1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 141 int pextents); 142 143 /* 144 * Test whether an inode is a fast symlink. 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 146 */ 147 int ext4_inode_is_fast_symlink(struct inode *inode) 148 { 149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 return S_ISLNK(inode->i_mode) && inode->i_size && 159 (inode->i_size < EXT4_N_BLOCKS * 4); 160 } 161 162 /* 163 * Called at the last iput() if i_nlink is zero. 164 */ 165 void ext4_evict_inode(struct inode *inode) 166 { 167 handle_t *handle; 168 int err; 169 /* 170 * Credits for final inode cleanup and freeing: 171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 172 * (xattr block freeing), bitmap, group descriptor (inode freeing) 173 */ 174 int extra_credits = 6; 175 struct ext4_xattr_inode_array *ea_inode_array = NULL; 176 bool freeze_protected = false; 177 178 trace_ext4_evict_inode(inode); 179 180 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 181 ext4_evict_ea_inode(inode); 182 if (inode->i_nlink) { 183 /* 184 * When journalling data dirty buffers are tracked only in the 185 * journal. So although mm thinks everything is clean and 186 * ready for reaping the inode might still have some pages to 187 * write in the running transaction or waiting to be 188 * checkpointed. Thus calling jbd2_journal_invalidate_folio() 189 * (via truncate_inode_pages()) to discard these buffers can 190 * cause data loss. Also even if we did not discard these 191 * buffers, we would have no way to find them after the inode 192 * is reaped and thus user could see stale data if he tries to 193 * read them before the transaction is checkpointed. So be 194 * careful and force everything to disk here... We use 195 * ei->i_datasync_tid to store the newest transaction 196 * containing inode's data. 197 * 198 * Note that directories do not have this problem because they 199 * don't use page cache. 200 */ 201 if (inode->i_ino != EXT4_JOURNAL_INO && 202 ext4_should_journal_data(inode) && 203 S_ISREG(inode->i_mode) && inode->i_data.nrpages) { 204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 206 207 jbd2_complete_transaction(journal, commit_tid); 208 filemap_write_and_wait(&inode->i_data); 209 } 210 truncate_inode_pages_final(&inode->i_data); 211 212 goto no_delete; 213 } 214 215 if (is_bad_inode(inode)) 216 goto no_delete; 217 dquot_initialize(inode); 218 219 if (ext4_should_order_data(inode)) 220 ext4_begin_ordered_truncate(inode, 0); 221 truncate_inode_pages_final(&inode->i_data); 222 223 /* 224 * For inodes with journalled data, transaction commit could have 225 * dirtied the inode. And for inodes with dioread_nolock, unwritten 226 * extents converting worker could merge extents and also have dirtied 227 * the inode. Flush worker is ignoring it because of I_FREEING flag but 228 * we still need to remove the inode from the writeback lists. 229 */ 230 if (!list_empty_careful(&inode->i_io_list)) 231 inode_io_list_del(inode); 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it. When we are in a running transaction though, 236 * we are already protected against freezing and we cannot grab further 237 * protection due to lock ordering constraints. 238 */ 239 if (!ext4_journal_current_handle()) { 240 sb_start_intwrite(inode->i_sb); 241 freeze_protected = true; 242 } 243 244 if (!IS_NOQUOTA(inode)) 245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 246 247 /* 248 * Block bitmap, group descriptor, and inode are accounted in both 249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 250 */ 251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 252 ext4_blocks_for_truncate(inode) + extra_credits - 3); 253 if (IS_ERR(handle)) { 254 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 255 /* 256 * If we're going to skip the normal cleanup, we still need to 257 * make sure that the in-core orphan linked list is properly 258 * cleaned up. 259 */ 260 ext4_orphan_del(NULL, inode); 261 if (freeze_protected) 262 sb_end_intwrite(inode->i_sb); 263 goto no_delete; 264 } 265 266 if (IS_SYNC(inode)) 267 ext4_handle_sync(handle); 268 269 /* 270 * Set inode->i_size to 0 before calling ext4_truncate(). We need 271 * special handling of symlinks here because i_size is used to 272 * determine whether ext4_inode_info->i_data contains symlink data or 273 * block mappings. Setting i_size to 0 will remove its fast symlink 274 * status. Erase i_data so that it becomes a valid empty block map. 275 */ 276 if (ext4_inode_is_fast_symlink(inode)) 277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 278 inode->i_size = 0; 279 err = ext4_mark_inode_dirty(handle, inode); 280 if (err) { 281 ext4_warning(inode->i_sb, 282 "couldn't mark inode dirty (err %d)", err); 283 goto stop_handle; 284 } 285 if (inode->i_blocks) { 286 err = ext4_truncate(inode); 287 if (err) { 288 ext4_error_err(inode->i_sb, -err, 289 "couldn't truncate inode %lu (err %d)", 290 inode->i_ino, err); 291 goto stop_handle; 292 } 293 } 294 295 /* Remove xattr references. */ 296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 297 extra_credits); 298 if (err) { 299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 300 stop_handle: 301 ext4_journal_stop(handle); 302 ext4_orphan_del(NULL, inode); 303 if (freeze_protected) 304 sb_end_intwrite(inode->i_sb); 305 ext4_xattr_inode_array_free(ea_inode_array); 306 goto no_delete; 307 } 308 309 /* 310 * Kill off the orphan record which ext4_truncate created. 311 * AKPM: I think this can be inside the above `if'. 312 * Note that ext4_orphan_del() has to be able to cope with the 313 * deletion of a non-existent orphan - this is because we don't 314 * know if ext4_truncate() actually created an orphan record. 315 * (Well, we could do this if we need to, but heck - it works) 316 */ 317 ext4_orphan_del(handle, inode); 318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 319 320 /* 321 * One subtle ordering requirement: if anything has gone wrong 322 * (transaction abort, IO errors, whatever), then we can still 323 * do these next steps (the fs will already have been marked as 324 * having errors), but we can't free the inode if the mark_dirty 325 * fails. 326 */ 327 if (ext4_mark_inode_dirty(handle, inode)) 328 /* If that failed, just do the required in-core inode clear. */ 329 ext4_clear_inode(inode); 330 else 331 ext4_free_inode(handle, inode); 332 ext4_journal_stop(handle); 333 if (freeze_protected) 334 sb_end_intwrite(inode->i_sb); 335 ext4_xattr_inode_array_free(ea_inode_array); 336 return; 337 no_delete: 338 /* 339 * Check out some where else accidentally dirty the evicting inode, 340 * which may probably cause inode use-after-free issues later. 341 */ 342 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 343 344 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 345 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 346 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 347 } 348 349 #ifdef CONFIG_QUOTA 350 qsize_t *ext4_get_reserved_space(struct inode *inode) 351 { 352 return &EXT4_I(inode)->i_reserved_quota; 353 } 354 #endif 355 356 /* 357 * Called with i_data_sem down, which is important since we can call 358 * ext4_discard_preallocations() from here. 359 */ 360 void ext4_da_update_reserve_space(struct inode *inode, 361 int used, int quota_claim) 362 { 363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 364 struct ext4_inode_info *ei = EXT4_I(inode); 365 366 spin_lock(&ei->i_block_reservation_lock); 367 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 368 if (unlikely(used > ei->i_reserved_data_blocks)) { 369 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 370 "with only %d reserved data blocks", 371 __func__, inode->i_ino, used, 372 ei->i_reserved_data_blocks); 373 WARN_ON(1); 374 used = ei->i_reserved_data_blocks; 375 } 376 377 /* Update per-inode reservations */ 378 ei->i_reserved_data_blocks -= used; 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 380 381 spin_unlock(&ei->i_block_reservation_lock); 382 383 /* Update quota subsystem for data blocks */ 384 if (quota_claim) 385 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 386 else { 387 /* 388 * We did fallocate with an offset that is already delayed 389 * allocated. So on delayed allocated writeback we should 390 * not re-claim the quota for fallocated blocks. 391 */ 392 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 393 } 394 395 /* 396 * If we have done all the pending block allocations and if 397 * there aren't any writers on the inode, we can discard the 398 * inode's preallocations. 399 */ 400 if ((ei->i_reserved_data_blocks == 0) && 401 !inode_is_open_for_write(inode)) 402 ext4_discard_preallocations(inode, 0); 403 } 404 405 static int __check_block_validity(struct inode *inode, const char *func, 406 unsigned int line, 407 struct ext4_map_blocks *map) 408 { 409 if (ext4_has_feature_journal(inode->i_sb) && 410 (inode->i_ino == 411 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 412 return 0; 413 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 414 ext4_error_inode(inode, func, line, map->m_pblk, 415 "lblock %lu mapped to illegal pblock %llu " 416 "(length %d)", (unsigned long) map->m_lblk, 417 map->m_pblk, map->m_len); 418 return -EFSCORRUPTED; 419 } 420 return 0; 421 } 422 423 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 424 ext4_lblk_t len) 425 { 426 int ret; 427 428 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 429 return fscrypt_zeroout_range(inode, lblk, pblk, len); 430 431 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 432 if (ret > 0) 433 ret = 0; 434 435 return ret; 436 } 437 438 #define check_block_validity(inode, map) \ 439 __check_block_validity((inode), __func__, __LINE__, (map)) 440 441 #ifdef ES_AGGRESSIVE_TEST 442 static void ext4_map_blocks_es_recheck(handle_t *handle, 443 struct inode *inode, 444 struct ext4_map_blocks *es_map, 445 struct ext4_map_blocks *map, 446 int flags) 447 { 448 int retval; 449 450 map->m_flags = 0; 451 /* 452 * There is a race window that the result is not the same. 453 * e.g. xfstests #223 when dioread_nolock enables. The reason 454 * is that we lookup a block mapping in extent status tree with 455 * out taking i_data_sem. So at the time the unwritten extent 456 * could be converted. 457 */ 458 down_read(&EXT4_I(inode)->i_data_sem); 459 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 460 retval = ext4_ext_map_blocks(handle, inode, map, 0); 461 } else { 462 retval = ext4_ind_map_blocks(handle, inode, map, 0); 463 } 464 up_read((&EXT4_I(inode)->i_data_sem)); 465 466 /* 467 * We don't check m_len because extent will be collpased in status 468 * tree. So the m_len might not equal. 469 */ 470 if (es_map->m_lblk != map->m_lblk || 471 es_map->m_flags != map->m_flags || 472 es_map->m_pblk != map->m_pblk) { 473 printk("ES cache assertion failed for inode: %lu " 474 "es_cached ex [%d/%d/%llu/%x] != " 475 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 476 inode->i_ino, es_map->m_lblk, es_map->m_len, 477 es_map->m_pblk, es_map->m_flags, map->m_lblk, 478 map->m_len, map->m_pblk, map->m_flags, 479 retval, flags); 480 } 481 } 482 #endif /* ES_AGGRESSIVE_TEST */ 483 484 /* 485 * The ext4_map_blocks() function tries to look up the requested blocks, 486 * and returns if the blocks are already mapped. 487 * 488 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 489 * and store the allocated blocks in the result buffer head and mark it 490 * mapped. 491 * 492 * If file type is extents based, it will call ext4_ext_map_blocks(), 493 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 494 * based files 495 * 496 * On success, it returns the number of blocks being mapped or allocated. if 497 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 498 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 499 * 500 * It returns 0 if plain look up failed (blocks have not been allocated), in 501 * that case, @map is returned as unmapped but we still do fill map->m_len to 502 * indicate the length of a hole starting at map->m_lblk. 503 * 504 * It returns the error in case of allocation failure. 505 */ 506 int ext4_map_blocks(handle_t *handle, struct inode *inode, 507 struct ext4_map_blocks *map, int flags) 508 { 509 struct extent_status es; 510 int retval; 511 int ret = 0; 512 #ifdef ES_AGGRESSIVE_TEST 513 struct ext4_map_blocks orig_map; 514 515 memcpy(&orig_map, map, sizeof(*map)); 516 #endif 517 518 map->m_flags = 0; 519 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 520 flags, map->m_len, (unsigned long) map->m_lblk); 521 522 /* 523 * ext4_map_blocks returns an int, and m_len is an unsigned int 524 */ 525 if (unlikely(map->m_len > INT_MAX)) 526 map->m_len = INT_MAX; 527 528 /* We can handle the block number less than EXT_MAX_BLOCKS */ 529 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 530 return -EFSCORRUPTED; 531 532 /* Lookup extent status tree firstly */ 533 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 534 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 535 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 536 map->m_pblk = ext4_es_pblock(&es) + 537 map->m_lblk - es.es_lblk; 538 map->m_flags |= ext4_es_is_written(&es) ? 539 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 540 retval = es.es_len - (map->m_lblk - es.es_lblk); 541 if (retval > map->m_len) 542 retval = map->m_len; 543 map->m_len = retval; 544 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 545 map->m_pblk = 0; 546 retval = es.es_len - (map->m_lblk - es.es_lblk); 547 if (retval > map->m_len) 548 retval = map->m_len; 549 map->m_len = retval; 550 retval = 0; 551 } else { 552 BUG(); 553 } 554 555 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 556 return retval; 557 #ifdef ES_AGGRESSIVE_TEST 558 ext4_map_blocks_es_recheck(handle, inode, map, 559 &orig_map, flags); 560 #endif 561 goto found; 562 } 563 /* 564 * In the query cache no-wait mode, nothing we can do more if we 565 * cannot find extent in the cache. 566 */ 567 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 568 return 0; 569 570 /* 571 * Try to see if we can get the block without requesting a new 572 * file system block. 573 */ 574 down_read(&EXT4_I(inode)->i_data_sem); 575 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 576 retval = ext4_ext_map_blocks(handle, inode, map, 0); 577 } else { 578 retval = ext4_ind_map_blocks(handle, inode, map, 0); 579 } 580 if (retval > 0) { 581 unsigned int status; 582 583 if (unlikely(retval != map->m_len)) { 584 ext4_warning(inode->i_sb, 585 "ES len assertion failed for inode " 586 "%lu: retval %d != map->m_len %d", 587 inode->i_ino, retval, map->m_len); 588 WARN_ON(1); 589 } 590 591 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 592 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 593 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 594 !(status & EXTENT_STATUS_WRITTEN) && 595 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 596 map->m_lblk + map->m_len - 1)) 597 status |= EXTENT_STATUS_DELAYED; 598 ret = ext4_es_insert_extent(inode, map->m_lblk, 599 map->m_len, map->m_pblk, status); 600 if (ret < 0) 601 retval = ret; 602 } 603 up_read((&EXT4_I(inode)->i_data_sem)); 604 605 found: 606 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 607 ret = check_block_validity(inode, map); 608 if (ret != 0) 609 return ret; 610 } 611 612 /* If it is only a block(s) look up */ 613 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 614 return retval; 615 616 /* 617 * Returns if the blocks have already allocated 618 * 619 * Note that if blocks have been preallocated 620 * ext4_ext_get_block() returns the create = 0 621 * with buffer head unmapped. 622 */ 623 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 624 /* 625 * If we need to convert extent to unwritten 626 * we continue and do the actual work in 627 * ext4_ext_map_blocks() 628 */ 629 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 630 return retval; 631 632 /* 633 * Here we clear m_flags because after allocating an new extent, 634 * it will be set again. 635 */ 636 map->m_flags &= ~EXT4_MAP_FLAGS; 637 638 /* 639 * New blocks allocate and/or writing to unwritten extent 640 * will possibly result in updating i_data, so we take 641 * the write lock of i_data_sem, and call get_block() 642 * with create == 1 flag. 643 */ 644 down_write(&EXT4_I(inode)->i_data_sem); 645 646 /* 647 * We need to check for EXT4 here because migrate 648 * could have changed the inode type in between 649 */ 650 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 651 retval = ext4_ext_map_blocks(handle, inode, map, flags); 652 } else { 653 retval = ext4_ind_map_blocks(handle, inode, map, flags); 654 655 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 656 /* 657 * We allocated new blocks which will result in 658 * i_data's format changing. Force the migrate 659 * to fail by clearing migrate flags 660 */ 661 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 662 } 663 664 /* 665 * Update reserved blocks/metadata blocks after successful 666 * block allocation which had been deferred till now. We don't 667 * support fallocate for non extent files. So we can update 668 * reserve space here. 669 */ 670 if ((retval > 0) && 671 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 672 ext4_da_update_reserve_space(inode, retval, 1); 673 } 674 675 if (retval > 0) { 676 unsigned int status; 677 678 if (unlikely(retval != map->m_len)) { 679 ext4_warning(inode->i_sb, 680 "ES len assertion failed for inode " 681 "%lu: retval %d != map->m_len %d", 682 inode->i_ino, retval, map->m_len); 683 WARN_ON(1); 684 } 685 686 /* 687 * We have to zeroout blocks before inserting them into extent 688 * status tree. Otherwise someone could look them up there and 689 * use them before they are really zeroed. We also have to 690 * unmap metadata before zeroing as otherwise writeback can 691 * overwrite zeros with stale data from block device. 692 */ 693 if (flags & EXT4_GET_BLOCKS_ZERO && 694 map->m_flags & EXT4_MAP_MAPPED && 695 map->m_flags & EXT4_MAP_NEW) { 696 ret = ext4_issue_zeroout(inode, map->m_lblk, 697 map->m_pblk, map->m_len); 698 if (ret) { 699 retval = ret; 700 goto out_sem; 701 } 702 } 703 704 /* 705 * If the extent has been zeroed out, we don't need to update 706 * extent status tree. 707 */ 708 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 709 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 710 if (ext4_es_is_written(&es)) 711 goto out_sem; 712 } 713 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 714 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 715 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 716 !(status & EXTENT_STATUS_WRITTEN) && 717 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 718 map->m_lblk + map->m_len - 1)) 719 status |= EXTENT_STATUS_DELAYED; 720 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 721 map->m_pblk, status); 722 if (ret < 0) { 723 retval = ret; 724 goto out_sem; 725 } 726 } 727 728 out_sem: 729 up_write((&EXT4_I(inode)->i_data_sem)); 730 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 731 ret = check_block_validity(inode, map); 732 if (ret != 0) 733 return ret; 734 735 /* 736 * Inodes with freshly allocated blocks where contents will be 737 * visible after transaction commit must be on transaction's 738 * ordered data list. 739 */ 740 if (map->m_flags & EXT4_MAP_NEW && 741 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 742 !(flags & EXT4_GET_BLOCKS_ZERO) && 743 !ext4_is_quota_file(inode) && 744 ext4_should_order_data(inode)) { 745 loff_t start_byte = 746 (loff_t)map->m_lblk << inode->i_blkbits; 747 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 748 749 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 750 ret = ext4_jbd2_inode_add_wait(handle, inode, 751 start_byte, length); 752 else 753 ret = ext4_jbd2_inode_add_write(handle, inode, 754 start_byte, length); 755 if (ret) 756 return ret; 757 } 758 } 759 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 760 map->m_flags & EXT4_MAP_MAPPED)) 761 ext4_fc_track_range(handle, inode, map->m_lblk, 762 map->m_lblk + map->m_len - 1); 763 if (retval < 0) 764 ext_debug(inode, "failed with err %d\n", retval); 765 return retval; 766 } 767 768 /* 769 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 770 * we have to be careful as someone else may be manipulating b_state as well. 771 */ 772 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 773 { 774 unsigned long old_state; 775 unsigned long new_state; 776 777 flags &= EXT4_MAP_FLAGS; 778 779 /* Dummy buffer_head? Set non-atomically. */ 780 if (!bh->b_page) { 781 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 782 return; 783 } 784 /* 785 * Someone else may be modifying b_state. Be careful! This is ugly but 786 * once we get rid of using bh as a container for mapping information 787 * to pass to / from get_block functions, this can go away. 788 */ 789 do { 790 old_state = READ_ONCE(bh->b_state); 791 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 792 } while (unlikely( 793 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 794 } 795 796 static int _ext4_get_block(struct inode *inode, sector_t iblock, 797 struct buffer_head *bh, int flags) 798 { 799 struct ext4_map_blocks map; 800 int ret = 0; 801 802 if (ext4_has_inline_data(inode)) 803 return -ERANGE; 804 805 map.m_lblk = iblock; 806 map.m_len = bh->b_size >> inode->i_blkbits; 807 808 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 809 flags); 810 if (ret > 0) { 811 map_bh(bh, inode->i_sb, map.m_pblk); 812 ext4_update_bh_state(bh, map.m_flags); 813 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 814 ret = 0; 815 } else if (ret == 0) { 816 /* hole case, need to fill in bh->b_size */ 817 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 818 } 819 return ret; 820 } 821 822 int ext4_get_block(struct inode *inode, sector_t iblock, 823 struct buffer_head *bh, int create) 824 { 825 return _ext4_get_block(inode, iblock, bh, 826 create ? EXT4_GET_BLOCKS_CREATE : 0); 827 } 828 829 /* 830 * Get block function used when preparing for buffered write if we require 831 * creating an unwritten extent if blocks haven't been allocated. The extent 832 * will be converted to written after the IO is complete. 833 */ 834 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 835 struct buffer_head *bh_result, int create) 836 { 837 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 838 inode->i_ino, create); 839 return _ext4_get_block(inode, iblock, bh_result, 840 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 841 } 842 843 /* Maximum number of blocks we map for direct IO at once. */ 844 #define DIO_MAX_BLOCKS 4096 845 846 /* 847 * `handle' can be NULL if create is zero 848 */ 849 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 850 ext4_lblk_t block, int map_flags) 851 { 852 struct ext4_map_blocks map; 853 struct buffer_head *bh; 854 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 855 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 856 int err; 857 858 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 859 || handle != NULL || create == 0); 860 ASSERT(create == 0 || !nowait); 861 862 map.m_lblk = block; 863 map.m_len = 1; 864 err = ext4_map_blocks(handle, inode, &map, map_flags); 865 866 if (err == 0) 867 return create ? ERR_PTR(-ENOSPC) : NULL; 868 if (err < 0) 869 return ERR_PTR(err); 870 871 if (nowait) 872 return sb_find_get_block(inode->i_sb, map.m_pblk); 873 874 bh = sb_getblk(inode->i_sb, map.m_pblk); 875 if (unlikely(!bh)) 876 return ERR_PTR(-ENOMEM); 877 if (map.m_flags & EXT4_MAP_NEW) { 878 ASSERT(create != 0); 879 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 880 || (handle != NULL)); 881 882 /* 883 * Now that we do not always journal data, we should 884 * keep in mind whether this should always journal the 885 * new buffer as metadata. For now, regular file 886 * writes use ext4_get_block instead, so it's not a 887 * problem. 888 */ 889 lock_buffer(bh); 890 BUFFER_TRACE(bh, "call get_create_access"); 891 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 892 EXT4_JTR_NONE); 893 if (unlikely(err)) { 894 unlock_buffer(bh); 895 goto errout; 896 } 897 if (!buffer_uptodate(bh)) { 898 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 899 set_buffer_uptodate(bh); 900 } 901 unlock_buffer(bh); 902 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 903 err = ext4_handle_dirty_metadata(handle, inode, bh); 904 if (unlikely(err)) 905 goto errout; 906 } else 907 BUFFER_TRACE(bh, "not a new buffer"); 908 return bh; 909 errout: 910 brelse(bh); 911 return ERR_PTR(err); 912 } 913 914 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 915 ext4_lblk_t block, int map_flags) 916 { 917 struct buffer_head *bh; 918 int ret; 919 920 bh = ext4_getblk(handle, inode, block, map_flags); 921 if (IS_ERR(bh)) 922 return bh; 923 if (!bh || ext4_buffer_uptodate(bh)) 924 return bh; 925 926 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 927 if (ret) { 928 put_bh(bh); 929 return ERR_PTR(ret); 930 } 931 return bh; 932 } 933 934 /* Read a contiguous batch of blocks. */ 935 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 936 bool wait, struct buffer_head **bhs) 937 { 938 int i, err; 939 940 for (i = 0; i < bh_count; i++) { 941 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 942 if (IS_ERR(bhs[i])) { 943 err = PTR_ERR(bhs[i]); 944 bh_count = i; 945 goto out_brelse; 946 } 947 } 948 949 for (i = 0; i < bh_count; i++) 950 /* Note that NULL bhs[i] is valid because of holes. */ 951 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 952 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 953 954 if (!wait) 955 return 0; 956 957 for (i = 0; i < bh_count; i++) 958 if (bhs[i]) 959 wait_on_buffer(bhs[i]); 960 961 for (i = 0; i < bh_count; i++) { 962 if (bhs[i] && !buffer_uptodate(bhs[i])) { 963 err = -EIO; 964 goto out_brelse; 965 } 966 } 967 return 0; 968 969 out_brelse: 970 for (i = 0; i < bh_count; i++) { 971 brelse(bhs[i]); 972 bhs[i] = NULL; 973 } 974 return err; 975 } 976 977 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 978 struct buffer_head *head, 979 unsigned from, 980 unsigned to, 981 int *partial, 982 int (*fn)(handle_t *handle, struct inode *inode, 983 struct buffer_head *bh)) 984 { 985 struct buffer_head *bh; 986 unsigned block_start, block_end; 987 unsigned blocksize = head->b_size; 988 int err, ret = 0; 989 struct buffer_head *next; 990 991 for (bh = head, block_start = 0; 992 ret == 0 && (bh != head || !block_start); 993 block_start = block_end, bh = next) { 994 next = bh->b_this_page; 995 block_end = block_start + blocksize; 996 if (block_end <= from || block_start >= to) { 997 if (partial && !buffer_uptodate(bh)) 998 *partial = 1; 999 continue; 1000 } 1001 err = (*fn)(handle, inode, bh); 1002 if (!ret) 1003 ret = err; 1004 } 1005 return ret; 1006 } 1007 1008 /* 1009 * To preserve ordering, it is essential that the hole instantiation and 1010 * the data write be encapsulated in a single transaction. We cannot 1011 * close off a transaction and start a new one between the ext4_get_block() 1012 * and the commit_write(). So doing the jbd2_journal_start at the start of 1013 * prepare_write() is the right place. 1014 * 1015 * Also, this function can nest inside ext4_writepage(). In that case, we 1016 * *know* that ext4_writepage() has generated enough buffer credits to do the 1017 * whole page. So we won't block on the journal in that case, which is good, 1018 * because the caller may be PF_MEMALLOC. 1019 * 1020 * By accident, ext4 can be reentered when a transaction is open via 1021 * quota file writes. If we were to commit the transaction while thus 1022 * reentered, there can be a deadlock - we would be holding a quota 1023 * lock, and the commit would never complete if another thread had a 1024 * transaction open and was blocking on the quota lock - a ranking 1025 * violation. 1026 * 1027 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1028 * will _not_ run commit under these circumstances because handle->h_ref 1029 * is elevated. We'll still have enough credits for the tiny quotafile 1030 * write. 1031 */ 1032 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1033 struct buffer_head *bh) 1034 { 1035 int dirty = buffer_dirty(bh); 1036 int ret; 1037 1038 if (!buffer_mapped(bh) || buffer_freed(bh)) 1039 return 0; 1040 /* 1041 * __block_write_begin() could have dirtied some buffers. Clean 1042 * the dirty bit as jbd2_journal_get_write_access() could complain 1043 * otherwise about fs integrity issues. Setting of the dirty bit 1044 * by __block_write_begin() isn't a real problem here as we clear 1045 * the bit before releasing a page lock and thus writeback cannot 1046 * ever write the buffer. 1047 */ 1048 if (dirty) 1049 clear_buffer_dirty(bh); 1050 BUFFER_TRACE(bh, "get write access"); 1051 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1052 EXT4_JTR_NONE); 1053 if (!ret && dirty) 1054 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1055 return ret; 1056 } 1057 1058 #ifdef CONFIG_FS_ENCRYPTION 1059 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1060 get_block_t *get_block) 1061 { 1062 unsigned from = pos & (PAGE_SIZE - 1); 1063 unsigned to = from + len; 1064 struct inode *inode = page->mapping->host; 1065 unsigned block_start, block_end; 1066 sector_t block; 1067 int err = 0; 1068 unsigned blocksize = inode->i_sb->s_blocksize; 1069 unsigned bbits; 1070 struct buffer_head *bh, *head, *wait[2]; 1071 int nr_wait = 0; 1072 int i; 1073 1074 BUG_ON(!PageLocked(page)); 1075 BUG_ON(from > PAGE_SIZE); 1076 BUG_ON(to > PAGE_SIZE); 1077 BUG_ON(from > to); 1078 1079 if (!page_has_buffers(page)) 1080 create_empty_buffers(page, blocksize, 0); 1081 head = page_buffers(page); 1082 bbits = ilog2(blocksize); 1083 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1084 1085 for (bh = head, block_start = 0; bh != head || !block_start; 1086 block++, block_start = block_end, bh = bh->b_this_page) { 1087 block_end = block_start + blocksize; 1088 if (block_end <= from || block_start >= to) { 1089 if (PageUptodate(page)) { 1090 set_buffer_uptodate(bh); 1091 } 1092 continue; 1093 } 1094 if (buffer_new(bh)) 1095 clear_buffer_new(bh); 1096 if (!buffer_mapped(bh)) { 1097 WARN_ON(bh->b_size != blocksize); 1098 err = get_block(inode, block, bh, 1); 1099 if (err) 1100 break; 1101 if (buffer_new(bh)) { 1102 if (PageUptodate(page)) { 1103 clear_buffer_new(bh); 1104 set_buffer_uptodate(bh); 1105 mark_buffer_dirty(bh); 1106 continue; 1107 } 1108 if (block_end > to || block_start < from) 1109 zero_user_segments(page, to, block_end, 1110 block_start, from); 1111 continue; 1112 } 1113 } 1114 if (PageUptodate(page)) { 1115 set_buffer_uptodate(bh); 1116 continue; 1117 } 1118 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1119 !buffer_unwritten(bh) && 1120 (block_start < from || block_end > to)) { 1121 ext4_read_bh_lock(bh, 0, false); 1122 wait[nr_wait++] = bh; 1123 } 1124 } 1125 /* 1126 * If we issued read requests, let them complete. 1127 */ 1128 for (i = 0; i < nr_wait; i++) { 1129 wait_on_buffer(wait[i]); 1130 if (!buffer_uptodate(wait[i])) 1131 err = -EIO; 1132 } 1133 if (unlikely(err)) { 1134 page_zero_new_buffers(page, from, to); 1135 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1136 for (i = 0; i < nr_wait; i++) { 1137 int err2; 1138 1139 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1140 bh_offset(wait[i])); 1141 if (err2) { 1142 clear_buffer_uptodate(wait[i]); 1143 err = err2; 1144 } 1145 } 1146 } 1147 1148 return err; 1149 } 1150 #endif 1151 1152 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1153 loff_t pos, unsigned len, 1154 struct page **pagep, void **fsdata) 1155 { 1156 struct inode *inode = mapping->host; 1157 int ret, needed_blocks; 1158 handle_t *handle; 1159 int retries = 0; 1160 struct page *page; 1161 pgoff_t index; 1162 unsigned from, to; 1163 1164 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1165 return -EIO; 1166 1167 trace_ext4_write_begin(inode, pos, len); 1168 /* 1169 * Reserve one block more for addition to orphan list in case 1170 * we allocate blocks but write fails for some reason 1171 */ 1172 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1173 index = pos >> PAGE_SHIFT; 1174 from = pos & (PAGE_SIZE - 1); 1175 to = from + len; 1176 1177 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1178 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1179 pagep); 1180 if (ret < 0) 1181 return ret; 1182 if (ret == 1) 1183 return 0; 1184 } 1185 1186 /* 1187 * grab_cache_page_write_begin() can take a long time if the 1188 * system is thrashing due to memory pressure, or if the page 1189 * is being written back. So grab it first before we start 1190 * the transaction handle. This also allows us to allocate 1191 * the page (if needed) without using GFP_NOFS. 1192 */ 1193 retry_grab: 1194 page = grab_cache_page_write_begin(mapping, index); 1195 if (!page) 1196 return -ENOMEM; 1197 /* 1198 * The same as page allocation, we prealloc buffer heads before 1199 * starting the handle. 1200 */ 1201 if (!page_has_buffers(page)) 1202 create_empty_buffers(page, inode->i_sb->s_blocksize, 0); 1203 1204 unlock_page(page); 1205 1206 retry_journal: 1207 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1208 if (IS_ERR(handle)) { 1209 put_page(page); 1210 return PTR_ERR(handle); 1211 } 1212 1213 lock_page(page); 1214 if (page->mapping != mapping) { 1215 /* The page got truncated from under us */ 1216 unlock_page(page); 1217 put_page(page); 1218 ext4_journal_stop(handle); 1219 goto retry_grab; 1220 } 1221 /* In case writeback began while the page was unlocked */ 1222 wait_for_stable_page(page); 1223 1224 #ifdef CONFIG_FS_ENCRYPTION 1225 if (ext4_should_dioread_nolock(inode)) 1226 ret = ext4_block_write_begin(page, pos, len, 1227 ext4_get_block_unwritten); 1228 else 1229 ret = ext4_block_write_begin(page, pos, len, 1230 ext4_get_block); 1231 #else 1232 if (ext4_should_dioread_nolock(inode)) 1233 ret = __block_write_begin(page, pos, len, 1234 ext4_get_block_unwritten); 1235 else 1236 ret = __block_write_begin(page, pos, len, ext4_get_block); 1237 #endif 1238 if (!ret && ext4_should_journal_data(inode)) { 1239 ret = ext4_walk_page_buffers(handle, inode, 1240 page_buffers(page), from, to, NULL, 1241 do_journal_get_write_access); 1242 } 1243 1244 if (ret) { 1245 bool extended = (pos + len > inode->i_size) && 1246 !ext4_verity_in_progress(inode); 1247 1248 unlock_page(page); 1249 /* 1250 * __block_write_begin may have instantiated a few blocks 1251 * outside i_size. Trim these off again. Don't need 1252 * i_size_read because we hold i_rwsem. 1253 * 1254 * Add inode to orphan list in case we crash before 1255 * truncate finishes 1256 */ 1257 if (extended && ext4_can_truncate(inode)) 1258 ext4_orphan_add(handle, inode); 1259 1260 ext4_journal_stop(handle); 1261 if (extended) { 1262 ext4_truncate_failed_write(inode); 1263 /* 1264 * If truncate failed early the inode might 1265 * still be on the orphan list; we need to 1266 * make sure the inode is removed from the 1267 * orphan list in that case. 1268 */ 1269 if (inode->i_nlink) 1270 ext4_orphan_del(NULL, inode); 1271 } 1272 1273 if (ret == -ENOSPC && 1274 ext4_should_retry_alloc(inode->i_sb, &retries)) 1275 goto retry_journal; 1276 put_page(page); 1277 return ret; 1278 } 1279 *pagep = page; 1280 return ret; 1281 } 1282 1283 /* For write_end() in data=journal mode */ 1284 static int write_end_fn(handle_t *handle, struct inode *inode, 1285 struct buffer_head *bh) 1286 { 1287 int ret; 1288 if (!buffer_mapped(bh) || buffer_freed(bh)) 1289 return 0; 1290 set_buffer_uptodate(bh); 1291 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1292 clear_buffer_meta(bh); 1293 clear_buffer_prio(bh); 1294 return ret; 1295 } 1296 1297 /* 1298 * We need to pick up the new inode size which generic_commit_write gave us 1299 * `file' can be NULL - eg, when called from page_symlink(). 1300 * 1301 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1302 * buffers are managed internally. 1303 */ 1304 static int ext4_write_end(struct file *file, 1305 struct address_space *mapping, 1306 loff_t pos, unsigned len, unsigned copied, 1307 struct page *page, void *fsdata) 1308 { 1309 handle_t *handle = ext4_journal_current_handle(); 1310 struct inode *inode = mapping->host; 1311 loff_t old_size = inode->i_size; 1312 int ret = 0, ret2; 1313 int i_size_changed = 0; 1314 bool verity = ext4_verity_in_progress(inode); 1315 1316 trace_ext4_write_end(inode, pos, len, copied); 1317 1318 if (ext4_has_inline_data(inode) && 1319 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1320 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1321 1322 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1323 /* 1324 * it's important to update i_size while still holding page lock: 1325 * page writeout could otherwise come in and zero beyond i_size. 1326 * 1327 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1328 * blocks are being written past EOF, so skip the i_size update. 1329 */ 1330 if (!verity) 1331 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1332 unlock_page(page); 1333 put_page(page); 1334 1335 if (old_size < pos && !verity) 1336 pagecache_isize_extended(inode, old_size, pos); 1337 /* 1338 * Don't mark the inode dirty under page lock. First, it unnecessarily 1339 * makes the holding time of page lock longer. Second, it forces lock 1340 * ordering of page lock and transaction start for journaling 1341 * filesystems. 1342 */ 1343 if (i_size_changed) 1344 ret = ext4_mark_inode_dirty(handle, inode); 1345 1346 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1347 /* if we have allocated more blocks and copied 1348 * less. We will have blocks allocated outside 1349 * inode->i_size. So truncate them 1350 */ 1351 ext4_orphan_add(handle, inode); 1352 1353 ret2 = ext4_journal_stop(handle); 1354 if (!ret) 1355 ret = ret2; 1356 1357 if (pos + len > inode->i_size && !verity) { 1358 ext4_truncate_failed_write(inode); 1359 /* 1360 * If truncate failed early the inode might still be 1361 * on the orphan list; we need to make sure the inode 1362 * is removed from the orphan list in that case. 1363 */ 1364 if (inode->i_nlink) 1365 ext4_orphan_del(NULL, inode); 1366 } 1367 1368 return ret ? ret : copied; 1369 } 1370 1371 /* 1372 * This is a private version of page_zero_new_buffers() which doesn't 1373 * set the buffer to be dirty, since in data=journalled mode we need 1374 * to call ext4_handle_dirty_metadata() instead. 1375 */ 1376 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1377 struct inode *inode, 1378 struct page *page, 1379 unsigned from, unsigned to) 1380 { 1381 unsigned int block_start = 0, block_end; 1382 struct buffer_head *head, *bh; 1383 1384 bh = head = page_buffers(page); 1385 do { 1386 block_end = block_start + bh->b_size; 1387 if (buffer_new(bh)) { 1388 if (block_end > from && block_start < to) { 1389 if (!PageUptodate(page)) { 1390 unsigned start, size; 1391 1392 start = max(from, block_start); 1393 size = min(to, block_end) - start; 1394 1395 zero_user(page, start, size); 1396 write_end_fn(handle, inode, bh); 1397 } 1398 clear_buffer_new(bh); 1399 } 1400 } 1401 block_start = block_end; 1402 bh = bh->b_this_page; 1403 } while (bh != head); 1404 } 1405 1406 static int ext4_journalled_write_end(struct file *file, 1407 struct address_space *mapping, 1408 loff_t pos, unsigned len, unsigned copied, 1409 struct page *page, void *fsdata) 1410 { 1411 handle_t *handle = ext4_journal_current_handle(); 1412 struct inode *inode = mapping->host; 1413 loff_t old_size = inode->i_size; 1414 int ret = 0, ret2; 1415 int partial = 0; 1416 unsigned from, to; 1417 int size_changed = 0; 1418 bool verity = ext4_verity_in_progress(inode); 1419 1420 trace_ext4_journalled_write_end(inode, pos, len, copied); 1421 from = pos & (PAGE_SIZE - 1); 1422 to = from + len; 1423 1424 BUG_ON(!ext4_handle_valid(handle)); 1425 1426 if (ext4_has_inline_data(inode)) 1427 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1428 1429 if (unlikely(copied < len) && !PageUptodate(page)) { 1430 copied = 0; 1431 ext4_journalled_zero_new_buffers(handle, inode, page, from, to); 1432 } else { 1433 if (unlikely(copied < len)) 1434 ext4_journalled_zero_new_buffers(handle, inode, page, 1435 from + copied, to); 1436 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page), 1437 from, from + copied, &partial, 1438 write_end_fn); 1439 if (!partial) 1440 SetPageUptodate(page); 1441 } 1442 if (!verity) 1443 size_changed = ext4_update_inode_size(inode, pos + copied); 1444 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1445 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1446 unlock_page(page); 1447 put_page(page); 1448 1449 if (old_size < pos && !verity) 1450 pagecache_isize_extended(inode, old_size, pos); 1451 1452 if (size_changed) { 1453 ret2 = ext4_mark_inode_dirty(handle, inode); 1454 if (!ret) 1455 ret = ret2; 1456 } 1457 1458 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1459 /* if we have allocated more blocks and copied 1460 * less. We will have blocks allocated outside 1461 * inode->i_size. So truncate them 1462 */ 1463 ext4_orphan_add(handle, inode); 1464 1465 ret2 = ext4_journal_stop(handle); 1466 if (!ret) 1467 ret = ret2; 1468 if (pos + len > inode->i_size && !verity) { 1469 ext4_truncate_failed_write(inode); 1470 /* 1471 * If truncate failed early the inode might still be 1472 * on the orphan list; we need to make sure the inode 1473 * is removed from the orphan list in that case. 1474 */ 1475 if (inode->i_nlink) 1476 ext4_orphan_del(NULL, inode); 1477 } 1478 1479 return ret ? ret : copied; 1480 } 1481 1482 /* 1483 * Reserve space for a single cluster 1484 */ 1485 static int ext4_da_reserve_space(struct inode *inode) 1486 { 1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1488 struct ext4_inode_info *ei = EXT4_I(inode); 1489 int ret; 1490 1491 /* 1492 * We will charge metadata quota at writeout time; this saves 1493 * us from metadata over-estimation, though we may go over by 1494 * a small amount in the end. Here we just reserve for data. 1495 */ 1496 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1497 if (ret) 1498 return ret; 1499 1500 spin_lock(&ei->i_block_reservation_lock); 1501 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1502 spin_unlock(&ei->i_block_reservation_lock); 1503 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1504 return -ENOSPC; 1505 } 1506 ei->i_reserved_data_blocks++; 1507 trace_ext4_da_reserve_space(inode); 1508 spin_unlock(&ei->i_block_reservation_lock); 1509 1510 return 0; /* success */ 1511 } 1512 1513 void ext4_da_release_space(struct inode *inode, int to_free) 1514 { 1515 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1516 struct ext4_inode_info *ei = EXT4_I(inode); 1517 1518 if (!to_free) 1519 return; /* Nothing to release, exit */ 1520 1521 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1522 1523 trace_ext4_da_release_space(inode, to_free); 1524 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1525 /* 1526 * if there aren't enough reserved blocks, then the 1527 * counter is messed up somewhere. Since this 1528 * function is called from invalidate page, it's 1529 * harmless to return without any action. 1530 */ 1531 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1532 "ino %lu, to_free %d with only %d reserved " 1533 "data blocks", inode->i_ino, to_free, 1534 ei->i_reserved_data_blocks); 1535 WARN_ON(1); 1536 to_free = ei->i_reserved_data_blocks; 1537 } 1538 ei->i_reserved_data_blocks -= to_free; 1539 1540 /* update fs dirty data blocks counter */ 1541 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1542 1543 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1544 1545 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1546 } 1547 1548 /* 1549 * Delayed allocation stuff 1550 */ 1551 1552 struct mpage_da_data { 1553 /* These are input fields for ext4_do_writepages() */ 1554 struct inode *inode; 1555 struct writeback_control *wbc; 1556 unsigned int can_map:1; /* Can writepages call map blocks? */ 1557 1558 /* These are internal state of ext4_do_writepages() */ 1559 pgoff_t first_page; /* The first page to write */ 1560 pgoff_t next_page; /* Current page to examine */ 1561 pgoff_t last_page; /* Last page to examine */ 1562 /* 1563 * Extent to map - this can be after first_page because that can be 1564 * fully mapped. We somewhat abuse m_flags to store whether the extent 1565 * is delalloc or unwritten. 1566 */ 1567 struct ext4_map_blocks map; 1568 struct ext4_io_submit io_submit; /* IO submission data */ 1569 unsigned int do_map:1; 1570 unsigned int scanned_until_end:1; 1571 }; 1572 1573 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1574 bool invalidate) 1575 { 1576 unsigned nr, i; 1577 pgoff_t index, end; 1578 struct folio_batch fbatch; 1579 struct inode *inode = mpd->inode; 1580 struct address_space *mapping = inode->i_mapping; 1581 1582 /* This is necessary when next_page == 0. */ 1583 if (mpd->first_page >= mpd->next_page) 1584 return; 1585 1586 mpd->scanned_until_end = 0; 1587 index = mpd->first_page; 1588 end = mpd->next_page - 1; 1589 if (invalidate) { 1590 ext4_lblk_t start, last; 1591 start = index << (PAGE_SHIFT - inode->i_blkbits); 1592 last = end << (PAGE_SHIFT - inode->i_blkbits); 1593 1594 /* 1595 * avoid racing with extent status tree scans made by 1596 * ext4_insert_delayed_block() 1597 */ 1598 down_write(&EXT4_I(inode)->i_data_sem); 1599 ext4_es_remove_extent(inode, start, last - start + 1); 1600 up_write(&EXT4_I(inode)->i_data_sem); 1601 } 1602 1603 folio_batch_init(&fbatch); 1604 while (index <= end) { 1605 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1606 if (nr == 0) 1607 break; 1608 for (i = 0; i < nr; i++) { 1609 struct folio *folio = fbatch.folios[i]; 1610 1611 if (folio->index < mpd->first_page) 1612 continue; 1613 if (folio->index + folio_nr_pages(folio) - 1 > end) 1614 continue; 1615 BUG_ON(!folio_test_locked(folio)); 1616 BUG_ON(folio_test_writeback(folio)); 1617 if (invalidate) { 1618 if (folio_mapped(folio)) 1619 folio_clear_dirty_for_io(folio); 1620 block_invalidate_folio(folio, 0, 1621 folio_size(folio)); 1622 folio_clear_uptodate(folio); 1623 } 1624 folio_unlock(folio); 1625 } 1626 folio_batch_release(&fbatch); 1627 } 1628 } 1629 1630 static void ext4_print_free_blocks(struct inode *inode) 1631 { 1632 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1633 struct super_block *sb = inode->i_sb; 1634 struct ext4_inode_info *ei = EXT4_I(inode); 1635 1636 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1637 EXT4_C2B(EXT4_SB(inode->i_sb), 1638 ext4_count_free_clusters(sb))); 1639 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1640 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1641 (long long) EXT4_C2B(EXT4_SB(sb), 1642 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1643 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1644 (long long) EXT4_C2B(EXT4_SB(sb), 1645 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1646 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1647 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1648 ei->i_reserved_data_blocks); 1649 return; 1650 } 1651 1652 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode, 1653 struct buffer_head *bh) 1654 { 1655 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1656 } 1657 1658 /* 1659 * ext4_insert_delayed_block - adds a delayed block to the extents status 1660 * tree, incrementing the reserved cluster/block 1661 * count or making a pending reservation 1662 * where needed 1663 * 1664 * @inode - file containing the newly added block 1665 * @lblk - logical block to be added 1666 * 1667 * Returns 0 on success, negative error code on failure. 1668 */ 1669 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1670 { 1671 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1672 int ret; 1673 bool allocated = false; 1674 bool reserved = false; 1675 1676 /* 1677 * If the cluster containing lblk is shared with a delayed, 1678 * written, or unwritten extent in a bigalloc file system, it's 1679 * already been accounted for and does not need to be reserved. 1680 * A pending reservation must be made for the cluster if it's 1681 * shared with a written or unwritten extent and doesn't already 1682 * have one. Written and unwritten extents can be purged from the 1683 * extents status tree if the system is under memory pressure, so 1684 * it's necessary to examine the extent tree if a search of the 1685 * extents status tree doesn't get a match. 1686 */ 1687 if (sbi->s_cluster_ratio == 1) { 1688 ret = ext4_da_reserve_space(inode); 1689 if (ret != 0) /* ENOSPC */ 1690 goto errout; 1691 reserved = true; 1692 } else { /* bigalloc */ 1693 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1694 if (!ext4_es_scan_clu(inode, 1695 &ext4_es_is_mapped, lblk)) { 1696 ret = ext4_clu_mapped(inode, 1697 EXT4_B2C(sbi, lblk)); 1698 if (ret < 0) 1699 goto errout; 1700 if (ret == 0) { 1701 ret = ext4_da_reserve_space(inode); 1702 if (ret != 0) /* ENOSPC */ 1703 goto errout; 1704 reserved = true; 1705 } else { 1706 allocated = true; 1707 } 1708 } else { 1709 allocated = true; 1710 } 1711 } 1712 } 1713 1714 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1715 if (ret && reserved) 1716 ext4_da_release_space(inode, 1); 1717 1718 errout: 1719 return ret; 1720 } 1721 1722 /* 1723 * This function is grabs code from the very beginning of 1724 * ext4_map_blocks, but assumes that the caller is from delayed write 1725 * time. This function looks up the requested blocks and sets the 1726 * buffer delay bit under the protection of i_data_sem. 1727 */ 1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1729 struct ext4_map_blocks *map, 1730 struct buffer_head *bh) 1731 { 1732 struct extent_status es; 1733 int retval; 1734 sector_t invalid_block = ~((sector_t) 0xffff); 1735 #ifdef ES_AGGRESSIVE_TEST 1736 struct ext4_map_blocks orig_map; 1737 1738 memcpy(&orig_map, map, sizeof(*map)); 1739 #endif 1740 1741 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1742 invalid_block = ~0; 1743 1744 map->m_flags = 0; 1745 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1746 (unsigned long) map->m_lblk); 1747 1748 /* Lookup extent status tree firstly */ 1749 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1750 if (ext4_es_is_hole(&es)) { 1751 retval = 0; 1752 down_read(&EXT4_I(inode)->i_data_sem); 1753 goto add_delayed; 1754 } 1755 1756 /* 1757 * Delayed extent could be allocated by fallocate. 1758 * So we need to check it. 1759 */ 1760 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1761 map_bh(bh, inode->i_sb, invalid_block); 1762 set_buffer_new(bh); 1763 set_buffer_delay(bh); 1764 return 0; 1765 } 1766 1767 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1768 retval = es.es_len - (iblock - es.es_lblk); 1769 if (retval > map->m_len) 1770 retval = map->m_len; 1771 map->m_len = retval; 1772 if (ext4_es_is_written(&es)) 1773 map->m_flags |= EXT4_MAP_MAPPED; 1774 else if (ext4_es_is_unwritten(&es)) 1775 map->m_flags |= EXT4_MAP_UNWRITTEN; 1776 else 1777 BUG(); 1778 1779 #ifdef ES_AGGRESSIVE_TEST 1780 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1781 #endif 1782 return retval; 1783 } 1784 1785 /* 1786 * Try to see if we can get the block without requesting a new 1787 * file system block. 1788 */ 1789 down_read(&EXT4_I(inode)->i_data_sem); 1790 if (ext4_has_inline_data(inode)) 1791 retval = 0; 1792 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1793 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1794 else 1795 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1796 1797 add_delayed: 1798 if (retval == 0) { 1799 int ret; 1800 1801 /* 1802 * XXX: __block_prepare_write() unmaps passed block, 1803 * is it OK? 1804 */ 1805 1806 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1807 if (ret != 0) { 1808 retval = ret; 1809 goto out_unlock; 1810 } 1811 1812 map_bh(bh, inode->i_sb, invalid_block); 1813 set_buffer_new(bh); 1814 set_buffer_delay(bh); 1815 } else if (retval > 0) { 1816 int ret; 1817 unsigned int status; 1818 1819 if (unlikely(retval != map->m_len)) { 1820 ext4_warning(inode->i_sb, 1821 "ES len assertion failed for inode " 1822 "%lu: retval %d != map->m_len %d", 1823 inode->i_ino, retval, map->m_len); 1824 WARN_ON(1); 1825 } 1826 1827 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1828 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1829 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1830 map->m_pblk, status); 1831 if (ret != 0) 1832 retval = ret; 1833 } 1834 1835 out_unlock: 1836 up_read((&EXT4_I(inode)->i_data_sem)); 1837 1838 return retval; 1839 } 1840 1841 /* 1842 * This is a special get_block_t callback which is used by 1843 * ext4_da_write_begin(). It will either return mapped block or 1844 * reserve space for a single block. 1845 * 1846 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1847 * We also have b_blocknr = -1 and b_bdev initialized properly 1848 * 1849 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1850 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1851 * initialized properly. 1852 */ 1853 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1854 struct buffer_head *bh, int create) 1855 { 1856 struct ext4_map_blocks map; 1857 int ret = 0; 1858 1859 BUG_ON(create == 0); 1860 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1861 1862 map.m_lblk = iblock; 1863 map.m_len = 1; 1864 1865 /* 1866 * first, we need to know whether the block is allocated already 1867 * preallocated blocks are unmapped but should treated 1868 * the same as allocated blocks. 1869 */ 1870 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1871 if (ret <= 0) 1872 return ret; 1873 1874 map_bh(bh, inode->i_sb, map.m_pblk); 1875 ext4_update_bh_state(bh, map.m_flags); 1876 1877 if (buffer_unwritten(bh)) { 1878 /* A delayed write to unwritten bh should be marked 1879 * new and mapped. Mapped ensures that we don't do 1880 * get_block multiple times when we write to the same 1881 * offset and new ensures that we do proper zero out 1882 * for partial write. 1883 */ 1884 set_buffer_new(bh); 1885 set_buffer_mapped(bh); 1886 } 1887 return 0; 1888 } 1889 1890 static int __ext4_journalled_writepage(struct page *page, 1891 unsigned int len) 1892 { 1893 struct address_space *mapping = page->mapping; 1894 struct inode *inode = mapping->host; 1895 handle_t *handle = NULL; 1896 int ret = 0, err = 0; 1897 int inline_data = ext4_has_inline_data(inode); 1898 struct buffer_head *inode_bh = NULL; 1899 loff_t size; 1900 1901 ClearPageChecked(page); 1902 1903 if (inline_data) { 1904 BUG_ON(page->index != 0); 1905 BUG_ON(len > ext4_get_max_inline_size(inode)); 1906 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1907 if (inode_bh == NULL) 1908 goto out; 1909 } 1910 /* 1911 * We need to release the page lock before we start the 1912 * journal, so grab a reference so the page won't disappear 1913 * out from under us. 1914 */ 1915 get_page(page); 1916 unlock_page(page); 1917 1918 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1919 ext4_writepage_trans_blocks(inode)); 1920 if (IS_ERR(handle)) { 1921 ret = PTR_ERR(handle); 1922 put_page(page); 1923 goto out_no_pagelock; 1924 } 1925 BUG_ON(!ext4_handle_valid(handle)); 1926 1927 lock_page(page); 1928 put_page(page); 1929 size = i_size_read(inode); 1930 if (page->mapping != mapping || page_offset(page) > size) { 1931 /* The page got truncated from under us */ 1932 ext4_journal_stop(handle); 1933 ret = 0; 1934 goto out; 1935 } 1936 1937 if (inline_data) { 1938 ret = ext4_mark_inode_dirty(handle, inode); 1939 } else { 1940 struct buffer_head *page_bufs = page_buffers(page); 1941 1942 if (page->index == size >> PAGE_SHIFT) 1943 len = size & ~PAGE_MASK; 1944 else 1945 len = PAGE_SIZE; 1946 1947 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1948 NULL, do_journal_get_write_access); 1949 1950 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1951 NULL, write_end_fn); 1952 } 1953 if (ret == 0) 1954 ret = err; 1955 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1956 if (ret == 0) 1957 ret = err; 1958 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1959 err = ext4_journal_stop(handle); 1960 if (!ret) 1961 ret = err; 1962 1963 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1964 out: 1965 unlock_page(page); 1966 out_no_pagelock: 1967 brelse(inode_bh); 1968 return ret; 1969 } 1970 1971 /* 1972 * Note that we don't need to start a transaction unless we're journaling data 1973 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1974 * need to file the inode to the transaction's list in ordered mode because if 1975 * we are writing back data added by write(), the inode is already there and if 1976 * we are writing back data modified via mmap(), no one guarantees in which 1977 * transaction the data will hit the disk. In case we are journaling data, we 1978 * cannot start transaction directly because transaction start ranks above page 1979 * lock so we have to do some magic. 1980 * 1981 * This function can get called via... 1982 * - ext4_writepages after taking page lock (have journal handle) 1983 * - journal_submit_inode_data_buffers (no journal handle) 1984 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1985 * - grab_page_cache when doing write_begin (have journal handle) 1986 * 1987 * We don't do any block allocation in this function. If we have page with 1988 * multiple blocks we need to write those buffer_heads that are mapped. This 1989 * is important for mmaped based write. So if we do with blocksize 1K 1990 * truncate(f, 1024); 1991 * a = mmap(f, 0, 4096); 1992 * a[0] = 'a'; 1993 * truncate(f, 4096); 1994 * we have in the page first buffer_head mapped via page_mkwrite call back 1995 * but other buffer_heads would be unmapped but dirty (dirty done via the 1996 * do_wp_page). So writepage should write the first block. If we modify 1997 * the mmap area beyond 1024 we will again get a page_fault and the 1998 * page_mkwrite callback will do the block allocation and mark the 1999 * buffer_heads mapped. 2000 * 2001 * We redirty the page if we have any buffer_heads that is either delay or 2002 * unwritten in the page. 2003 * 2004 * We can get recursively called as show below. 2005 * 2006 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2007 * ext4_writepage() 2008 * 2009 * But since we don't do any block allocation we should not deadlock. 2010 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2011 */ 2012 static int ext4_writepage(struct page *page, 2013 struct writeback_control *wbc) 2014 { 2015 struct folio *folio = page_folio(page); 2016 int ret = 0; 2017 loff_t size; 2018 unsigned int len; 2019 struct buffer_head *page_bufs = NULL; 2020 struct inode *inode = page->mapping->host; 2021 struct ext4_io_submit io_submit; 2022 2023 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2024 folio_invalidate(folio, 0, folio_size(folio)); 2025 folio_unlock(folio); 2026 return -EIO; 2027 } 2028 2029 trace_ext4_writepage(page); 2030 size = i_size_read(inode); 2031 if (page->index == size >> PAGE_SHIFT && 2032 !ext4_verity_in_progress(inode)) 2033 len = size & ~PAGE_MASK; 2034 else 2035 len = PAGE_SIZE; 2036 2037 /* Should never happen but for bugs in other kernel subsystems */ 2038 if (!page_has_buffers(page)) { 2039 ext4_warning_inode(inode, 2040 "page %lu does not have buffers attached", page->index); 2041 ClearPageDirty(page); 2042 unlock_page(page); 2043 return 0; 2044 } 2045 2046 page_bufs = page_buffers(page); 2047 /* 2048 * We cannot do block allocation or other extent handling in this 2049 * function. If there are buffers needing that, we have to redirty 2050 * the page. But we may reach here when we do a journal commit via 2051 * journal_submit_inode_data_buffers() and in that case we must write 2052 * allocated buffers to achieve data=ordered mode guarantees. 2053 * 2054 * Also, if there is only one buffer per page (the fs block 2055 * size == the page size), if one buffer needs block 2056 * allocation or needs to modify the extent tree to clear the 2057 * unwritten flag, we know that the page can't be written at 2058 * all, so we might as well refuse the write immediately. 2059 * Unfortunately if the block size != page size, we can't as 2060 * easily detect this case using ext4_walk_page_buffers(), but 2061 * for the extremely common case, this is an optimization that 2062 * skips a useless round trip through ext4_bio_write_page(). 2063 */ 2064 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL, 2065 ext4_bh_delay_or_unwritten)) { 2066 redirty_page_for_writepage(wbc, page); 2067 if ((current->flags & PF_MEMALLOC) || 2068 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2069 /* 2070 * For memory cleaning there's no point in writing only 2071 * some buffers. So just bail out. Warn if we came here 2072 * from direct reclaim. 2073 */ 2074 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2075 == PF_MEMALLOC); 2076 unlock_page(page); 2077 return 0; 2078 } 2079 } 2080 2081 if (PageChecked(page) && ext4_should_journal_data(inode)) 2082 /* 2083 * It's mmapped pagecache. Add buffers and journal it. There 2084 * doesn't seem much point in redirtying the page here. 2085 */ 2086 return __ext4_journalled_writepage(page, len); 2087 2088 ext4_io_submit_init(&io_submit, wbc); 2089 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2090 if (!io_submit.io_end) { 2091 redirty_page_for_writepage(wbc, page); 2092 unlock_page(page); 2093 return -ENOMEM; 2094 } 2095 ret = ext4_bio_write_page(&io_submit, page, len); 2096 ext4_io_submit(&io_submit); 2097 /* Drop io_end reference we got from init */ 2098 ext4_put_io_end_defer(io_submit.io_end); 2099 return ret; 2100 } 2101 2102 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2103 { 2104 int len; 2105 loff_t size; 2106 int err; 2107 2108 BUG_ON(page->index != mpd->first_page); 2109 clear_page_dirty_for_io(page); 2110 /* 2111 * We have to be very careful here! Nothing protects writeback path 2112 * against i_size changes and the page can be writeably mapped into 2113 * page tables. So an application can be growing i_size and writing 2114 * data through mmap while writeback runs. clear_page_dirty_for_io() 2115 * write-protects our page in page tables and the page cannot get 2116 * written to again until we release page lock. So only after 2117 * clear_page_dirty_for_io() we are safe to sample i_size for 2118 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2119 * on the barrier provided by TestClearPageDirty in 2120 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2121 * after page tables are updated. 2122 */ 2123 size = i_size_read(mpd->inode); 2124 if (page->index == size >> PAGE_SHIFT && 2125 !ext4_verity_in_progress(mpd->inode)) 2126 len = size & ~PAGE_MASK; 2127 else 2128 len = PAGE_SIZE; 2129 err = ext4_bio_write_page(&mpd->io_submit, page, len); 2130 if (!err) 2131 mpd->wbc->nr_to_write--; 2132 mpd->first_page++; 2133 2134 return err; 2135 } 2136 2137 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2138 2139 /* 2140 * mballoc gives us at most this number of blocks... 2141 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2142 * The rest of mballoc seems to handle chunks up to full group size. 2143 */ 2144 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2145 2146 /* 2147 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2148 * 2149 * @mpd - extent of blocks 2150 * @lblk - logical number of the block in the file 2151 * @bh - buffer head we want to add to the extent 2152 * 2153 * The function is used to collect contig. blocks in the same state. If the 2154 * buffer doesn't require mapping for writeback and we haven't started the 2155 * extent of buffers to map yet, the function returns 'true' immediately - the 2156 * caller can write the buffer right away. Otherwise the function returns true 2157 * if the block has been added to the extent, false if the block couldn't be 2158 * added. 2159 */ 2160 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2161 struct buffer_head *bh) 2162 { 2163 struct ext4_map_blocks *map = &mpd->map; 2164 2165 /* Buffer that doesn't need mapping for writeback? */ 2166 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2167 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2168 /* So far no extent to map => we write the buffer right away */ 2169 if (map->m_len == 0) 2170 return true; 2171 return false; 2172 } 2173 2174 /* First block in the extent? */ 2175 if (map->m_len == 0) { 2176 /* We cannot map unless handle is started... */ 2177 if (!mpd->do_map) 2178 return false; 2179 map->m_lblk = lblk; 2180 map->m_len = 1; 2181 map->m_flags = bh->b_state & BH_FLAGS; 2182 return true; 2183 } 2184 2185 /* Don't go larger than mballoc is willing to allocate */ 2186 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2187 return false; 2188 2189 /* Can we merge the block to our big extent? */ 2190 if (lblk == map->m_lblk + map->m_len && 2191 (bh->b_state & BH_FLAGS) == map->m_flags) { 2192 map->m_len++; 2193 return true; 2194 } 2195 return false; 2196 } 2197 2198 /* 2199 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2200 * 2201 * @mpd - extent of blocks for mapping 2202 * @head - the first buffer in the page 2203 * @bh - buffer we should start processing from 2204 * @lblk - logical number of the block in the file corresponding to @bh 2205 * 2206 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2207 * the page for IO if all buffers in this page were mapped and there's no 2208 * accumulated extent of buffers to map or add buffers in the page to the 2209 * extent of buffers to map. The function returns 1 if the caller can continue 2210 * by processing the next page, 0 if it should stop adding buffers to the 2211 * extent to map because we cannot extend it anymore. It can also return value 2212 * < 0 in case of error during IO submission. 2213 */ 2214 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2215 struct buffer_head *head, 2216 struct buffer_head *bh, 2217 ext4_lblk_t lblk) 2218 { 2219 struct inode *inode = mpd->inode; 2220 int err; 2221 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2222 >> inode->i_blkbits; 2223 2224 if (ext4_verity_in_progress(inode)) 2225 blocks = EXT_MAX_BLOCKS; 2226 2227 do { 2228 BUG_ON(buffer_locked(bh)); 2229 2230 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2231 /* Found extent to map? */ 2232 if (mpd->map.m_len) 2233 return 0; 2234 /* Buffer needs mapping and handle is not started? */ 2235 if (!mpd->do_map) 2236 return 0; 2237 /* Everything mapped so far and we hit EOF */ 2238 break; 2239 } 2240 } while (lblk++, (bh = bh->b_this_page) != head); 2241 /* So far everything mapped? Submit the page for IO. */ 2242 if (mpd->map.m_len == 0) { 2243 err = mpage_submit_page(mpd, head->b_page); 2244 if (err < 0) 2245 return err; 2246 } 2247 if (lblk >= blocks) { 2248 mpd->scanned_until_end = 1; 2249 return 0; 2250 } 2251 return 1; 2252 } 2253 2254 /* 2255 * mpage_process_page - update page buffers corresponding to changed extent and 2256 * may submit fully mapped page for IO 2257 * 2258 * @mpd - description of extent to map, on return next extent to map 2259 * @m_lblk - logical block mapping. 2260 * @m_pblk - corresponding physical mapping. 2261 * @map_bh - determines on return whether this page requires any further 2262 * mapping or not. 2263 * Scan given page buffers corresponding to changed extent and update buffer 2264 * state according to new extent state. 2265 * We map delalloc buffers to their physical location, clear unwritten bits. 2266 * If the given page is not fully mapped, we update @map to the next extent in 2267 * the given page that needs mapping & return @map_bh as true. 2268 */ 2269 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2270 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2271 bool *map_bh) 2272 { 2273 struct buffer_head *head, *bh; 2274 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2275 ext4_lblk_t lblk = *m_lblk; 2276 ext4_fsblk_t pblock = *m_pblk; 2277 int err = 0; 2278 int blkbits = mpd->inode->i_blkbits; 2279 ssize_t io_end_size = 0; 2280 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2281 2282 bh = head = page_buffers(page); 2283 do { 2284 if (lblk < mpd->map.m_lblk) 2285 continue; 2286 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2287 /* 2288 * Buffer after end of mapped extent. 2289 * Find next buffer in the page to map. 2290 */ 2291 mpd->map.m_len = 0; 2292 mpd->map.m_flags = 0; 2293 io_end_vec->size += io_end_size; 2294 2295 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2296 if (err > 0) 2297 err = 0; 2298 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2299 io_end_vec = ext4_alloc_io_end_vec(io_end); 2300 if (IS_ERR(io_end_vec)) { 2301 err = PTR_ERR(io_end_vec); 2302 goto out; 2303 } 2304 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2305 } 2306 *map_bh = true; 2307 goto out; 2308 } 2309 if (buffer_delay(bh)) { 2310 clear_buffer_delay(bh); 2311 bh->b_blocknr = pblock++; 2312 } 2313 clear_buffer_unwritten(bh); 2314 io_end_size += (1 << blkbits); 2315 } while (lblk++, (bh = bh->b_this_page) != head); 2316 2317 io_end_vec->size += io_end_size; 2318 *map_bh = false; 2319 out: 2320 *m_lblk = lblk; 2321 *m_pblk = pblock; 2322 return err; 2323 } 2324 2325 /* 2326 * mpage_map_buffers - update buffers corresponding to changed extent and 2327 * submit fully mapped pages for IO 2328 * 2329 * @mpd - description of extent to map, on return next extent to map 2330 * 2331 * Scan buffers corresponding to changed extent (we expect corresponding pages 2332 * to be already locked) and update buffer state according to new extent state. 2333 * We map delalloc buffers to their physical location, clear unwritten bits, 2334 * and mark buffers as uninit when we perform writes to unwritten extents 2335 * and do extent conversion after IO is finished. If the last page is not fully 2336 * mapped, we update @map to the next extent in the last page that needs 2337 * mapping. Otherwise we submit the page for IO. 2338 */ 2339 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2340 { 2341 struct folio_batch fbatch; 2342 unsigned nr, i; 2343 struct inode *inode = mpd->inode; 2344 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2345 pgoff_t start, end; 2346 ext4_lblk_t lblk; 2347 ext4_fsblk_t pblock; 2348 int err; 2349 bool map_bh = false; 2350 2351 start = mpd->map.m_lblk >> bpp_bits; 2352 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2353 lblk = start << bpp_bits; 2354 pblock = mpd->map.m_pblk; 2355 2356 folio_batch_init(&fbatch); 2357 while (start <= end) { 2358 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2359 if (nr == 0) 2360 break; 2361 for (i = 0; i < nr; i++) { 2362 struct page *page = &fbatch.folios[i]->page; 2363 2364 err = mpage_process_page(mpd, page, &lblk, &pblock, 2365 &map_bh); 2366 /* 2367 * If map_bh is true, means page may require further bh 2368 * mapping, or maybe the page was submitted for IO. 2369 * So we return to call further extent mapping. 2370 */ 2371 if (err < 0 || map_bh) 2372 goto out; 2373 /* Page fully mapped - let IO run! */ 2374 err = mpage_submit_page(mpd, page); 2375 if (err < 0) 2376 goto out; 2377 } 2378 folio_batch_release(&fbatch); 2379 } 2380 /* Extent fully mapped and matches with page boundary. We are done. */ 2381 mpd->map.m_len = 0; 2382 mpd->map.m_flags = 0; 2383 return 0; 2384 out: 2385 folio_batch_release(&fbatch); 2386 return err; 2387 } 2388 2389 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2390 { 2391 struct inode *inode = mpd->inode; 2392 struct ext4_map_blocks *map = &mpd->map; 2393 int get_blocks_flags; 2394 int err, dioread_nolock; 2395 2396 trace_ext4_da_write_pages_extent(inode, map); 2397 /* 2398 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2399 * to convert an unwritten extent to be initialized (in the case 2400 * where we have written into one or more preallocated blocks). It is 2401 * possible that we're going to need more metadata blocks than 2402 * previously reserved. However we must not fail because we're in 2403 * writeback and there is nothing we can do about it so it might result 2404 * in data loss. So use reserved blocks to allocate metadata if 2405 * possible. 2406 * 2407 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2408 * the blocks in question are delalloc blocks. This indicates 2409 * that the blocks and quotas has already been checked when 2410 * the data was copied into the page cache. 2411 */ 2412 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2413 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2414 EXT4_GET_BLOCKS_IO_SUBMIT; 2415 dioread_nolock = ext4_should_dioread_nolock(inode); 2416 if (dioread_nolock) 2417 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2418 if (map->m_flags & BIT(BH_Delay)) 2419 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2420 2421 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2422 if (err < 0) 2423 return err; 2424 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2425 if (!mpd->io_submit.io_end->handle && 2426 ext4_handle_valid(handle)) { 2427 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2428 handle->h_rsv_handle = NULL; 2429 } 2430 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2431 } 2432 2433 BUG_ON(map->m_len == 0); 2434 return 0; 2435 } 2436 2437 /* 2438 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2439 * mpd->len and submit pages underlying it for IO 2440 * 2441 * @handle - handle for journal operations 2442 * @mpd - extent to map 2443 * @give_up_on_write - we set this to true iff there is a fatal error and there 2444 * is no hope of writing the data. The caller should discard 2445 * dirty pages to avoid infinite loops. 2446 * 2447 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2448 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2449 * them to initialized or split the described range from larger unwritten 2450 * extent. Note that we need not map all the described range since allocation 2451 * can return less blocks or the range is covered by more unwritten extents. We 2452 * cannot map more because we are limited by reserved transaction credits. On 2453 * the other hand we always make sure that the last touched page is fully 2454 * mapped so that it can be written out (and thus forward progress is 2455 * guaranteed). After mapping we submit all mapped pages for IO. 2456 */ 2457 static int mpage_map_and_submit_extent(handle_t *handle, 2458 struct mpage_da_data *mpd, 2459 bool *give_up_on_write) 2460 { 2461 struct inode *inode = mpd->inode; 2462 struct ext4_map_blocks *map = &mpd->map; 2463 int err; 2464 loff_t disksize; 2465 int progress = 0; 2466 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2467 struct ext4_io_end_vec *io_end_vec; 2468 2469 io_end_vec = ext4_alloc_io_end_vec(io_end); 2470 if (IS_ERR(io_end_vec)) 2471 return PTR_ERR(io_end_vec); 2472 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2473 do { 2474 err = mpage_map_one_extent(handle, mpd); 2475 if (err < 0) { 2476 struct super_block *sb = inode->i_sb; 2477 2478 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2479 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2480 goto invalidate_dirty_pages; 2481 /* 2482 * Let the uper layers retry transient errors. 2483 * In the case of ENOSPC, if ext4_count_free_blocks() 2484 * is non-zero, a commit should free up blocks. 2485 */ 2486 if ((err == -ENOMEM) || 2487 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2488 if (progress) 2489 goto update_disksize; 2490 return err; 2491 } 2492 ext4_msg(sb, KERN_CRIT, 2493 "Delayed block allocation failed for " 2494 "inode %lu at logical offset %llu with" 2495 " max blocks %u with error %d", 2496 inode->i_ino, 2497 (unsigned long long)map->m_lblk, 2498 (unsigned)map->m_len, -err); 2499 ext4_msg(sb, KERN_CRIT, 2500 "This should not happen!! Data will " 2501 "be lost\n"); 2502 if (err == -ENOSPC) 2503 ext4_print_free_blocks(inode); 2504 invalidate_dirty_pages: 2505 *give_up_on_write = true; 2506 return err; 2507 } 2508 progress = 1; 2509 /* 2510 * Update buffer state, submit mapped pages, and get us new 2511 * extent to map 2512 */ 2513 err = mpage_map_and_submit_buffers(mpd); 2514 if (err < 0) 2515 goto update_disksize; 2516 } while (map->m_len); 2517 2518 update_disksize: 2519 /* 2520 * Update on-disk size after IO is submitted. Races with 2521 * truncate are avoided by checking i_size under i_data_sem. 2522 */ 2523 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2524 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2525 int err2; 2526 loff_t i_size; 2527 2528 down_write(&EXT4_I(inode)->i_data_sem); 2529 i_size = i_size_read(inode); 2530 if (disksize > i_size) 2531 disksize = i_size; 2532 if (disksize > EXT4_I(inode)->i_disksize) 2533 EXT4_I(inode)->i_disksize = disksize; 2534 up_write(&EXT4_I(inode)->i_data_sem); 2535 err2 = ext4_mark_inode_dirty(handle, inode); 2536 if (err2) { 2537 ext4_error_err(inode->i_sb, -err2, 2538 "Failed to mark inode %lu dirty", 2539 inode->i_ino); 2540 } 2541 if (!err) 2542 err = err2; 2543 } 2544 return err; 2545 } 2546 2547 /* 2548 * Calculate the total number of credits to reserve for one writepages 2549 * iteration. This is called from ext4_writepages(). We map an extent of 2550 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2551 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2552 * bpp - 1 blocks in bpp different extents. 2553 */ 2554 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2555 { 2556 int bpp = ext4_journal_blocks_per_page(inode); 2557 2558 return ext4_meta_trans_blocks(inode, 2559 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2560 } 2561 2562 /* Return true if the page needs to be written as part of transaction commit */ 2563 static bool ext4_page_nomap_can_writeout(struct page *page) 2564 { 2565 struct buffer_head *bh, *head; 2566 2567 bh = head = page_buffers(page); 2568 do { 2569 if (buffer_dirty(bh) && buffer_mapped(bh) && !buffer_delay(bh)) 2570 return true; 2571 } while ((bh = bh->b_this_page) != head); 2572 return false; 2573 } 2574 2575 /* 2576 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2577 * needing mapping, submit mapped pages 2578 * 2579 * @mpd - where to look for pages 2580 * 2581 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2582 * IO immediately. If we cannot map blocks, we submit just already mapped 2583 * buffers in the page for IO and keep page dirty. When we can map blocks and 2584 * we find a page which isn't mapped we start accumulating extent of buffers 2585 * underlying these pages that needs mapping (formed by either delayed or 2586 * unwritten buffers). We also lock the pages containing these buffers. The 2587 * extent found is returned in @mpd structure (starting at mpd->lblk with 2588 * length mpd->len blocks). 2589 * 2590 * Note that this function can attach bios to one io_end structure which are 2591 * neither logically nor physically contiguous. Although it may seem as an 2592 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2593 * case as we need to track IO to all buffers underlying a page in one io_end. 2594 */ 2595 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2596 { 2597 struct address_space *mapping = mpd->inode->i_mapping; 2598 struct pagevec pvec; 2599 unsigned int nr_pages; 2600 long left = mpd->wbc->nr_to_write; 2601 pgoff_t index = mpd->first_page; 2602 pgoff_t end = mpd->last_page; 2603 xa_mark_t tag; 2604 int i, err = 0; 2605 int blkbits = mpd->inode->i_blkbits; 2606 ext4_lblk_t lblk; 2607 struct buffer_head *head; 2608 2609 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2610 tag = PAGECACHE_TAG_TOWRITE; 2611 else 2612 tag = PAGECACHE_TAG_DIRTY; 2613 2614 pagevec_init(&pvec); 2615 mpd->map.m_len = 0; 2616 mpd->next_page = index; 2617 while (index <= end) { 2618 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2619 tag); 2620 if (nr_pages == 0) 2621 break; 2622 2623 for (i = 0; i < nr_pages; i++) { 2624 struct page *page = pvec.pages[i]; 2625 2626 /* 2627 * Accumulated enough dirty pages? This doesn't apply 2628 * to WB_SYNC_ALL mode. For integrity sync we have to 2629 * keep going because someone may be concurrently 2630 * dirtying pages, and we might have synced a lot of 2631 * newly appeared dirty pages, but have not synced all 2632 * of the old dirty pages. 2633 */ 2634 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2635 goto out; 2636 2637 /* If we can't merge this page, we are done. */ 2638 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2639 goto out; 2640 2641 lock_page(page); 2642 /* 2643 * If the page is no longer dirty, or its mapping no 2644 * longer corresponds to inode we are writing (which 2645 * means it has been truncated or invalidated), or the 2646 * page is already under writeback and we are not doing 2647 * a data integrity writeback, skip the page 2648 */ 2649 if (!PageDirty(page) || 2650 (PageWriteback(page) && 2651 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2652 unlikely(page->mapping != mapping)) { 2653 unlock_page(page); 2654 continue; 2655 } 2656 2657 wait_on_page_writeback(page); 2658 BUG_ON(PageWriteback(page)); 2659 2660 /* 2661 * Should never happen but for buggy code in 2662 * other subsystems that call 2663 * set_page_dirty() without properly warning 2664 * the file system first. See [1] for more 2665 * information. 2666 * 2667 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2668 */ 2669 if (!page_has_buffers(page)) { 2670 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index); 2671 ClearPageDirty(page); 2672 unlock_page(page); 2673 continue; 2674 } 2675 2676 if (mpd->map.m_len == 0) 2677 mpd->first_page = page->index; 2678 mpd->next_page = page->index + 1; 2679 /* 2680 * Writeout for transaction commit where we cannot 2681 * modify metadata is simple. Just submit the page. 2682 */ 2683 if (!mpd->can_map) { 2684 if (ext4_page_nomap_can_writeout(page)) { 2685 err = mpage_submit_page(mpd, page); 2686 if (err < 0) 2687 goto out; 2688 } else { 2689 unlock_page(page); 2690 mpd->first_page++; 2691 } 2692 } else { 2693 /* Add all dirty buffers to mpd */ 2694 lblk = ((ext4_lblk_t)page->index) << 2695 (PAGE_SHIFT - blkbits); 2696 head = page_buffers(page); 2697 err = mpage_process_page_bufs(mpd, head, head, 2698 lblk); 2699 if (err <= 0) 2700 goto out; 2701 err = 0; 2702 } 2703 left--; 2704 } 2705 pagevec_release(&pvec); 2706 cond_resched(); 2707 } 2708 mpd->scanned_until_end = 1; 2709 return 0; 2710 out: 2711 pagevec_release(&pvec); 2712 return err; 2713 } 2714 2715 static int ext4_writepage_cb(struct page *page, struct writeback_control *wbc, 2716 void *data) 2717 { 2718 return ext4_writepage(page, wbc); 2719 } 2720 2721 static int ext4_do_writepages(struct mpage_da_data *mpd) 2722 { 2723 struct writeback_control *wbc = mpd->wbc; 2724 pgoff_t writeback_index = 0; 2725 long nr_to_write = wbc->nr_to_write; 2726 int range_whole = 0; 2727 int cycled = 1; 2728 handle_t *handle = NULL; 2729 struct inode *inode = mpd->inode; 2730 struct address_space *mapping = inode->i_mapping; 2731 int needed_blocks, rsv_blocks = 0, ret = 0; 2732 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2733 struct blk_plug plug; 2734 bool give_up_on_write = false; 2735 2736 trace_ext4_writepages(inode, wbc); 2737 2738 /* 2739 * No pages to write? This is mainly a kludge to avoid starting 2740 * a transaction for special inodes like journal inode on last iput() 2741 * because that could violate lock ordering on umount 2742 */ 2743 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2744 goto out_writepages; 2745 2746 if (ext4_should_journal_data(inode)) { 2747 blk_start_plug(&plug); 2748 ret = write_cache_pages(mapping, wbc, ext4_writepage_cb, NULL); 2749 blk_finish_plug(&plug); 2750 goto out_writepages; 2751 } 2752 2753 /* 2754 * If the filesystem has aborted, it is read-only, so return 2755 * right away instead of dumping stack traces later on that 2756 * will obscure the real source of the problem. We test 2757 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2758 * the latter could be true if the filesystem is mounted 2759 * read-only, and in that case, ext4_writepages should 2760 * *never* be called, so if that ever happens, we would want 2761 * the stack trace. 2762 */ 2763 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2764 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2765 ret = -EROFS; 2766 goto out_writepages; 2767 } 2768 2769 /* 2770 * If we have inline data and arrive here, it means that 2771 * we will soon create the block for the 1st page, so 2772 * we'd better clear the inline data here. 2773 */ 2774 if (ext4_has_inline_data(inode)) { 2775 /* Just inode will be modified... */ 2776 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2777 if (IS_ERR(handle)) { 2778 ret = PTR_ERR(handle); 2779 goto out_writepages; 2780 } 2781 BUG_ON(ext4_test_inode_state(inode, 2782 EXT4_STATE_MAY_INLINE_DATA)); 2783 ext4_destroy_inline_data(handle, inode); 2784 ext4_journal_stop(handle); 2785 } 2786 2787 if (ext4_should_dioread_nolock(inode)) { 2788 /* 2789 * We may need to convert up to one extent per block in 2790 * the page and we may dirty the inode. 2791 */ 2792 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2793 PAGE_SIZE >> inode->i_blkbits); 2794 } 2795 2796 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2797 range_whole = 1; 2798 2799 if (wbc->range_cyclic) { 2800 writeback_index = mapping->writeback_index; 2801 if (writeback_index) 2802 cycled = 0; 2803 mpd->first_page = writeback_index; 2804 mpd->last_page = -1; 2805 } else { 2806 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2807 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2808 } 2809 2810 ext4_io_submit_init(&mpd->io_submit, wbc); 2811 retry: 2812 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2813 tag_pages_for_writeback(mapping, mpd->first_page, 2814 mpd->last_page); 2815 blk_start_plug(&plug); 2816 2817 /* 2818 * First writeback pages that don't need mapping - we can avoid 2819 * starting a transaction unnecessarily and also avoid being blocked 2820 * in the block layer on device congestion while having transaction 2821 * started. 2822 */ 2823 mpd->do_map = 0; 2824 mpd->scanned_until_end = 0; 2825 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2826 if (!mpd->io_submit.io_end) { 2827 ret = -ENOMEM; 2828 goto unplug; 2829 } 2830 ret = mpage_prepare_extent_to_map(mpd); 2831 /* Unlock pages we didn't use */ 2832 mpage_release_unused_pages(mpd, false); 2833 /* Submit prepared bio */ 2834 ext4_io_submit(&mpd->io_submit); 2835 ext4_put_io_end_defer(mpd->io_submit.io_end); 2836 mpd->io_submit.io_end = NULL; 2837 if (ret < 0) 2838 goto unplug; 2839 2840 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2841 /* For each extent of pages we use new io_end */ 2842 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2843 if (!mpd->io_submit.io_end) { 2844 ret = -ENOMEM; 2845 break; 2846 } 2847 2848 WARN_ON_ONCE(!mpd->can_map); 2849 /* 2850 * We have two constraints: We find one extent to map and we 2851 * must always write out whole page (makes a difference when 2852 * blocksize < pagesize) so that we don't block on IO when we 2853 * try to write out the rest of the page. Journalled mode is 2854 * not supported by delalloc. 2855 */ 2856 BUG_ON(ext4_should_journal_data(inode)); 2857 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2858 2859 /* start a new transaction */ 2860 handle = ext4_journal_start_with_reserve(inode, 2861 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2862 if (IS_ERR(handle)) { 2863 ret = PTR_ERR(handle); 2864 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2865 "%ld pages, ino %lu; err %d", __func__, 2866 wbc->nr_to_write, inode->i_ino, ret); 2867 /* Release allocated io_end */ 2868 ext4_put_io_end(mpd->io_submit.io_end); 2869 mpd->io_submit.io_end = NULL; 2870 break; 2871 } 2872 mpd->do_map = 1; 2873 2874 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2875 ret = mpage_prepare_extent_to_map(mpd); 2876 if (!ret && mpd->map.m_len) 2877 ret = mpage_map_and_submit_extent(handle, mpd, 2878 &give_up_on_write); 2879 /* 2880 * Caution: If the handle is synchronous, 2881 * ext4_journal_stop() can wait for transaction commit 2882 * to finish which may depend on writeback of pages to 2883 * complete or on page lock to be released. In that 2884 * case, we have to wait until after we have 2885 * submitted all the IO, released page locks we hold, 2886 * and dropped io_end reference (for extent conversion 2887 * to be able to complete) before stopping the handle. 2888 */ 2889 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2890 ext4_journal_stop(handle); 2891 handle = NULL; 2892 mpd->do_map = 0; 2893 } 2894 /* Unlock pages we didn't use */ 2895 mpage_release_unused_pages(mpd, give_up_on_write); 2896 /* Submit prepared bio */ 2897 ext4_io_submit(&mpd->io_submit); 2898 2899 /* 2900 * Drop our io_end reference we got from init. We have 2901 * to be careful and use deferred io_end finishing if 2902 * we are still holding the transaction as we can 2903 * release the last reference to io_end which may end 2904 * up doing unwritten extent conversion. 2905 */ 2906 if (handle) { 2907 ext4_put_io_end_defer(mpd->io_submit.io_end); 2908 ext4_journal_stop(handle); 2909 } else 2910 ext4_put_io_end(mpd->io_submit.io_end); 2911 mpd->io_submit.io_end = NULL; 2912 2913 if (ret == -ENOSPC && sbi->s_journal) { 2914 /* 2915 * Commit the transaction which would 2916 * free blocks released in the transaction 2917 * and try again 2918 */ 2919 jbd2_journal_force_commit_nested(sbi->s_journal); 2920 ret = 0; 2921 continue; 2922 } 2923 /* Fatal error - ENOMEM, EIO... */ 2924 if (ret) 2925 break; 2926 } 2927 unplug: 2928 blk_finish_plug(&plug); 2929 if (!ret && !cycled && wbc->nr_to_write > 0) { 2930 cycled = 1; 2931 mpd->last_page = writeback_index - 1; 2932 mpd->first_page = 0; 2933 goto retry; 2934 } 2935 2936 /* Update index */ 2937 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2938 /* 2939 * Set the writeback_index so that range_cyclic 2940 * mode will write it back later 2941 */ 2942 mapping->writeback_index = mpd->first_page; 2943 2944 out_writepages: 2945 trace_ext4_writepages_result(inode, wbc, ret, 2946 nr_to_write - wbc->nr_to_write); 2947 return ret; 2948 } 2949 2950 static int ext4_writepages(struct address_space *mapping, 2951 struct writeback_control *wbc) 2952 { 2953 struct super_block *sb = mapping->host->i_sb; 2954 struct mpage_da_data mpd = { 2955 .inode = mapping->host, 2956 .wbc = wbc, 2957 .can_map = 1, 2958 }; 2959 int ret; 2960 2961 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 2962 return -EIO; 2963 2964 percpu_down_read(&EXT4_SB(sb)->s_writepages_rwsem); 2965 ret = ext4_do_writepages(&mpd); 2966 percpu_up_read(&EXT4_SB(sb)->s_writepages_rwsem); 2967 2968 return ret; 2969 } 2970 2971 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2972 { 2973 struct writeback_control wbc = { 2974 .sync_mode = WB_SYNC_ALL, 2975 .nr_to_write = LONG_MAX, 2976 .range_start = jinode->i_dirty_start, 2977 .range_end = jinode->i_dirty_end, 2978 }; 2979 struct mpage_da_data mpd = { 2980 .inode = jinode->i_vfs_inode, 2981 .wbc = &wbc, 2982 .can_map = 0, 2983 }; 2984 return ext4_do_writepages(&mpd); 2985 } 2986 2987 static int ext4_dax_writepages(struct address_space *mapping, 2988 struct writeback_control *wbc) 2989 { 2990 int ret; 2991 long nr_to_write = wbc->nr_to_write; 2992 struct inode *inode = mapping->host; 2993 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2994 2995 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2996 return -EIO; 2997 2998 percpu_down_read(&sbi->s_writepages_rwsem); 2999 trace_ext4_writepages(inode, wbc); 3000 3001 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 3002 trace_ext4_writepages_result(inode, wbc, ret, 3003 nr_to_write - wbc->nr_to_write); 3004 percpu_up_read(&sbi->s_writepages_rwsem); 3005 return ret; 3006 } 3007 3008 static int ext4_nonda_switch(struct super_block *sb) 3009 { 3010 s64 free_clusters, dirty_clusters; 3011 struct ext4_sb_info *sbi = EXT4_SB(sb); 3012 3013 /* 3014 * switch to non delalloc mode if we are running low 3015 * on free block. The free block accounting via percpu 3016 * counters can get slightly wrong with percpu_counter_batch getting 3017 * accumulated on each CPU without updating global counters 3018 * Delalloc need an accurate free block accounting. So switch 3019 * to non delalloc when we are near to error range. 3020 */ 3021 free_clusters = 3022 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3023 dirty_clusters = 3024 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3025 /* 3026 * Start pushing delalloc when 1/2 of free blocks are dirty. 3027 */ 3028 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3029 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3030 3031 if (2 * free_clusters < 3 * dirty_clusters || 3032 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3033 /* 3034 * free block count is less than 150% of dirty blocks 3035 * or free blocks is less than watermark 3036 */ 3037 return 1; 3038 } 3039 return 0; 3040 } 3041 3042 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3043 loff_t pos, unsigned len, 3044 struct page **pagep, void **fsdata) 3045 { 3046 int ret, retries = 0; 3047 struct page *page; 3048 pgoff_t index; 3049 struct inode *inode = mapping->host; 3050 3051 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3052 return -EIO; 3053 3054 index = pos >> PAGE_SHIFT; 3055 3056 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 3057 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3058 return ext4_write_begin(file, mapping, pos, 3059 len, pagep, fsdata); 3060 } 3061 *fsdata = (void *)0; 3062 trace_ext4_da_write_begin(inode, pos, len); 3063 3064 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3065 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 3066 pagep, fsdata); 3067 if (ret < 0) 3068 return ret; 3069 if (ret == 1) 3070 return 0; 3071 } 3072 3073 retry: 3074 page = grab_cache_page_write_begin(mapping, index); 3075 if (!page) 3076 return -ENOMEM; 3077 3078 /* In case writeback began while the page was unlocked */ 3079 wait_for_stable_page(page); 3080 3081 #ifdef CONFIG_FS_ENCRYPTION 3082 ret = ext4_block_write_begin(page, pos, len, 3083 ext4_da_get_block_prep); 3084 #else 3085 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3086 #endif 3087 if (ret < 0) { 3088 unlock_page(page); 3089 put_page(page); 3090 /* 3091 * block_write_begin may have instantiated a few blocks 3092 * outside i_size. Trim these off again. Don't need 3093 * i_size_read because we hold inode lock. 3094 */ 3095 if (pos + len > inode->i_size) 3096 ext4_truncate_failed_write(inode); 3097 3098 if (ret == -ENOSPC && 3099 ext4_should_retry_alloc(inode->i_sb, &retries)) 3100 goto retry; 3101 return ret; 3102 } 3103 3104 *pagep = page; 3105 return ret; 3106 } 3107 3108 /* 3109 * Check if we should update i_disksize 3110 * when write to the end of file but not require block allocation 3111 */ 3112 static int ext4_da_should_update_i_disksize(struct page *page, 3113 unsigned long offset) 3114 { 3115 struct buffer_head *bh; 3116 struct inode *inode = page->mapping->host; 3117 unsigned int idx; 3118 int i; 3119 3120 bh = page_buffers(page); 3121 idx = offset >> inode->i_blkbits; 3122 3123 for (i = 0; i < idx; i++) 3124 bh = bh->b_this_page; 3125 3126 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3127 return 0; 3128 return 1; 3129 } 3130 3131 static int ext4_da_write_end(struct file *file, 3132 struct address_space *mapping, 3133 loff_t pos, unsigned len, unsigned copied, 3134 struct page *page, void *fsdata) 3135 { 3136 struct inode *inode = mapping->host; 3137 loff_t new_i_size; 3138 unsigned long start, end; 3139 int write_mode = (int)(unsigned long)fsdata; 3140 3141 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3142 return ext4_write_end(file, mapping, pos, 3143 len, copied, page, fsdata); 3144 3145 trace_ext4_da_write_end(inode, pos, len, copied); 3146 3147 if (write_mode != CONVERT_INLINE_DATA && 3148 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3149 ext4_has_inline_data(inode)) 3150 return ext4_write_inline_data_end(inode, pos, len, copied, page); 3151 3152 start = pos & (PAGE_SIZE - 1); 3153 end = start + copied - 1; 3154 3155 /* 3156 * Since we are holding inode lock, we are sure i_disksize <= 3157 * i_size. We also know that if i_disksize < i_size, there are 3158 * delalloc writes pending in the range upto i_size. If the end of 3159 * the current write is <= i_size, there's no need to touch 3160 * i_disksize since writeback will push i_disksize upto i_size 3161 * eventually. If the end of the current write is > i_size and 3162 * inside an allocated block (ext4_da_should_update_i_disksize() 3163 * check), we need to update i_disksize here as neither 3164 * ext4_writepage() nor certain ext4_writepages() paths not 3165 * allocating blocks update i_disksize. 3166 * 3167 * Note that we defer inode dirtying to generic_write_end() / 3168 * ext4_da_write_inline_data_end(). 3169 */ 3170 new_i_size = pos + copied; 3171 if (copied && new_i_size > inode->i_size && 3172 ext4_da_should_update_i_disksize(page, end)) 3173 ext4_update_i_disksize(inode, new_i_size); 3174 3175 return generic_write_end(file, mapping, pos, len, copied, page, fsdata); 3176 } 3177 3178 /* 3179 * Force all delayed allocation blocks to be allocated for a given inode. 3180 */ 3181 int ext4_alloc_da_blocks(struct inode *inode) 3182 { 3183 trace_ext4_alloc_da_blocks(inode); 3184 3185 if (!EXT4_I(inode)->i_reserved_data_blocks) 3186 return 0; 3187 3188 /* 3189 * We do something simple for now. The filemap_flush() will 3190 * also start triggering a write of the data blocks, which is 3191 * not strictly speaking necessary (and for users of 3192 * laptop_mode, not even desirable). However, to do otherwise 3193 * would require replicating code paths in: 3194 * 3195 * ext4_writepages() -> 3196 * write_cache_pages() ---> (via passed in callback function) 3197 * __mpage_da_writepage() --> 3198 * mpage_add_bh_to_extent() 3199 * mpage_da_map_blocks() 3200 * 3201 * The problem is that write_cache_pages(), located in 3202 * mm/page-writeback.c, marks pages clean in preparation for 3203 * doing I/O, which is not desirable if we're not planning on 3204 * doing I/O at all. 3205 * 3206 * We could call write_cache_pages(), and then redirty all of 3207 * the pages by calling redirty_page_for_writepage() but that 3208 * would be ugly in the extreme. So instead we would need to 3209 * replicate parts of the code in the above functions, 3210 * simplifying them because we wouldn't actually intend to 3211 * write out the pages, but rather only collect contiguous 3212 * logical block extents, call the multi-block allocator, and 3213 * then update the buffer heads with the block allocations. 3214 * 3215 * For now, though, we'll cheat by calling filemap_flush(), 3216 * which will map the blocks, and start the I/O, but not 3217 * actually wait for the I/O to complete. 3218 */ 3219 return filemap_flush(inode->i_mapping); 3220 } 3221 3222 /* 3223 * bmap() is special. It gets used by applications such as lilo and by 3224 * the swapper to find the on-disk block of a specific piece of data. 3225 * 3226 * Naturally, this is dangerous if the block concerned is still in the 3227 * journal. If somebody makes a swapfile on an ext4 data-journaling 3228 * filesystem and enables swap, then they may get a nasty shock when the 3229 * data getting swapped to that swapfile suddenly gets overwritten by 3230 * the original zero's written out previously to the journal and 3231 * awaiting writeback in the kernel's buffer cache. 3232 * 3233 * So, if we see any bmap calls here on a modified, data-journaled file, 3234 * take extra steps to flush any blocks which might be in the cache. 3235 */ 3236 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3237 { 3238 struct inode *inode = mapping->host; 3239 journal_t *journal; 3240 sector_t ret = 0; 3241 int err; 3242 3243 inode_lock_shared(inode); 3244 /* 3245 * We can get here for an inline file via the FIBMAP ioctl 3246 */ 3247 if (ext4_has_inline_data(inode)) 3248 goto out; 3249 3250 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3251 test_opt(inode->i_sb, DELALLOC)) { 3252 /* 3253 * With delalloc we want to sync the file 3254 * so that we can make sure we allocate 3255 * blocks for file 3256 */ 3257 filemap_write_and_wait(mapping); 3258 } 3259 3260 if (EXT4_JOURNAL(inode) && 3261 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3262 /* 3263 * This is a REALLY heavyweight approach, but the use of 3264 * bmap on dirty files is expected to be extremely rare: 3265 * only if we run lilo or swapon on a freshly made file 3266 * do we expect this to happen. 3267 * 3268 * (bmap requires CAP_SYS_RAWIO so this does not 3269 * represent an unprivileged user DOS attack --- we'd be 3270 * in trouble if mortal users could trigger this path at 3271 * will.) 3272 * 3273 * NB. EXT4_STATE_JDATA is not set on files other than 3274 * regular files. If somebody wants to bmap a directory 3275 * or symlink and gets confused because the buffer 3276 * hasn't yet been flushed to disk, they deserve 3277 * everything they get. 3278 */ 3279 3280 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3281 journal = EXT4_JOURNAL(inode); 3282 jbd2_journal_lock_updates(journal); 3283 err = jbd2_journal_flush(journal, 0); 3284 jbd2_journal_unlock_updates(journal); 3285 3286 if (err) 3287 goto out; 3288 } 3289 3290 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3291 3292 out: 3293 inode_unlock_shared(inode); 3294 return ret; 3295 } 3296 3297 static int ext4_read_folio(struct file *file, struct folio *folio) 3298 { 3299 struct page *page = &folio->page; 3300 int ret = -EAGAIN; 3301 struct inode *inode = page->mapping->host; 3302 3303 trace_ext4_readpage(page); 3304 3305 if (ext4_has_inline_data(inode)) 3306 ret = ext4_readpage_inline(inode, page); 3307 3308 if (ret == -EAGAIN) 3309 return ext4_mpage_readpages(inode, NULL, page); 3310 3311 return ret; 3312 } 3313 3314 static void ext4_readahead(struct readahead_control *rac) 3315 { 3316 struct inode *inode = rac->mapping->host; 3317 3318 /* If the file has inline data, no need to do readahead. */ 3319 if (ext4_has_inline_data(inode)) 3320 return; 3321 3322 ext4_mpage_readpages(inode, rac, NULL); 3323 } 3324 3325 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3326 size_t length) 3327 { 3328 trace_ext4_invalidate_folio(folio, offset, length); 3329 3330 /* No journalling happens on data buffers when this function is used */ 3331 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3332 3333 block_invalidate_folio(folio, offset, length); 3334 } 3335 3336 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3337 size_t offset, size_t length) 3338 { 3339 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3340 3341 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3342 3343 /* 3344 * If it's a full truncate we just forget about the pending dirtying 3345 */ 3346 if (offset == 0 && length == folio_size(folio)) 3347 folio_clear_checked(folio); 3348 3349 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3350 } 3351 3352 /* Wrapper for aops... */ 3353 static void ext4_journalled_invalidate_folio(struct folio *folio, 3354 size_t offset, 3355 size_t length) 3356 { 3357 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3358 } 3359 3360 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3361 { 3362 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3363 3364 trace_ext4_releasepage(&folio->page); 3365 3366 /* Page has dirty journalled data -> cannot release */ 3367 if (folio_test_checked(folio)) 3368 return false; 3369 if (journal) 3370 return jbd2_journal_try_to_free_buffers(journal, folio); 3371 else 3372 return try_to_free_buffers(folio); 3373 } 3374 3375 static bool ext4_inode_datasync_dirty(struct inode *inode) 3376 { 3377 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3378 3379 if (journal) { 3380 if (jbd2_transaction_committed(journal, 3381 EXT4_I(inode)->i_datasync_tid)) 3382 return false; 3383 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3384 return !list_empty(&EXT4_I(inode)->i_fc_list); 3385 return true; 3386 } 3387 3388 /* Any metadata buffers to write? */ 3389 if (!list_empty(&inode->i_mapping->private_list)) 3390 return true; 3391 return inode->i_state & I_DIRTY_DATASYNC; 3392 } 3393 3394 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3395 struct ext4_map_blocks *map, loff_t offset, 3396 loff_t length, unsigned int flags) 3397 { 3398 u8 blkbits = inode->i_blkbits; 3399 3400 /* 3401 * Writes that span EOF might trigger an I/O size update on completion, 3402 * so consider them to be dirty for the purpose of O_DSYNC, even if 3403 * there is no other metadata changes being made or are pending. 3404 */ 3405 iomap->flags = 0; 3406 if (ext4_inode_datasync_dirty(inode) || 3407 offset + length > i_size_read(inode)) 3408 iomap->flags |= IOMAP_F_DIRTY; 3409 3410 if (map->m_flags & EXT4_MAP_NEW) 3411 iomap->flags |= IOMAP_F_NEW; 3412 3413 if (flags & IOMAP_DAX) 3414 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3415 else 3416 iomap->bdev = inode->i_sb->s_bdev; 3417 iomap->offset = (u64) map->m_lblk << blkbits; 3418 iomap->length = (u64) map->m_len << blkbits; 3419 3420 if ((map->m_flags & EXT4_MAP_MAPPED) && 3421 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3422 iomap->flags |= IOMAP_F_MERGED; 3423 3424 /* 3425 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3426 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3427 * set. In order for any allocated unwritten extents to be converted 3428 * into written extents correctly within the ->end_io() handler, we 3429 * need to ensure that the iomap->type is set appropriately. Hence, the 3430 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3431 * been set first. 3432 */ 3433 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3434 iomap->type = IOMAP_UNWRITTEN; 3435 iomap->addr = (u64) map->m_pblk << blkbits; 3436 if (flags & IOMAP_DAX) 3437 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3438 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3439 iomap->type = IOMAP_MAPPED; 3440 iomap->addr = (u64) map->m_pblk << blkbits; 3441 if (flags & IOMAP_DAX) 3442 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3443 } else { 3444 iomap->type = IOMAP_HOLE; 3445 iomap->addr = IOMAP_NULL_ADDR; 3446 } 3447 } 3448 3449 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3450 unsigned int flags) 3451 { 3452 handle_t *handle; 3453 u8 blkbits = inode->i_blkbits; 3454 int ret, dio_credits, m_flags = 0, retries = 0; 3455 3456 /* 3457 * Trim the mapping request to the maximum value that we can map at 3458 * once for direct I/O. 3459 */ 3460 if (map->m_len > DIO_MAX_BLOCKS) 3461 map->m_len = DIO_MAX_BLOCKS; 3462 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3463 3464 retry: 3465 /* 3466 * Either we allocate blocks and then don't get an unwritten extent, so 3467 * in that case we have reserved enough credits. Or, the blocks are 3468 * already allocated and unwritten. In that case, the extent conversion 3469 * fits into the credits as well. 3470 */ 3471 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3472 if (IS_ERR(handle)) 3473 return PTR_ERR(handle); 3474 3475 /* 3476 * DAX and direct I/O are the only two operations that are currently 3477 * supported with IOMAP_WRITE. 3478 */ 3479 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3480 if (flags & IOMAP_DAX) 3481 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3482 /* 3483 * We use i_size instead of i_disksize here because delalloc writeback 3484 * can complete at any point during the I/O and subsequently push the 3485 * i_disksize out to i_size. This could be beyond where direct I/O is 3486 * happening and thus expose allocated blocks to direct I/O reads. 3487 */ 3488 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3489 m_flags = EXT4_GET_BLOCKS_CREATE; 3490 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3491 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3492 3493 ret = ext4_map_blocks(handle, inode, map, m_flags); 3494 3495 /* 3496 * We cannot fill holes in indirect tree based inodes as that could 3497 * expose stale data in the case of a crash. Use the magic error code 3498 * to fallback to buffered I/O. 3499 */ 3500 if (!m_flags && !ret) 3501 ret = -ENOTBLK; 3502 3503 ext4_journal_stop(handle); 3504 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3505 goto retry; 3506 3507 return ret; 3508 } 3509 3510 3511 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3512 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3513 { 3514 int ret; 3515 struct ext4_map_blocks map; 3516 u8 blkbits = inode->i_blkbits; 3517 3518 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3519 return -EINVAL; 3520 3521 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3522 return -ERANGE; 3523 3524 /* 3525 * Calculate the first and last logical blocks respectively. 3526 */ 3527 map.m_lblk = offset >> blkbits; 3528 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3529 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3530 3531 if (flags & IOMAP_WRITE) { 3532 /* 3533 * We check here if the blocks are already allocated, then we 3534 * don't need to start a journal txn and we can directly return 3535 * the mapping information. This could boost performance 3536 * especially in multi-threaded overwrite requests. 3537 */ 3538 if (offset + length <= i_size_read(inode)) { 3539 ret = ext4_map_blocks(NULL, inode, &map, 0); 3540 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3541 goto out; 3542 } 3543 ret = ext4_iomap_alloc(inode, &map, flags); 3544 } else { 3545 ret = ext4_map_blocks(NULL, inode, &map, 0); 3546 } 3547 3548 if (ret < 0) 3549 return ret; 3550 out: 3551 /* 3552 * When inline encryption is enabled, sometimes I/O to an encrypted file 3553 * has to be broken up to guarantee DUN contiguity. Handle this by 3554 * limiting the length of the mapping returned. 3555 */ 3556 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3557 3558 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3559 3560 return 0; 3561 } 3562 3563 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3564 loff_t length, unsigned flags, struct iomap *iomap, 3565 struct iomap *srcmap) 3566 { 3567 int ret; 3568 3569 /* 3570 * Even for writes we don't need to allocate blocks, so just pretend 3571 * we are reading to save overhead of starting a transaction. 3572 */ 3573 flags &= ~IOMAP_WRITE; 3574 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3575 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3576 return ret; 3577 } 3578 3579 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3580 ssize_t written, unsigned flags, struct iomap *iomap) 3581 { 3582 /* 3583 * Check to see whether an error occurred while writing out the data to 3584 * the allocated blocks. If so, return the magic error code so that we 3585 * fallback to buffered I/O and attempt to complete the remainder of 3586 * the I/O. Any blocks that may have been allocated in preparation for 3587 * the direct I/O will be reused during buffered I/O. 3588 */ 3589 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3590 return -ENOTBLK; 3591 3592 return 0; 3593 } 3594 3595 const struct iomap_ops ext4_iomap_ops = { 3596 .iomap_begin = ext4_iomap_begin, 3597 .iomap_end = ext4_iomap_end, 3598 }; 3599 3600 const struct iomap_ops ext4_iomap_overwrite_ops = { 3601 .iomap_begin = ext4_iomap_overwrite_begin, 3602 .iomap_end = ext4_iomap_end, 3603 }; 3604 3605 static bool ext4_iomap_is_delalloc(struct inode *inode, 3606 struct ext4_map_blocks *map) 3607 { 3608 struct extent_status es; 3609 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3610 3611 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3612 map->m_lblk, end, &es); 3613 3614 if (!es.es_len || es.es_lblk > end) 3615 return false; 3616 3617 if (es.es_lblk > map->m_lblk) { 3618 map->m_len = es.es_lblk - map->m_lblk; 3619 return false; 3620 } 3621 3622 offset = map->m_lblk - es.es_lblk; 3623 map->m_len = es.es_len - offset; 3624 3625 return true; 3626 } 3627 3628 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3629 loff_t length, unsigned int flags, 3630 struct iomap *iomap, struct iomap *srcmap) 3631 { 3632 int ret; 3633 bool delalloc = false; 3634 struct ext4_map_blocks map; 3635 u8 blkbits = inode->i_blkbits; 3636 3637 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3638 return -EINVAL; 3639 3640 if (ext4_has_inline_data(inode)) { 3641 ret = ext4_inline_data_iomap(inode, iomap); 3642 if (ret != -EAGAIN) { 3643 if (ret == 0 && offset >= iomap->length) 3644 ret = -ENOENT; 3645 return ret; 3646 } 3647 } 3648 3649 /* 3650 * Calculate the first and last logical block respectively. 3651 */ 3652 map.m_lblk = offset >> blkbits; 3653 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3654 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3655 3656 /* 3657 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3658 * So handle it here itself instead of querying ext4_map_blocks(). 3659 * Since ext4_map_blocks() will warn about it and will return 3660 * -EIO error. 3661 */ 3662 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3663 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3664 3665 if (offset >= sbi->s_bitmap_maxbytes) { 3666 map.m_flags = 0; 3667 goto set_iomap; 3668 } 3669 } 3670 3671 ret = ext4_map_blocks(NULL, inode, &map, 0); 3672 if (ret < 0) 3673 return ret; 3674 if (ret == 0) 3675 delalloc = ext4_iomap_is_delalloc(inode, &map); 3676 3677 set_iomap: 3678 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3679 if (delalloc && iomap->type == IOMAP_HOLE) 3680 iomap->type = IOMAP_DELALLOC; 3681 3682 return 0; 3683 } 3684 3685 const struct iomap_ops ext4_iomap_report_ops = { 3686 .iomap_begin = ext4_iomap_begin_report, 3687 }; 3688 3689 /* 3690 * Whenever the folio is being dirtied, corresponding buffers should already 3691 * be attached to the transaction (we take care of this in ext4_page_mkwrite() 3692 * and ext4_write_begin()). However we cannot move buffers to dirty transaction 3693 * lists here because ->dirty_folio is called under VFS locks and the folio 3694 * is not necessarily locked. 3695 * 3696 * We cannot just dirty the folio and leave attached buffers clean, because the 3697 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3698 * or jbddirty because all the journalling code will explode. 3699 * 3700 * So what we do is to mark the folio "pending dirty" and next time writepage 3701 * is called, propagate that into the buffers appropriately. 3702 */ 3703 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3704 struct folio *folio) 3705 { 3706 WARN_ON_ONCE(!folio_buffers(folio)); 3707 folio_set_checked(folio); 3708 return filemap_dirty_folio(mapping, folio); 3709 } 3710 3711 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3712 { 3713 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3714 WARN_ON_ONCE(!folio_buffers(folio)); 3715 return block_dirty_folio(mapping, folio); 3716 } 3717 3718 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3719 struct file *file, sector_t *span) 3720 { 3721 return iomap_swapfile_activate(sis, file, span, 3722 &ext4_iomap_report_ops); 3723 } 3724 3725 static const struct address_space_operations ext4_aops = { 3726 .read_folio = ext4_read_folio, 3727 .readahead = ext4_readahead, 3728 .writepages = ext4_writepages, 3729 .write_begin = ext4_write_begin, 3730 .write_end = ext4_write_end, 3731 .dirty_folio = ext4_dirty_folio, 3732 .bmap = ext4_bmap, 3733 .invalidate_folio = ext4_invalidate_folio, 3734 .release_folio = ext4_release_folio, 3735 .direct_IO = noop_direct_IO, 3736 .migrate_folio = buffer_migrate_folio, 3737 .is_partially_uptodate = block_is_partially_uptodate, 3738 .error_remove_page = generic_error_remove_page, 3739 .swap_activate = ext4_iomap_swap_activate, 3740 }; 3741 3742 static const struct address_space_operations ext4_journalled_aops = { 3743 .read_folio = ext4_read_folio, 3744 .readahead = ext4_readahead, 3745 .writepages = ext4_writepages, 3746 .write_begin = ext4_write_begin, 3747 .write_end = ext4_journalled_write_end, 3748 .dirty_folio = ext4_journalled_dirty_folio, 3749 .bmap = ext4_bmap, 3750 .invalidate_folio = ext4_journalled_invalidate_folio, 3751 .release_folio = ext4_release_folio, 3752 .direct_IO = noop_direct_IO, 3753 .migrate_folio = buffer_migrate_folio_norefs, 3754 .is_partially_uptodate = block_is_partially_uptodate, 3755 .error_remove_page = generic_error_remove_page, 3756 .swap_activate = ext4_iomap_swap_activate, 3757 }; 3758 3759 static const struct address_space_operations ext4_da_aops = { 3760 .read_folio = ext4_read_folio, 3761 .readahead = ext4_readahead, 3762 .writepages = ext4_writepages, 3763 .write_begin = ext4_da_write_begin, 3764 .write_end = ext4_da_write_end, 3765 .dirty_folio = ext4_dirty_folio, 3766 .bmap = ext4_bmap, 3767 .invalidate_folio = ext4_invalidate_folio, 3768 .release_folio = ext4_release_folio, 3769 .direct_IO = noop_direct_IO, 3770 .migrate_folio = buffer_migrate_folio, 3771 .is_partially_uptodate = block_is_partially_uptodate, 3772 .error_remove_page = generic_error_remove_page, 3773 .swap_activate = ext4_iomap_swap_activate, 3774 }; 3775 3776 static const struct address_space_operations ext4_dax_aops = { 3777 .writepages = ext4_dax_writepages, 3778 .direct_IO = noop_direct_IO, 3779 .dirty_folio = noop_dirty_folio, 3780 .bmap = ext4_bmap, 3781 .swap_activate = ext4_iomap_swap_activate, 3782 }; 3783 3784 void ext4_set_aops(struct inode *inode) 3785 { 3786 switch (ext4_inode_journal_mode(inode)) { 3787 case EXT4_INODE_ORDERED_DATA_MODE: 3788 case EXT4_INODE_WRITEBACK_DATA_MODE: 3789 break; 3790 case EXT4_INODE_JOURNAL_DATA_MODE: 3791 inode->i_mapping->a_ops = &ext4_journalled_aops; 3792 return; 3793 default: 3794 BUG(); 3795 } 3796 if (IS_DAX(inode)) 3797 inode->i_mapping->a_ops = &ext4_dax_aops; 3798 else if (test_opt(inode->i_sb, DELALLOC)) 3799 inode->i_mapping->a_ops = &ext4_da_aops; 3800 else 3801 inode->i_mapping->a_ops = &ext4_aops; 3802 } 3803 3804 static int __ext4_block_zero_page_range(handle_t *handle, 3805 struct address_space *mapping, loff_t from, loff_t length) 3806 { 3807 ext4_fsblk_t index = from >> PAGE_SHIFT; 3808 unsigned offset = from & (PAGE_SIZE-1); 3809 unsigned blocksize, pos; 3810 ext4_lblk_t iblock; 3811 struct inode *inode = mapping->host; 3812 struct buffer_head *bh; 3813 struct page *page; 3814 int err = 0; 3815 3816 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3817 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3818 if (!page) 3819 return -ENOMEM; 3820 3821 blocksize = inode->i_sb->s_blocksize; 3822 3823 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3824 3825 if (!page_has_buffers(page)) 3826 create_empty_buffers(page, blocksize, 0); 3827 3828 /* Find the buffer that contains "offset" */ 3829 bh = page_buffers(page); 3830 pos = blocksize; 3831 while (offset >= pos) { 3832 bh = bh->b_this_page; 3833 iblock++; 3834 pos += blocksize; 3835 } 3836 if (buffer_freed(bh)) { 3837 BUFFER_TRACE(bh, "freed: skip"); 3838 goto unlock; 3839 } 3840 if (!buffer_mapped(bh)) { 3841 BUFFER_TRACE(bh, "unmapped"); 3842 ext4_get_block(inode, iblock, bh, 0); 3843 /* unmapped? It's a hole - nothing to do */ 3844 if (!buffer_mapped(bh)) { 3845 BUFFER_TRACE(bh, "still unmapped"); 3846 goto unlock; 3847 } 3848 } 3849 3850 /* Ok, it's mapped. Make sure it's up-to-date */ 3851 if (PageUptodate(page)) 3852 set_buffer_uptodate(bh); 3853 3854 if (!buffer_uptodate(bh)) { 3855 err = ext4_read_bh_lock(bh, 0, true); 3856 if (err) 3857 goto unlock; 3858 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3859 /* We expect the key to be set. */ 3860 BUG_ON(!fscrypt_has_encryption_key(inode)); 3861 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3862 bh_offset(bh)); 3863 if (err) { 3864 clear_buffer_uptodate(bh); 3865 goto unlock; 3866 } 3867 } 3868 } 3869 if (ext4_should_journal_data(inode)) { 3870 BUFFER_TRACE(bh, "get write access"); 3871 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3872 EXT4_JTR_NONE); 3873 if (err) 3874 goto unlock; 3875 } 3876 zero_user(page, offset, length); 3877 BUFFER_TRACE(bh, "zeroed end of block"); 3878 3879 if (ext4_should_journal_data(inode)) { 3880 err = ext4_handle_dirty_metadata(handle, inode, bh); 3881 } else { 3882 err = 0; 3883 mark_buffer_dirty(bh); 3884 if (ext4_should_order_data(inode)) 3885 err = ext4_jbd2_inode_add_write(handle, inode, from, 3886 length); 3887 } 3888 3889 unlock: 3890 unlock_page(page); 3891 put_page(page); 3892 return err; 3893 } 3894 3895 /* 3896 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3897 * starting from file offset 'from'. The range to be zero'd must 3898 * be contained with in one block. If the specified range exceeds 3899 * the end of the block it will be shortened to end of the block 3900 * that corresponds to 'from' 3901 */ 3902 static int ext4_block_zero_page_range(handle_t *handle, 3903 struct address_space *mapping, loff_t from, loff_t length) 3904 { 3905 struct inode *inode = mapping->host; 3906 unsigned offset = from & (PAGE_SIZE-1); 3907 unsigned blocksize = inode->i_sb->s_blocksize; 3908 unsigned max = blocksize - (offset & (blocksize - 1)); 3909 3910 /* 3911 * correct length if it does not fall between 3912 * 'from' and the end of the block 3913 */ 3914 if (length > max || length < 0) 3915 length = max; 3916 3917 if (IS_DAX(inode)) { 3918 return dax_zero_range(inode, from, length, NULL, 3919 &ext4_iomap_ops); 3920 } 3921 return __ext4_block_zero_page_range(handle, mapping, from, length); 3922 } 3923 3924 /* 3925 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3926 * up to the end of the block which corresponds to `from'. 3927 * This required during truncate. We need to physically zero the tail end 3928 * of that block so it doesn't yield old data if the file is later grown. 3929 */ 3930 static int ext4_block_truncate_page(handle_t *handle, 3931 struct address_space *mapping, loff_t from) 3932 { 3933 unsigned offset = from & (PAGE_SIZE-1); 3934 unsigned length; 3935 unsigned blocksize; 3936 struct inode *inode = mapping->host; 3937 3938 /* If we are processing an encrypted inode during orphan list handling */ 3939 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3940 return 0; 3941 3942 blocksize = inode->i_sb->s_blocksize; 3943 length = blocksize - (offset & (blocksize - 1)); 3944 3945 return ext4_block_zero_page_range(handle, mapping, from, length); 3946 } 3947 3948 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3949 loff_t lstart, loff_t length) 3950 { 3951 struct super_block *sb = inode->i_sb; 3952 struct address_space *mapping = inode->i_mapping; 3953 unsigned partial_start, partial_end; 3954 ext4_fsblk_t start, end; 3955 loff_t byte_end = (lstart + length - 1); 3956 int err = 0; 3957 3958 partial_start = lstart & (sb->s_blocksize - 1); 3959 partial_end = byte_end & (sb->s_blocksize - 1); 3960 3961 start = lstart >> sb->s_blocksize_bits; 3962 end = byte_end >> sb->s_blocksize_bits; 3963 3964 /* Handle partial zero within the single block */ 3965 if (start == end && 3966 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3967 err = ext4_block_zero_page_range(handle, mapping, 3968 lstart, length); 3969 return err; 3970 } 3971 /* Handle partial zero out on the start of the range */ 3972 if (partial_start) { 3973 err = ext4_block_zero_page_range(handle, mapping, 3974 lstart, sb->s_blocksize); 3975 if (err) 3976 return err; 3977 } 3978 /* Handle partial zero out on the end of the range */ 3979 if (partial_end != sb->s_blocksize - 1) 3980 err = ext4_block_zero_page_range(handle, mapping, 3981 byte_end - partial_end, 3982 partial_end + 1); 3983 return err; 3984 } 3985 3986 int ext4_can_truncate(struct inode *inode) 3987 { 3988 if (S_ISREG(inode->i_mode)) 3989 return 1; 3990 if (S_ISDIR(inode->i_mode)) 3991 return 1; 3992 if (S_ISLNK(inode->i_mode)) 3993 return !ext4_inode_is_fast_symlink(inode); 3994 return 0; 3995 } 3996 3997 /* 3998 * We have to make sure i_disksize gets properly updated before we truncate 3999 * page cache due to hole punching or zero range. Otherwise i_disksize update 4000 * can get lost as it may have been postponed to submission of writeback but 4001 * that will never happen after we truncate page cache. 4002 */ 4003 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4004 loff_t len) 4005 { 4006 handle_t *handle; 4007 int ret; 4008 4009 loff_t size = i_size_read(inode); 4010 4011 WARN_ON(!inode_is_locked(inode)); 4012 if (offset > size || offset + len < size) 4013 return 0; 4014 4015 if (EXT4_I(inode)->i_disksize >= size) 4016 return 0; 4017 4018 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4019 if (IS_ERR(handle)) 4020 return PTR_ERR(handle); 4021 ext4_update_i_disksize(inode, size); 4022 ret = ext4_mark_inode_dirty(handle, inode); 4023 ext4_journal_stop(handle); 4024 4025 return ret; 4026 } 4027 4028 static void ext4_wait_dax_page(struct inode *inode) 4029 { 4030 filemap_invalidate_unlock(inode->i_mapping); 4031 schedule(); 4032 filemap_invalidate_lock(inode->i_mapping); 4033 } 4034 4035 int ext4_break_layouts(struct inode *inode) 4036 { 4037 struct page *page; 4038 int error; 4039 4040 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 4041 return -EINVAL; 4042 4043 do { 4044 page = dax_layout_busy_page(inode->i_mapping); 4045 if (!page) 4046 return 0; 4047 4048 error = ___wait_var_event(&page->_refcount, 4049 atomic_read(&page->_refcount) == 1, 4050 TASK_INTERRUPTIBLE, 0, 0, 4051 ext4_wait_dax_page(inode)); 4052 } while (error == 0); 4053 4054 return error; 4055 } 4056 4057 /* 4058 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4059 * associated with the given offset and length 4060 * 4061 * @inode: File inode 4062 * @offset: The offset where the hole will begin 4063 * @len: The length of the hole 4064 * 4065 * Returns: 0 on success or negative on failure 4066 */ 4067 4068 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 4069 { 4070 struct inode *inode = file_inode(file); 4071 struct super_block *sb = inode->i_sb; 4072 ext4_lblk_t first_block, stop_block; 4073 struct address_space *mapping = inode->i_mapping; 4074 loff_t first_block_offset, last_block_offset, max_length; 4075 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4076 handle_t *handle; 4077 unsigned int credits; 4078 int ret = 0, ret2 = 0; 4079 4080 trace_ext4_punch_hole(inode, offset, length, 0); 4081 4082 /* 4083 * Write out all dirty pages to avoid race conditions 4084 * Then release them. 4085 */ 4086 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4087 ret = filemap_write_and_wait_range(mapping, offset, 4088 offset + length - 1); 4089 if (ret) 4090 return ret; 4091 } 4092 4093 inode_lock(inode); 4094 4095 /* No need to punch hole beyond i_size */ 4096 if (offset >= inode->i_size) 4097 goto out_mutex; 4098 4099 /* 4100 * If the hole extends beyond i_size, set the hole 4101 * to end after the page that contains i_size 4102 */ 4103 if (offset + length > inode->i_size) { 4104 length = inode->i_size + 4105 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4106 offset; 4107 } 4108 4109 /* 4110 * For punch hole the length + offset needs to be within one block 4111 * before last range. Adjust the length if it goes beyond that limit. 4112 */ 4113 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 4114 if (offset + length > max_length) 4115 length = max_length - offset; 4116 4117 if (offset & (sb->s_blocksize - 1) || 4118 (offset + length) & (sb->s_blocksize - 1)) { 4119 /* 4120 * Attach jinode to inode for jbd2 if we do any zeroing of 4121 * partial block 4122 */ 4123 ret = ext4_inode_attach_jinode(inode); 4124 if (ret < 0) 4125 goto out_mutex; 4126 4127 } 4128 4129 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 4130 inode_dio_wait(inode); 4131 4132 ret = file_modified(file); 4133 if (ret) 4134 goto out_mutex; 4135 4136 /* 4137 * Prevent page faults from reinstantiating pages we have released from 4138 * page cache. 4139 */ 4140 filemap_invalidate_lock(mapping); 4141 4142 ret = ext4_break_layouts(inode); 4143 if (ret) 4144 goto out_dio; 4145 4146 first_block_offset = round_up(offset, sb->s_blocksize); 4147 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4148 4149 /* Now release the pages and zero block aligned part of pages*/ 4150 if (last_block_offset > first_block_offset) { 4151 ret = ext4_update_disksize_before_punch(inode, offset, length); 4152 if (ret) 4153 goto out_dio; 4154 truncate_pagecache_range(inode, first_block_offset, 4155 last_block_offset); 4156 } 4157 4158 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4159 credits = ext4_writepage_trans_blocks(inode); 4160 else 4161 credits = ext4_blocks_for_truncate(inode); 4162 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4163 if (IS_ERR(handle)) { 4164 ret = PTR_ERR(handle); 4165 ext4_std_error(sb, ret); 4166 goto out_dio; 4167 } 4168 4169 ret = ext4_zero_partial_blocks(handle, inode, offset, 4170 length); 4171 if (ret) 4172 goto out_stop; 4173 4174 first_block = (offset + sb->s_blocksize - 1) >> 4175 EXT4_BLOCK_SIZE_BITS(sb); 4176 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4177 4178 /* If there are blocks to remove, do it */ 4179 if (stop_block > first_block) { 4180 4181 down_write(&EXT4_I(inode)->i_data_sem); 4182 ext4_discard_preallocations(inode, 0); 4183 4184 ret = ext4_es_remove_extent(inode, first_block, 4185 stop_block - first_block); 4186 if (ret) { 4187 up_write(&EXT4_I(inode)->i_data_sem); 4188 goto out_stop; 4189 } 4190 4191 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4192 ret = ext4_ext_remove_space(inode, first_block, 4193 stop_block - 1); 4194 else 4195 ret = ext4_ind_remove_space(handle, inode, first_block, 4196 stop_block); 4197 4198 up_write(&EXT4_I(inode)->i_data_sem); 4199 } 4200 ext4_fc_track_range(handle, inode, first_block, stop_block); 4201 if (IS_SYNC(inode)) 4202 ext4_handle_sync(handle); 4203 4204 inode->i_mtime = inode->i_ctime = current_time(inode); 4205 ret2 = ext4_mark_inode_dirty(handle, inode); 4206 if (unlikely(ret2)) 4207 ret = ret2; 4208 if (ret >= 0) 4209 ext4_update_inode_fsync_trans(handle, inode, 1); 4210 out_stop: 4211 ext4_journal_stop(handle); 4212 out_dio: 4213 filemap_invalidate_unlock(mapping); 4214 out_mutex: 4215 inode_unlock(inode); 4216 return ret; 4217 } 4218 4219 int ext4_inode_attach_jinode(struct inode *inode) 4220 { 4221 struct ext4_inode_info *ei = EXT4_I(inode); 4222 struct jbd2_inode *jinode; 4223 4224 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4225 return 0; 4226 4227 jinode = jbd2_alloc_inode(GFP_KERNEL); 4228 spin_lock(&inode->i_lock); 4229 if (!ei->jinode) { 4230 if (!jinode) { 4231 spin_unlock(&inode->i_lock); 4232 return -ENOMEM; 4233 } 4234 ei->jinode = jinode; 4235 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4236 jinode = NULL; 4237 } 4238 spin_unlock(&inode->i_lock); 4239 if (unlikely(jinode != NULL)) 4240 jbd2_free_inode(jinode); 4241 return 0; 4242 } 4243 4244 /* 4245 * ext4_truncate() 4246 * 4247 * We block out ext4_get_block() block instantiations across the entire 4248 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4249 * simultaneously on behalf of the same inode. 4250 * 4251 * As we work through the truncate and commit bits of it to the journal there 4252 * is one core, guiding principle: the file's tree must always be consistent on 4253 * disk. We must be able to restart the truncate after a crash. 4254 * 4255 * The file's tree may be transiently inconsistent in memory (although it 4256 * probably isn't), but whenever we close off and commit a journal transaction, 4257 * the contents of (the filesystem + the journal) must be consistent and 4258 * restartable. It's pretty simple, really: bottom up, right to left (although 4259 * left-to-right works OK too). 4260 * 4261 * Note that at recovery time, journal replay occurs *before* the restart of 4262 * truncate against the orphan inode list. 4263 * 4264 * The committed inode has the new, desired i_size (which is the same as 4265 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4266 * that this inode's truncate did not complete and it will again call 4267 * ext4_truncate() to have another go. So there will be instantiated blocks 4268 * to the right of the truncation point in a crashed ext4 filesystem. But 4269 * that's fine - as long as they are linked from the inode, the post-crash 4270 * ext4_truncate() run will find them and release them. 4271 */ 4272 int ext4_truncate(struct inode *inode) 4273 { 4274 struct ext4_inode_info *ei = EXT4_I(inode); 4275 unsigned int credits; 4276 int err = 0, err2; 4277 handle_t *handle; 4278 struct address_space *mapping = inode->i_mapping; 4279 4280 /* 4281 * There is a possibility that we're either freeing the inode 4282 * or it's a completely new inode. In those cases we might not 4283 * have i_rwsem locked because it's not necessary. 4284 */ 4285 if (!(inode->i_state & (I_NEW|I_FREEING))) 4286 WARN_ON(!inode_is_locked(inode)); 4287 trace_ext4_truncate_enter(inode); 4288 4289 if (!ext4_can_truncate(inode)) 4290 goto out_trace; 4291 4292 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4293 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4294 4295 if (ext4_has_inline_data(inode)) { 4296 int has_inline = 1; 4297 4298 err = ext4_inline_data_truncate(inode, &has_inline); 4299 if (err || has_inline) 4300 goto out_trace; 4301 } 4302 4303 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4304 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4305 err = ext4_inode_attach_jinode(inode); 4306 if (err) 4307 goto out_trace; 4308 } 4309 4310 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4311 credits = ext4_writepage_trans_blocks(inode); 4312 else 4313 credits = ext4_blocks_for_truncate(inode); 4314 4315 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4316 if (IS_ERR(handle)) { 4317 err = PTR_ERR(handle); 4318 goto out_trace; 4319 } 4320 4321 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4322 ext4_block_truncate_page(handle, mapping, inode->i_size); 4323 4324 /* 4325 * We add the inode to the orphan list, so that if this 4326 * truncate spans multiple transactions, and we crash, we will 4327 * resume the truncate when the filesystem recovers. It also 4328 * marks the inode dirty, to catch the new size. 4329 * 4330 * Implication: the file must always be in a sane, consistent 4331 * truncatable state while each transaction commits. 4332 */ 4333 err = ext4_orphan_add(handle, inode); 4334 if (err) 4335 goto out_stop; 4336 4337 down_write(&EXT4_I(inode)->i_data_sem); 4338 4339 ext4_discard_preallocations(inode, 0); 4340 4341 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4342 err = ext4_ext_truncate(handle, inode); 4343 else 4344 ext4_ind_truncate(handle, inode); 4345 4346 up_write(&ei->i_data_sem); 4347 if (err) 4348 goto out_stop; 4349 4350 if (IS_SYNC(inode)) 4351 ext4_handle_sync(handle); 4352 4353 out_stop: 4354 /* 4355 * If this was a simple ftruncate() and the file will remain alive, 4356 * then we need to clear up the orphan record which we created above. 4357 * However, if this was a real unlink then we were called by 4358 * ext4_evict_inode(), and we allow that function to clean up the 4359 * orphan info for us. 4360 */ 4361 if (inode->i_nlink) 4362 ext4_orphan_del(handle, inode); 4363 4364 inode->i_mtime = inode->i_ctime = current_time(inode); 4365 err2 = ext4_mark_inode_dirty(handle, inode); 4366 if (unlikely(err2 && !err)) 4367 err = err2; 4368 ext4_journal_stop(handle); 4369 4370 out_trace: 4371 trace_ext4_truncate_exit(inode); 4372 return err; 4373 } 4374 4375 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4376 { 4377 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4378 return inode_peek_iversion_raw(inode); 4379 else 4380 return inode_peek_iversion(inode); 4381 } 4382 4383 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4384 struct ext4_inode_info *ei) 4385 { 4386 struct inode *inode = &(ei->vfs_inode); 4387 u64 i_blocks = READ_ONCE(inode->i_blocks); 4388 struct super_block *sb = inode->i_sb; 4389 4390 if (i_blocks <= ~0U) { 4391 /* 4392 * i_blocks can be represented in a 32 bit variable 4393 * as multiple of 512 bytes 4394 */ 4395 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4396 raw_inode->i_blocks_high = 0; 4397 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4398 return 0; 4399 } 4400 4401 /* 4402 * This should never happen since sb->s_maxbytes should not have 4403 * allowed this, sb->s_maxbytes was set according to the huge_file 4404 * feature in ext4_fill_super(). 4405 */ 4406 if (!ext4_has_feature_huge_file(sb)) 4407 return -EFSCORRUPTED; 4408 4409 if (i_blocks <= 0xffffffffffffULL) { 4410 /* 4411 * i_blocks can be represented in a 48 bit variable 4412 * as multiple of 512 bytes 4413 */ 4414 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4415 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4416 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4417 } else { 4418 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4419 /* i_block is stored in file system block size */ 4420 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4421 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4422 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4423 } 4424 return 0; 4425 } 4426 4427 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4428 { 4429 struct ext4_inode_info *ei = EXT4_I(inode); 4430 uid_t i_uid; 4431 gid_t i_gid; 4432 projid_t i_projid; 4433 int block; 4434 int err; 4435 4436 err = ext4_inode_blocks_set(raw_inode, ei); 4437 4438 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4439 i_uid = i_uid_read(inode); 4440 i_gid = i_gid_read(inode); 4441 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4442 if (!(test_opt(inode->i_sb, NO_UID32))) { 4443 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4444 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4445 /* 4446 * Fix up interoperability with old kernels. Otherwise, 4447 * old inodes get re-used with the upper 16 bits of the 4448 * uid/gid intact. 4449 */ 4450 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4451 raw_inode->i_uid_high = 0; 4452 raw_inode->i_gid_high = 0; 4453 } else { 4454 raw_inode->i_uid_high = 4455 cpu_to_le16(high_16_bits(i_uid)); 4456 raw_inode->i_gid_high = 4457 cpu_to_le16(high_16_bits(i_gid)); 4458 } 4459 } else { 4460 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4461 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4462 raw_inode->i_uid_high = 0; 4463 raw_inode->i_gid_high = 0; 4464 } 4465 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4466 4467 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4468 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4469 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4470 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4471 4472 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4473 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4474 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4475 raw_inode->i_file_acl_high = 4476 cpu_to_le16(ei->i_file_acl >> 32); 4477 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4478 ext4_isize_set(raw_inode, ei->i_disksize); 4479 4480 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4481 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4482 if (old_valid_dev(inode->i_rdev)) { 4483 raw_inode->i_block[0] = 4484 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4485 raw_inode->i_block[1] = 0; 4486 } else { 4487 raw_inode->i_block[0] = 0; 4488 raw_inode->i_block[1] = 4489 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4490 raw_inode->i_block[2] = 0; 4491 } 4492 } else if (!ext4_has_inline_data(inode)) { 4493 for (block = 0; block < EXT4_N_BLOCKS; block++) 4494 raw_inode->i_block[block] = ei->i_data[block]; 4495 } 4496 4497 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4498 u64 ivers = ext4_inode_peek_iversion(inode); 4499 4500 raw_inode->i_disk_version = cpu_to_le32(ivers); 4501 if (ei->i_extra_isize) { 4502 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4503 raw_inode->i_version_hi = 4504 cpu_to_le32(ivers >> 32); 4505 raw_inode->i_extra_isize = 4506 cpu_to_le16(ei->i_extra_isize); 4507 } 4508 } 4509 4510 if (i_projid != EXT4_DEF_PROJID && 4511 !ext4_has_feature_project(inode->i_sb)) 4512 err = err ?: -EFSCORRUPTED; 4513 4514 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4515 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4516 raw_inode->i_projid = cpu_to_le32(i_projid); 4517 4518 ext4_inode_csum_set(inode, raw_inode, ei); 4519 return err; 4520 } 4521 4522 /* 4523 * ext4_get_inode_loc returns with an extra refcount against the inode's 4524 * underlying buffer_head on success. If we pass 'inode' and it does not 4525 * have in-inode xattr, we have all inode data in memory that is needed 4526 * to recreate the on-disk version of this inode. 4527 */ 4528 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4529 struct inode *inode, struct ext4_iloc *iloc, 4530 ext4_fsblk_t *ret_block) 4531 { 4532 struct ext4_group_desc *gdp; 4533 struct buffer_head *bh; 4534 ext4_fsblk_t block; 4535 struct blk_plug plug; 4536 int inodes_per_block, inode_offset; 4537 4538 iloc->bh = NULL; 4539 if (ino < EXT4_ROOT_INO || 4540 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4541 return -EFSCORRUPTED; 4542 4543 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4544 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4545 if (!gdp) 4546 return -EIO; 4547 4548 /* 4549 * Figure out the offset within the block group inode table 4550 */ 4551 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4552 inode_offset = ((ino - 1) % 4553 EXT4_INODES_PER_GROUP(sb)); 4554 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4555 4556 block = ext4_inode_table(sb, gdp); 4557 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4558 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4559 ext4_error(sb, "Invalid inode table block %llu in " 4560 "block_group %u", block, iloc->block_group); 4561 return -EFSCORRUPTED; 4562 } 4563 block += (inode_offset / inodes_per_block); 4564 4565 bh = sb_getblk(sb, block); 4566 if (unlikely(!bh)) 4567 return -ENOMEM; 4568 if (ext4_buffer_uptodate(bh)) 4569 goto has_buffer; 4570 4571 lock_buffer(bh); 4572 if (ext4_buffer_uptodate(bh)) { 4573 /* Someone brought it uptodate while we waited */ 4574 unlock_buffer(bh); 4575 goto has_buffer; 4576 } 4577 4578 /* 4579 * If we have all information of the inode in memory and this 4580 * is the only valid inode in the block, we need not read the 4581 * block. 4582 */ 4583 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4584 struct buffer_head *bitmap_bh; 4585 int i, start; 4586 4587 start = inode_offset & ~(inodes_per_block - 1); 4588 4589 /* Is the inode bitmap in cache? */ 4590 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4591 if (unlikely(!bitmap_bh)) 4592 goto make_io; 4593 4594 /* 4595 * If the inode bitmap isn't in cache then the 4596 * optimisation may end up performing two reads instead 4597 * of one, so skip it. 4598 */ 4599 if (!buffer_uptodate(bitmap_bh)) { 4600 brelse(bitmap_bh); 4601 goto make_io; 4602 } 4603 for (i = start; i < start + inodes_per_block; i++) { 4604 if (i == inode_offset) 4605 continue; 4606 if (ext4_test_bit(i, bitmap_bh->b_data)) 4607 break; 4608 } 4609 brelse(bitmap_bh); 4610 if (i == start + inodes_per_block) { 4611 struct ext4_inode *raw_inode = 4612 (struct ext4_inode *) (bh->b_data + iloc->offset); 4613 4614 /* all other inodes are free, so skip I/O */ 4615 memset(bh->b_data, 0, bh->b_size); 4616 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4617 ext4_fill_raw_inode(inode, raw_inode); 4618 set_buffer_uptodate(bh); 4619 unlock_buffer(bh); 4620 goto has_buffer; 4621 } 4622 } 4623 4624 make_io: 4625 /* 4626 * If we need to do any I/O, try to pre-readahead extra 4627 * blocks from the inode table. 4628 */ 4629 blk_start_plug(&plug); 4630 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4631 ext4_fsblk_t b, end, table; 4632 unsigned num; 4633 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4634 4635 table = ext4_inode_table(sb, gdp); 4636 /* s_inode_readahead_blks is always a power of 2 */ 4637 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4638 if (table > b) 4639 b = table; 4640 end = b + ra_blks; 4641 num = EXT4_INODES_PER_GROUP(sb); 4642 if (ext4_has_group_desc_csum(sb)) 4643 num -= ext4_itable_unused_count(sb, gdp); 4644 table += num / inodes_per_block; 4645 if (end > table) 4646 end = table; 4647 while (b <= end) 4648 ext4_sb_breadahead_unmovable(sb, b++); 4649 } 4650 4651 /* 4652 * There are other valid inodes in the buffer, this inode 4653 * has in-inode xattrs, or we don't have this inode in memory. 4654 * Read the block from disk. 4655 */ 4656 trace_ext4_load_inode(sb, ino); 4657 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4658 blk_finish_plug(&plug); 4659 wait_on_buffer(bh); 4660 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4661 if (!buffer_uptodate(bh)) { 4662 if (ret_block) 4663 *ret_block = block; 4664 brelse(bh); 4665 return -EIO; 4666 } 4667 has_buffer: 4668 iloc->bh = bh; 4669 return 0; 4670 } 4671 4672 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4673 struct ext4_iloc *iloc) 4674 { 4675 ext4_fsblk_t err_blk = 0; 4676 int ret; 4677 4678 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4679 &err_blk); 4680 4681 if (ret == -EIO) 4682 ext4_error_inode_block(inode, err_blk, EIO, 4683 "unable to read itable block"); 4684 4685 return ret; 4686 } 4687 4688 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4689 { 4690 ext4_fsblk_t err_blk = 0; 4691 int ret; 4692 4693 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4694 &err_blk); 4695 4696 if (ret == -EIO) 4697 ext4_error_inode_block(inode, err_blk, EIO, 4698 "unable to read itable block"); 4699 4700 return ret; 4701 } 4702 4703 4704 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4705 struct ext4_iloc *iloc) 4706 { 4707 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4708 } 4709 4710 static bool ext4_should_enable_dax(struct inode *inode) 4711 { 4712 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4713 4714 if (test_opt2(inode->i_sb, DAX_NEVER)) 4715 return false; 4716 if (!S_ISREG(inode->i_mode)) 4717 return false; 4718 if (ext4_should_journal_data(inode)) 4719 return false; 4720 if (ext4_has_inline_data(inode)) 4721 return false; 4722 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4723 return false; 4724 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4725 return false; 4726 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4727 return false; 4728 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4729 return true; 4730 4731 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4732 } 4733 4734 void ext4_set_inode_flags(struct inode *inode, bool init) 4735 { 4736 unsigned int flags = EXT4_I(inode)->i_flags; 4737 unsigned int new_fl = 0; 4738 4739 WARN_ON_ONCE(IS_DAX(inode) && init); 4740 4741 if (flags & EXT4_SYNC_FL) 4742 new_fl |= S_SYNC; 4743 if (flags & EXT4_APPEND_FL) 4744 new_fl |= S_APPEND; 4745 if (flags & EXT4_IMMUTABLE_FL) 4746 new_fl |= S_IMMUTABLE; 4747 if (flags & EXT4_NOATIME_FL) 4748 new_fl |= S_NOATIME; 4749 if (flags & EXT4_DIRSYNC_FL) 4750 new_fl |= S_DIRSYNC; 4751 4752 /* Because of the way inode_set_flags() works we must preserve S_DAX 4753 * here if already set. */ 4754 new_fl |= (inode->i_flags & S_DAX); 4755 if (init && ext4_should_enable_dax(inode)) 4756 new_fl |= S_DAX; 4757 4758 if (flags & EXT4_ENCRYPT_FL) 4759 new_fl |= S_ENCRYPTED; 4760 if (flags & EXT4_CASEFOLD_FL) 4761 new_fl |= S_CASEFOLD; 4762 if (flags & EXT4_VERITY_FL) 4763 new_fl |= S_VERITY; 4764 inode_set_flags(inode, new_fl, 4765 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4766 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4767 } 4768 4769 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4770 struct ext4_inode_info *ei) 4771 { 4772 blkcnt_t i_blocks ; 4773 struct inode *inode = &(ei->vfs_inode); 4774 struct super_block *sb = inode->i_sb; 4775 4776 if (ext4_has_feature_huge_file(sb)) { 4777 /* we are using combined 48 bit field */ 4778 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4779 le32_to_cpu(raw_inode->i_blocks_lo); 4780 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4781 /* i_blocks represent file system block size */ 4782 return i_blocks << (inode->i_blkbits - 9); 4783 } else { 4784 return i_blocks; 4785 } 4786 } else { 4787 return le32_to_cpu(raw_inode->i_blocks_lo); 4788 } 4789 } 4790 4791 static inline int ext4_iget_extra_inode(struct inode *inode, 4792 struct ext4_inode *raw_inode, 4793 struct ext4_inode_info *ei) 4794 { 4795 __le32 *magic = (void *)raw_inode + 4796 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4797 4798 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4799 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4800 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4801 return ext4_find_inline_data_nolock(inode); 4802 } else 4803 EXT4_I(inode)->i_inline_off = 0; 4804 return 0; 4805 } 4806 4807 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4808 { 4809 if (!ext4_has_feature_project(inode->i_sb)) 4810 return -EOPNOTSUPP; 4811 *projid = EXT4_I(inode)->i_projid; 4812 return 0; 4813 } 4814 4815 /* 4816 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4817 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4818 * set. 4819 */ 4820 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4821 { 4822 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4823 inode_set_iversion_raw(inode, val); 4824 else 4825 inode_set_iversion_queried(inode, val); 4826 } 4827 4828 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4829 ext4_iget_flags flags, const char *function, 4830 unsigned int line) 4831 { 4832 struct ext4_iloc iloc; 4833 struct ext4_inode *raw_inode; 4834 struct ext4_inode_info *ei; 4835 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4836 struct inode *inode; 4837 journal_t *journal = EXT4_SB(sb)->s_journal; 4838 long ret; 4839 loff_t size; 4840 int block; 4841 uid_t i_uid; 4842 gid_t i_gid; 4843 projid_t i_projid; 4844 4845 if ((!(flags & EXT4_IGET_SPECIAL) && 4846 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4847 ino == le32_to_cpu(es->s_usr_quota_inum) || 4848 ino == le32_to_cpu(es->s_grp_quota_inum) || 4849 ino == le32_to_cpu(es->s_prj_quota_inum) || 4850 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4851 (ino < EXT4_ROOT_INO) || 4852 (ino > le32_to_cpu(es->s_inodes_count))) { 4853 if (flags & EXT4_IGET_HANDLE) 4854 return ERR_PTR(-ESTALE); 4855 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4856 "inode #%lu: comm %s: iget: illegal inode #", 4857 ino, current->comm); 4858 return ERR_PTR(-EFSCORRUPTED); 4859 } 4860 4861 inode = iget_locked(sb, ino); 4862 if (!inode) 4863 return ERR_PTR(-ENOMEM); 4864 if (!(inode->i_state & I_NEW)) 4865 return inode; 4866 4867 ei = EXT4_I(inode); 4868 iloc.bh = NULL; 4869 4870 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4871 if (ret < 0) 4872 goto bad_inode; 4873 raw_inode = ext4_raw_inode(&iloc); 4874 4875 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4876 ext4_error_inode(inode, function, line, 0, 4877 "iget: root inode unallocated"); 4878 ret = -EFSCORRUPTED; 4879 goto bad_inode; 4880 } 4881 4882 if ((flags & EXT4_IGET_HANDLE) && 4883 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4884 ret = -ESTALE; 4885 goto bad_inode; 4886 } 4887 4888 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4889 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4890 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4891 EXT4_INODE_SIZE(inode->i_sb) || 4892 (ei->i_extra_isize & 3)) { 4893 ext4_error_inode(inode, function, line, 0, 4894 "iget: bad extra_isize %u " 4895 "(inode size %u)", 4896 ei->i_extra_isize, 4897 EXT4_INODE_SIZE(inode->i_sb)); 4898 ret = -EFSCORRUPTED; 4899 goto bad_inode; 4900 } 4901 } else 4902 ei->i_extra_isize = 0; 4903 4904 /* Precompute checksum seed for inode metadata */ 4905 if (ext4_has_metadata_csum(sb)) { 4906 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4907 __u32 csum; 4908 __le32 inum = cpu_to_le32(inode->i_ino); 4909 __le32 gen = raw_inode->i_generation; 4910 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4911 sizeof(inum)); 4912 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4913 sizeof(gen)); 4914 } 4915 4916 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4917 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4918 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4919 ext4_error_inode_err(inode, function, line, 0, 4920 EFSBADCRC, "iget: checksum invalid"); 4921 ret = -EFSBADCRC; 4922 goto bad_inode; 4923 } 4924 4925 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4926 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4927 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4928 if (ext4_has_feature_project(sb) && 4929 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4930 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4931 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4932 else 4933 i_projid = EXT4_DEF_PROJID; 4934 4935 if (!(test_opt(inode->i_sb, NO_UID32))) { 4936 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4937 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4938 } 4939 i_uid_write(inode, i_uid); 4940 i_gid_write(inode, i_gid); 4941 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4942 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4943 4944 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4945 ei->i_inline_off = 0; 4946 ei->i_dir_start_lookup = 0; 4947 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4948 /* We now have enough fields to check if the inode was active or not. 4949 * This is needed because nfsd might try to access dead inodes 4950 * the test is that same one that e2fsck uses 4951 * NeilBrown 1999oct15 4952 */ 4953 if (inode->i_nlink == 0) { 4954 if ((inode->i_mode == 0 || 4955 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4956 ino != EXT4_BOOT_LOADER_INO) { 4957 /* this inode is deleted */ 4958 ret = -ESTALE; 4959 goto bad_inode; 4960 } 4961 /* The only unlinked inodes we let through here have 4962 * valid i_mode and are being read by the orphan 4963 * recovery code: that's fine, we're about to complete 4964 * the process of deleting those. 4965 * OR it is the EXT4_BOOT_LOADER_INO which is 4966 * not initialized on a new filesystem. */ 4967 } 4968 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4969 ext4_set_inode_flags(inode, true); 4970 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4971 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4972 if (ext4_has_feature_64bit(sb)) 4973 ei->i_file_acl |= 4974 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4975 inode->i_size = ext4_isize(sb, raw_inode); 4976 if ((size = i_size_read(inode)) < 0) { 4977 ext4_error_inode(inode, function, line, 0, 4978 "iget: bad i_size value: %lld", size); 4979 ret = -EFSCORRUPTED; 4980 goto bad_inode; 4981 } 4982 /* 4983 * If dir_index is not enabled but there's dir with INDEX flag set, 4984 * we'd normally treat htree data as empty space. But with metadata 4985 * checksumming that corrupts checksums so forbid that. 4986 */ 4987 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4988 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4989 ext4_error_inode(inode, function, line, 0, 4990 "iget: Dir with htree data on filesystem without dir_index feature."); 4991 ret = -EFSCORRUPTED; 4992 goto bad_inode; 4993 } 4994 ei->i_disksize = inode->i_size; 4995 #ifdef CONFIG_QUOTA 4996 ei->i_reserved_quota = 0; 4997 #endif 4998 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4999 ei->i_block_group = iloc.block_group; 5000 ei->i_last_alloc_group = ~0; 5001 /* 5002 * NOTE! The in-memory inode i_data array is in little-endian order 5003 * even on big-endian machines: we do NOT byteswap the block numbers! 5004 */ 5005 for (block = 0; block < EXT4_N_BLOCKS; block++) 5006 ei->i_data[block] = raw_inode->i_block[block]; 5007 INIT_LIST_HEAD(&ei->i_orphan); 5008 ext4_fc_init_inode(&ei->vfs_inode); 5009 5010 /* 5011 * Set transaction id's of transactions that have to be committed 5012 * to finish f[data]sync. We set them to currently running transaction 5013 * as we cannot be sure that the inode or some of its metadata isn't 5014 * part of the transaction - the inode could have been reclaimed and 5015 * now it is reread from disk. 5016 */ 5017 if (journal) { 5018 transaction_t *transaction; 5019 tid_t tid; 5020 5021 read_lock(&journal->j_state_lock); 5022 if (journal->j_running_transaction) 5023 transaction = journal->j_running_transaction; 5024 else 5025 transaction = journal->j_committing_transaction; 5026 if (transaction) 5027 tid = transaction->t_tid; 5028 else 5029 tid = journal->j_commit_sequence; 5030 read_unlock(&journal->j_state_lock); 5031 ei->i_sync_tid = tid; 5032 ei->i_datasync_tid = tid; 5033 } 5034 5035 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5036 if (ei->i_extra_isize == 0) { 5037 /* The extra space is currently unused. Use it. */ 5038 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5039 ei->i_extra_isize = sizeof(struct ext4_inode) - 5040 EXT4_GOOD_OLD_INODE_SIZE; 5041 } else { 5042 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5043 if (ret) 5044 goto bad_inode; 5045 } 5046 } 5047 5048 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5049 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5050 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5051 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5052 5053 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5054 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5055 5056 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5057 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5058 ivers |= 5059 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5060 } 5061 ext4_inode_set_iversion_queried(inode, ivers); 5062 } 5063 5064 ret = 0; 5065 if (ei->i_file_acl && 5066 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 5067 ext4_error_inode(inode, function, line, 0, 5068 "iget: bad extended attribute block %llu", 5069 ei->i_file_acl); 5070 ret = -EFSCORRUPTED; 5071 goto bad_inode; 5072 } else if (!ext4_has_inline_data(inode)) { 5073 /* validate the block references in the inode */ 5074 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 5075 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5076 (S_ISLNK(inode->i_mode) && 5077 !ext4_inode_is_fast_symlink(inode)))) { 5078 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5079 ret = ext4_ext_check_inode(inode); 5080 else 5081 ret = ext4_ind_check_inode(inode); 5082 } 5083 } 5084 if (ret) 5085 goto bad_inode; 5086 5087 if (S_ISREG(inode->i_mode)) { 5088 inode->i_op = &ext4_file_inode_operations; 5089 inode->i_fop = &ext4_file_operations; 5090 ext4_set_aops(inode); 5091 } else if (S_ISDIR(inode->i_mode)) { 5092 inode->i_op = &ext4_dir_inode_operations; 5093 inode->i_fop = &ext4_dir_operations; 5094 } else if (S_ISLNK(inode->i_mode)) { 5095 /* VFS does not allow setting these so must be corruption */ 5096 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5097 ext4_error_inode(inode, function, line, 0, 5098 "iget: immutable or append flags " 5099 "not allowed on symlinks"); 5100 ret = -EFSCORRUPTED; 5101 goto bad_inode; 5102 } 5103 if (IS_ENCRYPTED(inode)) { 5104 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5105 } else if (ext4_inode_is_fast_symlink(inode)) { 5106 inode->i_link = (char *)ei->i_data; 5107 inode->i_op = &ext4_fast_symlink_inode_operations; 5108 nd_terminate_link(ei->i_data, inode->i_size, 5109 sizeof(ei->i_data) - 1); 5110 } else { 5111 inode->i_op = &ext4_symlink_inode_operations; 5112 } 5113 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5114 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5115 inode->i_op = &ext4_special_inode_operations; 5116 if (raw_inode->i_block[0]) 5117 init_special_inode(inode, inode->i_mode, 5118 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5119 else 5120 init_special_inode(inode, inode->i_mode, 5121 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5122 } else if (ino == EXT4_BOOT_LOADER_INO) { 5123 make_bad_inode(inode); 5124 } else { 5125 ret = -EFSCORRUPTED; 5126 ext4_error_inode(inode, function, line, 0, 5127 "iget: bogus i_mode (%o)", inode->i_mode); 5128 goto bad_inode; 5129 } 5130 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 5131 ext4_error_inode(inode, function, line, 0, 5132 "casefold flag without casefold feature"); 5133 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) { 5134 ext4_error_inode(inode, function, line, 0, 5135 "bad inode without EXT4_IGET_BAD flag"); 5136 ret = -EUCLEAN; 5137 goto bad_inode; 5138 } 5139 5140 brelse(iloc.bh); 5141 unlock_new_inode(inode); 5142 return inode; 5143 5144 bad_inode: 5145 brelse(iloc.bh); 5146 iget_failed(inode); 5147 return ERR_PTR(ret); 5148 } 5149 5150 static void __ext4_update_other_inode_time(struct super_block *sb, 5151 unsigned long orig_ino, 5152 unsigned long ino, 5153 struct ext4_inode *raw_inode) 5154 { 5155 struct inode *inode; 5156 5157 inode = find_inode_by_ino_rcu(sb, ino); 5158 if (!inode) 5159 return; 5160 5161 if (!inode_is_dirtytime_only(inode)) 5162 return; 5163 5164 spin_lock(&inode->i_lock); 5165 if (inode_is_dirtytime_only(inode)) { 5166 struct ext4_inode_info *ei = EXT4_I(inode); 5167 5168 inode->i_state &= ~I_DIRTY_TIME; 5169 spin_unlock(&inode->i_lock); 5170 5171 spin_lock(&ei->i_raw_lock); 5172 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5173 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5174 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5175 ext4_inode_csum_set(inode, raw_inode, ei); 5176 spin_unlock(&ei->i_raw_lock); 5177 trace_ext4_other_inode_update_time(inode, orig_ino); 5178 return; 5179 } 5180 spin_unlock(&inode->i_lock); 5181 } 5182 5183 /* 5184 * Opportunistically update the other time fields for other inodes in 5185 * the same inode table block. 5186 */ 5187 static void ext4_update_other_inodes_time(struct super_block *sb, 5188 unsigned long orig_ino, char *buf) 5189 { 5190 unsigned long ino; 5191 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5192 int inode_size = EXT4_INODE_SIZE(sb); 5193 5194 /* 5195 * Calculate the first inode in the inode table block. Inode 5196 * numbers are one-based. That is, the first inode in a block 5197 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5198 */ 5199 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5200 rcu_read_lock(); 5201 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5202 if (ino == orig_ino) 5203 continue; 5204 __ext4_update_other_inode_time(sb, orig_ino, ino, 5205 (struct ext4_inode *)buf); 5206 } 5207 rcu_read_unlock(); 5208 } 5209 5210 /* 5211 * Post the struct inode info into an on-disk inode location in the 5212 * buffer-cache. This gobbles the caller's reference to the 5213 * buffer_head in the inode location struct. 5214 * 5215 * The caller must have write access to iloc->bh. 5216 */ 5217 static int ext4_do_update_inode(handle_t *handle, 5218 struct inode *inode, 5219 struct ext4_iloc *iloc) 5220 { 5221 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5222 struct ext4_inode_info *ei = EXT4_I(inode); 5223 struct buffer_head *bh = iloc->bh; 5224 struct super_block *sb = inode->i_sb; 5225 int err; 5226 int need_datasync = 0, set_large_file = 0; 5227 5228 spin_lock(&ei->i_raw_lock); 5229 5230 /* 5231 * For fields not tracked in the in-memory inode, initialise them 5232 * to zero for new inodes. 5233 */ 5234 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5235 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5236 5237 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5238 need_datasync = 1; 5239 if (ei->i_disksize > 0x7fffffffULL) { 5240 if (!ext4_has_feature_large_file(sb) || 5241 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5242 set_large_file = 1; 5243 } 5244 5245 err = ext4_fill_raw_inode(inode, raw_inode); 5246 spin_unlock(&ei->i_raw_lock); 5247 if (err) { 5248 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5249 goto out_brelse; 5250 } 5251 5252 if (inode->i_sb->s_flags & SB_LAZYTIME) 5253 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5254 bh->b_data); 5255 5256 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5257 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5258 if (err) 5259 goto out_error; 5260 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5261 if (set_large_file) { 5262 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5263 err = ext4_journal_get_write_access(handle, sb, 5264 EXT4_SB(sb)->s_sbh, 5265 EXT4_JTR_NONE); 5266 if (err) 5267 goto out_error; 5268 lock_buffer(EXT4_SB(sb)->s_sbh); 5269 ext4_set_feature_large_file(sb); 5270 ext4_superblock_csum_set(sb); 5271 unlock_buffer(EXT4_SB(sb)->s_sbh); 5272 ext4_handle_sync(handle); 5273 err = ext4_handle_dirty_metadata(handle, NULL, 5274 EXT4_SB(sb)->s_sbh); 5275 } 5276 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5277 out_error: 5278 ext4_std_error(inode->i_sb, err); 5279 out_brelse: 5280 brelse(bh); 5281 return err; 5282 } 5283 5284 /* 5285 * ext4_write_inode() 5286 * 5287 * We are called from a few places: 5288 * 5289 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5290 * Here, there will be no transaction running. We wait for any running 5291 * transaction to commit. 5292 * 5293 * - Within flush work (sys_sync(), kupdate and such). 5294 * We wait on commit, if told to. 5295 * 5296 * - Within iput_final() -> write_inode_now() 5297 * We wait on commit, if told to. 5298 * 5299 * In all cases it is actually safe for us to return without doing anything, 5300 * because the inode has been copied into a raw inode buffer in 5301 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5302 * writeback. 5303 * 5304 * Note that we are absolutely dependent upon all inode dirtiers doing the 5305 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5306 * which we are interested. 5307 * 5308 * It would be a bug for them to not do this. The code: 5309 * 5310 * mark_inode_dirty(inode) 5311 * stuff(); 5312 * inode->i_size = expr; 5313 * 5314 * is in error because write_inode() could occur while `stuff()' is running, 5315 * and the new i_size will be lost. Plus the inode will no longer be on the 5316 * superblock's dirty inode list. 5317 */ 5318 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5319 { 5320 int err; 5321 5322 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5323 sb_rdonly(inode->i_sb)) 5324 return 0; 5325 5326 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5327 return -EIO; 5328 5329 if (EXT4_SB(inode->i_sb)->s_journal) { 5330 if (ext4_journal_current_handle()) { 5331 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5332 dump_stack(); 5333 return -EIO; 5334 } 5335 5336 /* 5337 * No need to force transaction in WB_SYNC_NONE mode. Also 5338 * ext4_sync_fs() will force the commit after everything is 5339 * written. 5340 */ 5341 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5342 return 0; 5343 5344 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5345 EXT4_I(inode)->i_sync_tid); 5346 } else { 5347 struct ext4_iloc iloc; 5348 5349 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5350 if (err) 5351 return err; 5352 /* 5353 * sync(2) will flush the whole buffer cache. No need to do 5354 * it here separately for each inode. 5355 */ 5356 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5357 sync_dirty_buffer(iloc.bh); 5358 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5359 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5360 "IO error syncing inode"); 5361 err = -EIO; 5362 } 5363 brelse(iloc.bh); 5364 } 5365 return err; 5366 } 5367 5368 /* 5369 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5370 * buffers that are attached to a folio straddling i_size and are undergoing 5371 * commit. In that case we have to wait for commit to finish and try again. 5372 */ 5373 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5374 { 5375 unsigned offset; 5376 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5377 tid_t commit_tid = 0; 5378 int ret; 5379 5380 offset = inode->i_size & (PAGE_SIZE - 1); 5381 /* 5382 * If the folio is fully truncated, we don't need to wait for any commit 5383 * (and we even should not as __ext4_journalled_invalidate_folio() may 5384 * strip all buffers from the folio but keep the folio dirty which can then 5385 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without 5386 * buffers). Also we don't need to wait for any commit if all buffers in 5387 * the folio remain valid. This is most beneficial for the common case of 5388 * blocksize == PAGESIZE. 5389 */ 5390 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5391 return; 5392 while (1) { 5393 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5394 inode->i_size >> PAGE_SHIFT); 5395 if (!folio) 5396 return; 5397 ret = __ext4_journalled_invalidate_folio(folio, offset, 5398 folio_size(folio) - offset); 5399 folio_unlock(folio); 5400 folio_put(folio); 5401 if (ret != -EBUSY) 5402 return; 5403 commit_tid = 0; 5404 read_lock(&journal->j_state_lock); 5405 if (journal->j_committing_transaction) 5406 commit_tid = journal->j_committing_transaction->t_tid; 5407 read_unlock(&journal->j_state_lock); 5408 if (commit_tid) 5409 jbd2_log_wait_commit(journal, commit_tid); 5410 } 5411 } 5412 5413 /* 5414 * ext4_setattr() 5415 * 5416 * Called from notify_change. 5417 * 5418 * We want to trap VFS attempts to truncate the file as soon as 5419 * possible. In particular, we want to make sure that when the VFS 5420 * shrinks i_size, we put the inode on the orphan list and modify 5421 * i_disksize immediately, so that during the subsequent flushing of 5422 * dirty pages and freeing of disk blocks, we can guarantee that any 5423 * commit will leave the blocks being flushed in an unused state on 5424 * disk. (On recovery, the inode will get truncated and the blocks will 5425 * be freed, so we have a strong guarantee that no future commit will 5426 * leave these blocks visible to the user.) 5427 * 5428 * Another thing we have to assure is that if we are in ordered mode 5429 * and inode is still attached to the committing transaction, we must 5430 * we start writeout of all the dirty pages which are being truncated. 5431 * This way we are sure that all the data written in the previous 5432 * transaction are already on disk (truncate waits for pages under 5433 * writeback). 5434 * 5435 * Called with inode->i_rwsem down. 5436 */ 5437 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5438 struct iattr *attr) 5439 { 5440 struct inode *inode = d_inode(dentry); 5441 int error, rc = 0; 5442 int orphan = 0; 5443 const unsigned int ia_valid = attr->ia_valid; 5444 bool inc_ivers = true; 5445 5446 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5447 return -EIO; 5448 5449 if (unlikely(IS_IMMUTABLE(inode))) 5450 return -EPERM; 5451 5452 if (unlikely(IS_APPEND(inode) && 5453 (ia_valid & (ATTR_MODE | ATTR_UID | 5454 ATTR_GID | ATTR_TIMES_SET)))) 5455 return -EPERM; 5456 5457 error = setattr_prepare(mnt_userns, dentry, attr); 5458 if (error) 5459 return error; 5460 5461 error = fscrypt_prepare_setattr(dentry, attr); 5462 if (error) 5463 return error; 5464 5465 error = fsverity_prepare_setattr(dentry, attr); 5466 if (error) 5467 return error; 5468 5469 if (is_quota_modification(mnt_userns, inode, attr)) { 5470 error = dquot_initialize(inode); 5471 if (error) 5472 return error; 5473 } 5474 5475 if (i_uid_needs_update(mnt_userns, attr, inode) || 5476 i_gid_needs_update(mnt_userns, attr, inode)) { 5477 handle_t *handle; 5478 5479 /* (user+group)*(old+new) structure, inode write (sb, 5480 * inode block, ? - but truncate inode update has it) */ 5481 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5482 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5483 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5484 if (IS_ERR(handle)) { 5485 error = PTR_ERR(handle); 5486 goto err_out; 5487 } 5488 5489 /* dquot_transfer() calls back ext4_get_inode_usage() which 5490 * counts xattr inode references. 5491 */ 5492 down_read(&EXT4_I(inode)->xattr_sem); 5493 error = dquot_transfer(mnt_userns, inode, attr); 5494 up_read(&EXT4_I(inode)->xattr_sem); 5495 5496 if (error) { 5497 ext4_journal_stop(handle); 5498 return error; 5499 } 5500 /* Update corresponding info in inode so that everything is in 5501 * one transaction */ 5502 i_uid_update(mnt_userns, attr, inode); 5503 i_gid_update(mnt_userns, attr, inode); 5504 error = ext4_mark_inode_dirty(handle, inode); 5505 ext4_journal_stop(handle); 5506 if (unlikely(error)) { 5507 return error; 5508 } 5509 } 5510 5511 if (attr->ia_valid & ATTR_SIZE) { 5512 handle_t *handle; 5513 loff_t oldsize = inode->i_size; 5514 loff_t old_disksize; 5515 int shrink = (attr->ia_size < inode->i_size); 5516 5517 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5519 5520 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5521 return -EFBIG; 5522 } 5523 } 5524 if (!S_ISREG(inode->i_mode)) { 5525 return -EINVAL; 5526 } 5527 5528 if (attr->ia_size == inode->i_size) 5529 inc_ivers = false; 5530 5531 if (shrink) { 5532 if (ext4_should_order_data(inode)) { 5533 error = ext4_begin_ordered_truncate(inode, 5534 attr->ia_size); 5535 if (error) 5536 goto err_out; 5537 } 5538 /* 5539 * Blocks are going to be removed from the inode. Wait 5540 * for dio in flight. 5541 */ 5542 inode_dio_wait(inode); 5543 } 5544 5545 filemap_invalidate_lock(inode->i_mapping); 5546 5547 rc = ext4_break_layouts(inode); 5548 if (rc) { 5549 filemap_invalidate_unlock(inode->i_mapping); 5550 goto err_out; 5551 } 5552 5553 if (attr->ia_size != inode->i_size) { 5554 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5555 if (IS_ERR(handle)) { 5556 error = PTR_ERR(handle); 5557 goto out_mmap_sem; 5558 } 5559 if (ext4_handle_valid(handle) && shrink) { 5560 error = ext4_orphan_add(handle, inode); 5561 orphan = 1; 5562 } 5563 /* 5564 * Update c/mtime on truncate up, ext4_truncate() will 5565 * update c/mtime in shrink case below 5566 */ 5567 if (!shrink) { 5568 inode->i_mtime = current_time(inode); 5569 inode->i_ctime = inode->i_mtime; 5570 } 5571 5572 if (shrink) 5573 ext4_fc_track_range(handle, inode, 5574 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5575 inode->i_sb->s_blocksize_bits, 5576 EXT_MAX_BLOCKS - 1); 5577 else 5578 ext4_fc_track_range( 5579 handle, inode, 5580 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5581 inode->i_sb->s_blocksize_bits, 5582 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5583 inode->i_sb->s_blocksize_bits); 5584 5585 down_write(&EXT4_I(inode)->i_data_sem); 5586 old_disksize = EXT4_I(inode)->i_disksize; 5587 EXT4_I(inode)->i_disksize = attr->ia_size; 5588 rc = ext4_mark_inode_dirty(handle, inode); 5589 if (!error) 5590 error = rc; 5591 /* 5592 * We have to update i_size under i_data_sem together 5593 * with i_disksize to avoid races with writeback code 5594 * running ext4_wb_update_i_disksize(). 5595 */ 5596 if (!error) 5597 i_size_write(inode, attr->ia_size); 5598 else 5599 EXT4_I(inode)->i_disksize = old_disksize; 5600 up_write(&EXT4_I(inode)->i_data_sem); 5601 ext4_journal_stop(handle); 5602 if (error) 5603 goto out_mmap_sem; 5604 if (!shrink) { 5605 pagecache_isize_extended(inode, oldsize, 5606 inode->i_size); 5607 } else if (ext4_should_journal_data(inode)) { 5608 ext4_wait_for_tail_page_commit(inode); 5609 } 5610 } 5611 5612 /* 5613 * Truncate pagecache after we've waited for commit 5614 * in data=journal mode to make pages freeable. 5615 */ 5616 truncate_pagecache(inode, inode->i_size); 5617 /* 5618 * Call ext4_truncate() even if i_size didn't change to 5619 * truncate possible preallocated blocks. 5620 */ 5621 if (attr->ia_size <= oldsize) { 5622 rc = ext4_truncate(inode); 5623 if (rc) 5624 error = rc; 5625 } 5626 out_mmap_sem: 5627 filemap_invalidate_unlock(inode->i_mapping); 5628 } 5629 5630 if (!error) { 5631 if (inc_ivers) 5632 inode_inc_iversion(inode); 5633 setattr_copy(mnt_userns, inode, attr); 5634 mark_inode_dirty(inode); 5635 } 5636 5637 /* 5638 * If the call to ext4_truncate failed to get a transaction handle at 5639 * all, we need to clean up the in-core orphan list manually. 5640 */ 5641 if (orphan && inode->i_nlink) 5642 ext4_orphan_del(NULL, inode); 5643 5644 if (!error && (ia_valid & ATTR_MODE)) 5645 rc = posix_acl_chmod(mnt_userns, dentry, inode->i_mode); 5646 5647 err_out: 5648 if (error) 5649 ext4_std_error(inode->i_sb, error); 5650 if (!error) 5651 error = rc; 5652 return error; 5653 } 5654 5655 u32 ext4_dio_alignment(struct inode *inode) 5656 { 5657 if (fsverity_active(inode)) 5658 return 0; 5659 if (ext4_should_journal_data(inode)) 5660 return 0; 5661 if (ext4_has_inline_data(inode)) 5662 return 0; 5663 if (IS_ENCRYPTED(inode)) { 5664 if (!fscrypt_dio_supported(inode)) 5665 return 0; 5666 return i_blocksize(inode); 5667 } 5668 return 1; /* use the iomap defaults */ 5669 } 5670 5671 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5672 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5673 { 5674 struct inode *inode = d_inode(path->dentry); 5675 struct ext4_inode *raw_inode; 5676 struct ext4_inode_info *ei = EXT4_I(inode); 5677 unsigned int flags; 5678 5679 if ((request_mask & STATX_BTIME) && 5680 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5681 stat->result_mask |= STATX_BTIME; 5682 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5683 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5684 } 5685 5686 /* 5687 * Return the DIO alignment restrictions if requested. We only return 5688 * this information when requested, since on encrypted files it might 5689 * take a fair bit of work to get if the file wasn't opened recently. 5690 */ 5691 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5692 u32 dio_align = ext4_dio_alignment(inode); 5693 5694 stat->result_mask |= STATX_DIOALIGN; 5695 if (dio_align == 1) { 5696 struct block_device *bdev = inode->i_sb->s_bdev; 5697 5698 /* iomap defaults */ 5699 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5700 stat->dio_offset_align = bdev_logical_block_size(bdev); 5701 } else { 5702 stat->dio_mem_align = dio_align; 5703 stat->dio_offset_align = dio_align; 5704 } 5705 } 5706 5707 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5708 if (flags & EXT4_APPEND_FL) 5709 stat->attributes |= STATX_ATTR_APPEND; 5710 if (flags & EXT4_COMPR_FL) 5711 stat->attributes |= STATX_ATTR_COMPRESSED; 5712 if (flags & EXT4_ENCRYPT_FL) 5713 stat->attributes |= STATX_ATTR_ENCRYPTED; 5714 if (flags & EXT4_IMMUTABLE_FL) 5715 stat->attributes |= STATX_ATTR_IMMUTABLE; 5716 if (flags & EXT4_NODUMP_FL) 5717 stat->attributes |= STATX_ATTR_NODUMP; 5718 if (flags & EXT4_VERITY_FL) 5719 stat->attributes |= STATX_ATTR_VERITY; 5720 5721 stat->attributes_mask |= (STATX_ATTR_APPEND | 5722 STATX_ATTR_COMPRESSED | 5723 STATX_ATTR_ENCRYPTED | 5724 STATX_ATTR_IMMUTABLE | 5725 STATX_ATTR_NODUMP | 5726 STATX_ATTR_VERITY); 5727 5728 generic_fillattr(mnt_userns, inode, stat); 5729 return 0; 5730 } 5731 5732 int ext4_file_getattr(struct user_namespace *mnt_userns, 5733 const struct path *path, struct kstat *stat, 5734 u32 request_mask, unsigned int query_flags) 5735 { 5736 struct inode *inode = d_inode(path->dentry); 5737 u64 delalloc_blocks; 5738 5739 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5740 5741 /* 5742 * If there is inline data in the inode, the inode will normally not 5743 * have data blocks allocated (it may have an external xattr block). 5744 * Report at least one sector for such files, so tools like tar, rsync, 5745 * others don't incorrectly think the file is completely sparse. 5746 */ 5747 if (unlikely(ext4_has_inline_data(inode))) 5748 stat->blocks += (stat->size + 511) >> 9; 5749 5750 /* 5751 * We can't update i_blocks if the block allocation is delayed 5752 * otherwise in the case of system crash before the real block 5753 * allocation is done, we will have i_blocks inconsistent with 5754 * on-disk file blocks. 5755 * We always keep i_blocks updated together with real 5756 * allocation. But to not confuse with user, stat 5757 * will return the blocks that include the delayed allocation 5758 * blocks for this file. 5759 */ 5760 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5761 EXT4_I(inode)->i_reserved_data_blocks); 5762 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5763 return 0; 5764 } 5765 5766 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5767 int pextents) 5768 { 5769 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5770 return ext4_ind_trans_blocks(inode, lblocks); 5771 return ext4_ext_index_trans_blocks(inode, pextents); 5772 } 5773 5774 /* 5775 * Account for index blocks, block groups bitmaps and block group 5776 * descriptor blocks if modify datablocks and index blocks 5777 * worse case, the indexs blocks spread over different block groups 5778 * 5779 * If datablocks are discontiguous, they are possible to spread over 5780 * different block groups too. If they are contiguous, with flexbg, 5781 * they could still across block group boundary. 5782 * 5783 * Also account for superblock, inode, quota and xattr blocks 5784 */ 5785 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5786 int pextents) 5787 { 5788 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5789 int gdpblocks; 5790 int idxblocks; 5791 int ret = 0; 5792 5793 /* 5794 * How many index blocks need to touch to map @lblocks logical blocks 5795 * to @pextents physical extents? 5796 */ 5797 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5798 5799 ret = idxblocks; 5800 5801 /* 5802 * Now let's see how many group bitmaps and group descriptors need 5803 * to account 5804 */ 5805 groups = idxblocks + pextents; 5806 gdpblocks = groups; 5807 if (groups > ngroups) 5808 groups = ngroups; 5809 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5810 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5811 5812 /* bitmaps and block group descriptor blocks */ 5813 ret += groups + gdpblocks; 5814 5815 /* Blocks for super block, inode, quota and xattr blocks */ 5816 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5817 5818 return ret; 5819 } 5820 5821 /* 5822 * Calculate the total number of credits to reserve to fit 5823 * the modification of a single pages into a single transaction, 5824 * which may include multiple chunks of block allocations. 5825 * 5826 * This could be called via ext4_write_begin() 5827 * 5828 * We need to consider the worse case, when 5829 * one new block per extent. 5830 */ 5831 int ext4_writepage_trans_blocks(struct inode *inode) 5832 { 5833 int bpp = ext4_journal_blocks_per_page(inode); 5834 int ret; 5835 5836 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5837 5838 /* Account for data blocks for journalled mode */ 5839 if (ext4_should_journal_data(inode)) 5840 ret += bpp; 5841 return ret; 5842 } 5843 5844 /* 5845 * Calculate the journal credits for a chunk of data modification. 5846 * 5847 * This is called from DIO, fallocate or whoever calling 5848 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5849 * 5850 * journal buffers for data blocks are not included here, as DIO 5851 * and fallocate do no need to journal data buffers. 5852 */ 5853 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5854 { 5855 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5856 } 5857 5858 /* 5859 * The caller must have previously called ext4_reserve_inode_write(). 5860 * Give this, we know that the caller already has write access to iloc->bh. 5861 */ 5862 int ext4_mark_iloc_dirty(handle_t *handle, 5863 struct inode *inode, struct ext4_iloc *iloc) 5864 { 5865 int err = 0; 5866 5867 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5868 put_bh(iloc->bh); 5869 return -EIO; 5870 } 5871 ext4_fc_track_inode(handle, inode); 5872 5873 /* the do_update_inode consumes one bh->b_count */ 5874 get_bh(iloc->bh); 5875 5876 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5877 err = ext4_do_update_inode(handle, inode, iloc); 5878 put_bh(iloc->bh); 5879 return err; 5880 } 5881 5882 /* 5883 * On success, We end up with an outstanding reference count against 5884 * iloc->bh. This _must_ be cleaned up later. 5885 */ 5886 5887 int 5888 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5889 struct ext4_iloc *iloc) 5890 { 5891 int err; 5892 5893 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5894 return -EIO; 5895 5896 err = ext4_get_inode_loc(inode, iloc); 5897 if (!err) { 5898 BUFFER_TRACE(iloc->bh, "get_write_access"); 5899 err = ext4_journal_get_write_access(handle, inode->i_sb, 5900 iloc->bh, EXT4_JTR_NONE); 5901 if (err) { 5902 brelse(iloc->bh); 5903 iloc->bh = NULL; 5904 } 5905 } 5906 ext4_std_error(inode->i_sb, err); 5907 return err; 5908 } 5909 5910 static int __ext4_expand_extra_isize(struct inode *inode, 5911 unsigned int new_extra_isize, 5912 struct ext4_iloc *iloc, 5913 handle_t *handle, int *no_expand) 5914 { 5915 struct ext4_inode *raw_inode; 5916 struct ext4_xattr_ibody_header *header; 5917 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5918 struct ext4_inode_info *ei = EXT4_I(inode); 5919 int error; 5920 5921 /* this was checked at iget time, but double check for good measure */ 5922 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5923 (ei->i_extra_isize & 3)) { 5924 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5925 ei->i_extra_isize, 5926 EXT4_INODE_SIZE(inode->i_sb)); 5927 return -EFSCORRUPTED; 5928 } 5929 if ((new_extra_isize < ei->i_extra_isize) || 5930 (new_extra_isize < 4) || 5931 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5932 return -EINVAL; /* Should never happen */ 5933 5934 raw_inode = ext4_raw_inode(iloc); 5935 5936 header = IHDR(inode, raw_inode); 5937 5938 /* No extended attributes present */ 5939 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5940 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5941 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5942 EXT4_I(inode)->i_extra_isize, 0, 5943 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5944 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5945 return 0; 5946 } 5947 5948 /* 5949 * We may need to allocate external xattr block so we need quotas 5950 * initialized. Here we can be called with various locks held so we 5951 * cannot affort to initialize quotas ourselves. So just bail. 5952 */ 5953 if (dquot_initialize_needed(inode)) 5954 return -EAGAIN; 5955 5956 /* try to expand with EAs present */ 5957 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5958 raw_inode, handle); 5959 if (error) { 5960 /* 5961 * Inode size expansion failed; don't try again 5962 */ 5963 *no_expand = 1; 5964 } 5965 5966 return error; 5967 } 5968 5969 /* 5970 * Expand an inode by new_extra_isize bytes. 5971 * Returns 0 on success or negative error number on failure. 5972 */ 5973 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5974 unsigned int new_extra_isize, 5975 struct ext4_iloc iloc, 5976 handle_t *handle) 5977 { 5978 int no_expand; 5979 int error; 5980 5981 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5982 return -EOVERFLOW; 5983 5984 /* 5985 * In nojournal mode, we can immediately attempt to expand 5986 * the inode. When journaled, we first need to obtain extra 5987 * buffer credits since we may write into the EA block 5988 * with this same handle. If journal_extend fails, then it will 5989 * only result in a minor loss of functionality for that inode. 5990 * If this is felt to be critical, then e2fsck should be run to 5991 * force a large enough s_min_extra_isize. 5992 */ 5993 if (ext4_journal_extend(handle, 5994 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5995 return -ENOSPC; 5996 5997 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5998 return -EBUSY; 5999 6000 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 6001 handle, &no_expand); 6002 ext4_write_unlock_xattr(inode, &no_expand); 6003 6004 return error; 6005 } 6006 6007 int ext4_expand_extra_isize(struct inode *inode, 6008 unsigned int new_extra_isize, 6009 struct ext4_iloc *iloc) 6010 { 6011 handle_t *handle; 6012 int no_expand; 6013 int error, rc; 6014 6015 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 6016 brelse(iloc->bh); 6017 return -EOVERFLOW; 6018 } 6019 6020 handle = ext4_journal_start(inode, EXT4_HT_INODE, 6021 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 6022 if (IS_ERR(handle)) { 6023 error = PTR_ERR(handle); 6024 brelse(iloc->bh); 6025 return error; 6026 } 6027 6028 ext4_write_lock_xattr(inode, &no_expand); 6029 6030 BUFFER_TRACE(iloc->bh, "get_write_access"); 6031 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 6032 EXT4_JTR_NONE); 6033 if (error) { 6034 brelse(iloc->bh); 6035 goto out_unlock; 6036 } 6037 6038 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6039 handle, &no_expand); 6040 6041 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6042 if (!error) 6043 error = rc; 6044 6045 out_unlock: 6046 ext4_write_unlock_xattr(inode, &no_expand); 6047 ext4_journal_stop(handle); 6048 return error; 6049 } 6050 6051 /* 6052 * What we do here is to mark the in-core inode as clean with respect to inode 6053 * dirtiness (it may still be data-dirty). 6054 * This means that the in-core inode may be reaped by prune_icache 6055 * without having to perform any I/O. This is a very good thing, 6056 * because *any* task may call prune_icache - even ones which 6057 * have a transaction open against a different journal. 6058 * 6059 * Is this cheating? Not really. Sure, we haven't written the 6060 * inode out, but prune_icache isn't a user-visible syncing function. 6061 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6062 * we start and wait on commits. 6063 */ 6064 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 6065 const char *func, unsigned int line) 6066 { 6067 struct ext4_iloc iloc; 6068 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6069 int err; 6070 6071 might_sleep(); 6072 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6073 err = ext4_reserve_inode_write(handle, inode, &iloc); 6074 if (err) 6075 goto out; 6076 6077 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6078 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6079 iloc, handle); 6080 6081 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 6082 out: 6083 if (unlikely(err)) 6084 ext4_error_inode_err(inode, func, line, 0, err, 6085 "mark_inode_dirty error"); 6086 return err; 6087 } 6088 6089 /* 6090 * ext4_dirty_inode() is called from __mark_inode_dirty() 6091 * 6092 * We're really interested in the case where a file is being extended. 6093 * i_size has been changed by generic_commit_write() and we thus need 6094 * to include the updated inode in the current transaction. 6095 * 6096 * Also, dquot_alloc_block() will always dirty the inode when blocks 6097 * are allocated to the file. 6098 * 6099 * If the inode is marked synchronous, we don't honour that here - doing 6100 * so would cause a commit on atime updates, which we don't bother doing. 6101 * We handle synchronous inodes at the highest possible level. 6102 */ 6103 void ext4_dirty_inode(struct inode *inode, int flags) 6104 { 6105 handle_t *handle; 6106 6107 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6108 if (IS_ERR(handle)) 6109 return; 6110 ext4_mark_inode_dirty(handle, inode); 6111 ext4_journal_stop(handle); 6112 } 6113 6114 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6115 { 6116 journal_t *journal; 6117 handle_t *handle; 6118 int err; 6119 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6120 6121 /* 6122 * We have to be very careful here: changing a data block's 6123 * journaling status dynamically is dangerous. If we write a 6124 * data block to the journal, change the status and then delete 6125 * that block, we risk forgetting to revoke the old log record 6126 * from the journal and so a subsequent replay can corrupt data. 6127 * So, first we make sure that the journal is empty and that 6128 * nobody is changing anything. 6129 */ 6130 6131 journal = EXT4_JOURNAL(inode); 6132 if (!journal) 6133 return 0; 6134 if (is_journal_aborted(journal)) 6135 return -EROFS; 6136 6137 /* Wait for all existing dio workers */ 6138 inode_dio_wait(inode); 6139 6140 /* 6141 * Before flushing the journal and switching inode's aops, we have 6142 * to flush all dirty data the inode has. There can be outstanding 6143 * delayed allocations, there can be unwritten extents created by 6144 * fallocate or buffered writes in dioread_nolock mode covered by 6145 * dirty data which can be converted only after flushing the dirty 6146 * data (and journalled aops don't know how to handle these cases). 6147 */ 6148 if (val) { 6149 filemap_invalidate_lock(inode->i_mapping); 6150 err = filemap_write_and_wait(inode->i_mapping); 6151 if (err < 0) { 6152 filemap_invalidate_unlock(inode->i_mapping); 6153 return err; 6154 } 6155 } 6156 6157 percpu_down_write(&sbi->s_writepages_rwsem); 6158 jbd2_journal_lock_updates(journal); 6159 6160 /* 6161 * OK, there are no updates running now, and all cached data is 6162 * synced to disk. We are now in a completely consistent state 6163 * which doesn't have anything in the journal, and we know that 6164 * no filesystem updates are running, so it is safe to modify 6165 * the inode's in-core data-journaling state flag now. 6166 */ 6167 6168 if (val) 6169 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6170 else { 6171 err = jbd2_journal_flush(journal, 0); 6172 if (err < 0) { 6173 jbd2_journal_unlock_updates(journal); 6174 percpu_up_write(&sbi->s_writepages_rwsem); 6175 return err; 6176 } 6177 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6178 } 6179 ext4_set_aops(inode); 6180 6181 jbd2_journal_unlock_updates(journal); 6182 percpu_up_write(&sbi->s_writepages_rwsem); 6183 6184 if (val) 6185 filemap_invalidate_unlock(inode->i_mapping); 6186 6187 /* Finally we can mark the inode as dirty. */ 6188 6189 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6190 if (IS_ERR(handle)) 6191 return PTR_ERR(handle); 6192 6193 ext4_fc_mark_ineligible(inode->i_sb, 6194 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6195 err = ext4_mark_inode_dirty(handle, inode); 6196 ext4_handle_sync(handle); 6197 ext4_journal_stop(handle); 6198 ext4_std_error(inode->i_sb, err); 6199 6200 return err; 6201 } 6202 6203 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6204 struct buffer_head *bh) 6205 { 6206 return !buffer_mapped(bh); 6207 } 6208 6209 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6210 { 6211 struct vm_area_struct *vma = vmf->vma; 6212 struct page *page = vmf->page; 6213 loff_t size; 6214 unsigned long len; 6215 int err; 6216 vm_fault_t ret; 6217 struct file *file = vma->vm_file; 6218 struct inode *inode = file_inode(file); 6219 struct address_space *mapping = inode->i_mapping; 6220 handle_t *handle; 6221 get_block_t *get_block; 6222 int retries = 0; 6223 6224 if (unlikely(IS_IMMUTABLE(inode))) 6225 return VM_FAULT_SIGBUS; 6226 6227 sb_start_pagefault(inode->i_sb); 6228 file_update_time(vma->vm_file); 6229 6230 filemap_invalidate_lock_shared(mapping); 6231 6232 err = ext4_convert_inline_data(inode); 6233 if (err) 6234 goto out_ret; 6235 6236 /* 6237 * On data journalling we skip straight to the transaction handle: 6238 * there's no delalloc; page truncated will be checked later; the 6239 * early return w/ all buffers mapped (calculates size/len) can't 6240 * be used; and there's no dioread_nolock, so only ext4_get_block. 6241 */ 6242 if (ext4_should_journal_data(inode)) 6243 goto retry_alloc; 6244 6245 /* Delalloc case is easy... */ 6246 if (test_opt(inode->i_sb, DELALLOC) && 6247 !ext4_nonda_switch(inode->i_sb)) { 6248 do { 6249 err = block_page_mkwrite(vma, vmf, 6250 ext4_da_get_block_prep); 6251 } while (err == -ENOSPC && 6252 ext4_should_retry_alloc(inode->i_sb, &retries)); 6253 goto out_ret; 6254 } 6255 6256 lock_page(page); 6257 size = i_size_read(inode); 6258 /* Page got truncated from under us? */ 6259 if (page->mapping != mapping || page_offset(page) > size) { 6260 unlock_page(page); 6261 ret = VM_FAULT_NOPAGE; 6262 goto out; 6263 } 6264 6265 if (page->index == size >> PAGE_SHIFT) 6266 len = size & ~PAGE_MASK; 6267 else 6268 len = PAGE_SIZE; 6269 /* 6270 * Return if we have all the buffers mapped. This avoids the need to do 6271 * journal_start/journal_stop which can block and take a long time 6272 * 6273 * This cannot be done for data journalling, as we have to add the 6274 * inode to the transaction's list to writeprotect pages on commit. 6275 */ 6276 if (page_has_buffers(page)) { 6277 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page), 6278 0, len, NULL, 6279 ext4_bh_unmapped)) { 6280 /* Wait so that we don't change page under IO */ 6281 wait_for_stable_page(page); 6282 ret = VM_FAULT_LOCKED; 6283 goto out; 6284 } 6285 } 6286 unlock_page(page); 6287 /* OK, we need to fill the hole... */ 6288 if (ext4_should_dioread_nolock(inode)) 6289 get_block = ext4_get_block_unwritten; 6290 else 6291 get_block = ext4_get_block; 6292 retry_alloc: 6293 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6294 ext4_writepage_trans_blocks(inode)); 6295 if (IS_ERR(handle)) { 6296 ret = VM_FAULT_SIGBUS; 6297 goto out; 6298 } 6299 /* 6300 * Data journalling can't use block_page_mkwrite() because it 6301 * will set_buffer_dirty() before do_journal_get_write_access() 6302 * thus might hit warning messages for dirty metadata buffers. 6303 */ 6304 if (!ext4_should_journal_data(inode)) { 6305 err = block_page_mkwrite(vma, vmf, get_block); 6306 } else { 6307 lock_page(page); 6308 size = i_size_read(inode); 6309 /* Page got truncated from under us? */ 6310 if (page->mapping != mapping || page_offset(page) > size) { 6311 ret = VM_FAULT_NOPAGE; 6312 goto out_error; 6313 } 6314 6315 if (page->index == size >> PAGE_SHIFT) 6316 len = size & ~PAGE_MASK; 6317 else 6318 len = PAGE_SIZE; 6319 6320 err = __block_write_begin(page, 0, len, ext4_get_block); 6321 if (!err) { 6322 ret = VM_FAULT_SIGBUS; 6323 if (ext4_walk_page_buffers(handle, inode, 6324 page_buffers(page), 0, len, NULL, 6325 do_journal_get_write_access)) 6326 goto out_error; 6327 if (ext4_walk_page_buffers(handle, inode, 6328 page_buffers(page), 0, len, NULL, 6329 write_end_fn)) 6330 goto out_error; 6331 if (ext4_jbd2_inode_add_write(handle, inode, 6332 page_offset(page), len)) 6333 goto out_error; 6334 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6335 } else { 6336 unlock_page(page); 6337 } 6338 } 6339 ext4_journal_stop(handle); 6340 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6341 goto retry_alloc; 6342 out_ret: 6343 ret = block_page_mkwrite_return(err); 6344 out: 6345 filemap_invalidate_unlock_shared(mapping); 6346 sb_end_pagefault(inode->i_sb); 6347 return ret; 6348 out_error: 6349 unlock_page(page); 6350 ext4_journal_stop(handle); 6351 goto out; 6352 } 6353