xref: /openbmc/linux/fs/ext4/inode.c (revision b85d4594)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !ext4_has_metadata_csum(inode->i_sb))
85 		return 1;
86 
87 	provided = le16_to_cpu(raw->i_checksum_lo);
88 	calculated = ext4_inode_csum(inode, raw, ei);
89 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 	else
93 		calculated &= 0xFFFF;
94 
95 	return provided == calculated;
96 }
97 
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 				struct ext4_inode_info *ei)
100 {
101 	__u32 csum;
102 
103 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 	    cpu_to_le32(EXT4_OS_LINUX) ||
105 	    !ext4_has_metadata_csum(inode->i_sb))
106 		return;
107 
108 	csum = ext4_inode_csum(inode, raw, ei);
109 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114 
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 					      loff_t new_size)
117 {
118 	trace_ext4_begin_ordered_truncate(inode, new_size);
119 	/*
120 	 * If jinode is zero, then we never opened the file for
121 	 * writing, so there's no need to call
122 	 * jbd2_journal_begin_ordered_truncate() since there's no
123 	 * outstanding writes we need to flush.
124 	 */
125 	if (!EXT4_I(inode)->jinode)
126 		return 0;
127 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 						   EXT4_I(inode)->jinode,
129 						   new_size);
130 }
131 
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 				unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 				  int pextents);
138 
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146 
147 	if (ext4_has_inline_data(inode))
148 		return 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages_final(&inode->i_data);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (is_bad_inode(inode))
224 		goto no_delete;
225 	dquot_initialize(inode);
226 
227 	if (ext4_should_order_data(inode))
228 		ext4_begin_ordered_truncate(inode, 0);
229 	truncate_inode_pages_final(&inode->i_data);
230 
231 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 				    ext4_blocks_for_truncate(inode)+3);
240 	if (IS_ERR(handle)) {
241 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 		/*
243 		 * If we're going to skip the normal cleanup, we still need to
244 		 * make sure that the in-core orphan linked list is properly
245 		 * cleaned up.
246 		 */
247 		ext4_orphan_del(NULL, inode);
248 		sb_end_intwrite(inode->i_sb);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		ext4_handle_sync(handle);
254 	inode->i_size = 0;
255 	err = ext4_mark_inode_dirty(handle, inode);
256 	if (err) {
257 		ext4_warning(inode->i_sb,
258 			     "couldn't mark inode dirty (err %d)", err);
259 		goto stop_handle;
260 	}
261 	if (inode->i_blocks)
262 		ext4_truncate(inode);
263 
264 	/*
265 	 * ext4_ext_truncate() doesn't reserve any slop when it
266 	 * restarts journal transactions; therefore there may not be
267 	 * enough credits left in the handle to remove the inode from
268 	 * the orphan list and set the dtime field.
269 	 */
270 	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 		err = ext4_journal_extend(handle, 3);
272 		if (err > 0)
273 			err = ext4_journal_restart(handle, 3);
274 		if (err != 0) {
275 			ext4_warning(inode->i_sb,
276 				     "couldn't extend journal (err %d)", err);
277 		stop_handle:
278 			ext4_journal_stop(handle);
279 			ext4_orphan_del(NULL, inode);
280 			sb_end_intwrite(inode->i_sb);
281 			goto no_delete;
282 		}
283 	}
284 
285 	/*
286 	 * Kill off the orphan record which ext4_truncate created.
287 	 * AKPM: I think this can be inside the above `if'.
288 	 * Note that ext4_orphan_del() has to be able to cope with the
289 	 * deletion of a non-existent orphan - this is because we don't
290 	 * know if ext4_truncate() actually created an orphan record.
291 	 * (Well, we could do this if we need to, but heck - it works)
292 	 */
293 	ext4_orphan_del(handle, inode);
294 	EXT4_I(inode)->i_dtime	= get_seconds();
295 
296 	/*
297 	 * One subtle ordering requirement: if anything has gone wrong
298 	 * (transaction abort, IO errors, whatever), then we can still
299 	 * do these next steps (the fs will already have been marked as
300 	 * having errors), but we can't free the inode if the mark_dirty
301 	 * fails.
302 	 */
303 	if (ext4_mark_inode_dirty(handle, inode))
304 		/* If that failed, just do the required in-core inode clear. */
305 		ext4_clear_inode(inode);
306 	else
307 		ext4_free_inode(handle, inode);
308 	ext4_journal_stop(handle);
309 	sb_end_intwrite(inode->i_sb);
310 	return;
311 no_delete:
312 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 }
314 
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 	return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321 
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327 					int used, int quota_claim)
328 {
329 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330 	struct ext4_inode_info *ei = EXT4_I(inode);
331 
332 	spin_lock(&ei->i_block_reservation_lock);
333 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334 	if (unlikely(used > ei->i_reserved_data_blocks)) {
335 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336 			 "with only %d reserved data blocks",
337 			 __func__, inode->i_ino, used,
338 			 ei->i_reserved_data_blocks);
339 		WARN_ON(1);
340 		used = ei->i_reserved_data_blocks;
341 	}
342 
343 	/* Update per-inode reservations */
344 	ei->i_reserved_data_blocks -= used;
345 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346 
347 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348 
349 	/* Update quota subsystem for data blocks */
350 	if (quota_claim)
351 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
352 	else {
353 		/*
354 		 * We did fallocate with an offset that is already delayed
355 		 * allocated. So on delayed allocated writeback we should
356 		 * not re-claim the quota for fallocated blocks.
357 		 */
358 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359 	}
360 
361 	/*
362 	 * If we have done all the pending block allocations and if
363 	 * there aren't any writers on the inode, we can discard the
364 	 * inode's preallocations.
365 	 */
366 	if ((ei->i_reserved_data_blocks == 0) &&
367 	    (atomic_read(&inode->i_writecount) == 0))
368 		ext4_discard_preallocations(inode);
369 }
370 
371 static int __check_block_validity(struct inode *inode, const char *func,
372 				unsigned int line,
373 				struct ext4_map_blocks *map)
374 {
375 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 				   map->m_len)) {
377 		ext4_error_inode(inode, func, line, map->m_pblk,
378 				 "lblock %lu mapped to illegal pblock "
379 				 "(length %d)", (unsigned long) map->m_lblk,
380 				 map->m_len);
381 		return -EIO;
382 	}
383 	return 0;
384 }
385 
386 #define check_block_validity(inode, map)	\
387 	__check_block_validity((inode), __func__, __LINE__, (map))
388 
389 #ifdef ES_AGGRESSIVE_TEST
390 static void ext4_map_blocks_es_recheck(handle_t *handle,
391 				       struct inode *inode,
392 				       struct ext4_map_blocks *es_map,
393 				       struct ext4_map_blocks *map,
394 				       int flags)
395 {
396 	int retval;
397 
398 	map->m_flags = 0;
399 	/*
400 	 * There is a race window that the result is not the same.
401 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
402 	 * is that we lookup a block mapping in extent status tree with
403 	 * out taking i_data_sem.  So at the time the unwritten extent
404 	 * could be converted.
405 	 */
406 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
407 		down_read(&EXT4_I(inode)->i_data_sem);
408 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
410 					     EXT4_GET_BLOCKS_KEEP_SIZE);
411 	} else {
412 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
413 					     EXT4_GET_BLOCKS_KEEP_SIZE);
414 	}
415 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 		up_read((&EXT4_I(inode)->i_data_sem));
417 
418 	/*
419 	 * We don't check m_len because extent will be collpased in status
420 	 * tree.  So the m_len might not equal.
421 	 */
422 	if (es_map->m_lblk != map->m_lblk ||
423 	    es_map->m_flags != map->m_flags ||
424 	    es_map->m_pblk != map->m_pblk) {
425 		printk("ES cache assertion failed for inode: %lu "
426 		       "es_cached ex [%d/%d/%llu/%x] != "
427 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
429 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
430 		       map->m_len, map->m_pblk, map->m_flags,
431 		       retval, flags);
432 	}
433 }
434 #endif /* ES_AGGRESSIVE_TEST */
435 
436 /*
437  * The ext4_map_blocks() function tries to look up the requested blocks,
438  * and returns if the blocks are already mapped.
439  *
440  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441  * and store the allocated blocks in the result buffer head and mark it
442  * mapped.
443  *
444  * If file type is extents based, it will call ext4_ext_map_blocks(),
445  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
446  * based files
447  *
448  * On success, it returns the number of blocks being mapped or allocated.
449  * if create==0 and the blocks are pre-allocated and unwritten block,
450  * the result buffer head is unmapped. If the create ==1, it will make sure
451  * the buffer head is mapped.
452  *
453  * It returns 0 if plain look up failed (blocks have not been allocated), in
454  * that case, buffer head is unmapped
455  *
456  * It returns the error in case of allocation failure.
457  */
458 int ext4_map_blocks(handle_t *handle, struct inode *inode,
459 		    struct ext4_map_blocks *map, int flags)
460 {
461 	struct extent_status es;
462 	int retval;
463 	int ret = 0;
464 #ifdef ES_AGGRESSIVE_TEST
465 	struct ext4_map_blocks orig_map;
466 
467 	memcpy(&orig_map, map, sizeof(*map));
468 #endif
469 
470 	map->m_flags = 0;
471 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 		  (unsigned long) map->m_lblk);
474 
475 	/*
476 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 	 */
478 	if (unlikely(map->m_len > INT_MAX))
479 		map->m_len = INT_MAX;
480 
481 	/* We can handle the block number less than EXT_MAX_BLOCKS */
482 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483 		return -EIO;
484 
485 	/* Lookup extent status tree firstly */
486 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488 			map->m_pblk = ext4_es_pblock(&es) +
489 					map->m_lblk - es.es_lblk;
490 			map->m_flags |= ext4_es_is_written(&es) ?
491 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492 			retval = es.es_len - (map->m_lblk - es.es_lblk);
493 			if (retval > map->m_len)
494 				retval = map->m_len;
495 			map->m_len = retval;
496 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497 			retval = 0;
498 		} else {
499 			BUG_ON(1);
500 		}
501 #ifdef ES_AGGRESSIVE_TEST
502 		ext4_map_blocks_es_recheck(handle, inode, map,
503 					   &orig_map, flags);
504 #endif
505 		goto found;
506 	}
507 
508 	/*
509 	 * Try to see if we can get the block without requesting a new
510 	 * file system block.
511 	 */
512 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 		down_read(&EXT4_I(inode)->i_data_sem);
514 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
515 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
516 					     EXT4_GET_BLOCKS_KEEP_SIZE);
517 	} else {
518 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
519 					     EXT4_GET_BLOCKS_KEEP_SIZE);
520 	}
521 	if (retval > 0) {
522 		unsigned int status;
523 
524 		if (unlikely(retval != map->m_len)) {
525 			ext4_warning(inode->i_sb,
526 				     "ES len assertion failed for inode "
527 				     "%lu: retval %d != map->m_len %d",
528 				     inode->i_ino, retval, map->m_len);
529 			WARN_ON(1);
530 		}
531 
532 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535 		    !(status & EXTENT_STATUS_WRITTEN) &&
536 		    ext4_find_delalloc_range(inode, map->m_lblk,
537 					     map->m_lblk + map->m_len - 1))
538 			status |= EXTENT_STATUS_DELAYED;
539 		ret = ext4_es_insert_extent(inode, map->m_lblk,
540 					    map->m_len, map->m_pblk, status);
541 		if (ret < 0)
542 			retval = ret;
543 	}
544 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 		up_read((&EXT4_I(inode)->i_data_sem));
546 
547 found:
548 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549 		ret = check_block_validity(inode, map);
550 		if (ret != 0)
551 			return ret;
552 	}
553 
554 	/* If it is only a block(s) look up */
555 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
556 		return retval;
557 
558 	/*
559 	 * Returns if the blocks have already allocated
560 	 *
561 	 * Note that if blocks have been preallocated
562 	 * ext4_ext_get_block() returns the create = 0
563 	 * with buffer head unmapped.
564 	 */
565 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566 		/*
567 		 * If we need to convert extent to unwritten
568 		 * we continue and do the actual work in
569 		 * ext4_ext_map_blocks()
570 		 */
571 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572 			return retval;
573 
574 	/*
575 	 * Here we clear m_flags because after allocating an new extent,
576 	 * it will be set again.
577 	 */
578 	map->m_flags &= ~EXT4_MAP_FLAGS;
579 
580 	/*
581 	 * New blocks allocate and/or writing to unwritten extent
582 	 * will possibly result in updating i_data, so we take
583 	 * the write lock of i_data_sem, and call get_block()
584 	 * with create == 1 flag.
585 	 */
586 	down_write(&EXT4_I(inode)->i_data_sem);
587 
588 	/*
589 	 * We need to check for EXT4 here because migrate
590 	 * could have changed the inode type in between
591 	 */
592 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
594 	} else {
595 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
596 
597 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598 			/*
599 			 * We allocated new blocks which will result in
600 			 * i_data's format changing.  Force the migrate
601 			 * to fail by clearing migrate flags
602 			 */
603 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
604 		}
605 
606 		/*
607 		 * Update reserved blocks/metadata blocks after successful
608 		 * block allocation which had been deferred till now. We don't
609 		 * support fallocate for non extent files. So we can update
610 		 * reserve space here.
611 		 */
612 		if ((retval > 0) &&
613 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614 			ext4_da_update_reserve_space(inode, retval, 1);
615 	}
616 
617 	if (retval > 0) {
618 		unsigned int status;
619 
620 		if (unlikely(retval != map->m_len)) {
621 			ext4_warning(inode->i_sb,
622 				     "ES len assertion failed for inode "
623 				     "%lu: retval %d != map->m_len %d",
624 				     inode->i_ino, retval, map->m_len);
625 			WARN_ON(1);
626 		}
627 
628 		/*
629 		 * If the extent has been zeroed out, we don't need to update
630 		 * extent status tree.
631 		 */
632 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634 			if (ext4_es_is_written(&es))
635 				goto has_zeroout;
636 		}
637 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640 		    !(status & EXTENT_STATUS_WRITTEN) &&
641 		    ext4_find_delalloc_range(inode, map->m_lblk,
642 					     map->m_lblk + map->m_len - 1))
643 			status |= EXTENT_STATUS_DELAYED;
644 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 					    map->m_pblk, status);
646 		if (ret < 0)
647 			retval = ret;
648 	}
649 
650 has_zeroout:
651 	up_write((&EXT4_I(inode)->i_data_sem));
652 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653 		ret = check_block_validity(inode, map);
654 		if (ret != 0)
655 			return ret;
656 	}
657 	return retval;
658 }
659 
660 /* Maximum number of blocks we map for direct IO at once. */
661 #define DIO_MAX_BLOCKS 4096
662 
663 static int _ext4_get_block(struct inode *inode, sector_t iblock,
664 			   struct buffer_head *bh, int flags)
665 {
666 	handle_t *handle = ext4_journal_current_handle();
667 	struct ext4_map_blocks map;
668 	int ret = 0, started = 0;
669 	int dio_credits;
670 
671 	if (ext4_has_inline_data(inode))
672 		return -ERANGE;
673 
674 	map.m_lblk = iblock;
675 	map.m_len = bh->b_size >> inode->i_blkbits;
676 
677 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
678 		/* Direct IO write... */
679 		if (map.m_len > DIO_MAX_BLOCKS)
680 			map.m_len = DIO_MAX_BLOCKS;
681 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
682 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
683 					    dio_credits);
684 		if (IS_ERR(handle)) {
685 			ret = PTR_ERR(handle);
686 			return ret;
687 		}
688 		started = 1;
689 	}
690 
691 	ret = ext4_map_blocks(handle, inode, &map, flags);
692 	if (ret > 0) {
693 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
694 
695 		map_bh(bh, inode->i_sb, map.m_pblk);
696 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
697 		if (IS_DAX(inode) && buffer_unwritten(bh)) {
698 			/*
699 			 * dgc: I suspect unwritten conversion on ext4+DAX is
700 			 * fundamentally broken here when there are concurrent
701 			 * read/write in progress on this inode.
702 			 */
703 			WARN_ON_ONCE(io_end);
704 			bh->b_assoc_map = inode->i_mapping;
705 			bh->b_private = (void *)(unsigned long)iblock;
706 		}
707 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
708 			set_buffer_defer_completion(bh);
709 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
710 		ret = 0;
711 	}
712 	if (started)
713 		ext4_journal_stop(handle);
714 	return ret;
715 }
716 
717 int ext4_get_block(struct inode *inode, sector_t iblock,
718 		   struct buffer_head *bh, int create)
719 {
720 	return _ext4_get_block(inode, iblock, bh,
721 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
722 }
723 
724 /*
725  * `handle' can be NULL if create is zero
726  */
727 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
728 				ext4_lblk_t block, int map_flags)
729 {
730 	struct ext4_map_blocks map;
731 	struct buffer_head *bh;
732 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
733 	int err;
734 
735 	J_ASSERT(handle != NULL || create == 0);
736 
737 	map.m_lblk = block;
738 	map.m_len = 1;
739 	err = ext4_map_blocks(handle, inode, &map, map_flags);
740 
741 	if (err == 0)
742 		return create ? ERR_PTR(-ENOSPC) : NULL;
743 	if (err < 0)
744 		return ERR_PTR(err);
745 
746 	bh = sb_getblk(inode->i_sb, map.m_pblk);
747 	if (unlikely(!bh))
748 		return ERR_PTR(-ENOMEM);
749 	if (map.m_flags & EXT4_MAP_NEW) {
750 		J_ASSERT(create != 0);
751 		J_ASSERT(handle != NULL);
752 
753 		/*
754 		 * Now that we do not always journal data, we should
755 		 * keep in mind whether this should always journal the
756 		 * new buffer as metadata.  For now, regular file
757 		 * writes use ext4_get_block instead, so it's not a
758 		 * problem.
759 		 */
760 		lock_buffer(bh);
761 		BUFFER_TRACE(bh, "call get_create_access");
762 		err = ext4_journal_get_create_access(handle, bh);
763 		if (unlikely(err)) {
764 			unlock_buffer(bh);
765 			goto errout;
766 		}
767 		if (!buffer_uptodate(bh)) {
768 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
769 			set_buffer_uptodate(bh);
770 		}
771 		unlock_buffer(bh);
772 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
773 		err = ext4_handle_dirty_metadata(handle, inode, bh);
774 		if (unlikely(err))
775 			goto errout;
776 	} else
777 		BUFFER_TRACE(bh, "not a new buffer");
778 	return bh;
779 errout:
780 	brelse(bh);
781 	return ERR_PTR(err);
782 }
783 
784 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
785 			       ext4_lblk_t block, int map_flags)
786 {
787 	struct buffer_head *bh;
788 
789 	bh = ext4_getblk(handle, inode, block, map_flags);
790 	if (IS_ERR(bh))
791 		return bh;
792 	if (!bh || buffer_uptodate(bh))
793 		return bh;
794 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
795 	wait_on_buffer(bh);
796 	if (buffer_uptodate(bh))
797 		return bh;
798 	put_bh(bh);
799 	return ERR_PTR(-EIO);
800 }
801 
802 int ext4_walk_page_buffers(handle_t *handle,
803 			   struct buffer_head *head,
804 			   unsigned from,
805 			   unsigned to,
806 			   int *partial,
807 			   int (*fn)(handle_t *handle,
808 				     struct buffer_head *bh))
809 {
810 	struct buffer_head *bh;
811 	unsigned block_start, block_end;
812 	unsigned blocksize = head->b_size;
813 	int err, ret = 0;
814 	struct buffer_head *next;
815 
816 	for (bh = head, block_start = 0;
817 	     ret == 0 && (bh != head || !block_start);
818 	     block_start = block_end, bh = next) {
819 		next = bh->b_this_page;
820 		block_end = block_start + blocksize;
821 		if (block_end <= from || block_start >= to) {
822 			if (partial && !buffer_uptodate(bh))
823 				*partial = 1;
824 			continue;
825 		}
826 		err = (*fn)(handle, bh);
827 		if (!ret)
828 			ret = err;
829 	}
830 	return ret;
831 }
832 
833 /*
834  * To preserve ordering, it is essential that the hole instantiation and
835  * the data write be encapsulated in a single transaction.  We cannot
836  * close off a transaction and start a new one between the ext4_get_block()
837  * and the commit_write().  So doing the jbd2_journal_start at the start of
838  * prepare_write() is the right place.
839  *
840  * Also, this function can nest inside ext4_writepage().  In that case, we
841  * *know* that ext4_writepage() has generated enough buffer credits to do the
842  * whole page.  So we won't block on the journal in that case, which is good,
843  * because the caller may be PF_MEMALLOC.
844  *
845  * By accident, ext4 can be reentered when a transaction is open via
846  * quota file writes.  If we were to commit the transaction while thus
847  * reentered, there can be a deadlock - we would be holding a quota
848  * lock, and the commit would never complete if another thread had a
849  * transaction open and was blocking on the quota lock - a ranking
850  * violation.
851  *
852  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853  * will _not_ run commit under these circumstances because handle->h_ref
854  * is elevated.  We'll still have enough credits for the tiny quotafile
855  * write.
856  */
857 int do_journal_get_write_access(handle_t *handle,
858 				struct buffer_head *bh)
859 {
860 	int dirty = buffer_dirty(bh);
861 	int ret;
862 
863 	if (!buffer_mapped(bh) || buffer_freed(bh))
864 		return 0;
865 	/*
866 	 * __block_write_begin() could have dirtied some buffers. Clean
867 	 * the dirty bit as jbd2_journal_get_write_access() could complain
868 	 * otherwise about fs integrity issues. Setting of the dirty bit
869 	 * by __block_write_begin() isn't a real problem here as we clear
870 	 * the bit before releasing a page lock and thus writeback cannot
871 	 * ever write the buffer.
872 	 */
873 	if (dirty)
874 		clear_buffer_dirty(bh);
875 	BUFFER_TRACE(bh, "get write access");
876 	ret = ext4_journal_get_write_access(handle, bh);
877 	if (!ret && dirty)
878 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
879 	return ret;
880 }
881 
882 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
883 		   struct buffer_head *bh_result, int create);
884 
885 #ifdef CONFIG_EXT4_FS_ENCRYPTION
886 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
887 				  get_block_t *get_block)
888 {
889 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
890 	unsigned to = from + len;
891 	struct inode *inode = page->mapping->host;
892 	unsigned block_start, block_end;
893 	sector_t block;
894 	int err = 0;
895 	unsigned blocksize = inode->i_sb->s_blocksize;
896 	unsigned bbits;
897 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
898 	bool decrypt = false;
899 
900 	BUG_ON(!PageLocked(page));
901 	BUG_ON(from > PAGE_CACHE_SIZE);
902 	BUG_ON(to > PAGE_CACHE_SIZE);
903 	BUG_ON(from > to);
904 
905 	if (!page_has_buffers(page))
906 		create_empty_buffers(page, blocksize, 0);
907 	head = page_buffers(page);
908 	bbits = ilog2(blocksize);
909 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
910 
911 	for (bh = head, block_start = 0; bh != head || !block_start;
912 	    block++, block_start = block_end, bh = bh->b_this_page) {
913 		block_end = block_start + blocksize;
914 		if (block_end <= from || block_start >= to) {
915 			if (PageUptodate(page)) {
916 				if (!buffer_uptodate(bh))
917 					set_buffer_uptodate(bh);
918 			}
919 			continue;
920 		}
921 		if (buffer_new(bh))
922 			clear_buffer_new(bh);
923 		if (!buffer_mapped(bh)) {
924 			WARN_ON(bh->b_size != blocksize);
925 			err = get_block(inode, block, bh, 1);
926 			if (err)
927 				break;
928 			if (buffer_new(bh)) {
929 				unmap_underlying_metadata(bh->b_bdev,
930 							  bh->b_blocknr);
931 				if (PageUptodate(page)) {
932 					clear_buffer_new(bh);
933 					set_buffer_uptodate(bh);
934 					mark_buffer_dirty(bh);
935 					continue;
936 				}
937 				if (block_end > to || block_start < from)
938 					zero_user_segments(page, to, block_end,
939 							   block_start, from);
940 				continue;
941 			}
942 		}
943 		if (PageUptodate(page)) {
944 			if (!buffer_uptodate(bh))
945 				set_buffer_uptodate(bh);
946 			continue;
947 		}
948 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
949 		    !buffer_unwritten(bh) &&
950 		    (block_start < from || block_end > to)) {
951 			ll_rw_block(READ, 1, &bh);
952 			*wait_bh++ = bh;
953 			decrypt = ext4_encrypted_inode(inode) &&
954 				S_ISREG(inode->i_mode);
955 		}
956 	}
957 	/*
958 	 * If we issued read requests, let them complete.
959 	 */
960 	while (wait_bh > wait) {
961 		wait_on_buffer(*--wait_bh);
962 		if (!buffer_uptodate(*wait_bh))
963 			err = -EIO;
964 	}
965 	if (unlikely(err))
966 		page_zero_new_buffers(page, from, to);
967 	else if (decrypt)
968 		err = ext4_decrypt_one(inode, page);
969 	return err;
970 }
971 #endif
972 
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 			    loff_t pos, unsigned len, unsigned flags,
975 			    struct page **pagep, void **fsdata)
976 {
977 	struct inode *inode = mapping->host;
978 	int ret, needed_blocks;
979 	handle_t *handle;
980 	int retries = 0;
981 	struct page *page;
982 	pgoff_t index;
983 	unsigned from, to;
984 
985 	trace_ext4_write_begin(inode, pos, len, flags);
986 	/*
987 	 * Reserve one block more for addition to orphan list in case
988 	 * we allocate blocks but write fails for some reason
989 	 */
990 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991 	index = pos >> PAGE_CACHE_SHIFT;
992 	from = pos & (PAGE_CACHE_SIZE - 1);
993 	to = from + len;
994 
995 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 						    flags, pagep);
998 		if (ret < 0)
999 			return ret;
1000 		if (ret == 1)
1001 			return 0;
1002 	}
1003 
1004 	/*
1005 	 * grab_cache_page_write_begin() can take a long time if the
1006 	 * system is thrashing due to memory pressure, or if the page
1007 	 * is being written back.  So grab it first before we start
1008 	 * the transaction handle.  This also allows us to allocate
1009 	 * the page (if needed) without using GFP_NOFS.
1010 	 */
1011 retry_grab:
1012 	page = grab_cache_page_write_begin(mapping, index, flags);
1013 	if (!page)
1014 		return -ENOMEM;
1015 	unlock_page(page);
1016 
1017 retry_journal:
1018 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019 	if (IS_ERR(handle)) {
1020 		page_cache_release(page);
1021 		return PTR_ERR(handle);
1022 	}
1023 
1024 	lock_page(page);
1025 	if (page->mapping != mapping) {
1026 		/* The page got truncated from under us */
1027 		unlock_page(page);
1028 		page_cache_release(page);
1029 		ext4_journal_stop(handle);
1030 		goto retry_grab;
1031 	}
1032 	/* In case writeback began while the page was unlocked */
1033 	wait_for_stable_page(page);
1034 
1035 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1036 	if (ext4_should_dioread_nolock(inode))
1037 		ret = ext4_block_write_begin(page, pos, len,
1038 					     ext4_get_block_write);
1039 	else
1040 		ret = ext4_block_write_begin(page, pos, len,
1041 					     ext4_get_block);
1042 #else
1043 	if (ext4_should_dioread_nolock(inode))
1044 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1045 	else
1046 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1047 #endif
1048 	if (!ret && ext4_should_journal_data(inode)) {
1049 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1050 					     from, to, NULL,
1051 					     do_journal_get_write_access);
1052 	}
1053 
1054 	if (ret) {
1055 		unlock_page(page);
1056 		/*
1057 		 * __block_write_begin may have instantiated a few blocks
1058 		 * outside i_size.  Trim these off again. Don't need
1059 		 * i_size_read because we hold i_mutex.
1060 		 *
1061 		 * Add inode to orphan list in case we crash before
1062 		 * truncate finishes
1063 		 */
1064 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1065 			ext4_orphan_add(handle, inode);
1066 
1067 		ext4_journal_stop(handle);
1068 		if (pos + len > inode->i_size) {
1069 			ext4_truncate_failed_write(inode);
1070 			/*
1071 			 * If truncate failed early the inode might
1072 			 * still be on the orphan list; we need to
1073 			 * make sure the inode is removed from the
1074 			 * orphan list in that case.
1075 			 */
1076 			if (inode->i_nlink)
1077 				ext4_orphan_del(NULL, inode);
1078 		}
1079 
1080 		if (ret == -ENOSPC &&
1081 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1082 			goto retry_journal;
1083 		page_cache_release(page);
1084 		return ret;
1085 	}
1086 	*pagep = page;
1087 	return ret;
1088 }
1089 
1090 /* For write_end() in data=journal mode */
1091 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1092 {
1093 	int ret;
1094 	if (!buffer_mapped(bh) || buffer_freed(bh))
1095 		return 0;
1096 	set_buffer_uptodate(bh);
1097 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1098 	clear_buffer_meta(bh);
1099 	clear_buffer_prio(bh);
1100 	return ret;
1101 }
1102 
1103 /*
1104  * We need to pick up the new inode size which generic_commit_write gave us
1105  * `file' can be NULL - eg, when called from page_symlink().
1106  *
1107  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1108  * buffers are managed internally.
1109  */
1110 static int ext4_write_end(struct file *file,
1111 			  struct address_space *mapping,
1112 			  loff_t pos, unsigned len, unsigned copied,
1113 			  struct page *page, void *fsdata)
1114 {
1115 	handle_t *handle = ext4_journal_current_handle();
1116 	struct inode *inode = mapping->host;
1117 	loff_t old_size = inode->i_size;
1118 	int ret = 0, ret2;
1119 	int i_size_changed = 0;
1120 
1121 	trace_ext4_write_end(inode, pos, len, copied);
1122 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1123 		ret = ext4_jbd2_file_inode(handle, inode);
1124 		if (ret) {
1125 			unlock_page(page);
1126 			page_cache_release(page);
1127 			goto errout;
1128 		}
1129 	}
1130 
1131 	if (ext4_has_inline_data(inode)) {
1132 		ret = ext4_write_inline_data_end(inode, pos, len,
1133 						 copied, page);
1134 		if (ret < 0)
1135 			goto errout;
1136 		copied = ret;
1137 	} else
1138 		copied = block_write_end(file, mapping, pos,
1139 					 len, copied, page, fsdata);
1140 	/*
1141 	 * it's important to update i_size while still holding page lock:
1142 	 * page writeout could otherwise come in and zero beyond i_size.
1143 	 */
1144 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1145 	unlock_page(page);
1146 	page_cache_release(page);
1147 
1148 	if (old_size < pos)
1149 		pagecache_isize_extended(inode, old_size, pos);
1150 	/*
1151 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1152 	 * makes the holding time of page lock longer. Second, it forces lock
1153 	 * ordering of page lock and transaction start for journaling
1154 	 * filesystems.
1155 	 */
1156 	if (i_size_changed)
1157 		ext4_mark_inode_dirty(handle, inode);
1158 
1159 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1160 		/* if we have allocated more blocks and copied
1161 		 * less. We will have blocks allocated outside
1162 		 * inode->i_size. So truncate them
1163 		 */
1164 		ext4_orphan_add(handle, inode);
1165 errout:
1166 	ret2 = ext4_journal_stop(handle);
1167 	if (!ret)
1168 		ret = ret2;
1169 
1170 	if (pos + len > inode->i_size) {
1171 		ext4_truncate_failed_write(inode);
1172 		/*
1173 		 * If truncate failed early the inode might still be
1174 		 * on the orphan list; we need to make sure the inode
1175 		 * is removed from the orphan list in that case.
1176 		 */
1177 		if (inode->i_nlink)
1178 			ext4_orphan_del(NULL, inode);
1179 	}
1180 
1181 	return ret ? ret : copied;
1182 }
1183 
1184 static int ext4_journalled_write_end(struct file *file,
1185 				     struct address_space *mapping,
1186 				     loff_t pos, unsigned len, unsigned copied,
1187 				     struct page *page, void *fsdata)
1188 {
1189 	handle_t *handle = ext4_journal_current_handle();
1190 	struct inode *inode = mapping->host;
1191 	loff_t old_size = inode->i_size;
1192 	int ret = 0, ret2;
1193 	int partial = 0;
1194 	unsigned from, to;
1195 	int size_changed = 0;
1196 
1197 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1198 	from = pos & (PAGE_CACHE_SIZE - 1);
1199 	to = from + len;
1200 
1201 	BUG_ON(!ext4_handle_valid(handle));
1202 
1203 	if (ext4_has_inline_data(inode))
1204 		copied = ext4_write_inline_data_end(inode, pos, len,
1205 						    copied, page);
1206 	else {
1207 		if (copied < len) {
1208 			if (!PageUptodate(page))
1209 				copied = 0;
1210 			page_zero_new_buffers(page, from+copied, to);
1211 		}
1212 
1213 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1214 					     to, &partial, write_end_fn);
1215 		if (!partial)
1216 			SetPageUptodate(page);
1217 	}
1218 	size_changed = ext4_update_inode_size(inode, pos + copied);
1219 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1220 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1221 	unlock_page(page);
1222 	page_cache_release(page);
1223 
1224 	if (old_size < pos)
1225 		pagecache_isize_extended(inode, old_size, pos);
1226 
1227 	if (size_changed) {
1228 		ret2 = ext4_mark_inode_dirty(handle, inode);
1229 		if (!ret)
1230 			ret = ret2;
1231 	}
1232 
1233 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1234 		/* if we have allocated more blocks and copied
1235 		 * less. We will have blocks allocated outside
1236 		 * inode->i_size. So truncate them
1237 		 */
1238 		ext4_orphan_add(handle, inode);
1239 
1240 	ret2 = ext4_journal_stop(handle);
1241 	if (!ret)
1242 		ret = ret2;
1243 	if (pos + len > inode->i_size) {
1244 		ext4_truncate_failed_write(inode);
1245 		/*
1246 		 * If truncate failed early the inode might still be
1247 		 * on the orphan list; we need to make sure the inode
1248 		 * is removed from the orphan list in that case.
1249 		 */
1250 		if (inode->i_nlink)
1251 			ext4_orphan_del(NULL, inode);
1252 	}
1253 
1254 	return ret ? ret : copied;
1255 }
1256 
1257 /*
1258  * Reserve space for a single cluster
1259  */
1260 static int ext4_da_reserve_space(struct inode *inode)
1261 {
1262 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1263 	struct ext4_inode_info *ei = EXT4_I(inode);
1264 	int ret;
1265 
1266 	/*
1267 	 * We will charge metadata quota at writeout time; this saves
1268 	 * us from metadata over-estimation, though we may go over by
1269 	 * a small amount in the end.  Here we just reserve for data.
1270 	 */
1271 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1272 	if (ret)
1273 		return ret;
1274 
1275 	spin_lock(&ei->i_block_reservation_lock);
1276 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1277 		spin_unlock(&ei->i_block_reservation_lock);
1278 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1279 		return -ENOSPC;
1280 	}
1281 	ei->i_reserved_data_blocks++;
1282 	trace_ext4_da_reserve_space(inode);
1283 	spin_unlock(&ei->i_block_reservation_lock);
1284 
1285 	return 0;       /* success */
1286 }
1287 
1288 static void ext4_da_release_space(struct inode *inode, int to_free)
1289 {
1290 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1291 	struct ext4_inode_info *ei = EXT4_I(inode);
1292 
1293 	if (!to_free)
1294 		return;		/* Nothing to release, exit */
1295 
1296 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1297 
1298 	trace_ext4_da_release_space(inode, to_free);
1299 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1300 		/*
1301 		 * if there aren't enough reserved blocks, then the
1302 		 * counter is messed up somewhere.  Since this
1303 		 * function is called from invalidate page, it's
1304 		 * harmless to return without any action.
1305 		 */
1306 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1307 			 "ino %lu, to_free %d with only %d reserved "
1308 			 "data blocks", inode->i_ino, to_free,
1309 			 ei->i_reserved_data_blocks);
1310 		WARN_ON(1);
1311 		to_free = ei->i_reserved_data_blocks;
1312 	}
1313 	ei->i_reserved_data_blocks -= to_free;
1314 
1315 	/* update fs dirty data blocks counter */
1316 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1317 
1318 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1319 
1320 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1321 }
1322 
1323 static void ext4_da_page_release_reservation(struct page *page,
1324 					     unsigned int offset,
1325 					     unsigned int length)
1326 {
1327 	int to_release = 0, contiguous_blks = 0;
1328 	struct buffer_head *head, *bh;
1329 	unsigned int curr_off = 0;
1330 	struct inode *inode = page->mapping->host;
1331 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1332 	unsigned int stop = offset + length;
1333 	int num_clusters;
1334 	ext4_fsblk_t lblk;
1335 
1336 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1337 
1338 	head = page_buffers(page);
1339 	bh = head;
1340 	do {
1341 		unsigned int next_off = curr_off + bh->b_size;
1342 
1343 		if (next_off > stop)
1344 			break;
1345 
1346 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1347 			to_release++;
1348 			contiguous_blks++;
1349 			clear_buffer_delay(bh);
1350 		} else if (contiguous_blks) {
1351 			lblk = page->index <<
1352 			       (PAGE_CACHE_SHIFT - inode->i_blkbits);
1353 			lblk += (curr_off >> inode->i_blkbits) -
1354 				contiguous_blks;
1355 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1356 			contiguous_blks = 0;
1357 		}
1358 		curr_off = next_off;
1359 	} while ((bh = bh->b_this_page) != head);
1360 
1361 	if (contiguous_blks) {
1362 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1363 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1364 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1365 	}
1366 
1367 	/* If we have released all the blocks belonging to a cluster, then we
1368 	 * need to release the reserved space for that cluster. */
1369 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1370 	while (num_clusters > 0) {
1371 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1372 			((num_clusters - 1) << sbi->s_cluster_bits);
1373 		if (sbi->s_cluster_ratio == 1 ||
1374 		    !ext4_find_delalloc_cluster(inode, lblk))
1375 			ext4_da_release_space(inode, 1);
1376 
1377 		num_clusters--;
1378 	}
1379 }
1380 
1381 /*
1382  * Delayed allocation stuff
1383  */
1384 
1385 struct mpage_da_data {
1386 	struct inode *inode;
1387 	struct writeback_control *wbc;
1388 
1389 	pgoff_t first_page;	/* The first page to write */
1390 	pgoff_t next_page;	/* Current page to examine */
1391 	pgoff_t last_page;	/* Last page to examine */
1392 	/*
1393 	 * Extent to map - this can be after first_page because that can be
1394 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1395 	 * is delalloc or unwritten.
1396 	 */
1397 	struct ext4_map_blocks map;
1398 	struct ext4_io_submit io_submit;	/* IO submission data */
1399 };
1400 
1401 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1402 				       bool invalidate)
1403 {
1404 	int nr_pages, i;
1405 	pgoff_t index, end;
1406 	struct pagevec pvec;
1407 	struct inode *inode = mpd->inode;
1408 	struct address_space *mapping = inode->i_mapping;
1409 
1410 	/* This is necessary when next_page == 0. */
1411 	if (mpd->first_page >= mpd->next_page)
1412 		return;
1413 
1414 	index = mpd->first_page;
1415 	end   = mpd->next_page - 1;
1416 	if (invalidate) {
1417 		ext4_lblk_t start, last;
1418 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1419 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1420 		ext4_es_remove_extent(inode, start, last - start + 1);
1421 	}
1422 
1423 	pagevec_init(&pvec, 0);
1424 	while (index <= end) {
1425 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1426 		if (nr_pages == 0)
1427 			break;
1428 		for (i = 0; i < nr_pages; i++) {
1429 			struct page *page = pvec.pages[i];
1430 			if (page->index > end)
1431 				break;
1432 			BUG_ON(!PageLocked(page));
1433 			BUG_ON(PageWriteback(page));
1434 			if (invalidate) {
1435 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1436 				ClearPageUptodate(page);
1437 			}
1438 			unlock_page(page);
1439 		}
1440 		index = pvec.pages[nr_pages - 1]->index + 1;
1441 		pagevec_release(&pvec);
1442 	}
1443 }
1444 
1445 static void ext4_print_free_blocks(struct inode *inode)
1446 {
1447 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1448 	struct super_block *sb = inode->i_sb;
1449 	struct ext4_inode_info *ei = EXT4_I(inode);
1450 
1451 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1452 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1453 			ext4_count_free_clusters(sb)));
1454 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1455 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1456 	       (long long) EXT4_C2B(EXT4_SB(sb),
1457 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1458 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1459 	       (long long) EXT4_C2B(EXT4_SB(sb),
1460 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1461 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1462 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1463 		 ei->i_reserved_data_blocks);
1464 	return;
1465 }
1466 
1467 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1468 {
1469 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1470 }
1471 
1472 /*
1473  * This function is grabs code from the very beginning of
1474  * ext4_map_blocks, but assumes that the caller is from delayed write
1475  * time. This function looks up the requested blocks and sets the
1476  * buffer delay bit under the protection of i_data_sem.
1477  */
1478 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1479 			      struct ext4_map_blocks *map,
1480 			      struct buffer_head *bh)
1481 {
1482 	struct extent_status es;
1483 	int retval;
1484 	sector_t invalid_block = ~((sector_t) 0xffff);
1485 #ifdef ES_AGGRESSIVE_TEST
1486 	struct ext4_map_blocks orig_map;
1487 
1488 	memcpy(&orig_map, map, sizeof(*map));
1489 #endif
1490 
1491 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1492 		invalid_block = ~0;
1493 
1494 	map->m_flags = 0;
1495 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1496 		  "logical block %lu\n", inode->i_ino, map->m_len,
1497 		  (unsigned long) map->m_lblk);
1498 
1499 	/* Lookup extent status tree firstly */
1500 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1501 		if (ext4_es_is_hole(&es)) {
1502 			retval = 0;
1503 			down_read(&EXT4_I(inode)->i_data_sem);
1504 			goto add_delayed;
1505 		}
1506 
1507 		/*
1508 		 * Delayed extent could be allocated by fallocate.
1509 		 * So we need to check it.
1510 		 */
1511 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1512 			map_bh(bh, inode->i_sb, invalid_block);
1513 			set_buffer_new(bh);
1514 			set_buffer_delay(bh);
1515 			return 0;
1516 		}
1517 
1518 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1519 		retval = es.es_len - (iblock - es.es_lblk);
1520 		if (retval > map->m_len)
1521 			retval = map->m_len;
1522 		map->m_len = retval;
1523 		if (ext4_es_is_written(&es))
1524 			map->m_flags |= EXT4_MAP_MAPPED;
1525 		else if (ext4_es_is_unwritten(&es))
1526 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1527 		else
1528 			BUG_ON(1);
1529 
1530 #ifdef ES_AGGRESSIVE_TEST
1531 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1532 #endif
1533 		return retval;
1534 	}
1535 
1536 	/*
1537 	 * Try to see if we can get the block without requesting a new
1538 	 * file system block.
1539 	 */
1540 	down_read(&EXT4_I(inode)->i_data_sem);
1541 	if (ext4_has_inline_data(inode))
1542 		retval = 0;
1543 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1544 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1545 	else
1546 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1547 
1548 add_delayed:
1549 	if (retval == 0) {
1550 		int ret;
1551 		/*
1552 		 * XXX: __block_prepare_write() unmaps passed block,
1553 		 * is it OK?
1554 		 */
1555 		/*
1556 		 * If the block was allocated from previously allocated cluster,
1557 		 * then we don't need to reserve it again. However we still need
1558 		 * to reserve metadata for every block we're going to write.
1559 		 */
1560 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1561 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1562 			ret = ext4_da_reserve_space(inode);
1563 			if (ret) {
1564 				/* not enough space to reserve */
1565 				retval = ret;
1566 				goto out_unlock;
1567 			}
1568 		}
1569 
1570 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1571 					    ~0, EXTENT_STATUS_DELAYED);
1572 		if (ret) {
1573 			retval = ret;
1574 			goto out_unlock;
1575 		}
1576 
1577 		map_bh(bh, inode->i_sb, invalid_block);
1578 		set_buffer_new(bh);
1579 		set_buffer_delay(bh);
1580 	} else if (retval > 0) {
1581 		int ret;
1582 		unsigned int status;
1583 
1584 		if (unlikely(retval != map->m_len)) {
1585 			ext4_warning(inode->i_sb,
1586 				     "ES len assertion failed for inode "
1587 				     "%lu: retval %d != map->m_len %d",
1588 				     inode->i_ino, retval, map->m_len);
1589 			WARN_ON(1);
1590 		}
1591 
1592 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1593 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1594 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1595 					    map->m_pblk, status);
1596 		if (ret != 0)
1597 			retval = ret;
1598 	}
1599 
1600 out_unlock:
1601 	up_read((&EXT4_I(inode)->i_data_sem));
1602 
1603 	return retval;
1604 }
1605 
1606 /*
1607  * This is a special get_block_t callback which is used by
1608  * ext4_da_write_begin().  It will either return mapped block or
1609  * reserve space for a single block.
1610  *
1611  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1612  * We also have b_blocknr = -1 and b_bdev initialized properly
1613  *
1614  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1615  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1616  * initialized properly.
1617  */
1618 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1619 			   struct buffer_head *bh, int create)
1620 {
1621 	struct ext4_map_blocks map;
1622 	int ret = 0;
1623 
1624 	BUG_ON(create == 0);
1625 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1626 
1627 	map.m_lblk = iblock;
1628 	map.m_len = 1;
1629 
1630 	/*
1631 	 * first, we need to know whether the block is allocated already
1632 	 * preallocated blocks are unmapped but should treated
1633 	 * the same as allocated blocks.
1634 	 */
1635 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1636 	if (ret <= 0)
1637 		return ret;
1638 
1639 	map_bh(bh, inode->i_sb, map.m_pblk);
1640 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1641 
1642 	if (buffer_unwritten(bh)) {
1643 		/* A delayed write to unwritten bh should be marked
1644 		 * new and mapped.  Mapped ensures that we don't do
1645 		 * get_block multiple times when we write to the same
1646 		 * offset and new ensures that we do proper zero out
1647 		 * for partial write.
1648 		 */
1649 		set_buffer_new(bh);
1650 		set_buffer_mapped(bh);
1651 	}
1652 	return 0;
1653 }
1654 
1655 static int bget_one(handle_t *handle, struct buffer_head *bh)
1656 {
1657 	get_bh(bh);
1658 	return 0;
1659 }
1660 
1661 static int bput_one(handle_t *handle, struct buffer_head *bh)
1662 {
1663 	put_bh(bh);
1664 	return 0;
1665 }
1666 
1667 static int __ext4_journalled_writepage(struct page *page,
1668 				       unsigned int len)
1669 {
1670 	struct address_space *mapping = page->mapping;
1671 	struct inode *inode = mapping->host;
1672 	struct buffer_head *page_bufs = NULL;
1673 	handle_t *handle = NULL;
1674 	int ret = 0, err = 0;
1675 	int inline_data = ext4_has_inline_data(inode);
1676 	struct buffer_head *inode_bh = NULL;
1677 
1678 	ClearPageChecked(page);
1679 
1680 	if (inline_data) {
1681 		BUG_ON(page->index != 0);
1682 		BUG_ON(len > ext4_get_max_inline_size(inode));
1683 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1684 		if (inode_bh == NULL)
1685 			goto out;
1686 	} else {
1687 		page_bufs = page_buffers(page);
1688 		if (!page_bufs) {
1689 			BUG();
1690 			goto out;
1691 		}
1692 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1693 				       NULL, bget_one);
1694 	}
1695 	/*
1696 	 * We need to release the page lock before we start the
1697 	 * journal, so grab a reference so the page won't disappear
1698 	 * out from under us.
1699 	 */
1700 	get_page(page);
1701 	unlock_page(page);
1702 
1703 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1704 				    ext4_writepage_trans_blocks(inode));
1705 	if (IS_ERR(handle)) {
1706 		ret = PTR_ERR(handle);
1707 		put_page(page);
1708 		goto out_no_pagelock;
1709 	}
1710 	BUG_ON(!ext4_handle_valid(handle));
1711 
1712 	lock_page(page);
1713 	put_page(page);
1714 	if (page->mapping != mapping) {
1715 		/* The page got truncated from under us */
1716 		ext4_journal_stop(handle);
1717 		ret = 0;
1718 		goto out;
1719 	}
1720 
1721 	if (inline_data) {
1722 		BUFFER_TRACE(inode_bh, "get write access");
1723 		ret = ext4_journal_get_write_access(handle, inode_bh);
1724 
1725 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1726 
1727 	} else {
1728 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1729 					     do_journal_get_write_access);
1730 
1731 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1732 					     write_end_fn);
1733 	}
1734 	if (ret == 0)
1735 		ret = err;
1736 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1737 	err = ext4_journal_stop(handle);
1738 	if (!ret)
1739 		ret = err;
1740 
1741 	if (!ext4_has_inline_data(inode))
1742 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1743 				       NULL, bput_one);
1744 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1745 out:
1746 	unlock_page(page);
1747 out_no_pagelock:
1748 	brelse(inode_bh);
1749 	return ret;
1750 }
1751 
1752 /*
1753  * Note that we don't need to start a transaction unless we're journaling data
1754  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1755  * need to file the inode to the transaction's list in ordered mode because if
1756  * we are writing back data added by write(), the inode is already there and if
1757  * we are writing back data modified via mmap(), no one guarantees in which
1758  * transaction the data will hit the disk. In case we are journaling data, we
1759  * cannot start transaction directly because transaction start ranks above page
1760  * lock so we have to do some magic.
1761  *
1762  * This function can get called via...
1763  *   - ext4_writepages after taking page lock (have journal handle)
1764  *   - journal_submit_inode_data_buffers (no journal handle)
1765  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1766  *   - grab_page_cache when doing write_begin (have journal handle)
1767  *
1768  * We don't do any block allocation in this function. If we have page with
1769  * multiple blocks we need to write those buffer_heads that are mapped. This
1770  * is important for mmaped based write. So if we do with blocksize 1K
1771  * truncate(f, 1024);
1772  * a = mmap(f, 0, 4096);
1773  * a[0] = 'a';
1774  * truncate(f, 4096);
1775  * we have in the page first buffer_head mapped via page_mkwrite call back
1776  * but other buffer_heads would be unmapped but dirty (dirty done via the
1777  * do_wp_page). So writepage should write the first block. If we modify
1778  * the mmap area beyond 1024 we will again get a page_fault and the
1779  * page_mkwrite callback will do the block allocation and mark the
1780  * buffer_heads mapped.
1781  *
1782  * We redirty the page if we have any buffer_heads that is either delay or
1783  * unwritten in the page.
1784  *
1785  * We can get recursively called as show below.
1786  *
1787  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1788  *		ext4_writepage()
1789  *
1790  * But since we don't do any block allocation we should not deadlock.
1791  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1792  */
1793 static int ext4_writepage(struct page *page,
1794 			  struct writeback_control *wbc)
1795 {
1796 	int ret = 0;
1797 	loff_t size;
1798 	unsigned int len;
1799 	struct buffer_head *page_bufs = NULL;
1800 	struct inode *inode = page->mapping->host;
1801 	struct ext4_io_submit io_submit;
1802 	bool keep_towrite = false;
1803 
1804 	trace_ext4_writepage(page);
1805 	size = i_size_read(inode);
1806 	if (page->index == size >> PAGE_CACHE_SHIFT)
1807 		len = size & ~PAGE_CACHE_MASK;
1808 	else
1809 		len = PAGE_CACHE_SIZE;
1810 
1811 	page_bufs = page_buffers(page);
1812 	/*
1813 	 * We cannot do block allocation or other extent handling in this
1814 	 * function. If there are buffers needing that, we have to redirty
1815 	 * the page. But we may reach here when we do a journal commit via
1816 	 * journal_submit_inode_data_buffers() and in that case we must write
1817 	 * allocated buffers to achieve data=ordered mode guarantees.
1818 	 */
1819 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1820 				   ext4_bh_delay_or_unwritten)) {
1821 		redirty_page_for_writepage(wbc, page);
1822 		if (current->flags & PF_MEMALLOC) {
1823 			/*
1824 			 * For memory cleaning there's no point in writing only
1825 			 * some buffers. So just bail out. Warn if we came here
1826 			 * from direct reclaim.
1827 			 */
1828 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1829 							== PF_MEMALLOC);
1830 			unlock_page(page);
1831 			return 0;
1832 		}
1833 		keep_towrite = true;
1834 	}
1835 
1836 	if (PageChecked(page) && ext4_should_journal_data(inode))
1837 		/*
1838 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1839 		 * doesn't seem much point in redirtying the page here.
1840 		 */
1841 		return __ext4_journalled_writepage(page, len);
1842 
1843 	ext4_io_submit_init(&io_submit, wbc);
1844 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1845 	if (!io_submit.io_end) {
1846 		redirty_page_for_writepage(wbc, page);
1847 		unlock_page(page);
1848 		return -ENOMEM;
1849 	}
1850 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1851 	ext4_io_submit(&io_submit);
1852 	/* Drop io_end reference we got from init */
1853 	ext4_put_io_end_defer(io_submit.io_end);
1854 	return ret;
1855 }
1856 
1857 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1858 {
1859 	int len;
1860 	loff_t size = i_size_read(mpd->inode);
1861 	int err;
1862 
1863 	BUG_ON(page->index != mpd->first_page);
1864 	if (page->index == size >> PAGE_CACHE_SHIFT)
1865 		len = size & ~PAGE_CACHE_MASK;
1866 	else
1867 		len = PAGE_CACHE_SIZE;
1868 	clear_page_dirty_for_io(page);
1869 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1870 	if (!err)
1871 		mpd->wbc->nr_to_write--;
1872 	mpd->first_page++;
1873 
1874 	return err;
1875 }
1876 
1877 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1878 
1879 /*
1880  * mballoc gives us at most this number of blocks...
1881  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1882  * The rest of mballoc seems to handle chunks up to full group size.
1883  */
1884 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1885 
1886 /*
1887  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1888  *
1889  * @mpd - extent of blocks
1890  * @lblk - logical number of the block in the file
1891  * @bh - buffer head we want to add to the extent
1892  *
1893  * The function is used to collect contig. blocks in the same state. If the
1894  * buffer doesn't require mapping for writeback and we haven't started the
1895  * extent of buffers to map yet, the function returns 'true' immediately - the
1896  * caller can write the buffer right away. Otherwise the function returns true
1897  * if the block has been added to the extent, false if the block couldn't be
1898  * added.
1899  */
1900 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1901 				   struct buffer_head *bh)
1902 {
1903 	struct ext4_map_blocks *map = &mpd->map;
1904 
1905 	/* Buffer that doesn't need mapping for writeback? */
1906 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1907 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1908 		/* So far no extent to map => we write the buffer right away */
1909 		if (map->m_len == 0)
1910 			return true;
1911 		return false;
1912 	}
1913 
1914 	/* First block in the extent? */
1915 	if (map->m_len == 0) {
1916 		map->m_lblk = lblk;
1917 		map->m_len = 1;
1918 		map->m_flags = bh->b_state & BH_FLAGS;
1919 		return true;
1920 	}
1921 
1922 	/* Don't go larger than mballoc is willing to allocate */
1923 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1924 		return false;
1925 
1926 	/* Can we merge the block to our big extent? */
1927 	if (lblk == map->m_lblk + map->m_len &&
1928 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1929 		map->m_len++;
1930 		return true;
1931 	}
1932 	return false;
1933 }
1934 
1935 /*
1936  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1937  *
1938  * @mpd - extent of blocks for mapping
1939  * @head - the first buffer in the page
1940  * @bh - buffer we should start processing from
1941  * @lblk - logical number of the block in the file corresponding to @bh
1942  *
1943  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1944  * the page for IO if all buffers in this page were mapped and there's no
1945  * accumulated extent of buffers to map or add buffers in the page to the
1946  * extent of buffers to map. The function returns 1 if the caller can continue
1947  * by processing the next page, 0 if it should stop adding buffers to the
1948  * extent to map because we cannot extend it anymore. It can also return value
1949  * < 0 in case of error during IO submission.
1950  */
1951 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1952 				   struct buffer_head *head,
1953 				   struct buffer_head *bh,
1954 				   ext4_lblk_t lblk)
1955 {
1956 	struct inode *inode = mpd->inode;
1957 	int err;
1958 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1959 							>> inode->i_blkbits;
1960 
1961 	do {
1962 		BUG_ON(buffer_locked(bh));
1963 
1964 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1965 			/* Found extent to map? */
1966 			if (mpd->map.m_len)
1967 				return 0;
1968 			/* Everything mapped so far and we hit EOF */
1969 			break;
1970 		}
1971 	} while (lblk++, (bh = bh->b_this_page) != head);
1972 	/* So far everything mapped? Submit the page for IO. */
1973 	if (mpd->map.m_len == 0) {
1974 		err = mpage_submit_page(mpd, head->b_page);
1975 		if (err < 0)
1976 			return err;
1977 	}
1978 	return lblk < blocks;
1979 }
1980 
1981 /*
1982  * mpage_map_buffers - update buffers corresponding to changed extent and
1983  *		       submit fully mapped pages for IO
1984  *
1985  * @mpd - description of extent to map, on return next extent to map
1986  *
1987  * Scan buffers corresponding to changed extent (we expect corresponding pages
1988  * to be already locked) and update buffer state according to new extent state.
1989  * We map delalloc buffers to their physical location, clear unwritten bits,
1990  * and mark buffers as uninit when we perform writes to unwritten extents
1991  * and do extent conversion after IO is finished. If the last page is not fully
1992  * mapped, we update @map to the next extent in the last page that needs
1993  * mapping. Otherwise we submit the page for IO.
1994  */
1995 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1996 {
1997 	struct pagevec pvec;
1998 	int nr_pages, i;
1999 	struct inode *inode = mpd->inode;
2000 	struct buffer_head *head, *bh;
2001 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2002 	pgoff_t start, end;
2003 	ext4_lblk_t lblk;
2004 	sector_t pblock;
2005 	int err;
2006 
2007 	start = mpd->map.m_lblk >> bpp_bits;
2008 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2009 	lblk = start << bpp_bits;
2010 	pblock = mpd->map.m_pblk;
2011 
2012 	pagevec_init(&pvec, 0);
2013 	while (start <= end) {
2014 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2015 					  PAGEVEC_SIZE);
2016 		if (nr_pages == 0)
2017 			break;
2018 		for (i = 0; i < nr_pages; i++) {
2019 			struct page *page = pvec.pages[i];
2020 
2021 			if (page->index > end)
2022 				break;
2023 			/* Up to 'end' pages must be contiguous */
2024 			BUG_ON(page->index != start);
2025 			bh = head = page_buffers(page);
2026 			do {
2027 				if (lblk < mpd->map.m_lblk)
2028 					continue;
2029 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2030 					/*
2031 					 * Buffer after end of mapped extent.
2032 					 * Find next buffer in the page to map.
2033 					 */
2034 					mpd->map.m_len = 0;
2035 					mpd->map.m_flags = 0;
2036 					/*
2037 					 * FIXME: If dioread_nolock supports
2038 					 * blocksize < pagesize, we need to make
2039 					 * sure we add size mapped so far to
2040 					 * io_end->size as the following call
2041 					 * can submit the page for IO.
2042 					 */
2043 					err = mpage_process_page_bufs(mpd, head,
2044 								      bh, lblk);
2045 					pagevec_release(&pvec);
2046 					if (err > 0)
2047 						err = 0;
2048 					return err;
2049 				}
2050 				if (buffer_delay(bh)) {
2051 					clear_buffer_delay(bh);
2052 					bh->b_blocknr = pblock++;
2053 				}
2054 				clear_buffer_unwritten(bh);
2055 			} while (lblk++, (bh = bh->b_this_page) != head);
2056 
2057 			/*
2058 			 * FIXME: This is going to break if dioread_nolock
2059 			 * supports blocksize < pagesize as we will try to
2060 			 * convert potentially unmapped parts of inode.
2061 			 */
2062 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2063 			/* Page fully mapped - let IO run! */
2064 			err = mpage_submit_page(mpd, page);
2065 			if (err < 0) {
2066 				pagevec_release(&pvec);
2067 				return err;
2068 			}
2069 			start++;
2070 		}
2071 		pagevec_release(&pvec);
2072 	}
2073 	/* Extent fully mapped and matches with page boundary. We are done. */
2074 	mpd->map.m_len = 0;
2075 	mpd->map.m_flags = 0;
2076 	return 0;
2077 }
2078 
2079 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2080 {
2081 	struct inode *inode = mpd->inode;
2082 	struct ext4_map_blocks *map = &mpd->map;
2083 	int get_blocks_flags;
2084 	int err, dioread_nolock;
2085 
2086 	trace_ext4_da_write_pages_extent(inode, map);
2087 	/*
2088 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2089 	 * to convert an unwritten extent to be initialized (in the case
2090 	 * where we have written into one or more preallocated blocks).  It is
2091 	 * possible that we're going to need more metadata blocks than
2092 	 * previously reserved. However we must not fail because we're in
2093 	 * writeback and there is nothing we can do about it so it might result
2094 	 * in data loss.  So use reserved blocks to allocate metadata if
2095 	 * possible.
2096 	 *
2097 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2098 	 * the blocks in question are delalloc blocks.  This indicates
2099 	 * that the blocks and quotas has already been checked when
2100 	 * the data was copied into the page cache.
2101 	 */
2102 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2103 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2104 	dioread_nolock = ext4_should_dioread_nolock(inode);
2105 	if (dioread_nolock)
2106 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2107 	if (map->m_flags & (1 << BH_Delay))
2108 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2109 
2110 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2111 	if (err < 0)
2112 		return err;
2113 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2114 		if (!mpd->io_submit.io_end->handle &&
2115 		    ext4_handle_valid(handle)) {
2116 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2117 			handle->h_rsv_handle = NULL;
2118 		}
2119 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2120 	}
2121 
2122 	BUG_ON(map->m_len == 0);
2123 	if (map->m_flags & EXT4_MAP_NEW) {
2124 		struct block_device *bdev = inode->i_sb->s_bdev;
2125 		int i;
2126 
2127 		for (i = 0; i < map->m_len; i++)
2128 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2129 	}
2130 	return 0;
2131 }
2132 
2133 /*
2134  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2135  *				 mpd->len and submit pages underlying it for IO
2136  *
2137  * @handle - handle for journal operations
2138  * @mpd - extent to map
2139  * @give_up_on_write - we set this to true iff there is a fatal error and there
2140  *                     is no hope of writing the data. The caller should discard
2141  *                     dirty pages to avoid infinite loops.
2142  *
2143  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2144  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2145  * them to initialized or split the described range from larger unwritten
2146  * extent. Note that we need not map all the described range since allocation
2147  * can return less blocks or the range is covered by more unwritten extents. We
2148  * cannot map more because we are limited by reserved transaction credits. On
2149  * the other hand we always make sure that the last touched page is fully
2150  * mapped so that it can be written out (and thus forward progress is
2151  * guaranteed). After mapping we submit all mapped pages for IO.
2152  */
2153 static int mpage_map_and_submit_extent(handle_t *handle,
2154 				       struct mpage_da_data *mpd,
2155 				       bool *give_up_on_write)
2156 {
2157 	struct inode *inode = mpd->inode;
2158 	struct ext4_map_blocks *map = &mpd->map;
2159 	int err;
2160 	loff_t disksize;
2161 	int progress = 0;
2162 
2163 	mpd->io_submit.io_end->offset =
2164 				((loff_t)map->m_lblk) << inode->i_blkbits;
2165 	do {
2166 		err = mpage_map_one_extent(handle, mpd);
2167 		if (err < 0) {
2168 			struct super_block *sb = inode->i_sb;
2169 
2170 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2171 				goto invalidate_dirty_pages;
2172 			/*
2173 			 * Let the uper layers retry transient errors.
2174 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2175 			 * is non-zero, a commit should free up blocks.
2176 			 */
2177 			if ((err == -ENOMEM) ||
2178 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2179 				if (progress)
2180 					goto update_disksize;
2181 				return err;
2182 			}
2183 			ext4_msg(sb, KERN_CRIT,
2184 				 "Delayed block allocation failed for "
2185 				 "inode %lu at logical offset %llu with"
2186 				 " max blocks %u with error %d",
2187 				 inode->i_ino,
2188 				 (unsigned long long)map->m_lblk,
2189 				 (unsigned)map->m_len, -err);
2190 			ext4_msg(sb, KERN_CRIT,
2191 				 "This should not happen!! Data will "
2192 				 "be lost\n");
2193 			if (err == -ENOSPC)
2194 				ext4_print_free_blocks(inode);
2195 		invalidate_dirty_pages:
2196 			*give_up_on_write = true;
2197 			return err;
2198 		}
2199 		progress = 1;
2200 		/*
2201 		 * Update buffer state, submit mapped pages, and get us new
2202 		 * extent to map
2203 		 */
2204 		err = mpage_map_and_submit_buffers(mpd);
2205 		if (err < 0)
2206 			goto update_disksize;
2207 	} while (map->m_len);
2208 
2209 update_disksize:
2210 	/*
2211 	 * Update on-disk size after IO is submitted.  Races with
2212 	 * truncate are avoided by checking i_size under i_data_sem.
2213 	 */
2214 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2215 	if (disksize > EXT4_I(inode)->i_disksize) {
2216 		int err2;
2217 		loff_t i_size;
2218 
2219 		down_write(&EXT4_I(inode)->i_data_sem);
2220 		i_size = i_size_read(inode);
2221 		if (disksize > i_size)
2222 			disksize = i_size;
2223 		if (disksize > EXT4_I(inode)->i_disksize)
2224 			EXT4_I(inode)->i_disksize = disksize;
2225 		err2 = ext4_mark_inode_dirty(handle, inode);
2226 		up_write(&EXT4_I(inode)->i_data_sem);
2227 		if (err2)
2228 			ext4_error(inode->i_sb,
2229 				   "Failed to mark inode %lu dirty",
2230 				   inode->i_ino);
2231 		if (!err)
2232 			err = err2;
2233 	}
2234 	return err;
2235 }
2236 
2237 /*
2238  * Calculate the total number of credits to reserve for one writepages
2239  * iteration. This is called from ext4_writepages(). We map an extent of
2240  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2241  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2242  * bpp - 1 blocks in bpp different extents.
2243  */
2244 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2245 {
2246 	int bpp = ext4_journal_blocks_per_page(inode);
2247 
2248 	return ext4_meta_trans_blocks(inode,
2249 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2250 }
2251 
2252 /*
2253  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2254  * 				 and underlying extent to map
2255  *
2256  * @mpd - where to look for pages
2257  *
2258  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2259  * IO immediately. When we find a page which isn't mapped we start accumulating
2260  * extent of buffers underlying these pages that needs mapping (formed by
2261  * either delayed or unwritten buffers). We also lock the pages containing
2262  * these buffers. The extent found is returned in @mpd structure (starting at
2263  * mpd->lblk with length mpd->len blocks).
2264  *
2265  * Note that this function can attach bios to one io_end structure which are
2266  * neither logically nor physically contiguous. Although it may seem as an
2267  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2268  * case as we need to track IO to all buffers underlying a page in one io_end.
2269  */
2270 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2271 {
2272 	struct address_space *mapping = mpd->inode->i_mapping;
2273 	struct pagevec pvec;
2274 	unsigned int nr_pages;
2275 	long left = mpd->wbc->nr_to_write;
2276 	pgoff_t index = mpd->first_page;
2277 	pgoff_t end = mpd->last_page;
2278 	int tag;
2279 	int i, err = 0;
2280 	int blkbits = mpd->inode->i_blkbits;
2281 	ext4_lblk_t lblk;
2282 	struct buffer_head *head;
2283 
2284 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2285 		tag = PAGECACHE_TAG_TOWRITE;
2286 	else
2287 		tag = PAGECACHE_TAG_DIRTY;
2288 
2289 	pagevec_init(&pvec, 0);
2290 	mpd->map.m_len = 0;
2291 	mpd->next_page = index;
2292 	while (index <= end) {
2293 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2294 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2295 		if (nr_pages == 0)
2296 			goto out;
2297 
2298 		for (i = 0; i < nr_pages; i++) {
2299 			struct page *page = pvec.pages[i];
2300 
2301 			/*
2302 			 * At this point, the page may be truncated or
2303 			 * invalidated (changing page->mapping to NULL), or
2304 			 * even swizzled back from swapper_space to tmpfs file
2305 			 * mapping. However, page->index will not change
2306 			 * because we have a reference on the page.
2307 			 */
2308 			if (page->index > end)
2309 				goto out;
2310 
2311 			/*
2312 			 * Accumulated enough dirty pages? This doesn't apply
2313 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2314 			 * keep going because someone may be concurrently
2315 			 * dirtying pages, and we might have synced a lot of
2316 			 * newly appeared dirty pages, but have not synced all
2317 			 * of the old dirty pages.
2318 			 */
2319 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2320 				goto out;
2321 
2322 			/* If we can't merge this page, we are done. */
2323 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2324 				goto out;
2325 
2326 			lock_page(page);
2327 			/*
2328 			 * If the page is no longer dirty, or its mapping no
2329 			 * longer corresponds to inode we are writing (which
2330 			 * means it has been truncated or invalidated), or the
2331 			 * page is already under writeback and we are not doing
2332 			 * a data integrity writeback, skip the page
2333 			 */
2334 			if (!PageDirty(page) ||
2335 			    (PageWriteback(page) &&
2336 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2337 			    unlikely(page->mapping != mapping)) {
2338 				unlock_page(page);
2339 				continue;
2340 			}
2341 
2342 			wait_on_page_writeback(page);
2343 			BUG_ON(PageWriteback(page));
2344 
2345 			if (mpd->map.m_len == 0)
2346 				mpd->first_page = page->index;
2347 			mpd->next_page = page->index + 1;
2348 			/* Add all dirty buffers to mpd */
2349 			lblk = ((ext4_lblk_t)page->index) <<
2350 				(PAGE_CACHE_SHIFT - blkbits);
2351 			head = page_buffers(page);
2352 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2353 			if (err <= 0)
2354 				goto out;
2355 			err = 0;
2356 			left--;
2357 		}
2358 		pagevec_release(&pvec);
2359 		cond_resched();
2360 	}
2361 	return 0;
2362 out:
2363 	pagevec_release(&pvec);
2364 	return err;
2365 }
2366 
2367 static int __writepage(struct page *page, struct writeback_control *wbc,
2368 		       void *data)
2369 {
2370 	struct address_space *mapping = data;
2371 	int ret = ext4_writepage(page, wbc);
2372 	mapping_set_error(mapping, ret);
2373 	return ret;
2374 }
2375 
2376 static int ext4_writepages(struct address_space *mapping,
2377 			   struct writeback_control *wbc)
2378 {
2379 	pgoff_t	writeback_index = 0;
2380 	long nr_to_write = wbc->nr_to_write;
2381 	int range_whole = 0;
2382 	int cycled = 1;
2383 	handle_t *handle = NULL;
2384 	struct mpage_da_data mpd;
2385 	struct inode *inode = mapping->host;
2386 	int needed_blocks, rsv_blocks = 0, ret = 0;
2387 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2388 	bool done;
2389 	struct blk_plug plug;
2390 	bool give_up_on_write = false;
2391 
2392 	trace_ext4_writepages(inode, wbc);
2393 
2394 	/*
2395 	 * No pages to write? This is mainly a kludge to avoid starting
2396 	 * a transaction for special inodes like journal inode on last iput()
2397 	 * because that could violate lock ordering on umount
2398 	 */
2399 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2400 		goto out_writepages;
2401 
2402 	if (ext4_should_journal_data(inode)) {
2403 		struct blk_plug plug;
2404 
2405 		blk_start_plug(&plug);
2406 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2407 		blk_finish_plug(&plug);
2408 		goto out_writepages;
2409 	}
2410 
2411 	/*
2412 	 * If the filesystem has aborted, it is read-only, so return
2413 	 * right away instead of dumping stack traces later on that
2414 	 * will obscure the real source of the problem.  We test
2415 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2416 	 * the latter could be true if the filesystem is mounted
2417 	 * read-only, and in that case, ext4_writepages should
2418 	 * *never* be called, so if that ever happens, we would want
2419 	 * the stack trace.
2420 	 */
2421 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2422 		ret = -EROFS;
2423 		goto out_writepages;
2424 	}
2425 
2426 	if (ext4_should_dioread_nolock(inode)) {
2427 		/*
2428 		 * We may need to convert up to one extent per block in
2429 		 * the page and we may dirty the inode.
2430 		 */
2431 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2432 	}
2433 
2434 	/*
2435 	 * If we have inline data and arrive here, it means that
2436 	 * we will soon create the block for the 1st page, so
2437 	 * we'd better clear the inline data here.
2438 	 */
2439 	if (ext4_has_inline_data(inode)) {
2440 		/* Just inode will be modified... */
2441 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2442 		if (IS_ERR(handle)) {
2443 			ret = PTR_ERR(handle);
2444 			goto out_writepages;
2445 		}
2446 		BUG_ON(ext4_test_inode_state(inode,
2447 				EXT4_STATE_MAY_INLINE_DATA));
2448 		ext4_destroy_inline_data(handle, inode);
2449 		ext4_journal_stop(handle);
2450 	}
2451 
2452 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2453 		range_whole = 1;
2454 
2455 	if (wbc->range_cyclic) {
2456 		writeback_index = mapping->writeback_index;
2457 		if (writeback_index)
2458 			cycled = 0;
2459 		mpd.first_page = writeback_index;
2460 		mpd.last_page = -1;
2461 	} else {
2462 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2463 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2464 	}
2465 
2466 	mpd.inode = inode;
2467 	mpd.wbc = wbc;
2468 	ext4_io_submit_init(&mpd.io_submit, wbc);
2469 retry:
2470 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2471 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2472 	done = false;
2473 	blk_start_plug(&plug);
2474 	while (!done && mpd.first_page <= mpd.last_page) {
2475 		/* For each extent of pages we use new io_end */
2476 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2477 		if (!mpd.io_submit.io_end) {
2478 			ret = -ENOMEM;
2479 			break;
2480 		}
2481 
2482 		/*
2483 		 * We have two constraints: We find one extent to map and we
2484 		 * must always write out whole page (makes a difference when
2485 		 * blocksize < pagesize) so that we don't block on IO when we
2486 		 * try to write out the rest of the page. Journalled mode is
2487 		 * not supported by delalloc.
2488 		 */
2489 		BUG_ON(ext4_should_journal_data(inode));
2490 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2491 
2492 		/* start a new transaction */
2493 		handle = ext4_journal_start_with_reserve(inode,
2494 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2495 		if (IS_ERR(handle)) {
2496 			ret = PTR_ERR(handle);
2497 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2498 			       "%ld pages, ino %lu; err %d", __func__,
2499 				wbc->nr_to_write, inode->i_ino, ret);
2500 			/* Release allocated io_end */
2501 			ext4_put_io_end(mpd.io_submit.io_end);
2502 			break;
2503 		}
2504 
2505 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2506 		ret = mpage_prepare_extent_to_map(&mpd);
2507 		if (!ret) {
2508 			if (mpd.map.m_len)
2509 				ret = mpage_map_and_submit_extent(handle, &mpd,
2510 					&give_up_on_write);
2511 			else {
2512 				/*
2513 				 * We scanned the whole range (or exhausted
2514 				 * nr_to_write), submitted what was mapped and
2515 				 * didn't find anything needing mapping. We are
2516 				 * done.
2517 				 */
2518 				done = true;
2519 			}
2520 		}
2521 		ext4_journal_stop(handle);
2522 		/* Submit prepared bio */
2523 		ext4_io_submit(&mpd.io_submit);
2524 		/* Unlock pages we didn't use */
2525 		mpage_release_unused_pages(&mpd, give_up_on_write);
2526 		/* Drop our io_end reference we got from init */
2527 		ext4_put_io_end(mpd.io_submit.io_end);
2528 
2529 		if (ret == -ENOSPC && sbi->s_journal) {
2530 			/*
2531 			 * Commit the transaction which would
2532 			 * free blocks released in the transaction
2533 			 * and try again
2534 			 */
2535 			jbd2_journal_force_commit_nested(sbi->s_journal);
2536 			ret = 0;
2537 			continue;
2538 		}
2539 		/* Fatal error - ENOMEM, EIO... */
2540 		if (ret)
2541 			break;
2542 	}
2543 	blk_finish_plug(&plug);
2544 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2545 		cycled = 1;
2546 		mpd.last_page = writeback_index - 1;
2547 		mpd.first_page = 0;
2548 		goto retry;
2549 	}
2550 
2551 	/* Update index */
2552 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2553 		/*
2554 		 * Set the writeback_index so that range_cyclic
2555 		 * mode will write it back later
2556 		 */
2557 		mapping->writeback_index = mpd.first_page;
2558 
2559 out_writepages:
2560 	trace_ext4_writepages_result(inode, wbc, ret,
2561 				     nr_to_write - wbc->nr_to_write);
2562 	return ret;
2563 }
2564 
2565 static int ext4_nonda_switch(struct super_block *sb)
2566 {
2567 	s64 free_clusters, dirty_clusters;
2568 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2569 
2570 	/*
2571 	 * switch to non delalloc mode if we are running low
2572 	 * on free block. The free block accounting via percpu
2573 	 * counters can get slightly wrong with percpu_counter_batch getting
2574 	 * accumulated on each CPU without updating global counters
2575 	 * Delalloc need an accurate free block accounting. So switch
2576 	 * to non delalloc when we are near to error range.
2577 	 */
2578 	free_clusters =
2579 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2580 	dirty_clusters =
2581 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2582 	/*
2583 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2584 	 */
2585 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2586 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2587 
2588 	if (2 * free_clusters < 3 * dirty_clusters ||
2589 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2590 		/*
2591 		 * free block count is less than 150% of dirty blocks
2592 		 * or free blocks is less than watermark
2593 		 */
2594 		return 1;
2595 	}
2596 	return 0;
2597 }
2598 
2599 /* We always reserve for an inode update; the superblock could be there too */
2600 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2601 {
2602 	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2603 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2604 		return 1;
2605 
2606 	if (pos + len <= 0x7fffffffULL)
2607 		return 1;
2608 
2609 	/* We might need to update the superblock to set LARGE_FILE */
2610 	return 2;
2611 }
2612 
2613 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2614 			       loff_t pos, unsigned len, unsigned flags,
2615 			       struct page **pagep, void **fsdata)
2616 {
2617 	int ret, retries = 0;
2618 	struct page *page;
2619 	pgoff_t index;
2620 	struct inode *inode = mapping->host;
2621 	handle_t *handle;
2622 
2623 	index = pos >> PAGE_CACHE_SHIFT;
2624 
2625 	if (ext4_nonda_switch(inode->i_sb)) {
2626 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2627 		return ext4_write_begin(file, mapping, pos,
2628 					len, flags, pagep, fsdata);
2629 	}
2630 	*fsdata = (void *)0;
2631 	trace_ext4_da_write_begin(inode, pos, len, flags);
2632 
2633 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2634 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2635 						      pos, len, flags,
2636 						      pagep, fsdata);
2637 		if (ret < 0)
2638 			return ret;
2639 		if (ret == 1)
2640 			return 0;
2641 	}
2642 
2643 	/*
2644 	 * grab_cache_page_write_begin() can take a long time if the
2645 	 * system is thrashing due to memory pressure, or if the page
2646 	 * is being written back.  So grab it first before we start
2647 	 * the transaction handle.  This also allows us to allocate
2648 	 * the page (if needed) without using GFP_NOFS.
2649 	 */
2650 retry_grab:
2651 	page = grab_cache_page_write_begin(mapping, index, flags);
2652 	if (!page)
2653 		return -ENOMEM;
2654 	unlock_page(page);
2655 
2656 	/*
2657 	 * With delayed allocation, we don't log the i_disksize update
2658 	 * if there is delayed block allocation. But we still need
2659 	 * to journalling the i_disksize update if writes to the end
2660 	 * of file which has an already mapped buffer.
2661 	 */
2662 retry_journal:
2663 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2664 				ext4_da_write_credits(inode, pos, len));
2665 	if (IS_ERR(handle)) {
2666 		page_cache_release(page);
2667 		return PTR_ERR(handle);
2668 	}
2669 
2670 	lock_page(page);
2671 	if (page->mapping != mapping) {
2672 		/* The page got truncated from under us */
2673 		unlock_page(page);
2674 		page_cache_release(page);
2675 		ext4_journal_stop(handle);
2676 		goto retry_grab;
2677 	}
2678 	/* In case writeback began while the page was unlocked */
2679 	wait_for_stable_page(page);
2680 
2681 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2682 	ret = ext4_block_write_begin(page, pos, len,
2683 				     ext4_da_get_block_prep);
2684 #else
2685 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2686 #endif
2687 	if (ret < 0) {
2688 		unlock_page(page);
2689 		ext4_journal_stop(handle);
2690 		/*
2691 		 * block_write_begin may have instantiated a few blocks
2692 		 * outside i_size.  Trim these off again. Don't need
2693 		 * i_size_read because we hold i_mutex.
2694 		 */
2695 		if (pos + len > inode->i_size)
2696 			ext4_truncate_failed_write(inode);
2697 
2698 		if (ret == -ENOSPC &&
2699 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2700 			goto retry_journal;
2701 
2702 		page_cache_release(page);
2703 		return ret;
2704 	}
2705 
2706 	*pagep = page;
2707 	return ret;
2708 }
2709 
2710 /*
2711  * Check if we should update i_disksize
2712  * when write to the end of file but not require block allocation
2713  */
2714 static int ext4_da_should_update_i_disksize(struct page *page,
2715 					    unsigned long offset)
2716 {
2717 	struct buffer_head *bh;
2718 	struct inode *inode = page->mapping->host;
2719 	unsigned int idx;
2720 	int i;
2721 
2722 	bh = page_buffers(page);
2723 	idx = offset >> inode->i_blkbits;
2724 
2725 	for (i = 0; i < idx; i++)
2726 		bh = bh->b_this_page;
2727 
2728 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2729 		return 0;
2730 	return 1;
2731 }
2732 
2733 static int ext4_da_write_end(struct file *file,
2734 			     struct address_space *mapping,
2735 			     loff_t pos, unsigned len, unsigned copied,
2736 			     struct page *page, void *fsdata)
2737 {
2738 	struct inode *inode = mapping->host;
2739 	int ret = 0, ret2;
2740 	handle_t *handle = ext4_journal_current_handle();
2741 	loff_t new_i_size;
2742 	unsigned long start, end;
2743 	int write_mode = (int)(unsigned long)fsdata;
2744 
2745 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2746 		return ext4_write_end(file, mapping, pos,
2747 				      len, copied, page, fsdata);
2748 
2749 	trace_ext4_da_write_end(inode, pos, len, copied);
2750 	start = pos & (PAGE_CACHE_SIZE - 1);
2751 	end = start + copied - 1;
2752 
2753 	/*
2754 	 * generic_write_end() will run mark_inode_dirty() if i_size
2755 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2756 	 * into that.
2757 	 */
2758 	new_i_size = pos + copied;
2759 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2760 		if (ext4_has_inline_data(inode) ||
2761 		    ext4_da_should_update_i_disksize(page, end)) {
2762 			ext4_update_i_disksize(inode, new_i_size);
2763 			/* We need to mark inode dirty even if
2764 			 * new_i_size is less that inode->i_size
2765 			 * bu greater than i_disksize.(hint delalloc)
2766 			 */
2767 			ext4_mark_inode_dirty(handle, inode);
2768 		}
2769 	}
2770 
2771 	if (write_mode != CONVERT_INLINE_DATA &&
2772 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2773 	    ext4_has_inline_data(inode))
2774 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2775 						     page);
2776 	else
2777 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2778 							page, fsdata);
2779 
2780 	copied = ret2;
2781 	if (ret2 < 0)
2782 		ret = ret2;
2783 	ret2 = ext4_journal_stop(handle);
2784 	if (!ret)
2785 		ret = ret2;
2786 
2787 	return ret ? ret : copied;
2788 }
2789 
2790 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2791 				   unsigned int length)
2792 {
2793 	/*
2794 	 * Drop reserved blocks
2795 	 */
2796 	BUG_ON(!PageLocked(page));
2797 	if (!page_has_buffers(page))
2798 		goto out;
2799 
2800 	ext4_da_page_release_reservation(page, offset, length);
2801 
2802 out:
2803 	ext4_invalidatepage(page, offset, length);
2804 
2805 	return;
2806 }
2807 
2808 /*
2809  * Force all delayed allocation blocks to be allocated for a given inode.
2810  */
2811 int ext4_alloc_da_blocks(struct inode *inode)
2812 {
2813 	trace_ext4_alloc_da_blocks(inode);
2814 
2815 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2816 		return 0;
2817 
2818 	/*
2819 	 * We do something simple for now.  The filemap_flush() will
2820 	 * also start triggering a write of the data blocks, which is
2821 	 * not strictly speaking necessary (and for users of
2822 	 * laptop_mode, not even desirable).  However, to do otherwise
2823 	 * would require replicating code paths in:
2824 	 *
2825 	 * ext4_writepages() ->
2826 	 *    write_cache_pages() ---> (via passed in callback function)
2827 	 *        __mpage_da_writepage() -->
2828 	 *           mpage_add_bh_to_extent()
2829 	 *           mpage_da_map_blocks()
2830 	 *
2831 	 * The problem is that write_cache_pages(), located in
2832 	 * mm/page-writeback.c, marks pages clean in preparation for
2833 	 * doing I/O, which is not desirable if we're not planning on
2834 	 * doing I/O at all.
2835 	 *
2836 	 * We could call write_cache_pages(), and then redirty all of
2837 	 * the pages by calling redirty_page_for_writepage() but that
2838 	 * would be ugly in the extreme.  So instead we would need to
2839 	 * replicate parts of the code in the above functions,
2840 	 * simplifying them because we wouldn't actually intend to
2841 	 * write out the pages, but rather only collect contiguous
2842 	 * logical block extents, call the multi-block allocator, and
2843 	 * then update the buffer heads with the block allocations.
2844 	 *
2845 	 * For now, though, we'll cheat by calling filemap_flush(),
2846 	 * which will map the blocks, and start the I/O, but not
2847 	 * actually wait for the I/O to complete.
2848 	 */
2849 	return filemap_flush(inode->i_mapping);
2850 }
2851 
2852 /*
2853  * bmap() is special.  It gets used by applications such as lilo and by
2854  * the swapper to find the on-disk block of a specific piece of data.
2855  *
2856  * Naturally, this is dangerous if the block concerned is still in the
2857  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2858  * filesystem and enables swap, then they may get a nasty shock when the
2859  * data getting swapped to that swapfile suddenly gets overwritten by
2860  * the original zero's written out previously to the journal and
2861  * awaiting writeback in the kernel's buffer cache.
2862  *
2863  * So, if we see any bmap calls here on a modified, data-journaled file,
2864  * take extra steps to flush any blocks which might be in the cache.
2865  */
2866 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2867 {
2868 	struct inode *inode = mapping->host;
2869 	journal_t *journal;
2870 	int err;
2871 
2872 	/*
2873 	 * We can get here for an inline file via the FIBMAP ioctl
2874 	 */
2875 	if (ext4_has_inline_data(inode))
2876 		return 0;
2877 
2878 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2879 			test_opt(inode->i_sb, DELALLOC)) {
2880 		/*
2881 		 * With delalloc we want to sync the file
2882 		 * so that we can make sure we allocate
2883 		 * blocks for file
2884 		 */
2885 		filemap_write_and_wait(mapping);
2886 	}
2887 
2888 	if (EXT4_JOURNAL(inode) &&
2889 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2890 		/*
2891 		 * This is a REALLY heavyweight approach, but the use of
2892 		 * bmap on dirty files is expected to be extremely rare:
2893 		 * only if we run lilo or swapon on a freshly made file
2894 		 * do we expect this to happen.
2895 		 *
2896 		 * (bmap requires CAP_SYS_RAWIO so this does not
2897 		 * represent an unprivileged user DOS attack --- we'd be
2898 		 * in trouble if mortal users could trigger this path at
2899 		 * will.)
2900 		 *
2901 		 * NB. EXT4_STATE_JDATA is not set on files other than
2902 		 * regular files.  If somebody wants to bmap a directory
2903 		 * or symlink and gets confused because the buffer
2904 		 * hasn't yet been flushed to disk, they deserve
2905 		 * everything they get.
2906 		 */
2907 
2908 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2909 		journal = EXT4_JOURNAL(inode);
2910 		jbd2_journal_lock_updates(journal);
2911 		err = jbd2_journal_flush(journal);
2912 		jbd2_journal_unlock_updates(journal);
2913 
2914 		if (err)
2915 			return 0;
2916 	}
2917 
2918 	return generic_block_bmap(mapping, block, ext4_get_block);
2919 }
2920 
2921 static int ext4_readpage(struct file *file, struct page *page)
2922 {
2923 	int ret = -EAGAIN;
2924 	struct inode *inode = page->mapping->host;
2925 
2926 	trace_ext4_readpage(page);
2927 
2928 	if (ext4_has_inline_data(inode))
2929 		ret = ext4_readpage_inline(inode, page);
2930 
2931 	if (ret == -EAGAIN)
2932 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2933 
2934 	return ret;
2935 }
2936 
2937 static int
2938 ext4_readpages(struct file *file, struct address_space *mapping,
2939 		struct list_head *pages, unsigned nr_pages)
2940 {
2941 	struct inode *inode = mapping->host;
2942 
2943 	/* If the file has inline data, no need to do readpages. */
2944 	if (ext4_has_inline_data(inode))
2945 		return 0;
2946 
2947 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2948 }
2949 
2950 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2951 				unsigned int length)
2952 {
2953 	trace_ext4_invalidatepage(page, offset, length);
2954 
2955 	/* No journalling happens on data buffers when this function is used */
2956 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2957 
2958 	block_invalidatepage(page, offset, length);
2959 }
2960 
2961 static int __ext4_journalled_invalidatepage(struct page *page,
2962 					    unsigned int offset,
2963 					    unsigned int length)
2964 {
2965 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2966 
2967 	trace_ext4_journalled_invalidatepage(page, offset, length);
2968 
2969 	/*
2970 	 * If it's a full truncate we just forget about the pending dirtying
2971 	 */
2972 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2973 		ClearPageChecked(page);
2974 
2975 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2976 }
2977 
2978 /* Wrapper for aops... */
2979 static void ext4_journalled_invalidatepage(struct page *page,
2980 					   unsigned int offset,
2981 					   unsigned int length)
2982 {
2983 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2984 }
2985 
2986 static int ext4_releasepage(struct page *page, gfp_t wait)
2987 {
2988 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2989 
2990 	trace_ext4_releasepage(page);
2991 
2992 	/* Page has dirty journalled data -> cannot release */
2993 	if (PageChecked(page))
2994 		return 0;
2995 	if (journal)
2996 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2997 	else
2998 		return try_to_free_buffers(page);
2999 }
3000 
3001 /*
3002  * ext4_get_block used when preparing for a DIO write or buffer write.
3003  * We allocate an uinitialized extent if blocks haven't been allocated.
3004  * The extent will be converted to initialized after the IO is complete.
3005  */
3006 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3007 		   struct buffer_head *bh_result, int create)
3008 {
3009 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3010 		   inode->i_ino, create);
3011 	return _ext4_get_block(inode, iblock, bh_result,
3012 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3013 }
3014 
3015 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3016 		   struct buffer_head *bh_result, int create)
3017 {
3018 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3019 		   inode->i_ino, create);
3020 	return _ext4_get_block(inode, iblock, bh_result,
3021 			       EXT4_GET_BLOCKS_NO_LOCK);
3022 }
3023 
3024 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3025 		   struct buffer_head *bh_result, int create)
3026 {
3027 	int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3028 	if (create)
3029 		flags |= EXT4_GET_BLOCKS_CREATE;
3030 	ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3031 		   inode->i_ino, create);
3032 	return _ext4_get_block(inode, iblock, bh_result, flags);
3033 }
3034 
3035 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3036 			    ssize_t size, void *private)
3037 {
3038         ext4_io_end_t *io_end = iocb->private;
3039 
3040 	/* if not async direct IO just return */
3041 	if (!io_end)
3042 		return;
3043 
3044 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3045 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3046  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3047 		  size);
3048 
3049 	iocb->private = NULL;
3050 	io_end->offset = offset;
3051 	io_end->size = size;
3052 	ext4_put_io_end(io_end);
3053 }
3054 
3055 /*
3056  * For ext4 extent files, ext4 will do direct-io write to holes,
3057  * preallocated extents, and those write extend the file, no need to
3058  * fall back to buffered IO.
3059  *
3060  * For holes, we fallocate those blocks, mark them as unwritten
3061  * If those blocks were preallocated, we mark sure they are split, but
3062  * still keep the range to write as unwritten.
3063  *
3064  * The unwritten extents will be converted to written when DIO is completed.
3065  * For async direct IO, since the IO may still pending when return, we
3066  * set up an end_io call back function, which will do the conversion
3067  * when async direct IO completed.
3068  *
3069  * If the O_DIRECT write will extend the file then add this inode to the
3070  * orphan list.  So recovery will truncate it back to the original size
3071  * if the machine crashes during the write.
3072  *
3073  */
3074 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3075 				  loff_t offset)
3076 {
3077 	struct file *file = iocb->ki_filp;
3078 	struct inode *inode = file->f_mapping->host;
3079 	ssize_t ret;
3080 	size_t count = iov_iter_count(iter);
3081 	int overwrite = 0;
3082 	get_block_t *get_block_func = NULL;
3083 	int dio_flags = 0;
3084 	loff_t final_size = offset + count;
3085 	ext4_io_end_t *io_end = NULL;
3086 
3087 	/* Use the old path for reads and writes beyond i_size. */
3088 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3089 		return ext4_ind_direct_IO(iocb, iter, offset);
3090 
3091 	BUG_ON(iocb->private == NULL);
3092 
3093 	/*
3094 	 * Make all waiters for direct IO properly wait also for extent
3095 	 * conversion. This also disallows race between truncate() and
3096 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3097 	 */
3098 	if (iov_iter_rw(iter) == WRITE)
3099 		inode_dio_begin(inode);
3100 
3101 	/* If we do a overwrite dio, i_mutex locking can be released */
3102 	overwrite = *((int *)iocb->private);
3103 
3104 	if (overwrite) {
3105 		down_read(&EXT4_I(inode)->i_data_sem);
3106 		mutex_unlock(&inode->i_mutex);
3107 	}
3108 
3109 	/*
3110 	 * We could direct write to holes and fallocate.
3111 	 *
3112 	 * Allocated blocks to fill the hole are marked as
3113 	 * unwritten to prevent parallel buffered read to expose
3114 	 * the stale data before DIO complete the data IO.
3115 	 *
3116 	 * As to previously fallocated extents, ext4 get_block will
3117 	 * just simply mark the buffer mapped but still keep the
3118 	 * extents unwritten.
3119 	 *
3120 	 * For non AIO case, we will convert those unwritten extents
3121 	 * to written after return back from blockdev_direct_IO.
3122 	 *
3123 	 * For async DIO, the conversion needs to be deferred when the
3124 	 * IO is completed. The ext4 end_io callback function will be
3125 	 * called to take care of the conversion work.  Here for async
3126 	 * case, we allocate an io_end structure to hook to the iocb.
3127 	 */
3128 	iocb->private = NULL;
3129 	ext4_inode_aio_set(inode, NULL);
3130 	if (!is_sync_kiocb(iocb)) {
3131 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3132 		if (!io_end) {
3133 			ret = -ENOMEM;
3134 			goto retake_lock;
3135 		}
3136 		/*
3137 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3138 		 */
3139 		iocb->private = ext4_get_io_end(io_end);
3140 		/*
3141 		 * we save the io structure for current async direct
3142 		 * IO, so that later ext4_map_blocks() could flag the
3143 		 * io structure whether there is a unwritten extents
3144 		 * needs to be converted when IO is completed.
3145 		 */
3146 		ext4_inode_aio_set(inode, io_end);
3147 	}
3148 
3149 	if (overwrite) {
3150 		get_block_func = ext4_get_block_write_nolock;
3151 	} else {
3152 		get_block_func = ext4_get_block_write;
3153 		dio_flags = DIO_LOCKING;
3154 	}
3155 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3156 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3157 #endif
3158 	if (IS_DAX(inode))
3159 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3160 				ext4_end_io_dio, dio_flags);
3161 	else
3162 		ret = __blockdev_direct_IO(iocb, inode,
3163 					   inode->i_sb->s_bdev, iter, offset,
3164 					   get_block_func,
3165 					   ext4_end_io_dio, NULL, dio_flags);
3166 
3167 	/*
3168 	 * Put our reference to io_end. This can free the io_end structure e.g.
3169 	 * in sync IO case or in case of error. It can even perform extent
3170 	 * conversion if all bios we submitted finished before we got here.
3171 	 * Note that in that case iocb->private can be already set to NULL
3172 	 * here.
3173 	 */
3174 	if (io_end) {
3175 		ext4_inode_aio_set(inode, NULL);
3176 		ext4_put_io_end(io_end);
3177 		/*
3178 		 * When no IO was submitted ext4_end_io_dio() was not
3179 		 * called so we have to put iocb's reference.
3180 		 */
3181 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3182 			WARN_ON(iocb->private != io_end);
3183 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3184 			ext4_put_io_end(io_end);
3185 			iocb->private = NULL;
3186 		}
3187 	}
3188 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3189 						EXT4_STATE_DIO_UNWRITTEN)) {
3190 		int err;
3191 		/*
3192 		 * for non AIO case, since the IO is already
3193 		 * completed, we could do the conversion right here
3194 		 */
3195 		err = ext4_convert_unwritten_extents(NULL, inode,
3196 						     offset, ret);
3197 		if (err < 0)
3198 			ret = err;
3199 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3200 	}
3201 
3202 retake_lock:
3203 	if (iov_iter_rw(iter) == WRITE)
3204 		inode_dio_end(inode);
3205 	/* take i_mutex locking again if we do a ovewrite dio */
3206 	if (overwrite) {
3207 		up_read(&EXT4_I(inode)->i_data_sem);
3208 		mutex_lock(&inode->i_mutex);
3209 	}
3210 
3211 	return ret;
3212 }
3213 
3214 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3215 			      loff_t offset)
3216 {
3217 	struct file *file = iocb->ki_filp;
3218 	struct inode *inode = file->f_mapping->host;
3219 	size_t count = iov_iter_count(iter);
3220 	ssize_t ret;
3221 
3222 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3223 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3224 		return 0;
3225 #endif
3226 
3227 	/*
3228 	 * If we are doing data journalling we don't support O_DIRECT
3229 	 */
3230 	if (ext4_should_journal_data(inode))
3231 		return 0;
3232 
3233 	/* Let buffer I/O handle the inline data case. */
3234 	if (ext4_has_inline_data(inode))
3235 		return 0;
3236 
3237 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3238 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3239 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3240 	else
3241 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3242 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3243 	return ret;
3244 }
3245 
3246 /*
3247  * Pages can be marked dirty completely asynchronously from ext4's journalling
3248  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3249  * much here because ->set_page_dirty is called under VFS locks.  The page is
3250  * not necessarily locked.
3251  *
3252  * We cannot just dirty the page and leave attached buffers clean, because the
3253  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3254  * or jbddirty because all the journalling code will explode.
3255  *
3256  * So what we do is to mark the page "pending dirty" and next time writepage
3257  * is called, propagate that into the buffers appropriately.
3258  */
3259 static int ext4_journalled_set_page_dirty(struct page *page)
3260 {
3261 	SetPageChecked(page);
3262 	return __set_page_dirty_nobuffers(page);
3263 }
3264 
3265 static const struct address_space_operations ext4_aops = {
3266 	.readpage		= ext4_readpage,
3267 	.readpages		= ext4_readpages,
3268 	.writepage		= ext4_writepage,
3269 	.writepages		= ext4_writepages,
3270 	.write_begin		= ext4_write_begin,
3271 	.write_end		= ext4_write_end,
3272 	.bmap			= ext4_bmap,
3273 	.invalidatepage		= ext4_invalidatepage,
3274 	.releasepage		= ext4_releasepage,
3275 	.direct_IO		= ext4_direct_IO,
3276 	.migratepage		= buffer_migrate_page,
3277 	.is_partially_uptodate  = block_is_partially_uptodate,
3278 	.error_remove_page	= generic_error_remove_page,
3279 };
3280 
3281 static const struct address_space_operations ext4_journalled_aops = {
3282 	.readpage		= ext4_readpage,
3283 	.readpages		= ext4_readpages,
3284 	.writepage		= ext4_writepage,
3285 	.writepages		= ext4_writepages,
3286 	.write_begin		= ext4_write_begin,
3287 	.write_end		= ext4_journalled_write_end,
3288 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3289 	.bmap			= ext4_bmap,
3290 	.invalidatepage		= ext4_journalled_invalidatepage,
3291 	.releasepage		= ext4_releasepage,
3292 	.direct_IO		= ext4_direct_IO,
3293 	.is_partially_uptodate  = block_is_partially_uptodate,
3294 	.error_remove_page	= generic_error_remove_page,
3295 };
3296 
3297 static const struct address_space_operations ext4_da_aops = {
3298 	.readpage		= ext4_readpage,
3299 	.readpages		= ext4_readpages,
3300 	.writepage		= ext4_writepage,
3301 	.writepages		= ext4_writepages,
3302 	.write_begin		= ext4_da_write_begin,
3303 	.write_end		= ext4_da_write_end,
3304 	.bmap			= ext4_bmap,
3305 	.invalidatepage		= ext4_da_invalidatepage,
3306 	.releasepage		= ext4_releasepage,
3307 	.direct_IO		= ext4_direct_IO,
3308 	.migratepage		= buffer_migrate_page,
3309 	.is_partially_uptodate  = block_is_partially_uptodate,
3310 	.error_remove_page	= generic_error_remove_page,
3311 };
3312 
3313 void ext4_set_aops(struct inode *inode)
3314 {
3315 	switch (ext4_inode_journal_mode(inode)) {
3316 	case EXT4_INODE_ORDERED_DATA_MODE:
3317 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3318 		break;
3319 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3320 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3321 		break;
3322 	case EXT4_INODE_JOURNAL_DATA_MODE:
3323 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3324 		return;
3325 	default:
3326 		BUG();
3327 	}
3328 	if (test_opt(inode->i_sb, DELALLOC))
3329 		inode->i_mapping->a_ops = &ext4_da_aops;
3330 	else
3331 		inode->i_mapping->a_ops = &ext4_aops;
3332 }
3333 
3334 static int __ext4_block_zero_page_range(handle_t *handle,
3335 		struct address_space *mapping, loff_t from, loff_t length)
3336 {
3337 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3338 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3339 	unsigned blocksize, pos;
3340 	ext4_lblk_t iblock;
3341 	struct inode *inode = mapping->host;
3342 	struct buffer_head *bh;
3343 	struct page *page;
3344 	int err = 0;
3345 
3346 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3347 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3348 	if (!page)
3349 		return -ENOMEM;
3350 
3351 	blocksize = inode->i_sb->s_blocksize;
3352 
3353 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3354 
3355 	if (!page_has_buffers(page))
3356 		create_empty_buffers(page, blocksize, 0);
3357 
3358 	/* Find the buffer that contains "offset" */
3359 	bh = page_buffers(page);
3360 	pos = blocksize;
3361 	while (offset >= pos) {
3362 		bh = bh->b_this_page;
3363 		iblock++;
3364 		pos += blocksize;
3365 	}
3366 	if (buffer_freed(bh)) {
3367 		BUFFER_TRACE(bh, "freed: skip");
3368 		goto unlock;
3369 	}
3370 	if (!buffer_mapped(bh)) {
3371 		BUFFER_TRACE(bh, "unmapped");
3372 		ext4_get_block(inode, iblock, bh, 0);
3373 		/* unmapped? It's a hole - nothing to do */
3374 		if (!buffer_mapped(bh)) {
3375 			BUFFER_TRACE(bh, "still unmapped");
3376 			goto unlock;
3377 		}
3378 	}
3379 
3380 	/* Ok, it's mapped. Make sure it's up-to-date */
3381 	if (PageUptodate(page))
3382 		set_buffer_uptodate(bh);
3383 
3384 	if (!buffer_uptodate(bh)) {
3385 		err = -EIO;
3386 		ll_rw_block(READ, 1, &bh);
3387 		wait_on_buffer(bh);
3388 		/* Uhhuh. Read error. Complain and punt. */
3389 		if (!buffer_uptodate(bh))
3390 			goto unlock;
3391 		if (S_ISREG(inode->i_mode) &&
3392 		    ext4_encrypted_inode(inode)) {
3393 			/* We expect the key to be set. */
3394 			BUG_ON(!ext4_has_encryption_key(inode));
3395 			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3396 			WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3397 		}
3398 	}
3399 	if (ext4_should_journal_data(inode)) {
3400 		BUFFER_TRACE(bh, "get write access");
3401 		err = ext4_journal_get_write_access(handle, bh);
3402 		if (err)
3403 			goto unlock;
3404 	}
3405 	zero_user(page, offset, length);
3406 	BUFFER_TRACE(bh, "zeroed end of block");
3407 
3408 	if (ext4_should_journal_data(inode)) {
3409 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3410 	} else {
3411 		err = 0;
3412 		mark_buffer_dirty(bh);
3413 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3414 			err = ext4_jbd2_file_inode(handle, inode);
3415 	}
3416 
3417 unlock:
3418 	unlock_page(page);
3419 	page_cache_release(page);
3420 	return err;
3421 }
3422 
3423 /*
3424  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3425  * starting from file offset 'from'.  The range to be zero'd must
3426  * be contained with in one block.  If the specified range exceeds
3427  * the end of the block it will be shortened to end of the block
3428  * that cooresponds to 'from'
3429  */
3430 static int ext4_block_zero_page_range(handle_t *handle,
3431 		struct address_space *mapping, loff_t from, loff_t length)
3432 {
3433 	struct inode *inode = mapping->host;
3434 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3435 	unsigned blocksize = inode->i_sb->s_blocksize;
3436 	unsigned max = blocksize - (offset & (blocksize - 1));
3437 
3438 	/*
3439 	 * correct length if it does not fall between
3440 	 * 'from' and the end of the block
3441 	 */
3442 	if (length > max || length < 0)
3443 		length = max;
3444 
3445 	if (IS_DAX(inode))
3446 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3447 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3448 }
3449 
3450 /*
3451  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3452  * up to the end of the block which corresponds to `from'.
3453  * This required during truncate. We need to physically zero the tail end
3454  * of that block so it doesn't yield old data if the file is later grown.
3455  */
3456 static int ext4_block_truncate_page(handle_t *handle,
3457 		struct address_space *mapping, loff_t from)
3458 {
3459 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3460 	unsigned length;
3461 	unsigned blocksize;
3462 	struct inode *inode = mapping->host;
3463 
3464 	blocksize = inode->i_sb->s_blocksize;
3465 	length = blocksize - (offset & (blocksize - 1));
3466 
3467 	return ext4_block_zero_page_range(handle, mapping, from, length);
3468 }
3469 
3470 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3471 			     loff_t lstart, loff_t length)
3472 {
3473 	struct super_block *sb = inode->i_sb;
3474 	struct address_space *mapping = inode->i_mapping;
3475 	unsigned partial_start, partial_end;
3476 	ext4_fsblk_t start, end;
3477 	loff_t byte_end = (lstart + length - 1);
3478 	int err = 0;
3479 
3480 	partial_start = lstart & (sb->s_blocksize - 1);
3481 	partial_end = byte_end & (sb->s_blocksize - 1);
3482 
3483 	start = lstart >> sb->s_blocksize_bits;
3484 	end = byte_end >> sb->s_blocksize_bits;
3485 
3486 	/* Handle partial zero within the single block */
3487 	if (start == end &&
3488 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3489 		err = ext4_block_zero_page_range(handle, mapping,
3490 						 lstart, length);
3491 		return err;
3492 	}
3493 	/* Handle partial zero out on the start of the range */
3494 	if (partial_start) {
3495 		err = ext4_block_zero_page_range(handle, mapping,
3496 						 lstart, sb->s_blocksize);
3497 		if (err)
3498 			return err;
3499 	}
3500 	/* Handle partial zero out on the end of the range */
3501 	if (partial_end != sb->s_blocksize - 1)
3502 		err = ext4_block_zero_page_range(handle, mapping,
3503 						 byte_end - partial_end,
3504 						 partial_end + 1);
3505 	return err;
3506 }
3507 
3508 int ext4_can_truncate(struct inode *inode)
3509 {
3510 	if (S_ISREG(inode->i_mode))
3511 		return 1;
3512 	if (S_ISDIR(inode->i_mode))
3513 		return 1;
3514 	if (S_ISLNK(inode->i_mode))
3515 		return !ext4_inode_is_fast_symlink(inode);
3516 	return 0;
3517 }
3518 
3519 /*
3520  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3521  * associated with the given offset and length
3522  *
3523  * @inode:  File inode
3524  * @offset: The offset where the hole will begin
3525  * @len:    The length of the hole
3526  *
3527  * Returns: 0 on success or negative on failure
3528  */
3529 
3530 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3531 {
3532 	struct super_block *sb = inode->i_sb;
3533 	ext4_lblk_t first_block, stop_block;
3534 	struct address_space *mapping = inode->i_mapping;
3535 	loff_t first_block_offset, last_block_offset;
3536 	handle_t *handle;
3537 	unsigned int credits;
3538 	int ret = 0;
3539 
3540 	if (!S_ISREG(inode->i_mode))
3541 		return -EOPNOTSUPP;
3542 
3543 	trace_ext4_punch_hole(inode, offset, length, 0);
3544 
3545 	/*
3546 	 * Write out all dirty pages to avoid race conditions
3547 	 * Then release them.
3548 	 */
3549 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3550 		ret = filemap_write_and_wait_range(mapping, offset,
3551 						   offset + length - 1);
3552 		if (ret)
3553 			return ret;
3554 	}
3555 
3556 	mutex_lock(&inode->i_mutex);
3557 
3558 	/* No need to punch hole beyond i_size */
3559 	if (offset >= inode->i_size)
3560 		goto out_mutex;
3561 
3562 	/*
3563 	 * If the hole extends beyond i_size, set the hole
3564 	 * to end after the page that contains i_size
3565 	 */
3566 	if (offset + length > inode->i_size) {
3567 		length = inode->i_size +
3568 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3569 		   offset;
3570 	}
3571 
3572 	if (offset & (sb->s_blocksize - 1) ||
3573 	    (offset + length) & (sb->s_blocksize - 1)) {
3574 		/*
3575 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3576 		 * partial block
3577 		 */
3578 		ret = ext4_inode_attach_jinode(inode);
3579 		if (ret < 0)
3580 			goto out_mutex;
3581 
3582 	}
3583 
3584 	first_block_offset = round_up(offset, sb->s_blocksize);
3585 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3586 
3587 	/* Now release the pages and zero block aligned part of pages*/
3588 	if (last_block_offset > first_block_offset)
3589 		truncate_pagecache_range(inode, first_block_offset,
3590 					 last_block_offset);
3591 
3592 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3593 	ext4_inode_block_unlocked_dio(inode);
3594 	inode_dio_wait(inode);
3595 
3596 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3597 		credits = ext4_writepage_trans_blocks(inode);
3598 	else
3599 		credits = ext4_blocks_for_truncate(inode);
3600 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3601 	if (IS_ERR(handle)) {
3602 		ret = PTR_ERR(handle);
3603 		ext4_std_error(sb, ret);
3604 		goto out_dio;
3605 	}
3606 
3607 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3608 				       length);
3609 	if (ret)
3610 		goto out_stop;
3611 
3612 	first_block = (offset + sb->s_blocksize - 1) >>
3613 		EXT4_BLOCK_SIZE_BITS(sb);
3614 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3615 
3616 	/* If there are no blocks to remove, return now */
3617 	if (first_block >= stop_block)
3618 		goto out_stop;
3619 
3620 	down_write(&EXT4_I(inode)->i_data_sem);
3621 	ext4_discard_preallocations(inode);
3622 
3623 	ret = ext4_es_remove_extent(inode, first_block,
3624 				    stop_block - first_block);
3625 	if (ret) {
3626 		up_write(&EXT4_I(inode)->i_data_sem);
3627 		goto out_stop;
3628 	}
3629 
3630 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3631 		ret = ext4_ext_remove_space(inode, first_block,
3632 					    stop_block - 1);
3633 	else
3634 		ret = ext4_ind_remove_space(handle, inode, first_block,
3635 					    stop_block);
3636 
3637 	up_write(&EXT4_I(inode)->i_data_sem);
3638 	if (IS_SYNC(inode))
3639 		ext4_handle_sync(handle);
3640 
3641 	/* Now release the pages again to reduce race window */
3642 	if (last_block_offset > first_block_offset)
3643 		truncate_pagecache_range(inode, first_block_offset,
3644 					 last_block_offset);
3645 
3646 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3647 	ext4_mark_inode_dirty(handle, inode);
3648 out_stop:
3649 	ext4_journal_stop(handle);
3650 out_dio:
3651 	ext4_inode_resume_unlocked_dio(inode);
3652 out_mutex:
3653 	mutex_unlock(&inode->i_mutex);
3654 	return ret;
3655 }
3656 
3657 int ext4_inode_attach_jinode(struct inode *inode)
3658 {
3659 	struct ext4_inode_info *ei = EXT4_I(inode);
3660 	struct jbd2_inode *jinode;
3661 
3662 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3663 		return 0;
3664 
3665 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3666 	spin_lock(&inode->i_lock);
3667 	if (!ei->jinode) {
3668 		if (!jinode) {
3669 			spin_unlock(&inode->i_lock);
3670 			return -ENOMEM;
3671 		}
3672 		ei->jinode = jinode;
3673 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3674 		jinode = NULL;
3675 	}
3676 	spin_unlock(&inode->i_lock);
3677 	if (unlikely(jinode != NULL))
3678 		jbd2_free_inode(jinode);
3679 	return 0;
3680 }
3681 
3682 /*
3683  * ext4_truncate()
3684  *
3685  * We block out ext4_get_block() block instantiations across the entire
3686  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3687  * simultaneously on behalf of the same inode.
3688  *
3689  * As we work through the truncate and commit bits of it to the journal there
3690  * is one core, guiding principle: the file's tree must always be consistent on
3691  * disk.  We must be able to restart the truncate after a crash.
3692  *
3693  * The file's tree may be transiently inconsistent in memory (although it
3694  * probably isn't), but whenever we close off and commit a journal transaction,
3695  * the contents of (the filesystem + the journal) must be consistent and
3696  * restartable.  It's pretty simple, really: bottom up, right to left (although
3697  * left-to-right works OK too).
3698  *
3699  * Note that at recovery time, journal replay occurs *before* the restart of
3700  * truncate against the orphan inode list.
3701  *
3702  * The committed inode has the new, desired i_size (which is the same as
3703  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3704  * that this inode's truncate did not complete and it will again call
3705  * ext4_truncate() to have another go.  So there will be instantiated blocks
3706  * to the right of the truncation point in a crashed ext4 filesystem.  But
3707  * that's fine - as long as they are linked from the inode, the post-crash
3708  * ext4_truncate() run will find them and release them.
3709  */
3710 void ext4_truncate(struct inode *inode)
3711 {
3712 	struct ext4_inode_info *ei = EXT4_I(inode);
3713 	unsigned int credits;
3714 	handle_t *handle;
3715 	struct address_space *mapping = inode->i_mapping;
3716 
3717 	/*
3718 	 * There is a possibility that we're either freeing the inode
3719 	 * or it's a completely new inode. In those cases we might not
3720 	 * have i_mutex locked because it's not necessary.
3721 	 */
3722 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3723 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3724 	trace_ext4_truncate_enter(inode);
3725 
3726 	if (!ext4_can_truncate(inode))
3727 		return;
3728 
3729 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3730 
3731 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3732 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3733 
3734 	if (ext4_has_inline_data(inode)) {
3735 		int has_inline = 1;
3736 
3737 		ext4_inline_data_truncate(inode, &has_inline);
3738 		if (has_inline)
3739 			return;
3740 	}
3741 
3742 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3743 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3744 		if (ext4_inode_attach_jinode(inode) < 0)
3745 			return;
3746 	}
3747 
3748 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3749 		credits = ext4_writepage_trans_blocks(inode);
3750 	else
3751 		credits = ext4_blocks_for_truncate(inode);
3752 
3753 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3754 	if (IS_ERR(handle)) {
3755 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3756 		return;
3757 	}
3758 
3759 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3760 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3761 
3762 	/*
3763 	 * We add the inode to the orphan list, so that if this
3764 	 * truncate spans multiple transactions, and we crash, we will
3765 	 * resume the truncate when the filesystem recovers.  It also
3766 	 * marks the inode dirty, to catch the new size.
3767 	 *
3768 	 * Implication: the file must always be in a sane, consistent
3769 	 * truncatable state while each transaction commits.
3770 	 */
3771 	if (ext4_orphan_add(handle, inode))
3772 		goto out_stop;
3773 
3774 	down_write(&EXT4_I(inode)->i_data_sem);
3775 
3776 	ext4_discard_preallocations(inode);
3777 
3778 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3779 		ext4_ext_truncate(handle, inode);
3780 	else
3781 		ext4_ind_truncate(handle, inode);
3782 
3783 	up_write(&ei->i_data_sem);
3784 
3785 	if (IS_SYNC(inode))
3786 		ext4_handle_sync(handle);
3787 
3788 out_stop:
3789 	/*
3790 	 * If this was a simple ftruncate() and the file will remain alive,
3791 	 * then we need to clear up the orphan record which we created above.
3792 	 * However, if this was a real unlink then we were called by
3793 	 * ext4_evict_inode(), and we allow that function to clean up the
3794 	 * orphan info for us.
3795 	 */
3796 	if (inode->i_nlink)
3797 		ext4_orphan_del(handle, inode);
3798 
3799 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3800 	ext4_mark_inode_dirty(handle, inode);
3801 	ext4_journal_stop(handle);
3802 
3803 	trace_ext4_truncate_exit(inode);
3804 }
3805 
3806 /*
3807  * ext4_get_inode_loc returns with an extra refcount against the inode's
3808  * underlying buffer_head on success. If 'in_mem' is true, we have all
3809  * data in memory that is needed to recreate the on-disk version of this
3810  * inode.
3811  */
3812 static int __ext4_get_inode_loc(struct inode *inode,
3813 				struct ext4_iloc *iloc, int in_mem)
3814 {
3815 	struct ext4_group_desc	*gdp;
3816 	struct buffer_head	*bh;
3817 	struct super_block	*sb = inode->i_sb;
3818 	ext4_fsblk_t		block;
3819 	int			inodes_per_block, inode_offset;
3820 
3821 	iloc->bh = NULL;
3822 	if (!ext4_valid_inum(sb, inode->i_ino))
3823 		return -EIO;
3824 
3825 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3826 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3827 	if (!gdp)
3828 		return -EIO;
3829 
3830 	/*
3831 	 * Figure out the offset within the block group inode table
3832 	 */
3833 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3834 	inode_offset = ((inode->i_ino - 1) %
3835 			EXT4_INODES_PER_GROUP(sb));
3836 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3837 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3838 
3839 	bh = sb_getblk(sb, block);
3840 	if (unlikely(!bh))
3841 		return -ENOMEM;
3842 	if (!buffer_uptodate(bh)) {
3843 		lock_buffer(bh);
3844 
3845 		/*
3846 		 * If the buffer has the write error flag, we have failed
3847 		 * to write out another inode in the same block.  In this
3848 		 * case, we don't have to read the block because we may
3849 		 * read the old inode data successfully.
3850 		 */
3851 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3852 			set_buffer_uptodate(bh);
3853 
3854 		if (buffer_uptodate(bh)) {
3855 			/* someone brought it uptodate while we waited */
3856 			unlock_buffer(bh);
3857 			goto has_buffer;
3858 		}
3859 
3860 		/*
3861 		 * If we have all information of the inode in memory and this
3862 		 * is the only valid inode in the block, we need not read the
3863 		 * block.
3864 		 */
3865 		if (in_mem) {
3866 			struct buffer_head *bitmap_bh;
3867 			int i, start;
3868 
3869 			start = inode_offset & ~(inodes_per_block - 1);
3870 
3871 			/* Is the inode bitmap in cache? */
3872 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3873 			if (unlikely(!bitmap_bh))
3874 				goto make_io;
3875 
3876 			/*
3877 			 * If the inode bitmap isn't in cache then the
3878 			 * optimisation may end up performing two reads instead
3879 			 * of one, so skip it.
3880 			 */
3881 			if (!buffer_uptodate(bitmap_bh)) {
3882 				brelse(bitmap_bh);
3883 				goto make_io;
3884 			}
3885 			for (i = start; i < start + inodes_per_block; i++) {
3886 				if (i == inode_offset)
3887 					continue;
3888 				if (ext4_test_bit(i, bitmap_bh->b_data))
3889 					break;
3890 			}
3891 			brelse(bitmap_bh);
3892 			if (i == start + inodes_per_block) {
3893 				/* all other inodes are free, so skip I/O */
3894 				memset(bh->b_data, 0, bh->b_size);
3895 				set_buffer_uptodate(bh);
3896 				unlock_buffer(bh);
3897 				goto has_buffer;
3898 			}
3899 		}
3900 
3901 make_io:
3902 		/*
3903 		 * If we need to do any I/O, try to pre-readahead extra
3904 		 * blocks from the inode table.
3905 		 */
3906 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3907 			ext4_fsblk_t b, end, table;
3908 			unsigned num;
3909 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3910 
3911 			table = ext4_inode_table(sb, gdp);
3912 			/* s_inode_readahead_blks is always a power of 2 */
3913 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3914 			if (table > b)
3915 				b = table;
3916 			end = b + ra_blks;
3917 			num = EXT4_INODES_PER_GROUP(sb);
3918 			if (ext4_has_group_desc_csum(sb))
3919 				num -= ext4_itable_unused_count(sb, gdp);
3920 			table += num / inodes_per_block;
3921 			if (end > table)
3922 				end = table;
3923 			while (b <= end)
3924 				sb_breadahead(sb, b++);
3925 		}
3926 
3927 		/*
3928 		 * There are other valid inodes in the buffer, this inode
3929 		 * has in-inode xattrs, or we don't have this inode in memory.
3930 		 * Read the block from disk.
3931 		 */
3932 		trace_ext4_load_inode(inode);
3933 		get_bh(bh);
3934 		bh->b_end_io = end_buffer_read_sync;
3935 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3936 		wait_on_buffer(bh);
3937 		if (!buffer_uptodate(bh)) {
3938 			EXT4_ERROR_INODE_BLOCK(inode, block,
3939 					       "unable to read itable block");
3940 			brelse(bh);
3941 			return -EIO;
3942 		}
3943 	}
3944 has_buffer:
3945 	iloc->bh = bh;
3946 	return 0;
3947 }
3948 
3949 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3950 {
3951 	/* We have all inode data except xattrs in memory here. */
3952 	return __ext4_get_inode_loc(inode, iloc,
3953 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3954 }
3955 
3956 void ext4_set_inode_flags(struct inode *inode)
3957 {
3958 	unsigned int flags = EXT4_I(inode)->i_flags;
3959 	unsigned int new_fl = 0;
3960 
3961 	if (flags & EXT4_SYNC_FL)
3962 		new_fl |= S_SYNC;
3963 	if (flags & EXT4_APPEND_FL)
3964 		new_fl |= S_APPEND;
3965 	if (flags & EXT4_IMMUTABLE_FL)
3966 		new_fl |= S_IMMUTABLE;
3967 	if (flags & EXT4_NOATIME_FL)
3968 		new_fl |= S_NOATIME;
3969 	if (flags & EXT4_DIRSYNC_FL)
3970 		new_fl |= S_DIRSYNC;
3971 	if (test_opt(inode->i_sb, DAX))
3972 		new_fl |= S_DAX;
3973 	inode_set_flags(inode, new_fl,
3974 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3975 }
3976 
3977 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3978 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3979 {
3980 	unsigned int vfs_fl;
3981 	unsigned long old_fl, new_fl;
3982 
3983 	do {
3984 		vfs_fl = ei->vfs_inode.i_flags;
3985 		old_fl = ei->i_flags;
3986 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3987 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3988 				EXT4_DIRSYNC_FL);
3989 		if (vfs_fl & S_SYNC)
3990 			new_fl |= EXT4_SYNC_FL;
3991 		if (vfs_fl & S_APPEND)
3992 			new_fl |= EXT4_APPEND_FL;
3993 		if (vfs_fl & S_IMMUTABLE)
3994 			new_fl |= EXT4_IMMUTABLE_FL;
3995 		if (vfs_fl & S_NOATIME)
3996 			new_fl |= EXT4_NOATIME_FL;
3997 		if (vfs_fl & S_DIRSYNC)
3998 			new_fl |= EXT4_DIRSYNC_FL;
3999 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4000 }
4001 
4002 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4003 				  struct ext4_inode_info *ei)
4004 {
4005 	blkcnt_t i_blocks ;
4006 	struct inode *inode = &(ei->vfs_inode);
4007 	struct super_block *sb = inode->i_sb;
4008 
4009 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4010 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4011 		/* we are using combined 48 bit field */
4012 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4013 					le32_to_cpu(raw_inode->i_blocks_lo);
4014 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4015 			/* i_blocks represent file system block size */
4016 			return i_blocks  << (inode->i_blkbits - 9);
4017 		} else {
4018 			return i_blocks;
4019 		}
4020 	} else {
4021 		return le32_to_cpu(raw_inode->i_blocks_lo);
4022 	}
4023 }
4024 
4025 static inline void ext4_iget_extra_inode(struct inode *inode,
4026 					 struct ext4_inode *raw_inode,
4027 					 struct ext4_inode_info *ei)
4028 {
4029 	__le32 *magic = (void *)raw_inode +
4030 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4031 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4032 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4033 		ext4_find_inline_data_nolock(inode);
4034 	} else
4035 		EXT4_I(inode)->i_inline_off = 0;
4036 }
4037 
4038 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4039 {
4040 	struct ext4_iloc iloc;
4041 	struct ext4_inode *raw_inode;
4042 	struct ext4_inode_info *ei;
4043 	struct inode *inode;
4044 	journal_t *journal = EXT4_SB(sb)->s_journal;
4045 	long ret;
4046 	int block;
4047 	uid_t i_uid;
4048 	gid_t i_gid;
4049 
4050 	inode = iget_locked(sb, ino);
4051 	if (!inode)
4052 		return ERR_PTR(-ENOMEM);
4053 	if (!(inode->i_state & I_NEW))
4054 		return inode;
4055 
4056 	ei = EXT4_I(inode);
4057 	iloc.bh = NULL;
4058 
4059 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4060 	if (ret < 0)
4061 		goto bad_inode;
4062 	raw_inode = ext4_raw_inode(&iloc);
4063 
4064 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4065 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4066 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4067 		    EXT4_INODE_SIZE(inode->i_sb)) {
4068 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4069 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4070 				EXT4_INODE_SIZE(inode->i_sb));
4071 			ret = -EIO;
4072 			goto bad_inode;
4073 		}
4074 	} else
4075 		ei->i_extra_isize = 0;
4076 
4077 	/* Precompute checksum seed for inode metadata */
4078 	if (ext4_has_metadata_csum(sb)) {
4079 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4080 		__u32 csum;
4081 		__le32 inum = cpu_to_le32(inode->i_ino);
4082 		__le32 gen = raw_inode->i_generation;
4083 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4084 				   sizeof(inum));
4085 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4086 					      sizeof(gen));
4087 	}
4088 
4089 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4090 		EXT4_ERROR_INODE(inode, "checksum invalid");
4091 		ret = -EIO;
4092 		goto bad_inode;
4093 	}
4094 
4095 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4096 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4097 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4098 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4099 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4100 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4101 	}
4102 	i_uid_write(inode, i_uid);
4103 	i_gid_write(inode, i_gid);
4104 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4105 
4106 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4107 	ei->i_inline_off = 0;
4108 	ei->i_dir_start_lookup = 0;
4109 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4110 	/* We now have enough fields to check if the inode was active or not.
4111 	 * This is needed because nfsd might try to access dead inodes
4112 	 * the test is that same one that e2fsck uses
4113 	 * NeilBrown 1999oct15
4114 	 */
4115 	if (inode->i_nlink == 0) {
4116 		if ((inode->i_mode == 0 ||
4117 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4118 		    ino != EXT4_BOOT_LOADER_INO) {
4119 			/* this inode is deleted */
4120 			ret = -ESTALE;
4121 			goto bad_inode;
4122 		}
4123 		/* The only unlinked inodes we let through here have
4124 		 * valid i_mode and are being read by the orphan
4125 		 * recovery code: that's fine, we're about to complete
4126 		 * the process of deleting those.
4127 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4128 		 * not initialized on a new filesystem. */
4129 	}
4130 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4131 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4132 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4133 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4134 		ei->i_file_acl |=
4135 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4136 	inode->i_size = ext4_isize(raw_inode);
4137 	ei->i_disksize = inode->i_size;
4138 #ifdef CONFIG_QUOTA
4139 	ei->i_reserved_quota = 0;
4140 #endif
4141 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4142 	ei->i_block_group = iloc.block_group;
4143 	ei->i_last_alloc_group = ~0;
4144 	/*
4145 	 * NOTE! The in-memory inode i_data array is in little-endian order
4146 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4147 	 */
4148 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4149 		ei->i_data[block] = raw_inode->i_block[block];
4150 	INIT_LIST_HEAD(&ei->i_orphan);
4151 
4152 	/*
4153 	 * Set transaction id's of transactions that have to be committed
4154 	 * to finish f[data]sync. We set them to currently running transaction
4155 	 * as we cannot be sure that the inode or some of its metadata isn't
4156 	 * part of the transaction - the inode could have been reclaimed and
4157 	 * now it is reread from disk.
4158 	 */
4159 	if (journal) {
4160 		transaction_t *transaction;
4161 		tid_t tid;
4162 
4163 		read_lock(&journal->j_state_lock);
4164 		if (journal->j_running_transaction)
4165 			transaction = journal->j_running_transaction;
4166 		else
4167 			transaction = journal->j_committing_transaction;
4168 		if (transaction)
4169 			tid = transaction->t_tid;
4170 		else
4171 			tid = journal->j_commit_sequence;
4172 		read_unlock(&journal->j_state_lock);
4173 		ei->i_sync_tid = tid;
4174 		ei->i_datasync_tid = tid;
4175 	}
4176 
4177 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4178 		if (ei->i_extra_isize == 0) {
4179 			/* The extra space is currently unused. Use it. */
4180 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4181 					    EXT4_GOOD_OLD_INODE_SIZE;
4182 		} else {
4183 			ext4_iget_extra_inode(inode, raw_inode, ei);
4184 		}
4185 	}
4186 
4187 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4188 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4189 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4190 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4191 
4192 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4193 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4194 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4195 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4196 				inode->i_version |=
4197 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4198 		}
4199 	}
4200 
4201 	ret = 0;
4202 	if (ei->i_file_acl &&
4203 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4204 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4205 				 ei->i_file_acl);
4206 		ret = -EIO;
4207 		goto bad_inode;
4208 	} else if (!ext4_has_inline_data(inode)) {
4209 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4210 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4211 			    (S_ISLNK(inode->i_mode) &&
4212 			     !ext4_inode_is_fast_symlink(inode))))
4213 				/* Validate extent which is part of inode */
4214 				ret = ext4_ext_check_inode(inode);
4215 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4216 			   (S_ISLNK(inode->i_mode) &&
4217 			    !ext4_inode_is_fast_symlink(inode))) {
4218 			/* Validate block references which are part of inode */
4219 			ret = ext4_ind_check_inode(inode);
4220 		}
4221 	}
4222 	if (ret)
4223 		goto bad_inode;
4224 
4225 	if (S_ISREG(inode->i_mode)) {
4226 		inode->i_op = &ext4_file_inode_operations;
4227 		inode->i_fop = &ext4_file_operations;
4228 		ext4_set_aops(inode);
4229 	} else if (S_ISDIR(inode->i_mode)) {
4230 		inode->i_op = &ext4_dir_inode_operations;
4231 		inode->i_fop = &ext4_dir_operations;
4232 	} else if (S_ISLNK(inode->i_mode)) {
4233 		if (ext4_encrypted_inode(inode)) {
4234 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4235 			ext4_set_aops(inode);
4236 		} else if (ext4_inode_is_fast_symlink(inode)) {
4237 			inode->i_link = (char *)ei->i_data;
4238 			inode->i_op = &ext4_fast_symlink_inode_operations;
4239 			nd_terminate_link(ei->i_data, inode->i_size,
4240 				sizeof(ei->i_data) - 1);
4241 		} else {
4242 			inode->i_op = &ext4_symlink_inode_operations;
4243 			ext4_set_aops(inode);
4244 		}
4245 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4246 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4247 		inode->i_op = &ext4_special_inode_operations;
4248 		if (raw_inode->i_block[0])
4249 			init_special_inode(inode, inode->i_mode,
4250 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4251 		else
4252 			init_special_inode(inode, inode->i_mode,
4253 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4254 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4255 		make_bad_inode(inode);
4256 	} else {
4257 		ret = -EIO;
4258 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4259 		goto bad_inode;
4260 	}
4261 	brelse(iloc.bh);
4262 	ext4_set_inode_flags(inode);
4263 	unlock_new_inode(inode);
4264 	return inode;
4265 
4266 bad_inode:
4267 	brelse(iloc.bh);
4268 	iget_failed(inode);
4269 	return ERR_PTR(ret);
4270 }
4271 
4272 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4273 {
4274 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4275 		return ERR_PTR(-EIO);
4276 	return ext4_iget(sb, ino);
4277 }
4278 
4279 static int ext4_inode_blocks_set(handle_t *handle,
4280 				struct ext4_inode *raw_inode,
4281 				struct ext4_inode_info *ei)
4282 {
4283 	struct inode *inode = &(ei->vfs_inode);
4284 	u64 i_blocks = inode->i_blocks;
4285 	struct super_block *sb = inode->i_sb;
4286 
4287 	if (i_blocks <= ~0U) {
4288 		/*
4289 		 * i_blocks can be represented in a 32 bit variable
4290 		 * as multiple of 512 bytes
4291 		 */
4292 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4293 		raw_inode->i_blocks_high = 0;
4294 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4295 		return 0;
4296 	}
4297 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4298 		return -EFBIG;
4299 
4300 	if (i_blocks <= 0xffffffffffffULL) {
4301 		/*
4302 		 * i_blocks can be represented in a 48 bit variable
4303 		 * as multiple of 512 bytes
4304 		 */
4305 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4306 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4307 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4308 	} else {
4309 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4310 		/* i_block is stored in file system block size */
4311 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4312 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4313 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4314 	}
4315 	return 0;
4316 }
4317 
4318 struct other_inode {
4319 	unsigned long		orig_ino;
4320 	struct ext4_inode	*raw_inode;
4321 };
4322 
4323 static int other_inode_match(struct inode * inode, unsigned long ino,
4324 			     void *data)
4325 {
4326 	struct other_inode *oi = (struct other_inode *) data;
4327 
4328 	if ((inode->i_ino != ino) ||
4329 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4330 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4331 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4332 		return 0;
4333 	spin_lock(&inode->i_lock);
4334 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4335 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4336 	    (inode->i_state & I_DIRTY_TIME)) {
4337 		struct ext4_inode_info	*ei = EXT4_I(inode);
4338 
4339 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4340 		spin_unlock(&inode->i_lock);
4341 
4342 		spin_lock(&ei->i_raw_lock);
4343 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4344 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4345 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4346 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4347 		spin_unlock(&ei->i_raw_lock);
4348 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4349 		return -1;
4350 	}
4351 	spin_unlock(&inode->i_lock);
4352 	return -1;
4353 }
4354 
4355 /*
4356  * Opportunistically update the other time fields for other inodes in
4357  * the same inode table block.
4358  */
4359 static void ext4_update_other_inodes_time(struct super_block *sb,
4360 					  unsigned long orig_ino, char *buf)
4361 {
4362 	struct other_inode oi;
4363 	unsigned long ino;
4364 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4365 	int inode_size = EXT4_INODE_SIZE(sb);
4366 
4367 	oi.orig_ino = orig_ino;
4368 	/*
4369 	 * Calculate the first inode in the inode table block.  Inode
4370 	 * numbers are one-based.  That is, the first inode in a block
4371 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4372 	 */
4373 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4374 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4375 		if (ino == orig_ino)
4376 			continue;
4377 		oi.raw_inode = (struct ext4_inode *) buf;
4378 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4379 	}
4380 }
4381 
4382 /*
4383  * Post the struct inode info into an on-disk inode location in the
4384  * buffer-cache.  This gobbles the caller's reference to the
4385  * buffer_head in the inode location struct.
4386  *
4387  * The caller must have write access to iloc->bh.
4388  */
4389 static int ext4_do_update_inode(handle_t *handle,
4390 				struct inode *inode,
4391 				struct ext4_iloc *iloc)
4392 {
4393 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4394 	struct ext4_inode_info *ei = EXT4_I(inode);
4395 	struct buffer_head *bh = iloc->bh;
4396 	struct super_block *sb = inode->i_sb;
4397 	int err = 0, rc, block;
4398 	int need_datasync = 0, set_large_file = 0;
4399 	uid_t i_uid;
4400 	gid_t i_gid;
4401 
4402 	spin_lock(&ei->i_raw_lock);
4403 
4404 	/* For fields not tracked in the in-memory inode,
4405 	 * initialise them to zero for new inodes. */
4406 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4407 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4408 
4409 	ext4_get_inode_flags(ei);
4410 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4411 	i_uid = i_uid_read(inode);
4412 	i_gid = i_gid_read(inode);
4413 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4414 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4415 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4416 /*
4417  * Fix up interoperability with old kernels. Otherwise, old inodes get
4418  * re-used with the upper 16 bits of the uid/gid intact
4419  */
4420 		if (!ei->i_dtime) {
4421 			raw_inode->i_uid_high =
4422 				cpu_to_le16(high_16_bits(i_uid));
4423 			raw_inode->i_gid_high =
4424 				cpu_to_le16(high_16_bits(i_gid));
4425 		} else {
4426 			raw_inode->i_uid_high = 0;
4427 			raw_inode->i_gid_high = 0;
4428 		}
4429 	} else {
4430 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4431 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4432 		raw_inode->i_uid_high = 0;
4433 		raw_inode->i_gid_high = 0;
4434 	}
4435 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4436 
4437 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4438 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4439 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4440 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4441 
4442 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4443 	if (err) {
4444 		spin_unlock(&ei->i_raw_lock);
4445 		goto out_brelse;
4446 	}
4447 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4448 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4449 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4450 		raw_inode->i_file_acl_high =
4451 			cpu_to_le16(ei->i_file_acl >> 32);
4452 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4453 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4454 		ext4_isize_set(raw_inode, ei->i_disksize);
4455 		need_datasync = 1;
4456 	}
4457 	if (ei->i_disksize > 0x7fffffffULL) {
4458 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4459 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4460 				EXT4_SB(sb)->s_es->s_rev_level ==
4461 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4462 			set_large_file = 1;
4463 	}
4464 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4465 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4466 		if (old_valid_dev(inode->i_rdev)) {
4467 			raw_inode->i_block[0] =
4468 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4469 			raw_inode->i_block[1] = 0;
4470 		} else {
4471 			raw_inode->i_block[0] = 0;
4472 			raw_inode->i_block[1] =
4473 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4474 			raw_inode->i_block[2] = 0;
4475 		}
4476 	} else if (!ext4_has_inline_data(inode)) {
4477 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4478 			raw_inode->i_block[block] = ei->i_data[block];
4479 	}
4480 
4481 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4482 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4483 		if (ei->i_extra_isize) {
4484 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4485 				raw_inode->i_version_hi =
4486 					cpu_to_le32(inode->i_version >> 32);
4487 			raw_inode->i_extra_isize =
4488 				cpu_to_le16(ei->i_extra_isize);
4489 		}
4490 	}
4491 	ext4_inode_csum_set(inode, raw_inode, ei);
4492 	spin_unlock(&ei->i_raw_lock);
4493 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4494 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4495 					      bh->b_data);
4496 
4497 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4498 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4499 	if (!err)
4500 		err = rc;
4501 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4502 	if (set_large_file) {
4503 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4504 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4505 		if (err)
4506 			goto out_brelse;
4507 		ext4_update_dynamic_rev(sb);
4508 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4509 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4510 		ext4_handle_sync(handle);
4511 		err = ext4_handle_dirty_super(handle, sb);
4512 	}
4513 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4514 out_brelse:
4515 	brelse(bh);
4516 	ext4_std_error(inode->i_sb, err);
4517 	return err;
4518 }
4519 
4520 /*
4521  * ext4_write_inode()
4522  *
4523  * We are called from a few places:
4524  *
4525  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4526  *   Here, there will be no transaction running. We wait for any running
4527  *   transaction to commit.
4528  *
4529  * - Within flush work (sys_sync(), kupdate and such).
4530  *   We wait on commit, if told to.
4531  *
4532  * - Within iput_final() -> write_inode_now()
4533  *   We wait on commit, if told to.
4534  *
4535  * In all cases it is actually safe for us to return without doing anything,
4536  * because the inode has been copied into a raw inode buffer in
4537  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4538  * writeback.
4539  *
4540  * Note that we are absolutely dependent upon all inode dirtiers doing the
4541  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4542  * which we are interested.
4543  *
4544  * It would be a bug for them to not do this.  The code:
4545  *
4546  *	mark_inode_dirty(inode)
4547  *	stuff();
4548  *	inode->i_size = expr;
4549  *
4550  * is in error because write_inode() could occur while `stuff()' is running,
4551  * and the new i_size will be lost.  Plus the inode will no longer be on the
4552  * superblock's dirty inode list.
4553  */
4554 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4555 {
4556 	int err;
4557 
4558 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4559 		return 0;
4560 
4561 	if (EXT4_SB(inode->i_sb)->s_journal) {
4562 		if (ext4_journal_current_handle()) {
4563 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4564 			dump_stack();
4565 			return -EIO;
4566 		}
4567 
4568 		/*
4569 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4570 		 * ext4_sync_fs() will force the commit after everything is
4571 		 * written.
4572 		 */
4573 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4574 			return 0;
4575 
4576 		err = ext4_force_commit(inode->i_sb);
4577 	} else {
4578 		struct ext4_iloc iloc;
4579 
4580 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4581 		if (err)
4582 			return err;
4583 		/*
4584 		 * sync(2) will flush the whole buffer cache. No need to do
4585 		 * it here separately for each inode.
4586 		 */
4587 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4588 			sync_dirty_buffer(iloc.bh);
4589 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4590 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4591 					 "IO error syncing inode");
4592 			err = -EIO;
4593 		}
4594 		brelse(iloc.bh);
4595 	}
4596 	return err;
4597 }
4598 
4599 /*
4600  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4601  * buffers that are attached to a page stradding i_size and are undergoing
4602  * commit. In that case we have to wait for commit to finish and try again.
4603  */
4604 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4605 {
4606 	struct page *page;
4607 	unsigned offset;
4608 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4609 	tid_t commit_tid = 0;
4610 	int ret;
4611 
4612 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4613 	/*
4614 	 * All buffers in the last page remain valid? Then there's nothing to
4615 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4616 	 * blocksize case
4617 	 */
4618 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4619 		return;
4620 	while (1) {
4621 		page = find_lock_page(inode->i_mapping,
4622 				      inode->i_size >> PAGE_CACHE_SHIFT);
4623 		if (!page)
4624 			return;
4625 		ret = __ext4_journalled_invalidatepage(page, offset,
4626 						PAGE_CACHE_SIZE - offset);
4627 		unlock_page(page);
4628 		page_cache_release(page);
4629 		if (ret != -EBUSY)
4630 			return;
4631 		commit_tid = 0;
4632 		read_lock(&journal->j_state_lock);
4633 		if (journal->j_committing_transaction)
4634 			commit_tid = journal->j_committing_transaction->t_tid;
4635 		read_unlock(&journal->j_state_lock);
4636 		if (commit_tid)
4637 			jbd2_log_wait_commit(journal, commit_tid);
4638 	}
4639 }
4640 
4641 /*
4642  * ext4_setattr()
4643  *
4644  * Called from notify_change.
4645  *
4646  * We want to trap VFS attempts to truncate the file as soon as
4647  * possible.  In particular, we want to make sure that when the VFS
4648  * shrinks i_size, we put the inode on the orphan list and modify
4649  * i_disksize immediately, so that during the subsequent flushing of
4650  * dirty pages and freeing of disk blocks, we can guarantee that any
4651  * commit will leave the blocks being flushed in an unused state on
4652  * disk.  (On recovery, the inode will get truncated and the blocks will
4653  * be freed, so we have a strong guarantee that no future commit will
4654  * leave these blocks visible to the user.)
4655  *
4656  * Another thing we have to assure is that if we are in ordered mode
4657  * and inode is still attached to the committing transaction, we must
4658  * we start writeout of all the dirty pages which are being truncated.
4659  * This way we are sure that all the data written in the previous
4660  * transaction are already on disk (truncate waits for pages under
4661  * writeback).
4662  *
4663  * Called with inode->i_mutex down.
4664  */
4665 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4666 {
4667 	struct inode *inode = d_inode(dentry);
4668 	int error, rc = 0;
4669 	int orphan = 0;
4670 	const unsigned int ia_valid = attr->ia_valid;
4671 
4672 	error = inode_change_ok(inode, attr);
4673 	if (error)
4674 		return error;
4675 
4676 	if (is_quota_modification(inode, attr)) {
4677 		error = dquot_initialize(inode);
4678 		if (error)
4679 			return error;
4680 	}
4681 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4682 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4683 		handle_t *handle;
4684 
4685 		/* (user+group)*(old+new) structure, inode write (sb,
4686 		 * inode block, ? - but truncate inode update has it) */
4687 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4688 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4689 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4690 		if (IS_ERR(handle)) {
4691 			error = PTR_ERR(handle);
4692 			goto err_out;
4693 		}
4694 		error = dquot_transfer(inode, attr);
4695 		if (error) {
4696 			ext4_journal_stop(handle);
4697 			return error;
4698 		}
4699 		/* Update corresponding info in inode so that everything is in
4700 		 * one transaction */
4701 		if (attr->ia_valid & ATTR_UID)
4702 			inode->i_uid = attr->ia_uid;
4703 		if (attr->ia_valid & ATTR_GID)
4704 			inode->i_gid = attr->ia_gid;
4705 		error = ext4_mark_inode_dirty(handle, inode);
4706 		ext4_journal_stop(handle);
4707 	}
4708 
4709 	if (attr->ia_valid & ATTR_SIZE) {
4710 		handle_t *handle;
4711 		loff_t oldsize = inode->i_size;
4712 		int shrink = (attr->ia_size <= inode->i_size);
4713 
4714 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4715 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4716 
4717 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4718 				return -EFBIG;
4719 		}
4720 		if (!S_ISREG(inode->i_mode))
4721 			return -EINVAL;
4722 
4723 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4724 			inode_inc_iversion(inode);
4725 
4726 		if (ext4_should_order_data(inode) &&
4727 		    (attr->ia_size < inode->i_size)) {
4728 			error = ext4_begin_ordered_truncate(inode,
4729 							    attr->ia_size);
4730 			if (error)
4731 				goto err_out;
4732 		}
4733 		if (attr->ia_size != inode->i_size) {
4734 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4735 			if (IS_ERR(handle)) {
4736 				error = PTR_ERR(handle);
4737 				goto err_out;
4738 			}
4739 			if (ext4_handle_valid(handle) && shrink) {
4740 				error = ext4_orphan_add(handle, inode);
4741 				orphan = 1;
4742 			}
4743 			/*
4744 			 * Update c/mtime on truncate up, ext4_truncate() will
4745 			 * update c/mtime in shrink case below
4746 			 */
4747 			if (!shrink) {
4748 				inode->i_mtime = ext4_current_time(inode);
4749 				inode->i_ctime = inode->i_mtime;
4750 			}
4751 			down_write(&EXT4_I(inode)->i_data_sem);
4752 			EXT4_I(inode)->i_disksize = attr->ia_size;
4753 			rc = ext4_mark_inode_dirty(handle, inode);
4754 			if (!error)
4755 				error = rc;
4756 			/*
4757 			 * We have to update i_size under i_data_sem together
4758 			 * with i_disksize to avoid races with writeback code
4759 			 * running ext4_wb_update_i_disksize().
4760 			 */
4761 			if (!error)
4762 				i_size_write(inode, attr->ia_size);
4763 			up_write(&EXT4_I(inode)->i_data_sem);
4764 			ext4_journal_stop(handle);
4765 			if (error) {
4766 				if (orphan)
4767 					ext4_orphan_del(NULL, inode);
4768 				goto err_out;
4769 			}
4770 		}
4771 		if (!shrink)
4772 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4773 
4774 		/*
4775 		 * Blocks are going to be removed from the inode. Wait
4776 		 * for dio in flight.  Temporarily disable
4777 		 * dioread_nolock to prevent livelock.
4778 		 */
4779 		if (orphan) {
4780 			if (!ext4_should_journal_data(inode)) {
4781 				ext4_inode_block_unlocked_dio(inode);
4782 				inode_dio_wait(inode);
4783 				ext4_inode_resume_unlocked_dio(inode);
4784 			} else
4785 				ext4_wait_for_tail_page_commit(inode);
4786 		}
4787 		/*
4788 		 * Truncate pagecache after we've waited for commit
4789 		 * in data=journal mode to make pages freeable.
4790 		 */
4791 		truncate_pagecache(inode, inode->i_size);
4792 		if (shrink)
4793 			ext4_truncate(inode);
4794 	}
4795 
4796 	if (!rc) {
4797 		setattr_copy(inode, attr);
4798 		mark_inode_dirty(inode);
4799 	}
4800 
4801 	/*
4802 	 * If the call to ext4_truncate failed to get a transaction handle at
4803 	 * all, we need to clean up the in-core orphan list manually.
4804 	 */
4805 	if (orphan && inode->i_nlink)
4806 		ext4_orphan_del(NULL, inode);
4807 
4808 	if (!rc && (ia_valid & ATTR_MODE))
4809 		rc = posix_acl_chmod(inode, inode->i_mode);
4810 
4811 err_out:
4812 	ext4_std_error(inode->i_sb, error);
4813 	if (!error)
4814 		error = rc;
4815 	return error;
4816 }
4817 
4818 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4819 		 struct kstat *stat)
4820 {
4821 	struct inode *inode;
4822 	unsigned long long delalloc_blocks;
4823 
4824 	inode = d_inode(dentry);
4825 	generic_fillattr(inode, stat);
4826 
4827 	/*
4828 	 * If there is inline data in the inode, the inode will normally not
4829 	 * have data blocks allocated (it may have an external xattr block).
4830 	 * Report at least one sector for such files, so tools like tar, rsync,
4831 	 * others doen't incorrectly think the file is completely sparse.
4832 	 */
4833 	if (unlikely(ext4_has_inline_data(inode)))
4834 		stat->blocks += (stat->size + 511) >> 9;
4835 
4836 	/*
4837 	 * We can't update i_blocks if the block allocation is delayed
4838 	 * otherwise in the case of system crash before the real block
4839 	 * allocation is done, we will have i_blocks inconsistent with
4840 	 * on-disk file blocks.
4841 	 * We always keep i_blocks updated together with real
4842 	 * allocation. But to not confuse with user, stat
4843 	 * will return the blocks that include the delayed allocation
4844 	 * blocks for this file.
4845 	 */
4846 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4847 				   EXT4_I(inode)->i_reserved_data_blocks);
4848 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4849 	return 0;
4850 }
4851 
4852 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4853 				   int pextents)
4854 {
4855 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4856 		return ext4_ind_trans_blocks(inode, lblocks);
4857 	return ext4_ext_index_trans_blocks(inode, pextents);
4858 }
4859 
4860 /*
4861  * Account for index blocks, block groups bitmaps and block group
4862  * descriptor blocks if modify datablocks and index blocks
4863  * worse case, the indexs blocks spread over different block groups
4864  *
4865  * If datablocks are discontiguous, they are possible to spread over
4866  * different block groups too. If they are contiguous, with flexbg,
4867  * they could still across block group boundary.
4868  *
4869  * Also account for superblock, inode, quota and xattr blocks
4870  */
4871 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4872 				  int pextents)
4873 {
4874 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4875 	int gdpblocks;
4876 	int idxblocks;
4877 	int ret = 0;
4878 
4879 	/*
4880 	 * How many index blocks need to touch to map @lblocks logical blocks
4881 	 * to @pextents physical extents?
4882 	 */
4883 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4884 
4885 	ret = idxblocks;
4886 
4887 	/*
4888 	 * Now let's see how many group bitmaps and group descriptors need
4889 	 * to account
4890 	 */
4891 	groups = idxblocks + pextents;
4892 	gdpblocks = groups;
4893 	if (groups > ngroups)
4894 		groups = ngroups;
4895 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4896 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4897 
4898 	/* bitmaps and block group descriptor blocks */
4899 	ret += groups + gdpblocks;
4900 
4901 	/* Blocks for super block, inode, quota and xattr blocks */
4902 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4903 
4904 	return ret;
4905 }
4906 
4907 /*
4908  * Calculate the total number of credits to reserve to fit
4909  * the modification of a single pages into a single transaction,
4910  * which may include multiple chunks of block allocations.
4911  *
4912  * This could be called via ext4_write_begin()
4913  *
4914  * We need to consider the worse case, when
4915  * one new block per extent.
4916  */
4917 int ext4_writepage_trans_blocks(struct inode *inode)
4918 {
4919 	int bpp = ext4_journal_blocks_per_page(inode);
4920 	int ret;
4921 
4922 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4923 
4924 	/* Account for data blocks for journalled mode */
4925 	if (ext4_should_journal_data(inode))
4926 		ret += bpp;
4927 	return ret;
4928 }
4929 
4930 /*
4931  * Calculate the journal credits for a chunk of data modification.
4932  *
4933  * This is called from DIO, fallocate or whoever calling
4934  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4935  *
4936  * journal buffers for data blocks are not included here, as DIO
4937  * and fallocate do no need to journal data buffers.
4938  */
4939 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4940 {
4941 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4942 }
4943 
4944 /*
4945  * The caller must have previously called ext4_reserve_inode_write().
4946  * Give this, we know that the caller already has write access to iloc->bh.
4947  */
4948 int ext4_mark_iloc_dirty(handle_t *handle,
4949 			 struct inode *inode, struct ext4_iloc *iloc)
4950 {
4951 	int err = 0;
4952 
4953 	if (IS_I_VERSION(inode))
4954 		inode_inc_iversion(inode);
4955 
4956 	/* the do_update_inode consumes one bh->b_count */
4957 	get_bh(iloc->bh);
4958 
4959 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4960 	err = ext4_do_update_inode(handle, inode, iloc);
4961 	put_bh(iloc->bh);
4962 	return err;
4963 }
4964 
4965 /*
4966  * On success, We end up with an outstanding reference count against
4967  * iloc->bh.  This _must_ be cleaned up later.
4968  */
4969 
4970 int
4971 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4972 			 struct ext4_iloc *iloc)
4973 {
4974 	int err;
4975 
4976 	err = ext4_get_inode_loc(inode, iloc);
4977 	if (!err) {
4978 		BUFFER_TRACE(iloc->bh, "get_write_access");
4979 		err = ext4_journal_get_write_access(handle, iloc->bh);
4980 		if (err) {
4981 			brelse(iloc->bh);
4982 			iloc->bh = NULL;
4983 		}
4984 	}
4985 	ext4_std_error(inode->i_sb, err);
4986 	return err;
4987 }
4988 
4989 /*
4990  * Expand an inode by new_extra_isize bytes.
4991  * Returns 0 on success or negative error number on failure.
4992  */
4993 static int ext4_expand_extra_isize(struct inode *inode,
4994 				   unsigned int new_extra_isize,
4995 				   struct ext4_iloc iloc,
4996 				   handle_t *handle)
4997 {
4998 	struct ext4_inode *raw_inode;
4999 	struct ext4_xattr_ibody_header *header;
5000 
5001 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5002 		return 0;
5003 
5004 	raw_inode = ext4_raw_inode(&iloc);
5005 
5006 	header = IHDR(inode, raw_inode);
5007 
5008 	/* No extended attributes present */
5009 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5010 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5011 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5012 			new_extra_isize);
5013 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5014 		return 0;
5015 	}
5016 
5017 	/* try to expand with EAs present */
5018 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5019 					  raw_inode, handle);
5020 }
5021 
5022 /*
5023  * What we do here is to mark the in-core inode as clean with respect to inode
5024  * dirtiness (it may still be data-dirty).
5025  * This means that the in-core inode may be reaped by prune_icache
5026  * without having to perform any I/O.  This is a very good thing,
5027  * because *any* task may call prune_icache - even ones which
5028  * have a transaction open against a different journal.
5029  *
5030  * Is this cheating?  Not really.  Sure, we haven't written the
5031  * inode out, but prune_icache isn't a user-visible syncing function.
5032  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5033  * we start and wait on commits.
5034  */
5035 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5036 {
5037 	struct ext4_iloc iloc;
5038 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5039 	static unsigned int mnt_count;
5040 	int err, ret;
5041 
5042 	might_sleep();
5043 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5044 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5045 	if (ext4_handle_valid(handle) &&
5046 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5047 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5048 		/*
5049 		 * We need extra buffer credits since we may write into EA block
5050 		 * with this same handle. If journal_extend fails, then it will
5051 		 * only result in a minor loss of functionality for that inode.
5052 		 * If this is felt to be critical, then e2fsck should be run to
5053 		 * force a large enough s_min_extra_isize.
5054 		 */
5055 		if ((jbd2_journal_extend(handle,
5056 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5057 			ret = ext4_expand_extra_isize(inode,
5058 						      sbi->s_want_extra_isize,
5059 						      iloc, handle);
5060 			if (ret) {
5061 				ext4_set_inode_state(inode,
5062 						     EXT4_STATE_NO_EXPAND);
5063 				if (mnt_count !=
5064 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5065 					ext4_warning(inode->i_sb,
5066 					"Unable to expand inode %lu. Delete"
5067 					" some EAs or run e2fsck.",
5068 					inode->i_ino);
5069 					mnt_count =
5070 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5071 				}
5072 			}
5073 		}
5074 	}
5075 	if (!err)
5076 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5077 	return err;
5078 }
5079 
5080 /*
5081  * ext4_dirty_inode() is called from __mark_inode_dirty()
5082  *
5083  * We're really interested in the case where a file is being extended.
5084  * i_size has been changed by generic_commit_write() and we thus need
5085  * to include the updated inode in the current transaction.
5086  *
5087  * Also, dquot_alloc_block() will always dirty the inode when blocks
5088  * are allocated to the file.
5089  *
5090  * If the inode is marked synchronous, we don't honour that here - doing
5091  * so would cause a commit on atime updates, which we don't bother doing.
5092  * We handle synchronous inodes at the highest possible level.
5093  *
5094  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5095  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5096  * to copy into the on-disk inode structure are the timestamp files.
5097  */
5098 void ext4_dirty_inode(struct inode *inode, int flags)
5099 {
5100 	handle_t *handle;
5101 
5102 	if (flags == I_DIRTY_TIME)
5103 		return;
5104 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5105 	if (IS_ERR(handle))
5106 		goto out;
5107 
5108 	ext4_mark_inode_dirty(handle, inode);
5109 
5110 	ext4_journal_stop(handle);
5111 out:
5112 	return;
5113 }
5114 
5115 #if 0
5116 /*
5117  * Bind an inode's backing buffer_head into this transaction, to prevent
5118  * it from being flushed to disk early.  Unlike
5119  * ext4_reserve_inode_write, this leaves behind no bh reference and
5120  * returns no iloc structure, so the caller needs to repeat the iloc
5121  * lookup to mark the inode dirty later.
5122  */
5123 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5124 {
5125 	struct ext4_iloc iloc;
5126 
5127 	int err = 0;
5128 	if (handle) {
5129 		err = ext4_get_inode_loc(inode, &iloc);
5130 		if (!err) {
5131 			BUFFER_TRACE(iloc.bh, "get_write_access");
5132 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5133 			if (!err)
5134 				err = ext4_handle_dirty_metadata(handle,
5135 								 NULL,
5136 								 iloc.bh);
5137 			brelse(iloc.bh);
5138 		}
5139 	}
5140 	ext4_std_error(inode->i_sb, err);
5141 	return err;
5142 }
5143 #endif
5144 
5145 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5146 {
5147 	journal_t *journal;
5148 	handle_t *handle;
5149 	int err;
5150 
5151 	/*
5152 	 * We have to be very careful here: changing a data block's
5153 	 * journaling status dynamically is dangerous.  If we write a
5154 	 * data block to the journal, change the status and then delete
5155 	 * that block, we risk forgetting to revoke the old log record
5156 	 * from the journal and so a subsequent replay can corrupt data.
5157 	 * So, first we make sure that the journal is empty and that
5158 	 * nobody is changing anything.
5159 	 */
5160 
5161 	journal = EXT4_JOURNAL(inode);
5162 	if (!journal)
5163 		return 0;
5164 	if (is_journal_aborted(journal))
5165 		return -EROFS;
5166 	/* We have to allocate physical blocks for delalloc blocks
5167 	 * before flushing journal. otherwise delalloc blocks can not
5168 	 * be allocated any more. even more truncate on delalloc blocks
5169 	 * could trigger BUG by flushing delalloc blocks in journal.
5170 	 * There is no delalloc block in non-journal data mode.
5171 	 */
5172 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5173 		err = ext4_alloc_da_blocks(inode);
5174 		if (err < 0)
5175 			return err;
5176 	}
5177 
5178 	/* Wait for all existing dio workers */
5179 	ext4_inode_block_unlocked_dio(inode);
5180 	inode_dio_wait(inode);
5181 
5182 	jbd2_journal_lock_updates(journal);
5183 
5184 	/*
5185 	 * OK, there are no updates running now, and all cached data is
5186 	 * synced to disk.  We are now in a completely consistent state
5187 	 * which doesn't have anything in the journal, and we know that
5188 	 * no filesystem updates are running, so it is safe to modify
5189 	 * the inode's in-core data-journaling state flag now.
5190 	 */
5191 
5192 	if (val)
5193 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5194 	else {
5195 		err = jbd2_journal_flush(journal);
5196 		if (err < 0) {
5197 			jbd2_journal_unlock_updates(journal);
5198 			ext4_inode_resume_unlocked_dio(inode);
5199 			return err;
5200 		}
5201 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5202 	}
5203 	ext4_set_aops(inode);
5204 
5205 	jbd2_journal_unlock_updates(journal);
5206 	ext4_inode_resume_unlocked_dio(inode);
5207 
5208 	/* Finally we can mark the inode as dirty. */
5209 
5210 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5211 	if (IS_ERR(handle))
5212 		return PTR_ERR(handle);
5213 
5214 	err = ext4_mark_inode_dirty(handle, inode);
5215 	ext4_handle_sync(handle);
5216 	ext4_journal_stop(handle);
5217 	ext4_std_error(inode->i_sb, err);
5218 
5219 	return err;
5220 }
5221 
5222 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5223 {
5224 	return !buffer_mapped(bh);
5225 }
5226 
5227 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5228 {
5229 	struct page *page = vmf->page;
5230 	loff_t size;
5231 	unsigned long len;
5232 	int ret;
5233 	struct file *file = vma->vm_file;
5234 	struct inode *inode = file_inode(file);
5235 	struct address_space *mapping = inode->i_mapping;
5236 	handle_t *handle;
5237 	get_block_t *get_block;
5238 	int retries = 0;
5239 
5240 	sb_start_pagefault(inode->i_sb);
5241 	file_update_time(vma->vm_file);
5242 	/* Delalloc case is easy... */
5243 	if (test_opt(inode->i_sb, DELALLOC) &&
5244 	    !ext4_should_journal_data(inode) &&
5245 	    !ext4_nonda_switch(inode->i_sb)) {
5246 		do {
5247 			ret = __block_page_mkwrite(vma, vmf,
5248 						   ext4_da_get_block_prep);
5249 		} while (ret == -ENOSPC &&
5250 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5251 		goto out_ret;
5252 	}
5253 
5254 	lock_page(page);
5255 	size = i_size_read(inode);
5256 	/* Page got truncated from under us? */
5257 	if (page->mapping != mapping || page_offset(page) > size) {
5258 		unlock_page(page);
5259 		ret = VM_FAULT_NOPAGE;
5260 		goto out;
5261 	}
5262 
5263 	if (page->index == size >> PAGE_CACHE_SHIFT)
5264 		len = size & ~PAGE_CACHE_MASK;
5265 	else
5266 		len = PAGE_CACHE_SIZE;
5267 	/*
5268 	 * Return if we have all the buffers mapped. This avoids the need to do
5269 	 * journal_start/journal_stop which can block and take a long time
5270 	 */
5271 	if (page_has_buffers(page)) {
5272 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5273 					    0, len, NULL,
5274 					    ext4_bh_unmapped)) {
5275 			/* Wait so that we don't change page under IO */
5276 			wait_for_stable_page(page);
5277 			ret = VM_FAULT_LOCKED;
5278 			goto out;
5279 		}
5280 	}
5281 	unlock_page(page);
5282 	/* OK, we need to fill the hole... */
5283 	if (ext4_should_dioread_nolock(inode))
5284 		get_block = ext4_get_block_write;
5285 	else
5286 		get_block = ext4_get_block;
5287 retry_alloc:
5288 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5289 				    ext4_writepage_trans_blocks(inode));
5290 	if (IS_ERR(handle)) {
5291 		ret = VM_FAULT_SIGBUS;
5292 		goto out;
5293 	}
5294 	ret = __block_page_mkwrite(vma, vmf, get_block);
5295 	if (!ret && ext4_should_journal_data(inode)) {
5296 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5297 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5298 			unlock_page(page);
5299 			ret = VM_FAULT_SIGBUS;
5300 			ext4_journal_stop(handle);
5301 			goto out;
5302 		}
5303 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5304 	}
5305 	ext4_journal_stop(handle);
5306 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5307 		goto retry_alloc;
5308 out_ret:
5309 	ret = block_page_mkwrite_return(ret);
5310 out:
5311 	sb_end_pagefault(inode->i_sb);
5312 	return ret;
5313 }
5314