xref: /openbmc/linux/fs/ext4/inode.c (revision c0e297dc)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
39 
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
44 
45 #include <trace/events/ext4.h>
46 
47 #define MPAGE_DA_EXTENT_TAIL 0x01
48 
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50 			      struct ext4_inode_info *ei)
51 {
52 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 	__u16 csum_lo;
54 	__u16 csum_hi = 0;
55 	__u32 csum;
56 
57 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
58 	raw->i_checksum_lo = 0;
59 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
62 		raw->i_checksum_hi = 0;
63 	}
64 
65 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66 			   EXT4_INODE_SIZE(inode->i_sb));
67 
68 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
69 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
72 
73 	return csum;
74 }
75 
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77 				  struct ext4_inode_info *ei)
78 {
79 	__u32 provided, calculated;
80 
81 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82 	    cpu_to_le32(EXT4_OS_LINUX) ||
83 	    !ext4_has_metadata_csum(inode->i_sb))
84 		return 1;
85 
86 	provided = le16_to_cpu(raw->i_checksum_lo);
87 	calculated = ext4_inode_csum(inode, raw, ei);
88 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91 	else
92 		calculated &= 0xFFFF;
93 
94 	return provided == calculated;
95 }
96 
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98 				struct ext4_inode_info *ei)
99 {
100 	__u32 csum;
101 
102 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103 	    cpu_to_le32(EXT4_OS_LINUX) ||
104 	    !ext4_has_metadata_csum(inode->i_sb))
105 		return;
106 
107 	csum = ext4_inode_csum(inode, raw, ei);
108 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112 }
113 
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115 					      loff_t new_size)
116 {
117 	trace_ext4_begin_ordered_truncate(inode, new_size);
118 	/*
119 	 * If jinode is zero, then we never opened the file for
120 	 * writing, so there's no need to call
121 	 * jbd2_journal_begin_ordered_truncate() since there's no
122 	 * outstanding writes we need to flush.
123 	 */
124 	if (!EXT4_I(inode)->jinode)
125 		return 0;
126 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127 						   EXT4_I(inode)->jinode,
128 						   new_size);
129 }
130 
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132 				unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136 				  int pextents);
137 
138 /*
139  * Test whether an inode is a fast symlink.
140  */
141 int ext4_inode_is_fast_symlink(struct inode *inode)
142 {
143         int ea_blocks = EXT4_I(inode)->i_file_acl ?
144 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145 
146 	if (ext4_has_inline_data(inode))
147 		return 0;
148 
149 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151 
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 				 int nblocks)
159 {
160 	int ret;
161 
162 	/*
163 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 	 * moment, get_block can be called only for blocks inside i_size since
165 	 * page cache has been already dropped and writes are blocked by
166 	 * i_mutex. So we can safely drop the i_data_sem here.
167 	 */
168 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 	jbd_debug(2, "restarting handle %p\n", handle);
170 	up_write(&EXT4_I(inode)->i_data_sem);
171 	ret = ext4_journal_restart(handle, nblocks);
172 	down_write(&EXT4_I(inode)->i_data_sem);
173 	ext4_discard_preallocations(inode);
174 
175 	return ret;
176 }
177 
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183 	handle_t *handle;
184 	int err;
185 
186 	trace_ext4_evict_inode(inode);
187 
188 	if (inode->i_nlink) {
189 		/*
190 		 * When journalling data dirty buffers are tracked only in the
191 		 * journal. So although mm thinks everything is clean and
192 		 * ready for reaping the inode might still have some pages to
193 		 * write in the running transaction or waiting to be
194 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 		 * (via truncate_inode_pages()) to discard these buffers can
196 		 * cause data loss. Also even if we did not discard these
197 		 * buffers, we would have no way to find them after the inode
198 		 * is reaped and thus user could see stale data if he tries to
199 		 * read them before the transaction is checkpointed. So be
200 		 * careful and force everything to disk here... We use
201 		 * ei->i_datasync_tid to store the newest transaction
202 		 * containing inode's data.
203 		 *
204 		 * Note that directories do not have this problem because they
205 		 * don't use page cache.
206 		 */
207 		if (ext4_should_journal_data(inode) &&
208 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 		    inode->i_ino != EXT4_JOURNAL_INO) {
210 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212 
213 			jbd2_complete_transaction(journal, commit_tid);
214 			filemap_write_and_wait(&inode->i_data);
215 		}
216 		truncate_inode_pages_final(&inode->i_data);
217 
218 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219 		goto no_delete;
220 	}
221 
222 	if (is_bad_inode(inode))
223 		goto no_delete;
224 	dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages_final(&inode->i_data);
229 
230 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 
232 	/*
233 	 * Protect us against freezing - iput() caller didn't have to have any
234 	 * protection against it
235 	 */
236 	sb_start_intwrite(inode->i_sb);
237 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 				    ext4_blocks_for_truncate(inode)+3);
239 	if (IS_ERR(handle)) {
240 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 		/*
242 		 * If we're going to skip the normal cleanup, we still need to
243 		 * make sure that the in-core orphan linked list is properly
244 		 * cleaned up.
245 		 */
246 		ext4_orphan_del(NULL, inode);
247 		sb_end_intwrite(inode->i_sb);
248 		goto no_delete;
249 	}
250 
251 	if (IS_SYNC(inode))
252 		ext4_handle_sync(handle);
253 	inode->i_size = 0;
254 	err = ext4_mark_inode_dirty(handle, inode);
255 	if (err) {
256 		ext4_warning(inode->i_sb,
257 			     "couldn't mark inode dirty (err %d)", err);
258 		goto stop_handle;
259 	}
260 	if (inode->i_blocks)
261 		ext4_truncate(inode);
262 
263 	/*
264 	 * ext4_ext_truncate() doesn't reserve any slop when it
265 	 * restarts journal transactions; therefore there may not be
266 	 * enough credits left in the handle to remove the inode from
267 	 * the orphan list and set the dtime field.
268 	 */
269 	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 		err = ext4_journal_extend(handle, 3);
271 		if (err > 0)
272 			err = ext4_journal_restart(handle, 3);
273 		if (err != 0) {
274 			ext4_warning(inode->i_sb,
275 				     "couldn't extend journal (err %d)", err);
276 		stop_handle:
277 			ext4_journal_stop(handle);
278 			ext4_orphan_del(NULL, inode);
279 			sb_end_intwrite(inode->i_sb);
280 			goto no_delete;
281 		}
282 	}
283 
284 	/*
285 	 * Kill off the orphan record which ext4_truncate created.
286 	 * AKPM: I think this can be inside the above `if'.
287 	 * Note that ext4_orphan_del() has to be able to cope with the
288 	 * deletion of a non-existent orphan - this is because we don't
289 	 * know if ext4_truncate() actually created an orphan record.
290 	 * (Well, we could do this if we need to, but heck - it works)
291 	 */
292 	ext4_orphan_del(handle, inode);
293 	EXT4_I(inode)->i_dtime	= get_seconds();
294 
295 	/*
296 	 * One subtle ordering requirement: if anything has gone wrong
297 	 * (transaction abort, IO errors, whatever), then we can still
298 	 * do these next steps (the fs will already have been marked as
299 	 * having errors), but we can't free the inode if the mark_dirty
300 	 * fails.
301 	 */
302 	if (ext4_mark_inode_dirty(handle, inode))
303 		/* If that failed, just do the required in-core inode clear. */
304 		ext4_clear_inode(inode);
305 	else
306 		ext4_free_inode(handle, inode);
307 	ext4_journal_stop(handle);
308 	sb_end_intwrite(inode->i_sb);
309 	return;
310 no_delete:
311 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 }
313 
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317 	return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320 
321 /*
322  * Called with i_data_sem down, which is important since we can call
323  * ext4_discard_preallocations() from here.
324  */
325 void ext4_da_update_reserve_space(struct inode *inode,
326 					int used, int quota_claim)
327 {
328 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329 	struct ext4_inode_info *ei = EXT4_I(inode);
330 
331 	spin_lock(&ei->i_block_reservation_lock);
332 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333 	if (unlikely(used > ei->i_reserved_data_blocks)) {
334 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335 			 "with only %d reserved data blocks",
336 			 __func__, inode->i_ino, used,
337 			 ei->i_reserved_data_blocks);
338 		WARN_ON(1);
339 		used = ei->i_reserved_data_blocks;
340 	}
341 
342 	/* Update per-inode reservations */
343 	ei->i_reserved_data_blocks -= used;
344 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345 
346 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347 
348 	/* Update quota subsystem for data blocks */
349 	if (quota_claim)
350 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
351 	else {
352 		/*
353 		 * We did fallocate with an offset that is already delayed
354 		 * allocated. So on delayed allocated writeback we should
355 		 * not re-claim the quota for fallocated blocks.
356 		 */
357 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358 	}
359 
360 	/*
361 	 * If we have done all the pending block allocations and if
362 	 * there aren't any writers on the inode, we can discard the
363 	 * inode's preallocations.
364 	 */
365 	if ((ei->i_reserved_data_blocks == 0) &&
366 	    (atomic_read(&inode->i_writecount) == 0))
367 		ext4_discard_preallocations(inode);
368 }
369 
370 static int __check_block_validity(struct inode *inode, const char *func,
371 				unsigned int line,
372 				struct ext4_map_blocks *map)
373 {
374 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375 				   map->m_len)) {
376 		ext4_error_inode(inode, func, line, map->m_pblk,
377 				 "lblock %lu mapped to illegal pblock "
378 				 "(length %d)", (unsigned long) map->m_lblk,
379 				 map->m_len);
380 		return -EIO;
381 	}
382 	return 0;
383 }
384 
385 #define check_block_validity(inode, map)	\
386 	__check_block_validity((inode), __func__, __LINE__, (map))
387 
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390 				       struct inode *inode,
391 				       struct ext4_map_blocks *es_map,
392 				       struct ext4_map_blocks *map,
393 				       int flags)
394 {
395 	int retval;
396 
397 	map->m_flags = 0;
398 	/*
399 	 * There is a race window that the result is not the same.
400 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
401 	 * is that we lookup a block mapping in extent status tree with
402 	 * out taking i_data_sem.  So at the time the unwritten extent
403 	 * could be converted.
404 	 */
405 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406 		down_read(&EXT4_I(inode)->i_data_sem);
407 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
409 					     EXT4_GET_BLOCKS_KEEP_SIZE);
410 	} else {
411 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
412 					     EXT4_GET_BLOCKS_KEEP_SIZE);
413 	}
414 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415 		up_read((&EXT4_I(inode)->i_data_sem));
416 
417 	/*
418 	 * We don't check m_len because extent will be collpased in status
419 	 * tree.  So the m_len might not equal.
420 	 */
421 	if (es_map->m_lblk != map->m_lblk ||
422 	    es_map->m_flags != map->m_flags ||
423 	    es_map->m_pblk != map->m_pblk) {
424 		printk("ES cache assertion failed for inode: %lu "
425 		       "es_cached ex [%d/%d/%llu/%x] != "
426 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
428 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
429 		       map->m_len, map->m_pblk, map->m_flags,
430 		       retval, flags);
431 	}
432 }
433 #endif /* ES_AGGRESSIVE_TEST */
434 
435 /*
436  * The ext4_map_blocks() function tries to look up the requested blocks,
437  * and returns if the blocks are already mapped.
438  *
439  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440  * and store the allocated blocks in the result buffer head and mark it
441  * mapped.
442  *
443  * If file type is extents based, it will call ext4_ext_map_blocks(),
444  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445  * based files
446  *
447  * On success, it returns the number of blocks being mapped or allocated.
448  * if create==0 and the blocks are pre-allocated and unwritten block,
449  * the result buffer head is unmapped. If the create ==1, it will make sure
450  * the buffer head is mapped.
451  *
452  * It returns 0 if plain look up failed (blocks have not been allocated), in
453  * that case, buffer head is unmapped
454  *
455  * It returns the error in case of allocation failure.
456  */
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458 		    struct ext4_map_blocks *map, int flags)
459 {
460 	struct extent_status es;
461 	int retval;
462 	int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464 	struct ext4_map_blocks orig_map;
465 
466 	memcpy(&orig_map, map, sizeof(*map));
467 #endif
468 
469 	map->m_flags = 0;
470 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
472 		  (unsigned long) map->m_lblk);
473 
474 	/*
475 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
476 	 */
477 	if (unlikely(map->m_len > INT_MAX))
478 		map->m_len = INT_MAX;
479 
480 	/* We can handle the block number less than EXT_MAX_BLOCKS */
481 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482 		return -EIO;
483 
484 	/* Lookup extent status tree firstly */
485 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487 			map->m_pblk = ext4_es_pblock(&es) +
488 					map->m_lblk - es.es_lblk;
489 			map->m_flags |= ext4_es_is_written(&es) ?
490 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491 			retval = es.es_len - (map->m_lblk - es.es_lblk);
492 			if (retval > map->m_len)
493 				retval = map->m_len;
494 			map->m_len = retval;
495 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496 			retval = 0;
497 		} else {
498 			BUG_ON(1);
499 		}
500 #ifdef ES_AGGRESSIVE_TEST
501 		ext4_map_blocks_es_recheck(handle, inode, map,
502 					   &orig_map, flags);
503 #endif
504 		goto found;
505 	}
506 
507 	/*
508 	 * Try to see if we can get the block without requesting a new
509 	 * file system block.
510 	 */
511 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 		down_read(&EXT4_I(inode)->i_data_sem);
513 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
515 					     EXT4_GET_BLOCKS_KEEP_SIZE);
516 	} else {
517 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
518 					     EXT4_GET_BLOCKS_KEEP_SIZE);
519 	}
520 	if (retval > 0) {
521 		unsigned int status;
522 
523 		if (unlikely(retval != map->m_len)) {
524 			ext4_warning(inode->i_sb,
525 				     "ES len assertion failed for inode "
526 				     "%lu: retval %d != map->m_len %d",
527 				     inode->i_ino, retval, map->m_len);
528 			WARN_ON(1);
529 		}
530 
531 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534 		    !(status & EXTENT_STATUS_WRITTEN) &&
535 		    ext4_find_delalloc_range(inode, map->m_lblk,
536 					     map->m_lblk + map->m_len - 1))
537 			status |= EXTENT_STATUS_DELAYED;
538 		ret = ext4_es_insert_extent(inode, map->m_lblk,
539 					    map->m_len, map->m_pblk, status);
540 		if (ret < 0)
541 			retval = ret;
542 	}
543 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 		up_read((&EXT4_I(inode)->i_data_sem));
545 
546 found:
547 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548 		ret = check_block_validity(inode, map);
549 		if (ret != 0)
550 			return ret;
551 	}
552 
553 	/* If it is only a block(s) look up */
554 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555 		return retval;
556 
557 	/*
558 	 * Returns if the blocks have already allocated
559 	 *
560 	 * Note that if blocks have been preallocated
561 	 * ext4_ext_get_block() returns the create = 0
562 	 * with buffer head unmapped.
563 	 */
564 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565 		/*
566 		 * If we need to convert extent to unwritten
567 		 * we continue and do the actual work in
568 		 * ext4_ext_map_blocks()
569 		 */
570 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571 			return retval;
572 
573 	/*
574 	 * Here we clear m_flags because after allocating an new extent,
575 	 * it will be set again.
576 	 */
577 	map->m_flags &= ~EXT4_MAP_FLAGS;
578 
579 	/*
580 	 * New blocks allocate and/or writing to unwritten extent
581 	 * will possibly result in updating i_data, so we take
582 	 * the write lock of i_data_sem, and call get_block()
583 	 * with create == 1 flag.
584 	 */
585 	down_write(&EXT4_I(inode)->i_data_sem);
586 
587 	/*
588 	 * We need to check for EXT4 here because migrate
589 	 * could have changed the inode type in between
590 	 */
591 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
593 	} else {
594 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
595 
596 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597 			/*
598 			 * We allocated new blocks which will result in
599 			 * i_data's format changing.  Force the migrate
600 			 * to fail by clearing migrate flags
601 			 */
602 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603 		}
604 
605 		/*
606 		 * Update reserved blocks/metadata blocks after successful
607 		 * block allocation which had been deferred till now. We don't
608 		 * support fallocate for non extent files. So we can update
609 		 * reserve space here.
610 		 */
611 		if ((retval > 0) &&
612 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613 			ext4_da_update_reserve_space(inode, retval, 1);
614 	}
615 
616 	if (retval > 0) {
617 		unsigned int status;
618 
619 		if (unlikely(retval != map->m_len)) {
620 			ext4_warning(inode->i_sb,
621 				     "ES len assertion failed for inode "
622 				     "%lu: retval %d != map->m_len %d",
623 				     inode->i_ino, retval, map->m_len);
624 			WARN_ON(1);
625 		}
626 
627 		/*
628 		 * If the extent has been zeroed out, we don't need to update
629 		 * extent status tree.
630 		 */
631 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633 			if (ext4_es_is_written(&es))
634 				goto has_zeroout;
635 		}
636 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639 		    !(status & EXTENT_STATUS_WRITTEN) &&
640 		    ext4_find_delalloc_range(inode, map->m_lblk,
641 					     map->m_lblk + map->m_len - 1))
642 			status |= EXTENT_STATUS_DELAYED;
643 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644 					    map->m_pblk, status);
645 		if (ret < 0)
646 			retval = ret;
647 	}
648 
649 has_zeroout:
650 	up_write((&EXT4_I(inode)->i_data_sem));
651 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652 		ret = check_block_validity(inode, map);
653 		if (ret != 0)
654 			return ret;
655 	}
656 	return retval;
657 }
658 
659 /* Maximum number of blocks we map for direct IO at once. */
660 #define DIO_MAX_BLOCKS 4096
661 
662 static int _ext4_get_block(struct inode *inode, sector_t iblock,
663 			   struct buffer_head *bh, int flags)
664 {
665 	handle_t *handle = ext4_journal_current_handle();
666 	struct ext4_map_blocks map;
667 	int ret = 0, started = 0;
668 	int dio_credits;
669 
670 	if (ext4_has_inline_data(inode))
671 		return -ERANGE;
672 
673 	map.m_lblk = iblock;
674 	map.m_len = bh->b_size >> inode->i_blkbits;
675 
676 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
677 		/* Direct IO write... */
678 		if (map.m_len > DIO_MAX_BLOCKS)
679 			map.m_len = DIO_MAX_BLOCKS;
680 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
681 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
682 					    dio_credits);
683 		if (IS_ERR(handle)) {
684 			ret = PTR_ERR(handle);
685 			return ret;
686 		}
687 		started = 1;
688 	}
689 
690 	ret = ext4_map_blocks(handle, inode, &map, flags);
691 	if (ret > 0) {
692 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
693 
694 		map_bh(bh, inode->i_sb, map.m_pblk);
695 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
696 		if (IS_DAX(inode) && buffer_unwritten(bh)) {
697 			/*
698 			 * dgc: I suspect unwritten conversion on ext4+DAX is
699 			 * fundamentally broken here when there are concurrent
700 			 * read/write in progress on this inode.
701 			 */
702 			WARN_ON_ONCE(io_end);
703 			bh->b_assoc_map = inode->i_mapping;
704 			bh->b_private = (void *)(unsigned long)iblock;
705 		}
706 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
707 			set_buffer_defer_completion(bh);
708 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
709 		ret = 0;
710 	}
711 	if (started)
712 		ext4_journal_stop(handle);
713 	return ret;
714 }
715 
716 int ext4_get_block(struct inode *inode, sector_t iblock,
717 		   struct buffer_head *bh, int create)
718 {
719 	return _ext4_get_block(inode, iblock, bh,
720 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
721 }
722 
723 /*
724  * `handle' can be NULL if create is zero
725  */
726 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
727 				ext4_lblk_t block, int map_flags)
728 {
729 	struct ext4_map_blocks map;
730 	struct buffer_head *bh;
731 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
732 	int err;
733 
734 	J_ASSERT(handle != NULL || create == 0);
735 
736 	map.m_lblk = block;
737 	map.m_len = 1;
738 	err = ext4_map_blocks(handle, inode, &map, map_flags);
739 
740 	if (err == 0)
741 		return create ? ERR_PTR(-ENOSPC) : NULL;
742 	if (err < 0)
743 		return ERR_PTR(err);
744 
745 	bh = sb_getblk(inode->i_sb, map.m_pblk);
746 	if (unlikely(!bh))
747 		return ERR_PTR(-ENOMEM);
748 	if (map.m_flags & EXT4_MAP_NEW) {
749 		J_ASSERT(create != 0);
750 		J_ASSERT(handle != NULL);
751 
752 		/*
753 		 * Now that we do not always journal data, we should
754 		 * keep in mind whether this should always journal the
755 		 * new buffer as metadata.  For now, regular file
756 		 * writes use ext4_get_block instead, so it's not a
757 		 * problem.
758 		 */
759 		lock_buffer(bh);
760 		BUFFER_TRACE(bh, "call get_create_access");
761 		err = ext4_journal_get_create_access(handle, bh);
762 		if (unlikely(err)) {
763 			unlock_buffer(bh);
764 			goto errout;
765 		}
766 		if (!buffer_uptodate(bh)) {
767 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
768 			set_buffer_uptodate(bh);
769 		}
770 		unlock_buffer(bh);
771 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
772 		err = ext4_handle_dirty_metadata(handle, inode, bh);
773 		if (unlikely(err))
774 			goto errout;
775 	} else
776 		BUFFER_TRACE(bh, "not a new buffer");
777 	return bh;
778 errout:
779 	brelse(bh);
780 	return ERR_PTR(err);
781 }
782 
783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
784 			       ext4_lblk_t block, int map_flags)
785 {
786 	struct buffer_head *bh;
787 
788 	bh = ext4_getblk(handle, inode, block, map_flags);
789 	if (IS_ERR(bh))
790 		return bh;
791 	if (!bh || buffer_uptodate(bh))
792 		return bh;
793 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
794 	wait_on_buffer(bh);
795 	if (buffer_uptodate(bh))
796 		return bh;
797 	put_bh(bh);
798 	return ERR_PTR(-EIO);
799 }
800 
801 int ext4_walk_page_buffers(handle_t *handle,
802 			   struct buffer_head *head,
803 			   unsigned from,
804 			   unsigned to,
805 			   int *partial,
806 			   int (*fn)(handle_t *handle,
807 				     struct buffer_head *bh))
808 {
809 	struct buffer_head *bh;
810 	unsigned block_start, block_end;
811 	unsigned blocksize = head->b_size;
812 	int err, ret = 0;
813 	struct buffer_head *next;
814 
815 	for (bh = head, block_start = 0;
816 	     ret == 0 && (bh != head || !block_start);
817 	     block_start = block_end, bh = next) {
818 		next = bh->b_this_page;
819 		block_end = block_start + blocksize;
820 		if (block_end <= from || block_start >= to) {
821 			if (partial && !buffer_uptodate(bh))
822 				*partial = 1;
823 			continue;
824 		}
825 		err = (*fn)(handle, bh);
826 		if (!ret)
827 			ret = err;
828 	}
829 	return ret;
830 }
831 
832 /*
833  * To preserve ordering, it is essential that the hole instantiation and
834  * the data write be encapsulated in a single transaction.  We cannot
835  * close off a transaction and start a new one between the ext4_get_block()
836  * and the commit_write().  So doing the jbd2_journal_start at the start of
837  * prepare_write() is the right place.
838  *
839  * Also, this function can nest inside ext4_writepage().  In that case, we
840  * *know* that ext4_writepage() has generated enough buffer credits to do the
841  * whole page.  So we won't block on the journal in that case, which is good,
842  * because the caller may be PF_MEMALLOC.
843  *
844  * By accident, ext4 can be reentered when a transaction is open via
845  * quota file writes.  If we were to commit the transaction while thus
846  * reentered, there can be a deadlock - we would be holding a quota
847  * lock, and the commit would never complete if another thread had a
848  * transaction open and was blocking on the quota lock - a ranking
849  * violation.
850  *
851  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
852  * will _not_ run commit under these circumstances because handle->h_ref
853  * is elevated.  We'll still have enough credits for the tiny quotafile
854  * write.
855  */
856 int do_journal_get_write_access(handle_t *handle,
857 				struct buffer_head *bh)
858 {
859 	int dirty = buffer_dirty(bh);
860 	int ret;
861 
862 	if (!buffer_mapped(bh) || buffer_freed(bh))
863 		return 0;
864 	/*
865 	 * __block_write_begin() could have dirtied some buffers. Clean
866 	 * the dirty bit as jbd2_journal_get_write_access() could complain
867 	 * otherwise about fs integrity issues. Setting of the dirty bit
868 	 * by __block_write_begin() isn't a real problem here as we clear
869 	 * the bit before releasing a page lock and thus writeback cannot
870 	 * ever write the buffer.
871 	 */
872 	if (dirty)
873 		clear_buffer_dirty(bh);
874 	BUFFER_TRACE(bh, "get write access");
875 	ret = ext4_journal_get_write_access(handle, bh);
876 	if (!ret && dirty)
877 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878 	return ret;
879 }
880 
881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882 		   struct buffer_head *bh_result, int create);
883 
884 #ifdef CONFIG_EXT4_FS_ENCRYPTION
885 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
886 				  get_block_t *get_block)
887 {
888 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
889 	unsigned to = from + len;
890 	struct inode *inode = page->mapping->host;
891 	unsigned block_start, block_end;
892 	sector_t block;
893 	int err = 0;
894 	unsigned blocksize = inode->i_sb->s_blocksize;
895 	unsigned bbits;
896 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
897 	bool decrypt = false;
898 
899 	BUG_ON(!PageLocked(page));
900 	BUG_ON(from > PAGE_CACHE_SIZE);
901 	BUG_ON(to > PAGE_CACHE_SIZE);
902 	BUG_ON(from > to);
903 
904 	if (!page_has_buffers(page))
905 		create_empty_buffers(page, blocksize, 0);
906 	head = page_buffers(page);
907 	bbits = ilog2(blocksize);
908 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
909 
910 	for (bh = head, block_start = 0; bh != head || !block_start;
911 	    block++, block_start = block_end, bh = bh->b_this_page) {
912 		block_end = block_start + blocksize;
913 		if (block_end <= from || block_start >= to) {
914 			if (PageUptodate(page)) {
915 				if (!buffer_uptodate(bh))
916 					set_buffer_uptodate(bh);
917 			}
918 			continue;
919 		}
920 		if (buffer_new(bh))
921 			clear_buffer_new(bh);
922 		if (!buffer_mapped(bh)) {
923 			WARN_ON(bh->b_size != blocksize);
924 			err = get_block(inode, block, bh, 1);
925 			if (err)
926 				break;
927 			if (buffer_new(bh)) {
928 				unmap_underlying_metadata(bh->b_bdev,
929 							  bh->b_blocknr);
930 				if (PageUptodate(page)) {
931 					clear_buffer_new(bh);
932 					set_buffer_uptodate(bh);
933 					mark_buffer_dirty(bh);
934 					continue;
935 				}
936 				if (block_end > to || block_start < from)
937 					zero_user_segments(page, to, block_end,
938 							   block_start, from);
939 				continue;
940 			}
941 		}
942 		if (PageUptodate(page)) {
943 			if (!buffer_uptodate(bh))
944 				set_buffer_uptodate(bh);
945 			continue;
946 		}
947 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
948 		    !buffer_unwritten(bh) &&
949 		    (block_start < from || block_end > to)) {
950 			ll_rw_block(READ, 1, &bh);
951 			*wait_bh++ = bh;
952 			decrypt = ext4_encrypted_inode(inode) &&
953 				S_ISREG(inode->i_mode);
954 		}
955 	}
956 	/*
957 	 * If we issued read requests, let them complete.
958 	 */
959 	while (wait_bh > wait) {
960 		wait_on_buffer(*--wait_bh);
961 		if (!buffer_uptodate(*wait_bh))
962 			err = -EIO;
963 	}
964 	if (unlikely(err))
965 		page_zero_new_buffers(page, from, to);
966 	else if (decrypt)
967 		err = ext4_decrypt_one(inode, page);
968 	return err;
969 }
970 #endif
971 
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973 			    loff_t pos, unsigned len, unsigned flags,
974 			    struct page **pagep, void **fsdata)
975 {
976 	struct inode *inode = mapping->host;
977 	int ret, needed_blocks;
978 	handle_t *handle;
979 	int retries = 0;
980 	struct page *page;
981 	pgoff_t index;
982 	unsigned from, to;
983 
984 	trace_ext4_write_begin(inode, pos, len, flags);
985 	/*
986 	 * Reserve one block more for addition to orphan list in case
987 	 * we allocate blocks but write fails for some reason
988 	 */
989 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990 	index = pos >> PAGE_CACHE_SHIFT;
991 	from = pos & (PAGE_CACHE_SIZE - 1);
992 	to = from + len;
993 
994 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996 						    flags, pagep);
997 		if (ret < 0)
998 			return ret;
999 		if (ret == 1)
1000 			return 0;
1001 	}
1002 
1003 	/*
1004 	 * grab_cache_page_write_begin() can take a long time if the
1005 	 * system is thrashing due to memory pressure, or if the page
1006 	 * is being written back.  So grab it first before we start
1007 	 * the transaction handle.  This also allows us to allocate
1008 	 * the page (if needed) without using GFP_NOFS.
1009 	 */
1010 retry_grab:
1011 	page = grab_cache_page_write_begin(mapping, index, flags);
1012 	if (!page)
1013 		return -ENOMEM;
1014 	unlock_page(page);
1015 
1016 retry_journal:
1017 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018 	if (IS_ERR(handle)) {
1019 		page_cache_release(page);
1020 		return PTR_ERR(handle);
1021 	}
1022 
1023 	lock_page(page);
1024 	if (page->mapping != mapping) {
1025 		/* The page got truncated from under us */
1026 		unlock_page(page);
1027 		page_cache_release(page);
1028 		ext4_journal_stop(handle);
1029 		goto retry_grab;
1030 	}
1031 	/* In case writeback began while the page was unlocked */
1032 	wait_for_stable_page(page);
1033 
1034 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1035 	if (ext4_should_dioread_nolock(inode))
1036 		ret = ext4_block_write_begin(page, pos, len,
1037 					     ext4_get_block_write);
1038 	else
1039 		ret = ext4_block_write_begin(page, pos, len,
1040 					     ext4_get_block);
1041 #else
1042 	if (ext4_should_dioread_nolock(inode))
1043 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1044 	else
1045 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1046 #endif
1047 	if (!ret && ext4_should_journal_data(inode)) {
1048 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1049 					     from, to, NULL,
1050 					     do_journal_get_write_access);
1051 	}
1052 
1053 	if (ret) {
1054 		unlock_page(page);
1055 		/*
1056 		 * __block_write_begin may have instantiated a few blocks
1057 		 * outside i_size.  Trim these off again. Don't need
1058 		 * i_size_read because we hold i_mutex.
1059 		 *
1060 		 * Add inode to orphan list in case we crash before
1061 		 * truncate finishes
1062 		 */
1063 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1064 			ext4_orphan_add(handle, inode);
1065 
1066 		ext4_journal_stop(handle);
1067 		if (pos + len > inode->i_size) {
1068 			ext4_truncate_failed_write(inode);
1069 			/*
1070 			 * If truncate failed early the inode might
1071 			 * still be on the orphan list; we need to
1072 			 * make sure the inode is removed from the
1073 			 * orphan list in that case.
1074 			 */
1075 			if (inode->i_nlink)
1076 				ext4_orphan_del(NULL, inode);
1077 		}
1078 
1079 		if (ret == -ENOSPC &&
1080 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1081 			goto retry_journal;
1082 		page_cache_release(page);
1083 		return ret;
1084 	}
1085 	*pagep = page;
1086 	return ret;
1087 }
1088 
1089 /* For write_end() in data=journal mode */
1090 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1091 {
1092 	int ret;
1093 	if (!buffer_mapped(bh) || buffer_freed(bh))
1094 		return 0;
1095 	set_buffer_uptodate(bh);
1096 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1097 	clear_buffer_meta(bh);
1098 	clear_buffer_prio(bh);
1099 	return ret;
1100 }
1101 
1102 /*
1103  * We need to pick up the new inode size which generic_commit_write gave us
1104  * `file' can be NULL - eg, when called from page_symlink().
1105  *
1106  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1107  * buffers are managed internally.
1108  */
1109 static int ext4_write_end(struct file *file,
1110 			  struct address_space *mapping,
1111 			  loff_t pos, unsigned len, unsigned copied,
1112 			  struct page *page, void *fsdata)
1113 {
1114 	handle_t *handle = ext4_journal_current_handle();
1115 	struct inode *inode = mapping->host;
1116 	loff_t old_size = inode->i_size;
1117 	int ret = 0, ret2;
1118 	int i_size_changed = 0;
1119 
1120 	trace_ext4_write_end(inode, pos, len, copied);
1121 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1122 		ret = ext4_jbd2_file_inode(handle, inode);
1123 		if (ret) {
1124 			unlock_page(page);
1125 			page_cache_release(page);
1126 			goto errout;
1127 		}
1128 	}
1129 
1130 	if (ext4_has_inline_data(inode)) {
1131 		ret = ext4_write_inline_data_end(inode, pos, len,
1132 						 copied, page);
1133 		if (ret < 0)
1134 			goto errout;
1135 		copied = ret;
1136 	} else
1137 		copied = block_write_end(file, mapping, pos,
1138 					 len, copied, page, fsdata);
1139 	/*
1140 	 * it's important to update i_size while still holding page lock:
1141 	 * page writeout could otherwise come in and zero beyond i_size.
1142 	 */
1143 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1144 	unlock_page(page);
1145 	page_cache_release(page);
1146 
1147 	if (old_size < pos)
1148 		pagecache_isize_extended(inode, old_size, pos);
1149 	/*
1150 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1151 	 * makes the holding time of page lock longer. Second, it forces lock
1152 	 * ordering of page lock and transaction start for journaling
1153 	 * filesystems.
1154 	 */
1155 	if (i_size_changed)
1156 		ext4_mark_inode_dirty(handle, inode);
1157 
1158 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1159 		/* if we have allocated more blocks and copied
1160 		 * less. We will have blocks allocated outside
1161 		 * inode->i_size. So truncate them
1162 		 */
1163 		ext4_orphan_add(handle, inode);
1164 errout:
1165 	ret2 = ext4_journal_stop(handle);
1166 	if (!ret)
1167 		ret = ret2;
1168 
1169 	if (pos + len > inode->i_size) {
1170 		ext4_truncate_failed_write(inode);
1171 		/*
1172 		 * If truncate failed early the inode might still be
1173 		 * on the orphan list; we need to make sure the inode
1174 		 * is removed from the orphan list in that case.
1175 		 */
1176 		if (inode->i_nlink)
1177 			ext4_orphan_del(NULL, inode);
1178 	}
1179 
1180 	return ret ? ret : copied;
1181 }
1182 
1183 static int ext4_journalled_write_end(struct file *file,
1184 				     struct address_space *mapping,
1185 				     loff_t pos, unsigned len, unsigned copied,
1186 				     struct page *page, void *fsdata)
1187 {
1188 	handle_t *handle = ext4_journal_current_handle();
1189 	struct inode *inode = mapping->host;
1190 	loff_t old_size = inode->i_size;
1191 	int ret = 0, ret2;
1192 	int partial = 0;
1193 	unsigned from, to;
1194 	int size_changed = 0;
1195 
1196 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1197 	from = pos & (PAGE_CACHE_SIZE - 1);
1198 	to = from + len;
1199 
1200 	BUG_ON(!ext4_handle_valid(handle));
1201 
1202 	if (ext4_has_inline_data(inode))
1203 		copied = ext4_write_inline_data_end(inode, pos, len,
1204 						    copied, page);
1205 	else {
1206 		if (copied < len) {
1207 			if (!PageUptodate(page))
1208 				copied = 0;
1209 			page_zero_new_buffers(page, from+copied, to);
1210 		}
1211 
1212 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1213 					     to, &partial, write_end_fn);
1214 		if (!partial)
1215 			SetPageUptodate(page);
1216 	}
1217 	size_changed = ext4_update_inode_size(inode, pos + copied);
1218 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1219 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1220 	unlock_page(page);
1221 	page_cache_release(page);
1222 
1223 	if (old_size < pos)
1224 		pagecache_isize_extended(inode, old_size, pos);
1225 
1226 	if (size_changed) {
1227 		ret2 = ext4_mark_inode_dirty(handle, inode);
1228 		if (!ret)
1229 			ret = ret2;
1230 	}
1231 
1232 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1233 		/* if we have allocated more blocks and copied
1234 		 * less. We will have blocks allocated outside
1235 		 * inode->i_size. So truncate them
1236 		 */
1237 		ext4_orphan_add(handle, inode);
1238 
1239 	ret2 = ext4_journal_stop(handle);
1240 	if (!ret)
1241 		ret = ret2;
1242 	if (pos + len > inode->i_size) {
1243 		ext4_truncate_failed_write(inode);
1244 		/*
1245 		 * If truncate failed early the inode might still be
1246 		 * on the orphan list; we need to make sure the inode
1247 		 * is removed from the orphan list in that case.
1248 		 */
1249 		if (inode->i_nlink)
1250 			ext4_orphan_del(NULL, inode);
1251 	}
1252 
1253 	return ret ? ret : copied;
1254 }
1255 
1256 /*
1257  * Reserve space for a single cluster
1258  */
1259 static int ext4_da_reserve_space(struct inode *inode)
1260 {
1261 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1262 	struct ext4_inode_info *ei = EXT4_I(inode);
1263 	int ret;
1264 
1265 	/*
1266 	 * We will charge metadata quota at writeout time; this saves
1267 	 * us from metadata over-estimation, though we may go over by
1268 	 * a small amount in the end.  Here we just reserve for data.
1269 	 */
1270 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1271 	if (ret)
1272 		return ret;
1273 
1274 	spin_lock(&ei->i_block_reservation_lock);
1275 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1276 		spin_unlock(&ei->i_block_reservation_lock);
1277 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1278 		return -ENOSPC;
1279 	}
1280 	ei->i_reserved_data_blocks++;
1281 	trace_ext4_da_reserve_space(inode);
1282 	spin_unlock(&ei->i_block_reservation_lock);
1283 
1284 	return 0;       /* success */
1285 }
1286 
1287 static void ext4_da_release_space(struct inode *inode, int to_free)
1288 {
1289 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1290 	struct ext4_inode_info *ei = EXT4_I(inode);
1291 
1292 	if (!to_free)
1293 		return;		/* Nothing to release, exit */
1294 
1295 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1296 
1297 	trace_ext4_da_release_space(inode, to_free);
1298 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1299 		/*
1300 		 * if there aren't enough reserved blocks, then the
1301 		 * counter is messed up somewhere.  Since this
1302 		 * function is called from invalidate page, it's
1303 		 * harmless to return without any action.
1304 		 */
1305 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1306 			 "ino %lu, to_free %d with only %d reserved "
1307 			 "data blocks", inode->i_ino, to_free,
1308 			 ei->i_reserved_data_blocks);
1309 		WARN_ON(1);
1310 		to_free = ei->i_reserved_data_blocks;
1311 	}
1312 	ei->i_reserved_data_blocks -= to_free;
1313 
1314 	/* update fs dirty data blocks counter */
1315 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1316 
1317 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1318 
1319 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1320 }
1321 
1322 static void ext4_da_page_release_reservation(struct page *page,
1323 					     unsigned int offset,
1324 					     unsigned int length)
1325 {
1326 	int to_release = 0, contiguous_blks = 0;
1327 	struct buffer_head *head, *bh;
1328 	unsigned int curr_off = 0;
1329 	struct inode *inode = page->mapping->host;
1330 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1331 	unsigned int stop = offset + length;
1332 	int num_clusters;
1333 	ext4_fsblk_t lblk;
1334 
1335 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1336 
1337 	head = page_buffers(page);
1338 	bh = head;
1339 	do {
1340 		unsigned int next_off = curr_off + bh->b_size;
1341 
1342 		if (next_off > stop)
1343 			break;
1344 
1345 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1346 			to_release++;
1347 			contiguous_blks++;
1348 			clear_buffer_delay(bh);
1349 		} else if (contiguous_blks) {
1350 			lblk = page->index <<
1351 			       (PAGE_CACHE_SHIFT - inode->i_blkbits);
1352 			lblk += (curr_off >> inode->i_blkbits) -
1353 				contiguous_blks;
1354 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1355 			contiguous_blks = 0;
1356 		}
1357 		curr_off = next_off;
1358 	} while ((bh = bh->b_this_page) != head);
1359 
1360 	if (contiguous_blks) {
1361 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1362 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1363 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1364 	}
1365 
1366 	/* If we have released all the blocks belonging to a cluster, then we
1367 	 * need to release the reserved space for that cluster. */
1368 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1369 	while (num_clusters > 0) {
1370 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1371 			((num_clusters - 1) << sbi->s_cluster_bits);
1372 		if (sbi->s_cluster_ratio == 1 ||
1373 		    !ext4_find_delalloc_cluster(inode, lblk))
1374 			ext4_da_release_space(inode, 1);
1375 
1376 		num_clusters--;
1377 	}
1378 }
1379 
1380 /*
1381  * Delayed allocation stuff
1382  */
1383 
1384 struct mpage_da_data {
1385 	struct inode *inode;
1386 	struct writeback_control *wbc;
1387 
1388 	pgoff_t first_page;	/* The first page to write */
1389 	pgoff_t next_page;	/* Current page to examine */
1390 	pgoff_t last_page;	/* Last page to examine */
1391 	/*
1392 	 * Extent to map - this can be after first_page because that can be
1393 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1394 	 * is delalloc or unwritten.
1395 	 */
1396 	struct ext4_map_blocks map;
1397 	struct ext4_io_submit io_submit;	/* IO submission data */
1398 };
1399 
1400 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1401 				       bool invalidate)
1402 {
1403 	int nr_pages, i;
1404 	pgoff_t index, end;
1405 	struct pagevec pvec;
1406 	struct inode *inode = mpd->inode;
1407 	struct address_space *mapping = inode->i_mapping;
1408 
1409 	/* This is necessary when next_page == 0. */
1410 	if (mpd->first_page >= mpd->next_page)
1411 		return;
1412 
1413 	index = mpd->first_page;
1414 	end   = mpd->next_page - 1;
1415 	if (invalidate) {
1416 		ext4_lblk_t start, last;
1417 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1418 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1419 		ext4_es_remove_extent(inode, start, last - start + 1);
1420 	}
1421 
1422 	pagevec_init(&pvec, 0);
1423 	while (index <= end) {
1424 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1425 		if (nr_pages == 0)
1426 			break;
1427 		for (i = 0; i < nr_pages; i++) {
1428 			struct page *page = pvec.pages[i];
1429 			if (page->index > end)
1430 				break;
1431 			BUG_ON(!PageLocked(page));
1432 			BUG_ON(PageWriteback(page));
1433 			if (invalidate) {
1434 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1435 				ClearPageUptodate(page);
1436 			}
1437 			unlock_page(page);
1438 		}
1439 		index = pvec.pages[nr_pages - 1]->index + 1;
1440 		pagevec_release(&pvec);
1441 	}
1442 }
1443 
1444 static void ext4_print_free_blocks(struct inode *inode)
1445 {
1446 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1447 	struct super_block *sb = inode->i_sb;
1448 	struct ext4_inode_info *ei = EXT4_I(inode);
1449 
1450 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1451 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1452 			ext4_count_free_clusters(sb)));
1453 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1454 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1455 	       (long long) EXT4_C2B(EXT4_SB(sb),
1456 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1457 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1458 	       (long long) EXT4_C2B(EXT4_SB(sb),
1459 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1460 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1461 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1462 		 ei->i_reserved_data_blocks);
1463 	return;
1464 }
1465 
1466 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1467 {
1468 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1469 }
1470 
1471 /*
1472  * This function is grabs code from the very beginning of
1473  * ext4_map_blocks, but assumes that the caller is from delayed write
1474  * time. This function looks up the requested blocks and sets the
1475  * buffer delay bit under the protection of i_data_sem.
1476  */
1477 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1478 			      struct ext4_map_blocks *map,
1479 			      struct buffer_head *bh)
1480 {
1481 	struct extent_status es;
1482 	int retval;
1483 	sector_t invalid_block = ~((sector_t) 0xffff);
1484 #ifdef ES_AGGRESSIVE_TEST
1485 	struct ext4_map_blocks orig_map;
1486 
1487 	memcpy(&orig_map, map, sizeof(*map));
1488 #endif
1489 
1490 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1491 		invalid_block = ~0;
1492 
1493 	map->m_flags = 0;
1494 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1495 		  "logical block %lu\n", inode->i_ino, map->m_len,
1496 		  (unsigned long) map->m_lblk);
1497 
1498 	/* Lookup extent status tree firstly */
1499 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1500 		if (ext4_es_is_hole(&es)) {
1501 			retval = 0;
1502 			down_read(&EXT4_I(inode)->i_data_sem);
1503 			goto add_delayed;
1504 		}
1505 
1506 		/*
1507 		 * Delayed extent could be allocated by fallocate.
1508 		 * So we need to check it.
1509 		 */
1510 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1511 			map_bh(bh, inode->i_sb, invalid_block);
1512 			set_buffer_new(bh);
1513 			set_buffer_delay(bh);
1514 			return 0;
1515 		}
1516 
1517 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1518 		retval = es.es_len - (iblock - es.es_lblk);
1519 		if (retval > map->m_len)
1520 			retval = map->m_len;
1521 		map->m_len = retval;
1522 		if (ext4_es_is_written(&es))
1523 			map->m_flags |= EXT4_MAP_MAPPED;
1524 		else if (ext4_es_is_unwritten(&es))
1525 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1526 		else
1527 			BUG_ON(1);
1528 
1529 #ifdef ES_AGGRESSIVE_TEST
1530 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1531 #endif
1532 		return retval;
1533 	}
1534 
1535 	/*
1536 	 * Try to see if we can get the block without requesting a new
1537 	 * file system block.
1538 	 */
1539 	down_read(&EXT4_I(inode)->i_data_sem);
1540 	if (ext4_has_inline_data(inode))
1541 		retval = 0;
1542 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1543 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1544 	else
1545 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1546 
1547 add_delayed:
1548 	if (retval == 0) {
1549 		int ret;
1550 		/*
1551 		 * XXX: __block_prepare_write() unmaps passed block,
1552 		 * is it OK?
1553 		 */
1554 		/*
1555 		 * If the block was allocated from previously allocated cluster,
1556 		 * then we don't need to reserve it again. However we still need
1557 		 * to reserve metadata for every block we're going to write.
1558 		 */
1559 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1560 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1561 			ret = ext4_da_reserve_space(inode);
1562 			if (ret) {
1563 				/* not enough space to reserve */
1564 				retval = ret;
1565 				goto out_unlock;
1566 			}
1567 		}
1568 
1569 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1570 					    ~0, EXTENT_STATUS_DELAYED);
1571 		if (ret) {
1572 			retval = ret;
1573 			goto out_unlock;
1574 		}
1575 
1576 		map_bh(bh, inode->i_sb, invalid_block);
1577 		set_buffer_new(bh);
1578 		set_buffer_delay(bh);
1579 	} else if (retval > 0) {
1580 		int ret;
1581 		unsigned int status;
1582 
1583 		if (unlikely(retval != map->m_len)) {
1584 			ext4_warning(inode->i_sb,
1585 				     "ES len assertion failed for inode "
1586 				     "%lu: retval %d != map->m_len %d",
1587 				     inode->i_ino, retval, map->m_len);
1588 			WARN_ON(1);
1589 		}
1590 
1591 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1592 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1593 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1594 					    map->m_pblk, status);
1595 		if (ret != 0)
1596 			retval = ret;
1597 	}
1598 
1599 out_unlock:
1600 	up_read((&EXT4_I(inode)->i_data_sem));
1601 
1602 	return retval;
1603 }
1604 
1605 /*
1606  * This is a special get_block_t callback which is used by
1607  * ext4_da_write_begin().  It will either return mapped block or
1608  * reserve space for a single block.
1609  *
1610  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1611  * We also have b_blocknr = -1 and b_bdev initialized properly
1612  *
1613  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1614  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1615  * initialized properly.
1616  */
1617 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1618 			   struct buffer_head *bh, int create)
1619 {
1620 	struct ext4_map_blocks map;
1621 	int ret = 0;
1622 
1623 	BUG_ON(create == 0);
1624 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1625 
1626 	map.m_lblk = iblock;
1627 	map.m_len = 1;
1628 
1629 	/*
1630 	 * first, we need to know whether the block is allocated already
1631 	 * preallocated blocks are unmapped but should treated
1632 	 * the same as allocated blocks.
1633 	 */
1634 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1635 	if (ret <= 0)
1636 		return ret;
1637 
1638 	map_bh(bh, inode->i_sb, map.m_pblk);
1639 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1640 
1641 	if (buffer_unwritten(bh)) {
1642 		/* A delayed write to unwritten bh should be marked
1643 		 * new and mapped.  Mapped ensures that we don't do
1644 		 * get_block multiple times when we write to the same
1645 		 * offset and new ensures that we do proper zero out
1646 		 * for partial write.
1647 		 */
1648 		set_buffer_new(bh);
1649 		set_buffer_mapped(bh);
1650 	}
1651 	return 0;
1652 }
1653 
1654 static int bget_one(handle_t *handle, struct buffer_head *bh)
1655 {
1656 	get_bh(bh);
1657 	return 0;
1658 }
1659 
1660 static int bput_one(handle_t *handle, struct buffer_head *bh)
1661 {
1662 	put_bh(bh);
1663 	return 0;
1664 }
1665 
1666 static int __ext4_journalled_writepage(struct page *page,
1667 				       unsigned int len)
1668 {
1669 	struct address_space *mapping = page->mapping;
1670 	struct inode *inode = mapping->host;
1671 	struct buffer_head *page_bufs = NULL;
1672 	handle_t *handle = NULL;
1673 	int ret = 0, err = 0;
1674 	int inline_data = ext4_has_inline_data(inode);
1675 	struct buffer_head *inode_bh = NULL;
1676 
1677 	ClearPageChecked(page);
1678 
1679 	if (inline_data) {
1680 		BUG_ON(page->index != 0);
1681 		BUG_ON(len > ext4_get_max_inline_size(inode));
1682 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1683 		if (inode_bh == NULL)
1684 			goto out;
1685 	} else {
1686 		page_bufs = page_buffers(page);
1687 		if (!page_bufs) {
1688 			BUG();
1689 			goto out;
1690 		}
1691 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1692 				       NULL, bget_one);
1693 	}
1694 	/*
1695 	 * We need to release the page lock before we start the
1696 	 * journal, so grab a reference so the page won't disappear
1697 	 * out from under us.
1698 	 */
1699 	get_page(page);
1700 	unlock_page(page);
1701 
1702 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1703 				    ext4_writepage_trans_blocks(inode));
1704 	if (IS_ERR(handle)) {
1705 		ret = PTR_ERR(handle);
1706 		put_page(page);
1707 		goto out_no_pagelock;
1708 	}
1709 	BUG_ON(!ext4_handle_valid(handle));
1710 
1711 	lock_page(page);
1712 	put_page(page);
1713 	if (page->mapping != mapping) {
1714 		/* The page got truncated from under us */
1715 		ext4_journal_stop(handle);
1716 		ret = 0;
1717 		goto out;
1718 	}
1719 
1720 	if (inline_data) {
1721 		BUFFER_TRACE(inode_bh, "get write access");
1722 		ret = ext4_journal_get_write_access(handle, inode_bh);
1723 
1724 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1725 
1726 	} else {
1727 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1728 					     do_journal_get_write_access);
1729 
1730 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1731 					     write_end_fn);
1732 	}
1733 	if (ret == 0)
1734 		ret = err;
1735 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1736 	err = ext4_journal_stop(handle);
1737 	if (!ret)
1738 		ret = err;
1739 
1740 	if (!ext4_has_inline_data(inode))
1741 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1742 				       NULL, bput_one);
1743 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1744 out:
1745 	unlock_page(page);
1746 out_no_pagelock:
1747 	brelse(inode_bh);
1748 	return ret;
1749 }
1750 
1751 /*
1752  * Note that we don't need to start a transaction unless we're journaling data
1753  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1754  * need to file the inode to the transaction's list in ordered mode because if
1755  * we are writing back data added by write(), the inode is already there and if
1756  * we are writing back data modified via mmap(), no one guarantees in which
1757  * transaction the data will hit the disk. In case we are journaling data, we
1758  * cannot start transaction directly because transaction start ranks above page
1759  * lock so we have to do some magic.
1760  *
1761  * This function can get called via...
1762  *   - ext4_writepages after taking page lock (have journal handle)
1763  *   - journal_submit_inode_data_buffers (no journal handle)
1764  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1765  *   - grab_page_cache when doing write_begin (have journal handle)
1766  *
1767  * We don't do any block allocation in this function. If we have page with
1768  * multiple blocks we need to write those buffer_heads that are mapped. This
1769  * is important for mmaped based write. So if we do with blocksize 1K
1770  * truncate(f, 1024);
1771  * a = mmap(f, 0, 4096);
1772  * a[0] = 'a';
1773  * truncate(f, 4096);
1774  * we have in the page first buffer_head mapped via page_mkwrite call back
1775  * but other buffer_heads would be unmapped but dirty (dirty done via the
1776  * do_wp_page). So writepage should write the first block. If we modify
1777  * the mmap area beyond 1024 we will again get a page_fault and the
1778  * page_mkwrite callback will do the block allocation and mark the
1779  * buffer_heads mapped.
1780  *
1781  * We redirty the page if we have any buffer_heads that is either delay or
1782  * unwritten in the page.
1783  *
1784  * We can get recursively called as show below.
1785  *
1786  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1787  *		ext4_writepage()
1788  *
1789  * But since we don't do any block allocation we should not deadlock.
1790  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1791  */
1792 static int ext4_writepage(struct page *page,
1793 			  struct writeback_control *wbc)
1794 {
1795 	int ret = 0;
1796 	loff_t size;
1797 	unsigned int len;
1798 	struct buffer_head *page_bufs = NULL;
1799 	struct inode *inode = page->mapping->host;
1800 	struct ext4_io_submit io_submit;
1801 	bool keep_towrite = false;
1802 
1803 	trace_ext4_writepage(page);
1804 	size = i_size_read(inode);
1805 	if (page->index == size >> PAGE_CACHE_SHIFT)
1806 		len = size & ~PAGE_CACHE_MASK;
1807 	else
1808 		len = PAGE_CACHE_SIZE;
1809 
1810 	page_bufs = page_buffers(page);
1811 	/*
1812 	 * We cannot do block allocation or other extent handling in this
1813 	 * function. If there are buffers needing that, we have to redirty
1814 	 * the page. But we may reach here when we do a journal commit via
1815 	 * journal_submit_inode_data_buffers() and in that case we must write
1816 	 * allocated buffers to achieve data=ordered mode guarantees.
1817 	 */
1818 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1819 				   ext4_bh_delay_or_unwritten)) {
1820 		redirty_page_for_writepage(wbc, page);
1821 		if (current->flags & PF_MEMALLOC) {
1822 			/*
1823 			 * For memory cleaning there's no point in writing only
1824 			 * some buffers. So just bail out. Warn if we came here
1825 			 * from direct reclaim.
1826 			 */
1827 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1828 							== PF_MEMALLOC);
1829 			unlock_page(page);
1830 			return 0;
1831 		}
1832 		keep_towrite = true;
1833 	}
1834 
1835 	if (PageChecked(page) && ext4_should_journal_data(inode))
1836 		/*
1837 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1838 		 * doesn't seem much point in redirtying the page here.
1839 		 */
1840 		return __ext4_journalled_writepage(page, len);
1841 
1842 	ext4_io_submit_init(&io_submit, wbc);
1843 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1844 	if (!io_submit.io_end) {
1845 		redirty_page_for_writepage(wbc, page);
1846 		unlock_page(page);
1847 		return -ENOMEM;
1848 	}
1849 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1850 	ext4_io_submit(&io_submit);
1851 	/* Drop io_end reference we got from init */
1852 	ext4_put_io_end_defer(io_submit.io_end);
1853 	return ret;
1854 }
1855 
1856 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1857 {
1858 	int len;
1859 	loff_t size = i_size_read(mpd->inode);
1860 	int err;
1861 
1862 	BUG_ON(page->index != mpd->first_page);
1863 	if (page->index == size >> PAGE_CACHE_SHIFT)
1864 		len = size & ~PAGE_CACHE_MASK;
1865 	else
1866 		len = PAGE_CACHE_SIZE;
1867 	clear_page_dirty_for_io(page);
1868 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1869 	if (!err)
1870 		mpd->wbc->nr_to_write--;
1871 	mpd->first_page++;
1872 
1873 	return err;
1874 }
1875 
1876 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1877 
1878 /*
1879  * mballoc gives us at most this number of blocks...
1880  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881  * The rest of mballoc seems to handle chunks up to full group size.
1882  */
1883 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1884 
1885 /*
1886  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1887  *
1888  * @mpd - extent of blocks
1889  * @lblk - logical number of the block in the file
1890  * @bh - buffer head we want to add to the extent
1891  *
1892  * The function is used to collect contig. blocks in the same state. If the
1893  * buffer doesn't require mapping for writeback and we haven't started the
1894  * extent of buffers to map yet, the function returns 'true' immediately - the
1895  * caller can write the buffer right away. Otherwise the function returns true
1896  * if the block has been added to the extent, false if the block couldn't be
1897  * added.
1898  */
1899 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1900 				   struct buffer_head *bh)
1901 {
1902 	struct ext4_map_blocks *map = &mpd->map;
1903 
1904 	/* Buffer that doesn't need mapping for writeback? */
1905 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1906 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1907 		/* So far no extent to map => we write the buffer right away */
1908 		if (map->m_len == 0)
1909 			return true;
1910 		return false;
1911 	}
1912 
1913 	/* First block in the extent? */
1914 	if (map->m_len == 0) {
1915 		map->m_lblk = lblk;
1916 		map->m_len = 1;
1917 		map->m_flags = bh->b_state & BH_FLAGS;
1918 		return true;
1919 	}
1920 
1921 	/* Don't go larger than mballoc is willing to allocate */
1922 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1923 		return false;
1924 
1925 	/* Can we merge the block to our big extent? */
1926 	if (lblk == map->m_lblk + map->m_len &&
1927 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1928 		map->m_len++;
1929 		return true;
1930 	}
1931 	return false;
1932 }
1933 
1934 /*
1935  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1936  *
1937  * @mpd - extent of blocks for mapping
1938  * @head - the first buffer in the page
1939  * @bh - buffer we should start processing from
1940  * @lblk - logical number of the block in the file corresponding to @bh
1941  *
1942  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1943  * the page for IO if all buffers in this page were mapped and there's no
1944  * accumulated extent of buffers to map or add buffers in the page to the
1945  * extent of buffers to map. The function returns 1 if the caller can continue
1946  * by processing the next page, 0 if it should stop adding buffers to the
1947  * extent to map because we cannot extend it anymore. It can also return value
1948  * < 0 in case of error during IO submission.
1949  */
1950 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1951 				   struct buffer_head *head,
1952 				   struct buffer_head *bh,
1953 				   ext4_lblk_t lblk)
1954 {
1955 	struct inode *inode = mpd->inode;
1956 	int err;
1957 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1958 							>> inode->i_blkbits;
1959 
1960 	do {
1961 		BUG_ON(buffer_locked(bh));
1962 
1963 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1964 			/* Found extent to map? */
1965 			if (mpd->map.m_len)
1966 				return 0;
1967 			/* Everything mapped so far and we hit EOF */
1968 			break;
1969 		}
1970 	} while (lblk++, (bh = bh->b_this_page) != head);
1971 	/* So far everything mapped? Submit the page for IO. */
1972 	if (mpd->map.m_len == 0) {
1973 		err = mpage_submit_page(mpd, head->b_page);
1974 		if (err < 0)
1975 			return err;
1976 	}
1977 	return lblk < blocks;
1978 }
1979 
1980 /*
1981  * mpage_map_buffers - update buffers corresponding to changed extent and
1982  *		       submit fully mapped pages for IO
1983  *
1984  * @mpd - description of extent to map, on return next extent to map
1985  *
1986  * Scan buffers corresponding to changed extent (we expect corresponding pages
1987  * to be already locked) and update buffer state according to new extent state.
1988  * We map delalloc buffers to their physical location, clear unwritten bits,
1989  * and mark buffers as uninit when we perform writes to unwritten extents
1990  * and do extent conversion after IO is finished. If the last page is not fully
1991  * mapped, we update @map to the next extent in the last page that needs
1992  * mapping. Otherwise we submit the page for IO.
1993  */
1994 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1995 {
1996 	struct pagevec pvec;
1997 	int nr_pages, i;
1998 	struct inode *inode = mpd->inode;
1999 	struct buffer_head *head, *bh;
2000 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2001 	pgoff_t start, end;
2002 	ext4_lblk_t lblk;
2003 	sector_t pblock;
2004 	int err;
2005 
2006 	start = mpd->map.m_lblk >> bpp_bits;
2007 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2008 	lblk = start << bpp_bits;
2009 	pblock = mpd->map.m_pblk;
2010 
2011 	pagevec_init(&pvec, 0);
2012 	while (start <= end) {
2013 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2014 					  PAGEVEC_SIZE);
2015 		if (nr_pages == 0)
2016 			break;
2017 		for (i = 0; i < nr_pages; i++) {
2018 			struct page *page = pvec.pages[i];
2019 
2020 			if (page->index > end)
2021 				break;
2022 			/* Up to 'end' pages must be contiguous */
2023 			BUG_ON(page->index != start);
2024 			bh = head = page_buffers(page);
2025 			do {
2026 				if (lblk < mpd->map.m_lblk)
2027 					continue;
2028 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2029 					/*
2030 					 * Buffer after end of mapped extent.
2031 					 * Find next buffer in the page to map.
2032 					 */
2033 					mpd->map.m_len = 0;
2034 					mpd->map.m_flags = 0;
2035 					/*
2036 					 * FIXME: If dioread_nolock supports
2037 					 * blocksize < pagesize, we need to make
2038 					 * sure we add size mapped so far to
2039 					 * io_end->size as the following call
2040 					 * can submit the page for IO.
2041 					 */
2042 					err = mpage_process_page_bufs(mpd, head,
2043 								      bh, lblk);
2044 					pagevec_release(&pvec);
2045 					if (err > 0)
2046 						err = 0;
2047 					return err;
2048 				}
2049 				if (buffer_delay(bh)) {
2050 					clear_buffer_delay(bh);
2051 					bh->b_blocknr = pblock++;
2052 				}
2053 				clear_buffer_unwritten(bh);
2054 			} while (lblk++, (bh = bh->b_this_page) != head);
2055 
2056 			/*
2057 			 * FIXME: This is going to break if dioread_nolock
2058 			 * supports blocksize < pagesize as we will try to
2059 			 * convert potentially unmapped parts of inode.
2060 			 */
2061 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2062 			/* Page fully mapped - let IO run! */
2063 			err = mpage_submit_page(mpd, page);
2064 			if (err < 0) {
2065 				pagevec_release(&pvec);
2066 				return err;
2067 			}
2068 			start++;
2069 		}
2070 		pagevec_release(&pvec);
2071 	}
2072 	/* Extent fully mapped and matches with page boundary. We are done. */
2073 	mpd->map.m_len = 0;
2074 	mpd->map.m_flags = 0;
2075 	return 0;
2076 }
2077 
2078 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2079 {
2080 	struct inode *inode = mpd->inode;
2081 	struct ext4_map_blocks *map = &mpd->map;
2082 	int get_blocks_flags;
2083 	int err, dioread_nolock;
2084 
2085 	trace_ext4_da_write_pages_extent(inode, map);
2086 	/*
2087 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2088 	 * to convert an unwritten extent to be initialized (in the case
2089 	 * where we have written into one or more preallocated blocks).  It is
2090 	 * possible that we're going to need more metadata blocks than
2091 	 * previously reserved. However we must not fail because we're in
2092 	 * writeback and there is nothing we can do about it so it might result
2093 	 * in data loss.  So use reserved blocks to allocate metadata if
2094 	 * possible.
2095 	 *
2096 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2097 	 * the blocks in question are delalloc blocks.  This indicates
2098 	 * that the blocks and quotas has already been checked when
2099 	 * the data was copied into the page cache.
2100 	 */
2101 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2102 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2103 	dioread_nolock = ext4_should_dioread_nolock(inode);
2104 	if (dioread_nolock)
2105 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2106 	if (map->m_flags & (1 << BH_Delay))
2107 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2108 
2109 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2110 	if (err < 0)
2111 		return err;
2112 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2113 		if (!mpd->io_submit.io_end->handle &&
2114 		    ext4_handle_valid(handle)) {
2115 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2116 			handle->h_rsv_handle = NULL;
2117 		}
2118 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2119 	}
2120 
2121 	BUG_ON(map->m_len == 0);
2122 	if (map->m_flags & EXT4_MAP_NEW) {
2123 		struct block_device *bdev = inode->i_sb->s_bdev;
2124 		int i;
2125 
2126 		for (i = 0; i < map->m_len; i++)
2127 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2128 	}
2129 	return 0;
2130 }
2131 
2132 /*
2133  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2134  *				 mpd->len and submit pages underlying it for IO
2135  *
2136  * @handle - handle for journal operations
2137  * @mpd - extent to map
2138  * @give_up_on_write - we set this to true iff there is a fatal error and there
2139  *                     is no hope of writing the data. The caller should discard
2140  *                     dirty pages to avoid infinite loops.
2141  *
2142  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2143  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2144  * them to initialized or split the described range from larger unwritten
2145  * extent. Note that we need not map all the described range since allocation
2146  * can return less blocks or the range is covered by more unwritten extents. We
2147  * cannot map more because we are limited by reserved transaction credits. On
2148  * the other hand we always make sure that the last touched page is fully
2149  * mapped so that it can be written out (and thus forward progress is
2150  * guaranteed). After mapping we submit all mapped pages for IO.
2151  */
2152 static int mpage_map_and_submit_extent(handle_t *handle,
2153 				       struct mpage_da_data *mpd,
2154 				       bool *give_up_on_write)
2155 {
2156 	struct inode *inode = mpd->inode;
2157 	struct ext4_map_blocks *map = &mpd->map;
2158 	int err;
2159 	loff_t disksize;
2160 	int progress = 0;
2161 
2162 	mpd->io_submit.io_end->offset =
2163 				((loff_t)map->m_lblk) << inode->i_blkbits;
2164 	do {
2165 		err = mpage_map_one_extent(handle, mpd);
2166 		if (err < 0) {
2167 			struct super_block *sb = inode->i_sb;
2168 
2169 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2170 				goto invalidate_dirty_pages;
2171 			/*
2172 			 * Let the uper layers retry transient errors.
2173 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2174 			 * is non-zero, a commit should free up blocks.
2175 			 */
2176 			if ((err == -ENOMEM) ||
2177 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2178 				if (progress)
2179 					goto update_disksize;
2180 				return err;
2181 			}
2182 			ext4_msg(sb, KERN_CRIT,
2183 				 "Delayed block allocation failed for "
2184 				 "inode %lu at logical offset %llu with"
2185 				 " max blocks %u with error %d",
2186 				 inode->i_ino,
2187 				 (unsigned long long)map->m_lblk,
2188 				 (unsigned)map->m_len, -err);
2189 			ext4_msg(sb, KERN_CRIT,
2190 				 "This should not happen!! Data will "
2191 				 "be lost\n");
2192 			if (err == -ENOSPC)
2193 				ext4_print_free_blocks(inode);
2194 		invalidate_dirty_pages:
2195 			*give_up_on_write = true;
2196 			return err;
2197 		}
2198 		progress = 1;
2199 		/*
2200 		 * Update buffer state, submit mapped pages, and get us new
2201 		 * extent to map
2202 		 */
2203 		err = mpage_map_and_submit_buffers(mpd);
2204 		if (err < 0)
2205 			goto update_disksize;
2206 	} while (map->m_len);
2207 
2208 update_disksize:
2209 	/*
2210 	 * Update on-disk size after IO is submitted.  Races with
2211 	 * truncate are avoided by checking i_size under i_data_sem.
2212 	 */
2213 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2214 	if (disksize > EXT4_I(inode)->i_disksize) {
2215 		int err2;
2216 		loff_t i_size;
2217 
2218 		down_write(&EXT4_I(inode)->i_data_sem);
2219 		i_size = i_size_read(inode);
2220 		if (disksize > i_size)
2221 			disksize = i_size;
2222 		if (disksize > EXT4_I(inode)->i_disksize)
2223 			EXT4_I(inode)->i_disksize = disksize;
2224 		err2 = ext4_mark_inode_dirty(handle, inode);
2225 		up_write(&EXT4_I(inode)->i_data_sem);
2226 		if (err2)
2227 			ext4_error(inode->i_sb,
2228 				   "Failed to mark inode %lu dirty",
2229 				   inode->i_ino);
2230 		if (!err)
2231 			err = err2;
2232 	}
2233 	return err;
2234 }
2235 
2236 /*
2237  * Calculate the total number of credits to reserve for one writepages
2238  * iteration. This is called from ext4_writepages(). We map an extent of
2239  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2240  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2241  * bpp - 1 blocks in bpp different extents.
2242  */
2243 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2244 {
2245 	int bpp = ext4_journal_blocks_per_page(inode);
2246 
2247 	return ext4_meta_trans_blocks(inode,
2248 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2249 }
2250 
2251 /*
2252  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2253  * 				 and underlying extent to map
2254  *
2255  * @mpd - where to look for pages
2256  *
2257  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2258  * IO immediately. When we find a page which isn't mapped we start accumulating
2259  * extent of buffers underlying these pages that needs mapping (formed by
2260  * either delayed or unwritten buffers). We also lock the pages containing
2261  * these buffers. The extent found is returned in @mpd structure (starting at
2262  * mpd->lblk with length mpd->len blocks).
2263  *
2264  * Note that this function can attach bios to one io_end structure which are
2265  * neither logically nor physically contiguous. Although it may seem as an
2266  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2267  * case as we need to track IO to all buffers underlying a page in one io_end.
2268  */
2269 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2270 {
2271 	struct address_space *mapping = mpd->inode->i_mapping;
2272 	struct pagevec pvec;
2273 	unsigned int nr_pages;
2274 	long left = mpd->wbc->nr_to_write;
2275 	pgoff_t index = mpd->first_page;
2276 	pgoff_t end = mpd->last_page;
2277 	int tag;
2278 	int i, err = 0;
2279 	int blkbits = mpd->inode->i_blkbits;
2280 	ext4_lblk_t lblk;
2281 	struct buffer_head *head;
2282 
2283 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2284 		tag = PAGECACHE_TAG_TOWRITE;
2285 	else
2286 		tag = PAGECACHE_TAG_DIRTY;
2287 
2288 	pagevec_init(&pvec, 0);
2289 	mpd->map.m_len = 0;
2290 	mpd->next_page = index;
2291 	while (index <= end) {
2292 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2293 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2294 		if (nr_pages == 0)
2295 			goto out;
2296 
2297 		for (i = 0; i < nr_pages; i++) {
2298 			struct page *page = pvec.pages[i];
2299 
2300 			/*
2301 			 * At this point, the page may be truncated or
2302 			 * invalidated (changing page->mapping to NULL), or
2303 			 * even swizzled back from swapper_space to tmpfs file
2304 			 * mapping. However, page->index will not change
2305 			 * because we have a reference on the page.
2306 			 */
2307 			if (page->index > end)
2308 				goto out;
2309 
2310 			/*
2311 			 * Accumulated enough dirty pages? This doesn't apply
2312 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2313 			 * keep going because someone may be concurrently
2314 			 * dirtying pages, and we might have synced a lot of
2315 			 * newly appeared dirty pages, but have not synced all
2316 			 * of the old dirty pages.
2317 			 */
2318 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2319 				goto out;
2320 
2321 			/* If we can't merge this page, we are done. */
2322 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2323 				goto out;
2324 
2325 			lock_page(page);
2326 			/*
2327 			 * If the page is no longer dirty, or its mapping no
2328 			 * longer corresponds to inode we are writing (which
2329 			 * means it has been truncated or invalidated), or the
2330 			 * page is already under writeback and we are not doing
2331 			 * a data integrity writeback, skip the page
2332 			 */
2333 			if (!PageDirty(page) ||
2334 			    (PageWriteback(page) &&
2335 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2336 			    unlikely(page->mapping != mapping)) {
2337 				unlock_page(page);
2338 				continue;
2339 			}
2340 
2341 			wait_on_page_writeback(page);
2342 			BUG_ON(PageWriteback(page));
2343 
2344 			if (mpd->map.m_len == 0)
2345 				mpd->first_page = page->index;
2346 			mpd->next_page = page->index + 1;
2347 			/* Add all dirty buffers to mpd */
2348 			lblk = ((ext4_lblk_t)page->index) <<
2349 				(PAGE_CACHE_SHIFT - blkbits);
2350 			head = page_buffers(page);
2351 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2352 			if (err <= 0)
2353 				goto out;
2354 			err = 0;
2355 			left--;
2356 		}
2357 		pagevec_release(&pvec);
2358 		cond_resched();
2359 	}
2360 	return 0;
2361 out:
2362 	pagevec_release(&pvec);
2363 	return err;
2364 }
2365 
2366 static int __writepage(struct page *page, struct writeback_control *wbc,
2367 		       void *data)
2368 {
2369 	struct address_space *mapping = data;
2370 	int ret = ext4_writepage(page, wbc);
2371 	mapping_set_error(mapping, ret);
2372 	return ret;
2373 }
2374 
2375 static int ext4_writepages(struct address_space *mapping,
2376 			   struct writeback_control *wbc)
2377 {
2378 	pgoff_t	writeback_index = 0;
2379 	long nr_to_write = wbc->nr_to_write;
2380 	int range_whole = 0;
2381 	int cycled = 1;
2382 	handle_t *handle = NULL;
2383 	struct mpage_da_data mpd;
2384 	struct inode *inode = mapping->host;
2385 	int needed_blocks, rsv_blocks = 0, ret = 0;
2386 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2387 	bool done;
2388 	struct blk_plug plug;
2389 	bool give_up_on_write = false;
2390 
2391 	trace_ext4_writepages(inode, wbc);
2392 
2393 	/*
2394 	 * No pages to write? This is mainly a kludge to avoid starting
2395 	 * a transaction for special inodes like journal inode on last iput()
2396 	 * because that could violate lock ordering on umount
2397 	 */
2398 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2399 		goto out_writepages;
2400 
2401 	if (ext4_should_journal_data(inode)) {
2402 		struct blk_plug plug;
2403 
2404 		blk_start_plug(&plug);
2405 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2406 		blk_finish_plug(&plug);
2407 		goto out_writepages;
2408 	}
2409 
2410 	/*
2411 	 * If the filesystem has aborted, it is read-only, so return
2412 	 * right away instead of dumping stack traces later on that
2413 	 * will obscure the real source of the problem.  We test
2414 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2415 	 * the latter could be true if the filesystem is mounted
2416 	 * read-only, and in that case, ext4_writepages should
2417 	 * *never* be called, so if that ever happens, we would want
2418 	 * the stack trace.
2419 	 */
2420 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2421 		ret = -EROFS;
2422 		goto out_writepages;
2423 	}
2424 
2425 	if (ext4_should_dioread_nolock(inode)) {
2426 		/*
2427 		 * We may need to convert up to one extent per block in
2428 		 * the page and we may dirty the inode.
2429 		 */
2430 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2431 	}
2432 
2433 	/*
2434 	 * If we have inline data and arrive here, it means that
2435 	 * we will soon create the block for the 1st page, so
2436 	 * we'd better clear the inline data here.
2437 	 */
2438 	if (ext4_has_inline_data(inode)) {
2439 		/* Just inode will be modified... */
2440 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2441 		if (IS_ERR(handle)) {
2442 			ret = PTR_ERR(handle);
2443 			goto out_writepages;
2444 		}
2445 		BUG_ON(ext4_test_inode_state(inode,
2446 				EXT4_STATE_MAY_INLINE_DATA));
2447 		ext4_destroy_inline_data(handle, inode);
2448 		ext4_journal_stop(handle);
2449 	}
2450 
2451 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2452 		range_whole = 1;
2453 
2454 	if (wbc->range_cyclic) {
2455 		writeback_index = mapping->writeback_index;
2456 		if (writeback_index)
2457 			cycled = 0;
2458 		mpd.first_page = writeback_index;
2459 		mpd.last_page = -1;
2460 	} else {
2461 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2462 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2463 	}
2464 
2465 	mpd.inode = inode;
2466 	mpd.wbc = wbc;
2467 	ext4_io_submit_init(&mpd.io_submit, wbc);
2468 retry:
2469 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2470 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2471 	done = false;
2472 	blk_start_plug(&plug);
2473 	while (!done && mpd.first_page <= mpd.last_page) {
2474 		/* For each extent of pages we use new io_end */
2475 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2476 		if (!mpd.io_submit.io_end) {
2477 			ret = -ENOMEM;
2478 			break;
2479 		}
2480 
2481 		/*
2482 		 * We have two constraints: We find one extent to map and we
2483 		 * must always write out whole page (makes a difference when
2484 		 * blocksize < pagesize) so that we don't block on IO when we
2485 		 * try to write out the rest of the page. Journalled mode is
2486 		 * not supported by delalloc.
2487 		 */
2488 		BUG_ON(ext4_should_journal_data(inode));
2489 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2490 
2491 		/* start a new transaction */
2492 		handle = ext4_journal_start_with_reserve(inode,
2493 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2494 		if (IS_ERR(handle)) {
2495 			ret = PTR_ERR(handle);
2496 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2497 			       "%ld pages, ino %lu; err %d", __func__,
2498 				wbc->nr_to_write, inode->i_ino, ret);
2499 			/* Release allocated io_end */
2500 			ext4_put_io_end(mpd.io_submit.io_end);
2501 			break;
2502 		}
2503 
2504 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2505 		ret = mpage_prepare_extent_to_map(&mpd);
2506 		if (!ret) {
2507 			if (mpd.map.m_len)
2508 				ret = mpage_map_and_submit_extent(handle, &mpd,
2509 					&give_up_on_write);
2510 			else {
2511 				/*
2512 				 * We scanned the whole range (or exhausted
2513 				 * nr_to_write), submitted what was mapped and
2514 				 * didn't find anything needing mapping. We are
2515 				 * done.
2516 				 */
2517 				done = true;
2518 			}
2519 		}
2520 		ext4_journal_stop(handle);
2521 		/* Submit prepared bio */
2522 		ext4_io_submit(&mpd.io_submit);
2523 		/* Unlock pages we didn't use */
2524 		mpage_release_unused_pages(&mpd, give_up_on_write);
2525 		/* Drop our io_end reference we got from init */
2526 		ext4_put_io_end(mpd.io_submit.io_end);
2527 
2528 		if (ret == -ENOSPC && sbi->s_journal) {
2529 			/*
2530 			 * Commit the transaction which would
2531 			 * free blocks released in the transaction
2532 			 * and try again
2533 			 */
2534 			jbd2_journal_force_commit_nested(sbi->s_journal);
2535 			ret = 0;
2536 			continue;
2537 		}
2538 		/* Fatal error - ENOMEM, EIO... */
2539 		if (ret)
2540 			break;
2541 	}
2542 	blk_finish_plug(&plug);
2543 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2544 		cycled = 1;
2545 		mpd.last_page = writeback_index - 1;
2546 		mpd.first_page = 0;
2547 		goto retry;
2548 	}
2549 
2550 	/* Update index */
2551 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2552 		/*
2553 		 * Set the writeback_index so that range_cyclic
2554 		 * mode will write it back later
2555 		 */
2556 		mapping->writeback_index = mpd.first_page;
2557 
2558 out_writepages:
2559 	trace_ext4_writepages_result(inode, wbc, ret,
2560 				     nr_to_write - wbc->nr_to_write);
2561 	return ret;
2562 }
2563 
2564 static int ext4_nonda_switch(struct super_block *sb)
2565 {
2566 	s64 free_clusters, dirty_clusters;
2567 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2568 
2569 	/*
2570 	 * switch to non delalloc mode if we are running low
2571 	 * on free block. The free block accounting via percpu
2572 	 * counters can get slightly wrong with percpu_counter_batch getting
2573 	 * accumulated on each CPU without updating global counters
2574 	 * Delalloc need an accurate free block accounting. So switch
2575 	 * to non delalloc when we are near to error range.
2576 	 */
2577 	free_clusters =
2578 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2579 	dirty_clusters =
2580 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2581 	/*
2582 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2583 	 */
2584 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2585 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2586 
2587 	if (2 * free_clusters < 3 * dirty_clusters ||
2588 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2589 		/*
2590 		 * free block count is less than 150% of dirty blocks
2591 		 * or free blocks is less than watermark
2592 		 */
2593 		return 1;
2594 	}
2595 	return 0;
2596 }
2597 
2598 /* We always reserve for an inode update; the superblock could be there too */
2599 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2600 {
2601 	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2602 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2603 		return 1;
2604 
2605 	if (pos + len <= 0x7fffffffULL)
2606 		return 1;
2607 
2608 	/* We might need to update the superblock to set LARGE_FILE */
2609 	return 2;
2610 }
2611 
2612 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2613 			       loff_t pos, unsigned len, unsigned flags,
2614 			       struct page **pagep, void **fsdata)
2615 {
2616 	int ret, retries = 0;
2617 	struct page *page;
2618 	pgoff_t index;
2619 	struct inode *inode = mapping->host;
2620 	handle_t *handle;
2621 
2622 	index = pos >> PAGE_CACHE_SHIFT;
2623 
2624 	if (ext4_nonda_switch(inode->i_sb)) {
2625 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2626 		return ext4_write_begin(file, mapping, pos,
2627 					len, flags, pagep, fsdata);
2628 	}
2629 	*fsdata = (void *)0;
2630 	trace_ext4_da_write_begin(inode, pos, len, flags);
2631 
2632 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2633 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2634 						      pos, len, flags,
2635 						      pagep, fsdata);
2636 		if (ret < 0)
2637 			return ret;
2638 		if (ret == 1)
2639 			return 0;
2640 	}
2641 
2642 	/*
2643 	 * grab_cache_page_write_begin() can take a long time if the
2644 	 * system is thrashing due to memory pressure, or if the page
2645 	 * is being written back.  So grab it first before we start
2646 	 * the transaction handle.  This also allows us to allocate
2647 	 * the page (if needed) without using GFP_NOFS.
2648 	 */
2649 retry_grab:
2650 	page = grab_cache_page_write_begin(mapping, index, flags);
2651 	if (!page)
2652 		return -ENOMEM;
2653 	unlock_page(page);
2654 
2655 	/*
2656 	 * With delayed allocation, we don't log the i_disksize update
2657 	 * if there is delayed block allocation. But we still need
2658 	 * to journalling the i_disksize update if writes to the end
2659 	 * of file which has an already mapped buffer.
2660 	 */
2661 retry_journal:
2662 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2663 				ext4_da_write_credits(inode, pos, len));
2664 	if (IS_ERR(handle)) {
2665 		page_cache_release(page);
2666 		return PTR_ERR(handle);
2667 	}
2668 
2669 	lock_page(page);
2670 	if (page->mapping != mapping) {
2671 		/* The page got truncated from under us */
2672 		unlock_page(page);
2673 		page_cache_release(page);
2674 		ext4_journal_stop(handle);
2675 		goto retry_grab;
2676 	}
2677 	/* In case writeback began while the page was unlocked */
2678 	wait_for_stable_page(page);
2679 
2680 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2681 	ret = ext4_block_write_begin(page, pos, len,
2682 				     ext4_da_get_block_prep);
2683 #else
2684 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2685 #endif
2686 	if (ret < 0) {
2687 		unlock_page(page);
2688 		ext4_journal_stop(handle);
2689 		/*
2690 		 * block_write_begin may have instantiated a few blocks
2691 		 * outside i_size.  Trim these off again. Don't need
2692 		 * i_size_read because we hold i_mutex.
2693 		 */
2694 		if (pos + len > inode->i_size)
2695 			ext4_truncate_failed_write(inode);
2696 
2697 		if (ret == -ENOSPC &&
2698 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2699 			goto retry_journal;
2700 
2701 		page_cache_release(page);
2702 		return ret;
2703 	}
2704 
2705 	*pagep = page;
2706 	return ret;
2707 }
2708 
2709 /*
2710  * Check if we should update i_disksize
2711  * when write to the end of file but not require block allocation
2712  */
2713 static int ext4_da_should_update_i_disksize(struct page *page,
2714 					    unsigned long offset)
2715 {
2716 	struct buffer_head *bh;
2717 	struct inode *inode = page->mapping->host;
2718 	unsigned int idx;
2719 	int i;
2720 
2721 	bh = page_buffers(page);
2722 	idx = offset >> inode->i_blkbits;
2723 
2724 	for (i = 0; i < idx; i++)
2725 		bh = bh->b_this_page;
2726 
2727 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2728 		return 0;
2729 	return 1;
2730 }
2731 
2732 static int ext4_da_write_end(struct file *file,
2733 			     struct address_space *mapping,
2734 			     loff_t pos, unsigned len, unsigned copied,
2735 			     struct page *page, void *fsdata)
2736 {
2737 	struct inode *inode = mapping->host;
2738 	int ret = 0, ret2;
2739 	handle_t *handle = ext4_journal_current_handle();
2740 	loff_t new_i_size;
2741 	unsigned long start, end;
2742 	int write_mode = (int)(unsigned long)fsdata;
2743 
2744 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2745 		return ext4_write_end(file, mapping, pos,
2746 				      len, copied, page, fsdata);
2747 
2748 	trace_ext4_da_write_end(inode, pos, len, copied);
2749 	start = pos & (PAGE_CACHE_SIZE - 1);
2750 	end = start + copied - 1;
2751 
2752 	/*
2753 	 * generic_write_end() will run mark_inode_dirty() if i_size
2754 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2755 	 * into that.
2756 	 */
2757 	new_i_size = pos + copied;
2758 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2759 		if (ext4_has_inline_data(inode) ||
2760 		    ext4_da_should_update_i_disksize(page, end)) {
2761 			ext4_update_i_disksize(inode, new_i_size);
2762 			/* We need to mark inode dirty even if
2763 			 * new_i_size is less that inode->i_size
2764 			 * bu greater than i_disksize.(hint delalloc)
2765 			 */
2766 			ext4_mark_inode_dirty(handle, inode);
2767 		}
2768 	}
2769 
2770 	if (write_mode != CONVERT_INLINE_DATA &&
2771 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2772 	    ext4_has_inline_data(inode))
2773 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2774 						     page);
2775 	else
2776 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2777 							page, fsdata);
2778 
2779 	copied = ret2;
2780 	if (ret2 < 0)
2781 		ret = ret2;
2782 	ret2 = ext4_journal_stop(handle);
2783 	if (!ret)
2784 		ret = ret2;
2785 
2786 	return ret ? ret : copied;
2787 }
2788 
2789 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2790 				   unsigned int length)
2791 {
2792 	/*
2793 	 * Drop reserved blocks
2794 	 */
2795 	BUG_ON(!PageLocked(page));
2796 	if (!page_has_buffers(page))
2797 		goto out;
2798 
2799 	ext4_da_page_release_reservation(page, offset, length);
2800 
2801 out:
2802 	ext4_invalidatepage(page, offset, length);
2803 
2804 	return;
2805 }
2806 
2807 /*
2808  * Force all delayed allocation blocks to be allocated for a given inode.
2809  */
2810 int ext4_alloc_da_blocks(struct inode *inode)
2811 {
2812 	trace_ext4_alloc_da_blocks(inode);
2813 
2814 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2815 		return 0;
2816 
2817 	/*
2818 	 * We do something simple for now.  The filemap_flush() will
2819 	 * also start triggering a write of the data blocks, which is
2820 	 * not strictly speaking necessary (and for users of
2821 	 * laptop_mode, not even desirable).  However, to do otherwise
2822 	 * would require replicating code paths in:
2823 	 *
2824 	 * ext4_writepages() ->
2825 	 *    write_cache_pages() ---> (via passed in callback function)
2826 	 *        __mpage_da_writepage() -->
2827 	 *           mpage_add_bh_to_extent()
2828 	 *           mpage_da_map_blocks()
2829 	 *
2830 	 * The problem is that write_cache_pages(), located in
2831 	 * mm/page-writeback.c, marks pages clean in preparation for
2832 	 * doing I/O, which is not desirable if we're not planning on
2833 	 * doing I/O at all.
2834 	 *
2835 	 * We could call write_cache_pages(), and then redirty all of
2836 	 * the pages by calling redirty_page_for_writepage() but that
2837 	 * would be ugly in the extreme.  So instead we would need to
2838 	 * replicate parts of the code in the above functions,
2839 	 * simplifying them because we wouldn't actually intend to
2840 	 * write out the pages, but rather only collect contiguous
2841 	 * logical block extents, call the multi-block allocator, and
2842 	 * then update the buffer heads with the block allocations.
2843 	 *
2844 	 * For now, though, we'll cheat by calling filemap_flush(),
2845 	 * which will map the blocks, and start the I/O, but not
2846 	 * actually wait for the I/O to complete.
2847 	 */
2848 	return filemap_flush(inode->i_mapping);
2849 }
2850 
2851 /*
2852  * bmap() is special.  It gets used by applications such as lilo and by
2853  * the swapper to find the on-disk block of a specific piece of data.
2854  *
2855  * Naturally, this is dangerous if the block concerned is still in the
2856  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2857  * filesystem and enables swap, then they may get a nasty shock when the
2858  * data getting swapped to that swapfile suddenly gets overwritten by
2859  * the original zero's written out previously to the journal and
2860  * awaiting writeback in the kernel's buffer cache.
2861  *
2862  * So, if we see any bmap calls here on a modified, data-journaled file,
2863  * take extra steps to flush any blocks which might be in the cache.
2864  */
2865 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2866 {
2867 	struct inode *inode = mapping->host;
2868 	journal_t *journal;
2869 	int err;
2870 
2871 	/*
2872 	 * We can get here for an inline file via the FIBMAP ioctl
2873 	 */
2874 	if (ext4_has_inline_data(inode))
2875 		return 0;
2876 
2877 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2878 			test_opt(inode->i_sb, DELALLOC)) {
2879 		/*
2880 		 * With delalloc we want to sync the file
2881 		 * so that we can make sure we allocate
2882 		 * blocks for file
2883 		 */
2884 		filemap_write_and_wait(mapping);
2885 	}
2886 
2887 	if (EXT4_JOURNAL(inode) &&
2888 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2889 		/*
2890 		 * This is a REALLY heavyweight approach, but the use of
2891 		 * bmap on dirty files is expected to be extremely rare:
2892 		 * only if we run lilo or swapon on a freshly made file
2893 		 * do we expect this to happen.
2894 		 *
2895 		 * (bmap requires CAP_SYS_RAWIO so this does not
2896 		 * represent an unprivileged user DOS attack --- we'd be
2897 		 * in trouble if mortal users could trigger this path at
2898 		 * will.)
2899 		 *
2900 		 * NB. EXT4_STATE_JDATA is not set on files other than
2901 		 * regular files.  If somebody wants to bmap a directory
2902 		 * or symlink and gets confused because the buffer
2903 		 * hasn't yet been flushed to disk, they deserve
2904 		 * everything they get.
2905 		 */
2906 
2907 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2908 		journal = EXT4_JOURNAL(inode);
2909 		jbd2_journal_lock_updates(journal);
2910 		err = jbd2_journal_flush(journal);
2911 		jbd2_journal_unlock_updates(journal);
2912 
2913 		if (err)
2914 			return 0;
2915 	}
2916 
2917 	return generic_block_bmap(mapping, block, ext4_get_block);
2918 }
2919 
2920 static int ext4_readpage(struct file *file, struct page *page)
2921 {
2922 	int ret = -EAGAIN;
2923 	struct inode *inode = page->mapping->host;
2924 
2925 	trace_ext4_readpage(page);
2926 
2927 	if (ext4_has_inline_data(inode))
2928 		ret = ext4_readpage_inline(inode, page);
2929 
2930 	if (ret == -EAGAIN)
2931 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2932 
2933 	return ret;
2934 }
2935 
2936 static int
2937 ext4_readpages(struct file *file, struct address_space *mapping,
2938 		struct list_head *pages, unsigned nr_pages)
2939 {
2940 	struct inode *inode = mapping->host;
2941 
2942 	/* If the file has inline data, no need to do readpages. */
2943 	if (ext4_has_inline_data(inode))
2944 		return 0;
2945 
2946 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2947 }
2948 
2949 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2950 				unsigned int length)
2951 {
2952 	trace_ext4_invalidatepage(page, offset, length);
2953 
2954 	/* No journalling happens on data buffers when this function is used */
2955 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2956 
2957 	block_invalidatepage(page, offset, length);
2958 }
2959 
2960 static int __ext4_journalled_invalidatepage(struct page *page,
2961 					    unsigned int offset,
2962 					    unsigned int length)
2963 {
2964 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2965 
2966 	trace_ext4_journalled_invalidatepage(page, offset, length);
2967 
2968 	/*
2969 	 * If it's a full truncate we just forget about the pending dirtying
2970 	 */
2971 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2972 		ClearPageChecked(page);
2973 
2974 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2975 }
2976 
2977 /* Wrapper for aops... */
2978 static void ext4_journalled_invalidatepage(struct page *page,
2979 					   unsigned int offset,
2980 					   unsigned int length)
2981 {
2982 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2983 }
2984 
2985 static int ext4_releasepage(struct page *page, gfp_t wait)
2986 {
2987 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2988 
2989 	trace_ext4_releasepage(page);
2990 
2991 	/* Page has dirty journalled data -> cannot release */
2992 	if (PageChecked(page))
2993 		return 0;
2994 	if (journal)
2995 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2996 	else
2997 		return try_to_free_buffers(page);
2998 }
2999 
3000 /*
3001  * ext4_get_block used when preparing for a DIO write or buffer write.
3002  * We allocate an uinitialized extent if blocks haven't been allocated.
3003  * The extent will be converted to initialized after the IO is complete.
3004  */
3005 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3006 		   struct buffer_head *bh_result, int create)
3007 {
3008 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3009 		   inode->i_ino, create);
3010 	return _ext4_get_block(inode, iblock, bh_result,
3011 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3012 }
3013 
3014 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3015 		   struct buffer_head *bh_result, int create)
3016 {
3017 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3018 		   inode->i_ino, create);
3019 	return _ext4_get_block(inode, iblock, bh_result,
3020 			       EXT4_GET_BLOCKS_NO_LOCK);
3021 }
3022 
3023 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3024 			    ssize_t size, void *private)
3025 {
3026         ext4_io_end_t *io_end = iocb->private;
3027 
3028 	/* if not async direct IO just return */
3029 	if (!io_end)
3030 		return;
3031 
3032 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3033 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3034  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3035 		  size);
3036 
3037 	iocb->private = NULL;
3038 	io_end->offset = offset;
3039 	io_end->size = size;
3040 	ext4_put_io_end(io_end);
3041 }
3042 
3043 /*
3044  * For ext4 extent files, ext4 will do direct-io write to holes,
3045  * preallocated extents, and those write extend the file, no need to
3046  * fall back to buffered IO.
3047  *
3048  * For holes, we fallocate those blocks, mark them as unwritten
3049  * If those blocks were preallocated, we mark sure they are split, but
3050  * still keep the range to write as unwritten.
3051  *
3052  * The unwritten extents will be converted to written when DIO is completed.
3053  * For async direct IO, since the IO may still pending when return, we
3054  * set up an end_io call back function, which will do the conversion
3055  * when async direct IO completed.
3056  *
3057  * If the O_DIRECT write will extend the file then add this inode to the
3058  * orphan list.  So recovery will truncate it back to the original size
3059  * if the machine crashes during the write.
3060  *
3061  */
3062 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3063 				  loff_t offset)
3064 {
3065 	struct file *file = iocb->ki_filp;
3066 	struct inode *inode = file->f_mapping->host;
3067 	ssize_t ret;
3068 	size_t count = iov_iter_count(iter);
3069 	int overwrite = 0;
3070 	get_block_t *get_block_func = NULL;
3071 	int dio_flags = 0;
3072 	loff_t final_size = offset + count;
3073 	ext4_io_end_t *io_end = NULL;
3074 
3075 	/* Use the old path for reads and writes beyond i_size. */
3076 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3077 		return ext4_ind_direct_IO(iocb, iter, offset);
3078 
3079 	BUG_ON(iocb->private == NULL);
3080 
3081 	/*
3082 	 * Make all waiters for direct IO properly wait also for extent
3083 	 * conversion. This also disallows race between truncate() and
3084 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3085 	 */
3086 	if (iov_iter_rw(iter) == WRITE)
3087 		inode_dio_begin(inode);
3088 
3089 	/* If we do a overwrite dio, i_mutex locking can be released */
3090 	overwrite = *((int *)iocb->private);
3091 
3092 	if (overwrite) {
3093 		down_read(&EXT4_I(inode)->i_data_sem);
3094 		mutex_unlock(&inode->i_mutex);
3095 	}
3096 
3097 	/*
3098 	 * We could direct write to holes and fallocate.
3099 	 *
3100 	 * Allocated blocks to fill the hole are marked as
3101 	 * unwritten to prevent parallel buffered read to expose
3102 	 * the stale data before DIO complete the data IO.
3103 	 *
3104 	 * As to previously fallocated extents, ext4 get_block will
3105 	 * just simply mark the buffer mapped but still keep the
3106 	 * extents unwritten.
3107 	 *
3108 	 * For non AIO case, we will convert those unwritten extents
3109 	 * to written after return back from blockdev_direct_IO.
3110 	 *
3111 	 * For async DIO, the conversion needs to be deferred when the
3112 	 * IO is completed. The ext4 end_io callback function will be
3113 	 * called to take care of the conversion work.  Here for async
3114 	 * case, we allocate an io_end structure to hook to the iocb.
3115 	 */
3116 	iocb->private = NULL;
3117 	ext4_inode_aio_set(inode, NULL);
3118 	if (!is_sync_kiocb(iocb)) {
3119 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3120 		if (!io_end) {
3121 			ret = -ENOMEM;
3122 			goto retake_lock;
3123 		}
3124 		/*
3125 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3126 		 */
3127 		iocb->private = ext4_get_io_end(io_end);
3128 		/*
3129 		 * we save the io structure for current async direct
3130 		 * IO, so that later ext4_map_blocks() could flag the
3131 		 * io structure whether there is a unwritten extents
3132 		 * needs to be converted when IO is completed.
3133 		 */
3134 		ext4_inode_aio_set(inode, io_end);
3135 	}
3136 
3137 	if (overwrite) {
3138 		get_block_func = ext4_get_block_write_nolock;
3139 	} else {
3140 		get_block_func = ext4_get_block_write;
3141 		dio_flags = DIO_LOCKING;
3142 	}
3143 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3144 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3145 #endif
3146 	if (IS_DAX(inode))
3147 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3148 				ext4_end_io_dio, dio_flags);
3149 	else
3150 		ret = __blockdev_direct_IO(iocb, inode,
3151 					   inode->i_sb->s_bdev, iter, offset,
3152 					   get_block_func,
3153 					   ext4_end_io_dio, NULL, dio_flags);
3154 
3155 	/*
3156 	 * Put our reference to io_end. This can free the io_end structure e.g.
3157 	 * in sync IO case or in case of error. It can even perform extent
3158 	 * conversion if all bios we submitted finished before we got here.
3159 	 * Note that in that case iocb->private can be already set to NULL
3160 	 * here.
3161 	 */
3162 	if (io_end) {
3163 		ext4_inode_aio_set(inode, NULL);
3164 		ext4_put_io_end(io_end);
3165 		/*
3166 		 * When no IO was submitted ext4_end_io_dio() was not
3167 		 * called so we have to put iocb's reference.
3168 		 */
3169 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3170 			WARN_ON(iocb->private != io_end);
3171 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3172 			ext4_put_io_end(io_end);
3173 			iocb->private = NULL;
3174 		}
3175 	}
3176 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3177 						EXT4_STATE_DIO_UNWRITTEN)) {
3178 		int err;
3179 		/*
3180 		 * for non AIO case, since the IO is already
3181 		 * completed, we could do the conversion right here
3182 		 */
3183 		err = ext4_convert_unwritten_extents(NULL, inode,
3184 						     offset, ret);
3185 		if (err < 0)
3186 			ret = err;
3187 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3188 	}
3189 
3190 retake_lock:
3191 	if (iov_iter_rw(iter) == WRITE)
3192 		inode_dio_end(inode);
3193 	/* take i_mutex locking again if we do a ovewrite dio */
3194 	if (overwrite) {
3195 		up_read(&EXT4_I(inode)->i_data_sem);
3196 		mutex_lock(&inode->i_mutex);
3197 	}
3198 
3199 	return ret;
3200 }
3201 
3202 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3203 			      loff_t offset)
3204 {
3205 	struct file *file = iocb->ki_filp;
3206 	struct inode *inode = file->f_mapping->host;
3207 	size_t count = iov_iter_count(iter);
3208 	ssize_t ret;
3209 
3210 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3211 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3212 		return 0;
3213 #endif
3214 
3215 	/*
3216 	 * If we are doing data journalling we don't support O_DIRECT
3217 	 */
3218 	if (ext4_should_journal_data(inode))
3219 		return 0;
3220 
3221 	/* Let buffer I/O handle the inline data case. */
3222 	if (ext4_has_inline_data(inode))
3223 		return 0;
3224 
3225 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3226 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3227 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3228 	else
3229 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3230 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3231 	return ret;
3232 }
3233 
3234 /*
3235  * Pages can be marked dirty completely asynchronously from ext4's journalling
3236  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3237  * much here because ->set_page_dirty is called under VFS locks.  The page is
3238  * not necessarily locked.
3239  *
3240  * We cannot just dirty the page and leave attached buffers clean, because the
3241  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3242  * or jbddirty because all the journalling code will explode.
3243  *
3244  * So what we do is to mark the page "pending dirty" and next time writepage
3245  * is called, propagate that into the buffers appropriately.
3246  */
3247 static int ext4_journalled_set_page_dirty(struct page *page)
3248 {
3249 	SetPageChecked(page);
3250 	return __set_page_dirty_nobuffers(page);
3251 }
3252 
3253 static const struct address_space_operations ext4_aops = {
3254 	.readpage		= ext4_readpage,
3255 	.readpages		= ext4_readpages,
3256 	.writepage		= ext4_writepage,
3257 	.writepages		= ext4_writepages,
3258 	.write_begin		= ext4_write_begin,
3259 	.write_end		= ext4_write_end,
3260 	.bmap			= ext4_bmap,
3261 	.invalidatepage		= ext4_invalidatepage,
3262 	.releasepage		= ext4_releasepage,
3263 	.direct_IO		= ext4_direct_IO,
3264 	.migratepage		= buffer_migrate_page,
3265 	.is_partially_uptodate  = block_is_partially_uptodate,
3266 	.error_remove_page	= generic_error_remove_page,
3267 };
3268 
3269 static const struct address_space_operations ext4_journalled_aops = {
3270 	.readpage		= ext4_readpage,
3271 	.readpages		= ext4_readpages,
3272 	.writepage		= ext4_writepage,
3273 	.writepages		= ext4_writepages,
3274 	.write_begin		= ext4_write_begin,
3275 	.write_end		= ext4_journalled_write_end,
3276 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3277 	.bmap			= ext4_bmap,
3278 	.invalidatepage		= ext4_journalled_invalidatepage,
3279 	.releasepage		= ext4_releasepage,
3280 	.direct_IO		= ext4_direct_IO,
3281 	.is_partially_uptodate  = block_is_partially_uptodate,
3282 	.error_remove_page	= generic_error_remove_page,
3283 };
3284 
3285 static const struct address_space_operations ext4_da_aops = {
3286 	.readpage		= ext4_readpage,
3287 	.readpages		= ext4_readpages,
3288 	.writepage		= ext4_writepage,
3289 	.writepages		= ext4_writepages,
3290 	.write_begin		= ext4_da_write_begin,
3291 	.write_end		= ext4_da_write_end,
3292 	.bmap			= ext4_bmap,
3293 	.invalidatepage		= ext4_da_invalidatepage,
3294 	.releasepage		= ext4_releasepage,
3295 	.direct_IO		= ext4_direct_IO,
3296 	.migratepage		= buffer_migrate_page,
3297 	.is_partially_uptodate  = block_is_partially_uptodate,
3298 	.error_remove_page	= generic_error_remove_page,
3299 };
3300 
3301 void ext4_set_aops(struct inode *inode)
3302 {
3303 	switch (ext4_inode_journal_mode(inode)) {
3304 	case EXT4_INODE_ORDERED_DATA_MODE:
3305 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3306 		break;
3307 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3308 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3309 		break;
3310 	case EXT4_INODE_JOURNAL_DATA_MODE:
3311 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3312 		return;
3313 	default:
3314 		BUG();
3315 	}
3316 	if (test_opt(inode->i_sb, DELALLOC))
3317 		inode->i_mapping->a_ops = &ext4_da_aops;
3318 	else
3319 		inode->i_mapping->a_ops = &ext4_aops;
3320 }
3321 
3322 static int __ext4_block_zero_page_range(handle_t *handle,
3323 		struct address_space *mapping, loff_t from, loff_t length)
3324 {
3325 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3326 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3327 	unsigned blocksize, pos;
3328 	ext4_lblk_t iblock;
3329 	struct inode *inode = mapping->host;
3330 	struct buffer_head *bh;
3331 	struct page *page;
3332 	int err = 0;
3333 
3334 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3335 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3336 	if (!page)
3337 		return -ENOMEM;
3338 
3339 	blocksize = inode->i_sb->s_blocksize;
3340 
3341 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3342 
3343 	if (!page_has_buffers(page))
3344 		create_empty_buffers(page, blocksize, 0);
3345 
3346 	/* Find the buffer that contains "offset" */
3347 	bh = page_buffers(page);
3348 	pos = blocksize;
3349 	while (offset >= pos) {
3350 		bh = bh->b_this_page;
3351 		iblock++;
3352 		pos += blocksize;
3353 	}
3354 	if (buffer_freed(bh)) {
3355 		BUFFER_TRACE(bh, "freed: skip");
3356 		goto unlock;
3357 	}
3358 	if (!buffer_mapped(bh)) {
3359 		BUFFER_TRACE(bh, "unmapped");
3360 		ext4_get_block(inode, iblock, bh, 0);
3361 		/* unmapped? It's a hole - nothing to do */
3362 		if (!buffer_mapped(bh)) {
3363 			BUFFER_TRACE(bh, "still unmapped");
3364 			goto unlock;
3365 		}
3366 	}
3367 
3368 	/* Ok, it's mapped. Make sure it's up-to-date */
3369 	if (PageUptodate(page))
3370 		set_buffer_uptodate(bh);
3371 
3372 	if (!buffer_uptodate(bh)) {
3373 		err = -EIO;
3374 		ll_rw_block(READ, 1, &bh);
3375 		wait_on_buffer(bh);
3376 		/* Uhhuh. Read error. Complain and punt. */
3377 		if (!buffer_uptodate(bh))
3378 			goto unlock;
3379 		if (S_ISREG(inode->i_mode) &&
3380 		    ext4_encrypted_inode(inode)) {
3381 			/* We expect the key to be set. */
3382 			BUG_ON(!ext4_has_encryption_key(inode));
3383 			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3384 			WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3385 		}
3386 	}
3387 	if (ext4_should_journal_data(inode)) {
3388 		BUFFER_TRACE(bh, "get write access");
3389 		err = ext4_journal_get_write_access(handle, bh);
3390 		if (err)
3391 			goto unlock;
3392 	}
3393 	zero_user(page, offset, length);
3394 	BUFFER_TRACE(bh, "zeroed end of block");
3395 
3396 	if (ext4_should_journal_data(inode)) {
3397 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3398 	} else {
3399 		err = 0;
3400 		mark_buffer_dirty(bh);
3401 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3402 			err = ext4_jbd2_file_inode(handle, inode);
3403 	}
3404 
3405 unlock:
3406 	unlock_page(page);
3407 	page_cache_release(page);
3408 	return err;
3409 }
3410 
3411 /*
3412  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3413  * starting from file offset 'from'.  The range to be zero'd must
3414  * be contained with in one block.  If the specified range exceeds
3415  * the end of the block it will be shortened to end of the block
3416  * that cooresponds to 'from'
3417  */
3418 static int ext4_block_zero_page_range(handle_t *handle,
3419 		struct address_space *mapping, loff_t from, loff_t length)
3420 {
3421 	struct inode *inode = mapping->host;
3422 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3423 	unsigned blocksize = inode->i_sb->s_blocksize;
3424 	unsigned max = blocksize - (offset & (blocksize - 1));
3425 
3426 	/*
3427 	 * correct length if it does not fall between
3428 	 * 'from' and the end of the block
3429 	 */
3430 	if (length > max || length < 0)
3431 		length = max;
3432 
3433 	if (IS_DAX(inode))
3434 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3435 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3436 }
3437 
3438 /*
3439  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3440  * up to the end of the block which corresponds to `from'.
3441  * This required during truncate. We need to physically zero the tail end
3442  * of that block so it doesn't yield old data if the file is later grown.
3443  */
3444 static int ext4_block_truncate_page(handle_t *handle,
3445 		struct address_space *mapping, loff_t from)
3446 {
3447 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3448 	unsigned length;
3449 	unsigned blocksize;
3450 	struct inode *inode = mapping->host;
3451 
3452 	blocksize = inode->i_sb->s_blocksize;
3453 	length = blocksize - (offset & (blocksize - 1));
3454 
3455 	return ext4_block_zero_page_range(handle, mapping, from, length);
3456 }
3457 
3458 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3459 			     loff_t lstart, loff_t length)
3460 {
3461 	struct super_block *sb = inode->i_sb;
3462 	struct address_space *mapping = inode->i_mapping;
3463 	unsigned partial_start, partial_end;
3464 	ext4_fsblk_t start, end;
3465 	loff_t byte_end = (lstart + length - 1);
3466 	int err = 0;
3467 
3468 	partial_start = lstart & (sb->s_blocksize - 1);
3469 	partial_end = byte_end & (sb->s_blocksize - 1);
3470 
3471 	start = lstart >> sb->s_blocksize_bits;
3472 	end = byte_end >> sb->s_blocksize_bits;
3473 
3474 	/* Handle partial zero within the single block */
3475 	if (start == end &&
3476 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3477 		err = ext4_block_zero_page_range(handle, mapping,
3478 						 lstart, length);
3479 		return err;
3480 	}
3481 	/* Handle partial zero out on the start of the range */
3482 	if (partial_start) {
3483 		err = ext4_block_zero_page_range(handle, mapping,
3484 						 lstart, sb->s_blocksize);
3485 		if (err)
3486 			return err;
3487 	}
3488 	/* Handle partial zero out on the end of the range */
3489 	if (partial_end != sb->s_blocksize - 1)
3490 		err = ext4_block_zero_page_range(handle, mapping,
3491 						 byte_end - partial_end,
3492 						 partial_end + 1);
3493 	return err;
3494 }
3495 
3496 int ext4_can_truncate(struct inode *inode)
3497 {
3498 	if (S_ISREG(inode->i_mode))
3499 		return 1;
3500 	if (S_ISDIR(inode->i_mode))
3501 		return 1;
3502 	if (S_ISLNK(inode->i_mode))
3503 		return !ext4_inode_is_fast_symlink(inode);
3504 	return 0;
3505 }
3506 
3507 /*
3508  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3509  * associated with the given offset and length
3510  *
3511  * @inode:  File inode
3512  * @offset: The offset where the hole will begin
3513  * @len:    The length of the hole
3514  *
3515  * Returns: 0 on success or negative on failure
3516  */
3517 
3518 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3519 {
3520 	struct super_block *sb = inode->i_sb;
3521 	ext4_lblk_t first_block, stop_block;
3522 	struct address_space *mapping = inode->i_mapping;
3523 	loff_t first_block_offset, last_block_offset;
3524 	handle_t *handle;
3525 	unsigned int credits;
3526 	int ret = 0;
3527 
3528 	if (!S_ISREG(inode->i_mode))
3529 		return -EOPNOTSUPP;
3530 
3531 	trace_ext4_punch_hole(inode, offset, length, 0);
3532 
3533 	/*
3534 	 * Write out all dirty pages to avoid race conditions
3535 	 * Then release them.
3536 	 */
3537 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3538 		ret = filemap_write_and_wait_range(mapping, offset,
3539 						   offset + length - 1);
3540 		if (ret)
3541 			return ret;
3542 	}
3543 
3544 	mutex_lock(&inode->i_mutex);
3545 
3546 	/* No need to punch hole beyond i_size */
3547 	if (offset >= inode->i_size)
3548 		goto out_mutex;
3549 
3550 	/*
3551 	 * If the hole extends beyond i_size, set the hole
3552 	 * to end after the page that contains i_size
3553 	 */
3554 	if (offset + length > inode->i_size) {
3555 		length = inode->i_size +
3556 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3557 		   offset;
3558 	}
3559 
3560 	if (offset & (sb->s_blocksize - 1) ||
3561 	    (offset + length) & (sb->s_blocksize - 1)) {
3562 		/*
3563 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3564 		 * partial block
3565 		 */
3566 		ret = ext4_inode_attach_jinode(inode);
3567 		if (ret < 0)
3568 			goto out_mutex;
3569 
3570 	}
3571 
3572 	first_block_offset = round_up(offset, sb->s_blocksize);
3573 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3574 
3575 	/* Now release the pages and zero block aligned part of pages*/
3576 	if (last_block_offset > first_block_offset)
3577 		truncate_pagecache_range(inode, first_block_offset,
3578 					 last_block_offset);
3579 
3580 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3581 	ext4_inode_block_unlocked_dio(inode);
3582 	inode_dio_wait(inode);
3583 
3584 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3585 		credits = ext4_writepage_trans_blocks(inode);
3586 	else
3587 		credits = ext4_blocks_for_truncate(inode);
3588 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3589 	if (IS_ERR(handle)) {
3590 		ret = PTR_ERR(handle);
3591 		ext4_std_error(sb, ret);
3592 		goto out_dio;
3593 	}
3594 
3595 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3596 				       length);
3597 	if (ret)
3598 		goto out_stop;
3599 
3600 	first_block = (offset + sb->s_blocksize - 1) >>
3601 		EXT4_BLOCK_SIZE_BITS(sb);
3602 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3603 
3604 	/* If there are no blocks to remove, return now */
3605 	if (first_block >= stop_block)
3606 		goto out_stop;
3607 
3608 	down_write(&EXT4_I(inode)->i_data_sem);
3609 	ext4_discard_preallocations(inode);
3610 
3611 	ret = ext4_es_remove_extent(inode, first_block,
3612 				    stop_block - first_block);
3613 	if (ret) {
3614 		up_write(&EXT4_I(inode)->i_data_sem);
3615 		goto out_stop;
3616 	}
3617 
3618 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3619 		ret = ext4_ext_remove_space(inode, first_block,
3620 					    stop_block - 1);
3621 	else
3622 		ret = ext4_ind_remove_space(handle, inode, first_block,
3623 					    stop_block);
3624 
3625 	up_write(&EXT4_I(inode)->i_data_sem);
3626 	if (IS_SYNC(inode))
3627 		ext4_handle_sync(handle);
3628 
3629 	/* Now release the pages again to reduce race window */
3630 	if (last_block_offset > first_block_offset)
3631 		truncate_pagecache_range(inode, first_block_offset,
3632 					 last_block_offset);
3633 
3634 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3635 	ext4_mark_inode_dirty(handle, inode);
3636 out_stop:
3637 	ext4_journal_stop(handle);
3638 out_dio:
3639 	ext4_inode_resume_unlocked_dio(inode);
3640 out_mutex:
3641 	mutex_unlock(&inode->i_mutex);
3642 	return ret;
3643 }
3644 
3645 int ext4_inode_attach_jinode(struct inode *inode)
3646 {
3647 	struct ext4_inode_info *ei = EXT4_I(inode);
3648 	struct jbd2_inode *jinode;
3649 
3650 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3651 		return 0;
3652 
3653 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3654 	spin_lock(&inode->i_lock);
3655 	if (!ei->jinode) {
3656 		if (!jinode) {
3657 			spin_unlock(&inode->i_lock);
3658 			return -ENOMEM;
3659 		}
3660 		ei->jinode = jinode;
3661 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3662 		jinode = NULL;
3663 	}
3664 	spin_unlock(&inode->i_lock);
3665 	if (unlikely(jinode != NULL))
3666 		jbd2_free_inode(jinode);
3667 	return 0;
3668 }
3669 
3670 /*
3671  * ext4_truncate()
3672  *
3673  * We block out ext4_get_block() block instantiations across the entire
3674  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3675  * simultaneously on behalf of the same inode.
3676  *
3677  * As we work through the truncate and commit bits of it to the journal there
3678  * is one core, guiding principle: the file's tree must always be consistent on
3679  * disk.  We must be able to restart the truncate after a crash.
3680  *
3681  * The file's tree may be transiently inconsistent in memory (although it
3682  * probably isn't), but whenever we close off and commit a journal transaction,
3683  * the contents of (the filesystem + the journal) must be consistent and
3684  * restartable.  It's pretty simple, really: bottom up, right to left (although
3685  * left-to-right works OK too).
3686  *
3687  * Note that at recovery time, journal replay occurs *before* the restart of
3688  * truncate against the orphan inode list.
3689  *
3690  * The committed inode has the new, desired i_size (which is the same as
3691  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3692  * that this inode's truncate did not complete and it will again call
3693  * ext4_truncate() to have another go.  So there will be instantiated blocks
3694  * to the right of the truncation point in a crashed ext4 filesystem.  But
3695  * that's fine - as long as they are linked from the inode, the post-crash
3696  * ext4_truncate() run will find them and release them.
3697  */
3698 void ext4_truncate(struct inode *inode)
3699 {
3700 	struct ext4_inode_info *ei = EXT4_I(inode);
3701 	unsigned int credits;
3702 	handle_t *handle;
3703 	struct address_space *mapping = inode->i_mapping;
3704 
3705 	/*
3706 	 * There is a possibility that we're either freeing the inode
3707 	 * or it's a completely new inode. In those cases we might not
3708 	 * have i_mutex locked because it's not necessary.
3709 	 */
3710 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3711 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3712 	trace_ext4_truncate_enter(inode);
3713 
3714 	if (!ext4_can_truncate(inode))
3715 		return;
3716 
3717 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3718 
3719 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3720 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3721 
3722 	if (ext4_has_inline_data(inode)) {
3723 		int has_inline = 1;
3724 
3725 		ext4_inline_data_truncate(inode, &has_inline);
3726 		if (has_inline)
3727 			return;
3728 	}
3729 
3730 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3731 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3732 		if (ext4_inode_attach_jinode(inode) < 0)
3733 			return;
3734 	}
3735 
3736 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3737 		credits = ext4_writepage_trans_blocks(inode);
3738 	else
3739 		credits = ext4_blocks_for_truncate(inode);
3740 
3741 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3742 	if (IS_ERR(handle)) {
3743 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3744 		return;
3745 	}
3746 
3747 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3748 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3749 
3750 	/*
3751 	 * We add the inode to the orphan list, so that if this
3752 	 * truncate spans multiple transactions, and we crash, we will
3753 	 * resume the truncate when the filesystem recovers.  It also
3754 	 * marks the inode dirty, to catch the new size.
3755 	 *
3756 	 * Implication: the file must always be in a sane, consistent
3757 	 * truncatable state while each transaction commits.
3758 	 */
3759 	if (ext4_orphan_add(handle, inode))
3760 		goto out_stop;
3761 
3762 	down_write(&EXT4_I(inode)->i_data_sem);
3763 
3764 	ext4_discard_preallocations(inode);
3765 
3766 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3767 		ext4_ext_truncate(handle, inode);
3768 	else
3769 		ext4_ind_truncate(handle, inode);
3770 
3771 	up_write(&ei->i_data_sem);
3772 
3773 	if (IS_SYNC(inode))
3774 		ext4_handle_sync(handle);
3775 
3776 out_stop:
3777 	/*
3778 	 * If this was a simple ftruncate() and the file will remain alive,
3779 	 * then we need to clear up the orphan record which we created above.
3780 	 * However, if this was a real unlink then we were called by
3781 	 * ext4_evict_inode(), and we allow that function to clean up the
3782 	 * orphan info for us.
3783 	 */
3784 	if (inode->i_nlink)
3785 		ext4_orphan_del(handle, inode);
3786 
3787 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3788 	ext4_mark_inode_dirty(handle, inode);
3789 	ext4_journal_stop(handle);
3790 
3791 	trace_ext4_truncate_exit(inode);
3792 }
3793 
3794 /*
3795  * ext4_get_inode_loc returns with an extra refcount against the inode's
3796  * underlying buffer_head on success. If 'in_mem' is true, we have all
3797  * data in memory that is needed to recreate the on-disk version of this
3798  * inode.
3799  */
3800 static int __ext4_get_inode_loc(struct inode *inode,
3801 				struct ext4_iloc *iloc, int in_mem)
3802 {
3803 	struct ext4_group_desc	*gdp;
3804 	struct buffer_head	*bh;
3805 	struct super_block	*sb = inode->i_sb;
3806 	ext4_fsblk_t		block;
3807 	int			inodes_per_block, inode_offset;
3808 
3809 	iloc->bh = NULL;
3810 	if (!ext4_valid_inum(sb, inode->i_ino))
3811 		return -EIO;
3812 
3813 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3814 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3815 	if (!gdp)
3816 		return -EIO;
3817 
3818 	/*
3819 	 * Figure out the offset within the block group inode table
3820 	 */
3821 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3822 	inode_offset = ((inode->i_ino - 1) %
3823 			EXT4_INODES_PER_GROUP(sb));
3824 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3825 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3826 
3827 	bh = sb_getblk(sb, block);
3828 	if (unlikely(!bh))
3829 		return -ENOMEM;
3830 	if (!buffer_uptodate(bh)) {
3831 		lock_buffer(bh);
3832 
3833 		/*
3834 		 * If the buffer has the write error flag, we have failed
3835 		 * to write out another inode in the same block.  In this
3836 		 * case, we don't have to read the block because we may
3837 		 * read the old inode data successfully.
3838 		 */
3839 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3840 			set_buffer_uptodate(bh);
3841 
3842 		if (buffer_uptodate(bh)) {
3843 			/* someone brought it uptodate while we waited */
3844 			unlock_buffer(bh);
3845 			goto has_buffer;
3846 		}
3847 
3848 		/*
3849 		 * If we have all information of the inode in memory and this
3850 		 * is the only valid inode in the block, we need not read the
3851 		 * block.
3852 		 */
3853 		if (in_mem) {
3854 			struct buffer_head *bitmap_bh;
3855 			int i, start;
3856 
3857 			start = inode_offset & ~(inodes_per_block - 1);
3858 
3859 			/* Is the inode bitmap in cache? */
3860 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3861 			if (unlikely(!bitmap_bh))
3862 				goto make_io;
3863 
3864 			/*
3865 			 * If the inode bitmap isn't in cache then the
3866 			 * optimisation may end up performing two reads instead
3867 			 * of one, so skip it.
3868 			 */
3869 			if (!buffer_uptodate(bitmap_bh)) {
3870 				brelse(bitmap_bh);
3871 				goto make_io;
3872 			}
3873 			for (i = start; i < start + inodes_per_block; i++) {
3874 				if (i == inode_offset)
3875 					continue;
3876 				if (ext4_test_bit(i, bitmap_bh->b_data))
3877 					break;
3878 			}
3879 			brelse(bitmap_bh);
3880 			if (i == start + inodes_per_block) {
3881 				/* all other inodes are free, so skip I/O */
3882 				memset(bh->b_data, 0, bh->b_size);
3883 				set_buffer_uptodate(bh);
3884 				unlock_buffer(bh);
3885 				goto has_buffer;
3886 			}
3887 		}
3888 
3889 make_io:
3890 		/*
3891 		 * If we need to do any I/O, try to pre-readahead extra
3892 		 * blocks from the inode table.
3893 		 */
3894 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3895 			ext4_fsblk_t b, end, table;
3896 			unsigned num;
3897 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3898 
3899 			table = ext4_inode_table(sb, gdp);
3900 			/* s_inode_readahead_blks is always a power of 2 */
3901 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3902 			if (table > b)
3903 				b = table;
3904 			end = b + ra_blks;
3905 			num = EXT4_INODES_PER_GROUP(sb);
3906 			if (ext4_has_group_desc_csum(sb))
3907 				num -= ext4_itable_unused_count(sb, gdp);
3908 			table += num / inodes_per_block;
3909 			if (end > table)
3910 				end = table;
3911 			while (b <= end)
3912 				sb_breadahead(sb, b++);
3913 		}
3914 
3915 		/*
3916 		 * There are other valid inodes in the buffer, this inode
3917 		 * has in-inode xattrs, or we don't have this inode in memory.
3918 		 * Read the block from disk.
3919 		 */
3920 		trace_ext4_load_inode(inode);
3921 		get_bh(bh);
3922 		bh->b_end_io = end_buffer_read_sync;
3923 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3924 		wait_on_buffer(bh);
3925 		if (!buffer_uptodate(bh)) {
3926 			EXT4_ERROR_INODE_BLOCK(inode, block,
3927 					       "unable to read itable block");
3928 			brelse(bh);
3929 			return -EIO;
3930 		}
3931 	}
3932 has_buffer:
3933 	iloc->bh = bh;
3934 	return 0;
3935 }
3936 
3937 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3938 {
3939 	/* We have all inode data except xattrs in memory here. */
3940 	return __ext4_get_inode_loc(inode, iloc,
3941 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3942 }
3943 
3944 void ext4_set_inode_flags(struct inode *inode)
3945 {
3946 	unsigned int flags = EXT4_I(inode)->i_flags;
3947 	unsigned int new_fl = 0;
3948 
3949 	if (flags & EXT4_SYNC_FL)
3950 		new_fl |= S_SYNC;
3951 	if (flags & EXT4_APPEND_FL)
3952 		new_fl |= S_APPEND;
3953 	if (flags & EXT4_IMMUTABLE_FL)
3954 		new_fl |= S_IMMUTABLE;
3955 	if (flags & EXT4_NOATIME_FL)
3956 		new_fl |= S_NOATIME;
3957 	if (flags & EXT4_DIRSYNC_FL)
3958 		new_fl |= S_DIRSYNC;
3959 	if (test_opt(inode->i_sb, DAX))
3960 		new_fl |= S_DAX;
3961 	inode_set_flags(inode, new_fl,
3962 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3963 }
3964 
3965 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3966 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3967 {
3968 	unsigned int vfs_fl;
3969 	unsigned long old_fl, new_fl;
3970 
3971 	do {
3972 		vfs_fl = ei->vfs_inode.i_flags;
3973 		old_fl = ei->i_flags;
3974 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3975 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3976 				EXT4_DIRSYNC_FL);
3977 		if (vfs_fl & S_SYNC)
3978 			new_fl |= EXT4_SYNC_FL;
3979 		if (vfs_fl & S_APPEND)
3980 			new_fl |= EXT4_APPEND_FL;
3981 		if (vfs_fl & S_IMMUTABLE)
3982 			new_fl |= EXT4_IMMUTABLE_FL;
3983 		if (vfs_fl & S_NOATIME)
3984 			new_fl |= EXT4_NOATIME_FL;
3985 		if (vfs_fl & S_DIRSYNC)
3986 			new_fl |= EXT4_DIRSYNC_FL;
3987 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3988 }
3989 
3990 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3991 				  struct ext4_inode_info *ei)
3992 {
3993 	blkcnt_t i_blocks ;
3994 	struct inode *inode = &(ei->vfs_inode);
3995 	struct super_block *sb = inode->i_sb;
3996 
3997 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3998 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3999 		/* we are using combined 48 bit field */
4000 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4001 					le32_to_cpu(raw_inode->i_blocks_lo);
4002 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4003 			/* i_blocks represent file system block size */
4004 			return i_blocks  << (inode->i_blkbits - 9);
4005 		} else {
4006 			return i_blocks;
4007 		}
4008 	} else {
4009 		return le32_to_cpu(raw_inode->i_blocks_lo);
4010 	}
4011 }
4012 
4013 static inline void ext4_iget_extra_inode(struct inode *inode,
4014 					 struct ext4_inode *raw_inode,
4015 					 struct ext4_inode_info *ei)
4016 {
4017 	__le32 *magic = (void *)raw_inode +
4018 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4019 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4020 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4021 		ext4_find_inline_data_nolock(inode);
4022 	} else
4023 		EXT4_I(inode)->i_inline_off = 0;
4024 }
4025 
4026 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4027 {
4028 	struct ext4_iloc iloc;
4029 	struct ext4_inode *raw_inode;
4030 	struct ext4_inode_info *ei;
4031 	struct inode *inode;
4032 	journal_t *journal = EXT4_SB(sb)->s_journal;
4033 	long ret;
4034 	int block;
4035 	uid_t i_uid;
4036 	gid_t i_gid;
4037 
4038 	inode = iget_locked(sb, ino);
4039 	if (!inode)
4040 		return ERR_PTR(-ENOMEM);
4041 	if (!(inode->i_state & I_NEW))
4042 		return inode;
4043 
4044 	ei = EXT4_I(inode);
4045 	iloc.bh = NULL;
4046 
4047 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4048 	if (ret < 0)
4049 		goto bad_inode;
4050 	raw_inode = ext4_raw_inode(&iloc);
4051 
4052 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4053 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4054 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4055 		    EXT4_INODE_SIZE(inode->i_sb)) {
4056 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4057 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4058 				EXT4_INODE_SIZE(inode->i_sb));
4059 			ret = -EIO;
4060 			goto bad_inode;
4061 		}
4062 	} else
4063 		ei->i_extra_isize = 0;
4064 
4065 	/* Precompute checksum seed for inode metadata */
4066 	if (ext4_has_metadata_csum(sb)) {
4067 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4068 		__u32 csum;
4069 		__le32 inum = cpu_to_le32(inode->i_ino);
4070 		__le32 gen = raw_inode->i_generation;
4071 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4072 				   sizeof(inum));
4073 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4074 					      sizeof(gen));
4075 	}
4076 
4077 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4078 		EXT4_ERROR_INODE(inode, "checksum invalid");
4079 		ret = -EIO;
4080 		goto bad_inode;
4081 	}
4082 
4083 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4084 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4085 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4086 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4087 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4088 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4089 	}
4090 	i_uid_write(inode, i_uid);
4091 	i_gid_write(inode, i_gid);
4092 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4093 
4094 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4095 	ei->i_inline_off = 0;
4096 	ei->i_dir_start_lookup = 0;
4097 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4098 	/* We now have enough fields to check if the inode was active or not.
4099 	 * This is needed because nfsd might try to access dead inodes
4100 	 * the test is that same one that e2fsck uses
4101 	 * NeilBrown 1999oct15
4102 	 */
4103 	if (inode->i_nlink == 0) {
4104 		if ((inode->i_mode == 0 ||
4105 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4106 		    ino != EXT4_BOOT_LOADER_INO) {
4107 			/* this inode is deleted */
4108 			ret = -ESTALE;
4109 			goto bad_inode;
4110 		}
4111 		/* The only unlinked inodes we let through here have
4112 		 * valid i_mode and are being read by the orphan
4113 		 * recovery code: that's fine, we're about to complete
4114 		 * the process of deleting those.
4115 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4116 		 * not initialized on a new filesystem. */
4117 	}
4118 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4119 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4120 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4121 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4122 		ei->i_file_acl |=
4123 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4124 	inode->i_size = ext4_isize(raw_inode);
4125 	ei->i_disksize = inode->i_size;
4126 #ifdef CONFIG_QUOTA
4127 	ei->i_reserved_quota = 0;
4128 #endif
4129 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4130 	ei->i_block_group = iloc.block_group;
4131 	ei->i_last_alloc_group = ~0;
4132 	/*
4133 	 * NOTE! The in-memory inode i_data array is in little-endian order
4134 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4135 	 */
4136 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4137 		ei->i_data[block] = raw_inode->i_block[block];
4138 	INIT_LIST_HEAD(&ei->i_orphan);
4139 
4140 	/*
4141 	 * Set transaction id's of transactions that have to be committed
4142 	 * to finish f[data]sync. We set them to currently running transaction
4143 	 * as we cannot be sure that the inode or some of its metadata isn't
4144 	 * part of the transaction - the inode could have been reclaimed and
4145 	 * now it is reread from disk.
4146 	 */
4147 	if (journal) {
4148 		transaction_t *transaction;
4149 		tid_t tid;
4150 
4151 		read_lock(&journal->j_state_lock);
4152 		if (journal->j_running_transaction)
4153 			transaction = journal->j_running_transaction;
4154 		else
4155 			transaction = journal->j_committing_transaction;
4156 		if (transaction)
4157 			tid = transaction->t_tid;
4158 		else
4159 			tid = journal->j_commit_sequence;
4160 		read_unlock(&journal->j_state_lock);
4161 		ei->i_sync_tid = tid;
4162 		ei->i_datasync_tid = tid;
4163 	}
4164 
4165 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4166 		if (ei->i_extra_isize == 0) {
4167 			/* The extra space is currently unused. Use it. */
4168 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4169 					    EXT4_GOOD_OLD_INODE_SIZE;
4170 		} else {
4171 			ext4_iget_extra_inode(inode, raw_inode, ei);
4172 		}
4173 	}
4174 
4175 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4176 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4177 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4178 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4179 
4180 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4181 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4182 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4183 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4184 				inode->i_version |=
4185 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4186 		}
4187 	}
4188 
4189 	ret = 0;
4190 	if (ei->i_file_acl &&
4191 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4192 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4193 				 ei->i_file_acl);
4194 		ret = -EIO;
4195 		goto bad_inode;
4196 	} else if (!ext4_has_inline_data(inode)) {
4197 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4198 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4199 			    (S_ISLNK(inode->i_mode) &&
4200 			     !ext4_inode_is_fast_symlink(inode))))
4201 				/* Validate extent which is part of inode */
4202 				ret = ext4_ext_check_inode(inode);
4203 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4204 			   (S_ISLNK(inode->i_mode) &&
4205 			    !ext4_inode_is_fast_symlink(inode))) {
4206 			/* Validate block references which are part of inode */
4207 			ret = ext4_ind_check_inode(inode);
4208 		}
4209 	}
4210 	if (ret)
4211 		goto bad_inode;
4212 
4213 	if (S_ISREG(inode->i_mode)) {
4214 		inode->i_op = &ext4_file_inode_operations;
4215 		inode->i_fop = &ext4_file_operations;
4216 		ext4_set_aops(inode);
4217 	} else if (S_ISDIR(inode->i_mode)) {
4218 		inode->i_op = &ext4_dir_inode_operations;
4219 		inode->i_fop = &ext4_dir_operations;
4220 	} else if (S_ISLNK(inode->i_mode)) {
4221 		if (ext4_encrypted_inode(inode)) {
4222 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4223 			ext4_set_aops(inode);
4224 		} else if (ext4_inode_is_fast_symlink(inode)) {
4225 			inode->i_link = (char *)ei->i_data;
4226 			inode->i_op = &ext4_fast_symlink_inode_operations;
4227 			nd_terminate_link(ei->i_data, inode->i_size,
4228 				sizeof(ei->i_data) - 1);
4229 		} else {
4230 			inode->i_op = &ext4_symlink_inode_operations;
4231 			ext4_set_aops(inode);
4232 		}
4233 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4234 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4235 		inode->i_op = &ext4_special_inode_operations;
4236 		if (raw_inode->i_block[0])
4237 			init_special_inode(inode, inode->i_mode,
4238 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4239 		else
4240 			init_special_inode(inode, inode->i_mode,
4241 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4242 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4243 		make_bad_inode(inode);
4244 	} else {
4245 		ret = -EIO;
4246 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4247 		goto bad_inode;
4248 	}
4249 	brelse(iloc.bh);
4250 	ext4_set_inode_flags(inode);
4251 	unlock_new_inode(inode);
4252 	return inode;
4253 
4254 bad_inode:
4255 	brelse(iloc.bh);
4256 	iget_failed(inode);
4257 	return ERR_PTR(ret);
4258 }
4259 
4260 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4261 {
4262 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4263 		return ERR_PTR(-EIO);
4264 	return ext4_iget(sb, ino);
4265 }
4266 
4267 static int ext4_inode_blocks_set(handle_t *handle,
4268 				struct ext4_inode *raw_inode,
4269 				struct ext4_inode_info *ei)
4270 {
4271 	struct inode *inode = &(ei->vfs_inode);
4272 	u64 i_blocks = inode->i_blocks;
4273 	struct super_block *sb = inode->i_sb;
4274 
4275 	if (i_blocks <= ~0U) {
4276 		/*
4277 		 * i_blocks can be represented in a 32 bit variable
4278 		 * as multiple of 512 bytes
4279 		 */
4280 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4281 		raw_inode->i_blocks_high = 0;
4282 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4283 		return 0;
4284 	}
4285 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4286 		return -EFBIG;
4287 
4288 	if (i_blocks <= 0xffffffffffffULL) {
4289 		/*
4290 		 * i_blocks can be represented in a 48 bit variable
4291 		 * as multiple of 512 bytes
4292 		 */
4293 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4294 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4295 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4296 	} else {
4297 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4298 		/* i_block is stored in file system block size */
4299 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4300 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4301 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4302 	}
4303 	return 0;
4304 }
4305 
4306 struct other_inode {
4307 	unsigned long		orig_ino;
4308 	struct ext4_inode	*raw_inode;
4309 };
4310 
4311 static int other_inode_match(struct inode * inode, unsigned long ino,
4312 			     void *data)
4313 {
4314 	struct other_inode *oi = (struct other_inode *) data;
4315 
4316 	if ((inode->i_ino != ino) ||
4317 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4318 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4319 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4320 		return 0;
4321 	spin_lock(&inode->i_lock);
4322 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4323 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4324 	    (inode->i_state & I_DIRTY_TIME)) {
4325 		struct ext4_inode_info	*ei = EXT4_I(inode);
4326 
4327 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4328 		spin_unlock(&inode->i_lock);
4329 
4330 		spin_lock(&ei->i_raw_lock);
4331 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4332 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4333 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4334 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4335 		spin_unlock(&ei->i_raw_lock);
4336 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4337 		return -1;
4338 	}
4339 	spin_unlock(&inode->i_lock);
4340 	return -1;
4341 }
4342 
4343 /*
4344  * Opportunistically update the other time fields for other inodes in
4345  * the same inode table block.
4346  */
4347 static void ext4_update_other_inodes_time(struct super_block *sb,
4348 					  unsigned long orig_ino, char *buf)
4349 {
4350 	struct other_inode oi;
4351 	unsigned long ino;
4352 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4353 	int inode_size = EXT4_INODE_SIZE(sb);
4354 
4355 	oi.orig_ino = orig_ino;
4356 	/*
4357 	 * Calculate the first inode in the inode table block.  Inode
4358 	 * numbers are one-based.  That is, the first inode in a block
4359 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4360 	 */
4361 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4362 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4363 		if (ino == orig_ino)
4364 			continue;
4365 		oi.raw_inode = (struct ext4_inode *) buf;
4366 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4367 	}
4368 }
4369 
4370 /*
4371  * Post the struct inode info into an on-disk inode location in the
4372  * buffer-cache.  This gobbles the caller's reference to the
4373  * buffer_head in the inode location struct.
4374  *
4375  * The caller must have write access to iloc->bh.
4376  */
4377 static int ext4_do_update_inode(handle_t *handle,
4378 				struct inode *inode,
4379 				struct ext4_iloc *iloc)
4380 {
4381 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4382 	struct ext4_inode_info *ei = EXT4_I(inode);
4383 	struct buffer_head *bh = iloc->bh;
4384 	struct super_block *sb = inode->i_sb;
4385 	int err = 0, rc, block;
4386 	int need_datasync = 0, set_large_file = 0;
4387 	uid_t i_uid;
4388 	gid_t i_gid;
4389 
4390 	spin_lock(&ei->i_raw_lock);
4391 
4392 	/* For fields not tracked in the in-memory inode,
4393 	 * initialise them to zero for new inodes. */
4394 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4395 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4396 
4397 	ext4_get_inode_flags(ei);
4398 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4399 	i_uid = i_uid_read(inode);
4400 	i_gid = i_gid_read(inode);
4401 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4402 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4403 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4404 /*
4405  * Fix up interoperability with old kernels. Otherwise, old inodes get
4406  * re-used with the upper 16 bits of the uid/gid intact
4407  */
4408 		if (!ei->i_dtime) {
4409 			raw_inode->i_uid_high =
4410 				cpu_to_le16(high_16_bits(i_uid));
4411 			raw_inode->i_gid_high =
4412 				cpu_to_le16(high_16_bits(i_gid));
4413 		} else {
4414 			raw_inode->i_uid_high = 0;
4415 			raw_inode->i_gid_high = 0;
4416 		}
4417 	} else {
4418 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4419 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4420 		raw_inode->i_uid_high = 0;
4421 		raw_inode->i_gid_high = 0;
4422 	}
4423 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4424 
4425 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4426 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4427 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4428 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4429 
4430 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4431 	if (err) {
4432 		spin_unlock(&ei->i_raw_lock);
4433 		goto out_brelse;
4434 	}
4435 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4436 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4437 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4438 		raw_inode->i_file_acl_high =
4439 			cpu_to_le16(ei->i_file_acl >> 32);
4440 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4441 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4442 		ext4_isize_set(raw_inode, ei->i_disksize);
4443 		need_datasync = 1;
4444 	}
4445 	if (ei->i_disksize > 0x7fffffffULL) {
4446 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4447 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4448 				EXT4_SB(sb)->s_es->s_rev_level ==
4449 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4450 			set_large_file = 1;
4451 	}
4452 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4453 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4454 		if (old_valid_dev(inode->i_rdev)) {
4455 			raw_inode->i_block[0] =
4456 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4457 			raw_inode->i_block[1] = 0;
4458 		} else {
4459 			raw_inode->i_block[0] = 0;
4460 			raw_inode->i_block[1] =
4461 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4462 			raw_inode->i_block[2] = 0;
4463 		}
4464 	} else if (!ext4_has_inline_data(inode)) {
4465 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4466 			raw_inode->i_block[block] = ei->i_data[block];
4467 	}
4468 
4469 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4470 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4471 		if (ei->i_extra_isize) {
4472 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4473 				raw_inode->i_version_hi =
4474 					cpu_to_le32(inode->i_version >> 32);
4475 			raw_inode->i_extra_isize =
4476 				cpu_to_le16(ei->i_extra_isize);
4477 		}
4478 	}
4479 	ext4_inode_csum_set(inode, raw_inode, ei);
4480 	spin_unlock(&ei->i_raw_lock);
4481 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4482 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4483 					      bh->b_data);
4484 
4485 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4486 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4487 	if (!err)
4488 		err = rc;
4489 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4490 	if (set_large_file) {
4491 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4492 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4493 		if (err)
4494 			goto out_brelse;
4495 		ext4_update_dynamic_rev(sb);
4496 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4497 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4498 		ext4_handle_sync(handle);
4499 		err = ext4_handle_dirty_super(handle, sb);
4500 	}
4501 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4502 out_brelse:
4503 	brelse(bh);
4504 	ext4_std_error(inode->i_sb, err);
4505 	return err;
4506 }
4507 
4508 /*
4509  * ext4_write_inode()
4510  *
4511  * We are called from a few places:
4512  *
4513  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4514  *   Here, there will be no transaction running. We wait for any running
4515  *   transaction to commit.
4516  *
4517  * - Within flush work (sys_sync(), kupdate and such).
4518  *   We wait on commit, if told to.
4519  *
4520  * - Within iput_final() -> write_inode_now()
4521  *   We wait on commit, if told to.
4522  *
4523  * In all cases it is actually safe for us to return without doing anything,
4524  * because the inode has been copied into a raw inode buffer in
4525  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4526  * writeback.
4527  *
4528  * Note that we are absolutely dependent upon all inode dirtiers doing the
4529  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4530  * which we are interested.
4531  *
4532  * It would be a bug for them to not do this.  The code:
4533  *
4534  *	mark_inode_dirty(inode)
4535  *	stuff();
4536  *	inode->i_size = expr;
4537  *
4538  * is in error because write_inode() could occur while `stuff()' is running,
4539  * and the new i_size will be lost.  Plus the inode will no longer be on the
4540  * superblock's dirty inode list.
4541  */
4542 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4543 {
4544 	int err;
4545 
4546 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4547 		return 0;
4548 
4549 	if (EXT4_SB(inode->i_sb)->s_journal) {
4550 		if (ext4_journal_current_handle()) {
4551 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4552 			dump_stack();
4553 			return -EIO;
4554 		}
4555 
4556 		/*
4557 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4558 		 * ext4_sync_fs() will force the commit after everything is
4559 		 * written.
4560 		 */
4561 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4562 			return 0;
4563 
4564 		err = ext4_force_commit(inode->i_sb);
4565 	} else {
4566 		struct ext4_iloc iloc;
4567 
4568 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4569 		if (err)
4570 			return err;
4571 		/*
4572 		 * sync(2) will flush the whole buffer cache. No need to do
4573 		 * it here separately for each inode.
4574 		 */
4575 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4576 			sync_dirty_buffer(iloc.bh);
4577 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4578 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4579 					 "IO error syncing inode");
4580 			err = -EIO;
4581 		}
4582 		brelse(iloc.bh);
4583 	}
4584 	return err;
4585 }
4586 
4587 /*
4588  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4589  * buffers that are attached to a page stradding i_size and are undergoing
4590  * commit. In that case we have to wait for commit to finish and try again.
4591  */
4592 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4593 {
4594 	struct page *page;
4595 	unsigned offset;
4596 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4597 	tid_t commit_tid = 0;
4598 	int ret;
4599 
4600 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4601 	/*
4602 	 * All buffers in the last page remain valid? Then there's nothing to
4603 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4604 	 * blocksize case
4605 	 */
4606 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4607 		return;
4608 	while (1) {
4609 		page = find_lock_page(inode->i_mapping,
4610 				      inode->i_size >> PAGE_CACHE_SHIFT);
4611 		if (!page)
4612 			return;
4613 		ret = __ext4_journalled_invalidatepage(page, offset,
4614 						PAGE_CACHE_SIZE - offset);
4615 		unlock_page(page);
4616 		page_cache_release(page);
4617 		if (ret != -EBUSY)
4618 			return;
4619 		commit_tid = 0;
4620 		read_lock(&journal->j_state_lock);
4621 		if (journal->j_committing_transaction)
4622 			commit_tid = journal->j_committing_transaction->t_tid;
4623 		read_unlock(&journal->j_state_lock);
4624 		if (commit_tid)
4625 			jbd2_log_wait_commit(journal, commit_tid);
4626 	}
4627 }
4628 
4629 /*
4630  * ext4_setattr()
4631  *
4632  * Called from notify_change.
4633  *
4634  * We want to trap VFS attempts to truncate the file as soon as
4635  * possible.  In particular, we want to make sure that when the VFS
4636  * shrinks i_size, we put the inode on the orphan list and modify
4637  * i_disksize immediately, so that during the subsequent flushing of
4638  * dirty pages and freeing of disk blocks, we can guarantee that any
4639  * commit will leave the blocks being flushed in an unused state on
4640  * disk.  (On recovery, the inode will get truncated and the blocks will
4641  * be freed, so we have a strong guarantee that no future commit will
4642  * leave these blocks visible to the user.)
4643  *
4644  * Another thing we have to assure is that if we are in ordered mode
4645  * and inode is still attached to the committing transaction, we must
4646  * we start writeout of all the dirty pages which are being truncated.
4647  * This way we are sure that all the data written in the previous
4648  * transaction are already on disk (truncate waits for pages under
4649  * writeback).
4650  *
4651  * Called with inode->i_mutex down.
4652  */
4653 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4654 {
4655 	struct inode *inode = d_inode(dentry);
4656 	int error, rc = 0;
4657 	int orphan = 0;
4658 	const unsigned int ia_valid = attr->ia_valid;
4659 
4660 	error = inode_change_ok(inode, attr);
4661 	if (error)
4662 		return error;
4663 
4664 	if (is_quota_modification(inode, attr))
4665 		dquot_initialize(inode);
4666 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4667 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4668 		handle_t *handle;
4669 
4670 		/* (user+group)*(old+new) structure, inode write (sb,
4671 		 * inode block, ? - but truncate inode update has it) */
4672 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4673 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4674 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4675 		if (IS_ERR(handle)) {
4676 			error = PTR_ERR(handle);
4677 			goto err_out;
4678 		}
4679 		error = dquot_transfer(inode, attr);
4680 		if (error) {
4681 			ext4_journal_stop(handle);
4682 			return error;
4683 		}
4684 		/* Update corresponding info in inode so that everything is in
4685 		 * one transaction */
4686 		if (attr->ia_valid & ATTR_UID)
4687 			inode->i_uid = attr->ia_uid;
4688 		if (attr->ia_valid & ATTR_GID)
4689 			inode->i_gid = attr->ia_gid;
4690 		error = ext4_mark_inode_dirty(handle, inode);
4691 		ext4_journal_stop(handle);
4692 	}
4693 
4694 	if (attr->ia_valid & ATTR_SIZE) {
4695 		handle_t *handle;
4696 		loff_t oldsize = inode->i_size;
4697 		int shrink = (attr->ia_size <= inode->i_size);
4698 
4699 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4700 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4701 
4702 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4703 				return -EFBIG;
4704 		}
4705 		if (!S_ISREG(inode->i_mode))
4706 			return -EINVAL;
4707 
4708 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4709 			inode_inc_iversion(inode);
4710 
4711 		if (ext4_should_order_data(inode) &&
4712 		    (attr->ia_size < inode->i_size)) {
4713 			error = ext4_begin_ordered_truncate(inode,
4714 							    attr->ia_size);
4715 			if (error)
4716 				goto err_out;
4717 		}
4718 		if (attr->ia_size != inode->i_size) {
4719 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4720 			if (IS_ERR(handle)) {
4721 				error = PTR_ERR(handle);
4722 				goto err_out;
4723 			}
4724 			if (ext4_handle_valid(handle) && shrink) {
4725 				error = ext4_orphan_add(handle, inode);
4726 				orphan = 1;
4727 			}
4728 			down_write(&EXT4_I(inode)->i_data_sem);
4729 			EXT4_I(inode)->i_disksize = attr->ia_size;
4730 			rc = ext4_mark_inode_dirty(handle, inode);
4731 			if (!error)
4732 				error = rc;
4733 			/*
4734 			 * We have to update i_size under i_data_sem together
4735 			 * with i_disksize to avoid races with writeback code
4736 			 * running ext4_wb_update_i_disksize().
4737 			 */
4738 			if (!error)
4739 				i_size_write(inode, attr->ia_size);
4740 			up_write(&EXT4_I(inode)->i_data_sem);
4741 			ext4_journal_stop(handle);
4742 			if (error) {
4743 				if (orphan)
4744 					ext4_orphan_del(NULL, inode);
4745 				goto err_out;
4746 			}
4747 		}
4748 		if (!shrink)
4749 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4750 
4751 		/*
4752 		 * Blocks are going to be removed from the inode. Wait
4753 		 * for dio in flight.  Temporarily disable
4754 		 * dioread_nolock to prevent livelock.
4755 		 */
4756 		if (orphan) {
4757 			if (!ext4_should_journal_data(inode)) {
4758 				ext4_inode_block_unlocked_dio(inode);
4759 				inode_dio_wait(inode);
4760 				ext4_inode_resume_unlocked_dio(inode);
4761 			} else
4762 				ext4_wait_for_tail_page_commit(inode);
4763 		}
4764 		/*
4765 		 * Truncate pagecache after we've waited for commit
4766 		 * in data=journal mode to make pages freeable.
4767 		 */
4768 		truncate_pagecache(inode, inode->i_size);
4769 		if (shrink)
4770 			ext4_truncate(inode);
4771 	}
4772 
4773 	if (!rc) {
4774 		setattr_copy(inode, attr);
4775 		mark_inode_dirty(inode);
4776 	}
4777 
4778 	/*
4779 	 * If the call to ext4_truncate failed to get a transaction handle at
4780 	 * all, we need to clean up the in-core orphan list manually.
4781 	 */
4782 	if (orphan && inode->i_nlink)
4783 		ext4_orphan_del(NULL, inode);
4784 
4785 	if (!rc && (ia_valid & ATTR_MODE))
4786 		rc = posix_acl_chmod(inode, inode->i_mode);
4787 
4788 err_out:
4789 	ext4_std_error(inode->i_sb, error);
4790 	if (!error)
4791 		error = rc;
4792 	return error;
4793 }
4794 
4795 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4796 		 struct kstat *stat)
4797 {
4798 	struct inode *inode;
4799 	unsigned long long delalloc_blocks;
4800 
4801 	inode = d_inode(dentry);
4802 	generic_fillattr(inode, stat);
4803 
4804 	/*
4805 	 * If there is inline data in the inode, the inode will normally not
4806 	 * have data blocks allocated (it may have an external xattr block).
4807 	 * Report at least one sector for such files, so tools like tar, rsync,
4808 	 * others doen't incorrectly think the file is completely sparse.
4809 	 */
4810 	if (unlikely(ext4_has_inline_data(inode)))
4811 		stat->blocks += (stat->size + 511) >> 9;
4812 
4813 	/*
4814 	 * We can't update i_blocks if the block allocation is delayed
4815 	 * otherwise in the case of system crash before the real block
4816 	 * allocation is done, we will have i_blocks inconsistent with
4817 	 * on-disk file blocks.
4818 	 * We always keep i_blocks updated together with real
4819 	 * allocation. But to not confuse with user, stat
4820 	 * will return the blocks that include the delayed allocation
4821 	 * blocks for this file.
4822 	 */
4823 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4824 				   EXT4_I(inode)->i_reserved_data_blocks);
4825 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4826 	return 0;
4827 }
4828 
4829 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4830 				   int pextents)
4831 {
4832 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4833 		return ext4_ind_trans_blocks(inode, lblocks);
4834 	return ext4_ext_index_trans_blocks(inode, pextents);
4835 }
4836 
4837 /*
4838  * Account for index blocks, block groups bitmaps and block group
4839  * descriptor blocks if modify datablocks and index blocks
4840  * worse case, the indexs blocks spread over different block groups
4841  *
4842  * If datablocks are discontiguous, they are possible to spread over
4843  * different block groups too. If they are contiguous, with flexbg,
4844  * they could still across block group boundary.
4845  *
4846  * Also account for superblock, inode, quota and xattr blocks
4847  */
4848 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4849 				  int pextents)
4850 {
4851 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4852 	int gdpblocks;
4853 	int idxblocks;
4854 	int ret = 0;
4855 
4856 	/*
4857 	 * How many index blocks need to touch to map @lblocks logical blocks
4858 	 * to @pextents physical extents?
4859 	 */
4860 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4861 
4862 	ret = idxblocks;
4863 
4864 	/*
4865 	 * Now let's see how many group bitmaps and group descriptors need
4866 	 * to account
4867 	 */
4868 	groups = idxblocks + pextents;
4869 	gdpblocks = groups;
4870 	if (groups > ngroups)
4871 		groups = ngroups;
4872 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4873 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4874 
4875 	/* bitmaps and block group descriptor blocks */
4876 	ret += groups + gdpblocks;
4877 
4878 	/* Blocks for super block, inode, quota and xattr blocks */
4879 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4880 
4881 	return ret;
4882 }
4883 
4884 /*
4885  * Calculate the total number of credits to reserve to fit
4886  * the modification of a single pages into a single transaction,
4887  * which may include multiple chunks of block allocations.
4888  *
4889  * This could be called via ext4_write_begin()
4890  *
4891  * We need to consider the worse case, when
4892  * one new block per extent.
4893  */
4894 int ext4_writepage_trans_blocks(struct inode *inode)
4895 {
4896 	int bpp = ext4_journal_blocks_per_page(inode);
4897 	int ret;
4898 
4899 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4900 
4901 	/* Account for data blocks for journalled mode */
4902 	if (ext4_should_journal_data(inode))
4903 		ret += bpp;
4904 	return ret;
4905 }
4906 
4907 /*
4908  * Calculate the journal credits for a chunk of data modification.
4909  *
4910  * This is called from DIO, fallocate or whoever calling
4911  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4912  *
4913  * journal buffers for data blocks are not included here, as DIO
4914  * and fallocate do no need to journal data buffers.
4915  */
4916 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4917 {
4918 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4919 }
4920 
4921 /*
4922  * The caller must have previously called ext4_reserve_inode_write().
4923  * Give this, we know that the caller already has write access to iloc->bh.
4924  */
4925 int ext4_mark_iloc_dirty(handle_t *handle,
4926 			 struct inode *inode, struct ext4_iloc *iloc)
4927 {
4928 	int err = 0;
4929 
4930 	if (IS_I_VERSION(inode))
4931 		inode_inc_iversion(inode);
4932 
4933 	/* the do_update_inode consumes one bh->b_count */
4934 	get_bh(iloc->bh);
4935 
4936 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4937 	err = ext4_do_update_inode(handle, inode, iloc);
4938 	put_bh(iloc->bh);
4939 	return err;
4940 }
4941 
4942 /*
4943  * On success, We end up with an outstanding reference count against
4944  * iloc->bh.  This _must_ be cleaned up later.
4945  */
4946 
4947 int
4948 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4949 			 struct ext4_iloc *iloc)
4950 {
4951 	int err;
4952 
4953 	err = ext4_get_inode_loc(inode, iloc);
4954 	if (!err) {
4955 		BUFFER_TRACE(iloc->bh, "get_write_access");
4956 		err = ext4_journal_get_write_access(handle, iloc->bh);
4957 		if (err) {
4958 			brelse(iloc->bh);
4959 			iloc->bh = NULL;
4960 		}
4961 	}
4962 	ext4_std_error(inode->i_sb, err);
4963 	return err;
4964 }
4965 
4966 /*
4967  * Expand an inode by new_extra_isize bytes.
4968  * Returns 0 on success or negative error number on failure.
4969  */
4970 static int ext4_expand_extra_isize(struct inode *inode,
4971 				   unsigned int new_extra_isize,
4972 				   struct ext4_iloc iloc,
4973 				   handle_t *handle)
4974 {
4975 	struct ext4_inode *raw_inode;
4976 	struct ext4_xattr_ibody_header *header;
4977 
4978 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4979 		return 0;
4980 
4981 	raw_inode = ext4_raw_inode(&iloc);
4982 
4983 	header = IHDR(inode, raw_inode);
4984 
4985 	/* No extended attributes present */
4986 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4987 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4988 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4989 			new_extra_isize);
4990 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4991 		return 0;
4992 	}
4993 
4994 	/* try to expand with EAs present */
4995 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4996 					  raw_inode, handle);
4997 }
4998 
4999 /*
5000  * What we do here is to mark the in-core inode as clean with respect to inode
5001  * dirtiness (it may still be data-dirty).
5002  * This means that the in-core inode may be reaped by prune_icache
5003  * without having to perform any I/O.  This is a very good thing,
5004  * because *any* task may call prune_icache - even ones which
5005  * have a transaction open against a different journal.
5006  *
5007  * Is this cheating?  Not really.  Sure, we haven't written the
5008  * inode out, but prune_icache isn't a user-visible syncing function.
5009  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5010  * we start and wait on commits.
5011  */
5012 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5013 {
5014 	struct ext4_iloc iloc;
5015 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5016 	static unsigned int mnt_count;
5017 	int err, ret;
5018 
5019 	might_sleep();
5020 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5021 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5022 	if (ext4_handle_valid(handle) &&
5023 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5024 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5025 		/*
5026 		 * We need extra buffer credits since we may write into EA block
5027 		 * with this same handle. If journal_extend fails, then it will
5028 		 * only result in a minor loss of functionality for that inode.
5029 		 * If this is felt to be critical, then e2fsck should be run to
5030 		 * force a large enough s_min_extra_isize.
5031 		 */
5032 		if ((jbd2_journal_extend(handle,
5033 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5034 			ret = ext4_expand_extra_isize(inode,
5035 						      sbi->s_want_extra_isize,
5036 						      iloc, handle);
5037 			if (ret) {
5038 				ext4_set_inode_state(inode,
5039 						     EXT4_STATE_NO_EXPAND);
5040 				if (mnt_count !=
5041 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5042 					ext4_warning(inode->i_sb,
5043 					"Unable to expand inode %lu. Delete"
5044 					" some EAs or run e2fsck.",
5045 					inode->i_ino);
5046 					mnt_count =
5047 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5048 				}
5049 			}
5050 		}
5051 	}
5052 	if (!err)
5053 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5054 	return err;
5055 }
5056 
5057 /*
5058  * ext4_dirty_inode() is called from __mark_inode_dirty()
5059  *
5060  * We're really interested in the case where a file is being extended.
5061  * i_size has been changed by generic_commit_write() and we thus need
5062  * to include the updated inode in the current transaction.
5063  *
5064  * Also, dquot_alloc_block() will always dirty the inode when blocks
5065  * are allocated to the file.
5066  *
5067  * If the inode is marked synchronous, we don't honour that here - doing
5068  * so would cause a commit on atime updates, which we don't bother doing.
5069  * We handle synchronous inodes at the highest possible level.
5070  *
5071  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5072  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5073  * to copy into the on-disk inode structure are the timestamp files.
5074  */
5075 void ext4_dirty_inode(struct inode *inode, int flags)
5076 {
5077 	handle_t *handle;
5078 
5079 	if (flags == I_DIRTY_TIME)
5080 		return;
5081 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5082 	if (IS_ERR(handle))
5083 		goto out;
5084 
5085 	ext4_mark_inode_dirty(handle, inode);
5086 
5087 	ext4_journal_stop(handle);
5088 out:
5089 	return;
5090 }
5091 
5092 #if 0
5093 /*
5094  * Bind an inode's backing buffer_head into this transaction, to prevent
5095  * it from being flushed to disk early.  Unlike
5096  * ext4_reserve_inode_write, this leaves behind no bh reference and
5097  * returns no iloc structure, so the caller needs to repeat the iloc
5098  * lookup to mark the inode dirty later.
5099  */
5100 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5101 {
5102 	struct ext4_iloc iloc;
5103 
5104 	int err = 0;
5105 	if (handle) {
5106 		err = ext4_get_inode_loc(inode, &iloc);
5107 		if (!err) {
5108 			BUFFER_TRACE(iloc.bh, "get_write_access");
5109 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5110 			if (!err)
5111 				err = ext4_handle_dirty_metadata(handle,
5112 								 NULL,
5113 								 iloc.bh);
5114 			brelse(iloc.bh);
5115 		}
5116 	}
5117 	ext4_std_error(inode->i_sb, err);
5118 	return err;
5119 }
5120 #endif
5121 
5122 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5123 {
5124 	journal_t *journal;
5125 	handle_t *handle;
5126 	int err;
5127 
5128 	/*
5129 	 * We have to be very careful here: changing a data block's
5130 	 * journaling status dynamically is dangerous.  If we write a
5131 	 * data block to the journal, change the status and then delete
5132 	 * that block, we risk forgetting to revoke the old log record
5133 	 * from the journal and so a subsequent replay can corrupt data.
5134 	 * So, first we make sure that the journal is empty and that
5135 	 * nobody is changing anything.
5136 	 */
5137 
5138 	journal = EXT4_JOURNAL(inode);
5139 	if (!journal)
5140 		return 0;
5141 	if (is_journal_aborted(journal))
5142 		return -EROFS;
5143 	/* We have to allocate physical blocks for delalloc blocks
5144 	 * before flushing journal. otherwise delalloc blocks can not
5145 	 * be allocated any more. even more truncate on delalloc blocks
5146 	 * could trigger BUG by flushing delalloc blocks in journal.
5147 	 * There is no delalloc block in non-journal data mode.
5148 	 */
5149 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5150 		err = ext4_alloc_da_blocks(inode);
5151 		if (err < 0)
5152 			return err;
5153 	}
5154 
5155 	/* Wait for all existing dio workers */
5156 	ext4_inode_block_unlocked_dio(inode);
5157 	inode_dio_wait(inode);
5158 
5159 	jbd2_journal_lock_updates(journal);
5160 
5161 	/*
5162 	 * OK, there are no updates running now, and all cached data is
5163 	 * synced to disk.  We are now in a completely consistent state
5164 	 * which doesn't have anything in the journal, and we know that
5165 	 * no filesystem updates are running, so it is safe to modify
5166 	 * the inode's in-core data-journaling state flag now.
5167 	 */
5168 
5169 	if (val)
5170 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5171 	else {
5172 		err = jbd2_journal_flush(journal);
5173 		if (err < 0) {
5174 			jbd2_journal_unlock_updates(journal);
5175 			ext4_inode_resume_unlocked_dio(inode);
5176 			return err;
5177 		}
5178 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5179 	}
5180 	ext4_set_aops(inode);
5181 
5182 	jbd2_journal_unlock_updates(journal);
5183 	ext4_inode_resume_unlocked_dio(inode);
5184 
5185 	/* Finally we can mark the inode as dirty. */
5186 
5187 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5188 	if (IS_ERR(handle))
5189 		return PTR_ERR(handle);
5190 
5191 	err = ext4_mark_inode_dirty(handle, inode);
5192 	ext4_handle_sync(handle);
5193 	ext4_journal_stop(handle);
5194 	ext4_std_error(inode->i_sb, err);
5195 
5196 	return err;
5197 }
5198 
5199 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5200 {
5201 	return !buffer_mapped(bh);
5202 }
5203 
5204 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5205 {
5206 	struct page *page = vmf->page;
5207 	loff_t size;
5208 	unsigned long len;
5209 	int ret;
5210 	struct file *file = vma->vm_file;
5211 	struct inode *inode = file_inode(file);
5212 	struct address_space *mapping = inode->i_mapping;
5213 	handle_t *handle;
5214 	get_block_t *get_block;
5215 	int retries = 0;
5216 
5217 	sb_start_pagefault(inode->i_sb);
5218 	file_update_time(vma->vm_file);
5219 	/* Delalloc case is easy... */
5220 	if (test_opt(inode->i_sb, DELALLOC) &&
5221 	    !ext4_should_journal_data(inode) &&
5222 	    !ext4_nonda_switch(inode->i_sb)) {
5223 		do {
5224 			ret = __block_page_mkwrite(vma, vmf,
5225 						   ext4_da_get_block_prep);
5226 		} while (ret == -ENOSPC &&
5227 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5228 		goto out_ret;
5229 	}
5230 
5231 	lock_page(page);
5232 	size = i_size_read(inode);
5233 	/* Page got truncated from under us? */
5234 	if (page->mapping != mapping || page_offset(page) > size) {
5235 		unlock_page(page);
5236 		ret = VM_FAULT_NOPAGE;
5237 		goto out;
5238 	}
5239 
5240 	if (page->index == size >> PAGE_CACHE_SHIFT)
5241 		len = size & ~PAGE_CACHE_MASK;
5242 	else
5243 		len = PAGE_CACHE_SIZE;
5244 	/*
5245 	 * Return if we have all the buffers mapped. This avoids the need to do
5246 	 * journal_start/journal_stop which can block and take a long time
5247 	 */
5248 	if (page_has_buffers(page)) {
5249 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5250 					    0, len, NULL,
5251 					    ext4_bh_unmapped)) {
5252 			/* Wait so that we don't change page under IO */
5253 			wait_for_stable_page(page);
5254 			ret = VM_FAULT_LOCKED;
5255 			goto out;
5256 		}
5257 	}
5258 	unlock_page(page);
5259 	/* OK, we need to fill the hole... */
5260 	if (ext4_should_dioread_nolock(inode))
5261 		get_block = ext4_get_block_write;
5262 	else
5263 		get_block = ext4_get_block;
5264 retry_alloc:
5265 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5266 				    ext4_writepage_trans_blocks(inode));
5267 	if (IS_ERR(handle)) {
5268 		ret = VM_FAULT_SIGBUS;
5269 		goto out;
5270 	}
5271 	ret = __block_page_mkwrite(vma, vmf, get_block);
5272 	if (!ret && ext4_should_journal_data(inode)) {
5273 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5274 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5275 			unlock_page(page);
5276 			ret = VM_FAULT_SIGBUS;
5277 			ext4_journal_stop(handle);
5278 			goto out;
5279 		}
5280 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5281 	}
5282 	ext4_journal_stop(handle);
5283 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5284 		goto retry_alloc;
5285 out_ret:
5286 	ret = block_page_mkwrite_return(ret);
5287 out:
5288 	sb_end_pagefault(inode->i_sb);
5289 	return ret;
5290 }
5291