1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 #include <linux/iomap.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 148 */ 149 int ext4_inode_is_fast_symlink(struct inode *inode) 150 { 151 return S_ISLNK(inode->i_mode) && inode->i_size && 152 (inode->i_size < EXT4_N_BLOCKS * 4); 153 } 154 155 /* 156 * Restart the transaction associated with *handle. This does a commit, 157 * so before we call here everything must be consistently dirtied against 158 * this transaction. 159 */ 160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 161 int nblocks) 162 { 163 int ret; 164 165 /* 166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 167 * moment, get_block can be called only for blocks inside i_size since 168 * page cache has been already dropped and writes are blocked by 169 * i_mutex. So we can safely drop the i_data_sem here. 170 */ 171 BUG_ON(EXT4_JOURNAL(inode) == NULL); 172 jbd_debug(2, "restarting handle %p\n", handle); 173 up_write(&EXT4_I(inode)->i_data_sem); 174 ret = ext4_journal_restart(handle, nblocks); 175 down_write(&EXT4_I(inode)->i_data_sem); 176 ext4_discard_preallocations(inode); 177 178 return ret; 179 } 180 181 /* 182 * Called at the last iput() if i_nlink is zero. 183 */ 184 void ext4_evict_inode(struct inode *inode) 185 { 186 handle_t *handle; 187 int err; 188 int extra_credits = 3; 189 struct ext4_xattr_inode_array *ea_inode_array = NULL; 190 191 trace_ext4_evict_inode(inode); 192 193 if (inode->i_nlink) { 194 /* 195 * When journalling data dirty buffers are tracked only in the 196 * journal. So although mm thinks everything is clean and 197 * ready for reaping the inode might still have some pages to 198 * write in the running transaction or waiting to be 199 * checkpointed. Thus calling jbd2_journal_invalidatepage() 200 * (via truncate_inode_pages()) to discard these buffers can 201 * cause data loss. Also even if we did not discard these 202 * buffers, we would have no way to find them after the inode 203 * is reaped and thus user could see stale data if he tries to 204 * read them before the transaction is checkpointed. So be 205 * careful and force everything to disk here... We use 206 * ei->i_datasync_tid to store the newest transaction 207 * containing inode's data. 208 * 209 * Note that directories do not have this problem because they 210 * don't use page cache. 211 */ 212 if (inode->i_ino != EXT4_JOURNAL_INO && 213 ext4_should_journal_data(inode) && 214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 215 inode->i_data.nrpages) { 216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 218 219 jbd2_complete_transaction(journal, commit_tid); 220 filemap_write_and_wait(&inode->i_data); 221 } 222 truncate_inode_pages_final(&inode->i_data); 223 224 goto no_delete; 225 } 226 227 if (is_bad_inode(inode)) 228 goto no_delete; 229 dquot_initialize(inode); 230 231 if (ext4_should_order_data(inode)) 232 ext4_begin_ordered_truncate(inode, 0); 233 truncate_inode_pages_final(&inode->i_data); 234 235 /* 236 * Protect us against freezing - iput() caller didn't have to have any 237 * protection against it 238 */ 239 sb_start_intwrite(inode->i_sb); 240 241 if (!IS_NOQUOTA(inode)) 242 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 243 244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 245 ext4_blocks_for_truncate(inode)+extra_credits); 246 if (IS_ERR(handle)) { 247 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 248 /* 249 * If we're going to skip the normal cleanup, we still need to 250 * make sure that the in-core orphan linked list is properly 251 * cleaned up. 252 */ 253 ext4_orphan_del(NULL, inode); 254 sb_end_intwrite(inode->i_sb); 255 goto no_delete; 256 } 257 258 if (IS_SYNC(inode)) 259 ext4_handle_sync(handle); 260 261 /* 262 * Set inode->i_size to 0 before calling ext4_truncate(). We need 263 * special handling of symlinks here because i_size is used to 264 * determine whether ext4_inode_info->i_data contains symlink data or 265 * block mappings. Setting i_size to 0 will remove its fast symlink 266 * status. Erase i_data so that it becomes a valid empty block map. 267 */ 268 if (ext4_inode_is_fast_symlink(inode)) 269 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 270 inode->i_size = 0; 271 err = ext4_mark_inode_dirty(handle, inode); 272 if (err) { 273 ext4_warning(inode->i_sb, 274 "couldn't mark inode dirty (err %d)", err); 275 goto stop_handle; 276 } 277 if (inode->i_blocks) { 278 err = ext4_truncate(inode); 279 if (err) { 280 ext4_error(inode->i_sb, 281 "couldn't truncate inode %lu (err %d)", 282 inode->i_ino, err); 283 goto stop_handle; 284 } 285 } 286 287 /* Remove xattr references. */ 288 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 289 extra_credits); 290 if (err) { 291 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 292 stop_handle: 293 ext4_journal_stop(handle); 294 ext4_orphan_del(NULL, inode); 295 sb_end_intwrite(inode->i_sb); 296 ext4_xattr_inode_array_free(ea_inode_array); 297 goto no_delete; 298 } 299 300 /* 301 * Kill off the orphan record which ext4_truncate created. 302 * AKPM: I think this can be inside the above `if'. 303 * Note that ext4_orphan_del() has to be able to cope with the 304 * deletion of a non-existent orphan - this is because we don't 305 * know if ext4_truncate() actually created an orphan record. 306 * (Well, we could do this if we need to, but heck - it works) 307 */ 308 ext4_orphan_del(handle, inode); 309 EXT4_I(inode)->i_dtime = get_seconds(); 310 311 /* 312 * One subtle ordering requirement: if anything has gone wrong 313 * (transaction abort, IO errors, whatever), then we can still 314 * do these next steps (the fs will already have been marked as 315 * having errors), but we can't free the inode if the mark_dirty 316 * fails. 317 */ 318 if (ext4_mark_inode_dirty(handle, inode)) 319 /* If that failed, just do the required in-core inode clear. */ 320 ext4_clear_inode(inode); 321 else 322 ext4_free_inode(handle, inode); 323 ext4_journal_stop(handle); 324 sb_end_intwrite(inode->i_sb); 325 ext4_xattr_inode_array_free(ea_inode_array); 326 return; 327 no_delete: 328 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 329 } 330 331 #ifdef CONFIG_QUOTA 332 qsize_t *ext4_get_reserved_space(struct inode *inode) 333 { 334 return &EXT4_I(inode)->i_reserved_quota; 335 } 336 #endif 337 338 /* 339 * Called with i_data_sem down, which is important since we can call 340 * ext4_discard_preallocations() from here. 341 */ 342 void ext4_da_update_reserve_space(struct inode *inode, 343 int used, int quota_claim) 344 { 345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 346 struct ext4_inode_info *ei = EXT4_I(inode); 347 348 spin_lock(&ei->i_block_reservation_lock); 349 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 350 if (unlikely(used > ei->i_reserved_data_blocks)) { 351 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 352 "with only %d reserved data blocks", 353 __func__, inode->i_ino, used, 354 ei->i_reserved_data_blocks); 355 WARN_ON(1); 356 used = ei->i_reserved_data_blocks; 357 } 358 359 /* Update per-inode reservations */ 360 ei->i_reserved_data_blocks -= used; 361 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 362 363 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 364 365 /* Update quota subsystem for data blocks */ 366 if (quota_claim) 367 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 368 else { 369 /* 370 * We did fallocate with an offset that is already delayed 371 * allocated. So on delayed allocated writeback we should 372 * not re-claim the quota for fallocated blocks. 373 */ 374 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 375 } 376 377 /* 378 * If we have done all the pending block allocations and if 379 * there aren't any writers on the inode, we can discard the 380 * inode's preallocations. 381 */ 382 if ((ei->i_reserved_data_blocks == 0) && 383 (atomic_read(&inode->i_writecount) == 0)) 384 ext4_discard_preallocations(inode); 385 } 386 387 static int __check_block_validity(struct inode *inode, const char *func, 388 unsigned int line, 389 struct ext4_map_blocks *map) 390 { 391 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 392 map->m_len)) { 393 ext4_error_inode(inode, func, line, map->m_pblk, 394 "lblock %lu mapped to illegal pblock " 395 "(length %d)", (unsigned long) map->m_lblk, 396 map->m_len); 397 return -EFSCORRUPTED; 398 } 399 return 0; 400 } 401 402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 403 ext4_lblk_t len) 404 { 405 int ret; 406 407 if (ext4_encrypted_inode(inode)) 408 return fscrypt_zeroout_range(inode, lblk, pblk, len); 409 410 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 411 if (ret > 0) 412 ret = 0; 413 414 return ret; 415 } 416 417 #define check_block_validity(inode, map) \ 418 __check_block_validity((inode), __func__, __LINE__, (map)) 419 420 #ifdef ES_AGGRESSIVE_TEST 421 static void ext4_map_blocks_es_recheck(handle_t *handle, 422 struct inode *inode, 423 struct ext4_map_blocks *es_map, 424 struct ext4_map_blocks *map, 425 int flags) 426 { 427 int retval; 428 429 map->m_flags = 0; 430 /* 431 * There is a race window that the result is not the same. 432 * e.g. xfstests #223 when dioread_nolock enables. The reason 433 * is that we lookup a block mapping in extent status tree with 434 * out taking i_data_sem. So at the time the unwritten extent 435 * could be converted. 436 */ 437 down_read(&EXT4_I(inode)->i_data_sem); 438 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 439 retval = ext4_ext_map_blocks(handle, inode, map, flags & 440 EXT4_GET_BLOCKS_KEEP_SIZE); 441 } else { 442 retval = ext4_ind_map_blocks(handle, inode, map, flags & 443 EXT4_GET_BLOCKS_KEEP_SIZE); 444 } 445 up_read((&EXT4_I(inode)->i_data_sem)); 446 447 /* 448 * We don't check m_len because extent will be collpased in status 449 * tree. So the m_len might not equal. 450 */ 451 if (es_map->m_lblk != map->m_lblk || 452 es_map->m_flags != map->m_flags || 453 es_map->m_pblk != map->m_pblk) { 454 printk("ES cache assertion failed for inode: %lu " 455 "es_cached ex [%d/%d/%llu/%x] != " 456 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 457 inode->i_ino, es_map->m_lblk, es_map->m_len, 458 es_map->m_pblk, es_map->m_flags, map->m_lblk, 459 map->m_len, map->m_pblk, map->m_flags, 460 retval, flags); 461 } 462 } 463 #endif /* ES_AGGRESSIVE_TEST */ 464 465 /* 466 * The ext4_map_blocks() function tries to look up the requested blocks, 467 * and returns if the blocks are already mapped. 468 * 469 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 470 * and store the allocated blocks in the result buffer head and mark it 471 * mapped. 472 * 473 * If file type is extents based, it will call ext4_ext_map_blocks(), 474 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 475 * based files 476 * 477 * On success, it returns the number of blocks being mapped or allocated. if 478 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 479 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 480 * 481 * It returns 0 if plain look up failed (blocks have not been allocated), in 482 * that case, @map is returned as unmapped but we still do fill map->m_len to 483 * indicate the length of a hole starting at map->m_lblk. 484 * 485 * It returns the error in case of allocation failure. 486 */ 487 int ext4_map_blocks(handle_t *handle, struct inode *inode, 488 struct ext4_map_blocks *map, int flags) 489 { 490 struct extent_status es; 491 int retval; 492 int ret = 0; 493 #ifdef ES_AGGRESSIVE_TEST 494 struct ext4_map_blocks orig_map; 495 496 memcpy(&orig_map, map, sizeof(*map)); 497 #endif 498 499 map->m_flags = 0; 500 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 501 "logical block %lu\n", inode->i_ino, flags, map->m_len, 502 (unsigned long) map->m_lblk); 503 504 /* 505 * ext4_map_blocks returns an int, and m_len is an unsigned int 506 */ 507 if (unlikely(map->m_len > INT_MAX)) 508 map->m_len = INT_MAX; 509 510 /* We can handle the block number less than EXT_MAX_BLOCKS */ 511 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 512 return -EFSCORRUPTED; 513 514 /* Lookup extent status tree firstly */ 515 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 516 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 517 map->m_pblk = ext4_es_pblock(&es) + 518 map->m_lblk - es.es_lblk; 519 map->m_flags |= ext4_es_is_written(&es) ? 520 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 521 retval = es.es_len - (map->m_lblk - es.es_lblk); 522 if (retval > map->m_len) 523 retval = map->m_len; 524 map->m_len = retval; 525 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 526 map->m_pblk = 0; 527 retval = es.es_len - (map->m_lblk - es.es_lblk); 528 if (retval > map->m_len) 529 retval = map->m_len; 530 map->m_len = retval; 531 retval = 0; 532 } else { 533 BUG_ON(1); 534 } 535 #ifdef ES_AGGRESSIVE_TEST 536 ext4_map_blocks_es_recheck(handle, inode, map, 537 &orig_map, flags); 538 #endif 539 goto found; 540 } 541 542 /* 543 * Try to see if we can get the block without requesting a new 544 * file system block. 545 */ 546 down_read(&EXT4_I(inode)->i_data_sem); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, flags & 549 EXT4_GET_BLOCKS_KEEP_SIZE); 550 } else { 551 retval = ext4_ind_map_blocks(handle, inode, map, flags & 552 EXT4_GET_BLOCKS_KEEP_SIZE); 553 } 554 if (retval > 0) { 555 unsigned int status; 556 557 if (unlikely(retval != map->m_len)) { 558 ext4_warning(inode->i_sb, 559 "ES len assertion failed for inode " 560 "%lu: retval %d != map->m_len %d", 561 inode->i_ino, retval, map->m_len); 562 WARN_ON(1); 563 } 564 565 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 568 !(status & EXTENT_STATUS_WRITTEN) && 569 ext4_find_delalloc_range(inode, map->m_lblk, 570 map->m_lblk + map->m_len - 1)) 571 status |= EXTENT_STATUS_DELAYED; 572 ret = ext4_es_insert_extent(inode, map->m_lblk, 573 map->m_len, map->m_pblk, status); 574 if (ret < 0) 575 retval = ret; 576 } 577 up_read((&EXT4_I(inode)->i_data_sem)); 578 579 found: 580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 581 ret = check_block_validity(inode, map); 582 if (ret != 0) 583 return ret; 584 } 585 586 /* If it is only a block(s) look up */ 587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 588 return retval; 589 590 /* 591 * Returns if the blocks have already allocated 592 * 593 * Note that if blocks have been preallocated 594 * ext4_ext_get_block() returns the create = 0 595 * with buffer head unmapped. 596 */ 597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 598 /* 599 * If we need to convert extent to unwritten 600 * we continue and do the actual work in 601 * ext4_ext_map_blocks() 602 */ 603 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 604 return retval; 605 606 /* 607 * Here we clear m_flags because after allocating an new extent, 608 * it will be set again. 609 */ 610 map->m_flags &= ~EXT4_MAP_FLAGS; 611 612 /* 613 * New blocks allocate and/or writing to unwritten extent 614 * will possibly result in updating i_data, so we take 615 * the write lock of i_data_sem, and call get_block() 616 * with create == 1 flag. 617 */ 618 down_write(&EXT4_I(inode)->i_data_sem); 619 620 /* 621 * We need to check for EXT4 here because migrate 622 * could have changed the inode type in between 623 */ 624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 625 retval = ext4_ext_map_blocks(handle, inode, map, flags); 626 } else { 627 retval = ext4_ind_map_blocks(handle, inode, map, flags); 628 629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 630 /* 631 * We allocated new blocks which will result in 632 * i_data's format changing. Force the migrate 633 * to fail by clearing migrate flags 634 */ 635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 636 } 637 638 /* 639 * Update reserved blocks/metadata blocks after successful 640 * block allocation which had been deferred till now. We don't 641 * support fallocate for non extent files. So we can update 642 * reserve space here. 643 */ 644 if ((retval > 0) && 645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 646 ext4_da_update_reserve_space(inode, retval, 1); 647 } 648 649 if (retval > 0) { 650 unsigned int status; 651 652 if (unlikely(retval != map->m_len)) { 653 ext4_warning(inode->i_sb, 654 "ES len assertion failed for inode " 655 "%lu: retval %d != map->m_len %d", 656 inode->i_ino, retval, map->m_len); 657 WARN_ON(1); 658 } 659 660 /* 661 * We have to zeroout blocks before inserting them into extent 662 * status tree. Otherwise someone could look them up there and 663 * use them before they are really zeroed. We also have to 664 * unmap metadata before zeroing as otherwise writeback can 665 * overwrite zeros with stale data from block device. 666 */ 667 if (flags & EXT4_GET_BLOCKS_ZERO && 668 map->m_flags & EXT4_MAP_MAPPED && 669 map->m_flags & EXT4_MAP_NEW) { 670 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 671 map->m_len); 672 ret = ext4_issue_zeroout(inode, map->m_lblk, 673 map->m_pblk, map->m_len); 674 if (ret) { 675 retval = ret; 676 goto out_sem; 677 } 678 } 679 680 /* 681 * If the extent has been zeroed out, we don't need to update 682 * extent status tree. 683 */ 684 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 685 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 686 if (ext4_es_is_written(&es)) 687 goto out_sem; 688 } 689 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 690 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 691 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 692 !(status & EXTENT_STATUS_WRITTEN) && 693 ext4_find_delalloc_range(inode, map->m_lblk, 694 map->m_lblk + map->m_len - 1)) 695 status |= EXTENT_STATUS_DELAYED; 696 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 697 map->m_pblk, status); 698 if (ret < 0) { 699 retval = ret; 700 goto out_sem; 701 } 702 } 703 704 out_sem: 705 up_write((&EXT4_I(inode)->i_data_sem)); 706 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 707 ret = check_block_validity(inode, map); 708 if (ret != 0) 709 return ret; 710 711 /* 712 * Inodes with freshly allocated blocks where contents will be 713 * visible after transaction commit must be on transaction's 714 * ordered data list. 715 */ 716 if (map->m_flags & EXT4_MAP_NEW && 717 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 718 !(flags & EXT4_GET_BLOCKS_ZERO) && 719 !ext4_is_quota_file(inode) && 720 ext4_should_order_data(inode)) { 721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 722 ret = ext4_jbd2_inode_add_wait(handle, inode); 723 else 724 ret = ext4_jbd2_inode_add_write(handle, inode); 725 if (ret) 726 return ret; 727 } 728 } 729 return retval; 730 } 731 732 /* 733 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 734 * we have to be careful as someone else may be manipulating b_state as well. 735 */ 736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 737 { 738 unsigned long old_state; 739 unsigned long new_state; 740 741 flags &= EXT4_MAP_FLAGS; 742 743 /* Dummy buffer_head? Set non-atomically. */ 744 if (!bh->b_page) { 745 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 746 return; 747 } 748 /* 749 * Someone else may be modifying b_state. Be careful! This is ugly but 750 * once we get rid of using bh as a container for mapping information 751 * to pass to / from get_block functions, this can go away. 752 */ 753 do { 754 old_state = READ_ONCE(bh->b_state); 755 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 756 } while (unlikely( 757 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 758 } 759 760 static int _ext4_get_block(struct inode *inode, sector_t iblock, 761 struct buffer_head *bh, int flags) 762 { 763 struct ext4_map_blocks map; 764 int ret = 0; 765 766 if (ext4_has_inline_data(inode)) 767 return -ERANGE; 768 769 map.m_lblk = iblock; 770 map.m_len = bh->b_size >> inode->i_blkbits; 771 772 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 773 flags); 774 if (ret > 0) { 775 map_bh(bh, inode->i_sb, map.m_pblk); 776 ext4_update_bh_state(bh, map.m_flags); 777 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 778 ret = 0; 779 } else if (ret == 0) { 780 /* hole case, need to fill in bh->b_size */ 781 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 782 } 783 return ret; 784 } 785 786 int ext4_get_block(struct inode *inode, sector_t iblock, 787 struct buffer_head *bh, int create) 788 { 789 return _ext4_get_block(inode, iblock, bh, 790 create ? EXT4_GET_BLOCKS_CREATE : 0); 791 } 792 793 /* 794 * Get block function used when preparing for buffered write if we require 795 * creating an unwritten extent if blocks haven't been allocated. The extent 796 * will be converted to written after the IO is complete. 797 */ 798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 799 struct buffer_head *bh_result, int create) 800 { 801 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 802 inode->i_ino, create); 803 return _ext4_get_block(inode, iblock, bh_result, 804 EXT4_GET_BLOCKS_IO_CREATE_EXT); 805 } 806 807 /* Maximum number of blocks we map for direct IO at once. */ 808 #define DIO_MAX_BLOCKS 4096 809 810 /* 811 * Get blocks function for the cases that need to start a transaction - 812 * generally difference cases of direct IO and DAX IO. It also handles retries 813 * in case of ENOSPC. 814 */ 815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 816 struct buffer_head *bh_result, int flags) 817 { 818 int dio_credits; 819 handle_t *handle; 820 int retries = 0; 821 int ret; 822 823 /* Trim mapping request to maximum we can map at once for DIO */ 824 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 825 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 826 dio_credits = ext4_chunk_trans_blocks(inode, 827 bh_result->b_size >> inode->i_blkbits); 828 retry: 829 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 830 if (IS_ERR(handle)) 831 return PTR_ERR(handle); 832 833 ret = _ext4_get_block(inode, iblock, bh_result, flags); 834 ext4_journal_stop(handle); 835 836 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 837 goto retry; 838 return ret; 839 } 840 841 /* Get block function for DIO reads and writes to inodes without extents */ 842 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 843 struct buffer_head *bh, int create) 844 { 845 /* We don't expect handle for direct IO */ 846 WARN_ON_ONCE(ext4_journal_current_handle()); 847 848 if (!create) 849 return _ext4_get_block(inode, iblock, bh, 0); 850 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 851 } 852 853 /* 854 * Get block function for AIO DIO writes when we create unwritten extent if 855 * blocks are not allocated yet. The extent will be converted to written 856 * after IO is complete. 857 */ 858 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 859 sector_t iblock, struct buffer_head *bh_result, int create) 860 { 861 int ret; 862 863 /* We don't expect handle for direct IO */ 864 WARN_ON_ONCE(ext4_journal_current_handle()); 865 866 ret = ext4_get_block_trans(inode, iblock, bh_result, 867 EXT4_GET_BLOCKS_IO_CREATE_EXT); 868 869 /* 870 * When doing DIO using unwritten extents, we need io_end to convert 871 * unwritten extents to written on IO completion. We allocate io_end 872 * once we spot unwritten extent and store it in b_private. Generic 873 * DIO code keeps b_private set and furthermore passes the value to 874 * our completion callback in 'private' argument. 875 */ 876 if (!ret && buffer_unwritten(bh_result)) { 877 if (!bh_result->b_private) { 878 ext4_io_end_t *io_end; 879 880 io_end = ext4_init_io_end(inode, GFP_KERNEL); 881 if (!io_end) 882 return -ENOMEM; 883 bh_result->b_private = io_end; 884 ext4_set_io_unwritten_flag(inode, io_end); 885 } 886 set_buffer_defer_completion(bh_result); 887 } 888 889 return ret; 890 } 891 892 /* 893 * Get block function for non-AIO DIO writes when we create unwritten extent if 894 * blocks are not allocated yet. The extent will be converted to written 895 * after IO is complete by ext4_direct_IO_write(). 896 */ 897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 898 sector_t iblock, struct buffer_head *bh_result, int create) 899 { 900 int ret; 901 902 /* We don't expect handle for direct IO */ 903 WARN_ON_ONCE(ext4_journal_current_handle()); 904 905 ret = ext4_get_block_trans(inode, iblock, bh_result, 906 EXT4_GET_BLOCKS_IO_CREATE_EXT); 907 908 /* 909 * Mark inode as having pending DIO writes to unwritten extents. 910 * ext4_direct_IO_write() checks this flag and converts extents to 911 * written. 912 */ 913 if (!ret && buffer_unwritten(bh_result)) 914 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 915 916 return ret; 917 } 918 919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 920 struct buffer_head *bh_result, int create) 921 { 922 int ret; 923 924 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 925 inode->i_ino, create); 926 /* We don't expect handle for direct IO */ 927 WARN_ON_ONCE(ext4_journal_current_handle()); 928 929 ret = _ext4_get_block(inode, iblock, bh_result, 0); 930 /* 931 * Blocks should have been preallocated! ext4_file_write_iter() checks 932 * that. 933 */ 934 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 935 936 return ret; 937 } 938 939 940 /* 941 * `handle' can be NULL if create is zero 942 */ 943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 944 ext4_lblk_t block, int map_flags) 945 { 946 struct ext4_map_blocks map; 947 struct buffer_head *bh; 948 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 949 int err; 950 951 J_ASSERT(handle != NULL || create == 0); 952 953 map.m_lblk = block; 954 map.m_len = 1; 955 err = ext4_map_blocks(handle, inode, &map, map_flags); 956 957 if (err == 0) 958 return create ? ERR_PTR(-ENOSPC) : NULL; 959 if (err < 0) 960 return ERR_PTR(err); 961 962 bh = sb_getblk(inode->i_sb, map.m_pblk); 963 if (unlikely(!bh)) 964 return ERR_PTR(-ENOMEM); 965 if (map.m_flags & EXT4_MAP_NEW) { 966 J_ASSERT(create != 0); 967 J_ASSERT(handle != NULL); 968 969 /* 970 * Now that we do not always journal data, we should 971 * keep in mind whether this should always journal the 972 * new buffer as metadata. For now, regular file 973 * writes use ext4_get_block instead, so it's not a 974 * problem. 975 */ 976 lock_buffer(bh); 977 BUFFER_TRACE(bh, "call get_create_access"); 978 err = ext4_journal_get_create_access(handle, bh); 979 if (unlikely(err)) { 980 unlock_buffer(bh); 981 goto errout; 982 } 983 if (!buffer_uptodate(bh)) { 984 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 985 set_buffer_uptodate(bh); 986 } 987 unlock_buffer(bh); 988 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 989 err = ext4_handle_dirty_metadata(handle, inode, bh); 990 if (unlikely(err)) 991 goto errout; 992 } else 993 BUFFER_TRACE(bh, "not a new buffer"); 994 return bh; 995 errout: 996 brelse(bh); 997 return ERR_PTR(err); 998 } 999 1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1001 ext4_lblk_t block, int map_flags) 1002 { 1003 struct buffer_head *bh; 1004 1005 bh = ext4_getblk(handle, inode, block, map_flags); 1006 if (IS_ERR(bh)) 1007 return bh; 1008 if (!bh || buffer_uptodate(bh)) 1009 return bh; 1010 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1011 wait_on_buffer(bh); 1012 if (buffer_uptodate(bh)) 1013 return bh; 1014 put_bh(bh); 1015 return ERR_PTR(-EIO); 1016 } 1017 1018 /* Read a contiguous batch of blocks. */ 1019 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1020 bool wait, struct buffer_head **bhs) 1021 { 1022 int i, err; 1023 1024 for (i = 0; i < bh_count; i++) { 1025 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1026 if (IS_ERR(bhs[i])) { 1027 err = PTR_ERR(bhs[i]); 1028 bh_count = i; 1029 goto out_brelse; 1030 } 1031 } 1032 1033 for (i = 0; i < bh_count; i++) 1034 /* Note that NULL bhs[i] is valid because of holes. */ 1035 if (bhs[i] && !buffer_uptodate(bhs[i])) 1036 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1037 &bhs[i]); 1038 1039 if (!wait) 1040 return 0; 1041 1042 for (i = 0; i < bh_count; i++) 1043 if (bhs[i]) 1044 wait_on_buffer(bhs[i]); 1045 1046 for (i = 0; i < bh_count; i++) { 1047 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1048 err = -EIO; 1049 goto out_brelse; 1050 } 1051 } 1052 return 0; 1053 1054 out_brelse: 1055 for (i = 0; i < bh_count; i++) { 1056 brelse(bhs[i]); 1057 bhs[i] = NULL; 1058 } 1059 return err; 1060 } 1061 1062 int ext4_walk_page_buffers(handle_t *handle, 1063 struct buffer_head *head, 1064 unsigned from, 1065 unsigned to, 1066 int *partial, 1067 int (*fn)(handle_t *handle, 1068 struct buffer_head *bh)) 1069 { 1070 struct buffer_head *bh; 1071 unsigned block_start, block_end; 1072 unsigned blocksize = head->b_size; 1073 int err, ret = 0; 1074 struct buffer_head *next; 1075 1076 for (bh = head, block_start = 0; 1077 ret == 0 && (bh != head || !block_start); 1078 block_start = block_end, bh = next) { 1079 next = bh->b_this_page; 1080 block_end = block_start + blocksize; 1081 if (block_end <= from || block_start >= to) { 1082 if (partial && !buffer_uptodate(bh)) 1083 *partial = 1; 1084 continue; 1085 } 1086 err = (*fn)(handle, bh); 1087 if (!ret) 1088 ret = err; 1089 } 1090 return ret; 1091 } 1092 1093 /* 1094 * To preserve ordering, it is essential that the hole instantiation and 1095 * the data write be encapsulated in a single transaction. We cannot 1096 * close off a transaction and start a new one between the ext4_get_block() 1097 * and the commit_write(). So doing the jbd2_journal_start at the start of 1098 * prepare_write() is the right place. 1099 * 1100 * Also, this function can nest inside ext4_writepage(). In that case, we 1101 * *know* that ext4_writepage() has generated enough buffer credits to do the 1102 * whole page. So we won't block on the journal in that case, which is good, 1103 * because the caller may be PF_MEMALLOC. 1104 * 1105 * By accident, ext4 can be reentered when a transaction is open via 1106 * quota file writes. If we were to commit the transaction while thus 1107 * reentered, there can be a deadlock - we would be holding a quota 1108 * lock, and the commit would never complete if another thread had a 1109 * transaction open and was blocking on the quota lock - a ranking 1110 * violation. 1111 * 1112 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1113 * will _not_ run commit under these circumstances because handle->h_ref 1114 * is elevated. We'll still have enough credits for the tiny quotafile 1115 * write. 1116 */ 1117 int do_journal_get_write_access(handle_t *handle, 1118 struct buffer_head *bh) 1119 { 1120 int dirty = buffer_dirty(bh); 1121 int ret; 1122 1123 if (!buffer_mapped(bh) || buffer_freed(bh)) 1124 return 0; 1125 /* 1126 * __block_write_begin() could have dirtied some buffers. Clean 1127 * the dirty bit as jbd2_journal_get_write_access() could complain 1128 * otherwise about fs integrity issues. Setting of the dirty bit 1129 * by __block_write_begin() isn't a real problem here as we clear 1130 * the bit before releasing a page lock and thus writeback cannot 1131 * ever write the buffer. 1132 */ 1133 if (dirty) 1134 clear_buffer_dirty(bh); 1135 BUFFER_TRACE(bh, "get write access"); 1136 ret = ext4_journal_get_write_access(handle, bh); 1137 if (!ret && dirty) 1138 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1139 return ret; 1140 } 1141 1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1143 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1144 get_block_t *get_block) 1145 { 1146 unsigned from = pos & (PAGE_SIZE - 1); 1147 unsigned to = from + len; 1148 struct inode *inode = page->mapping->host; 1149 unsigned block_start, block_end; 1150 sector_t block; 1151 int err = 0; 1152 unsigned blocksize = inode->i_sb->s_blocksize; 1153 unsigned bbits; 1154 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1155 bool decrypt = false; 1156 1157 BUG_ON(!PageLocked(page)); 1158 BUG_ON(from > PAGE_SIZE); 1159 BUG_ON(to > PAGE_SIZE); 1160 BUG_ON(from > to); 1161 1162 if (!page_has_buffers(page)) 1163 create_empty_buffers(page, blocksize, 0); 1164 head = page_buffers(page); 1165 bbits = ilog2(blocksize); 1166 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1167 1168 for (bh = head, block_start = 0; bh != head || !block_start; 1169 block++, block_start = block_end, bh = bh->b_this_page) { 1170 block_end = block_start + blocksize; 1171 if (block_end <= from || block_start >= to) { 1172 if (PageUptodate(page)) { 1173 if (!buffer_uptodate(bh)) 1174 set_buffer_uptodate(bh); 1175 } 1176 continue; 1177 } 1178 if (buffer_new(bh)) 1179 clear_buffer_new(bh); 1180 if (!buffer_mapped(bh)) { 1181 WARN_ON(bh->b_size != blocksize); 1182 err = get_block(inode, block, bh, 1); 1183 if (err) 1184 break; 1185 if (buffer_new(bh)) { 1186 clean_bdev_bh_alias(bh); 1187 if (PageUptodate(page)) { 1188 clear_buffer_new(bh); 1189 set_buffer_uptodate(bh); 1190 mark_buffer_dirty(bh); 1191 continue; 1192 } 1193 if (block_end > to || block_start < from) 1194 zero_user_segments(page, to, block_end, 1195 block_start, from); 1196 continue; 1197 } 1198 } 1199 if (PageUptodate(page)) { 1200 if (!buffer_uptodate(bh)) 1201 set_buffer_uptodate(bh); 1202 continue; 1203 } 1204 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1205 !buffer_unwritten(bh) && 1206 (block_start < from || block_end > to)) { 1207 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1208 *wait_bh++ = bh; 1209 decrypt = ext4_encrypted_inode(inode) && 1210 S_ISREG(inode->i_mode); 1211 } 1212 } 1213 /* 1214 * If we issued read requests, let them complete. 1215 */ 1216 while (wait_bh > wait) { 1217 wait_on_buffer(*--wait_bh); 1218 if (!buffer_uptodate(*wait_bh)) 1219 err = -EIO; 1220 } 1221 if (unlikely(err)) 1222 page_zero_new_buffers(page, from, to); 1223 else if (decrypt) 1224 err = fscrypt_decrypt_page(page->mapping->host, page, 1225 PAGE_SIZE, 0, page->index); 1226 return err; 1227 } 1228 #endif 1229 1230 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1231 loff_t pos, unsigned len, unsigned flags, 1232 struct page **pagep, void **fsdata) 1233 { 1234 struct inode *inode = mapping->host; 1235 int ret, needed_blocks; 1236 handle_t *handle; 1237 int retries = 0; 1238 struct page *page; 1239 pgoff_t index; 1240 unsigned from, to; 1241 1242 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1243 return -EIO; 1244 1245 trace_ext4_write_begin(inode, pos, len, flags); 1246 /* 1247 * Reserve one block more for addition to orphan list in case 1248 * we allocate blocks but write fails for some reason 1249 */ 1250 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1251 index = pos >> PAGE_SHIFT; 1252 from = pos & (PAGE_SIZE - 1); 1253 to = from + len; 1254 1255 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1256 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1257 flags, pagep); 1258 if (ret < 0) 1259 return ret; 1260 if (ret == 1) 1261 return 0; 1262 } 1263 1264 /* 1265 * grab_cache_page_write_begin() can take a long time if the 1266 * system is thrashing due to memory pressure, or if the page 1267 * is being written back. So grab it first before we start 1268 * the transaction handle. This also allows us to allocate 1269 * the page (if needed) without using GFP_NOFS. 1270 */ 1271 retry_grab: 1272 page = grab_cache_page_write_begin(mapping, index, flags); 1273 if (!page) 1274 return -ENOMEM; 1275 unlock_page(page); 1276 1277 retry_journal: 1278 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1279 if (IS_ERR(handle)) { 1280 put_page(page); 1281 return PTR_ERR(handle); 1282 } 1283 1284 lock_page(page); 1285 if (page->mapping != mapping) { 1286 /* The page got truncated from under us */ 1287 unlock_page(page); 1288 put_page(page); 1289 ext4_journal_stop(handle); 1290 goto retry_grab; 1291 } 1292 /* In case writeback began while the page was unlocked */ 1293 wait_for_stable_page(page); 1294 1295 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1296 if (ext4_should_dioread_nolock(inode)) 1297 ret = ext4_block_write_begin(page, pos, len, 1298 ext4_get_block_unwritten); 1299 else 1300 ret = ext4_block_write_begin(page, pos, len, 1301 ext4_get_block); 1302 #else 1303 if (ext4_should_dioread_nolock(inode)) 1304 ret = __block_write_begin(page, pos, len, 1305 ext4_get_block_unwritten); 1306 else 1307 ret = __block_write_begin(page, pos, len, ext4_get_block); 1308 #endif 1309 if (!ret && ext4_should_journal_data(inode)) { 1310 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1311 from, to, NULL, 1312 do_journal_get_write_access); 1313 } 1314 1315 if (ret) { 1316 unlock_page(page); 1317 /* 1318 * __block_write_begin may have instantiated a few blocks 1319 * outside i_size. Trim these off again. Don't need 1320 * i_size_read because we hold i_mutex. 1321 * 1322 * Add inode to orphan list in case we crash before 1323 * truncate finishes 1324 */ 1325 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1326 ext4_orphan_add(handle, inode); 1327 1328 ext4_journal_stop(handle); 1329 if (pos + len > inode->i_size) { 1330 ext4_truncate_failed_write(inode); 1331 /* 1332 * If truncate failed early the inode might 1333 * still be on the orphan list; we need to 1334 * make sure the inode is removed from the 1335 * orphan list in that case. 1336 */ 1337 if (inode->i_nlink) 1338 ext4_orphan_del(NULL, inode); 1339 } 1340 1341 if (ret == -ENOSPC && 1342 ext4_should_retry_alloc(inode->i_sb, &retries)) 1343 goto retry_journal; 1344 put_page(page); 1345 return ret; 1346 } 1347 *pagep = page; 1348 return ret; 1349 } 1350 1351 /* For write_end() in data=journal mode */ 1352 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1353 { 1354 int ret; 1355 if (!buffer_mapped(bh) || buffer_freed(bh)) 1356 return 0; 1357 set_buffer_uptodate(bh); 1358 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1359 clear_buffer_meta(bh); 1360 clear_buffer_prio(bh); 1361 return ret; 1362 } 1363 1364 /* 1365 * We need to pick up the new inode size which generic_commit_write gave us 1366 * `file' can be NULL - eg, when called from page_symlink(). 1367 * 1368 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1369 * buffers are managed internally. 1370 */ 1371 static int ext4_write_end(struct file *file, 1372 struct address_space *mapping, 1373 loff_t pos, unsigned len, unsigned copied, 1374 struct page *page, void *fsdata) 1375 { 1376 handle_t *handle = ext4_journal_current_handle(); 1377 struct inode *inode = mapping->host; 1378 loff_t old_size = inode->i_size; 1379 int ret = 0, ret2; 1380 int i_size_changed = 0; 1381 1382 trace_ext4_write_end(inode, pos, len, copied); 1383 if (ext4_has_inline_data(inode)) { 1384 ret = ext4_write_inline_data_end(inode, pos, len, 1385 copied, page); 1386 if (ret < 0) { 1387 unlock_page(page); 1388 put_page(page); 1389 goto errout; 1390 } 1391 copied = ret; 1392 } else 1393 copied = block_write_end(file, mapping, pos, 1394 len, copied, page, fsdata); 1395 /* 1396 * it's important to update i_size while still holding page lock: 1397 * page writeout could otherwise come in and zero beyond i_size. 1398 */ 1399 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1400 unlock_page(page); 1401 put_page(page); 1402 1403 if (old_size < pos) 1404 pagecache_isize_extended(inode, old_size, pos); 1405 /* 1406 * Don't mark the inode dirty under page lock. First, it unnecessarily 1407 * makes the holding time of page lock longer. Second, it forces lock 1408 * ordering of page lock and transaction start for journaling 1409 * filesystems. 1410 */ 1411 if (i_size_changed) 1412 ext4_mark_inode_dirty(handle, inode); 1413 1414 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1415 /* if we have allocated more blocks and copied 1416 * less. We will have blocks allocated outside 1417 * inode->i_size. So truncate them 1418 */ 1419 ext4_orphan_add(handle, inode); 1420 errout: 1421 ret2 = ext4_journal_stop(handle); 1422 if (!ret) 1423 ret = ret2; 1424 1425 if (pos + len > inode->i_size) { 1426 ext4_truncate_failed_write(inode); 1427 /* 1428 * If truncate failed early the inode might still be 1429 * on the orphan list; we need to make sure the inode 1430 * is removed from the orphan list in that case. 1431 */ 1432 if (inode->i_nlink) 1433 ext4_orphan_del(NULL, inode); 1434 } 1435 1436 return ret ? ret : copied; 1437 } 1438 1439 /* 1440 * This is a private version of page_zero_new_buffers() which doesn't 1441 * set the buffer to be dirty, since in data=journalled mode we need 1442 * to call ext4_handle_dirty_metadata() instead. 1443 */ 1444 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1445 struct page *page, 1446 unsigned from, unsigned to) 1447 { 1448 unsigned int block_start = 0, block_end; 1449 struct buffer_head *head, *bh; 1450 1451 bh = head = page_buffers(page); 1452 do { 1453 block_end = block_start + bh->b_size; 1454 if (buffer_new(bh)) { 1455 if (block_end > from && block_start < to) { 1456 if (!PageUptodate(page)) { 1457 unsigned start, size; 1458 1459 start = max(from, block_start); 1460 size = min(to, block_end) - start; 1461 1462 zero_user(page, start, size); 1463 write_end_fn(handle, bh); 1464 } 1465 clear_buffer_new(bh); 1466 } 1467 } 1468 block_start = block_end; 1469 bh = bh->b_this_page; 1470 } while (bh != head); 1471 } 1472 1473 static int ext4_journalled_write_end(struct file *file, 1474 struct address_space *mapping, 1475 loff_t pos, unsigned len, unsigned copied, 1476 struct page *page, void *fsdata) 1477 { 1478 handle_t *handle = ext4_journal_current_handle(); 1479 struct inode *inode = mapping->host; 1480 loff_t old_size = inode->i_size; 1481 int ret = 0, ret2; 1482 int partial = 0; 1483 unsigned from, to; 1484 int size_changed = 0; 1485 1486 trace_ext4_journalled_write_end(inode, pos, len, copied); 1487 from = pos & (PAGE_SIZE - 1); 1488 to = from + len; 1489 1490 BUG_ON(!ext4_handle_valid(handle)); 1491 1492 if (ext4_has_inline_data(inode)) { 1493 ret = ext4_write_inline_data_end(inode, pos, len, 1494 copied, page); 1495 if (ret < 0) { 1496 unlock_page(page); 1497 put_page(page); 1498 goto errout; 1499 } 1500 copied = ret; 1501 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1502 copied = 0; 1503 ext4_journalled_zero_new_buffers(handle, page, from, to); 1504 } else { 1505 if (unlikely(copied < len)) 1506 ext4_journalled_zero_new_buffers(handle, page, 1507 from + copied, to); 1508 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1509 from + copied, &partial, 1510 write_end_fn); 1511 if (!partial) 1512 SetPageUptodate(page); 1513 } 1514 size_changed = ext4_update_inode_size(inode, pos + copied); 1515 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1516 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1517 unlock_page(page); 1518 put_page(page); 1519 1520 if (old_size < pos) 1521 pagecache_isize_extended(inode, old_size, pos); 1522 1523 if (size_changed) { 1524 ret2 = ext4_mark_inode_dirty(handle, inode); 1525 if (!ret) 1526 ret = ret2; 1527 } 1528 1529 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1530 /* if we have allocated more blocks and copied 1531 * less. We will have blocks allocated outside 1532 * inode->i_size. So truncate them 1533 */ 1534 ext4_orphan_add(handle, inode); 1535 1536 errout: 1537 ret2 = ext4_journal_stop(handle); 1538 if (!ret) 1539 ret = ret2; 1540 if (pos + len > inode->i_size) { 1541 ext4_truncate_failed_write(inode); 1542 /* 1543 * If truncate failed early the inode might still be 1544 * on the orphan list; we need to make sure the inode 1545 * is removed from the orphan list in that case. 1546 */ 1547 if (inode->i_nlink) 1548 ext4_orphan_del(NULL, inode); 1549 } 1550 1551 return ret ? ret : copied; 1552 } 1553 1554 /* 1555 * Reserve space for a single cluster 1556 */ 1557 static int ext4_da_reserve_space(struct inode *inode) 1558 { 1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1560 struct ext4_inode_info *ei = EXT4_I(inode); 1561 int ret; 1562 1563 /* 1564 * We will charge metadata quota at writeout time; this saves 1565 * us from metadata over-estimation, though we may go over by 1566 * a small amount in the end. Here we just reserve for data. 1567 */ 1568 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1569 if (ret) 1570 return ret; 1571 1572 spin_lock(&ei->i_block_reservation_lock); 1573 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1574 spin_unlock(&ei->i_block_reservation_lock); 1575 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1576 return -ENOSPC; 1577 } 1578 ei->i_reserved_data_blocks++; 1579 trace_ext4_da_reserve_space(inode); 1580 spin_unlock(&ei->i_block_reservation_lock); 1581 1582 return 0; /* success */ 1583 } 1584 1585 static void ext4_da_release_space(struct inode *inode, int to_free) 1586 { 1587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1588 struct ext4_inode_info *ei = EXT4_I(inode); 1589 1590 if (!to_free) 1591 return; /* Nothing to release, exit */ 1592 1593 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1594 1595 trace_ext4_da_release_space(inode, to_free); 1596 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1597 /* 1598 * if there aren't enough reserved blocks, then the 1599 * counter is messed up somewhere. Since this 1600 * function is called from invalidate page, it's 1601 * harmless to return without any action. 1602 */ 1603 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1604 "ino %lu, to_free %d with only %d reserved " 1605 "data blocks", inode->i_ino, to_free, 1606 ei->i_reserved_data_blocks); 1607 WARN_ON(1); 1608 to_free = ei->i_reserved_data_blocks; 1609 } 1610 ei->i_reserved_data_blocks -= to_free; 1611 1612 /* update fs dirty data blocks counter */ 1613 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1614 1615 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1616 1617 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1618 } 1619 1620 static void ext4_da_page_release_reservation(struct page *page, 1621 unsigned int offset, 1622 unsigned int length) 1623 { 1624 int to_release = 0, contiguous_blks = 0; 1625 struct buffer_head *head, *bh; 1626 unsigned int curr_off = 0; 1627 struct inode *inode = page->mapping->host; 1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1629 unsigned int stop = offset + length; 1630 int num_clusters; 1631 ext4_fsblk_t lblk; 1632 1633 BUG_ON(stop > PAGE_SIZE || stop < length); 1634 1635 head = page_buffers(page); 1636 bh = head; 1637 do { 1638 unsigned int next_off = curr_off + bh->b_size; 1639 1640 if (next_off > stop) 1641 break; 1642 1643 if ((offset <= curr_off) && (buffer_delay(bh))) { 1644 to_release++; 1645 contiguous_blks++; 1646 clear_buffer_delay(bh); 1647 } else if (contiguous_blks) { 1648 lblk = page->index << 1649 (PAGE_SHIFT - inode->i_blkbits); 1650 lblk += (curr_off >> inode->i_blkbits) - 1651 contiguous_blks; 1652 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1653 contiguous_blks = 0; 1654 } 1655 curr_off = next_off; 1656 } while ((bh = bh->b_this_page) != head); 1657 1658 if (contiguous_blks) { 1659 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1660 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1661 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1662 } 1663 1664 /* If we have released all the blocks belonging to a cluster, then we 1665 * need to release the reserved space for that cluster. */ 1666 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1667 while (num_clusters > 0) { 1668 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1669 ((num_clusters - 1) << sbi->s_cluster_bits); 1670 if (sbi->s_cluster_ratio == 1 || 1671 !ext4_find_delalloc_cluster(inode, lblk)) 1672 ext4_da_release_space(inode, 1); 1673 1674 num_clusters--; 1675 } 1676 } 1677 1678 /* 1679 * Delayed allocation stuff 1680 */ 1681 1682 struct mpage_da_data { 1683 struct inode *inode; 1684 struct writeback_control *wbc; 1685 1686 pgoff_t first_page; /* The first page to write */ 1687 pgoff_t next_page; /* Current page to examine */ 1688 pgoff_t last_page; /* Last page to examine */ 1689 /* 1690 * Extent to map - this can be after first_page because that can be 1691 * fully mapped. We somewhat abuse m_flags to store whether the extent 1692 * is delalloc or unwritten. 1693 */ 1694 struct ext4_map_blocks map; 1695 struct ext4_io_submit io_submit; /* IO submission data */ 1696 unsigned int do_map:1; 1697 }; 1698 1699 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1700 bool invalidate) 1701 { 1702 int nr_pages, i; 1703 pgoff_t index, end; 1704 struct pagevec pvec; 1705 struct inode *inode = mpd->inode; 1706 struct address_space *mapping = inode->i_mapping; 1707 1708 /* This is necessary when next_page == 0. */ 1709 if (mpd->first_page >= mpd->next_page) 1710 return; 1711 1712 index = mpd->first_page; 1713 end = mpd->next_page - 1; 1714 if (invalidate) { 1715 ext4_lblk_t start, last; 1716 start = index << (PAGE_SHIFT - inode->i_blkbits); 1717 last = end << (PAGE_SHIFT - inode->i_blkbits); 1718 ext4_es_remove_extent(inode, start, last - start + 1); 1719 } 1720 1721 pagevec_init(&pvec, 0); 1722 while (index <= end) { 1723 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1724 if (nr_pages == 0) 1725 break; 1726 for (i = 0; i < nr_pages; i++) { 1727 struct page *page = pvec.pages[i]; 1728 if (page->index > end) 1729 break; 1730 BUG_ON(!PageLocked(page)); 1731 BUG_ON(PageWriteback(page)); 1732 if (invalidate) { 1733 if (page_mapped(page)) 1734 clear_page_dirty_for_io(page); 1735 block_invalidatepage(page, 0, PAGE_SIZE); 1736 ClearPageUptodate(page); 1737 } 1738 unlock_page(page); 1739 } 1740 index = pvec.pages[nr_pages - 1]->index + 1; 1741 pagevec_release(&pvec); 1742 } 1743 } 1744 1745 static void ext4_print_free_blocks(struct inode *inode) 1746 { 1747 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1748 struct super_block *sb = inode->i_sb; 1749 struct ext4_inode_info *ei = EXT4_I(inode); 1750 1751 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1752 EXT4_C2B(EXT4_SB(inode->i_sb), 1753 ext4_count_free_clusters(sb))); 1754 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1755 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1756 (long long) EXT4_C2B(EXT4_SB(sb), 1757 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1758 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1759 (long long) EXT4_C2B(EXT4_SB(sb), 1760 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1761 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1762 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1763 ei->i_reserved_data_blocks); 1764 return; 1765 } 1766 1767 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1768 { 1769 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1770 } 1771 1772 /* 1773 * This function is grabs code from the very beginning of 1774 * ext4_map_blocks, but assumes that the caller is from delayed write 1775 * time. This function looks up the requested blocks and sets the 1776 * buffer delay bit under the protection of i_data_sem. 1777 */ 1778 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1779 struct ext4_map_blocks *map, 1780 struct buffer_head *bh) 1781 { 1782 struct extent_status es; 1783 int retval; 1784 sector_t invalid_block = ~((sector_t) 0xffff); 1785 #ifdef ES_AGGRESSIVE_TEST 1786 struct ext4_map_blocks orig_map; 1787 1788 memcpy(&orig_map, map, sizeof(*map)); 1789 #endif 1790 1791 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1792 invalid_block = ~0; 1793 1794 map->m_flags = 0; 1795 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1796 "logical block %lu\n", inode->i_ino, map->m_len, 1797 (unsigned long) map->m_lblk); 1798 1799 /* Lookup extent status tree firstly */ 1800 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1801 if (ext4_es_is_hole(&es)) { 1802 retval = 0; 1803 down_read(&EXT4_I(inode)->i_data_sem); 1804 goto add_delayed; 1805 } 1806 1807 /* 1808 * Delayed extent could be allocated by fallocate. 1809 * So we need to check it. 1810 */ 1811 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1812 map_bh(bh, inode->i_sb, invalid_block); 1813 set_buffer_new(bh); 1814 set_buffer_delay(bh); 1815 return 0; 1816 } 1817 1818 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1819 retval = es.es_len - (iblock - es.es_lblk); 1820 if (retval > map->m_len) 1821 retval = map->m_len; 1822 map->m_len = retval; 1823 if (ext4_es_is_written(&es)) 1824 map->m_flags |= EXT4_MAP_MAPPED; 1825 else if (ext4_es_is_unwritten(&es)) 1826 map->m_flags |= EXT4_MAP_UNWRITTEN; 1827 else 1828 BUG_ON(1); 1829 1830 #ifdef ES_AGGRESSIVE_TEST 1831 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1832 #endif 1833 return retval; 1834 } 1835 1836 /* 1837 * Try to see if we can get the block without requesting a new 1838 * file system block. 1839 */ 1840 down_read(&EXT4_I(inode)->i_data_sem); 1841 if (ext4_has_inline_data(inode)) 1842 retval = 0; 1843 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1844 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1845 else 1846 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1847 1848 add_delayed: 1849 if (retval == 0) { 1850 int ret; 1851 /* 1852 * XXX: __block_prepare_write() unmaps passed block, 1853 * is it OK? 1854 */ 1855 /* 1856 * If the block was allocated from previously allocated cluster, 1857 * then we don't need to reserve it again. However we still need 1858 * to reserve metadata for every block we're going to write. 1859 */ 1860 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1861 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1862 ret = ext4_da_reserve_space(inode); 1863 if (ret) { 1864 /* not enough space to reserve */ 1865 retval = ret; 1866 goto out_unlock; 1867 } 1868 } 1869 1870 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1871 ~0, EXTENT_STATUS_DELAYED); 1872 if (ret) { 1873 retval = ret; 1874 goto out_unlock; 1875 } 1876 1877 map_bh(bh, inode->i_sb, invalid_block); 1878 set_buffer_new(bh); 1879 set_buffer_delay(bh); 1880 } else if (retval > 0) { 1881 int ret; 1882 unsigned int status; 1883 1884 if (unlikely(retval != map->m_len)) { 1885 ext4_warning(inode->i_sb, 1886 "ES len assertion failed for inode " 1887 "%lu: retval %d != map->m_len %d", 1888 inode->i_ino, retval, map->m_len); 1889 WARN_ON(1); 1890 } 1891 1892 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1893 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1894 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1895 map->m_pblk, status); 1896 if (ret != 0) 1897 retval = ret; 1898 } 1899 1900 out_unlock: 1901 up_read((&EXT4_I(inode)->i_data_sem)); 1902 1903 return retval; 1904 } 1905 1906 /* 1907 * This is a special get_block_t callback which is used by 1908 * ext4_da_write_begin(). It will either return mapped block or 1909 * reserve space for a single block. 1910 * 1911 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1912 * We also have b_blocknr = -1 and b_bdev initialized properly 1913 * 1914 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1915 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1916 * initialized properly. 1917 */ 1918 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1919 struct buffer_head *bh, int create) 1920 { 1921 struct ext4_map_blocks map; 1922 int ret = 0; 1923 1924 BUG_ON(create == 0); 1925 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1926 1927 map.m_lblk = iblock; 1928 map.m_len = 1; 1929 1930 /* 1931 * first, we need to know whether the block is allocated already 1932 * preallocated blocks are unmapped but should treated 1933 * the same as allocated blocks. 1934 */ 1935 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1936 if (ret <= 0) 1937 return ret; 1938 1939 map_bh(bh, inode->i_sb, map.m_pblk); 1940 ext4_update_bh_state(bh, map.m_flags); 1941 1942 if (buffer_unwritten(bh)) { 1943 /* A delayed write to unwritten bh should be marked 1944 * new and mapped. Mapped ensures that we don't do 1945 * get_block multiple times when we write to the same 1946 * offset and new ensures that we do proper zero out 1947 * for partial write. 1948 */ 1949 set_buffer_new(bh); 1950 set_buffer_mapped(bh); 1951 } 1952 return 0; 1953 } 1954 1955 static int bget_one(handle_t *handle, struct buffer_head *bh) 1956 { 1957 get_bh(bh); 1958 return 0; 1959 } 1960 1961 static int bput_one(handle_t *handle, struct buffer_head *bh) 1962 { 1963 put_bh(bh); 1964 return 0; 1965 } 1966 1967 static int __ext4_journalled_writepage(struct page *page, 1968 unsigned int len) 1969 { 1970 struct address_space *mapping = page->mapping; 1971 struct inode *inode = mapping->host; 1972 struct buffer_head *page_bufs = NULL; 1973 handle_t *handle = NULL; 1974 int ret = 0, err = 0; 1975 int inline_data = ext4_has_inline_data(inode); 1976 struct buffer_head *inode_bh = NULL; 1977 1978 ClearPageChecked(page); 1979 1980 if (inline_data) { 1981 BUG_ON(page->index != 0); 1982 BUG_ON(len > ext4_get_max_inline_size(inode)); 1983 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1984 if (inode_bh == NULL) 1985 goto out; 1986 } else { 1987 page_bufs = page_buffers(page); 1988 if (!page_bufs) { 1989 BUG(); 1990 goto out; 1991 } 1992 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1993 NULL, bget_one); 1994 } 1995 /* 1996 * We need to release the page lock before we start the 1997 * journal, so grab a reference so the page won't disappear 1998 * out from under us. 1999 */ 2000 get_page(page); 2001 unlock_page(page); 2002 2003 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2004 ext4_writepage_trans_blocks(inode)); 2005 if (IS_ERR(handle)) { 2006 ret = PTR_ERR(handle); 2007 put_page(page); 2008 goto out_no_pagelock; 2009 } 2010 BUG_ON(!ext4_handle_valid(handle)); 2011 2012 lock_page(page); 2013 put_page(page); 2014 if (page->mapping != mapping) { 2015 /* The page got truncated from under us */ 2016 ext4_journal_stop(handle); 2017 ret = 0; 2018 goto out; 2019 } 2020 2021 if (inline_data) { 2022 BUFFER_TRACE(inode_bh, "get write access"); 2023 ret = ext4_journal_get_write_access(handle, inode_bh); 2024 2025 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2026 2027 } else { 2028 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2029 do_journal_get_write_access); 2030 2031 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2032 write_end_fn); 2033 } 2034 if (ret == 0) 2035 ret = err; 2036 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2037 err = ext4_journal_stop(handle); 2038 if (!ret) 2039 ret = err; 2040 2041 if (!ext4_has_inline_data(inode)) 2042 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2043 NULL, bput_one); 2044 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2045 out: 2046 unlock_page(page); 2047 out_no_pagelock: 2048 brelse(inode_bh); 2049 return ret; 2050 } 2051 2052 /* 2053 * Note that we don't need to start a transaction unless we're journaling data 2054 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2055 * need to file the inode to the transaction's list in ordered mode because if 2056 * we are writing back data added by write(), the inode is already there and if 2057 * we are writing back data modified via mmap(), no one guarantees in which 2058 * transaction the data will hit the disk. In case we are journaling data, we 2059 * cannot start transaction directly because transaction start ranks above page 2060 * lock so we have to do some magic. 2061 * 2062 * This function can get called via... 2063 * - ext4_writepages after taking page lock (have journal handle) 2064 * - journal_submit_inode_data_buffers (no journal handle) 2065 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2066 * - grab_page_cache when doing write_begin (have journal handle) 2067 * 2068 * We don't do any block allocation in this function. If we have page with 2069 * multiple blocks we need to write those buffer_heads that are mapped. This 2070 * is important for mmaped based write. So if we do with blocksize 1K 2071 * truncate(f, 1024); 2072 * a = mmap(f, 0, 4096); 2073 * a[0] = 'a'; 2074 * truncate(f, 4096); 2075 * we have in the page first buffer_head mapped via page_mkwrite call back 2076 * but other buffer_heads would be unmapped but dirty (dirty done via the 2077 * do_wp_page). So writepage should write the first block. If we modify 2078 * the mmap area beyond 1024 we will again get a page_fault and the 2079 * page_mkwrite callback will do the block allocation and mark the 2080 * buffer_heads mapped. 2081 * 2082 * We redirty the page if we have any buffer_heads that is either delay or 2083 * unwritten in the page. 2084 * 2085 * We can get recursively called as show below. 2086 * 2087 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2088 * ext4_writepage() 2089 * 2090 * But since we don't do any block allocation we should not deadlock. 2091 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2092 */ 2093 static int ext4_writepage(struct page *page, 2094 struct writeback_control *wbc) 2095 { 2096 int ret = 0; 2097 loff_t size; 2098 unsigned int len; 2099 struct buffer_head *page_bufs = NULL; 2100 struct inode *inode = page->mapping->host; 2101 struct ext4_io_submit io_submit; 2102 bool keep_towrite = false; 2103 2104 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2105 ext4_invalidatepage(page, 0, PAGE_SIZE); 2106 unlock_page(page); 2107 return -EIO; 2108 } 2109 2110 trace_ext4_writepage(page); 2111 size = i_size_read(inode); 2112 if (page->index == size >> PAGE_SHIFT) 2113 len = size & ~PAGE_MASK; 2114 else 2115 len = PAGE_SIZE; 2116 2117 page_bufs = page_buffers(page); 2118 /* 2119 * We cannot do block allocation or other extent handling in this 2120 * function. If there are buffers needing that, we have to redirty 2121 * the page. But we may reach here when we do a journal commit via 2122 * journal_submit_inode_data_buffers() and in that case we must write 2123 * allocated buffers to achieve data=ordered mode guarantees. 2124 * 2125 * Also, if there is only one buffer per page (the fs block 2126 * size == the page size), if one buffer needs block 2127 * allocation or needs to modify the extent tree to clear the 2128 * unwritten flag, we know that the page can't be written at 2129 * all, so we might as well refuse the write immediately. 2130 * Unfortunately if the block size != page size, we can't as 2131 * easily detect this case using ext4_walk_page_buffers(), but 2132 * for the extremely common case, this is an optimization that 2133 * skips a useless round trip through ext4_bio_write_page(). 2134 */ 2135 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2136 ext4_bh_delay_or_unwritten)) { 2137 redirty_page_for_writepage(wbc, page); 2138 if ((current->flags & PF_MEMALLOC) || 2139 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2140 /* 2141 * For memory cleaning there's no point in writing only 2142 * some buffers. So just bail out. Warn if we came here 2143 * from direct reclaim. 2144 */ 2145 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2146 == PF_MEMALLOC); 2147 unlock_page(page); 2148 return 0; 2149 } 2150 keep_towrite = true; 2151 } 2152 2153 if (PageChecked(page) && ext4_should_journal_data(inode)) 2154 /* 2155 * It's mmapped pagecache. Add buffers and journal it. There 2156 * doesn't seem much point in redirtying the page here. 2157 */ 2158 return __ext4_journalled_writepage(page, len); 2159 2160 ext4_io_submit_init(&io_submit, wbc); 2161 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2162 if (!io_submit.io_end) { 2163 redirty_page_for_writepage(wbc, page); 2164 unlock_page(page); 2165 return -ENOMEM; 2166 } 2167 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2168 ext4_io_submit(&io_submit); 2169 /* Drop io_end reference we got from init */ 2170 ext4_put_io_end_defer(io_submit.io_end); 2171 return ret; 2172 } 2173 2174 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2175 { 2176 int len; 2177 loff_t size; 2178 int err; 2179 2180 BUG_ON(page->index != mpd->first_page); 2181 clear_page_dirty_for_io(page); 2182 /* 2183 * We have to be very careful here! Nothing protects writeback path 2184 * against i_size changes and the page can be writeably mapped into 2185 * page tables. So an application can be growing i_size and writing 2186 * data through mmap while writeback runs. clear_page_dirty_for_io() 2187 * write-protects our page in page tables and the page cannot get 2188 * written to again until we release page lock. So only after 2189 * clear_page_dirty_for_io() we are safe to sample i_size for 2190 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2191 * on the barrier provided by TestClearPageDirty in 2192 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2193 * after page tables are updated. 2194 */ 2195 size = i_size_read(mpd->inode); 2196 if (page->index == size >> PAGE_SHIFT) 2197 len = size & ~PAGE_MASK; 2198 else 2199 len = PAGE_SIZE; 2200 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2201 if (!err) 2202 mpd->wbc->nr_to_write--; 2203 mpd->first_page++; 2204 2205 return err; 2206 } 2207 2208 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2209 2210 /* 2211 * mballoc gives us at most this number of blocks... 2212 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2213 * The rest of mballoc seems to handle chunks up to full group size. 2214 */ 2215 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2216 2217 /* 2218 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2219 * 2220 * @mpd - extent of blocks 2221 * @lblk - logical number of the block in the file 2222 * @bh - buffer head we want to add to the extent 2223 * 2224 * The function is used to collect contig. blocks in the same state. If the 2225 * buffer doesn't require mapping for writeback and we haven't started the 2226 * extent of buffers to map yet, the function returns 'true' immediately - the 2227 * caller can write the buffer right away. Otherwise the function returns true 2228 * if the block has been added to the extent, false if the block couldn't be 2229 * added. 2230 */ 2231 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2232 struct buffer_head *bh) 2233 { 2234 struct ext4_map_blocks *map = &mpd->map; 2235 2236 /* Buffer that doesn't need mapping for writeback? */ 2237 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2238 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2239 /* So far no extent to map => we write the buffer right away */ 2240 if (map->m_len == 0) 2241 return true; 2242 return false; 2243 } 2244 2245 /* First block in the extent? */ 2246 if (map->m_len == 0) { 2247 /* We cannot map unless handle is started... */ 2248 if (!mpd->do_map) 2249 return false; 2250 map->m_lblk = lblk; 2251 map->m_len = 1; 2252 map->m_flags = bh->b_state & BH_FLAGS; 2253 return true; 2254 } 2255 2256 /* Don't go larger than mballoc is willing to allocate */ 2257 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2258 return false; 2259 2260 /* Can we merge the block to our big extent? */ 2261 if (lblk == map->m_lblk + map->m_len && 2262 (bh->b_state & BH_FLAGS) == map->m_flags) { 2263 map->m_len++; 2264 return true; 2265 } 2266 return false; 2267 } 2268 2269 /* 2270 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2271 * 2272 * @mpd - extent of blocks for mapping 2273 * @head - the first buffer in the page 2274 * @bh - buffer we should start processing from 2275 * @lblk - logical number of the block in the file corresponding to @bh 2276 * 2277 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2278 * the page for IO if all buffers in this page were mapped and there's no 2279 * accumulated extent of buffers to map or add buffers in the page to the 2280 * extent of buffers to map. The function returns 1 if the caller can continue 2281 * by processing the next page, 0 if it should stop adding buffers to the 2282 * extent to map because we cannot extend it anymore. It can also return value 2283 * < 0 in case of error during IO submission. 2284 */ 2285 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2286 struct buffer_head *head, 2287 struct buffer_head *bh, 2288 ext4_lblk_t lblk) 2289 { 2290 struct inode *inode = mpd->inode; 2291 int err; 2292 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2293 >> inode->i_blkbits; 2294 2295 do { 2296 BUG_ON(buffer_locked(bh)); 2297 2298 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2299 /* Found extent to map? */ 2300 if (mpd->map.m_len) 2301 return 0; 2302 /* Buffer needs mapping and handle is not started? */ 2303 if (!mpd->do_map) 2304 return 0; 2305 /* Everything mapped so far and we hit EOF */ 2306 break; 2307 } 2308 } while (lblk++, (bh = bh->b_this_page) != head); 2309 /* So far everything mapped? Submit the page for IO. */ 2310 if (mpd->map.m_len == 0) { 2311 err = mpage_submit_page(mpd, head->b_page); 2312 if (err < 0) 2313 return err; 2314 } 2315 return lblk < blocks; 2316 } 2317 2318 /* 2319 * mpage_map_buffers - update buffers corresponding to changed extent and 2320 * submit fully mapped pages for IO 2321 * 2322 * @mpd - description of extent to map, on return next extent to map 2323 * 2324 * Scan buffers corresponding to changed extent (we expect corresponding pages 2325 * to be already locked) and update buffer state according to new extent state. 2326 * We map delalloc buffers to their physical location, clear unwritten bits, 2327 * and mark buffers as uninit when we perform writes to unwritten extents 2328 * and do extent conversion after IO is finished. If the last page is not fully 2329 * mapped, we update @map to the next extent in the last page that needs 2330 * mapping. Otherwise we submit the page for IO. 2331 */ 2332 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2333 { 2334 struct pagevec pvec; 2335 int nr_pages, i; 2336 struct inode *inode = mpd->inode; 2337 struct buffer_head *head, *bh; 2338 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2339 pgoff_t start, end; 2340 ext4_lblk_t lblk; 2341 sector_t pblock; 2342 int err; 2343 2344 start = mpd->map.m_lblk >> bpp_bits; 2345 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2346 lblk = start << bpp_bits; 2347 pblock = mpd->map.m_pblk; 2348 2349 pagevec_init(&pvec, 0); 2350 while (start <= end) { 2351 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2352 PAGEVEC_SIZE); 2353 if (nr_pages == 0) 2354 break; 2355 for (i = 0; i < nr_pages; i++) { 2356 struct page *page = pvec.pages[i]; 2357 2358 if (page->index > end) 2359 break; 2360 /* Up to 'end' pages must be contiguous */ 2361 BUG_ON(page->index != start); 2362 bh = head = page_buffers(page); 2363 do { 2364 if (lblk < mpd->map.m_lblk) 2365 continue; 2366 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2367 /* 2368 * Buffer after end of mapped extent. 2369 * Find next buffer in the page to map. 2370 */ 2371 mpd->map.m_len = 0; 2372 mpd->map.m_flags = 0; 2373 /* 2374 * FIXME: If dioread_nolock supports 2375 * blocksize < pagesize, we need to make 2376 * sure we add size mapped so far to 2377 * io_end->size as the following call 2378 * can submit the page for IO. 2379 */ 2380 err = mpage_process_page_bufs(mpd, head, 2381 bh, lblk); 2382 pagevec_release(&pvec); 2383 if (err > 0) 2384 err = 0; 2385 return err; 2386 } 2387 if (buffer_delay(bh)) { 2388 clear_buffer_delay(bh); 2389 bh->b_blocknr = pblock++; 2390 } 2391 clear_buffer_unwritten(bh); 2392 } while (lblk++, (bh = bh->b_this_page) != head); 2393 2394 /* 2395 * FIXME: This is going to break if dioread_nolock 2396 * supports blocksize < pagesize as we will try to 2397 * convert potentially unmapped parts of inode. 2398 */ 2399 mpd->io_submit.io_end->size += PAGE_SIZE; 2400 /* Page fully mapped - let IO run! */ 2401 err = mpage_submit_page(mpd, page); 2402 if (err < 0) { 2403 pagevec_release(&pvec); 2404 return err; 2405 } 2406 start++; 2407 } 2408 pagevec_release(&pvec); 2409 } 2410 /* Extent fully mapped and matches with page boundary. We are done. */ 2411 mpd->map.m_len = 0; 2412 mpd->map.m_flags = 0; 2413 return 0; 2414 } 2415 2416 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2417 { 2418 struct inode *inode = mpd->inode; 2419 struct ext4_map_blocks *map = &mpd->map; 2420 int get_blocks_flags; 2421 int err, dioread_nolock; 2422 2423 trace_ext4_da_write_pages_extent(inode, map); 2424 /* 2425 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2426 * to convert an unwritten extent to be initialized (in the case 2427 * where we have written into one or more preallocated blocks). It is 2428 * possible that we're going to need more metadata blocks than 2429 * previously reserved. However we must not fail because we're in 2430 * writeback and there is nothing we can do about it so it might result 2431 * in data loss. So use reserved blocks to allocate metadata if 2432 * possible. 2433 * 2434 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2435 * the blocks in question are delalloc blocks. This indicates 2436 * that the blocks and quotas has already been checked when 2437 * the data was copied into the page cache. 2438 */ 2439 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2440 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2441 EXT4_GET_BLOCKS_IO_SUBMIT; 2442 dioread_nolock = ext4_should_dioread_nolock(inode); 2443 if (dioread_nolock) 2444 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2445 if (map->m_flags & (1 << BH_Delay)) 2446 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2447 2448 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2449 if (err < 0) 2450 return err; 2451 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2452 if (!mpd->io_submit.io_end->handle && 2453 ext4_handle_valid(handle)) { 2454 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2455 handle->h_rsv_handle = NULL; 2456 } 2457 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2458 } 2459 2460 BUG_ON(map->m_len == 0); 2461 if (map->m_flags & EXT4_MAP_NEW) { 2462 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2463 map->m_len); 2464 } 2465 return 0; 2466 } 2467 2468 /* 2469 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2470 * mpd->len and submit pages underlying it for IO 2471 * 2472 * @handle - handle for journal operations 2473 * @mpd - extent to map 2474 * @give_up_on_write - we set this to true iff there is a fatal error and there 2475 * is no hope of writing the data. The caller should discard 2476 * dirty pages to avoid infinite loops. 2477 * 2478 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2479 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2480 * them to initialized or split the described range from larger unwritten 2481 * extent. Note that we need not map all the described range since allocation 2482 * can return less blocks or the range is covered by more unwritten extents. We 2483 * cannot map more because we are limited by reserved transaction credits. On 2484 * the other hand we always make sure that the last touched page is fully 2485 * mapped so that it can be written out (and thus forward progress is 2486 * guaranteed). After mapping we submit all mapped pages for IO. 2487 */ 2488 static int mpage_map_and_submit_extent(handle_t *handle, 2489 struct mpage_da_data *mpd, 2490 bool *give_up_on_write) 2491 { 2492 struct inode *inode = mpd->inode; 2493 struct ext4_map_blocks *map = &mpd->map; 2494 int err; 2495 loff_t disksize; 2496 int progress = 0; 2497 2498 mpd->io_submit.io_end->offset = 2499 ((loff_t)map->m_lblk) << inode->i_blkbits; 2500 do { 2501 err = mpage_map_one_extent(handle, mpd); 2502 if (err < 0) { 2503 struct super_block *sb = inode->i_sb; 2504 2505 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2506 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2507 goto invalidate_dirty_pages; 2508 /* 2509 * Let the uper layers retry transient errors. 2510 * In the case of ENOSPC, if ext4_count_free_blocks() 2511 * is non-zero, a commit should free up blocks. 2512 */ 2513 if ((err == -ENOMEM) || 2514 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2515 if (progress) 2516 goto update_disksize; 2517 return err; 2518 } 2519 ext4_msg(sb, KERN_CRIT, 2520 "Delayed block allocation failed for " 2521 "inode %lu at logical offset %llu with" 2522 " max blocks %u with error %d", 2523 inode->i_ino, 2524 (unsigned long long)map->m_lblk, 2525 (unsigned)map->m_len, -err); 2526 ext4_msg(sb, KERN_CRIT, 2527 "This should not happen!! Data will " 2528 "be lost\n"); 2529 if (err == -ENOSPC) 2530 ext4_print_free_blocks(inode); 2531 invalidate_dirty_pages: 2532 *give_up_on_write = true; 2533 return err; 2534 } 2535 progress = 1; 2536 /* 2537 * Update buffer state, submit mapped pages, and get us new 2538 * extent to map 2539 */ 2540 err = mpage_map_and_submit_buffers(mpd); 2541 if (err < 0) 2542 goto update_disksize; 2543 } while (map->m_len); 2544 2545 update_disksize: 2546 /* 2547 * Update on-disk size after IO is submitted. Races with 2548 * truncate are avoided by checking i_size under i_data_sem. 2549 */ 2550 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2551 if (disksize > EXT4_I(inode)->i_disksize) { 2552 int err2; 2553 loff_t i_size; 2554 2555 down_write(&EXT4_I(inode)->i_data_sem); 2556 i_size = i_size_read(inode); 2557 if (disksize > i_size) 2558 disksize = i_size; 2559 if (disksize > EXT4_I(inode)->i_disksize) 2560 EXT4_I(inode)->i_disksize = disksize; 2561 up_write(&EXT4_I(inode)->i_data_sem); 2562 err2 = ext4_mark_inode_dirty(handle, inode); 2563 if (err2) 2564 ext4_error(inode->i_sb, 2565 "Failed to mark inode %lu dirty", 2566 inode->i_ino); 2567 if (!err) 2568 err = err2; 2569 } 2570 return err; 2571 } 2572 2573 /* 2574 * Calculate the total number of credits to reserve for one writepages 2575 * iteration. This is called from ext4_writepages(). We map an extent of 2576 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2577 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2578 * bpp - 1 blocks in bpp different extents. 2579 */ 2580 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2581 { 2582 int bpp = ext4_journal_blocks_per_page(inode); 2583 2584 return ext4_meta_trans_blocks(inode, 2585 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2586 } 2587 2588 /* 2589 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2590 * and underlying extent to map 2591 * 2592 * @mpd - where to look for pages 2593 * 2594 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2595 * IO immediately. When we find a page which isn't mapped we start accumulating 2596 * extent of buffers underlying these pages that needs mapping (formed by 2597 * either delayed or unwritten buffers). We also lock the pages containing 2598 * these buffers. The extent found is returned in @mpd structure (starting at 2599 * mpd->lblk with length mpd->len blocks). 2600 * 2601 * Note that this function can attach bios to one io_end structure which are 2602 * neither logically nor physically contiguous. Although it may seem as an 2603 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2604 * case as we need to track IO to all buffers underlying a page in one io_end. 2605 */ 2606 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2607 { 2608 struct address_space *mapping = mpd->inode->i_mapping; 2609 struct pagevec pvec; 2610 unsigned int nr_pages; 2611 long left = mpd->wbc->nr_to_write; 2612 pgoff_t index = mpd->first_page; 2613 pgoff_t end = mpd->last_page; 2614 int tag; 2615 int i, err = 0; 2616 int blkbits = mpd->inode->i_blkbits; 2617 ext4_lblk_t lblk; 2618 struct buffer_head *head; 2619 2620 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2621 tag = PAGECACHE_TAG_TOWRITE; 2622 else 2623 tag = PAGECACHE_TAG_DIRTY; 2624 2625 pagevec_init(&pvec, 0); 2626 mpd->map.m_len = 0; 2627 mpd->next_page = index; 2628 while (index <= end) { 2629 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2630 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2631 if (nr_pages == 0) 2632 goto out; 2633 2634 for (i = 0; i < nr_pages; i++) { 2635 struct page *page = pvec.pages[i]; 2636 2637 /* 2638 * At this point, the page may be truncated or 2639 * invalidated (changing page->mapping to NULL), or 2640 * even swizzled back from swapper_space to tmpfs file 2641 * mapping. However, page->index will not change 2642 * because we have a reference on the page. 2643 */ 2644 if (page->index > end) 2645 goto out; 2646 2647 /* 2648 * Accumulated enough dirty pages? This doesn't apply 2649 * to WB_SYNC_ALL mode. For integrity sync we have to 2650 * keep going because someone may be concurrently 2651 * dirtying pages, and we might have synced a lot of 2652 * newly appeared dirty pages, but have not synced all 2653 * of the old dirty pages. 2654 */ 2655 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2656 goto out; 2657 2658 /* If we can't merge this page, we are done. */ 2659 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2660 goto out; 2661 2662 lock_page(page); 2663 /* 2664 * If the page is no longer dirty, or its mapping no 2665 * longer corresponds to inode we are writing (which 2666 * means it has been truncated or invalidated), or the 2667 * page is already under writeback and we are not doing 2668 * a data integrity writeback, skip the page 2669 */ 2670 if (!PageDirty(page) || 2671 (PageWriteback(page) && 2672 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2673 unlikely(page->mapping != mapping)) { 2674 unlock_page(page); 2675 continue; 2676 } 2677 2678 wait_on_page_writeback(page); 2679 BUG_ON(PageWriteback(page)); 2680 2681 if (mpd->map.m_len == 0) 2682 mpd->first_page = page->index; 2683 mpd->next_page = page->index + 1; 2684 /* Add all dirty buffers to mpd */ 2685 lblk = ((ext4_lblk_t)page->index) << 2686 (PAGE_SHIFT - blkbits); 2687 head = page_buffers(page); 2688 err = mpage_process_page_bufs(mpd, head, head, lblk); 2689 if (err <= 0) 2690 goto out; 2691 err = 0; 2692 left--; 2693 } 2694 pagevec_release(&pvec); 2695 cond_resched(); 2696 } 2697 return 0; 2698 out: 2699 pagevec_release(&pvec); 2700 return err; 2701 } 2702 2703 static int __writepage(struct page *page, struct writeback_control *wbc, 2704 void *data) 2705 { 2706 struct address_space *mapping = data; 2707 int ret = ext4_writepage(page, wbc); 2708 mapping_set_error(mapping, ret); 2709 return ret; 2710 } 2711 2712 static int ext4_writepages(struct address_space *mapping, 2713 struct writeback_control *wbc) 2714 { 2715 pgoff_t writeback_index = 0; 2716 long nr_to_write = wbc->nr_to_write; 2717 int range_whole = 0; 2718 int cycled = 1; 2719 handle_t *handle = NULL; 2720 struct mpage_da_data mpd; 2721 struct inode *inode = mapping->host; 2722 int needed_blocks, rsv_blocks = 0, ret = 0; 2723 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2724 bool done; 2725 struct blk_plug plug; 2726 bool give_up_on_write = false; 2727 2728 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2729 return -EIO; 2730 2731 percpu_down_read(&sbi->s_journal_flag_rwsem); 2732 trace_ext4_writepages(inode, wbc); 2733 2734 if (dax_mapping(mapping)) { 2735 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2736 wbc); 2737 goto out_writepages; 2738 } 2739 2740 /* 2741 * No pages to write? This is mainly a kludge to avoid starting 2742 * a transaction for special inodes like journal inode on last iput() 2743 * because that could violate lock ordering on umount 2744 */ 2745 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2746 goto out_writepages; 2747 2748 if (ext4_should_journal_data(inode)) { 2749 struct blk_plug plug; 2750 2751 blk_start_plug(&plug); 2752 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2753 blk_finish_plug(&plug); 2754 goto out_writepages; 2755 } 2756 2757 /* 2758 * If the filesystem has aborted, it is read-only, so return 2759 * right away instead of dumping stack traces later on that 2760 * will obscure the real source of the problem. We test 2761 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2762 * the latter could be true if the filesystem is mounted 2763 * read-only, and in that case, ext4_writepages should 2764 * *never* be called, so if that ever happens, we would want 2765 * the stack trace. 2766 */ 2767 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2768 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2769 ret = -EROFS; 2770 goto out_writepages; 2771 } 2772 2773 if (ext4_should_dioread_nolock(inode)) { 2774 /* 2775 * We may need to convert up to one extent per block in 2776 * the page and we may dirty the inode. 2777 */ 2778 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2779 } 2780 2781 /* 2782 * If we have inline data and arrive here, it means that 2783 * we will soon create the block for the 1st page, so 2784 * we'd better clear the inline data here. 2785 */ 2786 if (ext4_has_inline_data(inode)) { 2787 /* Just inode will be modified... */ 2788 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2789 if (IS_ERR(handle)) { 2790 ret = PTR_ERR(handle); 2791 goto out_writepages; 2792 } 2793 BUG_ON(ext4_test_inode_state(inode, 2794 EXT4_STATE_MAY_INLINE_DATA)); 2795 ext4_destroy_inline_data(handle, inode); 2796 ext4_journal_stop(handle); 2797 } 2798 2799 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2800 range_whole = 1; 2801 2802 if (wbc->range_cyclic) { 2803 writeback_index = mapping->writeback_index; 2804 if (writeback_index) 2805 cycled = 0; 2806 mpd.first_page = writeback_index; 2807 mpd.last_page = -1; 2808 } else { 2809 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2810 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2811 } 2812 2813 mpd.inode = inode; 2814 mpd.wbc = wbc; 2815 ext4_io_submit_init(&mpd.io_submit, wbc); 2816 retry: 2817 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2818 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2819 done = false; 2820 blk_start_plug(&plug); 2821 2822 /* 2823 * First writeback pages that don't need mapping - we can avoid 2824 * starting a transaction unnecessarily and also avoid being blocked 2825 * in the block layer on device congestion while having transaction 2826 * started. 2827 */ 2828 mpd.do_map = 0; 2829 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2830 if (!mpd.io_submit.io_end) { 2831 ret = -ENOMEM; 2832 goto unplug; 2833 } 2834 ret = mpage_prepare_extent_to_map(&mpd); 2835 /* Submit prepared bio */ 2836 ext4_io_submit(&mpd.io_submit); 2837 ext4_put_io_end_defer(mpd.io_submit.io_end); 2838 mpd.io_submit.io_end = NULL; 2839 /* Unlock pages we didn't use */ 2840 mpage_release_unused_pages(&mpd, false); 2841 if (ret < 0) 2842 goto unplug; 2843 2844 while (!done && mpd.first_page <= mpd.last_page) { 2845 /* For each extent of pages we use new io_end */ 2846 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2847 if (!mpd.io_submit.io_end) { 2848 ret = -ENOMEM; 2849 break; 2850 } 2851 2852 /* 2853 * We have two constraints: We find one extent to map and we 2854 * must always write out whole page (makes a difference when 2855 * blocksize < pagesize) so that we don't block on IO when we 2856 * try to write out the rest of the page. Journalled mode is 2857 * not supported by delalloc. 2858 */ 2859 BUG_ON(ext4_should_journal_data(inode)); 2860 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2861 2862 /* start a new transaction */ 2863 handle = ext4_journal_start_with_reserve(inode, 2864 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2865 if (IS_ERR(handle)) { 2866 ret = PTR_ERR(handle); 2867 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2868 "%ld pages, ino %lu; err %d", __func__, 2869 wbc->nr_to_write, inode->i_ino, ret); 2870 /* Release allocated io_end */ 2871 ext4_put_io_end(mpd.io_submit.io_end); 2872 mpd.io_submit.io_end = NULL; 2873 break; 2874 } 2875 mpd.do_map = 1; 2876 2877 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2878 ret = mpage_prepare_extent_to_map(&mpd); 2879 if (!ret) { 2880 if (mpd.map.m_len) 2881 ret = mpage_map_and_submit_extent(handle, &mpd, 2882 &give_up_on_write); 2883 else { 2884 /* 2885 * We scanned the whole range (or exhausted 2886 * nr_to_write), submitted what was mapped and 2887 * didn't find anything needing mapping. We are 2888 * done. 2889 */ 2890 done = true; 2891 } 2892 } 2893 /* 2894 * Caution: If the handle is synchronous, 2895 * ext4_journal_stop() can wait for transaction commit 2896 * to finish which may depend on writeback of pages to 2897 * complete or on page lock to be released. In that 2898 * case, we have to wait until after after we have 2899 * submitted all the IO, released page locks we hold, 2900 * and dropped io_end reference (for extent conversion 2901 * to be able to complete) before stopping the handle. 2902 */ 2903 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2904 ext4_journal_stop(handle); 2905 handle = NULL; 2906 mpd.do_map = 0; 2907 } 2908 /* Submit prepared bio */ 2909 ext4_io_submit(&mpd.io_submit); 2910 /* Unlock pages we didn't use */ 2911 mpage_release_unused_pages(&mpd, give_up_on_write); 2912 /* 2913 * Drop our io_end reference we got from init. We have 2914 * to be careful and use deferred io_end finishing if 2915 * we are still holding the transaction as we can 2916 * release the last reference to io_end which may end 2917 * up doing unwritten extent conversion. 2918 */ 2919 if (handle) { 2920 ext4_put_io_end_defer(mpd.io_submit.io_end); 2921 ext4_journal_stop(handle); 2922 } else 2923 ext4_put_io_end(mpd.io_submit.io_end); 2924 mpd.io_submit.io_end = NULL; 2925 2926 if (ret == -ENOSPC && sbi->s_journal) { 2927 /* 2928 * Commit the transaction which would 2929 * free blocks released in the transaction 2930 * and try again 2931 */ 2932 jbd2_journal_force_commit_nested(sbi->s_journal); 2933 ret = 0; 2934 continue; 2935 } 2936 /* Fatal error - ENOMEM, EIO... */ 2937 if (ret) 2938 break; 2939 } 2940 unplug: 2941 blk_finish_plug(&plug); 2942 if (!ret && !cycled && wbc->nr_to_write > 0) { 2943 cycled = 1; 2944 mpd.last_page = writeback_index - 1; 2945 mpd.first_page = 0; 2946 goto retry; 2947 } 2948 2949 /* Update index */ 2950 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2951 /* 2952 * Set the writeback_index so that range_cyclic 2953 * mode will write it back later 2954 */ 2955 mapping->writeback_index = mpd.first_page; 2956 2957 out_writepages: 2958 trace_ext4_writepages_result(inode, wbc, ret, 2959 nr_to_write - wbc->nr_to_write); 2960 percpu_up_read(&sbi->s_journal_flag_rwsem); 2961 return ret; 2962 } 2963 2964 static int ext4_nonda_switch(struct super_block *sb) 2965 { 2966 s64 free_clusters, dirty_clusters; 2967 struct ext4_sb_info *sbi = EXT4_SB(sb); 2968 2969 /* 2970 * switch to non delalloc mode if we are running low 2971 * on free block. The free block accounting via percpu 2972 * counters can get slightly wrong with percpu_counter_batch getting 2973 * accumulated on each CPU without updating global counters 2974 * Delalloc need an accurate free block accounting. So switch 2975 * to non delalloc when we are near to error range. 2976 */ 2977 free_clusters = 2978 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2979 dirty_clusters = 2980 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2981 /* 2982 * Start pushing delalloc when 1/2 of free blocks are dirty. 2983 */ 2984 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2985 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2986 2987 if (2 * free_clusters < 3 * dirty_clusters || 2988 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2989 /* 2990 * free block count is less than 150% of dirty blocks 2991 * or free blocks is less than watermark 2992 */ 2993 return 1; 2994 } 2995 return 0; 2996 } 2997 2998 /* We always reserve for an inode update; the superblock could be there too */ 2999 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 3000 { 3001 if (likely(ext4_has_feature_large_file(inode->i_sb))) 3002 return 1; 3003 3004 if (pos + len <= 0x7fffffffULL) 3005 return 1; 3006 3007 /* We might need to update the superblock to set LARGE_FILE */ 3008 return 2; 3009 } 3010 3011 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3012 loff_t pos, unsigned len, unsigned flags, 3013 struct page **pagep, void **fsdata) 3014 { 3015 int ret, retries = 0; 3016 struct page *page; 3017 pgoff_t index; 3018 struct inode *inode = mapping->host; 3019 handle_t *handle; 3020 3021 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3022 return -EIO; 3023 3024 index = pos >> PAGE_SHIFT; 3025 3026 if (ext4_nonda_switch(inode->i_sb) || 3027 S_ISLNK(inode->i_mode)) { 3028 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3029 return ext4_write_begin(file, mapping, pos, 3030 len, flags, pagep, fsdata); 3031 } 3032 *fsdata = (void *)0; 3033 trace_ext4_da_write_begin(inode, pos, len, flags); 3034 3035 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3036 ret = ext4_da_write_inline_data_begin(mapping, inode, 3037 pos, len, flags, 3038 pagep, fsdata); 3039 if (ret < 0) 3040 return ret; 3041 if (ret == 1) 3042 return 0; 3043 } 3044 3045 /* 3046 * grab_cache_page_write_begin() can take a long time if the 3047 * system is thrashing due to memory pressure, or if the page 3048 * is being written back. So grab it first before we start 3049 * the transaction handle. This also allows us to allocate 3050 * the page (if needed) without using GFP_NOFS. 3051 */ 3052 retry_grab: 3053 page = grab_cache_page_write_begin(mapping, index, flags); 3054 if (!page) 3055 return -ENOMEM; 3056 unlock_page(page); 3057 3058 /* 3059 * With delayed allocation, we don't log the i_disksize update 3060 * if there is delayed block allocation. But we still need 3061 * to journalling the i_disksize update if writes to the end 3062 * of file which has an already mapped buffer. 3063 */ 3064 retry_journal: 3065 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3066 ext4_da_write_credits(inode, pos, len)); 3067 if (IS_ERR(handle)) { 3068 put_page(page); 3069 return PTR_ERR(handle); 3070 } 3071 3072 lock_page(page); 3073 if (page->mapping != mapping) { 3074 /* The page got truncated from under us */ 3075 unlock_page(page); 3076 put_page(page); 3077 ext4_journal_stop(handle); 3078 goto retry_grab; 3079 } 3080 /* In case writeback began while the page was unlocked */ 3081 wait_for_stable_page(page); 3082 3083 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3084 ret = ext4_block_write_begin(page, pos, len, 3085 ext4_da_get_block_prep); 3086 #else 3087 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3088 #endif 3089 if (ret < 0) { 3090 unlock_page(page); 3091 ext4_journal_stop(handle); 3092 /* 3093 * block_write_begin may have instantiated a few blocks 3094 * outside i_size. Trim these off again. Don't need 3095 * i_size_read because we hold i_mutex. 3096 */ 3097 if (pos + len > inode->i_size) 3098 ext4_truncate_failed_write(inode); 3099 3100 if (ret == -ENOSPC && 3101 ext4_should_retry_alloc(inode->i_sb, &retries)) 3102 goto retry_journal; 3103 3104 put_page(page); 3105 return ret; 3106 } 3107 3108 *pagep = page; 3109 return ret; 3110 } 3111 3112 /* 3113 * Check if we should update i_disksize 3114 * when write to the end of file but not require block allocation 3115 */ 3116 static int ext4_da_should_update_i_disksize(struct page *page, 3117 unsigned long offset) 3118 { 3119 struct buffer_head *bh; 3120 struct inode *inode = page->mapping->host; 3121 unsigned int idx; 3122 int i; 3123 3124 bh = page_buffers(page); 3125 idx = offset >> inode->i_blkbits; 3126 3127 for (i = 0; i < idx; i++) 3128 bh = bh->b_this_page; 3129 3130 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3131 return 0; 3132 return 1; 3133 } 3134 3135 static int ext4_da_write_end(struct file *file, 3136 struct address_space *mapping, 3137 loff_t pos, unsigned len, unsigned copied, 3138 struct page *page, void *fsdata) 3139 { 3140 struct inode *inode = mapping->host; 3141 int ret = 0, ret2; 3142 handle_t *handle = ext4_journal_current_handle(); 3143 loff_t new_i_size; 3144 unsigned long start, end; 3145 int write_mode = (int)(unsigned long)fsdata; 3146 3147 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3148 return ext4_write_end(file, mapping, pos, 3149 len, copied, page, fsdata); 3150 3151 trace_ext4_da_write_end(inode, pos, len, copied); 3152 start = pos & (PAGE_SIZE - 1); 3153 end = start + copied - 1; 3154 3155 /* 3156 * generic_write_end() will run mark_inode_dirty() if i_size 3157 * changes. So let's piggyback the i_disksize mark_inode_dirty 3158 * into that. 3159 */ 3160 new_i_size = pos + copied; 3161 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3162 if (ext4_has_inline_data(inode) || 3163 ext4_da_should_update_i_disksize(page, end)) { 3164 ext4_update_i_disksize(inode, new_i_size); 3165 /* We need to mark inode dirty even if 3166 * new_i_size is less that inode->i_size 3167 * bu greater than i_disksize.(hint delalloc) 3168 */ 3169 ext4_mark_inode_dirty(handle, inode); 3170 } 3171 } 3172 3173 if (write_mode != CONVERT_INLINE_DATA && 3174 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3175 ext4_has_inline_data(inode)) 3176 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3177 page); 3178 else 3179 ret2 = generic_write_end(file, mapping, pos, len, copied, 3180 page, fsdata); 3181 3182 copied = ret2; 3183 if (ret2 < 0) 3184 ret = ret2; 3185 ret2 = ext4_journal_stop(handle); 3186 if (!ret) 3187 ret = ret2; 3188 3189 return ret ? ret : copied; 3190 } 3191 3192 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3193 unsigned int length) 3194 { 3195 /* 3196 * Drop reserved blocks 3197 */ 3198 BUG_ON(!PageLocked(page)); 3199 if (!page_has_buffers(page)) 3200 goto out; 3201 3202 ext4_da_page_release_reservation(page, offset, length); 3203 3204 out: 3205 ext4_invalidatepage(page, offset, length); 3206 3207 return; 3208 } 3209 3210 /* 3211 * Force all delayed allocation blocks to be allocated for a given inode. 3212 */ 3213 int ext4_alloc_da_blocks(struct inode *inode) 3214 { 3215 trace_ext4_alloc_da_blocks(inode); 3216 3217 if (!EXT4_I(inode)->i_reserved_data_blocks) 3218 return 0; 3219 3220 /* 3221 * We do something simple for now. The filemap_flush() will 3222 * also start triggering a write of the data blocks, which is 3223 * not strictly speaking necessary (and for users of 3224 * laptop_mode, not even desirable). However, to do otherwise 3225 * would require replicating code paths in: 3226 * 3227 * ext4_writepages() -> 3228 * write_cache_pages() ---> (via passed in callback function) 3229 * __mpage_da_writepage() --> 3230 * mpage_add_bh_to_extent() 3231 * mpage_da_map_blocks() 3232 * 3233 * The problem is that write_cache_pages(), located in 3234 * mm/page-writeback.c, marks pages clean in preparation for 3235 * doing I/O, which is not desirable if we're not planning on 3236 * doing I/O at all. 3237 * 3238 * We could call write_cache_pages(), and then redirty all of 3239 * the pages by calling redirty_page_for_writepage() but that 3240 * would be ugly in the extreme. So instead we would need to 3241 * replicate parts of the code in the above functions, 3242 * simplifying them because we wouldn't actually intend to 3243 * write out the pages, but rather only collect contiguous 3244 * logical block extents, call the multi-block allocator, and 3245 * then update the buffer heads with the block allocations. 3246 * 3247 * For now, though, we'll cheat by calling filemap_flush(), 3248 * which will map the blocks, and start the I/O, but not 3249 * actually wait for the I/O to complete. 3250 */ 3251 return filemap_flush(inode->i_mapping); 3252 } 3253 3254 /* 3255 * bmap() is special. It gets used by applications such as lilo and by 3256 * the swapper to find the on-disk block of a specific piece of data. 3257 * 3258 * Naturally, this is dangerous if the block concerned is still in the 3259 * journal. If somebody makes a swapfile on an ext4 data-journaling 3260 * filesystem and enables swap, then they may get a nasty shock when the 3261 * data getting swapped to that swapfile suddenly gets overwritten by 3262 * the original zero's written out previously to the journal and 3263 * awaiting writeback in the kernel's buffer cache. 3264 * 3265 * So, if we see any bmap calls here on a modified, data-journaled file, 3266 * take extra steps to flush any blocks which might be in the cache. 3267 */ 3268 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3269 { 3270 struct inode *inode = mapping->host; 3271 journal_t *journal; 3272 int err; 3273 3274 /* 3275 * We can get here for an inline file via the FIBMAP ioctl 3276 */ 3277 if (ext4_has_inline_data(inode)) 3278 return 0; 3279 3280 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3281 test_opt(inode->i_sb, DELALLOC)) { 3282 /* 3283 * With delalloc we want to sync the file 3284 * so that we can make sure we allocate 3285 * blocks for file 3286 */ 3287 filemap_write_and_wait(mapping); 3288 } 3289 3290 if (EXT4_JOURNAL(inode) && 3291 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3292 /* 3293 * This is a REALLY heavyweight approach, but the use of 3294 * bmap on dirty files is expected to be extremely rare: 3295 * only if we run lilo or swapon on a freshly made file 3296 * do we expect this to happen. 3297 * 3298 * (bmap requires CAP_SYS_RAWIO so this does not 3299 * represent an unprivileged user DOS attack --- we'd be 3300 * in trouble if mortal users could trigger this path at 3301 * will.) 3302 * 3303 * NB. EXT4_STATE_JDATA is not set on files other than 3304 * regular files. If somebody wants to bmap a directory 3305 * or symlink and gets confused because the buffer 3306 * hasn't yet been flushed to disk, they deserve 3307 * everything they get. 3308 */ 3309 3310 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3311 journal = EXT4_JOURNAL(inode); 3312 jbd2_journal_lock_updates(journal); 3313 err = jbd2_journal_flush(journal); 3314 jbd2_journal_unlock_updates(journal); 3315 3316 if (err) 3317 return 0; 3318 } 3319 3320 return generic_block_bmap(mapping, block, ext4_get_block); 3321 } 3322 3323 static int ext4_readpage(struct file *file, struct page *page) 3324 { 3325 int ret = -EAGAIN; 3326 struct inode *inode = page->mapping->host; 3327 3328 trace_ext4_readpage(page); 3329 3330 if (ext4_has_inline_data(inode)) 3331 ret = ext4_readpage_inline(inode, page); 3332 3333 if (ret == -EAGAIN) 3334 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3335 3336 return ret; 3337 } 3338 3339 static int 3340 ext4_readpages(struct file *file, struct address_space *mapping, 3341 struct list_head *pages, unsigned nr_pages) 3342 { 3343 struct inode *inode = mapping->host; 3344 3345 /* If the file has inline data, no need to do readpages. */ 3346 if (ext4_has_inline_data(inode)) 3347 return 0; 3348 3349 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3350 } 3351 3352 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3353 unsigned int length) 3354 { 3355 trace_ext4_invalidatepage(page, offset, length); 3356 3357 /* No journalling happens on data buffers when this function is used */ 3358 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3359 3360 block_invalidatepage(page, offset, length); 3361 } 3362 3363 static int __ext4_journalled_invalidatepage(struct page *page, 3364 unsigned int offset, 3365 unsigned int length) 3366 { 3367 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3368 3369 trace_ext4_journalled_invalidatepage(page, offset, length); 3370 3371 /* 3372 * If it's a full truncate we just forget about the pending dirtying 3373 */ 3374 if (offset == 0 && length == PAGE_SIZE) 3375 ClearPageChecked(page); 3376 3377 return jbd2_journal_invalidatepage(journal, page, offset, length); 3378 } 3379 3380 /* Wrapper for aops... */ 3381 static void ext4_journalled_invalidatepage(struct page *page, 3382 unsigned int offset, 3383 unsigned int length) 3384 { 3385 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3386 } 3387 3388 static int ext4_releasepage(struct page *page, gfp_t wait) 3389 { 3390 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3391 3392 trace_ext4_releasepage(page); 3393 3394 /* Page has dirty journalled data -> cannot release */ 3395 if (PageChecked(page)) 3396 return 0; 3397 if (journal) 3398 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3399 else 3400 return try_to_free_buffers(page); 3401 } 3402 3403 #ifdef CONFIG_FS_DAX 3404 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3405 unsigned flags, struct iomap *iomap) 3406 { 3407 struct block_device *bdev; 3408 unsigned int blkbits = inode->i_blkbits; 3409 unsigned long first_block = offset >> blkbits; 3410 unsigned long last_block = (offset + length - 1) >> blkbits; 3411 struct ext4_map_blocks map; 3412 int ret; 3413 3414 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3415 return -ERANGE; 3416 3417 map.m_lblk = first_block; 3418 map.m_len = last_block - first_block + 1; 3419 3420 if (!(flags & IOMAP_WRITE)) { 3421 ret = ext4_map_blocks(NULL, inode, &map, 0); 3422 } else { 3423 int dio_credits; 3424 handle_t *handle; 3425 int retries = 0; 3426 3427 /* Trim mapping request to maximum we can map at once for DIO */ 3428 if (map.m_len > DIO_MAX_BLOCKS) 3429 map.m_len = DIO_MAX_BLOCKS; 3430 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3431 retry: 3432 /* 3433 * Either we allocate blocks and then we don't get unwritten 3434 * extent so we have reserved enough credits, or the blocks 3435 * are already allocated and unwritten and in that case 3436 * extent conversion fits in the credits as well. 3437 */ 3438 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3439 dio_credits); 3440 if (IS_ERR(handle)) 3441 return PTR_ERR(handle); 3442 3443 ret = ext4_map_blocks(handle, inode, &map, 3444 EXT4_GET_BLOCKS_CREATE_ZERO); 3445 if (ret < 0) { 3446 ext4_journal_stop(handle); 3447 if (ret == -ENOSPC && 3448 ext4_should_retry_alloc(inode->i_sb, &retries)) 3449 goto retry; 3450 return ret; 3451 } 3452 3453 /* 3454 * If we added blocks beyond i_size, we need to make sure they 3455 * will get truncated if we crash before updating i_size in 3456 * ext4_iomap_end(). For faults we don't need to do that (and 3457 * even cannot because for orphan list operations inode_lock is 3458 * required) - if we happen to instantiate block beyond i_size, 3459 * it is because we race with truncate which has already added 3460 * the inode to the orphan list. 3461 */ 3462 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3463 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3464 int err; 3465 3466 err = ext4_orphan_add(handle, inode); 3467 if (err < 0) { 3468 ext4_journal_stop(handle); 3469 return err; 3470 } 3471 } 3472 ext4_journal_stop(handle); 3473 } 3474 3475 iomap->flags = 0; 3476 bdev = inode->i_sb->s_bdev; 3477 iomap->bdev = bdev; 3478 if (blk_queue_dax(bdev->bd_queue)) 3479 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name); 3480 else 3481 iomap->dax_dev = NULL; 3482 iomap->offset = first_block << blkbits; 3483 3484 if (ret == 0) { 3485 iomap->type = IOMAP_HOLE; 3486 iomap->blkno = IOMAP_NULL_BLOCK; 3487 iomap->length = (u64)map.m_len << blkbits; 3488 } else { 3489 if (map.m_flags & EXT4_MAP_MAPPED) { 3490 iomap->type = IOMAP_MAPPED; 3491 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3492 iomap->type = IOMAP_UNWRITTEN; 3493 } else { 3494 WARN_ON_ONCE(1); 3495 return -EIO; 3496 } 3497 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9); 3498 iomap->length = (u64)map.m_len << blkbits; 3499 } 3500 3501 if (map.m_flags & EXT4_MAP_NEW) 3502 iomap->flags |= IOMAP_F_NEW; 3503 return 0; 3504 } 3505 3506 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3507 ssize_t written, unsigned flags, struct iomap *iomap) 3508 { 3509 int ret = 0; 3510 handle_t *handle; 3511 int blkbits = inode->i_blkbits; 3512 bool truncate = false; 3513 3514 fs_put_dax(iomap->dax_dev); 3515 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3516 return 0; 3517 3518 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3519 if (IS_ERR(handle)) { 3520 ret = PTR_ERR(handle); 3521 goto orphan_del; 3522 } 3523 if (ext4_update_inode_size(inode, offset + written)) 3524 ext4_mark_inode_dirty(handle, inode); 3525 /* 3526 * We may need to truncate allocated but not written blocks beyond EOF. 3527 */ 3528 if (iomap->offset + iomap->length > 3529 ALIGN(inode->i_size, 1 << blkbits)) { 3530 ext4_lblk_t written_blk, end_blk; 3531 3532 written_blk = (offset + written) >> blkbits; 3533 end_blk = (offset + length) >> blkbits; 3534 if (written_blk < end_blk && ext4_can_truncate(inode)) 3535 truncate = true; 3536 } 3537 /* 3538 * Remove inode from orphan list if we were extending a inode and 3539 * everything went fine. 3540 */ 3541 if (!truncate && inode->i_nlink && 3542 !list_empty(&EXT4_I(inode)->i_orphan)) 3543 ext4_orphan_del(handle, inode); 3544 ext4_journal_stop(handle); 3545 if (truncate) { 3546 ext4_truncate_failed_write(inode); 3547 orphan_del: 3548 /* 3549 * If truncate failed early the inode might still be on the 3550 * orphan list; we need to make sure the inode is removed from 3551 * the orphan list in that case. 3552 */ 3553 if (inode->i_nlink) 3554 ext4_orphan_del(NULL, inode); 3555 } 3556 return ret; 3557 } 3558 3559 const struct iomap_ops ext4_iomap_ops = { 3560 .iomap_begin = ext4_iomap_begin, 3561 .iomap_end = ext4_iomap_end, 3562 }; 3563 3564 #endif 3565 3566 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3567 ssize_t size, void *private) 3568 { 3569 ext4_io_end_t *io_end = private; 3570 3571 /* if not async direct IO just return */ 3572 if (!io_end) 3573 return 0; 3574 3575 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3576 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3577 io_end, io_end->inode->i_ino, iocb, offset, size); 3578 3579 /* 3580 * Error during AIO DIO. We cannot convert unwritten extents as the 3581 * data was not written. Just clear the unwritten flag and drop io_end. 3582 */ 3583 if (size <= 0) { 3584 ext4_clear_io_unwritten_flag(io_end); 3585 size = 0; 3586 } 3587 io_end->offset = offset; 3588 io_end->size = size; 3589 ext4_put_io_end(io_end); 3590 3591 return 0; 3592 } 3593 3594 /* 3595 * Handling of direct IO writes. 3596 * 3597 * For ext4 extent files, ext4 will do direct-io write even to holes, 3598 * preallocated extents, and those write extend the file, no need to 3599 * fall back to buffered IO. 3600 * 3601 * For holes, we fallocate those blocks, mark them as unwritten 3602 * If those blocks were preallocated, we mark sure they are split, but 3603 * still keep the range to write as unwritten. 3604 * 3605 * The unwritten extents will be converted to written when DIO is completed. 3606 * For async direct IO, since the IO may still pending when return, we 3607 * set up an end_io call back function, which will do the conversion 3608 * when async direct IO completed. 3609 * 3610 * If the O_DIRECT write will extend the file then add this inode to the 3611 * orphan list. So recovery will truncate it back to the original size 3612 * if the machine crashes during the write. 3613 * 3614 */ 3615 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3616 { 3617 struct file *file = iocb->ki_filp; 3618 struct inode *inode = file->f_mapping->host; 3619 struct ext4_inode_info *ei = EXT4_I(inode); 3620 ssize_t ret; 3621 loff_t offset = iocb->ki_pos; 3622 size_t count = iov_iter_count(iter); 3623 int overwrite = 0; 3624 get_block_t *get_block_func = NULL; 3625 int dio_flags = 0; 3626 loff_t final_size = offset + count; 3627 int orphan = 0; 3628 handle_t *handle; 3629 3630 if (final_size > inode->i_size) { 3631 /* Credits for sb + inode write */ 3632 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3633 if (IS_ERR(handle)) { 3634 ret = PTR_ERR(handle); 3635 goto out; 3636 } 3637 ret = ext4_orphan_add(handle, inode); 3638 if (ret) { 3639 ext4_journal_stop(handle); 3640 goto out; 3641 } 3642 orphan = 1; 3643 ei->i_disksize = inode->i_size; 3644 ext4_journal_stop(handle); 3645 } 3646 3647 BUG_ON(iocb->private == NULL); 3648 3649 /* 3650 * Make all waiters for direct IO properly wait also for extent 3651 * conversion. This also disallows race between truncate() and 3652 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3653 */ 3654 inode_dio_begin(inode); 3655 3656 /* If we do a overwrite dio, i_mutex locking can be released */ 3657 overwrite = *((int *)iocb->private); 3658 3659 if (overwrite) 3660 inode_unlock(inode); 3661 3662 /* 3663 * For extent mapped files we could direct write to holes and fallocate. 3664 * 3665 * Allocated blocks to fill the hole are marked as unwritten to prevent 3666 * parallel buffered read to expose the stale data before DIO complete 3667 * the data IO. 3668 * 3669 * As to previously fallocated extents, ext4 get_block will just simply 3670 * mark the buffer mapped but still keep the extents unwritten. 3671 * 3672 * For non AIO case, we will convert those unwritten extents to written 3673 * after return back from blockdev_direct_IO. That way we save us from 3674 * allocating io_end structure and also the overhead of offloading 3675 * the extent convertion to a workqueue. 3676 * 3677 * For async DIO, the conversion needs to be deferred when the 3678 * IO is completed. The ext4 end_io callback function will be 3679 * called to take care of the conversion work. Here for async 3680 * case, we allocate an io_end structure to hook to the iocb. 3681 */ 3682 iocb->private = NULL; 3683 if (overwrite) 3684 get_block_func = ext4_dio_get_block_overwrite; 3685 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3686 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3687 get_block_func = ext4_dio_get_block; 3688 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3689 } else if (is_sync_kiocb(iocb)) { 3690 get_block_func = ext4_dio_get_block_unwritten_sync; 3691 dio_flags = DIO_LOCKING; 3692 } else { 3693 get_block_func = ext4_dio_get_block_unwritten_async; 3694 dio_flags = DIO_LOCKING; 3695 } 3696 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3697 get_block_func, ext4_end_io_dio, NULL, 3698 dio_flags); 3699 3700 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3701 EXT4_STATE_DIO_UNWRITTEN)) { 3702 int err; 3703 /* 3704 * for non AIO case, since the IO is already 3705 * completed, we could do the conversion right here 3706 */ 3707 err = ext4_convert_unwritten_extents(NULL, inode, 3708 offset, ret); 3709 if (err < 0) 3710 ret = err; 3711 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3712 } 3713 3714 inode_dio_end(inode); 3715 /* take i_mutex locking again if we do a ovewrite dio */ 3716 if (overwrite) 3717 inode_lock(inode); 3718 3719 if (ret < 0 && final_size > inode->i_size) 3720 ext4_truncate_failed_write(inode); 3721 3722 /* Handle extending of i_size after direct IO write */ 3723 if (orphan) { 3724 int err; 3725 3726 /* Credits for sb + inode write */ 3727 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3728 if (IS_ERR(handle)) { 3729 /* This is really bad luck. We've written the data 3730 * but cannot extend i_size. Bail out and pretend 3731 * the write failed... */ 3732 ret = PTR_ERR(handle); 3733 if (inode->i_nlink) 3734 ext4_orphan_del(NULL, inode); 3735 3736 goto out; 3737 } 3738 if (inode->i_nlink) 3739 ext4_orphan_del(handle, inode); 3740 if (ret > 0) { 3741 loff_t end = offset + ret; 3742 if (end > inode->i_size) { 3743 ei->i_disksize = end; 3744 i_size_write(inode, end); 3745 /* 3746 * We're going to return a positive `ret' 3747 * here due to non-zero-length I/O, so there's 3748 * no way of reporting error returns from 3749 * ext4_mark_inode_dirty() to userspace. So 3750 * ignore it. 3751 */ 3752 ext4_mark_inode_dirty(handle, inode); 3753 } 3754 } 3755 err = ext4_journal_stop(handle); 3756 if (ret == 0) 3757 ret = err; 3758 } 3759 out: 3760 return ret; 3761 } 3762 3763 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3764 { 3765 struct address_space *mapping = iocb->ki_filp->f_mapping; 3766 struct inode *inode = mapping->host; 3767 size_t count = iov_iter_count(iter); 3768 ssize_t ret; 3769 3770 /* 3771 * Shared inode_lock is enough for us - it protects against concurrent 3772 * writes & truncates and since we take care of writing back page cache, 3773 * we are protected against page writeback as well. 3774 */ 3775 inode_lock_shared(inode); 3776 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3777 iocb->ki_pos + count - 1); 3778 if (ret) 3779 goto out_unlock; 3780 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3781 iter, ext4_dio_get_block, NULL, NULL, 0); 3782 out_unlock: 3783 inode_unlock_shared(inode); 3784 return ret; 3785 } 3786 3787 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3788 { 3789 struct file *file = iocb->ki_filp; 3790 struct inode *inode = file->f_mapping->host; 3791 size_t count = iov_iter_count(iter); 3792 loff_t offset = iocb->ki_pos; 3793 ssize_t ret; 3794 3795 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3796 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3797 return 0; 3798 #endif 3799 3800 /* 3801 * If we are doing data journalling we don't support O_DIRECT 3802 */ 3803 if (ext4_should_journal_data(inode)) 3804 return 0; 3805 3806 /* Let buffer I/O handle the inline data case. */ 3807 if (ext4_has_inline_data(inode)) 3808 return 0; 3809 3810 /* DAX uses iomap path now */ 3811 if (WARN_ON_ONCE(IS_DAX(inode))) 3812 return 0; 3813 3814 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3815 if (iov_iter_rw(iter) == READ) 3816 ret = ext4_direct_IO_read(iocb, iter); 3817 else 3818 ret = ext4_direct_IO_write(iocb, iter); 3819 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3820 return ret; 3821 } 3822 3823 /* 3824 * Pages can be marked dirty completely asynchronously from ext4's journalling 3825 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3826 * much here because ->set_page_dirty is called under VFS locks. The page is 3827 * not necessarily locked. 3828 * 3829 * We cannot just dirty the page and leave attached buffers clean, because the 3830 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3831 * or jbddirty because all the journalling code will explode. 3832 * 3833 * So what we do is to mark the page "pending dirty" and next time writepage 3834 * is called, propagate that into the buffers appropriately. 3835 */ 3836 static int ext4_journalled_set_page_dirty(struct page *page) 3837 { 3838 SetPageChecked(page); 3839 return __set_page_dirty_nobuffers(page); 3840 } 3841 3842 static int ext4_set_page_dirty(struct page *page) 3843 { 3844 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3845 WARN_ON_ONCE(!page_has_buffers(page)); 3846 return __set_page_dirty_buffers(page); 3847 } 3848 3849 static const struct address_space_operations ext4_aops = { 3850 .readpage = ext4_readpage, 3851 .readpages = ext4_readpages, 3852 .writepage = ext4_writepage, 3853 .writepages = ext4_writepages, 3854 .write_begin = ext4_write_begin, 3855 .write_end = ext4_write_end, 3856 .set_page_dirty = ext4_set_page_dirty, 3857 .bmap = ext4_bmap, 3858 .invalidatepage = ext4_invalidatepage, 3859 .releasepage = ext4_releasepage, 3860 .direct_IO = ext4_direct_IO, 3861 .migratepage = buffer_migrate_page, 3862 .is_partially_uptodate = block_is_partially_uptodate, 3863 .error_remove_page = generic_error_remove_page, 3864 }; 3865 3866 static const struct address_space_operations ext4_journalled_aops = { 3867 .readpage = ext4_readpage, 3868 .readpages = ext4_readpages, 3869 .writepage = ext4_writepage, 3870 .writepages = ext4_writepages, 3871 .write_begin = ext4_write_begin, 3872 .write_end = ext4_journalled_write_end, 3873 .set_page_dirty = ext4_journalled_set_page_dirty, 3874 .bmap = ext4_bmap, 3875 .invalidatepage = ext4_journalled_invalidatepage, 3876 .releasepage = ext4_releasepage, 3877 .direct_IO = ext4_direct_IO, 3878 .is_partially_uptodate = block_is_partially_uptodate, 3879 .error_remove_page = generic_error_remove_page, 3880 }; 3881 3882 static const struct address_space_operations ext4_da_aops = { 3883 .readpage = ext4_readpage, 3884 .readpages = ext4_readpages, 3885 .writepage = ext4_writepage, 3886 .writepages = ext4_writepages, 3887 .write_begin = ext4_da_write_begin, 3888 .write_end = ext4_da_write_end, 3889 .set_page_dirty = ext4_set_page_dirty, 3890 .bmap = ext4_bmap, 3891 .invalidatepage = ext4_da_invalidatepage, 3892 .releasepage = ext4_releasepage, 3893 .direct_IO = ext4_direct_IO, 3894 .migratepage = buffer_migrate_page, 3895 .is_partially_uptodate = block_is_partially_uptodate, 3896 .error_remove_page = generic_error_remove_page, 3897 }; 3898 3899 void ext4_set_aops(struct inode *inode) 3900 { 3901 switch (ext4_inode_journal_mode(inode)) { 3902 case EXT4_INODE_ORDERED_DATA_MODE: 3903 case EXT4_INODE_WRITEBACK_DATA_MODE: 3904 break; 3905 case EXT4_INODE_JOURNAL_DATA_MODE: 3906 inode->i_mapping->a_ops = &ext4_journalled_aops; 3907 return; 3908 default: 3909 BUG(); 3910 } 3911 if (test_opt(inode->i_sb, DELALLOC)) 3912 inode->i_mapping->a_ops = &ext4_da_aops; 3913 else 3914 inode->i_mapping->a_ops = &ext4_aops; 3915 } 3916 3917 static int __ext4_block_zero_page_range(handle_t *handle, 3918 struct address_space *mapping, loff_t from, loff_t length) 3919 { 3920 ext4_fsblk_t index = from >> PAGE_SHIFT; 3921 unsigned offset = from & (PAGE_SIZE-1); 3922 unsigned blocksize, pos; 3923 ext4_lblk_t iblock; 3924 struct inode *inode = mapping->host; 3925 struct buffer_head *bh; 3926 struct page *page; 3927 int err = 0; 3928 3929 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3930 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3931 if (!page) 3932 return -ENOMEM; 3933 3934 blocksize = inode->i_sb->s_blocksize; 3935 3936 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3937 3938 if (!page_has_buffers(page)) 3939 create_empty_buffers(page, blocksize, 0); 3940 3941 /* Find the buffer that contains "offset" */ 3942 bh = page_buffers(page); 3943 pos = blocksize; 3944 while (offset >= pos) { 3945 bh = bh->b_this_page; 3946 iblock++; 3947 pos += blocksize; 3948 } 3949 if (buffer_freed(bh)) { 3950 BUFFER_TRACE(bh, "freed: skip"); 3951 goto unlock; 3952 } 3953 if (!buffer_mapped(bh)) { 3954 BUFFER_TRACE(bh, "unmapped"); 3955 ext4_get_block(inode, iblock, bh, 0); 3956 /* unmapped? It's a hole - nothing to do */ 3957 if (!buffer_mapped(bh)) { 3958 BUFFER_TRACE(bh, "still unmapped"); 3959 goto unlock; 3960 } 3961 } 3962 3963 /* Ok, it's mapped. Make sure it's up-to-date */ 3964 if (PageUptodate(page)) 3965 set_buffer_uptodate(bh); 3966 3967 if (!buffer_uptodate(bh)) { 3968 err = -EIO; 3969 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3970 wait_on_buffer(bh); 3971 /* Uhhuh. Read error. Complain and punt. */ 3972 if (!buffer_uptodate(bh)) 3973 goto unlock; 3974 if (S_ISREG(inode->i_mode) && 3975 ext4_encrypted_inode(inode)) { 3976 /* We expect the key to be set. */ 3977 BUG_ON(!fscrypt_has_encryption_key(inode)); 3978 BUG_ON(blocksize != PAGE_SIZE); 3979 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 3980 page, PAGE_SIZE, 0, page->index)); 3981 } 3982 } 3983 if (ext4_should_journal_data(inode)) { 3984 BUFFER_TRACE(bh, "get write access"); 3985 err = ext4_journal_get_write_access(handle, bh); 3986 if (err) 3987 goto unlock; 3988 } 3989 zero_user(page, offset, length); 3990 BUFFER_TRACE(bh, "zeroed end of block"); 3991 3992 if (ext4_should_journal_data(inode)) { 3993 err = ext4_handle_dirty_metadata(handle, inode, bh); 3994 } else { 3995 err = 0; 3996 mark_buffer_dirty(bh); 3997 if (ext4_should_order_data(inode)) 3998 err = ext4_jbd2_inode_add_write(handle, inode); 3999 } 4000 4001 unlock: 4002 unlock_page(page); 4003 put_page(page); 4004 return err; 4005 } 4006 4007 /* 4008 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4009 * starting from file offset 'from'. The range to be zero'd must 4010 * be contained with in one block. If the specified range exceeds 4011 * the end of the block it will be shortened to end of the block 4012 * that cooresponds to 'from' 4013 */ 4014 static int ext4_block_zero_page_range(handle_t *handle, 4015 struct address_space *mapping, loff_t from, loff_t length) 4016 { 4017 struct inode *inode = mapping->host; 4018 unsigned offset = from & (PAGE_SIZE-1); 4019 unsigned blocksize = inode->i_sb->s_blocksize; 4020 unsigned max = blocksize - (offset & (blocksize - 1)); 4021 4022 /* 4023 * correct length if it does not fall between 4024 * 'from' and the end of the block 4025 */ 4026 if (length > max || length < 0) 4027 length = max; 4028 4029 if (IS_DAX(inode)) { 4030 return iomap_zero_range(inode, from, length, NULL, 4031 &ext4_iomap_ops); 4032 } 4033 return __ext4_block_zero_page_range(handle, mapping, from, length); 4034 } 4035 4036 /* 4037 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4038 * up to the end of the block which corresponds to `from'. 4039 * This required during truncate. We need to physically zero the tail end 4040 * of that block so it doesn't yield old data if the file is later grown. 4041 */ 4042 static int ext4_block_truncate_page(handle_t *handle, 4043 struct address_space *mapping, loff_t from) 4044 { 4045 unsigned offset = from & (PAGE_SIZE-1); 4046 unsigned length; 4047 unsigned blocksize; 4048 struct inode *inode = mapping->host; 4049 4050 /* If we are processing an encrypted inode during orphan list handling */ 4051 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode)) 4052 return 0; 4053 4054 blocksize = inode->i_sb->s_blocksize; 4055 length = blocksize - (offset & (blocksize - 1)); 4056 4057 return ext4_block_zero_page_range(handle, mapping, from, length); 4058 } 4059 4060 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4061 loff_t lstart, loff_t length) 4062 { 4063 struct super_block *sb = inode->i_sb; 4064 struct address_space *mapping = inode->i_mapping; 4065 unsigned partial_start, partial_end; 4066 ext4_fsblk_t start, end; 4067 loff_t byte_end = (lstart + length - 1); 4068 int err = 0; 4069 4070 partial_start = lstart & (sb->s_blocksize - 1); 4071 partial_end = byte_end & (sb->s_blocksize - 1); 4072 4073 start = lstart >> sb->s_blocksize_bits; 4074 end = byte_end >> sb->s_blocksize_bits; 4075 4076 /* Handle partial zero within the single block */ 4077 if (start == end && 4078 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4079 err = ext4_block_zero_page_range(handle, mapping, 4080 lstart, length); 4081 return err; 4082 } 4083 /* Handle partial zero out on the start of the range */ 4084 if (partial_start) { 4085 err = ext4_block_zero_page_range(handle, mapping, 4086 lstart, sb->s_blocksize); 4087 if (err) 4088 return err; 4089 } 4090 /* Handle partial zero out on the end of the range */ 4091 if (partial_end != sb->s_blocksize - 1) 4092 err = ext4_block_zero_page_range(handle, mapping, 4093 byte_end - partial_end, 4094 partial_end + 1); 4095 return err; 4096 } 4097 4098 int ext4_can_truncate(struct inode *inode) 4099 { 4100 if (S_ISREG(inode->i_mode)) 4101 return 1; 4102 if (S_ISDIR(inode->i_mode)) 4103 return 1; 4104 if (S_ISLNK(inode->i_mode)) 4105 return !ext4_inode_is_fast_symlink(inode); 4106 return 0; 4107 } 4108 4109 /* 4110 * We have to make sure i_disksize gets properly updated before we truncate 4111 * page cache due to hole punching or zero range. Otherwise i_disksize update 4112 * can get lost as it may have been postponed to submission of writeback but 4113 * that will never happen after we truncate page cache. 4114 */ 4115 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4116 loff_t len) 4117 { 4118 handle_t *handle; 4119 loff_t size = i_size_read(inode); 4120 4121 WARN_ON(!inode_is_locked(inode)); 4122 if (offset > size || offset + len < size) 4123 return 0; 4124 4125 if (EXT4_I(inode)->i_disksize >= size) 4126 return 0; 4127 4128 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4129 if (IS_ERR(handle)) 4130 return PTR_ERR(handle); 4131 ext4_update_i_disksize(inode, size); 4132 ext4_mark_inode_dirty(handle, inode); 4133 ext4_journal_stop(handle); 4134 4135 return 0; 4136 } 4137 4138 /* 4139 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4140 * associated with the given offset and length 4141 * 4142 * @inode: File inode 4143 * @offset: The offset where the hole will begin 4144 * @len: The length of the hole 4145 * 4146 * Returns: 0 on success or negative on failure 4147 */ 4148 4149 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4150 { 4151 struct super_block *sb = inode->i_sb; 4152 ext4_lblk_t first_block, stop_block; 4153 struct address_space *mapping = inode->i_mapping; 4154 loff_t first_block_offset, last_block_offset; 4155 handle_t *handle; 4156 unsigned int credits; 4157 int ret = 0; 4158 4159 if (!S_ISREG(inode->i_mode)) 4160 return -EOPNOTSUPP; 4161 4162 trace_ext4_punch_hole(inode, offset, length, 0); 4163 4164 /* 4165 * Write out all dirty pages to avoid race conditions 4166 * Then release them. 4167 */ 4168 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4169 ret = filemap_write_and_wait_range(mapping, offset, 4170 offset + length - 1); 4171 if (ret) 4172 return ret; 4173 } 4174 4175 inode_lock(inode); 4176 4177 /* No need to punch hole beyond i_size */ 4178 if (offset >= inode->i_size) 4179 goto out_mutex; 4180 4181 /* 4182 * If the hole extends beyond i_size, set the hole 4183 * to end after the page that contains i_size 4184 */ 4185 if (offset + length > inode->i_size) { 4186 length = inode->i_size + 4187 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4188 offset; 4189 } 4190 4191 if (offset & (sb->s_blocksize - 1) || 4192 (offset + length) & (sb->s_blocksize - 1)) { 4193 /* 4194 * Attach jinode to inode for jbd2 if we do any zeroing of 4195 * partial block 4196 */ 4197 ret = ext4_inode_attach_jinode(inode); 4198 if (ret < 0) 4199 goto out_mutex; 4200 4201 } 4202 4203 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4204 ext4_inode_block_unlocked_dio(inode); 4205 inode_dio_wait(inode); 4206 4207 /* 4208 * Prevent page faults from reinstantiating pages we have released from 4209 * page cache. 4210 */ 4211 down_write(&EXT4_I(inode)->i_mmap_sem); 4212 first_block_offset = round_up(offset, sb->s_blocksize); 4213 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4214 4215 /* Now release the pages and zero block aligned part of pages*/ 4216 if (last_block_offset > first_block_offset) { 4217 ret = ext4_update_disksize_before_punch(inode, offset, length); 4218 if (ret) 4219 goto out_dio; 4220 truncate_pagecache_range(inode, first_block_offset, 4221 last_block_offset); 4222 } 4223 4224 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4225 credits = ext4_writepage_trans_blocks(inode); 4226 else 4227 credits = ext4_blocks_for_truncate(inode); 4228 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4229 if (IS_ERR(handle)) { 4230 ret = PTR_ERR(handle); 4231 ext4_std_error(sb, ret); 4232 goto out_dio; 4233 } 4234 4235 ret = ext4_zero_partial_blocks(handle, inode, offset, 4236 length); 4237 if (ret) 4238 goto out_stop; 4239 4240 first_block = (offset + sb->s_blocksize - 1) >> 4241 EXT4_BLOCK_SIZE_BITS(sb); 4242 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4243 4244 /* If there are no blocks to remove, return now */ 4245 if (first_block >= stop_block) 4246 goto out_stop; 4247 4248 down_write(&EXT4_I(inode)->i_data_sem); 4249 ext4_discard_preallocations(inode); 4250 4251 ret = ext4_es_remove_extent(inode, first_block, 4252 stop_block - first_block); 4253 if (ret) { 4254 up_write(&EXT4_I(inode)->i_data_sem); 4255 goto out_stop; 4256 } 4257 4258 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4259 ret = ext4_ext_remove_space(inode, first_block, 4260 stop_block - 1); 4261 else 4262 ret = ext4_ind_remove_space(handle, inode, first_block, 4263 stop_block); 4264 4265 up_write(&EXT4_I(inode)->i_data_sem); 4266 if (IS_SYNC(inode)) 4267 ext4_handle_sync(handle); 4268 4269 inode->i_mtime = inode->i_ctime = current_time(inode); 4270 ext4_mark_inode_dirty(handle, inode); 4271 if (ret >= 0) 4272 ext4_update_inode_fsync_trans(handle, inode, 1); 4273 out_stop: 4274 ext4_journal_stop(handle); 4275 out_dio: 4276 up_write(&EXT4_I(inode)->i_mmap_sem); 4277 ext4_inode_resume_unlocked_dio(inode); 4278 out_mutex: 4279 inode_unlock(inode); 4280 return ret; 4281 } 4282 4283 int ext4_inode_attach_jinode(struct inode *inode) 4284 { 4285 struct ext4_inode_info *ei = EXT4_I(inode); 4286 struct jbd2_inode *jinode; 4287 4288 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4289 return 0; 4290 4291 jinode = jbd2_alloc_inode(GFP_KERNEL); 4292 spin_lock(&inode->i_lock); 4293 if (!ei->jinode) { 4294 if (!jinode) { 4295 spin_unlock(&inode->i_lock); 4296 return -ENOMEM; 4297 } 4298 ei->jinode = jinode; 4299 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4300 jinode = NULL; 4301 } 4302 spin_unlock(&inode->i_lock); 4303 if (unlikely(jinode != NULL)) 4304 jbd2_free_inode(jinode); 4305 return 0; 4306 } 4307 4308 /* 4309 * ext4_truncate() 4310 * 4311 * We block out ext4_get_block() block instantiations across the entire 4312 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4313 * simultaneously on behalf of the same inode. 4314 * 4315 * As we work through the truncate and commit bits of it to the journal there 4316 * is one core, guiding principle: the file's tree must always be consistent on 4317 * disk. We must be able to restart the truncate after a crash. 4318 * 4319 * The file's tree may be transiently inconsistent in memory (although it 4320 * probably isn't), but whenever we close off and commit a journal transaction, 4321 * the contents of (the filesystem + the journal) must be consistent and 4322 * restartable. It's pretty simple, really: bottom up, right to left (although 4323 * left-to-right works OK too). 4324 * 4325 * Note that at recovery time, journal replay occurs *before* the restart of 4326 * truncate against the orphan inode list. 4327 * 4328 * The committed inode has the new, desired i_size (which is the same as 4329 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4330 * that this inode's truncate did not complete and it will again call 4331 * ext4_truncate() to have another go. So there will be instantiated blocks 4332 * to the right of the truncation point in a crashed ext4 filesystem. But 4333 * that's fine - as long as they are linked from the inode, the post-crash 4334 * ext4_truncate() run will find them and release them. 4335 */ 4336 int ext4_truncate(struct inode *inode) 4337 { 4338 struct ext4_inode_info *ei = EXT4_I(inode); 4339 unsigned int credits; 4340 int err = 0; 4341 handle_t *handle; 4342 struct address_space *mapping = inode->i_mapping; 4343 4344 /* 4345 * There is a possibility that we're either freeing the inode 4346 * or it's a completely new inode. In those cases we might not 4347 * have i_mutex locked because it's not necessary. 4348 */ 4349 if (!(inode->i_state & (I_NEW|I_FREEING))) 4350 WARN_ON(!inode_is_locked(inode)); 4351 trace_ext4_truncate_enter(inode); 4352 4353 if (!ext4_can_truncate(inode)) 4354 return 0; 4355 4356 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4357 4358 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4359 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4360 4361 if (ext4_has_inline_data(inode)) { 4362 int has_inline = 1; 4363 4364 err = ext4_inline_data_truncate(inode, &has_inline); 4365 if (err) 4366 return err; 4367 if (has_inline) 4368 return 0; 4369 } 4370 4371 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4372 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4373 if (ext4_inode_attach_jinode(inode) < 0) 4374 return 0; 4375 } 4376 4377 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4378 credits = ext4_writepage_trans_blocks(inode); 4379 else 4380 credits = ext4_blocks_for_truncate(inode); 4381 4382 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4383 if (IS_ERR(handle)) 4384 return PTR_ERR(handle); 4385 4386 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4387 ext4_block_truncate_page(handle, mapping, inode->i_size); 4388 4389 /* 4390 * We add the inode to the orphan list, so that if this 4391 * truncate spans multiple transactions, and we crash, we will 4392 * resume the truncate when the filesystem recovers. It also 4393 * marks the inode dirty, to catch the new size. 4394 * 4395 * Implication: the file must always be in a sane, consistent 4396 * truncatable state while each transaction commits. 4397 */ 4398 err = ext4_orphan_add(handle, inode); 4399 if (err) 4400 goto out_stop; 4401 4402 down_write(&EXT4_I(inode)->i_data_sem); 4403 4404 ext4_discard_preallocations(inode); 4405 4406 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4407 err = ext4_ext_truncate(handle, inode); 4408 else 4409 ext4_ind_truncate(handle, inode); 4410 4411 up_write(&ei->i_data_sem); 4412 if (err) 4413 goto out_stop; 4414 4415 if (IS_SYNC(inode)) 4416 ext4_handle_sync(handle); 4417 4418 out_stop: 4419 /* 4420 * If this was a simple ftruncate() and the file will remain alive, 4421 * then we need to clear up the orphan record which we created above. 4422 * However, if this was a real unlink then we were called by 4423 * ext4_evict_inode(), and we allow that function to clean up the 4424 * orphan info for us. 4425 */ 4426 if (inode->i_nlink) 4427 ext4_orphan_del(handle, inode); 4428 4429 inode->i_mtime = inode->i_ctime = current_time(inode); 4430 ext4_mark_inode_dirty(handle, inode); 4431 ext4_journal_stop(handle); 4432 4433 trace_ext4_truncate_exit(inode); 4434 return err; 4435 } 4436 4437 /* 4438 * ext4_get_inode_loc returns with an extra refcount against the inode's 4439 * underlying buffer_head on success. If 'in_mem' is true, we have all 4440 * data in memory that is needed to recreate the on-disk version of this 4441 * inode. 4442 */ 4443 static int __ext4_get_inode_loc(struct inode *inode, 4444 struct ext4_iloc *iloc, int in_mem) 4445 { 4446 struct ext4_group_desc *gdp; 4447 struct buffer_head *bh; 4448 struct super_block *sb = inode->i_sb; 4449 ext4_fsblk_t block; 4450 int inodes_per_block, inode_offset; 4451 4452 iloc->bh = NULL; 4453 if (!ext4_valid_inum(sb, inode->i_ino)) 4454 return -EFSCORRUPTED; 4455 4456 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4457 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4458 if (!gdp) 4459 return -EIO; 4460 4461 /* 4462 * Figure out the offset within the block group inode table 4463 */ 4464 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4465 inode_offset = ((inode->i_ino - 1) % 4466 EXT4_INODES_PER_GROUP(sb)); 4467 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4468 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4469 4470 bh = sb_getblk(sb, block); 4471 if (unlikely(!bh)) 4472 return -ENOMEM; 4473 if (!buffer_uptodate(bh)) { 4474 lock_buffer(bh); 4475 4476 /* 4477 * If the buffer has the write error flag, we have failed 4478 * to write out another inode in the same block. In this 4479 * case, we don't have to read the block because we may 4480 * read the old inode data successfully. 4481 */ 4482 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4483 set_buffer_uptodate(bh); 4484 4485 if (buffer_uptodate(bh)) { 4486 /* someone brought it uptodate while we waited */ 4487 unlock_buffer(bh); 4488 goto has_buffer; 4489 } 4490 4491 /* 4492 * If we have all information of the inode in memory and this 4493 * is the only valid inode in the block, we need not read the 4494 * block. 4495 */ 4496 if (in_mem) { 4497 struct buffer_head *bitmap_bh; 4498 int i, start; 4499 4500 start = inode_offset & ~(inodes_per_block - 1); 4501 4502 /* Is the inode bitmap in cache? */ 4503 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4504 if (unlikely(!bitmap_bh)) 4505 goto make_io; 4506 4507 /* 4508 * If the inode bitmap isn't in cache then the 4509 * optimisation may end up performing two reads instead 4510 * of one, so skip it. 4511 */ 4512 if (!buffer_uptodate(bitmap_bh)) { 4513 brelse(bitmap_bh); 4514 goto make_io; 4515 } 4516 for (i = start; i < start + inodes_per_block; i++) { 4517 if (i == inode_offset) 4518 continue; 4519 if (ext4_test_bit(i, bitmap_bh->b_data)) 4520 break; 4521 } 4522 brelse(bitmap_bh); 4523 if (i == start + inodes_per_block) { 4524 /* all other inodes are free, so skip I/O */ 4525 memset(bh->b_data, 0, bh->b_size); 4526 set_buffer_uptodate(bh); 4527 unlock_buffer(bh); 4528 goto has_buffer; 4529 } 4530 } 4531 4532 make_io: 4533 /* 4534 * If we need to do any I/O, try to pre-readahead extra 4535 * blocks from the inode table. 4536 */ 4537 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4538 ext4_fsblk_t b, end, table; 4539 unsigned num; 4540 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4541 4542 table = ext4_inode_table(sb, gdp); 4543 /* s_inode_readahead_blks is always a power of 2 */ 4544 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4545 if (table > b) 4546 b = table; 4547 end = b + ra_blks; 4548 num = EXT4_INODES_PER_GROUP(sb); 4549 if (ext4_has_group_desc_csum(sb)) 4550 num -= ext4_itable_unused_count(sb, gdp); 4551 table += num / inodes_per_block; 4552 if (end > table) 4553 end = table; 4554 while (b <= end) 4555 sb_breadahead(sb, b++); 4556 } 4557 4558 /* 4559 * There are other valid inodes in the buffer, this inode 4560 * has in-inode xattrs, or we don't have this inode in memory. 4561 * Read the block from disk. 4562 */ 4563 trace_ext4_load_inode(inode); 4564 get_bh(bh); 4565 bh->b_end_io = end_buffer_read_sync; 4566 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4567 wait_on_buffer(bh); 4568 if (!buffer_uptodate(bh)) { 4569 EXT4_ERROR_INODE_BLOCK(inode, block, 4570 "unable to read itable block"); 4571 brelse(bh); 4572 return -EIO; 4573 } 4574 } 4575 has_buffer: 4576 iloc->bh = bh; 4577 return 0; 4578 } 4579 4580 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4581 { 4582 /* We have all inode data except xattrs in memory here. */ 4583 return __ext4_get_inode_loc(inode, iloc, 4584 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4585 } 4586 4587 void ext4_set_inode_flags(struct inode *inode) 4588 { 4589 unsigned int flags = EXT4_I(inode)->i_flags; 4590 unsigned int new_fl = 0; 4591 4592 if (flags & EXT4_SYNC_FL) 4593 new_fl |= S_SYNC; 4594 if (flags & EXT4_APPEND_FL) 4595 new_fl |= S_APPEND; 4596 if (flags & EXT4_IMMUTABLE_FL) 4597 new_fl |= S_IMMUTABLE; 4598 if (flags & EXT4_NOATIME_FL) 4599 new_fl |= S_NOATIME; 4600 if (flags & EXT4_DIRSYNC_FL) 4601 new_fl |= S_DIRSYNC; 4602 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) && 4603 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) && 4604 !ext4_encrypted_inode(inode)) 4605 new_fl |= S_DAX; 4606 inode_set_flags(inode, new_fl, 4607 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4608 } 4609 4610 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4611 struct ext4_inode_info *ei) 4612 { 4613 blkcnt_t i_blocks ; 4614 struct inode *inode = &(ei->vfs_inode); 4615 struct super_block *sb = inode->i_sb; 4616 4617 if (ext4_has_feature_huge_file(sb)) { 4618 /* we are using combined 48 bit field */ 4619 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4620 le32_to_cpu(raw_inode->i_blocks_lo); 4621 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4622 /* i_blocks represent file system block size */ 4623 return i_blocks << (inode->i_blkbits - 9); 4624 } else { 4625 return i_blocks; 4626 } 4627 } else { 4628 return le32_to_cpu(raw_inode->i_blocks_lo); 4629 } 4630 } 4631 4632 static inline void ext4_iget_extra_inode(struct inode *inode, 4633 struct ext4_inode *raw_inode, 4634 struct ext4_inode_info *ei) 4635 { 4636 __le32 *magic = (void *)raw_inode + 4637 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4638 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4639 EXT4_INODE_SIZE(inode->i_sb) && 4640 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4641 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4642 ext4_find_inline_data_nolock(inode); 4643 } else 4644 EXT4_I(inode)->i_inline_off = 0; 4645 } 4646 4647 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4648 { 4649 if (!ext4_has_feature_project(inode->i_sb)) 4650 return -EOPNOTSUPP; 4651 *projid = EXT4_I(inode)->i_projid; 4652 return 0; 4653 } 4654 4655 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4656 { 4657 struct ext4_iloc iloc; 4658 struct ext4_inode *raw_inode; 4659 struct ext4_inode_info *ei; 4660 struct inode *inode; 4661 journal_t *journal = EXT4_SB(sb)->s_journal; 4662 long ret; 4663 loff_t size; 4664 int block; 4665 uid_t i_uid; 4666 gid_t i_gid; 4667 projid_t i_projid; 4668 4669 inode = iget_locked(sb, ino); 4670 if (!inode) 4671 return ERR_PTR(-ENOMEM); 4672 if (!(inode->i_state & I_NEW)) 4673 return inode; 4674 4675 ei = EXT4_I(inode); 4676 iloc.bh = NULL; 4677 4678 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4679 if (ret < 0) 4680 goto bad_inode; 4681 raw_inode = ext4_raw_inode(&iloc); 4682 4683 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4684 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4685 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4686 EXT4_INODE_SIZE(inode->i_sb) || 4687 (ei->i_extra_isize & 3)) { 4688 EXT4_ERROR_INODE(inode, 4689 "bad extra_isize %u (inode size %u)", 4690 ei->i_extra_isize, 4691 EXT4_INODE_SIZE(inode->i_sb)); 4692 ret = -EFSCORRUPTED; 4693 goto bad_inode; 4694 } 4695 } else 4696 ei->i_extra_isize = 0; 4697 4698 /* Precompute checksum seed for inode metadata */ 4699 if (ext4_has_metadata_csum(sb)) { 4700 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4701 __u32 csum; 4702 __le32 inum = cpu_to_le32(inode->i_ino); 4703 __le32 gen = raw_inode->i_generation; 4704 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4705 sizeof(inum)); 4706 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4707 sizeof(gen)); 4708 } 4709 4710 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4711 EXT4_ERROR_INODE(inode, "checksum invalid"); 4712 ret = -EFSBADCRC; 4713 goto bad_inode; 4714 } 4715 4716 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4717 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4718 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4719 if (ext4_has_feature_project(sb) && 4720 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4721 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4722 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4723 else 4724 i_projid = EXT4_DEF_PROJID; 4725 4726 if (!(test_opt(inode->i_sb, NO_UID32))) { 4727 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4728 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4729 } 4730 i_uid_write(inode, i_uid); 4731 i_gid_write(inode, i_gid); 4732 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4733 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4734 4735 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4736 ei->i_inline_off = 0; 4737 ei->i_dir_start_lookup = 0; 4738 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4739 /* We now have enough fields to check if the inode was active or not. 4740 * This is needed because nfsd might try to access dead inodes 4741 * the test is that same one that e2fsck uses 4742 * NeilBrown 1999oct15 4743 */ 4744 if (inode->i_nlink == 0) { 4745 if ((inode->i_mode == 0 || 4746 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4747 ino != EXT4_BOOT_LOADER_INO) { 4748 /* this inode is deleted */ 4749 ret = -ESTALE; 4750 goto bad_inode; 4751 } 4752 /* The only unlinked inodes we let through here have 4753 * valid i_mode and are being read by the orphan 4754 * recovery code: that's fine, we're about to complete 4755 * the process of deleting those. 4756 * OR it is the EXT4_BOOT_LOADER_INO which is 4757 * not initialized on a new filesystem. */ 4758 } 4759 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4760 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4761 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4762 if (ext4_has_feature_64bit(sb)) 4763 ei->i_file_acl |= 4764 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4765 inode->i_size = ext4_isize(sb, raw_inode); 4766 if ((size = i_size_read(inode)) < 0) { 4767 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4768 ret = -EFSCORRUPTED; 4769 goto bad_inode; 4770 } 4771 ei->i_disksize = inode->i_size; 4772 #ifdef CONFIG_QUOTA 4773 ei->i_reserved_quota = 0; 4774 #endif 4775 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4776 ei->i_block_group = iloc.block_group; 4777 ei->i_last_alloc_group = ~0; 4778 /* 4779 * NOTE! The in-memory inode i_data array is in little-endian order 4780 * even on big-endian machines: we do NOT byteswap the block numbers! 4781 */ 4782 for (block = 0; block < EXT4_N_BLOCKS; block++) 4783 ei->i_data[block] = raw_inode->i_block[block]; 4784 INIT_LIST_HEAD(&ei->i_orphan); 4785 4786 /* 4787 * Set transaction id's of transactions that have to be committed 4788 * to finish f[data]sync. We set them to currently running transaction 4789 * as we cannot be sure that the inode or some of its metadata isn't 4790 * part of the transaction - the inode could have been reclaimed and 4791 * now it is reread from disk. 4792 */ 4793 if (journal) { 4794 transaction_t *transaction; 4795 tid_t tid; 4796 4797 read_lock(&journal->j_state_lock); 4798 if (journal->j_running_transaction) 4799 transaction = journal->j_running_transaction; 4800 else 4801 transaction = journal->j_committing_transaction; 4802 if (transaction) 4803 tid = transaction->t_tid; 4804 else 4805 tid = journal->j_commit_sequence; 4806 read_unlock(&journal->j_state_lock); 4807 ei->i_sync_tid = tid; 4808 ei->i_datasync_tid = tid; 4809 } 4810 4811 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4812 if (ei->i_extra_isize == 0) { 4813 /* The extra space is currently unused. Use it. */ 4814 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4815 ei->i_extra_isize = sizeof(struct ext4_inode) - 4816 EXT4_GOOD_OLD_INODE_SIZE; 4817 } else { 4818 ext4_iget_extra_inode(inode, raw_inode, ei); 4819 } 4820 } 4821 4822 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4823 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4824 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4825 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4826 4827 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4828 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4829 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4830 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4831 inode->i_version |= 4832 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4833 } 4834 } 4835 4836 ret = 0; 4837 if (ei->i_file_acl && 4838 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4839 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4840 ei->i_file_acl); 4841 ret = -EFSCORRUPTED; 4842 goto bad_inode; 4843 } else if (!ext4_has_inline_data(inode)) { 4844 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4845 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4846 (S_ISLNK(inode->i_mode) && 4847 !ext4_inode_is_fast_symlink(inode)))) 4848 /* Validate extent which is part of inode */ 4849 ret = ext4_ext_check_inode(inode); 4850 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4851 (S_ISLNK(inode->i_mode) && 4852 !ext4_inode_is_fast_symlink(inode))) { 4853 /* Validate block references which are part of inode */ 4854 ret = ext4_ind_check_inode(inode); 4855 } 4856 } 4857 if (ret) 4858 goto bad_inode; 4859 4860 if (S_ISREG(inode->i_mode)) { 4861 inode->i_op = &ext4_file_inode_operations; 4862 inode->i_fop = &ext4_file_operations; 4863 ext4_set_aops(inode); 4864 } else if (S_ISDIR(inode->i_mode)) { 4865 inode->i_op = &ext4_dir_inode_operations; 4866 inode->i_fop = &ext4_dir_operations; 4867 } else if (S_ISLNK(inode->i_mode)) { 4868 if (ext4_encrypted_inode(inode)) { 4869 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4870 ext4_set_aops(inode); 4871 } else if (ext4_inode_is_fast_symlink(inode)) { 4872 inode->i_link = (char *)ei->i_data; 4873 inode->i_op = &ext4_fast_symlink_inode_operations; 4874 nd_terminate_link(ei->i_data, inode->i_size, 4875 sizeof(ei->i_data) - 1); 4876 } else { 4877 inode->i_op = &ext4_symlink_inode_operations; 4878 ext4_set_aops(inode); 4879 } 4880 inode_nohighmem(inode); 4881 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4882 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4883 inode->i_op = &ext4_special_inode_operations; 4884 if (raw_inode->i_block[0]) 4885 init_special_inode(inode, inode->i_mode, 4886 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4887 else 4888 init_special_inode(inode, inode->i_mode, 4889 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4890 } else if (ino == EXT4_BOOT_LOADER_INO) { 4891 make_bad_inode(inode); 4892 } else { 4893 ret = -EFSCORRUPTED; 4894 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4895 goto bad_inode; 4896 } 4897 brelse(iloc.bh); 4898 ext4_set_inode_flags(inode); 4899 4900 if (ei->i_flags & EXT4_EA_INODE_FL) { 4901 ext4_xattr_inode_set_class(inode); 4902 4903 inode_lock(inode); 4904 inode->i_flags |= S_NOQUOTA; 4905 inode_unlock(inode); 4906 } 4907 4908 unlock_new_inode(inode); 4909 return inode; 4910 4911 bad_inode: 4912 brelse(iloc.bh); 4913 iget_failed(inode); 4914 return ERR_PTR(ret); 4915 } 4916 4917 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4918 { 4919 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4920 return ERR_PTR(-EFSCORRUPTED); 4921 return ext4_iget(sb, ino); 4922 } 4923 4924 static int ext4_inode_blocks_set(handle_t *handle, 4925 struct ext4_inode *raw_inode, 4926 struct ext4_inode_info *ei) 4927 { 4928 struct inode *inode = &(ei->vfs_inode); 4929 u64 i_blocks = inode->i_blocks; 4930 struct super_block *sb = inode->i_sb; 4931 4932 if (i_blocks <= ~0U) { 4933 /* 4934 * i_blocks can be represented in a 32 bit variable 4935 * as multiple of 512 bytes 4936 */ 4937 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4938 raw_inode->i_blocks_high = 0; 4939 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4940 return 0; 4941 } 4942 if (!ext4_has_feature_huge_file(sb)) 4943 return -EFBIG; 4944 4945 if (i_blocks <= 0xffffffffffffULL) { 4946 /* 4947 * i_blocks can be represented in a 48 bit variable 4948 * as multiple of 512 bytes 4949 */ 4950 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4951 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4952 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4953 } else { 4954 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4955 /* i_block is stored in file system block size */ 4956 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4957 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4958 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4959 } 4960 return 0; 4961 } 4962 4963 struct other_inode { 4964 unsigned long orig_ino; 4965 struct ext4_inode *raw_inode; 4966 }; 4967 4968 static int other_inode_match(struct inode * inode, unsigned long ino, 4969 void *data) 4970 { 4971 struct other_inode *oi = (struct other_inode *) data; 4972 4973 if ((inode->i_ino != ino) || 4974 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4975 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4976 ((inode->i_state & I_DIRTY_TIME) == 0)) 4977 return 0; 4978 spin_lock(&inode->i_lock); 4979 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4980 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4981 (inode->i_state & I_DIRTY_TIME)) { 4982 struct ext4_inode_info *ei = EXT4_I(inode); 4983 4984 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4985 spin_unlock(&inode->i_lock); 4986 4987 spin_lock(&ei->i_raw_lock); 4988 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4989 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4990 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4991 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4992 spin_unlock(&ei->i_raw_lock); 4993 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4994 return -1; 4995 } 4996 spin_unlock(&inode->i_lock); 4997 return -1; 4998 } 4999 5000 /* 5001 * Opportunistically update the other time fields for other inodes in 5002 * the same inode table block. 5003 */ 5004 static void ext4_update_other_inodes_time(struct super_block *sb, 5005 unsigned long orig_ino, char *buf) 5006 { 5007 struct other_inode oi; 5008 unsigned long ino; 5009 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5010 int inode_size = EXT4_INODE_SIZE(sb); 5011 5012 oi.orig_ino = orig_ino; 5013 /* 5014 * Calculate the first inode in the inode table block. Inode 5015 * numbers are one-based. That is, the first inode in a block 5016 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5017 */ 5018 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5019 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5020 if (ino == orig_ino) 5021 continue; 5022 oi.raw_inode = (struct ext4_inode *) buf; 5023 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5024 } 5025 } 5026 5027 /* 5028 * Post the struct inode info into an on-disk inode location in the 5029 * buffer-cache. This gobbles the caller's reference to the 5030 * buffer_head in the inode location struct. 5031 * 5032 * The caller must have write access to iloc->bh. 5033 */ 5034 static int ext4_do_update_inode(handle_t *handle, 5035 struct inode *inode, 5036 struct ext4_iloc *iloc) 5037 { 5038 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5039 struct ext4_inode_info *ei = EXT4_I(inode); 5040 struct buffer_head *bh = iloc->bh; 5041 struct super_block *sb = inode->i_sb; 5042 int err = 0, rc, block; 5043 int need_datasync = 0, set_large_file = 0; 5044 uid_t i_uid; 5045 gid_t i_gid; 5046 projid_t i_projid; 5047 5048 spin_lock(&ei->i_raw_lock); 5049 5050 /* For fields not tracked in the in-memory inode, 5051 * initialise them to zero for new inodes. */ 5052 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5053 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5054 5055 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5056 i_uid = i_uid_read(inode); 5057 i_gid = i_gid_read(inode); 5058 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5059 if (!(test_opt(inode->i_sb, NO_UID32))) { 5060 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5061 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5062 /* 5063 * Fix up interoperability with old kernels. Otherwise, old inodes get 5064 * re-used with the upper 16 bits of the uid/gid intact 5065 */ 5066 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5067 raw_inode->i_uid_high = 0; 5068 raw_inode->i_gid_high = 0; 5069 } else { 5070 raw_inode->i_uid_high = 5071 cpu_to_le16(high_16_bits(i_uid)); 5072 raw_inode->i_gid_high = 5073 cpu_to_le16(high_16_bits(i_gid)); 5074 } 5075 } else { 5076 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5077 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5078 raw_inode->i_uid_high = 0; 5079 raw_inode->i_gid_high = 0; 5080 } 5081 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5082 5083 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5084 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5085 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5086 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5087 5088 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5089 if (err) { 5090 spin_unlock(&ei->i_raw_lock); 5091 goto out_brelse; 5092 } 5093 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5094 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5095 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5096 raw_inode->i_file_acl_high = 5097 cpu_to_le16(ei->i_file_acl >> 32); 5098 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5099 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5100 ext4_isize_set(raw_inode, ei->i_disksize); 5101 need_datasync = 1; 5102 } 5103 if (ei->i_disksize > 0x7fffffffULL) { 5104 if (!ext4_has_feature_large_file(sb) || 5105 EXT4_SB(sb)->s_es->s_rev_level == 5106 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5107 set_large_file = 1; 5108 } 5109 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5110 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5111 if (old_valid_dev(inode->i_rdev)) { 5112 raw_inode->i_block[0] = 5113 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5114 raw_inode->i_block[1] = 0; 5115 } else { 5116 raw_inode->i_block[0] = 0; 5117 raw_inode->i_block[1] = 5118 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5119 raw_inode->i_block[2] = 0; 5120 } 5121 } else if (!ext4_has_inline_data(inode)) { 5122 for (block = 0; block < EXT4_N_BLOCKS; block++) 5123 raw_inode->i_block[block] = ei->i_data[block]; 5124 } 5125 5126 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5127 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5128 if (ei->i_extra_isize) { 5129 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5130 raw_inode->i_version_hi = 5131 cpu_to_le32(inode->i_version >> 32); 5132 raw_inode->i_extra_isize = 5133 cpu_to_le16(ei->i_extra_isize); 5134 } 5135 } 5136 5137 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5138 i_projid != EXT4_DEF_PROJID); 5139 5140 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5141 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5142 raw_inode->i_projid = cpu_to_le32(i_projid); 5143 5144 ext4_inode_csum_set(inode, raw_inode, ei); 5145 spin_unlock(&ei->i_raw_lock); 5146 if (inode->i_sb->s_flags & MS_LAZYTIME) 5147 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5148 bh->b_data); 5149 5150 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5151 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5152 if (!err) 5153 err = rc; 5154 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5155 if (set_large_file) { 5156 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5157 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5158 if (err) 5159 goto out_brelse; 5160 ext4_update_dynamic_rev(sb); 5161 ext4_set_feature_large_file(sb); 5162 ext4_handle_sync(handle); 5163 err = ext4_handle_dirty_super(handle, sb); 5164 } 5165 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5166 out_brelse: 5167 brelse(bh); 5168 ext4_std_error(inode->i_sb, err); 5169 return err; 5170 } 5171 5172 /* 5173 * ext4_write_inode() 5174 * 5175 * We are called from a few places: 5176 * 5177 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5178 * Here, there will be no transaction running. We wait for any running 5179 * transaction to commit. 5180 * 5181 * - Within flush work (sys_sync(), kupdate and such). 5182 * We wait on commit, if told to. 5183 * 5184 * - Within iput_final() -> write_inode_now() 5185 * We wait on commit, if told to. 5186 * 5187 * In all cases it is actually safe for us to return without doing anything, 5188 * because the inode has been copied into a raw inode buffer in 5189 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5190 * writeback. 5191 * 5192 * Note that we are absolutely dependent upon all inode dirtiers doing the 5193 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5194 * which we are interested. 5195 * 5196 * It would be a bug for them to not do this. The code: 5197 * 5198 * mark_inode_dirty(inode) 5199 * stuff(); 5200 * inode->i_size = expr; 5201 * 5202 * is in error because write_inode() could occur while `stuff()' is running, 5203 * and the new i_size will be lost. Plus the inode will no longer be on the 5204 * superblock's dirty inode list. 5205 */ 5206 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5207 { 5208 int err; 5209 5210 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5211 return 0; 5212 5213 if (EXT4_SB(inode->i_sb)->s_journal) { 5214 if (ext4_journal_current_handle()) { 5215 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5216 dump_stack(); 5217 return -EIO; 5218 } 5219 5220 /* 5221 * No need to force transaction in WB_SYNC_NONE mode. Also 5222 * ext4_sync_fs() will force the commit after everything is 5223 * written. 5224 */ 5225 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5226 return 0; 5227 5228 err = ext4_force_commit(inode->i_sb); 5229 } else { 5230 struct ext4_iloc iloc; 5231 5232 err = __ext4_get_inode_loc(inode, &iloc, 0); 5233 if (err) 5234 return err; 5235 /* 5236 * sync(2) will flush the whole buffer cache. No need to do 5237 * it here separately for each inode. 5238 */ 5239 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5240 sync_dirty_buffer(iloc.bh); 5241 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5242 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5243 "IO error syncing inode"); 5244 err = -EIO; 5245 } 5246 brelse(iloc.bh); 5247 } 5248 return err; 5249 } 5250 5251 /* 5252 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5253 * buffers that are attached to a page stradding i_size and are undergoing 5254 * commit. In that case we have to wait for commit to finish and try again. 5255 */ 5256 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5257 { 5258 struct page *page; 5259 unsigned offset; 5260 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5261 tid_t commit_tid = 0; 5262 int ret; 5263 5264 offset = inode->i_size & (PAGE_SIZE - 1); 5265 /* 5266 * All buffers in the last page remain valid? Then there's nothing to 5267 * do. We do the check mainly to optimize the common PAGE_SIZE == 5268 * blocksize case 5269 */ 5270 if (offset > PAGE_SIZE - i_blocksize(inode)) 5271 return; 5272 while (1) { 5273 page = find_lock_page(inode->i_mapping, 5274 inode->i_size >> PAGE_SHIFT); 5275 if (!page) 5276 return; 5277 ret = __ext4_journalled_invalidatepage(page, offset, 5278 PAGE_SIZE - offset); 5279 unlock_page(page); 5280 put_page(page); 5281 if (ret != -EBUSY) 5282 return; 5283 commit_tid = 0; 5284 read_lock(&journal->j_state_lock); 5285 if (journal->j_committing_transaction) 5286 commit_tid = journal->j_committing_transaction->t_tid; 5287 read_unlock(&journal->j_state_lock); 5288 if (commit_tid) 5289 jbd2_log_wait_commit(journal, commit_tid); 5290 } 5291 } 5292 5293 /* 5294 * ext4_setattr() 5295 * 5296 * Called from notify_change. 5297 * 5298 * We want to trap VFS attempts to truncate the file as soon as 5299 * possible. In particular, we want to make sure that when the VFS 5300 * shrinks i_size, we put the inode on the orphan list and modify 5301 * i_disksize immediately, so that during the subsequent flushing of 5302 * dirty pages and freeing of disk blocks, we can guarantee that any 5303 * commit will leave the blocks being flushed in an unused state on 5304 * disk. (On recovery, the inode will get truncated and the blocks will 5305 * be freed, so we have a strong guarantee that no future commit will 5306 * leave these blocks visible to the user.) 5307 * 5308 * Another thing we have to assure is that if we are in ordered mode 5309 * and inode is still attached to the committing transaction, we must 5310 * we start writeout of all the dirty pages which are being truncated. 5311 * This way we are sure that all the data written in the previous 5312 * transaction are already on disk (truncate waits for pages under 5313 * writeback). 5314 * 5315 * Called with inode->i_mutex down. 5316 */ 5317 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5318 { 5319 struct inode *inode = d_inode(dentry); 5320 int error, rc = 0; 5321 int orphan = 0; 5322 const unsigned int ia_valid = attr->ia_valid; 5323 5324 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5325 return -EIO; 5326 5327 error = setattr_prepare(dentry, attr); 5328 if (error) 5329 return error; 5330 5331 if (is_quota_modification(inode, attr)) { 5332 error = dquot_initialize(inode); 5333 if (error) 5334 return error; 5335 } 5336 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5337 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5338 handle_t *handle; 5339 5340 /* (user+group)*(old+new) structure, inode write (sb, 5341 * inode block, ? - but truncate inode update has it) */ 5342 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5343 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5344 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5345 if (IS_ERR(handle)) { 5346 error = PTR_ERR(handle); 5347 goto err_out; 5348 } 5349 5350 /* dquot_transfer() calls back ext4_get_inode_usage() which 5351 * counts xattr inode references. 5352 */ 5353 down_read(&EXT4_I(inode)->xattr_sem); 5354 error = dquot_transfer(inode, attr); 5355 up_read(&EXT4_I(inode)->xattr_sem); 5356 5357 if (error) { 5358 ext4_journal_stop(handle); 5359 return error; 5360 } 5361 /* Update corresponding info in inode so that everything is in 5362 * one transaction */ 5363 if (attr->ia_valid & ATTR_UID) 5364 inode->i_uid = attr->ia_uid; 5365 if (attr->ia_valid & ATTR_GID) 5366 inode->i_gid = attr->ia_gid; 5367 error = ext4_mark_inode_dirty(handle, inode); 5368 ext4_journal_stop(handle); 5369 } 5370 5371 if (attr->ia_valid & ATTR_SIZE) { 5372 handle_t *handle; 5373 loff_t oldsize = inode->i_size; 5374 int shrink = (attr->ia_size <= inode->i_size); 5375 5376 if (ext4_encrypted_inode(inode)) { 5377 error = fscrypt_get_encryption_info(inode); 5378 if (error) 5379 return error; 5380 if (!fscrypt_has_encryption_key(inode)) 5381 return -ENOKEY; 5382 } 5383 5384 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5385 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5386 5387 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5388 return -EFBIG; 5389 } 5390 if (!S_ISREG(inode->i_mode)) 5391 return -EINVAL; 5392 5393 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5394 inode_inc_iversion(inode); 5395 5396 if (ext4_should_order_data(inode) && 5397 (attr->ia_size < inode->i_size)) { 5398 error = ext4_begin_ordered_truncate(inode, 5399 attr->ia_size); 5400 if (error) 5401 goto err_out; 5402 } 5403 if (attr->ia_size != inode->i_size) { 5404 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5405 if (IS_ERR(handle)) { 5406 error = PTR_ERR(handle); 5407 goto err_out; 5408 } 5409 if (ext4_handle_valid(handle) && shrink) { 5410 error = ext4_orphan_add(handle, inode); 5411 orphan = 1; 5412 } 5413 /* 5414 * Update c/mtime on truncate up, ext4_truncate() will 5415 * update c/mtime in shrink case below 5416 */ 5417 if (!shrink) { 5418 inode->i_mtime = current_time(inode); 5419 inode->i_ctime = inode->i_mtime; 5420 } 5421 down_write(&EXT4_I(inode)->i_data_sem); 5422 EXT4_I(inode)->i_disksize = attr->ia_size; 5423 rc = ext4_mark_inode_dirty(handle, inode); 5424 if (!error) 5425 error = rc; 5426 /* 5427 * We have to update i_size under i_data_sem together 5428 * with i_disksize to avoid races with writeback code 5429 * running ext4_wb_update_i_disksize(). 5430 */ 5431 if (!error) 5432 i_size_write(inode, attr->ia_size); 5433 up_write(&EXT4_I(inode)->i_data_sem); 5434 ext4_journal_stop(handle); 5435 if (error) { 5436 if (orphan) 5437 ext4_orphan_del(NULL, inode); 5438 goto err_out; 5439 } 5440 } 5441 if (!shrink) 5442 pagecache_isize_extended(inode, oldsize, inode->i_size); 5443 5444 /* 5445 * Blocks are going to be removed from the inode. Wait 5446 * for dio in flight. Temporarily disable 5447 * dioread_nolock to prevent livelock. 5448 */ 5449 if (orphan) { 5450 if (!ext4_should_journal_data(inode)) { 5451 ext4_inode_block_unlocked_dio(inode); 5452 inode_dio_wait(inode); 5453 ext4_inode_resume_unlocked_dio(inode); 5454 } else 5455 ext4_wait_for_tail_page_commit(inode); 5456 } 5457 down_write(&EXT4_I(inode)->i_mmap_sem); 5458 /* 5459 * Truncate pagecache after we've waited for commit 5460 * in data=journal mode to make pages freeable. 5461 */ 5462 truncate_pagecache(inode, inode->i_size); 5463 if (shrink) { 5464 rc = ext4_truncate(inode); 5465 if (rc) 5466 error = rc; 5467 } 5468 up_write(&EXT4_I(inode)->i_mmap_sem); 5469 } 5470 5471 if (!error) { 5472 setattr_copy(inode, attr); 5473 mark_inode_dirty(inode); 5474 } 5475 5476 /* 5477 * If the call to ext4_truncate failed to get a transaction handle at 5478 * all, we need to clean up the in-core orphan list manually. 5479 */ 5480 if (orphan && inode->i_nlink) 5481 ext4_orphan_del(NULL, inode); 5482 5483 if (!error && (ia_valid & ATTR_MODE)) 5484 rc = posix_acl_chmod(inode, inode->i_mode); 5485 5486 err_out: 5487 ext4_std_error(inode->i_sb, error); 5488 if (!error) 5489 error = rc; 5490 return error; 5491 } 5492 5493 int ext4_getattr(const struct path *path, struct kstat *stat, 5494 u32 request_mask, unsigned int query_flags) 5495 { 5496 struct inode *inode = d_inode(path->dentry); 5497 struct ext4_inode *raw_inode; 5498 struct ext4_inode_info *ei = EXT4_I(inode); 5499 unsigned int flags; 5500 5501 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5502 stat->result_mask |= STATX_BTIME; 5503 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5504 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5505 } 5506 5507 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5508 if (flags & EXT4_APPEND_FL) 5509 stat->attributes |= STATX_ATTR_APPEND; 5510 if (flags & EXT4_COMPR_FL) 5511 stat->attributes |= STATX_ATTR_COMPRESSED; 5512 if (flags & EXT4_ENCRYPT_FL) 5513 stat->attributes |= STATX_ATTR_ENCRYPTED; 5514 if (flags & EXT4_IMMUTABLE_FL) 5515 stat->attributes |= STATX_ATTR_IMMUTABLE; 5516 if (flags & EXT4_NODUMP_FL) 5517 stat->attributes |= STATX_ATTR_NODUMP; 5518 5519 stat->attributes_mask |= (STATX_ATTR_APPEND | 5520 STATX_ATTR_COMPRESSED | 5521 STATX_ATTR_ENCRYPTED | 5522 STATX_ATTR_IMMUTABLE | 5523 STATX_ATTR_NODUMP); 5524 5525 generic_fillattr(inode, stat); 5526 return 0; 5527 } 5528 5529 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5530 u32 request_mask, unsigned int query_flags) 5531 { 5532 struct inode *inode = d_inode(path->dentry); 5533 u64 delalloc_blocks; 5534 5535 ext4_getattr(path, stat, request_mask, query_flags); 5536 5537 /* 5538 * If there is inline data in the inode, the inode will normally not 5539 * have data blocks allocated (it may have an external xattr block). 5540 * Report at least one sector for such files, so tools like tar, rsync, 5541 * others don't incorrectly think the file is completely sparse. 5542 */ 5543 if (unlikely(ext4_has_inline_data(inode))) 5544 stat->blocks += (stat->size + 511) >> 9; 5545 5546 /* 5547 * We can't update i_blocks if the block allocation is delayed 5548 * otherwise in the case of system crash before the real block 5549 * allocation is done, we will have i_blocks inconsistent with 5550 * on-disk file blocks. 5551 * We always keep i_blocks updated together with real 5552 * allocation. But to not confuse with user, stat 5553 * will return the blocks that include the delayed allocation 5554 * blocks for this file. 5555 */ 5556 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5557 EXT4_I(inode)->i_reserved_data_blocks); 5558 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5559 return 0; 5560 } 5561 5562 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5563 int pextents) 5564 { 5565 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5566 return ext4_ind_trans_blocks(inode, lblocks); 5567 return ext4_ext_index_trans_blocks(inode, pextents); 5568 } 5569 5570 /* 5571 * Account for index blocks, block groups bitmaps and block group 5572 * descriptor blocks if modify datablocks and index blocks 5573 * worse case, the indexs blocks spread over different block groups 5574 * 5575 * If datablocks are discontiguous, they are possible to spread over 5576 * different block groups too. If they are contiguous, with flexbg, 5577 * they could still across block group boundary. 5578 * 5579 * Also account for superblock, inode, quota and xattr blocks 5580 */ 5581 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5582 int pextents) 5583 { 5584 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5585 int gdpblocks; 5586 int idxblocks; 5587 int ret = 0; 5588 5589 /* 5590 * How many index blocks need to touch to map @lblocks logical blocks 5591 * to @pextents physical extents? 5592 */ 5593 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5594 5595 ret = idxblocks; 5596 5597 /* 5598 * Now let's see how many group bitmaps and group descriptors need 5599 * to account 5600 */ 5601 groups = idxblocks + pextents; 5602 gdpblocks = groups; 5603 if (groups > ngroups) 5604 groups = ngroups; 5605 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5606 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5607 5608 /* bitmaps and block group descriptor blocks */ 5609 ret += groups + gdpblocks; 5610 5611 /* Blocks for super block, inode, quota and xattr blocks */ 5612 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5613 5614 return ret; 5615 } 5616 5617 /* 5618 * Calculate the total number of credits to reserve to fit 5619 * the modification of a single pages into a single transaction, 5620 * which may include multiple chunks of block allocations. 5621 * 5622 * This could be called via ext4_write_begin() 5623 * 5624 * We need to consider the worse case, when 5625 * one new block per extent. 5626 */ 5627 int ext4_writepage_trans_blocks(struct inode *inode) 5628 { 5629 int bpp = ext4_journal_blocks_per_page(inode); 5630 int ret; 5631 5632 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5633 5634 /* Account for data blocks for journalled mode */ 5635 if (ext4_should_journal_data(inode)) 5636 ret += bpp; 5637 return ret; 5638 } 5639 5640 /* 5641 * Calculate the journal credits for a chunk of data modification. 5642 * 5643 * This is called from DIO, fallocate or whoever calling 5644 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5645 * 5646 * journal buffers for data blocks are not included here, as DIO 5647 * and fallocate do no need to journal data buffers. 5648 */ 5649 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5650 { 5651 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5652 } 5653 5654 /* 5655 * The caller must have previously called ext4_reserve_inode_write(). 5656 * Give this, we know that the caller already has write access to iloc->bh. 5657 */ 5658 int ext4_mark_iloc_dirty(handle_t *handle, 5659 struct inode *inode, struct ext4_iloc *iloc) 5660 { 5661 int err = 0; 5662 5663 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5664 return -EIO; 5665 5666 if (IS_I_VERSION(inode)) 5667 inode_inc_iversion(inode); 5668 5669 /* the do_update_inode consumes one bh->b_count */ 5670 get_bh(iloc->bh); 5671 5672 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5673 err = ext4_do_update_inode(handle, inode, iloc); 5674 put_bh(iloc->bh); 5675 return err; 5676 } 5677 5678 /* 5679 * On success, We end up with an outstanding reference count against 5680 * iloc->bh. This _must_ be cleaned up later. 5681 */ 5682 5683 int 5684 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5685 struct ext4_iloc *iloc) 5686 { 5687 int err; 5688 5689 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5690 return -EIO; 5691 5692 err = ext4_get_inode_loc(inode, iloc); 5693 if (!err) { 5694 BUFFER_TRACE(iloc->bh, "get_write_access"); 5695 err = ext4_journal_get_write_access(handle, iloc->bh); 5696 if (err) { 5697 brelse(iloc->bh); 5698 iloc->bh = NULL; 5699 } 5700 } 5701 ext4_std_error(inode->i_sb, err); 5702 return err; 5703 } 5704 5705 static int __ext4_expand_extra_isize(struct inode *inode, 5706 unsigned int new_extra_isize, 5707 struct ext4_iloc *iloc, 5708 handle_t *handle, int *no_expand) 5709 { 5710 struct ext4_inode *raw_inode; 5711 struct ext4_xattr_ibody_header *header; 5712 int error; 5713 5714 raw_inode = ext4_raw_inode(iloc); 5715 5716 header = IHDR(inode, raw_inode); 5717 5718 /* No extended attributes present */ 5719 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5720 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5721 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5722 EXT4_I(inode)->i_extra_isize, 0, 5723 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5724 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5725 return 0; 5726 } 5727 5728 /* try to expand with EAs present */ 5729 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5730 raw_inode, handle); 5731 if (error) { 5732 /* 5733 * Inode size expansion failed; don't try again 5734 */ 5735 *no_expand = 1; 5736 } 5737 5738 return error; 5739 } 5740 5741 /* 5742 * Expand an inode by new_extra_isize bytes. 5743 * Returns 0 on success or negative error number on failure. 5744 */ 5745 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5746 unsigned int new_extra_isize, 5747 struct ext4_iloc iloc, 5748 handle_t *handle) 5749 { 5750 int no_expand; 5751 int error; 5752 5753 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5754 return -EOVERFLOW; 5755 5756 /* 5757 * In nojournal mode, we can immediately attempt to expand 5758 * the inode. When journaled, we first need to obtain extra 5759 * buffer credits since we may write into the EA block 5760 * with this same handle. If journal_extend fails, then it will 5761 * only result in a minor loss of functionality for that inode. 5762 * If this is felt to be critical, then e2fsck should be run to 5763 * force a large enough s_min_extra_isize. 5764 */ 5765 if (ext4_handle_valid(handle) && 5766 jbd2_journal_extend(handle, 5767 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5768 return -ENOSPC; 5769 5770 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5771 return -EBUSY; 5772 5773 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5774 handle, &no_expand); 5775 ext4_write_unlock_xattr(inode, &no_expand); 5776 5777 return error; 5778 } 5779 5780 int ext4_expand_extra_isize(struct inode *inode, 5781 unsigned int new_extra_isize, 5782 struct ext4_iloc *iloc) 5783 { 5784 handle_t *handle; 5785 int no_expand; 5786 int error, rc; 5787 5788 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5789 brelse(iloc->bh); 5790 return -EOVERFLOW; 5791 } 5792 5793 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5794 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5795 if (IS_ERR(handle)) { 5796 error = PTR_ERR(handle); 5797 brelse(iloc->bh); 5798 return error; 5799 } 5800 5801 ext4_write_lock_xattr(inode, &no_expand); 5802 5803 BUFFER_TRACE(iloc.bh, "get_write_access"); 5804 error = ext4_journal_get_write_access(handle, iloc->bh); 5805 if (error) { 5806 brelse(iloc->bh); 5807 goto out_stop; 5808 } 5809 5810 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5811 handle, &no_expand); 5812 5813 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5814 if (!error) 5815 error = rc; 5816 5817 ext4_write_unlock_xattr(inode, &no_expand); 5818 out_stop: 5819 ext4_journal_stop(handle); 5820 return error; 5821 } 5822 5823 /* 5824 * What we do here is to mark the in-core inode as clean with respect to inode 5825 * dirtiness (it may still be data-dirty). 5826 * This means that the in-core inode may be reaped by prune_icache 5827 * without having to perform any I/O. This is a very good thing, 5828 * because *any* task may call prune_icache - even ones which 5829 * have a transaction open against a different journal. 5830 * 5831 * Is this cheating? Not really. Sure, we haven't written the 5832 * inode out, but prune_icache isn't a user-visible syncing function. 5833 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5834 * we start and wait on commits. 5835 */ 5836 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5837 { 5838 struct ext4_iloc iloc; 5839 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5840 int err; 5841 5842 might_sleep(); 5843 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5844 err = ext4_reserve_inode_write(handle, inode, &iloc); 5845 if (err) 5846 return err; 5847 5848 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5849 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5850 iloc, handle); 5851 5852 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5853 } 5854 5855 /* 5856 * ext4_dirty_inode() is called from __mark_inode_dirty() 5857 * 5858 * We're really interested in the case where a file is being extended. 5859 * i_size has been changed by generic_commit_write() and we thus need 5860 * to include the updated inode in the current transaction. 5861 * 5862 * Also, dquot_alloc_block() will always dirty the inode when blocks 5863 * are allocated to the file. 5864 * 5865 * If the inode is marked synchronous, we don't honour that here - doing 5866 * so would cause a commit on atime updates, which we don't bother doing. 5867 * We handle synchronous inodes at the highest possible level. 5868 * 5869 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5870 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5871 * to copy into the on-disk inode structure are the timestamp files. 5872 */ 5873 void ext4_dirty_inode(struct inode *inode, int flags) 5874 { 5875 handle_t *handle; 5876 5877 if (flags == I_DIRTY_TIME) 5878 return; 5879 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5880 if (IS_ERR(handle)) 5881 goto out; 5882 5883 ext4_mark_inode_dirty(handle, inode); 5884 5885 ext4_journal_stop(handle); 5886 out: 5887 return; 5888 } 5889 5890 #if 0 5891 /* 5892 * Bind an inode's backing buffer_head into this transaction, to prevent 5893 * it from being flushed to disk early. Unlike 5894 * ext4_reserve_inode_write, this leaves behind no bh reference and 5895 * returns no iloc structure, so the caller needs to repeat the iloc 5896 * lookup to mark the inode dirty later. 5897 */ 5898 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5899 { 5900 struct ext4_iloc iloc; 5901 5902 int err = 0; 5903 if (handle) { 5904 err = ext4_get_inode_loc(inode, &iloc); 5905 if (!err) { 5906 BUFFER_TRACE(iloc.bh, "get_write_access"); 5907 err = jbd2_journal_get_write_access(handle, iloc.bh); 5908 if (!err) 5909 err = ext4_handle_dirty_metadata(handle, 5910 NULL, 5911 iloc.bh); 5912 brelse(iloc.bh); 5913 } 5914 } 5915 ext4_std_error(inode->i_sb, err); 5916 return err; 5917 } 5918 #endif 5919 5920 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5921 { 5922 journal_t *journal; 5923 handle_t *handle; 5924 int err; 5925 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5926 5927 /* 5928 * We have to be very careful here: changing a data block's 5929 * journaling status dynamically is dangerous. If we write a 5930 * data block to the journal, change the status and then delete 5931 * that block, we risk forgetting to revoke the old log record 5932 * from the journal and so a subsequent replay can corrupt data. 5933 * So, first we make sure that the journal is empty and that 5934 * nobody is changing anything. 5935 */ 5936 5937 journal = EXT4_JOURNAL(inode); 5938 if (!journal) 5939 return 0; 5940 if (is_journal_aborted(journal)) 5941 return -EROFS; 5942 5943 /* Wait for all existing dio workers */ 5944 ext4_inode_block_unlocked_dio(inode); 5945 inode_dio_wait(inode); 5946 5947 /* 5948 * Before flushing the journal and switching inode's aops, we have 5949 * to flush all dirty data the inode has. There can be outstanding 5950 * delayed allocations, there can be unwritten extents created by 5951 * fallocate or buffered writes in dioread_nolock mode covered by 5952 * dirty data which can be converted only after flushing the dirty 5953 * data (and journalled aops don't know how to handle these cases). 5954 */ 5955 if (val) { 5956 down_write(&EXT4_I(inode)->i_mmap_sem); 5957 err = filemap_write_and_wait(inode->i_mapping); 5958 if (err < 0) { 5959 up_write(&EXT4_I(inode)->i_mmap_sem); 5960 ext4_inode_resume_unlocked_dio(inode); 5961 return err; 5962 } 5963 } 5964 5965 percpu_down_write(&sbi->s_journal_flag_rwsem); 5966 jbd2_journal_lock_updates(journal); 5967 5968 /* 5969 * OK, there are no updates running now, and all cached data is 5970 * synced to disk. We are now in a completely consistent state 5971 * which doesn't have anything in the journal, and we know that 5972 * no filesystem updates are running, so it is safe to modify 5973 * the inode's in-core data-journaling state flag now. 5974 */ 5975 5976 if (val) 5977 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5978 else { 5979 err = jbd2_journal_flush(journal); 5980 if (err < 0) { 5981 jbd2_journal_unlock_updates(journal); 5982 percpu_up_write(&sbi->s_journal_flag_rwsem); 5983 ext4_inode_resume_unlocked_dio(inode); 5984 return err; 5985 } 5986 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5987 } 5988 ext4_set_aops(inode); 5989 /* 5990 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated. 5991 * E.g. S_DAX may get cleared / set. 5992 */ 5993 ext4_set_inode_flags(inode); 5994 5995 jbd2_journal_unlock_updates(journal); 5996 percpu_up_write(&sbi->s_journal_flag_rwsem); 5997 5998 if (val) 5999 up_write(&EXT4_I(inode)->i_mmap_sem); 6000 ext4_inode_resume_unlocked_dio(inode); 6001 6002 /* Finally we can mark the inode as dirty. */ 6003 6004 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6005 if (IS_ERR(handle)) 6006 return PTR_ERR(handle); 6007 6008 err = ext4_mark_inode_dirty(handle, inode); 6009 ext4_handle_sync(handle); 6010 ext4_journal_stop(handle); 6011 ext4_std_error(inode->i_sb, err); 6012 6013 return err; 6014 } 6015 6016 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6017 { 6018 return !buffer_mapped(bh); 6019 } 6020 6021 int ext4_page_mkwrite(struct vm_fault *vmf) 6022 { 6023 struct vm_area_struct *vma = vmf->vma; 6024 struct page *page = vmf->page; 6025 loff_t size; 6026 unsigned long len; 6027 int ret; 6028 struct file *file = vma->vm_file; 6029 struct inode *inode = file_inode(file); 6030 struct address_space *mapping = inode->i_mapping; 6031 handle_t *handle; 6032 get_block_t *get_block; 6033 int retries = 0; 6034 6035 sb_start_pagefault(inode->i_sb); 6036 file_update_time(vma->vm_file); 6037 6038 down_read(&EXT4_I(inode)->i_mmap_sem); 6039 6040 ret = ext4_convert_inline_data(inode); 6041 if (ret) 6042 goto out_ret; 6043 6044 /* Delalloc case is easy... */ 6045 if (test_opt(inode->i_sb, DELALLOC) && 6046 !ext4_should_journal_data(inode) && 6047 !ext4_nonda_switch(inode->i_sb)) { 6048 do { 6049 ret = block_page_mkwrite(vma, vmf, 6050 ext4_da_get_block_prep); 6051 } while (ret == -ENOSPC && 6052 ext4_should_retry_alloc(inode->i_sb, &retries)); 6053 goto out_ret; 6054 } 6055 6056 lock_page(page); 6057 size = i_size_read(inode); 6058 /* Page got truncated from under us? */ 6059 if (page->mapping != mapping || page_offset(page) > size) { 6060 unlock_page(page); 6061 ret = VM_FAULT_NOPAGE; 6062 goto out; 6063 } 6064 6065 if (page->index == size >> PAGE_SHIFT) 6066 len = size & ~PAGE_MASK; 6067 else 6068 len = PAGE_SIZE; 6069 /* 6070 * Return if we have all the buffers mapped. This avoids the need to do 6071 * journal_start/journal_stop which can block and take a long time 6072 */ 6073 if (page_has_buffers(page)) { 6074 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6075 0, len, NULL, 6076 ext4_bh_unmapped)) { 6077 /* Wait so that we don't change page under IO */ 6078 wait_for_stable_page(page); 6079 ret = VM_FAULT_LOCKED; 6080 goto out; 6081 } 6082 } 6083 unlock_page(page); 6084 /* OK, we need to fill the hole... */ 6085 if (ext4_should_dioread_nolock(inode)) 6086 get_block = ext4_get_block_unwritten; 6087 else 6088 get_block = ext4_get_block; 6089 retry_alloc: 6090 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6091 ext4_writepage_trans_blocks(inode)); 6092 if (IS_ERR(handle)) { 6093 ret = VM_FAULT_SIGBUS; 6094 goto out; 6095 } 6096 ret = block_page_mkwrite(vma, vmf, get_block); 6097 if (!ret && ext4_should_journal_data(inode)) { 6098 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6099 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6100 unlock_page(page); 6101 ret = VM_FAULT_SIGBUS; 6102 ext4_journal_stop(handle); 6103 goto out; 6104 } 6105 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6106 } 6107 ext4_journal_stop(handle); 6108 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6109 goto retry_alloc; 6110 out_ret: 6111 ret = block_page_mkwrite_return(ret); 6112 out: 6113 up_read(&EXT4_I(inode)->i_mmap_sem); 6114 sb_end_pagefault(inode->i_sb); 6115 return ret; 6116 } 6117 6118 int ext4_filemap_fault(struct vm_fault *vmf) 6119 { 6120 struct inode *inode = file_inode(vmf->vma->vm_file); 6121 int err; 6122 6123 down_read(&EXT4_I(inode)->i_mmap_sem); 6124 err = filemap_fault(vmf); 6125 up_read(&EXT4_I(inode)->i_mmap_sem); 6126 6127 return err; 6128 } 6129 6130 /* 6131 * Find the first extent at or after @lblk in an inode that is not a hole. 6132 * Search for @map_len blocks at most. The extent is returned in @result. 6133 * 6134 * The function returns 1 if we found an extent. The function returns 0 in 6135 * case there is no extent at or after @lblk and in that case also sets 6136 * @result->es_len to 0. In case of error, the error code is returned. 6137 */ 6138 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 6139 unsigned int map_len, struct extent_status *result) 6140 { 6141 struct ext4_map_blocks map; 6142 struct extent_status es = {}; 6143 int ret; 6144 6145 map.m_lblk = lblk; 6146 map.m_len = map_len; 6147 6148 /* 6149 * For non-extent based files this loop may iterate several times since 6150 * we do not determine full hole size. 6151 */ 6152 while (map.m_len > 0) { 6153 ret = ext4_map_blocks(NULL, inode, &map, 0); 6154 if (ret < 0) 6155 return ret; 6156 /* There's extent covering m_lblk? Just return it. */ 6157 if (ret > 0) { 6158 int status; 6159 6160 ext4_es_store_pblock(result, map.m_pblk); 6161 result->es_lblk = map.m_lblk; 6162 result->es_len = map.m_len; 6163 if (map.m_flags & EXT4_MAP_UNWRITTEN) 6164 status = EXTENT_STATUS_UNWRITTEN; 6165 else 6166 status = EXTENT_STATUS_WRITTEN; 6167 ext4_es_store_status(result, status); 6168 return 1; 6169 } 6170 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 6171 map.m_lblk + map.m_len - 1, 6172 &es); 6173 /* Is delalloc data before next block in extent tree? */ 6174 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 6175 ext4_lblk_t offset = 0; 6176 6177 if (es.es_lblk < lblk) 6178 offset = lblk - es.es_lblk; 6179 result->es_lblk = es.es_lblk + offset; 6180 ext4_es_store_pblock(result, 6181 ext4_es_pblock(&es) + offset); 6182 result->es_len = es.es_len - offset; 6183 ext4_es_store_status(result, ext4_es_status(&es)); 6184 6185 return 1; 6186 } 6187 /* There's a hole at m_lblk, advance us after it */ 6188 map.m_lblk += map.m_len; 6189 map_len -= map.m_len; 6190 map.m_len = map_len; 6191 cond_resched(); 6192 } 6193 result->es_len = 0; 6194 return 0; 6195 } 6196