xref: /openbmc/linux/fs/ext4/inode.c (revision bacf743e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 #include <linux/dax.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <trace/events/ext4.h>
52 
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 			 struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
142 				  int pextents);
143 
144 /*
145  * Test whether an inode is a fast symlink.
146  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
151 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
152 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
153 
154 		if (ext4_has_inline_data(inode))
155 			return 0;
156 
157 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
158 	}
159 	return S_ISLNK(inode->i_mode) && inode->i_size &&
160 	       (inode->i_size < EXT4_N_BLOCKS * 4);
161 }
162 
163 /*
164  * Called at the last iput() if i_nlink is zero.
165  */
166 void ext4_evict_inode(struct inode *inode)
167 {
168 	handle_t *handle;
169 	int err;
170 	/*
171 	 * Credits for final inode cleanup and freeing:
172 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
173 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
174 	 */
175 	int extra_credits = 6;
176 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
177 	bool freeze_protected = false;
178 
179 	trace_ext4_evict_inode(inode);
180 
181 	if (inode->i_nlink) {
182 		/*
183 		 * When journalling data dirty buffers are tracked only in the
184 		 * journal. So although mm thinks everything is clean and
185 		 * ready for reaping the inode might still have some pages to
186 		 * write in the running transaction or waiting to be
187 		 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
188 		 * (via truncate_inode_pages()) to discard these buffers can
189 		 * cause data loss. Also even if we did not discard these
190 		 * buffers, we would have no way to find them after the inode
191 		 * is reaped and thus user could see stale data if he tries to
192 		 * read them before the transaction is checkpointed. So be
193 		 * careful and force everything to disk here... We use
194 		 * ei->i_datasync_tid to store the newest transaction
195 		 * containing inode's data.
196 		 *
197 		 * Note that directories do not have this problem because they
198 		 * don't use page cache.
199 		 */
200 		if (inode->i_ino != EXT4_JOURNAL_INO &&
201 		    ext4_should_journal_data(inode) &&
202 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 		    inode->i_data.nrpages) {
204 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206 
207 			jbd2_complete_transaction(journal, commit_tid);
208 			filemap_write_and_wait(&inode->i_data);
209 		}
210 		truncate_inode_pages_final(&inode->i_data);
211 
212 		goto no_delete;
213 	}
214 
215 	if (is_bad_inode(inode))
216 		goto no_delete;
217 	dquot_initialize(inode);
218 
219 	if (ext4_should_order_data(inode))
220 		ext4_begin_ordered_truncate(inode, 0);
221 	truncate_inode_pages_final(&inode->i_data);
222 
223 	/*
224 	 * For inodes with journalled data, transaction commit could have
225 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226 	 * flag but we still need to remove the inode from the writeback lists.
227 	 */
228 	if (!list_empty_careful(&inode->i_io_list)) {
229 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
230 		inode_io_list_del(inode);
231 	}
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it. When we are in a running transaction though,
236 	 * we are already protected against freezing and we cannot grab further
237 	 * protection due to lock ordering constraints.
238 	 */
239 	if (!ext4_journal_current_handle()) {
240 		sb_start_intwrite(inode->i_sb);
241 		freeze_protected = true;
242 	}
243 
244 	if (!IS_NOQUOTA(inode))
245 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246 
247 	/*
248 	 * Block bitmap, group descriptor, and inode are accounted in both
249 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250 	 */
251 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
253 	if (IS_ERR(handle)) {
254 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
255 		/*
256 		 * If we're going to skip the normal cleanup, we still need to
257 		 * make sure that the in-core orphan linked list is properly
258 		 * cleaned up.
259 		 */
260 		ext4_orphan_del(NULL, inode);
261 		if (freeze_protected)
262 			sb_end_intwrite(inode->i_sb);
263 		goto no_delete;
264 	}
265 
266 	if (IS_SYNC(inode))
267 		ext4_handle_sync(handle);
268 
269 	/*
270 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 	 * special handling of symlinks here because i_size is used to
272 	 * determine whether ext4_inode_info->i_data contains symlink data or
273 	 * block mappings. Setting i_size to 0 will remove its fast symlink
274 	 * status. Erase i_data so that it becomes a valid empty block map.
275 	 */
276 	if (ext4_inode_is_fast_symlink(inode))
277 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278 	inode->i_size = 0;
279 	err = ext4_mark_inode_dirty(handle, inode);
280 	if (err) {
281 		ext4_warning(inode->i_sb,
282 			     "couldn't mark inode dirty (err %d)", err);
283 		goto stop_handle;
284 	}
285 	if (inode->i_blocks) {
286 		err = ext4_truncate(inode);
287 		if (err) {
288 			ext4_error_err(inode->i_sb, -err,
289 				       "couldn't truncate inode %lu (err %d)",
290 				       inode->i_ino, err);
291 			goto stop_handle;
292 		}
293 	}
294 
295 	/* Remove xattr references. */
296 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297 				      extra_credits);
298 	if (err) {
299 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301 		ext4_journal_stop(handle);
302 		ext4_orphan_del(NULL, inode);
303 		if (freeze_protected)
304 			sb_end_intwrite(inode->i_sb);
305 		ext4_xattr_inode_array_free(ea_inode_array);
306 		goto no_delete;
307 	}
308 
309 	/*
310 	 * Kill off the orphan record which ext4_truncate created.
311 	 * AKPM: I think this can be inside the above `if'.
312 	 * Note that ext4_orphan_del() has to be able to cope with the
313 	 * deletion of a non-existent orphan - this is because we don't
314 	 * know if ext4_truncate() actually created an orphan record.
315 	 * (Well, we could do this if we need to, but heck - it works)
316 	 */
317 	ext4_orphan_del(handle, inode);
318 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
319 
320 	/*
321 	 * One subtle ordering requirement: if anything has gone wrong
322 	 * (transaction abort, IO errors, whatever), then we can still
323 	 * do these next steps (the fs will already have been marked as
324 	 * having errors), but we can't free the inode if the mark_dirty
325 	 * fails.
326 	 */
327 	if (ext4_mark_inode_dirty(handle, inode))
328 		/* If that failed, just do the required in-core inode clear. */
329 		ext4_clear_inode(inode);
330 	else
331 		ext4_free_inode(handle, inode);
332 	ext4_journal_stop(handle);
333 	if (freeze_protected)
334 		sb_end_intwrite(inode->i_sb);
335 	ext4_xattr_inode_array_free(ea_inode_array);
336 	return;
337 no_delete:
338 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
339 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
340 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
341 }
342 
343 #ifdef CONFIG_QUOTA
344 qsize_t *ext4_get_reserved_space(struct inode *inode)
345 {
346 	return &EXT4_I(inode)->i_reserved_quota;
347 }
348 #endif
349 
350 /*
351  * Called with i_data_sem down, which is important since we can call
352  * ext4_discard_preallocations() from here.
353  */
354 void ext4_da_update_reserve_space(struct inode *inode,
355 					int used, int quota_claim)
356 {
357 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
358 	struct ext4_inode_info *ei = EXT4_I(inode);
359 
360 	spin_lock(&ei->i_block_reservation_lock);
361 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
362 	if (unlikely(used > ei->i_reserved_data_blocks)) {
363 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
364 			 "with only %d reserved data blocks",
365 			 __func__, inode->i_ino, used,
366 			 ei->i_reserved_data_blocks);
367 		WARN_ON(1);
368 		used = ei->i_reserved_data_blocks;
369 	}
370 
371 	/* Update per-inode reservations */
372 	ei->i_reserved_data_blocks -= used;
373 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
374 
375 	spin_unlock(&ei->i_block_reservation_lock);
376 
377 	/* Update quota subsystem for data blocks */
378 	if (quota_claim)
379 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
380 	else {
381 		/*
382 		 * We did fallocate with an offset that is already delayed
383 		 * allocated. So on delayed allocated writeback we should
384 		 * not re-claim the quota for fallocated blocks.
385 		 */
386 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
387 	}
388 
389 	/*
390 	 * If we have done all the pending block allocations and if
391 	 * there aren't any writers on the inode, we can discard the
392 	 * inode's preallocations.
393 	 */
394 	if ((ei->i_reserved_data_blocks == 0) &&
395 	    !inode_is_open_for_write(inode))
396 		ext4_discard_preallocations(inode, 0);
397 }
398 
399 static int __check_block_validity(struct inode *inode, const char *func,
400 				unsigned int line,
401 				struct ext4_map_blocks *map)
402 {
403 	if (ext4_has_feature_journal(inode->i_sb) &&
404 	    (inode->i_ino ==
405 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
406 		return 0;
407 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
408 		ext4_error_inode(inode, func, line, map->m_pblk,
409 				 "lblock %lu mapped to illegal pblock %llu "
410 				 "(length %d)", (unsigned long) map->m_lblk,
411 				 map->m_pblk, map->m_len);
412 		return -EFSCORRUPTED;
413 	}
414 	return 0;
415 }
416 
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 		       ext4_lblk_t len)
419 {
420 	int ret;
421 
422 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
423 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
424 
425 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426 	if (ret > 0)
427 		ret = 0;
428 
429 	return ret;
430 }
431 
432 #define check_block_validity(inode, map)	\
433 	__check_block_validity((inode), __func__, __LINE__, (map))
434 
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437 				       struct inode *inode,
438 				       struct ext4_map_blocks *es_map,
439 				       struct ext4_map_blocks *map,
440 				       int flags)
441 {
442 	int retval;
443 
444 	map->m_flags = 0;
445 	/*
446 	 * There is a race window that the result is not the same.
447 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
448 	 * is that we lookup a block mapping in extent status tree with
449 	 * out taking i_data_sem.  So at the time the unwritten extent
450 	 * could be converted.
451 	 */
452 	down_read(&EXT4_I(inode)->i_data_sem);
453 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
455 	} else {
456 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
457 	}
458 	up_read((&EXT4_I(inode)->i_data_sem));
459 
460 	/*
461 	 * We don't check m_len because extent will be collpased in status
462 	 * tree.  So the m_len might not equal.
463 	 */
464 	if (es_map->m_lblk != map->m_lblk ||
465 	    es_map->m_flags != map->m_flags ||
466 	    es_map->m_pblk != map->m_pblk) {
467 		printk("ES cache assertion failed for inode: %lu "
468 		       "es_cached ex [%d/%d/%llu/%x] != "
469 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
470 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
471 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
472 		       map->m_len, map->m_pblk, map->m_flags,
473 		       retval, flags);
474 	}
475 }
476 #endif /* ES_AGGRESSIVE_TEST */
477 
478 /*
479  * The ext4_map_blocks() function tries to look up the requested blocks,
480  * and returns if the blocks are already mapped.
481  *
482  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
483  * and store the allocated blocks in the result buffer head and mark it
484  * mapped.
485  *
486  * If file type is extents based, it will call ext4_ext_map_blocks(),
487  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
488  * based files
489  *
490  * On success, it returns the number of blocks being mapped or allocated.  if
491  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
492  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
493  *
494  * It returns 0 if plain look up failed (blocks have not been allocated), in
495  * that case, @map is returned as unmapped but we still do fill map->m_len to
496  * indicate the length of a hole starting at map->m_lblk.
497  *
498  * It returns the error in case of allocation failure.
499  */
500 int ext4_map_blocks(handle_t *handle, struct inode *inode,
501 		    struct ext4_map_blocks *map, int flags)
502 {
503 	struct extent_status es;
504 	int retval;
505 	int ret = 0;
506 #ifdef ES_AGGRESSIVE_TEST
507 	struct ext4_map_blocks orig_map;
508 
509 	memcpy(&orig_map, map, sizeof(*map));
510 #endif
511 
512 	map->m_flags = 0;
513 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
514 		  flags, map->m_len, (unsigned long) map->m_lblk);
515 
516 	/*
517 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
518 	 */
519 	if (unlikely(map->m_len > INT_MAX))
520 		map->m_len = INT_MAX;
521 
522 	/* We can handle the block number less than EXT_MAX_BLOCKS */
523 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
524 		return -EFSCORRUPTED;
525 
526 	/* Lookup extent status tree firstly */
527 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
528 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
529 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
530 			map->m_pblk = ext4_es_pblock(&es) +
531 					map->m_lblk - es.es_lblk;
532 			map->m_flags |= ext4_es_is_written(&es) ?
533 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
534 			retval = es.es_len - (map->m_lblk - es.es_lblk);
535 			if (retval > map->m_len)
536 				retval = map->m_len;
537 			map->m_len = retval;
538 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
539 			map->m_pblk = 0;
540 			retval = es.es_len - (map->m_lblk - es.es_lblk);
541 			if (retval > map->m_len)
542 				retval = map->m_len;
543 			map->m_len = retval;
544 			retval = 0;
545 		} else {
546 			BUG();
547 		}
548 #ifdef ES_AGGRESSIVE_TEST
549 		ext4_map_blocks_es_recheck(handle, inode, map,
550 					   &orig_map, flags);
551 #endif
552 		goto found;
553 	}
554 
555 	/*
556 	 * Try to see if we can get the block without requesting a new
557 	 * file system block.
558 	 */
559 	down_read(&EXT4_I(inode)->i_data_sem);
560 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
561 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
562 	} else {
563 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
564 	}
565 	if (retval > 0) {
566 		unsigned int status;
567 
568 		if (unlikely(retval != map->m_len)) {
569 			ext4_warning(inode->i_sb,
570 				     "ES len assertion failed for inode "
571 				     "%lu: retval %d != map->m_len %d",
572 				     inode->i_ino, retval, map->m_len);
573 			WARN_ON(1);
574 		}
575 
576 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 		    !(status & EXTENT_STATUS_WRITTEN) &&
580 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581 				       map->m_lblk + map->m_len - 1))
582 			status |= EXTENT_STATUS_DELAYED;
583 		ret = ext4_es_insert_extent(inode, map->m_lblk,
584 					    map->m_len, map->m_pblk, status);
585 		if (ret < 0)
586 			retval = ret;
587 	}
588 	up_read((&EXT4_I(inode)->i_data_sem));
589 
590 found:
591 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 		ret = check_block_validity(inode, map);
593 		if (ret != 0)
594 			return ret;
595 	}
596 
597 	/* If it is only a block(s) look up */
598 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599 		return retval;
600 
601 	/*
602 	 * Returns if the blocks have already allocated
603 	 *
604 	 * Note that if blocks have been preallocated
605 	 * ext4_ext_get_block() returns the create = 0
606 	 * with buffer head unmapped.
607 	 */
608 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609 		/*
610 		 * If we need to convert extent to unwritten
611 		 * we continue and do the actual work in
612 		 * ext4_ext_map_blocks()
613 		 */
614 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615 			return retval;
616 
617 	/*
618 	 * Here we clear m_flags because after allocating an new extent,
619 	 * it will be set again.
620 	 */
621 	map->m_flags &= ~EXT4_MAP_FLAGS;
622 
623 	/*
624 	 * New blocks allocate and/or writing to unwritten extent
625 	 * will possibly result in updating i_data, so we take
626 	 * the write lock of i_data_sem, and call get_block()
627 	 * with create == 1 flag.
628 	 */
629 	down_write(&EXT4_I(inode)->i_data_sem);
630 
631 	/*
632 	 * We need to check for EXT4 here because migrate
633 	 * could have changed the inode type in between
634 	 */
635 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
637 	} else {
638 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
639 
640 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641 			/*
642 			 * We allocated new blocks which will result in
643 			 * i_data's format changing.  Force the migrate
644 			 * to fail by clearing migrate flags
645 			 */
646 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647 		}
648 
649 		/*
650 		 * Update reserved blocks/metadata blocks after successful
651 		 * block allocation which had been deferred till now. We don't
652 		 * support fallocate for non extent files. So we can update
653 		 * reserve space here.
654 		 */
655 		if ((retval > 0) &&
656 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 			ext4_da_update_reserve_space(inode, retval, 1);
658 	}
659 
660 	if (retval > 0) {
661 		unsigned int status;
662 
663 		if (unlikely(retval != map->m_len)) {
664 			ext4_warning(inode->i_sb,
665 				     "ES len assertion failed for inode "
666 				     "%lu: retval %d != map->m_len %d",
667 				     inode->i_ino, retval, map->m_len);
668 			WARN_ON(1);
669 		}
670 
671 		/*
672 		 * We have to zeroout blocks before inserting them into extent
673 		 * status tree. Otherwise someone could look them up there and
674 		 * use them before they are really zeroed. We also have to
675 		 * unmap metadata before zeroing as otherwise writeback can
676 		 * overwrite zeros with stale data from block device.
677 		 */
678 		if (flags & EXT4_GET_BLOCKS_ZERO &&
679 		    map->m_flags & EXT4_MAP_MAPPED &&
680 		    map->m_flags & EXT4_MAP_NEW) {
681 			ret = ext4_issue_zeroout(inode, map->m_lblk,
682 						 map->m_pblk, map->m_len);
683 			if (ret) {
684 				retval = ret;
685 				goto out_sem;
686 			}
687 		}
688 
689 		/*
690 		 * If the extent has been zeroed out, we don't need to update
691 		 * extent status tree.
692 		 */
693 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
694 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
695 			if (ext4_es_is_written(&es))
696 				goto out_sem;
697 		}
698 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
699 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
700 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
701 		    !(status & EXTENT_STATUS_WRITTEN) &&
702 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
703 				       map->m_lblk + map->m_len - 1))
704 			status |= EXTENT_STATUS_DELAYED;
705 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
706 					    map->m_pblk, status);
707 		if (ret < 0) {
708 			retval = ret;
709 			goto out_sem;
710 		}
711 	}
712 
713 out_sem:
714 	up_write((&EXT4_I(inode)->i_data_sem));
715 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716 		ret = check_block_validity(inode, map);
717 		if (ret != 0)
718 			return ret;
719 
720 		/*
721 		 * Inodes with freshly allocated blocks where contents will be
722 		 * visible after transaction commit must be on transaction's
723 		 * ordered data list.
724 		 */
725 		if (map->m_flags & EXT4_MAP_NEW &&
726 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
728 		    !ext4_is_quota_file(inode) &&
729 		    ext4_should_order_data(inode)) {
730 			loff_t start_byte =
731 				(loff_t)map->m_lblk << inode->i_blkbits;
732 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
733 
734 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
735 				ret = ext4_jbd2_inode_add_wait(handle, inode,
736 						start_byte, length);
737 			else
738 				ret = ext4_jbd2_inode_add_write(handle, inode,
739 						start_byte, length);
740 			if (ret)
741 				return ret;
742 		}
743 	}
744 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
745 				map->m_flags & EXT4_MAP_MAPPED))
746 		ext4_fc_track_range(handle, inode, map->m_lblk,
747 					map->m_lblk + map->m_len - 1);
748 	if (retval < 0)
749 		ext_debug(inode, "failed with err %d\n", retval);
750 	return retval;
751 }
752 
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759 	unsigned long old_state;
760 	unsigned long new_state;
761 
762 	flags &= EXT4_MAP_FLAGS;
763 
764 	/* Dummy buffer_head? Set non-atomically. */
765 	if (!bh->b_page) {
766 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767 		return;
768 	}
769 	/*
770 	 * Someone else may be modifying b_state. Be careful! This is ugly but
771 	 * once we get rid of using bh as a container for mapping information
772 	 * to pass to / from get_block functions, this can go away.
773 	 */
774 	do {
775 		old_state = READ_ONCE(bh->b_state);
776 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777 	} while (unlikely(
778 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780 
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 			   struct buffer_head *bh, int flags)
783 {
784 	struct ext4_map_blocks map;
785 	int ret = 0;
786 
787 	if (ext4_has_inline_data(inode))
788 		return -ERANGE;
789 
790 	map.m_lblk = iblock;
791 	map.m_len = bh->b_size >> inode->i_blkbits;
792 
793 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794 			      flags);
795 	if (ret > 0) {
796 		map_bh(bh, inode->i_sb, map.m_pblk);
797 		ext4_update_bh_state(bh, map.m_flags);
798 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799 		ret = 0;
800 	} else if (ret == 0) {
801 		/* hole case, need to fill in bh->b_size */
802 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803 	}
804 	return ret;
805 }
806 
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 		   struct buffer_head *bh, int create)
809 {
810 	return _ext4_get_block(inode, iblock, bh,
811 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813 
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 			     struct buffer_head *bh_result, int create)
821 {
822 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 		   inode->i_ino, create);
824 	return _ext4_get_block(inode, iblock, bh_result,
825 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827 
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830 
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 				ext4_lblk_t block, int map_flags)
836 {
837 	struct ext4_map_blocks map;
838 	struct buffer_head *bh;
839 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 	int err;
841 
842 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 		    || handle != NULL || create == 0);
844 
845 	map.m_lblk = block;
846 	map.m_len = 1;
847 	err = ext4_map_blocks(handle, inode, &map, map_flags);
848 
849 	if (err == 0)
850 		return create ? ERR_PTR(-ENOSPC) : NULL;
851 	if (err < 0)
852 		return ERR_PTR(err);
853 
854 	bh = sb_getblk(inode->i_sb, map.m_pblk);
855 	if (unlikely(!bh))
856 		return ERR_PTR(-ENOMEM);
857 	if (map.m_flags & EXT4_MAP_NEW) {
858 		ASSERT(create != 0);
859 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 			    || (handle != NULL));
861 
862 		/*
863 		 * Now that we do not always journal data, we should
864 		 * keep in mind whether this should always journal the
865 		 * new buffer as metadata.  For now, regular file
866 		 * writes use ext4_get_block instead, so it's not a
867 		 * problem.
868 		 */
869 		lock_buffer(bh);
870 		BUFFER_TRACE(bh, "call get_create_access");
871 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
872 						     EXT4_JTR_NONE);
873 		if (unlikely(err)) {
874 			unlock_buffer(bh);
875 			goto errout;
876 		}
877 		if (!buffer_uptodate(bh)) {
878 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 			set_buffer_uptodate(bh);
880 		}
881 		unlock_buffer(bh);
882 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 		err = ext4_handle_dirty_metadata(handle, inode, bh);
884 		if (unlikely(err))
885 			goto errout;
886 	} else
887 		BUFFER_TRACE(bh, "not a new buffer");
888 	return bh;
889 errout:
890 	brelse(bh);
891 	return ERR_PTR(err);
892 }
893 
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 			       ext4_lblk_t block, int map_flags)
896 {
897 	struct buffer_head *bh;
898 	int ret;
899 
900 	bh = ext4_getblk(handle, inode, block, map_flags);
901 	if (IS_ERR(bh))
902 		return bh;
903 	if (!bh || ext4_buffer_uptodate(bh))
904 		return bh;
905 
906 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 	if (ret) {
908 		put_bh(bh);
909 		return ERR_PTR(ret);
910 	}
911 	return bh;
912 }
913 
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 		     bool wait, struct buffer_head **bhs)
917 {
918 	int i, err;
919 
920 	for (i = 0; i < bh_count; i++) {
921 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 		if (IS_ERR(bhs[i])) {
923 			err = PTR_ERR(bhs[i]);
924 			bh_count = i;
925 			goto out_brelse;
926 		}
927 	}
928 
929 	for (i = 0; i < bh_count; i++)
930 		/* Note that NULL bhs[i] is valid because of holes. */
931 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933 
934 	if (!wait)
935 		return 0;
936 
937 	for (i = 0; i < bh_count; i++)
938 		if (bhs[i])
939 			wait_on_buffer(bhs[i]);
940 
941 	for (i = 0; i < bh_count; i++) {
942 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 			err = -EIO;
944 			goto out_brelse;
945 		}
946 	}
947 	return 0;
948 
949 out_brelse:
950 	for (i = 0; i < bh_count; i++) {
951 		brelse(bhs[i]);
952 		bhs[i] = NULL;
953 	}
954 	return err;
955 }
956 
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958 			   struct buffer_head *head,
959 			   unsigned from,
960 			   unsigned to,
961 			   int *partial,
962 			   int (*fn)(handle_t *handle, struct inode *inode,
963 				     struct buffer_head *bh))
964 {
965 	struct buffer_head *bh;
966 	unsigned block_start, block_end;
967 	unsigned blocksize = head->b_size;
968 	int err, ret = 0;
969 	struct buffer_head *next;
970 
971 	for (bh = head, block_start = 0;
972 	     ret == 0 && (bh != head || !block_start);
973 	     block_start = block_end, bh = next) {
974 		next = bh->b_this_page;
975 		block_end = block_start + blocksize;
976 		if (block_end <= from || block_start >= to) {
977 			if (partial && !buffer_uptodate(bh))
978 				*partial = 1;
979 			continue;
980 		}
981 		err = (*fn)(handle, inode, bh);
982 		if (!ret)
983 			ret = err;
984 	}
985 	return ret;
986 }
987 
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 				struct buffer_head *bh)
1014 {
1015 	int dirty = buffer_dirty(bh);
1016 	int ret;
1017 
1018 	if (!buffer_mapped(bh) || buffer_freed(bh))
1019 		return 0;
1020 	/*
1021 	 * __block_write_begin() could have dirtied some buffers. Clean
1022 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 	 * otherwise about fs integrity issues. Setting of the dirty bit
1024 	 * by __block_write_begin() isn't a real problem here as we clear
1025 	 * the bit before releasing a page lock and thus writeback cannot
1026 	 * ever write the buffer.
1027 	 */
1028 	if (dirty)
1029 		clear_buffer_dirty(bh);
1030 	BUFFER_TRACE(bh, "get write access");
1031 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032 					    EXT4_JTR_NONE);
1033 	if (!ret && dirty)
1034 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035 	return ret;
1036 }
1037 
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040 				  get_block_t *get_block)
1041 {
1042 	unsigned from = pos & (PAGE_SIZE - 1);
1043 	unsigned to = from + len;
1044 	struct inode *inode = page->mapping->host;
1045 	unsigned block_start, block_end;
1046 	sector_t block;
1047 	int err = 0;
1048 	unsigned blocksize = inode->i_sb->s_blocksize;
1049 	unsigned bbits;
1050 	struct buffer_head *bh, *head, *wait[2];
1051 	int nr_wait = 0;
1052 	int i;
1053 
1054 	BUG_ON(!PageLocked(page));
1055 	BUG_ON(from > PAGE_SIZE);
1056 	BUG_ON(to > PAGE_SIZE);
1057 	BUG_ON(from > to);
1058 
1059 	if (!page_has_buffers(page))
1060 		create_empty_buffers(page, blocksize, 0);
1061 	head = page_buffers(page);
1062 	bbits = ilog2(blocksize);
1063 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1064 
1065 	for (bh = head, block_start = 0; bh != head || !block_start;
1066 	    block++, block_start = block_end, bh = bh->b_this_page) {
1067 		block_end = block_start + blocksize;
1068 		if (block_end <= from || block_start >= to) {
1069 			if (PageUptodate(page)) {
1070 				set_buffer_uptodate(bh);
1071 			}
1072 			continue;
1073 		}
1074 		if (buffer_new(bh))
1075 			clear_buffer_new(bh);
1076 		if (!buffer_mapped(bh)) {
1077 			WARN_ON(bh->b_size != blocksize);
1078 			err = get_block(inode, block, bh, 1);
1079 			if (err)
1080 				break;
1081 			if (buffer_new(bh)) {
1082 				if (PageUptodate(page)) {
1083 					clear_buffer_new(bh);
1084 					set_buffer_uptodate(bh);
1085 					mark_buffer_dirty(bh);
1086 					continue;
1087 				}
1088 				if (block_end > to || block_start < from)
1089 					zero_user_segments(page, to, block_end,
1090 							   block_start, from);
1091 				continue;
1092 			}
1093 		}
1094 		if (PageUptodate(page)) {
1095 			set_buffer_uptodate(bh);
1096 			continue;
1097 		}
1098 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 		    !buffer_unwritten(bh) &&
1100 		    (block_start < from || block_end > to)) {
1101 			ext4_read_bh_lock(bh, 0, false);
1102 			wait[nr_wait++] = bh;
1103 		}
1104 	}
1105 	/*
1106 	 * If we issued read requests, let them complete.
1107 	 */
1108 	for (i = 0; i < nr_wait; i++) {
1109 		wait_on_buffer(wait[i]);
1110 		if (!buffer_uptodate(wait[i]))
1111 			err = -EIO;
1112 	}
1113 	if (unlikely(err)) {
1114 		page_zero_new_buffers(page, from, to);
1115 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 		for (i = 0; i < nr_wait; i++) {
1117 			int err2;
1118 
1119 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 								bh_offset(wait[i]));
1121 			if (err2) {
1122 				clear_buffer_uptodate(wait[i]);
1123 				err = err2;
1124 			}
1125 		}
1126 	}
1127 
1128 	return err;
1129 }
1130 #endif
1131 
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 			    loff_t pos, unsigned len, unsigned flags,
1134 			    struct page **pagep, void **fsdata)
1135 {
1136 	struct inode *inode = mapping->host;
1137 	int ret, needed_blocks;
1138 	handle_t *handle;
1139 	int retries = 0;
1140 	struct page *page;
1141 	pgoff_t index;
1142 	unsigned from, to;
1143 
1144 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145 		return -EIO;
1146 
1147 	trace_ext4_write_begin(inode, pos, len, flags);
1148 	/*
1149 	 * Reserve one block more for addition to orphan list in case
1150 	 * we allocate blocks but write fails for some reason
1151 	 */
1152 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153 	index = pos >> PAGE_SHIFT;
1154 	from = pos & (PAGE_SIZE - 1);
1155 	to = from + len;
1156 
1157 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159 						    flags, pagep);
1160 		if (ret < 0)
1161 			return ret;
1162 		if (ret == 1)
1163 			return 0;
1164 	}
1165 
1166 	/*
1167 	 * grab_cache_page_write_begin() can take a long time if the
1168 	 * system is thrashing due to memory pressure, or if the page
1169 	 * is being written back.  So grab it first before we start
1170 	 * the transaction handle.  This also allows us to allocate
1171 	 * the page (if needed) without using GFP_NOFS.
1172 	 */
1173 retry_grab:
1174 	page = grab_cache_page_write_begin(mapping, index, flags);
1175 	if (!page)
1176 		return -ENOMEM;
1177 	unlock_page(page);
1178 
1179 retry_journal:
1180 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181 	if (IS_ERR(handle)) {
1182 		put_page(page);
1183 		return PTR_ERR(handle);
1184 	}
1185 
1186 	lock_page(page);
1187 	if (page->mapping != mapping) {
1188 		/* The page got truncated from under us */
1189 		unlock_page(page);
1190 		put_page(page);
1191 		ext4_journal_stop(handle);
1192 		goto retry_grab;
1193 	}
1194 	/* In case writeback began while the page was unlocked */
1195 	wait_for_stable_page(page);
1196 
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 	if (ext4_should_dioread_nolock(inode))
1199 		ret = ext4_block_write_begin(page, pos, len,
1200 					     ext4_get_block_unwritten);
1201 	else
1202 		ret = ext4_block_write_begin(page, pos, len,
1203 					     ext4_get_block);
1204 #else
1205 	if (ext4_should_dioread_nolock(inode))
1206 		ret = __block_write_begin(page, pos, len,
1207 					  ext4_get_block_unwritten);
1208 	else
1209 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211 	if (!ret && ext4_should_journal_data(inode)) {
1212 		ret = ext4_walk_page_buffers(handle, inode,
1213 					     page_buffers(page), from, to, NULL,
1214 					     do_journal_get_write_access);
1215 	}
1216 
1217 	if (ret) {
1218 		bool extended = (pos + len > inode->i_size) &&
1219 				!ext4_verity_in_progress(inode);
1220 
1221 		unlock_page(page);
1222 		/*
1223 		 * __block_write_begin may have instantiated a few blocks
1224 		 * outside i_size.  Trim these off again. Don't need
1225 		 * i_size_read because we hold i_rwsem.
1226 		 *
1227 		 * Add inode to orphan list in case we crash before
1228 		 * truncate finishes
1229 		 */
1230 		if (extended && ext4_can_truncate(inode))
1231 			ext4_orphan_add(handle, inode);
1232 
1233 		ext4_journal_stop(handle);
1234 		if (extended) {
1235 			ext4_truncate_failed_write(inode);
1236 			/*
1237 			 * If truncate failed early the inode might
1238 			 * still be on the orphan list; we need to
1239 			 * make sure the inode is removed from the
1240 			 * orphan list in that case.
1241 			 */
1242 			if (inode->i_nlink)
1243 				ext4_orphan_del(NULL, inode);
1244 		}
1245 
1246 		if (ret == -ENOSPC &&
1247 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1248 			goto retry_journal;
1249 		put_page(page);
1250 		return ret;
1251 	}
1252 	*pagep = page;
1253 	return ret;
1254 }
1255 
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258 			struct buffer_head *bh)
1259 {
1260 	int ret;
1261 	if (!buffer_mapped(bh) || buffer_freed(bh))
1262 		return 0;
1263 	set_buffer_uptodate(bh);
1264 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 	clear_buffer_meta(bh);
1266 	clear_buffer_prio(bh);
1267 	return ret;
1268 }
1269 
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
1277 static int ext4_write_end(struct file *file,
1278 			  struct address_space *mapping,
1279 			  loff_t pos, unsigned len, unsigned copied,
1280 			  struct page *page, void *fsdata)
1281 {
1282 	handle_t *handle = ext4_journal_current_handle();
1283 	struct inode *inode = mapping->host;
1284 	loff_t old_size = inode->i_size;
1285 	int ret = 0, ret2;
1286 	int i_size_changed = 0;
1287 	bool verity = ext4_verity_in_progress(inode);
1288 
1289 	trace_ext4_write_end(inode, pos, len, copied);
1290 
1291 	if (ext4_has_inline_data(inode))
1292 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1293 
1294 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1295 	/*
1296 	 * it's important to update i_size while still holding page lock:
1297 	 * page writeout could otherwise come in and zero beyond i_size.
1298 	 *
1299 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1300 	 * blocks are being written past EOF, so skip the i_size update.
1301 	 */
1302 	if (!verity)
1303 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1304 	unlock_page(page);
1305 	put_page(page);
1306 
1307 	if (old_size < pos && !verity)
1308 		pagecache_isize_extended(inode, old_size, pos);
1309 	/*
1310 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1311 	 * makes the holding time of page lock longer. Second, it forces lock
1312 	 * ordering of page lock and transaction start for journaling
1313 	 * filesystems.
1314 	 */
1315 	if (i_size_changed)
1316 		ret = ext4_mark_inode_dirty(handle, inode);
1317 
1318 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1319 		/* if we have allocated more blocks and copied
1320 		 * less. We will have blocks allocated outside
1321 		 * inode->i_size. So truncate them
1322 		 */
1323 		ext4_orphan_add(handle, inode);
1324 
1325 	ret2 = ext4_journal_stop(handle);
1326 	if (!ret)
1327 		ret = ret2;
1328 
1329 	if (pos + len > inode->i_size && !verity) {
1330 		ext4_truncate_failed_write(inode);
1331 		/*
1332 		 * If truncate failed early the inode might still be
1333 		 * on the orphan list; we need to make sure the inode
1334 		 * is removed from the orphan list in that case.
1335 		 */
1336 		if (inode->i_nlink)
1337 			ext4_orphan_del(NULL, inode);
1338 	}
1339 
1340 	return ret ? ret : copied;
1341 }
1342 
1343 /*
1344  * This is a private version of page_zero_new_buffers() which doesn't
1345  * set the buffer to be dirty, since in data=journalled mode we need
1346  * to call ext4_handle_dirty_metadata() instead.
1347  */
1348 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1349 					    struct inode *inode,
1350 					    struct page *page,
1351 					    unsigned from, unsigned to)
1352 {
1353 	unsigned int block_start = 0, block_end;
1354 	struct buffer_head *head, *bh;
1355 
1356 	bh = head = page_buffers(page);
1357 	do {
1358 		block_end = block_start + bh->b_size;
1359 		if (buffer_new(bh)) {
1360 			if (block_end > from && block_start < to) {
1361 				if (!PageUptodate(page)) {
1362 					unsigned start, size;
1363 
1364 					start = max(from, block_start);
1365 					size = min(to, block_end) - start;
1366 
1367 					zero_user(page, start, size);
1368 					write_end_fn(handle, inode, bh);
1369 				}
1370 				clear_buffer_new(bh);
1371 			}
1372 		}
1373 		block_start = block_end;
1374 		bh = bh->b_this_page;
1375 	} while (bh != head);
1376 }
1377 
1378 static int ext4_journalled_write_end(struct file *file,
1379 				     struct address_space *mapping,
1380 				     loff_t pos, unsigned len, unsigned copied,
1381 				     struct page *page, void *fsdata)
1382 {
1383 	handle_t *handle = ext4_journal_current_handle();
1384 	struct inode *inode = mapping->host;
1385 	loff_t old_size = inode->i_size;
1386 	int ret = 0, ret2;
1387 	int partial = 0;
1388 	unsigned from, to;
1389 	int size_changed = 0;
1390 	bool verity = ext4_verity_in_progress(inode);
1391 
1392 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1393 	from = pos & (PAGE_SIZE - 1);
1394 	to = from + len;
1395 
1396 	BUG_ON(!ext4_handle_valid(handle));
1397 
1398 	if (ext4_has_inline_data(inode))
1399 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1400 
1401 	if (unlikely(copied < len) && !PageUptodate(page)) {
1402 		copied = 0;
1403 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1404 	} else {
1405 		if (unlikely(copied < len))
1406 			ext4_journalled_zero_new_buffers(handle, inode, page,
1407 							 from + copied, to);
1408 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1409 					     from, from + copied, &partial,
1410 					     write_end_fn);
1411 		if (!partial)
1412 			SetPageUptodate(page);
1413 	}
1414 	if (!verity)
1415 		size_changed = ext4_update_inode_size(inode, pos + copied);
1416 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1417 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1418 	unlock_page(page);
1419 	put_page(page);
1420 
1421 	if (old_size < pos && !verity)
1422 		pagecache_isize_extended(inode, old_size, pos);
1423 
1424 	if (size_changed) {
1425 		ret2 = ext4_mark_inode_dirty(handle, inode);
1426 		if (!ret)
1427 			ret = ret2;
1428 	}
1429 
1430 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431 		/* if we have allocated more blocks and copied
1432 		 * less. We will have blocks allocated outside
1433 		 * inode->i_size. So truncate them
1434 		 */
1435 		ext4_orphan_add(handle, inode);
1436 
1437 	ret2 = ext4_journal_stop(handle);
1438 	if (!ret)
1439 		ret = ret2;
1440 	if (pos + len > inode->i_size && !verity) {
1441 		ext4_truncate_failed_write(inode);
1442 		/*
1443 		 * If truncate failed early the inode might still be
1444 		 * on the orphan list; we need to make sure the inode
1445 		 * is removed from the orphan list in that case.
1446 		 */
1447 		if (inode->i_nlink)
1448 			ext4_orphan_del(NULL, inode);
1449 	}
1450 
1451 	return ret ? ret : copied;
1452 }
1453 
1454 /*
1455  * Reserve space for a single cluster
1456  */
1457 static int ext4_da_reserve_space(struct inode *inode)
1458 {
1459 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460 	struct ext4_inode_info *ei = EXT4_I(inode);
1461 	int ret;
1462 
1463 	/*
1464 	 * We will charge metadata quota at writeout time; this saves
1465 	 * us from metadata over-estimation, though we may go over by
1466 	 * a small amount in the end.  Here we just reserve for data.
1467 	 */
1468 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1469 	if (ret)
1470 		return ret;
1471 
1472 	spin_lock(&ei->i_block_reservation_lock);
1473 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474 		spin_unlock(&ei->i_block_reservation_lock);
1475 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1476 		return -ENOSPC;
1477 	}
1478 	ei->i_reserved_data_blocks++;
1479 	trace_ext4_da_reserve_space(inode);
1480 	spin_unlock(&ei->i_block_reservation_lock);
1481 
1482 	return 0;       /* success */
1483 }
1484 
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1486 {
1487 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 	struct ext4_inode_info *ei = EXT4_I(inode);
1489 
1490 	if (!to_free)
1491 		return;		/* Nothing to release, exit */
1492 
1493 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1494 
1495 	trace_ext4_da_release_space(inode, to_free);
1496 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1497 		/*
1498 		 * if there aren't enough reserved blocks, then the
1499 		 * counter is messed up somewhere.  Since this
1500 		 * function is called from invalidate page, it's
1501 		 * harmless to return without any action.
1502 		 */
1503 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504 			 "ino %lu, to_free %d with only %d reserved "
1505 			 "data blocks", inode->i_ino, to_free,
1506 			 ei->i_reserved_data_blocks);
1507 		WARN_ON(1);
1508 		to_free = ei->i_reserved_data_blocks;
1509 	}
1510 	ei->i_reserved_data_blocks -= to_free;
1511 
1512 	/* update fs dirty data blocks counter */
1513 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1514 
1515 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1516 
1517 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1518 }
1519 
1520 /*
1521  * Delayed allocation stuff
1522  */
1523 
1524 struct mpage_da_data {
1525 	struct inode *inode;
1526 	struct writeback_control *wbc;
1527 
1528 	pgoff_t first_page;	/* The first page to write */
1529 	pgoff_t next_page;	/* Current page to examine */
1530 	pgoff_t last_page;	/* Last page to examine */
1531 	/*
1532 	 * Extent to map - this can be after first_page because that can be
1533 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1534 	 * is delalloc or unwritten.
1535 	 */
1536 	struct ext4_map_blocks map;
1537 	struct ext4_io_submit io_submit;	/* IO submission data */
1538 	unsigned int do_map:1;
1539 	unsigned int scanned_until_end:1;
1540 };
1541 
1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1543 				       bool invalidate)
1544 {
1545 	int nr_pages, i;
1546 	pgoff_t index, end;
1547 	struct pagevec pvec;
1548 	struct inode *inode = mpd->inode;
1549 	struct address_space *mapping = inode->i_mapping;
1550 
1551 	/* This is necessary when next_page == 0. */
1552 	if (mpd->first_page >= mpd->next_page)
1553 		return;
1554 
1555 	mpd->scanned_until_end = 0;
1556 	index = mpd->first_page;
1557 	end   = mpd->next_page - 1;
1558 	if (invalidate) {
1559 		ext4_lblk_t start, last;
1560 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1561 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1562 		ext4_es_remove_extent(inode, start, last - start + 1);
1563 	}
1564 
1565 	pagevec_init(&pvec);
1566 	while (index <= end) {
1567 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1568 		if (nr_pages == 0)
1569 			break;
1570 		for (i = 0; i < nr_pages; i++) {
1571 			struct page *page = pvec.pages[i];
1572 			struct folio *folio = page_folio(page);
1573 
1574 			BUG_ON(!folio_test_locked(folio));
1575 			BUG_ON(folio_test_writeback(folio));
1576 			if (invalidate) {
1577 				if (folio_mapped(folio))
1578 					folio_clear_dirty_for_io(folio);
1579 				block_invalidate_folio(folio, 0,
1580 						folio_size(folio));
1581 				folio_clear_uptodate(folio);
1582 			}
1583 			folio_unlock(folio);
1584 		}
1585 		pagevec_release(&pvec);
1586 	}
1587 }
1588 
1589 static void ext4_print_free_blocks(struct inode *inode)
1590 {
1591 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1592 	struct super_block *sb = inode->i_sb;
1593 	struct ext4_inode_info *ei = EXT4_I(inode);
1594 
1595 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1596 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1597 			ext4_count_free_clusters(sb)));
1598 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1599 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1600 	       (long long) EXT4_C2B(EXT4_SB(sb),
1601 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1602 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1603 	       (long long) EXT4_C2B(EXT4_SB(sb),
1604 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1605 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1606 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1607 		 ei->i_reserved_data_blocks);
1608 	return;
1609 }
1610 
1611 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1612 				      struct buffer_head *bh)
1613 {
1614 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1615 }
1616 
1617 /*
1618  * ext4_insert_delayed_block - adds a delayed block to the extents status
1619  *                             tree, incrementing the reserved cluster/block
1620  *                             count or making a pending reservation
1621  *                             where needed
1622  *
1623  * @inode - file containing the newly added block
1624  * @lblk - logical block to be added
1625  *
1626  * Returns 0 on success, negative error code on failure.
1627  */
1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1629 {
1630 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1631 	int ret;
1632 	bool allocated = false;
1633 	bool reserved = false;
1634 
1635 	/*
1636 	 * If the cluster containing lblk is shared with a delayed,
1637 	 * written, or unwritten extent in a bigalloc file system, it's
1638 	 * already been accounted for and does not need to be reserved.
1639 	 * A pending reservation must be made for the cluster if it's
1640 	 * shared with a written or unwritten extent and doesn't already
1641 	 * have one.  Written and unwritten extents can be purged from the
1642 	 * extents status tree if the system is under memory pressure, so
1643 	 * it's necessary to examine the extent tree if a search of the
1644 	 * extents status tree doesn't get a match.
1645 	 */
1646 	if (sbi->s_cluster_ratio == 1) {
1647 		ret = ext4_da_reserve_space(inode);
1648 		if (ret != 0)   /* ENOSPC */
1649 			goto errout;
1650 		reserved = true;
1651 	} else {   /* bigalloc */
1652 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1653 			if (!ext4_es_scan_clu(inode,
1654 					      &ext4_es_is_mapped, lblk)) {
1655 				ret = ext4_clu_mapped(inode,
1656 						      EXT4_B2C(sbi, lblk));
1657 				if (ret < 0)
1658 					goto errout;
1659 				if (ret == 0) {
1660 					ret = ext4_da_reserve_space(inode);
1661 					if (ret != 0)   /* ENOSPC */
1662 						goto errout;
1663 					reserved = true;
1664 				} else {
1665 					allocated = true;
1666 				}
1667 			} else {
1668 				allocated = true;
1669 			}
1670 		}
1671 	}
1672 
1673 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1674 	if (ret && reserved)
1675 		ext4_da_release_space(inode, 1);
1676 
1677 errout:
1678 	return ret;
1679 }
1680 
1681 /*
1682  * This function is grabs code from the very beginning of
1683  * ext4_map_blocks, but assumes that the caller is from delayed write
1684  * time. This function looks up the requested blocks and sets the
1685  * buffer delay bit under the protection of i_data_sem.
1686  */
1687 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1688 			      struct ext4_map_blocks *map,
1689 			      struct buffer_head *bh)
1690 {
1691 	struct extent_status es;
1692 	int retval;
1693 	sector_t invalid_block = ~((sector_t) 0xffff);
1694 #ifdef ES_AGGRESSIVE_TEST
1695 	struct ext4_map_blocks orig_map;
1696 
1697 	memcpy(&orig_map, map, sizeof(*map));
1698 #endif
1699 
1700 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1701 		invalid_block = ~0;
1702 
1703 	map->m_flags = 0;
1704 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1705 		  (unsigned long) map->m_lblk);
1706 
1707 	/* Lookup extent status tree firstly */
1708 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1709 		if (ext4_es_is_hole(&es)) {
1710 			retval = 0;
1711 			down_read(&EXT4_I(inode)->i_data_sem);
1712 			goto add_delayed;
1713 		}
1714 
1715 		/*
1716 		 * Delayed extent could be allocated by fallocate.
1717 		 * So we need to check it.
1718 		 */
1719 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1720 			map_bh(bh, inode->i_sb, invalid_block);
1721 			set_buffer_new(bh);
1722 			set_buffer_delay(bh);
1723 			return 0;
1724 		}
1725 
1726 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1727 		retval = es.es_len - (iblock - es.es_lblk);
1728 		if (retval > map->m_len)
1729 			retval = map->m_len;
1730 		map->m_len = retval;
1731 		if (ext4_es_is_written(&es))
1732 			map->m_flags |= EXT4_MAP_MAPPED;
1733 		else if (ext4_es_is_unwritten(&es))
1734 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1735 		else
1736 			BUG();
1737 
1738 #ifdef ES_AGGRESSIVE_TEST
1739 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1740 #endif
1741 		return retval;
1742 	}
1743 
1744 	/*
1745 	 * Try to see if we can get the block without requesting a new
1746 	 * file system block.
1747 	 */
1748 	down_read(&EXT4_I(inode)->i_data_sem);
1749 	if (ext4_has_inline_data(inode))
1750 		retval = 0;
1751 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1752 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1753 	else
1754 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1755 
1756 add_delayed:
1757 	if (retval == 0) {
1758 		int ret;
1759 
1760 		/*
1761 		 * XXX: __block_prepare_write() unmaps passed block,
1762 		 * is it OK?
1763 		 */
1764 
1765 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1766 		if (ret != 0) {
1767 			retval = ret;
1768 			goto out_unlock;
1769 		}
1770 
1771 		map_bh(bh, inode->i_sb, invalid_block);
1772 		set_buffer_new(bh);
1773 		set_buffer_delay(bh);
1774 	} else if (retval > 0) {
1775 		int ret;
1776 		unsigned int status;
1777 
1778 		if (unlikely(retval != map->m_len)) {
1779 			ext4_warning(inode->i_sb,
1780 				     "ES len assertion failed for inode "
1781 				     "%lu: retval %d != map->m_len %d",
1782 				     inode->i_ino, retval, map->m_len);
1783 			WARN_ON(1);
1784 		}
1785 
1786 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1787 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1788 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1789 					    map->m_pblk, status);
1790 		if (ret != 0)
1791 			retval = ret;
1792 	}
1793 
1794 out_unlock:
1795 	up_read((&EXT4_I(inode)->i_data_sem));
1796 
1797 	return retval;
1798 }
1799 
1800 /*
1801  * This is a special get_block_t callback which is used by
1802  * ext4_da_write_begin().  It will either return mapped block or
1803  * reserve space for a single block.
1804  *
1805  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1806  * We also have b_blocknr = -1 and b_bdev initialized properly
1807  *
1808  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1809  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1810  * initialized properly.
1811  */
1812 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1813 			   struct buffer_head *bh, int create)
1814 {
1815 	struct ext4_map_blocks map;
1816 	int ret = 0;
1817 
1818 	BUG_ON(create == 0);
1819 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1820 
1821 	map.m_lblk = iblock;
1822 	map.m_len = 1;
1823 
1824 	/*
1825 	 * first, we need to know whether the block is allocated already
1826 	 * preallocated blocks are unmapped but should treated
1827 	 * the same as allocated blocks.
1828 	 */
1829 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1830 	if (ret <= 0)
1831 		return ret;
1832 
1833 	map_bh(bh, inode->i_sb, map.m_pblk);
1834 	ext4_update_bh_state(bh, map.m_flags);
1835 
1836 	if (buffer_unwritten(bh)) {
1837 		/* A delayed write to unwritten bh should be marked
1838 		 * new and mapped.  Mapped ensures that we don't do
1839 		 * get_block multiple times when we write to the same
1840 		 * offset and new ensures that we do proper zero out
1841 		 * for partial write.
1842 		 */
1843 		set_buffer_new(bh);
1844 		set_buffer_mapped(bh);
1845 	}
1846 	return 0;
1847 }
1848 
1849 static int __ext4_journalled_writepage(struct page *page,
1850 				       unsigned int len)
1851 {
1852 	struct address_space *mapping = page->mapping;
1853 	struct inode *inode = mapping->host;
1854 	handle_t *handle = NULL;
1855 	int ret = 0, err = 0;
1856 	int inline_data = ext4_has_inline_data(inode);
1857 	struct buffer_head *inode_bh = NULL;
1858 	loff_t size;
1859 
1860 	ClearPageChecked(page);
1861 
1862 	if (inline_data) {
1863 		BUG_ON(page->index != 0);
1864 		BUG_ON(len > ext4_get_max_inline_size(inode));
1865 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1866 		if (inode_bh == NULL)
1867 			goto out;
1868 	}
1869 	/*
1870 	 * We need to release the page lock before we start the
1871 	 * journal, so grab a reference so the page won't disappear
1872 	 * out from under us.
1873 	 */
1874 	get_page(page);
1875 	unlock_page(page);
1876 
1877 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1878 				    ext4_writepage_trans_blocks(inode));
1879 	if (IS_ERR(handle)) {
1880 		ret = PTR_ERR(handle);
1881 		put_page(page);
1882 		goto out_no_pagelock;
1883 	}
1884 	BUG_ON(!ext4_handle_valid(handle));
1885 
1886 	lock_page(page);
1887 	put_page(page);
1888 	size = i_size_read(inode);
1889 	if (page->mapping != mapping || page_offset(page) > size) {
1890 		/* The page got truncated from under us */
1891 		ext4_journal_stop(handle);
1892 		ret = 0;
1893 		goto out;
1894 	}
1895 
1896 	if (inline_data) {
1897 		ret = ext4_mark_inode_dirty(handle, inode);
1898 	} else {
1899 		struct buffer_head *page_bufs = page_buffers(page);
1900 
1901 		if (page->index == size >> PAGE_SHIFT)
1902 			len = size & ~PAGE_MASK;
1903 		else
1904 			len = PAGE_SIZE;
1905 
1906 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1907 					     NULL, do_journal_get_write_access);
1908 
1909 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1910 					     NULL, write_end_fn);
1911 	}
1912 	if (ret == 0)
1913 		ret = err;
1914 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1915 	if (ret == 0)
1916 		ret = err;
1917 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918 	err = ext4_journal_stop(handle);
1919 	if (!ret)
1920 		ret = err;
1921 
1922 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1923 out:
1924 	unlock_page(page);
1925 out_no_pagelock:
1926 	brelse(inode_bh);
1927 	return ret;
1928 }
1929 
1930 /*
1931  * Note that we don't need to start a transaction unless we're journaling data
1932  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1933  * need to file the inode to the transaction's list in ordered mode because if
1934  * we are writing back data added by write(), the inode is already there and if
1935  * we are writing back data modified via mmap(), no one guarantees in which
1936  * transaction the data will hit the disk. In case we are journaling data, we
1937  * cannot start transaction directly because transaction start ranks above page
1938  * lock so we have to do some magic.
1939  *
1940  * This function can get called via...
1941  *   - ext4_writepages after taking page lock (have journal handle)
1942  *   - journal_submit_inode_data_buffers (no journal handle)
1943  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1944  *   - grab_page_cache when doing write_begin (have journal handle)
1945  *
1946  * We don't do any block allocation in this function. If we have page with
1947  * multiple blocks we need to write those buffer_heads that are mapped. This
1948  * is important for mmaped based write. So if we do with blocksize 1K
1949  * truncate(f, 1024);
1950  * a = mmap(f, 0, 4096);
1951  * a[0] = 'a';
1952  * truncate(f, 4096);
1953  * we have in the page first buffer_head mapped via page_mkwrite call back
1954  * but other buffer_heads would be unmapped but dirty (dirty done via the
1955  * do_wp_page). So writepage should write the first block. If we modify
1956  * the mmap area beyond 1024 we will again get a page_fault and the
1957  * page_mkwrite callback will do the block allocation and mark the
1958  * buffer_heads mapped.
1959  *
1960  * We redirty the page if we have any buffer_heads that is either delay or
1961  * unwritten in the page.
1962  *
1963  * We can get recursively called as show below.
1964  *
1965  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1966  *		ext4_writepage()
1967  *
1968  * But since we don't do any block allocation we should not deadlock.
1969  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1970  */
1971 static int ext4_writepage(struct page *page,
1972 			  struct writeback_control *wbc)
1973 {
1974 	struct folio *folio = page_folio(page);
1975 	int ret = 0;
1976 	loff_t size;
1977 	unsigned int len;
1978 	struct buffer_head *page_bufs = NULL;
1979 	struct inode *inode = page->mapping->host;
1980 	struct ext4_io_submit io_submit;
1981 	bool keep_towrite = false;
1982 
1983 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1984 		folio_invalidate(folio, 0, folio_size(folio));
1985 		folio_unlock(folio);
1986 		return -EIO;
1987 	}
1988 
1989 	trace_ext4_writepage(page);
1990 	size = i_size_read(inode);
1991 	if (page->index == size >> PAGE_SHIFT &&
1992 	    !ext4_verity_in_progress(inode))
1993 		len = size & ~PAGE_MASK;
1994 	else
1995 		len = PAGE_SIZE;
1996 
1997 	/* Should never happen but for bugs in other kernel subsystems */
1998 	if (!page_has_buffers(page)) {
1999 		ext4_warning_inode(inode,
2000 		   "page %lu does not have buffers attached", page->index);
2001 		ClearPageDirty(page);
2002 		unlock_page(page);
2003 		return 0;
2004 	}
2005 
2006 	page_bufs = page_buffers(page);
2007 	/*
2008 	 * We cannot do block allocation or other extent handling in this
2009 	 * function. If there are buffers needing that, we have to redirty
2010 	 * the page. But we may reach here when we do a journal commit via
2011 	 * journal_submit_inode_data_buffers() and in that case we must write
2012 	 * allocated buffers to achieve data=ordered mode guarantees.
2013 	 *
2014 	 * Also, if there is only one buffer per page (the fs block
2015 	 * size == the page size), if one buffer needs block
2016 	 * allocation or needs to modify the extent tree to clear the
2017 	 * unwritten flag, we know that the page can't be written at
2018 	 * all, so we might as well refuse the write immediately.
2019 	 * Unfortunately if the block size != page size, we can't as
2020 	 * easily detect this case using ext4_walk_page_buffers(), but
2021 	 * for the extremely common case, this is an optimization that
2022 	 * skips a useless round trip through ext4_bio_write_page().
2023 	 */
2024 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2025 				   ext4_bh_delay_or_unwritten)) {
2026 		redirty_page_for_writepage(wbc, page);
2027 		if ((current->flags & PF_MEMALLOC) ||
2028 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2029 			/*
2030 			 * For memory cleaning there's no point in writing only
2031 			 * some buffers. So just bail out. Warn if we came here
2032 			 * from direct reclaim.
2033 			 */
2034 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2035 							== PF_MEMALLOC);
2036 			unlock_page(page);
2037 			return 0;
2038 		}
2039 		keep_towrite = true;
2040 	}
2041 
2042 	if (PageChecked(page) && ext4_should_journal_data(inode))
2043 		/*
2044 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2045 		 * doesn't seem much point in redirtying the page here.
2046 		 */
2047 		return __ext4_journalled_writepage(page, len);
2048 
2049 	ext4_io_submit_init(&io_submit, wbc);
2050 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2051 	if (!io_submit.io_end) {
2052 		redirty_page_for_writepage(wbc, page);
2053 		unlock_page(page);
2054 		return -ENOMEM;
2055 	}
2056 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2057 	ext4_io_submit(&io_submit);
2058 	/* Drop io_end reference we got from init */
2059 	ext4_put_io_end_defer(io_submit.io_end);
2060 	return ret;
2061 }
2062 
2063 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2064 {
2065 	int len;
2066 	loff_t size;
2067 	int err;
2068 
2069 	BUG_ON(page->index != mpd->first_page);
2070 	clear_page_dirty_for_io(page);
2071 	/*
2072 	 * We have to be very careful here!  Nothing protects writeback path
2073 	 * against i_size changes and the page can be writeably mapped into
2074 	 * page tables. So an application can be growing i_size and writing
2075 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2076 	 * write-protects our page in page tables and the page cannot get
2077 	 * written to again until we release page lock. So only after
2078 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2079 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2080 	 * on the barrier provided by TestClearPageDirty in
2081 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2082 	 * after page tables are updated.
2083 	 */
2084 	size = i_size_read(mpd->inode);
2085 	if (page->index == size >> PAGE_SHIFT &&
2086 	    !ext4_verity_in_progress(mpd->inode))
2087 		len = size & ~PAGE_MASK;
2088 	else
2089 		len = PAGE_SIZE;
2090 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2091 	if (!err)
2092 		mpd->wbc->nr_to_write--;
2093 	mpd->first_page++;
2094 
2095 	return err;
2096 }
2097 
2098 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2099 
2100 /*
2101  * mballoc gives us at most this number of blocks...
2102  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2103  * The rest of mballoc seems to handle chunks up to full group size.
2104  */
2105 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2106 
2107 /*
2108  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2109  *
2110  * @mpd - extent of blocks
2111  * @lblk - logical number of the block in the file
2112  * @bh - buffer head we want to add to the extent
2113  *
2114  * The function is used to collect contig. blocks in the same state. If the
2115  * buffer doesn't require mapping for writeback and we haven't started the
2116  * extent of buffers to map yet, the function returns 'true' immediately - the
2117  * caller can write the buffer right away. Otherwise the function returns true
2118  * if the block has been added to the extent, false if the block couldn't be
2119  * added.
2120  */
2121 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2122 				   struct buffer_head *bh)
2123 {
2124 	struct ext4_map_blocks *map = &mpd->map;
2125 
2126 	/* Buffer that doesn't need mapping for writeback? */
2127 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2128 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2129 		/* So far no extent to map => we write the buffer right away */
2130 		if (map->m_len == 0)
2131 			return true;
2132 		return false;
2133 	}
2134 
2135 	/* First block in the extent? */
2136 	if (map->m_len == 0) {
2137 		/* We cannot map unless handle is started... */
2138 		if (!mpd->do_map)
2139 			return false;
2140 		map->m_lblk = lblk;
2141 		map->m_len = 1;
2142 		map->m_flags = bh->b_state & BH_FLAGS;
2143 		return true;
2144 	}
2145 
2146 	/* Don't go larger than mballoc is willing to allocate */
2147 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2148 		return false;
2149 
2150 	/* Can we merge the block to our big extent? */
2151 	if (lblk == map->m_lblk + map->m_len &&
2152 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2153 		map->m_len++;
2154 		return true;
2155 	}
2156 	return false;
2157 }
2158 
2159 /*
2160  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2161  *
2162  * @mpd - extent of blocks for mapping
2163  * @head - the first buffer in the page
2164  * @bh - buffer we should start processing from
2165  * @lblk - logical number of the block in the file corresponding to @bh
2166  *
2167  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2168  * the page for IO if all buffers in this page were mapped and there's no
2169  * accumulated extent of buffers to map or add buffers in the page to the
2170  * extent of buffers to map. The function returns 1 if the caller can continue
2171  * by processing the next page, 0 if it should stop adding buffers to the
2172  * extent to map because we cannot extend it anymore. It can also return value
2173  * < 0 in case of error during IO submission.
2174  */
2175 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2176 				   struct buffer_head *head,
2177 				   struct buffer_head *bh,
2178 				   ext4_lblk_t lblk)
2179 {
2180 	struct inode *inode = mpd->inode;
2181 	int err;
2182 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2183 							>> inode->i_blkbits;
2184 
2185 	if (ext4_verity_in_progress(inode))
2186 		blocks = EXT_MAX_BLOCKS;
2187 
2188 	do {
2189 		BUG_ON(buffer_locked(bh));
2190 
2191 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2192 			/* Found extent to map? */
2193 			if (mpd->map.m_len)
2194 				return 0;
2195 			/* Buffer needs mapping and handle is not started? */
2196 			if (!mpd->do_map)
2197 				return 0;
2198 			/* Everything mapped so far and we hit EOF */
2199 			break;
2200 		}
2201 	} while (lblk++, (bh = bh->b_this_page) != head);
2202 	/* So far everything mapped? Submit the page for IO. */
2203 	if (mpd->map.m_len == 0) {
2204 		err = mpage_submit_page(mpd, head->b_page);
2205 		if (err < 0)
2206 			return err;
2207 	}
2208 	if (lblk >= blocks) {
2209 		mpd->scanned_until_end = 1;
2210 		return 0;
2211 	}
2212 	return 1;
2213 }
2214 
2215 /*
2216  * mpage_process_page - update page buffers corresponding to changed extent and
2217  *		       may submit fully mapped page for IO
2218  *
2219  * @mpd		- description of extent to map, on return next extent to map
2220  * @m_lblk	- logical block mapping.
2221  * @m_pblk	- corresponding physical mapping.
2222  * @map_bh	- determines on return whether this page requires any further
2223  *		  mapping or not.
2224  * Scan given page buffers corresponding to changed extent and update buffer
2225  * state according to new extent state.
2226  * We map delalloc buffers to their physical location, clear unwritten bits.
2227  * If the given page is not fully mapped, we update @map to the next extent in
2228  * the given page that needs mapping & return @map_bh as true.
2229  */
2230 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2231 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2232 			      bool *map_bh)
2233 {
2234 	struct buffer_head *head, *bh;
2235 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2236 	ext4_lblk_t lblk = *m_lblk;
2237 	ext4_fsblk_t pblock = *m_pblk;
2238 	int err = 0;
2239 	int blkbits = mpd->inode->i_blkbits;
2240 	ssize_t io_end_size = 0;
2241 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2242 
2243 	bh = head = page_buffers(page);
2244 	do {
2245 		if (lblk < mpd->map.m_lblk)
2246 			continue;
2247 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2248 			/*
2249 			 * Buffer after end of mapped extent.
2250 			 * Find next buffer in the page to map.
2251 			 */
2252 			mpd->map.m_len = 0;
2253 			mpd->map.m_flags = 0;
2254 			io_end_vec->size += io_end_size;
2255 
2256 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2257 			if (err > 0)
2258 				err = 0;
2259 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2260 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2261 				if (IS_ERR(io_end_vec)) {
2262 					err = PTR_ERR(io_end_vec);
2263 					goto out;
2264 				}
2265 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2266 			}
2267 			*map_bh = true;
2268 			goto out;
2269 		}
2270 		if (buffer_delay(bh)) {
2271 			clear_buffer_delay(bh);
2272 			bh->b_blocknr = pblock++;
2273 		}
2274 		clear_buffer_unwritten(bh);
2275 		io_end_size += (1 << blkbits);
2276 	} while (lblk++, (bh = bh->b_this_page) != head);
2277 
2278 	io_end_vec->size += io_end_size;
2279 	*map_bh = false;
2280 out:
2281 	*m_lblk = lblk;
2282 	*m_pblk = pblock;
2283 	return err;
2284 }
2285 
2286 /*
2287  * mpage_map_buffers - update buffers corresponding to changed extent and
2288  *		       submit fully mapped pages for IO
2289  *
2290  * @mpd - description of extent to map, on return next extent to map
2291  *
2292  * Scan buffers corresponding to changed extent (we expect corresponding pages
2293  * to be already locked) and update buffer state according to new extent state.
2294  * We map delalloc buffers to their physical location, clear unwritten bits,
2295  * and mark buffers as uninit when we perform writes to unwritten extents
2296  * and do extent conversion after IO is finished. If the last page is not fully
2297  * mapped, we update @map to the next extent in the last page that needs
2298  * mapping. Otherwise we submit the page for IO.
2299  */
2300 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2301 {
2302 	struct pagevec pvec;
2303 	int nr_pages, i;
2304 	struct inode *inode = mpd->inode;
2305 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2306 	pgoff_t start, end;
2307 	ext4_lblk_t lblk;
2308 	ext4_fsblk_t pblock;
2309 	int err;
2310 	bool map_bh = false;
2311 
2312 	start = mpd->map.m_lblk >> bpp_bits;
2313 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2314 	lblk = start << bpp_bits;
2315 	pblock = mpd->map.m_pblk;
2316 
2317 	pagevec_init(&pvec);
2318 	while (start <= end) {
2319 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2320 						&start, end);
2321 		if (nr_pages == 0)
2322 			break;
2323 		for (i = 0; i < nr_pages; i++) {
2324 			struct page *page = pvec.pages[i];
2325 
2326 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2327 						 &map_bh);
2328 			/*
2329 			 * If map_bh is true, means page may require further bh
2330 			 * mapping, or maybe the page was submitted for IO.
2331 			 * So we return to call further extent mapping.
2332 			 */
2333 			if (err < 0 || map_bh)
2334 				goto out;
2335 			/* Page fully mapped - let IO run! */
2336 			err = mpage_submit_page(mpd, page);
2337 			if (err < 0)
2338 				goto out;
2339 		}
2340 		pagevec_release(&pvec);
2341 	}
2342 	/* Extent fully mapped and matches with page boundary. We are done. */
2343 	mpd->map.m_len = 0;
2344 	mpd->map.m_flags = 0;
2345 	return 0;
2346 out:
2347 	pagevec_release(&pvec);
2348 	return err;
2349 }
2350 
2351 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2352 {
2353 	struct inode *inode = mpd->inode;
2354 	struct ext4_map_blocks *map = &mpd->map;
2355 	int get_blocks_flags;
2356 	int err, dioread_nolock;
2357 
2358 	trace_ext4_da_write_pages_extent(inode, map);
2359 	/*
2360 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2361 	 * to convert an unwritten extent to be initialized (in the case
2362 	 * where we have written into one or more preallocated blocks).  It is
2363 	 * possible that we're going to need more metadata blocks than
2364 	 * previously reserved. However we must not fail because we're in
2365 	 * writeback and there is nothing we can do about it so it might result
2366 	 * in data loss.  So use reserved blocks to allocate metadata if
2367 	 * possible.
2368 	 *
2369 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2370 	 * the blocks in question are delalloc blocks.  This indicates
2371 	 * that the blocks and quotas has already been checked when
2372 	 * the data was copied into the page cache.
2373 	 */
2374 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2375 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2376 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2377 	dioread_nolock = ext4_should_dioread_nolock(inode);
2378 	if (dioread_nolock)
2379 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2380 	if (map->m_flags & BIT(BH_Delay))
2381 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2382 
2383 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2384 	if (err < 0)
2385 		return err;
2386 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2387 		if (!mpd->io_submit.io_end->handle &&
2388 		    ext4_handle_valid(handle)) {
2389 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2390 			handle->h_rsv_handle = NULL;
2391 		}
2392 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2393 	}
2394 
2395 	BUG_ON(map->m_len == 0);
2396 	return 0;
2397 }
2398 
2399 /*
2400  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2401  *				 mpd->len and submit pages underlying it for IO
2402  *
2403  * @handle - handle for journal operations
2404  * @mpd - extent to map
2405  * @give_up_on_write - we set this to true iff there is a fatal error and there
2406  *                     is no hope of writing the data. The caller should discard
2407  *                     dirty pages to avoid infinite loops.
2408  *
2409  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2410  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2411  * them to initialized or split the described range from larger unwritten
2412  * extent. Note that we need not map all the described range since allocation
2413  * can return less blocks or the range is covered by more unwritten extents. We
2414  * cannot map more because we are limited by reserved transaction credits. On
2415  * the other hand we always make sure that the last touched page is fully
2416  * mapped so that it can be written out (and thus forward progress is
2417  * guaranteed). After mapping we submit all mapped pages for IO.
2418  */
2419 static int mpage_map_and_submit_extent(handle_t *handle,
2420 				       struct mpage_da_data *mpd,
2421 				       bool *give_up_on_write)
2422 {
2423 	struct inode *inode = mpd->inode;
2424 	struct ext4_map_blocks *map = &mpd->map;
2425 	int err;
2426 	loff_t disksize;
2427 	int progress = 0;
2428 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2429 	struct ext4_io_end_vec *io_end_vec;
2430 
2431 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2432 	if (IS_ERR(io_end_vec))
2433 		return PTR_ERR(io_end_vec);
2434 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2435 	do {
2436 		err = mpage_map_one_extent(handle, mpd);
2437 		if (err < 0) {
2438 			struct super_block *sb = inode->i_sb;
2439 
2440 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2441 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2442 				goto invalidate_dirty_pages;
2443 			/*
2444 			 * Let the uper layers retry transient errors.
2445 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2446 			 * is non-zero, a commit should free up blocks.
2447 			 */
2448 			if ((err == -ENOMEM) ||
2449 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2450 				if (progress)
2451 					goto update_disksize;
2452 				return err;
2453 			}
2454 			ext4_msg(sb, KERN_CRIT,
2455 				 "Delayed block allocation failed for "
2456 				 "inode %lu at logical offset %llu with"
2457 				 " max blocks %u with error %d",
2458 				 inode->i_ino,
2459 				 (unsigned long long)map->m_lblk,
2460 				 (unsigned)map->m_len, -err);
2461 			ext4_msg(sb, KERN_CRIT,
2462 				 "This should not happen!! Data will "
2463 				 "be lost\n");
2464 			if (err == -ENOSPC)
2465 				ext4_print_free_blocks(inode);
2466 		invalidate_dirty_pages:
2467 			*give_up_on_write = true;
2468 			return err;
2469 		}
2470 		progress = 1;
2471 		/*
2472 		 * Update buffer state, submit mapped pages, and get us new
2473 		 * extent to map
2474 		 */
2475 		err = mpage_map_and_submit_buffers(mpd);
2476 		if (err < 0)
2477 			goto update_disksize;
2478 	} while (map->m_len);
2479 
2480 update_disksize:
2481 	/*
2482 	 * Update on-disk size after IO is submitted.  Races with
2483 	 * truncate are avoided by checking i_size under i_data_sem.
2484 	 */
2485 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2486 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2487 		int err2;
2488 		loff_t i_size;
2489 
2490 		down_write(&EXT4_I(inode)->i_data_sem);
2491 		i_size = i_size_read(inode);
2492 		if (disksize > i_size)
2493 			disksize = i_size;
2494 		if (disksize > EXT4_I(inode)->i_disksize)
2495 			EXT4_I(inode)->i_disksize = disksize;
2496 		up_write(&EXT4_I(inode)->i_data_sem);
2497 		err2 = ext4_mark_inode_dirty(handle, inode);
2498 		if (err2) {
2499 			ext4_error_err(inode->i_sb, -err2,
2500 				       "Failed to mark inode %lu dirty",
2501 				       inode->i_ino);
2502 		}
2503 		if (!err)
2504 			err = err2;
2505 	}
2506 	return err;
2507 }
2508 
2509 /*
2510  * Calculate the total number of credits to reserve for one writepages
2511  * iteration. This is called from ext4_writepages(). We map an extent of
2512  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2513  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2514  * bpp - 1 blocks in bpp different extents.
2515  */
2516 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2517 {
2518 	int bpp = ext4_journal_blocks_per_page(inode);
2519 
2520 	return ext4_meta_trans_blocks(inode,
2521 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2522 }
2523 
2524 /*
2525  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2526  * 				 and underlying extent to map
2527  *
2528  * @mpd - where to look for pages
2529  *
2530  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2531  * IO immediately. When we find a page which isn't mapped we start accumulating
2532  * extent of buffers underlying these pages that needs mapping (formed by
2533  * either delayed or unwritten buffers). We also lock the pages containing
2534  * these buffers. The extent found is returned in @mpd structure (starting at
2535  * mpd->lblk with length mpd->len blocks).
2536  *
2537  * Note that this function can attach bios to one io_end structure which are
2538  * neither logically nor physically contiguous. Although it may seem as an
2539  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2540  * case as we need to track IO to all buffers underlying a page in one io_end.
2541  */
2542 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2543 {
2544 	struct address_space *mapping = mpd->inode->i_mapping;
2545 	struct pagevec pvec;
2546 	unsigned int nr_pages;
2547 	long left = mpd->wbc->nr_to_write;
2548 	pgoff_t index = mpd->first_page;
2549 	pgoff_t end = mpd->last_page;
2550 	xa_mark_t tag;
2551 	int i, err = 0;
2552 	int blkbits = mpd->inode->i_blkbits;
2553 	ext4_lblk_t lblk;
2554 	struct buffer_head *head;
2555 
2556 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2557 		tag = PAGECACHE_TAG_TOWRITE;
2558 	else
2559 		tag = PAGECACHE_TAG_DIRTY;
2560 
2561 	pagevec_init(&pvec);
2562 	mpd->map.m_len = 0;
2563 	mpd->next_page = index;
2564 	while (index <= end) {
2565 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2566 				tag);
2567 		if (nr_pages == 0)
2568 			break;
2569 
2570 		for (i = 0; i < nr_pages; i++) {
2571 			struct page *page = pvec.pages[i];
2572 
2573 			/*
2574 			 * Accumulated enough dirty pages? This doesn't apply
2575 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2576 			 * keep going because someone may be concurrently
2577 			 * dirtying pages, and we might have synced a lot of
2578 			 * newly appeared dirty pages, but have not synced all
2579 			 * of the old dirty pages.
2580 			 */
2581 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2582 				goto out;
2583 
2584 			/* If we can't merge this page, we are done. */
2585 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2586 				goto out;
2587 
2588 			lock_page(page);
2589 			/*
2590 			 * If the page is no longer dirty, or its mapping no
2591 			 * longer corresponds to inode we are writing (which
2592 			 * means it has been truncated or invalidated), or the
2593 			 * page is already under writeback and we are not doing
2594 			 * a data integrity writeback, skip the page
2595 			 */
2596 			if (!PageDirty(page) ||
2597 			    (PageWriteback(page) &&
2598 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2599 			    unlikely(page->mapping != mapping)) {
2600 				unlock_page(page);
2601 				continue;
2602 			}
2603 
2604 			wait_on_page_writeback(page);
2605 			BUG_ON(PageWriteback(page));
2606 
2607 			/*
2608 			 * Should never happen but for buggy code in
2609 			 * other subsystems that call
2610 			 * set_page_dirty() without properly warning
2611 			 * the file system first.  See [1] for more
2612 			 * information.
2613 			 *
2614 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2615 			 */
2616 			if (!page_has_buffers(page)) {
2617 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2618 				ClearPageDirty(page);
2619 				unlock_page(page);
2620 				continue;
2621 			}
2622 
2623 			if (mpd->map.m_len == 0)
2624 				mpd->first_page = page->index;
2625 			mpd->next_page = page->index + 1;
2626 			/* Add all dirty buffers to mpd */
2627 			lblk = ((ext4_lblk_t)page->index) <<
2628 				(PAGE_SHIFT - blkbits);
2629 			head = page_buffers(page);
2630 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2631 			if (err <= 0)
2632 				goto out;
2633 			err = 0;
2634 			left--;
2635 		}
2636 		pagevec_release(&pvec);
2637 		cond_resched();
2638 	}
2639 	mpd->scanned_until_end = 1;
2640 	return 0;
2641 out:
2642 	pagevec_release(&pvec);
2643 	return err;
2644 }
2645 
2646 static int ext4_writepages(struct address_space *mapping,
2647 			   struct writeback_control *wbc)
2648 {
2649 	pgoff_t	writeback_index = 0;
2650 	long nr_to_write = wbc->nr_to_write;
2651 	int range_whole = 0;
2652 	int cycled = 1;
2653 	handle_t *handle = NULL;
2654 	struct mpage_da_data mpd;
2655 	struct inode *inode = mapping->host;
2656 	int needed_blocks, rsv_blocks = 0, ret = 0;
2657 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2658 	struct blk_plug plug;
2659 	bool give_up_on_write = false;
2660 
2661 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2662 		return -EIO;
2663 
2664 	percpu_down_read(&sbi->s_writepages_rwsem);
2665 	trace_ext4_writepages(inode, wbc);
2666 
2667 	/*
2668 	 * No pages to write? This is mainly a kludge to avoid starting
2669 	 * a transaction for special inodes like journal inode on last iput()
2670 	 * because that could violate lock ordering on umount
2671 	 */
2672 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2673 		goto out_writepages;
2674 
2675 	if (ext4_should_journal_data(inode)) {
2676 		ret = generic_writepages(mapping, wbc);
2677 		goto out_writepages;
2678 	}
2679 
2680 	/*
2681 	 * If the filesystem has aborted, it is read-only, so return
2682 	 * right away instead of dumping stack traces later on that
2683 	 * will obscure the real source of the problem.  We test
2684 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2685 	 * the latter could be true if the filesystem is mounted
2686 	 * read-only, and in that case, ext4_writepages should
2687 	 * *never* be called, so if that ever happens, we would want
2688 	 * the stack trace.
2689 	 */
2690 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2691 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2692 		ret = -EROFS;
2693 		goto out_writepages;
2694 	}
2695 
2696 	/*
2697 	 * If we have inline data and arrive here, it means that
2698 	 * we will soon create the block for the 1st page, so
2699 	 * we'd better clear the inline data here.
2700 	 */
2701 	if (ext4_has_inline_data(inode)) {
2702 		/* Just inode will be modified... */
2703 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2704 		if (IS_ERR(handle)) {
2705 			ret = PTR_ERR(handle);
2706 			goto out_writepages;
2707 		}
2708 		BUG_ON(ext4_test_inode_state(inode,
2709 				EXT4_STATE_MAY_INLINE_DATA));
2710 		ext4_destroy_inline_data(handle, inode);
2711 		ext4_journal_stop(handle);
2712 	}
2713 
2714 	if (ext4_should_dioread_nolock(inode)) {
2715 		/*
2716 		 * We may need to convert up to one extent per block in
2717 		 * the page and we may dirty the inode.
2718 		 */
2719 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2720 						PAGE_SIZE >> inode->i_blkbits);
2721 	}
2722 
2723 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2724 		range_whole = 1;
2725 
2726 	if (wbc->range_cyclic) {
2727 		writeback_index = mapping->writeback_index;
2728 		if (writeback_index)
2729 			cycled = 0;
2730 		mpd.first_page = writeback_index;
2731 		mpd.last_page = -1;
2732 	} else {
2733 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2734 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2735 	}
2736 
2737 	mpd.inode = inode;
2738 	mpd.wbc = wbc;
2739 	ext4_io_submit_init(&mpd.io_submit, wbc);
2740 retry:
2741 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2742 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2743 	blk_start_plug(&plug);
2744 
2745 	/*
2746 	 * First writeback pages that don't need mapping - we can avoid
2747 	 * starting a transaction unnecessarily and also avoid being blocked
2748 	 * in the block layer on device congestion while having transaction
2749 	 * started.
2750 	 */
2751 	mpd.do_map = 0;
2752 	mpd.scanned_until_end = 0;
2753 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2754 	if (!mpd.io_submit.io_end) {
2755 		ret = -ENOMEM;
2756 		goto unplug;
2757 	}
2758 	ret = mpage_prepare_extent_to_map(&mpd);
2759 	/* Unlock pages we didn't use */
2760 	mpage_release_unused_pages(&mpd, false);
2761 	/* Submit prepared bio */
2762 	ext4_io_submit(&mpd.io_submit);
2763 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2764 	mpd.io_submit.io_end = NULL;
2765 	if (ret < 0)
2766 		goto unplug;
2767 
2768 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2769 		/* For each extent of pages we use new io_end */
2770 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2771 		if (!mpd.io_submit.io_end) {
2772 			ret = -ENOMEM;
2773 			break;
2774 		}
2775 
2776 		/*
2777 		 * We have two constraints: We find one extent to map and we
2778 		 * must always write out whole page (makes a difference when
2779 		 * blocksize < pagesize) so that we don't block on IO when we
2780 		 * try to write out the rest of the page. Journalled mode is
2781 		 * not supported by delalloc.
2782 		 */
2783 		BUG_ON(ext4_should_journal_data(inode));
2784 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2785 
2786 		/* start a new transaction */
2787 		handle = ext4_journal_start_with_reserve(inode,
2788 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2789 		if (IS_ERR(handle)) {
2790 			ret = PTR_ERR(handle);
2791 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2792 			       "%ld pages, ino %lu; err %d", __func__,
2793 				wbc->nr_to_write, inode->i_ino, ret);
2794 			/* Release allocated io_end */
2795 			ext4_put_io_end(mpd.io_submit.io_end);
2796 			mpd.io_submit.io_end = NULL;
2797 			break;
2798 		}
2799 		mpd.do_map = 1;
2800 
2801 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2802 		ret = mpage_prepare_extent_to_map(&mpd);
2803 		if (!ret && mpd.map.m_len)
2804 			ret = mpage_map_and_submit_extent(handle, &mpd,
2805 					&give_up_on_write);
2806 		/*
2807 		 * Caution: If the handle is synchronous,
2808 		 * ext4_journal_stop() can wait for transaction commit
2809 		 * to finish which may depend on writeback of pages to
2810 		 * complete or on page lock to be released.  In that
2811 		 * case, we have to wait until after we have
2812 		 * submitted all the IO, released page locks we hold,
2813 		 * and dropped io_end reference (for extent conversion
2814 		 * to be able to complete) before stopping the handle.
2815 		 */
2816 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2817 			ext4_journal_stop(handle);
2818 			handle = NULL;
2819 			mpd.do_map = 0;
2820 		}
2821 		/* Unlock pages we didn't use */
2822 		mpage_release_unused_pages(&mpd, give_up_on_write);
2823 		/* Submit prepared bio */
2824 		ext4_io_submit(&mpd.io_submit);
2825 
2826 		/*
2827 		 * Drop our io_end reference we got from init. We have
2828 		 * to be careful and use deferred io_end finishing if
2829 		 * we are still holding the transaction as we can
2830 		 * release the last reference to io_end which may end
2831 		 * up doing unwritten extent conversion.
2832 		 */
2833 		if (handle) {
2834 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2835 			ext4_journal_stop(handle);
2836 		} else
2837 			ext4_put_io_end(mpd.io_submit.io_end);
2838 		mpd.io_submit.io_end = NULL;
2839 
2840 		if (ret == -ENOSPC && sbi->s_journal) {
2841 			/*
2842 			 * Commit the transaction which would
2843 			 * free blocks released in the transaction
2844 			 * and try again
2845 			 */
2846 			jbd2_journal_force_commit_nested(sbi->s_journal);
2847 			ret = 0;
2848 			continue;
2849 		}
2850 		/* Fatal error - ENOMEM, EIO... */
2851 		if (ret)
2852 			break;
2853 	}
2854 unplug:
2855 	blk_finish_plug(&plug);
2856 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2857 		cycled = 1;
2858 		mpd.last_page = writeback_index - 1;
2859 		mpd.first_page = 0;
2860 		goto retry;
2861 	}
2862 
2863 	/* Update index */
2864 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2865 		/*
2866 		 * Set the writeback_index so that range_cyclic
2867 		 * mode will write it back later
2868 		 */
2869 		mapping->writeback_index = mpd.first_page;
2870 
2871 out_writepages:
2872 	trace_ext4_writepages_result(inode, wbc, ret,
2873 				     nr_to_write - wbc->nr_to_write);
2874 	percpu_up_read(&sbi->s_writepages_rwsem);
2875 	return ret;
2876 }
2877 
2878 static int ext4_dax_writepages(struct address_space *mapping,
2879 			       struct writeback_control *wbc)
2880 {
2881 	int ret;
2882 	long nr_to_write = wbc->nr_to_write;
2883 	struct inode *inode = mapping->host;
2884 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2885 
2886 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2887 		return -EIO;
2888 
2889 	percpu_down_read(&sbi->s_writepages_rwsem);
2890 	trace_ext4_writepages(inode, wbc);
2891 
2892 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2893 	trace_ext4_writepages_result(inode, wbc, ret,
2894 				     nr_to_write - wbc->nr_to_write);
2895 	percpu_up_read(&sbi->s_writepages_rwsem);
2896 	return ret;
2897 }
2898 
2899 static int ext4_nonda_switch(struct super_block *sb)
2900 {
2901 	s64 free_clusters, dirty_clusters;
2902 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2903 
2904 	/*
2905 	 * switch to non delalloc mode if we are running low
2906 	 * on free block. The free block accounting via percpu
2907 	 * counters can get slightly wrong with percpu_counter_batch getting
2908 	 * accumulated on each CPU without updating global counters
2909 	 * Delalloc need an accurate free block accounting. So switch
2910 	 * to non delalloc when we are near to error range.
2911 	 */
2912 	free_clusters =
2913 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2914 	dirty_clusters =
2915 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2916 	/*
2917 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2918 	 */
2919 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2920 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2921 
2922 	if (2 * free_clusters < 3 * dirty_clusters ||
2923 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2924 		/*
2925 		 * free block count is less than 150% of dirty blocks
2926 		 * or free blocks is less than watermark
2927 		 */
2928 		return 1;
2929 	}
2930 	return 0;
2931 }
2932 
2933 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2934 			       loff_t pos, unsigned len, unsigned flags,
2935 			       struct page **pagep, void **fsdata)
2936 {
2937 	int ret, retries = 0;
2938 	struct page *page;
2939 	pgoff_t index;
2940 	struct inode *inode = mapping->host;
2941 
2942 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2943 		return -EIO;
2944 
2945 	index = pos >> PAGE_SHIFT;
2946 
2947 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2948 	    ext4_verity_in_progress(inode)) {
2949 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2950 		return ext4_write_begin(file, mapping, pos,
2951 					len, flags, pagep, fsdata);
2952 	}
2953 	*fsdata = (void *)0;
2954 	trace_ext4_da_write_begin(inode, pos, len, flags);
2955 
2956 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2957 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2958 						      pos, len, flags,
2959 						      pagep, fsdata);
2960 		if (ret < 0)
2961 			return ret;
2962 		if (ret == 1)
2963 			return 0;
2964 	}
2965 
2966 retry:
2967 	page = grab_cache_page_write_begin(mapping, index, flags);
2968 	if (!page)
2969 		return -ENOMEM;
2970 
2971 	/* In case writeback began while the page was unlocked */
2972 	wait_for_stable_page(page);
2973 
2974 #ifdef CONFIG_FS_ENCRYPTION
2975 	ret = ext4_block_write_begin(page, pos, len,
2976 				     ext4_da_get_block_prep);
2977 #else
2978 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2979 #endif
2980 	if (ret < 0) {
2981 		unlock_page(page);
2982 		put_page(page);
2983 		/*
2984 		 * block_write_begin may have instantiated a few blocks
2985 		 * outside i_size.  Trim these off again. Don't need
2986 		 * i_size_read because we hold inode lock.
2987 		 */
2988 		if (pos + len > inode->i_size)
2989 			ext4_truncate_failed_write(inode);
2990 
2991 		if (ret == -ENOSPC &&
2992 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2993 			goto retry;
2994 		return ret;
2995 	}
2996 
2997 	*pagep = page;
2998 	return ret;
2999 }
3000 
3001 /*
3002  * Check if we should update i_disksize
3003  * when write to the end of file but not require block allocation
3004  */
3005 static int ext4_da_should_update_i_disksize(struct page *page,
3006 					    unsigned long offset)
3007 {
3008 	struct buffer_head *bh;
3009 	struct inode *inode = page->mapping->host;
3010 	unsigned int idx;
3011 	int i;
3012 
3013 	bh = page_buffers(page);
3014 	idx = offset >> inode->i_blkbits;
3015 
3016 	for (i = 0; i < idx; i++)
3017 		bh = bh->b_this_page;
3018 
3019 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3020 		return 0;
3021 	return 1;
3022 }
3023 
3024 static int ext4_da_write_end(struct file *file,
3025 			     struct address_space *mapping,
3026 			     loff_t pos, unsigned len, unsigned copied,
3027 			     struct page *page, void *fsdata)
3028 {
3029 	struct inode *inode = mapping->host;
3030 	loff_t new_i_size;
3031 	unsigned long start, end;
3032 	int write_mode = (int)(unsigned long)fsdata;
3033 
3034 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3035 		return ext4_write_end(file, mapping, pos,
3036 				      len, copied, page, fsdata);
3037 
3038 	trace_ext4_da_write_end(inode, pos, len, copied);
3039 
3040 	if (write_mode != CONVERT_INLINE_DATA &&
3041 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3042 	    ext4_has_inline_data(inode))
3043 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3044 
3045 	start = pos & (PAGE_SIZE - 1);
3046 	end = start + copied - 1;
3047 
3048 	/*
3049 	 * Since we are holding inode lock, we are sure i_disksize <=
3050 	 * i_size. We also know that if i_disksize < i_size, there are
3051 	 * delalloc writes pending in the range upto i_size. If the end of
3052 	 * the current write is <= i_size, there's no need to touch
3053 	 * i_disksize since writeback will push i_disksize upto i_size
3054 	 * eventually. If the end of the current write is > i_size and
3055 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3056 	 * check), we need to update i_disksize here as neither
3057 	 * ext4_writepage() nor certain ext4_writepages() paths not
3058 	 * allocating blocks update i_disksize.
3059 	 *
3060 	 * Note that we defer inode dirtying to generic_write_end() /
3061 	 * ext4_da_write_inline_data_end().
3062 	 */
3063 	new_i_size = pos + copied;
3064 	if (copied && new_i_size > inode->i_size &&
3065 	    ext4_da_should_update_i_disksize(page, end))
3066 		ext4_update_i_disksize(inode, new_i_size);
3067 
3068 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3069 }
3070 
3071 /*
3072  * Force all delayed allocation blocks to be allocated for a given inode.
3073  */
3074 int ext4_alloc_da_blocks(struct inode *inode)
3075 {
3076 	trace_ext4_alloc_da_blocks(inode);
3077 
3078 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3079 		return 0;
3080 
3081 	/*
3082 	 * We do something simple for now.  The filemap_flush() will
3083 	 * also start triggering a write of the data blocks, which is
3084 	 * not strictly speaking necessary (and for users of
3085 	 * laptop_mode, not even desirable).  However, to do otherwise
3086 	 * would require replicating code paths in:
3087 	 *
3088 	 * ext4_writepages() ->
3089 	 *    write_cache_pages() ---> (via passed in callback function)
3090 	 *        __mpage_da_writepage() -->
3091 	 *           mpage_add_bh_to_extent()
3092 	 *           mpage_da_map_blocks()
3093 	 *
3094 	 * The problem is that write_cache_pages(), located in
3095 	 * mm/page-writeback.c, marks pages clean in preparation for
3096 	 * doing I/O, which is not desirable if we're not planning on
3097 	 * doing I/O at all.
3098 	 *
3099 	 * We could call write_cache_pages(), and then redirty all of
3100 	 * the pages by calling redirty_page_for_writepage() but that
3101 	 * would be ugly in the extreme.  So instead we would need to
3102 	 * replicate parts of the code in the above functions,
3103 	 * simplifying them because we wouldn't actually intend to
3104 	 * write out the pages, but rather only collect contiguous
3105 	 * logical block extents, call the multi-block allocator, and
3106 	 * then update the buffer heads with the block allocations.
3107 	 *
3108 	 * For now, though, we'll cheat by calling filemap_flush(),
3109 	 * which will map the blocks, and start the I/O, but not
3110 	 * actually wait for the I/O to complete.
3111 	 */
3112 	return filemap_flush(inode->i_mapping);
3113 }
3114 
3115 /*
3116  * bmap() is special.  It gets used by applications such as lilo and by
3117  * the swapper to find the on-disk block of a specific piece of data.
3118  *
3119  * Naturally, this is dangerous if the block concerned is still in the
3120  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3121  * filesystem and enables swap, then they may get a nasty shock when the
3122  * data getting swapped to that swapfile suddenly gets overwritten by
3123  * the original zero's written out previously to the journal and
3124  * awaiting writeback in the kernel's buffer cache.
3125  *
3126  * So, if we see any bmap calls here on a modified, data-journaled file,
3127  * take extra steps to flush any blocks which might be in the cache.
3128  */
3129 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3130 {
3131 	struct inode *inode = mapping->host;
3132 	journal_t *journal;
3133 	int err;
3134 
3135 	/*
3136 	 * We can get here for an inline file via the FIBMAP ioctl
3137 	 */
3138 	if (ext4_has_inline_data(inode))
3139 		return 0;
3140 
3141 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3142 			test_opt(inode->i_sb, DELALLOC)) {
3143 		/*
3144 		 * With delalloc we want to sync the file
3145 		 * so that we can make sure we allocate
3146 		 * blocks for file
3147 		 */
3148 		filemap_write_and_wait(mapping);
3149 	}
3150 
3151 	if (EXT4_JOURNAL(inode) &&
3152 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3153 		/*
3154 		 * This is a REALLY heavyweight approach, but the use of
3155 		 * bmap on dirty files is expected to be extremely rare:
3156 		 * only if we run lilo or swapon on a freshly made file
3157 		 * do we expect this to happen.
3158 		 *
3159 		 * (bmap requires CAP_SYS_RAWIO so this does not
3160 		 * represent an unprivileged user DOS attack --- we'd be
3161 		 * in trouble if mortal users could trigger this path at
3162 		 * will.)
3163 		 *
3164 		 * NB. EXT4_STATE_JDATA is not set on files other than
3165 		 * regular files.  If somebody wants to bmap a directory
3166 		 * or symlink and gets confused because the buffer
3167 		 * hasn't yet been flushed to disk, they deserve
3168 		 * everything they get.
3169 		 */
3170 
3171 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3172 		journal = EXT4_JOURNAL(inode);
3173 		jbd2_journal_lock_updates(journal);
3174 		err = jbd2_journal_flush(journal, 0);
3175 		jbd2_journal_unlock_updates(journal);
3176 
3177 		if (err)
3178 			return 0;
3179 	}
3180 
3181 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3182 }
3183 
3184 static int ext4_readpage(struct file *file, struct page *page)
3185 {
3186 	int ret = -EAGAIN;
3187 	struct inode *inode = page->mapping->host;
3188 
3189 	trace_ext4_readpage(page);
3190 
3191 	if (ext4_has_inline_data(inode))
3192 		ret = ext4_readpage_inline(inode, page);
3193 
3194 	if (ret == -EAGAIN)
3195 		return ext4_mpage_readpages(inode, NULL, page);
3196 
3197 	return ret;
3198 }
3199 
3200 static void ext4_readahead(struct readahead_control *rac)
3201 {
3202 	struct inode *inode = rac->mapping->host;
3203 
3204 	/* If the file has inline data, no need to do readahead. */
3205 	if (ext4_has_inline_data(inode))
3206 		return;
3207 
3208 	ext4_mpage_readpages(inode, rac, NULL);
3209 }
3210 
3211 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3212 				size_t length)
3213 {
3214 	trace_ext4_invalidate_folio(folio, offset, length);
3215 
3216 	/* No journalling happens on data buffers when this function is used */
3217 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3218 
3219 	block_invalidate_folio(folio, offset, length);
3220 }
3221 
3222 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3223 					    size_t offset, size_t length)
3224 {
3225 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3226 
3227 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3228 
3229 	/*
3230 	 * If it's a full truncate we just forget about the pending dirtying
3231 	 */
3232 	if (offset == 0 && length == folio_size(folio))
3233 		folio_clear_checked(folio);
3234 
3235 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3236 }
3237 
3238 /* Wrapper for aops... */
3239 static void ext4_journalled_invalidate_folio(struct folio *folio,
3240 					   size_t offset,
3241 					   size_t length)
3242 {
3243 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3244 }
3245 
3246 static int ext4_releasepage(struct page *page, gfp_t wait)
3247 {
3248 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3249 
3250 	trace_ext4_releasepage(page);
3251 
3252 	/* Page has dirty journalled data -> cannot release */
3253 	if (PageChecked(page))
3254 		return 0;
3255 	if (journal)
3256 		return jbd2_journal_try_to_free_buffers(journal, page);
3257 	else
3258 		return try_to_free_buffers(page);
3259 }
3260 
3261 static bool ext4_inode_datasync_dirty(struct inode *inode)
3262 {
3263 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3264 
3265 	if (journal) {
3266 		if (jbd2_transaction_committed(journal,
3267 			EXT4_I(inode)->i_datasync_tid))
3268 			return false;
3269 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3270 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3271 		return true;
3272 	}
3273 
3274 	/* Any metadata buffers to write? */
3275 	if (!list_empty(&inode->i_mapping->private_list))
3276 		return true;
3277 	return inode->i_state & I_DIRTY_DATASYNC;
3278 }
3279 
3280 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3281 			   struct ext4_map_blocks *map, loff_t offset,
3282 			   loff_t length, unsigned int flags)
3283 {
3284 	u8 blkbits = inode->i_blkbits;
3285 
3286 	/*
3287 	 * Writes that span EOF might trigger an I/O size update on completion,
3288 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3289 	 * there is no other metadata changes being made or are pending.
3290 	 */
3291 	iomap->flags = 0;
3292 	if (ext4_inode_datasync_dirty(inode) ||
3293 	    offset + length > i_size_read(inode))
3294 		iomap->flags |= IOMAP_F_DIRTY;
3295 
3296 	if (map->m_flags & EXT4_MAP_NEW)
3297 		iomap->flags |= IOMAP_F_NEW;
3298 
3299 	if (flags & IOMAP_DAX)
3300 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3301 	else
3302 		iomap->bdev = inode->i_sb->s_bdev;
3303 	iomap->offset = (u64) map->m_lblk << blkbits;
3304 	iomap->length = (u64) map->m_len << blkbits;
3305 
3306 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3307 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3308 		iomap->flags |= IOMAP_F_MERGED;
3309 
3310 	/*
3311 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3312 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3313 	 * set. In order for any allocated unwritten extents to be converted
3314 	 * into written extents correctly within the ->end_io() handler, we
3315 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3316 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3317 	 * been set first.
3318 	 */
3319 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3320 		iomap->type = IOMAP_UNWRITTEN;
3321 		iomap->addr = (u64) map->m_pblk << blkbits;
3322 		if (flags & IOMAP_DAX)
3323 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3324 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3325 		iomap->type = IOMAP_MAPPED;
3326 		iomap->addr = (u64) map->m_pblk << blkbits;
3327 		if (flags & IOMAP_DAX)
3328 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3329 	} else {
3330 		iomap->type = IOMAP_HOLE;
3331 		iomap->addr = IOMAP_NULL_ADDR;
3332 	}
3333 }
3334 
3335 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3336 			    unsigned int flags)
3337 {
3338 	handle_t *handle;
3339 	u8 blkbits = inode->i_blkbits;
3340 	int ret, dio_credits, m_flags = 0, retries = 0;
3341 
3342 	/*
3343 	 * Trim the mapping request to the maximum value that we can map at
3344 	 * once for direct I/O.
3345 	 */
3346 	if (map->m_len > DIO_MAX_BLOCKS)
3347 		map->m_len = DIO_MAX_BLOCKS;
3348 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3349 
3350 retry:
3351 	/*
3352 	 * Either we allocate blocks and then don't get an unwritten extent, so
3353 	 * in that case we have reserved enough credits. Or, the blocks are
3354 	 * already allocated and unwritten. In that case, the extent conversion
3355 	 * fits into the credits as well.
3356 	 */
3357 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3358 	if (IS_ERR(handle))
3359 		return PTR_ERR(handle);
3360 
3361 	/*
3362 	 * DAX and direct I/O are the only two operations that are currently
3363 	 * supported with IOMAP_WRITE.
3364 	 */
3365 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3366 	if (flags & IOMAP_DAX)
3367 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3368 	/*
3369 	 * We use i_size instead of i_disksize here because delalloc writeback
3370 	 * can complete at any point during the I/O and subsequently push the
3371 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3372 	 * happening and thus expose allocated blocks to direct I/O reads.
3373 	 */
3374 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3375 		m_flags = EXT4_GET_BLOCKS_CREATE;
3376 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3377 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3378 
3379 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3380 
3381 	/*
3382 	 * We cannot fill holes in indirect tree based inodes as that could
3383 	 * expose stale data in the case of a crash. Use the magic error code
3384 	 * to fallback to buffered I/O.
3385 	 */
3386 	if (!m_flags && !ret)
3387 		ret = -ENOTBLK;
3388 
3389 	ext4_journal_stop(handle);
3390 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3391 		goto retry;
3392 
3393 	return ret;
3394 }
3395 
3396 
3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3398 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3399 {
3400 	int ret;
3401 	struct ext4_map_blocks map;
3402 	u8 blkbits = inode->i_blkbits;
3403 
3404 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3405 		return -EINVAL;
3406 
3407 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3408 		return -ERANGE;
3409 
3410 	/*
3411 	 * Calculate the first and last logical blocks respectively.
3412 	 */
3413 	map.m_lblk = offset >> blkbits;
3414 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3415 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3416 
3417 	if (flags & IOMAP_WRITE) {
3418 		/*
3419 		 * We check here if the blocks are already allocated, then we
3420 		 * don't need to start a journal txn and we can directly return
3421 		 * the mapping information. This could boost performance
3422 		 * especially in multi-threaded overwrite requests.
3423 		 */
3424 		if (offset + length <= i_size_read(inode)) {
3425 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3426 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3427 				goto out;
3428 		}
3429 		ret = ext4_iomap_alloc(inode, &map, flags);
3430 	} else {
3431 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3432 	}
3433 
3434 	if (ret < 0)
3435 		return ret;
3436 out:
3437 	/*
3438 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3439 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3440 	 * limiting the length of the mapping returned.
3441 	 */
3442 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3443 
3444 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3445 
3446 	return 0;
3447 }
3448 
3449 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3450 		loff_t length, unsigned flags, struct iomap *iomap,
3451 		struct iomap *srcmap)
3452 {
3453 	int ret;
3454 
3455 	/*
3456 	 * Even for writes we don't need to allocate blocks, so just pretend
3457 	 * we are reading to save overhead of starting a transaction.
3458 	 */
3459 	flags &= ~IOMAP_WRITE;
3460 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3461 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3462 	return ret;
3463 }
3464 
3465 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3466 			  ssize_t written, unsigned flags, struct iomap *iomap)
3467 {
3468 	/*
3469 	 * Check to see whether an error occurred while writing out the data to
3470 	 * the allocated blocks. If so, return the magic error code so that we
3471 	 * fallback to buffered I/O and attempt to complete the remainder of
3472 	 * the I/O. Any blocks that may have been allocated in preparation for
3473 	 * the direct I/O will be reused during buffered I/O.
3474 	 */
3475 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3476 		return -ENOTBLK;
3477 
3478 	return 0;
3479 }
3480 
3481 const struct iomap_ops ext4_iomap_ops = {
3482 	.iomap_begin		= ext4_iomap_begin,
3483 	.iomap_end		= ext4_iomap_end,
3484 };
3485 
3486 const struct iomap_ops ext4_iomap_overwrite_ops = {
3487 	.iomap_begin		= ext4_iomap_overwrite_begin,
3488 	.iomap_end		= ext4_iomap_end,
3489 };
3490 
3491 static bool ext4_iomap_is_delalloc(struct inode *inode,
3492 				   struct ext4_map_blocks *map)
3493 {
3494 	struct extent_status es;
3495 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3496 
3497 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3498 				  map->m_lblk, end, &es);
3499 
3500 	if (!es.es_len || es.es_lblk > end)
3501 		return false;
3502 
3503 	if (es.es_lblk > map->m_lblk) {
3504 		map->m_len = es.es_lblk - map->m_lblk;
3505 		return false;
3506 	}
3507 
3508 	offset = map->m_lblk - es.es_lblk;
3509 	map->m_len = es.es_len - offset;
3510 
3511 	return true;
3512 }
3513 
3514 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3515 				   loff_t length, unsigned int flags,
3516 				   struct iomap *iomap, struct iomap *srcmap)
3517 {
3518 	int ret;
3519 	bool delalloc = false;
3520 	struct ext4_map_blocks map;
3521 	u8 blkbits = inode->i_blkbits;
3522 
3523 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3524 		return -EINVAL;
3525 
3526 	if (ext4_has_inline_data(inode)) {
3527 		ret = ext4_inline_data_iomap(inode, iomap);
3528 		if (ret != -EAGAIN) {
3529 			if (ret == 0 && offset >= iomap->length)
3530 				ret = -ENOENT;
3531 			return ret;
3532 		}
3533 	}
3534 
3535 	/*
3536 	 * Calculate the first and last logical block respectively.
3537 	 */
3538 	map.m_lblk = offset >> blkbits;
3539 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3540 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3541 
3542 	/*
3543 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3544 	 * So handle it here itself instead of querying ext4_map_blocks().
3545 	 * Since ext4_map_blocks() will warn about it and will return
3546 	 * -EIO error.
3547 	 */
3548 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3549 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3550 
3551 		if (offset >= sbi->s_bitmap_maxbytes) {
3552 			map.m_flags = 0;
3553 			goto set_iomap;
3554 		}
3555 	}
3556 
3557 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3558 	if (ret < 0)
3559 		return ret;
3560 	if (ret == 0)
3561 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3562 
3563 set_iomap:
3564 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3565 	if (delalloc && iomap->type == IOMAP_HOLE)
3566 		iomap->type = IOMAP_DELALLOC;
3567 
3568 	return 0;
3569 }
3570 
3571 const struct iomap_ops ext4_iomap_report_ops = {
3572 	.iomap_begin = ext4_iomap_begin_report,
3573 };
3574 
3575 /*
3576  * Whenever the folio is being dirtied, corresponding buffers should already
3577  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3578  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3579  * lists here because ->dirty_folio is called under VFS locks and the folio
3580  * is not necessarily locked.
3581  *
3582  * We cannot just dirty the folio and leave attached buffers clean, because the
3583  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3584  * or jbddirty because all the journalling code will explode.
3585  *
3586  * So what we do is to mark the folio "pending dirty" and next time writepage
3587  * is called, propagate that into the buffers appropriately.
3588  */
3589 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3590 		struct folio *folio)
3591 {
3592 	WARN_ON_ONCE(!folio_buffers(folio));
3593 	folio_set_checked(folio);
3594 	return filemap_dirty_folio(mapping, folio);
3595 }
3596 
3597 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3598 {
3599 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3600 	WARN_ON_ONCE(!folio_buffers(folio));
3601 	return block_dirty_folio(mapping, folio);
3602 }
3603 
3604 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3605 				    struct file *file, sector_t *span)
3606 {
3607 	return iomap_swapfile_activate(sis, file, span,
3608 				       &ext4_iomap_report_ops);
3609 }
3610 
3611 static const struct address_space_operations ext4_aops = {
3612 	.readpage		= ext4_readpage,
3613 	.readahead		= ext4_readahead,
3614 	.writepage		= ext4_writepage,
3615 	.writepages		= ext4_writepages,
3616 	.write_begin		= ext4_write_begin,
3617 	.write_end		= ext4_write_end,
3618 	.dirty_folio		= ext4_dirty_folio,
3619 	.bmap			= ext4_bmap,
3620 	.invalidate_folio	= ext4_invalidate_folio,
3621 	.releasepage		= ext4_releasepage,
3622 	.direct_IO		= noop_direct_IO,
3623 	.migratepage		= buffer_migrate_page,
3624 	.is_partially_uptodate  = block_is_partially_uptodate,
3625 	.error_remove_page	= generic_error_remove_page,
3626 	.swap_activate		= ext4_iomap_swap_activate,
3627 };
3628 
3629 static const struct address_space_operations ext4_journalled_aops = {
3630 	.readpage		= ext4_readpage,
3631 	.readahead		= ext4_readahead,
3632 	.writepage		= ext4_writepage,
3633 	.writepages		= ext4_writepages,
3634 	.write_begin		= ext4_write_begin,
3635 	.write_end		= ext4_journalled_write_end,
3636 	.dirty_folio		= ext4_journalled_dirty_folio,
3637 	.bmap			= ext4_bmap,
3638 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3639 	.releasepage		= ext4_releasepage,
3640 	.direct_IO		= noop_direct_IO,
3641 	.is_partially_uptodate  = block_is_partially_uptodate,
3642 	.error_remove_page	= generic_error_remove_page,
3643 	.swap_activate		= ext4_iomap_swap_activate,
3644 };
3645 
3646 static const struct address_space_operations ext4_da_aops = {
3647 	.readpage		= ext4_readpage,
3648 	.readahead		= ext4_readahead,
3649 	.writepage		= ext4_writepage,
3650 	.writepages		= ext4_writepages,
3651 	.write_begin		= ext4_da_write_begin,
3652 	.write_end		= ext4_da_write_end,
3653 	.dirty_folio		= ext4_dirty_folio,
3654 	.bmap			= ext4_bmap,
3655 	.invalidate_folio	= ext4_invalidate_folio,
3656 	.releasepage		= ext4_releasepage,
3657 	.direct_IO		= noop_direct_IO,
3658 	.migratepage		= buffer_migrate_page,
3659 	.is_partially_uptodate  = block_is_partially_uptodate,
3660 	.error_remove_page	= generic_error_remove_page,
3661 	.swap_activate		= ext4_iomap_swap_activate,
3662 };
3663 
3664 static const struct address_space_operations ext4_dax_aops = {
3665 	.writepages		= ext4_dax_writepages,
3666 	.direct_IO		= noop_direct_IO,
3667 	.dirty_folio		= noop_dirty_folio,
3668 	.bmap			= ext4_bmap,
3669 	.swap_activate		= ext4_iomap_swap_activate,
3670 };
3671 
3672 void ext4_set_aops(struct inode *inode)
3673 {
3674 	switch (ext4_inode_journal_mode(inode)) {
3675 	case EXT4_INODE_ORDERED_DATA_MODE:
3676 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3677 		break;
3678 	case EXT4_INODE_JOURNAL_DATA_MODE:
3679 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3680 		return;
3681 	default:
3682 		BUG();
3683 	}
3684 	if (IS_DAX(inode))
3685 		inode->i_mapping->a_ops = &ext4_dax_aops;
3686 	else if (test_opt(inode->i_sb, DELALLOC))
3687 		inode->i_mapping->a_ops = &ext4_da_aops;
3688 	else
3689 		inode->i_mapping->a_ops = &ext4_aops;
3690 }
3691 
3692 static int __ext4_block_zero_page_range(handle_t *handle,
3693 		struct address_space *mapping, loff_t from, loff_t length)
3694 {
3695 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3696 	unsigned offset = from & (PAGE_SIZE-1);
3697 	unsigned blocksize, pos;
3698 	ext4_lblk_t iblock;
3699 	struct inode *inode = mapping->host;
3700 	struct buffer_head *bh;
3701 	struct page *page;
3702 	int err = 0;
3703 
3704 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3705 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3706 	if (!page)
3707 		return -ENOMEM;
3708 
3709 	blocksize = inode->i_sb->s_blocksize;
3710 
3711 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3712 
3713 	if (!page_has_buffers(page))
3714 		create_empty_buffers(page, blocksize, 0);
3715 
3716 	/* Find the buffer that contains "offset" */
3717 	bh = page_buffers(page);
3718 	pos = blocksize;
3719 	while (offset >= pos) {
3720 		bh = bh->b_this_page;
3721 		iblock++;
3722 		pos += blocksize;
3723 	}
3724 	if (buffer_freed(bh)) {
3725 		BUFFER_TRACE(bh, "freed: skip");
3726 		goto unlock;
3727 	}
3728 	if (!buffer_mapped(bh)) {
3729 		BUFFER_TRACE(bh, "unmapped");
3730 		ext4_get_block(inode, iblock, bh, 0);
3731 		/* unmapped? It's a hole - nothing to do */
3732 		if (!buffer_mapped(bh)) {
3733 			BUFFER_TRACE(bh, "still unmapped");
3734 			goto unlock;
3735 		}
3736 	}
3737 
3738 	/* Ok, it's mapped. Make sure it's up-to-date */
3739 	if (PageUptodate(page))
3740 		set_buffer_uptodate(bh);
3741 
3742 	if (!buffer_uptodate(bh)) {
3743 		err = ext4_read_bh_lock(bh, 0, true);
3744 		if (err)
3745 			goto unlock;
3746 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3747 			/* We expect the key to be set. */
3748 			BUG_ON(!fscrypt_has_encryption_key(inode));
3749 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3750 							       bh_offset(bh));
3751 			if (err) {
3752 				clear_buffer_uptodate(bh);
3753 				goto unlock;
3754 			}
3755 		}
3756 	}
3757 	if (ext4_should_journal_data(inode)) {
3758 		BUFFER_TRACE(bh, "get write access");
3759 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3760 						    EXT4_JTR_NONE);
3761 		if (err)
3762 			goto unlock;
3763 	}
3764 	zero_user(page, offset, length);
3765 	BUFFER_TRACE(bh, "zeroed end of block");
3766 
3767 	if (ext4_should_journal_data(inode)) {
3768 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3769 	} else {
3770 		err = 0;
3771 		mark_buffer_dirty(bh);
3772 		if (ext4_should_order_data(inode))
3773 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3774 					length);
3775 	}
3776 
3777 unlock:
3778 	unlock_page(page);
3779 	put_page(page);
3780 	return err;
3781 }
3782 
3783 /*
3784  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3785  * starting from file offset 'from'.  The range to be zero'd must
3786  * be contained with in one block.  If the specified range exceeds
3787  * the end of the block it will be shortened to end of the block
3788  * that corresponds to 'from'
3789  */
3790 static int ext4_block_zero_page_range(handle_t *handle,
3791 		struct address_space *mapping, loff_t from, loff_t length)
3792 {
3793 	struct inode *inode = mapping->host;
3794 	unsigned offset = from & (PAGE_SIZE-1);
3795 	unsigned blocksize = inode->i_sb->s_blocksize;
3796 	unsigned max = blocksize - (offset & (blocksize - 1));
3797 
3798 	/*
3799 	 * correct length if it does not fall between
3800 	 * 'from' and the end of the block
3801 	 */
3802 	if (length > max || length < 0)
3803 		length = max;
3804 
3805 	if (IS_DAX(inode)) {
3806 		return dax_zero_range(inode, from, length, NULL,
3807 				      &ext4_iomap_ops);
3808 	}
3809 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3810 }
3811 
3812 /*
3813  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3814  * up to the end of the block which corresponds to `from'.
3815  * This required during truncate. We need to physically zero the tail end
3816  * of that block so it doesn't yield old data if the file is later grown.
3817  */
3818 static int ext4_block_truncate_page(handle_t *handle,
3819 		struct address_space *mapping, loff_t from)
3820 {
3821 	unsigned offset = from & (PAGE_SIZE-1);
3822 	unsigned length;
3823 	unsigned blocksize;
3824 	struct inode *inode = mapping->host;
3825 
3826 	/* If we are processing an encrypted inode during orphan list handling */
3827 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3828 		return 0;
3829 
3830 	blocksize = inode->i_sb->s_blocksize;
3831 	length = blocksize - (offset & (blocksize - 1));
3832 
3833 	return ext4_block_zero_page_range(handle, mapping, from, length);
3834 }
3835 
3836 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3837 			     loff_t lstart, loff_t length)
3838 {
3839 	struct super_block *sb = inode->i_sb;
3840 	struct address_space *mapping = inode->i_mapping;
3841 	unsigned partial_start, partial_end;
3842 	ext4_fsblk_t start, end;
3843 	loff_t byte_end = (lstart + length - 1);
3844 	int err = 0;
3845 
3846 	partial_start = lstart & (sb->s_blocksize - 1);
3847 	partial_end = byte_end & (sb->s_blocksize - 1);
3848 
3849 	start = lstart >> sb->s_blocksize_bits;
3850 	end = byte_end >> sb->s_blocksize_bits;
3851 
3852 	/* Handle partial zero within the single block */
3853 	if (start == end &&
3854 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3855 		err = ext4_block_zero_page_range(handle, mapping,
3856 						 lstart, length);
3857 		return err;
3858 	}
3859 	/* Handle partial zero out on the start of the range */
3860 	if (partial_start) {
3861 		err = ext4_block_zero_page_range(handle, mapping,
3862 						 lstart, sb->s_blocksize);
3863 		if (err)
3864 			return err;
3865 	}
3866 	/* Handle partial zero out on the end of the range */
3867 	if (partial_end != sb->s_blocksize - 1)
3868 		err = ext4_block_zero_page_range(handle, mapping,
3869 						 byte_end - partial_end,
3870 						 partial_end + 1);
3871 	return err;
3872 }
3873 
3874 int ext4_can_truncate(struct inode *inode)
3875 {
3876 	if (S_ISREG(inode->i_mode))
3877 		return 1;
3878 	if (S_ISDIR(inode->i_mode))
3879 		return 1;
3880 	if (S_ISLNK(inode->i_mode))
3881 		return !ext4_inode_is_fast_symlink(inode);
3882 	return 0;
3883 }
3884 
3885 /*
3886  * We have to make sure i_disksize gets properly updated before we truncate
3887  * page cache due to hole punching or zero range. Otherwise i_disksize update
3888  * can get lost as it may have been postponed to submission of writeback but
3889  * that will never happen after we truncate page cache.
3890  */
3891 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3892 				      loff_t len)
3893 {
3894 	handle_t *handle;
3895 	int ret;
3896 
3897 	loff_t size = i_size_read(inode);
3898 
3899 	WARN_ON(!inode_is_locked(inode));
3900 	if (offset > size || offset + len < size)
3901 		return 0;
3902 
3903 	if (EXT4_I(inode)->i_disksize >= size)
3904 		return 0;
3905 
3906 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3907 	if (IS_ERR(handle))
3908 		return PTR_ERR(handle);
3909 	ext4_update_i_disksize(inode, size);
3910 	ret = ext4_mark_inode_dirty(handle, inode);
3911 	ext4_journal_stop(handle);
3912 
3913 	return ret;
3914 }
3915 
3916 static void ext4_wait_dax_page(struct inode *inode)
3917 {
3918 	filemap_invalidate_unlock(inode->i_mapping);
3919 	schedule();
3920 	filemap_invalidate_lock(inode->i_mapping);
3921 }
3922 
3923 int ext4_break_layouts(struct inode *inode)
3924 {
3925 	struct page *page;
3926 	int error;
3927 
3928 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3929 		return -EINVAL;
3930 
3931 	do {
3932 		page = dax_layout_busy_page(inode->i_mapping);
3933 		if (!page)
3934 			return 0;
3935 
3936 		error = ___wait_var_event(&page->_refcount,
3937 				atomic_read(&page->_refcount) == 1,
3938 				TASK_INTERRUPTIBLE, 0, 0,
3939 				ext4_wait_dax_page(inode));
3940 	} while (error == 0);
3941 
3942 	return error;
3943 }
3944 
3945 /*
3946  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3947  * associated with the given offset and length
3948  *
3949  * @inode:  File inode
3950  * @offset: The offset where the hole will begin
3951  * @len:    The length of the hole
3952  *
3953  * Returns: 0 on success or negative on failure
3954  */
3955 
3956 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3957 {
3958 	struct super_block *sb = inode->i_sb;
3959 	ext4_lblk_t first_block, stop_block;
3960 	struct address_space *mapping = inode->i_mapping;
3961 	loff_t first_block_offset, last_block_offset;
3962 	handle_t *handle;
3963 	unsigned int credits;
3964 	int ret = 0, ret2 = 0;
3965 
3966 	trace_ext4_punch_hole(inode, offset, length, 0);
3967 
3968 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3969 	if (ext4_has_inline_data(inode)) {
3970 		filemap_invalidate_lock(mapping);
3971 		ret = ext4_convert_inline_data(inode);
3972 		filemap_invalidate_unlock(mapping);
3973 		if (ret)
3974 			return ret;
3975 	}
3976 
3977 	/*
3978 	 * Write out all dirty pages to avoid race conditions
3979 	 * Then release them.
3980 	 */
3981 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3982 		ret = filemap_write_and_wait_range(mapping, offset,
3983 						   offset + length - 1);
3984 		if (ret)
3985 			return ret;
3986 	}
3987 
3988 	inode_lock(inode);
3989 
3990 	/* No need to punch hole beyond i_size */
3991 	if (offset >= inode->i_size)
3992 		goto out_mutex;
3993 
3994 	/*
3995 	 * If the hole extends beyond i_size, set the hole
3996 	 * to end after the page that contains i_size
3997 	 */
3998 	if (offset + length > inode->i_size) {
3999 		length = inode->i_size +
4000 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4001 		   offset;
4002 	}
4003 
4004 	if (offset & (sb->s_blocksize - 1) ||
4005 	    (offset + length) & (sb->s_blocksize - 1)) {
4006 		/*
4007 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4008 		 * partial block
4009 		 */
4010 		ret = ext4_inode_attach_jinode(inode);
4011 		if (ret < 0)
4012 			goto out_mutex;
4013 
4014 	}
4015 
4016 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4017 	inode_dio_wait(inode);
4018 
4019 	/*
4020 	 * Prevent page faults from reinstantiating pages we have released from
4021 	 * page cache.
4022 	 */
4023 	filemap_invalidate_lock(mapping);
4024 
4025 	ret = ext4_break_layouts(inode);
4026 	if (ret)
4027 		goto out_dio;
4028 
4029 	first_block_offset = round_up(offset, sb->s_blocksize);
4030 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4031 
4032 	/* Now release the pages and zero block aligned part of pages*/
4033 	if (last_block_offset > first_block_offset) {
4034 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4035 		if (ret)
4036 			goto out_dio;
4037 		truncate_pagecache_range(inode, first_block_offset,
4038 					 last_block_offset);
4039 	}
4040 
4041 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4042 		credits = ext4_writepage_trans_blocks(inode);
4043 	else
4044 		credits = ext4_blocks_for_truncate(inode);
4045 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4046 	if (IS_ERR(handle)) {
4047 		ret = PTR_ERR(handle);
4048 		ext4_std_error(sb, ret);
4049 		goto out_dio;
4050 	}
4051 
4052 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4053 				       length);
4054 	if (ret)
4055 		goto out_stop;
4056 
4057 	first_block = (offset + sb->s_blocksize - 1) >>
4058 		EXT4_BLOCK_SIZE_BITS(sb);
4059 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4060 
4061 	/* If there are blocks to remove, do it */
4062 	if (stop_block > first_block) {
4063 
4064 		down_write(&EXT4_I(inode)->i_data_sem);
4065 		ext4_discard_preallocations(inode, 0);
4066 
4067 		ret = ext4_es_remove_extent(inode, first_block,
4068 					    stop_block - first_block);
4069 		if (ret) {
4070 			up_write(&EXT4_I(inode)->i_data_sem);
4071 			goto out_stop;
4072 		}
4073 
4074 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4075 			ret = ext4_ext_remove_space(inode, first_block,
4076 						    stop_block - 1);
4077 		else
4078 			ret = ext4_ind_remove_space(handle, inode, first_block,
4079 						    stop_block);
4080 
4081 		up_write(&EXT4_I(inode)->i_data_sem);
4082 	}
4083 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4084 	if (IS_SYNC(inode))
4085 		ext4_handle_sync(handle);
4086 
4087 	inode->i_mtime = inode->i_ctime = current_time(inode);
4088 	ret2 = ext4_mark_inode_dirty(handle, inode);
4089 	if (unlikely(ret2))
4090 		ret = ret2;
4091 	if (ret >= 0)
4092 		ext4_update_inode_fsync_trans(handle, inode, 1);
4093 out_stop:
4094 	ext4_journal_stop(handle);
4095 out_dio:
4096 	filemap_invalidate_unlock(mapping);
4097 out_mutex:
4098 	inode_unlock(inode);
4099 	return ret;
4100 }
4101 
4102 int ext4_inode_attach_jinode(struct inode *inode)
4103 {
4104 	struct ext4_inode_info *ei = EXT4_I(inode);
4105 	struct jbd2_inode *jinode;
4106 
4107 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4108 		return 0;
4109 
4110 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4111 	spin_lock(&inode->i_lock);
4112 	if (!ei->jinode) {
4113 		if (!jinode) {
4114 			spin_unlock(&inode->i_lock);
4115 			return -ENOMEM;
4116 		}
4117 		ei->jinode = jinode;
4118 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4119 		jinode = NULL;
4120 	}
4121 	spin_unlock(&inode->i_lock);
4122 	if (unlikely(jinode != NULL))
4123 		jbd2_free_inode(jinode);
4124 	return 0;
4125 }
4126 
4127 /*
4128  * ext4_truncate()
4129  *
4130  * We block out ext4_get_block() block instantiations across the entire
4131  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4132  * simultaneously on behalf of the same inode.
4133  *
4134  * As we work through the truncate and commit bits of it to the journal there
4135  * is one core, guiding principle: the file's tree must always be consistent on
4136  * disk.  We must be able to restart the truncate after a crash.
4137  *
4138  * The file's tree may be transiently inconsistent in memory (although it
4139  * probably isn't), but whenever we close off and commit a journal transaction,
4140  * the contents of (the filesystem + the journal) must be consistent and
4141  * restartable.  It's pretty simple, really: bottom up, right to left (although
4142  * left-to-right works OK too).
4143  *
4144  * Note that at recovery time, journal replay occurs *before* the restart of
4145  * truncate against the orphan inode list.
4146  *
4147  * The committed inode has the new, desired i_size (which is the same as
4148  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4149  * that this inode's truncate did not complete and it will again call
4150  * ext4_truncate() to have another go.  So there will be instantiated blocks
4151  * to the right of the truncation point in a crashed ext4 filesystem.  But
4152  * that's fine - as long as they are linked from the inode, the post-crash
4153  * ext4_truncate() run will find them and release them.
4154  */
4155 int ext4_truncate(struct inode *inode)
4156 {
4157 	struct ext4_inode_info *ei = EXT4_I(inode);
4158 	unsigned int credits;
4159 	int err = 0, err2;
4160 	handle_t *handle;
4161 	struct address_space *mapping = inode->i_mapping;
4162 
4163 	/*
4164 	 * There is a possibility that we're either freeing the inode
4165 	 * or it's a completely new inode. In those cases we might not
4166 	 * have i_rwsem locked because it's not necessary.
4167 	 */
4168 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4169 		WARN_ON(!inode_is_locked(inode));
4170 	trace_ext4_truncate_enter(inode);
4171 
4172 	if (!ext4_can_truncate(inode))
4173 		goto out_trace;
4174 
4175 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4176 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4177 
4178 	if (ext4_has_inline_data(inode)) {
4179 		int has_inline = 1;
4180 
4181 		err = ext4_inline_data_truncate(inode, &has_inline);
4182 		if (err || has_inline)
4183 			goto out_trace;
4184 	}
4185 
4186 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4187 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4188 		if (ext4_inode_attach_jinode(inode) < 0)
4189 			goto out_trace;
4190 	}
4191 
4192 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4193 		credits = ext4_writepage_trans_blocks(inode);
4194 	else
4195 		credits = ext4_blocks_for_truncate(inode);
4196 
4197 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4198 	if (IS_ERR(handle)) {
4199 		err = PTR_ERR(handle);
4200 		goto out_trace;
4201 	}
4202 
4203 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4204 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4205 
4206 	/*
4207 	 * We add the inode to the orphan list, so that if this
4208 	 * truncate spans multiple transactions, and we crash, we will
4209 	 * resume the truncate when the filesystem recovers.  It also
4210 	 * marks the inode dirty, to catch the new size.
4211 	 *
4212 	 * Implication: the file must always be in a sane, consistent
4213 	 * truncatable state while each transaction commits.
4214 	 */
4215 	err = ext4_orphan_add(handle, inode);
4216 	if (err)
4217 		goto out_stop;
4218 
4219 	down_write(&EXT4_I(inode)->i_data_sem);
4220 
4221 	ext4_discard_preallocations(inode, 0);
4222 
4223 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4224 		err = ext4_ext_truncate(handle, inode);
4225 	else
4226 		ext4_ind_truncate(handle, inode);
4227 
4228 	up_write(&ei->i_data_sem);
4229 	if (err)
4230 		goto out_stop;
4231 
4232 	if (IS_SYNC(inode))
4233 		ext4_handle_sync(handle);
4234 
4235 out_stop:
4236 	/*
4237 	 * If this was a simple ftruncate() and the file will remain alive,
4238 	 * then we need to clear up the orphan record which we created above.
4239 	 * However, if this was a real unlink then we were called by
4240 	 * ext4_evict_inode(), and we allow that function to clean up the
4241 	 * orphan info for us.
4242 	 */
4243 	if (inode->i_nlink)
4244 		ext4_orphan_del(handle, inode);
4245 
4246 	inode->i_mtime = inode->i_ctime = current_time(inode);
4247 	err2 = ext4_mark_inode_dirty(handle, inode);
4248 	if (unlikely(err2 && !err))
4249 		err = err2;
4250 	ext4_journal_stop(handle);
4251 
4252 out_trace:
4253 	trace_ext4_truncate_exit(inode);
4254 	return err;
4255 }
4256 
4257 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4258 {
4259 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4260 		return inode_peek_iversion_raw(inode);
4261 	else
4262 		return inode_peek_iversion(inode);
4263 }
4264 
4265 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4266 				 struct ext4_inode_info *ei)
4267 {
4268 	struct inode *inode = &(ei->vfs_inode);
4269 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4270 	struct super_block *sb = inode->i_sb;
4271 
4272 	if (i_blocks <= ~0U) {
4273 		/*
4274 		 * i_blocks can be represented in a 32 bit variable
4275 		 * as multiple of 512 bytes
4276 		 */
4277 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4278 		raw_inode->i_blocks_high = 0;
4279 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4280 		return 0;
4281 	}
4282 
4283 	/*
4284 	 * This should never happen since sb->s_maxbytes should not have
4285 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4286 	 * feature in ext4_fill_super().
4287 	 */
4288 	if (!ext4_has_feature_huge_file(sb))
4289 		return -EFSCORRUPTED;
4290 
4291 	if (i_blocks <= 0xffffffffffffULL) {
4292 		/*
4293 		 * i_blocks can be represented in a 48 bit variable
4294 		 * as multiple of 512 bytes
4295 		 */
4296 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4297 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4298 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4299 	} else {
4300 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4301 		/* i_block is stored in file system block size */
4302 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4303 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4304 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4305 	}
4306 	return 0;
4307 }
4308 
4309 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4310 {
4311 	struct ext4_inode_info *ei = EXT4_I(inode);
4312 	uid_t i_uid;
4313 	gid_t i_gid;
4314 	projid_t i_projid;
4315 	int block;
4316 	int err;
4317 
4318 	err = ext4_inode_blocks_set(raw_inode, ei);
4319 
4320 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4321 	i_uid = i_uid_read(inode);
4322 	i_gid = i_gid_read(inode);
4323 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4324 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4325 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4326 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4327 		/*
4328 		 * Fix up interoperability with old kernels. Otherwise,
4329 		 * old inodes get re-used with the upper 16 bits of the
4330 		 * uid/gid intact.
4331 		 */
4332 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4333 			raw_inode->i_uid_high = 0;
4334 			raw_inode->i_gid_high = 0;
4335 		} else {
4336 			raw_inode->i_uid_high =
4337 				cpu_to_le16(high_16_bits(i_uid));
4338 			raw_inode->i_gid_high =
4339 				cpu_to_le16(high_16_bits(i_gid));
4340 		}
4341 	} else {
4342 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4343 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4344 		raw_inode->i_uid_high = 0;
4345 		raw_inode->i_gid_high = 0;
4346 	}
4347 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4348 
4349 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4350 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4351 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4352 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4353 
4354 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4355 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4356 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4357 		raw_inode->i_file_acl_high =
4358 			cpu_to_le16(ei->i_file_acl >> 32);
4359 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4360 	ext4_isize_set(raw_inode, ei->i_disksize);
4361 
4362 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4363 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4364 		if (old_valid_dev(inode->i_rdev)) {
4365 			raw_inode->i_block[0] =
4366 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4367 			raw_inode->i_block[1] = 0;
4368 		} else {
4369 			raw_inode->i_block[0] = 0;
4370 			raw_inode->i_block[1] =
4371 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4372 			raw_inode->i_block[2] = 0;
4373 		}
4374 	} else if (!ext4_has_inline_data(inode)) {
4375 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4376 			raw_inode->i_block[block] = ei->i_data[block];
4377 	}
4378 
4379 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4380 		u64 ivers = ext4_inode_peek_iversion(inode);
4381 
4382 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4383 		if (ei->i_extra_isize) {
4384 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4385 				raw_inode->i_version_hi =
4386 					cpu_to_le32(ivers >> 32);
4387 			raw_inode->i_extra_isize =
4388 				cpu_to_le16(ei->i_extra_isize);
4389 		}
4390 	}
4391 
4392 	if (i_projid != EXT4_DEF_PROJID &&
4393 	    !ext4_has_feature_project(inode->i_sb))
4394 		err = err ?: -EFSCORRUPTED;
4395 
4396 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4397 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4398 		raw_inode->i_projid = cpu_to_le32(i_projid);
4399 
4400 	ext4_inode_csum_set(inode, raw_inode, ei);
4401 	return err;
4402 }
4403 
4404 /*
4405  * ext4_get_inode_loc returns with an extra refcount against the inode's
4406  * underlying buffer_head on success. If we pass 'inode' and it does not
4407  * have in-inode xattr, we have all inode data in memory that is needed
4408  * to recreate the on-disk version of this inode.
4409  */
4410 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4411 				struct inode *inode, struct ext4_iloc *iloc,
4412 				ext4_fsblk_t *ret_block)
4413 {
4414 	struct ext4_group_desc	*gdp;
4415 	struct buffer_head	*bh;
4416 	ext4_fsblk_t		block;
4417 	struct blk_plug		plug;
4418 	int			inodes_per_block, inode_offset;
4419 
4420 	iloc->bh = NULL;
4421 	if (ino < EXT4_ROOT_INO ||
4422 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4423 		return -EFSCORRUPTED;
4424 
4425 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4426 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4427 	if (!gdp)
4428 		return -EIO;
4429 
4430 	/*
4431 	 * Figure out the offset within the block group inode table
4432 	 */
4433 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4434 	inode_offset = ((ino - 1) %
4435 			EXT4_INODES_PER_GROUP(sb));
4436 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4437 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4438 
4439 	bh = sb_getblk(sb, block);
4440 	if (unlikely(!bh))
4441 		return -ENOMEM;
4442 	if (ext4_buffer_uptodate(bh))
4443 		goto has_buffer;
4444 
4445 	lock_buffer(bh);
4446 	if (ext4_buffer_uptodate(bh)) {
4447 		/* Someone brought it uptodate while we waited */
4448 		unlock_buffer(bh);
4449 		goto has_buffer;
4450 	}
4451 
4452 	/*
4453 	 * If we have all information of the inode in memory and this
4454 	 * is the only valid inode in the block, we need not read the
4455 	 * block.
4456 	 */
4457 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4458 		struct buffer_head *bitmap_bh;
4459 		int i, start;
4460 
4461 		start = inode_offset & ~(inodes_per_block - 1);
4462 
4463 		/* Is the inode bitmap in cache? */
4464 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4465 		if (unlikely(!bitmap_bh))
4466 			goto make_io;
4467 
4468 		/*
4469 		 * If the inode bitmap isn't in cache then the
4470 		 * optimisation may end up performing two reads instead
4471 		 * of one, so skip it.
4472 		 */
4473 		if (!buffer_uptodate(bitmap_bh)) {
4474 			brelse(bitmap_bh);
4475 			goto make_io;
4476 		}
4477 		for (i = start; i < start + inodes_per_block; i++) {
4478 			if (i == inode_offset)
4479 				continue;
4480 			if (ext4_test_bit(i, bitmap_bh->b_data))
4481 				break;
4482 		}
4483 		brelse(bitmap_bh);
4484 		if (i == start + inodes_per_block) {
4485 			struct ext4_inode *raw_inode =
4486 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4487 
4488 			/* all other inodes are free, so skip I/O */
4489 			memset(bh->b_data, 0, bh->b_size);
4490 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4491 				ext4_fill_raw_inode(inode, raw_inode);
4492 			set_buffer_uptodate(bh);
4493 			unlock_buffer(bh);
4494 			goto has_buffer;
4495 		}
4496 	}
4497 
4498 make_io:
4499 	/*
4500 	 * If we need to do any I/O, try to pre-readahead extra
4501 	 * blocks from the inode table.
4502 	 */
4503 	blk_start_plug(&plug);
4504 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4505 		ext4_fsblk_t b, end, table;
4506 		unsigned num;
4507 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4508 
4509 		table = ext4_inode_table(sb, gdp);
4510 		/* s_inode_readahead_blks is always a power of 2 */
4511 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4512 		if (table > b)
4513 			b = table;
4514 		end = b + ra_blks;
4515 		num = EXT4_INODES_PER_GROUP(sb);
4516 		if (ext4_has_group_desc_csum(sb))
4517 			num -= ext4_itable_unused_count(sb, gdp);
4518 		table += num / inodes_per_block;
4519 		if (end > table)
4520 			end = table;
4521 		while (b <= end)
4522 			ext4_sb_breadahead_unmovable(sb, b++);
4523 	}
4524 
4525 	/*
4526 	 * There are other valid inodes in the buffer, this inode
4527 	 * has in-inode xattrs, or we don't have this inode in memory.
4528 	 * Read the block from disk.
4529 	 */
4530 	trace_ext4_load_inode(sb, ino);
4531 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4532 	blk_finish_plug(&plug);
4533 	wait_on_buffer(bh);
4534 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4535 	if (!buffer_uptodate(bh)) {
4536 		if (ret_block)
4537 			*ret_block = block;
4538 		brelse(bh);
4539 		return -EIO;
4540 	}
4541 has_buffer:
4542 	iloc->bh = bh;
4543 	return 0;
4544 }
4545 
4546 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4547 					struct ext4_iloc *iloc)
4548 {
4549 	ext4_fsblk_t err_blk = 0;
4550 	int ret;
4551 
4552 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4553 					&err_blk);
4554 
4555 	if (ret == -EIO)
4556 		ext4_error_inode_block(inode, err_blk, EIO,
4557 					"unable to read itable block");
4558 
4559 	return ret;
4560 }
4561 
4562 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4563 {
4564 	ext4_fsblk_t err_blk = 0;
4565 	int ret;
4566 
4567 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4568 					&err_blk);
4569 
4570 	if (ret == -EIO)
4571 		ext4_error_inode_block(inode, err_blk, EIO,
4572 					"unable to read itable block");
4573 
4574 	return ret;
4575 }
4576 
4577 
4578 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4579 			  struct ext4_iloc *iloc)
4580 {
4581 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4582 }
4583 
4584 static bool ext4_should_enable_dax(struct inode *inode)
4585 {
4586 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4587 
4588 	if (test_opt2(inode->i_sb, DAX_NEVER))
4589 		return false;
4590 	if (!S_ISREG(inode->i_mode))
4591 		return false;
4592 	if (ext4_should_journal_data(inode))
4593 		return false;
4594 	if (ext4_has_inline_data(inode))
4595 		return false;
4596 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4597 		return false;
4598 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4599 		return false;
4600 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4601 		return false;
4602 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4603 		return true;
4604 
4605 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4606 }
4607 
4608 void ext4_set_inode_flags(struct inode *inode, bool init)
4609 {
4610 	unsigned int flags = EXT4_I(inode)->i_flags;
4611 	unsigned int new_fl = 0;
4612 
4613 	WARN_ON_ONCE(IS_DAX(inode) && init);
4614 
4615 	if (flags & EXT4_SYNC_FL)
4616 		new_fl |= S_SYNC;
4617 	if (flags & EXT4_APPEND_FL)
4618 		new_fl |= S_APPEND;
4619 	if (flags & EXT4_IMMUTABLE_FL)
4620 		new_fl |= S_IMMUTABLE;
4621 	if (flags & EXT4_NOATIME_FL)
4622 		new_fl |= S_NOATIME;
4623 	if (flags & EXT4_DIRSYNC_FL)
4624 		new_fl |= S_DIRSYNC;
4625 
4626 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4627 	 * here if already set. */
4628 	new_fl |= (inode->i_flags & S_DAX);
4629 	if (init && ext4_should_enable_dax(inode))
4630 		new_fl |= S_DAX;
4631 
4632 	if (flags & EXT4_ENCRYPT_FL)
4633 		new_fl |= S_ENCRYPTED;
4634 	if (flags & EXT4_CASEFOLD_FL)
4635 		new_fl |= S_CASEFOLD;
4636 	if (flags & EXT4_VERITY_FL)
4637 		new_fl |= S_VERITY;
4638 	inode_set_flags(inode, new_fl,
4639 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4640 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4641 }
4642 
4643 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4644 				  struct ext4_inode_info *ei)
4645 {
4646 	blkcnt_t i_blocks ;
4647 	struct inode *inode = &(ei->vfs_inode);
4648 	struct super_block *sb = inode->i_sb;
4649 
4650 	if (ext4_has_feature_huge_file(sb)) {
4651 		/* we are using combined 48 bit field */
4652 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4653 					le32_to_cpu(raw_inode->i_blocks_lo);
4654 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4655 			/* i_blocks represent file system block size */
4656 			return i_blocks  << (inode->i_blkbits - 9);
4657 		} else {
4658 			return i_blocks;
4659 		}
4660 	} else {
4661 		return le32_to_cpu(raw_inode->i_blocks_lo);
4662 	}
4663 }
4664 
4665 static inline int ext4_iget_extra_inode(struct inode *inode,
4666 					 struct ext4_inode *raw_inode,
4667 					 struct ext4_inode_info *ei)
4668 {
4669 	__le32 *magic = (void *)raw_inode +
4670 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4671 
4672 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4673 	    EXT4_INODE_SIZE(inode->i_sb) &&
4674 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4675 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4676 		return ext4_find_inline_data_nolock(inode);
4677 	} else
4678 		EXT4_I(inode)->i_inline_off = 0;
4679 	return 0;
4680 }
4681 
4682 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4683 {
4684 	if (!ext4_has_feature_project(inode->i_sb))
4685 		return -EOPNOTSUPP;
4686 	*projid = EXT4_I(inode)->i_projid;
4687 	return 0;
4688 }
4689 
4690 /*
4691  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4692  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4693  * set.
4694  */
4695 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4696 {
4697 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4698 		inode_set_iversion_raw(inode, val);
4699 	else
4700 		inode_set_iversion_queried(inode, val);
4701 }
4702 
4703 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4704 			  ext4_iget_flags flags, const char *function,
4705 			  unsigned int line)
4706 {
4707 	struct ext4_iloc iloc;
4708 	struct ext4_inode *raw_inode;
4709 	struct ext4_inode_info *ei;
4710 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4711 	struct inode *inode;
4712 	journal_t *journal = EXT4_SB(sb)->s_journal;
4713 	long ret;
4714 	loff_t size;
4715 	int block;
4716 	uid_t i_uid;
4717 	gid_t i_gid;
4718 	projid_t i_projid;
4719 
4720 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4721 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4722 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4723 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4724 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4725 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4726 	    (ino < EXT4_ROOT_INO) ||
4727 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4728 		if (flags & EXT4_IGET_HANDLE)
4729 			return ERR_PTR(-ESTALE);
4730 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4731 			     "inode #%lu: comm %s: iget: illegal inode #",
4732 			     ino, current->comm);
4733 		return ERR_PTR(-EFSCORRUPTED);
4734 	}
4735 
4736 	inode = iget_locked(sb, ino);
4737 	if (!inode)
4738 		return ERR_PTR(-ENOMEM);
4739 	if (!(inode->i_state & I_NEW))
4740 		return inode;
4741 
4742 	ei = EXT4_I(inode);
4743 	iloc.bh = NULL;
4744 
4745 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4746 	if (ret < 0)
4747 		goto bad_inode;
4748 	raw_inode = ext4_raw_inode(&iloc);
4749 
4750 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4751 		ext4_error_inode(inode, function, line, 0,
4752 				 "iget: root inode unallocated");
4753 		ret = -EFSCORRUPTED;
4754 		goto bad_inode;
4755 	}
4756 
4757 	if ((flags & EXT4_IGET_HANDLE) &&
4758 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4759 		ret = -ESTALE;
4760 		goto bad_inode;
4761 	}
4762 
4763 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4764 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4765 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4766 			EXT4_INODE_SIZE(inode->i_sb) ||
4767 		    (ei->i_extra_isize & 3)) {
4768 			ext4_error_inode(inode, function, line, 0,
4769 					 "iget: bad extra_isize %u "
4770 					 "(inode size %u)",
4771 					 ei->i_extra_isize,
4772 					 EXT4_INODE_SIZE(inode->i_sb));
4773 			ret = -EFSCORRUPTED;
4774 			goto bad_inode;
4775 		}
4776 	} else
4777 		ei->i_extra_isize = 0;
4778 
4779 	/* Precompute checksum seed for inode metadata */
4780 	if (ext4_has_metadata_csum(sb)) {
4781 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4782 		__u32 csum;
4783 		__le32 inum = cpu_to_le32(inode->i_ino);
4784 		__le32 gen = raw_inode->i_generation;
4785 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4786 				   sizeof(inum));
4787 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4788 					      sizeof(gen));
4789 	}
4790 
4791 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4792 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4793 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4794 		ext4_error_inode_err(inode, function, line, 0,
4795 				EFSBADCRC, "iget: checksum invalid");
4796 		ret = -EFSBADCRC;
4797 		goto bad_inode;
4798 	}
4799 
4800 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4801 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4802 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4803 	if (ext4_has_feature_project(sb) &&
4804 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4805 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4806 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4807 	else
4808 		i_projid = EXT4_DEF_PROJID;
4809 
4810 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4811 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4812 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4813 	}
4814 	i_uid_write(inode, i_uid);
4815 	i_gid_write(inode, i_gid);
4816 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4817 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4818 
4819 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4820 	ei->i_inline_off = 0;
4821 	ei->i_dir_start_lookup = 0;
4822 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4823 	/* We now have enough fields to check if the inode was active or not.
4824 	 * This is needed because nfsd might try to access dead inodes
4825 	 * the test is that same one that e2fsck uses
4826 	 * NeilBrown 1999oct15
4827 	 */
4828 	if (inode->i_nlink == 0) {
4829 		if ((inode->i_mode == 0 ||
4830 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4831 		    ino != EXT4_BOOT_LOADER_INO) {
4832 			/* this inode is deleted */
4833 			ret = -ESTALE;
4834 			goto bad_inode;
4835 		}
4836 		/* The only unlinked inodes we let through here have
4837 		 * valid i_mode and are being read by the orphan
4838 		 * recovery code: that's fine, we're about to complete
4839 		 * the process of deleting those.
4840 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4841 		 * not initialized on a new filesystem. */
4842 	}
4843 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4844 	ext4_set_inode_flags(inode, true);
4845 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4846 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4847 	if (ext4_has_feature_64bit(sb))
4848 		ei->i_file_acl |=
4849 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4850 	inode->i_size = ext4_isize(sb, raw_inode);
4851 	if ((size = i_size_read(inode)) < 0) {
4852 		ext4_error_inode(inode, function, line, 0,
4853 				 "iget: bad i_size value: %lld", size);
4854 		ret = -EFSCORRUPTED;
4855 		goto bad_inode;
4856 	}
4857 	/*
4858 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4859 	 * we'd normally treat htree data as empty space. But with metadata
4860 	 * checksumming that corrupts checksums so forbid that.
4861 	 */
4862 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4863 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4864 		ext4_error_inode(inode, function, line, 0,
4865 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4866 		ret = -EFSCORRUPTED;
4867 		goto bad_inode;
4868 	}
4869 	ei->i_disksize = inode->i_size;
4870 #ifdef CONFIG_QUOTA
4871 	ei->i_reserved_quota = 0;
4872 #endif
4873 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4874 	ei->i_block_group = iloc.block_group;
4875 	ei->i_last_alloc_group = ~0;
4876 	/*
4877 	 * NOTE! The in-memory inode i_data array is in little-endian order
4878 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4879 	 */
4880 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4881 		ei->i_data[block] = raw_inode->i_block[block];
4882 	INIT_LIST_HEAD(&ei->i_orphan);
4883 	ext4_fc_init_inode(&ei->vfs_inode);
4884 
4885 	/*
4886 	 * Set transaction id's of transactions that have to be committed
4887 	 * to finish f[data]sync. We set them to currently running transaction
4888 	 * as we cannot be sure that the inode or some of its metadata isn't
4889 	 * part of the transaction - the inode could have been reclaimed and
4890 	 * now it is reread from disk.
4891 	 */
4892 	if (journal) {
4893 		transaction_t *transaction;
4894 		tid_t tid;
4895 
4896 		read_lock(&journal->j_state_lock);
4897 		if (journal->j_running_transaction)
4898 			transaction = journal->j_running_transaction;
4899 		else
4900 			transaction = journal->j_committing_transaction;
4901 		if (transaction)
4902 			tid = transaction->t_tid;
4903 		else
4904 			tid = journal->j_commit_sequence;
4905 		read_unlock(&journal->j_state_lock);
4906 		ei->i_sync_tid = tid;
4907 		ei->i_datasync_tid = tid;
4908 	}
4909 
4910 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4911 		if (ei->i_extra_isize == 0) {
4912 			/* The extra space is currently unused. Use it. */
4913 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4914 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4915 					    EXT4_GOOD_OLD_INODE_SIZE;
4916 		} else {
4917 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4918 			if (ret)
4919 				goto bad_inode;
4920 		}
4921 	}
4922 
4923 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4924 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4925 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4926 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4927 
4928 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4929 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4930 
4931 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4932 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4933 				ivers |=
4934 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4935 		}
4936 		ext4_inode_set_iversion_queried(inode, ivers);
4937 	}
4938 
4939 	ret = 0;
4940 	if (ei->i_file_acl &&
4941 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4942 		ext4_error_inode(inode, function, line, 0,
4943 				 "iget: bad extended attribute block %llu",
4944 				 ei->i_file_acl);
4945 		ret = -EFSCORRUPTED;
4946 		goto bad_inode;
4947 	} else if (!ext4_has_inline_data(inode)) {
4948 		/* validate the block references in the inode */
4949 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4950 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4951 			(S_ISLNK(inode->i_mode) &&
4952 			!ext4_inode_is_fast_symlink(inode)))) {
4953 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4954 				ret = ext4_ext_check_inode(inode);
4955 			else
4956 				ret = ext4_ind_check_inode(inode);
4957 		}
4958 	}
4959 	if (ret)
4960 		goto bad_inode;
4961 
4962 	if (S_ISREG(inode->i_mode)) {
4963 		inode->i_op = &ext4_file_inode_operations;
4964 		inode->i_fop = &ext4_file_operations;
4965 		ext4_set_aops(inode);
4966 	} else if (S_ISDIR(inode->i_mode)) {
4967 		inode->i_op = &ext4_dir_inode_operations;
4968 		inode->i_fop = &ext4_dir_operations;
4969 	} else if (S_ISLNK(inode->i_mode)) {
4970 		/* VFS does not allow setting these so must be corruption */
4971 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4972 			ext4_error_inode(inode, function, line, 0,
4973 					 "iget: immutable or append flags "
4974 					 "not allowed on symlinks");
4975 			ret = -EFSCORRUPTED;
4976 			goto bad_inode;
4977 		}
4978 		if (IS_ENCRYPTED(inode)) {
4979 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4980 			ext4_set_aops(inode);
4981 		} else if (ext4_inode_is_fast_symlink(inode)) {
4982 			inode->i_link = (char *)ei->i_data;
4983 			inode->i_op = &ext4_fast_symlink_inode_operations;
4984 			nd_terminate_link(ei->i_data, inode->i_size,
4985 				sizeof(ei->i_data) - 1);
4986 		} else {
4987 			inode->i_op = &ext4_symlink_inode_operations;
4988 			ext4_set_aops(inode);
4989 		}
4990 		inode_nohighmem(inode);
4991 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4992 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4993 		inode->i_op = &ext4_special_inode_operations;
4994 		if (raw_inode->i_block[0])
4995 			init_special_inode(inode, inode->i_mode,
4996 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4997 		else
4998 			init_special_inode(inode, inode->i_mode,
4999 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5000 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5001 		make_bad_inode(inode);
5002 	} else {
5003 		ret = -EFSCORRUPTED;
5004 		ext4_error_inode(inode, function, line, 0,
5005 				 "iget: bogus i_mode (%o)", inode->i_mode);
5006 		goto bad_inode;
5007 	}
5008 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5009 		ext4_error_inode(inode, function, line, 0,
5010 				 "casefold flag without casefold feature");
5011 	brelse(iloc.bh);
5012 
5013 	unlock_new_inode(inode);
5014 	return inode;
5015 
5016 bad_inode:
5017 	brelse(iloc.bh);
5018 	iget_failed(inode);
5019 	return ERR_PTR(ret);
5020 }
5021 
5022 static void __ext4_update_other_inode_time(struct super_block *sb,
5023 					   unsigned long orig_ino,
5024 					   unsigned long ino,
5025 					   struct ext4_inode *raw_inode)
5026 {
5027 	struct inode *inode;
5028 
5029 	inode = find_inode_by_ino_rcu(sb, ino);
5030 	if (!inode)
5031 		return;
5032 
5033 	if (!inode_is_dirtytime_only(inode))
5034 		return;
5035 
5036 	spin_lock(&inode->i_lock);
5037 	if (inode_is_dirtytime_only(inode)) {
5038 		struct ext4_inode_info	*ei = EXT4_I(inode);
5039 
5040 		inode->i_state &= ~I_DIRTY_TIME;
5041 		spin_unlock(&inode->i_lock);
5042 
5043 		spin_lock(&ei->i_raw_lock);
5044 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5045 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5046 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5047 		ext4_inode_csum_set(inode, raw_inode, ei);
5048 		spin_unlock(&ei->i_raw_lock);
5049 		trace_ext4_other_inode_update_time(inode, orig_ino);
5050 		return;
5051 	}
5052 	spin_unlock(&inode->i_lock);
5053 }
5054 
5055 /*
5056  * Opportunistically update the other time fields for other inodes in
5057  * the same inode table block.
5058  */
5059 static void ext4_update_other_inodes_time(struct super_block *sb,
5060 					  unsigned long orig_ino, char *buf)
5061 {
5062 	unsigned long ino;
5063 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5064 	int inode_size = EXT4_INODE_SIZE(sb);
5065 
5066 	/*
5067 	 * Calculate the first inode in the inode table block.  Inode
5068 	 * numbers are one-based.  That is, the first inode in a block
5069 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5070 	 */
5071 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5072 	rcu_read_lock();
5073 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5074 		if (ino == orig_ino)
5075 			continue;
5076 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5077 					       (struct ext4_inode *)buf);
5078 	}
5079 	rcu_read_unlock();
5080 }
5081 
5082 /*
5083  * Post the struct inode info into an on-disk inode location in the
5084  * buffer-cache.  This gobbles the caller's reference to the
5085  * buffer_head in the inode location struct.
5086  *
5087  * The caller must have write access to iloc->bh.
5088  */
5089 static int ext4_do_update_inode(handle_t *handle,
5090 				struct inode *inode,
5091 				struct ext4_iloc *iloc)
5092 {
5093 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5094 	struct ext4_inode_info *ei = EXT4_I(inode);
5095 	struct buffer_head *bh = iloc->bh;
5096 	struct super_block *sb = inode->i_sb;
5097 	int err;
5098 	int need_datasync = 0, set_large_file = 0;
5099 
5100 	spin_lock(&ei->i_raw_lock);
5101 
5102 	/*
5103 	 * For fields not tracked in the in-memory inode, initialise them
5104 	 * to zero for new inodes.
5105 	 */
5106 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5107 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5108 
5109 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5110 		need_datasync = 1;
5111 	if (ei->i_disksize > 0x7fffffffULL) {
5112 		if (!ext4_has_feature_large_file(sb) ||
5113 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5114 			set_large_file = 1;
5115 	}
5116 
5117 	err = ext4_fill_raw_inode(inode, raw_inode);
5118 	spin_unlock(&ei->i_raw_lock);
5119 	if (err) {
5120 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5121 		goto out_brelse;
5122 	}
5123 
5124 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5125 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5126 					      bh->b_data);
5127 
5128 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5129 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5130 	if (err)
5131 		goto out_error;
5132 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5133 	if (set_large_file) {
5134 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5135 		err = ext4_journal_get_write_access(handle, sb,
5136 						    EXT4_SB(sb)->s_sbh,
5137 						    EXT4_JTR_NONE);
5138 		if (err)
5139 			goto out_error;
5140 		lock_buffer(EXT4_SB(sb)->s_sbh);
5141 		ext4_set_feature_large_file(sb);
5142 		ext4_superblock_csum_set(sb);
5143 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5144 		ext4_handle_sync(handle);
5145 		err = ext4_handle_dirty_metadata(handle, NULL,
5146 						 EXT4_SB(sb)->s_sbh);
5147 	}
5148 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5149 out_error:
5150 	ext4_std_error(inode->i_sb, err);
5151 out_brelse:
5152 	brelse(bh);
5153 	return err;
5154 }
5155 
5156 /*
5157  * ext4_write_inode()
5158  *
5159  * We are called from a few places:
5160  *
5161  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5162  *   Here, there will be no transaction running. We wait for any running
5163  *   transaction to commit.
5164  *
5165  * - Within flush work (sys_sync(), kupdate and such).
5166  *   We wait on commit, if told to.
5167  *
5168  * - Within iput_final() -> write_inode_now()
5169  *   We wait on commit, if told to.
5170  *
5171  * In all cases it is actually safe for us to return without doing anything,
5172  * because the inode has been copied into a raw inode buffer in
5173  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5174  * writeback.
5175  *
5176  * Note that we are absolutely dependent upon all inode dirtiers doing the
5177  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5178  * which we are interested.
5179  *
5180  * It would be a bug for them to not do this.  The code:
5181  *
5182  *	mark_inode_dirty(inode)
5183  *	stuff();
5184  *	inode->i_size = expr;
5185  *
5186  * is in error because write_inode() could occur while `stuff()' is running,
5187  * and the new i_size will be lost.  Plus the inode will no longer be on the
5188  * superblock's dirty inode list.
5189  */
5190 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5191 {
5192 	int err;
5193 
5194 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5195 	    sb_rdonly(inode->i_sb))
5196 		return 0;
5197 
5198 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5199 		return -EIO;
5200 
5201 	if (EXT4_SB(inode->i_sb)->s_journal) {
5202 		if (ext4_journal_current_handle()) {
5203 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5204 			dump_stack();
5205 			return -EIO;
5206 		}
5207 
5208 		/*
5209 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5210 		 * ext4_sync_fs() will force the commit after everything is
5211 		 * written.
5212 		 */
5213 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5214 			return 0;
5215 
5216 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5217 						EXT4_I(inode)->i_sync_tid);
5218 	} else {
5219 		struct ext4_iloc iloc;
5220 
5221 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5222 		if (err)
5223 			return err;
5224 		/*
5225 		 * sync(2) will flush the whole buffer cache. No need to do
5226 		 * it here separately for each inode.
5227 		 */
5228 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5229 			sync_dirty_buffer(iloc.bh);
5230 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5231 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5232 					       "IO error syncing inode");
5233 			err = -EIO;
5234 		}
5235 		brelse(iloc.bh);
5236 	}
5237 	return err;
5238 }
5239 
5240 /*
5241  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5242  * buffers that are attached to a folio straddling i_size and are undergoing
5243  * commit. In that case we have to wait for commit to finish and try again.
5244  */
5245 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5246 {
5247 	unsigned offset;
5248 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5249 	tid_t commit_tid = 0;
5250 	int ret;
5251 
5252 	offset = inode->i_size & (PAGE_SIZE - 1);
5253 	/*
5254 	 * If the folio is fully truncated, we don't need to wait for any commit
5255 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5256 	 * strip all buffers from the folio but keep the folio dirty which can then
5257 	 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5258 	 * buffers). Also we don't need to wait for any commit if all buffers in
5259 	 * the folio remain valid. This is most beneficial for the common case of
5260 	 * blocksize == PAGESIZE.
5261 	 */
5262 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5263 		return;
5264 	while (1) {
5265 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5266 				      inode->i_size >> PAGE_SHIFT);
5267 		if (!folio)
5268 			return;
5269 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5270 						folio_size(folio) - offset);
5271 		folio_unlock(folio);
5272 		folio_put(folio);
5273 		if (ret != -EBUSY)
5274 			return;
5275 		commit_tid = 0;
5276 		read_lock(&journal->j_state_lock);
5277 		if (journal->j_committing_transaction)
5278 			commit_tid = journal->j_committing_transaction->t_tid;
5279 		read_unlock(&journal->j_state_lock);
5280 		if (commit_tid)
5281 			jbd2_log_wait_commit(journal, commit_tid);
5282 	}
5283 }
5284 
5285 /*
5286  * ext4_setattr()
5287  *
5288  * Called from notify_change.
5289  *
5290  * We want to trap VFS attempts to truncate the file as soon as
5291  * possible.  In particular, we want to make sure that when the VFS
5292  * shrinks i_size, we put the inode on the orphan list and modify
5293  * i_disksize immediately, so that during the subsequent flushing of
5294  * dirty pages and freeing of disk blocks, we can guarantee that any
5295  * commit will leave the blocks being flushed in an unused state on
5296  * disk.  (On recovery, the inode will get truncated and the blocks will
5297  * be freed, so we have a strong guarantee that no future commit will
5298  * leave these blocks visible to the user.)
5299  *
5300  * Another thing we have to assure is that if we are in ordered mode
5301  * and inode is still attached to the committing transaction, we must
5302  * we start writeout of all the dirty pages which are being truncated.
5303  * This way we are sure that all the data written in the previous
5304  * transaction are already on disk (truncate waits for pages under
5305  * writeback).
5306  *
5307  * Called with inode->i_rwsem down.
5308  */
5309 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5310 		 struct iattr *attr)
5311 {
5312 	struct inode *inode = d_inode(dentry);
5313 	int error, rc = 0;
5314 	int orphan = 0;
5315 	const unsigned int ia_valid = attr->ia_valid;
5316 
5317 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5318 		return -EIO;
5319 
5320 	if (unlikely(IS_IMMUTABLE(inode)))
5321 		return -EPERM;
5322 
5323 	if (unlikely(IS_APPEND(inode) &&
5324 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5325 				  ATTR_GID | ATTR_TIMES_SET))))
5326 		return -EPERM;
5327 
5328 	error = setattr_prepare(mnt_userns, dentry, attr);
5329 	if (error)
5330 		return error;
5331 
5332 	error = fscrypt_prepare_setattr(dentry, attr);
5333 	if (error)
5334 		return error;
5335 
5336 	error = fsverity_prepare_setattr(dentry, attr);
5337 	if (error)
5338 		return error;
5339 
5340 	if (is_quota_modification(inode, attr)) {
5341 		error = dquot_initialize(inode);
5342 		if (error)
5343 			return error;
5344 	}
5345 
5346 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5347 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5348 		handle_t *handle;
5349 
5350 		/* (user+group)*(old+new) structure, inode write (sb,
5351 		 * inode block, ? - but truncate inode update has it) */
5352 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5353 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5354 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5355 		if (IS_ERR(handle)) {
5356 			error = PTR_ERR(handle);
5357 			goto err_out;
5358 		}
5359 
5360 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5361 		 * counts xattr inode references.
5362 		 */
5363 		down_read(&EXT4_I(inode)->xattr_sem);
5364 		error = dquot_transfer(inode, attr);
5365 		up_read(&EXT4_I(inode)->xattr_sem);
5366 
5367 		if (error) {
5368 			ext4_journal_stop(handle);
5369 			return error;
5370 		}
5371 		/* Update corresponding info in inode so that everything is in
5372 		 * one transaction */
5373 		if (attr->ia_valid & ATTR_UID)
5374 			inode->i_uid = attr->ia_uid;
5375 		if (attr->ia_valid & ATTR_GID)
5376 			inode->i_gid = attr->ia_gid;
5377 		error = ext4_mark_inode_dirty(handle, inode);
5378 		ext4_journal_stop(handle);
5379 		if (unlikely(error)) {
5380 			return error;
5381 		}
5382 	}
5383 
5384 	if (attr->ia_valid & ATTR_SIZE) {
5385 		handle_t *handle;
5386 		loff_t oldsize = inode->i_size;
5387 		int shrink = (attr->ia_size < inode->i_size);
5388 
5389 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5390 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5391 
5392 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5393 				return -EFBIG;
5394 			}
5395 		}
5396 		if (!S_ISREG(inode->i_mode)) {
5397 			return -EINVAL;
5398 		}
5399 
5400 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5401 			inode_inc_iversion(inode);
5402 
5403 		if (shrink) {
5404 			if (ext4_should_order_data(inode)) {
5405 				error = ext4_begin_ordered_truncate(inode,
5406 							    attr->ia_size);
5407 				if (error)
5408 					goto err_out;
5409 			}
5410 			/*
5411 			 * Blocks are going to be removed from the inode. Wait
5412 			 * for dio in flight.
5413 			 */
5414 			inode_dio_wait(inode);
5415 		}
5416 
5417 		filemap_invalidate_lock(inode->i_mapping);
5418 
5419 		rc = ext4_break_layouts(inode);
5420 		if (rc) {
5421 			filemap_invalidate_unlock(inode->i_mapping);
5422 			goto err_out;
5423 		}
5424 
5425 		if (attr->ia_size != inode->i_size) {
5426 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5427 			if (IS_ERR(handle)) {
5428 				error = PTR_ERR(handle);
5429 				goto out_mmap_sem;
5430 			}
5431 			if (ext4_handle_valid(handle) && shrink) {
5432 				error = ext4_orphan_add(handle, inode);
5433 				orphan = 1;
5434 			}
5435 			/*
5436 			 * Update c/mtime on truncate up, ext4_truncate() will
5437 			 * update c/mtime in shrink case below
5438 			 */
5439 			if (!shrink) {
5440 				inode->i_mtime = current_time(inode);
5441 				inode->i_ctime = inode->i_mtime;
5442 			}
5443 
5444 			if (shrink)
5445 				ext4_fc_track_range(handle, inode,
5446 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5447 					inode->i_sb->s_blocksize_bits,
5448 					EXT_MAX_BLOCKS - 1);
5449 			else
5450 				ext4_fc_track_range(
5451 					handle, inode,
5452 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5453 					inode->i_sb->s_blocksize_bits,
5454 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5455 					inode->i_sb->s_blocksize_bits);
5456 
5457 			down_write(&EXT4_I(inode)->i_data_sem);
5458 			EXT4_I(inode)->i_disksize = attr->ia_size;
5459 			rc = ext4_mark_inode_dirty(handle, inode);
5460 			if (!error)
5461 				error = rc;
5462 			/*
5463 			 * We have to update i_size under i_data_sem together
5464 			 * with i_disksize to avoid races with writeback code
5465 			 * running ext4_wb_update_i_disksize().
5466 			 */
5467 			if (!error)
5468 				i_size_write(inode, attr->ia_size);
5469 			up_write(&EXT4_I(inode)->i_data_sem);
5470 			ext4_journal_stop(handle);
5471 			if (error)
5472 				goto out_mmap_sem;
5473 			if (!shrink) {
5474 				pagecache_isize_extended(inode, oldsize,
5475 							 inode->i_size);
5476 			} else if (ext4_should_journal_data(inode)) {
5477 				ext4_wait_for_tail_page_commit(inode);
5478 			}
5479 		}
5480 
5481 		/*
5482 		 * Truncate pagecache after we've waited for commit
5483 		 * in data=journal mode to make pages freeable.
5484 		 */
5485 		truncate_pagecache(inode, inode->i_size);
5486 		/*
5487 		 * Call ext4_truncate() even if i_size didn't change to
5488 		 * truncate possible preallocated blocks.
5489 		 */
5490 		if (attr->ia_size <= oldsize) {
5491 			rc = ext4_truncate(inode);
5492 			if (rc)
5493 				error = rc;
5494 		}
5495 out_mmap_sem:
5496 		filemap_invalidate_unlock(inode->i_mapping);
5497 	}
5498 
5499 	if (!error) {
5500 		setattr_copy(mnt_userns, inode, attr);
5501 		mark_inode_dirty(inode);
5502 	}
5503 
5504 	/*
5505 	 * If the call to ext4_truncate failed to get a transaction handle at
5506 	 * all, we need to clean up the in-core orphan list manually.
5507 	 */
5508 	if (orphan && inode->i_nlink)
5509 		ext4_orphan_del(NULL, inode);
5510 
5511 	if (!error && (ia_valid & ATTR_MODE))
5512 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5513 
5514 err_out:
5515 	if  (error)
5516 		ext4_std_error(inode->i_sb, error);
5517 	if (!error)
5518 		error = rc;
5519 	return error;
5520 }
5521 
5522 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5523 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5524 {
5525 	struct inode *inode = d_inode(path->dentry);
5526 	struct ext4_inode *raw_inode;
5527 	struct ext4_inode_info *ei = EXT4_I(inode);
5528 	unsigned int flags;
5529 
5530 	if ((request_mask & STATX_BTIME) &&
5531 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5532 		stat->result_mask |= STATX_BTIME;
5533 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5534 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5535 	}
5536 
5537 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5538 	if (flags & EXT4_APPEND_FL)
5539 		stat->attributes |= STATX_ATTR_APPEND;
5540 	if (flags & EXT4_COMPR_FL)
5541 		stat->attributes |= STATX_ATTR_COMPRESSED;
5542 	if (flags & EXT4_ENCRYPT_FL)
5543 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5544 	if (flags & EXT4_IMMUTABLE_FL)
5545 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5546 	if (flags & EXT4_NODUMP_FL)
5547 		stat->attributes |= STATX_ATTR_NODUMP;
5548 	if (flags & EXT4_VERITY_FL)
5549 		stat->attributes |= STATX_ATTR_VERITY;
5550 
5551 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5552 				  STATX_ATTR_COMPRESSED |
5553 				  STATX_ATTR_ENCRYPTED |
5554 				  STATX_ATTR_IMMUTABLE |
5555 				  STATX_ATTR_NODUMP |
5556 				  STATX_ATTR_VERITY);
5557 
5558 	generic_fillattr(mnt_userns, inode, stat);
5559 	return 0;
5560 }
5561 
5562 int ext4_file_getattr(struct user_namespace *mnt_userns,
5563 		      const struct path *path, struct kstat *stat,
5564 		      u32 request_mask, unsigned int query_flags)
5565 {
5566 	struct inode *inode = d_inode(path->dentry);
5567 	u64 delalloc_blocks;
5568 
5569 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5570 
5571 	/*
5572 	 * If there is inline data in the inode, the inode will normally not
5573 	 * have data blocks allocated (it may have an external xattr block).
5574 	 * Report at least one sector for such files, so tools like tar, rsync,
5575 	 * others don't incorrectly think the file is completely sparse.
5576 	 */
5577 	if (unlikely(ext4_has_inline_data(inode)))
5578 		stat->blocks += (stat->size + 511) >> 9;
5579 
5580 	/*
5581 	 * We can't update i_blocks if the block allocation is delayed
5582 	 * otherwise in the case of system crash before the real block
5583 	 * allocation is done, we will have i_blocks inconsistent with
5584 	 * on-disk file blocks.
5585 	 * We always keep i_blocks updated together with real
5586 	 * allocation. But to not confuse with user, stat
5587 	 * will return the blocks that include the delayed allocation
5588 	 * blocks for this file.
5589 	 */
5590 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5591 				   EXT4_I(inode)->i_reserved_data_blocks);
5592 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5593 	return 0;
5594 }
5595 
5596 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5597 				   int pextents)
5598 {
5599 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5600 		return ext4_ind_trans_blocks(inode, lblocks);
5601 	return ext4_ext_index_trans_blocks(inode, pextents);
5602 }
5603 
5604 /*
5605  * Account for index blocks, block groups bitmaps and block group
5606  * descriptor blocks if modify datablocks and index blocks
5607  * worse case, the indexs blocks spread over different block groups
5608  *
5609  * If datablocks are discontiguous, they are possible to spread over
5610  * different block groups too. If they are contiguous, with flexbg,
5611  * they could still across block group boundary.
5612  *
5613  * Also account for superblock, inode, quota and xattr blocks
5614  */
5615 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5616 				  int pextents)
5617 {
5618 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5619 	int gdpblocks;
5620 	int idxblocks;
5621 	int ret = 0;
5622 
5623 	/*
5624 	 * How many index blocks need to touch to map @lblocks logical blocks
5625 	 * to @pextents physical extents?
5626 	 */
5627 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5628 
5629 	ret = idxblocks;
5630 
5631 	/*
5632 	 * Now let's see how many group bitmaps and group descriptors need
5633 	 * to account
5634 	 */
5635 	groups = idxblocks + pextents;
5636 	gdpblocks = groups;
5637 	if (groups > ngroups)
5638 		groups = ngroups;
5639 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5640 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5641 
5642 	/* bitmaps and block group descriptor blocks */
5643 	ret += groups + gdpblocks;
5644 
5645 	/* Blocks for super block, inode, quota and xattr blocks */
5646 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5647 
5648 	return ret;
5649 }
5650 
5651 /*
5652  * Calculate the total number of credits to reserve to fit
5653  * the modification of a single pages into a single transaction,
5654  * which may include multiple chunks of block allocations.
5655  *
5656  * This could be called via ext4_write_begin()
5657  *
5658  * We need to consider the worse case, when
5659  * one new block per extent.
5660  */
5661 int ext4_writepage_trans_blocks(struct inode *inode)
5662 {
5663 	int bpp = ext4_journal_blocks_per_page(inode);
5664 	int ret;
5665 
5666 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5667 
5668 	/* Account for data blocks for journalled mode */
5669 	if (ext4_should_journal_data(inode))
5670 		ret += bpp;
5671 	return ret;
5672 }
5673 
5674 /*
5675  * Calculate the journal credits for a chunk of data modification.
5676  *
5677  * This is called from DIO, fallocate or whoever calling
5678  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5679  *
5680  * journal buffers for data blocks are not included here, as DIO
5681  * and fallocate do no need to journal data buffers.
5682  */
5683 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5684 {
5685 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5686 }
5687 
5688 /*
5689  * The caller must have previously called ext4_reserve_inode_write().
5690  * Give this, we know that the caller already has write access to iloc->bh.
5691  */
5692 int ext4_mark_iloc_dirty(handle_t *handle,
5693 			 struct inode *inode, struct ext4_iloc *iloc)
5694 {
5695 	int err = 0;
5696 
5697 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5698 		put_bh(iloc->bh);
5699 		return -EIO;
5700 	}
5701 	ext4_fc_track_inode(handle, inode);
5702 
5703 	if (IS_I_VERSION(inode))
5704 		inode_inc_iversion(inode);
5705 
5706 	/* the do_update_inode consumes one bh->b_count */
5707 	get_bh(iloc->bh);
5708 
5709 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5710 	err = ext4_do_update_inode(handle, inode, iloc);
5711 	put_bh(iloc->bh);
5712 	return err;
5713 }
5714 
5715 /*
5716  * On success, We end up with an outstanding reference count against
5717  * iloc->bh.  This _must_ be cleaned up later.
5718  */
5719 
5720 int
5721 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5722 			 struct ext4_iloc *iloc)
5723 {
5724 	int err;
5725 
5726 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5727 		return -EIO;
5728 
5729 	err = ext4_get_inode_loc(inode, iloc);
5730 	if (!err) {
5731 		BUFFER_TRACE(iloc->bh, "get_write_access");
5732 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5733 						    iloc->bh, EXT4_JTR_NONE);
5734 		if (err) {
5735 			brelse(iloc->bh);
5736 			iloc->bh = NULL;
5737 		}
5738 	}
5739 	ext4_std_error(inode->i_sb, err);
5740 	return err;
5741 }
5742 
5743 static int __ext4_expand_extra_isize(struct inode *inode,
5744 				     unsigned int new_extra_isize,
5745 				     struct ext4_iloc *iloc,
5746 				     handle_t *handle, int *no_expand)
5747 {
5748 	struct ext4_inode *raw_inode;
5749 	struct ext4_xattr_ibody_header *header;
5750 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5751 	struct ext4_inode_info *ei = EXT4_I(inode);
5752 	int error;
5753 
5754 	/* this was checked at iget time, but double check for good measure */
5755 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5756 	    (ei->i_extra_isize & 3)) {
5757 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5758 				 ei->i_extra_isize,
5759 				 EXT4_INODE_SIZE(inode->i_sb));
5760 		return -EFSCORRUPTED;
5761 	}
5762 	if ((new_extra_isize < ei->i_extra_isize) ||
5763 	    (new_extra_isize < 4) ||
5764 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5765 		return -EINVAL;	/* Should never happen */
5766 
5767 	raw_inode = ext4_raw_inode(iloc);
5768 
5769 	header = IHDR(inode, raw_inode);
5770 
5771 	/* No extended attributes present */
5772 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5773 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5774 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5775 		       EXT4_I(inode)->i_extra_isize, 0,
5776 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5777 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5778 		return 0;
5779 	}
5780 
5781 	/* try to expand with EAs present */
5782 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5783 					   raw_inode, handle);
5784 	if (error) {
5785 		/*
5786 		 * Inode size expansion failed; don't try again
5787 		 */
5788 		*no_expand = 1;
5789 	}
5790 
5791 	return error;
5792 }
5793 
5794 /*
5795  * Expand an inode by new_extra_isize bytes.
5796  * Returns 0 on success or negative error number on failure.
5797  */
5798 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5799 					  unsigned int new_extra_isize,
5800 					  struct ext4_iloc iloc,
5801 					  handle_t *handle)
5802 {
5803 	int no_expand;
5804 	int error;
5805 
5806 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5807 		return -EOVERFLOW;
5808 
5809 	/*
5810 	 * In nojournal mode, we can immediately attempt to expand
5811 	 * the inode.  When journaled, we first need to obtain extra
5812 	 * buffer credits since we may write into the EA block
5813 	 * with this same handle. If journal_extend fails, then it will
5814 	 * only result in a minor loss of functionality for that inode.
5815 	 * If this is felt to be critical, then e2fsck should be run to
5816 	 * force a large enough s_min_extra_isize.
5817 	 */
5818 	if (ext4_journal_extend(handle,
5819 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5820 		return -ENOSPC;
5821 
5822 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5823 		return -EBUSY;
5824 
5825 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5826 					  handle, &no_expand);
5827 	ext4_write_unlock_xattr(inode, &no_expand);
5828 
5829 	return error;
5830 }
5831 
5832 int ext4_expand_extra_isize(struct inode *inode,
5833 			    unsigned int new_extra_isize,
5834 			    struct ext4_iloc *iloc)
5835 {
5836 	handle_t *handle;
5837 	int no_expand;
5838 	int error, rc;
5839 
5840 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5841 		brelse(iloc->bh);
5842 		return -EOVERFLOW;
5843 	}
5844 
5845 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5846 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5847 	if (IS_ERR(handle)) {
5848 		error = PTR_ERR(handle);
5849 		brelse(iloc->bh);
5850 		return error;
5851 	}
5852 
5853 	ext4_write_lock_xattr(inode, &no_expand);
5854 
5855 	BUFFER_TRACE(iloc->bh, "get_write_access");
5856 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5857 					      EXT4_JTR_NONE);
5858 	if (error) {
5859 		brelse(iloc->bh);
5860 		goto out_unlock;
5861 	}
5862 
5863 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5864 					  handle, &no_expand);
5865 
5866 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5867 	if (!error)
5868 		error = rc;
5869 
5870 out_unlock:
5871 	ext4_write_unlock_xattr(inode, &no_expand);
5872 	ext4_journal_stop(handle);
5873 	return error;
5874 }
5875 
5876 /*
5877  * What we do here is to mark the in-core inode as clean with respect to inode
5878  * dirtiness (it may still be data-dirty).
5879  * This means that the in-core inode may be reaped by prune_icache
5880  * without having to perform any I/O.  This is a very good thing,
5881  * because *any* task may call prune_icache - even ones which
5882  * have a transaction open against a different journal.
5883  *
5884  * Is this cheating?  Not really.  Sure, we haven't written the
5885  * inode out, but prune_icache isn't a user-visible syncing function.
5886  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5887  * we start and wait on commits.
5888  */
5889 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5890 				const char *func, unsigned int line)
5891 {
5892 	struct ext4_iloc iloc;
5893 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5894 	int err;
5895 
5896 	might_sleep();
5897 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5898 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5899 	if (err)
5900 		goto out;
5901 
5902 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5903 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5904 					       iloc, handle);
5905 
5906 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5907 out:
5908 	if (unlikely(err))
5909 		ext4_error_inode_err(inode, func, line, 0, err,
5910 					"mark_inode_dirty error");
5911 	return err;
5912 }
5913 
5914 /*
5915  * ext4_dirty_inode() is called from __mark_inode_dirty()
5916  *
5917  * We're really interested in the case where a file is being extended.
5918  * i_size has been changed by generic_commit_write() and we thus need
5919  * to include the updated inode in the current transaction.
5920  *
5921  * Also, dquot_alloc_block() will always dirty the inode when blocks
5922  * are allocated to the file.
5923  *
5924  * If the inode is marked synchronous, we don't honour that here - doing
5925  * so would cause a commit on atime updates, which we don't bother doing.
5926  * We handle synchronous inodes at the highest possible level.
5927  */
5928 void ext4_dirty_inode(struct inode *inode, int flags)
5929 {
5930 	handle_t *handle;
5931 
5932 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5933 	if (IS_ERR(handle))
5934 		return;
5935 	ext4_mark_inode_dirty(handle, inode);
5936 	ext4_journal_stop(handle);
5937 }
5938 
5939 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5940 {
5941 	journal_t *journal;
5942 	handle_t *handle;
5943 	int err;
5944 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5945 
5946 	/*
5947 	 * We have to be very careful here: changing a data block's
5948 	 * journaling status dynamically is dangerous.  If we write a
5949 	 * data block to the journal, change the status and then delete
5950 	 * that block, we risk forgetting to revoke the old log record
5951 	 * from the journal and so a subsequent replay can corrupt data.
5952 	 * So, first we make sure that the journal is empty and that
5953 	 * nobody is changing anything.
5954 	 */
5955 
5956 	journal = EXT4_JOURNAL(inode);
5957 	if (!journal)
5958 		return 0;
5959 	if (is_journal_aborted(journal))
5960 		return -EROFS;
5961 
5962 	/* Wait for all existing dio workers */
5963 	inode_dio_wait(inode);
5964 
5965 	/*
5966 	 * Before flushing the journal and switching inode's aops, we have
5967 	 * to flush all dirty data the inode has. There can be outstanding
5968 	 * delayed allocations, there can be unwritten extents created by
5969 	 * fallocate or buffered writes in dioread_nolock mode covered by
5970 	 * dirty data which can be converted only after flushing the dirty
5971 	 * data (and journalled aops don't know how to handle these cases).
5972 	 */
5973 	if (val) {
5974 		filemap_invalidate_lock(inode->i_mapping);
5975 		err = filemap_write_and_wait(inode->i_mapping);
5976 		if (err < 0) {
5977 			filemap_invalidate_unlock(inode->i_mapping);
5978 			return err;
5979 		}
5980 	}
5981 
5982 	percpu_down_write(&sbi->s_writepages_rwsem);
5983 	jbd2_journal_lock_updates(journal);
5984 
5985 	/*
5986 	 * OK, there are no updates running now, and all cached data is
5987 	 * synced to disk.  We are now in a completely consistent state
5988 	 * which doesn't have anything in the journal, and we know that
5989 	 * no filesystem updates are running, so it is safe to modify
5990 	 * the inode's in-core data-journaling state flag now.
5991 	 */
5992 
5993 	if (val)
5994 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5995 	else {
5996 		err = jbd2_journal_flush(journal, 0);
5997 		if (err < 0) {
5998 			jbd2_journal_unlock_updates(journal);
5999 			percpu_up_write(&sbi->s_writepages_rwsem);
6000 			return err;
6001 		}
6002 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6003 	}
6004 	ext4_set_aops(inode);
6005 
6006 	jbd2_journal_unlock_updates(journal);
6007 	percpu_up_write(&sbi->s_writepages_rwsem);
6008 
6009 	if (val)
6010 		filemap_invalidate_unlock(inode->i_mapping);
6011 
6012 	/* Finally we can mark the inode as dirty. */
6013 
6014 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6015 	if (IS_ERR(handle))
6016 		return PTR_ERR(handle);
6017 
6018 	ext4_fc_mark_ineligible(inode->i_sb,
6019 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6020 	err = ext4_mark_inode_dirty(handle, inode);
6021 	ext4_handle_sync(handle);
6022 	ext4_journal_stop(handle);
6023 	ext4_std_error(inode->i_sb, err);
6024 
6025 	return err;
6026 }
6027 
6028 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6029 			    struct buffer_head *bh)
6030 {
6031 	return !buffer_mapped(bh);
6032 }
6033 
6034 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6035 {
6036 	struct vm_area_struct *vma = vmf->vma;
6037 	struct page *page = vmf->page;
6038 	loff_t size;
6039 	unsigned long len;
6040 	int err;
6041 	vm_fault_t ret;
6042 	struct file *file = vma->vm_file;
6043 	struct inode *inode = file_inode(file);
6044 	struct address_space *mapping = inode->i_mapping;
6045 	handle_t *handle;
6046 	get_block_t *get_block;
6047 	int retries = 0;
6048 
6049 	if (unlikely(IS_IMMUTABLE(inode)))
6050 		return VM_FAULT_SIGBUS;
6051 
6052 	sb_start_pagefault(inode->i_sb);
6053 	file_update_time(vma->vm_file);
6054 
6055 	filemap_invalidate_lock_shared(mapping);
6056 
6057 	err = ext4_convert_inline_data(inode);
6058 	if (err)
6059 		goto out_ret;
6060 
6061 	/*
6062 	 * On data journalling we skip straight to the transaction handle:
6063 	 * there's no delalloc; page truncated will be checked later; the
6064 	 * early return w/ all buffers mapped (calculates size/len) can't
6065 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6066 	 */
6067 	if (ext4_should_journal_data(inode))
6068 		goto retry_alloc;
6069 
6070 	/* Delalloc case is easy... */
6071 	if (test_opt(inode->i_sb, DELALLOC) &&
6072 	    !ext4_nonda_switch(inode->i_sb)) {
6073 		do {
6074 			err = block_page_mkwrite(vma, vmf,
6075 						   ext4_da_get_block_prep);
6076 		} while (err == -ENOSPC &&
6077 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6078 		goto out_ret;
6079 	}
6080 
6081 	lock_page(page);
6082 	size = i_size_read(inode);
6083 	/* Page got truncated from under us? */
6084 	if (page->mapping != mapping || page_offset(page) > size) {
6085 		unlock_page(page);
6086 		ret = VM_FAULT_NOPAGE;
6087 		goto out;
6088 	}
6089 
6090 	if (page->index == size >> PAGE_SHIFT)
6091 		len = size & ~PAGE_MASK;
6092 	else
6093 		len = PAGE_SIZE;
6094 	/*
6095 	 * Return if we have all the buffers mapped. This avoids the need to do
6096 	 * journal_start/journal_stop which can block and take a long time
6097 	 *
6098 	 * This cannot be done for data journalling, as we have to add the
6099 	 * inode to the transaction's list to writeprotect pages on commit.
6100 	 */
6101 	if (page_has_buffers(page)) {
6102 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6103 					    0, len, NULL,
6104 					    ext4_bh_unmapped)) {
6105 			/* Wait so that we don't change page under IO */
6106 			wait_for_stable_page(page);
6107 			ret = VM_FAULT_LOCKED;
6108 			goto out;
6109 		}
6110 	}
6111 	unlock_page(page);
6112 	/* OK, we need to fill the hole... */
6113 	if (ext4_should_dioread_nolock(inode))
6114 		get_block = ext4_get_block_unwritten;
6115 	else
6116 		get_block = ext4_get_block;
6117 retry_alloc:
6118 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6119 				    ext4_writepage_trans_blocks(inode));
6120 	if (IS_ERR(handle)) {
6121 		ret = VM_FAULT_SIGBUS;
6122 		goto out;
6123 	}
6124 	/*
6125 	 * Data journalling can't use block_page_mkwrite() because it
6126 	 * will set_buffer_dirty() before do_journal_get_write_access()
6127 	 * thus might hit warning messages for dirty metadata buffers.
6128 	 */
6129 	if (!ext4_should_journal_data(inode)) {
6130 		err = block_page_mkwrite(vma, vmf, get_block);
6131 	} else {
6132 		lock_page(page);
6133 		size = i_size_read(inode);
6134 		/* Page got truncated from under us? */
6135 		if (page->mapping != mapping || page_offset(page) > size) {
6136 			ret = VM_FAULT_NOPAGE;
6137 			goto out_error;
6138 		}
6139 
6140 		if (page->index == size >> PAGE_SHIFT)
6141 			len = size & ~PAGE_MASK;
6142 		else
6143 			len = PAGE_SIZE;
6144 
6145 		err = __block_write_begin(page, 0, len, ext4_get_block);
6146 		if (!err) {
6147 			ret = VM_FAULT_SIGBUS;
6148 			if (ext4_walk_page_buffers(handle, inode,
6149 					page_buffers(page), 0, len, NULL,
6150 					do_journal_get_write_access))
6151 				goto out_error;
6152 			if (ext4_walk_page_buffers(handle, inode,
6153 					page_buffers(page), 0, len, NULL,
6154 					write_end_fn))
6155 				goto out_error;
6156 			if (ext4_jbd2_inode_add_write(handle, inode,
6157 						      page_offset(page), len))
6158 				goto out_error;
6159 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6160 		} else {
6161 			unlock_page(page);
6162 		}
6163 	}
6164 	ext4_journal_stop(handle);
6165 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6166 		goto retry_alloc;
6167 out_ret:
6168 	ret = block_page_mkwrite_return(err);
6169 out:
6170 	filemap_invalidate_unlock_shared(mapping);
6171 	sb_end_pagefault(inode->i_sb);
6172 	return ret;
6173 out_error:
6174 	unlock_page(page);
6175 	ext4_journal_stop(handle);
6176 	goto out;
6177 }
6178