1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 #include <linux/iomap.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 */ 148 int ext4_inode_is_fast_symlink(struct inode *inode) 149 { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 159 /* 160 * Restart the transaction associated with *handle. This does a commit, 161 * so before we call here everything must be consistently dirtied against 162 * this transaction. 163 */ 164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 165 int nblocks) 166 { 167 int ret; 168 169 /* 170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 171 * moment, get_block can be called only for blocks inside i_size since 172 * page cache has been already dropped and writes are blocked by 173 * i_mutex. So we can safely drop the i_data_sem here. 174 */ 175 BUG_ON(EXT4_JOURNAL(inode) == NULL); 176 jbd_debug(2, "restarting handle %p\n", handle); 177 up_write(&EXT4_I(inode)->i_data_sem); 178 ret = ext4_journal_restart(handle, nblocks); 179 down_write(&EXT4_I(inode)->i_data_sem); 180 ext4_discard_preallocations(inode); 181 182 return ret; 183 } 184 185 /* 186 * Called at the last iput() if i_nlink is zero. 187 */ 188 void ext4_evict_inode(struct inode *inode) 189 { 190 handle_t *handle; 191 int err; 192 193 trace_ext4_evict_inode(inode); 194 195 if (inode->i_nlink) { 196 /* 197 * When journalling data dirty buffers are tracked only in the 198 * journal. So although mm thinks everything is clean and 199 * ready for reaping the inode might still have some pages to 200 * write in the running transaction or waiting to be 201 * checkpointed. Thus calling jbd2_journal_invalidatepage() 202 * (via truncate_inode_pages()) to discard these buffers can 203 * cause data loss. Also even if we did not discard these 204 * buffers, we would have no way to find them after the inode 205 * is reaped and thus user could see stale data if he tries to 206 * read them before the transaction is checkpointed. So be 207 * careful and force everything to disk here... We use 208 * ei->i_datasync_tid to store the newest transaction 209 * containing inode's data. 210 * 211 * Note that directories do not have this problem because they 212 * don't use page cache. 213 */ 214 if (inode->i_ino != EXT4_JOURNAL_INO && 215 ext4_should_journal_data(inode) && 216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 219 220 jbd2_complete_transaction(journal, commit_tid); 221 filemap_write_and_wait(&inode->i_data); 222 } 223 truncate_inode_pages_final(&inode->i_data); 224 225 goto no_delete; 226 } 227 228 if (is_bad_inode(inode)) 229 goto no_delete; 230 dquot_initialize(inode); 231 232 if (ext4_should_order_data(inode)) 233 ext4_begin_ordered_truncate(inode, 0); 234 truncate_inode_pages_final(&inode->i_data); 235 236 /* 237 * Protect us against freezing - iput() caller didn't have to have any 238 * protection against it 239 */ 240 sb_start_intwrite(inode->i_sb); 241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 242 ext4_blocks_for_truncate(inode)+3); 243 if (IS_ERR(handle)) { 244 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 245 /* 246 * If we're going to skip the normal cleanup, we still need to 247 * make sure that the in-core orphan linked list is properly 248 * cleaned up. 249 */ 250 ext4_orphan_del(NULL, inode); 251 sb_end_intwrite(inode->i_sb); 252 goto no_delete; 253 } 254 255 if (IS_SYNC(inode)) 256 ext4_handle_sync(handle); 257 inode->i_size = 0; 258 err = ext4_mark_inode_dirty(handle, inode); 259 if (err) { 260 ext4_warning(inode->i_sb, 261 "couldn't mark inode dirty (err %d)", err); 262 goto stop_handle; 263 } 264 if (inode->i_blocks) { 265 err = ext4_truncate(inode); 266 if (err) { 267 ext4_error(inode->i_sb, 268 "couldn't truncate inode %lu (err %d)", 269 inode->i_ino, err); 270 goto stop_handle; 271 } 272 } 273 274 /* 275 * ext4_ext_truncate() doesn't reserve any slop when it 276 * restarts journal transactions; therefore there may not be 277 * enough credits left in the handle to remove the inode from 278 * the orphan list and set the dtime field. 279 */ 280 if (!ext4_handle_has_enough_credits(handle, 3)) { 281 err = ext4_journal_extend(handle, 3); 282 if (err > 0) 283 err = ext4_journal_restart(handle, 3); 284 if (err != 0) { 285 ext4_warning(inode->i_sb, 286 "couldn't extend journal (err %d)", err); 287 stop_handle: 288 ext4_journal_stop(handle); 289 ext4_orphan_del(NULL, inode); 290 sb_end_intwrite(inode->i_sb); 291 goto no_delete; 292 } 293 } 294 295 /* 296 * Kill off the orphan record which ext4_truncate created. 297 * AKPM: I think this can be inside the above `if'. 298 * Note that ext4_orphan_del() has to be able to cope with the 299 * deletion of a non-existent orphan - this is because we don't 300 * know if ext4_truncate() actually created an orphan record. 301 * (Well, we could do this if we need to, but heck - it works) 302 */ 303 ext4_orphan_del(handle, inode); 304 EXT4_I(inode)->i_dtime = get_seconds(); 305 306 /* 307 * One subtle ordering requirement: if anything has gone wrong 308 * (transaction abort, IO errors, whatever), then we can still 309 * do these next steps (the fs will already have been marked as 310 * having errors), but we can't free the inode if the mark_dirty 311 * fails. 312 */ 313 if (ext4_mark_inode_dirty(handle, inode)) 314 /* If that failed, just do the required in-core inode clear. */ 315 ext4_clear_inode(inode); 316 else 317 ext4_free_inode(handle, inode); 318 ext4_journal_stop(handle); 319 sb_end_intwrite(inode->i_sb); 320 return; 321 no_delete: 322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 323 } 324 325 #ifdef CONFIG_QUOTA 326 qsize_t *ext4_get_reserved_space(struct inode *inode) 327 { 328 return &EXT4_I(inode)->i_reserved_quota; 329 } 330 #endif 331 332 /* 333 * Called with i_data_sem down, which is important since we can call 334 * ext4_discard_preallocations() from here. 335 */ 336 void ext4_da_update_reserve_space(struct inode *inode, 337 int used, int quota_claim) 338 { 339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 340 struct ext4_inode_info *ei = EXT4_I(inode); 341 342 spin_lock(&ei->i_block_reservation_lock); 343 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 344 if (unlikely(used > ei->i_reserved_data_blocks)) { 345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 346 "with only %d reserved data blocks", 347 __func__, inode->i_ino, used, 348 ei->i_reserved_data_blocks); 349 WARN_ON(1); 350 used = ei->i_reserved_data_blocks; 351 } 352 353 /* Update per-inode reservations */ 354 ei->i_reserved_data_blocks -= used; 355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 356 357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 358 359 /* Update quota subsystem for data blocks */ 360 if (quota_claim) 361 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 362 else { 363 /* 364 * We did fallocate with an offset that is already delayed 365 * allocated. So on delayed allocated writeback we should 366 * not re-claim the quota for fallocated blocks. 367 */ 368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 369 } 370 371 /* 372 * If we have done all the pending block allocations and if 373 * there aren't any writers on the inode, we can discard the 374 * inode's preallocations. 375 */ 376 if ((ei->i_reserved_data_blocks == 0) && 377 (atomic_read(&inode->i_writecount) == 0)) 378 ext4_discard_preallocations(inode); 379 } 380 381 static int __check_block_validity(struct inode *inode, const char *func, 382 unsigned int line, 383 struct ext4_map_blocks *map) 384 { 385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 386 map->m_len)) { 387 ext4_error_inode(inode, func, line, map->m_pblk, 388 "lblock %lu mapped to illegal pblock " 389 "(length %d)", (unsigned long) map->m_lblk, 390 map->m_len); 391 return -EFSCORRUPTED; 392 } 393 return 0; 394 } 395 396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 397 ext4_lblk_t len) 398 { 399 int ret; 400 401 if (ext4_encrypted_inode(inode)) 402 return fscrypt_zeroout_range(inode, lblk, pblk, len); 403 404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 405 if (ret > 0) 406 ret = 0; 407 408 return ret; 409 } 410 411 #define check_block_validity(inode, map) \ 412 __check_block_validity((inode), __func__, __LINE__, (map)) 413 414 #ifdef ES_AGGRESSIVE_TEST 415 static void ext4_map_blocks_es_recheck(handle_t *handle, 416 struct inode *inode, 417 struct ext4_map_blocks *es_map, 418 struct ext4_map_blocks *map, 419 int flags) 420 { 421 int retval; 422 423 map->m_flags = 0; 424 /* 425 * There is a race window that the result is not the same. 426 * e.g. xfstests #223 when dioread_nolock enables. The reason 427 * is that we lookup a block mapping in extent status tree with 428 * out taking i_data_sem. So at the time the unwritten extent 429 * could be converted. 430 */ 431 down_read(&EXT4_I(inode)->i_data_sem); 432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 433 retval = ext4_ext_map_blocks(handle, inode, map, flags & 434 EXT4_GET_BLOCKS_KEEP_SIZE); 435 } else { 436 retval = ext4_ind_map_blocks(handle, inode, map, flags & 437 EXT4_GET_BLOCKS_KEEP_SIZE); 438 } 439 up_read((&EXT4_I(inode)->i_data_sem)); 440 441 /* 442 * We don't check m_len because extent will be collpased in status 443 * tree. So the m_len might not equal. 444 */ 445 if (es_map->m_lblk != map->m_lblk || 446 es_map->m_flags != map->m_flags || 447 es_map->m_pblk != map->m_pblk) { 448 printk("ES cache assertion failed for inode: %lu " 449 "es_cached ex [%d/%d/%llu/%x] != " 450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 451 inode->i_ino, es_map->m_lblk, es_map->m_len, 452 es_map->m_pblk, es_map->m_flags, map->m_lblk, 453 map->m_len, map->m_pblk, map->m_flags, 454 retval, flags); 455 } 456 } 457 #endif /* ES_AGGRESSIVE_TEST */ 458 459 /* 460 * The ext4_map_blocks() function tries to look up the requested blocks, 461 * and returns if the blocks are already mapped. 462 * 463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 464 * and store the allocated blocks in the result buffer head and mark it 465 * mapped. 466 * 467 * If file type is extents based, it will call ext4_ext_map_blocks(), 468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 469 * based files 470 * 471 * On success, it returns the number of blocks being mapped or allocated. if 472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 473 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 474 * 475 * It returns 0 if plain look up failed (blocks have not been allocated), in 476 * that case, @map is returned as unmapped but we still do fill map->m_len to 477 * indicate the length of a hole starting at map->m_lblk. 478 * 479 * It returns the error in case of allocation failure. 480 */ 481 int ext4_map_blocks(handle_t *handle, struct inode *inode, 482 struct ext4_map_blocks *map, int flags) 483 { 484 struct extent_status es; 485 int retval; 486 int ret = 0; 487 #ifdef ES_AGGRESSIVE_TEST 488 struct ext4_map_blocks orig_map; 489 490 memcpy(&orig_map, map, sizeof(*map)); 491 #endif 492 493 map->m_flags = 0; 494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 495 "logical block %lu\n", inode->i_ino, flags, map->m_len, 496 (unsigned long) map->m_lblk); 497 498 /* 499 * ext4_map_blocks returns an int, and m_len is an unsigned int 500 */ 501 if (unlikely(map->m_len > INT_MAX)) 502 map->m_len = INT_MAX; 503 504 /* We can handle the block number less than EXT_MAX_BLOCKS */ 505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 506 return -EFSCORRUPTED; 507 508 /* Lookup extent status tree firstly */ 509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 511 map->m_pblk = ext4_es_pblock(&es) + 512 map->m_lblk - es.es_lblk; 513 map->m_flags |= ext4_es_is_written(&es) ? 514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 515 retval = es.es_len - (map->m_lblk - es.es_lblk); 516 if (retval > map->m_len) 517 retval = map->m_len; 518 map->m_len = retval; 519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 520 map->m_pblk = 0; 521 retval = es.es_len - (map->m_lblk - es.es_lblk); 522 if (retval > map->m_len) 523 retval = map->m_len; 524 map->m_len = retval; 525 retval = 0; 526 } else { 527 BUG_ON(1); 528 } 529 #ifdef ES_AGGRESSIVE_TEST 530 ext4_map_blocks_es_recheck(handle, inode, map, 531 &orig_map, flags); 532 #endif 533 goto found; 534 } 535 536 /* 537 * Try to see if we can get the block without requesting a new 538 * file system block. 539 */ 540 down_read(&EXT4_I(inode)->i_data_sem); 541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 542 retval = ext4_ext_map_blocks(handle, inode, map, flags & 543 EXT4_GET_BLOCKS_KEEP_SIZE); 544 } else { 545 retval = ext4_ind_map_blocks(handle, inode, map, flags & 546 EXT4_GET_BLOCKS_KEEP_SIZE); 547 } 548 if (retval > 0) { 549 unsigned int status; 550 551 if (unlikely(retval != map->m_len)) { 552 ext4_warning(inode->i_sb, 553 "ES len assertion failed for inode " 554 "%lu: retval %d != map->m_len %d", 555 inode->i_ino, retval, map->m_len); 556 WARN_ON(1); 557 } 558 559 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 562 !(status & EXTENT_STATUS_WRITTEN) && 563 ext4_find_delalloc_range(inode, map->m_lblk, 564 map->m_lblk + map->m_len - 1)) 565 status |= EXTENT_STATUS_DELAYED; 566 ret = ext4_es_insert_extent(inode, map->m_lblk, 567 map->m_len, map->m_pblk, status); 568 if (ret < 0) 569 retval = ret; 570 } 571 up_read((&EXT4_I(inode)->i_data_sem)); 572 573 found: 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 575 ret = check_block_validity(inode, map); 576 if (ret != 0) 577 return ret; 578 } 579 580 /* If it is only a block(s) look up */ 581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 582 return retval; 583 584 /* 585 * Returns if the blocks have already allocated 586 * 587 * Note that if blocks have been preallocated 588 * ext4_ext_get_block() returns the create = 0 589 * with buffer head unmapped. 590 */ 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 592 /* 593 * If we need to convert extent to unwritten 594 * we continue and do the actual work in 595 * ext4_ext_map_blocks() 596 */ 597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 598 return retval; 599 600 /* 601 * Here we clear m_flags because after allocating an new extent, 602 * it will be set again. 603 */ 604 map->m_flags &= ~EXT4_MAP_FLAGS; 605 606 /* 607 * New blocks allocate and/or writing to unwritten extent 608 * will possibly result in updating i_data, so we take 609 * the write lock of i_data_sem, and call get_block() 610 * with create == 1 flag. 611 */ 612 down_write(&EXT4_I(inode)->i_data_sem); 613 614 /* 615 * We need to check for EXT4 here because migrate 616 * could have changed the inode type in between 617 */ 618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 619 retval = ext4_ext_map_blocks(handle, inode, map, flags); 620 } else { 621 retval = ext4_ind_map_blocks(handle, inode, map, flags); 622 623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 624 /* 625 * We allocated new blocks which will result in 626 * i_data's format changing. Force the migrate 627 * to fail by clearing migrate flags 628 */ 629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 630 } 631 632 /* 633 * Update reserved blocks/metadata blocks after successful 634 * block allocation which had been deferred till now. We don't 635 * support fallocate for non extent files. So we can update 636 * reserve space here. 637 */ 638 if ((retval > 0) && 639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 640 ext4_da_update_reserve_space(inode, retval, 1); 641 } 642 643 if (retval > 0) { 644 unsigned int status; 645 646 if (unlikely(retval != map->m_len)) { 647 ext4_warning(inode->i_sb, 648 "ES len assertion failed for inode " 649 "%lu: retval %d != map->m_len %d", 650 inode->i_ino, retval, map->m_len); 651 WARN_ON(1); 652 } 653 654 /* 655 * We have to zeroout blocks before inserting them into extent 656 * status tree. Otherwise someone could look them up there and 657 * use them before they are really zeroed. We also have to 658 * unmap metadata before zeroing as otherwise writeback can 659 * overwrite zeros with stale data from block device. 660 */ 661 if (flags & EXT4_GET_BLOCKS_ZERO && 662 map->m_flags & EXT4_MAP_MAPPED && 663 map->m_flags & EXT4_MAP_NEW) { 664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 665 map->m_len); 666 ret = ext4_issue_zeroout(inode, map->m_lblk, 667 map->m_pblk, map->m_len); 668 if (ret) { 669 retval = ret; 670 goto out_sem; 671 } 672 } 673 674 /* 675 * If the extent has been zeroed out, we don't need to update 676 * extent status tree. 677 */ 678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 680 if (ext4_es_is_written(&es)) 681 goto out_sem; 682 } 683 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 686 !(status & EXTENT_STATUS_WRITTEN) && 687 ext4_find_delalloc_range(inode, map->m_lblk, 688 map->m_lblk + map->m_len - 1)) 689 status |= EXTENT_STATUS_DELAYED; 690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 691 map->m_pblk, status); 692 if (ret < 0) { 693 retval = ret; 694 goto out_sem; 695 } 696 } 697 698 out_sem: 699 up_write((&EXT4_I(inode)->i_data_sem)); 700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 701 ret = check_block_validity(inode, map); 702 if (ret != 0) 703 return ret; 704 705 /* 706 * Inodes with freshly allocated blocks where contents will be 707 * visible after transaction commit must be on transaction's 708 * ordered data list. 709 */ 710 if (map->m_flags & EXT4_MAP_NEW && 711 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 712 !(flags & EXT4_GET_BLOCKS_ZERO) && 713 !IS_NOQUOTA(inode) && 714 ext4_should_order_data(inode)) { 715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 716 ret = ext4_jbd2_inode_add_wait(handle, inode); 717 else 718 ret = ext4_jbd2_inode_add_write(handle, inode); 719 if (ret) 720 return ret; 721 } 722 } 723 return retval; 724 } 725 726 /* 727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 728 * we have to be careful as someone else may be manipulating b_state as well. 729 */ 730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 731 { 732 unsigned long old_state; 733 unsigned long new_state; 734 735 flags &= EXT4_MAP_FLAGS; 736 737 /* Dummy buffer_head? Set non-atomically. */ 738 if (!bh->b_page) { 739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 740 return; 741 } 742 /* 743 * Someone else may be modifying b_state. Be careful! This is ugly but 744 * once we get rid of using bh as a container for mapping information 745 * to pass to / from get_block functions, this can go away. 746 */ 747 do { 748 old_state = READ_ONCE(bh->b_state); 749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 750 } while (unlikely( 751 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 752 } 753 754 static int _ext4_get_block(struct inode *inode, sector_t iblock, 755 struct buffer_head *bh, int flags) 756 { 757 struct ext4_map_blocks map; 758 int ret = 0; 759 760 if (ext4_has_inline_data(inode)) 761 return -ERANGE; 762 763 map.m_lblk = iblock; 764 map.m_len = bh->b_size >> inode->i_blkbits; 765 766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 767 flags); 768 if (ret > 0) { 769 map_bh(bh, inode->i_sb, map.m_pblk); 770 ext4_update_bh_state(bh, map.m_flags); 771 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 772 ret = 0; 773 } else if (ret == 0) { 774 /* hole case, need to fill in bh->b_size */ 775 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 776 } 777 return ret; 778 } 779 780 int ext4_get_block(struct inode *inode, sector_t iblock, 781 struct buffer_head *bh, int create) 782 { 783 return _ext4_get_block(inode, iblock, bh, 784 create ? EXT4_GET_BLOCKS_CREATE : 0); 785 } 786 787 /* 788 * Get block function used when preparing for buffered write if we require 789 * creating an unwritten extent if blocks haven't been allocated. The extent 790 * will be converted to written after the IO is complete. 791 */ 792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 793 struct buffer_head *bh_result, int create) 794 { 795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 796 inode->i_ino, create); 797 return _ext4_get_block(inode, iblock, bh_result, 798 EXT4_GET_BLOCKS_IO_CREATE_EXT); 799 } 800 801 /* Maximum number of blocks we map for direct IO at once. */ 802 #define DIO_MAX_BLOCKS 4096 803 804 /* 805 * Get blocks function for the cases that need to start a transaction - 806 * generally difference cases of direct IO and DAX IO. It also handles retries 807 * in case of ENOSPC. 808 */ 809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 810 struct buffer_head *bh_result, int flags) 811 { 812 int dio_credits; 813 handle_t *handle; 814 int retries = 0; 815 int ret; 816 817 /* Trim mapping request to maximum we can map at once for DIO */ 818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 820 dio_credits = ext4_chunk_trans_blocks(inode, 821 bh_result->b_size >> inode->i_blkbits); 822 retry: 823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 824 if (IS_ERR(handle)) 825 return PTR_ERR(handle); 826 827 ret = _ext4_get_block(inode, iblock, bh_result, flags); 828 ext4_journal_stop(handle); 829 830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 831 goto retry; 832 return ret; 833 } 834 835 /* Get block function for DIO reads and writes to inodes without extents */ 836 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 837 struct buffer_head *bh, int create) 838 { 839 /* We don't expect handle for direct IO */ 840 WARN_ON_ONCE(ext4_journal_current_handle()); 841 842 if (!create) 843 return _ext4_get_block(inode, iblock, bh, 0); 844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 845 } 846 847 /* 848 * Get block function for AIO DIO writes when we create unwritten extent if 849 * blocks are not allocated yet. The extent will be converted to written 850 * after IO is complete. 851 */ 852 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 853 sector_t iblock, struct buffer_head *bh_result, int create) 854 { 855 int ret; 856 857 /* We don't expect handle for direct IO */ 858 WARN_ON_ONCE(ext4_journal_current_handle()); 859 860 ret = ext4_get_block_trans(inode, iblock, bh_result, 861 EXT4_GET_BLOCKS_IO_CREATE_EXT); 862 863 /* 864 * When doing DIO using unwritten extents, we need io_end to convert 865 * unwritten extents to written on IO completion. We allocate io_end 866 * once we spot unwritten extent and store it in b_private. Generic 867 * DIO code keeps b_private set and furthermore passes the value to 868 * our completion callback in 'private' argument. 869 */ 870 if (!ret && buffer_unwritten(bh_result)) { 871 if (!bh_result->b_private) { 872 ext4_io_end_t *io_end; 873 874 io_end = ext4_init_io_end(inode, GFP_KERNEL); 875 if (!io_end) 876 return -ENOMEM; 877 bh_result->b_private = io_end; 878 ext4_set_io_unwritten_flag(inode, io_end); 879 } 880 set_buffer_defer_completion(bh_result); 881 } 882 883 return ret; 884 } 885 886 /* 887 * Get block function for non-AIO DIO writes when we create unwritten extent if 888 * blocks are not allocated yet. The extent will be converted to written 889 * after IO is complete from ext4_ext_direct_IO() function. 890 */ 891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 892 sector_t iblock, struct buffer_head *bh_result, int create) 893 { 894 int ret; 895 896 /* We don't expect handle for direct IO */ 897 WARN_ON_ONCE(ext4_journal_current_handle()); 898 899 ret = ext4_get_block_trans(inode, iblock, bh_result, 900 EXT4_GET_BLOCKS_IO_CREATE_EXT); 901 902 /* 903 * Mark inode as having pending DIO writes to unwritten extents. 904 * ext4_ext_direct_IO() checks this flag and converts extents to 905 * written. 906 */ 907 if (!ret && buffer_unwritten(bh_result)) 908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 909 910 return ret; 911 } 912 913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 914 struct buffer_head *bh_result, int create) 915 { 916 int ret; 917 918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 919 inode->i_ino, create); 920 /* We don't expect handle for direct IO */ 921 WARN_ON_ONCE(ext4_journal_current_handle()); 922 923 ret = _ext4_get_block(inode, iblock, bh_result, 0); 924 /* 925 * Blocks should have been preallocated! ext4_file_write_iter() checks 926 * that. 927 */ 928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 929 930 return ret; 931 } 932 933 934 /* 935 * `handle' can be NULL if create is zero 936 */ 937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 938 ext4_lblk_t block, int map_flags) 939 { 940 struct ext4_map_blocks map; 941 struct buffer_head *bh; 942 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 943 int err; 944 945 J_ASSERT(handle != NULL || create == 0); 946 947 map.m_lblk = block; 948 map.m_len = 1; 949 err = ext4_map_blocks(handle, inode, &map, map_flags); 950 951 if (err == 0) 952 return create ? ERR_PTR(-ENOSPC) : NULL; 953 if (err < 0) 954 return ERR_PTR(err); 955 956 bh = sb_getblk(inode->i_sb, map.m_pblk); 957 if (unlikely(!bh)) 958 return ERR_PTR(-ENOMEM); 959 if (map.m_flags & EXT4_MAP_NEW) { 960 J_ASSERT(create != 0); 961 J_ASSERT(handle != NULL); 962 963 /* 964 * Now that we do not always journal data, we should 965 * keep in mind whether this should always journal the 966 * new buffer as metadata. For now, regular file 967 * writes use ext4_get_block instead, so it's not a 968 * problem. 969 */ 970 lock_buffer(bh); 971 BUFFER_TRACE(bh, "call get_create_access"); 972 err = ext4_journal_get_create_access(handle, bh); 973 if (unlikely(err)) { 974 unlock_buffer(bh); 975 goto errout; 976 } 977 if (!buffer_uptodate(bh)) { 978 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 979 set_buffer_uptodate(bh); 980 } 981 unlock_buffer(bh); 982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 983 err = ext4_handle_dirty_metadata(handle, inode, bh); 984 if (unlikely(err)) 985 goto errout; 986 } else 987 BUFFER_TRACE(bh, "not a new buffer"); 988 return bh; 989 errout: 990 brelse(bh); 991 return ERR_PTR(err); 992 } 993 994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 995 ext4_lblk_t block, int map_flags) 996 { 997 struct buffer_head *bh; 998 999 bh = ext4_getblk(handle, inode, block, map_flags); 1000 if (IS_ERR(bh)) 1001 return bh; 1002 if (!bh || buffer_uptodate(bh)) 1003 return bh; 1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1005 wait_on_buffer(bh); 1006 if (buffer_uptodate(bh)) 1007 return bh; 1008 put_bh(bh); 1009 return ERR_PTR(-EIO); 1010 } 1011 1012 int ext4_walk_page_buffers(handle_t *handle, 1013 struct buffer_head *head, 1014 unsigned from, 1015 unsigned to, 1016 int *partial, 1017 int (*fn)(handle_t *handle, 1018 struct buffer_head *bh)) 1019 { 1020 struct buffer_head *bh; 1021 unsigned block_start, block_end; 1022 unsigned blocksize = head->b_size; 1023 int err, ret = 0; 1024 struct buffer_head *next; 1025 1026 for (bh = head, block_start = 0; 1027 ret == 0 && (bh != head || !block_start); 1028 block_start = block_end, bh = next) { 1029 next = bh->b_this_page; 1030 block_end = block_start + blocksize; 1031 if (block_end <= from || block_start >= to) { 1032 if (partial && !buffer_uptodate(bh)) 1033 *partial = 1; 1034 continue; 1035 } 1036 err = (*fn)(handle, bh); 1037 if (!ret) 1038 ret = err; 1039 } 1040 return ret; 1041 } 1042 1043 /* 1044 * To preserve ordering, it is essential that the hole instantiation and 1045 * the data write be encapsulated in a single transaction. We cannot 1046 * close off a transaction and start a new one between the ext4_get_block() 1047 * and the commit_write(). So doing the jbd2_journal_start at the start of 1048 * prepare_write() is the right place. 1049 * 1050 * Also, this function can nest inside ext4_writepage(). In that case, we 1051 * *know* that ext4_writepage() has generated enough buffer credits to do the 1052 * whole page. So we won't block on the journal in that case, which is good, 1053 * because the caller may be PF_MEMALLOC. 1054 * 1055 * By accident, ext4 can be reentered when a transaction is open via 1056 * quota file writes. If we were to commit the transaction while thus 1057 * reentered, there can be a deadlock - we would be holding a quota 1058 * lock, and the commit would never complete if another thread had a 1059 * transaction open and was blocking on the quota lock - a ranking 1060 * violation. 1061 * 1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1063 * will _not_ run commit under these circumstances because handle->h_ref 1064 * is elevated. We'll still have enough credits for the tiny quotafile 1065 * write. 1066 */ 1067 int do_journal_get_write_access(handle_t *handle, 1068 struct buffer_head *bh) 1069 { 1070 int dirty = buffer_dirty(bh); 1071 int ret; 1072 1073 if (!buffer_mapped(bh) || buffer_freed(bh)) 1074 return 0; 1075 /* 1076 * __block_write_begin() could have dirtied some buffers. Clean 1077 * the dirty bit as jbd2_journal_get_write_access() could complain 1078 * otherwise about fs integrity issues. Setting of the dirty bit 1079 * by __block_write_begin() isn't a real problem here as we clear 1080 * the bit before releasing a page lock and thus writeback cannot 1081 * ever write the buffer. 1082 */ 1083 if (dirty) 1084 clear_buffer_dirty(bh); 1085 BUFFER_TRACE(bh, "get write access"); 1086 ret = ext4_journal_get_write_access(handle, bh); 1087 if (!ret && dirty) 1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1089 return ret; 1090 } 1091 1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1094 get_block_t *get_block) 1095 { 1096 unsigned from = pos & (PAGE_SIZE - 1); 1097 unsigned to = from + len; 1098 struct inode *inode = page->mapping->host; 1099 unsigned block_start, block_end; 1100 sector_t block; 1101 int err = 0; 1102 unsigned blocksize = inode->i_sb->s_blocksize; 1103 unsigned bbits; 1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1105 bool decrypt = false; 1106 1107 BUG_ON(!PageLocked(page)); 1108 BUG_ON(from > PAGE_SIZE); 1109 BUG_ON(to > PAGE_SIZE); 1110 BUG_ON(from > to); 1111 1112 if (!page_has_buffers(page)) 1113 create_empty_buffers(page, blocksize, 0); 1114 head = page_buffers(page); 1115 bbits = ilog2(blocksize); 1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1117 1118 for (bh = head, block_start = 0; bh != head || !block_start; 1119 block++, block_start = block_end, bh = bh->b_this_page) { 1120 block_end = block_start + blocksize; 1121 if (block_end <= from || block_start >= to) { 1122 if (PageUptodate(page)) { 1123 if (!buffer_uptodate(bh)) 1124 set_buffer_uptodate(bh); 1125 } 1126 continue; 1127 } 1128 if (buffer_new(bh)) 1129 clear_buffer_new(bh); 1130 if (!buffer_mapped(bh)) { 1131 WARN_ON(bh->b_size != blocksize); 1132 err = get_block(inode, block, bh, 1); 1133 if (err) 1134 break; 1135 if (buffer_new(bh)) { 1136 clean_bdev_bh_alias(bh); 1137 if (PageUptodate(page)) { 1138 clear_buffer_new(bh); 1139 set_buffer_uptodate(bh); 1140 mark_buffer_dirty(bh); 1141 continue; 1142 } 1143 if (block_end > to || block_start < from) 1144 zero_user_segments(page, to, block_end, 1145 block_start, from); 1146 continue; 1147 } 1148 } 1149 if (PageUptodate(page)) { 1150 if (!buffer_uptodate(bh)) 1151 set_buffer_uptodate(bh); 1152 continue; 1153 } 1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1155 !buffer_unwritten(bh) && 1156 (block_start < from || block_end > to)) { 1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1158 *wait_bh++ = bh; 1159 decrypt = ext4_encrypted_inode(inode) && 1160 S_ISREG(inode->i_mode); 1161 } 1162 } 1163 /* 1164 * If we issued read requests, let them complete. 1165 */ 1166 while (wait_bh > wait) { 1167 wait_on_buffer(*--wait_bh); 1168 if (!buffer_uptodate(*wait_bh)) 1169 err = -EIO; 1170 } 1171 if (unlikely(err)) 1172 page_zero_new_buffers(page, from, to); 1173 else if (decrypt) 1174 err = fscrypt_decrypt_page(page->mapping->host, page, 1175 PAGE_SIZE, 0, page->index); 1176 return err; 1177 } 1178 #endif 1179 1180 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1181 loff_t pos, unsigned len, unsigned flags, 1182 struct page **pagep, void **fsdata) 1183 { 1184 struct inode *inode = mapping->host; 1185 int ret, needed_blocks; 1186 handle_t *handle; 1187 int retries = 0; 1188 struct page *page; 1189 pgoff_t index; 1190 unsigned from, to; 1191 1192 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1193 return -EIO; 1194 1195 trace_ext4_write_begin(inode, pos, len, flags); 1196 /* 1197 * Reserve one block more for addition to orphan list in case 1198 * we allocate blocks but write fails for some reason 1199 */ 1200 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1201 index = pos >> PAGE_SHIFT; 1202 from = pos & (PAGE_SIZE - 1); 1203 to = from + len; 1204 1205 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1206 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1207 flags, pagep); 1208 if (ret < 0) 1209 return ret; 1210 if (ret == 1) 1211 return 0; 1212 } 1213 1214 /* 1215 * grab_cache_page_write_begin() can take a long time if the 1216 * system is thrashing due to memory pressure, or if the page 1217 * is being written back. So grab it first before we start 1218 * the transaction handle. This also allows us to allocate 1219 * the page (if needed) without using GFP_NOFS. 1220 */ 1221 retry_grab: 1222 page = grab_cache_page_write_begin(mapping, index, flags); 1223 if (!page) 1224 return -ENOMEM; 1225 unlock_page(page); 1226 1227 retry_journal: 1228 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1229 if (IS_ERR(handle)) { 1230 put_page(page); 1231 return PTR_ERR(handle); 1232 } 1233 1234 lock_page(page); 1235 if (page->mapping != mapping) { 1236 /* The page got truncated from under us */ 1237 unlock_page(page); 1238 put_page(page); 1239 ext4_journal_stop(handle); 1240 goto retry_grab; 1241 } 1242 /* In case writeback began while the page was unlocked */ 1243 wait_for_stable_page(page); 1244 1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1246 if (ext4_should_dioread_nolock(inode)) 1247 ret = ext4_block_write_begin(page, pos, len, 1248 ext4_get_block_unwritten); 1249 else 1250 ret = ext4_block_write_begin(page, pos, len, 1251 ext4_get_block); 1252 #else 1253 if (ext4_should_dioread_nolock(inode)) 1254 ret = __block_write_begin(page, pos, len, 1255 ext4_get_block_unwritten); 1256 else 1257 ret = __block_write_begin(page, pos, len, ext4_get_block); 1258 #endif 1259 if (!ret && ext4_should_journal_data(inode)) { 1260 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1261 from, to, NULL, 1262 do_journal_get_write_access); 1263 } 1264 1265 if (ret) { 1266 unlock_page(page); 1267 /* 1268 * __block_write_begin may have instantiated a few blocks 1269 * outside i_size. Trim these off again. Don't need 1270 * i_size_read because we hold i_mutex. 1271 * 1272 * Add inode to orphan list in case we crash before 1273 * truncate finishes 1274 */ 1275 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1276 ext4_orphan_add(handle, inode); 1277 1278 ext4_journal_stop(handle); 1279 if (pos + len > inode->i_size) { 1280 ext4_truncate_failed_write(inode); 1281 /* 1282 * If truncate failed early the inode might 1283 * still be on the orphan list; we need to 1284 * make sure the inode is removed from the 1285 * orphan list in that case. 1286 */ 1287 if (inode->i_nlink) 1288 ext4_orphan_del(NULL, inode); 1289 } 1290 1291 if (ret == -ENOSPC && 1292 ext4_should_retry_alloc(inode->i_sb, &retries)) 1293 goto retry_journal; 1294 put_page(page); 1295 return ret; 1296 } 1297 *pagep = page; 1298 return ret; 1299 } 1300 1301 /* For write_end() in data=journal mode */ 1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1303 { 1304 int ret; 1305 if (!buffer_mapped(bh) || buffer_freed(bh)) 1306 return 0; 1307 set_buffer_uptodate(bh); 1308 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1309 clear_buffer_meta(bh); 1310 clear_buffer_prio(bh); 1311 return ret; 1312 } 1313 1314 /* 1315 * We need to pick up the new inode size which generic_commit_write gave us 1316 * `file' can be NULL - eg, when called from page_symlink(). 1317 * 1318 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1319 * buffers are managed internally. 1320 */ 1321 static int ext4_write_end(struct file *file, 1322 struct address_space *mapping, 1323 loff_t pos, unsigned len, unsigned copied, 1324 struct page *page, void *fsdata) 1325 { 1326 handle_t *handle = ext4_journal_current_handle(); 1327 struct inode *inode = mapping->host; 1328 loff_t old_size = inode->i_size; 1329 int ret = 0, ret2; 1330 int i_size_changed = 0; 1331 1332 trace_ext4_write_end(inode, pos, len, copied); 1333 if (ext4_has_inline_data(inode)) { 1334 ret = ext4_write_inline_data_end(inode, pos, len, 1335 copied, page); 1336 if (ret < 0) { 1337 unlock_page(page); 1338 put_page(page); 1339 goto errout; 1340 } 1341 copied = ret; 1342 } else 1343 copied = block_write_end(file, mapping, pos, 1344 len, copied, page, fsdata); 1345 /* 1346 * it's important to update i_size while still holding page lock: 1347 * page writeout could otherwise come in and zero beyond i_size. 1348 */ 1349 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1350 unlock_page(page); 1351 put_page(page); 1352 1353 if (old_size < pos) 1354 pagecache_isize_extended(inode, old_size, pos); 1355 /* 1356 * Don't mark the inode dirty under page lock. First, it unnecessarily 1357 * makes the holding time of page lock longer. Second, it forces lock 1358 * ordering of page lock and transaction start for journaling 1359 * filesystems. 1360 */ 1361 if (i_size_changed) 1362 ext4_mark_inode_dirty(handle, inode); 1363 1364 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1365 /* if we have allocated more blocks and copied 1366 * less. We will have blocks allocated outside 1367 * inode->i_size. So truncate them 1368 */ 1369 ext4_orphan_add(handle, inode); 1370 errout: 1371 ret2 = ext4_journal_stop(handle); 1372 if (!ret) 1373 ret = ret2; 1374 1375 if (pos + len > inode->i_size) { 1376 ext4_truncate_failed_write(inode); 1377 /* 1378 * If truncate failed early the inode might still be 1379 * on the orphan list; we need to make sure the inode 1380 * is removed from the orphan list in that case. 1381 */ 1382 if (inode->i_nlink) 1383 ext4_orphan_del(NULL, inode); 1384 } 1385 1386 return ret ? ret : copied; 1387 } 1388 1389 /* 1390 * This is a private version of page_zero_new_buffers() which doesn't 1391 * set the buffer to be dirty, since in data=journalled mode we need 1392 * to call ext4_handle_dirty_metadata() instead. 1393 */ 1394 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1395 struct page *page, 1396 unsigned from, unsigned to) 1397 { 1398 unsigned int block_start = 0, block_end; 1399 struct buffer_head *head, *bh; 1400 1401 bh = head = page_buffers(page); 1402 do { 1403 block_end = block_start + bh->b_size; 1404 if (buffer_new(bh)) { 1405 if (block_end > from && block_start < to) { 1406 if (!PageUptodate(page)) { 1407 unsigned start, size; 1408 1409 start = max(from, block_start); 1410 size = min(to, block_end) - start; 1411 1412 zero_user(page, start, size); 1413 write_end_fn(handle, bh); 1414 } 1415 clear_buffer_new(bh); 1416 } 1417 } 1418 block_start = block_end; 1419 bh = bh->b_this_page; 1420 } while (bh != head); 1421 } 1422 1423 static int ext4_journalled_write_end(struct file *file, 1424 struct address_space *mapping, 1425 loff_t pos, unsigned len, unsigned copied, 1426 struct page *page, void *fsdata) 1427 { 1428 handle_t *handle = ext4_journal_current_handle(); 1429 struct inode *inode = mapping->host; 1430 loff_t old_size = inode->i_size; 1431 int ret = 0, ret2; 1432 int partial = 0; 1433 unsigned from, to; 1434 int size_changed = 0; 1435 1436 trace_ext4_journalled_write_end(inode, pos, len, copied); 1437 from = pos & (PAGE_SIZE - 1); 1438 to = from + len; 1439 1440 BUG_ON(!ext4_handle_valid(handle)); 1441 1442 if (ext4_has_inline_data(inode)) { 1443 ret = ext4_write_inline_data_end(inode, pos, len, 1444 copied, page); 1445 if (ret < 0) { 1446 unlock_page(page); 1447 put_page(page); 1448 goto errout; 1449 } 1450 copied = ret; 1451 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1452 copied = 0; 1453 ext4_journalled_zero_new_buffers(handle, page, from, to); 1454 } else { 1455 if (unlikely(copied < len)) 1456 ext4_journalled_zero_new_buffers(handle, page, 1457 from + copied, to); 1458 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1459 from + copied, &partial, 1460 write_end_fn); 1461 if (!partial) 1462 SetPageUptodate(page); 1463 } 1464 size_changed = ext4_update_inode_size(inode, pos + copied); 1465 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1466 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1467 unlock_page(page); 1468 put_page(page); 1469 1470 if (old_size < pos) 1471 pagecache_isize_extended(inode, old_size, pos); 1472 1473 if (size_changed) { 1474 ret2 = ext4_mark_inode_dirty(handle, inode); 1475 if (!ret) 1476 ret = ret2; 1477 } 1478 1479 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1480 /* if we have allocated more blocks and copied 1481 * less. We will have blocks allocated outside 1482 * inode->i_size. So truncate them 1483 */ 1484 ext4_orphan_add(handle, inode); 1485 1486 errout: 1487 ret2 = ext4_journal_stop(handle); 1488 if (!ret) 1489 ret = ret2; 1490 if (pos + len > inode->i_size) { 1491 ext4_truncate_failed_write(inode); 1492 /* 1493 * If truncate failed early the inode might still be 1494 * on the orphan list; we need to make sure the inode 1495 * is removed from the orphan list in that case. 1496 */ 1497 if (inode->i_nlink) 1498 ext4_orphan_del(NULL, inode); 1499 } 1500 1501 return ret ? ret : copied; 1502 } 1503 1504 /* 1505 * Reserve space for a single cluster 1506 */ 1507 static int ext4_da_reserve_space(struct inode *inode) 1508 { 1509 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1510 struct ext4_inode_info *ei = EXT4_I(inode); 1511 int ret; 1512 1513 /* 1514 * We will charge metadata quota at writeout time; this saves 1515 * us from metadata over-estimation, though we may go over by 1516 * a small amount in the end. Here we just reserve for data. 1517 */ 1518 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1519 if (ret) 1520 return ret; 1521 1522 spin_lock(&ei->i_block_reservation_lock); 1523 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1524 spin_unlock(&ei->i_block_reservation_lock); 1525 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1526 return -ENOSPC; 1527 } 1528 ei->i_reserved_data_blocks++; 1529 trace_ext4_da_reserve_space(inode); 1530 spin_unlock(&ei->i_block_reservation_lock); 1531 1532 return 0; /* success */ 1533 } 1534 1535 static void ext4_da_release_space(struct inode *inode, int to_free) 1536 { 1537 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1538 struct ext4_inode_info *ei = EXT4_I(inode); 1539 1540 if (!to_free) 1541 return; /* Nothing to release, exit */ 1542 1543 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1544 1545 trace_ext4_da_release_space(inode, to_free); 1546 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1547 /* 1548 * if there aren't enough reserved blocks, then the 1549 * counter is messed up somewhere. Since this 1550 * function is called from invalidate page, it's 1551 * harmless to return without any action. 1552 */ 1553 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1554 "ino %lu, to_free %d with only %d reserved " 1555 "data blocks", inode->i_ino, to_free, 1556 ei->i_reserved_data_blocks); 1557 WARN_ON(1); 1558 to_free = ei->i_reserved_data_blocks; 1559 } 1560 ei->i_reserved_data_blocks -= to_free; 1561 1562 /* update fs dirty data blocks counter */ 1563 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1564 1565 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1566 1567 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1568 } 1569 1570 static void ext4_da_page_release_reservation(struct page *page, 1571 unsigned int offset, 1572 unsigned int length) 1573 { 1574 int to_release = 0, contiguous_blks = 0; 1575 struct buffer_head *head, *bh; 1576 unsigned int curr_off = 0; 1577 struct inode *inode = page->mapping->host; 1578 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1579 unsigned int stop = offset + length; 1580 int num_clusters; 1581 ext4_fsblk_t lblk; 1582 1583 BUG_ON(stop > PAGE_SIZE || stop < length); 1584 1585 head = page_buffers(page); 1586 bh = head; 1587 do { 1588 unsigned int next_off = curr_off + bh->b_size; 1589 1590 if (next_off > stop) 1591 break; 1592 1593 if ((offset <= curr_off) && (buffer_delay(bh))) { 1594 to_release++; 1595 contiguous_blks++; 1596 clear_buffer_delay(bh); 1597 } else if (contiguous_blks) { 1598 lblk = page->index << 1599 (PAGE_SHIFT - inode->i_blkbits); 1600 lblk += (curr_off >> inode->i_blkbits) - 1601 contiguous_blks; 1602 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1603 contiguous_blks = 0; 1604 } 1605 curr_off = next_off; 1606 } while ((bh = bh->b_this_page) != head); 1607 1608 if (contiguous_blks) { 1609 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1610 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1611 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1612 } 1613 1614 /* If we have released all the blocks belonging to a cluster, then we 1615 * need to release the reserved space for that cluster. */ 1616 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1617 while (num_clusters > 0) { 1618 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1619 ((num_clusters - 1) << sbi->s_cluster_bits); 1620 if (sbi->s_cluster_ratio == 1 || 1621 !ext4_find_delalloc_cluster(inode, lblk)) 1622 ext4_da_release_space(inode, 1); 1623 1624 num_clusters--; 1625 } 1626 } 1627 1628 /* 1629 * Delayed allocation stuff 1630 */ 1631 1632 struct mpage_da_data { 1633 struct inode *inode; 1634 struct writeback_control *wbc; 1635 1636 pgoff_t first_page; /* The first page to write */ 1637 pgoff_t next_page; /* Current page to examine */ 1638 pgoff_t last_page; /* Last page to examine */ 1639 /* 1640 * Extent to map - this can be after first_page because that can be 1641 * fully mapped. We somewhat abuse m_flags to store whether the extent 1642 * is delalloc or unwritten. 1643 */ 1644 struct ext4_map_blocks map; 1645 struct ext4_io_submit io_submit; /* IO submission data */ 1646 }; 1647 1648 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1649 bool invalidate) 1650 { 1651 int nr_pages, i; 1652 pgoff_t index, end; 1653 struct pagevec pvec; 1654 struct inode *inode = mpd->inode; 1655 struct address_space *mapping = inode->i_mapping; 1656 1657 /* This is necessary when next_page == 0. */ 1658 if (mpd->first_page >= mpd->next_page) 1659 return; 1660 1661 index = mpd->first_page; 1662 end = mpd->next_page - 1; 1663 if (invalidate) { 1664 ext4_lblk_t start, last; 1665 start = index << (PAGE_SHIFT - inode->i_blkbits); 1666 last = end << (PAGE_SHIFT - inode->i_blkbits); 1667 ext4_es_remove_extent(inode, start, last - start + 1); 1668 } 1669 1670 pagevec_init(&pvec, 0); 1671 while (index <= end) { 1672 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1673 if (nr_pages == 0) 1674 break; 1675 for (i = 0; i < nr_pages; i++) { 1676 struct page *page = pvec.pages[i]; 1677 if (page->index > end) 1678 break; 1679 BUG_ON(!PageLocked(page)); 1680 BUG_ON(PageWriteback(page)); 1681 if (invalidate) { 1682 if (page_mapped(page)) 1683 clear_page_dirty_for_io(page); 1684 block_invalidatepage(page, 0, PAGE_SIZE); 1685 ClearPageUptodate(page); 1686 } 1687 unlock_page(page); 1688 } 1689 index = pvec.pages[nr_pages - 1]->index + 1; 1690 pagevec_release(&pvec); 1691 } 1692 } 1693 1694 static void ext4_print_free_blocks(struct inode *inode) 1695 { 1696 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1697 struct super_block *sb = inode->i_sb; 1698 struct ext4_inode_info *ei = EXT4_I(inode); 1699 1700 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1701 EXT4_C2B(EXT4_SB(inode->i_sb), 1702 ext4_count_free_clusters(sb))); 1703 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1704 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1705 (long long) EXT4_C2B(EXT4_SB(sb), 1706 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1707 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1708 (long long) EXT4_C2B(EXT4_SB(sb), 1709 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1710 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1711 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1712 ei->i_reserved_data_blocks); 1713 return; 1714 } 1715 1716 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1717 { 1718 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1719 } 1720 1721 /* 1722 * This function is grabs code from the very beginning of 1723 * ext4_map_blocks, but assumes that the caller is from delayed write 1724 * time. This function looks up the requested blocks and sets the 1725 * buffer delay bit under the protection of i_data_sem. 1726 */ 1727 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1728 struct ext4_map_blocks *map, 1729 struct buffer_head *bh) 1730 { 1731 struct extent_status es; 1732 int retval; 1733 sector_t invalid_block = ~((sector_t) 0xffff); 1734 #ifdef ES_AGGRESSIVE_TEST 1735 struct ext4_map_blocks orig_map; 1736 1737 memcpy(&orig_map, map, sizeof(*map)); 1738 #endif 1739 1740 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1741 invalid_block = ~0; 1742 1743 map->m_flags = 0; 1744 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1745 "logical block %lu\n", inode->i_ino, map->m_len, 1746 (unsigned long) map->m_lblk); 1747 1748 /* Lookup extent status tree firstly */ 1749 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1750 if (ext4_es_is_hole(&es)) { 1751 retval = 0; 1752 down_read(&EXT4_I(inode)->i_data_sem); 1753 goto add_delayed; 1754 } 1755 1756 /* 1757 * Delayed extent could be allocated by fallocate. 1758 * So we need to check it. 1759 */ 1760 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1761 map_bh(bh, inode->i_sb, invalid_block); 1762 set_buffer_new(bh); 1763 set_buffer_delay(bh); 1764 return 0; 1765 } 1766 1767 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1768 retval = es.es_len - (iblock - es.es_lblk); 1769 if (retval > map->m_len) 1770 retval = map->m_len; 1771 map->m_len = retval; 1772 if (ext4_es_is_written(&es)) 1773 map->m_flags |= EXT4_MAP_MAPPED; 1774 else if (ext4_es_is_unwritten(&es)) 1775 map->m_flags |= EXT4_MAP_UNWRITTEN; 1776 else 1777 BUG_ON(1); 1778 1779 #ifdef ES_AGGRESSIVE_TEST 1780 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1781 #endif 1782 return retval; 1783 } 1784 1785 /* 1786 * Try to see if we can get the block without requesting a new 1787 * file system block. 1788 */ 1789 down_read(&EXT4_I(inode)->i_data_sem); 1790 if (ext4_has_inline_data(inode)) 1791 retval = 0; 1792 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1793 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1794 else 1795 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1796 1797 add_delayed: 1798 if (retval == 0) { 1799 int ret; 1800 /* 1801 * XXX: __block_prepare_write() unmaps passed block, 1802 * is it OK? 1803 */ 1804 /* 1805 * If the block was allocated from previously allocated cluster, 1806 * then we don't need to reserve it again. However we still need 1807 * to reserve metadata for every block we're going to write. 1808 */ 1809 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1810 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1811 ret = ext4_da_reserve_space(inode); 1812 if (ret) { 1813 /* not enough space to reserve */ 1814 retval = ret; 1815 goto out_unlock; 1816 } 1817 } 1818 1819 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1820 ~0, EXTENT_STATUS_DELAYED); 1821 if (ret) { 1822 retval = ret; 1823 goto out_unlock; 1824 } 1825 1826 map_bh(bh, inode->i_sb, invalid_block); 1827 set_buffer_new(bh); 1828 set_buffer_delay(bh); 1829 } else if (retval > 0) { 1830 int ret; 1831 unsigned int status; 1832 1833 if (unlikely(retval != map->m_len)) { 1834 ext4_warning(inode->i_sb, 1835 "ES len assertion failed for inode " 1836 "%lu: retval %d != map->m_len %d", 1837 inode->i_ino, retval, map->m_len); 1838 WARN_ON(1); 1839 } 1840 1841 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1842 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1843 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1844 map->m_pblk, status); 1845 if (ret != 0) 1846 retval = ret; 1847 } 1848 1849 out_unlock: 1850 up_read((&EXT4_I(inode)->i_data_sem)); 1851 1852 return retval; 1853 } 1854 1855 /* 1856 * This is a special get_block_t callback which is used by 1857 * ext4_da_write_begin(). It will either return mapped block or 1858 * reserve space for a single block. 1859 * 1860 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1861 * We also have b_blocknr = -1 and b_bdev initialized properly 1862 * 1863 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1864 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1865 * initialized properly. 1866 */ 1867 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1868 struct buffer_head *bh, int create) 1869 { 1870 struct ext4_map_blocks map; 1871 int ret = 0; 1872 1873 BUG_ON(create == 0); 1874 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1875 1876 map.m_lblk = iblock; 1877 map.m_len = 1; 1878 1879 /* 1880 * first, we need to know whether the block is allocated already 1881 * preallocated blocks are unmapped but should treated 1882 * the same as allocated blocks. 1883 */ 1884 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1885 if (ret <= 0) 1886 return ret; 1887 1888 map_bh(bh, inode->i_sb, map.m_pblk); 1889 ext4_update_bh_state(bh, map.m_flags); 1890 1891 if (buffer_unwritten(bh)) { 1892 /* A delayed write to unwritten bh should be marked 1893 * new and mapped. Mapped ensures that we don't do 1894 * get_block multiple times when we write to the same 1895 * offset and new ensures that we do proper zero out 1896 * for partial write. 1897 */ 1898 set_buffer_new(bh); 1899 set_buffer_mapped(bh); 1900 } 1901 return 0; 1902 } 1903 1904 static int bget_one(handle_t *handle, struct buffer_head *bh) 1905 { 1906 get_bh(bh); 1907 return 0; 1908 } 1909 1910 static int bput_one(handle_t *handle, struct buffer_head *bh) 1911 { 1912 put_bh(bh); 1913 return 0; 1914 } 1915 1916 static int __ext4_journalled_writepage(struct page *page, 1917 unsigned int len) 1918 { 1919 struct address_space *mapping = page->mapping; 1920 struct inode *inode = mapping->host; 1921 struct buffer_head *page_bufs = NULL; 1922 handle_t *handle = NULL; 1923 int ret = 0, err = 0; 1924 int inline_data = ext4_has_inline_data(inode); 1925 struct buffer_head *inode_bh = NULL; 1926 1927 ClearPageChecked(page); 1928 1929 if (inline_data) { 1930 BUG_ON(page->index != 0); 1931 BUG_ON(len > ext4_get_max_inline_size(inode)); 1932 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1933 if (inode_bh == NULL) 1934 goto out; 1935 } else { 1936 page_bufs = page_buffers(page); 1937 if (!page_bufs) { 1938 BUG(); 1939 goto out; 1940 } 1941 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1942 NULL, bget_one); 1943 } 1944 /* 1945 * We need to release the page lock before we start the 1946 * journal, so grab a reference so the page won't disappear 1947 * out from under us. 1948 */ 1949 get_page(page); 1950 unlock_page(page); 1951 1952 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1953 ext4_writepage_trans_blocks(inode)); 1954 if (IS_ERR(handle)) { 1955 ret = PTR_ERR(handle); 1956 put_page(page); 1957 goto out_no_pagelock; 1958 } 1959 BUG_ON(!ext4_handle_valid(handle)); 1960 1961 lock_page(page); 1962 put_page(page); 1963 if (page->mapping != mapping) { 1964 /* The page got truncated from under us */ 1965 ext4_journal_stop(handle); 1966 ret = 0; 1967 goto out; 1968 } 1969 1970 if (inline_data) { 1971 BUFFER_TRACE(inode_bh, "get write access"); 1972 ret = ext4_journal_get_write_access(handle, inode_bh); 1973 1974 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1975 1976 } else { 1977 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1978 do_journal_get_write_access); 1979 1980 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1981 write_end_fn); 1982 } 1983 if (ret == 0) 1984 ret = err; 1985 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1986 err = ext4_journal_stop(handle); 1987 if (!ret) 1988 ret = err; 1989 1990 if (!ext4_has_inline_data(inode)) 1991 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1992 NULL, bput_one); 1993 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1994 out: 1995 unlock_page(page); 1996 out_no_pagelock: 1997 brelse(inode_bh); 1998 return ret; 1999 } 2000 2001 /* 2002 * Note that we don't need to start a transaction unless we're journaling data 2003 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2004 * need to file the inode to the transaction's list in ordered mode because if 2005 * we are writing back data added by write(), the inode is already there and if 2006 * we are writing back data modified via mmap(), no one guarantees in which 2007 * transaction the data will hit the disk. In case we are journaling data, we 2008 * cannot start transaction directly because transaction start ranks above page 2009 * lock so we have to do some magic. 2010 * 2011 * This function can get called via... 2012 * - ext4_writepages after taking page lock (have journal handle) 2013 * - journal_submit_inode_data_buffers (no journal handle) 2014 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2015 * - grab_page_cache when doing write_begin (have journal handle) 2016 * 2017 * We don't do any block allocation in this function. If we have page with 2018 * multiple blocks we need to write those buffer_heads that are mapped. This 2019 * is important for mmaped based write. So if we do with blocksize 1K 2020 * truncate(f, 1024); 2021 * a = mmap(f, 0, 4096); 2022 * a[0] = 'a'; 2023 * truncate(f, 4096); 2024 * we have in the page first buffer_head mapped via page_mkwrite call back 2025 * but other buffer_heads would be unmapped but dirty (dirty done via the 2026 * do_wp_page). So writepage should write the first block. If we modify 2027 * the mmap area beyond 1024 we will again get a page_fault and the 2028 * page_mkwrite callback will do the block allocation and mark the 2029 * buffer_heads mapped. 2030 * 2031 * We redirty the page if we have any buffer_heads that is either delay or 2032 * unwritten in the page. 2033 * 2034 * We can get recursively called as show below. 2035 * 2036 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2037 * ext4_writepage() 2038 * 2039 * But since we don't do any block allocation we should not deadlock. 2040 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2041 */ 2042 static int ext4_writepage(struct page *page, 2043 struct writeback_control *wbc) 2044 { 2045 int ret = 0; 2046 loff_t size; 2047 unsigned int len; 2048 struct buffer_head *page_bufs = NULL; 2049 struct inode *inode = page->mapping->host; 2050 struct ext4_io_submit io_submit; 2051 bool keep_towrite = false; 2052 2053 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2054 ext4_invalidatepage(page, 0, PAGE_SIZE); 2055 unlock_page(page); 2056 return -EIO; 2057 } 2058 2059 trace_ext4_writepage(page); 2060 size = i_size_read(inode); 2061 if (page->index == size >> PAGE_SHIFT) 2062 len = size & ~PAGE_MASK; 2063 else 2064 len = PAGE_SIZE; 2065 2066 page_bufs = page_buffers(page); 2067 /* 2068 * We cannot do block allocation or other extent handling in this 2069 * function. If there are buffers needing that, we have to redirty 2070 * the page. But we may reach here when we do a journal commit via 2071 * journal_submit_inode_data_buffers() and in that case we must write 2072 * allocated buffers to achieve data=ordered mode guarantees. 2073 * 2074 * Also, if there is only one buffer per page (the fs block 2075 * size == the page size), if one buffer needs block 2076 * allocation or needs to modify the extent tree to clear the 2077 * unwritten flag, we know that the page can't be written at 2078 * all, so we might as well refuse the write immediately. 2079 * Unfortunately if the block size != page size, we can't as 2080 * easily detect this case using ext4_walk_page_buffers(), but 2081 * for the extremely common case, this is an optimization that 2082 * skips a useless round trip through ext4_bio_write_page(). 2083 */ 2084 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2085 ext4_bh_delay_or_unwritten)) { 2086 redirty_page_for_writepage(wbc, page); 2087 if ((current->flags & PF_MEMALLOC) || 2088 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2089 /* 2090 * For memory cleaning there's no point in writing only 2091 * some buffers. So just bail out. Warn if we came here 2092 * from direct reclaim. 2093 */ 2094 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2095 == PF_MEMALLOC); 2096 unlock_page(page); 2097 return 0; 2098 } 2099 keep_towrite = true; 2100 } 2101 2102 if (PageChecked(page) && ext4_should_journal_data(inode)) 2103 /* 2104 * It's mmapped pagecache. Add buffers and journal it. There 2105 * doesn't seem much point in redirtying the page here. 2106 */ 2107 return __ext4_journalled_writepage(page, len); 2108 2109 ext4_io_submit_init(&io_submit, wbc); 2110 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2111 if (!io_submit.io_end) { 2112 redirty_page_for_writepage(wbc, page); 2113 unlock_page(page); 2114 return -ENOMEM; 2115 } 2116 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2117 ext4_io_submit(&io_submit); 2118 /* Drop io_end reference we got from init */ 2119 ext4_put_io_end_defer(io_submit.io_end); 2120 return ret; 2121 } 2122 2123 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2124 { 2125 int len; 2126 loff_t size = i_size_read(mpd->inode); 2127 int err; 2128 2129 BUG_ON(page->index != mpd->first_page); 2130 if (page->index == size >> PAGE_SHIFT) 2131 len = size & ~PAGE_MASK; 2132 else 2133 len = PAGE_SIZE; 2134 clear_page_dirty_for_io(page); 2135 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2136 if (!err) 2137 mpd->wbc->nr_to_write--; 2138 mpd->first_page++; 2139 2140 return err; 2141 } 2142 2143 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2144 2145 /* 2146 * mballoc gives us at most this number of blocks... 2147 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2148 * The rest of mballoc seems to handle chunks up to full group size. 2149 */ 2150 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2151 2152 /* 2153 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2154 * 2155 * @mpd - extent of blocks 2156 * @lblk - logical number of the block in the file 2157 * @bh - buffer head we want to add to the extent 2158 * 2159 * The function is used to collect contig. blocks in the same state. If the 2160 * buffer doesn't require mapping for writeback and we haven't started the 2161 * extent of buffers to map yet, the function returns 'true' immediately - the 2162 * caller can write the buffer right away. Otherwise the function returns true 2163 * if the block has been added to the extent, false if the block couldn't be 2164 * added. 2165 */ 2166 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2167 struct buffer_head *bh) 2168 { 2169 struct ext4_map_blocks *map = &mpd->map; 2170 2171 /* Buffer that doesn't need mapping for writeback? */ 2172 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2173 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2174 /* So far no extent to map => we write the buffer right away */ 2175 if (map->m_len == 0) 2176 return true; 2177 return false; 2178 } 2179 2180 /* First block in the extent? */ 2181 if (map->m_len == 0) { 2182 map->m_lblk = lblk; 2183 map->m_len = 1; 2184 map->m_flags = bh->b_state & BH_FLAGS; 2185 return true; 2186 } 2187 2188 /* Don't go larger than mballoc is willing to allocate */ 2189 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2190 return false; 2191 2192 /* Can we merge the block to our big extent? */ 2193 if (lblk == map->m_lblk + map->m_len && 2194 (bh->b_state & BH_FLAGS) == map->m_flags) { 2195 map->m_len++; 2196 return true; 2197 } 2198 return false; 2199 } 2200 2201 /* 2202 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2203 * 2204 * @mpd - extent of blocks for mapping 2205 * @head - the first buffer in the page 2206 * @bh - buffer we should start processing from 2207 * @lblk - logical number of the block in the file corresponding to @bh 2208 * 2209 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2210 * the page for IO if all buffers in this page were mapped and there's no 2211 * accumulated extent of buffers to map or add buffers in the page to the 2212 * extent of buffers to map. The function returns 1 if the caller can continue 2213 * by processing the next page, 0 if it should stop adding buffers to the 2214 * extent to map because we cannot extend it anymore. It can also return value 2215 * < 0 in case of error during IO submission. 2216 */ 2217 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2218 struct buffer_head *head, 2219 struct buffer_head *bh, 2220 ext4_lblk_t lblk) 2221 { 2222 struct inode *inode = mpd->inode; 2223 int err; 2224 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2225 >> inode->i_blkbits; 2226 2227 do { 2228 BUG_ON(buffer_locked(bh)); 2229 2230 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2231 /* Found extent to map? */ 2232 if (mpd->map.m_len) 2233 return 0; 2234 /* Everything mapped so far and we hit EOF */ 2235 break; 2236 } 2237 } while (lblk++, (bh = bh->b_this_page) != head); 2238 /* So far everything mapped? Submit the page for IO. */ 2239 if (mpd->map.m_len == 0) { 2240 err = mpage_submit_page(mpd, head->b_page); 2241 if (err < 0) 2242 return err; 2243 } 2244 return lblk < blocks; 2245 } 2246 2247 /* 2248 * mpage_map_buffers - update buffers corresponding to changed extent and 2249 * submit fully mapped pages for IO 2250 * 2251 * @mpd - description of extent to map, on return next extent to map 2252 * 2253 * Scan buffers corresponding to changed extent (we expect corresponding pages 2254 * to be already locked) and update buffer state according to new extent state. 2255 * We map delalloc buffers to their physical location, clear unwritten bits, 2256 * and mark buffers as uninit when we perform writes to unwritten extents 2257 * and do extent conversion after IO is finished. If the last page is not fully 2258 * mapped, we update @map to the next extent in the last page that needs 2259 * mapping. Otherwise we submit the page for IO. 2260 */ 2261 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2262 { 2263 struct pagevec pvec; 2264 int nr_pages, i; 2265 struct inode *inode = mpd->inode; 2266 struct buffer_head *head, *bh; 2267 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2268 pgoff_t start, end; 2269 ext4_lblk_t lblk; 2270 sector_t pblock; 2271 int err; 2272 2273 start = mpd->map.m_lblk >> bpp_bits; 2274 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2275 lblk = start << bpp_bits; 2276 pblock = mpd->map.m_pblk; 2277 2278 pagevec_init(&pvec, 0); 2279 while (start <= end) { 2280 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2281 PAGEVEC_SIZE); 2282 if (nr_pages == 0) 2283 break; 2284 for (i = 0; i < nr_pages; i++) { 2285 struct page *page = pvec.pages[i]; 2286 2287 if (page->index > end) 2288 break; 2289 /* Up to 'end' pages must be contiguous */ 2290 BUG_ON(page->index != start); 2291 bh = head = page_buffers(page); 2292 do { 2293 if (lblk < mpd->map.m_lblk) 2294 continue; 2295 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2296 /* 2297 * Buffer after end of mapped extent. 2298 * Find next buffer in the page to map. 2299 */ 2300 mpd->map.m_len = 0; 2301 mpd->map.m_flags = 0; 2302 /* 2303 * FIXME: If dioread_nolock supports 2304 * blocksize < pagesize, we need to make 2305 * sure we add size mapped so far to 2306 * io_end->size as the following call 2307 * can submit the page for IO. 2308 */ 2309 err = mpage_process_page_bufs(mpd, head, 2310 bh, lblk); 2311 pagevec_release(&pvec); 2312 if (err > 0) 2313 err = 0; 2314 return err; 2315 } 2316 if (buffer_delay(bh)) { 2317 clear_buffer_delay(bh); 2318 bh->b_blocknr = pblock++; 2319 } 2320 clear_buffer_unwritten(bh); 2321 } while (lblk++, (bh = bh->b_this_page) != head); 2322 2323 /* 2324 * FIXME: This is going to break if dioread_nolock 2325 * supports blocksize < pagesize as we will try to 2326 * convert potentially unmapped parts of inode. 2327 */ 2328 mpd->io_submit.io_end->size += PAGE_SIZE; 2329 /* Page fully mapped - let IO run! */ 2330 err = mpage_submit_page(mpd, page); 2331 if (err < 0) { 2332 pagevec_release(&pvec); 2333 return err; 2334 } 2335 start++; 2336 } 2337 pagevec_release(&pvec); 2338 } 2339 /* Extent fully mapped and matches with page boundary. We are done. */ 2340 mpd->map.m_len = 0; 2341 mpd->map.m_flags = 0; 2342 return 0; 2343 } 2344 2345 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2346 { 2347 struct inode *inode = mpd->inode; 2348 struct ext4_map_blocks *map = &mpd->map; 2349 int get_blocks_flags; 2350 int err, dioread_nolock; 2351 2352 trace_ext4_da_write_pages_extent(inode, map); 2353 /* 2354 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2355 * to convert an unwritten extent to be initialized (in the case 2356 * where we have written into one or more preallocated blocks). It is 2357 * possible that we're going to need more metadata blocks than 2358 * previously reserved. However we must not fail because we're in 2359 * writeback and there is nothing we can do about it so it might result 2360 * in data loss. So use reserved blocks to allocate metadata if 2361 * possible. 2362 * 2363 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2364 * the blocks in question are delalloc blocks. This indicates 2365 * that the blocks and quotas has already been checked when 2366 * the data was copied into the page cache. 2367 */ 2368 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2369 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2370 EXT4_GET_BLOCKS_IO_SUBMIT; 2371 dioread_nolock = ext4_should_dioread_nolock(inode); 2372 if (dioread_nolock) 2373 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2374 if (map->m_flags & (1 << BH_Delay)) 2375 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2376 2377 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2378 if (err < 0) 2379 return err; 2380 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2381 if (!mpd->io_submit.io_end->handle && 2382 ext4_handle_valid(handle)) { 2383 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2384 handle->h_rsv_handle = NULL; 2385 } 2386 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2387 } 2388 2389 BUG_ON(map->m_len == 0); 2390 if (map->m_flags & EXT4_MAP_NEW) { 2391 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2392 map->m_len); 2393 } 2394 return 0; 2395 } 2396 2397 /* 2398 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2399 * mpd->len and submit pages underlying it for IO 2400 * 2401 * @handle - handle for journal operations 2402 * @mpd - extent to map 2403 * @give_up_on_write - we set this to true iff there is a fatal error and there 2404 * is no hope of writing the data. The caller should discard 2405 * dirty pages to avoid infinite loops. 2406 * 2407 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2408 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2409 * them to initialized or split the described range from larger unwritten 2410 * extent. Note that we need not map all the described range since allocation 2411 * can return less blocks or the range is covered by more unwritten extents. We 2412 * cannot map more because we are limited by reserved transaction credits. On 2413 * the other hand we always make sure that the last touched page is fully 2414 * mapped so that it can be written out (and thus forward progress is 2415 * guaranteed). After mapping we submit all mapped pages for IO. 2416 */ 2417 static int mpage_map_and_submit_extent(handle_t *handle, 2418 struct mpage_da_data *mpd, 2419 bool *give_up_on_write) 2420 { 2421 struct inode *inode = mpd->inode; 2422 struct ext4_map_blocks *map = &mpd->map; 2423 int err; 2424 loff_t disksize; 2425 int progress = 0; 2426 2427 mpd->io_submit.io_end->offset = 2428 ((loff_t)map->m_lblk) << inode->i_blkbits; 2429 do { 2430 err = mpage_map_one_extent(handle, mpd); 2431 if (err < 0) { 2432 struct super_block *sb = inode->i_sb; 2433 2434 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2435 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2436 goto invalidate_dirty_pages; 2437 /* 2438 * Let the uper layers retry transient errors. 2439 * In the case of ENOSPC, if ext4_count_free_blocks() 2440 * is non-zero, a commit should free up blocks. 2441 */ 2442 if ((err == -ENOMEM) || 2443 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2444 if (progress) 2445 goto update_disksize; 2446 return err; 2447 } 2448 ext4_msg(sb, KERN_CRIT, 2449 "Delayed block allocation failed for " 2450 "inode %lu at logical offset %llu with" 2451 " max blocks %u with error %d", 2452 inode->i_ino, 2453 (unsigned long long)map->m_lblk, 2454 (unsigned)map->m_len, -err); 2455 ext4_msg(sb, KERN_CRIT, 2456 "This should not happen!! Data will " 2457 "be lost\n"); 2458 if (err == -ENOSPC) 2459 ext4_print_free_blocks(inode); 2460 invalidate_dirty_pages: 2461 *give_up_on_write = true; 2462 return err; 2463 } 2464 progress = 1; 2465 /* 2466 * Update buffer state, submit mapped pages, and get us new 2467 * extent to map 2468 */ 2469 err = mpage_map_and_submit_buffers(mpd); 2470 if (err < 0) 2471 goto update_disksize; 2472 } while (map->m_len); 2473 2474 update_disksize: 2475 /* 2476 * Update on-disk size after IO is submitted. Races with 2477 * truncate are avoided by checking i_size under i_data_sem. 2478 */ 2479 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2480 if (disksize > EXT4_I(inode)->i_disksize) { 2481 int err2; 2482 loff_t i_size; 2483 2484 down_write(&EXT4_I(inode)->i_data_sem); 2485 i_size = i_size_read(inode); 2486 if (disksize > i_size) 2487 disksize = i_size; 2488 if (disksize > EXT4_I(inode)->i_disksize) 2489 EXT4_I(inode)->i_disksize = disksize; 2490 up_write(&EXT4_I(inode)->i_data_sem); 2491 err2 = ext4_mark_inode_dirty(handle, inode); 2492 if (err2) 2493 ext4_error(inode->i_sb, 2494 "Failed to mark inode %lu dirty", 2495 inode->i_ino); 2496 if (!err) 2497 err = err2; 2498 } 2499 return err; 2500 } 2501 2502 /* 2503 * Calculate the total number of credits to reserve for one writepages 2504 * iteration. This is called from ext4_writepages(). We map an extent of 2505 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2506 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2507 * bpp - 1 blocks in bpp different extents. 2508 */ 2509 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2510 { 2511 int bpp = ext4_journal_blocks_per_page(inode); 2512 2513 return ext4_meta_trans_blocks(inode, 2514 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2515 } 2516 2517 /* 2518 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2519 * and underlying extent to map 2520 * 2521 * @mpd - where to look for pages 2522 * 2523 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2524 * IO immediately. When we find a page which isn't mapped we start accumulating 2525 * extent of buffers underlying these pages that needs mapping (formed by 2526 * either delayed or unwritten buffers). We also lock the pages containing 2527 * these buffers. The extent found is returned in @mpd structure (starting at 2528 * mpd->lblk with length mpd->len blocks). 2529 * 2530 * Note that this function can attach bios to one io_end structure which are 2531 * neither logically nor physically contiguous. Although it may seem as an 2532 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2533 * case as we need to track IO to all buffers underlying a page in one io_end. 2534 */ 2535 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2536 { 2537 struct address_space *mapping = mpd->inode->i_mapping; 2538 struct pagevec pvec; 2539 unsigned int nr_pages; 2540 long left = mpd->wbc->nr_to_write; 2541 pgoff_t index = mpd->first_page; 2542 pgoff_t end = mpd->last_page; 2543 int tag; 2544 int i, err = 0; 2545 int blkbits = mpd->inode->i_blkbits; 2546 ext4_lblk_t lblk; 2547 struct buffer_head *head; 2548 2549 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2550 tag = PAGECACHE_TAG_TOWRITE; 2551 else 2552 tag = PAGECACHE_TAG_DIRTY; 2553 2554 pagevec_init(&pvec, 0); 2555 mpd->map.m_len = 0; 2556 mpd->next_page = index; 2557 while (index <= end) { 2558 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2559 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2560 if (nr_pages == 0) 2561 goto out; 2562 2563 for (i = 0; i < nr_pages; i++) { 2564 struct page *page = pvec.pages[i]; 2565 2566 /* 2567 * At this point, the page may be truncated or 2568 * invalidated (changing page->mapping to NULL), or 2569 * even swizzled back from swapper_space to tmpfs file 2570 * mapping. However, page->index will not change 2571 * because we have a reference on the page. 2572 */ 2573 if (page->index > end) 2574 goto out; 2575 2576 /* 2577 * Accumulated enough dirty pages? This doesn't apply 2578 * to WB_SYNC_ALL mode. For integrity sync we have to 2579 * keep going because someone may be concurrently 2580 * dirtying pages, and we might have synced a lot of 2581 * newly appeared dirty pages, but have not synced all 2582 * of the old dirty pages. 2583 */ 2584 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2585 goto out; 2586 2587 /* If we can't merge this page, we are done. */ 2588 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2589 goto out; 2590 2591 lock_page(page); 2592 /* 2593 * If the page is no longer dirty, or its mapping no 2594 * longer corresponds to inode we are writing (which 2595 * means it has been truncated or invalidated), or the 2596 * page is already under writeback and we are not doing 2597 * a data integrity writeback, skip the page 2598 */ 2599 if (!PageDirty(page) || 2600 (PageWriteback(page) && 2601 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2602 unlikely(page->mapping != mapping)) { 2603 unlock_page(page); 2604 continue; 2605 } 2606 2607 wait_on_page_writeback(page); 2608 BUG_ON(PageWriteback(page)); 2609 2610 if (mpd->map.m_len == 0) 2611 mpd->first_page = page->index; 2612 mpd->next_page = page->index + 1; 2613 /* Add all dirty buffers to mpd */ 2614 lblk = ((ext4_lblk_t)page->index) << 2615 (PAGE_SHIFT - blkbits); 2616 head = page_buffers(page); 2617 err = mpage_process_page_bufs(mpd, head, head, lblk); 2618 if (err <= 0) 2619 goto out; 2620 err = 0; 2621 left--; 2622 } 2623 pagevec_release(&pvec); 2624 cond_resched(); 2625 } 2626 return 0; 2627 out: 2628 pagevec_release(&pvec); 2629 return err; 2630 } 2631 2632 static int __writepage(struct page *page, struct writeback_control *wbc, 2633 void *data) 2634 { 2635 struct address_space *mapping = data; 2636 int ret = ext4_writepage(page, wbc); 2637 mapping_set_error(mapping, ret); 2638 return ret; 2639 } 2640 2641 static int ext4_writepages(struct address_space *mapping, 2642 struct writeback_control *wbc) 2643 { 2644 pgoff_t writeback_index = 0; 2645 long nr_to_write = wbc->nr_to_write; 2646 int range_whole = 0; 2647 int cycled = 1; 2648 handle_t *handle = NULL; 2649 struct mpage_da_data mpd; 2650 struct inode *inode = mapping->host; 2651 int needed_blocks, rsv_blocks = 0, ret = 0; 2652 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2653 bool done; 2654 struct blk_plug plug; 2655 bool give_up_on_write = false; 2656 2657 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2658 return -EIO; 2659 2660 percpu_down_read(&sbi->s_journal_flag_rwsem); 2661 trace_ext4_writepages(inode, wbc); 2662 2663 if (dax_mapping(mapping)) { 2664 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2665 wbc); 2666 goto out_writepages; 2667 } 2668 2669 /* 2670 * No pages to write? This is mainly a kludge to avoid starting 2671 * a transaction for special inodes like journal inode on last iput() 2672 * because that could violate lock ordering on umount 2673 */ 2674 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2675 goto out_writepages; 2676 2677 if (ext4_should_journal_data(inode)) { 2678 struct blk_plug plug; 2679 2680 blk_start_plug(&plug); 2681 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2682 blk_finish_plug(&plug); 2683 goto out_writepages; 2684 } 2685 2686 /* 2687 * If the filesystem has aborted, it is read-only, so return 2688 * right away instead of dumping stack traces later on that 2689 * will obscure the real source of the problem. We test 2690 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2691 * the latter could be true if the filesystem is mounted 2692 * read-only, and in that case, ext4_writepages should 2693 * *never* be called, so if that ever happens, we would want 2694 * the stack trace. 2695 */ 2696 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2697 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2698 ret = -EROFS; 2699 goto out_writepages; 2700 } 2701 2702 if (ext4_should_dioread_nolock(inode)) { 2703 /* 2704 * We may need to convert up to one extent per block in 2705 * the page and we may dirty the inode. 2706 */ 2707 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2708 } 2709 2710 /* 2711 * If we have inline data and arrive here, it means that 2712 * we will soon create the block for the 1st page, so 2713 * we'd better clear the inline data here. 2714 */ 2715 if (ext4_has_inline_data(inode)) { 2716 /* Just inode will be modified... */ 2717 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2718 if (IS_ERR(handle)) { 2719 ret = PTR_ERR(handle); 2720 goto out_writepages; 2721 } 2722 BUG_ON(ext4_test_inode_state(inode, 2723 EXT4_STATE_MAY_INLINE_DATA)); 2724 ext4_destroy_inline_data(handle, inode); 2725 ext4_journal_stop(handle); 2726 } 2727 2728 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2729 range_whole = 1; 2730 2731 if (wbc->range_cyclic) { 2732 writeback_index = mapping->writeback_index; 2733 if (writeback_index) 2734 cycled = 0; 2735 mpd.first_page = writeback_index; 2736 mpd.last_page = -1; 2737 } else { 2738 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2739 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2740 } 2741 2742 mpd.inode = inode; 2743 mpd.wbc = wbc; 2744 ext4_io_submit_init(&mpd.io_submit, wbc); 2745 retry: 2746 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2747 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2748 done = false; 2749 blk_start_plug(&plug); 2750 while (!done && mpd.first_page <= mpd.last_page) { 2751 /* For each extent of pages we use new io_end */ 2752 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2753 if (!mpd.io_submit.io_end) { 2754 ret = -ENOMEM; 2755 break; 2756 } 2757 2758 /* 2759 * We have two constraints: We find one extent to map and we 2760 * must always write out whole page (makes a difference when 2761 * blocksize < pagesize) so that we don't block on IO when we 2762 * try to write out the rest of the page. Journalled mode is 2763 * not supported by delalloc. 2764 */ 2765 BUG_ON(ext4_should_journal_data(inode)); 2766 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2767 2768 /* start a new transaction */ 2769 handle = ext4_journal_start_with_reserve(inode, 2770 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2771 if (IS_ERR(handle)) { 2772 ret = PTR_ERR(handle); 2773 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2774 "%ld pages, ino %lu; err %d", __func__, 2775 wbc->nr_to_write, inode->i_ino, ret); 2776 /* Release allocated io_end */ 2777 ext4_put_io_end(mpd.io_submit.io_end); 2778 break; 2779 } 2780 2781 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2782 ret = mpage_prepare_extent_to_map(&mpd); 2783 if (!ret) { 2784 if (mpd.map.m_len) 2785 ret = mpage_map_and_submit_extent(handle, &mpd, 2786 &give_up_on_write); 2787 else { 2788 /* 2789 * We scanned the whole range (or exhausted 2790 * nr_to_write), submitted what was mapped and 2791 * didn't find anything needing mapping. We are 2792 * done. 2793 */ 2794 done = true; 2795 } 2796 } 2797 /* 2798 * Caution: If the handle is synchronous, 2799 * ext4_journal_stop() can wait for transaction commit 2800 * to finish which may depend on writeback of pages to 2801 * complete or on page lock to be released. In that 2802 * case, we have to wait until after after we have 2803 * submitted all the IO, released page locks we hold, 2804 * and dropped io_end reference (for extent conversion 2805 * to be able to complete) before stopping the handle. 2806 */ 2807 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2808 ext4_journal_stop(handle); 2809 handle = NULL; 2810 } 2811 /* Submit prepared bio */ 2812 ext4_io_submit(&mpd.io_submit); 2813 /* Unlock pages we didn't use */ 2814 mpage_release_unused_pages(&mpd, give_up_on_write); 2815 /* 2816 * Drop our io_end reference we got from init. We have 2817 * to be careful and use deferred io_end finishing if 2818 * we are still holding the transaction as we can 2819 * release the last reference to io_end which may end 2820 * up doing unwritten extent conversion. 2821 */ 2822 if (handle) { 2823 ext4_put_io_end_defer(mpd.io_submit.io_end); 2824 ext4_journal_stop(handle); 2825 } else 2826 ext4_put_io_end(mpd.io_submit.io_end); 2827 2828 if (ret == -ENOSPC && sbi->s_journal) { 2829 /* 2830 * Commit the transaction which would 2831 * free blocks released in the transaction 2832 * and try again 2833 */ 2834 jbd2_journal_force_commit_nested(sbi->s_journal); 2835 ret = 0; 2836 continue; 2837 } 2838 /* Fatal error - ENOMEM, EIO... */ 2839 if (ret) 2840 break; 2841 } 2842 blk_finish_plug(&plug); 2843 if (!ret && !cycled && wbc->nr_to_write > 0) { 2844 cycled = 1; 2845 mpd.last_page = writeback_index - 1; 2846 mpd.first_page = 0; 2847 goto retry; 2848 } 2849 2850 /* Update index */ 2851 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2852 /* 2853 * Set the writeback_index so that range_cyclic 2854 * mode will write it back later 2855 */ 2856 mapping->writeback_index = mpd.first_page; 2857 2858 out_writepages: 2859 trace_ext4_writepages_result(inode, wbc, ret, 2860 nr_to_write - wbc->nr_to_write); 2861 percpu_up_read(&sbi->s_journal_flag_rwsem); 2862 return ret; 2863 } 2864 2865 static int ext4_nonda_switch(struct super_block *sb) 2866 { 2867 s64 free_clusters, dirty_clusters; 2868 struct ext4_sb_info *sbi = EXT4_SB(sb); 2869 2870 /* 2871 * switch to non delalloc mode if we are running low 2872 * on free block. The free block accounting via percpu 2873 * counters can get slightly wrong with percpu_counter_batch getting 2874 * accumulated on each CPU without updating global counters 2875 * Delalloc need an accurate free block accounting. So switch 2876 * to non delalloc when we are near to error range. 2877 */ 2878 free_clusters = 2879 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2880 dirty_clusters = 2881 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2882 /* 2883 * Start pushing delalloc when 1/2 of free blocks are dirty. 2884 */ 2885 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2886 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2887 2888 if (2 * free_clusters < 3 * dirty_clusters || 2889 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2890 /* 2891 * free block count is less than 150% of dirty blocks 2892 * or free blocks is less than watermark 2893 */ 2894 return 1; 2895 } 2896 return 0; 2897 } 2898 2899 /* We always reserve for an inode update; the superblock could be there too */ 2900 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2901 { 2902 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2903 return 1; 2904 2905 if (pos + len <= 0x7fffffffULL) 2906 return 1; 2907 2908 /* We might need to update the superblock to set LARGE_FILE */ 2909 return 2; 2910 } 2911 2912 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2913 loff_t pos, unsigned len, unsigned flags, 2914 struct page **pagep, void **fsdata) 2915 { 2916 int ret, retries = 0; 2917 struct page *page; 2918 pgoff_t index; 2919 struct inode *inode = mapping->host; 2920 handle_t *handle; 2921 2922 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2923 return -EIO; 2924 2925 index = pos >> PAGE_SHIFT; 2926 2927 if (ext4_nonda_switch(inode->i_sb) || 2928 S_ISLNK(inode->i_mode)) { 2929 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2930 return ext4_write_begin(file, mapping, pos, 2931 len, flags, pagep, fsdata); 2932 } 2933 *fsdata = (void *)0; 2934 trace_ext4_da_write_begin(inode, pos, len, flags); 2935 2936 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2937 ret = ext4_da_write_inline_data_begin(mapping, inode, 2938 pos, len, flags, 2939 pagep, fsdata); 2940 if (ret < 0) 2941 return ret; 2942 if (ret == 1) 2943 return 0; 2944 } 2945 2946 /* 2947 * grab_cache_page_write_begin() can take a long time if the 2948 * system is thrashing due to memory pressure, or if the page 2949 * is being written back. So grab it first before we start 2950 * the transaction handle. This also allows us to allocate 2951 * the page (if needed) without using GFP_NOFS. 2952 */ 2953 retry_grab: 2954 page = grab_cache_page_write_begin(mapping, index, flags); 2955 if (!page) 2956 return -ENOMEM; 2957 unlock_page(page); 2958 2959 /* 2960 * With delayed allocation, we don't log the i_disksize update 2961 * if there is delayed block allocation. But we still need 2962 * to journalling the i_disksize update if writes to the end 2963 * of file which has an already mapped buffer. 2964 */ 2965 retry_journal: 2966 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2967 ext4_da_write_credits(inode, pos, len)); 2968 if (IS_ERR(handle)) { 2969 put_page(page); 2970 return PTR_ERR(handle); 2971 } 2972 2973 lock_page(page); 2974 if (page->mapping != mapping) { 2975 /* The page got truncated from under us */ 2976 unlock_page(page); 2977 put_page(page); 2978 ext4_journal_stop(handle); 2979 goto retry_grab; 2980 } 2981 /* In case writeback began while the page was unlocked */ 2982 wait_for_stable_page(page); 2983 2984 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2985 ret = ext4_block_write_begin(page, pos, len, 2986 ext4_da_get_block_prep); 2987 #else 2988 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2989 #endif 2990 if (ret < 0) { 2991 unlock_page(page); 2992 ext4_journal_stop(handle); 2993 /* 2994 * block_write_begin may have instantiated a few blocks 2995 * outside i_size. Trim these off again. Don't need 2996 * i_size_read because we hold i_mutex. 2997 */ 2998 if (pos + len > inode->i_size) 2999 ext4_truncate_failed_write(inode); 3000 3001 if (ret == -ENOSPC && 3002 ext4_should_retry_alloc(inode->i_sb, &retries)) 3003 goto retry_journal; 3004 3005 put_page(page); 3006 return ret; 3007 } 3008 3009 *pagep = page; 3010 return ret; 3011 } 3012 3013 /* 3014 * Check if we should update i_disksize 3015 * when write to the end of file but not require block allocation 3016 */ 3017 static int ext4_da_should_update_i_disksize(struct page *page, 3018 unsigned long offset) 3019 { 3020 struct buffer_head *bh; 3021 struct inode *inode = page->mapping->host; 3022 unsigned int idx; 3023 int i; 3024 3025 bh = page_buffers(page); 3026 idx = offset >> inode->i_blkbits; 3027 3028 for (i = 0; i < idx; i++) 3029 bh = bh->b_this_page; 3030 3031 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3032 return 0; 3033 return 1; 3034 } 3035 3036 static int ext4_da_write_end(struct file *file, 3037 struct address_space *mapping, 3038 loff_t pos, unsigned len, unsigned copied, 3039 struct page *page, void *fsdata) 3040 { 3041 struct inode *inode = mapping->host; 3042 int ret = 0, ret2; 3043 handle_t *handle = ext4_journal_current_handle(); 3044 loff_t new_i_size; 3045 unsigned long start, end; 3046 int write_mode = (int)(unsigned long)fsdata; 3047 3048 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3049 return ext4_write_end(file, mapping, pos, 3050 len, copied, page, fsdata); 3051 3052 trace_ext4_da_write_end(inode, pos, len, copied); 3053 start = pos & (PAGE_SIZE - 1); 3054 end = start + copied - 1; 3055 3056 /* 3057 * generic_write_end() will run mark_inode_dirty() if i_size 3058 * changes. So let's piggyback the i_disksize mark_inode_dirty 3059 * into that. 3060 */ 3061 new_i_size = pos + copied; 3062 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3063 if (ext4_has_inline_data(inode) || 3064 ext4_da_should_update_i_disksize(page, end)) { 3065 ext4_update_i_disksize(inode, new_i_size); 3066 /* We need to mark inode dirty even if 3067 * new_i_size is less that inode->i_size 3068 * bu greater than i_disksize.(hint delalloc) 3069 */ 3070 ext4_mark_inode_dirty(handle, inode); 3071 } 3072 } 3073 3074 if (write_mode != CONVERT_INLINE_DATA && 3075 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3076 ext4_has_inline_data(inode)) 3077 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3078 page); 3079 else 3080 ret2 = generic_write_end(file, mapping, pos, len, copied, 3081 page, fsdata); 3082 3083 copied = ret2; 3084 if (ret2 < 0) 3085 ret = ret2; 3086 ret2 = ext4_journal_stop(handle); 3087 if (!ret) 3088 ret = ret2; 3089 3090 return ret ? ret : copied; 3091 } 3092 3093 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3094 unsigned int length) 3095 { 3096 /* 3097 * Drop reserved blocks 3098 */ 3099 BUG_ON(!PageLocked(page)); 3100 if (!page_has_buffers(page)) 3101 goto out; 3102 3103 ext4_da_page_release_reservation(page, offset, length); 3104 3105 out: 3106 ext4_invalidatepage(page, offset, length); 3107 3108 return; 3109 } 3110 3111 /* 3112 * Force all delayed allocation blocks to be allocated for a given inode. 3113 */ 3114 int ext4_alloc_da_blocks(struct inode *inode) 3115 { 3116 trace_ext4_alloc_da_blocks(inode); 3117 3118 if (!EXT4_I(inode)->i_reserved_data_blocks) 3119 return 0; 3120 3121 /* 3122 * We do something simple for now. The filemap_flush() will 3123 * also start triggering a write of the data blocks, which is 3124 * not strictly speaking necessary (and for users of 3125 * laptop_mode, not even desirable). However, to do otherwise 3126 * would require replicating code paths in: 3127 * 3128 * ext4_writepages() -> 3129 * write_cache_pages() ---> (via passed in callback function) 3130 * __mpage_da_writepage() --> 3131 * mpage_add_bh_to_extent() 3132 * mpage_da_map_blocks() 3133 * 3134 * The problem is that write_cache_pages(), located in 3135 * mm/page-writeback.c, marks pages clean in preparation for 3136 * doing I/O, which is not desirable if we're not planning on 3137 * doing I/O at all. 3138 * 3139 * We could call write_cache_pages(), and then redirty all of 3140 * the pages by calling redirty_page_for_writepage() but that 3141 * would be ugly in the extreme. So instead we would need to 3142 * replicate parts of the code in the above functions, 3143 * simplifying them because we wouldn't actually intend to 3144 * write out the pages, but rather only collect contiguous 3145 * logical block extents, call the multi-block allocator, and 3146 * then update the buffer heads with the block allocations. 3147 * 3148 * For now, though, we'll cheat by calling filemap_flush(), 3149 * which will map the blocks, and start the I/O, but not 3150 * actually wait for the I/O to complete. 3151 */ 3152 return filemap_flush(inode->i_mapping); 3153 } 3154 3155 /* 3156 * bmap() is special. It gets used by applications such as lilo and by 3157 * the swapper to find the on-disk block of a specific piece of data. 3158 * 3159 * Naturally, this is dangerous if the block concerned is still in the 3160 * journal. If somebody makes a swapfile on an ext4 data-journaling 3161 * filesystem and enables swap, then they may get a nasty shock when the 3162 * data getting swapped to that swapfile suddenly gets overwritten by 3163 * the original zero's written out previously to the journal and 3164 * awaiting writeback in the kernel's buffer cache. 3165 * 3166 * So, if we see any bmap calls here on a modified, data-journaled file, 3167 * take extra steps to flush any blocks which might be in the cache. 3168 */ 3169 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3170 { 3171 struct inode *inode = mapping->host; 3172 journal_t *journal; 3173 int err; 3174 3175 /* 3176 * We can get here for an inline file via the FIBMAP ioctl 3177 */ 3178 if (ext4_has_inline_data(inode)) 3179 return 0; 3180 3181 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3182 test_opt(inode->i_sb, DELALLOC)) { 3183 /* 3184 * With delalloc we want to sync the file 3185 * so that we can make sure we allocate 3186 * blocks for file 3187 */ 3188 filemap_write_and_wait(mapping); 3189 } 3190 3191 if (EXT4_JOURNAL(inode) && 3192 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3193 /* 3194 * This is a REALLY heavyweight approach, but the use of 3195 * bmap on dirty files is expected to be extremely rare: 3196 * only if we run lilo or swapon on a freshly made file 3197 * do we expect this to happen. 3198 * 3199 * (bmap requires CAP_SYS_RAWIO so this does not 3200 * represent an unprivileged user DOS attack --- we'd be 3201 * in trouble if mortal users could trigger this path at 3202 * will.) 3203 * 3204 * NB. EXT4_STATE_JDATA is not set on files other than 3205 * regular files. If somebody wants to bmap a directory 3206 * or symlink and gets confused because the buffer 3207 * hasn't yet been flushed to disk, they deserve 3208 * everything they get. 3209 */ 3210 3211 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3212 journal = EXT4_JOURNAL(inode); 3213 jbd2_journal_lock_updates(journal); 3214 err = jbd2_journal_flush(journal); 3215 jbd2_journal_unlock_updates(journal); 3216 3217 if (err) 3218 return 0; 3219 } 3220 3221 return generic_block_bmap(mapping, block, ext4_get_block); 3222 } 3223 3224 static int ext4_readpage(struct file *file, struct page *page) 3225 { 3226 int ret = -EAGAIN; 3227 struct inode *inode = page->mapping->host; 3228 3229 trace_ext4_readpage(page); 3230 3231 if (ext4_has_inline_data(inode)) 3232 ret = ext4_readpage_inline(inode, page); 3233 3234 if (ret == -EAGAIN) 3235 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3236 3237 return ret; 3238 } 3239 3240 static int 3241 ext4_readpages(struct file *file, struct address_space *mapping, 3242 struct list_head *pages, unsigned nr_pages) 3243 { 3244 struct inode *inode = mapping->host; 3245 3246 /* If the file has inline data, no need to do readpages. */ 3247 if (ext4_has_inline_data(inode)) 3248 return 0; 3249 3250 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3251 } 3252 3253 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3254 unsigned int length) 3255 { 3256 trace_ext4_invalidatepage(page, offset, length); 3257 3258 /* No journalling happens on data buffers when this function is used */ 3259 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3260 3261 block_invalidatepage(page, offset, length); 3262 } 3263 3264 static int __ext4_journalled_invalidatepage(struct page *page, 3265 unsigned int offset, 3266 unsigned int length) 3267 { 3268 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3269 3270 trace_ext4_journalled_invalidatepage(page, offset, length); 3271 3272 /* 3273 * If it's a full truncate we just forget about the pending dirtying 3274 */ 3275 if (offset == 0 && length == PAGE_SIZE) 3276 ClearPageChecked(page); 3277 3278 return jbd2_journal_invalidatepage(journal, page, offset, length); 3279 } 3280 3281 /* Wrapper for aops... */ 3282 static void ext4_journalled_invalidatepage(struct page *page, 3283 unsigned int offset, 3284 unsigned int length) 3285 { 3286 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3287 } 3288 3289 static int ext4_releasepage(struct page *page, gfp_t wait) 3290 { 3291 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3292 3293 trace_ext4_releasepage(page); 3294 3295 /* Page has dirty journalled data -> cannot release */ 3296 if (PageChecked(page)) 3297 return 0; 3298 if (journal) 3299 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3300 else 3301 return try_to_free_buffers(page); 3302 } 3303 3304 #ifdef CONFIG_FS_DAX 3305 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3306 unsigned flags, struct iomap *iomap) 3307 { 3308 unsigned int blkbits = inode->i_blkbits; 3309 unsigned long first_block = offset >> blkbits; 3310 unsigned long last_block = (offset + length - 1) >> blkbits; 3311 struct ext4_map_blocks map; 3312 int ret; 3313 3314 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3315 return -ERANGE; 3316 3317 map.m_lblk = first_block; 3318 map.m_len = last_block - first_block + 1; 3319 3320 if (!(flags & IOMAP_WRITE)) { 3321 ret = ext4_map_blocks(NULL, inode, &map, 0); 3322 } else { 3323 int dio_credits; 3324 handle_t *handle; 3325 int retries = 0; 3326 3327 /* Trim mapping request to maximum we can map at once for DIO */ 3328 if (map.m_len > DIO_MAX_BLOCKS) 3329 map.m_len = DIO_MAX_BLOCKS; 3330 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3331 retry: 3332 /* 3333 * Either we allocate blocks and then we don't get unwritten 3334 * extent so we have reserved enough credits, or the blocks 3335 * are already allocated and unwritten and in that case 3336 * extent conversion fits in the credits as well. 3337 */ 3338 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3339 dio_credits); 3340 if (IS_ERR(handle)) 3341 return PTR_ERR(handle); 3342 3343 ret = ext4_map_blocks(handle, inode, &map, 3344 EXT4_GET_BLOCKS_CREATE_ZERO); 3345 if (ret < 0) { 3346 ext4_journal_stop(handle); 3347 if (ret == -ENOSPC && 3348 ext4_should_retry_alloc(inode->i_sb, &retries)) 3349 goto retry; 3350 return ret; 3351 } 3352 3353 /* 3354 * If we added blocks beyond i_size, we need to make sure they 3355 * will get truncated if we crash before updating i_size in 3356 * ext4_iomap_end(). For faults we don't need to do that (and 3357 * even cannot because for orphan list operations inode_lock is 3358 * required) - if we happen to instantiate block beyond i_size, 3359 * it is because we race with truncate which has already added 3360 * the inode to the orphan list. 3361 */ 3362 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3363 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3364 int err; 3365 3366 err = ext4_orphan_add(handle, inode); 3367 if (err < 0) { 3368 ext4_journal_stop(handle); 3369 return err; 3370 } 3371 } 3372 ext4_journal_stop(handle); 3373 } 3374 3375 iomap->flags = 0; 3376 iomap->bdev = inode->i_sb->s_bdev; 3377 iomap->offset = first_block << blkbits; 3378 3379 if (ret == 0) { 3380 iomap->type = IOMAP_HOLE; 3381 iomap->blkno = IOMAP_NULL_BLOCK; 3382 iomap->length = (u64)map.m_len << blkbits; 3383 } else { 3384 if (map.m_flags & EXT4_MAP_MAPPED) { 3385 iomap->type = IOMAP_MAPPED; 3386 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3387 iomap->type = IOMAP_UNWRITTEN; 3388 } else { 3389 WARN_ON_ONCE(1); 3390 return -EIO; 3391 } 3392 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9); 3393 iomap->length = (u64)map.m_len << blkbits; 3394 } 3395 3396 if (map.m_flags & EXT4_MAP_NEW) 3397 iomap->flags |= IOMAP_F_NEW; 3398 return 0; 3399 } 3400 3401 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3402 ssize_t written, unsigned flags, struct iomap *iomap) 3403 { 3404 int ret = 0; 3405 handle_t *handle; 3406 int blkbits = inode->i_blkbits; 3407 bool truncate = false; 3408 3409 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3410 return 0; 3411 3412 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3413 if (IS_ERR(handle)) { 3414 ret = PTR_ERR(handle); 3415 goto orphan_del; 3416 } 3417 if (ext4_update_inode_size(inode, offset + written)) 3418 ext4_mark_inode_dirty(handle, inode); 3419 /* 3420 * We may need to truncate allocated but not written blocks beyond EOF. 3421 */ 3422 if (iomap->offset + iomap->length > 3423 ALIGN(inode->i_size, 1 << blkbits)) { 3424 ext4_lblk_t written_blk, end_blk; 3425 3426 written_blk = (offset + written) >> blkbits; 3427 end_blk = (offset + length) >> blkbits; 3428 if (written_blk < end_blk && ext4_can_truncate(inode)) 3429 truncate = true; 3430 } 3431 /* 3432 * Remove inode from orphan list if we were extending a inode and 3433 * everything went fine. 3434 */ 3435 if (!truncate && inode->i_nlink && 3436 !list_empty(&EXT4_I(inode)->i_orphan)) 3437 ext4_orphan_del(handle, inode); 3438 ext4_journal_stop(handle); 3439 if (truncate) { 3440 ext4_truncate_failed_write(inode); 3441 orphan_del: 3442 /* 3443 * If truncate failed early the inode might still be on the 3444 * orphan list; we need to make sure the inode is removed from 3445 * the orphan list in that case. 3446 */ 3447 if (inode->i_nlink) 3448 ext4_orphan_del(NULL, inode); 3449 } 3450 return ret; 3451 } 3452 3453 const struct iomap_ops ext4_iomap_ops = { 3454 .iomap_begin = ext4_iomap_begin, 3455 .iomap_end = ext4_iomap_end, 3456 }; 3457 3458 #endif 3459 3460 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3461 ssize_t size, void *private) 3462 { 3463 ext4_io_end_t *io_end = private; 3464 3465 /* if not async direct IO just return */ 3466 if (!io_end) 3467 return 0; 3468 3469 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3470 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3471 io_end, io_end->inode->i_ino, iocb, offset, size); 3472 3473 /* 3474 * Error during AIO DIO. We cannot convert unwritten extents as the 3475 * data was not written. Just clear the unwritten flag and drop io_end. 3476 */ 3477 if (size <= 0) { 3478 ext4_clear_io_unwritten_flag(io_end); 3479 size = 0; 3480 } 3481 io_end->offset = offset; 3482 io_end->size = size; 3483 ext4_put_io_end(io_end); 3484 3485 return 0; 3486 } 3487 3488 /* 3489 * Handling of direct IO writes. 3490 * 3491 * For ext4 extent files, ext4 will do direct-io write even to holes, 3492 * preallocated extents, and those write extend the file, no need to 3493 * fall back to buffered IO. 3494 * 3495 * For holes, we fallocate those blocks, mark them as unwritten 3496 * If those blocks were preallocated, we mark sure they are split, but 3497 * still keep the range to write as unwritten. 3498 * 3499 * The unwritten extents will be converted to written when DIO is completed. 3500 * For async direct IO, since the IO may still pending when return, we 3501 * set up an end_io call back function, which will do the conversion 3502 * when async direct IO completed. 3503 * 3504 * If the O_DIRECT write will extend the file then add this inode to the 3505 * orphan list. So recovery will truncate it back to the original size 3506 * if the machine crashes during the write. 3507 * 3508 */ 3509 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3510 { 3511 struct file *file = iocb->ki_filp; 3512 struct inode *inode = file->f_mapping->host; 3513 struct ext4_inode_info *ei = EXT4_I(inode); 3514 ssize_t ret; 3515 loff_t offset = iocb->ki_pos; 3516 size_t count = iov_iter_count(iter); 3517 int overwrite = 0; 3518 get_block_t *get_block_func = NULL; 3519 int dio_flags = 0; 3520 loff_t final_size = offset + count; 3521 int orphan = 0; 3522 handle_t *handle; 3523 3524 if (final_size > inode->i_size) { 3525 /* Credits for sb + inode write */ 3526 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3527 if (IS_ERR(handle)) { 3528 ret = PTR_ERR(handle); 3529 goto out; 3530 } 3531 ret = ext4_orphan_add(handle, inode); 3532 if (ret) { 3533 ext4_journal_stop(handle); 3534 goto out; 3535 } 3536 orphan = 1; 3537 ei->i_disksize = inode->i_size; 3538 ext4_journal_stop(handle); 3539 } 3540 3541 BUG_ON(iocb->private == NULL); 3542 3543 /* 3544 * Make all waiters for direct IO properly wait also for extent 3545 * conversion. This also disallows race between truncate() and 3546 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3547 */ 3548 inode_dio_begin(inode); 3549 3550 /* If we do a overwrite dio, i_mutex locking can be released */ 3551 overwrite = *((int *)iocb->private); 3552 3553 if (overwrite) 3554 inode_unlock(inode); 3555 3556 /* 3557 * For extent mapped files we could direct write to holes and fallocate. 3558 * 3559 * Allocated blocks to fill the hole are marked as unwritten to prevent 3560 * parallel buffered read to expose the stale data before DIO complete 3561 * the data IO. 3562 * 3563 * As to previously fallocated extents, ext4 get_block will just simply 3564 * mark the buffer mapped but still keep the extents unwritten. 3565 * 3566 * For non AIO case, we will convert those unwritten extents to written 3567 * after return back from blockdev_direct_IO. That way we save us from 3568 * allocating io_end structure and also the overhead of offloading 3569 * the extent convertion to a workqueue. 3570 * 3571 * For async DIO, the conversion needs to be deferred when the 3572 * IO is completed. The ext4 end_io callback function will be 3573 * called to take care of the conversion work. Here for async 3574 * case, we allocate an io_end structure to hook to the iocb. 3575 */ 3576 iocb->private = NULL; 3577 if (overwrite) 3578 get_block_func = ext4_dio_get_block_overwrite; 3579 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3580 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3581 get_block_func = ext4_dio_get_block; 3582 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3583 } else if (is_sync_kiocb(iocb)) { 3584 get_block_func = ext4_dio_get_block_unwritten_sync; 3585 dio_flags = DIO_LOCKING; 3586 } else { 3587 get_block_func = ext4_dio_get_block_unwritten_async; 3588 dio_flags = DIO_LOCKING; 3589 } 3590 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3591 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3592 #endif 3593 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3594 get_block_func, ext4_end_io_dio, NULL, 3595 dio_flags); 3596 3597 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3598 EXT4_STATE_DIO_UNWRITTEN)) { 3599 int err; 3600 /* 3601 * for non AIO case, since the IO is already 3602 * completed, we could do the conversion right here 3603 */ 3604 err = ext4_convert_unwritten_extents(NULL, inode, 3605 offset, ret); 3606 if (err < 0) 3607 ret = err; 3608 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3609 } 3610 3611 inode_dio_end(inode); 3612 /* take i_mutex locking again if we do a ovewrite dio */ 3613 if (overwrite) 3614 inode_lock(inode); 3615 3616 if (ret < 0 && final_size > inode->i_size) 3617 ext4_truncate_failed_write(inode); 3618 3619 /* Handle extending of i_size after direct IO write */ 3620 if (orphan) { 3621 int err; 3622 3623 /* Credits for sb + inode write */ 3624 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3625 if (IS_ERR(handle)) { 3626 /* This is really bad luck. We've written the data 3627 * but cannot extend i_size. Bail out and pretend 3628 * the write failed... */ 3629 ret = PTR_ERR(handle); 3630 if (inode->i_nlink) 3631 ext4_orphan_del(NULL, inode); 3632 3633 goto out; 3634 } 3635 if (inode->i_nlink) 3636 ext4_orphan_del(handle, inode); 3637 if (ret > 0) { 3638 loff_t end = offset + ret; 3639 if (end > inode->i_size) { 3640 ei->i_disksize = end; 3641 i_size_write(inode, end); 3642 /* 3643 * We're going to return a positive `ret' 3644 * here due to non-zero-length I/O, so there's 3645 * no way of reporting error returns from 3646 * ext4_mark_inode_dirty() to userspace. So 3647 * ignore it. 3648 */ 3649 ext4_mark_inode_dirty(handle, inode); 3650 } 3651 } 3652 err = ext4_journal_stop(handle); 3653 if (ret == 0) 3654 ret = err; 3655 } 3656 out: 3657 return ret; 3658 } 3659 3660 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3661 { 3662 struct address_space *mapping = iocb->ki_filp->f_mapping; 3663 struct inode *inode = mapping->host; 3664 size_t count = iov_iter_count(iter); 3665 ssize_t ret; 3666 3667 /* 3668 * Shared inode_lock is enough for us - it protects against concurrent 3669 * writes & truncates and since we take care of writing back page cache, 3670 * we are protected against page writeback as well. 3671 */ 3672 inode_lock_shared(inode); 3673 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3674 iocb->ki_pos + count); 3675 if (ret) 3676 goto out_unlock; 3677 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3678 iter, ext4_dio_get_block, NULL, NULL, 0); 3679 out_unlock: 3680 inode_unlock_shared(inode); 3681 return ret; 3682 } 3683 3684 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3685 { 3686 struct file *file = iocb->ki_filp; 3687 struct inode *inode = file->f_mapping->host; 3688 size_t count = iov_iter_count(iter); 3689 loff_t offset = iocb->ki_pos; 3690 ssize_t ret; 3691 3692 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3693 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3694 return 0; 3695 #endif 3696 3697 /* 3698 * If we are doing data journalling we don't support O_DIRECT 3699 */ 3700 if (ext4_should_journal_data(inode)) 3701 return 0; 3702 3703 /* Let buffer I/O handle the inline data case. */ 3704 if (ext4_has_inline_data(inode)) 3705 return 0; 3706 3707 /* DAX uses iomap path now */ 3708 if (WARN_ON_ONCE(IS_DAX(inode))) 3709 return 0; 3710 3711 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3712 if (iov_iter_rw(iter) == READ) 3713 ret = ext4_direct_IO_read(iocb, iter); 3714 else 3715 ret = ext4_direct_IO_write(iocb, iter); 3716 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3717 return ret; 3718 } 3719 3720 /* 3721 * Pages can be marked dirty completely asynchronously from ext4's journalling 3722 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3723 * much here because ->set_page_dirty is called under VFS locks. The page is 3724 * not necessarily locked. 3725 * 3726 * We cannot just dirty the page and leave attached buffers clean, because the 3727 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3728 * or jbddirty because all the journalling code will explode. 3729 * 3730 * So what we do is to mark the page "pending dirty" and next time writepage 3731 * is called, propagate that into the buffers appropriately. 3732 */ 3733 static int ext4_journalled_set_page_dirty(struct page *page) 3734 { 3735 SetPageChecked(page); 3736 return __set_page_dirty_nobuffers(page); 3737 } 3738 3739 static int ext4_set_page_dirty(struct page *page) 3740 { 3741 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3742 WARN_ON_ONCE(!page_has_buffers(page)); 3743 return __set_page_dirty_buffers(page); 3744 } 3745 3746 static const struct address_space_operations ext4_aops = { 3747 .readpage = ext4_readpage, 3748 .readpages = ext4_readpages, 3749 .writepage = ext4_writepage, 3750 .writepages = ext4_writepages, 3751 .write_begin = ext4_write_begin, 3752 .write_end = ext4_write_end, 3753 .set_page_dirty = ext4_set_page_dirty, 3754 .bmap = ext4_bmap, 3755 .invalidatepage = ext4_invalidatepage, 3756 .releasepage = ext4_releasepage, 3757 .direct_IO = ext4_direct_IO, 3758 .migratepage = buffer_migrate_page, 3759 .is_partially_uptodate = block_is_partially_uptodate, 3760 .error_remove_page = generic_error_remove_page, 3761 }; 3762 3763 static const struct address_space_operations ext4_journalled_aops = { 3764 .readpage = ext4_readpage, 3765 .readpages = ext4_readpages, 3766 .writepage = ext4_writepage, 3767 .writepages = ext4_writepages, 3768 .write_begin = ext4_write_begin, 3769 .write_end = ext4_journalled_write_end, 3770 .set_page_dirty = ext4_journalled_set_page_dirty, 3771 .bmap = ext4_bmap, 3772 .invalidatepage = ext4_journalled_invalidatepage, 3773 .releasepage = ext4_releasepage, 3774 .direct_IO = ext4_direct_IO, 3775 .is_partially_uptodate = block_is_partially_uptodate, 3776 .error_remove_page = generic_error_remove_page, 3777 }; 3778 3779 static const struct address_space_operations ext4_da_aops = { 3780 .readpage = ext4_readpage, 3781 .readpages = ext4_readpages, 3782 .writepage = ext4_writepage, 3783 .writepages = ext4_writepages, 3784 .write_begin = ext4_da_write_begin, 3785 .write_end = ext4_da_write_end, 3786 .set_page_dirty = ext4_set_page_dirty, 3787 .bmap = ext4_bmap, 3788 .invalidatepage = ext4_da_invalidatepage, 3789 .releasepage = ext4_releasepage, 3790 .direct_IO = ext4_direct_IO, 3791 .migratepage = buffer_migrate_page, 3792 .is_partially_uptodate = block_is_partially_uptodate, 3793 .error_remove_page = generic_error_remove_page, 3794 }; 3795 3796 void ext4_set_aops(struct inode *inode) 3797 { 3798 switch (ext4_inode_journal_mode(inode)) { 3799 case EXT4_INODE_ORDERED_DATA_MODE: 3800 case EXT4_INODE_WRITEBACK_DATA_MODE: 3801 break; 3802 case EXT4_INODE_JOURNAL_DATA_MODE: 3803 inode->i_mapping->a_ops = &ext4_journalled_aops; 3804 return; 3805 default: 3806 BUG(); 3807 } 3808 if (test_opt(inode->i_sb, DELALLOC)) 3809 inode->i_mapping->a_ops = &ext4_da_aops; 3810 else 3811 inode->i_mapping->a_ops = &ext4_aops; 3812 } 3813 3814 static int __ext4_block_zero_page_range(handle_t *handle, 3815 struct address_space *mapping, loff_t from, loff_t length) 3816 { 3817 ext4_fsblk_t index = from >> PAGE_SHIFT; 3818 unsigned offset = from & (PAGE_SIZE-1); 3819 unsigned blocksize, pos; 3820 ext4_lblk_t iblock; 3821 struct inode *inode = mapping->host; 3822 struct buffer_head *bh; 3823 struct page *page; 3824 int err = 0; 3825 3826 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3827 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3828 if (!page) 3829 return -ENOMEM; 3830 3831 blocksize = inode->i_sb->s_blocksize; 3832 3833 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3834 3835 if (!page_has_buffers(page)) 3836 create_empty_buffers(page, blocksize, 0); 3837 3838 /* Find the buffer that contains "offset" */ 3839 bh = page_buffers(page); 3840 pos = blocksize; 3841 while (offset >= pos) { 3842 bh = bh->b_this_page; 3843 iblock++; 3844 pos += blocksize; 3845 } 3846 if (buffer_freed(bh)) { 3847 BUFFER_TRACE(bh, "freed: skip"); 3848 goto unlock; 3849 } 3850 if (!buffer_mapped(bh)) { 3851 BUFFER_TRACE(bh, "unmapped"); 3852 ext4_get_block(inode, iblock, bh, 0); 3853 /* unmapped? It's a hole - nothing to do */ 3854 if (!buffer_mapped(bh)) { 3855 BUFFER_TRACE(bh, "still unmapped"); 3856 goto unlock; 3857 } 3858 } 3859 3860 /* Ok, it's mapped. Make sure it's up-to-date */ 3861 if (PageUptodate(page)) 3862 set_buffer_uptodate(bh); 3863 3864 if (!buffer_uptodate(bh)) { 3865 err = -EIO; 3866 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3867 wait_on_buffer(bh); 3868 /* Uhhuh. Read error. Complain and punt. */ 3869 if (!buffer_uptodate(bh)) 3870 goto unlock; 3871 if (S_ISREG(inode->i_mode) && 3872 ext4_encrypted_inode(inode)) { 3873 /* We expect the key to be set. */ 3874 BUG_ON(!fscrypt_has_encryption_key(inode)); 3875 BUG_ON(blocksize != PAGE_SIZE); 3876 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 3877 page, PAGE_SIZE, 0, page->index)); 3878 } 3879 } 3880 if (ext4_should_journal_data(inode)) { 3881 BUFFER_TRACE(bh, "get write access"); 3882 err = ext4_journal_get_write_access(handle, bh); 3883 if (err) 3884 goto unlock; 3885 } 3886 zero_user(page, offset, length); 3887 BUFFER_TRACE(bh, "zeroed end of block"); 3888 3889 if (ext4_should_journal_data(inode)) { 3890 err = ext4_handle_dirty_metadata(handle, inode, bh); 3891 } else { 3892 err = 0; 3893 mark_buffer_dirty(bh); 3894 if (ext4_should_order_data(inode)) 3895 err = ext4_jbd2_inode_add_write(handle, inode); 3896 } 3897 3898 unlock: 3899 unlock_page(page); 3900 put_page(page); 3901 return err; 3902 } 3903 3904 /* 3905 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3906 * starting from file offset 'from'. The range to be zero'd must 3907 * be contained with in one block. If the specified range exceeds 3908 * the end of the block it will be shortened to end of the block 3909 * that cooresponds to 'from' 3910 */ 3911 static int ext4_block_zero_page_range(handle_t *handle, 3912 struct address_space *mapping, loff_t from, loff_t length) 3913 { 3914 struct inode *inode = mapping->host; 3915 unsigned offset = from & (PAGE_SIZE-1); 3916 unsigned blocksize = inode->i_sb->s_blocksize; 3917 unsigned max = blocksize - (offset & (blocksize - 1)); 3918 3919 /* 3920 * correct length if it does not fall between 3921 * 'from' and the end of the block 3922 */ 3923 if (length > max || length < 0) 3924 length = max; 3925 3926 if (IS_DAX(inode)) { 3927 return iomap_zero_range(inode, from, length, NULL, 3928 &ext4_iomap_ops); 3929 } 3930 return __ext4_block_zero_page_range(handle, mapping, from, length); 3931 } 3932 3933 /* 3934 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3935 * up to the end of the block which corresponds to `from'. 3936 * This required during truncate. We need to physically zero the tail end 3937 * of that block so it doesn't yield old data if the file is later grown. 3938 */ 3939 static int ext4_block_truncate_page(handle_t *handle, 3940 struct address_space *mapping, loff_t from) 3941 { 3942 unsigned offset = from & (PAGE_SIZE-1); 3943 unsigned length; 3944 unsigned blocksize; 3945 struct inode *inode = mapping->host; 3946 3947 /* If we are processing an encrypted inode during orphan list handling */ 3948 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode)) 3949 return 0; 3950 3951 blocksize = inode->i_sb->s_blocksize; 3952 length = blocksize - (offset & (blocksize - 1)); 3953 3954 return ext4_block_zero_page_range(handle, mapping, from, length); 3955 } 3956 3957 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3958 loff_t lstart, loff_t length) 3959 { 3960 struct super_block *sb = inode->i_sb; 3961 struct address_space *mapping = inode->i_mapping; 3962 unsigned partial_start, partial_end; 3963 ext4_fsblk_t start, end; 3964 loff_t byte_end = (lstart + length - 1); 3965 int err = 0; 3966 3967 partial_start = lstart & (sb->s_blocksize - 1); 3968 partial_end = byte_end & (sb->s_blocksize - 1); 3969 3970 start = lstart >> sb->s_blocksize_bits; 3971 end = byte_end >> sb->s_blocksize_bits; 3972 3973 /* Handle partial zero within the single block */ 3974 if (start == end && 3975 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3976 err = ext4_block_zero_page_range(handle, mapping, 3977 lstart, length); 3978 return err; 3979 } 3980 /* Handle partial zero out on the start of the range */ 3981 if (partial_start) { 3982 err = ext4_block_zero_page_range(handle, mapping, 3983 lstart, sb->s_blocksize); 3984 if (err) 3985 return err; 3986 } 3987 /* Handle partial zero out on the end of the range */ 3988 if (partial_end != sb->s_blocksize - 1) 3989 err = ext4_block_zero_page_range(handle, mapping, 3990 byte_end - partial_end, 3991 partial_end + 1); 3992 return err; 3993 } 3994 3995 int ext4_can_truncate(struct inode *inode) 3996 { 3997 if (S_ISREG(inode->i_mode)) 3998 return 1; 3999 if (S_ISDIR(inode->i_mode)) 4000 return 1; 4001 if (S_ISLNK(inode->i_mode)) 4002 return !ext4_inode_is_fast_symlink(inode); 4003 return 0; 4004 } 4005 4006 /* 4007 * We have to make sure i_disksize gets properly updated before we truncate 4008 * page cache due to hole punching or zero range. Otherwise i_disksize update 4009 * can get lost as it may have been postponed to submission of writeback but 4010 * that will never happen after we truncate page cache. 4011 */ 4012 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4013 loff_t len) 4014 { 4015 handle_t *handle; 4016 loff_t size = i_size_read(inode); 4017 4018 WARN_ON(!inode_is_locked(inode)); 4019 if (offset > size || offset + len < size) 4020 return 0; 4021 4022 if (EXT4_I(inode)->i_disksize >= size) 4023 return 0; 4024 4025 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4026 if (IS_ERR(handle)) 4027 return PTR_ERR(handle); 4028 ext4_update_i_disksize(inode, size); 4029 ext4_mark_inode_dirty(handle, inode); 4030 ext4_journal_stop(handle); 4031 4032 return 0; 4033 } 4034 4035 /* 4036 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4037 * associated with the given offset and length 4038 * 4039 * @inode: File inode 4040 * @offset: The offset where the hole will begin 4041 * @len: The length of the hole 4042 * 4043 * Returns: 0 on success or negative on failure 4044 */ 4045 4046 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4047 { 4048 struct super_block *sb = inode->i_sb; 4049 ext4_lblk_t first_block, stop_block; 4050 struct address_space *mapping = inode->i_mapping; 4051 loff_t first_block_offset, last_block_offset; 4052 handle_t *handle; 4053 unsigned int credits; 4054 int ret = 0; 4055 4056 if (!S_ISREG(inode->i_mode)) 4057 return -EOPNOTSUPP; 4058 4059 trace_ext4_punch_hole(inode, offset, length, 0); 4060 4061 /* 4062 * Write out all dirty pages to avoid race conditions 4063 * Then release them. 4064 */ 4065 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4066 ret = filemap_write_and_wait_range(mapping, offset, 4067 offset + length - 1); 4068 if (ret) 4069 return ret; 4070 } 4071 4072 inode_lock(inode); 4073 4074 /* No need to punch hole beyond i_size */ 4075 if (offset >= inode->i_size) 4076 goto out_mutex; 4077 4078 /* 4079 * If the hole extends beyond i_size, set the hole 4080 * to end after the page that contains i_size 4081 */ 4082 if (offset + length > inode->i_size) { 4083 length = inode->i_size + 4084 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4085 offset; 4086 } 4087 4088 if (offset & (sb->s_blocksize - 1) || 4089 (offset + length) & (sb->s_blocksize - 1)) { 4090 /* 4091 * Attach jinode to inode for jbd2 if we do any zeroing of 4092 * partial block 4093 */ 4094 ret = ext4_inode_attach_jinode(inode); 4095 if (ret < 0) 4096 goto out_mutex; 4097 4098 } 4099 4100 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4101 ext4_inode_block_unlocked_dio(inode); 4102 inode_dio_wait(inode); 4103 4104 /* 4105 * Prevent page faults from reinstantiating pages we have released from 4106 * page cache. 4107 */ 4108 down_write(&EXT4_I(inode)->i_mmap_sem); 4109 first_block_offset = round_up(offset, sb->s_blocksize); 4110 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4111 4112 /* Now release the pages and zero block aligned part of pages*/ 4113 if (last_block_offset > first_block_offset) { 4114 ret = ext4_update_disksize_before_punch(inode, offset, length); 4115 if (ret) 4116 goto out_dio; 4117 truncate_pagecache_range(inode, first_block_offset, 4118 last_block_offset); 4119 } 4120 4121 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4122 credits = ext4_writepage_trans_blocks(inode); 4123 else 4124 credits = ext4_blocks_for_truncate(inode); 4125 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4126 if (IS_ERR(handle)) { 4127 ret = PTR_ERR(handle); 4128 ext4_std_error(sb, ret); 4129 goto out_dio; 4130 } 4131 4132 ret = ext4_zero_partial_blocks(handle, inode, offset, 4133 length); 4134 if (ret) 4135 goto out_stop; 4136 4137 first_block = (offset + sb->s_blocksize - 1) >> 4138 EXT4_BLOCK_SIZE_BITS(sb); 4139 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4140 4141 /* If there are no blocks to remove, return now */ 4142 if (first_block >= stop_block) 4143 goto out_stop; 4144 4145 down_write(&EXT4_I(inode)->i_data_sem); 4146 ext4_discard_preallocations(inode); 4147 4148 ret = ext4_es_remove_extent(inode, first_block, 4149 stop_block - first_block); 4150 if (ret) { 4151 up_write(&EXT4_I(inode)->i_data_sem); 4152 goto out_stop; 4153 } 4154 4155 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4156 ret = ext4_ext_remove_space(inode, first_block, 4157 stop_block - 1); 4158 else 4159 ret = ext4_ind_remove_space(handle, inode, first_block, 4160 stop_block); 4161 4162 up_write(&EXT4_I(inode)->i_data_sem); 4163 if (IS_SYNC(inode)) 4164 ext4_handle_sync(handle); 4165 4166 inode->i_mtime = inode->i_ctime = current_time(inode); 4167 ext4_mark_inode_dirty(handle, inode); 4168 out_stop: 4169 ext4_journal_stop(handle); 4170 out_dio: 4171 up_write(&EXT4_I(inode)->i_mmap_sem); 4172 ext4_inode_resume_unlocked_dio(inode); 4173 out_mutex: 4174 inode_unlock(inode); 4175 return ret; 4176 } 4177 4178 int ext4_inode_attach_jinode(struct inode *inode) 4179 { 4180 struct ext4_inode_info *ei = EXT4_I(inode); 4181 struct jbd2_inode *jinode; 4182 4183 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4184 return 0; 4185 4186 jinode = jbd2_alloc_inode(GFP_KERNEL); 4187 spin_lock(&inode->i_lock); 4188 if (!ei->jinode) { 4189 if (!jinode) { 4190 spin_unlock(&inode->i_lock); 4191 return -ENOMEM; 4192 } 4193 ei->jinode = jinode; 4194 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4195 jinode = NULL; 4196 } 4197 spin_unlock(&inode->i_lock); 4198 if (unlikely(jinode != NULL)) 4199 jbd2_free_inode(jinode); 4200 return 0; 4201 } 4202 4203 /* 4204 * ext4_truncate() 4205 * 4206 * We block out ext4_get_block() block instantiations across the entire 4207 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4208 * simultaneously on behalf of the same inode. 4209 * 4210 * As we work through the truncate and commit bits of it to the journal there 4211 * is one core, guiding principle: the file's tree must always be consistent on 4212 * disk. We must be able to restart the truncate after a crash. 4213 * 4214 * The file's tree may be transiently inconsistent in memory (although it 4215 * probably isn't), but whenever we close off and commit a journal transaction, 4216 * the contents of (the filesystem + the journal) must be consistent and 4217 * restartable. It's pretty simple, really: bottom up, right to left (although 4218 * left-to-right works OK too). 4219 * 4220 * Note that at recovery time, journal replay occurs *before* the restart of 4221 * truncate against the orphan inode list. 4222 * 4223 * The committed inode has the new, desired i_size (which is the same as 4224 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4225 * that this inode's truncate did not complete and it will again call 4226 * ext4_truncate() to have another go. So there will be instantiated blocks 4227 * to the right of the truncation point in a crashed ext4 filesystem. But 4228 * that's fine - as long as they are linked from the inode, the post-crash 4229 * ext4_truncate() run will find them and release them. 4230 */ 4231 int ext4_truncate(struct inode *inode) 4232 { 4233 struct ext4_inode_info *ei = EXT4_I(inode); 4234 unsigned int credits; 4235 int err = 0; 4236 handle_t *handle; 4237 struct address_space *mapping = inode->i_mapping; 4238 4239 /* 4240 * There is a possibility that we're either freeing the inode 4241 * or it's a completely new inode. In those cases we might not 4242 * have i_mutex locked because it's not necessary. 4243 */ 4244 if (!(inode->i_state & (I_NEW|I_FREEING))) 4245 WARN_ON(!inode_is_locked(inode)); 4246 trace_ext4_truncate_enter(inode); 4247 4248 if (!ext4_can_truncate(inode)) 4249 return 0; 4250 4251 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4252 4253 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4254 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4255 4256 if (ext4_has_inline_data(inode)) { 4257 int has_inline = 1; 4258 4259 err = ext4_inline_data_truncate(inode, &has_inline); 4260 if (err) 4261 return err; 4262 if (has_inline) 4263 return 0; 4264 } 4265 4266 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4267 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4268 if (ext4_inode_attach_jinode(inode) < 0) 4269 return 0; 4270 } 4271 4272 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4273 credits = ext4_writepage_trans_blocks(inode); 4274 else 4275 credits = ext4_blocks_for_truncate(inode); 4276 4277 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4278 if (IS_ERR(handle)) 4279 return PTR_ERR(handle); 4280 4281 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4282 ext4_block_truncate_page(handle, mapping, inode->i_size); 4283 4284 /* 4285 * We add the inode to the orphan list, so that if this 4286 * truncate spans multiple transactions, and we crash, we will 4287 * resume the truncate when the filesystem recovers. It also 4288 * marks the inode dirty, to catch the new size. 4289 * 4290 * Implication: the file must always be in a sane, consistent 4291 * truncatable state while each transaction commits. 4292 */ 4293 err = ext4_orphan_add(handle, inode); 4294 if (err) 4295 goto out_stop; 4296 4297 down_write(&EXT4_I(inode)->i_data_sem); 4298 4299 ext4_discard_preallocations(inode); 4300 4301 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4302 err = ext4_ext_truncate(handle, inode); 4303 else 4304 ext4_ind_truncate(handle, inode); 4305 4306 up_write(&ei->i_data_sem); 4307 if (err) 4308 goto out_stop; 4309 4310 if (IS_SYNC(inode)) 4311 ext4_handle_sync(handle); 4312 4313 out_stop: 4314 /* 4315 * If this was a simple ftruncate() and the file will remain alive, 4316 * then we need to clear up the orphan record which we created above. 4317 * However, if this was a real unlink then we were called by 4318 * ext4_evict_inode(), and we allow that function to clean up the 4319 * orphan info for us. 4320 */ 4321 if (inode->i_nlink) 4322 ext4_orphan_del(handle, inode); 4323 4324 inode->i_mtime = inode->i_ctime = current_time(inode); 4325 ext4_mark_inode_dirty(handle, inode); 4326 ext4_journal_stop(handle); 4327 4328 trace_ext4_truncate_exit(inode); 4329 return err; 4330 } 4331 4332 /* 4333 * ext4_get_inode_loc returns with an extra refcount against the inode's 4334 * underlying buffer_head on success. If 'in_mem' is true, we have all 4335 * data in memory that is needed to recreate the on-disk version of this 4336 * inode. 4337 */ 4338 static int __ext4_get_inode_loc(struct inode *inode, 4339 struct ext4_iloc *iloc, int in_mem) 4340 { 4341 struct ext4_group_desc *gdp; 4342 struct buffer_head *bh; 4343 struct super_block *sb = inode->i_sb; 4344 ext4_fsblk_t block; 4345 int inodes_per_block, inode_offset; 4346 4347 iloc->bh = NULL; 4348 if (!ext4_valid_inum(sb, inode->i_ino)) 4349 return -EFSCORRUPTED; 4350 4351 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4352 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4353 if (!gdp) 4354 return -EIO; 4355 4356 /* 4357 * Figure out the offset within the block group inode table 4358 */ 4359 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4360 inode_offset = ((inode->i_ino - 1) % 4361 EXT4_INODES_PER_GROUP(sb)); 4362 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4363 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4364 4365 bh = sb_getblk(sb, block); 4366 if (unlikely(!bh)) 4367 return -ENOMEM; 4368 if (!buffer_uptodate(bh)) { 4369 lock_buffer(bh); 4370 4371 /* 4372 * If the buffer has the write error flag, we have failed 4373 * to write out another inode in the same block. In this 4374 * case, we don't have to read the block because we may 4375 * read the old inode data successfully. 4376 */ 4377 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4378 set_buffer_uptodate(bh); 4379 4380 if (buffer_uptodate(bh)) { 4381 /* someone brought it uptodate while we waited */ 4382 unlock_buffer(bh); 4383 goto has_buffer; 4384 } 4385 4386 /* 4387 * If we have all information of the inode in memory and this 4388 * is the only valid inode in the block, we need not read the 4389 * block. 4390 */ 4391 if (in_mem) { 4392 struct buffer_head *bitmap_bh; 4393 int i, start; 4394 4395 start = inode_offset & ~(inodes_per_block - 1); 4396 4397 /* Is the inode bitmap in cache? */ 4398 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4399 if (unlikely(!bitmap_bh)) 4400 goto make_io; 4401 4402 /* 4403 * If the inode bitmap isn't in cache then the 4404 * optimisation may end up performing two reads instead 4405 * of one, so skip it. 4406 */ 4407 if (!buffer_uptodate(bitmap_bh)) { 4408 brelse(bitmap_bh); 4409 goto make_io; 4410 } 4411 for (i = start; i < start + inodes_per_block; i++) { 4412 if (i == inode_offset) 4413 continue; 4414 if (ext4_test_bit(i, bitmap_bh->b_data)) 4415 break; 4416 } 4417 brelse(bitmap_bh); 4418 if (i == start + inodes_per_block) { 4419 /* all other inodes are free, so skip I/O */ 4420 memset(bh->b_data, 0, bh->b_size); 4421 set_buffer_uptodate(bh); 4422 unlock_buffer(bh); 4423 goto has_buffer; 4424 } 4425 } 4426 4427 make_io: 4428 /* 4429 * If we need to do any I/O, try to pre-readahead extra 4430 * blocks from the inode table. 4431 */ 4432 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4433 ext4_fsblk_t b, end, table; 4434 unsigned num; 4435 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4436 4437 table = ext4_inode_table(sb, gdp); 4438 /* s_inode_readahead_blks is always a power of 2 */ 4439 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4440 if (table > b) 4441 b = table; 4442 end = b + ra_blks; 4443 num = EXT4_INODES_PER_GROUP(sb); 4444 if (ext4_has_group_desc_csum(sb)) 4445 num -= ext4_itable_unused_count(sb, gdp); 4446 table += num / inodes_per_block; 4447 if (end > table) 4448 end = table; 4449 while (b <= end) 4450 sb_breadahead(sb, b++); 4451 } 4452 4453 /* 4454 * There are other valid inodes in the buffer, this inode 4455 * has in-inode xattrs, or we don't have this inode in memory. 4456 * Read the block from disk. 4457 */ 4458 trace_ext4_load_inode(inode); 4459 get_bh(bh); 4460 bh->b_end_io = end_buffer_read_sync; 4461 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4462 wait_on_buffer(bh); 4463 if (!buffer_uptodate(bh)) { 4464 EXT4_ERROR_INODE_BLOCK(inode, block, 4465 "unable to read itable block"); 4466 brelse(bh); 4467 return -EIO; 4468 } 4469 } 4470 has_buffer: 4471 iloc->bh = bh; 4472 return 0; 4473 } 4474 4475 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4476 { 4477 /* We have all inode data except xattrs in memory here. */ 4478 return __ext4_get_inode_loc(inode, iloc, 4479 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4480 } 4481 4482 void ext4_set_inode_flags(struct inode *inode) 4483 { 4484 unsigned int flags = EXT4_I(inode)->i_flags; 4485 unsigned int new_fl = 0; 4486 4487 if (flags & EXT4_SYNC_FL) 4488 new_fl |= S_SYNC; 4489 if (flags & EXT4_APPEND_FL) 4490 new_fl |= S_APPEND; 4491 if (flags & EXT4_IMMUTABLE_FL) 4492 new_fl |= S_IMMUTABLE; 4493 if (flags & EXT4_NOATIME_FL) 4494 new_fl |= S_NOATIME; 4495 if (flags & EXT4_DIRSYNC_FL) 4496 new_fl |= S_DIRSYNC; 4497 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) && 4498 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) && 4499 !ext4_encrypted_inode(inode)) 4500 new_fl |= S_DAX; 4501 inode_set_flags(inode, new_fl, 4502 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4503 } 4504 4505 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4506 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4507 { 4508 unsigned int vfs_fl; 4509 unsigned long old_fl, new_fl; 4510 4511 do { 4512 vfs_fl = ei->vfs_inode.i_flags; 4513 old_fl = ei->i_flags; 4514 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4515 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4516 EXT4_DIRSYNC_FL); 4517 if (vfs_fl & S_SYNC) 4518 new_fl |= EXT4_SYNC_FL; 4519 if (vfs_fl & S_APPEND) 4520 new_fl |= EXT4_APPEND_FL; 4521 if (vfs_fl & S_IMMUTABLE) 4522 new_fl |= EXT4_IMMUTABLE_FL; 4523 if (vfs_fl & S_NOATIME) 4524 new_fl |= EXT4_NOATIME_FL; 4525 if (vfs_fl & S_DIRSYNC) 4526 new_fl |= EXT4_DIRSYNC_FL; 4527 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4528 } 4529 4530 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4531 struct ext4_inode_info *ei) 4532 { 4533 blkcnt_t i_blocks ; 4534 struct inode *inode = &(ei->vfs_inode); 4535 struct super_block *sb = inode->i_sb; 4536 4537 if (ext4_has_feature_huge_file(sb)) { 4538 /* we are using combined 48 bit field */ 4539 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4540 le32_to_cpu(raw_inode->i_blocks_lo); 4541 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4542 /* i_blocks represent file system block size */ 4543 return i_blocks << (inode->i_blkbits - 9); 4544 } else { 4545 return i_blocks; 4546 } 4547 } else { 4548 return le32_to_cpu(raw_inode->i_blocks_lo); 4549 } 4550 } 4551 4552 static inline void ext4_iget_extra_inode(struct inode *inode, 4553 struct ext4_inode *raw_inode, 4554 struct ext4_inode_info *ei) 4555 { 4556 __le32 *magic = (void *)raw_inode + 4557 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4558 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4559 EXT4_INODE_SIZE(inode->i_sb) && 4560 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4561 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4562 ext4_find_inline_data_nolock(inode); 4563 } else 4564 EXT4_I(inode)->i_inline_off = 0; 4565 } 4566 4567 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4568 { 4569 if (!ext4_has_feature_project(inode->i_sb)) 4570 return -EOPNOTSUPP; 4571 *projid = EXT4_I(inode)->i_projid; 4572 return 0; 4573 } 4574 4575 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4576 { 4577 struct ext4_iloc iloc; 4578 struct ext4_inode *raw_inode; 4579 struct ext4_inode_info *ei; 4580 struct inode *inode; 4581 journal_t *journal = EXT4_SB(sb)->s_journal; 4582 long ret; 4583 loff_t size; 4584 int block; 4585 uid_t i_uid; 4586 gid_t i_gid; 4587 projid_t i_projid; 4588 4589 inode = iget_locked(sb, ino); 4590 if (!inode) 4591 return ERR_PTR(-ENOMEM); 4592 if (!(inode->i_state & I_NEW)) 4593 return inode; 4594 4595 ei = EXT4_I(inode); 4596 iloc.bh = NULL; 4597 4598 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4599 if (ret < 0) 4600 goto bad_inode; 4601 raw_inode = ext4_raw_inode(&iloc); 4602 4603 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4604 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4605 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4606 EXT4_INODE_SIZE(inode->i_sb) || 4607 (ei->i_extra_isize & 3)) { 4608 EXT4_ERROR_INODE(inode, 4609 "bad extra_isize %u (inode size %u)", 4610 ei->i_extra_isize, 4611 EXT4_INODE_SIZE(inode->i_sb)); 4612 ret = -EFSCORRUPTED; 4613 goto bad_inode; 4614 } 4615 } else 4616 ei->i_extra_isize = 0; 4617 4618 /* Precompute checksum seed for inode metadata */ 4619 if (ext4_has_metadata_csum(sb)) { 4620 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4621 __u32 csum; 4622 __le32 inum = cpu_to_le32(inode->i_ino); 4623 __le32 gen = raw_inode->i_generation; 4624 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4625 sizeof(inum)); 4626 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4627 sizeof(gen)); 4628 } 4629 4630 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4631 EXT4_ERROR_INODE(inode, "checksum invalid"); 4632 ret = -EFSBADCRC; 4633 goto bad_inode; 4634 } 4635 4636 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4637 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4638 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4639 if (ext4_has_feature_project(sb) && 4640 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4641 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4642 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4643 else 4644 i_projid = EXT4_DEF_PROJID; 4645 4646 if (!(test_opt(inode->i_sb, NO_UID32))) { 4647 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4648 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4649 } 4650 i_uid_write(inode, i_uid); 4651 i_gid_write(inode, i_gid); 4652 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4653 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4654 4655 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4656 ei->i_inline_off = 0; 4657 ei->i_dir_start_lookup = 0; 4658 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4659 /* We now have enough fields to check if the inode was active or not. 4660 * This is needed because nfsd might try to access dead inodes 4661 * the test is that same one that e2fsck uses 4662 * NeilBrown 1999oct15 4663 */ 4664 if (inode->i_nlink == 0) { 4665 if ((inode->i_mode == 0 || 4666 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4667 ino != EXT4_BOOT_LOADER_INO) { 4668 /* this inode is deleted */ 4669 ret = -ESTALE; 4670 goto bad_inode; 4671 } 4672 /* The only unlinked inodes we let through here have 4673 * valid i_mode and are being read by the orphan 4674 * recovery code: that's fine, we're about to complete 4675 * the process of deleting those. 4676 * OR it is the EXT4_BOOT_LOADER_INO which is 4677 * not initialized on a new filesystem. */ 4678 } 4679 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4680 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4681 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4682 if (ext4_has_feature_64bit(sb)) 4683 ei->i_file_acl |= 4684 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4685 inode->i_size = ext4_isize(raw_inode); 4686 if ((size = i_size_read(inode)) < 0) { 4687 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4688 ret = -EFSCORRUPTED; 4689 goto bad_inode; 4690 } 4691 ei->i_disksize = inode->i_size; 4692 #ifdef CONFIG_QUOTA 4693 ei->i_reserved_quota = 0; 4694 #endif 4695 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4696 ei->i_block_group = iloc.block_group; 4697 ei->i_last_alloc_group = ~0; 4698 /* 4699 * NOTE! The in-memory inode i_data array is in little-endian order 4700 * even on big-endian machines: we do NOT byteswap the block numbers! 4701 */ 4702 for (block = 0; block < EXT4_N_BLOCKS; block++) 4703 ei->i_data[block] = raw_inode->i_block[block]; 4704 INIT_LIST_HEAD(&ei->i_orphan); 4705 4706 /* 4707 * Set transaction id's of transactions that have to be committed 4708 * to finish f[data]sync. We set them to currently running transaction 4709 * as we cannot be sure that the inode or some of its metadata isn't 4710 * part of the transaction - the inode could have been reclaimed and 4711 * now it is reread from disk. 4712 */ 4713 if (journal) { 4714 transaction_t *transaction; 4715 tid_t tid; 4716 4717 read_lock(&journal->j_state_lock); 4718 if (journal->j_running_transaction) 4719 transaction = journal->j_running_transaction; 4720 else 4721 transaction = journal->j_committing_transaction; 4722 if (transaction) 4723 tid = transaction->t_tid; 4724 else 4725 tid = journal->j_commit_sequence; 4726 read_unlock(&journal->j_state_lock); 4727 ei->i_sync_tid = tid; 4728 ei->i_datasync_tid = tid; 4729 } 4730 4731 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4732 if (ei->i_extra_isize == 0) { 4733 /* The extra space is currently unused. Use it. */ 4734 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4735 ei->i_extra_isize = sizeof(struct ext4_inode) - 4736 EXT4_GOOD_OLD_INODE_SIZE; 4737 } else { 4738 ext4_iget_extra_inode(inode, raw_inode, ei); 4739 } 4740 } 4741 4742 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4743 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4744 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4745 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4746 4747 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4748 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4749 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4750 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4751 inode->i_version |= 4752 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4753 } 4754 } 4755 4756 ret = 0; 4757 if (ei->i_file_acl && 4758 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4759 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4760 ei->i_file_acl); 4761 ret = -EFSCORRUPTED; 4762 goto bad_inode; 4763 } else if (!ext4_has_inline_data(inode)) { 4764 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4765 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4766 (S_ISLNK(inode->i_mode) && 4767 !ext4_inode_is_fast_symlink(inode)))) 4768 /* Validate extent which is part of inode */ 4769 ret = ext4_ext_check_inode(inode); 4770 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4771 (S_ISLNK(inode->i_mode) && 4772 !ext4_inode_is_fast_symlink(inode))) { 4773 /* Validate block references which are part of inode */ 4774 ret = ext4_ind_check_inode(inode); 4775 } 4776 } 4777 if (ret) 4778 goto bad_inode; 4779 4780 if (S_ISREG(inode->i_mode)) { 4781 inode->i_op = &ext4_file_inode_operations; 4782 inode->i_fop = &ext4_file_operations; 4783 ext4_set_aops(inode); 4784 } else if (S_ISDIR(inode->i_mode)) { 4785 inode->i_op = &ext4_dir_inode_operations; 4786 inode->i_fop = &ext4_dir_operations; 4787 } else if (S_ISLNK(inode->i_mode)) { 4788 if (ext4_encrypted_inode(inode)) { 4789 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4790 ext4_set_aops(inode); 4791 } else if (ext4_inode_is_fast_symlink(inode)) { 4792 inode->i_link = (char *)ei->i_data; 4793 inode->i_op = &ext4_fast_symlink_inode_operations; 4794 nd_terminate_link(ei->i_data, inode->i_size, 4795 sizeof(ei->i_data) - 1); 4796 } else { 4797 inode->i_op = &ext4_symlink_inode_operations; 4798 ext4_set_aops(inode); 4799 } 4800 inode_nohighmem(inode); 4801 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4802 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4803 inode->i_op = &ext4_special_inode_operations; 4804 if (raw_inode->i_block[0]) 4805 init_special_inode(inode, inode->i_mode, 4806 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4807 else 4808 init_special_inode(inode, inode->i_mode, 4809 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4810 } else if (ino == EXT4_BOOT_LOADER_INO) { 4811 make_bad_inode(inode); 4812 } else { 4813 ret = -EFSCORRUPTED; 4814 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4815 goto bad_inode; 4816 } 4817 brelse(iloc.bh); 4818 ext4_set_inode_flags(inode); 4819 unlock_new_inode(inode); 4820 return inode; 4821 4822 bad_inode: 4823 brelse(iloc.bh); 4824 iget_failed(inode); 4825 return ERR_PTR(ret); 4826 } 4827 4828 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4829 { 4830 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4831 return ERR_PTR(-EFSCORRUPTED); 4832 return ext4_iget(sb, ino); 4833 } 4834 4835 static int ext4_inode_blocks_set(handle_t *handle, 4836 struct ext4_inode *raw_inode, 4837 struct ext4_inode_info *ei) 4838 { 4839 struct inode *inode = &(ei->vfs_inode); 4840 u64 i_blocks = inode->i_blocks; 4841 struct super_block *sb = inode->i_sb; 4842 4843 if (i_blocks <= ~0U) { 4844 /* 4845 * i_blocks can be represented in a 32 bit variable 4846 * as multiple of 512 bytes 4847 */ 4848 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4849 raw_inode->i_blocks_high = 0; 4850 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4851 return 0; 4852 } 4853 if (!ext4_has_feature_huge_file(sb)) 4854 return -EFBIG; 4855 4856 if (i_blocks <= 0xffffffffffffULL) { 4857 /* 4858 * i_blocks can be represented in a 48 bit variable 4859 * as multiple of 512 bytes 4860 */ 4861 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4862 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4863 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4864 } else { 4865 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4866 /* i_block is stored in file system block size */ 4867 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4868 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4869 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4870 } 4871 return 0; 4872 } 4873 4874 struct other_inode { 4875 unsigned long orig_ino; 4876 struct ext4_inode *raw_inode; 4877 }; 4878 4879 static int other_inode_match(struct inode * inode, unsigned long ino, 4880 void *data) 4881 { 4882 struct other_inode *oi = (struct other_inode *) data; 4883 4884 if ((inode->i_ino != ino) || 4885 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4886 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4887 ((inode->i_state & I_DIRTY_TIME) == 0)) 4888 return 0; 4889 spin_lock(&inode->i_lock); 4890 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4891 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4892 (inode->i_state & I_DIRTY_TIME)) { 4893 struct ext4_inode_info *ei = EXT4_I(inode); 4894 4895 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4896 spin_unlock(&inode->i_lock); 4897 4898 spin_lock(&ei->i_raw_lock); 4899 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4900 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4901 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4902 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4903 spin_unlock(&ei->i_raw_lock); 4904 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4905 return -1; 4906 } 4907 spin_unlock(&inode->i_lock); 4908 return -1; 4909 } 4910 4911 /* 4912 * Opportunistically update the other time fields for other inodes in 4913 * the same inode table block. 4914 */ 4915 static void ext4_update_other_inodes_time(struct super_block *sb, 4916 unsigned long orig_ino, char *buf) 4917 { 4918 struct other_inode oi; 4919 unsigned long ino; 4920 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4921 int inode_size = EXT4_INODE_SIZE(sb); 4922 4923 oi.orig_ino = orig_ino; 4924 /* 4925 * Calculate the first inode in the inode table block. Inode 4926 * numbers are one-based. That is, the first inode in a block 4927 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4928 */ 4929 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4930 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4931 if (ino == orig_ino) 4932 continue; 4933 oi.raw_inode = (struct ext4_inode *) buf; 4934 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4935 } 4936 } 4937 4938 /* 4939 * Post the struct inode info into an on-disk inode location in the 4940 * buffer-cache. This gobbles the caller's reference to the 4941 * buffer_head in the inode location struct. 4942 * 4943 * The caller must have write access to iloc->bh. 4944 */ 4945 static int ext4_do_update_inode(handle_t *handle, 4946 struct inode *inode, 4947 struct ext4_iloc *iloc) 4948 { 4949 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4950 struct ext4_inode_info *ei = EXT4_I(inode); 4951 struct buffer_head *bh = iloc->bh; 4952 struct super_block *sb = inode->i_sb; 4953 int err = 0, rc, block; 4954 int need_datasync = 0, set_large_file = 0; 4955 uid_t i_uid; 4956 gid_t i_gid; 4957 projid_t i_projid; 4958 4959 spin_lock(&ei->i_raw_lock); 4960 4961 /* For fields not tracked in the in-memory inode, 4962 * initialise them to zero for new inodes. */ 4963 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4964 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4965 4966 ext4_get_inode_flags(ei); 4967 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4968 i_uid = i_uid_read(inode); 4969 i_gid = i_gid_read(inode); 4970 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4971 if (!(test_opt(inode->i_sb, NO_UID32))) { 4972 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4973 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4974 /* 4975 * Fix up interoperability with old kernels. Otherwise, old inodes get 4976 * re-used with the upper 16 bits of the uid/gid intact 4977 */ 4978 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4979 raw_inode->i_uid_high = 0; 4980 raw_inode->i_gid_high = 0; 4981 } else { 4982 raw_inode->i_uid_high = 4983 cpu_to_le16(high_16_bits(i_uid)); 4984 raw_inode->i_gid_high = 4985 cpu_to_le16(high_16_bits(i_gid)); 4986 } 4987 } else { 4988 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4989 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4990 raw_inode->i_uid_high = 0; 4991 raw_inode->i_gid_high = 0; 4992 } 4993 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4994 4995 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4996 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4997 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4998 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4999 5000 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5001 if (err) { 5002 spin_unlock(&ei->i_raw_lock); 5003 goto out_brelse; 5004 } 5005 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5006 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5007 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5008 raw_inode->i_file_acl_high = 5009 cpu_to_le16(ei->i_file_acl >> 32); 5010 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5011 if (ei->i_disksize != ext4_isize(raw_inode)) { 5012 ext4_isize_set(raw_inode, ei->i_disksize); 5013 need_datasync = 1; 5014 } 5015 if (ei->i_disksize > 0x7fffffffULL) { 5016 if (!ext4_has_feature_large_file(sb) || 5017 EXT4_SB(sb)->s_es->s_rev_level == 5018 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5019 set_large_file = 1; 5020 } 5021 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5022 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5023 if (old_valid_dev(inode->i_rdev)) { 5024 raw_inode->i_block[0] = 5025 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5026 raw_inode->i_block[1] = 0; 5027 } else { 5028 raw_inode->i_block[0] = 0; 5029 raw_inode->i_block[1] = 5030 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5031 raw_inode->i_block[2] = 0; 5032 } 5033 } else if (!ext4_has_inline_data(inode)) { 5034 for (block = 0; block < EXT4_N_BLOCKS; block++) 5035 raw_inode->i_block[block] = ei->i_data[block]; 5036 } 5037 5038 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5039 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5040 if (ei->i_extra_isize) { 5041 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5042 raw_inode->i_version_hi = 5043 cpu_to_le32(inode->i_version >> 32); 5044 raw_inode->i_extra_isize = 5045 cpu_to_le16(ei->i_extra_isize); 5046 } 5047 } 5048 5049 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5050 i_projid != EXT4_DEF_PROJID); 5051 5052 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5053 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5054 raw_inode->i_projid = cpu_to_le32(i_projid); 5055 5056 ext4_inode_csum_set(inode, raw_inode, ei); 5057 spin_unlock(&ei->i_raw_lock); 5058 if (inode->i_sb->s_flags & MS_LAZYTIME) 5059 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5060 bh->b_data); 5061 5062 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5063 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5064 if (!err) 5065 err = rc; 5066 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5067 if (set_large_file) { 5068 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5069 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5070 if (err) 5071 goto out_brelse; 5072 ext4_update_dynamic_rev(sb); 5073 ext4_set_feature_large_file(sb); 5074 ext4_handle_sync(handle); 5075 err = ext4_handle_dirty_super(handle, sb); 5076 } 5077 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5078 out_brelse: 5079 brelse(bh); 5080 ext4_std_error(inode->i_sb, err); 5081 return err; 5082 } 5083 5084 /* 5085 * ext4_write_inode() 5086 * 5087 * We are called from a few places: 5088 * 5089 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5090 * Here, there will be no transaction running. We wait for any running 5091 * transaction to commit. 5092 * 5093 * - Within flush work (sys_sync(), kupdate and such). 5094 * We wait on commit, if told to. 5095 * 5096 * - Within iput_final() -> write_inode_now() 5097 * We wait on commit, if told to. 5098 * 5099 * In all cases it is actually safe for us to return without doing anything, 5100 * because the inode has been copied into a raw inode buffer in 5101 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5102 * writeback. 5103 * 5104 * Note that we are absolutely dependent upon all inode dirtiers doing the 5105 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5106 * which we are interested. 5107 * 5108 * It would be a bug for them to not do this. The code: 5109 * 5110 * mark_inode_dirty(inode) 5111 * stuff(); 5112 * inode->i_size = expr; 5113 * 5114 * is in error because write_inode() could occur while `stuff()' is running, 5115 * and the new i_size will be lost. Plus the inode will no longer be on the 5116 * superblock's dirty inode list. 5117 */ 5118 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5119 { 5120 int err; 5121 5122 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5123 return 0; 5124 5125 if (EXT4_SB(inode->i_sb)->s_journal) { 5126 if (ext4_journal_current_handle()) { 5127 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5128 dump_stack(); 5129 return -EIO; 5130 } 5131 5132 /* 5133 * No need to force transaction in WB_SYNC_NONE mode. Also 5134 * ext4_sync_fs() will force the commit after everything is 5135 * written. 5136 */ 5137 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5138 return 0; 5139 5140 err = ext4_force_commit(inode->i_sb); 5141 } else { 5142 struct ext4_iloc iloc; 5143 5144 err = __ext4_get_inode_loc(inode, &iloc, 0); 5145 if (err) 5146 return err; 5147 /* 5148 * sync(2) will flush the whole buffer cache. No need to do 5149 * it here separately for each inode. 5150 */ 5151 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5152 sync_dirty_buffer(iloc.bh); 5153 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5154 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5155 "IO error syncing inode"); 5156 err = -EIO; 5157 } 5158 brelse(iloc.bh); 5159 } 5160 return err; 5161 } 5162 5163 /* 5164 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5165 * buffers that are attached to a page stradding i_size and are undergoing 5166 * commit. In that case we have to wait for commit to finish and try again. 5167 */ 5168 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5169 { 5170 struct page *page; 5171 unsigned offset; 5172 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5173 tid_t commit_tid = 0; 5174 int ret; 5175 5176 offset = inode->i_size & (PAGE_SIZE - 1); 5177 /* 5178 * All buffers in the last page remain valid? Then there's nothing to 5179 * do. We do the check mainly to optimize the common PAGE_SIZE == 5180 * blocksize case 5181 */ 5182 if (offset > PAGE_SIZE - i_blocksize(inode)) 5183 return; 5184 while (1) { 5185 page = find_lock_page(inode->i_mapping, 5186 inode->i_size >> PAGE_SHIFT); 5187 if (!page) 5188 return; 5189 ret = __ext4_journalled_invalidatepage(page, offset, 5190 PAGE_SIZE - offset); 5191 unlock_page(page); 5192 put_page(page); 5193 if (ret != -EBUSY) 5194 return; 5195 commit_tid = 0; 5196 read_lock(&journal->j_state_lock); 5197 if (journal->j_committing_transaction) 5198 commit_tid = journal->j_committing_transaction->t_tid; 5199 read_unlock(&journal->j_state_lock); 5200 if (commit_tid) 5201 jbd2_log_wait_commit(journal, commit_tid); 5202 } 5203 } 5204 5205 /* 5206 * ext4_setattr() 5207 * 5208 * Called from notify_change. 5209 * 5210 * We want to trap VFS attempts to truncate the file as soon as 5211 * possible. In particular, we want to make sure that when the VFS 5212 * shrinks i_size, we put the inode on the orphan list and modify 5213 * i_disksize immediately, so that during the subsequent flushing of 5214 * dirty pages and freeing of disk blocks, we can guarantee that any 5215 * commit will leave the blocks being flushed in an unused state on 5216 * disk. (On recovery, the inode will get truncated and the blocks will 5217 * be freed, so we have a strong guarantee that no future commit will 5218 * leave these blocks visible to the user.) 5219 * 5220 * Another thing we have to assure is that if we are in ordered mode 5221 * and inode is still attached to the committing transaction, we must 5222 * we start writeout of all the dirty pages which are being truncated. 5223 * This way we are sure that all the data written in the previous 5224 * transaction are already on disk (truncate waits for pages under 5225 * writeback). 5226 * 5227 * Called with inode->i_mutex down. 5228 */ 5229 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5230 { 5231 struct inode *inode = d_inode(dentry); 5232 int error, rc = 0; 5233 int orphan = 0; 5234 const unsigned int ia_valid = attr->ia_valid; 5235 5236 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5237 return -EIO; 5238 5239 error = setattr_prepare(dentry, attr); 5240 if (error) 5241 return error; 5242 5243 if (is_quota_modification(inode, attr)) { 5244 error = dquot_initialize(inode); 5245 if (error) 5246 return error; 5247 } 5248 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5249 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5250 handle_t *handle; 5251 5252 /* (user+group)*(old+new) structure, inode write (sb, 5253 * inode block, ? - but truncate inode update has it) */ 5254 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5255 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5256 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5257 if (IS_ERR(handle)) { 5258 error = PTR_ERR(handle); 5259 goto err_out; 5260 } 5261 error = dquot_transfer(inode, attr); 5262 if (error) { 5263 ext4_journal_stop(handle); 5264 return error; 5265 } 5266 /* Update corresponding info in inode so that everything is in 5267 * one transaction */ 5268 if (attr->ia_valid & ATTR_UID) 5269 inode->i_uid = attr->ia_uid; 5270 if (attr->ia_valid & ATTR_GID) 5271 inode->i_gid = attr->ia_gid; 5272 error = ext4_mark_inode_dirty(handle, inode); 5273 ext4_journal_stop(handle); 5274 } 5275 5276 if (attr->ia_valid & ATTR_SIZE) { 5277 handle_t *handle; 5278 loff_t oldsize = inode->i_size; 5279 int shrink = (attr->ia_size <= inode->i_size); 5280 5281 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5282 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5283 5284 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5285 return -EFBIG; 5286 } 5287 if (!S_ISREG(inode->i_mode)) 5288 return -EINVAL; 5289 5290 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5291 inode_inc_iversion(inode); 5292 5293 if (ext4_should_order_data(inode) && 5294 (attr->ia_size < inode->i_size)) { 5295 error = ext4_begin_ordered_truncate(inode, 5296 attr->ia_size); 5297 if (error) 5298 goto err_out; 5299 } 5300 if (attr->ia_size != inode->i_size) { 5301 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5302 if (IS_ERR(handle)) { 5303 error = PTR_ERR(handle); 5304 goto err_out; 5305 } 5306 if (ext4_handle_valid(handle) && shrink) { 5307 error = ext4_orphan_add(handle, inode); 5308 orphan = 1; 5309 } 5310 /* 5311 * Update c/mtime on truncate up, ext4_truncate() will 5312 * update c/mtime in shrink case below 5313 */ 5314 if (!shrink) { 5315 inode->i_mtime = current_time(inode); 5316 inode->i_ctime = inode->i_mtime; 5317 } 5318 down_write(&EXT4_I(inode)->i_data_sem); 5319 EXT4_I(inode)->i_disksize = attr->ia_size; 5320 rc = ext4_mark_inode_dirty(handle, inode); 5321 if (!error) 5322 error = rc; 5323 /* 5324 * We have to update i_size under i_data_sem together 5325 * with i_disksize to avoid races with writeback code 5326 * running ext4_wb_update_i_disksize(). 5327 */ 5328 if (!error) 5329 i_size_write(inode, attr->ia_size); 5330 up_write(&EXT4_I(inode)->i_data_sem); 5331 ext4_journal_stop(handle); 5332 if (error) { 5333 if (orphan) 5334 ext4_orphan_del(NULL, inode); 5335 goto err_out; 5336 } 5337 } 5338 if (!shrink) 5339 pagecache_isize_extended(inode, oldsize, inode->i_size); 5340 5341 /* 5342 * Blocks are going to be removed from the inode. Wait 5343 * for dio in flight. Temporarily disable 5344 * dioread_nolock to prevent livelock. 5345 */ 5346 if (orphan) { 5347 if (!ext4_should_journal_data(inode)) { 5348 ext4_inode_block_unlocked_dio(inode); 5349 inode_dio_wait(inode); 5350 ext4_inode_resume_unlocked_dio(inode); 5351 } else 5352 ext4_wait_for_tail_page_commit(inode); 5353 } 5354 down_write(&EXT4_I(inode)->i_mmap_sem); 5355 /* 5356 * Truncate pagecache after we've waited for commit 5357 * in data=journal mode to make pages freeable. 5358 */ 5359 truncate_pagecache(inode, inode->i_size); 5360 if (shrink) { 5361 rc = ext4_truncate(inode); 5362 if (rc) 5363 error = rc; 5364 } 5365 up_write(&EXT4_I(inode)->i_mmap_sem); 5366 } 5367 5368 if (!error) { 5369 setattr_copy(inode, attr); 5370 mark_inode_dirty(inode); 5371 } 5372 5373 /* 5374 * If the call to ext4_truncate failed to get a transaction handle at 5375 * all, we need to clean up the in-core orphan list manually. 5376 */ 5377 if (orphan && inode->i_nlink) 5378 ext4_orphan_del(NULL, inode); 5379 5380 if (!error && (ia_valid & ATTR_MODE)) 5381 rc = posix_acl_chmod(inode, inode->i_mode); 5382 5383 err_out: 5384 ext4_std_error(inode->i_sb, error); 5385 if (!error) 5386 error = rc; 5387 return error; 5388 } 5389 5390 int ext4_getattr(const struct path *path, struct kstat *stat, 5391 u32 request_mask, unsigned int query_flags) 5392 { 5393 struct inode *inode; 5394 unsigned long long delalloc_blocks; 5395 5396 inode = d_inode(path->dentry); 5397 generic_fillattr(inode, stat); 5398 5399 /* 5400 * If there is inline data in the inode, the inode will normally not 5401 * have data blocks allocated (it may have an external xattr block). 5402 * Report at least one sector for such files, so tools like tar, rsync, 5403 * others doen't incorrectly think the file is completely sparse. 5404 */ 5405 if (unlikely(ext4_has_inline_data(inode))) 5406 stat->blocks += (stat->size + 511) >> 9; 5407 5408 /* 5409 * We can't update i_blocks if the block allocation is delayed 5410 * otherwise in the case of system crash before the real block 5411 * allocation is done, we will have i_blocks inconsistent with 5412 * on-disk file blocks. 5413 * We always keep i_blocks updated together with real 5414 * allocation. But to not confuse with user, stat 5415 * will return the blocks that include the delayed allocation 5416 * blocks for this file. 5417 */ 5418 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5419 EXT4_I(inode)->i_reserved_data_blocks); 5420 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5421 return 0; 5422 } 5423 5424 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5425 int pextents) 5426 { 5427 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5428 return ext4_ind_trans_blocks(inode, lblocks); 5429 return ext4_ext_index_trans_blocks(inode, pextents); 5430 } 5431 5432 /* 5433 * Account for index blocks, block groups bitmaps and block group 5434 * descriptor blocks if modify datablocks and index blocks 5435 * worse case, the indexs blocks spread over different block groups 5436 * 5437 * If datablocks are discontiguous, they are possible to spread over 5438 * different block groups too. If they are contiguous, with flexbg, 5439 * they could still across block group boundary. 5440 * 5441 * Also account for superblock, inode, quota and xattr blocks 5442 */ 5443 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5444 int pextents) 5445 { 5446 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5447 int gdpblocks; 5448 int idxblocks; 5449 int ret = 0; 5450 5451 /* 5452 * How many index blocks need to touch to map @lblocks logical blocks 5453 * to @pextents physical extents? 5454 */ 5455 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5456 5457 ret = idxblocks; 5458 5459 /* 5460 * Now let's see how many group bitmaps and group descriptors need 5461 * to account 5462 */ 5463 groups = idxblocks + pextents; 5464 gdpblocks = groups; 5465 if (groups > ngroups) 5466 groups = ngroups; 5467 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5468 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5469 5470 /* bitmaps and block group descriptor blocks */ 5471 ret += groups + gdpblocks; 5472 5473 /* Blocks for super block, inode, quota and xattr blocks */ 5474 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5475 5476 return ret; 5477 } 5478 5479 /* 5480 * Calculate the total number of credits to reserve to fit 5481 * the modification of a single pages into a single transaction, 5482 * which may include multiple chunks of block allocations. 5483 * 5484 * This could be called via ext4_write_begin() 5485 * 5486 * We need to consider the worse case, when 5487 * one new block per extent. 5488 */ 5489 int ext4_writepage_trans_blocks(struct inode *inode) 5490 { 5491 int bpp = ext4_journal_blocks_per_page(inode); 5492 int ret; 5493 5494 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5495 5496 /* Account for data blocks for journalled mode */ 5497 if (ext4_should_journal_data(inode)) 5498 ret += bpp; 5499 return ret; 5500 } 5501 5502 /* 5503 * Calculate the journal credits for a chunk of data modification. 5504 * 5505 * This is called from DIO, fallocate or whoever calling 5506 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5507 * 5508 * journal buffers for data blocks are not included here, as DIO 5509 * and fallocate do no need to journal data buffers. 5510 */ 5511 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5512 { 5513 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5514 } 5515 5516 /* 5517 * The caller must have previously called ext4_reserve_inode_write(). 5518 * Give this, we know that the caller already has write access to iloc->bh. 5519 */ 5520 int ext4_mark_iloc_dirty(handle_t *handle, 5521 struct inode *inode, struct ext4_iloc *iloc) 5522 { 5523 int err = 0; 5524 5525 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5526 return -EIO; 5527 5528 if (IS_I_VERSION(inode)) 5529 inode_inc_iversion(inode); 5530 5531 /* the do_update_inode consumes one bh->b_count */ 5532 get_bh(iloc->bh); 5533 5534 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5535 err = ext4_do_update_inode(handle, inode, iloc); 5536 put_bh(iloc->bh); 5537 return err; 5538 } 5539 5540 /* 5541 * On success, We end up with an outstanding reference count against 5542 * iloc->bh. This _must_ be cleaned up later. 5543 */ 5544 5545 int 5546 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5547 struct ext4_iloc *iloc) 5548 { 5549 int err; 5550 5551 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5552 return -EIO; 5553 5554 err = ext4_get_inode_loc(inode, iloc); 5555 if (!err) { 5556 BUFFER_TRACE(iloc->bh, "get_write_access"); 5557 err = ext4_journal_get_write_access(handle, iloc->bh); 5558 if (err) { 5559 brelse(iloc->bh); 5560 iloc->bh = NULL; 5561 } 5562 } 5563 ext4_std_error(inode->i_sb, err); 5564 return err; 5565 } 5566 5567 /* 5568 * Expand an inode by new_extra_isize bytes. 5569 * Returns 0 on success or negative error number on failure. 5570 */ 5571 static int ext4_expand_extra_isize(struct inode *inode, 5572 unsigned int new_extra_isize, 5573 struct ext4_iloc iloc, 5574 handle_t *handle) 5575 { 5576 struct ext4_inode *raw_inode; 5577 struct ext4_xattr_ibody_header *header; 5578 5579 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5580 return 0; 5581 5582 raw_inode = ext4_raw_inode(&iloc); 5583 5584 header = IHDR(inode, raw_inode); 5585 5586 /* No extended attributes present */ 5587 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5588 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5589 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5590 new_extra_isize); 5591 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5592 return 0; 5593 } 5594 5595 /* try to expand with EAs present */ 5596 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5597 raw_inode, handle); 5598 } 5599 5600 /* 5601 * What we do here is to mark the in-core inode as clean with respect to inode 5602 * dirtiness (it may still be data-dirty). 5603 * This means that the in-core inode may be reaped by prune_icache 5604 * without having to perform any I/O. This is a very good thing, 5605 * because *any* task may call prune_icache - even ones which 5606 * have a transaction open against a different journal. 5607 * 5608 * Is this cheating? Not really. Sure, we haven't written the 5609 * inode out, but prune_icache isn't a user-visible syncing function. 5610 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5611 * we start and wait on commits. 5612 */ 5613 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5614 { 5615 struct ext4_iloc iloc; 5616 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5617 static unsigned int mnt_count; 5618 int err, ret; 5619 5620 might_sleep(); 5621 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5622 err = ext4_reserve_inode_write(handle, inode, &iloc); 5623 if (err) 5624 return err; 5625 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5626 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5627 /* 5628 * In nojournal mode, we can immediately attempt to expand 5629 * the inode. When journaled, we first need to obtain extra 5630 * buffer credits since we may write into the EA block 5631 * with this same handle. If journal_extend fails, then it will 5632 * only result in a minor loss of functionality for that inode. 5633 * If this is felt to be critical, then e2fsck should be run to 5634 * force a large enough s_min_extra_isize. 5635 */ 5636 if (!ext4_handle_valid(handle) || 5637 jbd2_journal_extend(handle, 5638 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) { 5639 ret = ext4_expand_extra_isize(inode, 5640 sbi->s_want_extra_isize, 5641 iloc, handle); 5642 if (ret) { 5643 if (mnt_count != 5644 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5645 ext4_warning(inode->i_sb, 5646 "Unable to expand inode %lu. Delete" 5647 " some EAs or run e2fsck.", 5648 inode->i_ino); 5649 mnt_count = 5650 le16_to_cpu(sbi->s_es->s_mnt_count); 5651 } 5652 } 5653 } 5654 } 5655 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5656 } 5657 5658 /* 5659 * ext4_dirty_inode() is called from __mark_inode_dirty() 5660 * 5661 * We're really interested in the case where a file is being extended. 5662 * i_size has been changed by generic_commit_write() and we thus need 5663 * to include the updated inode in the current transaction. 5664 * 5665 * Also, dquot_alloc_block() will always dirty the inode when blocks 5666 * are allocated to the file. 5667 * 5668 * If the inode is marked synchronous, we don't honour that here - doing 5669 * so would cause a commit on atime updates, which we don't bother doing. 5670 * We handle synchronous inodes at the highest possible level. 5671 * 5672 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5673 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5674 * to copy into the on-disk inode structure are the timestamp files. 5675 */ 5676 void ext4_dirty_inode(struct inode *inode, int flags) 5677 { 5678 handle_t *handle; 5679 5680 if (flags == I_DIRTY_TIME) 5681 return; 5682 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5683 if (IS_ERR(handle)) 5684 goto out; 5685 5686 ext4_mark_inode_dirty(handle, inode); 5687 5688 ext4_journal_stop(handle); 5689 out: 5690 return; 5691 } 5692 5693 #if 0 5694 /* 5695 * Bind an inode's backing buffer_head into this transaction, to prevent 5696 * it from being flushed to disk early. Unlike 5697 * ext4_reserve_inode_write, this leaves behind no bh reference and 5698 * returns no iloc structure, so the caller needs to repeat the iloc 5699 * lookup to mark the inode dirty later. 5700 */ 5701 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5702 { 5703 struct ext4_iloc iloc; 5704 5705 int err = 0; 5706 if (handle) { 5707 err = ext4_get_inode_loc(inode, &iloc); 5708 if (!err) { 5709 BUFFER_TRACE(iloc.bh, "get_write_access"); 5710 err = jbd2_journal_get_write_access(handle, iloc.bh); 5711 if (!err) 5712 err = ext4_handle_dirty_metadata(handle, 5713 NULL, 5714 iloc.bh); 5715 brelse(iloc.bh); 5716 } 5717 } 5718 ext4_std_error(inode->i_sb, err); 5719 return err; 5720 } 5721 #endif 5722 5723 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5724 { 5725 journal_t *journal; 5726 handle_t *handle; 5727 int err; 5728 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5729 5730 /* 5731 * We have to be very careful here: changing a data block's 5732 * journaling status dynamically is dangerous. If we write a 5733 * data block to the journal, change the status and then delete 5734 * that block, we risk forgetting to revoke the old log record 5735 * from the journal and so a subsequent replay can corrupt data. 5736 * So, first we make sure that the journal is empty and that 5737 * nobody is changing anything. 5738 */ 5739 5740 journal = EXT4_JOURNAL(inode); 5741 if (!journal) 5742 return 0; 5743 if (is_journal_aborted(journal)) 5744 return -EROFS; 5745 5746 /* Wait for all existing dio workers */ 5747 ext4_inode_block_unlocked_dio(inode); 5748 inode_dio_wait(inode); 5749 5750 /* 5751 * Before flushing the journal and switching inode's aops, we have 5752 * to flush all dirty data the inode has. There can be outstanding 5753 * delayed allocations, there can be unwritten extents created by 5754 * fallocate or buffered writes in dioread_nolock mode covered by 5755 * dirty data which can be converted only after flushing the dirty 5756 * data (and journalled aops don't know how to handle these cases). 5757 */ 5758 if (val) { 5759 down_write(&EXT4_I(inode)->i_mmap_sem); 5760 err = filemap_write_and_wait(inode->i_mapping); 5761 if (err < 0) { 5762 up_write(&EXT4_I(inode)->i_mmap_sem); 5763 ext4_inode_resume_unlocked_dio(inode); 5764 return err; 5765 } 5766 } 5767 5768 percpu_down_write(&sbi->s_journal_flag_rwsem); 5769 jbd2_journal_lock_updates(journal); 5770 5771 /* 5772 * OK, there are no updates running now, and all cached data is 5773 * synced to disk. We are now in a completely consistent state 5774 * which doesn't have anything in the journal, and we know that 5775 * no filesystem updates are running, so it is safe to modify 5776 * the inode's in-core data-journaling state flag now. 5777 */ 5778 5779 if (val) 5780 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5781 else { 5782 err = jbd2_journal_flush(journal); 5783 if (err < 0) { 5784 jbd2_journal_unlock_updates(journal); 5785 percpu_up_write(&sbi->s_journal_flag_rwsem); 5786 ext4_inode_resume_unlocked_dio(inode); 5787 return err; 5788 } 5789 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5790 } 5791 ext4_set_aops(inode); 5792 /* 5793 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated. 5794 * E.g. S_DAX may get cleared / set. 5795 */ 5796 ext4_set_inode_flags(inode); 5797 5798 jbd2_journal_unlock_updates(journal); 5799 percpu_up_write(&sbi->s_journal_flag_rwsem); 5800 5801 if (val) 5802 up_write(&EXT4_I(inode)->i_mmap_sem); 5803 ext4_inode_resume_unlocked_dio(inode); 5804 5805 /* Finally we can mark the inode as dirty. */ 5806 5807 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5808 if (IS_ERR(handle)) 5809 return PTR_ERR(handle); 5810 5811 err = ext4_mark_inode_dirty(handle, inode); 5812 ext4_handle_sync(handle); 5813 ext4_journal_stop(handle); 5814 ext4_std_error(inode->i_sb, err); 5815 5816 return err; 5817 } 5818 5819 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5820 { 5821 return !buffer_mapped(bh); 5822 } 5823 5824 int ext4_page_mkwrite(struct vm_fault *vmf) 5825 { 5826 struct vm_area_struct *vma = vmf->vma; 5827 struct page *page = vmf->page; 5828 loff_t size; 5829 unsigned long len; 5830 int ret; 5831 struct file *file = vma->vm_file; 5832 struct inode *inode = file_inode(file); 5833 struct address_space *mapping = inode->i_mapping; 5834 handle_t *handle; 5835 get_block_t *get_block; 5836 int retries = 0; 5837 5838 sb_start_pagefault(inode->i_sb); 5839 file_update_time(vma->vm_file); 5840 5841 down_read(&EXT4_I(inode)->i_mmap_sem); 5842 /* Delalloc case is easy... */ 5843 if (test_opt(inode->i_sb, DELALLOC) && 5844 !ext4_should_journal_data(inode) && 5845 !ext4_nonda_switch(inode->i_sb)) { 5846 do { 5847 ret = block_page_mkwrite(vma, vmf, 5848 ext4_da_get_block_prep); 5849 } while (ret == -ENOSPC && 5850 ext4_should_retry_alloc(inode->i_sb, &retries)); 5851 goto out_ret; 5852 } 5853 5854 lock_page(page); 5855 size = i_size_read(inode); 5856 /* Page got truncated from under us? */ 5857 if (page->mapping != mapping || page_offset(page) > size) { 5858 unlock_page(page); 5859 ret = VM_FAULT_NOPAGE; 5860 goto out; 5861 } 5862 5863 if (page->index == size >> PAGE_SHIFT) 5864 len = size & ~PAGE_MASK; 5865 else 5866 len = PAGE_SIZE; 5867 /* 5868 * Return if we have all the buffers mapped. This avoids the need to do 5869 * journal_start/journal_stop which can block and take a long time 5870 */ 5871 if (page_has_buffers(page)) { 5872 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5873 0, len, NULL, 5874 ext4_bh_unmapped)) { 5875 /* Wait so that we don't change page under IO */ 5876 wait_for_stable_page(page); 5877 ret = VM_FAULT_LOCKED; 5878 goto out; 5879 } 5880 } 5881 unlock_page(page); 5882 /* OK, we need to fill the hole... */ 5883 if (ext4_should_dioread_nolock(inode)) 5884 get_block = ext4_get_block_unwritten; 5885 else 5886 get_block = ext4_get_block; 5887 retry_alloc: 5888 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5889 ext4_writepage_trans_blocks(inode)); 5890 if (IS_ERR(handle)) { 5891 ret = VM_FAULT_SIGBUS; 5892 goto out; 5893 } 5894 ret = block_page_mkwrite(vma, vmf, get_block); 5895 if (!ret && ext4_should_journal_data(inode)) { 5896 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5897 PAGE_SIZE, NULL, do_journal_get_write_access)) { 5898 unlock_page(page); 5899 ret = VM_FAULT_SIGBUS; 5900 ext4_journal_stop(handle); 5901 goto out; 5902 } 5903 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5904 } 5905 ext4_journal_stop(handle); 5906 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5907 goto retry_alloc; 5908 out_ret: 5909 ret = block_page_mkwrite_return(ret); 5910 out: 5911 up_read(&EXT4_I(inode)->i_mmap_sem); 5912 sb_end_pagefault(inode->i_sb); 5913 return ret; 5914 } 5915 5916 int ext4_filemap_fault(struct vm_fault *vmf) 5917 { 5918 struct inode *inode = file_inode(vmf->vma->vm_file); 5919 int err; 5920 5921 down_read(&EXT4_I(inode)->i_mmap_sem); 5922 err = filemap_fault(vmf); 5923 up_read(&EXT4_I(inode)->i_mmap_sem); 5924 5925 return err; 5926 } 5927 5928 /* 5929 * Find the first extent at or after @lblk in an inode that is not a hole. 5930 * Search for @map_len blocks at most. The extent is returned in @result. 5931 * 5932 * The function returns 1 if we found an extent. The function returns 0 in 5933 * case there is no extent at or after @lblk and in that case also sets 5934 * @result->es_len to 0. In case of error, the error code is returned. 5935 */ 5936 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 5937 unsigned int map_len, struct extent_status *result) 5938 { 5939 struct ext4_map_blocks map; 5940 struct extent_status es = {}; 5941 int ret; 5942 5943 map.m_lblk = lblk; 5944 map.m_len = map_len; 5945 5946 /* 5947 * For non-extent based files this loop may iterate several times since 5948 * we do not determine full hole size. 5949 */ 5950 while (map.m_len > 0) { 5951 ret = ext4_map_blocks(NULL, inode, &map, 0); 5952 if (ret < 0) 5953 return ret; 5954 /* There's extent covering m_lblk? Just return it. */ 5955 if (ret > 0) { 5956 int status; 5957 5958 ext4_es_store_pblock(result, map.m_pblk); 5959 result->es_lblk = map.m_lblk; 5960 result->es_len = map.m_len; 5961 if (map.m_flags & EXT4_MAP_UNWRITTEN) 5962 status = EXTENT_STATUS_UNWRITTEN; 5963 else 5964 status = EXTENT_STATUS_WRITTEN; 5965 ext4_es_store_status(result, status); 5966 return 1; 5967 } 5968 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 5969 map.m_lblk + map.m_len - 1, 5970 &es); 5971 /* Is delalloc data before next block in extent tree? */ 5972 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 5973 ext4_lblk_t offset = 0; 5974 5975 if (es.es_lblk < lblk) 5976 offset = lblk - es.es_lblk; 5977 result->es_lblk = es.es_lblk + offset; 5978 ext4_es_store_pblock(result, 5979 ext4_es_pblock(&es) + offset); 5980 result->es_len = es.es_len - offset; 5981 ext4_es_store_status(result, ext4_es_status(&es)); 5982 5983 return 1; 5984 } 5985 /* There's a hole at m_lblk, advance us after it */ 5986 map.m_lblk += map.m_len; 5987 map_len -= map.m_len; 5988 map.m_len = map_len; 5989 cond_resched(); 5990 } 5991 result->es_len = 0; 5992 return 0; 5993 } 5994