xref: /openbmc/linux/fs/ext4/inode.c (revision bd4af432)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 
179 	trace_ext4_evict_inode(inode);
180 
181 	if (inode->i_nlink) {
182 		/*
183 		 * When journalling data dirty buffers are tracked only in the
184 		 * journal. So although mm thinks everything is clean and
185 		 * ready for reaping the inode might still have some pages to
186 		 * write in the running transaction or waiting to be
187 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
188 		 * (via truncate_inode_pages()) to discard these buffers can
189 		 * cause data loss. Also even if we did not discard these
190 		 * buffers, we would have no way to find them after the inode
191 		 * is reaped and thus user could see stale data if he tries to
192 		 * read them before the transaction is checkpointed. So be
193 		 * careful and force everything to disk here... We use
194 		 * ei->i_datasync_tid to store the newest transaction
195 		 * containing inode's data.
196 		 *
197 		 * Note that directories do not have this problem because they
198 		 * don't use page cache.
199 		 */
200 		if (inode->i_ino != EXT4_JOURNAL_INO &&
201 		    ext4_should_journal_data(inode) &&
202 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 		    inode->i_data.nrpages) {
204 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206 
207 			jbd2_complete_transaction(journal, commit_tid);
208 			filemap_write_and_wait(&inode->i_data);
209 		}
210 		truncate_inode_pages_final(&inode->i_data);
211 
212 		goto no_delete;
213 	}
214 
215 	if (is_bad_inode(inode))
216 		goto no_delete;
217 	dquot_initialize(inode);
218 
219 	if (ext4_should_order_data(inode))
220 		ext4_begin_ordered_truncate(inode, 0);
221 	truncate_inode_pages_final(&inode->i_data);
222 
223 	/*
224 	 * Protect us against freezing - iput() caller didn't have to have any
225 	 * protection against it
226 	 */
227 	sb_start_intwrite(inode->i_sb);
228 
229 	if (!IS_NOQUOTA(inode))
230 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
231 
232 	/*
233 	 * Block bitmap, group descriptor, and inode are accounted in both
234 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
235 	 */
236 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
237 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
238 	if (IS_ERR(handle)) {
239 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
240 		/*
241 		 * If we're going to skip the normal cleanup, we still need to
242 		 * make sure that the in-core orphan linked list is properly
243 		 * cleaned up.
244 		 */
245 		ext4_orphan_del(NULL, inode);
246 		sb_end_intwrite(inode->i_sb);
247 		goto no_delete;
248 	}
249 
250 	if (IS_SYNC(inode))
251 		ext4_handle_sync(handle);
252 
253 	/*
254 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
255 	 * special handling of symlinks here because i_size is used to
256 	 * determine whether ext4_inode_info->i_data contains symlink data or
257 	 * block mappings. Setting i_size to 0 will remove its fast symlink
258 	 * status. Erase i_data so that it becomes a valid empty block map.
259 	 */
260 	if (ext4_inode_is_fast_symlink(inode))
261 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
262 	inode->i_size = 0;
263 	err = ext4_mark_inode_dirty(handle, inode);
264 	if (err) {
265 		ext4_warning(inode->i_sb,
266 			     "couldn't mark inode dirty (err %d)", err);
267 		goto stop_handle;
268 	}
269 	if (inode->i_blocks) {
270 		err = ext4_truncate(inode);
271 		if (err) {
272 			ext4_error_err(inode->i_sb, -err,
273 				       "couldn't truncate inode %lu (err %d)",
274 				       inode->i_ino, err);
275 			goto stop_handle;
276 		}
277 	}
278 
279 	/* Remove xattr references. */
280 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
281 				      extra_credits);
282 	if (err) {
283 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
284 stop_handle:
285 		ext4_journal_stop(handle);
286 		ext4_orphan_del(NULL, inode);
287 		sb_end_intwrite(inode->i_sb);
288 		ext4_xattr_inode_array_free(ea_inode_array);
289 		goto no_delete;
290 	}
291 
292 	/*
293 	 * Kill off the orphan record which ext4_truncate created.
294 	 * AKPM: I think this can be inside the above `if'.
295 	 * Note that ext4_orphan_del() has to be able to cope with the
296 	 * deletion of a non-existent orphan - this is because we don't
297 	 * know if ext4_truncate() actually created an orphan record.
298 	 * (Well, we could do this if we need to, but heck - it works)
299 	 */
300 	ext4_orphan_del(handle, inode);
301 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
302 
303 	/*
304 	 * One subtle ordering requirement: if anything has gone wrong
305 	 * (transaction abort, IO errors, whatever), then we can still
306 	 * do these next steps (the fs will already have been marked as
307 	 * having errors), but we can't free the inode if the mark_dirty
308 	 * fails.
309 	 */
310 	if (ext4_mark_inode_dirty(handle, inode))
311 		/* If that failed, just do the required in-core inode clear. */
312 		ext4_clear_inode(inode);
313 	else
314 		ext4_free_inode(handle, inode);
315 	ext4_journal_stop(handle);
316 	sb_end_intwrite(inode->i_sb);
317 	ext4_xattr_inode_array_free(ea_inode_array);
318 	return;
319 no_delete:
320 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
321 }
322 
323 #ifdef CONFIG_QUOTA
324 qsize_t *ext4_get_reserved_space(struct inode *inode)
325 {
326 	return &EXT4_I(inode)->i_reserved_quota;
327 }
328 #endif
329 
330 /*
331  * Called with i_data_sem down, which is important since we can call
332  * ext4_discard_preallocations() from here.
333  */
334 void ext4_da_update_reserve_space(struct inode *inode,
335 					int used, int quota_claim)
336 {
337 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
338 	struct ext4_inode_info *ei = EXT4_I(inode);
339 
340 	spin_lock(&ei->i_block_reservation_lock);
341 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
342 	if (unlikely(used > ei->i_reserved_data_blocks)) {
343 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
344 			 "with only %d reserved data blocks",
345 			 __func__, inode->i_ino, used,
346 			 ei->i_reserved_data_blocks);
347 		WARN_ON(1);
348 		used = ei->i_reserved_data_blocks;
349 	}
350 
351 	/* Update per-inode reservations */
352 	ei->i_reserved_data_blocks -= used;
353 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
354 
355 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
356 
357 	/* Update quota subsystem for data blocks */
358 	if (quota_claim)
359 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
360 	else {
361 		/*
362 		 * We did fallocate with an offset that is already delayed
363 		 * allocated. So on delayed allocated writeback we should
364 		 * not re-claim the quota for fallocated blocks.
365 		 */
366 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
367 	}
368 
369 	/*
370 	 * If we have done all the pending block allocations and if
371 	 * there aren't any writers on the inode, we can discard the
372 	 * inode's preallocations.
373 	 */
374 	if ((ei->i_reserved_data_blocks == 0) &&
375 	    !inode_is_open_for_write(inode))
376 		ext4_discard_preallocations(inode);
377 }
378 
379 static int __check_block_validity(struct inode *inode, const char *func,
380 				unsigned int line,
381 				struct ext4_map_blocks *map)
382 {
383 	if (ext4_has_feature_journal(inode->i_sb) &&
384 	    (inode->i_ino ==
385 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
386 		return 0;
387 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
388 				   map->m_len)) {
389 		ext4_error_inode(inode, func, line, map->m_pblk,
390 				 "lblock %lu mapped to illegal pblock %llu "
391 				 "(length %d)", (unsigned long) map->m_lblk,
392 				 map->m_pblk, map->m_len);
393 		return -EFSCORRUPTED;
394 	}
395 	return 0;
396 }
397 
398 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
399 		       ext4_lblk_t len)
400 {
401 	int ret;
402 
403 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
404 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
405 
406 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
407 	if (ret > 0)
408 		ret = 0;
409 
410 	return ret;
411 }
412 
413 #define check_block_validity(inode, map)	\
414 	__check_block_validity((inode), __func__, __LINE__, (map))
415 
416 #ifdef ES_AGGRESSIVE_TEST
417 static void ext4_map_blocks_es_recheck(handle_t *handle,
418 				       struct inode *inode,
419 				       struct ext4_map_blocks *es_map,
420 				       struct ext4_map_blocks *map,
421 				       int flags)
422 {
423 	int retval;
424 
425 	map->m_flags = 0;
426 	/*
427 	 * There is a race window that the result is not the same.
428 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
429 	 * is that we lookup a block mapping in extent status tree with
430 	 * out taking i_data_sem.  So at the time the unwritten extent
431 	 * could be converted.
432 	 */
433 	down_read(&EXT4_I(inode)->i_data_sem);
434 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
435 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
436 					     EXT4_GET_BLOCKS_KEEP_SIZE);
437 	} else {
438 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
439 					     EXT4_GET_BLOCKS_KEEP_SIZE);
440 	}
441 	up_read((&EXT4_I(inode)->i_data_sem));
442 
443 	/*
444 	 * We don't check m_len because extent will be collpased in status
445 	 * tree.  So the m_len might not equal.
446 	 */
447 	if (es_map->m_lblk != map->m_lblk ||
448 	    es_map->m_flags != map->m_flags ||
449 	    es_map->m_pblk != map->m_pblk) {
450 		printk("ES cache assertion failed for inode: %lu "
451 		       "es_cached ex [%d/%d/%llu/%x] != "
452 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
454 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
455 		       map->m_len, map->m_pblk, map->m_flags,
456 		       retval, flags);
457 	}
458 }
459 #endif /* ES_AGGRESSIVE_TEST */
460 
461 /*
462  * The ext4_map_blocks() function tries to look up the requested blocks,
463  * and returns if the blocks are already mapped.
464  *
465  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
466  * and store the allocated blocks in the result buffer head and mark it
467  * mapped.
468  *
469  * If file type is extents based, it will call ext4_ext_map_blocks(),
470  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
471  * based files
472  *
473  * On success, it returns the number of blocks being mapped or allocated.  if
474  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
475  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
476  *
477  * It returns 0 if plain look up failed (blocks have not been allocated), in
478  * that case, @map is returned as unmapped but we still do fill map->m_len to
479  * indicate the length of a hole starting at map->m_lblk.
480  *
481  * It returns the error in case of allocation failure.
482  */
483 int ext4_map_blocks(handle_t *handle, struct inode *inode,
484 		    struct ext4_map_blocks *map, int flags)
485 {
486 	struct extent_status es;
487 	int retval;
488 	int ret = 0;
489 #ifdef ES_AGGRESSIVE_TEST
490 	struct ext4_map_blocks orig_map;
491 
492 	memcpy(&orig_map, map, sizeof(*map));
493 #endif
494 
495 	map->m_flags = 0;
496 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
497 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
498 		  (unsigned long) map->m_lblk);
499 
500 	/*
501 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
502 	 */
503 	if (unlikely(map->m_len > INT_MAX))
504 		map->m_len = INT_MAX;
505 
506 	/* We can handle the block number less than EXT_MAX_BLOCKS */
507 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
508 		return -EFSCORRUPTED;
509 
510 	/* Lookup extent status tree firstly */
511 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
512 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
513 			map->m_pblk = ext4_es_pblock(&es) +
514 					map->m_lblk - es.es_lblk;
515 			map->m_flags |= ext4_es_is_written(&es) ?
516 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
517 			retval = es.es_len - (map->m_lblk - es.es_lblk);
518 			if (retval > map->m_len)
519 				retval = map->m_len;
520 			map->m_len = retval;
521 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
522 			map->m_pblk = 0;
523 			retval = es.es_len - (map->m_lblk - es.es_lblk);
524 			if (retval > map->m_len)
525 				retval = map->m_len;
526 			map->m_len = retval;
527 			retval = 0;
528 		} else {
529 			BUG();
530 		}
531 #ifdef ES_AGGRESSIVE_TEST
532 		ext4_map_blocks_es_recheck(handle, inode, map,
533 					   &orig_map, flags);
534 #endif
535 		goto found;
536 	}
537 
538 	/*
539 	 * Try to see if we can get the block without requesting a new
540 	 * file system block.
541 	 */
542 	down_read(&EXT4_I(inode)->i_data_sem);
543 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
544 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
545 					     EXT4_GET_BLOCKS_KEEP_SIZE);
546 	} else {
547 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
548 					     EXT4_GET_BLOCKS_KEEP_SIZE);
549 	}
550 	if (retval > 0) {
551 		unsigned int status;
552 
553 		if (unlikely(retval != map->m_len)) {
554 			ext4_warning(inode->i_sb,
555 				     "ES len assertion failed for inode "
556 				     "%lu: retval %d != map->m_len %d",
557 				     inode->i_ino, retval, map->m_len);
558 			WARN_ON(1);
559 		}
560 
561 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
562 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
563 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
564 		    !(status & EXTENT_STATUS_WRITTEN) &&
565 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
566 				       map->m_lblk + map->m_len - 1))
567 			status |= EXTENT_STATUS_DELAYED;
568 		ret = ext4_es_insert_extent(inode, map->m_lblk,
569 					    map->m_len, map->m_pblk, status);
570 		if (ret < 0)
571 			retval = ret;
572 	}
573 	up_read((&EXT4_I(inode)->i_data_sem));
574 
575 found:
576 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 		ret = check_block_validity(inode, map);
578 		if (ret != 0)
579 			return ret;
580 	}
581 
582 	/* If it is only a block(s) look up */
583 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 		return retval;
585 
586 	/*
587 	 * Returns if the blocks have already allocated
588 	 *
589 	 * Note that if blocks have been preallocated
590 	 * ext4_ext_get_block() returns the create = 0
591 	 * with buffer head unmapped.
592 	 */
593 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 		/*
595 		 * If we need to convert extent to unwritten
596 		 * we continue and do the actual work in
597 		 * ext4_ext_map_blocks()
598 		 */
599 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
600 			return retval;
601 
602 	/*
603 	 * Here we clear m_flags because after allocating an new extent,
604 	 * it will be set again.
605 	 */
606 	map->m_flags &= ~EXT4_MAP_FLAGS;
607 
608 	/*
609 	 * New blocks allocate and/or writing to unwritten extent
610 	 * will possibly result in updating i_data, so we take
611 	 * the write lock of i_data_sem, and call get_block()
612 	 * with create == 1 flag.
613 	 */
614 	down_write(&EXT4_I(inode)->i_data_sem);
615 
616 	/*
617 	 * We need to check for EXT4 here because migrate
618 	 * could have changed the inode type in between
619 	 */
620 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
622 	} else {
623 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
624 
625 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626 			/*
627 			 * We allocated new blocks which will result in
628 			 * i_data's format changing.  Force the migrate
629 			 * to fail by clearing migrate flags
630 			 */
631 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
632 		}
633 
634 		/*
635 		 * Update reserved blocks/metadata blocks after successful
636 		 * block allocation which had been deferred till now. We don't
637 		 * support fallocate for non extent files. So we can update
638 		 * reserve space here.
639 		 */
640 		if ((retval > 0) &&
641 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
642 			ext4_da_update_reserve_space(inode, retval, 1);
643 	}
644 
645 	if (retval > 0) {
646 		unsigned int status;
647 
648 		if (unlikely(retval != map->m_len)) {
649 			ext4_warning(inode->i_sb,
650 				     "ES len assertion failed for inode "
651 				     "%lu: retval %d != map->m_len %d",
652 				     inode->i_ino, retval, map->m_len);
653 			WARN_ON(1);
654 		}
655 
656 		/*
657 		 * We have to zeroout blocks before inserting them into extent
658 		 * status tree. Otherwise someone could look them up there and
659 		 * use them before they are really zeroed. We also have to
660 		 * unmap metadata before zeroing as otherwise writeback can
661 		 * overwrite zeros with stale data from block device.
662 		 */
663 		if (flags & EXT4_GET_BLOCKS_ZERO &&
664 		    map->m_flags & EXT4_MAP_MAPPED &&
665 		    map->m_flags & EXT4_MAP_NEW) {
666 			ret = ext4_issue_zeroout(inode, map->m_lblk,
667 						 map->m_pblk, map->m_len);
668 			if (ret) {
669 				retval = ret;
670 				goto out_sem;
671 			}
672 		}
673 
674 		/*
675 		 * If the extent has been zeroed out, we don't need to update
676 		 * extent status tree.
677 		 */
678 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
680 			if (ext4_es_is_written(&es))
681 				goto out_sem;
682 		}
683 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 		    !(status & EXTENT_STATUS_WRITTEN) &&
687 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
688 				       map->m_lblk + map->m_len - 1))
689 			status |= EXTENT_STATUS_DELAYED;
690 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 					    map->m_pblk, status);
692 		if (ret < 0) {
693 			retval = ret;
694 			goto out_sem;
695 		}
696 	}
697 
698 out_sem:
699 	up_write((&EXT4_I(inode)->i_data_sem));
700 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 		ret = check_block_validity(inode, map);
702 		if (ret != 0)
703 			return ret;
704 
705 		/*
706 		 * Inodes with freshly allocated blocks where contents will be
707 		 * visible after transaction commit must be on transaction's
708 		 * ordered data list.
709 		 */
710 		if (map->m_flags & EXT4_MAP_NEW &&
711 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 		    !ext4_is_quota_file(inode) &&
714 		    ext4_should_order_data(inode)) {
715 			loff_t start_byte =
716 				(loff_t)map->m_lblk << inode->i_blkbits;
717 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
718 
719 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
720 				ret = ext4_jbd2_inode_add_wait(handle, inode,
721 						start_byte, length);
722 			else
723 				ret = ext4_jbd2_inode_add_write(handle, inode,
724 						start_byte, length);
725 			if (ret)
726 				return ret;
727 		}
728 	}
729 	return retval;
730 }
731 
732 /*
733  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734  * we have to be careful as someone else may be manipulating b_state as well.
735  */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738 	unsigned long old_state;
739 	unsigned long new_state;
740 
741 	flags &= EXT4_MAP_FLAGS;
742 
743 	/* Dummy buffer_head? Set non-atomically. */
744 	if (!bh->b_page) {
745 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746 		return;
747 	}
748 	/*
749 	 * Someone else may be modifying b_state. Be careful! This is ugly but
750 	 * once we get rid of using bh as a container for mapping information
751 	 * to pass to / from get_block functions, this can go away.
752 	 */
753 	do {
754 		old_state = READ_ONCE(bh->b_state);
755 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756 	} while (unlikely(
757 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759 
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 			   struct buffer_head *bh, int flags)
762 {
763 	struct ext4_map_blocks map;
764 	int ret = 0;
765 
766 	if (ext4_has_inline_data(inode))
767 		return -ERANGE;
768 
769 	map.m_lblk = iblock;
770 	map.m_len = bh->b_size >> inode->i_blkbits;
771 
772 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773 			      flags);
774 	if (ret > 0) {
775 		map_bh(bh, inode->i_sb, map.m_pblk);
776 		ext4_update_bh_state(bh, map.m_flags);
777 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778 		ret = 0;
779 	} else if (ret == 0) {
780 		/* hole case, need to fill in bh->b_size */
781 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782 	}
783 	return ret;
784 }
785 
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 		   struct buffer_head *bh, int create)
788 {
789 	return _ext4_get_block(inode, iblock, bh,
790 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792 
793 /*
794  * Get block function used when preparing for buffered write if we require
795  * creating an unwritten extent if blocks haven't been allocated.  The extent
796  * will be converted to written after the IO is complete.
797  */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 			     struct buffer_head *bh_result, int create)
800 {
801 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 		   inode->i_ino, create);
803 	return _ext4_get_block(inode, iblock, bh_result,
804 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806 
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809 
810 /*
811  * `handle' can be NULL if create is zero
812  */
813 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
814 				ext4_lblk_t block, int map_flags)
815 {
816 	struct ext4_map_blocks map;
817 	struct buffer_head *bh;
818 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
819 	int err;
820 
821 	J_ASSERT(handle != NULL || create == 0);
822 
823 	map.m_lblk = block;
824 	map.m_len = 1;
825 	err = ext4_map_blocks(handle, inode, &map, map_flags);
826 
827 	if (err == 0)
828 		return create ? ERR_PTR(-ENOSPC) : NULL;
829 	if (err < 0)
830 		return ERR_PTR(err);
831 
832 	bh = sb_getblk(inode->i_sb, map.m_pblk);
833 	if (unlikely(!bh))
834 		return ERR_PTR(-ENOMEM);
835 	if (map.m_flags & EXT4_MAP_NEW) {
836 		J_ASSERT(create != 0);
837 		J_ASSERT(handle != NULL);
838 
839 		/*
840 		 * Now that we do not always journal data, we should
841 		 * keep in mind whether this should always journal the
842 		 * new buffer as metadata.  For now, regular file
843 		 * writes use ext4_get_block instead, so it's not a
844 		 * problem.
845 		 */
846 		lock_buffer(bh);
847 		BUFFER_TRACE(bh, "call get_create_access");
848 		err = ext4_journal_get_create_access(handle, bh);
849 		if (unlikely(err)) {
850 			unlock_buffer(bh);
851 			goto errout;
852 		}
853 		if (!buffer_uptodate(bh)) {
854 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855 			set_buffer_uptodate(bh);
856 		}
857 		unlock_buffer(bh);
858 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859 		err = ext4_handle_dirty_metadata(handle, inode, bh);
860 		if (unlikely(err))
861 			goto errout;
862 	} else
863 		BUFFER_TRACE(bh, "not a new buffer");
864 	return bh;
865 errout:
866 	brelse(bh);
867 	return ERR_PTR(err);
868 }
869 
870 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
871 			       ext4_lblk_t block, int map_flags)
872 {
873 	struct buffer_head *bh;
874 
875 	bh = ext4_getblk(handle, inode, block, map_flags);
876 	if (IS_ERR(bh))
877 		return bh;
878 	if (!bh || ext4_buffer_uptodate(bh))
879 		return bh;
880 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
881 	wait_on_buffer(bh);
882 	if (buffer_uptodate(bh))
883 		return bh;
884 	put_bh(bh);
885 	return ERR_PTR(-EIO);
886 }
887 
888 /* Read a contiguous batch of blocks. */
889 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
890 		     bool wait, struct buffer_head **bhs)
891 {
892 	int i, err;
893 
894 	for (i = 0; i < bh_count; i++) {
895 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
896 		if (IS_ERR(bhs[i])) {
897 			err = PTR_ERR(bhs[i]);
898 			bh_count = i;
899 			goto out_brelse;
900 		}
901 	}
902 
903 	for (i = 0; i < bh_count; i++)
904 		/* Note that NULL bhs[i] is valid because of holes. */
905 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
906 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
907 				    &bhs[i]);
908 
909 	if (!wait)
910 		return 0;
911 
912 	for (i = 0; i < bh_count; i++)
913 		if (bhs[i])
914 			wait_on_buffer(bhs[i]);
915 
916 	for (i = 0; i < bh_count; i++) {
917 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
918 			err = -EIO;
919 			goto out_brelse;
920 		}
921 	}
922 	return 0;
923 
924 out_brelse:
925 	for (i = 0; i < bh_count; i++) {
926 		brelse(bhs[i]);
927 		bhs[i] = NULL;
928 	}
929 	return err;
930 }
931 
932 int ext4_walk_page_buffers(handle_t *handle,
933 			   struct buffer_head *head,
934 			   unsigned from,
935 			   unsigned to,
936 			   int *partial,
937 			   int (*fn)(handle_t *handle,
938 				     struct buffer_head *bh))
939 {
940 	struct buffer_head *bh;
941 	unsigned block_start, block_end;
942 	unsigned blocksize = head->b_size;
943 	int err, ret = 0;
944 	struct buffer_head *next;
945 
946 	for (bh = head, block_start = 0;
947 	     ret == 0 && (bh != head || !block_start);
948 	     block_start = block_end, bh = next) {
949 		next = bh->b_this_page;
950 		block_end = block_start + blocksize;
951 		if (block_end <= from || block_start >= to) {
952 			if (partial && !buffer_uptodate(bh))
953 				*partial = 1;
954 			continue;
955 		}
956 		err = (*fn)(handle, bh);
957 		if (!ret)
958 			ret = err;
959 	}
960 	return ret;
961 }
962 
963 /*
964  * To preserve ordering, it is essential that the hole instantiation and
965  * the data write be encapsulated in a single transaction.  We cannot
966  * close off a transaction and start a new one between the ext4_get_block()
967  * and the commit_write().  So doing the jbd2_journal_start at the start of
968  * prepare_write() is the right place.
969  *
970  * Also, this function can nest inside ext4_writepage().  In that case, we
971  * *know* that ext4_writepage() has generated enough buffer credits to do the
972  * whole page.  So we won't block on the journal in that case, which is good,
973  * because the caller may be PF_MEMALLOC.
974  *
975  * By accident, ext4 can be reentered when a transaction is open via
976  * quota file writes.  If we were to commit the transaction while thus
977  * reentered, there can be a deadlock - we would be holding a quota
978  * lock, and the commit would never complete if another thread had a
979  * transaction open and was blocking on the quota lock - a ranking
980  * violation.
981  *
982  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
983  * will _not_ run commit under these circumstances because handle->h_ref
984  * is elevated.  We'll still have enough credits for the tiny quotafile
985  * write.
986  */
987 int do_journal_get_write_access(handle_t *handle,
988 				struct buffer_head *bh)
989 {
990 	int dirty = buffer_dirty(bh);
991 	int ret;
992 
993 	if (!buffer_mapped(bh) || buffer_freed(bh))
994 		return 0;
995 	/*
996 	 * __block_write_begin() could have dirtied some buffers. Clean
997 	 * the dirty bit as jbd2_journal_get_write_access() could complain
998 	 * otherwise about fs integrity issues. Setting of the dirty bit
999 	 * by __block_write_begin() isn't a real problem here as we clear
1000 	 * the bit before releasing a page lock and thus writeback cannot
1001 	 * ever write the buffer.
1002 	 */
1003 	if (dirty)
1004 		clear_buffer_dirty(bh);
1005 	BUFFER_TRACE(bh, "get write access");
1006 	ret = ext4_journal_get_write_access(handle, bh);
1007 	if (!ret && dirty)
1008 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1009 	return ret;
1010 }
1011 
1012 #ifdef CONFIG_FS_ENCRYPTION
1013 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1014 				  get_block_t *get_block)
1015 {
1016 	unsigned from = pos & (PAGE_SIZE - 1);
1017 	unsigned to = from + len;
1018 	struct inode *inode = page->mapping->host;
1019 	unsigned block_start, block_end;
1020 	sector_t block;
1021 	int err = 0;
1022 	unsigned blocksize = inode->i_sb->s_blocksize;
1023 	unsigned bbits;
1024 	struct buffer_head *bh, *head, *wait[2];
1025 	int nr_wait = 0;
1026 	int i;
1027 
1028 	BUG_ON(!PageLocked(page));
1029 	BUG_ON(from > PAGE_SIZE);
1030 	BUG_ON(to > PAGE_SIZE);
1031 	BUG_ON(from > to);
1032 
1033 	if (!page_has_buffers(page))
1034 		create_empty_buffers(page, blocksize, 0);
1035 	head = page_buffers(page);
1036 	bbits = ilog2(blocksize);
1037 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1038 
1039 	for (bh = head, block_start = 0; bh != head || !block_start;
1040 	    block++, block_start = block_end, bh = bh->b_this_page) {
1041 		block_end = block_start + blocksize;
1042 		if (block_end <= from || block_start >= to) {
1043 			if (PageUptodate(page)) {
1044 				if (!buffer_uptodate(bh))
1045 					set_buffer_uptodate(bh);
1046 			}
1047 			continue;
1048 		}
1049 		if (buffer_new(bh))
1050 			clear_buffer_new(bh);
1051 		if (!buffer_mapped(bh)) {
1052 			WARN_ON(bh->b_size != blocksize);
1053 			err = get_block(inode, block, bh, 1);
1054 			if (err)
1055 				break;
1056 			if (buffer_new(bh)) {
1057 				if (PageUptodate(page)) {
1058 					clear_buffer_new(bh);
1059 					set_buffer_uptodate(bh);
1060 					mark_buffer_dirty(bh);
1061 					continue;
1062 				}
1063 				if (block_end > to || block_start < from)
1064 					zero_user_segments(page, to, block_end,
1065 							   block_start, from);
1066 				continue;
1067 			}
1068 		}
1069 		if (PageUptodate(page)) {
1070 			if (!buffer_uptodate(bh))
1071 				set_buffer_uptodate(bh);
1072 			continue;
1073 		}
1074 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1075 		    !buffer_unwritten(bh) &&
1076 		    (block_start < from || block_end > to)) {
1077 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1078 			wait[nr_wait++] = bh;
1079 		}
1080 	}
1081 	/*
1082 	 * If we issued read requests, let them complete.
1083 	 */
1084 	for (i = 0; i < nr_wait; i++) {
1085 		wait_on_buffer(wait[i]);
1086 		if (!buffer_uptodate(wait[i]))
1087 			err = -EIO;
1088 	}
1089 	if (unlikely(err)) {
1090 		page_zero_new_buffers(page, from, to);
1091 	} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1092 		for (i = 0; i < nr_wait; i++) {
1093 			int err2;
1094 
1095 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1096 								bh_offset(wait[i]));
1097 			if (err2) {
1098 				clear_buffer_uptodate(wait[i]);
1099 				err = err2;
1100 			}
1101 		}
1102 	}
1103 
1104 	return err;
1105 }
1106 #endif
1107 
1108 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1109 			    loff_t pos, unsigned len, unsigned flags,
1110 			    struct page **pagep, void **fsdata)
1111 {
1112 	struct inode *inode = mapping->host;
1113 	int ret, needed_blocks;
1114 	handle_t *handle;
1115 	int retries = 0;
1116 	struct page *page;
1117 	pgoff_t index;
1118 	unsigned from, to;
1119 
1120 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1121 		return -EIO;
1122 
1123 	trace_ext4_write_begin(inode, pos, len, flags);
1124 	/*
1125 	 * Reserve one block more for addition to orphan list in case
1126 	 * we allocate blocks but write fails for some reason
1127 	 */
1128 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1129 	index = pos >> PAGE_SHIFT;
1130 	from = pos & (PAGE_SIZE - 1);
1131 	to = from + len;
1132 
1133 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1134 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1135 						    flags, pagep);
1136 		if (ret < 0)
1137 			return ret;
1138 		if (ret == 1)
1139 			return 0;
1140 	}
1141 
1142 	/*
1143 	 * grab_cache_page_write_begin() can take a long time if the
1144 	 * system is thrashing due to memory pressure, or if the page
1145 	 * is being written back.  So grab it first before we start
1146 	 * the transaction handle.  This also allows us to allocate
1147 	 * the page (if needed) without using GFP_NOFS.
1148 	 */
1149 retry_grab:
1150 	page = grab_cache_page_write_begin(mapping, index, flags);
1151 	if (!page)
1152 		return -ENOMEM;
1153 	unlock_page(page);
1154 
1155 retry_journal:
1156 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1157 	if (IS_ERR(handle)) {
1158 		put_page(page);
1159 		return PTR_ERR(handle);
1160 	}
1161 
1162 	lock_page(page);
1163 	if (page->mapping != mapping) {
1164 		/* The page got truncated from under us */
1165 		unlock_page(page);
1166 		put_page(page);
1167 		ext4_journal_stop(handle);
1168 		goto retry_grab;
1169 	}
1170 	/* In case writeback began while the page was unlocked */
1171 	wait_for_stable_page(page);
1172 
1173 #ifdef CONFIG_FS_ENCRYPTION
1174 	if (ext4_should_dioread_nolock(inode))
1175 		ret = ext4_block_write_begin(page, pos, len,
1176 					     ext4_get_block_unwritten);
1177 	else
1178 		ret = ext4_block_write_begin(page, pos, len,
1179 					     ext4_get_block);
1180 #else
1181 	if (ext4_should_dioread_nolock(inode))
1182 		ret = __block_write_begin(page, pos, len,
1183 					  ext4_get_block_unwritten);
1184 	else
1185 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1186 #endif
1187 	if (!ret && ext4_should_journal_data(inode)) {
1188 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1189 					     from, to, NULL,
1190 					     do_journal_get_write_access);
1191 	}
1192 
1193 	if (ret) {
1194 		bool extended = (pos + len > inode->i_size) &&
1195 				!ext4_verity_in_progress(inode);
1196 
1197 		unlock_page(page);
1198 		/*
1199 		 * __block_write_begin may have instantiated a few blocks
1200 		 * outside i_size.  Trim these off again. Don't need
1201 		 * i_size_read because we hold i_mutex.
1202 		 *
1203 		 * Add inode to orphan list in case we crash before
1204 		 * truncate finishes
1205 		 */
1206 		if (extended && ext4_can_truncate(inode))
1207 			ext4_orphan_add(handle, inode);
1208 
1209 		ext4_journal_stop(handle);
1210 		if (extended) {
1211 			ext4_truncate_failed_write(inode);
1212 			/*
1213 			 * If truncate failed early the inode might
1214 			 * still be on the orphan list; we need to
1215 			 * make sure the inode is removed from the
1216 			 * orphan list in that case.
1217 			 */
1218 			if (inode->i_nlink)
1219 				ext4_orphan_del(NULL, inode);
1220 		}
1221 
1222 		if (ret == -ENOSPC &&
1223 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1224 			goto retry_journal;
1225 		put_page(page);
1226 		return ret;
1227 	}
1228 	*pagep = page;
1229 	return ret;
1230 }
1231 
1232 /* For write_end() in data=journal mode */
1233 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1234 {
1235 	int ret;
1236 	if (!buffer_mapped(bh) || buffer_freed(bh))
1237 		return 0;
1238 	set_buffer_uptodate(bh);
1239 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1240 	clear_buffer_meta(bh);
1241 	clear_buffer_prio(bh);
1242 	return ret;
1243 }
1244 
1245 /*
1246  * We need to pick up the new inode size which generic_commit_write gave us
1247  * `file' can be NULL - eg, when called from page_symlink().
1248  *
1249  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1250  * buffers are managed internally.
1251  */
1252 static int ext4_write_end(struct file *file,
1253 			  struct address_space *mapping,
1254 			  loff_t pos, unsigned len, unsigned copied,
1255 			  struct page *page, void *fsdata)
1256 {
1257 	handle_t *handle = ext4_journal_current_handle();
1258 	struct inode *inode = mapping->host;
1259 	loff_t old_size = inode->i_size;
1260 	int ret = 0, ret2;
1261 	int i_size_changed = 0;
1262 	int inline_data = ext4_has_inline_data(inode);
1263 	bool verity = ext4_verity_in_progress(inode);
1264 
1265 	trace_ext4_write_end(inode, pos, len, copied);
1266 	if (inline_data) {
1267 		ret = ext4_write_inline_data_end(inode, pos, len,
1268 						 copied, page);
1269 		if (ret < 0) {
1270 			unlock_page(page);
1271 			put_page(page);
1272 			goto errout;
1273 		}
1274 		copied = ret;
1275 	} else
1276 		copied = block_write_end(file, mapping, pos,
1277 					 len, copied, page, fsdata);
1278 	/*
1279 	 * it's important to update i_size while still holding page lock:
1280 	 * page writeout could otherwise come in and zero beyond i_size.
1281 	 *
1282 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1283 	 * blocks are being written past EOF, so skip the i_size update.
1284 	 */
1285 	if (!verity)
1286 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1287 	unlock_page(page);
1288 	put_page(page);
1289 
1290 	if (old_size < pos && !verity)
1291 		pagecache_isize_extended(inode, old_size, pos);
1292 	/*
1293 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1294 	 * makes the holding time of page lock longer. Second, it forces lock
1295 	 * ordering of page lock and transaction start for journaling
1296 	 * filesystems.
1297 	 */
1298 	if (i_size_changed || inline_data)
1299 		ext4_mark_inode_dirty(handle, inode);
1300 
1301 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1302 		/* if we have allocated more blocks and copied
1303 		 * less. We will have blocks allocated outside
1304 		 * inode->i_size. So truncate them
1305 		 */
1306 		ext4_orphan_add(handle, inode);
1307 errout:
1308 	ret2 = ext4_journal_stop(handle);
1309 	if (!ret)
1310 		ret = ret2;
1311 
1312 	if (pos + len > inode->i_size && !verity) {
1313 		ext4_truncate_failed_write(inode);
1314 		/*
1315 		 * If truncate failed early the inode might still be
1316 		 * on the orphan list; we need to make sure the inode
1317 		 * is removed from the orphan list in that case.
1318 		 */
1319 		if (inode->i_nlink)
1320 			ext4_orphan_del(NULL, inode);
1321 	}
1322 
1323 	return ret ? ret : copied;
1324 }
1325 
1326 /*
1327  * This is a private version of page_zero_new_buffers() which doesn't
1328  * set the buffer to be dirty, since in data=journalled mode we need
1329  * to call ext4_handle_dirty_metadata() instead.
1330  */
1331 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1332 					    struct page *page,
1333 					    unsigned from, unsigned to)
1334 {
1335 	unsigned int block_start = 0, block_end;
1336 	struct buffer_head *head, *bh;
1337 
1338 	bh = head = page_buffers(page);
1339 	do {
1340 		block_end = block_start + bh->b_size;
1341 		if (buffer_new(bh)) {
1342 			if (block_end > from && block_start < to) {
1343 				if (!PageUptodate(page)) {
1344 					unsigned start, size;
1345 
1346 					start = max(from, block_start);
1347 					size = min(to, block_end) - start;
1348 
1349 					zero_user(page, start, size);
1350 					write_end_fn(handle, bh);
1351 				}
1352 				clear_buffer_new(bh);
1353 			}
1354 		}
1355 		block_start = block_end;
1356 		bh = bh->b_this_page;
1357 	} while (bh != head);
1358 }
1359 
1360 static int ext4_journalled_write_end(struct file *file,
1361 				     struct address_space *mapping,
1362 				     loff_t pos, unsigned len, unsigned copied,
1363 				     struct page *page, void *fsdata)
1364 {
1365 	handle_t *handle = ext4_journal_current_handle();
1366 	struct inode *inode = mapping->host;
1367 	loff_t old_size = inode->i_size;
1368 	int ret = 0, ret2;
1369 	int partial = 0;
1370 	unsigned from, to;
1371 	int size_changed = 0;
1372 	int inline_data = ext4_has_inline_data(inode);
1373 	bool verity = ext4_verity_in_progress(inode);
1374 
1375 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1376 	from = pos & (PAGE_SIZE - 1);
1377 	to = from + len;
1378 
1379 	BUG_ON(!ext4_handle_valid(handle));
1380 
1381 	if (inline_data) {
1382 		ret = ext4_write_inline_data_end(inode, pos, len,
1383 						 copied, page);
1384 		if (ret < 0) {
1385 			unlock_page(page);
1386 			put_page(page);
1387 			goto errout;
1388 		}
1389 		copied = ret;
1390 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1391 		copied = 0;
1392 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1393 	} else {
1394 		if (unlikely(copied < len))
1395 			ext4_journalled_zero_new_buffers(handle, page,
1396 							 from + copied, to);
1397 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1398 					     from + copied, &partial,
1399 					     write_end_fn);
1400 		if (!partial)
1401 			SetPageUptodate(page);
1402 	}
1403 	if (!verity)
1404 		size_changed = ext4_update_inode_size(inode, pos + copied);
1405 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1406 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1407 	unlock_page(page);
1408 	put_page(page);
1409 
1410 	if (old_size < pos && !verity)
1411 		pagecache_isize_extended(inode, old_size, pos);
1412 
1413 	if (size_changed || inline_data) {
1414 		ret2 = ext4_mark_inode_dirty(handle, inode);
1415 		if (!ret)
1416 			ret = ret2;
1417 	}
1418 
1419 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1420 		/* if we have allocated more blocks and copied
1421 		 * less. We will have blocks allocated outside
1422 		 * inode->i_size. So truncate them
1423 		 */
1424 		ext4_orphan_add(handle, inode);
1425 
1426 errout:
1427 	ret2 = ext4_journal_stop(handle);
1428 	if (!ret)
1429 		ret = ret2;
1430 	if (pos + len > inode->i_size && !verity) {
1431 		ext4_truncate_failed_write(inode);
1432 		/*
1433 		 * If truncate failed early the inode might still be
1434 		 * on the orphan list; we need to make sure the inode
1435 		 * is removed from the orphan list in that case.
1436 		 */
1437 		if (inode->i_nlink)
1438 			ext4_orphan_del(NULL, inode);
1439 	}
1440 
1441 	return ret ? ret : copied;
1442 }
1443 
1444 /*
1445  * Reserve space for a single cluster
1446  */
1447 static int ext4_da_reserve_space(struct inode *inode)
1448 {
1449 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1450 	struct ext4_inode_info *ei = EXT4_I(inode);
1451 	int ret;
1452 
1453 	/*
1454 	 * We will charge metadata quota at writeout time; this saves
1455 	 * us from metadata over-estimation, though we may go over by
1456 	 * a small amount in the end.  Here we just reserve for data.
1457 	 */
1458 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1459 	if (ret)
1460 		return ret;
1461 
1462 	spin_lock(&ei->i_block_reservation_lock);
1463 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1464 		spin_unlock(&ei->i_block_reservation_lock);
1465 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1466 		return -ENOSPC;
1467 	}
1468 	ei->i_reserved_data_blocks++;
1469 	trace_ext4_da_reserve_space(inode);
1470 	spin_unlock(&ei->i_block_reservation_lock);
1471 
1472 	return 0;       /* success */
1473 }
1474 
1475 void ext4_da_release_space(struct inode *inode, int to_free)
1476 {
1477 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1478 	struct ext4_inode_info *ei = EXT4_I(inode);
1479 
1480 	if (!to_free)
1481 		return;		/* Nothing to release, exit */
1482 
1483 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1484 
1485 	trace_ext4_da_release_space(inode, to_free);
1486 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1487 		/*
1488 		 * if there aren't enough reserved blocks, then the
1489 		 * counter is messed up somewhere.  Since this
1490 		 * function is called from invalidate page, it's
1491 		 * harmless to return without any action.
1492 		 */
1493 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1494 			 "ino %lu, to_free %d with only %d reserved "
1495 			 "data blocks", inode->i_ino, to_free,
1496 			 ei->i_reserved_data_blocks);
1497 		WARN_ON(1);
1498 		to_free = ei->i_reserved_data_blocks;
1499 	}
1500 	ei->i_reserved_data_blocks -= to_free;
1501 
1502 	/* update fs dirty data blocks counter */
1503 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1504 
1505 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1506 
1507 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1508 }
1509 
1510 /*
1511  * Delayed allocation stuff
1512  */
1513 
1514 struct mpage_da_data {
1515 	struct inode *inode;
1516 	struct writeback_control *wbc;
1517 
1518 	pgoff_t first_page;	/* The first page to write */
1519 	pgoff_t next_page;	/* Current page to examine */
1520 	pgoff_t last_page;	/* Last page to examine */
1521 	/*
1522 	 * Extent to map - this can be after first_page because that can be
1523 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1524 	 * is delalloc or unwritten.
1525 	 */
1526 	struct ext4_map_blocks map;
1527 	struct ext4_io_submit io_submit;	/* IO submission data */
1528 	unsigned int do_map:1;
1529 };
1530 
1531 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1532 				       bool invalidate)
1533 {
1534 	int nr_pages, i;
1535 	pgoff_t index, end;
1536 	struct pagevec pvec;
1537 	struct inode *inode = mpd->inode;
1538 	struct address_space *mapping = inode->i_mapping;
1539 
1540 	/* This is necessary when next_page == 0. */
1541 	if (mpd->first_page >= mpd->next_page)
1542 		return;
1543 
1544 	index = mpd->first_page;
1545 	end   = mpd->next_page - 1;
1546 	if (invalidate) {
1547 		ext4_lblk_t start, last;
1548 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1549 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1550 		ext4_es_remove_extent(inode, start, last - start + 1);
1551 	}
1552 
1553 	pagevec_init(&pvec);
1554 	while (index <= end) {
1555 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1556 		if (nr_pages == 0)
1557 			break;
1558 		for (i = 0; i < nr_pages; i++) {
1559 			struct page *page = pvec.pages[i];
1560 
1561 			BUG_ON(!PageLocked(page));
1562 			BUG_ON(PageWriteback(page));
1563 			if (invalidate) {
1564 				if (page_mapped(page))
1565 					clear_page_dirty_for_io(page);
1566 				block_invalidatepage(page, 0, PAGE_SIZE);
1567 				ClearPageUptodate(page);
1568 			}
1569 			unlock_page(page);
1570 		}
1571 		pagevec_release(&pvec);
1572 	}
1573 }
1574 
1575 static void ext4_print_free_blocks(struct inode *inode)
1576 {
1577 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1578 	struct super_block *sb = inode->i_sb;
1579 	struct ext4_inode_info *ei = EXT4_I(inode);
1580 
1581 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1582 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1583 			ext4_count_free_clusters(sb)));
1584 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1585 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1586 	       (long long) EXT4_C2B(EXT4_SB(sb),
1587 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1588 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1589 	       (long long) EXT4_C2B(EXT4_SB(sb),
1590 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1591 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1592 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1593 		 ei->i_reserved_data_blocks);
1594 	return;
1595 }
1596 
1597 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1598 {
1599 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1600 }
1601 
1602 /*
1603  * ext4_insert_delayed_block - adds a delayed block to the extents status
1604  *                             tree, incrementing the reserved cluster/block
1605  *                             count or making a pending reservation
1606  *                             where needed
1607  *
1608  * @inode - file containing the newly added block
1609  * @lblk - logical block to be added
1610  *
1611  * Returns 0 on success, negative error code on failure.
1612  */
1613 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1614 {
1615 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1616 	int ret;
1617 	bool allocated = false;
1618 
1619 	/*
1620 	 * If the cluster containing lblk is shared with a delayed,
1621 	 * written, or unwritten extent in a bigalloc file system, it's
1622 	 * already been accounted for and does not need to be reserved.
1623 	 * A pending reservation must be made for the cluster if it's
1624 	 * shared with a written or unwritten extent and doesn't already
1625 	 * have one.  Written and unwritten extents can be purged from the
1626 	 * extents status tree if the system is under memory pressure, so
1627 	 * it's necessary to examine the extent tree if a search of the
1628 	 * extents status tree doesn't get a match.
1629 	 */
1630 	if (sbi->s_cluster_ratio == 1) {
1631 		ret = ext4_da_reserve_space(inode);
1632 		if (ret != 0)   /* ENOSPC */
1633 			goto errout;
1634 	} else {   /* bigalloc */
1635 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1636 			if (!ext4_es_scan_clu(inode,
1637 					      &ext4_es_is_mapped, lblk)) {
1638 				ret = ext4_clu_mapped(inode,
1639 						      EXT4_B2C(sbi, lblk));
1640 				if (ret < 0)
1641 					goto errout;
1642 				if (ret == 0) {
1643 					ret = ext4_da_reserve_space(inode);
1644 					if (ret != 0)   /* ENOSPC */
1645 						goto errout;
1646 				} else {
1647 					allocated = true;
1648 				}
1649 			} else {
1650 				allocated = true;
1651 			}
1652 		}
1653 	}
1654 
1655 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1656 
1657 errout:
1658 	return ret;
1659 }
1660 
1661 /*
1662  * This function is grabs code from the very beginning of
1663  * ext4_map_blocks, but assumes that the caller is from delayed write
1664  * time. This function looks up the requested blocks and sets the
1665  * buffer delay bit under the protection of i_data_sem.
1666  */
1667 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1668 			      struct ext4_map_blocks *map,
1669 			      struct buffer_head *bh)
1670 {
1671 	struct extent_status es;
1672 	int retval;
1673 	sector_t invalid_block = ~((sector_t) 0xffff);
1674 #ifdef ES_AGGRESSIVE_TEST
1675 	struct ext4_map_blocks orig_map;
1676 
1677 	memcpy(&orig_map, map, sizeof(*map));
1678 #endif
1679 
1680 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1681 		invalid_block = ~0;
1682 
1683 	map->m_flags = 0;
1684 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1685 		  "logical block %lu\n", inode->i_ino, map->m_len,
1686 		  (unsigned long) map->m_lblk);
1687 
1688 	/* Lookup extent status tree firstly */
1689 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1690 		if (ext4_es_is_hole(&es)) {
1691 			retval = 0;
1692 			down_read(&EXT4_I(inode)->i_data_sem);
1693 			goto add_delayed;
1694 		}
1695 
1696 		/*
1697 		 * Delayed extent could be allocated by fallocate.
1698 		 * So we need to check it.
1699 		 */
1700 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1701 			map_bh(bh, inode->i_sb, invalid_block);
1702 			set_buffer_new(bh);
1703 			set_buffer_delay(bh);
1704 			return 0;
1705 		}
1706 
1707 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1708 		retval = es.es_len - (iblock - es.es_lblk);
1709 		if (retval > map->m_len)
1710 			retval = map->m_len;
1711 		map->m_len = retval;
1712 		if (ext4_es_is_written(&es))
1713 			map->m_flags |= EXT4_MAP_MAPPED;
1714 		else if (ext4_es_is_unwritten(&es))
1715 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1716 		else
1717 			BUG();
1718 
1719 #ifdef ES_AGGRESSIVE_TEST
1720 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1721 #endif
1722 		return retval;
1723 	}
1724 
1725 	/*
1726 	 * Try to see if we can get the block without requesting a new
1727 	 * file system block.
1728 	 */
1729 	down_read(&EXT4_I(inode)->i_data_sem);
1730 	if (ext4_has_inline_data(inode))
1731 		retval = 0;
1732 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1733 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1734 	else
1735 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1736 
1737 add_delayed:
1738 	if (retval == 0) {
1739 		int ret;
1740 
1741 		/*
1742 		 * XXX: __block_prepare_write() unmaps passed block,
1743 		 * is it OK?
1744 		 */
1745 
1746 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1747 		if (ret != 0) {
1748 			retval = ret;
1749 			goto out_unlock;
1750 		}
1751 
1752 		map_bh(bh, inode->i_sb, invalid_block);
1753 		set_buffer_new(bh);
1754 		set_buffer_delay(bh);
1755 	} else if (retval > 0) {
1756 		int ret;
1757 		unsigned int status;
1758 
1759 		if (unlikely(retval != map->m_len)) {
1760 			ext4_warning(inode->i_sb,
1761 				     "ES len assertion failed for inode "
1762 				     "%lu: retval %d != map->m_len %d",
1763 				     inode->i_ino, retval, map->m_len);
1764 			WARN_ON(1);
1765 		}
1766 
1767 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1768 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1769 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1770 					    map->m_pblk, status);
1771 		if (ret != 0)
1772 			retval = ret;
1773 	}
1774 
1775 out_unlock:
1776 	up_read((&EXT4_I(inode)->i_data_sem));
1777 
1778 	return retval;
1779 }
1780 
1781 /*
1782  * This is a special get_block_t callback which is used by
1783  * ext4_da_write_begin().  It will either return mapped block or
1784  * reserve space for a single block.
1785  *
1786  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1787  * We also have b_blocknr = -1 and b_bdev initialized properly
1788  *
1789  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1790  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1791  * initialized properly.
1792  */
1793 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1794 			   struct buffer_head *bh, int create)
1795 {
1796 	struct ext4_map_blocks map;
1797 	int ret = 0;
1798 
1799 	BUG_ON(create == 0);
1800 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1801 
1802 	map.m_lblk = iblock;
1803 	map.m_len = 1;
1804 
1805 	/*
1806 	 * first, we need to know whether the block is allocated already
1807 	 * preallocated blocks are unmapped but should treated
1808 	 * the same as allocated blocks.
1809 	 */
1810 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1811 	if (ret <= 0)
1812 		return ret;
1813 
1814 	map_bh(bh, inode->i_sb, map.m_pblk);
1815 	ext4_update_bh_state(bh, map.m_flags);
1816 
1817 	if (buffer_unwritten(bh)) {
1818 		/* A delayed write to unwritten bh should be marked
1819 		 * new and mapped.  Mapped ensures that we don't do
1820 		 * get_block multiple times when we write to the same
1821 		 * offset and new ensures that we do proper zero out
1822 		 * for partial write.
1823 		 */
1824 		set_buffer_new(bh);
1825 		set_buffer_mapped(bh);
1826 	}
1827 	return 0;
1828 }
1829 
1830 static int bget_one(handle_t *handle, struct buffer_head *bh)
1831 {
1832 	get_bh(bh);
1833 	return 0;
1834 }
1835 
1836 static int bput_one(handle_t *handle, struct buffer_head *bh)
1837 {
1838 	put_bh(bh);
1839 	return 0;
1840 }
1841 
1842 static int __ext4_journalled_writepage(struct page *page,
1843 				       unsigned int len)
1844 {
1845 	struct address_space *mapping = page->mapping;
1846 	struct inode *inode = mapping->host;
1847 	struct buffer_head *page_bufs = NULL;
1848 	handle_t *handle = NULL;
1849 	int ret = 0, err = 0;
1850 	int inline_data = ext4_has_inline_data(inode);
1851 	struct buffer_head *inode_bh = NULL;
1852 
1853 	ClearPageChecked(page);
1854 
1855 	if (inline_data) {
1856 		BUG_ON(page->index != 0);
1857 		BUG_ON(len > ext4_get_max_inline_size(inode));
1858 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1859 		if (inode_bh == NULL)
1860 			goto out;
1861 	} else {
1862 		page_bufs = page_buffers(page);
1863 		if (!page_bufs) {
1864 			BUG();
1865 			goto out;
1866 		}
1867 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1868 				       NULL, bget_one);
1869 	}
1870 	/*
1871 	 * We need to release the page lock before we start the
1872 	 * journal, so grab a reference so the page won't disappear
1873 	 * out from under us.
1874 	 */
1875 	get_page(page);
1876 	unlock_page(page);
1877 
1878 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1879 				    ext4_writepage_trans_blocks(inode));
1880 	if (IS_ERR(handle)) {
1881 		ret = PTR_ERR(handle);
1882 		put_page(page);
1883 		goto out_no_pagelock;
1884 	}
1885 	BUG_ON(!ext4_handle_valid(handle));
1886 
1887 	lock_page(page);
1888 	put_page(page);
1889 	if (page->mapping != mapping) {
1890 		/* The page got truncated from under us */
1891 		ext4_journal_stop(handle);
1892 		ret = 0;
1893 		goto out;
1894 	}
1895 
1896 	if (inline_data) {
1897 		ret = ext4_mark_inode_dirty(handle, inode);
1898 	} else {
1899 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1900 					     do_journal_get_write_access);
1901 
1902 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1903 					     write_end_fn);
1904 	}
1905 	if (ret == 0)
1906 		ret = err;
1907 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1908 	err = ext4_journal_stop(handle);
1909 	if (!ret)
1910 		ret = err;
1911 
1912 	if (!ext4_has_inline_data(inode))
1913 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1914 				       NULL, bput_one);
1915 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1916 out:
1917 	unlock_page(page);
1918 out_no_pagelock:
1919 	brelse(inode_bh);
1920 	return ret;
1921 }
1922 
1923 /*
1924  * Note that we don't need to start a transaction unless we're journaling data
1925  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1926  * need to file the inode to the transaction's list in ordered mode because if
1927  * we are writing back data added by write(), the inode is already there and if
1928  * we are writing back data modified via mmap(), no one guarantees in which
1929  * transaction the data will hit the disk. In case we are journaling data, we
1930  * cannot start transaction directly because transaction start ranks above page
1931  * lock so we have to do some magic.
1932  *
1933  * This function can get called via...
1934  *   - ext4_writepages after taking page lock (have journal handle)
1935  *   - journal_submit_inode_data_buffers (no journal handle)
1936  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1937  *   - grab_page_cache when doing write_begin (have journal handle)
1938  *
1939  * We don't do any block allocation in this function. If we have page with
1940  * multiple blocks we need to write those buffer_heads that are mapped. This
1941  * is important for mmaped based write. So if we do with blocksize 1K
1942  * truncate(f, 1024);
1943  * a = mmap(f, 0, 4096);
1944  * a[0] = 'a';
1945  * truncate(f, 4096);
1946  * we have in the page first buffer_head mapped via page_mkwrite call back
1947  * but other buffer_heads would be unmapped but dirty (dirty done via the
1948  * do_wp_page). So writepage should write the first block. If we modify
1949  * the mmap area beyond 1024 we will again get a page_fault and the
1950  * page_mkwrite callback will do the block allocation and mark the
1951  * buffer_heads mapped.
1952  *
1953  * We redirty the page if we have any buffer_heads that is either delay or
1954  * unwritten in the page.
1955  *
1956  * We can get recursively called as show below.
1957  *
1958  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1959  *		ext4_writepage()
1960  *
1961  * But since we don't do any block allocation we should not deadlock.
1962  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1963  */
1964 static int ext4_writepage(struct page *page,
1965 			  struct writeback_control *wbc)
1966 {
1967 	int ret = 0;
1968 	loff_t size;
1969 	unsigned int len;
1970 	struct buffer_head *page_bufs = NULL;
1971 	struct inode *inode = page->mapping->host;
1972 	struct ext4_io_submit io_submit;
1973 	bool keep_towrite = false;
1974 
1975 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1976 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1977 		unlock_page(page);
1978 		return -EIO;
1979 	}
1980 
1981 	trace_ext4_writepage(page);
1982 	size = i_size_read(inode);
1983 	if (page->index == size >> PAGE_SHIFT &&
1984 	    !ext4_verity_in_progress(inode))
1985 		len = size & ~PAGE_MASK;
1986 	else
1987 		len = PAGE_SIZE;
1988 
1989 	page_bufs = page_buffers(page);
1990 	/*
1991 	 * We cannot do block allocation or other extent handling in this
1992 	 * function. If there are buffers needing that, we have to redirty
1993 	 * the page. But we may reach here when we do a journal commit via
1994 	 * journal_submit_inode_data_buffers() and in that case we must write
1995 	 * allocated buffers to achieve data=ordered mode guarantees.
1996 	 *
1997 	 * Also, if there is only one buffer per page (the fs block
1998 	 * size == the page size), if one buffer needs block
1999 	 * allocation or needs to modify the extent tree to clear the
2000 	 * unwritten flag, we know that the page can't be written at
2001 	 * all, so we might as well refuse the write immediately.
2002 	 * Unfortunately if the block size != page size, we can't as
2003 	 * easily detect this case using ext4_walk_page_buffers(), but
2004 	 * for the extremely common case, this is an optimization that
2005 	 * skips a useless round trip through ext4_bio_write_page().
2006 	 */
2007 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2008 				   ext4_bh_delay_or_unwritten)) {
2009 		redirty_page_for_writepage(wbc, page);
2010 		if ((current->flags & PF_MEMALLOC) ||
2011 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2012 			/*
2013 			 * For memory cleaning there's no point in writing only
2014 			 * some buffers. So just bail out. Warn if we came here
2015 			 * from direct reclaim.
2016 			 */
2017 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2018 							== PF_MEMALLOC);
2019 			unlock_page(page);
2020 			return 0;
2021 		}
2022 		keep_towrite = true;
2023 	}
2024 
2025 	if (PageChecked(page) && ext4_should_journal_data(inode))
2026 		/*
2027 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2028 		 * doesn't seem much point in redirtying the page here.
2029 		 */
2030 		return __ext4_journalled_writepage(page, len);
2031 
2032 	ext4_io_submit_init(&io_submit, wbc);
2033 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2034 	if (!io_submit.io_end) {
2035 		redirty_page_for_writepage(wbc, page);
2036 		unlock_page(page);
2037 		return -ENOMEM;
2038 	}
2039 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2040 	ext4_io_submit(&io_submit);
2041 	/* Drop io_end reference we got from init */
2042 	ext4_put_io_end_defer(io_submit.io_end);
2043 	return ret;
2044 }
2045 
2046 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2047 {
2048 	int len;
2049 	loff_t size;
2050 	int err;
2051 
2052 	BUG_ON(page->index != mpd->first_page);
2053 	clear_page_dirty_for_io(page);
2054 	/*
2055 	 * We have to be very careful here!  Nothing protects writeback path
2056 	 * against i_size changes and the page can be writeably mapped into
2057 	 * page tables. So an application can be growing i_size and writing
2058 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2059 	 * write-protects our page in page tables and the page cannot get
2060 	 * written to again until we release page lock. So only after
2061 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2062 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2063 	 * on the barrier provided by TestClearPageDirty in
2064 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2065 	 * after page tables are updated.
2066 	 */
2067 	size = i_size_read(mpd->inode);
2068 	if (page->index == size >> PAGE_SHIFT &&
2069 	    !ext4_verity_in_progress(mpd->inode))
2070 		len = size & ~PAGE_MASK;
2071 	else
2072 		len = PAGE_SIZE;
2073 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2074 	if (!err)
2075 		mpd->wbc->nr_to_write--;
2076 	mpd->first_page++;
2077 
2078 	return err;
2079 }
2080 
2081 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2082 
2083 /*
2084  * mballoc gives us at most this number of blocks...
2085  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2086  * The rest of mballoc seems to handle chunks up to full group size.
2087  */
2088 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2089 
2090 /*
2091  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2092  *
2093  * @mpd - extent of blocks
2094  * @lblk - logical number of the block in the file
2095  * @bh - buffer head we want to add to the extent
2096  *
2097  * The function is used to collect contig. blocks in the same state. If the
2098  * buffer doesn't require mapping for writeback and we haven't started the
2099  * extent of buffers to map yet, the function returns 'true' immediately - the
2100  * caller can write the buffer right away. Otherwise the function returns true
2101  * if the block has been added to the extent, false if the block couldn't be
2102  * added.
2103  */
2104 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2105 				   struct buffer_head *bh)
2106 {
2107 	struct ext4_map_blocks *map = &mpd->map;
2108 
2109 	/* Buffer that doesn't need mapping for writeback? */
2110 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2111 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2112 		/* So far no extent to map => we write the buffer right away */
2113 		if (map->m_len == 0)
2114 			return true;
2115 		return false;
2116 	}
2117 
2118 	/* First block in the extent? */
2119 	if (map->m_len == 0) {
2120 		/* We cannot map unless handle is started... */
2121 		if (!mpd->do_map)
2122 			return false;
2123 		map->m_lblk = lblk;
2124 		map->m_len = 1;
2125 		map->m_flags = bh->b_state & BH_FLAGS;
2126 		return true;
2127 	}
2128 
2129 	/* Don't go larger than mballoc is willing to allocate */
2130 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2131 		return false;
2132 
2133 	/* Can we merge the block to our big extent? */
2134 	if (lblk == map->m_lblk + map->m_len &&
2135 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2136 		map->m_len++;
2137 		return true;
2138 	}
2139 	return false;
2140 }
2141 
2142 /*
2143  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2144  *
2145  * @mpd - extent of blocks for mapping
2146  * @head - the first buffer in the page
2147  * @bh - buffer we should start processing from
2148  * @lblk - logical number of the block in the file corresponding to @bh
2149  *
2150  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2151  * the page for IO if all buffers in this page were mapped and there's no
2152  * accumulated extent of buffers to map or add buffers in the page to the
2153  * extent of buffers to map. The function returns 1 if the caller can continue
2154  * by processing the next page, 0 if it should stop adding buffers to the
2155  * extent to map because we cannot extend it anymore. It can also return value
2156  * < 0 in case of error during IO submission.
2157  */
2158 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2159 				   struct buffer_head *head,
2160 				   struct buffer_head *bh,
2161 				   ext4_lblk_t lblk)
2162 {
2163 	struct inode *inode = mpd->inode;
2164 	int err;
2165 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2166 							>> inode->i_blkbits;
2167 
2168 	if (ext4_verity_in_progress(inode))
2169 		blocks = EXT_MAX_BLOCKS;
2170 
2171 	do {
2172 		BUG_ON(buffer_locked(bh));
2173 
2174 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2175 			/* Found extent to map? */
2176 			if (mpd->map.m_len)
2177 				return 0;
2178 			/* Buffer needs mapping and handle is not started? */
2179 			if (!mpd->do_map)
2180 				return 0;
2181 			/* Everything mapped so far and we hit EOF */
2182 			break;
2183 		}
2184 	} while (lblk++, (bh = bh->b_this_page) != head);
2185 	/* So far everything mapped? Submit the page for IO. */
2186 	if (mpd->map.m_len == 0) {
2187 		err = mpage_submit_page(mpd, head->b_page);
2188 		if (err < 0)
2189 			return err;
2190 	}
2191 	return lblk < blocks;
2192 }
2193 
2194 /*
2195  * mpage_process_page - update page buffers corresponding to changed extent and
2196  *		       may submit fully mapped page for IO
2197  *
2198  * @mpd		- description of extent to map, on return next extent to map
2199  * @m_lblk	- logical block mapping.
2200  * @m_pblk	- corresponding physical mapping.
2201  * @map_bh	- determines on return whether this page requires any further
2202  *		  mapping or not.
2203  * Scan given page buffers corresponding to changed extent and update buffer
2204  * state according to new extent state.
2205  * We map delalloc buffers to their physical location, clear unwritten bits.
2206  * If the given page is not fully mapped, we update @map to the next extent in
2207  * the given page that needs mapping & return @map_bh as true.
2208  */
2209 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2210 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2211 			      bool *map_bh)
2212 {
2213 	struct buffer_head *head, *bh;
2214 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2215 	ext4_lblk_t lblk = *m_lblk;
2216 	ext4_fsblk_t pblock = *m_pblk;
2217 	int err = 0;
2218 	int blkbits = mpd->inode->i_blkbits;
2219 	ssize_t io_end_size = 0;
2220 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2221 
2222 	bh = head = page_buffers(page);
2223 	do {
2224 		if (lblk < mpd->map.m_lblk)
2225 			continue;
2226 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2227 			/*
2228 			 * Buffer after end of mapped extent.
2229 			 * Find next buffer in the page to map.
2230 			 */
2231 			mpd->map.m_len = 0;
2232 			mpd->map.m_flags = 0;
2233 			io_end_vec->size += io_end_size;
2234 			io_end_size = 0;
2235 
2236 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2237 			if (err > 0)
2238 				err = 0;
2239 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2240 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2241 				if (IS_ERR(io_end_vec)) {
2242 					err = PTR_ERR(io_end_vec);
2243 					goto out;
2244 				}
2245 				io_end_vec->offset = mpd->map.m_lblk << blkbits;
2246 			}
2247 			*map_bh = true;
2248 			goto out;
2249 		}
2250 		if (buffer_delay(bh)) {
2251 			clear_buffer_delay(bh);
2252 			bh->b_blocknr = pblock++;
2253 		}
2254 		clear_buffer_unwritten(bh);
2255 		io_end_size += (1 << blkbits);
2256 	} while (lblk++, (bh = bh->b_this_page) != head);
2257 
2258 	io_end_vec->size += io_end_size;
2259 	io_end_size = 0;
2260 	*map_bh = false;
2261 out:
2262 	*m_lblk = lblk;
2263 	*m_pblk = pblock;
2264 	return err;
2265 }
2266 
2267 /*
2268  * mpage_map_buffers - update buffers corresponding to changed extent and
2269  *		       submit fully mapped pages for IO
2270  *
2271  * @mpd - description of extent to map, on return next extent to map
2272  *
2273  * Scan buffers corresponding to changed extent (we expect corresponding pages
2274  * to be already locked) and update buffer state according to new extent state.
2275  * We map delalloc buffers to their physical location, clear unwritten bits,
2276  * and mark buffers as uninit when we perform writes to unwritten extents
2277  * and do extent conversion after IO is finished. If the last page is not fully
2278  * mapped, we update @map to the next extent in the last page that needs
2279  * mapping. Otherwise we submit the page for IO.
2280  */
2281 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2282 {
2283 	struct pagevec pvec;
2284 	int nr_pages, i;
2285 	struct inode *inode = mpd->inode;
2286 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2287 	pgoff_t start, end;
2288 	ext4_lblk_t lblk;
2289 	ext4_fsblk_t pblock;
2290 	int err;
2291 	bool map_bh = false;
2292 
2293 	start = mpd->map.m_lblk >> bpp_bits;
2294 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2295 	lblk = start << bpp_bits;
2296 	pblock = mpd->map.m_pblk;
2297 
2298 	pagevec_init(&pvec);
2299 	while (start <= end) {
2300 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2301 						&start, end);
2302 		if (nr_pages == 0)
2303 			break;
2304 		for (i = 0; i < nr_pages; i++) {
2305 			struct page *page = pvec.pages[i];
2306 
2307 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2308 						 &map_bh);
2309 			/*
2310 			 * If map_bh is true, means page may require further bh
2311 			 * mapping, or maybe the page was submitted for IO.
2312 			 * So we return to call further extent mapping.
2313 			 */
2314 			if (err < 0 || map_bh == true)
2315 				goto out;
2316 			/* Page fully mapped - let IO run! */
2317 			err = mpage_submit_page(mpd, page);
2318 			if (err < 0)
2319 				goto out;
2320 		}
2321 		pagevec_release(&pvec);
2322 	}
2323 	/* Extent fully mapped and matches with page boundary. We are done. */
2324 	mpd->map.m_len = 0;
2325 	mpd->map.m_flags = 0;
2326 	return 0;
2327 out:
2328 	pagevec_release(&pvec);
2329 	return err;
2330 }
2331 
2332 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2333 {
2334 	struct inode *inode = mpd->inode;
2335 	struct ext4_map_blocks *map = &mpd->map;
2336 	int get_blocks_flags;
2337 	int err, dioread_nolock;
2338 
2339 	trace_ext4_da_write_pages_extent(inode, map);
2340 	/*
2341 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2342 	 * to convert an unwritten extent to be initialized (in the case
2343 	 * where we have written into one or more preallocated blocks).  It is
2344 	 * possible that we're going to need more metadata blocks than
2345 	 * previously reserved. However we must not fail because we're in
2346 	 * writeback and there is nothing we can do about it so it might result
2347 	 * in data loss.  So use reserved blocks to allocate metadata if
2348 	 * possible.
2349 	 *
2350 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2351 	 * the blocks in question are delalloc blocks.  This indicates
2352 	 * that the blocks and quotas has already been checked when
2353 	 * the data was copied into the page cache.
2354 	 */
2355 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2356 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2357 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2358 	dioread_nolock = ext4_should_dioread_nolock(inode);
2359 	if (dioread_nolock)
2360 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2361 	if (map->m_flags & (1 << BH_Delay))
2362 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2363 
2364 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2365 	if (err < 0)
2366 		return err;
2367 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2368 		if (!mpd->io_submit.io_end->handle &&
2369 		    ext4_handle_valid(handle)) {
2370 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2371 			handle->h_rsv_handle = NULL;
2372 		}
2373 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2374 	}
2375 
2376 	BUG_ON(map->m_len == 0);
2377 	return 0;
2378 }
2379 
2380 /*
2381  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2382  *				 mpd->len and submit pages underlying it for IO
2383  *
2384  * @handle - handle for journal operations
2385  * @mpd - extent to map
2386  * @give_up_on_write - we set this to true iff there is a fatal error and there
2387  *                     is no hope of writing the data. The caller should discard
2388  *                     dirty pages to avoid infinite loops.
2389  *
2390  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2391  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2392  * them to initialized or split the described range from larger unwritten
2393  * extent. Note that we need not map all the described range since allocation
2394  * can return less blocks or the range is covered by more unwritten extents. We
2395  * cannot map more because we are limited by reserved transaction credits. On
2396  * the other hand we always make sure that the last touched page is fully
2397  * mapped so that it can be written out (and thus forward progress is
2398  * guaranteed). After mapping we submit all mapped pages for IO.
2399  */
2400 static int mpage_map_and_submit_extent(handle_t *handle,
2401 				       struct mpage_da_data *mpd,
2402 				       bool *give_up_on_write)
2403 {
2404 	struct inode *inode = mpd->inode;
2405 	struct ext4_map_blocks *map = &mpd->map;
2406 	int err;
2407 	loff_t disksize;
2408 	int progress = 0;
2409 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2410 	struct ext4_io_end_vec *io_end_vec;
2411 
2412 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2413 	if (IS_ERR(io_end_vec))
2414 		return PTR_ERR(io_end_vec);
2415 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2416 	do {
2417 		err = mpage_map_one_extent(handle, mpd);
2418 		if (err < 0) {
2419 			struct super_block *sb = inode->i_sb;
2420 
2421 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2422 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2423 				goto invalidate_dirty_pages;
2424 			/*
2425 			 * Let the uper layers retry transient errors.
2426 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2427 			 * is non-zero, a commit should free up blocks.
2428 			 */
2429 			if ((err == -ENOMEM) ||
2430 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2431 				if (progress)
2432 					goto update_disksize;
2433 				return err;
2434 			}
2435 			ext4_msg(sb, KERN_CRIT,
2436 				 "Delayed block allocation failed for "
2437 				 "inode %lu at logical offset %llu with"
2438 				 " max blocks %u with error %d",
2439 				 inode->i_ino,
2440 				 (unsigned long long)map->m_lblk,
2441 				 (unsigned)map->m_len, -err);
2442 			ext4_msg(sb, KERN_CRIT,
2443 				 "This should not happen!! Data will "
2444 				 "be lost\n");
2445 			if (err == -ENOSPC)
2446 				ext4_print_free_blocks(inode);
2447 		invalidate_dirty_pages:
2448 			*give_up_on_write = true;
2449 			return err;
2450 		}
2451 		progress = 1;
2452 		/*
2453 		 * Update buffer state, submit mapped pages, and get us new
2454 		 * extent to map
2455 		 */
2456 		err = mpage_map_and_submit_buffers(mpd);
2457 		if (err < 0)
2458 			goto update_disksize;
2459 	} while (map->m_len);
2460 
2461 update_disksize:
2462 	/*
2463 	 * Update on-disk size after IO is submitted.  Races with
2464 	 * truncate are avoided by checking i_size under i_data_sem.
2465 	 */
2466 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2467 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2468 		int err2;
2469 		loff_t i_size;
2470 
2471 		down_write(&EXT4_I(inode)->i_data_sem);
2472 		i_size = i_size_read(inode);
2473 		if (disksize > i_size)
2474 			disksize = i_size;
2475 		if (disksize > EXT4_I(inode)->i_disksize)
2476 			EXT4_I(inode)->i_disksize = disksize;
2477 		up_write(&EXT4_I(inode)->i_data_sem);
2478 		err2 = ext4_mark_inode_dirty(handle, inode);
2479 		if (err2) {
2480 			ext4_error_err(inode->i_sb, -err2,
2481 				       "Failed to mark inode %lu dirty",
2482 				       inode->i_ino);
2483 		}
2484 		if (!err)
2485 			err = err2;
2486 	}
2487 	return err;
2488 }
2489 
2490 /*
2491  * Calculate the total number of credits to reserve for one writepages
2492  * iteration. This is called from ext4_writepages(). We map an extent of
2493  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2494  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2495  * bpp - 1 blocks in bpp different extents.
2496  */
2497 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2498 {
2499 	int bpp = ext4_journal_blocks_per_page(inode);
2500 
2501 	return ext4_meta_trans_blocks(inode,
2502 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2503 }
2504 
2505 /*
2506  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2507  * 				 and underlying extent to map
2508  *
2509  * @mpd - where to look for pages
2510  *
2511  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2512  * IO immediately. When we find a page which isn't mapped we start accumulating
2513  * extent of buffers underlying these pages that needs mapping (formed by
2514  * either delayed or unwritten buffers). We also lock the pages containing
2515  * these buffers. The extent found is returned in @mpd structure (starting at
2516  * mpd->lblk with length mpd->len blocks).
2517  *
2518  * Note that this function can attach bios to one io_end structure which are
2519  * neither logically nor physically contiguous. Although it may seem as an
2520  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2521  * case as we need to track IO to all buffers underlying a page in one io_end.
2522  */
2523 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2524 {
2525 	struct address_space *mapping = mpd->inode->i_mapping;
2526 	struct pagevec pvec;
2527 	unsigned int nr_pages;
2528 	long left = mpd->wbc->nr_to_write;
2529 	pgoff_t index = mpd->first_page;
2530 	pgoff_t end = mpd->last_page;
2531 	xa_mark_t tag;
2532 	int i, err = 0;
2533 	int blkbits = mpd->inode->i_blkbits;
2534 	ext4_lblk_t lblk;
2535 	struct buffer_head *head;
2536 
2537 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2538 		tag = PAGECACHE_TAG_TOWRITE;
2539 	else
2540 		tag = PAGECACHE_TAG_DIRTY;
2541 
2542 	pagevec_init(&pvec);
2543 	mpd->map.m_len = 0;
2544 	mpd->next_page = index;
2545 	while (index <= end) {
2546 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2547 				tag);
2548 		if (nr_pages == 0)
2549 			goto out;
2550 
2551 		for (i = 0; i < nr_pages; i++) {
2552 			struct page *page = pvec.pages[i];
2553 
2554 			/*
2555 			 * Accumulated enough dirty pages? This doesn't apply
2556 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2557 			 * keep going because someone may be concurrently
2558 			 * dirtying pages, and we might have synced a lot of
2559 			 * newly appeared dirty pages, but have not synced all
2560 			 * of the old dirty pages.
2561 			 */
2562 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2563 				goto out;
2564 
2565 			/* If we can't merge this page, we are done. */
2566 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2567 				goto out;
2568 
2569 			lock_page(page);
2570 			/*
2571 			 * If the page is no longer dirty, or its mapping no
2572 			 * longer corresponds to inode we are writing (which
2573 			 * means it has been truncated or invalidated), or the
2574 			 * page is already under writeback and we are not doing
2575 			 * a data integrity writeback, skip the page
2576 			 */
2577 			if (!PageDirty(page) ||
2578 			    (PageWriteback(page) &&
2579 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2580 			    unlikely(page->mapping != mapping)) {
2581 				unlock_page(page);
2582 				continue;
2583 			}
2584 
2585 			wait_on_page_writeback(page);
2586 			BUG_ON(PageWriteback(page));
2587 
2588 			if (mpd->map.m_len == 0)
2589 				mpd->first_page = page->index;
2590 			mpd->next_page = page->index + 1;
2591 			/* Add all dirty buffers to mpd */
2592 			lblk = ((ext4_lblk_t)page->index) <<
2593 				(PAGE_SHIFT - blkbits);
2594 			head = page_buffers(page);
2595 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2596 			if (err <= 0)
2597 				goto out;
2598 			err = 0;
2599 			left--;
2600 		}
2601 		pagevec_release(&pvec);
2602 		cond_resched();
2603 	}
2604 	return 0;
2605 out:
2606 	pagevec_release(&pvec);
2607 	return err;
2608 }
2609 
2610 static int ext4_writepages(struct address_space *mapping,
2611 			   struct writeback_control *wbc)
2612 {
2613 	pgoff_t	writeback_index = 0;
2614 	long nr_to_write = wbc->nr_to_write;
2615 	int range_whole = 0;
2616 	int cycled = 1;
2617 	handle_t *handle = NULL;
2618 	struct mpage_da_data mpd;
2619 	struct inode *inode = mapping->host;
2620 	int needed_blocks, rsv_blocks = 0, ret = 0;
2621 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2622 	bool done;
2623 	struct blk_plug plug;
2624 	bool give_up_on_write = false;
2625 
2626 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2627 		return -EIO;
2628 
2629 	percpu_down_read(&sbi->s_writepages_rwsem);
2630 	trace_ext4_writepages(inode, wbc);
2631 
2632 	/*
2633 	 * No pages to write? This is mainly a kludge to avoid starting
2634 	 * a transaction for special inodes like journal inode on last iput()
2635 	 * because that could violate lock ordering on umount
2636 	 */
2637 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2638 		goto out_writepages;
2639 
2640 	if (ext4_should_journal_data(inode)) {
2641 		ret = generic_writepages(mapping, wbc);
2642 		goto out_writepages;
2643 	}
2644 
2645 	/*
2646 	 * If the filesystem has aborted, it is read-only, so return
2647 	 * right away instead of dumping stack traces later on that
2648 	 * will obscure the real source of the problem.  We test
2649 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2650 	 * the latter could be true if the filesystem is mounted
2651 	 * read-only, and in that case, ext4_writepages should
2652 	 * *never* be called, so if that ever happens, we would want
2653 	 * the stack trace.
2654 	 */
2655 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2656 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2657 		ret = -EROFS;
2658 		goto out_writepages;
2659 	}
2660 
2661 	/*
2662 	 * If we have inline data and arrive here, it means that
2663 	 * we will soon create the block for the 1st page, so
2664 	 * we'd better clear the inline data here.
2665 	 */
2666 	if (ext4_has_inline_data(inode)) {
2667 		/* Just inode will be modified... */
2668 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2669 		if (IS_ERR(handle)) {
2670 			ret = PTR_ERR(handle);
2671 			goto out_writepages;
2672 		}
2673 		BUG_ON(ext4_test_inode_state(inode,
2674 				EXT4_STATE_MAY_INLINE_DATA));
2675 		ext4_destroy_inline_data(handle, inode);
2676 		ext4_journal_stop(handle);
2677 	}
2678 
2679 	if (ext4_should_dioread_nolock(inode)) {
2680 		/*
2681 		 * We may need to convert up to one extent per block in
2682 		 * the page and we may dirty the inode.
2683 		 */
2684 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2685 						PAGE_SIZE >> inode->i_blkbits);
2686 	}
2687 
2688 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2689 		range_whole = 1;
2690 
2691 	if (wbc->range_cyclic) {
2692 		writeback_index = mapping->writeback_index;
2693 		if (writeback_index)
2694 			cycled = 0;
2695 		mpd.first_page = writeback_index;
2696 		mpd.last_page = -1;
2697 	} else {
2698 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2699 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2700 	}
2701 
2702 	mpd.inode = inode;
2703 	mpd.wbc = wbc;
2704 	ext4_io_submit_init(&mpd.io_submit, wbc);
2705 retry:
2706 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2707 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2708 	done = false;
2709 	blk_start_plug(&plug);
2710 
2711 	/*
2712 	 * First writeback pages that don't need mapping - we can avoid
2713 	 * starting a transaction unnecessarily and also avoid being blocked
2714 	 * in the block layer on device congestion while having transaction
2715 	 * started.
2716 	 */
2717 	mpd.do_map = 0;
2718 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2719 	if (!mpd.io_submit.io_end) {
2720 		ret = -ENOMEM;
2721 		goto unplug;
2722 	}
2723 	ret = mpage_prepare_extent_to_map(&mpd);
2724 	/* Unlock pages we didn't use */
2725 	mpage_release_unused_pages(&mpd, false);
2726 	/* Submit prepared bio */
2727 	ext4_io_submit(&mpd.io_submit);
2728 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2729 	mpd.io_submit.io_end = NULL;
2730 	if (ret < 0)
2731 		goto unplug;
2732 
2733 	while (!done && mpd.first_page <= mpd.last_page) {
2734 		/* For each extent of pages we use new io_end */
2735 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2736 		if (!mpd.io_submit.io_end) {
2737 			ret = -ENOMEM;
2738 			break;
2739 		}
2740 
2741 		/*
2742 		 * We have two constraints: We find one extent to map and we
2743 		 * must always write out whole page (makes a difference when
2744 		 * blocksize < pagesize) so that we don't block on IO when we
2745 		 * try to write out the rest of the page. Journalled mode is
2746 		 * not supported by delalloc.
2747 		 */
2748 		BUG_ON(ext4_should_journal_data(inode));
2749 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2750 
2751 		/* start a new transaction */
2752 		handle = ext4_journal_start_with_reserve(inode,
2753 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2754 		if (IS_ERR(handle)) {
2755 			ret = PTR_ERR(handle);
2756 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2757 			       "%ld pages, ino %lu; err %d", __func__,
2758 				wbc->nr_to_write, inode->i_ino, ret);
2759 			/* Release allocated io_end */
2760 			ext4_put_io_end(mpd.io_submit.io_end);
2761 			mpd.io_submit.io_end = NULL;
2762 			break;
2763 		}
2764 		mpd.do_map = 1;
2765 
2766 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2767 		ret = mpage_prepare_extent_to_map(&mpd);
2768 		if (!ret) {
2769 			if (mpd.map.m_len)
2770 				ret = mpage_map_and_submit_extent(handle, &mpd,
2771 					&give_up_on_write);
2772 			else {
2773 				/*
2774 				 * We scanned the whole range (or exhausted
2775 				 * nr_to_write), submitted what was mapped and
2776 				 * didn't find anything needing mapping. We are
2777 				 * done.
2778 				 */
2779 				done = true;
2780 			}
2781 		}
2782 		/*
2783 		 * Caution: If the handle is synchronous,
2784 		 * ext4_journal_stop() can wait for transaction commit
2785 		 * to finish which may depend on writeback of pages to
2786 		 * complete or on page lock to be released.  In that
2787 		 * case, we have to wait until after after we have
2788 		 * submitted all the IO, released page locks we hold,
2789 		 * and dropped io_end reference (for extent conversion
2790 		 * to be able to complete) before stopping the handle.
2791 		 */
2792 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2793 			ext4_journal_stop(handle);
2794 			handle = NULL;
2795 			mpd.do_map = 0;
2796 		}
2797 		/* Unlock pages we didn't use */
2798 		mpage_release_unused_pages(&mpd, give_up_on_write);
2799 		/* Submit prepared bio */
2800 		ext4_io_submit(&mpd.io_submit);
2801 
2802 		/*
2803 		 * Drop our io_end reference we got from init. We have
2804 		 * to be careful and use deferred io_end finishing if
2805 		 * we are still holding the transaction as we can
2806 		 * release the last reference to io_end which may end
2807 		 * up doing unwritten extent conversion.
2808 		 */
2809 		if (handle) {
2810 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2811 			ext4_journal_stop(handle);
2812 		} else
2813 			ext4_put_io_end(mpd.io_submit.io_end);
2814 		mpd.io_submit.io_end = NULL;
2815 
2816 		if (ret == -ENOSPC && sbi->s_journal) {
2817 			/*
2818 			 * Commit the transaction which would
2819 			 * free blocks released in the transaction
2820 			 * and try again
2821 			 */
2822 			jbd2_journal_force_commit_nested(sbi->s_journal);
2823 			ret = 0;
2824 			continue;
2825 		}
2826 		/* Fatal error - ENOMEM, EIO... */
2827 		if (ret)
2828 			break;
2829 	}
2830 unplug:
2831 	blk_finish_plug(&plug);
2832 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2833 		cycled = 1;
2834 		mpd.last_page = writeback_index - 1;
2835 		mpd.first_page = 0;
2836 		goto retry;
2837 	}
2838 
2839 	/* Update index */
2840 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2841 		/*
2842 		 * Set the writeback_index so that range_cyclic
2843 		 * mode will write it back later
2844 		 */
2845 		mapping->writeback_index = mpd.first_page;
2846 
2847 out_writepages:
2848 	trace_ext4_writepages_result(inode, wbc, ret,
2849 				     nr_to_write - wbc->nr_to_write);
2850 	percpu_up_read(&sbi->s_writepages_rwsem);
2851 	return ret;
2852 }
2853 
2854 static int ext4_dax_writepages(struct address_space *mapping,
2855 			       struct writeback_control *wbc)
2856 {
2857 	int ret;
2858 	long nr_to_write = wbc->nr_to_write;
2859 	struct inode *inode = mapping->host;
2860 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2861 
2862 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2863 		return -EIO;
2864 
2865 	percpu_down_read(&sbi->s_writepages_rwsem);
2866 	trace_ext4_writepages(inode, wbc);
2867 
2868 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2869 	trace_ext4_writepages_result(inode, wbc, ret,
2870 				     nr_to_write - wbc->nr_to_write);
2871 	percpu_up_read(&sbi->s_writepages_rwsem);
2872 	return ret;
2873 }
2874 
2875 static int ext4_nonda_switch(struct super_block *sb)
2876 {
2877 	s64 free_clusters, dirty_clusters;
2878 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2879 
2880 	/*
2881 	 * switch to non delalloc mode if we are running low
2882 	 * on free block. The free block accounting via percpu
2883 	 * counters can get slightly wrong with percpu_counter_batch getting
2884 	 * accumulated on each CPU without updating global counters
2885 	 * Delalloc need an accurate free block accounting. So switch
2886 	 * to non delalloc when we are near to error range.
2887 	 */
2888 	free_clusters =
2889 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890 	dirty_clusters =
2891 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892 	/*
2893 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894 	 */
2895 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897 
2898 	if (2 * free_clusters < 3 * dirty_clusters ||
2899 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900 		/*
2901 		 * free block count is less than 150% of dirty blocks
2902 		 * or free blocks is less than watermark
2903 		 */
2904 		return 1;
2905 	}
2906 	return 0;
2907 }
2908 
2909 /* We always reserve for an inode update; the superblock could be there too */
2910 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2911 {
2912 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2913 		return 1;
2914 
2915 	if (pos + len <= 0x7fffffffULL)
2916 		return 1;
2917 
2918 	/* We might need to update the superblock to set LARGE_FILE */
2919 	return 2;
2920 }
2921 
2922 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2923 			       loff_t pos, unsigned len, unsigned flags,
2924 			       struct page **pagep, void **fsdata)
2925 {
2926 	int ret, retries = 0;
2927 	struct page *page;
2928 	pgoff_t index;
2929 	struct inode *inode = mapping->host;
2930 	handle_t *handle;
2931 
2932 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2933 		return -EIO;
2934 
2935 	index = pos >> PAGE_SHIFT;
2936 
2937 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2938 	    ext4_verity_in_progress(inode)) {
2939 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2940 		return ext4_write_begin(file, mapping, pos,
2941 					len, flags, pagep, fsdata);
2942 	}
2943 	*fsdata = (void *)0;
2944 	trace_ext4_da_write_begin(inode, pos, len, flags);
2945 
2946 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2947 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2948 						      pos, len, flags,
2949 						      pagep, fsdata);
2950 		if (ret < 0)
2951 			return ret;
2952 		if (ret == 1)
2953 			return 0;
2954 	}
2955 
2956 	/*
2957 	 * grab_cache_page_write_begin() can take a long time if the
2958 	 * system is thrashing due to memory pressure, or if the page
2959 	 * is being written back.  So grab it first before we start
2960 	 * the transaction handle.  This also allows us to allocate
2961 	 * the page (if needed) without using GFP_NOFS.
2962 	 */
2963 retry_grab:
2964 	page = grab_cache_page_write_begin(mapping, index, flags);
2965 	if (!page)
2966 		return -ENOMEM;
2967 	unlock_page(page);
2968 
2969 	/*
2970 	 * With delayed allocation, we don't log the i_disksize update
2971 	 * if there is delayed block allocation. But we still need
2972 	 * to journalling the i_disksize update if writes to the end
2973 	 * of file which has an already mapped buffer.
2974 	 */
2975 retry_journal:
2976 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2977 				ext4_da_write_credits(inode, pos, len));
2978 	if (IS_ERR(handle)) {
2979 		put_page(page);
2980 		return PTR_ERR(handle);
2981 	}
2982 
2983 	lock_page(page);
2984 	if (page->mapping != mapping) {
2985 		/* The page got truncated from under us */
2986 		unlock_page(page);
2987 		put_page(page);
2988 		ext4_journal_stop(handle);
2989 		goto retry_grab;
2990 	}
2991 	/* In case writeback began while the page was unlocked */
2992 	wait_for_stable_page(page);
2993 
2994 #ifdef CONFIG_FS_ENCRYPTION
2995 	ret = ext4_block_write_begin(page, pos, len,
2996 				     ext4_da_get_block_prep);
2997 #else
2998 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2999 #endif
3000 	if (ret < 0) {
3001 		unlock_page(page);
3002 		ext4_journal_stop(handle);
3003 		/*
3004 		 * block_write_begin may have instantiated a few blocks
3005 		 * outside i_size.  Trim these off again. Don't need
3006 		 * i_size_read because we hold i_mutex.
3007 		 */
3008 		if (pos + len > inode->i_size)
3009 			ext4_truncate_failed_write(inode);
3010 
3011 		if (ret == -ENOSPC &&
3012 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3013 			goto retry_journal;
3014 
3015 		put_page(page);
3016 		return ret;
3017 	}
3018 
3019 	*pagep = page;
3020 	return ret;
3021 }
3022 
3023 /*
3024  * Check if we should update i_disksize
3025  * when write to the end of file but not require block allocation
3026  */
3027 static int ext4_da_should_update_i_disksize(struct page *page,
3028 					    unsigned long offset)
3029 {
3030 	struct buffer_head *bh;
3031 	struct inode *inode = page->mapping->host;
3032 	unsigned int idx;
3033 	int i;
3034 
3035 	bh = page_buffers(page);
3036 	idx = offset >> inode->i_blkbits;
3037 
3038 	for (i = 0; i < idx; i++)
3039 		bh = bh->b_this_page;
3040 
3041 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3042 		return 0;
3043 	return 1;
3044 }
3045 
3046 static int ext4_da_write_end(struct file *file,
3047 			     struct address_space *mapping,
3048 			     loff_t pos, unsigned len, unsigned copied,
3049 			     struct page *page, void *fsdata)
3050 {
3051 	struct inode *inode = mapping->host;
3052 	int ret = 0, ret2;
3053 	handle_t *handle = ext4_journal_current_handle();
3054 	loff_t new_i_size;
3055 	unsigned long start, end;
3056 	int write_mode = (int)(unsigned long)fsdata;
3057 
3058 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3059 		return ext4_write_end(file, mapping, pos,
3060 				      len, copied, page, fsdata);
3061 
3062 	trace_ext4_da_write_end(inode, pos, len, copied);
3063 	start = pos & (PAGE_SIZE - 1);
3064 	end = start + copied - 1;
3065 
3066 	/*
3067 	 * generic_write_end() will run mark_inode_dirty() if i_size
3068 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3069 	 * into that.
3070 	 */
3071 	new_i_size = pos + copied;
3072 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3073 		if (ext4_has_inline_data(inode) ||
3074 		    ext4_da_should_update_i_disksize(page, end)) {
3075 			ext4_update_i_disksize(inode, new_i_size);
3076 			/* We need to mark inode dirty even if
3077 			 * new_i_size is less that inode->i_size
3078 			 * bu greater than i_disksize.(hint delalloc)
3079 			 */
3080 			ext4_mark_inode_dirty(handle, inode);
3081 		}
3082 	}
3083 
3084 	if (write_mode != CONVERT_INLINE_DATA &&
3085 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3086 	    ext4_has_inline_data(inode))
3087 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3088 						     page);
3089 	else
3090 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3091 							page, fsdata);
3092 
3093 	copied = ret2;
3094 	if (ret2 < 0)
3095 		ret = ret2;
3096 	ret2 = ext4_journal_stop(handle);
3097 	if (!ret)
3098 		ret = ret2;
3099 
3100 	return ret ? ret : copied;
3101 }
3102 
3103 /*
3104  * Force all delayed allocation blocks to be allocated for a given inode.
3105  */
3106 int ext4_alloc_da_blocks(struct inode *inode)
3107 {
3108 	trace_ext4_alloc_da_blocks(inode);
3109 
3110 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3111 		return 0;
3112 
3113 	/*
3114 	 * We do something simple for now.  The filemap_flush() will
3115 	 * also start triggering a write of the data blocks, which is
3116 	 * not strictly speaking necessary (and for users of
3117 	 * laptop_mode, not even desirable).  However, to do otherwise
3118 	 * would require replicating code paths in:
3119 	 *
3120 	 * ext4_writepages() ->
3121 	 *    write_cache_pages() ---> (via passed in callback function)
3122 	 *        __mpage_da_writepage() -->
3123 	 *           mpage_add_bh_to_extent()
3124 	 *           mpage_da_map_blocks()
3125 	 *
3126 	 * The problem is that write_cache_pages(), located in
3127 	 * mm/page-writeback.c, marks pages clean in preparation for
3128 	 * doing I/O, which is not desirable if we're not planning on
3129 	 * doing I/O at all.
3130 	 *
3131 	 * We could call write_cache_pages(), and then redirty all of
3132 	 * the pages by calling redirty_page_for_writepage() but that
3133 	 * would be ugly in the extreme.  So instead we would need to
3134 	 * replicate parts of the code in the above functions,
3135 	 * simplifying them because we wouldn't actually intend to
3136 	 * write out the pages, but rather only collect contiguous
3137 	 * logical block extents, call the multi-block allocator, and
3138 	 * then update the buffer heads with the block allocations.
3139 	 *
3140 	 * For now, though, we'll cheat by calling filemap_flush(),
3141 	 * which will map the blocks, and start the I/O, but not
3142 	 * actually wait for the I/O to complete.
3143 	 */
3144 	return filemap_flush(inode->i_mapping);
3145 }
3146 
3147 /*
3148  * bmap() is special.  It gets used by applications such as lilo and by
3149  * the swapper to find the on-disk block of a specific piece of data.
3150  *
3151  * Naturally, this is dangerous if the block concerned is still in the
3152  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3153  * filesystem and enables swap, then they may get a nasty shock when the
3154  * data getting swapped to that swapfile suddenly gets overwritten by
3155  * the original zero's written out previously to the journal and
3156  * awaiting writeback in the kernel's buffer cache.
3157  *
3158  * So, if we see any bmap calls here on a modified, data-journaled file,
3159  * take extra steps to flush any blocks which might be in the cache.
3160  */
3161 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3162 {
3163 	struct inode *inode = mapping->host;
3164 	journal_t *journal;
3165 	int err;
3166 
3167 	/*
3168 	 * We can get here for an inline file via the FIBMAP ioctl
3169 	 */
3170 	if (ext4_has_inline_data(inode))
3171 		return 0;
3172 
3173 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3174 			test_opt(inode->i_sb, DELALLOC)) {
3175 		/*
3176 		 * With delalloc we want to sync the file
3177 		 * so that we can make sure we allocate
3178 		 * blocks for file
3179 		 */
3180 		filemap_write_and_wait(mapping);
3181 	}
3182 
3183 	if (EXT4_JOURNAL(inode) &&
3184 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3185 		/*
3186 		 * This is a REALLY heavyweight approach, but the use of
3187 		 * bmap on dirty files is expected to be extremely rare:
3188 		 * only if we run lilo or swapon on a freshly made file
3189 		 * do we expect this to happen.
3190 		 *
3191 		 * (bmap requires CAP_SYS_RAWIO so this does not
3192 		 * represent an unprivileged user DOS attack --- we'd be
3193 		 * in trouble if mortal users could trigger this path at
3194 		 * will.)
3195 		 *
3196 		 * NB. EXT4_STATE_JDATA is not set on files other than
3197 		 * regular files.  If somebody wants to bmap a directory
3198 		 * or symlink and gets confused because the buffer
3199 		 * hasn't yet been flushed to disk, they deserve
3200 		 * everything they get.
3201 		 */
3202 
3203 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3204 		journal = EXT4_JOURNAL(inode);
3205 		jbd2_journal_lock_updates(journal);
3206 		err = jbd2_journal_flush(journal);
3207 		jbd2_journal_unlock_updates(journal);
3208 
3209 		if (err)
3210 			return 0;
3211 	}
3212 
3213 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3214 }
3215 
3216 static int ext4_readpage(struct file *file, struct page *page)
3217 {
3218 	int ret = -EAGAIN;
3219 	struct inode *inode = page->mapping->host;
3220 
3221 	trace_ext4_readpage(page);
3222 
3223 	if (ext4_has_inline_data(inode))
3224 		ret = ext4_readpage_inline(inode, page);
3225 
3226 	if (ret == -EAGAIN)
3227 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3228 						false);
3229 
3230 	return ret;
3231 }
3232 
3233 static int
3234 ext4_readpages(struct file *file, struct address_space *mapping,
3235 		struct list_head *pages, unsigned nr_pages)
3236 {
3237 	struct inode *inode = mapping->host;
3238 
3239 	/* If the file has inline data, no need to do readpages. */
3240 	if (ext4_has_inline_data(inode))
3241 		return 0;
3242 
3243 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3244 }
3245 
3246 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3247 				unsigned int length)
3248 {
3249 	trace_ext4_invalidatepage(page, offset, length);
3250 
3251 	/* No journalling happens on data buffers when this function is used */
3252 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3253 
3254 	block_invalidatepage(page, offset, length);
3255 }
3256 
3257 static int __ext4_journalled_invalidatepage(struct page *page,
3258 					    unsigned int offset,
3259 					    unsigned int length)
3260 {
3261 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3262 
3263 	trace_ext4_journalled_invalidatepage(page, offset, length);
3264 
3265 	/*
3266 	 * If it's a full truncate we just forget about the pending dirtying
3267 	 */
3268 	if (offset == 0 && length == PAGE_SIZE)
3269 		ClearPageChecked(page);
3270 
3271 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3272 }
3273 
3274 /* Wrapper for aops... */
3275 static void ext4_journalled_invalidatepage(struct page *page,
3276 					   unsigned int offset,
3277 					   unsigned int length)
3278 {
3279 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3280 }
3281 
3282 static int ext4_releasepage(struct page *page, gfp_t wait)
3283 {
3284 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3285 
3286 	trace_ext4_releasepage(page);
3287 
3288 	/* Page has dirty journalled data -> cannot release */
3289 	if (PageChecked(page))
3290 		return 0;
3291 	if (journal)
3292 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3293 	else
3294 		return try_to_free_buffers(page);
3295 }
3296 
3297 static bool ext4_inode_datasync_dirty(struct inode *inode)
3298 {
3299 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3300 
3301 	if (journal)
3302 		return !jbd2_transaction_committed(journal,
3303 					EXT4_I(inode)->i_datasync_tid);
3304 	/* Any metadata buffers to write? */
3305 	if (!list_empty(&inode->i_mapping->private_list))
3306 		return true;
3307 	return inode->i_state & I_DIRTY_DATASYNC;
3308 }
3309 
3310 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3311 			   struct ext4_map_blocks *map, loff_t offset,
3312 			   loff_t length)
3313 {
3314 	u8 blkbits = inode->i_blkbits;
3315 
3316 	/*
3317 	 * Writes that span EOF might trigger an I/O size update on completion,
3318 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3319 	 * there is no other metadata changes being made or are pending.
3320 	 */
3321 	iomap->flags = 0;
3322 	if (ext4_inode_datasync_dirty(inode) ||
3323 	    offset + length > i_size_read(inode))
3324 		iomap->flags |= IOMAP_F_DIRTY;
3325 
3326 	if (map->m_flags & EXT4_MAP_NEW)
3327 		iomap->flags |= IOMAP_F_NEW;
3328 
3329 	iomap->bdev = inode->i_sb->s_bdev;
3330 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3331 	iomap->offset = (u64) map->m_lblk << blkbits;
3332 	iomap->length = (u64) map->m_len << blkbits;
3333 
3334 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3335 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3336 		iomap->flags |= IOMAP_F_MERGED;
3337 
3338 	/*
3339 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3340 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3341 	 * set. In order for any allocated unwritten extents to be converted
3342 	 * into written extents correctly within the ->end_io() handler, we
3343 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3344 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3345 	 * been set first.
3346 	 */
3347 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3348 		iomap->type = IOMAP_UNWRITTEN;
3349 		iomap->addr = (u64) map->m_pblk << blkbits;
3350 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3351 		iomap->type = IOMAP_MAPPED;
3352 		iomap->addr = (u64) map->m_pblk << blkbits;
3353 	} else {
3354 		iomap->type = IOMAP_HOLE;
3355 		iomap->addr = IOMAP_NULL_ADDR;
3356 	}
3357 }
3358 
3359 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3360 			    unsigned int flags)
3361 {
3362 	handle_t *handle;
3363 	u8 blkbits = inode->i_blkbits;
3364 	int ret, dio_credits, m_flags = 0, retries = 0;
3365 
3366 	/*
3367 	 * Trim the mapping request to the maximum value that we can map at
3368 	 * once for direct I/O.
3369 	 */
3370 	if (map->m_len > DIO_MAX_BLOCKS)
3371 		map->m_len = DIO_MAX_BLOCKS;
3372 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3373 
3374 retry:
3375 	/*
3376 	 * Either we allocate blocks and then don't get an unwritten extent, so
3377 	 * in that case we have reserved enough credits. Or, the blocks are
3378 	 * already allocated and unwritten. In that case, the extent conversion
3379 	 * fits into the credits as well.
3380 	 */
3381 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3382 	if (IS_ERR(handle))
3383 		return PTR_ERR(handle);
3384 
3385 	/*
3386 	 * DAX and direct I/O are the only two operations that are currently
3387 	 * supported with IOMAP_WRITE.
3388 	 */
3389 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3390 	if (IS_DAX(inode))
3391 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3392 	/*
3393 	 * We use i_size instead of i_disksize here because delalloc writeback
3394 	 * can complete at any point during the I/O and subsequently push the
3395 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3396 	 * happening and thus expose allocated blocks to direct I/O reads.
3397 	 */
3398 	else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3399 		m_flags = EXT4_GET_BLOCKS_CREATE;
3400 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3401 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3402 
3403 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3404 
3405 	/*
3406 	 * We cannot fill holes in indirect tree based inodes as that could
3407 	 * expose stale data in the case of a crash. Use the magic error code
3408 	 * to fallback to buffered I/O.
3409 	 */
3410 	if (!m_flags && !ret)
3411 		ret = -ENOTBLK;
3412 
3413 	ext4_journal_stop(handle);
3414 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3415 		goto retry;
3416 
3417 	return ret;
3418 }
3419 
3420 
3421 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3422 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3423 {
3424 	int ret;
3425 	struct ext4_map_blocks map;
3426 	u8 blkbits = inode->i_blkbits;
3427 
3428 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3429 		return -EINVAL;
3430 
3431 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3432 		return -ERANGE;
3433 
3434 	/*
3435 	 * Calculate the first and last logical blocks respectively.
3436 	 */
3437 	map.m_lblk = offset >> blkbits;
3438 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3439 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3440 
3441 	if (flags & IOMAP_WRITE)
3442 		ret = ext4_iomap_alloc(inode, &map, flags);
3443 	else
3444 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3445 
3446 	if (ret < 0)
3447 		return ret;
3448 
3449 	ext4_set_iomap(inode, iomap, &map, offset, length);
3450 
3451 	return 0;
3452 }
3453 
3454 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3455 		loff_t length, unsigned flags, struct iomap *iomap,
3456 		struct iomap *srcmap)
3457 {
3458 	int ret;
3459 
3460 	/*
3461 	 * Even for writes we don't need to allocate blocks, so just pretend
3462 	 * we are reading to save overhead of starting a transaction.
3463 	 */
3464 	flags &= ~IOMAP_WRITE;
3465 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3466 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3467 	return ret;
3468 }
3469 
3470 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3471 			  ssize_t written, unsigned flags, struct iomap *iomap)
3472 {
3473 	/*
3474 	 * Check to see whether an error occurred while writing out the data to
3475 	 * the allocated blocks. If so, return the magic error code so that we
3476 	 * fallback to buffered I/O and attempt to complete the remainder of
3477 	 * the I/O. Any blocks that may have been allocated in preparation for
3478 	 * the direct I/O will be reused during buffered I/O.
3479 	 */
3480 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3481 		return -ENOTBLK;
3482 
3483 	return 0;
3484 }
3485 
3486 const struct iomap_ops ext4_iomap_ops = {
3487 	.iomap_begin		= ext4_iomap_begin,
3488 	.iomap_end		= ext4_iomap_end,
3489 };
3490 
3491 const struct iomap_ops ext4_iomap_overwrite_ops = {
3492 	.iomap_begin		= ext4_iomap_overwrite_begin,
3493 	.iomap_end		= ext4_iomap_end,
3494 };
3495 
3496 static bool ext4_iomap_is_delalloc(struct inode *inode,
3497 				   struct ext4_map_blocks *map)
3498 {
3499 	struct extent_status es;
3500 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3501 
3502 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3503 				  map->m_lblk, end, &es);
3504 
3505 	if (!es.es_len || es.es_lblk > end)
3506 		return false;
3507 
3508 	if (es.es_lblk > map->m_lblk) {
3509 		map->m_len = es.es_lblk - map->m_lblk;
3510 		return false;
3511 	}
3512 
3513 	offset = map->m_lblk - es.es_lblk;
3514 	map->m_len = es.es_len - offset;
3515 
3516 	return true;
3517 }
3518 
3519 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3520 				   loff_t length, unsigned int flags,
3521 				   struct iomap *iomap, struct iomap *srcmap)
3522 {
3523 	int ret;
3524 	bool delalloc = false;
3525 	struct ext4_map_blocks map;
3526 	u8 blkbits = inode->i_blkbits;
3527 
3528 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3529 		return -EINVAL;
3530 
3531 	if (ext4_has_inline_data(inode)) {
3532 		ret = ext4_inline_data_iomap(inode, iomap);
3533 		if (ret != -EAGAIN) {
3534 			if (ret == 0 && offset >= iomap->length)
3535 				ret = -ENOENT;
3536 			return ret;
3537 		}
3538 	}
3539 
3540 	/*
3541 	 * Calculate the first and last logical block respectively.
3542 	 */
3543 	map.m_lblk = offset >> blkbits;
3544 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3545 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3546 
3547 	/*
3548 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3549 	 * So handle it here itself instead of querying ext4_map_blocks().
3550 	 * Since ext4_map_blocks() will warn about it and will return
3551 	 * -EIO error.
3552 	 */
3553 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3554 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3555 
3556 		if (offset >= sbi->s_bitmap_maxbytes) {
3557 			map.m_flags = 0;
3558 			goto set_iomap;
3559 		}
3560 	}
3561 
3562 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3563 	if (ret < 0)
3564 		return ret;
3565 	if (ret == 0)
3566 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3567 
3568 set_iomap:
3569 	ext4_set_iomap(inode, iomap, &map, offset, length);
3570 	if (delalloc && iomap->type == IOMAP_HOLE)
3571 		iomap->type = IOMAP_DELALLOC;
3572 
3573 	return 0;
3574 }
3575 
3576 const struct iomap_ops ext4_iomap_report_ops = {
3577 	.iomap_begin = ext4_iomap_begin_report,
3578 };
3579 
3580 /*
3581  * Pages can be marked dirty completely asynchronously from ext4's journalling
3582  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3583  * much here because ->set_page_dirty is called under VFS locks.  The page is
3584  * not necessarily locked.
3585  *
3586  * We cannot just dirty the page and leave attached buffers clean, because the
3587  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3588  * or jbddirty because all the journalling code will explode.
3589  *
3590  * So what we do is to mark the page "pending dirty" and next time writepage
3591  * is called, propagate that into the buffers appropriately.
3592  */
3593 static int ext4_journalled_set_page_dirty(struct page *page)
3594 {
3595 	SetPageChecked(page);
3596 	return __set_page_dirty_nobuffers(page);
3597 }
3598 
3599 static int ext4_set_page_dirty(struct page *page)
3600 {
3601 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3602 	WARN_ON_ONCE(!page_has_buffers(page));
3603 	return __set_page_dirty_buffers(page);
3604 }
3605 
3606 static const struct address_space_operations ext4_aops = {
3607 	.readpage		= ext4_readpage,
3608 	.readpages		= ext4_readpages,
3609 	.writepage		= ext4_writepage,
3610 	.writepages		= ext4_writepages,
3611 	.write_begin		= ext4_write_begin,
3612 	.write_end		= ext4_write_end,
3613 	.set_page_dirty		= ext4_set_page_dirty,
3614 	.bmap			= ext4_bmap,
3615 	.invalidatepage		= ext4_invalidatepage,
3616 	.releasepage		= ext4_releasepage,
3617 	.direct_IO		= noop_direct_IO,
3618 	.migratepage		= buffer_migrate_page,
3619 	.is_partially_uptodate  = block_is_partially_uptodate,
3620 	.error_remove_page	= generic_error_remove_page,
3621 };
3622 
3623 static const struct address_space_operations ext4_journalled_aops = {
3624 	.readpage		= ext4_readpage,
3625 	.readpages		= ext4_readpages,
3626 	.writepage		= ext4_writepage,
3627 	.writepages		= ext4_writepages,
3628 	.write_begin		= ext4_write_begin,
3629 	.write_end		= ext4_journalled_write_end,
3630 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3631 	.bmap			= ext4_bmap,
3632 	.invalidatepage		= ext4_journalled_invalidatepage,
3633 	.releasepage		= ext4_releasepage,
3634 	.direct_IO		= noop_direct_IO,
3635 	.is_partially_uptodate  = block_is_partially_uptodate,
3636 	.error_remove_page	= generic_error_remove_page,
3637 };
3638 
3639 static const struct address_space_operations ext4_da_aops = {
3640 	.readpage		= ext4_readpage,
3641 	.readpages		= ext4_readpages,
3642 	.writepage		= ext4_writepage,
3643 	.writepages		= ext4_writepages,
3644 	.write_begin		= ext4_da_write_begin,
3645 	.write_end		= ext4_da_write_end,
3646 	.set_page_dirty		= ext4_set_page_dirty,
3647 	.bmap			= ext4_bmap,
3648 	.invalidatepage		= ext4_invalidatepage,
3649 	.releasepage		= ext4_releasepage,
3650 	.direct_IO		= noop_direct_IO,
3651 	.migratepage		= buffer_migrate_page,
3652 	.is_partially_uptodate  = block_is_partially_uptodate,
3653 	.error_remove_page	= generic_error_remove_page,
3654 };
3655 
3656 static const struct address_space_operations ext4_dax_aops = {
3657 	.writepages		= ext4_dax_writepages,
3658 	.direct_IO		= noop_direct_IO,
3659 	.set_page_dirty		= noop_set_page_dirty,
3660 	.bmap			= ext4_bmap,
3661 	.invalidatepage		= noop_invalidatepage,
3662 };
3663 
3664 void ext4_set_aops(struct inode *inode)
3665 {
3666 	switch (ext4_inode_journal_mode(inode)) {
3667 	case EXT4_INODE_ORDERED_DATA_MODE:
3668 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3669 		break;
3670 	case EXT4_INODE_JOURNAL_DATA_MODE:
3671 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3672 		return;
3673 	default:
3674 		BUG();
3675 	}
3676 	if (IS_DAX(inode))
3677 		inode->i_mapping->a_ops = &ext4_dax_aops;
3678 	else if (test_opt(inode->i_sb, DELALLOC))
3679 		inode->i_mapping->a_ops = &ext4_da_aops;
3680 	else
3681 		inode->i_mapping->a_ops = &ext4_aops;
3682 }
3683 
3684 static int __ext4_block_zero_page_range(handle_t *handle,
3685 		struct address_space *mapping, loff_t from, loff_t length)
3686 {
3687 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3688 	unsigned offset = from & (PAGE_SIZE-1);
3689 	unsigned blocksize, pos;
3690 	ext4_lblk_t iblock;
3691 	struct inode *inode = mapping->host;
3692 	struct buffer_head *bh;
3693 	struct page *page;
3694 	int err = 0;
3695 
3696 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3697 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3698 	if (!page)
3699 		return -ENOMEM;
3700 
3701 	blocksize = inode->i_sb->s_blocksize;
3702 
3703 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3704 
3705 	if (!page_has_buffers(page))
3706 		create_empty_buffers(page, blocksize, 0);
3707 
3708 	/* Find the buffer that contains "offset" */
3709 	bh = page_buffers(page);
3710 	pos = blocksize;
3711 	while (offset >= pos) {
3712 		bh = bh->b_this_page;
3713 		iblock++;
3714 		pos += blocksize;
3715 	}
3716 	if (buffer_freed(bh)) {
3717 		BUFFER_TRACE(bh, "freed: skip");
3718 		goto unlock;
3719 	}
3720 	if (!buffer_mapped(bh)) {
3721 		BUFFER_TRACE(bh, "unmapped");
3722 		ext4_get_block(inode, iblock, bh, 0);
3723 		/* unmapped? It's a hole - nothing to do */
3724 		if (!buffer_mapped(bh)) {
3725 			BUFFER_TRACE(bh, "still unmapped");
3726 			goto unlock;
3727 		}
3728 	}
3729 
3730 	/* Ok, it's mapped. Make sure it's up-to-date */
3731 	if (PageUptodate(page))
3732 		set_buffer_uptodate(bh);
3733 
3734 	if (!buffer_uptodate(bh)) {
3735 		err = -EIO;
3736 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3737 		wait_on_buffer(bh);
3738 		/* Uhhuh. Read error. Complain and punt. */
3739 		if (!buffer_uptodate(bh))
3740 			goto unlock;
3741 		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3742 			/* We expect the key to be set. */
3743 			BUG_ON(!fscrypt_has_encryption_key(inode));
3744 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3745 							       bh_offset(bh));
3746 			if (err) {
3747 				clear_buffer_uptodate(bh);
3748 				goto unlock;
3749 			}
3750 		}
3751 	}
3752 	if (ext4_should_journal_data(inode)) {
3753 		BUFFER_TRACE(bh, "get write access");
3754 		err = ext4_journal_get_write_access(handle, bh);
3755 		if (err)
3756 			goto unlock;
3757 	}
3758 	zero_user(page, offset, length);
3759 	BUFFER_TRACE(bh, "zeroed end of block");
3760 
3761 	if (ext4_should_journal_data(inode)) {
3762 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3763 	} else {
3764 		err = 0;
3765 		mark_buffer_dirty(bh);
3766 		if (ext4_should_order_data(inode))
3767 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3768 					length);
3769 	}
3770 
3771 unlock:
3772 	unlock_page(page);
3773 	put_page(page);
3774 	return err;
3775 }
3776 
3777 /*
3778  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3779  * starting from file offset 'from'.  The range to be zero'd must
3780  * be contained with in one block.  If the specified range exceeds
3781  * the end of the block it will be shortened to end of the block
3782  * that cooresponds to 'from'
3783  */
3784 static int ext4_block_zero_page_range(handle_t *handle,
3785 		struct address_space *mapping, loff_t from, loff_t length)
3786 {
3787 	struct inode *inode = mapping->host;
3788 	unsigned offset = from & (PAGE_SIZE-1);
3789 	unsigned blocksize = inode->i_sb->s_blocksize;
3790 	unsigned max = blocksize - (offset & (blocksize - 1));
3791 
3792 	/*
3793 	 * correct length if it does not fall between
3794 	 * 'from' and the end of the block
3795 	 */
3796 	if (length > max || length < 0)
3797 		length = max;
3798 
3799 	if (IS_DAX(inode)) {
3800 		return iomap_zero_range(inode, from, length, NULL,
3801 					&ext4_iomap_ops);
3802 	}
3803 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3804 }
3805 
3806 /*
3807  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3808  * up to the end of the block which corresponds to `from'.
3809  * This required during truncate. We need to physically zero the tail end
3810  * of that block so it doesn't yield old data if the file is later grown.
3811  */
3812 static int ext4_block_truncate_page(handle_t *handle,
3813 		struct address_space *mapping, loff_t from)
3814 {
3815 	unsigned offset = from & (PAGE_SIZE-1);
3816 	unsigned length;
3817 	unsigned blocksize;
3818 	struct inode *inode = mapping->host;
3819 
3820 	/* If we are processing an encrypted inode during orphan list handling */
3821 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3822 		return 0;
3823 
3824 	blocksize = inode->i_sb->s_blocksize;
3825 	length = blocksize - (offset & (blocksize - 1));
3826 
3827 	return ext4_block_zero_page_range(handle, mapping, from, length);
3828 }
3829 
3830 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3831 			     loff_t lstart, loff_t length)
3832 {
3833 	struct super_block *sb = inode->i_sb;
3834 	struct address_space *mapping = inode->i_mapping;
3835 	unsigned partial_start, partial_end;
3836 	ext4_fsblk_t start, end;
3837 	loff_t byte_end = (lstart + length - 1);
3838 	int err = 0;
3839 
3840 	partial_start = lstart & (sb->s_blocksize - 1);
3841 	partial_end = byte_end & (sb->s_blocksize - 1);
3842 
3843 	start = lstart >> sb->s_blocksize_bits;
3844 	end = byte_end >> sb->s_blocksize_bits;
3845 
3846 	/* Handle partial zero within the single block */
3847 	if (start == end &&
3848 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3849 		err = ext4_block_zero_page_range(handle, mapping,
3850 						 lstart, length);
3851 		return err;
3852 	}
3853 	/* Handle partial zero out on the start of the range */
3854 	if (partial_start) {
3855 		err = ext4_block_zero_page_range(handle, mapping,
3856 						 lstart, sb->s_blocksize);
3857 		if (err)
3858 			return err;
3859 	}
3860 	/* Handle partial zero out on the end of the range */
3861 	if (partial_end != sb->s_blocksize - 1)
3862 		err = ext4_block_zero_page_range(handle, mapping,
3863 						 byte_end - partial_end,
3864 						 partial_end + 1);
3865 	return err;
3866 }
3867 
3868 int ext4_can_truncate(struct inode *inode)
3869 {
3870 	if (S_ISREG(inode->i_mode))
3871 		return 1;
3872 	if (S_ISDIR(inode->i_mode))
3873 		return 1;
3874 	if (S_ISLNK(inode->i_mode))
3875 		return !ext4_inode_is_fast_symlink(inode);
3876 	return 0;
3877 }
3878 
3879 /*
3880  * We have to make sure i_disksize gets properly updated before we truncate
3881  * page cache due to hole punching or zero range. Otherwise i_disksize update
3882  * can get lost as it may have been postponed to submission of writeback but
3883  * that will never happen after we truncate page cache.
3884  */
3885 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3886 				      loff_t len)
3887 {
3888 	handle_t *handle;
3889 	loff_t size = i_size_read(inode);
3890 
3891 	WARN_ON(!inode_is_locked(inode));
3892 	if (offset > size || offset + len < size)
3893 		return 0;
3894 
3895 	if (EXT4_I(inode)->i_disksize >= size)
3896 		return 0;
3897 
3898 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3899 	if (IS_ERR(handle))
3900 		return PTR_ERR(handle);
3901 	ext4_update_i_disksize(inode, size);
3902 	ext4_mark_inode_dirty(handle, inode);
3903 	ext4_journal_stop(handle);
3904 
3905 	return 0;
3906 }
3907 
3908 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3909 {
3910 	up_write(&ei->i_mmap_sem);
3911 	schedule();
3912 	down_write(&ei->i_mmap_sem);
3913 }
3914 
3915 int ext4_break_layouts(struct inode *inode)
3916 {
3917 	struct ext4_inode_info *ei = EXT4_I(inode);
3918 	struct page *page;
3919 	int error;
3920 
3921 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3922 		return -EINVAL;
3923 
3924 	do {
3925 		page = dax_layout_busy_page(inode->i_mapping);
3926 		if (!page)
3927 			return 0;
3928 
3929 		error = ___wait_var_event(&page->_refcount,
3930 				atomic_read(&page->_refcount) == 1,
3931 				TASK_INTERRUPTIBLE, 0, 0,
3932 				ext4_wait_dax_page(ei));
3933 	} while (error == 0);
3934 
3935 	return error;
3936 }
3937 
3938 /*
3939  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3940  * associated with the given offset and length
3941  *
3942  * @inode:  File inode
3943  * @offset: The offset where the hole will begin
3944  * @len:    The length of the hole
3945  *
3946  * Returns: 0 on success or negative on failure
3947  */
3948 
3949 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3950 {
3951 	struct super_block *sb = inode->i_sb;
3952 	ext4_lblk_t first_block, stop_block;
3953 	struct address_space *mapping = inode->i_mapping;
3954 	loff_t first_block_offset, last_block_offset;
3955 	handle_t *handle;
3956 	unsigned int credits;
3957 	int ret = 0;
3958 
3959 	trace_ext4_punch_hole(inode, offset, length, 0);
3960 
3961 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3962 	if (ext4_has_inline_data(inode)) {
3963 		down_write(&EXT4_I(inode)->i_mmap_sem);
3964 		ret = ext4_convert_inline_data(inode);
3965 		up_write(&EXT4_I(inode)->i_mmap_sem);
3966 		if (ret)
3967 			return ret;
3968 	}
3969 
3970 	/*
3971 	 * Write out all dirty pages to avoid race conditions
3972 	 * Then release them.
3973 	 */
3974 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3975 		ret = filemap_write_and_wait_range(mapping, offset,
3976 						   offset + length - 1);
3977 		if (ret)
3978 			return ret;
3979 	}
3980 
3981 	inode_lock(inode);
3982 
3983 	/* No need to punch hole beyond i_size */
3984 	if (offset >= inode->i_size)
3985 		goto out_mutex;
3986 
3987 	/*
3988 	 * If the hole extends beyond i_size, set the hole
3989 	 * to end after the page that contains i_size
3990 	 */
3991 	if (offset + length > inode->i_size) {
3992 		length = inode->i_size +
3993 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3994 		   offset;
3995 	}
3996 
3997 	if (offset & (sb->s_blocksize - 1) ||
3998 	    (offset + length) & (sb->s_blocksize - 1)) {
3999 		/*
4000 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4001 		 * partial block
4002 		 */
4003 		ret = ext4_inode_attach_jinode(inode);
4004 		if (ret < 0)
4005 			goto out_mutex;
4006 
4007 	}
4008 
4009 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4010 	inode_dio_wait(inode);
4011 
4012 	/*
4013 	 * Prevent page faults from reinstantiating pages we have released from
4014 	 * page cache.
4015 	 */
4016 	down_write(&EXT4_I(inode)->i_mmap_sem);
4017 
4018 	ret = ext4_break_layouts(inode);
4019 	if (ret)
4020 		goto out_dio;
4021 
4022 	first_block_offset = round_up(offset, sb->s_blocksize);
4023 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4024 
4025 	/* Now release the pages and zero block aligned part of pages*/
4026 	if (last_block_offset > first_block_offset) {
4027 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4028 		if (ret)
4029 			goto out_dio;
4030 		truncate_pagecache_range(inode, first_block_offset,
4031 					 last_block_offset);
4032 	}
4033 
4034 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035 		credits = ext4_writepage_trans_blocks(inode);
4036 	else
4037 		credits = ext4_blocks_for_truncate(inode);
4038 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4039 	if (IS_ERR(handle)) {
4040 		ret = PTR_ERR(handle);
4041 		ext4_std_error(sb, ret);
4042 		goto out_dio;
4043 	}
4044 
4045 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4046 				       length);
4047 	if (ret)
4048 		goto out_stop;
4049 
4050 	first_block = (offset + sb->s_blocksize - 1) >>
4051 		EXT4_BLOCK_SIZE_BITS(sb);
4052 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4053 
4054 	/* If there are blocks to remove, do it */
4055 	if (stop_block > first_block) {
4056 
4057 		down_write(&EXT4_I(inode)->i_data_sem);
4058 		ext4_discard_preallocations(inode);
4059 
4060 		ret = ext4_es_remove_extent(inode, first_block,
4061 					    stop_block - first_block);
4062 		if (ret) {
4063 			up_write(&EXT4_I(inode)->i_data_sem);
4064 			goto out_stop;
4065 		}
4066 
4067 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4068 			ret = ext4_ext_remove_space(inode, first_block,
4069 						    stop_block - 1);
4070 		else
4071 			ret = ext4_ind_remove_space(handle, inode, first_block,
4072 						    stop_block);
4073 
4074 		up_write(&EXT4_I(inode)->i_data_sem);
4075 	}
4076 	if (IS_SYNC(inode))
4077 		ext4_handle_sync(handle);
4078 
4079 	inode->i_mtime = inode->i_ctime = current_time(inode);
4080 	ext4_mark_inode_dirty(handle, inode);
4081 	if (ret >= 0)
4082 		ext4_update_inode_fsync_trans(handle, inode, 1);
4083 out_stop:
4084 	ext4_journal_stop(handle);
4085 out_dio:
4086 	up_write(&EXT4_I(inode)->i_mmap_sem);
4087 out_mutex:
4088 	inode_unlock(inode);
4089 	return ret;
4090 }
4091 
4092 int ext4_inode_attach_jinode(struct inode *inode)
4093 {
4094 	struct ext4_inode_info *ei = EXT4_I(inode);
4095 	struct jbd2_inode *jinode;
4096 
4097 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4098 		return 0;
4099 
4100 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4101 	spin_lock(&inode->i_lock);
4102 	if (!ei->jinode) {
4103 		if (!jinode) {
4104 			spin_unlock(&inode->i_lock);
4105 			return -ENOMEM;
4106 		}
4107 		ei->jinode = jinode;
4108 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4109 		jinode = NULL;
4110 	}
4111 	spin_unlock(&inode->i_lock);
4112 	if (unlikely(jinode != NULL))
4113 		jbd2_free_inode(jinode);
4114 	return 0;
4115 }
4116 
4117 /*
4118  * ext4_truncate()
4119  *
4120  * We block out ext4_get_block() block instantiations across the entire
4121  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4122  * simultaneously on behalf of the same inode.
4123  *
4124  * As we work through the truncate and commit bits of it to the journal there
4125  * is one core, guiding principle: the file's tree must always be consistent on
4126  * disk.  We must be able to restart the truncate after a crash.
4127  *
4128  * The file's tree may be transiently inconsistent in memory (although it
4129  * probably isn't), but whenever we close off and commit a journal transaction,
4130  * the contents of (the filesystem + the journal) must be consistent and
4131  * restartable.  It's pretty simple, really: bottom up, right to left (although
4132  * left-to-right works OK too).
4133  *
4134  * Note that at recovery time, journal replay occurs *before* the restart of
4135  * truncate against the orphan inode list.
4136  *
4137  * The committed inode has the new, desired i_size (which is the same as
4138  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4139  * that this inode's truncate did not complete and it will again call
4140  * ext4_truncate() to have another go.  So there will be instantiated blocks
4141  * to the right of the truncation point in a crashed ext4 filesystem.  But
4142  * that's fine - as long as they are linked from the inode, the post-crash
4143  * ext4_truncate() run will find them and release them.
4144  */
4145 int ext4_truncate(struct inode *inode)
4146 {
4147 	struct ext4_inode_info *ei = EXT4_I(inode);
4148 	unsigned int credits;
4149 	int err = 0;
4150 	handle_t *handle;
4151 	struct address_space *mapping = inode->i_mapping;
4152 
4153 	/*
4154 	 * There is a possibility that we're either freeing the inode
4155 	 * or it's a completely new inode. In those cases we might not
4156 	 * have i_mutex locked because it's not necessary.
4157 	 */
4158 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4159 		WARN_ON(!inode_is_locked(inode));
4160 	trace_ext4_truncate_enter(inode);
4161 
4162 	if (!ext4_can_truncate(inode))
4163 		return 0;
4164 
4165 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4166 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4167 
4168 	if (ext4_has_inline_data(inode)) {
4169 		int has_inline = 1;
4170 
4171 		err = ext4_inline_data_truncate(inode, &has_inline);
4172 		if (err)
4173 			return err;
4174 		if (has_inline)
4175 			return 0;
4176 	}
4177 
4178 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180 		if (ext4_inode_attach_jinode(inode) < 0)
4181 			return 0;
4182 	}
4183 
4184 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4185 		credits = ext4_writepage_trans_blocks(inode);
4186 	else
4187 		credits = ext4_blocks_for_truncate(inode);
4188 
4189 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4190 	if (IS_ERR(handle))
4191 		return PTR_ERR(handle);
4192 
4193 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4194 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4195 
4196 	/*
4197 	 * We add the inode to the orphan list, so that if this
4198 	 * truncate spans multiple transactions, and we crash, we will
4199 	 * resume the truncate when the filesystem recovers.  It also
4200 	 * marks the inode dirty, to catch the new size.
4201 	 *
4202 	 * Implication: the file must always be in a sane, consistent
4203 	 * truncatable state while each transaction commits.
4204 	 */
4205 	err = ext4_orphan_add(handle, inode);
4206 	if (err)
4207 		goto out_stop;
4208 
4209 	down_write(&EXT4_I(inode)->i_data_sem);
4210 
4211 	ext4_discard_preallocations(inode);
4212 
4213 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4214 		err = ext4_ext_truncate(handle, inode);
4215 	else
4216 		ext4_ind_truncate(handle, inode);
4217 
4218 	up_write(&ei->i_data_sem);
4219 	if (err)
4220 		goto out_stop;
4221 
4222 	if (IS_SYNC(inode))
4223 		ext4_handle_sync(handle);
4224 
4225 out_stop:
4226 	/*
4227 	 * If this was a simple ftruncate() and the file will remain alive,
4228 	 * then we need to clear up the orphan record which we created above.
4229 	 * However, if this was a real unlink then we were called by
4230 	 * ext4_evict_inode(), and we allow that function to clean up the
4231 	 * orphan info for us.
4232 	 */
4233 	if (inode->i_nlink)
4234 		ext4_orphan_del(handle, inode);
4235 
4236 	inode->i_mtime = inode->i_ctime = current_time(inode);
4237 	ext4_mark_inode_dirty(handle, inode);
4238 	ext4_journal_stop(handle);
4239 
4240 	trace_ext4_truncate_exit(inode);
4241 	return err;
4242 }
4243 
4244 /*
4245  * ext4_get_inode_loc returns with an extra refcount against the inode's
4246  * underlying buffer_head on success. If 'in_mem' is true, we have all
4247  * data in memory that is needed to recreate the on-disk version of this
4248  * inode.
4249  */
4250 static int __ext4_get_inode_loc(struct inode *inode,
4251 				struct ext4_iloc *iloc, int in_mem)
4252 {
4253 	struct ext4_group_desc	*gdp;
4254 	struct buffer_head	*bh;
4255 	struct super_block	*sb = inode->i_sb;
4256 	ext4_fsblk_t		block;
4257 	struct blk_plug		plug;
4258 	int			inodes_per_block, inode_offset;
4259 
4260 	iloc->bh = NULL;
4261 	if (inode->i_ino < EXT4_ROOT_INO ||
4262 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4263 		return -EFSCORRUPTED;
4264 
4265 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4266 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4267 	if (!gdp)
4268 		return -EIO;
4269 
4270 	/*
4271 	 * Figure out the offset within the block group inode table
4272 	 */
4273 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4274 	inode_offset = ((inode->i_ino - 1) %
4275 			EXT4_INODES_PER_GROUP(sb));
4276 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4277 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4278 
4279 	bh = sb_getblk(sb, block);
4280 	if (unlikely(!bh))
4281 		return -ENOMEM;
4282 	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4283 		goto simulate_eio;
4284 	if (!buffer_uptodate(bh)) {
4285 		lock_buffer(bh);
4286 
4287 		/*
4288 		 * If the buffer has the write error flag, we have failed
4289 		 * to write out another inode in the same block.  In this
4290 		 * case, we don't have to read the block because we may
4291 		 * read the old inode data successfully.
4292 		 */
4293 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4294 			set_buffer_uptodate(bh);
4295 
4296 		if (buffer_uptodate(bh)) {
4297 			/* someone brought it uptodate while we waited */
4298 			unlock_buffer(bh);
4299 			goto has_buffer;
4300 		}
4301 
4302 		/*
4303 		 * If we have all information of the inode in memory and this
4304 		 * is the only valid inode in the block, we need not read the
4305 		 * block.
4306 		 */
4307 		if (in_mem) {
4308 			struct buffer_head *bitmap_bh;
4309 			int i, start;
4310 
4311 			start = inode_offset & ~(inodes_per_block - 1);
4312 
4313 			/* Is the inode bitmap in cache? */
4314 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4315 			if (unlikely(!bitmap_bh))
4316 				goto make_io;
4317 
4318 			/*
4319 			 * If the inode bitmap isn't in cache then the
4320 			 * optimisation may end up performing two reads instead
4321 			 * of one, so skip it.
4322 			 */
4323 			if (!buffer_uptodate(bitmap_bh)) {
4324 				brelse(bitmap_bh);
4325 				goto make_io;
4326 			}
4327 			for (i = start; i < start + inodes_per_block; i++) {
4328 				if (i == inode_offset)
4329 					continue;
4330 				if (ext4_test_bit(i, bitmap_bh->b_data))
4331 					break;
4332 			}
4333 			brelse(bitmap_bh);
4334 			if (i == start + inodes_per_block) {
4335 				/* all other inodes are free, so skip I/O */
4336 				memset(bh->b_data, 0, bh->b_size);
4337 				set_buffer_uptodate(bh);
4338 				unlock_buffer(bh);
4339 				goto has_buffer;
4340 			}
4341 		}
4342 
4343 make_io:
4344 		/*
4345 		 * If we need to do any I/O, try to pre-readahead extra
4346 		 * blocks from the inode table.
4347 		 */
4348 		blk_start_plug(&plug);
4349 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4350 			ext4_fsblk_t b, end, table;
4351 			unsigned num;
4352 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4353 
4354 			table = ext4_inode_table(sb, gdp);
4355 			/* s_inode_readahead_blks is always a power of 2 */
4356 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4357 			if (table > b)
4358 				b = table;
4359 			end = b + ra_blks;
4360 			num = EXT4_INODES_PER_GROUP(sb);
4361 			if (ext4_has_group_desc_csum(sb))
4362 				num -= ext4_itable_unused_count(sb, gdp);
4363 			table += num / inodes_per_block;
4364 			if (end > table)
4365 				end = table;
4366 			while (b <= end)
4367 				sb_breadahead_unmovable(sb, b++);
4368 		}
4369 
4370 		/*
4371 		 * There are other valid inodes in the buffer, this inode
4372 		 * has in-inode xattrs, or we don't have this inode in memory.
4373 		 * Read the block from disk.
4374 		 */
4375 		trace_ext4_load_inode(inode);
4376 		get_bh(bh);
4377 		bh->b_end_io = end_buffer_read_sync;
4378 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4379 		blk_finish_plug(&plug);
4380 		wait_on_buffer(bh);
4381 		if (!buffer_uptodate(bh)) {
4382 		simulate_eio:
4383 			ext4_error_inode_block(inode, block, EIO,
4384 					       "unable to read itable block");
4385 			brelse(bh);
4386 			return -EIO;
4387 		}
4388 	}
4389 has_buffer:
4390 	iloc->bh = bh;
4391 	return 0;
4392 }
4393 
4394 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4395 {
4396 	/* We have all inode data except xattrs in memory here. */
4397 	return __ext4_get_inode_loc(inode, iloc,
4398 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4399 }
4400 
4401 static bool ext4_should_use_dax(struct inode *inode)
4402 {
4403 	if (!test_opt(inode->i_sb, DAX))
4404 		return false;
4405 	if (!S_ISREG(inode->i_mode))
4406 		return false;
4407 	if (ext4_should_journal_data(inode))
4408 		return false;
4409 	if (ext4_has_inline_data(inode))
4410 		return false;
4411 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4412 		return false;
4413 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4414 		return false;
4415 	return true;
4416 }
4417 
4418 void ext4_set_inode_flags(struct inode *inode)
4419 {
4420 	unsigned int flags = EXT4_I(inode)->i_flags;
4421 	unsigned int new_fl = 0;
4422 
4423 	if (flags & EXT4_SYNC_FL)
4424 		new_fl |= S_SYNC;
4425 	if (flags & EXT4_APPEND_FL)
4426 		new_fl |= S_APPEND;
4427 	if (flags & EXT4_IMMUTABLE_FL)
4428 		new_fl |= S_IMMUTABLE;
4429 	if (flags & EXT4_NOATIME_FL)
4430 		new_fl |= S_NOATIME;
4431 	if (flags & EXT4_DIRSYNC_FL)
4432 		new_fl |= S_DIRSYNC;
4433 	if (ext4_should_use_dax(inode))
4434 		new_fl |= S_DAX;
4435 	if (flags & EXT4_ENCRYPT_FL)
4436 		new_fl |= S_ENCRYPTED;
4437 	if (flags & EXT4_CASEFOLD_FL)
4438 		new_fl |= S_CASEFOLD;
4439 	if (flags & EXT4_VERITY_FL)
4440 		new_fl |= S_VERITY;
4441 	inode_set_flags(inode, new_fl,
4442 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4443 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4444 }
4445 
4446 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4447 				  struct ext4_inode_info *ei)
4448 {
4449 	blkcnt_t i_blocks ;
4450 	struct inode *inode = &(ei->vfs_inode);
4451 	struct super_block *sb = inode->i_sb;
4452 
4453 	if (ext4_has_feature_huge_file(sb)) {
4454 		/* we are using combined 48 bit field */
4455 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4456 					le32_to_cpu(raw_inode->i_blocks_lo);
4457 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4458 			/* i_blocks represent file system block size */
4459 			return i_blocks  << (inode->i_blkbits - 9);
4460 		} else {
4461 			return i_blocks;
4462 		}
4463 	} else {
4464 		return le32_to_cpu(raw_inode->i_blocks_lo);
4465 	}
4466 }
4467 
4468 static inline int ext4_iget_extra_inode(struct inode *inode,
4469 					 struct ext4_inode *raw_inode,
4470 					 struct ext4_inode_info *ei)
4471 {
4472 	__le32 *magic = (void *)raw_inode +
4473 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4474 
4475 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4476 	    EXT4_INODE_SIZE(inode->i_sb) &&
4477 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4478 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4479 		return ext4_find_inline_data_nolock(inode);
4480 	} else
4481 		EXT4_I(inode)->i_inline_off = 0;
4482 	return 0;
4483 }
4484 
4485 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4486 {
4487 	if (!ext4_has_feature_project(inode->i_sb))
4488 		return -EOPNOTSUPP;
4489 	*projid = EXT4_I(inode)->i_projid;
4490 	return 0;
4491 }
4492 
4493 /*
4494  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4495  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4496  * set.
4497  */
4498 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4499 {
4500 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4501 		inode_set_iversion_raw(inode, val);
4502 	else
4503 		inode_set_iversion_queried(inode, val);
4504 }
4505 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4506 {
4507 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4508 		return inode_peek_iversion_raw(inode);
4509 	else
4510 		return inode_peek_iversion(inode);
4511 }
4512 
4513 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4514 			  ext4_iget_flags flags, const char *function,
4515 			  unsigned int line)
4516 {
4517 	struct ext4_iloc iloc;
4518 	struct ext4_inode *raw_inode;
4519 	struct ext4_inode_info *ei;
4520 	struct inode *inode;
4521 	journal_t *journal = EXT4_SB(sb)->s_journal;
4522 	long ret;
4523 	loff_t size;
4524 	int block;
4525 	uid_t i_uid;
4526 	gid_t i_gid;
4527 	projid_t i_projid;
4528 
4529 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4530 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4531 	    (ino < EXT4_ROOT_INO) ||
4532 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4533 		if (flags & EXT4_IGET_HANDLE)
4534 			return ERR_PTR(-ESTALE);
4535 		__ext4_error(sb, function, line, EFSCORRUPTED, 0,
4536 			     "inode #%lu: comm %s: iget: illegal inode #",
4537 			     ino, current->comm);
4538 		return ERR_PTR(-EFSCORRUPTED);
4539 	}
4540 
4541 	inode = iget_locked(sb, ino);
4542 	if (!inode)
4543 		return ERR_PTR(-ENOMEM);
4544 	if (!(inode->i_state & I_NEW))
4545 		return inode;
4546 
4547 	ei = EXT4_I(inode);
4548 	iloc.bh = NULL;
4549 
4550 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4551 	if (ret < 0)
4552 		goto bad_inode;
4553 	raw_inode = ext4_raw_inode(&iloc);
4554 
4555 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4556 		ext4_error_inode(inode, function, line, 0,
4557 				 "iget: root inode unallocated");
4558 		ret = -EFSCORRUPTED;
4559 		goto bad_inode;
4560 	}
4561 
4562 	if ((flags & EXT4_IGET_HANDLE) &&
4563 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4564 		ret = -ESTALE;
4565 		goto bad_inode;
4566 	}
4567 
4568 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4569 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4570 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4571 			EXT4_INODE_SIZE(inode->i_sb) ||
4572 		    (ei->i_extra_isize & 3)) {
4573 			ext4_error_inode(inode, function, line, 0,
4574 					 "iget: bad extra_isize %u "
4575 					 "(inode size %u)",
4576 					 ei->i_extra_isize,
4577 					 EXT4_INODE_SIZE(inode->i_sb));
4578 			ret = -EFSCORRUPTED;
4579 			goto bad_inode;
4580 		}
4581 	} else
4582 		ei->i_extra_isize = 0;
4583 
4584 	/* Precompute checksum seed for inode metadata */
4585 	if (ext4_has_metadata_csum(sb)) {
4586 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4587 		__u32 csum;
4588 		__le32 inum = cpu_to_le32(inode->i_ino);
4589 		__le32 gen = raw_inode->i_generation;
4590 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4591 				   sizeof(inum));
4592 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4593 					      sizeof(gen));
4594 	}
4595 
4596 	if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4597 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4598 		ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4599 				     "iget: checksum invalid");
4600 		ret = -EFSBADCRC;
4601 		goto bad_inode;
4602 	}
4603 
4604 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4605 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4606 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4607 	if (ext4_has_feature_project(sb) &&
4608 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4609 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4610 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4611 	else
4612 		i_projid = EXT4_DEF_PROJID;
4613 
4614 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4615 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4616 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4617 	}
4618 	i_uid_write(inode, i_uid);
4619 	i_gid_write(inode, i_gid);
4620 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4621 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4622 
4623 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4624 	ei->i_inline_off = 0;
4625 	ei->i_dir_start_lookup = 0;
4626 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4627 	/* We now have enough fields to check if the inode was active or not.
4628 	 * This is needed because nfsd might try to access dead inodes
4629 	 * the test is that same one that e2fsck uses
4630 	 * NeilBrown 1999oct15
4631 	 */
4632 	if (inode->i_nlink == 0) {
4633 		if ((inode->i_mode == 0 ||
4634 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4635 		    ino != EXT4_BOOT_LOADER_INO) {
4636 			/* this inode is deleted */
4637 			ret = -ESTALE;
4638 			goto bad_inode;
4639 		}
4640 		/* The only unlinked inodes we let through here have
4641 		 * valid i_mode and are being read by the orphan
4642 		 * recovery code: that's fine, we're about to complete
4643 		 * the process of deleting those.
4644 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4645 		 * not initialized on a new filesystem. */
4646 	}
4647 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4648 	ext4_set_inode_flags(inode);
4649 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4650 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4651 	if (ext4_has_feature_64bit(sb))
4652 		ei->i_file_acl |=
4653 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4654 	inode->i_size = ext4_isize(sb, raw_inode);
4655 	if ((size = i_size_read(inode)) < 0) {
4656 		ext4_error_inode(inode, function, line, 0,
4657 				 "iget: bad i_size value: %lld", size);
4658 		ret = -EFSCORRUPTED;
4659 		goto bad_inode;
4660 	}
4661 	/*
4662 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4663 	 * we'd normally treat htree data as empty space. But with metadata
4664 	 * checksumming that corrupts checksums so forbid that.
4665 	 */
4666 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4667 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4668 		ext4_error_inode(inode, function, line, 0,
4669 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4670 		ret = -EFSCORRUPTED;
4671 		goto bad_inode;
4672 	}
4673 	ei->i_disksize = inode->i_size;
4674 #ifdef CONFIG_QUOTA
4675 	ei->i_reserved_quota = 0;
4676 #endif
4677 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4678 	ei->i_block_group = iloc.block_group;
4679 	ei->i_last_alloc_group = ~0;
4680 	/*
4681 	 * NOTE! The in-memory inode i_data array is in little-endian order
4682 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4683 	 */
4684 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4685 		ei->i_data[block] = raw_inode->i_block[block];
4686 	INIT_LIST_HEAD(&ei->i_orphan);
4687 
4688 	/*
4689 	 * Set transaction id's of transactions that have to be committed
4690 	 * to finish f[data]sync. We set them to currently running transaction
4691 	 * as we cannot be sure that the inode or some of its metadata isn't
4692 	 * part of the transaction - the inode could have been reclaimed and
4693 	 * now it is reread from disk.
4694 	 */
4695 	if (journal) {
4696 		transaction_t *transaction;
4697 		tid_t tid;
4698 
4699 		read_lock(&journal->j_state_lock);
4700 		if (journal->j_running_transaction)
4701 			transaction = journal->j_running_transaction;
4702 		else
4703 			transaction = journal->j_committing_transaction;
4704 		if (transaction)
4705 			tid = transaction->t_tid;
4706 		else
4707 			tid = journal->j_commit_sequence;
4708 		read_unlock(&journal->j_state_lock);
4709 		ei->i_sync_tid = tid;
4710 		ei->i_datasync_tid = tid;
4711 	}
4712 
4713 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4714 		if (ei->i_extra_isize == 0) {
4715 			/* The extra space is currently unused. Use it. */
4716 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4717 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4718 					    EXT4_GOOD_OLD_INODE_SIZE;
4719 		} else {
4720 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4721 			if (ret)
4722 				goto bad_inode;
4723 		}
4724 	}
4725 
4726 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4727 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4728 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4729 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4730 
4731 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4732 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4733 
4734 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4735 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4736 				ivers |=
4737 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4738 		}
4739 		ext4_inode_set_iversion_queried(inode, ivers);
4740 	}
4741 
4742 	ret = 0;
4743 	if (ei->i_file_acl &&
4744 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4745 		ext4_error_inode(inode, function, line, 0,
4746 				 "iget: bad extended attribute block %llu",
4747 				 ei->i_file_acl);
4748 		ret = -EFSCORRUPTED;
4749 		goto bad_inode;
4750 	} else if (!ext4_has_inline_data(inode)) {
4751 		/* validate the block references in the inode */
4752 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4753 		   (S_ISLNK(inode->i_mode) &&
4754 		    !ext4_inode_is_fast_symlink(inode))) {
4755 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4756 				ret = ext4_ext_check_inode(inode);
4757 			else
4758 				ret = ext4_ind_check_inode(inode);
4759 		}
4760 	}
4761 	if (ret)
4762 		goto bad_inode;
4763 
4764 	if (S_ISREG(inode->i_mode)) {
4765 		inode->i_op = &ext4_file_inode_operations;
4766 		inode->i_fop = &ext4_file_operations;
4767 		ext4_set_aops(inode);
4768 	} else if (S_ISDIR(inode->i_mode)) {
4769 		inode->i_op = &ext4_dir_inode_operations;
4770 		inode->i_fop = &ext4_dir_operations;
4771 	} else if (S_ISLNK(inode->i_mode)) {
4772 		/* VFS does not allow setting these so must be corruption */
4773 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4774 			ext4_error_inode(inode, function, line, 0,
4775 					 "iget: immutable or append flags "
4776 					 "not allowed on symlinks");
4777 			ret = -EFSCORRUPTED;
4778 			goto bad_inode;
4779 		}
4780 		if (IS_ENCRYPTED(inode)) {
4781 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4782 			ext4_set_aops(inode);
4783 		} else if (ext4_inode_is_fast_symlink(inode)) {
4784 			inode->i_link = (char *)ei->i_data;
4785 			inode->i_op = &ext4_fast_symlink_inode_operations;
4786 			nd_terminate_link(ei->i_data, inode->i_size,
4787 				sizeof(ei->i_data) - 1);
4788 		} else {
4789 			inode->i_op = &ext4_symlink_inode_operations;
4790 			ext4_set_aops(inode);
4791 		}
4792 		inode_nohighmem(inode);
4793 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4794 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4795 		inode->i_op = &ext4_special_inode_operations;
4796 		if (raw_inode->i_block[0])
4797 			init_special_inode(inode, inode->i_mode,
4798 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4799 		else
4800 			init_special_inode(inode, inode->i_mode,
4801 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4802 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4803 		make_bad_inode(inode);
4804 	} else {
4805 		ret = -EFSCORRUPTED;
4806 		ext4_error_inode(inode, function, line, 0,
4807 				 "iget: bogus i_mode (%o)", inode->i_mode);
4808 		goto bad_inode;
4809 	}
4810 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4811 		ext4_error_inode(inode, function, line, 0,
4812 				 "casefold flag without casefold feature");
4813 	brelse(iloc.bh);
4814 
4815 	unlock_new_inode(inode);
4816 	return inode;
4817 
4818 bad_inode:
4819 	brelse(iloc.bh);
4820 	iget_failed(inode);
4821 	return ERR_PTR(ret);
4822 }
4823 
4824 static int ext4_inode_blocks_set(handle_t *handle,
4825 				struct ext4_inode *raw_inode,
4826 				struct ext4_inode_info *ei)
4827 {
4828 	struct inode *inode = &(ei->vfs_inode);
4829 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4830 	struct super_block *sb = inode->i_sb;
4831 
4832 	if (i_blocks <= ~0U) {
4833 		/*
4834 		 * i_blocks can be represented in a 32 bit variable
4835 		 * as multiple of 512 bytes
4836 		 */
4837 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4838 		raw_inode->i_blocks_high = 0;
4839 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4840 		return 0;
4841 	}
4842 	if (!ext4_has_feature_huge_file(sb))
4843 		return -EFBIG;
4844 
4845 	if (i_blocks <= 0xffffffffffffULL) {
4846 		/*
4847 		 * i_blocks can be represented in a 48 bit variable
4848 		 * as multiple of 512 bytes
4849 		 */
4850 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4851 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4852 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4853 	} else {
4854 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4855 		/* i_block is stored in file system block size */
4856 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4857 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4858 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4859 	}
4860 	return 0;
4861 }
4862 
4863 struct other_inode {
4864 	unsigned long		orig_ino;
4865 	struct ext4_inode	*raw_inode;
4866 };
4867 
4868 static int other_inode_match(struct inode * inode, unsigned long ino,
4869 			     void *data)
4870 {
4871 	struct other_inode *oi = (struct other_inode *) data;
4872 
4873 	if ((inode->i_ino != ino) ||
4874 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4875 			       I_DIRTY_INODE)) ||
4876 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4877 		return 0;
4878 	spin_lock(&inode->i_lock);
4879 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4880 				I_DIRTY_INODE)) == 0) &&
4881 	    (inode->i_state & I_DIRTY_TIME)) {
4882 		struct ext4_inode_info	*ei = EXT4_I(inode);
4883 
4884 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4885 		spin_unlock(&inode->i_lock);
4886 
4887 		spin_lock(&ei->i_raw_lock);
4888 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4889 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4890 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4891 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4892 		spin_unlock(&ei->i_raw_lock);
4893 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4894 		return -1;
4895 	}
4896 	spin_unlock(&inode->i_lock);
4897 	return -1;
4898 }
4899 
4900 /*
4901  * Opportunistically update the other time fields for other inodes in
4902  * the same inode table block.
4903  */
4904 static void ext4_update_other_inodes_time(struct super_block *sb,
4905 					  unsigned long orig_ino, char *buf)
4906 {
4907 	struct other_inode oi;
4908 	unsigned long ino;
4909 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4910 	int inode_size = EXT4_INODE_SIZE(sb);
4911 
4912 	oi.orig_ino = orig_ino;
4913 	/*
4914 	 * Calculate the first inode in the inode table block.  Inode
4915 	 * numbers are one-based.  That is, the first inode in a block
4916 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4917 	 */
4918 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4919 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4920 		if (ino == orig_ino)
4921 			continue;
4922 		oi.raw_inode = (struct ext4_inode *) buf;
4923 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4924 	}
4925 }
4926 
4927 /*
4928  * Post the struct inode info into an on-disk inode location in the
4929  * buffer-cache.  This gobbles the caller's reference to the
4930  * buffer_head in the inode location struct.
4931  *
4932  * The caller must have write access to iloc->bh.
4933  */
4934 static int ext4_do_update_inode(handle_t *handle,
4935 				struct inode *inode,
4936 				struct ext4_iloc *iloc)
4937 {
4938 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4939 	struct ext4_inode_info *ei = EXT4_I(inode);
4940 	struct buffer_head *bh = iloc->bh;
4941 	struct super_block *sb = inode->i_sb;
4942 	int err = 0, rc, block;
4943 	int need_datasync = 0, set_large_file = 0;
4944 	uid_t i_uid;
4945 	gid_t i_gid;
4946 	projid_t i_projid;
4947 
4948 	spin_lock(&ei->i_raw_lock);
4949 
4950 	/* For fields not tracked in the in-memory inode,
4951 	 * initialise them to zero for new inodes. */
4952 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4953 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4954 
4955 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4956 	i_uid = i_uid_read(inode);
4957 	i_gid = i_gid_read(inode);
4958 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4959 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4960 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4961 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4962 /*
4963  * Fix up interoperability with old kernels. Otherwise, old inodes get
4964  * re-used with the upper 16 bits of the uid/gid intact
4965  */
4966 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4967 			raw_inode->i_uid_high = 0;
4968 			raw_inode->i_gid_high = 0;
4969 		} else {
4970 			raw_inode->i_uid_high =
4971 				cpu_to_le16(high_16_bits(i_uid));
4972 			raw_inode->i_gid_high =
4973 				cpu_to_le16(high_16_bits(i_gid));
4974 		}
4975 	} else {
4976 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4977 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4978 		raw_inode->i_uid_high = 0;
4979 		raw_inode->i_gid_high = 0;
4980 	}
4981 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4982 
4983 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4984 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4985 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4986 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4987 
4988 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4989 	if (err) {
4990 		spin_unlock(&ei->i_raw_lock);
4991 		goto out_brelse;
4992 	}
4993 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4994 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4995 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4996 		raw_inode->i_file_acl_high =
4997 			cpu_to_le16(ei->i_file_acl >> 32);
4998 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4999 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5000 		ext4_isize_set(raw_inode, ei->i_disksize);
5001 		need_datasync = 1;
5002 	}
5003 	if (ei->i_disksize > 0x7fffffffULL) {
5004 		if (!ext4_has_feature_large_file(sb) ||
5005 				EXT4_SB(sb)->s_es->s_rev_level ==
5006 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5007 			set_large_file = 1;
5008 	}
5009 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5010 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5011 		if (old_valid_dev(inode->i_rdev)) {
5012 			raw_inode->i_block[0] =
5013 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5014 			raw_inode->i_block[1] = 0;
5015 		} else {
5016 			raw_inode->i_block[0] = 0;
5017 			raw_inode->i_block[1] =
5018 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5019 			raw_inode->i_block[2] = 0;
5020 		}
5021 	} else if (!ext4_has_inline_data(inode)) {
5022 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5023 			raw_inode->i_block[block] = ei->i_data[block];
5024 	}
5025 
5026 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5027 		u64 ivers = ext4_inode_peek_iversion(inode);
5028 
5029 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5030 		if (ei->i_extra_isize) {
5031 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5032 				raw_inode->i_version_hi =
5033 					cpu_to_le32(ivers >> 32);
5034 			raw_inode->i_extra_isize =
5035 				cpu_to_le16(ei->i_extra_isize);
5036 		}
5037 	}
5038 
5039 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5040 	       i_projid != EXT4_DEF_PROJID);
5041 
5042 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5043 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5044 		raw_inode->i_projid = cpu_to_le32(i_projid);
5045 
5046 	ext4_inode_csum_set(inode, raw_inode, ei);
5047 	spin_unlock(&ei->i_raw_lock);
5048 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5049 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5050 					      bh->b_data);
5051 
5052 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5053 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5054 	if (!err)
5055 		err = rc;
5056 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5057 	if (set_large_file) {
5058 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5059 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5060 		if (err)
5061 			goto out_brelse;
5062 		ext4_set_feature_large_file(sb);
5063 		ext4_handle_sync(handle);
5064 		err = ext4_handle_dirty_super(handle, sb);
5065 	}
5066 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5067 out_brelse:
5068 	brelse(bh);
5069 	ext4_std_error(inode->i_sb, err);
5070 	return err;
5071 }
5072 
5073 /*
5074  * ext4_write_inode()
5075  *
5076  * We are called from a few places:
5077  *
5078  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5079  *   Here, there will be no transaction running. We wait for any running
5080  *   transaction to commit.
5081  *
5082  * - Within flush work (sys_sync(), kupdate and such).
5083  *   We wait on commit, if told to.
5084  *
5085  * - Within iput_final() -> write_inode_now()
5086  *   We wait on commit, if told to.
5087  *
5088  * In all cases it is actually safe for us to return without doing anything,
5089  * because the inode has been copied into a raw inode buffer in
5090  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5091  * writeback.
5092  *
5093  * Note that we are absolutely dependent upon all inode dirtiers doing the
5094  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5095  * which we are interested.
5096  *
5097  * It would be a bug for them to not do this.  The code:
5098  *
5099  *	mark_inode_dirty(inode)
5100  *	stuff();
5101  *	inode->i_size = expr;
5102  *
5103  * is in error because write_inode() could occur while `stuff()' is running,
5104  * and the new i_size will be lost.  Plus the inode will no longer be on the
5105  * superblock's dirty inode list.
5106  */
5107 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5108 {
5109 	int err;
5110 
5111 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5112 	    sb_rdonly(inode->i_sb))
5113 		return 0;
5114 
5115 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5116 		return -EIO;
5117 
5118 	if (EXT4_SB(inode->i_sb)->s_journal) {
5119 		if (ext4_journal_current_handle()) {
5120 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5121 			dump_stack();
5122 			return -EIO;
5123 		}
5124 
5125 		/*
5126 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5127 		 * ext4_sync_fs() will force the commit after everything is
5128 		 * written.
5129 		 */
5130 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5131 			return 0;
5132 
5133 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5134 						EXT4_I(inode)->i_sync_tid);
5135 	} else {
5136 		struct ext4_iloc iloc;
5137 
5138 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5139 		if (err)
5140 			return err;
5141 		/*
5142 		 * sync(2) will flush the whole buffer cache. No need to do
5143 		 * it here separately for each inode.
5144 		 */
5145 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5146 			sync_dirty_buffer(iloc.bh);
5147 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5148 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5149 					       "IO error syncing inode");
5150 			err = -EIO;
5151 		}
5152 		brelse(iloc.bh);
5153 	}
5154 	return err;
5155 }
5156 
5157 /*
5158  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5159  * buffers that are attached to a page stradding i_size and are undergoing
5160  * commit. In that case we have to wait for commit to finish and try again.
5161  */
5162 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5163 {
5164 	struct page *page;
5165 	unsigned offset;
5166 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5167 	tid_t commit_tid = 0;
5168 	int ret;
5169 
5170 	offset = inode->i_size & (PAGE_SIZE - 1);
5171 	/*
5172 	 * If the page is fully truncated, we don't need to wait for any commit
5173 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5174 	 * strip all buffers from the page but keep the page dirty which can then
5175 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5176 	 * buffers). Also we don't need to wait for any commit if all buffers in
5177 	 * the page remain valid. This is most beneficial for the common case of
5178 	 * blocksize == PAGESIZE.
5179 	 */
5180 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5181 		return;
5182 	while (1) {
5183 		page = find_lock_page(inode->i_mapping,
5184 				      inode->i_size >> PAGE_SHIFT);
5185 		if (!page)
5186 			return;
5187 		ret = __ext4_journalled_invalidatepage(page, offset,
5188 						PAGE_SIZE - offset);
5189 		unlock_page(page);
5190 		put_page(page);
5191 		if (ret != -EBUSY)
5192 			return;
5193 		commit_tid = 0;
5194 		read_lock(&journal->j_state_lock);
5195 		if (journal->j_committing_transaction)
5196 			commit_tid = journal->j_committing_transaction->t_tid;
5197 		read_unlock(&journal->j_state_lock);
5198 		if (commit_tid)
5199 			jbd2_log_wait_commit(journal, commit_tid);
5200 	}
5201 }
5202 
5203 /*
5204  * ext4_setattr()
5205  *
5206  * Called from notify_change.
5207  *
5208  * We want to trap VFS attempts to truncate the file as soon as
5209  * possible.  In particular, we want to make sure that when the VFS
5210  * shrinks i_size, we put the inode on the orphan list and modify
5211  * i_disksize immediately, so that during the subsequent flushing of
5212  * dirty pages and freeing of disk blocks, we can guarantee that any
5213  * commit will leave the blocks being flushed in an unused state on
5214  * disk.  (On recovery, the inode will get truncated and the blocks will
5215  * be freed, so we have a strong guarantee that no future commit will
5216  * leave these blocks visible to the user.)
5217  *
5218  * Another thing we have to assure is that if we are in ordered mode
5219  * and inode is still attached to the committing transaction, we must
5220  * we start writeout of all the dirty pages which are being truncated.
5221  * This way we are sure that all the data written in the previous
5222  * transaction are already on disk (truncate waits for pages under
5223  * writeback).
5224  *
5225  * Called with inode->i_mutex down.
5226  */
5227 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5228 {
5229 	struct inode *inode = d_inode(dentry);
5230 	int error, rc = 0;
5231 	int orphan = 0;
5232 	const unsigned int ia_valid = attr->ia_valid;
5233 
5234 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5235 		return -EIO;
5236 
5237 	if (unlikely(IS_IMMUTABLE(inode)))
5238 		return -EPERM;
5239 
5240 	if (unlikely(IS_APPEND(inode) &&
5241 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5242 				  ATTR_GID | ATTR_TIMES_SET))))
5243 		return -EPERM;
5244 
5245 	error = setattr_prepare(dentry, attr);
5246 	if (error)
5247 		return error;
5248 
5249 	error = fscrypt_prepare_setattr(dentry, attr);
5250 	if (error)
5251 		return error;
5252 
5253 	error = fsverity_prepare_setattr(dentry, attr);
5254 	if (error)
5255 		return error;
5256 
5257 	if (is_quota_modification(inode, attr)) {
5258 		error = dquot_initialize(inode);
5259 		if (error)
5260 			return error;
5261 	}
5262 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5263 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5264 		handle_t *handle;
5265 
5266 		/* (user+group)*(old+new) structure, inode write (sb,
5267 		 * inode block, ? - but truncate inode update has it) */
5268 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5269 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5270 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5271 		if (IS_ERR(handle)) {
5272 			error = PTR_ERR(handle);
5273 			goto err_out;
5274 		}
5275 
5276 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5277 		 * counts xattr inode references.
5278 		 */
5279 		down_read(&EXT4_I(inode)->xattr_sem);
5280 		error = dquot_transfer(inode, attr);
5281 		up_read(&EXT4_I(inode)->xattr_sem);
5282 
5283 		if (error) {
5284 			ext4_journal_stop(handle);
5285 			return error;
5286 		}
5287 		/* Update corresponding info in inode so that everything is in
5288 		 * one transaction */
5289 		if (attr->ia_valid & ATTR_UID)
5290 			inode->i_uid = attr->ia_uid;
5291 		if (attr->ia_valid & ATTR_GID)
5292 			inode->i_gid = attr->ia_gid;
5293 		error = ext4_mark_inode_dirty(handle, inode);
5294 		ext4_journal_stop(handle);
5295 	}
5296 
5297 	if (attr->ia_valid & ATTR_SIZE) {
5298 		handle_t *handle;
5299 		loff_t oldsize = inode->i_size;
5300 		int shrink = (attr->ia_size < inode->i_size);
5301 
5302 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5303 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5304 
5305 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5306 				return -EFBIG;
5307 		}
5308 		if (!S_ISREG(inode->i_mode))
5309 			return -EINVAL;
5310 
5311 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5312 			inode_inc_iversion(inode);
5313 
5314 		if (shrink) {
5315 			if (ext4_should_order_data(inode)) {
5316 				error = ext4_begin_ordered_truncate(inode,
5317 							    attr->ia_size);
5318 				if (error)
5319 					goto err_out;
5320 			}
5321 			/*
5322 			 * Blocks are going to be removed from the inode. Wait
5323 			 * for dio in flight.
5324 			 */
5325 			inode_dio_wait(inode);
5326 		}
5327 
5328 		down_write(&EXT4_I(inode)->i_mmap_sem);
5329 
5330 		rc = ext4_break_layouts(inode);
5331 		if (rc) {
5332 			up_write(&EXT4_I(inode)->i_mmap_sem);
5333 			return rc;
5334 		}
5335 
5336 		if (attr->ia_size != inode->i_size) {
5337 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5338 			if (IS_ERR(handle)) {
5339 				error = PTR_ERR(handle);
5340 				goto out_mmap_sem;
5341 			}
5342 			if (ext4_handle_valid(handle) && shrink) {
5343 				error = ext4_orphan_add(handle, inode);
5344 				orphan = 1;
5345 			}
5346 			/*
5347 			 * Update c/mtime on truncate up, ext4_truncate() will
5348 			 * update c/mtime in shrink case below
5349 			 */
5350 			if (!shrink) {
5351 				inode->i_mtime = current_time(inode);
5352 				inode->i_ctime = inode->i_mtime;
5353 			}
5354 			down_write(&EXT4_I(inode)->i_data_sem);
5355 			EXT4_I(inode)->i_disksize = attr->ia_size;
5356 			rc = ext4_mark_inode_dirty(handle, inode);
5357 			if (!error)
5358 				error = rc;
5359 			/*
5360 			 * We have to update i_size under i_data_sem together
5361 			 * with i_disksize to avoid races with writeback code
5362 			 * running ext4_wb_update_i_disksize().
5363 			 */
5364 			if (!error)
5365 				i_size_write(inode, attr->ia_size);
5366 			up_write(&EXT4_I(inode)->i_data_sem);
5367 			ext4_journal_stop(handle);
5368 			if (error)
5369 				goto out_mmap_sem;
5370 			if (!shrink) {
5371 				pagecache_isize_extended(inode, oldsize,
5372 							 inode->i_size);
5373 			} else if (ext4_should_journal_data(inode)) {
5374 				ext4_wait_for_tail_page_commit(inode);
5375 			}
5376 		}
5377 
5378 		/*
5379 		 * Truncate pagecache after we've waited for commit
5380 		 * in data=journal mode to make pages freeable.
5381 		 */
5382 		truncate_pagecache(inode, inode->i_size);
5383 		/*
5384 		 * Call ext4_truncate() even if i_size didn't change to
5385 		 * truncate possible preallocated blocks.
5386 		 */
5387 		if (attr->ia_size <= oldsize) {
5388 			rc = ext4_truncate(inode);
5389 			if (rc)
5390 				error = rc;
5391 		}
5392 out_mmap_sem:
5393 		up_write(&EXT4_I(inode)->i_mmap_sem);
5394 	}
5395 
5396 	if (!error) {
5397 		setattr_copy(inode, attr);
5398 		mark_inode_dirty(inode);
5399 	}
5400 
5401 	/*
5402 	 * If the call to ext4_truncate failed to get a transaction handle at
5403 	 * all, we need to clean up the in-core orphan list manually.
5404 	 */
5405 	if (orphan && inode->i_nlink)
5406 		ext4_orphan_del(NULL, inode);
5407 
5408 	if (!error && (ia_valid & ATTR_MODE))
5409 		rc = posix_acl_chmod(inode, inode->i_mode);
5410 
5411 err_out:
5412 	ext4_std_error(inode->i_sb, error);
5413 	if (!error)
5414 		error = rc;
5415 	return error;
5416 }
5417 
5418 int ext4_getattr(const struct path *path, struct kstat *stat,
5419 		 u32 request_mask, unsigned int query_flags)
5420 {
5421 	struct inode *inode = d_inode(path->dentry);
5422 	struct ext4_inode *raw_inode;
5423 	struct ext4_inode_info *ei = EXT4_I(inode);
5424 	unsigned int flags;
5425 
5426 	if ((request_mask & STATX_BTIME) &&
5427 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5428 		stat->result_mask |= STATX_BTIME;
5429 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5430 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5431 	}
5432 
5433 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5434 	if (flags & EXT4_APPEND_FL)
5435 		stat->attributes |= STATX_ATTR_APPEND;
5436 	if (flags & EXT4_COMPR_FL)
5437 		stat->attributes |= STATX_ATTR_COMPRESSED;
5438 	if (flags & EXT4_ENCRYPT_FL)
5439 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5440 	if (flags & EXT4_IMMUTABLE_FL)
5441 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5442 	if (flags & EXT4_NODUMP_FL)
5443 		stat->attributes |= STATX_ATTR_NODUMP;
5444 	if (flags & EXT4_VERITY_FL)
5445 		stat->attributes |= STATX_ATTR_VERITY;
5446 
5447 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5448 				  STATX_ATTR_COMPRESSED |
5449 				  STATX_ATTR_ENCRYPTED |
5450 				  STATX_ATTR_IMMUTABLE |
5451 				  STATX_ATTR_NODUMP |
5452 				  STATX_ATTR_VERITY);
5453 
5454 	generic_fillattr(inode, stat);
5455 	return 0;
5456 }
5457 
5458 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5459 		      u32 request_mask, unsigned int query_flags)
5460 {
5461 	struct inode *inode = d_inode(path->dentry);
5462 	u64 delalloc_blocks;
5463 
5464 	ext4_getattr(path, stat, request_mask, query_flags);
5465 
5466 	/*
5467 	 * If there is inline data in the inode, the inode will normally not
5468 	 * have data blocks allocated (it may have an external xattr block).
5469 	 * Report at least one sector for such files, so tools like tar, rsync,
5470 	 * others don't incorrectly think the file is completely sparse.
5471 	 */
5472 	if (unlikely(ext4_has_inline_data(inode)))
5473 		stat->blocks += (stat->size + 511) >> 9;
5474 
5475 	/*
5476 	 * We can't update i_blocks if the block allocation is delayed
5477 	 * otherwise in the case of system crash before the real block
5478 	 * allocation is done, we will have i_blocks inconsistent with
5479 	 * on-disk file blocks.
5480 	 * We always keep i_blocks updated together with real
5481 	 * allocation. But to not confuse with user, stat
5482 	 * will return the blocks that include the delayed allocation
5483 	 * blocks for this file.
5484 	 */
5485 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5486 				   EXT4_I(inode)->i_reserved_data_blocks);
5487 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5488 	return 0;
5489 }
5490 
5491 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5492 				   int pextents)
5493 {
5494 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5495 		return ext4_ind_trans_blocks(inode, lblocks);
5496 	return ext4_ext_index_trans_blocks(inode, pextents);
5497 }
5498 
5499 /*
5500  * Account for index blocks, block groups bitmaps and block group
5501  * descriptor blocks if modify datablocks and index blocks
5502  * worse case, the indexs blocks spread over different block groups
5503  *
5504  * If datablocks are discontiguous, they are possible to spread over
5505  * different block groups too. If they are contiguous, with flexbg,
5506  * they could still across block group boundary.
5507  *
5508  * Also account for superblock, inode, quota and xattr blocks
5509  */
5510 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5511 				  int pextents)
5512 {
5513 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5514 	int gdpblocks;
5515 	int idxblocks;
5516 	int ret = 0;
5517 
5518 	/*
5519 	 * How many index blocks need to touch to map @lblocks logical blocks
5520 	 * to @pextents physical extents?
5521 	 */
5522 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5523 
5524 	ret = idxblocks;
5525 
5526 	/*
5527 	 * Now let's see how many group bitmaps and group descriptors need
5528 	 * to account
5529 	 */
5530 	groups = idxblocks + pextents;
5531 	gdpblocks = groups;
5532 	if (groups > ngroups)
5533 		groups = ngroups;
5534 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5535 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5536 
5537 	/* bitmaps and block group descriptor blocks */
5538 	ret += groups + gdpblocks;
5539 
5540 	/* Blocks for super block, inode, quota and xattr blocks */
5541 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5542 
5543 	return ret;
5544 }
5545 
5546 /*
5547  * Calculate the total number of credits to reserve to fit
5548  * the modification of a single pages into a single transaction,
5549  * which may include multiple chunks of block allocations.
5550  *
5551  * This could be called via ext4_write_begin()
5552  *
5553  * We need to consider the worse case, when
5554  * one new block per extent.
5555  */
5556 int ext4_writepage_trans_blocks(struct inode *inode)
5557 {
5558 	int bpp = ext4_journal_blocks_per_page(inode);
5559 	int ret;
5560 
5561 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5562 
5563 	/* Account for data blocks for journalled mode */
5564 	if (ext4_should_journal_data(inode))
5565 		ret += bpp;
5566 	return ret;
5567 }
5568 
5569 /*
5570  * Calculate the journal credits for a chunk of data modification.
5571  *
5572  * This is called from DIO, fallocate or whoever calling
5573  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5574  *
5575  * journal buffers for data blocks are not included here, as DIO
5576  * and fallocate do no need to journal data buffers.
5577  */
5578 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5579 {
5580 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5581 }
5582 
5583 /*
5584  * The caller must have previously called ext4_reserve_inode_write().
5585  * Give this, we know that the caller already has write access to iloc->bh.
5586  */
5587 int ext4_mark_iloc_dirty(handle_t *handle,
5588 			 struct inode *inode, struct ext4_iloc *iloc)
5589 {
5590 	int err = 0;
5591 
5592 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5593 		put_bh(iloc->bh);
5594 		return -EIO;
5595 	}
5596 	if (IS_I_VERSION(inode))
5597 		inode_inc_iversion(inode);
5598 
5599 	/* the do_update_inode consumes one bh->b_count */
5600 	get_bh(iloc->bh);
5601 
5602 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5603 	err = ext4_do_update_inode(handle, inode, iloc);
5604 	put_bh(iloc->bh);
5605 	return err;
5606 }
5607 
5608 /*
5609  * On success, We end up with an outstanding reference count against
5610  * iloc->bh.  This _must_ be cleaned up later.
5611  */
5612 
5613 int
5614 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5615 			 struct ext4_iloc *iloc)
5616 {
5617 	int err;
5618 
5619 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5620 		return -EIO;
5621 
5622 	err = ext4_get_inode_loc(inode, iloc);
5623 	if (!err) {
5624 		BUFFER_TRACE(iloc->bh, "get_write_access");
5625 		err = ext4_journal_get_write_access(handle, iloc->bh);
5626 		if (err) {
5627 			brelse(iloc->bh);
5628 			iloc->bh = NULL;
5629 		}
5630 	}
5631 	ext4_std_error(inode->i_sb, err);
5632 	return err;
5633 }
5634 
5635 static int __ext4_expand_extra_isize(struct inode *inode,
5636 				     unsigned int new_extra_isize,
5637 				     struct ext4_iloc *iloc,
5638 				     handle_t *handle, int *no_expand)
5639 {
5640 	struct ext4_inode *raw_inode;
5641 	struct ext4_xattr_ibody_header *header;
5642 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5643 	struct ext4_inode_info *ei = EXT4_I(inode);
5644 	int error;
5645 
5646 	/* this was checked at iget time, but double check for good measure */
5647 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5648 	    (ei->i_extra_isize & 3)) {
5649 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5650 				 ei->i_extra_isize,
5651 				 EXT4_INODE_SIZE(inode->i_sb));
5652 		return -EFSCORRUPTED;
5653 	}
5654 	if ((new_extra_isize < ei->i_extra_isize) ||
5655 	    (new_extra_isize < 4) ||
5656 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5657 		return -EINVAL;	/* Should never happen */
5658 
5659 	raw_inode = ext4_raw_inode(iloc);
5660 
5661 	header = IHDR(inode, raw_inode);
5662 
5663 	/* No extended attributes present */
5664 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5665 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5666 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5667 		       EXT4_I(inode)->i_extra_isize, 0,
5668 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5669 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5670 		return 0;
5671 	}
5672 
5673 	/* try to expand with EAs present */
5674 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5675 					   raw_inode, handle);
5676 	if (error) {
5677 		/*
5678 		 * Inode size expansion failed; don't try again
5679 		 */
5680 		*no_expand = 1;
5681 	}
5682 
5683 	return error;
5684 }
5685 
5686 /*
5687  * Expand an inode by new_extra_isize bytes.
5688  * Returns 0 on success or negative error number on failure.
5689  */
5690 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5691 					  unsigned int new_extra_isize,
5692 					  struct ext4_iloc iloc,
5693 					  handle_t *handle)
5694 {
5695 	int no_expand;
5696 	int error;
5697 
5698 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5699 		return -EOVERFLOW;
5700 
5701 	/*
5702 	 * In nojournal mode, we can immediately attempt to expand
5703 	 * the inode.  When journaled, we first need to obtain extra
5704 	 * buffer credits since we may write into the EA block
5705 	 * with this same handle. If journal_extend fails, then it will
5706 	 * only result in a minor loss of functionality for that inode.
5707 	 * If this is felt to be critical, then e2fsck should be run to
5708 	 * force a large enough s_min_extra_isize.
5709 	 */
5710 	if (ext4_journal_extend(handle,
5711 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5712 		return -ENOSPC;
5713 
5714 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5715 		return -EBUSY;
5716 
5717 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5718 					  handle, &no_expand);
5719 	ext4_write_unlock_xattr(inode, &no_expand);
5720 
5721 	return error;
5722 }
5723 
5724 int ext4_expand_extra_isize(struct inode *inode,
5725 			    unsigned int new_extra_isize,
5726 			    struct ext4_iloc *iloc)
5727 {
5728 	handle_t *handle;
5729 	int no_expand;
5730 	int error, rc;
5731 
5732 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5733 		brelse(iloc->bh);
5734 		return -EOVERFLOW;
5735 	}
5736 
5737 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5738 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5739 	if (IS_ERR(handle)) {
5740 		error = PTR_ERR(handle);
5741 		brelse(iloc->bh);
5742 		return error;
5743 	}
5744 
5745 	ext4_write_lock_xattr(inode, &no_expand);
5746 
5747 	BUFFER_TRACE(iloc->bh, "get_write_access");
5748 	error = ext4_journal_get_write_access(handle, iloc->bh);
5749 	if (error) {
5750 		brelse(iloc->bh);
5751 		goto out_unlock;
5752 	}
5753 
5754 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5755 					  handle, &no_expand);
5756 
5757 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5758 	if (!error)
5759 		error = rc;
5760 
5761 out_unlock:
5762 	ext4_write_unlock_xattr(inode, &no_expand);
5763 	ext4_journal_stop(handle);
5764 	return error;
5765 }
5766 
5767 /*
5768  * What we do here is to mark the in-core inode as clean with respect to inode
5769  * dirtiness (it may still be data-dirty).
5770  * This means that the in-core inode may be reaped by prune_icache
5771  * without having to perform any I/O.  This is a very good thing,
5772  * because *any* task may call prune_icache - even ones which
5773  * have a transaction open against a different journal.
5774  *
5775  * Is this cheating?  Not really.  Sure, we haven't written the
5776  * inode out, but prune_icache isn't a user-visible syncing function.
5777  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5778  * we start and wait on commits.
5779  */
5780 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5781 {
5782 	struct ext4_iloc iloc;
5783 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5784 	int err;
5785 
5786 	might_sleep();
5787 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5788 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5789 	if (err)
5790 		return err;
5791 
5792 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5793 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5794 					       iloc, handle);
5795 
5796 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5797 }
5798 
5799 /*
5800  * ext4_dirty_inode() is called from __mark_inode_dirty()
5801  *
5802  * We're really interested in the case where a file is being extended.
5803  * i_size has been changed by generic_commit_write() and we thus need
5804  * to include the updated inode in the current transaction.
5805  *
5806  * Also, dquot_alloc_block() will always dirty the inode when blocks
5807  * are allocated to the file.
5808  *
5809  * If the inode is marked synchronous, we don't honour that here - doing
5810  * so would cause a commit on atime updates, which we don't bother doing.
5811  * We handle synchronous inodes at the highest possible level.
5812  *
5813  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5814  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5815  * to copy into the on-disk inode structure are the timestamp files.
5816  */
5817 void ext4_dirty_inode(struct inode *inode, int flags)
5818 {
5819 	handle_t *handle;
5820 
5821 	if (flags == I_DIRTY_TIME)
5822 		return;
5823 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5824 	if (IS_ERR(handle))
5825 		goto out;
5826 
5827 	ext4_mark_inode_dirty(handle, inode);
5828 
5829 	ext4_journal_stop(handle);
5830 out:
5831 	return;
5832 }
5833 
5834 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5835 {
5836 	journal_t *journal;
5837 	handle_t *handle;
5838 	int err;
5839 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5840 
5841 	/*
5842 	 * We have to be very careful here: changing a data block's
5843 	 * journaling status dynamically is dangerous.  If we write a
5844 	 * data block to the journal, change the status and then delete
5845 	 * that block, we risk forgetting to revoke the old log record
5846 	 * from the journal and so a subsequent replay can corrupt data.
5847 	 * So, first we make sure that the journal is empty and that
5848 	 * nobody is changing anything.
5849 	 */
5850 
5851 	journal = EXT4_JOURNAL(inode);
5852 	if (!journal)
5853 		return 0;
5854 	if (is_journal_aborted(journal))
5855 		return -EROFS;
5856 
5857 	/* Wait for all existing dio workers */
5858 	inode_dio_wait(inode);
5859 
5860 	/*
5861 	 * Before flushing the journal and switching inode's aops, we have
5862 	 * to flush all dirty data the inode has. There can be outstanding
5863 	 * delayed allocations, there can be unwritten extents created by
5864 	 * fallocate or buffered writes in dioread_nolock mode covered by
5865 	 * dirty data which can be converted only after flushing the dirty
5866 	 * data (and journalled aops don't know how to handle these cases).
5867 	 */
5868 	if (val) {
5869 		down_write(&EXT4_I(inode)->i_mmap_sem);
5870 		err = filemap_write_and_wait(inode->i_mapping);
5871 		if (err < 0) {
5872 			up_write(&EXT4_I(inode)->i_mmap_sem);
5873 			return err;
5874 		}
5875 	}
5876 
5877 	percpu_down_write(&sbi->s_writepages_rwsem);
5878 	jbd2_journal_lock_updates(journal);
5879 
5880 	/*
5881 	 * OK, there are no updates running now, and all cached data is
5882 	 * synced to disk.  We are now in a completely consistent state
5883 	 * which doesn't have anything in the journal, and we know that
5884 	 * no filesystem updates are running, so it is safe to modify
5885 	 * the inode's in-core data-journaling state flag now.
5886 	 */
5887 
5888 	if (val)
5889 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5890 	else {
5891 		err = jbd2_journal_flush(journal);
5892 		if (err < 0) {
5893 			jbd2_journal_unlock_updates(journal);
5894 			percpu_up_write(&sbi->s_writepages_rwsem);
5895 			return err;
5896 		}
5897 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5898 	}
5899 	ext4_set_aops(inode);
5900 
5901 	jbd2_journal_unlock_updates(journal);
5902 	percpu_up_write(&sbi->s_writepages_rwsem);
5903 
5904 	if (val)
5905 		up_write(&EXT4_I(inode)->i_mmap_sem);
5906 
5907 	/* Finally we can mark the inode as dirty. */
5908 
5909 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5910 	if (IS_ERR(handle))
5911 		return PTR_ERR(handle);
5912 
5913 	err = ext4_mark_inode_dirty(handle, inode);
5914 	ext4_handle_sync(handle);
5915 	ext4_journal_stop(handle);
5916 	ext4_std_error(inode->i_sb, err);
5917 
5918 	return err;
5919 }
5920 
5921 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5922 {
5923 	return !buffer_mapped(bh);
5924 }
5925 
5926 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5927 {
5928 	struct vm_area_struct *vma = vmf->vma;
5929 	struct page *page = vmf->page;
5930 	loff_t size;
5931 	unsigned long len;
5932 	int err;
5933 	vm_fault_t ret;
5934 	struct file *file = vma->vm_file;
5935 	struct inode *inode = file_inode(file);
5936 	struct address_space *mapping = inode->i_mapping;
5937 	handle_t *handle;
5938 	get_block_t *get_block;
5939 	int retries = 0;
5940 
5941 	if (unlikely(IS_IMMUTABLE(inode)))
5942 		return VM_FAULT_SIGBUS;
5943 
5944 	sb_start_pagefault(inode->i_sb);
5945 	file_update_time(vma->vm_file);
5946 
5947 	down_read(&EXT4_I(inode)->i_mmap_sem);
5948 
5949 	err = ext4_convert_inline_data(inode);
5950 	if (err)
5951 		goto out_ret;
5952 
5953 	/* Delalloc case is easy... */
5954 	if (test_opt(inode->i_sb, DELALLOC) &&
5955 	    !ext4_should_journal_data(inode) &&
5956 	    !ext4_nonda_switch(inode->i_sb)) {
5957 		do {
5958 			err = block_page_mkwrite(vma, vmf,
5959 						   ext4_da_get_block_prep);
5960 		} while (err == -ENOSPC &&
5961 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5962 		goto out_ret;
5963 	}
5964 
5965 	lock_page(page);
5966 	size = i_size_read(inode);
5967 	/* Page got truncated from under us? */
5968 	if (page->mapping != mapping || page_offset(page) > size) {
5969 		unlock_page(page);
5970 		ret = VM_FAULT_NOPAGE;
5971 		goto out;
5972 	}
5973 
5974 	if (page->index == size >> PAGE_SHIFT)
5975 		len = size & ~PAGE_MASK;
5976 	else
5977 		len = PAGE_SIZE;
5978 	/*
5979 	 * Return if we have all the buffers mapped. This avoids the need to do
5980 	 * journal_start/journal_stop which can block and take a long time
5981 	 */
5982 	if (page_has_buffers(page)) {
5983 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5984 					    0, len, NULL,
5985 					    ext4_bh_unmapped)) {
5986 			/* Wait so that we don't change page under IO */
5987 			wait_for_stable_page(page);
5988 			ret = VM_FAULT_LOCKED;
5989 			goto out;
5990 		}
5991 	}
5992 	unlock_page(page);
5993 	/* OK, we need to fill the hole... */
5994 	if (ext4_should_dioread_nolock(inode))
5995 		get_block = ext4_get_block_unwritten;
5996 	else
5997 		get_block = ext4_get_block;
5998 retry_alloc:
5999 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6000 				    ext4_writepage_trans_blocks(inode));
6001 	if (IS_ERR(handle)) {
6002 		ret = VM_FAULT_SIGBUS;
6003 		goto out;
6004 	}
6005 	err = block_page_mkwrite(vma, vmf, get_block);
6006 	if (!err && ext4_should_journal_data(inode)) {
6007 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6008 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6009 			unlock_page(page);
6010 			ret = VM_FAULT_SIGBUS;
6011 			ext4_journal_stop(handle);
6012 			goto out;
6013 		}
6014 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6015 	}
6016 	ext4_journal_stop(handle);
6017 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6018 		goto retry_alloc;
6019 out_ret:
6020 	ret = block_page_mkwrite_return(err);
6021 out:
6022 	up_read(&EXT4_I(inode)->i_mmap_sem);
6023 	sb_end_pagefault(inode->i_sb);
6024 	return ret;
6025 }
6026 
6027 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6028 {
6029 	struct inode *inode = file_inode(vmf->vma->vm_file);
6030 	vm_fault_t ret;
6031 
6032 	down_read(&EXT4_I(inode)->i_mmap_sem);
6033 	ret = filemap_fault(vmf);
6034 	up_read(&EXT4_I(inode)->i_mmap_sem);
6035 
6036 	return ret;
6037 }
6038