1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static void ext4_invalidatepage(struct page *page, unsigned int offset, 140 unsigned int length); 141 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 144 int pextents); 145 146 /* 147 * Test whether an inode is a fast symlink. 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 149 */ 150 int ext4_inode_is_fast_symlink(struct inode *inode) 151 { 152 return S_ISLNK(inode->i_mode) && inode->i_size && 153 (inode->i_size < EXT4_N_BLOCKS * 4); 154 } 155 156 /* 157 * Restart the transaction associated with *handle. This does a commit, 158 * so before we call here everything must be consistently dirtied against 159 * this transaction. 160 */ 161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 162 int nblocks) 163 { 164 int ret; 165 166 /* 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 168 * moment, get_block can be called only for blocks inside i_size since 169 * page cache has been already dropped and writes are blocked by 170 * i_mutex. So we can safely drop the i_data_sem here. 171 */ 172 BUG_ON(EXT4_JOURNAL(inode) == NULL); 173 jbd_debug(2, "restarting handle %p\n", handle); 174 up_write(&EXT4_I(inode)->i_data_sem); 175 ret = ext4_journal_restart(handle, nblocks); 176 down_write(&EXT4_I(inode)->i_data_sem); 177 ext4_discard_preallocations(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called at the last iput() if i_nlink is zero. 184 */ 185 void ext4_evict_inode(struct inode *inode) 186 { 187 handle_t *handle; 188 int err; 189 int extra_credits = 3; 190 struct ext4_xattr_inode_array *ea_inode_array = NULL; 191 192 trace_ext4_evict_inode(inode); 193 194 if (inode->i_nlink) { 195 /* 196 * When journalling data dirty buffers are tracked only in the 197 * journal. So although mm thinks everything is clean and 198 * ready for reaping the inode might still have some pages to 199 * write in the running transaction or waiting to be 200 * checkpointed. Thus calling jbd2_journal_invalidatepage() 201 * (via truncate_inode_pages()) to discard these buffers can 202 * cause data loss. Also even if we did not discard these 203 * buffers, we would have no way to find them after the inode 204 * is reaped and thus user could see stale data if he tries to 205 * read them before the transaction is checkpointed. So be 206 * careful and force everything to disk here... We use 207 * ei->i_datasync_tid to store the newest transaction 208 * containing inode's data. 209 * 210 * Note that directories do not have this problem because they 211 * don't use page cache. 212 */ 213 if (inode->i_ino != EXT4_JOURNAL_INO && 214 ext4_should_journal_data(inode) && 215 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 216 inode->i_data.nrpages) { 217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 219 220 jbd2_complete_transaction(journal, commit_tid); 221 filemap_write_and_wait(&inode->i_data); 222 } 223 truncate_inode_pages_final(&inode->i_data); 224 225 goto no_delete; 226 } 227 228 if (is_bad_inode(inode)) 229 goto no_delete; 230 dquot_initialize(inode); 231 232 if (ext4_should_order_data(inode)) 233 ext4_begin_ordered_truncate(inode, 0); 234 truncate_inode_pages_final(&inode->i_data); 235 236 /* 237 * Protect us against freezing - iput() caller didn't have to have any 238 * protection against it 239 */ 240 sb_start_intwrite(inode->i_sb); 241 242 if (!IS_NOQUOTA(inode)) 243 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 244 245 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 246 ext4_blocks_for_truncate(inode)+extra_credits); 247 if (IS_ERR(handle)) { 248 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 249 /* 250 * If we're going to skip the normal cleanup, we still need to 251 * make sure that the in-core orphan linked list is properly 252 * cleaned up. 253 */ 254 ext4_orphan_del(NULL, inode); 255 sb_end_intwrite(inode->i_sb); 256 goto no_delete; 257 } 258 259 if (IS_SYNC(inode)) 260 ext4_handle_sync(handle); 261 262 /* 263 * Set inode->i_size to 0 before calling ext4_truncate(). We need 264 * special handling of symlinks here because i_size is used to 265 * determine whether ext4_inode_info->i_data contains symlink data or 266 * block mappings. Setting i_size to 0 will remove its fast symlink 267 * status. Erase i_data so that it becomes a valid empty block map. 268 */ 269 if (ext4_inode_is_fast_symlink(inode)) 270 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 271 inode->i_size = 0; 272 err = ext4_mark_inode_dirty(handle, inode); 273 if (err) { 274 ext4_warning(inode->i_sb, 275 "couldn't mark inode dirty (err %d)", err); 276 goto stop_handle; 277 } 278 if (inode->i_blocks) { 279 err = ext4_truncate(inode); 280 if (err) { 281 ext4_error(inode->i_sb, 282 "couldn't truncate inode %lu (err %d)", 283 inode->i_ino, err); 284 goto stop_handle; 285 } 286 } 287 288 /* Remove xattr references. */ 289 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 290 extra_credits); 291 if (err) { 292 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 293 stop_handle: 294 ext4_journal_stop(handle); 295 ext4_orphan_del(NULL, inode); 296 sb_end_intwrite(inode->i_sb); 297 ext4_xattr_inode_array_free(ea_inode_array); 298 goto no_delete; 299 } 300 301 /* 302 * Kill off the orphan record which ext4_truncate created. 303 * AKPM: I think this can be inside the above `if'. 304 * Note that ext4_orphan_del() has to be able to cope with the 305 * deletion of a non-existent orphan - this is because we don't 306 * know if ext4_truncate() actually created an orphan record. 307 * (Well, we could do this if we need to, but heck - it works) 308 */ 309 ext4_orphan_del(handle, inode); 310 EXT4_I(inode)->i_dtime = get_seconds(); 311 312 /* 313 * One subtle ordering requirement: if anything has gone wrong 314 * (transaction abort, IO errors, whatever), then we can still 315 * do these next steps (the fs will already have been marked as 316 * having errors), but we can't free the inode if the mark_dirty 317 * fails. 318 */ 319 if (ext4_mark_inode_dirty(handle, inode)) 320 /* If that failed, just do the required in-core inode clear. */ 321 ext4_clear_inode(inode); 322 else 323 ext4_free_inode(handle, inode); 324 ext4_journal_stop(handle); 325 sb_end_intwrite(inode->i_sb); 326 ext4_xattr_inode_array_free(ea_inode_array); 327 return; 328 no_delete: 329 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 330 } 331 332 #ifdef CONFIG_QUOTA 333 qsize_t *ext4_get_reserved_space(struct inode *inode) 334 { 335 return &EXT4_I(inode)->i_reserved_quota; 336 } 337 #endif 338 339 /* 340 * Called with i_data_sem down, which is important since we can call 341 * ext4_discard_preallocations() from here. 342 */ 343 void ext4_da_update_reserve_space(struct inode *inode, 344 int used, int quota_claim) 345 { 346 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 347 struct ext4_inode_info *ei = EXT4_I(inode); 348 349 spin_lock(&ei->i_block_reservation_lock); 350 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 351 if (unlikely(used > ei->i_reserved_data_blocks)) { 352 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 353 "with only %d reserved data blocks", 354 __func__, inode->i_ino, used, 355 ei->i_reserved_data_blocks); 356 WARN_ON(1); 357 used = ei->i_reserved_data_blocks; 358 } 359 360 /* Update per-inode reservations */ 361 ei->i_reserved_data_blocks -= used; 362 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 363 364 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 365 366 /* Update quota subsystem for data blocks */ 367 if (quota_claim) 368 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 369 else { 370 /* 371 * We did fallocate with an offset that is already delayed 372 * allocated. So on delayed allocated writeback we should 373 * not re-claim the quota for fallocated blocks. 374 */ 375 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 376 } 377 378 /* 379 * If we have done all the pending block allocations and if 380 * there aren't any writers on the inode, we can discard the 381 * inode's preallocations. 382 */ 383 if ((ei->i_reserved_data_blocks == 0) && 384 (atomic_read(&inode->i_writecount) == 0)) 385 ext4_discard_preallocations(inode); 386 } 387 388 static int __check_block_validity(struct inode *inode, const char *func, 389 unsigned int line, 390 struct ext4_map_blocks *map) 391 { 392 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 393 map->m_len)) { 394 ext4_error_inode(inode, func, line, map->m_pblk, 395 "lblock %lu mapped to illegal pblock " 396 "(length %d)", (unsigned long) map->m_lblk, 397 map->m_len); 398 return -EFSCORRUPTED; 399 } 400 return 0; 401 } 402 403 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 404 ext4_lblk_t len) 405 { 406 int ret; 407 408 if (ext4_encrypted_inode(inode)) 409 return fscrypt_zeroout_range(inode, lblk, pblk, len); 410 411 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 412 if (ret > 0) 413 ret = 0; 414 415 return ret; 416 } 417 418 #define check_block_validity(inode, map) \ 419 __check_block_validity((inode), __func__, __LINE__, (map)) 420 421 #ifdef ES_AGGRESSIVE_TEST 422 static void ext4_map_blocks_es_recheck(handle_t *handle, 423 struct inode *inode, 424 struct ext4_map_blocks *es_map, 425 struct ext4_map_blocks *map, 426 int flags) 427 { 428 int retval; 429 430 map->m_flags = 0; 431 /* 432 * There is a race window that the result is not the same. 433 * e.g. xfstests #223 when dioread_nolock enables. The reason 434 * is that we lookup a block mapping in extent status tree with 435 * out taking i_data_sem. So at the time the unwritten extent 436 * could be converted. 437 */ 438 down_read(&EXT4_I(inode)->i_data_sem); 439 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 440 retval = ext4_ext_map_blocks(handle, inode, map, flags & 441 EXT4_GET_BLOCKS_KEEP_SIZE); 442 } else { 443 retval = ext4_ind_map_blocks(handle, inode, map, flags & 444 EXT4_GET_BLOCKS_KEEP_SIZE); 445 } 446 up_read((&EXT4_I(inode)->i_data_sem)); 447 448 /* 449 * We don't check m_len because extent will be collpased in status 450 * tree. So the m_len might not equal. 451 */ 452 if (es_map->m_lblk != map->m_lblk || 453 es_map->m_flags != map->m_flags || 454 es_map->m_pblk != map->m_pblk) { 455 printk("ES cache assertion failed for inode: %lu " 456 "es_cached ex [%d/%d/%llu/%x] != " 457 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 458 inode->i_ino, es_map->m_lblk, es_map->m_len, 459 es_map->m_pblk, es_map->m_flags, map->m_lblk, 460 map->m_len, map->m_pblk, map->m_flags, 461 retval, flags); 462 } 463 } 464 #endif /* ES_AGGRESSIVE_TEST */ 465 466 /* 467 * The ext4_map_blocks() function tries to look up the requested blocks, 468 * and returns if the blocks are already mapped. 469 * 470 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 471 * and store the allocated blocks in the result buffer head and mark it 472 * mapped. 473 * 474 * If file type is extents based, it will call ext4_ext_map_blocks(), 475 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 476 * based files 477 * 478 * On success, it returns the number of blocks being mapped or allocated. if 479 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 480 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 481 * 482 * It returns 0 if plain look up failed (blocks have not been allocated), in 483 * that case, @map is returned as unmapped but we still do fill map->m_len to 484 * indicate the length of a hole starting at map->m_lblk. 485 * 486 * It returns the error in case of allocation failure. 487 */ 488 int ext4_map_blocks(handle_t *handle, struct inode *inode, 489 struct ext4_map_blocks *map, int flags) 490 { 491 struct extent_status es; 492 int retval; 493 int ret = 0; 494 #ifdef ES_AGGRESSIVE_TEST 495 struct ext4_map_blocks orig_map; 496 497 memcpy(&orig_map, map, sizeof(*map)); 498 #endif 499 500 map->m_flags = 0; 501 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 502 "logical block %lu\n", inode->i_ino, flags, map->m_len, 503 (unsigned long) map->m_lblk); 504 505 /* 506 * ext4_map_blocks returns an int, and m_len is an unsigned int 507 */ 508 if (unlikely(map->m_len > INT_MAX)) 509 map->m_len = INT_MAX; 510 511 /* We can handle the block number less than EXT_MAX_BLOCKS */ 512 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 513 return -EFSCORRUPTED; 514 515 /* Lookup extent status tree firstly */ 516 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 517 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 518 map->m_pblk = ext4_es_pblock(&es) + 519 map->m_lblk - es.es_lblk; 520 map->m_flags |= ext4_es_is_written(&es) ? 521 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 522 retval = es.es_len - (map->m_lblk - es.es_lblk); 523 if (retval > map->m_len) 524 retval = map->m_len; 525 map->m_len = retval; 526 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 527 map->m_pblk = 0; 528 retval = es.es_len - (map->m_lblk - es.es_lblk); 529 if (retval > map->m_len) 530 retval = map->m_len; 531 map->m_len = retval; 532 retval = 0; 533 } else { 534 BUG_ON(1); 535 } 536 #ifdef ES_AGGRESSIVE_TEST 537 ext4_map_blocks_es_recheck(handle, inode, map, 538 &orig_map, flags); 539 #endif 540 goto found; 541 } 542 543 /* 544 * Try to see if we can get the block without requesting a new 545 * file system block. 546 */ 547 down_read(&EXT4_I(inode)->i_data_sem); 548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 549 retval = ext4_ext_map_blocks(handle, inode, map, flags & 550 EXT4_GET_BLOCKS_KEEP_SIZE); 551 } else { 552 retval = ext4_ind_map_blocks(handle, inode, map, flags & 553 EXT4_GET_BLOCKS_KEEP_SIZE); 554 } 555 if (retval > 0) { 556 unsigned int status; 557 558 if (unlikely(retval != map->m_len)) { 559 ext4_warning(inode->i_sb, 560 "ES len assertion failed for inode " 561 "%lu: retval %d != map->m_len %d", 562 inode->i_ino, retval, map->m_len); 563 WARN_ON(1); 564 } 565 566 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 569 !(status & EXTENT_STATUS_WRITTEN) && 570 ext4_find_delalloc_range(inode, map->m_lblk, 571 map->m_lblk + map->m_len - 1)) 572 status |= EXTENT_STATUS_DELAYED; 573 ret = ext4_es_insert_extent(inode, map->m_lblk, 574 map->m_len, map->m_pblk, status); 575 if (ret < 0) 576 retval = ret; 577 } 578 up_read((&EXT4_I(inode)->i_data_sem)); 579 580 found: 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 582 ret = check_block_validity(inode, map); 583 if (ret != 0) 584 return ret; 585 } 586 587 /* If it is only a block(s) look up */ 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 589 return retval; 590 591 /* 592 * Returns if the blocks have already allocated 593 * 594 * Note that if blocks have been preallocated 595 * ext4_ext_get_block() returns the create = 0 596 * with buffer head unmapped. 597 */ 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 599 /* 600 * If we need to convert extent to unwritten 601 * we continue and do the actual work in 602 * ext4_ext_map_blocks() 603 */ 604 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 605 return retval; 606 607 /* 608 * Here we clear m_flags because after allocating an new extent, 609 * it will be set again. 610 */ 611 map->m_flags &= ~EXT4_MAP_FLAGS; 612 613 /* 614 * New blocks allocate and/or writing to unwritten extent 615 * will possibly result in updating i_data, so we take 616 * the write lock of i_data_sem, and call get_block() 617 * with create == 1 flag. 618 */ 619 down_write(&EXT4_I(inode)->i_data_sem); 620 621 /* 622 * We need to check for EXT4 here because migrate 623 * could have changed the inode type in between 624 */ 625 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 626 retval = ext4_ext_map_blocks(handle, inode, map, flags); 627 } else { 628 retval = ext4_ind_map_blocks(handle, inode, map, flags); 629 630 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 631 /* 632 * We allocated new blocks which will result in 633 * i_data's format changing. Force the migrate 634 * to fail by clearing migrate flags 635 */ 636 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 637 } 638 639 /* 640 * Update reserved blocks/metadata blocks after successful 641 * block allocation which had been deferred till now. We don't 642 * support fallocate for non extent files. So we can update 643 * reserve space here. 644 */ 645 if ((retval > 0) && 646 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 647 ext4_da_update_reserve_space(inode, retval, 1); 648 } 649 650 if (retval > 0) { 651 unsigned int status; 652 653 if (unlikely(retval != map->m_len)) { 654 ext4_warning(inode->i_sb, 655 "ES len assertion failed for inode " 656 "%lu: retval %d != map->m_len %d", 657 inode->i_ino, retval, map->m_len); 658 WARN_ON(1); 659 } 660 661 /* 662 * We have to zeroout blocks before inserting them into extent 663 * status tree. Otherwise someone could look them up there and 664 * use them before they are really zeroed. We also have to 665 * unmap metadata before zeroing as otherwise writeback can 666 * overwrite zeros with stale data from block device. 667 */ 668 if (flags & EXT4_GET_BLOCKS_ZERO && 669 map->m_flags & EXT4_MAP_MAPPED && 670 map->m_flags & EXT4_MAP_NEW) { 671 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 672 map->m_len); 673 ret = ext4_issue_zeroout(inode, map->m_lblk, 674 map->m_pblk, map->m_len); 675 if (ret) { 676 retval = ret; 677 goto out_sem; 678 } 679 } 680 681 /* 682 * If the extent has been zeroed out, we don't need to update 683 * extent status tree. 684 */ 685 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 686 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 687 if (ext4_es_is_written(&es)) 688 goto out_sem; 689 } 690 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 691 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 692 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 693 !(status & EXTENT_STATUS_WRITTEN) && 694 ext4_find_delalloc_range(inode, map->m_lblk, 695 map->m_lblk + map->m_len - 1)) 696 status |= EXTENT_STATUS_DELAYED; 697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 698 map->m_pblk, status); 699 if (ret < 0) { 700 retval = ret; 701 goto out_sem; 702 } 703 } 704 705 out_sem: 706 up_write((&EXT4_I(inode)->i_data_sem)); 707 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 708 ret = check_block_validity(inode, map); 709 if (ret != 0) 710 return ret; 711 712 /* 713 * Inodes with freshly allocated blocks where contents will be 714 * visible after transaction commit must be on transaction's 715 * ordered data list. 716 */ 717 if (map->m_flags & EXT4_MAP_NEW && 718 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 719 !(flags & EXT4_GET_BLOCKS_ZERO) && 720 !ext4_is_quota_file(inode) && 721 ext4_should_order_data(inode)) { 722 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 723 ret = ext4_jbd2_inode_add_wait(handle, inode); 724 else 725 ret = ext4_jbd2_inode_add_write(handle, inode); 726 if (ret) 727 return ret; 728 } 729 } 730 return retval; 731 } 732 733 /* 734 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 735 * we have to be careful as someone else may be manipulating b_state as well. 736 */ 737 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 738 { 739 unsigned long old_state; 740 unsigned long new_state; 741 742 flags &= EXT4_MAP_FLAGS; 743 744 /* Dummy buffer_head? Set non-atomically. */ 745 if (!bh->b_page) { 746 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 747 return; 748 } 749 /* 750 * Someone else may be modifying b_state. Be careful! This is ugly but 751 * once we get rid of using bh as a container for mapping information 752 * to pass to / from get_block functions, this can go away. 753 */ 754 do { 755 old_state = READ_ONCE(bh->b_state); 756 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 757 } while (unlikely( 758 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 759 } 760 761 static int _ext4_get_block(struct inode *inode, sector_t iblock, 762 struct buffer_head *bh, int flags) 763 { 764 struct ext4_map_blocks map; 765 int ret = 0; 766 767 if (ext4_has_inline_data(inode)) 768 return -ERANGE; 769 770 map.m_lblk = iblock; 771 map.m_len = bh->b_size >> inode->i_blkbits; 772 773 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 774 flags); 775 if (ret > 0) { 776 map_bh(bh, inode->i_sb, map.m_pblk); 777 ext4_update_bh_state(bh, map.m_flags); 778 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 779 ret = 0; 780 } else if (ret == 0) { 781 /* hole case, need to fill in bh->b_size */ 782 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 783 } 784 return ret; 785 } 786 787 int ext4_get_block(struct inode *inode, sector_t iblock, 788 struct buffer_head *bh, int create) 789 { 790 return _ext4_get_block(inode, iblock, bh, 791 create ? EXT4_GET_BLOCKS_CREATE : 0); 792 } 793 794 /* 795 * Get block function used when preparing for buffered write if we require 796 * creating an unwritten extent if blocks haven't been allocated. The extent 797 * will be converted to written after the IO is complete. 798 */ 799 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 800 struct buffer_head *bh_result, int create) 801 { 802 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 803 inode->i_ino, create); 804 return _ext4_get_block(inode, iblock, bh_result, 805 EXT4_GET_BLOCKS_IO_CREATE_EXT); 806 } 807 808 /* Maximum number of blocks we map for direct IO at once. */ 809 #define DIO_MAX_BLOCKS 4096 810 811 /* 812 * Get blocks function for the cases that need to start a transaction - 813 * generally difference cases of direct IO and DAX IO. It also handles retries 814 * in case of ENOSPC. 815 */ 816 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 817 struct buffer_head *bh_result, int flags) 818 { 819 int dio_credits; 820 handle_t *handle; 821 int retries = 0; 822 int ret; 823 824 /* Trim mapping request to maximum we can map at once for DIO */ 825 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 826 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 827 dio_credits = ext4_chunk_trans_blocks(inode, 828 bh_result->b_size >> inode->i_blkbits); 829 retry: 830 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 831 if (IS_ERR(handle)) 832 return PTR_ERR(handle); 833 834 ret = _ext4_get_block(inode, iblock, bh_result, flags); 835 ext4_journal_stop(handle); 836 837 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 838 goto retry; 839 return ret; 840 } 841 842 /* Get block function for DIO reads and writes to inodes without extents */ 843 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 844 struct buffer_head *bh, int create) 845 { 846 /* We don't expect handle for direct IO */ 847 WARN_ON_ONCE(ext4_journal_current_handle()); 848 849 if (!create) 850 return _ext4_get_block(inode, iblock, bh, 0); 851 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 852 } 853 854 /* 855 * Get block function for AIO DIO writes when we create unwritten extent if 856 * blocks are not allocated yet. The extent will be converted to written 857 * after IO is complete. 858 */ 859 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 860 sector_t iblock, struct buffer_head *bh_result, int create) 861 { 862 int ret; 863 864 /* We don't expect handle for direct IO */ 865 WARN_ON_ONCE(ext4_journal_current_handle()); 866 867 ret = ext4_get_block_trans(inode, iblock, bh_result, 868 EXT4_GET_BLOCKS_IO_CREATE_EXT); 869 870 /* 871 * When doing DIO using unwritten extents, we need io_end to convert 872 * unwritten extents to written on IO completion. We allocate io_end 873 * once we spot unwritten extent and store it in b_private. Generic 874 * DIO code keeps b_private set and furthermore passes the value to 875 * our completion callback in 'private' argument. 876 */ 877 if (!ret && buffer_unwritten(bh_result)) { 878 if (!bh_result->b_private) { 879 ext4_io_end_t *io_end; 880 881 io_end = ext4_init_io_end(inode, GFP_KERNEL); 882 if (!io_end) 883 return -ENOMEM; 884 bh_result->b_private = io_end; 885 ext4_set_io_unwritten_flag(inode, io_end); 886 } 887 set_buffer_defer_completion(bh_result); 888 } 889 890 return ret; 891 } 892 893 /* 894 * Get block function for non-AIO DIO writes when we create unwritten extent if 895 * blocks are not allocated yet. The extent will be converted to written 896 * after IO is complete by ext4_direct_IO_write(). 897 */ 898 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 899 sector_t iblock, struct buffer_head *bh_result, int create) 900 { 901 int ret; 902 903 /* We don't expect handle for direct IO */ 904 WARN_ON_ONCE(ext4_journal_current_handle()); 905 906 ret = ext4_get_block_trans(inode, iblock, bh_result, 907 EXT4_GET_BLOCKS_IO_CREATE_EXT); 908 909 /* 910 * Mark inode as having pending DIO writes to unwritten extents. 911 * ext4_direct_IO_write() checks this flag and converts extents to 912 * written. 913 */ 914 if (!ret && buffer_unwritten(bh_result)) 915 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 916 917 return ret; 918 } 919 920 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 921 struct buffer_head *bh_result, int create) 922 { 923 int ret; 924 925 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 926 inode->i_ino, create); 927 /* We don't expect handle for direct IO */ 928 WARN_ON_ONCE(ext4_journal_current_handle()); 929 930 ret = _ext4_get_block(inode, iblock, bh_result, 0); 931 /* 932 * Blocks should have been preallocated! ext4_file_write_iter() checks 933 * that. 934 */ 935 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 936 937 return ret; 938 } 939 940 941 /* 942 * `handle' can be NULL if create is zero 943 */ 944 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 945 ext4_lblk_t block, int map_flags) 946 { 947 struct ext4_map_blocks map; 948 struct buffer_head *bh; 949 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 950 int err; 951 952 J_ASSERT(handle != NULL || create == 0); 953 954 map.m_lblk = block; 955 map.m_len = 1; 956 err = ext4_map_blocks(handle, inode, &map, map_flags); 957 958 if (err == 0) 959 return create ? ERR_PTR(-ENOSPC) : NULL; 960 if (err < 0) 961 return ERR_PTR(err); 962 963 bh = sb_getblk(inode->i_sb, map.m_pblk); 964 if (unlikely(!bh)) 965 return ERR_PTR(-ENOMEM); 966 if (map.m_flags & EXT4_MAP_NEW) { 967 J_ASSERT(create != 0); 968 J_ASSERT(handle != NULL); 969 970 /* 971 * Now that we do not always journal data, we should 972 * keep in mind whether this should always journal the 973 * new buffer as metadata. For now, regular file 974 * writes use ext4_get_block instead, so it's not a 975 * problem. 976 */ 977 lock_buffer(bh); 978 BUFFER_TRACE(bh, "call get_create_access"); 979 err = ext4_journal_get_create_access(handle, bh); 980 if (unlikely(err)) { 981 unlock_buffer(bh); 982 goto errout; 983 } 984 if (!buffer_uptodate(bh)) { 985 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 986 set_buffer_uptodate(bh); 987 } 988 unlock_buffer(bh); 989 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 990 err = ext4_handle_dirty_metadata(handle, inode, bh); 991 if (unlikely(err)) 992 goto errout; 993 } else 994 BUFFER_TRACE(bh, "not a new buffer"); 995 return bh; 996 errout: 997 brelse(bh); 998 return ERR_PTR(err); 999 } 1000 1001 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1002 ext4_lblk_t block, int map_flags) 1003 { 1004 struct buffer_head *bh; 1005 1006 bh = ext4_getblk(handle, inode, block, map_flags); 1007 if (IS_ERR(bh)) 1008 return bh; 1009 if (!bh || buffer_uptodate(bh)) 1010 return bh; 1011 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1012 wait_on_buffer(bh); 1013 if (buffer_uptodate(bh)) 1014 return bh; 1015 put_bh(bh); 1016 return ERR_PTR(-EIO); 1017 } 1018 1019 /* Read a contiguous batch of blocks. */ 1020 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1021 bool wait, struct buffer_head **bhs) 1022 { 1023 int i, err; 1024 1025 for (i = 0; i < bh_count; i++) { 1026 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1027 if (IS_ERR(bhs[i])) { 1028 err = PTR_ERR(bhs[i]); 1029 bh_count = i; 1030 goto out_brelse; 1031 } 1032 } 1033 1034 for (i = 0; i < bh_count; i++) 1035 /* Note that NULL bhs[i] is valid because of holes. */ 1036 if (bhs[i] && !buffer_uptodate(bhs[i])) 1037 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1038 &bhs[i]); 1039 1040 if (!wait) 1041 return 0; 1042 1043 for (i = 0; i < bh_count; i++) 1044 if (bhs[i]) 1045 wait_on_buffer(bhs[i]); 1046 1047 for (i = 0; i < bh_count; i++) { 1048 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1049 err = -EIO; 1050 goto out_brelse; 1051 } 1052 } 1053 return 0; 1054 1055 out_brelse: 1056 for (i = 0; i < bh_count; i++) { 1057 brelse(bhs[i]); 1058 bhs[i] = NULL; 1059 } 1060 return err; 1061 } 1062 1063 int ext4_walk_page_buffers(handle_t *handle, 1064 struct buffer_head *head, 1065 unsigned from, 1066 unsigned to, 1067 int *partial, 1068 int (*fn)(handle_t *handle, 1069 struct buffer_head *bh)) 1070 { 1071 struct buffer_head *bh; 1072 unsigned block_start, block_end; 1073 unsigned blocksize = head->b_size; 1074 int err, ret = 0; 1075 struct buffer_head *next; 1076 1077 for (bh = head, block_start = 0; 1078 ret == 0 && (bh != head || !block_start); 1079 block_start = block_end, bh = next) { 1080 next = bh->b_this_page; 1081 block_end = block_start + blocksize; 1082 if (block_end <= from || block_start >= to) { 1083 if (partial && !buffer_uptodate(bh)) 1084 *partial = 1; 1085 continue; 1086 } 1087 err = (*fn)(handle, bh); 1088 if (!ret) 1089 ret = err; 1090 } 1091 return ret; 1092 } 1093 1094 /* 1095 * To preserve ordering, it is essential that the hole instantiation and 1096 * the data write be encapsulated in a single transaction. We cannot 1097 * close off a transaction and start a new one between the ext4_get_block() 1098 * and the commit_write(). So doing the jbd2_journal_start at the start of 1099 * prepare_write() is the right place. 1100 * 1101 * Also, this function can nest inside ext4_writepage(). In that case, we 1102 * *know* that ext4_writepage() has generated enough buffer credits to do the 1103 * whole page. So we won't block on the journal in that case, which is good, 1104 * because the caller may be PF_MEMALLOC. 1105 * 1106 * By accident, ext4 can be reentered when a transaction is open via 1107 * quota file writes. If we were to commit the transaction while thus 1108 * reentered, there can be a deadlock - we would be holding a quota 1109 * lock, and the commit would never complete if another thread had a 1110 * transaction open and was blocking on the quota lock - a ranking 1111 * violation. 1112 * 1113 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1114 * will _not_ run commit under these circumstances because handle->h_ref 1115 * is elevated. We'll still have enough credits for the tiny quotafile 1116 * write. 1117 */ 1118 int do_journal_get_write_access(handle_t *handle, 1119 struct buffer_head *bh) 1120 { 1121 int dirty = buffer_dirty(bh); 1122 int ret; 1123 1124 if (!buffer_mapped(bh) || buffer_freed(bh)) 1125 return 0; 1126 /* 1127 * __block_write_begin() could have dirtied some buffers. Clean 1128 * the dirty bit as jbd2_journal_get_write_access() could complain 1129 * otherwise about fs integrity issues. Setting of the dirty bit 1130 * by __block_write_begin() isn't a real problem here as we clear 1131 * the bit before releasing a page lock and thus writeback cannot 1132 * ever write the buffer. 1133 */ 1134 if (dirty) 1135 clear_buffer_dirty(bh); 1136 BUFFER_TRACE(bh, "get write access"); 1137 ret = ext4_journal_get_write_access(handle, bh); 1138 if (!ret && dirty) 1139 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1140 return ret; 1141 } 1142 1143 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1144 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1145 get_block_t *get_block) 1146 { 1147 unsigned from = pos & (PAGE_SIZE - 1); 1148 unsigned to = from + len; 1149 struct inode *inode = page->mapping->host; 1150 unsigned block_start, block_end; 1151 sector_t block; 1152 int err = 0; 1153 unsigned blocksize = inode->i_sb->s_blocksize; 1154 unsigned bbits; 1155 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1156 bool decrypt = false; 1157 1158 BUG_ON(!PageLocked(page)); 1159 BUG_ON(from > PAGE_SIZE); 1160 BUG_ON(to > PAGE_SIZE); 1161 BUG_ON(from > to); 1162 1163 if (!page_has_buffers(page)) 1164 create_empty_buffers(page, blocksize, 0); 1165 head = page_buffers(page); 1166 bbits = ilog2(blocksize); 1167 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1168 1169 for (bh = head, block_start = 0; bh != head || !block_start; 1170 block++, block_start = block_end, bh = bh->b_this_page) { 1171 block_end = block_start + blocksize; 1172 if (block_end <= from || block_start >= to) { 1173 if (PageUptodate(page)) { 1174 if (!buffer_uptodate(bh)) 1175 set_buffer_uptodate(bh); 1176 } 1177 continue; 1178 } 1179 if (buffer_new(bh)) 1180 clear_buffer_new(bh); 1181 if (!buffer_mapped(bh)) { 1182 WARN_ON(bh->b_size != blocksize); 1183 err = get_block(inode, block, bh, 1); 1184 if (err) 1185 break; 1186 if (buffer_new(bh)) { 1187 clean_bdev_bh_alias(bh); 1188 if (PageUptodate(page)) { 1189 clear_buffer_new(bh); 1190 set_buffer_uptodate(bh); 1191 mark_buffer_dirty(bh); 1192 continue; 1193 } 1194 if (block_end > to || block_start < from) 1195 zero_user_segments(page, to, block_end, 1196 block_start, from); 1197 continue; 1198 } 1199 } 1200 if (PageUptodate(page)) { 1201 if (!buffer_uptodate(bh)) 1202 set_buffer_uptodate(bh); 1203 continue; 1204 } 1205 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1206 !buffer_unwritten(bh) && 1207 (block_start < from || block_end > to)) { 1208 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1209 *wait_bh++ = bh; 1210 decrypt = ext4_encrypted_inode(inode) && 1211 S_ISREG(inode->i_mode); 1212 } 1213 } 1214 /* 1215 * If we issued read requests, let them complete. 1216 */ 1217 while (wait_bh > wait) { 1218 wait_on_buffer(*--wait_bh); 1219 if (!buffer_uptodate(*wait_bh)) 1220 err = -EIO; 1221 } 1222 if (unlikely(err)) 1223 page_zero_new_buffers(page, from, to); 1224 else if (decrypt) 1225 err = fscrypt_decrypt_page(page->mapping->host, page, 1226 PAGE_SIZE, 0, page->index); 1227 return err; 1228 } 1229 #endif 1230 1231 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1232 loff_t pos, unsigned len, unsigned flags, 1233 struct page **pagep, void **fsdata) 1234 { 1235 struct inode *inode = mapping->host; 1236 int ret, needed_blocks; 1237 handle_t *handle; 1238 int retries = 0; 1239 struct page *page; 1240 pgoff_t index; 1241 unsigned from, to; 1242 1243 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1244 return -EIO; 1245 1246 trace_ext4_write_begin(inode, pos, len, flags); 1247 /* 1248 * Reserve one block more for addition to orphan list in case 1249 * we allocate blocks but write fails for some reason 1250 */ 1251 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1252 index = pos >> PAGE_SHIFT; 1253 from = pos & (PAGE_SIZE - 1); 1254 to = from + len; 1255 1256 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1257 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1258 flags, pagep); 1259 if (ret < 0) 1260 return ret; 1261 if (ret == 1) 1262 return 0; 1263 } 1264 1265 /* 1266 * grab_cache_page_write_begin() can take a long time if the 1267 * system is thrashing due to memory pressure, or if the page 1268 * is being written back. So grab it first before we start 1269 * the transaction handle. This also allows us to allocate 1270 * the page (if needed) without using GFP_NOFS. 1271 */ 1272 retry_grab: 1273 page = grab_cache_page_write_begin(mapping, index, flags); 1274 if (!page) 1275 return -ENOMEM; 1276 unlock_page(page); 1277 1278 retry_journal: 1279 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1280 if (IS_ERR(handle)) { 1281 put_page(page); 1282 return PTR_ERR(handle); 1283 } 1284 1285 lock_page(page); 1286 if (page->mapping != mapping) { 1287 /* The page got truncated from under us */ 1288 unlock_page(page); 1289 put_page(page); 1290 ext4_journal_stop(handle); 1291 goto retry_grab; 1292 } 1293 /* In case writeback began while the page was unlocked */ 1294 wait_for_stable_page(page); 1295 1296 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1297 if (ext4_should_dioread_nolock(inode)) 1298 ret = ext4_block_write_begin(page, pos, len, 1299 ext4_get_block_unwritten); 1300 else 1301 ret = ext4_block_write_begin(page, pos, len, 1302 ext4_get_block); 1303 #else 1304 if (ext4_should_dioread_nolock(inode)) 1305 ret = __block_write_begin(page, pos, len, 1306 ext4_get_block_unwritten); 1307 else 1308 ret = __block_write_begin(page, pos, len, ext4_get_block); 1309 #endif 1310 if (!ret && ext4_should_journal_data(inode)) { 1311 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1312 from, to, NULL, 1313 do_journal_get_write_access); 1314 } 1315 1316 if (ret) { 1317 unlock_page(page); 1318 /* 1319 * __block_write_begin may have instantiated a few blocks 1320 * outside i_size. Trim these off again. Don't need 1321 * i_size_read because we hold i_mutex. 1322 * 1323 * Add inode to orphan list in case we crash before 1324 * truncate finishes 1325 */ 1326 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1327 ext4_orphan_add(handle, inode); 1328 1329 ext4_journal_stop(handle); 1330 if (pos + len > inode->i_size) { 1331 ext4_truncate_failed_write(inode); 1332 /* 1333 * If truncate failed early the inode might 1334 * still be on the orphan list; we need to 1335 * make sure the inode is removed from the 1336 * orphan list in that case. 1337 */ 1338 if (inode->i_nlink) 1339 ext4_orphan_del(NULL, inode); 1340 } 1341 1342 if (ret == -ENOSPC && 1343 ext4_should_retry_alloc(inode->i_sb, &retries)) 1344 goto retry_journal; 1345 put_page(page); 1346 return ret; 1347 } 1348 *pagep = page; 1349 return ret; 1350 } 1351 1352 /* For write_end() in data=journal mode */ 1353 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1354 { 1355 int ret; 1356 if (!buffer_mapped(bh) || buffer_freed(bh)) 1357 return 0; 1358 set_buffer_uptodate(bh); 1359 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1360 clear_buffer_meta(bh); 1361 clear_buffer_prio(bh); 1362 return ret; 1363 } 1364 1365 /* 1366 * We need to pick up the new inode size which generic_commit_write gave us 1367 * `file' can be NULL - eg, when called from page_symlink(). 1368 * 1369 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1370 * buffers are managed internally. 1371 */ 1372 static int ext4_write_end(struct file *file, 1373 struct address_space *mapping, 1374 loff_t pos, unsigned len, unsigned copied, 1375 struct page *page, void *fsdata) 1376 { 1377 handle_t *handle = ext4_journal_current_handle(); 1378 struct inode *inode = mapping->host; 1379 loff_t old_size = inode->i_size; 1380 int ret = 0, ret2; 1381 int i_size_changed = 0; 1382 1383 trace_ext4_write_end(inode, pos, len, copied); 1384 if (ext4_has_inline_data(inode)) { 1385 ret = ext4_write_inline_data_end(inode, pos, len, 1386 copied, page); 1387 if (ret < 0) { 1388 unlock_page(page); 1389 put_page(page); 1390 goto errout; 1391 } 1392 copied = ret; 1393 } else 1394 copied = block_write_end(file, mapping, pos, 1395 len, copied, page, fsdata); 1396 /* 1397 * it's important to update i_size while still holding page lock: 1398 * page writeout could otherwise come in and zero beyond i_size. 1399 */ 1400 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1401 unlock_page(page); 1402 put_page(page); 1403 1404 if (old_size < pos) 1405 pagecache_isize_extended(inode, old_size, pos); 1406 /* 1407 * Don't mark the inode dirty under page lock. First, it unnecessarily 1408 * makes the holding time of page lock longer. Second, it forces lock 1409 * ordering of page lock and transaction start for journaling 1410 * filesystems. 1411 */ 1412 if (i_size_changed) 1413 ext4_mark_inode_dirty(handle, inode); 1414 1415 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1416 /* if we have allocated more blocks and copied 1417 * less. We will have blocks allocated outside 1418 * inode->i_size. So truncate them 1419 */ 1420 ext4_orphan_add(handle, inode); 1421 errout: 1422 ret2 = ext4_journal_stop(handle); 1423 if (!ret) 1424 ret = ret2; 1425 1426 if (pos + len > inode->i_size) { 1427 ext4_truncate_failed_write(inode); 1428 /* 1429 * If truncate failed early the inode might still be 1430 * on the orphan list; we need to make sure the inode 1431 * is removed from the orphan list in that case. 1432 */ 1433 if (inode->i_nlink) 1434 ext4_orphan_del(NULL, inode); 1435 } 1436 1437 return ret ? ret : copied; 1438 } 1439 1440 /* 1441 * This is a private version of page_zero_new_buffers() which doesn't 1442 * set the buffer to be dirty, since in data=journalled mode we need 1443 * to call ext4_handle_dirty_metadata() instead. 1444 */ 1445 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1446 struct page *page, 1447 unsigned from, unsigned to) 1448 { 1449 unsigned int block_start = 0, block_end; 1450 struct buffer_head *head, *bh; 1451 1452 bh = head = page_buffers(page); 1453 do { 1454 block_end = block_start + bh->b_size; 1455 if (buffer_new(bh)) { 1456 if (block_end > from && block_start < to) { 1457 if (!PageUptodate(page)) { 1458 unsigned start, size; 1459 1460 start = max(from, block_start); 1461 size = min(to, block_end) - start; 1462 1463 zero_user(page, start, size); 1464 write_end_fn(handle, bh); 1465 } 1466 clear_buffer_new(bh); 1467 } 1468 } 1469 block_start = block_end; 1470 bh = bh->b_this_page; 1471 } while (bh != head); 1472 } 1473 1474 static int ext4_journalled_write_end(struct file *file, 1475 struct address_space *mapping, 1476 loff_t pos, unsigned len, unsigned copied, 1477 struct page *page, void *fsdata) 1478 { 1479 handle_t *handle = ext4_journal_current_handle(); 1480 struct inode *inode = mapping->host; 1481 loff_t old_size = inode->i_size; 1482 int ret = 0, ret2; 1483 int partial = 0; 1484 unsigned from, to; 1485 int size_changed = 0; 1486 1487 trace_ext4_journalled_write_end(inode, pos, len, copied); 1488 from = pos & (PAGE_SIZE - 1); 1489 to = from + len; 1490 1491 BUG_ON(!ext4_handle_valid(handle)); 1492 1493 if (ext4_has_inline_data(inode)) { 1494 ret = ext4_write_inline_data_end(inode, pos, len, 1495 copied, page); 1496 if (ret < 0) { 1497 unlock_page(page); 1498 put_page(page); 1499 goto errout; 1500 } 1501 copied = ret; 1502 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1503 copied = 0; 1504 ext4_journalled_zero_new_buffers(handle, page, from, to); 1505 } else { 1506 if (unlikely(copied < len)) 1507 ext4_journalled_zero_new_buffers(handle, page, 1508 from + copied, to); 1509 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1510 from + copied, &partial, 1511 write_end_fn); 1512 if (!partial) 1513 SetPageUptodate(page); 1514 } 1515 size_changed = ext4_update_inode_size(inode, pos + copied); 1516 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1517 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1518 unlock_page(page); 1519 put_page(page); 1520 1521 if (old_size < pos) 1522 pagecache_isize_extended(inode, old_size, pos); 1523 1524 if (size_changed) { 1525 ret2 = ext4_mark_inode_dirty(handle, inode); 1526 if (!ret) 1527 ret = ret2; 1528 } 1529 1530 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1531 /* if we have allocated more blocks and copied 1532 * less. We will have blocks allocated outside 1533 * inode->i_size. So truncate them 1534 */ 1535 ext4_orphan_add(handle, inode); 1536 1537 errout: 1538 ret2 = ext4_journal_stop(handle); 1539 if (!ret) 1540 ret = ret2; 1541 if (pos + len > inode->i_size) { 1542 ext4_truncate_failed_write(inode); 1543 /* 1544 * If truncate failed early the inode might still be 1545 * on the orphan list; we need to make sure the inode 1546 * is removed from the orphan list in that case. 1547 */ 1548 if (inode->i_nlink) 1549 ext4_orphan_del(NULL, inode); 1550 } 1551 1552 return ret ? ret : copied; 1553 } 1554 1555 /* 1556 * Reserve space for a single cluster 1557 */ 1558 static int ext4_da_reserve_space(struct inode *inode) 1559 { 1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1561 struct ext4_inode_info *ei = EXT4_I(inode); 1562 int ret; 1563 1564 /* 1565 * We will charge metadata quota at writeout time; this saves 1566 * us from metadata over-estimation, though we may go over by 1567 * a small amount in the end. Here we just reserve for data. 1568 */ 1569 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1570 if (ret) 1571 return ret; 1572 1573 spin_lock(&ei->i_block_reservation_lock); 1574 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1575 spin_unlock(&ei->i_block_reservation_lock); 1576 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1577 return -ENOSPC; 1578 } 1579 ei->i_reserved_data_blocks++; 1580 trace_ext4_da_reserve_space(inode); 1581 spin_unlock(&ei->i_block_reservation_lock); 1582 1583 return 0; /* success */ 1584 } 1585 1586 static void ext4_da_release_space(struct inode *inode, int to_free) 1587 { 1588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1589 struct ext4_inode_info *ei = EXT4_I(inode); 1590 1591 if (!to_free) 1592 return; /* Nothing to release, exit */ 1593 1594 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1595 1596 trace_ext4_da_release_space(inode, to_free); 1597 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1598 /* 1599 * if there aren't enough reserved blocks, then the 1600 * counter is messed up somewhere. Since this 1601 * function is called from invalidate page, it's 1602 * harmless to return without any action. 1603 */ 1604 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1605 "ino %lu, to_free %d with only %d reserved " 1606 "data blocks", inode->i_ino, to_free, 1607 ei->i_reserved_data_blocks); 1608 WARN_ON(1); 1609 to_free = ei->i_reserved_data_blocks; 1610 } 1611 ei->i_reserved_data_blocks -= to_free; 1612 1613 /* update fs dirty data blocks counter */ 1614 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1615 1616 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1617 1618 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1619 } 1620 1621 static void ext4_da_page_release_reservation(struct page *page, 1622 unsigned int offset, 1623 unsigned int length) 1624 { 1625 int to_release = 0, contiguous_blks = 0; 1626 struct buffer_head *head, *bh; 1627 unsigned int curr_off = 0; 1628 struct inode *inode = page->mapping->host; 1629 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1630 unsigned int stop = offset + length; 1631 int num_clusters; 1632 ext4_fsblk_t lblk; 1633 1634 BUG_ON(stop > PAGE_SIZE || stop < length); 1635 1636 head = page_buffers(page); 1637 bh = head; 1638 do { 1639 unsigned int next_off = curr_off + bh->b_size; 1640 1641 if (next_off > stop) 1642 break; 1643 1644 if ((offset <= curr_off) && (buffer_delay(bh))) { 1645 to_release++; 1646 contiguous_blks++; 1647 clear_buffer_delay(bh); 1648 } else if (contiguous_blks) { 1649 lblk = page->index << 1650 (PAGE_SHIFT - inode->i_blkbits); 1651 lblk += (curr_off >> inode->i_blkbits) - 1652 contiguous_blks; 1653 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1654 contiguous_blks = 0; 1655 } 1656 curr_off = next_off; 1657 } while ((bh = bh->b_this_page) != head); 1658 1659 if (contiguous_blks) { 1660 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1661 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1662 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1663 } 1664 1665 /* If we have released all the blocks belonging to a cluster, then we 1666 * need to release the reserved space for that cluster. */ 1667 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1668 while (num_clusters > 0) { 1669 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1670 ((num_clusters - 1) << sbi->s_cluster_bits); 1671 if (sbi->s_cluster_ratio == 1 || 1672 !ext4_find_delalloc_cluster(inode, lblk)) 1673 ext4_da_release_space(inode, 1); 1674 1675 num_clusters--; 1676 } 1677 } 1678 1679 /* 1680 * Delayed allocation stuff 1681 */ 1682 1683 struct mpage_da_data { 1684 struct inode *inode; 1685 struct writeback_control *wbc; 1686 1687 pgoff_t first_page; /* The first page to write */ 1688 pgoff_t next_page; /* Current page to examine */ 1689 pgoff_t last_page; /* Last page to examine */ 1690 /* 1691 * Extent to map - this can be after first_page because that can be 1692 * fully mapped. We somewhat abuse m_flags to store whether the extent 1693 * is delalloc or unwritten. 1694 */ 1695 struct ext4_map_blocks map; 1696 struct ext4_io_submit io_submit; /* IO submission data */ 1697 unsigned int do_map:1; 1698 }; 1699 1700 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1701 bool invalidate) 1702 { 1703 int nr_pages, i; 1704 pgoff_t index, end; 1705 struct pagevec pvec; 1706 struct inode *inode = mpd->inode; 1707 struct address_space *mapping = inode->i_mapping; 1708 1709 /* This is necessary when next_page == 0. */ 1710 if (mpd->first_page >= mpd->next_page) 1711 return; 1712 1713 index = mpd->first_page; 1714 end = mpd->next_page - 1; 1715 if (invalidate) { 1716 ext4_lblk_t start, last; 1717 start = index << (PAGE_SHIFT - inode->i_blkbits); 1718 last = end << (PAGE_SHIFT - inode->i_blkbits); 1719 ext4_es_remove_extent(inode, start, last - start + 1); 1720 } 1721 1722 pagevec_init(&pvec, 0); 1723 while (index <= end) { 1724 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1725 if (nr_pages == 0) 1726 break; 1727 for (i = 0; i < nr_pages; i++) { 1728 struct page *page = pvec.pages[i]; 1729 1730 BUG_ON(!PageLocked(page)); 1731 BUG_ON(PageWriteback(page)); 1732 if (invalidate) { 1733 if (page_mapped(page)) 1734 clear_page_dirty_for_io(page); 1735 block_invalidatepage(page, 0, PAGE_SIZE); 1736 ClearPageUptodate(page); 1737 } 1738 unlock_page(page); 1739 } 1740 pagevec_release(&pvec); 1741 } 1742 } 1743 1744 static void ext4_print_free_blocks(struct inode *inode) 1745 { 1746 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1747 struct super_block *sb = inode->i_sb; 1748 struct ext4_inode_info *ei = EXT4_I(inode); 1749 1750 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1751 EXT4_C2B(EXT4_SB(inode->i_sb), 1752 ext4_count_free_clusters(sb))); 1753 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1754 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1755 (long long) EXT4_C2B(EXT4_SB(sb), 1756 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1757 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1758 (long long) EXT4_C2B(EXT4_SB(sb), 1759 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1760 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1761 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1762 ei->i_reserved_data_blocks); 1763 return; 1764 } 1765 1766 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1767 { 1768 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1769 } 1770 1771 /* 1772 * This function is grabs code from the very beginning of 1773 * ext4_map_blocks, but assumes that the caller is from delayed write 1774 * time. This function looks up the requested blocks and sets the 1775 * buffer delay bit under the protection of i_data_sem. 1776 */ 1777 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1778 struct ext4_map_blocks *map, 1779 struct buffer_head *bh) 1780 { 1781 struct extent_status es; 1782 int retval; 1783 sector_t invalid_block = ~((sector_t) 0xffff); 1784 #ifdef ES_AGGRESSIVE_TEST 1785 struct ext4_map_blocks orig_map; 1786 1787 memcpy(&orig_map, map, sizeof(*map)); 1788 #endif 1789 1790 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1791 invalid_block = ~0; 1792 1793 map->m_flags = 0; 1794 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1795 "logical block %lu\n", inode->i_ino, map->m_len, 1796 (unsigned long) map->m_lblk); 1797 1798 /* Lookup extent status tree firstly */ 1799 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1800 if (ext4_es_is_hole(&es)) { 1801 retval = 0; 1802 down_read(&EXT4_I(inode)->i_data_sem); 1803 goto add_delayed; 1804 } 1805 1806 /* 1807 * Delayed extent could be allocated by fallocate. 1808 * So we need to check it. 1809 */ 1810 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1811 map_bh(bh, inode->i_sb, invalid_block); 1812 set_buffer_new(bh); 1813 set_buffer_delay(bh); 1814 return 0; 1815 } 1816 1817 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1818 retval = es.es_len - (iblock - es.es_lblk); 1819 if (retval > map->m_len) 1820 retval = map->m_len; 1821 map->m_len = retval; 1822 if (ext4_es_is_written(&es)) 1823 map->m_flags |= EXT4_MAP_MAPPED; 1824 else if (ext4_es_is_unwritten(&es)) 1825 map->m_flags |= EXT4_MAP_UNWRITTEN; 1826 else 1827 BUG_ON(1); 1828 1829 #ifdef ES_AGGRESSIVE_TEST 1830 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1831 #endif 1832 return retval; 1833 } 1834 1835 /* 1836 * Try to see if we can get the block without requesting a new 1837 * file system block. 1838 */ 1839 down_read(&EXT4_I(inode)->i_data_sem); 1840 if (ext4_has_inline_data(inode)) 1841 retval = 0; 1842 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1843 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1844 else 1845 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1846 1847 add_delayed: 1848 if (retval == 0) { 1849 int ret; 1850 /* 1851 * XXX: __block_prepare_write() unmaps passed block, 1852 * is it OK? 1853 */ 1854 /* 1855 * If the block was allocated from previously allocated cluster, 1856 * then we don't need to reserve it again. However we still need 1857 * to reserve metadata for every block we're going to write. 1858 */ 1859 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1860 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1861 ret = ext4_da_reserve_space(inode); 1862 if (ret) { 1863 /* not enough space to reserve */ 1864 retval = ret; 1865 goto out_unlock; 1866 } 1867 } 1868 1869 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1870 ~0, EXTENT_STATUS_DELAYED); 1871 if (ret) { 1872 retval = ret; 1873 goto out_unlock; 1874 } 1875 1876 map_bh(bh, inode->i_sb, invalid_block); 1877 set_buffer_new(bh); 1878 set_buffer_delay(bh); 1879 } else if (retval > 0) { 1880 int ret; 1881 unsigned int status; 1882 1883 if (unlikely(retval != map->m_len)) { 1884 ext4_warning(inode->i_sb, 1885 "ES len assertion failed for inode " 1886 "%lu: retval %d != map->m_len %d", 1887 inode->i_ino, retval, map->m_len); 1888 WARN_ON(1); 1889 } 1890 1891 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1892 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1893 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1894 map->m_pblk, status); 1895 if (ret != 0) 1896 retval = ret; 1897 } 1898 1899 out_unlock: 1900 up_read((&EXT4_I(inode)->i_data_sem)); 1901 1902 return retval; 1903 } 1904 1905 /* 1906 * This is a special get_block_t callback which is used by 1907 * ext4_da_write_begin(). It will either return mapped block or 1908 * reserve space for a single block. 1909 * 1910 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1911 * We also have b_blocknr = -1 and b_bdev initialized properly 1912 * 1913 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1914 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1915 * initialized properly. 1916 */ 1917 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1918 struct buffer_head *bh, int create) 1919 { 1920 struct ext4_map_blocks map; 1921 int ret = 0; 1922 1923 BUG_ON(create == 0); 1924 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1925 1926 map.m_lblk = iblock; 1927 map.m_len = 1; 1928 1929 /* 1930 * first, we need to know whether the block is allocated already 1931 * preallocated blocks are unmapped but should treated 1932 * the same as allocated blocks. 1933 */ 1934 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1935 if (ret <= 0) 1936 return ret; 1937 1938 map_bh(bh, inode->i_sb, map.m_pblk); 1939 ext4_update_bh_state(bh, map.m_flags); 1940 1941 if (buffer_unwritten(bh)) { 1942 /* A delayed write to unwritten bh should be marked 1943 * new and mapped. Mapped ensures that we don't do 1944 * get_block multiple times when we write to the same 1945 * offset and new ensures that we do proper zero out 1946 * for partial write. 1947 */ 1948 set_buffer_new(bh); 1949 set_buffer_mapped(bh); 1950 } 1951 return 0; 1952 } 1953 1954 static int bget_one(handle_t *handle, struct buffer_head *bh) 1955 { 1956 get_bh(bh); 1957 return 0; 1958 } 1959 1960 static int bput_one(handle_t *handle, struct buffer_head *bh) 1961 { 1962 put_bh(bh); 1963 return 0; 1964 } 1965 1966 static int __ext4_journalled_writepage(struct page *page, 1967 unsigned int len) 1968 { 1969 struct address_space *mapping = page->mapping; 1970 struct inode *inode = mapping->host; 1971 struct buffer_head *page_bufs = NULL; 1972 handle_t *handle = NULL; 1973 int ret = 0, err = 0; 1974 int inline_data = ext4_has_inline_data(inode); 1975 struct buffer_head *inode_bh = NULL; 1976 1977 ClearPageChecked(page); 1978 1979 if (inline_data) { 1980 BUG_ON(page->index != 0); 1981 BUG_ON(len > ext4_get_max_inline_size(inode)); 1982 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1983 if (inode_bh == NULL) 1984 goto out; 1985 } else { 1986 page_bufs = page_buffers(page); 1987 if (!page_bufs) { 1988 BUG(); 1989 goto out; 1990 } 1991 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1992 NULL, bget_one); 1993 } 1994 /* 1995 * We need to release the page lock before we start the 1996 * journal, so grab a reference so the page won't disappear 1997 * out from under us. 1998 */ 1999 get_page(page); 2000 unlock_page(page); 2001 2002 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2003 ext4_writepage_trans_blocks(inode)); 2004 if (IS_ERR(handle)) { 2005 ret = PTR_ERR(handle); 2006 put_page(page); 2007 goto out_no_pagelock; 2008 } 2009 BUG_ON(!ext4_handle_valid(handle)); 2010 2011 lock_page(page); 2012 put_page(page); 2013 if (page->mapping != mapping) { 2014 /* The page got truncated from under us */ 2015 ext4_journal_stop(handle); 2016 ret = 0; 2017 goto out; 2018 } 2019 2020 if (inline_data) { 2021 BUFFER_TRACE(inode_bh, "get write access"); 2022 ret = ext4_journal_get_write_access(handle, inode_bh); 2023 2024 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2025 2026 } else { 2027 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2028 do_journal_get_write_access); 2029 2030 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2031 write_end_fn); 2032 } 2033 if (ret == 0) 2034 ret = err; 2035 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2036 err = ext4_journal_stop(handle); 2037 if (!ret) 2038 ret = err; 2039 2040 if (!ext4_has_inline_data(inode)) 2041 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2042 NULL, bput_one); 2043 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2044 out: 2045 unlock_page(page); 2046 out_no_pagelock: 2047 brelse(inode_bh); 2048 return ret; 2049 } 2050 2051 /* 2052 * Note that we don't need to start a transaction unless we're journaling data 2053 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2054 * need to file the inode to the transaction's list in ordered mode because if 2055 * we are writing back data added by write(), the inode is already there and if 2056 * we are writing back data modified via mmap(), no one guarantees in which 2057 * transaction the data will hit the disk. In case we are journaling data, we 2058 * cannot start transaction directly because transaction start ranks above page 2059 * lock so we have to do some magic. 2060 * 2061 * This function can get called via... 2062 * - ext4_writepages after taking page lock (have journal handle) 2063 * - journal_submit_inode_data_buffers (no journal handle) 2064 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2065 * - grab_page_cache when doing write_begin (have journal handle) 2066 * 2067 * We don't do any block allocation in this function. If we have page with 2068 * multiple blocks we need to write those buffer_heads that are mapped. This 2069 * is important for mmaped based write. So if we do with blocksize 1K 2070 * truncate(f, 1024); 2071 * a = mmap(f, 0, 4096); 2072 * a[0] = 'a'; 2073 * truncate(f, 4096); 2074 * we have in the page first buffer_head mapped via page_mkwrite call back 2075 * but other buffer_heads would be unmapped but dirty (dirty done via the 2076 * do_wp_page). So writepage should write the first block. If we modify 2077 * the mmap area beyond 1024 we will again get a page_fault and the 2078 * page_mkwrite callback will do the block allocation and mark the 2079 * buffer_heads mapped. 2080 * 2081 * We redirty the page if we have any buffer_heads that is either delay or 2082 * unwritten in the page. 2083 * 2084 * We can get recursively called as show below. 2085 * 2086 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2087 * ext4_writepage() 2088 * 2089 * But since we don't do any block allocation we should not deadlock. 2090 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2091 */ 2092 static int ext4_writepage(struct page *page, 2093 struct writeback_control *wbc) 2094 { 2095 int ret = 0; 2096 loff_t size; 2097 unsigned int len; 2098 struct buffer_head *page_bufs = NULL; 2099 struct inode *inode = page->mapping->host; 2100 struct ext4_io_submit io_submit; 2101 bool keep_towrite = false; 2102 2103 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2104 ext4_invalidatepage(page, 0, PAGE_SIZE); 2105 unlock_page(page); 2106 return -EIO; 2107 } 2108 2109 trace_ext4_writepage(page); 2110 size = i_size_read(inode); 2111 if (page->index == size >> PAGE_SHIFT) 2112 len = size & ~PAGE_MASK; 2113 else 2114 len = PAGE_SIZE; 2115 2116 page_bufs = page_buffers(page); 2117 /* 2118 * We cannot do block allocation or other extent handling in this 2119 * function. If there are buffers needing that, we have to redirty 2120 * the page. But we may reach here when we do a journal commit via 2121 * journal_submit_inode_data_buffers() and in that case we must write 2122 * allocated buffers to achieve data=ordered mode guarantees. 2123 * 2124 * Also, if there is only one buffer per page (the fs block 2125 * size == the page size), if one buffer needs block 2126 * allocation or needs to modify the extent tree to clear the 2127 * unwritten flag, we know that the page can't be written at 2128 * all, so we might as well refuse the write immediately. 2129 * Unfortunately if the block size != page size, we can't as 2130 * easily detect this case using ext4_walk_page_buffers(), but 2131 * for the extremely common case, this is an optimization that 2132 * skips a useless round trip through ext4_bio_write_page(). 2133 */ 2134 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2135 ext4_bh_delay_or_unwritten)) { 2136 redirty_page_for_writepage(wbc, page); 2137 if ((current->flags & PF_MEMALLOC) || 2138 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2139 /* 2140 * For memory cleaning there's no point in writing only 2141 * some buffers. So just bail out. Warn if we came here 2142 * from direct reclaim. 2143 */ 2144 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2145 == PF_MEMALLOC); 2146 unlock_page(page); 2147 return 0; 2148 } 2149 keep_towrite = true; 2150 } 2151 2152 if (PageChecked(page) && ext4_should_journal_data(inode)) 2153 /* 2154 * It's mmapped pagecache. Add buffers and journal it. There 2155 * doesn't seem much point in redirtying the page here. 2156 */ 2157 return __ext4_journalled_writepage(page, len); 2158 2159 ext4_io_submit_init(&io_submit, wbc); 2160 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2161 if (!io_submit.io_end) { 2162 redirty_page_for_writepage(wbc, page); 2163 unlock_page(page); 2164 return -ENOMEM; 2165 } 2166 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2167 ext4_io_submit(&io_submit); 2168 /* Drop io_end reference we got from init */ 2169 ext4_put_io_end_defer(io_submit.io_end); 2170 return ret; 2171 } 2172 2173 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2174 { 2175 int len; 2176 loff_t size; 2177 int err; 2178 2179 BUG_ON(page->index != mpd->first_page); 2180 clear_page_dirty_for_io(page); 2181 /* 2182 * We have to be very careful here! Nothing protects writeback path 2183 * against i_size changes and the page can be writeably mapped into 2184 * page tables. So an application can be growing i_size and writing 2185 * data through mmap while writeback runs. clear_page_dirty_for_io() 2186 * write-protects our page in page tables and the page cannot get 2187 * written to again until we release page lock. So only after 2188 * clear_page_dirty_for_io() we are safe to sample i_size for 2189 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2190 * on the barrier provided by TestClearPageDirty in 2191 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2192 * after page tables are updated. 2193 */ 2194 size = i_size_read(mpd->inode); 2195 if (page->index == size >> PAGE_SHIFT) 2196 len = size & ~PAGE_MASK; 2197 else 2198 len = PAGE_SIZE; 2199 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2200 if (!err) 2201 mpd->wbc->nr_to_write--; 2202 mpd->first_page++; 2203 2204 return err; 2205 } 2206 2207 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2208 2209 /* 2210 * mballoc gives us at most this number of blocks... 2211 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2212 * The rest of mballoc seems to handle chunks up to full group size. 2213 */ 2214 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2215 2216 /* 2217 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2218 * 2219 * @mpd - extent of blocks 2220 * @lblk - logical number of the block in the file 2221 * @bh - buffer head we want to add to the extent 2222 * 2223 * The function is used to collect contig. blocks in the same state. If the 2224 * buffer doesn't require mapping for writeback and we haven't started the 2225 * extent of buffers to map yet, the function returns 'true' immediately - the 2226 * caller can write the buffer right away. Otherwise the function returns true 2227 * if the block has been added to the extent, false if the block couldn't be 2228 * added. 2229 */ 2230 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2231 struct buffer_head *bh) 2232 { 2233 struct ext4_map_blocks *map = &mpd->map; 2234 2235 /* Buffer that doesn't need mapping for writeback? */ 2236 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2237 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2238 /* So far no extent to map => we write the buffer right away */ 2239 if (map->m_len == 0) 2240 return true; 2241 return false; 2242 } 2243 2244 /* First block in the extent? */ 2245 if (map->m_len == 0) { 2246 /* We cannot map unless handle is started... */ 2247 if (!mpd->do_map) 2248 return false; 2249 map->m_lblk = lblk; 2250 map->m_len = 1; 2251 map->m_flags = bh->b_state & BH_FLAGS; 2252 return true; 2253 } 2254 2255 /* Don't go larger than mballoc is willing to allocate */ 2256 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2257 return false; 2258 2259 /* Can we merge the block to our big extent? */ 2260 if (lblk == map->m_lblk + map->m_len && 2261 (bh->b_state & BH_FLAGS) == map->m_flags) { 2262 map->m_len++; 2263 return true; 2264 } 2265 return false; 2266 } 2267 2268 /* 2269 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2270 * 2271 * @mpd - extent of blocks for mapping 2272 * @head - the first buffer in the page 2273 * @bh - buffer we should start processing from 2274 * @lblk - logical number of the block in the file corresponding to @bh 2275 * 2276 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2277 * the page for IO if all buffers in this page were mapped and there's no 2278 * accumulated extent of buffers to map or add buffers in the page to the 2279 * extent of buffers to map. The function returns 1 if the caller can continue 2280 * by processing the next page, 0 if it should stop adding buffers to the 2281 * extent to map because we cannot extend it anymore. It can also return value 2282 * < 0 in case of error during IO submission. 2283 */ 2284 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2285 struct buffer_head *head, 2286 struct buffer_head *bh, 2287 ext4_lblk_t lblk) 2288 { 2289 struct inode *inode = mpd->inode; 2290 int err; 2291 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2292 >> inode->i_blkbits; 2293 2294 do { 2295 BUG_ON(buffer_locked(bh)); 2296 2297 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2298 /* Found extent to map? */ 2299 if (mpd->map.m_len) 2300 return 0; 2301 /* Buffer needs mapping and handle is not started? */ 2302 if (!mpd->do_map) 2303 return 0; 2304 /* Everything mapped so far and we hit EOF */ 2305 break; 2306 } 2307 } while (lblk++, (bh = bh->b_this_page) != head); 2308 /* So far everything mapped? Submit the page for IO. */ 2309 if (mpd->map.m_len == 0) { 2310 err = mpage_submit_page(mpd, head->b_page); 2311 if (err < 0) 2312 return err; 2313 } 2314 return lblk < blocks; 2315 } 2316 2317 /* 2318 * mpage_map_buffers - update buffers corresponding to changed extent and 2319 * submit fully mapped pages for IO 2320 * 2321 * @mpd - description of extent to map, on return next extent to map 2322 * 2323 * Scan buffers corresponding to changed extent (we expect corresponding pages 2324 * to be already locked) and update buffer state according to new extent state. 2325 * We map delalloc buffers to their physical location, clear unwritten bits, 2326 * and mark buffers as uninit when we perform writes to unwritten extents 2327 * and do extent conversion after IO is finished. If the last page is not fully 2328 * mapped, we update @map to the next extent in the last page that needs 2329 * mapping. Otherwise we submit the page for IO. 2330 */ 2331 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2332 { 2333 struct pagevec pvec; 2334 int nr_pages, i; 2335 struct inode *inode = mpd->inode; 2336 struct buffer_head *head, *bh; 2337 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2338 pgoff_t start, end; 2339 ext4_lblk_t lblk; 2340 sector_t pblock; 2341 int err; 2342 2343 start = mpd->map.m_lblk >> bpp_bits; 2344 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2345 lblk = start << bpp_bits; 2346 pblock = mpd->map.m_pblk; 2347 2348 pagevec_init(&pvec, 0); 2349 while (start <= end) { 2350 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2351 &start, end); 2352 if (nr_pages == 0) 2353 break; 2354 for (i = 0; i < nr_pages; i++) { 2355 struct page *page = pvec.pages[i]; 2356 2357 bh = head = page_buffers(page); 2358 do { 2359 if (lblk < mpd->map.m_lblk) 2360 continue; 2361 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2362 /* 2363 * Buffer after end of mapped extent. 2364 * Find next buffer in the page to map. 2365 */ 2366 mpd->map.m_len = 0; 2367 mpd->map.m_flags = 0; 2368 /* 2369 * FIXME: If dioread_nolock supports 2370 * blocksize < pagesize, we need to make 2371 * sure we add size mapped so far to 2372 * io_end->size as the following call 2373 * can submit the page for IO. 2374 */ 2375 err = mpage_process_page_bufs(mpd, head, 2376 bh, lblk); 2377 pagevec_release(&pvec); 2378 if (err > 0) 2379 err = 0; 2380 return err; 2381 } 2382 if (buffer_delay(bh)) { 2383 clear_buffer_delay(bh); 2384 bh->b_blocknr = pblock++; 2385 } 2386 clear_buffer_unwritten(bh); 2387 } while (lblk++, (bh = bh->b_this_page) != head); 2388 2389 /* 2390 * FIXME: This is going to break if dioread_nolock 2391 * supports blocksize < pagesize as we will try to 2392 * convert potentially unmapped parts of inode. 2393 */ 2394 mpd->io_submit.io_end->size += PAGE_SIZE; 2395 /* Page fully mapped - let IO run! */ 2396 err = mpage_submit_page(mpd, page); 2397 if (err < 0) { 2398 pagevec_release(&pvec); 2399 return err; 2400 } 2401 } 2402 pagevec_release(&pvec); 2403 } 2404 /* Extent fully mapped and matches with page boundary. We are done. */ 2405 mpd->map.m_len = 0; 2406 mpd->map.m_flags = 0; 2407 return 0; 2408 } 2409 2410 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2411 { 2412 struct inode *inode = mpd->inode; 2413 struct ext4_map_blocks *map = &mpd->map; 2414 int get_blocks_flags; 2415 int err, dioread_nolock; 2416 2417 trace_ext4_da_write_pages_extent(inode, map); 2418 /* 2419 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2420 * to convert an unwritten extent to be initialized (in the case 2421 * where we have written into one or more preallocated blocks). It is 2422 * possible that we're going to need more metadata blocks than 2423 * previously reserved. However we must not fail because we're in 2424 * writeback and there is nothing we can do about it so it might result 2425 * in data loss. So use reserved blocks to allocate metadata if 2426 * possible. 2427 * 2428 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2429 * the blocks in question are delalloc blocks. This indicates 2430 * that the blocks and quotas has already been checked when 2431 * the data was copied into the page cache. 2432 */ 2433 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2434 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2435 EXT4_GET_BLOCKS_IO_SUBMIT; 2436 dioread_nolock = ext4_should_dioread_nolock(inode); 2437 if (dioread_nolock) 2438 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2439 if (map->m_flags & (1 << BH_Delay)) 2440 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2441 2442 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2443 if (err < 0) 2444 return err; 2445 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2446 if (!mpd->io_submit.io_end->handle && 2447 ext4_handle_valid(handle)) { 2448 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2449 handle->h_rsv_handle = NULL; 2450 } 2451 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2452 } 2453 2454 BUG_ON(map->m_len == 0); 2455 if (map->m_flags & EXT4_MAP_NEW) { 2456 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2457 map->m_len); 2458 } 2459 return 0; 2460 } 2461 2462 /* 2463 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2464 * mpd->len and submit pages underlying it for IO 2465 * 2466 * @handle - handle for journal operations 2467 * @mpd - extent to map 2468 * @give_up_on_write - we set this to true iff there is a fatal error and there 2469 * is no hope of writing the data. The caller should discard 2470 * dirty pages to avoid infinite loops. 2471 * 2472 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2473 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2474 * them to initialized or split the described range from larger unwritten 2475 * extent. Note that we need not map all the described range since allocation 2476 * can return less blocks or the range is covered by more unwritten extents. We 2477 * cannot map more because we are limited by reserved transaction credits. On 2478 * the other hand we always make sure that the last touched page is fully 2479 * mapped so that it can be written out (and thus forward progress is 2480 * guaranteed). After mapping we submit all mapped pages for IO. 2481 */ 2482 static int mpage_map_and_submit_extent(handle_t *handle, 2483 struct mpage_da_data *mpd, 2484 bool *give_up_on_write) 2485 { 2486 struct inode *inode = mpd->inode; 2487 struct ext4_map_blocks *map = &mpd->map; 2488 int err; 2489 loff_t disksize; 2490 int progress = 0; 2491 2492 mpd->io_submit.io_end->offset = 2493 ((loff_t)map->m_lblk) << inode->i_blkbits; 2494 do { 2495 err = mpage_map_one_extent(handle, mpd); 2496 if (err < 0) { 2497 struct super_block *sb = inode->i_sb; 2498 2499 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2500 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2501 goto invalidate_dirty_pages; 2502 /* 2503 * Let the uper layers retry transient errors. 2504 * In the case of ENOSPC, if ext4_count_free_blocks() 2505 * is non-zero, a commit should free up blocks. 2506 */ 2507 if ((err == -ENOMEM) || 2508 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2509 if (progress) 2510 goto update_disksize; 2511 return err; 2512 } 2513 ext4_msg(sb, KERN_CRIT, 2514 "Delayed block allocation failed for " 2515 "inode %lu at logical offset %llu with" 2516 " max blocks %u with error %d", 2517 inode->i_ino, 2518 (unsigned long long)map->m_lblk, 2519 (unsigned)map->m_len, -err); 2520 ext4_msg(sb, KERN_CRIT, 2521 "This should not happen!! Data will " 2522 "be lost\n"); 2523 if (err == -ENOSPC) 2524 ext4_print_free_blocks(inode); 2525 invalidate_dirty_pages: 2526 *give_up_on_write = true; 2527 return err; 2528 } 2529 progress = 1; 2530 /* 2531 * Update buffer state, submit mapped pages, and get us new 2532 * extent to map 2533 */ 2534 err = mpage_map_and_submit_buffers(mpd); 2535 if (err < 0) 2536 goto update_disksize; 2537 } while (map->m_len); 2538 2539 update_disksize: 2540 /* 2541 * Update on-disk size after IO is submitted. Races with 2542 * truncate are avoided by checking i_size under i_data_sem. 2543 */ 2544 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2545 if (disksize > EXT4_I(inode)->i_disksize) { 2546 int err2; 2547 loff_t i_size; 2548 2549 down_write(&EXT4_I(inode)->i_data_sem); 2550 i_size = i_size_read(inode); 2551 if (disksize > i_size) 2552 disksize = i_size; 2553 if (disksize > EXT4_I(inode)->i_disksize) 2554 EXT4_I(inode)->i_disksize = disksize; 2555 up_write(&EXT4_I(inode)->i_data_sem); 2556 err2 = ext4_mark_inode_dirty(handle, inode); 2557 if (err2) 2558 ext4_error(inode->i_sb, 2559 "Failed to mark inode %lu dirty", 2560 inode->i_ino); 2561 if (!err) 2562 err = err2; 2563 } 2564 return err; 2565 } 2566 2567 /* 2568 * Calculate the total number of credits to reserve for one writepages 2569 * iteration. This is called from ext4_writepages(). We map an extent of 2570 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2571 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2572 * bpp - 1 blocks in bpp different extents. 2573 */ 2574 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2575 { 2576 int bpp = ext4_journal_blocks_per_page(inode); 2577 2578 return ext4_meta_trans_blocks(inode, 2579 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2580 } 2581 2582 /* 2583 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2584 * and underlying extent to map 2585 * 2586 * @mpd - where to look for pages 2587 * 2588 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2589 * IO immediately. When we find a page which isn't mapped we start accumulating 2590 * extent of buffers underlying these pages that needs mapping (formed by 2591 * either delayed or unwritten buffers). We also lock the pages containing 2592 * these buffers. The extent found is returned in @mpd structure (starting at 2593 * mpd->lblk with length mpd->len blocks). 2594 * 2595 * Note that this function can attach bios to one io_end structure which are 2596 * neither logically nor physically contiguous. Although it may seem as an 2597 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2598 * case as we need to track IO to all buffers underlying a page in one io_end. 2599 */ 2600 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2601 { 2602 struct address_space *mapping = mpd->inode->i_mapping; 2603 struct pagevec pvec; 2604 unsigned int nr_pages; 2605 long left = mpd->wbc->nr_to_write; 2606 pgoff_t index = mpd->first_page; 2607 pgoff_t end = mpd->last_page; 2608 int tag; 2609 int i, err = 0; 2610 int blkbits = mpd->inode->i_blkbits; 2611 ext4_lblk_t lblk; 2612 struct buffer_head *head; 2613 2614 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2615 tag = PAGECACHE_TAG_TOWRITE; 2616 else 2617 tag = PAGECACHE_TAG_DIRTY; 2618 2619 pagevec_init(&pvec, 0); 2620 mpd->map.m_len = 0; 2621 mpd->next_page = index; 2622 while (index <= end) { 2623 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2624 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2625 if (nr_pages == 0) 2626 goto out; 2627 2628 for (i = 0; i < nr_pages; i++) { 2629 struct page *page = pvec.pages[i]; 2630 2631 /* 2632 * At this point, the page may be truncated or 2633 * invalidated (changing page->mapping to NULL), or 2634 * even swizzled back from swapper_space to tmpfs file 2635 * mapping. However, page->index will not change 2636 * because we have a reference on the page. 2637 */ 2638 if (page->index > end) 2639 goto out; 2640 2641 /* 2642 * Accumulated enough dirty pages? This doesn't apply 2643 * to WB_SYNC_ALL mode. For integrity sync we have to 2644 * keep going because someone may be concurrently 2645 * dirtying pages, and we might have synced a lot of 2646 * newly appeared dirty pages, but have not synced all 2647 * of the old dirty pages. 2648 */ 2649 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2650 goto out; 2651 2652 /* If we can't merge this page, we are done. */ 2653 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2654 goto out; 2655 2656 lock_page(page); 2657 /* 2658 * If the page is no longer dirty, or its mapping no 2659 * longer corresponds to inode we are writing (which 2660 * means it has been truncated or invalidated), or the 2661 * page is already under writeback and we are not doing 2662 * a data integrity writeback, skip the page 2663 */ 2664 if (!PageDirty(page) || 2665 (PageWriteback(page) && 2666 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2667 unlikely(page->mapping != mapping)) { 2668 unlock_page(page); 2669 continue; 2670 } 2671 2672 wait_on_page_writeback(page); 2673 BUG_ON(PageWriteback(page)); 2674 2675 if (mpd->map.m_len == 0) 2676 mpd->first_page = page->index; 2677 mpd->next_page = page->index + 1; 2678 /* Add all dirty buffers to mpd */ 2679 lblk = ((ext4_lblk_t)page->index) << 2680 (PAGE_SHIFT - blkbits); 2681 head = page_buffers(page); 2682 err = mpage_process_page_bufs(mpd, head, head, lblk); 2683 if (err <= 0) 2684 goto out; 2685 err = 0; 2686 left--; 2687 } 2688 pagevec_release(&pvec); 2689 cond_resched(); 2690 } 2691 return 0; 2692 out: 2693 pagevec_release(&pvec); 2694 return err; 2695 } 2696 2697 static int __writepage(struct page *page, struct writeback_control *wbc, 2698 void *data) 2699 { 2700 struct address_space *mapping = data; 2701 int ret = ext4_writepage(page, wbc); 2702 mapping_set_error(mapping, ret); 2703 return ret; 2704 } 2705 2706 static int ext4_writepages(struct address_space *mapping, 2707 struct writeback_control *wbc) 2708 { 2709 pgoff_t writeback_index = 0; 2710 long nr_to_write = wbc->nr_to_write; 2711 int range_whole = 0; 2712 int cycled = 1; 2713 handle_t *handle = NULL; 2714 struct mpage_da_data mpd; 2715 struct inode *inode = mapping->host; 2716 int needed_blocks, rsv_blocks = 0, ret = 0; 2717 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2718 bool done; 2719 struct blk_plug plug; 2720 bool give_up_on_write = false; 2721 2722 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2723 return -EIO; 2724 2725 percpu_down_read(&sbi->s_journal_flag_rwsem); 2726 trace_ext4_writepages(inode, wbc); 2727 2728 if (dax_mapping(mapping)) { 2729 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2730 wbc); 2731 goto out_writepages; 2732 } 2733 2734 /* 2735 * No pages to write? This is mainly a kludge to avoid starting 2736 * a transaction for special inodes like journal inode on last iput() 2737 * because that could violate lock ordering on umount 2738 */ 2739 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2740 goto out_writepages; 2741 2742 if (ext4_should_journal_data(inode)) { 2743 struct blk_plug plug; 2744 2745 blk_start_plug(&plug); 2746 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2747 blk_finish_plug(&plug); 2748 goto out_writepages; 2749 } 2750 2751 /* 2752 * If the filesystem has aborted, it is read-only, so return 2753 * right away instead of dumping stack traces later on that 2754 * will obscure the real source of the problem. We test 2755 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2756 * the latter could be true if the filesystem is mounted 2757 * read-only, and in that case, ext4_writepages should 2758 * *never* be called, so if that ever happens, we would want 2759 * the stack trace. 2760 */ 2761 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2762 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2763 ret = -EROFS; 2764 goto out_writepages; 2765 } 2766 2767 if (ext4_should_dioread_nolock(inode)) { 2768 /* 2769 * We may need to convert up to one extent per block in 2770 * the page and we may dirty the inode. 2771 */ 2772 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2773 } 2774 2775 /* 2776 * If we have inline data and arrive here, it means that 2777 * we will soon create the block for the 1st page, so 2778 * we'd better clear the inline data here. 2779 */ 2780 if (ext4_has_inline_data(inode)) { 2781 /* Just inode will be modified... */ 2782 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2783 if (IS_ERR(handle)) { 2784 ret = PTR_ERR(handle); 2785 goto out_writepages; 2786 } 2787 BUG_ON(ext4_test_inode_state(inode, 2788 EXT4_STATE_MAY_INLINE_DATA)); 2789 ext4_destroy_inline_data(handle, inode); 2790 ext4_journal_stop(handle); 2791 } 2792 2793 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2794 range_whole = 1; 2795 2796 if (wbc->range_cyclic) { 2797 writeback_index = mapping->writeback_index; 2798 if (writeback_index) 2799 cycled = 0; 2800 mpd.first_page = writeback_index; 2801 mpd.last_page = -1; 2802 } else { 2803 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2804 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2805 } 2806 2807 mpd.inode = inode; 2808 mpd.wbc = wbc; 2809 ext4_io_submit_init(&mpd.io_submit, wbc); 2810 retry: 2811 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2812 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2813 done = false; 2814 blk_start_plug(&plug); 2815 2816 /* 2817 * First writeback pages that don't need mapping - we can avoid 2818 * starting a transaction unnecessarily and also avoid being blocked 2819 * in the block layer on device congestion while having transaction 2820 * started. 2821 */ 2822 mpd.do_map = 0; 2823 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2824 if (!mpd.io_submit.io_end) { 2825 ret = -ENOMEM; 2826 goto unplug; 2827 } 2828 ret = mpage_prepare_extent_to_map(&mpd); 2829 /* Submit prepared bio */ 2830 ext4_io_submit(&mpd.io_submit); 2831 ext4_put_io_end_defer(mpd.io_submit.io_end); 2832 mpd.io_submit.io_end = NULL; 2833 /* Unlock pages we didn't use */ 2834 mpage_release_unused_pages(&mpd, false); 2835 if (ret < 0) 2836 goto unplug; 2837 2838 while (!done && mpd.first_page <= mpd.last_page) { 2839 /* For each extent of pages we use new io_end */ 2840 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2841 if (!mpd.io_submit.io_end) { 2842 ret = -ENOMEM; 2843 break; 2844 } 2845 2846 /* 2847 * We have two constraints: We find one extent to map and we 2848 * must always write out whole page (makes a difference when 2849 * blocksize < pagesize) so that we don't block on IO when we 2850 * try to write out the rest of the page. Journalled mode is 2851 * not supported by delalloc. 2852 */ 2853 BUG_ON(ext4_should_journal_data(inode)); 2854 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2855 2856 /* start a new transaction */ 2857 handle = ext4_journal_start_with_reserve(inode, 2858 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2859 if (IS_ERR(handle)) { 2860 ret = PTR_ERR(handle); 2861 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2862 "%ld pages, ino %lu; err %d", __func__, 2863 wbc->nr_to_write, inode->i_ino, ret); 2864 /* Release allocated io_end */ 2865 ext4_put_io_end(mpd.io_submit.io_end); 2866 mpd.io_submit.io_end = NULL; 2867 break; 2868 } 2869 mpd.do_map = 1; 2870 2871 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2872 ret = mpage_prepare_extent_to_map(&mpd); 2873 if (!ret) { 2874 if (mpd.map.m_len) 2875 ret = mpage_map_and_submit_extent(handle, &mpd, 2876 &give_up_on_write); 2877 else { 2878 /* 2879 * We scanned the whole range (or exhausted 2880 * nr_to_write), submitted what was mapped and 2881 * didn't find anything needing mapping. We are 2882 * done. 2883 */ 2884 done = true; 2885 } 2886 } 2887 /* 2888 * Caution: If the handle is synchronous, 2889 * ext4_journal_stop() can wait for transaction commit 2890 * to finish which may depend on writeback of pages to 2891 * complete or on page lock to be released. In that 2892 * case, we have to wait until after after we have 2893 * submitted all the IO, released page locks we hold, 2894 * and dropped io_end reference (for extent conversion 2895 * to be able to complete) before stopping the handle. 2896 */ 2897 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2898 ext4_journal_stop(handle); 2899 handle = NULL; 2900 mpd.do_map = 0; 2901 } 2902 /* Submit prepared bio */ 2903 ext4_io_submit(&mpd.io_submit); 2904 /* Unlock pages we didn't use */ 2905 mpage_release_unused_pages(&mpd, give_up_on_write); 2906 /* 2907 * Drop our io_end reference we got from init. We have 2908 * to be careful and use deferred io_end finishing if 2909 * we are still holding the transaction as we can 2910 * release the last reference to io_end which may end 2911 * up doing unwritten extent conversion. 2912 */ 2913 if (handle) { 2914 ext4_put_io_end_defer(mpd.io_submit.io_end); 2915 ext4_journal_stop(handle); 2916 } else 2917 ext4_put_io_end(mpd.io_submit.io_end); 2918 mpd.io_submit.io_end = NULL; 2919 2920 if (ret == -ENOSPC && sbi->s_journal) { 2921 /* 2922 * Commit the transaction which would 2923 * free blocks released in the transaction 2924 * and try again 2925 */ 2926 jbd2_journal_force_commit_nested(sbi->s_journal); 2927 ret = 0; 2928 continue; 2929 } 2930 /* Fatal error - ENOMEM, EIO... */ 2931 if (ret) 2932 break; 2933 } 2934 unplug: 2935 blk_finish_plug(&plug); 2936 if (!ret && !cycled && wbc->nr_to_write > 0) { 2937 cycled = 1; 2938 mpd.last_page = writeback_index - 1; 2939 mpd.first_page = 0; 2940 goto retry; 2941 } 2942 2943 /* Update index */ 2944 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2945 /* 2946 * Set the writeback_index so that range_cyclic 2947 * mode will write it back later 2948 */ 2949 mapping->writeback_index = mpd.first_page; 2950 2951 out_writepages: 2952 trace_ext4_writepages_result(inode, wbc, ret, 2953 nr_to_write - wbc->nr_to_write); 2954 percpu_up_read(&sbi->s_journal_flag_rwsem); 2955 return ret; 2956 } 2957 2958 static int ext4_nonda_switch(struct super_block *sb) 2959 { 2960 s64 free_clusters, dirty_clusters; 2961 struct ext4_sb_info *sbi = EXT4_SB(sb); 2962 2963 /* 2964 * switch to non delalloc mode if we are running low 2965 * on free block. The free block accounting via percpu 2966 * counters can get slightly wrong with percpu_counter_batch getting 2967 * accumulated on each CPU without updating global counters 2968 * Delalloc need an accurate free block accounting. So switch 2969 * to non delalloc when we are near to error range. 2970 */ 2971 free_clusters = 2972 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2973 dirty_clusters = 2974 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2975 /* 2976 * Start pushing delalloc when 1/2 of free blocks are dirty. 2977 */ 2978 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2979 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2980 2981 if (2 * free_clusters < 3 * dirty_clusters || 2982 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2983 /* 2984 * free block count is less than 150% of dirty blocks 2985 * or free blocks is less than watermark 2986 */ 2987 return 1; 2988 } 2989 return 0; 2990 } 2991 2992 /* We always reserve for an inode update; the superblock could be there too */ 2993 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2994 { 2995 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2996 return 1; 2997 2998 if (pos + len <= 0x7fffffffULL) 2999 return 1; 3000 3001 /* We might need to update the superblock to set LARGE_FILE */ 3002 return 2; 3003 } 3004 3005 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3006 loff_t pos, unsigned len, unsigned flags, 3007 struct page **pagep, void **fsdata) 3008 { 3009 int ret, retries = 0; 3010 struct page *page; 3011 pgoff_t index; 3012 struct inode *inode = mapping->host; 3013 handle_t *handle; 3014 3015 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3016 return -EIO; 3017 3018 index = pos >> PAGE_SHIFT; 3019 3020 if (ext4_nonda_switch(inode->i_sb) || 3021 S_ISLNK(inode->i_mode)) { 3022 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3023 return ext4_write_begin(file, mapping, pos, 3024 len, flags, pagep, fsdata); 3025 } 3026 *fsdata = (void *)0; 3027 trace_ext4_da_write_begin(inode, pos, len, flags); 3028 3029 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3030 ret = ext4_da_write_inline_data_begin(mapping, inode, 3031 pos, len, flags, 3032 pagep, fsdata); 3033 if (ret < 0) 3034 return ret; 3035 if (ret == 1) 3036 return 0; 3037 } 3038 3039 /* 3040 * grab_cache_page_write_begin() can take a long time if the 3041 * system is thrashing due to memory pressure, or if the page 3042 * is being written back. So grab it first before we start 3043 * the transaction handle. This also allows us to allocate 3044 * the page (if needed) without using GFP_NOFS. 3045 */ 3046 retry_grab: 3047 page = grab_cache_page_write_begin(mapping, index, flags); 3048 if (!page) 3049 return -ENOMEM; 3050 unlock_page(page); 3051 3052 /* 3053 * With delayed allocation, we don't log the i_disksize update 3054 * if there is delayed block allocation. But we still need 3055 * to journalling the i_disksize update if writes to the end 3056 * of file which has an already mapped buffer. 3057 */ 3058 retry_journal: 3059 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3060 ext4_da_write_credits(inode, pos, len)); 3061 if (IS_ERR(handle)) { 3062 put_page(page); 3063 return PTR_ERR(handle); 3064 } 3065 3066 lock_page(page); 3067 if (page->mapping != mapping) { 3068 /* The page got truncated from under us */ 3069 unlock_page(page); 3070 put_page(page); 3071 ext4_journal_stop(handle); 3072 goto retry_grab; 3073 } 3074 /* In case writeback began while the page was unlocked */ 3075 wait_for_stable_page(page); 3076 3077 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3078 ret = ext4_block_write_begin(page, pos, len, 3079 ext4_da_get_block_prep); 3080 #else 3081 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3082 #endif 3083 if (ret < 0) { 3084 unlock_page(page); 3085 ext4_journal_stop(handle); 3086 /* 3087 * block_write_begin may have instantiated a few blocks 3088 * outside i_size. Trim these off again. Don't need 3089 * i_size_read because we hold i_mutex. 3090 */ 3091 if (pos + len > inode->i_size) 3092 ext4_truncate_failed_write(inode); 3093 3094 if (ret == -ENOSPC && 3095 ext4_should_retry_alloc(inode->i_sb, &retries)) 3096 goto retry_journal; 3097 3098 put_page(page); 3099 return ret; 3100 } 3101 3102 *pagep = page; 3103 return ret; 3104 } 3105 3106 /* 3107 * Check if we should update i_disksize 3108 * when write to the end of file but not require block allocation 3109 */ 3110 static int ext4_da_should_update_i_disksize(struct page *page, 3111 unsigned long offset) 3112 { 3113 struct buffer_head *bh; 3114 struct inode *inode = page->mapping->host; 3115 unsigned int idx; 3116 int i; 3117 3118 bh = page_buffers(page); 3119 idx = offset >> inode->i_blkbits; 3120 3121 for (i = 0; i < idx; i++) 3122 bh = bh->b_this_page; 3123 3124 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3125 return 0; 3126 return 1; 3127 } 3128 3129 static int ext4_da_write_end(struct file *file, 3130 struct address_space *mapping, 3131 loff_t pos, unsigned len, unsigned copied, 3132 struct page *page, void *fsdata) 3133 { 3134 struct inode *inode = mapping->host; 3135 int ret = 0, ret2; 3136 handle_t *handle = ext4_journal_current_handle(); 3137 loff_t new_i_size; 3138 unsigned long start, end; 3139 int write_mode = (int)(unsigned long)fsdata; 3140 3141 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3142 return ext4_write_end(file, mapping, pos, 3143 len, copied, page, fsdata); 3144 3145 trace_ext4_da_write_end(inode, pos, len, copied); 3146 start = pos & (PAGE_SIZE - 1); 3147 end = start + copied - 1; 3148 3149 /* 3150 * generic_write_end() will run mark_inode_dirty() if i_size 3151 * changes. So let's piggyback the i_disksize mark_inode_dirty 3152 * into that. 3153 */ 3154 new_i_size = pos + copied; 3155 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3156 if (ext4_has_inline_data(inode) || 3157 ext4_da_should_update_i_disksize(page, end)) { 3158 ext4_update_i_disksize(inode, new_i_size); 3159 /* We need to mark inode dirty even if 3160 * new_i_size is less that inode->i_size 3161 * bu greater than i_disksize.(hint delalloc) 3162 */ 3163 ext4_mark_inode_dirty(handle, inode); 3164 } 3165 } 3166 3167 if (write_mode != CONVERT_INLINE_DATA && 3168 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3169 ext4_has_inline_data(inode)) 3170 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3171 page); 3172 else 3173 ret2 = generic_write_end(file, mapping, pos, len, copied, 3174 page, fsdata); 3175 3176 copied = ret2; 3177 if (ret2 < 0) 3178 ret = ret2; 3179 ret2 = ext4_journal_stop(handle); 3180 if (!ret) 3181 ret = ret2; 3182 3183 return ret ? ret : copied; 3184 } 3185 3186 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3187 unsigned int length) 3188 { 3189 /* 3190 * Drop reserved blocks 3191 */ 3192 BUG_ON(!PageLocked(page)); 3193 if (!page_has_buffers(page)) 3194 goto out; 3195 3196 ext4_da_page_release_reservation(page, offset, length); 3197 3198 out: 3199 ext4_invalidatepage(page, offset, length); 3200 3201 return; 3202 } 3203 3204 /* 3205 * Force all delayed allocation blocks to be allocated for a given inode. 3206 */ 3207 int ext4_alloc_da_blocks(struct inode *inode) 3208 { 3209 trace_ext4_alloc_da_blocks(inode); 3210 3211 if (!EXT4_I(inode)->i_reserved_data_blocks) 3212 return 0; 3213 3214 /* 3215 * We do something simple for now. The filemap_flush() will 3216 * also start triggering a write of the data blocks, which is 3217 * not strictly speaking necessary (and for users of 3218 * laptop_mode, not even desirable). However, to do otherwise 3219 * would require replicating code paths in: 3220 * 3221 * ext4_writepages() -> 3222 * write_cache_pages() ---> (via passed in callback function) 3223 * __mpage_da_writepage() --> 3224 * mpage_add_bh_to_extent() 3225 * mpage_da_map_blocks() 3226 * 3227 * The problem is that write_cache_pages(), located in 3228 * mm/page-writeback.c, marks pages clean in preparation for 3229 * doing I/O, which is not desirable if we're not planning on 3230 * doing I/O at all. 3231 * 3232 * We could call write_cache_pages(), and then redirty all of 3233 * the pages by calling redirty_page_for_writepage() but that 3234 * would be ugly in the extreme. So instead we would need to 3235 * replicate parts of the code in the above functions, 3236 * simplifying them because we wouldn't actually intend to 3237 * write out the pages, but rather only collect contiguous 3238 * logical block extents, call the multi-block allocator, and 3239 * then update the buffer heads with the block allocations. 3240 * 3241 * For now, though, we'll cheat by calling filemap_flush(), 3242 * which will map the blocks, and start the I/O, but not 3243 * actually wait for the I/O to complete. 3244 */ 3245 return filemap_flush(inode->i_mapping); 3246 } 3247 3248 /* 3249 * bmap() is special. It gets used by applications such as lilo and by 3250 * the swapper to find the on-disk block of a specific piece of data. 3251 * 3252 * Naturally, this is dangerous if the block concerned is still in the 3253 * journal. If somebody makes a swapfile on an ext4 data-journaling 3254 * filesystem and enables swap, then they may get a nasty shock when the 3255 * data getting swapped to that swapfile suddenly gets overwritten by 3256 * the original zero's written out previously to the journal and 3257 * awaiting writeback in the kernel's buffer cache. 3258 * 3259 * So, if we see any bmap calls here on a modified, data-journaled file, 3260 * take extra steps to flush any blocks which might be in the cache. 3261 */ 3262 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3263 { 3264 struct inode *inode = mapping->host; 3265 journal_t *journal; 3266 int err; 3267 3268 /* 3269 * We can get here for an inline file via the FIBMAP ioctl 3270 */ 3271 if (ext4_has_inline_data(inode)) 3272 return 0; 3273 3274 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3275 test_opt(inode->i_sb, DELALLOC)) { 3276 /* 3277 * With delalloc we want to sync the file 3278 * so that we can make sure we allocate 3279 * blocks for file 3280 */ 3281 filemap_write_and_wait(mapping); 3282 } 3283 3284 if (EXT4_JOURNAL(inode) && 3285 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3286 /* 3287 * This is a REALLY heavyweight approach, but the use of 3288 * bmap on dirty files is expected to be extremely rare: 3289 * only if we run lilo or swapon on a freshly made file 3290 * do we expect this to happen. 3291 * 3292 * (bmap requires CAP_SYS_RAWIO so this does not 3293 * represent an unprivileged user DOS attack --- we'd be 3294 * in trouble if mortal users could trigger this path at 3295 * will.) 3296 * 3297 * NB. EXT4_STATE_JDATA is not set on files other than 3298 * regular files. If somebody wants to bmap a directory 3299 * or symlink and gets confused because the buffer 3300 * hasn't yet been flushed to disk, they deserve 3301 * everything they get. 3302 */ 3303 3304 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3305 journal = EXT4_JOURNAL(inode); 3306 jbd2_journal_lock_updates(journal); 3307 err = jbd2_journal_flush(journal); 3308 jbd2_journal_unlock_updates(journal); 3309 3310 if (err) 3311 return 0; 3312 } 3313 3314 return generic_block_bmap(mapping, block, ext4_get_block); 3315 } 3316 3317 static int ext4_readpage(struct file *file, struct page *page) 3318 { 3319 int ret = -EAGAIN; 3320 struct inode *inode = page->mapping->host; 3321 3322 trace_ext4_readpage(page); 3323 3324 if (ext4_has_inline_data(inode)) 3325 ret = ext4_readpage_inline(inode, page); 3326 3327 if (ret == -EAGAIN) 3328 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3329 3330 return ret; 3331 } 3332 3333 static int 3334 ext4_readpages(struct file *file, struct address_space *mapping, 3335 struct list_head *pages, unsigned nr_pages) 3336 { 3337 struct inode *inode = mapping->host; 3338 3339 /* If the file has inline data, no need to do readpages. */ 3340 if (ext4_has_inline_data(inode)) 3341 return 0; 3342 3343 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3344 } 3345 3346 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3347 unsigned int length) 3348 { 3349 trace_ext4_invalidatepage(page, offset, length); 3350 3351 /* No journalling happens on data buffers when this function is used */ 3352 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3353 3354 block_invalidatepage(page, offset, length); 3355 } 3356 3357 static int __ext4_journalled_invalidatepage(struct page *page, 3358 unsigned int offset, 3359 unsigned int length) 3360 { 3361 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3362 3363 trace_ext4_journalled_invalidatepage(page, offset, length); 3364 3365 /* 3366 * If it's a full truncate we just forget about the pending dirtying 3367 */ 3368 if (offset == 0 && length == PAGE_SIZE) 3369 ClearPageChecked(page); 3370 3371 return jbd2_journal_invalidatepage(journal, page, offset, length); 3372 } 3373 3374 /* Wrapper for aops... */ 3375 static void ext4_journalled_invalidatepage(struct page *page, 3376 unsigned int offset, 3377 unsigned int length) 3378 { 3379 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3380 } 3381 3382 static int ext4_releasepage(struct page *page, gfp_t wait) 3383 { 3384 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3385 3386 trace_ext4_releasepage(page); 3387 3388 /* Page has dirty journalled data -> cannot release */ 3389 if (PageChecked(page)) 3390 return 0; 3391 if (journal) 3392 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3393 else 3394 return try_to_free_buffers(page); 3395 } 3396 3397 #ifdef CONFIG_FS_DAX 3398 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3399 unsigned flags, struct iomap *iomap) 3400 { 3401 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3402 unsigned int blkbits = inode->i_blkbits; 3403 unsigned long first_block = offset >> blkbits; 3404 unsigned long last_block = (offset + length - 1) >> blkbits; 3405 struct ext4_map_blocks map; 3406 int ret; 3407 3408 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3409 return -ERANGE; 3410 3411 map.m_lblk = first_block; 3412 map.m_len = last_block - first_block + 1; 3413 3414 if (!(flags & IOMAP_WRITE)) { 3415 ret = ext4_map_blocks(NULL, inode, &map, 0); 3416 } else { 3417 int dio_credits; 3418 handle_t *handle; 3419 int retries = 0; 3420 3421 /* Trim mapping request to maximum we can map at once for DIO */ 3422 if (map.m_len > DIO_MAX_BLOCKS) 3423 map.m_len = DIO_MAX_BLOCKS; 3424 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3425 retry: 3426 /* 3427 * Either we allocate blocks and then we don't get unwritten 3428 * extent so we have reserved enough credits, or the blocks 3429 * are already allocated and unwritten and in that case 3430 * extent conversion fits in the credits as well. 3431 */ 3432 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3433 dio_credits); 3434 if (IS_ERR(handle)) 3435 return PTR_ERR(handle); 3436 3437 ret = ext4_map_blocks(handle, inode, &map, 3438 EXT4_GET_BLOCKS_CREATE_ZERO); 3439 if (ret < 0) { 3440 ext4_journal_stop(handle); 3441 if (ret == -ENOSPC && 3442 ext4_should_retry_alloc(inode->i_sb, &retries)) 3443 goto retry; 3444 return ret; 3445 } 3446 3447 /* 3448 * If we added blocks beyond i_size, we need to make sure they 3449 * will get truncated if we crash before updating i_size in 3450 * ext4_iomap_end(). For faults we don't need to do that (and 3451 * even cannot because for orphan list operations inode_lock is 3452 * required) - if we happen to instantiate block beyond i_size, 3453 * it is because we race with truncate which has already added 3454 * the inode to the orphan list. 3455 */ 3456 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3457 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3458 int err; 3459 3460 err = ext4_orphan_add(handle, inode); 3461 if (err < 0) { 3462 ext4_journal_stop(handle); 3463 return err; 3464 } 3465 } 3466 ext4_journal_stop(handle); 3467 } 3468 3469 iomap->flags = 0; 3470 iomap->bdev = inode->i_sb->s_bdev; 3471 iomap->dax_dev = sbi->s_daxdev; 3472 iomap->offset = first_block << blkbits; 3473 3474 if (ret == 0) { 3475 iomap->type = IOMAP_HOLE; 3476 iomap->blkno = IOMAP_NULL_BLOCK; 3477 iomap->length = (u64)map.m_len << blkbits; 3478 } else { 3479 if (map.m_flags & EXT4_MAP_MAPPED) { 3480 iomap->type = IOMAP_MAPPED; 3481 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3482 iomap->type = IOMAP_UNWRITTEN; 3483 } else { 3484 WARN_ON_ONCE(1); 3485 return -EIO; 3486 } 3487 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9); 3488 iomap->length = (u64)map.m_len << blkbits; 3489 } 3490 3491 if (map.m_flags & EXT4_MAP_NEW) 3492 iomap->flags |= IOMAP_F_NEW; 3493 return 0; 3494 } 3495 3496 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3497 ssize_t written, unsigned flags, struct iomap *iomap) 3498 { 3499 int ret = 0; 3500 handle_t *handle; 3501 int blkbits = inode->i_blkbits; 3502 bool truncate = false; 3503 3504 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3505 return 0; 3506 3507 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3508 if (IS_ERR(handle)) { 3509 ret = PTR_ERR(handle); 3510 goto orphan_del; 3511 } 3512 if (ext4_update_inode_size(inode, offset + written)) 3513 ext4_mark_inode_dirty(handle, inode); 3514 /* 3515 * We may need to truncate allocated but not written blocks beyond EOF. 3516 */ 3517 if (iomap->offset + iomap->length > 3518 ALIGN(inode->i_size, 1 << blkbits)) { 3519 ext4_lblk_t written_blk, end_blk; 3520 3521 written_blk = (offset + written) >> blkbits; 3522 end_blk = (offset + length) >> blkbits; 3523 if (written_blk < end_blk && ext4_can_truncate(inode)) 3524 truncate = true; 3525 } 3526 /* 3527 * Remove inode from orphan list if we were extending a inode and 3528 * everything went fine. 3529 */ 3530 if (!truncate && inode->i_nlink && 3531 !list_empty(&EXT4_I(inode)->i_orphan)) 3532 ext4_orphan_del(handle, inode); 3533 ext4_journal_stop(handle); 3534 if (truncate) { 3535 ext4_truncate_failed_write(inode); 3536 orphan_del: 3537 /* 3538 * If truncate failed early the inode might still be on the 3539 * orphan list; we need to make sure the inode is removed from 3540 * the orphan list in that case. 3541 */ 3542 if (inode->i_nlink) 3543 ext4_orphan_del(NULL, inode); 3544 } 3545 return ret; 3546 } 3547 3548 const struct iomap_ops ext4_iomap_ops = { 3549 .iomap_begin = ext4_iomap_begin, 3550 .iomap_end = ext4_iomap_end, 3551 }; 3552 3553 #endif 3554 3555 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3556 ssize_t size, void *private) 3557 { 3558 ext4_io_end_t *io_end = private; 3559 3560 /* if not async direct IO just return */ 3561 if (!io_end) 3562 return 0; 3563 3564 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3565 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3566 io_end, io_end->inode->i_ino, iocb, offset, size); 3567 3568 /* 3569 * Error during AIO DIO. We cannot convert unwritten extents as the 3570 * data was not written. Just clear the unwritten flag and drop io_end. 3571 */ 3572 if (size <= 0) { 3573 ext4_clear_io_unwritten_flag(io_end); 3574 size = 0; 3575 } 3576 io_end->offset = offset; 3577 io_end->size = size; 3578 ext4_put_io_end(io_end); 3579 3580 return 0; 3581 } 3582 3583 /* 3584 * Handling of direct IO writes. 3585 * 3586 * For ext4 extent files, ext4 will do direct-io write even to holes, 3587 * preallocated extents, and those write extend the file, no need to 3588 * fall back to buffered IO. 3589 * 3590 * For holes, we fallocate those blocks, mark them as unwritten 3591 * If those blocks were preallocated, we mark sure they are split, but 3592 * still keep the range to write as unwritten. 3593 * 3594 * The unwritten extents will be converted to written when DIO is completed. 3595 * For async direct IO, since the IO may still pending when return, we 3596 * set up an end_io call back function, which will do the conversion 3597 * when async direct IO completed. 3598 * 3599 * If the O_DIRECT write will extend the file then add this inode to the 3600 * orphan list. So recovery will truncate it back to the original size 3601 * if the machine crashes during the write. 3602 * 3603 */ 3604 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3605 { 3606 struct file *file = iocb->ki_filp; 3607 struct inode *inode = file->f_mapping->host; 3608 struct ext4_inode_info *ei = EXT4_I(inode); 3609 ssize_t ret; 3610 loff_t offset = iocb->ki_pos; 3611 size_t count = iov_iter_count(iter); 3612 int overwrite = 0; 3613 get_block_t *get_block_func = NULL; 3614 int dio_flags = 0; 3615 loff_t final_size = offset + count; 3616 int orphan = 0; 3617 handle_t *handle; 3618 3619 if (final_size > inode->i_size) { 3620 /* Credits for sb + inode write */ 3621 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3622 if (IS_ERR(handle)) { 3623 ret = PTR_ERR(handle); 3624 goto out; 3625 } 3626 ret = ext4_orphan_add(handle, inode); 3627 if (ret) { 3628 ext4_journal_stop(handle); 3629 goto out; 3630 } 3631 orphan = 1; 3632 ei->i_disksize = inode->i_size; 3633 ext4_journal_stop(handle); 3634 } 3635 3636 BUG_ON(iocb->private == NULL); 3637 3638 /* 3639 * Make all waiters for direct IO properly wait also for extent 3640 * conversion. This also disallows race between truncate() and 3641 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3642 */ 3643 inode_dio_begin(inode); 3644 3645 /* If we do a overwrite dio, i_mutex locking can be released */ 3646 overwrite = *((int *)iocb->private); 3647 3648 if (overwrite) 3649 inode_unlock(inode); 3650 3651 /* 3652 * For extent mapped files we could direct write to holes and fallocate. 3653 * 3654 * Allocated blocks to fill the hole are marked as unwritten to prevent 3655 * parallel buffered read to expose the stale data before DIO complete 3656 * the data IO. 3657 * 3658 * As to previously fallocated extents, ext4 get_block will just simply 3659 * mark the buffer mapped but still keep the extents unwritten. 3660 * 3661 * For non AIO case, we will convert those unwritten extents to written 3662 * after return back from blockdev_direct_IO. That way we save us from 3663 * allocating io_end structure and also the overhead of offloading 3664 * the extent convertion to a workqueue. 3665 * 3666 * For async DIO, the conversion needs to be deferred when the 3667 * IO is completed. The ext4 end_io callback function will be 3668 * called to take care of the conversion work. Here for async 3669 * case, we allocate an io_end structure to hook to the iocb. 3670 */ 3671 iocb->private = NULL; 3672 if (overwrite) 3673 get_block_func = ext4_dio_get_block_overwrite; 3674 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3675 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3676 get_block_func = ext4_dio_get_block; 3677 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3678 } else if (is_sync_kiocb(iocb)) { 3679 get_block_func = ext4_dio_get_block_unwritten_sync; 3680 dio_flags = DIO_LOCKING; 3681 } else { 3682 get_block_func = ext4_dio_get_block_unwritten_async; 3683 dio_flags = DIO_LOCKING; 3684 } 3685 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3686 get_block_func, ext4_end_io_dio, NULL, 3687 dio_flags); 3688 3689 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3690 EXT4_STATE_DIO_UNWRITTEN)) { 3691 int err; 3692 /* 3693 * for non AIO case, since the IO is already 3694 * completed, we could do the conversion right here 3695 */ 3696 err = ext4_convert_unwritten_extents(NULL, inode, 3697 offset, ret); 3698 if (err < 0) 3699 ret = err; 3700 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3701 } 3702 3703 inode_dio_end(inode); 3704 /* take i_mutex locking again if we do a ovewrite dio */ 3705 if (overwrite) 3706 inode_lock(inode); 3707 3708 if (ret < 0 && final_size > inode->i_size) 3709 ext4_truncate_failed_write(inode); 3710 3711 /* Handle extending of i_size after direct IO write */ 3712 if (orphan) { 3713 int err; 3714 3715 /* Credits for sb + inode write */ 3716 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3717 if (IS_ERR(handle)) { 3718 /* This is really bad luck. We've written the data 3719 * but cannot extend i_size. Bail out and pretend 3720 * the write failed... */ 3721 ret = PTR_ERR(handle); 3722 if (inode->i_nlink) 3723 ext4_orphan_del(NULL, inode); 3724 3725 goto out; 3726 } 3727 if (inode->i_nlink) 3728 ext4_orphan_del(handle, inode); 3729 if (ret > 0) { 3730 loff_t end = offset + ret; 3731 if (end > inode->i_size) { 3732 ei->i_disksize = end; 3733 i_size_write(inode, end); 3734 /* 3735 * We're going to return a positive `ret' 3736 * here due to non-zero-length I/O, so there's 3737 * no way of reporting error returns from 3738 * ext4_mark_inode_dirty() to userspace. So 3739 * ignore it. 3740 */ 3741 ext4_mark_inode_dirty(handle, inode); 3742 } 3743 } 3744 err = ext4_journal_stop(handle); 3745 if (ret == 0) 3746 ret = err; 3747 } 3748 out: 3749 return ret; 3750 } 3751 3752 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3753 { 3754 struct address_space *mapping = iocb->ki_filp->f_mapping; 3755 struct inode *inode = mapping->host; 3756 size_t count = iov_iter_count(iter); 3757 ssize_t ret; 3758 3759 /* 3760 * Shared inode_lock is enough for us - it protects against concurrent 3761 * writes & truncates and since we take care of writing back page cache, 3762 * we are protected against page writeback as well. 3763 */ 3764 inode_lock_shared(inode); 3765 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3766 iocb->ki_pos + count - 1); 3767 if (ret) 3768 goto out_unlock; 3769 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3770 iter, ext4_dio_get_block, NULL, NULL, 0); 3771 out_unlock: 3772 inode_unlock_shared(inode); 3773 return ret; 3774 } 3775 3776 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3777 { 3778 struct file *file = iocb->ki_filp; 3779 struct inode *inode = file->f_mapping->host; 3780 size_t count = iov_iter_count(iter); 3781 loff_t offset = iocb->ki_pos; 3782 ssize_t ret; 3783 3784 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3785 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3786 return 0; 3787 #endif 3788 3789 /* 3790 * If we are doing data journalling we don't support O_DIRECT 3791 */ 3792 if (ext4_should_journal_data(inode)) 3793 return 0; 3794 3795 /* Let buffer I/O handle the inline data case. */ 3796 if (ext4_has_inline_data(inode)) 3797 return 0; 3798 3799 /* DAX uses iomap path now */ 3800 if (WARN_ON_ONCE(IS_DAX(inode))) 3801 return 0; 3802 3803 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3804 if (iov_iter_rw(iter) == READ) 3805 ret = ext4_direct_IO_read(iocb, iter); 3806 else 3807 ret = ext4_direct_IO_write(iocb, iter); 3808 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3809 return ret; 3810 } 3811 3812 /* 3813 * Pages can be marked dirty completely asynchronously from ext4's journalling 3814 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3815 * much here because ->set_page_dirty is called under VFS locks. The page is 3816 * not necessarily locked. 3817 * 3818 * We cannot just dirty the page and leave attached buffers clean, because the 3819 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3820 * or jbddirty because all the journalling code will explode. 3821 * 3822 * So what we do is to mark the page "pending dirty" and next time writepage 3823 * is called, propagate that into the buffers appropriately. 3824 */ 3825 static int ext4_journalled_set_page_dirty(struct page *page) 3826 { 3827 SetPageChecked(page); 3828 return __set_page_dirty_nobuffers(page); 3829 } 3830 3831 static int ext4_set_page_dirty(struct page *page) 3832 { 3833 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3834 WARN_ON_ONCE(!page_has_buffers(page)); 3835 return __set_page_dirty_buffers(page); 3836 } 3837 3838 static const struct address_space_operations ext4_aops = { 3839 .readpage = ext4_readpage, 3840 .readpages = ext4_readpages, 3841 .writepage = ext4_writepage, 3842 .writepages = ext4_writepages, 3843 .write_begin = ext4_write_begin, 3844 .write_end = ext4_write_end, 3845 .set_page_dirty = ext4_set_page_dirty, 3846 .bmap = ext4_bmap, 3847 .invalidatepage = ext4_invalidatepage, 3848 .releasepage = ext4_releasepage, 3849 .direct_IO = ext4_direct_IO, 3850 .migratepage = buffer_migrate_page, 3851 .is_partially_uptodate = block_is_partially_uptodate, 3852 .error_remove_page = generic_error_remove_page, 3853 }; 3854 3855 static const struct address_space_operations ext4_journalled_aops = { 3856 .readpage = ext4_readpage, 3857 .readpages = ext4_readpages, 3858 .writepage = ext4_writepage, 3859 .writepages = ext4_writepages, 3860 .write_begin = ext4_write_begin, 3861 .write_end = ext4_journalled_write_end, 3862 .set_page_dirty = ext4_journalled_set_page_dirty, 3863 .bmap = ext4_bmap, 3864 .invalidatepage = ext4_journalled_invalidatepage, 3865 .releasepage = ext4_releasepage, 3866 .direct_IO = ext4_direct_IO, 3867 .is_partially_uptodate = block_is_partially_uptodate, 3868 .error_remove_page = generic_error_remove_page, 3869 }; 3870 3871 static const struct address_space_operations ext4_da_aops = { 3872 .readpage = ext4_readpage, 3873 .readpages = ext4_readpages, 3874 .writepage = ext4_writepage, 3875 .writepages = ext4_writepages, 3876 .write_begin = ext4_da_write_begin, 3877 .write_end = ext4_da_write_end, 3878 .set_page_dirty = ext4_set_page_dirty, 3879 .bmap = ext4_bmap, 3880 .invalidatepage = ext4_da_invalidatepage, 3881 .releasepage = ext4_releasepage, 3882 .direct_IO = ext4_direct_IO, 3883 .migratepage = buffer_migrate_page, 3884 .is_partially_uptodate = block_is_partially_uptodate, 3885 .error_remove_page = generic_error_remove_page, 3886 }; 3887 3888 void ext4_set_aops(struct inode *inode) 3889 { 3890 switch (ext4_inode_journal_mode(inode)) { 3891 case EXT4_INODE_ORDERED_DATA_MODE: 3892 case EXT4_INODE_WRITEBACK_DATA_MODE: 3893 break; 3894 case EXT4_INODE_JOURNAL_DATA_MODE: 3895 inode->i_mapping->a_ops = &ext4_journalled_aops; 3896 return; 3897 default: 3898 BUG(); 3899 } 3900 if (test_opt(inode->i_sb, DELALLOC)) 3901 inode->i_mapping->a_ops = &ext4_da_aops; 3902 else 3903 inode->i_mapping->a_ops = &ext4_aops; 3904 } 3905 3906 static int __ext4_block_zero_page_range(handle_t *handle, 3907 struct address_space *mapping, loff_t from, loff_t length) 3908 { 3909 ext4_fsblk_t index = from >> PAGE_SHIFT; 3910 unsigned offset = from & (PAGE_SIZE-1); 3911 unsigned blocksize, pos; 3912 ext4_lblk_t iblock; 3913 struct inode *inode = mapping->host; 3914 struct buffer_head *bh; 3915 struct page *page; 3916 int err = 0; 3917 3918 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3919 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3920 if (!page) 3921 return -ENOMEM; 3922 3923 blocksize = inode->i_sb->s_blocksize; 3924 3925 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3926 3927 if (!page_has_buffers(page)) 3928 create_empty_buffers(page, blocksize, 0); 3929 3930 /* Find the buffer that contains "offset" */ 3931 bh = page_buffers(page); 3932 pos = blocksize; 3933 while (offset >= pos) { 3934 bh = bh->b_this_page; 3935 iblock++; 3936 pos += blocksize; 3937 } 3938 if (buffer_freed(bh)) { 3939 BUFFER_TRACE(bh, "freed: skip"); 3940 goto unlock; 3941 } 3942 if (!buffer_mapped(bh)) { 3943 BUFFER_TRACE(bh, "unmapped"); 3944 ext4_get_block(inode, iblock, bh, 0); 3945 /* unmapped? It's a hole - nothing to do */ 3946 if (!buffer_mapped(bh)) { 3947 BUFFER_TRACE(bh, "still unmapped"); 3948 goto unlock; 3949 } 3950 } 3951 3952 /* Ok, it's mapped. Make sure it's up-to-date */ 3953 if (PageUptodate(page)) 3954 set_buffer_uptodate(bh); 3955 3956 if (!buffer_uptodate(bh)) { 3957 err = -EIO; 3958 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3959 wait_on_buffer(bh); 3960 /* Uhhuh. Read error. Complain and punt. */ 3961 if (!buffer_uptodate(bh)) 3962 goto unlock; 3963 if (S_ISREG(inode->i_mode) && 3964 ext4_encrypted_inode(inode)) { 3965 /* We expect the key to be set. */ 3966 BUG_ON(!fscrypt_has_encryption_key(inode)); 3967 BUG_ON(blocksize != PAGE_SIZE); 3968 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 3969 page, PAGE_SIZE, 0, page->index)); 3970 } 3971 } 3972 if (ext4_should_journal_data(inode)) { 3973 BUFFER_TRACE(bh, "get write access"); 3974 err = ext4_journal_get_write_access(handle, bh); 3975 if (err) 3976 goto unlock; 3977 } 3978 zero_user(page, offset, length); 3979 BUFFER_TRACE(bh, "zeroed end of block"); 3980 3981 if (ext4_should_journal_data(inode)) { 3982 err = ext4_handle_dirty_metadata(handle, inode, bh); 3983 } else { 3984 err = 0; 3985 mark_buffer_dirty(bh); 3986 if (ext4_should_order_data(inode)) 3987 err = ext4_jbd2_inode_add_write(handle, inode); 3988 } 3989 3990 unlock: 3991 unlock_page(page); 3992 put_page(page); 3993 return err; 3994 } 3995 3996 /* 3997 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3998 * starting from file offset 'from'. The range to be zero'd must 3999 * be contained with in one block. If the specified range exceeds 4000 * the end of the block it will be shortened to end of the block 4001 * that cooresponds to 'from' 4002 */ 4003 static int ext4_block_zero_page_range(handle_t *handle, 4004 struct address_space *mapping, loff_t from, loff_t length) 4005 { 4006 struct inode *inode = mapping->host; 4007 unsigned offset = from & (PAGE_SIZE-1); 4008 unsigned blocksize = inode->i_sb->s_blocksize; 4009 unsigned max = blocksize - (offset & (blocksize - 1)); 4010 4011 /* 4012 * correct length if it does not fall between 4013 * 'from' and the end of the block 4014 */ 4015 if (length > max || length < 0) 4016 length = max; 4017 4018 if (IS_DAX(inode)) { 4019 return iomap_zero_range(inode, from, length, NULL, 4020 &ext4_iomap_ops); 4021 } 4022 return __ext4_block_zero_page_range(handle, mapping, from, length); 4023 } 4024 4025 /* 4026 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4027 * up to the end of the block which corresponds to `from'. 4028 * This required during truncate. We need to physically zero the tail end 4029 * of that block so it doesn't yield old data if the file is later grown. 4030 */ 4031 static int ext4_block_truncate_page(handle_t *handle, 4032 struct address_space *mapping, loff_t from) 4033 { 4034 unsigned offset = from & (PAGE_SIZE-1); 4035 unsigned length; 4036 unsigned blocksize; 4037 struct inode *inode = mapping->host; 4038 4039 /* If we are processing an encrypted inode during orphan list handling */ 4040 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode)) 4041 return 0; 4042 4043 blocksize = inode->i_sb->s_blocksize; 4044 length = blocksize - (offset & (blocksize - 1)); 4045 4046 return ext4_block_zero_page_range(handle, mapping, from, length); 4047 } 4048 4049 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4050 loff_t lstart, loff_t length) 4051 { 4052 struct super_block *sb = inode->i_sb; 4053 struct address_space *mapping = inode->i_mapping; 4054 unsigned partial_start, partial_end; 4055 ext4_fsblk_t start, end; 4056 loff_t byte_end = (lstart + length - 1); 4057 int err = 0; 4058 4059 partial_start = lstart & (sb->s_blocksize - 1); 4060 partial_end = byte_end & (sb->s_blocksize - 1); 4061 4062 start = lstart >> sb->s_blocksize_bits; 4063 end = byte_end >> sb->s_blocksize_bits; 4064 4065 /* Handle partial zero within the single block */ 4066 if (start == end && 4067 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4068 err = ext4_block_zero_page_range(handle, mapping, 4069 lstart, length); 4070 return err; 4071 } 4072 /* Handle partial zero out on the start of the range */ 4073 if (partial_start) { 4074 err = ext4_block_zero_page_range(handle, mapping, 4075 lstart, sb->s_blocksize); 4076 if (err) 4077 return err; 4078 } 4079 /* Handle partial zero out on the end of the range */ 4080 if (partial_end != sb->s_blocksize - 1) 4081 err = ext4_block_zero_page_range(handle, mapping, 4082 byte_end - partial_end, 4083 partial_end + 1); 4084 return err; 4085 } 4086 4087 int ext4_can_truncate(struct inode *inode) 4088 { 4089 if (S_ISREG(inode->i_mode)) 4090 return 1; 4091 if (S_ISDIR(inode->i_mode)) 4092 return 1; 4093 if (S_ISLNK(inode->i_mode)) 4094 return !ext4_inode_is_fast_symlink(inode); 4095 return 0; 4096 } 4097 4098 /* 4099 * We have to make sure i_disksize gets properly updated before we truncate 4100 * page cache due to hole punching or zero range. Otherwise i_disksize update 4101 * can get lost as it may have been postponed to submission of writeback but 4102 * that will never happen after we truncate page cache. 4103 */ 4104 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4105 loff_t len) 4106 { 4107 handle_t *handle; 4108 loff_t size = i_size_read(inode); 4109 4110 WARN_ON(!inode_is_locked(inode)); 4111 if (offset > size || offset + len < size) 4112 return 0; 4113 4114 if (EXT4_I(inode)->i_disksize >= size) 4115 return 0; 4116 4117 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4118 if (IS_ERR(handle)) 4119 return PTR_ERR(handle); 4120 ext4_update_i_disksize(inode, size); 4121 ext4_mark_inode_dirty(handle, inode); 4122 ext4_journal_stop(handle); 4123 4124 return 0; 4125 } 4126 4127 /* 4128 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4129 * associated with the given offset and length 4130 * 4131 * @inode: File inode 4132 * @offset: The offset where the hole will begin 4133 * @len: The length of the hole 4134 * 4135 * Returns: 0 on success or negative on failure 4136 */ 4137 4138 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4139 { 4140 struct super_block *sb = inode->i_sb; 4141 ext4_lblk_t first_block, stop_block; 4142 struct address_space *mapping = inode->i_mapping; 4143 loff_t first_block_offset, last_block_offset; 4144 handle_t *handle; 4145 unsigned int credits; 4146 int ret = 0; 4147 4148 if (!S_ISREG(inode->i_mode)) 4149 return -EOPNOTSUPP; 4150 4151 trace_ext4_punch_hole(inode, offset, length, 0); 4152 4153 /* 4154 * Write out all dirty pages to avoid race conditions 4155 * Then release them. 4156 */ 4157 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4158 ret = filemap_write_and_wait_range(mapping, offset, 4159 offset + length - 1); 4160 if (ret) 4161 return ret; 4162 } 4163 4164 inode_lock(inode); 4165 4166 /* No need to punch hole beyond i_size */ 4167 if (offset >= inode->i_size) 4168 goto out_mutex; 4169 4170 /* 4171 * If the hole extends beyond i_size, set the hole 4172 * to end after the page that contains i_size 4173 */ 4174 if (offset + length > inode->i_size) { 4175 length = inode->i_size + 4176 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4177 offset; 4178 } 4179 4180 if (offset & (sb->s_blocksize - 1) || 4181 (offset + length) & (sb->s_blocksize - 1)) { 4182 /* 4183 * Attach jinode to inode for jbd2 if we do any zeroing of 4184 * partial block 4185 */ 4186 ret = ext4_inode_attach_jinode(inode); 4187 if (ret < 0) 4188 goto out_mutex; 4189 4190 } 4191 4192 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4193 ext4_inode_block_unlocked_dio(inode); 4194 inode_dio_wait(inode); 4195 4196 /* 4197 * Prevent page faults from reinstantiating pages we have released from 4198 * page cache. 4199 */ 4200 down_write(&EXT4_I(inode)->i_mmap_sem); 4201 first_block_offset = round_up(offset, sb->s_blocksize); 4202 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4203 4204 /* Now release the pages and zero block aligned part of pages*/ 4205 if (last_block_offset > first_block_offset) { 4206 ret = ext4_update_disksize_before_punch(inode, offset, length); 4207 if (ret) 4208 goto out_dio; 4209 truncate_pagecache_range(inode, first_block_offset, 4210 last_block_offset); 4211 } 4212 4213 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4214 credits = ext4_writepage_trans_blocks(inode); 4215 else 4216 credits = ext4_blocks_for_truncate(inode); 4217 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4218 if (IS_ERR(handle)) { 4219 ret = PTR_ERR(handle); 4220 ext4_std_error(sb, ret); 4221 goto out_dio; 4222 } 4223 4224 ret = ext4_zero_partial_blocks(handle, inode, offset, 4225 length); 4226 if (ret) 4227 goto out_stop; 4228 4229 first_block = (offset + sb->s_blocksize - 1) >> 4230 EXT4_BLOCK_SIZE_BITS(sb); 4231 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4232 4233 /* If there are no blocks to remove, return now */ 4234 if (first_block >= stop_block) 4235 goto out_stop; 4236 4237 down_write(&EXT4_I(inode)->i_data_sem); 4238 ext4_discard_preallocations(inode); 4239 4240 ret = ext4_es_remove_extent(inode, first_block, 4241 stop_block - first_block); 4242 if (ret) { 4243 up_write(&EXT4_I(inode)->i_data_sem); 4244 goto out_stop; 4245 } 4246 4247 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4248 ret = ext4_ext_remove_space(inode, first_block, 4249 stop_block - 1); 4250 else 4251 ret = ext4_ind_remove_space(handle, inode, first_block, 4252 stop_block); 4253 4254 up_write(&EXT4_I(inode)->i_data_sem); 4255 if (IS_SYNC(inode)) 4256 ext4_handle_sync(handle); 4257 4258 inode->i_mtime = inode->i_ctime = current_time(inode); 4259 ext4_mark_inode_dirty(handle, inode); 4260 if (ret >= 0) 4261 ext4_update_inode_fsync_trans(handle, inode, 1); 4262 out_stop: 4263 ext4_journal_stop(handle); 4264 out_dio: 4265 up_write(&EXT4_I(inode)->i_mmap_sem); 4266 ext4_inode_resume_unlocked_dio(inode); 4267 out_mutex: 4268 inode_unlock(inode); 4269 return ret; 4270 } 4271 4272 int ext4_inode_attach_jinode(struct inode *inode) 4273 { 4274 struct ext4_inode_info *ei = EXT4_I(inode); 4275 struct jbd2_inode *jinode; 4276 4277 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4278 return 0; 4279 4280 jinode = jbd2_alloc_inode(GFP_KERNEL); 4281 spin_lock(&inode->i_lock); 4282 if (!ei->jinode) { 4283 if (!jinode) { 4284 spin_unlock(&inode->i_lock); 4285 return -ENOMEM; 4286 } 4287 ei->jinode = jinode; 4288 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4289 jinode = NULL; 4290 } 4291 spin_unlock(&inode->i_lock); 4292 if (unlikely(jinode != NULL)) 4293 jbd2_free_inode(jinode); 4294 return 0; 4295 } 4296 4297 /* 4298 * ext4_truncate() 4299 * 4300 * We block out ext4_get_block() block instantiations across the entire 4301 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4302 * simultaneously on behalf of the same inode. 4303 * 4304 * As we work through the truncate and commit bits of it to the journal there 4305 * is one core, guiding principle: the file's tree must always be consistent on 4306 * disk. We must be able to restart the truncate after a crash. 4307 * 4308 * The file's tree may be transiently inconsistent in memory (although it 4309 * probably isn't), but whenever we close off and commit a journal transaction, 4310 * the contents of (the filesystem + the journal) must be consistent and 4311 * restartable. It's pretty simple, really: bottom up, right to left (although 4312 * left-to-right works OK too). 4313 * 4314 * Note that at recovery time, journal replay occurs *before* the restart of 4315 * truncate against the orphan inode list. 4316 * 4317 * The committed inode has the new, desired i_size (which is the same as 4318 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4319 * that this inode's truncate did not complete and it will again call 4320 * ext4_truncate() to have another go. So there will be instantiated blocks 4321 * to the right of the truncation point in a crashed ext4 filesystem. But 4322 * that's fine - as long as they are linked from the inode, the post-crash 4323 * ext4_truncate() run will find them and release them. 4324 */ 4325 int ext4_truncate(struct inode *inode) 4326 { 4327 struct ext4_inode_info *ei = EXT4_I(inode); 4328 unsigned int credits; 4329 int err = 0; 4330 handle_t *handle; 4331 struct address_space *mapping = inode->i_mapping; 4332 4333 /* 4334 * There is a possibility that we're either freeing the inode 4335 * or it's a completely new inode. In those cases we might not 4336 * have i_mutex locked because it's not necessary. 4337 */ 4338 if (!(inode->i_state & (I_NEW|I_FREEING))) 4339 WARN_ON(!inode_is_locked(inode)); 4340 trace_ext4_truncate_enter(inode); 4341 4342 if (!ext4_can_truncate(inode)) 4343 return 0; 4344 4345 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4346 4347 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4348 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4349 4350 if (ext4_has_inline_data(inode)) { 4351 int has_inline = 1; 4352 4353 err = ext4_inline_data_truncate(inode, &has_inline); 4354 if (err) 4355 return err; 4356 if (has_inline) 4357 return 0; 4358 } 4359 4360 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4361 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4362 if (ext4_inode_attach_jinode(inode) < 0) 4363 return 0; 4364 } 4365 4366 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4367 credits = ext4_writepage_trans_blocks(inode); 4368 else 4369 credits = ext4_blocks_for_truncate(inode); 4370 4371 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4372 if (IS_ERR(handle)) 4373 return PTR_ERR(handle); 4374 4375 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4376 ext4_block_truncate_page(handle, mapping, inode->i_size); 4377 4378 /* 4379 * We add the inode to the orphan list, so that if this 4380 * truncate spans multiple transactions, and we crash, we will 4381 * resume the truncate when the filesystem recovers. It also 4382 * marks the inode dirty, to catch the new size. 4383 * 4384 * Implication: the file must always be in a sane, consistent 4385 * truncatable state while each transaction commits. 4386 */ 4387 err = ext4_orphan_add(handle, inode); 4388 if (err) 4389 goto out_stop; 4390 4391 down_write(&EXT4_I(inode)->i_data_sem); 4392 4393 ext4_discard_preallocations(inode); 4394 4395 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4396 err = ext4_ext_truncate(handle, inode); 4397 else 4398 ext4_ind_truncate(handle, inode); 4399 4400 up_write(&ei->i_data_sem); 4401 if (err) 4402 goto out_stop; 4403 4404 if (IS_SYNC(inode)) 4405 ext4_handle_sync(handle); 4406 4407 out_stop: 4408 /* 4409 * If this was a simple ftruncate() and the file will remain alive, 4410 * then we need to clear up the orphan record which we created above. 4411 * However, if this was a real unlink then we were called by 4412 * ext4_evict_inode(), and we allow that function to clean up the 4413 * orphan info for us. 4414 */ 4415 if (inode->i_nlink) 4416 ext4_orphan_del(handle, inode); 4417 4418 inode->i_mtime = inode->i_ctime = current_time(inode); 4419 ext4_mark_inode_dirty(handle, inode); 4420 ext4_journal_stop(handle); 4421 4422 trace_ext4_truncate_exit(inode); 4423 return err; 4424 } 4425 4426 /* 4427 * ext4_get_inode_loc returns with an extra refcount against the inode's 4428 * underlying buffer_head on success. If 'in_mem' is true, we have all 4429 * data in memory that is needed to recreate the on-disk version of this 4430 * inode. 4431 */ 4432 static int __ext4_get_inode_loc(struct inode *inode, 4433 struct ext4_iloc *iloc, int in_mem) 4434 { 4435 struct ext4_group_desc *gdp; 4436 struct buffer_head *bh; 4437 struct super_block *sb = inode->i_sb; 4438 ext4_fsblk_t block; 4439 int inodes_per_block, inode_offset; 4440 4441 iloc->bh = NULL; 4442 if (!ext4_valid_inum(sb, inode->i_ino)) 4443 return -EFSCORRUPTED; 4444 4445 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4446 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4447 if (!gdp) 4448 return -EIO; 4449 4450 /* 4451 * Figure out the offset within the block group inode table 4452 */ 4453 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4454 inode_offset = ((inode->i_ino - 1) % 4455 EXT4_INODES_PER_GROUP(sb)); 4456 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4457 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4458 4459 bh = sb_getblk(sb, block); 4460 if (unlikely(!bh)) 4461 return -ENOMEM; 4462 if (!buffer_uptodate(bh)) { 4463 lock_buffer(bh); 4464 4465 /* 4466 * If the buffer has the write error flag, we have failed 4467 * to write out another inode in the same block. In this 4468 * case, we don't have to read the block because we may 4469 * read the old inode data successfully. 4470 */ 4471 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4472 set_buffer_uptodate(bh); 4473 4474 if (buffer_uptodate(bh)) { 4475 /* someone brought it uptodate while we waited */ 4476 unlock_buffer(bh); 4477 goto has_buffer; 4478 } 4479 4480 /* 4481 * If we have all information of the inode in memory and this 4482 * is the only valid inode in the block, we need not read the 4483 * block. 4484 */ 4485 if (in_mem) { 4486 struct buffer_head *bitmap_bh; 4487 int i, start; 4488 4489 start = inode_offset & ~(inodes_per_block - 1); 4490 4491 /* Is the inode bitmap in cache? */ 4492 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4493 if (unlikely(!bitmap_bh)) 4494 goto make_io; 4495 4496 /* 4497 * If the inode bitmap isn't in cache then the 4498 * optimisation may end up performing two reads instead 4499 * of one, so skip it. 4500 */ 4501 if (!buffer_uptodate(bitmap_bh)) { 4502 brelse(bitmap_bh); 4503 goto make_io; 4504 } 4505 for (i = start; i < start + inodes_per_block; i++) { 4506 if (i == inode_offset) 4507 continue; 4508 if (ext4_test_bit(i, bitmap_bh->b_data)) 4509 break; 4510 } 4511 brelse(bitmap_bh); 4512 if (i == start + inodes_per_block) { 4513 /* all other inodes are free, so skip I/O */ 4514 memset(bh->b_data, 0, bh->b_size); 4515 set_buffer_uptodate(bh); 4516 unlock_buffer(bh); 4517 goto has_buffer; 4518 } 4519 } 4520 4521 make_io: 4522 /* 4523 * If we need to do any I/O, try to pre-readahead extra 4524 * blocks from the inode table. 4525 */ 4526 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4527 ext4_fsblk_t b, end, table; 4528 unsigned num; 4529 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4530 4531 table = ext4_inode_table(sb, gdp); 4532 /* s_inode_readahead_blks is always a power of 2 */ 4533 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4534 if (table > b) 4535 b = table; 4536 end = b + ra_blks; 4537 num = EXT4_INODES_PER_GROUP(sb); 4538 if (ext4_has_group_desc_csum(sb)) 4539 num -= ext4_itable_unused_count(sb, gdp); 4540 table += num / inodes_per_block; 4541 if (end > table) 4542 end = table; 4543 while (b <= end) 4544 sb_breadahead(sb, b++); 4545 } 4546 4547 /* 4548 * There are other valid inodes in the buffer, this inode 4549 * has in-inode xattrs, or we don't have this inode in memory. 4550 * Read the block from disk. 4551 */ 4552 trace_ext4_load_inode(inode); 4553 get_bh(bh); 4554 bh->b_end_io = end_buffer_read_sync; 4555 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4556 wait_on_buffer(bh); 4557 if (!buffer_uptodate(bh)) { 4558 EXT4_ERROR_INODE_BLOCK(inode, block, 4559 "unable to read itable block"); 4560 brelse(bh); 4561 return -EIO; 4562 } 4563 } 4564 has_buffer: 4565 iloc->bh = bh; 4566 return 0; 4567 } 4568 4569 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4570 { 4571 /* We have all inode data except xattrs in memory here. */ 4572 return __ext4_get_inode_loc(inode, iloc, 4573 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4574 } 4575 4576 void ext4_set_inode_flags(struct inode *inode) 4577 { 4578 unsigned int flags = EXT4_I(inode)->i_flags; 4579 unsigned int new_fl = 0; 4580 4581 if (flags & EXT4_SYNC_FL) 4582 new_fl |= S_SYNC; 4583 if (flags & EXT4_APPEND_FL) 4584 new_fl |= S_APPEND; 4585 if (flags & EXT4_IMMUTABLE_FL) 4586 new_fl |= S_IMMUTABLE; 4587 if (flags & EXT4_NOATIME_FL) 4588 new_fl |= S_NOATIME; 4589 if (flags & EXT4_DIRSYNC_FL) 4590 new_fl |= S_DIRSYNC; 4591 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) && 4592 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) && 4593 !ext4_encrypted_inode(inode)) 4594 new_fl |= S_DAX; 4595 inode_set_flags(inode, new_fl, 4596 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4597 } 4598 4599 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4600 struct ext4_inode_info *ei) 4601 { 4602 blkcnt_t i_blocks ; 4603 struct inode *inode = &(ei->vfs_inode); 4604 struct super_block *sb = inode->i_sb; 4605 4606 if (ext4_has_feature_huge_file(sb)) { 4607 /* we are using combined 48 bit field */ 4608 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4609 le32_to_cpu(raw_inode->i_blocks_lo); 4610 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4611 /* i_blocks represent file system block size */ 4612 return i_blocks << (inode->i_blkbits - 9); 4613 } else { 4614 return i_blocks; 4615 } 4616 } else { 4617 return le32_to_cpu(raw_inode->i_blocks_lo); 4618 } 4619 } 4620 4621 static inline void ext4_iget_extra_inode(struct inode *inode, 4622 struct ext4_inode *raw_inode, 4623 struct ext4_inode_info *ei) 4624 { 4625 __le32 *magic = (void *)raw_inode + 4626 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4627 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4628 EXT4_INODE_SIZE(inode->i_sb) && 4629 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4630 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4631 ext4_find_inline_data_nolock(inode); 4632 } else 4633 EXT4_I(inode)->i_inline_off = 0; 4634 } 4635 4636 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4637 { 4638 if (!ext4_has_feature_project(inode->i_sb)) 4639 return -EOPNOTSUPP; 4640 *projid = EXT4_I(inode)->i_projid; 4641 return 0; 4642 } 4643 4644 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4645 { 4646 struct ext4_iloc iloc; 4647 struct ext4_inode *raw_inode; 4648 struct ext4_inode_info *ei; 4649 struct inode *inode; 4650 journal_t *journal = EXT4_SB(sb)->s_journal; 4651 long ret; 4652 loff_t size; 4653 int block; 4654 uid_t i_uid; 4655 gid_t i_gid; 4656 projid_t i_projid; 4657 4658 inode = iget_locked(sb, ino); 4659 if (!inode) 4660 return ERR_PTR(-ENOMEM); 4661 if (!(inode->i_state & I_NEW)) 4662 return inode; 4663 4664 ei = EXT4_I(inode); 4665 iloc.bh = NULL; 4666 4667 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4668 if (ret < 0) 4669 goto bad_inode; 4670 raw_inode = ext4_raw_inode(&iloc); 4671 4672 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4673 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4674 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4675 EXT4_INODE_SIZE(inode->i_sb) || 4676 (ei->i_extra_isize & 3)) { 4677 EXT4_ERROR_INODE(inode, 4678 "bad extra_isize %u (inode size %u)", 4679 ei->i_extra_isize, 4680 EXT4_INODE_SIZE(inode->i_sb)); 4681 ret = -EFSCORRUPTED; 4682 goto bad_inode; 4683 } 4684 } else 4685 ei->i_extra_isize = 0; 4686 4687 /* Precompute checksum seed for inode metadata */ 4688 if (ext4_has_metadata_csum(sb)) { 4689 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4690 __u32 csum; 4691 __le32 inum = cpu_to_le32(inode->i_ino); 4692 __le32 gen = raw_inode->i_generation; 4693 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4694 sizeof(inum)); 4695 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4696 sizeof(gen)); 4697 } 4698 4699 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4700 EXT4_ERROR_INODE(inode, "checksum invalid"); 4701 ret = -EFSBADCRC; 4702 goto bad_inode; 4703 } 4704 4705 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4706 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4707 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4708 if (ext4_has_feature_project(sb) && 4709 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4710 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4711 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4712 else 4713 i_projid = EXT4_DEF_PROJID; 4714 4715 if (!(test_opt(inode->i_sb, NO_UID32))) { 4716 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4717 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4718 } 4719 i_uid_write(inode, i_uid); 4720 i_gid_write(inode, i_gid); 4721 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4722 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4723 4724 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4725 ei->i_inline_off = 0; 4726 ei->i_dir_start_lookup = 0; 4727 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4728 /* We now have enough fields to check if the inode was active or not. 4729 * This is needed because nfsd might try to access dead inodes 4730 * the test is that same one that e2fsck uses 4731 * NeilBrown 1999oct15 4732 */ 4733 if (inode->i_nlink == 0) { 4734 if ((inode->i_mode == 0 || 4735 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4736 ino != EXT4_BOOT_LOADER_INO) { 4737 /* this inode is deleted */ 4738 ret = -ESTALE; 4739 goto bad_inode; 4740 } 4741 /* The only unlinked inodes we let through here have 4742 * valid i_mode and are being read by the orphan 4743 * recovery code: that's fine, we're about to complete 4744 * the process of deleting those. 4745 * OR it is the EXT4_BOOT_LOADER_INO which is 4746 * not initialized on a new filesystem. */ 4747 } 4748 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4749 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4750 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4751 if (ext4_has_feature_64bit(sb)) 4752 ei->i_file_acl |= 4753 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4754 inode->i_size = ext4_isize(sb, raw_inode); 4755 if ((size = i_size_read(inode)) < 0) { 4756 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4757 ret = -EFSCORRUPTED; 4758 goto bad_inode; 4759 } 4760 ei->i_disksize = inode->i_size; 4761 #ifdef CONFIG_QUOTA 4762 ei->i_reserved_quota = 0; 4763 #endif 4764 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4765 ei->i_block_group = iloc.block_group; 4766 ei->i_last_alloc_group = ~0; 4767 /* 4768 * NOTE! The in-memory inode i_data array is in little-endian order 4769 * even on big-endian machines: we do NOT byteswap the block numbers! 4770 */ 4771 for (block = 0; block < EXT4_N_BLOCKS; block++) 4772 ei->i_data[block] = raw_inode->i_block[block]; 4773 INIT_LIST_HEAD(&ei->i_orphan); 4774 4775 /* 4776 * Set transaction id's of transactions that have to be committed 4777 * to finish f[data]sync. We set them to currently running transaction 4778 * as we cannot be sure that the inode or some of its metadata isn't 4779 * part of the transaction - the inode could have been reclaimed and 4780 * now it is reread from disk. 4781 */ 4782 if (journal) { 4783 transaction_t *transaction; 4784 tid_t tid; 4785 4786 read_lock(&journal->j_state_lock); 4787 if (journal->j_running_transaction) 4788 transaction = journal->j_running_transaction; 4789 else 4790 transaction = journal->j_committing_transaction; 4791 if (transaction) 4792 tid = transaction->t_tid; 4793 else 4794 tid = journal->j_commit_sequence; 4795 read_unlock(&journal->j_state_lock); 4796 ei->i_sync_tid = tid; 4797 ei->i_datasync_tid = tid; 4798 } 4799 4800 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4801 if (ei->i_extra_isize == 0) { 4802 /* The extra space is currently unused. Use it. */ 4803 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4804 ei->i_extra_isize = sizeof(struct ext4_inode) - 4805 EXT4_GOOD_OLD_INODE_SIZE; 4806 } else { 4807 ext4_iget_extra_inode(inode, raw_inode, ei); 4808 } 4809 } 4810 4811 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4812 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4813 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4814 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4815 4816 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4817 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4818 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4819 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4820 inode->i_version |= 4821 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4822 } 4823 } 4824 4825 ret = 0; 4826 if (ei->i_file_acl && 4827 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4828 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4829 ei->i_file_acl); 4830 ret = -EFSCORRUPTED; 4831 goto bad_inode; 4832 } else if (!ext4_has_inline_data(inode)) { 4833 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4834 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4835 (S_ISLNK(inode->i_mode) && 4836 !ext4_inode_is_fast_symlink(inode)))) 4837 /* Validate extent which is part of inode */ 4838 ret = ext4_ext_check_inode(inode); 4839 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4840 (S_ISLNK(inode->i_mode) && 4841 !ext4_inode_is_fast_symlink(inode))) { 4842 /* Validate block references which are part of inode */ 4843 ret = ext4_ind_check_inode(inode); 4844 } 4845 } 4846 if (ret) 4847 goto bad_inode; 4848 4849 if (S_ISREG(inode->i_mode)) { 4850 inode->i_op = &ext4_file_inode_operations; 4851 inode->i_fop = &ext4_file_operations; 4852 ext4_set_aops(inode); 4853 } else if (S_ISDIR(inode->i_mode)) { 4854 inode->i_op = &ext4_dir_inode_operations; 4855 inode->i_fop = &ext4_dir_operations; 4856 } else if (S_ISLNK(inode->i_mode)) { 4857 if (ext4_encrypted_inode(inode)) { 4858 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4859 ext4_set_aops(inode); 4860 } else if (ext4_inode_is_fast_symlink(inode)) { 4861 inode->i_link = (char *)ei->i_data; 4862 inode->i_op = &ext4_fast_symlink_inode_operations; 4863 nd_terminate_link(ei->i_data, inode->i_size, 4864 sizeof(ei->i_data) - 1); 4865 } else { 4866 inode->i_op = &ext4_symlink_inode_operations; 4867 ext4_set_aops(inode); 4868 } 4869 inode_nohighmem(inode); 4870 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4871 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4872 inode->i_op = &ext4_special_inode_operations; 4873 if (raw_inode->i_block[0]) 4874 init_special_inode(inode, inode->i_mode, 4875 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4876 else 4877 init_special_inode(inode, inode->i_mode, 4878 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4879 } else if (ino == EXT4_BOOT_LOADER_INO) { 4880 make_bad_inode(inode); 4881 } else { 4882 ret = -EFSCORRUPTED; 4883 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4884 goto bad_inode; 4885 } 4886 brelse(iloc.bh); 4887 ext4_set_inode_flags(inode); 4888 4889 unlock_new_inode(inode); 4890 return inode; 4891 4892 bad_inode: 4893 brelse(iloc.bh); 4894 iget_failed(inode); 4895 return ERR_PTR(ret); 4896 } 4897 4898 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4899 { 4900 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4901 return ERR_PTR(-EFSCORRUPTED); 4902 return ext4_iget(sb, ino); 4903 } 4904 4905 static int ext4_inode_blocks_set(handle_t *handle, 4906 struct ext4_inode *raw_inode, 4907 struct ext4_inode_info *ei) 4908 { 4909 struct inode *inode = &(ei->vfs_inode); 4910 u64 i_blocks = inode->i_blocks; 4911 struct super_block *sb = inode->i_sb; 4912 4913 if (i_blocks <= ~0U) { 4914 /* 4915 * i_blocks can be represented in a 32 bit variable 4916 * as multiple of 512 bytes 4917 */ 4918 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4919 raw_inode->i_blocks_high = 0; 4920 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4921 return 0; 4922 } 4923 if (!ext4_has_feature_huge_file(sb)) 4924 return -EFBIG; 4925 4926 if (i_blocks <= 0xffffffffffffULL) { 4927 /* 4928 * i_blocks can be represented in a 48 bit variable 4929 * as multiple of 512 bytes 4930 */ 4931 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4932 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4933 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4934 } else { 4935 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4936 /* i_block is stored in file system block size */ 4937 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4938 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4939 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4940 } 4941 return 0; 4942 } 4943 4944 struct other_inode { 4945 unsigned long orig_ino; 4946 struct ext4_inode *raw_inode; 4947 }; 4948 4949 static int other_inode_match(struct inode * inode, unsigned long ino, 4950 void *data) 4951 { 4952 struct other_inode *oi = (struct other_inode *) data; 4953 4954 if ((inode->i_ino != ino) || 4955 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4956 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4957 ((inode->i_state & I_DIRTY_TIME) == 0)) 4958 return 0; 4959 spin_lock(&inode->i_lock); 4960 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4961 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4962 (inode->i_state & I_DIRTY_TIME)) { 4963 struct ext4_inode_info *ei = EXT4_I(inode); 4964 4965 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4966 spin_unlock(&inode->i_lock); 4967 4968 spin_lock(&ei->i_raw_lock); 4969 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4970 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4971 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4972 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4973 spin_unlock(&ei->i_raw_lock); 4974 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4975 return -1; 4976 } 4977 spin_unlock(&inode->i_lock); 4978 return -1; 4979 } 4980 4981 /* 4982 * Opportunistically update the other time fields for other inodes in 4983 * the same inode table block. 4984 */ 4985 static void ext4_update_other_inodes_time(struct super_block *sb, 4986 unsigned long orig_ino, char *buf) 4987 { 4988 struct other_inode oi; 4989 unsigned long ino; 4990 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4991 int inode_size = EXT4_INODE_SIZE(sb); 4992 4993 oi.orig_ino = orig_ino; 4994 /* 4995 * Calculate the first inode in the inode table block. Inode 4996 * numbers are one-based. That is, the first inode in a block 4997 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4998 */ 4999 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5000 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5001 if (ino == orig_ino) 5002 continue; 5003 oi.raw_inode = (struct ext4_inode *) buf; 5004 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5005 } 5006 } 5007 5008 /* 5009 * Post the struct inode info into an on-disk inode location in the 5010 * buffer-cache. This gobbles the caller's reference to the 5011 * buffer_head in the inode location struct. 5012 * 5013 * The caller must have write access to iloc->bh. 5014 */ 5015 static int ext4_do_update_inode(handle_t *handle, 5016 struct inode *inode, 5017 struct ext4_iloc *iloc) 5018 { 5019 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5020 struct ext4_inode_info *ei = EXT4_I(inode); 5021 struct buffer_head *bh = iloc->bh; 5022 struct super_block *sb = inode->i_sb; 5023 int err = 0, rc, block; 5024 int need_datasync = 0, set_large_file = 0; 5025 uid_t i_uid; 5026 gid_t i_gid; 5027 projid_t i_projid; 5028 5029 spin_lock(&ei->i_raw_lock); 5030 5031 /* For fields not tracked in the in-memory inode, 5032 * initialise them to zero for new inodes. */ 5033 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5034 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5035 5036 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5037 i_uid = i_uid_read(inode); 5038 i_gid = i_gid_read(inode); 5039 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5040 if (!(test_opt(inode->i_sb, NO_UID32))) { 5041 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5042 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5043 /* 5044 * Fix up interoperability with old kernels. Otherwise, old inodes get 5045 * re-used with the upper 16 bits of the uid/gid intact 5046 */ 5047 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5048 raw_inode->i_uid_high = 0; 5049 raw_inode->i_gid_high = 0; 5050 } else { 5051 raw_inode->i_uid_high = 5052 cpu_to_le16(high_16_bits(i_uid)); 5053 raw_inode->i_gid_high = 5054 cpu_to_le16(high_16_bits(i_gid)); 5055 } 5056 } else { 5057 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5058 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5059 raw_inode->i_uid_high = 0; 5060 raw_inode->i_gid_high = 0; 5061 } 5062 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5063 5064 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5065 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5066 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5067 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5068 5069 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5070 if (err) { 5071 spin_unlock(&ei->i_raw_lock); 5072 goto out_brelse; 5073 } 5074 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5075 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5076 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5077 raw_inode->i_file_acl_high = 5078 cpu_to_le16(ei->i_file_acl >> 32); 5079 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5080 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5081 ext4_isize_set(raw_inode, ei->i_disksize); 5082 need_datasync = 1; 5083 } 5084 if (ei->i_disksize > 0x7fffffffULL) { 5085 if (!ext4_has_feature_large_file(sb) || 5086 EXT4_SB(sb)->s_es->s_rev_level == 5087 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5088 set_large_file = 1; 5089 } 5090 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5091 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5092 if (old_valid_dev(inode->i_rdev)) { 5093 raw_inode->i_block[0] = 5094 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5095 raw_inode->i_block[1] = 0; 5096 } else { 5097 raw_inode->i_block[0] = 0; 5098 raw_inode->i_block[1] = 5099 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5100 raw_inode->i_block[2] = 0; 5101 } 5102 } else if (!ext4_has_inline_data(inode)) { 5103 for (block = 0; block < EXT4_N_BLOCKS; block++) 5104 raw_inode->i_block[block] = ei->i_data[block]; 5105 } 5106 5107 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5108 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5109 if (ei->i_extra_isize) { 5110 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5111 raw_inode->i_version_hi = 5112 cpu_to_le32(inode->i_version >> 32); 5113 raw_inode->i_extra_isize = 5114 cpu_to_le16(ei->i_extra_isize); 5115 } 5116 } 5117 5118 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5119 i_projid != EXT4_DEF_PROJID); 5120 5121 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5122 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5123 raw_inode->i_projid = cpu_to_le32(i_projid); 5124 5125 ext4_inode_csum_set(inode, raw_inode, ei); 5126 spin_unlock(&ei->i_raw_lock); 5127 if (inode->i_sb->s_flags & MS_LAZYTIME) 5128 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5129 bh->b_data); 5130 5131 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5132 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5133 if (!err) 5134 err = rc; 5135 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5136 if (set_large_file) { 5137 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5138 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5139 if (err) 5140 goto out_brelse; 5141 ext4_update_dynamic_rev(sb); 5142 ext4_set_feature_large_file(sb); 5143 ext4_handle_sync(handle); 5144 err = ext4_handle_dirty_super(handle, sb); 5145 } 5146 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5147 out_brelse: 5148 brelse(bh); 5149 ext4_std_error(inode->i_sb, err); 5150 return err; 5151 } 5152 5153 /* 5154 * ext4_write_inode() 5155 * 5156 * We are called from a few places: 5157 * 5158 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5159 * Here, there will be no transaction running. We wait for any running 5160 * transaction to commit. 5161 * 5162 * - Within flush work (sys_sync(), kupdate and such). 5163 * We wait on commit, if told to. 5164 * 5165 * - Within iput_final() -> write_inode_now() 5166 * We wait on commit, if told to. 5167 * 5168 * In all cases it is actually safe for us to return without doing anything, 5169 * because the inode has been copied into a raw inode buffer in 5170 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5171 * writeback. 5172 * 5173 * Note that we are absolutely dependent upon all inode dirtiers doing the 5174 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5175 * which we are interested. 5176 * 5177 * It would be a bug for them to not do this. The code: 5178 * 5179 * mark_inode_dirty(inode) 5180 * stuff(); 5181 * inode->i_size = expr; 5182 * 5183 * is in error because write_inode() could occur while `stuff()' is running, 5184 * and the new i_size will be lost. Plus the inode will no longer be on the 5185 * superblock's dirty inode list. 5186 */ 5187 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5188 { 5189 int err; 5190 5191 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5192 return 0; 5193 5194 if (EXT4_SB(inode->i_sb)->s_journal) { 5195 if (ext4_journal_current_handle()) { 5196 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5197 dump_stack(); 5198 return -EIO; 5199 } 5200 5201 /* 5202 * No need to force transaction in WB_SYNC_NONE mode. Also 5203 * ext4_sync_fs() will force the commit after everything is 5204 * written. 5205 */ 5206 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5207 return 0; 5208 5209 err = ext4_force_commit(inode->i_sb); 5210 } else { 5211 struct ext4_iloc iloc; 5212 5213 err = __ext4_get_inode_loc(inode, &iloc, 0); 5214 if (err) 5215 return err; 5216 /* 5217 * sync(2) will flush the whole buffer cache. No need to do 5218 * it here separately for each inode. 5219 */ 5220 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5221 sync_dirty_buffer(iloc.bh); 5222 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5223 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5224 "IO error syncing inode"); 5225 err = -EIO; 5226 } 5227 brelse(iloc.bh); 5228 } 5229 return err; 5230 } 5231 5232 /* 5233 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5234 * buffers that are attached to a page stradding i_size and are undergoing 5235 * commit. In that case we have to wait for commit to finish and try again. 5236 */ 5237 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5238 { 5239 struct page *page; 5240 unsigned offset; 5241 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5242 tid_t commit_tid = 0; 5243 int ret; 5244 5245 offset = inode->i_size & (PAGE_SIZE - 1); 5246 /* 5247 * All buffers in the last page remain valid? Then there's nothing to 5248 * do. We do the check mainly to optimize the common PAGE_SIZE == 5249 * blocksize case 5250 */ 5251 if (offset > PAGE_SIZE - i_blocksize(inode)) 5252 return; 5253 while (1) { 5254 page = find_lock_page(inode->i_mapping, 5255 inode->i_size >> PAGE_SHIFT); 5256 if (!page) 5257 return; 5258 ret = __ext4_journalled_invalidatepage(page, offset, 5259 PAGE_SIZE - offset); 5260 unlock_page(page); 5261 put_page(page); 5262 if (ret != -EBUSY) 5263 return; 5264 commit_tid = 0; 5265 read_lock(&journal->j_state_lock); 5266 if (journal->j_committing_transaction) 5267 commit_tid = journal->j_committing_transaction->t_tid; 5268 read_unlock(&journal->j_state_lock); 5269 if (commit_tid) 5270 jbd2_log_wait_commit(journal, commit_tid); 5271 } 5272 } 5273 5274 /* 5275 * ext4_setattr() 5276 * 5277 * Called from notify_change. 5278 * 5279 * We want to trap VFS attempts to truncate the file as soon as 5280 * possible. In particular, we want to make sure that when the VFS 5281 * shrinks i_size, we put the inode on the orphan list and modify 5282 * i_disksize immediately, so that during the subsequent flushing of 5283 * dirty pages and freeing of disk blocks, we can guarantee that any 5284 * commit will leave the blocks being flushed in an unused state on 5285 * disk. (On recovery, the inode will get truncated and the blocks will 5286 * be freed, so we have a strong guarantee that no future commit will 5287 * leave these blocks visible to the user.) 5288 * 5289 * Another thing we have to assure is that if we are in ordered mode 5290 * and inode is still attached to the committing transaction, we must 5291 * we start writeout of all the dirty pages which are being truncated. 5292 * This way we are sure that all the data written in the previous 5293 * transaction are already on disk (truncate waits for pages under 5294 * writeback). 5295 * 5296 * Called with inode->i_mutex down. 5297 */ 5298 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5299 { 5300 struct inode *inode = d_inode(dentry); 5301 int error, rc = 0; 5302 int orphan = 0; 5303 const unsigned int ia_valid = attr->ia_valid; 5304 5305 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5306 return -EIO; 5307 5308 error = setattr_prepare(dentry, attr); 5309 if (error) 5310 return error; 5311 5312 if (is_quota_modification(inode, attr)) { 5313 error = dquot_initialize(inode); 5314 if (error) 5315 return error; 5316 } 5317 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5318 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5319 handle_t *handle; 5320 5321 /* (user+group)*(old+new) structure, inode write (sb, 5322 * inode block, ? - but truncate inode update has it) */ 5323 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5324 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5325 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5326 if (IS_ERR(handle)) { 5327 error = PTR_ERR(handle); 5328 goto err_out; 5329 } 5330 5331 /* dquot_transfer() calls back ext4_get_inode_usage() which 5332 * counts xattr inode references. 5333 */ 5334 down_read(&EXT4_I(inode)->xattr_sem); 5335 error = dquot_transfer(inode, attr); 5336 up_read(&EXT4_I(inode)->xattr_sem); 5337 5338 if (error) { 5339 ext4_journal_stop(handle); 5340 return error; 5341 } 5342 /* Update corresponding info in inode so that everything is in 5343 * one transaction */ 5344 if (attr->ia_valid & ATTR_UID) 5345 inode->i_uid = attr->ia_uid; 5346 if (attr->ia_valid & ATTR_GID) 5347 inode->i_gid = attr->ia_gid; 5348 error = ext4_mark_inode_dirty(handle, inode); 5349 ext4_journal_stop(handle); 5350 } 5351 5352 if (attr->ia_valid & ATTR_SIZE) { 5353 handle_t *handle; 5354 loff_t oldsize = inode->i_size; 5355 int shrink = (attr->ia_size <= inode->i_size); 5356 5357 if (ext4_encrypted_inode(inode)) { 5358 error = fscrypt_get_encryption_info(inode); 5359 if (error) 5360 return error; 5361 if (!fscrypt_has_encryption_key(inode)) 5362 return -ENOKEY; 5363 } 5364 5365 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5367 5368 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5369 return -EFBIG; 5370 } 5371 if (!S_ISREG(inode->i_mode)) 5372 return -EINVAL; 5373 5374 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5375 inode_inc_iversion(inode); 5376 5377 if (ext4_should_order_data(inode) && 5378 (attr->ia_size < inode->i_size)) { 5379 error = ext4_begin_ordered_truncate(inode, 5380 attr->ia_size); 5381 if (error) 5382 goto err_out; 5383 } 5384 if (attr->ia_size != inode->i_size) { 5385 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5386 if (IS_ERR(handle)) { 5387 error = PTR_ERR(handle); 5388 goto err_out; 5389 } 5390 if (ext4_handle_valid(handle) && shrink) { 5391 error = ext4_orphan_add(handle, inode); 5392 orphan = 1; 5393 } 5394 /* 5395 * Update c/mtime on truncate up, ext4_truncate() will 5396 * update c/mtime in shrink case below 5397 */ 5398 if (!shrink) { 5399 inode->i_mtime = current_time(inode); 5400 inode->i_ctime = inode->i_mtime; 5401 } 5402 down_write(&EXT4_I(inode)->i_data_sem); 5403 EXT4_I(inode)->i_disksize = attr->ia_size; 5404 rc = ext4_mark_inode_dirty(handle, inode); 5405 if (!error) 5406 error = rc; 5407 /* 5408 * We have to update i_size under i_data_sem together 5409 * with i_disksize to avoid races with writeback code 5410 * running ext4_wb_update_i_disksize(). 5411 */ 5412 if (!error) 5413 i_size_write(inode, attr->ia_size); 5414 up_write(&EXT4_I(inode)->i_data_sem); 5415 ext4_journal_stop(handle); 5416 if (error) { 5417 if (orphan) 5418 ext4_orphan_del(NULL, inode); 5419 goto err_out; 5420 } 5421 } 5422 if (!shrink) 5423 pagecache_isize_extended(inode, oldsize, inode->i_size); 5424 5425 /* 5426 * Blocks are going to be removed from the inode. Wait 5427 * for dio in flight. Temporarily disable 5428 * dioread_nolock to prevent livelock. 5429 */ 5430 if (orphan) { 5431 if (!ext4_should_journal_data(inode)) { 5432 ext4_inode_block_unlocked_dio(inode); 5433 inode_dio_wait(inode); 5434 ext4_inode_resume_unlocked_dio(inode); 5435 } else 5436 ext4_wait_for_tail_page_commit(inode); 5437 } 5438 down_write(&EXT4_I(inode)->i_mmap_sem); 5439 /* 5440 * Truncate pagecache after we've waited for commit 5441 * in data=journal mode to make pages freeable. 5442 */ 5443 truncate_pagecache(inode, inode->i_size); 5444 if (shrink) { 5445 rc = ext4_truncate(inode); 5446 if (rc) 5447 error = rc; 5448 } 5449 up_write(&EXT4_I(inode)->i_mmap_sem); 5450 } 5451 5452 if (!error) { 5453 setattr_copy(inode, attr); 5454 mark_inode_dirty(inode); 5455 } 5456 5457 /* 5458 * If the call to ext4_truncate failed to get a transaction handle at 5459 * all, we need to clean up the in-core orphan list manually. 5460 */ 5461 if (orphan && inode->i_nlink) 5462 ext4_orphan_del(NULL, inode); 5463 5464 if (!error && (ia_valid & ATTR_MODE)) 5465 rc = posix_acl_chmod(inode, inode->i_mode); 5466 5467 err_out: 5468 ext4_std_error(inode->i_sb, error); 5469 if (!error) 5470 error = rc; 5471 return error; 5472 } 5473 5474 int ext4_getattr(const struct path *path, struct kstat *stat, 5475 u32 request_mask, unsigned int query_flags) 5476 { 5477 struct inode *inode = d_inode(path->dentry); 5478 struct ext4_inode *raw_inode; 5479 struct ext4_inode_info *ei = EXT4_I(inode); 5480 unsigned int flags; 5481 5482 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5483 stat->result_mask |= STATX_BTIME; 5484 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5485 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5486 } 5487 5488 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5489 if (flags & EXT4_APPEND_FL) 5490 stat->attributes |= STATX_ATTR_APPEND; 5491 if (flags & EXT4_COMPR_FL) 5492 stat->attributes |= STATX_ATTR_COMPRESSED; 5493 if (flags & EXT4_ENCRYPT_FL) 5494 stat->attributes |= STATX_ATTR_ENCRYPTED; 5495 if (flags & EXT4_IMMUTABLE_FL) 5496 stat->attributes |= STATX_ATTR_IMMUTABLE; 5497 if (flags & EXT4_NODUMP_FL) 5498 stat->attributes |= STATX_ATTR_NODUMP; 5499 5500 stat->attributes_mask |= (STATX_ATTR_APPEND | 5501 STATX_ATTR_COMPRESSED | 5502 STATX_ATTR_ENCRYPTED | 5503 STATX_ATTR_IMMUTABLE | 5504 STATX_ATTR_NODUMP); 5505 5506 generic_fillattr(inode, stat); 5507 return 0; 5508 } 5509 5510 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5511 u32 request_mask, unsigned int query_flags) 5512 { 5513 struct inode *inode = d_inode(path->dentry); 5514 u64 delalloc_blocks; 5515 5516 ext4_getattr(path, stat, request_mask, query_flags); 5517 5518 /* 5519 * If there is inline data in the inode, the inode will normally not 5520 * have data blocks allocated (it may have an external xattr block). 5521 * Report at least one sector for such files, so tools like tar, rsync, 5522 * others don't incorrectly think the file is completely sparse. 5523 */ 5524 if (unlikely(ext4_has_inline_data(inode))) 5525 stat->blocks += (stat->size + 511) >> 9; 5526 5527 /* 5528 * We can't update i_blocks if the block allocation is delayed 5529 * otherwise in the case of system crash before the real block 5530 * allocation is done, we will have i_blocks inconsistent with 5531 * on-disk file blocks. 5532 * We always keep i_blocks updated together with real 5533 * allocation. But to not confuse with user, stat 5534 * will return the blocks that include the delayed allocation 5535 * blocks for this file. 5536 */ 5537 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5538 EXT4_I(inode)->i_reserved_data_blocks); 5539 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5540 return 0; 5541 } 5542 5543 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5544 int pextents) 5545 { 5546 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5547 return ext4_ind_trans_blocks(inode, lblocks); 5548 return ext4_ext_index_trans_blocks(inode, pextents); 5549 } 5550 5551 /* 5552 * Account for index blocks, block groups bitmaps and block group 5553 * descriptor blocks if modify datablocks and index blocks 5554 * worse case, the indexs blocks spread over different block groups 5555 * 5556 * If datablocks are discontiguous, they are possible to spread over 5557 * different block groups too. If they are contiguous, with flexbg, 5558 * they could still across block group boundary. 5559 * 5560 * Also account for superblock, inode, quota and xattr blocks 5561 */ 5562 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5563 int pextents) 5564 { 5565 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5566 int gdpblocks; 5567 int idxblocks; 5568 int ret = 0; 5569 5570 /* 5571 * How many index blocks need to touch to map @lblocks logical blocks 5572 * to @pextents physical extents? 5573 */ 5574 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5575 5576 ret = idxblocks; 5577 5578 /* 5579 * Now let's see how many group bitmaps and group descriptors need 5580 * to account 5581 */ 5582 groups = idxblocks + pextents; 5583 gdpblocks = groups; 5584 if (groups > ngroups) 5585 groups = ngroups; 5586 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5587 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5588 5589 /* bitmaps and block group descriptor blocks */ 5590 ret += groups + gdpblocks; 5591 5592 /* Blocks for super block, inode, quota and xattr blocks */ 5593 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5594 5595 return ret; 5596 } 5597 5598 /* 5599 * Calculate the total number of credits to reserve to fit 5600 * the modification of a single pages into a single transaction, 5601 * which may include multiple chunks of block allocations. 5602 * 5603 * This could be called via ext4_write_begin() 5604 * 5605 * We need to consider the worse case, when 5606 * one new block per extent. 5607 */ 5608 int ext4_writepage_trans_blocks(struct inode *inode) 5609 { 5610 int bpp = ext4_journal_blocks_per_page(inode); 5611 int ret; 5612 5613 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5614 5615 /* Account for data blocks for journalled mode */ 5616 if (ext4_should_journal_data(inode)) 5617 ret += bpp; 5618 return ret; 5619 } 5620 5621 /* 5622 * Calculate the journal credits for a chunk of data modification. 5623 * 5624 * This is called from DIO, fallocate or whoever calling 5625 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5626 * 5627 * journal buffers for data blocks are not included here, as DIO 5628 * and fallocate do no need to journal data buffers. 5629 */ 5630 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5631 { 5632 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5633 } 5634 5635 /* 5636 * The caller must have previously called ext4_reserve_inode_write(). 5637 * Give this, we know that the caller already has write access to iloc->bh. 5638 */ 5639 int ext4_mark_iloc_dirty(handle_t *handle, 5640 struct inode *inode, struct ext4_iloc *iloc) 5641 { 5642 int err = 0; 5643 5644 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5645 return -EIO; 5646 5647 if (IS_I_VERSION(inode)) 5648 inode_inc_iversion(inode); 5649 5650 /* the do_update_inode consumes one bh->b_count */ 5651 get_bh(iloc->bh); 5652 5653 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5654 err = ext4_do_update_inode(handle, inode, iloc); 5655 put_bh(iloc->bh); 5656 return err; 5657 } 5658 5659 /* 5660 * On success, We end up with an outstanding reference count against 5661 * iloc->bh. This _must_ be cleaned up later. 5662 */ 5663 5664 int 5665 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5666 struct ext4_iloc *iloc) 5667 { 5668 int err; 5669 5670 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5671 return -EIO; 5672 5673 err = ext4_get_inode_loc(inode, iloc); 5674 if (!err) { 5675 BUFFER_TRACE(iloc->bh, "get_write_access"); 5676 err = ext4_journal_get_write_access(handle, iloc->bh); 5677 if (err) { 5678 brelse(iloc->bh); 5679 iloc->bh = NULL; 5680 } 5681 } 5682 ext4_std_error(inode->i_sb, err); 5683 return err; 5684 } 5685 5686 static int __ext4_expand_extra_isize(struct inode *inode, 5687 unsigned int new_extra_isize, 5688 struct ext4_iloc *iloc, 5689 handle_t *handle, int *no_expand) 5690 { 5691 struct ext4_inode *raw_inode; 5692 struct ext4_xattr_ibody_header *header; 5693 int error; 5694 5695 raw_inode = ext4_raw_inode(iloc); 5696 5697 header = IHDR(inode, raw_inode); 5698 5699 /* No extended attributes present */ 5700 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5701 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5702 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5703 EXT4_I(inode)->i_extra_isize, 0, 5704 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5705 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5706 return 0; 5707 } 5708 5709 /* try to expand with EAs present */ 5710 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5711 raw_inode, handle); 5712 if (error) { 5713 /* 5714 * Inode size expansion failed; don't try again 5715 */ 5716 *no_expand = 1; 5717 } 5718 5719 return error; 5720 } 5721 5722 /* 5723 * Expand an inode by new_extra_isize bytes. 5724 * Returns 0 on success or negative error number on failure. 5725 */ 5726 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5727 unsigned int new_extra_isize, 5728 struct ext4_iloc iloc, 5729 handle_t *handle) 5730 { 5731 int no_expand; 5732 int error; 5733 5734 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5735 return -EOVERFLOW; 5736 5737 /* 5738 * In nojournal mode, we can immediately attempt to expand 5739 * the inode. When journaled, we first need to obtain extra 5740 * buffer credits since we may write into the EA block 5741 * with this same handle. If journal_extend fails, then it will 5742 * only result in a minor loss of functionality for that inode. 5743 * If this is felt to be critical, then e2fsck should be run to 5744 * force a large enough s_min_extra_isize. 5745 */ 5746 if (ext4_handle_valid(handle) && 5747 jbd2_journal_extend(handle, 5748 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5749 return -ENOSPC; 5750 5751 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5752 return -EBUSY; 5753 5754 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5755 handle, &no_expand); 5756 ext4_write_unlock_xattr(inode, &no_expand); 5757 5758 return error; 5759 } 5760 5761 int ext4_expand_extra_isize(struct inode *inode, 5762 unsigned int new_extra_isize, 5763 struct ext4_iloc *iloc) 5764 { 5765 handle_t *handle; 5766 int no_expand; 5767 int error, rc; 5768 5769 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5770 brelse(iloc->bh); 5771 return -EOVERFLOW; 5772 } 5773 5774 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5775 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5776 if (IS_ERR(handle)) { 5777 error = PTR_ERR(handle); 5778 brelse(iloc->bh); 5779 return error; 5780 } 5781 5782 ext4_write_lock_xattr(inode, &no_expand); 5783 5784 BUFFER_TRACE(iloc.bh, "get_write_access"); 5785 error = ext4_journal_get_write_access(handle, iloc->bh); 5786 if (error) { 5787 brelse(iloc->bh); 5788 goto out_stop; 5789 } 5790 5791 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5792 handle, &no_expand); 5793 5794 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5795 if (!error) 5796 error = rc; 5797 5798 ext4_write_unlock_xattr(inode, &no_expand); 5799 out_stop: 5800 ext4_journal_stop(handle); 5801 return error; 5802 } 5803 5804 /* 5805 * What we do here is to mark the in-core inode as clean with respect to inode 5806 * dirtiness (it may still be data-dirty). 5807 * This means that the in-core inode may be reaped by prune_icache 5808 * without having to perform any I/O. This is a very good thing, 5809 * because *any* task may call prune_icache - even ones which 5810 * have a transaction open against a different journal. 5811 * 5812 * Is this cheating? Not really. Sure, we haven't written the 5813 * inode out, but prune_icache isn't a user-visible syncing function. 5814 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5815 * we start and wait on commits. 5816 */ 5817 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5818 { 5819 struct ext4_iloc iloc; 5820 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5821 int err; 5822 5823 might_sleep(); 5824 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5825 err = ext4_reserve_inode_write(handle, inode, &iloc); 5826 if (err) 5827 return err; 5828 5829 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5830 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5831 iloc, handle); 5832 5833 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5834 } 5835 5836 /* 5837 * ext4_dirty_inode() is called from __mark_inode_dirty() 5838 * 5839 * We're really interested in the case where a file is being extended. 5840 * i_size has been changed by generic_commit_write() and we thus need 5841 * to include the updated inode in the current transaction. 5842 * 5843 * Also, dquot_alloc_block() will always dirty the inode when blocks 5844 * are allocated to the file. 5845 * 5846 * If the inode is marked synchronous, we don't honour that here - doing 5847 * so would cause a commit on atime updates, which we don't bother doing. 5848 * We handle synchronous inodes at the highest possible level. 5849 * 5850 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5851 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5852 * to copy into the on-disk inode structure are the timestamp files. 5853 */ 5854 void ext4_dirty_inode(struct inode *inode, int flags) 5855 { 5856 handle_t *handle; 5857 5858 if (flags == I_DIRTY_TIME) 5859 return; 5860 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5861 if (IS_ERR(handle)) 5862 goto out; 5863 5864 ext4_mark_inode_dirty(handle, inode); 5865 5866 ext4_journal_stop(handle); 5867 out: 5868 return; 5869 } 5870 5871 #if 0 5872 /* 5873 * Bind an inode's backing buffer_head into this transaction, to prevent 5874 * it from being flushed to disk early. Unlike 5875 * ext4_reserve_inode_write, this leaves behind no bh reference and 5876 * returns no iloc structure, so the caller needs to repeat the iloc 5877 * lookup to mark the inode dirty later. 5878 */ 5879 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5880 { 5881 struct ext4_iloc iloc; 5882 5883 int err = 0; 5884 if (handle) { 5885 err = ext4_get_inode_loc(inode, &iloc); 5886 if (!err) { 5887 BUFFER_TRACE(iloc.bh, "get_write_access"); 5888 err = jbd2_journal_get_write_access(handle, iloc.bh); 5889 if (!err) 5890 err = ext4_handle_dirty_metadata(handle, 5891 NULL, 5892 iloc.bh); 5893 brelse(iloc.bh); 5894 } 5895 } 5896 ext4_std_error(inode->i_sb, err); 5897 return err; 5898 } 5899 #endif 5900 5901 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5902 { 5903 journal_t *journal; 5904 handle_t *handle; 5905 int err; 5906 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5907 5908 /* 5909 * We have to be very careful here: changing a data block's 5910 * journaling status dynamically is dangerous. If we write a 5911 * data block to the journal, change the status and then delete 5912 * that block, we risk forgetting to revoke the old log record 5913 * from the journal and so a subsequent replay can corrupt data. 5914 * So, first we make sure that the journal is empty and that 5915 * nobody is changing anything. 5916 */ 5917 5918 journal = EXT4_JOURNAL(inode); 5919 if (!journal) 5920 return 0; 5921 if (is_journal_aborted(journal)) 5922 return -EROFS; 5923 5924 /* Wait for all existing dio workers */ 5925 ext4_inode_block_unlocked_dio(inode); 5926 inode_dio_wait(inode); 5927 5928 /* 5929 * Before flushing the journal and switching inode's aops, we have 5930 * to flush all dirty data the inode has. There can be outstanding 5931 * delayed allocations, there can be unwritten extents created by 5932 * fallocate or buffered writes in dioread_nolock mode covered by 5933 * dirty data which can be converted only after flushing the dirty 5934 * data (and journalled aops don't know how to handle these cases). 5935 */ 5936 if (val) { 5937 down_write(&EXT4_I(inode)->i_mmap_sem); 5938 err = filemap_write_and_wait(inode->i_mapping); 5939 if (err < 0) { 5940 up_write(&EXT4_I(inode)->i_mmap_sem); 5941 ext4_inode_resume_unlocked_dio(inode); 5942 return err; 5943 } 5944 } 5945 5946 percpu_down_write(&sbi->s_journal_flag_rwsem); 5947 jbd2_journal_lock_updates(journal); 5948 5949 /* 5950 * OK, there are no updates running now, and all cached data is 5951 * synced to disk. We are now in a completely consistent state 5952 * which doesn't have anything in the journal, and we know that 5953 * no filesystem updates are running, so it is safe to modify 5954 * the inode's in-core data-journaling state flag now. 5955 */ 5956 5957 if (val) 5958 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5959 else { 5960 err = jbd2_journal_flush(journal); 5961 if (err < 0) { 5962 jbd2_journal_unlock_updates(journal); 5963 percpu_up_write(&sbi->s_journal_flag_rwsem); 5964 ext4_inode_resume_unlocked_dio(inode); 5965 return err; 5966 } 5967 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5968 } 5969 ext4_set_aops(inode); 5970 /* 5971 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated. 5972 * E.g. S_DAX may get cleared / set. 5973 */ 5974 ext4_set_inode_flags(inode); 5975 5976 jbd2_journal_unlock_updates(journal); 5977 percpu_up_write(&sbi->s_journal_flag_rwsem); 5978 5979 if (val) 5980 up_write(&EXT4_I(inode)->i_mmap_sem); 5981 ext4_inode_resume_unlocked_dio(inode); 5982 5983 /* Finally we can mark the inode as dirty. */ 5984 5985 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5986 if (IS_ERR(handle)) 5987 return PTR_ERR(handle); 5988 5989 err = ext4_mark_inode_dirty(handle, inode); 5990 ext4_handle_sync(handle); 5991 ext4_journal_stop(handle); 5992 ext4_std_error(inode->i_sb, err); 5993 5994 return err; 5995 } 5996 5997 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5998 { 5999 return !buffer_mapped(bh); 6000 } 6001 6002 int ext4_page_mkwrite(struct vm_fault *vmf) 6003 { 6004 struct vm_area_struct *vma = vmf->vma; 6005 struct page *page = vmf->page; 6006 loff_t size; 6007 unsigned long len; 6008 int ret; 6009 struct file *file = vma->vm_file; 6010 struct inode *inode = file_inode(file); 6011 struct address_space *mapping = inode->i_mapping; 6012 handle_t *handle; 6013 get_block_t *get_block; 6014 int retries = 0; 6015 6016 sb_start_pagefault(inode->i_sb); 6017 file_update_time(vma->vm_file); 6018 6019 down_read(&EXT4_I(inode)->i_mmap_sem); 6020 6021 ret = ext4_convert_inline_data(inode); 6022 if (ret) 6023 goto out_ret; 6024 6025 /* Delalloc case is easy... */ 6026 if (test_opt(inode->i_sb, DELALLOC) && 6027 !ext4_should_journal_data(inode) && 6028 !ext4_nonda_switch(inode->i_sb)) { 6029 do { 6030 ret = block_page_mkwrite(vma, vmf, 6031 ext4_da_get_block_prep); 6032 } while (ret == -ENOSPC && 6033 ext4_should_retry_alloc(inode->i_sb, &retries)); 6034 goto out_ret; 6035 } 6036 6037 lock_page(page); 6038 size = i_size_read(inode); 6039 /* Page got truncated from under us? */ 6040 if (page->mapping != mapping || page_offset(page) > size) { 6041 unlock_page(page); 6042 ret = VM_FAULT_NOPAGE; 6043 goto out; 6044 } 6045 6046 if (page->index == size >> PAGE_SHIFT) 6047 len = size & ~PAGE_MASK; 6048 else 6049 len = PAGE_SIZE; 6050 /* 6051 * Return if we have all the buffers mapped. This avoids the need to do 6052 * journal_start/journal_stop which can block and take a long time 6053 */ 6054 if (page_has_buffers(page)) { 6055 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6056 0, len, NULL, 6057 ext4_bh_unmapped)) { 6058 /* Wait so that we don't change page under IO */ 6059 wait_for_stable_page(page); 6060 ret = VM_FAULT_LOCKED; 6061 goto out; 6062 } 6063 } 6064 unlock_page(page); 6065 /* OK, we need to fill the hole... */ 6066 if (ext4_should_dioread_nolock(inode)) 6067 get_block = ext4_get_block_unwritten; 6068 else 6069 get_block = ext4_get_block; 6070 retry_alloc: 6071 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6072 ext4_writepage_trans_blocks(inode)); 6073 if (IS_ERR(handle)) { 6074 ret = VM_FAULT_SIGBUS; 6075 goto out; 6076 } 6077 ret = block_page_mkwrite(vma, vmf, get_block); 6078 if (!ret && ext4_should_journal_data(inode)) { 6079 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6080 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6081 unlock_page(page); 6082 ret = VM_FAULT_SIGBUS; 6083 ext4_journal_stop(handle); 6084 goto out; 6085 } 6086 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6087 } 6088 ext4_journal_stop(handle); 6089 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6090 goto retry_alloc; 6091 out_ret: 6092 ret = block_page_mkwrite_return(ret); 6093 out: 6094 up_read(&EXT4_I(inode)->i_mmap_sem); 6095 sb_end_pagefault(inode->i_sb); 6096 return ret; 6097 } 6098 6099 int ext4_filemap_fault(struct vm_fault *vmf) 6100 { 6101 struct inode *inode = file_inode(vmf->vma->vm_file); 6102 int err; 6103 6104 down_read(&EXT4_I(inode)->i_mmap_sem); 6105 err = filemap_fault(vmf); 6106 up_read(&EXT4_I(inode)->i_mmap_sem); 6107 6108 return err; 6109 } 6110 6111 /* 6112 * Find the first extent at or after @lblk in an inode that is not a hole. 6113 * Search for @map_len blocks at most. The extent is returned in @result. 6114 * 6115 * The function returns 1 if we found an extent. The function returns 0 in 6116 * case there is no extent at or after @lblk and in that case also sets 6117 * @result->es_len to 0. In case of error, the error code is returned. 6118 */ 6119 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 6120 unsigned int map_len, struct extent_status *result) 6121 { 6122 struct ext4_map_blocks map; 6123 struct extent_status es = {}; 6124 int ret; 6125 6126 map.m_lblk = lblk; 6127 map.m_len = map_len; 6128 6129 /* 6130 * For non-extent based files this loop may iterate several times since 6131 * we do not determine full hole size. 6132 */ 6133 while (map.m_len > 0) { 6134 ret = ext4_map_blocks(NULL, inode, &map, 0); 6135 if (ret < 0) 6136 return ret; 6137 /* There's extent covering m_lblk? Just return it. */ 6138 if (ret > 0) { 6139 int status; 6140 6141 ext4_es_store_pblock(result, map.m_pblk); 6142 result->es_lblk = map.m_lblk; 6143 result->es_len = map.m_len; 6144 if (map.m_flags & EXT4_MAP_UNWRITTEN) 6145 status = EXTENT_STATUS_UNWRITTEN; 6146 else 6147 status = EXTENT_STATUS_WRITTEN; 6148 ext4_es_store_status(result, status); 6149 return 1; 6150 } 6151 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 6152 map.m_lblk + map.m_len - 1, 6153 &es); 6154 /* Is delalloc data before next block in extent tree? */ 6155 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 6156 ext4_lblk_t offset = 0; 6157 6158 if (es.es_lblk < lblk) 6159 offset = lblk - es.es_lblk; 6160 result->es_lblk = es.es_lblk + offset; 6161 ext4_es_store_pblock(result, 6162 ext4_es_pblock(&es) + offset); 6163 result->es_len = es.es_len - offset; 6164 ext4_es_store_status(result, ext4_es_status(&es)); 6165 6166 return 1; 6167 } 6168 /* There's a hole at m_lblk, advance us after it */ 6169 map.m_lblk += map.m_len; 6170 map_len -= map.m_len; 6171 map.m_len = map_len; 6172 cond_resched(); 6173 } 6174 result->es_len = 0; 6175 return 0; 6176 } 6177