1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 #include <linux/bitops.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u16 csum_lo; 57 __u16 csum_hi = 0; 58 __u32 csum; 59 60 csum_lo = le16_to_cpu(raw->i_checksum_lo); 61 raw->i_checksum_lo = 0; 62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 64 csum_hi = le16_to_cpu(raw->i_checksum_hi); 65 raw->i_checksum_hi = 0; 66 } 67 68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 69 EXT4_INODE_SIZE(inode->i_sb)); 70 71 raw->i_checksum_lo = cpu_to_le16(csum_lo); 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 74 raw->i_checksum_hi = cpu_to_le16(csum_hi); 75 76 return csum; 77 } 78 79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 80 struct ext4_inode_info *ei) 81 { 82 __u32 provided, calculated; 83 84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 85 cpu_to_le32(EXT4_OS_LINUX) || 86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 88 return 1; 89 90 provided = le16_to_cpu(raw->i_checksum_lo); 91 calculated = ext4_inode_csum(inode, raw, ei); 92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 95 else 96 calculated &= 0xFFFF; 97 98 return provided == calculated; 99 } 100 101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 102 struct ext4_inode_info *ei) 103 { 104 __u32 csum; 105 106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 107 cpu_to_le32(EXT4_OS_LINUX) || 108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 110 return; 111 112 csum = ext4_inode_csum(inode, raw, ei); 113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 116 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 117 } 118 119 static inline int ext4_begin_ordered_truncate(struct inode *inode, 120 loff_t new_size) 121 { 122 trace_ext4_begin_ordered_truncate(inode, new_size); 123 /* 124 * If jinode is zero, then we never opened the file for 125 * writing, so there's no need to call 126 * jbd2_journal_begin_ordered_truncate() since there's no 127 * outstanding writes we need to flush. 128 */ 129 if (!EXT4_I(inode)->jinode) 130 return 0; 131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 132 EXT4_I(inode)->jinode, 133 new_size); 134 } 135 136 static void ext4_invalidatepage(struct page *page, unsigned int offset, 137 unsigned int length); 138 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 141 int pextents); 142 143 /* 144 * Test whether an inode is a fast symlink. 145 */ 146 static int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 int ea_blocks = EXT4_I(inode)->i_file_acl ? 149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 150 151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 152 } 153 154 /* 155 * Restart the transaction associated with *handle. This does a commit, 156 * so before we call here everything must be consistently dirtied against 157 * this transaction. 158 */ 159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 160 int nblocks) 161 { 162 int ret; 163 164 /* 165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 166 * moment, get_block can be called only for blocks inside i_size since 167 * page cache has been already dropped and writes are blocked by 168 * i_mutex. So we can safely drop the i_data_sem here. 169 */ 170 BUG_ON(EXT4_JOURNAL(inode) == NULL); 171 jbd_debug(2, "restarting handle %p\n", handle); 172 up_write(&EXT4_I(inode)->i_data_sem); 173 ret = ext4_journal_restart(handle, nblocks); 174 down_write(&EXT4_I(inode)->i_data_sem); 175 ext4_discard_preallocations(inode); 176 177 return ret; 178 } 179 180 /* 181 * Called at the last iput() if i_nlink is zero. 182 */ 183 void ext4_evict_inode(struct inode *inode) 184 { 185 handle_t *handle; 186 int err; 187 188 trace_ext4_evict_inode(inode); 189 190 if (inode->i_nlink) { 191 /* 192 * When journalling data dirty buffers are tracked only in the 193 * journal. So although mm thinks everything is clean and 194 * ready for reaping the inode might still have some pages to 195 * write in the running transaction or waiting to be 196 * checkpointed. Thus calling jbd2_journal_invalidatepage() 197 * (via truncate_inode_pages()) to discard these buffers can 198 * cause data loss. Also even if we did not discard these 199 * buffers, we would have no way to find them after the inode 200 * is reaped and thus user could see stale data if he tries to 201 * read them before the transaction is checkpointed. So be 202 * careful and force everything to disk here... We use 203 * ei->i_datasync_tid to store the newest transaction 204 * containing inode's data. 205 * 206 * Note that directories do not have this problem because they 207 * don't use page cache. 208 */ 209 if (ext4_should_journal_data(inode) && 210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 211 inode->i_ino != EXT4_JOURNAL_INO) { 212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 214 215 jbd2_complete_transaction(journal, commit_tid); 216 filemap_write_and_wait(&inode->i_data); 217 } 218 truncate_inode_pages_final(&inode->i_data); 219 220 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 221 goto no_delete; 222 } 223 224 if (!is_bad_inode(inode)) 225 dquot_initialize(inode); 226 227 if (ext4_should_order_data(inode)) 228 ext4_begin_ordered_truncate(inode, 0); 229 truncate_inode_pages_final(&inode->i_data); 230 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 232 if (is_bad_inode(inode)) 233 goto no_delete; 234 235 /* 236 * Protect us against freezing - iput() caller didn't have to have any 237 * protection against it 238 */ 239 sb_start_intwrite(inode->i_sb); 240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 241 ext4_blocks_for_truncate(inode)+3); 242 if (IS_ERR(handle)) { 243 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 244 /* 245 * If we're going to skip the normal cleanup, we still need to 246 * make sure that the in-core orphan linked list is properly 247 * cleaned up. 248 */ 249 ext4_orphan_del(NULL, inode); 250 sb_end_intwrite(inode->i_sb); 251 goto no_delete; 252 } 253 254 if (IS_SYNC(inode)) 255 ext4_handle_sync(handle); 256 inode->i_size = 0; 257 err = ext4_mark_inode_dirty(handle, inode); 258 if (err) { 259 ext4_warning(inode->i_sb, 260 "couldn't mark inode dirty (err %d)", err); 261 goto stop_handle; 262 } 263 if (inode->i_blocks) 264 ext4_truncate(inode); 265 266 /* 267 * ext4_ext_truncate() doesn't reserve any slop when it 268 * restarts journal transactions; therefore there may not be 269 * enough credits left in the handle to remove the inode from 270 * the orphan list and set the dtime field. 271 */ 272 if (!ext4_handle_has_enough_credits(handle, 3)) { 273 err = ext4_journal_extend(handle, 3); 274 if (err > 0) 275 err = ext4_journal_restart(handle, 3); 276 if (err != 0) { 277 ext4_warning(inode->i_sb, 278 "couldn't extend journal (err %d)", err); 279 stop_handle: 280 ext4_journal_stop(handle); 281 ext4_orphan_del(NULL, inode); 282 sb_end_intwrite(inode->i_sb); 283 goto no_delete; 284 } 285 } 286 287 /* 288 * Kill off the orphan record which ext4_truncate created. 289 * AKPM: I think this can be inside the above `if'. 290 * Note that ext4_orphan_del() has to be able to cope with the 291 * deletion of a non-existent orphan - this is because we don't 292 * know if ext4_truncate() actually created an orphan record. 293 * (Well, we could do this if we need to, but heck - it works) 294 */ 295 ext4_orphan_del(handle, inode); 296 EXT4_I(inode)->i_dtime = get_seconds(); 297 298 /* 299 * One subtle ordering requirement: if anything has gone wrong 300 * (transaction abort, IO errors, whatever), then we can still 301 * do these next steps (the fs will already have been marked as 302 * having errors), but we can't free the inode if the mark_dirty 303 * fails. 304 */ 305 if (ext4_mark_inode_dirty(handle, inode)) 306 /* If that failed, just do the required in-core inode clear. */ 307 ext4_clear_inode(inode); 308 else 309 ext4_free_inode(handle, inode); 310 ext4_journal_stop(handle); 311 sb_end_intwrite(inode->i_sb); 312 return; 313 no_delete: 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 315 } 316 317 #ifdef CONFIG_QUOTA 318 qsize_t *ext4_get_reserved_space(struct inode *inode) 319 { 320 return &EXT4_I(inode)->i_reserved_quota; 321 } 322 #endif 323 324 /* 325 * Calculate the number of metadata blocks need to reserve 326 * to allocate a block located at @lblock 327 */ 328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 329 { 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 331 return ext4_ext_calc_metadata_amount(inode, lblock); 332 333 return ext4_ind_calc_metadata_amount(inode, lblock); 334 } 335 336 /* 337 * Called with i_data_sem down, which is important since we can call 338 * ext4_discard_preallocations() from here. 339 */ 340 void ext4_da_update_reserve_space(struct inode *inode, 341 int used, int quota_claim) 342 { 343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 344 struct ext4_inode_info *ei = EXT4_I(inode); 345 346 spin_lock(&ei->i_block_reservation_lock); 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 348 if (unlikely(used > ei->i_reserved_data_blocks)) { 349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 350 "with only %d reserved data blocks", 351 __func__, inode->i_ino, used, 352 ei->i_reserved_data_blocks); 353 WARN_ON(1); 354 used = ei->i_reserved_data_blocks; 355 } 356 357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 358 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 359 "with only %d reserved metadata blocks " 360 "(releasing %d blocks with reserved %d data blocks)", 361 inode->i_ino, ei->i_allocated_meta_blocks, 362 ei->i_reserved_meta_blocks, used, 363 ei->i_reserved_data_blocks); 364 WARN_ON(1); 365 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 366 } 367 368 /* Update per-inode reservations */ 369 ei->i_reserved_data_blocks -= used; 370 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 371 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 372 used + ei->i_allocated_meta_blocks); 373 ei->i_allocated_meta_blocks = 0; 374 375 if (ei->i_reserved_data_blocks == 0) { 376 /* 377 * We can release all of the reserved metadata blocks 378 * only when we have written all of the delayed 379 * allocation blocks. 380 */ 381 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 382 ei->i_reserved_meta_blocks); 383 ei->i_reserved_meta_blocks = 0; 384 ei->i_da_metadata_calc_len = 0; 385 } 386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 387 388 /* Update quota subsystem for data blocks */ 389 if (quota_claim) 390 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 391 else { 392 /* 393 * We did fallocate with an offset that is already delayed 394 * allocated. So on delayed allocated writeback we should 395 * not re-claim the quota for fallocated blocks. 396 */ 397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 398 } 399 400 /* 401 * If we have done all the pending block allocations and if 402 * there aren't any writers on the inode, we can discard the 403 * inode's preallocations. 404 */ 405 if ((ei->i_reserved_data_blocks == 0) && 406 (atomic_read(&inode->i_writecount) == 0)) 407 ext4_discard_preallocations(inode); 408 } 409 410 static int __check_block_validity(struct inode *inode, const char *func, 411 unsigned int line, 412 struct ext4_map_blocks *map) 413 { 414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 415 map->m_len)) { 416 ext4_error_inode(inode, func, line, map->m_pblk, 417 "lblock %lu mapped to illegal pblock " 418 "(length %d)", (unsigned long) map->m_lblk, 419 map->m_len); 420 return -EIO; 421 } 422 return 0; 423 } 424 425 #define check_block_validity(inode, map) \ 426 __check_block_validity((inode), __func__, __LINE__, (map)) 427 428 #ifdef ES_AGGRESSIVE_TEST 429 static void ext4_map_blocks_es_recheck(handle_t *handle, 430 struct inode *inode, 431 struct ext4_map_blocks *es_map, 432 struct ext4_map_blocks *map, 433 int flags) 434 { 435 int retval; 436 437 map->m_flags = 0; 438 /* 439 * There is a race window that the result is not the same. 440 * e.g. xfstests #223 when dioread_nolock enables. The reason 441 * is that we lookup a block mapping in extent status tree with 442 * out taking i_data_sem. So at the time the unwritten extent 443 * could be converted. 444 */ 445 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 446 down_read((&EXT4_I(inode)->i_data_sem)); 447 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 448 retval = ext4_ext_map_blocks(handle, inode, map, flags & 449 EXT4_GET_BLOCKS_KEEP_SIZE); 450 } else { 451 retval = ext4_ind_map_blocks(handle, inode, map, flags & 452 EXT4_GET_BLOCKS_KEEP_SIZE); 453 } 454 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 455 up_read((&EXT4_I(inode)->i_data_sem)); 456 /* 457 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 458 * because it shouldn't be marked in es_map->m_flags. 459 */ 460 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 461 462 /* 463 * We don't check m_len because extent will be collpased in status 464 * tree. So the m_len might not equal. 465 */ 466 if (es_map->m_lblk != map->m_lblk || 467 es_map->m_flags != map->m_flags || 468 es_map->m_pblk != map->m_pblk) { 469 printk("ES cache assertion failed for inode: %lu " 470 "es_cached ex [%d/%d/%llu/%x] != " 471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 472 inode->i_ino, es_map->m_lblk, es_map->m_len, 473 es_map->m_pblk, es_map->m_flags, map->m_lblk, 474 map->m_len, map->m_pblk, map->m_flags, 475 retval, flags); 476 } 477 } 478 #endif /* ES_AGGRESSIVE_TEST */ 479 480 /* 481 * The ext4_map_blocks() function tries to look up the requested blocks, 482 * and returns if the blocks are already mapped. 483 * 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 485 * and store the allocated blocks in the result buffer head and mark it 486 * mapped. 487 * 488 * If file type is extents based, it will call ext4_ext_map_blocks(), 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 490 * based files 491 * 492 * On success, it returns the number of blocks being mapped or allocate. 493 * if create==0 and the blocks are pre-allocated and uninitialized block, 494 * the result buffer head is unmapped. If the create ==1, it will make sure 495 * the buffer head is mapped. 496 * 497 * It returns 0 if plain look up failed (blocks have not been allocated), in 498 * that case, buffer head is unmapped 499 * 500 * It returns the error in case of allocation failure. 501 */ 502 int ext4_map_blocks(handle_t *handle, struct inode *inode, 503 struct ext4_map_blocks *map, int flags) 504 { 505 struct extent_status es; 506 int retval; 507 int ret = 0; 508 #ifdef ES_AGGRESSIVE_TEST 509 struct ext4_map_blocks orig_map; 510 511 memcpy(&orig_map, map, sizeof(*map)); 512 #endif 513 514 map->m_flags = 0; 515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 516 "logical block %lu\n", inode->i_ino, flags, map->m_len, 517 (unsigned long) map->m_lblk); 518 519 /* 520 * ext4_map_blocks returns an int, and m_len is an unsigned int 521 */ 522 if (unlikely(map->m_len > INT_MAX)) 523 map->m_len = INT_MAX; 524 525 /* Lookup extent status tree firstly */ 526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 527 ext4_es_lru_add(inode); 528 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 529 map->m_pblk = ext4_es_pblock(&es) + 530 map->m_lblk - es.es_lblk; 531 map->m_flags |= ext4_es_is_written(&es) ? 532 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 533 retval = es.es_len - (map->m_lblk - es.es_lblk); 534 if (retval > map->m_len) 535 retval = map->m_len; 536 map->m_len = retval; 537 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 538 retval = 0; 539 } else { 540 BUG_ON(1); 541 } 542 #ifdef ES_AGGRESSIVE_TEST 543 ext4_map_blocks_es_recheck(handle, inode, map, 544 &orig_map, flags); 545 #endif 546 goto found; 547 } 548 549 /* 550 * Try to see if we can get the block without requesting a new 551 * file system block. 552 */ 553 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 554 down_read((&EXT4_I(inode)->i_data_sem)); 555 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 556 retval = ext4_ext_map_blocks(handle, inode, map, flags & 557 EXT4_GET_BLOCKS_KEEP_SIZE); 558 } else { 559 retval = ext4_ind_map_blocks(handle, inode, map, flags & 560 EXT4_GET_BLOCKS_KEEP_SIZE); 561 } 562 if (retval > 0) { 563 unsigned int status; 564 565 if (unlikely(retval != map->m_len)) { 566 ext4_warning(inode->i_sb, 567 "ES len assertion failed for inode " 568 "%lu: retval %d != map->m_len %d", 569 inode->i_ino, retval, map->m_len); 570 WARN_ON(1); 571 } 572 573 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 574 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 575 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 576 ext4_find_delalloc_range(inode, map->m_lblk, 577 map->m_lblk + map->m_len - 1)) 578 status |= EXTENT_STATUS_DELAYED; 579 ret = ext4_es_insert_extent(inode, map->m_lblk, 580 map->m_len, map->m_pblk, status); 581 if (ret < 0) 582 retval = ret; 583 } 584 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 585 up_read((&EXT4_I(inode)->i_data_sem)); 586 587 found: 588 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 589 ret = check_block_validity(inode, map); 590 if (ret != 0) 591 return ret; 592 } 593 594 /* If it is only a block(s) look up */ 595 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 596 return retval; 597 598 /* 599 * Returns if the blocks have already allocated 600 * 601 * Note that if blocks have been preallocated 602 * ext4_ext_get_block() returns the create = 0 603 * with buffer head unmapped. 604 */ 605 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 606 /* 607 * If we need to convert extent to unwritten 608 * we continue and do the actual work in 609 * ext4_ext_map_blocks() 610 */ 611 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 612 return retval; 613 614 /* 615 * Here we clear m_flags because after allocating an new extent, 616 * it will be set again. 617 */ 618 map->m_flags &= ~EXT4_MAP_FLAGS; 619 620 /* 621 * New blocks allocate and/or writing to uninitialized extent 622 * will possibly result in updating i_data, so we take 623 * the write lock of i_data_sem, and call get_blocks() 624 * with create == 1 flag. 625 */ 626 down_write((&EXT4_I(inode)->i_data_sem)); 627 628 /* 629 * if the caller is from delayed allocation writeout path 630 * we have already reserved fs blocks for allocation 631 * let the underlying get_block() function know to 632 * avoid double accounting 633 */ 634 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 635 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 636 /* 637 * We need to check for EXT4 here because migrate 638 * could have changed the inode type in between 639 */ 640 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 641 retval = ext4_ext_map_blocks(handle, inode, map, flags); 642 } else { 643 retval = ext4_ind_map_blocks(handle, inode, map, flags); 644 645 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 646 /* 647 * We allocated new blocks which will result in 648 * i_data's format changing. Force the migrate 649 * to fail by clearing migrate flags 650 */ 651 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 652 } 653 654 /* 655 * Update reserved blocks/metadata blocks after successful 656 * block allocation which had been deferred till now. We don't 657 * support fallocate for non extent files. So we can update 658 * reserve space here. 659 */ 660 if ((retval > 0) && 661 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 662 ext4_da_update_reserve_space(inode, retval, 1); 663 } 664 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 665 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 666 667 if (retval > 0) { 668 unsigned int status; 669 670 if (unlikely(retval != map->m_len)) { 671 ext4_warning(inode->i_sb, 672 "ES len assertion failed for inode " 673 "%lu: retval %d != map->m_len %d", 674 inode->i_ino, retval, map->m_len); 675 WARN_ON(1); 676 } 677 678 /* 679 * If the extent has been zeroed out, we don't need to update 680 * extent status tree. 681 */ 682 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 683 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 684 if (ext4_es_is_written(&es)) 685 goto has_zeroout; 686 } 687 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 688 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 689 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 690 ext4_find_delalloc_range(inode, map->m_lblk, 691 map->m_lblk + map->m_len - 1)) 692 status |= EXTENT_STATUS_DELAYED; 693 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 694 map->m_pblk, status); 695 if (ret < 0) 696 retval = ret; 697 } 698 699 has_zeroout: 700 up_write((&EXT4_I(inode)->i_data_sem)); 701 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 702 ret = check_block_validity(inode, map); 703 if (ret != 0) 704 return ret; 705 } 706 return retval; 707 } 708 709 /* Maximum number of blocks we map for direct IO at once. */ 710 #define DIO_MAX_BLOCKS 4096 711 712 static int _ext4_get_block(struct inode *inode, sector_t iblock, 713 struct buffer_head *bh, int flags) 714 { 715 handle_t *handle = ext4_journal_current_handle(); 716 struct ext4_map_blocks map; 717 int ret = 0, started = 0; 718 int dio_credits; 719 720 if (ext4_has_inline_data(inode)) 721 return -ERANGE; 722 723 map.m_lblk = iblock; 724 map.m_len = bh->b_size >> inode->i_blkbits; 725 726 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 727 /* Direct IO write... */ 728 if (map.m_len > DIO_MAX_BLOCKS) 729 map.m_len = DIO_MAX_BLOCKS; 730 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 731 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 732 dio_credits); 733 if (IS_ERR(handle)) { 734 ret = PTR_ERR(handle); 735 return ret; 736 } 737 started = 1; 738 } 739 740 ret = ext4_map_blocks(handle, inode, &map, flags); 741 if (ret > 0) { 742 ext4_io_end_t *io_end = ext4_inode_aio(inode); 743 744 map_bh(bh, inode->i_sb, map.m_pblk); 745 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 746 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 747 set_buffer_defer_completion(bh); 748 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 749 ret = 0; 750 } 751 if (started) 752 ext4_journal_stop(handle); 753 return ret; 754 } 755 756 int ext4_get_block(struct inode *inode, sector_t iblock, 757 struct buffer_head *bh, int create) 758 { 759 return _ext4_get_block(inode, iblock, bh, 760 create ? EXT4_GET_BLOCKS_CREATE : 0); 761 } 762 763 /* 764 * `handle' can be NULL if create is zero 765 */ 766 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 767 ext4_lblk_t block, int create, int *errp) 768 { 769 struct ext4_map_blocks map; 770 struct buffer_head *bh; 771 int fatal = 0, err; 772 773 J_ASSERT(handle != NULL || create == 0); 774 775 map.m_lblk = block; 776 map.m_len = 1; 777 err = ext4_map_blocks(handle, inode, &map, 778 create ? EXT4_GET_BLOCKS_CREATE : 0); 779 780 /* ensure we send some value back into *errp */ 781 *errp = 0; 782 783 if (create && err == 0) 784 err = -ENOSPC; /* should never happen */ 785 if (err < 0) 786 *errp = err; 787 if (err <= 0) 788 return NULL; 789 790 bh = sb_getblk(inode->i_sb, map.m_pblk); 791 if (unlikely(!bh)) { 792 *errp = -ENOMEM; 793 return NULL; 794 } 795 if (map.m_flags & EXT4_MAP_NEW) { 796 J_ASSERT(create != 0); 797 J_ASSERT(handle != NULL); 798 799 /* 800 * Now that we do not always journal data, we should 801 * keep in mind whether this should always journal the 802 * new buffer as metadata. For now, regular file 803 * writes use ext4_get_block instead, so it's not a 804 * problem. 805 */ 806 lock_buffer(bh); 807 BUFFER_TRACE(bh, "call get_create_access"); 808 fatal = ext4_journal_get_create_access(handle, bh); 809 if (!fatal && !buffer_uptodate(bh)) { 810 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 811 set_buffer_uptodate(bh); 812 } 813 unlock_buffer(bh); 814 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 815 err = ext4_handle_dirty_metadata(handle, inode, bh); 816 if (!fatal) 817 fatal = err; 818 } else { 819 BUFFER_TRACE(bh, "not a new buffer"); 820 } 821 if (fatal) { 822 *errp = fatal; 823 brelse(bh); 824 bh = NULL; 825 } 826 return bh; 827 } 828 829 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 830 ext4_lblk_t block, int create, int *err) 831 { 832 struct buffer_head *bh; 833 834 bh = ext4_getblk(handle, inode, block, create, err); 835 if (!bh) 836 return bh; 837 if (buffer_uptodate(bh)) 838 return bh; 839 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 840 wait_on_buffer(bh); 841 if (buffer_uptodate(bh)) 842 return bh; 843 put_bh(bh); 844 *err = -EIO; 845 return NULL; 846 } 847 848 int ext4_walk_page_buffers(handle_t *handle, 849 struct buffer_head *head, 850 unsigned from, 851 unsigned to, 852 int *partial, 853 int (*fn)(handle_t *handle, 854 struct buffer_head *bh)) 855 { 856 struct buffer_head *bh; 857 unsigned block_start, block_end; 858 unsigned blocksize = head->b_size; 859 int err, ret = 0; 860 struct buffer_head *next; 861 862 for (bh = head, block_start = 0; 863 ret == 0 && (bh != head || !block_start); 864 block_start = block_end, bh = next) { 865 next = bh->b_this_page; 866 block_end = block_start + blocksize; 867 if (block_end <= from || block_start >= to) { 868 if (partial && !buffer_uptodate(bh)) 869 *partial = 1; 870 continue; 871 } 872 err = (*fn)(handle, bh); 873 if (!ret) 874 ret = err; 875 } 876 return ret; 877 } 878 879 /* 880 * To preserve ordering, it is essential that the hole instantiation and 881 * the data write be encapsulated in a single transaction. We cannot 882 * close off a transaction and start a new one between the ext4_get_block() 883 * and the commit_write(). So doing the jbd2_journal_start at the start of 884 * prepare_write() is the right place. 885 * 886 * Also, this function can nest inside ext4_writepage(). In that case, we 887 * *know* that ext4_writepage() has generated enough buffer credits to do the 888 * whole page. So we won't block on the journal in that case, which is good, 889 * because the caller may be PF_MEMALLOC. 890 * 891 * By accident, ext4 can be reentered when a transaction is open via 892 * quota file writes. If we were to commit the transaction while thus 893 * reentered, there can be a deadlock - we would be holding a quota 894 * lock, and the commit would never complete if another thread had a 895 * transaction open and was blocking on the quota lock - a ranking 896 * violation. 897 * 898 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 899 * will _not_ run commit under these circumstances because handle->h_ref 900 * is elevated. We'll still have enough credits for the tiny quotafile 901 * write. 902 */ 903 int do_journal_get_write_access(handle_t *handle, 904 struct buffer_head *bh) 905 { 906 int dirty = buffer_dirty(bh); 907 int ret; 908 909 if (!buffer_mapped(bh) || buffer_freed(bh)) 910 return 0; 911 /* 912 * __block_write_begin() could have dirtied some buffers. Clean 913 * the dirty bit as jbd2_journal_get_write_access() could complain 914 * otherwise about fs integrity issues. Setting of the dirty bit 915 * by __block_write_begin() isn't a real problem here as we clear 916 * the bit before releasing a page lock and thus writeback cannot 917 * ever write the buffer. 918 */ 919 if (dirty) 920 clear_buffer_dirty(bh); 921 ret = ext4_journal_get_write_access(handle, bh); 922 if (!ret && dirty) 923 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 924 return ret; 925 } 926 927 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 928 struct buffer_head *bh_result, int create); 929 static int ext4_write_begin(struct file *file, struct address_space *mapping, 930 loff_t pos, unsigned len, unsigned flags, 931 struct page **pagep, void **fsdata) 932 { 933 struct inode *inode = mapping->host; 934 int ret, needed_blocks; 935 handle_t *handle; 936 int retries = 0; 937 struct page *page; 938 pgoff_t index; 939 unsigned from, to; 940 941 trace_ext4_write_begin(inode, pos, len, flags); 942 /* 943 * Reserve one block more for addition to orphan list in case 944 * we allocate blocks but write fails for some reason 945 */ 946 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 947 index = pos >> PAGE_CACHE_SHIFT; 948 from = pos & (PAGE_CACHE_SIZE - 1); 949 to = from + len; 950 951 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 952 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 953 flags, pagep); 954 if (ret < 0) 955 return ret; 956 if (ret == 1) 957 return 0; 958 } 959 960 /* 961 * grab_cache_page_write_begin() can take a long time if the 962 * system is thrashing due to memory pressure, or if the page 963 * is being written back. So grab it first before we start 964 * the transaction handle. This also allows us to allocate 965 * the page (if needed) without using GFP_NOFS. 966 */ 967 retry_grab: 968 page = grab_cache_page_write_begin(mapping, index, flags); 969 if (!page) 970 return -ENOMEM; 971 unlock_page(page); 972 973 retry_journal: 974 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 975 if (IS_ERR(handle)) { 976 page_cache_release(page); 977 return PTR_ERR(handle); 978 } 979 980 lock_page(page); 981 if (page->mapping != mapping) { 982 /* The page got truncated from under us */ 983 unlock_page(page); 984 page_cache_release(page); 985 ext4_journal_stop(handle); 986 goto retry_grab; 987 } 988 /* In case writeback began while the page was unlocked */ 989 wait_for_stable_page(page); 990 991 if (ext4_should_dioread_nolock(inode)) 992 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 993 else 994 ret = __block_write_begin(page, pos, len, ext4_get_block); 995 996 if (!ret && ext4_should_journal_data(inode)) { 997 ret = ext4_walk_page_buffers(handle, page_buffers(page), 998 from, to, NULL, 999 do_journal_get_write_access); 1000 } 1001 1002 if (ret) { 1003 unlock_page(page); 1004 /* 1005 * __block_write_begin may have instantiated a few blocks 1006 * outside i_size. Trim these off again. Don't need 1007 * i_size_read because we hold i_mutex. 1008 * 1009 * Add inode to orphan list in case we crash before 1010 * truncate finishes 1011 */ 1012 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1013 ext4_orphan_add(handle, inode); 1014 1015 ext4_journal_stop(handle); 1016 if (pos + len > inode->i_size) { 1017 ext4_truncate_failed_write(inode); 1018 /* 1019 * If truncate failed early the inode might 1020 * still be on the orphan list; we need to 1021 * make sure the inode is removed from the 1022 * orphan list in that case. 1023 */ 1024 if (inode->i_nlink) 1025 ext4_orphan_del(NULL, inode); 1026 } 1027 1028 if (ret == -ENOSPC && 1029 ext4_should_retry_alloc(inode->i_sb, &retries)) 1030 goto retry_journal; 1031 page_cache_release(page); 1032 return ret; 1033 } 1034 *pagep = page; 1035 return ret; 1036 } 1037 1038 /* For write_end() in data=journal mode */ 1039 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1040 { 1041 int ret; 1042 if (!buffer_mapped(bh) || buffer_freed(bh)) 1043 return 0; 1044 set_buffer_uptodate(bh); 1045 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1046 clear_buffer_meta(bh); 1047 clear_buffer_prio(bh); 1048 return ret; 1049 } 1050 1051 /* 1052 * We need to pick up the new inode size which generic_commit_write gave us 1053 * `file' can be NULL - eg, when called from page_symlink(). 1054 * 1055 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1056 * buffers are managed internally. 1057 */ 1058 static int ext4_write_end(struct file *file, 1059 struct address_space *mapping, 1060 loff_t pos, unsigned len, unsigned copied, 1061 struct page *page, void *fsdata) 1062 { 1063 handle_t *handle = ext4_journal_current_handle(); 1064 struct inode *inode = mapping->host; 1065 int ret = 0, ret2; 1066 int i_size_changed = 0; 1067 1068 trace_ext4_write_end(inode, pos, len, copied); 1069 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1070 ret = ext4_jbd2_file_inode(handle, inode); 1071 if (ret) { 1072 unlock_page(page); 1073 page_cache_release(page); 1074 goto errout; 1075 } 1076 } 1077 1078 if (ext4_has_inline_data(inode)) { 1079 ret = ext4_write_inline_data_end(inode, pos, len, 1080 copied, page); 1081 if (ret < 0) 1082 goto errout; 1083 copied = ret; 1084 } else 1085 copied = block_write_end(file, mapping, pos, 1086 len, copied, page, fsdata); 1087 1088 /* 1089 * No need to use i_size_read() here, the i_size 1090 * cannot change under us because we hole i_mutex. 1091 * 1092 * But it's important to update i_size while still holding page lock: 1093 * page writeout could otherwise come in and zero beyond i_size. 1094 */ 1095 if (pos + copied > inode->i_size) { 1096 i_size_write(inode, pos + copied); 1097 i_size_changed = 1; 1098 } 1099 1100 if (pos + copied > EXT4_I(inode)->i_disksize) { 1101 /* We need to mark inode dirty even if 1102 * new_i_size is less that inode->i_size 1103 * but greater than i_disksize. (hint delalloc) 1104 */ 1105 ext4_update_i_disksize(inode, (pos + copied)); 1106 i_size_changed = 1; 1107 } 1108 unlock_page(page); 1109 page_cache_release(page); 1110 1111 /* 1112 * Don't mark the inode dirty under page lock. First, it unnecessarily 1113 * makes the holding time of page lock longer. Second, it forces lock 1114 * ordering of page lock and transaction start for journaling 1115 * filesystems. 1116 */ 1117 if (i_size_changed) 1118 ext4_mark_inode_dirty(handle, inode); 1119 1120 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1121 /* if we have allocated more blocks and copied 1122 * less. We will have blocks allocated outside 1123 * inode->i_size. So truncate them 1124 */ 1125 ext4_orphan_add(handle, inode); 1126 errout: 1127 ret2 = ext4_journal_stop(handle); 1128 if (!ret) 1129 ret = ret2; 1130 1131 if (pos + len > inode->i_size) { 1132 ext4_truncate_failed_write(inode); 1133 /* 1134 * If truncate failed early the inode might still be 1135 * on the orphan list; we need to make sure the inode 1136 * is removed from the orphan list in that case. 1137 */ 1138 if (inode->i_nlink) 1139 ext4_orphan_del(NULL, inode); 1140 } 1141 1142 return ret ? ret : copied; 1143 } 1144 1145 static int ext4_journalled_write_end(struct file *file, 1146 struct address_space *mapping, 1147 loff_t pos, unsigned len, unsigned copied, 1148 struct page *page, void *fsdata) 1149 { 1150 handle_t *handle = ext4_journal_current_handle(); 1151 struct inode *inode = mapping->host; 1152 int ret = 0, ret2; 1153 int partial = 0; 1154 unsigned from, to; 1155 loff_t new_i_size; 1156 1157 trace_ext4_journalled_write_end(inode, pos, len, copied); 1158 from = pos & (PAGE_CACHE_SIZE - 1); 1159 to = from + len; 1160 1161 BUG_ON(!ext4_handle_valid(handle)); 1162 1163 if (ext4_has_inline_data(inode)) 1164 copied = ext4_write_inline_data_end(inode, pos, len, 1165 copied, page); 1166 else { 1167 if (copied < len) { 1168 if (!PageUptodate(page)) 1169 copied = 0; 1170 page_zero_new_buffers(page, from+copied, to); 1171 } 1172 1173 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1174 to, &partial, write_end_fn); 1175 if (!partial) 1176 SetPageUptodate(page); 1177 } 1178 new_i_size = pos + copied; 1179 if (new_i_size > inode->i_size) 1180 i_size_write(inode, pos+copied); 1181 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1182 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1183 if (new_i_size > EXT4_I(inode)->i_disksize) { 1184 ext4_update_i_disksize(inode, new_i_size); 1185 ret2 = ext4_mark_inode_dirty(handle, inode); 1186 if (!ret) 1187 ret = ret2; 1188 } 1189 1190 unlock_page(page); 1191 page_cache_release(page); 1192 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1193 /* if we have allocated more blocks and copied 1194 * less. We will have blocks allocated outside 1195 * inode->i_size. So truncate them 1196 */ 1197 ext4_orphan_add(handle, inode); 1198 1199 ret2 = ext4_journal_stop(handle); 1200 if (!ret) 1201 ret = ret2; 1202 if (pos + len > inode->i_size) { 1203 ext4_truncate_failed_write(inode); 1204 /* 1205 * If truncate failed early the inode might still be 1206 * on the orphan list; we need to make sure the inode 1207 * is removed from the orphan list in that case. 1208 */ 1209 if (inode->i_nlink) 1210 ext4_orphan_del(NULL, inode); 1211 } 1212 1213 return ret ? ret : copied; 1214 } 1215 1216 /* 1217 * Reserve a metadata for a single block located at lblock 1218 */ 1219 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1220 { 1221 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1222 struct ext4_inode_info *ei = EXT4_I(inode); 1223 unsigned int md_needed; 1224 ext4_lblk_t save_last_lblock; 1225 int save_len; 1226 1227 /* 1228 * recalculate the amount of metadata blocks to reserve 1229 * in order to allocate nrblocks 1230 * worse case is one extent per block 1231 */ 1232 spin_lock(&ei->i_block_reservation_lock); 1233 /* 1234 * ext4_calc_metadata_amount() has side effects, which we have 1235 * to be prepared undo if we fail to claim space. 1236 */ 1237 save_len = ei->i_da_metadata_calc_len; 1238 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1239 md_needed = EXT4_NUM_B2C(sbi, 1240 ext4_calc_metadata_amount(inode, lblock)); 1241 trace_ext4_da_reserve_space(inode, md_needed); 1242 1243 /* 1244 * We do still charge estimated metadata to the sb though; 1245 * we cannot afford to run out of free blocks. 1246 */ 1247 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1248 ei->i_da_metadata_calc_len = save_len; 1249 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1250 spin_unlock(&ei->i_block_reservation_lock); 1251 return -ENOSPC; 1252 } 1253 ei->i_reserved_meta_blocks += md_needed; 1254 spin_unlock(&ei->i_block_reservation_lock); 1255 1256 return 0; /* success */ 1257 } 1258 1259 /* 1260 * Reserve a single cluster located at lblock 1261 */ 1262 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1263 { 1264 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1265 struct ext4_inode_info *ei = EXT4_I(inode); 1266 unsigned int md_needed; 1267 int ret; 1268 ext4_lblk_t save_last_lblock; 1269 int save_len; 1270 1271 /* 1272 * We will charge metadata quota at writeout time; this saves 1273 * us from metadata over-estimation, though we may go over by 1274 * a small amount in the end. Here we just reserve for data. 1275 */ 1276 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1277 if (ret) 1278 return ret; 1279 1280 /* 1281 * recalculate the amount of metadata blocks to reserve 1282 * in order to allocate nrblocks 1283 * worse case is one extent per block 1284 */ 1285 spin_lock(&ei->i_block_reservation_lock); 1286 /* 1287 * ext4_calc_metadata_amount() has side effects, which we have 1288 * to be prepared undo if we fail to claim space. 1289 */ 1290 save_len = ei->i_da_metadata_calc_len; 1291 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1292 md_needed = EXT4_NUM_B2C(sbi, 1293 ext4_calc_metadata_amount(inode, lblock)); 1294 trace_ext4_da_reserve_space(inode, md_needed); 1295 1296 /* 1297 * We do still charge estimated metadata to the sb though; 1298 * we cannot afford to run out of free blocks. 1299 */ 1300 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1301 ei->i_da_metadata_calc_len = save_len; 1302 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1303 spin_unlock(&ei->i_block_reservation_lock); 1304 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1305 return -ENOSPC; 1306 } 1307 ei->i_reserved_data_blocks++; 1308 ei->i_reserved_meta_blocks += md_needed; 1309 spin_unlock(&ei->i_block_reservation_lock); 1310 1311 return 0; /* success */ 1312 } 1313 1314 static void ext4_da_release_space(struct inode *inode, int to_free) 1315 { 1316 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1317 struct ext4_inode_info *ei = EXT4_I(inode); 1318 1319 if (!to_free) 1320 return; /* Nothing to release, exit */ 1321 1322 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1323 1324 trace_ext4_da_release_space(inode, to_free); 1325 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1326 /* 1327 * if there aren't enough reserved blocks, then the 1328 * counter is messed up somewhere. Since this 1329 * function is called from invalidate page, it's 1330 * harmless to return without any action. 1331 */ 1332 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1333 "ino %lu, to_free %d with only %d reserved " 1334 "data blocks", inode->i_ino, to_free, 1335 ei->i_reserved_data_blocks); 1336 WARN_ON(1); 1337 to_free = ei->i_reserved_data_blocks; 1338 } 1339 ei->i_reserved_data_blocks -= to_free; 1340 1341 if (ei->i_reserved_data_blocks == 0) { 1342 /* 1343 * We can release all of the reserved metadata blocks 1344 * only when we have written all of the delayed 1345 * allocation blocks. 1346 * Note that in case of bigalloc, i_reserved_meta_blocks, 1347 * i_reserved_data_blocks, etc. refer to number of clusters. 1348 */ 1349 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1350 ei->i_reserved_meta_blocks); 1351 ei->i_reserved_meta_blocks = 0; 1352 ei->i_da_metadata_calc_len = 0; 1353 } 1354 1355 /* update fs dirty data blocks counter */ 1356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1357 1358 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1359 1360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1361 } 1362 1363 static void ext4_da_page_release_reservation(struct page *page, 1364 unsigned int offset, 1365 unsigned int length) 1366 { 1367 int to_release = 0; 1368 struct buffer_head *head, *bh; 1369 unsigned int curr_off = 0; 1370 struct inode *inode = page->mapping->host; 1371 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1372 unsigned int stop = offset + length; 1373 int num_clusters; 1374 ext4_fsblk_t lblk; 1375 1376 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1377 1378 head = page_buffers(page); 1379 bh = head; 1380 do { 1381 unsigned int next_off = curr_off + bh->b_size; 1382 1383 if (next_off > stop) 1384 break; 1385 1386 if ((offset <= curr_off) && (buffer_delay(bh))) { 1387 to_release++; 1388 clear_buffer_delay(bh); 1389 } 1390 curr_off = next_off; 1391 } while ((bh = bh->b_this_page) != head); 1392 1393 if (to_release) { 1394 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1395 ext4_es_remove_extent(inode, lblk, to_release); 1396 } 1397 1398 /* If we have released all the blocks belonging to a cluster, then we 1399 * need to release the reserved space for that cluster. */ 1400 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1401 while (num_clusters > 0) { 1402 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1403 ((num_clusters - 1) << sbi->s_cluster_bits); 1404 if (sbi->s_cluster_ratio == 1 || 1405 !ext4_find_delalloc_cluster(inode, lblk)) 1406 ext4_da_release_space(inode, 1); 1407 1408 num_clusters--; 1409 } 1410 } 1411 1412 /* 1413 * Delayed allocation stuff 1414 */ 1415 1416 struct mpage_da_data { 1417 struct inode *inode; 1418 struct writeback_control *wbc; 1419 1420 pgoff_t first_page; /* The first page to write */ 1421 pgoff_t next_page; /* Current page to examine */ 1422 pgoff_t last_page; /* Last page to examine */ 1423 /* 1424 * Extent to map - this can be after first_page because that can be 1425 * fully mapped. We somewhat abuse m_flags to store whether the extent 1426 * is delalloc or unwritten. 1427 */ 1428 struct ext4_map_blocks map; 1429 struct ext4_io_submit io_submit; /* IO submission data */ 1430 }; 1431 1432 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1433 bool invalidate) 1434 { 1435 int nr_pages, i; 1436 pgoff_t index, end; 1437 struct pagevec pvec; 1438 struct inode *inode = mpd->inode; 1439 struct address_space *mapping = inode->i_mapping; 1440 1441 /* This is necessary when next_page == 0. */ 1442 if (mpd->first_page >= mpd->next_page) 1443 return; 1444 1445 index = mpd->first_page; 1446 end = mpd->next_page - 1; 1447 if (invalidate) { 1448 ext4_lblk_t start, last; 1449 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1450 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1451 ext4_es_remove_extent(inode, start, last - start + 1); 1452 } 1453 1454 pagevec_init(&pvec, 0); 1455 while (index <= end) { 1456 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1457 if (nr_pages == 0) 1458 break; 1459 for (i = 0; i < nr_pages; i++) { 1460 struct page *page = pvec.pages[i]; 1461 if (page->index > end) 1462 break; 1463 BUG_ON(!PageLocked(page)); 1464 BUG_ON(PageWriteback(page)); 1465 if (invalidate) { 1466 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1467 ClearPageUptodate(page); 1468 } 1469 unlock_page(page); 1470 } 1471 index = pvec.pages[nr_pages - 1]->index + 1; 1472 pagevec_release(&pvec); 1473 } 1474 } 1475 1476 static void ext4_print_free_blocks(struct inode *inode) 1477 { 1478 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1479 struct super_block *sb = inode->i_sb; 1480 struct ext4_inode_info *ei = EXT4_I(inode); 1481 1482 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1483 EXT4_C2B(EXT4_SB(inode->i_sb), 1484 ext4_count_free_clusters(sb))); 1485 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1486 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1487 (long long) EXT4_C2B(EXT4_SB(sb), 1488 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1489 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1490 (long long) EXT4_C2B(EXT4_SB(sb), 1491 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1492 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1493 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1494 ei->i_reserved_data_blocks); 1495 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1496 ei->i_reserved_meta_blocks); 1497 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1498 ei->i_allocated_meta_blocks); 1499 return; 1500 } 1501 1502 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1503 { 1504 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1505 } 1506 1507 /* 1508 * This function is grabs code from the very beginning of 1509 * ext4_map_blocks, but assumes that the caller is from delayed write 1510 * time. This function looks up the requested blocks and sets the 1511 * buffer delay bit under the protection of i_data_sem. 1512 */ 1513 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1514 struct ext4_map_blocks *map, 1515 struct buffer_head *bh) 1516 { 1517 struct extent_status es; 1518 int retval; 1519 sector_t invalid_block = ~((sector_t) 0xffff); 1520 #ifdef ES_AGGRESSIVE_TEST 1521 struct ext4_map_blocks orig_map; 1522 1523 memcpy(&orig_map, map, sizeof(*map)); 1524 #endif 1525 1526 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1527 invalid_block = ~0; 1528 1529 map->m_flags = 0; 1530 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1531 "logical block %lu\n", inode->i_ino, map->m_len, 1532 (unsigned long) map->m_lblk); 1533 1534 /* Lookup extent status tree firstly */ 1535 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1536 ext4_es_lru_add(inode); 1537 if (ext4_es_is_hole(&es)) { 1538 retval = 0; 1539 down_read((&EXT4_I(inode)->i_data_sem)); 1540 goto add_delayed; 1541 } 1542 1543 /* 1544 * Delayed extent could be allocated by fallocate. 1545 * So we need to check it. 1546 */ 1547 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1548 map_bh(bh, inode->i_sb, invalid_block); 1549 set_buffer_new(bh); 1550 set_buffer_delay(bh); 1551 return 0; 1552 } 1553 1554 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1555 retval = es.es_len - (iblock - es.es_lblk); 1556 if (retval > map->m_len) 1557 retval = map->m_len; 1558 map->m_len = retval; 1559 if (ext4_es_is_written(&es)) 1560 map->m_flags |= EXT4_MAP_MAPPED; 1561 else if (ext4_es_is_unwritten(&es)) 1562 map->m_flags |= EXT4_MAP_UNWRITTEN; 1563 else 1564 BUG_ON(1); 1565 1566 #ifdef ES_AGGRESSIVE_TEST 1567 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1568 #endif 1569 return retval; 1570 } 1571 1572 /* 1573 * Try to see if we can get the block without requesting a new 1574 * file system block. 1575 */ 1576 down_read((&EXT4_I(inode)->i_data_sem)); 1577 if (ext4_has_inline_data(inode)) { 1578 /* 1579 * We will soon create blocks for this page, and let 1580 * us pretend as if the blocks aren't allocated yet. 1581 * In case of clusters, we have to handle the work 1582 * of mapping from cluster so that the reserved space 1583 * is calculated properly. 1584 */ 1585 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1586 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1587 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1588 retval = 0; 1589 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1590 retval = ext4_ext_map_blocks(NULL, inode, map, 1591 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1592 else 1593 retval = ext4_ind_map_blocks(NULL, inode, map, 1594 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1595 1596 add_delayed: 1597 if (retval == 0) { 1598 int ret; 1599 /* 1600 * XXX: __block_prepare_write() unmaps passed block, 1601 * is it OK? 1602 */ 1603 /* 1604 * If the block was allocated from previously allocated cluster, 1605 * then we don't need to reserve it again. However we still need 1606 * to reserve metadata for every block we're going to write. 1607 */ 1608 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1609 ret = ext4_da_reserve_space(inode, iblock); 1610 if (ret) { 1611 /* not enough space to reserve */ 1612 retval = ret; 1613 goto out_unlock; 1614 } 1615 } else { 1616 ret = ext4_da_reserve_metadata(inode, iblock); 1617 if (ret) { 1618 /* not enough space to reserve */ 1619 retval = ret; 1620 goto out_unlock; 1621 } 1622 } 1623 1624 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1625 ~0, EXTENT_STATUS_DELAYED); 1626 if (ret) { 1627 retval = ret; 1628 goto out_unlock; 1629 } 1630 1631 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1632 * and it should not appear on the bh->b_state. 1633 */ 1634 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1635 1636 map_bh(bh, inode->i_sb, invalid_block); 1637 set_buffer_new(bh); 1638 set_buffer_delay(bh); 1639 } else if (retval > 0) { 1640 int ret; 1641 unsigned int status; 1642 1643 if (unlikely(retval != map->m_len)) { 1644 ext4_warning(inode->i_sb, 1645 "ES len assertion failed for inode " 1646 "%lu: retval %d != map->m_len %d", 1647 inode->i_ino, retval, map->m_len); 1648 WARN_ON(1); 1649 } 1650 1651 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1652 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1653 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1654 map->m_pblk, status); 1655 if (ret != 0) 1656 retval = ret; 1657 } 1658 1659 out_unlock: 1660 up_read((&EXT4_I(inode)->i_data_sem)); 1661 1662 return retval; 1663 } 1664 1665 /* 1666 * This is a special get_blocks_t callback which is used by 1667 * ext4_da_write_begin(). It will either return mapped block or 1668 * reserve space for a single block. 1669 * 1670 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1671 * We also have b_blocknr = -1 and b_bdev initialized properly 1672 * 1673 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1674 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1675 * initialized properly. 1676 */ 1677 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1678 struct buffer_head *bh, int create) 1679 { 1680 struct ext4_map_blocks map; 1681 int ret = 0; 1682 1683 BUG_ON(create == 0); 1684 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1685 1686 map.m_lblk = iblock; 1687 map.m_len = 1; 1688 1689 /* 1690 * first, we need to know whether the block is allocated already 1691 * preallocated blocks are unmapped but should treated 1692 * the same as allocated blocks. 1693 */ 1694 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1695 if (ret <= 0) 1696 return ret; 1697 1698 map_bh(bh, inode->i_sb, map.m_pblk); 1699 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1700 1701 if (buffer_unwritten(bh)) { 1702 /* A delayed write to unwritten bh should be marked 1703 * new and mapped. Mapped ensures that we don't do 1704 * get_block multiple times when we write to the same 1705 * offset and new ensures that we do proper zero out 1706 * for partial write. 1707 */ 1708 set_buffer_new(bh); 1709 set_buffer_mapped(bh); 1710 } 1711 return 0; 1712 } 1713 1714 static int bget_one(handle_t *handle, struct buffer_head *bh) 1715 { 1716 get_bh(bh); 1717 return 0; 1718 } 1719 1720 static int bput_one(handle_t *handle, struct buffer_head *bh) 1721 { 1722 put_bh(bh); 1723 return 0; 1724 } 1725 1726 static int __ext4_journalled_writepage(struct page *page, 1727 unsigned int len) 1728 { 1729 struct address_space *mapping = page->mapping; 1730 struct inode *inode = mapping->host; 1731 struct buffer_head *page_bufs = NULL; 1732 handle_t *handle = NULL; 1733 int ret = 0, err = 0; 1734 int inline_data = ext4_has_inline_data(inode); 1735 struct buffer_head *inode_bh = NULL; 1736 1737 ClearPageChecked(page); 1738 1739 if (inline_data) { 1740 BUG_ON(page->index != 0); 1741 BUG_ON(len > ext4_get_max_inline_size(inode)); 1742 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1743 if (inode_bh == NULL) 1744 goto out; 1745 } else { 1746 page_bufs = page_buffers(page); 1747 if (!page_bufs) { 1748 BUG(); 1749 goto out; 1750 } 1751 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1752 NULL, bget_one); 1753 } 1754 /* As soon as we unlock the page, it can go away, but we have 1755 * references to buffers so we are safe */ 1756 unlock_page(page); 1757 1758 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1759 ext4_writepage_trans_blocks(inode)); 1760 if (IS_ERR(handle)) { 1761 ret = PTR_ERR(handle); 1762 goto out; 1763 } 1764 1765 BUG_ON(!ext4_handle_valid(handle)); 1766 1767 if (inline_data) { 1768 ret = ext4_journal_get_write_access(handle, inode_bh); 1769 1770 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1771 1772 } else { 1773 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1774 do_journal_get_write_access); 1775 1776 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1777 write_end_fn); 1778 } 1779 if (ret == 0) 1780 ret = err; 1781 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1782 err = ext4_journal_stop(handle); 1783 if (!ret) 1784 ret = err; 1785 1786 if (!ext4_has_inline_data(inode)) 1787 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1788 NULL, bput_one); 1789 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1790 out: 1791 brelse(inode_bh); 1792 return ret; 1793 } 1794 1795 /* 1796 * Note that we don't need to start a transaction unless we're journaling data 1797 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1798 * need to file the inode to the transaction's list in ordered mode because if 1799 * we are writing back data added by write(), the inode is already there and if 1800 * we are writing back data modified via mmap(), no one guarantees in which 1801 * transaction the data will hit the disk. In case we are journaling data, we 1802 * cannot start transaction directly because transaction start ranks above page 1803 * lock so we have to do some magic. 1804 * 1805 * This function can get called via... 1806 * - ext4_writepages after taking page lock (have journal handle) 1807 * - journal_submit_inode_data_buffers (no journal handle) 1808 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1809 * - grab_page_cache when doing write_begin (have journal handle) 1810 * 1811 * We don't do any block allocation in this function. If we have page with 1812 * multiple blocks we need to write those buffer_heads that are mapped. This 1813 * is important for mmaped based write. So if we do with blocksize 1K 1814 * truncate(f, 1024); 1815 * a = mmap(f, 0, 4096); 1816 * a[0] = 'a'; 1817 * truncate(f, 4096); 1818 * we have in the page first buffer_head mapped via page_mkwrite call back 1819 * but other buffer_heads would be unmapped but dirty (dirty done via the 1820 * do_wp_page). So writepage should write the first block. If we modify 1821 * the mmap area beyond 1024 we will again get a page_fault and the 1822 * page_mkwrite callback will do the block allocation and mark the 1823 * buffer_heads mapped. 1824 * 1825 * We redirty the page if we have any buffer_heads that is either delay or 1826 * unwritten in the page. 1827 * 1828 * We can get recursively called as show below. 1829 * 1830 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1831 * ext4_writepage() 1832 * 1833 * But since we don't do any block allocation we should not deadlock. 1834 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1835 */ 1836 static int ext4_writepage(struct page *page, 1837 struct writeback_control *wbc) 1838 { 1839 int ret = 0; 1840 loff_t size; 1841 unsigned int len; 1842 struct buffer_head *page_bufs = NULL; 1843 struct inode *inode = page->mapping->host; 1844 struct ext4_io_submit io_submit; 1845 1846 trace_ext4_writepage(page); 1847 size = i_size_read(inode); 1848 if (page->index == size >> PAGE_CACHE_SHIFT) 1849 len = size & ~PAGE_CACHE_MASK; 1850 else 1851 len = PAGE_CACHE_SIZE; 1852 1853 page_bufs = page_buffers(page); 1854 /* 1855 * We cannot do block allocation or other extent handling in this 1856 * function. If there are buffers needing that, we have to redirty 1857 * the page. But we may reach here when we do a journal commit via 1858 * journal_submit_inode_data_buffers() and in that case we must write 1859 * allocated buffers to achieve data=ordered mode guarantees. 1860 */ 1861 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1862 ext4_bh_delay_or_unwritten)) { 1863 redirty_page_for_writepage(wbc, page); 1864 if (current->flags & PF_MEMALLOC) { 1865 /* 1866 * For memory cleaning there's no point in writing only 1867 * some buffers. So just bail out. Warn if we came here 1868 * from direct reclaim. 1869 */ 1870 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1871 == PF_MEMALLOC); 1872 unlock_page(page); 1873 return 0; 1874 } 1875 } 1876 1877 if (PageChecked(page) && ext4_should_journal_data(inode)) 1878 /* 1879 * It's mmapped pagecache. Add buffers and journal it. There 1880 * doesn't seem much point in redirtying the page here. 1881 */ 1882 return __ext4_journalled_writepage(page, len); 1883 1884 ext4_io_submit_init(&io_submit, wbc); 1885 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1886 if (!io_submit.io_end) { 1887 redirty_page_for_writepage(wbc, page); 1888 unlock_page(page); 1889 return -ENOMEM; 1890 } 1891 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 1892 ext4_io_submit(&io_submit); 1893 /* Drop io_end reference we got from init */ 1894 ext4_put_io_end_defer(io_submit.io_end); 1895 return ret; 1896 } 1897 1898 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1899 { 1900 int len; 1901 loff_t size = i_size_read(mpd->inode); 1902 int err; 1903 1904 BUG_ON(page->index != mpd->first_page); 1905 if (page->index == size >> PAGE_CACHE_SHIFT) 1906 len = size & ~PAGE_CACHE_MASK; 1907 else 1908 len = PAGE_CACHE_SIZE; 1909 clear_page_dirty_for_io(page); 1910 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc); 1911 if (!err) 1912 mpd->wbc->nr_to_write--; 1913 mpd->first_page++; 1914 1915 return err; 1916 } 1917 1918 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1919 1920 /* 1921 * mballoc gives us at most this number of blocks... 1922 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1923 * The rest of mballoc seems to handle chunks up to full group size. 1924 */ 1925 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1926 1927 /* 1928 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1929 * 1930 * @mpd - extent of blocks 1931 * @lblk - logical number of the block in the file 1932 * @bh - buffer head we want to add to the extent 1933 * 1934 * The function is used to collect contig. blocks in the same state. If the 1935 * buffer doesn't require mapping for writeback and we haven't started the 1936 * extent of buffers to map yet, the function returns 'true' immediately - the 1937 * caller can write the buffer right away. Otherwise the function returns true 1938 * if the block has been added to the extent, false if the block couldn't be 1939 * added. 1940 */ 1941 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1942 struct buffer_head *bh) 1943 { 1944 struct ext4_map_blocks *map = &mpd->map; 1945 1946 /* Buffer that doesn't need mapping for writeback? */ 1947 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1948 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1949 /* So far no extent to map => we write the buffer right away */ 1950 if (map->m_len == 0) 1951 return true; 1952 return false; 1953 } 1954 1955 /* First block in the extent? */ 1956 if (map->m_len == 0) { 1957 map->m_lblk = lblk; 1958 map->m_len = 1; 1959 map->m_flags = bh->b_state & BH_FLAGS; 1960 return true; 1961 } 1962 1963 /* Don't go larger than mballoc is willing to allocate */ 1964 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1965 return false; 1966 1967 /* Can we merge the block to our big extent? */ 1968 if (lblk == map->m_lblk + map->m_len && 1969 (bh->b_state & BH_FLAGS) == map->m_flags) { 1970 map->m_len++; 1971 return true; 1972 } 1973 return false; 1974 } 1975 1976 /* 1977 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1978 * 1979 * @mpd - extent of blocks for mapping 1980 * @head - the first buffer in the page 1981 * @bh - buffer we should start processing from 1982 * @lblk - logical number of the block in the file corresponding to @bh 1983 * 1984 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1985 * the page for IO if all buffers in this page were mapped and there's no 1986 * accumulated extent of buffers to map or add buffers in the page to the 1987 * extent of buffers to map. The function returns 1 if the caller can continue 1988 * by processing the next page, 0 if it should stop adding buffers to the 1989 * extent to map because we cannot extend it anymore. It can also return value 1990 * < 0 in case of error during IO submission. 1991 */ 1992 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1993 struct buffer_head *head, 1994 struct buffer_head *bh, 1995 ext4_lblk_t lblk) 1996 { 1997 struct inode *inode = mpd->inode; 1998 int err; 1999 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2000 >> inode->i_blkbits; 2001 2002 do { 2003 BUG_ON(buffer_locked(bh)); 2004 2005 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2006 /* Found extent to map? */ 2007 if (mpd->map.m_len) 2008 return 0; 2009 /* Everything mapped so far and we hit EOF */ 2010 break; 2011 } 2012 } while (lblk++, (bh = bh->b_this_page) != head); 2013 /* So far everything mapped? Submit the page for IO. */ 2014 if (mpd->map.m_len == 0) { 2015 err = mpage_submit_page(mpd, head->b_page); 2016 if (err < 0) 2017 return err; 2018 } 2019 return lblk < blocks; 2020 } 2021 2022 /* 2023 * mpage_map_buffers - update buffers corresponding to changed extent and 2024 * submit fully mapped pages for IO 2025 * 2026 * @mpd - description of extent to map, on return next extent to map 2027 * 2028 * Scan buffers corresponding to changed extent (we expect corresponding pages 2029 * to be already locked) and update buffer state according to new extent state. 2030 * We map delalloc buffers to their physical location, clear unwritten bits, 2031 * and mark buffers as uninit when we perform writes to uninitialized extents 2032 * and do extent conversion after IO is finished. If the last page is not fully 2033 * mapped, we update @map to the next extent in the last page that needs 2034 * mapping. Otherwise we submit the page for IO. 2035 */ 2036 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2037 { 2038 struct pagevec pvec; 2039 int nr_pages, i; 2040 struct inode *inode = mpd->inode; 2041 struct buffer_head *head, *bh; 2042 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2043 pgoff_t start, end; 2044 ext4_lblk_t lblk; 2045 sector_t pblock; 2046 int err; 2047 2048 start = mpd->map.m_lblk >> bpp_bits; 2049 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2050 lblk = start << bpp_bits; 2051 pblock = mpd->map.m_pblk; 2052 2053 pagevec_init(&pvec, 0); 2054 while (start <= end) { 2055 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2056 PAGEVEC_SIZE); 2057 if (nr_pages == 0) 2058 break; 2059 for (i = 0; i < nr_pages; i++) { 2060 struct page *page = pvec.pages[i]; 2061 2062 if (page->index > end) 2063 break; 2064 /* Up to 'end' pages must be contiguous */ 2065 BUG_ON(page->index != start); 2066 bh = head = page_buffers(page); 2067 do { 2068 if (lblk < mpd->map.m_lblk) 2069 continue; 2070 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2071 /* 2072 * Buffer after end of mapped extent. 2073 * Find next buffer in the page to map. 2074 */ 2075 mpd->map.m_len = 0; 2076 mpd->map.m_flags = 0; 2077 /* 2078 * FIXME: If dioread_nolock supports 2079 * blocksize < pagesize, we need to make 2080 * sure we add size mapped so far to 2081 * io_end->size as the following call 2082 * can submit the page for IO. 2083 */ 2084 err = mpage_process_page_bufs(mpd, head, 2085 bh, lblk); 2086 pagevec_release(&pvec); 2087 if (err > 0) 2088 err = 0; 2089 return err; 2090 } 2091 if (buffer_delay(bh)) { 2092 clear_buffer_delay(bh); 2093 bh->b_blocknr = pblock++; 2094 } 2095 clear_buffer_unwritten(bh); 2096 } while (lblk++, (bh = bh->b_this_page) != head); 2097 2098 /* 2099 * FIXME: This is going to break if dioread_nolock 2100 * supports blocksize < pagesize as we will try to 2101 * convert potentially unmapped parts of inode. 2102 */ 2103 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2104 /* Page fully mapped - let IO run! */ 2105 err = mpage_submit_page(mpd, page); 2106 if (err < 0) { 2107 pagevec_release(&pvec); 2108 return err; 2109 } 2110 start++; 2111 } 2112 pagevec_release(&pvec); 2113 } 2114 /* Extent fully mapped and matches with page boundary. We are done. */ 2115 mpd->map.m_len = 0; 2116 mpd->map.m_flags = 0; 2117 return 0; 2118 } 2119 2120 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2121 { 2122 struct inode *inode = mpd->inode; 2123 struct ext4_map_blocks *map = &mpd->map; 2124 int get_blocks_flags; 2125 int err; 2126 2127 trace_ext4_da_write_pages_extent(inode, map); 2128 /* 2129 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2130 * to convert an uninitialized extent to be initialized (in the case 2131 * where we have written into one or more preallocated blocks). It is 2132 * possible that we're going to need more metadata blocks than 2133 * previously reserved. However we must not fail because we're in 2134 * writeback and there is nothing we can do about it so it might result 2135 * in data loss. So use reserved blocks to allocate metadata if 2136 * possible. 2137 * 2138 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2139 * in question are delalloc blocks. This affects functions in many 2140 * different parts of the allocation call path. This flag exists 2141 * primarily because we don't want to change *many* call functions, so 2142 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2143 * once the inode's allocation semaphore is taken. 2144 */ 2145 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2146 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2147 if (ext4_should_dioread_nolock(inode)) 2148 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2149 if (map->m_flags & (1 << BH_Delay)) 2150 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2151 2152 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2153 if (err < 0) 2154 return err; 2155 if (map->m_flags & EXT4_MAP_UNINIT) { 2156 if (!mpd->io_submit.io_end->handle && 2157 ext4_handle_valid(handle)) { 2158 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2159 handle->h_rsv_handle = NULL; 2160 } 2161 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2162 } 2163 2164 BUG_ON(map->m_len == 0); 2165 if (map->m_flags & EXT4_MAP_NEW) { 2166 struct block_device *bdev = inode->i_sb->s_bdev; 2167 int i; 2168 2169 for (i = 0; i < map->m_len; i++) 2170 unmap_underlying_metadata(bdev, map->m_pblk + i); 2171 } 2172 return 0; 2173 } 2174 2175 /* 2176 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2177 * mpd->len and submit pages underlying it for IO 2178 * 2179 * @handle - handle for journal operations 2180 * @mpd - extent to map 2181 * @give_up_on_write - we set this to true iff there is a fatal error and there 2182 * is no hope of writing the data. The caller should discard 2183 * dirty pages to avoid infinite loops. 2184 * 2185 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2186 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2187 * them to initialized or split the described range from larger unwritten 2188 * extent. Note that we need not map all the described range since allocation 2189 * can return less blocks or the range is covered by more unwritten extents. We 2190 * cannot map more because we are limited by reserved transaction credits. On 2191 * the other hand we always make sure that the last touched page is fully 2192 * mapped so that it can be written out (and thus forward progress is 2193 * guaranteed). After mapping we submit all mapped pages for IO. 2194 */ 2195 static int mpage_map_and_submit_extent(handle_t *handle, 2196 struct mpage_da_data *mpd, 2197 bool *give_up_on_write) 2198 { 2199 struct inode *inode = mpd->inode; 2200 struct ext4_map_blocks *map = &mpd->map; 2201 int err; 2202 loff_t disksize; 2203 2204 mpd->io_submit.io_end->offset = 2205 ((loff_t)map->m_lblk) << inode->i_blkbits; 2206 do { 2207 err = mpage_map_one_extent(handle, mpd); 2208 if (err < 0) { 2209 struct super_block *sb = inode->i_sb; 2210 2211 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2212 goto invalidate_dirty_pages; 2213 /* 2214 * Let the uper layers retry transient errors. 2215 * In the case of ENOSPC, if ext4_count_free_blocks() 2216 * is non-zero, a commit should free up blocks. 2217 */ 2218 if ((err == -ENOMEM) || 2219 (err == -ENOSPC && ext4_count_free_clusters(sb))) 2220 return err; 2221 ext4_msg(sb, KERN_CRIT, 2222 "Delayed block allocation failed for " 2223 "inode %lu at logical offset %llu with" 2224 " max blocks %u with error %d", 2225 inode->i_ino, 2226 (unsigned long long)map->m_lblk, 2227 (unsigned)map->m_len, -err); 2228 ext4_msg(sb, KERN_CRIT, 2229 "This should not happen!! Data will " 2230 "be lost\n"); 2231 if (err == -ENOSPC) 2232 ext4_print_free_blocks(inode); 2233 invalidate_dirty_pages: 2234 *give_up_on_write = true; 2235 return err; 2236 } 2237 /* 2238 * Update buffer state, submit mapped pages, and get us new 2239 * extent to map 2240 */ 2241 err = mpage_map_and_submit_buffers(mpd); 2242 if (err < 0) 2243 return err; 2244 } while (map->m_len); 2245 2246 /* Update on-disk size after IO is submitted */ 2247 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2248 if (disksize > EXT4_I(inode)->i_disksize) { 2249 int err2; 2250 2251 ext4_wb_update_i_disksize(inode, disksize); 2252 err2 = ext4_mark_inode_dirty(handle, inode); 2253 if (err2) 2254 ext4_error(inode->i_sb, 2255 "Failed to mark inode %lu dirty", 2256 inode->i_ino); 2257 if (!err) 2258 err = err2; 2259 } 2260 return err; 2261 } 2262 2263 /* 2264 * Calculate the total number of credits to reserve for one writepages 2265 * iteration. This is called from ext4_writepages(). We map an extent of 2266 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2267 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2268 * bpp - 1 blocks in bpp different extents. 2269 */ 2270 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2271 { 2272 int bpp = ext4_journal_blocks_per_page(inode); 2273 2274 return ext4_meta_trans_blocks(inode, 2275 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2276 } 2277 2278 /* 2279 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2280 * and underlying extent to map 2281 * 2282 * @mpd - where to look for pages 2283 * 2284 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2285 * IO immediately. When we find a page which isn't mapped we start accumulating 2286 * extent of buffers underlying these pages that needs mapping (formed by 2287 * either delayed or unwritten buffers). We also lock the pages containing 2288 * these buffers. The extent found is returned in @mpd structure (starting at 2289 * mpd->lblk with length mpd->len blocks). 2290 * 2291 * Note that this function can attach bios to one io_end structure which are 2292 * neither logically nor physically contiguous. Although it may seem as an 2293 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2294 * case as we need to track IO to all buffers underlying a page in one io_end. 2295 */ 2296 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2297 { 2298 struct address_space *mapping = mpd->inode->i_mapping; 2299 struct pagevec pvec; 2300 unsigned int nr_pages; 2301 long left = mpd->wbc->nr_to_write; 2302 pgoff_t index = mpd->first_page; 2303 pgoff_t end = mpd->last_page; 2304 int tag; 2305 int i, err = 0; 2306 int blkbits = mpd->inode->i_blkbits; 2307 ext4_lblk_t lblk; 2308 struct buffer_head *head; 2309 2310 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2311 tag = PAGECACHE_TAG_TOWRITE; 2312 else 2313 tag = PAGECACHE_TAG_DIRTY; 2314 2315 pagevec_init(&pvec, 0); 2316 mpd->map.m_len = 0; 2317 mpd->next_page = index; 2318 while (index <= end) { 2319 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2320 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2321 if (nr_pages == 0) 2322 goto out; 2323 2324 for (i = 0; i < nr_pages; i++) { 2325 struct page *page = pvec.pages[i]; 2326 2327 /* 2328 * At this point, the page may be truncated or 2329 * invalidated (changing page->mapping to NULL), or 2330 * even swizzled back from swapper_space to tmpfs file 2331 * mapping. However, page->index will not change 2332 * because we have a reference on the page. 2333 */ 2334 if (page->index > end) 2335 goto out; 2336 2337 /* 2338 * Accumulated enough dirty pages? This doesn't apply 2339 * to WB_SYNC_ALL mode. For integrity sync we have to 2340 * keep going because someone may be concurrently 2341 * dirtying pages, and we might have synced a lot of 2342 * newly appeared dirty pages, but have not synced all 2343 * of the old dirty pages. 2344 */ 2345 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2346 goto out; 2347 2348 /* If we can't merge this page, we are done. */ 2349 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2350 goto out; 2351 2352 lock_page(page); 2353 /* 2354 * If the page is no longer dirty, or its mapping no 2355 * longer corresponds to inode we are writing (which 2356 * means it has been truncated or invalidated), or the 2357 * page is already under writeback and we are not doing 2358 * a data integrity writeback, skip the page 2359 */ 2360 if (!PageDirty(page) || 2361 (PageWriteback(page) && 2362 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2363 unlikely(page->mapping != mapping)) { 2364 unlock_page(page); 2365 continue; 2366 } 2367 2368 wait_on_page_writeback(page); 2369 BUG_ON(PageWriteback(page)); 2370 2371 if (mpd->map.m_len == 0) 2372 mpd->first_page = page->index; 2373 mpd->next_page = page->index + 1; 2374 /* Add all dirty buffers to mpd */ 2375 lblk = ((ext4_lblk_t)page->index) << 2376 (PAGE_CACHE_SHIFT - blkbits); 2377 head = page_buffers(page); 2378 err = mpage_process_page_bufs(mpd, head, head, lblk); 2379 if (err <= 0) 2380 goto out; 2381 err = 0; 2382 left--; 2383 } 2384 pagevec_release(&pvec); 2385 cond_resched(); 2386 } 2387 return 0; 2388 out: 2389 pagevec_release(&pvec); 2390 return err; 2391 } 2392 2393 static int __writepage(struct page *page, struct writeback_control *wbc, 2394 void *data) 2395 { 2396 struct address_space *mapping = data; 2397 int ret = ext4_writepage(page, wbc); 2398 mapping_set_error(mapping, ret); 2399 return ret; 2400 } 2401 2402 static int ext4_writepages(struct address_space *mapping, 2403 struct writeback_control *wbc) 2404 { 2405 pgoff_t writeback_index = 0; 2406 long nr_to_write = wbc->nr_to_write; 2407 int range_whole = 0; 2408 int cycled = 1; 2409 handle_t *handle = NULL; 2410 struct mpage_da_data mpd; 2411 struct inode *inode = mapping->host; 2412 int needed_blocks, rsv_blocks = 0, ret = 0; 2413 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2414 bool done; 2415 struct blk_plug plug; 2416 bool give_up_on_write = false; 2417 2418 trace_ext4_writepages(inode, wbc); 2419 2420 /* 2421 * No pages to write? This is mainly a kludge to avoid starting 2422 * a transaction for special inodes like journal inode on last iput() 2423 * because that could violate lock ordering on umount 2424 */ 2425 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2426 goto out_writepages; 2427 2428 if (ext4_should_journal_data(inode)) { 2429 struct blk_plug plug; 2430 2431 blk_start_plug(&plug); 2432 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2433 blk_finish_plug(&plug); 2434 goto out_writepages; 2435 } 2436 2437 /* 2438 * If the filesystem has aborted, it is read-only, so return 2439 * right away instead of dumping stack traces later on that 2440 * will obscure the real source of the problem. We test 2441 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2442 * the latter could be true if the filesystem is mounted 2443 * read-only, and in that case, ext4_writepages should 2444 * *never* be called, so if that ever happens, we would want 2445 * the stack trace. 2446 */ 2447 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2448 ret = -EROFS; 2449 goto out_writepages; 2450 } 2451 2452 if (ext4_should_dioread_nolock(inode)) { 2453 /* 2454 * We may need to convert up to one extent per block in 2455 * the page and we may dirty the inode. 2456 */ 2457 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2458 } 2459 2460 /* 2461 * If we have inline data and arrive here, it means that 2462 * we will soon create the block for the 1st page, so 2463 * we'd better clear the inline data here. 2464 */ 2465 if (ext4_has_inline_data(inode)) { 2466 /* Just inode will be modified... */ 2467 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2468 if (IS_ERR(handle)) { 2469 ret = PTR_ERR(handle); 2470 goto out_writepages; 2471 } 2472 BUG_ON(ext4_test_inode_state(inode, 2473 EXT4_STATE_MAY_INLINE_DATA)); 2474 ext4_destroy_inline_data(handle, inode); 2475 ext4_journal_stop(handle); 2476 } 2477 2478 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2479 range_whole = 1; 2480 2481 if (wbc->range_cyclic) { 2482 writeback_index = mapping->writeback_index; 2483 if (writeback_index) 2484 cycled = 0; 2485 mpd.first_page = writeback_index; 2486 mpd.last_page = -1; 2487 } else { 2488 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2489 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2490 } 2491 2492 mpd.inode = inode; 2493 mpd.wbc = wbc; 2494 ext4_io_submit_init(&mpd.io_submit, wbc); 2495 retry: 2496 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2497 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2498 done = false; 2499 blk_start_plug(&plug); 2500 while (!done && mpd.first_page <= mpd.last_page) { 2501 /* For each extent of pages we use new io_end */ 2502 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2503 if (!mpd.io_submit.io_end) { 2504 ret = -ENOMEM; 2505 break; 2506 } 2507 2508 /* 2509 * We have two constraints: We find one extent to map and we 2510 * must always write out whole page (makes a difference when 2511 * blocksize < pagesize) so that we don't block on IO when we 2512 * try to write out the rest of the page. Journalled mode is 2513 * not supported by delalloc. 2514 */ 2515 BUG_ON(ext4_should_journal_data(inode)); 2516 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2517 2518 /* start a new transaction */ 2519 handle = ext4_journal_start_with_reserve(inode, 2520 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2521 if (IS_ERR(handle)) { 2522 ret = PTR_ERR(handle); 2523 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2524 "%ld pages, ino %lu; err %d", __func__, 2525 wbc->nr_to_write, inode->i_ino, ret); 2526 /* Release allocated io_end */ 2527 ext4_put_io_end(mpd.io_submit.io_end); 2528 break; 2529 } 2530 2531 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2532 ret = mpage_prepare_extent_to_map(&mpd); 2533 if (!ret) { 2534 if (mpd.map.m_len) 2535 ret = mpage_map_and_submit_extent(handle, &mpd, 2536 &give_up_on_write); 2537 else { 2538 /* 2539 * We scanned the whole range (or exhausted 2540 * nr_to_write), submitted what was mapped and 2541 * didn't find anything needing mapping. We are 2542 * done. 2543 */ 2544 done = true; 2545 } 2546 } 2547 ext4_journal_stop(handle); 2548 /* Submit prepared bio */ 2549 ext4_io_submit(&mpd.io_submit); 2550 /* Unlock pages we didn't use */ 2551 mpage_release_unused_pages(&mpd, give_up_on_write); 2552 /* Drop our io_end reference we got from init */ 2553 ext4_put_io_end(mpd.io_submit.io_end); 2554 2555 if (ret == -ENOSPC && sbi->s_journal) { 2556 /* 2557 * Commit the transaction which would 2558 * free blocks released in the transaction 2559 * and try again 2560 */ 2561 jbd2_journal_force_commit_nested(sbi->s_journal); 2562 ret = 0; 2563 continue; 2564 } 2565 /* Fatal error - ENOMEM, EIO... */ 2566 if (ret) 2567 break; 2568 } 2569 blk_finish_plug(&plug); 2570 if (!ret && !cycled && wbc->nr_to_write > 0) { 2571 cycled = 1; 2572 mpd.last_page = writeback_index - 1; 2573 mpd.first_page = 0; 2574 goto retry; 2575 } 2576 2577 /* Update index */ 2578 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2579 /* 2580 * Set the writeback_index so that range_cyclic 2581 * mode will write it back later 2582 */ 2583 mapping->writeback_index = mpd.first_page; 2584 2585 out_writepages: 2586 trace_ext4_writepages_result(inode, wbc, ret, 2587 nr_to_write - wbc->nr_to_write); 2588 return ret; 2589 } 2590 2591 static int ext4_nonda_switch(struct super_block *sb) 2592 { 2593 s64 free_clusters, dirty_clusters; 2594 struct ext4_sb_info *sbi = EXT4_SB(sb); 2595 2596 /* 2597 * switch to non delalloc mode if we are running low 2598 * on free block. The free block accounting via percpu 2599 * counters can get slightly wrong with percpu_counter_batch getting 2600 * accumulated on each CPU without updating global counters 2601 * Delalloc need an accurate free block accounting. So switch 2602 * to non delalloc when we are near to error range. 2603 */ 2604 free_clusters = 2605 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2606 dirty_clusters = 2607 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2608 /* 2609 * Start pushing delalloc when 1/2 of free blocks are dirty. 2610 */ 2611 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2612 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2613 2614 if (2 * free_clusters < 3 * dirty_clusters || 2615 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2616 /* 2617 * free block count is less than 150% of dirty blocks 2618 * or free blocks is less than watermark 2619 */ 2620 return 1; 2621 } 2622 return 0; 2623 } 2624 2625 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2626 loff_t pos, unsigned len, unsigned flags, 2627 struct page **pagep, void **fsdata) 2628 { 2629 int ret, retries = 0; 2630 struct page *page; 2631 pgoff_t index; 2632 struct inode *inode = mapping->host; 2633 handle_t *handle; 2634 2635 index = pos >> PAGE_CACHE_SHIFT; 2636 2637 if (ext4_nonda_switch(inode->i_sb)) { 2638 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2639 return ext4_write_begin(file, mapping, pos, 2640 len, flags, pagep, fsdata); 2641 } 2642 *fsdata = (void *)0; 2643 trace_ext4_da_write_begin(inode, pos, len, flags); 2644 2645 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2646 ret = ext4_da_write_inline_data_begin(mapping, inode, 2647 pos, len, flags, 2648 pagep, fsdata); 2649 if (ret < 0) 2650 return ret; 2651 if (ret == 1) 2652 return 0; 2653 } 2654 2655 /* 2656 * grab_cache_page_write_begin() can take a long time if the 2657 * system is thrashing due to memory pressure, or if the page 2658 * is being written back. So grab it first before we start 2659 * the transaction handle. This also allows us to allocate 2660 * the page (if needed) without using GFP_NOFS. 2661 */ 2662 retry_grab: 2663 page = grab_cache_page_write_begin(mapping, index, flags); 2664 if (!page) 2665 return -ENOMEM; 2666 unlock_page(page); 2667 2668 /* 2669 * With delayed allocation, we don't log the i_disksize update 2670 * if there is delayed block allocation. But we still need 2671 * to journalling the i_disksize update if writes to the end 2672 * of file which has an already mapped buffer. 2673 */ 2674 retry_journal: 2675 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2676 if (IS_ERR(handle)) { 2677 page_cache_release(page); 2678 return PTR_ERR(handle); 2679 } 2680 2681 lock_page(page); 2682 if (page->mapping != mapping) { 2683 /* The page got truncated from under us */ 2684 unlock_page(page); 2685 page_cache_release(page); 2686 ext4_journal_stop(handle); 2687 goto retry_grab; 2688 } 2689 /* In case writeback began while the page was unlocked */ 2690 wait_for_stable_page(page); 2691 2692 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2693 if (ret < 0) { 2694 unlock_page(page); 2695 ext4_journal_stop(handle); 2696 /* 2697 * block_write_begin may have instantiated a few blocks 2698 * outside i_size. Trim these off again. Don't need 2699 * i_size_read because we hold i_mutex. 2700 */ 2701 if (pos + len > inode->i_size) 2702 ext4_truncate_failed_write(inode); 2703 2704 if (ret == -ENOSPC && 2705 ext4_should_retry_alloc(inode->i_sb, &retries)) 2706 goto retry_journal; 2707 2708 page_cache_release(page); 2709 return ret; 2710 } 2711 2712 *pagep = page; 2713 return ret; 2714 } 2715 2716 /* 2717 * Check if we should update i_disksize 2718 * when write to the end of file but not require block allocation 2719 */ 2720 static int ext4_da_should_update_i_disksize(struct page *page, 2721 unsigned long offset) 2722 { 2723 struct buffer_head *bh; 2724 struct inode *inode = page->mapping->host; 2725 unsigned int idx; 2726 int i; 2727 2728 bh = page_buffers(page); 2729 idx = offset >> inode->i_blkbits; 2730 2731 for (i = 0; i < idx; i++) 2732 bh = bh->b_this_page; 2733 2734 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2735 return 0; 2736 return 1; 2737 } 2738 2739 static int ext4_da_write_end(struct file *file, 2740 struct address_space *mapping, 2741 loff_t pos, unsigned len, unsigned copied, 2742 struct page *page, void *fsdata) 2743 { 2744 struct inode *inode = mapping->host; 2745 int ret = 0, ret2; 2746 handle_t *handle = ext4_journal_current_handle(); 2747 loff_t new_i_size; 2748 unsigned long start, end; 2749 int write_mode = (int)(unsigned long)fsdata; 2750 2751 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2752 return ext4_write_end(file, mapping, pos, 2753 len, copied, page, fsdata); 2754 2755 trace_ext4_da_write_end(inode, pos, len, copied); 2756 start = pos & (PAGE_CACHE_SIZE - 1); 2757 end = start + copied - 1; 2758 2759 /* 2760 * generic_write_end() will run mark_inode_dirty() if i_size 2761 * changes. So let's piggyback the i_disksize mark_inode_dirty 2762 * into that. 2763 */ 2764 new_i_size = pos + copied; 2765 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2766 if (ext4_has_inline_data(inode) || 2767 ext4_da_should_update_i_disksize(page, end)) { 2768 down_write(&EXT4_I(inode)->i_data_sem); 2769 if (new_i_size > EXT4_I(inode)->i_disksize) 2770 EXT4_I(inode)->i_disksize = new_i_size; 2771 up_write(&EXT4_I(inode)->i_data_sem); 2772 /* We need to mark inode dirty even if 2773 * new_i_size is less that inode->i_size 2774 * bu greater than i_disksize.(hint delalloc) 2775 */ 2776 ext4_mark_inode_dirty(handle, inode); 2777 } 2778 } 2779 2780 if (write_mode != CONVERT_INLINE_DATA && 2781 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2782 ext4_has_inline_data(inode)) 2783 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2784 page); 2785 else 2786 ret2 = generic_write_end(file, mapping, pos, len, copied, 2787 page, fsdata); 2788 2789 copied = ret2; 2790 if (ret2 < 0) 2791 ret = ret2; 2792 ret2 = ext4_journal_stop(handle); 2793 if (!ret) 2794 ret = ret2; 2795 2796 return ret ? ret : copied; 2797 } 2798 2799 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2800 unsigned int length) 2801 { 2802 /* 2803 * Drop reserved blocks 2804 */ 2805 BUG_ON(!PageLocked(page)); 2806 if (!page_has_buffers(page)) 2807 goto out; 2808 2809 ext4_da_page_release_reservation(page, offset, length); 2810 2811 out: 2812 ext4_invalidatepage(page, offset, length); 2813 2814 return; 2815 } 2816 2817 /* 2818 * Force all delayed allocation blocks to be allocated for a given inode. 2819 */ 2820 int ext4_alloc_da_blocks(struct inode *inode) 2821 { 2822 trace_ext4_alloc_da_blocks(inode); 2823 2824 if (!EXT4_I(inode)->i_reserved_data_blocks && 2825 !EXT4_I(inode)->i_reserved_meta_blocks) 2826 return 0; 2827 2828 /* 2829 * We do something simple for now. The filemap_flush() will 2830 * also start triggering a write of the data blocks, which is 2831 * not strictly speaking necessary (and for users of 2832 * laptop_mode, not even desirable). However, to do otherwise 2833 * would require replicating code paths in: 2834 * 2835 * ext4_writepages() -> 2836 * write_cache_pages() ---> (via passed in callback function) 2837 * __mpage_da_writepage() --> 2838 * mpage_add_bh_to_extent() 2839 * mpage_da_map_blocks() 2840 * 2841 * The problem is that write_cache_pages(), located in 2842 * mm/page-writeback.c, marks pages clean in preparation for 2843 * doing I/O, which is not desirable if we're not planning on 2844 * doing I/O at all. 2845 * 2846 * We could call write_cache_pages(), and then redirty all of 2847 * the pages by calling redirty_page_for_writepage() but that 2848 * would be ugly in the extreme. So instead we would need to 2849 * replicate parts of the code in the above functions, 2850 * simplifying them because we wouldn't actually intend to 2851 * write out the pages, but rather only collect contiguous 2852 * logical block extents, call the multi-block allocator, and 2853 * then update the buffer heads with the block allocations. 2854 * 2855 * For now, though, we'll cheat by calling filemap_flush(), 2856 * which will map the blocks, and start the I/O, but not 2857 * actually wait for the I/O to complete. 2858 */ 2859 return filemap_flush(inode->i_mapping); 2860 } 2861 2862 /* 2863 * bmap() is special. It gets used by applications such as lilo and by 2864 * the swapper to find the on-disk block of a specific piece of data. 2865 * 2866 * Naturally, this is dangerous if the block concerned is still in the 2867 * journal. If somebody makes a swapfile on an ext4 data-journaling 2868 * filesystem and enables swap, then they may get a nasty shock when the 2869 * data getting swapped to that swapfile suddenly gets overwritten by 2870 * the original zero's written out previously to the journal and 2871 * awaiting writeback in the kernel's buffer cache. 2872 * 2873 * So, if we see any bmap calls here on a modified, data-journaled file, 2874 * take extra steps to flush any blocks which might be in the cache. 2875 */ 2876 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2877 { 2878 struct inode *inode = mapping->host; 2879 journal_t *journal; 2880 int err; 2881 2882 /* 2883 * We can get here for an inline file via the FIBMAP ioctl 2884 */ 2885 if (ext4_has_inline_data(inode)) 2886 return 0; 2887 2888 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2889 test_opt(inode->i_sb, DELALLOC)) { 2890 /* 2891 * With delalloc we want to sync the file 2892 * so that we can make sure we allocate 2893 * blocks for file 2894 */ 2895 filemap_write_and_wait(mapping); 2896 } 2897 2898 if (EXT4_JOURNAL(inode) && 2899 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2900 /* 2901 * This is a REALLY heavyweight approach, but the use of 2902 * bmap on dirty files is expected to be extremely rare: 2903 * only if we run lilo or swapon on a freshly made file 2904 * do we expect this to happen. 2905 * 2906 * (bmap requires CAP_SYS_RAWIO so this does not 2907 * represent an unprivileged user DOS attack --- we'd be 2908 * in trouble if mortal users could trigger this path at 2909 * will.) 2910 * 2911 * NB. EXT4_STATE_JDATA is not set on files other than 2912 * regular files. If somebody wants to bmap a directory 2913 * or symlink and gets confused because the buffer 2914 * hasn't yet been flushed to disk, they deserve 2915 * everything they get. 2916 */ 2917 2918 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2919 journal = EXT4_JOURNAL(inode); 2920 jbd2_journal_lock_updates(journal); 2921 err = jbd2_journal_flush(journal); 2922 jbd2_journal_unlock_updates(journal); 2923 2924 if (err) 2925 return 0; 2926 } 2927 2928 return generic_block_bmap(mapping, block, ext4_get_block); 2929 } 2930 2931 static int ext4_readpage(struct file *file, struct page *page) 2932 { 2933 int ret = -EAGAIN; 2934 struct inode *inode = page->mapping->host; 2935 2936 trace_ext4_readpage(page); 2937 2938 if (ext4_has_inline_data(inode)) 2939 ret = ext4_readpage_inline(inode, page); 2940 2941 if (ret == -EAGAIN) 2942 return mpage_readpage(page, ext4_get_block); 2943 2944 return ret; 2945 } 2946 2947 static int 2948 ext4_readpages(struct file *file, struct address_space *mapping, 2949 struct list_head *pages, unsigned nr_pages) 2950 { 2951 struct inode *inode = mapping->host; 2952 2953 /* If the file has inline data, no need to do readpages. */ 2954 if (ext4_has_inline_data(inode)) 2955 return 0; 2956 2957 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2958 } 2959 2960 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2961 unsigned int length) 2962 { 2963 trace_ext4_invalidatepage(page, offset, length); 2964 2965 /* No journalling happens on data buffers when this function is used */ 2966 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2967 2968 block_invalidatepage(page, offset, length); 2969 } 2970 2971 static int __ext4_journalled_invalidatepage(struct page *page, 2972 unsigned int offset, 2973 unsigned int length) 2974 { 2975 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2976 2977 trace_ext4_journalled_invalidatepage(page, offset, length); 2978 2979 /* 2980 * If it's a full truncate we just forget about the pending dirtying 2981 */ 2982 if (offset == 0 && length == PAGE_CACHE_SIZE) 2983 ClearPageChecked(page); 2984 2985 return jbd2_journal_invalidatepage(journal, page, offset, length); 2986 } 2987 2988 /* Wrapper for aops... */ 2989 static void ext4_journalled_invalidatepage(struct page *page, 2990 unsigned int offset, 2991 unsigned int length) 2992 { 2993 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2994 } 2995 2996 static int ext4_releasepage(struct page *page, gfp_t wait) 2997 { 2998 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2999 3000 trace_ext4_releasepage(page); 3001 3002 /* Page has dirty journalled data -> cannot release */ 3003 if (PageChecked(page)) 3004 return 0; 3005 if (journal) 3006 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3007 else 3008 return try_to_free_buffers(page); 3009 } 3010 3011 /* 3012 * ext4_get_block used when preparing for a DIO write or buffer write. 3013 * We allocate an uinitialized extent if blocks haven't been allocated. 3014 * The extent will be converted to initialized after the IO is complete. 3015 */ 3016 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3017 struct buffer_head *bh_result, int create) 3018 { 3019 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3020 inode->i_ino, create); 3021 return _ext4_get_block(inode, iblock, bh_result, 3022 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3023 } 3024 3025 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3026 struct buffer_head *bh_result, int create) 3027 { 3028 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3029 inode->i_ino, create); 3030 return _ext4_get_block(inode, iblock, bh_result, 3031 EXT4_GET_BLOCKS_NO_LOCK); 3032 } 3033 3034 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3035 ssize_t size, void *private) 3036 { 3037 ext4_io_end_t *io_end = iocb->private; 3038 3039 /* if not async direct IO just return */ 3040 if (!io_end) 3041 return; 3042 3043 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3044 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3045 iocb->private, io_end->inode->i_ino, iocb, offset, 3046 size); 3047 3048 iocb->private = NULL; 3049 io_end->offset = offset; 3050 io_end->size = size; 3051 ext4_put_io_end(io_end); 3052 } 3053 3054 /* 3055 * For ext4 extent files, ext4 will do direct-io write to holes, 3056 * preallocated extents, and those write extend the file, no need to 3057 * fall back to buffered IO. 3058 * 3059 * For holes, we fallocate those blocks, mark them as uninitialized 3060 * If those blocks were preallocated, we mark sure they are split, but 3061 * still keep the range to write as uninitialized. 3062 * 3063 * The unwritten extents will be converted to written when DIO is completed. 3064 * For async direct IO, since the IO may still pending when return, we 3065 * set up an end_io call back function, which will do the conversion 3066 * when async direct IO completed. 3067 * 3068 * If the O_DIRECT write will extend the file then add this inode to the 3069 * orphan list. So recovery will truncate it back to the original size 3070 * if the machine crashes during the write. 3071 * 3072 */ 3073 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3074 const struct iovec *iov, loff_t offset, 3075 unsigned long nr_segs) 3076 { 3077 struct file *file = iocb->ki_filp; 3078 struct inode *inode = file->f_mapping->host; 3079 ssize_t ret; 3080 size_t count = iov_length(iov, nr_segs); 3081 int overwrite = 0; 3082 get_block_t *get_block_func = NULL; 3083 int dio_flags = 0; 3084 loff_t final_size = offset + count; 3085 ext4_io_end_t *io_end = NULL; 3086 3087 /* Use the old path for reads and writes beyond i_size. */ 3088 if (rw != WRITE || final_size > inode->i_size) 3089 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3090 3091 BUG_ON(iocb->private == NULL); 3092 3093 /* 3094 * Make all waiters for direct IO properly wait also for extent 3095 * conversion. This also disallows race between truncate() and 3096 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3097 */ 3098 if (rw == WRITE) 3099 atomic_inc(&inode->i_dio_count); 3100 3101 /* If we do a overwrite dio, i_mutex locking can be released */ 3102 overwrite = *((int *)iocb->private); 3103 3104 if (overwrite) { 3105 down_read(&EXT4_I(inode)->i_data_sem); 3106 mutex_unlock(&inode->i_mutex); 3107 } 3108 3109 /* 3110 * We could direct write to holes and fallocate. 3111 * 3112 * Allocated blocks to fill the hole are marked as 3113 * uninitialized to prevent parallel buffered read to expose 3114 * the stale data before DIO complete the data IO. 3115 * 3116 * As to previously fallocated extents, ext4 get_block will 3117 * just simply mark the buffer mapped but still keep the 3118 * extents uninitialized. 3119 * 3120 * For non AIO case, we will convert those unwritten extents 3121 * to written after return back from blockdev_direct_IO. 3122 * 3123 * For async DIO, the conversion needs to be deferred when the 3124 * IO is completed. The ext4 end_io callback function will be 3125 * called to take care of the conversion work. Here for async 3126 * case, we allocate an io_end structure to hook to the iocb. 3127 */ 3128 iocb->private = NULL; 3129 ext4_inode_aio_set(inode, NULL); 3130 if (!is_sync_kiocb(iocb)) { 3131 io_end = ext4_init_io_end(inode, GFP_NOFS); 3132 if (!io_end) { 3133 ret = -ENOMEM; 3134 goto retake_lock; 3135 } 3136 /* 3137 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3138 */ 3139 iocb->private = ext4_get_io_end(io_end); 3140 /* 3141 * we save the io structure for current async direct 3142 * IO, so that later ext4_map_blocks() could flag the 3143 * io structure whether there is a unwritten extents 3144 * needs to be converted when IO is completed. 3145 */ 3146 ext4_inode_aio_set(inode, io_end); 3147 } 3148 3149 if (overwrite) { 3150 get_block_func = ext4_get_block_write_nolock; 3151 } else { 3152 get_block_func = ext4_get_block_write; 3153 dio_flags = DIO_LOCKING; 3154 } 3155 ret = __blockdev_direct_IO(rw, iocb, inode, 3156 inode->i_sb->s_bdev, iov, 3157 offset, nr_segs, 3158 get_block_func, 3159 ext4_end_io_dio, 3160 NULL, 3161 dio_flags); 3162 3163 /* 3164 * Put our reference to io_end. This can free the io_end structure e.g. 3165 * in sync IO case or in case of error. It can even perform extent 3166 * conversion if all bios we submitted finished before we got here. 3167 * Note that in that case iocb->private can be already set to NULL 3168 * here. 3169 */ 3170 if (io_end) { 3171 ext4_inode_aio_set(inode, NULL); 3172 ext4_put_io_end(io_end); 3173 /* 3174 * When no IO was submitted ext4_end_io_dio() was not 3175 * called so we have to put iocb's reference. 3176 */ 3177 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3178 WARN_ON(iocb->private != io_end); 3179 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3180 ext4_put_io_end(io_end); 3181 iocb->private = NULL; 3182 } 3183 } 3184 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3185 EXT4_STATE_DIO_UNWRITTEN)) { 3186 int err; 3187 /* 3188 * for non AIO case, since the IO is already 3189 * completed, we could do the conversion right here 3190 */ 3191 err = ext4_convert_unwritten_extents(NULL, inode, 3192 offset, ret); 3193 if (err < 0) 3194 ret = err; 3195 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3196 } 3197 3198 retake_lock: 3199 if (rw == WRITE) 3200 inode_dio_done(inode); 3201 /* take i_mutex locking again if we do a ovewrite dio */ 3202 if (overwrite) { 3203 up_read(&EXT4_I(inode)->i_data_sem); 3204 mutex_lock(&inode->i_mutex); 3205 } 3206 3207 return ret; 3208 } 3209 3210 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3211 const struct iovec *iov, loff_t offset, 3212 unsigned long nr_segs) 3213 { 3214 struct file *file = iocb->ki_filp; 3215 struct inode *inode = file->f_mapping->host; 3216 ssize_t ret; 3217 3218 /* 3219 * If we are doing data journalling we don't support O_DIRECT 3220 */ 3221 if (ext4_should_journal_data(inode)) 3222 return 0; 3223 3224 /* Let buffer I/O handle the inline data case. */ 3225 if (ext4_has_inline_data(inode)) 3226 return 0; 3227 3228 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3229 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3230 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3231 else 3232 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3233 trace_ext4_direct_IO_exit(inode, offset, 3234 iov_length(iov, nr_segs), rw, ret); 3235 return ret; 3236 } 3237 3238 /* 3239 * Pages can be marked dirty completely asynchronously from ext4's journalling 3240 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3241 * much here because ->set_page_dirty is called under VFS locks. The page is 3242 * not necessarily locked. 3243 * 3244 * We cannot just dirty the page and leave attached buffers clean, because the 3245 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3246 * or jbddirty because all the journalling code will explode. 3247 * 3248 * So what we do is to mark the page "pending dirty" and next time writepage 3249 * is called, propagate that into the buffers appropriately. 3250 */ 3251 static int ext4_journalled_set_page_dirty(struct page *page) 3252 { 3253 SetPageChecked(page); 3254 return __set_page_dirty_nobuffers(page); 3255 } 3256 3257 static const struct address_space_operations ext4_aops = { 3258 .readpage = ext4_readpage, 3259 .readpages = ext4_readpages, 3260 .writepage = ext4_writepage, 3261 .writepages = ext4_writepages, 3262 .write_begin = ext4_write_begin, 3263 .write_end = ext4_write_end, 3264 .bmap = ext4_bmap, 3265 .invalidatepage = ext4_invalidatepage, 3266 .releasepage = ext4_releasepage, 3267 .direct_IO = ext4_direct_IO, 3268 .migratepage = buffer_migrate_page, 3269 .is_partially_uptodate = block_is_partially_uptodate, 3270 .error_remove_page = generic_error_remove_page, 3271 }; 3272 3273 static const struct address_space_operations ext4_journalled_aops = { 3274 .readpage = ext4_readpage, 3275 .readpages = ext4_readpages, 3276 .writepage = ext4_writepage, 3277 .writepages = ext4_writepages, 3278 .write_begin = ext4_write_begin, 3279 .write_end = ext4_journalled_write_end, 3280 .set_page_dirty = ext4_journalled_set_page_dirty, 3281 .bmap = ext4_bmap, 3282 .invalidatepage = ext4_journalled_invalidatepage, 3283 .releasepage = ext4_releasepage, 3284 .direct_IO = ext4_direct_IO, 3285 .is_partially_uptodate = block_is_partially_uptodate, 3286 .error_remove_page = generic_error_remove_page, 3287 }; 3288 3289 static const struct address_space_operations ext4_da_aops = { 3290 .readpage = ext4_readpage, 3291 .readpages = ext4_readpages, 3292 .writepage = ext4_writepage, 3293 .writepages = ext4_writepages, 3294 .write_begin = ext4_da_write_begin, 3295 .write_end = ext4_da_write_end, 3296 .bmap = ext4_bmap, 3297 .invalidatepage = ext4_da_invalidatepage, 3298 .releasepage = ext4_releasepage, 3299 .direct_IO = ext4_direct_IO, 3300 .migratepage = buffer_migrate_page, 3301 .is_partially_uptodate = block_is_partially_uptodate, 3302 .error_remove_page = generic_error_remove_page, 3303 }; 3304 3305 void ext4_set_aops(struct inode *inode) 3306 { 3307 switch (ext4_inode_journal_mode(inode)) { 3308 case EXT4_INODE_ORDERED_DATA_MODE: 3309 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3310 break; 3311 case EXT4_INODE_WRITEBACK_DATA_MODE: 3312 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3313 break; 3314 case EXT4_INODE_JOURNAL_DATA_MODE: 3315 inode->i_mapping->a_ops = &ext4_journalled_aops; 3316 return; 3317 default: 3318 BUG(); 3319 } 3320 if (test_opt(inode->i_sb, DELALLOC)) 3321 inode->i_mapping->a_ops = &ext4_da_aops; 3322 else 3323 inode->i_mapping->a_ops = &ext4_aops; 3324 } 3325 3326 /* 3327 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3328 * starting from file offset 'from'. The range to be zero'd must 3329 * be contained with in one block. If the specified range exceeds 3330 * the end of the block it will be shortened to end of the block 3331 * that cooresponds to 'from' 3332 */ 3333 static int ext4_block_zero_page_range(handle_t *handle, 3334 struct address_space *mapping, loff_t from, loff_t length) 3335 { 3336 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3337 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3338 unsigned blocksize, max, pos; 3339 ext4_lblk_t iblock; 3340 struct inode *inode = mapping->host; 3341 struct buffer_head *bh; 3342 struct page *page; 3343 int err = 0; 3344 3345 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3346 mapping_gfp_mask(mapping) & ~__GFP_FS); 3347 if (!page) 3348 return -ENOMEM; 3349 3350 blocksize = inode->i_sb->s_blocksize; 3351 max = blocksize - (offset & (blocksize - 1)); 3352 3353 /* 3354 * correct length if it does not fall between 3355 * 'from' and the end of the block 3356 */ 3357 if (length > max || length < 0) 3358 length = max; 3359 3360 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3361 3362 if (!page_has_buffers(page)) 3363 create_empty_buffers(page, blocksize, 0); 3364 3365 /* Find the buffer that contains "offset" */ 3366 bh = page_buffers(page); 3367 pos = blocksize; 3368 while (offset >= pos) { 3369 bh = bh->b_this_page; 3370 iblock++; 3371 pos += blocksize; 3372 } 3373 if (buffer_freed(bh)) { 3374 BUFFER_TRACE(bh, "freed: skip"); 3375 goto unlock; 3376 } 3377 if (!buffer_mapped(bh)) { 3378 BUFFER_TRACE(bh, "unmapped"); 3379 ext4_get_block(inode, iblock, bh, 0); 3380 /* unmapped? It's a hole - nothing to do */ 3381 if (!buffer_mapped(bh)) { 3382 BUFFER_TRACE(bh, "still unmapped"); 3383 goto unlock; 3384 } 3385 } 3386 3387 /* Ok, it's mapped. Make sure it's up-to-date */ 3388 if (PageUptodate(page)) 3389 set_buffer_uptodate(bh); 3390 3391 if (!buffer_uptodate(bh)) { 3392 err = -EIO; 3393 ll_rw_block(READ, 1, &bh); 3394 wait_on_buffer(bh); 3395 /* Uhhuh. Read error. Complain and punt. */ 3396 if (!buffer_uptodate(bh)) 3397 goto unlock; 3398 } 3399 if (ext4_should_journal_data(inode)) { 3400 BUFFER_TRACE(bh, "get write access"); 3401 err = ext4_journal_get_write_access(handle, bh); 3402 if (err) 3403 goto unlock; 3404 } 3405 zero_user(page, offset, length); 3406 BUFFER_TRACE(bh, "zeroed end of block"); 3407 3408 if (ext4_should_journal_data(inode)) { 3409 err = ext4_handle_dirty_metadata(handle, inode, bh); 3410 } else { 3411 err = 0; 3412 mark_buffer_dirty(bh); 3413 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3414 err = ext4_jbd2_file_inode(handle, inode); 3415 } 3416 3417 unlock: 3418 unlock_page(page); 3419 page_cache_release(page); 3420 return err; 3421 } 3422 3423 /* 3424 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3425 * up to the end of the block which corresponds to `from'. 3426 * This required during truncate. We need to physically zero the tail end 3427 * of that block so it doesn't yield old data if the file is later grown. 3428 */ 3429 int ext4_block_truncate_page(handle_t *handle, 3430 struct address_space *mapping, loff_t from) 3431 { 3432 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3433 unsigned length; 3434 unsigned blocksize; 3435 struct inode *inode = mapping->host; 3436 3437 blocksize = inode->i_sb->s_blocksize; 3438 length = blocksize - (offset & (blocksize - 1)); 3439 3440 return ext4_block_zero_page_range(handle, mapping, from, length); 3441 } 3442 3443 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3444 loff_t lstart, loff_t length) 3445 { 3446 struct super_block *sb = inode->i_sb; 3447 struct address_space *mapping = inode->i_mapping; 3448 unsigned partial_start, partial_end; 3449 ext4_fsblk_t start, end; 3450 loff_t byte_end = (lstart + length - 1); 3451 int err = 0; 3452 3453 partial_start = lstart & (sb->s_blocksize - 1); 3454 partial_end = byte_end & (sb->s_blocksize - 1); 3455 3456 start = lstart >> sb->s_blocksize_bits; 3457 end = byte_end >> sb->s_blocksize_bits; 3458 3459 /* Handle partial zero within the single block */ 3460 if (start == end && 3461 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3462 err = ext4_block_zero_page_range(handle, mapping, 3463 lstart, length); 3464 return err; 3465 } 3466 /* Handle partial zero out on the start of the range */ 3467 if (partial_start) { 3468 err = ext4_block_zero_page_range(handle, mapping, 3469 lstart, sb->s_blocksize); 3470 if (err) 3471 return err; 3472 } 3473 /* Handle partial zero out on the end of the range */ 3474 if (partial_end != sb->s_blocksize - 1) 3475 err = ext4_block_zero_page_range(handle, mapping, 3476 byte_end - partial_end, 3477 partial_end + 1); 3478 return err; 3479 } 3480 3481 int ext4_can_truncate(struct inode *inode) 3482 { 3483 if (S_ISREG(inode->i_mode)) 3484 return 1; 3485 if (S_ISDIR(inode->i_mode)) 3486 return 1; 3487 if (S_ISLNK(inode->i_mode)) 3488 return !ext4_inode_is_fast_symlink(inode); 3489 return 0; 3490 } 3491 3492 /* 3493 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3494 * associated with the given offset and length 3495 * 3496 * @inode: File inode 3497 * @offset: The offset where the hole will begin 3498 * @len: The length of the hole 3499 * 3500 * Returns: 0 on success or negative on failure 3501 */ 3502 3503 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3504 { 3505 struct super_block *sb = inode->i_sb; 3506 ext4_lblk_t first_block, stop_block; 3507 struct address_space *mapping = inode->i_mapping; 3508 loff_t first_block_offset, last_block_offset; 3509 handle_t *handle; 3510 unsigned int credits; 3511 int ret = 0; 3512 3513 if (!S_ISREG(inode->i_mode)) 3514 return -EOPNOTSUPP; 3515 3516 trace_ext4_punch_hole(inode, offset, length, 0); 3517 3518 /* 3519 * Write out all dirty pages to avoid race conditions 3520 * Then release them. 3521 */ 3522 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3523 ret = filemap_write_and_wait_range(mapping, offset, 3524 offset + length - 1); 3525 if (ret) 3526 return ret; 3527 } 3528 3529 mutex_lock(&inode->i_mutex); 3530 /* It's not possible punch hole on append only file */ 3531 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3532 ret = -EPERM; 3533 goto out_mutex; 3534 } 3535 if (IS_SWAPFILE(inode)) { 3536 ret = -ETXTBSY; 3537 goto out_mutex; 3538 } 3539 3540 /* No need to punch hole beyond i_size */ 3541 if (offset >= inode->i_size) 3542 goto out_mutex; 3543 3544 /* 3545 * If the hole extends beyond i_size, set the hole 3546 * to end after the page that contains i_size 3547 */ 3548 if (offset + length > inode->i_size) { 3549 length = inode->i_size + 3550 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3551 offset; 3552 } 3553 3554 if (offset & (sb->s_blocksize - 1) || 3555 (offset + length) & (sb->s_blocksize - 1)) { 3556 /* 3557 * Attach jinode to inode for jbd2 if we do any zeroing of 3558 * partial block 3559 */ 3560 ret = ext4_inode_attach_jinode(inode); 3561 if (ret < 0) 3562 goto out_mutex; 3563 3564 } 3565 3566 first_block_offset = round_up(offset, sb->s_blocksize); 3567 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3568 3569 /* Now release the pages and zero block aligned part of pages*/ 3570 if (last_block_offset > first_block_offset) 3571 truncate_pagecache_range(inode, first_block_offset, 3572 last_block_offset); 3573 3574 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3575 ext4_inode_block_unlocked_dio(inode); 3576 inode_dio_wait(inode); 3577 3578 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3579 credits = ext4_writepage_trans_blocks(inode); 3580 else 3581 credits = ext4_blocks_for_truncate(inode); 3582 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3583 if (IS_ERR(handle)) { 3584 ret = PTR_ERR(handle); 3585 ext4_std_error(sb, ret); 3586 goto out_dio; 3587 } 3588 3589 ret = ext4_zero_partial_blocks(handle, inode, offset, 3590 length); 3591 if (ret) 3592 goto out_stop; 3593 3594 first_block = (offset + sb->s_blocksize - 1) >> 3595 EXT4_BLOCK_SIZE_BITS(sb); 3596 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3597 3598 /* If there are no blocks to remove, return now */ 3599 if (first_block >= stop_block) 3600 goto out_stop; 3601 3602 down_write(&EXT4_I(inode)->i_data_sem); 3603 ext4_discard_preallocations(inode); 3604 3605 ret = ext4_es_remove_extent(inode, first_block, 3606 stop_block - first_block); 3607 if (ret) { 3608 up_write(&EXT4_I(inode)->i_data_sem); 3609 goto out_stop; 3610 } 3611 3612 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3613 ret = ext4_ext_remove_space(inode, first_block, 3614 stop_block - 1); 3615 else 3616 ret = ext4_free_hole_blocks(handle, inode, first_block, 3617 stop_block); 3618 3619 ext4_discard_preallocations(inode); 3620 up_write(&EXT4_I(inode)->i_data_sem); 3621 if (IS_SYNC(inode)) 3622 ext4_handle_sync(handle); 3623 3624 /* Now release the pages again to reduce race window */ 3625 if (last_block_offset > first_block_offset) 3626 truncate_pagecache_range(inode, first_block_offset, 3627 last_block_offset); 3628 3629 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3630 ext4_mark_inode_dirty(handle, inode); 3631 out_stop: 3632 ext4_journal_stop(handle); 3633 out_dio: 3634 ext4_inode_resume_unlocked_dio(inode); 3635 out_mutex: 3636 mutex_unlock(&inode->i_mutex); 3637 return ret; 3638 } 3639 3640 int ext4_inode_attach_jinode(struct inode *inode) 3641 { 3642 struct ext4_inode_info *ei = EXT4_I(inode); 3643 struct jbd2_inode *jinode; 3644 3645 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3646 return 0; 3647 3648 jinode = jbd2_alloc_inode(GFP_KERNEL); 3649 spin_lock(&inode->i_lock); 3650 if (!ei->jinode) { 3651 if (!jinode) { 3652 spin_unlock(&inode->i_lock); 3653 return -ENOMEM; 3654 } 3655 ei->jinode = jinode; 3656 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3657 jinode = NULL; 3658 } 3659 spin_unlock(&inode->i_lock); 3660 if (unlikely(jinode != NULL)) 3661 jbd2_free_inode(jinode); 3662 return 0; 3663 } 3664 3665 /* 3666 * ext4_truncate() 3667 * 3668 * We block out ext4_get_block() block instantiations across the entire 3669 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3670 * simultaneously on behalf of the same inode. 3671 * 3672 * As we work through the truncate and commit bits of it to the journal there 3673 * is one core, guiding principle: the file's tree must always be consistent on 3674 * disk. We must be able to restart the truncate after a crash. 3675 * 3676 * The file's tree may be transiently inconsistent in memory (although it 3677 * probably isn't), but whenever we close off and commit a journal transaction, 3678 * the contents of (the filesystem + the journal) must be consistent and 3679 * restartable. It's pretty simple, really: bottom up, right to left (although 3680 * left-to-right works OK too). 3681 * 3682 * Note that at recovery time, journal replay occurs *before* the restart of 3683 * truncate against the orphan inode list. 3684 * 3685 * The committed inode has the new, desired i_size (which is the same as 3686 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3687 * that this inode's truncate did not complete and it will again call 3688 * ext4_truncate() to have another go. So there will be instantiated blocks 3689 * to the right of the truncation point in a crashed ext4 filesystem. But 3690 * that's fine - as long as they are linked from the inode, the post-crash 3691 * ext4_truncate() run will find them and release them. 3692 */ 3693 void ext4_truncate(struct inode *inode) 3694 { 3695 struct ext4_inode_info *ei = EXT4_I(inode); 3696 unsigned int credits; 3697 handle_t *handle; 3698 struct address_space *mapping = inode->i_mapping; 3699 3700 /* 3701 * There is a possibility that we're either freeing the inode 3702 * or it's a completely new inode. In those cases we might not 3703 * have i_mutex locked because it's not necessary. 3704 */ 3705 if (!(inode->i_state & (I_NEW|I_FREEING))) 3706 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3707 trace_ext4_truncate_enter(inode); 3708 3709 if (!ext4_can_truncate(inode)) 3710 return; 3711 3712 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3713 3714 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3715 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3716 3717 if (ext4_has_inline_data(inode)) { 3718 int has_inline = 1; 3719 3720 ext4_inline_data_truncate(inode, &has_inline); 3721 if (has_inline) 3722 return; 3723 } 3724 3725 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3726 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3727 if (ext4_inode_attach_jinode(inode) < 0) 3728 return; 3729 } 3730 3731 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3732 credits = ext4_writepage_trans_blocks(inode); 3733 else 3734 credits = ext4_blocks_for_truncate(inode); 3735 3736 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3737 if (IS_ERR(handle)) { 3738 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3739 return; 3740 } 3741 3742 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3743 ext4_block_truncate_page(handle, mapping, inode->i_size); 3744 3745 /* 3746 * We add the inode to the orphan list, so that if this 3747 * truncate spans multiple transactions, and we crash, we will 3748 * resume the truncate when the filesystem recovers. It also 3749 * marks the inode dirty, to catch the new size. 3750 * 3751 * Implication: the file must always be in a sane, consistent 3752 * truncatable state while each transaction commits. 3753 */ 3754 if (ext4_orphan_add(handle, inode)) 3755 goto out_stop; 3756 3757 down_write(&EXT4_I(inode)->i_data_sem); 3758 3759 ext4_discard_preallocations(inode); 3760 3761 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3762 ext4_ext_truncate(handle, inode); 3763 else 3764 ext4_ind_truncate(handle, inode); 3765 3766 up_write(&ei->i_data_sem); 3767 3768 if (IS_SYNC(inode)) 3769 ext4_handle_sync(handle); 3770 3771 out_stop: 3772 /* 3773 * If this was a simple ftruncate() and the file will remain alive, 3774 * then we need to clear up the orphan record which we created above. 3775 * However, if this was a real unlink then we were called by 3776 * ext4_delete_inode(), and we allow that function to clean up the 3777 * orphan info for us. 3778 */ 3779 if (inode->i_nlink) 3780 ext4_orphan_del(handle, inode); 3781 3782 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3783 ext4_mark_inode_dirty(handle, inode); 3784 ext4_journal_stop(handle); 3785 3786 trace_ext4_truncate_exit(inode); 3787 } 3788 3789 /* 3790 * ext4_get_inode_loc returns with an extra refcount against the inode's 3791 * underlying buffer_head on success. If 'in_mem' is true, we have all 3792 * data in memory that is needed to recreate the on-disk version of this 3793 * inode. 3794 */ 3795 static int __ext4_get_inode_loc(struct inode *inode, 3796 struct ext4_iloc *iloc, int in_mem) 3797 { 3798 struct ext4_group_desc *gdp; 3799 struct buffer_head *bh; 3800 struct super_block *sb = inode->i_sb; 3801 ext4_fsblk_t block; 3802 int inodes_per_block, inode_offset; 3803 3804 iloc->bh = NULL; 3805 if (!ext4_valid_inum(sb, inode->i_ino)) 3806 return -EIO; 3807 3808 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3809 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3810 if (!gdp) 3811 return -EIO; 3812 3813 /* 3814 * Figure out the offset within the block group inode table 3815 */ 3816 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3817 inode_offset = ((inode->i_ino - 1) % 3818 EXT4_INODES_PER_GROUP(sb)); 3819 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3820 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3821 3822 bh = sb_getblk(sb, block); 3823 if (unlikely(!bh)) 3824 return -ENOMEM; 3825 if (!buffer_uptodate(bh)) { 3826 lock_buffer(bh); 3827 3828 /* 3829 * If the buffer has the write error flag, we have failed 3830 * to write out another inode in the same block. In this 3831 * case, we don't have to read the block because we may 3832 * read the old inode data successfully. 3833 */ 3834 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3835 set_buffer_uptodate(bh); 3836 3837 if (buffer_uptodate(bh)) { 3838 /* someone brought it uptodate while we waited */ 3839 unlock_buffer(bh); 3840 goto has_buffer; 3841 } 3842 3843 /* 3844 * If we have all information of the inode in memory and this 3845 * is the only valid inode in the block, we need not read the 3846 * block. 3847 */ 3848 if (in_mem) { 3849 struct buffer_head *bitmap_bh; 3850 int i, start; 3851 3852 start = inode_offset & ~(inodes_per_block - 1); 3853 3854 /* Is the inode bitmap in cache? */ 3855 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3856 if (unlikely(!bitmap_bh)) 3857 goto make_io; 3858 3859 /* 3860 * If the inode bitmap isn't in cache then the 3861 * optimisation may end up performing two reads instead 3862 * of one, so skip it. 3863 */ 3864 if (!buffer_uptodate(bitmap_bh)) { 3865 brelse(bitmap_bh); 3866 goto make_io; 3867 } 3868 for (i = start; i < start + inodes_per_block; i++) { 3869 if (i == inode_offset) 3870 continue; 3871 if (ext4_test_bit(i, bitmap_bh->b_data)) 3872 break; 3873 } 3874 brelse(bitmap_bh); 3875 if (i == start + inodes_per_block) { 3876 /* all other inodes are free, so skip I/O */ 3877 memset(bh->b_data, 0, bh->b_size); 3878 set_buffer_uptodate(bh); 3879 unlock_buffer(bh); 3880 goto has_buffer; 3881 } 3882 } 3883 3884 make_io: 3885 /* 3886 * If we need to do any I/O, try to pre-readahead extra 3887 * blocks from the inode table. 3888 */ 3889 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3890 ext4_fsblk_t b, end, table; 3891 unsigned num; 3892 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3893 3894 table = ext4_inode_table(sb, gdp); 3895 /* s_inode_readahead_blks is always a power of 2 */ 3896 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3897 if (table > b) 3898 b = table; 3899 end = b + ra_blks; 3900 num = EXT4_INODES_PER_GROUP(sb); 3901 if (ext4_has_group_desc_csum(sb)) 3902 num -= ext4_itable_unused_count(sb, gdp); 3903 table += num / inodes_per_block; 3904 if (end > table) 3905 end = table; 3906 while (b <= end) 3907 sb_breadahead(sb, b++); 3908 } 3909 3910 /* 3911 * There are other valid inodes in the buffer, this inode 3912 * has in-inode xattrs, or we don't have this inode in memory. 3913 * Read the block from disk. 3914 */ 3915 trace_ext4_load_inode(inode); 3916 get_bh(bh); 3917 bh->b_end_io = end_buffer_read_sync; 3918 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3919 wait_on_buffer(bh); 3920 if (!buffer_uptodate(bh)) { 3921 EXT4_ERROR_INODE_BLOCK(inode, block, 3922 "unable to read itable block"); 3923 brelse(bh); 3924 return -EIO; 3925 } 3926 } 3927 has_buffer: 3928 iloc->bh = bh; 3929 return 0; 3930 } 3931 3932 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3933 { 3934 /* We have all inode data except xattrs in memory here. */ 3935 return __ext4_get_inode_loc(inode, iloc, 3936 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3937 } 3938 3939 void ext4_set_inode_flags(struct inode *inode) 3940 { 3941 unsigned int flags = EXT4_I(inode)->i_flags; 3942 unsigned int new_fl = 0; 3943 3944 if (flags & EXT4_SYNC_FL) 3945 new_fl |= S_SYNC; 3946 if (flags & EXT4_APPEND_FL) 3947 new_fl |= S_APPEND; 3948 if (flags & EXT4_IMMUTABLE_FL) 3949 new_fl |= S_IMMUTABLE; 3950 if (flags & EXT4_NOATIME_FL) 3951 new_fl |= S_NOATIME; 3952 if (flags & EXT4_DIRSYNC_FL) 3953 new_fl |= S_DIRSYNC; 3954 inode_set_flags(inode, new_fl, 3955 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3956 } 3957 3958 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3959 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3960 { 3961 unsigned int vfs_fl; 3962 unsigned long old_fl, new_fl; 3963 3964 do { 3965 vfs_fl = ei->vfs_inode.i_flags; 3966 old_fl = ei->i_flags; 3967 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3968 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3969 EXT4_DIRSYNC_FL); 3970 if (vfs_fl & S_SYNC) 3971 new_fl |= EXT4_SYNC_FL; 3972 if (vfs_fl & S_APPEND) 3973 new_fl |= EXT4_APPEND_FL; 3974 if (vfs_fl & S_IMMUTABLE) 3975 new_fl |= EXT4_IMMUTABLE_FL; 3976 if (vfs_fl & S_NOATIME) 3977 new_fl |= EXT4_NOATIME_FL; 3978 if (vfs_fl & S_DIRSYNC) 3979 new_fl |= EXT4_DIRSYNC_FL; 3980 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3981 } 3982 3983 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3984 struct ext4_inode_info *ei) 3985 { 3986 blkcnt_t i_blocks ; 3987 struct inode *inode = &(ei->vfs_inode); 3988 struct super_block *sb = inode->i_sb; 3989 3990 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3991 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3992 /* we are using combined 48 bit field */ 3993 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3994 le32_to_cpu(raw_inode->i_blocks_lo); 3995 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3996 /* i_blocks represent file system block size */ 3997 return i_blocks << (inode->i_blkbits - 9); 3998 } else { 3999 return i_blocks; 4000 } 4001 } else { 4002 return le32_to_cpu(raw_inode->i_blocks_lo); 4003 } 4004 } 4005 4006 static inline void ext4_iget_extra_inode(struct inode *inode, 4007 struct ext4_inode *raw_inode, 4008 struct ext4_inode_info *ei) 4009 { 4010 __le32 *magic = (void *)raw_inode + 4011 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4012 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4013 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4014 ext4_find_inline_data_nolock(inode); 4015 } else 4016 EXT4_I(inode)->i_inline_off = 0; 4017 } 4018 4019 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4020 { 4021 struct ext4_iloc iloc; 4022 struct ext4_inode *raw_inode; 4023 struct ext4_inode_info *ei; 4024 struct inode *inode; 4025 journal_t *journal = EXT4_SB(sb)->s_journal; 4026 long ret; 4027 int block; 4028 uid_t i_uid; 4029 gid_t i_gid; 4030 4031 inode = iget_locked(sb, ino); 4032 if (!inode) 4033 return ERR_PTR(-ENOMEM); 4034 if (!(inode->i_state & I_NEW)) 4035 return inode; 4036 4037 ei = EXT4_I(inode); 4038 iloc.bh = NULL; 4039 4040 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4041 if (ret < 0) 4042 goto bad_inode; 4043 raw_inode = ext4_raw_inode(&iloc); 4044 4045 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4046 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4047 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4048 EXT4_INODE_SIZE(inode->i_sb)) { 4049 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4050 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4051 EXT4_INODE_SIZE(inode->i_sb)); 4052 ret = -EIO; 4053 goto bad_inode; 4054 } 4055 } else 4056 ei->i_extra_isize = 0; 4057 4058 /* Precompute checksum seed for inode metadata */ 4059 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4060 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 4061 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4062 __u32 csum; 4063 __le32 inum = cpu_to_le32(inode->i_ino); 4064 __le32 gen = raw_inode->i_generation; 4065 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4066 sizeof(inum)); 4067 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4068 sizeof(gen)); 4069 } 4070 4071 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4072 EXT4_ERROR_INODE(inode, "checksum invalid"); 4073 ret = -EIO; 4074 goto bad_inode; 4075 } 4076 4077 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4078 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4079 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4080 if (!(test_opt(inode->i_sb, NO_UID32))) { 4081 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4082 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4083 } 4084 i_uid_write(inode, i_uid); 4085 i_gid_write(inode, i_gid); 4086 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4087 4088 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4089 ei->i_inline_off = 0; 4090 ei->i_dir_start_lookup = 0; 4091 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4092 /* We now have enough fields to check if the inode was active or not. 4093 * This is needed because nfsd might try to access dead inodes 4094 * the test is that same one that e2fsck uses 4095 * NeilBrown 1999oct15 4096 */ 4097 if (inode->i_nlink == 0) { 4098 if ((inode->i_mode == 0 || 4099 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4100 ino != EXT4_BOOT_LOADER_INO) { 4101 /* this inode is deleted */ 4102 ret = -ESTALE; 4103 goto bad_inode; 4104 } 4105 /* The only unlinked inodes we let through here have 4106 * valid i_mode and are being read by the orphan 4107 * recovery code: that's fine, we're about to complete 4108 * the process of deleting those. 4109 * OR it is the EXT4_BOOT_LOADER_INO which is 4110 * not initialized on a new filesystem. */ 4111 } 4112 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4113 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4114 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4115 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4116 ei->i_file_acl |= 4117 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4118 inode->i_size = ext4_isize(raw_inode); 4119 ei->i_disksize = inode->i_size; 4120 #ifdef CONFIG_QUOTA 4121 ei->i_reserved_quota = 0; 4122 #endif 4123 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4124 ei->i_block_group = iloc.block_group; 4125 ei->i_last_alloc_group = ~0; 4126 /* 4127 * NOTE! The in-memory inode i_data array is in little-endian order 4128 * even on big-endian machines: we do NOT byteswap the block numbers! 4129 */ 4130 for (block = 0; block < EXT4_N_BLOCKS; block++) 4131 ei->i_data[block] = raw_inode->i_block[block]; 4132 INIT_LIST_HEAD(&ei->i_orphan); 4133 4134 /* 4135 * Set transaction id's of transactions that have to be committed 4136 * to finish f[data]sync. We set them to currently running transaction 4137 * as we cannot be sure that the inode or some of its metadata isn't 4138 * part of the transaction - the inode could have been reclaimed and 4139 * now it is reread from disk. 4140 */ 4141 if (journal) { 4142 transaction_t *transaction; 4143 tid_t tid; 4144 4145 read_lock(&journal->j_state_lock); 4146 if (journal->j_running_transaction) 4147 transaction = journal->j_running_transaction; 4148 else 4149 transaction = journal->j_committing_transaction; 4150 if (transaction) 4151 tid = transaction->t_tid; 4152 else 4153 tid = journal->j_commit_sequence; 4154 read_unlock(&journal->j_state_lock); 4155 ei->i_sync_tid = tid; 4156 ei->i_datasync_tid = tid; 4157 } 4158 4159 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4160 if (ei->i_extra_isize == 0) { 4161 /* The extra space is currently unused. Use it. */ 4162 ei->i_extra_isize = sizeof(struct ext4_inode) - 4163 EXT4_GOOD_OLD_INODE_SIZE; 4164 } else { 4165 ext4_iget_extra_inode(inode, raw_inode, ei); 4166 } 4167 } 4168 4169 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4170 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4171 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4172 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4173 4174 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4175 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4176 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4177 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4178 inode->i_version |= 4179 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4180 } 4181 } 4182 4183 ret = 0; 4184 if (ei->i_file_acl && 4185 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4186 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4187 ei->i_file_acl); 4188 ret = -EIO; 4189 goto bad_inode; 4190 } else if (!ext4_has_inline_data(inode)) { 4191 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4192 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4193 (S_ISLNK(inode->i_mode) && 4194 !ext4_inode_is_fast_symlink(inode)))) 4195 /* Validate extent which is part of inode */ 4196 ret = ext4_ext_check_inode(inode); 4197 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4198 (S_ISLNK(inode->i_mode) && 4199 !ext4_inode_is_fast_symlink(inode))) { 4200 /* Validate block references which are part of inode */ 4201 ret = ext4_ind_check_inode(inode); 4202 } 4203 } 4204 if (ret) 4205 goto bad_inode; 4206 4207 if (S_ISREG(inode->i_mode)) { 4208 inode->i_op = &ext4_file_inode_operations; 4209 inode->i_fop = &ext4_file_operations; 4210 ext4_set_aops(inode); 4211 } else if (S_ISDIR(inode->i_mode)) { 4212 inode->i_op = &ext4_dir_inode_operations; 4213 inode->i_fop = &ext4_dir_operations; 4214 } else if (S_ISLNK(inode->i_mode)) { 4215 if (ext4_inode_is_fast_symlink(inode)) { 4216 inode->i_op = &ext4_fast_symlink_inode_operations; 4217 nd_terminate_link(ei->i_data, inode->i_size, 4218 sizeof(ei->i_data) - 1); 4219 } else { 4220 inode->i_op = &ext4_symlink_inode_operations; 4221 ext4_set_aops(inode); 4222 } 4223 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4224 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4225 inode->i_op = &ext4_special_inode_operations; 4226 if (raw_inode->i_block[0]) 4227 init_special_inode(inode, inode->i_mode, 4228 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4229 else 4230 init_special_inode(inode, inode->i_mode, 4231 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4232 } else if (ino == EXT4_BOOT_LOADER_INO) { 4233 make_bad_inode(inode); 4234 } else { 4235 ret = -EIO; 4236 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4237 goto bad_inode; 4238 } 4239 brelse(iloc.bh); 4240 ext4_set_inode_flags(inode); 4241 unlock_new_inode(inode); 4242 return inode; 4243 4244 bad_inode: 4245 brelse(iloc.bh); 4246 iget_failed(inode); 4247 return ERR_PTR(ret); 4248 } 4249 4250 static int ext4_inode_blocks_set(handle_t *handle, 4251 struct ext4_inode *raw_inode, 4252 struct ext4_inode_info *ei) 4253 { 4254 struct inode *inode = &(ei->vfs_inode); 4255 u64 i_blocks = inode->i_blocks; 4256 struct super_block *sb = inode->i_sb; 4257 4258 if (i_blocks <= ~0U) { 4259 /* 4260 * i_blocks can be represented in a 32 bit variable 4261 * as multiple of 512 bytes 4262 */ 4263 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4264 raw_inode->i_blocks_high = 0; 4265 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4266 return 0; 4267 } 4268 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4269 return -EFBIG; 4270 4271 if (i_blocks <= 0xffffffffffffULL) { 4272 /* 4273 * i_blocks can be represented in a 48 bit variable 4274 * as multiple of 512 bytes 4275 */ 4276 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4277 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4278 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4279 } else { 4280 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4281 /* i_block is stored in file system block size */ 4282 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4283 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4284 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4285 } 4286 return 0; 4287 } 4288 4289 /* 4290 * Post the struct inode info into an on-disk inode location in the 4291 * buffer-cache. This gobbles the caller's reference to the 4292 * buffer_head in the inode location struct. 4293 * 4294 * The caller must have write access to iloc->bh. 4295 */ 4296 static int ext4_do_update_inode(handle_t *handle, 4297 struct inode *inode, 4298 struct ext4_iloc *iloc) 4299 { 4300 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4301 struct ext4_inode_info *ei = EXT4_I(inode); 4302 struct buffer_head *bh = iloc->bh; 4303 int err = 0, rc, block; 4304 int need_datasync = 0; 4305 uid_t i_uid; 4306 gid_t i_gid; 4307 4308 /* For fields not not tracking in the in-memory inode, 4309 * initialise them to zero for new inodes. */ 4310 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4311 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4312 4313 ext4_get_inode_flags(ei); 4314 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4315 i_uid = i_uid_read(inode); 4316 i_gid = i_gid_read(inode); 4317 if (!(test_opt(inode->i_sb, NO_UID32))) { 4318 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4319 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4320 /* 4321 * Fix up interoperability with old kernels. Otherwise, old inodes get 4322 * re-used with the upper 16 bits of the uid/gid intact 4323 */ 4324 if (!ei->i_dtime) { 4325 raw_inode->i_uid_high = 4326 cpu_to_le16(high_16_bits(i_uid)); 4327 raw_inode->i_gid_high = 4328 cpu_to_le16(high_16_bits(i_gid)); 4329 } else { 4330 raw_inode->i_uid_high = 0; 4331 raw_inode->i_gid_high = 0; 4332 } 4333 } else { 4334 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4335 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4336 raw_inode->i_uid_high = 0; 4337 raw_inode->i_gid_high = 0; 4338 } 4339 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4340 4341 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4342 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4343 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4344 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4345 4346 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4347 goto out_brelse; 4348 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4349 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4350 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4351 raw_inode->i_file_acl_high = 4352 cpu_to_le16(ei->i_file_acl >> 32); 4353 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4354 if (ei->i_disksize != ext4_isize(raw_inode)) { 4355 ext4_isize_set(raw_inode, ei->i_disksize); 4356 need_datasync = 1; 4357 } 4358 if (ei->i_disksize > 0x7fffffffULL) { 4359 struct super_block *sb = inode->i_sb; 4360 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4361 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4362 EXT4_SB(sb)->s_es->s_rev_level == 4363 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4364 /* If this is the first large file 4365 * created, add a flag to the superblock. 4366 */ 4367 err = ext4_journal_get_write_access(handle, 4368 EXT4_SB(sb)->s_sbh); 4369 if (err) 4370 goto out_brelse; 4371 ext4_update_dynamic_rev(sb); 4372 EXT4_SET_RO_COMPAT_FEATURE(sb, 4373 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4374 ext4_handle_sync(handle); 4375 err = ext4_handle_dirty_super(handle, sb); 4376 } 4377 } 4378 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4379 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4380 if (old_valid_dev(inode->i_rdev)) { 4381 raw_inode->i_block[0] = 4382 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4383 raw_inode->i_block[1] = 0; 4384 } else { 4385 raw_inode->i_block[0] = 0; 4386 raw_inode->i_block[1] = 4387 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4388 raw_inode->i_block[2] = 0; 4389 } 4390 } else if (!ext4_has_inline_data(inode)) { 4391 for (block = 0; block < EXT4_N_BLOCKS; block++) 4392 raw_inode->i_block[block] = ei->i_data[block]; 4393 } 4394 4395 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4396 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4397 if (ei->i_extra_isize) { 4398 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4399 raw_inode->i_version_hi = 4400 cpu_to_le32(inode->i_version >> 32); 4401 raw_inode->i_extra_isize = 4402 cpu_to_le16(ei->i_extra_isize); 4403 } 4404 } 4405 4406 ext4_inode_csum_set(inode, raw_inode, ei); 4407 4408 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4409 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4410 if (!err) 4411 err = rc; 4412 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4413 4414 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4415 out_brelse: 4416 brelse(bh); 4417 ext4_std_error(inode->i_sb, err); 4418 return err; 4419 } 4420 4421 /* 4422 * ext4_write_inode() 4423 * 4424 * We are called from a few places: 4425 * 4426 * - Within generic_file_write() for O_SYNC files. 4427 * Here, there will be no transaction running. We wait for any running 4428 * transaction to commit. 4429 * 4430 * - Within sys_sync(), kupdate and such. 4431 * We wait on commit, if tol to. 4432 * 4433 * - Within prune_icache() (PF_MEMALLOC == true) 4434 * Here we simply return. We can't afford to block kswapd on the 4435 * journal commit. 4436 * 4437 * In all cases it is actually safe for us to return without doing anything, 4438 * because the inode has been copied into a raw inode buffer in 4439 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4440 * knfsd. 4441 * 4442 * Note that we are absolutely dependent upon all inode dirtiers doing the 4443 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4444 * which we are interested. 4445 * 4446 * It would be a bug for them to not do this. The code: 4447 * 4448 * mark_inode_dirty(inode) 4449 * stuff(); 4450 * inode->i_size = expr; 4451 * 4452 * is in error because a kswapd-driven write_inode() could occur while 4453 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4454 * will no longer be on the superblock's dirty inode list. 4455 */ 4456 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4457 { 4458 int err; 4459 4460 if (current->flags & PF_MEMALLOC) 4461 return 0; 4462 4463 if (EXT4_SB(inode->i_sb)->s_journal) { 4464 if (ext4_journal_current_handle()) { 4465 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4466 dump_stack(); 4467 return -EIO; 4468 } 4469 4470 /* 4471 * No need to force transaction in WB_SYNC_NONE mode. Also 4472 * ext4_sync_fs() will force the commit after everything is 4473 * written. 4474 */ 4475 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4476 return 0; 4477 4478 err = ext4_force_commit(inode->i_sb); 4479 } else { 4480 struct ext4_iloc iloc; 4481 4482 err = __ext4_get_inode_loc(inode, &iloc, 0); 4483 if (err) 4484 return err; 4485 /* 4486 * sync(2) will flush the whole buffer cache. No need to do 4487 * it here separately for each inode. 4488 */ 4489 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4490 sync_dirty_buffer(iloc.bh); 4491 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4492 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4493 "IO error syncing inode"); 4494 err = -EIO; 4495 } 4496 brelse(iloc.bh); 4497 } 4498 return err; 4499 } 4500 4501 /* 4502 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4503 * buffers that are attached to a page stradding i_size and are undergoing 4504 * commit. In that case we have to wait for commit to finish and try again. 4505 */ 4506 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4507 { 4508 struct page *page; 4509 unsigned offset; 4510 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4511 tid_t commit_tid = 0; 4512 int ret; 4513 4514 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4515 /* 4516 * All buffers in the last page remain valid? Then there's nothing to 4517 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4518 * blocksize case 4519 */ 4520 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4521 return; 4522 while (1) { 4523 page = find_lock_page(inode->i_mapping, 4524 inode->i_size >> PAGE_CACHE_SHIFT); 4525 if (!page) 4526 return; 4527 ret = __ext4_journalled_invalidatepage(page, offset, 4528 PAGE_CACHE_SIZE - offset); 4529 unlock_page(page); 4530 page_cache_release(page); 4531 if (ret != -EBUSY) 4532 return; 4533 commit_tid = 0; 4534 read_lock(&journal->j_state_lock); 4535 if (journal->j_committing_transaction) 4536 commit_tid = journal->j_committing_transaction->t_tid; 4537 read_unlock(&journal->j_state_lock); 4538 if (commit_tid) 4539 jbd2_log_wait_commit(journal, commit_tid); 4540 } 4541 } 4542 4543 /* 4544 * ext4_setattr() 4545 * 4546 * Called from notify_change. 4547 * 4548 * We want to trap VFS attempts to truncate the file as soon as 4549 * possible. In particular, we want to make sure that when the VFS 4550 * shrinks i_size, we put the inode on the orphan list and modify 4551 * i_disksize immediately, so that during the subsequent flushing of 4552 * dirty pages and freeing of disk blocks, we can guarantee that any 4553 * commit will leave the blocks being flushed in an unused state on 4554 * disk. (On recovery, the inode will get truncated and the blocks will 4555 * be freed, so we have a strong guarantee that no future commit will 4556 * leave these blocks visible to the user.) 4557 * 4558 * Another thing we have to assure is that if we are in ordered mode 4559 * and inode is still attached to the committing transaction, we must 4560 * we start writeout of all the dirty pages which are being truncated. 4561 * This way we are sure that all the data written in the previous 4562 * transaction are already on disk (truncate waits for pages under 4563 * writeback). 4564 * 4565 * Called with inode->i_mutex down. 4566 */ 4567 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4568 { 4569 struct inode *inode = dentry->d_inode; 4570 int error, rc = 0; 4571 int orphan = 0; 4572 const unsigned int ia_valid = attr->ia_valid; 4573 4574 error = inode_change_ok(inode, attr); 4575 if (error) 4576 return error; 4577 4578 if (is_quota_modification(inode, attr)) 4579 dquot_initialize(inode); 4580 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4581 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4582 handle_t *handle; 4583 4584 /* (user+group)*(old+new) structure, inode write (sb, 4585 * inode block, ? - but truncate inode update has it) */ 4586 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4587 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4588 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4589 if (IS_ERR(handle)) { 4590 error = PTR_ERR(handle); 4591 goto err_out; 4592 } 4593 error = dquot_transfer(inode, attr); 4594 if (error) { 4595 ext4_journal_stop(handle); 4596 return error; 4597 } 4598 /* Update corresponding info in inode so that everything is in 4599 * one transaction */ 4600 if (attr->ia_valid & ATTR_UID) 4601 inode->i_uid = attr->ia_uid; 4602 if (attr->ia_valid & ATTR_GID) 4603 inode->i_gid = attr->ia_gid; 4604 error = ext4_mark_inode_dirty(handle, inode); 4605 ext4_journal_stop(handle); 4606 } 4607 4608 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4609 handle_t *handle; 4610 4611 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4612 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4613 4614 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4615 return -EFBIG; 4616 } 4617 4618 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4619 inode_inc_iversion(inode); 4620 4621 if (S_ISREG(inode->i_mode) && 4622 (attr->ia_size < inode->i_size)) { 4623 if (ext4_should_order_data(inode)) { 4624 error = ext4_begin_ordered_truncate(inode, 4625 attr->ia_size); 4626 if (error) 4627 goto err_out; 4628 } 4629 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4630 if (IS_ERR(handle)) { 4631 error = PTR_ERR(handle); 4632 goto err_out; 4633 } 4634 if (ext4_handle_valid(handle)) { 4635 error = ext4_orphan_add(handle, inode); 4636 orphan = 1; 4637 } 4638 down_write(&EXT4_I(inode)->i_data_sem); 4639 EXT4_I(inode)->i_disksize = attr->ia_size; 4640 rc = ext4_mark_inode_dirty(handle, inode); 4641 if (!error) 4642 error = rc; 4643 /* 4644 * We have to update i_size under i_data_sem together 4645 * with i_disksize to avoid races with writeback code 4646 * running ext4_wb_update_i_disksize(). 4647 */ 4648 if (!error) 4649 i_size_write(inode, attr->ia_size); 4650 up_write(&EXT4_I(inode)->i_data_sem); 4651 ext4_journal_stop(handle); 4652 if (error) { 4653 ext4_orphan_del(NULL, inode); 4654 goto err_out; 4655 } 4656 } else 4657 i_size_write(inode, attr->ia_size); 4658 4659 /* 4660 * Blocks are going to be removed from the inode. Wait 4661 * for dio in flight. Temporarily disable 4662 * dioread_nolock to prevent livelock. 4663 */ 4664 if (orphan) { 4665 if (!ext4_should_journal_data(inode)) { 4666 ext4_inode_block_unlocked_dio(inode); 4667 inode_dio_wait(inode); 4668 ext4_inode_resume_unlocked_dio(inode); 4669 } else 4670 ext4_wait_for_tail_page_commit(inode); 4671 } 4672 /* 4673 * Truncate pagecache after we've waited for commit 4674 * in data=journal mode to make pages freeable. 4675 */ 4676 truncate_pagecache(inode, inode->i_size); 4677 } 4678 /* 4679 * We want to call ext4_truncate() even if attr->ia_size == 4680 * inode->i_size for cases like truncation of fallocated space 4681 */ 4682 if (attr->ia_valid & ATTR_SIZE) 4683 ext4_truncate(inode); 4684 4685 if (!rc) { 4686 setattr_copy(inode, attr); 4687 mark_inode_dirty(inode); 4688 } 4689 4690 /* 4691 * If the call to ext4_truncate failed to get a transaction handle at 4692 * all, we need to clean up the in-core orphan list manually. 4693 */ 4694 if (orphan && inode->i_nlink) 4695 ext4_orphan_del(NULL, inode); 4696 4697 if (!rc && (ia_valid & ATTR_MODE)) 4698 rc = posix_acl_chmod(inode, inode->i_mode); 4699 4700 err_out: 4701 ext4_std_error(inode->i_sb, error); 4702 if (!error) 4703 error = rc; 4704 return error; 4705 } 4706 4707 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4708 struct kstat *stat) 4709 { 4710 struct inode *inode; 4711 unsigned long long delalloc_blocks; 4712 4713 inode = dentry->d_inode; 4714 generic_fillattr(inode, stat); 4715 4716 /* 4717 * If there is inline data in the inode, the inode will normally not 4718 * have data blocks allocated (it may have an external xattr block). 4719 * Report at least one sector for such files, so tools like tar, rsync, 4720 * others doen't incorrectly think the file is completely sparse. 4721 */ 4722 if (unlikely(ext4_has_inline_data(inode))) 4723 stat->blocks += (stat->size + 511) >> 9; 4724 4725 /* 4726 * We can't update i_blocks if the block allocation is delayed 4727 * otherwise in the case of system crash before the real block 4728 * allocation is done, we will have i_blocks inconsistent with 4729 * on-disk file blocks. 4730 * We always keep i_blocks updated together with real 4731 * allocation. But to not confuse with user, stat 4732 * will return the blocks that include the delayed allocation 4733 * blocks for this file. 4734 */ 4735 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4736 EXT4_I(inode)->i_reserved_data_blocks); 4737 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4738 return 0; 4739 } 4740 4741 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4742 int pextents) 4743 { 4744 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4745 return ext4_ind_trans_blocks(inode, lblocks); 4746 return ext4_ext_index_trans_blocks(inode, pextents); 4747 } 4748 4749 /* 4750 * Account for index blocks, block groups bitmaps and block group 4751 * descriptor blocks if modify datablocks and index blocks 4752 * worse case, the indexs blocks spread over different block groups 4753 * 4754 * If datablocks are discontiguous, they are possible to spread over 4755 * different block groups too. If they are contiguous, with flexbg, 4756 * they could still across block group boundary. 4757 * 4758 * Also account for superblock, inode, quota and xattr blocks 4759 */ 4760 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4761 int pextents) 4762 { 4763 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4764 int gdpblocks; 4765 int idxblocks; 4766 int ret = 0; 4767 4768 /* 4769 * How many index blocks need to touch to map @lblocks logical blocks 4770 * to @pextents physical extents? 4771 */ 4772 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4773 4774 ret = idxblocks; 4775 4776 /* 4777 * Now let's see how many group bitmaps and group descriptors need 4778 * to account 4779 */ 4780 groups = idxblocks + pextents; 4781 gdpblocks = groups; 4782 if (groups > ngroups) 4783 groups = ngroups; 4784 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4785 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4786 4787 /* bitmaps and block group descriptor blocks */ 4788 ret += groups + gdpblocks; 4789 4790 /* Blocks for super block, inode, quota and xattr blocks */ 4791 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4792 4793 return ret; 4794 } 4795 4796 /* 4797 * Calculate the total number of credits to reserve to fit 4798 * the modification of a single pages into a single transaction, 4799 * which may include multiple chunks of block allocations. 4800 * 4801 * This could be called via ext4_write_begin() 4802 * 4803 * We need to consider the worse case, when 4804 * one new block per extent. 4805 */ 4806 int ext4_writepage_trans_blocks(struct inode *inode) 4807 { 4808 int bpp = ext4_journal_blocks_per_page(inode); 4809 int ret; 4810 4811 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4812 4813 /* Account for data blocks for journalled mode */ 4814 if (ext4_should_journal_data(inode)) 4815 ret += bpp; 4816 return ret; 4817 } 4818 4819 /* 4820 * Calculate the journal credits for a chunk of data modification. 4821 * 4822 * This is called from DIO, fallocate or whoever calling 4823 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4824 * 4825 * journal buffers for data blocks are not included here, as DIO 4826 * and fallocate do no need to journal data buffers. 4827 */ 4828 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4829 { 4830 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4831 } 4832 4833 /* 4834 * The caller must have previously called ext4_reserve_inode_write(). 4835 * Give this, we know that the caller already has write access to iloc->bh. 4836 */ 4837 int ext4_mark_iloc_dirty(handle_t *handle, 4838 struct inode *inode, struct ext4_iloc *iloc) 4839 { 4840 int err = 0; 4841 4842 if (IS_I_VERSION(inode)) 4843 inode_inc_iversion(inode); 4844 4845 /* the do_update_inode consumes one bh->b_count */ 4846 get_bh(iloc->bh); 4847 4848 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4849 err = ext4_do_update_inode(handle, inode, iloc); 4850 put_bh(iloc->bh); 4851 return err; 4852 } 4853 4854 /* 4855 * On success, We end up with an outstanding reference count against 4856 * iloc->bh. This _must_ be cleaned up later. 4857 */ 4858 4859 int 4860 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4861 struct ext4_iloc *iloc) 4862 { 4863 int err; 4864 4865 err = ext4_get_inode_loc(inode, iloc); 4866 if (!err) { 4867 BUFFER_TRACE(iloc->bh, "get_write_access"); 4868 err = ext4_journal_get_write_access(handle, iloc->bh); 4869 if (err) { 4870 brelse(iloc->bh); 4871 iloc->bh = NULL; 4872 } 4873 } 4874 ext4_std_error(inode->i_sb, err); 4875 return err; 4876 } 4877 4878 /* 4879 * Expand an inode by new_extra_isize bytes. 4880 * Returns 0 on success or negative error number on failure. 4881 */ 4882 static int ext4_expand_extra_isize(struct inode *inode, 4883 unsigned int new_extra_isize, 4884 struct ext4_iloc iloc, 4885 handle_t *handle) 4886 { 4887 struct ext4_inode *raw_inode; 4888 struct ext4_xattr_ibody_header *header; 4889 4890 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4891 return 0; 4892 4893 raw_inode = ext4_raw_inode(&iloc); 4894 4895 header = IHDR(inode, raw_inode); 4896 4897 /* No extended attributes present */ 4898 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4899 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4900 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4901 new_extra_isize); 4902 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4903 return 0; 4904 } 4905 4906 /* try to expand with EAs present */ 4907 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4908 raw_inode, handle); 4909 } 4910 4911 /* 4912 * What we do here is to mark the in-core inode as clean with respect to inode 4913 * dirtiness (it may still be data-dirty). 4914 * This means that the in-core inode may be reaped by prune_icache 4915 * without having to perform any I/O. This is a very good thing, 4916 * because *any* task may call prune_icache - even ones which 4917 * have a transaction open against a different journal. 4918 * 4919 * Is this cheating? Not really. Sure, we haven't written the 4920 * inode out, but prune_icache isn't a user-visible syncing function. 4921 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4922 * we start and wait on commits. 4923 */ 4924 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4925 { 4926 struct ext4_iloc iloc; 4927 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4928 static unsigned int mnt_count; 4929 int err, ret; 4930 4931 might_sleep(); 4932 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4933 err = ext4_reserve_inode_write(handle, inode, &iloc); 4934 if (ext4_handle_valid(handle) && 4935 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4936 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4937 /* 4938 * We need extra buffer credits since we may write into EA block 4939 * with this same handle. If journal_extend fails, then it will 4940 * only result in a minor loss of functionality for that inode. 4941 * If this is felt to be critical, then e2fsck should be run to 4942 * force a large enough s_min_extra_isize. 4943 */ 4944 if ((jbd2_journal_extend(handle, 4945 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4946 ret = ext4_expand_extra_isize(inode, 4947 sbi->s_want_extra_isize, 4948 iloc, handle); 4949 if (ret) { 4950 ext4_set_inode_state(inode, 4951 EXT4_STATE_NO_EXPAND); 4952 if (mnt_count != 4953 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4954 ext4_warning(inode->i_sb, 4955 "Unable to expand inode %lu. Delete" 4956 " some EAs or run e2fsck.", 4957 inode->i_ino); 4958 mnt_count = 4959 le16_to_cpu(sbi->s_es->s_mnt_count); 4960 } 4961 } 4962 } 4963 } 4964 if (!err) 4965 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4966 return err; 4967 } 4968 4969 /* 4970 * ext4_dirty_inode() is called from __mark_inode_dirty() 4971 * 4972 * We're really interested in the case where a file is being extended. 4973 * i_size has been changed by generic_commit_write() and we thus need 4974 * to include the updated inode in the current transaction. 4975 * 4976 * Also, dquot_alloc_block() will always dirty the inode when blocks 4977 * are allocated to the file. 4978 * 4979 * If the inode is marked synchronous, we don't honour that here - doing 4980 * so would cause a commit on atime updates, which we don't bother doing. 4981 * We handle synchronous inodes at the highest possible level. 4982 */ 4983 void ext4_dirty_inode(struct inode *inode, int flags) 4984 { 4985 handle_t *handle; 4986 4987 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4988 if (IS_ERR(handle)) 4989 goto out; 4990 4991 ext4_mark_inode_dirty(handle, inode); 4992 4993 ext4_journal_stop(handle); 4994 out: 4995 return; 4996 } 4997 4998 #if 0 4999 /* 5000 * Bind an inode's backing buffer_head into this transaction, to prevent 5001 * it from being flushed to disk early. Unlike 5002 * ext4_reserve_inode_write, this leaves behind no bh reference and 5003 * returns no iloc structure, so the caller needs to repeat the iloc 5004 * lookup to mark the inode dirty later. 5005 */ 5006 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5007 { 5008 struct ext4_iloc iloc; 5009 5010 int err = 0; 5011 if (handle) { 5012 err = ext4_get_inode_loc(inode, &iloc); 5013 if (!err) { 5014 BUFFER_TRACE(iloc.bh, "get_write_access"); 5015 err = jbd2_journal_get_write_access(handle, iloc.bh); 5016 if (!err) 5017 err = ext4_handle_dirty_metadata(handle, 5018 NULL, 5019 iloc.bh); 5020 brelse(iloc.bh); 5021 } 5022 } 5023 ext4_std_error(inode->i_sb, err); 5024 return err; 5025 } 5026 #endif 5027 5028 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5029 { 5030 journal_t *journal; 5031 handle_t *handle; 5032 int err; 5033 5034 /* 5035 * We have to be very careful here: changing a data block's 5036 * journaling status dynamically is dangerous. If we write a 5037 * data block to the journal, change the status and then delete 5038 * that block, we risk forgetting to revoke the old log record 5039 * from the journal and so a subsequent replay can corrupt data. 5040 * So, first we make sure that the journal is empty and that 5041 * nobody is changing anything. 5042 */ 5043 5044 journal = EXT4_JOURNAL(inode); 5045 if (!journal) 5046 return 0; 5047 if (is_journal_aborted(journal)) 5048 return -EROFS; 5049 /* We have to allocate physical blocks for delalloc blocks 5050 * before flushing journal. otherwise delalloc blocks can not 5051 * be allocated any more. even more truncate on delalloc blocks 5052 * could trigger BUG by flushing delalloc blocks in journal. 5053 * There is no delalloc block in non-journal data mode. 5054 */ 5055 if (val && test_opt(inode->i_sb, DELALLOC)) { 5056 err = ext4_alloc_da_blocks(inode); 5057 if (err < 0) 5058 return err; 5059 } 5060 5061 /* Wait for all existing dio workers */ 5062 ext4_inode_block_unlocked_dio(inode); 5063 inode_dio_wait(inode); 5064 5065 jbd2_journal_lock_updates(journal); 5066 5067 /* 5068 * OK, there are no updates running now, and all cached data is 5069 * synced to disk. We are now in a completely consistent state 5070 * which doesn't have anything in the journal, and we know that 5071 * no filesystem updates are running, so it is safe to modify 5072 * the inode's in-core data-journaling state flag now. 5073 */ 5074 5075 if (val) 5076 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5077 else { 5078 jbd2_journal_flush(journal); 5079 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5080 } 5081 ext4_set_aops(inode); 5082 5083 jbd2_journal_unlock_updates(journal); 5084 ext4_inode_resume_unlocked_dio(inode); 5085 5086 /* Finally we can mark the inode as dirty. */ 5087 5088 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5089 if (IS_ERR(handle)) 5090 return PTR_ERR(handle); 5091 5092 err = ext4_mark_inode_dirty(handle, inode); 5093 ext4_handle_sync(handle); 5094 ext4_journal_stop(handle); 5095 ext4_std_error(inode->i_sb, err); 5096 5097 return err; 5098 } 5099 5100 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5101 { 5102 return !buffer_mapped(bh); 5103 } 5104 5105 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5106 { 5107 struct page *page = vmf->page; 5108 loff_t size; 5109 unsigned long len; 5110 int ret; 5111 struct file *file = vma->vm_file; 5112 struct inode *inode = file_inode(file); 5113 struct address_space *mapping = inode->i_mapping; 5114 handle_t *handle; 5115 get_block_t *get_block; 5116 int retries = 0; 5117 5118 sb_start_pagefault(inode->i_sb); 5119 file_update_time(vma->vm_file); 5120 /* Delalloc case is easy... */ 5121 if (test_opt(inode->i_sb, DELALLOC) && 5122 !ext4_should_journal_data(inode) && 5123 !ext4_nonda_switch(inode->i_sb)) { 5124 do { 5125 ret = __block_page_mkwrite(vma, vmf, 5126 ext4_da_get_block_prep); 5127 } while (ret == -ENOSPC && 5128 ext4_should_retry_alloc(inode->i_sb, &retries)); 5129 goto out_ret; 5130 } 5131 5132 lock_page(page); 5133 size = i_size_read(inode); 5134 /* Page got truncated from under us? */ 5135 if (page->mapping != mapping || page_offset(page) > size) { 5136 unlock_page(page); 5137 ret = VM_FAULT_NOPAGE; 5138 goto out; 5139 } 5140 5141 if (page->index == size >> PAGE_CACHE_SHIFT) 5142 len = size & ~PAGE_CACHE_MASK; 5143 else 5144 len = PAGE_CACHE_SIZE; 5145 /* 5146 * Return if we have all the buffers mapped. This avoids the need to do 5147 * journal_start/journal_stop which can block and take a long time 5148 */ 5149 if (page_has_buffers(page)) { 5150 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5151 0, len, NULL, 5152 ext4_bh_unmapped)) { 5153 /* Wait so that we don't change page under IO */ 5154 wait_for_stable_page(page); 5155 ret = VM_FAULT_LOCKED; 5156 goto out; 5157 } 5158 } 5159 unlock_page(page); 5160 /* OK, we need to fill the hole... */ 5161 if (ext4_should_dioread_nolock(inode)) 5162 get_block = ext4_get_block_write; 5163 else 5164 get_block = ext4_get_block; 5165 retry_alloc: 5166 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5167 ext4_writepage_trans_blocks(inode)); 5168 if (IS_ERR(handle)) { 5169 ret = VM_FAULT_SIGBUS; 5170 goto out; 5171 } 5172 ret = __block_page_mkwrite(vma, vmf, get_block); 5173 if (!ret && ext4_should_journal_data(inode)) { 5174 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5175 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5176 unlock_page(page); 5177 ret = VM_FAULT_SIGBUS; 5178 ext4_journal_stop(handle); 5179 goto out; 5180 } 5181 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5182 } 5183 ext4_journal_stop(handle); 5184 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5185 goto retry_alloc; 5186 out_ret: 5187 ret = block_page_mkwrite_return(ret); 5188 out: 5189 sb_end_pagefault(inode->i_sb); 5190 return ret; 5191 } 5192