1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 #include <linux/bitops.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u16 csum_lo; 57 __u16 csum_hi = 0; 58 __u32 csum; 59 60 csum_lo = le16_to_cpu(raw->i_checksum_lo); 61 raw->i_checksum_lo = 0; 62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 64 csum_hi = le16_to_cpu(raw->i_checksum_hi); 65 raw->i_checksum_hi = 0; 66 } 67 68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 69 EXT4_INODE_SIZE(inode->i_sb)); 70 71 raw->i_checksum_lo = cpu_to_le16(csum_lo); 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 74 raw->i_checksum_hi = cpu_to_le16(csum_hi); 75 76 return csum; 77 } 78 79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 80 struct ext4_inode_info *ei) 81 { 82 __u32 provided, calculated; 83 84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 85 cpu_to_le32(EXT4_OS_LINUX) || 86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 88 return 1; 89 90 provided = le16_to_cpu(raw->i_checksum_lo); 91 calculated = ext4_inode_csum(inode, raw, ei); 92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 95 else 96 calculated &= 0xFFFF; 97 98 return provided == calculated; 99 } 100 101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 102 struct ext4_inode_info *ei) 103 { 104 __u32 csum; 105 106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 107 cpu_to_le32(EXT4_OS_LINUX) || 108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 110 return; 111 112 csum = ext4_inode_csum(inode, raw, ei); 113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 116 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 117 } 118 119 static inline int ext4_begin_ordered_truncate(struct inode *inode, 120 loff_t new_size) 121 { 122 trace_ext4_begin_ordered_truncate(inode, new_size); 123 /* 124 * If jinode is zero, then we never opened the file for 125 * writing, so there's no need to call 126 * jbd2_journal_begin_ordered_truncate() since there's no 127 * outstanding writes we need to flush. 128 */ 129 if (!EXT4_I(inode)->jinode) 130 return 0; 131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 132 EXT4_I(inode)->jinode, 133 new_size); 134 } 135 136 static void ext4_invalidatepage(struct page *page, unsigned int offset, 137 unsigned int length); 138 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 141 int pextents); 142 143 /* 144 * Test whether an inode is a fast symlink. 145 */ 146 static int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 int ea_blocks = EXT4_I(inode)->i_file_acl ? 149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 150 151 if (ext4_has_inline_data(inode)) 152 return 0; 153 154 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 155 } 156 157 /* 158 * Restart the transaction associated with *handle. This does a commit, 159 * so before we call here everything must be consistently dirtied against 160 * this transaction. 161 */ 162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 163 int nblocks) 164 { 165 int ret; 166 167 /* 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 169 * moment, get_block can be called only for blocks inside i_size since 170 * page cache has been already dropped and writes are blocked by 171 * i_mutex. So we can safely drop the i_data_sem here. 172 */ 173 BUG_ON(EXT4_JOURNAL(inode) == NULL); 174 jbd_debug(2, "restarting handle %p\n", handle); 175 up_write(&EXT4_I(inode)->i_data_sem); 176 ret = ext4_journal_restart(handle, nblocks); 177 down_write(&EXT4_I(inode)->i_data_sem); 178 ext4_discard_preallocations(inode); 179 180 return ret; 181 } 182 183 /* 184 * Called at the last iput() if i_nlink is zero. 185 */ 186 void ext4_evict_inode(struct inode *inode) 187 { 188 handle_t *handle; 189 int err; 190 191 trace_ext4_evict_inode(inode); 192 193 if (inode->i_nlink) { 194 /* 195 * When journalling data dirty buffers are tracked only in the 196 * journal. So although mm thinks everything is clean and 197 * ready for reaping the inode might still have some pages to 198 * write in the running transaction or waiting to be 199 * checkpointed. Thus calling jbd2_journal_invalidatepage() 200 * (via truncate_inode_pages()) to discard these buffers can 201 * cause data loss. Also even if we did not discard these 202 * buffers, we would have no way to find them after the inode 203 * is reaped and thus user could see stale data if he tries to 204 * read them before the transaction is checkpointed. So be 205 * careful and force everything to disk here... We use 206 * ei->i_datasync_tid to store the newest transaction 207 * containing inode's data. 208 * 209 * Note that directories do not have this problem because they 210 * don't use page cache. 211 */ 212 if (ext4_should_journal_data(inode) && 213 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 214 inode->i_ino != EXT4_JOURNAL_INO) { 215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 217 218 jbd2_complete_transaction(journal, commit_tid); 219 filemap_write_and_wait(&inode->i_data); 220 } 221 truncate_inode_pages_final(&inode->i_data); 222 223 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 224 goto no_delete; 225 } 226 227 if (!is_bad_inode(inode)) 228 dquot_initialize(inode); 229 230 if (ext4_should_order_data(inode)) 231 ext4_begin_ordered_truncate(inode, 0); 232 truncate_inode_pages_final(&inode->i_data); 233 234 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 235 if (is_bad_inode(inode)) 236 goto no_delete; 237 238 /* 239 * Protect us against freezing - iput() caller didn't have to have any 240 * protection against it 241 */ 242 sb_start_intwrite(inode->i_sb); 243 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 244 ext4_blocks_for_truncate(inode)+3); 245 if (IS_ERR(handle)) { 246 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 247 /* 248 * If we're going to skip the normal cleanup, we still need to 249 * make sure that the in-core orphan linked list is properly 250 * cleaned up. 251 */ 252 ext4_orphan_del(NULL, inode); 253 sb_end_intwrite(inode->i_sb); 254 goto no_delete; 255 } 256 257 if (IS_SYNC(inode)) 258 ext4_handle_sync(handle); 259 inode->i_size = 0; 260 err = ext4_mark_inode_dirty(handle, inode); 261 if (err) { 262 ext4_warning(inode->i_sb, 263 "couldn't mark inode dirty (err %d)", err); 264 goto stop_handle; 265 } 266 if (inode->i_blocks) 267 ext4_truncate(inode); 268 269 /* 270 * ext4_ext_truncate() doesn't reserve any slop when it 271 * restarts journal transactions; therefore there may not be 272 * enough credits left in the handle to remove the inode from 273 * the orphan list and set the dtime field. 274 */ 275 if (!ext4_handle_has_enough_credits(handle, 3)) { 276 err = ext4_journal_extend(handle, 3); 277 if (err > 0) 278 err = ext4_journal_restart(handle, 3); 279 if (err != 0) { 280 ext4_warning(inode->i_sb, 281 "couldn't extend journal (err %d)", err); 282 stop_handle: 283 ext4_journal_stop(handle); 284 ext4_orphan_del(NULL, inode); 285 sb_end_intwrite(inode->i_sb); 286 goto no_delete; 287 } 288 } 289 290 /* 291 * Kill off the orphan record which ext4_truncate created. 292 * AKPM: I think this can be inside the above `if'. 293 * Note that ext4_orphan_del() has to be able to cope with the 294 * deletion of a non-existent orphan - this is because we don't 295 * know if ext4_truncate() actually created an orphan record. 296 * (Well, we could do this if we need to, but heck - it works) 297 */ 298 ext4_orphan_del(handle, inode); 299 EXT4_I(inode)->i_dtime = get_seconds(); 300 301 /* 302 * One subtle ordering requirement: if anything has gone wrong 303 * (transaction abort, IO errors, whatever), then we can still 304 * do these next steps (the fs will already have been marked as 305 * having errors), but we can't free the inode if the mark_dirty 306 * fails. 307 */ 308 if (ext4_mark_inode_dirty(handle, inode)) 309 /* If that failed, just do the required in-core inode clear. */ 310 ext4_clear_inode(inode); 311 else 312 ext4_free_inode(handle, inode); 313 ext4_journal_stop(handle); 314 sb_end_intwrite(inode->i_sb); 315 return; 316 no_delete: 317 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 318 } 319 320 #ifdef CONFIG_QUOTA 321 qsize_t *ext4_get_reserved_space(struct inode *inode) 322 { 323 return &EXT4_I(inode)->i_reserved_quota; 324 } 325 #endif 326 327 /* 328 * Called with i_data_sem down, which is important since we can call 329 * ext4_discard_preallocations() from here. 330 */ 331 void ext4_da_update_reserve_space(struct inode *inode, 332 int used, int quota_claim) 333 { 334 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 335 struct ext4_inode_info *ei = EXT4_I(inode); 336 337 spin_lock(&ei->i_block_reservation_lock); 338 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 339 if (unlikely(used > ei->i_reserved_data_blocks)) { 340 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 341 "with only %d reserved data blocks", 342 __func__, inode->i_ino, used, 343 ei->i_reserved_data_blocks); 344 WARN_ON(1); 345 used = ei->i_reserved_data_blocks; 346 } 347 348 /* Update per-inode reservations */ 349 ei->i_reserved_data_blocks -= used; 350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 351 352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 353 354 /* Update quota subsystem for data blocks */ 355 if (quota_claim) 356 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 357 else { 358 /* 359 * We did fallocate with an offset that is already delayed 360 * allocated. So on delayed allocated writeback we should 361 * not re-claim the quota for fallocated blocks. 362 */ 363 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 364 } 365 366 /* 367 * If we have done all the pending block allocations and if 368 * there aren't any writers on the inode, we can discard the 369 * inode's preallocations. 370 */ 371 if ((ei->i_reserved_data_blocks == 0) && 372 (atomic_read(&inode->i_writecount) == 0)) 373 ext4_discard_preallocations(inode); 374 } 375 376 static int __check_block_validity(struct inode *inode, const char *func, 377 unsigned int line, 378 struct ext4_map_blocks *map) 379 { 380 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 381 map->m_len)) { 382 ext4_error_inode(inode, func, line, map->m_pblk, 383 "lblock %lu mapped to illegal pblock " 384 "(length %d)", (unsigned long) map->m_lblk, 385 map->m_len); 386 return -EIO; 387 } 388 return 0; 389 } 390 391 #define check_block_validity(inode, map) \ 392 __check_block_validity((inode), __func__, __LINE__, (map)) 393 394 #ifdef ES_AGGRESSIVE_TEST 395 static void ext4_map_blocks_es_recheck(handle_t *handle, 396 struct inode *inode, 397 struct ext4_map_blocks *es_map, 398 struct ext4_map_blocks *map, 399 int flags) 400 { 401 int retval; 402 403 map->m_flags = 0; 404 /* 405 * There is a race window that the result is not the same. 406 * e.g. xfstests #223 when dioread_nolock enables. The reason 407 * is that we lookup a block mapping in extent status tree with 408 * out taking i_data_sem. So at the time the unwritten extent 409 * could be converted. 410 */ 411 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 412 down_read(&EXT4_I(inode)->i_data_sem); 413 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 414 retval = ext4_ext_map_blocks(handle, inode, map, flags & 415 EXT4_GET_BLOCKS_KEEP_SIZE); 416 } else { 417 retval = ext4_ind_map_blocks(handle, inode, map, flags & 418 EXT4_GET_BLOCKS_KEEP_SIZE); 419 } 420 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 421 up_read((&EXT4_I(inode)->i_data_sem)); 422 /* 423 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 424 * because it shouldn't be marked in es_map->m_flags. 425 */ 426 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 427 428 /* 429 * We don't check m_len because extent will be collpased in status 430 * tree. So the m_len might not equal. 431 */ 432 if (es_map->m_lblk != map->m_lblk || 433 es_map->m_flags != map->m_flags || 434 es_map->m_pblk != map->m_pblk) { 435 printk("ES cache assertion failed for inode: %lu " 436 "es_cached ex [%d/%d/%llu/%x] != " 437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 438 inode->i_ino, es_map->m_lblk, es_map->m_len, 439 es_map->m_pblk, es_map->m_flags, map->m_lblk, 440 map->m_len, map->m_pblk, map->m_flags, 441 retval, flags); 442 } 443 } 444 #endif /* ES_AGGRESSIVE_TEST */ 445 446 /* 447 * The ext4_map_blocks() function tries to look up the requested blocks, 448 * and returns if the blocks are already mapped. 449 * 450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 451 * and store the allocated blocks in the result buffer head and mark it 452 * mapped. 453 * 454 * If file type is extents based, it will call ext4_ext_map_blocks(), 455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 456 * based files 457 * 458 * On success, it returns the number of blocks being mapped or allocated. 459 * if create==0 and the blocks are pre-allocated and unwritten block, 460 * the result buffer head is unmapped. If the create ==1, it will make sure 461 * the buffer head is mapped. 462 * 463 * It returns 0 if plain look up failed (blocks have not been allocated), in 464 * that case, buffer head is unmapped 465 * 466 * It returns the error in case of allocation failure. 467 */ 468 int ext4_map_blocks(handle_t *handle, struct inode *inode, 469 struct ext4_map_blocks *map, int flags) 470 { 471 struct extent_status es; 472 int retval; 473 int ret = 0; 474 #ifdef ES_AGGRESSIVE_TEST 475 struct ext4_map_blocks orig_map; 476 477 memcpy(&orig_map, map, sizeof(*map)); 478 #endif 479 480 map->m_flags = 0; 481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 482 "logical block %lu\n", inode->i_ino, flags, map->m_len, 483 (unsigned long) map->m_lblk); 484 485 /* 486 * ext4_map_blocks returns an int, and m_len is an unsigned int 487 */ 488 if (unlikely(map->m_len > INT_MAX)) 489 map->m_len = INT_MAX; 490 491 /* We can handle the block number less than EXT_MAX_BLOCKS */ 492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 493 return -EIO; 494 495 /* Lookup extent status tree firstly */ 496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 497 ext4_es_lru_add(inode); 498 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 499 map->m_pblk = ext4_es_pblock(&es) + 500 map->m_lblk - es.es_lblk; 501 map->m_flags |= ext4_es_is_written(&es) ? 502 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 503 retval = es.es_len - (map->m_lblk - es.es_lblk); 504 if (retval > map->m_len) 505 retval = map->m_len; 506 map->m_len = retval; 507 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 508 retval = 0; 509 } else { 510 BUG_ON(1); 511 } 512 #ifdef ES_AGGRESSIVE_TEST 513 ext4_map_blocks_es_recheck(handle, inode, map, 514 &orig_map, flags); 515 #endif 516 goto found; 517 } 518 519 /* 520 * Try to see if we can get the block without requesting a new 521 * file system block. 522 */ 523 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 524 down_read(&EXT4_I(inode)->i_data_sem); 525 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 526 retval = ext4_ext_map_blocks(handle, inode, map, flags & 527 EXT4_GET_BLOCKS_KEEP_SIZE); 528 } else { 529 retval = ext4_ind_map_blocks(handle, inode, map, flags & 530 EXT4_GET_BLOCKS_KEEP_SIZE); 531 } 532 if (retval > 0) { 533 unsigned int status; 534 535 if (unlikely(retval != map->m_len)) { 536 ext4_warning(inode->i_sb, 537 "ES len assertion failed for inode " 538 "%lu: retval %d != map->m_len %d", 539 inode->i_ino, retval, map->m_len); 540 WARN_ON(1); 541 } 542 543 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 544 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 545 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 546 ext4_find_delalloc_range(inode, map->m_lblk, 547 map->m_lblk + map->m_len - 1)) 548 status |= EXTENT_STATUS_DELAYED; 549 ret = ext4_es_insert_extent(inode, map->m_lblk, 550 map->m_len, map->m_pblk, status); 551 if (ret < 0) 552 retval = ret; 553 } 554 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 555 up_read((&EXT4_I(inode)->i_data_sem)); 556 557 found: 558 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 559 ret = check_block_validity(inode, map); 560 if (ret != 0) 561 return ret; 562 } 563 564 /* If it is only a block(s) look up */ 565 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 566 return retval; 567 568 /* 569 * Returns if the blocks have already allocated 570 * 571 * Note that if blocks have been preallocated 572 * ext4_ext_get_block() returns the create = 0 573 * with buffer head unmapped. 574 */ 575 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 576 /* 577 * If we need to convert extent to unwritten 578 * we continue and do the actual work in 579 * ext4_ext_map_blocks() 580 */ 581 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 582 return retval; 583 584 /* 585 * Here we clear m_flags because after allocating an new extent, 586 * it will be set again. 587 */ 588 map->m_flags &= ~EXT4_MAP_FLAGS; 589 590 /* 591 * New blocks allocate and/or writing to unwritten extent 592 * will possibly result in updating i_data, so we take 593 * the write lock of i_data_sem, and call get_blocks() 594 * with create == 1 flag. 595 */ 596 down_write(&EXT4_I(inode)->i_data_sem); 597 598 /* 599 * if the caller is from delayed allocation writeout path 600 * we have already reserved fs blocks for allocation 601 * let the underlying get_block() function know to 602 * avoid double accounting 603 */ 604 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 605 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 606 /* 607 * We need to check for EXT4 here because migrate 608 * could have changed the inode type in between 609 */ 610 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 611 retval = ext4_ext_map_blocks(handle, inode, map, flags); 612 } else { 613 retval = ext4_ind_map_blocks(handle, inode, map, flags); 614 615 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 616 /* 617 * We allocated new blocks which will result in 618 * i_data's format changing. Force the migrate 619 * to fail by clearing migrate flags 620 */ 621 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 622 } 623 624 /* 625 * Update reserved blocks/metadata blocks after successful 626 * block allocation which had been deferred till now. We don't 627 * support fallocate for non extent files. So we can update 628 * reserve space here. 629 */ 630 if ((retval > 0) && 631 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 632 ext4_da_update_reserve_space(inode, retval, 1); 633 } 634 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 635 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 636 637 if (retval > 0) { 638 unsigned int status; 639 640 if (unlikely(retval != map->m_len)) { 641 ext4_warning(inode->i_sb, 642 "ES len assertion failed for inode " 643 "%lu: retval %d != map->m_len %d", 644 inode->i_ino, retval, map->m_len); 645 WARN_ON(1); 646 } 647 648 /* 649 * If the extent has been zeroed out, we don't need to update 650 * extent status tree. 651 */ 652 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 653 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 654 if (ext4_es_is_written(&es)) 655 goto has_zeroout; 656 } 657 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 658 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 659 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 660 ext4_find_delalloc_range(inode, map->m_lblk, 661 map->m_lblk + map->m_len - 1)) 662 status |= EXTENT_STATUS_DELAYED; 663 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 664 map->m_pblk, status); 665 if (ret < 0) 666 retval = ret; 667 } 668 669 has_zeroout: 670 up_write((&EXT4_I(inode)->i_data_sem)); 671 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 672 ret = check_block_validity(inode, map); 673 if (ret != 0) 674 return ret; 675 } 676 return retval; 677 } 678 679 /* Maximum number of blocks we map for direct IO at once. */ 680 #define DIO_MAX_BLOCKS 4096 681 682 static int _ext4_get_block(struct inode *inode, sector_t iblock, 683 struct buffer_head *bh, int flags) 684 { 685 handle_t *handle = ext4_journal_current_handle(); 686 struct ext4_map_blocks map; 687 int ret = 0, started = 0; 688 int dio_credits; 689 690 if (ext4_has_inline_data(inode)) 691 return -ERANGE; 692 693 map.m_lblk = iblock; 694 map.m_len = bh->b_size >> inode->i_blkbits; 695 696 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 697 /* Direct IO write... */ 698 if (map.m_len > DIO_MAX_BLOCKS) 699 map.m_len = DIO_MAX_BLOCKS; 700 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 701 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 702 dio_credits); 703 if (IS_ERR(handle)) { 704 ret = PTR_ERR(handle); 705 return ret; 706 } 707 started = 1; 708 } 709 710 ret = ext4_map_blocks(handle, inode, &map, flags); 711 if (ret > 0) { 712 ext4_io_end_t *io_end = ext4_inode_aio(inode); 713 714 map_bh(bh, inode->i_sb, map.m_pblk); 715 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 716 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 717 set_buffer_defer_completion(bh); 718 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 719 ret = 0; 720 } 721 if (started) 722 ext4_journal_stop(handle); 723 return ret; 724 } 725 726 int ext4_get_block(struct inode *inode, sector_t iblock, 727 struct buffer_head *bh, int create) 728 { 729 return _ext4_get_block(inode, iblock, bh, 730 create ? EXT4_GET_BLOCKS_CREATE : 0); 731 } 732 733 /* 734 * `handle' can be NULL if create is zero 735 */ 736 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 737 ext4_lblk_t block, int create, int *errp) 738 { 739 struct ext4_map_blocks map; 740 struct buffer_head *bh; 741 int fatal = 0, err; 742 743 J_ASSERT(handle != NULL || create == 0); 744 745 map.m_lblk = block; 746 map.m_len = 1; 747 err = ext4_map_blocks(handle, inode, &map, 748 create ? EXT4_GET_BLOCKS_CREATE : 0); 749 750 /* ensure we send some value back into *errp */ 751 *errp = 0; 752 753 if (create && err == 0) 754 err = -ENOSPC; /* should never happen */ 755 if (err < 0) 756 *errp = err; 757 if (err <= 0) 758 return NULL; 759 760 bh = sb_getblk(inode->i_sb, map.m_pblk); 761 if (unlikely(!bh)) { 762 *errp = -ENOMEM; 763 return NULL; 764 } 765 if (map.m_flags & EXT4_MAP_NEW) { 766 J_ASSERT(create != 0); 767 J_ASSERT(handle != NULL); 768 769 /* 770 * Now that we do not always journal data, we should 771 * keep in mind whether this should always journal the 772 * new buffer as metadata. For now, regular file 773 * writes use ext4_get_block instead, so it's not a 774 * problem. 775 */ 776 lock_buffer(bh); 777 BUFFER_TRACE(bh, "call get_create_access"); 778 fatal = ext4_journal_get_create_access(handle, bh); 779 if (!fatal && !buffer_uptodate(bh)) { 780 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 781 set_buffer_uptodate(bh); 782 } 783 unlock_buffer(bh); 784 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 785 err = ext4_handle_dirty_metadata(handle, inode, bh); 786 if (!fatal) 787 fatal = err; 788 } else { 789 BUFFER_TRACE(bh, "not a new buffer"); 790 } 791 if (fatal) { 792 *errp = fatal; 793 brelse(bh); 794 bh = NULL; 795 } 796 return bh; 797 } 798 799 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 800 ext4_lblk_t block, int create, int *err) 801 { 802 struct buffer_head *bh; 803 804 bh = ext4_getblk(handle, inode, block, create, err); 805 if (!bh) 806 return bh; 807 if (buffer_uptodate(bh)) 808 return bh; 809 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 810 wait_on_buffer(bh); 811 if (buffer_uptodate(bh)) 812 return bh; 813 put_bh(bh); 814 *err = -EIO; 815 return NULL; 816 } 817 818 int ext4_walk_page_buffers(handle_t *handle, 819 struct buffer_head *head, 820 unsigned from, 821 unsigned to, 822 int *partial, 823 int (*fn)(handle_t *handle, 824 struct buffer_head *bh)) 825 { 826 struct buffer_head *bh; 827 unsigned block_start, block_end; 828 unsigned blocksize = head->b_size; 829 int err, ret = 0; 830 struct buffer_head *next; 831 832 for (bh = head, block_start = 0; 833 ret == 0 && (bh != head || !block_start); 834 block_start = block_end, bh = next) { 835 next = bh->b_this_page; 836 block_end = block_start + blocksize; 837 if (block_end <= from || block_start >= to) { 838 if (partial && !buffer_uptodate(bh)) 839 *partial = 1; 840 continue; 841 } 842 err = (*fn)(handle, bh); 843 if (!ret) 844 ret = err; 845 } 846 return ret; 847 } 848 849 /* 850 * To preserve ordering, it is essential that the hole instantiation and 851 * the data write be encapsulated in a single transaction. We cannot 852 * close off a transaction and start a new one between the ext4_get_block() 853 * and the commit_write(). So doing the jbd2_journal_start at the start of 854 * prepare_write() is the right place. 855 * 856 * Also, this function can nest inside ext4_writepage(). In that case, we 857 * *know* that ext4_writepage() has generated enough buffer credits to do the 858 * whole page. So we won't block on the journal in that case, which is good, 859 * because the caller may be PF_MEMALLOC. 860 * 861 * By accident, ext4 can be reentered when a transaction is open via 862 * quota file writes. If we were to commit the transaction while thus 863 * reentered, there can be a deadlock - we would be holding a quota 864 * lock, and the commit would never complete if another thread had a 865 * transaction open and was blocking on the quota lock - a ranking 866 * violation. 867 * 868 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 869 * will _not_ run commit under these circumstances because handle->h_ref 870 * is elevated. We'll still have enough credits for the tiny quotafile 871 * write. 872 */ 873 int do_journal_get_write_access(handle_t *handle, 874 struct buffer_head *bh) 875 { 876 int dirty = buffer_dirty(bh); 877 int ret; 878 879 if (!buffer_mapped(bh) || buffer_freed(bh)) 880 return 0; 881 /* 882 * __block_write_begin() could have dirtied some buffers. Clean 883 * the dirty bit as jbd2_journal_get_write_access() could complain 884 * otherwise about fs integrity issues. Setting of the dirty bit 885 * by __block_write_begin() isn't a real problem here as we clear 886 * the bit before releasing a page lock and thus writeback cannot 887 * ever write the buffer. 888 */ 889 if (dirty) 890 clear_buffer_dirty(bh); 891 BUFFER_TRACE(bh, "get write access"); 892 ret = ext4_journal_get_write_access(handle, bh); 893 if (!ret && dirty) 894 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 895 return ret; 896 } 897 898 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 899 struct buffer_head *bh_result, int create); 900 static int ext4_write_begin(struct file *file, struct address_space *mapping, 901 loff_t pos, unsigned len, unsigned flags, 902 struct page **pagep, void **fsdata) 903 { 904 struct inode *inode = mapping->host; 905 int ret, needed_blocks; 906 handle_t *handle; 907 int retries = 0; 908 struct page *page; 909 pgoff_t index; 910 unsigned from, to; 911 912 trace_ext4_write_begin(inode, pos, len, flags); 913 /* 914 * Reserve one block more for addition to orphan list in case 915 * we allocate blocks but write fails for some reason 916 */ 917 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 918 index = pos >> PAGE_CACHE_SHIFT; 919 from = pos & (PAGE_CACHE_SIZE - 1); 920 to = from + len; 921 922 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 923 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 924 flags, pagep); 925 if (ret < 0) 926 return ret; 927 if (ret == 1) 928 return 0; 929 } 930 931 /* 932 * grab_cache_page_write_begin() can take a long time if the 933 * system is thrashing due to memory pressure, or if the page 934 * is being written back. So grab it first before we start 935 * the transaction handle. This also allows us to allocate 936 * the page (if needed) without using GFP_NOFS. 937 */ 938 retry_grab: 939 page = grab_cache_page_write_begin(mapping, index, flags); 940 if (!page) 941 return -ENOMEM; 942 unlock_page(page); 943 944 retry_journal: 945 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 946 if (IS_ERR(handle)) { 947 page_cache_release(page); 948 return PTR_ERR(handle); 949 } 950 951 lock_page(page); 952 if (page->mapping != mapping) { 953 /* The page got truncated from under us */ 954 unlock_page(page); 955 page_cache_release(page); 956 ext4_journal_stop(handle); 957 goto retry_grab; 958 } 959 /* In case writeback began while the page was unlocked */ 960 wait_for_stable_page(page); 961 962 if (ext4_should_dioread_nolock(inode)) 963 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 964 else 965 ret = __block_write_begin(page, pos, len, ext4_get_block); 966 967 if (!ret && ext4_should_journal_data(inode)) { 968 ret = ext4_walk_page_buffers(handle, page_buffers(page), 969 from, to, NULL, 970 do_journal_get_write_access); 971 } 972 973 if (ret) { 974 unlock_page(page); 975 /* 976 * __block_write_begin may have instantiated a few blocks 977 * outside i_size. Trim these off again. Don't need 978 * i_size_read because we hold i_mutex. 979 * 980 * Add inode to orphan list in case we crash before 981 * truncate finishes 982 */ 983 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 984 ext4_orphan_add(handle, inode); 985 986 ext4_journal_stop(handle); 987 if (pos + len > inode->i_size) { 988 ext4_truncate_failed_write(inode); 989 /* 990 * If truncate failed early the inode might 991 * still be on the orphan list; we need to 992 * make sure the inode is removed from the 993 * orphan list in that case. 994 */ 995 if (inode->i_nlink) 996 ext4_orphan_del(NULL, inode); 997 } 998 999 if (ret == -ENOSPC && 1000 ext4_should_retry_alloc(inode->i_sb, &retries)) 1001 goto retry_journal; 1002 page_cache_release(page); 1003 return ret; 1004 } 1005 *pagep = page; 1006 return ret; 1007 } 1008 1009 /* For write_end() in data=journal mode */ 1010 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1011 { 1012 int ret; 1013 if (!buffer_mapped(bh) || buffer_freed(bh)) 1014 return 0; 1015 set_buffer_uptodate(bh); 1016 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1017 clear_buffer_meta(bh); 1018 clear_buffer_prio(bh); 1019 return ret; 1020 } 1021 1022 /* 1023 * We need to pick up the new inode size which generic_commit_write gave us 1024 * `file' can be NULL - eg, when called from page_symlink(). 1025 * 1026 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1027 * buffers are managed internally. 1028 */ 1029 static int ext4_write_end(struct file *file, 1030 struct address_space *mapping, 1031 loff_t pos, unsigned len, unsigned copied, 1032 struct page *page, void *fsdata) 1033 { 1034 handle_t *handle = ext4_journal_current_handle(); 1035 struct inode *inode = mapping->host; 1036 int ret = 0, ret2; 1037 int i_size_changed = 0; 1038 1039 trace_ext4_write_end(inode, pos, len, copied); 1040 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1041 ret = ext4_jbd2_file_inode(handle, inode); 1042 if (ret) { 1043 unlock_page(page); 1044 page_cache_release(page); 1045 goto errout; 1046 } 1047 } 1048 1049 if (ext4_has_inline_data(inode)) { 1050 ret = ext4_write_inline_data_end(inode, pos, len, 1051 copied, page); 1052 if (ret < 0) 1053 goto errout; 1054 copied = ret; 1055 } else 1056 copied = block_write_end(file, mapping, pos, 1057 len, copied, page, fsdata); 1058 /* 1059 * it's important to update i_size while still holding page lock: 1060 * page writeout could otherwise come in and zero beyond i_size. 1061 */ 1062 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1063 unlock_page(page); 1064 page_cache_release(page); 1065 1066 /* 1067 * Don't mark the inode dirty under page lock. First, it unnecessarily 1068 * makes the holding time of page lock longer. Second, it forces lock 1069 * ordering of page lock and transaction start for journaling 1070 * filesystems. 1071 */ 1072 if (i_size_changed) 1073 ext4_mark_inode_dirty(handle, inode); 1074 1075 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1076 /* if we have allocated more blocks and copied 1077 * less. We will have blocks allocated outside 1078 * inode->i_size. So truncate them 1079 */ 1080 ext4_orphan_add(handle, inode); 1081 errout: 1082 ret2 = ext4_journal_stop(handle); 1083 if (!ret) 1084 ret = ret2; 1085 1086 if (pos + len > inode->i_size) { 1087 ext4_truncate_failed_write(inode); 1088 /* 1089 * If truncate failed early the inode might still be 1090 * on the orphan list; we need to make sure the inode 1091 * is removed from the orphan list in that case. 1092 */ 1093 if (inode->i_nlink) 1094 ext4_orphan_del(NULL, inode); 1095 } 1096 1097 return ret ? ret : copied; 1098 } 1099 1100 static int ext4_journalled_write_end(struct file *file, 1101 struct address_space *mapping, 1102 loff_t pos, unsigned len, unsigned copied, 1103 struct page *page, void *fsdata) 1104 { 1105 handle_t *handle = ext4_journal_current_handle(); 1106 struct inode *inode = mapping->host; 1107 int ret = 0, ret2; 1108 int partial = 0; 1109 unsigned from, to; 1110 int size_changed = 0; 1111 1112 trace_ext4_journalled_write_end(inode, pos, len, copied); 1113 from = pos & (PAGE_CACHE_SIZE - 1); 1114 to = from + len; 1115 1116 BUG_ON(!ext4_handle_valid(handle)); 1117 1118 if (ext4_has_inline_data(inode)) 1119 copied = ext4_write_inline_data_end(inode, pos, len, 1120 copied, page); 1121 else { 1122 if (copied < len) { 1123 if (!PageUptodate(page)) 1124 copied = 0; 1125 page_zero_new_buffers(page, from+copied, to); 1126 } 1127 1128 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1129 to, &partial, write_end_fn); 1130 if (!partial) 1131 SetPageUptodate(page); 1132 } 1133 size_changed = ext4_update_inode_size(inode, pos + copied); 1134 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1135 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1136 unlock_page(page); 1137 page_cache_release(page); 1138 1139 if (size_changed) { 1140 ret2 = ext4_mark_inode_dirty(handle, inode); 1141 if (!ret) 1142 ret = ret2; 1143 } 1144 1145 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1146 /* if we have allocated more blocks and copied 1147 * less. We will have blocks allocated outside 1148 * inode->i_size. So truncate them 1149 */ 1150 ext4_orphan_add(handle, inode); 1151 1152 ret2 = ext4_journal_stop(handle); 1153 if (!ret) 1154 ret = ret2; 1155 if (pos + len > inode->i_size) { 1156 ext4_truncate_failed_write(inode); 1157 /* 1158 * If truncate failed early the inode might still be 1159 * on the orphan list; we need to make sure the inode 1160 * is removed from the orphan list in that case. 1161 */ 1162 if (inode->i_nlink) 1163 ext4_orphan_del(NULL, inode); 1164 } 1165 1166 return ret ? ret : copied; 1167 } 1168 1169 /* 1170 * Reserve a single cluster located at lblock 1171 */ 1172 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1173 { 1174 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1175 struct ext4_inode_info *ei = EXT4_I(inode); 1176 unsigned int md_needed; 1177 int ret; 1178 1179 /* 1180 * We will charge metadata quota at writeout time; this saves 1181 * us from metadata over-estimation, though we may go over by 1182 * a small amount in the end. Here we just reserve for data. 1183 */ 1184 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1185 if (ret) 1186 return ret; 1187 1188 /* 1189 * recalculate the amount of metadata blocks to reserve 1190 * in order to allocate nrblocks 1191 * worse case is one extent per block 1192 */ 1193 spin_lock(&ei->i_block_reservation_lock); 1194 /* 1195 * ext4_calc_metadata_amount() has side effects, which we have 1196 * to be prepared undo if we fail to claim space. 1197 */ 1198 md_needed = 0; 1199 trace_ext4_da_reserve_space(inode, 0); 1200 1201 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1202 spin_unlock(&ei->i_block_reservation_lock); 1203 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1204 return -ENOSPC; 1205 } 1206 ei->i_reserved_data_blocks++; 1207 spin_unlock(&ei->i_block_reservation_lock); 1208 1209 return 0; /* success */ 1210 } 1211 1212 static void ext4_da_release_space(struct inode *inode, int to_free) 1213 { 1214 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1215 struct ext4_inode_info *ei = EXT4_I(inode); 1216 1217 if (!to_free) 1218 return; /* Nothing to release, exit */ 1219 1220 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1221 1222 trace_ext4_da_release_space(inode, to_free); 1223 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1224 /* 1225 * if there aren't enough reserved blocks, then the 1226 * counter is messed up somewhere. Since this 1227 * function is called from invalidate page, it's 1228 * harmless to return without any action. 1229 */ 1230 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1231 "ino %lu, to_free %d with only %d reserved " 1232 "data blocks", inode->i_ino, to_free, 1233 ei->i_reserved_data_blocks); 1234 WARN_ON(1); 1235 to_free = ei->i_reserved_data_blocks; 1236 } 1237 ei->i_reserved_data_blocks -= to_free; 1238 1239 /* update fs dirty data blocks counter */ 1240 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1241 1242 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1243 1244 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1245 } 1246 1247 static void ext4_da_page_release_reservation(struct page *page, 1248 unsigned int offset, 1249 unsigned int length) 1250 { 1251 int to_release = 0; 1252 struct buffer_head *head, *bh; 1253 unsigned int curr_off = 0; 1254 struct inode *inode = page->mapping->host; 1255 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1256 unsigned int stop = offset + length; 1257 int num_clusters; 1258 ext4_fsblk_t lblk; 1259 1260 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1261 1262 head = page_buffers(page); 1263 bh = head; 1264 do { 1265 unsigned int next_off = curr_off + bh->b_size; 1266 1267 if (next_off > stop) 1268 break; 1269 1270 if ((offset <= curr_off) && (buffer_delay(bh))) { 1271 to_release++; 1272 clear_buffer_delay(bh); 1273 } 1274 curr_off = next_off; 1275 } while ((bh = bh->b_this_page) != head); 1276 1277 if (to_release) { 1278 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1279 ext4_es_remove_extent(inode, lblk, to_release); 1280 } 1281 1282 /* If we have released all the blocks belonging to a cluster, then we 1283 * need to release the reserved space for that cluster. */ 1284 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1285 while (num_clusters > 0) { 1286 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1287 ((num_clusters - 1) << sbi->s_cluster_bits); 1288 if (sbi->s_cluster_ratio == 1 || 1289 !ext4_find_delalloc_cluster(inode, lblk)) 1290 ext4_da_release_space(inode, 1); 1291 1292 num_clusters--; 1293 } 1294 } 1295 1296 /* 1297 * Delayed allocation stuff 1298 */ 1299 1300 struct mpage_da_data { 1301 struct inode *inode; 1302 struct writeback_control *wbc; 1303 1304 pgoff_t first_page; /* The first page to write */ 1305 pgoff_t next_page; /* Current page to examine */ 1306 pgoff_t last_page; /* Last page to examine */ 1307 /* 1308 * Extent to map - this can be after first_page because that can be 1309 * fully mapped. We somewhat abuse m_flags to store whether the extent 1310 * is delalloc or unwritten. 1311 */ 1312 struct ext4_map_blocks map; 1313 struct ext4_io_submit io_submit; /* IO submission data */ 1314 }; 1315 1316 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1317 bool invalidate) 1318 { 1319 int nr_pages, i; 1320 pgoff_t index, end; 1321 struct pagevec pvec; 1322 struct inode *inode = mpd->inode; 1323 struct address_space *mapping = inode->i_mapping; 1324 1325 /* This is necessary when next_page == 0. */ 1326 if (mpd->first_page >= mpd->next_page) 1327 return; 1328 1329 index = mpd->first_page; 1330 end = mpd->next_page - 1; 1331 if (invalidate) { 1332 ext4_lblk_t start, last; 1333 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1334 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1335 ext4_es_remove_extent(inode, start, last - start + 1); 1336 } 1337 1338 pagevec_init(&pvec, 0); 1339 while (index <= end) { 1340 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1341 if (nr_pages == 0) 1342 break; 1343 for (i = 0; i < nr_pages; i++) { 1344 struct page *page = pvec.pages[i]; 1345 if (page->index > end) 1346 break; 1347 BUG_ON(!PageLocked(page)); 1348 BUG_ON(PageWriteback(page)); 1349 if (invalidate) { 1350 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1351 ClearPageUptodate(page); 1352 } 1353 unlock_page(page); 1354 } 1355 index = pvec.pages[nr_pages - 1]->index + 1; 1356 pagevec_release(&pvec); 1357 } 1358 } 1359 1360 static void ext4_print_free_blocks(struct inode *inode) 1361 { 1362 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1363 struct super_block *sb = inode->i_sb; 1364 struct ext4_inode_info *ei = EXT4_I(inode); 1365 1366 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1367 EXT4_C2B(EXT4_SB(inode->i_sb), 1368 ext4_count_free_clusters(sb))); 1369 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1370 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1371 (long long) EXT4_C2B(EXT4_SB(sb), 1372 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1373 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1374 (long long) EXT4_C2B(EXT4_SB(sb), 1375 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1376 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1377 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1378 ei->i_reserved_data_blocks); 1379 return; 1380 } 1381 1382 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1383 { 1384 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1385 } 1386 1387 /* 1388 * This function is grabs code from the very beginning of 1389 * ext4_map_blocks, but assumes that the caller is from delayed write 1390 * time. This function looks up the requested blocks and sets the 1391 * buffer delay bit under the protection of i_data_sem. 1392 */ 1393 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1394 struct ext4_map_blocks *map, 1395 struct buffer_head *bh) 1396 { 1397 struct extent_status es; 1398 int retval; 1399 sector_t invalid_block = ~((sector_t) 0xffff); 1400 #ifdef ES_AGGRESSIVE_TEST 1401 struct ext4_map_blocks orig_map; 1402 1403 memcpy(&orig_map, map, sizeof(*map)); 1404 #endif 1405 1406 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1407 invalid_block = ~0; 1408 1409 map->m_flags = 0; 1410 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1411 "logical block %lu\n", inode->i_ino, map->m_len, 1412 (unsigned long) map->m_lblk); 1413 1414 /* Lookup extent status tree firstly */ 1415 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1416 ext4_es_lru_add(inode); 1417 if (ext4_es_is_hole(&es)) { 1418 retval = 0; 1419 down_read(&EXT4_I(inode)->i_data_sem); 1420 goto add_delayed; 1421 } 1422 1423 /* 1424 * Delayed extent could be allocated by fallocate. 1425 * So we need to check it. 1426 */ 1427 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1428 map_bh(bh, inode->i_sb, invalid_block); 1429 set_buffer_new(bh); 1430 set_buffer_delay(bh); 1431 return 0; 1432 } 1433 1434 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1435 retval = es.es_len - (iblock - es.es_lblk); 1436 if (retval > map->m_len) 1437 retval = map->m_len; 1438 map->m_len = retval; 1439 if (ext4_es_is_written(&es)) 1440 map->m_flags |= EXT4_MAP_MAPPED; 1441 else if (ext4_es_is_unwritten(&es)) 1442 map->m_flags |= EXT4_MAP_UNWRITTEN; 1443 else 1444 BUG_ON(1); 1445 1446 #ifdef ES_AGGRESSIVE_TEST 1447 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1448 #endif 1449 return retval; 1450 } 1451 1452 /* 1453 * Try to see if we can get the block without requesting a new 1454 * file system block. 1455 */ 1456 down_read(&EXT4_I(inode)->i_data_sem); 1457 if (ext4_has_inline_data(inode)) { 1458 /* 1459 * We will soon create blocks for this page, and let 1460 * us pretend as if the blocks aren't allocated yet. 1461 * In case of clusters, we have to handle the work 1462 * of mapping from cluster so that the reserved space 1463 * is calculated properly. 1464 */ 1465 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1466 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1467 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1468 retval = 0; 1469 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1470 retval = ext4_ext_map_blocks(NULL, inode, map, 1471 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1472 else 1473 retval = ext4_ind_map_blocks(NULL, inode, map, 1474 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1475 1476 add_delayed: 1477 if (retval == 0) { 1478 int ret; 1479 /* 1480 * XXX: __block_prepare_write() unmaps passed block, 1481 * is it OK? 1482 */ 1483 /* 1484 * If the block was allocated from previously allocated cluster, 1485 * then we don't need to reserve it again. However we still need 1486 * to reserve metadata for every block we're going to write. 1487 */ 1488 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1489 ret = ext4_da_reserve_space(inode, iblock); 1490 if (ret) { 1491 /* not enough space to reserve */ 1492 retval = ret; 1493 goto out_unlock; 1494 } 1495 } 1496 1497 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1498 ~0, EXTENT_STATUS_DELAYED); 1499 if (ret) { 1500 retval = ret; 1501 goto out_unlock; 1502 } 1503 1504 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1505 * and it should not appear on the bh->b_state. 1506 */ 1507 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1508 1509 map_bh(bh, inode->i_sb, invalid_block); 1510 set_buffer_new(bh); 1511 set_buffer_delay(bh); 1512 } else if (retval > 0) { 1513 int ret; 1514 unsigned int status; 1515 1516 if (unlikely(retval != map->m_len)) { 1517 ext4_warning(inode->i_sb, 1518 "ES len assertion failed for inode " 1519 "%lu: retval %d != map->m_len %d", 1520 inode->i_ino, retval, map->m_len); 1521 WARN_ON(1); 1522 } 1523 1524 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1525 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1526 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1527 map->m_pblk, status); 1528 if (ret != 0) 1529 retval = ret; 1530 } 1531 1532 out_unlock: 1533 up_read((&EXT4_I(inode)->i_data_sem)); 1534 1535 return retval; 1536 } 1537 1538 /* 1539 * This is a special get_blocks_t callback which is used by 1540 * ext4_da_write_begin(). It will either return mapped block or 1541 * reserve space for a single block. 1542 * 1543 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1544 * We also have b_blocknr = -1 and b_bdev initialized properly 1545 * 1546 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1547 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1548 * initialized properly. 1549 */ 1550 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1551 struct buffer_head *bh, int create) 1552 { 1553 struct ext4_map_blocks map; 1554 int ret = 0; 1555 1556 BUG_ON(create == 0); 1557 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1558 1559 map.m_lblk = iblock; 1560 map.m_len = 1; 1561 1562 /* 1563 * first, we need to know whether the block is allocated already 1564 * preallocated blocks are unmapped but should treated 1565 * the same as allocated blocks. 1566 */ 1567 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1568 if (ret <= 0) 1569 return ret; 1570 1571 map_bh(bh, inode->i_sb, map.m_pblk); 1572 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1573 1574 if (buffer_unwritten(bh)) { 1575 /* A delayed write to unwritten bh should be marked 1576 * new and mapped. Mapped ensures that we don't do 1577 * get_block multiple times when we write to the same 1578 * offset and new ensures that we do proper zero out 1579 * for partial write. 1580 */ 1581 set_buffer_new(bh); 1582 set_buffer_mapped(bh); 1583 } 1584 return 0; 1585 } 1586 1587 static int bget_one(handle_t *handle, struct buffer_head *bh) 1588 { 1589 get_bh(bh); 1590 return 0; 1591 } 1592 1593 static int bput_one(handle_t *handle, struct buffer_head *bh) 1594 { 1595 put_bh(bh); 1596 return 0; 1597 } 1598 1599 static int __ext4_journalled_writepage(struct page *page, 1600 unsigned int len) 1601 { 1602 struct address_space *mapping = page->mapping; 1603 struct inode *inode = mapping->host; 1604 struct buffer_head *page_bufs = NULL; 1605 handle_t *handle = NULL; 1606 int ret = 0, err = 0; 1607 int inline_data = ext4_has_inline_data(inode); 1608 struct buffer_head *inode_bh = NULL; 1609 1610 ClearPageChecked(page); 1611 1612 if (inline_data) { 1613 BUG_ON(page->index != 0); 1614 BUG_ON(len > ext4_get_max_inline_size(inode)); 1615 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1616 if (inode_bh == NULL) 1617 goto out; 1618 } else { 1619 page_bufs = page_buffers(page); 1620 if (!page_bufs) { 1621 BUG(); 1622 goto out; 1623 } 1624 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1625 NULL, bget_one); 1626 } 1627 /* As soon as we unlock the page, it can go away, but we have 1628 * references to buffers so we are safe */ 1629 unlock_page(page); 1630 1631 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1632 ext4_writepage_trans_blocks(inode)); 1633 if (IS_ERR(handle)) { 1634 ret = PTR_ERR(handle); 1635 goto out; 1636 } 1637 1638 BUG_ON(!ext4_handle_valid(handle)); 1639 1640 if (inline_data) { 1641 BUFFER_TRACE(inode_bh, "get write access"); 1642 ret = ext4_journal_get_write_access(handle, inode_bh); 1643 1644 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1645 1646 } else { 1647 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1648 do_journal_get_write_access); 1649 1650 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1651 write_end_fn); 1652 } 1653 if (ret == 0) 1654 ret = err; 1655 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1656 err = ext4_journal_stop(handle); 1657 if (!ret) 1658 ret = err; 1659 1660 if (!ext4_has_inline_data(inode)) 1661 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1662 NULL, bput_one); 1663 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1664 out: 1665 brelse(inode_bh); 1666 return ret; 1667 } 1668 1669 /* 1670 * Note that we don't need to start a transaction unless we're journaling data 1671 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1672 * need to file the inode to the transaction's list in ordered mode because if 1673 * we are writing back data added by write(), the inode is already there and if 1674 * we are writing back data modified via mmap(), no one guarantees in which 1675 * transaction the data will hit the disk. In case we are journaling data, we 1676 * cannot start transaction directly because transaction start ranks above page 1677 * lock so we have to do some magic. 1678 * 1679 * This function can get called via... 1680 * - ext4_writepages after taking page lock (have journal handle) 1681 * - journal_submit_inode_data_buffers (no journal handle) 1682 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1683 * - grab_page_cache when doing write_begin (have journal handle) 1684 * 1685 * We don't do any block allocation in this function. If we have page with 1686 * multiple blocks we need to write those buffer_heads that are mapped. This 1687 * is important for mmaped based write. So if we do with blocksize 1K 1688 * truncate(f, 1024); 1689 * a = mmap(f, 0, 4096); 1690 * a[0] = 'a'; 1691 * truncate(f, 4096); 1692 * we have in the page first buffer_head mapped via page_mkwrite call back 1693 * but other buffer_heads would be unmapped but dirty (dirty done via the 1694 * do_wp_page). So writepage should write the first block. If we modify 1695 * the mmap area beyond 1024 we will again get a page_fault and the 1696 * page_mkwrite callback will do the block allocation and mark the 1697 * buffer_heads mapped. 1698 * 1699 * We redirty the page if we have any buffer_heads that is either delay or 1700 * unwritten in the page. 1701 * 1702 * We can get recursively called as show below. 1703 * 1704 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1705 * ext4_writepage() 1706 * 1707 * But since we don't do any block allocation we should not deadlock. 1708 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1709 */ 1710 static int ext4_writepage(struct page *page, 1711 struct writeback_control *wbc) 1712 { 1713 int ret = 0; 1714 loff_t size; 1715 unsigned int len; 1716 struct buffer_head *page_bufs = NULL; 1717 struct inode *inode = page->mapping->host; 1718 struct ext4_io_submit io_submit; 1719 bool keep_towrite = false; 1720 1721 trace_ext4_writepage(page); 1722 size = i_size_read(inode); 1723 if (page->index == size >> PAGE_CACHE_SHIFT) 1724 len = size & ~PAGE_CACHE_MASK; 1725 else 1726 len = PAGE_CACHE_SIZE; 1727 1728 page_bufs = page_buffers(page); 1729 /* 1730 * We cannot do block allocation or other extent handling in this 1731 * function. If there are buffers needing that, we have to redirty 1732 * the page. But we may reach here when we do a journal commit via 1733 * journal_submit_inode_data_buffers() and in that case we must write 1734 * allocated buffers to achieve data=ordered mode guarantees. 1735 */ 1736 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1737 ext4_bh_delay_or_unwritten)) { 1738 redirty_page_for_writepage(wbc, page); 1739 if (current->flags & PF_MEMALLOC) { 1740 /* 1741 * For memory cleaning there's no point in writing only 1742 * some buffers. So just bail out. Warn if we came here 1743 * from direct reclaim. 1744 */ 1745 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1746 == PF_MEMALLOC); 1747 unlock_page(page); 1748 return 0; 1749 } 1750 keep_towrite = true; 1751 } 1752 1753 if (PageChecked(page) && ext4_should_journal_data(inode)) 1754 /* 1755 * It's mmapped pagecache. Add buffers and journal it. There 1756 * doesn't seem much point in redirtying the page here. 1757 */ 1758 return __ext4_journalled_writepage(page, len); 1759 1760 ext4_io_submit_init(&io_submit, wbc); 1761 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1762 if (!io_submit.io_end) { 1763 redirty_page_for_writepage(wbc, page); 1764 unlock_page(page); 1765 return -ENOMEM; 1766 } 1767 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1768 ext4_io_submit(&io_submit); 1769 /* Drop io_end reference we got from init */ 1770 ext4_put_io_end_defer(io_submit.io_end); 1771 return ret; 1772 } 1773 1774 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1775 { 1776 int len; 1777 loff_t size = i_size_read(mpd->inode); 1778 int err; 1779 1780 BUG_ON(page->index != mpd->first_page); 1781 if (page->index == size >> PAGE_CACHE_SHIFT) 1782 len = size & ~PAGE_CACHE_MASK; 1783 else 1784 len = PAGE_CACHE_SIZE; 1785 clear_page_dirty_for_io(page); 1786 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1787 if (!err) 1788 mpd->wbc->nr_to_write--; 1789 mpd->first_page++; 1790 1791 return err; 1792 } 1793 1794 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1795 1796 /* 1797 * mballoc gives us at most this number of blocks... 1798 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1799 * The rest of mballoc seems to handle chunks up to full group size. 1800 */ 1801 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1802 1803 /* 1804 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1805 * 1806 * @mpd - extent of blocks 1807 * @lblk - logical number of the block in the file 1808 * @bh - buffer head we want to add to the extent 1809 * 1810 * The function is used to collect contig. blocks in the same state. If the 1811 * buffer doesn't require mapping for writeback and we haven't started the 1812 * extent of buffers to map yet, the function returns 'true' immediately - the 1813 * caller can write the buffer right away. Otherwise the function returns true 1814 * if the block has been added to the extent, false if the block couldn't be 1815 * added. 1816 */ 1817 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1818 struct buffer_head *bh) 1819 { 1820 struct ext4_map_blocks *map = &mpd->map; 1821 1822 /* Buffer that doesn't need mapping for writeback? */ 1823 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1824 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1825 /* So far no extent to map => we write the buffer right away */ 1826 if (map->m_len == 0) 1827 return true; 1828 return false; 1829 } 1830 1831 /* First block in the extent? */ 1832 if (map->m_len == 0) { 1833 map->m_lblk = lblk; 1834 map->m_len = 1; 1835 map->m_flags = bh->b_state & BH_FLAGS; 1836 return true; 1837 } 1838 1839 /* Don't go larger than mballoc is willing to allocate */ 1840 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1841 return false; 1842 1843 /* Can we merge the block to our big extent? */ 1844 if (lblk == map->m_lblk + map->m_len && 1845 (bh->b_state & BH_FLAGS) == map->m_flags) { 1846 map->m_len++; 1847 return true; 1848 } 1849 return false; 1850 } 1851 1852 /* 1853 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1854 * 1855 * @mpd - extent of blocks for mapping 1856 * @head - the first buffer in the page 1857 * @bh - buffer we should start processing from 1858 * @lblk - logical number of the block in the file corresponding to @bh 1859 * 1860 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1861 * the page for IO if all buffers in this page were mapped and there's no 1862 * accumulated extent of buffers to map or add buffers in the page to the 1863 * extent of buffers to map. The function returns 1 if the caller can continue 1864 * by processing the next page, 0 if it should stop adding buffers to the 1865 * extent to map because we cannot extend it anymore. It can also return value 1866 * < 0 in case of error during IO submission. 1867 */ 1868 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1869 struct buffer_head *head, 1870 struct buffer_head *bh, 1871 ext4_lblk_t lblk) 1872 { 1873 struct inode *inode = mpd->inode; 1874 int err; 1875 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1876 >> inode->i_blkbits; 1877 1878 do { 1879 BUG_ON(buffer_locked(bh)); 1880 1881 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1882 /* Found extent to map? */ 1883 if (mpd->map.m_len) 1884 return 0; 1885 /* Everything mapped so far and we hit EOF */ 1886 break; 1887 } 1888 } while (lblk++, (bh = bh->b_this_page) != head); 1889 /* So far everything mapped? Submit the page for IO. */ 1890 if (mpd->map.m_len == 0) { 1891 err = mpage_submit_page(mpd, head->b_page); 1892 if (err < 0) 1893 return err; 1894 } 1895 return lblk < blocks; 1896 } 1897 1898 /* 1899 * mpage_map_buffers - update buffers corresponding to changed extent and 1900 * submit fully mapped pages for IO 1901 * 1902 * @mpd - description of extent to map, on return next extent to map 1903 * 1904 * Scan buffers corresponding to changed extent (we expect corresponding pages 1905 * to be already locked) and update buffer state according to new extent state. 1906 * We map delalloc buffers to their physical location, clear unwritten bits, 1907 * and mark buffers as uninit when we perform writes to unwritten extents 1908 * and do extent conversion after IO is finished. If the last page is not fully 1909 * mapped, we update @map to the next extent in the last page that needs 1910 * mapping. Otherwise we submit the page for IO. 1911 */ 1912 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 1913 { 1914 struct pagevec pvec; 1915 int nr_pages, i; 1916 struct inode *inode = mpd->inode; 1917 struct buffer_head *head, *bh; 1918 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 1919 pgoff_t start, end; 1920 ext4_lblk_t lblk; 1921 sector_t pblock; 1922 int err; 1923 1924 start = mpd->map.m_lblk >> bpp_bits; 1925 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 1926 lblk = start << bpp_bits; 1927 pblock = mpd->map.m_pblk; 1928 1929 pagevec_init(&pvec, 0); 1930 while (start <= end) { 1931 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 1932 PAGEVEC_SIZE); 1933 if (nr_pages == 0) 1934 break; 1935 for (i = 0; i < nr_pages; i++) { 1936 struct page *page = pvec.pages[i]; 1937 1938 if (page->index > end) 1939 break; 1940 /* Up to 'end' pages must be contiguous */ 1941 BUG_ON(page->index != start); 1942 bh = head = page_buffers(page); 1943 do { 1944 if (lblk < mpd->map.m_lblk) 1945 continue; 1946 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 1947 /* 1948 * Buffer after end of mapped extent. 1949 * Find next buffer in the page to map. 1950 */ 1951 mpd->map.m_len = 0; 1952 mpd->map.m_flags = 0; 1953 /* 1954 * FIXME: If dioread_nolock supports 1955 * blocksize < pagesize, we need to make 1956 * sure we add size mapped so far to 1957 * io_end->size as the following call 1958 * can submit the page for IO. 1959 */ 1960 err = mpage_process_page_bufs(mpd, head, 1961 bh, lblk); 1962 pagevec_release(&pvec); 1963 if (err > 0) 1964 err = 0; 1965 return err; 1966 } 1967 if (buffer_delay(bh)) { 1968 clear_buffer_delay(bh); 1969 bh->b_blocknr = pblock++; 1970 } 1971 clear_buffer_unwritten(bh); 1972 } while (lblk++, (bh = bh->b_this_page) != head); 1973 1974 /* 1975 * FIXME: This is going to break if dioread_nolock 1976 * supports blocksize < pagesize as we will try to 1977 * convert potentially unmapped parts of inode. 1978 */ 1979 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 1980 /* Page fully mapped - let IO run! */ 1981 err = mpage_submit_page(mpd, page); 1982 if (err < 0) { 1983 pagevec_release(&pvec); 1984 return err; 1985 } 1986 start++; 1987 } 1988 pagevec_release(&pvec); 1989 } 1990 /* Extent fully mapped and matches with page boundary. We are done. */ 1991 mpd->map.m_len = 0; 1992 mpd->map.m_flags = 0; 1993 return 0; 1994 } 1995 1996 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 1997 { 1998 struct inode *inode = mpd->inode; 1999 struct ext4_map_blocks *map = &mpd->map; 2000 int get_blocks_flags; 2001 int err, dioread_nolock; 2002 2003 trace_ext4_da_write_pages_extent(inode, map); 2004 /* 2005 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2006 * to convert an unwritten extent to be initialized (in the case 2007 * where we have written into one or more preallocated blocks). It is 2008 * possible that we're going to need more metadata blocks than 2009 * previously reserved. However we must not fail because we're in 2010 * writeback and there is nothing we can do about it so it might result 2011 * in data loss. So use reserved blocks to allocate metadata if 2012 * possible. 2013 * 2014 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2015 * in question are delalloc blocks. This affects functions in many 2016 * different parts of the allocation call path. This flag exists 2017 * primarily because we don't want to change *many* call functions, so 2018 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2019 * once the inode's allocation semaphore is taken. 2020 */ 2021 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2022 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2023 dioread_nolock = ext4_should_dioread_nolock(inode); 2024 if (dioread_nolock) 2025 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2026 if (map->m_flags & (1 << BH_Delay)) 2027 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2028 2029 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2030 if (err < 0) 2031 return err; 2032 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2033 if (!mpd->io_submit.io_end->handle && 2034 ext4_handle_valid(handle)) { 2035 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2036 handle->h_rsv_handle = NULL; 2037 } 2038 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2039 } 2040 2041 BUG_ON(map->m_len == 0); 2042 if (map->m_flags & EXT4_MAP_NEW) { 2043 struct block_device *bdev = inode->i_sb->s_bdev; 2044 int i; 2045 2046 for (i = 0; i < map->m_len; i++) 2047 unmap_underlying_metadata(bdev, map->m_pblk + i); 2048 } 2049 return 0; 2050 } 2051 2052 /* 2053 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2054 * mpd->len and submit pages underlying it for IO 2055 * 2056 * @handle - handle for journal operations 2057 * @mpd - extent to map 2058 * @give_up_on_write - we set this to true iff there is a fatal error and there 2059 * is no hope of writing the data. The caller should discard 2060 * dirty pages to avoid infinite loops. 2061 * 2062 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2063 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2064 * them to initialized or split the described range from larger unwritten 2065 * extent. Note that we need not map all the described range since allocation 2066 * can return less blocks or the range is covered by more unwritten extents. We 2067 * cannot map more because we are limited by reserved transaction credits. On 2068 * the other hand we always make sure that the last touched page is fully 2069 * mapped so that it can be written out (and thus forward progress is 2070 * guaranteed). After mapping we submit all mapped pages for IO. 2071 */ 2072 static int mpage_map_and_submit_extent(handle_t *handle, 2073 struct mpage_da_data *mpd, 2074 bool *give_up_on_write) 2075 { 2076 struct inode *inode = mpd->inode; 2077 struct ext4_map_blocks *map = &mpd->map; 2078 int err; 2079 loff_t disksize; 2080 int progress = 0; 2081 2082 mpd->io_submit.io_end->offset = 2083 ((loff_t)map->m_lblk) << inode->i_blkbits; 2084 do { 2085 err = mpage_map_one_extent(handle, mpd); 2086 if (err < 0) { 2087 struct super_block *sb = inode->i_sb; 2088 2089 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2090 goto invalidate_dirty_pages; 2091 /* 2092 * Let the uper layers retry transient errors. 2093 * In the case of ENOSPC, if ext4_count_free_blocks() 2094 * is non-zero, a commit should free up blocks. 2095 */ 2096 if ((err == -ENOMEM) || 2097 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2098 if (progress) 2099 goto update_disksize; 2100 return err; 2101 } 2102 ext4_msg(sb, KERN_CRIT, 2103 "Delayed block allocation failed for " 2104 "inode %lu at logical offset %llu with" 2105 " max blocks %u with error %d", 2106 inode->i_ino, 2107 (unsigned long long)map->m_lblk, 2108 (unsigned)map->m_len, -err); 2109 ext4_msg(sb, KERN_CRIT, 2110 "This should not happen!! Data will " 2111 "be lost\n"); 2112 if (err == -ENOSPC) 2113 ext4_print_free_blocks(inode); 2114 invalidate_dirty_pages: 2115 *give_up_on_write = true; 2116 return err; 2117 } 2118 progress = 1; 2119 /* 2120 * Update buffer state, submit mapped pages, and get us new 2121 * extent to map 2122 */ 2123 err = mpage_map_and_submit_buffers(mpd); 2124 if (err < 0) 2125 goto update_disksize; 2126 } while (map->m_len); 2127 2128 update_disksize: 2129 /* 2130 * Update on-disk size after IO is submitted. Races with 2131 * truncate are avoided by checking i_size under i_data_sem. 2132 */ 2133 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2134 if (disksize > EXT4_I(inode)->i_disksize) { 2135 int err2; 2136 loff_t i_size; 2137 2138 down_write(&EXT4_I(inode)->i_data_sem); 2139 i_size = i_size_read(inode); 2140 if (disksize > i_size) 2141 disksize = i_size; 2142 if (disksize > EXT4_I(inode)->i_disksize) 2143 EXT4_I(inode)->i_disksize = disksize; 2144 err2 = ext4_mark_inode_dirty(handle, inode); 2145 up_write(&EXT4_I(inode)->i_data_sem); 2146 if (err2) 2147 ext4_error(inode->i_sb, 2148 "Failed to mark inode %lu dirty", 2149 inode->i_ino); 2150 if (!err) 2151 err = err2; 2152 } 2153 return err; 2154 } 2155 2156 /* 2157 * Calculate the total number of credits to reserve for one writepages 2158 * iteration. This is called from ext4_writepages(). We map an extent of 2159 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2160 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2161 * bpp - 1 blocks in bpp different extents. 2162 */ 2163 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2164 { 2165 int bpp = ext4_journal_blocks_per_page(inode); 2166 2167 return ext4_meta_trans_blocks(inode, 2168 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2169 } 2170 2171 /* 2172 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2173 * and underlying extent to map 2174 * 2175 * @mpd - where to look for pages 2176 * 2177 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2178 * IO immediately. When we find a page which isn't mapped we start accumulating 2179 * extent of buffers underlying these pages that needs mapping (formed by 2180 * either delayed or unwritten buffers). We also lock the pages containing 2181 * these buffers. The extent found is returned in @mpd structure (starting at 2182 * mpd->lblk with length mpd->len blocks). 2183 * 2184 * Note that this function can attach bios to one io_end structure which are 2185 * neither logically nor physically contiguous. Although it may seem as an 2186 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2187 * case as we need to track IO to all buffers underlying a page in one io_end. 2188 */ 2189 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2190 { 2191 struct address_space *mapping = mpd->inode->i_mapping; 2192 struct pagevec pvec; 2193 unsigned int nr_pages; 2194 long left = mpd->wbc->nr_to_write; 2195 pgoff_t index = mpd->first_page; 2196 pgoff_t end = mpd->last_page; 2197 int tag; 2198 int i, err = 0; 2199 int blkbits = mpd->inode->i_blkbits; 2200 ext4_lblk_t lblk; 2201 struct buffer_head *head; 2202 2203 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2204 tag = PAGECACHE_TAG_TOWRITE; 2205 else 2206 tag = PAGECACHE_TAG_DIRTY; 2207 2208 pagevec_init(&pvec, 0); 2209 mpd->map.m_len = 0; 2210 mpd->next_page = index; 2211 while (index <= end) { 2212 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2213 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2214 if (nr_pages == 0) 2215 goto out; 2216 2217 for (i = 0; i < nr_pages; i++) { 2218 struct page *page = pvec.pages[i]; 2219 2220 /* 2221 * At this point, the page may be truncated or 2222 * invalidated (changing page->mapping to NULL), or 2223 * even swizzled back from swapper_space to tmpfs file 2224 * mapping. However, page->index will not change 2225 * because we have a reference on the page. 2226 */ 2227 if (page->index > end) 2228 goto out; 2229 2230 /* 2231 * Accumulated enough dirty pages? This doesn't apply 2232 * to WB_SYNC_ALL mode. For integrity sync we have to 2233 * keep going because someone may be concurrently 2234 * dirtying pages, and we might have synced a lot of 2235 * newly appeared dirty pages, but have not synced all 2236 * of the old dirty pages. 2237 */ 2238 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2239 goto out; 2240 2241 /* If we can't merge this page, we are done. */ 2242 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2243 goto out; 2244 2245 lock_page(page); 2246 /* 2247 * If the page is no longer dirty, or its mapping no 2248 * longer corresponds to inode we are writing (which 2249 * means it has been truncated or invalidated), or the 2250 * page is already under writeback and we are not doing 2251 * a data integrity writeback, skip the page 2252 */ 2253 if (!PageDirty(page) || 2254 (PageWriteback(page) && 2255 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2256 unlikely(page->mapping != mapping)) { 2257 unlock_page(page); 2258 continue; 2259 } 2260 2261 wait_on_page_writeback(page); 2262 BUG_ON(PageWriteback(page)); 2263 2264 if (mpd->map.m_len == 0) 2265 mpd->first_page = page->index; 2266 mpd->next_page = page->index + 1; 2267 /* Add all dirty buffers to mpd */ 2268 lblk = ((ext4_lblk_t)page->index) << 2269 (PAGE_CACHE_SHIFT - blkbits); 2270 head = page_buffers(page); 2271 err = mpage_process_page_bufs(mpd, head, head, lblk); 2272 if (err <= 0) 2273 goto out; 2274 err = 0; 2275 left--; 2276 } 2277 pagevec_release(&pvec); 2278 cond_resched(); 2279 } 2280 return 0; 2281 out: 2282 pagevec_release(&pvec); 2283 return err; 2284 } 2285 2286 static int __writepage(struct page *page, struct writeback_control *wbc, 2287 void *data) 2288 { 2289 struct address_space *mapping = data; 2290 int ret = ext4_writepage(page, wbc); 2291 mapping_set_error(mapping, ret); 2292 return ret; 2293 } 2294 2295 static int ext4_writepages(struct address_space *mapping, 2296 struct writeback_control *wbc) 2297 { 2298 pgoff_t writeback_index = 0; 2299 long nr_to_write = wbc->nr_to_write; 2300 int range_whole = 0; 2301 int cycled = 1; 2302 handle_t *handle = NULL; 2303 struct mpage_da_data mpd; 2304 struct inode *inode = mapping->host; 2305 int needed_blocks, rsv_blocks = 0, ret = 0; 2306 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2307 bool done; 2308 struct blk_plug plug; 2309 bool give_up_on_write = false; 2310 2311 trace_ext4_writepages(inode, wbc); 2312 2313 /* 2314 * No pages to write? This is mainly a kludge to avoid starting 2315 * a transaction for special inodes like journal inode on last iput() 2316 * because that could violate lock ordering on umount 2317 */ 2318 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2319 goto out_writepages; 2320 2321 if (ext4_should_journal_data(inode)) { 2322 struct blk_plug plug; 2323 2324 blk_start_plug(&plug); 2325 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2326 blk_finish_plug(&plug); 2327 goto out_writepages; 2328 } 2329 2330 /* 2331 * If the filesystem has aborted, it is read-only, so return 2332 * right away instead of dumping stack traces later on that 2333 * will obscure the real source of the problem. We test 2334 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2335 * the latter could be true if the filesystem is mounted 2336 * read-only, and in that case, ext4_writepages should 2337 * *never* be called, so if that ever happens, we would want 2338 * the stack trace. 2339 */ 2340 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2341 ret = -EROFS; 2342 goto out_writepages; 2343 } 2344 2345 if (ext4_should_dioread_nolock(inode)) { 2346 /* 2347 * We may need to convert up to one extent per block in 2348 * the page and we may dirty the inode. 2349 */ 2350 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2351 } 2352 2353 /* 2354 * If we have inline data and arrive here, it means that 2355 * we will soon create the block for the 1st page, so 2356 * we'd better clear the inline data here. 2357 */ 2358 if (ext4_has_inline_data(inode)) { 2359 /* Just inode will be modified... */ 2360 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2361 if (IS_ERR(handle)) { 2362 ret = PTR_ERR(handle); 2363 goto out_writepages; 2364 } 2365 BUG_ON(ext4_test_inode_state(inode, 2366 EXT4_STATE_MAY_INLINE_DATA)); 2367 ext4_destroy_inline_data(handle, inode); 2368 ext4_journal_stop(handle); 2369 } 2370 2371 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2372 range_whole = 1; 2373 2374 if (wbc->range_cyclic) { 2375 writeback_index = mapping->writeback_index; 2376 if (writeback_index) 2377 cycled = 0; 2378 mpd.first_page = writeback_index; 2379 mpd.last_page = -1; 2380 } else { 2381 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2382 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2383 } 2384 2385 mpd.inode = inode; 2386 mpd.wbc = wbc; 2387 ext4_io_submit_init(&mpd.io_submit, wbc); 2388 retry: 2389 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2390 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2391 done = false; 2392 blk_start_plug(&plug); 2393 while (!done && mpd.first_page <= mpd.last_page) { 2394 /* For each extent of pages we use new io_end */ 2395 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2396 if (!mpd.io_submit.io_end) { 2397 ret = -ENOMEM; 2398 break; 2399 } 2400 2401 /* 2402 * We have two constraints: We find one extent to map and we 2403 * must always write out whole page (makes a difference when 2404 * blocksize < pagesize) so that we don't block on IO when we 2405 * try to write out the rest of the page. Journalled mode is 2406 * not supported by delalloc. 2407 */ 2408 BUG_ON(ext4_should_journal_data(inode)); 2409 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2410 2411 /* start a new transaction */ 2412 handle = ext4_journal_start_with_reserve(inode, 2413 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2414 if (IS_ERR(handle)) { 2415 ret = PTR_ERR(handle); 2416 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2417 "%ld pages, ino %lu; err %d", __func__, 2418 wbc->nr_to_write, inode->i_ino, ret); 2419 /* Release allocated io_end */ 2420 ext4_put_io_end(mpd.io_submit.io_end); 2421 break; 2422 } 2423 2424 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2425 ret = mpage_prepare_extent_to_map(&mpd); 2426 if (!ret) { 2427 if (mpd.map.m_len) 2428 ret = mpage_map_and_submit_extent(handle, &mpd, 2429 &give_up_on_write); 2430 else { 2431 /* 2432 * We scanned the whole range (or exhausted 2433 * nr_to_write), submitted what was mapped and 2434 * didn't find anything needing mapping. We are 2435 * done. 2436 */ 2437 done = true; 2438 } 2439 } 2440 ext4_journal_stop(handle); 2441 /* Submit prepared bio */ 2442 ext4_io_submit(&mpd.io_submit); 2443 /* Unlock pages we didn't use */ 2444 mpage_release_unused_pages(&mpd, give_up_on_write); 2445 /* Drop our io_end reference we got from init */ 2446 ext4_put_io_end(mpd.io_submit.io_end); 2447 2448 if (ret == -ENOSPC && sbi->s_journal) { 2449 /* 2450 * Commit the transaction which would 2451 * free blocks released in the transaction 2452 * and try again 2453 */ 2454 jbd2_journal_force_commit_nested(sbi->s_journal); 2455 ret = 0; 2456 continue; 2457 } 2458 /* Fatal error - ENOMEM, EIO... */ 2459 if (ret) 2460 break; 2461 } 2462 blk_finish_plug(&plug); 2463 if (!ret && !cycled && wbc->nr_to_write > 0) { 2464 cycled = 1; 2465 mpd.last_page = writeback_index - 1; 2466 mpd.first_page = 0; 2467 goto retry; 2468 } 2469 2470 /* Update index */ 2471 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2472 /* 2473 * Set the writeback_index so that range_cyclic 2474 * mode will write it back later 2475 */ 2476 mapping->writeback_index = mpd.first_page; 2477 2478 out_writepages: 2479 trace_ext4_writepages_result(inode, wbc, ret, 2480 nr_to_write - wbc->nr_to_write); 2481 return ret; 2482 } 2483 2484 static int ext4_nonda_switch(struct super_block *sb) 2485 { 2486 s64 free_clusters, dirty_clusters; 2487 struct ext4_sb_info *sbi = EXT4_SB(sb); 2488 2489 /* 2490 * switch to non delalloc mode if we are running low 2491 * on free block. The free block accounting via percpu 2492 * counters can get slightly wrong with percpu_counter_batch getting 2493 * accumulated on each CPU without updating global counters 2494 * Delalloc need an accurate free block accounting. So switch 2495 * to non delalloc when we are near to error range. 2496 */ 2497 free_clusters = 2498 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2499 dirty_clusters = 2500 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2501 /* 2502 * Start pushing delalloc when 1/2 of free blocks are dirty. 2503 */ 2504 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2505 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2506 2507 if (2 * free_clusters < 3 * dirty_clusters || 2508 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2509 /* 2510 * free block count is less than 150% of dirty blocks 2511 * or free blocks is less than watermark 2512 */ 2513 return 1; 2514 } 2515 return 0; 2516 } 2517 2518 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2519 loff_t pos, unsigned len, unsigned flags, 2520 struct page **pagep, void **fsdata) 2521 { 2522 int ret, retries = 0; 2523 struct page *page; 2524 pgoff_t index; 2525 struct inode *inode = mapping->host; 2526 handle_t *handle; 2527 2528 index = pos >> PAGE_CACHE_SHIFT; 2529 2530 if (ext4_nonda_switch(inode->i_sb)) { 2531 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2532 return ext4_write_begin(file, mapping, pos, 2533 len, flags, pagep, fsdata); 2534 } 2535 *fsdata = (void *)0; 2536 trace_ext4_da_write_begin(inode, pos, len, flags); 2537 2538 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2539 ret = ext4_da_write_inline_data_begin(mapping, inode, 2540 pos, len, flags, 2541 pagep, fsdata); 2542 if (ret < 0) 2543 return ret; 2544 if (ret == 1) 2545 return 0; 2546 } 2547 2548 /* 2549 * grab_cache_page_write_begin() can take a long time if the 2550 * system is thrashing due to memory pressure, or if the page 2551 * is being written back. So grab it first before we start 2552 * the transaction handle. This also allows us to allocate 2553 * the page (if needed) without using GFP_NOFS. 2554 */ 2555 retry_grab: 2556 page = grab_cache_page_write_begin(mapping, index, flags); 2557 if (!page) 2558 return -ENOMEM; 2559 unlock_page(page); 2560 2561 /* 2562 * With delayed allocation, we don't log the i_disksize update 2563 * if there is delayed block allocation. But we still need 2564 * to journalling the i_disksize update if writes to the end 2565 * of file which has an already mapped buffer. 2566 */ 2567 retry_journal: 2568 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2569 if (IS_ERR(handle)) { 2570 page_cache_release(page); 2571 return PTR_ERR(handle); 2572 } 2573 2574 lock_page(page); 2575 if (page->mapping != mapping) { 2576 /* The page got truncated from under us */ 2577 unlock_page(page); 2578 page_cache_release(page); 2579 ext4_journal_stop(handle); 2580 goto retry_grab; 2581 } 2582 /* In case writeback began while the page was unlocked */ 2583 wait_for_stable_page(page); 2584 2585 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2586 if (ret < 0) { 2587 unlock_page(page); 2588 ext4_journal_stop(handle); 2589 /* 2590 * block_write_begin may have instantiated a few blocks 2591 * outside i_size. Trim these off again. Don't need 2592 * i_size_read because we hold i_mutex. 2593 */ 2594 if (pos + len > inode->i_size) 2595 ext4_truncate_failed_write(inode); 2596 2597 if (ret == -ENOSPC && 2598 ext4_should_retry_alloc(inode->i_sb, &retries)) 2599 goto retry_journal; 2600 2601 page_cache_release(page); 2602 return ret; 2603 } 2604 2605 *pagep = page; 2606 return ret; 2607 } 2608 2609 /* 2610 * Check if we should update i_disksize 2611 * when write to the end of file but not require block allocation 2612 */ 2613 static int ext4_da_should_update_i_disksize(struct page *page, 2614 unsigned long offset) 2615 { 2616 struct buffer_head *bh; 2617 struct inode *inode = page->mapping->host; 2618 unsigned int idx; 2619 int i; 2620 2621 bh = page_buffers(page); 2622 idx = offset >> inode->i_blkbits; 2623 2624 for (i = 0; i < idx; i++) 2625 bh = bh->b_this_page; 2626 2627 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2628 return 0; 2629 return 1; 2630 } 2631 2632 static int ext4_da_write_end(struct file *file, 2633 struct address_space *mapping, 2634 loff_t pos, unsigned len, unsigned copied, 2635 struct page *page, void *fsdata) 2636 { 2637 struct inode *inode = mapping->host; 2638 int ret = 0, ret2; 2639 handle_t *handle = ext4_journal_current_handle(); 2640 loff_t new_i_size; 2641 unsigned long start, end; 2642 int write_mode = (int)(unsigned long)fsdata; 2643 2644 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2645 return ext4_write_end(file, mapping, pos, 2646 len, copied, page, fsdata); 2647 2648 trace_ext4_da_write_end(inode, pos, len, copied); 2649 start = pos & (PAGE_CACHE_SIZE - 1); 2650 end = start + copied - 1; 2651 2652 /* 2653 * generic_write_end() will run mark_inode_dirty() if i_size 2654 * changes. So let's piggyback the i_disksize mark_inode_dirty 2655 * into that. 2656 */ 2657 new_i_size = pos + copied; 2658 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2659 if (ext4_has_inline_data(inode) || 2660 ext4_da_should_update_i_disksize(page, end)) { 2661 down_write(&EXT4_I(inode)->i_data_sem); 2662 if (new_i_size > EXT4_I(inode)->i_disksize) 2663 EXT4_I(inode)->i_disksize = new_i_size; 2664 up_write(&EXT4_I(inode)->i_data_sem); 2665 /* We need to mark inode dirty even if 2666 * new_i_size is less that inode->i_size 2667 * bu greater than i_disksize.(hint delalloc) 2668 */ 2669 ext4_mark_inode_dirty(handle, inode); 2670 } 2671 } 2672 2673 if (write_mode != CONVERT_INLINE_DATA && 2674 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2675 ext4_has_inline_data(inode)) 2676 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2677 page); 2678 else 2679 ret2 = generic_write_end(file, mapping, pos, len, copied, 2680 page, fsdata); 2681 2682 copied = ret2; 2683 if (ret2 < 0) 2684 ret = ret2; 2685 ret2 = ext4_journal_stop(handle); 2686 if (!ret) 2687 ret = ret2; 2688 2689 return ret ? ret : copied; 2690 } 2691 2692 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2693 unsigned int length) 2694 { 2695 /* 2696 * Drop reserved blocks 2697 */ 2698 BUG_ON(!PageLocked(page)); 2699 if (!page_has_buffers(page)) 2700 goto out; 2701 2702 ext4_da_page_release_reservation(page, offset, length); 2703 2704 out: 2705 ext4_invalidatepage(page, offset, length); 2706 2707 return; 2708 } 2709 2710 /* 2711 * Force all delayed allocation blocks to be allocated for a given inode. 2712 */ 2713 int ext4_alloc_da_blocks(struct inode *inode) 2714 { 2715 trace_ext4_alloc_da_blocks(inode); 2716 2717 if (!EXT4_I(inode)->i_reserved_data_blocks) 2718 return 0; 2719 2720 /* 2721 * We do something simple for now. The filemap_flush() will 2722 * also start triggering a write of the data blocks, which is 2723 * not strictly speaking necessary (and for users of 2724 * laptop_mode, not even desirable). However, to do otherwise 2725 * would require replicating code paths in: 2726 * 2727 * ext4_writepages() -> 2728 * write_cache_pages() ---> (via passed in callback function) 2729 * __mpage_da_writepage() --> 2730 * mpage_add_bh_to_extent() 2731 * mpage_da_map_blocks() 2732 * 2733 * The problem is that write_cache_pages(), located in 2734 * mm/page-writeback.c, marks pages clean in preparation for 2735 * doing I/O, which is not desirable if we're not planning on 2736 * doing I/O at all. 2737 * 2738 * We could call write_cache_pages(), and then redirty all of 2739 * the pages by calling redirty_page_for_writepage() but that 2740 * would be ugly in the extreme. So instead we would need to 2741 * replicate parts of the code in the above functions, 2742 * simplifying them because we wouldn't actually intend to 2743 * write out the pages, but rather only collect contiguous 2744 * logical block extents, call the multi-block allocator, and 2745 * then update the buffer heads with the block allocations. 2746 * 2747 * For now, though, we'll cheat by calling filemap_flush(), 2748 * which will map the blocks, and start the I/O, but not 2749 * actually wait for the I/O to complete. 2750 */ 2751 return filemap_flush(inode->i_mapping); 2752 } 2753 2754 /* 2755 * bmap() is special. It gets used by applications such as lilo and by 2756 * the swapper to find the on-disk block of a specific piece of data. 2757 * 2758 * Naturally, this is dangerous if the block concerned is still in the 2759 * journal. If somebody makes a swapfile on an ext4 data-journaling 2760 * filesystem and enables swap, then they may get a nasty shock when the 2761 * data getting swapped to that swapfile suddenly gets overwritten by 2762 * the original zero's written out previously to the journal and 2763 * awaiting writeback in the kernel's buffer cache. 2764 * 2765 * So, if we see any bmap calls here on a modified, data-journaled file, 2766 * take extra steps to flush any blocks which might be in the cache. 2767 */ 2768 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2769 { 2770 struct inode *inode = mapping->host; 2771 journal_t *journal; 2772 int err; 2773 2774 /* 2775 * We can get here for an inline file via the FIBMAP ioctl 2776 */ 2777 if (ext4_has_inline_data(inode)) 2778 return 0; 2779 2780 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2781 test_opt(inode->i_sb, DELALLOC)) { 2782 /* 2783 * With delalloc we want to sync the file 2784 * so that we can make sure we allocate 2785 * blocks for file 2786 */ 2787 filemap_write_and_wait(mapping); 2788 } 2789 2790 if (EXT4_JOURNAL(inode) && 2791 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2792 /* 2793 * This is a REALLY heavyweight approach, but the use of 2794 * bmap on dirty files is expected to be extremely rare: 2795 * only if we run lilo or swapon on a freshly made file 2796 * do we expect this to happen. 2797 * 2798 * (bmap requires CAP_SYS_RAWIO so this does not 2799 * represent an unprivileged user DOS attack --- we'd be 2800 * in trouble if mortal users could trigger this path at 2801 * will.) 2802 * 2803 * NB. EXT4_STATE_JDATA is not set on files other than 2804 * regular files. If somebody wants to bmap a directory 2805 * or symlink and gets confused because the buffer 2806 * hasn't yet been flushed to disk, they deserve 2807 * everything they get. 2808 */ 2809 2810 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2811 journal = EXT4_JOURNAL(inode); 2812 jbd2_journal_lock_updates(journal); 2813 err = jbd2_journal_flush(journal); 2814 jbd2_journal_unlock_updates(journal); 2815 2816 if (err) 2817 return 0; 2818 } 2819 2820 return generic_block_bmap(mapping, block, ext4_get_block); 2821 } 2822 2823 static int ext4_readpage(struct file *file, struct page *page) 2824 { 2825 int ret = -EAGAIN; 2826 struct inode *inode = page->mapping->host; 2827 2828 trace_ext4_readpage(page); 2829 2830 if (ext4_has_inline_data(inode)) 2831 ret = ext4_readpage_inline(inode, page); 2832 2833 if (ret == -EAGAIN) 2834 return mpage_readpage(page, ext4_get_block); 2835 2836 return ret; 2837 } 2838 2839 static int 2840 ext4_readpages(struct file *file, struct address_space *mapping, 2841 struct list_head *pages, unsigned nr_pages) 2842 { 2843 struct inode *inode = mapping->host; 2844 2845 /* If the file has inline data, no need to do readpages. */ 2846 if (ext4_has_inline_data(inode)) 2847 return 0; 2848 2849 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2850 } 2851 2852 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2853 unsigned int length) 2854 { 2855 trace_ext4_invalidatepage(page, offset, length); 2856 2857 /* No journalling happens on data buffers when this function is used */ 2858 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2859 2860 block_invalidatepage(page, offset, length); 2861 } 2862 2863 static int __ext4_journalled_invalidatepage(struct page *page, 2864 unsigned int offset, 2865 unsigned int length) 2866 { 2867 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2868 2869 trace_ext4_journalled_invalidatepage(page, offset, length); 2870 2871 /* 2872 * If it's a full truncate we just forget about the pending dirtying 2873 */ 2874 if (offset == 0 && length == PAGE_CACHE_SIZE) 2875 ClearPageChecked(page); 2876 2877 return jbd2_journal_invalidatepage(journal, page, offset, length); 2878 } 2879 2880 /* Wrapper for aops... */ 2881 static void ext4_journalled_invalidatepage(struct page *page, 2882 unsigned int offset, 2883 unsigned int length) 2884 { 2885 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2886 } 2887 2888 static int ext4_releasepage(struct page *page, gfp_t wait) 2889 { 2890 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2891 2892 trace_ext4_releasepage(page); 2893 2894 /* Page has dirty journalled data -> cannot release */ 2895 if (PageChecked(page)) 2896 return 0; 2897 if (journal) 2898 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2899 else 2900 return try_to_free_buffers(page); 2901 } 2902 2903 /* 2904 * ext4_get_block used when preparing for a DIO write or buffer write. 2905 * We allocate an uinitialized extent if blocks haven't been allocated. 2906 * The extent will be converted to initialized after the IO is complete. 2907 */ 2908 int ext4_get_block_write(struct inode *inode, sector_t iblock, 2909 struct buffer_head *bh_result, int create) 2910 { 2911 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2912 inode->i_ino, create); 2913 return _ext4_get_block(inode, iblock, bh_result, 2914 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2915 } 2916 2917 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2918 struct buffer_head *bh_result, int create) 2919 { 2920 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 2921 inode->i_ino, create); 2922 return _ext4_get_block(inode, iblock, bh_result, 2923 EXT4_GET_BLOCKS_NO_LOCK); 2924 } 2925 2926 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2927 ssize_t size, void *private) 2928 { 2929 ext4_io_end_t *io_end = iocb->private; 2930 2931 /* if not async direct IO just return */ 2932 if (!io_end) 2933 return; 2934 2935 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2936 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2937 iocb->private, io_end->inode->i_ino, iocb, offset, 2938 size); 2939 2940 iocb->private = NULL; 2941 io_end->offset = offset; 2942 io_end->size = size; 2943 ext4_put_io_end(io_end); 2944 } 2945 2946 /* 2947 * For ext4 extent files, ext4 will do direct-io write to holes, 2948 * preallocated extents, and those write extend the file, no need to 2949 * fall back to buffered IO. 2950 * 2951 * For holes, we fallocate those blocks, mark them as unwritten 2952 * If those blocks were preallocated, we mark sure they are split, but 2953 * still keep the range to write as unwritten. 2954 * 2955 * The unwritten extents will be converted to written when DIO is completed. 2956 * For async direct IO, since the IO may still pending when return, we 2957 * set up an end_io call back function, which will do the conversion 2958 * when async direct IO completed. 2959 * 2960 * If the O_DIRECT write will extend the file then add this inode to the 2961 * orphan list. So recovery will truncate it back to the original size 2962 * if the machine crashes during the write. 2963 * 2964 */ 2965 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2966 struct iov_iter *iter, loff_t offset) 2967 { 2968 struct file *file = iocb->ki_filp; 2969 struct inode *inode = file->f_mapping->host; 2970 ssize_t ret; 2971 size_t count = iov_iter_count(iter); 2972 int overwrite = 0; 2973 get_block_t *get_block_func = NULL; 2974 int dio_flags = 0; 2975 loff_t final_size = offset + count; 2976 ext4_io_end_t *io_end = NULL; 2977 2978 /* Use the old path for reads and writes beyond i_size. */ 2979 if (rw != WRITE || final_size > inode->i_size) 2980 return ext4_ind_direct_IO(rw, iocb, iter, offset); 2981 2982 BUG_ON(iocb->private == NULL); 2983 2984 /* 2985 * Make all waiters for direct IO properly wait also for extent 2986 * conversion. This also disallows race between truncate() and 2987 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 2988 */ 2989 if (rw == WRITE) 2990 atomic_inc(&inode->i_dio_count); 2991 2992 /* If we do a overwrite dio, i_mutex locking can be released */ 2993 overwrite = *((int *)iocb->private); 2994 2995 if (overwrite) { 2996 down_read(&EXT4_I(inode)->i_data_sem); 2997 mutex_unlock(&inode->i_mutex); 2998 } 2999 3000 /* 3001 * We could direct write to holes and fallocate. 3002 * 3003 * Allocated blocks to fill the hole are marked as 3004 * unwritten to prevent parallel buffered read to expose 3005 * the stale data before DIO complete the data IO. 3006 * 3007 * As to previously fallocated extents, ext4 get_block will 3008 * just simply mark the buffer mapped but still keep the 3009 * extents unwritten. 3010 * 3011 * For non AIO case, we will convert those unwritten extents 3012 * to written after return back from blockdev_direct_IO. 3013 * 3014 * For async DIO, the conversion needs to be deferred when the 3015 * IO is completed. The ext4 end_io callback function will be 3016 * called to take care of the conversion work. Here for async 3017 * case, we allocate an io_end structure to hook to the iocb. 3018 */ 3019 iocb->private = NULL; 3020 ext4_inode_aio_set(inode, NULL); 3021 if (!is_sync_kiocb(iocb)) { 3022 io_end = ext4_init_io_end(inode, GFP_NOFS); 3023 if (!io_end) { 3024 ret = -ENOMEM; 3025 goto retake_lock; 3026 } 3027 /* 3028 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3029 */ 3030 iocb->private = ext4_get_io_end(io_end); 3031 /* 3032 * we save the io structure for current async direct 3033 * IO, so that later ext4_map_blocks() could flag the 3034 * io structure whether there is a unwritten extents 3035 * needs to be converted when IO is completed. 3036 */ 3037 ext4_inode_aio_set(inode, io_end); 3038 } 3039 3040 if (overwrite) { 3041 get_block_func = ext4_get_block_write_nolock; 3042 } else { 3043 get_block_func = ext4_get_block_write; 3044 dio_flags = DIO_LOCKING; 3045 } 3046 ret = __blockdev_direct_IO(rw, iocb, inode, 3047 inode->i_sb->s_bdev, iter, 3048 offset, 3049 get_block_func, 3050 ext4_end_io_dio, 3051 NULL, 3052 dio_flags); 3053 3054 /* 3055 * Put our reference to io_end. This can free the io_end structure e.g. 3056 * in sync IO case or in case of error. It can even perform extent 3057 * conversion if all bios we submitted finished before we got here. 3058 * Note that in that case iocb->private can be already set to NULL 3059 * here. 3060 */ 3061 if (io_end) { 3062 ext4_inode_aio_set(inode, NULL); 3063 ext4_put_io_end(io_end); 3064 /* 3065 * When no IO was submitted ext4_end_io_dio() was not 3066 * called so we have to put iocb's reference. 3067 */ 3068 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3069 WARN_ON(iocb->private != io_end); 3070 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3071 ext4_put_io_end(io_end); 3072 iocb->private = NULL; 3073 } 3074 } 3075 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3076 EXT4_STATE_DIO_UNWRITTEN)) { 3077 int err; 3078 /* 3079 * for non AIO case, since the IO is already 3080 * completed, we could do the conversion right here 3081 */ 3082 err = ext4_convert_unwritten_extents(NULL, inode, 3083 offset, ret); 3084 if (err < 0) 3085 ret = err; 3086 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3087 } 3088 3089 retake_lock: 3090 if (rw == WRITE) 3091 inode_dio_done(inode); 3092 /* take i_mutex locking again if we do a ovewrite dio */ 3093 if (overwrite) { 3094 up_read(&EXT4_I(inode)->i_data_sem); 3095 mutex_lock(&inode->i_mutex); 3096 } 3097 3098 return ret; 3099 } 3100 3101 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3102 struct iov_iter *iter, loff_t offset) 3103 { 3104 struct file *file = iocb->ki_filp; 3105 struct inode *inode = file->f_mapping->host; 3106 size_t count = iov_iter_count(iter); 3107 ssize_t ret; 3108 3109 /* 3110 * If we are doing data journalling we don't support O_DIRECT 3111 */ 3112 if (ext4_should_journal_data(inode)) 3113 return 0; 3114 3115 /* Let buffer I/O handle the inline data case. */ 3116 if (ext4_has_inline_data(inode)) 3117 return 0; 3118 3119 trace_ext4_direct_IO_enter(inode, offset, count, rw); 3120 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3121 ret = ext4_ext_direct_IO(rw, iocb, iter, offset); 3122 else 3123 ret = ext4_ind_direct_IO(rw, iocb, iter, offset); 3124 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret); 3125 return ret; 3126 } 3127 3128 /* 3129 * Pages can be marked dirty completely asynchronously from ext4's journalling 3130 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3131 * much here because ->set_page_dirty is called under VFS locks. The page is 3132 * not necessarily locked. 3133 * 3134 * We cannot just dirty the page and leave attached buffers clean, because the 3135 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3136 * or jbddirty because all the journalling code will explode. 3137 * 3138 * So what we do is to mark the page "pending dirty" and next time writepage 3139 * is called, propagate that into the buffers appropriately. 3140 */ 3141 static int ext4_journalled_set_page_dirty(struct page *page) 3142 { 3143 SetPageChecked(page); 3144 return __set_page_dirty_nobuffers(page); 3145 } 3146 3147 static const struct address_space_operations ext4_aops = { 3148 .readpage = ext4_readpage, 3149 .readpages = ext4_readpages, 3150 .writepage = ext4_writepage, 3151 .writepages = ext4_writepages, 3152 .write_begin = ext4_write_begin, 3153 .write_end = ext4_write_end, 3154 .bmap = ext4_bmap, 3155 .invalidatepage = ext4_invalidatepage, 3156 .releasepage = ext4_releasepage, 3157 .direct_IO = ext4_direct_IO, 3158 .migratepage = buffer_migrate_page, 3159 .is_partially_uptodate = block_is_partially_uptodate, 3160 .error_remove_page = generic_error_remove_page, 3161 }; 3162 3163 static const struct address_space_operations ext4_journalled_aops = { 3164 .readpage = ext4_readpage, 3165 .readpages = ext4_readpages, 3166 .writepage = ext4_writepage, 3167 .writepages = ext4_writepages, 3168 .write_begin = ext4_write_begin, 3169 .write_end = ext4_journalled_write_end, 3170 .set_page_dirty = ext4_journalled_set_page_dirty, 3171 .bmap = ext4_bmap, 3172 .invalidatepage = ext4_journalled_invalidatepage, 3173 .releasepage = ext4_releasepage, 3174 .direct_IO = ext4_direct_IO, 3175 .is_partially_uptodate = block_is_partially_uptodate, 3176 .error_remove_page = generic_error_remove_page, 3177 }; 3178 3179 static const struct address_space_operations ext4_da_aops = { 3180 .readpage = ext4_readpage, 3181 .readpages = ext4_readpages, 3182 .writepage = ext4_writepage, 3183 .writepages = ext4_writepages, 3184 .write_begin = ext4_da_write_begin, 3185 .write_end = ext4_da_write_end, 3186 .bmap = ext4_bmap, 3187 .invalidatepage = ext4_da_invalidatepage, 3188 .releasepage = ext4_releasepage, 3189 .direct_IO = ext4_direct_IO, 3190 .migratepage = buffer_migrate_page, 3191 .is_partially_uptodate = block_is_partially_uptodate, 3192 .error_remove_page = generic_error_remove_page, 3193 }; 3194 3195 void ext4_set_aops(struct inode *inode) 3196 { 3197 switch (ext4_inode_journal_mode(inode)) { 3198 case EXT4_INODE_ORDERED_DATA_MODE: 3199 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3200 break; 3201 case EXT4_INODE_WRITEBACK_DATA_MODE: 3202 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3203 break; 3204 case EXT4_INODE_JOURNAL_DATA_MODE: 3205 inode->i_mapping->a_ops = &ext4_journalled_aops; 3206 return; 3207 default: 3208 BUG(); 3209 } 3210 if (test_opt(inode->i_sb, DELALLOC)) 3211 inode->i_mapping->a_ops = &ext4_da_aops; 3212 else 3213 inode->i_mapping->a_ops = &ext4_aops; 3214 } 3215 3216 /* 3217 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3218 * starting from file offset 'from'. The range to be zero'd must 3219 * be contained with in one block. If the specified range exceeds 3220 * the end of the block it will be shortened to end of the block 3221 * that cooresponds to 'from' 3222 */ 3223 static int ext4_block_zero_page_range(handle_t *handle, 3224 struct address_space *mapping, loff_t from, loff_t length) 3225 { 3226 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3227 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3228 unsigned blocksize, max, pos; 3229 ext4_lblk_t iblock; 3230 struct inode *inode = mapping->host; 3231 struct buffer_head *bh; 3232 struct page *page; 3233 int err = 0; 3234 3235 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3236 mapping_gfp_mask(mapping) & ~__GFP_FS); 3237 if (!page) 3238 return -ENOMEM; 3239 3240 blocksize = inode->i_sb->s_blocksize; 3241 max = blocksize - (offset & (blocksize - 1)); 3242 3243 /* 3244 * correct length if it does not fall between 3245 * 'from' and the end of the block 3246 */ 3247 if (length > max || length < 0) 3248 length = max; 3249 3250 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3251 3252 if (!page_has_buffers(page)) 3253 create_empty_buffers(page, blocksize, 0); 3254 3255 /* Find the buffer that contains "offset" */ 3256 bh = page_buffers(page); 3257 pos = blocksize; 3258 while (offset >= pos) { 3259 bh = bh->b_this_page; 3260 iblock++; 3261 pos += blocksize; 3262 } 3263 if (buffer_freed(bh)) { 3264 BUFFER_TRACE(bh, "freed: skip"); 3265 goto unlock; 3266 } 3267 if (!buffer_mapped(bh)) { 3268 BUFFER_TRACE(bh, "unmapped"); 3269 ext4_get_block(inode, iblock, bh, 0); 3270 /* unmapped? It's a hole - nothing to do */ 3271 if (!buffer_mapped(bh)) { 3272 BUFFER_TRACE(bh, "still unmapped"); 3273 goto unlock; 3274 } 3275 } 3276 3277 /* Ok, it's mapped. Make sure it's up-to-date */ 3278 if (PageUptodate(page)) 3279 set_buffer_uptodate(bh); 3280 3281 if (!buffer_uptodate(bh)) { 3282 err = -EIO; 3283 ll_rw_block(READ, 1, &bh); 3284 wait_on_buffer(bh); 3285 /* Uhhuh. Read error. Complain and punt. */ 3286 if (!buffer_uptodate(bh)) 3287 goto unlock; 3288 } 3289 if (ext4_should_journal_data(inode)) { 3290 BUFFER_TRACE(bh, "get write access"); 3291 err = ext4_journal_get_write_access(handle, bh); 3292 if (err) 3293 goto unlock; 3294 } 3295 zero_user(page, offset, length); 3296 BUFFER_TRACE(bh, "zeroed end of block"); 3297 3298 if (ext4_should_journal_data(inode)) { 3299 err = ext4_handle_dirty_metadata(handle, inode, bh); 3300 } else { 3301 err = 0; 3302 mark_buffer_dirty(bh); 3303 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3304 err = ext4_jbd2_file_inode(handle, inode); 3305 } 3306 3307 unlock: 3308 unlock_page(page); 3309 page_cache_release(page); 3310 return err; 3311 } 3312 3313 /* 3314 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3315 * up to the end of the block which corresponds to `from'. 3316 * This required during truncate. We need to physically zero the tail end 3317 * of that block so it doesn't yield old data if the file is later grown. 3318 */ 3319 static int ext4_block_truncate_page(handle_t *handle, 3320 struct address_space *mapping, loff_t from) 3321 { 3322 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3323 unsigned length; 3324 unsigned blocksize; 3325 struct inode *inode = mapping->host; 3326 3327 blocksize = inode->i_sb->s_blocksize; 3328 length = blocksize - (offset & (blocksize - 1)); 3329 3330 return ext4_block_zero_page_range(handle, mapping, from, length); 3331 } 3332 3333 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3334 loff_t lstart, loff_t length) 3335 { 3336 struct super_block *sb = inode->i_sb; 3337 struct address_space *mapping = inode->i_mapping; 3338 unsigned partial_start, partial_end; 3339 ext4_fsblk_t start, end; 3340 loff_t byte_end = (lstart + length - 1); 3341 int err = 0; 3342 3343 partial_start = lstart & (sb->s_blocksize - 1); 3344 partial_end = byte_end & (sb->s_blocksize - 1); 3345 3346 start = lstart >> sb->s_blocksize_bits; 3347 end = byte_end >> sb->s_blocksize_bits; 3348 3349 /* Handle partial zero within the single block */ 3350 if (start == end && 3351 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3352 err = ext4_block_zero_page_range(handle, mapping, 3353 lstart, length); 3354 return err; 3355 } 3356 /* Handle partial zero out on the start of the range */ 3357 if (partial_start) { 3358 err = ext4_block_zero_page_range(handle, mapping, 3359 lstart, sb->s_blocksize); 3360 if (err) 3361 return err; 3362 } 3363 /* Handle partial zero out on the end of the range */ 3364 if (partial_end != sb->s_blocksize - 1) 3365 err = ext4_block_zero_page_range(handle, mapping, 3366 byte_end - partial_end, 3367 partial_end + 1); 3368 return err; 3369 } 3370 3371 int ext4_can_truncate(struct inode *inode) 3372 { 3373 if (S_ISREG(inode->i_mode)) 3374 return 1; 3375 if (S_ISDIR(inode->i_mode)) 3376 return 1; 3377 if (S_ISLNK(inode->i_mode)) 3378 return !ext4_inode_is_fast_symlink(inode); 3379 return 0; 3380 } 3381 3382 /* 3383 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3384 * associated with the given offset and length 3385 * 3386 * @inode: File inode 3387 * @offset: The offset where the hole will begin 3388 * @len: The length of the hole 3389 * 3390 * Returns: 0 on success or negative on failure 3391 */ 3392 3393 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3394 { 3395 struct super_block *sb = inode->i_sb; 3396 ext4_lblk_t first_block, stop_block; 3397 struct address_space *mapping = inode->i_mapping; 3398 loff_t first_block_offset, last_block_offset; 3399 handle_t *handle; 3400 unsigned int credits; 3401 int ret = 0; 3402 3403 if (!S_ISREG(inode->i_mode)) 3404 return -EOPNOTSUPP; 3405 3406 trace_ext4_punch_hole(inode, offset, length, 0); 3407 3408 /* 3409 * Write out all dirty pages to avoid race conditions 3410 * Then release them. 3411 */ 3412 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3413 ret = filemap_write_and_wait_range(mapping, offset, 3414 offset + length - 1); 3415 if (ret) 3416 return ret; 3417 } 3418 3419 mutex_lock(&inode->i_mutex); 3420 3421 /* No need to punch hole beyond i_size */ 3422 if (offset >= inode->i_size) 3423 goto out_mutex; 3424 3425 /* 3426 * If the hole extends beyond i_size, set the hole 3427 * to end after the page that contains i_size 3428 */ 3429 if (offset + length > inode->i_size) { 3430 length = inode->i_size + 3431 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3432 offset; 3433 } 3434 3435 if (offset & (sb->s_blocksize - 1) || 3436 (offset + length) & (sb->s_blocksize - 1)) { 3437 /* 3438 * Attach jinode to inode for jbd2 if we do any zeroing of 3439 * partial block 3440 */ 3441 ret = ext4_inode_attach_jinode(inode); 3442 if (ret < 0) 3443 goto out_mutex; 3444 3445 } 3446 3447 first_block_offset = round_up(offset, sb->s_blocksize); 3448 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3449 3450 /* Now release the pages and zero block aligned part of pages*/ 3451 if (last_block_offset > first_block_offset) 3452 truncate_pagecache_range(inode, first_block_offset, 3453 last_block_offset); 3454 3455 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3456 ext4_inode_block_unlocked_dio(inode); 3457 inode_dio_wait(inode); 3458 3459 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3460 credits = ext4_writepage_trans_blocks(inode); 3461 else 3462 credits = ext4_blocks_for_truncate(inode); 3463 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3464 if (IS_ERR(handle)) { 3465 ret = PTR_ERR(handle); 3466 ext4_std_error(sb, ret); 3467 goto out_dio; 3468 } 3469 3470 ret = ext4_zero_partial_blocks(handle, inode, offset, 3471 length); 3472 if (ret) 3473 goto out_stop; 3474 3475 first_block = (offset + sb->s_blocksize - 1) >> 3476 EXT4_BLOCK_SIZE_BITS(sb); 3477 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3478 3479 /* If there are no blocks to remove, return now */ 3480 if (first_block >= stop_block) 3481 goto out_stop; 3482 3483 down_write(&EXT4_I(inode)->i_data_sem); 3484 ext4_discard_preallocations(inode); 3485 3486 ret = ext4_es_remove_extent(inode, first_block, 3487 stop_block - first_block); 3488 if (ret) { 3489 up_write(&EXT4_I(inode)->i_data_sem); 3490 goto out_stop; 3491 } 3492 3493 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3494 ret = ext4_ext_remove_space(inode, first_block, 3495 stop_block - 1); 3496 else 3497 ret = ext4_ind_remove_space(handle, inode, first_block, 3498 stop_block); 3499 3500 up_write(&EXT4_I(inode)->i_data_sem); 3501 if (IS_SYNC(inode)) 3502 ext4_handle_sync(handle); 3503 3504 /* Now release the pages again to reduce race window */ 3505 if (last_block_offset > first_block_offset) 3506 truncate_pagecache_range(inode, first_block_offset, 3507 last_block_offset); 3508 3509 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3510 ext4_mark_inode_dirty(handle, inode); 3511 out_stop: 3512 ext4_journal_stop(handle); 3513 out_dio: 3514 ext4_inode_resume_unlocked_dio(inode); 3515 out_mutex: 3516 mutex_unlock(&inode->i_mutex); 3517 return ret; 3518 } 3519 3520 int ext4_inode_attach_jinode(struct inode *inode) 3521 { 3522 struct ext4_inode_info *ei = EXT4_I(inode); 3523 struct jbd2_inode *jinode; 3524 3525 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3526 return 0; 3527 3528 jinode = jbd2_alloc_inode(GFP_KERNEL); 3529 spin_lock(&inode->i_lock); 3530 if (!ei->jinode) { 3531 if (!jinode) { 3532 spin_unlock(&inode->i_lock); 3533 return -ENOMEM; 3534 } 3535 ei->jinode = jinode; 3536 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3537 jinode = NULL; 3538 } 3539 spin_unlock(&inode->i_lock); 3540 if (unlikely(jinode != NULL)) 3541 jbd2_free_inode(jinode); 3542 return 0; 3543 } 3544 3545 /* 3546 * ext4_truncate() 3547 * 3548 * We block out ext4_get_block() block instantiations across the entire 3549 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3550 * simultaneously on behalf of the same inode. 3551 * 3552 * As we work through the truncate and commit bits of it to the journal there 3553 * is one core, guiding principle: the file's tree must always be consistent on 3554 * disk. We must be able to restart the truncate after a crash. 3555 * 3556 * The file's tree may be transiently inconsistent in memory (although it 3557 * probably isn't), but whenever we close off and commit a journal transaction, 3558 * the contents of (the filesystem + the journal) must be consistent and 3559 * restartable. It's pretty simple, really: bottom up, right to left (although 3560 * left-to-right works OK too). 3561 * 3562 * Note that at recovery time, journal replay occurs *before* the restart of 3563 * truncate against the orphan inode list. 3564 * 3565 * The committed inode has the new, desired i_size (which is the same as 3566 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3567 * that this inode's truncate did not complete and it will again call 3568 * ext4_truncate() to have another go. So there will be instantiated blocks 3569 * to the right of the truncation point in a crashed ext4 filesystem. But 3570 * that's fine - as long as they are linked from the inode, the post-crash 3571 * ext4_truncate() run will find them and release them. 3572 */ 3573 void ext4_truncate(struct inode *inode) 3574 { 3575 struct ext4_inode_info *ei = EXT4_I(inode); 3576 unsigned int credits; 3577 handle_t *handle; 3578 struct address_space *mapping = inode->i_mapping; 3579 3580 /* 3581 * There is a possibility that we're either freeing the inode 3582 * or it's a completely new inode. In those cases we might not 3583 * have i_mutex locked because it's not necessary. 3584 */ 3585 if (!(inode->i_state & (I_NEW|I_FREEING))) 3586 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3587 trace_ext4_truncate_enter(inode); 3588 3589 if (!ext4_can_truncate(inode)) 3590 return; 3591 3592 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3593 3594 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3595 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3596 3597 if (ext4_has_inline_data(inode)) { 3598 int has_inline = 1; 3599 3600 ext4_inline_data_truncate(inode, &has_inline); 3601 if (has_inline) 3602 return; 3603 } 3604 3605 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3606 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3607 if (ext4_inode_attach_jinode(inode) < 0) 3608 return; 3609 } 3610 3611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3612 credits = ext4_writepage_trans_blocks(inode); 3613 else 3614 credits = ext4_blocks_for_truncate(inode); 3615 3616 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3617 if (IS_ERR(handle)) { 3618 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3619 return; 3620 } 3621 3622 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3623 ext4_block_truncate_page(handle, mapping, inode->i_size); 3624 3625 /* 3626 * We add the inode to the orphan list, so that if this 3627 * truncate spans multiple transactions, and we crash, we will 3628 * resume the truncate when the filesystem recovers. It also 3629 * marks the inode dirty, to catch the new size. 3630 * 3631 * Implication: the file must always be in a sane, consistent 3632 * truncatable state while each transaction commits. 3633 */ 3634 if (ext4_orphan_add(handle, inode)) 3635 goto out_stop; 3636 3637 down_write(&EXT4_I(inode)->i_data_sem); 3638 3639 ext4_discard_preallocations(inode); 3640 3641 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3642 ext4_ext_truncate(handle, inode); 3643 else 3644 ext4_ind_truncate(handle, inode); 3645 3646 up_write(&ei->i_data_sem); 3647 3648 if (IS_SYNC(inode)) 3649 ext4_handle_sync(handle); 3650 3651 out_stop: 3652 /* 3653 * If this was a simple ftruncate() and the file will remain alive, 3654 * then we need to clear up the orphan record which we created above. 3655 * However, if this was a real unlink then we were called by 3656 * ext4_delete_inode(), and we allow that function to clean up the 3657 * orphan info for us. 3658 */ 3659 if (inode->i_nlink) 3660 ext4_orphan_del(handle, inode); 3661 3662 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3663 ext4_mark_inode_dirty(handle, inode); 3664 ext4_journal_stop(handle); 3665 3666 trace_ext4_truncate_exit(inode); 3667 } 3668 3669 /* 3670 * ext4_get_inode_loc returns with an extra refcount against the inode's 3671 * underlying buffer_head on success. If 'in_mem' is true, we have all 3672 * data in memory that is needed to recreate the on-disk version of this 3673 * inode. 3674 */ 3675 static int __ext4_get_inode_loc(struct inode *inode, 3676 struct ext4_iloc *iloc, int in_mem) 3677 { 3678 struct ext4_group_desc *gdp; 3679 struct buffer_head *bh; 3680 struct super_block *sb = inode->i_sb; 3681 ext4_fsblk_t block; 3682 int inodes_per_block, inode_offset; 3683 3684 iloc->bh = NULL; 3685 if (!ext4_valid_inum(sb, inode->i_ino)) 3686 return -EIO; 3687 3688 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3689 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3690 if (!gdp) 3691 return -EIO; 3692 3693 /* 3694 * Figure out the offset within the block group inode table 3695 */ 3696 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3697 inode_offset = ((inode->i_ino - 1) % 3698 EXT4_INODES_PER_GROUP(sb)); 3699 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3700 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3701 3702 bh = sb_getblk(sb, block); 3703 if (unlikely(!bh)) 3704 return -ENOMEM; 3705 if (!buffer_uptodate(bh)) { 3706 lock_buffer(bh); 3707 3708 /* 3709 * If the buffer has the write error flag, we have failed 3710 * to write out another inode in the same block. In this 3711 * case, we don't have to read the block because we may 3712 * read the old inode data successfully. 3713 */ 3714 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3715 set_buffer_uptodate(bh); 3716 3717 if (buffer_uptodate(bh)) { 3718 /* someone brought it uptodate while we waited */ 3719 unlock_buffer(bh); 3720 goto has_buffer; 3721 } 3722 3723 /* 3724 * If we have all information of the inode in memory and this 3725 * is the only valid inode in the block, we need not read the 3726 * block. 3727 */ 3728 if (in_mem) { 3729 struct buffer_head *bitmap_bh; 3730 int i, start; 3731 3732 start = inode_offset & ~(inodes_per_block - 1); 3733 3734 /* Is the inode bitmap in cache? */ 3735 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3736 if (unlikely(!bitmap_bh)) 3737 goto make_io; 3738 3739 /* 3740 * If the inode bitmap isn't in cache then the 3741 * optimisation may end up performing two reads instead 3742 * of one, so skip it. 3743 */ 3744 if (!buffer_uptodate(bitmap_bh)) { 3745 brelse(bitmap_bh); 3746 goto make_io; 3747 } 3748 for (i = start; i < start + inodes_per_block; i++) { 3749 if (i == inode_offset) 3750 continue; 3751 if (ext4_test_bit(i, bitmap_bh->b_data)) 3752 break; 3753 } 3754 brelse(bitmap_bh); 3755 if (i == start + inodes_per_block) { 3756 /* all other inodes are free, so skip I/O */ 3757 memset(bh->b_data, 0, bh->b_size); 3758 set_buffer_uptodate(bh); 3759 unlock_buffer(bh); 3760 goto has_buffer; 3761 } 3762 } 3763 3764 make_io: 3765 /* 3766 * If we need to do any I/O, try to pre-readahead extra 3767 * blocks from the inode table. 3768 */ 3769 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3770 ext4_fsblk_t b, end, table; 3771 unsigned num; 3772 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3773 3774 table = ext4_inode_table(sb, gdp); 3775 /* s_inode_readahead_blks is always a power of 2 */ 3776 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3777 if (table > b) 3778 b = table; 3779 end = b + ra_blks; 3780 num = EXT4_INODES_PER_GROUP(sb); 3781 if (ext4_has_group_desc_csum(sb)) 3782 num -= ext4_itable_unused_count(sb, gdp); 3783 table += num / inodes_per_block; 3784 if (end > table) 3785 end = table; 3786 while (b <= end) 3787 sb_breadahead(sb, b++); 3788 } 3789 3790 /* 3791 * There are other valid inodes in the buffer, this inode 3792 * has in-inode xattrs, or we don't have this inode in memory. 3793 * Read the block from disk. 3794 */ 3795 trace_ext4_load_inode(inode); 3796 get_bh(bh); 3797 bh->b_end_io = end_buffer_read_sync; 3798 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3799 wait_on_buffer(bh); 3800 if (!buffer_uptodate(bh)) { 3801 EXT4_ERROR_INODE_BLOCK(inode, block, 3802 "unable to read itable block"); 3803 brelse(bh); 3804 return -EIO; 3805 } 3806 } 3807 has_buffer: 3808 iloc->bh = bh; 3809 return 0; 3810 } 3811 3812 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3813 { 3814 /* We have all inode data except xattrs in memory here. */ 3815 return __ext4_get_inode_loc(inode, iloc, 3816 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3817 } 3818 3819 void ext4_set_inode_flags(struct inode *inode) 3820 { 3821 unsigned int flags = EXT4_I(inode)->i_flags; 3822 unsigned int new_fl = 0; 3823 3824 if (flags & EXT4_SYNC_FL) 3825 new_fl |= S_SYNC; 3826 if (flags & EXT4_APPEND_FL) 3827 new_fl |= S_APPEND; 3828 if (flags & EXT4_IMMUTABLE_FL) 3829 new_fl |= S_IMMUTABLE; 3830 if (flags & EXT4_NOATIME_FL) 3831 new_fl |= S_NOATIME; 3832 if (flags & EXT4_DIRSYNC_FL) 3833 new_fl |= S_DIRSYNC; 3834 inode_set_flags(inode, new_fl, 3835 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3836 } 3837 3838 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3839 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3840 { 3841 unsigned int vfs_fl; 3842 unsigned long old_fl, new_fl; 3843 3844 do { 3845 vfs_fl = ei->vfs_inode.i_flags; 3846 old_fl = ei->i_flags; 3847 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3848 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3849 EXT4_DIRSYNC_FL); 3850 if (vfs_fl & S_SYNC) 3851 new_fl |= EXT4_SYNC_FL; 3852 if (vfs_fl & S_APPEND) 3853 new_fl |= EXT4_APPEND_FL; 3854 if (vfs_fl & S_IMMUTABLE) 3855 new_fl |= EXT4_IMMUTABLE_FL; 3856 if (vfs_fl & S_NOATIME) 3857 new_fl |= EXT4_NOATIME_FL; 3858 if (vfs_fl & S_DIRSYNC) 3859 new_fl |= EXT4_DIRSYNC_FL; 3860 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3861 } 3862 3863 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3864 struct ext4_inode_info *ei) 3865 { 3866 blkcnt_t i_blocks ; 3867 struct inode *inode = &(ei->vfs_inode); 3868 struct super_block *sb = inode->i_sb; 3869 3870 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3871 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3872 /* we are using combined 48 bit field */ 3873 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3874 le32_to_cpu(raw_inode->i_blocks_lo); 3875 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3876 /* i_blocks represent file system block size */ 3877 return i_blocks << (inode->i_blkbits - 9); 3878 } else { 3879 return i_blocks; 3880 } 3881 } else { 3882 return le32_to_cpu(raw_inode->i_blocks_lo); 3883 } 3884 } 3885 3886 static inline void ext4_iget_extra_inode(struct inode *inode, 3887 struct ext4_inode *raw_inode, 3888 struct ext4_inode_info *ei) 3889 { 3890 __le32 *magic = (void *)raw_inode + 3891 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3892 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3893 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3894 ext4_find_inline_data_nolock(inode); 3895 } else 3896 EXT4_I(inode)->i_inline_off = 0; 3897 } 3898 3899 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3900 { 3901 struct ext4_iloc iloc; 3902 struct ext4_inode *raw_inode; 3903 struct ext4_inode_info *ei; 3904 struct inode *inode; 3905 journal_t *journal = EXT4_SB(sb)->s_journal; 3906 long ret; 3907 int block; 3908 uid_t i_uid; 3909 gid_t i_gid; 3910 3911 inode = iget_locked(sb, ino); 3912 if (!inode) 3913 return ERR_PTR(-ENOMEM); 3914 if (!(inode->i_state & I_NEW)) 3915 return inode; 3916 3917 ei = EXT4_I(inode); 3918 iloc.bh = NULL; 3919 3920 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3921 if (ret < 0) 3922 goto bad_inode; 3923 raw_inode = ext4_raw_inode(&iloc); 3924 3925 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3926 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3927 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3928 EXT4_INODE_SIZE(inode->i_sb)) { 3929 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3930 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3931 EXT4_INODE_SIZE(inode->i_sb)); 3932 ret = -EIO; 3933 goto bad_inode; 3934 } 3935 } else 3936 ei->i_extra_isize = 0; 3937 3938 /* Precompute checksum seed for inode metadata */ 3939 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3940 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3941 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3942 __u32 csum; 3943 __le32 inum = cpu_to_le32(inode->i_ino); 3944 __le32 gen = raw_inode->i_generation; 3945 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3946 sizeof(inum)); 3947 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3948 sizeof(gen)); 3949 } 3950 3951 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3952 EXT4_ERROR_INODE(inode, "checksum invalid"); 3953 ret = -EIO; 3954 goto bad_inode; 3955 } 3956 3957 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3958 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3959 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3960 if (!(test_opt(inode->i_sb, NO_UID32))) { 3961 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3962 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3963 } 3964 i_uid_write(inode, i_uid); 3965 i_gid_write(inode, i_gid); 3966 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3967 3968 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3969 ei->i_inline_off = 0; 3970 ei->i_dir_start_lookup = 0; 3971 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3972 /* We now have enough fields to check if the inode was active or not. 3973 * This is needed because nfsd might try to access dead inodes 3974 * the test is that same one that e2fsck uses 3975 * NeilBrown 1999oct15 3976 */ 3977 if (inode->i_nlink == 0) { 3978 if ((inode->i_mode == 0 || 3979 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 3980 ino != EXT4_BOOT_LOADER_INO) { 3981 /* this inode is deleted */ 3982 ret = -ESTALE; 3983 goto bad_inode; 3984 } 3985 /* The only unlinked inodes we let through here have 3986 * valid i_mode and are being read by the orphan 3987 * recovery code: that's fine, we're about to complete 3988 * the process of deleting those. 3989 * OR it is the EXT4_BOOT_LOADER_INO which is 3990 * not initialized on a new filesystem. */ 3991 } 3992 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3993 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3994 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3995 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3996 ei->i_file_acl |= 3997 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3998 inode->i_size = ext4_isize(raw_inode); 3999 ei->i_disksize = inode->i_size; 4000 #ifdef CONFIG_QUOTA 4001 ei->i_reserved_quota = 0; 4002 #endif 4003 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4004 ei->i_block_group = iloc.block_group; 4005 ei->i_last_alloc_group = ~0; 4006 /* 4007 * NOTE! The in-memory inode i_data array is in little-endian order 4008 * even on big-endian machines: we do NOT byteswap the block numbers! 4009 */ 4010 for (block = 0; block < EXT4_N_BLOCKS; block++) 4011 ei->i_data[block] = raw_inode->i_block[block]; 4012 INIT_LIST_HEAD(&ei->i_orphan); 4013 4014 /* 4015 * Set transaction id's of transactions that have to be committed 4016 * to finish f[data]sync. We set them to currently running transaction 4017 * as we cannot be sure that the inode or some of its metadata isn't 4018 * part of the transaction - the inode could have been reclaimed and 4019 * now it is reread from disk. 4020 */ 4021 if (journal) { 4022 transaction_t *transaction; 4023 tid_t tid; 4024 4025 read_lock(&journal->j_state_lock); 4026 if (journal->j_running_transaction) 4027 transaction = journal->j_running_transaction; 4028 else 4029 transaction = journal->j_committing_transaction; 4030 if (transaction) 4031 tid = transaction->t_tid; 4032 else 4033 tid = journal->j_commit_sequence; 4034 read_unlock(&journal->j_state_lock); 4035 ei->i_sync_tid = tid; 4036 ei->i_datasync_tid = tid; 4037 } 4038 4039 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4040 if (ei->i_extra_isize == 0) { 4041 /* The extra space is currently unused. Use it. */ 4042 ei->i_extra_isize = sizeof(struct ext4_inode) - 4043 EXT4_GOOD_OLD_INODE_SIZE; 4044 } else { 4045 ext4_iget_extra_inode(inode, raw_inode, ei); 4046 } 4047 } 4048 4049 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4050 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4051 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4052 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4053 4054 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4055 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4056 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4057 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4058 inode->i_version |= 4059 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4060 } 4061 } 4062 4063 ret = 0; 4064 if (ei->i_file_acl && 4065 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4066 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4067 ei->i_file_acl); 4068 ret = -EIO; 4069 goto bad_inode; 4070 } else if (!ext4_has_inline_data(inode)) { 4071 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4072 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4073 (S_ISLNK(inode->i_mode) && 4074 !ext4_inode_is_fast_symlink(inode)))) 4075 /* Validate extent which is part of inode */ 4076 ret = ext4_ext_check_inode(inode); 4077 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4078 (S_ISLNK(inode->i_mode) && 4079 !ext4_inode_is_fast_symlink(inode))) { 4080 /* Validate block references which are part of inode */ 4081 ret = ext4_ind_check_inode(inode); 4082 } 4083 } 4084 if (ret) 4085 goto bad_inode; 4086 4087 if (S_ISREG(inode->i_mode)) { 4088 inode->i_op = &ext4_file_inode_operations; 4089 inode->i_fop = &ext4_file_operations; 4090 ext4_set_aops(inode); 4091 } else if (S_ISDIR(inode->i_mode)) { 4092 inode->i_op = &ext4_dir_inode_operations; 4093 inode->i_fop = &ext4_dir_operations; 4094 } else if (S_ISLNK(inode->i_mode)) { 4095 if (ext4_inode_is_fast_symlink(inode)) { 4096 inode->i_op = &ext4_fast_symlink_inode_operations; 4097 nd_terminate_link(ei->i_data, inode->i_size, 4098 sizeof(ei->i_data) - 1); 4099 } else { 4100 inode->i_op = &ext4_symlink_inode_operations; 4101 ext4_set_aops(inode); 4102 } 4103 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4104 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4105 inode->i_op = &ext4_special_inode_operations; 4106 if (raw_inode->i_block[0]) 4107 init_special_inode(inode, inode->i_mode, 4108 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4109 else 4110 init_special_inode(inode, inode->i_mode, 4111 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4112 } else if (ino == EXT4_BOOT_LOADER_INO) { 4113 make_bad_inode(inode); 4114 } else { 4115 ret = -EIO; 4116 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4117 goto bad_inode; 4118 } 4119 brelse(iloc.bh); 4120 ext4_set_inode_flags(inode); 4121 unlock_new_inode(inode); 4122 return inode; 4123 4124 bad_inode: 4125 brelse(iloc.bh); 4126 iget_failed(inode); 4127 return ERR_PTR(ret); 4128 } 4129 4130 static int ext4_inode_blocks_set(handle_t *handle, 4131 struct ext4_inode *raw_inode, 4132 struct ext4_inode_info *ei) 4133 { 4134 struct inode *inode = &(ei->vfs_inode); 4135 u64 i_blocks = inode->i_blocks; 4136 struct super_block *sb = inode->i_sb; 4137 4138 if (i_blocks <= ~0U) { 4139 /* 4140 * i_blocks can be represented in a 32 bit variable 4141 * as multiple of 512 bytes 4142 */ 4143 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4144 raw_inode->i_blocks_high = 0; 4145 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4146 return 0; 4147 } 4148 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4149 return -EFBIG; 4150 4151 if (i_blocks <= 0xffffffffffffULL) { 4152 /* 4153 * i_blocks can be represented in a 48 bit variable 4154 * as multiple of 512 bytes 4155 */ 4156 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4157 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4158 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4159 } else { 4160 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4161 /* i_block is stored in file system block size */ 4162 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4163 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4164 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4165 } 4166 return 0; 4167 } 4168 4169 /* 4170 * Post the struct inode info into an on-disk inode location in the 4171 * buffer-cache. This gobbles the caller's reference to the 4172 * buffer_head in the inode location struct. 4173 * 4174 * The caller must have write access to iloc->bh. 4175 */ 4176 static int ext4_do_update_inode(handle_t *handle, 4177 struct inode *inode, 4178 struct ext4_iloc *iloc) 4179 { 4180 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4181 struct ext4_inode_info *ei = EXT4_I(inode); 4182 struct buffer_head *bh = iloc->bh; 4183 struct super_block *sb = inode->i_sb; 4184 int err = 0, rc, block; 4185 int need_datasync = 0, set_large_file = 0; 4186 uid_t i_uid; 4187 gid_t i_gid; 4188 4189 spin_lock(&ei->i_raw_lock); 4190 4191 /* For fields not tracked in the in-memory inode, 4192 * initialise them to zero for new inodes. */ 4193 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4194 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4195 4196 ext4_get_inode_flags(ei); 4197 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4198 i_uid = i_uid_read(inode); 4199 i_gid = i_gid_read(inode); 4200 if (!(test_opt(inode->i_sb, NO_UID32))) { 4201 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4202 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4203 /* 4204 * Fix up interoperability with old kernels. Otherwise, old inodes get 4205 * re-used with the upper 16 bits of the uid/gid intact 4206 */ 4207 if (!ei->i_dtime) { 4208 raw_inode->i_uid_high = 4209 cpu_to_le16(high_16_bits(i_uid)); 4210 raw_inode->i_gid_high = 4211 cpu_to_le16(high_16_bits(i_gid)); 4212 } else { 4213 raw_inode->i_uid_high = 0; 4214 raw_inode->i_gid_high = 0; 4215 } 4216 } else { 4217 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4218 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4219 raw_inode->i_uid_high = 0; 4220 raw_inode->i_gid_high = 0; 4221 } 4222 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4223 4224 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4225 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4226 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4227 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4228 4229 if (ext4_inode_blocks_set(handle, raw_inode, ei)) { 4230 spin_unlock(&ei->i_raw_lock); 4231 goto out_brelse; 4232 } 4233 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4234 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4235 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4236 raw_inode->i_file_acl_high = 4237 cpu_to_le16(ei->i_file_acl >> 32); 4238 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4239 if (ei->i_disksize != ext4_isize(raw_inode)) { 4240 ext4_isize_set(raw_inode, ei->i_disksize); 4241 need_datasync = 1; 4242 } 4243 if (ei->i_disksize > 0x7fffffffULL) { 4244 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4245 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4246 EXT4_SB(sb)->s_es->s_rev_level == 4247 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4248 set_large_file = 1; 4249 } 4250 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4251 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4252 if (old_valid_dev(inode->i_rdev)) { 4253 raw_inode->i_block[0] = 4254 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4255 raw_inode->i_block[1] = 0; 4256 } else { 4257 raw_inode->i_block[0] = 0; 4258 raw_inode->i_block[1] = 4259 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4260 raw_inode->i_block[2] = 0; 4261 } 4262 } else if (!ext4_has_inline_data(inode)) { 4263 for (block = 0; block < EXT4_N_BLOCKS; block++) 4264 raw_inode->i_block[block] = ei->i_data[block]; 4265 } 4266 4267 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4268 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4269 if (ei->i_extra_isize) { 4270 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4271 raw_inode->i_version_hi = 4272 cpu_to_le32(inode->i_version >> 32); 4273 raw_inode->i_extra_isize = 4274 cpu_to_le16(ei->i_extra_isize); 4275 } 4276 } 4277 4278 ext4_inode_csum_set(inode, raw_inode, ei); 4279 4280 spin_unlock(&ei->i_raw_lock); 4281 4282 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4283 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4284 if (!err) 4285 err = rc; 4286 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4287 if (set_large_file) { 4288 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4289 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4290 if (err) 4291 goto out_brelse; 4292 ext4_update_dynamic_rev(sb); 4293 EXT4_SET_RO_COMPAT_FEATURE(sb, 4294 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4295 ext4_handle_sync(handle); 4296 err = ext4_handle_dirty_super(handle, sb); 4297 } 4298 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4299 out_brelse: 4300 brelse(bh); 4301 ext4_std_error(inode->i_sb, err); 4302 return err; 4303 } 4304 4305 /* 4306 * ext4_write_inode() 4307 * 4308 * We are called from a few places: 4309 * 4310 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4311 * Here, there will be no transaction running. We wait for any running 4312 * transaction to commit. 4313 * 4314 * - Within flush work (sys_sync(), kupdate and such). 4315 * We wait on commit, if told to. 4316 * 4317 * - Within iput_final() -> write_inode_now() 4318 * We wait on commit, if told to. 4319 * 4320 * In all cases it is actually safe for us to return without doing anything, 4321 * because the inode has been copied into a raw inode buffer in 4322 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4323 * writeback. 4324 * 4325 * Note that we are absolutely dependent upon all inode dirtiers doing the 4326 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4327 * which we are interested. 4328 * 4329 * It would be a bug for them to not do this. The code: 4330 * 4331 * mark_inode_dirty(inode) 4332 * stuff(); 4333 * inode->i_size = expr; 4334 * 4335 * is in error because write_inode() could occur while `stuff()' is running, 4336 * and the new i_size will be lost. Plus the inode will no longer be on the 4337 * superblock's dirty inode list. 4338 */ 4339 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4340 { 4341 int err; 4342 4343 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4344 return 0; 4345 4346 if (EXT4_SB(inode->i_sb)->s_journal) { 4347 if (ext4_journal_current_handle()) { 4348 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4349 dump_stack(); 4350 return -EIO; 4351 } 4352 4353 /* 4354 * No need to force transaction in WB_SYNC_NONE mode. Also 4355 * ext4_sync_fs() will force the commit after everything is 4356 * written. 4357 */ 4358 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4359 return 0; 4360 4361 err = ext4_force_commit(inode->i_sb); 4362 } else { 4363 struct ext4_iloc iloc; 4364 4365 err = __ext4_get_inode_loc(inode, &iloc, 0); 4366 if (err) 4367 return err; 4368 /* 4369 * sync(2) will flush the whole buffer cache. No need to do 4370 * it here separately for each inode. 4371 */ 4372 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4373 sync_dirty_buffer(iloc.bh); 4374 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4375 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4376 "IO error syncing inode"); 4377 err = -EIO; 4378 } 4379 brelse(iloc.bh); 4380 } 4381 return err; 4382 } 4383 4384 /* 4385 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4386 * buffers that are attached to a page stradding i_size and are undergoing 4387 * commit. In that case we have to wait for commit to finish and try again. 4388 */ 4389 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4390 { 4391 struct page *page; 4392 unsigned offset; 4393 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4394 tid_t commit_tid = 0; 4395 int ret; 4396 4397 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4398 /* 4399 * All buffers in the last page remain valid? Then there's nothing to 4400 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4401 * blocksize case 4402 */ 4403 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4404 return; 4405 while (1) { 4406 page = find_lock_page(inode->i_mapping, 4407 inode->i_size >> PAGE_CACHE_SHIFT); 4408 if (!page) 4409 return; 4410 ret = __ext4_journalled_invalidatepage(page, offset, 4411 PAGE_CACHE_SIZE - offset); 4412 unlock_page(page); 4413 page_cache_release(page); 4414 if (ret != -EBUSY) 4415 return; 4416 commit_tid = 0; 4417 read_lock(&journal->j_state_lock); 4418 if (journal->j_committing_transaction) 4419 commit_tid = journal->j_committing_transaction->t_tid; 4420 read_unlock(&journal->j_state_lock); 4421 if (commit_tid) 4422 jbd2_log_wait_commit(journal, commit_tid); 4423 } 4424 } 4425 4426 /* 4427 * ext4_setattr() 4428 * 4429 * Called from notify_change. 4430 * 4431 * We want to trap VFS attempts to truncate the file as soon as 4432 * possible. In particular, we want to make sure that when the VFS 4433 * shrinks i_size, we put the inode on the orphan list and modify 4434 * i_disksize immediately, so that during the subsequent flushing of 4435 * dirty pages and freeing of disk blocks, we can guarantee that any 4436 * commit will leave the blocks being flushed in an unused state on 4437 * disk. (On recovery, the inode will get truncated and the blocks will 4438 * be freed, so we have a strong guarantee that no future commit will 4439 * leave these blocks visible to the user.) 4440 * 4441 * Another thing we have to assure is that if we are in ordered mode 4442 * and inode is still attached to the committing transaction, we must 4443 * we start writeout of all the dirty pages which are being truncated. 4444 * This way we are sure that all the data written in the previous 4445 * transaction are already on disk (truncate waits for pages under 4446 * writeback). 4447 * 4448 * Called with inode->i_mutex down. 4449 */ 4450 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4451 { 4452 struct inode *inode = dentry->d_inode; 4453 int error, rc = 0; 4454 int orphan = 0; 4455 const unsigned int ia_valid = attr->ia_valid; 4456 4457 error = inode_change_ok(inode, attr); 4458 if (error) 4459 return error; 4460 4461 if (is_quota_modification(inode, attr)) 4462 dquot_initialize(inode); 4463 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4464 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4465 handle_t *handle; 4466 4467 /* (user+group)*(old+new) structure, inode write (sb, 4468 * inode block, ? - but truncate inode update has it) */ 4469 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4470 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4471 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4472 if (IS_ERR(handle)) { 4473 error = PTR_ERR(handle); 4474 goto err_out; 4475 } 4476 error = dquot_transfer(inode, attr); 4477 if (error) { 4478 ext4_journal_stop(handle); 4479 return error; 4480 } 4481 /* Update corresponding info in inode so that everything is in 4482 * one transaction */ 4483 if (attr->ia_valid & ATTR_UID) 4484 inode->i_uid = attr->ia_uid; 4485 if (attr->ia_valid & ATTR_GID) 4486 inode->i_gid = attr->ia_gid; 4487 error = ext4_mark_inode_dirty(handle, inode); 4488 ext4_journal_stop(handle); 4489 } 4490 4491 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4492 handle_t *handle; 4493 4494 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4495 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4496 4497 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4498 return -EFBIG; 4499 } 4500 4501 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4502 inode_inc_iversion(inode); 4503 4504 if (S_ISREG(inode->i_mode) && 4505 (attr->ia_size < inode->i_size)) { 4506 if (ext4_should_order_data(inode)) { 4507 error = ext4_begin_ordered_truncate(inode, 4508 attr->ia_size); 4509 if (error) 4510 goto err_out; 4511 } 4512 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4513 if (IS_ERR(handle)) { 4514 error = PTR_ERR(handle); 4515 goto err_out; 4516 } 4517 if (ext4_handle_valid(handle)) { 4518 error = ext4_orphan_add(handle, inode); 4519 orphan = 1; 4520 } 4521 down_write(&EXT4_I(inode)->i_data_sem); 4522 EXT4_I(inode)->i_disksize = attr->ia_size; 4523 rc = ext4_mark_inode_dirty(handle, inode); 4524 if (!error) 4525 error = rc; 4526 /* 4527 * We have to update i_size under i_data_sem together 4528 * with i_disksize to avoid races with writeback code 4529 * running ext4_wb_update_i_disksize(). 4530 */ 4531 if (!error) 4532 i_size_write(inode, attr->ia_size); 4533 up_write(&EXT4_I(inode)->i_data_sem); 4534 ext4_journal_stop(handle); 4535 if (error) { 4536 ext4_orphan_del(NULL, inode); 4537 goto err_out; 4538 } 4539 } else 4540 i_size_write(inode, attr->ia_size); 4541 4542 /* 4543 * Blocks are going to be removed from the inode. Wait 4544 * for dio in flight. Temporarily disable 4545 * dioread_nolock to prevent livelock. 4546 */ 4547 if (orphan) { 4548 if (!ext4_should_journal_data(inode)) { 4549 ext4_inode_block_unlocked_dio(inode); 4550 inode_dio_wait(inode); 4551 ext4_inode_resume_unlocked_dio(inode); 4552 } else 4553 ext4_wait_for_tail_page_commit(inode); 4554 } 4555 /* 4556 * Truncate pagecache after we've waited for commit 4557 * in data=journal mode to make pages freeable. 4558 */ 4559 truncate_pagecache(inode, inode->i_size); 4560 } 4561 /* 4562 * We want to call ext4_truncate() even if attr->ia_size == 4563 * inode->i_size for cases like truncation of fallocated space 4564 */ 4565 if (attr->ia_valid & ATTR_SIZE) 4566 ext4_truncate(inode); 4567 4568 if (!rc) { 4569 setattr_copy(inode, attr); 4570 mark_inode_dirty(inode); 4571 } 4572 4573 /* 4574 * If the call to ext4_truncate failed to get a transaction handle at 4575 * all, we need to clean up the in-core orphan list manually. 4576 */ 4577 if (orphan && inode->i_nlink) 4578 ext4_orphan_del(NULL, inode); 4579 4580 if (!rc && (ia_valid & ATTR_MODE)) 4581 rc = posix_acl_chmod(inode, inode->i_mode); 4582 4583 err_out: 4584 ext4_std_error(inode->i_sb, error); 4585 if (!error) 4586 error = rc; 4587 return error; 4588 } 4589 4590 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4591 struct kstat *stat) 4592 { 4593 struct inode *inode; 4594 unsigned long long delalloc_blocks; 4595 4596 inode = dentry->d_inode; 4597 generic_fillattr(inode, stat); 4598 4599 /* 4600 * If there is inline data in the inode, the inode will normally not 4601 * have data blocks allocated (it may have an external xattr block). 4602 * Report at least one sector for such files, so tools like tar, rsync, 4603 * others doen't incorrectly think the file is completely sparse. 4604 */ 4605 if (unlikely(ext4_has_inline_data(inode))) 4606 stat->blocks += (stat->size + 511) >> 9; 4607 4608 /* 4609 * We can't update i_blocks if the block allocation is delayed 4610 * otherwise in the case of system crash before the real block 4611 * allocation is done, we will have i_blocks inconsistent with 4612 * on-disk file blocks. 4613 * We always keep i_blocks updated together with real 4614 * allocation. But to not confuse with user, stat 4615 * will return the blocks that include the delayed allocation 4616 * blocks for this file. 4617 */ 4618 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4619 EXT4_I(inode)->i_reserved_data_blocks); 4620 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4621 return 0; 4622 } 4623 4624 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4625 int pextents) 4626 { 4627 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4628 return ext4_ind_trans_blocks(inode, lblocks); 4629 return ext4_ext_index_trans_blocks(inode, pextents); 4630 } 4631 4632 /* 4633 * Account for index blocks, block groups bitmaps and block group 4634 * descriptor blocks if modify datablocks and index blocks 4635 * worse case, the indexs blocks spread over different block groups 4636 * 4637 * If datablocks are discontiguous, they are possible to spread over 4638 * different block groups too. If they are contiguous, with flexbg, 4639 * they could still across block group boundary. 4640 * 4641 * Also account for superblock, inode, quota and xattr blocks 4642 */ 4643 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4644 int pextents) 4645 { 4646 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4647 int gdpblocks; 4648 int idxblocks; 4649 int ret = 0; 4650 4651 /* 4652 * How many index blocks need to touch to map @lblocks logical blocks 4653 * to @pextents physical extents? 4654 */ 4655 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4656 4657 ret = idxblocks; 4658 4659 /* 4660 * Now let's see how many group bitmaps and group descriptors need 4661 * to account 4662 */ 4663 groups = idxblocks + pextents; 4664 gdpblocks = groups; 4665 if (groups > ngroups) 4666 groups = ngroups; 4667 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4668 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4669 4670 /* bitmaps and block group descriptor blocks */ 4671 ret += groups + gdpblocks; 4672 4673 /* Blocks for super block, inode, quota and xattr blocks */ 4674 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4675 4676 return ret; 4677 } 4678 4679 /* 4680 * Calculate the total number of credits to reserve to fit 4681 * the modification of a single pages into a single transaction, 4682 * which may include multiple chunks of block allocations. 4683 * 4684 * This could be called via ext4_write_begin() 4685 * 4686 * We need to consider the worse case, when 4687 * one new block per extent. 4688 */ 4689 int ext4_writepage_trans_blocks(struct inode *inode) 4690 { 4691 int bpp = ext4_journal_blocks_per_page(inode); 4692 int ret; 4693 4694 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4695 4696 /* Account for data blocks for journalled mode */ 4697 if (ext4_should_journal_data(inode)) 4698 ret += bpp; 4699 return ret; 4700 } 4701 4702 /* 4703 * Calculate the journal credits for a chunk of data modification. 4704 * 4705 * This is called from DIO, fallocate or whoever calling 4706 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4707 * 4708 * journal buffers for data blocks are not included here, as DIO 4709 * and fallocate do no need to journal data buffers. 4710 */ 4711 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4712 { 4713 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4714 } 4715 4716 /* 4717 * The caller must have previously called ext4_reserve_inode_write(). 4718 * Give this, we know that the caller already has write access to iloc->bh. 4719 */ 4720 int ext4_mark_iloc_dirty(handle_t *handle, 4721 struct inode *inode, struct ext4_iloc *iloc) 4722 { 4723 int err = 0; 4724 4725 if (IS_I_VERSION(inode)) 4726 inode_inc_iversion(inode); 4727 4728 /* the do_update_inode consumes one bh->b_count */ 4729 get_bh(iloc->bh); 4730 4731 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4732 err = ext4_do_update_inode(handle, inode, iloc); 4733 put_bh(iloc->bh); 4734 return err; 4735 } 4736 4737 /* 4738 * On success, We end up with an outstanding reference count against 4739 * iloc->bh. This _must_ be cleaned up later. 4740 */ 4741 4742 int 4743 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4744 struct ext4_iloc *iloc) 4745 { 4746 int err; 4747 4748 err = ext4_get_inode_loc(inode, iloc); 4749 if (!err) { 4750 BUFFER_TRACE(iloc->bh, "get_write_access"); 4751 err = ext4_journal_get_write_access(handle, iloc->bh); 4752 if (err) { 4753 brelse(iloc->bh); 4754 iloc->bh = NULL; 4755 } 4756 } 4757 ext4_std_error(inode->i_sb, err); 4758 return err; 4759 } 4760 4761 /* 4762 * Expand an inode by new_extra_isize bytes. 4763 * Returns 0 on success or negative error number on failure. 4764 */ 4765 static int ext4_expand_extra_isize(struct inode *inode, 4766 unsigned int new_extra_isize, 4767 struct ext4_iloc iloc, 4768 handle_t *handle) 4769 { 4770 struct ext4_inode *raw_inode; 4771 struct ext4_xattr_ibody_header *header; 4772 4773 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4774 return 0; 4775 4776 raw_inode = ext4_raw_inode(&iloc); 4777 4778 header = IHDR(inode, raw_inode); 4779 4780 /* No extended attributes present */ 4781 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4782 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4783 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4784 new_extra_isize); 4785 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4786 return 0; 4787 } 4788 4789 /* try to expand with EAs present */ 4790 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4791 raw_inode, handle); 4792 } 4793 4794 /* 4795 * What we do here is to mark the in-core inode as clean with respect to inode 4796 * dirtiness (it may still be data-dirty). 4797 * This means that the in-core inode may be reaped by prune_icache 4798 * without having to perform any I/O. This is a very good thing, 4799 * because *any* task may call prune_icache - even ones which 4800 * have a transaction open against a different journal. 4801 * 4802 * Is this cheating? Not really. Sure, we haven't written the 4803 * inode out, but prune_icache isn't a user-visible syncing function. 4804 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4805 * we start and wait on commits. 4806 */ 4807 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4808 { 4809 struct ext4_iloc iloc; 4810 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4811 static unsigned int mnt_count; 4812 int err, ret; 4813 4814 might_sleep(); 4815 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4816 err = ext4_reserve_inode_write(handle, inode, &iloc); 4817 if (ext4_handle_valid(handle) && 4818 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4819 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4820 /* 4821 * We need extra buffer credits since we may write into EA block 4822 * with this same handle. If journal_extend fails, then it will 4823 * only result in a minor loss of functionality for that inode. 4824 * If this is felt to be critical, then e2fsck should be run to 4825 * force a large enough s_min_extra_isize. 4826 */ 4827 if ((jbd2_journal_extend(handle, 4828 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4829 ret = ext4_expand_extra_isize(inode, 4830 sbi->s_want_extra_isize, 4831 iloc, handle); 4832 if (ret) { 4833 ext4_set_inode_state(inode, 4834 EXT4_STATE_NO_EXPAND); 4835 if (mnt_count != 4836 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4837 ext4_warning(inode->i_sb, 4838 "Unable to expand inode %lu. Delete" 4839 " some EAs or run e2fsck.", 4840 inode->i_ino); 4841 mnt_count = 4842 le16_to_cpu(sbi->s_es->s_mnt_count); 4843 } 4844 } 4845 } 4846 } 4847 if (!err) 4848 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4849 return err; 4850 } 4851 4852 /* 4853 * ext4_dirty_inode() is called from __mark_inode_dirty() 4854 * 4855 * We're really interested in the case where a file is being extended. 4856 * i_size has been changed by generic_commit_write() and we thus need 4857 * to include the updated inode in the current transaction. 4858 * 4859 * Also, dquot_alloc_block() will always dirty the inode when blocks 4860 * are allocated to the file. 4861 * 4862 * If the inode is marked synchronous, we don't honour that here - doing 4863 * so would cause a commit on atime updates, which we don't bother doing. 4864 * We handle synchronous inodes at the highest possible level. 4865 */ 4866 void ext4_dirty_inode(struct inode *inode, int flags) 4867 { 4868 handle_t *handle; 4869 4870 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4871 if (IS_ERR(handle)) 4872 goto out; 4873 4874 ext4_mark_inode_dirty(handle, inode); 4875 4876 ext4_journal_stop(handle); 4877 out: 4878 return; 4879 } 4880 4881 #if 0 4882 /* 4883 * Bind an inode's backing buffer_head into this transaction, to prevent 4884 * it from being flushed to disk early. Unlike 4885 * ext4_reserve_inode_write, this leaves behind no bh reference and 4886 * returns no iloc structure, so the caller needs to repeat the iloc 4887 * lookup to mark the inode dirty later. 4888 */ 4889 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4890 { 4891 struct ext4_iloc iloc; 4892 4893 int err = 0; 4894 if (handle) { 4895 err = ext4_get_inode_loc(inode, &iloc); 4896 if (!err) { 4897 BUFFER_TRACE(iloc.bh, "get_write_access"); 4898 err = jbd2_journal_get_write_access(handle, iloc.bh); 4899 if (!err) 4900 err = ext4_handle_dirty_metadata(handle, 4901 NULL, 4902 iloc.bh); 4903 brelse(iloc.bh); 4904 } 4905 } 4906 ext4_std_error(inode->i_sb, err); 4907 return err; 4908 } 4909 #endif 4910 4911 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4912 { 4913 journal_t *journal; 4914 handle_t *handle; 4915 int err; 4916 4917 /* 4918 * We have to be very careful here: changing a data block's 4919 * journaling status dynamically is dangerous. If we write a 4920 * data block to the journal, change the status and then delete 4921 * that block, we risk forgetting to revoke the old log record 4922 * from the journal and so a subsequent replay can corrupt data. 4923 * So, first we make sure that the journal is empty and that 4924 * nobody is changing anything. 4925 */ 4926 4927 journal = EXT4_JOURNAL(inode); 4928 if (!journal) 4929 return 0; 4930 if (is_journal_aborted(journal)) 4931 return -EROFS; 4932 /* We have to allocate physical blocks for delalloc blocks 4933 * before flushing journal. otherwise delalloc blocks can not 4934 * be allocated any more. even more truncate on delalloc blocks 4935 * could trigger BUG by flushing delalloc blocks in journal. 4936 * There is no delalloc block in non-journal data mode. 4937 */ 4938 if (val && test_opt(inode->i_sb, DELALLOC)) { 4939 err = ext4_alloc_da_blocks(inode); 4940 if (err < 0) 4941 return err; 4942 } 4943 4944 /* Wait for all existing dio workers */ 4945 ext4_inode_block_unlocked_dio(inode); 4946 inode_dio_wait(inode); 4947 4948 jbd2_journal_lock_updates(journal); 4949 4950 /* 4951 * OK, there are no updates running now, and all cached data is 4952 * synced to disk. We are now in a completely consistent state 4953 * which doesn't have anything in the journal, and we know that 4954 * no filesystem updates are running, so it is safe to modify 4955 * the inode's in-core data-journaling state flag now. 4956 */ 4957 4958 if (val) 4959 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4960 else { 4961 jbd2_journal_flush(journal); 4962 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4963 } 4964 ext4_set_aops(inode); 4965 4966 jbd2_journal_unlock_updates(journal); 4967 ext4_inode_resume_unlocked_dio(inode); 4968 4969 /* Finally we can mark the inode as dirty. */ 4970 4971 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 4972 if (IS_ERR(handle)) 4973 return PTR_ERR(handle); 4974 4975 err = ext4_mark_inode_dirty(handle, inode); 4976 ext4_handle_sync(handle); 4977 ext4_journal_stop(handle); 4978 ext4_std_error(inode->i_sb, err); 4979 4980 return err; 4981 } 4982 4983 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4984 { 4985 return !buffer_mapped(bh); 4986 } 4987 4988 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4989 { 4990 struct page *page = vmf->page; 4991 loff_t size; 4992 unsigned long len; 4993 int ret; 4994 struct file *file = vma->vm_file; 4995 struct inode *inode = file_inode(file); 4996 struct address_space *mapping = inode->i_mapping; 4997 handle_t *handle; 4998 get_block_t *get_block; 4999 int retries = 0; 5000 5001 sb_start_pagefault(inode->i_sb); 5002 file_update_time(vma->vm_file); 5003 /* Delalloc case is easy... */ 5004 if (test_opt(inode->i_sb, DELALLOC) && 5005 !ext4_should_journal_data(inode) && 5006 !ext4_nonda_switch(inode->i_sb)) { 5007 do { 5008 ret = __block_page_mkwrite(vma, vmf, 5009 ext4_da_get_block_prep); 5010 } while (ret == -ENOSPC && 5011 ext4_should_retry_alloc(inode->i_sb, &retries)); 5012 goto out_ret; 5013 } 5014 5015 lock_page(page); 5016 size = i_size_read(inode); 5017 /* Page got truncated from under us? */ 5018 if (page->mapping != mapping || page_offset(page) > size) { 5019 unlock_page(page); 5020 ret = VM_FAULT_NOPAGE; 5021 goto out; 5022 } 5023 5024 if (page->index == size >> PAGE_CACHE_SHIFT) 5025 len = size & ~PAGE_CACHE_MASK; 5026 else 5027 len = PAGE_CACHE_SIZE; 5028 /* 5029 * Return if we have all the buffers mapped. This avoids the need to do 5030 * journal_start/journal_stop which can block and take a long time 5031 */ 5032 if (page_has_buffers(page)) { 5033 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5034 0, len, NULL, 5035 ext4_bh_unmapped)) { 5036 /* Wait so that we don't change page under IO */ 5037 wait_for_stable_page(page); 5038 ret = VM_FAULT_LOCKED; 5039 goto out; 5040 } 5041 } 5042 unlock_page(page); 5043 /* OK, we need to fill the hole... */ 5044 if (ext4_should_dioread_nolock(inode)) 5045 get_block = ext4_get_block_write; 5046 else 5047 get_block = ext4_get_block; 5048 retry_alloc: 5049 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5050 ext4_writepage_trans_blocks(inode)); 5051 if (IS_ERR(handle)) { 5052 ret = VM_FAULT_SIGBUS; 5053 goto out; 5054 } 5055 ret = __block_page_mkwrite(vma, vmf, get_block); 5056 if (!ret && ext4_should_journal_data(inode)) { 5057 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5058 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5059 unlock_page(page); 5060 ret = VM_FAULT_SIGBUS; 5061 ext4_journal_stop(handle); 5062 goto out; 5063 } 5064 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5065 } 5066 ext4_journal_stop(handle); 5067 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5068 goto retry_alloc; 5069 out_ret: 5070 ret = block_page_mkwrite_return(ret); 5071 out: 5072 sb_end_pagefault(inode->i_sb); 5073 return ret; 5074 } 5075