xref: /openbmc/linux/fs/ext4/inode.c (revision af958a38)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42 
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u16 csum_lo;
57 	__u16 csum_hi = 0;
58 	__u32 csum;
59 
60 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 	raw->i_checksum_lo = 0;
62 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 		raw->i_checksum_hi = 0;
66 	}
67 
68 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 			   EXT4_INODE_SIZE(inode->i_sb));
70 
71 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
75 
76 	return csum;
77 }
78 
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 				  struct ext4_inode_info *ei)
81 {
82 	__u32 provided, calculated;
83 
84 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 	    cpu_to_le32(EXT4_OS_LINUX) ||
86 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 		return 1;
89 
90 	provided = le16_to_cpu(raw->i_checksum_lo);
91 	calculated = ext4_inode_csum(inode, raw, ei);
92 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 	else
96 		calculated &= 0xFFFF;
97 
98 	return provided == calculated;
99 }
100 
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 				struct ext4_inode_info *ei)
103 {
104 	__u32 csum;
105 
106 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 	    cpu_to_le32(EXT4_OS_LINUX) ||
108 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 		return;
111 
112 	csum = ext4_inode_csum(inode, raw, ei);
113 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118 
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 					      loff_t new_size)
121 {
122 	trace_ext4_begin_ordered_truncate(inode, new_size);
123 	/*
124 	 * If jinode is zero, then we never opened the file for
125 	 * writing, so there's no need to call
126 	 * jbd2_journal_begin_ordered_truncate() since there's no
127 	 * outstanding writes we need to flush.
128 	 */
129 	if (!EXT4_I(inode)->jinode)
130 		return 0;
131 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 						   EXT4_I(inode)->jinode,
133 						   new_size);
134 }
135 
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 				unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 				  int pextents);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150 
151 	if (ext4_has_inline_data(inode))
152 		return 0;
153 
154 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 }
156 
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 				 int nblocks)
164 {
165 	int ret;
166 
167 	/*
168 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 	 * moment, get_block can be called only for blocks inside i_size since
170 	 * page cache has been already dropped and writes are blocked by
171 	 * i_mutex. So we can safely drop the i_data_sem here.
172 	 */
173 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 	jbd_debug(2, "restarting handle %p\n", handle);
175 	up_write(&EXT4_I(inode)->i_data_sem);
176 	ret = ext4_journal_restart(handle, nblocks);
177 	down_write(&EXT4_I(inode)->i_data_sem);
178 	ext4_discard_preallocations(inode);
179 
180 	return ret;
181 }
182 
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188 	handle_t *handle;
189 	int err;
190 
191 	trace_ext4_evict_inode(inode);
192 
193 	if (inode->i_nlink) {
194 		/*
195 		 * When journalling data dirty buffers are tracked only in the
196 		 * journal. So although mm thinks everything is clean and
197 		 * ready for reaping the inode might still have some pages to
198 		 * write in the running transaction or waiting to be
199 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 		 * (via truncate_inode_pages()) to discard these buffers can
201 		 * cause data loss. Also even if we did not discard these
202 		 * buffers, we would have no way to find them after the inode
203 		 * is reaped and thus user could see stale data if he tries to
204 		 * read them before the transaction is checkpointed. So be
205 		 * careful and force everything to disk here... We use
206 		 * ei->i_datasync_tid to store the newest transaction
207 		 * containing inode's data.
208 		 *
209 		 * Note that directories do not have this problem because they
210 		 * don't use page cache.
211 		 */
212 		if (ext4_should_journal_data(inode) &&
213 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214 		    inode->i_ino != EXT4_JOURNAL_INO) {
215 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217 
218 			jbd2_complete_transaction(journal, commit_tid);
219 			filemap_write_and_wait(&inode->i_data);
220 		}
221 		truncate_inode_pages_final(&inode->i_data);
222 
223 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
224 		goto no_delete;
225 	}
226 
227 	if (!is_bad_inode(inode))
228 		dquot_initialize(inode);
229 
230 	if (ext4_should_order_data(inode))
231 		ext4_begin_ordered_truncate(inode, 0);
232 	truncate_inode_pages_final(&inode->i_data);
233 
234 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
235 	if (is_bad_inode(inode))
236 		goto no_delete;
237 
238 	/*
239 	 * Protect us against freezing - iput() caller didn't have to have any
240 	 * protection against it
241 	 */
242 	sb_start_intwrite(inode->i_sb);
243 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244 				    ext4_blocks_for_truncate(inode)+3);
245 	if (IS_ERR(handle)) {
246 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
247 		/*
248 		 * If we're going to skip the normal cleanup, we still need to
249 		 * make sure that the in-core orphan linked list is properly
250 		 * cleaned up.
251 		 */
252 		ext4_orphan_del(NULL, inode);
253 		sb_end_intwrite(inode->i_sb);
254 		goto no_delete;
255 	}
256 
257 	if (IS_SYNC(inode))
258 		ext4_handle_sync(handle);
259 	inode->i_size = 0;
260 	err = ext4_mark_inode_dirty(handle, inode);
261 	if (err) {
262 		ext4_warning(inode->i_sb,
263 			     "couldn't mark inode dirty (err %d)", err);
264 		goto stop_handle;
265 	}
266 	if (inode->i_blocks)
267 		ext4_truncate(inode);
268 
269 	/*
270 	 * ext4_ext_truncate() doesn't reserve any slop when it
271 	 * restarts journal transactions; therefore there may not be
272 	 * enough credits left in the handle to remove the inode from
273 	 * the orphan list and set the dtime field.
274 	 */
275 	if (!ext4_handle_has_enough_credits(handle, 3)) {
276 		err = ext4_journal_extend(handle, 3);
277 		if (err > 0)
278 			err = ext4_journal_restart(handle, 3);
279 		if (err != 0) {
280 			ext4_warning(inode->i_sb,
281 				     "couldn't extend journal (err %d)", err);
282 		stop_handle:
283 			ext4_journal_stop(handle);
284 			ext4_orphan_del(NULL, inode);
285 			sb_end_intwrite(inode->i_sb);
286 			goto no_delete;
287 		}
288 	}
289 
290 	/*
291 	 * Kill off the orphan record which ext4_truncate created.
292 	 * AKPM: I think this can be inside the above `if'.
293 	 * Note that ext4_orphan_del() has to be able to cope with the
294 	 * deletion of a non-existent orphan - this is because we don't
295 	 * know if ext4_truncate() actually created an orphan record.
296 	 * (Well, we could do this if we need to, but heck - it works)
297 	 */
298 	ext4_orphan_del(handle, inode);
299 	EXT4_I(inode)->i_dtime	= get_seconds();
300 
301 	/*
302 	 * One subtle ordering requirement: if anything has gone wrong
303 	 * (transaction abort, IO errors, whatever), then we can still
304 	 * do these next steps (the fs will already have been marked as
305 	 * having errors), but we can't free the inode if the mark_dirty
306 	 * fails.
307 	 */
308 	if (ext4_mark_inode_dirty(handle, inode))
309 		/* If that failed, just do the required in-core inode clear. */
310 		ext4_clear_inode(inode);
311 	else
312 		ext4_free_inode(handle, inode);
313 	ext4_journal_stop(handle);
314 	sb_end_intwrite(inode->i_sb);
315 	return;
316 no_delete:
317 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
318 }
319 
320 #ifdef CONFIG_QUOTA
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
322 {
323 	return &EXT4_I(inode)->i_reserved_quota;
324 }
325 #endif
326 
327 /*
328  * Called with i_data_sem down, which is important since we can call
329  * ext4_discard_preallocations() from here.
330  */
331 void ext4_da_update_reserve_space(struct inode *inode,
332 					int used, int quota_claim)
333 {
334 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
335 	struct ext4_inode_info *ei = EXT4_I(inode);
336 
337 	spin_lock(&ei->i_block_reservation_lock);
338 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
339 	if (unlikely(used > ei->i_reserved_data_blocks)) {
340 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
341 			 "with only %d reserved data blocks",
342 			 __func__, inode->i_ino, used,
343 			 ei->i_reserved_data_blocks);
344 		WARN_ON(1);
345 		used = ei->i_reserved_data_blocks;
346 	}
347 
348 	/* Update per-inode reservations */
349 	ei->i_reserved_data_blocks -= used;
350 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
351 
352 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
353 
354 	/* Update quota subsystem for data blocks */
355 	if (quota_claim)
356 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
357 	else {
358 		/*
359 		 * We did fallocate with an offset that is already delayed
360 		 * allocated. So on delayed allocated writeback we should
361 		 * not re-claim the quota for fallocated blocks.
362 		 */
363 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
364 	}
365 
366 	/*
367 	 * If we have done all the pending block allocations and if
368 	 * there aren't any writers on the inode, we can discard the
369 	 * inode's preallocations.
370 	 */
371 	if ((ei->i_reserved_data_blocks == 0) &&
372 	    (atomic_read(&inode->i_writecount) == 0))
373 		ext4_discard_preallocations(inode);
374 }
375 
376 static int __check_block_validity(struct inode *inode, const char *func,
377 				unsigned int line,
378 				struct ext4_map_blocks *map)
379 {
380 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381 				   map->m_len)) {
382 		ext4_error_inode(inode, func, line, map->m_pblk,
383 				 "lblock %lu mapped to illegal pblock "
384 				 "(length %d)", (unsigned long) map->m_lblk,
385 				 map->m_len);
386 		return -EIO;
387 	}
388 	return 0;
389 }
390 
391 #define check_block_validity(inode, map)	\
392 	__check_block_validity((inode), __func__, __LINE__, (map))
393 
394 #ifdef ES_AGGRESSIVE_TEST
395 static void ext4_map_blocks_es_recheck(handle_t *handle,
396 				       struct inode *inode,
397 				       struct ext4_map_blocks *es_map,
398 				       struct ext4_map_blocks *map,
399 				       int flags)
400 {
401 	int retval;
402 
403 	map->m_flags = 0;
404 	/*
405 	 * There is a race window that the result is not the same.
406 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
407 	 * is that we lookup a block mapping in extent status tree with
408 	 * out taking i_data_sem.  So at the time the unwritten extent
409 	 * could be converted.
410 	 */
411 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
412 		down_read(&EXT4_I(inode)->i_data_sem);
413 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
415 					     EXT4_GET_BLOCKS_KEEP_SIZE);
416 	} else {
417 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
418 					     EXT4_GET_BLOCKS_KEEP_SIZE);
419 	}
420 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421 		up_read((&EXT4_I(inode)->i_data_sem));
422 	/*
423 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
424 	 * because it shouldn't be marked in es_map->m_flags.
425 	 */
426 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
427 
428 	/*
429 	 * We don't check m_len because extent will be collpased in status
430 	 * tree.  So the m_len might not equal.
431 	 */
432 	if (es_map->m_lblk != map->m_lblk ||
433 	    es_map->m_flags != map->m_flags ||
434 	    es_map->m_pblk != map->m_pblk) {
435 		printk("ES cache assertion failed for inode: %lu "
436 		       "es_cached ex [%d/%d/%llu/%x] != "
437 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
439 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 		       map->m_len, map->m_pblk, map->m_flags,
441 		       retval, flags);
442 	}
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445 
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.
459  * if create==0 and the blocks are pre-allocated and unwritten block,
460  * the result buffer head is unmapped. If the create ==1, it will make sure
461  * the buffer head is mapped.
462  *
463  * It returns 0 if plain look up failed (blocks have not been allocated), in
464  * that case, buffer head is unmapped
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 		    struct ext4_map_blocks *map, int flags)
470 {
471 	struct extent_status es;
472 	int retval;
473 	int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475 	struct ext4_map_blocks orig_map;
476 
477 	memcpy(&orig_map, map, sizeof(*map));
478 #endif
479 
480 	map->m_flags = 0;
481 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 		  (unsigned long) map->m_lblk);
484 
485 	/*
486 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 	 */
488 	if (unlikely(map->m_len > INT_MAX))
489 		map->m_len = INT_MAX;
490 
491 	/* We can handle the block number less than EXT_MAX_BLOCKS */
492 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 		return -EIO;
494 
495 	/* Lookup extent status tree firstly */
496 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 		ext4_es_lru_add(inode);
498 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
499 			map->m_pblk = ext4_es_pblock(&es) +
500 					map->m_lblk - es.es_lblk;
501 			map->m_flags |= ext4_es_is_written(&es) ?
502 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
503 			retval = es.es_len - (map->m_lblk - es.es_lblk);
504 			if (retval > map->m_len)
505 				retval = map->m_len;
506 			map->m_len = retval;
507 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
508 			retval = 0;
509 		} else {
510 			BUG_ON(1);
511 		}
512 #ifdef ES_AGGRESSIVE_TEST
513 		ext4_map_blocks_es_recheck(handle, inode, map,
514 					   &orig_map, flags);
515 #endif
516 		goto found;
517 	}
518 
519 	/*
520 	 * Try to see if we can get the block without requesting a new
521 	 * file system block.
522 	 */
523 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
524 		down_read(&EXT4_I(inode)->i_data_sem);
525 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
526 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
527 					     EXT4_GET_BLOCKS_KEEP_SIZE);
528 	} else {
529 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
530 					     EXT4_GET_BLOCKS_KEEP_SIZE);
531 	}
532 	if (retval > 0) {
533 		unsigned int status;
534 
535 		if (unlikely(retval != map->m_len)) {
536 			ext4_warning(inode->i_sb,
537 				     "ES len assertion failed for inode "
538 				     "%lu: retval %d != map->m_len %d",
539 				     inode->i_ino, retval, map->m_len);
540 			WARN_ON(1);
541 		}
542 
543 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
544 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
545 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
546 		    ext4_find_delalloc_range(inode, map->m_lblk,
547 					     map->m_lblk + map->m_len - 1))
548 			status |= EXTENT_STATUS_DELAYED;
549 		ret = ext4_es_insert_extent(inode, map->m_lblk,
550 					    map->m_len, map->m_pblk, status);
551 		if (ret < 0)
552 			retval = ret;
553 	}
554 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
555 		up_read((&EXT4_I(inode)->i_data_sem));
556 
557 found:
558 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
559 		ret = check_block_validity(inode, map);
560 		if (ret != 0)
561 			return ret;
562 	}
563 
564 	/* If it is only a block(s) look up */
565 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
566 		return retval;
567 
568 	/*
569 	 * Returns if the blocks have already allocated
570 	 *
571 	 * Note that if blocks have been preallocated
572 	 * ext4_ext_get_block() returns the create = 0
573 	 * with buffer head unmapped.
574 	 */
575 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
576 		/*
577 		 * If we need to convert extent to unwritten
578 		 * we continue and do the actual work in
579 		 * ext4_ext_map_blocks()
580 		 */
581 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
582 			return retval;
583 
584 	/*
585 	 * Here we clear m_flags because after allocating an new extent,
586 	 * it will be set again.
587 	 */
588 	map->m_flags &= ~EXT4_MAP_FLAGS;
589 
590 	/*
591 	 * New blocks allocate and/or writing to unwritten extent
592 	 * will possibly result in updating i_data, so we take
593 	 * the write lock of i_data_sem, and call get_blocks()
594 	 * with create == 1 flag.
595 	 */
596 	down_write(&EXT4_I(inode)->i_data_sem);
597 
598 	/*
599 	 * if the caller is from delayed allocation writeout path
600 	 * we have already reserved fs blocks for allocation
601 	 * let the underlying get_block() function know to
602 	 * avoid double accounting
603 	 */
604 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
605 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
606 	/*
607 	 * We need to check for EXT4 here because migrate
608 	 * could have changed the inode type in between
609 	 */
610 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
611 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
612 	} else {
613 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
614 
615 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
616 			/*
617 			 * We allocated new blocks which will result in
618 			 * i_data's format changing.  Force the migrate
619 			 * to fail by clearing migrate flags
620 			 */
621 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
622 		}
623 
624 		/*
625 		 * Update reserved blocks/metadata blocks after successful
626 		 * block allocation which had been deferred till now. We don't
627 		 * support fallocate for non extent files. So we can update
628 		 * reserve space here.
629 		 */
630 		if ((retval > 0) &&
631 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
632 			ext4_da_update_reserve_space(inode, retval, 1);
633 	}
634 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
635 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
636 
637 	if (retval > 0) {
638 		unsigned int status;
639 
640 		if (unlikely(retval != map->m_len)) {
641 			ext4_warning(inode->i_sb,
642 				     "ES len assertion failed for inode "
643 				     "%lu: retval %d != map->m_len %d",
644 				     inode->i_ino, retval, map->m_len);
645 			WARN_ON(1);
646 		}
647 
648 		/*
649 		 * If the extent has been zeroed out, we don't need to update
650 		 * extent status tree.
651 		 */
652 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
653 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
654 			if (ext4_es_is_written(&es))
655 				goto has_zeroout;
656 		}
657 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
660 		    ext4_find_delalloc_range(inode, map->m_lblk,
661 					     map->m_lblk + map->m_len - 1))
662 			status |= EXTENT_STATUS_DELAYED;
663 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
664 					    map->m_pblk, status);
665 		if (ret < 0)
666 			retval = ret;
667 	}
668 
669 has_zeroout:
670 	up_write((&EXT4_I(inode)->i_data_sem));
671 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
672 		ret = check_block_validity(inode, map);
673 		if (ret != 0)
674 			return ret;
675 	}
676 	return retval;
677 }
678 
679 /* Maximum number of blocks we map for direct IO at once. */
680 #define DIO_MAX_BLOCKS 4096
681 
682 static int _ext4_get_block(struct inode *inode, sector_t iblock,
683 			   struct buffer_head *bh, int flags)
684 {
685 	handle_t *handle = ext4_journal_current_handle();
686 	struct ext4_map_blocks map;
687 	int ret = 0, started = 0;
688 	int dio_credits;
689 
690 	if (ext4_has_inline_data(inode))
691 		return -ERANGE;
692 
693 	map.m_lblk = iblock;
694 	map.m_len = bh->b_size >> inode->i_blkbits;
695 
696 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
697 		/* Direct IO write... */
698 		if (map.m_len > DIO_MAX_BLOCKS)
699 			map.m_len = DIO_MAX_BLOCKS;
700 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
701 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
702 					    dio_credits);
703 		if (IS_ERR(handle)) {
704 			ret = PTR_ERR(handle);
705 			return ret;
706 		}
707 		started = 1;
708 	}
709 
710 	ret = ext4_map_blocks(handle, inode, &map, flags);
711 	if (ret > 0) {
712 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
713 
714 		map_bh(bh, inode->i_sb, map.m_pblk);
715 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
716 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
717 			set_buffer_defer_completion(bh);
718 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
719 		ret = 0;
720 	}
721 	if (started)
722 		ext4_journal_stop(handle);
723 	return ret;
724 }
725 
726 int ext4_get_block(struct inode *inode, sector_t iblock,
727 		   struct buffer_head *bh, int create)
728 {
729 	return _ext4_get_block(inode, iblock, bh,
730 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
731 }
732 
733 /*
734  * `handle' can be NULL if create is zero
735  */
736 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
737 				ext4_lblk_t block, int create, int *errp)
738 {
739 	struct ext4_map_blocks map;
740 	struct buffer_head *bh;
741 	int fatal = 0, err;
742 
743 	J_ASSERT(handle != NULL || create == 0);
744 
745 	map.m_lblk = block;
746 	map.m_len = 1;
747 	err = ext4_map_blocks(handle, inode, &map,
748 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
749 
750 	/* ensure we send some value back into *errp */
751 	*errp = 0;
752 
753 	if (create && err == 0)
754 		err = -ENOSPC;	/* should never happen */
755 	if (err < 0)
756 		*errp = err;
757 	if (err <= 0)
758 		return NULL;
759 
760 	bh = sb_getblk(inode->i_sb, map.m_pblk);
761 	if (unlikely(!bh)) {
762 		*errp = -ENOMEM;
763 		return NULL;
764 	}
765 	if (map.m_flags & EXT4_MAP_NEW) {
766 		J_ASSERT(create != 0);
767 		J_ASSERT(handle != NULL);
768 
769 		/*
770 		 * Now that we do not always journal data, we should
771 		 * keep in mind whether this should always journal the
772 		 * new buffer as metadata.  For now, regular file
773 		 * writes use ext4_get_block instead, so it's not a
774 		 * problem.
775 		 */
776 		lock_buffer(bh);
777 		BUFFER_TRACE(bh, "call get_create_access");
778 		fatal = ext4_journal_get_create_access(handle, bh);
779 		if (!fatal && !buffer_uptodate(bh)) {
780 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
781 			set_buffer_uptodate(bh);
782 		}
783 		unlock_buffer(bh);
784 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
785 		err = ext4_handle_dirty_metadata(handle, inode, bh);
786 		if (!fatal)
787 			fatal = err;
788 	} else {
789 		BUFFER_TRACE(bh, "not a new buffer");
790 	}
791 	if (fatal) {
792 		*errp = fatal;
793 		brelse(bh);
794 		bh = NULL;
795 	}
796 	return bh;
797 }
798 
799 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
800 			       ext4_lblk_t block, int create, int *err)
801 {
802 	struct buffer_head *bh;
803 
804 	bh = ext4_getblk(handle, inode, block, create, err);
805 	if (!bh)
806 		return bh;
807 	if (buffer_uptodate(bh))
808 		return bh;
809 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
810 	wait_on_buffer(bh);
811 	if (buffer_uptodate(bh))
812 		return bh;
813 	put_bh(bh);
814 	*err = -EIO;
815 	return NULL;
816 }
817 
818 int ext4_walk_page_buffers(handle_t *handle,
819 			   struct buffer_head *head,
820 			   unsigned from,
821 			   unsigned to,
822 			   int *partial,
823 			   int (*fn)(handle_t *handle,
824 				     struct buffer_head *bh))
825 {
826 	struct buffer_head *bh;
827 	unsigned block_start, block_end;
828 	unsigned blocksize = head->b_size;
829 	int err, ret = 0;
830 	struct buffer_head *next;
831 
832 	for (bh = head, block_start = 0;
833 	     ret == 0 && (bh != head || !block_start);
834 	     block_start = block_end, bh = next) {
835 		next = bh->b_this_page;
836 		block_end = block_start + blocksize;
837 		if (block_end <= from || block_start >= to) {
838 			if (partial && !buffer_uptodate(bh))
839 				*partial = 1;
840 			continue;
841 		}
842 		err = (*fn)(handle, bh);
843 		if (!ret)
844 			ret = err;
845 	}
846 	return ret;
847 }
848 
849 /*
850  * To preserve ordering, it is essential that the hole instantiation and
851  * the data write be encapsulated in a single transaction.  We cannot
852  * close off a transaction and start a new one between the ext4_get_block()
853  * and the commit_write().  So doing the jbd2_journal_start at the start of
854  * prepare_write() is the right place.
855  *
856  * Also, this function can nest inside ext4_writepage().  In that case, we
857  * *know* that ext4_writepage() has generated enough buffer credits to do the
858  * whole page.  So we won't block on the journal in that case, which is good,
859  * because the caller may be PF_MEMALLOC.
860  *
861  * By accident, ext4 can be reentered when a transaction is open via
862  * quota file writes.  If we were to commit the transaction while thus
863  * reentered, there can be a deadlock - we would be holding a quota
864  * lock, and the commit would never complete if another thread had a
865  * transaction open and was blocking on the quota lock - a ranking
866  * violation.
867  *
868  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
869  * will _not_ run commit under these circumstances because handle->h_ref
870  * is elevated.  We'll still have enough credits for the tiny quotafile
871  * write.
872  */
873 int do_journal_get_write_access(handle_t *handle,
874 				struct buffer_head *bh)
875 {
876 	int dirty = buffer_dirty(bh);
877 	int ret;
878 
879 	if (!buffer_mapped(bh) || buffer_freed(bh))
880 		return 0;
881 	/*
882 	 * __block_write_begin() could have dirtied some buffers. Clean
883 	 * the dirty bit as jbd2_journal_get_write_access() could complain
884 	 * otherwise about fs integrity issues. Setting of the dirty bit
885 	 * by __block_write_begin() isn't a real problem here as we clear
886 	 * the bit before releasing a page lock and thus writeback cannot
887 	 * ever write the buffer.
888 	 */
889 	if (dirty)
890 		clear_buffer_dirty(bh);
891 	BUFFER_TRACE(bh, "get write access");
892 	ret = ext4_journal_get_write_access(handle, bh);
893 	if (!ret && dirty)
894 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
895 	return ret;
896 }
897 
898 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
899 		   struct buffer_head *bh_result, int create);
900 static int ext4_write_begin(struct file *file, struct address_space *mapping,
901 			    loff_t pos, unsigned len, unsigned flags,
902 			    struct page **pagep, void **fsdata)
903 {
904 	struct inode *inode = mapping->host;
905 	int ret, needed_blocks;
906 	handle_t *handle;
907 	int retries = 0;
908 	struct page *page;
909 	pgoff_t index;
910 	unsigned from, to;
911 
912 	trace_ext4_write_begin(inode, pos, len, flags);
913 	/*
914 	 * Reserve one block more for addition to orphan list in case
915 	 * we allocate blocks but write fails for some reason
916 	 */
917 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
918 	index = pos >> PAGE_CACHE_SHIFT;
919 	from = pos & (PAGE_CACHE_SIZE - 1);
920 	to = from + len;
921 
922 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
923 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
924 						    flags, pagep);
925 		if (ret < 0)
926 			return ret;
927 		if (ret == 1)
928 			return 0;
929 	}
930 
931 	/*
932 	 * grab_cache_page_write_begin() can take a long time if the
933 	 * system is thrashing due to memory pressure, or if the page
934 	 * is being written back.  So grab it first before we start
935 	 * the transaction handle.  This also allows us to allocate
936 	 * the page (if needed) without using GFP_NOFS.
937 	 */
938 retry_grab:
939 	page = grab_cache_page_write_begin(mapping, index, flags);
940 	if (!page)
941 		return -ENOMEM;
942 	unlock_page(page);
943 
944 retry_journal:
945 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
946 	if (IS_ERR(handle)) {
947 		page_cache_release(page);
948 		return PTR_ERR(handle);
949 	}
950 
951 	lock_page(page);
952 	if (page->mapping != mapping) {
953 		/* The page got truncated from under us */
954 		unlock_page(page);
955 		page_cache_release(page);
956 		ext4_journal_stop(handle);
957 		goto retry_grab;
958 	}
959 	/* In case writeback began while the page was unlocked */
960 	wait_for_stable_page(page);
961 
962 	if (ext4_should_dioread_nolock(inode))
963 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
964 	else
965 		ret = __block_write_begin(page, pos, len, ext4_get_block);
966 
967 	if (!ret && ext4_should_journal_data(inode)) {
968 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
969 					     from, to, NULL,
970 					     do_journal_get_write_access);
971 	}
972 
973 	if (ret) {
974 		unlock_page(page);
975 		/*
976 		 * __block_write_begin may have instantiated a few blocks
977 		 * outside i_size.  Trim these off again. Don't need
978 		 * i_size_read because we hold i_mutex.
979 		 *
980 		 * Add inode to orphan list in case we crash before
981 		 * truncate finishes
982 		 */
983 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
984 			ext4_orphan_add(handle, inode);
985 
986 		ext4_journal_stop(handle);
987 		if (pos + len > inode->i_size) {
988 			ext4_truncate_failed_write(inode);
989 			/*
990 			 * If truncate failed early the inode might
991 			 * still be on the orphan list; we need to
992 			 * make sure the inode is removed from the
993 			 * orphan list in that case.
994 			 */
995 			if (inode->i_nlink)
996 				ext4_orphan_del(NULL, inode);
997 		}
998 
999 		if (ret == -ENOSPC &&
1000 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1001 			goto retry_journal;
1002 		page_cache_release(page);
1003 		return ret;
1004 	}
1005 	*pagep = page;
1006 	return ret;
1007 }
1008 
1009 /* For write_end() in data=journal mode */
1010 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1011 {
1012 	int ret;
1013 	if (!buffer_mapped(bh) || buffer_freed(bh))
1014 		return 0;
1015 	set_buffer_uptodate(bh);
1016 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1017 	clear_buffer_meta(bh);
1018 	clear_buffer_prio(bh);
1019 	return ret;
1020 }
1021 
1022 /*
1023  * We need to pick up the new inode size which generic_commit_write gave us
1024  * `file' can be NULL - eg, when called from page_symlink().
1025  *
1026  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1027  * buffers are managed internally.
1028  */
1029 static int ext4_write_end(struct file *file,
1030 			  struct address_space *mapping,
1031 			  loff_t pos, unsigned len, unsigned copied,
1032 			  struct page *page, void *fsdata)
1033 {
1034 	handle_t *handle = ext4_journal_current_handle();
1035 	struct inode *inode = mapping->host;
1036 	int ret = 0, ret2;
1037 	int i_size_changed = 0;
1038 
1039 	trace_ext4_write_end(inode, pos, len, copied);
1040 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1041 		ret = ext4_jbd2_file_inode(handle, inode);
1042 		if (ret) {
1043 			unlock_page(page);
1044 			page_cache_release(page);
1045 			goto errout;
1046 		}
1047 	}
1048 
1049 	if (ext4_has_inline_data(inode)) {
1050 		ret = ext4_write_inline_data_end(inode, pos, len,
1051 						 copied, page);
1052 		if (ret < 0)
1053 			goto errout;
1054 		copied = ret;
1055 	} else
1056 		copied = block_write_end(file, mapping, pos,
1057 					 len, copied, page, fsdata);
1058 	/*
1059 	 * it's important to update i_size while still holding page lock:
1060 	 * page writeout could otherwise come in and zero beyond i_size.
1061 	 */
1062 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1063 	unlock_page(page);
1064 	page_cache_release(page);
1065 
1066 	/*
1067 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1068 	 * makes the holding time of page lock longer. Second, it forces lock
1069 	 * ordering of page lock and transaction start for journaling
1070 	 * filesystems.
1071 	 */
1072 	if (i_size_changed)
1073 		ext4_mark_inode_dirty(handle, inode);
1074 
1075 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1076 		/* if we have allocated more blocks and copied
1077 		 * less. We will have blocks allocated outside
1078 		 * inode->i_size. So truncate them
1079 		 */
1080 		ext4_orphan_add(handle, inode);
1081 errout:
1082 	ret2 = ext4_journal_stop(handle);
1083 	if (!ret)
1084 		ret = ret2;
1085 
1086 	if (pos + len > inode->i_size) {
1087 		ext4_truncate_failed_write(inode);
1088 		/*
1089 		 * If truncate failed early the inode might still be
1090 		 * on the orphan list; we need to make sure the inode
1091 		 * is removed from the orphan list in that case.
1092 		 */
1093 		if (inode->i_nlink)
1094 			ext4_orphan_del(NULL, inode);
1095 	}
1096 
1097 	return ret ? ret : copied;
1098 }
1099 
1100 static int ext4_journalled_write_end(struct file *file,
1101 				     struct address_space *mapping,
1102 				     loff_t pos, unsigned len, unsigned copied,
1103 				     struct page *page, void *fsdata)
1104 {
1105 	handle_t *handle = ext4_journal_current_handle();
1106 	struct inode *inode = mapping->host;
1107 	int ret = 0, ret2;
1108 	int partial = 0;
1109 	unsigned from, to;
1110 	int size_changed = 0;
1111 
1112 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1113 	from = pos & (PAGE_CACHE_SIZE - 1);
1114 	to = from + len;
1115 
1116 	BUG_ON(!ext4_handle_valid(handle));
1117 
1118 	if (ext4_has_inline_data(inode))
1119 		copied = ext4_write_inline_data_end(inode, pos, len,
1120 						    copied, page);
1121 	else {
1122 		if (copied < len) {
1123 			if (!PageUptodate(page))
1124 				copied = 0;
1125 			page_zero_new_buffers(page, from+copied, to);
1126 		}
1127 
1128 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1129 					     to, &partial, write_end_fn);
1130 		if (!partial)
1131 			SetPageUptodate(page);
1132 	}
1133 	size_changed = ext4_update_inode_size(inode, pos + copied);
1134 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1135 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1136 	unlock_page(page);
1137 	page_cache_release(page);
1138 
1139 	if (size_changed) {
1140 		ret2 = ext4_mark_inode_dirty(handle, inode);
1141 		if (!ret)
1142 			ret = ret2;
1143 	}
1144 
1145 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1146 		/* if we have allocated more blocks and copied
1147 		 * less. We will have blocks allocated outside
1148 		 * inode->i_size. So truncate them
1149 		 */
1150 		ext4_orphan_add(handle, inode);
1151 
1152 	ret2 = ext4_journal_stop(handle);
1153 	if (!ret)
1154 		ret = ret2;
1155 	if (pos + len > inode->i_size) {
1156 		ext4_truncate_failed_write(inode);
1157 		/*
1158 		 * If truncate failed early the inode might still be
1159 		 * on the orphan list; we need to make sure the inode
1160 		 * is removed from the orphan list in that case.
1161 		 */
1162 		if (inode->i_nlink)
1163 			ext4_orphan_del(NULL, inode);
1164 	}
1165 
1166 	return ret ? ret : copied;
1167 }
1168 
1169 /*
1170  * Reserve a single cluster located at lblock
1171  */
1172 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1173 {
1174 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1175 	struct ext4_inode_info *ei = EXT4_I(inode);
1176 	unsigned int md_needed;
1177 	int ret;
1178 
1179 	/*
1180 	 * We will charge metadata quota at writeout time; this saves
1181 	 * us from metadata over-estimation, though we may go over by
1182 	 * a small amount in the end.  Here we just reserve for data.
1183 	 */
1184 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1185 	if (ret)
1186 		return ret;
1187 
1188 	/*
1189 	 * recalculate the amount of metadata blocks to reserve
1190 	 * in order to allocate nrblocks
1191 	 * worse case is one extent per block
1192 	 */
1193 	spin_lock(&ei->i_block_reservation_lock);
1194 	/*
1195 	 * ext4_calc_metadata_amount() has side effects, which we have
1196 	 * to be prepared undo if we fail to claim space.
1197 	 */
1198 	md_needed = 0;
1199 	trace_ext4_da_reserve_space(inode, 0);
1200 
1201 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1202 		spin_unlock(&ei->i_block_reservation_lock);
1203 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1204 		return -ENOSPC;
1205 	}
1206 	ei->i_reserved_data_blocks++;
1207 	spin_unlock(&ei->i_block_reservation_lock);
1208 
1209 	return 0;       /* success */
1210 }
1211 
1212 static void ext4_da_release_space(struct inode *inode, int to_free)
1213 {
1214 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1215 	struct ext4_inode_info *ei = EXT4_I(inode);
1216 
1217 	if (!to_free)
1218 		return;		/* Nothing to release, exit */
1219 
1220 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1221 
1222 	trace_ext4_da_release_space(inode, to_free);
1223 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1224 		/*
1225 		 * if there aren't enough reserved blocks, then the
1226 		 * counter is messed up somewhere.  Since this
1227 		 * function is called from invalidate page, it's
1228 		 * harmless to return without any action.
1229 		 */
1230 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1231 			 "ino %lu, to_free %d with only %d reserved "
1232 			 "data blocks", inode->i_ino, to_free,
1233 			 ei->i_reserved_data_blocks);
1234 		WARN_ON(1);
1235 		to_free = ei->i_reserved_data_blocks;
1236 	}
1237 	ei->i_reserved_data_blocks -= to_free;
1238 
1239 	/* update fs dirty data blocks counter */
1240 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1241 
1242 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1243 
1244 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1245 }
1246 
1247 static void ext4_da_page_release_reservation(struct page *page,
1248 					     unsigned int offset,
1249 					     unsigned int length)
1250 {
1251 	int to_release = 0;
1252 	struct buffer_head *head, *bh;
1253 	unsigned int curr_off = 0;
1254 	struct inode *inode = page->mapping->host;
1255 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1256 	unsigned int stop = offset + length;
1257 	int num_clusters;
1258 	ext4_fsblk_t lblk;
1259 
1260 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1261 
1262 	head = page_buffers(page);
1263 	bh = head;
1264 	do {
1265 		unsigned int next_off = curr_off + bh->b_size;
1266 
1267 		if (next_off > stop)
1268 			break;
1269 
1270 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1271 			to_release++;
1272 			clear_buffer_delay(bh);
1273 		}
1274 		curr_off = next_off;
1275 	} while ((bh = bh->b_this_page) != head);
1276 
1277 	if (to_release) {
1278 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1279 		ext4_es_remove_extent(inode, lblk, to_release);
1280 	}
1281 
1282 	/* If we have released all the blocks belonging to a cluster, then we
1283 	 * need to release the reserved space for that cluster. */
1284 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1285 	while (num_clusters > 0) {
1286 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1287 			((num_clusters - 1) << sbi->s_cluster_bits);
1288 		if (sbi->s_cluster_ratio == 1 ||
1289 		    !ext4_find_delalloc_cluster(inode, lblk))
1290 			ext4_da_release_space(inode, 1);
1291 
1292 		num_clusters--;
1293 	}
1294 }
1295 
1296 /*
1297  * Delayed allocation stuff
1298  */
1299 
1300 struct mpage_da_data {
1301 	struct inode *inode;
1302 	struct writeback_control *wbc;
1303 
1304 	pgoff_t first_page;	/* The first page to write */
1305 	pgoff_t next_page;	/* Current page to examine */
1306 	pgoff_t last_page;	/* Last page to examine */
1307 	/*
1308 	 * Extent to map - this can be after first_page because that can be
1309 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1310 	 * is delalloc or unwritten.
1311 	 */
1312 	struct ext4_map_blocks map;
1313 	struct ext4_io_submit io_submit;	/* IO submission data */
1314 };
1315 
1316 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1317 				       bool invalidate)
1318 {
1319 	int nr_pages, i;
1320 	pgoff_t index, end;
1321 	struct pagevec pvec;
1322 	struct inode *inode = mpd->inode;
1323 	struct address_space *mapping = inode->i_mapping;
1324 
1325 	/* This is necessary when next_page == 0. */
1326 	if (mpd->first_page >= mpd->next_page)
1327 		return;
1328 
1329 	index = mpd->first_page;
1330 	end   = mpd->next_page - 1;
1331 	if (invalidate) {
1332 		ext4_lblk_t start, last;
1333 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1334 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1335 		ext4_es_remove_extent(inode, start, last - start + 1);
1336 	}
1337 
1338 	pagevec_init(&pvec, 0);
1339 	while (index <= end) {
1340 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1341 		if (nr_pages == 0)
1342 			break;
1343 		for (i = 0; i < nr_pages; i++) {
1344 			struct page *page = pvec.pages[i];
1345 			if (page->index > end)
1346 				break;
1347 			BUG_ON(!PageLocked(page));
1348 			BUG_ON(PageWriteback(page));
1349 			if (invalidate) {
1350 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1351 				ClearPageUptodate(page);
1352 			}
1353 			unlock_page(page);
1354 		}
1355 		index = pvec.pages[nr_pages - 1]->index + 1;
1356 		pagevec_release(&pvec);
1357 	}
1358 }
1359 
1360 static void ext4_print_free_blocks(struct inode *inode)
1361 {
1362 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1363 	struct super_block *sb = inode->i_sb;
1364 	struct ext4_inode_info *ei = EXT4_I(inode);
1365 
1366 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1367 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1368 			ext4_count_free_clusters(sb)));
1369 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1370 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1371 	       (long long) EXT4_C2B(EXT4_SB(sb),
1372 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1373 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1374 	       (long long) EXT4_C2B(EXT4_SB(sb),
1375 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1376 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1377 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1378 		 ei->i_reserved_data_blocks);
1379 	return;
1380 }
1381 
1382 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1383 {
1384 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1385 }
1386 
1387 /*
1388  * This function is grabs code from the very beginning of
1389  * ext4_map_blocks, but assumes that the caller is from delayed write
1390  * time. This function looks up the requested blocks and sets the
1391  * buffer delay bit under the protection of i_data_sem.
1392  */
1393 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1394 			      struct ext4_map_blocks *map,
1395 			      struct buffer_head *bh)
1396 {
1397 	struct extent_status es;
1398 	int retval;
1399 	sector_t invalid_block = ~((sector_t) 0xffff);
1400 #ifdef ES_AGGRESSIVE_TEST
1401 	struct ext4_map_blocks orig_map;
1402 
1403 	memcpy(&orig_map, map, sizeof(*map));
1404 #endif
1405 
1406 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1407 		invalid_block = ~0;
1408 
1409 	map->m_flags = 0;
1410 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1411 		  "logical block %lu\n", inode->i_ino, map->m_len,
1412 		  (unsigned long) map->m_lblk);
1413 
1414 	/* Lookup extent status tree firstly */
1415 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1416 		ext4_es_lru_add(inode);
1417 		if (ext4_es_is_hole(&es)) {
1418 			retval = 0;
1419 			down_read(&EXT4_I(inode)->i_data_sem);
1420 			goto add_delayed;
1421 		}
1422 
1423 		/*
1424 		 * Delayed extent could be allocated by fallocate.
1425 		 * So we need to check it.
1426 		 */
1427 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1428 			map_bh(bh, inode->i_sb, invalid_block);
1429 			set_buffer_new(bh);
1430 			set_buffer_delay(bh);
1431 			return 0;
1432 		}
1433 
1434 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1435 		retval = es.es_len - (iblock - es.es_lblk);
1436 		if (retval > map->m_len)
1437 			retval = map->m_len;
1438 		map->m_len = retval;
1439 		if (ext4_es_is_written(&es))
1440 			map->m_flags |= EXT4_MAP_MAPPED;
1441 		else if (ext4_es_is_unwritten(&es))
1442 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1443 		else
1444 			BUG_ON(1);
1445 
1446 #ifdef ES_AGGRESSIVE_TEST
1447 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1448 #endif
1449 		return retval;
1450 	}
1451 
1452 	/*
1453 	 * Try to see if we can get the block without requesting a new
1454 	 * file system block.
1455 	 */
1456 	down_read(&EXT4_I(inode)->i_data_sem);
1457 	if (ext4_has_inline_data(inode)) {
1458 		/*
1459 		 * We will soon create blocks for this page, and let
1460 		 * us pretend as if the blocks aren't allocated yet.
1461 		 * In case of clusters, we have to handle the work
1462 		 * of mapping from cluster so that the reserved space
1463 		 * is calculated properly.
1464 		 */
1465 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1466 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1467 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1468 		retval = 0;
1469 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1470 		retval = ext4_ext_map_blocks(NULL, inode, map,
1471 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1472 	else
1473 		retval = ext4_ind_map_blocks(NULL, inode, map,
1474 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1475 
1476 add_delayed:
1477 	if (retval == 0) {
1478 		int ret;
1479 		/*
1480 		 * XXX: __block_prepare_write() unmaps passed block,
1481 		 * is it OK?
1482 		 */
1483 		/*
1484 		 * If the block was allocated from previously allocated cluster,
1485 		 * then we don't need to reserve it again. However we still need
1486 		 * to reserve metadata for every block we're going to write.
1487 		 */
1488 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1489 			ret = ext4_da_reserve_space(inode, iblock);
1490 			if (ret) {
1491 				/* not enough space to reserve */
1492 				retval = ret;
1493 				goto out_unlock;
1494 			}
1495 		}
1496 
1497 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1498 					    ~0, EXTENT_STATUS_DELAYED);
1499 		if (ret) {
1500 			retval = ret;
1501 			goto out_unlock;
1502 		}
1503 
1504 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1505 		 * and it should not appear on the bh->b_state.
1506 		 */
1507 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1508 
1509 		map_bh(bh, inode->i_sb, invalid_block);
1510 		set_buffer_new(bh);
1511 		set_buffer_delay(bh);
1512 	} else if (retval > 0) {
1513 		int ret;
1514 		unsigned int status;
1515 
1516 		if (unlikely(retval != map->m_len)) {
1517 			ext4_warning(inode->i_sb,
1518 				     "ES len assertion failed for inode "
1519 				     "%lu: retval %d != map->m_len %d",
1520 				     inode->i_ino, retval, map->m_len);
1521 			WARN_ON(1);
1522 		}
1523 
1524 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1525 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1526 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1527 					    map->m_pblk, status);
1528 		if (ret != 0)
1529 			retval = ret;
1530 	}
1531 
1532 out_unlock:
1533 	up_read((&EXT4_I(inode)->i_data_sem));
1534 
1535 	return retval;
1536 }
1537 
1538 /*
1539  * This is a special get_blocks_t callback which is used by
1540  * ext4_da_write_begin().  It will either return mapped block or
1541  * reserve space for a single block.
1542  *
1543  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1544  * We also have b_blocknr = -1 and b_bdev initialized properly
1545  *
1546  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1547  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1548  * initialized properly.
1549  */
1550 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1551 			   struct buffer_head *bh, int create)
1552 {
1553 	struct ext4_map_blocks map;
1554 	int ret = 0;
1555 
1556 	BUG_ON(create == 0);
1557 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1558 
1559 	map.m_lblk = iblock;
1560 	map.m_len = 1;
1561 
1562 	/*
1563 	 * first, we need to know whether the block is allocated already
1564 	 * preallocated blocks are unmapped but should treated
1565 	 * the same as allocated blocks.
1566 	 */
1567 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1568 	if (ret <= 0)
1569 		return ret;
1570 
1571 	map_bh(bh, inode->i_sb, map.m_pblk);
1572 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1573 
1574 	if (buffer_unwritten(bh)) {
1575 		/* A delayed write to unwritten bh should be marked
1576 		 * new and mapped.  Mapped ensures that we don't do
1577 		 * get_block multiple times when we write to the same
1578 		 * offset and new ensures that we do proper zero out
1579 		 * for partial write.
1580 		 */
1581 		set_buffer_new(bh);
1582 		set_buffer_mapped(bh);
1583 	}
1584 	return 0;
1585 }
1586 
1587 static int bget_one(handle_t *handle, struct buffer_head *bh)
1588 {
1589 	get_bh(bh);
1590 	return 0;
1591 }
1592 
1593 static int bput_one(handle_t *handle, struct buffer_head *bh)
1594 {
1595 	put_bh(bh);
1596 	return 0;
1597 }
1598 
1599 static int __ext4_journalled_writepage(struct page *page,
1600 				       unsigned int len)
1601 {
1602 	struct address_space *mapping = page->mapping;
1603 	struct inode *inode = mapping->host;
1604 	struct buffer_head *page_bufs = NULL;
1605 	handle_t *handle = NULL;
1606 	int ret = 0, err = 0;
1607 	int inline_data = ext4_has_inline_data(inode);
1608 	struct buffer_head *inode_bh = NULL;
1609 
1610 	ClearPageChecked(page);
1611 
1612 	if (inline_data) {
1613 		BUG_ON(page->index != 0);
1614 		BUG_ON(len > ext4_get_max_inline_size(inode));
1615 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1616 		if (inode_bh == NULL)
1617 			goto out;
1618 	} else {
1619 		page_bufs = page_buffers(page);
1620 		if (!page_bufs) {
1621 			BUG();
1622 			goto out;
1623 		}
1624 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1625 				       NULL, bget_one);
1626 	}
1627 	/* As soon as we unlock the page, it can go away, but we have
1628 	 * references to buffers so we are safe */
1629 	unlock_page(page);
1630 
1631 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1632 				    ext4_writepage_trans_blocks(inode));
1633 	if (IS_ERR(handle)) {
1634 		ret = PTR_ERR(handle);
1635 		goto out;
1636 	}
1637 
1638 	BUG_ON(!ext4_handle_valid(handle));
1639 
1640 	if (inline_data) {
1641 		BUFFER_TRACE(inode_bh, "get write access");
1642 		ret = ext4_journal_get_write_access(handle, inode_bh);
1643 
1644 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1645 
1646 	} else {
1647 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1648 					     do_journal_get_write_access);
1649 
1650 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1651 					     write_end_fn);
1652 	}
1653 	if (ret == 0)
1654 		ret = err;
1655 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1656 	err = ext4_journal_stop(handle);
1657 	if (!ret)
1658 		ret = err;
1659 
1660 	if (!ext4_has_inline_data(inode))
1661 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1662 				       NULL, bput_one);
1663 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1664 out:
1665 	brelse(inode_bh);
1666 	return ret;
1667 }
1668 
1669 /*
1670  * Note that we don't need to start a transaction unless we're journaling data
1671  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1672  * need to file the inode to the transaction's list in ordered mode because if
1673  * we are writing back data added by write(), the inode is already there and if
1674  * we are writing back data modified via mmap(), no one guarantees in which
1675  * transaction the data will hit the disk. In case we are journaling data, we
1676  * cannot start transaction directly because transaction start ranks above page
1677  * lock so we have to do some magic.
1678  *
1679  * This function can get called via...
1680  *   - ext4_writepages after taking page lock (have journal handle)
1681  *   - journal_submit_inode_data_buffers (no journal handle)
1682  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1683  *   - grab_page_cache when doing write_begin (have journal handle)
1684  *
1685  * We don't do any block allocation in this function. If we have page with
1686  * multiple blocks we need to write those buffer_heads that are mapped. This
1687  * is important for mmaped based write. So if we do with blocksize 1K
1688  * truncate(f, 1024);
1689  * a = mmap(f, 0, 4096);
1690  * a[0] = 'a';
1691  * truncate(f, 4096);
1692  * we have in the page first buffer_head mapped via page_mkwrite call back
1693  * but other buffer_heads would be unmapped but dirty (dirty done via the
1694  * do_wp_page). So writepage should write the first block. If we modify
1695  * the mmap area beyond 1024 we will again get a page_fault and the
1696  * page_mkwrite callback will do the block allocation and mark the
1697  * buffer_heads mapped.
1698  *
1699  * We redirty the page if we have any buffer_heads that is either delay or
1700  * unwritten in the page.
1701  *
1702  * We can get recursively called as show below.
1703  *
1704  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1705  *		ext4_writepage()
1706  *
1707  * But since we don't do any block allocation we should not deadlock.
1708  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1709  */
1710 static int ext4_writepage(struct page *page,
1711 			  struct writeback_control *wbc)
1712 {
1713 	int ret = 0;
1714 	loff_t size;
1715 	unsigned int len;
1716 	struct buffer_head *page_bufs = NULL;
1717 	struct inode *inode = page->mapping->host;
1718 	struct ext4_io_submit io_submit;
1719 	bool keep_towrite = false;
1720 
1721 	trace_ext4_writepage(page);
1722 	size = i_size_read(inode);
1723 	if (page->index == size >> PAGE_CACHE_SHIFT)
1724 		len = size & ~PAGE_CACHE_MASK;
1725 	else
1726 		len = PAGE_CACHE_SIZE;
1727 
1728 	page_bufs = page_buffers(page);
1729 	/*
1730 	 * We cannot do block allocation or other extent handling in this
1731 	 * function. If there are buffers needing that, we have to redirty
1732 	 * the page. But we may reach here when we do a journal commit via
1733 	 * journal_submit_inode_data_buffers() and in that case we must write
1734 	 * allocated buffers to achieve data=ordered mode guarantees.
1735 	 */
1736 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1737 				   ext4_bh_delay_or_unwritten)) {
1738 		redirty_page_for_writepage(wbc, page);
1739 		if (current->flags & PF_MEMALLOC) {
1740 			/*
1741 			 * For memory cleaning there's no point in writing only
1742 			 * some buffers. So just bail out. Warn if we came here
1743 			 * from direct reclaim.
1744 			 */
1745 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1746 							== PF_MEMALLOC);
1747 			unlock_page(page);
1748 			return 0;
1749 		}
1750 		keep_towrite = true;
1751 	}
1752 
1753 	if (PageChecked(page) && ext4_should_journal_data(inode))
1754 		/*
1755 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1756 		 * doesn't seem much point in redirtying the page here.
1757 		 */
1758 		return __ext4_journalled_writepage(page, len);
1759 
1760 	ext4_io_submit_init(&io_submit, wbc);
1761 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1762 	if (!io_submit.io_end) {
1763 		redirty_page_for_writepage(wbc, page);
1764 		unlock_page(page);
1765 		return -ENOMEM;
1766 	}
1767 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1768 	ext4_io_submit(&io_submit);
1769 	/* Drop io_end reference we got from init */
1770 	ext4_put_io_end_defer(io_submit.io_end);
1771 	return ret;
1772 }
1773 
1774 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1775 {
1776 	int len;
1777 	loff_t size = i_size_read(mpd->inode);
1778 	int err;
1779 
1780 	BUG_ON(page->index != mpd->first_page);
1781 	if (page->index == size >> PAGE_CACHE_SHIFT)
1782 		len = size & ~PAGE_CACHE_MASK;
1783 	else
1784 		len = PAGE_CACHE_SIZE;
1785 	clear_page_dirty_for_io(page);
1786 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1787 	if (!err)
1788 		mpd->wbc->nr_to_write--;
1789 	mpd->first_page++;
1790 
1791 	return err;
1792 }
1793 
1794 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1795 
1796 /*
1797  * mballoc gives us at most this number of blocks...
1798  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1799  * The rest of mballoc seems to handle chunks up to full group size.
1800  */
1801 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1802 
1803 /*
1804  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1805  *
1806  * @mpd - extent of blocks
1807  * @lblk - logical number of the block in the file
1808  * @bh - buffer head we want to add to the extent
1809  *
1810  * The function is used to collect contig. blocks in the same state. If the
1811  * buffer doesn't require mapping for writeback and we haven't started the
1812  * extent of buffers to map yet, the function returns 'true' immediately - the
1813  * caller can write the buffer right away. Otherwise the function returns true
1814  * if the block has been added to the extent, false if the block couldn't be
1815  * added.
1816  */
1817 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1818 				   struct buffer_head *bh)
1819 {
1820 	struct ext4_map_blocks *map = &mpd->map;
1821 
1822 	/* Buffer that doesn't need mapping for writeback? */
1823 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1824 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1825 		/* So far no extent to map => we write the buffer right away */
1826 		if (map->m_len == 0)
1827 			return true;
1828 		return false;
1829 	}
1830 
1831 	/* First block in the extent? */
1832 	if (map->m_len == 0) {
1833 		map->m_lblk = lblk;
1834 		map->m_len = 1;
1835 		map->m_flags = bh->b_state & BH_FLAGS;
1836 		return true;
1837 	}
1838 
1839 	/* Don't go larger than mballoc is willing to allocate */
1840 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1841 		return false;
1842 
1843 	/* Can we merge the block to our big extent? */
1844 	if (lblk == map->m_lblk + map->m_len &&
1845 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1846 		map->m_len++;
1847 		return true;
1848 	}
1849 	return false;
1850 }
1851 
1852 /*
1853  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1854  *
1855  * @mpd - extent of blocks for mapping
1856  * @head - the first buffer in the page
1857  * @bh - buffer we should start processing from
1858  * @lblk - logical number of the block in the file corresponding to @bh
1859  *
1860  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1861  * the page for IO if all buffers in this page were mapped and there's no
1862  * accumulated extent of buffers to map or add buffers in the page to the
1863  * extent of buffers to map. The function returns 1 if the caller can continue
1864  * by processing the next page, 0 if it should stop adding buffers to the
1865  * extent to map because we cannot extend it anymore. It can also return value
1866  * < 0 in case of error during IO submission.
1867  */
1868 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1869 				   struct buffer_head *head,
1870 				   struct buffer_head *bh,
1871 				   ext4_lblk_t lblk)
1872 {
1873 	struct inode *inode = mpd->inode;
1874 	int err;
1875 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1876 							>> inode->i_blkbits;
1877 
1878 	do {
1879 		BUG_ON(buffer_locked(bh));
1880 
1881 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1882 			/* Found extent to map? */
1883 			if (mpd->map.m_len)
1884 				return 0;
1885 			/* Everything mapped so far and we hit EOF */
1886 			break;
1887 		}
1888 	} while (lblk++, (bh = bh->b_this_page) != head);
1889 	/* So far everything mapped? Submit the page for IO. */
1890 	if (mpd->map.m_len == 0) {
1891 		err = mpage_submit_page(mpd, head->b_page);
1892 		if (err < 0)
1893 			return err;
1894 	}
1895 	return lblk < blocks;
1896 }
1897 
1898 /*
1899  * mpage_map_buffers - update buffers corresponding to changed extent and
1900  *		       submit fully mapped pages for IO
1901  *
1902  * @mpd - description of extent to map, on return next extent to map
1903  *
1904  * Scan buffers corresponding to changed extent (we expect corresponding pages
1905  * to be already locked) and update buffer state according to new extent state.
1906  * We map delalloc buffers to their physical location, clear unwritten bits,
1907  * and mark buffers as uninit when we perform writes to unwritten extents
1908  * and do extent conversion after IO is finished. If the last page is not fully
1909  * mapped, we update @map to the next extent in the last page that needs
1910  * mapping. Otherwise we submit the page for IO.
1911  */
1912 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1913 {
1914 	struct pagevec pvec;
1915 	int nr_pages, i;
1916 	struct inode *inode = mpd->inode;
1917 	struct buffer_head *head, *bh;
1918 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1919 	pgoff_t start, end;
1920 	ext4_lblk_t lblk;
1921 	sector_t pblock;
1922 	int err;
1923 
1924 	start = mpd->map.m_lblk >> bpp_bits;
1925 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1926 	lblk = start << bpp_bits;
1927 	pblock = mpd->map.m_pblk;
1928 
1929 	pagevec_init(&pvec, 0);
1930 	while (start <= end) {
1931 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1932 					  PAGEVEC_SIZE);
1933 		if (nr_pages == 0)
1934 			break;
1935 		for (i = 0; i < nr_pages; i++) {
1936 			struct page *page = pvec.pages[i];
1937 
1938 			if (page->index > end)
1939 				break;
1940 			/* Up to 'end' pages must be contiguous */
1941 			BUG_ON(page->index != start);
1942 			bh = head = page_buffers(page);
1943 			do {
1944 				if (lblk < mpd->map.m_lblk)
1945 					continue;
1946 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1947 					/*
1948 					 * Buffer after end of mapped extent.
1949 					 * Find next buffer in the page to map.
1950 					 */
1951 					mpd->map.m_len = 0;
1952 					mpd->map.m_flags = 0;
1953 					/*
1954 					 * FIXME: If dioread_nolock supports
1955 					 * blocksize < pagesize, we need to make
1956 					 * sure we add size mapped so far to
1957 					 * io_end->size as the following call
1958 					 * can submit the page for IO.
1959 					 */
1960 					err = mpage_process_page_bufs(mpd, head,
1961 								      bh, lblk);
1962 					pagevec_release(&pvec);
1963 					if (err > 0)
1964 						err = 0;
1965 					return err;
1966 				}
1967 				if (buffer_delay(bh)) {
1968 					clear_buffer_delay(bh);
1969 					bh->b_blocknr = pblock++;
1970 				}
1971 				clear_buffer_unwritten(bh);
1972 			} while (lblk++, (bh = bh->b_this_page) != head);
1973 
1974 			/*
1975 			 * FIXME: This is going to break if dioread_nolock
1976 			 * supports blocksize < pagesize as we will try to
1977 			 * convert potentially unmapped parts of inode.
1978 			 */
1979 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1980 			/* Page fully mapped - let IO run! */
1981 			err = mpage_submit_page(mpd, page);
1982 			if (err < 0) {
1983 				pagevec_release(&pvec);
1984 				return err;
1985 			}
1986 			start++;
1987 		}
1988 		pagevec_release(&pvec);
1989 	}
1990 	/* Extent fully mapped and matches with page boundary. We are done. */
1991 	mpd->map.m_len = 0;
1992 	mpd->map.m_flags = 0;
1993 	return 0;
1994 }
1995 
1996 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1997 {
1998 	struct inode *inode = mpd->inode;
1999 	struct ext4_map_blocks *map = &mpd->map;
2000 	int get_blocks_flags;
2001 	int err, dioread_nolock;
2002 
2003 	trace_ext4_da_write_pages_extent(inode, map);
2004 	/*
2005 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2006 	 * to convert an unwritten extent to be initialized (in the case
2007 	 * where we have written into one or more preallocated blocks).  It is
2008 	 * possible that we're going to need more metadata blocks than
2009 	 * previously reserved. However we must not fail because we're in
2010 	 * writeback and there is nothing we can do about it so it might result
2011 	 * in data loss.  So use reserved blocks to allocate metadata if
2012 	 * possible.
2013 	 *
2014 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2015 	 * in question are delalloc blocks.  This affects functions in many
2016 	 * different parts of the allocation call path.  This flag exists
2017 	 * primarily because we don't want to change *many* call functions, so
2018 	 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2019 	 * once the inode's allocation semaphore is taken.
2020 	 */
2021 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2022 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2023 	dioread_nolock = ext4_should_dioread_nolock(inode);
2024 	if (dioread_nolock)
2025 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2026 	if (map->m_flags & (1 << BH_Delay))
2027 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2028 
2029 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2030 	if (err < 0)
2031 		return err;
2032 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2033 		if (!mpd->io_submit.io_end->handle &&
2034 		    ext4_handle_valid(handle)) {
2035 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2036 			handle->h_rsv_handle = NULL;
2037 		}
2038 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2039 	}
2040 
2041 	BUG_ON(map->m_len == 0);
2042 	if (map->m_flags & EXT4_MAP_NEW) {
2043 		struct block_device *bdev = inode->i_sb->s_bdev;
2044 		int i;
2045 
2046 		for (i = 0; i < map->m_len; i++)
2047 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2048 	}
2049 	return 0;
2050 }
2051 
2052 /*
2053  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2054  *				 mpd->len and submit pages underlying it for IO
2055  *
2056  * @handle - handle for journal operations
2057  * @mpd - extent to map
2058  * @give_up_on_write - we set this to true iff there is a fatal error and there
2059  *                     is no hope of writing the data. The caller should discard
2060  *                     dirty pages to avoid infinite loops.
2061  *
2062  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2063  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2064  * them to initialized or split the described range from larger unwritten
2065  * extent. Note that we need not map all the described range since allocation
2066  * can return less blocks or the range is covered by more unwritten extents. We
2067  * cannot map more because we are limited by reserved transaction credits. On
2068  * the other hand we always make sure that the last touched page is fully
2069  * mapped so that it can be written out (and thus forward progress is
2070  * guaranteed). After mapping we submit all mapped pages for IO.
2071  */
2072 static int mpage_map_and_submit_extent(handle_t *handle,
2073 				       struct mpage_da_data *mpd,
2074 				       bool *give_up_on_write)
2075 {
2076 	struct inode *inode = mpd->inode;
2077 	struct ext4_map_blocks *map = &mpd->map;
2078 	int err;
2079 	loff_t disksize;
2080 	int progress = 0;
2081 
2082 	mpd->io_submit.io_end->offset =
2083 				((loff_t)map->m_lblk) << inode->i_blkbits;
2084 	do {
2085 		err = mpage_map_one_extent(handle, mpd);
2086 		if (err < 0) {
2087 			struct super_block *sb = inode->i_sb;
2088 
2089 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2090 				goto invalidate_dirty_pages;
2091 			/*
2092 			 * Let the uper layers retry transient errors.
2093 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2094 			 * is non-zero, a commit should free up blocks.
2095 			 */
2096 			if ((err == -ENOMEM) ||
2097 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2098 				if (progress)
2099 					goto update_disksize;
2100 				return err;
2101 			}
2102 			ext4_msg(sb, KERN_CRIT,
2103 				 "Delayed block allocation failed for "
2104 				 "inode %lu at logical offset %llu with"
2105 				 " max blocks %u with error %d",
2106 				 inode->i_ino,
2107 				 (unsigned long long)map->m_lblk,
2108 				 (unsigned)map->m_len, -err);
2109 			ext4_msg(sb, KERN_CRIT,
2110 				 "This should not happen!! Data will "
2111 				 "be lost\n");
2112 			if (err == -ENOSPC)
2113 				ext4_print_free_blocks(inode);
2114 		invalidate_dirty_pages:
2115 			*give_up_on_write = true;
2116 			return err;
2117 		}
2118 		progress = 1;
2119 		/*
2120 		 * Update buffer state, submit mapped pages, and get us new
2121 		 * extent to map
2122 		 */
2123 		err = mpage_map_and_submit_buffers(mpd);
2124 		if (err < 0)
2125 			goto update_disksize;
2126 	} while (map->m_len);
2127 
2128 update_disksize:
2129 	/*
2130 	 * Update on-disk size after IO is submitted.  Races with
2131 	 * truncate are avoided by checking i_size under i_data_sem.
2132 	 */
2133 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2134 	if (disksize > EXT4_I(inode)->i_disksize) {
2135 		int err2;
2136 		loff_t i_size;
2137 
2138 		down_write(&EXT4_I(inode)->i_data_sem);
2139 		i_size = i_size_read(inode);
2140 		if (disksize > i_size)
2141 			disksize = i_size;
2142 		if (disksize > EXT4_I(inode)->i_disksize)
2143 			EXT4_I(inode)->i_disksize = disksize;
2144 		err2 = ext4_mark_inode_dirty(handle, inode);
2145 		up_write(&EXT4_I(inode)->i_data_sem);
2146 		if (err2)
2147 			ext4_error(inode->i_sb,
2148 				   "Failed to mark inode %lu dirty",
2149 				   inode->i_ino);
2150 		if (!err)
2151 			err = err2;
2152 	}
2153 	return err;
2154 }
2155 
2156 /*
2157  * Calculate the total number of credits to reserve for one writepages
2158  * iteration. This is called from ext4_writepages(). We map an extent of
2159  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2160  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2161  * bpp - 1 blocks in bpp different extents.
2162  */
2163 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2164 {
2165 	int bpp = ext4_journal_blocks_per_page(inode);
2166 
2167 	return ext4_meta_trans_blocks(inode,
2168 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2169 }
2170 
2171 /*
2172  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2173  * 				 and underlying extent to map
2174  *
2175  * @mpd - where to look for pages
2176  *
2177  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2178  * IO immediately. When we find a page which isn't mapped we start accumulating
2179  * extent of buffers underlying these pages that needs mapping (formed by
2180  * either delayed or unwritten buffers). We also lock the pages containing
2181  * these buffers. The extent found is returned in @mpd structure (starting at
2182  * mpd->lblk with length mpd->len blocks).
2183  *
2184  * Note that this function can attach bios to one io_end structure which are
2185  * neither logically nor physically contiguous. Although it may seem as an
2186  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2187  * case as we need to track IO to all buffers underlying a page in one io_end.
2188  */
2189 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2190 {
2191 	struct address_space *mapping = mpd->inode->i_mapping;
2192 	struct pagevec pvec;
2193 	unsigned int nr_pages;
2194 	long left = mpd->wbc->nr_to_write;
2195 	pgoff_t index = mpd->first_page;
2196 	pgoff_t end = mpd->last_page;
2197 	int tag;
2198 	int i, err = 0;
2199 	int blkbits = mpd->inode->i_blkbits;
2200 	ext4_lblk_t lblk;
2201 	struct buffer_head *head;
2202 
2203 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2204 		tag = PAGECACHE_TAG_TOWRITE;
2205 	else
2206 		tag = PAGECACHE_TAG_DIRTY;
2207 
2208 	pagevec_init(&pvec, 0);
2209 	mpd->map.m_len = 0;
2210 	mpd->next_page = index;
2211 	while (index <= end) {
2212 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2213 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2214 		if (nr_pages == 0)
2215 			goto out;
2216 
2217 		for (i = 0; i < nr_pages; i++) {
2218 			struct page *page = pvec.pages[i];
2219 
2220 			/*
2221 			 * At this point, the page may be truncated or
2222 			 * invalidated (changing page->mapping to NULL), or
2223 			 * even swizzled back from swapper_space to tmpfs file
2224 			 * mapping. However, page->index will not change
2225 			 * because we have a reference on the page.
2226 			 */
2227 			if (page->index > end)
2228 				goto out;
2229 
2230 			/*
2231 			 * Accumulated enough dirty pages? This doesn't apply
2232 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2233 			 * keep going because someone may be concurrently
2234 			 * dirtying pages, and we might have synced a lot of
2235 			 * newly appeared dirty pages, but have not synced all
2236 			 * of the old dirty pages.
2237 			 */
2238 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2239 				goto out;
2240 
2241 			/* If we can't merge this page, we are done. */
2242 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2243 				goto out;
2244 
2245 			lock_page(page);
2246 			/*
2247 			 * If the page is no longer dirty, or its mapping no
2248 			 * longer corresponds to inode we are writing (which
2249 			 * means it has been truncated or invalidated), or the
2250 			 * page is already under writeback and we are not doing
2251 			 * a data integrity writeback, skip the page
2252 			 */
2253 			if (!PageDirty(page) ||
2254 			    (PageWriteback(page) &&
2255 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2256 			    unlikely(page->mapping != mapping)) {
2257 				unlock_page(page);
2258 				continue;
2259 			}
2260 
2261 			wait_on_page_writeback(page);
2262 			BUG_ON(PageWriteback(page));
2263 
2264 			if (mpd->map.m_len == 0)
2265 				mpd->first_page = page->index;
2266 			mpd->next_page = page->index + 1;
2267 			/* Add all dirty buffers to mpd */
2268 			lblk = ((ext4_lblk_t)page->index) <<
2269 				(PAGE_CACHE_SHIFT - blkbits);
2270 			head = page_buffers(page);
2271 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2272 			if (err <= 0)
2273 				goto out;
2274 			err = 0;
2275 			left--;
2276 		}
2277 		pagevec_release(&pvec);
2278 		cond_resched();
2279 	}
2280 	return 0;
2281 out:
2282 	pagevec_release(&pvec);
2283 	return err;
2284 }
2285 
2286 static int __writepage(struct page *page, struct writeback_control *wbc,
2287 		       void *data)
2288 {
2289 	struct address_space *mapping = data;
2290 	int ret = ext4_writepage(page, wbc);
2291 	mapping_set_error(mapping, ret);
2292 	return ret;
2293 }
2294 
2295 static int ext4_writepages(struct address_space *mapping,
2296 			   struct writeback_control *wbc)
2297 {
2298 	pgoff_t	writeback_index = 0;
2299 	long nr_to_write = wbc->nr_to_write;
2300 	int range_whole = 0;
2301 	int cycled = 1;
2302 	handle_t *handle = NULL;
2303 	struct mpage_da_data mpd;
2304 	struct inode *inode = mapping->host;
2305 	int needed_blocks, rsv_blocks = 0, ret = 0;
2306 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2307 	bool done;
2308 	struct blk_plug plug;
2309 	bool give_up_on_write = false;
2310 
2311 	trace_ext4_writepages(inode, wbc);
2312 
2313 	/*
2314 	 * No pages to write? This is mainly a kludge to avoid starting
2315 	 * a transaction for special inodes like journal inode on last iput()
2316 	 * because that could violate lock ordering on umount
2317 	 */
2318 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2319 		goto out_writepages;
2320 
2321 	if (ext4_should_journal_data(inode)) {
2322 		struct blk_plug plug;
2323 
2324 		blk_start_plug(&plug);
2325 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2326 		blk_finish_plug(&plug);
2327 		goto out_writepages;
2328 	}
2329 
2330 	/*
2331 	 * If the filesystem has aborted, it is read-only, so return
2332 	 * right away instead of dumping stack traces later on that
2333 	 * will obscure the real source of the problem.  We test
2334 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2335 	 * the latter could be true if the filesystem is mounted
2336 	 * read-only, and in that case, ext4_writepages should
2337 	 * *never* be called, so if that ever happens, we would want
2338 	 * the stack trace.
2339 	 */
2340 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2341 		ret = -EROFS;
2342 		goto out_writepages;
2343 	}
2344 
2345 	if (ext4_should_dioread_nolock(inode)) {
2346 		/*
2347 		 * We may need to convert up to one extent per block in
2348 		 * the page and we may dirty the inode.
2349 		 */
2350 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2351 	}
2352 
2353 	/*
2354 	 * If we have inline data and arrive here, it means that
2355 	 * we will soon create the block for the 1st page, so
2356 	 * we'd better clear the inline data here.
2357 	 */
2358 	if (ext4_has_inline_data(inode)) {
2359 		/* Just inode will be modified... */
2360 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2361 		if (IS_ERR(handle)) {
2362 			ret = PTR_ERR(handle);
2363 			goto out_writepages;
2364 		}
2365 		BUG_ON(ext4_test_inode_state(inode,
2366 				EXT4_STATE_MAY_INLINE_DATA));
2367 		ext4_destroy_inline_data(handle, inode);
2368 		ext4_journal_stop(handle);
2369 	}
2370 
2371 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2372 		range_whole = 1;
2373 
2374 	if (wbc->range_cyclic) {
2375 		writeback_index = mapping->writeback_index;
2376 		if (writeback_index)
2377 			cycled = 0;
2378 		mpd.first_page = writeback_index;
2379 		mpd.last_page = -1;
2380 	} else {
2381 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2382 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2383 	}
2384 
2385 	mpd.inode = inode;
2386 	mpd.wbc = wbc;
2387 	ext4_io_submit_init(&mpd.io_submit, wbc);
2388 retry:
2389 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2390 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2391 	done = false;
2392 	blk_start_plug(&plug);
2393 	while (!done && mpd.first_page <= mpd.last_page) {
2394 		/* For each extent of pages we use new io_end */
2395 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2396 		if (!mpd.io_submit.io_end) {
2397 			ret = -ENOMEM;
2398 			break;
2399 		}
2400 
2401 		/*
2402 		 * We have two constraints: We find one extent to map and we
2403 		 * must always write out whole page (makes a difference when
2404 		 * blocksize < pagesize) so that we don't block on IO when we
2405 		 * try to write out the rest of the page. Journalled mode is
2406 		 * not supported by delalloc.
2407 		 */
2408 		BUG_ON(ext4_should_journal_data(inode));
2409 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2410 
2411 		/* start a new transaction */
2412 		handle = ext4_journal_start_with_reserve(inode,
2413 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2414 		if (IS_ERR(handle)) {
2415 			ret = PTR_ERR(handle);
2416 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2417 			       "%ld pages, ino %lu; err %d", __func__,
2418 				wbc->nr_to_write, inode->i_ino, ret);
2419 			/* Release allocated io_end */
2420 			ext4_put_io_end(mpd.io_submit.io_end);
2421 			break;
2422 		}
2423 
2424 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2425 		ret = mpage_prepare_extent_to_map(&mpd);
2426 		if (!ret) {
2427 			if (mpd.map.m_len)
2428 				ret = mpage_map_and_submit_extent(handle, &mpd,
2429 					&give_up_on_write);
2430 			else {
2431 				/*
2432 				 * We scanned the whole range (or exhausted
2433 				 * nr_to_write), submitted what was mapped and
2434 				 * didn't find anything needing mapping. We are
2435 				 * done.
2436 				 */
2437 				done = true;
2438 			}
2439 		}
2440 		ext4_journal_stop(handle);
2441 		/* Submit prepared bio */
2442 		ext4_io_submit(&mpd.io_submit);
2443 		/* Unlock pages we didn't use */
2444 		mpage_release_unused_pages(&mpd, give_up_on_write);
2445 		/* Drop our io_end reference we got from init */
2446 		ext4_put_io_end(mpd.io_submit.io_end);
2447 
2448 		if (ret == -ENOSPC && sbi->s_journal) {
2449 			/*
2450 			 * Commit the transaction which would
2451 			 * free blocks released in the transaction
2452 			 * and try again
2453 			 */
2454 			jbd2_journal_force_commit_nested(sbi->s_journal);
2455 			ret = 0;
2456 			continue;
2457 		}
2458 		/* Fatal error - ENOMEM, EIO... */
2459 		if (ret)
2460 			break;
2461 	}
2462 	blk_finish_plug(&plug);
2463 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2464 		cycled = 1;
2465 		mpd.last_page = writeback_index - 1;
2466 		mpd.first_page = 0;
2467 		goto retry;
2468 	}
2469 
2470 	/* Update index */
2471 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2472 		/*
2473 		 * Set the writeback_index so that range_cyclic
2474 		 * mode will write it back later
2475 		 */
2476 		mapping->writeback_index = mpd.first_page;
2477 
2478 out_writepages:
2479 	trace_ext4_writepages_result(inode, wbc, ret,
2480 				     nr_to_write - wbc->nr_to_write);
2481 	return ret;
2482 }
2483 
2484 static int ext4_nonda_switch(struct super_block *sb)
2485 {
2486 	s64 free_clusters, dirty_clusters;
2487 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2488 
2489 	/*
2490 	 * switch to non delalloc mode if we are running low
2491 	 * on free block. The free block accounting via percpu
2492 	 * counters can get slightly wrong with percpu_counter_batch getting
2493 	 * accumulated on each CPU without updating global counters
2494 	 * Delalloc need an accurate free block accounting. So switch
2495 	 * to non delalloc when we are near to error range.
2496 	 */
2497 	free_clusters =
2498 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2499 	dirty_clusters =
2500 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2501 	/*
2502 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2503 	 */
2504 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2505 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2506 
2507 	if (2 * free_clusters < 3 * dirty_clusters ||
2508 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2509 		/*
2510 		 * free block count is less than 150% of dirty blocks
2511 		 * or free blocks is less than watermark
2512 		 */
2513 		return 1;
2514 	}
2515 	return 0;
2516 }
2517 
2518 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2519 			       loff_t pos, unsigned len, unsigned flags,
2520 			       struct page **pagep, void **fsdata)
2521 {
2522 	int ret, retries = 0;
2523 	struct page *page;
2524 	pgoff_t index;
2525 	struct inode *inode = mapping->host;
2526 	handle_t *handle;
2527 
2528 	index = pos >> PAGE_CACHE_SHIFT;
2529 
2530 	if (ext4_nonda_switch(inode->i_sb)) {
2531 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2532 		return ext4_write_begin(file, mapping, pos,
2533 					len, flags, pagep, fsdata);
2534 	}
2535 	*fsdata = (void *)0;
2536 	trace_ext4_da_write_begin(inode, pos, len, flags);
2537 
2538 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2539 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2540 						      pos, len, flags,
2541 						      pagep, fsdata);
2542 		if (ret < 0)
2543 			return ret;
2544 		if (ret == 1)
2545 			return 0;
2546 	}
2547 
2548 	/*
2549 	 * grab_cache_page_write_begin() can take a long time if the
2550 	 * system is thrashing due to memory pressure, or if the page
2551 	 * is being written back.  So grab it first before we start
2552 	 * the transaction handle.  This also allows us to allocate
2553 	 * the page (if needed) without using GFP_NOFS.
2554 	 */
2555 retry_grab:
2556 	page = grab_cache_page_write_begin(mapping, index, flags);
2557 	if (!page)
2558 		return -ENOMEM;
2559 	unlock_page(page);
2560 
2561 	/*
2562 	 * With delayed allocation, we don't log the i_disksize update
2563 	 * if there is delayed block allocation. But we still need
2564 	 * to journalling the i_disksize update if writes to the end
2565 	 * of file which has an already mapped buffer.
2566 	 */
2567 retry_journal:
2568 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2569 	if (IS_ERR(handle)) {
2570 		page_cache_release(page);
2571 		return PTR_ERR(handle);
2572 	}
2573 
2574 	lock_page(page);
2575 	if (page->mapping != mapping) {
2576 		/* The page got truncated from under us */
2577 		unlock_page(page);
2578 		page_cache_release(page);
2579 		ext4_journal_stop(handle);
2580 		goto retry_grab;
2581 	}
2582 	/* In case writeback began while the page was unlocked */
2583 	wait_for_stable_page(page);
2584 
2585 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2586 	if (ret < 0) {
2587 		unlock_page(page);
2588 		ext4_journal_stop(handle);
2589 		/*
2590 		 * block_write_begin may have instantiated a few blocks
2591 		 * outside i_size.  Trim these off again. Don't need
2592 		 * i_size_read because we hold i_mutex.
2593 		 */
2594 		if (pos + len > inode->i_size)
2595 			ext4_truncate_failed_write(inode);
2596 
2597 		if (ret == -ENOSPC &&
2598 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2599 			goto retry_journal;
2600 
2601 		page_cache_release(page);
2602 		return ret;
2603 	}
2604 
2605 	*pagep = page;
2606 	return ret;
2607 }
2608 
2609 /*
2610  * Check if we should update i_disksize
2611  * when write to the end of file but not require block allocation
2612  */
2613 static int ext4_da_should_update_i_disksize(struct page *page,
2614 					    unsigned long offset)
2615 {
2616 	struct buffer_head *bh;
2617 	struct inode *inode = page->mapping->host;
2618 	unsigned int idx;
2619 	int i;
2620 
2621 	bh = page_buffers(page);
2622 	idx = offset >> inode->i_blkbits;
2623 
2624 	for (i = 0; i < idx; i++)
2625 		bh = bh->b_this_page;
2626 
2627 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2628 		return 0;
2629 	return 1;
2630 }
2631 
2632 static int ext4_da_write_end(struct file *file,
2633 			     struct address_space *mapping,
2634 			     loff_t pos, unsigned len, unsigned copied,
2635 			     struct page *page, void *fsdata)
2636 {
2637 	struct inode *inode = mapping->host;
2638 	int ret = 0, ret2;
2639 	handle_t *handle = ext4_journal_current_handle();
2640 	loff_t new_i_size;
2641 	unsigned long start, end;
2642 	int write_mode = (int)(unsigned long)fsdata;
2643 
2644 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2645 		return ext4_write_end(file, mapping, pos,
2646 				      len, copied, page, fsdata);
2647 
2648 	trace_ext4_da_write_end(inode, pos, len, copied);
2649 	start = pos & (PAGE_CACHE_SIZE - 1);
2650 	end = start + copied - 1;
2651 
2652 	/*
2653 	 * generic_write_end() will run mark_inode_dirty() if i_size
2654 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2655 	 * into that.
2656 	 */
2657 	new_i_size = pos + copied;
2658 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2659 		if (ext4_has_inline_data(inode) ||
2660 		    ext4_da_should_update_i_disksize(page, end)) {
2661 			down_write(&EXT4_I(inode)->i_data_sem);
2662 			if (new_i_size > EXT4_I(inode)->i_disksize)
2663 				EXT4_I(inode)->i_disksize = new_i_size;
2664 			up_write(&EXT4_I(inode)->i_data_sem);
2665 			/* We need to mark inode dirty even if
2666 			 * new_i_size is less that inode->i_size
2667 			 * bu greater than i_disksize.(hint delalloc)
2668 			 */
2669 			ext4_mark_inode_dirty(handle, inode);
2670 		}
2671 	}
2672 
2673 	if (write_mode != CONVERT_INLINE_DATA &&
2674 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2675 	    ext4_has_inline_data(inode))
2676 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2677 						     page);
2678 	else
2679 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2680 							page, fsdata);
2681 
2682 	copied = ret2;
2683 	if (ret2 < 0)
2684 		ret = ret2;
2685 	ret2 = ext4_journal_stop(handle);
2686 	if (!ret)
2687 		ret = ret2;
2688 
2689 	return ret ? ret : copied;
2690 }
2691 
2692 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2693 				   unsigned int length)
2694 {
2695 	/*
2696 	 * Drop reserved blocks
2697 	 */
2698 	BUG_ON(!PageLocked(page));
2699 	if (!page_has_buffers(page))
2700 		goto out;
2701 
2702 	ext4_da_page_release_reservation(page, offset, length);
2703 
2704 out:
2705 	ext4_invalidatepage(page, offset, length);
2706 
2707 	return;
2708 }
2709 
2710 /*
2711  * Force all delayed allocation blocks to be allocated for a given inode.
2712  */
2713 int ext4_alloc_da_blocks(struct inode *inode)
2714 {
2715 	trace_ext4_alloc_da_blocks(inode);
2716 
2717 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2718 		return 0;
2719 
2720 	/*
2721 	 * We do something simple for now.  The filemap_flush() will
2722 	 * also start triggering a write of the data blocks, which is
2723 	 * not strictly speaking necessary (and for users of
2724 	 * laptop_mode, not even desirable).  However, to do otherwise
2725 	 * would require replicating code paths in:
2726 	 *
2727 	 * ext4_writepages() ->
2728 	 *    write_cache_pages() ---> (via passed in callback function)
2729 	 *        __mpage_da_writepage() -->
2730 	 *           mpage_add_bh_to_extent()
2731 	 *           mpage_da_map_blocks()
2732 	 *
2733 	 * The problem is that write_cache_pages(), located in
2734 	 * mm/page-writeback.c, marks pages clean in preparation for
2735 	 * doing I/O, which is not desirable if we're not planning on
2736 	 * doing I/O at all.
2737 	 *
2738 	 * We could call write_cache_pages(), and then redirty all of
2739 	 * the pages by calling redirty_page_for_writepage() but that
2740 	 * would be ugly in the extreme.  So instead we would need to
2741 	 * replicate parts of the code in the above functions,
2742 	 * simplifying them because we wouldn't actually intend to
2743 	 * write out the pages, but rather only collect contiguous
2744 	 * logical block extents, call the multi-block allocator, and
2745 	 * then update the buffer heads with the block allocations.
2746 	 *
2747 	 * For now, though, we'll cheat by calling filemap_flush(),
2748 	 * which will map the blocks, and start the I/O, but not
2749 	 * actually wait for the I/O to complete.
2750 	 */
2751 	return filemap_flush(inode->i_mapping);
2752 }
2753 
2754 /*
2755  * bmap() is special.  It gets used by applications such as lilo and by
2756  * the swapper to find the on-disk block of a specific piece of data.
2757  *
2758  * Naturally, this is dangerous if the block concerned is still in the
2759  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2760  * filesystem and enables swap, then they may get a nasty shock when the
2761  * data getting swapped to that swapfile suddenly gets overwritten by
2762  * the original zero's written out previously to the journal and
2763  * awaiting writeback in the kernel's buffer cache.
2764  *
2765  * So, if we see any bmap calls here on a modified, data-journaled file,
2766  * take extra steps to flush any blocks which might be in the cache.
2767  */
2768 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2769 {
2770 	struct inode *inode = mapping->host;
2771 	journal_t *journal;
2772 	int err;
2773 
2774 	/*
2775 	 * We can get here for an inline file via the FIBMAP ioctl
2776 	 */
2777 	if (ext4_has_inline_data(inode))
2778 		return 0;
2779 
2780 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2781 			test_opt(inode->i_sb, DELALLOC)) {
2782 		/*
2783 		 * With delalloc we want to sync the file
2784 		 * so that we can make sure we allocate
2785 		 * blocks for file
2786 		 */
2787 		filemap_write_and_wait(mapping);
2788 	}
2789 
2790 	if (EXT4_JOURNAL(inode) &&
2791 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2792 		/*
2793 		 * This is a REALLY heavyweight approach, but the use of
2794 		 * bmap on dirty files is expected to be extremely rare:
2795 		 * only if we run lilo or swapon on a freshly made file
2796 		 * do we expect this to happen.
2797 		 *
2798 		 * (bmap requires CAP_SYS_RAWIO so this does not
2799 		 * represent an unprivileged user DOS attack --- we'd be
2800 		 * in trouble if mortal users could trigger this path at
2801 		 * will.)
2802 		 *
2803 		 * NB. EXT4_STATE_JDATA is not set on files other than
2804 		 * regular files.  If somebody wants to bmap a directory
2805 		 * or symlink and gets confused because the buffer
2806 		 * hasn't yet been flushed to disk, they deserve
2807 		 * everything they get.
2808 		 */
2809 
2810 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2811 		journal = EXT4_JOURNAL(inode);
2812 		jbd2_journal_lock_updates(journal);
2813 		err = jbd2_journal_flush(journal);
2814 		jbd2_journal_unlock_updates(journal);
2815 
2816 		if (err)
2817 			return 0;
2818 	}
2819 
2820 	return generic_block_bmap(mapping, block, ext4_get_block);
2821 }
2822 
2823 static int ext4_readpage(struct file *file, struct page *page)
2824 {
2825 	int ret = -EAGAIN;
2826 	struct inode *inode = page->mapping->host;
2827 
2828 	trace_ext4_readpage(page);
2829 
2830 	if (ext4_has_inline_data(inode))
2831 		ret = ext4_readpage_inline(inode, page);
2832 
2833 	if (ret == -EAGAIN)
2834 		return mpage_readpage(page, ext4_get_block);
2835 
2836 	return ret;
2837 }
2838 
2839 static int
2840 ext4_readpages(struct file *file, struct address_space *mapping,
2841 		struct list_head *pages, unsigned nr_pages)
2842 {
2843 	struct inode *inode = mapping->host;
2844 
2845 	/* If the file has inline data, no need to do readpages. */
2846 	if (ext4_has_inline_data(inode))
2847 		return 0;
2848 
2849 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2850 }
2851 
2852 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2853 				unsigned int length)
2854 {
2855 	trace_ext4_invalidatepage(page, offset, length);
2856 
2857 	/* No journalling happens on data buffers when this function is used */
2858 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2859 
2860 	block_invalidatepage(page, offset, length);
2861 }
2862 
2863 static int __ext4_journalled_invalidatepage(struct page *page,
2864 					    unsigned int offset,
2865 					    unsigned int length)
2866 {
2867 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2868 
2869 	trace_ext4_journalled_invalidatepage(page, offset, length);
2870 
2871 	/*
2872 	 * If it's a full truncate we just forget about the pending dirtying
2873 	 */
2874 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2875 		ClearPageChecked(page);
2876 
2877 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2878 }
2879 
2880 /* Wrapper for aops... */
2881 static void ext4_journalled_invalidatepage(struct page *page,
2882 					   unsigned int offset,
2883 					   unsigned int length)
2884 {
2885 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2886 }
2887 
2888 static int ext4_releasepage(struct page *page, gfp_t wait)
2889 {
2890 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2891 
2892 	trace_ext4_releasepage(page);
2893 
2894 	/* Page has dirty journalled data -> cannot release */
2895 	if (PageChecked(page))
2896 		return 0;
2897 	if (journal)
2898 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2899 	else
2900 		return try_to_free_buffers(page);
2901 }
2902 
2903 /*
2904  * ext4_get_block used when preparing for a DIO write or buffer write.
2905  * We allocate an uinitialized extent if blocks haven't been allocated.
2906  * The extent will be converted to initialized after the IO is complete.
2907  */
2908 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2909 		   struct buffer_head *bh_result, int create)
2910 {
2911 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2912 		   inode->i_ino, create);
2913 	return _ext4_get_block(inode, iblock, bh_result,
2914 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2915 }
2916 
2917 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2918 		   struct buffer_head *bh_result, int create)
2919 {
2920 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2921 		   inode->i_ino, create);
2922 	return _ext4_get_block(inode, iblock, bh_result,
2923 			       EXT4_GET_BLOCKS_NO_LOCK);
2924 }
2925 
2926 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2927 			    ssize_t size, void *private)
2928 {
2929         ext4_io_end_t *io_end = iocb->private;
2930 
2931 	/* if not async direct IO just return */
2932 	if (!io_end)
2933 		return;
2934 
2935 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2936 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2937  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2938 		  size);
2939 
2940 	iocb->private = NULL;
2941 	io_end->offset = offset;
2942 	io_end->size = size;
2943 	ext4_put_io_end(io_end);
2944 }
2945 
2946 /*
2947  * For ext4 extent files, ext4 will do direct-io write to holes,
2948  * preallocated extents, and those write extend the file, no need to
2949  * fall back to buffered IO.
2950  *
2951  * For holes, we fallocate those blocks, mark them as unwritten
2952  * If those blocks were preallocated, we mark sure they are split, but
2953  * still keep the range to write as unwritten.
2954  *
2955  * The unwritten extents will be converted to written when DIO is completed.
2956  * For async direct IO, since the IO may still pending when return, we
2957  * set up an end_io call back function, which will do the conversion
2958  * when async direct IO completed.
2959  *
2960  * If the O_DIRECT write will extend the file then add this inode to the
2961  * orphan list.  So recovery will truncate it back to the original size
2962  * if the machine crashes during the write.
2963  *
2964  */
2965 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2966 			      struct iov_iter *iter, loff_t offset)
2967 {
2968 	struct file *file = iocb->ki_filp;
2969 	struct inode *inode = file->f_mapping->host;
2970 	ssize_t ret;
2971 	size_t count = iov_iter_count(iter);
2972 	int overwrite = 0;
2973 	get_block_t *get_block_func = NULL;
2974 	int dio_flags = 0;
2975 	loff_t final_size = offset + count;
2976 	ext4_io_end_t *io_end = NULL;
2977 
2978 	/* Use the old path for reads and writes beyond i_size. */
2979 	if (rw != WRITE || final_size > inode->i_size)
2980 		return ext4_ind_direct_IO(rw, iocb, iter, offset);
2981 
2982 	BUG_ON(iocb->private == NULL);
2983 
2984 	/*
2985 	 * Make all waiters for direct IO properly wait also for extent
2986 	 * conversion. This also disallows race between truncate() and
2987 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2988 	 */
2989 	if (rw == WRITE)
2990 		atomic_inc(&inode->i_dio_count);
2991 
2992 	/* If we do a overwrite dio, i_mutex locking can be released */
2993 	overwrite = *((int *)iocb->private);
2994 
2995 	if (overwrite) {
2996 		down_read(&EXT4_I(inode)->i_data_sem);
2997 		mutex_unlock(&inode->i_mutex);
2998 	}
2999 
3000 	/*
3001 	 * We could direct write to holes and fallocate.
3002 	 *
3003 	 * Allocated blocks to fill the hole are marked as
3004 	 * unwritten to prevent parallel buffered read to expose
3005 	 * the stale data before DIO complete the data IO.
3006 	 *
3007 	 * As to previously fallocated extents, ext4 get_block will
3008 	 * just simply mark the buffer mapped but still keep the
3009 	 * extents unwritten.
3010 	 *
3011 	 * For non AIO case, we will convert those unwritten extents
3012 	 * to written after return back from blockdev_direct_IO.
3013 	 *
3014 	 * For async DIO, the conversion needs to be deferred when the
3015 	 * IO is completed. The ext4 end_io callback function will be
3016 	 * called to take care of the conversion work.  Here for async
3017 	 * case, we allocate an io_end structure to hook to the iocb.
3018 	 */
3019 	iocb->private = NULL;
3020 	ext4_inode_aio_set(inode, NULL);
3021 	if (!is_sync_kiocb(iocb)) {
3022 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3023 		if (!io_end) {
3024 			ret = -ENOMEM;
3025 			goto retake_lock;
3026 		}
3027 		/*
3028 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3029 		 */
3030 		iocb->private = ext4_get_io_end(io_end);
3031 		/*
3032 		 * we save the io structure for current async direct
3033 		 * IO, so that later ext4_map_blocks() could flag the
3034 		 * io structure whether there is a unwritten extents
3035 		 * needs to be converted when IO is completed.
3036 		 */
3037 		ext4_inode_aio_set(inode, io_end);
3038 	}
3039 
3040 	if (overwrite) {
3041 		get_block_func = ext4_get_block_write_nolock;
3042 	} else {
3043 		get_block_func = ext4_get_block_write;
3044 		dio_flags = DIO_LOCKING;
3045 	}
3046 	ret = __blockdev_direct_IO(rw, iocb, inode,
3047 				   inode->i_sb->s_bdev, iter,
3048 				   offset,
3049 				   get_block_func,
3050 				   ext4_end_io_dio,
3051 				   NULL,
3052 				   dio_flags);
3053 
3054 	/*
3055 	 * Put our reference to io_end. This can free the io_end structure e.g.
3056 	 * in sync IO case or in case of error. It can even perform extent
3057 	 * conversion if all bios we submitted finished before we got here.
3058 	 * Note that in that case iocb->private can be already set to NULL
3059 	 * here.
3060 	 */
3061 	if (io_end) {
3062 		ext4_inode_aio_set(inode, NULL);
3063 		ext4_put_io_end(io_end);
3064 		/*
3065 		 * When no IO was submitted ext4_end_io_dio() was not
3066 		 * called so we have to put iocb's reference.
3067 		 */
3068 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3069 			WARN_ON(iocb->private != io_end);
3070 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3071 			ext4_put_io_end(io_end);
3072 			iocb->private = NULL;
3073 		}
3074 	}
3075 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3076 						EXT4_STATE_DIO_UNWRITTEN)) {
3077 		int err;
3078 		/*
3079 		 * for non AIO case, since the IO is already
3080 		 * completed, we could do the conversion right here
3081 		 */
3082 		err = ext4_convert_unwritten_extents(NULL, inode,
3083 						     offset, ret);
3084 		if (err < 0)
3085 			ret = err;
3086 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3087 	}
3088 
3089 retake_lock:
3090 	if (rw == WRITE)
3091 		inode_dio_done(inode);
3092 	/* take i_mutex locking again if we do a ovewrite dio */
3093 	if (overwrite) {
3094 		up_read(&EXT4_I(inode)->i_data_sem);
3095 		mutex_lock(&inode->i_mutex);
3096 	}
3097 
3098 	return ret;
3099 }
3100 
3101 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3102 			      struct iov_iter *iter, loff_t offset)
3103 {
3104 	struct file *file = iocb->ki_filp;
3105 	struct inode *inode = file->f_mapping->host;
3106 	size_t count = iov_iter_count(iter);
3107 	ssize_t ret;
3108 
3109 	/*
3110 	 * If we are doing data journalling we don't support O_DIRECT
3111 	 */
3112 	if (ext4_should_journal_data(inode))
3113 		return 0;
3114 
3115 	/* Let buffer I/O handle the inline data case. */
3116 	if (ext4_has_inline_data(inode))
3117 		return 0;
3118 
3119 	trace_ext4_direct_IO_enter(inode, offset, count, rw);
3120 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3121 		ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3122 	else
3123 		ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3124 	trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3125 	return ret;
3126 }
3127 
3128 /*
3129  * Pages can be marked dirty completely asynchronously from ext4's journalling
3130  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3131  * much here because ->set_page_dirty is called under VFS locks.  The page is
3132  * not necessarily locked.
3133  *
3134  * We cannot just dirty the page and leave attached buffers clean, because the
3135  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3136  * or jbddirty because all the journalling code will explode.
3137  *
3138  * So what we do is to mark the page "pending dirty" and next time writepage
3139  * is called, propagate that into the buffers appropriately.
3140  */
3141 static int ext4_journalled_set_page_dirty(struct page *page)
3142 {
3143 	SetPageChecked(page);
3144 	return __set_page_dirty_nobuffers(page);
3145 }
3146 
3147 static const struct address_space_operations ext4_aops = {
3148 	.readpage		= ext4_readpage,
3149 	.readpages		= ext4_readpages,
3150 	.writepage		= ext4_writepage,
3151 	.writepages		= ext4_writepages,
3152 	.write_begin		= ext4_write_begin,
3153 	.write_end		= ext4_write_end,
3154 	.bmap			= ext4_bmap,
3155 	.invalidatepage		= ext4_invalidatepage,
3156 	.releasepage		= ext4_releasepage,
3157 	.direct_IO		= ext4_direct_IO,
3158 	.migratepage		= buffer_migrate_page,
3159 	.is_partially_uptodate  = block_is_partially_uptodate,
3160 	.error_remove_page	= generic_error_remove_page,
3161 };
3162 
3163 static const struct address_space_operations ext4_journalled_aops = {
3164 	.readpage		= ext4_readpage,
3165 	.readpages		= ext4_readpages,
3166 	.writepage		= ext4_writepage,
3167 	.writepages		= ext4_writepages,
3168 	.write_begin		= ext4_write_begin,
3169 	.write_end		= ext4_journalled_write_end,
3170 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3171 	.bmap			= ext4_bmap,
3172 	.invalidatepage		= ext4_journalled_invalidatepage,
3173 	.releasepage		= ext4_releasepage,
3174 	.direct_IO		= ext4_direct_IO,
3175 	.is_partially_uptodate  = block_is_partially_uptodate,
3176 	.error_remove_page	= generic_error_remove_page,
3177 };
3178 
3179 static const struct address_space_operations ext4_da_aops = {
3180 	.readpage		= ext4_readpage,
3181 	.readpages		= ext4_readpages,
3182 	.writepage		= ext4_writepage,
3183 	.writepages		= ext4_writepages,
3184 	.write_begin		= ext4_da_write_begin,
3185 	.write_end		= ext4_da_write_end,
3186 	.bmap			= ext4_bmap,
3187 	.invalidatepage		= ext4_da_invalidatepage,
3188 	.releasepage		= ext4_releasepage,
3189 	.direct_IO		= ext4_direct_IO,
3190 	.migratepage		= buffer_migrate_page,
3191 	.is_partially_uptodate  = block_is_partially_uptodate,
3192 	.error_remove_page	= generic_error_remove_page,
3193 };
3194 
3195 void ext4_set_aops(struct inode *inode)
3196 {
3197 	switch (ext4_inode_journal_mode(inode)) {
3198 	case EXT4_INODE_ORDERED_DATA_MODE:
3199 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3200 		break;
3201 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3202 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3203 		break;
3204 	case EXT4_INODE_JOURNAL_DATA_MODE:
3205 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3206 		return;
3207 	default:
3208 		BUG();
3209 	}
3210 	if (test_opt(inode->i_sb, DELALLOC))
3211 		inode->i_mapping->a_ops = &ext4_da_aops;
3212 	else
3213 		inode->i_mapping->a_ops = &ext4_aops;
3214 }
3215 
3216 /*
3217  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3218  * starting from file offset 'from'.  The range to be zero'd must
3219  * be contained with in one block.  If the specified range exceeds
3220  * the end of the block it will be shortened to end of the block
3221  * that cooresponds to 'from'
3222  */
3223 static int ext4_block_zero_page_range(handle_t *handle,
3224 		struct address_space *mapping, loff_t from, loff_t length)
3225 {
3226 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3227 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3228 	unsigned blocksize, max, pos;
3229 	ext4_lblk_t iblock;
3230 	struct inode *inode = mapping->host;
3231 	struct buffer_head *bh;
3232 	struct page *page;
3233 	int err = 0;
3234 
3235 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3236 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3237 	if (!page)
3238 		return -ENOMEM;
3239 
3240 	blocksize = inode->i_sb->s_blocksize;
3241 	max = blocksize - (offset & (blocksize - 1));
3242 
3243 	/*
3244 	 * correct length if it does not fall between
3245 	 * 'from' and the end of the block
3246 	 */
3247 	if (length > max || length < 0)
3248 		length = max;
3249 
3250 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3251 
3252 	if (!page_has_buffers(page))
3253 		create_empty_buffers(page, blocksize, 0);
3254 
3255 	/* Find the buffer that contains "offset" */
3256 	bh = page_buffers(page);
3257 	pos = blocksize;
3258 	while (offset >= pos) {
3259 		bh = bh->b_this_page;
3260 		iblock++;
3261 		pos += blocksize;
3262 	}
3263 	if (buffer_freed(bh)) {
3264 		BUFFER_TRACE(bh, "freed: skip");
3265 		goto unlock;
3266 	}
3267 	if (!buffer_mapped(bh)) {
3268 		BUFFER_TRACE(bh, "unmapped");
3269 		ext4_get_block(inode, iblock, bh, 0);
3270 		/* unmapped? It's a hole - nothing to do */
3271 		if (!buffer_mapped(bh)) {
3272 			BUFFER_TRACE(bh, "still unmapped");
3273 			goto unlock;
3274 		}
3275 	}
3276 
3277 	/* Ok, it's mapped. Make sure it's up-to-date */
3278 	if (PageUptodate(page))
3279 		set_buffer_uptodate(bh);
3280 
3281 	if (!buffer_uptodate(bh)) {
3282 		err = -EIO;
3283 		ll_rw_block(READ, 1, &bh);
3284 		wait_on_buffer(bh);
3285 		/* Uhhuh. Read error. Complain and punt. */
3286 		if (!buffer_uptodate(bh))
3287 			goto unlock;
3288 	}
3289 	if (ext4_should_journal_data(inode)) {
3290 		BUFFER_TRACE(bh, "get write access");
3291 		err = ext4_journal_get_write_access(handle, bh);
3292 		if (err)
3293 			goto unlock;
3294 	}
3295 	zero_user(page, offset, length);
3296 	BUFFER_TRACE(bh, "zeroed end of block");
3297 
3298 	if (ext4_should_journal_data(inode)) {
3299 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3300 	} else {
3301 		err = 0;
3302 		mark_buffer_dirty(bh);
3303 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3304 			err = ext4_jbd2_file_inode(handle, inode);
3305 	}
3306 
3307 unlock:
3308 	unlock_page(page);
3309 	page_cache_release(page);
3310 	return err;
3311 }
3312 
3313 /*
3314  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3315  * up to the end of the block which corresponds to `from'.
3316  * This required during truncate. We need to physically zero the tail end
3317  * of that block so it doesn't yield old data if the file is later grown.
3318  */
3319 static int ext4_block_truncate_page(handle_t *handle,
3320 		struct address_space *mapping, loff_t from)
3321 {
3322 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3323 	unsigned length;
3324 	unsigned blocksize;
3325 	struct inode *inode = mapping->host;
3326 
3327 	blocksize = inode->i_sb->s_blocksize;
3328 	length = blocksize - (offset & (blocksize - 1));
3329 
3330 	return ext4_block_zero_page_range(handle, mapping, from, length);
3331 }
3332 
3333 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3334 			     loff_t lstart, loff_t length)
3335 {
3336 	struct super_block *sb = inode->i_sb;
3337 	struct address_space *mapping = inode->i_mapping;
3338 	unsigned partial_start, partial_end;
3339 	ext4_fsblk_t start, end;
3340 	loff_t byte_end = (lstart + length - 1);
3341 	int err = 0;
3342 
3343 	partial_start = lstart & (sb->s_blocksize - 1);
3344 	partial_end = byte_end & (sb->s_blocksize - 1);
3345 
3346 	start = lstart >> sb->s_blocksize_bits;
3347 	end = byte_end >> sb->s_blocksize_bits;
3348 
3349 	/* Handle partial zero within the single block */
3350 	if (start == end &&
3351 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3352 		err = ext4_block_zero_page_range(handle, mapping,
3353 						 lstart, length);
3354 		return err;
3355 	}
3356 	/* Handle partial zero out on the start of the range */
3357 	if (partial_start) {
3358 		err = ext4_block_zero_page_range(handle, mapping,
3359 						 lstart, sb->s_blocksize);
3360 		if (err)
3361 			return err;
3362 	}
3363 	/* Handle partial zero out on the end of the range */
3364 	if (partial_end != sb->s_blocksize - 1)
3365 		err = ext4_block_zero_page_range(handle, mapping,
3366 						 byte_end - partial_end,
3367 						 partial_end + 1);
3368 	return err;
3369 }
3370 
3371 int ext4_can_truncate(struct inode *inode)
3372 {
3373 	if (S_ISREG(inode->i_mode))
3374 		return 1;
3375 	if (S_ISDIR(inode->i_mode))
3376 		return 1;
3377 	if (S_ISLNK(inode->i_mode))
3378 		return !ext4_inode_is_fast_symlink(inode);
3379 	return 0;
3380 }
3381 
3382 /*
3383  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3384  * associated with the given offset and length
3385  *
3386  * @inode:  File inode
3387  * @offset: The offset where the hole will begin
3388  * @len:    The length of the hole
3389  *
3390  * Returns: 0 on success or negative on failure
3391  */
3392 
3393 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3394 {
3395 	struct super_block *sb = inode->i_sb;
3396 	ext4_lblk_t first_block, stop_block;
3397 	struct address_space *mapping = inode->i_mapping;
3398 	loff_t first_block_offset, last_block_offset;
3399 	handle_t *handle;
3400 	unsigned int credits;
3401 	int ret = 0;
3402 
3403 	if (!S_ISREG(inode->i_mode))
3404 		return -EOPNOTSUPP;
3405 
3406 	trace_ext4_punch_hole(inode, offset, length, 0);
3407 
3408 	/*
3409 	 * Write out all dirty pages to avoid race conditions
3410 	 * Then release them.
3411 	 */
3412 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3413 		ret = filemap_write_and_wait_range(mapping, offset,
3414 						   offset + length - 1);
3415 		if (ret)
3416 			return ret;
3417 	}
3418 
3419 	mutex_lock(&inode->i_mutex);
3420 
3421 	/* No need to punch hole beyond i_size */
3422 	if (offset >= inode->i_size)
3423 		goto out_mutex;
3424 
3425 	/*
3426 	 * If the hole extends beyond i_size, set the hole
3427 	 * to end after the page that contains i_size
3428 	 */
3429 	if (offset + length > inode->i_size) {
3430 		length = inode->i_size +
3431 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3432 		   offset;
3433 	}
3434 
3435 	if (offset & (sb->s_blocksize - 1) ||
3436 	    (offset + length) & (sb->s_blocksize - 1)) {
3437 		/*
3438 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3439 		 * partial block
3440 		 */
3441 		ret = ext4_inode_attach_jinode(inode);
3442 		if (ret < 0)
3443 			goto out_mutex;
3444 
3445 	}
3446 
3447 	first_block_offset = round_up(offset, sb->s_blocksize);
3448 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3449 
3450 	/* Now release the pages and zero block aligned part of pages*/
3451 	if (last_block_offset > first_block_offset)
3452 		truncate_pagecache_range(inode, first_block_offset,
3453 					 last_block_offset);
3454 
3455 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3456 	ext4_inode_block_unlocked_dio(inode);
3457 	inode_dio_wait(inode);
3458 
3459 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3460 		credits = ext4_writepage_trans_blocks(inode);
3461 	else
3462 		credits = ext4_blocks_for_truncate(inode);
3463 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3464 	if (IS_ERR(handle)) {
3465 		ret = PTR_ERR(handle);
3466 		ext4_std_error(sb, ret);
3467 		goto out_dio;
3468 	}
3469 
3470 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3471 				       length);
3472 	if (ret)
3473 		goto out_stop;
3474 
3475 	first_block = (offset + sb->s_blocksize - 1) >>
3476 		EXT4_BLOCK_SIZE_BITS(sb);
3477 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3478 
3479 	/* If there are no blocks to remove, return now */
3480 	if (first_block >= stop_block)
3481 		goto out_stop;
3482 
3483 	down_write(&EXT4_I(inode)->i_data_sem);
3484 	ext4_discard_preallocations(inode);
3485 
3486 	ret = ext4_es_remove_extent(inode, first_block,
3487 				    stop_block - first_block);
3488 	if (ret) {
3489 		up_write(&EXT4_I(inode)->i_data_sem);
3490 		goto out_stop;
3491 	}
3492 
3493 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3494 		ret = ext4_ext_remove_space(inode, first_block,
3495 					    stop_block - 1);
3496 	else
3497 		ret = ext4_ind_remove_space(handle, inode, first_block,
3498 					    stop_block);
3499 
3500 	up_write(&EXT4_I(inode)->i_data_sem);
3501 	if (IS_SYNC(inode))
3502 		ext4_handle_sync(handle);
3503 
3504 	/* Now release the pages again to reduce race window */
3505 	if (last_block_offset > first_block_offset)
3506 		truncate_pagecache_range(inode, first_block_offset,
3507 					 last_block_offset);
3508 
3509 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3510 	ext4_mark_inode_dirty(handle, inode);
3511 out_stop:
3512 	ext4_journal_stop(handle);
3513 out_dio:
3514 	ext4_inode_resume_unlocked_dio(inode);
3515 out_mutex:
3516 	mutex_unlock(&inode->i_mutex);
3517 	return ret;
3518 }
3519 
3520 int ext4_inode_attach_jinode(struct inode *inode)
3521 {
3522 	struct ext4_inode_info *ei = EXT4_I(inode);
3523 	struct jbd2_inode *jinode;
3524 
3525 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3526 		return 0;
3527 
3528 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3529 	spin_lock(&inode->i_lock);
3530 	if (!ei->jinode) {
3531 		if (!jinode) {
3532 			spin_unlock(&inode->i_lock);
3533 			return -ENOMEM;
3534 		}
3535 		ei->jinode = jinode;
3536 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3537 		jinode = NULL;
3538 	}
3539 	spin_unlock(&inode->i_lock);
3540 	if (unlikely(jinode != NULL))
3541 		jbd2_free_inode(jinode);
3542 	return 0;
3543 }
3544 
3545 /*
3546  * ext4_truncate()
3547  *
3548  * We block out ext4_get_block() block instantiations across the entire
3549  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3550  * simultaneously on behalf of the same inode.
3551  *
3552  * As we work through the truncate and commit bits of it to the journal there
3553  * is one core, guiding principle: the file's tree must always be consistent on
3554  * disk.  We must be able to restart the truncate after a crash.
3555  *
3556  * The file's tree may be transiently inconsistent in memory (although it
3557  * probably isn't), but whenever we close off and commit a journal transaction,
3558  * the contents of (the filesystem + the journal) must be consistent and
3559  * restartable.  It's pretty simple, really: bottom up, right to left (although
3560  * left-to-right works OK too).
3561  *
3562  * Note that at recovery time, journal replay occurs *before* the restart of
3563  * truncate against the orphan inode list.
3564  *
3565  * The committed inode has the new, desired i_size (which is the same as
3566  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3567  * that this inode's truncate did not complete and it will again call
3568  * ext4_truncate() to have another go.  So there will be instantiated blocks
3569  * to the right of the truncation point in a crashed ext4 filesystem.  But
3570  * that's fine - as long as they are linked from the inode, the post-crash
3571  * ext4_truncate() run will find them and release them.
3572  */
3573 void ext4_truncate(struct inode *inode)
3574 {
3575 	struct ext4_inode_info *ei = EXT4_I(inode);
3576 	unsigned int credits;
3577 	handle_t *handle;
3578 	struct address_space *mapping = inode->i_mapping;
3579 
3580 	/*
3581 	 * There is a possibility that we're either freeing the inode
3582 	 * or it's a completely new inode. In those cases we might not
3583 	 * have i_mutex locked because it's not necessary.
3584 	 */
3585 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3586 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3587 	trace_ext4_truncate_enter(inode);
3588 
3589 	if (!ext4_can_truncate(inode))
3590 		return;
3591 
3592 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3593 
3594 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3595 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3596 
3597 	if (ext4_has_inline_data(inode)) {
3598 		int has_inline = 1;
3599 
3600 		ext4_inline_data_truncate(inode, &has_inline);
3601 		if (has_inline)
3602 			return;
3603 	}
3604 
3605 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3606 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3607 		if (ext4_inode_attach_jinode(inode) < 0)
3608 			return;
3609 	}
3610 
3611 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3612 		credits = ext4_writepage_trans_blocks(inode);
3613 	else
3614 		credits = ext4_blocks_for_truncate(inode);
3615 
3616 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3617 	if (IS_ERR(handle)) {
3618 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3619 		return;
3620 	}
3621 
3622 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3623 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3624 
3625 	/*
3626 	 * We add the inode to the orphan list, so that if this
3627 	 * truncate spans multiple transactions, and we crash, we will
3628 	 * resume the truncate when the filesystem recovers.  It also
3629 	 * marks the inode dirty, to catch the new size.
3630 	 *
3631 	 * Implication: the file must always be in a sane, consistent
3632 	 * truncatable state while each transaction commits.
3633 	 */
3634 	if (ext4_orphan_add(handle, inode))
3635 		goto out_stop;
3636 
3637 	down_write(&EXT4_I(inode)->i_data_sem);
3638 
3639 	ext4_discard_preallocations(inode);
3640 
3641 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3642 		ext4_ext_truncate(handle, inode);
3643 	else
3644 		ext4_ind_truncate(handle, inode);
3645 
3646 	up_write(&ei->i_data_sem);
3647 
3648 	if (IS_SYNC(inode))
3649 		ext4_handle_sync(handle);
3650 
3651 out_stop:
3652 	/*
3653 	 * If this was a simple ftruncate() and the file will remain alive,
3654 	 * then we need to clear up the orphan record which we created above.
3655 	 * However, if this was a real unlink then we were called by
3656 	 * ext4_delete_inode(), and we allow that function to clean up the
3657 	 * orphan info for us.
3658 	 */
3659 	if (inode->i_nlink)
3660 		ext4_orphan_del(handle, inode);
3661 
3662 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3663 	ext4_mark_inode_dirty(handle, inode);
3664 	ext4_journal_stop(handle);
3665 
3666 	trace_ext4_truncate_exit(inode);
3667 }
3668 
3669 /*
3670  * ext4_get_inode_loc returns with an extra refcount against the inode's
3671  * underlying buffer_head on success. If 'in_mem' is true, we have all
3672  * data in memory that is needed to recreate the on-disk version of this
3673  * inode.
3674  */
3675 static int __ext4_get_inode_loc(struct inode *inode,
3676 				struct ext4_iloc *iloc, int in_mem)
3677 {
3678 	struct ext4_group_desc	*gdp;
3679 	struct buffer_head	*bh;
3680 	struct super_block	*sb = inode->i_sb;
3681 	ext4_fsblk_t		block;
3682 	int			inodes_per_block, inode_offset;
3683 
3684 	iloc->bh = NULL;
3685 	if (!ext4_valid_inum(sb, inode->i_ino))
3686 		return -EIO;
3687 
3688 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3689 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3690 	if (!gdp)
3691 		return -EIO;
3692 
3693 	/*
3694 	 * Figure out the offset within the block group inode table
3695 	 */
3696 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3697 	inode_offset = ((inode->i_ino - 1) %
3698 			EXT4_INODES_PER_GROUP(sb));
3699 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3700 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3701 
3702 	bh = sb_getblk(sb, block);
3703 	if (unlikely(!bh))
3704 		return -ENOMEM;
3705 	if (!buffer_uptodate(bh)) {
3706 		lock_buffer(bh);
3707 
3708 		/*
3709 		 * If the buffer has the write error flag, we have failed
3710 		 * to write out another inode in the same block.  In this
3711 		 * case, we don't have to read the block because we may
3712 		 * read the old inode data successfully.
3713 		 */
3714 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3715 			set_buffer_uptodate(bh);
3716 
3717 		if (buffer_uptodate(bh)) {
3718 			/* someone brought it uptodate while we waited */
3719 			unlock_buffer(bh);
3720 			goto has_buffer;
3721 		}
3722 
3723 		/*
3724 		 * If we have all information of the inode in memory and this
3725 		 * is the only valid inode in the block, we need not read the
3726 		 * block.
3727 		 */
3728 		if (in_mem) {
3729 			struct buffer_head *bitmap_bh;
3730 			int i, start;
3731 
3732 			start = inode_offset & ~(inodes_per_block - 1);
3733 
3734 			/* Is the inode bitmap in cache? */
3735 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3736 			if (unlikely(!bitmap_bh))
3737 				goto make_io;
3738 
3739 			/*
3740 			 * If the inode bitmap isn't in cache then the
3741 			 * optimisation may end up performing two reads instead
3742 			 * of one, so skip it.
3743 			 */
3744 			if (!buffer_uptodate(bitmap_bh)) {
3745 				brelse(bitmap_bh);
3746 				goto make_io;
3747 			}
3748 			for (i = start; i < start + inodes_per_block; i++) {
3749 				if (i == inode_offset)
3750 					continue;
3751 				if (ext4_test_bit(i, bitmap_bh->b_data))
3752 					break;
3753 			}
3754 			brelse(bitmap_bh);
3755 			if (i == start + inodes_per_block) {
3756 				/* all other inodes are free, so skip I/O */
3757 				memset(bh->b_data, 0, bh->b_size);
3758 				set_buffer_uptodate(bh);
3759 				unlock_buffer(bh);
3760 				goto has_buffer;
3761 			}
3762 		}
3763 
3764 make_io:
3765 		/*
3766 		 * If we need to do any I/O, try to pre-readahead extra
3767 		 * blocks from the inode table.
3768 		 */
3769 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3770 			ext4_fsblk_t b, end, table;
3771 			unsigned num;
3772 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3773 
3774 			table = ext4_inode_table(sb, gdp);
3775 			/* s_inode_readahead_blks is always a power of 2 */
3776 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3777 			if (table > b)
3778 				b = table;
3779 			end = b + ra_blks;
3780 			num = EXT4_INODES_PER_GROUP(sb);
3781 			if (ext4_has_group_desc_csum(sb))
3782 				num -= ext4_itable_unused_count(sb, gdp);
3783 			table += num / inodes_per_block;
3784 			if (end > table)
3785 				end = table;
3786 			while (b <= end)
3787 				sb_breadahead(sb, b++);
3788 		}
3789 
3790 		/*
3791 		 * There are other valid inodes in the buffer, this inode
3792 		 * has in-inode xattrs, or we don't have this inode in memory.
3793 		 * Read the block from disk.
3794 		 */
3795 		trace_ext4_load_inode(inode);
3796 		get_bh(bh);
3797 		bh->b_end_io = end_buffer_read_sync;
3798 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3799 		wait_on_buffer(bh);
3800 		if (!buffer_uptodate(bh)) {
3801 			EXT4_ERROR_INODE_BLOCK(inode, block,
3802 					       "unable to read itable block");
3803 			brelse(bh);
3804 			return -EIO;
3805 		}
3806 	}
3807 has_buffer:
3808 	iloc->bh = bh;
3809 	return 0;
3810 }
3811 
3812 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3813 {
3814 	/* We have all inode data except xattrs in memory here. */
3815 	return __ext4_get_inode_loc(inode, iloc,
3816 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3817 }
3818 
3819 void ext4_set_inode_flags(struct inode *inode)
3820 {
3821 	unsigned int flags = EXT4_I(inode)->i_flags;
3822 	unsigned int new_fl = 0;
3823 
3824 	if (flags & EXT4_SYNC_FL)
3825 		new_fl |= S_SYNC;
3826 	if (flags & EXT4_APPEND_FL)
3827 		new_fl |= S_APPEND;
3828 	if (flags & EXT4_IMMUTABLE_FL)
3829 		new_fl |= S_IMMUTABLE;
3830 	if (flags & EXT4_NOATIME_FL)
3831 		new_fl |= S_NOATIME;
3832 	if (flags & EXT4_DIRSYNC_FL)
3833 		new_fl |= S_DIRSYNC;
3834 	inode_set_flags(inode, new_fl,
3835 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3836 }
3837 
3838 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3839 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3840 {
3841 	unsigned int vfs_fl;
3842 	unsigned long old_fl, new_fl;
3843 
3844 	do {
3845 		vfs_fl = ei->vfs_inode.i_flags;
3846 		old_fl = ei->i_flags;
3847 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3848 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3849 				EXT4_DIRSYNC_FL);
3850 		if (vfs_fl & S_SYNC)
3851 			new_fl |= EXT4_SYNC_FL;
3852 		if (vfs_fl & S_APPEND)
3853 			new_fl |= EXT4_APPEND_FL;
3854 		if (vfs_fl & S_IMMUTABLE)
3855 			new_fl |= EXT4_IMMUTABLE_FL;
3856 		if (vfs_fl & S_NOATIME)
3857 			new_fl |= EXT4_NOATIME_FL;
3858 		if (vfs_fl & S_DIRSYNC)
3859 			new_fl |= EXT4_DIRSYNC_FL;
3860 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3861 }
3862 
3863 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3864 				  struct ext4_inode_info *ei)
3865 {
3866 	blkcnt_t i_blocks ;
3867 	struct inode *inode = &(ei->vfs_inode);
3868 	struct super_block *sb = inode->i_sb;
3869 
3870 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3871 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3872 		/* we are using combined 48 bit field */
3873 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3874 					le32_to_cpu(raw_inode->i_blocks_lo);
3875 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3876 			/* i_blocks represent file system block size */
3877 			return i_blocks  << (inode->i_blkbits - 9);
3878 		} else {
3879 			return i_blocks;
3880 		}
3881 	} else {
3882 		return le32_to_cpu(raw_inode->i_blocks_lo);
3883 	}
3884 }
3885 
3886 static inline void ext4_iget_extra_inode(struct inode *inode,
3887 					 struct ext4_inode *raw_inode,
3888 					 struct ext4_inode_info *ei)
3889 {
3890 	__le32 *magic = (void *)raw_inode +
3891 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3892 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3893 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3894 		ext4_find_inline_data_nolock(inode);
3895 	} else
3896 		EXT4_I(inode)->i_inline_off = 0;
3897 }
3898 
3899 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3900 {
3901 	struct ext4_iloc iloc;
3902 	struct ext4_inode *raw_inode;
3903 	struct ext4_inode_info *ei;
3904 	struct inode *inode;
3905 	journal_t *journal = EXT4_SB(sb)->s_journal;
3906 	long ret;
3907 	int block;
3908 	uid_t i_uid;
3909 	gid_t i_gid;
3910 
3911 	inode = iget_locked(sb, ino);
3912 	if (!inode)
3913 		return ERR_PTR(-ENOMEM);
3914 	if (!(inode->i_state & I_NEW))
3915 		return inode;
3916 
3917 	ei = EXT4_I(inode);
3918 	iloc.bh = NULL;
3919 
3920 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3921 	if (ret < 0)
3922 		goto bad_inode;
3923 	raw_inode = ext4_raw_inode(&iloc);
3924 
3925 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3926 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3927 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3928 		    EXT4_INODE_SIZE(inode->i_sb)) {
3929 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3930 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3931 				EXT4_INODE_SIZE(inode->i_sb));
3932 			ret = -EIO;
3933 			goto bad_inode;
3934 		}
3935 	} else
3936 		ei->i_extra_isize = 0;
3937 
3938 	/* Precompute checksum seed for inode metadata */
3939 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3940 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3941 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3942 		__u32 csum;
3943 		__le32 inum = cpu_to_le32(inode->i_ino);
3944 		__le32 gen = raw_inode->i_generation;
3945 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3946 				   sizeof(inum));
3947 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3948 					      sizeof(gen));
3949 	}
3950 
3951 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3952 		EXT4_ERROR_INODE(inode, "checksum invalid");
3953 		ret = -EIO;
3954 		goto bad_inode;
3955 	}
3956 
3957 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3958 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3959 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3960 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3961 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3962 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3963 	}
3964 	i_uid_write(inode, i_uid);
3965 	i_gid_write(inode, i_gid);
3966 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3967 
3968 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3969 	ei->i_inline_off = 0;
3970 	ei->i_dir_start_lookup = 0;
3971 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3972 	/* We now have enough fields to check if the inode was active or not.
3973 	 * This is needed because nfsd might try to access dead inodes
3974 	 * the test is that same one that e2fsck uses
3975 	 * NeilBrown 1999oct15
3976 	 */
3977 	if (inode->i_nlink == 0) {
3978 		if ((inode->i_mode == 0 ||
3979 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3980 		    ino != EXT4_BOOT_LOADER_INO) {
3981 			/* this inode is deleted */
3982 			ret = -ESTALE;
3983 			goto bad_inode;
3984 		}
3985 		/* The only unlinked inodes we let through here have
3986 		 * valid i_mode and are being read by the orphan
3987 		 * recovery code: that's fine, we're about to complete
3988 		 * the process of deleting those.
3989 		 * OR it is the EXT4_BOOT_LOADER_INO which is
3990 		 * not initialized on a new filesystem. */
3991 	}
3992 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3993 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3994 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3995 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3996 		ei->i_file_acl |=
3997 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3998 	inode->i_size = ext4_isize(raw_inode);
3999 	ei->i_disksize = inode->i_size;
4000 #ifdef CONFIG_QUOTA
4001 	ei->i_reserved_quota = 0;
4002 #endif
4003 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4004 	ei->i_block_group = iloc.block_group;
4005 	ei->i_last_alloc_group = ~0;
4006 	/*
4007 	 * NOTE! The in-memory inode i_data array is in little-endian order
4008 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4009 	 */
4010 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4011 		ei->i_data[block] = raw_inode->i_block[block];
4012 	INIT_LIST_HEAD(&ei->i_orphan);
4013 
4014 	/*
4015 	 * Set transaction id's of transactions that have to be committed
4016 	 * to finish f[data]sync. We set them to currently running transaction
4017 	 * as we cannot be sure that the inode or some of its metadata isn't
4018 	 * part of the transaction - the inode could have been reclaimed and
4019 	 * now it is reread from disk.
4020 	 */
4021 	if (journal) {
4022 		transaction_t *transaction;
4023 		tid_t tid;
4024 
4025 		read_lock(&journal->j_state_lock);
4026 		if (journal->j_running_transaction)
4027 			transaction = journal->j_running_transaction;
4028 		else
4029 			transaction = journal->j_committing_transaction;
4030 		if (transaction)
4031 			tid = transaction->t_tid;
4032 		else
4033 			tid = journal->j_commit_sequence;
4034 		read_unlock(&journal->j_state_lock);
4035 		ei->i_sync_tid = tid;
4036 		ei->i_datasync_tid = tid;
4037 	}
4038 
4039 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4040 		if (ei->i_extra_isize == 0) {
4041 			/* The extra space is currently unused. Use it. */
4042 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4043 					    EXT4_GOOD_OLD_INODE_SIZE;
4044 		} else {
4045 			ext4_iget_extra_inode(inode, raw_inode, ei);
4046 		}
4047 	}
4048 
4049 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4050 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4051 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4052 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4053 
4054 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4055 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4056 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4057 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4058 				inode->i_version |=
4059 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4060 		}
4061 	}
4062 
4063 	ret = 0;
4064 	if (ei->i_file_acl &&
4065 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4066 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4067 				 ei->i_file_acl);
4068 		ret = -EIO;
4069 		goto bad_inode;
4070 	} else if (!ext4_has_inline_data(inode)) {
4071 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4072 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4073 			    (S_ISLNK(inode->i_mode) &&
4074 			     !ext4_inode_is_fast_symlink(inode))))
4075 				/* Validate extent which is part of inode */
4076 				ret = ext4_ext_check_inode(inode);
4077 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4078 			   (S_ISLNK(inode->i_mode) &&
4079 			    !ext4_inode_is_fast_symlink(inode))) {
4080 			/* Validate block references which are part of inode */
4081 			ret = ext4_ind_check_inode(inode);
4082 		}
4083 	}
4084 	if (ret)
4085 		goto bad_inode;
4086 
4087 	if (S_ISREG(inode->i_mode)) {
4088 		inode->i_op = &ext4_file_inode_operations;
4089 		inode->i_fop = &ext4_file_operations;
4090 		ext4_set_aops(inode);
4091 	} else if (S_ISDIR(inode->i_mode)) {
4092 		inode->i_op = &ext4_dir_inode_operations;
4093 		inode->i_fop = &ext4_dir_operations;
4094 	} else if (S_ISLNK(inode->i_mode)) {
4095 		if (ext4_inode_is_fast_symlink(inode)) {
4096 			inode->i_op = &ext4_fast_symlink_inode_operations;
4097 			nd_terminate_link(ei->i_data, inode->i_size,
4098 				sizeof(ei->i_data) - 1);
4099 		} else {
4100 			inode->i_op = &ext4_symlink_inode_operations;
4101 			ext4_set_aops(inode);
4102 		}
4103 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4104 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4105 		inode->i_op = &ext4_special_inode_operations;
4106 		if (raw_inode->i_block[0])
4107 			init_special_inode(inode, inode->i_mode,
4108 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4109 		else
4110 			init_special_inode(inode, inode->i_mode,
4111 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4112 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4113 		make_bad_inode(inode);
4114 	} else {
4115 		ret = -EIO;
4116 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4117 		goto bad_inode;
4118 	}
4119 	brelse(iloc.bh);
4120 	ext4_set_inode_flags(inode);
4121 	unlock_new_inode(inode);
4122 	return inode;
4123 
4124 bad_inode:
4125 	brelse(iloc.bh);
4126 	iget_failed(inode);
4127 	return ERR_PTR(ret);
4128 }
4129 
4130 static int ext4_inode_blocks_set(handle_t *handle,
4131 				struct ext4_inode *raw_inode,
4132 				struct ext4_inode_info *ei)
4133 {
4134 	struct inode *inode = &(ei->vfs_inode);
4135 	u64 i_blocks = inode->i_blocks;
4136 	struct super_block *sb = inode->i_sb;
4137 
4138 	if (i_blocks <= ~0U) {
4139 		/*
4140 		 * i_blocks can be represented in a 32 bit variable
4141 		 * as multiple of 512 bytes
4142 		 */
4143 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4144 		raw_inode->i_blocks_high = 0;
4145 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4146 		return 0;
4147 	}
4148 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4149 		return -EFBIG;
4150 
4151 	if (i_blocks <= 0xffffffffffffULL) {
4152 		/*
4153 		 * i_blocks can be represented in a 48 bit variable
4154 		 * as multiple of 512 bytes
4155 		 */
4156 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4157 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4158 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4159 	} else {
4160 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4161 		/* i_block is stored in file system block size */
4162 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4163 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4164 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4165 	}
4166 	return 0;
4167 }
4168 
4169 /*
4170  * Post the struct inode info into an on-disk inode location in the
4171  * buffer-cache.  This gobbles the caller's reference to the
4172  * buffer_head in the inode location struct.
4173  *
4174  * The caller must have write access to iloc->bh.
4175  */
4176 static int ext4_do_update_inode(handle_t *handle,
4177 				struct inode *inode,
4178 				struct ext4_iloc *iloc)
4179 {
4180 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4181 	struct ext4_inode_info *ei = EXT4_I(inode);
4182 	struct buffer_head *bh = iloc->bh;
4183 	struct super_block *sb = inode->i_sb;
4184 	int err = 0, rc, block;
4185 	int need_datasync = 0, set_large_file = 0;
4186 	uid_t i_uid;
4187 	gid_t i_gid;
4188 
4189 	spin_lock(&ei->i_raw_lock);
4190 
4191 	/* For fields not tracked in the in-memory inode,
4192 	 * initialise them to zero for new inodes. */
4193 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4194 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4195 
4196 	ext4_get_inode_flags(ei);
4197 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4198 	i_uid = i_uid_read(inode);
4199 	i_gid = i_gid_read(inode);
4200 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4201 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4202 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4203 /*
4204  * Fix up interoperability with old kernels. Otherwise, old inodes get
4205  * re-used with the upper 16 bits of the uid/gid intact
4206  */
4207 		if (!ei->i_dtime) {
4208 			raw_inode->i_uid_high =
4209 				cpu_to_le16(high_16_bits(i_uid));
4210 			raw_inode->i_gid_high =
4211 				cpu_to_le16(high_16_bits(i_gid));
4212 		} else {
4213 			raw_inode->i_uid_high = 0;
4214 			raw_inode->i_gid_high = 0;
4215 		}
4216 	} else {
4217 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4218 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4219 		raw_inode->i_uid_high = 0;
4220 		raw_inode->i_gid_high = 0;
4221 	}
4222 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4223 
4224 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4225 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4226 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4227 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4228 
4229 	if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4230 		spin_unlock(&ei->i_raw_lock);
4231 		goto out_brelse;
4232 	}
4233 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4234 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4235 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4236 		raw_inode->i_file_acl_high =
4237 			cpu_to_le16(ei->i_file_acl >> 32);
4238 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4239 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4240 		ext4_isize_set(raw_inode, ei->i_disksize);
4241 		need_datasync = 1;
4242 	}
4243 	if (ei->i_disksize > 0x7fffffffULL) {
4244 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4245 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4246 				EXT4_SB(sb)->s_es->s_rev_level ==
4247 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4248 			set_large_file = 1;
4249 	}
4250 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4251 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4252 		if (old_valid_dev(inode->i_rdev)) {
4253 			raw_inode->i_block[0] =
4254 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4255 			raw_inode->i_block[1] = 0;
4256 		} else {
4257 			raw_inode->i_block[0] = 0;
4258 			raw_inode->i_block[1] =
4259 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4260 			raw_inode->i_block[2] = 0;
4261 		}
4262 	} else if (!ext4_has_inline_data(inode)) {
4263 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4264 			raw_inode->i_block[block] = ei->i_data[block];
4265 	}
4266 
4267 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4268 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4269 		if (ei->i_extra_isize) {
4270 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4271 				raw_inode->i_version_hi =
4272 					cpu_to_le32(inode->i_version >> 32);
4273 			raw_inode->i_extra_isize =
4274 				cpu_to_le16(ei->i_extra_isize);
4275 		}
4276 	}
4277 
4278 	ext4_inode_csum_set(inode, raw_inode, ei);
4279 
4280 	spin_unlock(&ei->i_raw_lock);
4281 
4282 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4283 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4284 	if (!err)
4285 		err = rc;
4286 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4287 	if (set_large_file) {
4288 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4289 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4290 		if (err)
4291 			goto out_brelse;
4292 		ext4_update_dynamic_rev(sb);
4293 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4294 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4295 		ext4_handle_sync(handle);
4296 		err = ext4_handle_dirty_super(handle, sb);
4297 	}
4298 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4299 out_brelse:
4300 	brelse(bh);
4301 	ext4_std_error(inode->i_sb, err);
4302 	return err;
4303 }
4304 
4305 /*
4306  * ext4_write_inode()
4307  *
4308  * We are called from a few places:
4309  *
4310  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4311  *   Here, there will be no transaction running. We wait for any running
4312  *   transaction to commit.
4313  *
4314  * - Within flush work (sys_sync(), kupdate and such).
4315  *   We wait on commit, if told to.
4316  *
4317  * - Within iput_final() -> write_inode_now()
4318  *   We wait on commit, if told to.
4319  *
4320  * In all cases it is actually safe for us to return without doing anything,
4321  * because the inode has been copied into a raw inode buffer in
4322  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4323  * writeback.
4324  *
4325  * Note that we are absolutely dependent upon all inode dirtiers doing the
4326  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4327  * which we are interested.
4328  *
4329  * It would be a bug for them to not do this.  The code:
4330  *
4331  *	mark_inode_dirty(inode)
4332  *	stuff();
4333  *	inode->i_size = expr;
4334  *
4335  * is in error because write_inode() could occur while `stuff()' is running,
4336  * and the new i_size will be lost.  Plus the inode will no longer be on the
4337  * superblock's dirty inode list.
4338  */
4339 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4340 {
4341 	int err;
4342 
4343 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4344 		return 0;
4345 
4346 	if (EXT4_SB(inode->i_sb)->s_journal) {
4347 		if (ext4_journal_current_handle()) {
4348 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4349 			dump_stack();
4350 			return -EIO;
4351 		}
4352 
4353 		/*
4354 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4355 		 * ext4_sync_fs() will force the commit after everything is
4356 		 * written.
4357 		 */
4358 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4359 			return 0;
4360 
4361 		err = ext4_force_commit(inode->i_sb);
4362 	} else {
4363 		struct ext4_iloc iloc;
4364 
4365 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4366 		if (err)
4367 			return err;
4368 		/*
4369 		 * sync(2) will flush the whole buffer cache. No need to do
4370 		 * it here separately for each inode.
4371 		 */
4372 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4373 			sync_dirty_buffer(iloc.bh);
4374 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4375 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4376 					 "IO error syncing inode");
4377 			err = -EIO;
4378 		}
4379 		brelse(iloc.bh);
4380 	}
4381 	return err;
4382 }
4383 
4384 /*
4385  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4386  * buffers that are attached to a page stradding i_size and are undergoing
4387  * commit. In that case we have to wait for commit to finish and try again.
4388  */
4389 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4390 {
4391 	struct page *page;
4392 	unsigned offset;
4393 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4394 	tid_t commit_tid = 0;
4395 	int ret;
4396 
4397 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4398 	/*
4399 	 * All buffers in the last page remain valid? Then there's nothing to
4400 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4401 	 * blocksize case
4402 	 */
4403 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4404 		return;
4405 	while (1) {
4406 		page = find_lock_page(inode->i_mapping,
4407 				      inode->i_size >> PAGE_CACHE_SHIFT);
4408 		if (!page)
4409 			return;
4410 		ret = __ext4_journalled_invalidatepage(page, offset,
4411 						PAGE_CACHE_SIZE - offset);
4412 		unlock_page(page);
4413 		page_cache_release(page);
4414 		if (ret != -EBUSY)
4415 			return;
4416 		commit_tid = 0;
4417 		read_lock(&journal->j_state_lock);
4418 		if (journal->j_committing_transaction)
4419 			commit_tid = journal->j_committing_transaction->t_tid;
4420 		read_unlock(&journal->j_state_lock);
4421 		if (commit_tid)
4422 			jbd2_log_wait_commit(journal, commit_tid);
4423 	}
4424 }
4425 
4426 /*
4427  * ext4_setattr()
4428  *
4429  * Called from notify_change.
4430  *
4431  * We want to trap VFS attempts to truncate the file as soon as
4432  * possible.  In particular, we want to make sure that when the VFS
4433  * shrinks i_size, we put the inode on the orphan list and modify
4434  * i_disksize immediately, so that during the subsequent flushing of
4435  * dirty pages and freeing of disk blocks, we can guarantee that any
4436  * commit will leave the blocks being flushed in an unused state on
4437  * disk.  (On recovery, the inode will get truncated and the blocks will
4438  * be freed, so we have a strong guarantee that no future commit will
4439  * leave these blocks visible to the user.)
4440  *
4441  * Another thing we have to assure is that if we are in ordered mode
4442  * and inode is still attached to the committing transaction, we must
4443  * we start writeout of all the dirty pages which are being truncated.
4444  * This way we are sure that all the data written in the previous
4445  * transaction are already on disk (truncate waits for pages under
4446  * writeback).
4447  *
4448  * Called with inode->i_mutex down.
4449  */
4450 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4451 {
4452 	struct inode *inode = dentry->d_inode;
4453 	int error, rc = 0;
4454 	int orphan = 0;
4455 	const unsigned int ia_valid = attr->ia_valid;
4456 
4457 	error = inode_change_ok(inode, attr);
4458 	if (error)
4459 		return error;
4460 
4461 	if (is_quota_modification(inode, attr))
4462 		dquot_initialize(inode);
4463 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4464 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4465 		handle_t *handle;
4466 
4467 		/* (user+group)*(old+new) structure, inode write (sb,
4468 		 * inode block, ? - but truncate inode update has it) */
4469 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4470 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4471 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4472 		if (IS_ERR(handle)) {
4473 			error = PTR_ERR(handle);
4474 			goto err_out;
4475 		}
4476 		error = dquot_transfer(inode, attr);
4477 		if (error) {
4478 			ext4_journal_stop(handle);
4479 			return error;
4480 		}
4481 		/* Update corresponding info in inode so that everything is in
4482 		 * one transaction */
4483 		if (attr->ia_valid & ATTR_UID)
4484 			inode->i_uid = attr->ia_uid;
4485 		if (attr->ia_valid & ATTR_GID)
4486 			inode->i_gid = attr->ia_gid;
4487 		error = ext4_mark_inode_dirty(handle, inode);
4488 		ext4_journal_stop(handle);
4489 	}
4490 
4491 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4492 		handle_t *handle;
4493 
4494 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4495 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4496 
4497 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4498 				return -EFBIG;
4499 		}
4500 
4501 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4502 			inode_inc_iversion(inode);
4503 
4504 		if (S_ISREG(inode->i_mode) &&
4505 		    (attr->ia_size < inode->i_size)) {
4506 			if (ext4_should_order_data(inode)) {
4507 				error = ext4_begin_ordered_truncate(inode,
4508 							    attr->ia_size);
4509 				if (error)
4510 					goto err_out;
4511 			}
4512 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4513 			if (IS_ERR(handle)) {
4514 				error = PTR_ERR(handle);
4515 				goto err_out;
4516 			}
4517 			if (ext4_handle_valid(handle)) {
4518 				error = ext4_orphan_add(handle, inode);
4519 				orphan = 1;
4520 			}
4521 			down_write(&EXT4_I(inode)->i_data_sem);
4522 			EXT4_I(inode)->i_disksize = attr->ia_size;
4523 			rc = ext4_mark_inode_dirty(handle, inode);
4524 			if (!error)
4525 				error = rc;
4526 			/*
4527 			 * We have to update i_size under i_data_sem together
4528 			 * with i_disksize to avoid races with writeback code
4529 			 * running ext4_wb_update_i_disksize().
4530 			 */
4531 			if (!error)
4532 				i_size_write(inode, attr->ia_size);
4533 			up_write(&EXT4_I(inode)->i_data_sem);
4534 			ext4_journal_stop(handle);
4535 			if (error) {
4536 				ext4_orphan_del(NULL, inode);
4537 				goto err_out;
4538 			}
4539 		} else
4540 			i_size_write(inode, attr->ia_size);
4541 
4542 		/*
4543 		 * Blocks are going to be removed from the inode. Wait
4544 		 * for dio in flight.  Temporarily disable
4545 		 * dioread_nolock to prevent livelock.
4546 		 */
4547 		if (orphan) {
4548 			if (!ext4_should_journal_data(inode)) {
4549 				ext4_inode_block_unlocked_dio(inode);
4550 				inode_dio_wait(inode);
4551 				ext4_inode_resume_unlocked_dio(inode);
4552 			} else
4553 				ext4_wait_for_tail_page_commit(inode);
4554 		}
4555 		/*
4556 		 * Truncate pagecache after we've waited for commit
4557 		 * in data=journal mode to make pages freeable.
4558 		 */
4559 			truncate_pagecache(inode, inode->i_size);
4560 	}
4561 	/*
4562 	 * We want to call ext4_truncate() even if attr->ia_size ==
4563 	 * inode->i_size for cases like truncation of fallocated space
4564 	 */
4565 	if (attr->ia_valid & ATTR_SIZE)
4566 		ext4_truncate(inode);
4567 
4568 	if (!rc) {
4569 		setattr_copy(inode, attr);
4570 		mark_inode_dirty(inode);
4571 	}
4572 
4573 	/*
4574 	 * If the call to ext4_truncate failed to get a transaction handle at
4575 	 * all, we need to clean up the in-core orphan list manually.
4576 	 */
4577 	if (orphan && inode->i_nlink)
4578 		ext4_orphan_del(NULL, inode);
4579 
4580 	if (!rc && (ia_valid & ATTR_MODE))
4581 		rc = posix_acl_chmod(inode, inode->i_mode);
4582 
4583 err_out:
4584 	ext4_std_error(inode->i_sb, error);
4585 	if (!error)
4586 		error = rc;
4587 	return error;
4588 }
4589 
4590 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4591 		 struct kstat *stat)
4592 {
4593 	struct inode *inode;
4594 	unsigned long long delalloc_blocks;
4595 
4596 	inode = dentry->d_inode;
4597 	generic_fillattr(inode, stat);
4598 
4599 	/*
4600 	 * If there is inline data in the inode, the inode will normally not
4601 	 * have data blocks allocated (it may have an external xattr block).
4602 	 * Report at least one sector for such files, so tools like tar, rsync,
4603 	 * others doen't incorrectly think the file is completely sparse.
4604 	 */
4605 	if (unlikely(ext4_has_inline_data(inode)))
4606 		stat->blocks += (stat->size + 511) >> 9;
4607 
4608 	/*
4609 	 * We can't update i_blocks if the block allocation is delayed
4610 	 * otherwise in the case of system crash before the real block
4611 	 * allocation is done, we will have i_blocks inconsistent with
4612 	 * on-disk file blocks.
4613 	 * We always keep i_blocks updated together with real
4614 	 * allocation. But to not confuse with user, stat
4615 	 * will return the blocks that include the delayed allocation
4616 	 * blocks for this file.
4617 	 */
4618 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4619 				   EXT4_I(inode)->i_reserved_data_blocks);
4620 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4621 	return 0;
4622 }
4623 
4624 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4625 				   int pextents)
4626 {
4627 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4628 		return ext4_ind_trans_blocks(inode, lblocks);
4629 	return ext4_ext_index_trans_blocks(inode, pextents);
4630 }
4631 
4632 /*
4633  * Account for index blocks, block groups bitmaps and block group
4634  * descriptor blocks if modify datablocks and index blocks
4635  * worse case, the indexs blocks spread over different block groups
4636  *
4637  * If datablocks are discontiguous, they are possible to spread over
4638  * different block groups too. If they are contiguous, with flexbg,
4639  * they could still across block group boundary.
4640  *
4641  * Also account for superblock, inode, quota and xattr blocks
4642  */
4643 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4644 				  int pextents)
4645 {
4646 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4647 	int gdpblocks;
4648 	int idxblocks;
4649 	int ret = 0;
4650 
4651 	/*
4652 	 * How many index blocks need to touch to map @lblocks logical blocks
4653 	 * to @pextents physical extents?
4654 	 */
4655 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4656 
4657 	ret = idxblocks;
4658 
4659 	/*
4660 	 * Now let's see how many group bitmaps and group descriptors need
4661 	 * to account
4662 	 */
4663 	groups = idxblocks + pextents;
4664 	gdpblocks = groups;
4665 	if (groups > ngroups)
4666 		groups = ngroups;
4667 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4668 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4669 
4670 	/* bitmaps and block group descriptor blocks */
4671 	ret += groups + gdpblocks;
4672 
4673 	/* Blocks for super block, inode, quota and xattr blocks */
4674 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4675 
4676 	return ret;
4677 }
4678 
4679 /*
4680  * Calculate the total number of credits to reserve to fit
4681  * the modification of a single pages into a single transaction,
4682  * which may include multiple chunks of block allocations.
4683  *
4684  * This could be called via ext4_write_begin()
4685  *
4686  * We need to consider the worse case, when
4687  * one new block per extent.
4688  */
4689 int ext4_writepage_trans_blocks(struct inode *inode)
4690 {
4691 	int bpp = ext4_journal_blocks_per_page(inode);
4692 	int ret;
4693 
4694 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4695 
4696 	/* Account for data blocks for journalled mode */
4697 	if (ext4_should_journal_data(inode))
4698 		ret += bpp;
4699 	return ret;
4700 }
4701 
4702 /*
4703  * Calculate the journal credits for a chunk of data modification.
4704  *
4705  * This is called from DIO, fallocate or whoever calling
4706  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4707  *
4708  * journal buffers for data blocks are not included here, as DIO
4709  * and fallocate do no need to journal data buffers.
4710  */
4711 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4712 {
4713 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4714 }
4715 
4716 /*
4717  * The caller must have previously called ext4_reserve_inode_write().
4718  * Give this, we know that the caller already has write access to iloc->bh.
4719  */
4720 int ext4_mark_iloc_dirty(handle_t *handle,
4721 			 struct inode *inode, struct ext4_iloc *iloc)
4722 {
4723 	int err = 0;
4724 
4725 	if (IS_I_VERSION(inode))
4726 		inode_inc_iversion(inode);
4727 
4728 	/* the do_update_inode consumes one bh->b_count */
4729 	get_bh(iloc->bh);
4730 
4731 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4732 	err = ext4_do_update_inode(handle, inode, iloc);
4733 	put_bh(iloc->bh);
4734 	return err;
4735 }
4736 
4737 /*
4738  * On success, We end up with an outstanding reference count against
4739  * iloc->bh.  This _must_ be cleaned up later.
4740  */
4741 
4742 int
4743 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4744 			 struct ext4_iloc *iloc)
4745 {
4746 	int err;
4747 
4748 	err = ext4_get_inode_loc(inode, iloc);
4749 	if (!err) {
4750 		BUFFER_TRACE(iloc->bh, "get_write_access");
4751 		err = ext4_journal_get_write_access(handle, iloc->bh);
4752 		if (err) {
4753 			brelse(iloc->bh);
4754 			iloc->bh = NULL;
4755 		}
4756 	}
4757 	ext4_std_error(inode->i_sb, err);
4758 	return err;
4759 }
4760 
4761 /*
4762  * Expand an inode by new_extra_isize bytes.
4763  * Returns 0 on success or negative error number on failure.
4764  */
4765 static int ext4_expand_extra_isize(struct inode *inode,
4766 				   unsigned int new_extra_isize,
4767 				   struct ext4_iloc iloc,
4768 				   handle_t *handle)
4769 {
4770 	struct ext4_inode *raw_inode;
4771 	struct ext4_xattr_ibody_header *header;
4772 
4773 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4774 		return 0;
4775 
4776 	raw_inode = ext4_raw_inode(&iloc);
4777 
4778 	header = IHDR(inode, raw_inode);
4779 
4780 	/* No extended attributes present */
4781 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4782 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4783 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4784 			new_extra_isize);
4785 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4786 		return 0;
4787 	}
4788 
4789 	/* try to expand with EAs present */
4790 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4791 					  raw_inode, handle);
4792 }
4793 
4794 /*
4795  * What we do here is to mark the in-core inode as clean with respect to inode
4796  * dirtiness (it may still be data-dirty).
4797  * This means that the in-core inode may be reaped by prune_icache
4798  * without having to perform any I/O.  This is a very good thing,
4799  * because *any* task may call prune_icache - even ones which
4800  * have a transaction open against a different journal.
4801  *
4802  * Is this cheating?  Not really.  Sure, we haven't written the
4803  * inode out, but prune_icache isn't a user-visible syncing function.
4804  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4805  * we start and wait on commits.
4806  */
4807 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4808 {
4809 	struct ext4_iloc iloc;
4810 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4811 	static unsigned int mnt_count;
4812 	int err, ret;
4813 
4814 	might_sleep();
4815 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4816 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4817 	if (ext4_handle_valid(handle) &&
4818 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4819 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4820 		/*
4821 		 * We need extra buffer credits since we may write into EA block
4822 		 * with this same handle. If journal_extend fails, then it will
4823 		 * only result in a minor loss of functionality for that inode.
4824 		 * If this is felt to be critical, then e2fsck should be run to
4825 		 * force a large enough s_min_extra_isize.
4826 		 */
4827 		if ((jbd2_journal_extend(handle,
4828 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4829 			ret = ext4_expand_extra_isize(inode,
4830 						      sbi->s_want_extra_isize,
4831 						      iloc, handle);
4832 			if (ret) {
4833 				ext4_set_inode_state(inode,
4834 						     EXT4_STATE_NO_EXPAND);
4835 				if (mnt_count !=
4836 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4837 					ext4_warning(inode->i_sb,
4838 					"Unable to expand inode %lu. Delete"
4839 					" some EAs or run e2fsck.",
4840 					inode->i_ino);
4841 					mnt_count =
4842 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4843 				}
4844 			}
4845 		}
4846 	}
4847 	if (!err)
4848 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4849 	return err;
4850 }
4851 
4852 /*
4853  * ext4_dirty_inode() is called from __mark_inode_dirty()
4854  *
4855  * We're really interested in the case where a file is being extended.
4856  * i_size has been changed by generic_commit_write() and we thus need
4857  * to include the updated inode in the current transaction.
4858  *
4859  * Also, dquot_alloc_block() will always dirty the inode when blocks
4860  * are allocated to the file.
4861  *
4862  * If the inode is marked synchronous, we don't honour that here - doing
4863  * so would cause a commit on atime updates, which we don't bother doing.
4864  * We handle synchronous inodes at the highest possible level.
4865  */
4866 void ext4_dirty_inode(struct inode *inode, int flags)
4867 {
4868 	handle_t *handle;
4869 
4870 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4871 	if (IS_ERR(handle))
4872 		goto out;
4873 
4874 	ext4_mark_inode_dirty(handle, inode);
4875 
4876 	ext4_journal_stop(handle);
4877 out:
4878 	return;
4879 }
4880 
4881 #if 0
4882 /*
4883  * Bind an inode's backing buffer_head into this transaction, to prevent
4884  * it from being flushed to disk early.  Unlike
4885  * ext4_reserve_inode_write, this leaves behind no bh reference and
4886  * returns no iloc structure, so the caller needs to repeat the iloc
4887  * lookup to mark the inode dirty later.
4888  */
4889 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4890 {
4891 	struct ext4_iloc iloc;
4892 
4893 	int err = 0;
4894 	if (handle) {
4895 		err = ext4_get_inode_loc(inode, &iloc);
4896 		if (!err) {
4897 			BUFFER_TRACE(iloc.bh, "get_write_access");
4898 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4899 			if (!err)
4900 				err = ext4_handle_dirty_metadata(handle,
4901 								 NULL,
4902 								 iloc.bh);
4903 			brelse(iloc.bh);
4904 		}
4905 	}
4906 	ext4_std_error(inode->i_sb, err);
4907 	return err;
4908 }
4909 #endif
4910 
4911 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4912 {
4913 	journal_t *journal;
4914 	handle_t *handle;
4915 	int err;
4916 
4917 	/*
4918 	 * We have to be very careful here: changing a data block's
4919 	 * journaling status dynamically is dangerous.  If we write a
4920 	 * data block to the journal, change the status and then delete
4921 	 * that block, we risk forgetting to revoke the old log record
4922 	 * from the journal and so a subsequent replay can corrupt data.
4923 	 * So, first we make sure that the journal is empty and that
4924 	 * nobody is changing anything.
4925 	 */
4926 
4927 	journal = EXT4_JOURNAL(inode);
4928 	if (!journal)
4929 		return 0;
4930 	if (is_journal_aborted(journal))
4931 		return -EROFS;
4932 	/* We have to allocate physical blocks for delalloc blocks
4933 	 * before flushing journal. otherwise delalloc blocks can not
4934 	 * be allocated any more. even more truncate on delalloc blocks
4935 	 * could trigger BUG by flushing delalloc blocks in journal.
4936 	 * There is no delalloc block in non-journal data mode.
4937 	 */
4938 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4939 		err = ext4_alloc_da_blocks(inode);
4940 		if (err < 0)
4941 			return err;
4942 	}
4943 
4944 	/* Wait for all existing dio workers */
4945 	ext4_inode_block_unlocked_dio(inode);
4946 	inode_dio_wait(inode);
4947 
4948 	jbd2_journal_lock_updates(journal);
4949 
4950 	/*
4951 	 * OK, there are no updates running now, and all cached data is
4952 	 * synced to disk.  We are now in a completely consistent state
4953 	 * which doesn't have anything in the journal, and we know that
4954 	 * no filesystem updates are running, so it is safe to modify
4955 	 * the inode's in-core data-journaling state flag now.
4956 	 */
4957 
4958 	if (val)
4959 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4960 	else {
4961 		jbd2_journal_flush(journal);
4962 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4963 	}
4964 	ext4_set_aops(inode);
4965 
4966 	jbd2_journal_unlock_updates(journal);
4967 	ext4_inode_resume_unlocked_dio(inode);
4968 
4969 	/* Finally we can mark the inode as dirty. */
4970 
4971 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4972 	if (IS_ERR(handle))
4973 		return PTR_ERR(handle);
4974 
4975 	err = ext4_mark_inode_dirty(handle, inode);
4976 	ext4_handle_sync(handle);
4977 	ext4_journal_stop(handle);
4978 	ext4_std_error(inode->i_sb, err);
4979 
4980 	return err;
4981 }
4982 
4983 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4984 {
4985 	return !buffer_mapped(bh);
4986 }
4987 
4988 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4989 {
4990 	struct page *page = vmf->page;
4991 	loff_t size;
4992 	unsigned long len;
4993 	int ret;
4994 	struct file *file = vma->vm_file;
4995 	struct inode *inode = file_inode(file);
4996 	struct address_space *mapping = inode->i_mapping;
4997 	handle_t *handle;
4998 	get_block_t *get_block;
4999 	int retries = 0;
5000 
5001 	sb_start_pagefault(inode->i_sb);
5002 	file_update_time(vma->vm_file);
5003 	/* Delalloc case is easy... */
5004 	if (test_opt(inode->i_sb, DELALLOC) &&
5005 	    !ext4_should_journal_data(inode) &&
5006 	    !ext4_nonda_switch(inode->i_sb)) {
5007 		do {
5008 			ret = __block_page_mkwrite(vma, vmf,
5009 						   ext4_da_get_block_prep);
5010 		} while (ret == -ENOSPC &&
5011 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5012 		goto out_ret;
5013 	}
5014 
5015 	lock_page(page);
5016 	size = i_size_read(inode);
5017 	/* Page got truncated from under us? */
5018 	if (page->mapping != mapping || page_offset(page) > size) {
5019 		unlock_page(page);
5020 		ret = VM_FAULT_NOPAGE;
5021 		goto out;
5022 	}
5023 
5024 	if (page->index == size >> PAGE_CACHE_SHIFT)
5025 		len = size & ~PAGE_CACHE_MASK;
5026 	else
5027 		len = PAGE_CACHE_SIZE;
5028 	/*
5029 	 * Return if we have all the buffers mapped. This avoids the need to do
5030 	 * journal_start/journal_stop which can block and take a long time
5031 	 */
5032 	if (page_has_buffers(page)) {
5033 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5034 					    0, len, NULL,
5035 					    ext4_bh_unmapped)) {
5036 			/* Wait so that we don't change page under IO */
5037 			wait_for_stable_page(page);
5038 			ret = VM_FAULT_LOCKED;
5039 			goto out;
5040 		}
5041 	}
5042 	unlock_page(page);
5043 	/* OK, we need to fill the hole... */
5044 	if (ext4_should_dioread_nolock(inode))
5045 		get_block = ext4_get_block_write;
5046 	else
5047 		get_block = ext4_get_block;
5048 retry_alloc:
5049 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5050 				    ext4_writepage_trans_blocks(inode));
5051 	if (IS_ERR(handle)) {
5052 		ret = VM_FAULT_SIGBUS;
5053 		goto out;
5054 	}
5055 	ret = __block_page_mkwrite(vma, vmf, get_block);
5056 	if (!ret && ext4_should_journal_data(inode)) {
5057 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5058 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5059 			unlock_page(page);
5060 			ret = VM_FAULT_SIGBUS;
5061 			ext4_journal_stop(handle);
5062 			goto out;
5063 		}
5064 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5065 	}
5066 	ext4_journal_stop(handle);
5067 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5068 		goto retry_alloc;
5069 out_ret:
5070 	ret = block_page_mkwrite_return(ret);
5071 out:
5072 	sb_end_pagefault(inode->i_sb);
5073 	return ret;
5074 }
5075