1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static void ext4_invalidatepage(struct page *page, unsigned int offset, 140 unsigned int length); 141 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 144 int pextents); 145 146 /* 147 * Test whether an inode is a fast symlink. 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 149 */ 150 int ext4_inode_is_fast_symlink(struct inode *inode) 151 { 152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 153 int ea_blocks = EXT4_I(inode)->i_file_acl ? 154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 155 156 if (ext4_has_inline_data(inode)) 157 return 0; 158 159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 160 } 161 return S_ISLNK(inode->i_mode) && inode->i_size && 162 (inode->i_size < EXT4_N_BLOCKS * 4); 163 } 164 165 /* 166 * Called at the last iput() if i_nlink is zero. 167 */ 168 void ext4_evict_inode(struct inode *inode) 169 { 170 handle_t *handle; 171 int err; 172 /* 173 * Credits for final inode cleanup and freeing: 174 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 175 * (xattr block freeing), bitmap, group descriptor (inode freeing) 176 */ 177 int extra_credits = 6; 178 struct ext4_xattr_inode_array *ea_inode_array = NULL; 179 bool freeze_protected = false; 180 181 trace_ext4_evict_inode(inode); 182 183 if (inode->i_nlink) { 184 /* 185 * When journalling data dirty buffers are tracked only in the 186 * journal. So although mm thinks everything is clean and 187 * ready for reaping the inode might still have some pages to 188 * write in the running transaction or waiting to be 189 * checkpointed. Thus calling jbd2_journal_invalidatepage() 190 * (via truncate_inode_pages()) to discard these buffers can 191 * cause data loss. Also even if we did not discard these 192 * buffers, we would have no way to find them after the inode 193 * is reaped and thus user could see stale data if he tries to 194 * read them before the transaction is checkpointed. So be 195 * careful and force everything to disk here... We use 196 * ei->i_datasync_tid to store the newest transaction 197 * containing inode's data. 198 * 199 * Note that directories do not have this problem because they 200 * don't use page cache. 201 */ 202 if (inode->i_ino != EXT4_JOURNAL_INO && 203 ext4_should_journal_data(inode) && 204 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 205 inode->i_data.nrpages) { 206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 207 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 208 209 jbd2_complete_transaction(journal, commit_tid); 210 filemap_write_and_wait(&inode->i_data); 211 } 212 truncate_inode_pages_final(&inode->i_data); 213 214 goto no_delete; 215 } 216 217 if (is_bad_inode(inode)) 218 goto no_delete; 219 dquot_initialize(inode); 220 221 if (ext4_should_order_data(inode)) 222 ext4_begin_ordered_truncate(inode, 0); 223 truncate_inode_pages_final(&inode->i_data); 224 225 /* 226 * For inodes with journalled data, transaction commit could have 227 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 228 * flag but we still need to remove the inode from the writeback lists. 229 */ 230 if (!list_empty_careful(&inode->i_io_list)) { 231 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 232 inode_io_list_del(inode); 233 } 234 235 /* 236 * Protect us against freezing - iput() caller didn't have to have any 237 * protection against it. When we are in a running transaction though, 238 * we are already protected against freezing and we cannot grab further 239 * protection due to lock ordering constraints. 240 */ 241 if (!ext4_journal_current_handle()) { 242 sb_start_intwrite(inode->i_sb); 243 freeze_protected = true; 244 } 245 246 if (!IS_NOQUOTA(inode)) 247 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 248 249 /* 250 * Block bitmap, group descriptor, and inode are accounted in both 251 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 252 */ 253 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 254 ext4_blocks_for_truncate(inode) + extra_credits - 3); 255 if (IS_ERR(handle)) { 256 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 257 /* 258 * If we're going to skip the normal cleanup, we still need to 259 * make sure that the in-core orphan linked list is properly 260 * cleaned up. 261 */ 262 ext4_orphan_del(NULL, inode); 263 if (freeze_protected) 264 sb_end_intwrite(inode->i_sb); 265 goto no_delete; 266 } 267 268 if (IS_SYNC(inode)) 269 ext4_handle_sync(handle); 270 271 /* 272 * Set inode->i_size to 0 before calling ext4_truncate(). We need 273 * special handling of symlinks here because i_size is used to 274 * determine whether ext4_inode_info->i_data contains symlink data or 275 * block mappings. Setting i_size to 0 will remove its fast symlink 276 * status. Erase i_data so that it becomes a valid empty block map. 277 */ 278 if (ext4_inode_is_fast_symlink(inode)) 279 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 280 inode->i_size = 0; 281 err = ext4_mark_inode_dirty(handle, inode); 282 if (err) { 283 ext4_warning(inode->i_sb, 284 "couldn't mark inode dirty (err %d)", err); 285 goto stop_handle; 286 } 287 if (inode->i_blocks) { 288 err = ext4_truncate(inode); 289 if (err) { 290 ext4_error_err(inode->i_sb, -err, 291 "couldn't truncate inode %lu (err %d)", 292 inode->i_ino, err); 293 goto stop_handle; 294 } 295 } 296 297 /* Remove xattr references. */ 298 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 299 extra_credits); 300 if (err) { 301 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 302 stop_handle: 303 ext4_journal_stop(handle); 304 ext4_orphan_del(NULL, inode); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 if (freeze_protected) 336 sb_end_intwrite(inode->i_sb); 337 ext4_xattr_inode_array_free(ea_inode_array); 338 return; 339 no_delete: 340 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 341 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM); 342 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 343 } 344 345 #ifdef CONFIG_QUOTA 346 qsize_t *ext4_get_reserved_space(struct inode *inode) 347 { 348 return &EXT4_I(inode)->i_reserved_quota; 349 } 350 #endif 351 352 /* 353 * Called with i_data_sem down, which is important since we can call 354 * ext4_discard_preallocations() from here. 355 */ 356 void ext4_da_update_reserve_space(struct inode *inode, 357 int used, int quota_claim) 358 { 359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 360 struct ext4_inode_info *ei = EXT4_I(inode); 361 362 spin_lock(&ei->i_block_reservation_lock); 363 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 364 if (unlikely(used > ei->i_reserved_data_blocks)) { 365 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 366 "with only %d reserved data blocks", 367 __func__, inode->i_ino, used, 368 ei->i_reserved_data_blocks); 369 WARN_ON(1); 370 used = ei->i_reserved_data_blocks; 371 } 372 373 /* Update per-inode reservations */ 374 ei->i_reserved_data_blocks -= used; 375 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 376 377 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 378 379 /* Update quota subsystem for data blocks */ 380 if (quota_claim) 381 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 382 else { 383 /* 384 * We did fallocate with an offset that is already delayed 385 * allocated. So on delayed allocated writeback we should 386 * not re-claim the quota for fallocated blocks. 387 */ 388 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 389 } 390 391 /* 392 * If we have done all the pending block allocations and if 393 * there aren't any writers on the inode, we can discard the 394 * inode's preallocations. 395 */ 396 if ((ei->i_reserved_data_blocks == 0) && 397 !inode_is_open_for_write(inode)) 398 ext4_discard_preallocations(inode, 0); 399 } 400 401 static int __check_block_validity(struct inode *inode, const char *func, 402 unsigned int line, 403 struct ext4_map_blocks *map) 404 { 405 if (ext4_has_feature_journal(inode->i_sb) && 406 (inode->i_ino == 407 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 408 return 0; 409 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 410 ext4_error_inode(inode, func, line, map->m_pblk, 411 "lblock %lu mapped to illegal pblock %llu " 412 "(length %d)", (unsigned long) map->m_lblk, 413 map->m_pblk, map->m_len); 414 return -EFSCORRUPTED; 415 } 416 return 0; 417 } 418 419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 420 ext4_lblk_t len) 421 { 422 int ret; 423 424 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 425 return fscrypt_zeroout_range(inode, lblk, pblk, len); 426 427 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 428 if (ret > 0) 429 ret = 0; 430 431 return ret; 432 } 433 434 #define check_block_validity(inode, map) \ 435 __check_block_validity((inode), __func__, __LINE__, (map)) 436 437 #ifdef ES_AGGRESSIVE_TEST 438 static void ext4_map_blocks_es_recheck(handle_t *handle, 439 struct inode *inode, 440 struct ext4_map_blocks *es_map, 441 struct ext4_map_blocks *map, 442 int flags) 443 { 444 int retval; 445 446 map->m_flags = 0; 447 /* 448 * There is a race window that the result is not the same. 449 * e.g. xfstests #223 when dioread_nolock enables. The reason 450 * is that we lookup a block mapping in extent status tree with 451 * out taking i_data_sem. So at the time the unwritten extent 452 * could be converted. 453 */ 454 down_read(&EXT4_I(inode)->i_data_sem); 455 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 456 retval = ext4_ext_map_blocks(handle, inode, map, 0); 457 } else { 458 retval = ext4_ind_map_blocks(handle, inode, map, 0); 459 } 460 up_read((&EXT4_I(inode)->i_data_sem)); 461 462 /* 463 * We don't check m_len because extent will be collpased in status 464 * tree. So the m_len might not equal. 465 */ 466 if (es_map->m_lblk != map->m_lblk || 467 es_map->m_flags != map->m_flags || 468 es_map->m_pblk != map->m_pblk) { 469 printk("ES cache assertion failed for inode: %lu " 470 "es_cached ex [%d/%d/%llu/%x] != " 471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 472 inode->i_ino, es_map->m_lblk, es_map->m_len, 473 es_map->m_pblk, es_map->m_flags, map->m_lblk, 474 map->m_len, map->m_pblk, map->m_flags, 475 retval, flags); 476 } 477 } 478 #endif /* ES_AGGRESSIVE_TEST */ 479 480 /* 481 * The ext4_map_blocks() function tries to look up the requested blocks, 482 * and returns if the blocks are already mapped. 483 * 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 485 * and store the allocated blocks in the result buffer head and mark it 486 * mapped. 487 * 488 * If file type is extents based, it will call ext4_ext_map_blocks(), 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 490 * based files 491 * 492 * On success, it returns the number of blocks being mapped or allocated. if 493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 494 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, @map is returned as unmapped but we still do fill map->m_len to 498 * indicate the length of a hole starting at map->m_lblk. 499 * 500 * It returns the error in case of allocation failure. 501 */ 502 int ext4_map_blocks(handle_t *handle, struct inode *inode, 503 struct ext4_map_blocks *map, int flags) 504 { 505 struct extent_status es; 506 int retval; 507 int ret = 0; 508 #ifdef ES_AGGRESSIVE_TEST 509 struct ext4_map_blocks orig_map; 510 511 memcpy(&orig_map, map, sizeof(*map)); 512 #endif 513 514 map->m_flags = 0; 515 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 516 flags, map->m_len, (unsigned long) map->m_lblk); 517 518 /* 519 * ext4_map_blocks returns an int, and m_len is an unsigned int 520 */ 521 if (unlikely(map->m_len > INT_MAX)) 522 map->m_len = INT_MAX; 523 524 /* We can handle the block number less than EXT_MAX_BLOCKS */ 525 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 526 return -EFSCORRUPTED; 527 528 /* Lookup extent status tree firstly */ 529 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 530 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 532 map->m_pblk = ext4_es_pblock(&es) + 533 map->m_lblk - es.es_lblk; 534 map->m_flags |= ext4_es_is_written(&es) ? 535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 536 retval = es.es_len - (map->m_lblk - es.es_lblk); 537 if (retval > map->m_len) 538 retval = map->m_len; 539 map->m_len = retval; 540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 541 map->m_pblk = 0; 542 retval = es.es_len - (map->m_lblk - es.es_lblk); 543 if (retval > map->m_len) 544 retval = map->m_len; 545 map->m_len = retval; 546 retval = 0; 547 } else { 548 BUG(); 549 } 550 #ifdef ES_AGGRESSIVE_TEST 551 ext4_map_blocks_es_recheck(handle, inode, map, 552 &orig_map, flags); 553 #endif 554 goto found; 555 } 556 557 /* 558 * Try to see if we can get the block without requesting a new 559 * file system block. 560 */ 561 down_read(&EXT4_I(inode)->i_data_sem); 562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 563 retval = ext4_ext_map_blocks(handle, inode, map, 0); 564 } else { 565 retval = ext4_ind_map_blocks(handle, inode, map, 0); 566 } 567 if (retval > 0) { 568 unsigned int status; 569 570 if (unlikely(retval != map->m_len)) { 571 ext4_warning(inode->i_sb, 572 "ES len assertion failed for inode " 573 "%lu: retval %d != map->m_len %d", 574 inode->i_ino, retval, map->m_len); 575 WARN_ON(1); 576 } 577 578 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 579 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 580 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 581 !(status & EXTENT_STATUS_WRITTEN) && 582 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 583 map->m_lblk + map->m_len - 1)) 584 status |= EXTENT_STATUS_DELAYED; 585 ret = ext4_es_insert_extent(inode, map->m_lblk, 586 map->m_len, map->m_pblk, status); 587 if (ret < 0) 588 retval = ret; 589 } 590 up_read((&EXT4_I(inode)->i_data_sem)); 591 592 found: 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 594 ret = check_block_validity(inode, map); 595 if (ret != 0) 596 return ret; 597 } 598 599 /* If it is only a block(s) look up */ 600 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 601 return retval; 602 603 /* 604 * Returns if the blocks have already allocated 605 * 606 * Note that if blocks have been preallocated 607 * ext4_ext_get_block() returns the create = 0 608 * with buffer head unmapped. 609 */ 610 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 611 /* 612 * If we need to convert extent to unwritten 613 * we continue and do the actual work in 614 * ext4_ext_map_blocks() 615 */ 616 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 617 return retval; 618 619 /* 620 * Here we clear m_flags because after allocating an new extent, 621 * it will be set again. 622 */ 623 map->m_flags &= ~EXT4_MAP_FLAGS; 624 625 /* 626 * New blocks allocate and/or writing to unwritten extent 627 * will possibly result in updating i_data, so we take 628 * the write lock of i_data_sem, and call get_block() 629 * with create == 1 flag. 630 */ 631 down_write(&EXT4_I(inode)->i_data_sem); 632 633 /* 634 * We need to check for EXT4 here because migrate 635 * could have changed the inode type in between 636 */ 637 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 638 retval = ext4_ext_map_blocks(handle, inode, map, flags); 639 } else { 640 retval = ext4_ind_map_blocks(handle, inode, map, flags); 641 642 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 643 /* 644 * We allocated new blocks which will result in 645 * i_data's format changing. Force the migrate 646 * to fail by clearing migrate flags 647 */ 648 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 649 } 650 651 /* 652 * Update reserved blocks/metadata blocks after successful 653 * block allocation which had been deferred till now. We don't 654 * support fallocate for non extent files. So we can update 655 * reserve space here. 656 */ 657 if ((retval > 0) && 658 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 659 ext4_da_update_reserve_space(inode, retval, 1); 660 } 661 662 if (retval > 0) { 663 unsigned int status; 664 665 if (unlikely(retval != map->m_len)) { 666 ext4_warning(inode->i_sb, 667 "ES len assertion failed for inode " 668 "%lu: retval %d != map->m_len %d", 669 inode->i_ino, retval, map->m_len); 670 WARN_ON(1); 671 } 672 673 /* 674 * We have to zeroout blocks before inserting them into extent 675 * status tree. Otherwise someone could look them up there and 676 * use them before they are really zeroed. We also have to 677 * unmap metadata before zeroing as otherwise writeback can 678 * overwrite zeros with stale data from block device. 679 */ 680 if (flags & EXT4_GET_BLOCKS_ZERO && 681 map->m_flags & EXT4_MAP_MAPPED && 682 map->m_flags & EXT4_MAP_NEW) { 683 ret = ext4_issue_zeroout(inode, map->m_lblk, 684 map->m_pblk, map->m_len); 685 if (ret) { 686 retval = ret; 687 goto out_sem; 688 } 689 } 690 691 /* 692 * If the extent has been zeroed out, we don't need to update 693 * extent status tree. 694 */ 695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 696 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 697 if (ext4_es_is_written(&es)) 698 goto out_sem; 699 } 700 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 703 !(status & EXTENT_STATUS_WRITTEN) && 704 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 705 map->m_lblk + map->m_len - 1)) 706 status |= EXTENT_STATUS_DELAYED; 707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 708 map->m_pblk, status); 709 if (ret < 0) { 710 retval = ret; 711 goto out_sem; 712 } 713 } 714 715 out_sem: 716 up_write((&EXT4_I(inode)->i_data_sem)); 717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 718 ret = check_block_validity(inode, map); 719 if (ret != 0) 720 return ret; 721 722 /* 723 * Inodes with freshly allocated blocks where contents will be 724 * visible after transaction commit must be on transaction's 725 * ordered data list. 726 */ 727 if (map->m_flags & EXT4_MAP_NEW && 728 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 729 !(flags & EXT4_GET_BLOCKS_ZERO) && 730 !ext4_is_quota_file(inode) && 731 ext4_should_order_data(inode)) { 732 loff_t start_byte = 733 (loff_t)map->m_lblk << inode->i_blkbits; 734 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 735 736 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 737 ret = ext4_jbd2_inode_add_wait(handle, inode, 738 start_byte, length); 739 else 740 ret = ext4_jbd2_inode_add_write(handle, inode, 741 start_byte, length); 742 if (ret) 743 return ret; 744 } 745 ext4_fc_track_range(handle, inode, map->m_lblk, 746 map->m_lblk + map->m_len - 1); 747 } 748 749 if (retval < 0) 750 ext_debug(inode, "failed with err %d\n", retval); 751 return retval; 752 } 753 754 /* 755 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 756 * we have to be careful as someone else may be manipulating b_state as well. 757 */ 758 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 759 { 760 unsigned long old_state; 761 unsigned long new_state; 762 763 flags &= EXT4_MAP_FLAGS; 764 765 /* Dummy buffer_head? Set non-atomically. */ 766 if (!bh->b_page) { 767 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 768 return; 769 } 770 /* 771 * Someone else may be modifying b_state. Be careful! This is ugly but 772 * once we get rid of using bh as a container for mapping information 773 * to pass to / from get_block functions, this can go away. 774 */ 775 do { 776 old_state = READ_ONCE(bh->b_state); 777 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 778 } while (unlikely( 779 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 780 } 781 782 static int _ext4_get_block(struct inode *inode, sector_t iblock, 783 struct buffer_head *bh, int flags) 784 { 785 struct ext4_map_blocks map; 786 int ret = 0; 787 788 if (ext4_has_inline_data(inode)) 789 return -ERANGE; 790 791 map.m_lblk = iblock; 792 map.m_len = bh->b_size >> inode->i_blkbits; 793 794 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 795 flags); 796 if (ret > 0) { 797 map_bh(bh, inode->i_sb, map.m_pblk); 798 ext4_update_bh_state(bh, map.m_flags); 799 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 800 ret = 0; 801 } else if (ret == 0) { 802 /* hole case, need to fill in bh->b_size */ 803 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 804 } 805 return ret; 806 } 807 808 int ext4_get_block(struct inode *inode, sector_t iblock, 809 struct buffer_head *bh, int create) 810 { 811 return _ext4_get_block(inode, iblock, bh, 812 create ? EXT4_GET_BLOCKS_CREATE : 0); 813 } 814 815 /* 816 * Get block function used when preparing for buffered write if we require 817 * creating an unwritten extent if blocks haven't been allocated. The extent 818 * will be converted to written after the IO is complete. 819 */ 820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 821 struct buffer_head *bh_result, int create) 822 { 823 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 824 inode->i_ino, create); 825 return _ext4_get_block(inode, iblock, bh_result, 826 EXT4_GET_BLOCKS_IO_CREATE_EXT); 827 } 828 829 /* Maximum number of blocks we map for direct IO at once. */ 830 #define DIO_MAX_BLOCKS 4096 831 832 /* 833 * `handle' can be NULL if create is zero 834 */ 835 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 836 ext4_lblk_t block, int map_flags) 837 { 838 struct ext4_map_blocks map; 839 struct buffer_head *bh; 840 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 841 int err; 842 843 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 844 || handle != NULL || create == 0); 845 846 map.m_lblk = block; 847 map.m_len = 1; 848 err = ext4_map_blocks(handle, inode, &map, map_flags); 849 850 if (err == 0) 851 return create ? ERR_PTR(-ENOSPC) : NULL; 852 if (err < 0) 853 return ERR_PTR(err); 854 855 bh = sb_getblk(inode->i_sb, map.m_pblk); 856 if (unlikely(!bh)) 857 return ERR_PTR(-ENOMEM); 858 if (map.m_flags & EXT4_MAP_NEW) { 859 ASSERT(create != 0); 860 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 861 || (handle != NULL)); 862 863 /* 864 * Now that we do not always journal data, we should 865 * keep in mind whether this should always journal the 866 * new buffer as metadata. For now, regular file 867 * writes use ext4_get_block instead, so it's not a 868 * problem. 869 */ 870 lock_buffer(bh); 871 BUFFER_TRACE(bh, "call get_create_access"); 872 err = ext4_journal_get_create_access(handle, bh); 873 if (unlikely(err)) { 874 unlock_buffer(bh); 875 goto errout; 876 } 877 if (!buffer_uptodate(bh)) { 878 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 879 set_buffer_uptodate(bh); 880 } 881 unlock_buffer(bh); 882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 883 err = ext4_handle_dirty_metadata(handle, inode, bh); 884 if (unlikely(err)) 885 goto errout; 886 } else 887 BUFFER_TRACE(bh, "not a new buffer"); 888 return bh; 889 errout: 890 brelse(bh); 891 return ERR_PTR(err); 892 } 893 894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 895 ext4_lblk_t block, int map_flags) 896 { 897 struct buffer_head *bh; 898 int ret; 899 900 bh = ext4_getblk(handle, inode, block, map_flags); 901 if (IS_ERR(bh)) 902 return bh; 903 if (!bh || ext4_buffer_uptodate(bh)) 904 return bh; 905 906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 907 if (ret) { 908 put_bh(bh); 909 return ERR_PTR(ret); 910 } 911 return bh; 912 } 913 914 /* Read a contiguous batch of blocks. */ 915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 916 bool wait, struct buffer_head **bhs) 917 { 918 int i, err; 919 920 for (i = 0; i < bh_count; i++) { 921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 922 if (IS_ERR(bhs[i])) { 923 err = PTR_ERR(bhs[i]); 924 bh_count = i; 925 goto out_brelse; 926 } 927 } 928 929 for (i = 0; i < bh_count; i++) 930 /* Note that NULL bhs[i] is valid because of holes. */ 931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 933 934 if (!wait) 935 return 0; 936 937 for (i = 0; i < bh_count; i++) 938 if (bhs[i]) 939 wait_on_buffer(bhs[i]); 940 941 for (i = 0; i < bh_count; i++) { 942 if (bhs[i] && !buffer_uptodate(bhs[i])) { 943 err = -EIO; 944 goto out_brelse; 945 } 946 } 947 return 0; 948 949 out_brelse: 950 for (i = 0; i < bh_count; i++) { 951 brelse(bhs[i]); 952 bhs[i] = NULL; 953 } 954 return err; 955 } 956 957 int ext4_walk_page_buffers(handle_t *handle, 958 struct buffer_head *head, 959 unsigned from, 960 unsigned to, 961 int *partial, 962 int (*fn)(handle_t *handle, 963 struct buffer_head *bh)) 964 { 965 struct buffer_head *bh; 966 unsigned block_start, block_end; 967 unsigned blocksize = head->b_size; 968 int err, ret = 0; 969 struct buffer_head *next; 970 971 for (bh = head, block_start = 0; 972 ret == 0 && (bh != head || !block_start); 973 block_start = block_end, bh = next) { 974 next = bh->b_this_page; 975 block_end = block_start + blocksize; 976 if (block_end <= from || block_start >= to) { 977 if (partial && !buffer_uptodate(bh)) 978 *partial = 1; 979 continue; 980 } 981 err = (*fn)(handle, bh); 982 if (!ret) 983 ret = err; 984 } 985 return ret; 986 } 987 988 /* 989 * To preserve ordering, it is essential that the hole instantiation and 990 * the data write be encapsulated in a single transaction. We cannot 991 * close off a transaction and start a new one between the ext4_get_block() 992 * and the commit_write(). So doing the jbd2_journal_start at the start of 993 * prepare_write() is the right place. 994 * 995 * Also, this function can nest inside ext4_writepage(). In that case, we 996 * *know* that ext4_writepage() has generated enough buffer credits to do the 997 * whole page. So we won't block on the journal in that case, which is good, 998 * because the caller may be PF_MEMALLOC. 999 * 1000 * By accident, ext4 can be reentered when a transaction is open via 1001 * quota file writes. If we were to commit the transaction while thus 1002 * reentered, there can be a deadlock - we would be holding a quota 1003 * lock, and the commit would never complete if another thread had a 1004 * transaction open and was blocking on the quota lock - a ranking 1005 * violation. 1006 * 1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1008 * will _not_ run commit under these circumstances because handle->h_ref 1009 * is elevated. We'll still have enough credits for the tiny quotafile 1010 * write. 1011 */ 1012 int do_journal_get_write_access(handle_t *handle, 1013 struct buffer_head *bh) 1014 { 1015 int dirty = buffer_dirty(bh); 1016 int ret; 1017 1018 if (!buffer_mapped(bh) || buffer_freed(bh)) 1019 return 0; 1020 /* 1021 * __block_write_begin() could have dirtied some buffers. Clean 1022 * the dirty bit as jbd2_journal_get_write_access() could complain 1023 * otherwise about fs integrity issues. Setting of the dirty bit 1024 * by __block_write_begin() isn't a real problem here as we clear 1025 * the bit before releasing a page lock and thus writeback cannot 1026 * ever write the buffer. 1027 */ 1028 if (dirty) 1029 clear_buffer_dirty(bh); 1030 BUFFER_TRACE(bh, "get write access"); 1031 ret = ext4_journal_get_write_access(handle, bh); 1032 if (!ret && dirty) 1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1034 return ret; 1035 } 1036 1037 #ifdef CONFIG_FS_ENCRYPTION 1038 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1039 get_block_t *get_block) 1040 { 1041 unsigned from = pos & (PAGE_SIZE - 1); 1042 unsigned to = from + len; 1043 struct inode *inode = page->mapping->host; 1044 unsigned block_start, block_end; 1045 sector_t block; 1046 int err = 0; 1047 unsigned blocksize = inode->i_sb->s_blocksize; 1048 unsigned bbits; 1049 struct buffer_head *bh, *head, *wait[2]; 1050 int nr_wait = 0; 1051 int i; 1052 1053 BUG_ON(!PageLocked(page)); 1054 BUG_ON(from > PAGE_SIZE); 1055 BUG_ON(to > PAGE_SIZE); 1056 BUG_ON(from > to); 1057 1058 if (!page_has_buffers(page)) 1059 create_empty_buffers(page, blocksize, 0); 1060 head = page_buffers(page); 1061 bbits = ilog2(blocksize); 1062 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1063 1064 for (bh = head, block_start = 0; bh != head || !block_start; 1065 block++, block_start = block_end, bh = bh->b_this_page) { 1066 block_end = block_start + blocksize; 1067 if (block_end <= from || block_start >= to) { 1068 if (PageUptodate(page)) { 1069 set_buffer_uptodate(bh); 1070 } 1071 continue; 1072 } 1073 if (buffer_new(bh)) 1074 clear_buffer_new(bh); 1075 if (!buffer_mapped(bh)) { 1076 WARN_ON(bh->b_size != blocksize); 1077 err = get_block(inode, block, bh, 1); 1078 if (err) 1079 break; 1080 if (buffer_new(bh)) { 1081 if (PageUptodate(page)) { 1082 clear_buffer_new(bh); 1083 set_buffer_uptodate(bh); 1084 mark_buffer_dirty(bh); 1085 continue; 1086 } 1087 if (block_end > to || block_start < from) 1088 zero_user_segments(page, to, block_end, 1089 block_start, from); 1090 continue; 1091 } 1092 } 1093 if (PageUptodate(page)) { 1094 set_buffer_uptodate(bh); 1095 continue; 1096 } 1097 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1098 !buffer_unwritten(bh) && 1099 (block_start < from || block_end > to)) { 1100 ext4_read_bh_lock(bh, 0, false); 1101 wait[nr_wait++] = bh; 1102 } 1103 } 1104 /* 1105 * If we issued read requests, let them complete. 1106 */ 1107 for (i = 0; i < nr_wait; i++) { 1108 wait_on_buffer(wait[i]); 1109 if (!buffer_uptodate(wait[i])) 1110 err = -EIO; 1111 } 1112 if (unlikely(err)) { 1113 page_zero_new_buffers(page, from, to); 1114 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1115 for (i = 0; i < nr_wait; i++) { 1116 int err2; 1117 1118 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1119 bh_offset(wait[i])); 1120 if (err2) { 1121 clear_buffer_uptodate(wait[i]); 1122 err = err2; 1123 } 1124 } 1125 } 1126 1127 return err; 1128 } 1129 #endif 1130 1131 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1132 loff_t pos, unsigned len, unsigned flags, 1133 struct page **pagep, void **fsdata) 1134 { 1135 struct inode *inode = mapping->host; 1136 int ret, needed_blocks; 1137 handle_t *handle; 1138 int retries = 0; 1139 struct page *page; 1140 pgoff_t index; 1141 unsigned from, to; 1142 1143 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1144 return -EIO; 1145 1146 trace_ext4_write_begin(inode, pos, len, flags); 1147 /* 1148 * Reserve one block more for addition to orphan list in case 1149 * we allocate blocks but write fails for some reason 1150 */ 1151 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1152 index = pos >> PAGE_SHIFT; 1153 from = pos & (PAGE_SIZE - 1); 1154 to = from + len; 1155 1156 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1157 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1158 flags, pagep); 1159 if (ret < 0) 1160 return ret; 1161 if (ret == 1) 1162 return 0; 1163 } 1164 1165 /* 1166 * grab_cache_page_write_begin() can take a long time if the 1167 * system is thrashing due to memory pressure, or if the page 1168 * is being written back. So grab it first before we start 1169 * the transaction handle. This also allows us to allocate 1170 * the page (if needed) without using GFP_NOFS. 1171 */ 1172 retry_grab: 1173 page = grab_cache_page_write_begin(mapping, index, flags); 1174 if (!page) 1175 return -ENOMEM; 1176 unlock_page(page); 1177 1178 retry_journal: 1179 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1180 if (IS_ERR(handle)) { 1181 put_page(page); 1182 return PTR_ERR(handle); 1183 } 1184 1185 lock_page(page); 1186 if (page->mapping != mapping) { 1187 /* The page got truncated from under us */ 1188 unlock_page(page); 1189 put_page(page); 1190 ext4_journal_stop(handle); 1191 goto retry_grab; 1192 } 1193 /* In case writeback began while the page was unlocked */ 1194 wait_for_stable_page(page); 1195 1196 #ifdef CONFIG_FS_ENCRYPTION 1197 if (ext4_should_dioread_nolock(inode)) 1198 ret = ext4_block_write_begin(page, pos, len, 1199 ext4_get_block_unwritten); 1200 else 1201 ret = ext4_block_write_begin(page, pos, len, 1202 ext4_get_block); 1203 #else 1204 if (ext4_should_dioread_nolock(inode)) 1205 ret = __block_write_begin(page, pos, len, 1206 ext4_get_block_unwritten); 1207 else 1208 ret = __block_write_begin(page, pos, len, ext4_get_block); 1209 #endif 1210 if (!ret && ext4_should_journal_data(inode)) { 1211 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1212 from, to, NULL, 1213 do_journal_get_write_access); 1214 } 1215 1216 if (ret) { 1217 bool extended = (pos + len > inode->i_size) && 1218 !ext4_verity_in_progress(inode); 1219 1220 unlock_page(page); 1221 /* 1222 * __block_write_begin may have instantiated a few blocks 1223 * outside i_size. Trim these off again. Don't need 1224 * i_size_read because we hold i_mutex. 1225 * 1226 * Add inode to orphan list in case we crash before 1227 * truncate finishes 1228 */ 1229 if (extended && ext4_can_truncate(inode)) 1230 ext4_orphan_add(handle, inode); 1231 1232 ext4_journal_stop(handle); 1233 if (extended) { 1234 ext4_truncate_failed_write(inode); 1235 /* 1236 * If truncate failed early the inode might 1237 * still be on the orphan list; we need to 1238 * make sure the inode is removed from the 1239 * orphan list in that case. 1240 */ 1241 if (inode->i_nlink) 1242 ext4_orphan_del(NULL, inode); 1243 } 1244 1245 if (ret == -ENOSPC && 1246 ext4_should_retry_alloc(inode->i_sb, &retries)) 1247 goto retry_journal; 1248 put_page(page); 1249 return ret; 1250 } 1251 *pagep = page; 1252 return ret; 1253 } 1254 1255 /* For write_end() in data=journal mode */ 1256 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1257 { 1258 int ret; 1259 if (!buffer_mapped(bh) || buffer_freed(bh)) 1260 return 0; 1261 set_buffer_uptodate(bh); 1262 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1263 clear_buffer_meta(bh); 1264 clear_buffer_prio(bh); 1265 return ret; 1266 } 1267 1268 /* 1269 * We need to pick up the new inode size which generic_commit_write gave us 1270 * `file' can be NULL - eg, when called from page_symlink(). 1271 * 1272 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1273 * buffers are managed internally. 1274 */ 1275 static int ext4_write_end(struct file *file, 1276 struct address_space *mapping, 1277 loff_t pos, unsigned len, unsigned copied, 1278 struct page *page, void *fsdata) 1279 { 1280 handle_t *handle = ext4_journal_current_handle(); 1281 struct inode *inode = mapping->host; 1282 loff_t old_size = inode->i_size; 1283 int ret = 0, ret2; 1284 int i_size_changed = 0; 1285 int inline_data = ext4_has_inline_data(inode); 1286 bool verity = ext4_verity_in_progress(inode); 1287 1288 trace_ext4_write_end(inode, pos, len, copied); 1289 if (inline_data) { 1290 ret = ext4_write_inline_data_end(inode, pos, len, 1291 copied, page); 1292 if (ret < 0) { 1293 unlock_page(page); 1294 put_page(page); 1295 goto errout; 1296 } 1297 copied = ret; 1298 } else 1299 copied = block_write_end(file, mapping, pos, 1300 len, copied, page, fsdata); 1301 /* 1302 * it's important to update i_size while still holding page lock: 1303 * page writeout could otherwise come in and zero beyond i_size. 1304 * 1305 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1306 * blocks are being written past EOF, so skip the i_size update. 1307 */ 1308 if (!verity) 1309 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1310 unlock_page(page); 1311 put_page(page); 1312 1313 if (old_size < pos && !verity) 1314 pagecache_isize_extended(inode, old_size, pos); 1315 /* 1316 * Don't mark the inode dirty under page lock. First, it unnecessarily 1317 * makes the holding time of page lock longer. Second, it forces lock 1318 * ordering of page lock and transaction start for journaling 1319 * filesystems. 1320 */ 1321 if (i_size_changed || inline_data) 1322 ret = ext4_mark_inode_dirty(handle, inode); 1323 1324 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1325 /* if we have allocated more blocks and copied 1326 * less. We will have blocks allocated outside 1327 * inode->i_size. So truncate them 1328 */ 1329 ext4_orphan_add(handle, inode); 1330 errout: 1331 ret2 = ext4_journal_stop(handle); 1332 if (!ret) 1333 ret = ret2; 1334 1335 if (pos + len > inode->i_size && !verity) { 1336 ext4_truncate_failed_write(inode); 1337 /* 1338 * If truncate failed early the inode might still be 1339 * on the orphan list; we need to make sure the inode 1340 * is removed from the orphan list in that case. 1341 */ 1342 if (inode->i_nlink) 1343 ext4_orphan_del(NULL, inode); 1344 } 1345 1346 return ret ? ret : copied; 1347 } 1348 1349 /* 1350 * This is a private version of page_zero_new_buffers() which doesn't 1351 * set the buffer to be dirty, since in data=journalled mode we need 1352 * to call ext4_handle_dirty_metadata() instead. 1353 */ 1354 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1355 struct page *page, 1356 unsigned from, unsigned to) 1357 { 1358 unsigned int block_start = 0, block_end; 1359 struct buffer_head *head, *bh; 1360 1361 bh = head = page_buffers(page); 1362 do { 1363 block_end = block_start + bh->b_size; 1364 if (buffer_new(bh)) { 1365 if (block_end > from && block_start < to) { 1366 if (!PageUptodate(page)) { 1367 unsigned start, size; 1368 1369 start = max(from, block_start); 1370 size = min(to, block_end) - start; 1371 1372 zero_user(page, start, size); 1373 write_end_fn(handle, bh); 1374 } 1375 clear_buffer_new(bh); 1376 } 1377 } 1378 block_start = block_end; 1379 bh = bh->b_this_page; 1380 } while (bh != head); 1381 } 1382 1383 static int ext4_journalled_write_end(struct file *file, 1384 struct address_space *mapping, 1385 loff_t pos, unsigned len, unsigned copied, 1386 struct page *page, void *fsdata) 1387 { 1388 handle_t *handle = ext4_journal_current_handle(); 1389 struct inode *inode = mapping->host; 1390 loff_t old_size = inode->i_size; 1391 int ret = 0, ret2; 1392 int partial = 0; 1393 unsigned from, to; 1394 int size_changed = 0; 1395 int inline_data = ext4_has_inline_data(inode); 1396 bool verity = ext4_verity_in_progress(inode); 1397 1398 trace_ext4_journalled_write_end(inode, pos, len, copied); 1399 from = pos & (PAGE_SIZE - 1); 1400 to = from + len; 1401 1402 BUG_ON(!ext4_handle_valid(handle)); 1403 1404 if (inline_data) { 1405 ret = ext4_write_inline_data_end(inode, pos, len, 1406 copied, page); 1407 if (ret < 0) { 1408 unlock_page(page); 1409 put_page(page); 1410 goto errout; 1411 } 1412 copied = ret; 1413 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1414 copied = 0; 1415 ext4_journalled_zero_new_buffers(handle, page, from, to); 1416 } else { 1417 if (unlikely(copied < len)) 1418 ext4_journalled_zero_new_buffers(handle, page, 1419 from + copied, to); 1420 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1421 from + copied, &partial, 1422 write_end_fn); 1423 if (!partial) 1424 SetPageUptodate(page); 1425 } 1426 if (!verity) 1427 size_changed = ext4_update_inode_size(inode, pos + copied); 1428 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1429 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1430 unlock_page(page); 1431 put_page(page); 1432 1433 if (old_size < pos && !verity) 1434 pagecache_isize_extended(inode, old_size, pos); 1435 1436 if (size_changed || inline_data) { 1437 ret2 = ext4_mark_inode_dirty(handle, inode); 1438 if (!ret) 1439 ret = ret2; 1440 } 1441 1442 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1443 /* if we have allocated more blocks and copied 1444 * less. We will have blocks allocated outside 1445 * inode->i_size. So truncate them 1446 */ 1447 ext4_orphan_add(handle, inode); 1448 1449 errout: 1450 ret2 = ext4_journal_stop(handle); 1451 if (!ret) 1452 ret = ret2; 1453 if (pos + len > inode->i_size && !verity) { 1454 ext4_truncate_failed_write(inode); 1455 /* 1456 * If truncate failed early the inode might still be 1457 * on the orphan list; we need to make sure the inode 1458 * is removed from the orphan list in that case. 1459 */ 1460 if (inode->i_nlink) 1461 ext4_orphan_del(NULL, inode); 1462 } 1463 1464 return ret ? ret : copied; 1465 } 1466 1467 /* 1468 * Reserve space for a single cluster 1469 */ 1470 static int ext4_da_reserve_space(struct inode *inode) 1471 { 1472 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1473 struct ext4_inode_info *ei = EXT4_I(inode); 1474 int ret; 1475 1476 /* 1477 * We will charge metadata quota at writeout time; this saves 1478 * us from metadata over-estimation, though we may go over by 1479 * a small amount in the end. Here we just reserve for data. 1480 */ 1481 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1482 if (ret) 1483 return ret; 1484 1485 spin_lock(&ei->i_block_reservation_lock); 1486 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1487 spin_unlock(&ei->i_block_reservation_lock); 1488 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1489 return -ENOSPC; 1490 } 1491 ei->i_reserved_data_blocks++; 1492 trace_ext4_da_reserve_space(inode); 1493 spin_unlock(&ei->i_block_reservation_lock); 1494 1495 return 0; /* success */ 1496 } 1497 1498 void ext4_da_release_space(struct inode *inode, int to_free) 1499 { 1500 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1501 struct ext4_inode_info *ei = EXT4_I(inode); 1502 1503 if (!to_free) 1504 return; /* Nothing to release, exit */ 1505 1506 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1507 1508 trace_ext4_da_release_space(inode, to_free); 1509 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1510 /* 1511 * if there aren't enough reserved blocks, then the 1512 * counter is messed up somewhere. Since this 1513 * function is called from invalidate page, it's 1514 * harmless to return without any action. 1515 */ 1516 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1517 "ino %lu, to_free %d with only %d reserved " 1518 "data blocks", inode->i_ino, to_free, 1519 ei->i_reserved_data_blocks); 1520 WARN_ON(1); 1521 to_free = ei->i_reserved_data_blocks; 1522 } 1523 ei->i_reserved_data_blocks -= to_free; 1524 1525 /* update fs dirty data blocks counter */ 1526 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1527 1528 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1529 1530 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1531 } 1532 1533 /* 1534 * Delayed allocation stuff 1535 */ 1536 1537 struct mpage_da_data { 1538 struct inode *inode; 1539 struct writeback_control *wbc; 1540 1541 pgoff_t first_page; /* The first page to write */ 1542 pgoff_t next_page; /* Current page to examine */ 1543 pgoff_t last_page; /* Last page to examine */ 1544 /* 1545 * Extent to map - this can be after first_page because that can be 1546 * fully mapped. We somewhat abuse m_flags to store whether the extent 1547 * is delalloc or unwritten. 1548 */ 1549 struct ext4_map_blocks map; 1550 struct ext4_io_submit io_submit; /* IO submission data */ 1551 unsigned int do_map:1; 1552 unsigned int scanned_until_end:1; 1553 }; 1554 1555 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1556 bool invalidate) 1557 { 1558 int nr_pages, i; 1559 pgoff_t index, end; 1560 struct pagevec pvec; 1561 struct inode *inode = mpd->inode; 1562 struct address_space *mapping = inode->i_mapping; 1563 1564 /* This is necessary when next_page == 0. */ 1565 if (mpd->first_page >= mpd->next_page) 1566 return; 1567 1568 mpd->scanned_until_end = 0; 1569 index = mpd->first_page; 1570 end = mpd->next_page - 1; 1571 if (invalidate) { 1572 ext4_lblk_t start, last; 1573 start = index << (PAGE_SHIFT - inode->i_blkbits); 1574 last = end << (PAGE_SHIFT - inode->i_blkbits); 1575 ext4_es_remove_extent(inode, start, last - start + 1); 1576 } 1577 1578 pagevec_init(&pvec); 1579 while (index <= end) { 1580 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1581 if (nr_pages == 0) 1582 break; 1583 for (i = 0; i < nr_pages; i++) { 1584 struct page *page = pvec.pages[i]; 1585 1586 BUG_ON(!PageLocked(page)); 1587 BUG_ON(PageWriteback(page)); 1588 if (invalidate) { 1589 if (page_mapped(page)) 1590 clear_page_dirty_for_io(page); 1591 block_invalidatepage(page, 0, PAGE_SIZE); 1592 ClearPageUptodate(page); 1593 } 1594 unlock_page(page); 1595 } 1596 pagevec_release(&pvec); 1597 } 1598 } 1599 1600 static void ext4_print_free_blocks(struct inode *inode) 1601 { 1602 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1603 struct super_block *sb = inode->i_sb; 1604 struct ext4_inode_info *ei = EXT4_I(inode); 1605 1606 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1607 EXT4_C2B(EXT4_SB(inode->i_sb), 1608 ext4_count_free_clusters(sb))); 1609 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1610 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1611 (long long) EXT4_C2B(EXT4_SB(sb), 1612 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1613 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1614 (long long) EXT4_C2B(EXT4_SB(sb), 1615 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1616 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1617 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1618 ei->i_reserved_data_blocks); 1619 return; 1620 } 1621 1622 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1623 { 1624 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1625 } 1626 1627 /* 1628 * ext4_insert_delayed_block - adds a delayed block to the extents status 1629 * tree, incrementing the reserved cluster/block 1630 * count or making a pending reservation 1631 * where needed 1632 * 1633 * @inode - file containing the newly added block 1634 * @lblk - logical block to be added 1635 * 1636 * Returns 0 on success, negative error code on failure. 1637 */ 1638 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1639 { 1640 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1641 int ret; 1642 bool allocated = false; 1643 1644 /* 1645 * If the cluster containing lblk is shared with a delayed, 1646 * written, or unwritten extent in a bigalloc file system, it's 1647 * already been accounted for and does not need to be reserved. 1648 * A pending reservation must be made for the cluster if it's 1649 * shared with a written or unwritten extent and doesn't already 1650 * have one. Written and unwritten extents can be purged from the 1651 * extents status tree if the system is under memory pressure, so 1652 * it's necessary to examine the extent tree if a search of the 1653 * extents status tree doesn't get a match. 1654 */ 1655 if (sbi->s_cluster_ratio == 1) { 1656 ret = ext4_da_reserve_space(inode); 1657 if (ret != 0) /* ENOSPC */ 1658 goto errout; 1659 } else { /* bigalloc */ 1660 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1661 if (!ext4_es_scan_clu(inode, 1662 &ext4_es_is_mapped, lblk)) { 1663 ret = ext4_clu_mapped(inode, 1664 EXT4_B2C(sbi, lblk)); 1665 if (ret < 0) 1666 goto errout; 1667 if (ret == 0) { 1668 ret = ext4_da_reserve_space(inode); 1669 if (ret != 0) /* ENOSPC */ 1670 goto errout; 1671 } else { 1672 allocated = true; 1673 } 1674 } else { 1675 allocated = true; 1676 } 1677 } 1678 } 1679 1680 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1681 1682 errout: 1683 return ret; 1684 } 1685 1686 /* 1687 * This function is grabs code from the very beginning of 1688 * ext4_map_blocks, but assumes that the caller is from delayed write 1689 * time. This function looks up the requested blocks and sets the 1690 * buffer delay bit under the protection of i_data_sem. 1691 */ 1692 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1693 struct ext4_map_blocks *map, 1694 struct buffer_head *bh) 1695 { 1696 struct extent_status es; 1697 int retval; 1698 sector_t invalid_block = ~((sector_t) 0xffff); 1699 #ifdef ES_AGGRESSIVE_TEST 1700 struct ext4_map_blocks orig_map; 1701 1702 memcpy(&orig_map, map, sizeof(*map)); 1703 #endif 1704 1705 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1706 invalid_block = ~0; 1707 1708 map->m_flags = 0; 1709 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1710 (unsigned long) map->m_lblk); 1711 1712 /* Lookup extent status tree firstly */ 1713 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1714 if (ext4_es_is_hole(&es)) { 1715 retval = 0; 1716 down_read(&EXT4_I(inode)->i_data_sem); 1717 goto add_delayed; 1718 } 1719 1720 /* 1721 * Delayed extent could be allocated by fallocate. 1722 * So we need to check it. 1723 */ 1724 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1725 map_bh(bh, inode->i_sb, invalid_block); 1726 set_buffer_new(bh); 1727 set_buffer_delay(bh); 1728 return 0; 1729 } 1730 1731 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1732 retval = es.es_len - (iblock - es.es_lblk); 1733 if (retval > map->m_len) 1734 retval = map->m_len; 1735 map->m_len = retval; 1736 if (ext4_es_is_written(&es)) 1737 map->m_flags |= EXT4_MAP_MAPPED; 1738 else if (ext4_es_is_unwritten(&es)) 1739 map->m_flags |= EXT4_MAP_UNWRITTEN; 1740 else 1741 BUG(); 1742 1743 #ifdef ES_AGGRESSIVE_TEST 1744 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1745 #endif 1746 return retval; 1747 } 1748 1749 /* 1750 * Try to see if we can get the block without requesting a new 1751 * file system block. 1752 */ 1753 down_read(&EXT4_I(inode)->i_data_sem); 1754 if (ext4_has_inline_data(inode)) 1755 retval = 0; 1756 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1757 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1758 else 1759 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1760 1761 add_delayed: 1762 if (retval == 0) { 1763 int ret; 1764 1765 /* 1766 * XXX: __block_prepare_write() unmaps passed block, 1767 * is it OK? 1768 */ 1769 1770 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1771 if (ret != 0) { 1772 retval = ret; 1773 goto out_unlock; 1774 } 1775 1776 map_bh(bh, inode->i_sb, invalid_block); 1777 set_buffer_new(bh); 1778 set_buffer_delay(bh); 1779 } else if (retval > 0) { 1780 int ret; 1781 unsigned int status; 1782 1783 if (unlikely(retval != map->m_len)) { 1784 ext4_warning(inode->i_sb, 1785 "ES len assertion failed for inode " 1786 "%lu: retval %d != map->m_len %d", 1787 inode->i_ino, retval, map->m_len); 1788 WARN_ON(1); 1789 } 1790 1791 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1792 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1793 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1794 map->m_pblk, status); 1795 if (ret != 0) 1796 retval = ret; 1797 } 1798 1799 out_unlock: 1800 up_read((&EXT4_I(inode)->i_data_sem)); 1801 1802 return retval; 1803 } 1804 1805 /* 1806 * This is a special get_block_t callback which is used by 1807 * ext4_da_write_begin(). It will either return mapped block or 1808 * reserve space for a single block. 1809 * 1810 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1811 * We also have b_blocknr = -1 and b_bdev initialized properly 1812 * 1813 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1814 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1815 * initialized properly. 1816 */ 1817 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1818 struct buffer_head *bh, int create) 1819 { 1820 struct ext4_map_blocks map; 1821 int ret = 0; 1822 1823 BUG_ON(create == 0); 1824 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1825 1826 map.m_lblk = iblock; 1827 map.m_len = 1; 1828 1829 /* 1830 * first, we need to know whether the block is allocated already 1831 * preallocated blocks are unmapped but should treated 1832 * the same as allocated blocks. 1833 */ 1834 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1835 if (ret <= 0) 1836 return ret; 1837 1838 map_bh(bh, inode->i_sb, map.m_pblk); 1839 ext4_update_bh_state(bh, map.m_flags); 1840 1841 if (buffer_unwritten(bh)) { 1842 /* A delayed write to unwritten bh should be marked 1843 * new and mapped. Mapped ensures that we don't do 1844 * get_block multiple times when we write to the same 1845 * offset and new ensures that we do proper zero out 1846 * for partial write. 1847 */ 1848 set_buffer_new(bh); 1849 set_buffer_mapped(bh); 1850 } 1851 return 0; 1852 } 1853 1854 static int bget_one(handle_t *handle, struct buffer_head *bh) 1855 { 1856 get_bh(bh); 1857 return 0; 1858 } 1859 1860 static int bput_one(handle_t *handle, struct buffer_head *bh) 1861 { 1862 put_bh(bh); 1863 return 0; 1864 } 1865 1866 static int __ext4_journalled_writepage(struct page *page, 1867 unsigned int len) 1868 { 1869 struct address_space *mapping = page->mapping; 1870 struct inode *inode = mapping->host; 1871 struct buffer_head *page_bufs = NULL; 1872 handle_t *handle = NULL; 1873 int ret = 0, err = 0; 1874 int inline_data = ext4_has_inline_data(inode); 1875 struct buffer_head *inode_bh = NULL; 1876 1877 ClearPageChecked(page); 1878 1879 if (inline_data) { 1880 BUG_ON(page->index != 0); 1881 BUG_ON(len > ext4_get_max_inline_size(inode)); 1882 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1883 if (inode_bh == NULL) 1884 goto out; 1885 } else { 1886 page_bufs = page_buffers(page); 1887 if (!page_bufs) { 1888 BUG(); 1889 goto out; 1890 } 1891 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1892 NULL, bget_one); 1893 } 1894 /* 1895 * We need to release the page lock before we start the 1896 * journal, so grab a reference so the page won't disappear 1897 * out from under us. 1898 */ 1899 get_page(page); 1900 unlock_page(page); 1901 1902 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1903 ext4_writepage_trans_blocks(inode)); 1904 if (IS_ERR(handle)) { 1905 ret = PTR_ERR(handle); 1906 put_page(page); 1907 goto out_no_pagelock; 1908 } 1909 BUG_ON(!ext4_handle_valid(handle)); 1910 1911 lock_page(page); 1912 put_page(page); 1913 if (page->mapping != mapping) { 1914 /* The page got truncated from under us */ 1915 ext4_journal_stop(handle); 1916 ret = 0; 1917 goto out; 1918 } 1919 1920 if (inline_data) { 1921 ret = ext4_mark_inode_dirty(handle, inode); 1922 } else { 1923 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1924 do_journal_get_write_access); 1925 1926 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1927 write_end_fn); 1928 } 1929 if (ret == 0) 1930 ret = err; 1931 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1932 if (ret == 0) 1933 ret = err; 1934 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1935 err = ext4_journal_stop(handle); 1936 if (!ret) 1937 ret = err; 1938 1939 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1940 out: 1941 unlock_page(page); 1942 out_no_pagelock: 1943 if (!inline_data && page_bufs) 1944 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1945 NULL, bput_one); 1946 brelse(inode_bh); 1947 return ret; 1948 } 1949 1950 /* 1951 * Note that we don't need to start a transaction unless we're journaling data 1952 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1953 * need to file the inode to the transaction's list in ordered mode because if 1954 * we are writing back data added by write(), the inode is already there and if 1955 * we are writing back data modified via mmap(), no one guarantees in which 1956 * transaction the data will hit the disk. In case we are journaling data, we 1957 * cannot start transaction directly because transaction start ranks above page 1958 * lock so we have to do some magic. 1959 * 1960 * This function can get called via... 1961 * - ext4_writepages after taking page lock (have journal handle) 1962 * - journal_submit_inode_data_buffers (no journal handle) 1963 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1964 * - grab_page_cache when doing write_begin (have journal handle) 1965 * 1966 * We don't do any block allocation in this function. If we have page with 1967 * multiple blocks we need to write those buffer_heads that are mapped. This 1968 * is important for mmaped based write. So if we do with blocksize 1K 1969 * truncate(f, 1024); 1970 * a = mmap(f, 0, 4096); 1971 * a[0] = 'a'; 1972 * truncate(f, 4096); 1973 * we have in the page first buffer_head mapped via page_mkwrite call back 1974 * but other buffer_heads would be unmapped but dirty (dirty done via the 1975 * do_wp_page). So writepage should write the first block. If we modify 1976 * the mmap area beyond 1024 we will again get a page_fault and the 1977 * page_mkwrite callback will do the block allocation and mark the 1978 * buffer_heads mapped. 1979 * 1980 * We redirty the page if we have any buffer_heads that is either delay or 1981 * unwritten in the page. 1982 * 1983 * We can get recursively called as show below. 1984 * 1985 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1986 * ext4_writepage() 1987 * 1988 * But since we don't do any block allocation we should not deadlock. 1989 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1990 */ 1991 static int ext4_writepage(struct page *page, 1992 struct writeback_control *wbc) 1993 { 1994 int ret = 0; 1995 loff_t size; 1996 unsigned int len; 1997 struct buffer_head *page_bufs = NULL; 1998 struct inode *inode = page->mapping->host; 1999 struct ext4_io_submit io_submit; 2000 bool keep_towrite = false; 2001 2002 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2003 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 2004 unlock_page(page); 2005 return -EIO; 2006 } 2007 2008 trace_ext4_writepage(page); 2009 size = i_size_read(inode); 2010 if (page->index == size >> PAGE_SHIFT && 2011 !ext4_verity_in_progress(inode)) 2012 len = size & ~PAGE_MASK; 2013 else 2014 len = PAGE_SIZE; 2015 2016 page_bufs = page_buffers(page); 2017 /* 2018 * We cannot do block allocation or other extent handling in this 2019 * function. If there are buffers needing that, we have to redirty 2020 * the page. But we may reach here when we do a journal commit via 2021 * journal_submit_inode_data_buffers() and in that case we must write 2022 * allocated buffers to achieve data=ordered mode guarantees. 2023 * 2024 * Also, if there is only one buffer per page (the fs block 2025 * size == the page size), if one buffer needs block 2026 * allocation or needs to modify the extent tree to clear the 2027 * unwritten flag, we know that the page can't be written at 2028 * all, so we might as well refuse the write immediately. 2029 * Unfortunately if the block size != page size, we can't as 2030 * easily detect this case using ext4_walk_page_buffers(), but 2031 * for the extremely common case, this is an optimization that 2032 * skips a useless round trip through ext4_bio_write_page(). 2033 */ 2034 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2035 ext4_bh_delay_or_unwritten)) { 2036 redirty_page_for_writepage(wbc, page); 2037 if ((current->flags & PF_MEMALLOC) || 2038 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2039 /* 2040 * For memory cleaning there's no point in writing only 2041 * some buffers. So just bail out. Warn if we came here 2042 * from direct reclaim. 2043 */ 2044 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2045 == PF_MEMALLOC); 2046 unlock_page(page); 2047 return 0; 2048 } 2049 keep_towrite = true; 2050 } 2051 2052 if (PageChecked(page) && ext4_should_journal_data(inode)) 2053 /* 2054 * It's mmapped pagecache. Add buffers and journal it. There 2055 * doesn't seem much point in redirtying the page here. 2056 */ 2057 return __ext4_journalled_writepage(page, len); 2058 2059 ext4_io_submit_init(&io_submit, wbc); 2060 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2061 if (!io_submit.io_end) { 2062 redirty_page_for_writepage(wbc, page); 2063 unlock_page(page); 2064 return -ENOMEM; 2065 } 2066 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite); 2067 ext4_io_submit(&io_submit); 2068 /* Drop io_end reference we got from init */ 2069 ext4_put_io_end_defer(io_submit.io_end); 2070 return ret; 2071 } 2072 2073 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2074 { 2075 int len; 2076 loff_t size; 2077 int err; 2078 2079 BUG_ON(page->index != mpd->first_page); 2080 clear_page_dirty_for_io(page); 2081 /* 2082 * We have to be very careful here! Nothing protects writeback path 2083 * against i_size changes and the page can be writeably mapped into 2084 * page tables. So an application can be growing i_size and writing 2085 * data through mmap while writeback runs. clear_page_dirty_for_io() 2086 * write-protects our page in page tables and the page cannot get 2087 * written to again until we release page lock. So only after 2088 * clear_page_dirty_for_io() we are safe to sample i_size for 2089 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2090 * on the barrier provided by TestClearPageDirty in 2091 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2092 * after page tables are updated. 2093 */ 2094 size = i_size_read(mpd->inode); 2095 if (page->index == size >> PAGE_SHIFT && 2096 !ext4_verity_in_progress(mpd->inode)) 2097 len = size & ~PAGE_MASK; 2098 else 2099 len = PAGE_SIZE; 2100 err = ext4_bio_write_page(&mpd->io_submit, page, len, false); 2101 if (!err) 2102 mpd->wbc->nr_to_write--; 2103 mpd->first_page++; 2104 2105 return err; 2106 } 2107 2108 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2109 2110 /* 2111 * mballoc gives us at most this number of blocks... 2112 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2113 * The rest of mballoc seems to handle chunks up to full group size. 2114 */ 2115 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2116 2117 /* 2118 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2119 * 2120 * @mpd - extent of blocks 2121 * @lblk - logical number of the block in the file 2122 * @bh - buffer head we want to add to the extent 2123 * 2124 * The function is used to collect contig. blocks in the same state. If the 2125 * buffer doesn't require mapping for writeback and we haven't started the 2126 * extent of buffers to map yet, the function returns 'true' immediately - the 2127 * caller can write the buffer right away. Otherwise the function returns true 2128 * if the block has been added to the extent, false if the block couldn't be 2129 * added. 2130 */ 2131 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2132 struct buffer_head *bh) 2133 { 2134 struct ext4_map_blocks *map = &mpd->map; 2135 2136 /* Buffer that doesn't need mapping for writeback? */ 2137 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2138 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2139 /* So far no extent to map => we write the buffer right away */ 2140 if (map->m_len == 0) 2141 return true; 2142 return false; 2143 } 2144 2145 /* First block in the extent? */ 2146 if (map->m_len == 0) { 2147 /* We cannot map unless handle is started... */ 2148 if (!mpd->do_map) 2149 return false; 2150 map->m_lblk = lblk; 2151 map->m_len = 1; 2152 map->m_flags = bh->b_state & BH_FLAGS; 2153 return true; 2154 } 2155 2156 /* Don't go larger than mballoc is willing to allocate */ 2157 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2158 return false; 2159 2160 /* Can we merge the block to our big extent? */ 2161 if (lblk == map->m_lblk + map->m_len && 2162 (bh->b_state & BH_FLAGS) == map->m_flags) { 2163 map->m_len++; 2164 return true; 2165 } 2166 return false; 2167 } 2168 2169 /* 2170 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2171 * 2172 * @mpd - extent of blocks for mapping 2173 * @head - the first buffer in the page 2174 * @bh - buffer we should start processing from 2175 * @lblk - logical number of the block in the file corresponding to @bh 2176 * 2177 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2178 * the page for IO if all buffers in this page were mapped and there's no 2179 * accumulated extent of buffers to map or add buffers in the page to the 2180 * extent of buffers to map. The function returns 1 if the caller can continue 2181 * by processing the next page, 0 if it should stop adding buffers to the 2182 * extent to map because we cannot extend it anymore. It can also return value 2183 * < 0 in case of error during IO submission. 2184 */ 2185 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2186 struct buffer_head *head, 2187 struct buffer_head *bh, 2188 ext4_lblk_t lblk) 2189 { 2190 struct inode *inode = mpd->inode; 2191 int err; 2192 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2193 >> inode->i_blkbits; 2194 2195 if (ext4_verity_in_progress(inode)) 2196 blocks = EXT_MAX_BLOCKS; 2197 2198 do { 2199 BUG_ON(buffer_locked(bh)); 2200 2201 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2202 /* Found extent to map? */ 2203 if (mpd->map.m_len) 2204 return 0; 2205 /* Buffer needs mapping and handle is not started? */ 2206 if (!mpd->do_map) 2207 return 0; 2208 /* Everything mapped so far and we hit EOF */ 2209 break; 2210 } 2211 } while (lblk++, (bh = bh->b_this_page) != head); 2212 /* So far everything mapped? Submit the page for IO. */ 2213 if (mpd->map.m_len == 0) { 2214 err = mpage_submit_page(mpd, head->b_page); 2215 if (err < 0) 2216 return err; 2217 } 2218 if (lblk >= blocks) { 2219 mpd->scanned_until_end = 1; 2220 return 0; 2221 } 2222 return 1; 2223 } 2224 2225 /* 2226 * mpage_process_page - update page buffers corresponding to changed extent and 2227 * may submit fully mapped page for IO 2228 * 2229 * @mpd - description of extent to map, on return next extent to map 2230 * @m_lblk - logical block mapping. 2231 * @m_pblk - corresponding physical mapping. 2232 * @map_bh - determines on return whether this page requires any further 2233 * mapping or not. 2234 * Scan given page buffers corresponding to changed extent and update buffer 2235 * state according to new extent state. 2236 * We map delalloc buffers to their physical location, clear unwritten bits. 2237 * If the given page is not fully mapped, we update @map to the next extent in 2238 * the given page that needs mapping & return @map_bh as true. 2239 */ 2240 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2241 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2242 bool *map_bh) 2243 { 2244 struct buffer_head *head, *bh; 2245 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2246 ext4_lblk_t lblk = *m_lblk; 2247 ext4_fsblk_t pblock = *m_pblk; 2248 int err = 0; 2249 int blkbits = mpd->inode->i_blkbits; 2250 ssize_t io_end_size = 0; 2251 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2252 2253 bh = head = page_buffers(page); 2254 do { 2255 if (lblk < mpd->map.m_lblk) 2256 continue; 2257 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2258 /* 2259 * Buffer after end of mapped extent. 2260 * Find next buffer in the page to map. 2261 */ 2262 mpd->map.m_len = 0; 2263 mpd->map.m_flags = 0; 2264 io_end_vec->size += io_end_size; 2265 io_end_size = 0; 2266 2267 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2268 if (err > 0) 2269 err = 0; 2270 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2271 io_end_vec = ext4_alloc_io_end_vec(io_end); 2272 if (IS_ERR(io_end_vec)) { 2273 err = PTR_ERR(io_end_vec); 2274 goto out; 2275 } 2276 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2277 } 2278 *map_bh = true; 2279 goto out; 2280 } 2281 if (buffer_delay(bh)) { 2282 clear_buffer_delay(bh); 2283 bh->b_blocknr = pblock++; 2284 } 2285 clear_buffer_unwritten(bh); 2286 io_end_size += (1 << blkbits); 2287 } while (lblk++, (bh = bh->b_this_page) != head); 2288 2289 io_end_vec->size += io_end_size; 2290 io_end_size = 0; 2291 *map_bh = false; 2292 out: 2293 *m_lblk = lblk; 2294 *m_pblk = pblock; 2295 return err; 2296 } 2297 2298 /* 2299 * mpage_map_buffers - update buffers corresponding to changed extent and 2300 * submit fully mapped pages for IO 2301 * 2302 * @mpd - description of extent to map, on return next extent to map 2303 * 2304 * Scan buffers corresponding to changed extent (we expect corresponding pages 2305 * to be already locked) and update buffer state according to new extent state. 2306 * We map delalloc buffers to their physical location, clear unwritten bits, 2307 * and mark buffers as uninit when we perform writes to unwritten extents 2308 * and do extent conversion after IO is finished. If the last page is not fully 2309 * mapped, we update @map to the next extent in the last page that needs 2310 * mapping. Otherwise we submit the page for IO. 2311 */ 2312 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2313 { 2314 struct pagevec pvec; 2315 int nr_pages, i; 2316 struct inode *inode = mpd->inode; 2317 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2318 pgoff_t start, end; 2319 ext4_lblk_t lblk; 2320 ext4_fsblk_t pblock; 2321 int err; 2322 bool map_bh = false; 2323 2324 start = mpd->map.m_lblk >> bpp_bits; 2325 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2326 lblk = start << bpp_bits; 2327 pblock = mpd->map.m_pblk; 2328 2329 pagevec_init(&pvec); 2330 while (start <= end) { 2331 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2332 &start, end); 2333 if (nr_pages == 0) 2334 break; 2335 for (i = 0; i < nr_pages; i++) { 2336 struct page *page = pvec.pages[i]; 2337 2338 err = mpage_process_page(mpd, page, &lblk, &pblock, 2339 &map_bh); 2340 /* 2341 * If map_bh is true, means page may require further bh 2342 * mapping, or maybe the page was submitted for IO. 2343 * So we return to call further extent mapping. 2344 */ 2345 if (err < 0 || map_bh) 2346 goto out; 2347 /* Page fully mapped - let IO run! */ 2348 err = mpage_submit_page(mpd, page); 2349 if (err < 0) 2350 goto out; 2351 } 2352 pagevec_release(&pvec); 2353 } 2354 /* Extent fully mapped and matches with page boundary. We are done. */ 2355 mpd->map.m_len = 0; 2356 mpd->map.m_flags = 0; 2357 return 0; 2358 out: 2359 pagevec_release(&pvec); 2360 return err; 2361 } 2362 2363 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2364 { 2365 struct inode *inode = mpd->inode; 2366 struct ext4_map_blocks *map = &mpd->map; 2367 int get_blocks_flags; 2368 int err, dioread_nolock; 2369 2370 trace_ext4_da_write_pages_extent(inode, map); 2371 /* 2372 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2373 * to convert an unwritten extent to be initialized (in the case 2374 * where we have written into one or more preallocated blocks). It is 2375 * possible that we're going to need more metadata blocks than 2376 * previously reserved. However we must not fail because we're in 2377 * writeback and there is nothing we can do about it so it might result 2378 * in data loss. So use reserved blocks to allocate metadata if 2379 * possible. 2380 * 2381 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2382 * the blocks in question are delalloc blocks. This indicates 2383 * that the blocks and quotas has already been checked when 2384 * the data was copied into the page cache. 2385 */ 2386 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2387 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2388 EXT4_GET_BLOCKS_IO_SUBMIT; 2389 dioread_nolock = ext4_should_dioread_nolock(inode); 2390 if (dioread_nolock) 2391 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2392 if (map->m_flags & BIT(BH_Delay)) 2393 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2394 2395 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2396 if (err < 0) 2397 return err; 2398 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2399 if (!mpd->io_submit.io_end->handle && 2400 ext4_handle_valid(handle)) { 2401 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2402 handle->h_rsv_handle = NULL; 2403 } 2404 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2405 } 2406 2407 BUG_ON(map->m_len == 0); 2408 return 0; 2409 } 2410 2411 /* 2412 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2413 * mpd->len and submit pages underlying it for IO 2414 * 2415 * @handle - handle for journal operations 2416 * @mpd - extent to map 2417 * @give_up_on_write - we set this to true iff there is a fatal error and there 2418 * is no hope of writing the data. The caller should discard 2419 * dirty pages to avoid infinite loops. 2420 * 2421 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2422 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2423 * them to initialized or split the described range from larger unwritten 2424 * extent. Note that we need not map all the described range since allocation 2425 * can return less blocks or the range is covered by more unwritten extents. We 2426 * cannot map more because we are limited by reserved transaction credits. On 2427 * the other hand we always make sure that the last touched page is fully 2428 * mapped so that it can be written out (and thus forward progress is 2429 * guaranteed). After mapping we submit all mapped pages for IO. 2430 */ 2431 static int mpage_map_and_submit_extent(handle_t *handle, 2432 struct mpage_da_data *mpd, 2433 bool *give_up_on_write) 2434 { 2435 struct inode *inode = mpd->inode; 2436 struct ext4_map_blocks *map = &mpd->map; 2437 int err; 2438 loff_t disksize; 2439 int progress = 0; 2440 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2441 struct ext4_io_end_vec *io_end_vec; 2442 2443 io_end_vec = ext4_alloc_io_end_vec(io_end); 2444 if (IS_ERR(io_end_vec)) 2445 return PTR_ERR(io_end_vec); 2446 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2447 do { 2448 err = mpage_map_one_extent(handle, mpd); 2449 if (err < 0) { 2450 struct super_block *sb = inode->i_sb; 2451 2452 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2453 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2454 goto invalidate_dirty_pages; 2455 /* 2456 * Let the uper layers retry transient errors. 2457 * In the case of ENOSPC, if ext4_count_free_blocks() 2458 * is non-zero, a commit should free up blocks. 2459 */ 2460 if ((err == -ENOMEM) || 2461 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2462 if (progress) 2463 goto update_disksize; 2464 return err; 2465 } 2466 ext4_msg(sb, KERN_CRIT, 2467 "Delayed block allocation failed for " 2468 "inode %lu at logical offset %llu with" 2469 " max blocks %u with error %d", 2470 inode->i_ino, 2471 (unsigned long long)map->m_lblk, 2472 (unsigned)map->m_len, -err); 2473 ext4_msg(sb, KERN_CRIT, 2474 "This should not happen!! Data will " 2475 "be lost\n"); 2476 if (err == -ENOSPC) 2477 ext4_print_free_blocks(inode); 2478 invalidate_dirty_pages: 2479 *give_up_on_write = true; 2480 return err; 2481 } 2482 progress = 1; 2483 /* 2484 * Update buffer state, submit mapped pages, and get us new 2485 * extent to map 2486 */ 2487 err = mpage_map_and_submit_buffers(mpd); 2488 if (err < 0) 2489 goto update_disksize; 2490 } while (map->m_len); 2491 2492 update_disksize: 2493 /* 2494 * Update on-disk size after IO is submitted. Races with 2495 * truncate are avoided by checking i_size under i_data_sem. 2496 */ 2497 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2498 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2499 int err2; 2500 loff_t i_size; 2501 2502 down_write(&EXT4_I(inode)->i_data_sem); 2503 i_size = i_size_read(inode); 2504 if (disksize > i_size) 2505 disksize = i_size; 2506 if (disksize > EXT4_I(inode)->i_disksize) 2507 EXT4_I(inode)->i_disksize = disksize; 2508 up_write(&EXT4_I(inode)->i_data_sem); 2509 err2 = ext4_mark_inode_dirty(handle, inode); 2510 if (err2) { 2511 ext4_error_err(inode->i_sb, -err2, 2512 "Failed to mark inode %lu dirty", 2513 inode->i_ino); 2514 } 2515 if (!err) 2516 err = err2; 2517 } 2518 return err; 2519 } 2520 2521 /* 2522 * Calculate the total number of credits to reserve for one writepages 2523 * iteration. This is called from ext4_writepages(). We map an extent of 2524 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2525 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2526 * bpp - 1 blocks in bpp different extents. 2527 */ 2528 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2529 { 2530 int bpp = ext4_journal_blocks_per_page(inode); 2531 2532 return ext4_meta_trans_blocks(inode, 2533 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2534 } 2535 2536 /* 2537 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2538 * and underlying extent to map 2539 * 2540 * @mpd - where to look for pages 2541 * 2542 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2543 * IO immediately. When we find a page which isn't mapped we start accumulating 2544 * extent of buffers underlying these pages that needs mapping (formed by 2545 * either delayed or unwritten buffers). We also lock the pages containing 2546 * these buffers. The extent found is returned in @mpd structure (starting at 2547 * mpd->lblk with length mpd->len blocks). 2548 * 2549 * Note that this function can attach bios to one io_end structure which are 2550 * neither logically nor physically contiguous. Although it may seem as an 2551 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2552 * case as we need to track IO to all buffers underlying a page in one io_end. 2553 */ 2554 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2555 { 2556 struct address_space *mapping = mpd->inode->i_mapping; 2557 struct pagevec pvec; 2558 unsigned int nr_pages; 2559 long left = mpd->wbc->nr_to_write; 2560 pgoff_t index = mpd->first_page; 2561 pgoff_t end = mpd->last_page; 2562 xa_mark_t tag; 2563 int i, err = 0; 2564 int blkbits = mpd->inode->i_blkbits; 2565 ext4_lblk_t lblk; 2566 struct buffer_head *head; 2567 2568 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2569 tag = PAGECACHE_TAG_TOWRITE; 2570 else 2571 tag = PAGECACHE_TAG_DIRTY; 2572 2573 pagevec_init(&pvec); 2574 mpd->map.m_len = 0; 2575 mpd->next_page = index; 2576 while (index <= end) { 2577 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2578 tag); 2579 if (nr_pages == 0) 2580 break; 2581 2582 for (i = 0; i < nr_pages; i++) { 2583 struct page *page = pvec.pages[i]; 2584 2585 /* 2586 * Accumulated enough dirty pages? This doesn't apply 2587 * to WB_SYNC_ALL mode. For integrity sync we have to 2588 * keep going because someone may be concurrently 2589 * dirtying pages, and we might have synced a lot of 2590 * newly appeared dirty pages, but have not synced all 2591 * of the old dirty pages. 2592 */ 2593 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2594 goto out; 2595 2596 /* If we can't merge this page, we are done. */ 2597 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2598 goto out; 2599 2600 lock_page(page); 2601 /* 2602 * If the page is no longer dirty, or its mapping no 2603 * longer corresponds to inode we are writing (which 2604 * means it has been truncated or invalidated), or the 2605 * page is already under writeback and we are not doing 2606 * a data integrity writeback, skip the page 2607 */ 2608 if (!PageDirty(page) || 2609 (PageWriteback(page) && 2610 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2611 unlikely(page->mapping != mapping)) { 2612 unlock_page(page); 2613 continue; 2614 } 2615 2616 wait_on_page_writeback(page); 2617 BUG_ON(PageWriteback(page)); 2618 2619 if (mpd->map.m_len == 0) 2620 mpd->first_page = page->index; 2621 mpd->next_page = page->index + 1; 2622 /* Add all dirty buffers to mpd */ 2623 lblk = ((ext4_lblk_t)page->index) << 2624 (PAGE_SHIFT - blkbits); 2625 head = page_buffers(page); 2626 err = mpage_process_page_bufs(mpd, head, head, lblk); 2627 if (err <= 0) 2628 goto out; 2629 err = 0; 2630 left--; 2631 } 2632 pagevec_release(&pvec); 2633 cond_resched(); 2634 } 2635 mpd->scanned_until_end = 1; 2636 return 0; 2637 out: 2638 pagevec_release(&pvec); 2639 return err; 2640 } 2641 2642 static int ext4_writepages(struct address_space *mapping, 2643 struct writeback_control *wbc) 2644 { 2645 pgoff_t writeback_index = 0; 2646 long nr_to_write = wbc->nr_to_write; 2647 int range_whole = 0; 2648 int cycled = 1; 2649 handle_t *handle = NULL; 2650 struct mpage_da_data mpd; 2651 struct inode *inode = mapping->host; 2652 int needed_blocks, rsv_blocks = 0, ret = 0; 2653 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2654 struct blk_plug plug; 2655 bool give_up_on_write = false; 2656 2657 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2658 return -EIO; 2659 2660 percpu_down_read(&sbi->s_writepages_rwsem); 2661 trace_ext4_writepages(inode, wbc); 2662 2663 /* 2664 * No pages to write? This is mainly a kludge to avoid starting 2665 * a transaction for special inodes like journal inode on last iput() 2666 * because that could violate lock ordering on umount 2667 */ 2668 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2669 goto out_writepages; 2670 2671 if (ext4_should_journal_data(inode)) { 2672 ret = generic_writepages(mapping, wbc); 2673 goto out_writepages; 2674 } 2675 2676 /* 2677 * If the filesystem has aborted, it is read-only, so return 2678 * right away instead of dumping stack traces later on that 2679 * will obscure the real source of the problem. We test 2680 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2681 * the latter could be true if the filesystem is mounted 2682 * read-only, and in that case, ext4_writepages should 2683 * *never* be called, so if that ever happens, we would want 2684 * the stack trace. 2685 */ 2686 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2687 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2688 ret = -EROFS; 2689 goto out_writepages; 2690 } 2691 2692 /* 2693 * If we have inline data and arrive here, it means that 2694 * we will soon create the block for the 1st page, so 2695 * we'd better clear the inline data here. 2696 */ 2697 if (ext4_has_inline_data(inode)) { 2698 /* Just inode will be modified... */ 2699 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2700 if (IS_ERR(handle)) { 2701 ret = PTR_ERR(handle); 2702 goto out_writepages; 2703 } 2704 BUG_ON(ext4_test_inode_state(inode, 2705 EXT4_STATE_MAY_INLINE_DATA)); 2706 ext4_destroy_inline_data(handle, inode); 2707 ext4_journal_stop(handle); 2708 } 2709 2710 if (ext4_should_dioread_nolock(inode)) { 2711 /* 2712 * We may need to convert up to one extent per block in 2713 * the page and we may dirty the inode. 2714 */ 2715 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2716 PAGE_SIZE >> inode->i_blkbits); 2717 } 2718 2719 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2720 range_whole = 1; 2721 2722 if (wbc->range_cyclic) { 2723 writeback_index = mapping->writeback_index; 2724 if (writeback_index) 2725 cycled = 0; 2726 mpd.first_page = writeback_index; 2727 mpd.last_page = -1; 2728 } else { 2729 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2730 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2731 } 2732 2733 mpd.inode = inode; 2734 mpd.wbc = wbc; 2735 ext4_io_submit_init(&mpd.io_submit, wbc); 2736 retry: 2737 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2738 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2739 blk_start_plug(&plug); 2740 2741 /* 2742 * First writeback pages that don't need mapping - we can avoid 2743 * starting a transaction unnecessarily and also avoid being blocked 2744 * in the block layer on device congestion while having transaction 2745 * started. 2746 */ 2747 mpd.do_map = 0; 2748 mpd.scanned_until_end = 0; 2749 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2750 if (!mpd.io_submit.io_end) { 2751 ret = -ENOMEM; 2752 goto unplug; 2753 } 2754 ret = mpage_prepare_extent_to_map(&mpd); 2755 /* Unlock pages we didn't use */ 2756 mpage_release_unused_pages(&mpd, false); 2757 /* Submit prepared bio */ 2758 ext4_io_submit(&mpd.io_submit); 2759 ext4_put_io_end_defer(mpd.io_submit.io_end); 2760 mpd.io_submit.io_end = NULL; 2761 if (ret < 0) 2762 goto unplug; 2763 2764 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2765 /* For each extent of pages we use new io_end */ 2766 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2767 if (!mpd.io_submit.io_end) { 2768 ret = -ENOMEM; 2769 break; 2770 } 2771 2772 /* 2773 * We have two constraints: We find one extent to map and we 2774 * must always write out whole page (makes a difference when 2775 * blocksize < pagesize) so that we don't block on IO when we 2776 * try to write out the rest of the page. Journalled mode is 2777 * not supported by delalloc. 2778 */ 2779 BUG_ON(ext4_should_journal_data(inode)); 2780 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2781 2782 /* start a new transaction */ 2783 handle = ext4_journal_start_with_reserve(inode, 2784 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2785 if (IS_ERR(handle)) { 2786 ret = PTR_ERR(handle); 2787 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2788 "%ld pages, ino %lu; err %d", __func__, 2789 wbc->nr_to_write, inode->i_ino, ret); 2790 /* Release allocated io_end */ 2791 ext4_put_io_end(mpd.io_submit.io_end); 2792 mpd.io_submit.io_end = NULL; 2793 break; 2794 } 2795 mpd.do_map = 1; 2796 2797 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2798 ret = mpage_prepare_extent_to_map(&mpd); 2799 if (!ret && mpd.map.m_len) 2800 ret = mpage_map_and_submit_extent(handle, &mpd, 2801 &give_up_on_write); 2802 /* 2803 * Caution: If the handle is synchronous, 2804 * ext4_journal_stop() can wait for transaction commit 2805 * to finish which may depend on writeback of pages to 2806 * complete or on page lock to be released. In that 2807 * case, we have to wait until after we have 2808 * submitted all the IO, released page locks we hold, 2809 * and dropped io_end reference (for extent conversion 2810 * to be able to complete) before stopping the handle. 2811 */ 2812 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2813 ext4_journal_stop(handle); 2814 handle = NULL; 2815 mpd.do_map = 0; 2816 } 2817 /* Unlock pages we didn't use */ 2818 mpage_release_unused_pages(&mpd, give_up_on_write); 2819 /* Submit prepared bio */ 2820 ext4_io_submit(&mpd.io_submit); 2821 2822 /* 2823 * Drop our io_end reference we got from init. We have 2824 * to be careful and use deferred io_end finishing if 2825 * we are still holding the transaction as we can 2826 * release the last reference to io_end which may end 2827 * up doing unwritten extent conversion. 2828 */ 2829 if (handle) { 2830 ext4_put_io_end_defer(mpd.io_submit.io_end); 2831 ext4_journal_stop(handle); 2832 } else 2833 ext4_put_io_end(mpd.io_submit.io_end); 2834 mpd.io_submit.io_end = NULL; 2835 2836 if (ret == -ENOSPC && sbi->s_journal) { 2837 /* 2838 * Commit the transaction which would 2839 * free blocks released in the transaction 2840 * and try again 2841 */ 2842 jbd2_journal_force_commit_nested(sbi->s_journal); 2843 ret = 0; 2844 continue; 2845 } 2846 /* Fatal error - ENOMEM, EIO... */ 2847 if (ret) 2848 break; 2849 } 2850 unplug: 2851 blk_finish_plug(&plug); 2852 if (!ret && !cycled && wbc->nr_to_write > 0) { 2853 cycled = 1; 2854 mpd.last_page = writeback_index - 1; 2855 mpd.first_page = 0; 2856 goto retry; 2857 } 2858 2859 /* Update index */ 2860 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2861 /* 2862 * Set the writeback_index so that range_cyclic 2863 * mode will write it back later 2864 */ 2865 mapping->writeback_index = mpd.first_page; 2866 2867 out_writepages: 2868 trace_ext4_writepages_result(inode, wbc, ret, 2869 nr_to_write - wbc->nr_to_write); 2870 percpu_up_read(&sbi->s_writepages_rwsem); 2871 return ret; 2872 } 2873 2874 static int ext4_dax_writepages(struct address_space *mapping, 2875 struct writeback_control *wbc) 2876 { 2877 int ret; 2878 long nr_to_write = wbc->nr_to_write; 2879 struct inode *inode = mapping->host; 2880 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2881 2882 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2883 return -EIO; 2884 2885 percpu_down_read(&sbi->s_writepages_rwsem); 2886 trace_ext4_writepages(inode, wbc); 2887 2888 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2889 trace_ext4_writepages_result(inode, wbc, ret, 2890 nr_to_write - wbc->nr_to_write); 2891 percpu_up_read(&sbi->s_writepages_rwsem); 2892 return ret; 2893 } 2894 2895 static int ext4_nonda_switch(struct super_block *sb) 2896 { 2897 s64 free_clusters, dirty_clusters; 2898 struct ext4_sb_info *sbi = EXT4_SB(sb); 2899 2900 /* 2901 * switch to non delalloc mode if we are running low 2902 * on free block. The free block accounting via percpu 2903 * counters can get slightly wrong with percpu_counter_batch getting 2904 * accumulated on each CPU without updating global counters 2905 * Delalloc need an accurate free block accounting. So switch 2906 * to non delalloc when we are near to error range. 2907 */ 2908 free_clusters = 2909 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2910 dirty_clusters = 2911 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2912 /* 2913 * Start pushing delalloc when 1/2 of free blocks are dirty. 2914 */ 2915 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2916 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2917 2918 if (2 * free_clusters < 3 * dirty_clusters || 2919 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2920 /* 2921 * free block count is less than 150% of dirty blocks 2922 * or free blocks is less than watermark 2923 */ 2924 return 1; 2925 } 2926 return 0; 2927 } 2928 2929 /* We always reserve for an inode update; the superblock could be there too */ 2930 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2931 { 2932 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2933 return 1; 2934 2935 if (pos + len <= 0x7fffffffULL) 2936 return 1; 2937 2938 /* We might need to update the superblock to set LARGE_FILE */ 2939 return 2; 2940 } 2941 2942 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2943 loff_t pos, unsigned len, unsigned flags, 2944 struct page **pagep, void **fsdata) 2945 { 2946 int ret, retries = 0; 2947 struct page *page; 2948 pgoff_t index; 2949 struct inode *inode = mapping->host; 2950 handle_t *handle; 2951 2952 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2953 return -EIO; 2954 2955 index = pos >> PAGE_SHIFT; 2956 2957 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2958 ext4_verity_in_progress(inode)) { 2959 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2960 return ext4_write_begin(file, mapping, pos, 2961 len, flags, pagep, fsdata); 2962 } 2963 *fsdata = (void *)0; 2964 trace_ext4_da_write_begin(inode, pos, len, flags); 2965 2966 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2967 ret = ext4_da_write_inline_data_begin(mapping, inode, 2968 pos, len, flags, 2969 pagep, fsdata); 2970 if (ret < 0) 2971 return ret; 2972 if (ret == 1) 2973 return 0; 2974 } 2975 2976 /* 2977 * grab_cache_page_write_begin() can take a long time if the 2978 * system is thrashing due to memory pressure, or if the page 2979 * is being written back. So grab it first before we start 2980 * the transaction handle. This also allows us to allocate 2981 * the page (if needed) without using GFP_NOFS. 2982 */ 2983 retry_grab: 2984 page = grab_cache_page_write_begin(mapping, index, flags); 2985 if (!page) 2986 return -ENOMEM; 2987 unlock_page(page); 2988 2989 /* 2990 * With delayed allocation, we don't log the i_disksize update 2991 * if there is delayed block allocation. But we still need 2992 * to journalling the i_disksize update if writes to the end 2993 * of file which has an already mapped buffer. 2994 */ 2995 retry_journal: 2996 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2997 ext4_da_write_credits(inode, pos, len)); 2998 if (IS_ERR(handle)) { 2999 put_page(page); 3000 return PTR_ERR(handle); 3001 } 3002 3003 lock_page(page); 3004 if (page->mapping != mapping) { 3005 /* The page got truncated from under us */ 3006 unlock_page(page); 3007 put_page(page); 3008 ext4_journal_stop(handle); 3009 goto retry_grab; 3010 } 3011 /* In case writeback began while the page was unlocked */ 3012 wait_for_stable_page(page); 3013 3014 #ifdef CONFIG_FS_ENCRYPTION 3015 ret = ext4_block_write_begin(page, pos, len, 3016 ext4_da_get_block_prep); 3017 #else 3018 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3019 #endif 3020 if (ret < 0) { 3021 unlock_page(page); 3022 ext4_journal_stop(handle); 3023 /* 3024 * block_write_begin may have instantiated a few blocks 3025 * outside i_size. Trim these off again. Don't need 3026 * i_size_read because we hold i_mutex. 3027 */ 3028 if (pos + len > inode->i_size) 3029 ext4_truncate_failed_write(inode); 3030 3031 if (ret == -ENOSPC && 3032 ext4_should_retry_alloc(inode->i_sb, &retries)) 3033 goto retry_journal; 3034 3035 put_page(page); 3036 return ret; 3037 } 3038 3039 *pagep = page; 3040 return ret; 3041 } 3042 3043 /* 3044 * Check if we should update i_disksize 3045 * when write to the end of file but not require block allocation 3046 */ 3047 static int ext4_da_should_update_i_disksize(struct page *page, 3048 unsigned long offset) 3049 { 3050 struct buffer_head *bh; 3051 struct inode *inode = page->mapping->host; 3052 unsigned int idx; 3053 int i; 3054 3055 bh = page_buffers(page); 3056 idx = offset >> inode->i_blkbits; 3057 3058 for (i = 0; i < idx; i++) 3059 bh = bh->b_this_page; 3060 3061 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3062 return 0; 3063 return 1; 3064 } 3065 3066 static int ext4_da_write_end(struct file *file, 3067 struct address_space *mapping, 3068 loff_t pos, unsigned len, unsigned copied, 3069 struct page *page, void *fsdata) 3070 { 3071 struct inode *inode = mapping->host; 3072 int ret = 0, ret2; 3073 handle_t *handle = ext4_journal_current_handle(); 3074 loff_t new_i_size; 3075 unsigned long start, end; 3076 int write_mode = (int)(unsigned long)fsdata; 3077 3078 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3079 return ext4_write_end(file, mapping, pos, 3080 len, copied, page, fsdata); 3081 3082 trace_ext4_da_write_end(inode, pos, len, copied); 3083 start = pos & (PAGE_SIZE - 1); 3084 end = start + copied - 1; 3085 3086 /* 3087 * generic_write_end() will run mark_inode_dirty() if i_size 3088 * changes. So let's piggyback the i_disksize mark_inode_dirty 3089 * into that. 3090 */ 3091 new_i_size = pos + copied; 3092 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3093 if (ext4_has_inline_data(inode) || 3094 ext4_da_should_update_i_disksize(page, end)) { 3095 ext4_update_i_disksize(inode, new_i_size); 3096 /* We need to mark inode dirty even if 3097 * new_i_size is less that inode->i_size 3098 * bu greater than i_disksize.(hint delalloc) 3099 */ 3100 ret = ext4_mark_inode_dirty(handle, inode); 3101 } 3102 } 3103 3104 if (write_mode != CONVERT_INLINE_DATA && 3105 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3106 ext4_has_inline_data(inode)) 3107 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3108 page); 3109 else 3110 ret2 = generic_write_end(file, mapping, pos, len, copied, 3111 page, fsdata); 3112 3113 copied = ret2; 3114 if (ret2 < 0) 3115 ret = ret2; 3116 ret2 = ext4_journal_stop(handle); 3117 if (unlikely(ret2 && !ret)) 3118 ret = ret2; 3119 3120 return ret ? ret : copied; 3121 } 3122 3123 /* 3124 * Force all delayed allocation blocks to be allocated for a given inode. 3125 */ 3126 int ext4_alloc_da_blocks(struct inode *inode) 3127 { 3128 trace_ext4_alloc_da_blocks(inode); 3129 3130 if (!EXT4_I(inode)->i_reserved_data_blocks) 3131 return 0; 3132 3133 /* 3134 * We do something simple for now. The filemap_flush() will 3135 * also start triggering a write of the data blocks, which is 3136 * not strictly speaking necessary (and for users of 3137 * laptop_mode, not even desirable). However, to do otherwise 3138 * would require replicating code paths in: 3139 * 3140 * ext4_writepages() -> 3141 * write_cache_pages() ---> (via passed in callback function) 3142 * __mpage_da_writepage() --> 3143 * mpage_add_bh_to_extent() 3144 * mpage_da_map_blocks() 3145 * 3146 * The problem is that write_cache_pages(), located in 3147 * mm/page-writeback.c, marks pages clean in preparation for 3148 * doing I/O, which is not desirable if we're not planning on 3149 * doing I/O at all. 3150 * 3151 * We could call write_cache_pages(), and then redirty all of 3152 * the pages by calling redirty_page_for_writepage() but that 3153 * would be ugly in the extreme. So instead we would need to 3154 * replicate parts of the code in the above functions, 3155 * simplifying them because we wouldn't actually intend to 3156 * write out the pages, but rather only collect contiguous 3157 * logical block extents, call the multi-block allocator, and 3158 * then update the buffer heads with the block allocations. 3159 * 3160 * For now, though, we'll cheat by calling filemap_flush(), 3161 * which will map the blocks, and start the I/O, but not 3162 * actually wait for the I/O to complete. 3163 */ 3164 return filemap_flush(inode->i_mapping); 3165 } 3166 3167 /* 3168 * bmap() is special. It gets used by applications such as lilo and by 3169 * the swapper to find the on-disk block of a specific piece of data. 3170 * 3171 * Naturally, this is dangerous if the block concerned is still in the 3172 * journal. If somebody makes a swapfile on an ext4 data-journaling 3173 * filesystem and enables swap, then they may get a nasty shock when the 3174 * data getting swapped to that swapfile suddenly gets overwritten by 3175 * the original zero's written out previously to the journal and 3176 * awaiting writeback in the kernel's buffer cache. 3177 * 3178 * So, if we see any bmap calls here on a modified, data-journaled file, 3179 * take extra steps to flush any blocks which might be in the cache. 3180 */ 3181 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3182 { 3183 struct inode *inode = mapping->host; 3184 journal_t *journal; 3185 int err; 3186 3187 /* 3188 * We can get here for an inline file via the FIBMAP ioctl 3189 */ 3190 if (ext4_has_inline_data(inode)) 3191 return 0; 3192 3193 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3194 test_opt(inode->i_sb, DELALLOC)) { 3195 /* 3196 * With delalloc we want to sync the file 3197 * so that we can make sure we allocate 3198 * blocks for file 3199 */ 3200 filemap_write_and_wait(mapping); 3201 } 3202 3203 if (EXT4_JOURNAL(inode) && 3204 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3205 /* 3206 * This is a REALLY heavyweight approach, but the use of 3207 * bmap on dirty files is expected to be extremely rare: 3208 * only if we run lilo or swapon on a freshly made file 3209 * do we expect this to happen. 3210 * 3211 * (bmap requires CAP_SYS_RAWIO so this does not 3212 * represent an unprivileged user DOS attack --- we'd be 3213 * in trouble if mortal users could trigger this path at 3214 * will.) 3215 * 3216 * NB. EXT4_STATE_JDATA is not set on files other than 3217 * regular files. If somebody wants to bmap a directory 3218 * or symlink and gets confused because the buffer 3219 * hasn't yet been flushed to disk, they deserve 3220 * everything they get. 3221 */ 3222 3223 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3224 journal = EXT4_JOURNAL(inode); 3225 jbd2_journal_lock_updates(journal); 3226 err = jbd2_journal_flush(journal); 3227 jbd2_journal_unlock_updates(journal); 3228 3229 if (err) 3230 return 0; 3231 } 3232 3233 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3234 } 3235 3236 static int ext4_readpage(struct file *file, struct page *page) 3237 { 3238 int ret = -EAGAIN; 3239 struct inode *inode = page->mapping->host; 3240 3241 trace_ext4_readpage(page); 3242 3243 if (ext4_has_inline_data(inode)) 3244 ret = ext4_readpage_inline(inode, page); 3245 3246 if (ret == -EAGAIN) 3247 return ext4_mpage_readpages(inode, NULL, page); 3248 3249 return ret; 3250 } 3251 3252 static void ext4_readahead(struct readahead_control *rac) 3253 { 3254 struct inode *inode = rac->mapping->host; 3255 3256 /* If the file has inline data, no need to do readahead. */ 3257 if (ext4_has_inline_data(inode)) 3258 return; 3259 3260 ext4_mpage_readpages(inode, rac, NULL); 3261 } 3262 3263 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3264 unsigned int length) 3265 { 3266 trace_ext4_invalidatepage(page, offset, length); 3267 3268 /* No journalling happens on data buffers when this function is used */ 3269 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3270 3271 block_invalidatepage(page, offset, length); 3272 } 3273 3274 static int __ext4_journalled_invalidatepage(struct page *page, 3275 unsigned int offset, 3276 unsigned int length) 3277 { 3278 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3279 3280 trace_ext4_journalled_invalidatepage(page, offset, length); 3281 3282 /* 3283 * If it's a full truncate we just forget about the pending dirtying 3284 */ 3285 if (offset == 0 && length == PAGE_SIZE) 3286 ClearPageChecked(page); 3287 3288 return jbd2_journal_invalidatepage(journal, page, offset, length); 3289 } 3290 3291 /* Wrapper for aops... */ 3292 static void ext4_journalled_invalidatepage(struct page *page, 3293 unsigned int offset, 3294 unsigned int length) 3295 { 3296 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3297 } 3298 3299 static int ext4_releasepage(struct page *page, gfp_t wait) 3300 { 3301 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3302 3303 trace_ext4_releasepage(page); 3304 3305 /* Page has dirty journalled data -> cannot release */ 3306 if (PageChecked(page)) 3307 return 0; 3308 if (journal) 3309 return jbd2_journal_try_to_free_buffers(journal, page); 3310 else 3311 return try_to_free_buffers(page); 3312 } 3313 3314 static bool ext4_inode_datasync_dirty(struct inode *inode) 3315 { 3316 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3317 3318 if (journal) { 3319 if (jbd2_transaction_committed(journal, 3320 EXT4_I(inode)->i_datasync_tid)) 3321 return false; 3322 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3323 return !list_empty(&EXT4_I(inode)->i_fc_list); 3324 return true; 3325 } 3326 3327 /* Any metadata buffers to write? */ 3328 if (!list_empty(&inode->i_mapping->private_list)) 3329 return true; 3330 return inode->i_state & I_DIRTY_DATASYNC; 3331 } 3332 3333 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3334 struct ext4_map_blocks *map, loff_t offset, 3335 loff_t length) 3336 { 3337 u8 blkbits = inode->i_blkbits; 3338 3339 /* 3340 * Writes that span EOF might trigger an I/O size update on completion, 3341 * so consider them to be dirty for the purpose of O_DSYNC, even if 3342 * there is no other metadata changes being made or are pending. 3343 */ 3344 iomap->flags = 0; 3345 if (ext4_inode_datasync_dirty(inode) || 3346 offset + length > i_size_read(inode)) 3347 iomap->flags |= IOMAP_F_DIRTY; 3348 3349 if (map->m_flags & EXT4_MAP_NEW) 3350 iomap->flags |= IOMAP_F_NEW; 3351 3352 iomap->bdev = inode->i_sb->s_bdev; 3353 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3354 iomap->offset = (u64) map->m_lblk << blkbits; 3355 iomap->length = (u64) map->m_len << blkbits; 3356 3357 if ((map->m_flags & EXT4_MAP_MAPPED) && 3358 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3359 iomap->flags |= IOMAP_F_MERGED; 3360 3361 /* 3362 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3363 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3364 * set. In order for any allocated unwritten extents to be converted 3365 * into written extents correctly within the ->end_io() handler, we 3366 * need to ensure that the iomap->type is set appropriately. Hence, the 3367 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3368 * been set first. 3369 */ 3370 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3371 iomap->type = IOMAP_UNWRITTEN; 3372 iomap->addr = (u64) map->m_pblk << blkbits; 3373 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3374 iomap->type = IOMAP_MAPPED; 3375 iomap->addr = (u64) map->m_pblk << blkbits; 3376 } else { 3377 iomap->type = IOMAP_HOLE; 3378 iomap->addr = IOMAP_NULL_ADDR; 3379 } 3380 } 3381 3382 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3383 unsigned int flags) 3384 { 3385 handle_t *handle; 3386 u8 blkbits = inode->i_blkbits; 3387 int ret, dio_credits, m_flags = 0, retries = 0; 3388 3389 /* 3390 * Trim the mapping request to the maximum value that we can map at 3391 * once for direct I/O. 3392 */ 3393 if (map->m_len > DIO_MAX_BLOCKS) 3394 map->m_len = DIO_MAX_BLOCKS; 3395 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3396 3397 retry: 3398 /* 3399 * Either we allocate blocks and then don't get an unwritten extent, so 3400 * in that case we have reserved enough credits. Or, the blocks are 3401 * already allocated and unwritten. In that case, the extent conversion 3402 * fits into the credits as well. 3403 */ 3404 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3405 if (IS_ERR(handle)) 3406 return PTR_ERR(handle); 3407 3408 /* 3409 * DAX and direct I/O are the only two operations that are currently 3410 * supported with IOMAP_WRITE. 3411 */ 3412 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3413 if (IS_DAX(inode)) 3414 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3415 /* 3416 * We use i_size instead of i_disksize here because delalloc writeback 3417 * can complete at any point during the I/O and subsequently push the 3418 * i_disksize out to i_size. This could be beyond where direct I/O is 3419 * happening and thus expose allocated blocks to direct I/O reads. 3420 */ 3421 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode)) 3422 m_flags = EXT4_GET_BLOCKS_CREATE; 3423 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3424 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3425 3426 ret = ext4_map_blocks(handle, inode, map, m_flags); 3427 3428 /* 3429 * We cannot fill holes in indirect tree based inodes as that could 3430 * expose stale data in the case of a crash. Use the magic error code 3431 * to fallback to buffered I/O. 3432 */ 3433 if (!m_flags && !ret) 3434 ret = -ENOTBLK; 3435 3436 ext4_journal_stop(handle); 3437 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3438 goto retry; 3439 3440 return ret; 3441 } 3442 3443 3444 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3445 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3446 { 3447 int ret; 3448 struct ext4_map_blocks map; 3449 u8 blkbits = inode->i_blkbits; 3450 3451 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3452 return -EINVAL; 3453 3454 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3455 return -ERANGE; 3456 3457 /* 3458 * Calculate the first and last logical blocks respectively. 3459 */ 3460 map.m_lblk = offset >> blkbits; 3461 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3462 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3463 3464 if (flags & IOMAP_WRITE) { 3465 /* 3466 * We check here if the blocks are already allocated, then we 3467 * don't need to start a journal txn and we can directly return 3468 * the mapping information. This could boost performance 3469 * especially in multi-threaded overwrite requests. 3470 */ 3471 if (offset + length <= i_size_read(inode)) { 3472 ret = ext4_map_blocks(NULL, inode, &map, 0); 3473 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3474 goto out; 3475 } 3476 ret = ext4_iomap_alloc(inode, &map, flags); 3477 } else { 3478 ret = ext4_map_blocks(NULL, inode, &map, 0); 3479 } 3480 3481 if (ret < 0) 3482 return ret; 3483 out: 3484 ext4_set_iomap(inode, iomap, &map, offset, length); 3485 3486 return 0; 3487 } 3488 3489 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3490 loff_t length, unsigned flags, struct iomap *iomap, 3491 struct iomap *srcmap) 3492 { 3493 int ret; 3494 3495 /* 3496 * Even for writes we don't need to allocate blocks, so just pretend 3497 * we are reading to save overhead of starting a transaction. 3498 */ 3499 flags &= ~IOMAP_WRITE; 3500 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3501 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3502 return ret; 3503 } 3504 3505 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3506 ssize_t written, unsigned flags, struct iomap *iomap) 3507 { 3508 /* 3509 * Check to see whether an error occurred while writing out the data to 3510 * the allocated blocks. If so, return the magic error code so that we 3511 * fallback to buffered I/O and attempt to complete the remainder of 3512 * the I/O. Any blocks that may have been allocated in preparation for 3513 * the direct I/O will be reused during buffered I/O. 3514 */ 3515 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3516 return -ENOTBLK; 3517 3518 return 0; 3519 } 3520 3521 const struct iomap_ops ext4_iomap_ops = { 3522 .iomap_begin = ext4_iomap_begin, 3523 .iomap_end = ext4_iomap_end, 3524 }; 3525 3526 const struct iomap_ops ext4_iomap_overwrite_ops = { 3527 .iomap_begin = ext4_iomap_overwrite_begin, 3528 .iomap_end = ext4_iomap_end, 3529 }; 3530 3531 static bool ext4_iomap_is_delalloc(struct inode *inode, 3532 struct ext4_map_blocks *map) 3533 { 3534 struct extent_status es; 3535 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3536 3537 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3538 map->m_lblk, end, &es); 3539 3540 if (!es.es_len || es.es_lblk > end) 3541 return false; 3542 3543 if (es.es_lblk > map->m_lblk) { 3544 map->m_len = es.es_lblk - map->m_lblk; 3545 return false; 3546 } 3547 3548 offset = map->m_lblk - es.es_lblk; 3549 map->m_len = es.es_len - offset; 3550 3551 return true; 3552 } 3553 3554 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3555 loff_t length, unsigned int flags, 3556 struct iomap *iomap, struct iomap *srcmap) 3557 { 3558 int ret; 3559 bool delalloc = false; 3560 struct ext4_map_blocks map; 3561 u8 blkbits = inode->i_blkbits; 3562 3563 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3564 return -EINVAL; 3565 3566 if (ext4_has_inline_data(inode)) { 3567 ret = ext4_inline_data_iomap(inode, iomap); 3568 if (ret != -EAGAIN) { 3569 if (ret == 0 && offset >= iomap->length) 3570 ret = -ENOENT; 3571 return ret; 3572 } 3573 } 3574 3575 /* 3576 * Calculate the first and last logical block respectively. 3577 */ 3578 map.m_lblk = offset >> blkbits; 3579 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3580 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3581 3582 /* 3583 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3584 * So handle it here itself instead of querying ext4_map_blocks(). 3585 * Since ext4_map_blocks() will warn about it and will return 3586 * -EIO error. 3587 */ 3588 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3589 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3590 3591 if (offset >= sbi->s_bitmap_maxbytes) { 3592 map.m_flags = 0; 3593 goto set_iomap; 3594 } 3595 } 3596 3597 ret = ext4_map_blocks(NULL, inode, &map, 0); 3598 if (ret < 0) 3599 return ret; 3600 if (ret == 0) 3601 delalloc = ext4_iomap_is_delalloc(inode, &map); 3602 3603 set_iomap: 3604 ext4_set_iomap(inode, iomap, &map, offset, length); 3605 if (delalloc && iomap->type == IOMAP_HOLE) 3606 iomap->type = IOMAP_DELALLOC; 3607 3608 return 0; 3609 } 3610 3611 const struct iomap_ops ext4_iomap_report_ops = { 3612 .iomap_begin = ext4_iomap_begin_report, 3613 }; 3614 3615 /* 3616 * Pages can be marked dirty completely asynchronously from ext4's journalling 3617 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3618 * much here because ->set_page_dirty is called under VFS locks. The page is 3619 * not necessarily locked. 3620 * 3621 * We cannot just dirty the page and leave attached buffers clean, because the 3622 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3623 * or jbddirty because all the journalling code will explode. 3624 * 3625 * So what we do is to mark the page "pending dirty" and next time writepage 3626 * is called, propagate that into the buffers appropriately. 3627 */ 3628 static int ext4_journalled_set_page_dirty(struct page *page) 3629 { 3630 SetPageChecked(page); 3631 return __set_page_dirty_nobuffers(page); 3632 } 3633 3634 static int ext4_set_page_dirty(struct page *page) 3635 { 3636 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3637 WARN_ON_ONCE(!page_has_buffers(page)); 3638 return __set_page_dirty_buffers(page); 3639 } 3640 3641 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3642 struct file *file, sector_t *span) 3643 { 3644 return iomap_swapfile_activate(sis, file, span, 3645 &ext4_iomap_report_ops); 3646 } 3647 3648 static const struct address_space_operations ext4_aops = { 3649 .readpage = ext4_readpage, 3650 .readahead = ext4_readahead, 3651 .writepage = ext4_writepage, 3652 .writepages = ext4_writepages, 3653 .write_begin = ext4_write_begin, 3654 .write_end = ext4_write_end, 3655 .set_page_dirty = ext4_set_page_dirty, 3656 .bmap = ext4_bmap, 3657 .invalidatepage = ext4_invalidatepage, 3658 .releasepage = ext4_releasepage, 3659 .direct_IO = noop_direct_IO, 3660 .migratepage = buffer_migrate_page, 3661 .is_partially_uptodate = block_is_partially_uptodate, 3662 .error_remove_page = generic_error_remove_page, 3663 .swap_activate = ext4_iomap_swap_activate, 3664 }; 3665 3666 static const struct address_space_operations ext4_journalled_aops = { 3667 .readpage = ext4_readpage, 3668 .readahead = ext4_readahead, 3669 .writepage = ext4_writepage, 3670 .writepages = ext4_writepages, 3671 .write_begin = ext4_write_begin, 3672 .write_end = ext4_journalled_write_end, 3673 .set_page_dirty = ext4_journalled_set_page_dirty, 3674 .bmap = ext4_bmap, 3675 .invalidatepage = ext4_journalled_invalidatepage, 3676 .releasepage = ext4_releasepage, 3677 .direct_IO = noop_direct_IO, 3678 .is_partially_uptodate = block_is_partially_uptodate, 3679 .error_remove_page = generic_error_remove_page, 3680 .swap_activate = ext4_iomap_swap_activate, 3681 }; 3682 3683 static const struct address_space_operations ext4_da_aops = { 3684 .readpage = ext4_readpage, 3685 .readahead = ext4_readahead, 3686 .writepage = ext4_writepage, 3687 .writepages = ext4_writepages, 3688 .write_begin = ext4_da_write_begin, 3689 .write_end = ext4_da_write_end, 3690 .set_page_dirty = ext4_set_page_dirty, 3691 .bmap = ext4_bmap, 3692 .invalidatepage = ext4_invalidatepage, 3693 .releasepage = ext4_releasepage, 3694 .direct_IO = noop_direct_IO, 3695 .migratepage = buffer_migrate_page, 3696 .is_partially_uptodate = block_is_partially_uptodate, 3697 .error_remove_page = generic_error_remove_page, 3698 .swap_activate = ext4_iomap_swap_activate, 3699 }; 3700 3701 static const struct address_space_operations ext4_dax_aops = { 3702 .writepages = ext4_dax_writepages, 3703 .direct_IO = noop_direct_IO, 3704 .set_page_dirty = noop_set_page_dirty, 3705 .bmap = ext4_bmap, 3706 .invalidatepage = noop_invalidatepage, 3707 .swap_activate = ext4_iomap_swap_activate, 3708 }; 3709 3710 void ext4_set_aops(struct inode *inode) 3711 { 3712 switch (ext4_inode_journal_mode(inode)) { 3713 case EXT4_INODE_ORDERED_DATA_MODE: 3714 case EXT4_INODE_WRITEBACK_DATA_MODE: 3715 break; 3716 case EXT4_INODE_JOURNAL_DATA_MODE: 3717 inode->i_mapping->a_ops = &ext4_journalled_aops; 3718 return; 3719 default: 3720 BUG(); 3721 } 3722 if (IS_DAX(inode)) 3723 inode->i_mapping->a_ops = &ext4_dax_aops; 3724 else if (test_opt(inode->i_sb, DELALLOC)) 3725 inode->i_mapping->a_ops = &ext4_da_aops; 3726 else 3727 inode->i_mapping->a_ops = &ext4_aops; 3728 } 3729 3730 static int __ext4_block_zero_page_range(handle_t *handle, 3731 struct address_space *mapping, loff_t from, loff_t length) 3732 { 3733 ext4_fsblk_t index = from >> PAGE_SHIFT; 3734 unsigned offset = from & (PAGE_SIZE-1); 3735 unsigned blocksize, pos; 3736 ext4_lblk_t iblock; 3737 struct inode *inode = mapping->host; 3738 struct buffer_head *bh; 3739 struct page *page; 3740 int err = 0; 3741 3742 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3743 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3744 if (!page) 3745 return -ENOMEM; 3746 3747 blocksize = inode->i_sb->s_blocksize; 3748 3749 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3750 3751 if (!page_has_buffers(page)) 3752 create_empty_buffers(page, blocksize, 0); 3753 3754 /* Find the buffer that contains "offset" */ 3755 bh = page_buffers(page); 3756 pos = blocksize; 3757 while (offset >= pos) { 3758 bh = bh->b_this_page; 3759 iblock++; 3760 pos += blocksize; 3761 } 3762 if (buffer_freed(bh)) { 3763 BUFFER_TRACE(bh, "freed: skip"); 3764 goto unlock; 3765 } 3766 if (!buffer_mapped(bh)) { 3767 BUFFER_TRACE(bh, "unmapped"); 3768 ext4_get_block(inode, iblock, bh, 0); 3769 /* unmapped? It's a hole - nothing to do */ 3770 if (!buffer_mapped(bh)) { 3771 BUFFER_TRACE(bh, "still unmapped"); 3772 goto unlock; 3773 } 3774 } 3775 3776 /* Ok, it's mapped. Make sure it's up-to-date */ 3777 if (PageUptodate(page)) 3778 set_buffer_uptodate(bh); 3779 3780 if (!buffer_uptodate(bh)) { 3781 err = ext4_read_bh_lock(bh, 0, true); 3782 if (err) 3783 goto unlock; 3784 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3785 /* We expect the key to be set. */ 3786 BUG_ON(!fscrypt_has_encryption_key(inode)); 3787 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3788 bh_offset(bh)); 3789 if (err) { 3790 clear_buffer_uptodate(bh); 3791 goto unlock; 3792 } 3793 } 3794 } 3795 if (ext4_should_journal_data(inode)) { 3796 BUFFER_TRACE(bh, "get write access"); 3797 err = ext4_journal_get_write_access(handle, bh); 3798 if (err) 3799 goto unlock; 3800 } 3801 zero_user(page, offset, length); 3802 BUFFER_TRACE(bh, "zeroed end of block"); 3803 3804 if (ext4_should_journal_data(inode)) { 3805 err = ext4_handle_dirty_metadata(handle, inode, bh); 3806 } else { 3807 err = 0; 3808 mark_buffer_dirty(bh); 3809 if (ext4_should_order_data(inode)) 3810 err = ext4_jbd2_inode_add_write(handle, inode, from, 3811 length); 3812 } 3813 3814 unlock: 3815 unlock_page(page); 3816 put_page(page); 3817 return err; 3818 } 3819 3820 /* 3821 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3822 * starting from file offset 'from'. The range to be zero'd must 3823 * be contained with in one block. If the specified range exceeds 3824 * the end of the block it will be shortened to end of the block 3825 * that corresponds to 'from' 3826 */ 3827 static int ext4_block_zero_page_range(handle_t *handle, 3828 struct address_space *mapping, loff_t from, loff_t length) 3829 { 3830 struct inode *inode = mapping->host; 3831 unsigned offset = from & (PAGE_SIZE-1); 3832 unsigned blocksize = inode->i_sb->s_blocksize; 3833 unsigned max = blocksize - (offset & (blocksize - 1)); 3834 3835 /* 3836 * correct length if it does not fall between 3837 * 'from' and the end of the block 3838 */ 3839 if (length > max || length < 0) 3840 length = max; 3841 3842 if (IS_DAX(inode)) { 3843 return iomap_zero_range(inode, from, length, NULL, 3844 &ext4_iomap_ops); 3845 } 3846 return __ext4_block_zero_page_range(handle, mapping, from, length); 3847 } 3848 3849 /* 3850 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3851 * up to the end of the block which corresponds to `from'. 3852 * This required during truncate. We need to physically zero the tail end 3853 * of that block so it doesn't yield old data if the file is later grown. 3854 */ 3855 static int ext4_block_truncate_page(handle_t *handle, 3856 struct address_space *mapping, loff_t from) 3857 { 3858 unsigned offset = from & (PAGE_SIZE-1); 3859 unsigned length; 3860 unsigned blocksize; 3861 struct inode *inode = mapping->host; 3862 3863 /* If we are processing an encrypted inode during orphan list handling */ 3864 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3865 return 0; 3866 3867 blocksize = inode->i_sb->s_blocksize; 3868 length = blocksize - (offset & (blocksize - 1)); 3869 3870 return ext4_block_zero_page_range(handle, mapping, from, length); 3871 } 3872 3873 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3874 loff_t lstart, loff_t length) 3875 { 3876 struct super_block *sb = inode->i_sb; 3877 struct address_space *mapping = inode->i_mapping; 3878 unsigned partial_start, partial_end; 3879 ext4_fsblk_t start, end; 3880 loff_t byte_end = (lstart + length - 1); 3881 int err = 0; 3882 3883 partial_start = lstart & (sb->s_blocksize - 1); 3884 partial_end = byte_end & (sb->s_blocksize - 1); 3885 3886 start = lstart >> sb->s_blocksize_bits; 3887 end = byte_end >> sb->s_blocksize_bits; 3888 3889 /* Handle partial zero within the single block */ 3890 if (start == end && 3891 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3892 err = ext4_block_zero_page_range(handle, mapping, 3893 lstart, length); 3894 return err; 3895 } 3896 /* Handle partial zero out on the start of the range */ 3897 if (partial_start) { 3898 err = ext4_block_zero_page_range(handle, mapping, 3899 lstart, sb->s_blocksize); 3900 if (err) 3901 return err; 3902 } 3903 /* Handle partial zero out on the end of the range */ 3904 if (partial_end != sb->s_blocksize - 1) 3905 err = ext4_block_zero_page_range(handle, mapping, 3906 byte_end - partial_end, 3907 partial_end + 1); 3908 return err; 3909 } 3910 3911 int ext4_can_truncate(struct inode *inode) 3912 { 3913 if (S_ISREG(inode->i_mode)) 3914 return 1; 3915 if (S_ISDIR(inode->i_mode)) 3916 return 1; 3917 if (S_ISLNK(inode->i_mode)) 3918 return !ext4_inode_is_fast_symlink(inode); 3919 return 0; 3920 } 3921 3922 /* 3923 * We have to make sure i_disksize gets properly updated before we truncate 3924 * page cache due to hole punching or zero range. Otherwise i_disksize update 3925 * can get lost as it may have been postponed to submission of writeback but 3926 * that will never happen after we truncate page cache. 3927 */ 3928 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3929 loff_t len) 3930 { 3931 handle_t *handle; 3932 int ret; 3933 3934 loff_t size = i_size_read(inode); 3935 3936 WARN_ON(!inode_is_locked(inode)); 3937 if (offset > size || offset + len < size) 3938 return 0; 3939 3940 if (EXT4_I(inode)->i_disksize >= size) 3941 return 0; 3942 3943 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3944 if (IS_ERR(handle)) 3945 return PTR_ERR(handle); 3946 ext4_update_i_disksize(inode, size); 3947 ret = ext4_mark_inode_dirty(handle, inode); 3948 ext4_journal_stop(handle); 3949 3950 return ret; 3951 } 3952 3953 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 3954 { 3955 up_write(&ei->i_mmap_sem); 3956 schedule(); 3957 down_write(&ei->i_mmap_sem); 3958 } 3959 3960 int ext4_break_layouts(struct inode *inode) 3961 { 3962 struct ext4_inode_info *ei = EXT4_I(inode); 3963 struct page *page; 3964 int error; 3965 3966 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 3967 return -EINVAL; 3968 3969 do { 3970 page = dax_layout_busy_page(inode->i_mapping); 3971 if (!page) 3972 return 0; 3973 3974 error = ___wait_var_event(&page->_refcount, 3975 atomic_read(&page->_refcount) == 1, 3976 TASK_INTERRUPTIBLE, 0, 0, 3977 ext4_wait_dax_page(ei)); 3978 } while (error == 0); 3979 3980 return error; 3981 } 3982 3983 /* 3984 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3985 * associated with the given offset and length 3986 * 3987 * @inode: File inode 3988 * @offset: The offset where the hole will begin 3989 * @len: The length of the hole 3990 * 3991 * Returns: 0 on success or negative on failure 3992 */ 3993 3994 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3995 { 3996 struct super_block *sb = inode->i_sb; 3997 ext4_lblk_t first_block, stop_block; 3998 struct address_space *mapping = inode->i_mapping; 3999 loff_t first_block_offset, last_block_offset; 4000 handle_t *handle; 4001 unsigned int credits; 4002 int ret = 0, ret2 = 0; 4003 4004 trace_ext4_punch_hole(inode, offset, length, 0); 4005 4006 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4007 if (ext4_has_inline_data(inode)) { 4008 down_write(&EXT4_I(inode)->i_mmap_sem); 4009 ret = ext4_convert_inline_data(inode); 4010 up_write(&EXT4_I(inode)->i_mmap_sem); 4011 if (ret) 4012 return ret; 4013 } 4014 4015 /* 4016 * Write out all dirty pages to avoid race conditions 4017 * Then release them. 4018 */ 4019 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4020 ret = filemap_write_and_wait_range(mapping, offset, 4021 offset + length - 1); 4022 if (ret) 4023 return ret; 4024 } 4025 4026 inode_lock(inode); 4027 4028 /* No need to punch hole beyond i_size */ 4029 if (offset >= inode->i_size) 4030 goto out_mutex; 4031 4032 /* 4033 * If the hole extends beyond i_size, set the hole 4034 * to end after the page that contains i_size 4035 */ 4036 if (offset + length > inode->i_size) { 4037 length = inode->i_size + 4038 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4039 offset; 4040 } 4041 4042 if (offset & (sb->s_blocksize - 1) || 4043 (offset + length) & (sb->s_blocksize - 1)) { 4044 /* 4045 * Attach jinode to inode for jbd2 if we do any zeroing of 4046 * partial block 4047 */ 4048 ret = ext4_inode_attach_jinode(inode); 4049 if (ret < 0) 4050 goto out_mutex; 4051 4052 } 4053 4054 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4055 inode_dio_wait(inode); 4056 4057 /* 4058 * Prevent page faults from reinstantiating pages we have released from 4059 * page cache. 4060 */ 4061 down_write(&EXT4_I(inode)->i_mmap_sem); 4062 4063 ret = ext4_break_layouts(inode); 4064 if (ret) 4065 goto out_dio; 4066 4067 first_block_offset = round_up(offset, sb->s_blocksize); 4068 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4069 4070 /* Now release the pages and zero block aligned part of pages*/ 4071 if (last_block_offset > first_block_offset) { 4072 ret = ext4_update_disksize_before_punch(inode, offset, length); 4073 if (ret) 4074 goto out_dio; 4075 truncate_pagecache_range(inode, first_block_offset, 4076 last_block_offset); 4077 } 4078 4079 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4080 credits = ext4_writepage_trans_blocks(inode); 4081 else 4082 credits = ext4_blocks_for_truncate(inode); 4083 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4084 if (IS_ERR(handle)) { 4085 ret = PTR_ERR(handle); 4086 ext4_std_error(sb, ret); 4087 goto out_dio; 4088 } 4089 4090 ret = ext4_zero_partial_blocks(handle, inode, offset, 4091 length); 4092 if (ret) 4093 goto out_stop; 4094 4095 first_block = (offset + sb->s_blocksize - 1) >> 4096 EXT4_BLOCK_SIZE_BITS(sb); 4097 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4098 4099 /* If there are blocks to remove, do it */ 4100 if (stop_block > first_block) { 4101 4102 down_write(&EXT4_I(inode)->i_data_sem); 4103 ext4_discard_preallocations(inode, 0); 4104 4105 ret = ext4_es_remove_extent(inode, first_block, 4106 stop_block - first_block); 4107 if (ret) { 4108 up_write(&EXT4_I(inode)->i_data_sem); 4109 goto out_stop; 4110 } 4111 4112 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4113 ret = ext4_ext_remove_space(inode, first_block, 4114 stop_block - 1); 4115 else 4116 ret = ext4_ind_remove_space(handle, inode, first_block, 4117 stop_block); 4118 4119 up_write(&EXT4_I(inode)->i_data_sem); 4120 } 4121 ext4_fc_track_range(handle, inode, first_block, stop_block); 4122 if (IS_SYNC(inode)) 4123 ext4_handle_sync(handle); 4124 4125 inode->i_mtime = inode->i_ctime = current_time(inode); 4126 ret2 = ext4_mark_inode_dirty(handle, inode); 4127 if (unlikely(ret2)) 4128 ret = ret2; 4129 if (ret >= 0) 4130 ext4_update_inode_fsync_trans(handle, inode, 1); 4131 out_stop: 4132 ext4_journal_stop(handle); 4133 out_dio: 4134 up_write(&EXT4_I(inode)->i_mmap_sem); 4135 out_mutex: 4136 inode_unlock(inode); 4137 return ret; 4138 } 4139 4140 int ext4_inode_attach_jinode(struct inode *inode) 4141 { 4142 struct ext4_inode_info *ei = EXT4_I(inode); 4143 struct jbd2_inode *jinode; 4144 4145 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4146 return 0; 4147 4148 jinode = jbd2_alloc_inode(GFP_KERNEL); 4149 spin_lock(&inode->i_lock); 4150 if (!ei->jinode) { 4151 if (!jinode) { 4152 spin_unlock(&inode->i_lock); 4153 return -ENOMEM; 4154 } 4155 ei->jinode = jinode; 4156 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4157 jinode = NULL; 4158 } 4159 spin_unlock(&inode->i_lock); 4160 if (unlikely(jinode != NULL)) 4161 jbd2_free_inode(jinode); 4162 return 0; 4163 } 4164 4165 /* 4166 * ext4_truncate() 4167 * 4168 * We block out ext4_get_block() block instantiations across the entire 4169 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4170 * simultaneously on behalf of the same inode. 4171 * 4172 * As we work through the truncate and commit bits of it to the journal there 4173 * is one core, guiding principle: the file's tree must always be consistent on 4174 * disk. We must be able to restart the truncate after a crash. 4175 * 4176 * The file's tree may be transiently inconsistent in memory (although it 4177 * probably isn't), but whenever we close off and commit a journal transaction, 4178 * the contents of (the filesystem + the journal) must be consistent and 4179 * restartable. It's pretty simple, really: bottom up, right to left (although 4180 * left-to-right works OK too). 4181 * 4182 * Note that at recovery time, journal replay occurs *before* the restart of 4183 * truncate against the orphan inode list. 4184 * 4185 * The committed inode has the new, desired i_size (which is the same as 4186 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4187 * that this inode's truncate did not complete and it will again call 4188 * ext4_truncate() to have another go. So there will be instantiated blocks 4189 * to the right of the truncation point in a crashed ext4 filesystem. But 4190 * that's fine - as long as they are linked from the inode, the post-crash 4191 * ext4_truncate() run will find them and release them. 4192 */ 4193 int ext4_truncate(struct inode *inode) 4194 { 4195 struct ext4_inode_info *ei = EXT4_I(inode); 4196 unsigned int credits; 4197 int err = 0, err2; 4198 handle_t *handle; 4199 struct address_space *mapping = inode->i_mapping; 4200 4201 /* 4202 * There is a possibility that we're either freeing the inode 4203 * or it's a completely new inode. In those cases we might not 4204 * have i_mutex locked because it's not necessary. 4205 */ 4206 if (!(inode->i_state & (I_NEW|I_FREEING))) 4207 WARN_ON(!inode_is_locked(inode)); 4208 trace_ext4_truncate_enter(inode); 4209 4210 if (!ext4_can_truncate(inode)) 4211 goto out_trace; 4212 4213 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4214 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4215 4216 if (ext4_has_inline_data(inode)) { 4217 int has_inline = 1; 4218 4219 err = ext4_inline_data_truncate(inode, &has_inline); 4220 if (err || has_inline) 4221 goto out_trace; 4222 } 4223 4224 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4225 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4226 if (ext4_inode_attach_jinode(inode) < 0) 4227 goto out_trace; 4228 } 4229 4230 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4231 credits = ext4_writepage_trans_blocks(inode); 4232 else 4233 credits = ext4_blocks_for_truncate(inode); 4234 4235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4236 if (IS_ERR(handle)) { 4237 err = PTR_ERR(handle); 4238 goto out_trace; 4239 } 4240 4241 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4242 ext4_block_truncate_page(handle, mapping, inode->i_size); 4243 4244 /* 4245 * We add the inode to the orphan list, so that if this 4246 * truncate spans multiple transactions, and we crash, we will 4247 * resume the truncate when the filesystem recovers. It also 4248 * marks the inode dirty, to catch the new size. 4249 * 4250 * Implication: the file must always be in a sane, consistent 4251 * truncatable state while each transaction commits. 4252 */ 4253 err = ext4_orphan_add(handle, inode); 4254 if (err) 4255 goto out_stop; 4256 4257 down_write(&EXT4_I(inode)->i_data_sem); 4258 4259 ext4_discard_preallocations(inode, 0); 4260 4261 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4262 err = ext4_ext_truncate(handle, inode); 4263 else 4264 ext4_ind_truncate(handle, inode); 4265 4266 up_write(&ei->i_data_sem); 4267 if (err) 4268 goto out_stop; 4269 4270 if (IS_SYNC(inode)) 4271 ext4_handle_sync(handle); 4272 4273 out_stop: 4274 /* 4275 * If this was a simple ftruncate() and the file will remain alive, 4276 * then we need to clear up the orphan record which we created above. 4277 * However, if this was a real unlink then we were called by 4278 * ext4_evict_inode(), and we allow that function to clean up the 4279 * orphan info for us. 4280 */ 4281 if (inode->i_nlink) 4282 ext4_orphan_del(handle, inode); 4283 4284 inode->i_mtime = inode->i_ctime = current_time(inode); 4285 err2 = ext4_mark_inode_dirty(handle, inode); 4286 if (unlikely(err2 && !err)) 4287 err = err2; 4288 ext4_journal_stop(handle); 4289 4290 out_trace: 4291 trace_ext4_truncate_exit(inode); 4292 return err; 4293 } 4294 4295 /* 4296 * ext4_get_inode_loc returns with an extra refcount against the inode's 4297 * underlying buffer_head on success. If 'in_mem' is true, we have all 4298 * data in memory that is needed to recreate the on-disk version of this 4299 * inode. 4300 */ 4301 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4302 struct ext4_iloc *iloc, int in_mem, 4303 ext4_fsblk_t *ret_block) 4304 { 4305 struct ext4_group_desc *gdp; 4306 struct buffer_head *bh; 4307 ext4_fsblk_t block; 4308 struct blk_plug plug; 4309 int inodes_per_block, inode_offset; 4310 4311 iloc->bh = NULL; 4312 if (ino < EXT4_ROOT_INO || 4313 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4314 return -EFSCORRUPTED; 4315 4316 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4317 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4318 if (!gdp) 4319 return -EIO; 4320 4321 /* 4322 * Figure out the offset within the block group inode table 4323 */ 4324 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4325 inode_offset = ((ino - 1) % 4326 EXT4_INODES_PER_GROUP(sb)); 4327 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4328 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4329 4330 bh = sb_getblk(sb, block); 4331 if (unlikely(!bh)) 4332 return -ENOMEM; 4333 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)) 4334 goto simulate_eio; 4335 if (!buffer_uptodate(bh)) { 4336 lock_buffer(bh); 4337 4338 if (ext4_buffer_uptodate(bh)) { 4339 /* someone brought it uptodate while we waited */ 4340 unlock_buffer(bh); 4341 goto has_buffer; 4342 } 4343 4344 /* 4345 * If we have all information of the inode in memory and this 4346 * is the only valid inode in the block, we need not read the 4347 * block. 4348 */ 4349 if (in_mem) { 4350 struct buffer_head *bitmap_bh; 4351 int i, start; 4352 4353 start = inode_offset & ~(inodes_per_block - 1); 4354 4355 /* Is the inode bitmap in cache? */ 4356 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4357 if (unlikely(!bitmap_bh)) 4358 goto make_io; 4359 4360 /* 4361 * If the inode bitmap isn't in cache then the 4362 * optimisation may end up performing two reads instead 4363 * of one, so skip it. 4364 */ 4365 if (!buffer_uptodate(bitmap_bh)) { 4366 brelse(bitmap_bh); 4367 goto make_io; 4368 } 4369 for (i = start; i < start + inodes_per_block; i++) { 4370 if (i == inode_offset) 4371 continue; 4372 if (ext4_test_bit(i, bitmap_bh->b_data)) 4373 break; 4374 } 4375 brelse(bitmap_bh); 4376 if (i == start + inodes_per_block) { 4377 /* all other inodes are free, so skip I/O */ 4378 memset(bh->b_data, 0, bh->b_size); 4379 set_buffer_uptodate(bh); 4380 unlock_buffer(bh); 4381 goto has_buffer; 4382 } 4383 } 4384 4385 make_io: 4386 /* 4387 * If we need to do any I/O, try to pre-readahead extra 4388 * blocks from the inode table. 4389 */ 4390 blk_start_plug(&plug); 4391 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4392 ext4_fsblk_t b, end, table; 4393 unsigned num; 4394 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4395 4396 table = ext4_inode_table(sb, gdp); 4397 /* s_inode_readahead_blks is always a power of 2 */ 4398 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4399 if (table > b) 4400 b = table; 4401 end = b + ra_blks; 4402 num = EXT4_INODES_PER_GROUP(sb); 4403 if (ext4_has_group_desc_csum(sb)) 4404 num -= ext4_itable_unused_count(sb, gdp); 4405 table += num / inodes_per_block; 4406 if (end > table) 4407 end = table; 4408 while (b <= end) 4409 ext4_sb_breadahead_unmovable(sb, b++); 4410 } 4411 4412 /* 4413 * There are other valid inodes in the buffer, this inode 4414 * has in-inode xattrs, or we don't have this inode in memory. 4415 * Read the block from disk. 4416 */ 4417 trace_ext4_load_inode(sb, ino); 4418 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4419 blk_finish_plug(&plug); 4420 wait_on_buffer(bh); 4421 if (!buffer_uptodate(bh)) { 4422 simulate_eio: 4423 if (ret_block) 4424 *ret_block = block; 4425 brelse(bh); 4426 return -EIO; 4427 } 4428 } 4429 has_buffer: 4430 iloc->bh = bh; 4431 return 0; 4432 } 4433 4434 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4435 struct ext4_iloc *iloc) 4436 { 4437 ext4_fsblk_t err_blk; 4438 int ret; 4439 4440 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0, 4441 &err_blk); 4442 4443 if (ret == -EIO) 4444 ext4_error_inode_block(inode, err_blk, EIO, 4445 "unable to read itable block"); 4446 4447 return ret; 4448 } 4449 4450 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4451 { 4452 ext4_fsblk_t err_blk; 4453 int ret; 4454 4455 /* We have all inode data except xattrs in memory here. */ 4456 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 4457 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk); 4458 4459 if (ret == -EIO) 4460 ext4_error_inode_block(inode, err_blk, EIO, 4461 "unable to read itable block"); 4462 4463 return ret; 4464 } 4465 4466 4467 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4468 struct ext4_iloc *iloc) 4469 { 4470 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL); 4471 } 4472 4473 static bool ext4_should_enable_dax(struct inode *inode) 4474 { 4475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4476 4477 if (test_opt2(inode->i_sb, DAX_NEVER)) 4478 return false; 4479 if (!S_ISREG(inode->i_mode)) 4480 return false; 4481 if (ext4_should_journal_data(inode)) 4482 return false; 4483 if (ext4_has_inline_data(inode)) 4484 return false; 4485 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4486 return false; 4487 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4488 return false; 4489 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4490 return false; 4491 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4492 return true; 4493 4494 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4495 } 4496 4497 void ext4_set_inode_flags(struct inode *inode, bool init) 4498 { 4499 unsigned int flags = EXT4_I(inode)->i_flags; 4500 unsigned int new_fl = 0; 4501 4502 WARN_ON_ONCE(IS_DAX(inode) && init); 4503 4504 if (flags & EXT4_SYNC_FL) 4505 new_fl |= S_SYNC; 4506 if (flags & EXT4_APPEND_FL) 4507 new_fl |= S_APPEND; 4508 if (flags & EXT4_IMMUTABLE_FL) 4509 new_fl |= S_IMMUTABLE; 4510 if (flags & EXT4_NOATIME_FL) 4511 new_fl |= S_NOATIME; 4512 if (flags & EXT4_DIRSYNC_FL) 4513 new_fl |= S_DIRSYNC; 4514 4515 /* Because of the way inode_set_flags() works we must preserve S_DAX 4516 * here if already set. */ 4517 new_fl |= (inode->i_flags & S_DAX); 4518 if (init && ext4_should_enable_dax(inode)) 4519 new_fl |= S_DAX; 4520 4521 if (flags & EXT4_ENCRYPT_FL) 4522 new_fl |= S_ENCRYPTED; 4523 if (flags & EXT4_CASEFOLD_FL) 4524 new_fl |= S_CASEFOLD; 4525 if (flags & EXT4_VERITY_FL) 4526 new_fl |= S_VERITY; 4527 inode_set_flags(inode, new_fl, 4528 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4529 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4530 } 4531 4532 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4533 struct ext4_inode_info *ei) 4534 { 4535 blkcnt_t i_blocks ; 4536 struct inode *inode = &(ei->vfs_inode); 4537 struct super_block *sb = inode->i_sb; 4538 4539 if (ext4_has_feature_huge_file(sb)) { 4540 /* we are using combined 48 bit field */ 4541 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4542 le32_to_cpu(raw_inode->i_blocks_lo); 4543 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4544 /* i_blocks represent file system block size */ 4545 return i_blocks << (inode->i_blkbits - 9); 4546 } else { 4547 return i_blocks; 4548 } 4549 } else { 4550 return le32_to_cpu(raw_inode->i_blocks_lo); 4551 } 4552 } 4553 4554 static inline int ext4_iget_extra_inode(struct inode *inode, 4555 struct ext4_inode *raw_inode, 4556 struct ext4_inode_info *ei) 4557 { 4558 __le32 *magic = (void *)raw_inode + 4559 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4560 4561 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4562 EXT4_INODE_SIZE(inode->i_sb) && 4563 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4564 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4565 return ext4_find_inline_data_nolock(inode); 4566 } else 4567 EXT4_I(inode)->i_inline_off = 0; 4568 return 0; 4569 } 4570 4571 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4572 { 4573 if (!ext4_has_feature_project(inode->i_sb)) 4574 return -EOPNOTSUPP; 4575 *projid = EXT4_I(inode)->i_projid; 4576 return 0; 4577 } 4578 4579 /* 4580 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4581 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4582 * set. 4583 */ 4584 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4585 { 4586 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4587 inode_set_iversion_raw(inode, val); 4588 else 4589 inode_set_iversion_queried(inode, val); 4590 } 4591 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4592 { 4593 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4594 return inode_peek_iversion_raw(inode); 4595 else 4596 return inode_peek_iversion(inode); 4597 } 4598 4599 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4600 ext4_iget_flags flags, const char *function, 4601 unsigned int line) 4602 { 4603 struct ext4_iloc iloc; 4604 struct ext4_inode *raw_inode; 4605 struct ext4_inode_info *ei; 4606 struct inode *inode; 4607 journal_t *journal = EXT4_SB(sb)->s_journal; 4608 long ret; 4609 loff_t size; 4610 int block; 4611 uid_t i_uid; 4612 gid_t i_gid; 4613 projid_t i_projid; 4614 4615 if ((!(flags & EXT4_IGET_SPECIAL) && 4616 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4617 (ino < EXT4_ROOT_INO) || 4618 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4619 if (flags & EXT4_IGET_HANDLE) 4620 return ERR_PTR(-ESTALE); 4621 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4622 "inode #%lu: comm %s: iget: illegal inode #", 4623 ino, current->comm); 4624 return ERR_PTR(-EFSCORRUPTED); 4625 } 4626 4627 inode = iget_locked(sb, ino); 4628 if (!inode) 4629 return ERR_PTR(-ENOMEM); 4630 if (!(inode->i_state & I_NEW)) 4631 return inode; 4632 4633 ei = EXT4_I(inode); 4634 iloc.bh = NULL; 4635 4636 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4637 if (ret < 0) 4638 goto bad_inode; 4639 raw_inode = ext4_raw_inode(&iloc); 4640 4641 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4642 ext4_error_inode(inode, function, line, 0, 4643 "iget: root inode unallocated"); 4644 ret = -EFSCORRUPTED; 4645 goto bad_inode; 4646 } 4647 4648 if ((flags & EXT4_IGET_HANDLE) && 4649 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4650 ret = -ESTALE; 4651 goto bad_inode; 4652 } 4653 4654 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4655 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4656 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4657 EXT4_INODE_SIZE(inode->i_sb) || 4658 (ei->i_extra_isize & 3)) { 4659 ext4_error_inode(inode, function, line, 0, 4660 "iget: bad extra_isize %u " 4661 "(inode size %u)", 4662 ei->i_extra_isize, 4663 EXT4_INODE_SIZE(inode->i_sb)); 4664 ret = -EFSCORRUPTED; 4665 goto bad_inode; 4666 } 4667 } else 4668 ei->i_extra_isize = 0; 4669 4670 /* Precompute checksum seed for inode metadata */ 4671 if (ext4_has_metadata_csum(sb)) { 4672 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4673 __u32 csum; 4674 __le32 inum = cpu_to_le32(inode->i_ino); 4675 __le32 gen = raw_inode->i_generation; 4676 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4677 sizeof(inum)); 4678 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4679 sizeof(gen)); 4680 } 4681 4682 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4683 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4684 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4685 ext4_error_inode_err(inode, function, line, 0, 4686 EFSBADCRC, "iget: checksum invalid"); 4687 ret = -EFSBADCRC; 4688 goto bad_inode; 4689 } 4690 4691 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4692 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4693 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4694 if (ext4_has_feature_project(sb) && 4695 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4696 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4697 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4698 else 4699 i_projid = EXT4_DEF_PROJID; 4700 4701 if (!(test_opt(inode->i_sb, NO_UID32))) { 4702 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4703 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4704 } 4705 i_uid_write(inode, i_uid); 4706 i_gid_write(inode, i_gid); 4707 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4708 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4709 4710 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4711 ei->i_inline_off = 0; 4712 ei->i_dir_start_lookup = 0; 4713 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4714 /* We now have enough fields to check if the inode was active or not. 4715 * This is needed because nfsd might try to access dead inodes 4716 * the test is that same one that e2fsck uses 4717 * NeilBrown 1999oct15 4718 */ 4719 if (inode->i_nlink == 0) { 4720 if ((inode->i_mode == 0 || 4721 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4722 ino != EXT4_BOOT_LOADER_INO) { 4723 /* this inode is deleted */ 4724 ret = -ESTALE; 4725 goto bad_inode; 4726 } 4727 /* The only unlinked inodes we let through here have 4728 * valid i_mode and are being read by the orphan 4729 * recovery code: that's fine, we're about to complete 4730 * the process of deleting those. 4731 * OR it is the EXT4_BOOT_LOADER_INO which is 4732 * not initialized on a new filesystem. */ 4733 } 4734 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4735 ext4_set_inode_flags(inode, true); 4736 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4737 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4738 if (ext4_has_feature_64bit(sb)) 4739 ei->i_file_acl |= 4740 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4741 inode->i_size = ext4_isize(sb, raw_inode); 4742 if ((size = i_size_read(inode)) < 0) { 4743 ext4_error_inode(inode, function, line, 0, 4744 "iget: bad i_size value: %lld", size); 4745 ret = -EFSCORRUPTED; 4746 goto bad_inode; 4747 } 4748 /* 4749 * If dir_index is not enabled but there's dir with INDEX flag set, 4750 * we'd normally treat htree data as empty space. But with metadata 4751 * checksumming that corrupts checksums so forbid that. 4752 */ 4753 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4754 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4755 ext4_error_inode(inode, function, line, 0, 4756 "iget: Dir with htree data on filesystem without dir_index feature."); 4757 ret = -EFSCORRUPTED; 4758 goto bad_inode; 4759 } 4760 ei->i_disksize = inode->i_size; 4761 #ifdef CONFIG_QUOTA 4762 ei->i_reserved_quota = 0; 4763 #endif 4764 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4765 ei->i_block_group = iloc.block_group; 4766 ei->i_last_alloc_group = ~0; 4767 /* 4768 * NOTE! The in-memory inode i_data array is in little-endian order 4769 * even on big-endian machines: we do NOT byteswap the block numbers! 4770 */ 4771 for (block = 0; block < EXT4_N_BLOCKS; block++) 4772 ei->i_data[block] = raw_inode->i_block[block]; 4773 INIT_LIST_HEAD(&ei->i_orphan); 4774 ext4_fc_init_inode(&ei->vfs_inode); 4775 4776 /* 4777 * Set transaction id's of transactions that have to be committed 4778 * to finish f[data]sync. We set them to currently running transaction 4779 * as we cannot be sure that the inode or some of its metadata isn't 4780 * part of the transaction - the inode could have been reclaimed and 4781 * now it is reread from disk. 4782 */ 4783 if (journal) { 4784 transaction_t *transaction; 4785 tid_t tid; 4786 4787 read_lock(&journal->j_state_lock); 4788 if (journal->j_running_transaction) 4789 transaction = journal->j_running_transaction; 4790 else 4791 transaction = journal->j_committing_transaction; 4792 if (transaction) 4793 tid = transaction->t_tid; 4794 else 4795 tid = journal->j_commit_sequence; 4796 read_unlock(&journal->j_state_lock); 4797 ei->i_sync_tid = tid; 4798 ei->i_datasync_tid = tid; 4799 } 4800 4801 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4802 if (ei->i_extra_isize == 0) { 4803 /* The extra space is currently unused. Use it. */ 4804 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4805 ei->i_extra_isize = sizeof(struct ext4_inode) - 4806 EXT4_GOOD_OLD_INODE_SIZE; 4807 } else { 4808 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4809 if (ret) 4810 goto bad_inode; 4811 } 4812 } 4813 4814 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4815 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4816 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4817 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4818 4819 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4820 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4821 4822 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4823 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4824 ivers |= 4825 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4826 } 4827 ext4_inode_set_iversion_queried(inode, ivers); 4828 } 4829 4830 ret = 0; 4831 if (ei->i_file_acl && 4832 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4833 ext4_error_inode(inode, function, line, 0, 4834 "iget: bad extended attribute block %llu", 4835 ei->i_file_acl); 4836 ret = -EFSCORRUPTED; 4837 goto bad_inode; 4838 } else if (!ext4_has_inline_data(inode)) { 4839 /* validate the block references in the inode */ 4840 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4841 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4842 (S_ISLNK(inode->i_mode) && 4843 !ext4_inode_is_fast_symlink(inode)))) { 4844 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4845 ret = ext4_ext_check_inode(inode); 4846 else 4847 ret = ext4_ind_check_inode(inode); 4848 } 4849 } 4850 if (ret) 4851 goto bad_inode; 4852 4853 if (S_ISREG(inode->i_mode)) { 4854 inode->i_op = &ext4_file_inode_operations; 4855 inode->i_fop = &ext4_file_operations; 4856 ext4_set_aops(inode); 4857 } else if (S_ISDIR(inode->i_mode)) { 4858 inode->i_op = &ext4_dir_inode_operations; 4859 inode->i_fop = &ext4_dir_operations; 4860 } else if (S_ISLNK(inode->i_mode)) { 4861 /* VFS does not allow setting these so must be corruption */ 4862 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4863 ext4_error_inode(inode, function, line, 0, 4864 "iget: immutable or append flags " 4865 "not allowed on symlinks"); 4866 ret = -EFSCORRUPTED; 4867 goto bad_inode; 4868 } 4869 if (IS_ENCRYPTED(inode)) { 4870 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4871 ext4_set_aops(inode); 4872 } else if (ext4_inode_is_fast_symlink(inode)) { 4873 inode->i_link = (char *)ei->i_data; 4874 inode->i_op = &ext4_fast_symlink_inode_operations; 4875 nd_terminate_link(ei->i_data, inode->i_size, 4876 sizeof(ei->i_data) - 1); 4877 } else { 4878 inode->i_op = &ext4_symlink_inode_operations; 4879 ext4_set_aops(inode); 4880 } 4881 inode_nohighmem(inode); 4882 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4883 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4884 inode->i_op = &ext4_special_inode_operations; 4885 if (raw_inode->i_block[0]) 4886 init_special_inode(inode, inode->i_mode, 4887 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4888 else 4889 init_special_inode(inode, inode->i_mode, 4890 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4891 } else if (ino == EXT4_BOOT_LOADER_INO) { 4892 make_bad_inode(inode); 4893 } else { 4894 ret = -EFSCORRUPTED; 4895 ext4_error_inode(inode, function, line, 0, 4896 "iget: bogus i_mode (%o)", inode->i_mode); 4897 goto bad_inode; 4898 } 4899 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4900 ext4_error_inode(inode, function, line, 0, 4901 "casefold flag without casefold feature"); 4902 brelse(iloc.bh); 4903 4904 unlock_new_inode(inode); 4905 return inode; 4906 4907 bad_inode: 4908 brelse(iloc.bh); 4909 iget_failed(inode); 4910 return ERR_PTR(ret); 4911 } 4912 4913 static int ext4_inode_blocks_set(handle_t *handle, 4914 struct ext4_inode *raw_inode, 4915 struct ext4_inode_info *ei) 4916 { 4917 struct inode *inode = &(ei->vfs_inode); 4918 u64 i_blocks = READ_ONCE(inode->i_blocks); 4919 struct super_block *sb = inode->i_sb; 4920 4921 if (i_blocks <= ~0U) { 4922 /* 4923 * i_blocks can be represented in a 32 bit variable 4924 * as multiple of 512 bytes 4925 */ 4926 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4927 raw_inode->i_blocks_high = 0; 4928 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4929 return 0; 4930 } 4931 if (!ext4_has_feature_huge_file(sb)) 4932 return -EFBIG; 4933 4934 if (i_blocks <= 0xffffffffffffULL) { 4935 /* 4936 * i_blocks can be represented in a 48 bit variable 4937 * as multiple of 512 bytes 4938 */ 4939 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4940 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4941 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4942 } else { 4943 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4944 /* i_block is stored in file system block size */ 4945 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4946 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4947 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4948 } 4949 return 0; 4950 } 4951 4952 static void __ext4_update_other_inode_time(struct super_block *sb, 4953 unsigned long orig_ino, 4954 unsigned long ino, 4955 struct ext4_inode *raw_inode) 4956 { 4957 struct inode *inode; 4958 4959 inode = find_inode_by_ino_rcu(sb, ino); 4960 if (!inode) 4961 return; 4962 4963 if (!inode_is_dirtytime_only(inode)) 4964 return; 4965 4966 spin_lock(&inode->i_lock); 4967 if (inode_is_dirtytime_only(inode)) { 4968 struct ext4_inode_info *ei = EXT4_I(inode); 4969 4970 inode->i_state &= ~I_DIRTY_TIME; 4971 spin_unlock(&inode->i_lock); 4972 4973 spin_lock(&ei->i_raw_lock); 4974 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4975 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4976 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4977 ext4_inode_csum_set(inode, raw_inode, ei); 4978 spin_unlock(&ei->i_raw_lock); 4979 trace_ext4_other_inode_update_time(inode, orig_ino); 4980 return; 4981 } 4982 spin_unlock(&inode->i_lock); 4983 } 4984 4985 /* 4986 * Opportunistically update the other time fields for other inodes in 4987 * the same inode table block. 4988 */ 4989 static void ext4_update_other_inodes_time(struct super_block *sb, 4990 unsigned long orig_ino, char *buf) 4991 { 4992 unsigned long ino; 4993 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4994 int inode_size = EXT4_INODE_SIZE(sb); 4995 4996 /* 4997 * Calculate the first inode in the inode table block. Inode 4998 * numbers are one-based. That is, the first inode in a block 4999 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5000 */ 5001 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5002 rcu_read_lock(); 5003 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5004 if (ino == orig_ino) 5005 continue; 5006 __ext4_update_other_inode_time(sb, orig_ino, ino, 5007 (struct ext4_inode *)buf); 5008 } 5009 rcu_read_unlock(); 5010 } 5011 5012 /* 5013 * Post the struct inode info into an on-disk inode location in the 5014 * buffer-cache. This gobbles the caller's reference to the 5015 * buffer_head in the inode location struct. 5016 * 5017 * The caller must have write access to iloc->bh. 5018 */ 5019 static int ext4_do_update_inode(handle_t *handle, 5020 struct inode *inode, 5021 struct ext4_iloc *iloc) 5022 { 5023 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5024 struct ext4_inode_info *ei = EXT4_I(inode); 5025 struct buffer_head *bh = iloc->bh; 5026 struct super_block *sb = inode->i_sb; 5027 int err = 0, block; 5028 int need_datasync = 0, set_large_file = 0; 5029 uid_t i_uid; 5030 gid_t i_gid; 5031 projid_t i_projid; 5032 5033 spin_lock(&ei->i_raw_lock); 5034 5035 /* For fields not tracked in the in-memory inode, 5036 * initialise them to zero for new inodes. */ 5037 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5038 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5039 5040 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5041 if (err) { 5042 spin_unlock(&ei->i_raw_lock); 5043 goto out_brelse; 5044 } 5045 5046 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5047 i_uid = i_uid_read(inode); 5048 i_gid = i_gid_read(inode); 5049 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5050 if (!(test_opt(inode->i_sb, NO_UID32))) { 5051 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5052 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5053 /* 5054 * Fix up interoperability with old kernels. Otherwise, old inodes get 5055 * re-used with the upper 16 bits of the uid/gid intact 5056 */ 5057 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5058 raw_inode->i_uid_high = 0; 5059 raw_inode->i_gid_high = 0; 5060 } else { 5061 raw_inode->i_uid_high = 5062 cpu_to_le16(high_16_bits(i_uid)); 5063 raw_inode->i_gid_high = 5064 cpu_to_le16(high_16_bits(i_gid)); 5065 } 5066 } else { 5067 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5068 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5069 raw_inode->i_uid_high = 0; 5070 raw_inode->i_gid_high = 0; 5071 } 5072 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5073 5074 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5075 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5076 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5077 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5078 5079 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5080 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5081 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5082 raw_inode->i_file_acl_high = 5083 cpu_to_le16(ei->i_file_acl >> 32); 5084 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5085 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) { 5086 ext4_isize_set(raw_inode, ei->i_disksize); 5087 need_datasync = 1; 5088 } 5089 if (ei->i_disksize > 0x7fffffffULL) { 5090 if (!ext4_has_feature_large_file(sb) || 5091 EXT4_SB(sb)->s_es->s_rev_level == 5092 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5093 set_large_file = 1; 5094 } 5095 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5096 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5097 if (old_valid_dev(inode->i_rdev)) { 5098 raw_inode->i_block[0] = 5099 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5100 raw_inode->i_block[1] = 0; 5101 } else { 5102 raw_inode->i_block[0] = 0; 5103 raw_inode->i_block[1] = 5104 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5105 raw_inode->i_block[2] = 0; 5106 } 5107 } else if (!ext4_has_inline_data(inode)) { 5108 for (block = 0; block < EXT4_N_BLOCKS; block++) 5109 raw_inode->i_block[block] = ei->i_data[block]; 5110 } 5111 5112 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5113 u64 ivers = ext4_inode_peek_iversion(inode); 5114 5115 raw_inode->i_disk_version = cpu_to_le32(ivers); 5116 if (ei->i_extra_isize) { 5117 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5118 raw_inode->i_version_hi = 5119 cpu_to_le32(ivers >> 32); 5120 raw_inode->i_extra_isize = 5121 cpu_to_le16(ei->i_extra_isize); 5122 } 5123 } 5124 5125 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5126 i_projid != EXT4_DEF_PROJID); 5127 5128 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5129 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5130 raw_inode->i_projid = cpu_to_le32(i_projid); 5131 5132 ext4_inode_csum_set(inode, raw_inode, ei); 5133 spin_unlock(&ei->i_raw_lock); 5134 if (inode->i_sb->s_flags & SB_LAZYTIME) 5135 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5136 bh->b_data); 5137 5138 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5139 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5140 if (err) 5141 goto out_brelse; 5142 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5143 if (set_large_file) { 5144 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5145 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5146 if (err) 5147 goto out_brelse; 5148 lock_buffer(EXT4_SB(sb)->s_sbh); 5149 ext4_set_feature_large_file(sb); 5150 ext4_superblock_csum_set(sb); 5151 unlock_buffer(EXT4_SB(sb)->s_sbh); 5152 ext4_handle_sync(handle); 5153 err = ext4_handle_dirty_metadata(handle, NULL, 5154 EXT4_SB(sb)->s_sbh); 5155 } 5156 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5157 out_brelse: 5158 brelse(bh); 5159 ext4_std_error(inode->i_sb, err); 5160 return err; 5161 } 5162 5163 /* 5164 * ext4_write_inode() 5165 * 5166 * We are called from a few places: 5167 * 5168 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5169 * Here, there will be no transaction running. We wait for any running 5170 * transaction to commit. 5171 * 5172 * - Within flush work (sys_sync(), kupdate and such). 5173 * We wait on commit, if told to. 5174 * 5175 * - Within iput_final() -> write_inode_now() 5176 * We wait on commit, if told to. 5177 * 5178 * In all cases it is actually safe for us to return without doing anything, 5179 * because the inode has been copied into a raw inode buffer in 5180 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5181 * writeback. 5182 * 5183 * Note that we are absolutely dependent upon all inode dirtiers doing the 5184 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5185 * which we are interested. 5186 * 5187 * It would be a bug for them to not do this. The code: 5188 * 5189 * mark_inode_dirty(inode) 5190 * stuff(); 5191 * inode->i_size = expr; 5192 * 5193 * is in error because write_inode() could occur while `stuff()' is running, 5194 * and the new i_size will be lost. Plus the inode will no longer be on the 5195 * superblock's dirty inode list. 5196 */ 5197 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5198 { 5199 int err; 5200 5201 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5202 sb_rdonly(inode->i_sb)) 5203 return 0; 5204 5205 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5206 return -EIO; 5207 5208 if (EXT4_SB(inode->i_sb)->s_journal) { 5209 if (ext4_journal_current_handle()) { 5210 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5211 dump_stack(); 5212 return -EIO; 5213 } 5214 5215 /* 5216 * No need to force transaction in WB_SYNC_NONE mode. Also 5217 * ext4_sync_fs() will force the commit after everything is 5218 * written. 5219 */ 5220 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5221 return 0; 5222 5223 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5224 EXT4_I(inode)->i_sync_tid); 5225 } else { 5226 struct ext4_iloc iloc; 5227 5228 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5229 if (err) 5230 return err; 5231 /* 5232 * sync(2) will flush the whole buffer cache. No need to do 5233 * it here separately for each inode. 5234 */ 5235 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5236 sync_dirty_buffer(iloc.bh); 5237 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5238 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5239 "IO error syncing inode"); 5240 err = -EIO; 5241 } 5242 brelse(iloc.bh); 5243 } 5244 return err; 5245 } 5246 5247 /* 5248 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5249 * buffers that are attached to a page stradding i_size and are undergoing 5250 * commit. In that case we have to wait for commit to finish and try again. 5251 */ 5252 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5253 { 5254 struct page *page; 5255 unsigned offset; 5256 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5257 tid_t commit_tid = 0; 5258 int ret; 5259 5260 offset = inode->i_size & (PAGE_SIZE - 1); 5261 /* 5262 * If the page is fully truncated, we don't need to wait for any commit 5263 * (and we even should not as __ext4_journalled_invalidatepage() may 5264 * strip all buffers from the page but keep the page dirty which can then 5265 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5266 * buffers). Also we don't need to wait for any commit if all buffers in 5267 * the page remain valid. This is most beneficial for the common case of 5268 * blocksize == PAGESIZE. 5269 */ 5270 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5271 return; 5272 while (1) { 5273 page = find_lock_page(inode->i_mapping, 5274 inode->i_size >> PAGE_SHIFT); 5275 if (!page) 5276 return; 5277 ret = __ext4_journalled_invalidatepage(page, offset, 5278 PAGE_SIZE - offset); 5279 unlock_page(page); 5280 put_page(page); 5281 if (ret != -EBUSY) 5282 return; 5283 commit_tid = 0; 5284 read_lock(&journal->j_state_lock); 5285 if (journal->j_committing_transaction) 5286 commit_tid = journal->j_committing_transaction->t_tid; 5287 read_unlock(&journal->j_state_lock); 5288 if (commit_tid) 5289 jbd2_log_wait_commit(journal, commit_tid); 5290 } 5291 } 5292 5293 /* 5294 * ext4_setattr() 5295 * 5296 * Called from notify_change. 5297 * 5298 * We want to trap VFS attempts to truncate the file as soon as 5299 * possible. In particular, we want to make sure that when the VFS 5300 * shrinks i_size, we put the inode on the orphan list and modify 5301 * i_disksize immediately, so that during the subsequent flushing of 5302 * dirty pages and freeing of disk blocks, we can guarantee that any 5303 * commit will leave the blocks being flushed in an unused state on 5304 * disk. (On recovery, the inode will get truncated and the blocks will 5305 * be freed, so we have a strong guarantee that no future commit will 5306 * leave these blocks visible to the user.) 5307 * 5308 * Another thing we have to assure is that if we are in ordered mode 5309 * and inode is still attached to the committing transaction, we must 5310 * we start writeout of all the dirty pages which are being truncated. 5311 * This way we are sure that all the data written in the previous 5312 * transaction are already on disk (truncate waits for pages under 5313 * writeback). 5314 * 5315 * Called with inode->i_mutex down. 5316 */ 5317 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5318 struct iattr *attr) 5319 { 5320 struct inode *inode = d_inode(dentry); 5321 int error, rc = 0; 5322 int orphan = 0; 5323 const unsigned int ia_valid = attr->ia_valid; 5324 5325 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5326 return -EIO; 5327 5328 if (unlikely(IS_IMMUTABLE(inode))) 5329 return -EPERM; 5330 5331 if (unlikely(IS_APPEND(inode) && 5332 (ia_valid & (ATTR_MODE | ATTR_UID | 5333 ATTR_GID | ATTR_TIMES_SET)))) 5334 return -EPERM; 5335 5336 error = setattr_prepare(mnt_userns, dentry, attr); 5337 if (error) 5338 return error; 5339 5340 error = fscrypt_prepare_setattr(dentry, attr); 5341 if (error) 5342 return error; 5343 5344 error = fsverity_prepare_setattr(dentry, attr); 5345 if (error) 5346 return error; 5347 5348 if (is_quota_modification(inode, attr)) { 5349 error = dquot_initialize(inode); 5350 if (error) 5351 return error; 5352 } 5353 ext4_fc_start_update(inode); 5354 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5355 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5356 handle_t *handle; 5357 5358 /* (user+group)*(old+new) structure, inode write (sb, 5359 * inode block, ? - but truncate inode update has it) */ 5360 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5361 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5362 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5363 if (IS_ERR(handle)) { 5364 error = PTR_ERR(handle); 5365 goto err_out; 5366 } 5367 5368 /* dquot_transfer() calls back ext4_get_inode_usage() which 5369 * counts xattr inode references. 5370 */ 5371 down_read(&EXT4_I(inode)->xattr_sem); 5372 error = dquot_transfer(inode, attr); 5373 up_read(&EXT4_I(inode)->xattr_sem); 5374 5375 if (error) { 5376 ext4_journal_stop(handle); 5377 ext4_fc_stop_update(inode); 5378 return error; 5379 } 5380 /* Update corresponding info in inode so that everything is in 5381 * one transaction */ 5382 if (attr->ia_valid & ATTR_UID) 5383 inode->i_uid = attr->ia_uid; 5384 if (attr->ia_valid & ATTR_GID) 5385 inode->i_gid = attr->ia_gid; 5386 error = ext4_mark_inode_dirty(handle, inode); 5387 ext4_journal_stop(handle); 5388 if (unlikely(error)) { 5389 ext4_fc_stop_update(inode); 5390 return error; 5391 } 5392 } 5393 5394 if (attr->ia_valid & ATTR_SIZE) { 5395 handle_t *handle; 5396 loff_t oldsize = inode->i_size; 5397 int shrink = (attr->ia_size < inode->i_size); 5398 5399 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5400 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5401 5402 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5403 ext4_fc_stop_update(inode); 5404 return -EFBIG; 5405 } 5406 } 5407 if (!S_ISREG(inode->i_mode)) { 5408 ext4_fc_stop_update(inode); 5409 return -EINVAL; 5410 } 5411 5412 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5413 inode_inc_iversion(inode); 5414 5415 if (shrink) { 5416 if (ext4_should_order_data(inode)) { 5417 error = ext4_begin_ordered_truncate(inode, 5418 attr->ia_size); 5419 if (error) 5420 goto err_out; 5421 } 5422 /* 5423 * Blocks are going to be removed from the inode. Wait 5424 * for dio in flight. 5425 */ 5426 inode_dio_wait(inode); 5427 } 5428 5429 down_write(&EXT4_I(inode)->i_mmap_sem); 5430 5431 rc = ext4_break_layouts(inode); 5432 if (rc) { 5433 up_write(&EXT4_I(inode)->i_mmap_sem); 5434 goto err_out; 5435 } 5436 5437 if (attr->ia_size != inode->i_size) { 5438 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5439 if (IS_ERR(handle)) { 5440 error = PTR_ERR(handle); 5441 goto out_mmap_sem; 5442 } 5443 if (ext4_handle_valid(handle) && shrink) { 5444 error = ext4_orphan_add(handle, inode); 5445 orphan = 1; 5446 } 5447 /* 5448 * Update c/mtime on truncate up, ext4_truncate() will 5449 * update c/mtime in shrink case below 5450 */ 5451 if (!shrink) { 5452 inode->i_mtime = current_time(inode); 5453 inode->i_ctime = inode->i_mtime; 5454 } 5455 5456 if (shrink) 5457 ext4_fc_track_range(handle, inode, 5458 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5459 inode->i_sb->s_blocksize_bits, 5460 (oldsize > 0 ? oldsize - 1 : 0) >> 5461 inode->i_sb->s_blocksize_bits); 5462 else 5463 ext4_fc_track_range( 5464 handle, inode, 5465 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5466 inode->i_sb->s_blocksize_bits, 5467 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5468 inode->i_sb->s_blocksize_bits); 5469 5470 down_write(&EXT4_I(inode)->i_data_sem); 5471 EXT4_I(inode)->i_disksize = attr->ia_size; 5472 rc = ext4_mark_inode_dirty(handle, inode); 5473 if (!error) 5474 error = rc; 5475 /* 5476 * We have to update i_size under i_data_sem together 5477 * with i_disksize to avoid races with writeback code 5478 * running ext4_wb_update_i_disksize(). 5479 */ 5480 if (!error) 5481 i_size_write(inode, attr->ia_size); 5482 up_write(&EXT4_I(inode)->i_data_sem); 5483 ext4_journal_stop(handle); 5484 if (error) 5485 goto out_mmap_sem; 5486 if (!shrink) { 5487 pagecache_isize_extended(inode, oldsize, 5488 inode->i_size); 5489 } else if (ext4_should_journal_data(inode)) { 5490 ext4_wait_for_tail_page_commit(inode); 5491 } 5492 } 5493 5494 /* 5495 * Truncate pagecache after we've waited for commit 5496 * in data=journal mode to make pages freeable. 5497 */ 5498 truncate_pagecache(inode, inode->i_size); 5499 /* 5500 * Call ext4_truncate() even if i_size didn't change to 5501 * truncate possible preallocated blocks. 5502 */ 5503 if (attr->ia_size <= oldsize) { 5504 rc = ext4_truncate(inode); 5505 if (rc) 5506 error = rc; 5507 } 5508 out_mmap_sem: 5509 up_write(&EXT4_I(inode)->i_mmap_sem); 5510 } 5511 5512 if (!error) { 5513 setattr_copy(mnt_userns, inode, attr); 5514 mark_inode_dirty(inode); 5515 } 5516 5517 /* 5518 * If the call to ext4_truncate failed to get a transaction handle at 5519 * all, we need to clean up the in-core orphan list manually. 5520 */ 5521 if (orphan && inode->i_nlink) 5522 ext4_orphan_del(NULL, inode); 5523 5524 if (!error && (ia_valid & ATTR_MODE)) 5525 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5526 5527 err_out: 5528 if (error) 5529 ext4_std_error(inode->i_sb, error); 5530 if (!error) 5531 error = rc; 5532 ext4_fc_stop_update(inode); 5533 return error; 5534 } 5535 5536 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5537 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5538 { 5539 struct inode *inode = d_inode(path->dentry); 5540 struct ext4_inode *raw_inode; 5541 struct ext4_inode_info *ei = EXT4_I(inode); 5542 unsigned int flags; 5543 5544 if ((request_mask & STATX_BTIME) && 5545 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5546 stat->result_mask |= STATX_BTIME; 5547 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5548 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5549 } 5550 5551 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5552 if (flags & EXT4_APPEND_FL) 5553 stat->attributes |= STATX_ATTR_APPEND; 5554 if (flags & EXT4_COMPR_FL) 5555 stat->attributes |= STATX_ATTR_COMPRESSED; 5556 if (flags & EXT4_ENCRYPT_FL) 5557 stat->attributes |= STATX_ATTR_ENCRYPTED; 5558 if (flags & EXT4_IMMUTABLE_FL) 5559 stat->attributes |= STATX_ATTR_IMMUTABLE; 5560 if (flags & EXT4_NODUMP_FL) 5561 stat->attributes |= STATX_ATTR_NODUMP; 5562 if (flags & EXT4_VERITY_FL) 5563 stat->attributes |= STATX_ATTR_VERITY; 5564 5565 stat->attributes_mask |= (STATX_ATTR_APPEND | 5566 STATX_ATTR_COMPRESSED | 5567 STATX_ATTR_ENCRYPTED | 5568 STATX_ATTR_IMMUTABLE | 5569 STATX_ATTR_NODUMP | 5570 STATX_ATTR_VERITY); 5571 5572 generic_fillattr(mnt_userns, inode, stat); 5573 return 0; 5574 } 5575 5576 int ext4_file_getattr(struct user_namespace *mnt_userns, 5577 const struct path *path, struct kstat *stat, 5578 u32 request_mask, unsigned int query_flags) 5579 { 5580 struct inode *inode = d_inode(path->dentry); 5581 u64 delalloc_blocks; 5582 5583 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5584 5585 /* 5586 * If there is inline data in the inode, the inode will normally not 5587 * have data blocks allocated (it may have an external xattr block). 5588 * Report at least one sector for such files, so tools like tar, rsync, 5589 * others don't incorrectly think the file is completely sparse. 5590 */ 5591 if (unlikely(ext4_has_inline_data(inode))) 5592 stat->blocks += (stat->size + 511) >> 9; 5593 5594 /* 5595 * We can't update i_blocks if the block allocation is delayed 5596 * otherwise in the case of system crash before the real block 5597 * allocation is done, we will have i_blocks inconsistent with 5598 * on-disk file blocks. 5599 * We always keep i_blocks updated together with real 5600 * allocation. But to not confuse with user, stat 5601 * will return the blocks that include the delayed allocation 5602 * blocks for this file. 5603 */ 5604 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5605 EXT4_I(inode)->i_reserved_data_blocks); 5606 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5607 return 0; 5608 } 5609 5610 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5611 int pextents) 5612 { 5613 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5614 return ext4_ind_trans_blocks(inode, lblocks); 5615 return ext4_ext_index_trans_blocks(inode, pextents); 5616 } 5617 5618 /* 5619 * Account for index blocks, block groups bitmaps and block group 5620 * descriptor blocks if modify datablocks and index blocks 5621 * worse case, the indexs blocks spread over different block groups 5622 * 5623 * If datablocks are discontiguous, they are possible to spread over 5624 * different block groups too. If they are contiguous, with flexbg, 5625 * they could still across block group boundary. 5626 * 5627 * Also account for superblock, inode, quota and xattr blocks 5628 */ 5629 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5630 int pextents) 5631 { 5632 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5633 int gdpblocks; 5634 int idxblocks; 5635 int ret = 0; 5636 5637 /* 5638 * How many index blocks need to touch to map @lblocks logical blocks 5639 * to @pextents physical extents? 5640 */ 5641 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5642 5643 ret = idxblocks; 5644 5645 /* 5646 * Now let's see how many group bitmaps and group descriptors need 5647 * to account 5648 */ 5649 groups = idxblocks + pextents; 5650 gdpblocks = groups; 5651 if (groups > ngroups) 5652 groups = ngroups; 5653 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5654 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5655 5656 /* bitmaps and block group descriptor blocks */ 5657 ret += groups + gdpblocks; 5658 5659 /* Blocks for super block, inode, quota and xattr blocks */ 5660 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5661 5662 return ret; 5663 } 5664 5665 /* 5666 * Calculate the total number of credits to reserve to fit 5667 * the modification of a single pages into a single transaction, 5668 * which may include multiple chunks of block allocations. 5669 * 5670 * This could be called via ext4_write_begin() 5671 * 5672 * We need to consider the worse case, when 5673 * one new block per extent. 5674 */ 5675 int ext4_writepage_trans_blocks(struct inode *inode) 5676 { 5677 int bpp = ext4_journal_blocks_per_page(inode); 5678 int ret; 5679 5680 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5681 5682 /* Account for data blocks for journalled mode */ 5683 if (ext4_should_journal_data(inode)) 5684 ret += bpp; 5685 return ret; 5686 } 5687 5688 /* 5689 * Calculate the journal credits for a chunk of data modification. 5690 * 5691 * This is called from DIO, fallocate or whoever calling 5692 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5693 * 5694 * journal buffers for data blocks are not included here, as DIO 5695 * and fallocate do no need to journal data buffers. 5696 */ 5697 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5698 { 5699 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5700 } 5701 5702 /* 5703 * The caller must have previously called ext4_reserve_inode_write(). 5704 * Give this, we know that the caller already has write access to iloc->bh. 5705 */ 5706 int ext4_mark_iloc_dirty(handle_t *handle, 5707 struct inode *inode, struct ext4_iloc *iloc) 5708 { 5709 int err = 0; 5710 5711 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5712 put_bh(iloc->bh); 5713 return -EIO; 5714 } 5715 ext4_fc_track_inode(handle, inode); 5716 5717 if (IS_I_VERSION(inode)) 5718 inode_inc_iversion(inode); 5719 5720 /* the do_update_inode consumes one bh->b_count */ 5721 get_bh(iloc->bh); 5722 5723 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5724 err = ext4_do_update_inode(handle, inode, iloc); 5725 put_bh(iloc->bh); 5726 return err; 5727 } 5728 5729 /* 5730 * On success, We end up with an outstanding reference count against 5731 * iloc->bh. This _must_ be cleaned up later. 5732 */ 5733 5734 int 5735 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5736 struct ext4_iloc *iloc) 5737 { 5738 int err; 5739 5740 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5741 return -EIO; 5742 5743 err = ext4_get_inode_loc(inode, iloc); 5744 if (!err) { 5745 BUFFER_TRACE(iloc->bh, "get_write_access"); 5746 err = ext4_journal_get_write_access(handle, iloc->bh); 5747 if (err) { 5748 brelse(iloc->bh); 5749 iloc->bh = NULL; 5750 } 5751 } 5752 ext4_std_error(inode->i_sb, err); 5753 return err; 5754 } 5755 5756 static int __ext4_expand_extra_isize(struct inode *inode, 5757 unsigned int new_extra_isize, 5758 struct ext4_iloc *iloc, 5759 handle_t *handle, int *no_expand) 5760 { 5761 struct ext4_inode *raw_inode; 5762 struct ext4_xattr_ibody_header *header; 5763 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5764 struct ext4_inode_info *ei = EXT4_I(inode); 5765 int error; 5766 5767 /* this was checked at iget time, but double check for good measure */ 5768 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5769 (ei->i_extra_isize & 3)) { 5770 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5771 ei->i_extra_isize, 5772 EXT4_INODE_SIZE(inode->i_sb)); 5773 return -EFSCORRUPTED; 5774 } 5775 if ((new_extra_isize < ei->i_extra_isize) || 5776 (new_extra_isize < 4) || 5777 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5778 return -EINVAL; /* Should never happen */ 5779 5780 raw_inode = ext4_raw_inode(iloc); 5781 5782 header = IHDR(inode, raw_inode); 5783 5784 /* No extended attributes present */ 5785 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5786 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5787 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5788 EXT4_I(inode)->i_extra_isize, 0, 5789 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5790 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5791 return 0; 5792 } 5793 5794 /* try to expand with EAs present */ 5795 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5796 raw_inode, handle); 5797 if (error) { 5798 /* 5799 * Inode size expansion failed; don't try again 5800 */ 5801 *no_expand = 1; 5802 } 5803 5804 return error; 5805 } 5806 5807 /* 5808 * Expand an inode by new_extra_isize bytes. 5809 * Returns 0 on success or negative error number on failure. 5810 */ 5811 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5812 unsigned int new_extra_isize, 5813 struct ext4_iloc iloc, 5814 handle_t *handle) 5815 { 5816 int no_expand; 5817 int error; 5818 5819 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5820 return -EOVERFLOW; 5821 5822 /* 5823 * In nojournal mode, we can immediately attempt to expand 5824 * the inode. When journaled, we first need to obtain extra 5825 * buffer credits since we may write into the EA block 5826 * with this same handle. If journal_extend fails, then it will 5827 * only result in a minor loss of functionality for that inode. 5828 * If this is felt to be critical, then e2fsck should be run to 5829 * force a large enough s_min_extra_isize. 5830 */ 5831 if (ext4_journal_extend(handle, 5832 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5833 return -ENOSPC; 5834 5835 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5836 return -EBUSY; 5837 5838 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5839 handle, &no_expand); 5840 ext4_write_unlock_xattr(inode, &no_expand); 5841 5842 return error; 5843 } 5844 5845 int ext4_expand_extra_isize(struct inode *inode, 5846 unsigned int new_extra_isize, 5847 struct ext4_iloc *iloc) 5848 { 5849 handle_t *handle; 5850 int no_expand; 5851 int error, rc; 5852 5853 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5854 brelse(iloc->bh); 5855 return -EOVERFLOW; 5856 } 5857 5858 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5859 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5860 if (IS_ERR(handle)) { 5861 error = PTR_ERR(handle); 5862 brelse(iloc->bh); 5863 return error; 5864 } 5865 5866 ext4_write_lock_xattr(inode, &no_expand); 5867 5868 BUFFER_TRACE(iloc->bh, "get_write_access"); 5869 error = ext4_journal_get_write_access(handle, iloc->bh); 5870 if (error) { 5871 brelse(iloc->bh); 5872 goto out_unlock; 5873 } 5874 5875 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5876 handle, &no_expand); 5877 5878 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5879 if (!error) 5880 error = rc; 5881 5882 out_unlock: 5883 ext4_write_unlock_xattr(inode, &no_expand); 5884 ext4_journal_stop(handle); 5885 return error; 5886 } 5887 5888 /* 5889 * What we do here is to mark the in-core inode as clean with respect to inode 5890 * dirtiness (it may still be data-dirty). 5891 * This means that the in-core inode may be reaped by prune_icache 5892 * without having to perform any I/O. This is a very good thing, 5893 * because *any* task may call prune_icache - even ones which 5894 * have a transaction open against a different journal. 5895 * 5896 * Is this cheating? Not really. Sure, we haven't written the 5897 * inode out, but prune_icache isn't a user-visible syncing function. 5898 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5899 * we start and wait on commits. 5900 */ 5901 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5902 const char *func, unsigned int line) 5903 { 5904 struct ext4_iloc iloc; 5905 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5906 int err; 5907 5908 might_sleep(); 5909 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5910 err = ext4_reserve_inode_write(handle, inode, &iloc); 5911 if (err) 5912 goto out; 5913 5914 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5915 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5916 iloc, handle); 5917 5918 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5919 out: 5920 if (unlikely(err)) 5921 ext4_error_inode_err(inode, func, line, 0, err, 5922 "mark_inode_dirty error"); 5923 return err; 5924 } 5925 5926 /* 5927 * ext4_dirty_inode() is called from __mark_inode_dirty() 5928 * 5929 * We're really interested in the case where a file is being extended. 5930 * i_size has been changed by generic_commit_write() and we thus need 5931 * to include the updated inode in the current transaction. 5932 * 5933 * Also, dquot_alloc_block() will always dirty the inode when blocks 5934 * are allocated to the file. 5935 * 5936 * If the inode is marked synchronous, we don't honour that here - doing 5937 * so would cause a commit on atime updates, which we don't bother doing. 5938 * We handle synchronous inodes at the highest possible level. 5939 */ 5940 void ext4_dirty_inode(struct inode *inode, int flags) 5941 { 5942 handle_t *handle; 5943 5944 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5945 if (IS_ERR(handle)) 5946 return; 5947 ext4_mark_inode_dirty(handle, inode); 5948 ext4_journal_stop(handle); 5949 } 5950 5951 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5952 { 5953 journal_t *journal; 5954 handle_t *handle; 5955 int err; 5956 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5957 5958 /* 5959 * We have to be very careful here: changing a data block's 5960 * journaling status dynamically is dangerous. If we write a 5961 * data block to the journal, change the status and then delete 5962 * that block, we risk forgetting to revoke the old log record 5963 * from the journal and so a subsequent replay can corrupt data. 5964 * So, first we make sure that the journal is empty and that 5965 * nobody is changing anything. 5966 */ 5967 5968 journal = EXT4_JOURNAL(inode); 5969 if (!journal) 5970 return 0; 5971 if (is_journal_aborted(journal)) 5972 return -EROFS; 5973 5974 /* Wait for all existing dio workers */ 5975 inode_dio_wait(inode); 5976 5977 /* 5978 * Before flushing the journal and switching inode's aops, we have 5979 * to flush all dirty data the inode has. There can be outstanding 5980 * delayed allocations, there can be unwritten extents created by 5981 * fallocate or buffered writes in dioread_nolock mode covered by 5982 * dirty data which can be converted only after flushing the dirty 5983 * data (and journalled aops don't know how to handle these cases). 5984 */ 5985 if (val) { 5986 down_write(&EXT4_I(inode)->i_mmap_sem); 5987 err = filemap_write_and_wait(inode->i_mapping); 5988 if (err < 0) { 5989 up_write(&EXT4_I(inode)->i_mmap_sem); 5990 return err; 5991 } 5992 } 5993 5994 percpu_down_write(&sbi->s_writepages_rwsem); 5995 jbd2_journal_lock_updates(journal); 5996 5997 /* 5998 * OK, there are no updates running now, and all cached data is 5999 * synced to disk. We are now in a completely consistent state 6000 * which doesn't have anything in the journal, and we know that 6001 * no filesystem updates are running, so it is safe to modify 6002 * the inode's in-core data-journaling state flag now. 6003 */ 6004 6005 if (val) 6006 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6007 else { 6008 err = jbd2_journal_flush(journal); 6009 if (err < 0) { 6010 jbd2_journal_unlock_updates(journal); 6011 percpu_up_write(&sbi->s_writepages_rwsem); 6012 return err; 6013 } 6014 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6015 } 6016 ext4_set_aops(inode); 6017 6018 jbd2_journal_unlock_updates(journal); 6019 percpu_up_write(&sbi->s_writepages_rwsem); 6020 6021 if (val) 6022 up_write(&EXT4_I(inode)->i_mmap_sem); 6023 6024 /* Finally we can mark the inode as dirty. */ 6025 6026 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6027 if (IS_ERR(handle)) 6028 return PTR_ERR(handle); 6029 6030 ext4_fc_mark_ineligible(inode->i_sb, 6031 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE); 6032 err = ext4_mark_inode_dirty(handle, inode); 6033 ext4_handle_sync(handle); 6034 ext4_journal_stop(handle); 6035 ext4_std_error(inode->i_sb, err); 6036 6037 return err; 6038 } 6039 6040 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6041 { 6042 return !buffer_mapped(bh); 6043 } 6044 6045 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6046 { 6047 struct vm_area_struct *vma = vmf->vma; 6048 struct page *page = vmf->page; 6049 loff_t size; 6050 unsigned long len; 6051 int err; 6052 vm_fault_t ret; 6053 struct file *file = vma->vm_file; 6054 struct inode *inode = file_inode(file); 6055 struct address_space *mapping = inode->i_mapping; 6056 handle_t *handle; 6057 get_block_t *get_block; 6058 int retries = 0; 6059 6060 if (unlikely(IS_IMMUTABLE(inode))) 6061 return VM_FAULT_SIGBUS; 6062 6063 sb_start_pagefault(inode->i_sb); 6064 file_update_time(vma->vm_file); 6065 6066 down_read(&EXT4_I(inode)->i_mmap_sem); 6067 6068 err = ext4_convert_inline_data(inode); 6069 if (err) 6070 goto out_ret; 6071 6072 /* 6073 * On data journalling we skip straight to the transaction handle: 6074 * there's no delalloc; page truncated will be checked later; the 6075 * early return w/ all buffers mapped (calculates size/len) can't 6076 * be used; and there's no dioread_nolock, so only ext4_get_block. 6077 */ 6078 if (ext4_should_journal_data(inode)) 6079 goto retry_alloc; 6080 6081 /* Delalloc case is easy... */ 6082 if (test_opt(inode->i_sb, DELALLOC) && 6083 !ext4_nonda_switch(inode->i_sb)) { 6084 do { 6085 err = block_page_mkwrite(vma, vmf, 6086 ext4_da_get_block_prep); 6087 } while (err == -ENOSPC && 6088 ext4_should_retry_alloc(inode->i_sb, &retries)); 6089 goto out_ret; 6090 } 6091 6092 lock_page(page); 6093 size = i_size_read(inode); 6094 /* Page got truncated from under us? */ 6095 if (page->mapping != mapping || page_offset(page) > size) { 6096 unlock_page(page); 6097 ret = VM_FAULT_NOPAGE; 6098 goto out; 6099 } 6100 6101 if (page->index == size >> PAGE_SHIFT) 6102 len = size & ~PAGE_MASK; 6103 else 6104 len = PAGE_SIZE; 6105 /* 6106 * Return if we have all the buffers mapped. This avoids the need to do 6107 * journal_start/journal_stop which can block and take a long time 6108 * 6109 * This cannot be done for data journalling, as we have to add the 6110 * inode to the transaction's list to writeprotect pages on commit. 6111 */ 6112 if (page_has_buffers(page)) { 6113 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6114 0, len, NULL, 6115 ext4_bh_unmapped)) { 6116 /* Wait so that we don't change page under IO */ 6117 wait_for_stable_page(page); 6118 ret = VM_FAULT_LOCKED; 6119 goto out; 6120 } 6121 } 6122 unlock_page(page); 6123 /* OK, we need to fill the hole... */ 6124 if (ext4_should_dioread_nolock(inode)) 6125 get_block = ext4_get_block_unwritten; 6126 else 6127 get_block = ext4_get_block; 6128 retry_alloc: 6129 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6130 ext4_writepage_trans_blocks(inode)); 6131 if (IS_ERR(handle)) { 6132 ret = VM_FAULT_SIGBUS; 6133 goto out; 6134 } 6135 /* 6136 * Data journalling can't use block_page_mkwrite() because it 6137 * will set_buffer_dirty() before do_journal_get_write_access() 6138 * thus might hit warning messages for dirty metadata buffers. 6139 */ 6140 if (!ext4_should_journal_data(inode)) { 6141 err = block_page_mkwrite(vma, vmf, get_block); 6142 } else { 6143 lock_page(page); 6144 size = i_size_read(inode); 6145 /* Page got truncated from under us? */ 6146 if (page->mapping != mapping || page_offset(page) > size) { 6147 ret = VM_FAULT_NOPAGE; 6148 goto out_error; 6149 } 6150 6151 if (page->index == size >> PAGE_SHIFT) 6152 len = size & ~PAGE_MASK; 6153 else 6154 len = PAGE_SIZE; 6155 6156 err = __block_write_begin(page, 0, len, ext4_get_block); 6157 if (!err) { 6158 ret = VM_FAULT_SIGBUS; 6159 if (ext4_walk_page_buffers(handle, page_buffers(page), 6160 0, len, NULL, do_journal_get_write_access)) 6161 goto out_error; 6162 if (ext4_walk_page_buffers(handle, page_buffers(page), 6163 0, len, NULL, write_end_fn)) 6164 goto out_error; 6165 if (ext4_jbd2_inode_add_write(handle, inode, 6166 page_offset(page), len)) 6167 goto out_error; 6168 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6169 } else { 6170 unlock_page(page); 6171 } 6172 } 6173 ext4_journal_stop(handle); 6174 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6175 goto retry_alloc; 6176 out_ret: 6177 ret = block_page_mkwrite_return(err); 6178 out: 6179 up_read(&EXT4_I(inode)->i_mmap_sem); 6180 sb_end_pagefault(inode->i_sb); 6181 return ret; 6182 out_error: 6183 unlock_page(page); 6184 ext4_journal_stop(handle); 6185 goto out; 6186 } 6187 6188 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6189 { 6190 struct inode *inode = file_inode(vmf->vma->vm_file); 6191 vm_fault_t ret; 6192 6193 down_read(&EXT4_I(inode)->i_mmap_sem); 6194 ret = filemap_fault(vmf); 6195 up_read(&EXT4_I(inode)->i_mmap_sem); 6196 6197 return ret; 6198 } 6199