xref: /openbmc/linux/fs/ext4/inode.c (revision b246a9d2)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 	if (ext4_has_inline_data(inode))
154 		return 0;
155 
156 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 				 int nblocks)
166 {
167 	int ret;
168 
169 	/*
170 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171 	 * moment, get_block can be called only for blocks inside i_size since
172 	 * page cache has been already dropped and writes are blocked by
173 	 * i_mutex. So we can safely drop the i_data_sem here.
174 	 */
175 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 	jbd_debug(2, "restarting handle %p\n", handle);
177 	up_write(&EXT4_I(inode)->i_data_sem);
178 	ret = ext4_journal_restart(handle, nblocks);
179 	down_write(&EXT4_I(inode)->i_data_sem);
180 	ext4_discard_preallocations(inode);
181 
182 	return ret;
183 }
184 
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 	handle_t *handle;
191 	int err;
192 
193 	trace_ext4_evict_inode(inode);
194 
195 	if (inode->i_nlink) {
196 		/*
197 		 * When journalling data dirty buffers are tracked only in the
198 		 * journal. So although mm thinks everything is clean and
199 		 * ready for reaping the inode might still have some pages to
200 		 * write in the running transaction or waiting to be
201 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 		 * (via truncate_inode_pages()) to discard these buffers can
203 		 * cause data loss. Also even if we did not discard these
204 		 * buffers, we would have no way to find them after the inode
205 		 * is reaped and thus user could see stale data if he tries to
206 		 * read them before the transaction is checkpointed. So be
207 		 * careful and force everything to disk here... We use
208 		 * ei->i_datasync_tid to store the newest transaction
209 		 * containing inode's data.
210 		 *
211 		 * Note that directories do not have this problem because they
212 		 * don't use page cache.
213 		 */
214 		if (inode->i_ino != EXT4_JOURNAL_INO &&
215 		    ext4_should_journal_data(inode) &&
216 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 
220 			jbd2_complete_transaction(journal, commit_tid);
221 			filemap_write_and_wait(&inode->i_data);
222 		}
223 		truncate_inode_pages_final(&inode->i_data);
224 
225 		goto no_delete;
226 	}
227 
228 	if (is_bad_inode(inode))
229 		goto no_delete;
230 	dquot_initialize(inode);
231 
232 	if (ext4_should_order_data(inode))
233 		ext4_begin_ordered_truncate(inode, 0);
234 	truncate_inode_pages_final(&inode->i_data);
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it
239 	 */
240 	sb_start_intwrite(inode->i_sb);
241 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 				    ext4_blocks_for_truncate(inode)+3);
243 	if (IS_ERR(handle)) {
244 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 		/*
246 		 * If we're going to skip the normal cleanup, we still need to
247 		 * make sure that the in-core orphan linked list is properly
248 		 * cleaned up.
249 		 */
250 		ext4_orphan_del(NULL, inode);
251 		sb_end_intwrite(inode->i_sb);
252 		goto no_delete;
253 	}
254 
255 	if (IS_SYNC(inode))
256 		ext4_handle_sync(handle);
257 	inode->i_size = 0;
258 	err = ext4_mark_inode_dirty(handle, inode);
259 	if (err) {
260 		ext4_warning(inode->i_sb,
261 			     "couldn't mark inode dirty (err %d)", err);
262 		goto stop_handle;
263 	}
264 	if (inode->i_blocks) {
265 		err = ext4_truncate(inode);
266 		if (err) {
267 			ext4_error(inode->i_sb,
268 				   "couldn't truncate inode %lu (err %d)",
269 				   inode->i_ino, err);
270 			goto stop_handle;
271 		}
272 	}
273 
274 	/*
275 	 * ext4_ext_truncate() doesn't reserve any slop when it
276 	 * restarts journal transactions; therefore there may not be
277 	 * enough credits left in the handle to remove the inode from
278 	 * the orphan list and set the dtime field.
279 	 */
280 	if (!ext4_handle_has_enough_credits(handle, 3)) {
281 		err = ext4_journal_extend(handle, 3);
282 		if (err > 0)
283 			err = ext4_journal_restart(handle, 3);
284 		if (err != 0) {
285 			ext4_warning(inode->i_sb,
286 				     "couldn't extend journal (err %d)", err);
287 		stop_handle:
288 			ext4_journal_stop(handle);
289 			ext4_orphan_del(NULL, inode);
290 			sb_end_intwrite(inode->i_sb);
291 			goto no_delete;
292 		}
293 	}
294 
295 	/*
296 	 * Kill off the orphan record which ext4_truncate created.
297 	 * AKPM: I think this can be inside the above `if'.
298 	 * Note that ext4_orphan_del() has to be able to cope with the
299 	 * deletion of a non-existent orphan - this is because we don't
300 	 * know if ext4_truncate() actually created an orphan record.
301 	 * (Well, we could do this if we need to, but heck - it works)
302 	 */
303 	ext4_orphan_del(handle, inode);
304 	EXT4_I(inode)->i_dtime	= get_seconds();
305 
306 	/*
307 	 * One subtle ordering requirement: if anything has gone wrong
308 	 * (transaction abort, IO errors, whatever), then we can still
309 	 * do these next steps (the fs will already have been marked as
310 	 * having errors), but we can't free the inode if the mark_dirty
311 	 * fails.
312 	 */
313 	if (ext4_mark_inode_dirty(handle, inode))
314 		/* If that failed, just do the required in-core inode clear. */
315 		ext4_clear_inode(inode);
316 	else
317 		ext4_free_inode(handle, inode);
318 	ext4_journal_stop(handle);
319 	sb_end_intwrite(inode->i_sb);
320 	return;
321 no_delete:
322 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
323 }
324 
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 	return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331 
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 					int used, int quota_claim)
338 {
339 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 	struct ext4_inode_info *ei = EXT4_I(inode);
341 
342 	spin_lock(&ei->i_block_reservation_lock);
343 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 	if (unlikely(used > ei->i_reserved_data_blocks)) {
345 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 			 "with only %d reserved data blocks",
347 			 __func__, inode->i_ino, used,
348 			 ei->i_reserved_data_blocks);
349 		WARN_ON(1);
350 		used = ei->i_reserved_data_blocks;
351 	}
352 
353 	/* Update per-inode reservations */
354 	ei->i_reserved_data_blocks -= used;
355 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356 
357 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358 
359 	/* Update quota subsystem for data blocks */
360 	if (quota_claim)
361 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 	else {
363 		/*
364 		 * We did fallocate with an offset that is already delayed
365 		 * allocated. So on delayed allocated writeback we should
366 		 * not re-claim the quota for fallocated blocks.
367 		 */
368 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 	}
370 
371 	/*
372 	 * If we have done all the pending block allocations and if
373 	 * there aren't any writers on the inode, we can discard the
374 	 * inode's preallocations.
375 	 */
376 	if ((ei->i_reserved_data_blocks == 0) &&
377 	    (atomic_read(&inode->i_writecount) == 0))
378 		ext4_discard_preallocations(inode);
379 }
380 
381 static int __check_block_validity(struct inode *inode, const char *func,
382 				unsigned int line,
383 				struct ext4_map_blocks *map)
384 {
385 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 				   map->m_len)) {
387 		ext4_error_inode(inode, func, line, map->m_pblk,
388 				 "lblock %lu mapped to illegal pblock "
389 				 "(length %d)", (unsigned long) map->m_lblk,
390 				 map->m_len);
391 		return -EFSCORRUPTED;
392 	}
393 	return 0;
394 }
395 
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 		       ext4_lblk_t len)
398 {
399 	int ret;
400 
401 	if (ext4_encrypted_inode(inode))
402 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
403 
404 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 	if (ret > 0)
406 		ret = 0;
407 
408 	return ret;
409 }
410 
411 #define check_block_validity(inode, map)	\
412 	__check_block_validity((inode), __func__, __LINE__, (map))
413 
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 				       struct inode *inode,
417 				       struct ext4_map_blocks *es_map,
418 				       struct ext4_map_blocks *map,
419 				       int flags)
420 {
421 	int retval;
422 
423 	map->m_flags = 0;
424 	/*
425 	 * There is a race window that the result is not the same.
426 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
427 	 * is that we lookup a block mapping in extent status tree with
428 	 * out taking i_data_sem.  So at the time the unwritten extent
429 	 * could be converted.
430 	 */
431 	down_read(&EXT4_I(inode)->i_data_sem);
432 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 					     EXT4_GET_BLOCKS_KEEP_SIZE);
435 	} else {
436 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 					     EXT4_GET_BLOCKS_KEEP_SIZE);
438 	}
439 	up_read((&EXT4_I(inode)->i_data_sem));
440 
441 	/*
442 	 * We don't check m_len because extent will be collpased in status
443 	 * tree.  So the m_len might not equal.
444 	 */
445 	if (es_map->m_lblk != map->m_lblk ||
446 	    es_map->m_flags != map->m_flags ||
447 	    es_map->m_pblk != map->m_pblk) {
448 		printk("ES cache assertion failed for inode: %lu "
449 		       "es_cached ex [%d/%d/%llu/%x] != "
450 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
452 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 		       map->m_len, map->m_pblk, map->m_flags,
454 		       retval, flags);
455 	}
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458 
459 /*
460  * The ext4_map_blocks() function tries to look up the requested blocks,
461  * and returns if the blocks are already mapped.
462  *
463  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464  * and store the allocated blocks in the result buffer head and mark it
465  * mapped.
466  *
467  * If file type is extents based, it will call ext4_ext_map_blocks(),
468  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469  * based files
470  *
471  * On success, it returns the number of blocks being mapped or allocated.  if
472  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474  *
475  * It returns 0 if plain look up failed (blocks have not been allocated), in
476  * that case, @map is returned as unmapped but we still do fill map->m_len to
477  * indicate the length of a hole starting at map->m_lblk.
478  *
479  * It returns the error in case of allocation failure.
480  */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 		    struct ext4_map_blocks *map, int flags)
483 {
484 	struct extent_status es;
485 	int retval;
486 	int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 	struct ext4_map_blocks orig_map;
489 
490 	memcpy(&orig_map, map, sizeof(*map));
491 #endif
492 
493 	map->m_flags = 0;
494 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 		  (unsigned long) map->m_lblk);
497 
498 	/*
499 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 	 */
501 	if (unlikely(map->m_len > INT_MAX))
502 		map->m_len = INT_MAX;
503 
504 	/* We can handle the block number less than EXT_MAX_BLOCKS */
505 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 		return -EFSCORRUPTED;
507 
508 	/* Lookup extent status tree firstly */
509 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 			map->m_pblk = ext4_es_pblock(&es) +
512 					map->m_lblk - es.es_lblk;
513 			map->m_flags |= ext4_es_is_written(&es) ?
514 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 			retval = es.es_len - (map->m_lblk - es.es_lblk);
516 			if (retval > map->m_len)
517 				retval = map->m_len;
518 			map->m_len = retval;
519 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 			map->m_pblk = 0;
521 			retval = es.es_len - (map->m_lblk - es.es_lblk);
522 			if (retval > map->m_len)
523 				retval = map->m_len;
524 			map->m_len = retval;
525 			retval = 0;
526 		} else {
527 			BUG_ON(1);
528 		}
529 #ifdef ES_AGGRESSIVE_TEST
530 		ext4_map_blocks_es_recheck(handle, inode, map,
531 					   &orig_map, flags);
532 #endif
533 		goto found;
534 	}
535 
536 	/*
537 	 * Try to see if we can get the block without requesting a new
538 	 * file system block.
539 	 */
540 	down_read(&EXT4_I(inode)->i_data_sem);
541 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 					     EXT4_GET_BLOCKS_KEEP_SIZE);
544 	} else {
545 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 					     EXT4_GET_BLOCKS_KEEP_SIZE);
547 	}
548 	if (retval > 0) {
549 		unsigned int status;
550 
551 		if (unlikely(retval != map->m_len)) {
552 			ext4_warning(inode->i_sb,
553 				     "ES len assertion failed for inode "
554 				     "%lu: retval %d != map->m_len %d",
555 				     inode->i_ino, retval, map->m_len);
556 			WARN_ON(1);
557 		}
558 
559 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 		    !(status & EXTENT_STATUS_WRITTEN) &&
563 		    ext4_find_delalloc_range(inode, map->m_lblk,
564 					     map->m_lblk + map->m_len - 1))
565 			status |= EXTENT_STATUS_DELAYED;
566 		ret = ext4_es_insert_extent(inode, map->m_lblk,
567 					    map->m_len, map->m_pblk, status);
568 		if (ret < 0)
569 			retval = ret;
570 	}
571 	up_read((&EXT4_I(inode)->i_data_sem));
572 
573 found:
574 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 		ret = check_block_validity(inode, map);
576 		if (ret != 0)
577 			return ret;
578 	}
579 
580 	/* If it is only a block(s) look up */
581 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 		return retval;
583 
584 	/*
585 	 * Returns if the blocks have already allocated
586 	 *
587 	 * Note that if blocks have been preallocated
588 	 * ext4_ext_get_block() returns the create = 0
589 	 * with buffer head unmapped.
590 	 */
591 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 		/*
593 		 * If we need to convert extent to unwritten
594 		 * we continue and do the actual work in
595 		 * ext4_ext_map_blocks()
596 		 */
597 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 			return retval;
599 
600 	/*
601 	 * Here we clear m_flags because after allocating an new extent,
602 	 * it will be set again.
603 	 */
604 	map->m_flags &= ~EXT4_MAP_FLAGS;
605 
606 	/*
607 	 * New blocks allocate and/or writing to unwritten extent
608 	 * will possibly result in updating i_data, so we take
609 	 * the write lock of i_data_sem, and call get_block()
610 	 * with create == 1 flag.
611 	 */
612 	down_write(&EXT4_I(inode)->i_data_sem);
613 
614 	/*
615 	 * We need to check for EXT4 here because migrate
616 	 * could have changed the inode type in between
617 	 */
618 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 	} else {
621 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
622 
623 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 			/*
625 			 * We allocated new blocks which will result in
626 			 * i_data's format changing.  Force the migrate
627 			 * to fail by clearing migrate flags
628 			 */
629 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 		}
631 
632 		/*
633 		 * Update reserved blocks/metadata blocks after successful
634 		 * block allocation which had been deferred till now. We don't
635 		 * support fallocate for non extent files. So we can update
636 		 * reserve space here.
637 		 */
638 		if ((retval > 0) &&
639 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 			ext4_da_update_reserve_space(inode, retval, 1);
641 	}
642 
643 	if (retval > 0) {
644 		unsigned int status;
645 
646 		if (unlikely(retval != map->m_len)) {
647 			ext4_warning(inode->i_sb,
648 				     "ES len assertion failed for inode "
649 				     "%lu: retval %d != map->m_len %d",
650 				     inode->i_ino, retval, map->m_len);
651 			WARN_ON(1);
652 		}
653 
654 		/*
655 		 * We have to zeroout blocks before inserting them into extent
656 		 * status tree. Otherwise someone could look them up there and
657 		 * use them before they are really zeroed. We also have to
658 		 * unmap metadata before zeroing as otherwise writeback can
659 		 * overwrite zeros with stale data from block device.
660 		 */
661 		if (flags & EXT4_GET_BLOCKS_ZERO &&
662 		    map->m_flags & EXT4_MAP_MAPPED &&
663 		    map->m_flags & EXT4_MAP_NEW) {
664 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 					   map->m_len);
666 			ret = ext4_issue_zeroout(inode, map->m_lblk,
667 						 map->m_pblk, map->m_len);
668 			if (ret) {
669 				retval = ret;
670 				goto out_sem;
671 			}
672 		}
673 
674 		/*
675 		 * If the extent has been zeroed out, we don't need to update
676 		 * extent status tree.
677 		 */
678 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 			if (ext4_es_is_written(&es))
681 				goto out_sem;
682 		}
683 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 		    !(status & EXTENT_STATUS_WRITTEN) &&
687 		    ext4_find_delalloc_range(inode, map->m_lblk,
688 					     map->m_lblk + map->m_len - 1))
689 			status |= EXTENT_STATUS_DELAYED;
690 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 					    map->m_pblk, status);
692 		if (ret < 0) {
693 			retval = ret;
694 			goto out_sem;
695 		}
696 	}
697 
698 out_sem:
699 	up_write((&EXT4_I(inode)->i_data_sem));
700 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 		ret = check_block_validity(inode, map);
702 		if (ret != 0)
703 			return ret;
704 
705 		/*
706 		 * Inodes with freshly allocated blocks where contents will be
707 		 * visible after transaction commit must be on transaction's
708 		 * ordered data list.
709 		 */
710 		if (map->m_flags & EXT4_MAP_NEW &&
711 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 		    !IS_NOQUOTA(inode) &&
714 		    ext4_should_order_data(inode)) {
715 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 				ret = ext4_jbd2_inode_add_wait(handle, inode);
717 			else
718 				ret = ext4_jbd2_inode_add_write(handle, inode);
719 			if (ret)
720 				return ret;
721 		}
722 	}
723 	return retval;
724 }
725 
726 /*
727  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728  * we have to be careful as someone else may be manipulating b_state as well.
729  */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732 	unsigned long old_state;
733 	unsigned long new_state;
734 
735 	flags &= EXT4_MAP_FLAGS;
736 
737 	/* Dummy buffer_head? Set non-atomically. */
738 	if (!bh->b_page) {
739 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 		return;
741 	}
742 	/*
743 	 * Someone else may be modifying b_state. Be careful! This is ugly but
744 	 * once we get rid of using bh as a container for mapping information
745 	 * to pass to / from get_block functions, this can go away.
746 	 */
747 	do {
748 		old_state = READ_ONCE(bh->b_state);
749 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 	} while (unlikely(
751 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753 
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 			   struct buffer_head *bh, int flags)
756 {
757 	struct ext4_map_blocks map;
758 	int ret = 0;
759 
760 	if (ext4_has_inline_data(inode))
761 		return -ERANGE;
762 
763 	map.m_lblk = iblock;
764 	map.m_len = bh->b_size >> inode->i_blkbits;
765 
766 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 			      flags);
768 	if (ret > 0) {
769 		map_bh(bh, inode->i_sb, map.m_pblk);
770 		ext4_update_bh_state(bh, map.m_flags);
771 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772 		ret = 0;
773 	} else if (ret == 0) {
774 		/* hole case, need to fill in bh->b_size */
775 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 	}
777 	return ret;
778 }
779 
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781 		   struct buffer_head *bh, int create)
782 {
783 	return _ext4_get_block(inode, iblock, bh,
784 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786 
787 /*
788  * Get block function used when preparing for buffered write if we require
789  * creating an unwritten extent if blocks haven't been allocated.  The extent
790  * will be converted to written after the IO is complete.
791  */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 			     struct buffer_head *bh_result, int create)
794 {
795 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 		   inode->i_ino, create);
797 	return _ext4_get_block(inode, iblock, bh_result,
798 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800 
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803 
804 /*
805  * Get blocks function for the cases that need to start a transaction -
806  * generally difference cases of direct IO and DAX IO. It also handles retries
807  * in case of ENOSPC.
808  */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 				struct buffer_head *bh_result, int flags)
811 {
812 	int dio_credits;
813 	handle_t *handle;
814 	int retries = 0;
815 	int ret;
816 
817 	/* Trim mapping request to maximum we can map at once for DIO */
818 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 	dio_credits = ext4_chunk_trans_blocks(inode,
821 				      bh_result->b_size >> inode->i_blkbits);
822 retry:
823 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 	if (IS_ERR(handle))
825 		return PTR_ERR(handle);
826 
827 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 	ext4_journal_stop(handle);
829 
830 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 		goto retry;
832 	return ret;
833 }
834 
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 		       struct buffer_head *bh, int create)
838 {
839 	/* We don't expect handle for direct IO */
840 	WARN_ON_ONCE(ext4_journal_current_handle());
841 
842 	if (!create)
843 		return _ext4_get_block(inode, iblock, bh, 0);
844 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846 
847 /*
848  * Get block function for AIO DIO writes when we create unwritten extent if
849  * blocks are not allocated yet. The extent will be converted to written
850  * after IO is complete.
851  */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 		sector_t iblock, struct buffer_head *bh_result,	int create)
854 {
855 	int ret;
856 
857 	/* We don't expect handle for direct IO */
858 	WARN_ON_ONCE(ext4_journal_current_handle());
859 
860 	ret = ext4_get_block_trans(inode, iblock, bh_result,
861 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
862 
863 	/*
864 	 * When doing DIO using unwritten extents, we need io_end to convert
865 	 * unwritten extents to written on IO completion. We allocate io_end
866 	 * once we spot unwritten extent and store it in b_private. Generic
867 	 * DIO code keeps b_private set and furthermore passes the value to
868 	 * our completion callback in 'private' argument.
869 	 */
870 	if (!ret && buffer_unwritten(bh_result)) {
871 		if (!bh_result->b_private) {
872 			ext4_io_end_t *io_end;
873 
874 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 			if (!io_end)
876 				return -ENOMEM;
877 			bh_result->b_private = io_end;
878 			ext4_set_io_unwritten_flag(inode, io_end);
879 		}
880 		set_buffer_defer_completion(bh_result);
881 	}
882 
883 	return ret;
884 }
885 
886 /*
887  * Get block function for non-AIO DIO writes when we create unwritten extent if
888  * blocks are not allocated yet. The extent will be converted to written
889  * after IO is complete from ext4_ext_direct_IO() function.
890  */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 		sector_t iblock, struct buffer_head *bh_result,	int create)
893 {
894 	int ret;
895 
896 	/* We don't expect handle for direct IO */
897 	WARN_ON_ONCE(ext4_journal_current_handle());
898 
899 	ret = ext4_get_block_trans(inode, iblock, bh_result,
900 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
901 
902 	/*
903 	 * Mark inode as having pending DIO writes to unwritten extents.
904 	 * ext4_ext_direct_IO() checks this flag and converts extents to
905 	 * written.
906 	 */
907 	if (!ret && buffer_unwritten(bh_result))
908 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909 
910 	return ret;
911 }
912 
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 		   struct buffer_head *bh_result, int create)
915 {
916 	int ret;
917 
918 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 		   inode->i_ino, create);
920 	/* We don't expect handle for direct IO */
921 	WARN_ON_ONCE(ext4_journal_current_handle());
922 
923 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 	/*
925 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 	 * that.
927 	 */
928 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929 
930 	return ret;
931 }
932 
933 
934 /*
935  * `handle' can be NULL if create is zero
936  */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938 				ext4_lblk_t block, int map_flags)
939 {
940 	struct ext4_map_blocks map;
941 	struct buffer_head *bh;
942 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943 	int err;
944 
945 	J_ASSERT(handle != NULL || create == 0);
946 
947 	map.m_lblk = block;
948 	map.m_len = 1;
949 	err = ext4_map_blocks(handle, inode, &map, map_flags);
950 
951 	if (err == 0)
952 		return create ? ERR_PTR(-ENOSPC) : NULL;
953 	if (err < 0)
954 		return ERR_PTR(err);
955 
956 	bh = sb_getblk(inode->i_sb, map.m_pblk);
957 	if (unlikely(!bh))
958 		return ERR_PTR(-ENOMEM);
959 	if (map.m_flags & EXT4_MAP_NEW) {
960 		J_ASSERT(create != 0);
961 		J_ASSERT(handle != NULL);
962 
963 		/*
964 		 * Now that we do not always journal data, we should
965 		 * keep in mind whether this should always journal the
966 		 * new buffer as metadata.  For now, regular file
967 		 * writes use ext4_get_block instead, so it's not a
968 		 * problem.
969 		 */
970 		lock_buffer(bh);
971 		BUFFER_TRACE(bh, "call get_create_access");
972 		err = ext4_journal_get_create_access(handle, bh);
973 		if (unlikely(err)) {
974 			unlock_buffer(bh);
975 			goto errout;
976 		}
977 		if (!buffer_uptodate(bh)) {
978 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 			set_buffer_uptodate(bh);
980 		}
981 		unlock_buffer(bh);
982 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 		err = ext4_handle_dirty_metadata(handle, inode, bh);
984 		if (unlikely(err))
985 			goto errout;
986 	} else
987 		BUFFER_TRACE(bh, "not a new buffer");
988 	return bh;
989 errout:
990 	brelse(bh);
991 	return ERR_PTR(err);
992 }
993 
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995 			       ext4_lblk_t block, int map_flags)
996 {
997 	struct buffer_head *bh;
998 
999 	bh = ext4_getblk(handle, inode, block, map_flags);
1000 	if (IS_ERR(bh))
1001 		return bh;
1002 	if (!bh || buffer_uptodate(bh))
1003 		return bh;
1004 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005 	wait_on_buffer(bh);
1006 	if (buffer_uptodate(bh))
1007 		return bh;
1008 	put_bh(bh);
1009 	return ERR_PTR(-EIO);
1010 }
1011 
1012 int ext4_walk_page_buffers(handle_t *handle,
1013 			   struct buffer_head *head,
1014 			   unsigned from,
1015 			   unsigned to,
1016 			   int *partial,
1017 			   int (*fn)(handle_t *handle,
1018 				     struct buffer_head *bh))
1019 {
1020 	struct buffer_head *bh;
1021 	unsigned block_start, block_end;
1022 	unsigned blocksize = head->b_size;
1023 	int err, ret = 0;
1024 	struct buffer_head *next;
1025 
1026 	for (bh = head, block_start = 0;
1027 	     ret == 0 && (bh != head || !block_start);
1028 	     block_start = block_end, bh = next) {
1029 		next = bh->b_this_page;
1030 		block_end = block_start + blocksize;
1031 		if (block_end <= from || block_start >= to) {
1032 			if (partial && !buffer_uptodate(bh))
1033 				*partial = 1;
1034 			continue;
1035 		}
1036 		err = (*fn)(handle, bh);
1037 		if (!ret)
1038 			ret = err;
1039 	}
1040 	return ret;
1041 }
1042 
1043 /*
1044  * To preserve ordering, it is essential that the hole instantiation and
1045  * the data write be encapsulated in a single transaction.  We cannot
1046  * close off a transaction and start a new one between the ext4_get_block()
1047  * and the commit_write().  So doing the jbd2_journal_start at the start of
1048  * prepare_write() is the right place.
1049  *
1050  * Also, this function can nest inside ext4_writepage().  In that case, we
1051  * *know* that ext4_writepage() has generated enough buffer credits to do the
1052  * whole page.  So we won't block on the journal in that case, which is good,
1053  * because the caller may be PF_MEMALLOC.
1054  *
1055  * By accident, ext4 can be reentered when a transaction is open via
1056  * quota file writes.  If we were to commit the transaction while thus
1057  * reentered, there can be a deadlock - we would be holding a quota
1058  * lock, and the commit would never complete if another thread had a
1059  * transaction open and was blocking on the quota lock - a ranking
1060  * violation.
1061  *
1062  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063  * will _not_ run commit under these circumstances because handle->h_ref
1064  * is elevated.  We'll still have enough credits for the tiny quotafile
1065  * write.
1066  */
1067 int do_journal_get_write_access(handle_t *handle,
1068 				struct buffer_head *bh)
1069 {
1070 	int dirty = buffer_dirty(bh);
1071 	int ret;
1072 
1073 	if (!buffer_mapped(bh) || buffer_freed(bh))
1074 		return 0;
1075 	/*
1076 	 * __block_write_begin() could have dirtied some buffers. Clean
1077 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 	 * otherwise about fs integrity issues. Setting of the dirty bit
1079 	 * by __block_write_begin() isn't a real problem here as we clear
1080 	 * the bit before releasing a page lock and thus writeback cannot
1081 	 * ever write the buffer.
1082 	 */
1083 	if (dirty)
1084 		clear_buffer_dirty(bh);
1085 	BUFFER_TRACE(bh, "get write access");
1086 	ret = ext4_journal_get_write_access(handle, bh);
1087 	if (!ret && dirty)
1088 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 	return ret;
1090 }
1091 
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 				  get_block_t *get_block)
1095 {
1096 	unsigned from = pos & (PAGE_SIZE - 1);
1097 	unsigned to = from + len;
1098 	struct inode *inode = page->mapping->host;
1099 	unsigned block_start, block_end;
1100 	sector_t block;
1101 	int err = 0;
1102 	unsigned blocksize = inode->i_sb->s_blocksize;
1103 	unsigned bbits;
1104 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 	bool decrypt = false;
1106 
1107 	BUG_ON(!PageLocked(page));
1108 	BUG_ON(from > PAGE_SIZE);
1109 	BUG_ON(to > PAGE_SIZE);
1110 	BUG_ON(from > to);
1111 
1112 	if (!page_has_buffers(page))
1113 		create_empty_buffers(page, blocksize, 0);
1114 	head = page_buffers(page);
1115 	bbits = ilog2(blocksize);
1116 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117 
1118 	for (bh = head, block_start = 0; bh != head || !block_start;
1119 	    block++, block_start = block_end, bh = bh->b_this_page) {
1120 		block_end = block_start + blocksize;
1121 		if (block_end <= from || block_start >= to) {
1122 			if (PageUptodate(page)) {
1123 				if (!buffer_uptodate(bh))
1124 					set_buffer_uptodate(bh);
1125 			}
1126 			continue;
1127 		}
1128 		if (buffer_new(bh))
1129 			clear_buffer_new(bh);
1130 		if (!buffer_mapped(bh)) {
1131 			WARN_ON(bh->b_size != blocksize);
1132 			err = get_block(inode, block, bh, 1);
1133 			if (err)
1134 				break;
1135 			if (buffer_new(bh)) {
1136 				clean_bdev_bh_alias(bh);
1137 				if (PageUptodate(page)) {
1138 					clear_buffer_new(bh);
1139 					set_buffer_uptodate(bh);
1140 					mark_buffer_dirty(bh);
1141 					continue;
1142 				}
1143 				if (block_end > to || block_start < from)
1144 					zero_user_segments(page, to, block_end,
1145 							   block_start, from);
1146 				continue;
1147 			}
1148 		}
1149 		if (PageUptodate(page)) {
1150 			if (!buffer_uptodate(bh))
1151 				set_buffer_uptodate(bh);
1152 			continue;
1153 		}
1154 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 		    !buffer_unwritten(bh) &&
1156 		    (block_start < from || block_end > to)) {
1157 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158 			*wait_bh++ = bh;
1159 			decrypt = ext4_encrypted_inode(inode) &&
1160 				S_ISREG(inode->i_mode);
1161 		}
1162 	}
1163 	/*
1164 	 * If we issued read requests, let them complete.
1165 	 */
1166 	while (wait_bh > wait) {
1167 		wait_on_buffer(*--wait_bh);
1168 		if (!buffer_uptodate(*wait_bh))
1169 			err = -EIO;
1170 	}
1171 	if (unlikely(err))
1172 		page_zero_new_buffers(page, from, to);
1173 	else if (decrypt)
1174 		err = fscrypt_decrypt_page(page->mapping->host, page,
1175 				PAGE_SIZE, 0, page->index);
1176 	return err;
1177 }
1178 #endif
1179 
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181 			    loff_t pos, unsigned len, unsigned flags,
1182 			    struct page **pagep, void **fsdata)
1183 {
1184 	struct inode *inode = mapping->host;
1185 	int ret, needed_blocks;
1186 	handle_t *handle;
1187 	int retries = 0;
1188 	struct page *page;
1189 	pgoff_t index;
1190 	unsigned from, to;
1191 
1192 	trace_ext4_write_begin(inode, pos, len, flags);
1193 	/*
1194 	 * Reserve one block more for addition to orphan list in case
1195 	 * we allocate blocks but write fails for some reason
1196 	 */
1197 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1198 	index = pos >> PAGE_SHIFT;
1199 	from = pos & (PAGE_SIZE - 1);
1200 	to = from + len;
1201 
1202 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1203 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1204 						    flags, pagep);
1205 		if (ret < 0)
1206 			return ret;
1207 		if (ret == 1)
1208 			return 0;
1209 	}
1210 
1211 	/*
1212 	 * grab_cache_page_write_begin() can take a long time if the
1213 	 * system is thrashing due to memory pressure, or if the page
1214 	 * is being written back.  So grab it first before we start
1215 	 * the transaction handle.  This also allows us to allocate
1216 	 * the page (if needed) without using GFP_NOFS.
1217 	 */
1218 retry_grab:
1219 	page = grab_cache_page_write_begin(mapping, index, flags);
1220 	if (!page)
1221 		return -ENOMEM;
1222 	unlock_page(page);
1223 
1224 retry_journal:
1225 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1226 	if (IS_ERR(handle)) {
1227 		put_page(page);
1228 		return PTR_ERR(handle);
1229 	}
1230 
1231 	lock_page(page);
1232 	if (page->mapping != mapping) {
1233 		/* The page got truncated from under us */
1234 		unlock_page(page);
1235 		put_page(page);
1236 		ext4_journal_stop(handle);
1237 		goto retry_grab;
1238 	}
1239 	/* In case writeback began while the page was unlocked */
1240 	wait_for_stable_page(page);
1241 
1242 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1243 	if (ext4_should_dioread_nolock(inode))
1244 		ret = ext4_block_write_begin(page, pos, len,
1245 					     ext4_get_block_unwritten);
1246 	else
1247 		ret = ext4_block_write_begin(page, pos, len,
1248 					     ext4_get_block);
1249 #else
1250 	if (ext4_should_dioread_nolock(inode))
1251 		ret = __block_write_begin(page, pos, len,
1252 					  ext4_get_block_unwritten);
1253 	else
1254 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1255 #endif
1256 	if (!ret && ext4_should_journal_data(inode)) {
1257 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1258 					     from, to, NULL,
1259 					     do_journal_get_write_access);
1260 	}
1261 
1262 	if (ret) {
1263 		unlock_page(page);
1264 		/*
1265 		 * __block_write_begin may have instantiated a few blocks
1266 		 * outside i_size.  Trim these off again. Don't need
1267 		 * i_size_read because we hold i_mutex.
1268 		 *
1269 		 * Add inode to orphan list in case we crash before
1270 		 * truncate finishes
1271 		 */
1272 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1273 			ext4_orphan_add(handle, inode);
1274 
1275 		ext4_journal_stop(handle);
1276 		if (pos + len > inode->i_size) {
1277 			ext4_truncate_failed_write(inode);
1278 			/*
1279 			 * If truncate failed early the inode might
1280 			 * still be on the orphan list; we need to
1281 			 * make sure the inode is removed from the
1282 			 * orphan list in that case.
1283 			 */
1284 			if (inode->i_nlink)
1285 				ext4_orphan_del(NULL, inode);
1286 		}
1287 
1288 		if (ret == -ENOSPC &&
1289 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1290 			goto retry_journal;
1291 		put_page(page);
1292 		return ret;
1293 	}
1294 	*pagep = page;
1295 	return ret;
1296 }
1297 
1298 /* For write_end() in data=journal mode */
1299 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1300 {
1301 	int ret;
1302 	if (!buffer_mapped(bh) || buffer_freed(bh))
1303 		return 0;
1304 	set_buffer_uptodate(bh);
1305 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1306 	clear_buffer_meta(bh);
1307 	clear_buffer_prio(bh);
1308 	return ret;
1309 }
1310 
1311 /*
1312  * We need to pick up the new inode size which generic_commit_write gave us
1313  * `file' can be NULL - eg, when called from page_symlink().
1314  *
1315  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1316  * buffers are managed internally.
1317  */
1318 static int ext4_write_end(struct file *file,
1319 			  struct address_space *mapping,
1320 			  loff_t pos, unsigned len, unsigned copied,
1321 			  struct page *page, void *fsdata)
1322 {
1323 	handle_t *handle = ext4_journal_current_handle();
1324 	struct inode *inode = mapping->host;
1325 	loff_t old_size = inode->i_size;
1326 	int ret = 0, ret2;
1327 	int i_size_changed = 0;
1328 
1329 	trace_ext4_write_end(inode, pos, len, copied);
1330 	if (ext4_has_inline_data(inode)) {
1331 		ret = ext4_write_inline_data_end(inode, pos, len,
1332 						 copied, page);
1333 		if (ret < 0)
1334 			goto errout;
1335 		copied = ret;
1336 	} else
1337 		copied = block_write_end(file, mapping, pos,
1338 					 len, copied, page, fsdata);
1339 	/*
1340 	 * it's important to update i_size while still holding page lock:
1341 	 * page writeout could otherwise come in and zero beyond i_size.
1342 	 */
1343 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1344 	unlock_page(page);
1345 	put_page(page);
1346 
1347 	if (old_size < pos)
1348 		pagecache_isize_extended(inode, old_size, pos);
1349 	/*
1350 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1351 	 * makes the holding time of page lock longer. Second, it forces lock
1352 	 * ordering of page lock and transaction start for journaling
1353 	 * filesystems.
1354 	 */
1355 	if (i_size_changed)
1356 		ext4_mark_inode_dirty(handle, inode);
1357 
1358 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1359 		/* if we have allocated more blocks and copied
1360 		 * less. We will have blocks allocated outside
1361 		 * inode->i_size. So truncate them
1362 		 */
1363 		ext4_orphan_add(handle, inode);
1364 errout:
1365 	ret2 = ext4_journal_stop(handle);
1366 	if (!ret)
1367 		ret = ret2;
1368 
1369 	if (pos + len > inode->i_size) {
1370 		ext4_truncate_failed_write(inode);
1371 		/*
1372 		 * If truncate failed early the inode might still be
1373 		 * on the orphan list; we need to make sure the inode
1374 		 * is removed from the orphan list in that case.
1375 		 */
1376 		if (inode->i_nlink)
1377 			ext4_orphan_del(NULL, inode);
1378 	}
1379 
1380 	return ret ? ret : copied;
1381 }
1382 
1383 /*
1384  * This is a private version of page_zero_new_buffers() which doesn't
1385  * set the buffer to be dirty, since in data=journalled mode we need
1386  * to call ext4_handle_dirty_metadata() instead.
1387  */
1388 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1389 {
1390 	unsigned int block_start = 0, block_end;
1391 	struct buffer_head *head, *bh;
1392 
1393 	bh = head = page_buffers(page);
1394 	do {
1395 		block_end = block_start + bh->b_size;
1396 		if (buffer_new(bh)) {
1397 			if (block_end > from && block_start < to) {
1398 				if (!PageUptodate(page)) {
1399 					unsigned start, size;
1400 
1401 					start = max(from, block_start);
1402 					size = min(to, block_end) - start;
1403 
1404 					zero_user(page, start, size);
1405 					set_buffer_uptodate(bh);
1406 				}
1407 				clear_buffer_new(bh);
1408 			}
1409 		}
1410 		block_start = block_end;
1411 		bh = bh->b_this_page;
1412 	} while (bh != head);
1413 }
1414 
1415 static int ext4_journalled_write_end(struct file *file,
1416 				     struct address_space *mapping,
1417 				     loff_t pos, unsigned len, unsigned copied,
1418 				     struct page *page, void *fsdata)
1419 {
1420 	handle_t *handle = ext4_journal_current_handle();
1421 	struct inode *inode = mapping->host;
1422 	loff_t old_size = inode->i_size;
1423 	int ret = 0, ret2;
1424 	int partial = 0;
1425 	unsigned from, to;
1426 	int size_changed = 0;
1427 
1428 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1429 	from = pos & (PAGE_SIZE - 1);
1430 	to = from + len;
1431 
1432 	BUG_ON(!ext4_handle_valid(handle));
1433 
1434 	if (ext4_has_inline_data(inode))
1435 		copied = ext4_write_inline_data_end(inode, pos, len,
1436 						    copied, page);
1437 	else {
1438 		if (copied < len) {
1439 			if (!PageUptodate(page))
1440 				copied = 0;
1441 			zero_new_buffers(page, from+copied, to);
1442 		}
1443 
1444 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1445 					     to, &partial, write_end_fn);
1446 		if (!partial)
1447 			SetPageUptodate(page);
1448 	}
1449 	size_changed = ext4_update_inode_size(inode, pos + copied);
1450 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1451 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1452 	unlock_page(page);
1453 	put_page(page);
1454 
1455 	if (old_size < pos)
1456 		pagecache_isize_extended(inode, old_size, pos);
1457 
1458 	if (size_changed) {
1459 		ret2 = ext4_mark_inode_dirty(handle, inode);
1460 		if (!ret)
1461 			ret = ret2;
1462 	}
1463 
1464 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1465 		/* if we have allocated more blocks and copied
1466 		 * less. We will have blocks allocated outside
1467 		 * inode->i_size. So truncate them
1468 		 */
1469 		ext4_orphan_add(handle, inode);
1470 
1471 	ret2 = ext4_journal_stop(handle);
1472 	if (!ret)
1473 		ret = ret2;
1474 	if (pos + len > inode->i_size) {
1475 		ext4_truncate_failed_write(inode);
1476 		/*
1477 		 * If truncate failed early the inode might still be
1478 		 * on the orphan list; we need to make sure the inode
1479 		 * is removed from the orphan list in that case.
1480 		 */
1481 		if (inode->i_nlink)
1482 			ext4_orphan_del(NULL, inode);
1483 	}
1484 
1485 	return ret ? ret : copied;
1486 }
1487 
1488 /*
1489  * Reserve space for a single cluster
1490  */
1491 static int ext4_da_reserve_space(struct inode *inode)
1492 {
1493 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1494 	struct ext4_inode_info *ei = EXT4_I(inode);
1495 	int ret;
1496 
1497 	/*
1498 	 * We will charge metadata quota at writeout time; this saves
1499 	 * us from metadata over-estimation, though we may go over by
1500 	 * a small amount in the end.  Here we just reserve for data.
1501 	 */
1502 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1503 	if (ret)
1504 		return ret;
1505 
1506 	spin_lock(&ei->i_block_reservation_lock);
1507 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1508 		spin_unlock(&ei->i_block_reservation_lock);
1509 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1510 		return -ENOSPC;
1511 	}
1512 	ei->i_reserved_data_blocks++;
1513 	trace_ext4_da_reserve_space(inode);
1514 	spin_unlock(&ei->i_block_reservation_lock);
1515 
1516 	return 0;       /* success */
1517 }
1518 
1519 static void ext4_da_release_space(struct inode *inode, int to_free)
1520 {
1521 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1522 	struct ext4_inode_info *ei = EXT4_I(inode);
1523 
1524 	if (!to_free)
1525 		return;		/* Nothing to release, exit */
1526 
1527 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1528 
1529 	trace_ext4_da_release_space(inode, to_free);
1530 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1531 		/*
1532 		 * if there aren't enough reserved blocks, then the
1533 		 * counter is messed up somewhere.  Since this
1534 		 * function is called from invalidate page, it's
1535 		 * harmless to return without any action.
1536 		 */
1537 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1538 			 "ino %lu, to_free %d with only %d reserved "
1539 			 "data blocks", inode->i_ino, to_free,
1540 			 ei->i_reserved_data_blocks);
1541 		WARN_ON(1);
1542 		to_free = ei->i_reserved_data_blocks;
1543 	}
1544 	ei->i_reserved_data_blocks -= to_free;
1545 
1546 	/* update fs dirty data blocks counter */
1547 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1548 
1549 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1550 
1551 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1552 }
1553 
1554 static void ext4_da_page_release_reservation(struct page *page,
1555 					     unsigned int offset,
1556 					     unsigned int length)
1557 {
1558 	int to_release = 0, contiguous_blks = 0;
1559 	struct buffer_head *head, *bh;
1560 	unsigned int curr_off = 0;
1561 	struct inode *inode = page->mapping->host;
1562 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1563 	unsigned int stop = offset + length;
1564 	int num_clusters;
1565 	ext4_fsblk_t lblk;
1566 
1567 	BUG_ON(stop > PAGE_SIZE || stop < length);
1568 
1569 	head = page_buffers(page);
1570 	bh = head;
1571 	do {
1572 		unsigned int next_off = curr_off + bh->b_size;
1573 
1574 		if (next_off > stop)
1575 			break;
1576 
1577 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1578 			to_release++;
1579 			contiguous_blks++;
1580 			clear_buffer_delay(bh);
1581 		} else if (contiguous_blks) {
1582 			lblk = page->index <<
1583 			       (PAGE_SHIFT - inode->i_blkbits);
1584 			lblk += (curr_off >> inode->i_blkbits) -
1585 				contiguous_blks;
1586 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1587 			contiguous_blks = 0;
1588 		}
1589 		curr_off = next_off;
1590 	} while ((bh = bh->b_this_page) != head);
1591 
1592 	if (contiguous_blks) {
1593 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1594 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1595 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1596 	}
1597 
1598 	/* If we have released all the blocks belonging to a cluster, then we
1599 	 * need to release the reserved space for that cluster. */
1600 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1601 	while (num_clusters > 0) {
1602 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1603 			((num_clusters - 1) << sbi->s_cluster_bits);
1604 		if (sbi->s_cluster_ratio == 1 ||
1605 		    !ext4_find_delalloc_cluster(inode, lblk))
1606 			ext4_da_release_space(inode, 1);
1607 
1608 		num_clusters--;
1609 	}
1610 }
1611 
1612 /*
1613  * Delayed allocation stuff
1614  */
1615 
1616 struct mpage_da_data {
1617 	struct inode *inode;
1618 	struct writeback_control *wbc;
1619 
1620 	pgoff_t first_page;	/* The first page to write */
1621 	pgoff_t next_page;	/* Current page to examine */
1622 	pgoff_t last_page;	/* Last page to examine */
1623 	/*
1624 	 * Extent to map - this can be after first_page because that can be
1625 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1626 	 * is delalloc or unwritten.
1627 	 */
1628 	struct ext4_map_blocks map;
1629 	struct ext4_io_submit io_submit;	/* IO submission data */
1630 };
1631 
1632 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1633 				       bool invalidate)
1634 {
1635 	int nr_pages, i;
1636 	pgoff_t index, end;
1637 	struct pagevec pvec;
1638 	struct inode *inode = mpd->inode;
1639 	struct address_space *mapping = inode->i_mapping;
1640 
1641 	/* This is necessary when next_page == 0. */
1642 	if (mpd->first_page >= mpd->next_page)
1643 		return;
1644 
1645 	index = mpd->first_page;
1646 	end   = mpd->next_page - 1;
1647 	if (invalidate) {
1648 		ext4_lblk_t start, last;
1649 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1650 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1651 		ext4_es_remove_extent(inode, start, last - start + 1);
1652 	}
1653 
1654 	pagevec_init(&pvec, 0);
1655 	while (index <= end) {
1656 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1657 		if (nr_pages == 0)
1658 			break;
1659 		for (i = 0; i < nr_pages; i++) {
1660 			struct page *page = pvec.pages[i];
1661 			if (page->index > end)
1662 				break;
1663 			BUG_ON(!PageLocked(page));
1664 			BUG_ON(PageWriteback(page));
1665 			if (invalidate) {
1666 				if (page_mapped(page))
1667 					clear_page_dirty_for_io(page);
1668 				block_invalidatepage(page, 0, PAGE_SIZE);
1669 				ClearPageUptodate(page);
1670 			}
1671 			unlock_page(page);
1672 		}
1673 		index = pvec.pages[nr_pages - 1]->index + 1;
1674 		pagevec_release(&pvec);
1675 	}
1676 }
1677 
1678 static void ext4_print_free_blocks(struct inode *inode)
1679 {
1680 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1681 	struct super_block *sb = inode->i_sb;
1682 	struct ext4_inode_info *ei = EXT4_I(inode);
1683 
1684 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1685 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1686 			ext4_count_free_clusters(sb)));
1687 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1688 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1689 	       (long long) EXT4_C2B(EXT4_SB(sb),
1690 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1691 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1692 	       (long long) EXT4_C2B(EXT4_SB(sb),
1693 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1694 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1695 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1696 		 ei->i_reserved_data_blocks);
1697 	return;
1698 }
1699 
1700 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1701 {
1702 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1703 }
1704 
1705 /*
1706  * This function is grabs code from the very beginning of
1707  * ext4_map_blocks, but assumes that the caller is from delayed write
1708  * time. This function looks up the requested blocks and sets the
1709  * buffer delay bit under the protection of i_data_sem.
1710  */
1711 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1712 			      struct ext4_map_blocks *map,
1713 			      struct buffer_head *bh)
1714 {
1715 	struct extent_status es;
1716 	int retval;
1717 	sector_t invalid_block = ~((sector_t) 0xffff);
1718 #ifdef ES_AGGRESSIVE_TEST
1719 	struct ext4_map_blocks orig_map;
1720 
1721 	memcpy(&orig_map, map, sizeof(*map));
1722 #endif
1723 
1724 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1725 		invalid_block = ~0;
1726 
1727 	map->m_flags = 0;
1728 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1729 		  "logical block %lu\n", inode->i_ino, map->m_len,
1730 		  (unsigned long) map->m_lblk);
1731 
1732 	/* Lookup extent status tree firstly */
1733 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1734 		if (ext4_es_is_hole(&es)) {
1735 			retval = 0;
1736 			down_read(&EXT4_I(inode)->i_data_sem);
1737 			goto add_delayed;
1738 		}
1739 
1740 		/*
1741 		 * Delayed extent could be allocated by fallocate.
1742 		 * So we need to check it.
1743 		 */
1744 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1745 			map_bh(bh, inode->i_sb, invalid_block);
1746 			set_buffer_new(bh);
1747 			set_buffer_delay(bh);
1748 			return 0;
1749 		}
1750 
1751 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1752 		retval = es.es_len - (iblock - es.es_lblk);
1753 		if (retval > map->m_len)
1754 			retval = map->m_len;
1755 		map->m_len = retval;
1756 		if (ext4_es_is_written(&es))
1757 			map->m_flags |= EXT4_MAP_MAPPED;
1758 		else if (ext4_es_is_unwritten(&es))
1759 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1760 		else
1761 			BUG_ON(1);
1762 
1763 #ifdef ES_AGGRESSIVE_TEST
1764 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1765 #endif
1766 		return retval;
1767 	}
1768 
1769 	/*
1770 	 * Try to see if we can get the block without requesting a new
1771 	 * file system block.
1772 	 */
1773 	down_read(&EXT4_I(inode)->i_data_sem);
1774 	if (ext4_has_inline_data(inode))
1775 		retval = 0;
1776 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1777 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1778 	else
1779 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1780 
1781 add_delayed:
1782 	if (retval == 0) {
1783 		int ret;
1784 		/*
1785 		 * XXX: __block_prepare_write() unmaps passed block,
1786 		 * is it OK?
1787 		 */
1788 		/*
1789 		 * If the block was allocated from previously allocated cluster,
1790 		 * then we don't need to reserve it again. However we still need
1791 		 * to reserve metadata for every block we're going to write.
1792 		 */
1793 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1794 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1795 			ret = ext4_da_reserve_space(inode);
1796 			if (ret) {
1797 				/* not enough space to reserve */
1798 				retval = ret;
1799 				goto out_unlock;
1800 			}
1801 		}
1802 
1803 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1804 					    ~0, EXTENT_STATUS_DELAYED);
1805 		if (ret) {
1806 			retval = ret;
1807 			goto out_unlock;
1808 		}
1809 
1810 		map_bh(bh, inode->i_sb, invalid_block);
1811 		set_buffer_new(bh);
1812 		set_buffer_delay(bh);
1813 	} else if (retval > 0) {
1814 		int ret;
1815 		unsigned int status;
1816 
1817 		if (unlikely(retval != map->m_len)) {
1818 			ext4_warning(inode->i_sb,
1819 				     "ES len assertion failed for inode "
1820 				     "%lu: retval %d != map->m_len %d",
1821 				     inode->i_ino, retval, map->m_len);
1822 			WARN_ON(1);
1823 		}
1824 
1825 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1826 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1827 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1828 					    map->m_pblk, status);
1829 		if (ret != 0)
1830 			retval = ret;
1831 	}
1832 
1833 out_unlock:
1834 	up_read((&EXT4_I(inode)->i_data_sem));
1835 
1836 	return retval;
1837 }
1838 
1839 /*
1840  * This is a special get_block_t callback which is used by
1841  * ext4_da_write_begin().  It will either return mapped block or
1842  * reserve space for a single block.
1843  *
1844  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1845  * We also have b_blocknr = -1 and b_bdev initialized properly
1846  *
1847  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1848  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1849  * initialized properly.
1850  */
1851 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1852 			   struct buffer_head *bh, int create)
1853 {
1854 	struct ext4_map_blocks map;
1855 	int ret = 0;
1856 
1857 	BUG_ON(create == 0);
1858 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1859 
1860 	map.m_lblk = iblock;
1861 	map.m_len = 1;
1862 
1863 	/*
1864 	 * first, we need to know whether the block is allocated already
1865 	 * preallocated blocks are unmapped but should treated
1866 	 * the same as allocated blocks.
1867 	 */
1868 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1869 	if (ret <= 0)
1870 		return ret;
1871 
1872 	map_bh(bh, inode->i_sb, map.m_pblk);
1873 	ext4_update_bh_state(bh, map.m_flags);
1874 
1875 	if (buffer_unwritten(bh)) {
1876 		/* A delayed write to unwritten bh should be marked
1877 		 * new and mapped.  Mapped ensures that we don't do
1878 		 * get_block multiple times when we write to the same
1879 		 * offset and new ensures that we do proper zero out
1880 		 * for partial write.
1881 		 */
1882 		set_buffer_new(bh);
1883 		set_buffer_mapped(bh);
1884 	}
1885 	return 0;
1886 }
1887 
1888 static int bget_one(handle_t *handle, struct buffer_head *bh)
1889 {
1890 	get_bh(bh);
1891 	return 0;
1892 }
1893 
1894 static int bput_one(handle_t *handle, struct buffer_head *bh)
1895 {
1896 	put_bh(bh);
1897 	return 0;
1898 }
1899 
1900 static int __ext4_journalled_writepage(struct page *page,
1901 				       unsigned int len)
1902 {
1903 	struct address_space *mapping = page->mapping;
1904 	struct inode *inode = mapping->host;
1905 	struct buffer_head *page_bufs = NULL;
1906 	handle_t *handle = NULL;
1907 	int ret = 0, err = 0;
1908 	int inline_data = ext4_has_inline_data(inode);
1909 	struct buffer_head *inode_bh = NULL;
1910 
1911 	ClearPageChecked(page);
1912 
1913 	if (inline_data) {
1914 		BUG_ON(page->index != 0);
1915 		BUG_ON(len > ext4_get_max_inline_size(inode));
1916 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1917 		if (inode_bh == NULL)
1918 			goto out;
1919 	} else {
1920 		page_bufs = page_buffers(page);
1921 		if (!page_bufs) {
1922 			BUG();
1923 			goto out;
1924 		}
1925 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1926 				       NULL, bget_one);
1927 	}
1928 	/*
1929 	 * We need to release the page lock before we start the
1930 	 * journal, so grab a reference so the page won't disappear
1931 	 * out from under us.
1932 	 */
1933 	get_page(page);
1934 	unlock_page(page);
1935 
1936 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1937 				    ext4_writepage_trans_blocks(inode));
1938 	if (IS_ERR(handle)) {
1939 		ret = PTR_ERR(handle);
1940 		put_page(page);
1941 		goto out_no_pagelock;
1942 	}
1943 	BUG_ON(!ext4_handle_valid(handle));
1944 
1945 	lock_page(page);
1946 	put_page(page);
1947 	if (page->mapping != mapping) {
1948 		/* The page got truncated from under us */
1949 		ext4_journal_stop(handle);
1950 		ret = 0;
1951 		goto out;
1952 	}
1953 
1954 	if (inline_data) {
1955 		BUFFER_TRACE(inode_bh, "get write access");
1956 		ret = ext4_journal_get_write_access(handle, inode_bh);
1957 
1958 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1959 
1960 	} else {
1961 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1962 					     do_journal_get_write_access);
1963 
1964 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1965 					     write_end_fn);
1966 	}
1967 	if (ret == 0)
1968 		ret = err;
1969 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1970 	err = ext4_journal_stop(handle);
1971 	if (!ret)
1972 		ret = err;
1973 
1974 	if (!ext4_has_inline_data(inode))
1975 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1976 				       NULL, bput_one);
1977 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1978 out:
1979 	unlock_page(page);
1980 out_no_pagelock:
1981 	brelse(inode_bh);
1982 	return ret;
1983 }
1984 
1985 /*
1986  * Note that we don't need to start a transaction unless we're journaling data
1987  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1988  * need to file the inode to the transaction's list in ordered mode because if
1989  * we are writing back data added by write(), the inode is already there and if
1990  * we are writing back data modified via mmap(), no one guarantees in which
1991  * transaction the data will hit the disk. In case we are journaling data, we
1992  * cannot start transaction directly because transaction start ranks above page
1993  * lock so we have to do some magic.
1994  *
1995  * This function can get called via...
1996  *   - ext4_writepages after taking page lock (have journal handle)
1997  *   - journal_submit_inode_data_buffers (no journal handle)
1998  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1999  *   - grab_page_cache when doing write_begin (have journal handle)
2000  *
2001  * We don't do any block allocation in this function. If we have page with
2002  * multiple blocks we need to write those buffer_heads that are mapped. This
2003  * is important for mmaped based write. So if we do with blocksize 1K
2004  * truncate(f, 1024);
2005  * a = mmap(f, 0, 4096);
2006  * a[0] = 'a';
2007  * truncate(f, 4096);
2008  * we have in the page first buffer_head mapped via page_mkwrite call back
2009  * but other buffer_heads would be unmapped but dirty (dirty done via the
2010  * do_wp_page). So writepage should write the first block. If we modify
2011  * the mmap area beyond 1024 we will again get a page_fault and the
2012  * page_mkwrite callback will do the block allocation and mark the
2013  * buffer_heads mapped.
2014  *
2015  * We redirty the page if we have any buffer_heads that is either delay or
2016  * unwritten in the page.
2017  *
2018  * We can get recursively called as show below.
2019  *
2020  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2021  *		ext4_writepage()
2022  *
2023  * But since we don't do any block allocation we should not deadlock.
2024  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2025  */
2026 static int ext4_writepage(struct page *page,
2027 			  struct writeback_control *wbc)
2028 {
2029 	int ret = 0;
2030 	loff_t size;
2031 	unsigned int len;
2032 	struct buffer_head *page_bufs = NULL;
2033 	struct inode *inode = page->mapping->host;
2034 	struct ext4_io_submit io_submit;
2035 	bool keep_towrite = false;
2036 
2037 	trace_ext4_writepage(page);
2038 	size = i_size_read(inode);
2039 	if (page->index == size >> PAGE_SHIFT)
2040 		len = size & ~PAGE_MASK;
2041 	else
2042 		len = PAGE_SIZE;
2043 
2044 	page_bufs = page_buffers(page);
2045 	/*
2046 	 * We cannot do block allocation or other extent handling in this
2047 	 * function. If there are buffers needing that, we have to redirty
2048 	 * the page. But we may reach here when we do a journal commit via
2049 	 * journal_submit_inode_data_buffers() and in that case we must write
2050 	 * allocated buffers to achieve data=ordered mode guarantees.
2051 	 *
2052 	 * Also, if there is only one buffer per page (the fs block
2053 	 * size == the page size), if one buffer needs block
2054 	 * allocation or needs to modify the extent tree to clear the
2055 	 * unwritten flag, we know that the page can't be written at
2056 	 * all, so we might as well refuse the write immediately.
2057 	 * Unfortunately if the block size != page size, we can't as
2058 	 * easily detect this case using ext4_walk_page_buffers(), but
2059 	 * for the extremely common case, this is an optimization that
2060 	 * skips a useless round trip through ext4_bio_write_page().
2061 	 */
2062 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2063 				   ext4_bh_delay_or_unwritten)) {
2064 		redirty_page_for_writepage(wbc, page);
2065 		if ((current->flags & PF_MEMALLOC) ||
2066 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2067 			/*
2068 			 * For memory cleaning there's no point in writing only
2069 			 * some buffers. So just bail out. Warn if we came here
2070 			 * from direct reclaim.
2071 			 */
2072 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2073 							== PF_MEMALLOC);
2074 			unlock_page(page);
2075 			return 0;
2076 		}
2077 		keep_towrite = true;
2078 	}
2079 
2080 	if (PageChecked(page) && ext4_should_journal_data(inode))
2081 		/*
2082 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2083 		 * doesn't seem much point in redirtying the page here.
2084 		 */
2085 		return __ext4_journalled_writepage(page, len);
2086 
2087 	ext4_io_submit_init(&io_submit, wbc);
2088 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2089 	if (!io_submit.io_end) {
2090 		redirty_page_for_writepage(wbc, page);
2091 		unlock_page(page);
2092 		return -ENOMEM;
2093 	}
2094 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2095 	ext4_io_submit(&io_submit);
2096 	/* Drop io_end reference we got from init */
2097 	ext4_put_io_end_defer(io_submit.io_end);
2098 	return ret;
2099 }
2100 
2101 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2102 {
2103 	int len;
2104 	loff_t size = i_size_read(mpd->inode);
2105 	int err;
2106 
2107 	BUG_ON(page->index != mpd->first_page);
2108 	if (page->index == size >> PAGE_SHIFT)
2109 		len = size & ~PAGE_MASK;
2110 	else
2111 		len = PAGE_SIZE;
2112 	clear_page_dirty_for_io(page);
2113 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2114 	if (!err)
2115 		mpd->wbc->nr_to_write--;
2116 	mpd->first_page++;
2117 
2118 	return err;
2119 }
2120 
2121 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2122 
2123 /*
2124  * mballoc gives us at most this number of blocks...
2125  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2126  * The rest of mballoc seems to handle chunks up to full group size.
2127  */
2128 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2129 
2130 /*
2131  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2132  *
2133  * @mpd - extent of blocks
2134  * @lblk - logical number of the block in the file
2135  * @bh - buffer head we want to add to the extent
2136  *
2137  * The function is used to collect contig. blocks in the same state. If the
2138  * buffer doesn't require mapping for writeback and we haven't started the
2139  * extent of buffers to map yet, the function returns 'true' immediately - the
2140  * caller can write the buffer right away. Otherwise the function returns true
2141  * if the block has been added to the extent, false if the block couldn't be
2142  * added.
2143  */
2144 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2145 				   struct buffer_head *bh)
2146 {
2147 	struct ext4_map_blocks *map = &mpd->map;
2148 
2149 	/* Buffer that doesn't need mapping for writeback? */
2150 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2151 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2152 		/* So far no extent to map => we write the buffer right away */
2153 		if (map->m_len == 0)
2154 			return true;
2155 		return false;
2156 	}
2157 
2158 	/* First block in the extent? */
2159 	if (map->m_len == 0) {
2160 		map->m_lblk = lblk;
2161 		map->m_len = 1;
2162 		map->m_flags = bh->b_state & BH_FLAGS;
2163 		return true;
2164 	}
2165 
2166 	/* Don't go larger than mballoc is willing to allocate */
2167 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2168 		return false;
2169 
2170 	/* Can we merge the block to our big extent? */
2171 	if (lblk == map->m_lblk + map->m_len &&
2172 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2173 		map->m_len++;
2174 		return true;
2175 	}
2176 	return false;
2177 }
2178 
2179 /*
2180  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2181  *
2182  * @mpd - extent of blocks for mapping
2183  * @head - the first buffer in the page
2184  * @bh - buffer we should start processing from
2185  * @lblk - logical number of the block in the file corresponding to @bh
2186  *
2187  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2188  * the page for IO if all buffers in this page were mapped and there's no
2189  * accumulated extent of buffers to map or add buffers in the page to the
2190  * extent of buffers to map. The function returns 1 if the caller can continue
2191  * by processing the next page, 0 if it should stop adding buffers to the
2192  * extent to map because we cannot extend it anymore. It can also return value
2193  * < 0 in case of error during IO submission.
2194  */
2195 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2196 				   struct buffer_head *head,
2197 				   struct buffer_head *bh,
2198 				   ext4_lblk_t lblk)
2199 {
2200 	struct inode *inode = mpd->inode;
2201 	int err;
2202 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2203 							>> inode->i_blkbits;
2204 
2205 	do {
2206 		BUG_ON(buffer_locked(bh));
2207 
2208 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2209 			/* Found extent to map? */
2210 			if (mpd->map.m_len)
2211 				return 0;
2212 			/* Everything mapped so far and we hit EOF */
2213 			break;
2214 		}
2215 	} while (lblk++, (bh = bh->b_this_page) != head);
2216 	/* So far everything mapped? Submit the page for IO. */
2217 	if (mpd->map.m_len == 0) {
2218 		err = mpage_submit_page(mpd, head->b_page);
2219 		if (err < 0)
2220 			return err;
2221 	}
2222 	return lblk < blocks;
2223 }
2224 
2225 /*
2226  * mpage_map_buffers - update buffers corresponding to changed extent and
2227  *		       submit fully mapped pages for IO
2228  *
2229  * @mpd - description of extent to map, on return next extent to map
2230  *
2231  * Scan buffers corresponding to changed extent (we expect corresponding pages
2232  * to be already locked) and update buffer state according to new extent state.
2233  * We map delalloc buffers to their physical location, clear unwritten bits,
2234  * and mark buffers as uninit when we perform writes to unwritten extents
2235  * and do extent conversion after IO is finished. If the last page is not fully
2236  * mapped, we update @map to the next extent in the last page that needs
2237  * mapping. Otherwise we submit the page for IO.
2238  */
2239 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2240 {
2241 	struct pagevec pvec;
2242 	int nr_pages, i;
2243 	struct inode *inode = mpd->inode;
2244 	struct buffer_head *head, *bh;
2245 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2246 	pgoff_t start, end;
2247 	ext4_lblk_t lblk;
2248 	sector_t pblock;
2249 	int err;
2250 
2251 	start = mpd->map.m_lblk >> bpp_bits;
2252 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2253 	lblk = start << bpp_bits;
2254 	pblock = mpd->map.m_pblk;
2255 
2256 	pagevec_init(&pvec, 0);
2257 	while (start <= end) {
2258 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2259 					  PAGEVEC_SIZE);
2260 		if (nr_pages == 0)
2261 			break;
2262 		for (i = 0; i < nr_pages; i++) {
2263 			struct page *page = pvec.pages[i];
2264 
2265 			if (page->index > end)
2266 				break;
2267 			/* Up to 'end' pages must be contiguous */
2268 			BUG_ON(page->index != start);
2269 			bh = head = page_buffers(page);
2270 			do {
2271 				if (lblk < mpd->map.m_lblk)
2272 					continue;
2273 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2274 					/*
2275 					 * Buffer after end of mapped extent.
2276 					 * Find next buffer in the page to map.
2277 					 */
2278 					mpd->map.m_len = 0;
2279 					mpd->map.m_flags = 0;
2280 					/*
2281 					 * FIXME: If dioread_nolock supports
2282 					 * blocksize < pagesize, we need to make
2283 					 * sure we add size mapped so far to
2284 					 * io_end->size as the following call
2285 					 * can submit the page for IO.
2286 					 */
2287 					err = mpage_process_page_bufs(mpd, head,
2288 								      bh, lblk);
2289 					pagevec_release(&pvec);
2290 					if (err > 0)
2291 						err = 0;
2292 					return err;
2293 				}
2294 				if (buffer_delay(bh)) {
2295 					clear_buffer_delay(bh);
2296 					bh->b_blocknr = pblock++;
2297 				}
2298 				clear_buffer_unwritten(bh);
2299 			} while (lblk++, (bh = bh->b_this_page) != head);
2300 
2301 			/*
2302 			 * FIXME: This is going to break if dioread_nolock
2303 			 * supports blocksize < pagesize as we will try to
2304 			 * convert potentially unmapped parts of inode.
2305 			 */
2306 			mpd->io_submit.io_end->size += PAGE_SIZE;
2307 			/* Page fully mapped - let IO run! */
2308 			err = mpage_submit_page(mpd, page);
2309 			if (err < 0) {
2310 				pagevec_release(&pvec);
2311 				return err;
2312 			}
2313 			start++;
2314 		}
2315 		pagevec_release(&pvec);
2316 	}
2317 	/* Extent fully mapped and matches with page boundary. We are done. */
2318 	mpd->map.m_len = 0;
2319 	mpd->map.m_flags = 0;
2320 	return 0;
2321 }
2322 
2323 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2324 {
2325 	struct inode *inode = mpd->inode;
2326 	struct ext4_map_blocks *map = &mpd->map;
2327 	int get_blocks_flags;
2328 	int err, dioread_nolock;
2329 
2330 	trace_ext4_da_write_pages_extent(inode, map);
2331 	/*
2332 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2333 	 * to convert an unwritten extent to be initialized (in the case
2334 	 * where we have written into one or more preallocated blocks).  It is
2335 	 * possible that we're going to need more metadata blocks than
2336 	 * previously reserved. However we must not fail because we're in
2337 	 * writeback and there is nothing we can do about it so it might result
2338 	 * in data loss.  So use reserved blocks to allocate metadata if
2339 	 * possible.
2340 	 *
2341 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2342 	 * the blocks in question are delalloc blocks.  This indicates
2343 	 * that the blocks and quotas has already been checked when
2344 	 * the data was copied into the page cache.
2345 	 */
2346 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2347 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2348 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2349 	dioread_nolock = ext4_should_dioread_nolock(inode);
2350 	if (dioread_nolock)
2351 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2352 	if (map->m_flags & (1 << BH_Delay))
2353 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2354 
2355 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2356 	if (err < 0)
2357 		return err;
2358 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2359 		if (!mpd->io_submit.io_end->handle &&
2360 		    ext4_handle_valid(handle)) {
2361 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2362 			handle->h_rsv_handle = NULL;
2363 		}
2364 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2365 	}
2366 
2367 	BUG_ON(map->m_len == 0);
2368 	if (map->m_flags & EXT4_MAP_NEW) {
2369 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2370 				   map->m_len);
2371 	}
2372 	return 0;
2373 }
2374 
2375 /*
2376  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2377  *				 mpd->len and submit pages underlying it for IO
2378  *
2379  * @handle - handle for journal operations
2380  * @mpd - extent to map
2381  * @give_up_on_write - we set this to true iff there is a fatal error and there
2382  *                     is no hope of writing the data. The caller should discard
2383  *                     dirty pages to avoid infinite loops.
2384  *
2385  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2386  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2387  * them to initialized or split the described range from larger unwritten
2388  * extent. Note that we need not map all the described range since allocation
2389  * can return less blocks or the range is covered by more unwritten extents. We
2390  * cannot map more because we are limited by reserved transaction credits. On
2391  * the other hand we always make sure that the last touched page is fully
2392  * mapped so that it can be written out (and thus forward progress is
2393  * guaranteed). After mapping we submit all mapped pages for IO.
2394  */
2395 static int mpage_map_and_submit_extent(handle_t *handle,
2396 				       struct mpage_da_data *mpd,
2397 				       bool *give_up_on_write)
2398 {
2399 	struct inode *inode = mpd->inode;
2400 	struct ext4_map_blocks *map = &mpd->map;
2401 	int err;
2402 	loff_t disksize;
2403 	int progress = 0;
2404 
2405 	mpd->io_submit.io_end->offset =
2406 				((loff_t)map->m_lblk) << inode->i_blkbits;
2407 	do {
2408 		err = mpage_map_one_extent(handle, mpd);
2409 		if (err < 0) {
2410 			struct super_block *sb = inode->i_sb;
2411 
2412 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2413 				goto invalidate_dirty_pages;
2414 			/*
2415 			 * Let the uper layers retry transient errors.
2416 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2417 			 * is non-zero, a commit should free up blocks.
2418 			 */
2419 			if ((err == -ENOMEM) ||
2420 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2421 				if (progress)
2422 					goto update_disksize;
2423 				return err;
2424 			}
2425 			ext4_msg(sb, KERN_CRIT,
2426 				 "Delayed block allocation failed for "
2427 				 "inode %lu at logical offset %llu with"
2428 				 " max blocks %u with error %d",
2429 				 inode->i_ino,
2430 				 (unsigned long long)map->m_lblk,
2431 				 (unsigned)map->m_len, -err);
2432 			ext4_msg(sb, KERN_CRIT,
2433 				 "This should not happen!! Data will "
2434 				 "be lost\n");
2435 			if (err == -ENOSPC)
2436 				ext4_print_free_blocks(inode);
2437 		invalidate_dirty_pages:
2438 			*give_up_on_write = true;
2439 			return err;
2440 		}
2441 		progress = 1;
2442 		/*
2443 		 * Update buffer state, submit mapped pages, and get us new
2444 		 * extent to map
2445 		 */
2446 		err = mpage_map_and_submit_buffers(mpd);
2447 		if (err < 0)
2448 			goto update_disksize;
2449 	} while (map->m_len);
2450 
2451 update_disksize:
2452 	/*
2453 	 * Update on-disk size after IO is submitted.  Races with
2454 	 * truncate are avoided by checking i_size under i_data_sem.
2455 	 */
2456 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2457 	if (disksize > EXT4_I(inode)->i_disksize) {
2458 		int err2;
2459 		loff_t i_size;
2460 
2461 		down_write(&EXT4_I(inode)->i_data_sem);
2462 		i_size = i_size_read(inode);
2463 		if (disksize > i_size)
2464 			disksize = i_size;
2465 		if (disksize > EXT4_I(inode)->i_disksize)
2466 			EXT4_I(inode)->i_disksize = disksize;
2467 		err2 = ext4_mark_inode_dirty(handle, inode);
2468 		up_write(&EXT4_I(inode)->i_data_sem);
2469 		if (err2)
2470 			ext4_error(inode->i_sb,
2471 				   "Failed to mark inode %lu dirty",
2472 				   inode->i_ino);
2473 		if (!err)
2474 			err = err2;
2475 	}
2476 	return err;
2477 }
2478 
2479 /*
2480  * Calculate the total number of credits to reserve for one writepages
2481  * iteration. This is called from ext4_writepages(). We map an extent of
2482  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2483  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2484  * bpp - 1 blocks in bpp different extents.
2485  */
2486 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2487 {
2488 	int bpp = ext4_journal_blocks_per_page(inode);
2489 
2490 	return ext4_meta_trans_blocks(inode,
2491 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2492 }
2493 
2494 /*
2495  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2496  * 				 and underlying extent to map
2497  *
2498  * @mpd - where to look for pages
2499  *
2500  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2501  * IO immediately. When we find a page which isn't mapped we start accumulating
2502  * extent of buffers underlying these pages that needs mapping (formed by
2503  * either delayed or unwritten buffers). We also lock the pages containing
2504  * these buffers. The extent found is returned in @mpd structure (starting at
2505  * mpd->lblk with length mpd->len blocks).
2506  *
2507  * Note that this function can attach bios to one io_end structure which are
2508  * neither logically nor physically contiguous. Although it may seem as an
2509  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2510  * case as we need to track IO to all buffers underlying a page in one io_end.
2511  */
2512 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2513 {
2514 	struct address_space *mapping = mpd->inode->i_mapping;
2515 	struct pagevec pvec;
2516 	unsigned int nr_pages;
2517 	long left = mpd->wbc->nr_to_write;
2518 	pgoff_t index = mpd->first_page;
2519 	pgoff_t end = mpd->last_page;
2520 	int tag;
2521 	int i, err = 0;
2522 	int blkbits = mpd->inode->i_blkbits;
2523 	ext4_lblk_t lblk;
2524 	struct buffer_head *head;
2525 
2526 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2527 		tag = PAGECACHE_TAG_TOWRITE;
2528 	else
2529 		tag = PAGECACHE_TAG_DIRTY;
2530 
2531 	pagevec_init(&pvec, 0);
2532 	mpd->map.m_len = 0;
2533 	mpd->next_page = index;
2534 	while (index <= end) {
2535 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2536 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2537 		if (nr_pages == 0)
2538 			goto out;
2539 
2540 		for (i = 0; i < nr_pages; i++) {
2541 			struct page *page = pvec.pages[i];
2542 
2543 			/*
2544 			 * At this point, the page may be truncated or
2545 			 * invalidated (changing page->mapping to NULL), or
2546 			 * even swizzled back from swapper_space to tmpfs file
2547 			 * mapping. However, page->index will not change
2548 			 * because we have a reference on the page.
2549 			 */
2550 			if (page->index > end)
2551 				goto out;
2552 
2553 			/*
2554 			 * Accumulated enough dirty pages? This doesn't apply
2555 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2556 			 * keep going because someone may be concurrently
2557 			 * dirtying pages, and we might have synced a lot of
2558 			 * newly appeared dirty pages, but have not synced all
2559 			 * of the old dirty pages.
2560 			 */
2561 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2562 				goto out;
2563 
2564 			/* If we can't merge this page, we are done. */
2565 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2566 				goto out;
2567 
2568 			lock_page(page);
2569 			/*
2570 			 * If the page is no longer dirty, or its mapping no
2571 			 * longer corresponds to inode we are writing (which
2572 			 * means it has been truncated or invalidated), or the
2573 			 * page is already under writeback and we are not doing
2574 			 * a data integrity writeback, skip the page
2575 			 */
2576 			if (!PageDirty(page) ||
2577 			    (PageWriteback(page) &&
2578 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2579 			    unlikely(page->mapping != mapping)) {
2580 				unlock_page(page);
2581 				continue;
2582 			}
2583 
2584 			wait_on_page_writeback(page);
2585 			BUG_ON(PageWriteback(page));
2586 
2587 			if (mpd->map.m_len == 0)
2588 				mpd->first_page = page->index;
2589 			mpd->next_page = page->index + 1;
2590 			/* Add all dirty buffers to mpd */
2591 			lblk = ((ext4_lblk_t)page->index) <<
2592 				(PAGE_SHIFT - blkbits);
2593 			head = page_buffers(page);
2594 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2595 			if (err <= 0)
2596 				goto out;
2597 			err = 0;
2598 			left--;
2599 		}
2600 		pagevec_release(&pvec);
2601 		cond_resched();
2602 	}
2603 	return 0;
2604 out:
2605 	pagevec_release(&pvec);
2606 	return err;
2607 }
2608 
2609 static int __writepage(struct page *page, struct writeback_control *wbc,
2610 		       void *data)
2611 {
2612 	struct address_space *mapping = data;
2613 	int ret = ext4_writepage(page, wbc);
2614 	mapping_set_error(mapping, ret);
2615 	return ret;
2616 }
2617 
2618 static int ext4_writepages(struct address_space *mapping,
2619 			   struct writeback_control *wbc)
2620 {
2621 	pgoff_t	writeback_index = 0;
2622 	long nr_to_write = wbc->nr_to_write;
2623 	int range_whole = 0;
2624 	int cycled = 1;
2625 	handle_t *handle = NULL;
2626 	struct mpage_da_data mpd;
2627 	struct inode *inode = mapping->host;
2628 	int needed_blocks, rsv_blocks = 0, ret = 0;
2629 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2630 	bool done;
2631 	struct blk_plug plug;
2632 	bool give_up_on_write = false;
2633 
2634 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2635 	trace_ext4_writepages(inode, wbc);
2636 
2637 	if (dax_mapping(mapping)) {
2638 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2639 						  wbc);
2640 		goto out_writepages;
2641 	}
2642 
2643 	/*
2644 	 * No pages to write? This is mainly a kludge to avoid starting
2645 	 * a transaction for special inodes like journal inode on last iput()
2646 	 * because that could violate lock ordering on umount
2647 	 */
2648 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2649 		goto out_writepages;
2650 
2651 	if (ext4_should_journal_data(inode)) {
2652 		struct blk_plug plug;
2653 
2654 		blk_start_plug(&plug);
2655 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2656 		blk_finish_plug(&plug);
2657 		goto out_writepages;
2658 	}
2659 
2660 	/*
2661 	 * If the filesystem has aborted, it is read-only, so return
2662 	 * right away instead of dumping stack traces later on that
2663 	 * will obscure the real source of the problem.  We test
2664 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2665 	 * the latter could be true if the filesystem is mounted
2666 	 * read-only, and in that case, ext4_writepages should
2667 	 * *never* be called, so if that ever happens, we would want
2668 	 * the stack trace.
2669 	 */
2670 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2671 		ret = -EROFS;
2672 		goto out_writepages;
2673 	}
2674 
2675 	if (ext4_should_dioread_nolock(inode)) {
2676 		/*
2677 		 * We may need to convert up to one extent per block in
2678 		 * the page and we may dirty the inode.
2679 		 */
2680 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2681 	}
2682 
2683 	/*
2684 	 * If we have inline data and arrive here, it means that
2685 	 * we will soon create the block for the 1st page, so
2686 	 * we'd better clear the inline data here.
2687 	 */
2688 	if (ext4_has_inline_data(inode)) {
2689 		/* Just inode will be modified... */
2690 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2691 		if (IS_ERR(handle)) {
2692 			ret = PTR_ERR(handle);
2693 			goto out_writepages;
2694 		}
2695 		BUG_ON(ext4_test_inode_state(inode,
2696 				EXT4_STATE_MAY_INLINE_DATA));
2697 		ext4_destroy_inline_data(handle, inode);
2698 		ext4_journal_stop(handle);
2699 	}
2700 
2701 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2702 		range_whole = 1;
2703 
2704 	if (wbc->range_cyclic) {
2705 		writeback_index = mapping->writeback_index;
2706 		if (writeback_index)
2707 			cycled = 0;
2708 		mpd.first_page = writeback_index;
2709 		mpd.last_page = -1;
2710 	} else {
2711 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2712 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2713 	}
2714 
2715 	mpd.inode = inode;
2716 	mpd.wbc = wbc;
2717 	ext4_io_submit_init(&mpd.io_submit, wbc);
2718 retry:
2719 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2720 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2721 	done = false;
2722 	blk_start_plug(&plug);
2723 	while (!done && mpd.first_page <= mpd.last_page) {
2724 		/* For each extent of pages we use new io_end */
2725 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2726 		if (!mpd.io_submit.io_end) {
2727 			ret = -ENOMEM;
2728 			break;
2729 		}
2730 
2731 		/*
2732 		 * We have two constraints: We find one extent to map and we
2733 		 * must always write out whole page (makes a difference when
2734 		 * blocksize < pagesize) so that we don't block on IO when we
2735 		 * try to write out the rest of the page. Journalled mode is
2736 		 * not supported by delalloc.
2737 		 */
2738 		BUG_ON(ext4_should_journal_data(inode));
2739 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2740 
2741 		/* start a new transaction */
2742 		handle = ext4_journal_start_with_reserve(inode,
2743 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2744 		if (IS_ERR(handle)) {
2745 			ret = PTR_ERR(handle);
2746 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2747 			       "%ld pages, ino %lu; err %d", __func__,
2748 				wbc->nr_to_write, inode->i_ino, ret);
2749 			/* Release allocated io_end */
2750 			ext4_put_io_end(mpd.io_submit.io_end);
2751 			break;
2752 		}
2753 
2754 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2755 		ret = mpage_prepare_extent_to_map(&mpd);
2756 		if (!ret) {
2757 			if (mpd.map.m_len)
2758 				ret = mpage_map_and_submit_extent(handle, &mpd,
2759 					&give_up_on_write);
2760 			else {
2761 				/*
2762 				 * We scanned the whole range (or exhausted
2763 				 * nr_to_write), submitted what was mapped and
2764 				 * didn't find anything needing mapping. We are
2765 				 * done.
2766 				 */
2767 				done = true;
2768 			}
2769 		}
2770 		/*
2771 		 * Caution: If the handle is synchronous,
2772 		 * ext4_journal_stop() can wait for transaction commit
2773 		 * to finish which may depend on writeback of pages to
2774 		 * complete or on page lock to be released.  In that
2775 		 * case, we have to wait until after after we have
2776 		 * submitted all the IO, released page locks we hold,
2777 		 * and dropped io_end reference (for extent conversion
2778 		 * to be able to complete) before stopping the handle.
2779 		 */
2780 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2781 			ext4_journal_stop(handle);
2782 			handle = NULL;
2783 		}
2784 		/* Submit prepared bio */
2785 		ext4_io_submit(&mpd.io_submit);
2786 		/* Unlock pages we didn't use */
2787 		mpage_release_unused_pages(&mpd, give_up_on_write);
2788 		/*
2789 		 * Drop our io_end reference we got from init. We have
2790 		 * to be careful and use deferred io_end finishing if
2791 		 * we are still holding the transaction as we can
2792 		 * release the last reference to io_end which may end
2793 		 * up doing unwritten extent conversion.
2794 		 */
2795 		if (handle) {
2796 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2797 			ext4_journal_stop(handle);
2798 		} else
2799 			ext4_put_io_end(mpd.io_submit.io_end);
2800 
2801 		if (ret == -ENOSPC && sbi->s_journal) {
2802 			/*
2803 			 * Commit the transaction which would
2804 			 * free blocks released in the transaction
2805 			 * and try again
2806 			 */
2807 			jbd2_journal_force_commit_nested(sbi->s_journal);
2808 			ret = 0;
2809 			continue;
2810 		}
2811 		/* Fatal error - ENOMEM, EIO... */
2812 		if (ret)
2813 			break;
2814 	}
2815 	blk_finish_plug(&plug);
2816 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2817 		cycled = 1;
2818 		mpd.last_page = writeback_index - 1;
2819 		mpd.first_page = 0;
2820 		goto retry;
2821 	}
2822 
2823 	/* Update index */
2824 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2825 		/*
2826 		 * Set the writeback_index so that range_cyclic
2827 		 * mode will write it back later
2828 		 */
2829 		mapping->writeback_index = mpd.first_page;
2830 
2831 out_writepages:
2832 	trace_ext4_writepages_result(inode, wbc, ret,
2833 				     nr_to_write - wbc->nr_to_write);
2834 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2835 	return ret;
2836 }
2837 
2838 static int ext4_nonda_switch(struct super_block *sb)
2839 {
2840 	s64 free_clusters, dirty_clusters;
2841 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2842 
2843 	/*
2844 	 * switch to non delalloc mode if we are running low
2845 	 * on free block. The free block accounting via percpu
2846 	 * counters can get slightly wrong with percpu_counter_batch getting
2847 	 * accumulated on each CPU without updating global counters
2848 	 * Delalloc need an accurate free block accounting. So switch
2849 	 * to non delalloc when we are near to error range.
2850 	 */
2851 	free_clusters =
2852 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2853 	dirty_clusters =
2854 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2855 	/*
2856 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2857 	 */
2858 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2859 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2860 
2861 	if (2 * free_clusters < 3 * dirty_clusters ||
2862 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2863 		/*
2864 		 * free block count is less than 150% of dirty blocks
2865 		 * or free blocks is less than watermark
2866 		 */
2867 		return 1;
2868 	}
2869 	return 0;
2870 }
2871 
2872 /* We always reserve for an inode update; the superblock could be there too */
2873 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2874 {
2875 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2876 		return 1;
2877 
2878 	if (pos + len <= 0x7fffffffULL)
2879 		return 1;
2880 
2881 	/* We might need to update the superblock to set LARGE_FILE */
2882 	return 2;
2883 }
2884 
2885 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2886 			       loff_t pos, unsigned len, unsigned flags,
2887 			       struct page **pagep, void **fsdata)
2888 {
2889 	int ret, retries = 0;
2890 	struct page *page;
2891 	pgoff_t index;
2892 	struct inode *inode = mapping->host;
2893 	handle_t *handle;
2894 
2895 	index = pos >> PAGE_SHIFT;
2896 
2897 	if (ext4_nonda_switch(inode->i_sb) ||
2898 	    S_ISLNK(inode->i_mode)) {
2899 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2900 		return ext4_write_begin(file, mapping, pos,
2901 					len, flags, pagep, fsdata);
2902 	}
2903 	*fsdata = (void *)0;
2904 	trace_ext4_da_write_begin(inode, pos, len, flags);
2905 
2906 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2907 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2908 						      pos, len, flags,
2909 						      pagep, fsdata);
2910 		if (ret < 0)
2911 			return ret;
2912 		if (ret == 1)
2913 			return 0;
2914 	}
2915 
2916 	/*
2917 	 * grab_cache_page_write_begin() can take a long time if the
2918 	 * system is thrashing due to memory pressure, or if the page
2919 	 * is being written back.  So grab it first before we start
2920 	 * the transaction handle.  This also allows us to allocate
2921 	 * the page (if needed) without using GFP_NOFS.
2922 	 */
2923 retry_grab:
2924 	page = grab_cache_page_write_begin(mapping, index, flags);
2925 	if (!page)
2926 		return -ENOMEM;
2927 	unlock_page(page);
2928 
2929 	/*
2930 	 * With delayed allocation, we don't log the i_disksize update
2931 	 * if there is delayed block allocation. But we still need
2932 	 * to journalling the i_disksize update if writes to the end
2933 	 * of file which has an already mapped buffer.
2934 	 */
2935 retry_journal:
2936 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2937 				ext4_da_write_credits(inode, pos, len));
2938 	if (IS_ERR(handle)) {
2939 		put_page(page);
2940 		return PTR_ERR(handle);
2941 	}
2942 
2943 	lock_page(page);
2944 	if (page->mapping != mapping) {
2945 		/* The page got truncated from under us */
2946 		unlock_page(page);
2947 		put_page(page);
2948 		ext4_journal_stop(handle);
2949 		goto retry_grab;
2950 	}
2951 	/* In case writeback began while the page was unlocked */
2952 	wait_for_stable_page(page);
2953 
2954 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2955 	ret = ext4_block_write_begin(page, pos, len,
2956 				     ext4_da_get_block_prep);
2957 #else
2958 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2959 #endif
2960 	if (ret < 0) {
2961 		unlock_page(page);
2962 		ext4_journal_stop(handle);
2963 		/*
2964 		 * block_write_begin may have instantiated a few blocks
2965 		 * outside i_size.  Trim these off again. Don't need
2966 		 * i_size_read because we hold i_mutex.
2967 		 */
2968 		if (pos + len > inode->i_size)
2969 			ext4_truncate_failed_write(inode);
2970 
2971 		if (ret == -ENOSPC &&
2972 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2973 			goto retry_journal;
2974 
2975 		put_page(page);
2976 		return ret;
2977 	}
2978 
2979 	*pagep = page;
2980 	return ret;
2981 }
2982 
2983 /*
2984  * Check if we should update i_disksize
2985  * when write to the end of file but not require block allocation
2986  */
2987 static int ext4_da_should_update_i_disksize(struct page *page,
2988 					    unsigned long offset)
2989 {
2990 	struct buffer_head *bh;
2991 	struct inode *inode = page->mapping->host;
2992 	unsigned int idx;
2993 	int i;
2994 
2995 	bh = page_buffers(page);
2996 	idx = offset >> inode->i_blkbits;
2997 
2998 	for (i = 0; i < idx; i++)
2999 		bh = bh->b_this_page;
3000 
3001 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3002 		return 0;
3003 	return 1;
3004 }
3005 
3006 static int ext4_da_write_end(struct file *file,
3007 			     struct address_space *mapping,
3008 			     loff_t pos, unsigned len, unsigned copied,
3009 			     struct page *page, void *fsdata)
3010 {
3011 	struct inode *inode = mapping->host;
3012 	int ret = 0, ret2;
3013 	handle_t *handle = ext4_journal_current_handle();
3014 	loff_t new_i_size;
3015 	unsigned long start, end;
3016 	int write_mode = (int)(unsigned long)fsdata;
3017 
3018 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3019 		return ext4_write_end(file, mapping, pos,
3020 				      len, copied, page, fsdata);
3021 
3022 	trace_ext4_da_write_end(inode, pos, len, copied);
3023 	start = pos & (PAGE_SIZE - 1);
3024 	end = start + copied - 1;
3025 
3026 	/*
3027 	 * generic_write_end() will run mark_inode_dirty() if i_size
3028 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3029 	 * into that.
3030 	 */
3031 	new_i_size = pos + copied;
3032 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3033 		if (ext4_has_inline_data(inode) ||
3034 		    ext4_da_should_update_i_disksize(page, end)) {
3035 			ext4_update_i_disksize(inode, new_i_size);
3036 			/* We need to mark inode dirty even if
3037 			 * new_i_size is less that inode->i_size
3038 			 * bu greater than i_disksize.(hint delalloc)
3039 			 */
3040 			ext4_mark_inode_dirty(handle, inode);
3041 		}
3042 	}
3043 
3044 	if (write_mode != CONVERT_INLINE_DATA &&
3045 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3046 	    ext4_has_inline_data(inode))
3047 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3048 						     page);
3049 	else
3050 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3051 							page, fsdata);
3052 
3053 	copied = ret2;
3054 	if (ret2 < 0)
3055 		ret = ret2;
3056 	ret2 = ext4_journal_stop(handle);
3057 	if (!ret)
3058 		ret = ret2;
3059 
3060 	return ret ? ret : copied;
3061 }
3062 
3063 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3064 				   unsigned int length)
3065 {
3066 	/*
3067 	 * Drop reserved blocks
3068 	 */
3069 	BUG_ON(!PageLocked(page));
3070 	if (!page_has_buffers(page))
3071 		goto out;
3072 
3073 	ext4_da_page_release_reservation(page, offset, length);
3074 
3075 out:
3076 	ext4_invalidatepage(page, offset, length);
3077 
3078 	return;
3079 }
3080 
3081 /*
3082  * Force all delayed allocation blocks to be allocated for a given inode.
3083  */
3084 int ext4_alloc_da_blocks(struct inode *inode)
3085 {
3086 	trace_ext4_alloc_da_blocks(inode);
3087 
3088 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3089 		return 0;
3090 
3091 	/*
3092 	 * We do something simple for now.  The filemap_flush() will
3093 	 * also start triggering a write of the data blocks, which is
3094 	 * not strictly speaking necessary (and for users of
3095 	 * laptop_mode, not even desirable).  However, to do otherwise
3096 	 * would require replicating code paths in:
3097 	 *
3098 	 * ext4_writepages() ->
3099 	 *    write_cache_pages() ---> (via passed in callback function)
3100 	 *        __mpage_da_writepage() -->
3101 	 *           mpage_add_bh_to_extent()
3102 	 *           mpage_da_map_blocks()
3103 	 *
3104 	 * The problem is that write_cache_pages(), located in
3105 	 * mm/page-writeback.c, marks pages clean in preparation for
3106 	 * doing I/O, which is not desirable if we're not planning on
3107 	 * doing I/O at all.
3108 	 *
3109 	 * We could call write_cache_pages(), and then redirty all of
3110 	 * the pages by calling redirty_page_for_writepage() but that
3111 	 * would be ugly in the extreme.  So instead we would need to
3112 	 * replicate parts of the code in the above functions,
3113 	 * simplifying them because we wouldn't actually intend to
3114 	 * write out the pages, but rather only collect contiguous
3115 	 * logical block extents, call the multi-block allocator, and
3116 	 * then update the buffer heads with the block allocations.
3117 	 *
3118 	 * For now, though, we'll cheat by calling filemap_flush(),
3119 	 * which will map the blocks, and start the I/O, but not
3120 	 * actually wait for the I/O to complete.
3121 	 */
3122 	return filemap_flush(inode->i_mapping);
3123 }
3124 
3125 /*
3126  * bmap() is special.  It gets used by applications such as lilo and by
3127  * the swapper to find the on-disk block of a specific piece of data.
3128  *
3129  * Naturally, this is dangerous if the block concerned is still in the
3130  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3131  * filesystem and enables swap, then they may get a nasty shock when the
3132  * data getting swapped to that swapfile suddenly gets overwritten by
3133  * the original zero's written out previously to the journal and
3134  * awaiting writeback in the kernel's buffer cache.
3135  *
3136  * So, if we see any bmap calls here on a modified, data-journaled file,
3137  * take extra steps to flush any blocks which might be in the cache.
3138  */
3139 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3140 {
3141 	struct inode *inode = mapping->host;
3142 	journal_t *journal;
3143 	int err;
3144 
3145 	/*
3146 	 * We can get here for an inline file via the FIBMAP ioctl
3147 	 */
3148 	if (ext4_has_inline_data(inode))
3149 		return 0;
3150 
3151 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3152 			test_opt(inode->i_sb, DELALLOC)) {
3153 		/*
3154 		 * With delalloc we want to sync the file
3155 		 * so that we can make sure we allocate
3156 		 * blocks for file
3157 		 */
3158 		filemap_write_and_wait(mapping);
3159 	}
3160 
3161 	if (EXT4_JOURNAL(inode) &&
3162 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3163 		/*
3164 		 * This is a REALLY heavyweight approach, but the use of
3165 		 * bmap on dirty files is expected to be extremely rare:
3166 		 * only if we run lilo or swapon on a freshly made file
3167 		 * do we expect this to happen.
3168 		 *
3169 		 * (bmap requires CAP_SYS_RAWIO so this does not
3170 		 * represent an unprivileged user DOS attack --- we'd be
3171 		 * in trouble if mortal users could trigger this path at
3172 		 * will.)
3173 		 *
3174 		 * NB. EXT4_STATE_JDATA is not set on files other than
3175 		 * regular files.  If somebody wants to bmap a directory
3176 		 * or symlink and gets confused because the buffer
3177 		 * hasn't yet been flushed to disk, they deserve
3178 		 * everything they get.
3179 		 */
3180 
3181 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3182 		journal = EXT4_JOURNAL(inode);
3183 		jbd2_journal_lock_updates(journal);
3184 		err = jbd2_journal_flush(journal);
3185 		jbd2_journal_unlock_updates(journal);
3186 
3187 		if (err)
3188 			return 0;
3189 	}
3190 
3191 	return generic_block_bmap(mapping, block, ext4_get_block);
3192 }
3193 
3194 static int ext4_readpage(struct file *file, struct page *page)
3195 {
3196 	int ret = -EAGAIN;
3197 	struct inode *inode = page->mapping->host;
3198 
3199 	trace_ext4_readpage(page);
3200 
3201 	if (ext4_has_inline_data(inode))
3202 		ret = ext4_readpage_inline(inode, page);
3203 
3204 	if (ret == -EAGAIN)
3205 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3206 
3207 	return ret;
3208 }
3209 
3210 static int
3211 ext4_readpages(struct file *file, struct address_space *mapping,
3212 		struct list_head *pages, unsigned nr_pages)
3213 {
3214 	struct inode *inode = mapping->host;
3215 
3216 	/* If the file has inline data, no need to do readpages. */
3217 	if (ext4_has_inline_data(inode))
3218 		return 0;
3219 
3220 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3221 }
3222 
3223 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3224 				unsigned int length)
3225 {
3226 	trace_ext4_invalidatepage(page, offset, length);
3227 
3228 	/* No journalling happens on data buffers when this function is used */
3229 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3230 
3231 	block_invalidatepage(page, offset, length);
3232 }
3233 
3234 static int __ext4_journalled_invalidatepage(struct page *page,
3235 					    unsigned int offset,
3236 					    unsigned int length)
3237 {
3238 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3239 
3240 	trace_ext4_journalled_invalidatepage(page, offset, length);
3241 
3242 	/*
3243 	 * If it's a full truncate we just forget about the pending dirtying
3244 	 */
3245 	if (offset == 0 && length == PAGE_SIZE)
3246 		ClearPageChecked(page);
3247 
3248 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3249 }
3250 
3251 /* Wrapper for aops... */
3252 static void ext4_journalled_invalidatepage(struct page *page,
3253 					   unsigned int offset,
3254 					   unsigned int length)
3255 {
3256 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3257 }
3258 
3259 static int ext4_releasepage(struct page *page, gfp_t wait)
3260 {
3261 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3262 
3263 	trace_ext4_releasepage(page);
3264 
3265 	/* Page has dirty journalled data -> cannot release */
3266 	if (PageChecked(page))
3267 		return 0;
3268 	if (journal)
3269 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3270 	else
3271 		return try_to_free_buffers(page);
3272 }
3273 
3274 #ifdef CONFIG_FS_DAX
3275 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3276 			    unsigned flags, struct iomap *iomap)
3277 {
3278 	unsigned int blkbits = inode->i_blkbits;
3279 	unsigned long first_block = offset >> blkbits;
3280 	unsigned long last_block = (offset + length - 1) >> blkbits;
3281 	struct ext4_map_blocks map;
3282 	int ret;
3283 
3284 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3285 		return -ERANGE;
3286 
3287 	map.m_lblk = first_block;
3288 	map.m_len = last_block - first_block + 1;
3289 
3290 	if (!(flags & IOMAP_WRITE)) {
3291 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3292 	} else {
3293 		int dio_credits;
3294 		handle_t *handle;
3295 		int retries = 0;
3296 
3297 		/* Trim mapping request to maximum we can map at once for DIO */
3298 		if (map.m_len > DIO_MAX_BLOCKS)
3299 			map.m_len = DIO_MAX_BLOCKS;
3300 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3301 retry:
3302 		/*
3303 		 * Either we allocate blocks and then we don't get unwritten
3304 		 * extent so we have reserved enough credits, or the blocks
3305 		 * are already allocated and unwritten and in that case
3306 		 * extent conversion fits in the credits as well.
3307 		 */
3308 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3309 					    dio_credits);
3310 		if (IS_ERR(handle))
3311 			return PTR_ERR(handle);
3312 
3313 		ret = ext4_map_blocks(handle, inode, &map,
3314 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3315 		if (ret < 0) {
3316 			ext4_journal_stop(handle);
3317 			if (ret == -ENOSPC &&
3318 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3319 				goto retry;
3320 			return ret;
3321 		}
3322 
3323 		/*
3324 		 * If we added blocks beyond i_size, we need to make sure they
3325 		 * will get truncated if we crash before updating i_size in
3326 		 * ext4_iomap_end(). For faults we don't need to do that (and
3327 		 * even cannot because for orphan list operations inode_lock is
3328 		 * required) - if we happen to instantiate block beyond i_size,
3329 		 * it is because we race with truncate which has already added
3330 		 * the inode to the orphan list.
3331 		 */
3332 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3333 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3334 			int err;
3335 
3336 			err = ext4_orphan_add(handle, inode);
3337 			if (err < 0) {
3338 				ext4_journal_stop(handle);
3339 				return err;
3340 			}
3341 		}
3342 		ext4_journal_stop(handle);
3343 	}
3344 
3345 	iomap->flags = 0;
3346 	iomap->bdev = inode->i_sb->s_bdev;
3347 	iomap->offset = first_block << blkbits;
3348 
3349 	if (ret == 0) {
3350 		iomap->type = IOMAP_HOLE;
3351 		iomap->blkno = IOMAP_NULL_BLOCK;
3352 		iomap->length = (u64)map.m_len << blkbits;
3353 	} else {
3354 		if (map.m_flags & EXT4_MAP_MAPPED) {
3355 			iomap->type = IOMAP_MAPPED;
3356 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3357 			iomap->type = IOMAP_UNWRITTEN;
3358 		} else {
3359 			WARN_ON_ONCE(1);
3360 			return -EIO;
3361 		}
3362 		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3363 		iomap->length = (u64)map.m_len << blkbits;
3364 	}
3365 
3366 	if (map.m_flags & EXT4_MAP_NEW)
3367 		iomap->flags |= IOMAP_F_NEW;
3368 	return 0;
3369 }
3370 
3371 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3372 			  ssize_t written, unsigned flags, struct iomap *iomap)
3373 {
3374 	int ret = 0;
3375 	handle_t *handle;
3376 	int blkbits = inode->i_blkbits;
3377 	bool truncate = false;
3378 
3379 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3380 		return 0;
3381 
3382 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3383 	if (IS_ERR(handle)) {
3384 		ret = PTR_ERR(handle);
3385 		goto orphan_del;
3386 	}
3387 	if (ext4_update_inode_size(inode, offset + written))
3388 		ext4_mark_inode_dirty(handle, inode);
3389 	/*
3390 	 * We may need to truncate allocated but not written blocks beyond EOF.
3391 	 */
3392 	if (iomap->offset + iomap->length >
3393 	    ALIGN(inode->i_size, 1 << blkbits)) {
3394 		ext4_lblk_t written_blk, end_blk;
3395 
3396 		written_blk = (offset + written) >> blkbits;
3397 		end_blk = (offset + length) >> blkbits;
3398 		if (written_blk < end_blk && ext4_can_truncate(inode))
3399 			truncate = true;
3400 	}
3401 	/*
3402 	 * Remove inode from orphan list if we were extending a inode and
3403 	 * everything went fine.
3404 	 */
3405 	if (!truncate && inode->i_nlink &&
3406 	    !list_empty(&EXT4_I(inode)->i_orphan))
3407 		ext4_orphan_del(handle, inode);
3408 	ext4_journal_stop(handle);
3409 	if (truncate) {
3410 		ext4_truncate_failed_write(inode);
3411 orphan_del:
3412 		/*
3413 		 * If truncate failed early the inode might still be on the
3414 		 * orphan list; we need to make sure the inode is removed from
3415 		 * the orphan list in that case.
3416 		 */
3417 		if (inode->i_nlink)
3418 			ext4_orphan_del(NULL, inode);
3419 	}
3420 	return ret;
3421 }
3422 
3423 struct iomap_ops ext4_iomap_ops = {
3424 	.iomap_begin		= ext4_iomap_begin,
3425 	.iomap_end		= ext4_iomap_end,
3426 };
3427 
3428 #endif
3429 
3430 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3431 			    ssize_t size, void *private)
3432 {
3433         ext4_io_end_t *io_end = private;
3434 
3435 	/* if not async direct IO just return */
3436 	if (!io_end)
3437 		return 0;
3438 
3439 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3440 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3441 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3442 
3443 	/*
3444 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3445 	 * data was not written. Just clear the unwritten flag and drop io_end.
3446 	 */
3447 	if (size <= 0) {
3448 		ext4_clear_io_unwritten_flag(io_end);
3449 		size = 0;
3450 	}
3451 	io_end->offset = offset;
3452 	io_end->size = size;
3453 	ext4_put_io_end(io_end);
3454 
3455 	return 0;
3456 }
3457 
3458 /*
3459  * Handling of direct IO writes.
3460  *
3461  * For ext4 extent files, ext4 will do direct-io write even to holes,
3462  * preallocated extents, and those write extend the file, no need to
3463  * fall back to buffered IO.
3464  *
3465  * For holes, we fallocate those blocks, mark them as unwritten
3466  * If those blocks were preallocated, we mark sure they are split, but
3467  * still keep the range to write as unwritten.
3468  *
3469  * The unwritten extents will be converted to written when DIO is completed.
3470  * For async direct IO, since the IO may still pending when return, we
3471  * set up an end_io call back function, which will do the conversion
3472  * when async direct IO completed.
3473  *
3474  * If the O_DIRECT write will extend the file then add this inode to the
3475  * orphan list.  So recovery will truncate it back to the original size
3476  * if the machine crashes during the write.
3477  *
3478  */
3479 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3480 {
3481 	struct file *file = iocb->ki_filp;
3482 	struct inode *inode = file->f_mapping->host;
3483 	struct ext4_inode_info *ei = EXT4_I(inode);
3484 	ssize_t ret;
3485 	loff_t offset = iocb->ki_pos;
3486 	size_t count = iov_iter_count(iter);
3487 	int overwrite = 0;
3488 	get_block_t *get_block_func = NULL;
3489 	int dio_flags = 0;
3490 	loff_t final_size = offset + count;
3491 	int orphan = 0;
3492 	handle_t *handle;
3493 
3494 	if (final_size > inode->i_size) {
3495 		/* Credits for sb + inode write */
3496 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3497 		if (IS_ERR(handle)) {
3498 			ret = PTR_ERR(handle);
3499 			goto out;
3500 		}
3501 		ret = ext4_orphan_add(handle, inode);
3502 		if (ret) {
3503 			ext4_journal_stop(handle);
3504 			goto out;
3505 		}
3506 		orphan = 1;
3507 		ei->i_disksize = inode->i_size;
3508 		ext4_journal_stop(handle);
3509 	}
3510 
3511 	BUG_ON(iocb->private == NULL);
3512 
3513 	/*
3514 	 * Make all waiters for direct IO properly wait also for extent
3515 	 * conversion. This also disallows race between truncate() and
3516 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3517 	 */
3518 	inode_dio_begin(inode);
3519 
3520 	/* If we do a overwrite dio, i_mutex locking can be released */
3521 	overwrite = *((int *)iocb->private);
3522 
3523 	if (overwrite)
3524 		inode_unlock(inode);
3525 
3526 	/*
3527 	 * For extent mapped files we could direct write to holes and fallocate.
3528 	 *
3529 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3530 	 * parallel buffered read to expose the stale data before DIO complete
3531 	 * the data IO.
3532 	 *
3533 	 * As to previously fallocated extents, ext4 get_block will just simply
3534 	 * mark the buffer mapped but still keep the extents unwritten.
3535 	 *
3536 	 * For non AIO case, we will convert those unwritten extents to written
3537 	 * after return back from blockdev_direct_IO. That way we save us from
3538 	 * allocating io_end structure and also the overhead of offloading
3539 	 * the extent convertion to a workqueue.
3540 	 *
3541 	 * For async DIO, the conversion needs to be deferred when the
3542 	 * IO is completed. The ext4 end_io callback function will be
3543 	 * called to take care of the conversion work.  Here for async
3544 	 * case, we allocate an io_end structure to hook to the iocb.
3545 	 */
3546 	iocb->private = NULL;
3547 	if (overwrite)
3548 		get_block_func = ext4_dio_get_block_overwrite;
3549 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3550 		   round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3551 		get_block_func = ext4_dio_get_block;
3552 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3553 	} else if (is_sync_kiocb(iocb)) {
3554 		get_block_func = ext4_dio_get_block_unwritten_sync;
3555 		dio_flags = DIO_LOCKING;
3556 	} else {
3557 		get_block_func = ext4_dio_get_block_unwritten_async;
3558 		dio_flags = DIO_LOCKING;
3559 	}
3560 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3561 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3562 #endif
3563 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3564 				   get_block_func, ext4_end_io_dio, NULL,
3565 				   dio_flags);
3566 
3567 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3568 						EXT4_STATE_DIO_UNWRITTEN)) {
3569 		int err;
3570 		/*
3571 		 * for non AIO case, since the IO is already
3572 		 * completed, we could do the conversion right here
3573 		 */
3574 		err = ext4_convert_unwritten_extents(NULL, inode,
3575 						     offset, ret);
3576 		if (err < 0)
3577 			ret = err;
3578 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3579 	}
3580 
3581 	inode_dio_end(inode);
3582 	/* take i_mutex locking again if we do a ovewrite dio */
3583 	if (overwrite)
3584 		inode_lock(inode);
3585 
3586 	if (ret < 0 && final_size > inode->i_size)
3587 		ext4_truncate_failed_write(inode);
3588 
3589 	/* Handle extending of i_size after direct IO write */
3590 	if (orphan) {
3591 		int err;
3592 
3593 		/* Credits for sb + inode write */
3594 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3595 		if (IS_ERR(handle)) {
3596 			/* This is really bad luck. We've written the data
3597 			 * but cannot extend i_size. Bail out and pretend
3598 			 * the write failed... */
3599 			ret = PTR_ERR(handle);
3600 			if (inode->i_nlink)
3601 				ext4_orphan_del(NULL, inode);
3602 
3603 			goto out;
3604 		}
3605 		if (inode->i_nlink)
3606 			ext4_orphan_del(handle, inode);
3607 		if (ret > 0) {
3608 			loff_t end = offset + ret;
3609 			if (end > inode->i_size) {
3610 				ei->i_disksize = end;
3611 				i_size_write(inode, end);
3612 				/*
3613 				 * We're going to return a positive `ret'
3614 				 * here due to non-zero-length I/O, so there's
3615 				 * no way of reporting error returns from
3616 				 * ext4_mark_inode_dirty() to userspace.  So
3617 				 * ignore it.
3618 				 */
3619 				ext4_mark_inode_dirty(handle, inode);
3620 			}
3621 		}
3622 		err = ext4_journal_stop(handle);
3623 		if (ret == 0)
3624 			ret = err;
3625 	}
3626 out:
3627 	return ret;
3628 }
3629 
3630 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3631 {
3632 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3633 	struct inode *inode = mapping->host;
3634 	size_t count = iov_iter_count(iter);
3635 	ssize_t ret;
3636 
3637 	/*
3638 	 * Shared inode_lock is enough for us - it protects against concurrent
3639 	 * writes & truncates and since we take care of writing back page cache,
3640 	 * we are protected against page writeback as well.
3641 	 */
3642 	inode_lock_shared(inode);
3643 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3644 					   iocb->ki_pos + count);
3645 	if (ret)
3646 		goto out_unlock;
3647 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3648 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3649 out_unlock:
3650 	inode_unlock_shared(inode);
3651 	return ret;
3652 }
3653 
3654 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3655 {
3656 	struct file *file = iocb->ki_filp;
3657 	struct inode *inode = file->f_mapping->host;
3658 	size_t count = iov_iter_count(iter);
3659 	loff_t offset = iocb->ki_pos;
3660 	ssize_t ret;
3661 
3662 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3663 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3664 		return 0;
3665 #endif
3666 
3667 	/*
3668 	 * If we are doing data journalling we don't support O_DIRECT
3669 	 */
3670 	if (ext4_should_journal_data(inode))
3671 		return 0;
3672 
3673 	/* Let buffer I/O handle the inline data case. */
3674 	if (ext4_has_inline_data(inode))
3675 		return 0;
3676 
3677 	/* DAX uses iomap path now */
3678 	if (WARN_ON_ONCE(IS_DAX(inode)))
3679 		return 0;
3680 
3681 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3682 	if (iov_iter_rw(iter) == READ)
3683 		ret = ext4_direct_IO_read(iocb, iter);
3684 	else
3685 		ret = ext4_direct_IO_write(iocb, iter);
3686 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3687 	return ret;
3688 }
3689 
3690 /*
3691  * Pages can be marked dirty completely asynchronously from ext4's journalling
3692  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3693  * much here because ->set_page_dirty is called under VFS locks.  The page is
3694  * not necessarily locked.
3695  *
3696  * We cannot just dirty the page and leave attached buffers clean, because the
3697  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3698  * or jbddirty because all the journalling code will explode.
3699  *
3700  * So what we do is to mark the page "pending dirty" and next time writepage
3701  * is called, propagate that into the buffers appropriately.
3702  */
3703 static int ext4_journalled_set_page_dirty(struct page *page)
3704 {
3705 	SetPageChecked(page);
3706 	return __set_page_dirty_nobuffers(page);
3707 }
3708 
3709 static int ext4_set_page_dirty(struct page *page)
3710 {
3711 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3712 	WARN_ON_ONCE(!page_has_buffers(page));
3713 	return __set_page_dirty_buffers(page);
3714 }
3715 
3716 static const struct address_space_operations ext4_aops = {
3717 	.readpage		= ext4_readpage,
3718 	.readpages		= ext4_readpages,
3719 	.writepage		= ext4_writepage,
3720 	.writepages		= ext4_writepages,
3721 	.write_begin		= ext4_write_begin,
3722 	.write_end		= ext4_write_end,
3723 	.set_page_dirty		= ext4_set_page_dirty,
3724 	.bmap			= ext4_bmap,
3725 	.invalidatepage		= ext4_invalidatepage,
3726 	.releasepage		= ext4_releasepage,
3727 	.direct_IO		= ext4_direct_IO,
3728 	.migratepage		= buffer_migrate_page,
3729 	.is_partially_uptodate  = block_is_partially_uptodate,
3730 	.error_remove_page	= generic_error_remove_page,
3731 };
3732 
3733 static const struct address_space_operations ext4_journalled_aops = {
3734 	.readpage		= ext4_readpage,
3735 	.readpages		= ext4_readpages,
3736 	.writepage		= ext4_writepage,
3737 	.writepages		= ext4_writepages,
3738 	.write_begin		= ext4_write_begin,
3739 	.write_end		= ext4_journalled_write_end,
3740 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3741 	.bmap			= ext4_bmap,
3742 	.invalidatepage		= ext4_journalled_invalidatepage,
3743 	.releasepage		= ext4_releasepage,
3744 	.direct_IO		= ext4_direct_IO,
3745 	.is_partially_uptodate  = block_is_partially_uptodate,
3746 	.error_remove_page	= generic_error_remove_page,
3747 };
3748 
3749 static const struct address_space_operations ext4_da_aops = {
3750 	.readpage		= ext4_readpage,
3751 	.readpages		= ext4_readpages,
3752 	.writepage		= ext4_writepage,
3753 	.writepages		= ext4_writepages,
3754 	.write_begin		= ext4_da_write_begin,
3755 	.write_end		= ext4_da_write_end,
3756 	.set_page_dirty		= ext4_set_page_dirty,
3757 	.bmap			= ext4_bmap,
3758 	.invalidatepage		= ext4_da_invalidatepage,
3759 	.releasepage		= ext4_releasepage,
3760 	.direct_IO		= ext4_direct_IO,
3761 	.migratepage		= buffer_migrate_page,
3762 	.is_partially_uptodate  = block_is_partially_uptodate,
3763 	.error_remove_page	= generic_error_remove_page,
3764 };
3765 
3766 void ext4_set_aops(struct inode *inode)
3767 {
3768 	switch (ext4_inode_journal_mode(inode)) {
3769 	case EXT4_INODE_ORDERED_DATA_MODE:
3770 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3771 		break;
3772 	case EXT4_INODE_JOURNAL_DATA_MODE:
3773 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3774 		return;
3775 	default:
3776 		BUG();
3777 	}
3778 	if (test_opt(inode->i_sb, DELALLOC))
3779 		inode->i_mapping->a_ops = &ext4_da_aops;
3780 	else
3781 		inode->i_mapping->a_ops = &ext4_aops;
3782 }
3783 
3784 static int __ext4_block_zero_page_range(handle_t *handle,
3785 		struct address_space *mapping, loff_t from, loff_t length)
3786 {
3787 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3788 	unsigned offset = from & (PAGE_SIZE-1);
3789 	unsigned blocksize, pos;
3790 	ext4_lblk_t iblock;
3791 	struct inode *inode = mapping->host;
3792 	struct buffer_head *bh;
3793 	struct page *page;
3794 	int err = 0;
3795 
3796 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3797 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3798 	if (!page)
3799 		return -ENOMEM;
3800 
3801 	blocksize = inode->i_sb->s_blocksize;
3802 
3803 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3804 
3805 	if (!page_has_buffers(page))
3806 		create_empty_buffers(page, blocksize, 0);
3807 
3808 	/* Find the buffer that contains "offset" */
3809 	bh = page_buffers(page);
3810 	pos = blocksize;
3811 	while (offset >= pos) {
3812 		bh = bh->b_this_page;
3813 		iblock++;
3814 		pos += blocksize;
3815 	}
3816 	if (buffer_freed(bh)) {
3817 		BUFFER_TRACE(bh, "freed: skip");
3818 		goto unlock;
3819 	}
3820 	if (!buffer_mapped(bh)) {
3821 		BUFFER_TRACE(bh, "unmapped");
3822 		ext4_get_block(inode, iblock, bh, 0);
3823 		/* unmapped? It's a hole - nothing to do */
3824 		if (!buffer_mapped(bh)) {
3825 			BUFFER_TRACE(bh, "still unmapped");
3826 			goto unlock;
3827 		}
3828 	}
3829 
3830 	/* Ok, it's mapped. Make sure it's up-to-date */
3831 	if (PageUptodate(page))
3832 		set_buffer_uptodate(bh);
3833 
3834 	if (!buffer_uptodate(bh)) {
3835 		err = -EIO;
3836 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3837 		wait_on_buffer(bh);
3838 		/* Uhhuh. Read error. Complain and punt. */
3839 		if (!buffer_uptodate(bh))
3840 			goto unlock;
3841 		if (S_ISREG(inode->i_mode) &&
3842 		    ext4_encrypted_inode(inode)) {
3843 			/* We expect the key to be set. */
3844 			BUG_ON(!fscrypt_has_encryption_key(inode));
3845 			BUG_ON(blocksize != PAGE_SIZE);
3846 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3847 						page, PAGE_SIZE, 0, page->index));
3848 		}
3849 	}
3850 	if (ext4_should_journal_data(inode)) {
3851 		BUFFER_TRACE(bh, "get write access");
3852 		err = ext4_journal_get_write_access(handle, bh);
3853 		if (err)
3854 			goto unlock;
3855 	}
3856 	zero_user(page, offset, length);
3857 	BUFFER_TRACE(bh, "zeroed end of block");
3858 
3859 	if (ext4_should_journal_data(inode)) {
3860 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3861 	} else {
3862 		err = 0;
3863 		mark_buffer_dirty(bh);
3864 		if (ext4_should_order_data(inode))
3865 			err = ext4_jbd2_inode_add_write(handle, inode);
3866 	}
3867 
3868 unlock:
3869 	unlock_page(page);
3870 	put_page(page);
3871 	return err;
3872 }
3873 
3874 /*
3875  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3876  * starting from file offset 'from'.  The range to be zero'd must
3877  * be contained with in one block.  If the specified range exceeds
3878  * the end of the block it will be shortened to end of the block
3879  * that cooresponds to 'from'
3880  */
3881 static int ext4_block_zero_page_range(handle_t *handle,
3882 		struct address_space *mapping, loff_t from, loff_t length)
3883 {
3884 	struct inode *inode = mapping->host;
3885 	unsigned offset = from & (PAGE_SIZE-1);
3886 	unsigned blocksize = inode->i_sb->s_blocksize;
3887 	unsigned max = blocksize - (offset & (blocksize - 1));
3888 
3889 	/*
3890 	 * correct length if it does not fall between
3891 	 * 'from' and the end of the block
3892 	 */
3893 	if (length > max || length < 0)
3894 		length = max;
3895 
3896 	if (IS_DAX(inode)) {
3897 		return iomap_zero_range(inode, from, length, NULL,
3898 					&ext4_iomap_ops);
3899 	}
3900 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3901 }
3902 
3903 /*
3904  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3905  * up to the end of the block which corresponds to `from'.
3906  * This required during truncate. We need to physically zero the tail end
3907  * of that block so it doesn't yield old data if the file is later grown.
3908  */
3909 static int ext4_block_truncate_page(handle_t *handle,
3910 		struct address_space *mapping, loff_t from)
3911 {
3912 	unsigned offset = from & (PAGE_SIZE-1);
3913 	unsigned length;
3914 	unsigned blocksize;
3915 	struct inode *inode = mapping->host;
3916 
3917 	blocksize = inode->i_sb->s_blocksize;
3918 	length = blocksize - (offset & (blocksize - 1));
3919 
3920 	return ext4_block_zero_page_range(handle, mapping, from, length);
3921 }
3922 
3923 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3924 			     loff_t lstart, loff_t length)
3925 {
3926 	struct super_block *sb = inode->i_sb;
3927 	struct address_space *mapping = inode->i_mapping;
3928 	unsigned partial_start, partial_end;
3929 	ext4_fsblk_t start, end;
3930 	loff_t byte_end = (lstart + length - 1);
3931 	int err = 0;
3932 
3933 	partial_start = lstart & (sb->s_blocksize - 1);
3934 	partial_end = byte_end & (sb->s_blocksize - 1);
3935 
3936 	start = lstart >> sb->s_blocksize_bits;
3937 	end = byte_end >> sb->s_blocksize_bits;
3938 
3939 	/* Handle partial zero within the single block */
3940 	if (start == end &&
3941 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3942 		err = ext4_block_zero_page_range(handle, mapping,
3943 						 lstart, length);
3944 		return err;
3945 	}
3946 	/* Handle partial zero out on the start of the range */
3947 	if (partial_start) {
3948 		err = ext4_block_zero_page_range(handle, mapping,
3949 						 lstart, sb->s_blocksize);
3950 		if (err)
3951 			return err;
3952 	}
3953 	/* Handle partial zero out on the end of the range */
3954 	if (partial_end != sb->s_blocksize - 1)
3955 		err = ext4_block_zero_page_range(handle, mapping,
3956 						 byte_end - partial_end,
3957 						 partial_end + 1);
3958 	return err;
3959 }
3960 
3961 int ext4_can_truncate(struct inode *inode)
3962 {
3963 	if (S_ISREG(inode->i_mode))
3964 		return 1;
3965 	if (S_ISDIR(inode->i_mode))
3966 		return 1;
3967 	if (S_ISLNK(inode->i_mode))
3968 		return !ext4_inode_is_fast_symlink(inode);
3969 	return 0;
3970 }
3971 
3972 /*
3973  * We have to make sure i_disksize gets properly updated before we truncate
3974  * page cache due to hole punching or zero range. Otherwise i_disksize update
3975  * can get lost as it may have been postponed to submission of writeback but
3976  * that will never happen after we truncate page cache.
3977  */
3978 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3979 				      loff_t len)
3980 {
3981 	handle_t *handle;
3982 	loff_t size = i_size_read(inode);
3983 
3984 	WARN_ON(!inode_is_locked(inode));
3985 	if (offset > size || offset + len < size)
3986 		return 0;
3987 
3988 	if (EXT4_I(inode)->i_disksize >= size)
3989 		return 0;
3990 
3991 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3992 	if (IS_ERR(handle))
3993 		return PTR_ERR(handle);
3994 	ext4_update_i_disksize(inode, size);
3995 	ext4_mark_inode_dirty(handle, inode);
3996 	ext4_journal_stop(handle);
3997 
3998 	return 0;
3999 }
4000 
4001 /*
4002  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4003  * associated with the given offset and length
4004  *
4005  * @inode:  File inode
4006  * @offset: The offset where the hole will begin
4007  * @len:    The length of the hole
4008  *
4009  * Returns: 0 on success or negative on failure
4010  */
4011 
4012 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4013 {
4014 	struct super_block *sb = inode->i_sb;
4015 	ext4_lblk_t first_block, stop_block;
4016 	struct address_space *mapping = inode->i_mapping;
4017 	loff_t first_block_offset, last_block_offset;
4018 	handle_t *handle;
4019 	unsigned int credits;
4020 	int ret = 0;
4021 
4022 	if (!S_ISREG(inode->i_mode))
4023 		return -EOPNOTSUPP;
4024 
4025 	trace_ext4_punch_hole(inode, offset, length, 0);
4026 
4027 	/*
4028 	 * Write out all dirty pages to avoid race conditions
4029 	 * Then release them.
4030 	 */
4031 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4032 		ret = filemap_write_and_wait_range(mapping, offset,
4033 						   offset + length - 1);
4034 		if (ret)
4035 			return ret;
4036 	}
4037 
4038 	inode_lock(inode);
4039 
4040 	/* No need to punch hole beyond i_size */
4041 	if (offset >= inode->i_size)
4042 		goto out_mutex;
4043 
4044 	/*
4045 	 * If the hole extends beyond i_size, set the hole
4046 	 * to end after the page that contains i_size
4047 	 */
4048 	if (offset + length > inode->i_size) {
4049 		length = inode->i_size +
4050 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4051 		   offset;
4052 	}
4053 
4054 	if (offset & (sb->s_blocksize - 1) ||
4055 	    (offset + length) & (sb->s_blocksize - 1)) {
4056 		/*
4057 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4058 		 * partial block
4059 		 */
4060 		ret = ext4_inode_attach_jinode(inode);
4061 		if (ret < 0)
4062 			goto out_mutex;
4063 
4064 	}
4065 
4066 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4067 	ext4_inode_block_unlocked_dio(inode);
4068 	inode_dio_wait(inode);
4069 
4070 	/*
4071 	 * Prevent page faults from reinstantiating pages we have released from
4072 	 * page cache.
4073 	 */
4074 	down_write(&EXT4_I(inode)->i_mmap_sem);
4075 	first_block_offset = round_up(offset, sb->s_blocksize);
4076 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4077 
4078 	/* Now release the pages and zero block aligned part of pages*/
4079 	if (last_block_offset > first_block_offset) {
4080 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4081 		if (ret)
4082 			goto out_dio;
4083 		truncate_pagecache_range(inode, first_block_offset,
4084 					 last_block_offset);
4085 	}
4086 
4087 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4088 		credits = ext4_writepage_trans_blocks(inode);
4089 	else
4090 		credits = ext4_blocks_for_truncate(inode);
4091 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4092 	if (IS_ERR(handle)) {
4093 		ret = PTR_ERR(handle);
4094 		ext4_std_error(sb, ret);
4095 		goto out_dio;
4096 	}
4097 
4098 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4099 				       length);
4100 	if (ret)
4101 		goto out_stop;
4102 
4103 	first_block = (offset + sb->s_blocksize - 1) >>
4104 		EXT4_BLOCK_SIZE_BITS(sb);
4105 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4106 
4107 	/* If there are no blocks to remove, return now */
4108 	if (first_block >= stop_block)
4109 		goto out_stop;
4110 
4111 	down_write(&EXT4_I(inode)->i_data_sem);
4112 	ext4_discard_preallocations(inode);
4113 
4114 	ret = ext4_es_remove_extent(inode, first_block,
4115 				    stop_block - first_block);
4116 	if (ret) {
4117 		up_write(&EXT4_I(inode)->i_data_sem);
4118 		goto out_stop;
4119 	}
4120 
4121 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4122 		ret = ext4_ext_remove_space(inode, first_block,
4123 					    stop_block - 1);
4124 	else
4125 		ret = ext4_ind_remove_space(handle, inode, first_block,
4126 					    stop_block);
4127 
4128 	up_write(&EXT4_I(inode)->i_data_sem);
4129 	if (IS_SYNC(inode))
4130 		ext4_handle_sync(handle);
4131 
4132 	inode->i_mtime = inode->i_ctime = current_time(inode);
4133 	ext4_mark_inode_dirty(handle, inode);
4134 out_stop:
4135 	ext4_journal_stop(handle);
4136 out_dio:
4137 	up_write(&EXT4_I(inode)->i_mmap_sem);
4138 	ext4_inode_resume_unlocked_dio(inode);
4139 out_mutex:
4140 	inode_unlock(inode);
4141 	return ret;
4142 }
4143 
4144 int ext4_inode_attach_jinode(struct inode *inode)
4145 {
4146 	struct ext4_inode_info *ei = EXT4_I(inode);
4147 	struct jbd2_inode *jinode;
4148 
4149 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4150 		return 0;
4151 
4152 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4153 	spin_lock(&inode->i_lock);
4154 	if (!ei->jinode) {
4155 		if (!jinode) {
4156 			spin_unlock(&inode->i_lock);
4157 			return -ENOMEM;
4158 		}
4159 		ei->jinode = jinode;
4160 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4161 		jinode = NULL;
4162 	}
4163 	spin_unlock(&inode->i_lock);
4164 	if (unlikely(jinode != NULL))
4165 		jbd2_free_inode(jinode);
4166 	return 0;
4167 }
4168 
4169 /*
4170  * ext4_truncate()
4171  *
4172  * We block out ext4_get_block() block instantiations across the entire
4173  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4174  * simultaneously on behalf of the same inode.
4175  *
4176  * As we work through the truncate and commit bits of it to the journal there
4177  * is one core, guiding principle: the file's tree must always be consistent on
4178  * disk.  We must be able to restart the truncate after a crash.
4179  *
4180  * The file's tree may be transiently inconsistent in memory (although it
4181  * probably isn't), but whenever we close off and commit a journal transaction,
4182  * the contents of (the filesystem + the journal) must be consistent and
4183  * restartable.  It's pretty simple, really: bottom up, right to left (although
4184  * left-to-right works OK too).
4185  *
4186  * Note that at recovery time, journal replay occurs *before* the restart of
4187  * truncate against the orphan inode list.
4188  *
4189  * The committed inode has the new, desired i_size (which is the same as
4190  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4191  * that this inode's truncate did not complete and it will again call
4192  * ext4_truncate() to have another go.  So there will be instantiated blocks
4193  * to the right of the truncation point in a crashed ext4 filesystem.  But
4194  * that's fine - as long as they are linked from the inode, the post-crash
4195  * ext4_truncate() run will find them and release them.
4196  */
4197 int ext4_truncate(struct inode *inode)
4198 {
4199 	struct ext4_inode_info *ei = EXT4_I(inode);
4200 	unsigned int credits;
4201 	int err = 0;
4202 	handle_t *handle;
4203 	struct address_space *mapping = inode->i_mapping;
4204 
4205 	/*
4206 	 * There is a possibility that we're either freeing the inode
4207 	 * or it's a completely new inode. In those cases we might not
4208 	 * have i_mutex locked because it's not necessary.
4209 	 */
4210 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4211 		WARN_ON(!inode_is_locked(inode));
4212 	trace_ext4_truncate_enter(inode);
4213 
4214 	if (!ext4_can_truncate(inode))
4215 		return 0;
4216 
4217 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4218 
4219 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4220 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4221 
4222 	if (ext4_has_inline_data(inode)) {
4223 		int has_inline = 1;
4224 
4225 		ext4_inline_data_truncate(inode, &has_inline);
4226 		if (has_inline)
4227 			return 0;
4228 	}
4229 
4230 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4231 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4232 		if (ext4_inode_attach_jinode(inode) < 0)
4233 			return 0;
4234 	}
4235 
4236 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4237 		credits = ext4_writepage_trans_blocks(inode);
4238 	else
4239 		credits = ext4_blocks_for_truncate(inode);
4240 
4241 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4242 	if (IS_ERR(handle))
4243 		return PTR_ERR(handle);
4244 
4245 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4246 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4247 
4248 	/*
4249 	 * We add the inode to the orphan list, so that if this
4250 	 * truncate spans multiple transactions, and we crash, we will
4251 	 * resume the truncate when the filesystem recovers.  It also
4252 	 * marks the inode dirty, to catch the new size.
4253 	 *
4254 	 * Implication: the file must always be in a sane, consistent
4255 	 * truncatable state while each transaction commits.
4256 	 */
4257 	err = ext4_orphan_add(handle, inode);
4258 	if (err)
4259 		goto out_stop;
4260 
4261 	down_write(&EXT4_I(inode)->i_data_sem);
4262 
4263 	ext4_discard_preallocations(inode);
4264 
4265 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4266 		err = ext4_ext_truncate(handle, inode);
4267 	else
4268 		ext4_ind_truncate(handle, inode);
4269 
4270 	up_write(&ei->i_data_sem);
4271 	if (err)
4272 		goto out_stop;
4273 
4274 	if (IS_SYNC(inode))
4275 		ext4_handle_sync(handle);
4276 
4277 out_stop:
4278 	/*
4279 	 * If this was a simple ftruncate() and the file will remain alive,
4280 	 * then we need to clear up the orphan record which we created above.
4281 	 * However, if this was a real unlink then we were called by
4282 	 * ext4_evict_inode(), and we allow that function to clean up the
4283 	 * orphan info for us.
4284 	 */
4285 	if (inode->i_nlink)
4286 		ext4_orphan_del(handle, inode);
4287 
4288 	inode->i_mtime = inode->i_ctime = current_time(inode);
4289 	ext4_mark_inode_dirty(handle, inode);
4290 	ext4_journal_stop(handle);
4291 
4292 	trace_ext4_truncate_exit(inode);
4293 	return err;
4294 }
4295 
4296 /*
4297  * ext4_get_inode_loc returns with an extra refcount against the inode's
4298  * underlying buffer_head on success. If 'in_mem' is true, we have all
4299  * data in memory that is needed to recreate the on-disk version of this
4300  * inode.
4301  */
4302 static int __ext4_get_inode_loc(struct inode *inode,
4303 				struct ext4_iloc *iloc, int in_mem)
4304 {
4305 	struct ext4_group_desc	*gdp;
4306 	struct buffer_head	*bh;
4307 	struct super_block	*sb = inode->i_sb;
4308 	ext4_fsblk_t		block;
4309 	int			inodes_per_block, inode_offset;
4310 
4311 	iloc->bh = NULL;
4312 	if (!ext4_valid_inum(sb, inode->i_ino))
4313 		return -EFSCORRUPTED;
4314 
4315 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4316 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4317 	if (!gdp)
4318 		return -EIO;
4319 
4320 	/*
4321 	 * Figure out the offset within the block group inode table
4322 	 */
4323 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4324 	inode_offset = ((inode->i_ino - 1) %
4325 			EXT4_INODES_PER_GROUP(sb));
4326 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4327 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4328 
4329 	bh = sb_getblk(sb, block);
4330 	if (unlikely(!bh))
4331 		return -ENOMEM;
4332 	if (!buffer_uptodate(bh)) {
4333 		lock_buffer(bh);
4334 
4335 		/*
4336 		 * If the buffer has the write error flag, we have failed
4337 		 * to write out another inode in the same block.  In this
4338 		 * case, we don't have to read the block because we may
4339 		 * read the old inode data successfully.
4340 		 */
4341 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4342 			set_buffer_uptodate(bh);
4343 
4344 		if (buffer_uptodate(bh)) {
4345 			/* someone brought it uptodate while we waited */
4346 			unlock_buffer(bh);
4347 			goto has_buffer;
4348 		}
4349 
4350 		/*
4351 		 * If we have all information of the inode in memory and this
4352 		 * is the only valid inode in the block, we need not read the
4353 		 * block.
4354 		 */
4355 		if (in_mem) {
4356 			struct buffer_head *bitmap_bh;
4357 			int i, start;
4358 
4359 			start = inode_offset & ~(inodes_per_block - 1);
4360 
4361 			/* Is the inode bitmap in cache? */
4362 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4363 			if (unlikely(!bitmap_bh))
4364 				goto make_io;
4365 
4366 			/*
4367 			 * If the inode bitmap isn't in cache then the
4368 			 * optimisation may end up performing two reads instead
4369 			 * of one, so skip it.
4370 			 */
4371 			if (!buffer_uptodate(bitmap_bh)) {
4372 				brelse(bitmap_bh);
4373 				goto make_io;
4374 			}
4375 			for (i = start; i < start + inodes_per_block; i++) {
4376 				if (i == inode_offset)
4377 					continue;
4378 				if (ext4_test_bit(i, bitmap_bh->b_data))
4379 					break;
4380 			}
4381 			brelse(bitmap_bh);
4382 			if (i == start + inodes_per_block) {
4383 				/* all other inodes are free, so skip I/O */
4384 				memset(bh->b_data, 0, bh->b_size);
4385 				set_buffer_uptodate(bh);
4386 				unlock_buffer(bh);
4387 				goto has_buffer;
4388 			}
4389 		}
4390 
4391 make_io:
4392 		/*
4393 		 * If we need to do any I/O, try to pre-readahead extra
4394 		 * blocks from the inode table.
4395 		 */
4396 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4397 			ext4_fsblk_t b, end, table;
4398 			unsigned num;
4399 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4400 
4401 			table = ext4_inode_table(sb, gdp);
4402 			/* s_inode_readahead_blks is always a power of 2 */
4403 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4404 			if (table > b)
4405 				b = table;
4406 			end = b + ra_blks;
4407 			num = EXT4_INODES_PER_GROUP(sb);
4408 			if (ext4_has_group_desc_csum(sb))
4409 				num -= ext4_itable_unused_count(sb, gdp);
4410 			table += num / inodes_per_block;
4411 			if (end > table)
4412 				end = table;
4413 			while (b <= end)
4414 				sb_breadahead(sb, b++);
4415 		}
4416 
4417 		/*
4418 		 * There are other valid inodes in the buffer, this inode
4419 		 * has in-inode xattrs, or we don't have this inode in memory.
4420 		 * Read the block from disk.
4421 		 */
4422 		trace_ext4_load_inode(inode);
4423 		get_bh(bh);
4424 		bh->b_end_io = end_buffer_read_sync;
4425 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4426 		wait_on_buffer(bh);
4427 		if (!buffer_uptodate(bh)) {
4428 			EXT4_ERROR_INODE_BLOCK(inode, block,
4429 					       "unable to read itable block");
4430 			brelse(bh);
4431 			return -EIO;
4432 		}
4433 	}
4434 has_buffer:
4435 	iloc->bh = bh;
4436 	return 0;
4437 }
4438 
4439 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4440 {
4441 	/* We have all inode data except xattrs in memory here. */
4442 	return __ext4_get_inode_loc(inode, iloc,
4443 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4444 }
4445 
4446 void ext4_set_inode_flags(struct inode *inode)
4447 {
4448 	unsigned int flags = EXT4_I(inode)->i_flags;
4449 	unsigned int new_fl = 0;
4450 
4451 	if (flags & EXT4_SYNC_FL)
4452 		new_fl |= S_SYNC;
4453 	if (flags & EXT4_APPEND_FL)
4454 		new_fl |= S_APPEND;
4455 	if (flags & EXT4_IMMUTABLE_FL)
4456 		new_fl |= S_IMMUTABLE;
4457 	if (flags & EXT4_NOATIME_FL)
4458 		new_fl |= S_NOATIME;
4459 	if (flags & EXT4_DIRSYNC_FL)
4460 		new_fl |= S_DIRSYNC;
4461 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4462 	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4463 	    !ext4_encrypted_inode(inode))
4464 		new_fl |= S_DAX;
4465 	inode_set_flags(inode, new_fl,
4466 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4467 }
4468 
4469 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4470 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4471 {
4472 	unsigned int vfs_fl;
4473 	unsigned long old_fl, new_fl;
4474 
4475 	do {
4476 		vfs_fl = ei->vfs_inode.i_flags;
4477 		old_fl = ei->i_flags;
4478 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4479 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4480 				EXT4_DIRSYNC_FL);
4481 		if (vfs_fl & S_SYNC)
4482 			new_fl |= EXT4_SYNC_FL;
4483 		if (vfs_fl & S_APPEND)
4484 			new_fl |= EXT4_APPEND_FL;
4485 		if (vfs_fl & S_IMMUTABLE)
4486 			new_fl |= EXT4_IMMUTABLE_FL;
4487 		if (vfs_fl & S_NOATIME)
4488 			new_fl |= EXT4_NOATIME_FL;
4489 		if (vfs_fl & S_DIRSYNC)
4490 			new_fl |= EXT4_DIRSYNC_FL;
4491 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4492 }
4493 
4494 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4495 				  struct ext4_inode_info *ei)
4496 {
4497 	blkcnt_t i_blocks ;
4498 	struct inode *inode = &(ei->vfs_inode);
4499 	struct super_block *sb = inode->i_sb;
4500 
4501 	if (ext4_has_feature_huge_file(sb)) {
4502 		/* we are using combined 48 bit field */
4503 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4504 					le32_to_cpu(raw_inode->i_blocks_lo);
4505 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4506 			/* i_blocks represent file system block size */
4507 			return i_blocks  << (inode->i_blkbits - 9);
4508 		} else {
4509 			return i_blocks;
4510 		}
4511 	} else {
4512 		return le32_to_cpu(raw_inode->i_blocks_lo);
4513 	}
4514 }
4515 
4516 static inline void ext4_iget_extra_inode(struct inode *inode,
4517 					 struct ext4_inode *raw_inode,
4518 					 struct ext4_inode_info *ei)
4519 {
4520 	__le32 *magic = (void *)raw_inode +
4521 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4522 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4523 	    EXT4_INODE_SIZE(inode->i_sb) &&
4524 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4525 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4526 		ext4_find_inline_data_nolock(inode);
4527 	} else
4528 		EXT4_I(inode)->i_inline_off = 0;
4529 }
4530 
4531 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4532 {
4533 	if (!ext4_has_feature_project(inode->i_sb))
4534 		return -EOPNOTSUPP;
4535 	*projid = EXT4_I(inode)->i_projid;
4536 	return 0;
4537 }
4538 
4539 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4540 {
4541 	struct ext4_iloc iloc;
4542 	struct ext4_inode *raw_inode;
4543 	struct ext4_inode_info *ei;
4544 	struct inode *inode;
4545 	journal_t *journal = EXT4_SB(sb)->s_journal;
4546 	long ret;
4547 	loff_t size;
4548 	int block;
4549 	uid_t i_uid;
4550 	gid_t i_gid;
4551 	projid_t i_projid;
4552 
4553 	inode = iget_locked(sb, ino);
4554 	if (!inode)
4555 		return ERR_PTR(-ENOMEM);
4556 	if (!(inode->i_state & I_NEW))
4557 		return inode;
4558 
4559 	ei = EXT4_I(inode);
4560 	iloc.bh = NULL;
4561 
4562 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4563 	if (ret < 0)
4564 		goto bad_inode;
4565 	raw_inode = ext4_raw_inode(&iloc);
4566 
4567 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4568 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4569 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4570 			EXT4_INODE_SIZE(inode->i_sb) ||
4571 		    (ei->i_extra_isize & 3)) {
4572 			EXT4_ERROR_INODE(inode,
4573 					 "bad extra_isize %u (inode size %u)",
4574 					 ei->i_extra_isize,
4575 					 EXT4_INODE_SIZE(inode->i_sb));
4576 			ret = -EFSCORRUPTED;
4577 			goto bad_inode;
4578 		}
4579 	} else
4580 		ei->i_extra_isize = 0;
4581 
4582 	/* Precompute checksum seed for inode metadata */
4583 	if (ext4_has_metadata_csum(sb)) {
4584 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4585 		__u32 csum;
4586 		__le32 inum = cpu_to_le32(inode->i_ino);
4587 		__le32 gen = raw_inode->i_generation;
4588 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4589 				   sizeof(inum));
4590 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4591 					      sizeof(gen));
4592 	}
4593 
4594 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4595 		EXT4_ERROR_INODE(inode, "checksum invalid");
4596 		ret = -EFSBADCRC;
4597 		goto bad_inode;
4598 	}
4599 
4600 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4601 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4602 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4603 	if (ext4_has_feature_project(sb) &&
4604 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4605 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4606 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4607 	else
4608 		i_projid = EXT4_DEF_PROJID;
4609 
4610 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4611 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4612 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4613 	}
4614 	i_uid_write(inode, i_uid);
4615 	i_gid_write(inode, i_gid);
4616 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4617 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4618 
4619 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4620 	ei->i_inline_off = 0;
4621 	ei->i_dir_start_lookup = 0;
4622 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4623 	/* We now have enough fields to check if the inode was active or not.
4624 	 * This is needed because nfsd might try to access dead inodes
4625 	 * the test is that same one that e2fsck uses
4626 	 * NeilBrown 1999oct15
4627 	 */
4628 	if (inode->i_nlink == 0) {
4629 		if ((inode->i_mode == 0 ||
4630 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4631 		    ino != EXT4_BOOT_LOADER_INO) {
4632 			/* this inode is deleted */
4633 			ret = -ESTALE;
4634 			goto bad_inode;
4635 		}
4636 		/* The only unlinked inodes we let through here have
4637 		 * valid i_mode and are being read by the orphan
4638 		 * recovery code: that's fine, we're about to complete
4639 		 * the process of deleting those.
4640 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4641 		 * not initialized on a new filesystem. */
4642 	}
4643 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4644 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4645 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4646 	if (ext4_has_feature_64bit(sb))
4647 		ei->i_file_acl |=
4648 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4649 	inode->i_size = ext4_isize(raw_inode);
4650 	if ((size = i_size_read(inode)) < 0) {
4651 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4652 		ret = -EFSCORRUPTED;
4653 		goto bad_inode;
4654 	}
4655 	ei->i_disksize = inode->i_size;
4656 #ifdef CONFIG_QUOTA
4657 	ei->i_reserved_quota = 0;
4658 #endif
4659 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4660 	ei->i_block_group = iloc.block_group;
4661 	ei->i_last_alloc_group = ~0;
4662 	/*
4663 	 * NOTE! The in-memory inode i_data array is in little-endian order
4664 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4665 	 */
4666 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4667 		ei->i_data[block] = raw_inode->i_block[block];
4668 	INIT_LIST_HEAD(&ei->i_orphan);
4669 
4670 	/*
4671 	 * Set transaction id's of transactions that have to be committed
4672 	 * to finish f[data]sync. We set them to currently running transaction
4673 	 * as we cannot be sure that the inode or some of its metadata isn't
4674 	 * part of the transaction - the inode could have been reclaimed and
4675 	 * now it is reread from disk.
4676 	 */
4677 	if (journal) {
4678 		transaction_t *transaction;
4679 		tid_t tid;
4680 
4681 		read_lock(&journal->j_state_lock);
4682 		if (journal->j_running_transaction)
4683 			transaction = journal->j_running_transaction;
4684 		else
4685 			transaction = journal->j_committing_transaction;
4686 		if (transaction)
4687 			tid = transaction->t_tid;
4688 		else
4689 			tid = journal->j_commit_sequence;
4690 		read_unlock(&journal->j_state_lock);
4691 		ei->i_sync_tid = tid;
4692 		ei->i_datasync_tid = tid;
4693 	}
4694 
4695 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4696 		if (ei->i_extra_isize == 0) {
4697 			/* The extra space is currently unused. Use it. */
4698 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4699 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4700 					    EXT4_GOOD_OLD_INODE_SIZE;
4701 		} else {
4702 			ext4_iget_extra_inode(inode, raw_inode, ei);
4703 		}
4704 	}
4705 
4706 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4707 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4708 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4709 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4710 
4711 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4712 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4713 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4714 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4715 				inode->i_version |=
4716 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4717 		}
4718 	}
4719 
4720 	ret = 0;
4721 	if (ei->i_file_acl &&
4722 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4723 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4724 				 ei->i_file_acl);
4725 		ret = -EFSCORRUPTED;
4726 		goto bad_inode;
4727 	} else if (!ext4_has_inline_data(inode)) {
4728 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4729 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4730 			    (S_ISLNK(inode->i_mode) &&
4731 			     !ext4_inode_is_fast_symlink(inode))))
4732 				/* Validate extent which is part of inode */
4733 				ret = ext4_ext_check_inode(inode);
4734 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4735 			   (S_ISLNK(inode->i_mode) &&
4736 			    !ext4_inode_is_fast_symlink(inode))) {
4737 			/* Validate block references which are part of inode */
4738 			ret = ext4_ind_check_inode(inode);
4739 		}
4740 	}
4741 	if (ret)
4742 		goto bad_inode;
4743 
4744 	if (S_ISREG(inode->i_mode)) {
4745 		inode->i_op = &ext4_file_inode_operations;
4746 		inode->i_fop = &ext4_file_operations;
4747 		ext4_set_aops(inode);
4748 	} else if (S_ISDIR(inode->i_mode)) {
4749 		inode->i_op = &ext4_dir_inode_operations;
4750 		inode->i_fop = &ext4_dir_operations;
4751 	} else if (S_ISLNK(inode->i_mode)) {
4752 		if (ext4_encrypted_inode(inode)) {
4753 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4754 			ext4_set_aops(inode);
4755 		} else if (ext4_inode_is_fast_symlink(inode)) {
4756 			inode->i_link = (char *)ei->i_data;
4757 			inode->i_op = &ext4_fast_symlink_inode_operations;
4758 			nd_terminate_link(ei->i_data, inode->i_size,
4759 				sizeof(ei->i_data) - 1);
4760 		} else {
4761 			inode->i_op = &ext4_symlink_inode_operations;
4762 			ext4_set_aops(inode);
4763 		}
4764 		inode_nohighmem(inode);
4765 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4766 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4767 		inode->i_op = &ext4_special_inode_operations;
4768 		if (raw_inode->i_block[0])
4769 			init_special_inode(inode, inode->i_mode,
4770 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4771 		else
4772 			init_special_inode(inode, inode->i_mode,
4773 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4774 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4775 		make_bad_inode(inode);
4776 	} else {
4777 		ret = -EFSCORRUPTED;
4778 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4779 		goto bad_inode;
4780 	}
4781 	brelse(iloc.bh);
4782 	ext4_set_inode_flags(inode);
4783 	unlock_new_inode(inode);
4784 	return inode;
4785 
4786 bad_inode:
4787 	brelse(iloc.bh);
4788 	iget_failed(inode);
4789 	return ERR_PTR(ret);
4790 }
4791 
4792 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4793 {
4794 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4795 		return ERR_PTR(-EFSCORRUPTED);
4796 	return ext4_iget(sb, ino);
4797 }
4798 
4799 static int ext4_inode_blocks_set(handle_t *handle,
4800 				struct ext4_inode *raw_inode,
4801 				struct ext4_inode_info *ei)
4802 {
4803 	struct inode *inode = &(ei->vfs_inode);
4804 	u64 i_blocks = inode->i_blocks;
4805 	struct super_block *sb = inode->i_sb;
4806 
4807 	if (i_blocks <= ~0U) {
4808 		/*
4809 		 * i_blocks can be represented in a 32 bit variable
4810 		 * as multiple of 512 bytes
4811 		 */
4812 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4813 		raw_inode->i_blocks_high = 0;
4814 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4815 		return 0;
4816 	}
4817 	if (!ext4_has_feature_huge_file(sb))
4818 		return -EFBIG;
4819 
4820 	if (i_blocks <= 0xffffffffffffULL) {
4821 		/*
4822 		 * i_blocks can be represented in a 48 bit variable
4823 		 * as multiple of 512 bytes
4824 		 */
4825 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4826 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4827 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4828 	} else {
4829 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4830 		/* i_block is stored in file system block size */
4831 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4832 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4833 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4834 	}
4835 	return 0;
4836 }
4837 
4838 struct other_inode {
4839 	unsigned long		orig_ino;
4840 	struct ext4_inode	*raw_inode;
4841 };
4842 
4843 static int other_inode_match(struct inode * inode, unsigned long ino,
4844 			     void *data)
4845 {
4846 	struct other_inode *oi = (struct other_inode *) data;
4847 
4848 	if ((inode->i_ino != ino) ||
4849 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4850 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4851 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4852 		return 0;
4853 	spin_lock(&inode->i_lock);
4854 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4855 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4856 	    (inode->i_state & I_DIRTY_TIME)) {
4857 		struct ext4_inode_info	*ei = EXT4_I(inode);
4858 
4859 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4860 		spin_unlock(&inode->i_lock);
4861 
4862 		spin_lock(&ei->i_raw_lock);
4863 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4864 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4865 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4866 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4867 		spin_unlock(&ei->i_raw_lock);
4868 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4869 		return -1;
4870 	}
4871 	spin_unlock(&inode->i_lock);
4872 	return -1;
4873 }
4874 
4875 /*
4876  * Opportunistically update the other time fields for other inodes in
4877  * the same inode table block.
4878  */
4879 static void ext4_update_other_inodes_time(struct super_block *sb,
4880 					  unsigned long orig_ino, char *buf)
4881 {
4882 	struct other_inode oi;
4883 	unsigned long ino;
4884 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4885 	int inode_size = EXT4_INODE_SIZE(sb);
4886 
4887 	oi.orig_ino = orig_ino;
4888 	/*
4889 	 * Calculate the first inode in the inode table block.  Inode
4890 	 * numbers are one-based.  That is, the first inode in a block
4891 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4892 	 */
4893 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4894 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4895 		if (ino == orig_ino)
4896 			continue;
4897 		oi.raw_inode = (struct ext4_inode *) buf;
4898 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4899 	}
4900 }
4901 
4902 /*
4903  * Post the struct inode info into an on-disk inode location in the
4904  * buffer-cache.  This gobbles the caller's reference to the
4905  * buffer_head in the inode location struct.
4906  *
4907  * The caller must have write access to iloc->bh.
4908  */
4909 static int ext4_do_update_inode(handle_t *handle,
4910 				struct inode *inode,
4911 				struct ext4_iloc *iloc)
4912 {
4913 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4914 	struct ext4_inode_info *ei = EXT4_I(inode);
4915 	struct buffer_head *bh = iloc->bh;
4916 	struct super_block *sb = inode->i_sb;
4917 	int err = 0, rc, block;
4918 	int need_datasync = 0, set_large_file = 0;
4919 	uid_t i_uid;
4920 	gid_t i_gid;
4921 	projid_t i_projid;
4922 
4923 	spin_lock(&ei->i_raw_lock);
4924 
4925 	/* For fields not tracked in the in-memory inode,
4926 	 * initialise them to zero for new inodes. */
4927 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4928 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4929 
4930 	ext4_get_inode_flags(ei);
4931 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4932 	i_uid = i_uid_read(inode);
4933 	i_gid = i_gid_read(inode);
4934 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4935 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4936 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4937 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4938 /*
4939  * Fix up interoperability with old kernels. Otherwise, old inodes get
4940  * re-used with the upper 16 bits of the uid/gid intact
4941  */
4942 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4943 			raw_inode->i_uid_high = 0;
4944 			raw_inode->i_gid_high = 0;
4945 		} else {
4946 			raw_inode->i_uid_high =
4947 				cpu_to_le16(high_16_bits(i_uid));
4948 			raw_inode->i_gid_high =
4949 				cpu_to_le16(high_16_bits(i_gid));
4950 		}
4951 	} else {
4952 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4953 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4954 		raw_inode->i_uid_high = 0;
4955 		raw_inode->i_gid_high = 0;
4956 	}
4957 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4958 
4959 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4960 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4961 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4962 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4963 
4964 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4965 	if (err) {
4966 		spin_unlock(&ei->i_raw_lock);
4967 		goto out_brelse;
4968 	}
4969 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4970 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4971 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4972 		raw_inode->i_file_acl_high =
4973 			cpu_to_le16(ei->i_file_acl >> 32);
4974 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4975 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4976 		ext4_isize_set(raw_inode, ei->i_disksize);
4977 		need_datasync = 1;
4978 	}
4979 	if (ei->i_disksize > 0x7fffffffULL) {
4980 		if (!ext4_has_feature_large_file(sb) ||
4981 				EXT4_SB(sb)->s_es->s_rev_level ==
4982 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4983 			set_large_file = 1;
4984 	}
4985 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4986 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4987 		if (old_valid_dev(inode->i_rdev)) {
4988 			raw_inode->i_block[0] =
4989 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4990 			raw_inode->i_block[1] = 0;
4991 		} else {
4992 			raw_inode->i_block[0] = 0;
4993 			raw_inode->i_block[1] =
4994 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4995 			raw_inode->i_block[2] = 0;
4996 		}
4997 	} else if (!ext4_has_inline_data(inode)) {
4998 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4999 			raw_inode->i_block[block] = ei->i_data[block];
5000 	}
5001 
5002 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5003 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5004 		if (ei->i_extra_isize) {
5005 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5006 				raw_inode->i_version_hi =
5007 					cpu_to_le32(inode->i_version >> 32);
5008 			raw_inode->i_extra_isize =
5009 				cpu_to_le16(ei->i_extra_isize);
5010 		}
5011 	}
5012 
5013 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5014 	       i_projid != EXT4_DEF_PROJID);
5015 
5016 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5017 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5018 		raw_inode->i_projid = cpu_to_le32(i_projid);
5019 
5020 	ext4_inode_csum_set(inode, raw_inode, ei);
5021 	spin_unlock(&ei->i_raw_lock);
5022 	if (inode->i_sb->s_flags & MS_LAZYTIME)
5023 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5024 					      bh->b_data);
5025 
5026 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5027 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5028 	if (!err)
5029 		err = rc;
5030 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5031 	if (set_large_file) {
5032 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5033 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5034 		if (err)
5035 			goto out_brelse;
5036 		ext4_update_dynamic_rev(sb);
5037 		ext4_set_feature_large_file(sb);
5038 		ext4_handle_sync(handle);
5039 		err = ext4_handle_dirty_super(handle, sb);
5040 	}
5041 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5042 out_brelse:
5043 	brelse(bh);
5044 	ext4_std_error(inode->i_sb, err);
5045 	return err;
5046 }
5047 
5048 /*
5049  * ext4_write_inode()
5050  *
5051  * We are called from a few places:
5052  *
5053  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5054  *   Here, there will be no transaction running. We wait for any running
5055  *   transaction to commit.
5056  *
5057  * - Within flush work (sys_sync(), kupdate and such).
5058  *   We wait on commit, if told to.
5059  *
5060  * - Within iput_final() -> write_inode_now()
5061  *   We wait on commit, if told to.
5062  *
5063  * In all cases it is actually safe for us to return without doing anything,
5064  * because the inode has been copied into a raw inode buffer in
5065  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5066  * writeback.
5067  *
5068  * Note that we are absolutely dependent upon all inode dirtiers doing the
5069  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5070  * which we are interested.
5071  *
5072  * It would be a bug for them to not do this.  The code:
5073  *
5074  *	mark_inode_dirty(inode)
5075  *	stuff();
5076  *	inode->i_size = expr;
5077  *
5078  * is in error because write_inode() could occur while `stuff()' is running,
5079  * and the new i_size will be lost.  Plus the inode will no longer be on the
5080  * superblock's dirty inode list.
5081  */
5082 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5083 {
5084 	int err;
5085 
5086 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5087 		return 0;
5088 
5089 	if (EXT4_SB(inode->i_sb)->s_journal) {
5090 		if (ext4_journal_current_handle()) {
5091 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5092 			dump_stack();
5093 			return -EIO;
5094 		}
5095 
5096 		/*
5097 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5098 		 * ext4_sync_fs() will force the commit after everything is
5099 		 * written.
5100 		 */
5101 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5102 			return 0;
5103 
5104 		err = ext4_force_commit(inode->i_sb);
5105 	} else {
5106 		struct ext4_iloc iloc;
5107 
5108 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5109 		if (err)
5110 			return err;
5111 		/*
5112 		 * sync(2) will flush the whole buffer cache. No need to do
5113 		 * it here separately for each inode.
5114 		 */
5115 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5116 			sync_dirty_buffer(iloc.bh);
5117 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5118 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5119 					 "IO error syncing inode");
5120 			err = -EIO;
5121 		}
5122 		brelse(iloc.bh);
5123 	}
5124 	return err;
5125 }
5126 
5127 /*
5128  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5129  * buffers that are attached to a page stradding i_size and are undergoing
5130  * commit. In that case we have to wait for commit to finish and try again.
5131  */
5132 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5133 {
5134 	struct page *page;
5135 	unsigned offset;
5136 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5137 	tid_t commit_tid = 0;
5138 	int ret;
5139 
5140 	offset = inode->i_size & (PAGE_SIZE - 1);
5141 	/*
5142 	 * All buffers in the last page remain valid? Then there's nothing to
5143 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5144 	 * blocksize case
5145 	 */
5146 	if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5147 		return;
5148 	while (1) {
5149 		page = find_lock_page(inode->i_mapping,
5150 				      inode->i_size >> PAGE_SHIFT);
5151 		if (!page)
5152 			return;
5153 		ret = __ext4_journalled_invalidatepage(page, offset,
5154 						PAGE_SIZE - offset);
5155 		unlock_page(page);
5156 		put_page(page);
5157 		if (ret != -EBUSY)
5158 			return;
5159 		commit_tid = 0;
5160 		read_lock(&journal->j_state_lock);
5161 		if (journal->j_committing_transaction)
5162 			commit_tid = journal->j_committing_transaction->t_tid;
5163 		read_unlock(&journal->j_state_lock);
5164 		if (commit_tid)
5165 			jbd2_log_wait_commit(journal, commit_tid);
5166 	}
5167 }
5168 
5169 /*
5170  * ext4_setattr()
5171  *
5172  * Called from notify_change.
5173  *
5174  * We want to trap VFS attempts to truncate the file as soon as
5175  * possible.  In particular, we want to make sure that when the VFS
5176  * shrinks i_size, we put the inode on the orphan list and modify
5177  * i_disksize immediately, so that during the subsequent flushing of
5178  * dirty pages and freeing of disk blocks, we can guarantee that any
5179  * commit will leave the blocks being flushed in an unused state on
5180  * disk.  (On recovery, the inode will get truncated and the blocks will
5181  * be freed, so we have a strong guarantee that no future commit will
5182  * leave these blocks visible to the user.)
5183  *
5184  * Another thing we have to assure is that if we are in ordered mode
5185  * and inode is still attached to the committing transaction, we must
5186  * we start writeout of all the dirty pages which are being truncated.
5187  * This way we are sure that all the data written in the previous
5188  * transaction are already on disk (truncate waits for pages under
5189  * writeback).
5190  *
5191  * Called with inode->i_mutex down.
5192  */
5193 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5194 {
5195 	struct inode *inode = d_inode(dentry);
5196 	int error, rc = 0;
5197 	int orphan = 0;
5198 	const unsigned int ia_valid = attr->ia_valid;
5199 
5200 	error = setattr_prepare(dentry, attr);
5201 	if (error)
5202 		return error;
5203 
5204 	if (is_quota_modification(inode, attr)) {
5205 		error = dquot_initialize(inode);
5206 		if (error)
5207 			return error;
5208 	}
5209 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5210 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5211 		handle_t *handle;
5212 
5213 		/* (user+group)*(old+new) structure, inode write (sb,
5214 		 * inode block, ? - but truncate inode update has it) */
5215 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5216 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5217 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5218 		if (IS_ERR(handle)) {
5219 			error = PTR_ERR(handle);
5220 			goto err_out;
5221 		}
5222 		error = dquot_transfer(inode, attr);
5223 		if (error) {
5224 			ext4_journal_stop(handle);
5225 			return error;
5226 		}
5227 		/* Update corresponding info in inode so that everything is in
5228 		 * one transaction */
5229 		if (attr->ia_valid & ATTR_UID)
5230 			inode->i_uid = attr->ia_uid;
5231 		if (attr->ia_valid & ATTR_GID)
5232 			inode->i_gid = attr->ia_gid;
5233 		error = ext4_mark_inode_dirty(handle, inode);
5234 		ext4_journal_stop(handle);
5235 	}
5236 
5237 	if (attr->ia_valid & ATTR_SIZE) {
5238 		handle_t *handle;
5239 		loff_t oldsize = inode->i_size;
5240 		int shrink = (attr->ia_size <= inode->i_size);
5241 
5242 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5243 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5244 
5245 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5246 				return -EFBIG;
5247 		}
5248 		if (!S_ISREG(inode->i_mode))
5249 			return -EINVAL;
5250 
5251 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5252 			inode_inc_iversion(inode);
5253 
5254 		if (ext4_should_order_data(inode) &&
5255 		    (attr->ia_size < inode->i_size)) {
5256 			error = ext4_begin_ordered_truncate(inode,
5257 							    attr->ia_size);
5258 			if (error)
5259 				goto err_out;
5260 		}
5261 		if (attr->ia_size != inode->i_size) {
5262 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5263 			if (IS_ERR(handle)) {
5264 				error = PTR_ERR(handle);
5265 				goto err_out;
5266 			}
5267 			if (ext4_handle_valid(handle) && shrink) {
5268 				error = ext4_orphan_add(handle, inode);
5269 				orphan = 1;
5270 			}
5271 			/*
5272 			 * Update c/mtime on truncate up, ext4_truncate() will
5273 			 * update c/mtime in shrink case below
5274 			 */
5275 			if (!shrink) {
5276 				inode->i_mtime = current_time(inode);
5277 				inode->i_ctime = inode->i_mtime;
5278 			}
5279 			down_write(&EXT4_I(inode)->i_data_sem);
5280 			EXT4_I(inode)->i_disksize = attr->ia_size;
5281 			rc = ext4_mark_inode_dirty(handle, inode);
5282 			if (!error)
5283 				error = rc;
5284 			/*
5285 			 * We have to update i_size under i_data_sem together
5286 			 * with i_disksize to avoid races with writeback code
5287 			 * running ext4_wb_update_i_disksize().
5288 			 */
5289 			if (!error)
5290 				i_size_write(inode, attr->ia_size);
5291 			up_write(&EXT4_I(inode)->i_data_sem);
5292 			ext4_journal_stop(handle);
5293 			if (error) {
5294 				if (orphan)
5295 					ext4_orphan_del(NULL, inode);
5296 				goto err_out;
5297 			}
5298 		}
5299 		if (!shrink)
5300 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5301 
5302 		/*
5303 		 * Blocks are going to be removed from the inode. Wait
5304 		 * for dio in flight.  Temporarily disable
5305 		 * dioread_nolock to prevent livelock.
5306 		 */
5307 		if (orphan) {
5308 			if (!ext4_should_journal_data(inode)) {
5309 				ext4_inode_block_unlocked_dio(inode);
5310 				inode_dio_wait(inode);
5311 				ext4_inode_resume_unlocked_dio(inode);
5312 			} else
5313 				ext4_wait_for_tail_page_commit(inode);
5314 		}
5315 		down_write(&EXT4_I(inode)->i_mmap_sem);
5316 		/*
5317 		 * Truncate pagecache after we've waited for commit
5318 		 * in data=journal mode to make pages freeable.
5319 		 */
5320 		truncate_pagecache(inode, inode->i_size);
5321 		if (shrink) {
5322 			rc = ext4_truncate(inode);
5323 			if (rc)
5324 				error = rc;
5325 		}
5326 		up_write(&EXT4_I(inode)->i_mmap_sem);
5327 	}
5328 
5329 	if (!error) {
5330 		setattr_copy(inode, attr);
5331 		mark_inode_dirty(inode);
5332 	}
5333 
5334 	/*
5335 	 * If the call to ext4_truncate failed to get a transaction handle at
5336 	 * all, we need to clean up the in-core orphan list manually.
5337 	 */
5338 	if (orphan && inode->i_nlink)
5339 		ext4_orphan_del(NULL, inode);
5340 
5341 	if (!error && (ia_valid & ATTR_MODE))
5342 		rc = posix_acl_chmod(inode, inode->i_mode);
5343 
5344 err_out:
5345 	ext4_std_error(inode->i_sb, error);
5346 	if (!error)
5347 		error = rc;
5348 	return error;
5349 }
5350 
5351 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5352 		 struct kstat *stat)
5353 {
5354 	struct inode *inode;
5355 	unsigned long long delalloc_blocks;
5356 
5357 	inode = d_inode(dentry);
5358 	generic_fillattr(inode, stat);
5359 
5360 	/*
5361 	 * If there is inline data in the inode, the inode will normally not
5362 	 * have data blocks allocated (it may have an external xattr block).
5363 	 * Report at least one sector for such files, so tools like tar, rsync,
5364 	 * others doen't incorrectly think the file is completely sparse.
5365 	 */
5366 	if (unlikely(ext4_has_inline_data(inode)))
5367 		stat->blocks += (stat->size + 511) >> 9;
5368 
5369 	/*
5370 	 * We can't update i_blocks if the block allocation is delayed
5371 	 * otherwise in the case of system crash before the real block
5372 	 * allocation is done, we will have i_blocks inconsistent with
5373 	 * on-disk file blocks.
5374 	 * We always keep i_blocks updated together with real
5375 	 * allocation. But to not confuse with user, stat
5376 	 * will return the blocks that include the delayed allocation
5377 	 * blocks for this file.
5378 	 */
5379 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5380 				   EXT4_I(inode)->i_reserved_data_blocks);
5381 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5382 	return 0;
5383 }
5384 
5385 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5386 				   int pextents)
5387 {
5388 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5389 		return ext4_ind_trans_blocks(inode, lblocks);
5390 	return ext4_ext_index_trans_blocks(inode, pextents);
5391 }
5392 
5393 /*
5394  * Account for index blocks, block groups bitmaps and block group
5395  * descriptor blocks if modify datablocks and index blocks
5396  * worse case, the indexs blocks spread over different block groups
5397  *
5398  * If datablocks are discontiguous, they are possible to spread over
5399  * different block groups too. If they are contiguous, with flexbg,
5400  * they could still across block group boundary.
5401  *
5402  * Also account for superblock, inode, quota and xattr blocks
5403  */
5404 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5405 				  int pextents)
5406 {
5407 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5408 	int gdpblocks;
5409 	int idxblocks;
5410 	int ret = 0;
5411 
5412 	/*
5413 	 * How many index blocks need to touch to map @lblocks logical blocks
5414 	 * to @pextents physical extents?
5415 	 */
5416 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5417 
5418 	ret = idxblocks;
5419 
5420 	/*
5421 	 * Now let's see how many group bitmaps and group descriptors need
5422 	 * to account
5423 	 */
5424 	groups = idxblocks + pextents;
5425 	gdpblocks = groups;
5426 	if (groups > ngroups)
5427 		groups = ngroups;
5428 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5429 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5430 
5431 	/* bitmaps and block group descriptor blocks */
5432 	ret += groups + gdpblocks;
5433 
5434 	/* Blocks for super block, inode, quota and xattr blocks */
5435 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5436 
5437 	return ret;
5438 }
5439 
5440 /*
5441  * Calculate the total number of credits to reserve to fit
5442  * the modification of a single pages into a single transaction,
5443  * which may include multiple chunks of block allocations.
5444  *
5445  * This could be called via ext4_write_begin()
5446  *
5447  * We need to consider the worse case, when
5448  * one new block per extent.
5449  */
5450 int ext4_writepage_trans_blocks(struct inode *inode)
5451 {
5452 	int bpp = ext4_journal_blocks_per_page(inode);
5453 	int ret;
5454 
5455 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5456 
5457 	/* Account for data blocks for journalled mode */
5458 	if (ext4_should_journal_data(inode))
5459 		ret += bpp;
5460 	return ret;
5461 }
5462 
5463 /*
5464  * Calculate the journal credits for a chunk of data modification.
5465  *
5466  * This is called from DIO, fallocate or whoever calling
5467  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5468  *
5469  * journal buffers for data blocks are not included here, as DIO
5470  * and fallocate do no need to journal data buffers.
5471  */
5472 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5473 {
5474 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5475 }
5476 
5477 /*
5478  * The caller must have previously called ext4_reserve_inode_write().
5479  * Give this, we know that the caller already has write access to iloc->bh.
5480  */
5481 int ext4_mark_iloc_dirty(handle_t *handle,
5482 			 struct inode *inode, struct ext4_iloc *iloc)
5483 {
5484 	int err = 0;
5485 
5486 	if (IS_I_VERSION(inode))
5487 		inode_inc_iversion(inode);
5488 
5489 	/* the do_update_inode consumes one bh->b_count */
5490 	get_bh(iloc->bh);
5491 
5492 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5493 	err = ext4_do_update_inode(handle, inode, iloc);
5494 	put_bh(iloc->bh);
5495 	return err;
5496 }
5497 
5498 /*
5499  * On success, We end up with an outstanding reference count against
5500  * iloc->bh.  This _must_ be cleaned up later.
5501  */
5502 
5503 int
5504 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5505 			 struct ext4_iloc *iloc)
5506 {
5507 	int err;
5508 
5509 	err = ext4_get_inode_loc(inode, iloc);
5510 	if (!err) {
5511 		BUFFER_TRACE(iloc->bh, "get_write_access");
5512 		err = ext4_journal_get_write_access(handle, iloc->bh);
5513 		if (err) {
5514 			brelse(iloc->bh);
5515 			iloc->bh = NULL;
5516 		}
5517 	}
5518 	ext4_std_error(inode->i_sb, err);
5519 	return err;
5520 }
5521 
5522 /*
5523  * Expand an inode by new_extra_isize bytes.
5524  * Returns 0 on success or negative error number on failure.
5525  */
5526 static int ext4_expand_extra_isize(struct inode *inode,
5527 				   unsigned int new_extra_isize,
5528 				   struct ext4_iloc iloc,
5529 				   handle_t *handle)
5530 {
5531 	struct ext4_inode *raw_inode;
5532 	struct ext4_xattr_ibody_header *header;
5533 
5534 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5535 		return 0;
5536 
5537 	raw_inode = ext4_raw_inode(&iloc);
5538 
5539 	header = IHDR(inode, raw_inode);
5540 
5541 	/* No extended attributes present */
5542 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5543 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5544 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5545 			new_extra_isize);
5546 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5547 		return 0;
5548 	}
5549 
5550 	/* try to expand with EAs present */
5551 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5552 					  raw_inode, handle);
5553 }
5554 
5555 /*
5556  * What we do here is to mark the in-core inode as clean with respect to inode
5557  * dirtiness (it may still be data-dirty).
5558  * This means that the in-core inode may be reaped by prune_icache
5559  * without having to perform any I/O.  This is a very good thing,
5560  * because *any* task may call prune_icache - even ones which
5561  * have a transaction open against a different journal.
5562  *
5563  * Is this cheating?  Not really.  Sure, we haven't written the
5564  * inode out, but prune_icache isn't a user-visible syncing function.
5565  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5566  * we start and wait on commits.
5567  */
5568 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5569 {
5570 	struct ext4_iloc iloc;
5571 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5572 	static unsigned int mnt_count;
5573 	int err, ret;
5574 
5575 	might_sleep();
5576 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5577 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5578 	if (err)
5579 		return err;
5580 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5581 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5582 		/*
5583 		 * In nojournal mode, we can immediately attempt to expand
5584 		 * the inode.  When journaled, we first need to obtain extra
5585 		 * buffer credits since we may write into the EA block
5586 		 * with this same handle. If journal_extend fails, then it will
5587 		 * only result in a minor loss of functionality for that inode.
5588 		 * If this is felt to be critical, then e2fsck should be run to
5589 		 * force a large enough s_min_extra_isize.
5590 		 */
5591 		if (!ext4_handle_valid(handle) ||
5592 		    jbd2_journal_extend(handle,
5593 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5594 			ret = ext4_expand_extra_isize(inode,
5595 						      sbi->s_want_extra_isize,
5596 						      iloc, handle);
5597 			if (ret) {
5598 				if (mnt_count !=
5599 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5600 					ext4_warning(inode->i_sb,
5601 					"Unable to expand inode %lu. Delete"
5602 					" some EAs or run e2fsck.",
5603 					inode->i_ino);
5604 					mnt_count =
5605 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5606 				}
5607 			}
5608 		}
5609 	}
5610 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5611 }
5612 
5613 /*
5614  * ext4_dirty_inode() is called from __mark_inode_dirty()
5615  *
5616  * We're really interested in the case where a file is being extended.
5617  * i_size has been changed by generic_commit_write() and we thus need
5618  * to include the updated inode in the current transaction.
5619  *
5620  * Also, dquot_alloc_block() will always dirty the inode when blocks
5621  * are allocated to the file.
5622  *
5623  * If the inode is marked synchronous, we don't honour that here - doing
5624  * so would cause a commit on atime updates, which we don't bother doing.
5625  * We handle synchronous inodes at the highest possible level.
5626  *
5627  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5628  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5629  * to copy into the on-disk inode structure are the timestamp files.
5630  */
5631 void ext4_dirty_inode(struct inode *inode, int flags)
5632 {
5633 	handle_t *handle;
5634 
5635 	if (flags == I_DIRTY_TIME)
5636 		return;
5637 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5638 	if (IS_ERR(handle))
5639 		goto out;
5640 
5641 	ext4_mark_inode_dirty(handle, inode);
5642 
5643 	ext4_journal_stop(handle);
5644 out:
5645 	return;
5646 }
5647 
5648 #if 0
5649 /*
5650  * Bind an inode's backing buffer_head into this transaction, to prevent
5651  * it from being flushed to disk early.  Unlike
5652  * ext4_reserve_inode_write, this leaves behind no bh reference and
5653  * returns no iloc structure, so the caller needs to repeat the iloc
5654  * lookup to mark the inode dirty later.
5655  */
5656 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5657 {
5658 	struct ext4_iloc iloc;
5659 
5660 	int err = 0;
5661 	if (handle) {
5662 		err = ext4_get_inode_loc(inode, &iloc);
5663 		if (!err) {
5664 			BUFFER_TRACE(iloc.bh, "get_write_access");
5665 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5666 			if (!err)
5667 				err = ext4_handle_dirty_metadata(handle,
5668 								 NULL,
5669 								 iloc.bh);
5670 			brelse(iloc.bh);
5671 		}
5672 	}
5673 	ext4_std_error(inode->i_sb, err);
5674 	return err;
5675 }
5676 #endif
5677 
5678 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5679 {
5680 	journal_t *journal;
5681 	handle_t *handle;
5682 	int err;
5683 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5684 
5685 	/*
5686 	 * We have to be very careful here: changing a data block's
5687 	 * journaling status dynamically is dangerous.  If we write a
5688 	 * data block to the journal, change the status and then delete
5689 	 * that block, we risk forgetting to revoke the old log record
5690 	 * from the journal and so a subsequent replay can corrupt data.
5691 	 * So, first we make sure that the journal is empty and that
5692 	 * nobody is changing anything.
5693 	 */
5694 
5695 	journal = EXT4_JOURNAL(inode);
5696 	if (!journal)
5697 		return 0;
5698 	if (is_journal_aborted(journal))
5699 		return -EROFS;
5700 
5701 	/* Wait for all existing dio workers */
5702 	ext4_inode_block_unlocked_dio(inode);
5703 	inode_dio_wait(inode);
5704 
5705 	/*
5706 	 * Before flushing the journal and switching inode's aops, we have
5707 	 * to flush all dirty data the inode has. There can be outstanding
5708 	 * delayed allocations, there can be unwritten extents created by
5709 	 * fallocate or buffered writes in dioread_nolock mode covered by
5710 	 * dirty data which can be converted only after flushing the dirty
5711 	 * data (and journalled aops don't know how to handle these cases).
5712 	 */
5713 	if (val) {
5714 		down_write(&EXT4_I(inode)->i_mmap_sem);
5715 		err = filemap_write_and_wait(inode->i_mapping);
5716 		if (err < 0) {
5717 			up_write(&EXT4_I(inode)->i_mmap_sem);
5718 			ext4_inode_resume_unlocked_dio(inode);
5719 			return err;
5720 		}
5721 	}
5722 
5723 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5724 	jbd2_journal_lock_updates(journal);
5725 
5726 	/*
5727 	 * OK, there are no updates running now, and all cached data is
5728 	 * synced to disk.  We are now in a completely consistent state
5729 	 * which doesn't have anything in the journal, and we know that
5730 	 * no filesystem updates are running, so it is safe to modify
5731 	 * the inode's in-core data-journaling state flag now.
5732 	 */
5733 
5734 	if (val)
5735 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5736 	else {
5737 		err = jbd2_journal_flush(journal);
5738 		if (err < 0) {
5739 			jbd2_journal_unlock_updates(journal);
5740 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5741 			ext4_inode_resume_unlocked_dio(inode);
5742 			return err;
5743 		}
5744 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5745 	}
5746 	ext4_set_aops(inode);
5747 	/*
5748 	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5749 	 * E.g. S_DAX may get cleared / set.
5750 	 */
5751 	ext4_set_inode_flags(inode);
5752 
5753 	jbd2_journal_unlock_updates(journal);
5754 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5755 
5756 	if (val)
5757 		up_write(&EXT4_I(inode)->i_mmap_sem);
5758 	ext4_inode_resume_unlocked_dio(inode);
5759 
5760 	/* Finally we can mark the inode as dirty. */
5761 
5762 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5763 	if (IS_ERR(handle))
5764 		return PTR_ERR(handle);
5765 
5766 	err = ext4_mark_inode_dirty(handle, inode);
5767 	ext4_handle_sync(handle);
5768 	ext4_journal_stop(handle);
5769 	ext4_std_error(inode->i_sb, err);
5770 
5771 	return err;
5772 }
5773 
5774 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5775 {
5776 	return !buffer_mapped(bh);
5777 }
5778 
5779 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5780 {
5781 	struct page *page = vmf->page;
5782 	loff_t size;
5783 	unsigned long len;
5784 	int ret;
5785 	struct file *file = vma->vm_file;
5786 	struct inode *inode = file_inode(file);
5787 	struct address_space *mapping = inode->i_mapping;
5788 	handle_t *handle;
5789 	get_block_t *get_block;
5790 	int retries = 0;
5791 
5792 	sb_start_pagefault(inode->i_sb);
5793 	file_update_time(vma->vm_file);
5794 
5795 	down_read(&EXT4_I(inode)->i_mmap_sem);
5796 	/* Delalloc case is easy... */
5797 	if (test_opt(inode->i_sb, DELALLOC) &&
5798 	    !ext4_should_journal_data(inode) &&
5799 	    !ext4_nonda_switch(inode->i_sb)) {
5800 		do {
5801 			ret = block_page_mkwrite(vma, vmf,
5802 						   ext4_da_get_block_prep);
5803 		} while (ret == -ENOSPC &&
5804 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5805 		goto out_ret;
5806 	}
5807 
5808 	lock_page(page);
5809 	size = i_size_read(inode);
5810 	/* Page got truncated from under us? */
5811 	if (page->mapping != mapping || page_offset(page) > size) {
5812 		unlock_page(page);
5813 		ret = VM_FAULT_NOPAGE;
5814 		goto out;
5815 	}
5816 
5817 	if (page->index == size >> PAGE_SHIFT)
5818 		len = size & ~PAGE_MASK;
5819 	else
5820 		len = PAGE_SIZE;
5821 	/*
5822 	 * Return if we have all the buffers mapped. This avoids the need to do
5823 	 * journal_start/journal_stop which can block and take a long time
5824 	 */
5825 	if (page_has_buffers(page)) {
5826 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5827 					    0, len, NULL,
5828 					    ext4_bh_unmapped)) {
5829 			/* Wait so that we don't change page under IO */
5830 			wait_for_stable_page(page);
5831 			ret = VM_FAULT_LOCKED;
5832 			goto out;
5833 		}
5834 	}
5835 	unlock_page(page);
5836 	/* OK, we need to fill the hole... */
5837 	if (ext4_should_dioread_nolock(inode))
5838 		get_block = ext4_get_block_unwritten;
5839 	else
5840 		get_block = ext4_get_block;
5841 retry_alloc:
5842 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5843 				    ext4_writepage_trans_blocks(inode));
5844 	if (IS_ERR(handle)) {
5845 		ret = VM_FAULT_SIGBUS;
5846 		goto out;
5847 	}
5848 	ret = block_page_mkwrite(vma, vmf, get_block);
5849 	if (!ret && ext4_should_journal_data(inode)) {
5850 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5851 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5852 			unlock_page(page);
5853 			ret = VM_FAULT_SIGBUS;
5854 			ext4_journal_stop(handle);
5855 			goto out;
5856 		}
5857 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5858 	}
5859 	ext4_journal_stop(handle);
5860 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5861 		goto retry_alloc;
5862 out_ret:
5863 	ret = block_page_mkwrite_return(ret);
5864 out:
5865 	up_read(&EXT4_I(inode)->i_mmap_sem);
5866 	sb_end_pagefault(inode->i_sb);
5867 	return ret;
5868 }
5869 
5870 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5871 {
5872 	struct inode *inode = file_inode(vma->vm_file);
5873 	int err;
5874 
5875 	down_read(&EXT4_I(inode)->i_mmap_sem);
5876 	err = filemap_fault(vma, vmf);
5877 	up_read(&EXT4_I(inode)->i_mmap_sem);
5878 
5879 	return err;
5880 }
5881 
5882 /*
5883  * Find the first extent at or after @lblk in an inode that is not a hole.
5884  * Search for @map_len blocks at most. The extent is returned in @result.
5885  *
5886  * The function returns 1 if we found an extent. The function returns 0 in
5887  * case there is no extent at or after @lblk and in that case also sets
5888  * @result->es_len to 0. In case of error, the error code is returned.
5889  */
5890 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5891 			 unsigned int map_len, struct extent_status *result)
5892 {
5893 	struct ext4_map_blocks map;
5894 	struct extent_status es = {};
5895 	int ret;
5896 
5897 	map.m_lblk = lblk;
5898 	map.m_len = map_len;
5899 
5900 	/*
5901 	 * For non-extent based files this loop may iterate several times since
5902 	 * we do not determine full hole size.
5903 	 */
5904 	while (map.m_len > 0) {
5905 		ret = ext4_map_blocks(NULL, inode, &map, 0);
5906 		if (ret < 0)
5907 			return ret;
5908 		/* There's extent covering m_lblk? Just return it. */
5909 		if (ret > 0) {
5910 			int status;
5911 
5912 			ext4_es_store_pblock(result, map.m_pblk);
5913 			result->es_lblk = map.m_lblk;
5914 			result->es_len = map.m_len;
5915 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5916 				status = EXTENT_STATUS_UNWRITTEN;
5917 			else
5918 				status = EXTENT_STATUS_WRITTEN;
5919 			ext4_es_store_status(result, status);
5920 			return 1;
5921 		}
5922 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5923 						  map.m_lblk + map.m_len - 1,
5924 						  &es);
5925 		/* Is delalloc data before next block in extent tree? */
5926 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5927 			ext4_lblk_t offset = 0;
5928 
5929 			if (es.es_lblk < lblk)
5930 				offset = lblk - es.es_lblk;
5931 			result->es_lblk = es.es_lblk + offset;
5932 			ext4_es_store_pblock(result,
5933 					     ext4_es_pblock(&es) + offset);
5934 			result->es_len = es.es_len - offset;
5935 			ext4_es_store_status(result, ext4_es_status(&es));
5936 
5937 			return 1;
5938 		}
5939 		/* There's a hole at m_lblk, advance us after it */
5940 		map.m_lblk += map.m_len;
5941 		map_len -= map.m_len;
5942 		map.m_len = map_len;
5943 		cond_resched();
5944 	}
5945 	result->es_len = 0;
5946 	return 0;
5947 }
5948