1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u16 csum_lo; 56 __u16 csum_hi = 0; 57 __u32 csum; 58 59 csum_lo = le16_to_cpu(raw->i_checksum_lo); 60 raw->i_checksum_lo = 0; 61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 63 csum_hi = le16_to_cpu(raw->i_checksum_hi); 64 raw->i_checksum_hi = 0; 65 } 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 68 EXT4_INODE_SIZE(inode->i_sb)); 69 70 raw->i_checksum_lo = cpu_to_le16(csum_lo); 71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 73 raw->i_checksum_hi = cpu_to_le16(csum_hi); 74 75 return csum; 76 } 77 78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 79 struct ext4_inode_info *ei) 80 { 81 __u32 provided, calculated; 82 83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 84 cpu_to_le32(EXT4_OS_LINUX) || 85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 109 return; 110 111 csum = ext4_inode_csum(inode, raw, ei); 112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 115 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 116 } 117 118 static inline int ext4_begin_ordered_truncate(struct inode *inode, 119 loff_t new_size) 120 { 121 trace_ext4_begin_ordered_truncate(inode, new_size); 122 /* 123 * If jinode is zero, then we never opened the file for 124 * writing, so there's no need to call 125 * jbd2_journal_begin_ordered_truncate() since there's no 126 * outstanding writes we need to flush. 127 */ 128 if (!EXT4_I(inode)->jinode) 129 return 0; 130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 131 EXT4_I(inode)->jinode, 132 new_size); 133 } 134 135 static void ext4_invalidatepage(struct page *page, unsigned int offset, 136 unsigned int length); 137 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 */ 145 static int ext4_inode_is_fast_symlink(struct inode *inode) 146 { 147 int ea_blocks = EXT4_I(inode)->i_file_acl ? 148 (inode->i_sb->s_blocksize >> 9) : 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages(&inode->i_data, 0); 218 219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 220 goto no_delete; 221 } 222 223 if (!is_bad_inode(inode)) 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages(&inode->i_data, 0); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 if (is_bad_inode(inode)) 232 goto no_delete; 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it 237 */ 238 sb_start_intwrite(inode->i_sb); 239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 240 ext4_blocks_for_truncate(inode)+3); 241 if (IS_ERR(handle)) { 242 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 243 /* 244 * If we're going to skip the normal cleanup, we still need to 245 * make sure that the in-core orphan linked list is properly 246 * cleaned up. 247 */ 248 ext4_orphan_del(NULL, inode); 249 sb_end_intwrite(inode->i_sb); 250 goto no_delete; 251 } 252 253 if (IS_SYNC(inode)) 254 ext4_handle_sync(handle); 255 inode->i_size = 0; 256 err = ext4_mark_inode_dirty(handle, inode); 257 if (err) { 258 ext4_warning(inode->i_sb, 259 "couldn't mark inode dirty (err %d)", err); 260 goto stop_handle; 261 } 262 if (inode->i_blocks) 263 ext4_truncate(inode); 264 265 /* 266 * ext4_ext_truncate() doesn't reserve any slop when it 267 * restarts journal transactions; therefore there may not be 268 * enough credits left in the handle to remove the inode from 269 * the orphan list and set the dtime field. 270 */ 271 if (!ext4_handle_has_enough_credits(handle, 3)) { 272 err = ext4_journal_extend(handle, 3); 273 if (err > 0) 274 err = ext4_journal_restart(handle, 3); 275 if (err != 0) { 276 ext4_warning(inode->i_sb, 277 "couldn't extend journal (err %d)", err); 278 stop_handle: 279 ext4_journal_stop(handle); 280 ext4_orphan_del(NULL, inode); 281 sb_end_intwrite(inode->i_sb); 282 goto no_delete; 283 } 284 } 285 286 /* 287 * Kill off the orphan record which ext4_truncate created. 288 * AKPM: I think this can be inside the above `if'. 289 * Note that ext4_orphan_del() has to be able to cope with the 290 * deletion of a non-existent orphan - this is because we don't 291 * know if ext4_truncate() actually created an orphan record. 292 * (Well, we could do this if we need to, but heck - it works) 293 */ 294 ext4_orphan_del(handle, inode); 295 EXT4_I(inode)->i_dtime = get_seconds(); 296 297 /* 298 * One subtle ordering requirement: if anything has gone wrong 299 * (transaction abort, IO errors, whatever), then we can still 300 * do these next steps (the fs will already have been marked as 301 * having errors), but we can't free the inode if the mark_dirty 302 * fails. 303 */ 304 if (ext4_mark_inode_dirty(handle, inode)) 305 /* If that failed, just do the required in-core inode clear. */ 306 ext4_clear_inode(inode); 307 else 308 ext4_free_inode(handle, inode); 309 ext4_journal_stop(handle); 310 sb_end_intwrite(inode->i_sb); 311 return; 312 no_delete: 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 314 } 315 316 #ifdef CONFIG_QUOTA 317 qsize_t *ext4_get_reserved_space(struct inode *inode) 318 { 319 return &EXT4_I(inode)->i_reserved_quota; 320 } 321 #endif 322 323 /* 324 * Calculate the number of metadata blocks need to reserve 325 * to allocate a block located at @lblock 326 */ 327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 328 { 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 330 return ext4_ext_calc_metadata_amount(inode, lblock); 331 332 return ext4_ind_calc_metadata_amount(inode, lblock); 333 } 334 335 /* 336 * Called with i_data_sem down, which is important since we can call 337 * ext4_discard_preallocations() from here. 338 */ 339 void ext4_da_update_reserve_space(struct inode *inode, 340 int used, int quota_claim) 341 { 342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 343 struct ext4_inode_info *ei = EXT4_I(inode); 344 345 spin_lock(&ei->i_block_reservation_lock); 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 347 if (unlikely(used > ei->i_reserved_data_blocks)) { 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 349 "with only %d reserved data blocks", 350 __func__, inode->i_ino, used, 351 ei->i_reserved_data_blocks); 352 WARN_ON(1); 353 used = ei->i_reserved_data_blocks; 354 } 355 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 357 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 358 "with only %d reserved metadata blocks " 359 "(releasing %d blocks with reserved %d data blocks)", 360 inode->i_ino, ei->i_allocated_meta_blocks, 361 ei->i_reserved_meta_blocks, used, 362 ei->i_reserved_data_blocks); 363 WARN_ON(1); 364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 365 } 366 367 /* Update per-inode reservations */ 368 ei->i_reserved_data_blocks -= used; 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 371 used + ei->i_allocated_meta_blocks); 372 ei->i_allocated_meta_blocks = 0; 373 374 if (ei->i_reserved_data_blocks == 0) { 375 /* 376 * We can release all of the reserved metadata blocks 377 * only when we have written all of the delayed 378 * allocation blocks. 379 */ 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 381 ei->i_reserved_meta_blocks); 382 ei->i_reserved_meta_blocks = 0; 383 ei->i_da_metadata_calc_len = 0; 384 } 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 386 387 /* Update quota subsystem for data blocks */ 388 if (quota_claim) 389 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 390 else { 391 /* 392 * We did fallocate with an offset that is already delayed 393 * allocated. So on delayed allocated writeback we should 394 * not re-claim the quota for fallocated blocks. 395 */ 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 397 } 398 399 /* 400 * If we have done all the pending block allocations and if 401 * there aren't any writers on the inode, we can discard the 402 * inode's preallocations. 403 */ 404 if ((ei->i_reserved_data_blocks == 0) && 405 (atomic_read(&inode->i_writecount) == 0)) 406 ext4_discard_preallocations(inode); 407 } 408 409 static int __check_block_validity(struct inode *inode, const char *func, 410 unsigned int line, 411 struct ext4_map_blocks *map) 412 { 413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 414 map->m_len)) { 415 ext4_error_inode(inode, func, line, map->m_pblk, 416 "lblock %lu mapped to illegal pblock " 417 "(length %d)", (unsigned long) map->m_lblk, 418 map->m_len); 419 return -EIO; 420 } 421 return 0; 422 } 423 424 #define check_block_validity(inode, map) \ 425 __check_block_validity((inode), __func__, __LINE__, (map)) 426 427 #ifdef ES_AGGRESSIVE_TEST 428 static void ext4_map_blocks_es_recheck(handle_t *handle, 429 struct inode *inode, 430 struct ext4_map_blocks *es_map, 431 struct ext4_map_blocks *map, 432 int flags) 433 { 434 int retval; 435 436 map->m_flags = 0; 437 /* 438 * There is a race window that the result is not the same. 439 * e.g. xfstests #223 when dioread_nolock enables. The reason 440 * is that we lookup a block mapping in extent status tree with 441 * out taking i_data_sem. So at the time the unwritten extent 442 * could be converted. 443 */ 444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 445 down_read((&EXT4_I(inode)->i_data_sem)); 446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 447 retval = ext4_ext_map_blocks(handle, inode, map, flags & 448 EXT4_GET_BLOCKS_KEEP_SIZE); 449 } else { 450 retval = ext4_ind_map_blocks(handle, inode, map, flags & 451 EXT4_GET_BLOCKS_KEEP_SIZE); 452 } 453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 454 up_read((&EXT4_I(inode)->i_data_sem)); 455 /* 456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 457 * because it shouldn't be marked in es_map->m_flags. 458 */ 459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 460 461 /* 462 * We don't check m_len because extent will be collpased in status 463 * tree. So the m_len might not equal. 464 */ 465 if (es_map->m_lblk != map->m_lblk || 466 es_map->m_flags != map->m_flags || 467 es_map->m_pblk != map->m_pblk) { 468 printk("ES cache assertion failed for inode: %lu " 469 "es_cached ex [%d/%d/%llu/%x] != " 470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 471 inode->i_ino, es_map->m_lblk, es_map->m_len, 472 es_map->m_pblk, es_map->m_flags, map->m_lblk, 473 map->m_len, map->m_pblk, map->m_flags, 474 retval, flags); 475 } 476 } 477 #endif /* ES_AGGRESSIVE_TEST */ 478 479 /* 480 * The ext4_map_blocks() function tries to look up the requested blocks, 481 * and returns if the blocks are already mapped. 482 * 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 484 * and store the allocated blocks in the result buffer head and mark it 485 * mapped. 486 * 487 * If file type is extents based, it will call ext4_ext_map_blocks(), 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 489 * based files 490 * 491 * On success, it returns the number of blocks being mapped or allocate. 492 * if create==0 and the blocks are pre-allocated and uninitialized block, 493 * the result buffer head is unmapped. If the create ==1, it will make sure 494 * the buffer head is mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, buffer head is unmapped 498 * 499 * It returns the error in case of allocation failure. 500 */ 501 int ext4_map_blocks(handle_t *handle, struct inode *inode, 502 struct ext4_map_blocks *map, int flags) 503 { 504 struct extent_status es; 505 int retval; 506 #ifdef ES_AGGRESSIVE_TEST 507 struct ext4_map_blocks orig_map; 508 509 memcpy(&orig_map, map, sizeof(*map)); 510 #endif 511 512 map->m_flags = 0; 513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 514 "logical block %lu\n", inode->i_ino, flags, map->m_len, 515 (unsigned long) map->m_lblk); 516 517 /* Lookup extent status tree firstly */ 518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 519 ext4_es_lru_add(inode); 520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 521 map->m_pblk = ext4_es_pblock(&es) + 522 map->m_lblk - es.es_lblk; 523 map->m_flags |= ext4_es_is_written(&es) ? 524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 525 retval = es.es_len - (map->m_lblk - es.es_lblk); 526 if (retval > map->m_len) 527 retval = map->m_len; 528 map->m_len = retval; 529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 530 retval = 0; 531 } else { 532 BUG_ON(1); 533 } 534 #ifdef ES_AGGRESSIVE_TEST 535 ext4_map_blocks_es_recheck(handle, inode, map, 536 &orig_map, flags); 537 #endif 538 goto found; 539 } 540 541 /* 542 * Try to see if we can get the block without requesting a new 543 * file system block. 544 */ 545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 546 down_read((&EXT4_I(inode)->i_data_sem)); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, flags & 549 EXT4_GET_BLOCKS_KEEP_SIZE); 550 } else { 551 retval = ext4_ind_map_blocks(handle, inode, map, flags & 552 EXT4_GET_BLOCKS_KEEP_SIZE); 553 } 554 if (retval > 0) { 555 int ret; 556 unsigned int status; 557 558 if (unlikely(retval != map->m_len)) { 559 ext4_warning(inode->i_sb, 560 "ES len assertion failed for inode " 561 "%lu: retval %d != map->m_len %d", 562 inode->i_ino, retval, map->m_len); 563 WARN_ON(1); 564 } 565 566 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 569 ext4_find_delalloc_range(inode, map->m_lblk, 570 map->m_lblk + map->m_len - 1)) 571 status |= EXTENT_STATUS_DELAYED; 572 ret = ext4_es_insert_extent(inode, map->m_lblk, 573 map->m_len, map->m_pblk, status); 574 if (ret < 0) 575 retval = ret; 576 } 577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 578 up_read((&EXT4_I(inode)->i_data_sem)); 579 580 found: 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 582 int ret = check_block_validity(inode, map); 583 if (ret != 0) 584 return ret; 585 } 586 587 /* If it is only a block(s) look up */ 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 589 return retval; 590 591 /* 592 * Returns if the blocks have already allocated 593 * 594 * Note that if blocks have been preallocated 595 * ext4_ext_get_block() returns the create = 0 596 * with buffer head unmapped. 597 */ 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 599 return retval; 600 601 /* 602 * Here we clear m_flags because after allocating an new extent, 603 * it will be set again. 604 */ 605 map->m_flags &= ~EXT4_MAP_FLAGS; 606 607 /* 608 * New blocks allocate and/or writing to uninitialized extent 609 * will possibly result in updating i_data, so we take 610 * the write lock of i_data_sem, and call get_blocks() 611 * with create == 1 flag. 612 */ 613 down_write((&EXT4_I(inode)->i_data_sem)); 614 615 /* 616 * if the caller is from delayed allocation writeout path 617 * we have already reserved fs blocks for allocation 618 * let the underlying get_block() function know to 619 * avoid double accounting 620 */ 621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 623 /* 624 * We need to check for EXT4 here because migrate 625 * could have changed the inode type in between 626 */ 627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 628 retval = ext4_ext_map_blocks(handle, inode, map, flags); 629 } else { 630 retval = ext4_ind_map_blocks(handle, inode, map, flags); 631 632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 633 /* 634 * We allocated new blocks which will result in 635 * i_data's format changing. Force the migrate 636 * to fail by clearing migrate flags 637 */ 638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 639 } 640 641 /* 642 * Update reserved blocks/metadata blocks after successful 643 * block allocation which had been deferred till now. We don't 644 * support fallocate for non extent files. So we can update 645 * reserve space here. 646 */ 647 if ((retval > 0) && 648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 649 ext4_da_update_reserve_space(inode, retval, 1); 650 } 651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 653 654 if (retval > 0) { 655 int ret; 656 unsigned int status; 657 658 if (unlikely(retval != map->m_len)) { 659 ext4_warning(inode->i_sb, 660 "ES len assertion failed for inode " 661 "%lu: retval %d != map->m_len %d", 662 inode->i_ino, retval, map->m_len); 663 WARN_ON(1); 664 } 665 666 /* 667 * If the extent has been zeroed out, we don't need to update 668 * extent status tree. 669 */ 670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 672 if (ext4_es_is_written(&es)) 673 goto has_zeroout; 674 } 675 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 678 ext4_find_delalloc_range(inode, map->m_lblk, 679 map->m_lblk + map->m_len - 1)) 680 status |= EXTENT_STATUS_DELAYED; 681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 682 map->m_pblk, status); 683 if (ret < 0) 684 retval = ret; 685 } 686 687 has_zeroout: 688 up_write((&EXT4_I(inode)->i_data_sem)); 689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 690 int ret = check_block_validity(inode, map); 691 if (ret != 0) 692 return ret; 693 } 694 return retval; 695 } 696 697 /* Maximum number of blocks we map for direct IO at once. */ 698 #define DIO_MAX_BLOCKS 4096 699 700 static int _ext4_get_block(struct inode *inode, sector_t iblock, 701 struct buffer_head *bh, int flags) 702 { 703 handle_t *handle = ext4_journal_current_handle(); 704 struct ext4_map_blocks map; 705 int ret = 0, started = 0; 706 int dio_credits; 707 708 if (ext4_has_inline_data(inode)) 709 return -ERANGE; 710 711 map.m_lblk = iblock; 712 map.m_len = bh->b_size >> inode->i_blkbits; 713 714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 715 /* Direct IO write... */ 716 if (map.m_len > DIO_MAX_BLOCKS) 717 map.m_len = DIO_MAX_BLOCKS; 718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 720 dio_credits); 721 if (IS_ERR(handle)) { 722 ret = PTR_ERR(handle); 723 return ret; 724 } 725 started = 1; 726 } 727 728 ret = ext4_map_blocks(handle, inode, &map, flags); 729 if (ret > 0) { 730 ext4_io_end_t *io_end = ext4_inode_aio(inode); 731 732 map_bh(bh, inode->i_sb, map.m_pblk); 733 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 734 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 735 set_buffer_defer_completion(bh); 736 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 737 ret = 0; 738 } 739 if (started) 740 ext4_journal_stop(handle); 741 return ret; 742 } 743 744 int ext4_get_block(struct inode *inode, sector_t iblock, 745 struct buffer_head *bh, int create) 746 { 747 return _ext4_get_block(inode, iblock, bh, 748 create ? EXT4_GET_BLOCKS_CREATE : 0); 749 } 750 751 /* 752 * `handle' can be NULL if create is zero 753 */ 754 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 755 ext4_lblk_t block, int create, int *errp) 756 { 757 struct ext4_map_blocks map; 758 struct buffer_head *bh; 759 int fatal = 0, err; 760 761 J_ASSERT(handle != NULL || create == 0); 762 763 map.m_lblk = block; 764 map.m_len = 1; 765 err = ext4_map_blocks(handle, inode, &map, 766 create ? EXT4_GET_BLOCKS_CREATE : 0); 767 768 /* ensure we send some value back into *errp */ 769 *errp = 0; 770 771 if (create && err == 0) 772 err = -ENOSPC; /* should never happen */ 773 if (err < 0) 774 *errp = err; 775 if (err <= 0) 776 return NULL; 777 778 bh = sb_getblk(inode->i_sb, map.m_pblk); 779 if (unlikely(!bh)) { 780 *errp = -ENOMEM; 781 return NULL; 782 } 783 if (map.m_flags & EXT4_MAP_NEW) { 784 J_ASSERT(create != 0); 785 J_ASSERT(handle != NULL); 786 787 /* 788 * Now that we do not always journal data, we should 789 * keep in mind whether this should always journal the 790 * new buffer as metadata. For now, regular file 791 * writes use ext4_get_block instead, so it's not a 792 * problem. 793 */ 794 lock_buffer(bh); 795 BUFFER_TRACE(bh, "call get_create_access"); 796 fatal = ext4_journal_get_create_access(handle, bh); 797 if (!fatal && !buffer_uptodate(bh)) { 798 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 799 set_buffer_uptodate(bh); 800 } 801 unlock_buffer(bh); 802 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 803 err = ext4_handle_dirty_metadata(handle, inode, bh); 804 if (!fatal) 805 fatal = err; 806 } else { 807 BUFFER_TRACE(bh, "not a new buffer"); 808 } 809 if (fatal) { 810 *errp = fatal; 811 brelse(bh); 812 bh = NULL; 813 } 814 return bh; 815 } 816 817 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 818 ext4_lblk_t block, int create, int *err) 819 { 820 struct buffer_head *bh; 821 822 bh = ext4_getblk(handle, inode, block, create, err); 823 if (!bh) 824 return bh; 825 if (buffer_uptodate(bh)) 826 return bh; 827 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 828 wait_on_buffer(bh); 829 if (buffer_uptodate(bh)) 830 return bh; 831 put_bh(bh); 832 *err = -EIO; 833 return NULL; 834 } 835 836 int ext4_walk_page_buffers(handle_t *handle, 837 struct buffer_head *head, 838 unsigned from, 839 unsigned to, 840 int *partial, 841 int (*fn)(handle_t *handle, 842 struct buffer_head *bh)) 843 { 844 struct buffer_head *bh; 845 unsigned block_start, block_end; 846 unsigned blocksize = head->b_size; 847 int err, ret = 0; 848 struct buffer_head *next; 849 850 for (bh = head, block_start = 0; 851 ret == 0 && (bh != head || !block_start); 852 block_start = block_end, bh = next) { 853 next = bh->b_this_page; 854 block_end = block_start + blocksize; 855 if (block_end <= from || block_start >= to) { 856 if (partial && !buffer_uptodate(bh)) 857 *partial = 1; 858 continue; 859 } 860 err = (*fn)(handle, bh); 861 if (!ret) 862 ret = err; 863 } 864 return ret; 865 } 866 867 /* 868 * To preserve ordering, it is essential that the hole instantiation and 869 * the data write be encapsulated in a single transaction. We cannot 870 * close off a transaction and start a new one between the ext4_get_block() 871 * and the commit_write(). So doing the jbd2_journal_start at the start of 872 * prepare_write() is the right place. 873 * 874 * Also, this function can nest inside ext4_writepage(). In that case, we 875 * *know* that ext4_writepage() has generated enough buffer credits to do the 876 * whole page. So we won't block on the journal in that case, which is good, 877 * because the caller may be PF_MEMALLOC. 878 * 879 * By accident, ext4 can be reentered when a transaction is open via 880 * quota file writes. If we were to commit the transaction while thus 881 * reentered, there can be a deadlock - we would be holding a quota 882 * lock, and the commit would never complete if another thread had a 883 * transaction open and was blocking on the quota lock - a ranking 884 * violation. 885 * 886 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 887 * will _not_ run commit under these circumstances because handle->h_ref 888 * is elevated. We'll still have enough credits for the tiny quotafile 889 * write. 890 */ 891 int do_journal_get_write_access(handle_t *handle, 892 struct buffer_head *bh) 893 { 894 int dirty = buffer_dirty(bh); 895 int ret; 896 897 if (!buffer_mapped(bh) || buffer_freed(bh)) 898 return 0; 899 /* 900 * __block_write_begin() could have dirtied some buffers. Clean 901 * the dirty bit as jbd2_journal_get_write_access() could complain 902 * otherwise about fs integrity issues. Setting of the dirty bit 903 * by __block_write_begin() isn't a real problem here as we clear 904 * the bit before releasing a page lock and thus writeback cannot 905 * ever write the buffer. 906 */ 907 if (dirty) 908 clear_buffer_dirty(bh); 909 ret = ext4_journal_get_write_access(handle, bh); 910 if (!ret && dirty) 911 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 912 return ret; 913 } 914 915 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 916 struct buffer_head *bh_result, int create); 917 static int ext4_write_begin(struct file *file, struct address_space *mapping, 918 loff_t pos, unsigned len, unsigned flags, 919 struct page **pagep, void **fsdata) 920 { 921 struct inode *inode = mapping->host; 922 int ret, needed_blocks; 923 handle_t *handle; 924 int retries = 0; 925 struct page *page; 926 pgoff_t index; 927 unsigned from, to; 928 929 trace_ext4_write_begin(inode, pos, len, flags); 930 /* 931 * Reserve one block more for addition to orphan list in case 932 * we allocate blocks but write fails for some reason 933 */ 934 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 935 index = pos >> PAGE_CACHE_SHIFT; 936 from = pos & (PAGE_CACHE_SIZE - 1); 937 to = from + len; 938 939 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 940 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 941 flags, pagep); 942 if (ret < 0) 943 return ret; 944 if (ret == 1) 945 return 0; 946 } 947 948 /* 949 * grab_cache_page_write_begin() can take a long time if the 950 * system is thrashing due to memory pressure, or if the page 951 * is being written back. So grab it first before we start 952 * the transaction handle. This also allows us to allocate 953 * the page (if needed) without using GFP_NOFS. 954 */ 955 retry_grab: 956 page = grab_cache_page_write_begin(mapping, index, flags); 957 if (!page) 958 return -ENOMEM; 959 unlock_page(page); 960 961 retry_journal: 962 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 963 if (IS_ERR(handle)) { 964 page_cache_release(page); 965 return PTR_ERR(handle); 966 } 967 968 lock_page(page); 969 if (page->mapping != mapping) { 970 /* The page got truncated from under us */ 971 unlock_page(page); 972 page_cache_release(page); 973 ext4_journal_stop(handle); 974 goto retry_grab; 975 } 976 /* In case writeback began while the page was unlocked */ 977 wait_for_stable_page(page); 978 979 if (ext4_should_dioread_nolock(inode)) 980 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 981 else 982 ret = __block_write_begin(page, pos, len, ext4_get_block); 983 984 if (!ret && ext4_should_journal_data(inode)) { 985 ret = ext4_walk_page_buffers(handle, page_buffers(page), 986 from, to, NULL, 987 do_journal_get_write_access); 988 } 989 990 if (ret) { 991 unlock_page(page); 992 /* 993 * __block_write_begin may have instantiated a few blocks 994 * outside i_size. Trim these off again. Don't need 995 * i_size_read because we hold i_mutex. 996 * 997 * Add inode to orphan list in case we crash before 998 * truncate finishes 999 */ 1000 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1001 ext4_orphan_add(handle, inode); 1002 1003 ext4_journal_stop(handle); 1004 if (pos + len > inode->i_size) { 1005 ext4_truncate_failed_write(inode); 1006 /* 1007 * If truncate failed early the inode might 1008 * still be on the orphan list; we need to 1009 * make sure the inode is removed from the 1010 * orphan list in that case. 1011 */ 1012 if (inode->i_nlink) 1013 ext4_orphan_del(NULL, inode); 1014 } 1015 1016 if (ret == -ENOSPC && 1017 ext4_should_retry_alloc(inode->i_sb, &retries)) 1018 goto retry_journal; 1019 page_cache_release(page); 1020 return ret; 1021 } 1022 *pagep = page; 1023 return ret; 1024 } 1025 1026 /* For write_end() in data=journal mode */ 1027 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1028 { 1029 int ret; 1030 if (!buffer_mapped(bh) || buffer_freed(bh)) 1031 return 0; 1032 set_buffer_uptodate(bh); 1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1034 clear_buffer_meta(bh); 1035 clear_buffer_prio(bh); 1036 return ret; 1037 } 1038 1039 /* 1040 * We need to pick up the new inode size which generic_commit_write gave us 1041 * `file' can be NULL - eg, when called from page_symlink(). 1042 * 1043 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1044 * buffers are managed internally. 1045 */ 1046 static int ext4_write_end(struct file *file, 1047 struct address_space *mapping, 1048 loff_t pos, unsigned len, unsigned copied, 1049 struct page *page, void *fsdata) 1050 { 1051 handle_t *handle = ext4_journal_current_handle(); 1052 struct inode *inode = mapping->host; 1053 int ret = 0, ret2; 1054 int i_size_changed = 0; 1055 1056 trace_ext4_write_end(inode, pos, len, copied); 1057 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1058 ret = ext4_jbd2_file_inode(handle, inode); 1059 if (ret) { 1060 unlock_page(page); 1061 page_cache_release(page); 1062 goto errout; 1063 } 1064 } 1065 1066 if (ext4_has_inline_data(inode)) { 1067 ret = ext4_write_inline_data_end(inode, pos, len, 1068 copied, page); 1069 if (ret < 0) 1070 goto errout; 1071 copied = ret; 1072 } else 1073 copied = block_write_end(file, mapping, pos, 1074 len, copied, page, fsdata); 1075 1076 /* 1077 * No need to use i_size_read() here, the i_size 1078 * cannot change under us because we hole i_mutex. 1079 * 1080 * But it's important to update i_size while still holding page lock: 1081 * page writeout could otherwise come in and zero beyond i_size. 1082 */ 1083 if (pos + copied > inode->i_size) { 1084 i_size_write(inode, pos + copied); 1085 i_size_changed = 1; 1086 } 1087 1088 if (pos + copied > EXT4_I(inode)->i_disksize) { 1089 /* We need to mark inode dirty even if 1090 * new_i_size is less that inode->i_size 1091 * but greater than i_disksize. (hint delalloc) 1092 */ 1093 ext4_update_i_disksize(inode, (pos + copied)); 1094 i_size_changed = 1; 1095 } 1096 unlock_page(page); 1097 page_cache_release(page); 1098 1099 /* 1100 * Don't mark the inode dirty under page lock. First, it unnecessarily 1101 * makes the holding time of page lock longer. Second, it forces lock 1102 * ordering of page lock and transaction start for journaling 1103 * filesystems. 1104 */ 1105 if (i_size_changed) 1106 ext4_mark_inode_dirty(handle, inode); 1107 1108 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1109 /* if we have allocated more blocks and copied 1110 * less. We will have blocks allocated outside 1111 * inode->i_size. So truncate them 1112 */ 1113 ext4_orphan_add(handle, inode); 1114 errout: 1115 ret2 = ext4_journal_stop(handle); 1116 if (!ret) 1117 ret = ret2; 1118 1119 if (pos + len > inode->i_size) { 1120 ext4_truncate_failed_write(inode); 1121 /* 1122 * If truncate failed early the inode might still be 1123 * on the orphan list; we need to make sure the inode 1124 * is removed from the orphan list in that case. 1125 */ 1126 if (inode->i_nlink) 1127 ext4_orphan_del(NULL, inode); 1128 } 1129 1130 return ret ? ret : copied; 1131 } 1132 1133 static int ext4_journalled_write_end(struct file *file, 1134 struct address_space *mapping, 1135 loff_t pos, unsigned len, unsigned copied, 1136 struct page *page, void *fsdata) 1137 { 1138 handle_t *handle = ext4_journal_current_handle(); 1139 struct inode *inode = mapping->host; 1140 int ret = 0, ret2; 1141 int partial = 0; 1142 unsigned from, to; 1143 loff_t new_i_size; 1144 1145 trace_ext4_journalled_write_end(inode, pos, len, copied); 1146 from = pos & (PAGE_CACHE_SIZE - 1); 1147 to = from + len; 1148 1149 BUG_ON(!ext4_handle_valid(handle)); 1150 1151 if (ext4_has_inline_data(inode)) 1152 copied = ext4_write_inline_data_end(inode, pos, len, 1153 copied, page); 1154 else { 1155 if (copied < len) { 1156 if (!PageUptodate(page)) 1157 copied = 0; 1158 page_zero_new_buffers(page, from+copied, to); 1159 } 1160 1161 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1162 to, &partial, write_end_fn); 1163 if (!partial) 1164 SetPageUptodate(page); 1165 } 1166 new_i_size = pos + copied; 1167 if (new_i_size > inode->i_size) 1168 i_size_write(inode, pos+copied); 1169 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1170 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1171 if (new_i_size > EXT4_I(inode)->i_disksize) { 1172 ext4_update_i_disksize(inode, new_i_size); 1173 ret2 = ext4_mark_inode_dirty(handle, inode); 1174 if (!ret) 1175 ret = ret2; 1176 } 1177 1178 unlock_page(page); 1179 page_cache_release(page); 1180 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1181 /* if we have allocated more blocks and copied 1182 * less. We will have blocks allocated outside 1183 * inode->i_size. So truncate them 1184 */ 1185 ext4_orphan_add(handle, inode); 1186 1187 ret2 = ext4_journal_stop(handle); 1188 if (!ret) 1189 ret = ret2; 1190 if (pos + len > inode->i_size) { 1191 ext4_truncate_failed_write(inode); 1192 /* 1193 * If truncate failed early the inode might still be 1194 * on the orphan list; we need to make sure the inode 1195 * is removed from the orphan list in that case. 1196 */ 1197 if (inode->i_nlink) 1198 ext4_orphan_del(NULL, inode); 1199 } 1200 1201 return ret ? ret : copied; 1202 } 1203 1204 /* 1205 * Reserve a metadata for a single block located at lblock 1206 */ 1207 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1208 { 1209 int retries = 0; 1210 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1211 struct ext4_inode_info *ei = EXT4_I(inode); 1212 unsigned int md_needed; 1213 ext4_lblk_t save_last_lblock; 1214 int save_len; 1215 1216 /* 1217 * recalculate the amount of metadata blocks to reserve 1218 * in order to allocate nrblocks 1219 * worse case is one extent per block 1220 */ 1221 repeat: 1222 spin_lock(&ei->i_block_reservation_lock); 1223 /* 1224 * ext4_calc_metadata_amount() has side effects, which we have 1225 * to be prepared undo if we fail to claim space. 1226 */ 1227 save_len = ei->i_da_metadata_calc_len; 1228 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1229 md_needed = EXT4_NUM_B2C(sbi, 1230 ext4_calc_metadata_amount(inode, lblock)); 1231 trace_ext4_da_reserve_space(inode, md_needed); 1232 1233 /* 1234 * We do still charge estimated metadata to the sb though; 1235 * we cannot afford to run out of free blocks. 1236 */ 1237 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1238 ei->i_da_metadata_calc_len = save_len; 1239 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1240 spin_unlock(&ei->i_block_reservation_lock); 1241 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1242 cond_resched(); 1243 goto repeat; 1244 } 1245 return -ENOSPC; 1246 } 1247 ei->i_reserved_meta_blocks += md_needed; 1248 spin_unlock(&ei->i_block_reservation_lock); 1249 1250 return 0; /* success */ 1251 } 1252 1253 /* 1254 * Reserve a single cluster located at lblock 1255 */ 1256 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1257 { 1258 int retries = 0; 1259 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1260 struct ext4_inode_info *ei = EXT4_I(inode); 1261 unsigned int md_needed; 1262 int ret; 1263 ext4_lblk_t save_last_lblock; 1264 int save_len; 1265 1266 /* 1267 * We will charge metadata quota at writeout time; this saves 1268 * us from metadata over-estimation, though we may go over by 1269 * a small amount in the end. Here we just reserve for data. 1270 */ 1271 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1272 if (ret) 1273 return ret; 1274 1275 /* 1276 * recalculate the amount of metadata blocks to reserve 1277 * in order to allocate nrblocks 1278 * worse case is one extent per block 1279 */ 1280 repeat: 1281 spin_lock(&ei->i_block_reservation_lock); 1282 /* 1283 * ext4_calc_metadata_amount() has side effects, which we have 1284 * to be prepared undo if we fail to claim space. 1285 */ 1286 save_len = ei->i_da_metadata_calc_len; 1287 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1288 md_needed = EXT4_NUM_B2C(sbi, 1289 ext4_calc_metadata_amount(inode, lblock)); 1290 trace_ext4_da_reserve_space(inode, md_needed); 1291 1292 /* 1293 * We do still charge estimated metadata to the sb though; 1294 * we cannot afford to run out of free blocks. 1295 */ 1296 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1297 ei->i_da_metadata_calc_len = save_len; 1298 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1299 spin_unlock(&ei->i_block_reservation_lock); 1300 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1301 cond_resched(); 1302 goto repeat; 1303 } 1304 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1305 return -ENOSPC; 1306 } 1307 ei->i_reserved_data_blocks++; 1308 ei->i_reserved_meta_blocks += md_needed; 1309 spin_unlock(&ei->i_block_reservation_lock); 1310 1311 return 0; /* success */ 1312 } 1313 1314 static void ext4_da_release_space(struct inode *inode, int to_free) 1315 { 1316 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1317 struct ext4_inode_info *ei = EXT4_I(inode); 1318 1319 if (!to_free) 1320 return; /* Nothing to release, exit */ 1321 1322 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1323 1324 trace_ext4_da_release_space(inode, to_free); 1325 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1326 /* 1327 * if there aren't enough reserved blocks, then the 1328 * counter is messed up somewhere. Since this 1329 * function is called from invalidate page, it's 1330 * harmless to return without any action. 1331 */ 1332 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1333 "ino %lu, to_free %d with only %d reserved " 1334 "data blocks", inode->i_ino, to_free, 1335 ei->i_reserved_data_blocks); 1336 WARN_ON(1); 1337 to_free = ei->i_reserved_data_blocks; 1338 } 1339 ei->i_reserved_data_blocks -= to_free; 1340 1341 if (ei->i_reserved_data_blocks == 0) { 1342 /* 1343 * We can release all of the reserved metadata blocks 1344 * only when we have written all of the delayed 1345 * allocation blocks. 1346 * Note that in case of bigalloc, i_reserved_meta_blocks, 1347 * i_reserved_data_blocks, etc. refer to number of clusters. 1348 */ 1349 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1350 ei->i_reserved_meta_blocks); 1351 ei->i_reserved_meta_blocks = 0; 1352 ei->i_da_metadata_calc_len = 0; 1353 } 1354 1355 /* update fs dirty data blocks counter */ 1356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1357 1358 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1359 1360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1361 } 1362 1363 static void ext4_da_page_release_reservation(struct page *page, 1364 unsigned int offset, 1365 unsigned int length) 1366 { 1367 int to_release = 0; 1368 struct buffer_head *head, *bh; 1369 unsigned int curr_off = 0; 1370 struct inode *inode = page->mapping->host; 1371 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1372 unsigned int stop = offset + length; 1373 int num_clusters; 1374 ext4_fsblk_t lblk; 1375 1376 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1377 1378 head = page_buffers(page); 1379 bh = head; 1380 do { 1381 unsigned int next_off = curr_off + bh->b_size; 1382 1383 if (next_off > stop) 1384 break; 1385 1386 if ((offset <= curr_off) && (buffer_delay(bh))) { 1387 to_release++; 1388 clear_buffer_delay(bh); 1389 } 1390 curr_off = next_off; 1391 } while ((bh = bh->b_this_page) != head); 1392 1393 if (to_release) { 1394 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1395 ext4_es_remove_extent(inode, lblk, to_release); 1396 } 1397 1398 /* If we have released all the blocks belonging to a cluster, then we 1399 * need to release the reserved space for that cluster. */ 1400 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1401 while (num_clusters > 0) { 1402 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1403 ((num_clusters - 1) << sbi->s_cluster_bits); 1404 if (sbi->s_cluster_ratio == 1 || 1405 !ext4_find_delalloc_cluster(inode, lblk)) 1406 ext4_da_release_space(inode, 1); 1407 1408 num_clusters--; 1409 } 1410 } 1411 1412 /* 1413 * Delayed allocation stuff 1414 */ 1415 1416 struct mpage_da_data { 1417 struct inode *inode; 1418 struct writeback_control *wbc; 1419 1420 pgoff_t first_page; /* The first page to write */ 1421 pgoff_t next_page; /* Current page to examine */ 1422 pgoff_t last_page; /* Last page to examine */ 1423 /* 1424 * Extent to map - this can be after first_page because that can be 1425 * fully mapped. We somewhat abuse m_flags to store whether the extent 1426 * is delalloc or unwritten. 1427 */ 1428 struct ext4_map_blocks map; 1429 struct ext4_io_submit io_submit; /* IO submission data */ 1430 }; 1431 1432 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1433 bool invalidate) 1434 { 1435 int nr_pages, i; 1436 pgoff_t index, end; 1437 struct pagevec pvec; 1438 struct inode *inode = mpd->inode; 1439 struct address_space *mapping = inode->i_mapping; 1440 1441 /* This is necessary when next_page == 0. */ 1442 if (mpd->first_page >= mpd->next_page) 1443 return; 1444 1445 index = mpd->first_page; 1446 end = mpd->next_page - 1; 1447 if (invalidate) { 1448 ext4_lblk_t start, last; 1449 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1450 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1451 ext4_es_remove_extent(inode, start, last - start + 1); 1452 } 1453 1454 pagevec_init(&pvec, 0); 1455 while (index <= end) { 1456 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1457 if (nr_pages == 0) 1458 break; 1459 for (i = 0; i < nr_pages; i++) { 1460 struct page *page = pvec.pages[i]; 1461 if (page->index > end) 1462 break; 1463 BUG_ON(!PageLocked(page)); 1464 BUG_ON(PageWriteback(page)); 1465 if (invalidate) { 1466 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1467 ClearPageUptodate(page); 1468 } 1469 unlock_page(page); 1470 } 1471 index = pvec.pages[nr_pages - 1]->index + 1; 1472 pagevec_release(&pvec); 1473 } 1474 } 1475 1476 static void ext4_print_free_blocks(struct inode *inode) 1477 { 1478 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1479 struct super_block *sb = inode->i_sb; 1480 struct ext4_inode_info *ei = EXT4_I(inode); 1481 1482 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1483 EXT4_C2B(EXT4_SB(inode->i_sb), 1484 ext4_count_free_clusters(sb))); 1485 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1486 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1487 (long long) EXT4_C2B(EXT4_SB(sb), 1488 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1489 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1490 (long long) EXT4_C2B(EXT4_SB(sb), 1491 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1492 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1493 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1494 ei->i_reserved_data_blocks); 1495 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1496 ei->i_reserved_meta_blocks); 1497 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1498 ei->i_allocated_meta_blocks); 1499 return; 1500 } 1501 1502 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1503 { 1504 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1505 } 1506 1507 /* 1508 * This function is grabs code from the very beginning of 1509 * ext4_map_blocks, but assumes that the caller is from delayed write 1510 * time. This function looks up the requested blocks and sets the 1511 * buffer delay bit under the protection of i_data_sem. 1512 */ 1513 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1514 struct ext4_map_blocks *map, 1515 struct buffer_head *bh) 1516 { 1517 struct extent_status es; 1518 int retval; 1519 sector_t invalid_block = ~((sector_t) 0xffff); 1520 #ifdef ES_AGGRESSIVE_TEST 1521 struct ext4_map_blocks orig_map; 1522 1523 memcpy(&orig_map, map, sizeof(*map)); 1524 #endif 1525 1526 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1527 invalid_block = ~0; 1528 1529 map->m_flags = 0; 1530 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1531 "logical block %lu\n", inode->i_ino, map->m_len, 1532 (unsigned long) map->m_lblk); 1533 1534 /* Lookup extent status tree firstly */ 1535 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1536 ext4_es_lru_add(inode); 1537 if (ext4_es_is_hole(&es)) { 1538 retval = 0; 1539 down_read((&EXT4_I(inode)->i_data_sem)); 1540 goto add_delayed; 1541 } 1542 1543 /* 1544 * Delayed extent could be allocated by fallocate. 1545 * So we need to check it. 1546 */ 1547 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1548 map_bh(bh, inode->i_sb, invalid_block); 1549 set_buffer_new(bh); 1550 set_buffer_delay(bh); 1551 return 0; 1552 } 1553 1554 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1555 retval = es.es_len - (iblock - es.es_lblk); 1556 if (retval > map->m_len) 1557 retval = map->m_len; 1558 map->m_len = retval; 1559 if (ext4_es_is_written(&es)) 1560 map->m_flags |= EXT4_MAP_MAPPED; 1561 else if (ext4_es_is_unwritten(&es)) 1562 map->m_flags |= EXT4_MAP_UNWRITTEN; 1563 else 1564 BUG_ON(1); 1565 1566 #ifdef ES_AGGRESSIVE_TEST 1567 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1568 #endif 1569 return retval; 1570 } 1571 1572 /* 1573 * Try to see if we can get the block without requesting a new 1574 * file system block. 1575 */ 1576 down_read((&EXT4_I(inode)->i_data_sem)); 1577 if (ext4_has_inline_data(inode)) { 1578 /* 1579 * We will soon create blocks for this page, and let 1580 * us pretend as if the blocks aren't allocated yet. 1581 * In case of clusters, we have to handle the work 1582 * of mapping from cluster so that the reserved space 1583 * is calculated properly. 1584 */ 1585 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1586 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1587 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1588 retval = 0; 1589 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1590 retval = ext4_ext_map_blocks(NULL, inode, map, 1591 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1592 else 1593 retval = ext4_ind_map_blocks(NULL, inode, map, 1594 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1595 1596 add_delayed: 1597 if (retval == 0) { 1598 int ret; 1599 /* 1600 * XXX: __block_prepare_write() unmaps passed block, 1601 * is it OK? 1602 */ 1603 /* 1604 * If the block was allocated from previously allocated cluster, 1605 * then we don't need to reserve it again. However we still need 1606 * to reserve metadata for every block we're going to write. 1607 */ 1608 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1609 ret = ext4_da_reserve_space(inode, iblock); 1610 if (ret) { 1611 /* not enough space to reserve */ 1612 retval = ret; 1613 goto out_unlock; 1614 } 1615 } else { 1616 ret = ext4_da_reserve_metadata(inode, iblock); 1617 if (ret) { 1618 /* not enough space to reserve */ 1619 retval = ret; 1620 goto out_unlock; 1621 } 1622 } 1623 1624 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1625 ~0, EXTENT_STATUS_DELAYED); 1626 if (ret) { 1627 retval = ret; 1628 goto out_unlock; 1629 } 1630 1631 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1632 * and it should not appear on the bh->b_state. 1633 */ 1634 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1635 1636 map_bh(bh, inode->i_sb, invalid_block); 1637 set_buffer_new(bh); 1638 set_buffer_delay(bh); 1639 } else if (retval > 0) { 1640 int ret; 1641 unsigned int status; 1642 1643 if (unlikely(retval != map->m_len)) { 1644 ext4_warning(inode->i_sb, 1645 "ES len assertion failed for inode " 1646 "%lu: retval %d != map->m_len %d", 1647 inode->i_ino, retval, map->m_len); 1648 WARN_ON(1); 1649 } 1650 1651 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1652 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1653 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1654 map->m_pblk, status); 1655 if (ret != 0) 1656 retval = ret; 1657 } 1658 1659 out_unlock: 1660 up_read((&EXT4_I(inode)->i_data_sem)); 1661 1662 return retval; 1663 } 1664 1665 /* 1666 * This is a special get_blocks_t callback which is used by 1667 * ext4_da_write_begin(). It will either return mapped block or 1668 * reserve space for a single block. 1669 * 1670 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1671 * We also have b_blocknr = -1 and b_bdev initialized properly 1672 * 1673 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1674 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1675 * initialized properly. 1676 */ 1677 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1678 struct buffer_head *bh, int create) 1679 { 1680 struct ext4_map_blocks map; 1681 int ret = 0; 1682 1683 BUG_ON(create == 0); 1684 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1685 1686 map.m_lblk = iblock; 1687 map.m_len = 1; 1688 1689 /* 1690 * first, we need to know whether the block is allocated already 1691 * preallocated blocks are unmapped but should treated 1692 * the same as allocated blocks. 1693 */ 1694 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1695 if (ret <= 0) 1696 return ret; 1697 1698 map_bh(bh, inode->i_sb, map.m_pblk); 1699 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1700 1701 if (buffer_unwritten(bh)) { 1702 /* A delayed write to unwritten bh should be marked 1703 * new and mapped. Mapped ensures that we don't do 1704 * get_block multiple times when we write to the same 1705 * offset and new ensures that we do proper zero out 1706 * for partial write. 1707 */ 1708 set_buffer_new(bh); 1709 set_buffer_mapped(bh); 1710 } 1711 return 0; 1712 } 1713 1714 static int bget_one(handle_t *handle, struct buffer_head *bh) 1715 { 1716 get_bh(bh); 1717 return 0; 1718 } 1719 1720 static int bput_one(handle_t *handle, struct buffer_head *bh) 1721 { 1722 put_bh(bh); 1723 return 0; 1724 } 1725 1726 static int __ext4_journalled_writepage(struct page *page, 1727 unsigned int len) 1728 { 1729 struct address_space *mapping = page->mapping; 1730 struct inode *inode = mapping->host; 1731 struct buffer_head *page_bufs = NULL; 1732 handle_t *handle = NULL; 1733 int ret = 0, err = 0; 1734 int inline_data = ext4_has_inline_data(inode); 1735 struct buffer_head *inode_bh = NULL; 1736 1737 ClearPageChecked(page); 1738 1739 if (inline_data) { 1740 BUG_ON(page->index != 0); 1741 BUG_ON(len > ext4_get_max_inline_size(inode)); 1742 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1743 if (inode_bh == NULL) 1744 goto out; 1745 } else { 1746 page_bufs = page_buffers(page); 1747 if (!page_bufs) { 1748 BUG(); 1749 goto out; 1750 } 1751 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1752 NULL, bget_one); 1753 } 1754 /* As soon as we unlock the page, it can go away, but we have 1755 * references to buffers so we are safe */ 1756 unlock_page(page); 1757 1758 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1759 ext4_writepage_trans_blocks(inode)); 1760 if (IS_ERR(handle)) { 1761 ret = PTR_ERR(handle); 1762 goto out; 1763 } 1764 1765 BUG_ON(!ext4_handle_valid(handle)); 1766 1767 if (inline_data) { 1768 ret = ext4_journal_get_write_access(handle, inode_bh); 1769 1770 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1771 1772 } else { 1773 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1774 do_journal_get_write_access); 1775 1776 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1777 write_end_fn); 1778 } 1779 if (ret == 0) 1780 ret = err; 1781 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1782 err = ext4_journal_stop(handle); 1783 if (!ret) 1784 ret = err; 1785 1786 if (!ext4_has_inline_data(inode)) 1787 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1788 NULL, bput_one); 1789 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1790 out: 1791 brelse(inode_bh); 1792 return ret; 1793 } 1794 1795 /* 1796 * Note that we don't need to start a transaction unless we're journaling data 1797 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1798 * need to file the inode to the transaction's list in ordered mode because if 1799 * we are writing back data added by write(), the inode is already there and if 1800 * we are writing back data modified via mmap(), no one guarantees in which 1801 * transaction the data will hit the disk. In case we are journaling data, we 1802 * cannot start transaction directly because transaction start ranks above page 1803 * lock so we have to do some magic. 1804 * 1805 * This function can get called via... 1806 * - ext4_writepages after taking page lock (have journal handle) 1807 * - journal_submit_inode_data_buffers (no journal handle) 1808 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1809 * - grab_page_cache when doing write_begin (have journal handle) 1810 * 1811 * We don't do any block allocation in this function. If we have page with 1812 * multiple blocks we need to write those buffer_heads that are mapped. This 1813 * is important for mmaped based write. So if we do with blocksize 1K 1814 * truncate(f, 1024); 1815 * a = mmap(f, 0, 4096); 1816 * a[0] = 'a'; 1817 * truncate(f, 4096); 1818 * we have in the page first buffer_head mapped via page_mkwrite call back 1819 * but other buffer_heads would be unmapped but dirty (dirty done via the 1820 * do_wp_page). So writepage should write the first block. If we modify 1821 * the mmap area beyond 1024 we will again get a page_fault and the 1822 * page_mkwrite callback will do the block allocation and mark the 1823 * buffer_heads mapped. 1824 * 1825 * We redirty the page if we have any buffer_heads that is either delay or 1826 * unwritten in the page. 1827 * 1828 * We can get recursively called as show below. 1829 * 1830 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1831 * ext4_writepage() 1832 * 1833 * But since we don't do any block allocation we should not deadlock. 1834 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1835 */ 1836 static int ext4_writepage(struct page *page, 1837 struct writeback_control *wbc) 1838 { 1839 int ret = 0; 1840 loff_t size; 1841 unsigned int len; 1842 struct buffer_head *page_bufs = NULL; 1843 struct inode *inode = page->mapping->host; 1844 struct ext4_io_submit io_submit; 1845 1846 trace_ext4_writepage(page); 1847 size = i_size_read(inode); 1848 if (page->index == size >> PAGE_CACHE_SHIFT) 1849 len = size & ~PAGE_CACHE_MASK; 1850 else 1851 len = PAGE_CACHE_SIZE; 1852 1853 page_bufs = page_buffers(page); 1854 /* 1855 * We cannot do block allocation or other extent handling in this 1856 * function. If there are buffers needing that, we have to redirty 1857 * the page. But we may reach here when we do a journal commit via 1858 * journal_submit_inode_data_buffers() and in that case we must write 1859 * allocated buffers to achieve data=ordered mode guarantees. 1860 */ 1861 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1862 ext4_bh_delay_or_unwritten)) { 1863 redirty_page_for_writepage(wbc, page); 1864 if (current->flags & PF_MEMALLOC) { 1865 /* 1866 * For memory cleaning there's no point in writing only 1867 * some buffers. So just bail out. Warn if we came here 1868 * from direct reclaim. 1869 */ 1870 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1871 == PF_MEMALLOC); 1872 unlock_page(page); 1873 return 0; 1874 } 1875 } 1876 1877 if (PageChecked(page) && ext4_should_journal_data(inode)) 1878 /* 1879 * It's mmapped pagecache. Add buffers and journal it. There 1880 * doesn't seem much point in redirtying the page here. 1881 */ 1882 return __ext4_journalled_writepage(page, len); 1883 1884 ext4_io_submit_init(&io_submit, wbc); 1885 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1886 if (!io_submit.io_end) { 1887 redirty_page_for_writepage(wbc, page); 1888 unlock_page(page); 1889 return -ENOMEM; 1890 } 1891 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 1892 ext4_io_submit(&io_submit); 1893 /* Drop io_end reference we got from init */ 1894 ext4_put_io_end_defer(io_submit.io_end); 1895 return ret; 1896 } 1897 1898 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1899 { 1900 int len; 1901 loff_t size = i_size_read(mpd->inode); 1902 int err; 1903 1904 BUG_ON(page->index != mpd->first_page); 1905 if (page->index == size >> PAGE_CACHE_SHIFT) 1906 len = size & ~PAGE_CACHE_MASK; 1907 else 1908 len = PAGE_CACHE_SIZE; 1909 clear_page_dirty_for_io(page); 1910 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc); 1911 if (!err) 1912 mpd->wbc->nr_to_write--; 1913 mpd->first_page++; 1914 1915 return err; 1916 } 1917 1918 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1919 1920 /* 1921 * mballoc gives us at most this number of blocks... 1922 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1923 * The rest of mballoc seems to handle chunks up to full group size. 1924 */ 1925 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1926 1927 /* 1928 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1929 * 1930 * @mpd - extent of blocks 1931 * @lblk - logical number of the block in the file 1932 * @bh - buffer head we want to add to the extent 1933 * 1934 * The function is used to collect contig. blocks in the same state. If the 1935 * buffer doesn't require mapping for writeback and we haven't started the 1936 * extent of buffers to map yet, the function returns 'true' immediately - the 1937 * caller can write the buffer right away. Otherwise the function returns true 1938 * if the block has been added to the extent, false if the block couldn't be 1939 * added. 1940 */ 1941 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1942 struct buffer_head *bh) 1943 { 1944 struct ext4_map_blocks *map = &mpd->map; 1945 1946 /* Buffer that doesn't need mapping for writeback? */ 1947 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1948 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1949 /* So far no extent to map => we write the buffer right away */ 1950 if (map->m_len == 0) 1951 return true; 1952 return false; 1953 } 1954 1955 /* First block in the extent? */ 1956 if (map->m_len == 0) { 1957 map->m_lblk = lblk; 1958 map->m_len = 1; 1959 map->m_flags = bh->b_state & BH_FLAGS; 1960 return true; 1961 } 1962 1963 /* Don't go larger than mballoc is willing to allocate */ 1964 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1965 return false; 1966 1967 /* Can we merge the block to our big extent? */ 1968 if (lblk == map->m_lblk + map->m_len && 1969 (bh->b_state & BH_FLAGS) == map->m_flags) { 1970 map->m_len++; 1971 return true; 1972 } 1973 return false; 1974 } 1975 1976 /* 1977 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1978 * 1979 * @mpd - extent of blocks for mapping 1980 * @head - the first buffer in the page 1981 * @bh - buffer we should start processing from 1982 * @lblk - logical number of the block in the file corresponding to @bh 1983 * 1984 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1985 * the page for IO if all buffers in this page were mapped and there's no 1986 * accumulated extent of buffers to map or add buffers in the page to the 1987 * extent of buffers to map. The function returns 1 if the caller can continue 1988 * by processing the next page, 0 if it should stop adding buffers to the 1989 * extent to map because we cannot extend it anymore. It can also return value 1990 * < 0 in case of error during IO submission. 1991 */ 1992 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1993 struct buffer_head *head, 1994 struct buffer_head *bh, 1995 ext4_lblk_t lblk) 1996 { 1997 struct inode *inode = mpd->inode; 1998 int err; 1999 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2000 >> inode->i_blkbits; 2001 2002 do { 2003 BUG_ON(buffer_locked(bh)); 2004 2005 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2006 /* Found extent to map? */ 2007 if (mpd->map.m_len) 2008 return 0; 2009 /* Everything mapped so far and we hit EOF */ 2010 break; 2011 } 2012 } while (lblk++, (bh = bh->b_this_page) != head); 2013 /* So far everything mapped? Submit the page for IO. */ 2014 if (mpd->map.m_len == 0) { 2015 err = mpage_submit_page(mpd, head->b_page); 2016 if (err < 0) 2017 return err; 2018 } 2019 return lblk < blocks; 2020 } 2021 2022 /* 2023 * mpage_map_buffers - update buffers corresponding to changed extent and 2024 * submit fully mapped pages for IO 2025 * 2026 * @mpd - description of extent to map, on return next extent to map 2027 * 2028 * Scan buffers corresponding to changed extent (we expect corresponding pages 2029 * to be already locked) and update buffer state according to new extent state. 2030 * We map delalloc buffers to their physical location, clear unwritten bits, 2031 * and mark buffers as uninit when we perform writes to uninitialized extents 2032 * and do extent conversion after IO is finished. If the last page is not fully 2033 * mapped, we update @map to the next extent in the last page that needs 2034 * mapping. Otherwise we submit the page for IO. 2035 */ 2036 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2037 { 2038 struct pagevec pvec; 2039 int nr_pages, i; 2040 struct inode *inode = mpd->inode; 2041 struct buffer_head *head, *bh; 2042 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2043 pgoff_t start, end; 2044 ext4_lblk_t lblk; 2045 sector_t pblock; 2046 int err; 2047 2048 start = mpd->map.m_lblk >> bpp_bits; 2049 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2050 lblk = start << bpp_bits; 2051 pblock = mpd->map.m_pblk; 2052 2053 pagevec_init(&pvec, 0); 2054 while (start <= end) { 2055 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2056 PAGEVEC_SIZE); 2057 if (nr_pages == 0) 2058 break; 2059 for (i = 0; i < nr_pages; i++) { 2060 struct page *page = pvec.pages[i]; 2061 2062 if (page->index > end) 2063 break; 2064 /* Up to 'end' pages must be contiguous */ 2065 BUG_ON(page->index != start); 2066 bh = head = page_buffers(page); 2067 do { 2068 if (lblk < mpd->map.m_lblk) 2069 continue; 2070 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2071 /* 2072 * Buffer after end of mapped extent. 2073 * Find next buffer in the page to map. 2074 */ 2075 mpd->map.m_len = 0; 2076 mpd->map.m_flags = 0; 2077 /* 2078 * FIXME: If dioread_nolock supports 2079 * blocksize < pagesize, we need to make 2080 * sure we add size mapped so far to 2081 * io_end->size as the following call 2082 * can submit the page for IO. 2083 */ 2084 err = mpage_process_page_bufs(mpd, head, 2085 bh, lblk); 2086 pagevec_release(&pvec); 2087 if (err > 0) 2088 err = 0; 2089 return err; 2090 } 2091 if (buffer_delay(bh)) { 2092 clear_buffer_delay(bh); 2093 bh->b_blocknr = pblock++; 2094 } 2095 clear_buffer_unwritten(bh); 2096 } while (lblk++, (bh = bh->b_this_page) != head); 2097 2098 /* 2099 * FIXME: This is going to break if dioread_nolock 2100 * supports blocksize < pagesize as we will try to 2101 * convert potentially unmapped parts of inode. 2102 */ 2103 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2104 /* Page fully mapped - let IO run! */ 2105 err = mpage_submit_page(mpd, page); 2106 if (err < 0) { 2107 pagevec_release(&pvec); 2108 return err; 2109 } 2110 start++; 2111 } 2112 pagevec_release(&pvec); 2113 } 2114 /* Extent fully mapped and matches with page boundary. We are done. */ 2115 mpd->map.m_len = 0; 2116 mpd->map.m_flags = 0; 2117 return 0; 2118 } 2119 2120 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2121 { 2122 struct inode *inode = mpd->inode; 2123 struct ext4_map_blocks *map = &mpd->map; 2124 int get_blocks_flags; 2125 int err; 2126 2127 trace_ext4_da_write_pages_extent(inode, map); 2128 /* 2129 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2130 * to convert an uninitialized extent to be initialized (in the case 2131 * where we have written into one or more preallocated blocks). It is 2132 * possible that we're going to need more metadata blocks than 2133 * previously reserved. However we must not fail because we're in 2134 * writeback and there is nothing we can do about it so it might result 2135 * in data loss. So use reserved blocks to allocate metadata if 2136 * possible. 2137 * 2138 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2139 * in question are delalloc blocks. This affects functions in many 2140 * different parts of the allocation call path. This flag exists 2141 * primarily because we don't want to change *many* call functions, so 2142 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2143 * once the inode's allocation semaphore is taken. 2144 */ 2145 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2146 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2147 if (ext4_should_dioread_nolock(inode)) 2148 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2149 if (map->m_flags & (1 << BH_Delay)) 2150 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2151 2152 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2153 if (err < 0) 2154 return err; 2155 if (map->m_flags & EXT4_MAP_UNINIT) { 2156 if (!mpd->io_submit.io_end->handle && 2157 ext4_handle_valid(handle)) { 2158 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2159 handle->h_rsv_handle = NULL; 2160 } 2161 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2162 } 2163 2164 BUG_ON(map->m_len == 0); 2165 if (map->m_flags & EXT4_MAP_NEW) { 2166 struct block_device *bdev = inode->i_sb->s_bdev; 2167 int i; 2168 2169 for (i = 0; i < map->m_len; i++) 2170 unmap_underlying_metadata(bdev, map->m_pblk + i); 2171 } 2172 return 0; 2173 } 2174 2175 /* 2176 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2177 * mpd->len and submit pages underlying it for IO 2178 * 2179 * @handle - handle for journal operations 2180 * @mpd - extent to map 2181 * @give_up_on_write - we set this to true iff there is a fatal error and there 2182 * is no hope of writing the data. The caller should discard 2183 * dirty pages to avoid infinite loops. 2184 * 2185 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2186 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2187 * them to initialized or split the described range from larger unwritten 2188 * extent. Note that we need not map all the described range since allocation 2189 * can return less blocks or the range is covered by more unwritten extents. We 2190 * cannot map more because we are limited by reserved transaction credits. On 2191 * the other hand we always make sure that the last touched page is fully 2192 * mapped so that it can be written out (and thus forward progress is 2193 * guaranteed). After mapping we submit all mapped pages for IO. 2194 */ 2195 static int mpage_map_and_submit_extent(handle_t *handle, 2196 struct mpage_da_data *mpd, 2197 bool *give_up_on_write) 2198 { 2199 struct inode *inode = mpd->inode; 2200 struct ext4_map_blocks *map = &mpd->map; 2201 int err; 2202 loff_t disksize; 2203 2204 mpd->io_submit.io_end->offset = 2205 ((loff_t)map->m_lblk) << inode->i_blkbits; 2206 do { 2207 err = mpage_map_one_extent(handle, mpd); 2208 if (err < 0) { 2209 struct super_block *sb = inode->i_sb; 2210 2211 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2212 goto invalidate_dirty_pages; 2213 /* 2214 * Let the uper layers retry transient errors. 2215 * In the case of ENOSPC, if ext4_count_free_blocks() 2216 * is non-zero, a commit should free up blocks. 2217 */ 2218 if ((err == -ENOMEM) || 2219 (err == -ENOSPC && ext4_count_free_clusters(sb))) 2220 return err; 2221 ext4_msg(sb, KERN_CRIT, 2222 "Delayed block allocation failed for " 2223 "inode %lu at logical offset %llu with" 2224 " max blocks %u with error %d", 2225 inode->i_ino, 2226 (unsigned long long)map->m_lblk, 2227 (unsigned)map->m_len, -err); 2228 ext4_msg(sb, KERN_CRIT, 2229 "This should not happen!! Data will " 2230 "be lost\n"); 2231 if (err == -ENOSPC) 2232 ext4_print_free_blocks(inode); 2233 invalidate_dirty_pages: 2234 *give_up_on_write = true; 2235 return err; 2236 } 2237 /* 2238 * Update buffer state, submit mapped pages, and get us new 2239 * extent to map 2240 */ 2241 err = mpage_map_and_submit_buffers(mpd); 2242 if (err < 0) 2243 return err; 2244 } while (map->m_len); 2245 2246 /* Update on-disk size after IO is submitted */ 2247 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2248 if (disksize > EXT4_I(inode)->i_disksize) { 2249 int err2; 2250 2251 ext4_wb_update_i_disksize(inode, disksize); 2252 err2 = ext4_mark_inode_dirty(handle, inode); 2253 if (err2) 2254 ext4_error(inode->i_sb, 2255 "Failed to mark inode %lu dirty", 2256 inode->i_ino); 2257 if (!err) 2258 err = err2; 2259 } 2260 return err; 2261 } 2262 2263 /* 2264 * Calculate the total number of credits to reserve for one writepages 2265 * iteration. This is called from ext4_writepages(). We map an extent of 2266 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2267 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2268 * bpp - 1 blocks in bpp different extents. 2269 */ 2270 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2271 { 2272 int bpp = ext4_journal_blocks_per_page(inode); 2273 2274 return ext4_meta_trans_blocks(inode, 2275 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2276 } 2277 2278 /* 2279 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2280 * and underlying extent to map 2281 * 2282 * @mpd - where to look for pages 2283 * 2284 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2285 * IO immediately. When we find a page which isn't mapped we start accumulating 2286 * extent of buffers underlying these pages that needs mapping (formed by 2287 * either delayed or unwritten buffers). We also lock the pages containing 2288 * these buffers. The extent found is returned in @mpd structure (starting at 2289 * mpd->lblk with length mpd->len blocks). 2290 * 2291 * Note that this function can attach bios to one io_end structure which are 2292 * neither logically nor physically contiguous. Although it may seem as an 2293 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2294 * case as we need to track IO to all buffers underlying a page in one io_end. 2295 */ 2296 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2297 { 2298 struct address_space *mapping = mpd->inode->i_mapping; 2299 struct pagevec pvec; 2300 unsigned int nr_pages; 2301 long left = mpd->wbc->nr_to_write; 2302 pgoff_t index = mpd->first_page; 2303 pgoff_t end = mpd->last_page; 2304 int tag; 2305 int i, err = 0; 2306 int blkbits = mpd->inode->i_blkbits; 2307 ext4_lblk_t lblk; 2308 struct buffer_head *head; 2309 2310 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2311 tag = PAGECACHE_TAG_TOWRITE; 2312 else 2313 tag = PAGECACHE_TAG_DIRTY; 2314 2315 pagevec_init(&pvec, 0); 2316 mpd->map.m_len = 0; 2317 mpd->next_page = index; 2318 while (index <= end) { 2319 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2320 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2321 if (nr_pages == 0) 2322 goto out; 2323 2324 for (i = 0; i < nr_pages; i++) { 2325 struct page *page = pvec.pages[i]; 2326 2327 /* 2328 * At this point, the page may be truncated or 2329 * invalidated (changing page->mapping to NULL), or 2330 * even swizzled back from swapper_space to tmpfs file 2331 * mapping. However, page->index will not change 2332 * because we have a reference on the page. 2333 */ 2334 if (page->index > end) 2335 goto out; 2336 2337 /* 2338 * Accumulated enough dirty pages? This doesn't apply 2339 * to WB_SYNC_ALL mode. For integrity sync we have to 2340 * keep going because someone may be concurrently 2341 * dirtying pages, and we might have synced a lot of 2342 * newly appeared dirty pages, but have not synced all 2343 * of the old dirty pages. 2344 */ 2345 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2346 goto out; 2347 2348 /* If we can't merge this page, we are done. */ 2349 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2350 goto out; 2351 2352 lock_page(page); 2353 /* 2354 * If the page is no longer dirty, or its mapping no 2355 * longer corresponds to inode we are writing (which 2356 * means it has been truncated or invalidated), or the 2357 * page is already under writeback and we are not doing 2358 * a data integrity writeback, skip the page 2359 */ 2360 if (!PageDirty(page) || 2361 (PageWriteback(page) && 2362 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2363 unlikely(page->mapping != mapping)) { 2364 unlock_page(page); 2365 continue; 2366 } 2367 2368 wait_on_page_writeback(page); 2369 BUG_ON(PageWriteback(page)); 2370 2371 if (mpd->map.m_len == 0) 2372 mpd->first_page = page->index; 2373 mpd->next_page = page->index + 1; 2374 /* Add all dirty buffers to mpd */ 2375 lblk = ((ext4_lblk_t)page->index) << 2376 (PAGE_CACHE_SHIFT - blkbits); 2377 head = page_buffers(page); 2378 err = mpage_process_page_bufs(mpd, head, head, lblk); 2379 if (err <= 0) 2380 goto out; 2381 err = 0; 2382 left--; 2383 } 2384 pagevec_release(&pvec); 2385 cond_resched(); 2386 } 2387 return 0; 2388 out: 2389 pagevec_release(&pvec); 2390 return err; 2391 } 2392 2393 static int __writepage(struct page *page, struct writeback_control *wbc, 2394 void *data) 2395 { 2396 struct address_space *mapping = data; 2397 int ret = ext4_writepage(page, wbc); 2398 mapping_set_error(mapping, ret); 2399 return ret; 2400 } 2401 2402 static int ext4_writepages(struct address_space *mapping, 2403 struct writeback_control *wbc) 2404 { 2405 pgoff_t writeback_index = 0; 2406 long nr_to_write = wbc->nr_to_write; 2407 int range_whole = 0; 2408 int cycled = 1; 2409 handle_t *handle = NULL; 2410 struct mpage_da_data mpd; 2411 struct inode *inode = mapping->host; 2412 int needed_blocks, rsv_blocks = 0, ret = 0; 2413 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2414 bool done; 2415 struct blk_plug plug; 2416 bool give_up_on_write = false; 2417 2418 trace_ext4_writepages(inode, wbc); 2419 2420 /* 2421 * No pages to write? This is mainly a kludge to avoid starting 2422 * a transaction for special inodes like journal inode on last iput() 2423 * because that could violate lock ordering on umount 2424 */ 2425 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2426 goto out_writepages; 2427 2428 if (ext4_should_journal_data(inode)) { 2429 struct blk_plug plug; 2430 2431 blk_start_plug(&plug); 2432 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2433 blk_finish_plug(&plug); 2434 goto out_writepages; 2435 } 2436 2437 /* 2438 * If the filesystem has aborted, it is read-only, so return 2439 * right away instead of dumping stack traces later on that 2440 * will obscure the real source of the problem. We test 2441 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2442 * the latter could be true if the filesystem is mounted 2443 * read-only, and in that case, ext4_writepages should 2444 * *never* be called, so if that ever happens, we would want 2445 * the stack trace. 2446 */ 2447 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2448 ret = -EROFS; 2449 goto out_writepages; 2450 } 2451 2452 if (ext4_should_dioread_nolock(inode)) { 2453 /* 2454 * We may need to convert up to one extent per block in 2455 * the page and we may dirty the inode. 2456 */ 2457 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2458 } 2459 2460 /* 2461 * If we have inline data and arrive here, it means that 2462 * we will soon create the block for the 1st page, so 2463 * we'd better clear the inline data here. 2464 */ 2465 if (ext4_has_inline_data(inode)) { 2466 /* Just inode will be modified... */ 2467 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2468 if (IS_ERR(handle)) { 2469 ret = PTR_ERR(handle); 2470 goto out_writepages; 2471 } 2472 BUG_ON(ext4_test_inode_state(inode, 2473 EXT4_STATE_MAY_INLINE_DATA)); 2474 ext4_destroy_inline_data(handle, inode); 2475 ext4_journal_stop(handle); 2476 } 2477 2478 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2479 range_whole = 1; 2480 2481 if (wbc->range_cyclic) { 2482 writeback_index = mapping->writeback_index; 2483 if (writeback_index) 2484 cycled = 0; 2485 mpd.first_page = writeback_index; 2486 mpd.last_page = -1; 2487 } else { 2488 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2489 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2490 } 2491 2492 mpd.inode = inode; 2493 mpd.wbc = wbc; 2494 ext4_io_submit_init(&mpd.io_submit, wbc); 2495 retry: 2496 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2497 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2498 done = false; 2499 blk_start_plug(&plug); 2500 while (!done && mpd.first_page <= mpd.last_page) { 2501 /* For each extent of pages we use new io_end */ 2502 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2503 if (!mpd.io_submit.io_end) { 2504 ret = -ENOMEM; 2505 break; 2506 } 2507 2508 /* 2509 * We have two constraints: We find one extent to map and we 2510 * must always write out whole page (makes a difference when 2511 * blocksize < pagesize) so that we don't block on IO when we 2512 * try to write out the rest of the page. Journalled mode is 2513 * not supported by delalloc. 2514 */ 2515 BUG_ON(ext4_should_journal_data(inode)); 2516 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2517 2518 /* start a new transaction */ 2519 handle = ext4_journal_start_with_reserve(inode, 2520 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2521 if (IS_ERR(handle)) { 2522 ret = PTR_ERR(handle); 2523 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2524 "%ld pages, ino %lu; err %d", __func__, 2525 wbc->nr_to_write, inode->i_ino, ret); 2526 /* Release allocated io_end */ 2527 ext4_put_io_end(mpd.io_submit.io_end); 2528 break; 2529 } 2530 2531 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2532 ret = mpage_prepare_extent_to_map(&mpd); 2533 if (!ret) { 2534 if (mpd.map.m_len) 2535 ret = mpage_map_and_submit_extent(handle, &mpd, 2536 &give_up_on_write); 2537 else { 2538 /* 2539 * We scanned the whole range (or exhausted 2540 * nr_to_write), submitted what was mapped and 2541 * didn't find anything needing mapping. We are 2542 * done. 2543 */ 2544 done = true; 2545 } 2546 } 2547 ext4_journal_stop(handle); 2548 /* Submit prepared bio */ 2549 ext4_io_submit(&mpd.io_submit); 2550 /* Unlock pages we didn't use */ 2551 mpage_release_unused_pages(&mpd, give_up_on_write); 2552 /* Drop our io_end reference we got from init */ 2553 ext4_put_io_end(mpd.io_submit.io_end); 2554 2555 if (ret == -ENOSPC && sbi->s_journal) { 2556 /* 2557 * Commit the transaction which would 2558 * free blocks released in the transaction 2559 * and try again 2560 */ 2561 jbd2_journal_force_commit_nested(sbi->s_journal); 2562 ret = 0; 2563 continue; 2564 } 2565 /* Fatal error - ENOMEM, EIO... */ 2566 if (ret) 2567 break; 2568 } 2569 blk_finish_plug(&plug); 2570 if (!ret && !cycled && wbc->nr_to_write > 0) { 2571 cycled = 1; 2572 mpd.last_page = writeback_index - 1; 2573 mpd.first_page = 0; 2574 goto retry; 2575 } 2576 2577 /* Update index */ 2578 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2579 /* 2580 * Set the writeback_index so that range_cyclic 2581 * mode will write it back later 2582 */ 2583 mapping->writeback_index = mpd.first_page; 2584 2585 out_writepages: 2586 trace_ext4_writepages_result(inode, wbc, ret, 2587 nr_to_write - wbc->nr_to_write); 2588 return ret; 2589 } 2590 2591 static int ext4_nonda_switch(struct super_block *sb) 2592 { 2593 s64 free_clusters, dirty_clusters; 2594 struct ext4_sb_info *sbi = EXT4_SB(sb); 2595 2596 /* 2597 * switch to non delalloc mode if we are running low 2598 * on free block. The free block accounting via percpu 2599 * counters can get slightly wrong with percpu_counter_batch getting 2600 * accumulated on each CPU without updating global counters 2601 * Delalloc need an accurate free block accounting. So switch 2602 * to non delalloc when we are near to error range. 2603 */ 2604 free_clusters = 2605 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2606 dirty_clusters = 2607 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2608 /* 2609 * Start pushing delalloc when 1/2 of free blocks are dirty. 2610 */ 2611 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2612 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2613 2614 if (2 * free_clusters < 3 * dirty_clusters || 2615 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2616 /* 2617 * free block count is less than 150% of dirty blocks 2618 * or free blocks is less than watermark 2619 */ 2620 return 1; 2621 } 2622 return 0; 2623 } 2624 2625 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2626 loff_t pos, unsigned len, unsigned flags, 2627 struct page **pagep, void **fsdata) 2628 { 2629 int ret, retries = 0; 2630 struct page *page; 2631 pgoff_t index; 2632 struct inode *inode = mapping->host; 2633 handle_t *handle; 2634 2635 index = pos >> PAGE_CACHE_SHIFT; 2636 2637 if (ext4_nonda_switch(inode->i_sb)) { 2638 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2639 return ext4_write_begin(file, mapping, pos, 2640 len, flags, pagep, fsdata); 2641 } 2642 *fsdata = (void *)0; 2643 trace_ext4_da_write_begin(inode, pos, len, flags); 2644 2645 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2646 ret = ext4_da_write_inline_data_begin(mapping, inode, 2647 pos, len, flags, 2648 pagep, fsdata); 2649 if (ret < 0) 2650 return ret; 2651 if (ret == 1) 2652 return 0; 2653 } 2654 2655 /* 2656 * grab_cache_page_write_begin() can take a long time if the 2657 * system is thrashing due to memory pressure, or if the page 2658 * is being written back. So grab it first before we start 2659 * the transaction handle. This also allows us to allocate 2660 * the page (if needed) without using GFP_NOFS. 2661 */ 2662 retry_grab: 2663 page = grab_cache_page_write_begin(mapping, index, flags); 2664 if (!page) 2665 return -ENOMEM; 2666 unlock_page(page); 2667 2668 /* 2669 * With delayed allocation, we don't log the i_disksize update 2670 * if there is delayed block allocation. But we still need 2671 * to journalling the i_disksize update if writes to the end 2672 * of file which has an already mapped buffer. 2673 */ 2674 retry_journal: 2675 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2676 if (IS_ERR(handle)) { 2677 page_cache_release(page); 2678 return PTR_ERR(handle); 2679 } 2680 2681 lock_page(page); 2682 if (page->mapping != mapping) { 2683 /* The page got truncated from under us */ 2684 unlock_page(page); 2685 page_cache_release(page); 2686 ext4_journal_stop(handle); 2687 goto retry_grab; 2688 } 2689 /* In case writeback began while the page was unlocked */ 2690 wait_for_stable_page(page); 2691 2692 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2693 if (ret < 0) { 2694 unlock_page(page); 2695 ext4_journal_stop(handle); 2696 /* 2697 * block_write_begin may have instantiated a few blocks 2698 * outside i_size. Trim these off again. Don't need 2699 * i_size_read because we hold i_mutex. 2700 */ 2701 if (pos + len > inode->i_size) 2702 ext4_truncate_failed_write(inode); 2703 2704 if (ret == -ENOSPC && 2705 ext4_should_retry_alloc(inode->i_sb, &retries)) 2706 goto retry_journal; 2707 2708 page_cache_release(page); 2709 return ret; 2710 } 2711 2712 *pagep = page; 2713 return ret; 2714 } 2715 2716 /* 2717 * Check if we should update i_disksize 2718 * when write to the end of file but not require block allocation 2719 */ 2720 static int ext4_da_should_update_i_disksize(struct page *page, 2721 unsigned long offset) 2722 { 2723 struct buffer_head *bh; 2724 struct inode *inode = page->mapping->host; 2725 unsigned int idx; 2726 int i; 2727 2728 bh = page_buffers(page); 2729 idx = offset >> inode->i_blkbits; 2730 2731 for (i = 0; i < idx; i++) 2732 bh = bh->b_this_page; 2733 2734 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2735 return 0; 2736 return 1; 2737 } 2738 2739 static int ext4_da_write_end(struct file *file, 2740 struct address_space *mapping, 2741 loff_t pos, unsigned len, unsigned copied, 2742 struct page *page, void *fsdata) 2743 { 2744 struct inode *inode = mapping->host; 2745 int ret = 0, ret2; 2746 handle_t *handle = ext4_journal_current_handle(); 2747 loff_t new_i_size; 2748 unsigned long start, end; 2749 int write_mode = (int)(unsigned long)fsdata; 2750 2751 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2752 return ext4_write_end(file, mapping, pos, 2753 len, copied, page, fsdata); 2754 2755 trace_ext4_da_write_end(inode, pos, len, copied); 2756 start = pos & (PAGE_CACHE_SIZE - 1); 2757 end = start + copied - 1; 2758 2759 /* 2760 * generic_write_end() will run mark_inode_dirty() if i_size 2761 * changes. So let's piggyback the i_disksize mark_inode_dirty 2762 * into that. 2763 */ 2764 new_i_size = pos + copied; 2765 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2766 if (ext4_has_inline_data(inode) || 2767 ext4_da_should_update_i_disksize(page, end)) { 2768 down_write(&EXT4_I(inode)->i_data_sem); 2769 if (new_i_size > EXT4_I(inode)->i_disksize) 2770 EXT4_I(inode)->i_disksize = new_i_size; 2771 up_write(&EXT4_I(inode)->i_data_sem); 2772 /* We need to mark inode dirty even if 2773 * new_i_size is less that inode->i_size 2774 * bu greater than i_disksize.(hint delalloc) 2775 */ 2776 ext4_mark_inode_dirty(handle, inode); 2777 } 2778 } 2779 2780 if (write_mode != CONVERT_INLINE_DATA && 2781 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2782 ext4_has_inline_data(inode)) 2783 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2784 page); 2785 else 2786 ret2 = generic_write_end(file, mapping, pos, len, copied, 2787 page, fsdata); 2788 2789 copied = ret2; 2790 if (ret2 < 0) 2791 ret = ret2; 2792 ret2 = ext4_journal_stop(handle); 2793 if (!ret) 2794 ret = ret2; 2795 2796 return ret ? ret : copied; 2797 } 2798 2799 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2800 unsigned int length) 2801 { 2802 /* 2803 * Drop reserved blocks 2804 */ 2805 BUG_ON(!PageLocked(page)); 2806 if (!page_has_buffers(page)) 2807 goto out; 2808 2809 ext4_da_page_release_reservation(page, offset, length); 2810 2811 out: 2812 ext4_invalidatepage(page, offset, length); 2813 2814 return; 2815 } 2816 2817 /* 2818 * Force all delayed allocation blocks to be allocated for a given inode. 2819 */ 2820 int ext4_alloc_da_blocks(struct inode *inode) 2821 { 2822 trace_ext4_alloc_da_blocks(inode); 2823 2824 if (!EXT4_I(inode)->i_reserved_data_blocks && 2825 !EXT4_I(inode)->i_reserved_meta_blocks) 2826 return 0; 2827 2828 /* 2829 * We do something simple for now. The filemap_flush() will 2830 * also start triggering a write of the data blocks, which is 2831 * not strictly speaking necessary (and for users of 2832 * laptop_mode, not even desirable). However, to do otherwise 2833 * would require replicating code paths in: 2834 * 2835 * ext4_writepages() -> 2836 * write_cache_pages() ---> (via passed in callback function) 2837 * __mpage_da_writepage() --> 2838 * mpage_add_bh_to_extent() 2839 * mpage_da_map_blocks() 2840 * 2841 * The problem is that write_cache_pages(), located in 2842 * mm/page-writeback.c, marks pages clean in preparation for 2843 * doing I/O, which is not desirable if we're not planning on 2844 * doing I/O at all. 2845 * 2846 * We could call write_cache_pages(), and then redirty all of 2847 * the pages by calling redirty_page_for_writepage() but that 2848 * would be ugly in the extreme. So instead we would need to 2849 * replicate parts of the code in the above functions, 2850 * simplifying them because we wouldn't actually intend to 2851 * write out the pages, but rather only collect contiguous 2852 * logical block extents, call the multi-block allocator, and 2853 * then update the buffer heads with the block allocations. 2854 * 2855 * For now, though, we'll cheat by calling filemap_flush(), 2856 * which will map the blocks, and start the I/O, but not 2857 * actually wait for the I/O to complete. 2858 */ 2859 return filemap_flush(inode->i_mapping); 2860 } 2861 2862 /* 2863 * bmap() is special. It gets used by applications such as lilo and by 2864 * the swapper to find the on-disk block of a specific piece of data. 2865 * 2866 * Naturally, this is dangerous if the block concerned is still in the 2867 * journal. If somebody makes a swapfile on an ext4 data-journaling 2868 * filesystem and enables swap, then they may get a nasty shock when the 2869 * data getting swapped to that swapfile suddenly gets overwritten by 2870 * the original zero's written out previously to the journal and 2871 * awaiting writeback in the kernel's buffer cache. 2872 * 2873 * So, if we see any bmap calls here on a modified, data-journaled file, 2874 * take extra steps to flush any blocks which might be in the cache. 2875 */ 2876 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2877 { 2878 struct inode *inode = mapping->host; 2879 journal_t *journal; 2880 int err; 2881 2882 /* 2883 * We can get here for an inline file via the FIBMAP ioctl 2884 */ 2885 if (ext4_has_inline_data(inode)) 2886 return 0; 2887 2888 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2889 test_opt(inode->i_sb, DELALLOC)) { 2890 /* 2891 * With delalloc we want to sync the file 2892 * so that we can make sure we allocate 2893 * blocks for file 2894 */ 2895 filemap_write_and_wait(mapping); 2896 } 2897 2898 if (EXT4_JOURNAL(inode) && 2899 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2900 /* 2901 * This is a REALLY heavyweight approach, but the use of 2902 * bmap on dirty files is expected to be extremely rare: 2903 * only if we run lilo or swapon on a freshly made file 2904 * do we expect this to happen. 2905 * 2906 * (bmap requires CAP_SYS_RAWIO so this does not 2907 * represent an unprivileged user DOS attack --- we'd be 2908 * in trouble if mortal users could trigger this path at 2909 * will.) 2910 * 2911 * NB. EXT4_STATE_JDATA is not set on files other than 2912 * regular files. If somebody wants to bmap a directory 2913 * or symlink and gets confused because the buffer 2914 * hasn't yet been flushed to disk, they deserve 2915 * everything they get. 2916 */ 2917 2918 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2919 journal = EXT4_JOURNAL(inode); 2920 jbd2_journal_lock_updates(journal); 2921 err = jbd2_journal_flush(journal); 2922 jbd2_journal_unlock_updates(journal); 2923 2924 if (err) 2925 return 0; 2926 } 2927 2928 return generic_block_bmap(mapping, block, ext4_get_block); 2929 } 2930 2931 static int ext4_readpage(struct file *file, struct page *page) 2932 { 2933 int ret = -EAGAIN; 2934 struct inode *inode = page->mapping->host; 2935 2936 trace_ext4_readpage(page); 2937 2938 if (ext4_has_inline_data(inode)) 2939 ret = ext4_readpage_inline(inode, page); 2940 2941 if (ret == -EAGAIN) 2942 return mpage_readpage(page, ext4_get_block); 2943 2944 return ret; 2945 } 2946 2947 static int 2948 ext4_readpages(struct file *file, struct address_space *mapping, 2949 struct list_head *pages, unsigned nr_pages) 2950 { 2951 struct inode *inode = mapping->host; 2952 2953 /* If the file has inline data, no need to do readpages. */ 2954 if (ext4_has_inline_data(inode)) 2955 return 0; 2956 2957 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2958 } 2959 2960 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2961 unsigned int length) 2962 { 2963 trace_ext4_invalidatepage(page, offset, length); 2964 2965 /* No journalling happens on data buffers when this function is used */ 2966 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2967 2968 block_invalidatepage(page, offset, length); 2969 } 2970 2971 static int __ext4_journalled_invalidatepage(struct page *page, 2972 unsigned int offset, 2973 unsigned int length) 2974 { 2975 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2976 2977 trace_ext4_journalled_invalidatepage(page, offset, length); 2978 2979 /* 2980 * If it's a full truncate we just forget about the pending dirtying 2981 */ 2982 if (offset == 0 && length == PAGE_CACHE_SIZE) 2983 ClearPageChecked(page); 2984 2985 return jbd2_journal_invalidatepage(journal, page, offset, length); 2986 } 2987 2988 /* Wrapper for aops... */ 2989 static void ext4_journalled_invalidatepage(struct page *page, 2990 unsigned int offset, 2991 unsigned int length) 2992 { 2993 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2994 } 2995 2996 static int ext4_releasepage(struct page *page, gfp_t wait) 2997 { 2998 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2999 3000 trace_ext4_releasepage(page); 3001 3002 /* Page has dirty journalled data -> cannot release */ 3003 if (PageChecked(page)) 3004 return 0; 3005 if (journal) 3006 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3007 else 3008 return try_to_free_buffers(page); 3009 } 3010 3011 /* 3012 * ext4_get_block used when preparing for a DIO write or buffer write. 3013 * We allocate an uinitialized extent if blocks haven't been allocated. 3014 * The extent will be converted to initialized after the IO is complete. 3015 */ 3016 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3017 struct buffer_head *bh_result, int create) 3018 { 3019 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3020 inode->i_ino, create); 3021 return _ext4_get_block(inode, iblock, bh_result, 3022 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3023 } 3024 3025 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3026 struct buffer_head *bh_result, int create) 3027 { 3028 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3029 inode->i_ino, create); 3030 return _ext4_get_block(inode, iblock, bh_result, 3031 EXT4_GET_BLOCKS_NO_LOCK); 3032 } 3033 3034 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3035 ssize_t size, void *private) 3036 { 3037 ext4_io_end_t *io_end = iocb->private; 3038 3039 /* if not async direct IO just return */ 3040 if (!io_end) 3041 return; 3042 3043 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3044 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3045 iocb->private, io_end->inode->i_ino, iocb, offset, 3046 size); 3047 3048 iocb->private = NULL; 3049 io_end->offset = offset; 3050 io_end->size = size; 3051 ext4_put_io_end(io_end); 3052 } 3053 3054 /* 3055 * For ext4 extent files, ext4 will do direct-io write to holes, 3056 * preallocated extents, and those write extend the file, no need to 3057 * fall back to buffered IO. 3058 * 3059 * For holes, we fallocate those blocks, mark them as uninitialized 3060 * If those blocks were preallocated, we mark sure they are split, but 3061 * still keep the range to write as uninitialized. 3062 * 3063 * The unwritten extents will be converted to written when DIO is completed. 3064 * For async direct IO, since the IO may still pending when return, we 3065 * set up an end_io call back function, which will do the conversion 3066 * when async direct IO completed. 3067 * 3068 * If the O_DIRECT write will extend the file then add this inode to the 3069 * orphan list. So recovery will truncate it back to the original size 3070 * if the machine crashes during the write. 3071 * 3072 */ 3073 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3074 const struct iovec *iov, loff_t offset, 3075 unsigned long nr_segs) 3076 { 3077 struct file *file = iocb->ki_filp; 3078 struct inode *inode = file->f_mapping->host; 3079 ssize_t ret; 3080 size_t count = iov_length(iov, nr_segs); 3081 int overwrite = 0; 3082 get_block_t *get_block_func = NULL; 3083 int dio_flags = 0; 3084 loff_t final_size = offset + count; 3085 ext4_io_end_t *io_end = NULL; 3086 3087 /* Use the old path for reads and writes beyond i_size. */ 3088 if (rw != WRITE || final_size > inode->i_size) 3089 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3090 3091 BUG_ON(iocb->private == NULL); 3092 3093 /* 3094 * Make all waiters for direct IO properly wait also for extent 3095 * conversion. This also disallows race between truncate() and 3096 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3097 */ 3098 if (rw == WRITE) 3099 atomic_inc(&inode->i_dio_count); 3100 3101 /* If we do a overwrite dio, i_mutex locking can be released */ 3102 overwrite = *((int *)iocb->private); 3103 3104 if (overwrite) { 3105 down_read(&EXT4_I(inode)->i_data_sem); 3106 mutex_unlock(&inode->i_mutex); 3107 } 3108 3109 /* 3110 * We could direct write to holes and fallocate. 3111 * 3112 * Allocated blocks to fill the hole are marked as 3113 * uninitialized to prevent parallel buffered read to expose 3114 * the stale data before DIO complete the data IO. 3115 * 3116 * As to previously fallocated extents, ext4 get_block will 3117 * just simply mark the buffer mapped but still keep the 3118 * extents uninitialized. 3119 * 3120 * For non AIO case, we will convert those unwritten extents 3121 * to written after return back from blockdev_direct_IO. 3122 * 3123 * For async DIO, the conversion needs to be deferred when the 3124 * IO is completed. The ext4 end_io callback function will be 3125 * called to take care of the conversion work. Here for async 3126 * case, we allocate an io_end structure to hook to the iocb. 3127 */ 3128 iocb->private = NULL; 3129 ext4_inode_aio_set(inode, NULL); 3130 if (!is_sync_kiocb(iocb)) { 3131 io_end = ext4_init_io_end(inode, GFP_NOFS); 3132 if (!io_end) { 3133 ret = -ENOMEM; 3134 goto retake_lock; 3135 } 3136 /* 3137 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3138 */ 3139 iocb->private = ext4_get_io_end(io_end); 3140 /* 3141 * we save the io structure for current async direct 3142 * IO, so that later ext4_map_blocks() could flag the 3143 * io structure whether there is a unwritten extents 3144 * needs to be converted when IO is completed. 3145 */ 3146 ext4_inode_aio_set(inode, io_end); 3147 } 3148 3149 if (overwrite) { 3150 get_block_func = ext4_get_block_write_nolock; 3151 } else { 3152 get_block_func = ext4_get_block_write; 3153 dio_flags = DIO_LOCKING; 3154 } 3155 ret = __blockdev_direct_IO(rw, iocb, inode, 3156 inode->i_sb->s_bdev, iov, 3157 offset, nr_segs, 3158 get_block_func, 3159 ext4_end_io_dio, 3160 NULL, 3161 dio_flags); 3162 3163 /* 3164 * Put our reference to io_end. This can free the io_end structure e.g. 3165 * in sync IO case or in case of error. It can even perform extent 3166 * conversion if all bios we submitted finished before we got here. 3167 * Note that in that case iocb->private can be already set to NULL 3168 * here. 3169 */ 3170 if (io_end) { 3171 ext4_inode_aio_set(inode, NULL); 3172 ext4_put_io_end(io_end); 3173 /* 3174 * When no IO was submitted ext4_end_io_dio() was not 3175 * called so we have to put iocb's reference. 3176 */ 3177 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3178 WARN_ON(iocb->private != io_end); 3179 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3180 ext4_put_io_end(io_end); 3181 iocb->private = NULL; 3182 } 3183 } 3184 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3185 EXT4_STATE_DIO_UNWRITTEN)) { 3186 int err; 3187 /* 3188 * for non AIO case, since the IO is already 3189 * completed, we could do the conversion right here 3190 */ 3191 err = ext4_convert_unwritten_extents(NULL, inode, 3192 offset, ret); 3193 if (err < 0) 3194 ret = err; 3195 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3196 } 3197 3198 retake_lock: 3199 if (rw == WRITE) 3200 inode_dio_done(inode); 3201 /* take i_mutex locking again if we do a ovewrite dio */ 3202 if (overwrite) { 3203 up_read(&EXT4_I(inode)->i_data_sem); 3204 mutex_lock(&inode->i_mutex); 3205 } 3206 3207 return ret; 3208 } 3209 3210 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3211 const struct iovec *iov, loff_t offset, 3212 unsigned long nr_segs) 3213 { 3214 struct file *file = iocb->ki_filp; 3215 struct inode *inode = file->f_mapping->host; 3216 ssize_t ret; 3217 3218 /* 3219 * If we are doing data journalling we don't support O_DIRECT 3220 */ 3221 if (ext4_should_journal_data(inode)) 3222 return 0; 3223 3224 /* Let buffer I/O handle the inline data case. */ 3225 if (ext4_has_inline_data(inode)) 3226 return 0; 3227 3228 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3229 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3230 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3231 else 3232 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3233 trace_ext4_direct_IO_exit(inode, offset, 3234 iov_length(iov, nr_segs), rw, ret); 3235 return ret; 3236 } 3237 3238 /* 3239 * Pages can be marked dirty completely asynchronously from ext4's journalling 3240 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3241 * much here because ->set_page_dirty is called under VFS locks. The page is 3242 * not necessarily locked. 3243 * 3244 * We cannot just dirty the page and leave attached buffers clean, because the 3245 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3246 * or jbddirty because all the journalling code will explode. 3247 * 3248 * So what we do is to mark the page "pending dirty" and next time writepage 3249 * is called, propagate that into the buffers appropriately. 3250 */ 3251 static int ext4_journalled_set_page_dirty(struct page *page) 3252 { 3253 SetPageChecked(page); 3254 return __set_page_dirty_nobuffers(page); 3255 } 3256 3257 static const struct address_space_operations ext4_aops = { 3258 .readpage = ext4_readpage, 3259 .readpages = ext4_readpages, 3260 .writepage = ext4_writepage, 3261 .writepages = ext4_writepages, 3262 .write_begin = ext4_write_begin, 3263 .write_end = ext4_write_end, 3264 .bmap = ext4_bmap, 3265 .invalidatepage = ext4_invalidatepage, 3266 .releasepage = ext4_releasepage, 3267 .direct_IO = ext4_direct_IO, 3268 .migratepage = buffer_migrate_page, 3269 .is_partially_uptodate = block_is_partially_uptodate, 3270 .error_remove_page = generic_error_remove_page, 3271 }; 3272 3273 static const struct address_space_operations ext4_journalled_aops = { 3274 .readpage = ext4_readpage, 3275 .readpages = ext4_readpages, 3276 .writepage = ext4_writepage, 3277 .writepages = ext4_writepages, 3278 .write_begin = ext4_write_begin, 3279 .write_end = ext4_journalled_write_end, 3280 .set_page_dirty = ext4_journalled_set_page_dirty, 3281 .bmap = ext4_bmap, 3282 .invalidatepage = ext4_journalled_invalidatepage, 3283 .releasepage = ext4_releasepage, 3284 .direct_IO = ext4_direct_IO, 3285 .is_partially_uptodate = block_is_partially_uptodate, 3286 .error_remove_page = generic_error_remove_page, 3287 }; 3288 3289 static const struct address_space_operations ext4_da_aops = { 3290 .readpage = ext4_readpage, 3291 .readpages = ext4_readpages, 3292 .writepage = ext4_writepage, 3293 .writepages = ext4_writepages, 3294 .write_begin = ext4_da_write_begin, 3295 .write_end = ext4_da_write_end, 3296 .bmap = ext4_bmap, 3297 .invalidatepage = ext4_da_invalidatepage, 3298 .releasepage = ext4_releasepage, 3299 .direct_IO = ext4_direct_IO, 3300 .migratepage = buffer_migrate_page, 3301 .is_partially_uptodate = block_is_partially_uptodate, 3302 .error_remove_page = generic_error_remove_page, 3303 }; 3304 3305 void ext4_set_aops(struct inode *inode) 3306 { 3307 switch (ext4_inode_journal_mode(inode)) { 3308 case EXT4_INODE_ORDERED_DATA_MODE: 3309 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3310 break; 3311 case EXT4_INODE_WRITEBACK_DATA_MODE: 3312 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3313 break; 3314 case EXT4_INODE_JOURNAL_DATA_MODE: 3315 inode->i_mapping->a_ops = &ext4_journalled_aops; 3316 return; 3317 default: 3318 BUG(); 3319 } 3320 if (test_opt(inode->i_sb, DELALLOC)) 3321 inode->i_mapping->a_ops = &ext4_da_aops; 3322 else 3323 inode->i_mapping->a_ops = &ext4_aops; 3324 } 3325 3326 /* 3327 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3328 * up to the end of the block which corresponds to `from'. 3329 * This required during truncate. We need to physically zero the tail end 3330 * of that block so it doesn't yield old data if the file is later grown. 3331 */ 3332 int ext4_block_truncate_page(handle_t *handle, 3333 struct address_space *mapping, loff_t from) 3334 { 3335 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3336 unsigned length; 3337 unsigned blocksize; 3338 struct inode *inode = mapping->host; 3339 3340 blocksize = inode->i_sb->s_blocksize; 3341 length = blocksize - (offset & (blocksize - 1)); 3342 3343 return ext4_block_zero_page_range(handle, mapping, from, length); 3344 } 3345 3346 /* 3347 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3348 * starting from file offset 'from'. The range to be zero'd must 3349 * be contained with in one block. If the specified range exceeds 3350 * the end of the block it will be shortened to end of the block 3351 * that cooresponds to 'from' 3352 */ 3353 int ext4_block_zero_page_range(handle_t *handle, 3354 struct address_space *mapping, loff_t from, loff_t length) 3355 { 3356 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3357 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3358 unsigned blocksize, max, pos; 3359 ext4_lblk_t iblock; 3360 struct inode *inode = mapping->host; 3361 struct buffer_head *bh; 3362 struct page *page; 3363 int err = 0; 3364 3365 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3366 mapping_gfp_mask(mapping) & ~__GFP_FS); 3367 if (!page) 3368 return -ENOMEM; 3369 3370 blocksize = inode->i_sb->s_blocksize; 3371 max = blocksize - (offset & (blocksize - 1)); 3372 3373 /* 3374 * correct length if it does not fall between 3375 * 'from' and the end of the block 3376 */ 3377 if (length > max || length < 0) 3378 length = max; 3379 3380 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3381 3382 if (!page_has_buffers(page)) 3383 create_empty_buffers(page, blocksize, 0); 3384 3385 /* Find the buffer that contains "offset" */ 3386 bh = page_buffers(page); 3387 pos = blocksize; 3388 while (offset >= pos) { 3389 bh = bh->b_this_page; 3390 iblock++; 3391 pos += blocksize; 3392 } 3393 if (buffer_freed(bh)) { 3394 BUFFER_TRACE(bh, "freed: skip"); 3395 goto unlock; 3396 } 3397 if (!buffer_mapped(bh)) { 3398 BUFFER_TRACE(bh, "unmapped"); 3399 ext4_get_block(inode, iblock, bh, 0); 3400 /* unmapped? It's a hole - nothing to do */ 3401 if (!buffer_mapped(bh)) { 3402 BUFFER_TRACE(bh, "still unmapped"); 3403 goto unlock; 3404 } 3405 } 3406 3407 /* Ok, it's mapped. Make sure it's up-to-date */ 3408 if (PageUptodate(page)) 3409 set_buffer_uptodate(bh); 3410 3411 if (!buffer_uptodate(bh)) { 3412 err = -EIO; 3413 ll_rw_block(READ, 1, &bh); 3414 wait_on_buffer(bh); 3415 /* Uhhuh. Read error. Complain and punt. */ 3416 if (!buffer_uptodate(bh)) 3417 goto unlock; 3418 } 3419 if (ext4_should_journal_data(inode)) { 3420 BUFFER_TRACE(bh, "get write access"); 3421 err = ext4_journal_get_write_access(handle, bh); 3422 if (err) 3423 goto unlock; 3424 } 3425 zero_user(page, offset, length); 3426 BUFFER_TRACE(bh, "zeroed end of block"); 3427 3428 if (ext4_should_journal_data(inode)) { 3429 err = ext4_handle_dirty_metadata(handle, inode, bh); 3430 } else { 3431 err = 0; 3432 mark_buffer_dirty(bh); 3433 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3434 err = ext4_jbd2_file_inode(handle, inode); 3435 } 3436 3437 unlock: 3438 unlock_page(page); 3439 page_cache_release(page); 3440 return err; 3441 } 3442 3443 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3444 loff_t lstart, loff_t length) 3445 { 3446 struct super_block *sb = inode->i_sb; 3447 struct address_space *mapping = inode->i_mapping; 3448 unsigned partial_start, partial_end; 3449 ext4_fsblk_t start, end; 3450 loff_t byte_end = (lstart + length - 1); 3451 int err = 0; 3452 3453 partial_start = lstart & (sb->s_blocksize - 1); 3454 partial_end = byte_end & (sb->s_blocksize - 1); 3455 3456 start = lstart >> sb->s_blocksize_bits; 3457 end = byte_end >> sb->s_blocksize_bits; 3458 3459 /* Handle partial zero within the single block */ 3460 if (start == end && 3461 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3462 err = ext4_block_zero_page_range(handle, mapping, 3463 lstart, length); 3464 return err; 3465 } 3466 /* Handle partial zero out on the start of the range */ 3467 if (partial_start) { 3468 err = ext4_block_zero_page_range(handle, mapping, 3469 lstart, sb->s_blocksize); 3470 if (err) 3471 return err; 3472 } 3473 /* Handle partial zero out on the end of the range */ 3474 if (partial_end != sb->s_blocksize - 1) 3475 err = ext4_block_zero_page_range(handle, mapping, 3476 byte_end - partial_end, 3477 partial_end + 1); 3478 return err; 3479 } 3480 3481 int ext4_can_truncate(struct inode *inode) 3482 { 3483 if (S_ISREG(inode->i_mode)) 3484 return 1; 3485 if (S_ISDIR(inode->i_mode)) 3486 return 1; 3487 if (S_ISLNK(inode->i_mode)) 3488 return !ext4_inode_is_fast_symlink(inode); 3489 return 0; 3490 } 3491 3492 /* 3493 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3494 * associated with the given offset and length 3495 * 3496 * @inode: File inode 3497 * @offset: The offset where the hole will begin 3498 * @len: The length of the hole 3499 * 3500 * Returns: 0 on success or negative on failure 3501 */ 3502 3503 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3504 { 3505 struct super_block *sb = inode->i_sb; 3506 ext4_lblk_t first_block, stop_block; 3507 struct address_space *mapping = inode->i_mapping; 3508 loff_t first_block_offset, last_block_offset; 3509 handle_t *handle; 3510 unsigned int credits; 3511 int ret = 0; 3512 3513 if (!S_ISREG(inode->i_mode)) 3514 return -EOPNOTSUPP; 3515 3516 if (EXT4_SB(sb)->s_cluster_ratio > 1) { 3517 /* TODO: Add support for bigalloc file systems */ 3518 return -EOPNOTSUPP; 3519 } 3520 3521 trace_ext4_punch_hole(inode, offset, length); 3522 3523 /* 3524 * Write out all dirty pages to avoid race conditions 3525 * Then release them. 3526 */ 3527 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3528 ret = filemap_write_and_wait_range(mapping, offset, 3529 offset + length - 1); 3530 if (ret) 3531 return ret; 3532 } 3533 3534 mutex_lock(&inode->i_mutex); 3535 /* It's not possible punch hole on append only file */ 3536 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3537 ret = -EPERM; 3538 goto out_mutex; 3539 } 3540 if (IS_SWAPFILE(inode)) { 3541 ret = -ETXTBSY; 3542 goto out_mutex; 3543 } 3544 3545 /* No need to punch hole beyond i_size */ 3546 if (offset >= inode->i_size) 3547 goto out_mutex; 3548 3549 /* 3550 * If the hole extends beyond i_size, set the hole 3551 * to end after the page that contains i_size 3552 */ 3553 if (offset + length > inode->i_size) { 3554 length = inode->i_size + 3555 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3556 offset; 3557 } 3558 3559 if (offset & (sb->s_blocksize - 1) || 3560 (offset + length) & (sb->s_blocksize - 1)) { 3561 /* 3562 * Attach jinode to inode for jbd2 if we do any zeroing of 3563 * partial block 3564 */ 3565 ret = ext4_inode_attach_jinode(inode); 3566 if (ret < 0) 3567 goto out_mutex; 3568 3569 } 3570 3571 first_block_offset = round_up(offset, sb->s_blocksize); 3572 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3573 3574 /* Now release the pages and zero block aligned part of pages*/ 3575 if (last_block_offset > first_block_offset) 3576 truncate_pagecache_range(inode, first_block_offset, 3577 last_block_offset); 3578 3579 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3580 ext4_inode_block_unlocked_dio(inode); 3581 inode_dio_wait(inode); 3582 3583 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3584 credits = ext4_writepage_trans_blocks(inode); 3585 else 3586 credits = ext4_blocks_for_truncate(inode); 3587 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3588 if (IS_ERR(handle)) { 3589 ret = PTR_ERR(handle); 3590 ext4_std_error(sb, ret); 3591 goto out_dio; 3592 } 3593 3594 ret = ext4_zero_partial_blocks(handle, inode, offset, 3595 length); 3596 if (ret) 3597 goto out_stop; 3598 3599 first_block = (offset + sb->s_blocksize - 1) >> 3600 EXT4_BLOCK_SIZE_BITS(sb); 3601 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3602 3603 /* If there are no blocks to remove, return now */ 3604 if (first_block >= stop_block) 3605 goto out_stop; 3606 3607 down_write(&EXT4_I(inode)->i_data_sem); 3608 ext4_discard_preallocations(inode); 3609 3610 ret = ext4_es_remove_extent(inode, first_block, 3611 stop_block - first_block); 3612 if (ret) { 3613 up_write(&EXT4_I(inode)->i_data_sem); 3614 goto out_stop; 3615 } 3616 3617 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3618 ret = ext4_ext_remove_space(inode, first_block, 3619 stop_block - 1); 3620 else 3621 ret = ext4_free_hole_blocks(handle, inode, first_block, 3622 stop_block); 3623 3624 ext4_discard_preallocations(inode); 3625 up_write(&EXT4_I(inode)->i_data_sem); 3626 if (IS_SYNC(inode)) 3627 ext4_handle_sync(handle); 3628 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3629 ext4_mark_inode_dirty(handle, inode); 3630 out_stop: 3631 ext4_journal_stop(handle); 3632 out_dio: 3633 ext4_inode_resume_unlocked_dio(inode); 3634 out_mutex: 3635 mutex_unlock(&inode->i_mutex); 3636 return ret; 3637 } 3638 3639 int ext4_inode_attach_jinode(struct inode *inode) 3640 { 3641 struct ext4_inode_info *ei = EXT4_I(inode); 3642 struct jbd2_inode *jinode; 3643 3644 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3645 return 0; 3646 3647 jinode = jbd2_alloc_inode(GFP_KERNEL); 3648 spin_lock(&inode->i_lock); 3649 if (!ei->jinode) { 3650 if (!jinode) { 3651 spin_unlock(&inode->i_lock); 3652 return -ENOMEM; 3653 } 3654 ei->jinode = jinode; 3655 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3656 jinode = NULL; 3657 } 3658 spin_unlock(&inode->i_lock); 3659 if (unlikely(jinode != NULL)) 3660 jbd2_free_inode(jinode); 3661 return 0; 3662 } 3663 3664 /* 3665 * ext4_truncate() 3666 * 3667 * We block out ext4_get_block() block instantiations across the entire 3668 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3669 * simultaneously on behalf of the same inode. 3670 * 3671 * As we work through the truncate and commit bits of it to the journal there 3672 * is one core, guiding principle: the file's tree must always be consistent on 3673 * disk. We must be able to restart the truncate after a crash. 3674 * 3675 * The file's tree may be transiently inconsistent in memory (although it 3676 * probably isn't), but whenever we close off and commit a journal transaction, 3677 * the contents of (the filesystem + the journal) must be consistent and 3678 * restartable. It's pretty simple, really: bottom up, right to left (although 3679 * left-to-right works OK too). 3680 * 3681 * Note that at recovery time, journal replay occurs *before* the restart of 3682 * truncate against the orphan inode list. 3683 * 3684 * The committed inode has the new, desired i_size (which is the same as 3685 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3686 * that this inode's truncate did not complete and it will again call 3687 * ext4_truncate() to have another go. So there will be instantiated blocks 3688 * to the right of the truncation point in a crashed ext4 filesystem. But 3689 * that's fine - as long as they are linked from the inode, the post-crash 3690 * ext4_truncate() run will find them and release them. 3691 */ 3692 void ext4_truncate(struct inode *inode) 3693 { 3694 struct ext4_inode_info *ei = EXT4_I(inode); 3695 unsigned int credits; 3696 handle_t *handle; 3697 struct address_space *mapping = inode->i_mapping; 3698 3699 /* 3700 * There is a possibility that we're either freeing the inode 3701 * or it completely new indode. In those cases we might not 3702 * have i_mutex locked because it's not necessary. 3703 */ 3704 if (!(inode->i_state & (I_NEW|I_FREEING))) 3705 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3706 trace_ext4_truncate_enter(inode); 3707 3708 if (!ext4_can_truncate(inode)) 3709 return; 3710 3711 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3712 3713 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3714 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3715 3716 if (ext4_has_inline_data(inode)) { 3717 int has_inline = 1; 3718 3719 ext4_inline_data_truncate(inode, &has_inline); 3720 if (has_inline) 3721 return; 3722 } 3723 3724 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3725 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3726 if (ext4_inode_attach_jinode(inode) < 0) 3727 return; 3728 } 3729 3730 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3731 credits = ext4_writepage_trans_blocks(inode); 3732 else 3733 credits = ext4_blocks_for_truncate(inode); 3734 3735 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3736 if (IS_ERR(handle)) { 3737 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3738 return; 3739 } 3740 3741 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3742 ext4_block_truncate_page(handle, mapping, inode->i_size); 3743 3744 /* 3745 * We add the inode to the orphan list, so that if this 3746 * truncate spans multiple transactions, and we crash, we will 3747 * resume the truncate when the filesystem recovers. It also 3748 * marks the inode dirty, to catch the new size. 3749 * 3750 * Implication: the file must always be in a sane, consistent 3751 * truncatable state while each transaction commits. 3752 */ 3753 if (ext4_orphan_add(handle, inode)) 3754 goto out_stop; 3755 3756 down_write(&EXT4_I(inode)->i_data_sem); 3757 3758 ext4_discard_preallocations(inode); 3759 3760 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3761 ext4_ext_truncate(handle, inode); 3762 else 3763 ext4_ind_truncate(handle, inode); 3764 3765 up_write(&ei->i_data_sem); 3766 3767 if (IS_SYNC(inode)) 3768 ext4_handle_sync(handle); 3769 3770 out_stop: 3771 /* 3772 * If this was a simple ftruncate() and the file will remain alive, 3773 * then we need to clear up the orphan record which we created above. 3774 * However, if this was a real unlink then we were called by 3775 * ext4_delete_inode(), and we allow that function to clean up the 3776 * orphan info for us. 3777 */ 3778 if (inode->i_nlink) 3779 ext4_orphan_del(handle, inode); 3780 3781 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3782 ext4_mark_inode_dirty(handle, inode); 3783 ext4_journal_stop(handle); 3784 3785 trace_ext4_truncate_exit(inode); 3786 } 3787 3788 /* 3789 * ext4_get_inode_loc returns with an extra refcount against the inode's 3790 * underlying buffer_head on success. If 'in_mem' is true, we have all 3791 * data in memory that is needed to recreate the on-disk version of this 3792 * inode. 3793 */ 3794 static int __ext4_get_inode_loc(struct inode *inode, 3795 struct ext4_iloc *iloc, int in_mem) 3796 { 3797 struct ext4_group_desc *gdp; 3798 struct buffer_head *bh; 3799 struct super_block *sb = inode->i_sb; 3800 ext4_fsblk_t block; 3801 int inodes_per_block, inode_offset; 3802 3803 iloc->bh = NULL; 3804 if (!ext4_valid_inum(sb, inode->i_ino)) 3805 return -EIO; 3806 3807 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3808 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3809 if (!gdp) 3810 return -EIO; 3811 3812 /* 3813 * Figure out the offset within the block group inode table 3814 */ 3815 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3816 inode_offset = ((inode->i_ino - 1) % 3817 EXT4_INODES_PER_GROUP(sb)); 3818 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3819 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3820 3821 bh = sb_getblk(sb, block); 3822 if (unlikely(!bh)) 3823 return -ENOMEM; 3824 if (!buffer_uptodate(bh)) { 3825 lock_buffer(bh); 3826 3827 /* 3828 * If the buffer has the write error flag, we have failed 3829 * to write out another inode in the same block. In this 3830 * case, we don't have to read the block because we may 3831 * read the old inode data successfully. 3832 */ 3833 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3834 set_buffer_uptodate(bh); 3835 3836 if (buffer_uptodate(bh)) { 3837 /* someone brought it uptodate while we waited */ 3838 unlock_buffer(bh); 3839 goto has_buffer; 3840 } 3841 3842 /* 3843 * If we have all information of the inode in memory and this 3844 * is the only valid inode in the block, we need not read the 3845 * block. 3846 */ 3847 if (in_mem) { 3848 struct buffer_head *bitmap_bh; 3849 int i, start; 3850 3851 start = inode_offset & ~(inodes_per_block - 1); 3852 3853 /* Is the inode bitmap in cache? */ 3854 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3855 if (unlikely(!bitmap_bh)) 3856 goto make_io; 3857 3858 /* 3859 * If the inode bitmap isn't in cache then the 3860 * optimisation may end up performing two reads instead 3861 * of one, so skip it. 3862 */ 3863 if (!buffer_uptodate(bitmap_bh)) { 3864 brelse(bitmap_bh); 3865 goto make_io; 3866 } 3867 for (i = start; i < start + inodes_per_block; i++) { 3868 if (i == inode_offset) 3869 continue; 3870 if (ext4_test_bit(i, bitmap_bh->b_data)) 3871 break; 3872 } 3873 brelse(bitmap_bh); 3874 if (i == start + inodes_per_block) { 3875 /* all other inodes are free, so skip I/O */ 3876 memset(bh->b_data, 0, bh->b_size); 3877 set_buffer_uptodate(bh); 3878 unlock_buffer(bh); 3879 goto has_buffer; 3880 } 3881 } 3882 3883 make_io: 3884 /* 3885 * If we need to do any I/O, try to pre-readahead extra 3886 * blocks from the inode table. 3887 */ 3888 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3889 ext4_fsblk_t b, end, table; 3890 unsigned num; 3891 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3892 3893 table = ext4_inode_table(sb, gdp); 3894 /* s_inode_readahead_blks is always a power of 2 */ 3895 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3896 if (table > b) 3897 b = table; 3898 end = b + ra_blks; 3899 num = EXT4_INODES_PER_GROUP(sb); 3900 if (ext4_has_group_desc_csum(sb)) 3901 num -= ext4_itable_unused_count(sb, gdp); 3902 table += num / inodes_per_block; 3903 if (end > table) 3904 end = table; 3905 while (b <= end) 3906 sb_breadahead(sb, b++); 3907 } 3908 3909 /* 3910 * There are other valid inodes in the buffer, this inode 3911 * has in-inode xattrs, or we don't have this inode in memory. 3912 * Read the block from disk. 3913 */ 3914 trace_ext4_load_inode(inode); 3915 get_bh(bh); 3916 bh->b_end_io = end_buffer_read_sync; 3917 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3918 wait_on_buffer(bh); 3919 if (!buffer_uptodate(bh)) { 3920 EXT4_ERROR_INODE_BLOCK(inode, block, 3921 "unable to read itable block"); 3922 brelse(bh); 3923 return -EIO; 3924 } 3925 } 3926 has_buffer: 3927 iloc->bh = bh; 3928 return 0; 3929 } 3930 3931 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3932 { 3933 /* We have all inode data except xattrs in memory here. */ 3934 return __ext4_get_inode_loc(inode, iloc, 3935 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3936 } 3937 3938 void ext4_set_inode_flags(struct inode *inode) 3939 { 3940 unsigned int flags = EXT4_I(inode)->i_flags; 3941 3942 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3943 if (flags & EXT4_SYNC_FL) 3944 inode->i_flags |= S_SYNC; 3945 if (flags & EXT4_APPEND_FL) 3946 inode->i_flags |= S_APPEND; 3947 if (flags & EXT4_IMMUTABLE_FL) 3948 inode->i_flags |= S_IMMUTABLE; 3949 if (flags & EXT4_NOATIME_FL) 3950 inode->i_flags |= S_NOATIME; 3951 if (flags & EXT4_DIRSYNC_FL) 3952 inode->i_flags |= S_DIRSYNC; 3953 } 3954 3955 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3956 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3957 { 3958 unsigned int vfs_fl; 3959 unsigned long old_fl, new_fl; 3960 3961 do { 3962 vfs_fl = ei->vfs_inode.i_flags; 3963 old_fl = ei->i_flags; 3964 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3965 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3966 EXT4_DIRSYNC_FL); 3967 if (vfs_fl & S_SYNC) 3968 new_fl |= EXT4_SYNC_FL; 3969 if (vfs_fl & S_APPEND) 3970 new_fl |= EXT4_APPEND_FL; 3971 if (vfs_fl & S_IMMUTABLE) 3972 new_fl |= EXT4_IMMUTABLE_FL; 3973 if (vfs_fl & S_NOATIME) 3974 new_fl |= EXT4_NOATIME_FL; 3975 if (vfs_fl & S_DIRSYNC) 3976 new_fl |= EXT4_DIRSYNC_FL; 3977 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3978 } 3979 3980 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3981 struct ext4_inode_info *ei) 3982 { 3983 blkcnt_t i_blocks ; 3984 struct inode *inode = &(ei->vfs_inode); 3985 struct super_block *sb = inode->i_sb; 3986 3987 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3988 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3989 /* we are using combined 48 bit field */ 3990 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3991 le32_to_cpu(raw_inode->i_blocks_lo); 3992 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3993 /* i_blocks represent file system block size */ 3994 return i_blocks << (inode->i_blkbits - 9); 3995 } else { 3996 return i_blocks; 3997 } 3998 } else { 3999 return le32_to_cpu(raw_inode->i_blocks_lo); 4000 } 4001 } 4002 4003 static inline void ext4_iget_extra_inode(struct inode *inode, 4004 struct ext4_inode *raw_inode, 4005 struct ext4_inode_info *ei) 4006 { 4007 __le32 *magic = (void *)raw_inode + 4008 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4009 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4010 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4011 ext4_find_inline_data_nolock(inode); 4012 } else 4013 EXT4_I(inode)->i_inline_off = 0; 4014 } 4015 4016 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4017 { 4018 struct ext4_iloc iloc; 4019 struct ext4_inode *raw_inode; 4020 struct ext4_inode_info *ei; 4021 struct inode *inode; 4022 journal_t *journal = EXT4_SB(sb)->s_journal; 4023 long ret; 4024 int block; 4025 uid_t i_uid; 4026 gid_t i_gid; 4027 4028 inode = iget_locked(sb, ino); 4029 if (!inode) 4030 return ERR_PTR(-ENOMEM); 4031 if (!(inode->i_state & I_NEW)) 4032 return inode; 4033 4034 ei = EXT4_I(inode); 4035 iloc.bh = NULL; 4036 4037 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4038 if (ret < 0) 4039 goto bad_inode; 4040 raw_inode = ext4_raw_inode(&iloc); 4041 4042 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4043 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4044 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4045 EXT4_INODE_SIZE(inode->i_sb)) { 4046 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4047 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4048 EXT4_INODE_SIZE(inode->i_sb)); 4049 ret = -EIO; 4050 goto bad_inode; 4051 } 4052 } else 4053 ei->i_extra_isize = 0; 4054 4055 /* Precompute checksum seed for inode metadata */ 4056 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4057 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 4058 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4059 __u32 csum; 4060 __le32 inum = cpu_to_le32(inode->i_ino); 4061 __le32 gen = raw_inode->i_generation; 4062 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4063 sizeof(inum)); 4064 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4065 sizeof(gen)); 4066 } 4067 4068 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4069 EXT4_ERROR_INODE(inode, "checksum invalid"); 4070 ret = -EIO; 4071 goto bad_inode; 4072 } 4073 4074 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4075 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4076 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4077 if (!(test_opt(inode->i_sb, NO_UID32))) { 4078 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4079 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4080 } 4081 i_uid_write(inode, i_uid); 4082 i_gid_write(inode, i_gid); 4083 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4084 4085 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4086 ei->i_inline_off = 0; 4087 ei->i_dir_start_lookup = 0; 4088 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4089 /* We now have enough fields to check if the inode was active or not. 4090 * This is needed because nfsd might try to access dead inodes 4091 * the test is that same one that e2fsck uses 4092 * NeilBrown 1999oct15 4093 */ 4094 if (inode->i_nlink == 0) { 4095 if ((inode->i_mode == 0 || 4096 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4097 ino != EXT4_BOOT_LOADER_INO) { 4098 /* this inode is deleted */ 4099 ret = -ESTALE; 4100 goto bad_inode; 4101 } 4102 /* The only unlinked inodes we let through here have 4103 * valid i_mode and are being read by the orphan 4104 * recovery code: that's fine, we're about to complete 4105 * the process of deleting those. 4106 * OR it is the EXT4_BOOT_LOADER_INO which is 4107 * not initialized on a new filesystem. */ 4108 } 4109 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4110 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4111 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4112 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4113 ei->i_file_acl |= 4114 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4115 inode->i_size = ext4_isize(raw_inode); 4116 ei->i_disksize = inode->i_size; 4117 #ifdef CONFIG_QUOTA 4118 ei->i_reserved_quota = 0; 4119 #endif 4120 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4121 ei->i_block_group = iloc.block_group; 4122 ei->i_last_alloc_group = ~0; 4123 /* 4124 * NOTE! The in-memory inode i_data array is in little-endian order 4125 * even on big-endian machines: we do NOT byteswap the block numbers! 4126 */ 4127 for (block = 0; block < EXT4_N_BLOCKS; block++) 4128 ei->i_data[block] = raw_inode->i_block[block]; 4129 INIT_LIST_HEAD(&ei->i_orphan); 4130 4131 /* 4132 * Set transaction id's of transactions that have to be committed 4133 * to finish f[data]sync. We set them to currently running transaction 4134 * as we cannot be sure that the inode or some of its metadata isn't 4135 * part of the transaction - the inode could have been reclaimed and 4136 * now it is reread from disk. 4137 */ 4138 if (journal) { 4139 transaction_t *transaction; 4140 tid_t tid; 4141 4142 read_lock(&journal->j_state_lock); 4143 if (journal->j_running_transaction) 4144 transaction = journal->j_running_transaction; 4145 else 4146 transaction = journal->j_committing_transaction; 4147 if (transaction) 4148 tid = transaction->t_tid; 4149 else 4150 tid = journal->j_commit_sequence; 4151 read_unlock(&journal->j_state_lock); 4152 ei->i_sync_tid = tid; 4153 ei->i_datasync_tid = tid; 4154 } 4155 4156 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4157 if (ei->i_extra_isize == 0) { 4158 /* The extra space is currently unused. Use it. */ 4159 ei->i_extra_isize = sizeof(struct ext4_inode) - 4160 EXT4_GOOD_OLD_INODE_SIZE; 4161 } else { 4162 ext4_iget_extra_inode(inode, raw_inode, ei); 4163 } 4164 } 4165 4166 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4167 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4168 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4169 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4170 4171 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4172 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4173 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4174 inode->i_version |= 4175 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4176 } 4177 4178 ret = 0; 4179 if (ei->i_file_acl && 4180 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4181 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4182 ei->i_file_acl); 4183 ret = -EIO; 4184 goto bad_inode; 4185 } else if (!ext4_has_inline_data(inode)) { 4186 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4187 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4188 (S_ISLNK(inode->i_mode) && 4189 !ext4_inode_is_fast_symlink(inode)))) 4190 /* Validate extent which is part of inode */ 4191 ret = ext4_ext_check_inode(inode); 4192 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4193 (S_ISLNK(inode->i_mode) && 4194 !ext4_inode_is_fast_symlink(inode))) { 4195 /* Validate block references which are part of inode */ 4196 ret = ext4_ind_check_inode(inode); 4197 } 4198 } 4199 if (ret) 4200 goto bad_inode; 4201 4202 if (S_ISREG(inode->i_mode)) { 4203 inode->i_op = &ext4_file_inode_operations; 4204 inode->i_fop = &ext4_file_operations; 4205 ext4_set_aops(inode); 4206 } else if (S_ISDIR(inode->i_mode)) { 4207 inode->i_op = &ext4_dir_inode_operations; 4208 inode->i_fop = &ext4_dir_operations; 4209 } else if (S_ISLNK(inode->i_mode)) { 4210 if (ext4_inode_is_fast_symlink(inode)) { 4211 inode->i_op = &ext4_fast_symlink_inode_operations; 4212 nd_terminate_link(ei->i_data, inode->i_size, 4213 sizeof(ei->i_data) - 1); 4214 } else { 4215 inode->i_op = &ext4_symlink_inode_operations; 4216 ext4_set_aops(inode); 4217 } 4218 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4219 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4220 inode->i_op = &ext4_special_inode_operations; 4221 if (raw_inode->i_block[0]) 4222 init_special_inode(inode, inode->i_mode, 4223 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4224 else 4225 init_special_inode(inode, inode->i_mode, 4226 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4227 } else if (ino == EXT4_BOOT_LOADER_INO) { 4228 make_bad_inode(inode); 4229 } else { 4230 ret = -EIO; 4231 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4232 goto bad_inode; 4233 } 4234 brelse(iloc.bh); 4235 ext4_set_inode_flags(inode); 4236 unlock_new_inode(inode); 4237 return inode; 4238 4239 bad_inode: 4240 brelse(iloc.bh); 4241 iget_failed(inode); 4242 return ERR_PTR(ret); 4243 } 4244 4245 static int ext4_inode_blocks_set(handle_t *handle, 4246 struct ext4_inode *raw_inode, 4247 struct ext4_inode_info *ei) 4248 { 4249 struct inode *inode = &(ei->vfs_inode); 4250 u64 i_blocks = inode->i_blocks; 4251 struct super_block *sb = inode->i_sb; 4252 4253 if (i_blocks <= ~0U) { 4254 /* 4255 * i_blocks can be represented in a 32 bit variable 4256 * as multiple of 512 bytes 4257 */ 4258 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4259 raw_inode->i_blocks_high = 0; 4260 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4261 return 0; 4262 } 4263 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4264 return -EFBIG; 4265 4266 if (i_blocks <= 0xffffffffffffULL) { 4267 /* 4268 * i_blocks can be represented in a 48 bit variable 4269 * as multiple of 512 bytes 4270 */ 4271 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4272 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4273 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4274 } else { 4275 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4276 /* i_block is stored in file system block size */ 4277 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4278 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4279 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4280 } 4281 return 0; 4282 } 4283 4284 /* 4285 * Post the struct inode info into an on-disk inode location in the 4286 * buffer-cache. This gobbles the caller's reference to the 4287 * buffer_head in the inode location struct. 4288 * 4289 * The caller must have write access to iloc->bh. 4290 */ 4291 static int ext4_do_update_inode(handle_t *handle, 4292 struct inode *inode, 4293 struct ext4_iloc *iloc) 4294 { 4295 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4296 struct ext4_inode_info *ei = EXT4_I(inode); 4297 struct buffer_head *bh = iloc->bh; 4298 int err = 0, rc, block; 4299 int need_datasync = 0; 4300 uid_t i_uid; 4301 gid_t i_gid; 4302 4303 /* For fields not not tracking in the in-memory inode, 4304 * initialise them to zero for new inodes. */ 4305 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4306 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4307 4308 ext4_get_inode_flags(ei); 4309 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4310 i_uid = i_uid_read(inode); 4311 i_gid = i_gid_read(inode); 4312 if (!(test_opt(inode->i_sb, NO_UID32))) { 4313 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4314 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4315 /* 4316 * Fix up interoperability with old kernels. Otherwise, old inodes get 4317 * re-used with the upper 16 bits of the uid/gid intact 4318 */ 4319 if (!ei->i_dtime) { 4320 raw_inode->i_uid_high = 4321 cpu_to_le16(high_16_bits(i_uid)); 4322 raw_inode->i_gid_high = 4323 cpu_to_le16(high_16_bits(i_gid)); 4324 } else { 4325 raw_inode->i_uid_high = 0; 4326 raw_inode->i_gid_high = 0; 4327 } 4328 } else { 4329 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4330 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4331 raw_inode->i_uid_high = 0; 4332 raw_inode->i_gid_high = 0; 4333 } 4334 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4335 4336 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4337 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4338 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4339 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4340 4341 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4342 goto out_brelse; 4343 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4344 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4345 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4346 cpu_to_le32(EXT4_OS_HURD)) 4347 raw_inode->i_file_acl_high = 4348 cpu_to_le16(ei->i_file_acl >> 32); 4349 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4350 if (ei->i_disksize != ext4_isize(raw_inode)) { 4351 ext4_isize_set(raw_inode, ei->i_disksize); 4352 need_datasync = 1; 4353 } 4354 if (ei->i_disksize > 0x7fffffffULL) { 4355 struct super_block *sb = inode->i_sb; 4356 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4357 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4358 EXT4_SB(sb)->s_es->s_rev_level == 4359 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4360 /* If this is the first large file 4361 * created, add a flag to the superblock. 4362 */ 4363 err = ext4_journal_get_write_access(handle, 4364 EXT4_SB(sb)->s_sbh); 4365 if (err) 4366 goto out_brelse; 4367 ext4_update_dynamic_rev(sb); 4368 EXT4_SET_RO_COMPAT_FEATURE(sb, 4369 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4370 ext4_handle_sync(handle); 4371 err = ext4_handle_dirty_super(handle, sb); 4372 } 4373 } 4374 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4375 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4376 if (old_valid_dev(inode->i_rdev)) { 4377 raw_inode->i_block[0] = 4378 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4379 raw_inode->i_block[1] = 0; 4380 } else { 4381 raw_inode->i_block[0] = 0; 4382 raw_inode->i_block[1] = 4383 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4384 raw_inode->i_block[2] = 0; 4385 } 4386 } else if (!ext4_has_inline_data(inode)) { 4387 for (block = 0; block < EXT4_N_BLOCKS; block++) 4388 raw_inode->i_block[block] = ei->i_data[block]; 4389 } 4390 4391 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4392 if (ei->i_extra_isize) { 4393 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4394 raw_inode->i_version_hi = 4395 cpu_to_le32(inode->i_version >> 32); 4396 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4397 } 4398 4399 ext4_inode_csum_set(inode, raw_inode, ei); 4400 4401 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4402 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4403 if (!err) 4404 err = rc; 4405 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4406 4407 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4408 out_brelse: 4409 brelse(bh); 4410 ext4_std_error(inode->i_sb, err); 4411 return err; 4412 } 4413 4414 /* 4415 * ext4_write_inode() 4416 * 4417 * We are called from a few places: 4418 * 4419 * - Within generic_file_write() for O_SYNC files. 4420 * Here, there will be no transaction running. We wait for any running 4421 * transaction to commit. 4422 * 4423 * - Within sys_sync(), kupdate and such. 4424 * We wait on commit, if tol to. 4425 * 4426 * - Within prune_icache() (PF_MEMALLOC == true) 4427 * Here we simply return. We can't afford to block kswapd on the 4428 * journal commit. 4429 * 4430 * In all cases it is actually safe for us to return without doing anything, 4431 * because the inode has been copied into a raw inode buffer in 4432 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4433 * knfsd. 4434 * 4435 * Note that we are absolutely dependent upon all inode dirtiers doing the 4436 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4437 * which we are interested. 4438 * 4439 * It would be a bug for them to not do this. The code: 4440 * 4441 * mark_inode_dirty(inode) 4442 * stuff(); 4443 * inode->i_size = expr; 4444 * 4445 * is in error because a kswapd-driven write_inode() could occur while 4446 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4447 * will no longer be on the superblock's dirty inode list. 4448 */ 4449 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4450 { 4451 int err; 4452 4453 if (current->flags & PF_MEMALLOC) 4454 return 0; 4455 4456 if (EXT4_SB(inode->i_sb)->s_journal) { 4457 if (ext4_journal_current_handle()) { 4458 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4459 dump_stack(); 4460 return -EIO; 4461 } 4462 4463 if (wbc->sync_mode != WB_SYNC_ALL) 4464 return 0; 4465 4466 err = ext4_force_commit(inode->i_sb); 4467 } else { 4468 struct ext4_iloc iloc; 4469 4470 err = __ext4_get_inode_loc(inode, &iloc, 0); 4471 if (err) 4472 return err; 4473 if (wbc->sync_mode == WB_SYNC_ALL) 4474 sync_dirty_buffer(iloc.bh); 4475 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4476 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4477 "IO error syncing inode"); 4478 err = -EIO; 4479 } 4480 brelse(iloc.bh); 4481 } 4482 return err; 4483 } 4484 4485 /* 4486 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4487 * buffers that are attached to a page stradding i_size and are undergoing 4488 * commit. In that case we have to wait for commit to finish and try again. 4489 */ 4490 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4491 { 4492 struct page *page; 4493 unsigned offset; 4494 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4495 tid_t commit_tid = 0; 4496 int ret; 4497 4498 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4499 /* 4500 * All buffers in the last page remain valid? Then there's nothing to 4501 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4502 * blocksize case 4503 */ 4504 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4505 return; 4506 while (1) { 4507 page = find_lock_page(inode->i_mapping, 4508 inode->i_size >> PAGE_CACHE_SHIFT); 4509 if (!page) 4510 return; 4511 ret = __ext4_journalled_invalidatepage(page, offset, 4512 PAGE_CACHE_SIZE - offset); 4513 unlock_page(page); 4514 page_cache_release(page); 4515 if (ret != -EBUSY) 4516 return; 4517 commit_tid = 0; 4518 read_lock(&journal->j_state_lock); 4519 if (journal->j_committing_transaction) 4520 commit_tid = journal->j_committing_transaction->t_tid; 4521 read_unlock(&journal->j_state_lock); 4522 if (commit_tid) 4523 jbd2_log_wait_commit(journal, commit_tid); 4524 } 4525 } 4526 4527 /* 4528 * ext4_setattr() 4529 * 4530 * Called from notify_change. 4531 * 4532 * We want to trap VFS attempts to truncate the file as soon as 4533 * possible. In particular, we want to make sure that when the VFS 4534 * shrinks i_size, we put the inode on the orphan list and modify 4535 * i_disksize immediately, so that during the subsequent flushing of 4536 * dirty pages and freeing of disk blocks, we can guarantee that any 4537 * commit will leave the blocks being flushed in an unused state on 4538 * disk. (On recovery, the inode will get truncated and the blocks will 4539 * be freed, so we have a strong guarantee that no future commit will 4540 * leave these blocks visible to the user.) 4541 * 4542 * Another thing we have to assure is that if we are in ordered mode 4543 * and inode is still attached to the committing transaction, we must 4544 * we start writeout of all the dirty pages which are being truncated. 4545 * This way we are sure that all the data written in the previous 4546 * transaction are already on disk (truncate waits for pages under 4547 * writeback). 4548 * 4549 * Called with inode->i_mutex down. 4550 */ 4551 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4552 { 4553 struct inode *inode = dentry->d_inode; 4554 int error, rc = 0; 4555 int orphan = 0; 4556 const unsigned int ia_valid = attr->ia_valid; 4557 4558 error = inode_change_ok(inode, attr); 4559 if (error) 4560 return error; 4561 4562 if (is_quota_modification(inode, attr)) 4563 dquot_initialize(inode); 4564 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4565 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4566 handle_t *handle; 4567 4568 /* (user+group)*(old+new) structure, inode write (sb, 4569 * inode block, ? - but truncate inode update has it) */ 4570 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4571 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4572 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4573 if (IS_ERR(handle)) { 4574 error = PTR_ERR(handle); 4575 goto err_out; 4576 } 4577 error = dquot_transfer(inode, attr); 4578 if (error) { 4579 ext4_journal_stop(handle); 4580 return error; 4581 } 4582 /* Update corresponding info in inode so that everything is in 4583 * one transaction */ 4584 if (attr->ia_valid & ATTR_UID) 4585 inode->i_uid = attr->ia_uid; 4586 if (attr->ia_valid & ATTR_GID) 4587 inode->i_gid = attr->ia_gid; 4588 error = ext4_mark_inode_dirty(handle, inode); 4589 ext4_journal_stop(handle); 4590 } 4591 4592 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4593 handle_t *handle; 4594 4595 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4596 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4597 4598 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4599 return -EFBIG; 4600 } 4601 if (S_ISREG(inode->i_mode) && 4602 (attr->ia_size < inode->i_size)) { 4603 if (ext4_should_order_data(inode)) { 4604 error = ext4_begin_ordered_truncate(inode, 4605 attr->ia_size); 4606 if (error) 4607 goto err_out; 4608 } 4609 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4610 if (IS_ERR(handle)) { 4611 error = PTR_ERR(handle); 4612 goto err_out; 4613 } 4614 if (ext4_handle_valid(handle)) { 4615 error = ext4_orphan_add(handle, inode); 4616 orphan = 1; 4617 } 4618 down_write(&EXT4_I(inode)->i_data_sem); 4619 EXT4_I(inode)->i_disksize = attr->ia_size; 4620 rc = ext4_mark_inode_dirty(handle, inode); 4621 if (!error) 4622 error = rc; 4623 /* 4624 * We have to update i_size under i_data_sem together 4625 * with i_disksize to avoid races with writeback code 4626 * running ext4_wb_update_i_disksize(). 4627 */ 4628 if (!error) 4629 i_size_write(inode, attr->ia_size); 4630 up_write(&EXT4_I(inode)->i_data_sem); 4631 ext4_journal_stop(handle); 4632 if (error) { 4633 ext4_orphan_del(NULL, inode); 4634 goto err_out; 4635 } 4636 } else 4637 i_size_write(inode, attr->ia_size); 4638 4639 /* 4640 * Blocks are going to be removed from the inode. Wait 4641 * for dio in flight. Temporarily disable 4642 * dioread_nolock to prevent livelock. 4643 */ 4644 if (orphan) { 4645 if (!ext4_should_journal_data(inode)) { 4646 ext4_inode_block_unlocked_dio(inode); 4647 inode_dio_wait(inode); 4648 ext4_inode_resume_unlocked_dio(inode); 4649 } else 4650 ext4_wait_for_tail_page_commit(inode); 4651 } 4652 /* 4653 * Truncate pagecache after we've waited for commit 4654 * in data=journal mode to make pages freeable. 4655 */ 4656 truncate_pagecache(inode, inode->i_size); 4657 } 4658 /* 4659 * We want to call ext4_truncate() even if attr->ia_size == 4660 * inode->i_size for cases like truncation of fallocated space 4661 */ 4662 if (attr->ia_valid & ATTR_SIZE) 4663 ext4_truncate(inode); 4664 4665 if (!rc) { 4666 setattr_copy(inode, attr); 4667 mark_inode_dirty(inode); 4668 } 4669 4670 /* 4671 * If the call to ext4_truncate failed to get a transaction handle at 4672 * all, we need to clean up the in-core orphan list manually. 4673 */ 4674 if (orphan && inode->i_nlink) 4675 ext4_orphan_del(NULL, inode); 4676 4677 if (!rc && (ia_valid & ATTR_MODE)) 4678 rc = ext4_acl_chmod(inode); 4679 4680 err_out: 4681 ext4_std_error(inode->i_sb, error); 4682 if (!error) 4683 error = rc; 4684 return error; 4685 } 4686 4687 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4688 struct kstat *stat) 4689 { 4690 struct inode *inode; 4691 unsigned long long delalloc_blocks; 4692 4693 inode = dentry->d_inode; 4694 generic_fillattr(inode, stat); 4695 4696 /* 4697 * If there is inline data in the inode, the inode will normally not 4698 * have data blocks allocated (it may have an external xattr block). 4699 * Report at least one sector for such files, so tools like tar, rsync, 4700 * others doen't incorrectly think the file is completely sparse. 4701 */ 4702 if (unlikely(ext4_has_inline_data(inode))) 4703 stat->blocks += (stat->size + 511) >> 9; 4704 4705 /* 4706 * We can't update i_blocks if the block allocation is delayed 4707 * otherwise in the case of system crash before the real block 4708 * allocation is done, we will have i_blocks inconsistent with 4709 * on-disk file blocks. 4710 * We always keep i_blocks updated together with real 4711 * allocation. But to not confuse with user, stat 4712 * will return the blocks that include the delayed allocation 4713 * blocks for this file. 4714 */ 4715 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4716 EXT4_I(inode)->i_reserved_data_blocks); 4717 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4718 return 0; 4719 } 4720 4721 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4722 int pextents) 4723 { 4724 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4725 return ext4_ind_trans_blocks(inode, lblocks); 4726 return ext4_ext_index_trans_blocks(inode, pextents); 4727 } 4728 4729 /* 4730 * Account for index blocks, block groups bitmaps and block group 4731 * descriptor blocks if modify datablocks and index blocks 4732 * worse case, the indexs blocks spread over different block groups 4733 * 4734 * If datablocks are discontiguous, they are possible to spread over 4735 * different block groups too. If they are contiguous, with flexbg, 4736 * they could still across block group boundary. 4737 * 4738 * Also account for superblock, inode, quota and xattr blocks 4739 */ 4740 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4741 int pextents) 4742 { 4743 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4744 int gdpblocks; 4745 int idxblocks; 4746 int ret = 0; 4747 4748 /* 4749 * How many index blocks need to touch to map @lblocks logical blocks 4750 * to @pextents physical extents? 4751 */ 4752 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4753 4754 ret = idxblocks; 4755 4756 /* 4757 * Now let's see how many group bitmaps and group descriptors need 4758 * to account 4759 */ 4760 groups = idxblocks + pextents; 4761 gdpblocks = groups; 4762 if (groups > ngroups) 4763 groups = ngroups; 4764 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4765 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4766 4767 /* bitmaps and block group descriptor blocks */ 4768 ret += groups + gdpblocks; 4769 4770 /* Blocks for super block, inode, quota and xattr blocks */ 4771 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4772 4773 return ret; 4774 } 4775 4776 /* 4777 * Calculate the total number of credits to reserve to fit 4778 * the modification of a single pages into a single transaction, 4779 * which may include multiple chunks of block allocations. 4780 * 4781 * This could be called via ext4_write_begin() 4782 * 4783 * We need to consider the worse case, when 4784 * one new block per extent. 4785 */ 4786 int ext4_writepage_trans_blocks(struct inode *inode) 4787 { 4788 int bpp = ext4_journal_blocks_per_page(inode); 4789 int ret; 4790 4791 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4792 4793 /* Account for data blocks for journalled mode */ 4794 if (ext4_should_journal_data(inode)) 4795 ret += bpp; 4796 return ret; 4797 } 4798 4799 /* 4800 * Calculate the journal credits for a chunk of data modification. 4801 * 4802 * This is called from DIO, fallocate or whoever calling 4803 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4804 * 4805 * journal buffers for data blocks are not included here, as DIO 4806 * and fallocate do no need to journal data buffers. 4807 */ 4808 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4809 { 4810 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4811 } 4812 4813 /* 4814 * The caller must have previously called ext4_reserve_inode_write(). 4815 * Give this, we know that the caller already has write access to iloc->bh. 4816 */ 4817 int ext4_mark_iloc_dirty(handle_t *handle, 4818 struct inode *inode, struct ext4_iloc *iloc) 4819 { 4820 int err = 0; 4821 4822 if (IS_I_VERSION(inode)) 4823 inode_inc_iversion(inode); 4824 4825 /* the do_update_inode consumes one bh->b_count */ 4826 get_bh(iloc->bh); 4827 4828 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4829 err = ext4_do_update_inode(handle, inode, iloc); 4830 put_bh(iloc->bh); 4831 return err; 4832 } 4833 4834 /* 4835 * On success, We end up with an outstanding reference count against 4836 * iloc->bh. This _must_ be cleaned up later. 4837 */ 4838 4839 int 4840 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4841 struct ext4_iloc *iloc) 4842 { 4843 int err; 4844 4845 err = ext4_get_inode_loc(inode, iloc); 4846 if (!err) { 4847 BUFFER_TRACE(iloc->bh, "get_write_access"); 4848 err = ext4_journal_get_write_access(handle, iloc->bh); 4849 if (err) { 4850 brelse(iloc->bh); 4851 iloc->bh = NULL; 4852 } 4853 } 4854 ext4_std_error(inode->i_sb, err); 4855 return err; 4856 } 4857 4858 /* 4859 * Expand an inode by new_extra_isize bytes. 4860 * Returns 0 on success or negative error number on failure. 4861 */ 4862 static int ext4_expand_extra_isize(struct inode *inode, 4863 unsigned int new_extra_isize, 4864 struct ext4_iloc iloc, 4865 handle_t *handle) 4866 { 4867 struct ext4_inode *raw_inode; 4868 struct ext4_xattr_ibody_header *header; 4869 4870 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4871 return 0; 4872 4873 raw_inode = ext4_raw_inode(&iloc); 4874 4875 header = IHDR(inode, raw_inode); 4876 4877 /* No extended attributes present */ 4878 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4879 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4880 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4881 new_extra_isize); 4882 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4883 return 0; 4884 } 4885 4886 /* try to expand with EAs present */ 4887 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4888 raw_inode, handle); 4889 } 4890 4891 /* 4892 * What we do here is to mark the in-core inode as clean with respect to inode 4893 * dirtiness (it may still be data-dirty). 4894 * This means that the in-core inode may be reaped by prune_icache 4895 * without having to perform any I/O. This is a very good thing, 4896 * because *any* task may call prune_icache - even ones which 4897 * have a transaction open against a different journal. 4898 * 4899 * Is this cheating? Not really. Sure, we haven't written the 4900 * inode out, but prune_icache isn't a user-visible syncing function. 4901 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4902 * we start and wait on commits. 4903 */ 4904 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4905 { 4906 struct ext4_iloc iloc; 4907 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4908 static unsigned int mnt_count; 4909 int err, ret; 4910 4911 might_sleep(); 4912 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4913 err = ext4_reserve_inode_write(handle, inode, &iloc); 4914 if (ext4_handle_valid(handle) && 4915 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4916 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4917 /* 4918 * We need extra buffer credits since we may write into EA block 4919 * with this same handle. If journal_extend fails, then it will 4920 * only result in a minor loss of functionality for that inode. 4921 * If this is felt to be critical, then e2fsck should be run to 4922 * force a large enough s_min_extra_isize. 4923 */ 4924 if ((jbd2_journal_extend(handle, 4925 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4926 ret = ext4_expand_extra_isize(inode, 4927 sbi->s_want_extra_isize, 4928 iloc, handle); 4929 if (ret) { 4930 ext4_set_inode_state(inode, 4931 EXT4_STATE_NO_EXPAND); 4932 if (mnt_count != 4933 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4934 ext4_warning(inode->i_sb, 4935 "Unable to expand inode %lu. Delete" 4936 " some EAs or run e2fsck.", 4937 inode->i_ino); 4938 mnt_count = 4939 le16_to_cpu(sbi->s_es->s_mnt_count); 4940 } 4941 } 4942 } 4943 } 4944 if (!err) 4945 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4946 return err; 4947 } 4948 4949 /* 4950 * ext4_dirty_inode() is called from __mark_inode_dirty() 4951 * 4952 * We're really interested in the case where a file is being extended. 4953 * i_size has been changed by generic_commit_write() and we thus need 4954 * to include the updated inode in the current transaction. 4955 * 4956 * Also, dquot_alloc_block() will always dirty the inode when blocks 4957 * are allocated to the file. 4958 * 4959 * If the inode is marked synchronous, we don't honour that here - doing 4960 * so would cause a commit on atime updates, which we don't bother doing. 4961 * We handle synchronous inodes at the highest possible level. 4962 */ 4963 void ext4_dirty_inode(struct inode *inode, int flags) 4964 { 4965 handle_t *handle; 4966 4967 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4968 if (IS_ERR(handle)) 4969 goto out; 4970 4971 ext4_mark_inode_dirty(handle, inode); 4972 4973 ext4_journal_stop(handle); 4974 out: 4975 return; 4976 } 4977 4978 #if 0 4979 /* 4980 * Bind an inode's backing buffer_head into this transaction, to prevent 4981 * it from being flushed to disk early. Unlike 4982 * ext4_reserve_inode_write, this leaves behind no bh reference and 4983 * returns no iloc structure, so the caller needs to repeat the iloc 4984 * lookup to mark the inode dirty later. 4985 */ 4986 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4987 { 4988 struct ext4_iloc iloc; 4989 4990 int err = 0; 4991 if (handle) { 4992 err = ext4_get_inode_loc(inode, &iloc); 4993 if (!err) { 4994 BUFFER_TRACE(iloc.bh, "get_write_access"); 4995 err = jbd2_journal_get_write_access(handle, iloc.bh); 4996 if (!err) 4997 err = ext4_handle_dirty_metadata(handle, 4998 NULL, 4999 iloc.bh); 5000 brelse(iloc.bh); 5001 } 5002 } 5003 ext4_std_error(inode->i_sb, err); 5004 return err; 5005 } 5006 #endif 5007 5008 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5009 { 5010 journal_t *journal; 5011 handle_t *handle; 5012 int err; 5013 5014 /* 5015 * We have to be very careful here: changing a data block's 5016 * journaling status dynamically is dangerous. If we write a 5017 * data block to the journal, change the status and then delete 5018 * that block, we risk forgetting to revoke the old log record 5019 * from the journal and so a subsequent replay can corrupt data. 5020 * So, first we make sure that the journal is empty and that 5021 * nobody is changing anything. 5022 */ 5023 5024 journal = EXT4_JOURNAL(inode); 5025 if (!journal) 5026 return 0; 5027 if (is_journal_aborted(journal)) 5028 return -EROFS; 5029 /* We have to allocate physical blocks for delalloc blocks 5030 * before flushing journal. otherwise delalloc blocks can not 5031 * be allocated any more. even more truncate on delalloc blocks 5032 * could trigger BUG by flushing delalloc blocks in journal. 5033 * There is no delalloc block in non-journal data mode. 5034 */ 5035 if (val && test_opt(inode->i_sb, DELALLOC)) { 5036 err = ext4_alloc_da_blocks(inode); 5037 if (err < 0) 5038 return err; 5039 } 5040 5041 /* Wait for all existing dio workers */ 5042 ext4_inode_block_unlocked_dio(inode); 5043 inode_dio_wait(inode); 5044 5045 jbd2_journal_lock_updates(journal); 5046 5047 /* 5048 * OK, there are no updates running now, and all cached data is 5049 * synced to disk. We are now in a completely consistent state 5050 * which doesn't have anything in the journal, and we know that 5051 * no filesystem updates are running, so it is safe to modify 5052 * the inode's in-core data-journaling state flag now. 5053 */ 5054 5055 if (val) 5056 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5057 else { 5058 jbd2_journal_flush(journal); 5059 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5060 } 5061 ext4_set_aops(inode); 5062 5063 jbd2_journal_unlock_updates(journal); 5064 ext4_inode_resume_unlocked_dio(inode); 5065 5066 /* Finally we can mark the inode as dirty. */ 5067 5068 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5069 if (IS_ERR(handle)) 5070 return PTR_ERR(handle); 5071 5072 err = ext4_mark_inode_dirty(handle, inode); 5073 ext4_handle_sync(handle); 5074 ext4_journal_stop(handle); 5075 ext4_std_error(inode->i_sb, err); 5076 5077 return err; 5078 } 5079 5080 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5081 { 5082 return !buffer_mapped(bh); 5083 } 5084 5085 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5086 { 5087 struct page *page = vmf->page; 5088 loff_t size; 5089 unsigned long len; 5090 int ret; 5091 struct file *file = vma->vm_file; 5092 struct inode *inode = file_inode(file); 5093 struct address_space *mapping = inode->i_mapping; 5094 handle_t *handle; 5095 get_block_t *get_block; 5096 int retries = 0; 5097 5098 sb_start_pagefault(inode->i_sb); 5099 file_update_time(vma->vm_file); 5100 /* Delalloc case is easy... */ 5101 if (test_opt(inode->i_sb, DELALLOC) && 5102 !ext4_should_journal_data(inode) && 5103 !ext4_nonda_switch(inode->i_sb)) { 5104 do { 5105 ret = __block_page_mkwrite(vma, vmf, 5106 ext4_da_get_block_prep); 5107 } while (ret == -ENOSPC && 5108 ext4_should_retry_alloc(inode->i_sb, &retries)); 5109 goto out_ret; 5110 } 5111 5112 lock_page(page); 5113 size = i_size_read(inode); 5114 /* Page got truncated from under us? */ 5115 if (page->mapping != mapping || page_offset(page) > size) { 5116 unlock_page(page); 5117 ret = VM_FAULT_NOPAGE; 5118 goto out; 5119 } 5120 5121 if (page->index == size >> PAGE_CACHE_SHIFT) 5122 len = size & ~PAGE_CACHE_MASK; 5123 else 5124 len = PAGE_CACHE_SIZE; 5125 /* 5126 * Return if we have all the buffers mapped. This avoids the need to do 5127 * journal_start/journal_stop which can block and take a long time 5128 */ 5129 if (page_has_buffers(page)) { 5130 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5131 0, len, NULL, 5132 ext4_bh_unmapped)) { 5133 /* Wait so that we don't change page under IO */ 5134 wait_for_stable_page(page); 5135 ret = VM_FAULT_LOCKED; 5136 goto out; 5137 } 5138 } 5139 unlock_page(page); 5140 /* OK, we need to fill the hole... */ 5141 if (ext4_should_dioread_nolock(inode)) 5142 get_block = ext4_get_block_write; 5143 else 5144 get_block = ext4_get_block; 5145 retry_alloc: 5146 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5147 ext4_writepage_trans_blocks(inode)); 5148 if (IS_ERR(handle)) { 5149 ret = VM_FAULT_SIGBUS; 5150 goto out; 5151 } 5152 ret = __block_page_mkwrite(vma, vmf, get_block); 5153 if (!ret && ext4_should_journal_data(inode)) { 5154 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5155 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5156 unlock_page(page); 5157 ret = VM_FAULT_SIGBUS; 5158 ext4_journal_stop(handle); 5159 goto out; 5160 } 5161 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5162 } 5163 ext4_journal_stop(handle); 5164 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5165 goto retry_alloc; 5166 out_ret: 5167 ret = block_page_mkwrite_return(ret); 5168 out: 5169 sb_end_pagefault(inode->i_sb); 5170 return ret; 5171 } 5172