xref: /openbmc/linux/fs/ext4/inode.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 				struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 				unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 				 int nblocks)
173 {
174 	int ret;
175 
176 	/*
177 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178 	 * moment, get_block can be called only for blocks inside i_size since
179 	 * page cache has been already dropped and writes are blocked by
180 	 * i_mutex. So we can safely drop the i_data_sem here.
181 	 */
182 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 	jbd_debug(2, "restarting handle %p\n", handle);
184 	up_write(&EXT4_I(inode)->i_data_sem);
185 	ret = ext4_journal_restart(handle, nblocks);
186 	down_write(&EXT4_I(inode)->i_data_sem);
187 	ext4_discard_preallocations(inode);
188 
189 	return ret;
190 }
191 
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197 	handle_t *handle;
198 	int err;
199 	int extra_credits = 3;
200 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
201 
202 	trace_ext4_evict_inode(inode);
203 
204 	if (inode->i_nlink) {
205 		/*
206 		 * When journalling data dirty buffers are tracked only in the
207 		 * journal. So although mm thinks everything is clean and
208 		 * ready for reaping the inode might still have some pages to
209 		 * write in the running transaction or waiting to be
210 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 		 * (via truncate_inode_pages()) to discard these buffers can
212 		 * cause data loss. Also even if we did not discard these
213 		 * buffers, we would have no way to find them after the inode
214 		 * is reaped and thus user could see stale data if he tries to
215 		 * read them before the transaction is checkpointed. So be
216 		 * careful and force everything to disk here... We use
217 		 * ei->i_datasync_tid to store the newest transaction
218 		 * containing inode's data.
219 		 *
220 		 * Note that directories do not have this problem because they
221 		 * don't use page cache.
222 		 */
223 		if (inode->i_ino != EXT4_JOURNAL_INO &&
224 		    ext4_should_journal_data(inode) &&
225 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 		    inode->i_data.nrpages) {
227 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229 
230 			jbd2_complete_transaction(journal, commit_tid);
231 			filemap_write_and_wait(&inode->i_data);
232 		}
233 		truncate_inode_pages_final(&inode->i_data);
234 
235 		goto no_delete;
236 	}
237 
238 	if (is_bad_inode(inode))
239 		goto no_delete;
240 	dquot_initialize(inode);
241 
242 	if (ext4_should_order_data(inode))
243 		ext4_begin_ordered_truncate(inode, 0);
244 	truncate_inode_pages_final(&inode->i_data);
245 
246 	/*
247 	 * Protect us against freezing - iput() caller didn't have to have any
248 	 * protection against it
249 	 */
250 	sb_start_intwrite(inode->i_sb);
251 
252 	if (!IS_NOQUOTA(inode))
253 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254 
255 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 				 ext4_blocks_for_truncate(inode)+extra_credits);
257 	if (IS_ERR(handle)) {
258 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 		/*
260 		 * If we're going to skip the normal cleanup, we still need to
261 		 * make sure that the in-core orphan linked list is properly
262 		 * cleaned up.
263 		 */
264 		ext4_orphan_del(NULL, inode);
265 		sb_end_intwrite(inode->i_sb);
266 		goto no_delete;
267 	}
268 
269 	if (IS_SYNC(inode))
270 		ext4_handle_sync(handle);
271 
272 	/*
273 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 	 * special handling of symlinks here because i_size is used to
275 	 * determine whether ext4_inode_info->i_data contains symlink data or
276 	 * block mappings. Setting i_size to 0 will remove its fast symlink
277 	 * status. Erase i_data so that it becomes a valid empty block map.
278 	 */
279 	if (ext4_inode_is_fast_symlink(inode))
280 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 	inode->i_size = 0;
282 	err = ext4_mark_inode_dirty(handle, inode);
283 	if (err) {
284 		ext4_warning(inode->i_sb,
285 			     "couldn't mark inode dirty (err %d)", err);
286 		goto stop_handle;
287 	}
288 	if (inode->i_blocks) {
289 		err = ext4_truncate(inode);
290 		if (err) {
291 			ext4_error(inode->i_sb,
292 				   "couldn't truncate inode %lu (err %d)",
293 				   inode->i_ino, err);
294 			goto stop_handle;
295 		}
296 	}
297 
298 	/* Remove xattr references. */
299 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 				      extra_credits);
301 	if (err) {
302 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 		ext4_journal_stop(handle);
305 		ext4_orphan_del(NULL, inode);
306 		sb_end_intwrite(inode->i_sb);
307 		ext4_xattr_inode_array_free(ea_inode_array);
308 		goto no_delete;
309 	}
310 
311 	/*
312 	 * Kill off the orphan record which ext4_truncate created.
313 	 * AKPM: I think this can be inside the above `if'.
314 	 * Note that ext4_orphan_del() has to be able to cope with the
315 	 * deletion of a non-existent orphan - this is because we don't
316 	 * know if ext4_truncate() actually created an orphan record.
317 	 * (Well, we could do this if we need to, but heck - it works)
318 	 */
319 	ext4_orphan_del(handle, inode);
320 	EXT4_I(inode)->i_dtime	= get_seconds();
321 
322 	/*
323 	 * One subtle ordering requirement: if anything has gone wrong
324 	 * (transaction abort, IO errors, whatever), then we can still
325 	 * do these next steps (the fs will already have been marked as
326 	 * having errors), but we can't free the inode if the mark_dirty
327 	 * fails.
328 	 */
329 	if (ext4_mark_inode_dirty(handle, inode))
330 		/* If that failed, just do the required in-core inode clear. */
331 		ext4_clear_inode(inode);
332 	else
333 		ext4_free_inode(handle, inode);
334 	ext4_journal_stop(handle);
335 	sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
340 }
341 
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345 	return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348 
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354 					int used, int quota_claim)
355 {
356 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 	struct ext4_inode_info *ei = EXT4_I(inode);
358 
359 	spin_lock(&ei->i_block_reservation_lock);
360 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 	if (unlikely(used > ei->i_reserved_data_blocks)) {
362 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 			 "with only %d reserved data blocks",
364 			 __func__, inode->i_ino, used,
365 			 ei->i_reserved_data_blocks);
366 		WARN_ON(1);
367 		used = ei->i_reserved_data_blocks;
368 	}
369 
370 	/* Update per-inode reservations */
371 	ei->i_reserved_data_blocks -= used;
372 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373 
374 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375 
376 	/* Update quota subsystem for data blocks */
377 	if (quota_claim)
378 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 	else {
380 		/*
381 		 * We did fallocate with an offset that is already delayed
382 		 * allocated. So on delayed allocated writeback we should
383 		 * not re-claim the quota for fallocated blocks.
384 		 */
385 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 	}
387 
388 	/*
389 	 * If we have done all the pending block allocations and if
390 	 * there aren't any writers on the inode, we can discard the
391 	 * inode's preallocations.
392 	 */
393 	if ((ei->i_reserved_data_blocks == 0) &&
394 	    (atomic_read(&inode->i_writecount) == 0))
395 		ext4_discard_preallocations(inode);
396 }
397 
398 static int __check_block_validity(struct inode *inode, const char *func,
399 				unsigned int line,
400 				struct ext4_map_blocks *map)
401 {
402 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403 				   map->m_len)) {
404 		ext4_error_inode(inode, func, line, map->m_pblk,
405 				 "lblock %lu mapped to illegal pblock "
406 				 "(length %d)", (unsigned long) map->m_lblk,
407 				 map->m_len);
408 		return -EFSCORRUPTED;
409 	}
410 	return 0;
411 }
412 
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414 		       ext4_lblk_t len)
415 {
416 	int ret;
417 
418 	if (ext4_encrypted_inode(inode))
419 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
420 
421 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422 	if (ret > 0)
423 		ret = 0;
424 
425 	return ret;
426 }
427 
428 #define check_block_validity(inode, map)	\
429 	__check_block_validity((inode), __func__, __LINE__, (map))
430 
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433 				       struct inode *inode,
434 				       struct ext4_map_blocks *es_map,
435 				       struct ext4_map_blocks *map,
436 				       int flags)
437 {
438 	int retval;
439 
440 	map->m_flags = 0;
441 	/*
442 	 * There is a race window that the result is not the same.
443 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
444 	 * is that we lookup a block mapping in extent status tree with
445 	 * out taking i_data_sem.  So at the time the unwritten extent
446 	 * could be converted.
447 	 */
448 	down_read(&EXT4_I(inode)->i_data_sem);
449 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 					     EXT4_GET_BLOCKS_KEEP_SIZE);
452 	} else {
453 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 					     EXT4_GET_BLOCKS_KEEP_SIZE);
455 	}
456 	up_read((&EXT4_I(inode)->i_data_sem));
457 
458 	/*
459 	 * We don't check m_len because extent will be collpased in status
460 	 * tree.  So the m_len might not equal.
461 	 */
462 	if (es_map->m_lblk != map->m_lblk ||
463 	    es_map->m_flags != map->m_flags ||
464 	    es_map->m_pblk != map->m_pblk) {
465 		printk("ES cache assertion failed for inode: %lu "
466 		       "es_cached ex [%d/%d/%llu/%x] != "
467 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
469 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 		       map->m_len, map->m_pblk, map->m_flags,
471 		       retval, flags);
472 	}
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475 
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 		    struct ext4_map_blocks *map, int flags)
500 {
501 	struct extent_status es;
502 	int retval;
503 	int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505 	struct ext4_map_blocks orig_map;
506 
507 	memcpy(&orig_map, map, sizeof(*map));
508 #endif
509 
510 	map->m_flags = 0;
511 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 		  (unsigned long) map->m_lblk);
514 
515 	/*
516 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
517 	 */
518 	if (unlikely(map->m_len > INT_MAX))
519 		map->m_len = INT_MAX;
520 
521 	/* We can handle the block number less than EXT_MAX_BLOCKS */
522 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523 		return -EFSCORRUPTED;
524 
525 	/* Lookup extent status tree firstly */
526 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 			map->m_pblk = ext4_es_pblock(&es) +
529 					map->m_lblk - es.es_lblk;
530 			map->m_flags |= ext4_es_is_written(&es) ?
531 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 			retval = es.es_len - (map->m_lblk - es.es_lblk);
533 			if (retval > map->m_len)
534 				retval = map->m_len;
535 			map->m_len = retval;
536 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537 			map->m_pblk = 0;
538 			retval = es.es_len - (map->m_lblk - es.es_lblk);
539 			if (retval > map->m_len)
540 				retval = map->m_len;
541 			map->m_len = retval;
542 			retval = 0;
543 		} else {
544 			BUG_ON(1);
545 		}
546 #ifdef ES_AGGRESSIVE_TEST
547 		ext4_map_blocks_es_recheck(handle, inode, map,
548 					   &orig_map, flags);
549 #endif
550 		goto found;
551 	}
552 
553 	/*
554 	 * Try to see if we can get the block without requesting a new
555 	 * file system block.
556 	 */
557 	down_read(&EXT4_I(inode)->i_data_sem);
558 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 					     EXT4_GET_BLOCKS_KEEP_SIZE);
561 	} else {
562 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 					     EXT4_GET_BLOCKS_KEEP_SIZE);
564 	}
565 	if (retval > 0) {
566 		unsigned int status;
567 
568 		if (unlikely(retval != map->m_len)) {
569 			ext4_warning(inode->i_sb,
570 				     "ES len assertion failed for inode "
571 				     "%lu: retval %d != map->m_len %d",
572 				     inode->i_ino, retval, map->m_len);
573 			WARN_ON(1);
574 		}
575 
576 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 		    !(status & EXTENT_STATUS_WRITTEN) &&
580 		    ext4_find_delalloc_range(inode, map->m_lblk,
581 					     map->m_lblk + map->m_len - 1))
582 			status |= EXTENT_STATUS_DELAYED;
583 		ret = ext4_es_insert_extent(inode, map->m_lblk,
584 					    map->m_len, map->m_pblk, status);
585 		if (ret < 0)
586 			retval = ret;
587 	}
588 	up_read((&EXT4_I(inode)->i_data_sem));
589 
590 found:
591 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 		ret = check_block_validity(inode, map);
593 		if (ret != 0)
594 			return ret;
595 	}
596 
597 	/* If it is only a block(s) look up */
598 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599 		return retval;
600 
601 	/*
602 	 * Returns if the blocks have already allocated
603 	 *
604 	 * Note that if blocks have been preallocated
605 	 * ext4_ext_get_block() returns the create = 0
606 	 * with buffer head unmapped.
607 	 */
608 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609 		/*
610 		 * If we need to convert extent to unwritten
611 		 * we continue and do the actual work in
612 		 * ext4_ext_map_blocks()
613 		 */
614 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615 			return retval;
616 
617 	/*
618 	 * Here we clear m_flags because after allocating an new extent,
619 	 * it will be set again.
620 	 */
621 	map->m_flags &= ~EXT4_MAP_FLAGS;
622 
623 	/*
624 	 * New blocks allocate and/or writing to unwritten extent
625 	 * will possibly result in updating i_data, so we take
626 	 * the write lock of i_data_sem, and call get_block()
627 	 * with create == 1 flag.
628 	 */
629 	down_write(&EXT4_I(inode)->i_data_sem);
630 
631 	/*
632 	 * We need to check for EXT4 here because migrate
633 	 * could have changed the inode type in between
634 	 */
635 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
637 	} else {
638 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
639 
640 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641 			/*
642 			 * We allocated new blocks which will result in
643 			 * i_data's format changing.  Force the migrate
644 			 * to fail by clearing migrate flags
645 			 */
646 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647 		}
648 
649 		/*
650 		 * Update reserved blocks/metadata blocks after successful
651 		 * block allocation which had been deferred till now. We don't
652 		 * support fallocate for non extent files. So we can update
653 		 * reserve space here.
654 		 */
655 		if ((retval > 0) &&
656 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 			ext4_da_update_reserve_space(inode, retval, 1);
658 	}
659 
660 	if (retval > 0) {
661 		unsigned int status;
662 
663 		if (unlikely(retval != map->m_len)) {
664 			ext4_warning(inode->i_sb,
665 				     "ES len assertion failed for inode "
666 				     "%lu: retval %d != map->m_len %d",
667 				     inode->i_ino, retval, map->m_len);
668 			WARN_ON(1);
669 		}
670 
671 		/*
672 		 * We have to zeroout blocks before inserting them into extent
673 		 * status tree. Otherwise someone could look them up there and
674 		 * use them before they are really zeroed. We also have to
675 		 * unmap metadata before zeroing as otherwise writeback can
676 		 * overwrite zeros with stale data from block device.
677 		 */
678 		if (flags & EXT4_GET_BLOCKS_ZERO &&
679 		    map->m_flags & EXT4_MAP_MAPPED &&
680 		    map->m_flags & EXT4_MAP_NEW) {
681 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682 					   map->m_len);
683 			ret = ext4_issue_zeroout(inode, map->m_lblk,
684 						 map->m_pblk, map->m_len);
685 			if (ret) {
686 				retval = ret;
687 				goto out_sem;
688 			}
689 		}
690 
691 		/*
692 		 * If the extent has been zeroed out, we don't need to update
693 		 * extent status tree.
694 		 */
695 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697 			if (ext4_es_is_written(&es))
698 				goto out_sem;
699 		}
700 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 		    !(status & EXTENT_STATUS_WRITTEN) &&
704 		    ext4_find_delalloc_range(inode, map->m_lblk,
705 					     map->m_lblk + map->m_len - 1))
706 			status |= EXTENT_STATUS_DELAYED;
707 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 					    map->m_pblk, status);
709 		if (ret < 0) {
710 			retval = ret;
711 			goto out_sem;
712 		}
713 	}
714 
715 out_sem:
716 	up_write((&EXT4_I(inode)->i_data_sem));
717 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 		ret = check_block_validity(inode, map);
719 		if (ret != 0)
720 			return ret;
721 
722 		/*
723 		 * Inodes with freshly allocated blocks where contents will be
724 		 * visible after transaction commit must be on transaction's
725 		 * ordered data list.
726 		 */
727 		if (map->m_flags & EXT4_MAP_NEW &&
728 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 		    !ext4_is_quota_file(inode) &&
731 		    ext4_should_order_data(inode)) {
732 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733 				ret = ext4_jbd2_inode_add_wait(handle, inode);
734 			else
735 				ret = ext4_jbd2_inode_add_write(handle, inode);
736 			if (ret)
737 				return ret;
738 		}
739 	}
740 	return retval;
741 }
742 
743 /*
744  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745  * we have to be careful as someone else may be manipulating b_state as well.
746  */
747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748 {
749 	unsigned long old_state;
750 	unsigned long new_state;
751 
752 	flags &= EXT4_MAP_FLAGS;
753 
754 	/* Dummy buffer_head? Set non-atomically. */
755 	if (!bh->b_page) {
756 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757 		return;
758 	}
759 	/*
760 	 * Someone else may be modifying b_state. Be careful! This is ugly but
761 	 * once we get rid of using bh as a container for mapping information
762 	 * to pass to / from get_block functions, this can go away.
763 	 */
764 	do {
765 		old_state = READ_ONCE(bh->b_state);
766 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767 	} while (unlikely(
768 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769 }
770 
771 static int _ext4_get_block(struct inode *inode, sector_t iblock,
772 			   struct buffer_head *bh, int flags)
773 {
774 	struct ext4_map_blocks map;
775 	int ret = 0;
776 
777 	if (ext4_has_inline_data(inode))
778 		return -ERANGE;
779 
780 	map.m_lblk = iblock;
781 	map.m_len = bh->b_size >> inode->i_blkbits;
782 
783 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784 			      flags);
785 	if (ret > 0) {
786 		map_bh(bh, inode->i_sb, map.m_pblk);
787 		ext4_update_bh_state(bh, map.m_flags);
788 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789 		ret = 0;
790 	} else if (ret == 0) {
791 		/* hole case, need to fill in bh->b_size */
792 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 	}
794 	return ret;
795 }
796 
797 int ext4_get_block(struct inode *inode, sector_t iblock,
798 		   struct buffer_head *bh, int create)
799 {
800 	return _ext4_get_block(inode, iblock, bh,
801 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
802 }
803 
804 /*
805  * Get block function used when preparing for buffered write if we require
806  * creating an unwritten extent if blocks haven't been allocated.  The extent
807  * will be converted to written after the IO is complete.
808  */
809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810 			     struct buffer_head *bh_result, int create)
811 {
812 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 		   inode->i_ino, create);
814 	return _ext4_get_block(inode, iblock, bh_result,
815 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
816 }
817 
818 /* Maximum number of blocks we map for direct IO at once. */
819 #define DIO_MAX_BLOCKS 4096
820 
821 /*
822  * Get blocks function for the cases that need to start a transaction -
823  * generally difference cases of direct IO and DAX IO. It also handles retries
824  * in case of ENOSPC.
825  */
826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827 				struct buffer_head *bh_result, int flags)
828 {
829 	int dio_credits;
830 	handle_t *handle;
831 	int retries = 0;
832 	int ret;
833 
834 	/* Trim mapping request to maximum we can map at once for DIO */
835 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837 	dio_credits = ext4_chunk_trans_blocks(inode,
838 				      bh_result->b_size >> inode->i_blkbits);
839 retry:
840 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841 	if (IS_ERR(handle))
842 		return PTR_ERR(handle);
843 
844 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
845 	ext4_journal_stop(handle);
846 
847 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848 		goto retry;
849 	return ret;
850 }
851 
852 /* Get block function for DIO reads and writes to inodes without extents */
853 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854 		       struct buffer_head *bh, int create)
855 {
856 	/* We don't expect handle for direct IO */
857 	WARN_ON_ONCE(ext4_journal_current_handle());
858 
859 	if (!create)
860 		return _ext4_get_block(inode, iblock, bh, 0);
861 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
862 }
863 
864 /*
865  * Get block function for AIO DIO writes when we create unwritten extent if
866  * blocks are not allocated yet. The extent will be converted to written
867  * after IO is complete.
868  */
869 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870 		sector_t iblock, struct buffer_head *bh_result,	int create)
871 {
872 	int ret;
873 
874 	/* We don't expect handle for direct IO */
875 	WARN_ON_ONCE(ext4_journal_current_handle());
876 
877 	ret = ext4_get_block_trans(inode, iblock, bh_result,
878 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
879 
880 	/*
881 	 * When doing DIO using unwritten extents, we need io_end to convert
882 	 * unwritten extents to written on IO completion. We allocate io_end
883 	 * once we spot unwritten extent and store it in b_private. Generic
884 	 * DIO code keeps b_private set and furthermore passes the value to
885 	 * our completion callback in 'private' argument.
886 	 */
887 	if (!ret && buffer_unwritten(bh_result)) {
888 		if (!bh_result->b_private) {
889 			ext4_io_end_t *io_end;
890 
891 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
892 			if (!io_end)
893 				return -ENOMEM;
894 			bh_result->b_private = io_end;
895 			ext4_set_io_unwritten_flag(inode, io_end);
896 		}
897 		set_buffer_defer_completion(bh_result);
898 	}
899 
900 	return ret;
901 }
902 
903 /*
904  * Get block function for non-AIO DIO writes when we create unwritten extent if
905  * blocks are not allocated yet. The extent will be converted to written
906  * after IO is complete by ext4_direct_IO_write().
907  */
908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909 		sector_t iblock, struct buffer_head *bh_result,	int create)
910 {
911 	int ret;
912 
913 	/* We don't expect handle for direct IO */
914 	WARN_ON_ONCE(ext4_journal_current_handle());
915 
916 	ret = ext4_get_block_trans(inode, iblock, bh_result,
917 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
918 
919 	/*
920 	 * Mark inode as having pending DIO writes to unwritten extents.
921 	 * ext4_direct_IO_write() checks this flag and converts extents to
922 	 * written.
923 	 */
924 	if (!ret && buffer_unwritten(bh_result))
925 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
926 
927 	return ret;
928 }
929 
930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931 		   struct buffer_head *bh_result, int create)
932 {
933 	int ret;
934 
935 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936 		   inode->i_ino, create);
937 	/* We don't expect handle for direct IO */
938 	WARN_ON_ONCE(ext4_journal_current_handle());
939 
940 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
941 	/*
942 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
943 	 * that.
944 	 */
945 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
946 
947 	return ret;
948 }
949 
950 
951 /*
952  * `handle' can be NULL if create is zero
953  */
954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955 				ext4_lblk_t block, int map_flags)
956 {
957 	struct ext4_map_blocks map;
958 	struct buffer_head *bh;
959 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960 	int err;
961 
962 	J_ASSERT(handle != NULL || create == 0);
963 
964 	map.m_lblk = block;
965 	map.m_len = 1;
966 	err = ext4_map_blocks(handle, inode, &map, map_flags);
967 
968 	if (err == 0)
969 		return create ? ERR_PTR(-ENOSPC) : NULL;
970 	if (err < 0)
971 		return ERR_PTR(err);
972 
973 	bh = sb_getblk(inode->i_sb, map.m_pblk);
974 	if (unlikely(!bh))
975 		return ERR_PTR(-ENOMEM);
976 	if (map.m_flags & EXT4_MAP_NEW) {
977 		J_ASSERT(create != 0);
978 		J_ASSERT(handle != NULL);
979 
980 		/*
981 		 * Now that we do not always journal data, we should
982 		 * keep in mind whether this should always journal the
983 		 * new buffer as metadata.  For now, regular file
984 		 * writes use ext4_get_block instead, so it's not a
985 		 * problem.
986 		 */
987 		lock_buffer(bh);
988 		BUFFER_TRACE(bh, "call get_create_access");
989 		err = ext4_journal_get_create_access(handle, bh);
990 		if (unlikely(err)) {
991 			unlock_buffer(bh);
992 			goto errout;
993 		}
994 		if (!buffer_uptodate(bh)) {
995 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996 			set_buffer_uptodate(bh);
997 		}
998 		unlock_buffer(bh);
999 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1001 		if (unlikely(err))
1002 			goto errout;
1003 	} else
1004 		BUFFER_TRACE(bh, "not a new buffer");
1005 	return bh;
1006 errout:
1007 	brelse(bh);
1008 	return ERR_PTR(err);
1009 }
1010 
1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012 			       ext4_lblk_t block, int map_flags)
1013 {
1014 	struct buffer_head *bh;
1015 
1016 	bh = ext4_getblk(handle, inode, block, map_flags);
1017 	if (IS_ERR(bh))
1018 		return bh;
1019 	if (!bh || buffer_uptodate(bh))
1020 		return bh;
1021 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022 	wait_on_buffer(bh);
1023 	if (buffer_uptodate(bh))
1024 		return bh;
1025 	put_bh(bh);
1026 	return ERR_PTR(-EIO);
1027 }
1028 
1029 /* Read a contiguous batch of blocks. */
1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031 		     bool wait, struct buffer_head **bhs)
1032 {
1033 	int i, err;
1034 
1035 	for (i = 0; i < bh_count; i++) {
1036 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037 		if (IS_ERR(bhs[i])) {
1038 			err = PTR_ERR(bhs[i]);
1039 			bh_count = i;
1040 			goto out_brelse;
1041 		}
1042 	}
1043 
1044 	for (i = 0; i < bh_count; i++)
1045 		/* Note that NULL bhs[i] is valid because of holes. */
1046 		if (bhs[i] && !buffer_uptodate(bhs[i]))
1047 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048 				    &bhs[i]);
1049 
1050 	if (!wait)
1051 		return 0;
1052 
1053 	for (i = 0; i < bh_count; i++)
1054 		if (bhs[i])
1055 			wait_on_buffer(bhs[i]);
1056 
1057 	for (i = 0; i < bh_count; i++) {
1058 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059 			err = -EIO;
1060 			goto out_brelse;
1061 		}
1062 	}
1063 	return 0;
1064 
1065 out_brelse:
1066 	for (i = 0; i < bh_count; i++) {
1067 		brelse(bhs[i]);
1068 		bhs[i] = NULL;
1069 	}
1070 	return err;
1071 }
1072 
1073 int ext4_walk_page_buffers(handle_t *handle,
1074 			   struct buffer_head *head,
1075 			   unsigned from,
1076 			   unsigned to,
1077 			   int *partial,
1078 			   int (*fn)(handle_t *handle,
1079 				     struct buffer_head *bh))
1080 {
1081 	struct buffer_head *bh;
1082 	unsigned block_start, block_end;
1083 	unsigned blocksize = head->b_size;
1084 	int err, ret = 0;
1085 	struct buffer_head *next;
1086 
1087 	for (bh = head, block_start = 0;
1088 	     ret == 0 && (bh != head || !block_start);
1089 	     block_start = block_end, bh = next) {
1090 		next = bh->b_this_page;
1091 		block_end = block_start + blocksize;
1092 		if (block_end <= from || block_start >= to) {
1093 			if (partial && !buffer_uptodate(bh))
1094 				*partial = 1;
1095 			continue;
1096 		}
1097 		err = (*fn)(handle, bh);
1098 		if (!ret)
1099 			ret = err;
1100 	}
1101 	return ret;
1102 }
1103 
1104 /*
1105  * To preserve ordering, it is essential that the hole instantiation and
1106  * the data write be encapsulated in a single transaction.  We cannot
1107  * close off a transaction and start a new one between the ext4_get_block()
1108  * and the commit_write().  So doing the jbd2_journal_start at the start of
1109  * prepare_write() is the right place.
1110  *
1111  * Also, this function can nest inside ext4_writepage().  In that case, we
1112  * *know* that ext4_writepage() has generated enough buffer credits to do the
1113  * whole page.  So we won't block on the journal in that case, which is good,
1114  * because the caller may be PF_MEMALLOC.
1115  *
1116  * By accident, ext4 can be reentered when a transaction is open via
1117  * quota file writes.  If we were to commit the transaction while thus
1118  * reentered, there can be a deadlock - we would be holding a quota
1119  * lock, and the commit would never complete if another thread had a
1120  * transaction open and was blocking on the quota lock - a ranking
1121  * violation.
1122  *
1123  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124  * will _not_ run commit under these circumstances because handle->h_ref
1125  * is elevated.  We'll still have enough credits for the tiny quotafile
1126  * write.
1127  */
1128 int do_journal_get_write_access(handle_t *handle,
1129 				struct buffer_head *bh)
1130 {
1131 	int dirty = buffer_dirty(bh);
1132 	int ret;
1133 
1134 	if (!buffer_mapped(bh) || buffer_freed(bh))
1135 		return 0;
1136 	/*
1137 	 * __block_write_begin() could have dirtied some buffers. Clean
1138 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1139 	 * otherwise about fs integrity issues. Setting of the dirty bit
1140 	 * by __block_write_begin() isn't a real problem here as we clear
1141 	 * the bit before releasing a page lock and thus writeback cannot
1142 	 * ever write the buffer.
1143 	 */
1144 	if (dirty)
1145 		clear_buffer_dirty(bh);
1146 	BUFFER_TRACE(bh, "get write access");
1147 	ret = ext4_journal_get_write_access(handle, bh);
1148 	if (!ret && dirty)
1149 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150 	return ret;
1151 }
1152 
1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155 				  get_block_t *get_block)
1156 {
1157 	unsigned from = pos & (PAGE_SIZE - 1);
1158 	unsigned to = from + len;
1159 	struct inode *inode = page->mapping->host;
1160 	unsigned block_start, block_end;
1161 	sector_t block;
1162 	int err = 0;
1163 	unsigned blocksize = inode->i_sb->s_blocksize;
1164 	unsigned bbits;
1165 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166 	bool decrypt = false;
1167 
1168 	BUG_ON(!PageLocked(page));
1169 	BUG_ON(from > PAGE_SIZE);
1170 	BUG_ON(to > PAGE_SIZE);
1171 	BUG_ON(from > to);
1172 
1173 	if (!page_has_buffers(page))
1174 		create_empty_buffers(page, blocksize, 0);
1175 	head = page_buffers(page);
1176 	bbits = ilog2(blocksize);
1177 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178 
1179 	for (bh = head, block_start = 0; bh != head || !block_start;
1180 	    block++, block_start = block_end, bh = bh->b_this_page) {
1181 		block_end = block_start + blocksize;
1182 		if (block_end <= from || block_start >= to) {
1183 			if (PageUptodate(page)) {
1184 				if (!buffer_uptodate(bh))
1185 					set_buffer_uptodate(bh);
1186 			}
1187 			continue;
1188 		}
1189 		if (buffer_new(bh))
1190 			clear_buffer_new(bh);
1191 		if (!buffer_mapped(bh)) {
1192 			WARN_ON(bh->b_size != blocksize);
1193 			err = get_block(inode, block, bh, 1);
1194 			if (err)
1195 				break;
1196 			if (buffer_new(bh)) {
1197 				clean_bdev_bh_alias(bh);
1198 				if (PageUptodate(page)) {
1199 					clear_buffer_new(bh);
1200 					set_buffer_uptodate(bh);
1201 					mark_buffer_dirty(bh);
1202 					continue;
1203 				}
1204 				if (block_end > to || block_start < from)
1205 					zero_user_segments(page, to, block_end,
1206 							   block_start, from);
1207 				continue;
1208 			}
1209 		}
1210 		if (PageUptodate(page)) {
1211 			if (!buffer_uptodate(bh))
1212 				set_buffer_uptodate(bh);
1213 			continue;
1214 		}
1215 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216 		    !buffer_unwritten(bh) &&
1217 		    (block_start < from || block_end > to)) {
1218 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219 			*wait_bh++ = bh;
1220 			decrypt = ext4_encrypted_inode(inode) &&
1221 				S_ISREG(inode->i_mode);
1222 		}
1223 	}
1224 	/*
1225 	 * If we issued read requests, let them complete.
1226 	 */
1227 	while (wait_bh > wait) {
1228 		wait_on_buffer(*--wait_bh);
1229 		if (!buffer_uptodate(*wait_bh))
1230 			err = -EIO;
1231 	}
1232 	if (unlikely(err))
1233 		page_zero_new_buffers(page, from, to);
1234 	else if (decrypt)
1235 		err = fscrypt_decrypt_page(page->mapping->host, page,
1236 				PAGE_SIZE, 0, page->index);
1237 	return err;
1238 }
1239 #endif
1240 
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242 			    loff_t pos, unsigned len, unsigned flags,
1243 			    struct page **pagep, void **fsdata)
1244 {
1245 	struct inode *inode = mapping->host;
1246 	int ret, needed_blocks;
1247 	handle_t *handle;
1248 	int retries = 0;
1249 	struct page *page;
1250 	pgoff_t index;
1251 	unsigned from, to;
1252 
1253 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254 		return -EIO;
1255 
1256 	trace_ext4_write_begin(inode, pos, len, flags);
1257 	/*
1258 	 * Reserve one block more for addition to orphan list in case
1259 	 * we allocate blocks but write fails for some reason
1260 	 */
1261 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262 	index = pos >> PAGE_SHIFT;
1263 	from = pos & (PAGE_SIZE - 1);
1264 	to = from + len;
1265 
1266 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268 						    flags, pagep);
1269 		if (ret < 0)
1270 			return ret;
1271 		if (ret == 1)
1272 			return 0;
1273 	}
1274 
1275 	/*
1276 	 * grab_cache_page_write_begin() can take a long time if the
1277 	 * system is thrashing due to memory pressure, or if the page
1278 	 * is being written back.  So grab it first before we start
1279 	 * the transaction handle.  This also allows us to allocate
1280 	 * the page (if needed) without using GFP_NOFS.
1281 	 */
1282 retry_grab:
1283 	page = grab_cache_page_write_begin(mapping, index, flags);
1284 	if (!page)
1285 		return -ENOMEM;
1286 	unlock_page(page);
1287 
1288 retry_journal:
1289 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290 	if (IS_ERR(handle)) {
1291 		put_page(page);
1292 		return PTR_ERR(handle);
1293 	}
1294 
1295 	lock_page(page);
1296 	if (page->mapping != mapping) {
1297 		/* The page got truncated from under us */
1298 		unlock_page(page);
1299 		put_page(page);
1300 		ext4_journal_stop(handle);
1301 		goto retry_grab;
1302 	}
1303 	/* In case writeback began while the page was unlocked */
1304 	wait_for_stable_page(page);
1305 
1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1307 	if (ext4_should_dioread_nolock(inode))
1308 		ret = ext4_block_write_begin(page, pos, len,
1309 					     ext4_get_block_unwritten);
1310 	else
1311 		ret = ext4_block_write_begin(page, pos, len,
1312 					     ext4_get_block);
1313 #else
1314 	if (ext4_should_dioread_nolock(inode))
1315 		ret = __block_write_begin(page, pos, len,
1316 					  ext4_get_block_unwritten);
1317 	else
1318 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320 	if (!ret && ext4_should_journal_data(inode)) {
1321 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322 					     from, to, NULL,
1323 					     do_journal_get_write_access);
1324 	}
1325 
1326 	if (ret) {
1327 		unlock_page(page);
1328 		/*
1329 		 * __block_write_begin may have instantiated a few blocks
1330 		 * outside i_size.  Trim these off again. Don't need
1331 		 * i_size_read because we hold i_mutex.
1332 		 *
1333 		 * Add inode to orphan list in case we crash before
1334 		 * truncate finishes
1335 		 */
1336 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337 			ext4_orphan_add(handle, inode);
1338 
1339 		ext4_journal_stop(handle);
1340 		if (pos + len > inode->i_size) {
1341 			ext4_truncate_failed_write(inode);
1342 			/*
1343 			 * If truncate failed early the inode might
1344 			 * still be on the orphan list; we need to
1345 			 * make sure the inode is removed from the
1346 			 * orphan list in that case.
1347 			 */
1348 			if (inode->i_nlink)
1349 				ext4_orphan_del(NULL, inode);
1350 		}
1351 
1352 		if (ret == -ENOSPC &&
1353 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1354 			goto retry_journal;
1355 		put_page(page);
1356 		return ret;
1357 	}
1358 	*pagep = page;
1359 	return ret;
1360 }
1361 
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364 {
1365 	int ret;
1366 	if (!buffer_mapped(bh) || buffer_freed(bh))
1367 		return 0;
1368 	set_buffer_uptodate(bh);
1369 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370 	clear_buffer_meta(bh);
1371 	clear_buffer_prio(bh);
1372 	return ret;
1373 }
1374 
1375 /*
1376  * We need to pick up the new inode size which generic_commit_write gave us
1377  * `file' can be NULL - eg, when called from page_symlink().
1378  *
1379  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380  * buffers are managed internally.
1381  */
1382 static int ext4_write_end(struct file *file,
1383 			  struct address_space *mapping,
1384 			  loff_t pos, unsigned len, unsigned copied,
1385 			  struct page *page, void *fsdata)
1386 {
1387 	handle_t *handle = ext4_journal_current_handle();
1388 	struct inode *inode = mapping->host;
1389 	loff_t old_size = inode->i_size;
1390 	int ret = 0, ret2;
1391 	int i_size_changed = 0;
1392 
1393 	trace_ext4_write_end(inode, pos, len, copied);
1394 	if (ext4_has_inline_data(inode)) {
1395 		ret = ext4_write_inline_data_end(inode, pos, len,
1396 						 copied, page);
1397 		if (ret < 0) {
1398 			unlock_page(page);
1399 			put_page(page);
1400 			goto errout;
1401 		}
1402 		copied = ret;
1403 	} else
1404 		copied = block_write_end(file, mapping, pos,
1405 					 len, copied, page, fsdata);
1406 	/*
1407 	 * it's important to update i_size while still holding page lock:
1408 	 * page writeout could otherwise come in and zero beyond i_size.
1409 	 */
1410 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1411 	unlock_page(page);
1412 	put_page(page);
1413 
1414 	if (old_size < pos)
1415 		pagecache_isize_extended(inode, old_size, pos);
1416 	/*
1417 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1418 	 * makes the holding time of page lock longer. Second, it forces lock
1419 	 * ordering of page lock and transaction start for journaling
1420 	 * filesystems.
1421 	 */
1422 	if (i_size_changed)
1423 		ext4_mark_inode_dirty(handle, inode);
1424 
1425 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1426 		/* if we have allocated more blocks and copied
1427 		 * less. We will have blocks allocated outside
1428 		 * inode->i_size. So truncate them
1429 		 */
1430 		ext4_orphan_add(handle, inode);
1431 errout:
1432 	ret2 = ext4_journal_stop(handle);
1433 	if (!ret)
1434 		ret = ret2;
1435 
1436 	if (pos + len > inode->i_size) {
1437 		ext4_truncate_failed_write(inode);
1438 		/*
1439 		 * If truncate failed early the inode might still be
1440 		 * on the orphan list; we need to make sure the inode
1441 		 * is removed from the orphan list in that case.
1442 		 */
1443 		if (inode->i_nlink)
1444 			ext4_orphan_del(NULL, inode);
1445 	}
1446 
1447 	return ret ? ret : copied;
1448 }
1449 
1450 /*
1451  * This is a private version of page_zero_new_buffers() which doesn't
1452  * set the buffer to be dirty, since in data=journalled mode we need
1453  * to call ext4_handle_dirty_metadata() instead.
1454  */
1455 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1456 					    struct page *page,
1457 					    unsigned from, unsigned to)
1458 {
1459 	unsigned int block_start = 0, block_end;
1460 	struct buffer_head *head, *bh;
1461 
1462 	bh = head = page_buffers(page);
1463 	do {
1464 		block_end = block_start + bh->b_size;
1465 		if (buffer_new(bh)) {
1466 			if (block_end > from && block_start < to) {
1467 				if (!PageUptodate(page)) {
1468 					unsigned start, size;
1469 
1470 					start = max(from, block_start);
1471 					size = min(to, block_end) - start;
1472 
1473 					zero_user(page, start, size);
1474 					write_end_fn(handle, bh);
1475 				}
1476 				clear_buffer_new(bh);
1477 			}
1478 		}
1479 		block_start = block_end;
1480 		bh = bh->b_this_page;
1481 	} while (bh != head);
1482 }
1483 
1484 static int ext4_journalled_write_end(struct file *file,
1485 				     struct address_space *mapping,
1486 				     loff_t pos, unsigned len, unsigned copied,
1487 				     struct page *page, void *fsdata)
1488 {
1489 	handle_t *handle = ext4_journal_current_handle();
1490 	struct inode *inode = mapping->host;
1491 	loff_t old_size = inode->i_size;
1492 	int ret = 0, ret2;
1493 	int partial = 0;
1494 	unsigned from, to;
1495 	int size_changed = 0;
1496 
1497 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1498 	from = pos & (PAGE_SIZE - 1);
1499 	to = from + len;
1500 
1501 	BUG_ON(!ext4_handle_valid(handle));
1502 
1503 	if (ext4_has_inline_data(inode)) {
1504 		ret = ext4_write_inline_data_end(inode, pos, len,
1505 						 copied, page);
1506 		if (ret < 0) {
1507 			unlock_page(page);
1508 			put_page(page);
1509 			goto errout;
1510 		}
1511 		copied = ret;
1512 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1513 		copied = 0;
1514 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1515 	} else {
1516 		if (unlikely(copied < len))
1517 			ext4_journalled_zero_new_buffers(handle, page,
1518 							 from + copied, to);
1519 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1520 					     from + copied, &partial,
1521 					     write_end_fn);
1522 		if (!partial)
1523 			SetPageUptodate(page);
1524 	}
1525 	size_changed = ext4_update_inode_size(inode, pos + copied);
1526 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1527 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1528 	unlock_page(page);
1529 	put_page(page);
1530 
1531 	if (old_size < pos)
1532 		pagecache_isize_extended(inode, old_size, pos);
1533 
1534 	if (size_changed) {
1535 		ret2 = ext4_mark_inode_dirty(handle, inode);
1536 		if (!ret)
1537 			ret = ret2;
1538 	}
1539 
1540 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1541 		/* if we have allocated more blocks and copied
1542 		 * less. We will have blocks allocated outside
1543 		 * inode->i_size. So truncate them
1544 		 */
1545 		ext4_orphan_add(handle, inode);
1546 
1547 errout:
1548 	ret2 = ext4_journal_stop(handle);
1549 	if (!ret)
1550 		ret = ret2;
1551 	if (pos + len > inode->i_size) {
1552 		ext4_truncate_failed_write(inode);
1553 		/*
1554 		 * If truncate failed early the inode might still be
1555 		 * on the orphan list; we need to make sure the inode
1556 		 * is removed from the orphan list in that case.
1557 		 */
1558 		if (inode->i_nlink)
1559 			ext4_orphan_del(NULL, inode);
1560 	}
1561 
1562 	return ret ? ret : copied;
1563 }
1564 
1565 /*
1566  * Reserve space for a single cluster
1567  */
1568 static int ext4_da_reserve_space(struct inode *inode)
1569 {
1570 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1571 	struct ext4_inode_info *ei = EXT4_I(inode);
1572 	int ret;
1573 
1574 	/*
1575 	 * We will charge metadata quota at writeout time; this saves
1576 	 * us from metadata over-estimation, though we may go over by
1577 	 * a small amount in the end.  Here we just reserve for data.
1578 	 */
1579 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1580 	if (ret)
1581 		return ret;
1582 
1583 	spin_lock(&ei->i_block_reservation_lock);
1584 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1585 		spin_unlock(&ei->i_block_reservation_lock);
1586 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1587 		return -ENOSPC;
1588 	}
1589 	ei->i_reserved_data_blocks++;
1590 	trace_ext4_da_reserve_space(inode);
1591 	spin_unlock(&ei->i_block_reservation_lock);
1592 
1593 	return 0;       /* success */
1594 }
1595 
1596 static void ext4_da_release_space(struct inode *inode, int to_free)
1597 {
1598 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599 	struct ext4_inode_info *ei = EXT4_I(inode);
1600 
1601 	if (!to_free)
1602 		return;		/* Nothing to release, exit */
1603 
1604 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1605 
1606 	trace_ext4_da_release_space(inode, to_free);
1607 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1608 		/*
1609 		 * if there aren't enough reserved blocks, then the
1610 		 * counter is messed up somewhere.  Since this
1611 		 * function is called from invalidate page, it's
1612 		 * harmless to return without any action.
1613 		 */
1614 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1615 			 "ino %lu, to_free %d with only %d reserved "
1616 			 "data blocks", inode->i_ino, to_free,
1617 			 ei->i_reserved_data_blocks);
1618 		WARN_ON(1);
1619 		to_free = ei->i_reserved_data_blocks;
1620 	}
1621 	ei->i_reserved_data_blocks -= to_free;
1622 
1623 	/* update fs dirty data blocks counter */
1624 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1625 
1626 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1627 
1628 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1629 }
1630 
1631 static void ext4_da_page_release_reservation(struct page *page,
1632 					     unsigned int offset,
1633 					     unsigned int length)
1634 {
1635 	int to_release = 0, contiguous_blks = 0;
1636 	struct buffer_head *head, *bh;
1637 	unsigned int curr_off = 0;
1638 	struct inode *inode = page->mapping->host;
1639 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640 	unsigned int stop = offset + length;
1641 	int num_clusters;
1642 	ext4_fsblk_t lblk;
1643 
1644 	BUG_ON(stop > PAGE_SIZE || stop < length);
1645 
1646 	head = page_buffers(page);
1647 	bh = head;
1648 	do {
1649 		unsigned int next_off = curr_off + bh->b_size;
1650 
1651 		if (next_off > stop)
1652 			break;
1653 
1654 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1655 			to_release++;
1656 			contiguous_blks++;
1657 			clear_buffer_delay(bh);
1658 		} else if (contiguous_blks) {
1659 			lblk = page->index <<
1660 			       (PAGE_SHIFT - inode->i_blkbits);
1661 			lblk += (curr_off >> inode->i_blkbits) -
1662 				contiguous_blks;
1663 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664 			contiguous_blks = 0;
1665 		}
1666 		curr_off = next_off;
1667 	} while ((bh = bh->b_this_page) != head);
1668 
1669 	if (contiguous_blks) {
1670 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1671 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1672 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1673 	}
1674 
1675 	/* If we have released all the blocks belonging to a cluster, then we
1676 	 * need to release the reserved space for that cluster. */
1677 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1678 	while (num_clusters > 0) {
1679 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1680 			((num_clusters - 1) << sbi->s_cluster_bits);
1681 		if (sbi->s_cluster_ratio == 1 ||
1682 		    !ext4_find_delalloc_cluster(inode, lblk))
1683 			ext4_da_release_space(inode, 1);
1684 
1685 		num_clusters--;
1686 	}
1687 }
1688 
1689 /*
1690  * Delayed allocation stuff
1691  */
1692 
1693 struct mpage_da_data {
1694 	struct inode *inode;
1695 	struct writeback_control *wbc;
1696 
1697 	pgoff_t first_page;	/* The first page to write */
1698 	pgoff_t next_page;	/* Current page to examine */
1699 	pgoff_t last_page;	/* Last page to examine */
1700 	/*
1701 	 * Extent to map - this can be after first_page because that can be
1702 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1703 	 * is delalloc or unwritten.
1704 	 */
1705 	struct ext4_map_blocks map;
1706 	struct ext4_io_submit io_submit;	/* IO submission data */
1707 	unsigned int do_map:1;
1708 };
1709 
1710 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1711 				       bool invalidate)
1712 {
1713 	int nr_pages, i;
1714 	pgoff_t index, end;
1715 	struct pagevec pvec;
1716 	struct inode *inode = mpd->inode;
1717 	struct address_space *mapping = inode->i_mapping;
1718 
1719 	/* This is necessary when next_page == 0. */
1720 	if (mpd->first_page >= mpd->next_page)
1721 		return;
1722 
1723 	index = mpd->first_page;
1724 	end   = mpd->next_page - 1;
1725 	if (invalidate) {
1726 		ext4_lblk_t start, last;
1727 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1728 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1729 		ext4_es_remove_extent(inode, start, last - start + 1);
1730 	}
1731 
1732 	pagevec_init(&pvec);
1733 	while (index <= end) {
1734 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1735 		if (nr_pages == 0)
1736 			break;
1737 		for (i = 0; i < nr_pages; i++) {
1738 			struct page *page = pvec.pages[i];
1739 
1740 			BUG_ON(!PageLocked(page));
1741 			BUG_ON(PageWriteback(page));
1742 			if (invalidate) {
1743 				if (page_mapped(page))
1744 					clear_page_dirty_for_io(page);
1745 				block_invalidatepage(page, 0, PAGE_SIZE);
1746 				ClearPageUptodate(page);
1747 			}
1748 			unlock_page(page);
1749 		}
1750 		pagevec_release(&pvec);
1751 	}
1752 }
1753 
1754 static void ext4_print_free_blocks(struct inode *inode)
1755 {
1756 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757 	struct super_block *sb = inode->i_sb;
1758 	struct ext4_inode_info *ei = EXT4_I(inode);
1759 
1760 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1761 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1762 			ext4_count_free_clusters(sb)));
1763 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1764 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1765 	       (long long) EXT4_C2B(EXT4_SB(sb),
1766 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1767 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1768 	       (long long) EXT4_C2B(EXT4_SB(sb),
1769 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1770 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1771 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1772 		 ei->i_reserved_data_blocks);
1773 	return;
1774 }
1775 
1776 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1777 {
1778 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1779 }
1780 
1781 /*
1782  * This function is grabs code from the very beginning of
1783  * ext4_map_blocks, but assumes that the caller is from delayed write
1784  * time. This function looks up the requested blocks and sets the
1785  * buffer delay bit under the protection of i_data_sem.
1786  */
1787 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1788 			      struct ext4_map_blocks *map,
1789 			      struct buffer_head *bh)
1790 {
1791 	struct extent_status es;
1792 	int retval;
1793 	sector_t invalid_block = ~((sector_t) 0xffff);
1794 #ifdef ES_AGGRESSIVE_TEST
1795 	struct ext4_map_blocks orig_map;
1796 
1797 	memcpy(&orig_map, map, sizeof(*map));
1798 #endif
1799 
1800 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1801 		invalid_block = ~0;
1802 
1803 	map->m_flags = 0;
1804 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1805 		  "logical block %lu\n", inode->i_ino, map->m_len,
1806 		  (unsigned long) map->m_lblk);
1807 
1808 	/* Lookup extent status tree firstly */
1809 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1810 		if (ext4_es_is_hole(&es)) {
1811 			retval = 0;
1812 			down_read(&EXT4_I(inode)->i_data_sem);
1813 			goto add_delayed;
1814 		}
1815 
1816 		/*
1817 		 * Delayed extent could be allocated by fallocate.
1818 		 * So we need to check it.
1819 		 */
1820 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1821 			map_bh(bh, inode->i_sb, invalid_block);
1822 			set_buffer_new(bh);
1823 			set_buffer_delay(bh);
1824 			return 0;
1825 		}
1826 
1827 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1828 		retval = es.es_len - (iblock - es.es_lblk);
1829 		if (retval > map->m_len)
1830 			retval = map->m_len;
1831 		map->m_len = retval;
1832 		if (ext4_es_is_written(&es))
1833 			map->m_flags |= EXT4_MAP_MAPPED;
1834 		else if (ext4_es_is_unwritten(&es))
1835 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1836 		else
1837 			BUG_ON(1);
1838 
1839 #ifdef ES_AGGRESSIVE_TEST
1840 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1841 #endif
1842 		return retval;
1843 	}
1844 
1845 	/*
1846 	 * Try to see if we can get the block without requesting a new
1847 	 * file system block.
1848 	 */
1849 	down_read(&EXT4_I(inode)->i_data_sem);
1850 	if (ext4_has_inline_data(inode))
1851 		retval = 0;
1852 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1853 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1854 	else
1855 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1856 
1857 add_delayed:
1858 	if (retval == 0) {
1859 		int ret;
1860 		/*
1861 		 * XXX: __block_prepare_write() unmaps passed block,
1862 		 * is it OK?
1863 		 */
1864 		/*
1865 		 * If the block was allocated from previously allocated cluster,
1866 		 * then we don't need to reserve it again. However we still need
1867 		 * to reserve metadata for every block we're going to write.
1868 		 */
1869 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1870 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1871 			ret = ext4_da_reserve_space(inode);
1872 			if (ret) {
1873 				/* not enough space to reserve */
1874 				retval = ret;
1875 				goto out_unlock;
1876 			}
1877 		}
1878 
1879 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1880 					    ~0, EXTENT_STATUS_DELAYED);
1881 		if (ret) {
1882 			retval = ret;
1883 			goto out_unlock;
1884 		}
1885 
1886 		map_bh(bh, inode->i_sb, invalid_block);
1887 		set_buffer_new(bh);
1888 		set_buffer_delay(bh);
1889 	} else if (retval > 0) {
1890 		int ret;
1891 		unsigned int status;
1892 
1893 		if (unlikely(retval != map->m_len)) {
1894 			ext4_warning(inode->i_sb,
1895 				     "ES len assertion failed for inode "
1896 				     "%lu: retval %d != map->m_len %d",
1897 				     inode->i_ino, retval, map->m_len);
1898 			WARN_ON(1);
1899 		}
1900 
1901 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1902 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1903 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1904 					    map->m_pblk, status);
1905 		if (ret != 0)
1906 			retval = ret;
1907 	}
1908 
1909 out_unlock:
1910 	up_read((&EXT4_I(inode)->i_data_sem));
1911 
1912 	return retval;
1913 }
1914 
1915 /*
1916  * This is a special get_block_t callback which is used by
1917  * ext4_da_write_begin().  It will either return mapped block or
1918  * reserve space for a single block.
1919  *
1920  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1921  * We also have b_blocknr = -1 and b_bdev initialized properly
1922  *
1923  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1924  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1925  * initialized properly.
1926  */
1927 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1928 			   struct buffer_head *bh, int create)
1929 {
1930 	struct ext4_map_blocks map;
1931 	int ret = 0;
1932 
1933 	BUG_ON(create == 0);
1934 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1935 
1936 	map.m_lblk = iblock;
1937 	map.m_len = 1;
1938 
1939 	/*
1940 	 * first, we need to know whether the block is allocated already
1941 	 * preallocated blocks are unmapped but should treated
1942 	 * the same as allocated blocks.
1943 	 */
1944 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1945 	if (ret <= 0)
1946 		return ret;
1947 
1948 	map_bh(bh, inode->i_sb, map.m_pblk);
1949 	ext4_update_bh_state(bh, map.m_flags);
1950 
1951 	if (buffer_unwritten(bh)) {
1952 		/* A delayed write to unwritten bh should be marked
1953 		 * new and mapped.  Mapped ensures that we don't do
1954 		 * get_block multiple times when we write to the same
1955 		 * offset and new ensures that we do proper zero out
1956 		 * for partial write.
1957 		 */
1958 		set_buffer_new(bh);
1959 		set_buffer_mapped(bh);
1960 	}
1961 	return 0;
1962 }
1963 
1964 static int bget_one(handle_t *handle, struct buffer_head *bh)
1965 {
1966 	get_bh(bh);
1967 	return 0;
1968 }
1969 
1970 static int bput_one(handle_t *handle, struct buffer_head *bh)
1971 {
1972 	put_bh(bh);
1973 	return 0;
1974 }
1975 
1976 static int __ext4_journalled_writepage(struct page *page,
1977 				       unsigned int len)
1978 {
1979 	struct address_space *mapping = page->mapping;
1980 	struct inode *inode = mapping->host;
1981 	struct buffer_head *page_bufs = NULL;
1982 	handle_t *handle = NULL;
1983 	int ret = 0, err = 0;
1984 	int inline_data = ext4_has_inline_data(inode);
1985 	struct buffer_head *inode_bh = NULL;
1986 
1987 	ClearPageChecked(page);
1988 
1989 	if (inline_data) {
1990 		BUG_ON(page->index != 0);
1991 		BUG_ON(len > ext4_get_max_inline_size(inode));
1992 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1993 		if (inode_bh == NULL)
1994 			goto out;
1995 	} else {
1996 		page_bufs = page_buffers(page);
1997 		if (!page_bufs) {
1998 			BUG();
1999 			goto out;
2000 		}
2001 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2002 				       NULL, bget_one);
2003 	}
2004 	/*
2005 	 * We need to release the page lock before we start the
2006 	 * journal, so grab a reference so the page won't disappear
2007 	 * out from under us.
2008 	 */
2009 	get_page(page);
2010 	unlock_page(page);
2011 
2012 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2013 				    ext4_writepage_trans_blocks(inode));
2014 	if (IS_ERR(handle)) {
2015 		ret = PTR_ERR(handle);
2016 		put_page(page);
2017 		goto out_no_pagelock;
2018 	}
2019 	BUG_ON(!ext4_handle_valid(handle));
2020 
2021 	lock_page(page);
2022 	put_page(page);
2023 	if (page->mapping != mapping) {
2024 		/* The page got truncated from under us */
2025 		ext4_journal_stop(handle);
2026 		ret = 0;
2027 		goto out;
2028 	}
2029 
2030 	if (inline_data) {
2031 		BUFFER_TRACE(inode_bh, "get write access");
2032 		ret = ext4_journal_get_write_access(handle, inode_bh);
2033 
2034 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2035 
2036 	} else {
2037 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2038 					     do_journal_get_write_access);
2039 
2040 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2041 					     write_end_fn);
2042 	}
2043 	if (ret == 0)
2044 		ret = err;
2045 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2046 	err = ext4_journal_stop(handle);
2047 	if (!ret)
2048 		ret = err;
2049 
2050 	if (!ext4_has_inline_data(inode))
2051 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2052 				       NULL, bput_one);
2053 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2054 out:
2055 	unlock_page(page);
2056 out_no_pagelock:
2057 	brelse(inode_bh);
2058 	return ret;
2059 }
2060 
2061 /*
2062  * Note that we don't need to start a transaction unless we're journaling data
2063  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2064  * need to file the inode to the transaction's list in ordered mode because if
2065  * we are writing back data added by write(), the inode is already there and if
2066  * we are writing back data modified via mmap(), no one guarantees in which
2067  * transaction the data will hit the disk. In case we are journaling data, we
2068  * cannot start transaction directly because transaction start ranks above page
2069  * lock so we have to do some magic.
2070  *
2071  * This function can get called via...
2072  *   - ext4_writepages after taking page lock (have journal handle)
2073  *   - journal_submit_inode_data_buffers (no journal handle)
2074  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2075  *   - grab_page_cache when doing write_begin (have journal handle)
2076  *
2077  * We don't do any block allocation in this function. If we have page with
2078  * multiple blocks we need to write those buffer_heads that are mapped. This
2079  * is important for mmaped based write. So if we do with blocksize 1K
2080  * truncate(f, 1024);
2081  * a = mmap(f, 0, 4096);
2082  * a[0] = 'a';
2083  * truncate(f, 4096);
2084  * we have in the page first buffer_head mapped via page_mkwrite call back
2085  * but other buffer_heads would be unmapped but dirty (dirty done via the
2086  * do_wp_page). So writepage should write the first block. If we modify
2087  * the mmap area beyond 1024 we will again get a page_fault and the
2088  * page_mkwrite callback will do the block allocation and mark the
2089  * buffer_heads mapped.
2090  *
2091  * We redirty the page if we have any buffer_heads that is either delay or
2092  * unwritten in the page.
2093  *
2094  * We can get recursively called as show below.
2095  *
2096  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2097  *		ext4_writepage()
2098  *
2099  * But since we don't do any block allocation we should not deadlock.
2100  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2101  */
2102 static int ext4_writepage(struct page *page,
2103 			  struct writeback_control *wbc)
2104 {
2105 	int ret = 0;
2106 	loff_t size;
2107 	unsigned int len;
2108 	struct buffer_head *page_bufs = NULL;
2109 	struct inode *inode = page->mapping->host;
2110 	struct ext4_io_submit io_submit;
2111 	bool keep_towrite = false;
2112 
2113 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2114 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2115 		unlock_page(page);
2116 		return -EIO;
2117 	}
2118 
2119 	trace_ext4_writepage(page);
2120 	size = i_size_read(inode);
2121 	if (page->index == size >> PAGE_SHIFT)
2122 		len = size & ~PAGE_MASK;
2123 	else
2124 		len = PAGE_SIZE;
2125 
2126 	page_bufs = page_buffers(page);
2127 	/*
2128 	 * We cannot do block allocation or other extent handling in this
2129 	 * function. If there are buffers needing that, we have to redirty
2130 	 * the page. But we may reach here when we do a journal commit via
2131 	 * journal_submit_inode_data_buffers() and in that case we must write
2132 	 * allocated buffers to achieve data=ordered mode guarantees.
2133 	 *
2134 	 * Also, if there is only one buffer per page (the fs block
2135 	 * size == the page size), if one buffer needs block
2136 	 * allocation or needs to modify the extent tree to clear the
2137 	 * unwritten flag, we know that the page can't be written at
2138 	 * all, so we might as well refuse the write immediately.
2139 	 * Unfortunately if the block size != page size, we can't as
2140 	 * easily detect this case using ext4_walk_page_buffers(), but
2141 	 * for the extremely common case, this is an optimization that
2142 	 * skips a useless round trip through ext4_bio_write_page().
2143 	 */
2144 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2145 				   ext4_bh_delay_or_unwritten)) {
2146 		redirty_page_for_writepage(wbc, page);
2147 		if ((current->flags & PF_MEMALLOC) ||
2148 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2149 			/*
2150 			 * For memory cleaning there's no point in writing only
2151 			 * some buffers. So just bail out. Warn if we came here
2152 			 * from direct reclaim.
2153 			 */
2154 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2155 							== PF_MEMALLOC);
2156 			unlock_page(page);
2157 			return 0;
2158 		}
2159 		keep_towrite = true;
2160 	}
2161 
2162 	if (PageChecked(page) && ext4_should_journal_data(inode))
2163 		/*
2164 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2165 		 * doesn't seem much point in redirtying the page here.
2166 		 */
2167 		return __ext4_journalled_writepage(page, len);
2168 
2169 	ext4_io_submit_init(&io_submit, wbc);
2170 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2171 	if (!io_submit.io_end) {
2172 		redirty_page_for_writepage(wbc, page);
2173 		unlock_page(page);
2174 		return -ENOMEM;
2175 	}
2176 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2177 	ext4_io_submit(&io_submit);
2178 	/* Drop io_end reference we got from init */
2179 	ext4_put_io_end_defer(io_submit.io_end);
2180 	return ret;
2181 }
2182 
2183 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2184 {
2185 	int len;
2186 	loff_t size;
2187 	int err;
2188 
2189 	BUG_ON(page->index != mpd->first_page);
2190 	clear_page_dirty_for_io(page);
2191 	/*
2192 	 * We have to be very careful here!  Nothing protects writeback path
2193 	 * against i_size changes and the page can be writeably mapped into
2194 	 * page tables. So an application can be growing i_size and writing
2195 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2196 	 * write-protects our page in page tables and the page cannot get
2197 	 * written to again until we release page lock. So only after
2198 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2199 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2200 	 * on the barrier provided by TestClearPageDirty in
2201 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2202 	 * after page tables are updated.
2203 	 */
2204 	size = i_size_read(mpd->inode);
2205 	if (page->index == size >> PAGE_SHIFT)
2206 		len = size & ~PAGE_MASK;
2207 	else
2208 		len = PAGE_SIZE;
2209 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2210 	if (!err)
2211 		mpd->wbc->nr_to_write--;
2212 	mpd->first_page++;
2213 
2214 	return err;
2215 }
2216 
2217 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218 
2219 /*
2220  * mballoc gives us at most this number of blocks...
2221  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2222  * The rest of mballoc seems to handle chunks up to full group size.
2223  */
2224 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2225 
2226 /*
2227  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2228  *
2229  * @mpd - extent of blocks
2230  * @lblk - logical number of the block in the file
2231  * @bh - buffer head we want to add to the extent
2232  *
2233  * The function is used to collect contig. blocks in the same state. If the
2234  * buffer doesn't require mapping for writeback and we haven't started the
2235  * extent of buffers to map yet, the function returns 'true' immediately - the
2236  * caller can write the buffer right away. Otherwise the function returns true
2237  * if the block has been added to the extent, false if the block couldn't be
2238  * added.
2239  */
2240 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2241 				   struct buffer_head *bh)
2242 {
2243 	struct ext4_map_blocks *map = &mpd->map;
2244 
2245 	/* Buffer that doesn't need mapping for writeback? */
2246 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2247 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2248 		/* So far no extent to map => we write the buffer right away */
2249 		if (map->m_len == 0)
2250 			return true;
2251 		return false;
2252 	}
2253 
2254 	/* First block in the extent? */
2255 	if (map->m_len == 0) {
2256 		/* We cannot map unless handle is started... */
2257 		if (!mpd->do_map)
2258 			return false;
2259 		map->m_lblk = lblk;
2260 		map->m_len = 1;
2261 		map->m_flags = bh->b_state & BH_FLAGS;
2262 		return true;
2263 	}
2264 
2265 	/* Don't go larger than mballoc is willing to allocate */
2266 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2267 		return false;
2268 
2269 	/* Can we merge the block to our big extent? */
2270 	if (lblk == map->m_lblk + map->m_len &&
2271 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2272 		map->m_len++;
2273 		return true;
2274 	}
2275 	return false;
2276 }
2277 
2278 /*
2279  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2280  *
2281  * @mpd - extent of blocks for mapping
2282  * @head - the first buffer in the page
2283  * @bh - buffer we should start processing from
2284  * @lblk - logical number of the block in the file corresponding to @bh
2285  *
2286  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2287  * the page for IO if all buffers in this page were mapped and there's no
2288  * accumulated extent of buffers to map or add buffers in the page to the
2289  * extent of buffers to map. The function returns 1 if the caller can continue
2290  * by processing the next page, 0 if it should stop adding buffers to the
2291  * extent to map because we cannot extend it anymore. It can also return value
2292  * < 0 in case of error during IO submission.
2293  */
2294 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2295 				   struct buffer_head *head,
2296 				   struct buffer_head *bh,
2297 				   ext4_lblk_t lblk)
2298 {
2299 	struct inode *inode = mpd->inode;
2300 	int err;
2301 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2302 							>> inode->i_blkbits;
2303 
2304 	do {
2305 		BUG_ON(buffer_locked(bh));
2306 
2307 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2308 			/* Found extent to map? */
2309 			if (mpd->map.m_len)
2310 				return 0;
2311 			/* Buffer needs mapping and handle is not started? */
2312 			if (!mpd->do_map)
2313 				return 0;
2314 			/* Everything mapped so far and we hit EOF */
2315 			break;
2316 		}
2317 	} while (lblk++, (bh = bh->b_this_page) != head);
2318 	/* So far everything mapped? Submit the page for IO. */
2319 	if (mpd->map.m_len == 0) {
2320 		err = mpage_submit_page(mpd, head->b_page);
2321 		if (err < 0)
2322 			return err;
2323 	}
2324 	return lblk < blocks;
2325 }
2326 
2327 /*
2328  * mpage_map_buffers - update buffers corresponding to changed extent and
2329  *		       submit fully mapped pages for IO
2330  *
2331  * @mpd - description of extent to map, on return next extent to map
2332  *
2333  * Scan buffers corresponding to changed extent (we expect corresponding pages
2334  * to be already locked) and update buffer state according to new extent state.
2335  * We map delalloc buffers to their physical location, clear unwritten bits,
2336  * and mark buffers as uninit when we perform writes to unwritten extents
2337  * and do extent conversion after IO is finished. If the last page is not fully
2338  * mapped, we update @map to the next extent in the last page that needs
2339  * mapping. Otherwise we submit the page for IO.
2340  */
2341 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342 {
2343 	struct pagevec pvec;
2344 	int nr_pages, i;
2345 	struct inode *inode = mpd->inode;
2346 	struct buffer_head *head, *bh;
2347 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2348 	pgoff_t start, end;
2349 	ext4_lblk_t lblk;
2350 	sector_t pblock;
2351 	int err;
2352 
2353 	start = mpd->map.m_lblk >> bpp_bits;
2354 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355 	lblk = start << bpp_bits;
2356 	pblock = mpd->map.m_pblk;
2357 
2358 	pagevec_init(&pvec);
2359 	while (start <= end) {
2360 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2361 						&start, end);
2362 		if (nr_pages == 0)
2363 			break;
2364 		for (i = 0; i < nr_pages; i++) {
2365 			struct page *page = pvec.pages[i];
2366 
2367 			bh = head = page_buffers(page);
2368 			do {
2369 				if (lblk < mpd->map.m_lblk)
2370 					continue;
2371 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2372 					/*
2373 					 * Buffer after end of mapped extent.
2374 					 * Find next buffer in the page to map.
2375 					 */
2376 					mpd->map.m_len = 0;
2377 					mpd->map.m_flags = 0;
2378 					/*
2379 					 * FIXME: If dioread_nolock supports
2380 					 * blocksize < pagesize, we need to make
2381 					 * sure we add size mapped so far to
2382 					 * io_end->size as the following call
2383 					 * can submit the page for IO.
2384 					 */
2385 					err = mpage_process_page_bufs(mpd, head,
2386 								      bh, lblk);
2387 					pagevec_release(&pvec);
2388 					if (err > 0)
2389 						err = 0;
2390 					return err;
2391 				}
2392 				if (buffer_delay(bh)) {
2393 					clear_buffer_delay(bh);
2394 					bh->b_blocknr = pblock++;
2395 				}
2396 				clear_buffer_unwritten(bh);
2397 			} while (lblk++, (bh = bh->b_this_page) != head);
2398 
2399 			/*
2400 			 * FIXME: This is going to break if dioread_nolock
2401 			 * supports blocksize < pagesize as we will try to
2402 			 * convert potentially unmapped parts of inode.
2403 			 */
2404 			mpd->io_submit.io_end->size += PAGE_SIZE;
2405 			/* Page fully mapped - let IO run! */
2406 			err = mpage_submit_page(mpd, page);
2407 			if (err < 0) {
2408 				pagevec_release(&pvec);
2409 				return err;
2410 			}
2411 		}
2412 		pagevec_release(&pvec);
2413 	}
2414 	/* Extent fully mapped and matches with page boundary. We are done. */
2415 	mpd->map.m_len = 0;
2416 	mpd->map.m_flags = 0;
2417 	return 0;
2418 }
2419 
2420 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2421 {
2422 	struct inode *inode = mpd->inode;
2423 	struct ext4_map_blocks *map = &mpd->map;
2424 	int get_blocks_flags;
2425 	int err, dioread_nolock;
2426 
2427 	trace_ext4_da_write_pages_extent(inode, map);
2428 	/*
2429 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2430 	 * to convert an unwritten extent to be initialized (in the case
2431 	 * where we have written into one or more preallocated blocks).  It is
2432 	 * possible that we're going to need more metadata blocks than
2433 	 * previously reserved. However we must not fail because we're in
2434 	 * writeback and there is nothing we can do about it so it might result
2435 	 * in data loss.  So use reserved blocks to allocate metadata if
2436 	 * possible.
2437 	 *
2438 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2439 	 * the blocks in question are delalloc blocks.  This indicates
2440 	 * that the blocks and quotas has already been checked when
2441 	 * the data was copied into the page cache.
2442 	 */
2443 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2444 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2445 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2446 	dioread_nolock = ext4_should_dioread_nolock(inode);
2447 	if (dioread_nolock)
2448 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2449 	if (map->m_flags & (1 << BH_Delay))
2450 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2451 
2452 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2453 	if (err < 0)
2454 		return err;
2455 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2456 		if (!mpd->io_submit.io_end->handle &&
2457 		    ext4_handle_valid(handle)) {
2458 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2459 			handle->h_rsv_handle = NULL;
2460 		}
2461 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2462 	}
2463 
2464 	BUG_ON(map->m_len == 0);
2465 	if (map->m_flags & EXT4_MAP_NEW) {
2466 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2467 				   map->m_len);
2468 	}
2469 	return 0;
2470 }
2471 
2472 /*
2473  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2474  *				 mpd->len and submit pages underlying it for IO
2475  *
2476  * @handle - handle for journal operations
2477  * @mpd - extent to map
2478  * @give_up_on_write - we set this to true iff there is a fatal error and there
2479  *                     is no hope of writing the data. The caller should discard
2480  *                     dirty pages to avoid infinite loops.
2481  *
2482  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2483  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2484  * them to initialized or split the described range from larger unwritten
2485  * extent. Note that we need not map all the described range since allocation
2486  * can return less blocks or the range is covered by more unwritten extents. We
2487  * cannot map more because we are limited by reserved transaction credits. On
2488  * the other hand we always make sure that the last touched page is fully
2489  * mapped so that it can be written out (and thus forward progress is
2490  * guaranteed). After mapping we submit all mapped pages for IO.
2491  */
2492 static int mpage_map_and_submit_extent(handle_t *handle,
2493 				       struct mpage_da_data *mpd,
2494 				       bool *give_up_on_write)
2495 {
2496 	struct inode *inode = mpd->inode;
2497 	struct ext4_map_blocks *map = &mpd->map;
2498 	int err;
2499 	loff_t disksize;
2500 	int progress = 0;
2501 
2502 	mpd->io_submit.io_end->offset =
2503 				((loff_t)map->m_lblk) << inode->i_blkbits;
2504 	do {
2505 		err = mpage_map_one_extent(handle, mpd);
2506 		if (err < 0) {
2507 			struct super_block *sb = inode->i_sb;
2508 
2509 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2510 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2511 				goto invalidate_dirty_pages;
2512 			/*
2513 			 * Let the uper layers retry transient errors.
2514 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2515 			 * is non-zero, a commit should free up blocks.
2516 			 */
2517 			if ((err == -ENOMEM) ||
2518 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2519 				if (progress)
2520 					goto update_disksize;
2521 				return err;
2522 			}
2523 			ext4_msg(sb, KERN_CRIT,
2524 				 "Delayed block allocation failed for "
2525 				 "inode %lu at logical offset %llu with"
2526 				 " max blocks %u with error %d",
2527 				 inode->i_ino,
2528 				 (unsigned long long)map->m_lblk,
2529 				 (unsigned)map->m_len, -err);
2530 			ext4_msg(sb, KERN_CRIT,
2531 				 "This should not happen!! Data will "
2532 				 "be lost\n");
2533 			if (err == -ENOSPC)
2534 				ext4_print_free_blocks(inode);
2535 		invalidate_dirty_pages:
2536 			*give_up_on_write = true;
2537 			return err;
2538 		}
2539 		progress = 1;
2540 		/*
2541 		 * Update buffer state, submit mapped pages, and get us new
2542 		 * extent to map
2543 		 */
2544 		err = mpage_map_and_submit_buffers(mpd);
2545 		if (err < 0)
2546 			goto update_disksize;
2547 	} while (map->m_len);
2548 
2549 update_disksize:
2550 	/*
2551 	 * Update on-disk size after IO is submitted.  Races with
2552 	 * truncate are avoided by checking i_size under i_data_sem.
2553 	 */
2554 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2555 	if (disksize > EXT4_I(inode)->i_disksize) {
2556 		int err2;
2557 		loff_t i_size;
2558 
2559 		down_write(&EXT4_I(inode)->i_data_sem);
2560 		i_size = i_size_read(inode);
2561 		if (disksize > i_size)
2562 			disksize = i_size;
2563 		if (disksize > EXT4_I(inode)->i_disksize)
2564 			EXT4_I(inode)->i_disksize = disksize;
2565 		up_write(&EXT4_I(inode)->i_data_sem);
2566 		err2 = ext4_mark_inode_dirty(handle, inode);
2567 		if (err2)
2568 			ext4_error(inode->i_sb,
2569 				   "Failed to mark inode %lu dirty",
2570 				   inode->i_ino);
2571 		if (!err)
2572 			err = err2;
2573 	}
2574 	return err;
2575 }
2576 
2577 /*
2578  * Calculate the total number of credits to reserve for one writepages
2579  * iteration. This is called from ext4_writepages(). We map an extent of
2580  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2581  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2582  * bpp - 1 blocks in bpp different extents.
2583  */
2584 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2585 {
2586 	int bpp = ext4_journal_blocks_per_page(inode);
2587 
2588 	return ext4_meta_trans_blocks(inode,
2589 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2590 }
2591 
2592 /*
2593  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2594  * 				 and underlying extent to map
2595  *
2596  * @mpd - where to look for pages
2597  *
2598  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2599  * IO immediately. When we find a page which isn't mapped we start accumulating
2600  * extent of buffers underlying these pages that needs mapping (formed by
2601  * either delayed or unwritten buffers). We also lock the pages containing
2602  * these buffers. The extent found is returned in @mpd structure (starting at
2603  * mpd->lblk with length mpd->len blocks).
2604  *
2605  * Note that this function can attach bios to one io_end structure which are
2606  * neither logically nor physically contiguous. Although it may seem as an
2607  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2608  * case as we need to track IO to all buffers underlying a page in one io_end.
2609  */
2610 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2611 {
2612 	struct address_space *mapping = mpd->inode->i_mapping;
2613 	struct pagevec pvec;
2614 	unsigned int nr_pages;
2615 	long left = mpd->wbc->nr_to_write;
2616 	pgoff_t index = mpd->first_page;
2617 	pgoff_t end = mpd->last_page;
2618 	int tag;
2619 	int i, err = 0;
2620 	int blkbits = mpd->inode->i_blkbits;
2621 	ext4_lblk_t lblk;
2622 	struct buffer_head *head;
2623 
2624 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2625 		tag = PAGECACHE_TAG_TOWRITE;
2626 	else
2627 		tag = PAGECACHE_TAG_DIRTY;
2628 
2629 	pagevec_init(&pvec);
2630 	mpd->map.m_len = 0;
2631 	mpd->next_page = index;
2632 	while (index <= end) {
2633 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2634 				tag);
2635 		if (nr_pages == 0)
2636 			goto out;
2637 
2638 		for (i = 0; i < nr_pages; i++) {
2639 			struct page *page = pvec.pages[i];
2640 
2641 			/*
2642 			 * Accumulated enough dirty pages? This doesn't apply
2643 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2644 			 * keep going because someone may be concurrently
2645 			 * dirtying pages, and we might have synced a lot of
2646 			 * newly appeared dirty pages, but have not synced all
2647 			 * of the old dirty pages.
2648 			 */
2649 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650 				goto out;
2651 
2652 			/* If we can't merge this page, we are done. */
2653 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654 				goto out;
2655 
2656 			lock_page(page);
2657 			/*
2658 			 * If the page is no longer dirty, or its mapping no
2659 			 * longer corresponds to inode we are writing (which
2660 			 * means it has been truncated or invalidated), or the
2661 			 * page is already under writeback and we are not doing
2662 			 * a data integrity writeback, skip the page
2663 			 */
2664 			if (!PageDirty(page) ||
2665 			    (PageWriteback(page) &&
2666 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667 			    unlikely(page->mapping != mapping)) {
2668 				unlock_page(page);
2669 				continue;
2670 			}
2671 
2672 			wait_on_page_writeback(page);
2673 			BUG_ON(PageWriteback(page));
2674 
2675 			if (mpd->map.m_len == 0)
2676 				mpd->first_page = page->index;
2677 			mpd->next_page = page->index + 1;
2678 			/* Add all dirty buffers to mpd */
2679 			lblk = ((ext4_lblk_t)page->index) <<
2680 				(PAGE_SHIFT - blkbits);
2681 			head = page_buffers(page);
2682 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2683 			if (err <= 0)
2684 				goto out;
2685 			err = 0;
2686 			left--;
2687 		}
2688 		pagevec_release(&pvec);
2689 		cond_resched();
2690 	}
2691 	return 0;
2692 out:
2693 	pagevec_release(&pvec);
2694 	return err;
2695 }
2696 
2697 static int ext4_writepages(struct address_space *mapping,
2698 			   struct writeback_control *wbc)
2699 {
2700 	pgoff_t	writeback_index = 0;
2701 	long nr_to_write = wbc->nr_to_write;
2702 	int range_whole = 0;
2703 	int cycled = 1;
2704 	handle_t *handle = NULL;
2705 	struct mpage_da_data mpd;
2706 	struct inode *inode = mapping->host;
2707 	int needed_blocks, rsv_blocks = 0, ret = 0;
2708 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709 	bool done;
2710 	struct blk_plug plug;
2711 	bool give_up_on_write = false;
2712 
2713 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2714 		return -EIO;
2715 
2716 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2717 	trace_ext4_writepages(inode, wbc);
2718 
2719 	if (dax_mapping(mapping)) {
2720 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2721 						  wbc);
2722 		goto out_writepages;
2723 	}
2724 
2725 	/*
2726 	 * No pages to write? This is mainly a kludge to avoid starting
2727 	 * a transaction for special inodes like journal inode on last iput()
2728 	 * because that could violate lock ordering on umount
2729 	 */
2730 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2731 		goto out_writepages;
2732 
2733 	if (ext4_should_journal_data(inode)) {
2734 		ret = generic_writepages(mapping, wbc);
2735 		goto out_writepages;
2736 	}
2737 
2738 	/*
2739 	 * If the filesystem has aborted, it is read-only, so return
2740 	 * right away instead of dumping stack traces later on that
2741 	 * will obscure the real source of the problem.  We test
2742 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2743 	 * the latter could be true if the filesystem is mounted
2744 	 * read-only, and in that case, ext4_writepages should
2745 	 * *never* be called, so if that ever happens, we would want
2746 	 * the stack trace.
2747 	 */
2748 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2749 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2750 		ret = -EROFS;
2751 		goto out_writepages;
2752 	}
2753 
2754 	if (ext4_should_dioread_nolock(inode)) {
2755 		/*
2756 		 * We may need to convert up to one extent per block in
2757 		 * the page and we may dirty the inode.
2758 		 */
2759 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2760 	}
2761 
2762 	/*
2763 	 * If we have inline data and arrive here, it means that
2764 	 * we will soon create the block for the 1st page, so
2765 	 * we'd better clear the inline data here.
2766 	 */
2767 	if (ext4_has_inline_data(inode)) {
2768 		/* Just inode will be modified... */
2769 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2770 		if (IS_ERR(handle)) {
2771 			ret = PTR_ERR(handle);
2772 			goto out_writepages;
2773 		}
2774 		BUG_ON(ext4_test_inode_state(inode,
2775 				EXT4_STATE_MAY_INLINE_DATA));
2776 		ext4_destroy_inline_data(handle, inode);
2777 		ext4_journal_stop(handle);
2778 	}
2779 
2780 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2781 		range_whole = 1;
2782 
2783 	if (wbc->range_cyclic) {
2784 		writeback_index = mapping->writeback_index;
2785 		if (writeback_index)
2786 			cycled = 0;
2787 		mpd.first_page = writeback_index;
2788 		mpd.last_page = -1;
2789 	} else {
2790 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2791 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2792 	}
2793 
2794 	mpd.inode = inode;
2795 	mpd.wbc = wbc;
2796 	ext4_io_submit_init(&mpd.io_submit, wbc);
2797 retry:
2798 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2799 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2800 	done = false;
2801 	blk_start_plug(&plug);
2802 
2803 	/*
2804 	 * First writeback pages that don't need mapping - we can avoid
2805 	 * starting a transaction unnecessarily and also avoid being blocked
2806 	 * in the block layer on device congestion while having transaction
2807 	 * started.
2808 	 */
2809 	mpd.do_map = 0;
2810 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2811 	if (!mpd.io_submit.io_end) {
2812 		ret = -ENOMEM;
2813 		goto unplug;
2814 	}
2815 	ret = mpage_prepare_extent_to_map(&mpd);
2816 	/* Submit prepared bio */
2817 	ext4_io_submit(&mpd.io_submit);
2818 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2819 	mpd.io_submit.io_end = NULL;
2820 	/* Unlock pages we didn't use */
2821 	mpage_release_unused_pages(&mpd, false);
2822 	if (ret < 0)
2823 		goto unplug;
2824 
2825 	while (!done && mpd.first_page <= mpd.last_page) {
2826 		/* For each extent of pages we use new io_end */
2827 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2828 		if (!mpd.io_submit.io_end) {
2829 			ret = -ENOMEM;
2830 			break;
2831 		}
2832 
2833 		/*
2834 		 * We have two constraints: We find one extent to map and we
2835 		 * must always write out whole page (makes a difference when
2836 		 * blocksize < pagesize) so that we don't block on IO when we
2837 		 * try to write out the rest of the page. Journalled mode is
2838 		 * not supported by delalloc.
2839 		 */
2840 		BUG_ON(ext4_should_journal_data(inode));
2841 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2842 
2843 		/* start a new transaction */
2844 		handle = ext4_journal_start_with_reserve(inode,
2845 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2846 		if (IS_ERR(handle)) {
2847 			ret = PTR_ERR(handle);
2848 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2849 			       "%ld pages, ino %lu; err %d", __func__,
2850 				wbc->nr_to_write, inode->i_ino, ret);
2851 			/* Release allocated io_end */
2852 			ext4_put_io_end(mpd.io_submit.io_end);
2853 			mpd.io_submit.io_end = NULL;
2854 			break;
2855 		}
2856 		mpd.do_map = 1;
2857 
2858 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2859 		ret = mpage_prepare_extent_to_map(&mpd);
2860 		if (!ret) {
2861 			if (mpd.map.m_len)
2862 				ret = mpage_map_and_submit_extent(handle, &mpd,
2863 					&give_up_on_write);
2864 			else {
2865 				/*
2866 				 * We scanned the whole range (or exhausted
2867 				 * nr_to_write), submitted what was mapped and
2868 				 * didn't find anything needing mapping. We are
2869 				 * done.
2870 				 */
2871 				done = true;
2872 			}
2873 		}
2874 		/*
2875 		 * Caution: If the handle is synchronous,
2876 		 * ext4_journal_stop() can wait for transaction commit
2877 		 * to finish which may depend on writeback of pages to
2878 		 * complete or on page lock to be released.  In that
2879 		 * case, we have to wait until after after we have
2880 		 * submitted all the IO, released page locks we hold,
2881 		 * and dropped io_end reference (for extent conversion
2882 		 * to be able to complete) before stopping the handle.
2883 		 */
2884 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2885 			ext4_journal_stop(handle);
2886 			handle = NULL;
2887 			mpd.do_map = 0;
2888 		}
2889 		/* Submit prepared bio */
2890 		ext4_io_submit(&mpd.io_submit);
2891 		/* Unlock pages we didn't use */
2892 		mpage_release_unused_pages(&mpd, give_up_on_write);
2893 		/*
2894 		 * Drop our io_end reference we got from init. We have
2895 		 * to be careful and use deferred io_end finishing if
2896 		 * we are still holding the transaction as we can
2897 		 * release the last reference to io_end which may end
2898 		 * up doing unwritten extent conversion.
2899 		 */
2900 		if (handle) {
2901 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2902 			ext4_journal_stop(handle);
2903 		} else
2904 			ext4_put_io_end(mpd.io_submit.io_end);
2905 		mpd.io_submit.io_end = NULL;
2906 
2907 		if (ret == -ENOSPC && sbi->s_journal) {
2908 			/*
2909 			 * Commit the transaction which would
2910 			 * free blocks released in the transaction
2911 			 * and try again
2912 			 */
2913 			jbd2_journal_force_commit_nested(sbi->s_journal);
2914 			ret = 0;
2915 			continue;
2916 		}
2917 		/* Fatal error - ENOMEM, EIO... */
2918 		if (ret)
2919 			break;
2920 	}
2921 unplug:
2922 	blk_finish_plug(&plug);
2923 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2924 		cycled = 1;
2925 		mpd.last_page = writeback_index - 1;
2926 		mpd.first_page = 0;
2927 		goto retry;
2928 	}
2929 
2930 	/* Update index */
2931 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2932 		/*
2933 		 * Set the writeback_index so that range_cyclic
2934 		 * mode will write it back later
2935 		 */
2936 		mapping->writeback_index = mpd.first_page;
2937 
2938 out_writepages:
2939 	trace_ext4_writepages_result(inode, wbc, ret,
2940 				     nr_to_write - wbc->nr_to_write);
2941 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2942 	return ret;
2943 }
2944 
2945 static int ext4_nonda_switch(struct super_block *sb)
2946 {
2947 	s64 free_clusters, dirty_clusters;
2948 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2949 
2950 	/*
2951 	 * switch to non delalloc mode if we are running low
2952 	 * on free block. The free block accounting via percpu
2953 	 * counters can get slightly wrong with percpu_counter_batch getting
2954 	 * accumulated on each CPU without updating global counters
2955 	 * Delalloc need an accurate free block accounting. So switch
2956 	 * to non delalloc when we are near to error range.
2957 	 */
2958 	free_clusters =
2959 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2960 	dirty_clusters =
2961 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2962 	/*
2963 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2964 	 */
2965 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2966 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2967 
2968 	if (2 * free_clusters < 3 * dirty_clusters ||
2969 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2970 		/*
2971 		 * free block count is less than 150% of dirty blocks
2972 		 * or free blocks is less than watermark
2973 		 */
2974 		return 1;
2975 	}
2976 	return 0;
2977 }
2978 
2979 /* We always reserve for an inode update; the superblock could be there too */
2980 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2981 {
2982 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2983 		return 1;
2984 
2985 	if (pos + len <= 0x7fffffffULL)
2986 		return 1;
2987 
2988 	/* We might need to update the superblock to set LARGE_FILE */
2989 	return 2;
2990 }
2991 
2992 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2993 			       loff_t pos, unsigned len, unsigned flags,
2994 			       struct page **pagep, void **fsdata)
2995 {
2996 	int ret, retries = 0;
2997 	struct page *page;
2998 	pgoff_t index;
2999 	struct inode *inode = mapping->host;
3000 	handle_t *handle;
3001 
3002 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3003 		return -EIO;
3004 
3005 	index = pos >> PAGE_SHIFT;
3006 
3007 	if (ext4_nonda_switch(inode->i_sb) ||
3008 	    S_ISLNK(inode->i_mode)) {
3009 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3010 		return ext4_write_begin(file, mapping, pos,
3011 					len, flags, pagep, fsdata);
3012 	}
3013 	*fsdata = (void *)0;
3014 	trace_ext4_da_write_begin(inode, pos, len, flags);
3015 
3016 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3017 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3018 						      pos, len, flags,
3019 						      pagep, fsdata);
3020 		if (ret < 0)
3021 			return ret;
3022 		if (ret == 1)
3023 			return 0;
3024 	}
3025 
3026 	/*
3027 	 * grab_cache_page_write_begin() can take a long time if the
3028 	 * system is thrashing due to memory pressure, or if the page
3029 	 * is being written back.  So grab it first before we start
3030 	 * the transaction handle.  This also allows us to allocate
3031 	 * the page (if needed) without using GFP_NOFS.
3032 	 */
3033 retry_grab:
3034 	page = grab_cache_page_write_begin(mapping, index, flags);
3035 	if (!page)
3036 		return -ENOMEM;
3037 	unlock_page(page);
3038 
3039 	/*
3040 	 * With delayed allocation, we don't log the i_disksize update
3041 	 * if there is delayed block allocation. But we still need
3042 	 * to journalling the i_disksize update if writes to the end
3043 	 * of file which has an already mapped buffer.
3044 	 */
3045 retry_journal:
3046 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3047 				ext4_da_write_credits(inode, pos, len));
3048 	if (IS_ERR(handle)) {
3049 		put_page(page);
3050 		return PTR_ERR(handle);
3051 	}
3052 
3053 	lock_page(page);
3054 	if (page->mapping != mapping) {
3055 		/* The page got truncated from under us */
3056 		unlock_page(page);
3057 		put_page(page);
3058 		ext4_journal_stop(handle);
3059 		goto retry_grab;
3060 	}
3061 	/* In case writeback began while the page was unlocked */
3062 	wait_for_stable_page(page);
3063 
3064 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3065 	ret = ext4_block_write_begin(page, pos, len,
3066 				     ext4_da_get_block_prep);
3067 #else
3068 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3069 #endif
3070 	if (ret < 0) {
3071 		unlock_page(page);
3072 		ext4_journal_stop(handle);
3073 		/*
3074 		 * block_write_begin may have instantiated a few blocks
3075 		 * outside i_size.  Trim these off again. Don't need
3076 		 * i_size_read because we hold i_mutex.
3077 		 */
3078 		if (pos + len > inode->i_size)
3079 			ext4_truncate_failed_write(inode);
3080 
3081 		if (ret == -ENOSPC &&
3082 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3083 			goto retry_journal;
3084 
3085 		put_page(page);
3086 		return ret;
3087 	}
3088 
3089 	*pagep = page;
3090 	return ret;
3091 }
3092 
3093 /*
3094  * Check if we should update i_disksize
3095  * when write to the end of file but not require block allocation
3096  */
3097 static int ext4_da_should_update_i_disksize(struct page *page,
3098 					    unsigned long offset)
3099 {
3100 	struct buffer_head *bh;
3101 	struct inode *inode = page->mapping->host;
3102 	unsigned int idx;
3103 	int i;
3104 
3105 	bh = page_buffers(page);
3106 	idx = offset >> inode->i_blkbits;
3107 
3108 	for (i = 0; i < idx; i++)
3109 		bh = bh->b_this_page;
3110 
3111 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3112 		return 0;
3113 	return 1;
3114 }
3115 
3116 static int ext4_da_write_end(struct file *file,
3117 			     struct address_space *mapping,
3118 			     loff_t pos, unsigned len, unsigned copied,
3119 			     struct page *page, void *fsdata)
3120 {
3121 	struct inode *inode = mapping->host;
3122 	int ret = 0, ret2;
3123 	handle_t *handle = ext4_journal_current_handle();
3124 	loff_t new_i_size;
3125 	unsigned long start, end;
3126 	int write_mode = (int)(unsigned long)fsdata;
3127 
3128 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3129 		return ext4_write_end(file, mapping, pos,
3130 				      len, copied, page, fsdata);
3131 
3132 	trace_ext4_da_write_end(inode, pos, len, copied);
3133 	start = pos & (PAGE_SIZE - 1);
3134 	end = start + copied - 1;
3135 
3136 	/*
3137 	 * generic_write_end() will run mark_inode_dirty() if i_size
3138 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3139 	 * into that.
3140 	 */
3141 	new_i_size = pos + copied;
3142 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3143 		if (ext4_has_inline_data(inode) ||
3144 		    ext4_da_should_update_i_disksize(page, end)) {
3145 			ext4_update_i_disksize(inode, new_i_size);
3146 			/* We need to mark inode dirty even if
3147 			 * new_i_size is less that inode->i_size
3148 			 * bu greater than i_disksize.(hint delalloc)
3149 			 */
3150 			ext4_mark_inode_dirty(handle, inode);
3151 		}
3152 	}
3153 
3154 	if (write_mode != CONVERT_INLINE_DATA &&
3155 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3156 	    ext4_has_inline_data(inode))
3157 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3158 						     page);
3159 	else
3160 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3161 							page, fsdata);
3162 
3163 	copied = ret2;
3164 	if (ret2 < 0)
3165 		ret = ret2;
3166 	ret2 = ext4_journal_stop(handle);
3167 	if (!ret)
3168 		ret = ret2;
3169 
3170 	return ret ? ret : copied;
3171 }
3172 
3173 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3174 				   unsigned int length)
3175 {
3176 	/*
3177 	 * Drop reserved blocks
3178 	 */
3179 	BUG_ON(!PageLocked(page));
3180 	if (!page_has_buffers(page))
3181 		goto out;
3182 
3183 	ext4_da_page_release_reservation(page, offset, length);
3184 
3185 out:
3186 	ext4_invalidatepage(page, offset, length);
3187 
3188 	return;
3189 }
3190 
3191 /*
3192  * Force all delayed allocation blocks to be allocated for a given inode.
3193  */
3194 int ext4_alloc_da_blocks(struct inode *inode)
3195 {
3196 	trace_ext4_alloc_da_blocks(inode);
3197 
3198 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3199 		return 0;
3200 
3201 	/*
3202 	 * We do something simple for now.  The filemap_flush() will
3203 	 * also start triggering a write of the data blocks, which is
3204 	 * not strictly speaking necessary (and for users of
3205 	 * laptop_mode, not even desirable).  However, to do otherwise
3206 	 * would require replicating code paths in:
3207 	 *
3208 	 * ext4_writepages() ->
3209 	 *    write_cache_pages() ---> (via passed in callback function)
3210 	 *        __mpage_da_writepage() -->
3211 	 *           mpage_add_bh_to_extent()
3212 	 *           mpage_da_map_blocks()
3213 	 *
3214 	 * The problem is that write_cache_pages(), located in
3215 	 * mm/page-writeback.c, marks pages clean in preparation for
3216 	 * doing I/O, which is not desirable if we're not planning on
3217 	 * doing I/O at all.
3218 	 *
3219 	 * We could call write_cache_pages(), and then redirty all of
3220 	 * the pages by calling redirty_page_for_writepage() but that
3221 	 * would be ugly in the extreme.  So instead we would need to
3222 	 * replicate parts of the code in the above functions,
3223 	 * simplifying them because we wouldn't actually intend to
3224 	 * write out the pages, but rather only collect contiguous
3225 	 * logical block extents, call the multi-block allocator, and
3226 	 * then update the buffer heads with the block allocations.
3227 	 *
3228 	 * For now, though, we'll cheat by calling filemap_flush(),
3229 	 * which will map the blocks, and start the I/O, but not
3230 	 * actually wait for the I/O to complete.
3231 	 */
3232 	return filemap_flush(inode->i_mapping);
3233 }
3234 
3235 /*
3236  * bmap() is special.  It gets used by applications such as lilo and by
3237  * the swapper to find the on-disk block of a specific piece of data.
3238  *
3239  * Naturally, this is dangerous if the block concerned is still in the
3240  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3241  * filesystem and enables swap, then they may get a nasty shock when the
3242  * data getting swapped to that swapfile suddenly gets overwritten by
3243  * the original zero's written out previously to the journal and
3244  * awaiting writeback in the kernel's buffer cache.
3245  *
3246  * So, if we see any bmap calls here on a modified, data-journaled file,
3247  * take extra steps to flush any blocks which might be in the cache.
3248  */
3249 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3250 {
3251 	struct inode *inode = mapping->host;
3252 	journal_t *journal;
3253 	int err;
3254 
3255 	/*
3256 	 * We can get here for an inline file via the FIBMAP ioctl
3257 	 */
3258 	if (ext4_has_inline_data(inode))
3259 		return 0;
3260 
3261 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3262 			test_opt(inode->i_sb, DELALLOC)) {
3263 		/*
3264 		 * With delalloc we want to sync the file
3265 		 * so that we can make sure we allocate
3266 		 * blocks for file
3267 		 */
3268 		filemap_write_and_wait(mapping);
3269 	}
3270 
3271 	if (EXT4_JOURNAL(inode) &&
3272 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3273 		/*
3274 		 * This is a REALLY heavyweight approach, but the use of
3275 		 * bmap on dirty files is expected to be extremely rare:
3276 		 * only if we run lilo or swapon on a freshly made file
3277 		 * do we expect this to happen.
3278 		 *
3279 		 * (bmap requires CAP_SYS_RAWIO so this does not
3280 		 * represent an unprivileged user DOS attack --- we'd be
3281 		 * in trouble if mortal users could trigger this path at
3282 		 * will.)
3283 		 *
3284 		 * NB. EXT4_STATE_JDATA is not set on files other than
3285 		 * regular files.  If somebody wants to bmap a directory
3286 		 * or symlink and gets confused because the buffer
3287 		 * hasn't yet been flushed to disk, they deserve
3288 		 * everything they get.
3289 		 */
3290 
3291 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3292 		journal = EXT4_JOURNAL(inode);
3293 		jbd2_journal_lock_updates(journal);
3294 		err = jbd2_journal_flush(journal);
3295 		jbd2_journal_unlock_updates(journal);
3296 
3297 		if (err)
3298 			return 0;
3299 	}
3300 
3301 	return generic_block_bmap(mapping, block, ext4_get_block);
3302 }
3303 
3304 static int ext4_readpage(struct file *file, struct page *page)
3305 {
3306 	int ret = -EAGAIN;
3307 	struct inode *inode = page->mapping->host;
3308 
3309 	trace_ext4_readpage(page);
3310 
3311 	if (ext4_has_inline_data(inode))
3312 		ret = ext4_readpage_inline(inode, page);
3313 
3314 	if (ret == -EAGAIN)
3315 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3316 
3317 	return ret;
3318 }
3319 
3320 static int
3321 ext4_readpages(struct file *file, struct address_space *mapping,
3322 		struct list_head *pages, unsigned nr_pages)
3323 {
3324 	struct inode *inode = mapping->host;
3325 
3326 	/* If the file has inline data, no need to do readpages. */
3327 	if (ext4_has_inline_data(inode))
3328 		return 0;
3329 
3330 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3331 }
3332 
3333 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3334 				unsigned int length)
3335 {
3336 	trace_ext4_invalidatepage(page, offset, length);
3337 
3338 	/* No journalling happens on data buffers when this function is used */
3339 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3340 
3341 	block_invalidatepage(page, offset, length);
3342 }
3343 
3344 static int __ext4_journalled_invalidatepage(struct page *page,
3345 					    unsigned int offset,
3346 					    unsigned int length)
3347 {
3348 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3349 
3350 	trace_ext4_journalled_invalidatepage(page, offset, length);
3351 
3352 	/*
3353 	 * If it's a full truncate we just forget about the pending dirtying
3354 	 */
3355 	if (offset == 0 && length == PAGE_SIZE)
3356 		ClearPageChecked(page);
3357 
3358 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3359 }
3360 
3361 /* Wrapper for aops... */
3362 static void ext4_journalled_invalidatepage(struct page *page,
3363 					   unsigned int offset,
3364 					   unsigned int length)
3365 {
3366 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3367 }
3368 
3369 static int ext4_releasepage(struct page *page, gfp_t wait)
3370 {
3371 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3372 
3373 	trace_ext4_releasepage(page);
3374 
3375 	/* Page has dirty journalled data -> cannot release */
3376 	if (PageChecked(page))
3377 		return 0;
3378 	if (journal)
3379 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3380 	else
3381 		return try_to_free_buffers(page);
3382 }
3383 
3384 static bool ext4_inode_datasync_dirty(struct inode *inode)
3385 {
3386 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3387 
3388 	if (journal)
3389 		return !jbd2_transaction_committed(journal,
3390 					EXT4_I(inode)->i_datasync_tid);
3391 	/* Any metadata buffers to write? */
3392 	if (!list_empty(&inode->i_mapping->private_list))
3393 		return true;
3394 	return inode->i_state & I_DIRTY_DATASYNC;
3395 }
3396 
3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3398 			    unsigned flags, struct iomap *iomap)
3399 {
3400 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3401 	unsigned int blkbits = inode->i_blkbits;
3402 	unsigned long first_block = offset >> blkbits;
3403 	unsigned long last_block = (offset + length - 1) >> blkbits;
3404 	struct ext4_map_blocks map;
3405 	bool delalloc = false;
3406 	int ret;
3407 
3408 
3409 	if (flags & IOMAP_REPORT) {
3410 		if (ext4_has_inline_data(inode)) {
3411 			ret = ext4_inline_data_iomap(inode, iomap);
3412 			if (ret != -EAGAIN) {
3413 				if (ret == 0 && offset >= iomap->length)
3414 					ret = -ENOENT;
3415 				return ret;
3416 			}
3417 		}
3418 	} else {
3419 		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3420 			return -ERANGE;
3421 	}
3422 
3423 	map.m_lblk = first_block;
3424 	map.m_len = last_block - first_block + 1;
3425 
3426 	if (flags & IOMAP_REPORT) {
3427 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3428 		if (ret < 0)
3429 			return ret;
3430 
3431 		if (ret == 0) {
3432 			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3433 			struct extent_status es;
3434 
3435 			ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3436 
3437 			if (!es.es_len || es.es_lblk > end) {
3438 				/* entire range is a hole */
3439 			} else if (es.es_lblk > map.m_lblk) {
3440 				/* range starts with a hole */
3441 				map.m_len = es.es_lblk - map.m_lblk;
3442 			} else {
3443 				ext4_lblk_t offs = 0;
3444 
3445 				if (es.es_lblk < map.m_lblk)
3446 					offs = map.m_lblk - es.es_lblk;
3447 				map.m_lblk = es.es_lblk + offs;
3448 				map.m_len = es.es_len - offs;
3449 				delalloc = true;
3450 			}
3451 		}
3452 	} else if (flags & IOMAP_WRITE) {
3453 		int dio_credits;
3454 		handle_t *handle;
3455 		int retries = 0;
3456 
3457 		/* Trim mapping request to maximum we can map at once for DIO */
3458 		if (map.m_len > DIO_MAX_BLOCKS)
3459 			map.m_len = DIO_MAX_BLOCKS;
3460 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3461 retry:
3462 		/*
3463 		 * Either we allocate blocks and then we don't get unwritten
3464 		 * extent so we have reserved enough credits, or the blocks
3465 		 * are already allocated and unwritten and in that case
3466 		 * extent conversion fits in the credits as well.
3467 		 */
3468 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3469 					    dio_credits);
3470 		if (IS_ERR(handle))
3471 			return PTR_ERR(handle);
3472 
3473 		ret = ext4_map_blocks(handle, inode, &map,
3474 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3475 		if (ret < 0) {
3476 			ext4_journal_stop(handle);
3477 			if (ret == -ENOSPC &&
3478 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3479 				goto retry;
3480 			return ret;
3481 		}
3482 
3483 		/*
3484 		 * If we added blocks beyond i_size, we need to make sure they
3485 		 * will get truncated if we crash before updating i_size in
3486 		 * ext4_iomap_end(). For faults we don't need to do that (and
3487 		 * even cannot because for orphan list operations inode_lock is
3488 		 * required) - if we happen to instantiate block beyond i_size,
3489 		 * it is because we race with truncate which has already added
3490 		 * the inode to the orphan list.
3491 		 */
3492 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3493 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3494 			int err;
3495 
3496 			err = ext4_orphan_add(handle, inode);
3497 			if (err < 0) {
3498 				ext4_journal_stop(handle);
3499 				return err;
3500 			}
3501 		}
3502 		ext4_journal_stop(handle);
3503 	} else {
3504 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3505 		if (ret < 0)
3506 			return ret;
3507 	}
3508 
3509 	iomap->flags = 0;
3510 	if (ext4_inode_datasync_dirty(inode))
3511 		iomap->flags |= IOMAP_F_DIRTY;
3512 	iomap->bdev = inode->i_sb->s_bdev;
3513 	iomap->dax_dev = sbi->s_daxdev;
3514 	iomap->offset = (u64)first_block << blkbits;
3515 	iomap->length = (u64)map.m_len << blkbits;
3516 
3517 	if (ret == 0) {
3518 		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3519 		iomap->addr = IOMAP_NULL_ADDR;
3520 	} else {
3521 		if (map.m_flags & EXT4_MAP_MAPPED) {
3522 			iomap->type = IOMAP_MAPPED;
3523 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3524 			iomap->type = IOMAP_UNWRITTEN;
3525 		} else {
3526 			WARN_ON_ONCE(1);
3527 			return -EIO;
3528 		}
3529 		iomap->addr = (u64)map.m_pblk << blkbits;
3530 	}
3531 
3532 	if (map.m_flags & EXT4_MAP_NEW)
3533 		iomap->flags |= IOMAP_F_NEW;
3534 
3535 	return 0;
3536 }
3537 
3538 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3539 			  ssize_t written, unsigned flags, struct iomap *iomap)
3540 {
3541 	int ret = 0;
3542 	handle_t *handle;
3543 	int blkbits = inode->i_blkbits;
3544 	bool truncate = false;
3545 
3546 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3547 		return 0;
3548 
3549 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3550 	if (IS_ERR(handle)) {
3551 		ret = PTR_ERR(handle);
3552 		goto orphan_del;
3553 	}
3554 	if (ext4_update_inode_size(inode, offset + written))
3555 		ext4_mark_inode_dirty(handle, inode);
3556 	/*
3557 	 * We may need to truncate allocated but not written blocks beyond EOF.
3558 	 */
3559 	if (iomap->offset + iomap->length >
3560 	    ALIGN(inode->i_size, 1 << blkbits)) {
3561 		ext4_lblk_t written_blk, end_blk;
3562 
3563 		written_blk = (offset + written) >> blkbits;
3564 		end_blk = (offset + length) >> blkbits;
3565 		if (written_blk < end_blk && ext4_can_truncate(inode))
3566 			truncate = true;
3567 	}
3568 	/*
3569 	 * Remove inode from orphan list if we were extending a inode and
3570 	 * everything went fine.
3571 	 */
3572 	if (!truncate && inode->i_nlink &&
3573 	    !list_empty(&EXT4_I(inode)->i_orphan))
3574 		ext4_orphan_del(handle, inode);
3575 	ext4_journal_stop(handle);
3576 	if (truncate) {
3577 		ext4_truncate_failed_write(inode);
3578 orphan_del:
3579 		/*
3580 		 * If truncate failed early the inode might still be on the
3581 		 * orphan list; we need to make sure the inode is removed from
3582 		 * the orphan list in that case.
3583 		 */
3584 		if (inode->i_nlink)
3585 			ext4_orphan_del(NULL, inode);
3586 	}
3587 	return ret;
3588 }
3589 
3590 const struct iomap_ops ext4_iomap_ops = {
3591 	.iomap_begin		= ext4_iomap_begin,
3592 	.iomap_end		= ext4_iomap_end,
3593 };
3594 
3595 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3596 			    ssize_t size, void *private)
3597 {
3598         ext4_io_end_t *io_end = private;
3599 
3600 	/* if not async direct IO just return */
3601 	if (!io_end)
3602 		return 0;
3603 
3604 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3605 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3606 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3607 
3608 	/*
3609 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3610 	 * data was not written. Just clear the unwritten flag and drop io_end.
3611 	 */
3612 	if (size <= 0) {
3613 		ext4_clear_io_unwritten_flag(io_end);
3614 		size = 0;
3615 	}
3616 	io_end->offset = offset;
3617 	io_end->size = size;
3618 	ext4_put_io_end(io_end);
3619 
3620 	return 0;
3621 }
3622 
3623 /*
3624  * Handling of direct IO writes.
3625  *
3626  * For ext4 extent files, ext4 will do direct-io write even to holes,
3627  * preallocated extents, and those write extend the file, no need to
3628  * fall back to buffered IO.
3629  *
3630  * For holes, we fallocate those blocks, mark them as unwritten
3631  * If those blocks were preallocated, we mark sure they are split, but
3632  * still keep the range to write as unwritten.
3633  *
3634  * The unwritten extents will be converted to written when DIO is completed.
3635  * For async direct IO, since the IO may still pending when return, we
3636  * set up an end_io call back function, which will do the conversion
3637  * when async direct IO completed.
3638  *
3639  * If the O_DIRECT write will extend the file then add this inode to the
3640  * orphan list.  So recovery will truncate it back to the original size
3641  * if the machine crashes during the write.
3642  *
3643  */
3644 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3645 {
3646 	struct file *file = iocb->ki_filp;
3647 	struct inode *inode = file->f_mapping->host;
3648 	struct ext4_inode_info *ei = EXT4_I(inode);
3649 	ssize_t ret;
3650 	loff_t offset = iocb->ki_pos;
3651 	size_t count = iov_iter_count(iter);
3652 	int overwrite = 0;
3653 	get_block_t *get_block_func = NULL;
3654 	int dio_flags = 0;
3655 	loff_t final_size = offset + count;
3656 	int orphan = 0;
3657 	handle_t *handle;
3658 
3659 	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3660 		/* Credits for sb + inode write */
3661 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3662 		if (IS_ERR(handle)) {
3663 			ret = PTR_ERR(handle);
3664 			goto out;
3665 		}
3666 		ret = ext4_orphan_add(handle, inode);
3667 		if (ret) {
3668 			ext4_journal_stop(handle);
3669 			goto out;
3670 		}
3671 		orphan = 1;
3672 		ext4_update_i_disksize(inode, inode->i_size);
3673 		ext4_journal_stop(handle);
3674 	}
3675 
3676 	BUG_ON(iocb->private == NULL);
3677 
3678 	/*
3679 	 * Make all waiters for direct IO properly wait also for extent
3680 	 * conversion. This also disallows race between truncate() and
3681 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3682 	 */
3683 	inode_dio_begin(inode);
3684 
3685 	/* If we do a overwrite dio, i_mutex locking can be released */
3686 	overwrite = *((int *)iocb->private);
3687 
3688 	if (overwrite)
3689 		inode_unlock(inode);
3690 
3691 	/*
3692 	 * For extent mapped files we could direct write to holes and fallocate.
3693 	 *
3694 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3695 	 * parallel buffered read to expose the stale data before DIO complete
3696 	 * the data IO.
3697 	 *
3698 	 * As to previously fallocated extents, ext4 get_block will just simply
3699 	 * mark the buffer mapped but still keep the extents unwritten.
3700 	 *
3701 	 * For non AIO case, we will convert those unwritten extents to written
3702 	 * after return back from blockdev_direct_IO. That way we save us from
3703 	 * allocating io_end structure and also the overhead of offloading
3704 	 * the extent convertion to a workqueue.
3705 	 *
3706 	 * For async DIO, the conversion needs to be deferred when the
3707 	 * IO is completed. The ext4 end_io callback function will be
3708 	 * called to take care of the conversion work.  Here for async
3709 	 * case, we allocate an io_end structure to hook to the iocb.
3710 	 */
3711 	iocb->private = NULL;
3712 	if (overwrite)
3713 		get_block_func = ext4_dio_get_block_overwrite;
3714 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3715 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3716 		get_block_func = ext4_dio_get_block;
3717 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3718 	} else if (is_sync_kiocb(iocb)) {
3719 		get_block_func = ext4_dio_get_block_unwritten_sync;
3720 		dio_flags = DIO_LOCKING;
3721 	} else {
3722 		get_block_func = ext4_dio_get_block_unwritten_async;
3723 		dio_flags = DIO_LOCKING;
3724 	}
3725 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3726 				   get_block_func, ext4_end_io_dio, NULL,
3727 				   dio_flags);
3728 
3729 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3730 						EXT4_STATE_DIO_UNWRITTEN)) {
3731 		int err;
3732 		/*
3733 		 * for non AIO case, since the IO is already
3734 		 * completed, we could do the conversion right here
3735 		 */
3736 		err = ext4_convert_unwritten_extents(NULL, inode,
3737 						     offset, ret);
3738 		if (err < 0)
3739 			ret = err;
3740 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3741 	}
3742 
3743 	inode_dio_end(inode);
3744 	/* take i_mutex locking again if we do a ovewrite dio */
3745 	if (overwrite)
3746 		inode_lock(inode);
3747 
3748 	if (ret < 0 && final_size > inode->i_size)
3749 		ext4_truncate_failed_write(inode);
3750 
3751 	/* Handle extending of i_size after direct IO write */
3752 	if (orphan) {
3753 		int err;
3754 
3755 		/* Credits for sb + inode write */
3756 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3757 		if (IS_ERR(handle)) {
3758 			/*
3759 			 * We wrote the data but cannot extend
3760 			 * i_size. Bail out. In async io case, we do
3761 			 * not return error here because we have
3762 			 * already submmitted the corresponding
3763 			 * bio. Returning error here makes the caller
3764 			 * think that this IO is done and failed
3765 			 * resulting in race with bio's completion
3766 			 * handler.
3767 			 */
3768 			if (!ret)
3769 				ret = PTR_ERR(handle);
3770 			if (inode->i_nlink)
3771 				ext4_orphan_del(NULL, inode);
3772 
3773 			goto out;
3774 		}
3775 		if (inode->i_nlink)
3776 			ext4_orphan_del(handle, inode);
3777 		if (ret > 0) {
3778 			loff_t end = offset + ret;
3779 			if (end > inode->i_size || end > ei->i_disksize) {
3780 				ext4_update_i_disksize(inode, end);
3781 				if (end > inode->i_size)
3782 					i_size_write(inode, end);
3783 				/*
3784 				 * We're going to return a positive `ret'
3785 				 * here due to non-zero-length I/O, so there's
3786 				 * no way of reporting error returns from
3787 				 * ext4_mark_inode_dirty() to userspace.  So
3788 				 * ignore it.
3789 				 */
3790 				ext4_mark_inode_dirty(handle, inode);
3791 			}
3792 		}
3793 		err = ext4_journal_stop(handle);
3794 		if (ret == 0)
3795 			ret = err;
3796 	}
3797 out:
3798 	return ret;
3799 }
3800 
3801 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3802 {
3803 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3804 	struct inode *inode = mapping->host;
3805 	size_t count = iov_iter_count(iter);
3806 	ssize_t ret;
3807 
3808 	/*
3809 	 * Shared inode_lock is enough for us - it protects against concurrent
3810 	 * writes & truncates and since we take care of writing back page cache,
3811 	 * we are protected against page writeback as well.
3812 	 */
3813 	inode_lock_shared(inode);
3814 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3815 					   iocb->ki_pos + count - 1);
3816 	if (ret)
3817 		goto out_unlock;
3818 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3819 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3820 out_unlock:
3821 	inode_unlock_shared(inode);
3822 	return ret;
3823 }
3824 
3825 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3826 {
3827 	struct file *file = iocb->ki_filp;
3828 	struct inode *inode = file->f_mapping->host;
3829 	size_t count = iov_iter_count(iter);
3830 	loff_t offset = iocb->ki_pos;
3831 	ssize_t ret;
3832 
3833 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3834 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3835 		return 0;
3836 #endif
3837 
3838 	/*
3839 	 * If we are doing data journalling we don't support O_DIRECT
3840 	 */
3841 	if (ext4_should_journal_data(inode))
3842 		return 0;
3843 
3844 	/* Let buffer I/O handle the inline data case. */
3845 	if (ext4_has_inline_data(inode))
3846 		return 0;
3847 
3848 	/* DAX uses iomap path now */
3849 	if (WARN_ON_ONCE(IS_DAX(inode)))
3850 		return 0;
3851 
3852 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3853 	if (iov_iter_rw(iter) == READ)
3854 		ret = ext4_direct_IO_read(iocb, iter);
3855 	else
3856 		ret = ext4_direct_IO_write(iocb, iter);
3857 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3858 	return ret;
3859 }
3860 
3861 /*
3862  * Pages can be marked dirty completely asynchronously from ext4's journalling
3863  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3864  * much here because ->set_page_dirty is called under VFS locks.  The page is
3865  * not necessarily locked.
3866  *
3867  * We cannot just dirty the page and leave attached buffers clean, because the
3868  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3869  * or jbddirty because all the journalling code will explode.
3870  *
3871  * So what we do is to mark the page "pending dirty" and next time writepage
3872  * is called, propagate that into the buffers appropriately.
3873  */
3874 static int ext4_journalled_set_page_dirty(struct page *page)
3875 {
3876 	SetPageChecked(page);
3877 	return __set_page_dirty_nobuffers(page);
3878 }
3879 
3880 static int ext4_set_page_dirty(struct page *page)
3881 {
3882 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3883 	WARN_ON_ONCE(!page_has_buffers(page));
3884 	return __set_page_dirty_buffers(page);
3885 }
3886 
3887 static const struct address_space_operations ext4_aops = {
3888 	.readpage		= ext4_readpage,
3889 	.readpages		= ext4_readpages,
3890 	.writepage		= ext4_writepage,
3891 	.writepages		= ext4_writepages,
3892 	.write_begin		= ext4_write_begin,
3893 	.write_end		= ext4_write_end,
3894 	.set_page_dirty		= ext4_set_page_dirty,
3895 	.bmap			= ext4_bmap,
3896 	.invalidatepage		= ext4_invalidatepage,
3897 	.releasepage		= ext4_releasepage,
3898 	.direct_IO		= ext4_direct_IO,
3899 	.migratepage		= buffer_migrate_page,
3900 	.is_partially_uptodate  = block_is_partially_uptodate,
3901 	.error_remove_page	= generic_error_remove_page,
3902 };
3903 
3904 static const struct address_space_operations ext4_journalled_aops = {
3905 	.readpage		= ext4_readpage,
3906 	.readpages		= ext4_readpages,
3907 	.writepage		= ext4_writepage,
3908 	.writepages		= ext4_writepages,
3909 	.write_begin		= ext4_write_begin,
3910 	.write_end		= ext4_journalled_write_end,
3911 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3912 	.bmap			= ext4_bmap,
3913 	.invalidatepage		= ext4_journalled_invalidatepage,
3914 	.releasepage		= ext4_releasepage,
3915 	.direct_IO		= ext4_direct_IO,
3916 	.is_partially_uptodate  = block_is_partially_uptodate,
3917 	.error_remove_page	= generic_error_remove_page,
3918 };
3919 
3920 static const struct address_space_operations ext4_da_aops = {
3921 	.readpage		= ext4_readpage,
3922 	.readpages		= ext4_readpages,
3923 	.writepage		= ext4_writepage,
3924 	.writepages		= ext4_writepages,
3925 	.write_begin		= ext4_da_write_begin,
3926 	.write_end		= ext4_da_write_end,
3927 	.set_page_dirty		= ext4_set_page_dirty,
3928 	.bmap			= ext4_bmap,
3929 	.invalidatepage		= ext4_da_invalidatepage,
3930 	.releasepage		= ext4_releasepage,
3931 	.direct_IO		= ext4_direct_IO,
3932 	.migratepage		= buffer_migrate_page,
3933 	.is_partially_uptodate  = block_is_partially_uptodate,
3934 	.error_remove_page	= generic_error_remove_page,
3935 };
3936 
3937 void ext4_set_aops(struct inode *inode)
3938 {
3939 	switch (ext4_inode_journal_mode(inode)) {
3940 	case EXT4_INODE_ORDERED_DATA_MODE:
3941 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3942 		break;
3943 	case EXT4_INODE_JOURNAL_DATA_MODE:
3944 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3945 		return;
3946 	default:
3947 		BUG();
3948 	}
3949 	if (test_opt(inode->i_sb, DELALLOC))
3950 		inode->i_mapping->a_ops = &ext4_da_aops;
3951 	else
3952 		inode->i_mapping->a_ops = &ext4_aops;
3953 }
3954 
3955 static int __ext4_block_zero_page_range(handle_t *handle,
3956 		struct address_space *mapping, loff_t from, loff_t length)
3957 {
3958 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3959 	unsigned offset = from & (PAGE_SIZE-1);
3960 	unsigned blocksize, pos;
3961 	ext4_lblk_t iblock;
3962 	struct inode *inode = mapping->host;
3963 	struct buffer_head *bh;
3964 	struct page *page;
3965 	int err = 0;
3966 
3967 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3968 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3969 	if (!page)
3970 		return -ENOMEM;
3971 
3972 	blocksize = inode->i_sb->s_blocksize;
3973 
3974 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3975 
3976 	if (!page_has_buffers(page))
3977 		create_empty_buffers(page, blocksize, 0);
3978 
3979 	/* Find the buffer that contains "offset" */
3980 	bh = page_buffers(page);
3981 	pos = blocksize;
3982 	while (offset >= pos) {
3983 		bh = bh->b_this_page;
3984 		iblock++;
3985 		pos += blocksize;
3986 	}
3987 	if (buffer_freed(bh)) {
3988 		BUFFER_TRACE(bh, "freed: skip");
3989 		goto unlock;
3990 	}
3991 	if (!buffer_mapped(bh)) {
3992 		BUFFER_TRACE(bh, "unmapped");
3993 		ext4_get_block(inode, iblock, bh, 0);
3994 		/* unmapped? It's a hole - nothing to do */
3995 		if (!buffer_mapped(bh)) {
3996 			BUFFER_TRACE(bh, "still unmapped");
3997 			goto unlock;
3998 		}
3999 	}
4000 
4001 	/* Ok, it's mapped. Make sure it's up-to-date */
4002 	if (PageUptodate(page))
4003 		set_buffer_uptodate(bh);
4004 
4005 	if (!buffer_uptodate(bh)) {
4006 		err = -EIO;
4007 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4008 		wait_on_buffer(bh);
4009 		/* Uhhuh. Read error. Complain and punt. */
4010 		if (!buffer_uptodate(bh))
4011 			goto unlock;
4012 		if (S_ISREG(inode->i_mode) &&
4013 		    ext4_encrypted_inode(inode)) {
4014 			/* We expect the key to be set. */
4015 			BUG_ON(!fscrypt_has_encryption_key(inode));
4016 			BUG_ON(blocksize != PAGE_SIZE);
4017 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4018 						page, PAGE_SIZE, 0, page->index));
4019 		}
4020 	}
4021 	if (ext4_should_journal_data(inode)) {
4022 		BUFFER_TRACE(bh, "get write access");
4023 		err = ext4_journal_get_write_access(handle, bh);
4024 		if (err)
4025 			goto unlock;
4026 	}
4027 	zero_user(page, offset, length);
4028 	BUFFER_TRACE(bh, "zeroed end of block");
4029 
4030 	if (ext4_should_journal_data(inode)) {
4031 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4032 	} else {
4033 		err = 0;
4034 		mark_buffer_dirty(bh);
4035 		if (ext4_should_order_data(inode))
4036 			err = ext4_jbd2_inode_add_write(handle, inode);
4037 	}
4038 
4039 unlock:
4040 	unlock_page(page);
4041 	put_page(page);
4042 	return err;
4043 }
4044 
4045 /*
4046  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4047  * starting from file offset 'from'.  The range to be zero'd must
4048  * be contained with in one block.  If the specified range exceeds
4049  * the end of the block it will be shortened to end of the block
4050  * that cooresponds to 'from'
4051  */
4052 static int ext4_block_zero_page_range(handle_t *handle,
4053 		struct address_space *mapping, loff_t from, loff_t length)
4054 {
4055 	struct inode *inode = mapping->host;
4056 	unsigned offset = from & (PAGE_SIZE-1);
4057 	unsigned blocksize = inode->i_sb->s_blocksize;
4058 	unsigned max = blocksize - (offset & (blocksize - 1));
4059 
4060 	/*
4061 	 * correct length if it does not fall between
4062 	 * 'from' and the end of the block
4063 	 */
4064 	if (length > max || length < 0)
4065 		length = max;
4066 
4067 	if (IS_DAX(inode)) {
4068 		return iomap_zero_range(inode, from, length, NULL,
4069 					&ext4_iomap_ops);
4070 	}
4071 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4072 }
4073 
4074 /*
4075  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4076  * up to the end of the block which corresponds to `from'.
4077  * This required during truncate. We need to physically zero the tail end
4078  * of that block so it doesn't yield old data if the file is later grown.
4079  */
4080 static int ext4_block_truncate_page(handle_t *handle,
4081 		struct address_space *mapping, loff_t from)
4082 {
4083 	unsigned offset = from & (PAGE_SIZE-1);
4084 	unsigned length;
4085 	unsigned blocksize;
4086 	struct inode *inode = mapping->host;
4087 
4088 	/* If we are processing an encrypted inode during orphan list handling */
4089 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4090 		return 0;
4091 
4092 	blocksize = inode->i_sb->s_blocksize;
4093 	length = blocksize - (offset & (blocksize - 1));
4094 
4095 	return ext4_block_zero_page_range(handle, mapping, from, length);
4096 }
4097 
4098 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4099 			     loff_t lstart, loff_t length)
4100 {
4101 	struct super_block *sb = inode->i_sb;
4102 	struct address_space *mapping = inode->i_mapping;
4103 	unsigned partial_start, partial_end;
4104 	ext4_fsblk_t start, end;
4105 	loff_t byte_end = (lstart + length - 1);
4106 	int err = 0;
4107 
4108 	partial_start = lstart & (sb->s_blocksize - 1);
4109 	partial_end = byte_end & (sb->s_blocksize - 1);
4110 
4111 	start = lstart >> sb->s_blocksize_bits;
4112 	end = byte_end >> sb->s_blocksize_bits;
4113 
4114 	/* Handle partial zero within the single block */
4115 	if (start == end &&
4116 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4117 		err = ext4_block_zero_page_range(handle, mapping,
4118 						 lstart, length);
4119 		return err;
4120 	}
4121 	/* Handle partial zero out on the start of the range */
4122 	if (partial_start) {
4123 		err = ext4_block_zero_page_range(handle, mapping,
4124 						 lstart, sb->s_blocksize);
4125 		if (err)
4126 			return err;
4127 	}
4128 	/* Handle partial zero out on the end of the range */
4129 	if (partial_end != sb->s_blocksize - 1)
4130 		err = ext4_block_zero_page_range(handle, mapping,
4131 						 byte_end - partial_end,
4132 						 partial_end + 1);
4133 	return err;
4134 }
4135 
4136 int ext4_can_truncate(struct inode *inode)
4137 {
4138 	if (S_ISREG(inode->i_mode))
4139 		return 1;
4140 	if (S_ISDIR(inode->i_mode))
4141 		return 1;
4142 	if (S_ISLNK(inode->i_mode))
4143 		return !ext4_inode_is_fast_symlink(inode);
4144 	return 0;
4145 }
4146 
4147 /*
4148  * We have to make sure i_disksize gets properly updated before we truncate
4149  * page cache due to hole punching or zero range. Otherwise i_disksize update
4150  * can get lost as it may have been postponed to submission of writeback but
4151  * that will never happen after we truncate page cache.
4152  */
4153 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4154 				      loff_t len)
4155 {
4156 	handle_t *handle;
4157 	loff_t size = i_size_read(inode);
4158 
4159 	WARN_ON(!inode_is_locked(inode));
4160 	if (offset > size || offset + len < size)
4161 		return 0;
4162 
4163 	if (EXT4_I(inode)->i_disksize >= size)
4164 		return 0;
4165 
4166 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4167 	if (IS_ERR(handle))
4168 		return PTR_ERR(handle);
4169 	ext4_update_i_disksize(inode, size);
4170 	ext4_mark_inode_dirty(handle, inode);
4171 	ext4_journal_stop(handle);
4172 
4173 	return 0;
4174 }
4175 
4176 /*
4177  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4178  * associated with the given offset and length
4179  *
4180  * @inode:  File inode
4181  * @offset: The offset where the hole will begin
4182  * @len:    The length of the hole
4183  *
4184  * Returns: 0 on success or negative on failure
4185  */
4186 
4187 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4188 {
4189 	struct super_block *sb = inode->i_sb;
4190 	ext4_lblk_t first_block, stop_block;
4191 	struct address_space *mapping = inode->i_mapping;
4192 	loff_t first_block_offset, last_block_offset;
4193 	handle_t *handle;
4194 	unsigned int credits;
4195 	int ret = 0;
4196 
4197 	if (!S_ISREG(inode->i_mode))
4198 		return -EOPNOTSUPP;
4199 
4200 	trace_ext4_punch_hole(inode, offset, length, 0);
4201 
4202 	/*
4203 	 * Write out all dirty pages to avoid race conditions
4204 	 * Then release them.
4205 	 */
4206 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4207 		ret = filemap_write_and_wait_range(mapping, offset,
4208 						   offset + length - 1);
4209 		if (ret)
4210 			return ret;
4211 	}
4212 
4213 	inode_lock(inode);
4214 
4215 	/* No need to punch hole beyond i_size */
4216 	if (offset >= inode->i_size)
4217 		goto out_mutex;
4218 
4219 	/*
4220 	 * If the hole extends beyond i_size, set the hole
4221 	 * to end after the page that contains i_size
4222 	 */
4223 	if (offset + length > inode->i_size) {
4224 		length = inode->i_size +
4225 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4226 		   offset;
4227 	}
4228 
4229 	if (offset & (sb->s_blocksize - 1) ||
4230 	    (offset + length) & (sb->s_blocksize - 1)) {
4231 		/*
4232 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4233 		 * partial block
4234 		 */
4235 		ret = ext4_inode_attach_jinode(inode);
4236 		if (ret < 0)
4237 			goto out_mutex;
4238 
4239 	}
4240 
4241 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4242 	inode_dio_wait(inode);
4243 
4244 	/*
4245 	 * Prevent page faults from reinstantiating pages we have released from
4246 	 * page cache.
4247 	 */
4248 	down_write(&EXT4_I(inode)->i_mmap_sem);
4249 	first_block_offset = round_up(offset, sb->s_blocksize);
4250 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4251 
4252 	/* Now release the pages and zero block aligned part of pages*/
4253 	if (last_block_offset > first_block_offset) {
4254 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4255 		if (ret)
4256 			goto out_dio;
4257 		truncate_pagecache_range(inode, first_block_offset,
4258 					 last_block_offset);
4259 	}
4260 
4261 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4262 		credits = ext4_writepage_trans_blocks(inode);
4263 	else
4264 		credits = ext4_blocks_for_truncate(inode);
4265 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4266 	if (IS_ERR(handle)) {
4267 		ret = PTR_ERR(handle);
4268 		ext4_std_error(sb, ret);
4269 		goto out_dio;
4270 	}
4271 
4272 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4273 				       length);
4274 	if (ret)
4275 		goto out_stop;
4276 
4277 	first_block = (offset + sb->s_blocksize - 1) >>
4278 		EXT4_BLOCK_SIZE_BITS(sb);
4279 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4280 
4281 	/* If there are no blocks to remove, return now */
4282 	if (first_block >= stop_block)
4283 		goto out_stop;
4284 
4285 	down_write(&EXT4_I(inode)->i_data_sem);
4286 	ext4_discard_preallocations(inode);
4287 
4288 	ret = ext4_es_remove_extent(inode, first_block,
4289 				    stop_block - first_block);
4290 	if (ret) {
4291 		up_write(&EXT4_I(inode)->i_data_sem);
4292 		goto out_stop;
4293 	}
4294 
4295 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4296 		ret = ext4_ext_remove_space(inode, first_block,
4297 					    stop_block - 1);
4298 	else
4299 		ret = ext4_ind_remove_space(handle, inode, first_block,
4300 					    stop_block);
4301 
4302 	up_write(&EXT4_I(inode)->i_data_sem);
4303 	if (IS_SYNC(inode))
4304 		ext4_handle_sync(handle);
4305 
4306 	inode->i_mtime = inode->i_ctime = current_time(inode);
4307 	ext4_mark_inode_dirty(handle, inode);
4308 	if (ret >= 0)
4309 		ext4_update_inode_fsync_trans(handle, inode, 1);
4310 out_stop:
4311 	ext4_journal_stop(handle);
4312 out_dio:
4313 	up_write(&EXT4_I(inode)->i_mmap_sem);
4314 out_mutex:
4315 	inode_unlock(inode);
4316 	return ret;
4317 }
4318 
4319 int ext4_inode_attach_jinode(struct inode *inode)
4320 {
4321 	struct ext4_inode_info *ei = EXT4_I(inode);
4322 	struct jbd2_inode *jinode;
4323 
4324 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4325 		return 0;
4326 
4327 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4328 	spin_lock(&inode->i_lock);
4329 	if (!ei->jinode) {
4330 		if (!jinode) {
4331 			spin_unlock(&inode->i_lock);
4332 			return -ENOMEM;
4333 		}
4334 		ei->jinode = jinode;
4335 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4336 		jinode = NULL;
4337 	}
4338 	spin_unlock(&inode->i_lock);
4339 	if (unlikely(jinode != NULL))
4340 		jbd2_free_inode(jinode);
4341 	return 0;
4342 }
4343 
4344 /*
4345  * ext4_truncate()
4346  *
4347  * We block out ext4_get_block() block instantiations across the entire
4348  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4349  * simultaneously on behalf of the same inode.
4350  *
4351  * As we work through the truncate and commit bits of it to the journal there
4352  * is one core, guiding principle: the file's tree must always be consistent on
4353  * disk.  We must be able to restart the truncate after a crash.
4354  *
4355  * The file's tree may be transiently inconsistent in memory (although it
4356  * probably isn't), but whenever we close off and commit a journal transaction,
4357  * the contents of (the filesystem + the journal) must be consistent and
4358  * restartable.  It's pretty simple, really: bottom up, right to left (although
4359  * left-to-right works OK too).
4360  *
4361  * Note that at recovery time, journal replay occurs *before* the restart of
4362  * truncate against the orphan inode list.
4363  *
4364  * The committed inode has the new, desired i_size (which is the same as
4365  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4366  * that this inode's truncate did not complete and it will again call
4367  * ext4_truncate() to have another go.  So there will be instantiated blocks
4368  * to the right of the truncation point in a crashed ext4 filesystem.  But
4369  * that's fine - as long as they are linked from the inode, the post-crash
4370  * ext4_truncate() run will find them and release them.
4371  */
4372 int ext4_truncate(struct inode *inode)
4373 {
4374 	struct ext4_inode_info *ei = EXT4_I(inode);
4375 	unsigned int credits;
4376 	int err = 0;
4377 	handle_t *handle;
4378 	struct address_space *mapping = inode->i_mapping;
4379 
4380 	/*
4381 	 * There is a possibility that we're either freeing the inode
4382 	 * or it's a completely new inode. In those cases we might not
4383 	 * have i_mutex locked because it's not necessary.
4384 	 */
4385 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4386 		WARN_ON(!inode_is_locked(inode));
4387 	trace_ext4_truncate_enter(inode);
4388 
4389 	if (!ext4_can_truncate(inode))
4390 		return 0;
4391 
4392 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4393 
4394 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4395 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4396 
4397 	if (ext4_has_inline_data(inode)) {
4398 		int has_inline = 1;
4399 
4400 		err = ext4_inline_data_truncate(inode, &has_inline);
4401 		if (err)
4402 			return err;
4403 		if (has_inline)
4404 			return 0;
4405 	}
4406 
4407 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4408 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4409 		if (ext4_inode_attach_jinode(inode) < 0)
4410 			return 0;
4411 	}
4412 
4413 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4414 		credits = ext4_writepage_trans_blocks(inode);
4415 	else
4416 		credits = ext4_blocks_for_truncate(inode);
4417 
4418 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4419 	if (IS_ERR(handle))
4420 		return PTR_ERR(handle);
4421 
4422 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4423 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4424 
4425 	/*
4426 	 * We add the inode to the orphan list, so that if this
4427 	 * truncate spans multiple transactions, and we crash, we will
4428 	 * resume the truncate when the filesystem recovers.  It also
4429 	 * marks the inode dirty, to catch the new size.
4430 	 *
4431 	 * Implication: the file must always be in a sane, consistent
4432 	 * truncatable state while each transaction commits.
4433 	 */
4434 	err = ext4_orphan_add(handle, inode);
4435 	if (err)
4436 		goto out_stop;
4437 
4438 	down_write(&EXT4_I(inode)->i_data_sem);
4439 
4440 	ext4_discard_preallocations(inode);
4441 
4442 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4443 		err = ext4_ext_truncate(handle, inode);
4444 	else
4445 		ext4_ind_truncate(handle, inode);
4446 
4447 	up_write(&ei->i_data_sem);
4448 	if (err)
4449 		goto out_stop;
4450 
4451 	if (IS_SYNC(inode))
4452 		ext4_handle_sync(handle);
4453 
4454 out_stop:
4455 	/*
4456 	 * If this was a simple ftruncate() and the file will remain alive,
4457 	 * then we need to clear up the orphan record which we created above.
4458 	 * However, if this was a real unlink then we were called by
4459 	 * ext4_evict_inode(), and we allow that function to clean up the
4460 	 * orphan info for us.
4461 	 */
4462 	if (inode->i_nlink)
4463 		ext4_orphan_del(handle, inode);
4464 
4465 	inode->i_mtime = inode->i_ctime = current_time(inode);
4466 	ext4_mark_inode_dirty(handle, inode);
4467 	ext4_journal_stop(handle);
4468 
4469 	trace_ext4_truncate_exit(inode);
4470 	return err;
4471 }
4472 
4473 /*
4474  * ext4_get_inode_loc returns with an extra refcount against the inode's
4475  * underlying buffer_head on success. If 'in_mem' is true, we have all
4476  * data in memory that is needed to recreate the on-disk version of this
4477  * inode.
4478  */
4479 static int __ext4_get_inode_loc(struct inode *inode,
4480 				struct ext4_iloc *iloc, int in_mem)
4481 {
4482 	struct ext4_group_desc	*gdp;
4483 	struct buffer_head	*bh;
4484 	struct super_block	*sb = inode->i_sb;
4485 	ext4_fsblk_t		block;
4486 	int			inodes_per_block, inode_offset;
4487 
4488 	iloc->bh = NULL;
4489 	if (!ext4_valid_inum(sb, inode->i_ino))
4490 		return -EFSCORRUPTED;
4491 
4492 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4493 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4494 	if (!gdp)
4495 		return -EIO;
4496 
4497 	/*
4498 	 * Figure out the offset within the block group inode table
4499 	 */
4500 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4501 	inode_offset = ((inode->i_ino - 1) %
4502 			EXT4_INODES_PER_GROUP(sb));
4503 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4504 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4505 
4506 	bh = sb_getblk(sb, block);
4507 	if (unlikely(!bh))
4508 		return -ENOMEM;
4509 	if (!buffer_uptodate(bh)) {
4510 		lock_buffer(bh);
4511 
4512 		/*
4513 		 * If the buffer has the write error flag, we have failed
4514 		 * to write out another inode in the same block.  In this
4515 		 * case, we don't have to read the block because we may
4516 		 * read the old inode data successfully.
4517 		 */
4518 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4519 			set_buffer_uptodate(bh);
4520 
4521 		if (buffer_uptodate(bh)) {
4522 			/* someone brought it uptodate while we waited */
4523 			unlock_buffer(bh);
4524 			goto has_buffer;
4525 		}
4526 
4527 		/*
4528 		 * If we have all information of the inode in memory and this
4529 		 * is the only valid inode in the block, we need not read the
4530 		 * block.
4531 		 */
4532 		if (in_mem) {
4533 			struct buffer_head *bitmap_bh;
4534 			int i, start;
4535 
4536 			start = inode_offset & ~(inodes_per_block - 1);
4537 
4538 			/* Is the inode bitmap in cache? */
4539 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4540 			if (unlikely(!bitmap_bh))
4541 				goto make_io;
4542 
4543 			/*
4544 			 * If the inode bitmap isn't in cache then the
4545 			 * optimisation may end up performing two reads instead
4546 			 * of one, so skip it.
4547 			 */
4548 			if (!buffer_uptodate(bitmap_bh)) {
4549 				brelse(bitmap_bh);
4550 				goto make_io;
4551 			}
4552 			for (i = start; i < start + inodes_per_block; i++) {
4553 				if (i == inode_offset)
4554 					continue;
4555 				if (ext4_test_bit(i, bitmap_bh->b_data))
4556 					break;
4557 			}
4558 			brelse(bitmap_bh);
4559 			if (i == start + inodes_per_block) {
4560 				/* all other inodes are free, so skip I/O */
4561 				memset(bh->b_data, 0, bh->b_size);
4562 				set_buffer_uptodate(bh);
4563 				unlock_buffer(bh);
4564 				goto has_buffer;
4565 			}
4566 		}
4567 
4568 make_io:
4569 		/*
4570 		 * If we need to do any I/O, try to pre-readahead extra
4571 		 * blocks from the inode table.
4572 		 */
4573 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4574 			ext4_fsblk_t b, end, table;
4575 			unsigned num;
4576 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4577 
4578 			table = ext4_inode_table(sb, gdp);
4579 			/* s_inode_readahead_blks is always a power of 2 */
4580 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4581 			if (table > b)
4582 				b = table;
4583 			end = b + ra_blks;
4584 			num = EXT4_INODES_PER_GROUP(sb);
4585 			if (ext4_has_group_desc_csum(sb))
4586 				num -= ext4_itable_unused_count(sb, gdp);
4587 			table += num / inodes_per_block;
4588 			if (end > table)
4589 				end = table;
4590 			while (b <= end)
4591 				sb_breadahead(sb, b++);
4592 		}
4593 
4594 		/*
4595 		 * There are other valid inodes in the buffer, this inode
4596 		 * has in-inode xattrs, or we don't have this inode in memory.
4597 		 * Read the block from disk.
4598 		 */
4599 		trace_ext4_load_inode(inode);
4600 		get_bh(bh);
4601 		bh->b_end_io = end_buffer_read_sync;
4602 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4603 		wait_on_buffer(bh);
4604 		if (!buffer_uptodate(bh)) {
4605 			EXT4_ERROR_INODE_BLOCK(inode, block,
4606 					       "unable to read itable block");
4607 			brelse(bh);
4608 			return -EIO;
4609 		}
4610 	}
4611 has_buffer:
4612 	iloc->bh = bh;
4613 	return 0;
4614 }
4615 
4616 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4617 {
4618 	/* We have all inode data except xattrs in memory here. */
4619 	return __ext4_get_inode_loc(inode, iloc,
4620 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4621 }
4622 
4623 static bool ext4_should_use_dax(struct inode *inode)
4624 {
4625 	if (!test_opt(inode->i_sb, DAX))
4626 		return false;
4627 	if (!S_ISREG(inode->i_mode))
4628 		return false;
4629 	if (ext4_should_journal_data(inode))
4630 		return false;
4631 	if (ext4_has_inline_data(inode))
4632 		return false;
4633 	if (ext4_encrypted_inode(inode))
4634 		return false;
4635 	return true;
4636 }
4637 
4638 void ext4_set_inode_flags(struct inode *inode)
4639 {
4640 	unsigned int flags = EXT4_I(inode)->i_flags;
4641 	unsigned int new_fl = 0;
4642 
4643 	if (flags & EXT4_SYNC_FL)
4644 		new_fl |= S_SYNC;
4645 	if (flags & EXT4_APPEND_FL)
4646 		new_fl |= S_APPEND;
4647 	if (flags & EXT4_IMMUTABLE_FL)
4648 		new_fl |= S_IMMUTABLE;
4649 	if (flags & EXT4_NOATIME_FL)
4650 		new_fl |= S_NOATIME;
4651 	if (flags & EXT4_DIRSYNC_FL)
4652 		new_fl |= S_DIRSYNC;
4653 	if (ext4_should_use_dax(inode))
4654 		new_fl |= S_DAX;
4655 	if (flags & EXT4_ENCRYPT_FL)
4656 		new_fl |= S_ENCRYPTED;
4657 	inode_set_flags(inode, new_fl,
4658 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4659 			S_ENCRYPTED);
4660 }
4661 
4662 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4663 				  struct ext4_inode_info *ei)
4664 {
4665 	blkcnt_t i_blocks ;
4666 	struct inode *inode = &(ei->vfs_inode);
4667 	struct super_block *sb = inode->i_sb;
4668 
4669 	if (ext4_has_feature_huge_file(sb)) {
4670 		/* we are using combined 48 bit field */
4671 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4672 					le32_to_cpu(raw_inode->i_blocks_lo);
4673 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4674 			/* i_blocks represent file system block size */
4675 			return i_blocks  << (inode->i_blkbits - 9);
4676 		} else {
4677 			return i_blocks;
4678 		}
4679 	} else {
4680 		return le32_to_cpu(raw_inode->i_blocks_lo);
4681 	}
4682 }
4683 
4684 static inline void ext4_iget_extra_inode(struct inode *inode,
4685 					 struct ext4_inode *raw_inode,
4686 					 struct ext4_inode_info *ei)
4687 {
4688 	__le32 *magic = (void *)raw_inode +
4689 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4690 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4691 	    EXT4_INODE_SIZE(inode->i_sb) &&
4692 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4693 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4694 		ext4_find_inline_data_nolock(inode);
4695 	} else
4696 		EXT4_I(inode)->i_inline_off = 0;
4697 }
4698 
4699 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4700 {
4701 	if (!ext4_has_feature_project(inode->i_sb))
4702 		return -EOPNOTSUPP;
4703 	*projid = EXT4_I(inode)->i_projid;
4704 	return 0;
4705 }
4706 
4707 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4708 {
4709 	struct ext4_iloc iloc;
4710 	struct ext4_inode *raw_inode;
4711 	struct ext4_inode_info *ei;
4712 	struct inode *inode;
4713 	journal_t *journal = EXT4_SB(sb)->s_journal;
4714 	long ret;
4715 	loff_t size;
4716 	int block;
4717 	uid_t i_uid;
4718 	gid_t i_gid;
4719 	projid_t i_projid;
4720 
4721 	inode = iget_locked(sb, ino);
4722 	if (!inode)
4723 		return ERR_PTR(-ENOMEM);
4724 	if (!(inode->i_state & I_NEW))
4725 		return inode;
4726 
4727 	ei = EXT4_I(inode);
4728 	iloc.bh = NULL;
4729 
4730 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4731 	if (ret < 0)
4732 		goto bad_inode;
4733 	raw_inode = ext4_raw_inode(&iloc);
4734 
4735 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4736 		EXT4_ERROR_INODE(inode, "root inode unallocated");
4737 		ret = -EFSCORRUPTED;
4738 		goto bad_inode;
4739 	}
4740 
4741 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4742 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4743 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4744 			EXT4_INODE_SIZE(inode->i_sb) ||
4745 		    (ei->i_extra_isize & 3)) {
4746 			EXT4_ERROR_INODE(inode,
4747 					 "bad extra_isize %u (inode size %u)",
4748 					 ei->i_extra_isize,
4749 					 EXT4_INODE_SIZE(inode->i_sb));
4750 			ret = -EFSCORRUPTED;
4751 			goto bad_inode;
4752 		}
4753 	} else
4754 		ei->i_extra_isize = 0;
4755 
4756 	/* Precompute checksum seed for inode metadata */
4757 	if (ext4_has_metadata_csum(sb)) {
4758 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4759 		__u32 csum;
4760 		__le32 inum = cpu_to_le32(inode->i_ino);
4761 		__le32 gen = raw_inode->i_generation;
4762 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4763 				   sizeof(inum));
4764 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4765 					      sizeof(gen));
4766 	}
4767 
4768 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4769 		EXT4_ERROR_INODE(inode, "checksum invalid");
4770 		ret = -EFSBADCRC;
4771 		goto bad_inode;
4772 	}
4773 
4774 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4775 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4776 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4777 	if (ext4_has_feature_project(sb) &&
4778 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4779 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4780 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4781 	else
4782 		i_projid = EXT4_DEF_PROJID;
4783 
4784 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4785 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4786 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4787 	}
4788 	i_uid_write(inode, i_uid);
4789 	i_gid_write(inode, i_gid);
4790 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4791 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4792 
4793 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4794 	ei->i_inline_off = 0;
4795 	ei->i_dir_start_lookup = 0;
4796 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4797 	/* We now have enough fields to check if the inode was active or not.
4798 	 * This is needed because nfsd might try to access dead inodes
4799 	 * the test is that same one that e2fsck uses
4800 	 * NeilBrown 1999oct15
4801 	 */
4802 	if (inode->i_nlink == 0) {
4803 		if ((inode->i_mode == 0 ||
4804 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4805 		    ino != EXT4_BOOT_LOADER_INO) {
4806 			/* this inode is deleted */
4807 			ret = -ESTALE;
4808 			goto bad_inode;
4809 		}
4810 		/* The only unlinked inodes we let through here have
4811 		 * valid i_mode and are being read by the orphan
4812 		 * recovery code: that's fine, we're about to complete
4813 		 * the process of deleting those.
4814 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4815 		 * not initialized on a new filesystem. */
4816 	}
4817 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4818 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4819 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4820 	if (ext4_has_feature_64bit(sb))
4821 		ei->i_file_acl |=
4822 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4823 	inode->i_size = ext4_isize(sb, raw_inode);
4824 	if ((size = i_size_read(inode)) < 0) {
4825 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4826 		ret = -EFSCORRUPTED;
4827 		goto bad_inode;
4828 	}
4829 	ei->i_disksize = inode->i_size;
4830 #ifdef CONFIG_QUOTA
4831 	ei->i_reserved_quota = 0;
4832 #endif
4833 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4834 	ei->i_block_group = iloc.block_group;
4835 	ei->i_last_alloc_group = ~0;
4836 	/*
4837 	 * NOTE! The in-memory inode i_data array is in little-endian order
4838 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4839 	 */
4840 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4841 		ei->i_data[block] = raw_inode->i_block[block];
4842 	INIT_LIST_HEAD(&ei->i_orphan);
4843 
4844 	/*
4845 	 * Set transaction id's of transactions that have to be committed
4846 	 * to finish f[data]sync. We set them to currently running transaction
4847 	 * as we cannot be sure that the inode or some of its metadata isn't
4848 	 * part of the transaction - the inode could have been reclaimed and
4849 	 * now it is reread from disk.
4850 	 */
4851 	if (journal) {
4852 		transaction_t *transaction;
4853 		tid_t tid;
4854 
4855 		read_lock(&journal->j_state_lock);
4856 		if (journal->j_running_transaction)
4857 			transaction = journal->j_running_transaction;
4858 		else
4859 			transaction = journal->j_committing_transaction;
4860 		if (transaction)
4861 			tid = transaction->t_tid;
4862 		else
4863 			tid = journal->j_commit_sequence;
4864 		read_unlock(&journal->j_state_lock);
4865 		ei->i_sync_tid = tid;
4866 		ei->i_datasync_tid = tid;
4867 	}
4868 
4869 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4870 		if (ei->i_extra_isize == 0) {
4871 			/* The extra space is currently unused. Use it. */
4872 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4873 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4874 					    EXT4_GOOD_OLD_INODE_SIZE;
4875 		} else {
4876 			ext4_iget_extra_inode(inode, raw_inode, ei);
4877 		}
4878 	}
4879 
4880 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4881 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4882 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4883 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4884 
4885 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4886 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4887 
4888 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4889 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4890 				ivers |=
4891 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4892 		}
4893 		inode_set_iversion_queried(inode, ivers);
4894 	}
4895 
4896 	ret = 0;
4897 	if (ei->i_file_acl &&
4898 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4899 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4900 				 ei->i_file_acl);
4901 		ret = -EFSCORRUPTED;
4902 		goto bad_inode;
4903 	} else if (!ext4_has_inline_data(inode)) {
4904 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4905 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4906 			    (S_ISLNK(inode->i_mode) &&
4907 			     !ext4_inode_is_fast_symlink(inode))))
4908 				/* Validate extent which is part of inode */
4909 				ret = ext4_ext_check_inode(inode);
4910 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4911 			   (S_ISLNK(inode->i_mode) &&
4912 			    !ext4_inode_is_fast_symlink(inode))) {
4913 			/* Validate block references which are part of inode */
4914 			ret = ext4_ind_check_inode(inode);
4915 		}
4916 	}
4917 	if (ret)
4918 		goto bad_inode;
4919 
4920 	if (S_ISREG(inode->i_mode)) {
4921 		inode->i_op = &ext4_file_inode_operations;
4922 		inode->i_fop = &ext4_file_operations;
4923 		ext4_set_aops(inode);
4924 	} else if (S_ISDIR(inode->i_mode)) {
4925 		inode->i_op = &ext4_dir_inode_operations;
4926 		inode->i_fop = &ext4_dir_operations;
4927 	} else if (S_ISLNK(inode->i_mode)) {
4928 		if (ext4_encrypted_inode(inode)) {
4929 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4930 			ext4_set_aops(inode);
4931 		} else if (ext4_inode_is_fast_symlink(inode)) {
4932 			inode->i_link = (char *)ei->i_data;
4933 			inode->i_op = &ext4_fast_symlink_inode_operations;
4934 			nd_terminate_link(ei->i_data, inode->i_size,
4935 				sizeof(ei->i_data) - 1);
4936 		} else {
4937 			inode->i_op = &ext4_symlink_inode_operations;
4938 			ext4_set_aops(inode);
4939 		}
4940 		inode_nohighmem(inode);
4941 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4942 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4943 		inode->i_op = &ext4_special_inode_operations;
4944 		if (raw_inode->i_block[0])
4945 			init_special_inode(inode, inode->i_mode,
4946 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4947 		else
4948 			init_special_inode(inode, inode->i_mode,
4949 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4950 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4951 		make_bad_inode(inode);
4952 	} else {
4953 		ret = -EFSCORRUPTED;
4954 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4955 		goto bad_inode;
4956 	}
4957 	brelse(iloc.bh);
4958 	ext4_set_inode_flags(inode);
4959 
4960 	unlock_new_inode(inode);
4961 	return inode;
4962 
4963 bad_inode:
4964 	brelse(iloc.bh);
4965 	iget_failed(inode);
4966 	return ERR_PTR(ret);
4967 }
4968 
4969 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4970 {
4971 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4972 		return ERR_PTR(-EFSCORRUPTED);
4973 	return ext4_iget(sb, ino);
4974 }
4975 
4976 static int ext4_inode_blocks_set(handle_t *handle,
4977 				struct ext4_inode *raw_inode,
4978 				struct ext4_inode_info *ei)
4979 {
4980 	struct inode *inode = &(ei->vfs_inode);
4981 	u64 i_blocks = inode->i_blocks;
4982 	struct super_block *sb = inode->i_sb;
4983 
4984 	if (i_blocks <= ~0U) {
4985 		/*
4986 		 * i_blocks can be represented in a 32 bit variable
4987 		 * as multiple of 512 bytes
4988 		 */
4989 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4990 		raw_inode->i_blocks_high = 0;
4991 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4992 		return 0;
4993 	}
4994 	if (!ext4_has_feature_huge_file(sb))
4995 		return -EFBIG;
4996 
4997 	if (i_blocks <= 0xffffffffffffULL) {
4998 		/*
4999 		 * i_blocks can be represented in a 48 bit variable
5000 		 * as multiple of 512 bytes
5001 		 */
5002 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5003 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5004 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5005 	} else {
5006 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5007 		/* i_block is stored in file system block size */
5008 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5009 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5010 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5011 	}
5012 	return 0;
5013 }
5014 
5015 struct other_inode {
5016 	unsigned long		orig_ino;
5017 	struct ext4_inode	*raw_inode;
5018 };
5019 
5020 static int other_inode_match(struct inode * inode, unsigned long ino,
5021 			     void *data)
5022 {
5023 	struct other_inode *oi = (struct other_inode *) data;
5024 
5025 	if ((inode->i_ino != ino) ||
5026 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5027 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5028 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5029 		return 0;
5030 	spin_lock(&inode->i_lock);
5031 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5032 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5033 	    (inode->i_state & I_DIRTY_TIME)) {
5034 		struct ext4_inode_info	*ei = EXT4_I(inode);
5035 
5036 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5037 		spin_unlock(&inode->i_lock);
5038 
5039 		spin_lock(&ei->i_raw_lock);
5040 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5041 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5042 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5043 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5044 		spin_unlock(&ei->i_raw_lock);
5045 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5046 		return -1;
5047 	}
5048 	spin_unlock(&inode->i_lock);
5049 	return -1;
5050 }
5051 
5052 /*
5053  * Opportunistically update the other time fields for other inodes in
5054  * the same inode table block.
5055  */
5056 static void ext4_update_other_inodes_time(struct super_block *sb,
5057 					  unsigned long orig_ino, char *buf)
5058 {
5059 	struct other_inode oi;
5060 	unsigned long ino;
5061 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5062 	int inode_size = EXT4_INODE_SIZE(sb);
5063 
5064 	oi.orig_ino = orig_ino;
5065 	/*
5066 	 * Calculate the first inode in the inode table block.  Inode
5067 	 * numbers are one-based.  That is, the first inode in a block
5068 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5069 	 */
5070 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5071 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5072 		if (ino == orig_ino)
5073 			continue;
5074 		oi.raw_inode = (struct ext4_inode *) buf;
5075 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5076 	}
5077 }
5078 
5079 /*
5080  * Post the struct inode info into an on-disk inode location in the
5081  * buffer-cache.  This gobbles the caller's reference to the
5082  * buffer_head in the inode location struct.
5083  *
5084  * The caller must have write access to iloc->bh.
5085  */
5086 static int ext4_do_update_inode(handle_t *handle,
5087 				struct inode *inode,
5088 				struct ext4_iloc *iloc)
5089 {
5090 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5091 	struct ext4_inode_info *ei = EXT4_I(inode);
5092 	struct buffer_head *bh = iloc->bh;
5093 	struct super_block *sb = inode->i_sb;
5094 	int err = 0, rc, block;
5095 	int need_datasync = 0, set_large_file = 0;
5096 	uid_t i_uid;
5097 	gid_t i_gid;
5098 	projid_t i_projid;
5099 
5100 	spin_lock(&ei->i_raw_lock);
5101 
5102 	/* For fields not tracked in the in-memory inode,
5103 	 * initialise them to zero for new inodes. */
5104 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5105 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5106 
5107 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5108 	i_uid = i_uid_read(inode);
5109 	i_gid = i_gid_read(inode);
5110 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5111 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5112 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5113 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5114 /*
5115  * Fix up interoperability with old kernels. Otherwise, old inodes get
5116  * re-used with the upper 16 bits of the uid/gid intact
5117  */
5118 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5119 			raw_inode->i_uid_high = 0;
5120 			raw_inode->i_gid_high = 0;
5121 		} else {
5122 			raw_inode->i_uid_high =
5123 				cpu_to_le16(high_16_bits(i_uid));
5124 			raw_inode->i_gid_high =
5125 				cpu_to_le16(high_16_bits(i_gid));
5126 		}
5127 	} else {
5128 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5129 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5130 		raw_inode->i_uid_high = 0;
5131 		raw_inode->i_gid_high = 0;
5132 	}
5133 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5134 
5135 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5136 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5137 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5138 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5139 
5140 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5141 	if (err) {
5142 		spin_unlock(&ei->i_raw_lock);
5143 		goto out_brelse;
5144 	}
5145 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5146 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5147 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5148 		raw_inode->i_file_acl_high =
5149 			cpu_to_le16(ei->i_file_acl >> 32);
5150 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5151 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5152 		ext4_isize_set(raw_inode, ei->i_disksize);
5153 		need_datasync = 1;
5154 	}
5155 	if (ei->i_disksize > 0x7fffffffULL) {
5156 		if (!ext4_has_feature_large_file(sb) ||
5157 				EXT4_SB(sb)->s_es->s_rev_level ==
5158 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5159 			set_large_file = 1;
5160 	}
5161 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5162 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5163 		if (old_valid_dev(inode->i_rdev)) {
5164 			raw_inode->i_block[0] =
5165 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5166 			raw_inode->i_block[1] = 0;
5167 		} else {
5168 			raw_inode->i_block[0] = 0;
5169 			raw_inode->i_block[1] =
5170 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5171 			raw_inode->i_block[2] = 0;
5172 		}
5173 	} else if (!ext4_has_inline_data(inode)) {
5174 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5175 			raw_inode->i_block[block] = ei->i_data[block];
5176 	}
5177 
5178 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5179 		u64 ivers = inode_peek_iversion(inode);
5180 
5181 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5182 		if (ei->i_extra_isize) {
5183 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5184 				raw_inode->i_version_hi =
5185 					cpu_to_le32(ivers >> 32);
5186 			raw_inode->i_extra_isize =
5187 				cpu_to_le16(ei->i_extra_isize);
5188 		}
5189 	}
5190 
5191 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5192 	       i_projid != EXT4_DEF_PROJID);
5193 
5194 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5195 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5196 		raw_inode->i_projid = cpu_to_le32(i_projid);
5197 
5198 	ext4_inode_csum_set(inode, raw_inode, ei);
5199 	spin_unlock(&ei->i_raw_lock);
5200 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5201 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5202 					      bh->b_data);
5203 
5204 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5205 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5206 	if (!err)
5207 		err = rc;
5208 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5209 	if (set_large_file) {
5210 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5211 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5212 		if (err)
5213 			goto out_brelse;
5214 		ext4_update_dynamic_rev(sb);
5215 		ext4_set_feature_large_file(sb);
5216 		ext4_handle_sync(handle);
5217 		err = ext4_handle_dirty_super(handle, sb);
5218 	}
5219 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5220 out_brelse:
5221 	brelse(bh);
5222 	ext4_std_error(inode->i_sb, err);
5223 	return err;
5224 }
5225 
5226 /*
5227  * ext4_write_inode()
5228  *
5229  * We are called from a few places:
5230  *
5231  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5232  *   Here, there will be no transaction running. We wait for any running
5233  *   transaction to commit.
5234  *
5235  * - Within flush work (sys_sync(), kupdate and such).
5236  *   We wait on commit, if told to.
5237  *
5238  * - Within iput_final() -> write_inode_now()
5239  *   We wait on commit, if told to.
5240  *
5241  * In all cases it is actually safe for us to return without doing anything,
5242  * because the inode has been copied into a raw inode buffer in
5243  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5244  * writeback.
5245  *
5246  * Note that we are absolutely dependent upon all inode dirtiers doing the
5247  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5248  * which we are interested.
5249  *
5250  * It would be a bug for them to not do this.  The code:
5251  *
5252  *	mark_inode_dirty(inode)
5253  *	stuff();
5254  *	inode->i_size = expr;
5255  *
5256  * is in error because write_inode() could occur while `stuff()' is running,
5257  * and the new i_size will be lost.  Plus the inode will no longer be on the
5258  * superblock's dirty inode list.
5259  */
5260 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5261 {
5262 	int err;
5263 
5264 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5265 		return 0;
5266 
5267 	if (EXT4_SB(inode->i_sb)->s_journal) {
5268 		if (ext4_journal_current_handle()) {
5269 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5270 			dump_stack();
5271 			return -EIO;
5272 		}
5273 
5274 		/*
5275 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5276 		 * ext4_sync_fs() will force the commit after everything is
5277 		 * written.
5278 		 */
5279 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5280 			return 0;
5281 
5282 		err = ext4_force_commit(inode->i_sb);
5283 	} else {
5284 		struct ext4_iloc iloc;
5285 
5286 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5287 		if (err)
5288 			return err;
5289 		/*
5290 		 * sync(2) will flush the whole buffer cache. No need to do
5291 		 * it here separately for each inode.
5292 		 */
5293 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5294 			sync_dirty_buffer(iloc.bh);
5295 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5296 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5297 					 "IO error syncing inode");
5298 			err = -EIO;
5299 		}
5300 		brelse(iloc.bh);
5301 	}
5302 	return err;
5303 }
5304 
5305 /*
5306  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5307  * buffers that are attached to a page stradding i_size and are undergoing
5308  * commit. In that case we have to wait for commit to finish and try again.
5309  */
5310 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5311 {
5312 	struct page *page;
5313 	unsigned offset;
5314 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5315 	tid_t commit_tid = 0;
5316 	int ret;
5317 
5318 	offset = inode->i_size & (PAGE_SIZE - 1);
5319 	/*
5320 	 * All buffers in the last page remain valid? Then there's nothing to
5321 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5322 	 * blocksize case
5323 	 */
5324 	if (offset > PAGE_SIZE - i_blocksize(inode))
5325 		return;
5326 	while (1) {
5327 		page = find_lock_page(inode->i_mapping,
5328 				      inode->i_size >> PAGE_SHIFT);
5329 		if (!page)
5330 			return;
5331 		ret = __ext4_journalled_invalidatepage(page, offset,
5332 						PAGE_SIZE - offset);
5333 		unlock_page(page);
5334 		put_page(page);
5335 		if (ret != -EBUSY)
5336 			return;
5337 		commit_tid = 0;
5338 		read_lock(&journal->j_state_lock);
5339 		if (journal->j_committing_transaction)
5340 			commit_tid = journal->j_committing_transaction->t_tid;
5341 		read_unlock(&journal->j_state_lock);
5342 		if (commit_tid)
5343 			jbd2_log_wait_commit(journal, commit_tid);
5344 	}
5345 }
5346 
5347 /*
5348  * ext4_setattr()
5349  *
5350  * Called from notify_change.
5351  *
5352  * We want to trap VFS attempts to truncate the file as soon as
5353  * possible.  In particular, we want to make sure that when the VFS
5354  * shrinks i_size, we put the inode on the orphan list and modify
5355  * i_disksize immediately, so that during the subsequent flushing of
5356  * dirty pages and freeing of disk blocks, we can guarantee that any
5357  * commit will leave the blocks being flushed in an unused state on
5358  * disk.  (On recovery, the inode will get truncated and the blocks will
5359  * be freed, so we have a strong guarantee that no future commit will
5360  * leave these blocks visible to the user.)
5361  *
5362  * Another thing we have to assure is that if we are in ordered mode
5363  * and inode is still attached to the committing transaction, we must
5364  * we start writeout of all the dirty pages which are being truncated.
5365  * This way we are sure that all the data written in the previous
5366  * transaction are already on disk (truncate waits for pages under
5367  * writeback).
5368  *
5369  * Called with inode->i_mutex down.
5370  */
5371 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5372 {
5373 	struct inode *inode = d_inode(dentry);
5374 	int error, rc = 0;
5375 	int orphan = 0;
5376 	const unsigned int ia_valid = attr->ia_valid;
5377 
5378 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5379 		return -EIO;
5380 
5381 	error = setattr_prepare(dentry, attr);
5382 	if (error)
5383 		return error;
5384 
5385 	error = fscrypt_prepare_setattr(dentry, attr);
5386 	if (error)
5387 		return error;
5388 
5389 	if (is_quota_modification(inode, attr)) {
5390 		error = dquot_initialize(inode);
5391 		if (error)
5392 			return error;
5393 	}
5394 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5395 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5396 		handle_t *handle;
5397 
5398 		/* (user+group)*(old+new) structure, inode write (sb,
5399 		 * inode block, ? - but truncate inode update has it) */
5400 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5401 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5402 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5403 		if (IS_ERR(handle)) {
5404 			error = PTR_ERR(handle);
5405 			goto err_out;
5406 		}
5407 
5408 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5409 		 * counts xattr inode references.
5410 		 */
5411 		down_read(&EXT4_I(inode)->xattr_sem);
5412 		error = dquot_transfer(inode, attr);
5413 		up_read(&EXT4_I(inode)->xattr_sem);
5414 
5415 		if (error) {
5416 			ext4_journal_stop(handle);
5417 			return error;
5418 		}
5419 		/* Update corresponding info in inode so that everything is in
5420 		 * one transaction */
5421 		if (attr->ia_valid & ATTR_UID)
5422 			inode->i_uid = attr->ia_uid;
5423 		if (attr->ia_valid & ATTR_GID)
5424 			inode->i_gid = attr->ia_gid;
5425 		error = ext4_mark_inode_dirty(handle, inode);
5426 		ext4_journal_stop(handle);
5427 	}
5428 
5429 	if (attr->ia_valid & ATTR_SIZE) {
5430 		handle_t *handle;
5431 		loff_t oldsize = inode->i_size;
5432 		int shrink = (attr->ia_size <= inode->i_size);
5433 
5434 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5435 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5436 
5437 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5438 				return -EFBIG;
5439 		}
5440 		if (!S_ISREG(inode->i_mode))
5441 			return -EINVAL;
5442 
5443 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5444 			inode_inc_iversion(inode);
5445 
5446 		if (ext4_should_order_data(inode) &&
5447 		    (attr->ia_size < inode->i_size)) {
5448 			error = ext4_begin_ordered_truncate(inode,
5449 							    attr->ia_size);
5450 			if (error)
5451 				goto err_out;
5452 		}
5453 		if (attr->ia_size != inode->i_size) {
5454 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5455 			if (IS_ERR(handle)) {
5456 				error = PTR_ERR(handle);
5457 				goto err_out;
5458 			}
5459 			if (ext4_handle_valid(handle) && shrink) {
5460 				error = ext4_orphan_add(handle, inode);
5461 				orphan = 1;
5462 			}
5463 			/*
5464 			 * Update c/mtime on truncate up, ext4_truncate() will
5465 			 * update c/mtime in shrink case below
5466 			 */
5467 			if (!shrink) {
5468 				inode->i_mtime = current_time(inode);
5469 				inode->i_ctime = inode->i_mtime;
5470 			}
5471 			down_write(&EXT4_I(inode)->i_data_sem);
5472 			EXT4_I(inode)->i_disksize = attr->ia_size;
5473 			rc = ext4_mark_inode_dirty(handle, inode);
5474 			if (!error)
5475 				error = rc;
5476 			/*
5477 			 * We have to update i_size under i_data_sem together
5478 			 * with i_disksize to avoid races with writeback code
5479 			 * running ext4_wb_update_i_disksize().
5480 			 */
5481 			if (!error)
5482 				i_size_write(inode, attr->ia_size);
5483 			up_write(&EXT4_I(inode)->i_data_sem);
5484 			ext4_journal_stop(handle);
5485 			if (error) {
5486 				if (orphan)
5487 					ext4_orphan_del(NULL, inode);
5488 				goto err_out;
5489 			}
5490 		}
5491 		if (!shrink)
5492 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5493 
5494 		/*
5495 		 * Blocks are going to be removed from the inode. Wait
5496 		 * for dio in flight.  Temporarily disable
5497 		 * dioread_nolock to prevent livelock.
5498 		 */
5499 		if (orphan) {
5500 			if (!ext4_should_journal_data(inode)) {
5501 				inode_dio_wait(inode);
5502 			} else
5503 				ext4_wait_for_tail_page_commit(inode);
5504 		}
5505 		down_write(&EXT4_I(inode)->i_mmap_sem);
5506 		/*
5507 		 * Truncate pagecache after we've waited for commit
5508 		 * in data=journal mode to make pages freeable.
5509 		 */
5510 		truncate_pagecache(inode, inode->i_size);
5511 		if (shrink) {
5512 			rc = ext4_truncate(inode);
5513 			if (rc)
5514 				error = rc;
5515 		}
5516 		up_write(&EXT4_I(inode)->i_mmap_sem);
5517 	}
5518 
5519 	if (!error) {
5520 		setattr_copy(inode, attr);
5521 		mark_inode_dirty(inode);
5522 	}
5523 
5524 	/*
5525 	 * If the call to ext4_truncate failed to get a transaction handle at
5526 	 * all, we need to clean up the in-core orphan list manually.
5527 	 */
5528 	if (orphan && inode->i_nlink)
5529 		ext4_orphan_del(NULL, inode);
5530 
5531 	if (!error && (ia_valid & ATTR_MODE))
5532 		rc = posix_acl_chmod(inode, inode->i_mode);
5533 
5534 err_out:
5535 	ext4_std_error(inode->i_sb, error);
5536 	if (!error)
5537 		error = rc;
5538 	return error;
5539 }
5540 
5541 int ext4_getattr(const struct path *path, struct kstat *stat,
5542 		 u32 request_mask, unsigned int query_flags)
5543 {
5544 	struct inode *inode = d_inode(path->dentry);
5545 	struct ext4_inode *raw_inode;
5546 	struct ext4_inode_info *ei = EXT4_I(inode);
5547 	unsigned int flags;
5548 
5549 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5550 		stat->result_mask |= STATX_BTIME;
5551 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5552 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5553 	}
5554 
5555 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5556 	if (flags & EXT4_APPEND_FL)
5557 		stat->attributes |= STATX_ATTR_APPEND;
5558 	if (flags & EXT4_COMPR_FL)
5559 		stat->attributes |= STATX_ATTR_COMPRESSED;
5560 	if (flags & EXT4_ENCRYPT_FL)
5561 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5562 	if (flags & EXT4_IMMUTABLE_FL)
5563 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5564 	if (flags & EXT4_NODUMP_FL)
5565 		stat->attributes |= STATX_ATTR_NODUMP;
5566 
5567 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5568 				  STATX_ATTR_COMPRESSED |
5569 				  STATX_ATTR_ENCRYPTED |
5570 				  STATX_ATTR_IMMUTABLE |
5571 				  STATX_ATTR_NODUMP);
5572 
5573 	generic_fillattr(inode, stat);
5574 	return 0;
5575 }
5576 
5577 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5578 		      u32 request_mask, unsigned int query_flags)
5579 {
5580 	struct inode *inode = d_inode(path->dentry);
5581 	u64 delalloc_blocks;
5582 
5583 	ext4_getattr(path, stat, request_mask, query_flags);
5584 
5585 	/*
5586 	 * If there is inline data in the inode, the inode will normally not
5587 	 * have data blocks allocated (it may have an external xattr block).
5588 	 * Report at least one sector for such files, so tools like tar, rsync,
5589 	 * others don't incorrectly think the file is completely sparse.
5590 	 */
5591 	if (unlikely(ext4_has_inline_data(inode)))
5592 		stat->blocks += (stat->size + 511) >> 9;
5593 
5594 	/*
5595 	 * We can't update i_blocks if the block allocation is delayed
5596 	 * otherwise in the case of system crash before the real block
5597 	 * allocation is done, we will have i_blocks inconsistent with
5598 	 * on-disk file blocks.
5599 	 * We always keep i_blocks updated together with real
5600 	 * allocation. But to not confuse with user, stat
5601 	 * will return the blocks that include the delayed allocation
5602 	 * blocks for this file.
5603 	 */
5604 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5605 				   EXT4_I(inode)->i_reserved_data_blocks);
5606 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5607 	return 0;
5608 }
5609 
5610 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5611 				   int pextents)
5612 {
5613 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5614 		return ext4_ind_trans_blocks(inode, lblocks);
5615 	return ext4_ext_index_trans_blocks(inode, pextents);
5616 }
5617 
5618 /*
5619  * Account for index blocks, block groups bitmaps and block group
5620  * descriptor blocks if modify datablocks and index blocks
5621  * worse case, the indexs blocks spread over different block groups
5622  *
5623  * If datablocks are discontiguous, they are possible to spread over
5624  * different block groups too. If they are contiguous, with flexbg,
5625  * they could still across block group boundary.
5626  *
5627  * Also account for superblock, inode, quota and xattr blocks
5628  */
5629 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5630 				  int pextents)
5631 {
5632 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5633 	int gdpblocks;
5634 	int idxblocks;
5635 	int ret = 0;
5636 
5637 	/*
5638 	 * How many index blocks need to touch to map @lblocks logical blocks
5639 	 * to @pextents physical extents?
5640 	 */
5641 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5642 
5643 	ret = idxblocks;
5644 
5645 	/*
5646 	 * Now let's see how many group bitmaps and group descriptors need
5647 	 * to account
5648 	 */
5649 	groups = idxblocks + pextents;
5650 	gdpblocks = groups;
5651 	if (groups > ngroups)
5652 		groups = ngroups;
5653 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5654 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5655 
5656 	/* bitmaps and block group descriptor blocks */
5657 	ret += groups + gdpblocks;
5658 
5659 	/* Blocks for super block, inode, quota and xattr blocks */
5660 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5661 
5662 	return ret;
5663 }
5664 
5665 /*
5666  * Calculate the total number of credits to reserve to fit
5667  * the modification of a single pages into a single transaction,
5668  * which may include multiple chunks of block allocations.
5669  *
5670  * This could be called via ext4_write_begin()
5671  *
5672  * We need to consider the worse case, when
5673  * one new block per extent.
5674  */
5675 int ext4_writepage_trans_blocks(struct inode *inode)
5676 {
5677 	int bpp = ext4_journal_blocks_per_page(inode);
5678 	int ret;
5679 
5680 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5681 
5682 	/* Account for data blocks for journalled mode */
5683 	if (ext4_should_journal_data(inode))
5684 		ret += bpp;
5685 	return ret;
5686 }
5687 
5688 /*
5689  * Calculate the journal credits for a chunk of data modification.
5690  *
5691  * This is called from DIO, fallocate or whoever calling
5692  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5693  *
5694  * journal buffers for data blocks are not included here, as DIO
5695  * and fallocate do no need to journal data buffers.
5696  */
5697 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5698 {
5699 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5700 }
5701 
5702 /*
5703  * The caller must have previously called ext4_reserve_inode_write().
5704  * Give this, we know that the caller already has write access to iloc->bh.
5705  */
5706 int ext4_mark_iloc_dirty(handle_t *handle,
5707 			 struct inode *inode, struct ext4_iloc *iloc)
5708 {
5709 	int err = 0;
5710 
5711 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5712 		return -EIO;
5713 
5714 	if (IS_I_VERSION(inode))
5715 		inode_inc_iversion(inode);
5716 
5717 	/* the do_update_inode consumes one bh->b_count */
5718 	get_bh(iloc->bh);
5719 
5720 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5721 	err = ext4_do_update_inode(handle, inode, iloc);
5722 	put_bh(iloc->bh);
5723 	return err;
5724 }
5725 
5726 /*
5727  * On success, We end up with an outstanding reference count against
5728  * iloc->bh.  This _must_ be cleaned up later.
5729  */
5730 
5731 int
5732 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5733 			 struct ext4_iloc *iloc)
5734 {
5735 	int err;
5736 
5737 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5738 		return -EIO;
5739 
5740 	err = ext4_get_inode_loc(inode, iloc);
5741 	if (!err) {
5742 		BUFFER_TRACE(iloc->bh, "get_write_access");
5743 		err = ext4_journal_get_write_access(handle, iloc->bh);
5744 		if (err) {
5745 			brelse(iloc->bh);
5746 			iloc->bh = NULL;
5747 		}
5748 	}
5749 	ext4_std_error(inode->i_sb, err);
5750 	return err;
5751 }
5752 
5753 static int __ext4_expand_extra_isize(struct inode *inode,
5754 				     unsigned int new_extra_isize,
5755 				     struct ext4_iloc *iloc,
5756 				     handle_t *handle, int *no_expand)
5757 {
5758 	struct ext4_inode *raw_inode;
5759 	struct ext4_xattr_ibody_header *header;
5760 	int error;
5761 
5762 	raw_inode = ext4_raw_inode(iloc);
5763 
5764 	header = IHDR(inode, raw_inode);
5765 
5766 	/* No extended attributes present */
5767 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5768 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5769 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5770 		       EXT4_I(inode)->i_extra_isize, 0,
5771 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5772 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5773 		return 0;
5774 	}
5775 
5776 	/* try to expand with EAs present */
5777 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5778 					   raw_inode, handle);
5779 	if (error) {
5780 		/*
5781 		 * Inode size expansion failed; don't try again
5782 		 */
5783 		*no_expand = 1;
5784 	}
5785 
5786 	return error;
5787 }
5788 
5789 /*
5790  * Expand an inode by new_extra_isize bytes.
5791  * Returns 0 on success or negative error number on failure.
5792  */
5793 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5794 					  unsigned int new_extra_isize,
5795 					  struct ext4_iloc iloc,
5796 					  handle_t *handle)
5797 {
5798 	int no_expand;
5799 	int error;
5800 
5801 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5802 		return -EOVERFLOW;
5803 
5804 	/*
5805 	 * In nojournal mode, we can immediately attempt to expand
5806 	 * the inode.  When journaled, we first need to obtain extra
5807 	 * buffer credits since we may write into the EA block
5808 	 * with this same handle. If journal_extend fails, then it will
5809 	 * only result in a minor loss of functionality for that inode.
5810 	 * If this is felt to be critical, then e2fsck should be run to
5811 	 * force a large enough s_min_extra_isize.
5812 	 */
5813 	if (ext4_handle_valid(handle) &&
5814 	    jbd2_journal_extend(handle,
5815 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5816 		return -ENOSPC;
5817 
5818 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5819 		return -EBUSY;
5820 
5821 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5822 					  handle, &no_expand);
5823 	ext4_write_unlock_xattr(inode, &no_expand);
5824 
5825 	return error;
5826 }
5827 
5828 int ext4_expand_extra_isize(struct inode *inode,
5829 			    unsigned int new_extra_isize,
5830 			    struct ext4_iloc *iloc)
5831 {
5832 	handle_t *handle;
5833 	int no_expand;
5834 	int error, rc;
5835 
5836 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5837 		brelse(iloc->bh);
5838 		return -EOVERFLOW;
5839 	}
5840 
5841 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5842 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5843 	if (IS_ERR(handle)) {
5844 		error = PTR_ERR(handle);
5845 		brelse(iloc->bh);
5846 		return error;
5847 	}
5848 
5849 	ext4_write_lock_xattr(inode, &no_expand);
5850 
5851 	BUFFER_TRACE(iloc.bh, "get_write_access");
5852 	error = ext4_journal_get_write_access(handle, iloc->bh);
5853 	if (error) {
5854 		brelse(iloc->bh);
5855 		goto out_stop;
5856 	}
5857 
5858 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5859 					  handle, &no_expand);
5860 
5861 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5862 	if (!error)
5863 		error = rc;
5864 
5865 	ext4_write_unlock_xattr(inode, &no_expand);
5866 out_stop:
5867 	ext4_journal_stop(handle);
5868 	return error;
5869 }
5870 
5871 /*
5872  * What we do here is to mark the in-core inode as clean with respect to inode
5873  * dirtiness (it may still be data-dirty).
5874  * This means that the in-core inode may be reaped by prune_icache
5875  * without having to perform any I/O.  This is a very good thing,
5876  * because *any* task may call prune_icache - even ones which
5877  * have a transaction open against a different journal.
5878  *
5879  * Is this cheating?  Not really.  Sure, we haven't written the
5880  * inode out, but prune_icache isn't a user-visible syncing function.
5881  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5882  * we start and wait on commits.
5883  */
5884 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5885 {
5886 	struct ext4_iloc iloc;
5887 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5888 	int err;
5889 
5890 	might_sleep();
5891 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5892 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5893 	if (err)
5894 		return err;
5895 
5896 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5897 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5898 					       iloc, handle);
5899 
5900 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5901 }
5902 
5903 /*
5904  * ext4_dirty_inode() is called from __mark_inode_dirty()
5905  *
5906  * We're really interested in the case where a file is being extended.
5907  * i_size has been changed by generic_commit_write() and we thus need
5908  * to include the updated inode in the current transaction.
5909  *
5910  * Also, dquot_alloc_block() will always dirty the inode when blocks
5911  * are allocated to the file.
5912  *
5913  * If the inode is marked synchronous, we don't honour that here - doing
5914  * so would cause a commit on atime updates, which we don't bother doing.
5915  * We handle synchronous inodes at the highest possible level.
5916  *
5917  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5918  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5919  * to copy into the on-disk inode structure are the timestamp files.
5920  */
5921 void ext4_dirty_inode(struct inode *inode, int flags)
5922 {
5923 	handle_t *handle;
5924 
5925 	if (flags == I_DIRTY_TIME)
5926 		return;
5927 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5928 	if (IS_ERR(handle))
5929 		goto out;
5930 
5931 	ext4_mark_inode_dirty(handle, inode);
5932 
5933 	ext4_journal_stop(handle);
5934 out:
5935 	return;
5936 }
5937 
5938 #if 0
5939 /*
5940  * Bind an inode's backing buffer_head into this transaction, to prevent
5941  * it from being flushed to disk early.  Unlike
5942  * ext4_reserve_inode_write, this leaves behind no bh reference and
5943  * returns no iloc structure, so the caller needs to repeat the iloc
5944  * lookup to mark the inode dirty later.
5945  */
5946 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5947 {
5948 	struct ext4_iloc iloc;
5949 
5950 	int err = 0;
5951 	if (handle) {
5952 		err = ext4_get_inode_loc(inode, &iloc);
5953 		if (!err) {
5954 			BUFFER_TRACE(iloc.bh, "get_write_access");
5955 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5956 			if (!err)
5957 				err = ext4_handle_dirty_metadata(handle,
5958 								 NULL,
5959 								 iloc.bh);
5960 			brelse(iloc.bh);
5961 		}
5962 	}
5963 	ext4_std_error(inode->i_sb, err);
5964 	return err;
5965 }
5966 #endif
5967 
5968 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5969 {
5970 	journal_t *journal;
5971 	handle_t *handle;
5972 	int err;
5973 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5974 
5975 	/*
5976 	 * We have to be very careful here: changing a data block's
5977 	 * journaling status dynamically is dangerous.  If we write a
5978 	 * data block to the journal, change the status and then delete
5979 	 * that block, we risk forgetting to revoke the old log record
5980 	 * from the journal and so a subsequent replay can corrupt data.
5981 	 * So, first we make sure that the journal is empty and that
5982 	 * nobody is changing anything.
5983 	 */
5984 
5985 	journal = EXT4_JOURNAL(inode);
5986 	if (!journal)
5987 		return 0;
5988 	if (is_journal_aborted(journal))
5989 		return -EROFS;
5990 
5991 	/* Wait for all existing dio workers */
5992 	inode_dio_wait(inode);
5993 
5994 	/*
5995 	 * Before flushing the journal and switching inode's aops, we have
5996 	 * to flush all dirty data the inode has. There can be outstanding
5997 	 * delayed allocations, there can be unwritten extents created by
5998 	 * fallocate or buffered writes in dioread_nolock mode covered by
5999 	 * dirty data which can be converted only after flushing the dirty
6000 	 * data (and journalled aops don't know how to handle these cases).
6001 	 */
6002 	if (val) {
6003 		down_write(&EXT4_I(inode)->i_mmap_sem);
6004 		err = filemap_write_and_wait(inode->i_mapping);
6005 		if (err < 0) {
6006 			up_write(&EXT4_I(inode)->i_mmap_sem);
6007 			return err;
6008 		}
6009 	}
6010 
6011 	percpu_down_write(&sbi->s_journal_flag_rwsem);
6012 	jbd2_journal_lock_updates(journal);
6013 
6014 	/*
6015 	 * OK, there are no updates running now, and all cached data is
6016 	 * synced to disk.  We are now in a completely consistent state
6017 	 * which doesn't have anything in the journal, and we know that
6018 	 * no filesystem updates are running, so it is safe to modify
6019 	 * the inode's in-core data-journaling state flag now.
6020 	 */
6021 
6022 	if (val)
6023 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6024 	else {
6025 		err = jbd2_journal_flush(journal);
6026 		if (err < 0) {
6027 			jbd2_journal_unlock_updates(journal);
6028 			percpu_up_write(&sbi->s_journal_flag_rwsem);
6029 			return err;
6030 		}
6031 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6032 	}
6033 	ext4_set_aops(inode);
6034 
6035 	jbd2_journal_unlock_updates(journal);
6036 	percpu_up_write(&sbi->s_journal_flag_rwsem);
6037 
6038 	if (val)
6039 		up_write(&EXT4_I(inode)->i_mmap_sem);
6040 
6041 	/* Finally we can mark the inode as dirty. */
6042 
6043 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6044 	if (IS_ERR(handle))
6045 		return PTR_ERR(handle);
6046 
6047 	err = ext4_mark_inode_dirty(handle, inode);
6048 	ext4_handle_sync(handle);
6049 	ext4_journal_stop(handle);
6050 	ext4_std_error(inode->i_sb, err);
6051 
6052 	return err;
6053 }
6054 
6055 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6056 {
6057 	return !buffer_mapped(bh);
6058 }
6059 
6060 int ext4_page_mkwrite(struct vm_fault *vmf)
6061 {
6062 	struct vm_area_struct *vma = vmf->vma;
6063 	struct page *page = vmf->page;
6064 	loff_t size;
6065 	unsigned long len;
6066 	int ret;
6067 	struct file *file = vma->vm_file;
6068 	struct inode *inode = file_inode(file);
6069 	struct address_space *mapping = inode->i_mapping;
6070 	handle_t *handle;
6071 	get_block_t *get_block;
6072 	int retries = 0;
6073 
6074 	sb_start_pagefault(inode->i_sb);
6075 	file_update_time(vma->vm_file);
6076 
6077 	down_read(&EXT4_I(inode)->i_mmap_sem);
6078 
6079 	ret = ext4_convert_inline_data(inode);
6080 	if (ret)
6081 		goto out_ret;
6082 
6083 	/* Delalloc case is easy... */
6084 	if (test_opt(inode->i_sb, DELALLOC) &&
6085 	    !ext4_should_journal_data(inode) &&
6086 	    !ext4_nonda_switch(inode->i_sb)) {
6087 		do {
6088 			ret = block_page_mkwrite(vma, vmf,
6089 						   ext4_da_get_block_prep);
6090 		} while (ret == -ENOSPC &&
6091 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6092 		goto out_ret;
6093 	}
6094 
6095 	lock_page(page);
6096 	size = i_size_read(inode);
6097 	/* Page got truncated from under us? */
6098 	if (page->mapping != mapping || page_offset(page) > size) {
6099 		unlock_page(page);
6100 		ret = VM_FAULT_NOPAGE;
6101 		goto out;
6102 	}
6103 
6104 	if (page->index == size >> PAGE_SHIFT)
6105 		len = size & ~PAGE_MASK;
6106 	else
6107 		len = PAGE_SIZE;
6108 	/*
6109 	 * Return if we have all the buffers mapped. This avoids the need to do
6110 	 * journal_start/journal_stop which can block and take a long time
6111 	 */
6112 	if (page_has_buffers(page)) {
6113 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6114 					    0, len, NULL,
6115 					    ext4_bh_unmapped)) {
6116 			/* Wait so that we don't change page under IO */
6117 			wait_for_stable_page(page);
6118 			ret = VM_FAULT_LOCKED;
6119 			goto out;
6120 		}
6121 	}
6122 	unlock_page(page);
6123 	/* OK, we need to fill the hole... */
6124 	if (ext4_should_dioread_nolock(inode))
6125 		get_block = ext4_get_block_unwritten;
6126 	else
6127 		get_block = ext4_get_block;
6128 retry_alloc:
6129 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6130 				    ext4_writepage_trans_blocks(inode));
6131 	if (IS_ERR(handle)) {
6132 		ret = VM_FAULT_SIGBUS;
6133 		goto out;
6134 	}
6135 	ret = block_page_mkwrite(vma, vmf, get_block);
6136 	if (!ret && ext4_should_journal_data(inode)) {
6137 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6138 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6139 			unlock_page(page);
6140 			ret = VM_FAULT_SIGBUS;
6141 			ext4_journal_stop(handle);
6142 			goto out;
6143 		}
6144 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6145 	}
6146 	ext4_journal_stop(handle);
6147 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6148 		goto retry_alloc;
6149 out_ret:
6150 	ret = block_page_mkwrite_return(ret);
6151 out:
6152 	up_read(&EXT4_I(inode)->i_mmap_sem);
6153 	sb_end_pagefault(inode->i_sb);
6154 	return ret;
6155 }
6156 
6157 int ext4_filemap_fault(struct vm_fault *vmf)
6158 {
6159 	struct inode *inode = file_inode(vmf->vma->vm_file);
6160 	int err;
6161 
6162 	down_read(&EXT4_I(inode)->i_mmap_sem);
6163 	err = filemap_fault(vmf);
6164 	up_read(&EXT4_I(inode)->i_mmap_sem);
6165 
6166 	return err;
6167 }
6168