xref: /openbmc/linux/fs/ext4/inode.c (revision c1d45424)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u16 csum_lo;
56 	__u16 csum_hi = 0;
57 	__u32 csum;
58 
59 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 	raw->i_checksum_lo = 0;
61 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 		raw->i_checksum_hi = 0;
65 	}
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 			   EXT4_INODE_SIZE(inode->i_sb));
69 
70 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 
75 	return csum;
76 }
77 
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 				  struct ext4_inode_info *ei)
80 {
81 	__u32 provided, calculated;
82 
83 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 	    cpu_to_le32(EXT4_OS_LINUX) ||
85 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 		return;
110 
111 	csum = ext4_inode_csum(inode, raw, ei);
112 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117 
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 					      loff_t new_size)
120 {
121 	trace_ext4_begin_ordered_truncate(inode, new_size);
122 	/*
123 	 * If jinode is zero, then we never opened the file for
124 	 * writing, so there's no need to call
125 	 * jbd2_journal_begin_ordered_truncate() since there's no
126 	 * outstanding writes we need to flush.
127 	 */
128 	if (!EXT4_I(inode)->jinode)
129 		return 0;
130 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 						   EXT4_I(inode)->jinode,
132 						   new_size);
133 }
134 
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 				unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 		(inode->i_sb->s_blocksize >> 9) : 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages(&inode->i_data, 0);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (!is_bad_inode(inode))
224 		dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages(&inode->i_data, 0);
229 
230 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 	if (is_bad_inode(inode))
232 		goto no_delete;
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it
237 	 */
238 	sb_start_intwrite(inode->i_sb);
239 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 				    ext4_blocks_for_truncate(inode)+3);
241 	if (IS_ERR(handle)) {
242 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 		/*
244 		 * If we're going to skip the normal cleanup, we still need to
245 		 * make sure that the in-core orphan linked list is properly
246 		 * cleaned up.
247 		 */
248 		ext4_orphan_del(NULL, inode);
249 		sb_end_intwrite(inode->i_sb);
250 		goto no_delete;
251 	}
252 
253 	if (IS_SYNC(inode))
254 		ext4_handle_sync(handle);
255 	inode->i_size = 0;
256 	err = ext4_mark_inode_dirty(handle, inode);
257 	if (err) {
258 		ext4_warning(inode->i_sb,
259 			     "couldn't mark inode dirty (err %d)", err);
260 		goto stop_handle;
261 	}
262 	if (inode->i_blocks)
263 		ext4_truncate(inode);
264 
265 	/*
266 	 * ext4_ext_truncate() doesn't reserve any slop when it
267 	 * restarts journal transactions; therefore there may not be
268 	 * enough credits left in the handle to remove the inode from
269 	 * the orphan list and set the dtime field.
270 	 */
271 	if (!ext4_handle_has_enough_credits(handle, 3)) {
272 		err = ext4_journal_extend(handle, 3);
273 		if (err > 0)
274 			err = ext4_journal_restart(handle, 3);
275 		if (err != 0) {
276 			ext4_warning(inode->i_sb,
277 				     "couldn't extend journal (err %d)", err);
278 		stop_handle:
279 			ext4_journal_stop(handle);
280 			ext4_orphan_del(NULL, inode);
281 			sb_end_intwrite(inode->i_sb);
282 			goto no_delete;
283 		}
284 	}
285 
286 	/*
287 	 * Kill off the orphan record which ext4_truncate created.
288 	 * AKPM: I think this can be inside the above `if'.
289 	 * Note that ext4_orphan_del() has to be able to cope with the
290 	 * deletion of a non-existent orphan - this is because we don't
291 	 * know if ext4_truncate() actually created an orphan record.
292 	 * (Well, we could do this if we need to, but heck - it works)
293 	 */
294 	ext4_orphan_del(handle, inode);
295 	EXT4_I(inode)->i_dtime	= get_seconds();
296 
297 	/*
298 	 * One subtle ordering requirement: if anything has gone wrong
299 	 * (transaction abort, IO errors, whatever), then we can still
300 	 * do these next steps (the fs will already have been marked as
301 	 * having errors), but we can't free the inode if the mark_dirty
302 	 * fails.
303 	 */
304 	if (ext4_mark_inode_dirty(handle, inode))
305 		/* If that failed, just do the required in-core inode clear. */
306 		ext4_clear_inode(inode);
307 	else
308 		ext4_free_inode(handle, inode);
309 	ext4_journal_stop(handle);
310 	sb_end_intwrite(inode->i_sb);
311 	return;
312 no_delete:
313 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
314 }
315 
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 	return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322 
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 		return ext4_ext_calc_metadata_amount(inode, lblock);
331 
332 	return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334 
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 					int used, int quota_claim)
341 {
342 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 	struct ext4_inode_info *ei = EXT4_I(inode);
344 
345 	spin_lock(&ei->i_block_reservation_lock);
346 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 	if (unlikely(used > ei->i_reserved_data_blocks)) {
348 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 			 "with only %d reserved data blocks",
350 			 __func__, inode->i_ino, used,
351 			 ei->i_reserved_data_blocks);
352 		WARN_ON(1);
353 		used = ei->i_reserved_data_blocks;
354 	}
355 
356 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 			"with only %d reserved metadata blocks "
359 			"(releasing %d blocks with reserved %d data blocks)",
360 			inode->i_ino, ei->i_allocated_meta_blocks,
361 			     ei->i_reserved_meta_blocks, used,
362 			     ei->i_reserved_data_blocks);
363 		WARN_ON(1);
364 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 	}
366 
367 	/* Update per-inode reservations */
368 	ei->i_reserved_data_blocks -= used;
369 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 			   used + ei->i_allocated_meta_blocks);
372 	ei->i_allocated_meta_blocks = 0;
373 
374 	if (ei->i_reserved_data_blocks == 0) {
375 		/*
376 		 * We can release all of the reserved metadata blocks
377 		 * only when we have written all of the delayed
378 		 * allocation blocks.
379 		 */
380 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 				   ei->i_reserved_meta_blocks);
382 		ei->i_reserved_meta_blocks = 0;
383 		ei->i_da_metadata_calc_len = 0;
384 	}
385 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386 
387 	/* Update quota subsystem for data blocks */
388 	if (quota_claim)
389 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 	else {
391 		/*
392 		 * We did fallocate with an offset that is already delayed
393 		 * allocated. So on delayed allocated writeback we should
394 		 * not re-claim the quota for fallocated blocks.
395 		 */
396 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 	}
398 
399 	/*
400 	 * If we have done all the pending block allocations and if
401 	 * there aren't any writers on the inode, we can discard the
402 	 * inode's preallocations.
403 	 */
404 	if ((ei->i_reserved_data_blocks == 0) &&
405 	    (atomic_read(&inode->i_writecount) == 0))
406 		ext4_discard_preallocations(inode);
407 }
408 
409 static int __check_block_validity(struct inode *inode, const char *func,
410 				unsigned int line,
411 				struct ext4_map_blocks *map)
412 {
413 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 				   map->m_len)) {
415 		ext4_error_inode(inode, func, line, map->m_pblk,
416 				 "lblock %lu mapped to illegal pblock "
417 				 "(length %d)", (unsigned long) map->m_lblk,
418 				 map->m_len);
419 		return -EIO;
420 	}
421 	return 0;
422 }
423 
424 #define check_block_validity(inode, map)	\
425 	__check_block_validity((inode), __func__, __LINE__, (map))
426 
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429 				       struct inode *inode,
430 				       struct ext4_map_blocks *es_map,
431 				       struct ext4_map_blocks *map,
432 				       int flags)
433 {
434 	int retval;
435 
436 	map->m_flags = 0;
437 	/*
438 	 * There is a race window that the result is not the same.
439 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
440 	 * is that we lookup a block mapping in extent status tree with
441 	 * out taking i_data_sem.  So at the time the unwritten extent
442 	 * could be converted.
443 	 */
444 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 		down_read((&EXT4_I(inode)->i_data_sem));
446 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 					     EXT4_GET_BLOCKS_KEEP_SIZE);
449 	} else {
450 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 					     EXT4_GET_BLOCKS_KEEP_SIZE);
452 	}
453 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 		up_read((&EXT4_I(inode)->i_data_sem));
455 	/*
456 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 	 * because it shouldn't be marked in es_map->m_flags.
458 	 */
459 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertion failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507 	struct ext4_map_blocks orig_map;
508 
509 	memcpy(&orig_map, map, sizeof(*map));
510 #endif
511 
512 	map->m_flags = 0;
513 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 		  (unsigned long) map->m_lblk);
516 
517 	/* Lookup extent status tree firstly */
518 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519 		ext4_es_lru_add(inode);
520 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 			map->m_pblk = ext4_es_pblock(&es) +
522 					map->m_lblk - es.es_lblk;
523 			map->m_flags |= ext4_es_is_written(&es) ?
524 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 			retval = es.es_len - (map->m_lblk - es.es_lblk);
526 			if (retval > map->m_len)
527 				retval = map->m_len;
528 			map->m_len = retval;
529 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 			retval = 0;
531 		} else {
532 			BUG_ON(1);
533 		}
534 #ifdef ES_AGGRESSIVE_TEST
535 		ext4_map_blocks_es_recheck(handle, inode, map,
536 					   &orig_map, flags);
537 #endif
538 		goto found;
539 	}
540 
541 	/*
542 	 * Try to see if we can get the block without requesting a new
543 	 * file system block.
544 	 */
545 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 		down_read((&EXT4_I(inode)->i_data_sem));
547 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 					     EXT4_GET_BLOCKS_KEEP_SIZE);
550 	} else {
551 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 					     EXT4_GET_BLOCKS_KEEP_SIZE);
553 	}
554 	if (retval > 0) {
555 		int ret;
556 		unsigned long long status;
557 
558 		if (unlikely(retval != map->m_len)) {
559 			ext4_warning(inode->i_sb,
560 				     "ES len assertion failed for inode "
561 				     "%lu: retval %d != map->m_len %d",
562 				     inode->i_ino, retval, map->m_len);
563 			WARN_ON(1);
564 		}
565 
566 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 		    ext4_find_delalloc_range(inode, map->m_lblk,
570 					     map->m_lblk + map->m_len - 1))
571 			status |= EXTENT_STATUS_DELAYED;
572 		ret = ext4_es_insert_extent(inode, map->m_lblk,
573 					    map->m_len, map->m_pblk, status);
574 		if (ret < 0)
575 			retval = ret;
576 	}
577 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 		up_read((&EXT4_I(inode)->i_data_sem));
579 
580 found:
581 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 		int ret = check_block_validity(inode, map);
583 		if (ret != 0)
584 			return ret;
585 	}
586 
587 	/* If it is only a block(s) look up */
588 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 		return retval;
590 
591 	/*
592 	 * Returns if the blocks have already allocated
593 	 *
594 	 * Note that if blocks have been preallocated
595 	 * ext4_ext_get_block() returns the create = 0
596 	 * with buffer head unmapped.
597 	 */
598 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 		return retval;
600 
601 	/*
602 	 * Here we clear m_flags because after allocating an new extent,
603 	 * it will be set again.
604 	 */
605 	map->m_flags &= ~EXT4_MAP_FLAGS;
606 
607 	/*
608 	 * New blocks allocate and/or writing to uninitialized extent
609 	 * will possibly result in updating i_data, so we take
610 	 * the write lock of i_data_sem, and call get_blocks()
611 	 * with create == 1 flag.
612 	 */
613 	down_write((&EXT4_I(inode)->i_data_sem));
614 
615 	/*
616 	 * if the caller is from delayed allocation writeout path
617 	 * we have already reserved fs blocks for allocation
618 	 * let the underlying get_block() function know to
619 	 * avoid double accounting
620 	 */
621 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623 	/*
624 	 * We need to check for EXT4 here because migrate
625 	 * could have changed the inode type in between
626 	 */
627 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
629 	} else {
630 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
631 
632 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633 			/*
634 			 * We allocated new blocks which will result in
635 			 * i_data's format changing.  Force the migrate
636 			 * to fail by clearing migrate flags
637 			 */
638 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639 		}
640 
641 		/*
642 		 * Update reserved blocks/metadata blocks after successful
643 		 * block allocation which had been deferred till now. We don't
644 		 * support fallocate for non extent files. So we can update
645 		 * reserve space here.
646 		 */
647 		if ((retval > 0) &&
648 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649 			ext4_da_update_reserve_space(inode, retval, 1);
650 	}
651 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653 
654 	if (retval > 0) {
655 		int ret;
656 		unsigned long long status;
657 
658 		if (unlikely(retval != map->m_len)) {
659 			ext4_warning(inode->i_sb,
660 				     "ES len assertion failed for inode "
661 				     "%lu: retval %d != map->m_len %d",
662 				     inode->i_ino, retval, map->m_len);
663 			WARN_ON(1);
664 		}
665 
666 		/*
667 		 * If the extent has been zeroed out, we don't need to update
668 		 * extent status tree.
669 		 */
670 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 			if (ext4_es_is_written(&es))
673 				goto has_zeroout;
674 		}
675 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 		    ext4_find_delalloc_range(inode, map->m_lblk,
679 					     map->m_lblk + map->m_len - 1))
680 			status |= EXTENT_STATUS_DELAYED;
681 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 					    map->m_pblk, status);
683 		if (ret < 0)
684 			retval = ret;
685 	}
686 
687 has_zeroout:
688 	up_write((&EXT4_I(inode)->i_data_sem));
689 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690 		int ret = check_block_validity(inode, map);
691 		if (ret != 0)
692 			return ret;
693 	}
694 	return retval;
695 }
696 
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699 
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 			   struct buffer_head *bh, int flags)
702 {
703 	handle_t *handle = ext4_journal_current_handle();
704 	struct ext4_map_blocks map;
705 	int ret = 0, started = 0;
706 	int dio_credits;
707 
708 	if (ext4_has_inline_data(inode))
709 		return -ERANGE;
710 
711 	map.m_lblk = iblock;
712 	map.m_len = bh->b_size >> inode->i_blkbits;
713 
714 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715 		/* Direct IO write... */
716 		if (map.m_len > DIO_MAX_BLOCKS)
717 			map.m_len = DIO_MAX_BLOCKS;
718 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 					    dio_credits);
721 		if (IS_ERR(handle)) {
722 			ret = PTR_ERR(handle);
723 			return ret;
724 		}
725 		started = 1;
726 	}
727 
728 	ret = ext4_map_blocks(handle, inode, &map, flags);
729 	if (ret > 0) {
730 		map_bh(bh, inode->i_sb, map.m_pblk);
731 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
732 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
733 		ret = 0;
734 	}
735 	if (started)
736 		ext4_journal_stop(handle);
737 	return ret;
738 }
739 
740 int ext4_get_block(struct inode *inode, sector_t iblock,
741 		   struct buffer_head *bh, int create)
742 {
743 	return _ext4_get_block(inode, iblock, bh,
744 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
745 }
746 
747 /*
748  * `handle' can be NULL if create is zero
749  */
750 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
751 				ext4_lblk_t block, int create, int *errp)
752 {
753 	struct ext4_map_blocks map;
754 	struct buffer_head *bh;
755 	int fatal = 0, err;
756 
757 	J_ASSERT(handle != NULL || create == 0);
758 
759 	map.m_lblk = block;
760 	map.m_len = 1;
761 	err = ext4_map_blocks(handle, inode, &map,
762 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
763 
764 	/* ensure we send some value back into *errp */
765 	*errp = 0;
766 
767 	if (create && err == 0)
768 		err = -ENOSPC;	/* should never happen */
769 	if (err < 0)
770 		*errp = err;
771 	if (err <= 0)
772 		return NULL;
773 
774 	bh = sb_getblk(inode->i_sb, map.m_pblk);
775 	if (unlikely(!bh)) {
776 		*errp = -ENOMEM;
777 		return NULL;
778 	}
779 	if (map.m_flags & EXT4_MAP_NEW) {
780 		J_ASSERT(create != 0);
781 		J_ASSERT(handle != NULL);
782 
783 		/*
784 		 * Now that we do not always journal data, we should
785 		 * keep in mind whether this should always journal the
786 		 * new buffer as metadata.  For now, regular file
787 		 * writes use ext4_get_block instead, so it's not a
788 		 * problem.
789 		 */
790 		lock_buffer(bh);
791 		BUFFER_TRACE(bh, "call get_create_access");
792 		fatal = ext4_journal_get_create_access(handle, bh);
793 		if (!fatal && !buffer_uptodate(bh)) {
794 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
795 			set_buffer_uptodate(bh);
796 		}
797 		unlock_buffer(bh);
798 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799 		err = ext4_handle_dirty_metadata(handle, inode, bh);
800 		if (!fatal)
801 			fatal = err;
802 	} else {
803 		BUFFER_TRACE(bh, "not a new buffer");
804 	}
805 	if (fatal) {
806 		*errp = fatal;
807 		brelse(bh);
808 		bh = NULL;
809 	}
810 	return bh;
811 }
812 
813 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
814 			       ext4_lblk_t block, int create, int *err)
815 {
816 	struct buffer_head *bh;
817 
818 	bh = ext4_getblk(handle, inode, block, create, err);
819 	if (!bh)
820 		return bh;
821 	if (buffer_uptodate(bh))
822 		return bh;
823 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
824 	wait_on_buffer(bh);
825 	if (buffer_uptodate(bh))
826 		return bh;
827 	put_bh(bh);
828 	*err = -EIO;
829 	return NULL;
830 }
831 
832 int ext4_walk_page_buffers(handle_t *handle,
833 			   struct buffer_head *head,
834 			   unsigned from,
835 			   unsigned to,
836 			   int *partial,
837 			   int (*fn)(handle_t *handle,
838 				     struct buffer_head *bh))
839 {
840 	struct buffer_head *bh;
841 	unsigned block_start, block_end;
842 	unsigned blocksize = head->b_size;
843 	int err, ret = 0;
844 	struct buffer_head *next;
845 
846 	for (bh = head, block_start = 0;
847 	     ret == 0 && (bh != head || !block_start);
848 	     block_start = block_end, bh = next) {
849 		next = bh->b_this_page;
850 		block_end = block_start + blocksize;
851 		if (block_end <= from || block_start >= to) {
852 			if (partial && !buffer_uptodate(bh))
853 				*partial = 1;
854 			continue;
855 		}
856 		err = (*fn)(handle, bh);
857 		if (!ret)
858 			ret = err;
859 	}
860 	return ret;
861 }
862 
863 /*
864  * To preserve ordering, it is essential that the hole instantiation and
865  * the data write be encapsulated in a single transaction.  We cannot
866  * close off a transaction and start a new one between the ext4_get_block()
867  * and the commit_write().  So doing the jbd2_journal_start at the start of
868  * prepare_write() is the right place.
869  *
870  * Also, this function can nest inside ext4_writepage().  In that case, we
871  * *know* that ext4_writepage() has generated enough buffer credits to do the
872  * whole page.  So we won't block on the journal in that case, which is good,
873  * because the caller may be PF_MEMALLOC.
874  *
875  * By accident, ext4 can be reentered when a transaction is open via
876  * quota file writes.  If we were to commit the transaction while thus
877  * reentered, there can be a deadlock - we would be holding a quota
878  * lock, and the commit would never complete if another thread had a
879  * transaction open and was blocking on the quota lock - a ranking
880  * violation.
881  *
882  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
883  * will _not_ run commit under these circumstances because handle->h_ref
884  * is elevated.  We'll still have enough credits for the tiny quotafile
885  * write.
886  */
887 int do_journal_get_write_access(handle_t *handle,
888 				struct buffer_head *bh)
889 {
890 	int dirty = buffer_dirty(bh);
891 	int ret;
892 
893 	if (!buffer_mapped(bh) || buffer_freed(bh))
894 		return 0;
895 	/*
896 	 * __block_write_begin() could have dirtied some buffers. Clean
897 	 * the dirty bit as jbd2_journal_get_write_access() could complain
898 	 * otherwise about fs integrity issues. Setting of the dirty bit
899 	 * by __block_write_begin() isn't a real problem here as we clear
900 	 * the bit before releasing a page lock and thus writeback cannot
901 	 * ever write the buffer.
902 	 */
903 	if (dirty)
904 		clear_buffer_dirty(bh);
905 	ret = ext4_journal_get_write_access(handle, bh);
906 	if (!ret && dirty)
907 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
908 	return ret;
909 }
910 
911 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
912 		   struct buffer_head *bh_result, int create);
913 static int ext4_write_begin(struct file *file, struct address_space *mapping,
914 			    loff_t pos, unsigned len, unsigned flags,
915 			    struct page **pagep, void **fsdata)
916 {
917 	struct inode *inode = mapping->host;
918 	int ret, needed_blocks;
919 	handle_t *handle;
920 	int retries = 0;
921 	struct page *page;
922 	pgoff_t index;
923 	unsigned from, to;
924 
925 	trace_ext4_write_begin(inode, pos, len, flags);
926 	/*
927 	 * Reserve one block more for addition to orphan list in case
928 	 * we allocate blocks but write fails for some reason
929 	 */
930 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
931 	index = pos >> PAGE_CACHE_SHIFT;
932 	from = pos & (PAGE_CACHE_SIZE - 1);
933 	to = from + len;
934 
935 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
936 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
937 						    flags, pagep);
938 		if (ret < 0)
939 			return ret;
940 		if (ret == 1)
941 			return 0;
942 	}
943 
944 	/*
945 	 * grab_cache_page_write_begin() can take a long time if the
946 	 * system is thrashing due to memory pressure, or if the page
947 	 * is being written back.  So grab it first before we start
948 	 * the transaction handle.  This also allows us to allocate
949 	 * the page (if needed) without using GFP_NOFS.
950 	 */
951 retry_grab:
952 	page = grab_cache_page_write_begin(mapping, index, flags);
953 	if (!page)
954 		return -ENOMEM;
955 	unlock_page(page);
956 
957 retry_journal:
958 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
959 	if (IS_ERR(handle)) {
960 		page_cache_release(page);
961 		return PTR_ERR(handle);
962 	}
963 
964 	lock_page(page);
965 	if (page->mapping != mapping) {
966 		/* The page got truncated from under us */
967 		unlock_page(page);
968 		page_cache_release(page);
969 		ext4_journal_stop(handle);
970 		goto retry_grab;
971 	}
972 	wait_on_page_writeback(page);
973 
974 	if (ext4_should_dioread_nolock(inode))
975 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
976 	else
977 		ret = __block_write_begin(page, pos, len, ext4_get_block);
978 
979 	if (!ret && ext4_should_journal_data(inode)) {
980 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
981 					     from, to, NULL,
982 					     do_journal_get_write_access);
983 	}
984 
985 	if (ret) {
986 		unlock_page(page);
987 		/*
988 		 * __block_write_begin may have instantiated a few blocks
989 		 * outside i_size.  Trim these off again. Don't need
990 		 * i_size_read because we hold i_mutex.
991 		 *
992 		 * Add inode to orphan list in case we crash before
993 		 * truncate finishes
994 		 */
995 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
996 			ext4_orphan_add(handle, inode);
997 
998 		ext4_journal_stop(handle);
999 		if (pos + len > inode->i_size) {
1000 			ext4_truncate_failed_write(inode);
1001 			/*
1002 			 * If truncate failed early the inode might
1003 			 * still be on the orphan list; we need to
1004 			 * make sure the inode is removed from the
1005 			 * orphan list in that case.
1006 			 */
1007 			if (inode->i_nlink)
1008 				ext4_orphan_del(NULL, inode);
1009 		}
1010 
1011 		if (ret == -ENOSPC &&
1012 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1013 			goto retry_journal;
1014 		page_cache_release(page);
1015 		return ret;
1016 	}
1017 	*pagep = page;
1018 	return ret;
1019 }
1020 
1021 /* For write_end() in data=journal mode */
1022 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1023 {
1024 	int ret;
1025 	if (!buffer_mapped(bh) || buffer_freed(bh))
1026 		return 0;
1027 	set_buffer_uptodate(bh);
1028 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1029 	clear_buffer_meta(bh);
1030 	clear_buffer_prio(bh);
1031 	return ret;
1032 }
1033 
1034 /*
1035  * We need to pick up the new inode size which generic_commit_write gave us
1036  * `file' can be NULL - eg, when called from page_symlink().
1037  *
1038  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1039  * buffers are managed internally.
1040  */
1041 static int ext4_write_end(struct file *file,
1042 			  struct address_space *mapping,
1043 			  loff_t pos, unsigned len, unsigned copied,
1044 			  struct page *page, void *fsdata)
1045 {
1046 	handle_t *handle = ext4_journal_current_handle();
1047 	struct inode *inode = mapping->host;
1048 	int ret = 0, ret2;
1049 	int i_size_changed = 0;
1050 
1051 	trace_ext4_write_end(inode, pos, len, copied);
1052 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1053 		ret = ext4_jbd2_file_inode(handle, inode);
1054 		if (ret) {
1055 			unlock_page(page);
1056 			page_cache_release(page);
1057 			goto errout;
1058 		}
1059 	}
1060 
1061 	if (ext4_has_inline_data(inode)) {
1062 		ret = ext4_write_inline_data_end(inode, pos, len,
1063 						 copied, page);
1064 		if (ret < 0)
1065 			goto errout;
1066 		copied = ret;
1067 	} else
1068 		copied = block_write_end(file, mapping, pos,
1069 					 len, copied, page, fsdata);
1070 
1071 	/*
1072 	 * No need to use i_size_read() here, the i_size
1073 	 * cannot change under us because we hole i_mutex.
1074 	 *
1075 	 * But it's important to update i_size while still holding page lock:
1076 	 * page writeout could otherwise come in and zero beyond i_size.
1077 	 */
1078 	if (pos + copied > inode->i_size) {
1079 		i_size_write(inode, pos + copied);
1080 		i_size_changed = 1;
1081 	}
1082 
1083 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1084 		/* We need to mark inode dirty even if
1085 		 * new_i_size is less that inode->i_size
1086 		 * but greater than i_disksize. (hint delalloc)
1087 		 */
1088 		ext4_update_i_disksize(inode, (pos + copied));
1089 		i_size_changed = 1;
1090 	}
1091 	unlock_page(page);
1092 	page_cache_release(page);
1093 
1094 	/*
1095 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1096 	 * makes the holding time of page lock longer. Second, it forces lock
1097 	 * ordering of page lock and transaction start for journaling
1098 	 * filesystems.
1099 	 */
1100 	if (i_size_changed)
1101 		ext4_mark_inode_dirty(handle, inode);
1102 
1103 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1104 		/* if we have allocated more blocks and copied
1105 		 * less. We will have blocks allocated outside
1106 		 * inode->i_size. So truncate them
1107 		 */
1108 		ext4_orphan_add(handle, inode);
1109 errout:
1110 	ret2 = ext4_journal_stop(handle);
1111 	if (!ret)
1112 		ret = ret2;
1113 
1114 	if (pos + len > inode->i_size) {
1115 		ext4_truncate_failed_write(inode);
1116 		/*
1117 		 * If truncate failed early the inode might still be
1118 		 * on the orphan list; we need to make sure the inode
1119 		 * is removed from the orphan list in that case.
1120 		 */
1121 		if (inode->i_nlink)
1122 			ext4_orphan_del(NULL, inode);
1123 	}
1124 
1125 	return ret ? ret : copied;
1126 }
1127 
1128 static int ext4_journalled_write_end(struct file *file,
1129 				     struct address_space *mapping,
1130 				     loff_t pos, unsigned len, unsigned copied,
1131 				     struct page *page, void *fsdata)
1132 {
1133 	handle_t *handle = ext4_journal_current_handle();
1134 	struct inode *inode = mapping->host;
1135 	int ret = 0, ret2;
1136 	int partial = 0;
1137 	unsigned from, to;
1138 	loff_t new_i_size;
1139 
1140 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1141 	from = pos & (PAGE_CACHE_SIZE - 1);
1142 	to = from + len;
1143 
1144 	BUG_ON(!ext4_handle_valid(handle));
1145 
1146 	if (ext4_has_inline_data(inode))
1147 		copied = ext4_write_inline_data_end(inode, pos, len,
1148 						    copied, page);
1149 	else {
1150 		if (copied < len) {
1151 			if (!PageUptodate(page))
1152 				copied = 0;
1153 			page_zero_new_buffers(page, from+copied, to);
1154 		}
1155 
1156 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1157 					     to, &partial, write_end_fn);
1158 		if (!partial)
1159 			SetPageUptodate(page);
1160 	}
1161 	new_i_size = pos + copied;
1162 	if (new_i_size > inode->i_size)
1163 		i_size_write(inode, pos+copied);
1164 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1165 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1166 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1167 		ext4_update_i_disksize(inode, new_i_size);
1168 		ret2 = ext4_mark_inode_dirty(handle, inode);
1169 		if (!ret)
1170 			ret = ret2;
1171 	}
1172 
1173 	unlock_page(page);
1174 	page_cache_release(page);
1175 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1176 		/* if we have allocated more blocks and copied
1177 		 * less. We will have blocks allocated outside
1178 		 * inode->i_size. So truncate them
1179 		 */
1180 		ext4_orphan_add(handle, inode);
1181 
1182 	ret2 = ext4_journal_stop(handle);
1183 	if (!ret)
1184 		ret = ret2;
1185 	if (pos + len > inode->i_size) {
1186 		ext4_truncate_failed_write(inode);
1187 		/*
1188 		 * If truncate failed early the inode might still be
1189 		 * on the orphan list; we need to make sure the inode
1190 		 * is removed from the orphan list in that case.
1191 		 */
1192 		if (inode->i_nlink)
1193 			ext4_orphan_del(NULL, inode);
1194 	}
1195 
1196 	return ret ? ret : copied;
1197 }
1198 
1199 /*
1200  * Reserve a metadata for a single block located at lblock
1201  */
1202 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1203 {
1204 	int retries = 0;
1205 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1206 	struct ext4_inode_info *ei = EXT4_I(inode);
1207 	unsigned int md_needed;
1208 	ext4_lblk_t save_last_lblock;
1209 	int save_len;
1210 
1211 	/*
1212 	 * recalculate the amount of metadata blocks to reserve
1213 	 * in order to allocate nrblocks
1214 	 * worse case is one extent per block
1215 	 */
1216 repeat:
1217 	spin_lock(&ei->i_block_reservation_lock);
1218 	/*
1219 	 * ext4_calc_metadata_amount() has side effects, which we have
1220 	 * to be prepared undo if we fail to claim space.
1221 	 */
1222 	save_len = ei->i_da_metadata_calc_len;
1223 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224 	md_needed = EXT4_NUM_B2C(sbi,
1225 				 ext4_calc_metadata_amount(inode, lblock));
1226 	trace_ext4_da_reserve_space(inode, md_needed);
1227 
1228 	/*
1229 	 * We do still charge estimated metadata to the sb though;
1230 	 * we cannot afford to run out of free blocks.
1231 	 */
1232 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1233 		ei->i_da_metadata_calc_len = save_len;
1234 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1235 		spin_unlock(&ei->i_block_reservation_lock);
1236 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1237 			cond_resched();
1238 			goto repeat;
1239 		}
1240 		return -ENOSPC;
1241 	}
1242 	ei->i_reserved_meta_blocks += md_needed;
1243 	spin_unlock(&ei->i_block_reservation_lock);
1244 
1245 	return 0;       /* success */
1246 }
1247 
1248 /*
1249  * Reserve a single cluster located at lblock
1250  */
1251 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1252 {
1253 	int retries = 0;
1254 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1255 	struct ext4_inode_info *ei = EXT4_I(inode);
1256 	unsigned int md_needed;
1257 	int ret;
1258 	ext4_lblk_t save_last_lblock;
1259 	int save_len;
1260 
1261 	/*
1262 	 * We will charge metadata quota at writeout time; this saves
1263 	 * us from metadata over-estimation, though we may go over by
1264 	 * a small amount in the end.  Here we just reserve for data.
1265 	 */
1266 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1267 	if (ret)
1268 		return ret;
1269 
1270 	/*
1271 	 * recalculate the amount of metadata blocks to reserve
1272 	 * in order to allocate nrblocks
1273 	 * worse case is one extent per block
1274 	 */
1275 repeat:
1276 	spin_lock(&ei->i_block_reservation_lock);
1277 	/*
1278 	 * ext4_calc_metadata_amount() has side effects, which we have
1279 	 * to be prepared undo if we fail to claim space.
1280 	 */
1281 	save_len = ei->i_da_metadata_calc_len;
1282 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1283 	md_needed = EXT4_NUM_B2C(sbi,
1284 				 ext4_calc_metadata_amount(inode, lblock));
1285 	trace_ext4_da_reserve_space(inode, md_needed);
1286 
1287 	/*
1288 	 * We do still charge estimated metadata to the sb though;
1289 	 * we cannot afford to run out of free blocks.
1290 	 */
1291 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1292 		ei->i_da_metadata_calc_len = save_len;
1293 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294 		spin_unlock(&ei->i_block_reservation_lock);
1295 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1296 			cond_resched();
1297 			goto repeat;
1298 		}
1299 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1300 		return -ENOSPC;
1301 	}
1302 	ei->i_reserved_data_blocks++;
1303 	ei->i_reserved_meta_blocks += md_needed;
1304 	spin_unlock(&ei->i_block_reservation_lock);
1305 
1306 	return 0;       /* success */
1307 }
1308 
1309 static void ext4_da_release_space(struct inode *inode, int to_free)
1310 {
1311 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1312 	struct ext4_inode_info *ei = EXT4_I(inode);
1313 
1314 	if (!to_free)
1315 		return;		/* Nothing to release, exit */
1316 
1317 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1318 
1319 	trace_ext4_da_release_space(inode, to_free);
1320 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1321 		/*
1322 		 * if there aren't enough reserved blocks, then the
1323 		 * counter is messed up somewhere.  Since this
1324 		 * function is called from invalidate page, it's
1325 		 * harmless to return without any action.
1326 		 */
1327 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1328 			 "ino %lu, to_free %d with only %d reserved "
1329 			 "data blocks", inode->i_ino, to_free,
1330 			 ei->i_reserved_data_blocks);
1331 		WARN_ON(1);
1332 		to_free = ei->i_reserved_data_blocks;
1333 	}
1334 	ei->i_reserved_data_blocks -= to_free;
1335 
1336 	if (ei->i_reserved_data_blocks == 0) {
1337 		/*
1338 		 * We can release all of the reserved metadata blocks
1339 		 * only when we have written all of the delayed
1340 		 * allocation blocks.
1341 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1342 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1343 		 */
1344 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1345 				   ei->i_reserved_meta_blocks);
1346 		ei->i_reserved_meta_blocks = 0;
1347 		ei->i_da_metadata_calc_len = 0;
1348 	}
1349 
1350 	/* update fs dirty data blocks counter */
1351 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1352 
1353 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1354 
1355 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1356 }
1357 
1358 static void ext4_da_page_release_reservation(struct page *page,
1359 					     unsigned int offset,
1360 					     unsigned int length)
1361 {
1362 	int to_release = 0;
1363 	struct buffer_head *head, *bh;
1364 	unsigned int curr_off = 0;
1365 	struct inode *inode = page->mapping->host;
1366 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367 	unsigned int stop = offset + length;
1368 	int num_clusters;
1369 	ext4_fsblk_t lblk;
1370 
1371 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1372 
1373 	head = page_buffers(page);
1374 	bh = head;
1375 	do {
1376 		unsigned int next_off = curr_off + bh->b_size;
1377 
1378 		if (next_off > stop)
1379 			break;
1380 
1381 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1382 			to_release++;
1383 			clear_buffer_delay(bh);
1384 		}
1385 		curr_off = next_off;
1386 	} while ((bh = bh->b_this_page) != head);
1387 
1388 	if (to_release) {
1389 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1390 		ext4_es_remove_extent(inode, lblk, to_release);
1391 	}
1392 
1393 	/* If we have released all the blocks belonging to a cluster, then we
1394 	 * need to release the reserved space for that cluster. */
1395 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1396 	while (num_clusters > 0) {
1397 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1398 			((num_clusters - 1) << sbi->s_cluster_bits);
1399 		if (sbi->s_cluster_ratio == 1 ||
1400 		    !ext4_find_delalloc_cluster(inode, lblk))
1401 			ext4_da_release_space(inode, 1);
1402 
1403 		num_clusters--;
1404 	}
1405 }
1406 
1407 /*
1408  * Delayed allocation stuff
1409  */
1410 
1411 struct mpage_da_data {
1412 	struct inode *inode;
1413 	struct writeback_control *wbc;
1414 
1415 	pgoff_t first_page;	/* The first page to write */
1416 	pgoff_t next_page;	/* Current page to examine */
1417 	pgoff_t last_page;	/* Last page to examine */
1418 	/*
1419 	 * Extent to map - this can be after first_page because that can be
1420 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1421 	 * is delalloc or unwritten.
1422 	 */
1423 	struct ext4_map_blocks map;
1424 	struct ext4_io_submit io_submit;	/* IO submission data */
1425 };
1426 
1427 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1428 				       bool invalidate)
1429 {
1430 	int nr_pages, i;
1431 	pgoff_t index, end;
1432 	struct pagevec pvec;
1433 	struct inode *inode = mpd->inode;
1434 	struct address_space *mapping = inode->i_mapping;
1435 
1436 	/* This is necessary when next_page == 0. */
1437 	if (mpd->first_page >= mpd->next_page)
1438 		return;
1439 
1440 	index = mpd->first_page;
1441 	end   = mpd->next_page - 1;
1442 	if (invalidate) {
1443 		ext4_lblk_t start, last;
1444 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1446 		ext4_es_remove_extent(inode, start, last - start + 1);
1447 	}
1448 
1449 	pagevec_init(&pvec, 0);
1450 	while (index <= end) {
1451 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1452 		if (nr_pages == 0)
1453 			break;
1454 		for (i = 0; i < nr_pages; i++) {
1455 			struct page *page = pvec.pages[i];
1456 			if (page->index > end)
1457 				break;
1458 			BUG_ON(!PageLocked(page));
1459 			BUG_ON(PageWriteback(page));
1460 			if (invalidate) {
1461 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1462 				ClearPageUptodate(page);
1463 			}
1464 			unlock_page(page);
1465 		}
1466 		index = pvec.pages[nr_pages - 1]->index + 1;
1467 		pagevec_release(&pvec);
1468 	}
1469 }
1470 
1471 static void ext4_print_free_blocks(struct inode *inode)
1472 {
1473 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474 	struct super_block *sb = inode->i_sb;
1475 	struct ext4_inode_info *ei = EXT4_I(inode);
1476 
1477 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1478 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1479 			ext4_count_free_clusters(sb)));
1480 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1481 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1482 	       (long long) EXT4_C2B(EXT4_SB(sb),
1483 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1484 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1485 	       (long long) EXT4_C2B(EXT4_SB(sb),
1486 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1487 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1488 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1489 		 ei->i_reserved_data_blocks);
1490 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1491 	       ei->i_reserved_meta_blocks);
1492 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1493 	       ei->i_allocated_meta_blocks);
1494 	return;
1495 }
1496 
1497 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1498 {
1499 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1500 }
1501 
1502 /*
1503  * This function is grabs code from the very beginning of
1504  * ext4_map_blocks, but assumes that the caller is from delayed write
1505  * time. This function looks up the requested blocks and sets the
1506  * buffer delay bit under the protection of i_data_sem.
1507  */
1508 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1509 			      struct ext4_map_blocks *map,
1510 			      struct buffer_head *bh)
1511 {
1512 	struct extent_status es;
1513 	int retval;
1514 	sector_t invalid_block = ~((sector_t) 0xffff);
1515 #ifdef ES_AGGRESSIVE_TEST
1516 	struct ext4_map_blocks orig_map;
1517 
1518 	memcpy(&orig_map, map, sizeof(*map));
1519 #endif
1520 
1521 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1522 		invalid_block = ~0;
1523 
1524 	map->m_flags = 0;
1525 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1526 		  "logical block %lu\n", inode->i_ino, map->m_len,
1527 		  (unsigned long) map->m_lblk);
1528 
1529 	/* Lookup extent status tree firstly */
1530 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1531 		ext4_es_lru_add(inode);
1532 		if (ext4_es_is_hole(&es)) {
1533 			retval = 0;
1534 			down_read((&EXT4_I(inode)->i_data_sem));
1535 			goto add_delayed;
1536 		}
1537 
1538 		/*
1539 		 * Delayed extent could be allocated by fallocate.
1540 		 * So we need to check it.
1541 		 */
1542 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1543 			map_bh(bh, inode->i_sb, invalid_block);
1544 			set_buffer_new(bh);
1545 			set_buffer_delay(bh);
1546 			return 0;
1547 		}
1548 
1549 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1550 		retval = es.es_len - (iblock - es.es_lblk);
1551 		if (retval > map->m_len)
1552 			retval = map->m_len;
1553 		map->m_len = retval;
1554 		if (ext4_es_is_written(&es))
1555 			map->m_flags |= EXT4_MAP_MAPPED;
1556 		else if (ext4_es_is_unwritten(&es))
1557 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1558 		else
1559 			BUG_ON(1);
1560 
1561 #ifdef ES_AGGRESSIVE_TEST
1562 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1563 #endif
1564 		return retval;
1565 	}
1566 
1567 	/*
1568 	 * Try to see if we can get the block without requesting a new
1569 	 * file system block.
1570 	 */
1571 	down_read((&EXT4_I(inode)->i_data_sem));
1572 	if (ext4_has_inline_data(inode)) {
1573 		/*
1574 		 * We will soon create blocks for this page, and let
1575 		 * us pretend as if the blocks aren't allocated yet.
1576 		 * In case of clusters, we have to handle the work
1577 		 * of mapping from cluster so that the reserved space
1578 		 * is calculated properly.
1579 		 */
1580 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1581 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1582 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1583 		retval = 0;
1584 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1585 		retval = ext4_ext_map_blocks(NULL, inode, map,
1586 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1587 	else
1588 		retval = ext4_ind_map_blocks(NULL, inode, map,
1589 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1590 
1591 add_delayed:
1592 	if (retval == 0) {
1593 		int ret;
1594 		/*
1595 		 * XXX: __block_prepare_write() unmaps passed block,
1596 		 * is it OK?
1597 		 */
1598 		/*
1599 		 * If the block was allocated from previously allocated cluster,
1600 		 * then we don't need to reserve it again. However we still need
1601 		 * to reserve metadata for every block we're going to write.
1602 		 */
1603 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1604 			ret = ext4_da_reserve_space(inode, iblock);
1605 			if (ret) {
1606 				/* not enough space to reserve */
1607 				retval = ret;
1608 				goto out_unlock;
1609 			}
1610 		} else {
1611 			ret = ext4_da_reserve_metadata(inode, iblock);
1612 			if (ret) {
1613 				/* not enough space to reserve */
1614 				retval = ret;
1615 				goto out_unlock;
1616 			}
1617 		}
1618 
1619 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1620 					    ~0, EXTENT_STATUS_DELAYED);
1621 		if (ret) {
1622 			retval = ret;
1623 			goto out_unlock;
1624 		}
1625 
1626 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1627 		 * and it should not appear on the bh->b_state.
1628 		 */
1629 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1630 
1631 		map_bh(bh, inode->i_sb, invalid_block);
1632 		set_buffer_new(bh);
1633 		set_buffer_delay(bh);
1634 	} else if (retval > 0) {
1635 		int ret;
1636 		unsigned long long status;
1637 
1638 		if (unlikely(retval != map->m_len)) {
1639 			ext4_warning(inode->i_sb,
1640 				     "ES len assertion failed for inode "
1641 				     "%lu: retval %d != map->m_len %d",
1642 				     inode->i_ino, retval, map->m_len);
1643 			WARN_ON(1);
1644 		}
1645 
1646 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1647 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1648 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1649 					    map->m_pblk, status);
1650 		if (ret != 0)
1651 			retval = ret;
1652 	}
1653 
1654 out_unlock:
1655 	up_read((&EXT4_I(inode)->i_data_sem));
1656 
1657 	return retval;
1658 }
1659 
1660 /*
1661  * This is a special get_blocks_t callback which is used by
1662  * ext4_da_write_begin().  It will either return mapped block or
1663  * reserve space for a single block.
1664  *
1665  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1666  * We also have b_blocknr = -1 and b_bdev initialized properly
1667  *
1668  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1669  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1670  * initialized properly.
1671  */
1672 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1673 			   struct buffer_head *bh, int create)
1674 {
1675 	struct ext4_map_blocks map;
1676 	int ret = 0;
1677 
1678 	BUG_ON(create == 0);
1679 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1680 
1681 	map.m_lblk = iblock;
1682 	map.m_len = 1;
1683 
1684 	/*
1685 	 * first, we need to know whether the block is allocated already
1686 	 * preallocated blocks are unmapped but should treated
1687 	 * the same as allocated blocks.
1688 	 */
1689 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1690 	if (ret <= 0)
1691 		return ret;
1692 
1693 	map_bh(bh, inode->i_sb, map.m_pblk);
1694 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1695 
1696 	if (buffer_unwritten(bh)) {
1697 		/* A delayed write to unwritten bh should be marked
1698 		 * new and mapped.  Mapped ensures that we don't do
1699 		 * get_block multiple times when we write to the same
1700 		 * offset and new ensures that we do proper zero out
1701 		 * for partial write.
1702 		 */
1703 		set_buffer_new(bh);
1704 		set_buffer_mapped(bh);
1705 	}
1706 	return 0;
1707 }
1708 
1709 static int bget_one(handle_t *handle, struct buffer_head *bh)
1710 {
1711 	get_bh(bh);
1712 	return 0;
1713 }
1714 
1715 static int bput_one(handle_t *handle, struct buffer_head *bh)
1716 {
1717 	put_bh(bh);
1718 	return 0;
1719 }
1720 
1721 static int __ext4_journalled_writepage(struct page *page,
1722 				       unsigned int len)
1723 {
1724 	struct address_space *mapping = page->mapping;
1725 	struct inode *inode = mapping->host;
1726 	struct buffer_head *page_bufs = NULL;
1727 	handle_t *handle = NULL;
1728 	int ret = 0, err = 0;
1729 	int inline_data = ext4_has_inline_data(inode);
1730 	struct buffer_head *inode_bh = NULL;
1731 
1732 	ClearPageChecked(page);
1733 
1734 	if (inline_data) {
1735 		BUG_ON(page->index != 0);
1736 		BUG_ON(len > ext4_get_max_inline_size(inode));
1737 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1738 		if (inode_bh == NULL)
1739 			goto out;
1740 	} else {
1741 		page_bufs = page_buffers(page);
1742 		if (!page_bufs) {
1743 			BUG();
1744 			goto out;
1745 		}
1746 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1747 				       NULL, bget_one);
1748 	}
1749 	/* As soon as we unlock the page, it can go away, but we have
1750 	 * references to buffers so we are safe */
1751 	unlock_page(page);
1752 
1753 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1754 				    ext4_writepage_trans_blocks(inode));
1755 	if (IS_ERR(handle)) {
1756 		ret = PTR_ERR(handle);
1757 		goto out;
1758 	}
1759 
1760 	BUG_ON(!ext4_handle_valid(handle));
1761 
1762 	if (inline_data) {
1763 		ret = ext4_journal_get_write_access(handle, inode_bh);
1764 
1765 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1766 
1767 	} else {
1768 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1769 					     do_journal_get_write_access);
1770 
1771 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1772 					     write_end_fn);
1773 	}
1774 	if (ret == 0)
1775 		ret = err;
1776 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1777 	err = ext4_journal_stop(handle);
1778 	if (!ret)
1779 		ret = err;
1780 
1781 	if (!ext4_has_inline_data(inode))
1782 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1783 				       NULL, bput_one);
1784 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1785 out:
1786 	brelse(inode_bh);
1787 	return ret;
1788 }
1789 
1790 /*
1791  * Note that we don't need to start a transaction unless we're journaling data
1792  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1793  * need to file the inode to the transaction's list in ordered mode because if
1794  * we are writing back data added by write(), the inode is already there and if
1795  * we are writing back data modified via mmap(), no one guarantees in which
1796  * transaction the data will hit the disk. In case we are journaling data, we
1797  * cannot start transaction directly because transaction start ranks above page
1798  * lock so we have to do some magic.
1799  *
1800  * This function can get called via...
1801  *   - ext4_writepages after taking page lock (have journal handle)
1802  *   - journal_submit_inode_data_buffers (no journal handle)
1803  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1804  *   - grab_page_cache when doing write_begin (have journal handle)
1805  *
1806  * We don't do any block allocation in this function. If we have page with
1807  * multiple blocks we need to write those buffer_heads that are mapped. This
1808  * is important for mmaped based write. So if we do with blocksize 1K
1809  * truncate(f, 1024);
1810  * a = mmap(f, 0, 4096);
1811  * a[0] = 'a';
1812  * truncate(f, 4096);
1813  * we have in the page first buffer_head mapped via page_mkwrite call back
1814  * but other buffer_heads would be unmapped but dirty (dirty done via the
1815  * do_wp_page). So writepage should write the first block. If we modify
1816  * the mmap area beyond 1024 we will again get a page_fault and the
1817  * page_mkwrite callback will do the block allocation and mark the
1818  * buffer_heads mapped.
1819  *
1820  * We redirty the page if we have any buffer_heads that is either delay or
1821  * unwritten in the page.
1822  *
1823  * We can get recursively called as show below.
1824  *
1825  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1826  *		ext4_writepage()
1827  *
1828  * But since we don't do any block allocation we should not deadlock.
1829  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1830  */
1831 static int ext4_writepage(struct page *page,
1832 			  struct writeback_control *wbc)
1833 {
1834 	int ret = 0;
1835 	loff_t size;
1836 	unsigned int len;
1837 	struct buffer_head *page_bufs = NULL;
1838 	struct inode *inode = page->mapping->host;
1839 	struct ext4_io_submit io_submit;
1840 
1841 	trace_ext4_writepage(page);
1842 	size = i_size_read(inode);
1843 	if (page->index == size >> PAGE_CACHE_SHIFT)
1844 		len = size & ~PAGE_CACHE_MASK;
1845 	else
1846 		len = PAGE_CACHE_SIZE;
1847 
1848 	page_bufs = page_buffers(page);
1849 	/*
1850 	 * We cannot do block allocation or other extent handling in this
1851 	 * function. If there are buffers needing that, we have to redirty
1852 	 * the page. But we may reach here when we do a journal commit via
1853 	 * journal_submit_inode_data_buffers() and in that case we must write
1854 	 * allocated buffers to achieve data=ordered mode guarantees.
1855 	 */
1856 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1857 				   ext4_bh_delay_or_unwritten)) {
1858 		redirty_page_for_writepage(wbc, page);
1859 		if (current->flags & PF_MEMALLOC) {
1860 			/*
1861 			 * For memory cleaning there's no point in writing only
1862 			 * some buffers. So just bail out. Warn if we came here
1863 			 * from direct reclaim.
1864 			 */
1865 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1866 							== PF_MEMALLOC);
1867 			unlock_page(page);
1868 			return 0;
1869 		}
1870 	}
1871 
1872 	if (PageChecked(page) && ext4_should_journal_data(inode))
1873 		/*
1874 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1875 		 * doesn't seem much point in redirtying the page here.
1876 		 */
1877 		return __ext4_journalled_writepage(page, len);
1878 
1879 	ext4_io_submit_init(&io_submit, wbc);
1880 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1881 	if (!io_submit.io_end) {
1882 		redirty_page_for_writepage(wbc, page);
1883 		unlock_page(page);
1884 		return -ENOMEM;
1885 	}
1886 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1887 	ext4_io_submit(&io_submit);
1888 	/* Drop io_end reference we got from init */
1889 	ext4_put_io_end_defer(io_submit.io_end);
1890 	return ret;
1891 }
1892 
1893 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1894 
1895 /*
1896  * mballoc gives us at most this number of blocks...
1897  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1898  * The rest of mballoc seems to handle chunks upto full group size.
1899  */
1900 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1901 
1902 /*
1903  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1904  *
1905  * @mpd - extent of blocks
1906  * @lblk - logical number of the block in the file
1907  * @b_state - b_state of the buffer head added
1908  *
1909  * the function is used to collect contig. blocks in same state
1910  */
1911 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1912 				  unsigned long b_state)
1913 {
1914 	struct ext4_map_blocks *map = &mpd->map;
1915 
1916 	/* Don't go larger than mballoc is willing to allocate */
1917 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1918 		return 0;
1919 
1920 	/* First block in the extent? */
1921 	if (map->m_len == 0) {
1922 		map->m_lblk = lblk;
1923 		map->m_len = 1;
1924 		map->m_flags = b_state & BH_FLAGS;
1925 		return 1;
1926 	}
1927 
1928 	/* Can we merge the block to our big extent? */
1929 	if (lblk == map->m_lblk + map->m_len &&
1930 	    (b_state & BH_FLAGS) == map->m_flags) {
1931 		map->m_len++;
1932 		return 1;
1933 	}
1934 	return 0;
1935 }
1936 
1937 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1938 				    struct buffer_head *head,
1939 				    struct buffer_head *bh,
1940 				    ext4_lblk_t lblk)
1941 {
1942 	struct inode *inode = mpd->inode;
1943 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1944 							>> inode->i_blkbits;
1945 
1946 	do {
1947 		BUG_ON(buffer_locked(bh));
1948 
1949 		if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1950 		    (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1951 		    lblk >= blocks) {
1952 			/* Found extent to map? */
1953 			if (mpd->map.m_len)
1954 				return false;
1955 			if (lblk >= blocks)
1956 				return true;
1957 			continue;
1958 		}
1959 		if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1960 			return false;
1961 	} while (lblk++, (bh = bh->b_this_page) != head);
1962 	return true;
1963 }
1964 
1965 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1966 {
1967 	int len;
1968 	loff_t size = i_size_read(mpd->inode);
1969 	int err;
1970 
1971 	BUG_ON(page->index != mpd->first_page);
1972 	if (page->index == size >> PAGE_CACHE_SHIFT)
1973 		len = size & ~PAGE_CACHE_MASK;
1974 	else
1975 		len = PAGE_CACHE_SIZE;
1976 	clear_page_dirty_for_io(page);
1977 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1978 	if (!err)
1979 		mpd->wbc->nr_to_write--;
1980 	mpd->first_page++;
1981 
1982 	return err;
1983 }
1984 
1985 /*
1986  * mpage_map_buffers - update buffers corresponding to changed extent and
1987  *		       submit fully mapped pages for IO
1988  *
1989  * @mpd - description of extent to map, on return next extent to map
1990  *
1991  * Scan buffers corresponding to changed extent (we expect corresponding pages
1992  * to be already locked) and update buffer state according to new extent state.
1993  * We map delalloc buffers to their physical location, clear unwritten bits,
1994  * and mark buffers as uninit when we perform writes to uninitialized extents
1995  * and do extent conversion after IO is finished. If the last page is not fully
1996  * mapped, we update @map to the next extent in the last page that needs
1997  * mapping. Otherwise we submit the page for IO.
1998  */
1999 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2000 {
2001 	struct pagevec pvec;
2002 	int nr_pages, i;
2003 	struct inode *inode = mpd->inode;
2004 	struct buffer_head *head, *bh;
2005 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2006 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2007 							>> inode->i_blkbits;
2008 	pgoff_t start, end;
2009 	ext4_lblk_t lblk;
2010 	sector_t pblock;
2011 	int err;
2012 
2013 	start = mpd->map.m_lblk >> bpp_bits;
2014 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2015 	lblk = start << bpp_bits;
2016 	pblock = mpd->map.m_pblk;
2017 
2018 	pagevec_init(&pvec, 0);
2019 	while (start <= end) {
2020 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2021 					  PAGEVEC_SIZE);
2022 		if (nr_pages == 0)
2023 			break;
2024 		for (i = 0; i < nr_pages; i++) {
2025 			struct page *page = pvec.pages[i];
2026 
2027 			if (page->index > end)
2028 				break;
2029 			/* Upto 'end' pages must be contiguous */
2030 			BUG_ON(page->index != start);
2031 			bh = head = page_buffers(page);
2032 			do {
2033 				if (lblk < mpd->map.m_lblk)
2034 					continue;
2035 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2036 					/*
2037 					 * Buffer after end of mapped extent.
2038 					 * Find next buffer in the page to map.
2039 					 */
2040 					mpd->map.m_len = 0;
2041 					mpd->map.m_flags = 0;
2042 					add_page_bufs_to_extent(mpd, head, bh,
2043 								lblk);
2044 					pagevec_release(&pvec);
2045 					return 0;
2046 				}
2047 				if (buffer_delay(bh)) {
2048 					clear_buffer_delay(bh);
2049 					bh->b_blocknr = pblock++;
2050 				}
2051 				clear_buffer_unwritten(bh);
2052 			} while (++lblk < blocks &&
2053 				 (bh = bh->b_this_page) != head);
2054 
2055 			/*
2056 			 * FIXME: This is going to break if dioread_nolock
2057 			 * supports blocksize < pagesize as we will try to
2058 			 * convert potentially unmapped parts of inode.
2059 			 */
2060 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2061 			/* Page fully mapped - let IO run! */
2062 			err = mpage_submit_page(mpd, page);
2063 			if (err < 0) {
2064 				pagevec_release(&pvec);
2065 				return err;
2066 			}
2067 			start++;
2068 		}
2069 		pagevec_release(&pvec);
2070 	}
2071 	/* Extent fully mapped and matches with page boundary. We are done. */
2072 	mpd->map.m_len = 0;
2073 	mpd->map.m_flags = 0;
2074 	return 0;
2075 }
2076 
2077 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2078 {
2079 	struct inode *inode = mpd->inode;
2080 	struct ext4_map_blocks *map = &mpd->map;
2081 	int get_blocks_flags;
2082 	int err;
2083 
2084 	trace_ext4_da_write_pages_extent(inode, map);
2085 	/*
2086 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2087 	 * to convert an uninitialized extent to be initialized (in the case
2088 	 * where we have written into one or more preallocated blocks).  It is
2089 	 * possible that we're going to need more metadata blocks than
2090 	 * previously reserved. However we must not fail because we're in
2091 	 * writeback and there is nothing we can do about it so it might result
2092 	 * in data loss.  So use reserved blocks to allocate metadata if
2093 	 * possible.
2094 	 *
2095 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2096 	 * in question are delalloc blocks.  This affects functions in many
2097 	 * different parts of the allocation call path.  This flag exists
2098 	 * primarily because we don't want to change *many* call functions, so
2099 	 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2100 	 * once the inode's allocation semaphore is taken.
2101 	 */
2102 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2103 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2104 	if (ext4_should_dioread_nolock(inode))
2105 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2106 	if (map->m_flags & (1 << BH_Delay))
2107 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2108 
2109 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2110 	if (err < 0)
2111 		return err;
2112 	if (map->m_flags & EXT4_MAP_UNINIT) {
2113 		if (!mpd->io_submit.io_end->handle &&
2114 		    ext4_handle_valid(handle)) {
2115 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2116 			handle->h_rsv_handle = NULL;
2117 		}
2118 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2119 	}
2120 
2121 	BUG_ON(map->m_len == 0);
2122 	if (map->m_flags & EXT4_MAP_NEW) {
2123 		struct block_device *bdev = inode->i_sb->s_bdev;
2124 		int i;
2125 
2126 		for (i = 0; i < map->m_len; i++)
2127 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2128 	}
2129 	return 0;
2130 }
2131 
2132 /*
2133  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2134  *				 mpd->len and submit pages underlying it for IO
2135  *
2136  * @handle - handle for journal operations
2137  * @mpd - extent to map
2138  *
2139  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2140  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2141  * them to initialized or split the described range from larger unwritten
2142  * extent. Note that we need not map all the described range since allocation
2143  * can return less blocks or the range is covered by more unwritten extents. We
2144  * cannot map more because we are limited by reserved transaction credits. On
2145  * the other hand we always make sure that the last touched page is fully
2146  * mapped so that it can be written out (and thus forward progress is
2147  * guaranteed). After mapping we submit all mapped pages for IO.
2148  */
2149 static int mpage_map_and_submit_extent(handle_t *handle,
2150 				       struct mpage_da_data *mpd,
2151 				       bool *give_up_on_write)
2152 {
2153 	struct inode *inode = mpd->inode;
2154 	struct ext4_map_blocks *map = &mpd->map;
2155 	int err;
2156 	loff_t disksize;
2157 
2158 	mpd->io_submit.io_end->offset =
2159 				((loff_t)map->m_lblk) << inode->i_blkbits;
2160 	do {
2161 		err = mpage_map_one_extent(handle, mpd);
2162 		if (err < 0) {
2163 			struct super_block *sb = inode->i_sb;
2164 
2165 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2166 				goto invalidate_dirty_pages;
2167 			/*
2168 			 * Let the uper layers retry transient errors.
2169 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2170 			 * is non-zero, a commit should free up blocks.
2171 			 */
2172 			if ((err == -ENOMEM) ||
2173 			    (err == -ENOSPC && ext4_count_free_clusters(sb)))
2174 				return err;
2175 			ext4_msg(sb, KERN_CRIT,
2176 				 "Delayed block allocation failed for "
2177 				 "inode %lu at logical offset %llu with"
2178 				 " max blocks %u with error %d",
2179 				 inode->i_ino,
2180 				 (unsigned long long)map->m_lblk,
2181 				 (unsigned)map->m_len, -err);
2182 			ext4_msg(sb, KERN_CRIT,
2183 				 "This should not happen!! Data will "
2184 				 "be lost\n");
2185 			if (err == -ENOSPC)
2186 				ext4_print_free_blocks(inode);
2187 		invalidate_dirty_pages:
2188 			*give_up_on_write = true;
2189 			return err;
2190 		}
2191 		/*
2192 		 * Update buffer state, submit mapped pages, and get us new
2193 		 * extent to map
2194 		 */
2195 		err = mpage_map_and_submit_buffers(mpd);
2196 		if (err < 0)
2197 			return err;
2198 	} while (map->m_len);
2199 
2200 	/* Update on-disk size after IO is submitted */
2201 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2202 	if (disksize > i_size_read(inode))
2203 		disksize = i_size_read(inode);
2204 	if (disksize > EXT4_I(inode)->i_disksize) {
2205 		int err2;
2206 
2207 		ext4_update_i_disksize(inode, disksize);
2208 		err2 = ext4_mark_inode_dirty(handle, inode);
2209 		if (err2)
2210 			ext4_error(inode->i_sb,
2211 				   "Failed to mark inode %lu dirty",
2212 				   inode->i_ino);
2213 		if (!err)
2214 			err = err2;
2215 	}
2216 	return err;
2217 }
2218 
2219 /*
2220  * Calculate the total number of credits to reserve for one writepages
2221  * iteration. This is called from ext4_writepages(). We map an extent of
2222  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2223  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2224  * bpp - 1 blocks in bpp different extents.
2225  */
2226 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2227 {
2228 	int bpp = ext4_journal_blocks_per_page(inode);
2229 
2230 	return ext4_meta_trans_blocks(inode,
2231 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2232 }
2233 
2234 /*
2235  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2236  * 				 and underlying extent to map
2237  *
2238  * @mpd - where to look for pages
2239  *
2240  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2241  * IO immediately. When we find a page which isn't mapped we start accumulating
2242  * extent of buffers underlying these pages that needs mapping (formed by
2243  * either delayed or unwritten buffers). We also lock the pages containing
2244  * these buffers. The extent found is returned in @mpd structure (starting at
2245  * mpd->lblk with length mpd->len blocks).
2246  *
2247  * Note that this function can attach bios to one io_end structure which are
2248  * neither logically nor physically contiguous. Although it may seem as an
2249  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2250  * case as we need to track IO to all buffers underlying a page in one io_end.
2251  */
2252 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2253 {
2254 	struct address_space *mapping = mpd->inode->i_mapping;
2255 	struct pagevec pvec;
2256 	unsigned int nr_pages;
2257 	pgoff_t index = mpd->first_page;
2258 	pgoff_t end = mpd->last_page;
2259 	int tag;
2260 	int i, err = 0;
2261 	int blkbits = mpd->inode->i_blkbits;
2262 	ext4_lblk_t lblk;
2263 	struct buffer_head *head;
2264 
2265 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2266 		tag = PAGECACHE_TAG_TOWRITE;
2267 	else
2268 		tag = PAGECACHE_TAG_DIRTY;
2269 
2270 	pagevec_init(&pvec, 0);
2271 	mpd->map.m_len = 0;
2272 	mpd->next_page = index;
2273 	while (index <= end) {
2274 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2275 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2276 		if (nr_pages == 0)
2277 			goto out;
2278 
2279 		for (i = 0; i < nr_pages; i++) {
2280 			struct page *page = pvec.pages[i];
2281 
2282 			/*
2283 			 * At this point, the page may be truncated or
2284 			 * invalidated (changing page->mapping to NULL), or
2285 			 * even swizzled back from swapper_space to tmpfs file
2286 			 * mapping. However, page->index will not change
2287 			 * because we have a reference on the page.
2288 			 */
2289 			if (page->index > end)
2290 				goto out;
2291 
2292 			/* If we can't merge this page, we are done. */
2293 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2294 				goto out;
2295 
2296 			lock_page(page);
2297 			/*
2298 			 * If the page is no longer dirty, or its mapping no
2299 			 * longer corresponds to inode we are writing (which
2300 			 * means it has been truncated or invalidated), or the
2301 			 * page is already under writeback and we are not doing
2302 			 * a data integrity writeback, skip the page
2303 			 */
2304 			if (!PageDirty(page) ||
2305 			    (PageWriteback(page) &&
2306 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2307 			    unlikely(page->mapping != mapping)) {
2308 				unlock_page(page);
2309 				continue;
2310 			}
2311 
2312 			wait_on_page_writeback(page);
2313 			BUG_ON(PageWriteback(page));
2314 
2315 			if (mpd->map.m_len == 0)
2316 				mpd->first_page = page->index;
2317 			mpd->next_page = page->index + 1;
2318 			/* Add all dirty buffers to mpd */
2319 			lblk = ((ext4_lblk_t)page->index) <<
2320 				(PAGE_CACHE_SHIFT - blkbits);
2321 			head = page_buffers(page);
2322 			if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2323 				goto out;
2324 			/* So far everything mapped? Submit the page for IO. */
2325 			if (mpd->map.m_len == 0) {
2326 				err = mpage_submit_page(mpd, page);
2327 				if (err < 0)
2328 					goto out;
2329 			}
2330 
2331 			/*
2332 			 * Accumulated enough dirty pages? This doesn't apply
2333 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2334 			 * keep going because someone may be concurrently
2335 			 * dirtying pages, and we might have synced a lot of
2336 			 * newly appeared dirty pages, but have not synced all
2337 			 * of the old dirty pages.
2338 			 */
2339 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2340 			    mpd->next_page - mpd->first_page >=
2341 							mpd->wbc->nr_to_write)
2342 				goto out;
2343 		}
2344 		pagevec_release(&pvec);
2345 		cond_resched();
2346 	}
2347 	return 0;
2348 out:
2349 	pagevec_release(&pvec);
2350 	return err;
2351 }
2352 
2353 static int __writepage(struct page *page, struct writeback_control *wbc,
2354 		       void *data)
2355 {
2356 	struct address_space *mapping = data;
2357 	int ret = ext4_writepage(page, wbc);
2358 	mapping_set_error(mapping, ret);
2359 	return ret;
2360 }
2361 
2362 static int ext4_writepages(struct address_space *mapping,
2363 			   struct writeback_control *wbc)
2364 {
2365 	pgoff_t	writeback_index = 0;
2366 	long nr_to_write = wbc->nr_to_write;
2367 	int range_whole = 0;
2368 	int cycled = 1;
2369 	handle_t *handle = NULL;
2370 	struct mpage_da_data mpd;
2371 	struct inode *inode = mapping->host;
2372 	int needed_blocks, rsv_blocks = 0, ret = 0;
2373 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2374 	bool done;
2375 	struct blk_plug plug;
2376 	bool give_up_on_write = false;
2377 
2378 	trace_ext4_writepages(inode, wbc);
2379 
2380 	/*
2381 	 * No pages to write? This is mainly a kludge to avoid starting
2382 	 * a transaction for special inodes like journal inode on last iput()
2383 	 * because that could violate lock ordering on umount
2384 	 */
2385 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2386 		return 0;
2387 
2388 	if (ext4_should_journal_data(inode)) {
2389 		struct blk_plug plug;
2390 		int ret;
2391 
2392 		blk_start_plug(&plug);
2393 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2394 		blk_finish_plug(&plug);
2395 		return ret;
2396 	}
2397 
2398 	/*
2399 	 * If the filesystem has aborted, it is read-only, so return
2400 	 * right away instead of dumping stack traces later on that
2401 	 * will obscure the real source of the problem.  We test
2402 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2403 	 * the latter could be true if the filesystem is mounted
2404 	 * read-only, and in that case, ext4_writepages should
2405 	 * *never* be called, so if that ever happens, we would want
2406 	 * the stack trace.
2407 	 */
2408 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2409 		return -EROFS;
2410 
2411 	if (ext4_should_dioread_nolock(inode)) {
2412 		/*
2413 		 * We may need to convert upto one extent per block in
2414 		 * the page and we may dirty the inode.
2415 		 */
2416 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2417 	}
2418 
2419 	/*
2420 	 * If we have inline data and arrive here, it means that
2421 	 * we will soon create the block for the 1st page, so
2422 	 * we'd better clear the inline data here.
2423 	 */
2424 	if (ext4_has_inline_data(inode)) {
2425 		/* Just inode will be modified... */
2426 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2427 		if (IS_ERR(handle)) {
2428 			ret = PTR_ERR(handle);
2429 			goto out_writepages;
2430 		}
2431 		BUG_ON(ext4_test_inode_state(inode,
2432 				EXT4_STATE_MAY_INLINE_DATA));
2433 		ext4_destroy_inline_data(handle, inode);
2434 		ext4_journal_stop(handle);
2435 	}
2436 
2437 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2438 		range_whole = 1;
2439 
2440 	if (wbc->range_cyclic) {
2441 		writeback_index = mapping->writeback_index;
2442 		if (writeback_index)
2443 			cycled = 0;
2444 		mpd.first_page = writeback_index;
2445 		mpd.last_page = -1;
2446 	} else {
2447 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2448 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2449 	}
2450 
2451 	mpd.inode = inode;
2452 	mpd.wbc = wbc;
2453 	ext4_io_submit_init(&mpd.io_submit, wbc);
2454 retry:
2455 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2456 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2457 	done = false;
2458 	blk_start_plug(&plug);
2459 	while (!done && mpd.first_page <= mpd.last_page) {
2460 		/* For each extent of pages we use new io_end */
2461 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2462 		if (!mpd.io_submit.io_end) {
2463 			ret = -ENOMEM;
2464 			break;
2465 		}
2466 
2467 		/*
2468 		 * We have two constraints: We find one extent to map and we
2469 		 * must always write out whole page (makes a difference when
2470 		 * blocksize < pagesize) so that we don't block on IO when we
2471 		 * try to write out the rest of the page. Journalled mode is
2472 		 * not supported by delalloc.
2473 		 */
2474 		BUG_ON(ext4_should_journal_data(inode));
2475 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2476 
2477 		/* start a new transaction */
2478 		handle = ext4_journal_start_with_reserve(inode,
2479 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2480 		if (IS_ERR(handle)) {
2481 			ret = PTR_ERR(handle);
2482 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2483 			       "%ld pages, ino %lu; err %d", __func__,
2484 				wbc->nr_to_write, inode->i_ino, ret);
2485 			/* Release allocated io_end */
2486 			ext4_put_io_end(mpd.io_submit.io_end);
2487 			break;
2488 		}
2489 
2490 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2491 		ret = mpage_prepare_extent_to_map(&mpd);
2492 		if (!ret) {
2493 			if (mpd.map.m_len)
2494 				ret = mpage_map_and_submit_extent(handle, &mpd,
2495 					&give_up_on_write);
2496 			else {
2497 				/*
2498 				 * We scanned the whole range (or exhausted
2499 				 * nr_to_write), submitted what was mapped and
2500 				 * didn't find anything needing mapping. We are
2501 				 * done.
2502 				 */
2503 				done = true;
2504 			}
2505 		}
2506 		ext4_journal_stop(handle);
2507 		/* Submit prepared bio */
2508 		ext4_io_submit(&mpd.io_submit);
2509 		/* Unlock pages we didn't use */
2510 		mpage_release_unused_pages(&mpd, give_up_on_write);
2511 		/* Drop our io_end reference we got from init */
2512 		ext4_put_io_end(mpd.io_submit.io_end);
2513 
2514 		if (ret == -ENOSPC && sbi->s_journal) {
2515 			/*
2516 			 * Commit the transaction which would
2517 			 * free blocks released in the transaction
2518 			 * and try again
2519 			 */
2520 			jbd2_journal_force_commit_nested(sbi->s_journal);
2521 			ret = 0;
2522 			continue;
2523 		}
2524 		/* Fatal error - ENOMEM, EIO... */
2525 		if (ret)
2526 			break;
2527 	}
2528 	blk_finish_plug(&plug);
2529 	if (!ret && !cycled) {
2530 		cycled = 1;
2531 		mpd.last_page = writeback_index - 1;
2532 		mpd.first_page = 0;
2533 		goto retry;
2534 	}
2535 
2536 	/* Update index */
2537 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2538 		/*
2539 		 * Set the writeback_index so that range_cyclic
2540 		 * mode will write it back later
2541 		 */
2542 		mapping->writeback_index = mpd.first_page;
2543 
2544 out_writepages:
2545 	trace_ext4_writepages_result(inode, wbc, ret,
2546 				     nr_to_write - wbc->nr_to_write);
2547 	return ret;
2548 }
2549 
2550 static int ext4_nonda_switch(struct super_block *sb)
2551 {
2552 	s64 free_clusters, dirty_clusters;
2553 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2554 
2555 	/*
2556 	 * switch to non delalloc mode if we are running low
2557 	 * on free block. The free block accounting via percpu
2558 	 * counters can get slightly wrong with percpu_counter_batch getting
2559 	 * accumulated on each CPU without updating global counters
2560 	 * Delalloc need an accurate free block accounting. So switch
2561 	 * to non delalloc when we are near to error range.
2562 	 */
2563 	free_clusters =
2564 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2565 	dirty_clusters =
2566 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2567 	/*
2568 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2569 	 */
2570 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2571 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2572 
2573 	if (2 * free_clusters < 3 * dirty_clusters ||
2574 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2575 		/*
2576 		 * free block count is less than 150% of dirty blocks
2577 		 * or free blocks is less than watermark
2578 		 */
2579 		return 1;
2580 	}
2581 	return 0;
2582 }
2583 
2584 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2585 			       loff_t pos, unsigned len, unsigned flags,
2586 			       struct page **pagep, void **fsdata)
2587 {
2588 	int ret, retries = 0;
2589 	struct page *page;
2590 	pgoff_t index;
2591 	struct inode *inode = mapping->host;
2592 	handle_t *handle;
2593 
2594 	index = pos >> PAGE_CACHE_SHIFT;
2595 
2596 	if (ext4_nonda_switch(inode->i_sb)) {
2597 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2598 		return ext4_write_begin(file, mapping, pos,
2599 					len, flags, pagep, fsdata);
2600 	}
2601 	*fsdata = (void *)0;
2602 	trace_ext4_da_write_begin(inode, pos, len, flags);
2603 
2604 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2605 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2606 						      pos, len, flags,
2607 						      pagep, fsdata);
2608 		if (ret < 0)
2609 			return ret;
2610 		if (ret == 1)
2611 			return 0;
2612 	}
2613 
2614 	/*
2615 	 * grab_cache_page_write_begin() can take a long time if the
2616 	 * system is thrashing due to memory pressure, or if the page
2617 	 * is being written back.  So grab it first before we start
2618 	 * the transaction handle.  This also allows us to allocate
2619 	 * the page (if needed) without using GFP_NOFS.
2620 	 */
2621 retry_grab:
2622 	page = grab_cache_page_write_begin(mapping, index, flags);
2623 	if (!page)
2624 		return -ENOMEM;
2625 	unlock_page(page);
2626 
2627 	/*
2628 	 * With delayed allocation, we don't log the i_disksize update
2629 	 * if there is delayed block allocation. But we still need
2630 	 * to journalling the i_disksize update if writes to the end
2631 	 * of file which has an already mapped buffer.
2632 	 */
2633 retry_journal:
2634 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2635 	if (IS_ERR(handle)) {
2636 		page_cache_release(page);
2637 		return PTR_ERR(handle);
2638 	}
2639 
2640 	lock_page(page);
2641 	if (page->mapping != mapping) {
2642 		/* The page got truncated from under us */
2643 		unlock_page(page);
2644 		page_cache_release(page);
2645 		ext4_journal_stop(handle);
2646 		goto retry_grab;
2647 	}
2648 	/* In case writeback began while the page was unlocked */
2649 	wait_on_page_writeback(page);
2650 
2651 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2652 	if (ret < 0) {
2653 		unlock_page(page);
2654 		ext4_journal_stop(handle);
2655 		/*
2656 		 * block_write_begin may have instantiated a few blocks
2657 		 * outside i_size.  Trim these off again. Don't need
2658 		 * i_size_read because we hold i_mutex.
2659 		 */
2660 		if (pos + len > inode->i_size)
2661 			ext4_truncate_failed_write(inode);
2662 
2663 		if (ret == -ENOSPC &&
2664 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2665 			goto retry_journal;
2666 
2667 		page_cache_release(page);
2668 		return ret;
2669 	}
2670 
2671 	*pagep = page;
2672 	return ret;
2673 }
2674 
2675 /*
2676  * Check if we should update i_disksize
2677  * when write to the end of file but not require block allocation
2678  */
2679 static int ext4_da_should_update_i_disksize(struct page *page,
2680 					    unsigned long offset)
2681 {
2682 	struct buffer_head *bh;
2683 	struct inode *inode = page->mapping->host;
2684 	unsigned int idx;
2685 	int i;
2686 
2687 	bh = page_buffers(page);
2688 	idx = offset >> inode->i_blkbits;
2689 
2690 	for (i = 0; i < idx; i++)
2691 		bh = bh->b_this_page;
2692 
2693 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2694 		return 0;
2695 	return 1;
2696 }
2697 
2698 static int ext4_da_write_end(struct file *file,
2699 			     struct address_space *mapping,
2700 			     loff_t pos, unsigned len, unsigned copied,
2701 			     struct page *page, void *fsdata)
2702 {
2703 	struct inode *inode = mapping->host;
2704 	int ret = 0, ret2;
2705 	handle_t *handle = ext4_journal_current_handle();
2706 	loff_t new_i_size;
2707 	unsigned long start, end;
2708 	int write_mode = (int)(unsigned long)fsdata;
2709 
2710 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2711 		return ext4_write_end(file, mapping, pos,
2712 				      len, copied, page, fsdata);
2713 
2714 	trace_ext4_da_write_end(inode, pos, len, copied);
2715 	start = pos & (PAGE_CACHE_SIZE - 1);
2716 	end = start + copied - 1;
2717 
2718 	/*
2719 	 * generic_write_end() will run mark_inode_dirty() if i_size
2720 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2721 	 * into that.
2722 	 */
2723 	new_i_size = pos + copied;
2724 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2725 		if (ext4_has_inline_data(inode) ||
2726 		    ext4_da_should_update_i_disksize(page, end)) {
2727 			down_write(&EXT4_I(inode)->i_data_sem);
2728 			if (new_i_size > EXT4_I(inode)->i_disksize)
2729 				EXT4_I(inode)->i_disksize = new_i_size;
2730 			up_write(&EXT4_I(inode)->i_data_sem);
2731 			/* We need to mark inode dirty even if
2732 			 * new_i_size is less that inode->i_size
2733 			 * bu greater than i_disksize.(hint delalloc)
2734 			 */
2735 			ext4_mark_inode_dirty(handle, inode);
2736 		}
2737 	}
2738 
2739 	if (write_mode != CONVERT_INLINE_DATA &&
2740 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2741 	    ext4_has_inline_data(inode))
2742 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2743 						     page);
2744 	else
2745 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2746 							page, fsdata);
2747 
2748 	copied = ret2;
2749 	if (ret2 < 0)
2750 		ret = ret2;
2751 	ret2 = ext4_journal_stop(handle);
2752 	if (!ret)
2753 		ret = ret2;
2754 
2755 	return ret ? ret : copied;
2756 }
2757 
2758 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2759 				   unsigned int length)
2760 {
2761 	/*
2762 	 * Drop reserved blocks
2763 	 */
2764 	BUG_ON(!PageLocked(page));
2765 	if (!page_has_buffers(page))
2766 		goto out;
2767 
2768 	ext4_da_page_release_reservation(page, offset, length);
2769 
2770 out:
2771 	ext4_invalidatepage(page, offset, length);
2772 
2773 	return;
2774 }
2775 
2776 /*
2777  * Force all delayed allocation blocks to be allocated for a given inode.
2778  */
2779 int ext4_alloc_da_blocks(struct inode *inode)
2780 {
2781 	trace_ext4_alloc_da_blocks(inode);
2782 
2783 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2784 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2785 		return 0;
2786 
2787 	/*
2788 	 * We do something simple for now.  The filemap_flush() will
2789 	 * also start triggering a write of the data blocks, which is
2790 	 * not strictly speaking necessary (and for users of
2791 	 * laptop_mode, not even desirable).  However, to do otherwise
2792 	 * would require replicating code paths in:
2793 	 *
2794 	 * ext4_writepages() ->
2795 	 *    write_cache_pages() ---> (via passed in callback function)
2796 	 *        __mpage_da_writepage() -->
2797 	 *           mpage_add_bh_to_extent()
2798 	 *           mpage_da_map_blocks()
2799 	 *
2800 	 * The problem is that write_cache_pages(), located in
2801 	 * mm/page-writeback.c, marks pages clean in preparation for
2802 	 * doing I/O, which is not desirable if we're not planning on
2803 	 * doing I/O at all.
2804 	 *
2805 	 * We could call write_cache_pages(), and then redirty all of
2806 	 * the pages by calling redirty_page_for_writepage() but that
2807 	 * would be ugly in the extreme.  So instead we would need to
2808 	 * replicate parts of the code in the above functions,
2809 	 * simplifying them because we wouldn't actually intend to
2810 	 * write out the pages, but rather only collect contiguous
2811 	 * logical block extents, call the multi-block allocator, and
2812 	 * then update the buffer heads with the block allocations.
2813 	 *
2814 	 * For now, though, we'll cheat by calling filemap_flush(),
2815 	 * which will map the blocks, and start the I/O, but not
2816 	 * actually wait for the I/O to complete.
2817 	 */
2818 	return filemap_flush(inode->i_mapping);
2819 }
2820 
2821 /*
2822  * bmap() is special.  It gets used by applications such as lilo and by
2823  * the swapper to find the on-disk block of a specific piece of data.
2824  *
2825  * Naturally, this is dangerous if the block concerned is still in the
2826  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2827  * filesystem and enables swap, then they may get a nasty shock when the
2828  * data getting swapped to that swapfile suddenly gets overwritten by
2829  * the original zero's written out previously to the journal and
2830  * awaiting writeback in the kernel's buffer cache.
2831  *
2832  * So, if we see any bmap calls here on a modified, data-journaled file,
2833  * take extra steps to flush any blocks which might be in the cache.
2834  */
2835 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2836 {
2837 	struct inode *inode = mapping->host;
2838 	journal_t *journal;
2839 	int err;
2840 
2841 	/*
2842 	 * We can get here for an inline file via the FIBMAP ioctl
2843 	 */
2844 	if (ext4_has_inline_data(inode))
2845 		return 0;
2846 
2847 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2848 			test_opt(inode->i_sb, DELALLOC)) {
2849 		/*
2850 		 * With delalloc we want to sync the file
2851 		 * so that we can make sure we allocate
2852 		 * blocks for file
2853 		 */
2854 		filemap_write_and_wait(mapping);
2855 	}
2856 
2857 	if (EXT4_JOURNAL(inode) &&
2858 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2859 		/*
2860 		 * This is a REALLY heavyweight approach, but the use of
2861 		 * bmap on dirty files is expected to be extremely rare:
2862 		 * only if we run lilo or swapon on a freshly made file
2863 		 * do we expect this to happen.
2864 		 *
2865 		 * (bmap requires CAP_SYS_RAWIO so this does not
2866 		 * represent an unprivileged user DOS attack --- we'd be
2867 		 * in trouble if mortal users could trigger this path at
2868 		 * will.)
2869 		 *
2870 		 * NB. EXT4_STATE_JDATA is not set on files other than
2871 		 * regular files.  If somebody wants to bmap a directory
2872 		 * or symlink and gets confused because the buffer
2873 		 * hasn't yet been flushed to disk, they deserve
2874 		 * everything they get.
2875 		 */
2876 
2877 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2878 		journal = EXT4_JOURNAL(inode);
2879 		jbd2_journal_lock_updates(journal);
2880 		err = jbd2_journal_flush(journal);
2881 		jbd2_journal_unlock_updates(journal);
2882 
2883 		if (err)
2884 			return 0;
2885 	}
2886 
2887 	return generic_block_bmap(mapping, block, ext4_get_block);
2888 }
2889 
2890 static int ext4_readpage(struct file *file, struct page *page)
2891 {
2892 	int ret = -EAGAIN;
2893 	struct inode *inode = page->mapping->host;
2894 
2895 	trace_ext4_readpage(page);
2896 
2897 	if (ext4_has_inline_data(inode))
2898 		ret = ext4_readpage_inline(inode, page);
2899 
2900 	if (ret == -EAGAIN)
2901 		return mpage_readpage(page, ext4_get_block);
2902 
2903 	return ret;
2904 }
2905 
2906 static int
2907 ext4_readpages(struct file *file, struct address_space *mapping,
2908 		struct list_head *pages, unsigned nr_pages)
2909 {
2910 	struct inode *inode = mapping->host;
2911 
2912 	/* If the file has inline data, no need to do readpages. */
2913 	if (ext4_has_inline_data(inode))
2914 		return 0;
2915 
2916 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2917 }
2918 
2919 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2920 				unsigned int length)
2921 {
2922 	trace_ext4_invalidatepage(page, offset, length);
2923 
2924 	/* No journalling happens on data buffers when this function is used */
2925 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2926 
2927 	block_invalidatepage(page, offset, length);
2928 }
2929 
2930 static int __ext4_journalled_invalidatepage(struct page *page,
2931 					    unsigned int offset,
2932 					    unsigned int length)
2933 {
2934 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2935 
2936 	trace_ext4_journalled_invalidatepage(page, offset, length);
2937 
2938 	/*
2939 	 * If it's a full truncate we just forget about the pending dirtying
2940 	 */
2941 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2942 		ClearPageChecked(page);
2943 
2944 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2945 }
2946 
2947 /* Wrapper for aops... */
2948 static void ext4_journalled_invalidatepage(struct page *page,
2949 					   unsigned int offset,
2950 					   unsigned int length)
2951 {
2952 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2953 }
2954 
2955 static int ext4_releasepage(struct page *page, gfp_t wait)
2956 {
2957 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2958 
2959 	trace_ext4_releasepage(page);
2960 
2961 	/* Page has dirty journalled data -> cannot release */
2962 	if (PageChecked(page))
2963 		return 0;
2964 	if (journal)
2965 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2966 	else
2967 		return try_to_free_buffers(page);
2968 }
2969 
2970 /*
2971  * ext4_get_block used when preparing for a DIO write or buffer write.
2972  * We allocate an uinitialized extent if blocks haven't been allocated.
2973  * The extent will be converted to initialized after the IO is complete.
2974  */
2975 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2976 		   struct buffer_head *bh_result, int create)
2977 {
2978 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2979 		   inode->i_ino, create);
2980 	return _ext4_get_block(inode, iblock, bh_result,
2981 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2982 }
2983 
2984 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2985 		   struct buffer_head *bh_result, int create)
2986 {
2987 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2988 		   inode->i_ino, create);
2989 	return _ext4_get_block(inode, iblock, bh_result,
2990 			       EXT4_GET_BLOCKS_NO_LOCK);
2991 }
2992 
2993 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2994 			    ssize_t size, void *private, int ret,
2995 			    bool is_async)
2996 {
2997 	struct inode *inode = file_inode(iocb->ki_filp);
2998         ext4_io_end_t *io_end = iocb->private;
2999 
3000 	/* if not async direct IO just return */
3001 	if (!io_end) {
3002 		inode_dio_done(inode);
3003 		if (is_async)
3004 			aio_complete(iocb, ret, 0);
3005 		return;
3006 	}
3007 
3008 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3009 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3010  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3011 		  size);
3012 
3013 	iocb->private = NULL;
3014 	io_end->offset = offset;
3015 	io_end->size = size;
3016 	if (is_async) {
3017 		io_end->iocb = iocb;
3018 		io_end->result = ret;
3019 	}
3020 	ext4_put_io_end_defer(io_end);
3021 }
3022 
3023 /*
3024  * For ext4 extent files, ext4 will do direct-io write to holes,
3025  * preallocated extents, and those write extend the file, no need to
3026  * fall back to buffered IO.
3027  *
3028  * For holes, we fallocate those blocks, mark them as uninitialized
3029  * If those blocks were preallocated, we mark sure they are split, but
3030  * still keep the range to write as uninitialized.
3031  *
3032  * The unwritten extents will be converted to written when DIO is completed.
3033  * For async direct IO, since the IO may still pending when return, we
3034  * set up an end_io call back function, which will do the conversion
3035  * when async direct IO completed.
3036  *
3037  * If the O_DIRECT write will extend the file then add this inode to the
3038  * orphan list.  So recovery will truncate it back to the original size
3039  * if the machine crashes during the write.
3040  *
3041  */
3042 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3043 			      const struct iovec *iov, loff_t offset,
3044 			      unsigned long nr_segs)
3045 {
3046 	struct file *file = iocb->ki_filp;
3047 	struct inode *inode = file->f_mapping->host;
3048 	ssize_t ret;
3049 	size_t count = iov_length(iov, nr_segs);
3050 	int overwrite = 0;
3051 	get_block_t *get_block_func = NULL;
3052 	int dio_flags = 0;
3053 	loff_t final_size = offset + count;
3054 	ext4_io_end_t *io_end = NULL;
3055 
3056 	/* Use the old path for reads and writes beyond i_size. */
3057 	if (rw != WRITE || final_size > inode->i_size)
3058 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3059 
3060 	BUG_ON(iocb->private == NULL);
3061 
3062 	/*
3063 	 * Make all waiters for direct IO properly wait also for extent
3064 	 * conversion. This also disallows race between truncate() and
3065 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3066 	 */
3067 	if (rw == WRITE)
3068 		atomic_inc(&inode->i_dio_count);
3069 
3070 	/* If we do a overwrite dio, i_mutex locking can be released */
3071 	overwrite = *((int *)iocb->private);
3072 
3073 	if (overwrite) {
3074 		down_read(&EXT4_I(inode)->i_data_sem);
3075 		mutex_unlock(&inode->i_mutex);
3076 	}
3077 
3078 	/*
3079 	 * We could direct write to holes and fallocate.
3080 	 *
3081 	 * Allocated blocks to fill the hole are marked as
3082 	 * uninitialized to prevent parallel buffered read to expose
3083 	 * the stale data before DIO complete the data IO.
3084 	 *
3085 	 * As to previously fallocated extents, ext4 get_block will
3086 	 * just simply mark the buffer mapped but still keep the
3087 	 * extents uninitialized.
3088 	 *
3089 	 * For non AIO case, we will convert those unwritten extents
3090 	 * to written after return back from blockdev_direct_IO.
3091 	 *
3092 	 * For async DIO, the conversion needs to be deferred when the
3093 	 * IO is completed. The ext4 end_io callback function will be
3094 	 * called to take care of the conversion work.  Here for async
3095 	 * case, we allocate an io_end structure to hook to the iocb.
3096 	 */
3097 	iocb->private = NULL;
3098 	ext4_inode_aio_set(inode, NULL);
3099 	if (!is_sync_kiocb(iocb)) {
3100 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3101 		if (!io_end) {
3102 			ret = -ENOMEM;
3103 			goto retake_lock;
3104 		}
3105 		io_end->flag |= EXT4_IO_END_DIRECT;
3106 		/*
3107 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3108 		 */
3109 		iocb->private = ext4_get_io_end(io_end);
3110 		/*
3111 		 * we save the io structure for current async direct
3112 		 * IO, so that later ext4_map_blocks() could flag the
3113 		 * io structure whether there is a unwritten extents
3114 		 * needs to be converted when IO is completed.
3115 		 */
3116 		ext4_inode_aio_set(inode, io_end);
3117 	}
3118 
3119 	if (overwrite) {
3120 		get_block_func = ext4_get_block_write_nolock;
3121 	} else {
3122 		get_block_func = ext4_get_block_write;
3123 		dio_flags = DIO_LOCKING;
3124 	}
3125 	ret = __blockdev_direct_IO(rw, iocb, inode,
3126 				   inode->i_sb->s_bdev, iov,
3127 				   offset, nr_segs,
3128 				   get_block_func,
3129 				   ext4_end_io_dio,
3130 				   NULL,
3131 				   dio_flags);
3132 
3133 	/*
3134 	 * Put our reference to io_end. This can free the io_end structure e.g.
3135 	 * in sync IO case or in case of error. It can even perform extent
3136 	 * conversion if all bios we submitted finished before we got here.
3137 	 * Note that in that case iocb->private can be already set to NULL
3138 	 * here.
3139 	 */
3140 	if (io_end) {
3141 		ext4_inode_aio_set(inode, NULL);
3142 		ext4_put_io_end(io_end);
3143 		/*
3144 		 * When no IO was submitted ext4_end_io_dio() was not
3145 		 * called so we have to put iocb's reference.
3146 		 */
3147 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3148 			WARN_ON(iocb->private != io_end);
3149 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3150 			WARN_ON(io_end->iocb);
3151 			/*
3152 			 * Generic code already did inode_dio_done() so we
3153 			 * have to clear EXT4_IO_END_DIRECT to not do it for
3154 			 * the second time.
3155 			 */
3156 			io_end->flag = 0;
3157 			ext4_put_io_end(io_end);
3158 			iocb->private = NULL;
3159 		}
3160 	}
3161 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3162 						EXT4_STATE_DIO_UNWRITTEN)) {
3163 		int err;
3164 		/*
3165 		 * for non AIO case, since the IO is already
3166 		 * completed, we could do the conversion right here
3167 		 */
3168 		err = ext4_convert_unwritten_extents(NULL, inode,
3169 						     offset, ret);
3170 		if (err < 0)
3171 			ret = err;
3172 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3173 	}
3174 
3175 retake_lock:
3176 	if (rw == WRITE)
3177 		inode_dio_done(inode);
3178 	/* take i_mutex locking again if we do a ovewrite dio */
3179 	if (overwrite) {
3180 		up_read(&EXT4_I(inode)->i_data_sem);
3181 		mutex_lock(&inode->i_mutex);
3182 	}
3183 
3184 	return ret;
3185 }
3186 
3187 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3188 			      const struct iovec *iov, loff_t offset,
3189 			      unsigned long nr_segs)
3190 {
3191 	struct file *file = iocb->ki_filp;
3192 	struct inode *inode = file->f_mapping->host;
3193 	ssize_t ret;
3194 
3195 	/*
3196 	 * If we are doing data journalling we don't support O_DIRECT
3197 	 */
3198 	if (ext4_should_journal_data(inode))
3199 		return 0;
3200 
3201 	/* Let buffer I/O handle the inline data case. */
3202 	if (ext4_has_inline_data(inode))
3203 		return 0;
3204 
3205 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3206 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3207 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3208 	else
3209 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3210 	trace_ext4_direct_IO_exit(inode, offset,
3211 				iov_length(iov, nr_segs), rw, ret);
3212 	return ret;
3213 }
3214 
3215 /*
3216  * Pages can be marked dirty completely asynchronously from ext4's journalling
3217  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3218  * much here because ->set_page_dirty is called under VFS locks.  The page is
3219  * not necessarily locked.
3220  *
3221  * We cannot just dirty the page and leave attached buffers clean, because the
3222  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3223  * or jbddirty because all the journalling code will explode.
3224  *
3225  * So what we do is to mark the page "pending dirty" and next time writepage
3226  * is called, propagate that into the buffers appropriately.
3227  */
3228 static int ext4_journalled_set_page_dirty(struct page *page)
3229 {
3230 	SetPageChecked(page);
3231 	return __set_page_dirty_nobuffers(page);
3232 }
3233 
3234 static const struct address_space_operations ext4_aops = {
3235 	.readpage		= ext4_readpage,
3236 	.readpages		= ext4_readpages,
3237 	.writepage		= ext4_writepage,
3238 	.writepages		= ext4_writepages,
3239 	.write_begin		= ext4_write_begin,
3240 	.write_end		= ext4_write_end,
3241 	.bmap			= ext4_bmap,
3242 	.invalidatepage		= ext4_invalidatepage,
3243 	.releasepage		= ext4_releasepage,
3244 	.direct_IO		= ext4_direct_IO,
3245 	.migratepage		= buffer_migrate_page,
3246 	.is_partially_uptodate  = block_is_partially_uptodate,
3247 	.error_remove_page	= generic_error_remove_page,
3248 };
3249 
3250 static const struct address_space_operations ext4_journalled_aops = {
3251 	.readpage		= ext4_readpage,
3252 	.readpages		= ext4_readpages,
3253 	.writepage		= ext4_writepage,
3254 	.writepages		= ext4_writepages,
3255 	.write_begin		= ext4_write_begin,
3256 	.write_end		= ext4_journalled_write_end,
3257 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3258 	.bmap			= ext4_bmap,
3259 	.invalidatepage		= ext4_journalled_invalidatepage,
3260 	.releasepage		= ext4_releasepage,
3261 	.direct_IO		= ext4_direct_IO,
3262 	.is_partially_uptodate  = block_is_partially_uptodate,
3263 	.error_remove_page	= generic_error_remove_page,
3264 };
3265 
3266 static const struct address_space_operations ext4_da_aops = {
3267 	.readpage		= ext4_readpage,
3268 	.readpages		= ext4_readpages,
3269 	.writepage		= ext4_writepage,
3270 	.writepages		= ext4_writepages,
3271 	.write_begin		= ext4_da_write_begin,
3272 	.write_end		= ext4_da_write_end,
3273 	.bmap			= ext4_bmap,
3274 	.invalidatepage		= ext4_da_invalidatepage,
3275 	.releasepage		= ext4_releasepage,
3276 	.direct_IO		= ext4_direct_IO,
3277 	.migratepage		= buffer_migrate_page,
3278 	.is_partially_uptodate  = block_is_partially_uptodate,
3279 	.error_remove_page	= generic_error_remove_page,
3280 };
3281 
3282 void ext4_set_aops(struct inode *inode)
3283 {
3284 	switch (ext4_inode_journal_mode(inode)) {
3285 	case EXT4_INODE_ORDERED_DATA_MODE:
3286 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3287 		break;
3288 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3289 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3290 		break;
3291 	case EXT4_INODE_JOURNAL_DATA_MODE:
3292 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3293 		return;
3294 	default:
3295 		BUG();
3296 	}
3297 	if (test_opt(inode->i_sb, DELALLOC))
3298 		inode->i_mapping->a_ops = &ext4_da_aops;
3299 	else
3300 		inode->i_mapping->a_ops = &ext4_aops;
3301 }
3302 
3303 /*
3304  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3305  * up to the end of the block which corresponds to `from'.
3306  * This required during truncate. We need to physically zero the tail end
3307  * of that block so it doesn't yield old data if the file is later grown.
3308  */
3309 int ext4_block_truncate_page(handle_t *handle,
3310 		struct address_space *mapping, loff_t from)
3311 {
3312 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3313 	unsigned length;
3314 	unsigned blocksize;
3315 	struct inode *inode = mapping->host;
3316 
3317 	blocksize = inode->i_sb->s_blocksize;
3318 	length = blocksize - (offset & (blocksize - 1));
3319 
3320 	return ext4_block_zero_page_range(handle, mapping, from, length);
3321 }
3322 
3323 /*
3324  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3325  * starting from file offset 'from'.  The range to be zero'd must
3326  * be contained with in one block.  If the specified range exceeds
3327  * the end of the block it will be shortened to end of the block
3328  * that cooresponds to 'from'
3329  */
3330 int ext4_block_zero_page_range(handle_t *handle,
3331 		struct address_space *mapping, loff_t from, loff_t length)
3332 {
3333 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3334 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3335 	unsigned blocksize, max, pos;
3336 	ext4_lblk_t iblock;
3337 	struct inode *inode = mapping->host;
3338 	struct buffer_head *bh;
3339 	struct page *page;
3340 	int err = 0;
3341 
3342 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3343 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3344 	if (!page)
3345 		return -ENOMEM;
3346 
3347 	blocksize = inode->i_sb->s_blocksize;
3348 	max = blocksize - (offset & (blocksize - 1));
3349 
3350 	/*
3351 	 * correct length if it does not fall between
3352 	 * 'from' and the end of the block
3353 	 */
3354 	if (length > max || length < 0)
3355 		length = max;
3356 
3357 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3358 
3359 	if (!page_has_buffers(page))
3360 		create_empty_buffers(page, blocksize, 0);
3361 
3362 	/* Find the buffer that contains "offset" */
3363 	bh = page_buffers(page);
3364 	pos = blocksize;
3365 	while (offset >= pos) {
3366 		bh = bh->b_this_page;
3367 		iblock++;
3368 		pos += blocksize;
3369 	}
3370 	if (buffer_freed(bh)) {
3371 		BUFFER_TRACE(bh, "freed: skip");
3372 		goto unlock;
3373 	}
3374 	if (!buffer_mapped(bh)) {
3375 		BUFFER_TRACE(bh, "unmapped");
3376 		ext4_get_block(inode, iblock, bh, 0);
3377 		/* unmapped? It's a hole - nothing to do */
3378 		if (!buffer_mapped(bh)) {
3379 			BUFFER_TRACE(bh, "still unmapped");
3380 			goto unlock;
3381 		}
3382 	}
3383 
3384 	/* Ok, it's mapped. Make sure it's up-to-date */
3385 	if (PageUptodate(page))
3386 		set_buffer_uptodate(bh);
3387 
3388 	if (!buffer_uptodate(bh)) {
3389 		err = -EIO;
3390 		ll_rw_block(READ, 1, &bh);
3391 		wait_on_buffer(bh);
3392 		/* Uhhuh. Read error. Complain and punt. */
3393 		if (!buffer_uptodate(bh))
3394 			goto unlock;
3395 	}
3396 	if (ext4_should_journal_data(inode)) {
3397 		BUFFER_TRACE(bh, "get write access");
3398 		err = ext4_journal_get_write_access(handle, bh);
3399 		if (err)
3400 			goto unlock;
3401 	}
3402 	zero_user(page, offset, length);
3403 	BUFFER_TRACE(bh, "zeroed end of block");
3404 
3405 	if (ext4_should_journal_data(inode)) {
3406 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3407 	} else {
3408 		err = 0;
3409 		mark_buffer_dirty(bh);
3410 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3411 			err = ext4_jbd2_file_inode(handle, inode);
3412 	}
3413 
3414 unlock:
3415 	unlock_page(page);
3416 	page_cache_release(page);
3417 	return err;
3418 }
3419 
3420 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3421 			     loff_t lstart, loff_t length)
3422 {
3423 	struct super_block *sb = inode->i_sb;
3424 	struct address_space *mapping = inode->i_mapping;
3425 	unsigned partial_start, partial_end;
3426 	ext4_fsblk_t start, end;
3427 	loff_t byte_end = (lstart + length - 1);
3428 	int err = 0;
3429 
3430 	partial_start = lstart & (sb->s_blocksize - 1);
3431 	partial_end = byte_end & (sb->s_blocksize - 1);
3432 
3433 	start = lstart >> sb->s_blocksize_bits;
3434 	end = byte_end >> sb->s_blocksize_bits;
3435 
3436 	/* Handle partial zero within the single block */
3437 	if (start == end &&
3438 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3439 		err = ext4_block_zero_page_range(handle, mapping,
3440 						 lstart, length);
3441 		return err;
3442 	}
3443 	/* Handle partial zero out on the start of the range */
3444 	if (partial_start) {
3445 		err = ext4_block_zero_page_range(handle, mapping,
3446 						 lstart, sb->s_blocksize);
3447 		if (err)
3448 			return err;
3449 	}
3450 	/* Handle partial zero out on the end of the range */
3451 	if (partial_end != sb->s_blocksize - 1)
3452 		err = ext4_block_zero_page_range(handle, mapping,
3453 						 byte_end - partial_end,
3454 						 partial_end + 1);
3455 	return err;
3456 }
3457 
3458 int ext4_can_truncate(struct inode *inode)
3459 {
3460 	if (S_ISREG(inode->i_mode))
3461 		return 1;
3462 	if (S_ISDIR(inode->i_mode))
3463 		return 1;
3464 	if (S_ISLNK(inode->i_mode))
3465 		return !ext4_inode_is_fast_symlink(inode);
3466 	return 0;
3467 }
3468 
3469 /*
3470  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3471  * associated with the given offset and length
3472  *
3473  * @inode:  File inode
3474  * @offset: The offset where the hole will begin
3475  * @len:    The length of the hole
3476  *
3477  * Returns: 0 on success or negative on failure
3478  */
3479 
3480 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3481 {
3482 	struct super_block *sb = inode->i_sb;
3483 	ext4_lblk_t first_block, stop_block;
3484 	struct address_space *mapping = inode->i_mapping;
3485 	loff_t first_block_offset, last_block_offset;
3486 	handle_t *handle;
3487 	unsigned int credits;
3488 	int ret = 0;
3489 
3490 	if (!S_ISREG(inode->i_mode))
3491 		return -EOPNOTSUPP;
3492 
3493 	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3494 		/* TODO: Add support for bigalloc file systems */
3495 		return -EOPNOTSUPP;
3496 	}
3497 
3498 	trace_ext4_punch_hole(inode, offset, length);
3499 
3500 	/*
3501 	 * Write out all dirty pages to avoid race conditions
3502 	 * Then release them.
3503 	 */
3504 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3505 		ret = filemap_write_and_wait_range(mapping, offset,
3506 						   offset + length - 1);
3507 		if (ret)
3508 			return ret;
3509 	}
3510 
3511 	mutex_lock(&inode->i_mutex);
3512 	/* It's not possible punch hole on append only file */
3513 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3514 		ret = -EPERM;
3515 		goto out_mutex;
3516 	}
3517 	if (IS_SWAPFILE(inode)) {
3518 		ret = -ETXTBSY;
3519 		goto out_mutex;
3520 	}
3521 
3522 	/* No need to punch hole beyond i_size */
3523 	if (offset >= inode->i_size)
3524 		goto out_mutex;
3525 
3526 	/*
3527 	 * If the hole extends beyond i_size, set the hole
3528 	 * to end after the page that contains i_size
3529 	 */
3530 	if (offset + length > inode->i_size) {
3531 		length = inode->i_size +
3532 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3533 		   offset;
3534 	}
3535 
3536 	if (offset & (sb->s_blocksize - 1) ||
3537 	    (offset + length) & (sb->s_blocksize - 1)) {
3538 		/*
3539 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3540 		 * partial block
3541 		 */
3542 		ret = ext4_inode_attach_jinode(inode);
3543 		if (ret < 0)
3544 			goto out_mutex;
3545 
3546 	}
3547 
3548 	first_block_offset = round_up(offset, sb->s_blocksize);
3549 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3550 
3551 	/* Now release the pages and zero block aligned part of pages*/
3552 	if (last_block_offset > first_block_offset)
3553 		truncate_pagecache_range(inode, first_block_offset,
3554 					 last_block_offset);
3555 
3556 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3557 	ext4_inode_block_unlocked_dio(inode);
3558 	inode_dio_wait(inode);
3559 
3560 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3561 		credits = ext4_writepage_trans_blocks(inode);
3562 	else
3563 		credits = ext4_blocks_for_truncate(inode);
3564 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3565 	if (IS_ERR(handle)) {
3566 		ret = PTR_ERR(handle);
3567 		ext4_std_error(sb, ret);
3568 		goto out_dio;
3569 	}
3570 
3571 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3572 				       length);
3573 	if (ret)
3574 		goto out_stop;
3575 
3576 	first_block = (offset + sb->s_blocksize - 1) >>
3577 		EXT4_BLOCK_SIZE_BITS(sb);
3578 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3579 
3580 	/* If there are no blocks to remove, return now */
3581 	if (first_block >= stop_block)
3582 		goto out_stop;
3583 
3584 	down_write(&EXT4_I(inode)->i_data_sem);
3585 	ext4_discard_preallocations(inode);
3586 
3587 	ret = ext4_es_remove_extent(inode, first_block,
3588 				    stop_block - first_block);
3589 	if (ret) {
3590 		up_write(&EXT4_I(inode)->i_data_sem);
3591 		goto out_stop;
3592 	}
3593 
3594 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3595 		ret = ext4_ext_remove_space(inode, first_block,
3596 					    stop_block - 1);
3597 	else
3598 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3599 					    stop_block);
3600 
3601 	ext4_discard_preallocations(inode);
3602 	up_write(&EXT4_I(inode)->i_data_sem);
3603 	if (IS_SYNC(inode))
3604 		ext4_handle_sync(handle);
3605 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3606 	ext4_mark_inode_dirty(handle, inode);
3607 out_stop:
3608 	ext4_journal_stop(handle);
3609 out_dio:
3610 	ext4_inode_resume_unlocked_dio(inode);
3611 out_mutex:
3612 	mutex_unlock(&inode->i_mutex);
3613 	return ret;
3614 }
3615 
3616 int ext4_inode_attach_jinode(struct inode *inode)
3617 {
3618 	struct ext4_inode_info *ei = EXT4_I(inode);
3619 	struct jbd2_inode *jinode;
3620 
3621 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3622 		return 0;
3623 
3624 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3625 	spin_lock(&inode->i_lock);
3626 	if (!ei->jinode) {
3627 		if (!jinode) {
3628 			spin_unlock(&inode->i_lock);
3629 			return -ENOMEM;
3630 		}
3631 		ei->jinode = jinode;
3632 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3633 		jinode = NULL;
3634 	}
3635 	spin_unlock(&inode->i_lock);
3636 	if (unlikely(jinode != NULL))
3637 		jbd2_free_inode(jinode);
3638 	return 0;
3639 }
3640 
3641 /*
3642  * ext4_truncate()
3643  *
3644  * We block out ext4_get_block() block instantiations across the entire
3645  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3646  * simultaneously on behalf of the same inode.
3647  *
3648  * As we work through the truncate and commit bits of it to the journal there
3649  * is one core, guiding principle: the file's tree must always be consistent on
3650  * disk.  We must be able to restart the truncate after a crash.
3651  *
3652  * The file's tree may be transiently inconsistent in memory (although it
3653  * probably isn't), but whenever we close off and commit a journal transaction,
3654  * the contents of (the filesystem + the journal) must be consistent and
3655  * restartable.  It's pretty simple, really: bottom up, right to left (although
3656  * left-to-right works OK too).
3657  *
3658  * Note that at recovery time, journal replay occurs *before* the restart of
3659  * truncate against the orphan inode list.
3660  *
3661  * The committed inode has the new, desired i_size (which is the same as
3662  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3663  * that this inode's truncate did not complete and it will again call
3664  * ext4_truncate() to have another go.  So there will be instantiated blocks
3665  * to the right of the truncation point in a crashed ext4 filesystem.  But
3666  * that's fine - as long as they are linked from the inode, the post-crash
3667  * ext4_truncate() run will find them and release them.
3668  */
3669 void ext4_truncate(struct inode *inode)
3670 {
3671 	struct ext4_inode_info *ei = EXT4_I(inode);
3672 	unsigned int credits;
3673 	handle_t *handle;
3674 	struct address_space *mapping = inode->i_mapping;
3675 
3676 	/*
3677 	 * There is a possibility that we're either freeing the inode
3678 	 * or it completely new indode. In those cases we might not
3679 	 * have i_mutex locked because it's not necessary.
3680 	 */
3681 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3682 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3683 	trace_ext4_truncate_enter(inode);
3684 
3685 	if (!ext4_can_truncate(inode))
3686 		return;
3687 
3688 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3689 
3690 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3691 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3692 
3693 	if (ext4_has_inline_data(inode)) {
3694 		int has_inline = 1;
3695 
3696 		ext4_inline_data_truncate(inode, &has_inline);
3697 		if (has_inline)
3698 			return;
3699 	}
3700 
3701 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3702 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3703 		if (ext4_inode_attach_jinode(inode) < 0)
3704 			return;
3705 	}
3706 
3707 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3708 		credits = ext4_writepage_trans_blocks(inode);
3709 	else
3710 		credits = ext4_blocks_for_truncate(inode);
3711 
3712 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3713 	if (IS_ERR(handle)) {
3714 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3715 		return;
3716 	}
3717 
3718 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3719 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3720 
3721 	/*
3722 	 * We add the inode to the orphan list, so that if this
3723 	 * truncate spans multiple transactions, and we crash, we will
3724 	 * resume the truncate when the filesystem recovers.  It also
3725 	 * marks the inode dirty, to catch the new size.
3726 	 *
3727 	 * Implication: the file must always be in a sane, consistent
3728 	 * truncatable state while each transaction commits.
3729 	 */
3730 	if (ext4_orphan_add(handle, inode))
3731 		goto out_stop;
3732 
3733 	down_write(&EXT4_I(inode)->i_data_sem);
3734 
3735 	ext4_discard_preallocations(inode);
3736 
3737 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3738 		ext4_ext_truncate(handle, inode);
3739 	else
3740 		ext4_ind_truncate(handle, inode);
3741 
3742 	up_write(&ei->i_data_sem);
3743 
3744 	if (IS_SYNC(inode))
3745 		ext4_handle_sync(handle);
3746 
3747 out_stop:
3748 	/*
3749 	 * If this was a simple ftruncate() and the file will remain alive,
3750 	 * then we need to clear up the orphan record which we created above.
3751 	 * However, if this was a real unlink then we were called by
3752 	 * ext4_delete_inode(), and we allow that function to clean up the
3753 	 * orphan info for us.
3754 	 */
3755 	if (inode->i_nlink)
3756 		ext4_orphan_del(handle, inode);
3757 
3758 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3759 	ext4_mark_inode_dirty(handle, inode);
3760 	ext4_journal_stop(handle);
3761 
3762 	trace_ext4_truncate_exit(inode);
3763 }
3764 
3765 /*
3766  * ext4_get_inode_loc returns with an extra refcount against the inode's
3767  * underlying buffer_head on success. If 'in_mem' is true, we have all
3768  * data in memory that is needed to recreate the on-disk version of this
3769  * inode.
3770  */
3771 static int __ext4_get_inode_loc(struct inode *inode,
3772 				struct ext4_iloc *iloc, int in_mem)
3773 {
3774 	struct ext4_group_desc	*gdp;
3775 	struct buffer_head	*bh;
3776 	struct super_block	*sb = inode->i_sb;
3777 	ext4_fsblk_t		block;
3778 	int			inodes_per_block, inode_offset;
3779 
3780 	iloc->bh = NULL;
3781 	if (!ext4_valid_inum(sb, inode->i_ino))
3782 		return -EIO;
3783 
3784 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3785 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3786 	if (!gdp)
3787 		return -EIO;
3788 
3789 	/*
3790 	 * Figure out the offset within the block group inode table
3791 	 */
3792 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3793 	inode_offset = ((inode->i_ino - 1) %
3794 			EXT4_INODES_PER_GROUP(sb));
3795 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3796 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3797 
3798 	bh = sb_getblk(sb, block);
3799 	if (unlikely(!bh))
3800 		return -ENOMEM;
3801 	if (!buffer_uptodate(bh)) {
3802 		lock_buffer(bh);
3803 
3804 		/*
3805 		 * If the buffer has the write error flag, we have failed
3806 		 * to write out another inode in the same block.  In this
3807 		 * case, we don't have to read the block because we may
3808 		 * read the old inode data successfully.
3809 		 */
3810 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3811 			set_buffer_uptodate(bh);
3812 
3813 		if (buffer_uptodate(bh)) {
3814 			/* someone brought it uptodate while we waited */
3815 			unlock_buffer(bh);
3816 			goto has_buffer;
3817 		}
3818 
3819 		/*
3820 		 * If we have all information of the inode in memory and this
3821 		 * is the only valid inode in the block, we need not read the
3822 		 * block.
3823 		 */
3824 		if (in_mem) {
3825 			struct buffer_head *bitmap_bh;
3826 			int i, start;
3827 
3828 			start = inode_offset & ~(inodes_per_block - 1);
3829 
3830 			/* Is the inode bitmap in cache? */
3831 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3832 			if (unlikely(!bitmap_bh))
3833 				goto make_io;
3834 
3835 			/*
3836 			 * If the inode bitmap isn't in cache then the
3837 			 * optimisation may end up performing two reads instead
3838 			 * of one, so skip it.
3839 			 */
3840 			if (!buffer_uptodate(bitmap_bh)) {
3841 				brelse(bitmap_bh);
3842 				goto make_io;
3843 			}
3844 			for (i = start; i < start + inodes_per_block; i++) {
3845 				if (i == inode_offset)
3846 					continue;
3847 				if (ext4_test_bit(i, bitmap_bh->b_data))
3848 					break;
3849 			}
3850 			brelse(bitmap_bh);
3851 			if (i == start + inodes_per_block) {
3852 				/* all other inodes are free, so skip I/O */
3853 				memset(bh->b_data, 0, bh->b_size);
3854 				set_buffer_uptodate(bh);
3855 				unlock_buffer(bh);
3856 				goto has_buffer;
3857 			}
3858 		}
3859 
3860 make_io:
3861 		/*
3862 		 * If we need to do any I/O, try to pre-readahead extra
3863 		 * blocks from the inode table.
3864 		 */
3865 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3866 			ext4_fsblk_t b, end, table;
3867 			unsigned num;
3868 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3869 
3870 			table = ext4_inode_table(sb, gdp);
3871 			/* s_inode_readahead_blks is always a power of 2 */
3872 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3873 			if (table > b)
3874 				b = table;
3875 			end = b + ra_blks;
3876 			num = EXT4_INODES_PER_GROUP(sb);
3877 			if (ext4_has_group_desc_csum(sb))
3878 				num -= ext4_itable_unused_count(sb, gdp);
3879 			table += num / inodes_per_block;
3880 			if (end > table)
3881 				end = table;
3882 			while (b <= end)
3883 				sb_breadahead(sb, b++);
3884 		}
3885 
3886 		/*
3887 		 * There are other valid inodes in the buffer, this inode
3888 		 * has in-inode xattrs, or we don't have this inode in memory.
3889 		 * Read the block from disk.
3890 		 */
3891 		trace_ext4_load_inode(inode);
3892 		get_bh(bh);
3893 		bh->b_end_io = end_buffer_read_sync;
3894 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3895 		wait_on_buffer(bh);
3896 		if (!buffer_uptodate(bh)) {
3897 			EXT4_ERROR_INODE_BLOCK(inode, block,
3898 					       "unable to read itable block");
3899 			brelse(bh);
3900 			return -EIO;
3901 		}
3902 	}
3903 has_buffer:
3904 	iloc->bh = bh;
3905 	return 0;
3906 }
3907 
3908 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3909 {
3910 	/* We have all inode data except xattrs in memory here. */
3911 	return __ext4_get_inode_loc(inode, iloc,
3912 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3913 }
3914 
3915 void ext4_set_inode_flags(struct inode *inode)
3916 {
3917 	unsigned int flags = EXT4_I(inode)->i_flags;
3918 
3919 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3920 	if (flags & EXT4_SYNC_FL)
3921 		inode->i_flags |= S_SYNC;
3922 	if (flags & EXT4_APPEND_FL)
3923 		inode->i_flags |= S_APPEND;
3924 	if (flags & EXT4_IMMUTABLE_FL)
3925 		inode->i_flags |= S_IMMUTABLE;
3926 	if (flags & EXT4_NOATIME_FL)
3927 		inode->i_flags |= S_NOATIME;
3928 	if (flags & EXT4_DIRSYNC_FL)
3929 		inode->i_flags |= S_DIRSYNC;
3930 }
3931 
3932 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3933 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3934 {
3935 	unsigned int vfs_fl;
3936 	unsigned long old_fl, new_fl;
3937 
3938 	do {
3939 		vfs_fl = ei->vfs_inode.i_flags;
3940 		old_fl = ei->i_flags;
3941 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3942 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3943 				EXT4_DIRSYNC_FL);
3944 		if (vfs_fl & S_SYNC)
3945 			new_fl |= EXT4_SYNC_FL;
3946 		if (vfs_fl & S_APPEND)
3947 			new_fl |= EXT4_APPEND_FL;
3948 		if (vfs_fl & S_IMMUTABLE)
3949 			new_fl |= EXT4_IMMUTABLE_FL;
3950 		if (vfs_fl & S_NOATIME)
3951 			new_fl |= EXT4_NOATIME_FL;
3952 		if (vfs_fl & S_DIRSYNC)
3953 			new_fl |= EXT4_DIRSYNC_FL;
3954 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3955 }
3956 
3957 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3958 				  struct ext4_inode_info *ei)
3959 {
3960 	blkcnt_t i_blocks ;
3961 	struct inode *inode = &(ei->vfs_inode);
3962 	struct super_block *sb = inode->i_sb;
3963 
3964 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3965 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3966 		/* we are using combined 48 bit field */
3967 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3968 					le32_to_cpu(raw_inode->i_blocks_lo);
3969 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3970 			/* i_blocks represent file system block size */
3971 			return i_blocks  << (inode->i_blkbits - 9);
3972 		} else {
3973 			return i_blocks;
3974 		}
3975 	} else {
3976 		return le32_to_cpu(raw_inode->i_blocks_lo);
3977 	}
3978 }
3979 
3980 static inline void ext4_iget_extra_inode(struct inode *inode,
3981 					 struct ext4_inode *raw_inode,
3982 					 struct ext4_inode_info *ei)
3983 {
3984 	__le32 *magic = (void *)raw_inode +
3985 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3986 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3987 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3988 		ext4_find_inline_data_nolock(inode);
3989 	} else
3990 		EXT4_I(inode)->i_inline_off = 0;
3991 }
3992 
3993 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3994 {
3995 	struct ext4_iloc iloc;
3996 	struct ext4_inode *raw_inode;
3997 	struct ext4_inode_info *ei;
3998 	struct inode *inode;
3999 	journal_t *journal = EXT4_SB(sb)->s_journal;
4000 	long ret;
4001 	int block;
4002 	uid_t i_uid;
4003 	gid_t i_gid;
4004 
4005 	inode = iget_locked(sb, ino);
4006 	if (!inode)
4007 		return ERR_PTR(-ENOMEM);
4008 	if (!(inode->i_state & I_NEW))
4009 		return inode;
4010 
4011 	ei = EXT4_I(inode);
4012 	iloc.bh = NULL;
4013 
4014 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4015 	if (ret < 0)
4016 		goto bad_inode;
4017 	raw_inode = ext4_raw_inode(&iloc);
4018 
4019 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4020 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4021 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4022 		    EXT4_INODE_SIZE(inode->i_sb)) {
4023 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4024 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4025 				EXT4_INODE_SIZE(inode->i_sb));
4026 			ret = -EIO;
4027 			goto bad_inode;
4028 		}
4029 	} else
4030 		ei->i_extra_isize = 0;
4031 
4032 	/* Precompute checksum seed for inode metadata */
4033 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4034 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4035 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4036 		__u32 csum;
4037 		__le32 inum = cpu_to_le32(inode->i_ino);
4038 		__le32 gen = raw_inode->i_generation;
4039 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4040 				   sizeof(inum));
4041 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4042 					      sizeof(gen));
4043 	}
4044 
4045 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4046 		EXT4_ERROR_INODE(inode, "checksum invalid");
4047 		ret = -EIO;
4048 		goto bad_inode;
4049 	}
4050 
4051 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4052 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4053 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4054 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4055 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4056 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4057 	}
4058 	i_uid_write(inode, i_uid);
4059 	i_gid_write(inode, i_gid);
4060 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4061 
4062 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4063 	ei->i_inline_off = 0;
4064 	ei->i_dir_start_lookup = 0;
4065 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4066 	/* We now have enough fields to check if the inode was active or not.
4067 	 * This is needed because nfsd might try to access dead inodes
4068 	 * the test is that same one that e2fsck uses
4069 	 * NeilBrown 1999oct15
4070 	 */
4071 	if (inode->i_nlink == 0) {
4072 		if ((inode->i_mode == 0 ||
4073 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4074 		    ino != EXT4_BOOT_LOADER_INO) {
4075 			/* this inode is deleted */
4076 			ret = -ESTALE;
4077 			goto bad_inode;
4078 		}
4079 		/* The only unlinked inodes we let through here have
4080 		 * valid i_mode and are being read by the orphan
4081 		 * recovery code: that's fine, we're about to complete
4082 		 * the process of deleting those.
4083 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4084 		 * not initialized on a new filesystem. */
4085 	}
4086 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4087 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4088 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4089 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4090 		ei->i_file_acl |=
4091 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4092 	inode->i_size = ext4_isize(raw_inode);
4093 	ei->i_disksize = inode->i_size;
4094 #ifdef CONFIG_QUOTA
4095 	ei->i_reserved_quota = 0;
4096 #endif
4097 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4098 	ei->i_block_group = iloc.block_group;
4099 	ei->i_last_alloc_group = ~0;
4100 	/*
4101 	 * NOTE! The in-memory inode i_data array is in little-endian order
4102 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4103 	 */
4104 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4105 		ei->i_data[block] = raw_inode->i_block[block];
4106 	INIT_LIST_HEAD(&ei->i_orphan);
4107 
4108 	/*
4109 	 * Set transaction id's of transactions that have to be committed
4110 	 * to finish f[data]sync. We set them to currently running transaction
4111 	 * as we cannot be sure that the inode or some of its metadata isn't
4112 	 * part of the transaction - the inode could have been reclaimed and
4113 	 * now it is reread from disk.
4114 	 */
4115 	if (journal) {
4116 		transaction_t *transaction;
4117 		tid_t tid;
4118 
4119 		read_lock(&journal->j_state_lock);
4120 		if (journal->j_running_transaction)
4121 			transaction = journal->j_running_transaction;
4122 		else
4123 			transaction = journal->j_committing_transaction;
4124 		if (transaction)
4125 			tid = transaction->t_tid;
4126 		else
4127 			tid = journal->j_commit_sequence;
4128 		read_unlock(&journal->j_state_lock);
4129 		ei->i_sync_tid = tid;
4130 		ei->i_datasync_tid = tid;
4131 	}
4132 
4133 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4134 		if (ei->i_extra_isize == 0) {
4135 			/* The extra space is currently unused. Use it. */
4136 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4137 					    EXT4_GOOD_OLD_INODE_SIZE;
4138 		} else {
4139 			ext4_iget_extra_inode(inode, raw_inode, ei);
4140 		}
4141 	}
4142 
4143 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4144 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4145 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4146 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4147 
4148 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4149 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4150 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4151 			inode->i_version |=
4152 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4153 	}
4154 
4155 	ret = 0;
4156 	if (ei->i_file_acl &&
4157 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4158 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4159 				 ei->i_file_acl);
4160 		ret = -EIO;
4161 		goto bad_inode;
4162 	} else if (!ext4_has_inline_data(inode)) {
4163 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4164 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4165 			    (S_ISLNK(inode->i_mode) &&
4166 			     !ext4_inode_is_fast_symlink(inode))))
4167 				/* Validate extent which is part of inode */
4168 				ret = ext4_ext_check_inode(inode);
4169 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4170 			   (S_ISLNK(inode->i_mode) &&
4171 			    !ext4_inode_is_fast_symlink(inode))) {
4172 			/* Validate block references which are part of inode */
4173 			ret = ext4_ind_check_inode(inode);
4174 		}
4175 	}
4176 	if (ret)
4177 		goto bad_inode;
4178 
4179 	if (S_ISREG(inode->i_mode)) {
4180 		inode->i_op = &ext4_file_inode_operations;
4181 		inode->i_fop = &ext4_file_operations;
4182 		ext4_set_aops(inode);
4183 	} else if (S_ISDIR(inode->i_mode)) {
4184 		inode->i_op = &ext4_dir_inode_operations;
4185 		inode->i_fop = &ext4_dir_operations;
4186 	} else if (S_ISLNK(inode->i_mode)) {
4187 		if (ext4_inode_is_fast_symlink(inode)) {
4188 			inode->i_op = &ext4_fast_symlink_inode_operations;
4189 			nd_terminate_link(ei->i_data, inode->i_size,
4190 				sizeof(ei->i_data) - 1);
4191 		} else {
4192 			inode->i_op = &ext4_symlink_inode_operations;
4193 			ext4_set_aops(inode);
4194 		}
4195 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4196 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4197 		inode->i_op = &ext4_special_inode_operations;
4198 		if (raw_inode->i_block[0])
4199 			init_special_inode(inode, inode->i_mode,
4200 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4201 		else
4202 			init_special_inode(inode, inode->i_mode,
4203 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4204 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4205 		make_bad_inode(inode);
4206 	} else {
4207 		ret = -EIO;
4208 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4209 		goto bad_inode;
4210 	}
4211 	brelse(iloc.bh);
4212 	ext4_set_inode_flags(inode);
4213 	unlock_new_inode(inode);
4214 	return inode;
4215 
4216 bad_inode:
4217 	brelse(iloc.bh);
4218 	iget_failed(inode);
4219 	return ERR_PTR(ret);
4220 }
4221 
4222 static int ext4_inode_blocks_set(handle_t *handle,
4223 				struct ext4_inode *raw_inode,
4224 				struct ext4_inode_info *ei)
4225 {
4226 	struct inode *inode = &(ei->vfs_inode);
4227 	u64 i_blocks = inode->i_blocks;
4228 	struct super_block *sb = inode->i_sb;
4229 
4230 	if (i_blocks <= ~0U) {
4231 		/*
4232 		 * i_blocks can be represented in a 32 bit variable
4233 		 * as multiple of 512 bytes
4234 		 */
4235 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4236 		raw_inode->i_blocks_high = 0;
4237 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4238 		return 0;
4239 	}
4240 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4241 		return -EFBIG;
4242 
4243 	if (i_blocks <= 0xffffffffffffULL) {
4244 		/*
4245 		 * i_blocks can be represented in a 48 bit variable
4246 		 * as multiple of 512 bytes
4247 		 */
4248 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4249 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4250 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4251 	} else {
4252 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4253 		/* i_block is stored in file system block size */
4254 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4255 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4256 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4257 	}
4258 	return 0;
4259 }
4260 
4261 /*
4262  * Post the struct inode info into an on-disk inode location in the
4263  * buffer-cache.  This gobbles the caller's reference to the
4264  * buffer_head in the inode location struct.
4265  *
4266  * The caller must have write access to iloc->bh.
4267  */
4268 static int ext4_do_update_inode(handle_t *handle,
4269 				struct inode *inode,
4270 				struct ext4_iloc *iloc)
4271 {
4272 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4273 	struct ext4_inode_info *ei = EXT4_I(inode);
4274 	struct buffer_head *bh = iloc->bh;
4275 	int err = 0, rc, block;
4276 	int need_datasync = 0;
4277 	uid_t i_uid;
4278 	gid_t i_gid;
4279 
4280 	/* For fields not not tracking in the in-memory inode,
4281 	 * initialise them to zero for new inodes. */
4282 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4283 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4284 
4285 	ext4_get_inode_flags(ei);
4286 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4287 	i_uid = i_uid_read(inode);
4288 	i_gid = i_gid_read(inode);
4289 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4290 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4291 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4292 /*
4293  * Fix up interoperability with old kernels. Otherwise, old inodes get
4294  * re-used with the upper 16 bits of the uid/gid intact
4295  */
4296 		if (!ei->i_dtime) {
4297 			raw_inode->i_uid_high =
4298 				cpu_to_le16(high_16_bits(i_uid));
4299 			raw_inode->i_gid_high =
4300 				cpu_to_le16(high_16_bits(i_gid));
4301 		} else {
4302 			raw_inode->i_uid_high = 0;
4303 			raw_inode->i_gid_high = 0;
4304 		}
4305 	} else {
4306 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4307 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4308 		raw_inode->i_uid_high = 0;
4309 		raw_inode->i_gid_high = 0;
4310 	}
4311 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4312 
4313 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4314 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4315 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4316 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4317 
4318 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4319 		goto out_brelse;
4320 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4321 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4322 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4323 	    cpu_to_le32(EXT4_OS_HURD))
4324 		raw_inode->i_file_acl_high =
4325 			cpu_to_le16(ei->i_file_acl >> 32);
4326 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4327 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4328 		ext4_isize_set(raw_inode, ei->i_disksize);
4329 		need_datasync = 1;
4330 	}
4331 	if (ei->i_disksize > 0x7fffffffULL) {
4332 		struct super_block *sb = inode->i_sb;
4333 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4334 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4335 				EXT4_SB(sb)->s_es->s_rev_level ==
4336 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4337 			/* If this is the first large file
4338 			 * created, add a flag to the superblock.
4339 			 */
4340 			err = ext4_journal_get_write_access(handle,
4341 					EXT4_SB(sb)->s_sbh);
4342 			if (err)
4343 				goto out_brelse;
4344 			ext4_update_dynamic_rev(sb);
4345 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4346 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4347 			ext4_handle_sync(handle);
4348 			err = ext4_handle_dirty_super(handle, sb);
4349 		}
4350 	}
4351 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4352 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4353 		if (old_valid_dev(inode->i_rdev)) {
4354 			raw_inode->i_block[0] =
4355 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4356 			raw_inode->i_block[1] = 0;
4357 		} else {
4358 			raw_inode->i_block[0] = 0;
4359 			raw_inode->i_block[1] =
4360 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4361 			raw_inode->i_block[2] = 0;
4362 		}
4363 	} else if (!ext4_has_inline_data(inode)) {
4364 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4365 			raw_inode->i_block[block] = ei->i_data[block];
4366 	}
4367 
4368 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4369 	if (ei->i_extra_isize) {
4370 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4371 			raw_inode->i_version_hi =
4372 			cpu_to_le32(inode->i_version >> 32);
4373 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4374 	}
4375 
4376 	ext4_inode_csum_set(inode, raw_inode, ei);
4377 
4378 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4379 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4380 	if (!err)
4381 		err = rc;
4382 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4383 
4384 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4385 out_brelse:
4386 	brelse(bh);
4387 	ext4_std_error(inode->i_sb, err);
4388 	return err;
4389 }
4390 
4391 /*
4392  * ext4_write_inode()
4393  *
4394  * We are called from a few places:
4395  *
4396  * - Within generic_file_write() for O_SYNC files.
4397  *   Here, there will be no transaction running. We wait for any running
4398  *   transaction to commit.
4399  *
4400  * - Within sys_sync(), kupdate and such.
4401  *   We wait on commit, if tol to.
4402  *
4403  * - Within prune_icache() (PF_MEMALLOC == true)
4404  *   Here we simply return.  We can't afford to block kswapd on the
4405  *   journal commit.
4406  *
4407  * In all cases it is actually safe for us to return without doing anything,
4408  * because the inode has been copied into a raw inode buffer in
4409  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4410  * knfsd.
4411  *
4412  * Note that we are absolutely dependent upon all inode dirtiers doing the
4413  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4414  * which we are interested.
4415  *
4416  * It would be a bug for them to not do this.  The code:
4417  *
4418  *	mark_inode_dirty(inode)
4419  *	stuff();
4420  *	inode->i_size = expr;
4421  *
4422  * is in error because a kswapd-driven write_inode() could occur while
4423  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4424  * will no longer be on the superblock's dirty inode list.
4425  */
4426 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4427 {
4428 	int err;
4429 
4430 	if (current->flags & PF_MEMALLOC)
4431 		return 0;
4432 
4433 	if (EXT4_SB(inode->i_sb)->s_journal) {
4434 		if (ext4_journal_current_handle()) {
4435 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4436 			dump_stack();
4437 			return -EIO;
4438 		}
4439 
4440 		if (wbc->sync_mode != WB_SYNC_ALL)
4441 			return 0;
4442 
4443 		err = ext4_force_commit(inode->i_sb);
4444 	} else {
4445 		struct ext4_iloc iloc;
4446 
4447 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4448 		if (err)
4449 			return err;
4450 		if (wbc->sync_mode == WB_SYNC_ALL)
4451 			sync_dirty_buffer(iloc.bh);
4452 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4453 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4454 					 "IO error syncing inode");
4455 			err = -EIO;
4456 		}
4457 		brelse(iloc.bh);
4458 	}
4459 	return err;
4460 }
4461 
4462 /*
4463  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4464  * buffers that are attached to a page stradding i_size and are undergoing
4465  * commit. In that case we have to wait for commit to finish and try again.
4466  */
4467 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4468 {
4469 	struct page *page;
4470 	unsigned offset;
4471 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4472 	tid_t commit_tid = 0;
4473 	int ret;
4474 
4475 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4476 	/*
4477 	 * All buffers in the last page remain valid? Then there's nothing to
4478 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4479 	 * blocksize case
4480 	 */
4481 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4482 		return;
4483 	while (1) {
4484 		page = find_lock_page(inode->i_mapping,
4485 				      inode->i_size >> PAGE_CACHE_SHIFT);
4486 		if (!page)
4487 			return;
4488 		ret = __ext4_journalled_invalidatepage(page, offset,
4489 						PAGE_CACHE_SIZE - offset);
4490 		unlock_page(page);
4491 		page_cache_release(page);
4492 		if (ret != -EBUSY)
4493 			return;
4494 		commit_tid = 0;
4495 		read_lock(&journal->j_state_lock);
4496 		if (journal->j_committing_transaction)
4497 			commit_tid = journal->j_committing_transaction->t_tid;
4498 		read_unlock(&journal->j_state_lock);
4499 		if (commit_tid)
4500 			jbd2_log_wait_commit(journal, commit_tid);
4501 	}
4502 }
4503 
4504 /*
4505  * ext4_setattr()
4506  *
4507  * Called from notify_change.
4508  *
4509  * We want to trap VFS attempts to truncate the file as soon as
4510  * possible.  In particular, we want to make sure that when the VFS
4511  * shrinks i_size, we put the inode on the orphan list and modify
4512  * i_disksize immediately, so that during the subsequent flushing of
4513  * dirty pages and freeing of disk blocks, we can guarantee that any
4514  * commit will leave the blocks being flushed in an unused state on
4515  * disk.  (On recovery, the inode will get truncated and the blocks will
4516  * be freed, so we have a strong guarantee that no future commit will
4517  * leave these blocks visible to the user.)
4518  *
4519  * Another thing we have to assure is that if we are in ordered mode
4520  * and inode is still attached to the committing transaction, we must
4521  * we start writeout of all the dirty pages which are being truncated.
4522  * This way we are sure that all the data written in the previous
4523  * transaction are already on disk (truncate waits for pages under
4524  * writeback).
4525  *
4526  * Called with inode->i_mutex down.
4527  */
4528 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4529 {
4530 	struct inode *inode = dentry->d_inode;
4531 	int error, rc = 0;
4532 	int orphan = 0;
4533 	const unsigned int ia_valid = attr->ia_valid;
4534 
4535 	error = inode_change_ok(inode, attr);
4536 	if (error)
4537 		return error;
4538 
4539 	if (is_quota_modification(inode, attr))
4540 		dquot_initialize(inode);
4541 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4542 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4543 		handle_t *handle;
4544 
4545 		/* (user+group)*(old+new) structure, inode write (sb,
4546 		 * inode block, ? - but truncate inode update has it) */
4547 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4548 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4549 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4550 		if (IS_ERR(handle)) {
4551 			error = PTR_ERR(handle);
4552 			goto err_out;
4553 		}
4554 		error = dquot_transfer(inode, attr);
4555 		if (error) {
4556 			ext4_journal_stop(handle);
4557 			return error;
4558 		}
4559 		/* Update corresponding info in inode so that everything is in
4560 		 * one transaction */
4561 		if (attr->ia_valid & ATTR_UID)
4562 			inode->i_uid = attr->ia_uid;
4563 		if (attr->ia_valid & ATTR_GID)
4564 			inode->i_gid = attr->ia_gid;
4565 		error = ext4_mark_inode_dirty(handle, inode);
4566 		ext4_journal_stop(handle);
4567 	}
4568 
4569 	if (attr->ia_valid & ATTR_SIZE) {
4570 
4571 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4572 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4573 
4574 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4575 				return -EFBIG;
4576 		}
4577 	}
4578 
4579 	if (S_ISREG(inode->i_mode) &&
4580 	    attr->ia_valid & ATTR_SIZE &&
4581 	    (attr->ia_size < inode->i_size)) {
4582 		handle_t *handle;
4583 
4584 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4585 		if (IS_ERR(handle)) {
4586 			error = PTR_ERR(handle);
4587 			goto err_out;
4588 		}
4589 		if (ext4_handle_valid(handle)) {
4590 			error = ext4_orphan_add(handle, inode);
4591 			orphan = 1;
4592 		}
4593 		EXT4_I(inode)->i_disksize = attr->ia_size;
4594 		rc = ext4_mark_inode_dirty(handle, inode);
4595 		if (!error)
4596 			error = rc;
4597 		ext4_journal_stop(handle);
4598 
4599 		if (ext4_should_order_data(inode)) {
4600 			error = ext4_begin_ordered_truncate(inode,
4601 							    attr->ia_size);
4602 			if (error) {
4603 				/* Do as much error cleanup as possible */
4604 				handle = ext4_journal_start(inode,
4605 							    EXT4_HT_INODE, 3);
4606 				if (IS_ERR(handle)) {
4607 					ext4_orphan_del(NULL, inode);
4608 					goto err_out;
4609 				}
4610 				ext4_orphan_del(handle, inode);
4611 				orphan = 0;
4612 				ext4_journal_stop(handle);
4613 				goto err_out;
4614 			}
4615 		}
4616 	}
4617 
4618 	if (attr->ia_valid & ATTR_SIZE) {
4619 		if (attr->ia_size != inode->i_size) {
4620 			loff_t oldsize = inode->i_size;
4621 
4622 			i_size_write(inode, attr->ia_size);
4623 			/*
4624 			 * Blocks are going to be removed from the inode. Wait
4625 			 * for dio in flight.  Temporarily disable
4626 			 * dioread_nolock to prevent livelock.
4627 			 */
4628 			if (orphan) {
4629 				if (!ext4_should_journal_data(inode)) {
4630 					ext4_inode_block_unlocked_dio(inode);
4631 					inode_dio_wait(inode);
4632 					ext4_inode_resume_unlocked_dio(inode);
4633 				} else
4634 					ext4_wait_for_tail_page_commit(inode);
4635 			}
4636 			/*
4637 			 * Truncate pagecache after we've waited for commit
4638 			 * in data=journal mode to make pages freeable.
4639 			 */
4640 			truncate_pagecache(inode, oldsize, inode->i_size);
4641 		}
4642 		ext4_truncate(inode);
4643 	}
4644 
4645 	if (!rc) {
4646 		setattr_copy(inode, attr);
4647 		mark_inode_dirty(inode);
4648 	}
4649 
4650 	/*
4651 	 * If the call to ext4_truncate failed to get a transaction handle at
4652 	 * all, we need to clean up the in-core orphan list manually.
4653 	 */
4654 	if (orphan && inode->i_nlink)
4655 		ext4_orphan_del(NULL, inode);
4656 
4657 	if (!rc && (ia_valid & ATTR_MODE))
4658 		rc = ext4_acl_chmod(inode);
4659 
4660 err_out:
4661 	ext4_std_error(inode->i_sb, error);
4662 	if (!error)
4663 		error = rc;
4664 	return error;
4665 }
4666 
4667 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4668 		 struct kstat *stat)
4669 {
4670 	struct inode *inode;
4671 	unsigned long long delalloc_blocks;
4672 
4673 	inode = dentry->d_inode;
4674 	generic_fillattr(inode, stat);
4675 
4676 	/*
4677 	 * We can't update i_blocks if the block allocation is delayed
4678 	 * otherwise in the case of system crash before the real block
4679 	 * allocation is done, we will have i_blocks inconsistent with
4680 	 * on-disk file blocks.
4681 	 * We always keep i_blocks updated together with real
4682 	 * allocation. But to not confuse with user, stat
4683 	 * will return the blocks that include the delayed allocation
4684 	 * blocks for this file.
4685 	 */
4686 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4687 				EXT4_I(inode)->i_reserved_data_blocks);
4688 
4689 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4690 	return 0;
4691 }
4692 
4693 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4694 				   int pextents)
4695 {
4696 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4697 		return ext4_ind_trans_blocks(inode, lblocks);
4698 	return ext4_ext_index_trans_blocks(inode, pextents);
4699 }
4700 
4701 /*
4702  * Account for index blocks, block groups bitmaps and block group
4703  * descriptor blocks if modify datablocks and index blocks
4704  * worse case, the indexs blocks spread over different block groups
4705  *
4706  * If datablocks are discontiguous, they are possible to spread over
4707  * different block groups too. If they are contiguous, with flexbg,
4708  * they could still across block group boundary.
4709  *
4710  * Also account for superblock, inode, quota and xattr blocks
4711  */
4712 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4713 				  int pextents)
4714 {
4715 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4716 	int gdpblocks;
4717 	int idxblocks;
4718 	int ret = 0;
4719 
4720 	/*
4721 	 * How many index blocks need to touch to map @lblocks logical blocks
4722 	 * to @pextents physical extents?
4723 	 */
4724 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4725 
4726 	ret = idxblocks;
4727 
4728 	/*
4729 	 * Now let's see how many group bitmaps and group descriptors need
4730 	 * to account
4731 	 */
4732 	groups = idxblocks + pextents;
4733 	gdpblocks = groups;
4734 	if (groups > ngroups)
4735 		groups = ngroups;
4736 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4737 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4738 
4739 	/* bitmaps and block group descriptor blocks */
4740 	ret += groups + gdpblocks;
4741 
4742 	/* Blocks for super block, inode, quota and xattr blocks */
4743 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4744 
4745 	return ret;
4746 }
4747 
4748 /*
4749  * Calculate the total number of credits to reserve to fit
4750  * the modification of a single pages into a single transaction,
4751  * which may include multiple chunks of block allocations.
4752  *
4753  * This could be called via ext4_write_begin()
4754  *
4755  * We need to consider the worse case, when
4756  * one new block per extent.
4757  */
4758 int ext4_writepage_trans_blocks(struct inode *inode)
4759 {
4760 	int bpp = ext4_journal_blocks_per_page(inode);
4761 	int ret;
4762 
4763 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4764 
4765 	/* Account for data blocks for journalled mode */
4766 	if (ext4_should_journal_data(inode))
4767 		ret += bpp;
4768 	return ret;
4769 }
4770 
4771 /*
4772  * Calculate the journal credits for a chunk of data modification.
4773  *
4774  * This is called from DIO, fallocate or whoever calling
4775  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4776  *
4777  * journal buffers for data blocks are not included here, as DIO
4778  * and fallocate do no need to journal data buffers.
4779  */
4780 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4781 {
4782 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4783 }
4784 
4785 /*
4786  * The caller must have previously called ext4_reserve_inode_write().
4787  * Give this, we know that the caller already has write access to iloc->bh.
4788  */
4789 int ext4_mark_iloc_dirty(handle_t *handle,
4790 			 struct inode *inode, struct ext4_iloc *iloc)
4791 {
4792 	int err = 0;
4793 
4794 	if (IS_I_VERSION(inode))
4795 		inode_inc_iversion(inode);
4796 
4797 	/* the do_update_inode consumes one bh->b_count */
4798 	get_bh(iloc->bh);
4799 
4800 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4801 	err = ext4_do_update_inode(handle, inode, iloc);
4802 	put_bh(iloc->bh);
4803 	return err;
4804 }
4805 
4806 /*
4807  * On success, We end up with an outstanding reference count against
4808  * iloc->bh.  This _must_ be cleaned up later.
4809  */
4810 
4811 int
4812 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4813 			 struct ext4_iloc *iloc)
4814 {
4815 	int err;
4816 
4817 	err = ext4_get_inode_loc(inode, iloc);
4818 	if (!err) {
4819 		BUFFER_TRACE(iloc->bh, "get_write_access");
4820 		err = ext4_journal_get_write_access(handle, iloc->bh);
4821 		if (err) {
4822 			brelse(iloc->bh);
4823 			iloc->bh = NULL;
4824 		}
4825 	}
4826 	ext4_std_error(inode->i_sb, err);
4827 	return err;
4828 }
4829 
4830 /*
4831  * Expand an inode by new_extra_isize bytes.
4832  * Returns 0 on success or negative error number on failure.
4833  */
4834 static int ext4_expand_extra_isize(struct inode *inode,
4835 				   unsigned int new_extra_isize,
4836 				   struct ext4_iloc iloc,
4837 				   handle_t *handle)
4838 {
4839 	struct ext4_inode *raw_inode;
4840 	struct ext4_xattr_ibody_header *header;
4841 
4842 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4843 		return 0;
4844 
4845 	raw_inode = ext4_raw_inode(&iloc);
4846 
4847 	header = IHDR(inode, raw_inode);
4848 
4849 	/* No extended attributes present */
4850 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4851 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4852 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4853 			new_extra_isize);
4854 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4855 		return 0;
4856 	}
4857 
4858 	/* try to expand with EAs present */
4859 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4860 					  raw_inode, handle);
4861 }
4862 
4863 /*
4864  * What we do here is to mark the in-core inode as clean with respect to inode
4865  * dirtiness (it may still be data-dirty).
4866  * This means that the in-core inode may be reaped by prune_icache
4867  * without having to perform any I/O.  This is a very good thing,
4868  * because *any* task may call prune_icache - even ones which
4869  * have a transaction open against a different journal.
4870  *
4871  * Is this cheating?  Not really.  Sure, we haven't written the
4872  * inode out, but prune_icache isn't a user-visible syncing function.
4873  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4874  * we start and wait on commits.
4875  */
4876 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4877 {
4878 	struct ext4_iloc iloc;
4879 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4880 	static unsigned int mnt_count;
4881 	int err, ret;
4882 
4883 	might_sleep();
4884 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4885 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4886 	if (ext4_handle_valid(handle) &&
4887 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4888 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4889 		/*
4890 		 * We need extra buffer credits since we may write into EA block
4891 		 * with this same handle. If journal_extend fails, then it will
4892 		 * only result in a minor loss of functionality for that inode.
4893 		 * If this is felt to be critical, then e2fsck should be run to
4894 		 * force a large enough s_min_extra_isize.
4895 		 */
4896 		if ((jbd2_journal_extend(handle,
4897 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4898 			ret = ext4_expand_extra_isize(inode,
4899 						      sbi->s_want_extra_isize,
4900 						      iloc, handle);
4901 			if (ret) {
4902 				ext4_set_inode_state(inode,
4903 						     EXT4_STATE_NO_EXPAND);
4904 				if (mnt_count !=
4905 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4906 					ext4_warning(inode->i_sb,
4907 					"Unable to expand inode %lu. Delete"
4908 					" some EAs or run e2fsck.",
4909 					inode->i_ino);
4910 					mnt_count =
4911 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4912 				}
4913 			}
4914 		}
4915 	}
4916 	if (!err)
4917 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4918 	return err;
4919 }
4920 
4921 /*
4922  * ext4_dirty_inode() is called from __mark_inode_dirty()
4923  *
4924  * We're really interested in the case where a file is being extended.
4925  * i_size has been changed by generic_commit_write() and we thus need
4926  * to include the updated inode in the current transaction.
4927  *
4928  * Also, dquot_alloc_block() will always dirty the inode when blocks
4929  * are allocated to the file.
4930  *
4931  * If the inode is marked synchronous, we don't honour that here - doing
4932  * so would cause a commit on atime updates, which we don't bother doing.
4933  * We handle synchronous inodes at the highest possible level.
4934  */
4935 void ext4_dirty_inode(struct inode *inode, int flags)
4936 {
4937 	handle_t *handle;
4938 
4939 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4940 	if (IS_ERR(handle))
4941 		goto out;
4942 
4943 	ext4_mark_inode_dirty(handle, inode);
4944 
4945 	ext4_journal_stop(handle);
4946 out:
4947 	return;
4948 }
4949 
4950 #if 0
4951 /*
4952  * Bind an inode's backing buffer_head into this transaction, to prevent
4953  * it from being flushed to disk early.  Unlike
4954  * ext4_reserve_inode_write, this leaves behind no bh reference and
4955  * returns no iloc structure, so the caller needs to repeat the iloc
4956  * lookup to mark the inode dirty later.
4957  */
4958 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4959 {
4960 	struct ext4_iloc iloc;
4961 
4962 	int err = 0;
4963 	if (handle) {
4964 		err = ext4_get_inode_loc(inode, &iloc);
4965 		if (!err) {
4966 			BUFFER_TRACE(iloc.bh, "get_write_access");
4967 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4968 			if (!err)
4969 				err = ext4_handle_dirty_metadata(handle,
4970 								 NULL,
4971 								 iloc.bh);
4972 			brelse(iloc.bh);
4973 		}
4974 	}
4975 	ext4_std_error(inode->i_sb, err);
4976 	return err;
4977 }
4978 #endif
4979 
4980 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4981 {
4982 	journal_t *journal;
4983 	handle_t *handle;
4984 	int err;
4985 
4986 	/*
4987 	 * We have to be very careful here: changing a data block's
4988 	 * journaling status dynamically is dangerous.  If we write a
4989 	 * data block to the journal, change the status and then delete
4990 	 * that block, we risk forgetting to revoke the old log record
4991 	 * from the journal and so a subsequent replay can corrupt data.
4992 	 * So, first we make sure that the journal is empty and that
4993 	 * nobody is changing anything.
4994 	 */
4995 
4996 	journal = EXT4_JOURNAL(inode);
4997 	if (!journal)
4998 		return 0;
4999 	if (is_journal_aborted(journal))
5000 		return -EROFS;
5001 	/* We have to allocate physical blocks for delalloc blocks
5002 	 * before flushing journal. otherwise delalloc blocks can not
5003 	 * be allocated any more. even more truncate on delalloc blocks
5004 	 * could trigger BUG by flushing delalloc blocks in journal.
5005 	 * There is no delalloc block in non-journal data mode.
5006 	 */
5007 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5008 		err = ext4_alloc_da_blocks(inode);
5009 		if (err < 0)
5010 			return err;
5011 	}
5012 
5013 	/* Wait for all existing dio workers */
5014 	ext4_inode_block_unlocked_dio(inode);
5015 	inode_dio_wait(inode);
5016 
5017 	jbd2_journal_lock_updates(journal);
5018 
5019 	/*
5020 	 * OK, there are no updates running now, and all cached data is
5021 	 * synced to disk.  We are now in a completely consistent state
5022 	 * which doesn't have anything in the journal, and we know that
5023 	 * no filesystem updates are running, so it is safe to modify
5024 	 * the inode's in-core data-journaling state flag now.
5025 	 */
5026 
5027 	if (val)
5028 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5029 	else {
5030 		jbd2_journal_flush(journal);
5031 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5032 	}
5033 	ext4_set_aops(inode);
5034 
5035 	jbd2_journal_unlock_updates(journal);
5036 	ext4_inode_resume_unlocked_dio(inode);
5037 
5038 	/* Finally we can mark the inode as dirty. */
5039 
5040 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5041 	if (IS_ERR(handle))
5042 		return PTR_ERR(handle);
5043 
5044 	err = ext4_mark_inode_dirty(handle, inode);
5045 	ext4_handle_sync(handle);
5046 	ext4_journal_stop(handle);
5047 	ext4_std_error(inode->i_sb, err);
5048 
5049 	return err;
5050 }
5051 
5052 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5053 {
5054 	return !buffer_mapped(bh);
5055 }
5056 
5057 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5058 {
5059 	struct page *page = vmf->page;
5060 	loff_t size;
5061 	unsigned long len;
5062 	int ret;
5063 	struct file *file = vma->vm_file;
5064 	struct inode *inode = file_inode(file);
5065 	struct address_space *mapping = inode->i_mapping;
5066 	handle_t *handle;
5067 	get_block_t *get_block;
5068 	int retries = 0;
5069 
5070 	sb_start_pagefault(inode->i_sb);
5071 	file_update_time(vma->vm_file);
5072 	/* Delalloc case is easy... */
5073 	if (test_opt(inode->i_sb, DELALLOC) &&
5074 	    !ext4_should_journal_data(inode) &&
5075 	    !ext4_nonda_switch(inode->i_sb)) {
5076 		do {
5077 			ret = __block_page_mkwrite(vma, vmf,
5078 						   ext4_da_get_block_prep);
5079 		} while (ret == -ENOSPC &&
5080 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5081 		goto out_ret;
5082 	}
5083 
5084 	lock_page(page);
5085 	size = i_size_read(inode);
5086 	/* Page got truncated from under us? */
5087 	if (page->mapping != mapping || page_offset(page) > size) {
5088 		unlock_page(page);
5089 		ret = VM_FAULT_NOPAGE;
5090 		goto out;
5091 	}
5092 
5093 	if (page->index == size >> PAGE_CACHE_SHIFT)
5094 		len = size & ~PAGE_CACHE_MASK;
5095 	else
5096 		len = PAGE_CACHE_SIZE;
5097 	/*
5098 	 * Return if we have all the buffers mapped. This avoids the need to do
5099 	 * journal_start/journal_stop which can block and take a long time
5100 	 */
5101 	if (page_has_buffers(page)) {
5102 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5103 					    0, len, NULL,
5104 					    ext4_bh_unmapped)) {
5105 			/* Wait so that we don't change page under IO */
5106 			wait_for_stable_page(page);
5107 			ret = VM_FAULT_LOCKED;
5108 			goto out;
5109 		}
5110 	}
5111 	unlock_page(page);
5112 	/* OK, we need to fill the hole... */
5113 	if (ext4_should_dioread_nolock(inode))
5114 		get_block = ext4_get_block_write;
5115 	else
5116 		get_block = ext4_get_block;
5117 retry_alloc:
5118 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5119 				    ext4_writepage_trans_blocks(inode));
5120 	if (IS_ERR(handle)) {
5121 		ret = VM_FAULT_SIGBUS;
5122 		goto out;
5123 	}
5124 	ret = __block_page_mkwrite(vma, vmf, get_block);
5125 	if (!ret && ext4_should_journal_data(inode)) {
5126 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5127 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5128 			unlock_page(page);
5129 			ret = VM_FAULT_SIGBUS;
5130 			ext4_journal_stop(handle);
5131 			goto out;
5132 		}
5133 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5134 	}
5135 	ext4_journal_stop(handle);
5136 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5137 		goto retry_alloc;
5138 out_ret:
5139 	ret = block_page_mkwrite_return(ret);
5140 out:
5141 	sb_end_pagefault(inode->i_sb);
5142 	return ret;
5143 }
5144