xref: /openbmc/linux/fs/ext4/inode.c (revision b04b4f78)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44 
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46 
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 					      loff_t new_size)
49 {
50 	return jbd2_journal_begin_ordered_truncate(
51 					EXT4_SB(inode->i_sb)->s_journal,
52 					&EXT4_I(inode)->jinode,
53 					new_size);
54 }
55 
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57 
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 		(inode->i_sb->s_blocksize >> 9) : 0;
65 
66 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68 
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83 	int err;
84 
85 	if (!ext4_handle_valid(handle))
86 		return 0;
87 
88 	might_sleep();
89 
90 	BUFFER_TRACE(bh, "enter");
91 
92 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 		  "data mode %lx\n",
94 		  bh, is_metadata, inode->i_mode,
95 		  test_opt(inode->i_sb, DATA_FLAGS));
96 
97 	/* Never use the revoke function if we are doing full data
98 	 * journaling: there is no need to, and a V1 superblock won't
99 	 * support it.  Otherwise, only skip the revoke on un-journaled
100 	 * data blocks. */
101 
102 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 	    (!is_metadata && !ext4_should_journal_data(inode))) {
104 		if (bh) {
105 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106 			return ext4_journal_forget(handle, bh);
107 		}
108 		return 0;
109 	}
110 
111 	/*
112 	 * data!=journal && (is_metadata || should_journal_data(inode))
113 	 */
114 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 	err = ext4_journal_revoke(handle, blocknr, bh);
116 	if (err)
117 		ext4_abort(inode->i_sb, __func__,
118 			   "error %d when attempting revoke", err);
119 	BUFFER_TRACE(bh, "exit");
120 	return err;
121 }
122 
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129 	ext4_lblk_t needed;
130 
131 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132 
133 	/* Give ourselves just enough room to cope with inodes in which
134 	 * i_blocks is corrupt: we've seen disk corruptions in the past
135 	 * which resulted in random data in an inode which looked enough
136 	 * like a regular file for ext4 to try to delete it.  Things
137 	 * will go a bit crazy if that happens, but at least we should
138 	 * try not to panic the whole kernel. */
139 	if (needed < 2)
140 		needed = 2;
141 
142 	/* But we need to bound the transaction so we don't overflow the
143 	 * journal. */
144 	if (needed > EXT4_MAX_TRANS_DATA)
145 		needed = EXT4_MAX_TRANS_DATA;
146 
147 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149 
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162 	handle_t *result;
163 
164 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 	if (!IS_ERR(result))
166 		return result;
167 
168 	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 	return result;
170 }
171 
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180 	if (!ext4_handle_valid(handle))
181 		return 0;
182 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183 		return 0;
184 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 		return 0;
186 	return 1;
187 }
188 
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197 	jbd_debug(2, "restarting handle %p\n", handle);
198 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200 
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206 	handle_t *handle;
207 	int err;
208 
209 	if (ext4_should_order_data(inode))
210 		ext4_begin_ordered_truncate(inode, 0);
211 	truncate_inode_pages(&inode->i_data, 0);
212 
213 	if (is_bad_inode(inode))
214 		goto no_delete;
215 
216 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217 	if (IS_ERR(handle)) {
218 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 		/*
220 		 * If we're going to skip the normal cleanup, we still need to
221 		 * make sure that the in-core orphan linked list is properly
222 		 * cleaned up.
223 		 */
224 		ext4_orphan_del(NULL, inode);
225 		goto no_delete;
226 	}
227 
228 	if (IS_SYNC(inode))
229 		ext4_handle_sync(handle);
230 	inode->i_size = 0;
231 	err = ext4_mark_inode_dirty(handle, inode);
232 	if (err) {
233 		ext4_warning(inode->i_sb, __func__,
234 			     "couldn't mark inode dirty (err %d)", err);
235 		goto stop_handle;
236 	}
237 	if (inode->i_blocks)
238 		ext4_truncate(inode);
239 
240 	/*
241 	 * ext4_ext_truncate() doesn't reserve any slop when it
242 	 * restarts journal transactions; therefore there may not be
243 	 * enough credits left in the handle to remove the inode from
244 	 * the orphan list and set the dtime field.
245 	 */
246 	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 		err = ext4_journal_extend(handle, 3);
248 		if (err > 0)
249 			err = ext4_journal_restart(handle, 3);
250 		if (err != 0) {
251 			ext4_warning(inode->i_sb, __func__,
252 				     "couldn't extend journal (err %d)", err);
253 		stop_handle:
254 			ext4_journal_stop(handle);
255 			goto no_delete;
256 		}
257 	}
258 
259 	/*
260 	 * Kill off the orphan record which ext4_truncate created.
261 	 * AKPM: I think this can be inside the above `if'.
262 	 * Note that ext4_orphan_del() has to be able to cope with the
263 	 * deletion of a non-existent orphan - this is because we don't
264 	 * know if ext4_truncate() actually created an orphan record.
265 	 * (Well, we could do this if we need to, but heck - it works)
266 	 */
267 	ext4_orphan_del(handle, inode);
268 	EXT4_I(inode)->i_dtime	= get_seconds();
269 
270 	/*
271 	 * One subtle ordering requirement: if anything has gone wrong
272 	 * (transaction abort, IO errors, whatever), then we can still
273 	 * do these next steps (the fs will already have been marked as
274 	 * having errors), but we can't free the inode if the mark_dirty
275 	 * fails.
276 	 */
277 	if (ext4_mark_inode_dirty(handle, inode))
278 		/* If that failed, just do the required in-core inode clear. */
279 		clear_inode(inode);
280 	else
281 		ext4_free_inode(handle, inode);
282 	ext4_journal_stop(handle);
283 	return;
284 no_delete:
285 	clear_inode(inode);	/* We must guarantee clearing of inode... */
286 }
287 
288 typedef struct {
289 	__le32	*p;
290 	__le32	key;
291 	struct buffer_head *bh;
292 } Indirect;
293 
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296 	p->key = *(p->p = v);
297 	p->bh = bh;
298 }
299 
300 /**
301  *	ext4_block_to_path - parse the block number into array of offsets
302  *	@inode: inode in question (we are only interested in its superblock)
303  *	@i_block: block number to be parsed
304  *	@offsets: array to store the offsets in
305  *	@boundary: set this non-zero if the referred-to block is likely to be
306  *	       followed (on disk) by an indirect block.
307  *
308  *	To store the locations of file's data ext4 uses a data structure common
309  *	for UNIX filesystems - tree of pointers anchored in the inode, with
310  *	data blocks at leaves and indirect blocks in intermediate nodes.
311  *	This function translates the block number into path in that tree -
312  *	return value is the path length and @offsets[n] is the offset of
313  *	pointer to (n+1)th node in the nth one. If @block is out of range
314  *	(negative or too large) warning is printed and zero returned.
315  *
316  *	Note: function doesn't find node addresses, so no IO is needed. All
317  *	we need to know is the capacity of indirect blocks (taken from the
318  *	inode->i_sb).
319  */
320 
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330 
331 static int ext4_block_to_path(struct inode *inode,
332 			ext4_lblk_t i_block,
333 			ext4_lblk_t offsets[4], int *boundary)
334 {
335 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 		indirect_blocks = ptrs,
339 		double_blocks = (1 << (ptrs_bits * 2));
340 	int n = 0;
341 	int final = 0;
342 
343 	if (i_block < 0) {
344 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 	} else if (i_block < direct_blocks) {
346 		offsets[n++] = i_block;
347 		final = direct_blocks;
348 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349 		offsets[n++] = EXT4_IND_BLOCK;
350 		offsets[n++] = i_block;
351 		final = ptrs;
352 	} else if ((i_block -= indirect_blocks) < double_blocks) {
353 		offsets[n++] = EXT4_DIND_BLOCK;
354 		offsets[n++] = i_block >> ptrs_bits;
355 		offsets[n++] = i_block & (ptrs - 1);
356 		final = ptrs;
357 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358 		offsets[n++] = EXT4_TIND_BLOCK;
359 		offsets[n++] = i_block >> (ptrs_bits * 2);
360 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 		offsets[n++] = i_block & (ptrs - 1);
362 		final = ptrs;
363 	} else {
364 		ext4_warning(inode->i_sb, "ext4_block_to_path",
365 				"block %lu > max in inode %lu",
366 				i_block + direct_blocks +
367 				indirect_blocks + double_blocks, inode->i_ino);
368 	}
369 	if (boundary)
370 		*boundary = final - 1 - (i_block & (ptrs - 1));
371 	return n;
372 }
373 
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375 				 __le32 *p, unsigned int max) {
376 
377 	unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378 	__le32 *bref = p;
379 	while (bref < p+max) {
380 		if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381 			ext4_error(inode->i_sb, function,
382 				   "block reference %u >= max (%u) "
383 				   "in inode #%lu, offset=%d",
384 				   le32_to_cpu(*bref), maxblocks,
385 				   inode->i_ino, (int)(bref-p));
386  			return -EIO;
387  		}
388 		bref++;
389  	}
390  	return 0;
391 }
392 
393 
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397 
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400 			      EXT4_NDIR_BLOCKS)
401 
402 /**
403  *	ext4_get_branch - read the chain of indirect blocks leading to data
404  *	@inode: inode in question
405  *	@depth: depth of the chain (1 - direct pointer, etc.)
406  *	@offsets: offsets of pointers in inode/indirect blocks
407  *	@chain: place to store the result
408  *	@err: here we store the error value
409  *
410  *	Function fills the array of triples <key, p, bh> and returns %NULL
411  *	if everything went OK or the pointer to the last filled triple
412  *	(incomplete one) otherwise. Upon the return chain[i].key contains
413  *	the number of (i+1)-th block in the chain (as it is stored in memory,
414  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *	number (it points into struct inode for i==0 and into the bh->b_data
416  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *	block for i>0 and NULL for i==0. In other words, it holds the block
418  *	numbers of the chain, addresses they were taken from (and where we can
419  *	verify that chain did not change) and buffer_heads hosting these
420  *	numbers.
421  *
422  *	Function stops when it stumbles upon zero pointer (absent block)
423  *		(pointer to last triple returned, *@err == 0)
424  *	or when it gets an IO error reading an indirect block
425  *		(ditto, *@err == -EIO)
426  *	or when it reads all @depth-1 indirect blocks successfully and finds
427  *	the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 				 ext4_lblk_t  *offsets,
434 				 Indirect chain[4], int *err)
435 {
436 	struct super_block *sb = inode->i_sb;
437 	Indirect *p = chain;
438 	struct buffer_head *bh;
439 
440 	*err = 0;
441 	/* i_data is not going away, no lock needed */
442 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443 	if (!p->key)
444 		goto no_block;
445 	while (--depth) {
446 		bh = sb_getblk(sb, le32_to_cpu(p->key));
447 		if (unlikely(!bh))
448 			goto failure;
449 
450 		if (!bh_uptodate_or_lock(bh)) {
451 			if (bh_submit_read(bh) < 0) {
452 				put_bh(bh);
453 				goto failure;
454 			}
455 			/* validate block references */
456 			if (ext4_check_indirect_blockref(inode, bh)) {
457 				put_bh(bh);
458 				goto failure;
459 			}
460 		}
461 
462 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463 		/* Reader: end */
464 		if (!p->key)
465 			goto no_block;
466 	}
467 	return NULL;
468 
469 failure:
470 	*err = -EIO;
471 no_block:
472 	return p;
473 }
474 
475 /**
476  *	ext4_find_near - find a place for allocation with sufficient locality
477  *	@inode: owner
478  *	@ind: descriptor of indirect block.
479  *
480  *	This function returns the preferred place for block allocation.
481  *	It is used when heuristic for sequential allocation fails.
482  *	Rules are:
483  *	  + if there is a block to the left of our position - allocate near it.
484  *	  + if pointer will live in indirect block - allocate near that block.
485  *	  + if pointer will live in inode - allocate in the same
486  *	    cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *	Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497 	struct ext4_inode_info *ei = EXT4_I(inode);
498 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499 	__le32 *p;
500 	ext4_fsblk_t bg_start;
501 	ext4_fsblk_t last_block;
502 	ext4_grpblk_t colour;
503 	ext4_group_t block_group;
504 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505 
506 	/* Try to find previous block */
507 	for (p = ind->p - 1; p >= start; p--) {
508 		if (*p)
509 			return le32_to_cpu(*p);
510 	}
511 
512 	/* No such thing, so let's try location of indirect block */
513 	if (ind->bh)
514 		return ind->bh->b_blocknr;
515 
516 	/*
517 	 * It is going to be referred to from the inode itself? OK, just put it
518 	 * into the same cylinder group then.
519 	 */
520 	block_group = ei->i_block_group;
521 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 		block_group &= ~(flex_size-1);
523 		if (S_ISREG(inode->i_mode))
524 			block_group++;
525 	}
526 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528 
529 	/*
530 	 * If we are doing delayed allocation, we don't need take
531 	 * colour into account.
532 	 */
533 	if (test_opt(inode->i_sb, DELALLOC))
534 		return bg_start;
535 
536 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 		colour = (current->pid % 16) *
538 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539 	else
540 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541 	return bg_start + colour;
542 }
543 
544 /**
545  *	ext4_find_goal - find a preferred place for allocation.
546  *	@inode: owner
547  *	@block:  block we want
548  *	@partial: pointer to the last triple within a chain
549  *
550  *	Normally this function find the preferred place for block allocation,
551  *	returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554 		Indirect *partial)
555 {
556 	/*
557 	 * XXX need to get goal block from mballoc's data structures
558 	 */
559 
560 	return ext4_find_near(inode, partial);
561 }
562 
563 /**
564  *	ext4_blks_to_allocate: Look up the block map and count the number
565  *	of direct blocks need to be allocated for the given branch.
566  *
567  *	@branch: chain of indirect blocks
568  *	@k: number of blocks need for indirect blocks
569  *	@blks: number of data blocks to be mapped.
570  *	@blocks_to_boundary:  the offset in the indirect block
571  *
572  *	return the total number of blocks to be allocate, including the
573  *	direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 		int blocks_to_boundary)
577 {
578 	unsigned int count = 0;
579 
580 	/*
581 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 	 * then it's clear blocks on that path have not allocated
583 	 */
584 	if (k > 0) {
585 		/* right now we don't handle cross boundary allocation */
586 		if (blks < blocks_to_boundary + 1)
587 			count += blks;
588 		else
589 			count += blocks_to_boundary + 1;
590 		return count;
591 	}
592 
593 	count++;
594 	while (count < blks && count <= blocks_to_boundary &&
595 		le32_to_cpu(*(branch[0].p + count)) == 0) {
596 		count++;
597 	}
598 	return count;
599 }
600 
601 /**
602  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *	@indirect_blks: the number of blocks need to allocate for indirect
604  *			blocks
605  *
606  *	@new_blocks: on return it will store the new block numbers for
607  *	the indirect blocks(if needed) and the first direct block,
608  *	@blks:	on return it will store the total number of allocated
609  *		direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612 				ext4_lblk_t iblock, ext4_fsblk_t goal,
613 				int indirect_blks, int blks,
614 				ext4_fsblk_t new_blocks[4], int *err)
615 {
616 	struct ext4_allocation_request ar;
617 	int target, i;
618 	unsigned long count = 0, blk_allocated = 0;
619 	int index = 0;
620 	ext4_fsblk_t current_block = 0;
621 	int ret = 0;
622 
623 	/*
624 	 * Here we try to allocate the requested multiple blocks at once,
625 	 * on a best-effort basis.
626 	 * To build a branch, we should allocate blocks for
627 	 * the indirect blocks(if not allocated yet), and at least
628 	 * the first direct block of this branch.  That's the
629 	 * minimum number of blocks need to allocate(required)
630 	 */
631 	/* first we try to allocate the indirect blocks */
632 	target = indirect_blks;
633 	while (target > 0) {
634 		count = target;
635 		/* allocating blocks for indirect blocks and direct blocks */
636 		current_block = ext4_new_meta_blocks(handle, inode,
637 							goal, &count, err);
638 		if (*err)
639 			goto failed_out;
640 
641 		target -= count;
642 		/* allocate blocks for indirect blocks */
643 		while (index < indirect_blks && count) {
644 			new_blocks[index++] = current_block++;
645 			count--;
646 		}
647 		if (count > 0) {
648 			/*
649 			 * save the new block number
650 			 * for the first direct block
651 			 */
652 			new_blocks[index] = current_block;
653 			printk(KERN_INFO "%s returned more blocks than "
654 						"requested\n", __func__);
655 			WARN_ON(1);
656 			break;
657 		}
658 	}
659 
660 	target = blks - count ;
661 	blk_allocated = count;
662 	if (!target)
663 		goto allocated;
664 	/* Now allocate data blocks */
665 	memset(&ar, 0, sizeof(ar));
666 	ar.inode = inode;
667 	ar.goal = goal;
668 	ar.len = target;
669 	ar.logical = iblock;
670 	if (S_ISREG(inode->i_mode))
671 		/* enable in-core preallocation only for regular files */
672 		ar.flags = EXT4_MB_HINT_DATA;
673 
674 	current_block = ext4_mb_new_blocks(handle, &ar, err);
675 
676 	if (*err && (target == blks)) {
677 		/*
678 		 * if the allocation failed and we didn't allocate
679 		 * any blocks before
680 		 */
681 		goto failed_out;
682 	}
683 	if (!*err) {
684 		if (target == blks) {
685 		/*
686 		 * save the new block number
687 		 * for the first direct block
688 		 */
689 			new_blocks[index] = current_block;
690 		}
691 		blk_allocated += ar.len;
692 	}
693 allocated:
694 	/* total number of blocks allocated for direct blocks */
695 	ret = blk_allocated;
696 	*err = 0;
697 	return ret;
698 failed_out:
699 	for (i = 0; i < index; i++)
700 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701 	return ret;
702 }
703 
704 /**
705  *	ext4_alloc_branch - allocate and set up a chain of blocks.
706  *	@inode: owner
707  *	@indirect_blks: number of allocated indirect blocks
708  *	@blks: number of allocated direct blocks
709  *	@offsets: offsets (in the blocks) to store the pointers to next.
710  *	@branch: place to store the chain in.
711  *
712  *	This function allocates blocks, zeroes out all but the last one,
713  *	links them into chain and (if we are synchronous) writes them to disk.
714  *	In other words, it prepares a branch that can be spliced onto the
715  *	inode. It stores the information about that chain in the branch[], in
716  *	the same format as ext4_get_branch() would do. We are calling it after
717  *	we had read the existing part of chain and partial points to the last
718  *	triple of that (one with zero ->key). Upon the exit we have the same
719  *	picture as after the successful ext4_get_block(), except that in one
720  *	place chain is disconnected - *branch->p is still zero (we did not
721  *	set the last link), but branch->key contains the number that should
722  *	be placed into *branch->p to fill that gap.
723  *
724  *	If allocation fails we free all blocks we've allocated (and forget
725  *	their buffer_heads) and return the error value the from failed
726  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *	as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 				ext4_lblk_t iblock, int indirect_blks,
731 				int *blks, ext4_fsblk_t goal,
732 				ext4_lblk_t *offsets, Indirect *branch)
733 {
734 	int blocksize = inode->i_sb->s_blocksize;
735 	int i, n = 0;
736 	int err = 0;
737 	struct buffer_head *bh;
738 	int num;
739 	ext4_fsblk_t new_blocks[4];
740 	ext4_fsblk_t current_block;
741 
742 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 				*blks, new_blocks, &err);
744 	if (err)
745 		return err;
746 
747 	branch[0].key = cpu_to_le32(new_blocks[0]);
748 	/*
749 	 * metadata blocks and data blocks are allocated.
750 	 */
751 	for (n = 1; n <= indirect_blks;  n++) {
752 		/*
753 		 * Get buffer_head for parent block, zero it out
754 		 * and set the pointer to new one, then send
755 		 * parent to disk.
756 		 */
757 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 		branch[n].bh = bh;
759 		lock_buffer(bh);
760 		BUFFER_TRACE(bh, "call get_create_access");
761 		err = ext4_journal_get_create_access(handle, bh);
762 		if (err) {
763 			unlock_buffer(bh);
764 			brelse(bh);
765 			goto failed;
766 		}
767 
768 		memset(bh->b_data, 0, blocksize);
769 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
770 		branch[n].key = cpu_to_le32(new_blocks[n]);
771 		*branch[n].p = branch[n].key;
772 		if (n == indirect_blks) {
773 			current_block = new_blocks[n];
774 			/*
775 			 * End of chain, update the last new metablock of
776 			 * the chain to point to the new allocated
777 			 * data blocks numbers
778 			 */
779 			for (i=1; i < num; i++)
780 				*(branch[n].p + i) = cpu_to_le32(++current_block);
781 		}
782 		BUFFER_TRACE(bh, "marking uptodate");
783 		set_buffer_uptodate(bh);
784 		unlock_buffer(bh);
785 
786 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787 		err = ext4_handle_dirty_metadata(handle, inode, bh);
788 		if (err)
789 			goto failed;
790 	}
791 	*blks = num;
792 	return err;
793 failed:
794 	/* Allocation failed, free what we already allocated */
795 	for (i = 1; i <= n ; i++) {
796 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797 		ext4_journal_forget(handle, branch[i].bh);
798 	}
799 	for (i = 0; i < indirect_blks; i++)
800 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801 
802 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803 
804 	return err;
805 }
806 
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *	ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822 			ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824 	int i;
825 	int err = 0;
826 	ext4_fsblk_t current_block;
827 
828 	/*
829 	 * If we're splicing into a [td]indirect block (as opposed to the
830 	 * inode) then we need to get write access to the [td]indirect block
831 	 * before the splice.
832 	 */
833 	if (where->bh) {
834 		BUFFER_TRACE(where->bh, "get_write_access");
835 		err = ext4_journal_get_write_access(handle, where->bh);
836 		if (err)
837 			goto err_out;
838 	}
839 	/* That's it */
840 
841 	*where->p = where->key;
842 
843 	/*
844 	 * Update the host buffer_head or inode to point to more just allocated
845 	 * direct blocks blocks
846 	 */
847 	if (num == 0 && blks > 1) {
848 		current_block = le32_to_cpu(where->key) + 1;
849 		for (i = 1; i < blks; i++)
850 			*(where->p + i) = cpu_to_le32(current_block++);
851 	}
852 
853 	/* We are done with atomic stuff, now do the rest of housekeeping */
854 
855 	inode->i_ctime = ext4_current_time(inode);
856 	ext4_mark_inode_dirty(handle, inode);
857 
858 	/* had we spliced it onto indirect block? */
859 	if (where->bh) {
860 		/*
861 		 * If we spliced it onto an indirect block, we haven't
862 		 * altered the inode.  Note however that if it is being spliced
863 		 * onto an indirect block at the very end of the file (the
864 		 * file is growing) then we *will* alter the inode to reflect
865 		 * the new i_size.  But that is not done here - it is done in
866 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867 		 */
868 		jbd_debug(5, "splicing indirect only\n");
869 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871 		if (err)
872 			goto err_out;
873 	} else {
874 		/*
875 		 * OK, we spliced it into the inode itself on a direct block.
876 		 * Inode was dirtied above.
877 		 */
878 		jbd_debug(5, "splicing direct\n");
879 	}
880 	return err;
881 
882 err_out:
883 	for (i = 1; i <= num; i++) {
884 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885 		ext4_journal_forget(handle, where[i].bh);
886 		ext4_free_blocks(handle, inode,
887 					le32_to_cpu(where[i-1].key), 1, 0);
888 	}
889 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890 
891 	return err;
892 }
893 
894 /*
895  * Allocation strategy is simple: if we have to allocate something, we will
896  * have to go the whole way to leaf. So let's do it before attaching anything
897  * to tree, set linkage between the newborn blocks, write them if sync is
898  * required, recheck the path, free and repeat if check fails, otherwise
899  * set the last missing link (that will protect us from any truncate-generated
900  * removals - all blocks on the path are immune now) and possibly force the
901  * write on the parent block.
902  * That has a nice additional property: no special recovery from the failed
903  * allocations is needed - we simply release blocks and do not touch anything
904  * reachable from inode.
905  *
906  * `handle' can be NULL if create == 0.
907  *
908  * return > 0, # of blocks mapped or allocated.
909  * return = 0, if plain lookup failed.
910  * return < 0, error case.
911  *
912  *
913  * Need to be called with
914  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916  */
917 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
918 				  ext4_lblk_t iblock, unsigned int maxblocks,
919 				  struct buffer_head *bh_result,
920 				  int create, int extend_disksize)
921 {
922 	int err = -EIO;
923 	ext4_lblk_t offsets[4];
924 	Indirect chain[4];
925 	Indirect *partial;
926 	ext4_fsblk_t goal;
927 	int indirect_blks;
928 	int blocks_to_boundary = 0;
929 	int depth;
930 	struct ext4_inode_info *ei = EXT4_I(inode);
931 	int count = 0;
932 	ext4_fsblk_t first_block = 0;
933 	loff_t disksize;
934 
935 
936 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937 	J_ASSERT(handle != NULL || create == 0);
938 	depth = ext4_block_to_path(inode, iblock, offsets,
939 					&blocks_to_boundary);
940 
941 	if (depth == 0)
942 		goto out;
943 
944 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945 
946 	/* Simplest case - block found, no allocation needed */
947 	if (!partial) {
948 		first_block = le32_to_cpu(chain[depth - 1].key);
949 		clear_buffer_new(bh_result);
950 		count++;
951 		/*map more blocks*/
952 		while (count < maxblocks && count <= blocks_to_boundary) {
953 			ext4_fsblk_t blk;
954 
955 			blk = le32_to_cpu(*(chain[depth-1].p + count));
956 
957 			if (blk == first_block + count)
958 				count++;
959 			else
960 				break;
961 		}
962 		goto got_it;
963 	}
964 
965 	/* Next simple case - plain lookup or failed read of indirect block */
966 	if (!create || err == -EIO)
967 		goto cleanup;
968 
969 	/*
970 	 * Okay, we need to do block allocation.
971 	*/
972 	goal = ext4_find_goal(inode, iblock, partial);
973 
974 	/* the number of blocks need to allocate for [d,t]indirect blocks */
975 	indirect_blks = (chain + depth) - partial - 1;
976 
977 	/*
978 	 * Next look up the indirect map to count the totoal number of
979 	 * direct blocks to allocate for this branch.
980 	 */
981 	count = ext4_blks_to_allocate(partial, indirect_blks,
982 					maxblocks, blocks_to_boundary);
983 	/*
984 	 * Block out ext4_truncate while we alter the tree
985 	 */
986 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987 					&count, goal,
988 					offsets + (partial - chain), partial);
989 
990 	/*
991 	 * The ext4_splice_branch call will free and forget any buffers
992 	 * on the new chain if there is a failure, but that risks using
993 	 * up transaction credits, especially for bitmaps where the
994 	 * credits cannot be returned.  Can we handle this somehow?  We
995 	 * may need to return -EAGAIN upwards in the worst case.  --sct
996 	 */
997 	if (!err)
998 		err = ext4_splice_branch(handle, inode, iblock,
999 					partial, indirect_blks, count);
1000 	/*
1001 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
1002 	 * protect it if you're about to implement concurrent
1003 	 * ext4_get_block() -bzzz
1004 	*/
1005 	if (!err && extend_disksize) {
1006 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007 		if (disksize > i_size_read(inode))
1008 			disksize = i_size_read(inode);
1009 		if (disksize > ei->i_disksize)
1010 			ei->i_disksize = disksize;
1011 	}
1012 	if (err)
1013 		goto cleanup;
1014 
1015 	set_buffer_new(bh_result);
1016 got_it:
1017 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018 	if (count > blocks_to_boundary)
1019 		set_buffer_boundary(bh_result);
1020 	err = count;
1021 	/* Clean up and exit */
1022 	partial = chain + depth - 1;	/* the whole chain */
1023 cleanup:
1024 	while (partial > chain) {
1025 		BUFFER_TRACE(partial->bh, "call brelse");
1026 		brelse(partial->bh);
1027 		partial--;
1028 	}
1029 	BUFFER_TRACE(bh_result, "returned");
1030 out:
1031 	return err;
1032 }
1033 
1034 qsize_t ext4_get_reserved_space(struct inode *inode)
1035 {
1036 	unsigned long long total;
1037 
1038 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039 	total = EXT4_I(inode)->i_reserved_data_blocks +
1040 		EXT4_I(inode)->i_reserved_meta_blocks;
1041 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042 
1043 	return total;
1044 }
1045 /*
1046  * Calculate the number of metadata blocks need to reserve
1047  * to allocate @blocks for non extent file based file
1048  */
1049 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050 {
1051 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052 	int ind_blks, dind_blks, tind_blks;
1053 
1054 	/* number of new indirect blocks needed */
1055 	ind_blks = (blocks + icap - 1) / icap;
1056 
1057 	dind_blks = (ind_blks + icap - 1) / icap;
1058 
1059 	tind_blks = 1;
1060 
1061 	return ind_blks + dind_blks + tind_blks;
1062 }
1063 
1064 /*
1065  * Calculate the number of metadata blocks need to reserve
1066  * to allocate given number of blocks
1067  */
1068 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069 {
1070 	if (!blocks)
1071 		return 0;
1072 
1073 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074 		return ext4_ext_calc_metadata_amount(inode, blocks);
1075 
1076 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1077 }
1078 
1079 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080 {
1081 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082 	int total, mdb, mdb_free;
1083 
1084 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085 	/* recalculate the number of metablocks still need to be reserved */
1086 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087 	mdb = ext4_calc_metadata_amount(inode, total);
1088 
1089 	/* figure out how many metablocks to release */
1090 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092 
1093 	if (mdb_free) {
1094 		/* Account for allocated meta_blocks */
1095 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096 
1097 		/* update fs dirty blocks counter */
1098 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101 	}
1102 
1103 	/* update per-inode reservations */
1104 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1105 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1106 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107 
1108 	/*
1109 	 * free those over-booking quota for metadata blocks
1110 	 */
1111 	if (mdb_free)
1112 		vfs_dq_release_reservation_block(inode, mdb_free);
1113 
1114 	/*
1115 	 * If we have done all the pending block allocations and if
1116 	 * there aren't any writers on the inode, we can discard the
1117 	 * inode's preallocations.
1118 	 */
1119 	if (!total && (atomic_read(&inode->i_writecount) == 0))
1120 		ext4_discard_preallocations(inode);
1121 }
1122 
1123 /*
1124  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1125  * and returns if the blocks are already mapped.
1126  *
1127  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128  * and store the allocated blocks in the result buffer head and mark it
1129  * mapped.
1130  *
1131  * If file type is extents based, it will call ext4_ext_get_blocks(),
1132  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1133  * based files
1134  *
1135  * On success, it returns the number of blocks being mapped or allocate.
1136  * if create==0 and the blocks are pre-allocated and uninitialized block,
1137  * the result buffer head is unmapped. If the create ==1, it will make sure
1138  * the buffer head is mapped.
1139  *
1140  * It returns 0 if plain look up failed (blocks have not been allocated), in
1141  * that casem, buffer head is unmapped
1142  *
1143  * It returns the error in case of allocation failure.
1144  */
1145 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1146 			unsigned int max_blocks, struct buffer_head *bh,
1147 			int create, int extend_disksize, int flag)
1148 {
1149 	int retval;
1150 
1151 	clear_buffer_mapped(bh);
1152 
1153 	/*
1154 	 * Try to see if we can get  the block without requesting
1155 	 * for new file system block.
1156 	 */
1157 	down_read((&EXT4_I(inode)->i_data_sem));
1158 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1159 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1160 				bh, 0, 0);
1161 	} else {
1162 		retval = ext4_get_blocks_handle(handle,
1163 				inode, block, max_blocks, bh, 0, 0);
1164 	}
1165 	up_read((&EXT4_I(inode)->i_data_sem));
1166 
1167 	/* If it is only a block(s) look up */
1168 	if (!create)
1169 		return retval;
1170 
1171 	/*
1172 	 * Returns if the blocks have already allocated
1173 	 *
1174 	 * Note that if blocks have been preallocated
1175 	 * ext4_ext_get_block() returns th create = 0
1176 	 * with buffer head unmapped.
1177 	 */
1178 	if (retval > 0 && buffer_mapped(bh))
1179 		return retval;
1180 
1181 	/*
1182 	 * New blocks allocate and/or writing to uninitialized extent
1183 	 * will possibly result in updating i_data, so we take
1184 	 * the write lock of i_data_sem, and call get_blocks()
1185 	 * with create == 1 flag.
1186 	 */
1187 	down_write((&EXT4_I(inode)->i_data_sem));
1188 
1189 	/*
1190 	 * if the caller is from delayed allocation writeout path
1191 	 * we have already reserved fs blocks for allocation
1192 	 * let the underlying get_block() function know to
1193 	 * avoid double accounting
1194 	 */
1195 	if (flag)
1196 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1197 	/*
1198 	 * We need to check for EXT4 here because migrate
1199 	 * could have changed the inode type in between
1200 	 */
1201 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1202 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1203 				bh, create, extend_disksize);
1204 	} else {
1205 		retval = ext4_get_blocks_handle(handle, inode, block,
1206 				max_blocks, bh, create, extend_disksize);
1207 
1208 		if (retval > 0 && buffer_new(bh)) {
1209 			/*
1210 			 * We allocated new blocks which will result in
1211 			 * i_data's format changing.  Force the migrate
1212 			 * to fail by clearing migrate flags
1213 			 */
1214 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1215 							~EXT4_EXT_MIGRATE;
1216 		}
1217 	}
1218 
1219 	if (flag) {
1220 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1221 		/*
1222 		 * Update reserved blocks/metadata blocks
1223 		 * after successful block allocation
1224 		 * which were deferred till now
1225 		 */
1226 		if ((retval > 0) && buffer_delay(bh))
1227 			ext4_da_update_reserve_space(inode, retval);
1228 	}
1229 
1230 	up_write((&EXT4_I(inode)->i_data_sem));
1231 	return retval;
1232 }
1233 
1234 /* Maximum number of blocks we map for direct IO at once. */
1235 #define DIO_MAX_BLOCKS 4096
1236 
1237 int ext4_get_block(struct inode *inode, sector_t iblock,
1238 		   struct buffer_head *bh_result, int create)
1239 {
1240 	handle_t *handle = ext4_journal_current_handle();
1241 	int ret = 0, started = 0;
1242 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1243 	int dio_credits;
1244 
1245 	if (create && !handle) {
1246 		/* Direct IO write... */
1247 		if (max_blocks > DIO_MAX_BLOCKS)
1248 			max_blocks = DIO_MAX_BLOCKS;
1249 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1250 		handle = ext4_journal_start(inode, dio_credits);
1251 		if (IS_ERR(handle)) {
1252 			ret = PTR_ERR(handle);
1253 			goto out;
1254 		}
1255 		started = 1;
1256 	}
1257 
1258 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1259 					max_blocks, bh_result, create, 0, 0);
1260 	if (ret > 0) {
1261 		bh_result->b_size = (ret << inode->i_blkbits);
1262 		ret = 0;
1263 	}
1264 	if (started)
1265 		ext4_journal_stop(handle);
1266 out:
1267 	return ret;
1268 }
1269 
1270 /*
1271  * `handle' can be NULL if create is zero
1272  */
1273 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1274 				ext4_lblk_t block, int create, int *errp)
1275 {
1276 	struct buffer_head dummy;
1277 	int fatal = 0, err;
1278 
1279 	J_ASSERT(handle != NULL || create == 0);
1280 
1281 	dummy.b_state = 0;
1282 	dummy.b_blocknr = -1000;
1283 	buffer_trace_init(&dummy.b_history);
1284 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1285 					&dummy, create, 1, 0);
1286 	/*
1287 	 * ext4_get_blocks_handle() returns number of blocks
1288 	 * mapped. 0 in case of a HOLE.
1289 	 */
1290 	if (err > 0) {
1291 		if (err > 1)
1292 			WARN_ON(1);
1293 		err = 0;
1294 	}
1295 	*errp = err;
1296 	if (!err && buffer_mapped(&dummy)) {
1297 		struct buffer_head *bh;
1298 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1299 		if (!bh) {
1300 			*errp = -EIO;
1301 			goto err;
1302 		}
1303 		if (buffer_new(&dummy)) {
1304 			J_ASSERT(create != 0);
1305 			J_ASSERT(handle != NULL);
1306 
1307 			/*
1308 			 * Now that we do not always journal data, we should
1309 			 * keep in mind whether this should always journal the
1310 			 * new buffer as metadata.  For now, regular file
1311 			 * writes use ext4_get_block instead, so it's not a
1312 			 * problem.
1313 			 */
1314 			lock_buffer(bh);
1315 			BUFFER_TRACE(bh, "call get_create_access");
1316 			fatal = ext4_journal_get_create_access(handle, bh);
1317 			if (!fatal && !buffer_uptodate(bh)) {
1318 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1319 				set_buffer_uptodate(bh);
1320 			}
1321 			unlock_buffer(bh);
1322 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1323 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1324 			if (!fatal)
1325 				fatal = err;
1326 		} else {
1327 			BUFFER_TRACE(bh, "not a new buffer");
1328 		}
1329 		if (fatal) {
1330 			*errp = fatal;
1331 			brelse(bh);
1332 			bh = NULL;
1333 		}
1334 		return bh;
1335 	}
1336 err:
1337 	return NULL;
1338 }
1339 
1340 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1341 			       ext4_lblk_t block, int create, int *err)
1342 {
1343 	struct buffer_head *bh;
1344 
1345 	bh = ext4_getblk(handle, inode, block, create, err);
1346 	if (!bh)
1347 		return bh;
1348 	if (buffer_uptodate(bh))
1349 		return bh;
1350 	ll_rw_block(READ_META, 1, &bh);
1351 	wait_on_buffer(bh);
1352 	if (buffer_uptodate(bh))
1353 		return bh;
1354 	put_bh(bh);
1355 	*err = -EIO;
1356 	return NULL;
1357 }
1358 
1359 static int walk_page_buffers(handle_t *handle,
1360 			     struct buffer_head *head,
1361 			     unsigned from,
1362 			     unsigned to,
1363 			     int *partial,
1364 			     int (*fn)(handle_t *handle,
1365 				       struct buffer_head *bh))
1366 {
1367 	struct buffer_head *bh;
1368 	unsigned block_start, block_end;
1369 	unsigned blocksize = head->b_size;
1370 	int err, ret = 0;
1371 	struct buffer_head *next;
1372 
1373 	for (bh = head, block_start = 0;
1374 	     ret == 0 && (bh != head || !block_start);
1375 	     block_start = block_end, bh = next)
1376 	{
1377 		next = bh->b_this_page;
1378 		block_end = block_start + blocksize;
1379 		if (block_end <= from || block_start >= to) {
1380 			if (partial && !buffer_uptodate(bh))
1381 				*partial = 1;
1382 			continue;
1383 		}
1384 		err = (*fn)(handle, bh);
1385 		if (!ret)
1386 			ret = err;
1387 	}
1388 	return ret;
1389 }
1390 
1391 /*
1392  * To preserve ordering, it is essential that the hole instantiation and
1393  * the data write be encapsulated in a single transaction.  We cannot
1394  * close off a transaction and start a new one between the ext4_get_block()
1395  * and the commit_write().  So doing the jbd2_journal_start at the start of
1396  * prepare_write() is the right place.
1397  *
1398  * Also, this function can nest inside ext4_writepage() ->
1399  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1400  * has generated enough buffer credits to do the whole page.  So we won't
1401  * block on the journal in that case, which is good, because the caller may
1402  * be PF_MEMALLOC.
1403  *
1404  * By accident, ext4 can be reentered when a transaction is open via
1405  * quota file writes.  If we were to commit the transaction while thus
1406  * reentered, there can be a deadlock - we would be holding a quota
1407  * lock, and the commit would never complete if another thread had a
1408  * transaction open and was blocking on the quota lock - a ranking
1409  * violation.
1410  *
1411  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1412  * will _not_ run commit under these circumstances because handle->h_ref
1413  * is elevated.  We'll still have enough credits for the tiny quotafile
1414  * write.
1415  */
1416 static int do_journal_get_write_access(handle_t *handle,
1417 					struct buffer_head *bh)
1418 {
1419 	if (!buffer_mapped(bh) || buffer_freed(bh))
1420 		return 0;
1421 	return ext4_journal_get_write_access(handle, bh);
1422 }
1423 
1424 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1425 				loff_t pos, unsigned len, unsigned flags,
1426 				struct page **pagep, void **fsdata)
1427 {
1428 	struct inode *inode = mapping->host;
1429 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1430 	handle_t *handle;
1431 	int retries = 0;
1432 	struct page *page;
1433  	pgoff_t index;
1434 	unsigned from, to;
1435 
1436 	trace_mark(ext4_write_begin,
1437 		   "dev %s ino %lu pos %llu len %u flags %u",
1438 		   inode->i_sb->s_id, inode->i_ino,
1439 		   (unsigned long long) pos, len, flags);
1440  	index = pos >> PAGE_CACHE_SHIFT;
1441 	from = pos & (PAGE_CACHE_SIZE - 1);
1442 	to = from + len;
1443 
1444 retry:
1445 	handle = ext4_journal_start(inode, needed_blocks);
1446 	if (IS_ERR(handle)) {
1447 		ret = PTR_ERR(handle);
1448 		goto out;
1449 	}
1450 
1451 	/* We cannot recurse into the filesystem as the transaction is already
1452 	 * started */
1453 	flags |= AOP_FLAG_NOFS;
1454 
1455 	page = grab_cache_page_write_begin(mapping, index, flags);
1456 	if (!page) {
1457 		ext4_journal_stop(handle);
1458 		ret = -ENOMEM;
1459 		goto out;
1460 	}
1461 	*pagep = page;
1462 
1463 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1464 				ext4_get_block);
1465 
1466 	if (!ret && ext4_should_journal_data(inode)) {
1467 		ret = walk_page_buffers(handle, page_buffers(page),
1468 				from, to, NULL, do_journal_get_write_access);
1469 	}
1470 
1471 	if (ret) {
1472 		unlock_page(page);
1473 		ext4_journal_stop(handle);
1474 		page_cache_release(page);
1475 		/*
1476 		 * block_write_begin may have instantiated a few blocks
1477 		 * outside i_size.  Trim these off again. Don't need
1478 		 * i_size_read because we hold i_mutex.
1479 		 */
1480 		if (pos + len > inode->i_size)
1481 			vmtruncate(inode, inode->i_size);
1482 	}
1483 
1484 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1485 		goto retry;
1486 out:
1487 	return ret;
1488 }
1489 
1490 /* For write_end() in data=journal mode */
1491 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1492 {
1493 	if (!buffer_mapped(bh) || buffer_freed(bh))
1494 		return 0;
1495 	set_buffer_uptodate(bh);
1496 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1497 }
1498 
1499 /*
1500  * We need to pick up the new inode size which generic_commit_write gave us
1501  * `file' can be NULL - eg, when called from page_symlink().
1502  *
1503  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1504  * buffers are managed internally.
1505  */
1506 static int ext4_ordered_write_end(struct file *file,
1507 				struct address_space *mapping,
1508 				loff_t pos, unsigned len, unsigned copied,
1509 				struct page *page, void *fsdata)
1510 {
1511 	handle_t *handle = ext4_journal_current_handle();
1512 	struct inode *inode = mapping->host;
1513 	int ret = 0, ret2;
1514 
1515 	trace_mark(ext4_ordered_write_end,
1516 		   "dev %s ino %lu pos %llu len %u copied %u",
1517 		   inode->i_sb->s_id, inode->i_ino,
1518 		   (unsigned long long) pos, len, copied);
1519 	ret = ext4_jbd2_file_inode(handle, inode);
1520 
1521 	if (ret == 0) {
1522 		loff_t new_i_size;
1523 
1524 		new_i_size = pos + copied;
1525 		if (new_i_size > EXT4_I(inode)->i_disksize) {
1526 			ext4_update_i_disksize(inode, new_i_size);
1527 			/* We need to mark inode dirty even if
1528 			 * new_i_size is less that inode->i_size
1529 			 * bu greater than i_disksize.(hint delalloc)
1530 			 */
1531 			ext4_mark_inode_dirty(handle, inode);
1532 		}
1533 
1534 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1535 							page, fsdata);
1536 		copied = ret2;
1537 		if (ret2 < 0)
1538 			ret = ret2;
1539 	}
1540 	ret2 = ext4_journal_stop(handle);
1541 	if (!ret)
1542 		ret = ret2;
1543 
1544 	return ret ? ret : copied;
1545 }
1546 
1547 static int ext4_writeback_write_end(struct file *file,
1548 				struct address_space *mapping,
1549 				loff_t pos, unsigned len, unsigned copied,
1550 				struct page *page, void *fsdata)
1551 {
1552 	handle_t *handle = ext4_journal_current_handle();
1553 	struct inode *inode = mapping->host;
1554 	int ret = 0, ret2;
1555 	loff_t new_i_size;
1556 
1557 	trace_mark(ext4_writeback_write_end,
1558 		   "dev %s ino %lu pos %llu len %u copied %u",
1559 		   inode->i_sb->s_id, inode->i_ino,
1560 		   (unsigned long long) pos, len, copied);
1561 	new_i_size = pos + copied;
1562 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1563 		ext4_update_i_disksize(inode, new_i_size);
1564 		/* We need to mark inode dirty even if
1565 		 * new_i_size is less that inode->i_size
1566 		 * bu greater than i_disksize.(hint delalloc)
1567 		 */
1568 		ext4_mark_inode_dirty(handle, inode);
1569 	}
1570 
1571 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1572 							page, fsdata);
1573 	copied = ret2;
1574 	if (ret2 < 0)
1575 		ret = ret2;
1576 
1577 	ret2 = ext4_journal_stop(handle);
1578 	if (!ret)
1579 		ret = ret2;
1580 
1581 	return ret ? ret : copied;
1582 }
1583 
1584 static int ext4_journalled_write_end(struct file *file,
1585 				struct address_space *mapping,
1586 				loff_t pos, unsigned len, unsigned copied,
1587 				struct page *page, void *fsdata)
1588 {
1589 	handle_t *handle = ext4_journal_current_handle();
1590 	struct inode *inode = mapping->host;
1591 	int ret = 0, ret2;
1592 	int partial = 0;
1593 	unsigned from, to;
1594 	loff_t new_i_size;
1595 
1596 	trace_mark(ext4_journalled_write_end,
1597 		   "dev %s ino %lu pos %llu len %u copied %u",
1598 		   inode->i_sb->s_id, inode->i_ino,
1599 		   (unsigned long long) pos, len, copied);
1600 	from = pos & (PAGE_CACHE_SIZE - 1);
1601 	to = from + len;
1602 
1603 	if (copied < len) {
1604 		if (!PageUptodate(page))
1605 			copied = 0;
1606 		page_zero_new_buffers(page, from+copied, to);
1607 	}
1608 
1609 	ret = walk_page_buffers(handle, page_buffers(page), from,
1610 				to, &partial, write_end_fn);
1611 	if (!partial)
1612 		SetPageUptodate(page);
1613 	new_i_size = pos + copied;
1614 	if (new_i_size > inode->i_size)
1615 		i_size_write(inode, pos+copied);
1616 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1617 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1618 		ext4_update_i_disksize(inode, new_i_size);
1619 		ret2 = ext4_mark_inode_dirty(handle, inode);
1620 		if (!ret)
1621 			ret = ret2;
1622 	}
1623 
1624 	unlock_page(page);
1625 	ret2 = ext4_journal_stop(handle);
1626 	if (!ret)
1627 		ret = ret2;
1628 	page_cache_release(page);
1629 
1630 	return ret ? ret : copied;
1631 }
1632 
1633 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1634 {
1635 	int retries = 0;
1636 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637 	unsigned long md_needed, mdblocks, total = 0;
1638 
1639 	/*
1640 	 * recalculate the amount of metadata blocks to reserve
1641 	 * in order to allocate nrblocks
1642 	 * worse case is one extent per block
1643 	 */
1644 repeat:
1645 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1646 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1647 	mdblocks = ext4_calc_metadata_amount(inode, total);
1648 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1649 
1650 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1651 	total = md_needed + nrblocks;
1652 
1653 	/*
1654 	 * Make quota reservation here to prevent quota overflow
1655 	 * later. Real quota accounting is done at pages writeout
1656 	 * time.
1657 	 */
1658 	if (vfs_dq_reserve_block(inode, total)) {
1659 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1660 		return -EDQUOT;
1661 	}
1662 
1663 	if (ext4_claim_free_blocks(sbi, total)) {
1664 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1665 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1666 			yield();
1667 			goto repeat;
1668 		}
1669 		vfs_dq_release_reservation_block(inode, total);
1670 		return -ENOSPC;
1671 	}
1672 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1673 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1674 
1675 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1676 	return 0;       /* success */
1677 }
1678 
1679 static void ext4_da_release_space(struct inode *inode, int to_free)
1680 {
1681 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1682 	int total, mdb, mdb_free, release;
1683 
1684 	if (!to_free)
1685 		return;		/* Nothing to release, exit */
1686 
1687 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1688 
1689 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1690 		/*
1691 		 * if there is no reserved blocks, but we try to free some
1692 		 * then the counter is messed up somewhere.
1693 		 * but since this function is called from invalidate
1694 		 * page, it's harmless to return without any action
1695 		 */
1696 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1697 			    "blocks for inode %lu, but there is no reserved "
1698 			    "data blocks\n", to_free, inode->i_ino);
1699 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1700 		return;
1701 	}
1702 
1703 	/* recalculate the number of metablocks still need to be reserved */
1704 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1705 	mdb = ext4_calc_metadata_amount(inode, total);
1706 
1707 	/* figure out how many metablocks to release */
1708 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1709 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1710 
1711 	release = to_free + mdb_free;
1712 
1713 	/* update fs dirty blocks counter for truncate case */
1714 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1715 
1716 	/* update per-inode reservations */
1717 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1718 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1719 
1720 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1721 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1722 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1723 
1724 	vfs_dq_release_reservation_block(inode, release);
1725 }
1726 
1727 static void ext4_da_page_release_reservation(struct page *page,
1728 						unsigned long offset)
1729 {
1730 	int to_release = 0;
1731 	struct buffer_head *head, *bh;
1732 	unsigned int curr_off = 0;
1733 
1734 	head = page_buffers(page);
1735 	bh = head;
1736 	do {
1737 		unsigned int next_off = curr_off + bh->b_size;
1738 
1739 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1740 			to_release++;
1741 			clear_buffer_delay(bh);
1742 		}
1743 		curr_off = next_off;
1744 	} while ((bh = bh->b_this_page) != head);
1745 	ext4_da_release_space(page->mapping->host, to_release);
1746 }
1747 
1748 /*
1749  * Delayed allocation stuff
1750  */
1751 
1752 struct mpage_da_data {
1753 	struct inode *inode;
1754 	sector_t b_blocknr;		/* start block number of extent */
1755 	size_t b_size;			/* size of extent */
1756 	unsigned long b_state;		/* state of the extent */
1757 	unsigned long first_page, next_page;	/* extent of pages */
1758 	struct writeback_control *wbc;
1759 	int io_done;
1760 	int pages_written;
1761 	int retval;
1762 };
1763 
1764 /*
1765  * mpage_da_submit_io - walks through extent of pages and try to write
1766  * them with writepage() call back
1767  *
1768  * @mpd->inode: inode
1769  * @mpd->first_page: first page of the extent
1770  * @mpd->next_page: page after the last page of the extent
1771  *
1772  * By the time mpage_da_submit_io() is called we expect all blocks
1773  * to be allocated. this may be wrong if allocation failed.
1774  *
1775  * As pages are already locked by write_cache_pages(), we can't use it
1776  */
1777 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1778 {
1779 	long pages_skipped;
1780 	struct pagevec pvec;
1781 	unsigned long index, end;
1782 	int ret = 0, err, nr_pages, i;
1783 	struct inode *inode = mpd->inode;
1784 	struct address_space *mapping = inode->i_mapping;
1785 
1786 	BUG_ON(mpd->next_page <= mpd->first_page);
1787 	/*
1788 	 * We need to start from the first_page to the next_page - 1
1789 	 * to make sure we also write the mapped dirty buffer_heads.
1790 	 * If we look at mpd->b_blocknr we would only be looking
1791 	 * at the currently mapped buffer_heads.
1792 	 */
1793 	index = mpd->first_page;
1794 	end = mpd->next_page - 1;
1795 
1796 	pagevec_init(&pvec, 0);
1797 	while (index <= end) {
1798 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1799 		if (nr_pages == 0)
1800 			break;
1801 		for (i = 0; i < nr_pages; i++) {
1802 			struct page *page = pvec.pages[i];
1803 
1804 			index = page->index;
1805 			if (index > end)
1806 				break;
1807 			index++;
1808 
1809 			BUG_ON(!PageLocked(page));
1810 			BUG_ON(PageWriteback(page));
1811 
1812 			pages_skipped = mpd->wbc->pages_skipped;
1813 			err = mapping->a_ops->writepage(page, mpd->wbc);
1814 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1815 				/*
1816 				 * have successfully written the page
1817 				 * without skipping the same
1818 				 */
1819 				mpd->pages_written++;
1820 			/*
1821 			 * In error case, we have to continue because
1822 			 * remaining pages are still locked
1823 			 * XXX: unlock and re-dirty them?
1824 			 */
1825 			if (ret == 0)
1826 				ret = err;
1827 		}
1828 		pagevec_release(&pvec);
1829 	}
1830 	return ret;
1831 }
1832 
1833 /*
1834  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1835  *
1836  * @mpd->inode - inode to walk through
1837  * @exbh->b_blocknr - first block on a disk
1838  * @exbh->b_size - amount of space in bytes
1839  * @logical - first logical block to start assignment with
1840  *
1841  * the function goes through all passed space and put actual disk
1842  * block numbers into buffer heads, dropping BH_Delay
1843  */
1844 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1845 				 struct buffer_head *exbh)
1846 {
1847 	struct inode *inode = mpd->inode;
1848 	struct address_space *mapping = inode->i_mapping;
1849 	int blocks = exbh->b_size >> inode->i_blkbits;
1850 	sector_t pblock = exbh->b_blocknr, cur_logical;
1851 	struct buffer_head *head, *bh;
1852 	pgoff_t index, end;
1853 	struct pagevec pvec;
1854 	int nr_pages, i;
1855 
1856 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1857 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1858 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1859 
1860 	pagevec_init(&pvec, 0);
1861 
1862 	while (index <= end) {
1863 		/* XXX: optimize tail */
1864 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1865 		if (nr_pages == 0)
1866 			break;
1867 		for (i = 0; i < nr_pages; i++) {
1868 			struct page *page = pvec.pages[i];
1869 
1870 			index = page->index;
1871 			if (index > end)
1872 				break;
1873 			index++;
1874 
1875 			BUG_ON(!PageLocked(page));
1876 			BUG_ON(PageWriteback(page));
1877 			BUG_ON(!page_has_buffers(page));
1878 
1879 			bh = page_buffers(page);
1880 			head = bh;
1881 
1882 			/* skip blocks out of the range */
1883 			do {
1884 				if (cur_logical >= logical)
1885 					break;
1886 				cur_logical++;
1887 			} while ((bh = bh->b_this_page) != head);
1888 
1889 			do {
1890 				if (cur_logical >= logical + blocks)
1891 					break;
1892 				if (buffer_delay(bh)) {
1893 					bh->b_blocknr = pblock;
1894 					clear_buffer_delay(bh);
1895 					bh->b_bdev = inode->i_sb->s_bdev;
1896 				} else if (buffer_unwritten(bh)) {
1897 					bh->b_blocknr = pblock;
1898 					clear_buffer_unwritten(bh);
1899 					set_buffer_mapped(bh);
1900 					set_buffer_new(bh);
1901 					bh->b_bdev = inode->i_sb->s_bdev;
1902 				} else if (buffer_mapped(bh))
1903 					BUG_ON(bh->b_blocknr != pblock);
1904 
1905 				cur_logical++;
1906 				pblock++;
1907 			} while ((bh = bh->b_this_page) != head);
1908 		}
1909 		pagevec_release(&pvec);
1910 	}
1911 }
1912 
1913 
1914 /*
1915  * __unmap_underlying_blocks - just a helper function to unmap
1916  * set of blocks described by @bh
1917  */
1918 static inline void __unmap_underlying_blocks(struct inode *inode,
1919 					     struct buffer_head *bh)
1920 {
1921 	struct block_device *bdev = inode->i_sb->s_bdev;
1922 	int blocks, i;
1923 
1924 	blocks = bh->b_size >> inode->i_blkbits;
1925 	for (i = 0; i < blocks; i++)
1926 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1927 }
1928 
1929 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1930 					sector_t logical, long blk_cnt)
1931 {
1932 	int nr_pages, i;
1933 	pgoff_t index, end;
1934 	struct pagevec pvec;
1935 	struct inode *inode = mpd->inode;
1936 	struct address_space *mapping = inode->i_mapping;
1937 
1938 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1939 	end   = (logical + blk_cnt - 1) >>
1940 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1941 	while (index <= end) {
1942 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1943 		if (nr_pages == 0)
1944 			break;
1945 		for (i = 0; i < nr_pages; i++) {
1946 			struct page *page = pvec.pages[i];
1947 			index = page->index;
1948 			if (index > end)
1949 				break;
1950 			index++;
1951 
1952 			BUG_ON(!PageLocked(page));
1953 			BUG_ON(PageWriteback(page));
1954 			block_invalidatepage(page, 0);
1955 			ClearPageUptodate(page);
1956 			unlock_page(page);
1957 		}
1958 	}
1959 	return;
1960 }
1961 
1962 static void ext4_print_free_blocks(struct inode *inode)
1963 {
1964 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1965 	printk(KERN_EMERG "Total free blocks count %lld\n",
1966 			ext4_count_free_blocks(inode->i_sb));
1967 	printk(KERN_EMERG "Free/Dirty block details\n");
1968 	printk(KERN_EMERG "free_blocks=%lld\n",
1969 			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1970 	printk(KERN_EMERG "dirty_blocks=%lld\n",
1971 			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1972 	printk(KERN_EMERG "Block reservation details\n");
1973 	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1974 			EXT4_I(inode)->i_reserved_data_blocks);
1975 	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1976 			EXT4_I(inode)->i_reserved_meta_blocks);
1977 	return;
1978 }
1979 
1980 #define		EXT4_DELALLOC_RSVED	1
1981 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1982 				   struct buffer_head *bh_result, int create)
1983 {
1984 	int ret;
1985 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1986 	loff_t disksize = EXT4_I(inode)->i_disksize;
1987 	handle_t *handle = NULL;
1988 
1989 	handle = ext4_journal_current_handle();
1990 	BUG_ON(!handle);
1991 	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
1992 				   bh_result, create, 0, EXT4_DELALLOC_RSVED);
1993 	if (ret <= 0)
1994 		return ret;
1995 
1996 	bh_result->b_size = (ret << inode->i_blkbits);
1997 
1998 	if (ext4_should_order_data(inode)) {
1999 		int retval;
2000 		retval = ext4_jbd2_file_inode(handle, inode);
2001 		if (retval)
2002 			/*
2003 			 * Failed to add inode for ordered mode. Don't
2004 			 * update file size
2005 			 */
2006 			return retval;
2007 	}
2008 
2009 	/*
2010 	 * Update on-disk size along with block allocation we don't
2011 	 * use 'extend_disksize' as size may change within already
2012 	 * allocated block -bzzz
2013 	 */
2014 	disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2015 	if (disksize > i_size_read(inode))
2016 		disksize = i_size_read(inode);
2017 	if (disksize > EXT4_I(inode)->i_disksize) {
2018 		ext4_update_i_disksize(inode, disksize);
2019 		ret = ext4_mark_inode_dirty(handle, inode);
2020 		return ret;
2021 	}
2022 	return 0;
2023 }
2024 
2025 /*
2026  * mpage_da_map_blocks - go through given space
2027  *
2028  * @mpd - bh describing space
2029  *
2030  * The function skips space we know is already mapped to disk blocks.
2031  *
2032  */
2033 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2034 {
2035 	int err = 0;
2036 	struct buffer_head new;
2037 	sector_t next;
2038 
2039 	/*
2040 	 * We consider only non-mapped and non-allocated blocks
2041 	 */
2042 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2043 	    !(mpd->b_state & (1 << BH_Delay)))
2044 		return 0;
2045 	new.b_state = mpd->b_state;
2046 	new.b_blocknr = 0;
2047 	new.b_size = mpd->b_size;
2048 	next = mpd->b_blocknr;
2049 	/*
2050 	 * If we didn't accumulate anything
2051 	 * to write simply return
2052 	 */
2053 	if (!new.b_size)
2054 		return 0;
2055 
2056 	err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2057 	if (err) {
2058 		/*
2059 		 * If get block returns with error we simply
2060 		 * return. Later writepage will redirty the page and
2061 		 * writepages will find the dirty page again
2062 		 */
2063 		if (err == -EAGAIN)
2064 			return 0;
2065 
2066 		if (err == -ENOSPC &&
2067 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2068 			mpd->retval = err;
2069 			return 0;
2070 		}
2071 
2072 		/*
2073 		 * get block failure will cause us to loop in
2074 		 * writepages, because a_ops->writepage won't be able
2075 		 * to make progress. The page will be redirtied by
2076 		 * writepage and writepages will again try to write
2077 		 * the same.
2078 		 */
2079 		printk(KERN_EMERG "%s block allocation failed for inode %lu "
2080 				  "at logical offset %llu with max blocks "
2081 				  "%zd with error %d\n",
2082 				  __func__, mpd->inode->i_ino,
2083 				  (unsigned long long)next,
2084 				  mpd->b_size >> mpd->inode->i_blkbits, err);
2085 		printk(KERN_EMERG "This should not happen.!! "
2086 					"Data will be lost\n");
2087 		if (err == -ENOSPC) {
2088 			ext4_print_free_blocks(mpd->inode);
2089 		}
2090 		/* invlaidate all the pages */
2091 		ext4_da_block_invalidatepages(mpd, next,
2092 				mpd->b_size >> mpd->inode->i_blkbits);
2093 		return err;
2094 	}
2095 	BUG_ON(new.b_size == 0);
2096 
2097 	if (buffer_new(&new))
2098 		__unmap_underlying_blocks(mpd->inode, &new);
2099 
2100 	/*
2101 	 * If blocks are delayed marked, we need to
2102 	 * put actual blocknr and drop delayed bit
2103 	 */
2104 	if ((mpd->b_state & (1 << BH_Delay)) ||
2105 	    (mpd->b_state & (1 << BH_Unwritten)))
2106 		mpage_put_bnr_to_bhs(mpd, next, &new);
2107 
2108 	return 0;
2109 }
2110 
2111 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2112 		(1 << BH_Delay) | (1 << BH_Unwritten))
2113 
2114 /*
2115  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2116  *
2117  * @mpd->lbh - extent of blocks
2118  * @logical - logical number of the block in the file
2119  * @bh - bh of the block (used to access block's state)
2120  *
2121  * the function is used to collect contig. blocks in same state
2122  */
2123 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2124 				   sector_t logical, size_t b_size,
2125 				   unsigned long b_state)
2126 {
2127 	sector_t next;
2128 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2129 
2130 	/* check if thereserved journal credits might overflow */
2131 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2132 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2133 			/*
2134 			 * With non-extent format we are limited by the journal
2135 			 * credit available.  Total credit needed to insert
2136 			 * nrblocks contiguous blocks is dependent on the
2137 			 * nrblocks.  So limit nrblocks.
2138 			 */
2139 			goto flush_it;
2140 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2141 				EXT4_MAX_TRANS_DATA) {
2142 			/*
2143 			 * Adding the new buffer_head would make it cross the
2144 			 * allowed limit for which we have journal credit
2145 			 * reserved. So limit the new bh->b_size
2146 			 */
2147 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2148 						mpd->inode->i_blkbits;
2149 			/* we will do mpage_da_submit_io in the next loop */
2150 		}
2151 	}
2152 	/*
2153 	 * First block in the extent
2154 	 */
2155 	if (mpd->b_size == 0) {
2156 		mpd->b_blocknr = logical;
2157 		mpd->b_size = b_size;
2158 		mpd->b_state = b_state & BH_FLAGS;
2159 		return;
2160 	}
2161 
2162 	next = mpd->b_blocknr + nrblocks;
2163 	/*
2164 	 * Can we merge the block to our big extent?
2165 	 */
2166 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2167 		mpd->b_size += b_size;
2168 		return;
2169 	}
2170 
2171 flush_it:
2172 	/*
2173 	 * We couldn't merge the block to our extent, so we
2174 	 * need to flush current  extent and start new one
2175 	 */
2176 	if (mpage_da_map_blocks(mpd) == 0)
2177 		mpage_da_submit_io(mpd);
2178 	mpd->io_done = 1;
2179 	return;
2180 }
2181 
2182 /*
2183  * __mpage_da_writepage - finds extent of pages and blocks
2184  *
2185  * @page: page to consider
2186  * @wbc: not used, we just follow rules
2187  * @data: context
2188  *
2189  * The function finds extents of pages and scan them for all blocks.
2190  */
2191 static int __mpage_da_writepage(struct page *page,
2192 				struct writeback_control *wbc, void *data)
2193 {
2194 	struct mpage_da_data *mpd = data;
2195 	struct inode *inode = mpd->inode;
2196 	struct buffer_head *bh, *head;
2197 	sector_t logical;
2198 
2199 	if (mpd->io_done) {
2200 		/*
2201 		 * Rest of the page in the page_vec
2202 		 * redirty then and skip then. We will
2203 		 * try to to write them again after
2204 		 * starting a new transaction
2205 		 */
2206 		redirty_page_for_writepage(wbc, page);
2207 		unlock_page(page);
2208 		return MPAGE_DA_EXTENT_TAIL;
2209 	}
2210 	/*
2211 	 * Can we merge this page to current extent?
2212 	 */
2213 	if (mpd->next_page != page->index) {
2214 		/*
2215 		 * Nope, we can't. So, we map non-allocated blocks
2216 		 * and start IO on them using writepage()
2217 		 */
2218 		if (mpd->next_page != mpd->first_page) {
2219 			if (mpage_da_map_blocks(mpd) == 0)
2220 				mpage_da_submit_io(mpd);
2221 			/*
2222 			 * skip rest of the page in the page_vec
2223 			 */
2224 			mpd->io_done = 1;
2225 			redirty_page_for_writepage(wbc, page);
2226 			unlock_page(page);
2227 			return MPAGE_DA_EXTENT_TAIL;
2228 		}
2229 
2230 		/*
2231 		 * Start next extent of pages ...
2232 		 */
2233 		mpd->first_page = page->index;
2234 
2235 		/*
2236 		 * ... and blocks
2237 		 */
2238 		mpd->b_size = 0;
2239 		mpd->b_state = 0;
2240 		mpd->b_blocknr = 0;
2241 	}
2242 
2243 	mpd->next_page = page->index + 1;
2244 	logical = (sector_t) page->index <<
2245 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2246 
2247 	if (!page_has_buffers(page)) {
2248 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2249 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2250 		if (mpd->io_done)
2251 			return MPAGE_DA_EXTENT_TAIL;
2252 	} else {
2253 		/*
2254 		 * Page with regular buffer heads, just add all dirty ones
2255 		 */
2256 		head = page_buffers(page);
2257 		bh = head;
2258 		do {
2259 			BUG_ON(buffer_locked(bh));
2260 			/*
2261 			 * We need to try to allocate
2262 			 * unmapped blocks in the same page.
2263 			 * Otherwise we won't make progress
2264 			 * with the page in ext4_da_writepage
2265 			 */
2266 			if (buffer_dirty(bh) &&
2267 			    (!buffer_mapped(bh) || buffer_delay(bh))) {
2268 				mpage_add_bh_to_extent(mpd, logical,
2269 						       bh->b_size,
2270 						       bh->b_state);
2271 				if (mpd->io_done)
2272 					return MPAGE_DA_EXTENT_TAIL;
2273 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2274 				/*
2275 				 * mapped dirty buffer. We need to update
2276 				 * the b_state because we look at
2277 				 * b_state in mpage_da_map_blocks. We don't
2278 				 * update b_size because if we find an
2279 				 * unmapped buffer_head later we need to
2280 				 * use the b_state flag of that buffer_head.
2281 				 */
2282 				if (mpd->b_size == 0)
2283 					mpd->b_state = bh->b_state & BH_FLAGS;
2284 			}
2285 			logical++;
2286 		} while ((bh = bh->b_this_page) != head);
2287 	}
2288 
2289 	return 0;
2290 }
2291 
2292 /*
2293  * this is a special callback for ->write_begin() only
2294  * it's intention is to return mapped block or reserve space
2295  */
2296 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2297 				  struct buffer_head *bh_result, int create)
2298 {
2299 	int ret = 0;
2300 
2301 	BUG_ON(create == 0);
2302 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2303 
2304 	/*
2305 	 * first, we need to know whether the block is allocated already
2306 	 * preallocated blocks are unmapped but should treated
2307 	 * the same as allocated blocks.
2308 	 */
2309 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2310 	if ((ret == 0) && !buffer_delay(bh_result)) {
2311 		/* the block isn't (pre)allocated yet, let's reserve space */
2312 		/*
2313 		 * XXX: __block_prepare_write() unmaps passed block,
2314 		 * is it OK?
2315 		 */
2316 		ret = ext4_da_reserve_space(inode, 1);
2317 		if (ret)
2318 			/* not enough space to reserve */
2319 			return ret;
2320 
2321 		map_bh(bh_result, inode->i_sb, 0);
2322 		set_buffer_new(bh_result);
2323 		set_buffer_delay(bh_result);
2324 	} else if (ret > 0) {
2325 		bh_result->b_size = (ret << inode->i_blkbits);
2326 		ret = 0;
2327 	}
2328 
2329 	return ret;
2330 }
2331 
2332 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2333 {
2334 	/*
2335 	 * unmapped buffer is possible for holes.
2336 	 * delay buffer is possible with delayed allocation
2337 	 */
2338 	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2339 }
2340 
2341 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2342 				   struct buffer_head *bh_result, int create)
2343 {
2344 	int ret = 0;
2345 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2346 
2347 	/*
2348 	 * we don't want to do block allocation in writepage
2349 	 * so call get_block_wrap with create = 0
2350 	 */
2351 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2352 				   bh_result, 0, 0, 0);
2353 	if (ret > 0) {
2354 		bh_result->b_size = (ret << inode->i_blkbits);
2355 		ret = 0;
2356 	}
2357 	return ret;
2358 }
2359 
2360 /*
2361  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2362  * get called via journal_submit_inode_data_buffers (no journal handle)
2363  * get called via shrink_page_list via pdflush (no journal handle)
2364  * or grab_page_cache when doing write_begin (have journal handle)
2365  */
2366 static int ext4_da_writepage(struct page *page,
2367 				struct writeback_control *wbc)
2368 {
2369 	int ret = 0;
2370 	loff_t size;
2371 	unsigned int len;
2372 	struct buffer_head *page_bufs;
2373 	struct inode *inode = page->mapping->host;
2374 
2375 	trace_mark(ext4_da_writepage,
2376 		   "dev %s ino %lu page_index %lu",
2377 		   inode->i_sb->s_id, inode->i_ino, page->index);
2378 	size = i_size_read(inode);
2379 	if (page->index == size >> PAGE_CACHE_SHIFT)
2380 		len = size & ~PAGE_CACHE_MASK;
2381 	else
2382 		len = PAGE_CACHE_SIZE;
2383 
2384 	if (page_has_buffers(page)) {
2385 		page_bufs = page_buffers(page);
2386 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2387 					ext4_bh_unmapped_or_delay)) {
2388 			/*
2389 			 * We don't want to do  block allocation
2390 			 * So redirty the page and return
2391 			 * We may reach here when we do a journal commit
2392 			 * via journal_submit_inode_data_buffers.
2393 			 * If we don't have mapping block we just ignore
2394 			 * them. We can also reach here via shrink_page_list
2395 			 */
2396 			redirty_page_for_writepage(wbc, page);
2397 			unlock_page(page);
2398 			return 0;
2399 		}
2400 	} else {
2401 		/*
2402 		 * The test for page_has_buffers() is subtle:
2403 		 * We know the page is dirty but it lost buffers. That means
2404 		 * that at some moment in time after write_begin()/write_end()
2405 		 * has been called all buffers have been clean and thus they
2406 		 * must have been written at least once. So they are all
2407 		 * mapped and we can happily proceed with mapping them
2408 		 * and writing the page.
2409 		 *
2410 		 * Try to initialize the buffer_heads and check whether
2411 		 * all are mapped and non delay. We don't want to
2412 		 * do block allocation here.
2413 		 */
2414 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2415 						ext4_normal_get_block_write);
2416 		if (!ret) {
2417 			page_bufs = page_buffers(page);
2418 			/* check whether all are mapped and non delay */
2419 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2420 						ext4_bh_unmapped_or_delay)) {
2421 				redirty_page_for_writepage(wbc, page);
2422 				unlock_page(page);
2423 				return 0;
2424 			}
2425 		} else {
2426 			/*
2427 			 * We can't do block allocation here
2428 			 * so just redity the page and unlock
2429 			 * and return
2430 			 */
2431 			redirty_page_for_writepage(wbc, page);
2432 			unlock_page(page);
2433 			return 0;
2434 		}
2435 		/* now mark the buffer_heads as dirty and uptodate */
2436 		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2437 	}
2438 
2439 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2440 		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2441 	else
2442 		ret = block_write_full_page(page,
2443 						ext4_normal_get_block_write,
2444 						wbc);
2445 
2446 	return ret;
2447 }
2448 
2449 /*
2450  * This is called via ext4_da_writepages() to
2451  * calulate the total number of credits to reserve to fit
2452  * a single extent allocation into a single transaction,
2453  * ext4_da_writpeages() will loop calling this before
2454  * the block allocation.
2455  */
2456 
2457 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2458 {
2459 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2460 
2461 	/*
2462 	 * With non-extent format the journal credit needed to
2463 	 * insert nrblocks contiguous block is dependent on
2464 	 * number of contiguous block. So we will limit
2465 	 * number of contiguous block to a sane value
2466 	 */
2467 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2468 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2469 		max_blocks = EXT4_MAX_TRANS_DATA;
2470 
2471 	return ext4_chunk_trans_blocks(inode, max_blocks);
2472 }
2473 
2474 static int ext4_da_writepages(struct address_space *mapping,
2475 			      struct writeback_control *wbc)
2476 {
2477 	pgoff_t	index;
2478 	int range_whole = 0;
2479 	handle_t *handle = NULL;
2480 	struct mpage_da_data mpd;
2481 	struct inode *inode = mapping->host;
2482 	int no_nrwrite_index_update;
2483 	int pages_written = 0;
2484 	long pages_skipped;
2485 	int range_cyclic, cycled = 1, io_done = 0;
2486 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2487 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2488 
2489 	trace_mark(ext4_da_writepages,
2490 		   "dev %s ino %lu nr_t_write %ld "
2491 		   "pages_skipped %ld range_start %llu "
2492 		   "range_end %llu nonblocking %d "
2493 		   "for_kupdate %d for_reclaim %d "
2494 		   "for_writepages %d range_cyclic %d",
2495 		   inode->i_sb->s_id, inode->i_ino,
2496 		   wbc->nr_to_write, wbc->pages_skipped,
2497 		   (unsigned long long) wbc->range_start,
2498 		   (unsigned long long) wbc->range_end,
2499 		   wbc->nonblocking, wbc->for_kupdate,
2500 		   wbc->for_reclaim, wbc->for_writepages,
2501 		   wbc->range_cyclic);
2502 
2503 	/*
2504 	 * No pages to write? This is mainly a kludge to avoid starting
2505 	 * a transaction for special inodes like journal inode on last iput()
2506 	 * because that could violate lock ordering on umount
2507 	 */
2508 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2509 		return 0;
2510 
2511 	/*
2512 	 * If the filesystem has aborted, it is read-only, so return
2513 	 * right away instead of dumping stack traces later on that
2514 	 * will obscure the real source of the problem.  We test
2515 	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2516 	 * the latter could be true if the filesystem is mounted
2517 	 * read-only, and in that case, ext4_da_writepages should
2518 	 * *never* be called, so if that ever happens, we would want
2519 	 * the stack trace.
2520 	 */
2521 	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2522 		return -EROFS;
2523 
2524 	/*
2525 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2526 	 * This make sure small files blocks are allocated in
2527 	 * single attempt. This ensure that small files
2528 	 * get less fragmented.
2529 	 */
2530 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2531 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2532 		wbc->nr_to_write = sbi->s_mb_stream_request;
2533 	}
2534 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2535 		range_whole = 1;
2536 
2537 	range_cyclic = wbc->range_cyclic;
2538 	if (wbc->range_cyclic) {
2539 		index = mapping->writeback_index;
2540 		if (index)
2541 			cycled = 0;
2542 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2543 		wbc->range_end  = LLONG_MAX;
2544 		wbc->range_cyclic = 0;
2545 	} else
2546 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2547 
2548 	mpd.wbc = wbc;
2549 	mpd.inode = mapping->host;
2550 
2551 	/*
2552 	 * we don't want write_cache_pages to update
2553 	 * nr_to_write and writeback_index
2554 	 */
2555 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2556 	wbc->no_nrwrite_index_update = 1;
2557 	pages_skipped = wbc->pages_skipped;
2558 
2559 retry:
2560 	while (!ret && wbc->nr_to_write > 0) {
2561 
2562 		/*
2563 		 * we  insert one extent at a time. So we need
2564 		 * credit needed for single extent allocation.
2565 		 * journalled mode is currently not supported
2566 		 * by delalloc
2567 		 */
2568 		BUG_ON(ext4_should_journal_data(inode));
2569 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2570 
2571 		/* start a new transaction*/
2572 		handle = ext4_journal_start(inode, needed_blocks);
2573 		if (IS_ERR(handle)) {
2574 			ret = PTR_ERR(handle);
2575 			printk(KERN_CRIT "%s: jbd2_start: "
2576 			       "%ld pages, ino %lu; err %d\n", __func__,
2577 				wbc->nr_to_write, inode->i_ino, ret);
2578 			dump_stack();
2579 			goto out_writepages;
2580 		}
2581 
2582 		/*
2583 		 * Now call __mpage_da_writepage to find the next
2584 		 * contiguous region of logical blocks that need
2585 		 * blocks to be allocated by ext4.  We don't actually
2586 		 * submit the blocks for I/O here, even though
2587 		 * write_cache_pages thinks it will, and will set the
2588 		 * pages as clean for write before calling
2589 		 * __mpage_da_writepage().
2590 		 */
2591 		mpd.b_size = 0;
2592 		mpd.b_state = 0;
2593 		mpd.b_blocknr = 0;
2594 		mpd.first_page = 0;
2595 		mpd.next_page = 0;
2596 		mpd.io_done = 0;
2597 		mpd.pages_written = 0;
2598 		mpd.retval = 0;
2599 		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2600 					&mpd);
2601 		/*
2602 		 * If we have a contigous extent of pages and we
2603 		 * haven't done the I/O yet, map the blocks and submit
2604 		 * them for I/O.
2605 		 */
2606 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2607 			if (mpage_da_map_blocks(&mpd) == 0)
2608 				mpage_da_submit_io(&mpd);
2609 			mpd.io_done = 1;
2610 			ret = MPAGE_DA_EXTENT_TAIL;
2611 		}
2612 		wbc->nr_to_write -= mpd.pages_written;
2613 
2614 		ext4_journal_stop(handle);
2615 
2616 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2617 			/* commit the transaction which would
2618 			 * free blocks released in the transaction
2619 			 * and try again
2620 			 */
2621 			jbd2_journal_force_commit_nested(sbi->s_journal);
2622 			wbc->pages_skipped = pages_skipped;
2623 			ret = 0;
2624 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2625 			/*
2626 			 * got one extent now try with
2627 			 * rest of the pages
2628 			 */
2629 			pages_written += mpd.pages_written;
2630 			wbc->pages_skipped = pages_skipped;
2631 			ret = 0;
2632 			io_done = 1;
2633 		} else if (wbc->nr_to_write)
2634 			/*
2635 			 * There is no more writeout needed
2636 			 * or we requested for a noblocking writeout
2637 			 * and we found the device congested
2638 			 */
2639 			break;
2640 	}
2641 	if (!io_done && !cycled) {
2642 		cycled = 1;
2643 		index = 0;
2644 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2645 		wbc->range_end  = mapping->writeback_index - 1;
2646 		goto retry;
2647 	}
2648 	if (pages_skipped != wbc->pages_skipped)
2649 		printk(KERN_EMERG "This should not happen leaving %s "
2650 				"with nr_to_write = %ld ret = %d\n",
2651 				__func__, wbc->nr_to_write, ret);
2652 
2653 	/* Update index */
2654 	index += pages_written;
2655 	wbc->range_cyclic = range_cyclic;
2656 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2657 		/*
2658 		 * set the writeback_index so that range_cyclic
2659 		 * mode will write it back later
2660 		 */
2661 		mapping->writeback_index = index;
2662 
2663 out_writepages:
2664 	if (!no_nrwrite_index_update)
2665 		wbc->no_nrwrite_index_update = 0;
2666 	wbc->nr_to_write -= nr_to_writebump;
2667 	trace_mark(ext4_da_writepage_result,
2668 		   "dev %s ino %lu ret %d pages_written %d "
2669 		   "pages_skipped %ld congestion %d "
2670 		   "more_io %d no_nrwrite_index_update %d",
2671 		   inode->i_sb->s_id, inode->i_ino, ret,
2672 		   pages_written, wbc->pages_skipped,
2673 		   wbc->encountered_congestion, wbc->more_io,
2674 		   wbc->no_nrwrite_index_update);
2675 	return ret;
2676 }
2677 
2678 #define FALL_BACK_TO_NONDELALLOC 1
2679 static int ext4_nonda_switch(struct super_block *sb)
2680 {
2681 	s64 free_blocks, dirty_blocks;
2682 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2683 
2684 	/*
2685 	 * switch to non delalloc mode if we are running low
2686 	 * on free block. The free block accounting via percpu
2687 	 * counters can get slightly wrong with percpu_counter_batch getting
2688 	 * accumulated on each CPU without updating global counters
2689 	 * Delalloc need an accurate free block accounting. So switch
2690 	 * to non delalloc when we are near to error range.
2691 	 */
2692 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2693 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2694 	if (2 * free_blocks < 3 * dirty_blocks ||
2695 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2696 		/*
2697 		 * free block count is less that 150% of dirty blocks
2698 		 * or free blocks is less that watermark
2699 		 */
2700 		return 1;
2701 	}
2702 	return 0;
2703 }
2704 
2705 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2706 				loff_t pos, unsigned len, unsigned flags,
2707 				struct page **pagep, void **fsdata)
2708 {
2709 	int ret, retries = 0;
2710 	struct page *page;
2711 	pgoff_t index;
2712 	unsigned from, to;
2713 	struct inode *inode = mapping->host;
2714 	handle_t *handle;
2715 
2716 	index = pos >> PAGE_CACHE_SHIFT;
2717 	from = pos & (PAGE_CACHE_SIZE - 1);
2718 	to = from + len;
2719 
2720 	if (ext4_nonda_switch(inode->i_sb)) {
2721 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2722 		return ext4_write_begin(file, mapping, pos,
2723 					len, flags, pagep, fsdata);
2724 	}
2725 	*fsdata = (void *)0;
2726 
2727 	trace_mark(ext4_da_write_begin,
2728 		   "dev %s ino %lu pos %llu len %u flags %u",
2729 		   inode->i_sb->s_id, inode->i_ino,
2730 		   (unsigned long long) pos, len, flags);
2731 retry:
2732 	/*
2733 	 * With delayed allocation, we don't log the i_disksize update
2734 	 * if there is delayed block allocation. But we still need
2735 	 * to journalling the i_disksize update if writes to the end
2736 	 * of file which has an already mapped buffer.
2737 	 */
2738 	handle = ext4_journal_start(inode, 1);
2739 	if (IS_ERR(handle)) {
2740 		ret = PTR_ERR(handle);
2741 		goto out;
2742 	}
2743 	/* We cannot recurse into the filesystem as the transaction is already
2744 	 * started */
2745 	flags |= AOP_FLAG_NOFS;
2746 
2747 	page = grab_cache_page_write_begin(mapping, index, flags);
2748 	if (!page) {
2749 		ext4_journal_stop(handle);
2750 		ret = -ENOMEM;
2751 		goto out;
2752 	}
2753 	*pagep = page;
2754 
2755 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2756 							ext4_da_get_block_prep);
2757 	if (ret < 0) {
2758 		unlock_page(page);
2759 		ext4_journal_stop(handle);
2760 		page_cache_release(page);
2761 		/*
2762 		 * block_write_begin may have instantiated a few blocks
2763 		 * outside i_size.  Trim these off again. Don't need
2764 		 * i_size_read because we hold i_mutex.
2765 		 */
2766 		if (pos + len > inode->i_size)
2767 			vmtruncate(inode, inode->i_size);
2768 	}
2769 
2770 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2771 		goto retry;
2772 out:
2773 	return ret;
2774 }
2775 
2776 /*
2777  * Check if we should update i_disksize
2778  * when write to the end of file but not require block allocation
2779  */
2780 static int ext4_da_should_update_i_disksize(struct page *page,
2781 					 unsigned long offset)
2782 {
2783 	struct buffer_head *bh;
2784 	struct inode *inode = page->mapping->host;
2785 	unsigned int idx;
2786 	int i;
2787 
2788 	bh = page_buffers(page);
2789 	idx = offset >> inode->i_blkbits;
2790 
2791 	for (i = 0; i < idx; i++)
2792 		bh = bh->b_this_page;
2793 
2794 	if (!buffer_mapped(bh) || (buffer_delay(bh)))
2795 		return 0;
2796 	return 1;
2797 }
2798 
2799 static int ext4_da_write_end(struct file *file,
2800 				struct address_space *mapping,
2801 				loff_t pos, unsigned len, unsigned copied,
2802 				struct page *page, void *fsdata)
2803 {
2804 	struct inode *inode = mapping->host;
2805 	int ret = 0, ret2;
2806 	handle_t *handle = ext4_journal_current_handle();
2807 	loff_t new_i_size;
2808 	unsigned long start, end;
2809 	int write_mode = (int)(unsigned long)fsdata;
2810 
2811 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2812 		if (ext4_should_order_data(inode)) {
2813 			return ext4_ordered_write_end(file, mapping, pos,
2814 					len, copied, page, fsdata);
2815 		} else if (ext4_should_writeback_data(inode)) {
2816 			return ext4_writeback_write_end(file, mapping, pos,
2817 					len, copied, page, fsdata);
2818 		} else {
2819 			BUG();
2820 		}
2821 	}
2822 
2823 	trace_mark(ext4_da_write_end,
2824 		   "dev %s ino %lu pos %llu len %u copied %u",
2825 		   inode->i_sb->s_id, inode->i_ino,
2826 		   (unsigned long long) pos, len, copied);
2827 	start = pos & (PAGE_CACHE_SIZE - 1);
2828 	end = start + copied - 1;
2829 
2830 	/*
2831 	 * generic_write_end() will run mark_inode_dirty() if i_size
2832 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2833 	 * into that.
2834 	 */
2835 
2836 	new_i_size = pos + copied;
2837 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2838 		if (ext4_da_should_update_i_disksize(page, end)) {
2839 			down_write(&EXT4_I(inode)->i_data_sem);
2840 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2841 				/*
2842 				 * Updating i_disksize when extending file
2843 				 * without needing block allocation
2844 				 */
2845 				if (ext4_should_order_data(inode))
2846 					ret = ext4_jbd2_file_inode(handle,
2847 								   inode);
2848 
2849 				EXT4_I(inode)->i_disksize = new_i_size;
2850 			}
2851 			up_write(&EXT4_I(inode)->i_data_sem);
2852 			/* We need to mark inode dirty even if
2853 			 * new_i_size is less that inode->i_size
2854 			 * bu greater than i_disksize.(hint delalloc)
2855 			 */
2856 			ext4_mark_inode_dirty(handle, inode);
2857 		}
2858 	}
2859 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2860 							page, fsdata);
2861 	copied = ret2;
2862 	if (ret2 < 0)
2863 		ret = ret2;
2864 	ret2 = ext4_journal_stop(handle);
2865 	if (!ret)
2866 		ret = ret2;
2867 
2868 	return ret ? ret : copied;
2869 }
2870 
2871 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2872 {
2873 	/*
2874 	 * Drop reserved blocks
2875 	 */
2876 	BUG_ON(!PageLocked(page));
2877 	if (!page_has_buffers(page))
2878 		goto out;
2879 
2880 	ext4_da_page_release_reservation(page, offset);
2881 
2882 out:
2883 	ext4_invalidatepage(page, offset);
2884 
2885 	return;
2886 }
2887 
2888 /*
2889  * Force all delayed allocation blocks to be allocated for a given inode.
2890  */
2891 int ext4_alloc_da_blocks(struct inode *inode)
2892 {
2893 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2894 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2895 		return 0;
2896 
2897 	/*
2898 	 * We do something simple for now.  The filemap_flush() will
2899 	 * also start triggering a write of the data blocks, which is
2900 	 * not strictly speaking necessary (and for users of
2901 	 * laptop_mode, not even desirable).  However, to do otherwise
2902 	 * would require replicating code paths in:
2903 	 *
2904 	 * ext4_da_writepages() ->
2905 	 *    write_cache_pages() ---> (via passed in callback function)
2906 	 *        __mpage_da_writepage() -->
2907 	 *           mpage_add_bh_to_extent()
2908 	 *           mpage_da_map_blocks()
2909 	 *
2910 	 * The problem is that write_cache_pages(), located in
2911 	 * mm/page-writeback.c, marks pages clean in preparation for
2912 	 * doing I/O, which is not desirable if we're not planning on
2913 	 * doing I/O at all.
2914 	 *
2915 	 * We could call write_cache_pages(), and then redirty all of
2916 	 * the pages by calling redirty_page_for_writeback() but that
2917 	 * would be ugly in the extreme.  So instead we would need to
2918 	 * replicate parts of the code in the above functions,
2919 	 * simplifying them becuase we wouldn't actually intend to
2920 	 * write out the pages, but rather only collect contiguous
2921 	 * logical block extents, call the multi-block allocator, and
2922 	 * then update the buffer heads with the block allocations.
2923 	 *
2924 	 * For now, though, we'll cheat by calling filemap_flush(),
2925 	 * which will map the blocks, and start the I/O, but not
2926 	 * actually wait for the I/O to complete.
2927 	 */
2928 	return filemap_flush(inode->i_mapping);
2929 }
2930 
2931 /*
2932  * bmap() is special.  It gets used by applications such as lilo and by
2933  * the swapper to find the on-disk block of a specific piece of data.
2934  *
2935  * Naturally, this is dangerous if the block concerned is still in the
2936  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2937  * filesystem and enables swap, then they may get a nasty shock when the
2938  * data getting swapped to that swapfile suddenly gets overwritten by
2939  * the original zero's written out previously to the journal and
2940  * awaiting writeback in the kernel's buffer cache.
2941  *
2942  * So, if we see any bmap calls here on a modified, data-journaled file,
2943  * take extra steps to flush any blocks which might be in the cache.
2944  */
2945 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2946 {
2947 	struct inode *inode = mapping->host;
2948 	journal_t *journal;
2949 	int err;
2950 
2951 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2952 			test_opt(inode->i_sb, DELALLOC)) {
2953 		/*
2954 		 * With delalloc we want to sync the file
2955 		 * so that we can make sure we allocate
2956 		 * blocks for file
2957 		 */
2958 		filemap_write_and_wait(mapping);
2959 	}
2960 
2961 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2962 		/*
2963 		 * This is a REALLY heavyweight approach, but the use of
2964 		 * bmap on dirty files is expected to be extremely rare:
2965 		 * only if we run lilo or swapon on a freshly made file
2966 		 * do we expect this to happen.
2967 		 *
2968 		 * (bmap requires CAP_SYS_RAWIO so this does not
2969 		 * represent an unprivileged user DOS attack --- we'd be
2970 		 * in trouble if mortal users could trigger this path at
2971 		 * will.)
2972 		 *
2973 		 * NB. EXT4_STATE_JDATA is not set on files other than
2974 		 * regular files.  If somebody wants to bmap a directory
2975 		 * or symlink and gets confused because the buffer
2976 		 * hasn't yet been flushed to disk, they deserve
2977 		 * everything they get.
2978 		 */
2979 
2980 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2981 		journal = EXT4_JOURNAL(inode);
2982 		jbd2_journal_lock_updates(journal);
2983 		err = jbd2_journal_flush(journal);
2984 		jbd2_journal_unlock_updates(journal);
2985 
2986 		if (err)
2987 			return 0;
2988 	}
2989 
2990 	return generic_block_bmap(mapping, block, ext4_get_block);
2991 }
2992 
2993 static int bget_one(handle_t *handle, struct buffer_head *bh)
2994 {
2995 	get_bh(bh);
2996 	return 0;
2997 }
2998 
2999 static int bput_one(handle_t *handle, struct buffer_head *bh)
3000 {
3001 	put_bh(bh);
3002 	return 0;
3003 }
3004 
3005 /*
3006  * Note that we don't need to start a transaction unless we're journaling data
3007  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3008  * need to file the inode to the transaction's list in ordered mode because if
3009  * we are writing back data added by write(), the inode is already there and if
3010  * we are writing back data modified via mmap(), noone guarantees in which
3011  * transaction the data will hit the disk. In case we are journaling data, we
3012  * cannot start transaction directly because transaction start ranks above page
3013  * lock so we have to do some magic.
3014  *
3015  * In all journaling modes block_write_full_page() will start the I/O.
3016  *
3017  * Problem:
3018  *
3019  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3020  *		ext4_writepage()
3021  *
3022  * Similar for:
3023  *
3024  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3025  *
3026  * Same applies to ext4_get_block().  We will deadlock on various things like
3027  * lock_journal and i_data_sem
3028  *
3029  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3030  * allocations fail.
3031  *
3032  * 16May01: If we're reentered then journal_current_handle() will be
3033  *	    non-zero. We simply *return*.
3034  *
3035  * 1 July 2001: @@@ FIXME:
3036  *   In journalled data mode, a data buffer may be metadata against the
3037  *   current transaction.  But the same file is part of a shared mapping
3038  *   and someone does a writepage() on it.
3039  *
3040  *   We will move the buffer onto the async_data list, but *after* it has
3041  *   been dirtied. So there's a small window where we have dirty data on
3042  *   BJ_Metadata.
3043  *
3044  *   Note that this only applies to the last partial page in the file.  The
3045  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3046  *   broken code anyway: it's wrong for msync()).
3047  *
3048  *   It's a rare case: affects the final partial page, for journalled data
3049  *   where the file is subject to bith write() and writepage() in the same
3050  *   transction.  To fix it we'll need a custom block_write_full_page().
3051  *   We'll probably need that anyway for journalling writepage() output.
3052  *
3053  * We don't honour synchronous mounts for writepage().  That would be
3054  * disastrous.  Any write() or metadata operation will sync the fs for
3055  * us.
3056  *
3057  */
3058 static int __ext4_normal_writepage(struct page *page,
3059 				struct writeback_control *wbc)
3060 {
3061 	struct inode *inode = page->mapping->host;
3062 
3063 	if (test_opt(inode->i_sb, NOBH))
3064 		return nobh_writepage(page,
3065 					ext4_normal_get_block_write, wbc);
3066 	else
3067 		return block_write_full_page(page,
3068 						ext4_normal_get_block_write,
3069 						wbc);
3070 }
3071 
3072 static int ext4_normal_writepage(struct page *page,
3073 				struct writeback_control *wbc)
3074 {
3075 	struct inode *inode = page->mapping->host;
3076 	loff_t size = i_size_read(inode);
3077 	loff_t len;
3078 
3079 	trace_mark(ext4_normal_writepage,
3080 		   "dev %s ino %lu page_index %lu",
3081 		   inode->i_sb->s_id, inode->i_ino, page->index);
3082 	J_ASSERT(PageLocked(page));
3083 	if (page->index == size >> PAGE_CACHE_SHIFT)
3084 		len = size & ~PAGE_CACHE_MASK;
3085 	else
3086 		len = PAGE_CACHE_SIZE;
3087 
3088 	if (page_has_buffers(page)) {
3089 		/* if page has buffers it should all be mapped
3090 		 * and allocated. If there are not buffers attached
3091 		 * to the page we know the page is dirty but it lost
3092 		 * buffers. That means that at some moment in time
3093 		 * after write_begin() / write_end() has been called
3094 		 * all buffers have been clean and thus they must have been
3095 		 * written at least once. So they are all mapped and we can
3096 		 * happily proceed with mapping them and writing the page.
3097 		 */
3098 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3099 					ext4_bh_unmapped_or_delay));
3100 	}
3101 
3102 	if (!ext4_journal_current_handle())
3103 		return __ext4_normal_writepage(page, wbc);
3104 
3105 	redirty_page_for_writepage(wbc, page);
3106 	unlock_page(page);
3107 	return 0;
3108 }
3109 
3110 static int __ext4_journalled_writepage(struct page *page,
3111 				struct writeback_control *wbc)
3112 {
3113 	struct address_space *mapping = page->mapping;
3114 	struct inode *inode = mapping->host;
3115 	struct buffer_head *page_bufs;
3116 	handle_t *handle = NULL;
3117 	int ret = 0;
3118 	int err;
3119 
3120 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3121 					ext4_normal_get_block_write);
3122 	if (ret != 0)
3123 		goto out_unlock;
3124 
3125 	page_bufs = page_buffers(page);
3126 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3127 								bget_one);
3128 	/* As soon as we unlock the page, it can go away, but we have
3129 	 * references to buffers so we are safe */
3130 	unlock_page(page);
3131 
3132 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3133 	if (IS_ERR(handle)) {
3134 		ret = PTR_ERR(handle);
3135 		goto out;
3136 	}
3137 
3138 	ret = walk_page_buffers(handle, page_bufs, 0,
3139 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3140 
3141 	err = walk_page_buffers(handle, page_bufs, 0,
3142 				PAGE_CACHE_SIZE, NULL, write_end_fn);
3143 	if (ret == 0)
3144 		ret = err;
3145 	err = ext4_journal_stop(handle);
3146 	if (!ret)
3147 		ret = err;
3148 
3149 	walk_page_buffers(handle, page_bufs, 0,
3150 				PAGE_CACHE_SIZE, NULL, bput_one);
3151 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3152 	goto out;
3153 
3154 out_unlock:
3155 	unlock_page(page);
3156 out:
3157 	return ret;
3158 }
3159 
3160 static int ext4_journalled_writepage(struct page *page,
3161 				struct writeback_control *wbc)
3162 {
3163 	struct inode *inode = page->mapping->host;
3164 	loff_t size = i_size_read(inode);
3165 	loff_t len;
3166 
3167 	trace_mark(ext4_journalled_writepage,
3168 		   "dev %s ino %lu page_index %lu",
3169 		   inode->i_sb->s_id, inode->i_ino, page->index);
3170 	J_ASSERT(PageLocked(page));
3171 	if (page->index == size >> PAGE_CACHE_SHIFT)
3172 		len = size & ~PAGE_CACHE_MASK;
3173 	else
3174 		len = PAGE_CACHE_SIZE;
3175 
3176 	if (page_has_buffers(page)) {
3177 		/* if page has buffers it should all be mapped
3178 		 * and allocated. If there are not buffers attached
3179 		 * to the page we know the page is dirty but it lost
3180 		 * buffers. That means that at some moment in time
3181 		 * after write_begin() / write_end() has been called
3182 		 * all buffers have been clean and thus they must have been
3183 		 * written at least once. So they are all mapped and we can
3184 		 * happily proceed with mapping them and writing the page.
3185 		 */
3186 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3187 					ext4_bh_unmapped_or_delay));
3188 	}
3189 
3190 	if (ext4_journal_current_handle())
3191 		goto no_write;
3192 
3193 	if (PageChecked(page)) {
3194 		/*
3195 		 * It's mmapped pagecache.  Add buffers and journal it.  There
3196 		 * doesn't seem much point in redirtying the page here.
3197 		 */
3198 		ClearPageChecked(page);
3199 		return __ext4_journalled_writepage(page, wbc);
3200 	} else {
3201 		/*
3202 		 * It may be a page full of checkpoint-mode buffers.  We don't
3203 		 * really know unless we go poke around in the buffer_heads.
3204 		 * But block_write_full_page will do the right thing.
3205 		 */
3206 		return block_write_full_page(page,
3207 						ext4_normal_get_block_write,
3208 						wbc);
3209 	}
3210 no_write:
3211 	redirty_page_for_writepage(wbc, page);
3212 	unlock_page(page);
3213 	return 0;
3214 }
3215 
3216 static int ext4_readpage(struct file *file, struct page *page)
3217 {
3218 	return mpage_readpage(page, ext4_get_block);
3219 }
3220 
3221 static int
3222 ext4_readpages(struct file *file, struct address_space *mapping,
3223 		struct list_head *pages, unsigned nr_pages)
3224 {
3225 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3226 }
3227 
3228 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3229 {
3230 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3231 
3232 	/*
3233 	 * If it's a full truncate we just forget about the pending dirtying
3234 	 */
3235 	if (offset == 0)
3236 		ClearPageChecked(page);
3237 
3238 	if (journal)
3239 		jbd2_journal_invalidatepage(journal, page, offset);
3240 	else
3241 		block_invalidatepage(page, offset);
3242 }
3243 
3244 static int ext4_releasepage(struct page *page, gfp_t wait)
3245 {
3246 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3247 
3248 	WARN_ON(PageChecked(page));
3249 	if (!page_has_buffers(page))
3250 		return 0;
3251 	if (journal)
3252 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3253 	else
3254 		return try_to_free_buffers(page);
3255 }
3256 
3257 /*
3258  * If the O_DIRECT write will extend the file then add this inode to the
3259  * orphan list.  So recovery will truncate it back to the original size
3260  * if the machine crashes during the write.
3261  *
3262  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3263  * crashes then stale disk data _may_ be exposed inside the file. But current
3264  * VFS code falls back into buffered path in that case so we are safe.
3265  */
3266 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3267 			const struct iovec *iov, loff_t offset,
3268 			unsigned long nr_segs)
3269 {
3270 	struct file *file = iocb->ki_filp;
3271 	struct inode *inode = file->f_mapping->host;
3272 	struct ext4_inode_info *ei = EXT4_I(inode);
3273 	handle_t *handle;
3274 	ssize_t ret;
3275 	int orphan = 0;
3276 	size_t count = iov_length(iov, nr_segs);
3277 
3278 	if (rw == WRITE) {
3279 		loff_t final_size = offset + count;
3280 
3281 		if (final_size > inode->i_size) {
3282 			/* Credits for sb + inode write */
3283 			handle = ext4_journal_start(inode, 2);
3284 			if (IS_ERR(handle)) {
3285 				ret = PTR_ERR(handle);
3286 				goto out;
3287 			}
3288 			ret = ext4_orphan_add(handle, inode);
3289 			if (ret) {
3290 				ext4_journal_stop(handle);
3291 				goto out;
3292 			}
3293 			orphan = 1;
3294 			ei->i_disksize = inode->i_size;
3295 			ext4_journal_stop(handle);
3296 		}
3297 	}
3298 
3299 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3300 				 offset, nr_segs,
3301 				 ext4_get_block, NULL);
3302 
3303 	if (orphan) {
3304 		int err;
3305 
3306 		/* Credits for sb + inode write */
3307 		handle = ext4_journal_start(inode, 2);
3308 		if (IS_ERR(handle)) {
3309 			/* This is really bad luck. We've written the data
3310 			 * but cannot extend i_size. Bail out and pretend
3311 			 * the write failed... */
3312 			ret = PTR_ERR(handle);
3313 			goto out;
3314 		}
3315 		if (inode->i_nlink)
3316 			ext4_orphan_del(handle, inode);
3317 		if (ret > 0) {
3318 			loff_t end = offset + ret;
3319 			if (end > inode->i_size) {
3320 				ei->i_disksize = end;
3321 				i_size_write(inode, end);
3322 				/*
3323 				 * We're going to return a positive `ret'
3324 				 * here due to non-zero-length I/O, so there's
3325 				 * no way of reporting error returns from
3326 				 * ext4_mark_inode_dirty() to userspace.  So
3327 				 * ignore it.
3328 				 */
3329 				ext4_mark_inode_dirty(handle, inode);
3330 			}
3331 		}
3332 		err = ext4_journal_stop(handle);
3333 		if (ret == 0)
3334 			ret = err;
3335 	}
3336 out:
3337 	return ret;
3338 }
3339 
3340 /*
3341  * Pages can be marked dirty completely asynchronously from ext4's journalling
3342  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3343  * much here because ->set_page_dirty is called under VFS locks.  The page is
3344  * not necessarily locked.
3345  *
3346  * We cannot just dirty the page and leave attached buffers clean, because the
3347  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3348  * or jbddirty because all the journalling code will explode.
3349  *
3350  * So what we do is to mark the page "pending dirty" and next time writepage
3351  * is called, propagate that into the buffers appropriately.
3352  */
3353 static int ext4_journalled_set_page_dirty(struct page *page)
3354 {
3355 	SetPageChecked(page);
3356 	return __set_page_dirty_nobuffers(page);
3357 }
3358 
3359 static const struct address_space_operations ext4_ordered_aops = {
3360 	.readpage		= ext4_readpage,
3361 	.readpages		= ext4_readpages,
3362 	.writepage		= ext4_normal_writepage,
3363 	.sync_page		= block_sync_page,
3364 	.write_begin		= ext4_write_begin,
3365 	.write_end		= ext4_ordered_write_end,
3366 	.bmap			= ext4_bmap,
3367 	.invalidatepage		= ext4_invalidatepage,
3368 	.releasepage		= ext4_releasepage,
3369 	.direct_IO		= ext4_direct_IO,
3370 	.migratepage		= buffer_migrate_page,
3371 	.is_partially_uptodate  = block_is_partially_uptodate,
3372 };
3373 
3374 static const struct address_space_operations ext4_writeback_aops = {
3375 	.readpage		= ext4_readpage,
3376 	.readpages		= ext4_readpages,
3377 	.writepage		= ext4_normal_writepage,
3378 	.sync_page		= block_sync_page,
3379 	.write_begin		= ext4_write_begin,
3380 	.write_end		= ext4_writeback_write_end,
3381 	.bmap			= ext4_bmap,
3382 	.invalidatepage		= ext4_invalidatepage,
3383 	.releasepage		= ext4_releasepage,
3384 	.direct_IO		= ext4_direct_IO,
3385 	.migratepage		= buffer_migrate_page,
3386 	.is_partially_uptodate  = block_is_partially_uptodate,
3387 };
3388 
3389 static const struct address_space_operations ext4_journalled_aops = {
3390 	.readpage		= ext4_readpage,
3391 	.readpages		= ext4_readpages,
3392 	.writepage		= ext4_journalled_writepage,
3393 	.sync_page		= block_sync_page,
3394 	.write_begin		= ext4_write_begin,
3395 	.write_end		= ext4_journalled_write_end,
3396 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3397 	.bmap			= ext4_bmap,
3398 	.invalidatepage		= ext4_invalidatepage,
3399 	.releasepage		= ext4_releasepage,
3400 	.is_partially_uptodate  = block_is_partially_uptodate,
3401 };
3402 
3403 static const struct address_space_operations ext4_da_aops = {
3404 	.readpage		= ext4_readpage,
3405 	.readpages		= ext4_readpages,
3406 	.writepage		= ext4_da_writepage,
3407 	.writepages		= ext4_da_writepages,
3408 	.sync_page		= block_sync_page,
3409 	.write_begin		= ext4_da_write_begin,
3410 	.write_end		= ext4_da_write_end,
3411 	.bmap			= ext4_bmap,
3412 	.invalidatepage		= ext4_da_invalidatepage,
3413 	.releasepage		= ext4_releasepage,
3414 	.direct_IO		= ext4_direct_IO,
3415 	.migratepage		= buffer_migrate_page,
3416 	.is_partially_uptodate  = block_is_partially_uptodate,
3417 };
3418 
3419 void ext4_set_aops(struct inode *inode)
3420 {
3421 	if (ext4_should_order_data(inode) &&
3422 		test_opt(inode->i_sb, DELALLOC))
3423 		inode->i_mapping->a_ops = &ext4_da_aops;
3424 	else if (ext4_should_order_data(inode))
3425 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3426 	else if (ext4_should_writeback_data(inode) &&
3427 		 test_opt(inode->i_sb, DELALLOC))
3428 		inode->i_mapping->a_ops = &ext4_da_aops;
3429 	else if (ext4_should_writeback_data(inode))
3430 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3431 	else
3432 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3433 }
3434 
3435 /*
3436  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3437  * up to the end of the block which corresponds to `from'.
3438  * This required during truncate. We need to physically zero the tail end
3439  * of that block so it doesn't yield old data if the file is later grown.
3440  */
3441 int ext4_block_truncate_page(handle_t *handle,
3442 		struct address_space *mapping, loff_t from)
3443 {
3444 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3445 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3446 	unsigned blocksize, length, pos;
3447 	ext4_lblk_t iblock;
3448 	struct inode *inode = mapping->host;
3449 	struct buffer_head *bh;
3450 	struct page *page;
3451 	int err = 0;
3452 
3453 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3454 	if (!page)
3455 		return -EINVAL;
3456 
3457 	blocksize = inode->i_sb->s_blocksize;
3458 	length = blocksize - (offset & (blocksize - 1));
3459 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3460 
3461 	/*
3462 	 * For "nobh" option,  we can only work if we don't need to
3463 	 * read-in the page - otherwise we create buffers to do the IO.
3464 	 */
3465 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3466 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3467 		zero_user(page, offset, length);
3468 		set_page_dirty(page);
3469 		goto unlock;
3470 	}
3471 
3472 	if (!page_has_buffers(page))
3473 		create_empty_buffers(page, blocksize, 0);
3474 
3475 	/* Find the buffer that contains "offset" */
3476 	bh = page_buffers(page);
3477 	pos = blocksize;
3478 	while (offset >= pos) {
3479 		bh = bh->b_this_page;
3480 		iblock++;
3481 		pos += blocksize;
3482 	}
3483 
3484 	err = 0;
3485 	if (buffer_freed(bh)) {
3486 		BUFFER_TRACE(bh, "freed: skip");
3487 		goto unlock;
3488 	}
3489 
3490 	if (!buffer_mapped(bh)) {
3491 		BUFFER_TRACE(bh, "unmapped");
3492 		ext4_get_block(inode, iblock, bh, 0);
3493 		/* unmapped? It's a hole - nothing to do */
3494 		if (!buffer_mapped(bh)) {
3495 			BUFFER_TRACE(bh, "still unmapped");
3496 			goto unlock;
3497 		}
3498 	}
3499 
3500 	/* Ok, it's mapped. Make sure it's up-to-date */
3501 	if (PageUptodate(page))
3502 		set_buffer_uptodate(bh);
3503 
3504 	if (!buffer_uptodate(bh)) {
3505 		err = -EIO;
3506 		ll_rw_block(READ, 1, &bh);
3507 		wait_on_buffer(bh);
3508 		/* Uhhuh. Read error. Complain and punt. */
3509 		if (!buffer_uptodate(bh))
3510 			goto unlock;
3511 	}
3512 
3513 	if (ext4_should_journal_data(inode)) {
3514 		BUFFER_TRACE(bh, "get write access");
3515 		err = ext4_journal_get_write_access(handle, bh);
3516 		if (err)
3517 			goto unlock;
3518 	}
3519 
3520 	zero_user(page, offset, length);
3521 
3522 	BUFFER_TRACE(bh, "zeroed end of block");
3523 
3524 	err = 0;
3525 	if (ext4_should_journal_data(inode)) {
3526 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3527 	} else {
3528 		if (ext4_should_order_data(inode))
3529 			err = ext4_jbd2_file_inode(handle, inode);
3530 		mark_buffer_dirty(bh);
3531 	}
3532 
3533 unlock:
3534 	unlock_page(page);
3535 	page_cache_release(page);
3536 	return err;
3537 }
3538 
3539 /*
3540  * Probably it should be a library function... search for first non-zero word
3541  * or memcmp with zero_page, whatever is better for particular architecture.
3542  * Linus?
3543  */
3544 static inline int all_zeroes(__le32 *p, __le32 *q)
3545 {
3546 	while (p < q)
3547 		if (*p++)
3548 			return 0;
3549 	return 1;
3550 }
3551 
3552 /**
3553  *	ext4_find_shared - find the indirect blocks for partial truncation.
3554  *	@inode:	  inode in question
3555  *	@depth:	  depth of the affected branch
3556  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3557  *	@chain:	  place to store the pointers to partial indirect blocks
3558  *	@top:	  place to the (detached) top of branch
3559  *
3560  *	This is a helper function used by ext4_truncate().
3561  *
3562  *	When we do truncate() we may have to clean the ends of several
3563  *	indirect blocks but leave the blocks themselves alive. Block is
3564  *	partially truncated if some data below the new i_size is refered
3565  *	from it (and it is on the path to the first completely truncated
3566  *	data block, indeed).  We have to free the top of that path along
3567  *	with everything to the right of the path. Since no allocation
3568  *	past the truncation point is possible until ext4_truncate()
3569  *	finishes, we may safely do the latter, but top of branch may
3570  *	require special attention - pageout below the truncation point
3571  *	might try to populate it.
3572  *
3573  *	We atomically detach the top of branch from the tree, store the
3574  *	block number of its root in *@top, pointers to buffer_heads of
3575  *	partially truncated blocks - in @chain[].bh and pointers to
3576  *	their last elements that should not be removed - in
3577  *	@chain[].p. Return value is the pointer to last filled element
3578  *	of @chain.
3579  *
3580  *	The work left to caller to do the actual freeing of subtrees:
3581  *		a) free the subtree starting from *@top
3582  *		b) free the subtrees whose roots are stored in
3583  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3584  *		c) free the subtrees growing from the inode past the @chain[0].
3585  *			(no partially truncated stuff there).  */
3586 
3587 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3588 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3589 {
3590 	Indirect *partial, *p;
3591 	int k, err;
3592 
3593 	*top = 0;
3594 	/* Make k index the deepest non-null offest + 1 */
3595 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3596 		;
3597 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3598 	/* Writer: pointers */
3599 	if (!partial)
3600 		partial = chain + k-1;
3601 	/*
3602 	 * If the branch acquired continuation since we've looked at it -
3603 	 * fine, it should all survive and (new) top doesn't belong to us.
3604 	 */
3605 	if (!partial->key && *partial->p)
3606 		/* Writer: end */
3607 		goto no_top;
3608 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3609 		;
3610 	/*
3611 	 * OK, we've found the last block that must survive. The rest of our
3612 	 * branch should be detached before unlocking. However, if that rest
3613 	 * of branch is all ours and does not grow immediately from the inode
3614 	 * it's easier to cheat and just decrement partial->p.
3615 	 */
3616 	if (p == chain + k - 1 && p > chain) {
3617 		p->p--;
3618 	} else {
3619 		*top = *p->p;
3620 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3621 #if 0
3622 		*p->p = 0;
3623 #endif
3624 	}
3625 	/* Writer: end */
3626 
3627 	while (partial > p) {
3628 		brelse(partial->bh);
3629 		partial--;
3630 	}
3631 no_top:
3632 	return partial;
3633 }
3634 
3635 /*
3636  * Zero a number of block pointers in either an inode or an indirect block.
3637  * If we restart the transaction we must again get write access to the
3638  * indirect block for further modification.
3639  *
3640  * We release `count' blocks on disk, but (last - first) may be greater
3641  * than `count' because there can be holes in there.
3642  */
3643 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3644 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3645 		unsigned long count, __le32 *first, __le32 *last)
3646 {
3647 	__le32 *p;
3648 	if (try_to_extend_transaction(handle, inode)) {
3649 		if (bh) {
3650 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3651 			ext4_handle_dirty_metadata(handle, inode, bh);
3652 		}
3653 		ext4_mark_inode_dirty(handle, inode);
3654 		ext4_journal_test_restart(handle, inode);
3655 		if (bh) {
3656 			BUFFER_TRACE(bh, "retaking write access");
3657 			ext4_journal_get_write_access(handle, bh);
3658 		}
3659 	}
3660 
3661 	/*
3662 	 * Any buffers which are on the journal will be in memory. We find
3663 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3664 	 * on them.  We've already detached each block from the file, so
3665 	 * bforget() in jbd2_journal_forget() should be safe.
3666 	 *
3667 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3668 	 */
3669 	for (p = first; p < last; p++) {
3670 		u32 nr = le32_to_cpu(*p);
3671 		if (nr) {
3672 			struct buffer_head *tbh;
3673 
3674 			*p = 0;
3675 			tbh = sb_find_get_block(inode->i_sb, nr);
3676 			ext4_forget(handle, 0, inode, tbh, nr);
3677 		}
3678 	}
3679 
3680 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3681 }
3682 
3683 /**
3684  * ext4_free_data - free a list of data blocks
3685  * @handle:	handle for this transaction
3686  * @inode:	inode we are dealing with
3687  * @this_bh:	indirect buffer_head which contains *@first and *@last
3688  * @first:	array of block numbers
3689  * @last:	points immediately past the end of array
3690  *
3691  * We are freeing all blocks refered from that array (numbers are stored as
3692  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3693  *
3694  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3695  * blocks are contiguous then releasing them at one time will only affect one
3696  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3697  * actually use a lot of journal space.
3698  *
3699  * @this_bh will be %NULL if @first and @last point into the inode's direct
3700  * block pointers.
3701  */
3702 static void ext4_free_data(handle_t *handle, struct inode *inode,
3703 			   struct buffer_head *this_bh,
3704 			   __le32 *first, __le32 *last)
3705 {
3706 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3707 	unsigned long count = 0;	    /* Number of blocks in the run */
3708 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3709 					       corresponding to
3710 					       block_to_free */
3711 	ext4_fsblk_t nr;		    /* Current block # */
3712 	__le32 *p;			    /* Pointer into inode/ind
3713 					       for current block */
3714 	int err;
3715 
3716 	if (this_bh) {				/* For indirect block */
3717 		BUFFER_TRACE(this_bh, "get_write_access");
3718 		err = ext4_journal_get_write_access(handle, this_bh);
3719 		/* Important: if we can't update the indirect pointers
3720 		 * to the blocks, we can't free them. */
3721 		if (err)
3722 			return;
3723 	}
3724 
3725 	for (p = first; p < last; p++) {
3726 		nr = le32_to_cpu(*p);
3727 		if (nr) {
3728 			/* accumulate blocks to free if they're contiguous */
3729 			if (count == 0) {
3730 				block_to_free = nr;
3731 				block_to_free_p = p;
3732 				count = 1;
3733 			} else if (nr == block_to_free + count) {
3734 				count++;
3735 			} else {
3736 				ext4_clear_blocks(handle, inode, this_bh,
3737 						  block_to_free,
3738 						  count, block_to_free_p, p);
3739 				block_to_free = nr;
3740 				block_to_free_p = p;
3741 				count = 1;
3742 			}
3743 		}
3744 	}
3745 
3746 	if (count > 0)
3747 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3748 				  count, block_to_free_p, p);
3749 
3750 	if (this_bh) {
3751 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3752 
3753 		/*
3754 		 * The buffer head should have an attached journal head at this
3755 		 * point. However, if the data is corrupted and an indirect
3756 		 * block pointed to itself, it would have been detached when
3757 		 * the block was cleared. Check for this instead of OOPSing.
3758 		 */
3759 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3760 			ext4_handle_dirty_metadata(handle, inode, this_bh);
3761 		else
3762 			ext4_error(inode->i_sb, __func__,
3763 				   "circular indirect block detected, "
3764 				   "inode=%lu, block=%llu",
3765 				   inode->i_ino,
3766 				   (unsigned long long) this_bh->b_blocknr);
3767 	}
3768 }
3769 
3770 /**
3771  *	ext4_free_branches - free an array of branches
3772  *	@handle: JBD handle for this transaction
3773  *	@inode:	inode we are dealing with
3774  *	@parent_bh: the buffer_head which contains *@first and *@last
3775  *	@first:	array of block numbers
3776  *	@last:	pointer immediately past the end of array
3777  *	@depth:	depth of the branches to free
3778  *
3779  *	We are freeing all blocks refered from these branches (numbers are
3780  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3781  *	appropriately.
3782  */
3783 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3784 			       struct buffer_head *parent_bh,
3785 			       __le32 *first, __le32 *last, int depth)
3786 {
3787 	ext4_fsblk_t nr;
3788 	__le32 *p;
3789 
3790 	if (ext4_handle_is_aborted(handle))
3791 		return;
3792 
3793 	if (depth--) {
3794 		struct buffer_head *bh;
3795 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3796 		p = last;
3797 		while (--p >= first) {
3798 			nr = le32_to_cpu(*p);
3799 			if (!nr)
3800 				continue;		/* A hole */
3801 
3802 			/* Go read the buffer for the next level down */
3803 			bh = sb_bread(inode->i_sb, nr);
3804 
3805 			/*
3806 			 * A read failure? Report error and clear slot
3807 			 * (should be rare).
3808 			 */
3809 			if (!bh) {
3810 				ext4_error(inode->i_sb, "ext4_free_branches",
3811 					   "Read failure, inode=%lu, block=%llu",
3812 					   inode->i_ino, nr);
3813 				continue;
3814 			}
3815 
3816 			/* This zaps the entire block.  Bottom up. */
3817 			BUFFER_TRACE(bh, "free child branches");
3818 			ext4_free_branches(handle, inode, bh,
3819 					(__le32 *) bh->b_data,
3820 					(__le32 *) bh->b_data + addr_per_block,
3821 					depth);
3822 
3823 			/*
3824 			 * We've probably journalled the indirect block several
3825 			 * times during the truncate.  But it's no longer
3826 			 * needed and we now drop it from the transaction via
3827 			 * jbd2_journal_revoke().
3828 			 *
3829 			 * That's easy if it's exclusively part of this
3830 			 * transaction.  But if it's part of the committing
3831 			 * transaction then jbd2_journal_forget() will simply
3832 			 * brelse() it.  That means that if the underlying
3833 			 * block is reallocated in ext4_get_block(),
3834 			 * unmap_underlying_metadata() will find this block
3835 			 * and will try to get rid of it.  damn, damn.
3836 			 *
3837 			 * If this block has already been committed to the
3838 			 * journal, a revoke record will be written.  And
3839 			 * revoke records must be emitted *before* clearing
3840 			 * this block's bit in the bitmaps.
3841 			 */
3842 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3843 
3844 			/*
3845 			 * Everything below this this pointer has been
3846 			 * released.  Now let this top-of-subtree go.
3847 			 *
3848 			 * We want the freeing of this indirect block to be
3849 			 * atomic in the journal with the updating of the
3850 			 * bitmap block which owns it.  So make some room in
3851 			 * the journal.
3852 			 *
3853 			 * We zero the parent pointer *after* freeing its
3854 			 * pointee in the bitmaps, so if extend_transaction()
3855 			 * for some reason fails to put the bitmap changes and
3856 			 * the release into the same transaction, recovery
3857 			 * will merely complain about releasing a free block,
3858 			 * rather than leaking blocks.
3859 			 */
3860 			if (ext4_handle_is_aborted(handle))
3861 				return;
3862 			if (try_to_extend_transaction(handle, inode)) {
3863 				ext4_mark_inode_dirty(handle, inode);
3864 				ext4_journal_test_restart(handle, inode);
3865 			}
3866 
3867 			ext4_free_blocks(handle, inode, nr, 1, 1);
3868 
3869 			if (parent_bh) {
3870 				/*
3871 				 * The block which we have just freed is
3872 				 * pointed to by an indirect block: journal it
3873 				 */
3874 				BUFFER_TRACE(parent_bh, "get_write_access");
3875 				if (!ext4_journal_get_write_access(handle,
3876 								   parent_bh)){
3877 					*p = 0;
3878 					BUFFER_TRACE(parent_bh,
3879 					"call ext4_handle_dirty_metadata");
3880 					ext4_handle_dirty_metadata(handle,
3881 								   inode,
3882 								   parent_bh);
3883 				}
3884 			}
3885 		}
3886 	} else {
3887 		/* We have reached the bottom of the tree. */
3888 		BUFFER_TRACE(parent_bh, "free data blocks");
3889 		ext4_free_data(handle, inode, parent_bh, first, last);
3890 	}
3891 }
3892 
3893 int ext4_can_truncate(struct inode *inode)
3894 {
3895 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3896 		return 0;
3897 	if (S_ISREG(inode->i_mode))
3898 		return 1;
3899 	if (S_ISDIR(inode->i_mode))
3900 		return 1;
3901 	if (S_ISLNK(inode->i_mode))
3902 		return !ext4_inode_is_fast_symlink(inode);
3903 	return 0;
3904 }
3905 
3906 /*
3907  * ext4_truncate()
3908  *
3909  * We block out ext4_get_block() block instantiations across the entire
3910  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3911  * simultaneously on behalf of the same inode.
3912  *
3913  * As we work through the truncate and commmit bits of it to the journal there
3914  * is one core, guiding principle: the file's tree must always be consistent on
3915  * disk.  We must be able to restart the truncate after a crash.
3916  *
3917  * The file's tree may be transiently inconsistent in memory (although it
3918  * probably isn't), but whenever we close off and commit a journal transaction,
3919  * the contents of (the filesystem + the journal) must be consistent and
3920  * restartable.  It's pretty simple, really: bottom up, right to left (although
3921  * left-to-right works OK too).
3922  *
3923  * Note that at recovery time, journal replay occurs *before* the restart of
3924  * truncate against the orphan inode list.
3925  *
3926  * The committed inode has the new, desired i_size (which is the same as
3927  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3928  * that this inode's truncate did not complete and it will again call
3929  * ext4_truncate() to have another go.  So there will be instantiated blocks
3930  * to the right of the truncation point in a crashed ext4 filesystem.  But
3931  * that's fine - as long as they are linked from the inode, the post-crash
3932  * ext4_truncate() run will find them and release them.
3933  */
3934 void ext4_truncate(struct inode *inode)
3935 {
3936 	handle_t *handle;
3937 	struct ext4_inode_info *ei = EXT4_I(inode);
3938 	__le32 *i_data = ei->i_data;
3939 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3940 	struct address_space *mapping = inode->i_mapping;
3941 	ext4_lblk_t offsets[4];
3942 	Indirect chain[4];
3943 	Indirect *partial;
3944 	__le32 nr = 0;
3945 	int n;
3946 	ext4_lblk_t last_block;
3947 	unsigned blocksize = inode->i_sb->s_blocksize;
3948 
3949 	if (!ext4_can_truncate(inode))
3950 		return;
3951 
3952 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3953 		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3954 
3955 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3956 		ext4_ext_truncate(inode);
3957 		return;
3958 	}
3959 
3960 	handle = start_transaction(inode);
3961 	if (IS_ERR(handle))
3962 		return;		/* AKPM: return what? */
3963 
3964 	last_block = (inode->i_size + blocksize-1)
3965 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3966 
3967 	if (inode->i_size & (blocksize - 1))
3968 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3969 			goto out_stop;
3970 
3971 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3972 	if (n == 0)
3973 		goto out_stop;	/* error */
3974 
3975 	/*
3976 	 * OK.  This truncate is going to happen.  We add the inode to the
3977 	 * orphan list, so that if this truncate spans multiple transactions,
3978 	 * and we crash, we will resume the truncate when the filesystem
3979 	 * recovers.  It also marks the inode dirty, to catch the new size.
3980 	 *
3981 	 * Implication: the file must always be in a sane, consistent
3982 	 * truncatable state while each transaction commits.
3983 	 */
3984 	if (ext4_orphan_add(handle, inode))
3985 		goto out_stop;
3986 
3987 	/*
3988 	 * From here we block out all ext4_get_block() callers who want to
3989 	 * modify the block allocation tree.
3990 	 */
3991 	down_write(&ei->i_data_sem);
3992 
3993 	ext4_discard_preallocations(inode);
3994 
3995 	/*
3996 	 * The orphan list entry will now protect us from any crash which
3997 	 * occurs before the truncate completes, so it is now safe to propagate
3998 	 * the new, shorter inode size (held for now in i_size) into the
3999 	 * on-disk inode. We do this via i_disksize, which is the value which
4000 	 * ext4 *really* writes onto the disk inode.
4001 	 */
4002 	ei->i_disksize = inode->i_size;
4003 
4004 	if (n == 1) {		/* direct blocks */
4005 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4006 			       i_data + EXT4_NDIR_BLOCKS);
4007 		goto do_indirects;
4008 	}
4009 
4010 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4011 	/* Kill the top of shared branch (not detached) */
4012 	if (nr) {
4013 		if (partial == chain) {
4014 			/* Shared branch grows from the inode */
4015 			ext4_free_branches(handle, inode, NULL,
4016 					   &nr, &nr+1, (chain+n-1) - partial);
4017 			*partial->p = 0;
4018 			/*
4019 			 * We mark the inode dirty prior to restart,
4020 			 * and prior to stop.  No need for it here.
4021 			 */
4022 		} else {
4023 			/* Shared branch grows from an indirect block */
4024 			BUFFER_TRACE(partial->bh, "get_write_access");
4025 			ext4_free_branches(handle, inode, partial->bh,
4026 					partial->p,
4027 					partial->p+1, (chain+n-1) - partial);
4028 		}
4029 	}
4030 	/* Clear the ends of indirect blocks on the shared branch */
4031 	while (partial > chain) {
4032 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4033 				   (__le32*)partial->bh->b_data+addr_per_block,
4034 				   (chain+n-1) - partial);
4035 		BUFFER_TRACE(partial->bh, "call brelse");
4036 		brelse (partial->bh);
4037 		partial--;
4038 	}
4039 do_indirects:
4040 	/* Kill the remaining (whole) subtrees */
4041 	switch (offsets[0]) {
4042 	default:
4043 		nr = i_data[EXT4_IND_BLOCK];
4044 		if (nr) {
4045 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4046 			i_data[EXT4_IND_BLOCK] = 0;
4047 		}
4048 	case EXT4_IND_BLOCK:
4049 		nr = i_data[EXT4_DIND_BLOCK];
4050 		if (nr) {
4051 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4052 			i_data[EXT4_DIND_BLOCK] = 0;
4053 		}
4054 	case EXT4_DIND_BLOCK:
4055 		nr = i_data[EXT4_TIND_BLOCK];
4056 		if (nr) {
4057 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4058 			i_data[EXT4_TIND_BLOCK] = 0;
4059 		}
4060 	case EXT4_TIND_BLOCK:
4061 		;
4062 	}
4063 
4064 	up_write(&ei->i_data_sem);
4065 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4066 	ext4_mark_inode_dirty(handle, inode);
4067 
4068 	/*
4069 	 * In a multi-transaction truncate, we only make the final transaction
4070 	 * synchronous
4071 	 */
4072 	if (IS_SYNC(inode))
4073 		ext4_handle_sync(handle);
4074 out_stop:
4075 	/*
4076 	 * If this was a simple ftruncate(), and the file will remain alive
4077 	 * then we need to clear up the orphan record which we created above.
4078 	 * However, if this was a real unlink then we were called by
4079 	 * ext4_delete_inode(), and we allow that function to clean up the
4080 	 * orphan info for us.
4081 	 */
4082 	if (inode->i_nlink)
4083 		ext4_orphan_del(handle, inode);
4084 
4085 	ext4_journal_stop(handle);
4086 }
4087 
4088 /*
4089  * ext4_get_inode_loc returns with an extra refcount against the inode's
4090  * underlying buffer_head on success. If 'in_mem' is true, we have all
4091  * data in memory that is needed to recreate the on-disk version of this
4092  * inode.
4093  */
4094 static int __ext4_get_inode_loc(struct inode *inode,
4095 				struct ext4_iloc *iloc, int in_mem)
4096 {
4097 	struct ext4_group_desc	*gdp;
4098 	struct buffer_head	*bh;
4099 	struct super_block	*sb = inode->i_sb;
4100 	ext4_fsblk_t		block;
4101 	int			inodes_per_block, inode_offset;
4102 
4103 	iloc->bh = NULL;
4104 	if (!ext4_valid_inum(sb, inode->i_ino))
4105 		return -EIO;
4106 
4107 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4108 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4109 	if (!gdp)
4110 		return -EIO;
4111 
4112 	/*
4113 	 * Figure out the offset within the block group inode table
4114 	 */
4115 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4116 	inode_offset = ((inode->i_ino - 1) %
4117 			EXT4_INODES_PER_GROUP(sb));
4118 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4119 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4120 
4121 	bh = sb_getblk(sb, block);
4122 	if (!bh) {
4123 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4124 			   "inode block - inode=%lu, block=%llu",
4125 			   inode->i_ino, block);
4126 		return -EIO;
4127 	}
4128 	if (!buffer_uptodate(bh)) {
4129 		lock_buffer(bh);
4130 
4131 		/*
4132 		 * If the buffer has the write error flag, we have failed
4133 		 * to write out another inode in the same block.  In this
4134 		 * case, we don't have to read the block because we may
4135 		 * read the old inode data successfully.
4136 		 */
4137 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4138 			set_buffer_uptodate(bh);
4139 
4140 		if (buffer_uptodate(bh)) {
4141 			/* someone brought it uptodate while we waited */
4142 			unlock_buffer(bh);
4143 			goto has_buffer;
4144 		}
4145 
4146 		/*
4147 		 * If we have all information of the inode in memory and this
4148 		 * is the only valid inode in the block, we need not read the
4149 		 * block.
4150 		 */
4151 		if (in_mem) {
4152 			struct buffer_head *bitmap_bh;
4153 			int i, start;
4154 
4155 			start = inode_offset & ~(inodes_per_block - 1);
4156 
4157 			/* Is the inode bitmap in cache? */
4158 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4159 			if (!bitmap_bh)
4160 				goto make_io;
4161 
4162 			/*
4163 			 * If the inode bitmap isn't in cache then the
4164 			 * optimisation may end up performing two reads instead
4165 			 * of one, so skip it.
4166 			 */
4167 			if (!buffer_uptodate(bitmap_bh)) {
4168 				brelse(bitmap_bh);
4169 				goto make_io;
4170 			}
4171 			for (i = start; i < start + inodes_per_block; i++) {
4172 				if (i == inode_offset)
4173 					continue;
4174 				if (ext4_test_bit(i, bitmap_bh->b_data))
4175 					break;
4176 			}
4177 			brelse(bitmap_bh);
4178 			if (i == start + inodes_per_block) {
4179 				/* all other inodes are free, so skip I/O */
4180 				memset(bh->b_data, 0, bh->b_size);
4181 				set_buffer_uptodate(bh);
4182 				unlock_buffer(bh);
4183 				goto has_buffer;
4184 			}
4185 		}
4186 
4187 make_io:
4188 		/*
4189 		 * If we need to do any I/O, try to pre-readahead extra
4190 		 * blocks from the inode table.
4191 		 */
4192 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4193 			ext4_fsblk_t b, end, table;
4194 			unsigned num;
4195 
4196 			table = ext4_inode_table(sb, gdp);
4197 			/* s_inode_readahead_blks is always a power of 2 */
4198 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4199 			if (table > b)
4200 				b = table;
4201 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4202 			num = EXT4_INODES_PER_GROUP(sb);
4203 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4204 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4205 				num -= ext4_itable_unused_count(sb, gdp);
4206 			table += num / inodes_per_block;
4207 			if (end > table)
4208 				end = table;
4209 			while (b <= end)
4210 				sb_breadahead(sb, b++);
4211 		}
4212 
4213 		/*
4214 		 * There are other valid inodes in the buffer, this inode
4215 		 * has in-inode xattrs, or we don't have this inode in memory.
4216 		 * Read the block from disk.
4217 		 */
4218 		get_bh(bh);
4219 		bh->b_end_io = end_buffer_read_sync;
4220 		submit_bh(READ_META, bh);
4221 		wait_on_buffer(bh);
4222 		if (!buffer_uptodate(bh)) {
4223 			ext4_error(sb, __func__,
4224 				   "unable to read inode block - inode=%lu, "
4225 				   "block=%llu", inode->i_ino, block);
4226 			brelse(bh);
4227 			return -EIO;
4228 		}
4229 	}
4230 has_buffer:
4231 	iloc->bh = bh;
4232 	return 0;
4233 }
4234 
4235 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4236 {
4237 	/* We have all inode data except xattrs in memory here. */
4238 	return __ext4_get_inode_loc(inode, iloc,
4239 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4240 }
4241 
4242 void ext4_set_inode_flags(struct inode *inode)
4243 {
4244 	unsigned int flags = EXT4_I(inode)->i_flags;
4245 
4246 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4247 	if (flags & EXT4_SYNC_FL)
4248 		inode->i_flags |= S_SYNC;
4249 	if (flags & EXT4_APPEND_FL)
4250 		inode->i_flags |= S_APPEND;
4251 	if (flags & EXT4_IMMUTABLE_FL)
4252 		inode->i_flags |= S_IMMUTABLE;
4253 	if (flags & EXT4_NOATIME_FL)
4254 		inode->i_flags |= S_NOATIME;
4255 	if (flags & EXT4_DIRSYNC_FL)
4256 		inode->i_flags |= S_DIRSYNC;
4257 }
4258 
4259 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4260 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4261 {
4262 	unsigned int flags = ei->vfs_inode.i_flags;
4263 
4264 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4265 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4266 	if (flags & S_SYNC)
4267 		ei->i_flags |= EXT4_SYNC_FL;
4268 	if (flags & S_APPEND)
4269 		ei->i_flags |= EXT4_APPEND_FL;
4270 	if (flags & S_IMMUTABLE)
4271 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4272 	if (flags & S_NOATIME)
4273 		ei->i_flags |= EXT4_NOATIME_FL;
4274 	if (flags & S_DIRSYNC)
4275 		ei->i_flags |= EXT4_DIRSYNC_FL;
4276 }
4277 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4278 					struct ext4_inode_info *ei)
4279 {
4280 	blkcnt_t i_blocks ;
4281 	struct inode *inode = &(ei->vfs_inode);
4282 	struct super_block *sb = inode->i_sb;
4283 
4284 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4285 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4286 		/* we are using combined 48 bit field */
4287 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4288 					le32_to_cpu(raw_inode->i_blocks_lo);
4289 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4290 			/* i_blocks represent file system block size */
4291 			return i_blocks  << (inode->i_blkbits - 9);
4292 		} else {
4293 			return i_blocks;
4294 		}
4295 	} else {
4296 		return le32_to_cpu(raw_inode->i_blocks_lo);
4297 	}
4298 }
4299 
4300 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4301 {
4302 	struct ext4_iloc iloc;
4303 	struct ext4_inode *raw_inode;
4304 	struct ext4_inode_info *ei;
4305 	struct buffer_head *bh;
4306 	struct inode *inode;
4307 	long ret;
4308 	int block;
4309 
4310 	inode = iget_locked(sb, ino);
4311 	if (!inode)
4312 		return ERR_PTR(-ENOMEM);
4313 	if (!(inode->i_state & I_NEW))
4314 		return inode;
4315 
4316 	ei = EXT4_I(inode);
4317 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4318 	ei->i_acl = EXT4_ACL_NOT_CACHED;
4319 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4320 #endif
4321 
4322 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4323 	if (ret < 0)
4324 		goto bad_inode;
4325 	bh = iloc.bh;
4326 	raw_inode = ext4_raw_inode(&iloc);
4327 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4328 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4329 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4330 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4331 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4332 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4333 	}
4334 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4335 
4336 	ei->i_state = 0;
4337 	ei->i_dir_start_lookup = 0;
4338 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4339 	/* We now have enough fields to check if the inode was active or not.
4340 	 * This is needed because nfsd might try to access dead inodes
4341 	 * the test is that same one that e2fsck uses
4342 	 * NeilBrown 1999oct15
4343 	 */
4344 	if (inode->i_nlink == 0) {
4345 		if (inode->i_mode == 0 ||
4346 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4347 			/* this inode is deleted */
4348 			brelse(bh);
4349 			ret = -ESTALE;
4350 			goto bad_inode;
4351 		}
4352 		/* The only unlinked inodes we let through here have
4353 		 * valid i_mode and are being read by the orphan
4354 		 * recovery code: that's fine, we're about to complete
4355 		 * the process of deleting those. */
4356 	}
4357 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4358 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4359 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4360 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4361 		ei->i_file_acl |=
4362 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4363 	inode->i_size = ext4_isize(raw_inode);
4364 	ei->i_disksize = inode->i_size;
4365 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4366 	ei->i_block_group = iloc.block_group;
4367 	ei->i_last_alloc_group = ~0;
4368 	/*
4369 	 * NOTE! The in-memory inode i_data array is in little-endian order
4370 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4371 	 */
4372 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4373 		ei->i_data[block] = raw_inode->i_block[block];
4374 	INIT_LIST_HEAD(&ei->i_orphan);
4375 
4376 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4377 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4378 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4379 		    EXT4_INODE_SIZE(inode->i_sb)) {
4380 			brelse(bh);
4381 			ret = -EIO;
4382 			goto bad_inode;
4383 		}
4384 		if (ei->i_extra_isize == 0) {
4385 			/* The extra space is currently unused. Use it. */
4386 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4387 					    EXT4_GOOD_OLD_INODE_SIZE;
4388 		} else {
4389 			__le32 *magic = (void *)raw_inode +
4390 					EXT4_GOOD_OLD_INODE_SIZE +
4391 					ei->i_extra_isize;
4392 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4393 				 ei->i_state |= EXT4_STATE_XATTR;
4394 		}
4395 	} else
4396 		ei->i_extra_isize = 0;
4397 
4398 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4399 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4400 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4401 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4402 
4403 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4404 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4405 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4406 			inode->i_version |=
4407 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4408 	}
4409 
4410 	ret = 0;
4411 	if (ei->i_file_acl &&
4412 	    ((ei->i_file_acl <
4413 	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4414 	       EXT4_SB(sb)->s_gdb_count)) ||
4415 	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4416 		ext4_error(sb, __func__,
4417 			   "bad extended attribute block %llu in inode #%lu",
4418 			   ei->i_file_acl, inode->i_ino);
4419 		ret = -EIO;
4420 		goto bad_inode;
4421 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4422 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4423 		    (S_ISLNK(inode->i_mode) &&
4424 		     !ext4_inode_is_fast_symlink(inode)))
4425 			/* Validate extent which is part of inode */
4426 			ret = ext4_ext_check_inode(inode);
4427  	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4428 		   (S_ISLNK(inode->i_mode) &&
4429 		    !ext4_inode_is_fast_symlink(inode))) {
4430 	 	/* Validate block references which are part of inode */
4431 		ret = ext4_check_inode_blockref(inode);
4432 	}
4433 	if (ret) {
4434  		brelse(bh);
4435  		goto bad_inode;
4436 	}
4437 
4438 	if (S_ISREG(inode->i_mode)) {
4439 		inode->i_op = &ext4_file_inode_operations;
4440 		inode->i_fop = &ext4_file_operations;
4441 		ext4_set_aops(inode);
4442 	} else if (S_ISDIR(inode->i_mode)) {
4443 		inode->i_op = &ext4_dir_inode_operations;
4444 		inode->i_fop = &ext4_dir_operations;
4445 	} else if (S_ISLNK(inode->i_mode)) {
4446 		if (ext4_inode_is_fast_symlink(inode)) {
4447 			inode->i_op = &ext4_fast_symlink_inode_operations;
4448 			nd_terminate_link(ei->i_data, inode->i_size,
4449 				sizeof(ei->i_data) - 1);
4450 		} else {
4451 			inode->i_op = &ext4_symlink_inode_operations;
4452 			ext4_set_aops(inode);
4453 		}
4454 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4455 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4456 		inode->i_op = &ext4_special_inode_operations;
4457 		if (raw_inode->i_block[0])
4458 			init_special_inode(inode, inode->i_mode,
4459 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4460 		else
4461 			init_special_inode(inode, inode->i_mode,
4462 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4463 	} else {
4464 		brelse(bh);
4465 		ret = -EIO;
4466 		ext4_error(inode->i_sb, __func__,
4467 			   "bogus i_mode (%o) for inode=%lu",
4468 			   inode->i_mode, inode->i_ino);
4469 		goto bad_inode;
4470 	}
4471 	brelse(iloc.bh);
4472 	ext4_set_inode_flags(inode);
4473 	unlock_new_inode(inode);
4474 	return inode;
4475 
4476 bad_inode:
4477 	iget_failed(inode);
4478 	return ERR_PTR(ret);
4479 }
4480 
4481 static int ext4_inode_blocks_set(handle_t *handle,
4482 				struct ext4_inode *raw_inode,
4483 				struct ext4_inode_info *ei)
4484 {
4485 	struct inode *inode = &(ei->vfs_inode);
4486 	u64 i_blocks = inode->i_blocks;
4487 	struct super_block *sb = inode->i_sb;
4488 
4489 	if (i_blocks <= ~0U) {
4490 		/*
4491 		 * i_blocks can be represnted in a 32 bit variable
4492 		 * as multiple of 512 bytes
4493 		 */
4494 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4495 		raw_inode->i_blocks_high = 0;
4496 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4497 		return 0;
4498 	}
4499 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4500 		return -EFBIG;
4501 
4502 	if (i_blocks <= 0xffffffffffffULL) {
4503 		/*
4504 		 * i_blocks can be represented in a 48 bit variable
4505 		 * as multiple of 512 bytes
4506 		 */
4507 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4508 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4509 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4510 	} else {
4511 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4512 		/* i_block is stored in file system block size */
4513 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4514 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4515 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4516 	}
4517 	return 0;
4518 }
4519 
4520 /*
4521  * Post the struct inode info into an on-disk inode location in the
4522  * buffer-cache.  This gobbles the caller's reference to the
4523  * buffer_head in the inode location struct.
4524  *
4525  * The caller must have write access to iloc->bh.
4526  */
4527 static int ext4_do_update_inode(handle_t *handle,
4528 				struct inode *inode,
4529 				struct ext4_iloc *iloc)
4530 {
4531 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4532 	struct ext4_inode_info *ei = EXT4_I(inode);
4533 	struct buffer_head *bh = iloc->bh;
4534 	int err = 0, rc, block;
4535 
4536 	/* For fields not not tracking in the in-memory inode,
4537 	 * initialise them to zero for new inodes. */
4538 	if (ei->i_state & EXT4_STATE_NEW)
4539 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4540 
4541 	ext4_get_inode_flags(ei);
4542 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4543 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4544 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4545 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4546 /*
4547  * Fix up interoperability with old kernels. Otherwise, old inodes get
4548  * re-used with the upper 16 bits of the uid/gid intact
4549  */
4550 		if (!ei->i_dtime) {
4551 			raw_inode->i_uid_high =
4552 				cpu_to_le16(high_16_bits(inode->i_uid));
4553 			raw_inode->i_gid_high =
4554 				cpu_to_le16(high_16_bits(inode->i_gid));
4555 		} else {
4556 			raw_inode->i_uid_high = 0;
4557 			raw_inode->i_gid_high = 0;
4558 		}
4559 	} else {
4560 		raw_inode->i_uid_low =
4561 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4562 		raw_inode->i_gid_low =
4563 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4564 		raw_inode->i_uid_high = 0;
4565 		raw_inode->i_gid_high = 0;
4566 	}
4567 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4568 
4569 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4570 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4571 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4572 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4573 
4574 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4575 		goto out_brelse;
4576 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4577 	/* clear the migrate flag in the raw_inode */
4578 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4579 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4580 	    cpu_to_le32(EXT4_OS_HURD))
4581 		raw_inode->i_file_acl_high =
4582 			cpu_to_le16(ei->i_file_acl >> 32);
4583 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4584 	ext4_isize_set(raw_inode, ei->i_disksize);
4585 	if (ei->i_disksize > 0x7fffffffULL) {
4586 		struct super_block *sb = inode->i_sb;
4587 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4588 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4589 				EXT4_SB(sb)->s_es->s_rev_level ==
4590 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4591 			/* If this is the first large file
4592 			 * created, add a flag to the superblock.
4593 			 */
4594 			err = ext4_journal_get_write_access(handle,
4595 					EXT4_SB(sb)->s_sbh);
4596 			if (err)
4597 				goto out_brelse;
4598 			ext4_update_dynamic_rev(sb);
4599 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4600 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4601 			sb->s_dirt = 1;
4602 			ext4_handle_sync(handle);
4603 			err = ext4_handle_dirty_metadata(handle, inode,
4604 					EXT4_SB(sb)->s_sbh);
4605 		}
4606 	}
4607 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4608 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4609 		if (old_valid_dev(inode->i_rdev)) {
4610 			raw_inode->i_block[0] =
4611 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4612 			raw_inode->i_block[1] = 0;
4613 		} else {
4614 			raw_inode->i_block[0] = 0;
4615 			raw_inode->i_block[1] =
4616 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4617 			raw_inode->i_block[2] = 0;
4618 		}
4619 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4620 		raw_inode->i_block[block] = ei->i_data[block];
4621 
4622 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4623 	if (ei->i_extra_isize) {
4624 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4625 			raw_inode->i_version_hi =
4626 			cpu_to_le32(inode->i_version >> 32);
4627 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4628 	}
4629 
4630 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4631 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4632 	if (!err)
4633 		err = rc;
4634 	ei->i_state &= ~EXT4_STATE_NEW;
4635 
4636 out_brelse:
4637 	brelse(bh);
4638 	ext4_std_error(inode->i_sb, err);
4639 	return err;
4640 }
4641 
4642 /*
4643  * ext4_write_inode()
4644  *
4645  * We are called from a few places:
4646  *
4647  * - Within generic_file_write() for O_SYNC files.
4648  *   Here, there will be no transaction running. We wait for any running
4649  *   trasnaction to commit.
4650  *
4651  * - Within sys_sync(), kupdate and such.
4652  *   We wait on commit, if tol to.
4653  *
4654  * - Within prune_icache() (PF_MEMALLOC == true)
4655  *   Here we simply return.  We can't afford to block kswapd on the
4656  *   journal commit.
4657  *
4658  * In all cases it is actually safe for us to return without doing anything,
4659  * because the inode has been copied into a raw inode buffer in
4660  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4661  * knfsd.
4662  *
4663  * Note that we are absolutely dependent upon all inode dirtiers doing the
4664  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4665  * which we are interested.
4666  *
4667  * It would be a bug for them to not do this.  The code:
4668  *
4669  *	mark_inode_dirty(inode)
4670  *	stuff();
4671  *	inode->i_size = expr;
4672  *
4673  * is in error because a kswapd-driven write_inode() could occur while
4674  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4675  * will no longer be on the superblock's dirty inode list.
4676  */
4677 int ext4_write_inode(struct inode *inode, int wait)
4678 {
4679 	if (current->flags & PF_MEMALLOC)
4680 		return 0;
4681 
4682 	if (ext4_journal_current_handle()) {
4683 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4684 		dump_stack();
4685 		return -EIO;
4686 	}
4687 
4688 	if (!wait)
4689 		return 0;
4690 
4691 	return ext4_force_commit(inode->i_sb);
4692 }
4693 
4694 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4695 {
4696 	int err = 0;
4697 
4698 	mark_buffer_dirty(bh);
4699 	if (inode && inode_needs_sync(inode)) {
4700 		sync_dirty_buffer(bh);
4701 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
4702 			ext4_error(inode->i_sb, __func__,
4703 				   "IO error syncing inode, "
4704 				   "inode=%lu, block=%llu",
4705 				   inode->i_ino,
4706 				   (unsigned long long)bh->b_blocknr);
4707 			err = -EIO;
4708 		}
4709 	}
4710 	return err;
4711 }
4712 
4713 /*
4714  * ext4_setattr()
4715  *
4716  * Called from notify_change.
4717  *
4718  * We want to trap VFS attempts to truncate the file as soon as
4719  * possible.  In particular, we want to make sure that when the VFS
4720  * shrinks i_size, we put the inode on the orphan list and modify
4721  * i_disksize immediately, so that during the subsequent flushing of
4722  * dirty pages and freeing of disk blocks, we can guarantee that any
4723  * commit will leave the blocks being flushed in an unused state on
4724  * disk.  (On recovery, the inode will get truncated and the blocks will
4725  * be freed, so we have a strong guarantee that no future commit will
4726  * leave these blocks visible to the user.)
4727  *
4728  * Another thing we have to assure is that if we are in ordered mode
4729  * and inode is still attached to the committing transaction, we must
4730  * we start writeout of all the dirty pages which are being truncated.
4731  * This way we are sure that all the data written in the previous
4732  * transaction are already on disk (truncate waits for pages under
4733  * writeback).
4734  *
4735  * Called with inode->i_mutex down.
4736  */
4737 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4738 {
4739 	struct inode *inode = dentry->d_inode;
4740 	int error, rc = 0;
4741 	const unsigned int ia_valid = attr->ia_valid;
4742 
4743 	error = inode_change_ok(inode, attr);
4744 	if (error)
4745 		return error;
4746 
4747 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4748 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4749 		handle_t *handle;
4750 
4751 		/* (user+group)*(old+new) structure, inode write (sb,
4752 		 * inode block, ? - but truncate inode update has it) */
4753 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4754 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4755 		if (IS_ERR(handle)) {
4756 			error = PTR_ERR(handle);
4757 			goto err_out;
4758 		}
4759 		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4760 		if (error) {
4761 			ext4_journal_stop(handle);
4762 			return error;
4763 		}
4764 		/* Update corresponding info in inode so that everything is in
4765 		 * one transaction */
4766 		if (attr->ia_valid & ATTR_UID)
4767 			inode->i_uid = attr->ia_uid;
4768 		if (attr->ia_valid & ATTR_GID)
4769 			inode->i_gid = attr->ia_gid;
4770 		error = ext4_mark_inode_dirty(handle, inode);
4771 		ext4_journal_stop(handle);
4772 	}
4773 
4774 	if (attr->ia_valid & ATTR_SIZE) {
4775 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4776 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4777 
4778 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4779 				error = -EFBIG;
4780 				goto err_out;
4781 			}
4782 		}
4783 	}
4784 
4785 	if (S_ISREG(inode->i_mode) &&
4786 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4787 		handle_t *handle;
4788 
4789 		handle = ext4_journal_start(inode, 3);
4790 		if (IS_ERR(handle)) {
4791 			error = PTR_ERR(handle);
4792 			goto err_out;
4793 		}
4794 
4795 		error = ext4_orphan_add(handle, inode);
4796 		EXT4_I(inode)->i_disksize = attr->ia_size;
4797 		rc = ext4_mark_inode_dirty(handle, inode);
4798 		if (!error)
4799 			error = rc;
4800 		ext4_journal_stop(handle);
4801 
4802 		if (ext4_should_order_data(inode)) {
4803 			error = ext4_begin_ordered_truncate(inode,
4804 							    attr->ia_size);
4805 			if (error) {
4806 				/* Do as much error cleanup as possible */
4807 				handle = ext4_journal_start(inode, 3);
4808 				if (IS_ERR(handle)) {
4809 					ext4_orphan_del(NULL, inode);
4810 					goto err_out;
4811 				}
4812 				ext4_orphan_del(handle, inode);
4813 				ext4_journal_stop(handle);
4814 				goto err_out;
4815 			}
4816 		}
4817 	}
4818 
4819 	rc = inode_setattr(inode, attr);
4820 
4821 	/* If inode_setattr's call to ext4_truncate failed to get a
4822 	 * transaction handle at all, we need to clean up the in-core
4823 	 * orphan list manually. */
4824 	if (inode->i_nlink)
4825 		ext4_orphan_del(NULL, inode);
4826 
4827 	if (!rc && (ia_valid & ATTR_MODE))
4828 		rc = ext4_acl_chmod(inode);
4829 
4830 err_out:
4831 	ext4_std_error(inode->i_sb, error);
4832 	if (!error)
4833 		error = rc;
4834 	return error;
4835 }
4836 
4837 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4838 		 struct kstat *stat)
4839 {
4840 	struct inode *inode;
4841 	unsigned long delalloc_blocks;
4842 
4843 	inode = dentry->d_inode;
4844 	generic_fillattr(inode, stat);
4845 
4846 	/*
4847 	 * We can't update i_blocks if the block allocation is delayed
4848 	 * otherwise in the case of system crash before the real block
4849 	 * allocation is done, we will have i_blocks inconsistent with
4850 	 * on-disk file blocks.
4851 	 * We always keep i_blocks updated together with real
4852 	 * allocation. But to not confuse with user, stat
4853 	 * will return the blocks that include the delayed allocation
4854 	 * blocks for this file.
4855 	 */
4856 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4857 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4858 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4859 
4860 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4861 	return 0;
4862 }
4863 
4864 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4865 				      int chunk)
4866 {
4867 	int indirects;
4868 
4869 	/* if nrblocks are contiguous */
4870 	if (chunk) {
4871 		/*
4872 		 * With N contiguous data blocks, it need at most
4873 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4874 		 * 2 dindirect blocks
4875 		 * 1 tindirect block
4876 		 */
4877 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4878 		return indirects + 3;
4879 	}
4880 	/*
4881 	 * if nrblocks are not contiguous, worse case, each block touch
4882 	 * a indirect block, and each indirect block touch a double indirect
4883 	 * block, plus a triple indirect block
4884 	 */
4885 	indirects = nrblocks * 2 + 1;
4886 	return indirects;
4887 }
4888 
4889 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4890 {
4891 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4892 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4893 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4894 }
4895 
4896 /*
4897  * Account for index blocks, block groups bitmaps and block group
4898  * descriptor blocks if modify datablocks and index blocks
4899  * worse case, the indexs blocks spread over different block groups
4900  *
4901  * If datablocks are discontiguous, they are possible to spread over
4902  * different block groups too. If they are contiugous, with flexbg,
4903  * they could still across block group boundary.
4904  *
4905  * Also account for superblock, inode, quota and xattr blocks
4906  */
4907 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4908 {
4909 	int groups, gdpblocks;
4910 	int idxblocks;
4911 	int ret = 0;
4912 
4913 	/*
4914 	 * How many index blocks need to touch to modify nrblocks?
4915 	 * The "Chunk" flag indicating whether the nrblocks is
4916 	 * physically contiguous on disk
4917 	 *
4918 	 * For Direct IO and fallocate, they calls get_block to allocate
4919 	 * one single extent at a time, so they could set the "Chunk" flag
4920 	 */
4921 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4922 
4923 	ret = idxblocks;
4924 
4925 	/*
4926 	 * Now let's see how many group bitmaps and group descriptors need
4927 	 * to account
4928 	 */
4929 	groups = idxblocks;
4930 	if (chunk)
4931 		groups += 1;
4932 	else
4933 		groups += nrblocks;
4934 
4935 	gdpblocks = groups;
4936 	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4937 		groups = EXT4_SB(inode->i_sb)->s_groups_count;
4938 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4939 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4940 
4941 	/* bitmaps and block group descriptor blocks */
4942 	ret += groups + gdpblocks;
4943 
4944 	/* Blocks for super block, inode, quota and xattr blocks */
4945 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4946 
4947 	return ret;
4948 }
4949 
4950 /*
4951  * Calulate the total number of credits to reserve to fit
4952  * the modification of a single pages into a single transaction,
4953  * which may include multiple chunks of block allocations.
4954  *
4955  * This could be called via ext4_write_begin()
4956  *
4957  * We need to consider the worse case, when
4958  * one new block per extent.
4959  */
4960 int ext4_writepage_trans_blocks(struct inode *inode)
4961 {
4962 	int bpp = ext4_journal_blocks_per_page(inode);
4963 	int ret;
4964 
4965 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4966 
4967 	/* Account for data blocks for journalled mode */
4968 	if (ext4_should_journal_data(inode))
4969 		ret += bpp;
4970 	return ret;
4971 }
4972 
4973 /*
4974  * Calculate the journal credits for a chunk of data modification.
4975  *
4976  * This is called from DIO, fallocate or whoever calling
4977  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4978  *
4979  * journal buffers for data blocks are not included here, as DIO
4980  * and fallocate do no need to journal data buffers.
4981  */
4982 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4983 {
4984 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4985 }
4986 
4987 /*
4988  * The caller must have previously called ext4_reserve_inode_write().
4989  * Give this, we know that the caller already has write access to iloc->bh.
4990  */
4991 int ext4_mark_iloc_dirty(handle_t *handle,
4992 		struct inode *inode, struct ext4_iloc *iloc)
4993 {
4994 	int err = 0;
4995 
4996 	if (test_opt(inode->i_sb, I_VERSION))
4997 		inode_inc_iversion(inode);
4998 
4999 	/* the do_update_inode consumes one bh->b_count */
5000 	get_bh(iloc->bh);
5001 
5002 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5003 	err = ext4_do_update_inode(handle, inode, iloc);
5004 	put_bh(iloc->bh);
5005 	return err;
5006 }
5007 
5008 /*
5009  * On success, We end up with an outstanding reference count against
5010  * iloc->bh.  This _must_ be cleaned up later.
5011  */
5012 
5013 int
5014 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5015 			 struct ext4_iloc *iloc)
5016 {
5017 	int err;
5018 
5019 	err = ext4_get_inode_loc(inode, iloc);
5020 	if (!err) {
5021 		BUFFER_TRACE(iloc->bh, "get_write_access");
5022 		err = ext4_journal_get_write_access(handle, iloc->bh);
5023 		if (err) {
5024 			brelse(iloc->bh);
5025 			iloc->bh = NULL;
5026 		}
5027 	}
5028 	ext4_std_error(inode->i_sb, err);
5029 	return err;
5030 }
5031 
5032 /*
5033  * Expand an inode by new_extra_isize bytes.
5034  * Returns 0 on success or negative error number on failure.
5035  */
5036 static int ext4_expand_extra_isize(struct inode *inode,
5037 				   unsigned int new_extra_isize,
5038 				   struct ext4_iloc iloc,
5039 				   handle_t *handle)
5040 {
5041 	struct ext4_inode *raw_inode;
5042 	struct ext4_xattr_ibody_header *header;
5043 	struct ext4_xattr_entry *entry;
5044 
5045 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5046 		return 0;
5047 
5048 	raw_inode = ext4_raw_inode(&iloc);
5049 
5050 	header = IHDR(inode, raw_inode);
5051 	entry = IFIRST(header);
5052 
5053 	/* No extended attributes present */
5054 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5055 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5056 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5057 			new_extra_isize);
5058 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5059 		return 0;
5060 	}
5061 
5062 	/* try to expand with EAs present */
5063 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5064 					  raw_inode, handle);
5065 }
5066 
5067 /*
5068  * What we do here is to mark the in-core inode as clean with respect to inode
5069  * dirtiness (it may still be data-dirty).
5070  * This means that the in-core inode may be reaped by prune_icache
5071  * without having to perform any I/O.  This is a very good thing,
5072  * because *any* task may call prune_icache - even ones which
5073  * have a transaction open against a different journal.
5074  *
5075  * Is this cheating?  Not really.  Sure, we haven't written the
5076  * inode out, but prune_icache isn't a user-visible syncing function.
5077  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5078  * we start and wait on commits.
5079  *
5080  * Is this efficient/effective?  Well, we're being nice to the system
5081  * by cleaning up our inodes proactively so they can be reaped
5082  * without I/O.  But we are potentially leaving up to five seconds'
5083  * worth of inodes floating about which prune_icache wants us to
5084  * write out.  One way to fix that would be to get prune_icache()
5085  * to do a write_super() to free up some memory.  It has the desired
5086  * effect.
5087  */
5088 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5089 {
5090 	struct ext4_iloc iloc;
5091 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5092 	static unsigned int mnt_count;
5093 	int err, ret;
5094 
5095 	might_sleep();
5096 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5097 	if (ext4_handle_valid(handle) &&
5098 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5099 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5100 		/*
5101 		 * We need extra buffer credits since we may write into EA block
5102 		 * with this same handle. If journal_extend fails, then it will
5103 		 * only result in a minor loss of functionality for that inode.
5104 		 * If this is felt to be critical, then e2fsck should be run to
5105 		 * force a large enough s_min_extra_isize.
5106 		 */
5107 		if ((jbd2_journal_extend(handle,
5108 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5109 			ret = ext4_expand_extra_isize(inode,
5110 						      sbi->s_want_extra_isize,
5111 						      iloc, handle);
5112 			if (ret) {
5113 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5114 				if (mnt_count !=
5115 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5116 					ext4_warning(inode->i_sb, __func__,
5117 					"Unable to expand inode %lu. Delete"
5118 					" some EAs or run e2fsck.",
5119 					inode->i_ino);
5120 					mnt_count =
5121 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5122 				}
5123 			}
5124 		}
5125 	}
5126 	if (!err)
5127 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5128 	return err;
5129 }
5130 
5131 /*
5132  * ext4_dirty_inode() is called from __mark_inode_dirty()
5133  *
5134  * We're really interested in the case where a file is being extended.
5135  * i_size has been changed by generic_commit_write() and we thus need
5136  * to include the updated inode in the current transaction.
5137  *
5138  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5139  * are allocated to the file.
5140  *
5141  * If the inode is marked synchronous, we don't honour that here - doing
5142  * so would cause a commit on atime updates, which we don't bother doing.
5143  * We handle synchronous inodes at the highest possible level.
5144  */
5145 void ext4_dirty_inode(struct inode *inode)
5146 {
5147 	handle_t *current_handle = ext4_journal_current_handle();
5148 	handle_t *handle;
5149 
5150 	if (!ext4_handle_valid(current_handle)) {
5151 		ext4_mark_inode_dirty(current_handle, inode);
5152 		return;
5153 	}
5154 
5155 	handle = ext4_journal_start(inode, 2);
5156 	if (IS_ERR(handle))
5157 		goto out;
5158 	if (current_handle &&
5159 		current_handle->h_transaction != handle->h_transaction) {
5160 		/* This task has a transaction open against a different fs */
5161 		printk(KERN_EMERG "%s: transactions do not match!\n",
5162 		       __func__);
5163 	} else {
5164 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
5165 				current_handle);
5166 		ext4_mark_inode_dirty(handle, inode);
5167 	}
5168 	ext4_journal_stop(handle);
5169 out:
5170 	return;
5171 }
5172 
5173 #if 0
5174 /*
5175  * Bind an inode's backing buffer_head into this transaction, to prevent
5176  * it from being flushed to disk early.  Unlike
5177  * ext4_reserve_inode_write, this leaves behind no bh reference and
5178  * returns no iloc structure, so the caller needs to repeat the iloc
5179  * lookup to mark the inode dirty later.
5180  */
5181 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5182 {
5183 	struct ext4_iloc iloc;
5184 
5185 	int err = 0;
5186 	if (handle) {
5187 		err = ext4_get_inode_loc(inode, &iloc);
5188 		if (!err) {
5189 			BUFFER_TRACE(iloc.bh, "get_write_access");
5190 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5191 			if (!err)
5192 				err = ext4_handle_dirty_metadata(handle,
5193 								 inode,
5194 								 iloc.bh);
5195 			brelse(iloc.bh);
5196 		}
5197 	}
5198 	ext4_std_error(inode->i_sb, err);
5199 	return err;
5200 }
5201 #endif
5202 
5203 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5204 {
5205 	journal_t *journal;
5206 	handle_t *handle;
5207 	int err;
5208 
5209 	/*
5210 	 * We have to be very careful here: changing a data block's
5211 	 * journaling status dynamically is dangerous.  If we write a
5212 	 * data block to the journal, change the status and then delete
5213 	 * that block, we risk forgetting to revoke the old log record
5214 	 * from the journal and so a subsequent replay can corrupt data.
5215 	 * So, first we make sure that the journal is empty and that
5216 	 * nobody is changing anything.
5217 	 */
5218 
5219 	journal = EXT4_JOURNAL(inode);
5220 	if (!journal)
5221 		return 0;
5222 	if (is_journal_aborted(journal))
5223 		return -EROFS;
5224 
5225 	jbd2_journal_lock_updates(journal);
5226 	jbd2_journal_flush(journal);
5227 
5228 	/*
5229 	 * OK, there are no updates running now, and all cached data is
5230 	 * synced to disk.  We are now in a completely consistent state
5231 	 * which doesn't have anything in the journal, and we know that
5232 	 * no filesystem updates are running, so it is safe to modify
5233 	 * the inode's in-core data-journaling state flag now.
5234 	 */
5235 
5236 	if (val)
5237 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5238 	else
5239 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5240 	ext4_set_aops(inode);
5241 
5242 	jbd2_journal_unlock_updates(journal);
5243 
5244 	/* Finally we can mark the inode as dirty. */
5245 
5246 	handle = ext4_journal_start(inode, 1);
5247 	if (IS_ERR(handle))
5248 		return PTR_ERR(handle);
5249 
5250 	err = ext4_mark_inode_dirty(handle, inode);
5251 	ext4_handle_sync(handle);
5252 	ext4_journal_stop(handle);
5253 	ext4_std_error(inode->i_sb, err);
5254 
5255 	return err;
5256 }
5257 
5258 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5259 {
5260 	return !buffer_mapped(bh);
5261 }
5262 
5263 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5264 {
5265 	struct page *page = vmf->page;
5266 	loff_t size;
5267 	unsigned long len;
5268 	int ret = -EINVAL;
5269 	void *fsdata;
5270 	struct file *file = vma->vm_file;
5271 	struct inode *inode = file->f_path.dentry->d_inode;
5272 	struct address_space *mapping = inode->i_mapping;
5273 
5274 	/*
5275 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5276 	 * get i_mutex because we are already holding mmap_sem.
5277 	 */
5278 	down_read(&inode->i_alloc_sem);
5279 	size = i_size_read(inode);
5280 	if (page->mapping != mapping || size <= page_offset(page)
5281 	    || !PageUptodate(page)) {
5282 		/* page got truncated from under us? */
5283 		goto out_unlock;
5284 	}
5285 	ret = 0;
5286 	if (PageMappedToDisk(page))
5287 		goto out_unlock;
5288 
5289 	if (page->index == size >> PAGE_CACHE_SHIFT)
5290 		len = size & ~PAGE_CACHE_MASK;
5291 	else
5292 		len = PAGE_CACHE_SIZE;
5293 
5294 	if (page_has_buffers(page)) {
5295 		/* return if we have all the buffers mapped */
5296 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5297 				       ext4_bh_unmapped))
5298 			goto out_unlock;
5299 	}
5300 	/*
5301 	 * OK, we need to fill the hole... Do write_begin write_end
5302 	 * to do block allocation/reservation.We are not holding
5303 	 * inode.i__mutex here. That allow * parallel write_begin,
5304 	 * write_end call. lock_page prevent this from happening
5305 	 * on the same page though
5306 	 */
5307 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5308 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5309 	if (ret < 0)
5310 		goto out_unlock;
5311 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5312 			len, len, page, fsdata);
5313 	if (ret < 0)
5314 		goto out_unlock;
5315 	ret = 0;
5316 out_unlock:
5317 	if (ret)
5318 		ret = VM_FAULT_SIGBUS;
5319 	up_read(&inode->i_alloc_sem);
5320 	return ret;
5321 }
5322