
210 		if (ext4_should_journal_data(inode) &&
211 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 		    inode->i_ino != EXT4_JOURNAL_INO) {
213 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215 
216 			jbd2_complete_transaction(journal, commit_tid);
217 			filemap_write_and_wait(&inode->i_data);
218 		}
219 		truncate_inode_pages_final(&inode->i_data);
220 
221 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222 		goto no_delete;
223 	}
224 
225 	if (is_bad_inode(inode))
226 		goto no_delete;
227 	dquot_initialize(inode);
228 
229 	if (ext4_should_order_data(inode))
230 		ext4_begin_ordered_truncate(inode, 0);
231 	truncate_inode_pages_final(&inode->i_data);
232 
233 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234 
235 	/*
236 	 * Protect us against freezing - iput() caller didn't have to have any
237 	 * protection against it
238 	 */
239 	sb_start_intwrite(inode->i_sb);
240 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 				    ext4_blocks_for_truncate(inode)+3);
242 	if (IS_ERR(handle)) {
243 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 		/*
245 		 * If we're going to skip the normal cleanup, we still need to
246 		 * make sure that the in-core orphan linked list is properly
247 		 * cleaned up.
248 		 */
249 		ext4_orphan_del(NULL, inode);
250 		sb_end_intwrite(inode->i_sb);
251 		goto no_delete;
252 	}
253 
254 	if (IS_SYNC(inode))
255 		ext4_handle_sync(handle);
256 	inode->i_size = 0;
257 	err = ext4_mark_inode_dirty(handle, inode);
258 	if (err) {
259 		ext4_warning(inode->i_sb,
260 			     "couldn't mark inode dirty (err %d)", err);
261 		goto stop_handle;
262 	}
263 	if (inode->i_blocks)
264 		ext4_truncate(inode);
265 
266 	/*
267 	 * ext4_ext_truncate() doesn't reserve any slop when it
268 	 * restarts journal transactions; therefore there may not be
269 	 * enough credits left in the handle to remove the inode from
270 	 * the orphan list and set the dtime field.
271 	 */
272 	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 		err = ext4_journal_extend(handle, 3);
274 		if (err > 0)
275 			err = ext4_journal_restart(handle, 3);
276 		if (err != 0) {
277 			ext4_warning(inode->i_sb,
278 				     "couldn't extend journal (err %d)", err);
279 		stop_handle:
280 			ext4_journal_stop(handle);
281 			ext4_orphan_del(NULL, inode);
282 			sb_end_intwrite(inode->i_sb);
283 			goto no_delete;
284 		}
285 	}
286 
287 	/*
288 	 * Kill off the orphan record which ext4_truncate created.
289 	 * AKPM: I think this can be inside the above `if'.
290 	 * Note that ext4_orphan_del() has to be able to cope with the
291 	 * deletion of a non-existent orphan - this is because we don't
292 	 * know if ext4_truncate() actually created an orphan record.
293 	 * (Well, we could do this if we need to, but heck - it works)
294 	 */
295 	ext4_orphan_del(handle, inode);
296 	EXT4_I(inode)->i_dtime	= get_seconds();
297 
298 	/*
299 	 * One subtle ordering requirement: if anything has gone wrong
300 	 * (transaction abort, IO errors, whatever), then we can still
301 	 * do these next steps (the fs will already have been marked as
302 	 * having errors), but we can't free the inode if the mark_dirty
303 	 * fails.
304 	 */
305 	if (ext4_mark_inode_dirty(handle, inode))
306 		/* If that failed, just do the required in-core inode clear. */
307 		ext4_clear_inode(inode);
308 	else
309 		ext4_free_inode(handle, inode);
310 	ext4_journal_stop(handle);
311 	sb_end_intwrite(inode->i_sb);
312 	return;
313 no_delete:
314 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 }
316 
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 	return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323 
324 /*
325  * Called with i_data_sem down, which is important since we can call
326  * ext4_discard_preallocations() from here.
327  */
328 void ext4_da_update_reserve_space(struct inode *inode,
329 					int used, int quota_claim)
330 {
331 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332 	struct ext4_inode_info *ei = EXT4_I(inode);
333 
334 	spin_lock(&ei->i_block_reservation_lock);
335 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336 	if (unlikely(used > ei->i_reserved_data_blocks)) {
337 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338 			 "with only %d reserved data blocks",
339 			 __func__, inode->i_ino, used,
340 			 ei->i_reserved_data_blocks);
341 		WARN_ON(1);
342 		used = ei->i_reserved_data_blocks;
343 	}
344 
345 	/* Update per-inode reservations */
346 	ei->i_reserved_data_blocks -= used;
347 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348 
349 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350 
351 	/* Update quota subsystem for data blocks */
352 	if (quota_claim)
353 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
354 	else {
355 		/*
356 		 * We did fallocate with an offset that is already delayed
357 		 * allocated. So on delayed allocated writeback we should
358 		 * not re-claim the quota for fallocated blocks.
359 		 */
360 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361 	}
362 
363 	/*
364 	 * If we have done all the pending block allocations and if
365 	 * there aren't any writers on the inode, we can discard the
366 	 * inode's preallocations.
367 	 */
368 	if ((ei->i_reserved_data_blocks == 0) &&
369 	    (atomic_read(&inode->i_writecount) == 0))
370 		ext4_discard_preallocations(inode);
371 }
372 
373 static int __check_block_validity(struct inode *inode, const char *func,
374 				unsigned int line,
375 				struct ext4_map_blocks *map)
376 {
377 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378 				   map->m_len)) {
379 		ext4_error_inode(inode, func, line, map->m_pblk,
380 				 "lblock %lu mapped to illegal pblock "
381 				 "(length %d)", (unsigned long) map->m_lblk,
382 				 map->m_len);
383 		return -EIO;
384 	}
385 	return 0;
386 }
387 
388 #define check_block_validity(inode, map)	\
389 	__check_block_validity((inode), __func__, __LINE__, (map))
390 
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393 				       struct inode *inode,
394 				       struct ext4_map_blocks *es_map,
395 				       struct ext4_map_blocks *map,
396 				       int flags)
397 {
398 	int retval;
399 
400 	map->m_flags = 0;
401 	/*
402 	 * There is a race window that the result is not the same.
403 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
404 	 * is that we lookup a block mapping in extent status tree with
405 	 * out taking i_data_sem.  So at the time the unwritten extent
406 	 * could be converted.
407 	 */
408 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409 		down_read(&EXT4_I(inode)->i_data_sem);
410 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
412 					     EXT4_GET_BLOCKS_KEEP_SIZE);
413 	} else {
414 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
415 					     EXT4_GET_BLOCKS_KEEP_SIZE);
416 	}
417 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418 		up_read((&EXT4_I(inode)->i_data_sem));
419 	/*
420 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
421 	 * because it shouldn't be marked in es_map->m_flags.
422 	 */
423 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
424 
425 	/*
426 	 * We don't check m_len because extent will be collpased in status
427 	 * tree.  So the m_len might not equal.
428 	 */
429 	if (es_map->m_lblk != map->m_lblk ||
430 	    es_map->m_flags != map->m_flags ||
431 	    es_map->m_pblk != map->m_pblk) {
432 		printk("ES cache assertion failed for inode: %lu "
433 		       "es_cached ex [%d/%d/%llu/%x] != "
434 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
435 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
436 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
437 		       map->m_len, map->m_pblk, map->m_flags,
438 		       retval, flags);
439 	}
440 }
441 #endif /* ES_AGGRESSIVE_TEST */
442 
443 /*
444  * The ext4_map_blocks() function tries to look up the requested blocks,
445  * and returns if the blocks are already mapped.
446  *
447  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448  * and store the allocated blocks in the result buffer head and mark it
449  * mapped.
450  *
451  * If file type is extents based, it will call ext4_ext_map_blocks(),
452  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453  * based files
454  *
455  * On success, it returns the number of blocks being mapped or allocated.
456  * if create==0 and the blocks are pre-allocated and unwritten block,
457  * the result buffer head is unmapped. If the create ==1, it will make sure
458  * the buffer head is mapped.
459  *
460  * It returns 0 if plain look up failed (blocks have not been allocated), in
461  * that case, buffer head is unmapped
462  *
463  * It returns the error in case of allocation failure.
464  */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 		    struct ext4_map_blocks *map, int flags)
467 {
468 	struct extent_status es;
469 	int retval;
470 	int ret = 0;
471 #ifdef ES_AGGRESSIVE_TEST
472 	struct ext4_map_blocks orig_map;
473 
474 	memcpy(&orig_map, map, sizeof(*map));
475 #endif
476 
477 	map->m_flags = 0;
478 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
479 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
480 		  (unsigned long) map->m_lblk);
481 
482 	/*
483 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
484 	 */
485 	if (unlikely(map->m_len > INT_MAX))
486 		map->m_len = INT_MAX;
487 
488 	/* We can handle the block number less than EXT_MAX_BLOCKS */
489 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
490 		return -EIO;
491 
492 	/* Lookup extent status tree firstly */
493 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
494 		ext4_es_lru_add(inode);
495 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
496 			map->m_pblk = ext4_es_pblock(&es) +
497 					map->m_lblk - es.es_lblk;
498 			map->m_flags |= ext4_es_is_written(&es) ?
499 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
500 			retval = es.es_len - (map->m_lblk - es.es_lblk);
501 			if (retval > map->m_len)
502 				retval = map->m_len;
503 			map->m_len = retval;
504 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
505 			retval = 0;
506 		} else {
507 			BUG_ON(1);
508 		}
509 #ifdef ES_AGGRESSIVE_TEST
510 		ext4_map_blocks_es_recheck(handle, inode, map,
511 					   &orig_map, flags);
512 #endif
513 		goto found;
514 	}
515 
516 	/*
517 	 * Try to see if we can get the block without requesting a new
518 	 * file system block.
519 	 */
520 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
521 		down_read(&EXT4_I(inode)->i_data_sem);
522 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
523 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
524 					     EXT4_GET_BLOCKS_KEEP_SIZE);
525 	} else {
526 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
527 					     EXT4_GET_BLOCKS_KEEP_SIZE);
528 	}
529 	if (retval > 0) {
530 		unsigned int status;
531 
532 		if (unlikely(retval != map->m_len)) {
533 			ext4_warning(inode->i_sb,
534 				     "ES len assertion failed for inode "
535 				     "%lu: retval %d != map->m_len %d",
536 				     inode->i_ino, retval, map->m_len);
537 			WARN_ON(1);
538 		}
539 
540 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
541 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
542 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
543 		    ext4_find_delalloc_range(inode, map->m_lblk,
544 					     map->m_lblk + map->m_len - 1))
545 			status |= EXTENT_STATUS_DELAYED;
546 		ret = ext4_es_insert_extent(inode, map->m_lblk,
547 					    map->m_len, map->m_pblk, status);
548 		if (ret < 0)
549 			retval = ret;
550 	}
551 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
552 		up_read((&EXT4_I(inode)->i_data_sem));
553 
554 found:
555 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
556 		ret = check_block_validity(inode, map);
557 		if (ret != 0)
558 			return ret;
559 	}
560 
561 	/* If it is only a block(s) look up */
562 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
563 		return retval;
564 
565 	/*
566 	 * Returns if the blocks have already allocated
567 	 *
568 	 * Note that if blocks have been preallocated
569 	 * ext4_ext_get_block() returns the create = 0
570 	 * with buffer head unmapped.
571 	 */
572 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
573 		/*
574 		 * If we need to convert extent to unwritten
575 		 * we continue and do the actual work in
576 		 * ext4_ext_map_blocks()
577 		 */
578 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
579 			return retval;
580 
581 	/*
582 	 * Here we clear m_flags because after allocating an new extent,
583 	 * it will be set again.
584 	 */
585 	map->m_flags &= ~EXT4_MAP_FLAGS;
586 
587 	/*
588 	 * New blocks allocate and/or writing to unwritten extent
589 	 * will possibly result in updating i_data, so we take
590 	 * the write lock of i_data_sem, and call get_block()
591 	 * with create == 1 flag.
592 	 */
593 	down_write(&EXT4_I(inode)->i_data_sem);
594 
595 	/*
596 	 * We need to check for EXT4 here because migrate
597 	 * could have changed the inode type in between
598 	 */
599 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
600 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
601 	} else {
602 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
603 
604 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
605 			/*
606 			 * We allocated new blocks which will result in
607 			 * i_data's format changing.  Force the migrate
608 			 * to fail by clearing migrate flags
609 			 */
610 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
611 		}
612 
613 		/*
614 		 * Update reserved blocks/metadata blocks after successful
615 		 * block allocation which had been deferred till now. We don't
616 		 * support fallocate for non extent files. So we can update
617 		 * reserve space here.
618 		 */
619 		if ((retval > 0) &&
620 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
621 			ext4_da_update_reserve_space(inode, retval, 1);
622 	}
623 
624 	if (retval > 0) {
625 		unsigned int status;
626 
627 		if (unlikely(retval != map->m_len)) {
628 			ext4_warning(inode->i_sb,
629 				     "ES len assertion failed for inode "
630 				     "%lu: retval %d != map->m_len %d",
631 				     inode->i_ino, retval, map->m_len);
632 			WARN_ON(1);
633 		}
634 
635 		/*
636 		 * If the extent has been zeroed out, we don't need to update
637 		 * extent status tree.
638 		 */
639 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
640 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
641 			if (ext4_es_is_written(&es))
642 				goto has_zeroout;
643 		}
644 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
645 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
646 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
647 		    ext4_find_delalloc_range(inode, map->m_lblk,
648 					     map->m_lblk + map->m_len - 1))
649 			status |= EXTENT_STATUS_DELAYED;
650 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
651 					    map->m_pblk, status);
652 		if (ret < 0)
653 			retval = ret;
654 	}
655 
656 has_zeroout:
657 	up_write((&EXT4_I(inode)->i_data_sem));
658 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
659 		ret = check_block_validity(inode, map);
660 		if (ret != 0)
661 			return ret;
662 	}
663 	return retval;
664 }
665 
666 /* Maximum number of blocks we map for direct IO at once. */
667 #define DIO_MAX_BLOCKS 4096
668 
669 static int _ext4_get_block(struct inode *inode, sector_t iblock,
670 			   struct buffer_head *bh, int flags)
671 {
672 	handle_t *handle = ext4_journal_current_handle();
673 	struct ext4_map_blocks map;
674 	int ret = 0, started = 0;
675 	int dio_credits;
676 
677 	if (ext4_has_inline_data(inode))
678 		return -ERANGE;
679 
680 	map.m_lblk = iblock;
681 	map.m_len = bh->b_size >> inode->i_blkbits;
682 
683 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
684 		/* Direct IO write... */
685 		if (map.m_len > DIO_MAX_BLOCKS)
686 			map.m_len = DIO_MAX_BLOCKS;
687 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
688 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
689 					    dio_credits);
690 		if (IS_ERR(handle)) {
691 			ret = PTR_ERR(handle);
692 			return ret;
693 		}
694 		started = 1;
695 	}
696 
697 	ret = ext4_map_blocks(handle, inode, &map, flags);
698 	if (ret > 0) {
699 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
700 
701 		map_bh(bh, inode->i_sb, map.m_pblk);
702 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
704 			set_buffer_defer_completion(bh);
705 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
706 		ret = 0;
707 	}
708 	if (started)
709 		ext4_journal_stop(handle);
710 	return ret;
711 }
712 
713 int ext4_get_block(struct inode *inode, sector_t iblock,
714 		   struct buffer_head *bh, int create)
715 {
716 	return _ext4_get_block(inode, iblock, bh,
717 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
718 }
719 
720 /*
721  * `handle' can be NULL if create is zero
722  */
723 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
724 				ext4_lblk_t block, int create)
725 {
726 	struct ext4_map_blocks map;
727 	struct buffer_head *bh;
728 	int err;
729 
730 	J_ASSERT(handle != NULL || create == 0);
731 
732 	map.m_lblk = block;
733 	map.m_len = 1;
734 	err = ext4_map_blocks(handle, inode, &map,
735 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
736 
737 	if (err == 0)
738 		return create ? ERR_PTR(-ENOSPC) : NULL;
739 	if (err < 0)
740 		return ERR_PTR(err);
741 
742 	bh = sb_getblk(inode->i_sb, map.m_pblk);
743 	if (unlikely(!bh))
744 		return ERR_PTR(-ENOMEM);
745 	if (map.m_flags & EXT4_MAP_NEW) {
746 		J_ASSERT(create != 0);
747 		J_ASSERT(handle != NULL);
748 
749 		/*
750 		 * Now that we do not always journal data, we should
751 		 * keep in mind whether this should always journal the
752 		 * new buffer as metadata.  For now, regular file
753 		 * writes use ext4_get_block instead, so it's not a
754 		 * problem.
755 		 */
756 		lock_buffer(bh);
757 		BUFFER_TRACE(bh, "call get_create_access");
758 		err = ext4_journal_get_create_access(handle, bh);
759 		if (unlikely(err)) {
760 			unlock_buffer(bh);
761 			goto errout;
762 		}
763 		if (!buffer_uptodate(bh)) {
764 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
765 			set_buffer_uptodate(bh);
766 		}
767 		unlock_buffer(bh);
768 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
769 		err = ext4_handle_dirty_metadata(handle, inode, bh);
770 		if (unlikely(err))
771 			goto errout;
772 	} else
773 		BUFFER_TRACE(bh, "not a new buffer");
774 	return bh;
775 errout:
776 	brelse(bh);
777 	return ERR_PTR(err);
778 }
779 
780 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
781 			       ext4_lblk_t block, int create)
782 {
783 	struct buffer_head *bh;
784 
785 	bh = ext4_getblk(handle, inode, block, create);
786 	if (IS_ERR(bh))
787 		return bh;
788 	if (!bh || buffer_uptodate(bh))
789 		return bh;
790 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
791 	wait_on_buffer(bh);
792 	if (buffer_uptodate(bh))
793 		return bh;
794 	put_bh(bh);
795 	return ERR_PTR(-EIO);
796 }
797 
798 int ext4_walk_page_buffers(handle_t *handle,
799 			   struct buffer_head *head,
800 			   unsigned from,
801 			   unsigned to,
802 			   int *partial,
803 			   int (*fn)(handle_t *handle,
804 				     struct buffer_head *bh))
805 {
806 	struct buffer_head *bh;
807 	unsigned block_start, block_end;
808 	unsigned blocksize = head->b_size;
809 	int err, ret = 0;
810 	struct buffer_head *next;
811 
812 	for (bh = head, block_start = 0;
813 	     ret == 0 && (bh != head || !block_start);
814 	     block_start = block_end, bh = next) {
815 		next = bh->b_this_page;
816 		block_end = block_start + blocksize;
817 		if (block_end <= from || block_start >= to) {
818 			if (partial && !buffer_uptodate(bh))
819 				*partial = 1;
820 			continue;
821 		}
822 		err = (*fn)(handle, bh);
823 		if (!ret)
824 			ret = err;
825 	}
826 	return ret;
827 }
828 
829 /*
830  * To preserve ordering, it is essential that the hole instantiation and
831  * the data write be encapsulated in a single transaction.  We cannot
832  * close off a transaction and start a new one between the ext4_get_block()
833  * and the commit_write().  So doing the jbd2_journal_start at the start of
834  * prepare_write() is the right place.
835  *
836  * Also, this function can nest inside ext4_writepage().  In that case, we
837  * *know* that ext4_writepage() has generated enough buffer credits to do the
838  * whole page.  So we won't block on the journal in that case, which is good,
839  * because the caller may be PF_MEMALLOC.
840  *
841  * By accident, ext4 can be reentered when a transaction is open via
842  * quota file writes.  If we were to commit the transaction while thus
843  * reentered, there can be a deadlock - we would be holding a quota
844  * lock, and the commit would never complete if another thread had a
845  * transaction open and was blocking on the quota lock - a ranking
846  * violation.
847  *
848  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
849  * will _not_ run commit under these circumstances because handle->h_ref
850  * is elevated.  We'll still have enough credits for the tiny quotafile
851  * write.
852  */
853 int do_journal_get_write_access(handle_t *handle,
854 				struct buffer_head *bh)
855 {
856 	int dirty = buffer_dirty(bh);
857 	int ret;
858 
859 	if (!buffer_mapped(bh) || buffer_freed(bh))
860 		return 0;
861 	/*
862 	 * __block_write_begin() could have dirtied some buffers. Clean
863 	 * the dirty bit as jbd2_journal_get_write_access() could complain
864 	 * otherwise about fs integrity issues. Setting of the dirty bit
865 	 * by __block_write_begin() isn't a real problem here as we clear
866 	 * the bit before releasing a page lock and thus writeback cannot
867 	 * ever write the buffer.
868 	 */
869 	if (dirty)
870 		clear_buffer_dirty(bh);
871 	BUFFER_TRACE(bh, "get write access");
872 	ret = ext4_journal_get_write_access(handle, bh);
873 	if (!ret && dirty)
874 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
875 	return ret;
876 }
877 
878 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
879 		   struct buffer_head *bh_result, int create);
880 static int ext4_write_begin(struct file *file, struct address_space *mapping,
881 			    loff_t pos, unsigned len, unsigned flags,
882 			    struct page **pagep, void **fsdata)
883 {
884 	struct inode *inode = mapping->host;
885 	int ret, needed_blocks;
886 	handle_t *handle;
887 	int retries = 0;
888 	struct page *page;
889 	pgoff_t index;
890 	unsigned from, to;
891 
892 	trace_ext4_write_begin(inode, pos, len, flags);
893 	/*
894 	 * Reserve one block more for addition to orphan list in case
895 	 * we allocate blocks but write fails for some reason
896 	 */
897 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
898 	index = pos >> PAGE_CACHE_SHIFT;
899 	from = pos & (PAGE_CACHE_SIZE - 1);
900 	to = from + len;
901 
902 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
903 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
904 						    flags, pagep);
905 		if (ret < 0)
906 			return ret;
907 		if (ret == 1)
908 			return 0;
909 	}
910 
911 	/*
912 	 * grab_cache_page_write_begin() can take a long time if the
913 	 * system is thrashing due to memory pressure, or if the page
914 	 * is being written back.  So grab it first before we start
915 	 * the transaction handle.  This also allows us to allocate
916 	 * the page (if needed) without using GFP_NOFS.
917 	 */
918 retry_grab:
919 	page = grab_cache_page_write_begin(mapping, index, flags);
920 	if (!page)
921 		return -ENOMEM;
922 	unlock_page(page);
923 
924 retry_journal:
925 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
926 	if (IS_ERR(handle)) {
927 		page_cache_release(page);
928 		return PTR_ERR(handle);
929 	}
930 
931 	lock_page(page);
932 	if (page->mapping != mapping) {
933 		/* The page got truncated from under us */
934 		unlock_page(page);
935 		page_cache_release(page);
936 		ext4_journal_stop(handle);
937 		goto retry_grab;
938 	}
939 	/* In case writeback began while the page was unlocked */
940 	wait_for_stable_page(page);
941 
942 	if (ext4_should_dioread_nolock(inode))
943 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
944 	else
945 		ret = __block_write_begin(page, pos, len, ext4_get_block);
946 
947 	if (!ret && ext4_should_journal_data(inode)) {
948 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
949 					     from, to, NULL,
950 					     do_journal_get_write_access);
951 	}
952 
953 	if (ret) {
954 		unlock_page(page);
955 		/*
956 		 * __block_write_begin may have instantiated a few blocks
957 		 * outside i_size.  Trim these off again. Don't need
958 		 * i_size_read because we hold i_mutex.
959 		 *
960 		 * Add inode to orphan list in case we crash before
961 		 * truncate finishes
962 		 */
963 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
964 			ext4_orphan_add(handle, inode);
965 
966 		ext4_journal_stop(handle);
967 		if (pos + len > inode->i_size) {
968 			ext4_truncate_failed_write(inode);
969 			/*
970 			 * If truncate failed early the inode might
971 			 * still be on the orphan list; we need to
972 			 * make sure the inode is removed from the
973 			 * orphan list in that case.
974 			 */
975 			if (inode->i_nlink)
976 				ext4_orphan_del(NULL, inode);
977 		}
978 
979 		if (ret == -ENOSPC &&
980 		    ext4_should_retry_alloc(inode->i_sb, &retries))
981 			goto retry_journal;
982 		page_cache_release(page);
983 		return ret;
984 	}
985 	*pagep = page;
986 	return ret;
987 }
988 
989 /* For write_end() in data=journal mode */
990 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
991 {
992 	int ret;
993 	if (!buffer_mapped(bh) || buffer_freed(bh))
994 		return 0;
995 	set_buffer_uptodate(bh);
996 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
997 	clear_buffer_meta(bh);
998 	clear_buffer_prio(bh);
999 	return ret;
1000 }
1001 
1002 /*
1003  * We need to pick up the new inode size which generic_commit_write gave us
1004  * `file' can be NULL - eg, when called from page_symlink().
1005  *
1006  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1007  * buffers are managed internally.
1008  */
1009 static int ext4_write_end(struct file *file,
1010 			  struct address_space *mapping,
1011 			  loff_t pos, unsigned len, unsigned copied,
1012 			  struct page *page, void *fsdata)
1013 {
1014 	handle_t *handle = ext4_journal_current_handle();
1015 	struct inode *inode = mapping->host;
1016 	int ret = 0, ret2;
1017 	int i_size_changed = 0;
1018 
1019 	trace_ext4_write_end(inode, pos, len, copied);
1020 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1021 		ret = ext4_jbd2_file_inode(handle, inode);
1022 		if (ret) {
1023 			unlock_page(page);
1024 			page_cache_release(page);
1025 			goto errout;
1026 		}
1027 	}
1028 
1029 	if (ext4_has_inline_data(inode)) {
1030 		ret = ext4_write_inline_data_end(inode, pos, len,
1031 						 copied, page);
1032 		if (ret < 0)
1033 			goto errout;
1034 		copied = ret;
1035 	} else
1036 		copied = block_write_end(file, mapping, pos,
1037 					 len, copied, page, fsdata);
1038 	/*
1039 	 * it's important to update i_size while still holding page lock:
1040 	 * page writeout could otherwise come in and zero beyond i_size.
1041 	 */
1042 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1043 	unlock_page(page);
1044 	page_cache_release(page);
1045 
1046 	/*
1047 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1048 	 * makes the holding time of page lock longer. Second, it forces lock
1049 	 * ordering of page lock and transaction start for journaling
1050 	 * filesystems.
1051 	 */
1052 	if (i_size_changed)
1053 		ext4_mark_inode_dirty(handle, inode);
1054 
1055 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056 		/* if we have allocated more blocks and copied
1057 		 * less. We will have blocks allocated outside
1058 		 * inode->i_size. So truncate them
1059 		 */
1060 		ext4_orphan_add(handle, inode);
1061 errout:
1062 	ret2 = ext4_journal_stop(handle);
1063 	if (!ret)
1064 		ret = ret2;
1065 
1066 	if (pos + len > inode->i_size) {
1067 		ext4_truncate_failed_write(inode);
1068 		/*
1069 		 * If truncate failed early the inode might still be
1070 		 * on the orphan list; we need to make sure the inode
1071 		 * is removed from the orphan list in that case.
1072 		 */
1073 		if (inode->i_nlink)
1074 			ext4_orphan_del(NULL, inode);
1075 	}
1076 
1077 	return ret ? ret : copied;
1078 }
1079 
1080 static int ext4_journalled_write_end(struct file *file,
1081 				     struct address_space *mapping,
1082 				     loff_t pos, unsigned len, unsigned copied,
1083 				     struct page *page, void *fsdata)
1084 {
1085 	handle_t *handle = ext4_journal_current_handle();
1086 	struct inode *inode = mapping->host;
1087 	int ret = 0, ret2;
1088 	int partial = 0;
1089 	unsigned from, to;
1090 	int size_changed = 0;
1091 
1092 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1093 	from = pos & (PAGE_CACHE_SIZE - 1);
1094 	to = from + len;
1095 
1096 	BUG_ON(!ext4_handle_valid(handle));
1097 
1098 	if (ext4_has_inline_data(inode))
1099 		copied = ext4_write_inline_data_end(inode, pos, len,
1100 						    copied, page);
1101 	else {
1102 		if (copied < len) {
1103 			if (!PageUptodate(page))
1104 				copied = 0;
1105 			page_zero_new_buffers(page, from+copied, to);
1106 		}
1107 
1108 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1109 					     to, &partial, write_end_fn);
1110 		if (!partial)
1111 			SetPageUptodate(page);
1112 	}
1113 	size_changed = ext4_update_inode_size(inode, pos + copied);
1114 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1115 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1116 	unlock_page(page);
1117 	page_cache_release(page);
1118 
1119 	if (size_changed) {
1120 		ret2 = ext4_mark_inode_dirty(handle, inode);
1121 		if (!ret)
1122 			ret = ret2;
1123 	}
1124 
1125 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1126 		/* if we have allocated more blocks and copied
1127 		 * less. We will have blocks allocated outside
1128 		 * inode->i_size. So truncate them
1129 		 */
1130 		ext4_orphan_add(handle, inode);
1131 
1132 	ret2 = ext4_journal_stop(handle);
1133 	if (!ret)
1134 		ret = ret2;
1135 	if (pos + len > inode->i_size) {
1136 		ext4_truncate_failed_write(inode);
1137 		/*
1138 		 * If truncate failed early the inode might still be
1139 		 * on the orphan list; we need to make sure the inode
1140 		 * is removed from the orphan list in that case.
1141 		 */
1142 		if (inode->i_nlink)
1143 			ext4_orphan_del(NULL, inode);
1144 	}
1145 
1146 	return ret ? ret : copied;
1147 }
1148 
1149 /*
1150  * Reserve a single cluster located at lblock
1151  */
1152 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1153 {
1154 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1155 	struct ext4_inode_info *ei = EXT4_I(inode);
1156 	unsigned int md_needed;
1157 	int ret;
1158 
1159 	/*
1160 	 * We will charge metadata quota at writeout time; this saves
1161 	 * us from metadata over-estimation, though we may go over by
1162 	 * a small amount in the end.  Here we just reserve for data.
1163 	 */
1164 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1165 	if (ret)
1166 		return ret;
1167 
1168 	/*
1169 	 * recalculate the amount of metadata blocks to reserve
1170 	 * in order to allocate nrblocks
1171 	 * worse case is one extent per block
1172 	 */
1173 	spin_lock(&ei->i_block_reservation_lock);
1174 	/*
1175 	 * ext4_calc_metadata_amount() has side effects, which we have
1176 	 * to be prepared undo if we fail to claim space.
1177 	 */
1178 	md_needed = 0;
1179 	trace_ext4_da_reserve_space(inode, 0);
1180 
1181 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1182 		spin_unlock(&ei->i_block_reservation_lock);
1183 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1184 		return -ENOSPC;
1185 	}
1186 	ei->i_reserved_data_blocks++;
1187 	spin_unlock(&ei->i_block_reservation_lock);
1188 
1189 	return 0;       /* success */
1190 }
1191 
1192 static void ext4_da_release_space(struct inode *inode, int to_free)
1193 {
1194 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1195 	struct ext4_inode_info *ei = EXT4_I(inode);
1196 
1197 	if (!to_free)
1198 		return;		/* Nothing to release, exit */
1199 
1200 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1201 
1202 	trace_ext4_da_release_space(inode, to_free);
1203 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1204 		/*
1205 		 * if there aren't enough reserved blocks, then the
1206 		 * counter is messed up somewhere.  Since this
1207 		 * function is called from invalidate page, it's
1208 		 * harmless to return without any action.
1209 		 */
1210 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1211 			 "ino %lu, to_free %d with only %d reserved "
1212 			 "data blocks", inode->i_ino, to_free,
1213 			 ei->i_reserved_data_blocks);
1214 		WARN_ON(1);
1215 		to_free = ei->i_reserved_data_blocks;
1216 	}
1217 	ei->i_reserved_data_blocks -= to_free;
1218 
1219 	/* update fs dirty data blocks counter */
1220 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1221 
1222 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1223 
1224 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1225 }
1226 
1227 static void ext4_da_page_release_reservation(struct page *page,
1228 					     unsigned int offset,
1229 					     unsigned int length)
1230 {
1231 	int to_release = 0;
1232 	struct buffer_head *head, *bh;
1233 	unsigned int curr_off = 0;
1234 	struct inode *inode = page->mapping->host;
1235 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1236 	unsigned int stop = offset + length;
1237 	int num_clusters;
1238 	ext4_fsblk_t lblk;
1239 
1240 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1241 
1242 	head = page_buffers(page);
1243 	bh = head;
1244 	do {
1245 		unsigned int next_off = curr_off + bh->b_size;
1246 
1247 		if (next_off > stop)
1248 			break;
1249 
1250 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1251 			to_release++;
1252 			clear_buffer_delay(bh);
1253 		}
1254 		curr_off = next_off;
1255 	} while ((bh = bh->b_this_page) != head);
1256 
1257 	if (to_release) {
1258 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1259 		ext4_es_remove_extent(inode, lblk, to_release);
1260 	}
1261 
1262 	/* If we have released all the blocks belonging to a cluster, then we
1263 	 * need to release the reserved space for that cluster. */
1264 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1265 	while (num_clusters > 0) {
1266 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1267 			((num_clusters - 1) << sbi->s_cluster_bits);
1268 		if (sbi->s_cluster_ratio == 1 ||
1269 		    !ext4_find_delalloc_cluster(inode, lblk))
1270 			ext4_da_release_space(inode, 1);
1271 
1272 		num_clusters--;
1273 	}
1274 }
1275 
1276 /*
1277  * Delayed allocation stuff
1278  */
1279 
1280 struct mpage_da_data {
1281 	struct inode *inode;
1282 	struct writeback_control *wbc;
1283 
1284 	pgoff_t first_page;	/* The first page to write */
1285 	pgoff_t next_page;	/* Current page to examine */
1286 	pgoff_t last_page;	/* Last page to examine */
1287 	/*
1288 	 * Extent to map - this can be after first_page because that can be
1289 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1290 	 * is delalloc or unwritten.
1291 	 */
1292 	struct ext4_map_blocks map;
1293 	struct ext4_io_submit io_submit;	/* IO submission data */
1294 };
1295 
1296 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1297 				       bool invalidate)
1298 {
1299 	int nr_pages, i;
1300 	pgoff_t index, end;
1301 	struct pagevec pvec;
1302 	struct inode *inode = mpd->inode;
1303 	struct address_space *mapping = inode->i_mapping;
1304 
1305 	/* This is necessary when next_page == 0. */
1306 	if (mpd->first_page >= mpd->next_page)
1307 		return;
1308 
1309 	index = mpd->first_page;
1310 	end   = mpd->next_page - 1;
1311 	if (invalidate) {
1312 		ext4_lblk_t start, last;
1313 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1314 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1315 		ext4_es_remove_extent(inode, start, last - start + 1);
1316 	}
1317 
1318 	pagevec_init(&pvec, 0);
1319 	while (index <= end) {
1320 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1321 		if (nr_pages == 0)
1322 			break;
1323 		for (i = 0; i < nr_pages; i++) {
1324 			struct page *page = pvec.pages[i];
1325 			if (page->index > end)
1326 				break;
1327 			BUG_ON(!PageLocked(page));
1328 			BUG_ON(PageWriteback(page));
1329 			if (invalidate) {
1330 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1331 				ClearPageUptodate(page);
1332 			}
1333 			unlock_page(page);
1334 		}
1335 		index = pvec.pages[nr_pages - 1]->index + 1;
1336 		pagevec_release(&pvec);
1337 	}
1338 }
1339 
1340 static void ext4_print_free_blocks(struct inode *inode)
1341 {
1342 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1343 	struct super_block *sb = inode->i_sb;
1344 	struct ext4_inode_info *ei = EXT4_I(inode);
1345 
1346 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1347 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1348 			ext4_count_free_clusters(sb)));
1349 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1350 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1351 	       (long long) EXT4_C2B(EXT4_SB(sb),
1352 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1353 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1354 	       (long long) EXT4_C2B(EXT4_SB(sb),
1355 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1356 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1357 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1358 		 ei->i_reserved_data_blocks);
1359 	return;
1360 }
1361 
1362 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1363 {
1364 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1365 }
1366 
1367 /*
1368  * This function is grabs code from the very beginning of
1369  * ext4_map_blocks, but assumes that the caller is from delayed write
1370  * time. This function looks up the requested blocks and sets the
1371  * buffer delay bit under the protection of i_data_sem.
1372  */
1373 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1374 			      struct ext4_map_blocks *map,
1375 			      struct buffer_head *bh)
1376 {
1377 	struct extent_status es;
1378 	int retval;
1379 	sector_t invalid_block = ~((sector_t) 0xffff);
1380 #ifdef ES_AGGRESSIVE_TEST
1381 	struct ext4_map_blocks orig_map;
1382 
1383 	memcpy(&orig_map, map, sizeof(*map));
1384 #endif
1385 
1386 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1387 		invalid_block = ~0;
1388 
1389 	map->m_flags = 0;
1390 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1391 		  "logical block %lu\n", inode->i_ino, map->m_len,
1392 		  (unsigned long) map->m_lblk);
1393 
1394 	/* Lookup extent status tree firstly */
1395 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1396 		ext4_es_lru_add(inode);
1397 		if (ext4_es_is_hole(&es)) {
1398 			retval = 0;
1399 			down_read(&EXT4_I(inode)->i_data_sem);
1400 			goto add_delayed;
1401 		}
1402 
1403 		/*
1404 		 * Delayed extent could be allocated by fallocate.
1405 		 * So we need to check it.
1406 		 */
1407 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1408 			map_bh(bh, inode->i_sb, invalid_block);
1409 			set_buffer_new(bh);
1410 			set_buffer_delay(bh);
1411 			return 0;
1412 		}
1413 
1414 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1415 		retval = es.es_len - (iblock - es.es_lblk);
1416 		if (retval > map->m_len)
1417 			retval = map->m_len;
1418 		map->m_len = retval;
1419 		if (ext4_es_is_written(&es))
1420 			map->m_flags |= EXT4_MAP_MAPPED;
1421 		else if (ext4_es_is_unwritten(&es))
1422 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1423 		else
1424 			BUG_ON(1);
1425 
1426 #ifdef ES_AGGRESSIVE_TEST
1427 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1428 #endif
1429 		return retval;
1430 	}
1431 
1432 	/*
1433 	 * Try to see if we can get the block without requesting a new
1434 	 * file system block.
1435 	 */
1436 	down_read(&EXT4_I(inode)->i_data_sem);
1437 	if (ext4_has_inline_data(inode)) {
1438 		/*
1439 		 * We will soon create blocks for this page, and let
1440 		 * us pretend as if the blocks aren't allocated yet.
1441 		 * In case of clusters, we have to handle the work
1442 		 * of mapping from cluster so that the reserved space
1443 		 * is calculated properly.
1444 		 */
1445 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1446 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1447 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1448 		retval = 0;
1449 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1450 		retval = ext4_ext_map_blocks(NULL, inode, map,
1451 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1452 	else
1453 		retval = ext4_ind_map_blocks(NULL, inode, map,
1454 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1455 
1456 add_delayed:
1457 	if (retval == 0) {
1458 		int ret;
1459 		/*
1460 		 * XXX: __block_prepare_write() unmaps passed block,
1461 		 * is it OK?
1462 		 */
1463 		/*
1464 		 * If the block was allocated from previously allocated cluster,
1465 		 * then we don't need to reserve it again. However we still need
1466 		 * to reserve metadata for every block we're going to write.
1467 		 */
1468 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1469 			ret = ext4_da_reserve_space(inode, iblock);
1470 			if (ret) {
1471 				/* not enough space to reserve */
1472 				retval = ret;
1473 				goto out_unlock;
1474 			}
1475 		}
1476 
1477 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1478 					    ~0, EXTENT_STATUS_DELAYED);
1479 		if (ret) {
1480 			retval = ret;
1481 			goto out_unlock;
1482 		}
1483 
1484 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1485 		 * and it should not appear on the bh->b_state.
1486 		 */
1487 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1488 
1489 		map_bh(bh, inode->i_sb, invalid_block);
1490 		set_buffer_new(bh);
1491 		set_buffer_delay(bh);
1492 	} else if (retval > 0) {
1493 		int ret;
1494 		unsigned int status;
1495 
1496 		if (unlikely(retval != map->m_len)) {
1497 			ext4_warning(inode->i_sb,
1498 				     "ES len assertion failed for inode "
1499 				     "%lu: retval %d != map->m_len %d",
1500 				     inode->i_ino, retval, map->m_len);
1501 			WARN_ON(1);
1502 		}
1503 
1504 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1505 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1506 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1507 					    map->m_pblk, status);
1508 		if (ret != 0)
1509 			retval = ret;
1510 	}
1511 
1512 out_unlock:
1513 	up_read((&EXT4_I(inode)->i_data_sem));
1514 
1515 	return retval;
1516 }
1517 
1518 /*
1519  * This is a special get_block_t callback which is used by
1520  * ext4_da_write_begin().  It will either return mapped block or
1521  * reserve space for a single block.
1522  *
1523  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1524  * We also have b_blocknr = -1 and b_bdev initialized properly
1525  *
1526  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1527  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1528  * initialized properly.
1529  */
1530 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1531 			   struct buffer_head *bh, int create)
1532 {
1533 	struct ext4_map_blocks map;
1534 	int ret = 0;
1535 
1536 	BUG_ON(create == 0);
1537 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1538 
1539 	map.m_lblk = iblock;
1540 	map.m_len = 1;
1541 
1542 	/*
1543 	 * first, we need to know whether the block is allocated already
1544 	 * preallocated blocks are unmapped but should treated
1545 	 * the same as allocated blocks.
1546 	 */
1547 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1548 	if (ret <= 0)
1549 		return ret;
1550 
1551 	map_bh(bh, inode->i_sb, map.m_pblk);
1552 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1553 
1554 	if (buffer_unwritten(bh)) {
1555 		/* A delayed write to unwritten bh should be marked
1556 		 * new and mapped.  Mapped ensures that we don't do
1557 		 * get_block multiple times when we write to the same
1558 		 * offset and new ensures that we do proper zero out
1559 		 * for partial write.
1560 		 */
1561 		set_buffer_new(bh);
1562 		set_buffer_mapped(bh);
1563 	}
1564 	return 0;
1565 }
1566 
1567 static int bget_one(handle_t *handle, struct buffer_head *bh)
1568 {
1569 	get_bh(bh);
1570 	return 0;
1571 }
1572 
1573 static int bput_one(handle_t *handle, struct buffer_head *bh)
1574 {
1575 	put_bh(bh);
1576 	return 0;
1577 }
1578 
1579 static int __ext4_journalled_writepage(struct page *page,
1580 				       unsigned int len)
1581 {
1582 	struct address_space *mapping = page->mapping;
1583 	struct inode *inode = mapping->host;
1584 	struct buffer_head *page_bufs = NULL;
1585 	handle_t *handle = NULL;
1586 	int ret = 0, err = 0;
1587 	int inline_data = ext4_has_inline_data(inode);
1588 	struct buffer_head *inode_bh = NULL;
1589 
1590 	ClearPageChecked(page);
1591 
1592 	if (inline_data) {
1593 		BUG_ON(page->index != 0);
1594 		BUG_ON(len > ext4_get_max_inline_size(inode));
1595 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1596 		if (inode_bh == NULL)
1597 			goto out;
1598 	} else {
1599 		page_bufs = page_buffers(page);
1600 		if (!page_bufs) {
1601 			BUG();
1602 			goto out;
1603 		}
1604 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1605 				       NULL, bget_one);
1606 	}
1607 	/* As soon as we unlock the page, it can go away, but we have
1608 	 * references to buffers so we are safe */
1609 	unlock_page(page);
1610 
1611 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1612 				    ext4_writepage_trans_blocks(inode));
1613 	if (IS_ERR(handle)) {
1614 		ret = PTR_ERR(handle);
1615 		goto out;
1616 	}
1617 
1618 	BUG_ON(!ext4_handle_valid(handle));
1619 
1620 	if (inline_data) {
1621 		BUFFER_TRACE(inode_bh, "get write access");
1622 		ret = ext4_journal_get_write_access(handle, inode_bh);
1623 
1624 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1625 
1626 	} else {
1627 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1628 					     do_journal_get_write_access);
1629 
1630 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1631 					     write_end_fn);
1632 	}
1633 	if (ret == 0)
1634 		ret = err;
1635 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1636 	err = ext4_journal_stop(handle);
1637 	if (!ret)
1638 		ret = err;
1639 
1640 	if (!ext4_has_inline_data(inode))
1641 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1642 				       NULL, bput_one);
1643 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1644 out:
1645 	brelse(inode_bh);
1646 	return ret;
1647 }
1648 
1649 /*
1650  * Note that we don't need to start a transaction unless we're journaling data
1651  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1652  * need to file the inode to the transaction's list in ordered mode because if
1653  * we are writing back data added by write(), the inode is already there and if
1654  * we are writing back data modified via mmap(), no one guarantees in which
1655  * transaction the data will hit the disk. In case we are journaling data, we
1656  * cannot start transaction directly because transaction start ranks above page
1657  * lock so we have to do some magic.
1658  *
1659  * This function can get called via...
1660  *   - ext4_writepages after taking page lock (have journal handle)
1661  *   - journal_submit_inode_data_buffers (no journal handle)
1662  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1663  *   - grab_page_cache when doing write_begin (have journal handle)
1664  *
1665  * We don't do any block allocation in this function. If we have page with
1666  * multiple blocks we need to write those buffer_heads that are mapped. This
1667  * is important for mmaped based write. So if we do with blocksize 1K
1668  * truncate(f, 1024);
1669  * a = mmap(f, 0, 4096);
1670  * a[0] = 'a';
1671  * truncate(f, 4096);
1672  * we have in the page first buffer_head mapped via page_mkwrite call back
1673  * but other buffer_heads would be unmapped but dirty (dirty done via the
1674  * do_wp_page). So writepage should write the first block. If we modify
1675  * the mmap area beyond 1024 we will again get a page_fault and the
1676  * page_mkwrite callback will do the block allocation and mark the
1677  * buffer_heads mapped.
1678  *
1679  * We redirty the page if we have any buffer_heads that is either delay or
1680  * unwritten in the page.
1681  *
1682  * We can get recursively called as show below.
1683  *
1684  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1685  *		ext4_writepage()
1686  *
1687  * But since we don't do any block allocation we should not deadlock.
1688  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1689  */
1690 static int ext4_writepage(struct page *page,
1691 			  struct writeback_control *wbc)
1692 {
1693 	int ret = 0;
1694 	loff_t size;
1695 	unsigned int len;
1696 	struct buffer_head *page_bufs = NULL;
1697 	struct inode *inode = page->mapping->host;
1698 	struct ext4_io_submit io_submit;
1699 	bool keep_towrite = false;
1700 
1701 	trace_ext4_writepage(page);
1702 	size = i_size_read(inode);
1703 	if (page->index == size >> PAGE_CACHE_SHIFT)
1704 		len = size & ~PAGE_CACHE_MASK;
1705 	else
1706 		len = PAGE_CACHE_SIZE;
1707 
1708 	page_bufs = page_buffers(page);
1709 	/*
1710 	 * We cannot do block allocation or other extent handling in this
1711 	 * function. If there are buffers needing that, we have to redirty
1712 	 * the page. But we may reach here when we do a journal commit via
1713 	 * journal_submit_inode_data_buffers() and in that case we must write
1714 	 * allocated buffers to achieve data=ordered mode guarantees.
1715 	 */
1716 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1717 				   ext4_bh_delay_or_unwritten)) {
1718 		redirty_page_for_writepage(wbc, page);
1719 		if (current->flags & PF_MEMALLOC) {
1720 			/*
1721 			 * For memory cleaning there's no point in writing only
1722 			 * some buffers. So just bail out. Warn if we came here
1723 			 * from direct reclaim.
1724 			 */
1725 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1726 							== PF_MEMALLOC);
1727 			unlock_page(page);
1728 			return 0;
1729 		}
1730 		keep_towrite = true;
1731 	}
1732 
1733 	if (PageChecked(page) && ext4_should_journal_data(inode))
1734 		/*
1735 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1736 		 * doesn't seem much point in redirtying the page here.
1737 		 */
1738 		return __ext4_journalled_writepage(page, len);
1739 
1740 	ext4_io_submit_init(&io_submit, wbc);
1741 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1742 	if (!io_submit.io_end) {
1743 		redirty_page_for_writepage(wbc, page);
1744 		unlock_page(page);
1745 		return -ENOMEM;
1746 	}
1747 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1748 	ext4_io_submit(&io_submit);
1749 	/* Drop io_end reference we got from init */
1750 	ext4_put_io_end_defer(io_submit.io_end);
1751 	return ret;
1752 }
1753 
1754 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1755 {
1756 	int len;
1757 	loff_t size = i_size_read(mpd->inode);
1758 	int err;
1759 
1760 	BUG_ON(page->index != mpd->first_page);
1761 	if (page->index == size >> PAGE_CACHE_SHIFT)
1762 		len = size & ~PAGE_CACHE_MASK;
1763 	else
1764 		len = PAGE_CACHE_SIZE;
1765 	clear_page_dirty_for_io(page);
1766 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1767 	if (!err)
1768 		mpd->wbc->nr_to_write--;
1769 	mpd->first_page++;
1770 
1771 	return err;
1772 }
1773 
1774 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1775 
1776 /*
1777  * mballoc gives us at most this number of blocks...
1778  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1779  * The rest of mballoc seems to handle chunks up to full group size.
1780  */
1781 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1782 
1783 /*
1784  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1785  *
1786  * @mpd - extent of blocks
1787  * @lblk - logical number of the block in the file
1788  * @bh - buffer head we want to add to the extent
1789  *
1790  * The function is used to collect contig. blocks in the same state. If the
1791  * buffer doesn't require mapping for writeback and we haven't started the
1792  * extent of buffers to map yet, the function returns 'true' immediately - the
1793  * caller can write the buffer right away. Otherwise the function returns true
1794  * if the block has been added to the extent, false if the block couldn't be
1795  * added.
1796  */
1797 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1798 				   struct buffer_head *bh)
1799 {
1800 	struct ext4_map_blocks *map = &mpd->map;
1801 
1802 	/* Buffer that doesn't need mapping for writeback? */
1803 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1804 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1805 		/* So far no extent to map => we write the buffer right away */
1806 		if (map->m_len == 0)
1807 			return true;
1808 		return false;
1809 	}
1810 
1811 	/* First block in the extent? */
1812 	if (map->m_len == 0) {
1813 		map->m_lblk = lblk;
1814 		map->m_len = 1;
1815 		map->m_flags = bh->b_state & BH_FLAGS;
1816 		return true;
1817 	}
1818 
1819 	/* Don't go larger than mballoc is willing to allocate */
1820 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1821 		return false;
1822 
1823 	/* Can we merge the block to our big extent? */
1824 	if (lblk == map->m_lblk + map->m_len &&
1825 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1826 		map->m_len++;
1827 		return true;
1828 	}
1829 	return false;
1830 }
1831 
1832 /*
1833  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1834  *
1835  * @mpd - extent of blocks for mapping
1836  * @head - the first buffer in the page
1837  * @bh - buffer we should start processing from
1838  * @lblk - logical number of the block in the file corresponding to @bh
1839  *
1840  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1841  * the page for IO if all buffers in this page were mapped and there's no
1842  * accumulated extent of buffers to map or add buffers in the page to the
1843  * extent of buffers to map. The function returns 1 if the caller can continue
1844  * by processing the next page, 0 if it should stop adding buffers to the
1845  * extent to map because we cannot extend it anymore. It can also return value
1846  * < 0 in case of error during IO submission.
1847  */
1848 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1849 				   struct buffer_head *head,
1850 				   struct buffer_head *bh,
1851 				   ext4_lblk_t lblk)
1852 {
1853 	struct inode *inode = mpd->inode;
1854 	int err;
1855 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1856 							>> inode->i_blkbits;
1857 
1858 	do {
1859 		BUG_ON(buffer_locked(bh));
1860 
1861 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1862 			/* Found extent to map? */
1863 			if (mpd->map.m_len)
1864 				return 0;
1865 			/* Everything mapped so far and we hit EOF */
1866 			break;
1867 		}
1868 	} while (lblk++, (bh = bh->b_this_page) != head);
1869 	/* So far everything mapped? Submit the page for IO. */
1870 	if (mpd->map.m_len == 0) {
1871 		err = mpage_submit_page(mpd, head->b_page);
1872 		if (err < 0)
1873 			return err;
1874 	}
1875 	return lblk < blocks;
1876 }
1877 
1878 /*
1879  * mpage_map_buffers - update buffers corresponding to changed extent and
1880  *		       submit fully mapped pages for IO
1881  *
1882  * @mpd - description of extent to map, on return next extent to map
1883  *
1884  * Scan buffers corresponding to changed extent (we expect corresponding pages
1885  * to be already locked) and update buffer state according to new extent state.
1886  * We map delalloc buffers to their physical location, clear unwritten bits,
1887  * and mark buffers as uninit when we perform writes to unwritten extents
1888  * and do extent conversion after IO is finished. If the last page is not fully
1889  * mapped, we update @map to the next extent in the last page that needs
1890  * mapping. Otherwise we submit the page for IO.
1891  */
1892 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1893 {
1894 	struct pagevec pvec;
1895 	int nr_pages, i;
1896 	struct inode *inode = mpd->inode;
1897 	struct buffer_head *head, *bh;
1898 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1899 	pgoff_t start, end;
1900 	ext4_lblk_t lblk;
1901 	sector_t pblock;
1902 	int err;
1903 
1904 	start = mpd->map.m_lblk >> bpp_bits;
1905 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1906 	lblk = start << bpp_bits;
1907 	pblock = mpd->map.m_pblk;
1908 
1909 	pagevec_init(&pvec, 0);
1910 	while (start <= end) {
1911 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1912 					  PAGEVEC_SIZE);
1913 		if (nr_pages == 0)
1914 			break;
1915 		for (i = 0; i < nr_pages; i++) {
1916 			struct page *page = pvec.pages[i];
1917 
1918 			if (page->index > end)
1919 				break;
1920 			/* Up to 'end' pages must be contiguous */
1921 			BUG_ON(page->index != start);
1922 			bh = head = page_buffers(page);
1923 			do {
1924 				if (lblk < mpd->map.m_lblk)
1925 					continue;
1926 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1927 					/*
1928 					 * Buffer after end of mapped extent.
1929 					 * Find next buffer in the page to map.
1930 					 */
1931 					mpd->map.m_len = 0;
1932 					mpd->map.m_flags = 0;
1933 					/*
1934 					 * FIXME: If dioread_nolock supports
1935 					 * blocksize < pagesize, we need to make
1936 					 * sure we add size mapped so far to
1937 					 * io_end->size as the following call
1938 					 * can submit the page for IO.
1939 					 */
1940 					err = mpage_process_page_bufs(mpd, head,
1941 								      bh, lblk);
1942 					pagevec_release(&pvec);
1943 					if (err > 0)
1944 						err = 0;
1945 					return err;
1946 				}
1947 				if (buffer_delay(bh)) {
1948 					clear_buffer_delay(bh);
1949 					bh->b_blocknr = pblock++;
1950 				}
1951 				clear_buffer_unwritten(bh);
1952 			} while (lblk++, (bh = bh->b_this_page) != head);
1953 
1954 			/*
1955 			 * FIXME: This is going to break if dioread_nolock
1956 			 * supports blocksize < pagesize as we will try to
1957 			 * convert potentially unmapped parts of inode.
1958 			 */
1959 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1960 			/* Page fully mapped - let IO run! */
1961 			err = mpage_submit_page(mpd, page);
1962 			if (err < 0) {
1963 				pagevec_release(&pvec);
1964 				return err;
1965 			}
1966 			start++;
1967 		}
1968 		pagevec_release(&pvec);
1969 	}
1970 	/* Extent fully mapped and matches with page boundary. We are done. */
1971 	mpd->map.m_len = 0;
1972 	mpd->map.m_flags = 0;
1973 	return 0;
1974 }
1975 
1976 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1977 {
1978 	struct inode *inode = mpd->inode;
1979 	struct ext4_map_blocks *map = &mpd->map;
1980 	int get_blocks_flags;
1981 	int err, dioread_nolock;
1982 
1983 	trace_ext4_da_write_pages_extent(inode, map);
1984 	/*
1985 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1986 	 * to convert an unwritten extent to be initialized (in the case
1987 	 * where we have written into one or more preallocated blocks).  It is
1988 	 * possible that we're going to need more metadata blocks than
1989 	 * previously reserved. However we must not fail because we're in
1990 	 * writeback and there is nothing we can do about it so it might result
1991 	 * in data loss.  So use reserved blocks to allocate metadata if
1992 	 * possible.
1993 	 *
1994 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1995 	 * the blocks in question are delalloc blocks.  This indicates
1996 	 * that the blocks and quotas has already been checked when
1997 	 * the data was copied into the page cache.
1998 	 */
1999 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2000 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2001 	dioread_nolock = ext4_should_dioread_nolock(inode);
2002 	if (dioread_nolock)
2003 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2004 	if (map->m_flags & (1 << BH_Delay))
2005 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2006 
2007 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2008 	if (err < 0)
2009 		return err;
2010 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2011 		if (!mpd->io_submit.io_end->handle &&
2012 		    ext4_handle_valid(handle)) {
2013 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2014 			handle->h_rsv_handle = NULL;
2015 		}
2016 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2017 	}
2018 
2019 	BUG_ON(map->m_len == 0);
2020 	if (map->m_flags & EXT4_MAP_NEW) {
2021 		struct block_device *bdev = inode->i_sb->s_bdev;
2022 		int i;
2023 
2024 		for (i = 0; i < map->m_len; i++)
2025 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2026 	}
2027 	return 0;
2028 }
2029 
2030 /*
2031  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2032  *				 mpd->len and submit pages underlying it for IO
2033  *
2034  * @handle - handle for journal operations
2035  * @mpd - extent to map
2036  * @give_up_on_write - we set this to true iff there is a fatal error and there
2037  *                     is no hope of writing the data. The caller should discard
2038  *                     dirty pages to avoid infinite loops.
2039  *
2040  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2041  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2042  * them to initialized or split the described range from larger unwritten
2043  * extent. Note that we need not map all the described range since allocation
2044  * can return less blocks or the range is covered by more unwritten extents. We
2045  * cannot map more because we are limited by reserved transaction credits. On
2046  * the other hand we always make sure that the last touched page is fully
2047  * mapped so that it can be written out (and thus forward progress is
2048  * guaranteed). After mapping we submit all mapped pages for IO.
2049  */
2050 static int mpage_map_and_submit_extent(handle_t *handle,
2051 				       struct mpage_da_data *mpd,
2052 				       bool *give_up_on_write)
2053 {
2054 	struct inode *inode = mpd->inode;
2055 	struct ext4_map_blocks *map = &mpd->map;
2056 	int err;
2057 	loff_t disksize;
2058 	int progress = 0;
2059 
2060 	mpd->io_submit.io_end->offset =
2061 				((loff_t)map->m_lblk) << inode->i_blkbits;
2062 	do {
2063 		err = mpage_map_one_extent(handle, mpd);
2064 		if (err < 0) {
2065 			struct super_block *sb = inode->i_sb;
2066 
2067 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2068 				goto invalidate_dirty_pages;
2069 			/*
2070 			 * Let the uper layers retry transient errors.
2071 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2072 			 * is non-zero, a commit should free up blocks.
2073 			 */
2074 			if ((err == -ENOMEM) ||
2075 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2076 				if (progress)
2077 					goto update_disksize;
2078 				return err;
2079 			}
2080 			ext4_msg(sb, KERN_CRIT,
2081 				 "Delayed block allocation failed for "
2082 				 "inode %lu at logical offset %llu with"
2083 				 " max blocks %u with error %d",
2084 				 inode->i_ino,
2085 				 (unsigned long long)map->m_lblk,
2086 				 (unsigned)map->m_len, -err);
2087 			ext4_msg(sb, KERN_CRIT,
2088 				 "This should not happen!! Data will "
2089 				 "be lost\n");
2090 			if (err == -ENOSPC)
2091 				ext4_print_free_blocks(inode);
2092 		invalidate_dirty_pages:
2093 			*give_up_on_write = true;
2094 			return err;
2095 		}
2096 		progress = 1;
2097 		/*
2098 		 * Update buffer state, submit mapped pages, and get us new
2099 		 * extent to map
2100 		 */
2101 		err = mpage_map_and_submit_buffers(mpd);
2102 		if (err < 0)
2103 			goto update_disksize;
2104 	} while (map->m_len);
2105 
2106 update_disksize:
2107 	/*
2108 	 * Update on-disk size after IO is submitted.  Races with
2109 	 * truncate are avoided by checking i_size under i_data_sem.
2110 	 */
2111 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2112 	if (disksize > EXT4_I(inode)->i_disksize) {
2113 		int err2;
2114 		loff_t i_size;
2115 
2116 		down_write(&EXT4_I(inode)->i_data_sem);
2117 		i_size = i_size_read(inode);
2118 		if (disksize > i_size)
2119 			disksize = i_size;
2120 		if (disksize > EXT4_I(inode)->i_disksize)
2121 			EXT4_I(inode)->i_disksize = disksize;
2122 		err2 = ext4_mark_inode_dirty(handle, inode);
2123 		up_write(&EXT4_I(inode)->i_data_sem);
2124 		if (err2)
2125 			ext4_error(inode->i_sb,
2126 				   "Failed to mark inode %lu dirty",
2127 				   inode->i_ino);
2128 		if (!err)
2129 			err = err2;
2130 	}
2131 	return err;
2132 }
2133 
2134 /*
2135  * Calculate the total number of credits to reserve for one writepages
2136  * iteration. This is called from ext4_writepages(). We map an extent of
2137  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2138  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2139  * bpp - 1 blocks in bpp different extents.
2140  */
2141 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2142 {
2143 	int bpp = ext4_journal_blocks_per_page(inode);
2144 
2145 	return ext4_meta_trans_blocks(inode,
2146 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2147 }
2148 
2149 /*
2150  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2151  * 				 and underlying extent to map
2152  *
2153  * @mpd - where to look for pages
2154  *
2155  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2156  * IO immediately. When we find a page which isn't mapped we start accumulating
2157  * extent of buffers underlying these pages that needs mapping (formed by
2158  * either delayed or unwritten buffers). We also lock the pages containing
2159  * these buffers. The extent found is returned in @mpd structure (starting at
2160  * mpd->lblk with length mpd->len blocks).
2161  *
2162  * Note that this function can attach bios to one io_end structure which are
2163  * neither logically nor physically contiguous. Although it may seem as an
2164  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2165  * case as we need to track IO to all buffers underlying a page in one io_end.
2166  */
2167 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2168 {
2169 	struct address_space *mapping = mpd->inode->i_mapping;
2170 	struct pagevec pvec;
2171 	unsigned int nr_pages;
2172 	long left = mpd->wbc->nr_to_write;
2173 	pgoff_t index = mpd->first_page;
2174 	pgoff_t end = mpd->last_page;
2175 	int tag;
2176 	int i, err = 0;
2177 	int blkbits = mpd->inode->i_blkbits;
2178 	ext4_lblk_t lblk;
2179 	struct buffer_head *head;
2180 
2181 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2182 		tag = PAGECACHE_TAG_TOWRITE;
2183 	else
2184 		tag = PAGECACHE_TAG_DIRTY;
2185 
2186 	pagevec_init(&pvec, 0);
2187 	mpd->map.m_len = 0;
2188 	mpd->next_page = index;
2189 	while (index <= end) {
2190 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2191 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2192 		if (nr_pages == 0)
2193 			goto out;
2194 
2195 		for (i = 0; i < nr_pages; i++) {
2196 			struct page *page = pvec.pages[i];
2197 
2198 			/*
2199 			 * At this point, the page may be truncated or
2200 			 * invalidated (changing page->mapping to NULL), or
2201 			 * even swizzled back from swapper_space to tmpfs file
2202 			 * mapping. However, page->index will not change
2203 			 * because we have a reference on the page.
2204 			 */
2205 			if (page->index > end)
2206 				goto out;
2207 
2208 			/*
2209 			 * Accumulated enough dirty pages? This doesn't apply
2210 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2211 			 * keep going because someone may be concurrently
2212 			 * dirtying pages, and we might have synced a lot of
2213 			 * newly appeared dirty pages, but have not synced all
2214 			 * of the old dirty pages.
2215 			 */
2216 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2217 				goto out;
2218 
2219 			/* If we can't merge this page, we are done. */
2220 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2221 				goto out;
2222 
2223 			lock_page(page);
2224 			/*
2225 			 * If the page is no longer dirty, or its mapping no
2226 			 * longer corresponds to inode we are writing (which
2227 			 * means it has been truncated or invalidated), or the
2228 			 * page is already under writeback and we are not doing
2229 			 * a data integrity writeback, skip the page
2230 			 */
2231 			if (!PageDirty(page) ||
2232 			    (PageWriteback(page) &&
2233 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2234 			    unlikely(page->mapping != mapping)) {
2235 				unlock_page(page);
2236 				continue;
2237 			}
2238 
2239 			wait_on_page_writeback(page);
2240 			BUG_ON(PageWriteback(page));
2241 
2242 			if (mpd->map.m_len == 0)
2243 				mpd->first_page = page->index;
2244 			mpd->next_page = page->index + 1;
2245 			/* Add all dirty buffers to mpd */
2246 			lblk = ((ext4_lblk_t)page->index) <<
2247 				(PAGE_CACHE_SHIFT - blkbits);
2248 			head = page_buffers(page);
2249 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2250 			if (err <= 0)
2251 				goto out;
2252 			err = 0;
2253 			left--;
2254 		}
2255 		pagevec_release(&pvec);
2256 		cond_resched();
2257 	}
2258 	return 0;
2259 out:
2260 	pagevec_release(&pvec);
2261 	return err;
2262 }
2263 
2264 static int __writepage(struct page *page, struct writeback_control *wbc,
2265 		       void *data)
2266 {
2267 	struct address_space *mapping = data;
2268 	int ret = ext4_writepage(page, wbc);
2269 	mapping_set_error(mapping, ret);
2270 	return ret;
2271 }
2272 
2273 static int ext4_writepages(struct address_space *mapping,
2274 			   struct writeback_control *wbc)
2275 {
2276 	pgoff_t	writeback_index = 0;
2277 	long nr_to_write = wbc->nr_to_write;
2278 	int range_whole = 0;
2279 	int cycled = 1;
2280 	handle_t *handle = NULL;
2281 	struct mpage_da_data mpd;
2282 	struct inode *inode = mapping->host;
2283 	int needed_blocks, rsv_blocks = 0, ret = 0;
2284 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2285 	bool done;
2286 	struct blk_plug plug;
2287 	bool give_up_on_write = false;
2288 
2289 	trace_ext4_writepages(inode, wbc);
2290 
2291 	/*
2292 	 * No pages to write? This is mainly a kludge to avoid starting
2293 	 * a transaction for special inodes like journal inode on last iput()
2294 	 * because that could violate lock ordering on umount
2295 	 */
2296 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2297 		goto out_writepages;
2298 
2299 	if (ext4_should_journal_data(inode)) {
2300 		struct blk_plug plug;
2301 
2302 		blk_start_plug(&plug);
2303 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2304 		blk_finish_plug(&plug);
2305 		goto out_writepages;
2306 	}
2307 
2308 	/*
2309 	 * If the filesystem has aborted, it is read-only, so return
2310 	 * right away instead of dumping stack traces later on that
2311 	 * will obscure the real source of the problem.  We test
2312 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2313 	 * the latter could be true if the filesystem is mounted
2314 	 * read-only, and in that case, ext4_writepages should
2315 	 * *never* be called, so if that ever happens, we would want
2316 	 * the stack trace.
2317 	 */
2318 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2319 		ret = -EROFS;
2320 		goto out_writepages;
2321 	}
2322 
2323 	if (ext4_should_dioread_nolock(inode)) {
2324 		/*
2325 		 * We may need to convert up to one extent per block in
2326 		 * the page and we may dirty the inode.
2327 		 */
2328 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2329 	}
2330 
2331 	/*
2332 	 * If we have inline data and arrive here, it means that
2333 	 * we will soon create the block for the 1st page, so
2334 	 * we'd better clear the inline data here.
2335 	 */
2336 	if (ext4_has_inline_data(inode)) {
2337 		/* Just inode will be modified... */
2338 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2339 		if (IS_ERR(handle)) {
2340 			ret = PTR_ERR(handle);
2341 			goto out_writepages;
2342 		}
2343 		BUG_ON(ext4_test_inode_state(inode,
2344 				EXT4_STATE_MAY_INLINE_DATA));
2345 		ext4_destroy_inline_data(handle, inode);
2346 		ext4_journal_stop(handle);
2347 	}
2348 
2349 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2350 		range_whole = 1;
2351 
2352 	if (wbc->range_cyclic) {
2353 		writeback_index = mapping->writeback_index;
2354 		if (writeback_index)
2355 			cycled = 0;
2356 		mpd.first_page = writeback_index;
2357 		mpd.last_page = -1;
2358 	} else {
2359 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2360 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2361 	}
2362 
2363 	mpd.inode = inode;
2364 	mpd.wbc = wbc;
2365 	ext4_io_submit_init(&mpd.io_submit, wbc);
2366 retry:
2367 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2368 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2369 	done = false;
2370 	blk_start_plug(&plug);
2371 	while (!done && mpd.first_page <= mpd.last_page) {
2372 		/* For each extent of pages we use new io_end */
2373 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2374 		if (!mpd.io_submit.io_end) {
2375 			ret = -ENOMEM;
2376 			break;
2377 		}
2378 
2379 		/*
2380 		 * We have two constraints: We find one extent to map and we
2381 		 * must always write out whole page (makes a difference when
2382 		 * blocksize < pagesize) so that we don't block on IO when we
2383 		 * try to write out the rest of the page. Journalled mode is
2384 		 * not supported by delalloc.
2385 		 */
2386 		BUG_ON(ext4_should_journal_data(inode));
2387 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2388 
2389 		/* start a new transaction */
2390 		handle = ext4_journal_start_with_reserve(inode,
2391 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2392 		if (IS_ERR(handle)) {
2393 			ret = PTR_ERR(handle);
2394 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2395 			       "%ld pages, ino %lu; err %d", __func__,
2396 				wbc->nr_to_write, inode->i_ino, ret);
2397 			/* Release allocated io_end */
2398 			ext4_put_io_end(mpd.io_submit.io_end);
2399 			break;
2400 		}
2401 
2402 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2403 		ret = mpage_prepare_extent_to_map(&mpd);
2404 		if (!ret) {
2405 			if (mpd.map.m_len)
2406 				ret = mpage_map_and_submit_extent(handle, &mpd,
2407 					&give_up_on_write);
2408 			else {
2409 				/*
2410 				 * We scanned the whole range (or exhausted
2411 				 * nr_to_write), submitted what was mapped and
2412 				 * didn't find anything needing mapping. We are
2413 				 * done.
2414 				 */
2415 				done = true;
2416 			}
2417 		}
2418 		ext4_journal_stop(handle);
2419 		/* Submit prepared bio */
2420 		ext4_io_submit(&mpd.io_submit);
2421 		/* Unlock pages we didn't use */
2422 		mpage_release_unused_pages(&mpd, give_up_on_write);
2423 		/* Drop our io_end reference we got from init */
2424 		ext4_put_io_end(mpd.io_submit.io_end);
2425 
2426 		if (ret == -ENOSPC && sbi->s_journal) {
2427 			/*
2428 			 * Commit the transaction which would
2429 			 * free blocks released in the transaction
2430 			 * and try again
2431 			 */
2432 			jbd2_journal_force_commit_nested(sbi->s_journal);
2433 			ret = 0;
2434 			continue;
2435 		}
2436 		/* Fatal error - ENOMEM, EIO... */
2437 		if (ret)
2438 			break;
2439 	}
2440 	blk_finish_plug(&plug);
2441 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2442 		cycled = 1;
2443 		mpd.last_page = writeback_index - 1;
2444 		mpd.first_page = 0;
2445 		goto retry;
2446 	}
2447 
2448 	/* Update index */
2449 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2450 		/*
2451 		 * Set the writeback_index so that range_cyclic
2452 		 * mode will write it back later
2453 		 */
2454 		mapping->writeback_index = mpd.first_page;
2455 
2456 out_writepages:
2457 	trace_ext4_writepages_result(inode, wbc, ret,
2458 				     nr_to_write - wbc->nr_to_write);
2459 	return ret;
2460 }
2461 
2462 static int ext4_nonda_switch(struct super_block *sb)
2463 {
2464 	s64 free_clusters, dirty_clusters;
2465 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2466 
2467 	/*
2468 	 * switch to non delalloc mode if we are running low
2469 	 * on free block. The free block accounting via percpu
2470 	 * counters can get slightly wrong with percpu_counter_batch getting
2471 	 * accumulated on each CPU without updating global counters
2472 	 * Delalloc need an accurate free block accounting. So switch
2473 	 * to non delalloc when we are near to error range.
2474 	 */
2475 	free_clusters =
2476 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2477 	dirty_clusters =
2478 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2479 	/*
2480 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2481 	 */
2482 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2483 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2484 
2485 	if (2 * free_clusters < 3 * dirty_clusters ||
2486 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2487 		/*
2488 		 * free block count is less than 150% of dirty blocks
2489 		 * or free blocks is less than watermark
2490 		 */
2491 		return 1;
2492 	}
2493 	return 0;
2494 }
2495 
2496 /* We always reserve for an inode update; the superblock could be there too */
2497 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2498 {
2499 	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2500 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2501 		return 1;
2502 
2503 	if (pos + len <= 0x7fffffffULL)
2504 		return 1;
2505 
2506 	/* We might need to update the superblock to set LARGE_FILE */
2507 	return 2;
2508 }
2509 
2510 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2511 			       loff_t pos, unsigned len, unsigned flags,
2512 			       struct page **pagep, void **fsdata)
2513 {
2514 	int ret, retries = 0;
2515 	struct page *page;
2516 	pgoff_t index;
2517 	struct inode *inode = mapping->host;
2518 	handle_t *handle;
2519 
2520 	index = pos >> PAGE_CACHE_SHIFT;
2521 
2522 	if (ext4_nonda_switch(inode->i_sb)) {
2523 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2524 		return ext4_write_begin(file, mapping, pos,
2525 					len, flags, pagep, fsdata);
2526 	}
2527 	*fsdata = (void *)0;
2528 	trace_ext4_da_write_begin(inode, pos, len, flags);
2529 
2530 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2531 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2532 						      pos, len, flags,
2533 						      pagep, fsdata);
2534 		if (ret < 0)
2535 			return ret;
2536 		if (ret == 1)
2537 			return 0;
2538 	}
2539 
2540 	/*
2541 	 * grab_cache_page_write_begin() can take a long time if the
2542 	 * system is thrashing due to memory pressure, or if the page
2543 	 * is being written back.  So grab it first before we start
2544 	 * the transaction handle.  This also allows us to allocate
2545 	 * the page (if needed) without using GFP_NOFS.
2546 	 */
2547 retry_grab:
2548 	page = grab_cache_page_write_begin(mapping, index, flags);
2549 	if (!page)
2550 		return -ENOMEM;
2551 	unlock_page(page);
2552 
2553 	/*
2554 	 * With delayed allocation, we don't log the i_disksize update
2555 	 * if there is delayed block allocation. But we still need
2556 	 * to journalling the i_disksize update if writes to the end
2557 	 * of file which has an already mapped buffer.
2558 	 */
2559 retry_journal:
2560 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2561 				ext4_da_write_credits(inode, pos, len));
2562 	if (IS_ERR(handle)) {
2563 		page_cache_release(page);
2564 		return PTR_ERR(handle);
2565 	}
2566 
2567 	lock_page(page);
2568 	if (page->mapping != mapping) {
2569 		/* The page got truncated from under us */
2570 		unlock_page(page);
2571 		page_cache_release(page);
2572 		ext4_journal_stop(handle);
2573 		goto retry_grab;
2574 	}
2575 	/* In case writeback began while the page was unlocked */
2576 	wait_for_stable_page(page);
2577 
2578 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2579 	if (ret < 0) {
2580 		unlock_page(page);
2581 		ext4_journal_stop(handle);
2582 		/*
2583 		 * block_write_begin may have instantiated a few blocks
2584 		 * outside i_size.  Trim these off again. Don't need
2585 		 * i_size_read because we hold i_mutex.
2586 		 */
2587 		if (pos + len > inode->i_size)
2588 			ext4_truncate_failed_write(inode);
2589 
2590 		if (ret == -ENOSPC &&
2591 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2592 			goto retry_journal;
2593 
2594 		page_cache_release(page);
2595 		return ret;
2596 	}
2597 
2598 	*pagep = page;
2599 	return ret;
2600 }
2601 
2602 /*
2603  * Check if we should update i_disksize
2604  * when write to the end of file but not require block allocation
2605  */
2606 static int ext4_da_should_update_i_disksize(struct page *page,
2607 					    unsigned long offset)
2608 {
2609 	struct buffer_head *bh;
2610 	struct inode *inode = page->mapping->host;
2611 	unsigned int idx;
2612 	int i;
2613 
2614 	bh = page_buffers(page);
2615 	idx = offset >> inode->i_blkbits;
2616 
2617 	for (i = 0; i < idx; i++)
2618 		bh = bh->b_this_page;
2619 
2620 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2621 		return 0;
2622 	return 1;
2623 }
2624 
2625 static int ext4_da_write_end(struct file *file,
2626 			     struct address_space *mapping,
2627 			     loff_t pos, unsigned len, unsigned copied,
2628 			     struct page *page, void *fsdata)
2629 {
2630 	struct inode *inode = mapping->host;
2631 	int ret = 0, ret2;
2632 	handle_t *handle = ext4_journal_current_handle();
2633 	loff_t new_i_size;
2634 	unsigned long start, end;
2635 	int write_mode = (int)(unsigned long)fsdata;
2636 
2637 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2638 		return ext4_write_end(file, mapping, pos,
2639 				      len, copied, page, fsdata);
2640 
2641 	trace_ext4_da_write_end(inode, pos, len, copied);
2642 	start = pos & (PAGE_CACHE_SIZE - 1);
2643 	end = start + copied - 1;
2644 
2645 	/*
2646 	 * generic_write_end() will run mark_inode_dirty() if i_size
2647 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2648 	 * into that.
2649 	 */
2650 	new_i_size = pos + copied;
2651 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2652 		if (ext4_has_inline_data(inode) ||
2653 		    ext4_da_should_update_i_disksize(page, end)) {
2654 			ext4_update_i_disksize(inode, new_i_size);
2655 			/* We need to mark inode dirty even if
2656 			 * new_i_size is less that inode->i_size
2657 			 * bu greater than i_disksize.(hint delalloc)
2658 			 */
2659 			ext4_mark_inode_dirty(handle, inode);
2660 		}
2661 	}
2662 
2663 	if (write_mode != CONVERT_INLINE_DATA &&
2664 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2665 	    ext4_has_inline_data(inode))
2666 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2667 						     page);
2668 	else
2669 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2670 							page, fsdata);
2671 
2672 	copied = ret2;
2673 	if (ret2 < 0)
2674 		ret = ret2;
2675 	ret2 = ext4_journal_stop(handle);
2676 	if (!ret)
2677 		ret = ret2;
2678 
2679 	return ret ? ret : copied;
2680 }
2681 
2682 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2683 				   unsigned int length)
2684 {
2685 	/*
2686 	 * Drop reserved blocks
2687 	 */
2688 	BUG_ON(!PageLocked(page));
2689 	if (!page_has_buffers(page))
2690 		goto out;
2691 
2692 	ext4_da_page_release_reservation(page, offset, length);
2693 
2694 out:
2695 	ext4_invalidatepage(page, offset, length);
2696 
2697 	return;
2698 }
2699 
2700 /*
2701  * Force all delayed allocation blocks to be allocated for a given inode.
2702  */
2703 int ext4_alloc_da_blocks(struct inode *inode)
2704 {
2705 	trace_ext4_alloc_da_blocks(inode);
2706 
2707 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2708 		return 0;
2709 
2710 	/*
2711 	 * We do something simple for now.  The filemap_flush() will
2712 	 * also start triggering a write of the data blocks, which is
2713 	 * not strictly speaking necessary (and for users of
2714 	 * laptop_mode, not even desirable).  However, to do otherwise
2715 	 * would require replicating code paths in:
2716 	 *
2717 	 * ext4_writepages() ->
2718 	 *    write_cache_pages() ---> (via passed in callback function)
2719 	 *        __mpage_da_writepage() -->
2720 	 *           mpage_add_bh_to_extent()
2721 	 *           mpage_da_map_blocks()
2722 	 *
2723 	 * The problem is that write_cache_pages(), located in
2724 	 * mm/page-writeback.c, marks pages clean in preparation for
2725 	 * doing I/O, which is not desirable if we're not planning on
2726 	 * doing I/O at all.
2727 	 *
2728 	 * We could call write_cache_pages(), and then redirty all of
2729 	 * the pages by calling redirty_page_for_writepage() but that
2730 	 * would be ugly in the extreme.  So instead we would need to
2731 	 * replicate parts of the code in the above functions,
2732 	 * simplifying them because we wouldn't actually intend to
2733 	 * write out the pages, but rather only collect contiguous
2734 	 * logical block extents, call the multi-block allocator, and
2735 	 * then update the buffer heads with the block allocations.
2736 	 *
2737 	 * For now, though, we'll cheat by calling filemap_flush(),
2738 	 * which will map the blocks, and start the I/O, but not
2739 	 * actually wait for the I/O to complete.
2740 	 */
2741 	return filemap_flush(inode->i_mapping);
2742 }
2743 
2744 /*
2745  * bmap() is special.  It gets used by applications such as lilo and by
2746  * the swapper to find the on-disk block of a specific piece of data.
2747  *
2748  * Naturally, this is dangerous if the block concerned is still in the
2749  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2750  * filesystem and enables swap, then they may get a nasty shock when the
2751  * data getting swapped to that swapfile suddenly gets overwritten by
2752  * the original zero's written out previously to the journal and
2753  * awaiting writeback in the kernel's buffer cache.
2754  *
2755  * So, if we see any bmap calls here on a modified, data-journaled file,
2756  * take extra steps to flush any blocks which might be in the cache.
2757  */
2758 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2759 {
2760 	struct inode *inode = mapping->host;
2761 	journal_t *journal;
2762 	int err;
2763 
2764 	/*
2765 	 * We can get here for an inline file via the FIBMAP ioctl
2766 	 */
2767 	if (ext4_has_inline_data(inode))
2768 		return 0;
2769 
2770 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2771 			test_opt(inode->i_sb, DELALLOC)) {
2772 		/*
2773 		 * With delalloc we want to sync the file
2774 		 * so that we can make sure we allocate
2775 		 * blocks for file
2776 		 */
2777 		filemap_write_and_wait(mapping);
2778 	}
2779 
2780 	if (EXT4_JOURNAL(inode) &&
2781 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2782 		/*
2783 		 * This is a REALLY heavyweight approach, but the use of
2784 		 * bmap on dirty files is expected to be extremely rare:
2785 		 * only if we run lilo or swapon on a freshly made file
2786 		 * do we expect this to happen.
2787 		 *
2788 		 * (bmap requires CAP_SYS_RAWIO so this does not
2789 		 * represent an unprivileged user DOS attack --- we'd be
2790 		 * in trouble if mortal users could trigger this path at
2791 		 * will.)
2792 		 *
2793 		 * NB. EXT4_STATE_JDATA is not set on files other than
2794 		 * regular files.  If somebody wants to bmap a directory
2795 		 * or symlink and gets confused because the buffer
2796 		 * hasn't yet been flushed to disk, they deserve
2797 		 * everything they get.
2798 		 */
2799 
2800 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2801 		journal = EXT4_JOURNAL(inode);
2802 		jbd2_journal_lock_updates(journal);
2803 		err = jbd2_journal_flush(journal);
2804 		jbd2_journal_unlock_updates(journal);
2805 
2806 		if (err)
2807 			return 0;
2808 	}
2809 
2810 	return generic_block_bmap(mapping, block, ext4_get_block);
2811 }
2812 
2813 static int ext4_readpage(struct file *file, struct page *page)
2814 {
2815 	int ret = -EAGAIN;
2816 	struct inode *inode = page->mapping->host;
2817 
2818 	trace_ext4_readpage(page);
2819 
2820 	if (ext4_has_inline_data(inode))
2821 		ret = ext4_readpage_inline(inode, page);
2822 
2823 	if (ret == -EAGAIN)
2824 		return mpage_readpage(page, ext4_get_block);
2825 
2826 	return ret;
2827 }
2828 
2829 static int
2830 ext4_readpages(struct file *file, struct address_space *mapping,
2831 		struct list_head *pages, unsigned nr_pages)
2832 {
2833 	struct inode *inode = mapping->host;
2834 
2835 	/* If the file has inline data, no need to do readpages. */
2836 	if (ext4_has_inline_data(inode))
2837 		return 0;
2838 
2839 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2840 }
2841 
2842 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2843 				unsigned int length)
2844 {
2845 	trace_ext4_invalidatepage(page, offset, length);
2846 
2847 	/* No journalling happens on data buffers when this function is used */
2848 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2849 
2850 	block_invalidatepage(page, offset, length);
2851 }
2852 
2853 static int __ext4_journalled_invalidatepage(struct page *page,
2854 					    unsigned int offset,
2855 					    unsigned int length)
2856 {
2857 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2858 
2859 	trace_ext4_journalled_invalidatepage(page, offset, length);
2860 
2861 	/*
2862 	 * If it's a full truncate we just forget about the pending dirtying
2863 	 */
2864 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2865 		ClearPageChecked(page);
2866 
2867 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2868 }
2869 
2870 /* Wrapper for aops... */
2871 static void ext4_journalled_invalidatepage(struct page *page,
2872 					   unsigned int offset,
2873 					   unsigned int length)
2874 {
2875 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2876 }
2877 
2878 static int ext4_releasepage(struct page *page, gfp_t wait)
2879 {
2880 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2881 
2882 	trace_ext4_releasepage(page);
2883 
2884 	/* Page has dirty journalled data -> cannot release */
2885 	if (PageChecked(page))
2886 		return 0;
2887 	if (journal)
2888 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2889 	else
2890 		return try_to_free_buffers(page);
2891 }
2892 
2893 /*
2894  * ext4_get_block used when preparing for a DIO write or buffer write.
2895  * We allocate an uinitialized extent if blocks haven't been allocated.
2896  * The extent will be converted to initialized after the IO is complete.
2897  */
2898 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2899 		   struct buffer_head *bh_result, int create)
2900 {
2901 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2902 		   inode->i_ino, create);
2903 	return _ext4_get_block(inode, iblock, bh_result,
2904 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2905 }
2906 
2907 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2908 		   struct buffer_head *bh_result, int create)
2909 {
2910 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2911 		   inode->i_ino, create);
2912 	return _ext4_get_block(inode, iblock, bh_result,
2913 			       EXT4_GET_BLOCKS_NO_LOCK);
2914 }
2915 
2916 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2917 			    ssize_t size, void *private)
2918 {
2919         ext4_io_end_t *io_end = iocb->private;
2920 
2921 	/* if not async direct IO just return */
2922 	if (!io_end)
2923 		return;
2924 
2925 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2926 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2927  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2928 		  size);
2929 
2930 	iocb->private = NULL;
2931 	io_end->offset = offset;
2932 	io_end->size = size;
2933 	ext4_put_io_end(io_end);
2934 }
2935 
2936 /*
2937  * For ext4 extent files, ext4 will do direct-io write to holes,
2938  * preallocated extents, and those write extend the file, no need to
2939  * fall back to buffered IO.
2940  *
2941  * For holes, we fallocate those blocks, mark them as unwritten
2942  * If those blocks were preallocated, we mark sure they are split, but
2943  * still keep the range to write as unwritten.
2944  *
2945  * The unwritten extents will be converted to written when DIO is completed.
2946  * For async direct IO, since the IO may still pending when return, we
2947  * set up an end_io call back function, which will do the conversion
2948  * when async direct IO completed.
2949  *
2950  * If the O_DIRECT write will extend the file then add this inode to the
2951  * orphan list.  So recovery will truncate it back to the original size
2952  * if the machine crashes during the write.
2953  *
2954  */
2955 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2956 			      struct iov_iter *iter, loff_t offset)
2957 {
2958 	struct file *file = iocb->ki_filp;
2959 	struct inode *inode = file->f_mapping->host;
2960 	ssize_t ret;
2961 	size_t count = iov_iter_count(iter);
2962 	int overwrite = 0;
2963 	get_block_t *get_block_func = NULL;
2964 	int dio_flags = 0;
2965 	loff_t final_size = offset + count;
2966 	ext4_io_end_t *io_end = NULL;
2967 
2968 	/* Use the old path for reads and writes beyond i_size. */
2969 	if (rw != WRITE || final_size > inode->i_size)
2970 		return ext4_ind_direct_IO(rw, iocb, iter, offset);
2971 
2972 	BUG_ON(iocb->private == NULL);
2973 
2974 	/*
2975 	 * Make all waiters for direct IO properly wait also for extent
2976 	 * conversion. This also disallows race between truncate() and
2977 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2978 	 */
2979 	if (rw == WRITE)
2980 		atomic_inc(&inode->i_dio_count);
2981 
2982 	/* If we do a overwrite dio, i_mutex locking can be released */
2983 	overwrite = *((int *)iocb->private);
2984 
2985 	if (overwrite) {
2986 		down_read(&EXT4_I(inode)->i_data_sem);
2987 		mutex_unlock(&inode->i_mutex);
2988 	}
2989 
2990 	/*
2991 	 * We could direct write to holes and fallocate.
2992 	 *
2993 	 * Allocated blocks to fill the hole are marked as
2994 	 * unwritten to prevent parallel buffered read to expose
2995 	 * the stale data before DIO complete the data IO.
2996 	 *
2997 	 * As to previously fallocated extents, ext4 get_block will
2998 	 * just simply mark the buffer mapped but still keep the
2999 	 * extents unwritten.
3000 	 *
3001 	 * For non AIO case, we will convert those unwritten extents
3002 	 * to written after return back from blockdev_direct_IO.
3003 	 *
3004 	 * For async DIO, the conversion needs to be deferred when the
3005 	 * IO is completed. The ext4 end_io callback function will be
3006 	 * called to take care of the conversion work.  Here for async
3007 	 * case, we allocate an io_end structure to hook to the iocb.
3008 	 */
3009 	iocb->private = NULL;
3010 	ext4_inode_aio_set(inode, NULL);
3011 	if (!is_sync_kiocb(iocb)) {
3012 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3013 		if (!io_end) {
3014 			ret = -ENOMEM;
3015 			goto retake_lock;
3016 		}
3017 		/*
3018 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3019 		 */
3020 		iocb->private = ext4_get_io_end(io_end);
3021 		/*
3022 		 * we save the io structure for current async direct
3023 		 * IO, so that later ext4_map_blocks() could flag the
3024 		 * io structure whether there is a unwritten extents
3025 		 * needs to be converted when IO is completed.
3026 		 */
3027 		ext4_inode_aio_set(inode, io_end);
3028 	}
3029 
3030 	if (overwrite) {
3031 		get_block_func = ext4_get_block_write_nolock;
3032 	} else {
3033 		get_block_func = ext4_get_block_write;
3034 		dio_flags = DIO_LOCKING;
3035 	}
3036 	ret = __blockdev_direct_IO(rw, iocb, inode,
3037 				   inode->i_sb->s_bdev, iter,
3038 				   offset,
3039 				   get_block_func,
3040 				   ext4_end_io_dio,
3041 				   NULL,
3042 				   dio_flags);
3043 
3044 	/*
3045 	 * Put our reference to io_end. This can free the io_end structure e.g.
3046 	 * in sync IO case or in case of error. It can even perform extent
3047 	 * conversion if all bios we submitted finished before we got here.
3048 	 * Note that in that case iocb->private can be already set to NULL
3049 	 * here.
3050 	 */
3051 	if (io_end) {
3052 		ext4_inode_aio_set(inode, NULL);
3053 		ext4_put_io_end(io_end);
3054 		/*
3055 		 * When no IO was submitted ext4_end_io_dio() was not
3056 		 * called so we have to put iocb's reference.
3057 		 */
3058 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3059 			WARN_ON(iocb->private != io_end);
3060 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3061 			ext4_put_io_end(io_end);
3062 			iocb->private = NULL;
3063 		}
3064 	}
3065 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3066 						EXT4_STATE_DIO_UNWRITTEN)) {
3067 		int err;
3068 		/*
3069 		 * for non AIO case, since the IO is already
3070 		 * completed, we could do the conversion right here
3071 		 */
3072 		err = ext4_convert_unwritten_extents(NULL, inode,
3073 						     offset, ret);
3074 		if (err < 0)
3075 			ret = err;
3076 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3077 	}
3078 
3079 retake_lock:
3080 	if (rw == WRITE)
3081 		inode_dio_done(inode);
3082 	/* take i_mutex locking again if we do a ovewrite dio */
3083 	if (overwrite) {
3084 		up_read(&EXT4_I(inode)->i_data_sem);
3085 		mutex_lock(&inode->i_mutex);
3086 	}
3087 
3088 	return ret;
3089 }
3090 
3091 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3092 			      struct iov_iter *iter, loff_t offset)
3093 {
3094 	struct file *file = iocb->ki_filp;
3095 	struct inode *inode = file->f_mapping->host;
3096 	size_t count = iov_iter_count(iter);
3097 	ssize_t ret;
3098 
3099 	/*
3100 	 * If we are doing data journalling we don't support O_DIRECT
3101 	 */
3102 	if (ext4_should_journal_data(inode))
3103 		return 0;
3104 
3105 	/* Let buffer I/O handle the inline data case. */
3106 	if (ext4_has_inline_data(inode))
3107 		return 0;
3108 
3109 	trace_ext4_direct_IO_enter(inode, offset, count, rw);
3110 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3111 		ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3112 	else
3113 		ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3114 	trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3115 	return ret;
3116 }
3117 
3118 /*
3119  * Pages can be marked dirty completely asynchronously from ext4's journalling
3120  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3121  * much here because ->set_page_dirty is called under VFS locks.  The page is
3122  * not necessarily locked.
3123  *
3124  * We cannot just dirty the page and leave attached buffers clean, because the
3125  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3126  * or jbddirty because all the journalling code will explode.
3127  *
3128  * So what we do is to mark the page "pending dirty" and next time writepage
3129  * is called, propagate that into the buffers appropriately.
3130  */
3131 static int ext4_journalled_set_page_dirty(struct page *page)
3132 {
3133 	SetPageChecked(page);
3134 	return __set_page_dirty_nobuffers(page);
3135 }
3136 
3137 static const struct address_space_operations ext4_aops = {
3138 	.readpage		= ext4_readpage,
3139 	.readpages		= ext4_readpages,
3140 	.writepage		= ext4_writepage,
3141 	.writepages		= ext4_writepages,
3142 	.write_begin		= ext4_write_begin,
3143 	.write_end		= ext4_write_end,
3144 	.bmap			= ext4_bmap,
3145 	.invalidatepage		= ext4_invalidatepage,
3146 	.releasepage		= ext4_releasepage,
3147 	.direct_IO		= ext4_direct_IO,
3148 	.migratepage		= buffer_migrate_page,
3149 	.is_partially_uptodate  = block_is_partially_uptodate,
3150 	.error_remove_page	= generic_error_remove_page,
3151 };
3152 
3153 static const struct address_space_operations ext4_journalled_aops = {
3154 	.readpage		= ext4_readpage,
3155 	.readpages		= ext4_readpages,
3156 	.writepage		= ext4_writepage,
3157 	.writepages		= ext4_writepages,
3158 	.write_begin		= ext4_write_begin,
3159 	.write_end		= ext4_journalled_write_end,
3160 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3161 	.bmap			= ext4_bmap,
3162 	.invalidatepage		= ext4_journalled_invalidatepage,
3163 	.releasepage		= ext4_releasepage,
3164 	.direct_IO		= ext4_direct_IO,
3165 	.is_partially_uptodate  = block_is_partially_uptodate,
3166 	.error_remove_page	= generic_error_remove_page,
3167 };
3168 
3169 static const struct address_space_operations ext4_da_aops = {
3170 	.readpage		= ext4_readpage,
3171 	.readpages		= ext4_readpages,
3172 	.writepage		= ext4_writepage,
3173 	.writepages		= ext4_writepages,
3174 	.write_begin		= ext4_da_write_begin,
3175 	.write_end		= ext4_da_write_end,
3176 	.bmap			= ext4_bmap,
3177 	.invalidatepage		= ext4_da_invalidatepage,
3178 	.releasepage		= ext4_releasepage,
3179 	.direct_IO		= ext4_direct_IO,
3180 	.migratepage		= buffer_migrate_page,
3181 	.is_partially_uptodate  = block_is_partially_uptodate,
3182 	.error_remove_page	= generic_error_remove_page,
3183 };
3184 
3185 void ext4_set_aops(struct inode *inode)
3186 {
3187 	switch (ext4_inode_journal_mode(inode)) {
3188 	case EXT4_INODE_ORDERED_DATA_MODE:
3189 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3190 		break;
3191 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3192 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3193 		break;
3194 	case EXT4_INODE_JOURNAL_DATA_MODE:
3195 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3196 		return;
3197 	default:
3198 		BUG();
3199 	}
3200 	if (test_opt(inode->i_sb, DELALLOC))
3201 		inode->i_mapping->a_ops = &ext4_da_aops;
3202 	else
3203 		inode->i_mapping->a_ops = &ext4_aops;
3204 }
3205 
3206 /*
3207  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3208  * starting from file offset 'from'.  The range to be zero'd must
3209  * be contained with in one block.  If the specified range exceeds
3210  * the end of the block it will be shortened to end of the block
3211  * that cooresponds to 'from'
3212  */
3213 static int ext4_block_zero_page_range(handle_t *handle,
3214 		struct address_space *mapping, loff_t from, loff_t length)
3215 {
3216 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3217 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3218 	unsigned blocksize, max, pos;
3219 	ext4_lblk_t iblock;
3220 	struct inode *inode = mapping->host;
3221 	struct buffer_head *bh;
3222 	struct page *page;
3223 	int err = 0;
3224 
3225 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3226 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3227 	if (!page)
3228 		return -ENOMEM;
3229 
3230 	blocksize = inode->i_sb->s_blocksize;
3231 	max = blocksize - (offset & (blocksize - 1));
3232 
3233 	/*
3234 	 * correct length if it does not fall between
3235 	 * 'from' and the end of the block
3236 	 */
3237 	if (length > max || length < 0)
3238 		length = max;
3239 
3240 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3241 
3242 	if (!page_has_buffers(page))
3243 		create_empty_buffers(page, blocksize, 0);
3244 
3245 	/* Find the buffer that contains "offset" */
3246 	bh = page_buffers(page);
3247 	pos = blocksize;
3248 	while (offset >= pos) {
3249 		bh = bh->b_this_page;
3250 		iblock++;
3251 		pos += blocksize;
3252 	}
3253 	if (buffer_freed(bh)) {
3254 		BUFFER_TRACE(bh, "freed: skip");
3255 		goto unlock;
3256 	}
3257 	if (!buffer_mapped(bh)) {
3258 		BUFFER_TRACE(bh, "unmapped");
3259 		ext4_get_block(inode, iblock, bh, 0);
3260 		/* unmapped? It's a hole - nothing to do */
3261 		if (!buffer_mapped(bh)) {
3262 			BUFFER_TRACE(bh, "still unmapped");
3263 			goto unlock;
3264 		}
3265 	}
3266 
3267 	/* Ok, it's mapped. Make sure it's up-to-date */
3268 	if (PageUptodate(page))
3269 		set_buffer_uptodate(bh);
3270 
3271 	if (!buffer_uptodate(bh)) {
3272 		err = -EIO;
3273 		ll_rw_block(READ, 1, &bh);
3274 		wait_on_buffer(bh);
3275 		/* Uhhuh. Read error. Complain and punt. */
3276 		if (!buffer_uptodate(bh))
3277 			goto unlock;
3278 	}
3279 	if (ext4_should_journal_data(inode)) {
3280 		BUFFER_TRACE(bh, "get write access");
3281 		err = ext4_journal_get_write_access(handle, bh);
3282 		if (err)
3283 			goto unlock;
3284 	}
3285 	zero_user(page, offset, length);
3286 	BUFFER_TRACE(bh, "zeroed end of block");
3287 
3288 	if (ext4_should_journal_data(inode)) {
3289 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3290 	} else {
3291 		err = 0;
3292 		mark_buffer_dirty(bh);
3293 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3294 			err = ext4_jbd2_file_inode(handle, inode);
3295 	}
3296 
3297 unlock:
3298 	unlock_page(page);
3299 	page_cache_release(page);
3300 	return err;
3301 }
3302 
3303 /*
3304  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3305  * up to the end of the block which corresponds to `from'.
3306  * This required during truncate. We need to physically zero the tail end
3307  * of that block so it doesn't yield old data if the file is later grown.
3308  */
3309 static int ext4_block_truncate_page(handle_t *handle,
3310 		struct address_space *mapping, loff_t from)
3311 {
3312 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3313 	unsigned length;
3314 	unsigned blocksize;
3315 	struct inode *inode = mapping->host;
3316 
3317 	blocksize = inode->i_sb->s_blocksize;
3318 	length = blocksize - (offset & (blocksize - 1));
3319 
3320 	return ext4_block_zero_page_range(handle, mapping, from, length);
3321 }
3322 
3323 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3324 			     loff_t lstart, loff_t length)
3325 {
3326 	struct super_block *sb = inode->i_sb;
3327 	struct address_space *mapping = inode->i_mapping;
3328 	unsigned partial_start, partial_end;
3329 	ext4_fsblk_t start, end;
3330 	loff_t byte_end = (lstart + length - 1);
3331 	int err = 0;
3332 
3333 	partial_start = lstart & (sb->s_blocksize - 1);
3334 	partial_end = byte_end & (sb->s_blocksize - 1);
3335 
3336 	start = lstart >> sb->s_blocksize_bits;
3337 	end = byte_end >> sb->s_blocksize_bits;
3338 
3339 	/* Handle partial zero within the single block */
3340 	if (start == end &&
3341 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3342 		err = ext4_block_zero_page_range(handle, mapping,
3343 						 lstart, length);
3344 		return err;
3345 	}
3346 	/* Handle partial zero out on the start of the range */
3347 	if (partial_start) {
3348 		err = ext4_block_zero_page_range(handle, mapping,
3349 						 lstart, sb->s_blocksize);
3350 		if (err)
3351 			return err;
3352 	}
3353 	/* Handle partial zero out on the end of the range */
3354 	if (partial_end != sb->s_blocksize - 1)
3355 		err = ext4_block_zero_page_range(handle, mapping,
3356 						 byte_end - partial_end,
3357 						 partial_end + 1);
3358 	return err;
3359 }
3360 
3361 int ext4_can_truncate(struct inode *inode)
3362 {
3363 	if (S_ISREG(inode->i_mode))
3364 		return 1;
3365 	if (S_ISDIR(inode->i_mode))
3366 		return 1;
3367 	if (S_ISLNK(inode->i_mode))
3368 		return !ext4_inode_is_fast_symlink(inode);
3369 	return 0;
3370 }
3371 
3372 /*
3373  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3374  * associated with the given offset and length
3375  *
3376  * @inode:  File inode
3377  * @offset: The offset where the hole will begin
3378  * @len:    The length of the hole
3379  *
3380  * Returns: 0 on success or negative on failure
3381  */
3382 
3383 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3384 {
3385 	struct super_block *sb = inode->i_sb;
3386 	ext4_lblk_t first_block, stop_block;
3387 	struct address_space *mapping = inode->i_mapping;
3388 	loff_t first_block_offset, last_block_offset;
3389 	handle_t *handle;
3390 	unsigned int credits;
3391 	int ret = 0;
3392 
3393 	if (!S_ISREG(inode->i_mode))
3394 		return -EOPNOTSUPP;
3395 
3396 	trace_ext4_punch_hole(inode, offset, length, 0);
3397 
3398 	/*
3399 	 * Write out all dirty pages to avoid race conditions
3400 	 * Then release them.
3401 	 */
3402 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3403 		ret = filemap_write_and_wait_range(mapping, offset,
3404 						   offset + length - 1);
3405 		if (ret)
3406 			return ret;
3407 	}
3408 
3409 	mutex_lock(&inode->i_mutex);
3410 
3411 	/* No need to punch hole beyond i_size */
3412 	if (offset >= inode->i_size)
3413 		goto out_mutex;
3414 
3415 	/*
3416 	 * If the hole extends beyond i_size, set the hole
3417 	 * to end after the page that contains i_size
3418 	 */
3419 	if (offset + length > inode->i_size) {
3420 		length = inode->i_size +
3421 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3422 		   offset;
3423 	}
3424 
3425 	if (offset & (sb->s_blocksize - 1) ||
3426 	    (offset + length) & (sb->s_blocksize - 1)) {
3427 		/*
3428 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3429 		 * partial block
3430 		 */
3431 		ret = ext4_inode_attach_jinode(inode);
3432 		if (ret < 0)
3433 			goto out_mutex;
3434 
3435 	}
3436 
3437 	first_block_offset = round_up(offset, sb->s_blocksize);
3438 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3439 
3440 	/* Now release the pages and zero block aligned part of pages*/
3441 	if (last_block_offset > first_block_offset)
3442 		truncate_pagecache_range(inode, first_block_offset,
3443 					 last_block_offset);
3444 
3445 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3446 	ext4_inode_block_unlocked_dio(inode);
3447 	inode_dio_wait(inode);
3448 
3449 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3450 		credits = ext4_writepage_trans_blocks(inode);
3451 	else
3452 		credits = ext4_blocks_for_truncate(inode);
3453 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3454 	if (IS_ERR(handle)) {
3455 		ret = PTR_ERR(handle);
3456 		ext4_std_error(sb, ret);
3457 		goto out_dio;
3458 	}
3459 
3460 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3461 				       length);
3462 	if (ret)
3463 		goto out_stop;
3464 
3465 	first_block = (offset + sb->s_blocksize - 1) >>
3466 		EXT4_BLOCK_SIZE_BITS(sb);
3467 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3468 
3469 	/* If there are no blocks to remove, return now */
3470 	if (first_block >= stop_block)
3471 		goto out_stop;
3472 
3473 	down_write(&EXT4_I(inode)->i_data_sem);
3474 	ext4_discard_preallocations(inode);
3475 
3476 	ret = ext4_es_remove_extent(inode, first_block,
3477 				    stop_block - first_block);
3478 	if (ret) {
3479 		up_write(&EXT4_I(inode)->i_data_sem);
3480 		goto out_stop;
3481 	}
3482 
3483 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3484 		ret = ext4_ext_remove_space(inode, first_block,
3485 					    stop_block - 1);
3486 	else
3487 		ret = ext4_ind_remove_space(handle, inode, first_block,
3488 					    stop_block);
3489 
3490 	up_write(&EXT4_I(inode)->i_data_sem);
3491 	if (IS_SYNC(inode))
3492 		ext4_handle_sync(handle);
3493 
3494 	/* Now release the pages again to reduce race window */
3495 	if (last_block_offset > first_block_offset)
3496 		truncate_pagecache_range(inode, first_block_offset,
3497 					 last_block_offset);
3498 
3499 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3500 	ext4_mark_inode_dirty(handle, inode);
3501 out_stop:
3502 	ext4_journal_stop(handle);
3503 out_dio:
3504 	ext4_inode_resume_unlocked_dio(inode);
3505 out_mutex:
3506 	mutex_unlock(&inode->i_mutex);
3507 	return ret;
3508 }
3509 
3510 int ext4_inode_attach_jinode(struct inode *inode)
3511 {
3512 	struct ext4_inode_info *ei = EXT4_I(inode);
3513 	struct jbd2_inode *jinode;
3514 
3515 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3516 		return 0;
3517 
3518 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3519 	spin_lock(&inode->i_lock);
3520 	if (!ei->jinode) {
3521 		if (!jinode) {
3522 			spin_unlock(&inode->i_lock);
3523 			return -ENOMEM;
3524 		}
3525 		ei->jinode = jinode;
3526 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3527 		jinode = NULL;
3528 	}
3529 	spin_unlock(&inode->i_lock);
3530 	if (unlikely(jinode != NULL))
3531 		jbd2_free_inode(jinode);
3532 	return 0;
3533 }
3534 
3535 /*
3536  * ext4_truncate()
3537  *
3538  * We block out ext4_get_block() block instantiations across the entire
3539  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3540  * simultaneously on behalf of the same inode.
3541  *
3542  * As we work through the truncate and commit bits of it to the journal there
3543  * is one core, guiding principle: the file's tree must always be consistent on
3544  * disk.  We must be able to restart the truncate after a crash.
3545  *
3546  * The file's tree may be transiently inconsistent in memory (although it
3547  * probably isn't), but whenever we close off and commit a journal transaction,
3548  * the contents of (the filesystem + the journal) must be consistent and
3549  * restartable.  It's pretty simple, really: bottom up, right to left (although
3550  * left-to-right works OK too).
3551  *
3552  * Note that at recovery time, journal replay occurs *before* the restart of
3553  * truncate against the orphan inode list.
3554  *
3555  * The committed inode has the new, desired i_size (which is the same as
3556  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3557  * that this inode's truncate did not complete and it will again call
3558  * ext4_truncate() to have another go.  So there will be instantiated blocks
3559  * to the right of the truncation point in a crashed ext4 filesystem.  But
3560  * that's fine - as long as they are linked from the inode, the post-crash
3561  * ext4_truncate() run will find them and release them.
3562  */
3563 void ext4_truncate(struct inode *inode)
3564 {
3565 	struct ext4_inode_info *ei = EXT4_I(inode);
3566 	unsigned int credits;
3567 	handle_t *handle;
3568 	struct address_space *mapping = inode->i_mapping;
3569 
3570 	/*
3571 	 * There is a possibility that we're either freeing the inode
3572 	 * or it's a completely new inode. In those cases we might not
3573 	 * have i_mutex locked because it's not necessary.
3574 	 */
3575 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3576 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3577 	trace_ext4_truncate_enter(inode);
3578 
3579 	if (!ext4_can_truncate(inode))
3580 		return;
3581 
3582 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3583 
3584 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3585 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3586 
3587 	if (ext4_has_inline_data(inode)) {
3588 		int has_inline = 1;
3589 
3590 		ext4_inline_data_truncate(inode, &has_inline);
3591 		if (has_inline)
3592 			return;
3593 	}
3594 
3595 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3596 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3597 		if (ext4_inode_attach_jinode(inode) < 0)
3598 			return;
3599 	}
3600 
3601 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3602 		credits = ext4_writepage_trans_blocks(inode);
3603 	else
3604 		credits = ext4_blocks_for_truncate(inode);
3605 
3606 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3607 	if (IS_ERR(handle)) {
3608 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3609 		return;
3610 	}
3611 
3612 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3613 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3614 
3615 	/*
3616 	 * We add the inode to the orphan list, so that if this
3617 	 * truncate spans multiple transactions, and we crash, we will
3618 	 * resume the truncate when the filesystem recovers.  It also
3619 	 * marks the inode dirty, to catch the new size.
3620 	 *
3621 	 * Implication: the file must always be in a sane, consistent
3622 	 * truncatable state while each transaction commits.
3623 	 */
3624 	if (ext4_orphan_add(handle, inode))
3625 		goto out_stop;
3626 
3627 	down_write(&EXT4_I(inode)->i_data_sem);
3628 
3629 	ext4_discard_preallocations(inode);
3630 
3631 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3632 		ext4_ext_truncate(handle, inode);
3633 	else
3634 		ext4_ind_truncate(handle, inode);
3635 
3636 	up_write(&ei->i_data_sem);
3637 
3638 	if (IS_SYNC(inode))
3639 		ext4_handle_sync(handle);
3640 
3641 out_stop:
3642 	/*
3643 	 * If this was a simple ftruncate() and the file will remain alive,
3644 	 * then we need to clear up the orphan record which we created above.
3645 	 * However, if this was a real unlink then we were called by
3646 	 * ext4_delete_inode(), and we allow that function to clean up the
3647 	 * orphan info for us.
3648 	 */
3649 	if (inode->i_nlink)
3650 		ext4_orphan_del(handle, inode);
3651 
3652 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3653 	ext4_mark_inode_dirty(handle, inode);
3654 	ext4_journal_stop(handle);
3655 
3656 	trace_ext4_truncate_exit(inode);
3657 }
3658 
3659 /*
3660  * ext4_get_inode_loc returns with an extra refcount against the inode's
3661  * underlying buffer_head on success. If 'in_mem' is true, we have all
3662  * data in memory that is needed to recreate the on-disk version of this
3663  * inode.
3664  */
3665 static int __ext4_get_inode_loc(struct inode *inode,
3666 				struct ext4_iloc *iloc, int in_mem)
3667 {
3668 	struct ext4_group_desc	*gdp;
3669 	struct buffer_head	*bh;
3670 	struct super_block	*sb = inode->i_sb;
3671 	ext4_fsblk_t		block;
3672 	int			inodes_per_block, inode_offset;
3673 
3674 	iloc->bh = NULL;
3675 	if (!ext4_valid_inum(sb, inode->i_ino))
3676 		return -EIO;
3677 
3678 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3679 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3680 	if (!gdp)
3681 		return -EIO;
3682 
3683 	/*
3684 	 * Figure out the offset within the block group inode table
3685 	 */
3686 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3687 	inode_offset = ((inode->i_ino - 1) %
3688 			EXT4_INODES_PER_GROUP(sb));
3689 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3690 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3691 
3692 	bh = sb_getblk(sb, block);
3693 	if (unlikely(!bh))
3694 		return -ENOMEM;
3695 	if (!buffer_uptodate(bh)) {
3696 		lock_buffer(bh);
3697 
3698 		/*
3699 		 * If the buffer has the write error flag, we have failed
3700 		 * to write out another inode in the same block.  In this
3701 		 * case, we don't have to read the block because we may
3702 		 * read the old inode data successfully.
3703 		 */
3704 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3705 			set_buffer_uptodate(bh);
3706 
3707 		if (buffer_uptodate(bh)) {
3708 			/* someone brought it uptodate while we waited */
3709 			unlock_buffer(bh);
3710 			goto has_buffer;
3711 		}
3712 
3713 		/*
3714 		 * If we have all information of the inode in memory and this
3715 		 * is the only valid inode in the block, we need not read the
3716 		 * block.
3717 		 */
3718 		if (in_mem) {
3719 			struct buffer_head *bitmap_bh;
3720 			int i, start;
3721 
3722 			start = inode_offset & ~(inodes_per_block - 1);
3723 
3724 			/* Is the inode bitmap in cache? */
3725 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3726 			if (unlikely(!bitmap_bh))
3727 				goto make_io;
3728 
3729 			/*
3730 			 * If the inode bitmap isn't in cache then the
3731 			 * optimisation may end up performing two reads instead
3732 			 * of one, so skip it.
3733 			 */
3734 			if (!buffer_uptodate(bitmap_bh)) {
3735 				brelse(bitmap_bh);
3736 				goto make_io;
3737 			}
3738 			for (i = start; i < start + inodes_per_block; i++) {
3739 				if (i == inode_offset)
3740 					continue;
3741 				if (ext4_test_bit(i, bitmap_bh->b_data))
3742 					break;
3743 			}
3744 			brelse(bitmap_bh);
3745 			if (i == start + inodes_per_block) {
3746 				/* all other inodes are free, so skip I/O */
3747 				memset(bh->b_data, 0, bh->b_size);
3748 				set_buffer_uptodate(bh);
3749 				unlock_buffer(bh);
3750 				goto has_buffer;
3751 			}
3752 		}
3753 
3754 make_io:
3755 		/*
3756 		 * If we need to do any I/O, try to pre-readahead extra
3757 		 * blocks from the inode table.
3758 		 */
3759 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3760 			ext4_fsblk_t b, end, table;
3761 			unsigned num;
3762 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3763 
3764 			table = ext4_inode_table(sb, gdp);
3765 			/* s_inode_readahead_blks is always a power of 2 */
3766 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3767 			if (table > b)
3768 				b = table;
3769 			end = b + ra_blks;
3770 			num = EXT4_INODES_PER_GROUP(sb);
3771 			if (ext4_has_group_desc_csum(sb))
3772 				num -= ext4_itable_unused_count(sb, gdp);
3773 			table += num / inodes_per_block;
3774 			if (end > table)
3775 				end = table;
3776 			while (b <= end)
3777 				sb_breadahead(sb, b++);
3778 		}
3779 
3780 		/*
3781 		 * There are other valid inodes in the buffer, this inode
3782 		 * has in-inode xattrs, or we don't have this inode in memory.
3783 		 * Read the block from disk.
3784 		 */
3785 		trace_ext4_load_inode(inode);
3786 		get_bh(bh);
3787 		bh->b_end_io = end_buffer_read_sync;
3788 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3789 		wait_on_buffer(bh);
3790 		if (!buffer_uptodate(bh)) {
3791 			EXT4_ERROR_INODE_BLOCK(inode, block,
3792 					       "unable to read itable block");
3793 			brelse(bh);
3794 			return -EIO;
3795 		}
3796 	}
3797 has_buffer:
3798 	iloc->bh = bh;
3799 	return 0;
3800 }
3801 
3802 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3803 {
3804 	/* We have all inode data except xattrs in memory here. */
3805 	return __ext4_get_inode_loc(inode, iloc,
3806 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3807 }
3808 
3809 void ext4_set_inode_flags(struct inode *inode)
3810 {
3811 	unsigned int flags = EXT4_I(inode)->i_flags;
3812 	unsigned int new_fl = 0;
3813 
3814 	if (flags & EXT4_SYNC_FL)
3815 		new_fl |= S_SYNC;
3816 	if (flags & EXT4_APPEND_FL)
3817 		new_fl |= S_APPEND;
3818 	if (flags & EXT4_IMMUTABLE_FL)
3819 		new_fl |= S_IMMUTABLE;
3820 	if (flags & EXT4_NOATIME_FL)
3821 		new_fl |= S_NOATIME;
3822 	if (flags & EXT4_DIRSYNC_FL)
3823 		new_fl |= S_DIRSYNC;
3824 	inode_set_flags(inode, new_fl,
3825 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3826 }
3827 
3828 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3829 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3830 {
3831 	unsigned int vfs_fl;
3832 	unsigned long old_fl, new_fl;
3833 
3834 	do {
3835 		vfs_fl = ei->vfs_inode.i_flags;
3836 		old_fl = ei->i_flags;
3837 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3838 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3839 				EXT4_DIRSYNC_FL);
3840 		if (vfs_fl & S_SYNC)
3841 			new_fl |= EXT4_SYNC_FL;
3842 		if (vfs_fl & S_APPEND)
3843 			new_fl |= EXT4_APPEND_FL;
3844 		if (vfs_fl & S_IMMUTABLE)
3845 			new_fl |= EXT4_IMMUTABLE_FL;
3846 		if (vfs_fl & S_NOATIME)
3847 			new_fl |= EXT4_NOATIME_FL;
3848 		if (vfs_fl & S_DIRSYNC)
3849 			new_fl |= EXT4_DIRSYNC_FL;
3850 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3851 }
3852 
3853 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3854 				  struct ext4_inode_info *ei)
3855 {
3856 	blkcnt_t i_blocks ;
3857 	struct inode *inode = &(ei->vfs_inode);
3858 	struct super_block *sb = inode->i_sb;
3859 
3860 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3861 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3862 		/* we are using combined 48 bit field */
3863 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3864 					le32_to_cpu(raw_inode->i_blocks_lo);
3865 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3866 			/* i_blocks represent file system block size */
3867 			return i_blocks  << (inode->i_blkbits - 9);
3868 		} else {
3869 			return i_blocks;
3870 		}
3871 	} else {
3872 		return le32_to_cpu(raw_inode->i_blocks_lo);
3873 	}
3874 }
3875 
3876 static inline void ext4_iget_extra_inode(struct inode *inode,
3877 					 struct ext4_inode *raw_inode,
3878 					 struct ext4_inode_info *ei)
3879 {
3880 	__le32 *magic = (void *)raw_inode +
3881 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3882 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3883 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3884 		ext4_find_inline_data_nolock(inode);
3885 	} else
3886 		EXT4_I(inode)->i_inline_off = 0;
3887 }
3888 
3889 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3890 {
3891 	struct ext4_iloc iloc;
3892 	struct ext4_inode *raw_inode;
3893 	struct ext4_inode_info *ei;
3894 	struct inode *inode;
3895 	journal_t *journal = EXT4_SB(sb)->s_journal;
3896 	long ret;
3897 	int block;
3898 	uid_t i_uid;
3899 	gid_t i_gid;
3900 
3901 	inode = iget_locked(sb, ino);
3902 	if (!inode)
3903 		return ERR_PTR(-ENOMEM);
3904 	if (!(inode->i_state & I_NEW))
3905 		return inode;
3906 
3907 	ei = EXT4_I(inode);
3908 	iloc.bh = NULL;
3909 
3910 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3911 	if (ret < 0)
3912 		goto bad_inode;
3913 	raw_inode = ext4_raw_inode(&iloc);
3914 
3915 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3916 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3917 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3918 		    EXT4_INODE_SIZE(inode->i_sb)) {
3919 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3920 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3921 				EXT4_INODE_SIZE(inode->i_sb));
3922 			ret = -EIO;
3923 			goto bad_inode;
3924 		}
3925 	} else
3926 		ei->i_extra_isize = 0;
3927 
3928 	/* Precompute checksum seed for inode metadata */
3929 	if (ext4_has_metadata_csum(sb)) {
3930 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3931 		__u32 csum;
3932 		__le32 inum = cpu_to_le32(inode->i_ino);
3933 		__le32 gen = raw_inode->i_generation;
3934 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3935 				   sizeof(inum));
3936 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3937 					      sizeof(gen));
3938 	}
3939 
3940 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3941 		EXT4_ERROR_INODE(inode, "checksum invalid");
3942 		ret = -EIO;
3943 		goto bad_inode;
3944 	}
3945 
3946 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3947 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3948 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3949 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3950 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3951 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3952 	}
3953 	i_uid_write(inode, i_uid);
3954 	i_gid_write(inode, i_gid);
3955 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3956 
3957 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3958 	ei->i_inline_off = 0;
3959 	ei->i_dir_start_lookup = 0;
3960 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3961 	/* We now have enough fields to check if the inode was active or not.
3962 	 * This is needed because nfsd might try to access dead inodes
3963 	 * the test is that same one that e2fsck uses
3964 	 * NeilBrown 1999oct15
3965 	 */
3966 	if (inode->i_nlink == 0) {
3967 		if ((inode->i_mode == 0 ||
3968 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3969 		    ino != EXT4_BOOT_LOADER_INO) {
3970 			/* this inode is deleted */
3971 			ret = -ESTALE;
3972 			goto bad_inode;
3973 		}
3974 		/* The only unlinked inodes we let through here have
3975 		 * valid i_mode and are being read by the orphan
3976 		 * recovery code: that's fine, we're about to complete
3977 		 * the process of deleting those.
3978 		 * OR it is the EXT4_BOOT_LOADER_INO which is
3979 		 * not initialized on a new filesystem. */
3980 	}
3981 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3982 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3983 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3984 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3985 		ei->i_file_acl |=
3986 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3987 	inode->i_size = ext4_isize(raw_inode);
3988 	ei->i_disksize = inode->i_size;
3989 #ifdef CONFIG_QUOTA
3990 	ei->i_reserved_quota = 0;
3991 #endif
3992 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3993 	ei->i_block_group = iloc.block_group;
3994 	ei->i_last_alloc_group = ~0;
3995 	/*
3996 	 * NOTE! The in-memory inode i_data array is in little-endian order
3997 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3998 	 */
3999 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4000 		ei->i_data[block] = raw_inode->i_block[block];
4001 	INIT_LIST_HEAD(&ei->i_orphan);
4002 
4003 	/*
4004 	 * Set transaction id's of transactions that have to be committed
4005 	 * to finish f[data]sync. We set them to currently running transaction
4006 	 * as we cannot be sure that the inode or some of its metadata isn't
4007 	 * part of the transaction - the inode could have been reclaimed and
4008 	 * now it is reread from disk.
4009 	 */
4010 	if (journal) {
4011 		transaction_t *transaction;
4012 		tid_t tid;
4013 
4014 		read_lock(&journal->j_state_lock);
4015 		if (journal->j_running_transaction)
4016 			transaction = journal->j_running_transaction;
4017 		else
4018 			transaction = journal->j_committing_transaction;
4019 		if (transaction)
4020 			tid = transaction->t_tid;
4021 		else
4022 			tid = journal->j_commit_sequence;
4023 		read_unlock(&journal->j_state_lock);
4024 		ei->i_sync_tid = tid;
4025 		ei->i_datasync_tid = tid;
4026 	}
4027 
4028 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4029 		if (ei->i_extra_isize == 0) {
4030 			/* The extra space is currently unused. Use it. */
4031 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4032 					    EXT4_GOOD_OLD_INODE_SIZE;
4033 		} else {
4034 			ext4_iget_extra_inode(inode, raw_inode, ei);
4035 		}
4036 	}
4037 
4038 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4039 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4040 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4041 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4042 
4043 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4044 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4045 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4046 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4047 				inode->i_version |=
4048 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4049 		}
4050 	}
4051 
4052 	ret = 0;
4053 	if (ei->i_file_acl &&
4054 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4055 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4056 				 ei->i_file_acl);
4057 		ret = -EIO;
4058 		goto bad_inode;
4059 	} else if (!ext4_has_inline_data(inode)) {
4060 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4061 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4062 			    (S_ISLNK(inode->i_mode) &&
4063 			     !ext4_inode_is_fast_symlink(inode))))
4064 				/* Validate extent which is part of inode */
4065 				ret = ext4_ext_check_inode(inode);
4066 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4067 			   (S_ISLNK(inode->i_mode) &&
4068 			    !ext4_inode_is_fast_symlink(inode))) {
4069 			/* Validate block references which are part of inode */
4070 			ret = ext4_ind_check_inode(inode);
4071 		}
4072 	}
4073 	if (ret)
4074 		goto bad_inode;
4075 
4076 	if (S_ISREG(inode->i_mode)) {
4077 		inode->i_op = &ext4_file_inode_operations;
4078 		inode->i_fop = &ext4_file_operations;
4079 		ext4_set_aops(inode);
4080 	} else if (S_ISDIR(inode->i_mode)) {
4081 		inode->i_op = &ext4_dir_inode_operations;
4082 		inode->i_fop = &ext4_dir_operations;
4083 	} else if (S_ISLNK(inode->i_mode)) {
4084 		if (ext4_inode_is_fast_symlink(inode)) {
4085 			inode->i_op = &ext4_fast_symlink_inode_operations;
4086 			nd_terminate_link(ei->i_data, inode->i_size,
4087 				sizeof(ei->i_data) - 1);
4088 		} else {
4089 			inode->i_op = &ext4_symlink_inode_operations;
4090 			ext4_set_aops(inode);
4091 		}
4092 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4093 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4094 		inode->i_op = &ext4_special_inode_operations;
4095 		if (raw_inode->i_block[0])
4096 			init_special_inode(inode, inode->i_mode,
4097 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4098 		else
4099 			init_special_inode(inode, inode->i_mode,
4100 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4101 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4102 		make_bad_inode(inode);
4103 	} else {
4104 		ret = -EIO;
4105 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4106 		goto bad_inode;
4107 	}
4108 	brelse(iloc.bh);
4109 	ext4_set_inode_flags(inode);
4110 	unlock_new_inode(inode);
4111 	return inode;
4112 
4113 bad_inode:
4114 	brelse(iloc.bh);
4115 	iget_failed(inode);
4116 	return ERR_PTR(ret);
4117 }
4118 
4119 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4120 {
4121 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4122 		return ERR_PTR(-EIO);
4123 	return ext4_iget(sb, ino);
4124 }
4125 
4126 static int ext4_inode_blocks_set(handle_t *handle,
4127 				struct ext4_inode *raw_inode,
4128 				struct ext4_inode_info *ei)
4129 {
4130 	struct inode *inode = &(ei->vfs_inode);
4131 	u64 i_blocks = inode->i_blocks;
4132 	struct super_block *sb = inode->i_sb;
4133 
4134 	if (i_blocks <= ~0U) {
4135 		/*
4136 		 * i_blocks can be represented in a 32 bit variable
4137 		 * as multiple of 512 bytes
4138 		 */
4139 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4140 		raw_inode->i_blocks_high = 0;
4141 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4142 		return 0;
4143 	}
4144 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4145 		return -EFBIG;
4146 
4147 	if (i_blocks <= 0xffffffffffffULL) {
4148 		/*
4149 		 * i_blocks can be represented in a 48 bit variable
4150 		 * as multiple of 512 bytes
4151 		 */
4152 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4153 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4154 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4155 	} else {
4156 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4157 		/* i_block is stored in file system block size */
4158 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4159 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4160 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4161 	}
4162 	return 0;
4163 }
4164 
4165 /*
4166  * Post the struct inode info into an on-disk inode location in the
4167  * buffer-cache.  This gobbles the caller's reference to the
4168  * buffer_head in the inode location struct.
4169  *
4170  * The caller must have write access to iloc->bh.
4171  */
4172 static int ext4_do_update_inode(handle_t *handle,
4173 				struct inode *inode,
4174 				struct ext4_iloc *iloc)
4175 {
4176 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4177 	struct ext4_inode_info *ei = EXT4_I(inode);
4178 	struct buffer_head *bh = iloc->bh;
4179 	struct super_block *sb = inode->i_sb;
4180 	int err = 0, rc, block;
4181 	int need_datasync = 0, set_large_file = 0;
4182 	uid_t i_uid;
4183 	gid_t i_gid;
4184 
4185 	spin_lock(&ei->i_raw_lock);
4186 
4187 	/* For fields not tracked in the in-memory inode,
4188 	 * initialise them to zero for new inodes. */
4189 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4190 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4191 
4192 	ext4_get_inode_flags(ei);
4193 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4194 	i_uid = i_uid_read(inode);
4195 	i_gid = i_gid_read(inode);
4196 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4197 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4198 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4199 /*
4200  * Fix up interoperability with old kernels. Otherwise, old inodes get
4201  * re-used with the upper 16 bits of the uid/gid intact
4202  */
4203 		if (!ei->i_dtime) {
4204 			raw_inode->i_uid_high =
4205 				cpu_to_le16(high_16_bits(i_uid));
4206 			raw_inode->i_gid_high =
4207 				cpu_to_le16(high_16_bits(i_gid));
4208 		} else {
4209 			raw_inode->i_uid_high = 0;
4210 			raw_inode->i_gid_high = 0;
4211 		}
4212 	} else {
4213 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4214 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4215 		raw_inode->i_uid_high = 0;
4216 		raw_inode->i_gid_high = 0;
4217 	}
4218 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4219 
4220 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4221 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4222 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4223 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4224 
4225 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4226 	if (err) {
4227 		spin_unlock(&ei->i_raw_lock);
4228 		goto out_brelse;
4229 	}
4230 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4231 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4232 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4233 		raw_inode->i_file_acl_high =
4234 			cpu_to_le16(ei->i_file_acl >> 32);
4235 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4236 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4237 		ext4_isize_set(raw_inode, ei->i_disksize);
4238 		need_datasync = 1;
4239 	}
4240 	if (ei->i_disksize > 0x7fffffffULL) {
4241 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4242 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4243 				EXT4_SB(sb)->s_es->s_rev_level ==
4244 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4245 			set_large_file = 1;
4246 	}
4247 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4248 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4249 		if (old_valid_dev(inode->i_rdev)) {
4250 			raw_inode->i_block[0] =
4251 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4252 			raw_inode->i_block[1] = 0;
4253 		} else {
4254 			raw_inode->i_block[0] = 0;
4255 			raw_inode->i_block[1] =
4256 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4257 			raw_inode->i_block[2] = 0;
4258 		}
4259 	} else if (!ext4_has_inline_data(inode)) {
4260 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4261 			raw_inode->i_block[block] = ei->i_data[block];
4262 	}
4263 
4264 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4265 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4266 		if (ei->i_extra_isize) {
4267 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4268 				raw_inode->i_version_hi =
4269 					cpu_to_le32(inode->i_version >> 32);
4270 			raw_inode->i_extra_isize =
4271 				cpu_to_le16(ei->i_extra_isize);
4272 		}
4273 	}
4274 
4275 	ext4_inode_csum_set(inode, raw_inode, ei);
4276 
4277 	spin_unlock(&ei->i_raw_lock);
4278 
4279 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4280 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4281 	if (!err)
4282 		err = rc;
4283 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4284 	if (set_large_file) {
4285 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4286 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4287 		if (err)
4288 			goto out_brelse;
4289 		ext4_update_dynamic_rev(sb);
4290 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4291 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4292 		ext4_handle_sync(handle);
4293 		err = ext4_handle_dirty_super(handle, sb);
4294 	}
4295 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4296 out_brelse:
4297 	brelse(bh);
4298 	ext4_std_error(inode->i_sb, err);
4299 	return err;
4300 }
4301 
4302 /*
4303  * ext4_write_inode()
4304  *
4305  * We are called from a few places:
4306  *
4307  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4308  *   Here, there will be no transaction running. We wait for any running
4309  *   transaction to commit.
4310  *
4311  * - Within flush work (sys_sync(), kupdate and such).
4312  *   We wait on commit, if told to.
4313  *
4314  * - Within iput_final() -> write_inode_now()
4315  *   We wait on commit, if told to.
4316  *
4317  * In all cases it is actually safe for us to return without doing anything,
4318  * because the inode has been copied into a raw inode buffer in
4319  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4320  * writeback.
4321  *
4322  * Note that we are absolutely dependent upon all inode dirtiers doing the
4323  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4324  * which we are interested.
4325  *
4326  * It would be a bug for them to not do this.  The code:
4327  *
4328  *	mark_inode_dirty(inode)
4329  *	stuff();
4330  *	inode->i_size = expr;
4331  *
4332  * is in error because write_inode() could occur while `stuff()' is running,
4333  * and the new i_size will be lost.  Plus the inode will no longer be on the
4334  * superblock's dirty inode list.
4335  */
4336 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4337 {
4338 	int err;
4339 
4340 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4341 		return 0;
4342 
4343 	if (EXT4_SB(inode->i_sb)->s_journal) {
4344 		if (ext4_journal_current_handle()) {
4345 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4346 			dump_stack();
4347 			return -EIO;
4348 		}
4349 
4350 		/*
4351 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4352 		 * ext4_sync_fs() will force the commit after everything is
4353 		 * written.
4354 		 */
4355 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4356 			return 0;
4357 
4358 		err = ext4_force_commit(inode->i_sb);
4359 	} else {
4360 		struct ext4_iloc iloc;
4361 
4362 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4363 		if (err)
4364 			return err;
4365 		/*
4366 		 * sync(2) will flush the whole buffer cache. No need to do
4367 		 * it here separately for each inode.
4368 		 */
4369 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4370 			sync_dirty_buffer(iloc.bh);
4371 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4372 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4373 					 "IO error syncing inode");
4374 			err = -EIO;
4375 		}
4376 		brelse(iloc.bh);
4377 	}
4378 	return err;
4379 }
4380 
4381 /*
4382  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4383  * buffers that are attached to a page stradding i_size and are undergoing
4384  * commit. In that case we have to wait for commit to finish and try again.
4385  */
4386 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4387 {
4388 	struct page *page;
4389 	unsigned offset;
4390 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4391 	tid_t commit_tid = 0;
4392 	int ret;
4393 
4394 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4395 	/*
4396 	 * All buffers in the last page remain valid? Then there's nothing to
4397 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4398 	 * blocksize case
4399 	 */
4400 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4401 		return;
4402 	while (1) {
4403 		page = find_lock_page(inode->i_mapping,
4404 				      inode->i_size >> PAGE_CACHE_SHIFT);
4405 		if (!page)
4406 			return;
4407 		ret = __ext4_journalled_invalidatepage(page, offset,
4408 						PAGE_CACHE_SIZE - offset);
4409 		unlock_page(page);
4410 		page_cache_release(page);
4411 		if (ret != -EBUSY)
4412 			return;
4413 		commit_tid = 0;
4414 		read_lock(&journal->j_state_lock);
4415 		if (journal->j_committing_transaction)
4416 			commit_tid = journal->j_committing_transaction->t_tid;
4417 		read_unlock(&journal->j_state_lock);
4418 		if (commit_tid)
4419 			jbd2_log_wait_commit(journal, commit_tid);
4420 	}
4421 }
4422 
4423 /*
4424  * ext4_setattr()
4425  *
4426  * Called from notify_change.
4427  *
4428  * We want to trap VFS attempts to truncate the file as soon as
4429  * possible.  In particular, we want to make sure that when the VFS
4430  * shrinks i_size, we put the inode on the orphan list and modify
4431  * i_disksize immediately, so that during the subsequent flushing of
4432  * dirty pages and freeing of disk blocks, we can guarantee that any
4433  * commit will leave the blocks being flushed in an unused state on
4434  * disk.  (On recovery, the inode will get truncated and the blocks will
4435  * be freed, so we have a strong guarantee that no future commit will
4436  * leave these blocks visible to the user.)
4437  *
4438  * Another thing we have to assure is that if we are in ordered mode
4439  * and inode is still attached to the committing transaction, we must
4440  * we start writeout of all the dirty pages which are being truncated.
4441  * This way we are sure that all the data written in the previous
4442  * transaction are already on disk (truncate waits for pages under
4443  * writeback).
4444  *
4445  * Called with inode->i_mutex down.
4446  */
4447 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4448 {
4449 	struct inode *inode = dentry->d_inode;
4450 	int error, rc = 0;
4451 	int orphan = 0;
4452 	const unsigned int ia_valid = attr->ia_valid;
4453 
4454 	error = inode_change_ok(inode, attr);
4455 	if (error)
4456 		return error;
4457 
4458 	if (is_quota_modification(inode, attr))
4459 		dquot_initialize(inode);
4460 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4461 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4462 		handle_t *handle;
4463 
4464 		/* (user+group)*(old+new) structure, inode write (sb,
4465 		 * inode block, ? - but truncate inode update has it) */
4466 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4467 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4468 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4469 		if (IS_ERR(handle)) {
4470 			error = PTR_ERR(handle);
4471 			goto err_out;
4472 		}
4473 		error = dquot_transfer(inode, attr);
4474 		if (error) {
4475 			ext4_journal_stop(handle);
4476 			return error;
4477 		}
4478 		/* Update corresponding info in inode so that everything is in
4479 		 * one transaction */
4480 		if (attr->ia_valid & ATTR_UID)
4481 			inode->i_uid = attr->ia_uid;
4482 		if (attr->ia_valid & ATTR_GID)
4483 			inode->i_gid = attr->ia_gid;
4484 		error = ext4_mark_inode_dirty(handle, inode);
4485 		ext4_journal_stop(handle);
4486 	}
4487 
4488 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4489 		handle_t *handle;
4490 
4491 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4492 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4493 
4494 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4495 				return -EFBIG;
4496 		}
4497 
4498 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4499 			inode_inc_iversion(inode);
4500 
4501 		if (S_ISREG(inode->i_mode) &&
4502 		    (attr->ia_size < inode->i_size)) {
4503 			if (ext4_should_order_data(inode)) {
4504 				error = ext4_begin_ordered_truncate(inode,
4505 							    attr->ia_size);
4506 				if (error)
4507 					goto err_out;
4508 			}
4509 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4510 			if (IS_ERR(handle)) {
4511 				error = PTR_ERR(handle);
4512 				goto err_out;
4513 			}
4514 			if (ext4_handle_valid(handle)) {
4515 				error = ext4_orphan_add(handle, inode);
4516 				orphan = 1;
4517 			}
4518 			down_write(&EXT4_I(inode)->i_data_sem);
4519 			EXT4_I(inode)->i_disksize = attr->ia_size;
4520 			rc = ext4_mark_inode_dirty(handle, inode);
4521 			if (!error)
4522 				error = rc;
4523 			/*
4524 			 * We have to update i_size under i_data_sem together
4525 			 * with i_disksize to avoid races with writeback code
4526 			 * running ext4_wb_update_i_disksize().
4527 			 */
4528 			if (!error)
4529 				i_size_write(inode, attr->ia_size);
4530 			up_write(&EXT4_I(inode)->i_data_sem);
4531 			ext4_journal_stop(handle);
4532 			if (error) {
4533 				ext4_orphan_del(NULL, inode);
4534 				goto err_out;
4535 			}
4536 		} else {
4537 			loff_t oldsize = inode->i_size;
4538 
4539 			i_size_write(inode, attr->ia_size);
4540 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4541 		}
4542 
4543 		/*
4544 		 * Blocks are going to be removed from the inode. Wait
4545 		 * for dio in flight.  Temporarily disable
4546 		 * dioread_nolock to prevent livelock.
4547 		 */
4548 		if (orphan) {
4549 			if (!ext4_should_journal_data(inode)) {
4550 				ext4_inode_block_unlocked_dio(inode);
4551 				inode_dio_wait(inode);
4552 				ext4_inode_resume_unlocked_dio(inode);
4553 			} else
4554 				ext4_wait_for_tail_page_commit(inode);
4555 		}
4556 		/*
4557 		 * Truncate pagecache after we've waited for commit
4558 		 * in data=journal mode to make pages freeable.
4559 		 */
4560 			truncate_pagecache(inode, inode->i_size);
4561 	}
4562 	/*
4563 	 * We want to call ext4_truncate() even if attr->ia_size ==
4564 	 * inode->i_size for cases like truncation of fallocated space
4565 	 */
4566 	if (attr->ia_valid & ATTR_SIZE)
4567 		ext4_truncate(inode);
4568 
4569 	if (!rc) {
4570 		setattr_copy(inode, attr);
4571 		mark_inode_dirty(inode);
4572 	}
4573 
4574 	/*
4575 	 * If the call to ext4_truncate failed to get a transaction handle at
4576 	 * all, we need to clean up the in-core orphan list manually.
4577 	 */
4578 	if (orphan && inode->i_nlink)
4579 		ext4_orphan_del(NULL, inode);
4580 
4581 	if (!rc && (ia_valid & ATTR_MODE))
4582 		rc = posix_acl_chmod(inode, inode->i_mode);
4583 
4584 err_out:
4585 	ext4_std_error(inode->i_sb, error);
4586 	if (!error)
4587 		error = rc;
4588 	return error;
4589 }
4590 
4591 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4592 		 struct kstat *stat)
4593 {
4594 	struct inode *inode;
4595 	unsigned long long delalloc_blocks;
4596 
4597 	inode = dentry->d_inode;
4598 	generic_fillattr(inode, stat);
4599 
4600 	/*
4601 	 * If there is inline data in the inode, the inode will normally not
4602 	 * have data blocks allocated (it may have an external xattr block).
4603 	 * Report at least one sector for such files, so tools like tar, rsync,
4604 	 * others doen't incorrectly think the file is completely sparse.
4605 	 */
4606 	if (unlikely(ext4_has_inline_data(inode)))
4607 		stat->blocks += (stat->size + 511) >> 9;
4608 
4609 	/*
4610 	 * We can't update i_blocks if the block allocation is delayed
4611 	 * otherwise in the case of system crash before the real block
4612 	 * allocation is done, we will have i_blocks inconsistent with
4613 	 * on-disk file blocks.
4614 	 * We always keep i_blocks updated together with real
4615 	 * allocation. But to not confuse with user, stat
4616 	 * will return the blocks that include the delayed allocation
4617 	 * blocks for this file.
4618 	 */
4619 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4620 				   EXT4_I(inode)->i_reserved_data_blocks);
4621 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4622 	return 0;
4623 }
4624 
4625 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4626 				   int pextents)
4627 {
4628 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4629 		return ext4_ind_trans_blocks(inode, lblocks);
4630 	return ext4_ext_index_trans_blocks(inode, pextents);
4631 }
4632 
4633 /*
4634  * Account for index blocks, block groups bitmaps and block group
4635  * descriptor blocks if modify datablocks and index blocks
4636  * worse case, the indexs blocks spread over different block groups
4637  *
4638  * If datablocks are discontiguous, they are possible to spread over
4639  * different block groups too. If they are contiguous, with flexbg,
4640  * they could still across block group boundary.
4641  *
4642  * Also account for superblock, inode, quota and xattr blocks
4643  */
4644 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4645 				  int pextents)
4646 {
4647 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4648 	int gdpblocks;
4649 	int idxblocks;
4650 	int ret = 0;
4651 
4652 	/*
4653 	 * How many index blocks need to touch to map @lblocks logical blocks
4654 	 * to @pextents physical extents?
4655 	 */
4656 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4657 
4658 	ret = idxblocks;
4659 
4660 	/*
4661 	 * Now let's see how many group bitmaps and group descriptors need
4662 	 * to account
4663 	 */
4664 	groups = idxblocks + pextents;
4665 	gdpblocks = groups;
4666 	if (groups > ngroups)
4667 		groups = ngroups;
4668 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4669 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4670 
4671 	/* bitmaps and block group descriptor blocks */
4672 	ret += groups + gdpblocks;
4673 
4674 	/* Blocks for super block, inode, quota and xattr blocks */
4675 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4676 
4677 	return ret;
4678 }
4679 
4680 /*
4681  * Calculate the total number of credits to reserve to fit
4682  * the modification of a single pages into a single transaction,
4683  * which may include multiple chunks of block allocations.
4684  *
4685  * This could be called via ext4_write_begin()
4686  *
4687  * We need to consider the worse case, when
4688  * one new block per extent.
4689  */
4690 int ext4_writepage_trans_blocks(struct inode *inode)
4691 {
4692 	int bpp = ext4_journal_blocks_per_page(inode);
4693 	int ret;
4694 
4695 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4696 
4697 	/* Account for data blocks for journalled mode */
4698 	if (ext4_should_journal_data(inode))
4699 		ret += bpp;
4700 	return ret;
4701 }
4702 
4703 /*
4704  * Calculate the journal credits for a chunk of data modification.
4705  *
4706  * This is called from DIO, fallocate or whoever calling
4707  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4708  *
4709  * journal buffers for data blocks are not included here, as DIO
4710  * and fallocate do no need to journal data buffers.
4711  */
4712 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4713 {
4714 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4715 }
4716 
4717 /*
4718  * The caller must have previously called ext4_reserve_inode_write().
4719  * Give this, we know that the caller already has write access to iloc->bh.
4720  */
4721 int ext4_mark_iloc_dirty(handle_t *handle,
4722 			 struct inode *inode, struct ext4_iloc *iloc)
4723 {
4724 	int err = 0;
4725 
4726 	if (IS_I_VERSION(inode))
4727 		inode_inc_iversion(inode);
4728 
4729 	/* the do_update_inode consumes one bh->b_count */
4730 	get_bh(iloc->bh);
4731 
4732 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4733 	err = ext4_do_update_inode(handle, inode, iloc);
4734 	put_bh(iloc->bh);
4735 	return err;
4736 }
4737 
4738 /*
4739  * On success, We end up with an outstanding reference count against
4740  * iloc->bh.  This _must_ be cleaned up later.
4741  */
4742 
4743 int
4744 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4745 			 struct ext4_iloc *iloc)
4746 {
4747 	int err;
4748 
4749 	err = ext4_get_inode_loc(inode, iloc);
4750 	if (!err) {
4751 		BUFFER_TRACE(iloc->bh, "get_write_access");
4752 		err = ext4_journal_get_write_access(handle, iloc->bh);
4753 		if (err) {
4754 			brelse(iloc->bh);
4755 			iloc->bh = NULL;
4756 		}
4757 	}
4758 	ext4_std_error(inode->i_sb, err);
4759 	return err;
4760 }
4761 
4762 /*
4763  * Expand an inode by new_extra_isize bytes.
4764  * Returns 0 on success or negative error number on failure.
4765  */
4766 static int ext4_expand_extra_isize(struct inode *inode,
4767 				   unsigned int new_extra_isize,
4768 				   struct ext4_iloc iloc,
4769 				   handle_t *handle)
4770 {
4771 	struct ext4_inode *raw_inode;
4772 	struct ext4_xattr_ibody_header *header;
4773 
4774 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4775 		return 0;
4776 
4777 	raw_inode = ext4_raw_inode(&iloc);
4778 
4779 	header = IHDR(inode, raw_inode);
4780 
4781 	/* No extended attributes present */
4782 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4783 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4784 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4785 			new_extra_isize);
4786 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4787 		return 0;
4788 	}
4789 
4790 	/* try to expand with EAs present */
4791 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4792 					  raw_inode, handle);
4793 }
4794 
4795 /*
4796  * What we do here is to mark the in-core inode as clean with respect to inode
4797  * dirtiness (it may still be data-dirty).
4798  * This means that the in-core inode may be reaped by prune_icache
4799  * without having to perform any I/O.  This is a very good thing,
4800  * because *any* task may call prune_icache - even ones which
4801  * have a transaction open against a different journal.
4802  *
4803  * Is this cheating?  Not really.  Sure, we haven't written the
4804  * inode out, but prune_icache isn't a user-visible syncing function.
4805  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4806  * we start and wait on commits.
4807  */
4808 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4809 {
4810 	struct ext4_iloc iloc;
4811 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4812 	static unsigned int mnt_count;
4813 	int err, ret;
4814 
4815 	might_sleep();
4816 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4817 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4818 	if (ext4_handle_valid(handle) &&
4819 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4820 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4821 		/*
4822 		 * We need extra buffer credits since we may write into EA block
4823 		 * with this same handle. If journal_extend fails, then it will
4824 		 * only result in a minor loss of functionality for that inode.
4825 		 * If this is felt to be critical, then e2fsck should be run to
4826 		 * force a large enough s_min_extra_isize.
4827 		 */
4828 		if ((jbd2_journal_extend(handle,
4829 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4830 			ret = ext4_expand_extra_isize(inode,
4831 						      sbi->s_want_extra_isize,
4832 						      iloc, handle);
4833 			if (ret) {
4834 				ext4_set_inode_state(inode,
4835 						     EXT4_STATE_NO_EXPAND);
4836 				if (mnt_count !=
4837 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4838 					ext4_warning(inode->i_sb,
4839 					"Unable to expand inode %lu. Delete"
4840 					" some EAs or run e2fsck.",
4841 					inode->i_ino);
4842 					mnt_count =
4843 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4844 				}
4845 			}
4846 		}
4847 	}
4848 	if (!err)
4849 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4850 	return err;
4851 }
4852 
4853 /*
4854  * ext4_dirty_inode() is called from __mark_inode_dirty()
4855  *
4856  * We're really interested in the case where a file is being extended.
4857  * i_size has been changed by generic_commit_write() and we thus need
4858  * to include the updated inode in the current transaction.
4859  *
4860  * Also, dquot_alloc_block() will always dirty the inode when blocks
4861  * are allocated to the file.
4862  *
4863  * If the inode is marked synchronous, we don't honour that here - doing
4864  * so would cause a commit on atime updates, which we don't bother doing.
4865  * We handle synchronous inodes at the highest possible level.
4866  */
4867 void ext4_dirty_inode(struct inode *inode, int flags)
4868 {
4869 	handle_t *handle;
4870 
4871 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4872 	if (IS_ERR(handle))
4873 		goto out;
4874 
4875 	ext4_mark_inode_dirty(handle, inode);
4876 
4877 	ext4_journal_stop(handle);
4878 out:
4879 	return;
4880 }
4881 
4882 #if 0
4883 /*
4884  * Bind an inode's backing buffer_head into this transaction, to prevent
4885  * it from being flushed to disk early.  Unlike
4886  * ext4_reserve_inode_write, this leaves behind no bh reference and
4887  * returns no iloc structure, so the caller needs to repeat the iloc
4888  * lookup to mark the inode dirty later.
4889  */
4890 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4891 {
4892 	struct ext4_iloc iloc;
4893 
4894 	int err = 0;
4895 	if (handle) {
4896 		err = ext4_get_inode_loc(inode, &iloc);
4897 		if (!err) {
4898 			BUFFER_TRACE(iloc.bh, "get_write_access");
4899 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4900 			if (!err)
4901 				err = ext4_handle_dirty_metadata(handle,
4902 								 NULL,
4903 								 iloc.bh);
4904 			brelse(iloc.bh);
4905 		}
4906 	}
4907 	ext4_std_error(inode->i_sb, err);
4908 	return err;
4909 }
4910 #endif
4911 
4912 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4913 {
4914 	journal_t *journal;
4915 	handle_t *handle;
4916 	int err;
4917 
4918 	/*
4919 	 * We have to be very careful here: changing a data block's
4920 	 * journaling status dynamically is dangerous.  If we write a
4921 	 * data block to the journal, change the status and then delete
4922 	 * that block, we risk forgetting to revoke the old log record
4923 	 * from the journal and so a subsequent replay can corrupt data.
4924 	 * So, first we make sure that the journal is empty and that
4925 	 * nobody is changing anything.
4926 	 */
4927 
4928 	journal = EXT4_JOURNAL(inode);
4929 	if (!journal)
4930 		return 0;
4931 	if (is_journal_aborted(journal))
4932 		return -EROFS;
4933 	/* We have to allocate physical blocks for delalloc blocks
4934 	 * before flushing journal. otherwise delalloc blocks can not
4935 	 * be allocated any more. even more truncate on delalloc blocks
4936 	 * could trigger BUG by flushing delalloc blocks in journal.
4937 	 * There is no delalloc block in non-journal data mode.
4938 	 */
4939 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4940 		err = ext4_alloc_da_blocks(inode);
4941 		if (err < 0)
4942 			return err;
4943 	}
4944 
4945 	/* Wait for all existing dio workers */
4946 	ext4_inode_block_unlocked_dio(inode);
4947 	inode_dio_wait(inode);
4948 
4949 	jbd2_journal_lock_updates(journal);
4950 
4951 	/*
4952 	 * OK, there are no updates running now, and all cached data is
4953 	 * synced to disk.  We are now in a completely consistent state
4954 	 * which doesn't have anything in the journal, and we know that
4955 	 * no filesystem updates are running, so it is safe to modify
4956 	 * the inode's in-core data-journaling state flag now.
4957 	 */
4958 
4959 	if (val)
4960 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4961 	else {
4962 		err = jbd2_journal_flush(journal);
4963 		if (err < 0) {
4964 			jbd2_journal_unlock_updates(journal);
4965 			ext4_inode_resume_unlocked_dio(inode);
4966 			return err;
4967 		}
4968 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4969 	}
4970 	ext4_set_aops(inode);
4971 
4972 	jbd2_journal_unlock_updates(journal);
4973 	ext4_inode_resume_unlocked_dio(inode);
4974 
4975 	/* Finally we can mark the inode as dirty. */
4976 
4977 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4978 	if (IS_ERR(handle))
4979 		return PTR_ERR(handle);
4980 
4981 	err = ext4_mark_inode_dirty(handle, inode);
4982 	ext4_handle_sync(handle);
4983 	ext4_journal_stop(handle);
4984 	ext4_std_error(inode->i_sb, err);
4985 
4986 	return err;
4987 }
4988 
4989 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4990 {
4991 	return !buffer_mapped(bh);
4992 }
4993 
4994 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4995 {
4996 	struct page *page = vmf->page;
4997 	loff_t size;
4998 	unsigned long len;
4999 	int ret;
5000 	struct file *file = vma->vm_file;
5001 	struct inode *inode = file_inode(file);
5002 	struct address_space *mapping = inode->i_mapping;
5003 	handle_t *handle;
5004 	get_block_t *get_block;
5005 	int retries = 0;
5006 
5007 	sb_start_pagefault(inode->i_sb);
5008 	file_update_time(vma->vm_file);
5009 	/* Delalloc case is easy... */
5010 	if (test_opt(inode->i_sb, DELALLOC) &&
5011 	    !ext4_should_journal_data(inode) &&
5012 	    !ext4_nonda_switch(inode->i_sb)) {
5013 		do {
5014 			ret = __block_page_mkwrite(vma, vmf,
5015 						   ext4_da_get_block_prep);
5016 		} while (ret == -ENOSPC &&
5017 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5018 		goto out_ret;
5019 	}
5020 
5021 	lock_page(page);
5022 	size = i_size_read(inode);
5023 	/* Page got truncated from under us? */
5024 	if (page->mapping != mapping || page_offset(page) > size) {
5025 		unlock_page(page);
5026 		ret = VM_FAULT_NOPAGE;
5027 		goto out;
5028 	}
5029 
5030 	if (page->index == size >> PAGE_CACHE_SHIFT)
5031 		len = size & ~PAGE_CACHE_MASK;
5032 	else
5033 		len = PAGE_CACHE_SIZE;
5034 	/*
5035 	 * Return if we have all the buffers mapped. This avoids the need to do
5036 	 * journal_start/journal_stop which can block and take a long time
5037 	 */
5038 	if (page_has_buffers(page)) {
5039 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5040 					    0, len, NULL,
5041 					    ext4_bh_unmapped)) {
5042 			/* Wait so that we don't change page under IO */
5043 			wait_for_stable_page(page);
5044 			ret = VM_FAULT_LOCKED;
5045 			goto out;
5046 		}
5047 	}
5048 	unlock_page(page);
5049 	/* OK, we need to fill the hole... */
5050 	if (ext4_should_dioread_nolock(inode))
5051 		get_block = ext4_get_block_write;
5052 	else
5053 		get_block = ext4_get_block;
5054 retry_alloc:
5055 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5056 				    ext4_writepage_trans_blocks(inode));
5057 	if (IS_ERR(handle)) {
5058 		ret = VM_FAULT_SIGBUS;
5059 		goto out;
5060 	}
5061 	ret = __block_page_mkwrite(vma, vmf, get_block);
5062 	if (!ret && ext4_should_journal_data(inode)) {
5063 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5064 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5065 			unlock_page(page);
5066 			ret = VM_FAULT_SIGBUS;
5067 			ext4_journal_stop(handle);
5068 			goto out;
5069 		}
5070 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5071 	}
5072 	ext4_journal_stop(handle);
5073 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5074 		goto retry_alloc;
5075 out_ret:
5076 	ret = block_page_mkwrite_return(ret);
5077 out:
5078 	sb_end_pagefault(inode->i_sb);
5079 	return ret;
5080 }
5081