1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 172 int nblocks) 173 { 174 int ret; 175 176 /* 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 178 * moment, get_block can be called only for blocks inside i_size since 179 * page cache has been already dropped and writes are blocked by 180 * i_mutex. So we can safely drop the i_data_sem here. 181 */ 182 BUG_ON(EXT4_JOURNAL(inode) == NULL); 183 jbd_debug(2, "restarting handle %p\n", handle); 184 up_write(&EXT4_I(inode)->i_data_sem); 185 ret = ext4_journal_restart(handle, nblocks); 186 down_write(&EXT4_I(inode)->i_data_sem); 187 ext4_discard_preallocations(inode); 188 189 return ret; 190 } 191 192 /* 193 * Called at the last iput() if i_nlink is zero. 194 */ 195 void ext4_evict_inode(struct inode *inode) 196 { 197 handle_t *handle; 198 int err; 199 int extra_credits = 3; 200 struct ext4_xattr_inode_array *ea_inode_array = NULL; 201 202 trace_ext4_evict_inode(inode); 203 204 if (inode->i_nlink) { 205 /* 206 * When journalling data dirty buffers are tracked only in the 207 * journal. So although mm thinks everything is clean and 208 * ready for reaping the inode might still have some pages to 209 * write in the running transaction or waiting to be 210 * checkpointed. Thus calling jbd2_journal_invalidatepage() 211 * (via truncate_inode_pages()) to discard these buffers can 212 * cause data loss. Also even if we did not discard these 213 * buffers, we would have no way to find them after the inode 214 * is reaped and thus user could see stale data if he tries to 215 * read them before the transaction is checkpointed. So be 216 * careful and force everything to disk here... We use 217 * ei->i_datasync_tid to store the newest transaction 218 * containing inode's data. 219 * 220 * Note that directories do not have this problem because they 221 * don't use page cache. 222 */ 223 if (inode->i_ino != EXT4_JOURNAL_INO && 224 ext4_should_journal_data(inode) && 225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 226 inode->i_data.nrpages) { 227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 229 230 jbd2_complete_transaction(journal, commit_tid); 231 filemap_write_and_wait(&inode->i_data); 232 } 233 truncate_inode_pages_final(&inode->i_data); 234 235 goto no_delete; 236 } 237 238 if (is_bad_inode(inode)) 239 goto no_delete; 240 dquot_initialize(inode); 241 242 if (ext4_should_order_data(inode)) 243 ext4_begin_ordered_truncate(inode, 0); 244 truncate_inode_pages_final(&inode->i_data); 245 246 /* 247 * Protect us against freezing - iput() caller didn't have to have any 248 * protection against it 249 */ 250 sb_start_intwrite(inode->i_sb); 251 252 if (!IS_NOQUOTA(inode)) 253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 254 255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 256 ext4_blocks_for_truncate(inode)+extra_credits); 257 if (IS_ERR(handle)) { 258 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 259 /* 260 * If we're going to skip the normal cleanup, we still need to 261 * make sure that the in-core orphan linked list is properly 262 * cleaned up. 263 */ 264 ext4_orphan_del(NULL, inode); 265 sb_end_intwrite(inode->i_sb); 266 goto no_delete; 267 } 268 269 if (IS_SYNC(inode)) 270 ext4_handle_sync(handle); 271 272 /* 273 * Set inode->i_size to 0 before calling ext4_truncate(). We need 274 * special handling of symlinks here because i_size is used to 275 * determine whether ext4_inode_info->i_data contains symlink data or 276 * block mappings. Setting i_size to 0 will remove its fast symlink 277 * status. Erase i_data so that it becomes a valid empty block map. 278 */ 279 if (ext4_inode_is_fast_symlink(inode)) 280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 281 inode->i_size = 0; 282 err = ext4_mark_inode_dirty(handle, inode); 283 if (err) { 284 ext4_warning(inode->i_sb, 285 "couldn't mark inode dirty (err %d)", err); 286 goto stop_handle; 287 } 288 if (inode->i_blocks) { 289 err = ext4_truncate(inode); 290 if (err) { 291 ext4_error(inode->i_sb, 292 "couldn't truncate inode %lu (err %d)", 293 inode->i_ino, err); 294 goto stop_handle; 295 } 296 } 297 298 /* Remove xattr references. */ 299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 300 extra_credits); 301 if (err) { 302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 303 stop_handle: 304 ext4_journal_stop(handle); 305 ext4_orphan_del(NULL, inode); 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 340 } 341 342 #ifdef CONFIG_QUOTA 343 qsize_t *ext4_get_reserved_space(struct inode *inode) 344 { 345 return &EXT4_I(inode)->i_reserved_quota; 346 } 347 #endif 348 349 /* 350 * Called with i_data_sem down, which is important since we can call 351 * ext4_discard_preallocations() from here. 352 */ 353 void ext4_da_update_reserve_space(struct inode *inode, 354 int used, int quota_claim) 355 { 356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 357 struct ext4_inode_info *ei = EXT4_I(inode); 358 359 spin_lock(&ei->i_block_reservation_lock); 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 361 if (unlikely(used > ei->i_reserved_data_blocks)) { 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 363 "with only %d reserved data blocks", 364 __func__, inode->i_ino, used, 365 ei->i_reserved_data_blocks); 366 WARN_ON(1); 367 used = ei->i_reserved_data_blocks; 368 } 369 370 /* Update per-inode reservations */ 371 ei->i_reserved_data_blocks -= used; 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 373 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 375 376 /* Update quota subsystem for data blocks */ 377 if (quota_claim) 378 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 379 else { 380 /* 381 * We did fallocate with an offset that is already delayed 382 * allocated. So on delayed allocated writeback we should 383 * not re-claim the quota for fallocated blocks. 384 */ 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 386 } 387 388 /* 389 * If we have done all the pending block allocations and if 390 * there aren't any writers on the inode, we can discard the 391 * inode's preallocations. 392 */ 393 if ((ei->i_reserved_data_blocks == 0) && 394 !inode_is_open_for_write(inode)) 395 ext4_discard_preallocations(inode); 396 } 397 398 static int __check_block_validity(struct inode *inode, const char *func, 399 unsigned int line, 400 struct ext4_map_blocks *map) 401 { 402 if (ext4_has_feature_journal(inode->i_sb) && 403 (inode->i_ino == 404 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 405 return 0; 406 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 407 map->m_len)) { 408 ext4_error_inode(inode, func, line, map->m_pblk, 409 "lblock %lu mapped to illegal pblock %llu " 410 "(length %d)", (unsigned long) map->m_lblk, 411 map->m_pblk, map->m_len); 412 return -EFSCORRUPTED; 413 } 414 return 0; 415 } 416 417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 418 ext4_lblk_t len) 419 { 420 int ret; 421 422 if (IS_ENCRYPTED(inode)) 423 return fscrypt_zeroout_range(inode, lblk, pblk, len); 424 425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 426 if (ret > 0) 427 ret = 0; 428 429 return ret; 430 } 431 432 #define check_block_validity(inode, map) \ 433 __check_block_validity((inode), __func__, __LINE__, (map)) 434 435 #ifdef ES_AGGRESSIVE_TEST 436 static void ext4_map_blocks_es_recheck(handle_t *handle, 437 struct inode *inode, 438 struct ext4_map_blocks *es_map, 439 struct ext4_map_blocks *map, 440 int flags) 441 { 442 int retval; 443 444 map->m_flags = 0; 445 /* 446 * There is a race window that the result is not the same. 447 * e.g. xfstests #223 when dioread_nolock enables. The reason 448 * is that we lookup a block mapping in extent status tree with 449 * out taking i_data_sem. So at the time the unwritten extent 450 * could be converted. 451 */ 452 down_read(&EXT4_I(inode)->i_data_sem); 453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 454 retval = ext4_ext_map_blocks(handle, inode, map, flags & 455 EXT4_GET_BLOCKS_KEEP_SIZE); 456 } else { 457 retval = ext4_ind_map_blocks(handle, inode, map, flags & 458 EXT4_GET_BLOCKS_KEEP_SIZE); 459 } 460 up_read((&EXT4_I(inode)->i_data_sem)); 461 462 /* 463 * We don't check m_len because extent will be collpased in status 464 * tree. So the m_len might not equal. 465 */ 466 if (es_map->m_lblk != map->m_lblk || 467 es_map->m_flags != map->m_flags || 468 es_map->m_pblk != map->m_pblk) { 469 printk("ES cache assertion failed for inode: %lu " 470 "es_cached ex [%d/%d/%llu/%x] != " 471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 472 inode->i_ino, es_map->m_lblk, es_map->m_len, 473 es_map->m_pblk, es_map->m_flags, map->m_lblk, 474 map->m_len, map->m_pblk, map->m_flags, 475 retval, flags); 476 } 477 } 478 #endif /* ES_AGGRESSIVE_TEST */ 479 480 /* 481 * The ext4_map_blocks() function tries to look up the requested blocks, 482 * and returns if the blocks are already mapped. 483 * 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 485 * and store the allocated blocks in the result buffer head and mark it 486 * mapped. 487 * 488 * If file type is extents based, it will call ext4_ext_map_blocks(), 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 490 * based files 491 * 492 * On success, it returns the number of blocks being mapped or allocated. if 493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 494 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, @map is returned as unmapped but we still do fill map->m_len to 498 * indicate the length of a hole starting at map->m_lblk. 499 * 500 * It returns the error in case of allocation failure. 501 */ 502 int ext4_map_blocks(handle_t *handle, struct inode *inode, 503 struct ext4_map_blocks *map, int flags) 504 { 505 struct extent_status es; 506 int retval; 507 int ret = 0; 508 #ifdef ES_AGGRESSIVE_TEST 509 struct ext4_map_blocks orig_map; 510 511 memcpy(&orig_map, map, sizeof(*map)); 512 #endif 513 514 map->m_flags = 0; 515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 516 "logical block %lu\n", inode->i_ino, flags, map->m_len, 517 (unsigned long) map->m_lblk); 518 519 /* 520 * ext4_map_blocks returns an int, and m_len is an unsigned int 521 */ 522 if (unlikely(map->m_len > INT_MAX)) 523 map->m_len = INT_MAX; 524 525 /* We can handle the block number less than EXT_MAX_BLOCKS */ 526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 527 return -EFSCORRUPTED; 528 529 /* Lookup extent status tree firstly */ 530 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 532 map->m_pblk = ext4_es_pblock(&es) + 533 map->m_lblk - es.es_lblk; 534 map->m_flags |= ext4_es_is_written(&es) ? 535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 536 retval = es.es_len - (map->m_lblk - es.es_lblk); 537 if (retval > map->m_len) 538 retval = map->m_len; 539 map->m_len = retval; 540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 541 map->m_pblk = 0; 542 retval = es.es_len - (map->m_lblk - es.es_lblk); 543 if (retval > map->m_len) 544 retval = map->m_len; 545 map->m_len = retval; 546 retval = 0; 547 } else { 548 BUG(); 549 } 550 #ifdef ES_AGGRESSIVE_TEST 551 ext4_map_blocks_es_recheck(handle, inode, map, 552 &orig_map, flags); 553 #endif 554 goto found; 555 } 556 557 /* 558 * Try to see if we can get the block without requesting a new 559 * file system block. 560 */ 561 down_read(&EXT4_I(inode)->i_data_sem); 562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 563 retval = ext4_ext_map_blocks(handle, inode, map, flags & 564 EXT4_GET_BLOCKS_KEEP_SIZE); 565 } else { 566 retval = ext4_ind_map_blocks(handle, inode, map, flags & 567 EXT4_GET_BLOCKS_KEEP_SIZE); 568 } 569 if (retval > 0) { 570 unsigned int status; 571 572 if (unlikely(retval != map->m_len)) { 573 ext4_warning(inode->i_sb, 574 "ES len assertion failed for inode " 575 "%lu: retval %d != map->m_len %d", 576 inode->i_ino, retval, map->m_len); 577 WARN_ON(1); 578 } 579 580 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 581 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 582 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 583 !(status & EXTENT_STATUS_WRITTEN) && 584 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 585 map->m_lblk + map->m_len - 1)) 586 status |= EXTENT_STATUS_DELAYED; 587 ret = ext4_es_insert_extent(inode, map->m_lblk, 588 map->m_len, map->m_pblk, status); 589 if (ret < 0) 590 retval = ret; 591 } 592 up_read((&EXT4_I(inode)->i_data_sem)); 593 594 found: 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 596 ret = check_block_validity(inode, map); 597 if (ret != 0) 598 return ret; 599 } 600 601 /* If it is only a block(s) look up */ 602 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 603 return retval; 604 605 /* 606 * Returns if the blocks have already allocated 607 * 608 * Note that if blocks have been preallocated 609 * ext4_ext_get_block() returns the create = 0 610 * with buffer head unmapped. 611 */ 612 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 613 /* 614 * If we need to convert extent to unwritten 615 * we continue and do the actual work in 616 * ext4_ext_map_blocks() 617 */ 618 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 619 return retval; 620 621 /* 622 * Here we clear m_flags because after allocating an new extent, 623 * it will be set again. 624 */ 625 map->m_flags &= ~EXT4_MAP_FLAGS; 626 627 /* 628 * New blocks allocate and/or writing to unwritten extent 629 * will possibly result in updating i_data, so we take 630 * the write lock of i_data_sem, and call get_block() 631 * with create == 1 flag. 632 */ 633 down_write(&EXT4_I(inode)->i_data_sem); 634 635 /* 636 * We need to check for EXT4 here because migrate 637 * could have changed the inode type in between 638 */ 639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 640 retval = ext4_ext_map_blocks(handle, inode, map, flags); 641 } else { 642 retval = ext4_ind_map_blocks(handle, inode, map, flags); 643 644 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 645 /* 646 * We allocated new blocks which will result in 647 * i_data's format changing. Force the migrate 648 * to fail by clearing migrate flags 649 */ 650 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 651 } 652 653 /* 654 * Update reserved blocks/metadata blocks after successful 655 * block allocation which had been deferred till now. We don't 656 * support fallocate for non extent files. So we can update 657 * reserve space here. 658 */ 659 if ((retval > 0) && 660 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 661 ext4_da_update_reserve_space(inode, retval, 1); 662 } 663 664 if (retval > 0) { 665 unsigned int status; 666 667 if (unlikely(retval != map->m_len)) { 668 ext4_warning(inode->i_sb, 669 "ES len assertion failed for inode " 670 "%lu: retval %d != map->m_len %d", 671 inode->i_ino, retval, map->m_len); 672 WARN_ON(1); 673 } 674 675 /* 676 * We have to zeroout blocks before inserting them into extent 677 * status tree. Otherwise someone could look them up there and 678 * use them before they are really zeroed. We also have to 679 * unmap metadata before zeroing as otherwise writeback can 680 * overwrite zeros with stale data from block device. 681 */ 682 if (flags & EXT4_GET_BLOCKS_ZERO && 683 map->m_flags & EXT4_MAP_MAPPED && 684 map->m_flags & EXT4_MAP_NEW) { 685 ret = ext4_issue_zeroout(inode, map->m_lblk, 686 map->m_pblk, map->m_len); 687 if (ret) { 688 retval = ret; 689 goto out_sem; 690 } 691 } 692 693 /* 694 * If the extent has been zeroed out, we don't need to update 695 * extent status tree. 696 */ 697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 698 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 699 if (ext4_es_is_written(&es)) 700 goto out_sem; 701 } 702 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 705 !(status & EXTENT_STATUS_WRITTEN) && 706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 707 map->m_lblk + map->m_len - 1)) 708 status |= EXTENT_STATUS_DELAYED; 709 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 710 map->m_pblk, status); 711 if (ret < 0) { 712 retval = ret; 713 goto out_sem; 714 } 715 } 716 717 out_sem: 718 up_write((&EXT4_I(inode)->i_data_sem)); 719 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 720 ret = check_block_validity(inode, map); 721 if (ret != 0) 722 return ret; 723 724 /* 725 * Inodes with freshly allocated blocks where contents will be 726 * visible after transaction commit must be on transaction's 727 * ordered data list. 728 */ 729 if (map->m_flags & EXT4_MAP_NEW && 730 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 731 !(flags & EXT4_GET_BLOCKS_ZERO) && 732 !ext4_is_quota_file(inode) && 733 ext4_should_order_data(inode)) { 734 loff_t start_byte = 735 (loff_t)map->m_lblk << inode->i_blkbits; 736 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 737 738 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 739 ret = ext4_jbd2_inode_add_wait(handle, inode, 740 start_byte, length); 741 else 742 ret = ext4_jbd2_inode_add_write(handle, inode, 743 start_byte, length); 744 if (ret) 745 return ret; 746 } 747 } 748 return retval; 749 } 750 751 /* 752 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 753 * we have to be careful as someone else may be manipulating b_state as well. 754 */ 755 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 756 { 757 unsigned long old_state; 758 unsigned long new_state; 759 760 flags &= EXT4_MAP_FLAGS; 761 762 /* Dummy buffer_head? Set non-atomically. */ 763 if (!bh->b_page) { 764 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 765 return; 766 } 767 /* 768 * Someone else may be modifying b_state. Be careful! This is ugly but 769 * once we get rid of using bh as a container for mapping information 770 * to pass to / from get_block functions, this can go away. 771 */ 772 do { 773 old_state = READ_ONCE(bh->b_state); 774 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 775 } while (unlikely( 776 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 777 } 778 779 static int _ext4_get_block(struct inode *inode, sector_t iblock, 780 struct buffer_head *bh, int flags) 781 { 782 struct ext4_map_blocks map; 783 int ret = 0; 784 785 if (ext4_has_inline_data(inode)) 786 return -ERANGE; 787 788 map.m_lblk = iblock; 789 map.m_len = bh->b_size >> inode->i_blkbits; 790 791 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 792 flags); 793 if (ret > 0) { 794 map_bh(bh, inode->i_sb, map.m_pblk); 795 ext4_update_bh_state(bh, map.m_flags); 796 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 797 ret = 0; 798 } else if (ret == 0) { 799 /* hole case, need to fill in bh->b_size */ 800 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 801 } 802 return ret; 803 } 804 805 int ext4_get_block(struct inode *inode, sector_t iblock, 806 struct buffer_head *bh, int create) 807 { 808 return _ext4_get_block(inode, iblock, bh, 809 create ? EXT4_GET_BLOCKS_CREATE : 0); 810 } 811 812 /* 813 * Get block function used when preparing for buffered write if we require 814 * creating an unwritten extent if blocks haven't been allocated. The extent 815 * will be converted to written after the IO is complete. 816 */ 817 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 818 struct buffer_head *bh_result, int create) 819 { 820 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 821 inode->i_ino, create); 822 return _ext4_get_block(inode, iblock, bh_result, 823 EXT4_GET_BLOCKS_IO_CREATE_EXT); 824 } 825 826 /* Maximum number of blocks we map for direct IO at once. */ 827 #define DIO_MAX_BLOCKS 4096 828 829 /* 830 * Get blocks function for the cases that need to start a transaction - 831 * generally difference cases of direct IO and DAX IO. It also handles retries 832 * in case of ENOSPC. 833 */ 834 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 835 struct buffer_head *bh_result, int flags) 836 { 837 int dio_credits; 838 handle_t *handle; 839 int retries = 0; 840 int ret; 841 842 /* Trim mapping request to maximum we can map at once for DIO */ 843 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 844 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 845 dio_credits = ext4_chunk_trans_blocks(inode, 846 bh_result->b_size >> inode->i_blkbits); 847 retry: 848 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 849 if (IS_ERR(handle)) 850 return PTR_ERR(handle); 851 852 ret = _ext4_get_block(inode, iblock, bh_result, flags); 853 ext4_journal_stop(handle); 854 855 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 856 goto retry; 857 return ret; 858 } 859 860 /* Get block function for DIO reads and writes to inodes without extents */ 861 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 862 struct buffer_head *bh, int create) 863 { 864 /* We don't expect handle for direct IO */ 865 WARN_ON_ONCE(ext4_journal_current_handle()); 866 867 if (!create) 868 return _ext4_get_block(inode, iblock, bh, 0); 869 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 870 } 871 872 /* 873 * Get block function for AIO DIO writes when we create unwritten extent if 874 * blocks are not allocated yet. The extent will be converted to written 875 * after IO is complete. 876 */ 877 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 878 sector_t iblock, struct buffer_head *bh_result, int create) 879 { 880 int ret; 881 882 /* We don't expect handle for direct IO */ 883 WARN_ON_ONCE(ext4_journal_current_handle()); 884 885 ret = ext4_get_block_trans(inode, iblock, bh_result, 886 EXT4_GET_BLOCKS_IO_CREATE_EXT); 887 888 /* 889 * When doing DIO using unwritten extents, we need io_end to convert 890 * unwritten extents to written on IO completion. We allocate io_end 891 * once we spot unwritten extent and store it in b_private. Generic 892 * DIO code keeps b_private set and furthermore passes the value to 893 * our completion callback in 'private' argument. 894 */ 895 if (!ret && buffer_unwritten(bh_result)) { 896 if (!bh_result->b_private) { 897 ext4_io_end_t *io_end; 898 899 io_end = ext4_init_io_end(inode, GFP_KERNEL); 900 if (!io_end) 901 return -ENOMEM; 902 bh_result->b_private = io_end; 903 ext4_set_io_unwritten_flag(inode, io_end); 904 } 905 set_buffer_defer_completion(bh_result); 906 } 907 908 return ret; 909 } 910 911 /* 912 * Get block function for non-AIO DIO writes when we create unwritten extent if 913 * blocks are not allocated yet. The extent will be converted to written 914 * after IO is complete by ext4_direct_IO_write(). 915 */ 916 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 917 sector_t iblock, struct buffer_head *bh_result, int create) 918 { 919 int ret; 920 921 /* We don't expect handle for direct IO */ 922 WARN_ON_ONCE(ext4_journal_current_handle()); 923 924 ret = ext4_get_block_trans(inode, iblock, bh_result, 925 EXT4_GET_BLOCKS_IO_CREATE_EXT); 926 927 /* 928 * Mark inode as having pending DIO writes to unwritten extents. 929 * ext4_direct_IO_write() checks this flag and converts extents to 930 * written. 931 */ 932 if (!ret && buffer_unwritten(bh_result)) 933 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 934 935 return ret; 936 } 937 938 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 939 struct buffer_head *bh_result, int create) 940 { 941 int ret; 942 943 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 944 inode->i_ino, create); 945 /* We don't expect handle for direct IO */ 946 WARN_ON_ONCE(ext4_journal_current_handle()); 947 948 ret = _ext4_get_block(inode, iblock, bh_result, 0); 949 /* 950 * Blocks should have been preallocated! ext4_file_write_iter() checks 951 * that. 952 */ 953 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 954 955 return ret; 956 } 957 958 959 /* 960 * `handle' can be NULL if create is zero 961 */ 962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 963 ext4_lblk_t block, int map_flags) 964 { 965 struct ext4_map_blocks map; 966 struct buffer_head *bh; 967 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 968 int err; 969 970 J_ASSERT(handle != NULL || create == 0); 971 972 map.m_lblk = block; 973 map.m_len = 1; 974 err = ext4_map_blocks(handle, inode, &map, map_flags); 975 976 if (err == 0) 977 return create ? ERR_PTR(-ENOSPC) : NULL; 978 if (err < 0) 979 return ERR_PTR(err); 980 981 bh = sb_getblk(inode->i_sb, map.m_pblk); 982 if (unlikely(!bh)) 983 return ERR_PTR(-ENOMEM); 984 if (map.m_flags & EXT4_MAP_NEW) { 985 J_ASSERT(create != 0); 986 J_ASSERT(handle != NULL); 987 988 /* 989 * Now that we do not always journal data, we should 990 * keep in mind whether this should always journal the 991 * new buffer as metadata. For now, regular file 992 * writes use ext4_get_block instead, so it's not a 993 * problem. 994 */ 995 lock_buffer(bh); 996 BUFFER_TRACE(bh, "call get_create_access"); 997 err = ext4_journal_get_create_access(handle, bh); 998 if (unlikely(err)) { 999 unlock_buffer(bh); 1000 goto errout; 1001 } 1002 if (!buffer_uptodate(bh)) { 1003 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1004 set_buffer_uptodate(bh); 1005 } 1006 unlock_buffer(bh); 1007 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1008 err = ext4_handle_dirty_metadata(handle, inode, bh); 1009 if (unlikely(err)) 1010 goto errout; 1011 } else 1012 BUFFER_TRACE(bh, "not a new buffer"); 1013 return bh; 1014 errout: 1015 brelse(bh); 1016 return ERR_PTR(err); 1017 } 1018 1019 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1020 ext4_lblk_t block, int map_flags) 1021 { 1022 struct buffer_head *bh; 1023 1024 bh = ext4_getblk(handle, inode, block, map_flags); 1025 if (IS_ERR(bh)) 1026 return bh; 1027 if (!bh || buffer_uptodate(bh)) 1028 return bh; 1029 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1030 wait_on_buffer(bh); 1031 if (buffer_uptodate(bh)) 1032 return bh; 1033 put_bh(bh); 1034 return ERR_PTR(-EIO); 1035 } 1036 1037 /* Read a contiguous batch of blocks. */ 1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1039 bool wait, struct buffer_head **bhs) 1040 { 1041 int i, err; 1042 1043 for (i = 0; i < bh_count; i++) { 1044 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1045 if (IS_ERR(bhs[i])) { 1046 err = PTR_ERR(bhs[i]); 1047 bh_count = i; 1048 goto out_brelse; 1049 } 1050 } 1051 1052 for (i = 0; i < bh_count; i++) 1053 /* Note that NULL bhs[i] is valid because of holes. */ 1054 if (bhs[i] && !buffer_uptodate(bhs[i])) 1055 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1056 &bhs[i]); 1057 1058 if (!wait) 1059 return 0; 1060 1061 for (i = 0; i < bh_count; i++) 1062 if (bhs[i]) 1063 wait_on_buffer(bhs[i]); 1064 1065 for (i = 0; i < bh_count; i++) { 1066 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1067 err = -EIO; 1068 goto out_brelse; 1069 } 1070 } 1071 return 0; 1072 1073 out_brelse: 1074 for (i = 0; i < bh_count; i++) { 1075 brelse(bhs[i]); 1076 bhs[i] = NULL; 1077 } 1078 return err; 1079 } 1080 1081 int ext4_walk_page_buffers(handle_t *handle, 1082 struct buffer_head *head, 1083 unsigned from, 1084 unsigned to, 1085 int *partial, 1086 int (*fn)(handle_t *handle, 1087 struct buffer_head *bh)) 1088 { 1089 struct buffer_head *bh; 1090 unsigned block_start, block_end; 1091 unsigned blocksize = head->b_size; 1092 int err, ret = 0; 1093 struct buffer_head *next; 1094 1095 for (bh = head, block_start = 0; 1096 ret == 0 && (bh != head || !block_start); 1097 block_start = block_end, bh = next) { 1098 next = bh->b_this_page; 1099 block_end = block_start + blocksize; 1100 if (block_end <= from || block_start >= to) { 1101 if (partial && !buffer_uptodate(bh)) 1102 *partial = 1; 1103 continue; 1104 } 1105 err = (*fn)(handle, bh); 1106 if (!ret) 1107 ret = err; 1108 } 1109 return ret; 1110 } 1111 1112 /* 1113 * To preserve ordering, it is essential that the hole instantiation and 1114 * the data write be encapsulated in a single transaction. We cannot 1115 * close off a transaction and start a new one between the ext4_get_block() 1116 * and the commit_write(). So doing the jbd2_journal_start at the start of 1117 * prepare_write() is the right place. 1118 * 1119 * Also, this function can nest inside ext4_writepage(). In that case, we 1120 * *know* that ext4_writepage() has generated enough buffer credits to do the 1121 * whole page. So we won't block on the journal in that case, which is good, 1122 * because the caller may be PF_MEMALLOC. 1123 * 1124 * By accident, ext4 can be reentered when a transaction is open via 1125 * quota file writes. If we were to commit the transaction while thus 1126 * reentered, there can be a deadlock - we would be holding a quota 1127 * lock, and the commit would never complete if another thread had a 1128 * transaction open and was blocking on the quota lock - a ranking 1129 * violation. 1130 * 1131 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1132 * will _not_ run commit under these circumstances because handle->h_ref 1133 * is elevated. We'll still have enough credits for the tiny quotafile 1134 * write. 1135 */ 1136 int do_journal_get_write_access(handle_t *handle, 1137 struct buffer_head *bh) 1138 { 1139 int dirty = buffer_dirty(bh); 1140 int ret; 1141 1142 if (!buffer_mapped(bh) || buffer_freed(bh)) 1143 return 0; 1144 /* 1145 * __block_write_begin() could have dirtied some buffers. Clean 1146 * the dirty bit as jbd2_journal_get_write_access() could complain 1147 * otherwise about fs integrity issues. Setting of the dirty bit 1148 * by __block_write_begin() isn't a real problem here as we clear 1149 * the bit before releasing a page lock and thus writeback cannot 1150 * ever write the buffer. 1151 */ 1152 if (dirty) 1153 clear_buffer_dirty(bh); 1154 BUFFER_TRACE(bh, "get write access"); 1155 ret = ext4_journal_get_write_access(handle, bh); 1156 if (!ret && dirty) 1157 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1158 return ret; 1159 } 1160 1161 #ifdef CONFIG_FS_ENCRYPTION 1162 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1163 get_block_t *get_block) 1164 { 1165 unsigned from = pos & (PAGE_SIZE - 1); 1166 unsigned to = from + len; 1167 struct inode *inode = page->mapping->host; 1168 unsigned block_start, block_end; 1169 sector_t block; 1170 int err = 0; 1171 unsigned blocksize = inode->i_sb->s_blocksize; 1172 unsigned bbits; 1173 struct buffer_head *bh, *head, *wait[2]; 1174 int nr_wait = 0; 1175 int i; 1176 1177 BUG_ON(!PageLocked(page)); 1178 BUG_ON(from > PAGE_SIZE); 1179 BUG_ON(to > PAGE_SIZE); 1180 BUG_ON(from > to); 1181 1182 if (!page_has_buffers(page)) 1183 create_empty_buffers(page, blocksize, 0); 1184 head = page_buffers(page); 1185 bbits = ilog2(blocksize); 1186 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1187 1188 for (bh = head, block_start = 0; bh != head || !block_start; 1189 block++, block_start = block_end, bh = bh->b_this_page) { 1190 block_end = block_start + blocksize; 1191 if (block_end <= from || block_start >= to) { 1192 if (PageUptodate(page)) { 1193 if (!buffer_uptodate(bh)) 1194 set_buffer_uptodate(bh); 1195 } 1196 continue; 1197 } 1198 if (buffer_new(bh)) 1199 clear_buffer_new(bh); 1200 if (!buffer_mapped(bh)) { 1201 WARN_ON(bh->b_size != blocksize); 1202 err = get_block(inode, block, bh, 1); 1203 if (err) 1204 break; 1205 if (buffer_new(bh)) { 1206 if (PageUptodate(page)) { 1207 clear_buffer_new(bh); 1208 set_buffer_uptodate(bh); 1209 mark_buffer_dirty(bh); 1210 continue; 1211 } 1212 if (block_end > to || block_start < from) 1213 zero_user_segments(page, to, block_end, 1214 block_start, from); 1215 continue; 1216 } 1217 } 1218 if (PageUptodate(page)) { 1219 if (!buffer_uptodate(bh)) 1220 set_buffer_uptodate(bh); 1221 continue; 1222 } 1223 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1224 !buffer_unwritten(bh) && 1225 (block_start < from || block_end > to)) { 1226 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1227 wait[nr_wait++] = bh; 1228 } 1229 } 1230 /* 1231 * If we issued read requests, let them complete. 1232 */ 1233 for (i = 0; i < nr_wait; i++) { 1234 wait_on_buffer(wait[i]); 1235 if (!buffer_uptodate(wait[i])) 1236 err = -EIO; 1237 } 1238 if (unlikely(err)) { 1239 page_zero_new_buffers(page, from, to); 1240 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) { 1241 for (i = 0; i < nr_wait; i++) { 1242 int err2; 1243 1244 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1245 bh_offset(wait[i])); 1246 if (err2) { 1247 clear_buffer_uptodate(wait[i]); 1248 err = err2; 1249 } 1250 } 1251 } 1252 1253 return err; 1254 } 1255 #endif 1256 1257 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1258 loff_t pos, unsigned len, unsigned flags, 1259 struct page **pagep, void **fsdata) 1260 { 1261 struct inode *inode = mapping->host; 1262 int ret, needed_blocks; 1263 handle_t *handle; 1264 int retries = 0; 1265 struct page *page; 1266 pgoff_t index; 1267 unsigned from, to; 1268 1269 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1270 return -EIO; 1271 1272 trace_ext4_write_begin(inode, pos, len, flags); 1273 /* 1274 * Reserve one block more for addition to orphan list in case 1275 * we allocate blocks but write fails for some reason 1276 */ 1277 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1278 index = pos >> PAGE_SHIFT; 1279 from = pos & (PAGE_SIZE - 1); 1280 to = from + len; 1281 1282 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1283 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1284 flags, pagep); 1285 if (ret < 0) 1286 return ret; 1287 if (ret == 1) 1288 return 0; 1289 } 1290 1291 /* 1292 * grab_cache_page_write_begin() can take a long time if the 1293 * system is thrashing due to memory pressure, or if the page 1294 * is being written back. So grab it first before we start 1295 * the transaction handle. This also allows us to allocate 1296 * the page (if needed) without using GFP_NOFS. 1297 */ 1298 retry_grab: 1299 page = grab_cache_page_write_begin(mapping, index, flags); 1300 if (!page) 1301 return -ENOMEM; 1302 unlock_page(page); 1303 1304 retry_journal: 1305 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1306 if (IS_ERR(handle)) { 1307 put_page(page); 1308 return PTR_ERR(handle); 1309 } 1310 1311 lock_page(page); 1312 if (page->mapping != mapping) { 1313 /* The page got truncated from under us */ 1314 unlock_page(page); 1315 put_page(page); 1316 ext4_journal_stop(handle); 1317 goto retry_grab; 1318 } 1319 /* In case writeback began while the page was unlocked */ 1320 wait_for_stable_page(page); 1321 1322 #ifdef CONFIG_FS_ENCRYPTION 1323 if (ext4_should_dioread_nolock(inode)) 1324 ret = ext4_block_write_begin(page, pos, len, 1325 ext4_get_block_unwritten); 1326 else 1327 ret = ext4_block_write_begin(page, pos, len, 1328 ext4_get_block); 1329 #else 1330 if (ext4_should_dioread_nolock(inode)) 1331 ret = __block_write_begin(page, pos, len, 1332 ext4_get_block_unwritten); 1333 else 1334 ret = __block_write_begin(page, pos, len, ext4_get_block); 1335 #endif 1336 if (!ret && ext4_should_journal_data(inode)) { 1337 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1338 from, to, NULL, 1339 do_journal_get_write_access); 1340 } 1341 1342 if (ret) { 1343 unlock_page(page); 1344 /* 1345 * __block_write_begin may have instantiated a few blocks 1346 * outside i_size. Trim these off again. Don't need 1347 * i_size_read because we hold i_mutex. 1348 * 1349 * Add inode to orphan list in case we crash before 1350 * truncate finishes 1351 */ 1352 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1353 ext4_orphan_add(handle, inode); 1354 1355 ext4_journal_stop(handle); 1356 if (pos + len > inode->i_size) { 1357 ext4_truncate_failed_write(inode); 1358 /* 1359 * If truncate failed early the inode might 1360 * still be on the orphan list; we need to 1361 * make sure the inode is removed from the 1362 * orphan list in that case. 1363 */ 1364 if (inode->i_nlink) 1365 ext4_orphan_del(NULL, inode); 1366 } 1367 1368 if (ret == -ENOSPC && 1369 ext4_should_retry_alloc(inode->i_sb, &retries)) 1370 goto retry_journal; 1371 put_page(page); 1372 return ret; 1373 } 1374 *pagep = page; 1375 return ret; 1376 } 1377 1378 /* For write_end() in data=journal mode */ 1379 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1380 { 1381 int ret; 1382 if (!buffer_mapped(bh) || buffer_freed(bh)) 1383 return 0; 1384 set_buffer_uptodate(bh); 1385 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1386 clear_buffer_meta(bh); 1387 clear_buffer_prio(bh); 1388 return ret; 1389 } 1390 1391 /* 1392 * We need to pick up the new inode size which generic_commit_write gave us 1393 * `file' can be NULL - eg, when called from page_symlink(). 1394 * 1395 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1396 * buffers are managed internally. 1397 */ 1398 static int ext4_write_end(struct file *file, 1399 struct address_space *mapping, 1400 loff_t pos, unsigned len, unsigned copied, 1401 struct page *page, void *fsdata) 1402 { 1403 handle_t *handle = ext4_journal_current_handle(); 1404 struct inode *inode = mapping->host; 1405 loff_t old_size = inode->i_size; 1406 int ret = 0, ret2; 1407 int i_size_changed = 0; 1408 int inline_data = ext4_has_inline_data(inode); 1409 1410 trace_ext4_write_end(inode, pos, len, copied); 1411 if (inline_data) { 1412 ret = ext4_write_inline_data_end(inode, pos, len, 1413 copied, page); 1414 if (ret < 0) { 1415 unlock_page(page); 1416 put_page(page); 1417 goto errout; 1418 } 1419 copied = ret; 1420 } else 1421 copied = block_write_end(file, mapping, pos, 1422 len, copied, page, fsdata); 1423 /* 1424 * it's important to update i_size while still holding page lock: 1425 * page writeout could otherwise come in and zero beyond i_size. 1426 */ 1427 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1428 unlock_page(page); 1429 put_page(page); 1430 1431 if (old_size < pos) 1432 pagecache_isize_extended(inode, old_size, pos); 1433 /* 1434 * Don't mark the inode dirty under page lock. First, it unnecessarily 1435 * makes the holding time of page lock longer. Second, it forces lock 1436 * ordering of page lock and transaction start for journaling 1437 * filesystems. 1438 */ 1439 if (i_size_changed || inline_data) 1440 ext4_mark_inode_dirty(handle, inode); 1441 1442 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1443 /* if we have allocated more blocks and copied 1444 * less. We will have blocks allocated outside 1445 * inode->i_size. So truncate them 1446 */ 1447 ext4_orphan_add(handle, inode); 1448 errout: 1449 ret2 = ext4_journal_stop(handle); 1450 if (!ret) 1451 ret = ret2; 1452 1453 if (pos + len > inode->i_size) { 1454 ext4_truncate_failed_write(inode); 1455 /* 1456 * If truncate failed early the inode might still be 1457 * on the orphan list; we need to make sure the inode 1458 * is removed from the orphan list in that case. 1459 */ 1460 if (inode->i_nlink) 1461 ext4_orphan_del(NULL, inode); 1462 } 1463 1464 return ret ? ret : copied; 1465 } 1466 1467 /* 1468 * This is a private version of page_zero_new_buffers() which doesn't 1469 * set the buffer to be dirty, since in data=journalled mode we need 1470 * to call ext4_handle_dirty_metadata() instead. 1471 */ 1472 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1473 struct page *page, 1474 unsigned from, unsigned to) 1475 { 1476 unsigned int block_start = 0, block_end; 1477 struct buffer_head *head, *bh; 1478 1479 bh = head = page_buffers(page); 1480 do { 1481 block_end = block_start + bh->b_size; 1482 if (buffer_new(bh)) { 1483 if (block_end > from && block_start < to) { 1484 if (!PageUptodate(page)) { 1485 unsigned start, size; 1486 1487 start = max(from, block_start); 1488 size = min(to, block_end) - start; 1489 1490 zero_user(page, start, size); 1491 write_end_fn(handle, bh); 1492 } 1493 clear_buffer_new(bh); 1494 } 1495 } 1496 block_start = block_end; 1497 bh = bh->b_this_page; 1498 } while (bh != head); 1499 } 1500 1501 static int ext4_journalled_write_end(struct file *file, 1502 struct address_space *mapping, 1503 loff_t pos, unsigned len, unsigned copied, 1504 struct page *page, void *fsdata) 1505 { 1506 handle_t *handle = ext4_journal_current_handle(); 1507 struct inode *inode = mapping->host; 1508 loff_t old_size = inode->i_size; 1509 int ret = 0, ret2; 1510 int partial = 0; 1511 unsigned from, to; 1512 int size_changed = 0; 1513 int inline_data = ext4_has_inline_data(inode); 1514 1515 trace_ext4_journalled_write_end(inode, pos, len, copied); 1516 from = pos & (PAGE_SIZE - 1); 1517 to = from + len; 1518 1519 BUG_ON(!ext4_handle_valid(handle)); 1520 1521 if (inline_data) { 1522 ret = ext4_write_inline_data_end(inode, pos, len, 1523 copied, page); 1524 if (ret < 0) { 1525 unlock_page(page); 1526 put_page(page); 1527 goto errout; 1528 } 1529 copied = ret; 1530 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1531 copied = 0; 1532 ext4_journalled_zero_new_buffers(handle, page, from, to); 1533 } else { 1534 if (unlikely(copied < len)) 1535 ext4_journalled_zero_new_buffers(handle, page, 1536 from + copied, to); 1537 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1538 from + copied, &partial, 1539 write_end_fn); 1540 if (!partial) 1541 SetPageUptodate(page); 1542 } 1543 size_changed = ext4_update_inode_size(inode, pos + copied); 1544 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1545 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1546 unlock_page(page); 1547 put_page(page); 1548 1549 if (old_size < pos) 1550 pagecache_isize_extended(inode, old_size, pos); 1551 1552 if (size_changed || inline_data) { 1553 ret2 = ext4_mark_inode_dirty(handle, inode); 1554 if (!ret) 1555 ret = ret2; 1556 } 1557 1558 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1559 /* if we have allocated more blocks and copied 1560 * less. We will have blocks allocated outside 1561 * inode->i_size. So truncate them 1562 */ 1563 ext4_orphan_add(handle, inode); 1564 1565 errout: 1566 ret2 = ext4_journal_stop(handle); 1567 if (!ret) 1568 ret = ret2; 1569 if (pos + len > inode->i_size) { 1570 ext4_truncate_failed_write(inode); 1571 /* 1572 * If truncate failed early the inode might still be 1573 * on the orphan list; we need to make sure the inode 1574 * is removed from the orphan list in that case. 1575 */ 1576 if (inode->i_nlink) 1577 ext4_orphan_del(NULL, inode); 1578 } 1579 1580 return ret ? ret : copied; 1581 } 1582 1583 /* 1584 * Reserve space for a single cluster 1585 */ 1586 static int ext4_da_reserve_space(struct inode *inode) 1587 { 1588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1589 struct ext4_inode_info *ei = EXT4_I(inode); 1590 int ret; 1591 1592 /* 1593 * We will charge metadata quota at writeout time; this saves 1594 * us from metadata over-estimation, though we may go over by 1595 * a small amount in the end. Here we just reserve for data. 1596 */ 1597 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1598 if (ret) 1599 return ret; 1600 1601 spin_lock(&ei->i_block_reservation_lock); 1602 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1603 spin_unlock(&ei->i_block_reservation_lock); 1604 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1605 return -ENOSPC; 1606 } 1607 ei->i_reserved_data_blocks++; 1608 trace_ext4_da_reserve_space(inode); 1609 spin_unlock(&ei->i_block_reservation_lock); 1610 1611 return 0; /* success */ 1612 } 1613 1614 void ext4_da_release_space(struct inode *inode, int to_free) 1615 { 1616 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1617 struct ext4_inode_info *ei = EXT4_I(inode); 1618 1619 if (!to_free) 1620 return; /* Nothing to release, exit */ 1621 1622 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1623 1624 trace_ext4_da_release_space(inode, to_free); 1625 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1626 /* 1627 * if there aren't enough reserved blocks, then the 1628 * counter is messed up somewhere. Since this 1629 * function is called from invalidate page, it's 1630 * harmless to return without any action. 1631 */ 1632 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1633 "ino %lu, to_free %d with only %d reserved " 1634 "data blocks", inode->i_ino, to_free, 1635 ei->i_reserved_data_blocks); 1636 WARN_ON(1); 1637 to_free = ei->i_reserved_data_blocks; 1638 } 1639 ei->i_reserved_data_blocks -= to_free; 1640 1641 /* update fs dirty data blocks counter */ 1642 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1643 1644 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1645 1646 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1647 } 1648 1649 static void ext4_da_page_release_reservation(struct page *page, 1650 unsigned int offset, 1651 unsigned int length) 1652 { 1653 int contiguous_blks = 0; 1654 struct buffer_head *head, *bh; 1655 unsigned int curr_off = 0; 1656 struct inode *inode = page->mapping->host; 1657 unsigned int stop = offset + length; 1658 ext4_fsblk_t lblk; 1659 1660 BUG_ON(stop > PAGE_SIZE || stop < length); 1661 1662 head = page_buffers(page); 1663 bh = head; 1664 do { 1665 unsigned int next_off = curr_off + bh->b_size; 1666 1667 if (next_off > stop) 1668 break; 1669 1670 if ((offset <= curr_off) && (buffer_delay(bh))) { 1671 contiguous_blks++; 1672 clear_buffer_delay(bh); 1673 } else if (contiguous_blks) { 1674 lblk = page->index << 1675 (PAGE_SHIFT - inode->i_blkbits); 1676 lblk += (curr_off >> inode->i_blkbits) - 1677 contiguous_blks; 1678 ext4_es_remove_blks(inode, lblk, contiguous_blks); 1679 contiguous_blks = 0; 1680 } 1681 curr_off = next_off; 1682 } while ((bh = bh->b_this_page) != head); 1683 1684 if (contiguous_blks) { 1685 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1686 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1687 ext4_es_remove_blks(inode, lblk, contiguous_blks); 1688 } 1689 1690 } 1691 1692 /* 1693 * Delayed allocation stuff 1694 */ 1695 1696 struct mpage_da_data { 1697 struct inode *inode; 1698 struct writeback_control *wbc; 1699 1700 pgoff_t first_page; /* The first page to write */ 1701 pgoff_t next_page; /* Current page to examine */ 1702 pgoff_t last_page; /* Last page to examine */ 1703 /* 1704 * Extent to map - this can be after first_page because that can be 1705 * fully mapped. We somewhat abuse m_flags to store whether the extent 1706 * is delalloc or unwritten. 1707 */ 1708 struct ext4_map_blocks map; 1709 struct ext4_io_submit io_submit; /* IO submission data */ 1710 unsigned int do_map:1; 1711 }; 1712 1713 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1714 bool invalidate) 1715 { 1716 int nr_pages, i; 1717 pgoff_t index, end; 1718 struct pagevec pvec; 1719 struct inode *inode = mpd->inode; 1720 struct address_space *mapping = inode->i_mapping; 1721 1722 /* This is necessary when next_page == 0. */ 1723 if (mpd->first_page >= mpd->next_page) 1724 return; 1725 1726 index = mpd->first_page; 1727 end = mpd->next_page - 1; 1728 if (invalidate) { 1729 ext4_lblk_t start, last; 1730 start = index << (PAGE_SHIFT - inode->i_blkbits); 1731 last = end << (PAGE_SHIFT - inode->i_blkbits); 1732 ext4_es_remove_extent(inode, start, last - start + 1); 1733 } 1734 1735 pagevec_init(&pvec); 1736 while (index <= end) { 1737 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1738 if (nr_pages == 0) 1739 break; 1740 for (i = 0; i < nr_pages; i++) { 1741 struct page *page = pvec.pages[i]; 1742 1743 BUG_ON(!PageLocked(page)); 1744 BUG_ON(PageWriteback(page)); 1745 if (invalidate) { 1746 if (page_mapped(page)) 1747 clear_page_dirty_for_io(page); 1748 block_invalidatepage(page, 0, PAGE_SIZE); 1749 ClearPageUptodate(page); 1750 } 1751 unlock_page(page); 1752 } 1753 pagevec_release(&pvec); 1754 } 1755 } 1756 1757 static void ext4_print_free_blocks(struct inode *inode) 1758 { 1759 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1760 struct super_block *sb = inode->i_sb; 1761 struct ext4_inode_info *ei = EXT4_I(inode); 1762 1763 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1764 EXT4_C2B(EXT4_SB(inode->i_sb), 1765 ext4_count_free_clusters(sb))); 1766 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1767 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1768 (long long) EXT4_C2B(EXT4_SB(sb), 1769 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1770 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1771 (long long) EXT4_C2B(EXT4_SB(sb), 1772 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1773 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1774 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1775 ei->i_reserved_data_blocks); 1776 return; 1777 } 1778 1779 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1780 { 1781 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1782 } 1783 1784 /* 1785 * ext4_insert_delayed_block - adds a delayed block to the extents status 1786 * tree, incrementing the reserved cluster/block 1787 * count or making a pending reservation 1788 * where needed 1789 * 1790 * @inode - file containing the newly added block 1791 * @lblk - logical block to be added 1792 * 1793 * Returns 0 on success, negative error code on failure. 1794 */ 1795 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1796 { 1797 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1798 int ret; 1799 bool allocated = false; 1800 1801 /* 1802 * If the cluster containing lblk is shared with a delayed, 1803 * written, or unwritten extent in a bigalloc file system, it's 1804 * already been accounted for and does not need to be reserved. 1805 * A pending reservation must be made for the cluster if it's 1806 * shared with a written or unwritten extent and doesn't already 1807 * have one. Written and unwritten extents can be purged from the 1808 * extents status tree if the system is under memory pressure, so 1809 * it's necessary to examine the extent tree if a search of the 1810 * extents status tree doesn't get a match. 1811 */ 1812 if (sbi->s_cluster_ratio == 1) { 1813 ret = ext4_da_reserve_space(inode); 1814 if (ret != 0) /* ENOSPC */ 1815 goto errout; 1816 } else { /* bigalloc */ 1817 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1818 if (!ext4_es_scan_clu(inode, 1819 &ext4_es_is_mapped, lblk)) { 1820 ret = ext4_clu_mapped(inode, 1821 EXT4_B2C(sbi, lblk)); 1822 if (ret < 0) 1823 goto errout; 1824 if (ret == 0) { 1825 ret = ext4_da_reserve_space(inode); 1826 if (ret != 0) /* ENOSPC */ 1827 goto errout; 1828 } else { 1829 allocated = true; 1830 } 1831 } else { 1832 allocated = true; 1833 } 1834 } 1835 } 1836 1837 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1838 1839 errout: 1840 return ret; 1841 } 1842 1843 /* 1844 * This function is grabs code from the very beginning of 1845 * ext4_map_blocks, but assumes that the caller is from delayed write 1846 * time. This function looks up the requested blocks and sets the 1847 * buffer delay bit under the protection of i_data_sem. 1848 */ 1849 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1850 struct ext4_map_blocks *map, 1851 struct buffer_head *bh) 1852 { 1853 struct extent_status es; 1854 int retval; 1855 sector_t invalid_block = ~((sector_t) 0xffff); 1856 #ifdef ES_AGGRESSIVE_TEST 1857 struct ext4_map_blocks orig_map; 1858 1859 memcpy(&orig_map, map, sizeof(*map)); 1860 #endif 1861 1862 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1863 invalid_block = ~0; 1864 1865 map->m_flags = 0; 1866 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1867 "logical block %lu\n", inode->i_ino, map->m_len, 1868 (unsigned long) map->m_lblk); 1869 1870 /* Lookup extent status tree firstly */ 1871 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1872 if (ext4_es_is_hole(&es)) { 1873 retval = 0; 1874 down_read(&EXT4_I(inode)->i_data_sem); 1875 goto add_delayed; 1876 } 1877 1878 /* 1879 * Delayed extent could be allocated by fallocate. 1880 * So we need to check it. 1881 */ 1882 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1883 map_bh(bh, inode->i_sb, invalid_block); 1884 set_buffer_new(bh); 1885 set_buffer_delay(bh); 1886 return 0; 1887 } 1888 1889 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1890 retval = es.es_len - (iblock - es.es_lblk); 1891 if (retval > map->m_len) 1892 retval = map->m_len; 1893 map->m_len = retval; 1894 if (ext4_es_is_written(&es)) 1895 map->m_flags |= EXT4_MAP_MAPPED; 1896 else if (ext4_es_is_unwritten(&es)) 1897 map->m_flags |= EXT4_MAP_UNWRITTEN; 1898 else 1899 BUG(); 1900 1901 #ifdef ES_AGGRESSIVE_TEST 1902 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1903 #endif 1904 return retval; 1905 } 1906 1907 /* 1908 * Try to see if we can get the block without requesting a new 1909 * file system block. 1910 */ 1911 down_read(&EXT4_I(inode)->i_data_sem); 1912 if (ext4_has_inline_data(inode)) 1913 retval = 0; 1914 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1915 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1916 else 1917 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1918 1919 add_delayed: 1920 if (retval == 0) { 1921 int ret; 1922 1923 /* 1924 * XXX: __block_prepare_write() unmaps passed block, 1925 * is it OK? 1926 */ 1927 1928 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1929 if (ret != 0) { 1930 retval = ret; 1931 goto out_unlock; 1932 } 1933 1934 map_bh(bh, inode->i_sb, invalid_block); 1935 set_buffer_new(bh); 1936 set_buffer_delay(bh); 1937 } else if (retval > 0) { 1938 int ret; 1939 unsigned int status; 1940 1941 if (unlikely(retval != map->m_len)) { 1942 ext4_warning(inode->i_sb, 1943 "ES len assertion failed for inode " 1944 "%lu: retval %d != map->m_len %d", 1945 inode->i_ino, retval, map->m_len); 1946 WARN_ON(1); 1947 } 1948 1949 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1950 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1951 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1952 map->m_pblk, status); 1953 if (ret != 0) 1954 retval = ret; 1955 } 1956 1957 out_unlock: 1958 up_read((&EXT4_I(inode)->i_data_sem)); 1959 1960 return retval; 1961 } 1962 1963 /* 1964 * This is a special get_block_t callback which is used by 1965 * ext4_da_write_begin(). It will either return mapped block or 1966 * reserve space for a single block. 1967 * 1968 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1969 * We also have b_blocknr = -1 and b_bdev initialized properly 1970 * 1971 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1972 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1973 * initialized properly. 1974 */ 1975 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1976 struct buffer_head *bh, int create) 1977 { 1978 struct ext4_map_blocks map; 1979 int ret = 0; 1980 1981 BUG_ON(create == 0); 1982 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1983 1984 map.m_lblk = iblock; 1985 map.m_len = 1; 1986 1987 /* 1988 * first, we need to know whether the block is allocated already 1989 * preallocated blocks are unmapped but should treated 1990 * the same as allocated blocks. 1991 */ 1992 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1993 if (ret <= 0) 1994 return ret; 1995 1996 map_bh(bh, inode->i_sb, map.m_pblk); 1997 ext4_update_bh_state(bh, map.m_flags); 1998 1999 if (buffer_unwritten(bh)) { 2000 /* A delayed write to unwritten bh should be marked 2001 * new and mapped. Mapped ensures that we don't do 2002 * get_block multiple times when we write to the same 2003 * offset and new ensures that we do proper zero out 2004 * for partial write. 2005 */ 2006 set_buffer_new(bh); 2007 set_buffer_mapped(bh); 2008 } 2009 return 0; 2010 } 2011 2012 static int bget_one(handle_t *handle, struct buffer_head *bh) 2013 { 2014 get_bh(bh); 2015 return 0; 2016 } 2017 2018 static int bput_one(handle_t *handle, struct buffer_head *bh) 2019 { 2020 put_bh(bh); 2021 return 0; 2022 } 2023 2024 static int __ext4_journalled_writepage(struct page *page, 2025 unsigned int len) 2026 { 2027 struct address_space *mapping = page->mapping; 2028 struct inode *inode = mapping->host; 2029 struct buffer_head *page_bufs = NULL; 2030 handle_t *handle = NULL; 2031 int ret = 0, err = 0; 2032 int inline_data = ext4_has_inline_data(inode); 2033 struct buffer_head *inode_bh = NULL; 2034 2035 ClearPageChecked(page); 2036 2037 if (inline_data) { 2038 BUG_ON(page->index != 0); 2039 BUG_ON(len > ext4_get_max_inline_size(inode)); 2040 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2041 if (inode_bh == NULL) 2042 goto out; 2043 } else { 2044 page_bufs = page_buffers(page); 2045 if (!page_bufs) { 2046 BUG(); 2047 goto out; 2048 } 2049 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2050 NULL, bget_one); 2051 } 2052 /* 2053 * We need to release the page lock before we start the 2054 * journal, so grab a reference so the page won't disappear 2055 * out from under us. 2056 */ 2057 get_page(page); 2058 unlock_page(page); 2059 2060 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2061 ext4_writepage_trans_blocks(inode)); 2062 if (IS_ERR(handle)) { 2063 ret = PTR_ERR(handle); 2064 put_page(page); 2065 goto out_no_pagelock; 2066 } 2067 BUG_ON(!ext4_handle_valid(handle)); 2068 2069 lock_page(page); 2070 put_page(page); 2071 if (page->mapping != mapping) { 2072 /* The page got truncated from under us */ 2073 ext4_journal_stop(handle); 2074 ret = 0; 2075 goto out; 2076 } 2077 2078 if (inline_data) { 2079 ret = ext4_mark_inode_dirty(handle, inode); 2080 } else { 2081 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2082 do_journal_get_write_access); 2083 2084 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2085 write_end_fn); 2086 } 2087 if (ret == 0) 2088 ret = err; 2089 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2090 err = ext4_journal_stop(handle); 2091 if (!ret) 2092 ret = err; 2093 2094 if (!ext4_has_inline_data(inode)) 2095 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2096 NULL, bput_one); 2097 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2098 out: 2099 unlock_page(page); 2100 out_no_pagelock: 2101 brelse(inode_bh); 2102 return ret; 2103 } 2104 2105 /* 2106 * Note that we don't need to start a transaction unless we're journaling data 2107 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2108 * need to file the inode to the transaction's list in ordered mode because if 2109 * we are writing back data added by write(), the inode is already there and if 2110 * we are writing back data modified via mmap(), no one guarantees in which 2111 * transaction the data will hit the disk. In case we are journaling data, we 2112 * cannot start transaction directly because transaction start ranks above page 2113 * lock so we have to do some magic. 2114 * 2115 * This function can get called via... 2116 * - ext4_writepages after taking page lock (have journal handle) 2117 * - journal_submit_inode_data_buffers (no journal handle) 2118 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2119 * - grab_page_cache when doing write_begin (have journal handle) 2120 * 2121 * We don't do any block allocation in this function. If we have page with 2122 * multiple blocks we need to write those buffer_heads that are mapped. This 2123 * is important for mmaped based write. So if we do with blocksize 1K 2124 * truncate(f, 1024); 2125 * a = mmap(f, 0, 4096); 2126 * a[0] = 'a'; 2127 * truncate(f, 4096); 2128 * we have in the page first buffer_head mapped via page_mkwrite call back 2129 * but other buffer_heads would be unmapped but dirty (dirty done via the 2130 * do_wp_page). So writepage should write the first block. If we modify 2131 * the mmap area beyond 1024 we will again get a page_fault and the 2132 * page_mkwrite callback will do the block allocation and mark the 2133 * buffer_heads mapped. 2134 * 2135 * We redirty the page if we have any buffer_heads that is either delay or 2136 * unwritten in the page. 2137 * 2138 * We can get recursively called as show below. 2139 * 2140 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2141 * ext4_writepage() 2142 * 2143 * But since we don't do any block allocation we should not deadlock. 2144 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2145 */ 2146 static int ext4_writepage(struct page *page, 2147 struct writeback_control *wbc) 2148 { 2149 int ret = 0; 2150 loff_t size; 2151 unsigned int len; 2152 struct buffer_head *page_bufs = NULL; 2153 struct inode *inode = page->mapping->host; 2154 struct ext4_io_submit io_submit; 2155 bool keep_towrite = false; 2156 2157 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2158 ext4_invalidatepage(page, 0, PAGE_SIZE); 2159 unlock_page(page); 2160 return -EIO; 2161 } 2162 2163 trace_ext4_writepage(page); 2164 size = i_size_read(inode); 2165 if (page->index == size >> PAGE_SHIFT) 2166 len = size & ~PAGE_MASK; 2167 else 2168 len = PAGE_SIZE; 2169 2170 page_bufs = page_buffers(page); 2171 /* 2172 * We cannot do block allocation or other extent handling in this 2173 * function. If there are buffers needing that, we have to redirty 2174 * the page. But we may reach here when we do a journal commit via 2175 * journal_submit_inode_data_buffers() and in that case we must write 2176 * allocated buffers to achieve data=ordered mode guarantees. 2177 * 2178 * Also, if there is only one buffer per page (the fs block 2179 * size == the page size), if one buffer needs block 2180 * allocation or needs to modify the extent tree to clear the 2181 * unwritten flag, we know that the page can't be written at 2182 * all, so we might as well refuse the write immediately. 2183 * Unfortunately if the block size != page size, we can't as 2184 * easily detect this case using ext4_walk_page_buffers(), but 2185 * for the extremely common case, this is an optimization that 2186 * skips a useless round trip through ext4_bio_write_page(). 2187 */ 2188 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2189 ext4_bh_delay_or_unwritten)) { 2190 redirty_page_for_writepage(wbc, page); 2191 if ((current->flags & PF_MEMALLOC) || 2192 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2193 /* 2194 * For memory cleaning there's no point in writing only 2195 * some buffers. So just bail out. Warn if we came here 2196 * from direct reclaim. 2197 */ 2198 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2199 == PF_MEMALLOC); 2200 unlock_page(page); 2201 return 0; 2202 } 2203 keep_towrite = true; 2204 } 2205 2206 if (PageChecked(page) && ext4_should_journal_data(inode)) 2207 /* 2208 * It's mmapped pagecache. Add buffers and journal it. There 2209 * doesn't seem much point in redirtying the page here. 2210 */ 2211 return __ext4_journalled_writepage(page, len); 2212 2213 ext4_io_submit_init(&io_submit, wbc); 2214 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2215 if (!io_submit.io_end) { 2216 redirty_page_for_writepage(wbc, page); 2217 unlock_page(page); 2218 return -ENOMEM; 2219 } 2220 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2221 ext4_io_submit(&io_submit); 2222 /* Drop io_end reference we got from init */ 2223 ext4_put_io_end_defer(io_submit.io_end); 2224 return ret; 2225 } 2226 2227 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2228 { 2229 int len; 2230 loff_t size; 2231 int err; 2232 2233 BUG_ON(page->index != mpd->first_page); 2234 clear_page_dirty_for_io(page); 2235 /* 2236 * We have to be very careful here! Nothing protects writeback path 2237 * against i_size changes and the page can be writeably mapped into 2238 * page tables. So an application can be growing i_size and writing 2239 * data through mmap while writeback runs. clear_page_dirty_for_io() 2240 * write-protects our page in page tables and the page cannot get 2241 * written to again until we release page lock. So only after 2242 * clear_page_dirty_for_io() we are safe to sample i_size for 2243 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2244 * on the barrier provided by TestClearPageDirty in 2245 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2246 * after page tables are updated. 2247 */ 2248 size = i_size_read(mpd->inode); 2249 if (page->index == size >> PAGE_SHIFT) 2250 len = size & ~PAGE_MASK; 2251 else 2252 len = PAGE_SIZE; 2253 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2254 if (!err) 2255 mpd->wbc->nr_to_write--; 2256 mpd->first_page++; 2257 2258 return err; 2259 } 2260 2261 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2262 2263 /* 2264 * mballoc gives us at most this number of blocks... 2265 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2266 * The rest of mballoc seems to handle chunks up to full group size. 2267 */ 2268 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2269 2270 /* 2271 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2272 * 2273 * @mpd - extent of blocks 2274 * @lblk - logical number of the block in the file 2275 * @bh - buffer head we want to add to the extent 2276 * 2277 * The function is used to collect contig. blocks in the same state. If the 2278 * buffer doesn't require mapping for writeback and we haven't started the 2279 * extent of buffers to map yet, the function returns 'true' immediately - the 2280 * caller can write the buffer right away. Otherwise the function returns true 2281 * if the block has been added to the extent, false if the block couldn't be 2282 * added. 2283 */ 2284 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2285 struct buffer_head *bh) 2286 { 2287 struct ext4_map_blocks *map = &mpd->map; 2288 2289 /* Buffer that doesn't need mapping for writeback? */ 2290 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2291 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2292 /* So far no extent to map => we write the buffer right away */ 2293 if (map->m_len == 0) 2294 return true; 2295 return false; 2296 } 2297 2298 /* First block in the extent? */ 2299 if (map->m_len == 0) { 2300 /* We cannot map unless handle is started... */ 2301 if (!mpd->do_map) 2302 return false; 2303 map->m_lblk = lblk; 2304 map->m_len = 1; 2305 map->m_flags = bh->b_state & BH_FLAGS; 2306 return true; 2307 } 2308 2309 /* Don't go larger than mballoc is willing to allocate */ 2310 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2311 return false; 2312 2313 /* Can we merge the block to our big extent? */ 2314 if (lblk == map->m_lblk + map->m_len && 2315 (bh->b_state & BH_FLAGS) == map->m_flags) { 2316 map->m_len++; 2317 return true; 2318 } 2319 return false; 2320 } 2321 2322 /* 2323 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2324 * 2325 * @mpd - extent of blocks for mapping 2326 * @head - the first buffer in the page 2327 * @bh - buffer we should start processing from 2328 * @lblk - logical number of the block in the file corresponding to @bh 2329 * 2330 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2331 * the page for IO if all buffers in this page were mapped and there's no 2332 * accumulated extent of buffers to map or add buffers in the page to the 2333 * extent of buffers to map. The function returns 1 if the caller can continue 2334 * by processing the next page, 0 if it should stop adding buffers to the 2335 * extent to map because we cannot extend it anymore. It can also return value 2336 * < 0 in case of error during IO submission. 2337 */ 2338 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2339 struct buffer_head *head, 2340 struct buffer_head *bh, 2341 ext4_lblk_t lblk) 2342 { 2343 struct inode *inode = mpd->inode; 2344 int err; 2345 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2346 >> inode->i_blkbits; 2347 2348 do { 2349 BUG_ON(buffer_locked(bh)); 2350 2351 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2352 /* Found extent to map? */ 2353 if (mpd->map.m_len) 2354 return 0; 2355 /* Buffer needs mapping and handle is not started? */ 2356 if (!mpd->do_map) 2357 return 0; 2358 /* Everything mapped so far and we hit EOF */ 2359 break; 2360 } 2361 } while (lblk++, (bh = bh->b_this_page) != head); 2362 /* So far everything mapped? Submit the page for IO. */ 2363 if (mpd->map.m_len == 0) { 2364 err = mpage_submit_page(mpd, head->b_page); 2365 if (err < 0) 2366 return err; 2367 } 2368 return lblk < blocks; 2369 } 2370 2371 /* 2372 * mpage_map_buffers - update buffers corresponding to changed extent and 2373 * submit fully mapped pages for IO 2374 * 2375 * @mpd - description of extent to map, on return next extent to map 2376 * 2377 * Scan buffers corresponding to changed extent (we expect corresponding pages 2378 * to be already locked) and update buffer state according to new extent state. 2379 * We map delalloc buffers to their physical location, clear unwritten bits, 2380 * and mark buffers as uninit when we perform writes to unwritten extents 2381 * and do extent conversion after IO is finished. If the last page is not fully 2382 * mapped, we update @map to the next extent in the last page that needs 2383 * mapping. Otherwise we submit the page for IO. 2384 */ 2385 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2386 { 2387 struct pagevec pvec; 2388 int nr_pages, i; 2389 struct inode *inode = mpd->inode; 2390 struct buffer_head *head, *bh; 2391 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2392 pgoff_t start, end; 2393 ext4_lblk_t lblk; 2394 sector_t pblock; 2395 int err; 2396 2397 start = mpd->map.m_lblk >> bpp_bits; 2398 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2399 lblk = start << bpp_bits; 2400 pblock = mpd->map.m_pblk; 2401 2402 pagevec_init(&pvec); 2403 while (start <= end) { 2404 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2405 &start, end); 2406 if (nr_pages == 0) 2407 break; 2408 for (i = 0; i < nr_pages; i++) { 2409 struct page *page = pvec.pages[i]; 2410 2411 bh = head = page_buffers(page); 2412 do { 2413 if (lblk < mpd->map.m_lblk) 2414 continue; 2415 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2416 /* 2417 * Buffer after end of mapped extent. 2418 * Find next buffer in the page to map. 2419 */ 2420 mpd->map.m_len = 0; 2421 mpd->map.m_flags = 0; 2422 /* 2423 * FIXME: If dioread_nolock supports 2424 * blocksize < pagesize, we need to make 2425 * sure we add size mapped so far to 2426 * io_end->size as the following call 2427 * can submit the page for IO. 2428 */ 2429 err = mpage_process_page_bufs(mpd, head, 2430 bh, lblk); 2431 pagevec_release(&pvec); 2432 if (err > 0) 2433 err = 0; 2434 return err; 2435 } 2436 if (buffer_delay(bh)) { 2437 clear_buffer_delay(bh); 2438 bh->b_blocknr = pblock++; 2439 } 2440 clear_buffer_unwritten(bh); 2441 } while (lblk++, (bh = bh->b_this_page) != head); 2442 2443 /* 2444 * FIXME: This is going to break if dioread_nolock 2445 * supports blocksize < pagesize as we will try to 2446 * convert potentially unmapped parts of inode. 2447 */ 2448 mpd->io_submit.io_end->size += PAGE_SIZE; 2449 /* Page fully mapped - let IO run! */ 2450 err = mpage_submit_page(mpd, page); 2451 if (err < 0) { 2452 pagevec_release(&pvec); 2453 return err; 2454 } 2455 } 2456 pagevec_release(&pvec); 2457 } 2458 /* Extent fully mapped and matches with page boundary. We are done. */ 2459 mpd->map.m_len = 0; 2460 mpd->map.m_flags = 0; 2461 return 0; 2462 } 2463 2464 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2465 { 2466 struct inode *inode = mpd->inode; 2467 struct ext4_map_blocks *map = &mpd->map; 2468 int get_blocks_flags; 2469 int err, dioread_nolock; 2470 2471 trace_ext4_da_write_pages_extent(inode, map); 2472 /* 2473 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2474 * to convert an unwritten extent to be initialized (in the case 2475 * where we have written into one or more preallocated blocks). It is 2476 * possible that we're going to need more metadata blocks than 2477 * previously reserved. However we must not fail because we're in 2478 * writeback and there is nothing we can do about it so it might result 2479 * in data loss. So use reserved blocks to allocate metadata if 2480 * possible. 2481 * 2482 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2483 * the blocks in question are delalloc blocks. This indicates 2484 * that the blocks and quotas has already been checked when 2485 * the data was copied into the page cache. 2486 */ 2487 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2488 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2489 EXT4_GET_BLOCKS_IO_SUBMIT; 2490 dioread_nolock = ext4_should_dioread_nolock(inode); 2491 if (dioread_nolock) 2492 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2493 if (map->m_flags & (1 << BH_Delay)) 2494 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2495 2496 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2497 if (err < 0) 2498 return err; 2499 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2500 if (!mpd->io_submit.io_end->handle && 2501 ext4_handle_valid(handle)) { 2502 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2503 handle->h_rsv_handle = NULL; 2504 } 2505 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2506 } 2507 2508 BUG_ON(map->m_len == 0); 2509 return 0; 2510 } 2511 2512 /* 2513 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2514 * mpd->len and submit pages underlying it for IO 2515 * 2516 * @handle - handle for journal operations 2517 * @mpd - extent to map 2518 * @give_up_on_write - we set this to true iff there is a fatal error and there 2519 * is no hope of writing the data. The caller should discard 2520 * dirty pages to avoid infinite loops. 2521 * 2522 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2523 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2524 * them to initialized or split the described range from larger unwritten 2525 * extent. Note that we need not map all the described range since allocation 2526 * can return less blocks or the range is covered by more unwritten extents. We 2527 * cannot map more because we are limited by reserved transaction credits. On 2528 * the other hand we always make sure that the last touched page is fully 2529 * mapped so that it can be written out (and thus forward progress is 2530 * guaranteed). After mapping we submit all mapped pages for IO. 2531 */ 2532 static int mpage_map_and_submit_extent(handle_t *handle, 2533 struct mpage_da_data *mpd, 2534 bool *give_up_on_write) 2535 { 2536 struct inode *inode = mpd->inode; 2537 struct ext4_map_blocks *map = &mpd->map; 2538 int err; 2539 loff_t disksize; 2540 int progress = 0; 2541 2542 mpd->io_submit.io_end->offset = 2543 ((loff_t)map->m_lblk) << inode->i_blkbits; 2544 do { 2545 err = mpage_map_one_extent(handle, mpd); 2546 if (err < 0) { 2547 struct super_block *sb = inode->i_sb; 2548 2549 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2550 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2551 goto invalidate_dirty_pages; 2552 /* 2553 * Let the uper layers retry transient errors. 2554 * In the case of ENOSPC, if ext4_count_free_blocks() 2555 * is non-zero, a commit should free up blocks. 2556 */ 2557 if ((err == -ENOMEM) || 2558 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2559 if (progress) 2560 goto update_disksize; 2561 return err; 2562 } 2563 ext4_msg(sb, KERN_CRIT, 2564 "Delayed block allocation failed for " 2565 "inode %lu at logical offset %llu with" 2566 " max blocks %u with error %d", 2567 inode->i_ino, 2568 (unsigned long long)map->m_lblk, 2569 (unsigned)map->m_len, -err); 2570 ext4_msg(sb, KERN_CRIT, 2571 "This should not happen!! Data will " 2572 "be lost\n"); 2573 if (err == -ENOSPC) 2574 ext4_print_free_blocks(inode); 2575 invalidate_dirty_pages: 2576 *give_up_on_write = true; 2577 return err; 2578 } 2579 progress = 1; 2580 /* 2581 * Update buffer state, submit mapped pages, and get us new 2582 * extent to map 2583 */ 2584 err = mpage_map_and_submit_buffers(mpd); 2585 if (err < 0) 2586 goto update_disksize; 2587 } while (map->m_len); 2588 2589 update_disksize: 2590 /* 2591 * Update on-disk size after IO is submitted. Races with 2592 * truncate are avoided by checking i_size under i_data_sem. 2593 */ 2594 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2595 if (disksize > EXT4_I(inode)->i_disksize) { 2596 int err2; 2597 loff_t i_size; 2598 2599 down_write(&EXT4_I(inode)->i_data_sem); 2600 i_size = i_size_read(inode); 2601 if (disksize > i_size) 2602 disksize = i_size; 2603 if (disksize > EXT4_I(inode)->i_disksize) 2604 EXT4_I(inode)->i_disksize = disksize; 2605 up_write(&EXT4_I(inode)->i_data_sem); 2606 err2 = ext4_mark_inode_dirty(handle, inode); 2607 if (err2) 2608 ext4_error(inode->i_sb, 2609 "Failed to mark inode %lu dirty", 2610 inode->i_ino); 2611 if (!err) 2612 err = err2; 2613 } 2614 return err; 2615 } 2616 2617 /* 2618 * Calculate the total number of credits to reserve for one writepages 2619 * iteration. This is called from ext4_writepages(). We map an extent of 2620 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2621 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2622 * bpp - 1 blocks in bpp different extents. 2623 */ 2624 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2625 { 2626 int bpp = ext4_journal_blocks_per_page(inode); 2627 2628 return ext4_meta_trans_blocks(inode, 2629 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2630 } 2631 2632 /* 2633 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2634 * and underlying extent to map 2635 * 2636 * @mpd - where to look for pages 2637 * 2638 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2639 * IO immediately. When we find a page which isn't mapped we start accumulating 2640 * extent of buffers underlying these pages that needs mapping (formed by 2641 * either delayed or unwritten buffers). We also lock the pages containing 2642 * these buffers. The extent found is returned in @mpd structure (starting at 2643 * mpd->lblk with length mpd->len blocks). 2644 * 2645 * Note that this function can attach bios to one io_end structure which are 2646 * neither logically nor physically contiguous. Although it may seem as an 2647 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2648 * case as we need to track IO to all buffers underlying a page in one io_end. 2649 */ 2650 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2651 { 2652 struct address_space *mapping = mpd->inode->i_mapping; 2653 struct pagevec pvec; 2654 unsigned int nr_pages; 2655 long left = mpd->wbc->nr_to_write; 2656 pgoff_t index = mpd->first_page; 2657 pgoff_t end = mpd->last_page; 2658 xa_mark_t tag; 2659 int i, err = 0; 2660 int blkbits = mpd->inode->i_blkbits; 2661 ext4_lblk_t lblk; 2662 struct buffer_head *head; 2663 2664 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2665 tag = PAGECACHE_TAG_TOWRITE; 2666 else 2667 tag = PAGECACHE_TAG_DIRTY; 2668 2669 pagevec_init(&pvec); 2670 mpd->map.m_len = 0; 2671 mpd->next_page = index; 2672 while (index <= end) { 2673 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2674 tag); 2675 if (nr_pages == 0) 2676 goto out; 2677 2678 for (i = 0; i < nr_pages; i++) { 2679 struct page *page = pvec.pages[i]; 2680 2681 /* 2682 * Accumulated enough dirty pages? This doesn't apply 2683 * to WB_SYNC_ALL mode. For integrity sync we have to 2684 * keep going because someone may be concurrently 2685 * dirtying pages, and we might have synced a lot of 2686 * newly appeared dirty pages, but have not synced all 2687 * of the old dirty pages. 2688 */ 2689 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2690 goto out; 2691 2692 /* If we can't merge this page, we are done. */ 2693 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2694 goto out; 2695 2696 lock_page(page); 2697 /* 2698 * If the page is no longer dirty, or its mapping no 2699 * longer corresponds to inode we are writing (which 2700 * means it has been truncated or invalidated), or the 2701 * page is already under writeback and we are not doing 2702 * a data integrity writeback, skip the page 2703 */ 2704 if (!PageDirty(page) || 2705 (PageWriteback(page) && 2706 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2707 unlikely(page->mapping != mapping)) { 2708 unlock_page(page); 2709 continue; 2710 } 2711 2712 wait_on_page_writeback(page); 2713 BUG_ON(PageWriteback(page)); 2714 2715 if (mpd->map.m_len == 0) 2716 mpd->first_page = page->index; 2717 mpd->next_page = page->index + 1; 2718 /* Add all dirty buffers to mpd */ 2719 lblk = ((ext4_lblk_t)page->index) << 2720 (PAGE_SHIFT - blkbits); 2721 head = page_buffers(page); 2722 err = mpage_process_page_bufs(mpd, head, head, lblk); 2723 if (err <= 0) 2724 goto out; 2725 err = 0; 2726 left--; 2727 } 2728 pagevec_release(&pvec); 2729 cond_resched(); 2730 } 2731 return 0; 2732 out: 2733 pagevec_release(&pvec); 2734 return err; 2735 } 2736 2737 static int ext4_writepages(struct address_space *mapping, 2738 struct writeback_control *wbc) 2739 { 2740 pgoff_t writeback_index = 0; 2741 long nr_to_write = wbc->nr_to_write; 2742 int range_whole = 0; 2743 int cycled = 1; 2744 handle_t *handle = NULL; 2745 struct mpage_da_data mpd; 2746 struct inode *inode = mapping->host; 2747 int needed_blocks, rsv_blocks = 0, ret = 0; 2748 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2749 bool done; 2750 struct blk_plug plug; 2751 bool give_up_on_write = false; 2752 2753 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2754 return -EIO; 2755 2756 percpu_down_read(&sbi->s_journal_flag_rwsem); 2757 trace_ext4_writepages(inode, wbc); 2758 2759 /* 2760 * No pages to write? This is mainly a kludge to avoid starting 2761 * a transaction for special inodes like journal inode on last iput() 2762 * because that could violate lock ordering on umount 2763 */ 2764 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2765 goto out_writepages; 2766 2767 if (ext4_should_journal_data(inode)) { 2768 ret = generic_writepages(mapping, wbc); 2769 goto out_writepages; 2770 } 2771 2772 /* 2773 * If the filesystem has aborted, it is read-only, so return 2774 * right away instead of dumping stack traces later on that 2775 * will obscure the real source of the problem. We test 2776 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2777 * the latter could be true if the filesystem is mounted 2778 * read-only, and in that case, ext4_writepages should 2779 * *never* be called, so if that ever happens, we would want 2780 * the stack trace. 2781 */ 2782 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2783 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2784 ret = -EROFS; 2785 goto out_writepages; 2786 } 2787 2788 if (ext4_should_dioread_nolock(inode)) { 2789 /* 2790 * We may need to convert up to one extent per block in 2791 * the page and we may dirty the inode. 2792 */ 2793 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2794 PAGE_SIZE >> inode->i_blkbits); 2795 } 2796 2797 /* 2798 * If we have inline data and arrive here, it means that 2799 * we will soon create the block for the 1st page, so 2800 * we'd better clear the inline data here. 2801 */ 2802 if (ext4_has_inline_data(inode)) { 2803 /* Just inode will be modified... */ 2804 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2805 if (IS_ERR(handle)) { 2806 ret = PTR_ERR(handle); 2807 goto out_writepages; 2808 } 2809 BUG_ON(ext4_test_inode_state(inode, 2810 EXT4_STATE_MAY_INLINE_DATA)); 2811 ext4_destroy_inline_data(handle, inode); 2812 ext4_journal_stop(handle); 2813 } 2814 2815 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2816 range_whole = 1; 2817 2818 if (wbc->range_cyclic) { 2819 writeback_index = mapping->writeback_index; 2820 if (writeback_index) 2821 cycled = 0; 2822 mpd.first_page = writeback_index; 2823 mpd.last_page = -1; 2824 } else { 2825 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2826 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2827 } 2828 2829 mpd.inode = inode; 2830 mpd.wbc = wbc; 2831 ext4_io_submit_init(&mpd.io_submit, wbc); 2832 retry: 2833 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2834 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2835 done = false; 2836 blk_start_plug(&plug); 2837 2838 /* 2839 * First writeback pages that don't need mapping - we can avoid 2840 * starting a transaction unnecessarily and also avoid being blocked 2841 * in the block layer on device congestion while having transaction 2842 * started. 2843 */ 2844 mpd.do_map = 0; 2845 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2846 if (!mpd.io_submit.io_end) { 2847 ret = -ENOMEM; 2848 goto unplug; 2849 } 2850 ret = mpage_prepare_extent_to_map(&mpd); 2851 /* Unlock pages we didn't use */ 2852 mpage_release_unused_pages(&mpd, false); 2853 /* Submit prepared bio */ 2854 ext4_io_submit(&mpd.io_submit); 2855 ext4_put_io_end_defer(mpd.io_submit.io_end); 2856 mpd.io_submit.io_end = NULL; 2857 if (ret < 0) 2858 goto unplug; 2859 2860 while (!done && mpd.first_page <= mpd.last_page) { 2861 /* For each extent of pages we use new io_end */ 2862 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2863 if (!mpd.io_submit.io_end) { 2864 ret = -ENOMEM; 2865 break; 2866 } 2867 2868 /* 2869 * We have two constraints: We find one extent to map and we 2870 * must always write out whole page (makes a difference when 2871 * blocksize < pagesize) so that we don't block on IO when we 2872 * try to write out the rest of the page. Journalled mode is 2873 * not supported by delalloc. 2874 */ 2875 BUG_ON(ext4_should_journal_data(inode)); 2876 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2877 2878 /* start a new transaction */ 2879 handle = ext4_journal_start_with_reserve(inode, 2880 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2881 if (IS_ERR(handle)) { 2882 ret = PTR_ERR(handle); 2883 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2884 "%ld pages, ino %lu; err %d", __func__, 2885 wbc->nr_to_write, inode->i_ino, ret); 2886 /* Release allocated io_end */ 2887 ext4_put_io_end(mpd.io_submit.io_end); 2888 mpd.io_submit.io_end = NULL; 2889 break; 2890 } 2891 mpd.do_map = 1; 2892 2893 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2894 ret = mpage_prepare_extent_to_map(&mpd); 2895 if (!ret) { 2896 if (mpd.map.m_len) 2897 ret = mpage_map_and_submit_extent(handle, &mpd, 2898 &give_up_on_write); 2899 else { 2900 /* 2901 * We scanned the whole range (or exhausted 2902 * nr_to_write), submitted what was mapped and 2903 * didn't find anything needing mapping. We are 2904 * done. 2905 */ 2906 done = true; 2907 } 2908 } 2909 /* 2910 * Caution: If the handle is synchronous, 2911 * ext4_journal_stop() can wait for transaction commit 2912 * to finish which may depend on writeback of pages to 2913 * complete or on page lock to be released. In that 2914 * case, we have to wait until after after we have 2915 * submitted all the IO, released page locks we hold, 2916 * and dropped io_end reference (for extent conversion 2917 * to be able to complete) before stopping the handle. 2918 */ 2919 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2920 ext4_journal_stop(handle); 2921 handle = NULL; 2922 mpd.do_map = 0; 2923 } 2924 /* Unlock pages we didn't use */ 2925 mpage_release_unused_pages(&mpd, give_up_on_write); 2926 /* Submit prepared bio */ 2927 ext4_io_submit(&mpd.io_submit); 2928 2929 /* 2930 * Drop our io_end reference we got from init. We have 2931 * to be careful and use deferred io_end finishing if 2932 * we are still holding the transaction as we can 2933 * release the last reference to io_end which may end 2934 * up doing unwritten extent conversion. 2935 */ 2936 if (handle) { 2937 ext4_put_io_end_defer(mpd.io_submit.io_end); 2938 ext4_journal_stop(handle); 2939 } else 2940 ext4_put_io_end(mpd.io_submit.io_end); 2941 mpd.io_submit.io_end = NULL; 2942 2943 if (ret == -ENOSPC && sbi->s_journal) { 2944 /* 2945 * Commit the transaction which would 2946 * free blocks released in the transaction 2947 * and try again 2948 */ 2949 jbd2_journal_force_commit_nested(sbi->s_journal); 2950 ret = 0; 2951 continue; 2952 } 2953 /* Fatal error - ENOMEM, EIO... */ 2954 if (ret) 2955 break; 2956 } 2957 unplug: 2958 blk_finish_plug(&plug); 2959 if (!ret && !cycled && wbc->nr_to_write > 0) { 2960 cycled = 1; 2961 mpd.last_page = writeback_index - 1; 2962 mpd.first_page = 0; 2963 goto retry; 2964 } 2965 2966 /* Update index */ 2967 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2968 /* 2969 * Set the writeback_index so that range_cyclic 2970 * mode will write it back later 2971 */ 2972 mapping->writeback_index = mpd.first_page; 2973 2974 out_writepages: 2975 trace_ext4_writepages_result(inode, wbc, ret, 2976 nr_to_write - wbc->nr_to_write); 2977 percpu_up_read(&sbi->s_journal_flag_rwsem); 2978 return ret; 2979 } 2980 2981 static int ext4_dax_writepages(struct address_space *mapping, 2982 struct writeback_control *wbc) 2983 { 2984 int ret; 2985 long nr_to_write = wbc->nr_to_write; 2986 struct inode *inode = mapping->host; 2987 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2988 2989 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2990 return -EIO; 2991 2992 percpu_down_read(&sbi->s_journal_flag_rwsem); 2993 trace_ext4_writepages(inode, wbc); 2994 2995 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc); 2996 trace_ext4_writepages_result(inode, wbc, ret, 2997 nr_to_write - wbc->nr_to_write); 2998 percpu_up_read(&sbi->s_journal_flag_rwsem); 2999 return ret; 3000 } 3001 3002 static int ext4_nonda_switch(struct super_block *sb) 3003 { 3004 s64 free_clusters, dirty_clusters; 3005 struct ext4_sb_info *sbi = EXT4_SB(sb); 3006 3007 /* 3008 * switch to non delalloc mode if we are running low 3009 * on free block. The free block accounting via percpu 3010 * counters can get slightly wrong with percpu_counter_batch getting 3011 * accumulated on each CPU without updating global counters 3012 * Delalloc need an accurate free block accounting. So switch 3013 * to non delalloc when we are near to error range. 3014 */ 3015 free_clusters = 3016 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3017 dirty_clusters = 3018 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3019 /* 3020 * Start pushing delalloc when 1/2 of free blocks are dirty. 3021 */ 3022 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3023 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3024 3025 if (2 * free_clusters < 3 * dirty_clusters || 3026 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3027 /* 3028 * free block count is less than 150% of dirty blocks 3029 * or free blocks is less than watermark 3030 */ 3031 return 1; 3032 } 3033 return 0; 3034 } 3035 3036 /* We always reserve for an inode update; the superblock could be there too */ 3037 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 3038 { 3039 if (likely(ext4_has_feature_large_file(inode->i_sb))) 3040 return 1; 3041 3042 if (pos + len <= 0x7fffffffULL) 3043 return 1; 3044 3045 /* We might need to update the superblock to set LARGE_FILE */ 3046 return 2; 3047 } 3048 3049 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3050 loff_t pos, unsigned len, unsigned flags, 3051 struct page **pagep, void **fsdata) 3052 { 3053 int ret, retries = 0; 3054 struct page *page; 3055 pgoff_t index; 3056 struct inode *inode = mapping->host; 3057 handle_t *handle; 3058 3059 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3060 return -EIO; 3061 3062 index = pos >> PAGE_SHIFT; 3063 3064 if (ext4_nonda_switch(inode->i_sb) || 3065 S_ISLNK(inode->i_mode)) { 3066 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3067 return ext4_write_begin(file, mapping, pos, 3068 len, flags, pagep, fsdata); 3069 } 3070 *fsdata = (void *)0; 3071 trace_ext4_da_write_begin(inode, pos, len, flags); 3072 3073 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3074 ret = ext4_da_write_inline_data_begin(mapping, inode, 3075 pos, len, flags, 3076 pagep, fsdata); 3077 if (ret < 0) 3078 return ret; 3079 if (ret == 1) 3080 return 0; 3081 } 3082 3083 /* 3084 * grab_cache_page_write_begin() can take a long time if the 3085 * system is thrashing due to memory pressure, or if the page 3086 * is being written back. So grab it first before we start 3087 * the transaction handle. This also allows us to allocate 3088 * the page (if needed) without using GFP_NOFS. 3089 */ 3090 retry_grab: 3091 page = grab_cache_page_write_begin(mapping, index, flags); 3092 if (!page) 3093 return -ENOMEM; 3094 unlock_page(page); 3095 3096 /* 3097 * With delayed allocation, we don't log the i_disksize update 3098 * if there is delayed block allocation. But we still need 3099 * to journalling the i_disksize update if writes to the end 3100 * of file which has an already mapped buffer. 3101 */ 3102 retry_journal: 3103 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3104 ext4_da_write_credits(inode, pos, len)); 3105 if (IS_ERR(handle)) { 3106 put_page(page); 3107 return PTR_ERR(handle); 3108 } 3109 3110 lock_page(page); 3111 if (page->mapping != mapping) { 3112 /* The page got truncated from under us */ 3113 unlock_page(page); 3114 put_page(page); 3115 ext4_journal_stop(handle); 3116 goto retry_grab; 3117 } 3118 /* In case writeback began while the page was unlocked */ 3119 wait_for_stable_page(page); 3120 3121 #ifdef CONFIG_FS_ENCRYPTION 3122 ret = ext4_block_write_begin(page, pos, len, 3123 ext4_da_get_block_prep); 3124 #else 3125 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3126 #endif 3127 if (ret < 0) { 3128 unlock_page(page); 3129 ext4_journal_stop(handle); 3130 /* 3131 * block_write_begin may have instantiated a few blocks 3132 * outside i_size. Trim these off again. Don't need 3133 * i_size_read because we hold i_mutex. 3134 */ 3135 if (pos + len > inode->i_size) 3136 ext4_truncate_failed_write(inode); 3137 3138 if (ret == -ENOSPC && 3139 ext4_should_retry_alloc(inode->i_sb, &retries)) 3140 goto retry_journal; 3141 3142 put_page(page); 3143 return ret; 3144 } 3145 3146 *pagep = page; 3147 return ret; 3148 } 3149 3150 /* 3151 * Check if we should update i_disksize 3152 * when write to the end of file but not require block allocation 3153 */ 3154 static int ext4_da_should_update_i_disksize(struct page *page, 3155 unsigned long offset) 3156 { 3157 struct buffer_head *bh; 3158 struct inode *inode = page->mapping->host; 3159 unsigned int idx; 3160 int i; 3161 3162 bh = page_buffers(page); 3163 idx = offset >> inode->i_blkbits; 3164 3165 for (i = 0; i < idx; i++) 3166 bh = bh->b_this_page; 3167 3168 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3169 return 0; 3170 return 1; 3171 } 3172 3173 static int ext4_da_write_end(struct file *file, 3174 struct address_space *mapping, 3175 loff_t pos, unsigned len, unsigned copied, 3176 struct page *page, void *fsdata) 3177 { 3178 struct inode *inode = mapping->host; 3179 int ret = 0, ret2; 3180 handle_t *handle = ext4_journal_current_handle(); 3181 loff_t new_i_size; 3182 unsigned long start, end; 3183 int write_mode = (int)(unsigned long)fsdata; 3184 3185 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3186 return ext4_write_end(file, mapping, pos, 3187 len, copied, page, fsdata); 3188 3189 trace_ext4_da_write_end(inode, pos, len, copied); 3190 start = pos & (PAGE_SIZE - 1); 3191 end = start + copied - 1; 3192 3193 /* 3194 * generic_write_end() will run mark_inode_dirty() if i_size 3195 * changes. So let's piggyback the i_disksize mark_inode_dirty 3196 * into that. 3197 */ 3198 new_i_size = pos + copied; 3199 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3200 if (ext4_has_inline_data(inode) || 3201 ext4_da_should_update_i_disksize(page, end)) { 3202 ext4_update_i_disksize(inode, new_i_size); 3203 /* We need to mark inode dirty even if 3204 * new_i_size is less that inode->i_size 3205 * bu greater than i_disksize.(hint delalloc) 3206 */ 3207 ext4_mark_inode_dirty(handle, inode); 3208 } 3209 } 3210 3211 if (write_mode != CONVERT_INLINE_DATA && 3212 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3213 ext4_has_inline_data(inode)) 3214 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3215 page); 3216 else 3217 ret2 = generic_write_end(file, mapping, pos, len, copied, 3218 page, fsdata); 3219 3220 copied = ret2; 3221 if (ret2 < 0) 3222 ret = ret2; 3223 ret2 = ext4_journal_stop(handle); 3224 if (!ret) 3225 ret = ret2; 3226 3227 return ret ? ret : copied; 3228 } 3229 3230 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3231 unsigned int length) 3232 { 3233 /* 3234 * Drop reserved blocks 3235 */ 3236 BUG_ON(!PageLocked(page)); 3237 if (!page_has_buffers(page)) 3238 goto out; 3239 3240 ext4_da_page_release_reservation(page, offset, length); 3241 3242 out: 3243 ext4_invalidatepage(page, offset, length); 3244 3245 return; 3246 } 3247 3248 /* 3249 * Force all delayed allocation blocks to be allocated for a given inode. 3250 */ 3251 int ext4_alloc_da_blocks(struct inode *inode) 3252 { 3253 trace_ext4_alloc_da_blocks(inode); 3254 3255 if (!EXT4_I(inode)->i_reserved_data_blocks) 3256 return 0; 3257 3258 /* 3259 * We do something simple for now. The filemap_flush() will 3260 * also start triggering a write of the data blocks, which is 3261 * not strictly speaking necessary (and for users of 3262 * laptop_mode, not even desirable). However, to do otherwise 3263 * would require replicating code paths in: 3264 * 3265 * ext4_writepages() -> 3266 * write_cache_pages() ---> (via passed in callback function) 3267 * __mpage_da_writepage() --> 3268 * mpage_add_bh_to_extent() 3269 * mpage_da_map_blocks() 3270 * 3271 * The problem is that write_cache_pages(), located in 3272 * mm/page-writeback.c, marks pages clean in preparation for 3273 * doing I/O, which is not desirable if we're not planning on 3274 * doing I/O at all. 3275 * 3276 * We could call write_cache_pages(), and then redirty all of 3277 * the pages by calling redirty_page_for_writepage() but that 3278 * would be ugly in the extreme. So instead we would need to 3279 * replicate parts of the code in the above functions, 3280 * simplifying them because we wouldn't actually intend to 3281 * write out the pages, but rather only collect contiguous 3282 * logical block extents, call the multi-block allocator, and 3283 * then update the buffer heads with the block allocations. 3284 * 3285 * For now, though, we'll cheat by calling filemap_flush(), 3286 * which will map the blocks, and start the I/O, but not 3287 * actually wait for the I/O to complete. 3288 */ 3289 return filemap_flush(inode->i_mapping); 3290 } 3291 3292 /* 3293 * bmap() is special. It gets used by applications such as lilo and by 3294 * the swapper to find the on-disk block of a specific piece of data. 3295 * 3296 * Naturally, this is dangerous if the block concerned is still in the 3297 * journal. If somebody makes a swapfile on an ext4 data-journaling 3298 * filesystem and enables swap, then they may get a nasty shock when the 3299 * data getting swapped to that swapfile suddenly gets overwritten by 3300 * the original zero's written out previously to the journal and 3301 * awaiting writeback in the kernel's buffer cache. 3302 * 3303 * So, if we see any bmap calls here on a modified, data-journaled file, 3304 * take extra steps to flush any blocks which might be in the cache. 3305 */ 3306 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3307 { 3308 struct inode *inode = mapping->host; 3309 journal_t *journal; 3310 int err; 3311 3312 /* 3313 * We can get here for an inline file via the FIBMAP ioctl 3314 */ 3315 if (ext4_has_inline_data(inode)) 3316 return 0; 3317 3318 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3319 test_opt(inode->i_sb, DELALLOC)) { 3320 /* 3321 * With delalloc we want to sync the file 3322 * so that we can make sure we allocate 3323 * blocks for file 3324 */ 3325 filemap_write_and_wait(mapping); 3326 } 3327 3328 if (EXT4_JOURNAL(inode) && 3329 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3330 /* 3331 * This is a REALLY heavyweight approach, but the use of 3332 * bmap on dirty files is expected to be extremely rare: 3333 * only if we run lilo or swapon on a freshly made file 3334 * do we expect this to happen. 3335 * 3336 * (bmap requires CAP_SYS_RAWIO so this does not 3337 * represent an unprivileged user DOS attack --- we'd be 3338 * in trouble if mortal users could trigger this path at 3339 * will.) 3340 * 3341 * NB. EXT4_STATE_JDATA is not set on files other than 3342 * regular files. If somebody wants to bmap a directory 3343 * or symlink and gets confused because the buffer 3344 * hasn't yet been flushed to disk, they deserve 3345 * everything they get. 3346 */ 3347 3348 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3349 journal = EXT4_JOURNAL(inode); 3350 jbd2_journal_lock_updates(journal); 3351 err = jbd2_journal_flush(journal); 3352 jbd2_journal_unlock_updates(journal); 3353 3354 if (err) 3355 return 0; 3356 } 3357 3358 return generic_block_bmap(mapping, block, ext4_get_block); 3359 } 3360 3361 static int ext4_readpage(struct file *file, struct page *page) 3362 { 3363 int ret = -EAGAIN; 3364 struct inode *inode = page->mapping->host; 3365 3366 trace_ext4_readpage(page); 3367 3368 if (ext4_has_inline_data(inode)) 3369 ret = ext4_readpage_inline(inode, page); 3370 3371 if (ret == -EAGAIN) 3372 return ext4_mpage_readpages(page->mapping, NULL, page, 1, 3373 false); 3374 3375 return ret; 3376 } 3377 3378 static int 3379 ext4_readpages(struct file *file, struct address_space *mapping, 3380 struct list_head *pages, unsigned nr_pages) 3381 { 3382 struct inode *inode = mapping->host; 3383 3384 /* If the file has inline data, no need to do readpages. */ 3385 if (ext4_has_inline_data(inode)) 3386 return 0; 3387 3388 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true); 3389 } 3390 3391 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3392 unsigned int length) 3393 { 3394 trace_ext4_invalidatepage(page, offset, length); 3395 3396 /* No journalling happens on data buffers when this function is used */ 3397 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3398 3399 block_invalidatepage(page, offset, length); 3400 } 3401 3402 static int __ext4_journalled_invalidatepage(struct page *page, 3403 unsigned int offset, 3404 unsigned int length) 3405 { 3406 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3407 3408 trace_ext4_journalled_invalidatepage(page, offset, length); 3409 3410 /* 3411 * If it's a full truncate we just forget about the pending dirtying 3412 */ 3413 if (offset == 0 && length == PAGE_SIZE) 3414 ClearPageChecked(page); 3415 3416 return jbd2_journal_invalidatepage(journal, page, offset, length); 3417 } 3418 3419 /* Wrapper for aops... */ 3420 static void ext4_journalled_invalidatepage(struct page *page, 3421 unsigned int offset, 3422 unsigned int length) 3423 { 3424 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3425 } 3426 3427 static int ext4_releasepage(struct page *page, gfp_t wait) 3428 { 3429 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3430 3431 trace_ext4_releasepage(page); 3432 3433 /* Page has dirty journalled data -> cannot release */ 3434 if (PageChecked(page)) 3435 return 0; 3436 if (journal) 3437 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3438 else 3439 return try_to_free_buffers(page); 3440 } 3441 3442 static bool ext4_inode_datasync_dirty(struct inode *inode) 3443 { 3444 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3445 3446 if (journal) 3447 return !jbd2_transaction_committed(journal, 3448 EXT4_I(inode)->i_datasync_tid); 3449 /* Any metadata buffers to write? */ 3450 if (!list_empty(&inode->i_mapping->private_list)) 3451 return true; 3452 return inode->i_state & I_DIRTY_DATASYNC; 3453 } 3454 3455 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3456 unsigned flags, struct iomap *iomap) 3457 { 3458 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3459 unsigned int blkbits = inode->i_blkbits; 3460 unsigned long first_block, last_block; 3461 struct ext4_map_blocks map; 3462 bool delalloc = false; 3463 int ret; 3464 3465 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3466 return -EINVAL; 3467 first_block = offset >> blkbits; 3468 last_block = min_t(loff_t, (offset + length - 1) >> blkbits, 3469 EXT4_MAX_LOGICAL_BLOCK); 3470 3471 if (flags & IOMAP_REPORT) { 3472 if (ext4_has_inline_data(inode)) { 3473 ret = ext4_inline_data_iomap(inode, iomap); 3474 if (ret != -EAGAIN) { 3475 if (ret == 0 && offset >= iomap->length) 3476 ret = -ENOENT; 3477 return ret; 3478 } 3479 } 3480 } else { 3481 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3482 return -ERANGE; 3483 } 3484 3485 map.m_lblk = first_block; 3486 map.m_len = last_block - first_block + 1; 3487 3488 if (flags & IOMAP_REPORT) { 3489 ret = ext4_map_blocks(NULL, inode, &map, 0); 3490 if (ret < 0) 3491 return ret; 3492 3493 if (ret == 0) { 3494 ext4_lblk_t end = map.m_lblk + map.m_len - 1; 3495 struct extent_status es; 3496 3497 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3498 map.m_lblk, end, &es); 3499 3500 if (!es.es_len || es.es_lblk > end) { 3501 /* entire range is a hole */ 3502 } else if (es.es_lblk > map.m_lblk) { 3503 /* range starts with a hole */ 3504 map.m_len = es.es_lblk - map.m_lblk; 3505 } else { 3506 ext4_lblk_t offs = 0; 3507 3508 if (es.es_lblk < map.m_lblk) 3509 offs = map.m_lblk - es.es_lblk; 3510 map.m_lblk = es.es_lblk + offs; 3511 map.m_len = es.es_len - offs; 3512 delalloc = true; 3513 } 3514 } 3515 } else if (flags & IOMAP_WRITE) { 3516 int dio_credits; 3517 handle_t *handle; 3518 int retries = 0; 3519 3520 /* Trim mapping request to maximum we can map at once for DIO */ 3521 if (map.m_len > DIO_MAX_BLOCKS) 3522 map.m_len = DIO_MAX_BLOCKS; 3523 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3524 retry: 3525 /* 3526 * Either we allocate blocks and then we don't get unwritten 3527 * extent so we have reserved enough credits, or the blocks 3528 * are already allocated and unwritten and in that case 3529 * extent conversion fits in the credits as well. 3530 */ 3531 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3532 dio_credits); 3533 if (IS_ERR(handle)) 3534 return PTR_ERR(handle); 3535 3536 ret = ext4_map_blocks(handle, inode, &map, 3537 EXT4_GET_BLOCKS_CREATE_ZERO); 3538 if (ret < 0) { 3539 ext4_journal_stop(handle); 3540 if (ret == -ENOSPC && 3541 ext4_should_retry_alloc(inode->i_sb, &retries)) 3542 goto retry; 3543 return ret; 3544 } 3545 3546 /* 3547 * If we added blocks beyond i_size, we need to make sure they 3548 * will get truncated if we crash before updating i_size in 3549 * ext4_iomap_end(). For faults we don't need to do that (and 3550 * even cannot because for orphan list operations inode_lock is 3551 * required) - if we happen to instantiate block beyond i_size, 3552 * it is because we race with truncate which has already added 3553 * the inode to the orphan list. 3554 */ 3555 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3556 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3557 int err; 3558 3559 err = ext4_orphan_add(handle, inode); 3560 if (err < 0) { 3561 ext4_journal_stop(handle); 3562 return err; 3563 } 3564 } 3565 ext4_journal_stop(handle); 3566 } else { 3567 ret = ext4_map_blocks(NULL, inode, &map, 0); 3568 if (ret < 0) 3569 return ret; 3570 } 3571 3572 iomap->flags = 0; 3573 if (ext4_inode_datasync_dirty(inode)) 3574 iomap->flags |= IOMAP_F_DIRTY; 3575 iomap->bdev = inode->i_sb->s_bdev; 3576 iomap->dax_dev = sbi->s_daxdev; 3577 iomap->offset = (u64)first_block << blkbits; 3578 iomap->length = (u64)map.m_len << blkbits; 3579 3580 if (ret == 0) { 3581 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; 3582 iomap->addr = IOMAP_NULL_ADDR; 3583 } else { 3584 if (map.m_flags & EXT4_MAP_MAPPED) { 3585 iomap->type = IOMAP_MAPPED; 3586 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3587 iomap->type = IOMAP_UNWRITTEN; 3588 } else { 3589 WARN_ON_ONCE(1); 3590 return -EIO; 3591 } 3592 iomap->addr = (u64)map.m_pblk << blkbits; 3593 } 3594 3595 if (map.m_flags & EXT4_MAP_NEW) 3596 iomap->flags |= IOMAP_F_NEW; 3597 3598 return 0; 3599 } 3600 3601 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3602 ssize_t written, unsigned flags, struct iomap *iomap) 3603 { 3604 int ret = 0; 3605 handle_t *handle; 3606 int blkbits = inode->i_blkbits; 3607 bool truncate = false; 3608 3609 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3610 return 0; 3611 3612 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3613 if (IS_ERR(handle)) { 3614 ret = PTR_ERR(handle); 3615 goto orphan_del; 3616 } 3617 if (ext4_update_inode_size(inode, offset + written)) 3618 ext4_mark_inode_dirty(handle, inode); 3619 /* 3620 * We may need to truncate allocated but not written blocks beyond EOF. 3621 */ 3622 if (iomap->offset + iomap->length > 3623 ALIGN(inode->i_size, 1 << blkbits)) { 3624 ext4_lblk_t written_blk, end_blk; 3625 3626 written_blk = (offset + written) >> blkbits; 3627 end_blk = (offset + length) >> blkbits; 3628 if (written_blk < end_blk && ext4_can_truncate(inode)) 3629 truncate = true; 3630 } 3631 /* 3632 * Remove inode from orphan list if we were extending a inode and 3633 * everything went fine. 3634 */ 3635 if (!truncate && inode->i_nlink && 3636 !list_empty(&EXT4_I(inode)->i_orphan)) 3637 ext4_orphan_del(handle, inode); 3638 ext4_journal_stop(handle); 3639 if (truncate) { 3640 ext4_truncate_failed_write(inode); 3641 orphan_del: 3642 /* 3643 * If truncate failed early the inode might still be on the 3644 * orphan list; we need to make sure the inode is removed from 3645 * the orphan list in that case. 3646 */ 3647 if (inode->i_nlink) 3648 ext4_orphan_del(NULL, inode); 3649 } 3650 return ret; 3651 } 3652 3653 const struct iomap_ops ext4_iomap_ops = { 3654 .iomap_begin = ext4_iomap_begin, 3655 .iomap_end = ext4_iomap_end, 3656 }; 3657 3658 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3659 ssize_t size, void *private) 3660 { 3661 ext4_io_end_t *io_end = private; 3662 3663 /* if not async direct IO just return */ 3664 if (!io_end) 3665 return 0; 3666 3667 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3668 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3669 io_end, io_end->inode->i_ino, iocb, offset, size); 3670 3671 /* 3672 * Error during AIO DIO. We cannot convert unwritten extents as the 3673 * data was not written. Just clear the unwritten flag and drop io_end. 3674 */ 3675 if (size <= 0) { 3676 ext4_clear_io_unwritten_flag(io_end); 3677 size = 0; 3678 } 3679 io_end->offset = offset; 3680 io_end->size = size; 3681 ext4_put_io_end(io_end); 3682 3683 return 0; 3684 } 3685 3686 /* 3687 * Handling of direct IO writes. 3688 * 3689 * For ext4 extent files, ext4 will do direct-io write even to holes, 3690 * preallocated extents, and those write extend the file, no need to 3691 * fall back to buffered IO. 3692 * 3693 * For holes, we fallocate those blocks, mark them as unwritten 3694 * If those blocks were preallocated, we mark sure they are split, but 3695 * still keep the range to write as unwritten. 3696 * 3697 * The unwritten extents will be converted to written when DIO is completed. 3698 * For async direct IO, since the IO may still pending when return, we 3699 * set up an end_io call back function, which will do the conversion 3700 * when async direct IO completed. 3701 * 3702 * If the O_DIRECT write will extend the file then add this inode to the 3703 * orphan list. So recovery will truncate it back to the original size 3704 * if the machine crashes during the write. 3705 * 3706 */ 3707 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3708 { 3709 struct file *file = iocb->ki_filp; 3710 struct inode *inode = file->f_mapping->host; 3711 struct ext4_inode_info *ei = EXT4_I(inode); 3712 ssize_t ret; 3713 loff_t offset = iocb->ki_pos; 3714 size_t count = iov_iter_count(iter); 3715 int overwrite = 0; 3716 get_block_t *get_block_func = NULL; 3717 int dio_flags = 0; 3718 loff_t final_size = offset + count; 3719 int orphan = 0; 3720 handle_t *handle; 3721 3722 if (final_size > inode->i_size || final_size > ei->i_disksize) { 3723 /* Credits for sb + inode write */ 3724 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3725 if (IS_ERR(handle)) { 3726 ret = PTR_ERR(handle); 3727 goto out; 3728 } 3729 ret = ext4_orphan_add(handle, inode); 3730 if (ret) { 3731 ext4_journal_stop(handle); 3732 goto out; 3733 } 3734 orphan = 1; 3735 ext4_update_i_disksize(inode, inode->i_size); 3736 ext4_journal_stop(handle); 3737 } 3738 3739 BUG_ON(iocb->private == NULL); 3740 3741 /* 3742 * Make all waiters for direct IO properly wait also for extent 3743 * conversion. This also disallows race between truncate() and 3744 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3745 */ 3746 inode_dio_begin(inode); 3747 3748 /* If we do a overwrite dio, i_mutex locking can be released */ 3749 overwrite = *((int *)iocb->private); 3750 3751 if (overwrite) 3752 inode_unlock(inode); 3753 3754 /* 3755 * For extent mapped files we could direct write to holes and fallocate. 3756 * 3757 * Allocated blocks to fill the hole are marked as unwritten to prevent 3758 * parallel buffered read to expose the stale data before DIO complete 3759 * the data IO. 3760 * 3761 * As to previously fallocated extents, ext4 get_block will just simply 3762 * mark the buffer mapped but still keep the extents unwritten. 3763 * 3764 * For non AIO case, we will convert those unwritten extents to written 3765 * after return back from blockdev_direct_IO. That way we save us from 3766 * allocating io_end structure and also the overhead of offloading 3767 * the extent convertion to a workqueue. 3768 * 3769 * For async DIO, the conversion needs to be deferred when the 3770 * IO is completed. The ext4 end_io callback function will be 3771 * called to take care of the conversion work. Here for async 3772 * case, we allocate an io_end structure to hook to the iocb. 3773 */ 3774 iocb->private = NULL; 3775 if (overwrite) 3776 get_block_func = ext4_dio_get_block_overwrite; 3777 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3778 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3779 get_block_func = ext4_dio_get_block; 3780 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3781 } else if (is_sync_kiocb(iocb)) { 3782 get_block_func = ext4_dio_get_block_unwritten_sync; 3783 dio_flags = DIO_LOCKING; 3784 } else { 3785 get_block_func = ext4_dio_get_block_unwritten_async; 3786 dio_flags = DIO_LOCKING; 3787 } 3788 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3789 get_block_func, ext4_end_io_dio, NULL, 3790 dio_flags); 3791 3792 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3793 EXT4_STATE_DIO_UNWRITTEN)) { 3794 int err; 3795 /* 3796 * for non AIO case, since the IO is already 3797 * completed, we could do the conversion right here 3798 */ 3799 err = ext4_convert_unwritten_extents(NULL, inode, 3800 offset, ret); 3801 if (err < 0) 3802 ret = err; 3803 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3804 } 3805 3806 inode_dio_end(inode); 3807 /* take i_mutex locking again if we do a ovewrite dio */ 3808 if (overwrite) 3809 inode_lock(inode); 3810 3811 if (ret < 0 && final_size > inode->i_size) 3812 ext4_truncate_failed_write(inode); 3813 3814 /* Handle extending of i_size after direct IO write */ 3815 if (orphan) { 3816 int err; 3817 3818 /* Credits for sb + inode write */ 3819 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3820 if (IS_ERR(handle)) { 3821 /* 3822 * We wrote the data but cannot extend 3823 * i_size. Bail out. In async io case, we do 3824 * not return error here because we have 3825 * already submmitted the corresponding 3826 * bio. Returning error here makes the caller 3827 * think that this IO is done and failed 3828 * resulting in race with bio's completion 3829 * handler. 3830 */ 3831 if (!ret) 3832 ret = PTR_ERR(handle); 3833 if (inode->i_nlink) 3834 ext4_orphan_del(NULL, inode); 3835 3836 goto out; 3837 } 3838 if (inode->i_nlink) 3839 ext4_orphan_del(handle, inode); 3840 if (ret > 0) { 3841 loff_t end = offset + ret; 3842 if (end > inode->i_size || end > ei->i_disksize) { 3843 ext4_update_i_disksize(inode, end); 3844 if (end > inode->i_size) 3845 i_size_write(inode, end); 3846 /* 3847 * We're going to return a positive `ret' 3848 * here due to non-zero-length I/O, so there's 3849 * no way of reporting error returns from 3850 * ext4_mark_inode_dirty() to userspace. So 3851 * ignore it. 3852 */ 3853 ext4_mark_inode_dirty(handle, inode); 3854 } 3855 } 3856 err = ext4_journal_stop(handle); 3857 if (ret == 0) 3858 ret = err; 3859 } 3860 out: 3861 return ret; 3862 } 3863 3864 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3865 { 3866 struct address_space *mapping = iocb->ki_filp->f_mapping; 3867 struct inode *inode = mapping->host; 3868 size_t count = iov_iter_count(iter); 3869 ssize_t ret; 3870 3871 /* 3872 * Shared inode_lock is enough for us - it protects against concurrent 3873 * writes & truncates and since we take care of writing back page cache, 3874 * we are protected against page writeback as well. 3875 */ 3876 inode_lock_shared(inode); 3877 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3878 iocb->ki_pos + count - 1); 3879 if (ret) 3880 goto out_unlock; 3881 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3882 iter, ext4_dio_get_block, NULL, NULL, 0); 3883 out_unlock: 3884 inode_unlock_shared(inode); 3885 return ret; 3886 } 3887 3888 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3889 { 3890 struct file *file = iocb->ki_filp; 3891 struct inode *inode = file->f_mapping->host; 3892 size_t count = iov_iter_count(iter); 3893 loff_t offset = iocb->ki_pos; 3894 ssize_t ret; 3895 3896 #ifdef CONFIG_FS_ENCRYPTION 3897 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 3898 return 0; 3899 #endif 3900 3901 /* 3902 * If we are doing data journalling we don't support O_DIRECT 3903 */ 3904 if (ext4_should_journal_data(inode)) 3905 return 0; 3906 3907 /* Let buffer I/O handle the inline data case. */ 3908 if (ext4_has_inline_data(inode)) 3909 return 0; 3910 3911 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3912 if (iov_iter_rw(iter) == READ) 3913 ret = ext4_direct_IO_read(iocb, iter); 3914 else 3915 ret = ext4_direct_IO_write(iocb, iter); 3916 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3917 return ret; 3918 } 3919 3920 /* 3921 * Pages can be marked dirty completely asynchronously from ext4's journalling 3922 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3923 * much here because ->set_page_dirty is called under VFS locks. The page is 3924 * not necessarily locked. 3925 * 3926 * We cannot just dirty the page and leave attached buffers clean, because the 3927 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3928 * or jbddirty because all the journalling code will explode. 3929 * 3930 * So what we do is to mark the page "pending dirty" and next time writepage 3931 * is called, propagate that into the buffers appropriately. 3932 */ 3933 static int ext4_journalled_set_page_dirty(struct page *page) 3934 { 3935 SetPageChecked(page); 3936 return __set_page_dirty_nobuffers(page); 3937 } 3938 3939 static int ext4_set_page_dirty(struct page *page) 3940 { 3941 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3942 WARN_ON_ONCE(!page_has_buffers(page)); 3943 return __set_page_dirty_buffers(page); 3944 } 3945 3946 static const struct address_space_operations ext4_aops = { 3947 .readpage = ext4_readpage, 3948 .readpages = ext4_readpages, 3949 .writepage = ext4_writepage, 3950 .writepages = ext4_writepages, 3951 .write_begin = ext4_write_begin, 3952 .write_end = ext4_write_end, 3953 .set_page_dirty = ext4_set_page_dirty, 3954 .bmap = ext4_bmap, 3955 .invalidatepage = ext4_invalidatepage, 3956 .releasepage = ext4_releasepage, 3957 .direct_IO = ext4_direct_IO, 3958 .migratepage = buffer_migrate_page, 3959 .is_partially_uptodate = block_is_partially_uptodate, 3960 .error_remove_page = generic_error_remove_page, 3961 }; 3962 3963 static const struct address_space_operations ext4_journalled_aops = { 3964 .readpage = ext4_readpage, 3965 .readpages = ext4_readpages, 3966 .writepage = ext4_writepage, 3967 .writepages = ext4_writepages, 3968 .write_begin = ext4_write_begin, 3969 .write_end = ext4_journalled_write_end, 3970 .set_page_dirty = ext4_journalled_set_page_dirty, 3971 .bmap = ext4_bmap, 3972 .invalidatepage = ext4_journalled_invalidatepage, 3973 .releasepage = ext4_releasepage, 3974 .direct_IO = ext4_direct_IO, 3975 .is_partially_uptodate = block_is_partially_uptodate, 3976 .error_remove_page = generic_error_remove_page, 3977 }; 3978 3979 static const struct address_space_operations ext4_da_aops = { 3980 .readpage = ext4_readpage, 3981 .readpages = ext4_readpages, 3982 .writepage = ext4_writepage, 3983 .writepages = ext4_writepages, 3984 .write_begin = ext4_da_write_begin, 3985 .write_end = ext4_da_write_end, 3986 .set_page_dirty = ext4_set_page_dirty, 3987 .bmap = ext4_bmap, 3988 .invalidatepage = ext4_da_invalidatepage, 3989 .releasepage = ext4_releasepage, 3990 .direct_IO = ext4_direct_IO, 3991 .migratepage = buffer_migrate_page, 3992 .is_partially_uptodate = block_is_partially_uptodate, 3993 .error_remove_page = generic_error_remove_page, 3994 }; 3995 3996 static const struct address_space_operations ext4_dax_aops = { 3997 .writepages = ext4_dax_writepages, 3998 .direct_IO = noop_direct_IO, 3999 .set_page_dirty = noop_set_page_dirty, 4000 .bmap = ext4_bmap, 4001 .invalidatepage = noop_invalidatepage, 4002 }; 4003 4004 void ext4_set_aops(struct inode *inode) 4005 { 4006 switch (ext4_inode_journal_mode(inode)) { 4007 case EXT4_INODE_ORDERED_DATA_MODE: 4008 case EXT4_INODE_WRITEBACK_DATA_MODE: 4009 break; 4010 case EXT4_INODE_JOURNAL_DATA_MODE: 4011 inode->i_mapping->a_ops = &ext4_journalled_aops; 4012 return; 4013 default: 4014 BUG(); 4015 } 4016 if (IS_DAX(inode)) 4017 inode->i_mapping->a_ops = &ext4_dax_aops; 4018 else if (test_opt(inode->i_sb, DELALLOC)) 4019 inode->i_mapping->a_ops = &ext4_da_aops; 4020 else 4021 inode->i_mapping->a_ops = &ext4_aops; 4022 } 4023 4024 static int __ext4_block_zero_page_range(handle_t *handle, 4025 struct address_space *mapping, loff_t from, loff_t length) 4026 { 4027 ext4_fsblk_t index = from >> PAGE_SHIFT; 4028 unsigned offset = from & (PAGE_SIZE-1); 4029 unsigned blocksize, pos; 4030 ext4_lblk_t iblock; 4031 struct inode *inode = mapping->host; 4032 struct buffer_head *bh; 4033 struct page *page; 4034 int err = 0; 4035 4036 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 4037 mapping_gfp_constraint(mapping, ~__GFP_FS)); 4038 if (!page) 4039 return -ENOMEM; 4040 4041 blocksize = inode->i_sb->s_blocksize; 4042 4043 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 4044 4045 if (!page_has_buffers(page)) 4046 create_empty_buffers(page, blocksize, 0); 4047 4048 /* Find the buffer that contains "offset" */ 4049 bh = page_buffers(page); 4050 pos = blocksize; 4051 while (offset >= pos) { 4052 bh = bh->b_this_page; 4053 iblock++; 4054 pos += blocksize; 4055 } 4056 if (buffer_freed(bh)) { 4057 BUFFER_TRACE(bh, "freed: skip"); 4058 goto unlock; 4059 } 4060 if (!buffer_mapped(bh)) { 4061 BUFFER_TRACE(bh, "unmapped"); 4062 ext4_get_block(inode, iblock, bh, 0); 4063 /* unmapped? It's a hole - nothing to do */ 4064 if (!buffer_mapped(bh)) { 4065 BUFFER_TRACE(bh, "still unmapped"); 4066 goto unlock; 4067 } 4068 } 4069 4070 /* Ok, it's mapped. Make sure it's up-to-date */ 4071 if (PageUptodate(page)) 4072 set_buffer_uptodate(bh); 4073 4074 if (!buffer_uptodate(bh)) { 4075 err = -EIO; 4076 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 4077 wait_on_buffer(bh); 4078 /* Uhhuh. Read error. Complain and punt. */ 4079 if (!buffer_uptodate(bh)) 4080 goto unlock; 4081 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) { 4082 /* We expect the key to be set. */ 4083 BUG_ON(!fscrypt_has_encryption_key(inode)); 4084 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks( 4085 page, blocksize, bh_offset(bh))); 4086 } 4087 } 4088 if (ext4_should_journal_data(inode)) { 4089 BUFFER_TRACE(bh, "get write access"); 4090 err = ext4_journal_get_write_access(handle, bh); 4091 if (err) 4092 goto unlock; 4093 } 4094 zero_user(page, offset, length); 4095 BUFFER_TRACE(bh, "zeroed end of block"); 4096 4097 if (ext4_should_journal_data(inode)) { 4098 err = ext4_handle_dirty_metadata(handle, inode, bh); 4099 } else { 4100 err = 0; 4101 mark_buffer_dirty(bh); 4102 if (ext4_should_order_data(inode)) 4103 err = ext4_jbd2_inode_add_write(handle, inode, from, 4104 length); 4105 } 4106 4107 unlock: 4108 unlock_page(page); 4109 put_page(page); 4110 return err; 4111 } 4112 4113 /* 4114 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4115 * starting from file offset 'from'. The range to be zero'd must 4116 * be contained with in one block. If the specified range exceeds 4117 * the end of the block it will be shortened to end of the block 4118 * that cooresponds to 'from' 4119 */ 4120 static int ext4_block_zero_page_range(handle_t *handle, 4121 struct address_space *mapping, loff_t from, loff_t length) 4122 { 4123 struct inode *inode = mapping->host; 4124 unsigned offset = from & (PAGE_SIZE-1); 4125 unsigned blocksize = inode->i_sb->s_blocksize; 4126 unsigned max = blocksize - (offset & (blocksize - 1)); 4127 4128 /* 4129 * correct length if it does not fall between 4130 * 'from' and the end of the block 4131 */ 4132 if (length > max || length < 0) 4133 length = max; 4134 4135 if (IS_DAX(inode)) { 4136 return iomap_zero_range(inode, from, length, NULL, 4137 &ext4_iomap_ops); 4138 } 4139 return __ext4_block_zero_page_range(handle, mapping, from, length); 4140 } 4141 4142 /* 4143 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4144 * up to the end of the block which corresponds to `from'. 4145 * This required during truncate. We need to physically zero the tail end 4146 * of that block so it doesn't yield old data if the file is later grown. 4147 */ 4148 static int ext4_block_truncate_page(handle_t *handle, 4149 struct address_space *mapping, loff_t from) 4150 { 4151 unsigned offset = from & (PAGE_SIZE-1); 4152 unsigned length; 4153 unsigned blocksize; 4154 struct inode *inode = mapping->host; 4155 4156 /* If we are processing an encrypted inode during orphan list handling */ 4157 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4158 return 0; 4159 4160 blocksize = inode->i_sb->s_blocksize; 4161 length = blocksize - (offset & (blocksize - 1)); 4162 4163 return ext4_block_zero_page_range(handle, mapping, from, length); 4164 } 4165 4166 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4167 loff_t lstart, loff_t length) 4168 { 4169 struct super_block *sb = inode->i_sb; 4170 struct address_space *mapping = inode->i_mapping; 4171 unsigned partial_start, partial_end; 4172 ext4_fsblk_t start, end; 4173 loff_t byte_end = (lstart + length - 1); 4174 int err = 0; 4175 4176 partial_start = lstart & (sb->s_blocksize - 1); 4177 partial_end = byte_end & (sb->s_blocksize - 1); 4178 4179 start = lstart >> sb->s_blocksize_bits; 4180 end = byte_end >> sb->s_blocksize_bits; 4181 4182 /* Handle partial zero within the single block */ 4183 if (start == end && 4184 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4185 err = ext4_block_zero_page_range(handle, mapping, 4186 lstart, length); 4187 return err; 4188 } 4189 /* Handle partial zero out on the start of the range */ 4190 if (partial_start) { 4191 err = ext4_block_zero_page_range(handle, mapping, 4192 lstart, sb->s_blocksize); 4193 if (err) 4194 return err; 4195 } 4196 /* Handle partial zero out on the end of the range */ 4197 if (partial_end != sb->s_blocksize - 1) 4198 err = ext4_block_zero_page_range(handle, mapping, 4199 byte_end - partial_end, 4200 partial_end + 1); 4201 return err; 4202 } 4203 4204 int ext4_can_truncate(struct inode *inode) 4205 { 4206 if (S_ISREG(inode->i_mode)) 4207 return 1; 4208 if (S_ISDIR(inode->i_mode)) 4209 return 1; 4210 if (S_ISLNK(inode->i_mode)) 4211 return !ext4_inode_is_fast_symlink(inode); 4212 return 0; 4213 } 4214 4215 /* 4216 * We have to make sure i_disksize gets properly updated before we truncate 4217 * page cache due to hole punching or zero range. Otherwise i_disksize update 4218 * can get lost as it may have been postponed to submission of writeback but 4219 * that will never happen after we truncate page cache. 4220 */ 4221 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4222 loff_t len) 4223 { 4224 handle_t *handle; 4225 loff_t size = i_size_read(inode); 4226 4227 WARN_ON(!inode_is_locked(inode)); 4228 if (offset > size || offset + len < size) 4229 return 0; 4230 4231 if (EXT4_I(inode)->i_disksize >= size) 4232 return 0; 4233 4234 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4235 if (IS_ERR(handle)) 4236 return PTR_ERR(handle); 4237 ext4_update_i_disksize(inode, size); 4238 ext4_mark_inode_dirty(handle, inode); 4239 ext4_journal_stop(handle); 4240 4241 return 0; 4242 } 4243 4244 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 4245 { 4246 up_write(&ei->i_mmap_sem); 4247 schedule(); 4248 down_write(&ei->i_mmap_sem); 4249 } 4250 4251 int ext4_break_layouts(struct inode *inode) 4252 { 4253 struct ext4_inode_info *ei = EXT4_I(inode); 4254 struct page *page; 4255 int error; 4256 4257 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 4258 return -EINVAL; 4259 4260 do { 4261 page = dax_layout_busy_page(inode->i_mapping); 4262 if (!page) 4263 return 0; 4264 4265 error = ___wait_var_event(&page->_refcount, 4266 atomic_read(&page->_refcount) == 1, 4267 TASK_INTERRUPTIBLE, 0, 0, 4268 ext4_wait_dax_page(ei)); 4269 } while (error == 0); 4270 4271 return error; 4272 } 4273 4274 /* 4275 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4276 * associated with the given offset and length 4277 * 4278 * @inode: File inode 4279 * @offset: The offset where the hole will begin 4280 * @len: The length of the hole 4281 * 4282 * Returns: 0 on success or negative on failure 4283 */ 4284 4285 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4286 { 4287 struct super_block *sb = inode->i_sb; 4288 ext4_lblk_t first_block, stop_block; 4289 struct address_space *mapping = inode->i_mapping; 4290 loff_t first_block_offset, last_block_offset; 4291 handle_t *handle; 4292 unsigned int credits; 4293 int ret = 0; 4294 4295 if (!S_ISREG(inode->i_mode)) 4296 return -EOPNOTSUPP; 4297 4298 trace_ext4_punch_hole(inode, offset, length, 0); 4299 4300 /* 4301 * Write out all dirty pages to avoid race conditions 4302 * Then release them. 4303 */ 4304 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4305 ret = filemap_write_and_wait_range(mapping, offset, 4306 offset + length - 1); 4307 if (ret) 4308 return ret; 4309 } 4310 4311 inode_lock(inode); 4312 4313 /* No need to punch hole beyond i_size */ 4314 if (offset >= inode->i_size) 4315 goto out_mutex; 4316 4317 /* 4318 * If the hole extends beyond i_size, set the hole 4319 * to end after the page that contains i_size 4320 */ 4321 if (offset + length > inode->i_size) { 4322 length = inode->i_size + 4323 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4324 offset; 4325 } 4326 4327 if (offset & (sb->s_blocksize - 1) || 4328 (offset + length) & (sb->s_blocksize - 1)) { 4329 /* 4330 * Attach jinode to inode for jbd2 if we do any zeroing of 4331 * partial block 4332 */ 4333 ret = ext4_inode_attach_jinode(inode); 4334 if (ret < 0) 4335 goto out_mutex; 4336 4337 } 4338 4339 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4340 inode_dio_wait(inode); 4341 4342 /* 4343 * Prevent page faults from reinstantiating pages we have released from 4344 * page cache. 4345 */ 4346 down_write(&EXT4_I(inode)->i_mmap_sem); 4347 4348 ret = ext4_break_layouts(inode); 4349 if (ret) 4350 goto out_dio; 4351 4352 first_block_offset = round_up(offset, sb->s_blocksize); 4353 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4354 4355 /* Now release the pages and zero block aligned part of pages*/ 4356 if (last_block_offset > first_block_offset) { 4357 ret = ext4_update_disksize_before_punch(inode, offset, length); 4358 if (ret) 4359 goto out_dio; 4360 truncate_pagecache_range(inode, first_block_offset, 4361 last_block_offset); 4362 } 4363 4364 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4365 credits = ext4_writepage_trans_blocks(inode); 4366 else 4367 credits = ext4_blocks_for_truncate(inode); 4368 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4369 if (IS_ERR(handle)) { 4370 ret = PTR_ERR(handle); 4371 ext4_std_error(sb, ret); 4372 goto out_dio; 4373 } 4374 4375 ret = ext4_zero_partial_blocks(handle, inode, offset, 4376 length); 4377 if (ret) 4378 goto out_stop; 4379 4380 first_block = (offset + sb->s_blocksize - 1) >> 4381 EXT4_BLOCK_SIZE_BITS(sb); 4382 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4383 4384 /* If there are blocks to remove, do it */ 4385 if (stop_block > first_block) { 4386 4387 down_write(&EXT4_I(inode)->i_data_sem); 4388 ext4_discard_preallocations(inode); 4389 4390 ret = ext4_es_remove_extent(inode, first_block, 4391 stop_block - first_block); 4392 if (ret) { 4393 up_write(&EXT4_I(inode)->i_data_sem); 4394 goto out_stop; 4395 } 4396 4397 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4398 ret = ext4_ext_remove_space(inode, first_block, 4399 stop_block - 1); 4400 else 4401 ret = ext4_ind_remove_space(handle, inode, first_block, 4402 stop_block); 4403 4404 up_write(&EXT4_I(inode)->i_data_sem); 4405 } 4406 if (IS_SYNC(inode)) 4407 ext4_handle_sync(handle); 4408 4409 inode->i_mtime = inode->i_ctime = current_time(inode); 4410 ext4_mark_inode_dirty(handle, inode); 4411 if (ret >= 0) 4412 ext4_update_inode_fsync_trans(handle, inode, 1); 4413 out_stop: 4414 ext4_journal_stop(handle); 4415 out_dio: 4416 up_write(&EXT4_I(inode)->i_mmap_sem); 4417 out_mutex: 4418 inode_unlock(inode); 4419 return ret; 4420 } 4421 4422 int ext4_inode_attach_jinode(struct inode *inode) 4423 { 4424 struct ext4_inode_info *ei = EXT4_I(inode); 4425 struct jbd2_inode *jinode; 4426 4427 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4428 return 0; 4429 4430 jinode = jbd2_alloc_inode(GFP_KERNEL); 4431 spin_lock(&inode->i_lock); 4432 if (!ei->jinode) { 4433 if (!jinode) { 4434 spin_unlock(&inode->i_lock); 4435 return -ENOMEM; 4436 } 4437 ei->jinode = jinode; 4438 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4439 jinode = NULL; 4440 } 4441 spin_unlock(&inode->i_lock); 4442 if (unlikely(jinode != NULL)) 4443 jbd2_free_inode(jinode); 4444 return 0; 4445 } 4446 4447 /* 4448 * ext4_truncate() 4449 * 4450 * We block out ext4_get_block() block instantiations across the entire 4451 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4452 * simultaneously on behalf of the same inode. 4453 * 4454 * As we work through the truncate and commit bits of it to the journal there 4455 * is one core, guiding principle: the file's tree must always be consistent on 4456 * disk. We must be able to restart the truncate after a crash. 4457 * 4458 * The file's tree may be transiently inconsistent in memory (although it 4459 * probably isn't), but whenever we close off and commit a journal transaction, 4460 * the contents of (the filesystem + the journal) must be consistent and 4461 * restartable. It's pretty simple, really: bottom up, right to left (although 4462 * left-to-right works OK too). 4463 * 4464 * Note that at recovery time, journal replay occurs *before* the restart of 4465 * truncate against the orphan inode list. 4466 * 4467 * The committed inode has the new, desired i_size (which is the same as 4468 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4469 * that this inode's truncate did not complete and it will again call 4470 * ext4_truncate() to have another go. So there will be instantiated blocks 4471 * to the right of the truncation point in a crashed ext4 filesystem. But 4472 * that's fine - as long as they are linked from the inode, the post-crash 4473 * ext4_truncate() run will find them and release them. 4474 */ 4475 int ext4_truncate(struct inode *inode) 4476 { 4477 struct ext4_inode_info *ei = EXT4_I(inode); 4478 unsigned int credits; 4479 int err = 0; 4480 handle_t *handle; 4481 struct address_space *mapping = inode->i_mapping; 4482 4483 /* 4484 * There is a possibility that we're either freeing the inode 4485 * or it's a completely new inode. In those cases we might not 4486 * have i_mutex locked because it's not necessary. 4487 */ 4488 if (!(inode->i_state & (I_NEW|I_FREEING))) 4489 WARN_ON(!inode_is_locked(inode)); 4490 trace_ext4_truncate_enter(inode); 4491 4492 if (!ext4_can_truncate(inode)) 4493 return 0; 4494 4495 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4496 4497 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4498 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4499 4500 if (ext4_has_inline_data(inode)) { 4501 int has_inline = 1; 4502 4503 err = ext4_inline_data_truncate(inode, &has_inline); 4504 if (err) 4505 return err; 4506 if (has_inline) 4507 return 0; 4508 } 4509 4510 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4511 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4512 if (ext4_inode_attach_jinode(inode) < 0) 4513 return 0; 4514 } 4515 4516 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4517 credits = ext4_writepage_trans_blocks(inode); 4518 else 4519 credits = ext4_blocks_for_truncate(inode); 4520 4521 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4522 if (IS_ERR(handle)) 4523 return PTR_ERR(handle); 4524 4525 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4526 ext4_block_truncate_page(handle, mapping, inode->i_size); 4527 4528 /* 4529 * We add the inode to the orphan list, so that if this 4530 * truncate spans multiple transactions, and we crash, we will 4531 * resume the truncate when the filesystem recovers. It also 4532 * marks the inode dirty, to catch the new size. 4533 * 4534 * Implication: the file must always be in a sane, consistent 4535 * truncatable state while each transaction commits. 4536 */ 4537 err = ext4_orphan_add(handle, inode); 4538 if (err) 4539 goto out_stop; 4540 4541 down_write(&EXT4_I(inode)->i_data_sem); 4542 4543 ext4_discard_preallocations(inode); 4544 4545 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4546 err = ext4_ext_truncate(handle, inode); 4547 else 4548 ext4_ind_truncate(handle, inode); 4549 4550 up_write(&ei->i_data_sem); 4551 if (err) 4552 goto out_stop; 4553 4554 if (IS_SYNC(inode)) 4555 ext4_handle_sync(handle); 4556 4557 out_stop: 4558 /* 4559 * If this was a simple ftruncate() and the file will remain alive, 4560 * then we need to clear up the orphan record which we created above. 4561 * However, if this was a real unlink then we were called by 4562 * ext4_evict_inode(), and we allow that function to clean up the 4563 * orphan info for us. 4564 */ 4565 if (inode->i_nlink) 4566 ext4_orphan_del(handle, inode); 4567 4568 inode->i_mtime = inode->i_ctime = current_time(inode); 4569 ext4_mark_inode_dirty(handle, inode); 4570 ext4_journal_stop(handle); 4571 4572 trace_ext4_truncate_exit(inode); 4573 return err; 4574 } 4575 4576 /* 4577 * ext4_get_inode_loc returns with an extra refcount against the inode's 4578 * underlying buffer_head on success. If 'in_mem' is true, we have all 4579 * data in memory that is needed to recreate the on-disk version of this 4580 * inode. 4581 */ 4582 static int __ext4_get_inode_loc(struct inode *inode, 4583 struct ext4_iloc *iloc, int in_mem) 4584 { 4585 struct ext4_group_desc *gdp; 4586 struct buffer_head *bh; 4587 struct super_block *sb = inode->i_sb; 4588 ext4_fsblk_t block; 4589 struct blk_plug plug; 4590 int inodes_per_block, inode_offset; 4591 4592 iloc->bh = NULL; 4593 if (inode->i_ino < EXT4_ROOT_INO || 4594 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4595 return -EFSCORRUPTED; 4596 4597 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4598 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4599 if (!gdp) 4600 return -EIO; 4601 4602 /* 4603 * Figure out the offset within the block group inode table 4604 */ 4605 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4606 inode_offset = ((inode->i_ino - 1) % 4607 EXT4_INODES_PER_GROUP(sb)); 4608 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4609 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4610 4611 bh = sb_getblk(sb, block); 4612 if (unlikely(!bh)) 4613 return -ENOMEM; 4614 if (!buffer_uptodate(bh)) { 4615 lock_buffer(bh); 4616 4617 /* 4618 * If the buffer has the write error flag, we have failed 4619 * to write out another inode in the same block. In this 4620 * case, we don't have to read the block because we may 4621 * read the old inode data successfully. 4622 */ 4623 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4624 set_buffer_uptodate(bh); 4625 4626 if (buffer_uptodate(bh)) { 4627 /* someone brought it uptodate while we waited */ 4628 unlock_buffer(bh); 4629 goto has_buffer; 4630 } 4631 4632 /* 4633 * If we have all information of the inode in memory and this 4634 * is the only valid inode in the block, we need not read the 4635 * block. 4636 */ 4637 if (in_mem) { 4638 struct buffer_head *bitmap_bh; 4639 int i, start; 4640 4641 start = inode_offset & ~(inodes_per_block - 1); 4642 4643 /* Is the inode bitmap in cache? */ 4644 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4645 if (unlikely(!bitmap_bh)) 4646 goto make_io; 4647 4648 /* 4649 * If the inode bitmap isn't in cache then the 4650 * optimisation may end up performing two reads instead 4651 * of one, so skip it. 4652 */ 4653 if (!buffer_uptodate(bitmap_bh)) { 4654 brelse(bitmap_bh); 4655 goto make_io; 4656 } 4657 for (i = start; i < start + inodes_per_block; i++) { 4658 if (i == inode_offset) 4659 continue; 4660 if (ext4_test_bit(i, bitmap_bh->b_data)) 4661 break; 4662 } 4663 brelse(bitmap_bh); 4664 if (i == start + inodes_per_block) { 4665 /* all other inodes are free, so skip I/O */ 4666 memset(bh->b_data, 0, bh->b_size); 4667 set_buffer_uptodate(bh); 4668 unlock_buffer(bh); 4669 goto has_buffer; 4670 } 4671 } 4672 4673 make_io: 4674 /* 4675 * If we need to do any I/O, try to pre-readahead extra 4676 * blocks from the inode table. 4677 */ 4678 blk_start_plug(&plug); 4679 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4680 ext4_fsblk_t b, end, table; 4681 unsigned num; 4682 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4683 4684 table = ext4_inode_table(sb, gdp); 4685 /* s_inode_readahead_blks is always a power of 2 */ 4686 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4687 if (table > b) 4688 b = table; 4689 end = b + ra_blks; 4690 num = EXT4_INODES_PER_GROUP(sb); 4691 if (ext4_has_group_desc_csum(sb)) 4692 num -= ext4_itable_unused_count(sb, gdp); 4693 table += num / inodes_per_block; 4694 if (end > table) 4695 end = table; 4696 while (b <= end) 4697 sb_breadahead(sb, b++); 4698 } 4699 4700 /* 4701 * There are other valid inodes in the buffer, this inode 4702 * has in-inode xattrs, or we don't have this inode in memory. 4703 * Read the block from disk. 4704 */ 4705 trace_ext4_load_inode(inode); 4706 get_bh(bh); 4707 bh->b_end_io = end_buffer_read_sync; 4708 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4709 blk_finish_plug(&plug); 4710 wait_on_buffer(bh); 4711 if (!buffer_uptodate(bh)) { 4712 EXT4_ERROR_INODE_BLOCK(inode, block, 4713 "unable to read itable block"); 4714 brelse(bh); 4715 return -EIO; 4716 } 4717 } 4718 has_buffer: 4719 iloc->bh = bh; 4720 return 0; 4721 } 4722 4723 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4724 { 4725 /* We have all inode data except xattrs in memory here. */ 4726 return __ext4_get_inode_loc(inode, iloc, 4727 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4728 } 4729 4730 static bool ext4_should_use_dax(struct inode *inode) 4731 { 4732 if (!test_opt(inode->i_sb, DAX)) 4733 return false; 4734 if (!S_ISREG(inode->i_mode)) 4735 return false; 4736 if (ext4_should_journal_data(inode)) 4737 return false; 4738 if (ext4_has_inline_data(inode)) 4739 return false; 4740 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4741 return false; 4742 return true; 4743 } 4744 4745 void ext4_set_inode_flags(struct inode *inode) 4746 { 4747 unsigned int flags = EXT4_I(inode)->i_flags; 4748 unsigned int new_fl = 0; 4749 4750 if (flags & EXT4_SYNC_FL) 4751 new_fl |= S_SYNC; 4752 if (flags & EXT4_APPEND_FL) 4753 new_fl |= S_APPEND; 4754 if (flags & EXT4_IMMUTABLE_FL) 4755 new_fl |= S_IMMUTABLE; 4756 if (flags & EXT4_NOATIME_FL) 4757 new_fl |= S_NOATIME; 4758 if (flags & EXT4_DIRSYNC_FL) 4759 new_fl |= S_DIRSYNC; 4760 if (ext4_should_use_dax(inode)) 4761 new_fl |= S_DAX; 4762 if (flags & EXT4_ENCRYPT_FL) 4763 new_fl |= S_ENCRYPTED; 4764 if (flags & EXT4_CASEFOLD_FL) 4765 new_fl |= S_CASEFOLD; 4766 inode_set_flags(inode, new_fl, 4767 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4768 S_ENCRYPTED|S_CASEFOLD); 4769 } 4770 4771 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4772 struct ext4_inode_info *ei) 4773 { 4774 blkcnt_t i_blocks ; 4775 struct inode *inode = &(ei->vfs_inode); 4776 struct super_block *sb = inode->i_sb; 4777 4778 if (ext4_has_feature_huge_file(sb)) { 4779 /* we are using combined 48 bit field */ 4780 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4781 le32_to_cpu(raw_inode->i_blocks_lo); 4782 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4783 /* i_blocks represent file system block size */ 4784 return i_blocks << (inode->i_blkbits - 9); 4785 } else { 4786 return i_blocks; 4787 } 4788 } else { 4789 return le32_to_cpu(raw_inode->i_blocks_lo); 4790 } 4791 } 4792 4793 static inline int ext4_iget_extra_inode(struct inode *inode, 4794 struct ext4_inode *raw_inode, 4795 struct ext4_inode_info *ei) 4796 { 4797 __le32 *magic = (void *)raw_inode + 4798 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4799 4800 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4801 EXT4_INODE_SIZE(inode->i_sb) && 4802 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4803 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4804 return ext4_find_inline_data_nolock(inode); 4805 } else 4806 EXT4_I(inode)->i_inline_off = 0; 4807 return 0; 4808 } 4809 4810 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4811 { 4812 if (!ext4_has_feature_project(inode->i_sb)) 4813 return -EOPNOTSUPP; 4814 *projid = EXT4_I(inode)->i_projid; 4815 return 0; 4816 } 4817 4818 /* 4819 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4820 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4821 * set. 4822 */ 4823 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4824 { 4825 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4826 inode_set_iversion_raw(inode, val); 4827 else 4828 inode_set_iversion_queried(inode, val); 4829 } 4830 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4831 { 4832 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4833 return inode_peek_iversion_raw(inode); 4834 else 4835 return inode_peek_iversion(inode); 4836 } 4837 4838 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4839 ext4_iget_flags flags, const char *function, 4840 unsigned int line) 4841 { 4842 struct ext4_iloc iloc; 4843 struct ext4_inode *raw_inode; 4844 struct ext4_inode_info *ei; 4845 struct inode *inode; 4846 journal_t *journal = EXT4_SB(sb)->s_journal; 4847 long ret; 4848 loff_t size; 4849 int block; 4850 uid_t i_uid; 4851 gid_t i_gid; 4852 projid_t i_projid; 4853 4854 if ((!(flags & EXT4_IGET_SPECIAL) && 4855 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4856 (ino < EXT4_ROOT_INO) || 4857 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4858 if (flags & EXT4_IGET_HANDLE) 4859 return ERR_PTR(-ESTALE); 4860 __ext4_error(sb, function, line, 4861 "inode #%lu: comm %s: iget: illegal inode #", 4862 ino, current->comm); 4863 return ERR_PTR(-EFSCORRUPTED); 4864 } 4865 4866 inode = iget_locked(sb, ino); 4867 if (!inode) 4868 return ERR_PTR(-ENOMEM); 4869 if (!(inode->i_state & I_NEW)) 4870 return inode; 4871 4872 ei = EXT4_I(inode); 4873 iloc.bh = NULL; 4874 4875 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4876 if (ret < 0) 4877 goto bad_inode; 4878 raw_inode = ext4_raw_inode(&iloc); 4879 4880 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4881 ext4_error_inode(inode, function, line, 0, 4882 "iget: root inode unallocated"); 4883 ret = -EFSCORRUPTED; 4884 goto bad_inode; 4885 } 4886 4887 if ((flags & EXT4_IGET_HANDLE) && 4888 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4889 ret = -ESTALE; 4890 goto bad_inode; 4891 } 4892 4893 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4894 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4895 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4896 EXT4_INODE_SIZE(inode->i_sb) || 4897 (ei->i_extra_isize & 3)) { 4898 ext4_error_inode(inode, function, line, 0, 4899 "iget: bad extra_isize %u " 4900 "(inode size %u)", 4901 ei->i_extra_isize, 4902 EXT4_INODE_SIZE(inode->i_sb)); 4903 ret = -EFSCORRUPTED; 4904 goto bad_inode; 4905 } 4906 } else 4907 ei->i_extra_isize = 0; 4908 4909 /* Precompute checksum seed for inode metadata */ 4910 if (ext4_has_metadata_csum(sb)) { 4911 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4912 __u32 csum; 4913 __le32 inum = cpu_to_le32(inode->i_ino); 4914 __le32 gen = raw_inode->i_generation; 4915 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4916 sizeof(inum)); 4917 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4918 sizeof(gen)); 4919 } 4920 4921 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4922 ext4_error_inode(inode, function, line, 0, 4923 "iget: checksum invalid"); 4924 ret = -EFSBADCRC; 4925 goto bad_inode; 4926 } 4927 4928 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4929 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4930 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4931 if (ext4_has_feature_project(sb) && 4932 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4933 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4934 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4935 else 4936 i_projid = EXT4_DEF_PROJID; 4937 4938 if (!(test_opt(inode->i_sb, NO_UID32))) { 4939 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4940 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4941 } 4942 i_uid_write(inode, i_uid); 4943 i_gid_write(inode, i_gid); 4944 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4945 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4946 4947 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4948 ei->i_inline_off = 0; 4949 ei->i_dir_start_lookup = 0; 4950 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4951 /* We now have enough fields to check if the inode was active or not. 4952 * This is needed because nfsd might try to access dead inodes 4953 * the test is that same one that e2fsck uses 4954 * NeilBrown 1999oct15 4955 */ 4956 if (inode->i_nlink == 0) { 4957 if ((inode->i_mode == 0 || 4958 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4959 ino != EXT4_BOOT_LOADER_INO) { 4960 /* this inode is deleted */ 4961 ret = -ESTALE; 4962 goto bad_inode; 4963 } 4964 /* The only unlinked inodes we let through here have 4965 * valid i_mode and are being read by the orphan 4966 * recovery code: that's fine, we're about to complete 4967 * the process of deleting those. 4968 * OR it is the EXT4_BOOT_LOADER_INO which is 4969 * not initialized on a new filesystem. */ 4970 } 4971 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4972 ext4_set_inode_flags(inode); 4973 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4974 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4975 if (ext4_has_feature_64bit(sb)) 4976 ei->i_file_acl |= 4977 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4978 inode->i_size = ext4_isize(sb, raw_inode); 4979 if ((size = i_size_read(inode)) < 0) { 4980 ext4_error_inode(inode, function, line, 0, 4981 "iget: bad i_size value: %lld", size); 4982 ret = -EFSCORRUPTED; 4983 goto bad_inode; 4984 } 4985 ei->i_disksize = inode->i_size; 4986 #ifdef CONFIG_QUOTA 4987 ei->i_reserved_quota = 0; 4988 #endif 4989 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4990 ei->i_block_group = iloc.block_group; 4991 ei->i_last_alloc_group = ~0; 4992 /* 4993 * NOTE! The in-memory inode i_data array is in little-endian order 4994 * even on big-endian machines: we do NOT byteswap the block numbers! 4995 */ 4996 for (block = 0; block < EXT4_N_BLOCKS; block++) 4997 ei->i_data[block] = raw_inode->i_block[block]; 4998 INIT_LIST_HEAD(&ei->i_orphan); 4999 5000 /* 5001 * Set transaction id's of transactions that have to be committed 5002 * to finish f[data]sync. We set them to currently running transaction 5003 * as we cannot be sure that the inode or some of its metadata isn't 5004 * part of the transaction - the inode could have been reclaimed and 5005 * now it is reread from disk. 5006 */ 5007 if (journal) { 5008 transaction_t *transaction; 5009 tid_t tid; 5010 5011 read_lock(&journal->j_state_lock); 5012 if (journal->j_running_transaction) 5013 transaction = journal->j_running_transaction; 5014 else 5015 transaction = journal->j_committing_transaction; 5016 if (transaction) 5017 tid = transaction->t_tid; 5018 else 5019 tid = journal->j_commit_sequence; 5020 read_unlock(&journal->j_state_lock); 5021 ei->i_sync_tid = tid; 5022 ei->i_datasync_tid = tid; 5023 } 5024 5025 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5026 if (ei->i_extra_isize == 0) { 5027 /* The extra space is currently unused. Use it. */ 5028 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5029 ei->i_extra_isize = sizeof(struct ext4_inode) - 5030 EXT4_GOOD_OLD_INODE_SIZE; 5031 } else { 5032 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5033 if (ret) 5034 goto bad_inode; 5035 } 5036 } 5037 5038 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5039 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5040 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5041 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5042 5043 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5044 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5045 5046 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5047 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5048 ivers |= 5049 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5050 } 5051 ext4_inode_set_iversion_queried(inode, ivers); 5052 } 5053 5054 ret = 0; 5055 if (ei->i_file_acl && 5056 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5057 ext4_error_inode(inode, function, line, 0, 5058 "iget: bad extended attribute block %llu", 5059 ei->i_file_acl); 5060 ret = -EFSCORRUPTED; 5061 goto bad_inode; 5062 } else if (!ext4_has_inline_data(inode)) { 5063 /* validate the block references in the inode */ 5064 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5065 (S_ISLNK(inode->i_mode) && 5066 !ext4_inode_is_fast_symlink(inode))) { 5067 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5068 ret = ext4_ext_check_inode(inode); 5069 else 5070 ret = ext4_ind_check_inode(inode); 5071 } 5072 } 5073 if (ret) 5074 goto bad_inode; 5075 5076 if (S_ISREG(inode->i_mode)) { 5077 inode->i_op = &ext4_file_inode_operations; 5078 inode->i_fop = &ext4_file_operations; 5079 ext4_set_aops(inode); 5080 } else if (S_ISDIR(inode->i_mode)) { 5081 inode->i_op = &ext4_dir_inode_operations; 5082 inode->i_fop = &ext4_dir_operations; 5083 } else if (S_ISLNK(inode->i_mode)) { 5084 /* VFS does not allow setting these so must be corruption */ 5085 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5086 ext4_error_inode(inode, function, line, 0, 5087 "iget: immutable or append flags " 5088 "not allowed on symlinks"); 5089 ret = -EFSCORRUPTED; 5090 goto bad_inode; 5091 } 5092 if (IS_ENCRYPTED(inode)) { 5093 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5094 ext4_set_aops(inode); 5095 } else if (ext4_inode_is_fast_symlink(inode)) { 5096 inode->i_link = (char *)ei->i_data; 5097 inode->i_op = &ext4_fast_symlink_inode_operations; 5098 nd_terminate_link(ei->i_data, inode->i_size, 5099 sizeof(ei->i_data) - 1); 5100 } else { 5101 inode->i_op = &ext4_symlink_inode_operations; 5102 ext4_set_aops(inode); 5103 } 5104 inode_nohighmem(inode); 5105 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5106 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5107 inode->i_op = &ext4_special_inode_operations; 5108 if (raw_inode->i_block[0]) 5109 init_special_inode(inode, inode->i_mode, 5110 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5111 else 5112 init_special_inode(inode, inode->i_mode, 5113 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5114 } else if (ino == EXT4_BOOT_LOADER_INO) { 5115 make_bad_inode(inode); 5116 } else { 5117 ret = -EFSCORRUPTED; 5118 ext4_error_inode(inode, function, line, 0, 5119 "iget: bogus i_mode (%o)", inode->i_mode); 5120 goto bad_inode; 5121 } 5122 brelse(iloc.bh); 5123 5124 unlock_new_inode(inode); 5125 return inode; 5126 5127 bad_inode: 5128 brelse(iloc.bh); 5129 iget_failed(inode); 5130 return ERR_PTR(ret); 5131 } 5132 5133 static int ext4_inode_blocks_set(handle_t *handle, 5134 struct ext4_inode *raw_inode, 5135 struct ext4_inode_info *ei) 5136 { 5137 struct inode *inode = &(ei->vfs_inode); 5138 u64 i_blocks = inode->i_blocks; 5139 struct super_block *sb = inode->i_sb; 5140 5141 if (i_blocks <= ~0U) { 5142 /* 5143 * i_blocks can be represented in a 32 bit variable 5144 * as multiple of 512 bytes 5145 */ 5146 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5147 raw_inode->i_blocks_high = 0; 5148 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5149 return 0; 5150 } 5151 if (!ext4_has_feature_huge_file(sb)) 5152 return -EFBIG; 5153 5154 if (i_blocks <= 0xffffffffffffULL) { 5155 /* 5156 * i_blocks can be represented in a 48 bit variable 5157 * as multiple of 512 bytes 5158 */ 5159 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5160 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5161 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5162 } else { 5163 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5164 /* i_block is stored in file system block size */ 5165 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5166 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5167 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5168 } 5169 return 0; 5170 } 5171 5172 struct other_inode { 5173 unsigned long orig_ino; 5174 struct ext4_inode *raw_inode; 5175 }; 5176 5177 static int other_inode_match(struct inode * inode, unsigned long ino, 5178 void *data) 5179 { 5180 struct other_inode *oi = (struct other_inode *) data; 5181 5182 if ((inode->i_ino != ino) || 5183 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5184 I_DIRTY_INODE)) || 5185 ((inode->i_state & I_DIRTY_TIME) == 0)) 5186 return 0; 5187 spin_lock(&inode->i_lock); 5188 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5189 I_DIRTY_INODE)) == 0) && 5190 (inode->i_state & I_DIRTY_TIME)) { 5191 struct ext4_inode_info *ei = EXT4_I(inode); 5192 5193 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5194 spin_unlock(&inode->i_lock); 5195 5196 spin_lock(&ei->i_raw_lock); 5197 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5198 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5199 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5200 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5201 spin_unlock(&ei->i_raw_lock); 5202 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5203 return -1; 5204 } 5205 spin_unlock(&inode->i_lock); 5206 return -1; 5207 } 5208 5209 /* 5210 * Opportunistically update the other time fields for other inodes in 5211 * the same inode table block. 5212 */ 5213 static void ext4_update_other_inodes_time(struct super_block *sb, 5214 unsigned long orig_ino, char *buf) 5215 { 5216 struct other_inode oi; 5217 unsigned long ino; 5218 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5219 int inode_size = EXT4_INODE_SIZE(sb); 5220 5221 oi.orig_ino = orig_ino; 5222 /* 5223 * Calculate the first inode in the inode table block. Inode 5224 * numbers are one-based. That is, the first inode in a block 5225 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5226 */ 5227 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5228 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5229 if (ino == orig_ino) 5230 continue; 5231 oi.raw_inode = (struct ext4_inode *) buf; 5232 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5233 } 5234 } 5235 5236 /* 5237 * Post the struct inode info into an on-disk inode location in the 5238 * buffer-cache. This gobbles the caller's reference to the 5239 * buffer_head in the inode location struct. 5240 * 5241 * The caller must have write access to iloc->bh. 5242 */ 5243 static int ext4_do_update_inode(handle_t *handle, 5244 struct inode *inode, 5245 struct ext4_iloc *iloc) 5246 { 5247 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5248 struct ext4_inode_info *ei = EXT4_I(inode); 5249 struct buffer_head *bh = iloc->bh; 5250 struct super_block *sb = inode->i_sb; 5251 int err = 0, rc, block; 5252 int need_datasync = 0, set_large_file = 0; 5253 uid_t i_uid; 5254 gid_t i_gid; 5255 projid_t i_projid; 5256 5257 spin_lock(&ei->i_raw_lock); 5258 5259 /* For fields not tracked in the in-memory inode, 5260 * initialise them to zero for new inodes. */ 5261 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5262 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5263 5264 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5265 i_uid = i_uid_read(inode); 5266 i_gid = i_gid_read(inode); 5267 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5268 if (!(test_opt(inode->i_sb, NO_UID32))) { 5269 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5270 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5271 /* 5272 * Fix up interoperability with old kernels. Otherwise, old inodes get 5273 * re-used with the upper 16 bits of the uid/gid intact 5274 */ 5275 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5276 raw_inode->i_uid_high = 0; 5277 raw_inode->i_gid_high = 0; 5278 } else { 5279 raw_inode->i_uid_high = 5280 cpu_to_le16(high_16_bits(i_uid)); 5281 raw_inode->i_gid_high = 5282 cpu_to_le16(high_16_bits(i_gid)); 5283 } 5284 } else { 5285 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5286 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5287 raw_inode->i_uid_high = 0; 5288 raw_inode->i_gid_high = 0; 5289 } 5290 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5291 5292 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5293 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5294 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5295 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5296 5297 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5298 if (err) { 5299 spin_unlock(&ei->i_raw_lock); 5300 goto out_brelse; 5301 } 5302 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5303 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5304 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5305 raw_inode->i_file_acl_high = 5306 cpu_to_le16(ei->i_file_acl >> 32); 5307 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5308 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5309 ext4_isize_set(raw_inode, ei->i_disksize); 5310 need_datasync = 1; 5311 } 5312 if (ei->i_disksize > 0x7fffffffULL) { 5313 if (!ext4_has_feature_large_file(sb) || 5314 EXT4_SB(sb)->s_es->s_rev_level == 5315 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5316 set_large_file = 1; 5317 } 5318 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5319 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5320 if (old_valid_dev(inode->i_rdev)) { 5321 raw_inode->i_block[0] = 5322 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5323 raw_inode->i_block[1] = 0; 5324 } else { 5325 raw_inode->i_block[0] = 0; 5326 raw_inode->i_block[1] = 5327 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5328 raw_inode->i_block[2] = 0; 5329 } 5330 } else if (!ext4_has_inline_data(inode)) { 5331 for (block = 0; block < EXT4_N_BLOCKS; block++) 5332 raw_inode->i_block[block] = ei->i_data[block]; 5333 } 5334 5335 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5336 u64 ivers = ext4_inode_peek_iversion(inode); 5337 5338 raw_inode->i_disk_version = cpu_to_le32(ivers); 5339 if (ei->i_extra_isize) { 5340 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5341 raw_inode->i_version_hi = 5342 cpu_to_le32(ivers >> 32); 5343 raw_inode->i_extra_isize = 5344 cpu_to_le16(ei->i_extra_isize); 5345 } 5346 } 5347 5348 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5349 i_projid != EXT4_DEF_PROJID); 5350 5351 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5352 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5353 raw_inode->i_projid = cpu_to_le32(i_projid); 5354 5355 ext4_inode_csum_set(inode, raw_inode, ei); 5356 spin_unlock(&ei->i_raw_lock); 5357 if (inode->i_sb->s_flags & SB_LAZYTIME) 5358 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5359 bh->b_data); 5360 5361 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5362 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5363 if (!err) 5364 err = rc; 5365 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5366 if (set_large_file) { 5367 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5368 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5369 if (err) 5370 goto out_brelse; 5371 ext4_set_feature_large_file(sb); 5372 ext4_handle_sync(handle); 5373 err = ext4_handle_dirty_super(handle, sb); 5374 } 5375 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5376 out_brelse: 5377 brelse(bh); 5378 ext4_std_error(inode->i_sb, err); 5379 return err; 5380 } 5381 5382 /* 5383 * ext4_write_inode() 5384 * 5385 * We are called from a few places: 5386 * 5387 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5388 * Here, there will be no transaction running. We wait for any running 5389 * transaction to commit. 5390 * 5391 * - Within flush work (sys_sync(), kupdate and such). 5392 * We wait on commit, if told to. 5393 * 5394 * - Within iput_final() -> write_inode_now() 5395 * We wait on commit, if told to. 5396 * 5397 * In all cases it is actually safe for us to return without doing anything, 5398 * because the inode has been copied into a raw inode buffer in 5399 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5400 * writeback. 5401 * 5402 * Note that we are absolutely dependent upon all inode dirtiers doing the 5403 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5404 * which we are interested. 5405 * 5406 * It would be a bug for them to not do this. The code: 5407 * 5408 * mark_inode_dirty(inode) 5409 * stuff(); 5410 * inode->i_size = expr; 5411 * 5412 * is in error because write_inode() could occur while `stuff()' is running, 5413 * and the new i_size will be lost. Plus the inode will no longer be on the 5414 * superblock's dirty inode list. 5415 */ 5416 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5417 { 5418 int err; 5419 5420 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5421 sb_rdonly(inode->i_sb)) 5422 return 0; 5423 5424 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5425 return -EIO; 5426 5427 if (EXT4_SB(inode->i_sb)->s_journal) { 5428 if (ext4_journal_current_handle()) { 5429 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5430 dump_stack(); 5431 return -EIO; 5432 } 5433 5434 /* 5435 * No need to force transaction in WB_SYNC_NONE mode. Also 5436 * ext4_sync_fs() will force the commit after everything is 5437 * written. 5438 */ 5439 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5440 return 0; 5441 5442 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5443 EXT4_I(inode)->i_sync_tid); 5444 } else { 5445 struct ext4_iloc iloc; 5446 5447 err = __ext4_get_inode_loc(inode, &iloc, 0); 5448 if (err) 5449 return err; 5450 /* 5451 * sync(2) will flush the whole buffer cache. No need to do 5452 * it here separately for each inode. 5453 */ 5454 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5455 sync_dirty_buffer(iloc.bh); 5456 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5457 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5458 "IO error syncing inode"); 5459 err = -EIO; 5460 } 5461 brelse(iloc.bh); 5462 } 5463 return err; 5464 } 5465 5466 /* 5467 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5468 * buffers that are attached to a page stradding i_size and are undergoing 5469 * commit. In that case we have to wait for commit to finish and try again. 5470 */ 5471 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5472 { 5473 struct page *page; 5474 unsigned offset; 5475 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5476 tid_t commit_tid = 0; 5477 int ret; 5478 5479 offset = inode->i_size & (PAGE_SIZE - 1); 5480 /* 5481 * All buffers in the last page remain valid? Then there's nothing to 5482 * do. We do the check mainly to optimize the common PAGE_SIZE == 5483 * blocksize case 5484 */ 5485 if (offset > PAGE_SIZE - i_blocksize(inode)) 5486 return; 5487 while (1) { 5488 page = find_lock_page(inode->i_mapping, 5489 inode->i_size >> PAGE_SHIFT); 5490 if (!page) 5491 return; 5492 ret = __ext4_journalled_invalidatepage(page, offset, 5493 PAGE_SIZE - offset); 5494 unlock_page(page); 5495 put_page(page); 5496 if (ret != -EBUSY) 5497 return; 5498 commit_tid = 0; 5499 read_lock(&journal->j_state_lock); 5500 if (journal->j_committing_transaction) 5501 commit_tid = journal->j_committing_transaction->t_tid; 5502 read_unlock(&journal->j_state_lock); 5503 if (commit_tid) 5504 jbd2_log_wait_commit(journal, commit_tid); 5505 } 5506 } 5507 5508 /* 5509 * ext4_setattr() 5510 * 5511 * Called from notify_change. 5512 * 5513 * We want to trap VFS attempts to truncate the file as soon as 5514 * possible. In particular, we want to make sure that when the VFS 5515 * shrinks i_size, we put the inode on the orphan list and modify 5516 * i_disksize immediately, so that during the subsequent flushing of 5517 * dirty pages and freeing of disk blocks, we can guarantee that any 5518 * commit will leave the blocks being flushed in an unused state on 5519 * disk. (On recovery, the inode will get truncated and the blocks will 5520 * be freed, so we have a strong guarantee that no future commit will 5521 * leave these blocks visible to the user.) 5522 * 5523 * Another thing we have to assure is that if we are in ordered mode 5524 * and inode is still attached to the committing transaction, we must 5525 * we start writeout of all the dirty pages which are being truncated. 5526 * This way we are sure that all the data written in the previous 5527 * transaction are already on disk (truncate waits for pages under 5528 * writeback). 5529 * 5530 * Called with inode->i_mutex down. 5531 */ 5532 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5533 { 5534 struct inode *inode = d_inode(dentry); 5535 int error, rc = 0; 5536 int orphan = 0; 5537 const unsigned int ia_valid = attr->ia_valid; 5538 5539 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5540 return -EIO; 5541 5542 if (unlikely(IS_IMMUTABLE(inode))) 5543 return -EPERM; 5544 5545 if (unlikely(IS_APPEND(inode) && 5546 (ia_valid & (ATTR_MODE | ATTR_UID | 5547 ATTR_GID | ATTR_TIMES_SET)))) 5548 return -EPERM; 5549 5550 error = setattr_prepare(dentry, attr); 5551 if (error) 5552 return error; 5553 5554 error = fscrypt_prepare_setattr(dentry, attr); 5555 if (error) 5556 return error; 5557 5558 if (is_quota_modification(inode, attr)) { 5559 error = dquot_initialize(inode); 5560 if (error) 5561 return error; 5562 } 5563 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5564 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5565 handle_t *handle; 5566 5567 /* (user+group)*(old+new) structure, inode write (sb, 5568 * inode block, ? - but truncate inode update has it) */ 5569 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5570 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5571 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5572 if (IS_ERR(handle)) { 5573 error = PTR_ERR(handle); 5574 goto err_out; 5575 } 5576 5577 /* dquot_transfer() calls back ext4_get_inode_usage() which 5578 * counts xattr inode references. 5579 */ 5580 down_read(&EXT4_I(inode)->xattr_sem); 5581 error = dquot_transfer(inode, attr); 5582 up_read(&EXT4_I(inode)->xattr_sem); 5583 5584 if (error) { 5585 ext4_journal_stop(handle); 5586 return error; 5587 } 5588 /* Update corresponding info in inode so that everything is in 5589 * one transaction */ 5590 if (attr->ia_valid & ATTR_UID) 5591 inode->i_uid = attr->ia_uid; 5592 if (attr->ia_valid & ATTR_GID) 5593 inode->i_gid = attr->ia_gid; 5594 error = ext4_mark_inode_dirty(handle, inode); 5595 ext4_journal_stop(handle); 5596 } 5597 5598 if (attr->ia_valid & ATTR_SIZE) { 5599 handle_t *handle; 5600 loff_t oldsize = inode->i_size; 5601 int shrink = (attr->ia_size < inode->i_size); 5602 5603 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5604 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5605 5606 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5607 return -EFBIG; 5608 } 5609 if (!S_ISREG(inode->i_mode)) 5610 return -EINVAL; 5611 5612 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5613 inode_inc_iversion(inode); 5614 5615 if (shrink) { 5616 if (ext4_should_order_data(inode)) { 5617 error = ext4_begin_ordered_truncate(inode, 5618 attr->ia_size); 5619 if (error) 5620 goto err_out; 5621 } 5622 /* 5623 * Blocks are going to be removed from the inode. Wait 5624 * for dio in flight. 5625 */ 5626 inode_dio_wait(inode); 5627 } 5628 5629 down_write(&EXT4_I(inode)->i_mmap_sem); 5630 5631 rc = ext4_break_layouts(inode); 5632 if (rc) { 5633 up_write(&EXT4_I(inode)->i_mmap_sem); 5634 return rc; 5635 } 5636 5637 if (attr->ia_size != inode->i_size) { 5638 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5639 if (IS_ERR(handle)) { 5640 error = PTR_ERR(handle); 5641 goto out_mmap_sem; 5642 } 5643 if (ext4_handle_valid(handle) && shrink) { 5644 error = ext4_orphan_add(handle, inode); 5645 orphan = 1; 5646 } 5647 /* 5648 * Update c/mtime on truncate up, ext4_truncate() will 5649 * update c/mtime in shrink case below 5650 */ 5651 if (!shrink) { 5652 inode->i_mtime = current_time(inode); 5653 inode->i_ctime = inode->i_mtime; 5654 } 5655 down_write(&EXT4_I(inode)->i_data_sem); 5656 EXT4_I(inode)->i_disksize = attr->ia_size; 5657 rc = ext4_mark_inode_dirty(handle, inode); 5658 if (!error) 5659 error = rc; 5660 /* 5661 * We have to update i_size under i_data_sem together 5662 * with i_disksize to avoid races with writeback code 5663 * running ext4_wb_update_i_disksize(). 5664 */ 5665 if (!error) 5666 i_size_write(inode, attr->ia_size); 5667 up_write(&EXT4_I(inode)->i_data_sem); 5668 ext4_journal_stop(handle); 5669 if (error) 5670 goto out_mmap_sem; 5671 if (!shrink) { 5672 pagecache_isize_extended(inode, oldsize, 5673 inode->i_size); 5674 } else if (ext4_should_journal_data(inode)) { 5675 ext4_wait_for_tail_page_commit(inode); 5676 } 5677 } 5678 5679 /* 5680 * Truncate pagecache after we've waited for commit 5681 * in data=journal mode to make pages freeable. 5682 */ 5683 truncate_pagecache(inode, inode->i_size); 5684 /* 5685 * Call ext4_truncate() even if i_size didn't change to 5686 * truncate possible preallocated blocks. 5687 */ 5688 if (attr->ia_size <= oldsize) { 5689 rc = ext4_truncate(inode); 5690 if (rc) 5691 error = rc; 5692 } 5693 out_mmap_sem: 5694 up_write(&EXT4_I(inode)->i_mmap_sem); 5695 } 5696 5697 if (!error) { 5698 setattr_copy(inode, attr); 5699 mark_inode_dirty(inode); 5700 } 5701 5702 /* 5703 * If the call to ext4_truncate failed to get a transaction handle at 5704 * all, we need to clean up the in-core orphan list manually. 5705 */ 5706 if (orphan && inode->i_nlink) 5707 ext4_orphan_del(NULL, inode); 5708 5709 if (!error && (ia_valid & ATTR_MODE)) 5710 rc = posix_acl_chmod(inode, inode->i_mode); 5711 5712 err_out: 5713 ext4_std_error(inode->i_sb, error); 5714 if (!error) 5715 error = rc; 5716 return error; 5717 } 5718 5719 int ext4_getattr(const struct path *path, struct kstat *stat, 5720 u32 request_mask, unsigned int query_flags) 5721 { 5722 struct inode *inode = d_inode(path->dentry); 5723 struct ext4_inode *raw_inode; 5724 struct ext4_inode_info *ei = EXT4_I(inode); 5725 unsigned int flags; 5726 5727 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5728 stat->result_mask |= STATX_BTIME; 5729 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5730 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5731 } 5732 5733 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5734 if (flags & EXT4_APPEND_FL) 5735 stat->attributes |= STATX_ATTR_APPEND; 5736 if (flags & EXT4_COMPR_FL) 5737 stat->attributes |= STATX_ATTR_COMPRESSED; 5738 if (flags & EXT4_ENCRYPT_FL) 5739 stat->attributes |= STATX_ATTR_ENCRYPTED; 5740 if (flags & EXT4_IMMUTABLE_FL) 5741 stat->attributes |= STATX_ATTR_IMMUTABLE; 5742 if (flags & EXT4_NODUMP_FL) 5743 stat->attributes |= STATX_ATTR_NODUMP; 5744 5745 stat->attributes_mask |= (STATX_ATTR_APPEND | 5746 STATX_ATTR_COMPRESSED | 5747 STATX_ATTR_ENCRYPTED | 5748 STATX_ATTR_IMMUTABLE | 5749 STATX_ATTR_NODUMP); 5750 5751 generic_fillattr(inode, stat); 5752 return 0; 5753 } 5754 5755 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5756 u32 request_mask, unsigned int query_flags) 5757 { 5758 struct inode *inode = d_inode(path->dentry); 5759 u64 delalloc_blocks; 5760 5761 ext4_getattr(path, stat, request_mask, query_flags); 5762 5763 /* 5764 * If there is inline data in the inode, the inode will normally not 5765 * have data blocks allocated (it may have an external xattr block). 5766 * Report at least one sector for such files, so tools like tar, rsync, 5767 * others don't incorrectly think the file is completely sparse. 5768 */ 5769 if (unlikely(ext4_has_inline_data(inode))) 5770 stat->blocks += (stat->size + 511) >> 9; 5771 5772 /* 5773 * We can't update i_blocks if the block allocation is delayed 5774 * otherwise in the case of system crash before the real block 5775 * allocation is done, we will have i_blocks inconsistent with 5776 * on-disk file blocks. 5777 * We always keep i_blocks updated together with real 5778 * allocation. But to not confuse with user, stat 5779 * will return the blocks that include the delayed allocation 5780 * blocks for this file. 5781 */ 5782 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5783 EXT4_I(inode)->i_reserved_data_blocks); 5784 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5785 return 0; 5786 } 5787 5788 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5789 int pextents) 5790 { 5791 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5792 return ext4_ind_trans_blocks(inode, lblocks); 5793 return ext4_ext_index_trans_blocks(inode, pextents); 5794 } 5795 5796 /* 5797 * Account for index blocks, block groups bitmaps and block group 5798 * descriptor blocks if modify datablocks and index blocks 5799 * worse case, the indexs blocks spread over different block groups 5800 * 5801 * If datablocks are discontiguous, they are possible to spread over 5802 * different block groups too. If they are contiguous, with flexbg, 5803 * they could still across block group boundary. 5804 * 5805 * Also account for superblock, inode, quota and xattr blocks 5806 */ 5807 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5808 int pextents) 5809 { 5810 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5811 int gdpblocks; 5812 int idxblocks; 5813 int ret = 0; 5814 5815 /* 5816 * How many index blocks need to touch to map @lblocks logical blocks 5817 * to @pextents physical extents? 5818 */ 5819 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5820 5821 ret = idxblocks; 5822 5823 /* 5824 * Now let's see how many group bitmaps and group descriptors need 5825 * to account 5826 */ 5827 groups = idxblocks + pextents; 5828 gdpblocks = groups; 5829 if (groups > ngroups) 5830 groups = ngroups; 5831 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5832 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5833 5834 /* bitmaps and block group descriptor blocks */ 5835 ret += groups + gdpblocks; 5836 5837 /* Blocks for super block, inode, quota and xattr blocks */ 5838 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5839 5840 return ret; 5841 } 5842 5843 /* 5844 * Calculate the total number of credits to reserve to fit 5845 * the modification of a single pages into a single transaction, 5846 * which may include multiple chunks of block allocations. 5847 * 5848 * This could be called via ext4_write_begin() 5849 * 5850 * We need to consider the worse case, when 5851 * one new block per extent. 5852 */ 5853 int ext4_writepage_trans_blocks(struct inode *inode) 5854 { 5855 int bpp = ext4_journal_blocks_per_page(inode); 5856 int ret; 5857 5858 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5859 5860 /* Account for data blocks for journalled mode */ 5861 if (ext4_should_journal_data(inode)) 5862 ret += bpp; 5863 return ret; 5864 } 5865 5866 /* 5867 * Calculate the journal credits for a chunk of data modification. 5868 * 5869 * This is called from DIO, fallocate or whoever calling 5870 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5871 * 5872 * journal buffers for data blocks are not included here, as DIO 5873 * and fallocate do no need to journal data buffers. 5874 */ 5875 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5876 { 5877 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5878 } 5879 5880 /* 5881 * The caller must have previously called ext4_reserve_inode_write(). 5882 * Give this, we know that the caller already has write access to iloc->bh. 5883 */ 5884 int ext4_mark_iloc_dirty(handle_t *handle, 5885 struct inode *inode, struct ext4_iloc *iloc) 5886 { 5887 int err = 0; 5888 5889 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5890 put_bh(iloc->bh); 5891 return -EIO; 5892 } 5893 if (IS_I_VERSION(inode)) 5894 inode_inc_iversion(inode); 5895 5896 /* the do_update_inode consumes one bh->b_count */ 5897 get_bh(iloc->bh); 5898 5899 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5900 err = ext4_do_update_inode(handle, inode, iloc); 5901 put_bh(iloc->bh); 5902 return err; 5903 } 5904 5905 /* 5906 * On success, We end up with an outstanding reference count against 5907 * iloc->bh. This _must_ be cleaned up later. 5908 */ 5909 5910 int 5911 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5912 struct ext4_iloc *iloc) 5913 { 5914 int err; 5915 5916 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5917 return -EIO; 5918 5919 err = ext4_get_inode_loc(inode, iloc); 5920 if (!err) { 5921 BUFFER_TRACE(iloc->bh, "get_write_access"); 5922 err = ext4_journal_get_write_access(handle, iloc->bh); 5923 if (err) { 5924 brelse(iloc->bh); 5925 iloc->bh = NULL; 5926 } 5927 } 5928 ext4_std_error(inode->i_sb, err); 5929 return err; 5930 } 5931 5932 static int __ext4_expand_extra_isize(struct inode *inode, 5933 unsigned int new_extra_isize, 5934 struct ext4_iloc *iloc, 5935 handle_t *handle, int *no_expand) 5936 { 5937 struct ext4_inode *raw_inode; 5938 struct ext4_xattr_ibody_header *header; 5939 int error; 5940 5941 raw_inode = ext4_raw_inode(iloc); 5942 5943 header = IHDR(inode, raw_inode); 5944 5945 /* No extended attributes present */ 5946 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5947 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5948 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5949 EXT4_I(inode)->i_extra_isize, 0, 5950 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5951 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5952 return 0; 5953 } 5954 5955 /* try to expand with EAs present */ 5956 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5957 raw_inode, handle); 5958 if (error) { 5959 /* 5960 * Inode size expansion failed; don't try again 5961 */ 5962 *no_expand = 1; 5963 } 5964 5965 return error; 5966 } 5967 5968 /* 5969 * Expand an inode by new_extra_isize bytes. 5970 * Returns 0 on success or negative error number on failure. 5971 */ 5972 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5973 unsigned int new_extra_isize, 5974 struct ext4_iloc iloc, 5975 handle_t *handle) 5976 { 5977 int no_expand; 5978 int error; 5979 5980 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5981 return -EOVERFLOW; 5982 5983 /* 5984 * In nojournal mode, we can immediately attempt to expand 5985 * the inode. When journaled, we first need to obtain extra 5986 * buffer credits since we may write into the EA block 5987 * with this same handle. If journal_extend fails, then it will 5988 * only result in a minor loss of functionality for that inode. 5989 * If this is felt to be critical, then e2fsck should be run to 5990 * force a large enough s_min_extra_isize. 5991 */ 5992 if (ext4_handle_valid(handle) && 5993 jbd2_journal_extend(handle, 5994 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5995 return -ENOSPC; 5996 5997 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5998 return -EBUSY; 5999 6000 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 6001 handle, &no_expand); 6002 ext4_write_unlock_xattr(inode, &no_expand); 6003 6004 return error; 6005 } 6006 6007 int ext4_expand_extra_isize(struct inode *inode, 6008 unsigned int new_extra_isize, 6009 struct ext4_iloc *iloc) 6010 { 6011 handle_t *handle; 6012 int no_expand; 6013 int error, rc; 6014 6015 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 6016 brelse(iloc->bh); 6017 return -EOVERFLOW; 6018 } 6019 6020 handle = ext4_journal_start(inode, EXT4_HT_INODE, 6021 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 6022 if (IS_ERR(handle)) { 6023 error = PTR_ERR(handle); 6024 brelse(iloc->bh); 6025 return error; 6026 } 6027 6028 ext4_write_lock_xattr(inode, &no_expand); 6029 6030 BUFFER_TRACE(iloc->bh, "get_write_access"); 6031 error = ext4_journal_get_write_access(handle, iloc->bh); 6032 if (error) { 6033 brelse(iloc->bh); 6034 goto out_stop; 6035 } 6036 6037 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6038 handle, &no_expand); 6039 6040 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6041 if (!error) 6042 error = rc; 6043 6044 ext4_write_unlock_xattr(inode, &no_expand); 6045 out_stop: 6046 ext4_journal_stop(handle); 6047 return error; 6048 } 6049 6050 /* 6051 * What we do here is to mark the in-core inode as clean with respect to inode 6052 * dirtiness (it may still be data-dirty). 6053 * This means that the in-core inode may be reaped by prune_icache 6054 * without having to perform any I/O. This is a very good thing, 6055 * because *any* task may call prune_icache - even ones which 6056 * have a transaction open against a different journal. 6057 * 6058 * Is this cheating? Not really. Sure, we haven't written the 6059 * inode out, but prune_icache isn't a user-visible syncing function. 6060 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6061 * we start and wait on commits. 6062 */ 6063 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 6064 { 6065 struct ext4_iloc iloc; 6066 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6067 int err; 6068 6069 might_sleep(); 6070 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6071 err = ext4_reserve_inode_write(handle, inode, &iloc); 6072 if (err) 6073 return err; 6074 6075 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6076 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6077 iloc, handle); 6078 6079 return ext4_mark_iloc_dirty(handle, inode, &iloc); 6080 } 6081 6082 /* 6083 * ext4_dirty_inode() is called from __mark_inode_dirty() 6084 * 6085 * We're really interested in the case where a file is being extended. 6086 * i_size has been changed by generic_commit_write() and we thus need 6087 * to include the updated inode in the current transaction. 6088 * 6089 * Also, dquot_alloc_block() will always dirty the inode when blocks 6090 * are allocated to the file. 6091 * 6092 * If the inode is marked synchronous, we don't honour that here - doing 6093 * so would cause a commit on atime updates, which we don't bother doing. 6094 * We handle synchronous inodes at the highest possible level. 6095 * 6096 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 6097 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 6098 * to copy into the on-disk inode structure are the timestamp files. 6099 */ 6100 void ext4_dirty_inode(struct inode *inode, int flags) 6101 { 6102 handle_t *handle; 6103 6104 if (flags == I_DIRTY_TIME) 6105 return; 6106 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6107 if (IS_ERR(handle)) 6108 goto out; 6109 6110 ext4_mark_inode_dirty(handle, inode); 6111 6112 ext4_journal_stop(handle); 6113 out: 6114 return; 6115 } 6116 6117 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6118 { 6119 journal_t *journal; 6120 handle_t *handle; 6121 int err; 6122 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6123 6124 /* 6125 * We have to be very careful here: changing a data block's 6126 * journaling status dynamically is dangerous. If we write a 6127 * data block to the journal, change the status and then delete 6128 * that block, we risk forgetting to revoke the old log record 6129 * from the journal and so a subsequent replay can corrupt data. 6130 * So, first we make sure that the journal is empty and that 6131 * nobody is changing anything. 6132 */ 6133 6134 journal = EXT4_JOURNAL(inode); 6135 if (!journal) 6136 return 0; 6137 if (is_journal_aborted(journal)) 6138 return -EROFS; 6139 6140 /* Wait for all existing dio workers */ 6141 inode_dio_wait(inode); 6142 6143 /* 6144 * Before flushing the journal and switching inode's aops, we have 6145 * to flush all dirty data the inode has. There can be outstanding 6146 * delayed allocations, there can be unwritten extents created by 6147 * fallocate or buffered writes in dioread_nolock mode covered by 6148 * dirty data which can be converted only after flushing the dirty 6149 * data (and journalled aops don't know how to handle these cases). 6150 */ 6151 if (val) { 6152 down_write(&EXT4_I(inode)->i_mmap_sem); 6153 err = filemap_write_and_wait(inode->i_mapping); 6154 if (err < 0) { 6155 up_write(&EXT4_I(inode)->i_mmap_sem); 6156 return err; 6157 } 6158 } 6159 6160 percpu_down_write(&sbi->s_journal_flag_rwsem); 6161 jbd2_journal_lock_updates(journal); 6162 6163 /* 6164 * OK, there are no updates running now, and all cached data is 6165 * synced to disk. We are now in a completely consistent state 6166 * which doesn't have anything in the journal, and we know that 6167 * no filesystem updates are running, so it is safe to modify 6168 * the inode's in-core data-journaling state flag now. 6169 */ 6170 6171 if (val) 6172 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6173 else { 6174 err = jbd2_journal_flush(journal); 6175 if (err < 0) { 6176 jbd2_journal_unlock_updates(journal); 6177 percpu_up_write(&sbi->s_journal_flag_rwsem); 6178 return err; 6179 } 6180 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6181 } 6182 ext4_set_aops(inode); 6183 6184 jbd2_journal_unlock_updates(journal); 6185 percpu_up_write(&sbi->s_journal_flag_rwsem); 6186 6187 if (val) 6188 up_write(&EXT4_I(inode)->i_mmap_sem); 6189 6190 /* Finally we can mark the inode as dirty. */ 6191 6192 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6193 if (IS_ERR(handle)) 6194 return PTR_ERR(handle); 6195 6196 err = ext4_mark_inode_dirty(handle, inode); 6197 ext4_handle_sync(handle); 6198 ext4_journal_stop(handle); 6199 ext4_std_error(inode->i_sb, err); 6200 6201 return err; 6202 } 6203 6204 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6205 { 6206 return !buffer_mapped(bh); 6207 } 6208 6209 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6210 { 6211 struct vm_area_struct *vma = vmf->vma; 6212 struct page *page = vmf->page; 6213 loff_t size; 6214 unsigned long len; 6215 int err; 6216 vm_fault_t ret; 6217 struct file *file = vma->vm_file; 6218 struct inode *inode = file_inode(file); 6219 struct address_space *mapping = inode->i_mapping; 6220 handle_t *handle; 6221 get_block_t *get_block; 6222 int retries = 0; 6223 6224 if (unlikely(IS_IMMUTABLE(inode))) 6225 return VM_FAULT_SIGBUS; 6226 6227 sb_start_pagefault(inode->i_sb); 6228 file_update_time(vma->vm_file); 6229 6230 down_read(&EXT4_I(inode)->i_mmap_sem); 6231 6232 err = ext4_convert_inline_data(inode); 6233 if (err) 6234 goto out_ret; 6235 6236 /* Delalloc case is easy... */ 6237 if (test_opt(inode->i_sb, DELALLOC) && 6238 !ext4_should_journal_data(inode) && 6239 !ext4_nonda_switch(inode->i_sb)) { 6240 do { 6241 err = block_page_mkwrite(vma, vmf, 6242 ext4_da_get_block_prep); 6243 } while (err == -ENOSPC && 6244 ext4_should_retry_alloc(inode->i_sb, &retries)); 6245 goto out_ret; 6246 } 6247 6248 lock_page(page); 6249 size = i_size_read(inode); 6250 /* Page got truncated from under us? */ 6251 if (page->mapping != mapping || page_offset(page) > size) { 6252 unlock_page(page); 6253 ret = VM_FAULT_NOPAGE; 6254 goto out; 6255 } 6256 6257 if (page->index == size >> PAGE_SHIFT) 6258 len = size & ~PAGE_MASK; 6259 else 6260 len = PAGE_SIZE; 6261 /* 6262 * Return if we have all the buffers mapped. This avoids the need to do 6263 * journal_start/journal_stop which can block and take a long time 6264 */ 6265 if (page_has_buffers(page)) { 6266 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6267 0, len, NULL, 6268 ext4_bh_unmapped)) { 6269 /* Wait so that we don't change page under IO */ 6270 wait_for_stable_page(page); 6271 ret = VM_FAULT_LOCKED; 6272 goto out; 6273 } 6274 } 6275 unlock_page(page); 6276 /* OK, we need to fill the hole... */ 6277 if (ext4_should_dioread_nolock(inode)) 6278 get_block = ext4_get_block_unwritten; 6279 else 6280 get_block = ext4_get_block; 6281 retry_alloc: 6282 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6283 ext4_writepage_trans_blocks(inode)); 6284 if (IS_ERR(handle)) { 6285 ret = VM_FAULT_SIGBUS; 6286 goto out; 6287 } 6288 err = block_page_mkwrite(vma, vmf, get_block); 6289 if (!err && ext4_should_journal_data(inode)) { 6290 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6291 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6292 unlock_page(page); 6293 ret = VM_FAULT_SIGBUS; 6294 ext4_journal_stop(handle); 6295 goto out; 6296 } 6297 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6298 } 6299 ext4_journal_stop(handle); 6300 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6301 goto retry_alloc; 6302 out_ret: 6303 ret = block_page_mkwrite_return(err); 6304 out: 6305 up_read(&EXT4_I(inode)->i_mmap_sem); 6306 sb_end_pagefault(inode->i_sb); 6307 return ret; 6308 } 6309 6310 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6311 { 6312 struct inode *inode = file_inode(vmf->vma->vm_file); 6313 vm_fault_t ret; 6314 6315 down_read(&EXT4_I(inode)->i_mmap_sem); 6316 ret = filemap_fault(vmf); 6317 up_read(&EXT4_I(inode)->i_mmap_sem); 6318 6319 return ret; 6320 } 6321