xref: /openbmc/linux/fs/ext4/inode.c (revision c4ee0af3)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u16 csum_lo;
56 	__u16 csum_hi = 0;
57 	__u32 csum;
58 
59 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 	raw->i_checksum_lo = 0;
61 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 		raw->i_checksum_hi = 0;
65 	}
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 			   EXT4_INODE_SIZE(inode->i_sb));
69 
70 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 
75 	return csum;
76 }
77 
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 				  struct ext4_inode_info *ei)
80 {
81 	__u32 provided, calculated;
82 
83 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 	    cpu_to_le32(EXT4_OS_LINUX) ||
85 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 		return;
110 
111 	csum = ext4_inode_csum(inode, raw, ei);
112 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117 
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 					      loff_t new_size)
120 {
121 	trace_ext4_begin_ordered_truncate(inode, new_size);
122 	/*
123 	 * If jinode is zero, then we never opened the file for
124 	 * writing, so there's no need to call
125 	 * jbd2_journal_begin_ordered_truncate() since there's no
126 	 * outstanding writes we need to flush.
127 	 */
128 	if (!EXT4_I(inode)->jinode)
129 		return 0;
130 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 						   EXT4_I(inode)->jinode,
132 						   new_size);
133 }
134 
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 				unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 		(inode->i_sb->s_blocksize >> 9) : 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages(&inode->i_data, 0);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (!is_bad_inode(inode))
224 		dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages(&inode->i_data, 0);
229 
230 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 	if (is_bad_inode(inode))
232 		goto no_delete;
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it
237 	 */
238 	sb_start_intwrite(inode->i_sb);
239 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 				    ext4_blocks_for_truncate(inode)+3);
241 	if (IS_ERR(handle)) {
242 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 		/*
244 		 * If we're going to skip the normal cleanup, we still need to
245 		 * make sure that the in-core orphan linked list is properly
246 		 * cleaned up.
247 		 */
248 		ext4_orphan_del(NULL, inode);
249 		sb_end_intwrite(inode->i_sb);
250 		goto no_delete;
251 	}
252 
253 	if (IS_SYNC(inode))
254 		ext4_handle_sync(handle);
255 	inode->i_size = 0;
256 	err = ext4_mark_inode_dirty(handle, inode);
257 	if (err) {
258 		ext4_warning(inode->i_sb,
259 			     "couldn't mark inode dirty (err %d)", err);
260 		goto stop_handle;
261 	}
262 	if (inode->i_blocks)
263 		ext4_truncate(inode);
264 
265 	/*
266 	 * ext4_ext_truncate() doesn't reserve any slop when it
267 	 * restarts journal transactions; therefore there may not be
268 	 * enough credits left in the handle to remove the inode from
269 	 * the orphan list and set the dtime field.
270 	 */
271 	if (!ext4_handle_has_enough_credits(handle, 3)) {
272 		err = ext4_journal_extend(handle, 3);
273 		if (err > 0)
274 			err = ext4_journal_restart(handle, 3);
275 		if (err != 0) {
276 			ext4_warning(inode->i_sb,
277 				     "couldn't extend journal (err %d)", err);
278 		stop_handle:
279 			ext4_journal_stop(handle);
280 			ext4_orphan_del(NULL, inode);
281 			sb_end_intwrite(inode->i_sb);
282 			goto no_delete;
283 		}
284 	}
285 
286 	/*
287 	 * Kill off the orphan record which ext4_truncate created.
288 	 * AKPM: I think this can be inside the above `if'.
289 	 * Note that ext4_orphan_del() has to be able to cope with the
290 	 * deletion of a non-existent orphan - this is because we don't
291 	 * know if ext4_truncate() actually created an orphan record.
292 	 * (Well, we could do this if we need to, but heck - it works)
293 	 */
294 	ext4_orphan_del(handle, inode);
295 	EXT4_I(inode)->i_dtime	= get_seconds();
296 
297 	/*
298 	 * One subtle ordering requirement: if anything has gone wrong
299 	 * (transaction abort, IO errors, whatever), then we can still
300 	 * do these next steps (the fs will already have been marked as
301 	 * having errors), but we can't free the inode if the mark_dirty
302 	 * fails.
303 	 */
304 	if (ext4_mark_inode_dirty(handle, inode))
305 		/* If that failed, just do the required in-core inode clear. */
306 		ext4_clear_inode(inode);
307 	else
308 		ext4_free_inode(handle, inode);
309 	ext4_journal_stop(handle);
310 	sb_end_intwrite(inode->i_sb);
311 	return;
312 no_delete:
313 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
314 }
315 
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 	return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322 
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 		return ext4_ext_calc_metadata_amount(inode, lblock);
331 
332 	return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334 
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 					int used, int quota_claim)
341 {
342 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 	struct ext4_inode_info *ei = EXT4_I(inode);
344 
345 	spin_lock(&ei->i_block_reservation_lock);
346 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 	if (unlikely(used > ei->i_reserved_data_blocks)) {
348 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 			 "with only %d reserved data blocks",
350 			 __func__, inode->i_ino, used,
351 			 ei->i_reserved_data_blocks);
352 		WARN_ON(1);
353 		used = ei->i_reserved_data_blocks;
354 	}
355 
356 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 			"with only %d reserved metadata blocks "
359 			"(releasing %d blocks with reserved %d data blocks)",
360 			inode->i_ino, ei->i_allocated_meta_blocks,
361 			     ei->i_reserved_meta_blocks, used,
362 			     ei->i_reserved_data_blocks);
363 		WARN_ON(1);
364 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 	}
366 
367 	/* Update per-inode reservations */
368 	ei->i_reserved_data_blocks -= used;
369 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 			   used + ei->i_allocated_meta_blocks);
372 	ei->i_allocated_meta_blocks = 0;
373 
374 	if (ei->i_reserved_data_blocks == 0) {
375 		/*
376 		 * We can release all of the reserved metadata blocks
377 		 * only when we have written all of the delayed
378 		 * allocation blocks.
379 		 */
380 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 				   ei->i_reserved_meta_blocks);
382 		ei->i_reserved_meta_blocks = 0;
383 		ei->i_da_metadata_calc_len = 0;
384 	}
385 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386 
387 	/* Update quota subsystem for data blocks */
388 	if (quota_claim)
389 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 	else {
391 		/*
392 		 * We did fallocate with an offset that is already delayed
393 		 * allocated. So on delayed allocated writeback we should
394 		 * not re-claim the quota for fallocated blocks.
395 		 */
396 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 	}
398 
399 	/*
400 	 * If we have done all the pending block allocations and if
401 	 * there aren't any writers on the inode, we can discard the
402 	 * inode's preallocations.
403 	 */
404 	if ((ei->i_reserved_data_blocks == 0) &&
405 	    (atomic_read(&inode->i_writecount) == 0))
406 		ext4_discard_preallocations(inode);
407 }
408 
409 static int __check_block_validity(struct inode *inode, const char *func,
410 				unsigned int line,
411 				struct ext4_map_blocks *map)
412 {
413 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 				   map->m_len)) {
415 		ext4_error_inode(inode, func, line, map->m_pblk,
416 				 "lblock %lu mapped to illegal pblock "
417 				 "(length %d)", (unsigned long) map->m_lblk,
418 				 map->m_len);
419 		return -EIO;
420 	}
421 	return 0;
422 }
423 
424 #define check_block_validity(inode, map)	\
425 	__check_block_validity((inode), __func__, __LINE__, (map))
426 
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429 				       struct inode *inode,
430 				       struct ext4_map_blocks *es_map,
431 				       struct ext4_map_blocks *map,
432 				       int flags)
433 {
434 	int retval;
435 
436 	map->m_flags = 0;
437 	/*
438 	 * There is a race window that the result is not the same.
439 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
440 	 * is that we lookup a block mapping in extent status tree with
441 	 * out taking i_data_sem.  So at the time the unwritten extent
442 	 * could be converted.
443 	 */
444 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 		down_read((&EXT4_I(inode)->i_data_sem));
446 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 					     EXT4_GET_BLOCKS_KEEP_SIZE);
449 	} else {
450 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 					     EXT4_GET_BLOCKS_KEEP_SIZE);
452 	}
453 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 		up_read((&EXT4_I(inode)->i_data_sem));
455 	/*
456 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 	 * because it shouldn't be marked in es_map->m_flags.
458 	 */
459 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertion failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507 	struct ext4_map_blocks orig_map;
508 
509 	memcpy(&orig_map, map, sizeof(*map));
510 #endif
511 
512 	map->m_flags = 0;
513 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 		  (unsigned long) map->m_lblk);
516 
517 	/* Lookup extent status tree firstly */
518 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519 		ext4_es_lru_add(inode);
520 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 			map->m_pblk = ext4_es_pblock(&es) +
522 					map->m_lblk - es.es_lblk;
523 			map->m_flags |= ext4_es_is_written(&es) ?
524 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 			retval = es.es_len - (map->m_lblk - es.es_lblk);
526 			if (retval > map->m_len)
527 				retval = map->m_len;
528 			map->m_len = retval;
529 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 			retval = 0;
531 		} else {
532 			BUG_ON(1);
533 		}
534 #ifdef ES_AGGRESSIVE_TEST
535 		ext4_map_blocks_es_recheck(handle, inode, map,
536 					   &orig_map, flags);
537 #endif
538 		goto found;
539 	}
540 
541 	/*
542 	 * Try to see if we can get the block without requesting a new
543 	 * file system block.
544 	 */
545 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 		down_read((&EXT4_I(inode)->i_data_sem));
547 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 					     EXT4_GET_BLOCKS_KEEP_SIZE);
550 	} else {
551 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 					     EXT4_GET_BLOCKS_KEEP_SIZE);
553 	}
554 	if (retval > 0) {
555 		int ret;
556 		unsigned int status;
557 
558 		if (unlikely(retval != map->m_len)) {
559 			ext4_warning(inode->i_sb,
560 				     "ES len assertion failed for inode "
561 				     "%lu: retval %d != map->m_len %d",
562 				     inode->i_ino, retval, map->m_len);
563 			WARN_ON(1);
564 		}
565 
566 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 		    ext4_find_delalloc_range(inode, map->m_lblk,
570 					     map->m_lblk + map->m_len - 1))
571 			status |= EXTENT_STATUS_DELAYED;
572 		ret = ext4_es_insert_extent(inode, map->m_lblk,
573 					    map->m_len, map->m_pblk, status);
574 		if (ret < 0)
575 			retval = ret;
576 	}
577 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 		up_read((&EXT4_I(inode)->i_data_sem));
579 
580 found:
581 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 		int ret = check_block_validity(inode, map);
583 		if (ret != 0)
584 			return ret;
585 	}
586 
587 	/* If it is only a block(s) look up */
588 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 		return retval;
590 
591 	/*
592 	 * Returns if the blocks have already allocated
593 	 *
594 	 * Note that if blocks have been preallocated
595 	 * ext4_ext_get_block() returns the create = 0
596 	 * with buffer head unmapped.
597 	 */
598 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 		return retval;
600 
601 	/*
602 	 * Here we clear m_flags because after allocating an new extent,
603 	 * it will be set again.
604 	 */
605 	map->m_flags &= ~EXT4_MAP_FLAGS;
606 
607 	/*
608 	 * New blocks allocate and/or writing to uninitialized extent
609 	 * will possibly result in updating i_data, so we take
610 	 * the write lock of i_data_sem, and call get_blocks()
611 	 * with create == 1 flag.
612 	 */
613 	down_write((&EXT4_I(inode)->i_data_sem));
614 
615 	/*
616 	 * if the caller is from delayed allocation writeout path
617 	 * we have already reserved fs blocks for allocation
618 	 * let the underlying get_block() function know to
619 	 * avoid double accounting
620 	 */
621 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623 	/*
624 	 * We need to check for EXT4 here because migrate
625 	 * could have changed the inode type in between
626 	 */
627 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
629 	} else {
630 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
631 
632 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633 			/*
634 			 * We allocated new blocks which will result in
635 			 * i_data's format changing.  Force the migrate
636 			 * to fail by clearing migrate flags
637 			 */
638 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639 		}
640 
641 		/*
642 		 * Update reserved blocks/metadata blocks after successful
643 		 * block allocation which had been deferred till now. We don't
644 		 * support fallocate for non extent files. So we can update
645 		 * reserve space here.
646 		 */
647 		if ((retval > 0) &&
648 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649 			ext4_da_update_reserve_space(inode, retval, 1);
650 	}
651 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653 
654 	if (retval > 0) {
655 		int ret;
656 		unsigned int status;
657 
658 		if (unlikely(retval != map->m_len)) {
659 			ext4_warning(inode->i_sb,
660 				     "ES len assertion failed for inode "
661 				     "%lu: retval %d != map->m_len %d",
662 				     inode->i_ino, retval, map->m_len);
663 			WARN_ON(1);
664 		}
665 
666 		/*
667 		 * If the extent has been zeroed out, we don't need to update
668 		 * extent status tree.
669 		 */
670 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 			if (ext4_es_is_written(&es))
673 				goto has_zeroout;
674 		}
675 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 		    ext4_find_delalloc_range(inode, map->m_lblk,
679 					     map->m_lblk + map->m_len - 1))
680 			status |= EXTENT_STATUS_DELAYED;
681 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 					    map->m_pblk, status);
683 		if (ret < 0)
684 			retval = ret;
685 	}
686 
687 has_zeroout:
688 	up_write((&EXT4_I(inode)->i_data_sem));
689 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690 		int ret = check_block_validity(inode, map);
691 		if (ret != 0)
692 			return ret;
693 	}
694 	return retval;
695 }
696 
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699 
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 			   struct buffer_head *bh, int flags)
702 {
703 	handle_t *handle = ext4_journal_current_handle();
704 	struct ext4_map_blocks map;
705 	int ret = 0, started = 0;
706 	int dio_credits;
707 
708 	if (ext4_has_inline_data(inode))
709 		return -ERANGE;
710 
711 	map.m_lblk = iblock;
712 	map.m_len = bh->b_size >> inode->i_blkbits;
713 
714 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715 		/* Direct IO write... */
716 		if (map.m_len > DIO_MAX_BLOCKS)
717 			map.m_len = DIO_MAX_BLOCKS;
718 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 					    dio_credits);
721 		if (IS_ERR(handle)) {
722 			ret = PTR_ERR(handle);
723 			return ret;
724 		}
725 		started = 1;
726 	}
727 
728 	ret = ext4_map_blocks(handle, inode, &map, flags);
729 	if (ret > 0) {
730 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
731 
732 		map_bh(bh, inode->i_sb, map.m_pblk);
733 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
734 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735 			set_buffer_defer_completion(bh);
736 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737 		ret = 0;
738 	}
739 	if (started)
740 		ext4_journal_stop(handle);
741 	return ret;
742 }
743 
744 int ext4_get_block(struct inode *inode, sector_t iblock,
745 		   struct buffer_head *bh, int create)
746 {
747 	return _ext4_get_block(inode, iblock, bh,
748 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
749 }
750 
751 /*
752  * `handle' can be NULL if create is zero
753  */
754 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
755 				ext4_lblk_t block, int create, int *errp)
756 {
757 	struct ext4_map_blocks map;
758 	struct buffer_head *bh;
759 	int fatal = 0, err;
760 
761 	J_ASSERT(handle != NULL || create == 0);
762 
763 	map.m_lblk = block;
764 	map.m_len = 1;
765 	err = ext4_map_blocks(handle, inode, &map,
766 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
767 
768 	/* ensure we send some value back into *errp */
769 	*errp = 0;
770 
771 	if (create && err == 0)
772 		err = -ENOSPC;	/* should never happen */
773 	if (err < 0)
774 		*errp = err;
775 	if (err <= 0)
776 		return NULL;
777 
778 	bh = sb_getblk(inode->i_sb, map.m_pblk);
779 	if (unlikely(!bh)) {
780 		*errp = -ENOMEM;
781 		return NULL;
782 	}
783 	if (map.m_flags & EXT4_MAP_NEW) {
784 		J_ASSERT(create != 0);
785 		J_ASSERT(handle != NULL);
786 
787 		/*
788 		 * Now that we do not always journal data, we should
789 		 * keep in mind whether this should always journal the
790 		 * new buffer as metadata.  For now, regular file
791 		 * writes use ext4_get_block instead, so it's not a
792 		 * problem.
793 		 */
794 		lock_buffer(bh);
795 		BUFFER_TRACE(bh, "call get_create_access");
796 		fatal = ext4_journal_get_create_access(handle, bh);
797 		if (!fatal && !buffer_uptodate(bh)) {
798 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
799 			set_buffer_uptodate(bh);
800 		}
801 		unlock_buffer(bh);
802 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
803 		err = ext4_handle_dirty_metadata(handle, inode, bh);
804 		if (!fatal)
805 			fatal = err;
806 	} else {
807 		BUFFER_TRACE(bh, "not a new buffer");
808 	}
809 	if (fatal) {
810 		*errp = fatal;
811 		brelse(bh);
812 		bh = NULL;
813 	}
814 	return bh;
815 }
816 
817 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
818 			       ext4_lblk_t block, int create, int *err)
819 {
820 	struct buffer_head *bh;
821 
822 	bh = ext4_getblk(handle, inode, block, create, err);
823 	if (!bh)
824 		return bh;
825 	if (buffer_uptodate(bh))
826 		return bh;
827 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
828 	wait_on_buffer(bh);
829 	if (buffer_uptodate(bh))
830 		return bh;
831 	put_bh(bh);
832 	*err = -EIO;
833 	return NULL;
834 }
835 
836 int ext4_walk_page_buffers(handle_t *handle,
837 			   struct buffer_head *head,
838 			   unsigned from,
839 			   unsigned to,
840 			   int *partial,
841 			   int (*fn)(handle_t *handle,
842 				     struct buffer_head *bh))
843 {
844 	struct buffer_head *bh;
845 	unsigned block_start, block_end;
846 	unsigned blocksize = head->b_size;
847 	int err, ret = 0;
848 	struct buffer_head *next;
849 
850 	for (bh = head, block_start = 0;
851 	     ret == 0 && (bh != head || !block_start);
852 	     block_start = block_end, bh = next) {
853 		next = bh->b_this_page;
854 		block_end = block_start + blocksize;
855 		if (block_end <= from || block_start >= to) {
856 			if (partial && !buffer_uptodate(bh))
857 				*partial = 1;
858 			continue;
859 		}
860 		err = (*fn)(handle, bh);
861 		if (!ret)
862 			ret = err;
863 	}
864 	return ret;
865 }
866 
867 /*
868  * To preserve ordering, it is essential that the hole instantiation and
869  * the data write be encapsulated in a single transaction.  We cannot
870  * close off a transaction and start a new one between the ext4_get_block()
871  * and the commit_write().  So doing the jbd2_journal_start at the start of
872  * prepare_write() is the right place.
873  *
874  * Also, this function can nest inside ext4_writepage().  In that case, we
875  * *know* that ext4_writepage() has generated enough buffer credits to do the
876  * whole page.  So we won't block on the journal in that case, which is good,
877  * because the caller may be PF_MEMALLOC.
878  *
879  * By accident, ext4 can be reentered when a transaction is open via
880  * quota file writes.  If we were to commit the transaction while thus
881  * reentered, there can be a deadlock - we would be holding a quota
882  * lock, and the commit would never complete if another thread had a
883  * transaction open and was blocking on the quota lock - a ranking
884  * violation.
885  *
886  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
887  * will _not_ run commit under these circumstances because handle->h_ref
888  * is elevated.  We'll still have enough credits for the tiny quotafile
889  * write.
890  */
891 int do_journal_get_write_access(handle_t *handle,
892 				struct buffer_head *bh)
893 {
894 	int dirty = buffer_dirty(bh);
895 	int ret;
896 
897 	if (!buffer_mapped(bh) || buffer_freed(bh))
898 		return 0;
899 	/*
900 	 * __block_write_begin() could have dirtied some buffers. Clean
901 	 * the dirty bit as jbd2_journal_get_write_access() could complain
902 	 * otherwise about fs integrity issues. Setting of the dirty bit
903 	 * by __block_write_begin() isn't a real problem here as we clear
904 	 * the bit before releasing a page lock and thus writeback cannot
905 	 * ever write the buffer.
906 	 */
907 	if (dirty)
908 		clear_buffer_dirty(bh);
909 	ret = ext4_journal_get_write_access(handle, bh);
910 	if (!ret && dirty)
911 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
912 	return ret;
913 }
914 
915 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
916 		   struct buffer_head *bh_result, int create);
917 static int ext4_write_begin(struct file *file, struct address_space *mapping,
918 			    loff_t pos, unsigned len, unsigned flags,
919 			    struct page **pagep, void **fsdata)
920 {
921 	struct inode *inode = mapping->host;
922 	int ret, needed_blocks;
923 	handle_t *handle;
924 	int retries = 0;
925 	struct page *page;
926 	pgoff_t index;
927 	unsigned from, to;
928 
929 	trace_ext4_write_begin(inode, pos, len, flags);
930 	/*
931 	 * Reserve one block more for addition to orphan list in case
932 	 * we allocate blocks but write fails for some reason
933 	 */
934 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
935 	index = pos >> PAGE_CACHE_SHIFT;
936 	from = pos & (PAGE_CACHE_SIZE - 1);
937 	to = from + len;
938 
939 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
940 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
941 						    flags, pagep);
942 		if (ret < 0)
943 			return ret;
944 		if (ret == 1)
945 			return 0;
946 	}
947 
948 	/*
949 	 * grab_cache_page_write_begin() can take a long time if the
950 	 * system is thrashing due to memory pressure, or if the page
951 	 * is being written back.  So grab it first before we start
952 	 * the transaction handle.  This also allows us to allocate
953 	 * the page (if needed) without using GFP_NOFS.
954 	 */
955 retry_grab:
956 	page = grab_cache_page_write_begin(mapping, index, flags);
957 	if (!page)
958 		return -ENOMEM;
959 	unlock_page(page);
960 
961 retry_journal:
962 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
963 	if (IS_ERR(handle)) {
964 		page_cache_release(page);
965 		return PTR_ERR(handle);
966 	}
967 
968 	lock_page(page);
969 	if (page->mapping != mapping) {
970 		/* The page got truncated from under us */
971 		unlock_page(page);
972 		page_cache_release(page);
973 		ext4_journal_stop(handle);
974 		goto retry_grab;
975 	}
976 	/* In case writeback began while the page was unlocked */
977 	wait_for_stable_page(page);
978 
979 	if (ext4_should_dioread_nolock(inode))
980 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
981 	else
982 		ret = __block_write_begin(page, pos, len, ext4_get_block);
983 
984 	if (!ret && ext4_should_journal_data(inode)) {
985 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
986 					     from, to, NULL,
987 					     do_journal_get_write_access);
988 	}
989 
990 	if (ret) {
991 		unlock_page(page);
992 		/*
993 		 * __block_write_begin may have instantiated a few blocks
994 		 * outside i_size.  Trim these off again. Don't need
995 		 * i_size_read because we hold i_mutex.
996 		 *
997 		 * Add inode to orphan list in case we crash before
998 		 * truncate finishes
999 		 */
1000 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1001 			ext4_orphan_add(handle, inode);
1002 
1003 		ext4_journal_stop(handle);
1004 		if (pos + len > inode->i_size) {
1005 			ext4_truncate_failed_write(inode);
1006 			/*
1007 			 * If truncate failed early the inode might
1008 			 * still be on the orphan list; we need to
1009 			 * make sure the inode is removed from the
1010 			 * orphan list in that case.
1011 			 */
1012 			if (inode->i_nlink)
1013 				ext4_orphan_del(NULL, inode);
1014 		}
1015 
1016 		if (ret == -ENOSPC &&
1017 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1018 			goto retry_journal;
1019 		page_cache_release(page);
1020 		return ret;
1021 	}
1022 	*pagep = page;
1023 	return ret;
1024 }
1025 
1026 /* For write_end() in data=journal mode */
1027 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1028 {
1029 	int ret;
1030 	if (!buffer_mapped(bh) || buffer_freed(bh))
1031 		return 0;
1032 	set_buffer_uptodate(bh);
1033 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 	clear_buffer_meta(bh);
1035 	clear_buffer_prio(bh);
1036 	return ret;
1037 }
1038 
1039 /*
1040  * We need to pick up the new inode size which generic_commit_write gave us
1041  * `file' can be NULL - eg, when called from page_symlink().
1042  *
1043  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1044  * buffers are managed internally.
1045  */
1046 static int ext4_write_end(struct file *file,
1047 			  struct address_space *mapping,
1048 			  loff_t pos, unsigned len, unsigned copied,
1049 			  struct page *page, void *fsdata)
1050 {
1051 	handle_t *handle = ext4_journal_current_handle();
1052 	struct inode *inode = mapping->host;
1053 	int ret = 0, ret2;
1054 	int i_size_changed = 0;
1055 
1056 	trace_ext4_write_end(inode, pos, len, copied);
1057 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1058 		ret = ext4_jbd2_file_inode(handle, inode);
1059 		if (ret) {
1060 			unlock_page(page);
1061 			page_cache_release(page);
1062 			goto errout;
1063 		}
1064 	}
1065 
1066 	if (ext4_has_inline_data(inode)) {
1067 		ret = ext4_write_inline_data_end(inode, pos, len,
1068 						 copied, page);
1069 		if (ret < 0)
1070 			goto errout;
1071 		copied = ret;
1072 	} else
1073 		copied = block_write_end(file, mapping, pos,
1074 					 len, copied, page, fsdata);
1075 
1076 	/*
1077 	 * No need to use i_size_read() here, the i_size
1078 	 * cannot change under us because we hole i_mutex.
1079 	 *
1080 	 * But it's important to update i_size while still holding page lock:
1081 	 * page writeout could otherwise come in and zero beyond i_size.
1082 	 */
1083 	if (pos + copied > inode->i_size) {
1084 		i_size_write(inode, pos + copied);
1085 		i_size_changed = 1;
1086 	}
1087 
1088 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1089 		/* We need to mark inode dirty even if
1090 		 * new_i_size is less that inode->i_size
1091 		 * but greater than i_disksize. (hint delalloc)
1092 		 */
1093 		ext4_update_i_disksize(inode, (pos + copied));
1094 		i_size_changed = 1;
1095 	}
1096 	unlock_page(page);
1097 	page_cache_release(page);
1098 
1099 	/*
1100 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1101 	 * makes the holding time of page lock longer. Second, it forces lock
1102 	 * ordering of page lock and transaction start for journaling
1103 	 * filesystems.
1104 	 */
1105 	if (i_size_changed)
1106 		ext4_mark_inode_dirty(handle, inode);
1107 
1108 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1109 		/* if we have allocated more blocks and copied
1110 		 * less. We will have blocks allocated outside
1111 		 * inode->i_size. So truncate them
1112 		 */
1113 		ext4_orphan_add(handle, inode);
1114 errout:
1115 	ret2 = ext4_journal_stop(handle);
1116 	if (!ret)
1117 		ret = ret2;
1118 
1119 	if (pos + len > inode->i_size) {
1120 		ext4_truncate_failed_write(inode);
1121 		/*
1122 		 * If truncate failed early the inode might still be
1123 		 * on the orphan list; we need to make sure the inode
1124 		 * is removed from the orphan list in that case.
1125 		 */
1126 		if (inode->i_nlink)
1127 			ext4_orphan_del(NULL, inode);
1128 	}
1129 
1130 	return ret ? ret : copied;
1131 }
1132 
1133 static int ext4_journalled_write_end(struct file *file,
1134 				     struct address_space *mapping,
1135 				     loff_t pos, unsigned len, unsigned copied,
1136 				     struct page *page, void *fsdata)
1137 {
1138 	handle_t *handle = ext4_journal_current_handle();
1139 	struct inode *inode = mapping->host;
1140 	int ret = 0, ret2;
1141 	int partial = 0;
1142 	unsigned from, to;
1143 	loff_t new_i_size;
1144 
1145 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1146 	from = pos & (PAGE_CACHE_SIZE - 1);
1147 	to = from + len;
1148 
1149 	BUG_ON(!ext4_handle_valid(handle));
1150 
1151 	if (ext4_has_inline_data(inode))
1152 		copied = ext4_write_inline_data_end(inode, pos, len,
1153 						    copied, page);
1154 	else {
1155 		if (copied < len) {
1156 			if (!PageUptodate(page))
1157 				copied = 0;
1158 			page_zero_new_buffers(page, from+copied, to);
1159 		}
1160 
1161 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1162 					     to, &partial, write_end_fn);
1163 		if (!partial)
1164 			SetPageUptodate(page);
1165 	}
1166 	new_i_size = pos + copied;
1167 	if (new_i_size > inode->i_size)
1168 		i_size_write(inode, pos+copied);
1169 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1170 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1171 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1172 		ext4_update_i_disksize(inode, new_i_size);
1173 		ret2 = ext4_mark_inode_dirty(handle, inode);
1174 		if (!ret)
1175 			ret = ret2;
1176 	}
1177 
1178 	unlock_page(page);
1179 	page_cache_release(page);
1180 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1181 		/* if we have allocated more blocks and copied
1182 		 * less. We will have blocks allocated outside
1183 		 * inode->i_size. So truncate them
1184 		 */
1185 		ext4_orphan_add(handle, inode);
1186 
1187 	ret2 = ext4_journal_stop(handle);
1188 	if (!ret)
1189 		ret = ret2;
1190 	if (pos + len > inode->i_size) {
1191 		ext4_truncate_failed_write(inode);
1192 		/*
1193 		 * If truncate failed early the inode might still be
1194 		 * on the orphan list; we need to make sure the inode
1195 		 * is removed from the orphan list in that case.
1196 		 */
1197 		if (inode->i_nlink)
1198 			ext4_orphan_del(NULL, inode);
1199 	}
1200 
1201 	return ret ? ret : copied;
1202 }
1203 
1204 /*
1205  * Reserve a metadata for a single block located at lblock
1206  */
1207 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1208 {
1209 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1210 	struct ext4_inode_info *ei = EXT4_I(inode);
1211 	unsigned int md_needed;
1212 	ext4_lblk_t save_last_lblock;
1213 	int save_len;
1214 
1215 	/*
1216 	 * recalculate the amount of metadata blocks to reserve
1217 	 * in order to allocate nrblocks
1218 	 * worse case is one extent per block
1219 	 */
1220 	spin_lock(&ei->i_block_reservation_lock);
1221 	/*
1222 	 * ext4_calc_metadata_amount() has side effects, which we have
1223 	 * to be prepared undo if we fail to claim space.
1224 	 */
1225 	save_len = ei->i_da_metadata_calc_len;
1226 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1227 	md_needed = EXT4_NUM_B2C(sbi,
1228 				 ext4_calc_metadata_amount(inode, lblock));
1229 	trace_ext4_da_reserve_space(inode, md_needed);
1230 
1231 	/*
1232 	 * We do still charge estimated metadata to the sb though;
1233 	 * we cannot afford to run out of free blocks.
1234 	 */
1235 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1236 		ei->i_da_metadata_calc_len = save_len;
1237 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1238 		spin_unlock(&ei->i_block_reservation_lock);
1239 		return -ENOSPC;
1240 	}
1241 	ei->i_reserved_meta_blocks += md_needed;
1242 	spin_unlock(&ei->i_block_reservation_lock);
1243 
1244 	return 0;       /* success */
1245 }
1246 
1247 /*
1248  * Reserve a single cluster located at lblock
1249  */
1250 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1251 {
1252 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1253 	struct ext4_inode_info *ei = EXT4_I(inode);
1254 	unsigned int md_needed;
1255 	int ret;
1256 	ext4_lblk_t save_last_lblock;
1257 	int save_len;
1258 
1259 	/*
1260 	 * We will charge metadata quota at writeout time; this saves
1261 	 * us from metadata over-estimation, though we may go over by
1262 	 * a small amount in the end.  Here we just reserve for data.
1263 	 */
1264 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1265 	if (ret)
1266 		return ret;
1267 
1268 	/*
1269 	 * recalculate the amount of metadata blocks to reserve
1270 	 * in order to allocate nrblocks
1271 	 * worse case is one extent per block
1272 	 */
1273 	spin_lock(&ei->i_block_reservation_lock);
1274 	/*
1275 	 * ext4_calc_metadata_amount() has side effects, which we have
1276 	 * to be prepared undo if we fail to claim space.
1277 	 */
1278 	save_len = ei->i_da_metadata_calc_len;
1279 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1280 	md_needed = EXT4_NUM_B2C(sbi,
1281 				 ext4_calc_metadata_amount(inode, lblock));
1282 	trace_ext4_da_reserve_space(inode, md_needed);
1283 
1284 	/*
1285 	 * We do still charge estimated metadata to the sb though;
1286 	 * we cannot afford to run out of free blocks.
1287 	 */
1288 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1289 		ei->i_da_metadata_calc_len = save_len;
1290 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1291 		spin_unlock(&ei->i_block_reservation_lock);
1292 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1293 		return -ENOSPC;
1294 	}
1295 	ei->i_reserved_data_blocks++;
1296 	ei->i_reserved_meta_blocks += md_needed;
1297 	spin_unlock(&ei->i_block_reservation_lock);
1298 
1299 	return 0;       /* success */
1300 }
1301 
1302 static void ext4_da_release_space(struct inode *inode, int to_free)
1303 {
1304 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1305 	struct ext4_inode_info *ei = EXT4_I(inode);
1306 
1307 	if (!to_free)
1308 		return;		/* Nothing to release, exit */
1309 
1310 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1311 
1312 	trace_ext4_da_release_space(inode, to_free);
1313 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1314 		/*
1315 		 * if there aren't enough reserved blocks, then the
1316 		 * counter is messed up somewhere.  Since this
1317 		 * function is called from invalidate page, it's
1318 		 * harmless to return without any action.
1319 		 */
1320 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1321 			 "ino %lu, to_free %d with only %d reserved "
1322 			 "data blocks", inode->i_ino, to_free,
1323 			 ei->i_reserved_data_blocks);
1324 		WARN_ON(1);
1325 		to_free = ei->i_reserved_data_blocks;
1326 	}
1327 	ei->i_reserved_data_blocks -= to_free;
1328 
1329 	if (ei->i_reserved_data_blocks == 0) {
1330 		/*
1331 		 * We can release all of the reserved metadata blocks
1332 		 * only when we have written all of the delayed
1333 		 * allocation blocks.
1334 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1335 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1336 		 */
1337 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1338 				   ei->i_reserved_meta_blocks);
1339 		ei->i_reserved_meta_blocks = 0;
1340 		ei->i_da_metadata_calc_len = 0;
1341 	}
1342 
1343 	/* update fs dirty data blocks counter */
1344 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1345 
1346 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1347 
1348 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1349 }
1350 
1351 static void ext4_da_page_release_reservation(struct page *page,
1352 					     unsigned int offset,
1353 					     unsigned int length)
1354 {
1355 	int to_release = 0;
1356 	struct buffer_head *head, *bh;
1357 	unsigned int curr_off = 0;
1358 	struct inode *inode = page->mapping->host;
1359 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1360 	unsigned int stop = offset + length;
1361 	int num_clusters;
1362 	ext4_fsblk_t lblk;
1363 
1364 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1365 
1366 	head = page_buffers(page);
1367 	bh = head;
1368 	do {
1369 		unsigned int next_off = curr_off + bh->b_size;
1370 
1371 		if (next_off > stop)
1372 			break;
1373 
1374 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1375 			to_release++;
1376 			clear_buffer_delay(bh);
1377 		}
1378 		curr_off = next_off;
1379 	} while ((bh = bh->b_this_page) != head);
1380 
1381 	if (to_release) {
1382 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1383 		ext4_es_remove_extent(inode, lblk, to_release);
1384 	}
1385 
1386 	/* If we have released all the blocks belonging to a cluster, then we
1387 	 * need to release the reserved space for that cluster. */
1388 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1389 	while (num_clusters > 0) {
1390 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1391 			((num_clusters - 1) << sbi->s_cluster_bits);
1392 		if (sbi->s_cluster_ratio == 1 ||
1393 		    !ext4_find_delalloc_cluster(inode, lblk))
1394 			ext4_da_release_space(inode, 1);
1395 
1396 		num_clusters--;
1397 	}
1398 }
1399 
1400 /*
1401  * Delayed allocation stuff
1402  */
1403 
1404 struct mpage_da_data {
1405 	struct inode *inode;
1406 	struct writeback_control *wbc;
1407 
1408 	pgoff_t first_page;	/* The first page to write */
1409 	pgoff_t next_page;	/* Current page to examine */
1410 	pgoff_t last_page;	/* Last page to examine */
1411 	/*
1412 	 * Extent to map - this can be after first_page because that can be
1413 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1414 	 * is delalloc or unwritten.
1415 	 */
1416 	struct ext4_map_blocks map;
1417 	struct ext4_io_submit io_submit;	/* IO submission data */
1418 };
1419 
1420 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1421 				       bool invalidate)
1422 {
1423 	int nr_pages, i;
1424 	pgoff_t index, end;
1425 	struct pagevec pvec;
1426 	struct inode *inode = mpd->inode;
1427 	struct address_space *mapping = inode->i_mapping;
1428 
1429 	/* This is necessary when next_page == 0. */
1430 	if (mpd->first_page >= mpd->next_page)
1431 		return;
1432 
1433 	index = mpd->first_page;
1434 	end   = mpd->next_page - 1;
1435 	if (invalidate) {
1436 		ext4_lblk_t start, last;
1437 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1438 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1439 		ext4_es_remove_extent(inode, start, last - start + 1);
1440 	}
1441 
1442 	pagevec_init(&pvec, 0);
1443 	while (index <= end) {
1444 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1445 		if (nr_pages == 0)
1446 			break;
1447 		for (i = 0; i < nr_pages; i++) {
1448 			struct page *page = pvec.pages[i];
1449 			if (page->index > end)
1450 				break;
1451 			BUG_ON(!PageLocked(page));
1452 			BUG_ON(PageWriteback(page));
1453 			if (invalidate) {
1454 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1455 				ClearPageUptodate(page);
1456 			}
1457 			unlock_page(page);
1458 		}
1459 		index = pvec.pages[nr_pages - 1]->index + 1;
1460 		pagevec_release(&pvec);
1461 	}
1462 }
1463 
1464 static void ext4_print_free_blocks(struct inode *inode)
1465 {
1466 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1467 	struct super_block *sb = inode->i_sb;
1468 	struct ext4_inode_info *ei = EXT4_I(inode);
1469 
1470 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1471 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1472 			ext4_count_free_clusters(sb)));
1473 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1474 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1475 	       (long long) EXT4_C2B(EXT4_SB(sb),
1476 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1477 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1478 	       (long long) EXT4_C2B(EXT4_SB(sb),
1479 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1480 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1481 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1482 		 ei->i_reserved_data_blocks);
1483 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1484 	       ei->i_reserved_meta_blocks);
1485 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1486 	       ei->i_allocated_meta_blocks);
1487 	return;
1488 }
1489 
1490 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1491 {
1492 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1493 }
1494 
1495 /*
1496  * This function is grabs code from the very beginning of
1497  * ext4_map_blocks, but assumes that the caller is from delayed write
1498  * time. This function looks up the requested blocks and sets the
1499  * buffer delay bit under the protection of i_data_sem.
1500  */
1501 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1502 			      struct ext4_map_blocks *map,
1503 			      struct buffer_head *bh)
1504 {
1505 	struct extent_status es;
1506 	int retval;
1507 	sector_t invalid_block = ~((sector_t) 0xffff);
1508 #ifdef ES_AGGRESSIVE_TEST
1509 	struct ext4_map_blocks orig_map;
1510 
1511 	memcpy(&orig_map, map, sizeof(*map));
1512 #endif
1513 
1514 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1515 		invalid_block = ~0;
1516 
1517 	map->m_flags = 0;
1518 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1519 		  "logical block %lu\n", inode->i_ino, map->m_len,
1520 		  (unsigned long) map->m_lblk);
1521 
1522 	/* Lookup extent status tree firstly */
1523 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1524 		ext4_es_lru_add(inode);
1525 		if (ext4_es_is_hole(&es)) {
1526 			retval = 0;
1527 			down_read((&EXT4_I(inode)->i_data_sem));
1528 			goto add_delayed;
1529 		}
1530 
1531 		/*
1532 		 * Delayed extent could be allocated by fallocate.
1533 		 * So we need to check it.
1534 		 */
1535 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1536 			map_bh(bh, inode->i_sb, invalid_block);
1537 			set_buffer_new(bh);
1538 			set_buffer_delay(bh);
1539 			return 0;
1540 		}
1541 
1542 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1543 		retval = es.es_len - (iblock - es.es_lblk);
1544 		if (retval > map->m_len)
1545 			retval = map->m_len;
1546 		map->m_len = retval;
1547 		if (ext4_es_is_written(&es))
1548 			map->m_flags |= EXT4_MAP_MAPPED;
1549 		else if (ext4_es_is_unwritten(&es))
1550 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1551 		else
1552 			BUG_ON(1);
1553 
1554 #ifdef ES_AGGRESSIVE_TEST
1555 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1556 #endif
1557 		return retval;
1558 	}
1559 
1560 	/*
1561 	 * Try to see if we can get the block without requesting a new
1562 	 * file system block.
1563 	 */
1564 	down_read((&EXT4_I(inode)->i_data_sem));
1565 	if (ext4_has_inline_data(inode)) {
1566 		/*
1567 		 * We will soon create blocks for this page, and let
1568 		 * us pretend as if the blocks aren't allocated yet.
1569 		 * In case of clusters, we have to handle the work
1570 		 * of mapping from cluster so that the reserved space
1571 		 * is calculated properly.
1572 		 */
1573 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1574 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1575 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1576 		retval = 0;
1577 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1578 		retval = ext4_ext_map_blocks(NULL, inode, map,
1579 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1580 	else
1581 		retval = ext4_ind_map_blocks(NULL, inode, map,
1582 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1583 
1584 add_delayed:
1585 	if (retval == 0) {
1586 		int ret;
1587 		/*
1588 		 * XXX: __block_prepare_write() unmaps passed block,
1589 		 * is it OK?
1590 		 */
1591 		/*
1592 		 * If the block was allocated from previously allocated cluster,
1593 		 * then we don't need to reserve it again. However we still need
1594 		 * to reserve metadata for every block we're going to write.
1595 		 */
1596 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1597 			ret = ext4_da_reserve_space(inode, iblock);
1598 			if (ret) {
1599 				/* not enough space to reserve */
1600 				retval = ret;
1601 				goto out_unlock;
1602 			}
1603 		} else {
1604 			ret = ext4_da_reserve_metadata(inode, iblock);
1605 			if (ret) {
1606 				/* not enough space to reserve */
1607 				retval = ret;
1608 				goto out_unlock;
1609 			}
1610 		}
1611 
1612 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1613 					    ~0, EXTENT_STATUS_DELAYED);
1614 		if (ret) {
1615 			retval = ret;
1616 			goto out_unlock;
1617 		}
1618 
1619 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1620 		 * and it should not appear on the bh->b_state.
1621 		 */
1622 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1623 
1624 		map_bh(bh, inode->i_sb, invalid_block);
1625 		set_buffer_new(bh);
1626 		set_buffer_delay(bh);
1627 	} else if (retval > 0) {
1628 		int ret;
1629 		unsigned int status;
1630 
1631 		if (unlikely(retval != map->m_len)) {
1632 			ext4_warning(inode->i_sb,
1633 				     "ES len assertion failed for inode "
1634 				     "%lu: retval %d != map->m_len %d",
1635 				     inode->i_ino, retval, map->m_len);
1636 			WARN_ON(1);
1637 		}
1638 
1639 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1640 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1641 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1642 					    map->m_pblk, status);
1643 		if (ret != 0)
1644 			retval = ret;
1645 	}
1646 
1647 out_unlock:
1648 	up_read((&EXT4_I(inode)->i_data_sem));
1649 
1650 	return retval;
1651 }
1652 
1653 /*
1654  * This is a special get_blocks_t callback which is used by
1655  * ext4_da_write_begin().  It will either return mapped block or
1656  * reserve space for a single block.
1657  *
1658  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1659  * We also have b_blocknr = -1 and b_bdev initialized properly
1660  *
1661  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1662  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1663  * initialized properly.
1664  */
1665 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1666 			   struct buffer_head *bh, int create)
1667 {
1668 	struct ext4_map_blocks map;
1669 	int ret = 0;
1670 
1671 	BUG_ON(create == 0);
1672 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1673 
1674 	map.m_lblk = iblock;
1675 	map.m_len = 1;
1676 
1677 	/*
1678 	 * first, we need to know whether the block is allocated already
1679 	 * preallocated blocks are unmapped but should treated
1680 	 * the same as allocated blocks.
1681 	 */
1682 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1683 	if (ret <= 0)
1684 		return ret;
1685 
1686 	map_bh(bh, inode->i_sb, map.m_pblk);
1687 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1688 
1689 	if (buffer_unwritten(bh)) {
1690 		/* A delayed write to unwritten bh should be marked
1691 		 * new and mapped.  Mapped ensures that we don't do
1692 		 * get_block multiple times when we write to the same
1693 		 * offset and new ensures that we do proper zero out
1694 		 * for partial write.
1695 		 */
1696 		set_buffer_new(bh);
1697 		set_buffer_mapped(bh);
1698 	}
1699 	return 0;
1700 }
1701 
1702 static int bget_one(handle_t *handle, struct buffer_head *bh)
1703 {
1704 	get_bh(bh);
1705 	return 0;
1706 }
1707 
1708 static int bput_one(handle_t *handle, struct buffer_head *bh)
1709 {
1710 	put_bh(bh);
1711 	return 0;
1712 }
1713 
1714 static int __ext4_journalled_writepage(struct page *page,
1715 				       unsigned int len)
1716 {
1717 	struct address_space *mapping = page->mapping;
1718 	struct inode *inode = mapping->host;
1719 	struct buffer_head *page_bufs = NULL;
1720 	handle_t *handle = NULL;
1721 	int ret = 0, err = 0;
1722 	int inline_data = ext4_has_inline_data(inode);
1723 	struct buffer_head *inode_bh = NULL;
1724 
1725 	ClearPageChecked(page);
1726 
1727 	if (inline_data) {
1728 		BUG_ON(page->index != 0);
1729 		BUG_ON(len > ext4_get_max_inline_size(inode));
1730 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1731 		if (inode_bh == NULL)
1732 			goto out;
1733 	} else {
1734 		page_bufs = page_buffers(page);
1735 		if (!page_bufs) {
1736 			BUG();
1737 			goto out;
1738 		}
1739 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1740 				       NULL, bget_one);
1741 	}
1742 	/* As soon as we unlock the page, it can go away, but we have
1743 	 * references to buffers so we are safe */
1744 	unlock_page(page);
1745 
1746 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1747 				    ext4_writepage_trans_blocks(inode));
1748 	if (IS_ERR(handle)) {
1749 		ret = PTR_ERR(handle);
1750 		goto out;
1751 	}
1752 
1753 	BUG_ON(!ext4_handle_valid(handle));
1754 
1755 	if (inline_data) {
1756 		ret = ext4_journal_get_write_access(handle, inode_bh);
1757 
1758 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1759 
1760 	} else {
1761 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1762 					     do_journal_get_write_access);
1763 
1764 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1765 					     write_end_fn);
1766 	}
1767 	if (ret == 0)
1768 		ret = err;
1769 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1770 	err = ext4_journal_stop(handle);
1771 	if (!ret)
1772 		ret = err;
1773 
1774 	if (!ext4_has_inline_data(inode))
1775 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1776 				       NULL, bput_one);
1777 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1778 out:
1779 	brelse(inode_bh);
1780 	return ret;
1781 }
1782 
1783 /*
1784  * Note that we don't need to start a transaction unless we're journaling data
1785  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1786  * need to file the inode to the transaction's list in ordered mode because if
1787  * we are writing back data added by write(), the inode is already there and if
1788  * we are writing back data modified via mmap(), no one guarantees in which
1789  * transaction the data will hit the disk. In case we are journaling data, we
1790  * cannot start transaction directly because transaction start ranks above page
1791  * lock so we have to do some magic.
1792  *
1793  * This function can get called via...
1794  *   - ext4_writepages after taking page lock (have journal handle)
1795  *   - journal_submit_inode_data_buffers (no journal handle)
1796  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1797  *   - grab_page_cache when doing write_begin (have journal handle)
1798  *
1799  * We don't do any block allocation in this function. If we have page with
1800  * multiple blocks we need to write those buffer_heads that are mapped. This
1801  * is important for mmaped based write. So if we do with blocksize 1K
1802  * truncate(f, 1024);
1803  * a = mmap(f, 0, 4096);
1804  * a[0] = 'a';
1805  * truncate(f, 4096);
1806  * we have in the page first buffer_head mapped via page_mkwrite call back
1807  * but other buffer_heads would be unmapped but dirty (dirty done via the
1808  * do_wp_page). So writepage should write the first block. If we modify
1809  * the mmap area beyond 1024 we will again get a page_fault and the
1810  * page_mkwrite callback will do the block allocation and mark the
1811  * buffer_heads mapped.
1812  *
1813  * We redirty the page if we have any buffer_heads that is either delay or
1814  * unwritten in the page.
1815  *
1816  * We can get recursively called as show below.
1817  *
1818  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1819  *		ext4_writepage()
1820  *
1821  * But since we don't do any block allocation we should not deadlock.
1822  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1823  */
1824 static int ext4_writepage(struct page *page,
1825 			  struct writeback_control *wbc)
1826 {
1827 	int ret = 0;
1828 	loff_t size;
1829 	unsigned int len;
1830 	struct buffer_head *page_bufs = NULL;
1831 	struct inode *inode = page->mapping->host;
1832 	struct ext4_io_submit io_submit;
1833 
1834 	trace_ext4_writepage(page);
1835 	size = i_size_read(inode);
1836 	if (page->index == size >> PAGE_CACHE_SHIFT)
1837 		len = size & ~PAGE_CACHE_MASK;
1838 	else
1839 		len = PAGE_CACHE_SIZE;
1840 
1841 	page_bufs = page_buffers(page);
1842 	/*
1843 	 * We cannot do block allocation or other extent handling in this
1844 	 * function. If there are buffers needing that, we have to redirty
1845 	 * the page. But we may reach here when we do a journal commit via
1846 	 * journal_submit_inode_data_buffers() and in that case we must write
1847 	 * allocated buffers to achieve data=ordered mode guarantees.
1848 	 */
1849 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1850 				   ext4_bh_delay_or_unwritten)) {
1851 		redirty_page_for_writepage(wbc, page);
1852 		if (current->flags & PF_MEMALLOC) {
1853 			/*
1854 			 * For memory cleaning there's no point in writing only
1855 			 * some buffers. So just bail out. Warn if we came here
1856 			 * from direct reclaim.
1857 			 */
1858 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1859 							== PF_MEMALLOC);
1860 			unlock_page(page);
1861 			return 0;
1862 		}
1863 	}
1864 
1865 	if (PageChecked(page) && ext4_should_journal_data(inode))
1866 		/*
1867 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1868 		 * doesn't seem much point in redirtying the page here.
1869 		 */
1870 		return __ext4_journalled_writepage(page, len);
1871 
1872 	ext4_io_submit_init(&io_submit, wbc);
1873 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1874 	if (!io_submit.io_end) {
1875 		redirty_page_for_writepage(wbc, page);
1876 		unlock_page(page);
1877 		return -ENOMEM;
1878 	}
1879 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1880 	ext4_io_submit(&io_submit);
1881 	/* Drop io_end reference we got from init */
1882 	ext4_put_io_end_defer(io_submit.io_end);
1883 	return ret;
1884 }
1885 
1886 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1887 {
1888 	int len;
1889 	loff_t size = i_size_read(mpd->inode);
1890 	int err;
1891 
1892 	BUG_ON(page->index != mpd->first_page);
1893 	if (page->index == size >> PAGE_CACHE_SHIFT)
1894 		len = size & ~PAGE_CACHE_MASK;
1895 	else
1896 		len = PAGE_CACHE_SIZE;
1897 	clear_page_dirty_for_io(page);
1898 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1899 	if (!err)
1900 		mpd->wbc->nr_to_write--;
1901 	mpd->first_page++;
1902 
1903 	return err;
1904 }
1905 
1906 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1907 
1908 /*
1909  * mballoc gives us at most this number of blocks...
1910  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1911  * The rest of mballoc seems to handle chunks up to full group size.
1912  */
1913 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1914 
1915 /*
1916  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1917  *
1918  * @mpd - extent of blocks
1919  * @lblk - logical number of the block in the file
1920  * @bh - buffer head we want to add to the extent
1921  *
1922  * The function is used to collect contig. blocks in the same state. If the
1923  * buffer doesn't require mapping for writeback and we haven't started the
1924  * extent of buffers to map yet, the function returns 'true' immediately - the
1925  * caller can write the buffer right away. Otherwise the function returns true
1926  * if the block has been added to the extent, false if the block couldn't be
1927  * added.
1928  */
1929 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1930 				   struct buffer_head *bh)
1931 {
1932 	struct ext4_map_blocks *map = &mpd->map;
1933 
1934 	/* Buffer that doesn't need mapping for writeback? */
1935 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1936 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1937 		/* So far no extent to map => we write the buffer right away */
1938 		if (map->m_len == 0)
1939 			return true;
1940 		return false;
1941 	}
1942 
1943 	/* First block in the extent? */
1944 	if (map->m_len == 0) {
1945 		map->m_lblk = lblk;
1946 		map->m_len = 1;
1947 		map->m_flags = bh->b_state & BH_FLAGS;
1948 		return true;
1949 	}
1950 
1951 	/* Don't go larger than mballoc is willing to allocate */
1952 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1953 		return false;
1954 
1955 	/* Can we merge the block to our big extent? */
1956 	if (lblk == map->m_lblk + map->m_len &&
1957 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1958 		map->m_len++;
1959 		return true;
1960 	}
1961 	return false;
1962 }
1963 
1964 /*
1965  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1966  *
1967  * @mpd - extent of blocks for mapping
1968  * @head - the first buffer in the page
1969  * @bh - buffer we should start processing from
1970  * @lblk - logical number of the block in the file corresponding to @bh
1971  *
1972  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1973  * the page for IO if all buffers in this page were mapped and there's no
1974  * accumulated extent of buffers to map or add buffers in the page to the
1975  * extent of buffers to map. The function returns 1 if the caller can continue
1976  * by processing the next page, 0 if it should stop adding buffers to the
1977  * extent to map because we cannot extend it anymore. It can also return value
1978  * < 0 in case of error during IO submission.
1979  */
1980 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1981 				   struct buffer_head *head,
1982 				   struct buffer_head *bh,
1983 				   ext4_lblk_t lblk)
1984 {
1985 	struct inode *inode = mpd->inode;
1986 	int err;
1987 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1988 							>> inode->i_blkbits;
1989 
1990 	do {
1991 		BUG_ON(buffer_locked(bh));
1992 
1993 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1994 			/* Found extent to map? */
1995 			if (mpd->map.m_len)
1996 				return 0;
1997 			/* Everything mapped so far and we hit EOF */
1998 			break;
1999 		}
2000 	} while (lblk++, (bh = bh->b_this_page) != head);
2001 	/* So far everything mapped? Submit the page for IO. */
2002 	if (mpd->map.m_len == 0) {
2003 		err = mpage_submit_page(mpd, head->b_page);
2004 		if (err < 0)
2005 			return err;
2006 	}
2007 	return lblk < blocks;
2008 }
2009 
2010 /*
2011  * mpage_map_buffers - update buffers corresponding to changed extent and
2012  *		       submit fully mapped pages for IO
2013  *
2014  * @mpd - description of extent to map, on return next extent to map
2015  *
2016  * Scan buffers corresponding to changed extent (we expect corresponding pages
2017  * to be already locked) and update buffer state according to new extent state.
2018  * We map delalloc buffers to their physical location, clear unwritten bits,
2019  * and mark buffers as uninit when we perform writes to uninitialized extents
2020  * and do extent conversion after IO is finished. If the last page is not fully
2021  * mapped, we update @map to the next extent in the last page that needs
2022  * mapping. Otherwise we submit the page for IO.
2023  */
2024 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2025 {
2026 	struct pagevec pvec;
2027 	int nr_pages, i;
2028 	struct inode *inode = mpd->inode;
2029 	struct buffer_head *head, *bh;
2030 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2031 	pgoff_t start, end;
2032 	ext4_lblk_t lblk;
2033 	sector_t pblock;
2034 	int err;
2035 
2036 	start = mpd->map.m_lblk >> bpp_bits;
2037 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2038 	lblk = start << bpp_bits;
2039 	pblock = mpd->map.m_pblk;
2040 
2041 	pagevec_init(&pvec, 0);
2042 	while (start <= end) {
2043 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2044 					  PAGEVEC_SIZE);
2045 		if (nr_pages == 0)
2046 			break;
2047 		for (i = 0; i < nr_pages; i++) {
2048 			struct page *page = pvec.pages[i];
2049 
2050 			if (page->index > end)
2051 				break;
2052 			/* Up to 'end' pages must be contiguous */
2053 			BUG_ON(page->index != start);
2054 			bh = head = page_buffers(page);
2055 			do {
2056 				if (lblk < mpd->map.m_lblk)
2057 					continue;
2058 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2059 					/*
2060 					 * Buffer after end of mapped extent.
2061 					 * Find next buffer in the page to map.
2062 					 */
2063 					mpd->map.m_len = 0;
2064 					mpd->map.m_flags = 0;
2065 					/*
2066 					 * FIXME: If dioread_nolock supports
2067 					 * blocksize < pagesize, we need to make
2068 					 * sure we add size mapped so far to
2069 					 * io_end->size as the following call
2070 					 * can submit the page for IO.
2071 					 */
2072 					err = mpage_process_page_bufs(mpd, head,
2073 								      bh, lblk);
2074 					pagevec_release(&pvec);
2075 					if (err > 0)
2076 						err = 0;
2077 					return err;
2078 				}
2079 				if (buffer_delay(bh)) {
2080 					clear_buffer_delay(bh);
2081 					bh->b_blocknr = pblock++;
2082 				}
2083 				clear_buffer_unwritten(bh);
2084 			} while (lblk++, (bh = bh->b_this_page) != head);
2085 
2086 			/*
2087 			 * FIXME: This is going to break if dioread_nolock
2088 			 * supports blocksize < pagesize as we will try to
2089 			 * convert potentially unmapped parts of inode.
2090 			 */
2091 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2092 			/* Page fully mapped - let IO run! */
2093 			err = mpage_submit_page(mpd, page);
2094 			if (err < 0) {
2095 				pagevec_release(&pvec);
2096 				return err;
2097 			}
2098 			start++;
2099 		}
2100 		pagevec_release(&pvec);
2101 	}
2102 	/* Extent fully mapped and matches with page boundary. We are done. */
2103 	mpd->map.m_len = 0;
2104 	mpd->map.m_flags = 0;
2105 	return 0;
2106 }
2107 
2108 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2109 {
2110 	struct inode *inode = mpd->inode;
2111 	struct ext4_map_blocks *map = &mpd->map;
2112 	int get_blocks_flags;
2113 	int err;
2114 
2115 	trace_ext4_da_write_pages_extent(inode, map);
2116 	/*
2117 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2118 	 * to convert an uninitialized extent to be initialized (in the case
2119 	 * where we have written into one or more preallocated blocks).  It is
2120 	 * possible that we're going to need more metadata blocks than
2121 	 * previously reserved. However we must not fail because we're in
2122 	 * writeback and there is nothing we can do about it so it might result
2123 	 * in data loss.  So use reserved blocks to allocate metadata if
2124 	 * possible.
2125 	 *
2126 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2127 	 * in question are delalloc blocks.  This affects functions in many
2128 	 * different parts of the allocation call path.  This flag exists
2129 	 * primarily because we don't want to change *many* call functions, so
2130 	 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2131 	 * once the inode's allocation semaphore is taken.
2132 	 */
2133 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2134 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2135 	if (ext4_should_dioread_nolock(inode))
2136 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2137 	if (map->m_flags & (1 << BH_Delay))
2138 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2139 
2140 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2141 	if (err < 0)
2142 		return err;
2143 	if (map->m_flags & EXT4_MAP_UNINIT) {
2144 		if (!mpd->io_submit.io_end->handle &&
2145 		    ext4_handle_valid(handle)) {
2146 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2147 			handle->h_rsv_handle = NULL;
2148 		}
2149 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2150 	}
2151 
2152 	BUG_ON(map->m_len == 0);
2153 	if (map->m_flags & EXT4_MAP_NEW) {
2154 		struct block_device *bdev = inode->i_sb->s_bdev;
2155 		int i;
2156 
2157 		for (i = 0; i < map->m_len; i++)
2158 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2159 	}
2160 	return 0;
2161 }
2162 
2163 /*
2164  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2165  *				 mpd->len and submit pages underlying it for IO
2166  *
2167  * @handle - handle for journal operations
2168  * @mpd - extent to map
2169  * @give_up_on_write - we set this to true iff there is a fatal error and there
2170  *                     is no hope of writing the data. The caller should discard
2171  *                     dirty pages to avoid infinite loops.
2172  *
2173  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2174  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2175  * them to initialized or split the described range from larger unwritten
2176  * extent. Note that we need not map all the described range since allocation
2177  * can return less blocks or the range is covered by more unwritten extents. We
2178  * cannot map more because we are limited by reserved transaction credits. On
2179  * the other hand we always make sure that the last touched page is fully
2180  * mapped so that it can be written out (and thus forward progress is
2181  * guaranteed). After mapping we submit all mapped pages for IO.
2182  */
2183 static int mpage_map_and_submit_extent(handle_t *handle,
2184 				       struct mpage_da_data *mpd,
2185 				       bool *give_up_on_write)
2186 {
2187 	struct inode *inode = mpd->inode;
2188 	struct ext4_map_blocks *map = &mpd->map;
2189 	int err;
2190 	loff_t disksize;
2191 
2192 	mpd->io_submit.io_end->offset =
2193 				((loff_t)map->m_lblk) << inode->i_blkbits;
2194 	do {
2195 		err = mpage_map_one_extent(handle, mpd);
2196 		if (err < 0) {
2197 			struct super_block *sb = inode->i_sb;
2198 
2199 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2200 				goto invalidate_dirty_pages;
2201 			/*
2202 			 * Let the uper layers retry transient errors.
2203 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2204 			 * is non-zero, a commit should free up blocks.
2205 			 */
2206 			if ((err == -ENOMEM) ||
2207 			    (err == -ENOSPC && ext4_count_free_clusters(sb)))
2208 				return err;
2209 			ext4_msg(sb, KERN_CRIT,
2210 				 "Delayed block allocation failed for "
2211 				 "inode %lu at logical offset %llu with"
2212 				 " max blocks %u with error %d",
2213 				 inode->i_ino,
2214 				 (unsigned long long)map->m_lblk,
2215 				 (unsigned)map->m_len, -err);
2216 			ext4_msg(sb, KERN_CRIT,
2217 				 "This should not happen!! Data will "
2218 				 "be lost\n");
2219 			if (err == -ENOSPC)
2220 				ext4_print_free_blocks(inode);
2221 		invalidate_dirty_pages:
2222 			*give_up_on_write = true;
2223 			return err;
2224 		}
2225 		/*
2226 		 * Update buffer state, submit mapped pages, and get us new
2227 		 * extent to map
2228 		 */
2229 		err = mpage_map_and_submit_buffers(mpd);
2230 		if (err < 0)
2231 			return err;
2232 	} while (map->m_len);
2233 
2234 	/* Update on-disk size after IO is submitted */
2235 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2236 	if (disksize > EXT4_I(inode)->i_disksize) {
2237 		int err2;
2238 
2239 		ext4_wb_update_i_disksize(inode, disksize);
2240 		err2 = ext4_mark_inode_dirty(handle, inode);
2241 		if (err2)
2242 			ext4_error(inode->i_sb,
2243 				   "Failed to mark inode %lu dirty",
2244 				   inode->i_ino);
2245 		if (!err)
2246 			err = err2;
2247 	}
2248 	return err;
2249 }
2250 
2251 /*
2252  * Calculate the total number of credits to reserve for one writepages
2253  * iteration. This is called from ext4_writepages(). We map an extent of
2254  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2255  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2256  * bpp - 1 blocks in bpp different extents.
2257  */
2258 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2259 {
2260 	int bpp = ext4_journal_blocks_per_page(inode);
2261 
2262 	return ext4_meta_trans_blocks(inode,
2263 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2264 }
2265 
2266 /*
2267  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2268  * 				 and underlying extent to map
2269  *
2270  * @mpd - where to look for pages
2271  *
2272  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2273  * IO immediately. When we find a page which isn't mapped we start accumulating
2274  * extent of buffers underlying these pages that needs mapping (formed by
2275  * either delayed or unwritten buffers). We also lock the pages containing
2276  * these buffers. The extent found is returned in @mpd structure (starting at
2277  * mpd->lblk with length mpd->len blocks).
2278  *
2279  * Note that this function can attach bios to one io_end structure which are
2280  * neither logically nor physically contiguous. Although it may seem as an
2281  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2282  * case as we need to track IO to all buffers underlying a page in one io_end.
2283  */
2284 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2285 {
2286 	struct address_space *mapping = mpd->inode->i_mapping;
2287 	struct pagevec pvec;
2288 	unsigned int nr_pages;
2289 	long left = mpd->wbc->nr_to_write;
2290 	pgoff_t index = mpd->first_page;
2291 	pgoff_t end = mpd->last_page;
2292 	int tag;
2293 	int i, err = 0;
2294 	int blkbits = mpd->inode->i_blkbits;
2295 	ext4_lblk_t lblk;
2296 	struct buffer_head *head;
2297 
2298 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2299 		tag = PAGECACHE_TAG_TOWRITE;
2300 	else
2301 		tag = PAGECACHE_TAG_DIRTY;
2302 
2303 	pagevec_init(&pvec, 0);
2304 	mpd->map.m_len = 0;
2305 	mpd->next_page = index;
2306 	while (index <= end) {
2307 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2308 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2309 		if (nr_pages == 0)
2310 			goto out;
2311 
2312 		for (i = 0; i < nr_pages; i++) {
2313 			struct page *page = pvec.pages[i];
2314 
2315 			/*
2316 			 * At this point, the page may be truncated or
2317 			 * invalidated (changing page->mapping to NULL), or
2318 			 * even swizzled back from swapper_space to tmpfs file
2319 			 * mapping. However, page->index will not change
2320 			 * because we have a reference on the page.
2321 			 */
2322 			if (page->index > end)
2323 				goto out;
2324 
2325 			/*
2326 			 * Accumulated enough dirty pages? This doesn't apply
2327 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2328 			 * keep going because someone may be concurrently
2329 			 * dirtying pages, and we might have synced a lot of
2330 			 * newly appeared dirty pages, but have not synced all
2331 			 * of the old dirty pages.
2332 			 */
2333 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2334 				goto out;
2335 
2336 			/* If we can't merge this page, we are done. */
2337 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2338 				goto out;
2339 
2340 			lock_page(page);
2341 			/*
2342 			 * If the page is no longer dirty, or its mapping no
2343 			 * longer corresponds to inode we are writing (which
2344 			 * means it has been truncated or invalidated), or the
2345 			 * page is already under writeback and we are not doing
2346 			 * a data integrity writeback, skip the page
2347 			 */
2348 			if (!PageDirty(page) ||
2349 			    (PageWriteback(page) &&
2350 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2351 			    unlikely(page->mapping != mapping)) {
2352 				unlock_page(page);
2353 				continue;
2354 			}
2355 
2356 			wait_on_page_writeback(page);
2357 			BUG_ON(PageWriteback(page));
2358 
2359 			if (mpd->map.m_len == 0)
2360 				mpd->first_page = page->index;
2361 			mpd->next_page = page->index + 1;
2362 			/* Add all dirty buffers to mpd */
2363 			lblk = ((ext4_lblk_t)page->index) <<
2364 				(PAGE_CACHE_SHIFT - blkbits);
2365 			head = page_buffers(page);
2366 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2367 			if (err <= 0)
2368 				goto out;
2369 			err = 0;
2370 			left--;
2371 		}
2372 		pagevec_release(&pvec);
2373 		cond_resched();
2374 	}
2375 	return 0;
2376 out:
2377 	pagevec_release(&pvec);
2378 	return err;
2379 }
2380 
2381 static int __writepage(struct page *page, struct writeback_control *wbc,
2382 		       void *data)
2383 {
2384 	struct address_space *mapping = data;
2385 	int ret = ext4_writepage(page, wbc);
2386 	mapping_set_error(mapping, ret);
2387 	return ret;
2388 }
2389 
2390 static int ext4_writepages(struct address_space *mapping,
2391 			   struct writeback_control *wbc)
2392 {
2393 	pgoff_t	writeback_index = 0;
2394 	long nr_to_write = wbc->nr_to_write;
2395 	int range_whole = 0;
2396 	int cycled = 1;
2397 	handle_t *handle = NULL;
2398 	struct mpage_da_data mpd;
2399 	struct inode *inode = mapping->host;
2400 	int needed_blocks, rsv_blocks = 0, ret = 0;
2401 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2402 	bool done;
2403 	struct blk_plug plug;
2404 	bool give_up_on_write = false;
2405 
2406 	trace_ext4_writepages(inode, wbc);
2407 
2408 	/*
2409 	 * No pages to write? This is mainly a kludge to avoid starting
2410 	 * a transaction for special inodes like journal inode on last iput()
2411 	 * because that could violate lock ordering on umount
2412 	 */
2413 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2414 		goto out_writepages;
2415 
2416 	if (ext4_should_journal_data(inode)) {
2417 		struct blk_plug plug;
2418 
2419 		blk_start_plug(&plug);
2420 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2421 		blk_finish_plug(&plug);
2422 		goto out_writepages;
2423 	}
2424 
2425 	/*
2426 	 * If the filesystem has aborted, it is read-only, so return
2427 	 * right away instead of dumping stack traces later on that
2428 	 * will obscure the real source of the problem.  We test
2429 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2430 	 * the latter could be true if the filesystem is mounted
2431 	 * read-only, and in that case, ext4_writepages should
2432 	 * *never* be called, so if that ever happens, we would want
2433 	 * the stack trace.
2434 	 */
2435 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2436 		ret = -EROFS;
2437 		goto out_writepages;
2438 	}
2439 
2440 	if (ext4_should_dioread_nolock(inode)) {
2441 		/*
2442 		 * We may need to convert up to one extent per block in
2443 		 * the page and we may dirty the inode.
2444 		 */
2445 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2446 	}
2447 
2448 	/*
2449 	 * If we have inline data and arrive here, it means that
2450 	 * we will soon create the block for the 1st page, so
2451 	 * we'd better clear the inline data here.
2452 	 */
2453 	if (ext4_has_inline_data(inode)) {
2454 		/* Just inode will be modified... */
2455 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2456 		if (IS_ERR(handle)) {
2457 			ret = PTR_ERR(handle);
2458 			goto out_writepages;
2459 		}
2460 		BUG_ON(ext4_test_inode_state(inode,
2461 				EXT4_STATE_MAY_INLINE_DATA));
2462 		ext4_destroy_inline_data(handle, inode);
2463 		ext4_journal_stop(handle);
2464 	}
2465 
2466 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2467 		range_whole = 1;
2468 
2469 	if (wbc->range_cyclic) {
2470 		writeback_index = mapping->writeback_index;
2471 		if (writeback_index)
2472 			cycled = 0;
2473 		mpd.first_page = writeback_index;
2474 		mpd.last_page = -1;
2475 	} else {
2476 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2477 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2478 	}
2479 
2480 	mpd.inode = inode;
2481 	mpd.wbc = wbc;
2482 	ext4_io_submit_init(&mpd.io_submit, wbc);
2483 retry:
2484 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2485 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2486 	done = false;
2487 	blk_start_plug(&plug);
2488 	while (!done && mpd.first_page <= mpd.last_page) {
2489 		/* For each extent of pages we use new io_end */
2490 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2491 		if (!mpd.io_submit.io_end) {
2492 			ret = -ENOMEM;
2493 			break;
2494 		}
2495 
2496 		/*
2497 		 * We have two constraints: We find one extent to map and we
2498 		 * must always write out whole page (makes a difference when
2499 		 * blocksize < pagesize) so that we don't block on IO when we
2500 		 * try to write out the rest of the page. Journalled mode is
2501 		 * not supported by delalloc.
2502 		 */
2503 		BUG_ON(ext4_should_journal_data(inode));
2504 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2505 
2506 		/* start a new transaction */
2507 		handle = ext4_journal_start_with_reserve(inode,
2508 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2509 		if (IS_ERR(handle)) {
2510 			ret = PTR_ERR(handle);
2511 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2512 			       "%ld pages, ino %lu; err %d", __func__,
2513 				wbc->nr_to_write, inode->i_ino, ret);
2514 			/* Release allocated io_end */
2515 			ext4_put_io_end(mpd.io_submit.io_end);
2516 			break;
2517 		}
2518 
2519 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2520 		ret = mpage_prepare_extent_to_map(&mpd);
2521 		if (!ret) {
2522 			if (mpd.map.m_len)
2523 				ret = mpage_map_and_submit_extent(handle, &mpd,
2524 					&give_up_on_write);
2525 			else {
2526 				/*
2527 				 * We scanned the whole range (or exhausted
2528 				 * nr_to_write), submitted what was mapped and
2529 				 * didn't find anything needing mapping. We are
2530 				 * done.
2531 				 */
2532 				done = true;
2533 			}
2534 		}
2535 		ext4_journal_stop(handle);
2536 		/* Submit prepared bio */
2537 		ext4_io_submit(&mpd.io_submit);
2538 		/* Unlock pages we didn't use */
2539 		mpage_release_unused_pages(&mpd, give_up_on_write);
2540 		/* Drop our io_end reference we got from init */
2541 		ext4_put_io_end(mpd.io_submit.io_end);
2542 
2543 		if (ret == -ENOSPC && sbi->s_journal) {
2544 			/*
2545 			 * Commit the transaction which would
2546 			 * free blocks released in the transaction
2547 			 * and try again
2548 			 */
2549 			jbd2_journal_force_commit_nested(sbi->s_journal);
2550 			ret = 0;
2551 			continue;
2552 		}
2553 		/* Fatal error - ENOMEM, EIO... */
2554 		if (ret)
2555 			break;
2556 	}
2557 	blk_finish_plug(&plug);
2558 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2559 		cycled = 1;
2560 		mpd.last_page = writeback_index - 1;
2561 		mpd.first_page = 0;
2562 		goto retry;
2563 	}
2564 
2565 	/* Update index */
2566 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2567 		/*
2568 		 * Set the writeback_index so that range_cyclic
2569 		 * mode will write it back later
2570 		 */
2571 		mapping->writeback_index = mpd.first_page;
2572 
2573 out_writepages:
2574 	trace_ext4_writepages_result(inode, wbc, ret,
2575 				     nr_to_write - wbc->nr_to_write);
2576 	return ret;
2577 }
2578 
2579 static int ext4_nonda_switch(struct super_block *sb)
2580 {
2581 	s64 free_clusters, dirty_clusters;
2582 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2583 
2584 	/*
2585 	 * switch to non delalloc mode if we are running low
2586 	 * on free block. The free block accounting via percpu
2587 	 * counters can get slightly wrong with percpu_counter_batch getting
2588 	 * accumulated on each CPU without updating global counters
2589 	 * Delalloc need an accurate free block accounting. So switch
2590 	 * to non delalloc when we are near to error range.
2591 	 */
2592 	free_clusters =
2593 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2594 	dirty_clusters =
2595 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2596 	/*
2597 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2598 	 */
2599 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2600 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2601 
2602 	if (2 * free_clusters < 3 * dirty_clusters ||
2603 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2604 		/*
2605 		 * free block count is less than 150% of dirty blocks
2606 		 * or free blocks is less than watermark
2607 		 */
2608 		return 1;
2609 	}
2610 	return 0;
2611 }
2612 
2613 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2614 			       loff_t pos, unsigned len, unsigned flags,
2615 			       struct page **pagep, void **fsdata)
2616 {
2617 	int ret, retries = 0;
2618 	struct page *page;
2619 	pgoff_t index;
2620 	struct inode *inode = mapping->host;
2621 	handle_t *handle;
2622 
2623 	index = pos >> PAGE_CACHE_SHIFT;
2624 
2625 	if (ext4_nonda_switch(inode->i_sb)) {
2626 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2627 		return ext4_write_begin(file, mapping, pos,
2628 					len, flags, pagep, fsdata);
2629 	}
2630 	*fsdata = (void *)0;
2631 	trace_ext4_da_write_begin(inode, pos, len, flags);
2632 
2633 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2634 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2635 						      pos, len, flags,
2636 						      pagep, fsdata);
2637 		if (ret < 0)
2638 			return ret;
2639 		if (ret == 1)
2640 			return 0;
2641 	}
2642 
2643 	/*
2644 	 * grab_cache_page_write_begin() can take a long time if the
2645 	 * system is thrashing due to memory pressure, or if the page
2646 	 * is being written back.  So grab it first before we start
2647 	 * the transaction handle.  This also allows us to allocate
2648 	 * the page (if needed) without using GFP_NOFS.
2649 	 */
2650 retry_grab:
2651 	page = grab_cache_page_write_begin(mapping, index, flags);
2652 	if (!page)
2653 		return -ENOMEM;
2654 	unlock_page(page);
2655 
2656 	/*
2657 	 * With delayed allocation, we don't log the i_disksize update
2658 	 * if there is delayed block allocation. But we still need
2659 	 * to journalling the i_disksize update if writes to the end
2660 	 * of file which has an already mapped buffer.
2661 	 */
2662 retry_journal:
2663 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2664 	if (IS_ERR(handle)) {
2665 		page_cache_release(page);
2666 		return PTR_ERR(handle);
2667 	}
2668 
2669 	lock_page(page);
2670 	if (page->mapping != mapping) {
2671 		/* The page got truncated from under us */
2672 		unlock_page(page);
2673 		page_cache_release(page);
2674 		ext4_journal_stop(handle);
2675 		goto retry_grab;
2676 	}
2677 	/* In case writeback began while the page was unlocked */
2678 	wait_for_stable_page(page);
2679 
2680 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2681 	if (ret < 0) {
2682 		unlock_page(page);
2683 		ext4_journal_stop(handle);
2684 		/*
2685 		 * block_write_begin may have instantiated a few blocks
2686 		 * outside i_size.  Trim these off again. Don't need
2687 		 * i_size_read because we hold i_mutex.
2688 		 */
2689 		if (pos + len > inode->i_size)
2690 			ext4_truncate_failed_write(inode);
2691 
2692 		if (ret == -ENOSPC &&
2693 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2694 			goto retry_journal;
2695 
2696 		page_cache_release(page);
2697 		return ret;
2698 	}
2699 
2700 	*pagep = page;
2701 	return ret;
2702 }
2703 
2704 /*
2705  * Check if we should update i_disksize
2706  * when write to the end of file but not require block allocation
2707  */
2708 static int ext4_da_should_update_i_disksize(struct page *page,
2709 					    unsigned long offset)
2710 {
2711 	struct buffer_head *bh;
2712 	struct inode *inode = page->mapping->host;
2713 	unsigned int idx;
2714 	int i;
2715 
2716 	bh = page_buffers(page);
2717 	idx = offset >> inode->i_blkbits;
2718 
2719 	for (i = 0; i < idx; i++)
2720 		bh = bh->b_this_page;
2721 
2722 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2723 		return 0;
2724 	return 1;
2725 }
2726 
2727 static int ext4_da_write_end(struct file *file,
2728 			     struct address_space *mapping,
2729 			     loff_t pos, unsigned len, unsigned copied,
2730 			     struct page *page, void *fsdata)
2731 {
2732 	struct inode *inode = mapping->host;
2733 	int ret = 0, ret2;
2734 	handle_t *handle = ext4_journal_current_handle();
2735 	loff_t new_i_size;
2736 	unsigned long start, end;
2737 	int write_mode = (int)(unsigned long)fsdata;
2738 
2739 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2740 		return ext4_write_end(file, mapping, pos,
2741 				      len, copied, page, fsdata);
2742 
2743 	trace_ext4_da_write_end(inode, pos, len, copied);
2744 	start = pos & (PAGE_CACHE_SIZE - 1);
2745 	end = start + copied - 1;
2746 
2747 	/*
2748 	 * generic_write_end() will run mark_inode_dirty() if i_size
2749 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2750 	 * into that.
2751 	 */
2752 	new_i_size = pos + copied;
2753 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2754 		if (ext4_has_inline_data(inode) ||
2755 		    ext4_da_should_update_i_disksize(page, end)) {
2756 			down_write(&EXT4_I(inode)->i_data_sem);
2757 			if (new_i_size > EXT4_I(inode)->i_disksize)
2758 				EXT4_I(inode)->i_disksize = new_i_size;
2759 			up_write(&EXT4_I(inode)->i_data_sem);
2760 			/* We need to mark inode dirty even if
2761 			 * new_i_size is less that inode->i_size
2762 			 * bu greater than i_disksize.(hint delalloc)
2763 			 */
2764 			ext4_mark_inode_dirty(handle, inode);
2765 		}
2766 	}
2767 
2768 	if (write_mode != CONVERT_INLINE_DATA &&
2769 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2770 	    ext4_has_inline_data(inode))
2771 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2772 						     page);
2773 	else
2774 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2775 							page, fsdata);
2776 
2777 	copied = ret2;
2778 	if (ret2 < 0)
2779 		ret = ret2;
2780 	ret2 = ext4_journal_stop(handle);
2781 	if (!ret)
2782 		ret = ret2;
2783 
2784 	return ret ? ret : copied;
2785 }
2786 
2787 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2788 				   unsigned int length)
2789 {
2790 	/*
2791 	 * Drop reserved blocks
2792 	 */
2793 	BUG_ON(!PageLocked(page));
2794 	if (!page_has_buffers(page))
2795 		goto out;
2796 
2797 	ext4_da_page_release_reservation(page, offset, length);
2798 
2799 out:
2800 	ext4_invalidatepage(page, offset, length);
2801 
2802 	return;
2803 }
2804 
2805 /*
2806  * Force all delayed allocation blocks to be allocated for a given inode.
2807  */
2808 int ext4_alloc_da_blocks(struct inode *inode)
2809 {
2810 	trace_ext4_alloc_da_blocks(inode);
2811 
2812 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2813 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2814 		return 0;
2815 
2816 	/*
2817 	 * We do something simple for now.  The filemap_flush() will
2818 	 * also start triggering a write of the data blocks, which is
2819 	 * not strictly speaking necessary (and for users of
2820 	 * laptop_mode, not even desirable).  However, to do otherwise
2821 	 * would require replicating code paths in:
2822 	 *
2823 	 * ext4_writepages() ->
2824 	 *    write_cache_pages() ---> (via passed in callback function)
2825 	 *        __mpage_da_writepage() -->
2826 	 *           mpage_add_bh_to_extent()
2827 	 *           mpage_da_map_blocks()
2828 	 *
2829 	 * The problem is that write_cache_pages(), located in
2830 	 * mm/page-writeback.c, marks pages clean in preparation for
2831 	 * doing I/O, which is not desirable if we're not planning on
2832 	 * doing I/O at all.
2833 	 *
2834 	 * We could call write_cache_pages(), and then redirty all of
2835 	 * the pages by calling redirty_page_for_writepage() but that
2836 	 * would be ugly in the extreme.  So instead we would need to
2837 	 * replicate parts of the code in the above functions,
2838 	 * simplifying them because we wouldn't actually intend to
2839 	 * write out the pages, but rather only collect contiguous
2840 	 * logical block extents, call the multi-block allocator, and
2841 	 * then update the buffer heads with the block allocations.
2842 	 *
2843 	 * For now, though, we'll cheat by calling filemap_flush(),
2844 	 * which will map the blocks, and start the I/O, but not
2845 	 * actually wait for the I/O to complete.
2846 	 */
2847 	return filemap_flush(inode->i_mapping);
2848 }
2849 
2850 /*
2851  * bmap() is special.  It gets used by applications such as lilo and by
2852  * the swapper to find the on-disk block of a specific piece of data.
2853  *
2854  * Naturally, this is dangerous if the block concerned is still in the
2855  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2856  * filesystem and enables swap, then they may get a nasty shock when the
2857  * data getting swapped to that swapfile suddenly gets overwritten by
2858  * the original zero's written out previously to the journal and
2859  * awaiting writeback in the kernel's buffer cache.
2860  *
2861  * So, if we see any bmap calls here on a modified, data-journaled file,
2862  * take extra steps to flush any blocks which might be in the cache.
2863  */
2864 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2865 {
2866 	struct inode *inode = mapping->host;
2867 	journal_t *journal;
2868 	int err;
2869 
2870 	/*
2871 	 * We can get here for an inline file via the FIBMAP ioctl
2872 	 */
2873 	if (ext4_has_inline_data(inode))
2874 		return 0;
2875 
2876 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2877 			test_opt(inode->i_sb, DELALLOC)) {
2878 		/*
2879 		 * With delalloc we want to sync the file
2880 		 * so that we can make sure we allocate
2881 		 * blocks for file
2882 		 */
2883 		filemap_write_and_wait(mapping);
2884 	}
2885 
2886 	if (EXT4_JOURNAL(inode) &&
2887 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2888 		/*
2889 		 * This is a REALLY heavyweight approach, but the use of
2890 		 * bmap on dirty files is expected to be extremely rare:
2891 		 * only if we run lilo or swapon on a freshly made file
2892 		 * do we expect this to happen.
2893 		 *
2894 		 * (bmap requires CAP_SYS_RAWIO so this does not
2895 		 * represent an unprivileged user DOS attack --- we'd be
2896 		 * in trouble if mortal users could trigger this path at
2897 		 * will.)
2898 		 *
2899 		 * NB. EXT4_STATE_JDATA is not set on files other than
2900 		 * regular files.  If somebody wants to bmap a directory
2901 		 * or symlink and gets confused because the buffer
2902 		 * hasn't yet been flushed to disk, they deserve
2903 		 * everything they get.
2904 		 */
2905 
2906 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2907 		journal = EXT4_JOURNAL(inode);
2908 		jbd2_journal_lock_updates(journal);
2909 		err = jbd2_journal_flush(journal);
2910 		jbd2_journal_unlock_updates(journal);
2911 
2912 		if (err)
2913 			return 0;
2914 	}
2915 
2916 	return generic_block_bmap(mapping, block, ext4_get_block);
2917 }
2918 
2919 static int ext4_readpage(struct file *file, struct page *page)
2920 {
2921 	int ret = -EAGAIN;
2922 	struct inode *inode = page->mapping->host;
2923 
2924 	trace_ext4_readpage(page);
2925 
2926 	if (ext4_has_inline_data(inode))
2927 		ret = ext4_readpage_inline(inode, page);
2928 
2929 	if (ret == -EAGAIN)
2930 		return mpage_readpage(page, ext4_get_block);
2931 
2932 	return ret;
2933 }
2934 
2935 static int
2936 ext4_readpages(struct file *file, struct address_space *mapping,
2937 		struct list_head *pages, unsigned nr_pages)
2938 {
2939 	struct inode *inode = mapping->host;
2940 
2941 	/* If the file has inline data, no need to do readpages. */
2942 	if (ext4_has_inline_data(inode))
2943 		return 0;
2944 
2945 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2946 }
2947 
2948 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2949 				unsigned int length)
2950 {
2951 	trace_ext4_invalidatepage(page, offset, length);
2952 
2953 	/* No journalling happens on data buffers when this function is used */
2954 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2955 
2956 	block_invalidatepage(page, offset, length);
2957 }
2958 
2959 static int __ext4_journalled_invalidatepage(struct page *page,
2960 					    unsigned int offset,
2961 					    unsigned int length)
2962 {
2963 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2964 
2965 	trace_ext4_journalled_invalidatepage(page, offset, length);
2966 
2967 	/*
2968 	 * If it's a full truncate we just forget about the pending dirtying
2969 	 */
2970 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2971 		ClearPageChecked(page);
2972 
2973 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2974 }
2975 
2976 /* Wrapper for aops... */
2977 static void ext4_journalled_invalidatepage(struct page *page,
2978 					   unsigned int offset,
2979 					   unsigned int length)
2980 {
2981 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2982 }
2983 
2984 static int ext4_releasepage(struct page *page, gfp_t wait)
2985 {
2986 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2987 
2988 	trace_ext4_releasepage(page);
2989 
2990 	/* Page has dirty journalled data -> cannot release */
2991 	if (PageChecked(page))
2992 		return 0;
2993 	if (journal)
2994 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2995 	else
2996 		return try_to_free_buffers(page);
2997 }
2998 
2999 /*
3000  * ext4_get_block used when preparing for a DIO write or buffer write.
3001  * We allocate an uinitialized extent if blocks haven't been allocated.
3002  * The extent will be converted to initialized after the IO is complete.
3003  */
3004 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3005 		   struct buffer_head *bh_result, int create)
3006 {
3007 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3008 		   inode->i_ino, create);
3009 	return _ext4_get_block(inode, iblock, bh_result,
3010 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3011 }
3012 
3013 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3014 		   struct buffer_head *bh_result, int create)
3015 {
3016 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3017 		   inode->i_ino, create);
3018 	return _ext4_get_block(inode, iblock, bh_result,
3019 			       EXT4_GET_BLOCKS_NO_LOCK);
3020 }
3021 
3022 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3023 			    ssize_t size, void *private)
3024 {
3025         ext4_io_end_t *io_end = iocb->private;
3026 
3027 	/* if not async direct IO just return */
3028 	if (!io_end)
3029 		return;
3030 
3031 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3032 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3033  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3034 		  size);
3035 
3036 	iocb->private = NULL;
3037 	io_end->offset = offset;
3038 	io_end->size = size;
3039 	ext4_put_io_end(io_end);
3040 }
3041 
3042 /*
3043  * For ext4 extent files, ext4 will do direct-io write to holes,
3044  * preallocated extents, and those write extend the file, no need to
3045  * fall back to buffered IO.
3046  *
3047  * For holes, we fallocate those blocks, mark them as uninitialized
3048  * If those blocks were preallocated, we mark sure they are split, but
3049  * still keep the range to write as uninitialized.
3050  *
3051  * The unwritten extents will be converted to written when DIO is completed.
3052  * For async direct IO, since the IO may still pending when return, we
3053  * set up an end_io call back function, which will do the conversion
3054  * when async direct IO completed.
3055  *
3056  * If the O_DIRECT write will extend the file then add this inode to the
3057  * orphan list.  So recovery will truncate it back to the original size
3058  * if the machine crashes during the write.
3059  *
3060  */
3061 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3062 			      const struct iovec *iov, loff_t offset,
3063 			      unsigned long nr_segs)
3064 {
3065 	struct file *file = iocb->ki_filp;
3066 	struct inode *inode = file->f_mapping->host;
3067 	ssize_t ret;
3068 	size_t count = iov_length(iov, nr_segs);
3069 	int overwrite = 0;
3070 	get_block_t *get_block_func = NULL;
3071 	int dio_flags = 0;
3072 	loff_t final_size = offset + count;
3073 	ext4_io_end_t *io_end = NULL;
3074 
3075 	/* Use the old path for reads and writes beyond i_size. */
3076 	if (rw != WRITE || final_size > inode->i_size)
3077 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3078 
3079 	BUG_ON(iocb->private == NULL);
3080 
3081 	/*
3082 	 * Make all waiters for direct IO properly wait also for extent
3083 	 * conversion. This also disallows race between truncate() and
3084 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3085 	 */
3086 	if (rw == WRITE)
3087 		atomic_inc(&inode->i_dio_count);
3088 
3089 	/* If we do a overwrite dio, i_mutex locking can be released */
3090 	overwrite = *((int *)iocb->private);
3091 
3092 	if (overwrite) {
3093 		down_read(&EXT4_I(inode)->i_data_sem);
3094 		mutex_unlock(&inode->i_mutex);
3095 	}
3096 
3097 	/*
3098 	 * We could direct write to holes and fallocate.
3099 	 *
3100 	 * Allocated blocks to fill the hole are marked as
3101 	 * uninitialized to prevent parallel buffered read to expose
3102 	 * the stale data before DIO complete the data IO.
3103 	 *
3104 	 * As to previously fallocated extents, ext4 get_block will
3105 	 * just simply mark the buffer mapped but still keep the
3106 	 * extents uninitialized.
3107 	 *
3108 	 * For non AIO case, we will convert those unwritten extents
3109 	 * to written after return back from blockdev_direct_IO.
3110 	 *
3111 	 * For async DIO, the conversion needs to be deferred when the
3112 	 * IO is completed. The ext4 end_io callback function will be
3113 	 * called to take care of the conversion work.  Here for async
3114 	 * case, we allocate an io_end structure to hook to the iocb.
3115 	 */
3116 	iocb->private = NULL;
3117 	ext4_inode_aio_set(inode, NULL);
3118 	if (!is_sync_kiocb(iocb)) {
3119 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3120 		if (!io_end) {
3121 			ret = -ENOMEM;
3122 			goto retake_lock;
3123 		}
3124 		/*
3125 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3126 		 */
3127 		iocb->private = ext4_get_io_end(io_end);
3128 		/*
3129 		 * we save the io structure for current async direct
3130 		 * IO, so that later ext4_map_blocks() could flag the
3131 		 * io structure whether there is a unwritten extents
3132 		 * needs to be converted when IO is completed.
3133 		 */
3134 		ext4_inode_aio_set(inode, io_end);
3135 	}
3136 
3137 	if (overwrite) {
3138 		get_block_func = ext4_get_block_write_nolock;
3139 	} else {
3140 		get_block_func = ext4_get_block_write;
3141 		dio_flags = DIO_LOCKING;
3142 	}
3143 	ret = __blockdev_direct_IO(rw, iocb, inode,
3144 				   inode->i_sb->s_bdev, iov,
3145 				   offset, nr_segs,
3146 				   get_block_func,
3147 				   ext4_end_io_dio,
3148 				   NULL,
3149 				   dio_flags);
3150 
3151 	/*
3152 	 * Put our reference to io_end. This can free the io_end structure e.g.
3153 	 * in sync IO case or in case of error. It can even perform extent
3154 	 * conversion if all bios we submitted finished before we got here.
3155 	 * Note that in that case iocb->private can be already set to NULL
3156 	 * here.
3157 	 */
3158 	if (io_end) {
3159 		ext4_inode_aio_set(inode, NULL);
3160 		ext4_put_io_end(io_end);
3161 		/*
3162 		 * When no IO was submitted ext4_end_io_dio() was not
3163 		 * called so we have to put iocb's reference.
3164 		 */
3165 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3166 			WARN_ON(iocb->private != io_end);
3167 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3168 			ext4_put_io_end(io_end);
3169 			iocb->private = NULL;
3170 		}
3171 	}
3172 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3173 						EXT4_STATE_DIO_UNWRITTEN)) {
3174 		int err;
3175 		/*
3176 		 * for non AIO case, since the IO is already
3177 		 * completed, we could do the conversion right here
3178 		 */
3179 		err = ext4_convert_unwritten_extents(NULL, inode,
3180 						     offset, ret);
3181 		if (err < 0)
3182 			ret = err;
3183 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3184 	}
3185 
3186 retake_lock:
3187 	if (rw == WRITE)
3188 		inode_dio_done(inode);
3189 	/* take i_mutex locking again if we do a ovewrite dio */
3190 	if (overwrite) {
3191 		up_read(&EXT4_I(inode)->i_data_sem);
3192 		mutex_lock(&inode->i_mutex);
3193 	}
3194 
3195 	return ret;
3196 }
3197 
3198 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3199 			      const struct iovec *iov, loff_t offset,
3200 			      unsigned long nr_segs)
3201 {
3202 	struct file *file = iocb->ki_filp;
3203 	struct inode *inode = file->f_mapping->host;
3204 	ssize_t ret;
3205 
3206 	/*
3207 	 * If we are doing data journalling we don't support O_DIRECT
3208 	 */
3209 	if (ext4_should_journal_data(inode))
3210 		return 0;
3211 
3212 	/* Let buffer I/O handle the inline data case. */
3213 	if (ext4_has_inline_data(inode))
3214 		return 0;
3215 
3216 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3217 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3218 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3219 	else
3220 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3221 	trace_ext4_direct_IO_exit(inode, offset,
3222 				iov_length(iov, nr_segs), rw, ret);
3223 	return ret;
3224 }
3225 
3226 /*
3227  * Pages can be marked dirty completely asynchronously from ext4's journalling
3228  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3229  * much here because ->set_page_dirty is called under VFS locks.  The page is
3230  * not necessarily locked.
3231  *
3232  * We cannot just dirty the page and leave attached buffers clean, because the
3233  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3234  * or jbddirty because all the journalling code will explode.
3235  *
3236  * So what we do is to mark the page "pending dirty" and next time writepage
3237  * is called, propagate that into the buffers appropriately.
3238  */
3239 static int ext4_journalled_set_page_dirty(struct page *page)
3240 {
3241 	SetPageChecked(page);
3242 	return __set_page_dirty_nobuffers(page);
3243 }
3244 
3245 static const struct address_space_operations ext4_aops = {
3246 	.readpage		= ext4_readpage,
3247 	.readpages		= ext4_readpages,
3248 	.writepage		= ext4_writepage,
3249 	.writepages		= ext4_writepages,
3250 	.write_begin		= ext4_write_begin,
3251 	.write_end		= ext4_write_end,
3252 	.bmap			= ext4_bmap,
3253 	.invalidatepage		= ext4_invalidatepage,
3254 	.releasepage		= ext4_releasepage,
3255 	.direct_IO		= ext4_direct_IO,
3256 	.migratepage		= buffer_migrate_page,
3257 	.is_partially_uptodate  = block_is_partially_uptodate,
3258 	.error_remove_page	= generic_error_remove_page,
3259 };
3260 
3261 static const struct address_space_operations ext4_journalled_aops = {
3262 	.readpage		= ext4_readpage,
3263 	.readpages		= ext4_readpages,
3264 	.writepage		= ext4_writepage,
3265 	.writepages		= ext4_writepages,
3266 	.write_begin		= ext4_write_begin,
3267 	.write_end		= ext4_journalled_write_end,
3268 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3269 	.bmap			= ext4_bmap,
3270 	.invalidatepage		= ext4_journalled_invalidatepage,
3271 	.releasepage		= ext4_releasepage,
3272 	.direct_IO		= ext4_direct_IO,
3273 	.is_partially_uptodate  = block_is_partially_uptodate,
3274 	.error_remove_page	= generic_error_remove_page,
3275 };
3276 
3277 static const struct address_space_operations ext4_da_aops = {
3278 	.readpage		= ext4_readpage,
3279 	.readpages		= ext4_readpages,
3280 	.writepage		= ext4_writepage,
3281 	.writepages		= ext4_writepages,
3282 	.write_begin		= ext4_da_write_begin,
3283 	.write_end		= ext4_da_write_end,
3284 	.bmap			= ext4_bmap,
3285 	.invalidatepage		= ext4_da_invalidatepage,
3286 	.releasepage		= ext4_releasepage,
3287 	.direct_IO		= ext4_direct_IO,
3288 	.migratepage		= buffer_migrate_page,
3289 	.is_partially_uptodate  = block_is_partially_uptodate,
3290 	.error_remove_page	= generic_error_remove_page,
3291 };
3292 
3293 void ext4_set_aops(struct inode *inode)
3294 {
3295 	switch (ext4_inode_journal_mode(inode)) {
3296 	case EXT4_INODE_ORDERED_DATA_MODE:
3297 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3298 		break;
3299 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3300 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3301 		break;
3302 	case EXT4_INODE_JOURNAL_DATA_MODE:
3303 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3304 		return;
3305 	default:
3306 		BUG();
3307 	}
3308 	if (test_opt(inode->i_sb, DELALLOC))
3309 		inode->i_mapping->a_ops = &ext4_da_aops;
3310 	else
3311 		inode->i_mapping->a_ops = &ext4_aops;
3312 }
3313 
3314 /*
3315  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3316  * up to the end of the block which corresponds to `from'.
3317  * This required during truncate. We need to physically zero the tail end
3318  * of that block so it doesn't yield old data if the file is later grown.
3319  */
3320 int ext4_block_truncate_page(handle_t *handle,
3321 		struct address_space *mapping, loff_t from)
3322 {
3323 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3324 	unsigned length;
3325 	unsigned blocksize;
3326 	struct inode *inode = mapping->host;
3327 
3328 	blocksize = inode->i_sb->s_blocksize;
3329 	length = blocksize - (offset & (blocksize - 1));
3330 
3331 	return ext4_block_zero_page_range(handle, mapping, from, length);
3332 }
3333 
3334 /*
3335  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3336  * starting from file offset 'from'.  The range to be zero'd must
3337  * be contained with in one block.  If the specified range exceeds
3338  * the end of the block it will be shortened to end of the block
3339  * that cooresponds to 'from'
3340  */
3341 int ext4_block_zero_page_range(handle_t *handle,
3342 		struct address_space *mapping, loff_t from, loff_t length)
3343 {
3344 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3345 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3346 	unsigned blocksize, max, pos;
3347 	ext4_lblk_t iblock;
3348 	struct inode *inode = mapping->host;
3349 	struct buffer_head *bh;
3350 	struct page *page;
3351 	int err = 0;
3352 
3353 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3354 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3355 	if (!page)
3356 		return -ENOMEM;
3357 
3358 	blocksize = inode->i_sb->s_blocksize;
3359 	max = blocksize - (offset & (blocksize - 1));
3360 
3361 	/*
3362 	 * correct length if it does not fall between
3363 	 * 'from' and the end of the block
3364 	 */
3365 	if (length > max || length < 0)
3366 		length = max;
3367 
3368 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3369 
3370 	if (!page_has_buffers(page))
3371 		create_empty_buffers(page, blocksize, 0);
3372 
3373 	/* Find the buffer that contains "offset" */
3374 	bh = page_buffers(page);
3375 	pos = blocksize;
3376 	while (offset >= pos) {
3377 		bh = bh->b_this_page;
3378 		iblock++;
3379 		pos += blocksize;
3380 	}
3381 	if (buffer_freed(bh)) {
3382 		BUFFER_TRACE(bh, "freed: skip");
3383 		goto unlock;
3384 	}
3385 	if (!buffer_mapped(bh)) {
3386 		BUFFER_TRACE(bh, "unmapped");
3387 		ext4_get_block(inode, iblock, bh, 0);
3388 		/* unmapped? It's a hole - nothing to do */
3389 		if (!buffer_mapped(bh)) {
3390 			BUFFER_TRACE(bh, "still unmapped");
3391 			goto unlock;
3392 		}
3393 	}
3394 
3395 	/* Ok, it's mapped. Make sure it's up-to-date */
3396 	if (PageUptodate(page))
3397 		set_buffer_uptodate(bh);
3398 
3399 	if (!buffer_uptodate(bh)) {
3400 		err = -EIO;
3401 		ll_rw_block(READ, 1, &bh);
3402 		wait_on_buffer(bh);
3403 		/* Uhhuh. Read error. Complain and punt. */
3404 		if (!buffer_uptodate(bh))
3405 			goto unlock;
3406 	}
3407 	if (ext4_should_journal_data(inode)) {
3408 		BUFFER_TRACE(bh, "get write access");
3409 		err = ext4_journal_get_write_access(handle, bh);
3410 		if (err)
3411 			goto unlock;
3412 	}
3413 	zero_user(page, offset, length);
3414 	BUFFER_TRACE(bh, "zeroed end of block");
3415 
3416 	if (ext4_should_journal_data(inode)) {
3417 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3418 	} else {
3419 		err = 0;
3420 		mark_buffer_dirty(bh);
3421 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3422 			err = ext4_jbd2_file_inode(handle, inode);
3423 	}
3424 
3425 unlock:
3426 	unlock_page(page);
3427 	page_cache_release(page);
3428 	return err;
3429 }
3430 
3431 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3432 			     loff_t lstart, loff_t length)
3433 {
3434 	struct super_block *sb = inode->i_sb;
3435 	struct address_space *mapping = inode->i_mapping;
3436 	unsigned partial_start, partial_end;
3437 	ext4_fsblk_t start, end;
3438 	loff_t byte_end = (lstart + length - 1);
3439 	int err = 0;
3440 
3441 	partial_start = lstart & (sb->s_blocksize - 1);
3442 	partial_end = byte_end & (sb->s_blocksize - 1);
3443 
3444 	start = lstart >> sb->s_blocksize_bits;
3445 	end = byte_end >> sb->s_blocksize_bits;
3446 
3447 	/* Handle partial zero within the single block */
3448 	if (start == end &&
3449 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3450 		err = ext4_block_zero_page_range(handle, mapping,
3451 						 lstart, length);
3452 		return err;
3453 	}
3454 	/* Handle partial zero out on the start of the range */
3455 	if (partial_start) {
3456 		err = ext4_block_zero_page_range(handle, mapping,
3457 						 lstart, sb->s_blocksize);
3458 		if (err)
3459 			return err;
3460 	}
3461 	/* Handle partial zero out on the end of the range */
3462 	if (partial_end != sb->s_blocksize - 1)
3463 		err = ext4_block_zero_page_range(handle, mapping,
3464 						 byte_end - partial_end,
3465 						 partial_end + 1);
3466 	return err;
3467 }
3468 
3469 int ext4_can_truncate(struct inode *inode)
3470 {
3471 	if (S_ISREG(inode->i_mode))
3472 		return 1;
3473 	if (S_ISDIR(inode->i_mode))
3474 		return 1;
3475 	if (S_ISLNK(inode->i_mode))
3476 		return !ext4_inode_is_fast_symlink(inode);
3477 	return 0;
3478 }
3479 
3480 /*
3481  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3482  * associated with the given offset and length
3483  *
3484  * @inode:  File inode
3485  * @offset: The offset where the hole will begin
3486  * @len:    The length of the hole
3487  *
3488  * Returns: 0 on success or negative on failure
3489  */
3490 
3491 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3492 {
3493 	struct super_block *sb = inode->i_sb;
3494 	ext4_lblk_t first_block, stop_block;
3495 	struct address_space *mapping = inode->i_mapping;
3496 	loff_t first_block_offset, last_block_offset;
3497 	handle_t *handle;
3498 	unsigned int credits;
3499 	int ret = 0;
3500 
3501 	if (!S_ISREG(inode->i_mode))
3502 		return -EOPNOTSUPP;
3503 
3504 	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3505 		/* TODO: Add support for bigalloc file systems */
3506 		return -EOPNOTSUPP;
3507 	}
3508 
3509 	trace_ext4_punch_hole(inode, offset, length);
3510 
3511 	/*
3512 	 * Write out all dirty pages to avoid race conditions
3513 	 * Then release them.
3514 	 */
3515 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3516 		ret = filemap_write_and_wait_range(mapping, offset,
3517 						   offset + length - 1);
3518 		if (ret)
3519 			return ret;
3520 	}
3521 
3522 	mutex_lock(&inode->i_mutex);
3523 	/* It's not possible punch hole on append only file */
3524 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3525 		ret = -EPERM;
3526 		goto out_mutex;
3527 	}
3528 	if (IS_SWAPFILE(inode)) {
3529 		ret = -ETXTBSY;
3530 		goto out_mutex;
3531 	}
3532 
3533 	/* No need to punch hole beyond i_size */
3534 	if (offset >= inode->i_size)
3535 		goto out_mutex;
3536 
3537 	/*
3538 	 * If the hole extends beyond i_size, set the hole
3539 	 * to end after the page that contains i_size
3540 	 */
3541 	if (offset + length > inode->i_size) {
3542 		length = inode->i_size +
3543 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3544 		   offset;
3545 	}
3546 
3547 	if (offset & (sb->s_blocksize - 1) ||
3548 	    (offset + length) & (sb->s_blocksize - 1)) {
3549 		/*
3550 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3551 		 * partial block
3552 		 */
3553 		ret = ext4_inode_attach_jinode(inode);
3554 		if (ret < 0)
3555 			goto out_mutex;
3556 
3557 	}
3558 
3559 	first_block_offset = round_up(offset, sb->s_blocksize);
3560 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3561 
3562 	/* Now release the pages and zero block aligned part of pages*/
3563 	if (last_block_offset > first_block_offset)
3564 		truncate_pagecache_range(inode, first_block_offset,
3565 					 last_block_offset);
3566 
3567 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3568 	ext4_inode_block_unlocked_dio(inode);
3569 	inode_dio_wait(inode);
3570 
3571 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3572 		credits = ext4_writepage_trans_blocks(inode);
3573 	else
3574 		credits = ext4_blocks_for_truncate(inode);
3575 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3576 	if (IS_ERR(handle)) {
3577 		ret = PTR_ERR(handle);
3578 		ext4_std_error(sb, ret);
3579 		goto out_dio;
3580 	}
3581 
3582 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3583 				       length);
3584 	if (ret)
3585 		goto out_stop;
3586 
3587 	first_block = (offset + sb->s_blocksize - 1) >>
3588 		EXT4_BLOCK_SIZE_BITS(sb);
3589 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3590 
3591 	/* If there are no blocks to remove, return now */
3592 	if (first_block >= stop_block)
3593 		goto out_stop;
3594 
3595 	down_write(&EXT4_I(inode)->i_data_sem);
3596 	ext4_discard_preallocations(inode);
3597 
3598 	ret = ext4_es_remove_extent(inode, first_block,
3599 				    stop_block - first_block);
3600 	if (ret) {
3601 		up_write(&EXT4_I(inode)->i_data_sem);
3602 		goto out_stop;
3603 	}
3604 
3605 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3606 		ret = ext4_ext_remove_space(inode, first_block,
3607 					    stop_block - 1);
3608 	else
3609 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3610 					    stop_block);
3611 
3612 	ext4_discard_preallocations(inode);
3613 	up_write(&EXT4_I(inode)->i_data_sem);
3614 	if (IS_SYNC(inode))
3615 		ext4_handle_sync(handle);
3616 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3617 	ext4_mark_inode_dirty(handle, inode);
3618 out_stop:
3619 	ext4_journal_stop(handle);
3620 out_dio:
3621 	ext4_inode_resume_unlocked_dio(inode);
3622 out_mutex:
3623 	mutex_unlock(&inode->i_mutex);
3624 	return ret;
3625 }
3626 
3627 int ext4_inode_attach_jinode(struct inode *inode)
3628 {
3629 	struct ext4_inode_info *ei = EXT4_I(inode);
3630 	struct jbd2_inode *jinode;
3631 
3632 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3633 		return 0;
3634 
3635 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3636 	spin_lock(&inode->i_lock);
3637 	if (!ei->jinode) {
3638 		if (!jinode) {
3639 			spin_unlock(&inode->i_lock);
3640 			return -ENOMEM;
3641 		}
3642 		ei->jinode = jinode;
3643 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3644 		jinode = NULL;
3645 	}
3646 	spin_unlock(&inode->i_lock);
3647 	if (unlikely(jinode != NULL))
3648 		jbd2_free_inode(jinode);
3649 	return 0;
3650 }
3651 
3652 /*
3653  * ext4_truncate()
3654  *
3655  * We block out ext4_get_block() block instantiations across the entire
3656  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3657  * simultaneously on behalf of the same inode.
3658  *
3659  * As we work through the truncate and commit bits of it to the journal there
3660  * is one core, guiding principle: the file's tree must always be consistent on
3661  * disk.  We must be able to restart the truncate after a crash.
3662  *
3663  * The file's tree may be transiently inconsistent in memory (although it
3664  * probably isn't), but whenever we close off and commit a journal transaction,
3665  * the contents of (the filesystem + the journal) must be consistent and
3666  * restartable.  It's pretty simple, really: bottom up, right to left (although
3667  * left-to-right works OK too).
3668  *
3669  * Note that at recovery time, journal replay occurs *before* the restart of
3670  * truncate against the orphan inode list.
3671  *
3672  * The committed inode has the new, desired i_size (which is the same as
3673  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3674  * that this inode's truncate did not complete and it will again call
3675  * ext4_truncate() to have another go.  So there will be instantiated blocks
3676  * to the right of the truncation point in a crashed ext4 filesystem.  But
3677  * that's fine - as long as they are linked from the inode, the post-crash
3678  * ext4_truncate() run will find them and release them.
3679  */
3680 void ext4_truncate(struct inode *inode)
3681 {
3682 	struct ext4_inode_info *ei = EXT4_I(inode);
3683 	unsigned int credits;
3684 	handle_t *handle;
3685 	struct address_space *mapping = inode->i_mapping;
3686 
3687 	/*
3688 	 * There is a possibility that we're either freeing the inode
3689 	 * or it completely new indode. In those cases we might not
3690 	 * have i_mutex locked because it's not necessary.
3691 	 */
3692 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3693 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3694 	trace_ext4_truncate_enter(inode);
3695 
3696 	if (!ext4_can_truncate(inode))
3697 		return;
3698 
3699 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3700 
3701 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3702 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3703 
3704 	if (ext4_has_inline_data(inode)) {
3705 		int has_inline = 1;
3706 
3707 		ext4_inline_data_truncate(inode, &has_inline);
3708 		if (has_inline)
3709 			return;
3710 	}
3711 
3712 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3713 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3714 		if (ext4_inode_attach_jinode(inode) < 0)
3715 			return;
3716 	}
3717 
3718 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3719 		credits = ext4_writepage_trans_blocks(inode);
3720 	else
3721 		credits = ext4_blocks_for_truncate(inode);
3722 
3723 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3724 	if (IS_ERR(handle)) {
3725 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3726 		return;
3727 	}
3728 
3729 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3730 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3731 
3732 	/*
3733 	 * We add the inode to the orphan list, so that if this
3734 	 * truncate spans multiple transactions, and we crash, we will
3735 	 * resume the truncate when the filesystem recovers.  It also
3736 	 * marks the inode dirty, to catch the new size.
3737 	 *
3738 	 * Implication: the file must always be in a sane, consistent
3739 	 * truncatable state while each transaction commits.
3740 	 */
3741 	if (ext4_orphan_add(handle, inode))
3742 		goto out_stop;
3743 
3744 	down_write(&EXT4_I(inode)->i_data_sem);
3745 
3746 	ext4_discard_preallocations(inode);
3747 
3748 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3749 		ext4_ext_truncate(handle, inode);
3750 	else
3751 		ext4_ind_truncate(handle, inode);
3752 
3753 	up_write(&ei->i_data_sem);
3754 
3755 	if (IS_SYNC(inode))
3756 		ext4_handle_sync(handle);
3757 
3758 out_stop:
3759 	/*
3760 	 * If this was a simple ftruncate() and the file will remain alive,
3761 	 * then we need to clear up the orphan record which we created above.
3762 	 * However, if this was a real unlink then we were called by
3763 	 * ext4_delete_inode(), and we allow that function to clean up the
3764 	 * orphan info for us.
3765 	 */
3766 	if (inode->i_nlink)
3767 		ext4_orphan_del(handle, inode);
3768 
3769 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3770 	ext4_mark_inode_dirty(handle, inode);
3771 	ext4_journal_stop(handle);
3772 
3773 	trace_ext4_truncate_exit(inode);
3774 }
3775 
3776 /*
3777  * ext4_get_inode_loc returns with an extra refcount against the inode's
3778  * underlying buffer_head on success. If 'in_mem' is true, we have all
3779  * data in memory that is needed to recreate the on-disk version of this
3780  * inode.
3781  */
3782 static int __ext4_get_inode_loc(struct inode *inode,
3783 				struct ext4_iloc *iloc, int in_mem)
3784 {
3785 	struct ext4_group_desc	*gdp;
3786 	struct buffer_head	*bh;
3787 	struct super_block	*sb = inode->i_sb;
3788 	ext4_fsblk_t		block;
3789 	int			inodes_per_block, inode_offset;
3790 
3791 	iloc->bh = NULL;
3792 	if (!ext4_valid_inum(sb, inode->i_ino))
3793 		return -EIO;
3794 
3795 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3796 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3797 	if (!gdp)
3798 		return -EIO;
3799 
3800 	/*
3801 	 * Figure out the offset within the block group inode table
3802 	 */
3803 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3804 	inode_offset = ((inode->i_ino - 1) %
3805 			EXT4_INODES_PER_GROUP(sb));
3806 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3807 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3808 
3809 	bh = sb_getblk(sb, block);
3810 	if (unlikely(!bh))
3811 		return -ENOMEM;
3812 	if (!buffer_uptodate(bh)) {
3813 		lock_buffer(bh);
3814 
3815 		/*
3816 		 * If the buffer has the write error flag, we have failed
3817 		 * to write out another inode in the same block.  In this
3818 		 * case, we don't have to read the block because we may
3819 		 * read the old inode data successfully.
3820 		 */
3821 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3822 			set_buffer_uptodate(bh);
3823 
3824 		if (buffer_uptodate(bh)) {
3825 			/* someone brought it uptodate while we waited */
3826 			unlock_buffer(bh);
3827 			goto has_buffer;
3828 		}
3829 
3830 		/*
3831 		 * If we have all information of the inode in memory and this
3832 		 * is the only valid inode in the block, we need not read the
3833 		 * block.
3834 		 */
3835 		if (in_mem) {
3836 			struct buffer_head *bitmap_bh;
3837 			int i, start;
3838 
3839 			start = inode_offset & ~(inodes_per_block - 1);
3840 
3841 			/* Is the inode bitmap in cache? */
3842 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3843 			if (unlikely(!bitmap_bh))
3844 				goto make_io;
3845 
3846 			/*
3847 			 * If the inode bitmap isn't in cache then the
3848 			 * optimisation may end up performing two reads instead
3849 			 * of one, so skip it.
3850 			 */
3851 			if (!buffer_uptodate(bitmap_bh)) {
3852 				brelse(bitmap_bh);
3853 				goto make_io;
3854 			}
3855 			for (i = start; i < start + inodes_per_block; i++) {
3856 				if (i == inode_offset)
3857 					continue;
3858 				if (ext4_test_bit(i, bitmap_bh->b_data))
3859 					break;
3860 			}
3861 			brelse(bitmap_bh);
3862 			if (i == start + inodes_per_block) {
3863 				/* all other inodes are free, so skip I/O */
3864 				memset(bh->b_data, 0, bh->b_size);
3865 				set_buffer_uptodate(bh);
3866 				unlock_buffer(bh);
3867 				goto has_buffer;
3868 			}
3869 		}
3870 
3871 make_io:
3872 		/*
3873 		 * If we need to do any I/O, try to pre-readahead extra
3874 		 * blocks from the inode table.
3875 		 */
3876 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3877 			ext4_fsblk_t b, end, table;
3878 			unsigned num;
3879 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3880 
3881 			table = ext4_inode_table(sb, gdp);
3882 			/* s_inode_readahead_blks is always a power of 2 */
3883 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3884 			if (table > b)
3885 				b = table;
3886 			end = b + ra_blks;
3887 			num = EXT4_INODES_PER_GROUP(sb);
3888 			if (ext4_has_group_desc_csum(sb))
3889 				num -= ext4_itable_unused_count(sb, gdp);
3890 			table += num / inodes_per_block;
3891 			if (end > table)
3892 				end = table;
3893 			while (b <= end)
3894 				sb_breadahead(sb, b++);
3895 		}
3896 
3897 		/*
3898 		 * There are other valid inodes in the buffer, this inode
3899 		 * has in-inode xattrs, or we don't have this inode in memory.
3900 		 * Read the block from disk.
3901 		 */
3902 		trace_ext4_load_inode(inode);
3903 		get_bh(bh);
3904 		bh->b_end_io = end_buffer_read_sync;
3905 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3906 		wait_on_buffer(bh);
3907 		if (!buffer_uptodate(bh)) {
3908 			EXT4_ERROR_INODE_BLOCK(inode, block,
3909 					       "unable to read itable block");
3910 			brelse(bh);
3911 			return -EIO;
3912 		}
3913 	}
3914 has_buffer:
3915 	iloc->bh = bh;
3916 	return 0;
3917 }
3918 
3919 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3920 {
3921 	/* We have all inode data except xattrs in memory here. */
3922 	return __ext4_get_inode_loc(inode, iloc,
3923 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3924 }
3925 
3926 void ext4_set_inode_flags(struct inode *inode)
3927 {
3928 	unsigned int flags = EXT4_I(inode)->i_flags;
3929 
3930 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3931 	if (flags & EXT4_SYNC_FL)
3932 		inode->i_flags |= S_SYNC;
3933 	if (flags & EXT4_APPEND_FL)
3934 		inode->i_flags |= S_APPEND;
3935 	if (flags & EXT4_IMMUTABLE_FL)
3936 		inode->i_flags |= S_IMMUTABLE;
3937 	if (flags & EXT4_NOATIME_FL)
3938 		inode->i_flags |= S_NOATIME;
3939 	if (flags & EXT4_DIRSYNC_FL)
3940 		inode->i_flags |= S_DIRSYNC;
3941 }
3942 
3943 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3944 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3945 {
3946 	unsigned int vfs_fl;
3947 	unsigned long old_fl, new_fl;
3948 
3949 	do {
3950 		vfs_fl = ei->vfs_inode.i_flags;
3951 		old_fl = ei->i_flags;
3952 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3953 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3954 				EXT4_DIRSYNC_FL);
3955 		if (vfs_fl & S_SYNC)
3956 			new_fl |= EXT4_SYNC_FL;
3957 		if (vfs_fl & S_APPEND)
3958 			new_fl |= EXT4_APPEND_FL;
3959 		if (vfs_fl & S_IMMUTABLE)
3960 			new_fl |= EXT4_IMMUTABLE_FL;
3961 		if (vfs_fl & S_NOATIME)
3962 			new_fl |= EXT4_NOATIME_FL;
3963 		if (vfs_fl & S_DIRSYNC)
3964 			new_fl |= EXT4_DIRSYNC_FL;
3965 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3966 }
3967 
3968 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3969 				  struct ext4_inode_info *ei)
3970 {
3971 	blkcnt_t i_blocks ;
3972 	struct inode *inode = &(ei->vfs_inode);
3973 	struct super_block *sb = inode->i_sb;
3974 
3975 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3976 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3977 		/* we are using combined 48 bit field */
3978 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3979 					le32_to_cpu(raw_inode->i_blocks_lo);
3980 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3981 			/* i_blocks represent file system block size */
3982 			return i_blocks  << (inode->i_blkbits - 9);
3983 		} else {
3984 			return i_blocks;
3985 		}
3986 	} else {
3987 		return le32_to_cpu(raw_inode->i_blocks_lo);
3988 	}
3989 }
3990 
3991 static inline void ext4_iget_extra_inode(struct inode *inode,
3992 					 struct ext4_inode *raw_inode,
3993 					 struct ext4_inode_info *ei)
3994 {
3995 	__le32 *magic = (void *)raw_inode +
3996 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3997 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3998 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3999 		ext4_find_inline_data_nolock(inode);
4000 	} else
4001 		EXT4_I(inode)->i_inline_off = 0;
4002 }
4003 
4004 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4005 {
4006 	struct ext4_iloc iloc;
4007 	struct ext4_inode *raw_inode;
4008 	struct ext4_inode_info *ei;
4009 	struct inode *inode;
4010 	journal_t *journal = EXT4_SB(sb)->s_journal;
4011 	long ret;
4012 	int block;
4013 	uid_t i_uid;
4014 	gid_t i_gid;
4015 
4016 	inode = iget_locked(sb, ino);
4017 	if (!inode)
4018 		return ERR_PTR(-ENOMEM);
4019 	if (!(inode->i_state & I_NEW))
4020 		return inode;
4021 
4022 	ei = EXT4_I(inode);
4023 	iloc.bh = NULL;
4024 
4025 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4026 	if (ret < 0)
4027 		goto bad_inode;
4028 	raw_inode = ext4_raw_inode(&iloc);
4029 
4030 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4031 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4032 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4033 		    EXT4_INODE_SIZE(inode->i_sb)) {
4034 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4035 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4036 				EXT4_INODE_SIZE(inode->i_sb));
4037 			ret = -EIO;
4038 			goto bad_inode;
4039 		}
4040 	} else
4041 		ei->i_extra_isize = 0;
4042 
4043 	/* Precompute checksum seed for inode metadata */
4044 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4045 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4046 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4047 		__u32 csum;
4048 		__le32 inum = cpu_to_le32(inode->i_ino);
4049 		__le32 gen = raw_inode->i_generation;
4050 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4051 				   sizeof(inum));
4052 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4053 					      sizeof(gen));
4054 	}
4055 
4056 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4057 		EXT4_ERROR_INODE(inode, "checksum invalid");
4058 		ret = -EIO;
4059 		goto bad_inode;
4060 	}
4061 
4062 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4063 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4064 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4065 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4066 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4067 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4068 	}
4069 	i_uid_write(inode, i_uid);
4070 	i_gid_write(inode, i_gid);
4071 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4072 
4073 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4074 	ei->i_inline_off = 0;
4075 	ei->i_dir_start_lookup = 0;
4076 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4077 	/* We now have enough fields to check if the inode was active or not.
4078 	 * This is needed because nfsd might try to access dead inodes
4079 	 * the test is that same one that e2fsck uses
4080 	 * NeilBrown 1999oct15
4081 	 */
4082 	if (inode->i_nlink == 0) {
4083 		if ((inode->i_mode == 0 ||
4084 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4085 		    ino != EXT4_BOOT_LOADER_INO) {
4086 			/* this inode is deleted */
4087 			ret = -ESTALE;
4088 			goto bad_inode;
4089 		}
4090 		/* The only unlinked inodes we let through here have
4091 		 * valid i_mode and are being read by the orphan
4092 		 * recovery code: that's fine, we're about to complete
4093 		 * the process of deleting those.
4094 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4095 		 * not initialized on a new filesystem. */
4096 	}
4097 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4098 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4099 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4100 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4101 		ei->i_file_acl |=
4102 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4103 	inode->i_size = ext4_isize(raw_inode);
4104 	ei->i_disksize = inode->i_size;
4105 #ifdef CONFIG_QUOTA
4106 	ei->i_reserved_quota = 0;
4107 #endif
4108 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4109 	ei->i_block_group = iloc.block_group;
4110 	ei->i_last_alloc_group = ~0;
4111 	/*
4112 	 * NOTE! The in-memory inode i_data array is in little-endian order
4113 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4114 	 */
4115 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4116 		ei->i_data[block] = raw_inode->i_block[block];
4117 	INIT_LIST_HEAD(&ei->i_orphan);
4118 
4119 	/*
4120 	 * Set transaction id's of transactions that have to be committed
4121 	 * to finish f[data]sync. We set them to currently running transaction
4122 	 * as we cannot be sure that the inode or some of its metadata isn't
4123 	 * part of the transaction - the inode could have been reclaimed and
4124 	 * now it is reread from disk.
4125 	 */
4126 	if (journal) {
4127 		transaction_t *transaction;
4128 		tid_t tid;
4129 
4130 		read_lock(&journal->j_state_lock);
4131 		if (journal->j_running_transaction)
4132 			transaction = journal->j_running_transaction;
4133 		else
4134 			transaction = journal->j_committing_transaction;
4135 		if (transaction)
4136 			tid = transaction->t_tid;
4137 		else
4138 			tid = journal->j_commit_sequence;
4139 		read_unlock(&journal->j_state_lock);
4140 		ei->i_sync_tid = tid;
4141 		ei->i_datasync_tid = tid;
4142 	}
4143 
4144 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4145 		if (ei->i_extra_isize == 0) {
4146 			/* The extra space is currently unused. Use it. */
4147 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4148 					    EXT4_GOOD_OLD_INODE_SIZE;
4149 		} else {
4150 			ext4_iget_extra_inode(inode, raw_inode, ei);
4151 		}
4152 	}
4153 
4154 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4155 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4156 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4157 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4158 
4159 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4160 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4161 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4162 			inode->i_version |=
4163 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4164 	}
4165 
4166 	ret = 0;
4167 	if (ei->i_file_acl &&
4168 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4169 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4170 				 ei->i_file_acl);
4171 		ret = -EIO;
4172 		goto bad_inode;
4173 	} else if (!ext4_has_inline_data(inode)) {
4174 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4175 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4176 			    (S_ISLNK(inode->i_mode) &&
4177 			     !ext4_inode_is_fast_symlink(inode))))
4178 				/* Validate extent which is part of inode */
4179 				ret = ext4_ext_check_inode(inode);
4180 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4181 			   (S_ISLNK(inode->i_mode) &&
4182 			    !ext4_inode_is_fast_symlink(inode))) {
4183 			/* Validate block references which are part of inode */
4184 			ret = ext4_ind_check_inode(inode);
4185 		}
4186 	}
4187 	if (ret)
4188 		goto bad_inode;
4189 
4190 	if (S_ISREG(inode->i_mode)) {
4191 		inode->i_op = &ext4_file_inode_operations;
4192 		inode->i_fop = &ext4_file_operations;
4193 		ext4_set_aops(inode);
4194 	} else if (S_ISDIR(inode->i_mode)) {
4195 		inode->i_op = &ext4_dir_inode_operations;
4196 		inode->i_fop = &ext4_dir_operations;
4197 	} else if (S_ISLNK(inode->i_mode)) {
4198 		if (ext4_inode_is_fast_symlink(inode)) {
4199 			inode->i_op = &ext4_fast_symlink_inode_operations;
4200 			nd_terminate_link(ei->i_data, inode->i_size,
4201 				sizeof(ei->i_data) - 1);
4202 		} else {
4203 			inode->i_op = &ext4_symlink_inode_operations;
4204 			ext4_set_aops(inode);
4205 		}
4206 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4207 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4208 		inode->i_op = &ext4_special_inode_operations;
4209 		if (raw_inode->i_block[0])
4210 			init_special_inode(inode, inode->i_mode,
4211 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4212 		else
4213 			init_special_inode(inode, inode->i_mode,
4214 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4215 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4216 		make_bad_inode(inode);
4217 	} else {
4218 		ret = -EIO;
4219 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4220 		goto bad_inode;
4221 	}
4222 	brelse(iloc.bh);
4223 	ext4_set_inode_flags(inode);
4224 	unlock_new_inode(inode);
4225 	return inode;
4226 
4227 bad_inode:
4228 	brelse(iloc.bh);
4229 	iget_failed(inode);
4230 	return ERR_PTR(ret);
4231 }
4232 
4233 static int ext4_inode_blocks_set(handle_t *handle,
4234 				struct ext4_inode *raw_inode,
4235 				struct ext4_inode_info *ei)
4236 {
4237 	struct inode *inode = &(ei->vfs_inode);
4238 	u64 i_blocks = inode->i_blocks;
4239 	struct super_block *sb = inode->i_sb;
4240 
4241 	if (i_blocks <= ~0U) {
4242 		/*
4243 		 * i_blocks can be represented in a 32 bit variable
4244 		 * as multiple of 512 bytes
4245 		 */
4246 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4247 		raw_inode->i_blocks_high = 0;
4248 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4249 		return 0;
4250 	}
4251 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4252 		return -EFBIG;
4253 
4254 	if (i_blocks <= 0xffffffffffffULL) {
4255 		/*
4256 		 * i_blocks can be represented in a 48 bit variable
4257 		 * as multiple of 512 bytes
4258 		 */
4259 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4260 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4261 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4262 	} else {
4263 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4264 		/* i_block is stored in file system block size */
4265 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4266 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4267 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4268 	}
4269 	return 0;
4270 }
4271 
4272 /*
4273  * Post the struct inode info into an on-disk inode location in the
4274  * buffer-cache.  This gobbles the caller's reference to the
4275  * buffer_head in the inode location struct.
4276  *
4277  * The caller must have write access to iloc->bh.
4278  */
4279 static int ext4_do_update_inode(handle_t *handle,
4280 				struct inode *inode,
4281 				struct ext4_iloc *iloc)
4282 {
4283 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4284 	struct ext4_inode_info *ei = EXT4_I(inode);
4285 	struct buffer_head *bh = iloc->bh;
4286 	int err = 0, rc, block;
4287 	int need_datasync = 0;
4288 	uid_t i_uid;
4289 	gid_t i_gid;
4290 
4291 	/* For fields not not tracking in the in-memory inode,
4292 	 * initialise them to zero for new inodes. */
4293 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4294 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4295 
4296 	ext4_get_inode_flags(ei);
4297 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4298 	i_uid = i_uid_read(inode);
4299 	i_gid = i_gid_read(inode);
4300 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4301 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4302 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4303 /*
4304  * Fix up interoperability with old kernels. Otherwise, old inodes get
4305  * re-used with the upper 16 bits of the uid/gid intact
4306  */
4307 		if (!ei->i_dtime) {
4308 			raw_inode->i_uid_high =
4309 				cpu_to_le16(high_16_bits(i_uid));
4310 			raw_inode->i_gid_high =
4311 				cpu_to_le16(high_16_bits(i_gid));
4312 		} else {
4313 			raw_inode->i_uid_high = 0;
4314 			raw_inode->i_gid_high = 0;
4315 		}
4316 	} else {
4317 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4318 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4319 		raw_inode->i_uid_high = 0;
4320 		raw_inode->i_gid_high = 0;
4321 	}
4322 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4323 
4324 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4325 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4326 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4327 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4328 
4329 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4330 		goto out_brelse;
4331 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4332 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4333 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4334 	    cpu_to_le32(EXT4_OS_HURD))
4335 		raw_inode->i_file_acl_high =
4336 			cpu_to_le16(ei->i_file_acl >> 32);
4337 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4338 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4339 		ext4_isize_set(raw_inode, ei->i_disksize);
4340 		need_datasync = 1;
4341 	}
4342 	if (ei->i_disksize > 0x7fffffffULL) {
4343 		struct super_block *sb = inode->i_sb;
4344 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4345 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4346 				EXT4_SB(sb)->s_es->s_rev_level ==
4347 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4348 			/* If this is the first large file
4349 			 * created, add a flag to the superblock.
4350 			 */
4351 			err = ext4_journal_get_write_access(handle,
4352 					EXT4_SB(sb)->s_sbh);
4353 			if (err)
4354 				goto out_brelse;
4355 			ext4_update_dynamic_rev(sb);
4356 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4357 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4358 			ext4_handle_sync(handle);
4359 			err = ext4_handle_dirty_super(handle, sb);
4360 		}
4361 	}
4362 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4363 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4364 		if (old_valid_dev(inode->i_rdev)) {
4365 			raw_inode->i_block[0] =
4366 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4367 			raw_inode->i_block[1] = 0;
4368 		} else {
4369 			raw_inode->i_block[0] = 0;
4370 			raw_inode->i_block[1] =
4371 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4372 			raw_inode->i_block[2] = 0;
4373 		}
4374 	} else if (!ext4_has_inline_data(inode)) {
4375 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4376 			raw_inode->i_block[block] = ei->i_data[block];
4377 	}
4378 
4379 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4380 	if (ei->i_extra_isize) {
4381 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4382 			raw_inode->i_version_hi =
4383 			cpu_to_le32(inode->i_version >> 32);
4384 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4385 	}
4386 
4387 	ext4_inode_csum_set(inode, raw_inode, ei);
4388 
4389 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4390 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4391 	if (!err)
4392 		err = rc;
4393 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4394 
4395 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4396 out_brelse:
4397 	brelse(bh);
4398 	ext4_std_error(inode->i_sb, err);
4399 	return err;
4400 }
4401 
4402 /*
4403  * ext4_write_inode()
4404  *
4405  * We are called from a few places:
4406  *
4407  * - Within generic_file_write() for O_SYNC files.
4408  *   Here, there will be no transaction running. We wait for any running
4409  *   transaction to commit.
4410  *
4411  * - Within sys_sync(), kupdate and such.
4412  *   We wait on commit, if tol to.
4413  *
4414  * - Within prune_icache() (PF_MEMALLOC == true)
4415  *   Here we simply return.  We can't afford to block kswapd on the
4416  *   journal commit.
4417  *
4418  * In all cases it is actually safe for us to return without doing anything,
4419  * because the inode has been copied into a raw inode buffer in
4420  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4421  * knfsd.
4422  *
4423  * Note that we are absolutely dependent upon all inode dirtiers doing the
4424  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4425  * which we are interested.
4426  *
4427  * It would be a bug for them to not do this.  The code:
4428  *
4429  *	mark_inode_dirty(inode)
4430  *	stuff();
4431  *	inode->i_size = expr;
4432  *
4433  * is in error because a kswapd-driven write_inode() could occur while
4434  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4435  * will no longer be on the superblock's dirty inode list.
4436  */
4437 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4438 {
4439 	int err;
4440 
4441 	if (current->flags & PF_MEMALLOC)
4442 		return 0;
4443 
4444 	if (EXT4_SB(inode->i_sb)->s_journal) {
4445 		if (ext4_journal_current_handle()) {
4446 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4447 			dump_stack();
4448 			return -EIO;
4449 		}
4450 
4451 		if (wbc->sync_mode != WB_SYNC_ALL)
4452 			return 0;
4453 
4454 		err = ext4_force_commit(inode->i_sb);
4455 	} else {
4456 		struct ext4_iloc iloc;
4457 
4458 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4459 		if (err)
4460 			return err;
4461 		if (wbc->sync_mode == WB_SYNC_ALL)
4462 			sync_dirty_buffer(iloc.bh);
4463 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4464 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4465 					 "IO error syncing inode");
4466 			err = -EIO;
4467 		}
4468 		brelse(iloc.bh);
4469 	}
4470 	return err;
4471 }
4472 
4473 /*
4474  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4475  * buffers that are attached to a page stradding i_size and are undergoing
4476  * commit. In that case we have to wait for commit to finish and try again.
4477  */
4478 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4479 {
4480 	struct page *page;
4481 	unsigned offset;
4482 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4483 	tid_t commit_tid = 0;
4484 	int ret;
4485 
4486 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4487 	/*
4488 	 * All buffers in the last page remain valid? Then there's nothing to
4489 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4490 	 * blocksize case
4491 	 */
4492 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4493 		return;
4494 	while (1) {
4495 		page = find_lock_page(inode->i_mapping,
4496 				      inode->i_size >> PAGE_CACHE_SHIFT);
4497 		if (!page)
4498 			return;
4499 		ret = __ext4_journalled_invalidatepage(page, offset,
4500 						PAGE_CACHE_SIZE - offset);
4501 		unlock_page(page);
4502 		page_cache_release(page);
4503 		if (ret != -EBUSY)
4504 			return;
4505 		commit_tid = 0;
4506 		read_lock(&journal->j_state_lock);
4507 		if (journal->j_committing_transaction)
4508 			commit_tid = journal->j_committing_transaction->t_tid;
4509 		read_unlock(&journal->j_state_lock);
4510 		if (commit_tid)
4511 			jbd2_log_wait_commit(journal, commit_tid);
4512 	}
4513 }
4514 
4515 /*
4516  * ext4_setattr()
4517  *
4518  * Called from notify_change.
4519  *
4520  * We want to trap VFS attempts to truncate the file as soon as
4521  * possible.  In particular, we want to make sure that when the VFS
4522  * shrinks i_size, we put the inode on the orphan list and modify
4523  * i_disksize immediately, so that during the subsequent flushing of
4524  * dirty pages and freeing of disk blocks, we can guarantee that any
4525  * commit will leave the blocks being flushed in an unused state on
4526  * disk.  (On recovery, the inode will get truncated and the blocks will
4527  * be freed, so we have a strong guarantee that no future commit will
4528  * leave these blocks visible to the user.)
4529  *
4530  * Another thing we have to assure is that if we are in ordered mode
4531  * and inode is still attached to the committing transaction, we must
4532  * we start writeout of all the dirty pages which are being truncated.
4533  * This way we are sure that all the data written in the previous
4534  * transaction are already on disk (truncate waits for pages under
4535  * writeback).
4536  *
4537  * Called with inode->i_mutex down.
4538  */
4539 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4540 {
4541 	struct inode *inode = dentry->d_inode;
4542 	int error, rc = 0;
4543 	int orphan = 0;
4544 	const unsigned int ia_valid = attr->ia_valid;
4545 
4546 	error = inode_change_ok(inode, attr);
4547 	if (error)
4548 		return error;
4549 
4550 	if (is_quota_modification(inode, attr))
4551 		dquot_initialize(inode);
4552 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4553 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4554 		handle_t *handle;
4555 
4556 		/* (user+group)*(old+new) structure, inode write (sb,
4557 		 * inode block, ? - but truncate inode update has it) */
4558 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4559 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4560 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4561 		if (IS_ERR(handle)) {
4562 			error = PTR_ERR(handle);
4563 			goto err_out;
4564 		}
4565 		error = dquot_transfer(inode, attr);
4566 		if (error) {
4567 			ext4_journal_stop(handle);
4568 			return error;
4569 		}
4570 		/* Update corresponding info in inode so that everything is in
4571 		 * one transaction */
4572 		if (attr->ia_valid & ATTR_UID)
4573 			inode->i_uid = attr->ia_uid;
4574 		if (attr->ia_valid & ATTR_GID)
4575 			inode->i_gid = attr->ia_gid;
4576 		error = ext4_mark_inode_dirty(handle, inode);
4577 		ext4_journal_stop(handle);
4578 	}
4579 
4580 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4581 		handle_t *handle;
4582 
4583 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4584 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4585 
4586 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4587 				return -EFBIG;
4588 		}
4589 		if (S_ISREG(inode->i_mode) &&
4590 		    (attr->ia_size < inode->i_size)) {
4591 			if (ext4_should_order_data(inode)) {
4592 				error = ext4_begin_ordered_truncate(inode,
4593 							    attr->ia_size);
4594 				if (error)
4595 					goto err_out;
4596 			}
4597 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4598 			if (IS_ERR(handle)) {
4599 				error = PTR_ERR(handle);
4600 				goto err_out;
4601 			}
4602 			if (ext4_handle_valid(handle)) {
4603 				error = ext4_orphan_add(handle, inode);
4604 				orphan = 1;
4605 			}
4606 			down_write(&EXT4_I(inode)->i_data_sem);
4607 			EXT4_I(inode)->i_disksize = attr->ia_size;
4608 			rc = ext4_mark_inode_dirty(handle, inode);
4609 			if (!error)
4610 				error = rc;
4611 			/*
4612 			 * We have to update i_size under i_data_sem together
4613 			 * with i_disksize to avoid races with writeback code
4614 			 * running ext4_wb_update_i_disksize().
4615 			 */
4616 			if (!error)
4617 				i_size_write(inode, attr->ia_size);
4618 			up_write(&EXT4_I(inode)->i_data_sem);
4619 			ext4_journal_stop(handle);
4620 			if (error) {
4621 				ext4_orphan_del(NULL, inode);
4622 				goto err_out;
4623 			}
4624 		} else
4625 			i_size_write(inode, attr->ia_size);
4626 
4627 		/*
4628 		 * Blocks are going to be removed from the inode. Wait
4629 		 * for dio in flight.  Temporarily disable
4630 		 * dioread_nolock to prevent livelock.
4631 		 */
4632 		if (orphan) {
4633 			if (!ext4_should_journal_data(inode)) {
4634 				ext4_inode_block_unlocked_dio(inode);
4635 				inode_dio_wait(inode);
4636 				ext4_inode_resume_unlocked_dio(inode);
4637 			} else
4638 				ext4_wait_for_tail_page_commit(inode);
4639 		}
4640 		/*
4641 		 * Truncate pagecache after we've waited for commit
4642 		 * in data=journal mode to make pages freeable.
4643 		 */
4644 			truncate_pagecache(inode, inode->i_size);
4645 	}
4646 	/*
4647 	 * We want to call ext4_truncate() even if attr->ia_size ==
4648 	 * inode->i_size for cases like truncation of fallocated space
4649 	 */
4650 	if (attr->ia_valid & ATTR_SIZE)
4651 		ext4_truncate(inode);
4652 
4653 	if (!rc) {
4654 		setattr_copy(inode, attr);
4655 		mark_inode_dirty(inode);
4656 	}
4657 
4658 	/*
4659 	 * If the call to ext4_truncate failed to get a transaction handle at
4660 	 * all, we need to clean up the in-core orphan list manually.
4661 	 */
4662 	if (orphan && inode->i_nlink)
4663 		ext4_orphan_del(NULL, inode);
4664 
4665 	if (!rc && (ia_valid & ATTR_MODE))
4666 		rc = ext4_acl_chmod(inode);
4667 
4668 err_out:
4669 	ext4_std_error(inode->i_sb, error);
4670 	if (!error)
4671 		error = rc;
4672 	return error;
4673 }
4674 
4675 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4676 		 struct kstat *stat)
4677 {
4678 	struct inode *inode;
4679 	unsigned long long delalloc_blocks;
4680 
4681 	inode = dentry->d_inode;
4682 	generic_fillattr(inode, stat);
4683 
4684 	/*
4685 	 * If there is inline data in the inode, the inode will normally not
4686 	 * have data blocks allocated (it may have an external xattr block).
4687 	 * Report at least one sector for such files, so tools like tar, rsync,
4688 	 * others doen't incorrectly think the file is completely sparse.
4689 	 */
4690 	if (unlikely(ext4_has_inline_data(inode)))
4691 		stat->blocks += (stat->size + 511) >> 9;
4692 
4693 	/*
4694 	 * We can't update i_blocks if the block allocation is delayed
4695 	 * otherwise in the case of system crash before the real block
4696 	 * allocation is done, we will have i_blocks inconsistent with
4697 	 * on-disk file blocks.
4698 	 * We always keep i_blocks updated together with real
4699 	 * allocation. But to not confuse with user, stat
4700 	 * will return the blocks that include the delayed allocation
4701 	 * blocks for this file.
4702 	 */
4703 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4704 				   EXT4_I(inode)->i_reserved_data_blocks);
4705 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4706 	return 0;
4707 }
4708 
4709 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4710 				   int pextents)
4711 {
4712 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4713 		return ext4_ind_trans_blocks(inode, lblocks);
4714 	return ext4_ext_index_trans_blocks(inode, pextents);
4715 }
4716 
4717 /*
4718  * Account for index blocks, block groups bitmaps and block group
4719  * descriptor blocks if modify datablocks and index blocks
4720  * worse case, the indexs blocks spread over different block groups
4721  *
4722  * If datablocks are discontiguous, they are possible to spread over
4723  * different block groups too. If they are contiguous, with flexbg,
4724  * they could still across block group boundary.
4725  *
4726  * Also account for superblock, inode, quota and xattr blocks
4727  */
4728 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4729 				  int pextents)
4730 {
4731 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4732 	int gdpblocks;
4733 	int idxblocks;
4734 	int ret = 0;
4735 
4736 	/*
4737 	 * How many index blocks need to touch to map @lblocks logical blocks
4738 	 * to @pextents physical extents?
4739 	 */
4740 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4741 
4742 	ret = idxblocks;
4743 
4744 	/*
4745 	 * Now let's see how many group bitmaps and group descriptors need
4746 	 * to account
4747 	 */
4748 	groups = idxblocks + pextents;
4749 	gdpblocks = groups;
4750 	if (groups > ngroups)
4751 		groups = ngroups;
4752 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4753 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4754 
4755 	/* bitmaps and block group descriptor blocks */
4756 	ret += groups + gdpblocks;
4757 
4758 	/* Blocks for super block, inode, quota and xattr blocks */
4759 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4760 
4761 	return ret;
4762 }
4763 
4764 /*
4765  * Calculate the total number of credits to reserve to fit
4766  * the modification of a single pages into a single transaction,
4767  * which may include multiple chunks of block allocations.
4768  *
4769  * This could be called via ext4_write_begin()
4770  *
4771  * We need to consider the worse case, when
4772  * one new block per extent.
4773  */
4774 int ext4_writepage_trans_blocks(struct inode *inode)
4775 {
4776 	int bpp = ext4_journal_blocks_per_page(inode);
4777 	int ret;
4778 
4779 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4780 
4781 	/* Account for data blocks for journalled mode */
4782 	if (ext4_should_journal_data(inode))
4783 		ret += bpp;
4784 	return ret;
4785 }
4786 
4787 /*
4788  * Calculate the journal credits for a chunk of data modification.
4789  *
4790  * This is called from DIO, fallocate or whoever calling
4791  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4792  *
4793  * journal buffers for data blocks are not included here, as DIO
4794  * and fallocate do no need to journal data buffers.
4795  */
4796 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4797 {
4798 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4799 }
4800 
4801 /*
4802  * The caller must have previously called ext4_reserve_inode_write().
4803  * Give this, we know that the caller already has write access to iloc->bh.
4804  */
4805 int ext4_mark_iloc_dirty(handle_t *handle,
4806 			 struct inode *inode, struct ext4_iloc *iloc)
4807 {
4808 	int err = 0;
4809 
4810 	if (IS_I_VERSION(inode))
4811 		inode_inc_iversion(inode);
4812 
4813 	/* the do_update_inode consumes one bh->b_count */
4814 	get_bh(iloc->bh);
4815 
4816 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4817 	err = ext4_do_update_inode(handle, inode, iloc);
4818 	put_bh(iloc->bh);
4819 	return err;
4820 }
4821 
4822 /*
4823  * On success, We end up with an outstanding reference count against
4824  * iloc->bh.  This _must_ be cleaned up later.
4825  */
4826 
4827 int
4828 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4829 			 struct ext4_iloc *iloc)
4830 {
4831 	int err;
4832 
4833 	err = ext4_get_inode_loc(inode, iloc);
4834 	if (!err) {
4835 		BUFFER_TRACE(iloc->bh, "get_write_access");
4836 		err = ext4_journal_get_write_access(handle, iloc->bh);
4837 		if (err) {
4838 			brelse(iloc->bh);
4839 			iloc->bh = NULL;
4840 		}
4841 	}
4842 	ext4_std_error(inode->i_sb, err);
4843 	return err;
4844 }
4845 
4846 /*
4847  * Expand an inode by new_extra_isize bytes.
4848  * Returns 0 on success or negative error number on failure.
4849  */
4850 static int ext4_expand_extra_isize(struct inode *inode,
4851 				   unsigned int new_extra_isize,
4852 				   struct ext4_iloc iloc,
4853 				   handle_t *handle)
4854 {
4855 	struct ext4_inode *raw_inode;
4856 	struct ext4_xattr_ibody_header *header;
4857 
4858 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4859 		return 0;
4860 
4861 	raw_inode = ext4_raw_inode(&iloc);
4862 
4863 	header = IHDR(inode, raw_inode);
4864 
4865 	/* No extended attributes present */
4866 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4867 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4868 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4869 			new_extra_isize);
4870 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4871 		return 0;
4872 	}
4873 
4874 	/* try to expand with EAs present */
4875 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4876 					  raw_inode, handle);
4877 }
4878 
4879 /*
4880  * What we do here is to mark the in-core inode as clean with respect to inode
4881  * dirtiness (it may still be data-dirty).
4882  * This means that the in-core inode may be reaped by prune_icache
4883  * without having to perform any I/O.  This is a very good thing,
4884  * because *any* task may call prune_icache - even ones which
4885  * have a transaction open against a different journal.
4886  *
4887  * Is this cheating?  Not really.  Sure, we haven't written the
4888  * inode out, but prune_icache isn't a user-visible syncing function.
4889  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4890  * we start and wait on commits.
4891  */
4892 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4893 {
4894 	struct ext4_iloc iloc;
4895 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4896 	static unsigned int mnt_count;
4897 	int err, ret;
4898 
4899 	might_sleep();
4900 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4901 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4902 	if (ext4_handle_valid(handle) &&
4903 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4904 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4905 		/*
4906 		 * We need extra buffer credits since we may write into EA block
4907 		 * with this same handle. If journal_extend fails, then it will
4908 		 * only result in a minor loss of functionality for that inode.
4909 		 * If this is felt to be critical, then e2fsck should be run to
4910 		 * force a large enough s_min_extra_isize.
4911 		 */
4912 		if ((jbd2_journal_extend(handle,
4913 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4914 			ret = ext4_expand_extra_isize(inode,
4915 						      sbi->s_want_extra_isize,
4916 						      iloc, handle);
4917 			if (ret) {
4918 				ext4_set_inode_state(inode,
4919 						     EXT4_STATE_NO_EXPAND);
4920 				if (mnt_count !=
4921 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4922 					ext4_warning(inode->i_sb,
4923 					"Unable to expand inode %lu. Delete"
4924 					" some EAs or run e2fsck.",
4925 					inode->i_ino);
4926 					mnt_count =
4927 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4928 				}
4929 			}
4930 		}
4931 	}
4932 	if (!err)
4933 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4934 	return err;
4935 }
4936 
4937 /*
4938  * ext4_dirty_inode() is called from __mark_inode_dirty()
4939  *
4940  * We're really interested in the case where a file is being extended.
4941  * i_size has been changed by generic_commit_write() and we thus need
4942  * to include the updated inode in the current transaction.
4943  *
4944  * Also, dquot_alloc_block() will always dirty the inode when blocks
4945  * are allocated to the file.
4946  *
4947  * If the inode is marked synchronous, we don't honour that here - doing
4948  * so would cause a commit on atime updates, which we don't bother doing.
4949  * We handle synchronous inodes at the highest possible level.
4950  */
4951 void ext4_dirty_inode(struct inode *inode, int flags)
4952 {
4953 	handle_t *handle;
4954 
4955 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4956 	if (IS_ERR(handle))
4957 		goto out;
4958 
4959 	ext4_mark_inode_dirty(handle, inode);
4960 
4961 	ext4_journal_stop(handle);
4962 out:
4963 	return;
4964 }
4965 
4966 #if 0
4967 /*
4968  * Bind an inode's backing buffer_head into this transaction, to prevent
4969  * it from being flushed to disk early.  Unlike
4970  * ext4_reserve_inode_write, this leaves behind no bh reference and
4971  * returns no iloc structure, so the caller needs to repeat the iloc
4972  * lookup to mark the inode dirty later.
4973  */
4974 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4975 {
4976 	struct ext4_iloc iloc;
4977 
4978 	int err = 0;
4979 	if (handle) {
4980 		err = ext4_get_inode_loc(inode, &iloc);
4981 		if (!err) {
4982 			BUFFER_TRACE(iloc.bh, "get_write_access");
4983 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4984 			if (!err)
4985 				err = ext4_handle_dirty_metadata(handle,
4986 								 NULL,
4987 								 iloc.bh);
4988 			brelse(iloc.bh);
4989 		}
4990 	}
4991 	ext4_std_error(inode->i_sb, err);
4992 	return err;
4993 }
4994 #endif
4995 
4996 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4997 {
4998 	journal_t *journal;
4999 	handle_t *handle;
5000 	int err;
5001 
5002 	/*
5003 	 * We have to be very careful here: changing a data block's
5004 	 * journaling status dynamically is dangerous.  If we write a
5005 	 * data block to the journal, change the status and then delete
5006 	 * that block, we risk forgetting to revoke the old log record
5007 	 * from the journal and so a subsequent replay can corrupt data.
5008 	 * So, first we make sure that the journal is empty and that
5009 	 * nobody is changing anything.
5010 	 */
5011 
5012 	journal = EXT4_JOURNAL(inode);
5013 	if (!journal)
5014 		return 0;
5015 	if (is_journal_aborted(journal))
5016 		return -EROFS;
5017 	/* We have to allocate physical blocks for delalloc blocks
5018 	 * before flushing journal. otherwise delalloc blocks can not
5019 	 * be allocated any more. even more truncate on delalloc blocks
5020 	 * could trigger BUG by flushing delalloc blocks in journal.
5021 	 * There is no delalloc block in non-journal data mode.
5022 	 */
5023 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5024 		err = ext4_alloc_da_blocks(inode);
5025 		if (err < 0)
5026 			return err;
5027 	}
5028 
5029 	/* Wait for all existing dio workers */
5030 	ext4_inode_block_unlocked_dio(inode);
5031 	inode_dio_wait(inode);
5032 
5033 	jbd2_journal_lock_updates(journal);
5034 
5035 	/*
5036 	 * OK, there are no updates running now, and all cached data is
5037 	 * synced to disk.  We are now in a completely consistent state
5038 	 * which doesn't have anything in the journal, and we know that
5039 	 * no filesystem updates are running, so it is safe to modify
5040 	 * the inode's in-core data-journaling state flag now.
5041 	 */
5042 
5043 	if (val)
5044 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5045 	else {
5046 		jbd2_journal_flush(journal);
5047 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5048 	}
5049 	ext4_set_aops(inode);
5050 
5051 	jbd2_journal_unlock_updates(journal);
5052 	ext4_inode_resume_unlocked_dio(inode);
5053 
5054 	/* Finally we can mark the inode as dirty. */
5055 
5056 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5057 	if (IS_ERR(handle))
5058 		return PTR_ERR(handle);
5059 
5060 	err = ext4_mark_inode_dirty(handle, inode);
5061 	ext4_handle_sync(handle);
5062 	ext4_journal_stop(handle);
5063 	ext4_std_error(inode->i_sb, err);
5064 
5065 	return err;
5066 }
5067 
5068 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5069 {
5070 	return !buffer_mapped(bh);
5071 }
5072 
5073 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5074 {
5075 	struct page *page = vmf->page;
5076 	loff_t size;
5077 	unsigned long len;
5078 	int ret;
5079 	struct file *file = vma->vm_file;
5080 	struct inode *inode = file_inode(file);
5081 	struct address_space *mapping = inode->i_mapping;
5082 	handle_t *handle;
5083 	get_block_t *get_block;
5084 	int retries = 0;
5085 
5086 	sb_start_pagefault(inode->i_sb);
5087 	file_update_time(vma->vm_file);
5088 	/* Delalloc case is easy... */
5089 	if (test_opt(inode->i_sb, DELALLOC) &&
5090 	    !ext4_should_journal_data(inode) &&
5091 	    !ext4_nonda_switch(inode->i_sb)) {
5092 		do {
5093 			ret = __block_page_mkwrite(vma, vmf,
5094 						   ext4_da_get_block_prep);
5095 		} while (ret == -ENOSPC &&
5096 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5097 		goto out_ret;
5098 	}
5099 
5100 	lock_page(page);
5101 	size = i_size_read(inode);
5102 	/* Page got truncated from under us? */
5103 	if (page->mapping != mapping || page_offset(page) > size) {
5104 		unlock_page(page);
5105 		ret = VM_FAULT_NOPAGE;
5106 		goto out;
5107 	}
5108 
5109 	if (page->index == size >> PAGE_CACHE_SHIFT)
5110 		len = size & ~PAGE_CACHE_MASK;
5111 	else
5112 		len = PAGE_CACHE_SIZE;
5113 	/*
5114 	 * Return if we have all the buffers mapped. This avoids the need to do
5115 	 * journal_start/journal_stop which can block and take a long time
5116 	 */
5117 	if (page_has_buffers(page)) {
5118 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5119 					    0, len, NULL,
5120 					    ext4_bh_unmapped)) {
5121 			/* Wait so that we don't change page under IO */
5122 			wait_for_stable_page(page);
5123 			ret = VM_FAULT_LOCKED;
5124 			goto out;
5125 		}
5126 	}
5127 	unlock_page(page);
5128 	/* OK, we need to fill the hole... */
5129 	if (ext4_should_dioread_nolock(inode))
5130 		get_block = ext4_get_block_write;
5131 	else
5132 		get_block = ext4_get_block;
5133 retry_alloc:
5134 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5135 				    ext4_writepage_trans_blocks(inode));
5136 	if (IS_ERR(handle)) {
5137 		ret = VM_FAULT_SIGBUS;
5138 		goto out;
5139 	}
5140 	ret = __block_page_mkwrite(vma, vmf, get_block);
5141 	if (!ret && ext4_should_journal_data(inode)) {
5142 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5143 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5144 			unlock_page(page);
5145 			ret = VM_FAULT_SIGBUS;
5146 			ext4_journal_stop(handle);
5147 			goto out;
5148 		}
5149 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5150 	}
5151 	ext4_journal_stop(handle);
5152 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5153 		goto retry_alloc;
5154 out_ret:
5155 	ret = block_page_mkwrite_return(ret);
5156 out:
5157 	sb_end_pagefault(inode->i_sb);
5158 	return ret;
5159 }
5160