1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Called at the last iput() if i_nlink is zero. 168 */ 169 void ext4_evict_inode(struct inode *inode) 170 { 171 handle_t *handle; 172 int err; 173 /* 174 * Credits for final inode cleanup and freeing: 175 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 176 * (xattr block freeing), bitmap, group descriptor (inode freeing) 177 */ 178 int extra_credits = 6; 179 struct ext4_xattr_inode_array *ea_inode_array = NULL; 180 181 trace_ext4_evict_inode(inode); 182 183 if (inode->i_nlink) { 184 /* 185 * When journalling data dirty buffers are tracked only in the 186 * journal. So although mm thinks everything is clean and 187 * ready for reaping the inode might still have some pages to 188 * write in the running transaction or waiting to be 189 * checkpointed. Thus calling jbd2_journal_invalidatepage() 190 * (via truncate_inode_pages()) to discard these buffers can 191 * cause data loss. Also even if we did not discard these 192 * buffers, we would have no way to find them after the inode 193 * is reaped and thus user could see stale data if he tries to 194 * read them before the transaction is checkpointed. So be 195 * careful and force everything to disk here... We use 196 * ei->i_datasync_tid to store the newest transaction 197 * containing inode's data. 198 * 199 * Note that directories do not have this problem because they 200 * don't use page cache. 201 */ 202 if (inode->i_ino != EXT4_JOURNAL_INO && 203 ext4_should_journal_data(inode) && 204 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 205 inode->i_data.nrpages) { 206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 207 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 208 209 jbd2_complete_transaction(journal, commit_tid); 210 filemap_write_and_wait(&inode->i_data); 211 } 212 truncate_inode_pages_final(&inode->i_data); 213 214 goto no_delete; 215 } 216 217 if (is_bad_inode(inode)) 218 goto no_delete; 219 dquot_initialize(inode); 220 221 if (ext4_should_order_data(inode)) 222 ext4_begin_ordered_truncate(inode, 0); 223 truncate_inode_pages_final(&inode->i_data); 224 225 /* 226 * Protect us against freezing - iput() caller didn't have to have any 227 * protection against it 228 */ 229 sb_start_intwrite(inode->i_sb); 230 231 if (!IS_NOQUOTA(inode)) 232 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 233 234 /* 235 * Block bitmap, group descriptor, and inode are accounted in both 236 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 237 */ 238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 239 ext4_blocks_for_truncate(inode) + extra_credits - 3); 240 if (IS_ERR(handle)) { 241 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 242 /* 243 * If we're going to skip the normal cleanup, we still need to 244 * make sure that the in-core orphan linked list is properly 245 * cleaned up. 246 */ 247 ext4_orphan_del(NULL, inode); 248 sb_end_intwrite(inode->i_sb); 249 goto no_delete; 250 } 251 252 if (IS_SYNC(inode)) 253 ext4_handle_sync(handle); 254 255 /* 256 * Set inode->i_size to 0 before calling ext4_truncate(). We need 257 * special handling of symlinks here because i_size is used to 258 * determine whether ext4_inode_info->i_data contains symlink data or 259 * block mappings. Setting i_size to 0 will remove its fast symlink 260 * status. Erase i_data so that it becomes a valid empty block map. 261 */ 262 if (ext4_inode_is_fast_symlink(inode)) 263 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 264 inode->i_size = 0; 265 err = ext4_mark_inode_dirty(handle, inode); 266 if (err) { 267 ext4_warning(inode->i_sb, 268 "couldn't mark inode dirty (err %d)", err); 269 goto stop_handle; 270 } 271 if (inode->i_blocks) { 272 err = ext4_truncate(inode); 273 if (err) { 274 ext4_error(inode->i_sb, 275 "couldn't truncate inode %lu (err %d)", 276 inode->i_ino, err); 277 goto stop_handle; 278 } 279 } 280 281 /* Remove xattr references. */ 282 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 283 extra_credits); 284 if (err) { 285 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 286 stop_handle: 287 ext4_journal_stop(handle); 288 ext4_orphan_del(NULL, inode); 289 sb_end_intwrite(inode->i_sb); 290 ext4_xattr_inode_array_free(ea_inode_array); 291 goto no_delete; 292 } 293 294 /* 295 * Kill off the orphan record which ext4_truncate created. 296 * AKPM: I think this can be inside the above `if'. 297 * Note that ext4_orphan_del() has to be able to cope with the 298 * deletion of a non-existent orphan - this is because we don't 299 * know if ext4_truncate() actually created an orphan record. 300 * (Well, we could do this if we need to, but heck - it works) 301 */ 302 ext4_orphan_del(handle, inode); 303 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 304 305 /* 306 * One subtle ordering requirement: if anything has gone wrong 307 * (transaction abort, IO errors, whatever), then we can still 308 * do these next steps (the fs will already have been marked as 309 * having errors), but we can't free the inode if the mark_dirty 310 * fails. 311 */ 312 if (ext4_mark_inode_dirty(handle, inode)) 313 /* If that failed, just do the required in-core inode clear. */ 314 ext4_clear_inode(inode); 315 else 316 ext4_free_inode(handle, inode); 317 ext4_journal_stop(handle); 318 sb_end_intwrite(inode->i_sb); 319 ext4_xattr_inode_array_free(ea_inode_array); 320 return; 321 no_delete: 322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 323 } 324 325 #ifdef CONFIG_QUOTA 326 qsize_t *ext4_get_reserved_space(struct inode *inode) 327 { 328 return &EXT4_I(inode)->i_reserved_quota; 329 } 330 #endif 331 332 /* 333 * Called with i_data_sem down, which is important since we can call 334 * ext4_discard_preallocations() from here. 335 */ 336 void ext4_da_update_reserve_space(struct inode *inode, 337 int used, int quota_claim) 338 { 339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 340 struct ext4_inode_info *ei = EXT4_I(inode); 341 342 spin_lock(&ei->i_block_reservation_lock); 343 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 344 if (unlikely(used > ei->i_reserved_data_blocks)) { 345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 346 "with only %d reserved data blocks", 347 __func__, inode->i_ino, used, 348 ei->i_reserved_data_blocks); 349 WARN_ON(1); 350 used = ei->i_reserved_data_blocks; 351 } 352 353 /* Update per-inode reservations */ 354 ei->i_reserved_data_blocks -= used; 355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 356 357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 358 359 /* Update quota subsystem for data blocks */ 360 if (quota_claim) 361 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 362 else { 363 /* 364 * We did fallocate with an offset that is already delayed 365 * allocated. So on delayed allocated writeback we should 366 * not re-claim the quota for fallocated blocks. 367 */ 368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 369 } 370 371 /* 372 * If we have done all the pending block allocations and if 373 * there aren't any writers on the inode, we can discard the 374 * inode's preallocations. 375 */ 376 if ((ei->i_reserved_data_blocks == 0) && 377 !inode_is_open_for_write(inode)) 378 ext4_discard_preallocations(inode); 379 } 380 381 static int __check_block_validity(struct inode *inode, const char *func, 382 unsigned int line, 383 struct ext4_map_blocks *map) 384 { 385 if (ext4_has_feature_journal(inode->i_sb) && 386 (inode->i_ino == 387 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 388 return 0; 389 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 390 map->m_len)) { 391 ext4_error_inode(inode, func, line, map->m_pblk, 392 "lblock %lu mapped to illegal pblock %llu " 393 "(length %d)", (unsigned long) map->m_lblk, 394 map->m_pblk, map->m_len); 395 return -EFSCORRUPTED; 396 } 397 return 0; 398 } 399 400 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 401 ext4_lblk_t len) 402 { 403 int ret; 404 405 if (IS_ENCRYPTED(inode)) 406 return fscrypt_zeroout_range(inode, lblk, pblk, len); 407 408 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 409 if (ret > 0) 410 ret = 0; 411 412 return ret; 413 } 414 415 #define check_block_validity(inode, map) \ 416 __check_block_validity((inode), __func__, __LINE__, (map)) 417 418 #ifdef ES_AGGRESSIVE_TEST 419 static void ext4_map_blocks_es_recheck(handle_t *handle, 420 struct inode *inode, 421 struct ext4_map_blocks *es_map, 422 struct ext4_map_blocks *map, 423 int flags) 424 { 425 int retval; 426 427 map->m_flags = 0; 428 /* 429 * There is a race window that the result is not the same. 430 * e.g. xfstests #223 when dioread_nolock enables. The reason 431 * is that we lookup a block mapping in extent status tree with 432 * out taking i_data_sem. So at the time the unwritten extent 433 * could be converted. 434 */ 435 down_read(&EXT4_I(inode)->i_data_sem); 436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 437 retval = ext4_ext_map_blocks(handle, inode, map, flags & 438 EXT4_GET_BLOCKS_KEEP_SIZE); 439 } else { 440 retval = ext4_ind_map_blocks(handle, inode, map, flags & 441 EXT4_GET_BLOCKS_KEEP_SIZE); 442 } 443 up_read((&EXT4_I(inode)->i_data_sem)); 444 445 /* 446 * We don't check m_len because extent will be collpased in status 447 * tree. So the m_len might not equal. 448 */ 449 if (es_map->m_lblk != map->m_lblk || 450 es_map->m_flags != map->m_flags || 451 es_map->m_pblk != map->m_pblk) { 452 printk("ES cache assertion failed for inode: %lu " 453 "es_cached ex [%d/%d/%llu/%x] != " 454 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 455 inode->i_ino, es_map->m_lblk, es_map->m_len, 456 es_map->m_pblk, es_map->m_flags, map->m_lblk, 457 map->m_len, map->m_pblk, map->m_flags, 458 retval, flags); 459 } 460 } 461 #endif /* ES_AGGRESSIVE_TEST */ 462 463 /* 464 * The ext4_map_blocks() function tries to look up the requested blocks, 465 * and returns if the blocks are already mapped. 466 * 467 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 468 * and store the allocated blocks in the result buffer head and mark it 469 * mapped. 470 * 471 * If file type is extents based, it will call ext4_ext_map_blocks(), 472 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 473 * based files 474 * 475 * On success, it returns the number of blocks being mapped or allocated. if 476 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 477 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 478 * 479 * It returns 0 if plain look up failed (blocks have not been allocated), in 480 * that case, @map is returned as unmapped but we still do fill map->m_len to 481 * indicate the length of a hole starting at map->m_lblk. 482 * 483 * It returns the error in case of allocation failure. 484 */ 485 int ext4_map_blocks(handle_t *handle, struct inode *inode, 486 struct ext4_map_blocks *map, int flags) 487 { 488 struct extent_status es; 489 int retval; 490 int ret = 0; 491 #ifdef ES_AGGRESSIVE_TEST 492 struct ext4_map_blocks orig_map; 493 494 memcpy(&orig_map, map, sizeof(*map)); 495 #endif 496 497 map->m_flags = 0; 498 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 499 "logical block %lu\n", inode->i_ino, flags, map->m_len, 500 (unsigned long) map->m_lblk); 501 502 /* 503 * ext4_map_blocks returns an int, and m_len is an unsigned int 504 */ 505 if (unlikely(map->m_len > INT_MAX)) 506 map->m_len = INT_MAX; 507 508 /* We can handle the block number less than EXT_MAX_BLOCKS */ 509 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 510 return -EFSCORRUPTED; 511 512 /* Lookup extent status tree firstly */ 513 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 514 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 515 map->m_pblk = ext4_es_pblock(&es) + 516 map->m_lblk - es.es_lblk; 517 map->m_flags |= ext4_es_is_written(&es) ? 518 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 519 retval = es.es_len - (map->m_lblk - es.es_lblk); 520 if (retval > map->m_len) 521 retval = map->m_len; 522 map->m_len = retval; 523 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 524 map->m_pblk = 0; 525 retval = es.es_len - (map->m_lblk - es.es_lblk); 526 if (retval > map->m_len) 527 retval = map->m_len; 528 map->m_len = retval; 529 retval = 0; 530 } else { 531 BUG(); 532 } 533 #ifdef ES_AGGRESSIVE_TEST 534 ext4_map_blocks_es_recheck(handle, inode, map, 535 &orig_map, flags); 536 #endif 537 goto found; 538 } 539 540 /* 541 * Try to see if we can get the block without requesting a new 542 * file system block. 543 */ 544 down_read(&EXT4_I(inode)->i_data_sem); 545 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 546 retval = ext4_ext_map_blocks(handle, inode, map, flags & 547 EXT4_GET_BLOCKS_KEEP_SIZE); 548 } else { 549 retval = ext4_ind_map_blocks(handle, inode, map, flags & 550 EXT4_GET_BLOCKS_KEEP_SIZE); 551 } 552 if (retval > 0) { 553 unsigned int status; 554 555 if (unlikely(retval != map->m_len)) { 556 ext4_warning(inode->i_sb, 557 "ES len assertion failed for inode " 558 "%lu: retval %d != map->m_len %d", 559 inode->i_ino, retval, map->m_len); 560 WARN_ON(1); 561 } 562 563 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 566 !(status & EXTENT_STATUS_WRITTEN) && 567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 568 map->m_lblk + map->m_len - 1)) 569 status |= EXTENT_STATUS_DELAYED; 570 ret = ext4_es_insert_extent(inode, map->m_lblk, 571 map->m_len, map->m_pblk, status); 572 if (ret < 0) 573 retval = ret; 574 } 575 up_read((&EXT4_I(inode)->i_data_sem)); 576 577 found: 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 579 ret = check_block_validity(inode, map); 580 if (ret != 0) 581 return ret; 582 } 583 584 /* If it is only a block(s) look up */ 585 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 586 return retval; 587 588 /* 589 * Returns if the blocks have already allocated 590 * 591 * Note that if blocks have been preallocated 592 * ext4_ext_get_block() returns the create = 0 593 * with buffer head unmapped. 594 */ 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 596 /* 597 * If we need to convert extent to unwritten 598 * we continue and do the actual work in 599 * ext4_ext_map_blocks() 600 */ 601 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 602 return retval; 603 604 /* 605 * Here we clear m_flags because after allocating an new extent, 606 * it will be set again. 607 */ 608 map->m_flags &= ~EXT4_MAP_FLAGS; 609 610 /* 611 * New blocks allocate and/or writing to unwritten extent 612 * will possibly result in updating i_data, so we take 613 * the write lock of i_data_sem, and call get_block() 614 * with create == 1 flag. 615 */ 616 down_write(&EXT4_I(inode)->i_data_sem); 617 618 /* 619 * We need to check for EXT4 here because migrate 620 * could have changed the inode type in between 621 */ 622 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 623 retval = ext4_ext_map_blocks(handle, inode, map, flags); 624 } else { 625 retval = ext4_ind_map_blocks(handle, inode, map, flags); 626 627 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 628 /* 629 * We allocated new blocks which will result in 630 * i_data's format changing. Force the migrate 631 * to fail by clearing migrate flags 632 */ 633 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 634 } 635 636 /* 637 * Update reserved blocks/metadata blocks after successful 638 * block allocation which had been deferred till now. We don't 639 * support fallocate for non extent files. So we can update 640 * reserve space here. 641 */ 642 if ((retval > 0) && 643 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 644 ext4_da_update_reserve_space(inode, retval, 1); 645 } 646 647 if (retval > 0) { 648 unsigned int status; 649 650 if (unlikely(retval != map->m_len)) { 651 ext4_warning(inode->i_sb, 652 "ES len assertion failed for inode " 653 "%lu: retval %d != map->m_len %d", 654 inode->i_ino, retval, map->m_len); 655 WARN_ON(1); 656 } 657 658 /* 659 * We have to zeroout blocks before inserting them into extent 660 * status tree. Otherwise someone could look them up there and 661 * use them before they are really zeroed. We also have to 662 * unmap metadata before zeroing as otherwise writeback can 663 * overwrite zeros with stale data from block device. 664 */ 665 if (flags & EXT4_GET_BLOCKS_ZERO && 666 map->m_flags & EXT4_MAP_MAPPED && 667 map->m_flags & EXT4_MAP_NEW) { 668 ret = ext4_issue_zeroout(inode, map->m_lblk, 669 map->m_pblk, map->m_len); 670 if (ret) { 671 retval = ret; 672 goto out_sem; 673 } 674 } 675 676 /* 677 * If the extent has been zeroed out, we don't need to update 678 * extent status tree. 679 */ 680 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 681 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 682 if (ext4_es_is_written(&es)) 683 goto out_sem; 684 } 685 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 686 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 687 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 688 !(status & EXTENT_STATUS_WRITTEN) && 689 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 690 map->m_lblk + map->m_len - 1)) 691 status |= EXTENT_STATUS_DELAYED; 692 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 693 map->m_pblk, status); 694 if (ret < 0) { 695 retval = ret; 696 goto out_sem; 697 } 698 } 699 700 out_sem: 701 up_write((&EXT4_I(inode)->i_data_sem)); 702 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 703 ret = check_block_validity(inode, map); 704 if (ret != 0) 705 return ret; 706 707 /* 708 * Inodes with freshly allocated blocks where contents will be 709 * visible after transaction commit must be on transaction's 710 * ordered data list. 711 */ 712 if (map->m_flags & EXT4_MAP_NEW && 713 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 714 !(flags & EXT4_GET_BLOCKS_ZERO) && 715 !ext4_is_quota_file(inode) && 716 ext4_should_order_data(inode)) { 717 loff_t start_byte = 718 (loff_t)map->m_lblk << inode->i_blkbits; 719 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 720 721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 722 ret = ext4_jbd2_inode_add_wait(handle, inode, 723 start_byte, length); 724 else 725 ret = ext4_jbd2_inode_add_write(handle, inode, 726 start_byte, length); 727 if (ret) 728 return ret; 729 } 730 } 731 return retval; 732 } 733 734 /* 735 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 736 * we have to be careful as someone else may be manipulating b_state as well. 737 */ 738 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 739 { 740 unsigned long old_state; 741 unsigned long new_state; 742 743 flags &= EXT4_MAP_FLAGS; 744 745 /* Dummy buffer_head? Set non-atomically. */ 746 if (!bh->b_page) { 747 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 748 return; 749 } 750 /* 751 * Someone else may be modifying b_state. Be careful! This is ugly but 752 * once we get rid of using bh as a container for mapping information 753 * to pass to / from get_block functions, this can go away. 754 */ 755 do { 756 old_state = READ_ONCE(bh->b_state); 757 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 758 } while (unlikely( 759 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 760 } 761 762 static int _ext4_get_block(struct inode *inode, sector_t iblock, 763 struct buffer_head *bh, int flags) 764 { 765 struct ext4_map_blocks map; 766 int ret = 0; 767 768 if (ext4_has_inline_data(inode)) 769 return -ERANGE; 770 771 map.m_lblk = iblock; 772 map.m_len = bh->b_size >> inode->i_blkbits; 773 774 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 775 flags); 776 if (ret > 0) { 777 map_bh(bh, inode->i_sb, map.m_pblk); 778 ext4_update_bh_state(bh, map.m_flags); 779 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 780 ret = 0; 781 } else if (ret == 0) { 782 /* hole case, need to fill in bh->b_size */ 783 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 784 } 785 return ret; 786 } 787 788 int ext4_get_block(struct inode *inode, sector_t iblock, 789 struct buffer_head *bh, int create) 790 { 791 return _ext4_get_block(inode, iblock, bh, 792 create ? EXT4_GET_BLOCKS_CREATE : 0); 793 } 794 795 /* 796 * Get block function used when preparing for buffered write if we require 797 * creating an unwritten extent if blocks haven't been allocated. The extent 798 * will be converted to written after the IO is complete. 799 */ 800 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 801 struct buffer_head *bh_result, int create) 802 { 803 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 804 inode->i_ino, create); 805 return _ext4_get_block(inode, iblock, bh_result, 806 EXT4_GET_BLOCKS_IO_CREATE_EXT); 807 } 808 809 /* Maximum number of blocks we map for direct IO at once. */ 810 #define DIO_MAX_BLOCKS 4096 811 812 /* 813 * `handle' can be NULL if create is zero 814 */ 815 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 816 ext4_lblk_t block, int map_flags) 817 { 818 struct ext4_map_blocks map; 819 struct buffer_head *bh; 820 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 821 int err; 822 823 J_ASSERT(handle != NULL || create == 0); 824 825 map.m_lblk = block; 826 map.m_len = 1; 827 err = ext4_map_blocks(handle, inode, &map, map_flags); 828 829 if (err == 0) 830 return create ? ERR_PTR(-ENOSPC) : NULL; 831 if (err < 0) 832 return ERR_PTR(err); 833 834 bh = sb_getblk(inode->i_sb, map.m_pblk); 835 if (unlikely(!bh)) 836 return ERR_PTR(-ENOMEM); 837 if (map.m_flags & EXT4_MAP_NEW) { 838 J_ASSERT(create != 0); 839 J_ASSERT(handle != NULL); 840 841 /* 842 * Now that we do not always journal data, we should 843 * keep in mind whether this should always journal the 844 * new buffer as metadata. For now, regular file 845 * writes use ext4_get_block instead, so it's not a 846 * problem. 847 */ 848 lock_buffer(bh); 849 BUFFER_TRACE(bh, "call get_create_access"); 850 err = ext4_journal_get_create_access(handle, bh); 851 if (unlikely(err)) { 852 unlock_buffer(bh); 853 goto errout; 854 } 855 if (!buffer_uptodate(bh)) { 856 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 857 set_buffer_uptodate(bh); 858 } 859 unlock_buffer(bh); 860 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 861 err = ext4_handle_dirty_metadata(handle, inode, bh); 862 if (unlikely(err)) 863 goto errout; 864 } else 865 BUFFER_TRACE(bh, "not a new buffer"); 866 return bh; 867 errout: 868 brelse(bh); 869 return ERR_PTR(err); 870 } 871 872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 873 ext4_lblk_t block, int map_flags) 874 { 875 struct buffer_head *bh; 876 877 bh = ext4_getblk(handle, inode, block, map_flags); 878 if (IS_ERR(bh)) 879 return bh; 880 if (!bh || ext4_buffer_uptodate(bh)) 881 return bh; 882 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 883 wait_on_buffer(bh); 884 if (buffer_uptodate(bh)) 885 return bh; 886 put_bh(bh); 887 return ERR_PTR(-EIO); 888 } 889 890 /* Read a contiguous batch of blocks. */ 891 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 892 bool wait, struct buffer_head **bhs) 893 { 894 int i, err; 895 896 for (i = 0; i < bh_count; i++) { 897 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 898 if (IS_ERR(bhs[i])) { 899 err = PTR_ERR(bhs[i]); 900 bh_count = i; 901 goto out_brelse; 902 } 903 } 904 905 for (i = 0; i < bh_count; i++) 906 /* Note that NULL bhs[i] is valid because of holes. */ 907 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 908 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 909 &bhs[i]); 910 911 if (!wait) 912 return 0; 913 914 for (i = 0; i < bh_count; i++) 915 if (bhs[i]) 916 wait_on_buffer(bhs[i]); 917 918 for (i = 0; i < bh_count; i++) { 919 if (bhs[i] && !buffer_uptodate(bhs[i])) { 920 err = -EIO; 921 goto out_brelse; 922 } 923 } 924 return 0; 925 926 out_brelse: 927 for (i = 0; i < bh_count; i++) { 928 brelse(bhs[i]); 929 bhs[i] = NULL; 930 } 931 return err; 932 } 933 934 int ext4_walk_page_buffers(handle_t *handle, 935 struct buffer_head *head, 936 unsigned from, 937 unsigned to, 938 int *partial, 939 int (*fn)(handle_t *handle, 940 struct buffer_head *bh)) 941 { 942 struct buffer_head *bh; 943 unsigned block_start, block_end; 944 unsigned blocksize = head->b_size; 945 int err, ret = 0; 946 struct buffer_head *next; 947 948 for (bh = head, block_start = 0; 949 ret == 0 && (bh != head || !block_start); 950 block_start = block_end, bh = next) { 951 next = bh->b_this_page; 952 block_end = block_start + blocksize; 953 if (block_end <= from || block_start >= to) { 954 if (partial && !buffer_uptodate(bh)) 955 *partial = 1; 956 continue; 957 } 958 err = (*fn)(handle, bh); 959 if (!ret) 960 ret = err; 961 } 962 return ret; 963 } 964 965 /* 966 * To preserve ordering, it is essential that the hole instantiation and 967 * the data write be encapsulated in a single transaction. We cannot 968 * close off a transaction and start a new one between the ext4_get_block() 969 * and the commit_write(). So doing the jbd2_journal_start at the start of 970 * prepare_write() is the right place. 971 * 972 * Also, this function can nest inside ext4_writepage(). In that case, we 973 * *know* that ext4_writepage() has generated enough buffer credits to do the 974 * whole page. So we won't block on the journal in that case, which is good, 975 * because the caller may be PF_MEMALLOC. 976 * 977 * By accident, ext4 can be reentered when a transaction is open via 978 * quota file writes. If we were to commit the transaction while thus 979 * reentered, there can be a deadlock - we would be holding a quota 980 * lock, and the commit would never complete if another thread had a 981 * transaction open and was blocking on the quota lock - a ranking 982 * violation. 983 * 984 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 985 * will _not_ run commit under these circumstances because handle->h_ref 986 * is elevated. We'll still have enough credits for the tiny quotafile 987 * write. 988 */ 989 int do_journal_get_write_access(handle_t *handle, 990 struct buffer_head *bh) 991 { 992 int dirty = buffer_dirty(bh); 993 int ret; 994 995 if (!buffer_mapped(bh) || buffer_freed(bh)) 996 return 0; 997 /* 998 * __block_write_begin() could have dirtied some buffers. Clean 999 * the dirty bit as jbd2_journal_get_write_access() could complain 1000 * otherwise about fs integrity issues. Setting of the dirty bit 1001 * by __block_write_begin() isn't a real problem here as we clear 1002 * the bit before releasing a page lock and thus writeback cannot 1003 * ever write the buffer. 1004 */ 1005 if (dirty) 1006 clear_buffer_dirty(bh); 1007 BUFFER_TRACE(bh, "get write access"); 1008 ret = ext4_journal_get_write_access(handle, bh); 1009 if (!ret && dirty) 1010 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1011 return ret; 1012 } 1013 1014 #ifdef CONFIG_FS_ENCRYPTION 1015 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1016 get_block_t *get_block) 1017 { 1018 unsigned from = pos & (PAGE_SIZE - 1); 1019 unsigned to = from + len; 1020 struct inode *inode = page->mapping->host; 1021 unsigned block_start, block_end; 1022 sector_t block; 1023 int err = 0; 1024 unsigned blocksize = inode->i_sb->s_blocksize; 1025 unsigned bbits; 1026 struct buffer_head *bh, *head, *wait[2]; 1027 int nr_wait = 0; 1028 int i; 1029 1030 BUG_ON(!PageLocked(page)); 1031 BUG_ON(from > PAGE_SIZE); 1032 BUG_ON(to > PAGE_SIZE); 1033 BUG_ON(from > to); 1034 1035 if (!page_has_buffers(page)) 1036 create_empty_buffers(page, blocksize, 0); 1037 head = page_buffers(page); 1038 bbits = ilog2(blocksize); 1039 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1040 1041 for (bh = head, block_start = 0; bh != head || !block_start; 1042 block++, block_start = block_end, bh = bh->b_this_page) { 1043 block_end = block_start + blocksize; 1044 if (block_end <= from || block_start >= to) { 1045 if (PageUptodate(page)) { 1046 if (!buffer_uptodate(bh)) 1047 set_buffer_uptodate(bh); 1048 } 1049 continue; 1050 } 1051 if (buffer_new(bh)) 1052 clear_buffer_new(bh); 1053 if (!buffer_mapped(bh)) { 1054 WARN_ON(bh->b_size != blocksize); 1055 err = get_block(inode, block, bh, 1); 1056 if (err) 1057 break; 1058 if (buffer_new(bh)) { 1059 if (PageUptodate(page)) { 1060 clear_buffer_new(bh); 1061 set_buffer_uptodate(bh); 1062 mark_buffer_dirty(bh); 1063 continue; 1064 } 1065 if (block_end > to || block_start < from) 1066 zero_user_segments(page, to, block_end, 1067 block_start, from); 1068 continue; 1069 } 1070 } 1071 if (PageUptodate(page)) { 1072 if (!buffer_uptodate(bh)) 1073 set_buffer_uptodate(bh); 1074 continue; 1075 } 1076 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1077 !buffer_unwritten(bh) && 1078 (block_start < from || block_end > to)) { 1079 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1080 wait[nr_wait++] = bh; 1081 } 1082 } 1083 /* 1084 * If we issued read requests, let them complete. 1085 */ 1086 for (i = 0; i < nr_wait; i++) { 1087 wait_on_buffer(wait[i]); 1088 if (!buffer_uptodate(wait[i])) 1089 err = -EIO; 1090 } 1091 if (unlikely(err)) { 1092 page_zero_new_buffers(page, from, to); 1093 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) { 1094 for (i = 0; i < nr_wait; i++) { 1095 int err2; 1096 1097 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1098 bh_offset(wait[i])); 1099 if (err2) { 1100 clear_buffer_uptodate(wait[i]); 1101 err = err2; 1102 } 1103 } 1104 } 1105 1106 return err; 1107 } 1108 #endif 1109 1110 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1111 loff_t pos, unsigned len, unsigned flags, 1112 struct page **pagep, void **fsdata) 1113 { 1114 struct inode *inode = mapping->host; 1115 int ret, needed_blocks; 1116 handle_t *handle; 1117 int retries = 0; 1118 struct page *page; 1119 pgoff_t index; 1120 unsigned from, to; 1121 1122 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1123 return -EIO; 1124 1125 trace_ext4_write_begin(inode, pos, len, flags); 1126 /* 1127 * Reserve one block more for addition to orphan list in case 1128 * we allocate blocks but write fails for some reason 1129 */ 1130 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1131 index = pos >> PAGE_SHIFT; 1132 from = pos & (PAGE_SIZE - 1); 1133 to = from + len; 1134 1135 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1136 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1137 flags, pagep); 1138 if (ret < 0) 1139 return ret; 1140 if (ret == 1) 1141 return 0; 1142 } 1143 1144 /* 1145 * grab_cache_page_write_begin() can take a long time if the 1146 * system is thrashing due to memory pressure, or if the page 1147 * is being written back. So grab it first before we start 1148 * the transaction handle. This also allows us to allocate 1149 * the page (if needed) without using GFP_NOFS. 1150 */ 1151 retry_grab: 1152 page = grab_cache_page_write_begin(mapping, index, flags); 1153 if (!page) 1154 return -ENOMEM; 1155 unlock_page(page); 1156 1157 retry_journal: 1158 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1159 if (IS_ERR(handle)) { 1160 put_page(page); 1161 return PTR_ERR(handle); 1162 } 1163 1164 lock_page(page); 1165 if (page->mapping != mapping) { 1166 /* The page got truncated from under us */ 1167 unlock_page(page); 1168 put_page(page); 1169 ext4_journal_stop(handle); 1170 goto retry_grab; 1171 } 1172 /* In case writeback began while the page was unlocked */ 1173 wait_for_stable_page(page); 1174 1175 #ifdef CONFIG_FS_ENCRYPTION 1176 if (ext4_should_dioread_nolock(inode)) 1177 ret = ext4_block_write_begin(page, pos, len, 1178 ext4_get_block_unwritten); 1179 else 1180 ret = ext4_block_write_begin(page, pos, len, 1181 ext4_get_block); 1182 #else 1183 if (ext4_should_dioread_nolock(inode)) 1184 ret = __block_write_begin(page, pos, len, 1185 ext4_get_block_unwritten); 1186 else 1187 ret = __block_write_begin(page, pos, len, ext4_get_block); 1188 #endif 1189 if (!ret && ext4_should_journal_data(inode)) { 1190 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1191 from, to, NULL, 1192 do_journal_get_write_access); 1193 } 1194 1195 if (ret) { 1196 bool extended = (pos + len > inode->i_size) && 1197 !ext4_verity_in_progress(inode); 1198 1199 unlock_page(page); 1200 /* 1201 * __block_write_begin may have instantiated a few blocks 1202 * outside i_size. Trim these off again. Don't need 1203 * i_size_read because we hold i_mutex. 1204 * 1205 * Add inode to orphan list in case we crash before 1206 * truncate finishes 1207 */ 1208 if (extended && ext4_can_truncate(inode)) 1209 ext4_orphan_add(handle, inode); 1210 1211 ext4_journal_stop(handle); 1212 if (extended) { 1213 ext4_truncate_failed_write(inode); 1214 /* 1215 * If truncate failed early the inode might 1216 * still be on the orphan list; we need to 1217 * make sure the inode is removed from the 1218 * orphan list in that case. 1219 */ 1220 if (inode->i_nlink) 1221 ext4_orphan_del(NULL, inode); 1222 } 1223 1224 if (ret == -ENOSPC && 1225 ext4_should_retry_alloc(inode->i_sb, &retries)) 1226 goto retry_journal; 1227 put_page(page); 1228 return ret; 1229 } 1230 *pagep = page; 1231 return ret; 1232 } 1233 1234 /* For write_end() in data=journal mode */ 1235 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1236 { 1237 int ret; 1238 if (!buffer_mapped(bh) || buffer_freed(bh)) 1239 return 0; 1240 set_buffer_uptodate(bh); 1241 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1242 clear_buffer_meta(bh); 1243 clear_buffer_prio(bh); 1244 return ret; 1245 } 1246 1247 /* 1248 * We need to pick up the new inode size which generic_commit_write gave us 1249 * `file' can be NULL - eg, when called from page_symlink(). 1250 * 1251 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1252 * buffers are managed internally. 1253 */ 1254 static int ext4_write_end(struct file *file, 1255 struct address_space *mapping, 1256 loff_t pos, unsigned len, unsigned copied, 1257 struct page *page, void *fsdata) 1258 { 1259 handle_t *handle = ext4_journal_current_handle(); 1260 struct inode *inode = mapping->host; 1261 loff_t old_size = inode->i_size; 1262 int ret = 0, ret2; 1263 int i_size_changed = 0; 1264 int inline_data = ext4_has_inline_data(inode); 1265 bool verity = ext4_verity_in_progress(inode); 1266 1267 trace_ext4_write_end(inode, pos, len, copied); 1268 if (inline_data) { 1269 ret = ext4_write_inline_data_end(inode, pos, len, 1270 copied, page); 1271 if (ret < 0) { 1272 unlock_page(page); 1273 put_page(page); 1274 goto errout; 1275 } 1276 copied = ret; 1277 } else 1278 copied = block_write_end(file, mapping, pos, 1279 len, copied, page, fsdata); 1280 /* 1281 * it's important to update i_size while still holding page lock: 1282 * page writeout could otherwise come in and zero beyond i_size. 1283 * 1284 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1285 * blocks are being written past EOF, so skip the i_size update. 1286 */ 1287 if (!verity) 1288 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1289 unlock_page(page); 1290 put_page(page); 1291 1292 if (old_size < pos && !verity) 1293 pagecache_isize_extended(inode, old_size, pos); 1294 /* 1295 * Don't mark the inode dirty under page lock. First, it unnecessarily 1296 * makes the holding time of page lock longer. Second, it forces lock 1297 * ordering of page lock and transaction start for journaling 1298 * filesystems. 1299 */ 1300 if (i_size_changed || inline_data) 1301 ext4_mark_inode_dirty(handle, inode); 1302 1303 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1304 /* if we have allocated more blocks and copied 1305 * less. We will have blocks allocated outside 1306 * inode->i_size. So truncate them 1307 */ 1308 ext4_orphan_add(handle, inode); 1309 errout: 1310 ret2 = ext4_journal_stop(handle); 1311 if (!ret) 1312 ret = ret2; 1313 1314 if (pos + len > inode->i_size && !verity) { 1315 ext4_truncate_failed_write(inode); 1316 /* 1317 * If truncate failed early the inode might still be 1318 * on the orphan list; we need to make sure the inode 1319 * is removed from the orphan list in that case. 1320 */ 1321 if (inode->i_nlink) 1322 ext4_orphan_del(NULL, inode); 1323 } 1324 1325 return ret ? ret : copied; 1326 } 1327 1328 /* 1329 * This is a private version of page_zero_new_buffers() which doesn't 1330 * set the buffer to be dirty, since in data=journalled mode we need 1331 * to call ext4_handle_dirty_metadata() instead. 1332 */ 1333 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1334 struct page *page, 1335 unsigned from, unsigned to) 1336 { 1337 unsigned int block_start = 0, block_end; 1338 struct buffer_head *head, *bh; 1339 1340 bh = head = page_buffers(page); 1341 do { 1342 block_end = block_start + bh->b_size; 1343 if (buffer_new(bh)) { 1344 if (block_end > from && block_start < to) { 1345 if (!PageUptodate(page)) { 1346 unsigned start, size; 1347 1348 start = max(from, block_start); 1349 size = min(to, block_end) - start; 1350 1351 zero_user(page, start, size); 1352 write_end_fn(handle, bh); 1353 } 1354 clear_buffer_new(bh); 1355 } 1356 } 1357 block_start = block_end; 1358 bh = bh->b_this_page; 1359 } while (bh != head); 1360 } 1361 1362 static int ext4_journalled_write_end(struct file *file, 1363 struct address_space *mapping, 1364 loff_t pos, unsigned len, unsigned copied, 1365 struct page *page, void *fsdata) 1366 { 1367 handle_t *handle = ext4_journal_current_handle(); 1368 struct inode *inode = mapping->host; 1369 loff_t old_size = inode->i_size; 1370 int ret = 0, ret2; 1371 int partial = 0; 1372 unsigned from, to; 1373 int size_changed = 0; 1374 int inline_data = ext4_has_inline_data(inode); 1375 bool verity = ext4_verity_in_progress(inode); 1376 1377 trace_ext4_journalled_write_end(inode, pos, len, copied); 1378 from = pos & (PAGE_SIZE - 1); 1379 to = from + len; 1380 1381 BUG_ON(!ext4_handle_valid(handle)); 1382 1383 if (inline_data) { 1384 ret = ext4_write_inline_data_end(inode, pos, len, 1385 copied, page); 1386 if (ret < 0) { 1387 unlock_page(page); 1388 put_page(page); 1389 goto errout; 1390 } 1391 copied = ret; 1392 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1393 copied = 0; 1394 ext4_journalled_zero_new_buffers(handle, page, from, to); 1395 } else { 1396 if (unlikely(copied < len)) 1397 ext4_journalled_zero_new_buffers(handle, page, 1398 from + copied, to); 1399 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1400 from + copied, &partial, 1401 write_end_fn); 1402 if (!partial) 1403 SetPageUptodate(page); 1404 } 1405 if (!verity) 1406 size_changed = ext4_update_inode_size(inode, pos + copied); 1407 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1408 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1409 unlock_page(page); 1410 put_page(page); 1411 1412 if (old_size < pos && !verity) 1413 pagecache_isize_extended(inode, old_size, pos); 1414 1415 if (size_changed || inline_data) { 1416 ret2 = ext4_mark_inode_dirty(handle, inode); 1417 if (!ret) 1418 ret = ret2; 1419 } 1420 1421 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1422 /* if we have allocated more blocks and copied 1423 * less. We will have blocks allocated outside 1424 * inode->i_size. So truncate them 1425 */ 1426 ext4_orphan_add(handle, inode); 1427 1428 errout: 1429 ret2 = ext4_journal_stop(handle); 1430 if (!ret) 1431 ret = ret2; 1432 if (pos + len > inode->i_size && !verity) { 1433 ext4_truncate_failed_write(inode); 1434 /* 1435 * If truncate failed early the inode might still be 1436 * on the orphan list; we need to make sure the inode 1437 * is removed from the orphan list in that case. 1438 */ 1439 if (inode->i_nlink) 1440 ext4_orphan_del(NULL, inode); 1441 } 1442 1443 return ret ? ret : copied; 1444 } 1445 1446 /* 1447 * Reserve space for a single cluster 1448 */ 1449 static int ext4_da_reserve_space(struct inode *inode) 1450 { 1451 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1452 struct ext4_inode_info *ei = EXT4_I(inode); 1453 int ret; 1454 1455 /* 1456 * We will charge metadata quota at writeout time; this saves 1457 * us from metadata over-estimation, though we may go over by 1458 * a small amount in the end. Here we just reserve for data. 1459 */ 1460 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1461 if (ret) 1462 return ret; 1463 1464 spin_lock(&ei->i_block_reservation_lock); 1465 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1466 spin_unlock(&ei->i_block_reservation_lock); 1467 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1468 return -ENOSPC; 1469 } 1470 ei->i_reserved_data_blocks++; 1471 trace_ext4_da_reserve_space(inode); 1472 spin_unlock(&ei->i_block_reservation_lock); 1473 1474 return 0; /* success */ 1475 } 1476 1477 void ext4_da_release_space(struct inode *inode, int to_free) 1478 { 1479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1480 struct ext4_inode_info *ei = EXT4_I(inode); 1481 1482 if (!to_free) 1483 return; /* Nothing to release, exit */ 1484 1485 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1486 1487 trace_ext4_da_release_space(inode, to_free); 1488 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1489 /* 1490 * if there aren't enough reserved blocks, then the 1491 * counter is messed up somewhere. Since this 1492 * function is called from invalidate page, it's 1493 * harmless to return without any action. 1494 */ 1495 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1496 "ino %lu, to_free %d with only %d reserved " 1497 "data blocks", inode->i_ino, to_free, 1498 ei->i_reserved_data_blocks); 1499 WARN_ON(1); 1500 to_free = ei->i_reserved_data_blocks; 1501 } 1502 ei->i_reserved_data_blocks -= to_free; 1503 1504 /* update fs dirty data blocks counter */ 1505 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1506 1507 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1508 1509 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1510 } 1511 1512 /* 1513 * Delayed allocation stuff 1514 */ 1515 1516 struct mpage_da_data { 1517 struct inode *inode; 1518 struct writeback_control *wbc; 1519 1520 pgoff_t first_page; /* The first page to write */ 1521 pgoff_t next_page; /* Current page to examine */ 1522 pgoff_t last_page; /* Last page to examine */ 1523 /* 1524 * Extent to map - this can be after first_page because that can be 1525 * fully mapped. We somewhat abuse m_flags to store whether the extent 1526 * is delalloc or unwritten. 1527 */ 1528 struct ext4_map_blocks map; 1529 struct ext4_io_submit io_submit; /* IO submission data */ 1530 unsigned int do_map:1; 1531 }; 1532 1533 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1534 bool invalidate) 1535 { 1536 int nr_pages, i; 1537 pgoff_t index, end; 1538 struct pagevec pvec; 1539 struct inode *inode = mpd->inode; 1540 struct address_space *mapping = inode->i_mapping; 1541 1542 /* This is necessary when next_page == 0. */ 1543 if (mpd->first_page >= mpd->next_page) 1544 return; 1545 1546 index = mpd->first_page; 1547 end = mpd->next_page - 1; 1548 if (invalidate) { 1549 ext4_lblk_t start, last; 1550 start = index << (PAGE_SHIFT - inode->i_blkbits); 1551 last = end << (PAGE_SHIFT - inode->i_blkbits); 1552 ext4_es_remove_extent(inode, start, last - start + 1); 1553 } 1554 1555 pagevec_init(&pvec); 1556 while (index <= end) { 1557 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1558 if (nr_pages == 0) 1559 break; 1560 for (i = 0; i < nr_pages; i++) { 1561 struct page *page = pvec.pages[i]; 1562 1563 BUG_ON(!PageLocked(page)); 1564 BUG_ON(PageWriteback(page)); 1565 if (invalidate) { 1566 if (page_mapped(page)) 1567 clear_page_dirty_for_io(page); 1568 block_invalidatepage(page, 0, PAGE_SIZE); 1569 ClearPageUptodate(page); 1570 } 1571 unlock_page(page); 1572 } 1573 pagevec_release(&pvec); 1574 } 1575 } 1576 1577 static void ext4_print_free_blocks(struct inode *inode) 1578 { 1579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1580 struct super_block *sb = inode->i_sb; 1581 struct ext4_inode_info *ei = EXT4_I(inode); 1582 1583 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1584 EXT4_C2B(EXT4_SB(inode->i_sb), 1585 ext4_count_free_clusters(sb))); 1586 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1587 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1588 (long long) EXT4_C2B(EXT4_SB(sb), 1589 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1590 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1591 (long long) EXT4_C2B(EXT4_SB(sb), 1592 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1593 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1594 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1595 ei->i_reserved_data_blocks); 1596 return; 1597 } 1598 1599 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1600 { 1601 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1602 } 1603 1604 /* 1605 * ext4_insert_delayed_block - adds a delayed block to the extents status 1606 * tree, incrementing the reserved cluster/block 1607 * count or making a pending reservation 1608 * where needed 1609 * 1610 * @inode - file containing the newly added block 1611 * @lblk - logical block to be added 1612 * 1613 * Returns 0 on success, negative error code on failure. 1614 */ 1615 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1616 { 1617 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1618 int ret; 1619 bool allocated = false; 1620 1621 /* 1622 * If the cluster containing lblk is shared with a delayed, 1623 * written, or unwritten extent in a bigalloc file system, it's 1624 * already been accounted for and does not need to be reserved. 1625 * A pending reservation must be made for the cluster if it's 1626 * shared with a written or unwritten extent and doesn't already 1627 * have one. Written and unwritten extents can be purged from the 1628 * extents status tree if the system is under memory pressure, so 1629 * it's necessary to examine the extent tree if a search of the 1630 * extents status tree doesn't get a match. 1631 */ 1632 if (sbi->s_cluster_ratio == 1) { 1633 ret = ext4_da_reserve_space(inode); 1634 if (ret != 0) /* ENOSPC */ 1635 goto errout; 1636 } else { /* bigalloc */ 1637 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1638 if (!ext4_es_scan_clu(inode, 1639 &ext4_es_is_mapped, lblk)) { 1640 ret = ext4_clu_mapped(inode, 1641 EXT4_B2C(sbi, lblk)); 1642 if (ret < 0) 1643 goto errout; 1644 if (ret == 0) { 1645 ret = ext4_da_reserve_space(inode); 1646 if (ret != 0) /* ENOSPC */ 1647 goto errout; 1648 } else { 1649 allocated = true; 1650 } 1651 } else { 1652 allocated = true; 1653 } 1654 } 1655 } 1656 1657 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1658 1659 errout: 1660 return ret; 1661 } 1662 1663 /* 1664 * This function is grabs code from the very beginning of 1665 * ext4_map_blocks, but assumes that the caller is from delayed write 1666 * time. This function looks up the requested blocks and sets the 1667 * buffer delay bit under the protection of i_data_sem. 1668 */ 1669 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1670 struct ext4_map_blocks *map, 1671 struct buffer_head *bh) 1672 { 1673 struct extent_status es; 1674 int retval; 1675 sector_t invalid_block = ~((sector_t) 0xffff); 1676 #ifdef ES_AGGRESSIVE_TEST 1677 struct ext4_map_blocks orig_map; 1678 1679 memcpy(&orig_map, map, sizeof(*map)); 1680 #endif 1681 1682 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1683 invalid_block = ~0; 1684 1685 map->m_flags = 0; 1686 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1687 "logical block %lu\n", inode->i_ino, map->m_len, 1688 (unsigned long) map->m_lblk); 1689 1690 /* Lookup extent status tree firstly */ 1691 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1692 if (ext4_es_is_hole(&es)) { 1693 retval = 0; 1694 down_read(&EXT4_I(inode)->i_data_sem); 1695 goto add_delayed; 1696 } 1697 1698 /* 1699 * Delayed extent could be allocated by fallocate. 1700 * So we need to check it. 1701 */ 1702 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1703 map_bh(bh, inode->i_sb, invalid_block); 1704 set_buffer_new(bh); 1705 set_buffer_delay(bh); 1706 return 0; 1707 } 1708 1709 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1710 retval = es.es_len - (iblock - es.es_lblk); 1711 if (retval > map->m_len) 1712 retval = map->m_len; 1713 map->m_len = retval; 1714 if (ext4_es_is_written(&es)) 1715 map->m_flags |= EXT4_MAP_MAPPED; 1716 else if (ext4_es_is_unwritten(&es)) 1717 map->m_flags |= EXT4_MAP_UNWRITTEN; 1718 else 1719 BUG(); 1720 1721 #ifdef ES_AGGRESSIVE_TEST 1722 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1723 #endif 1724 return retval; 1725 } 1726 1727 /* 1728 * Try to see if we can get the block without requesting a new 1729 * file system block. 1730 */ 1731 down_read(&EXT4_I(inode)->i_data_sem); 1732 if (ext4_has_inline_data(inode)) 1733 retval = 0; 1734 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1735 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1736 else 1737 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1738 1739 add_delayed: 1740 if (retval == 0) { 1741 int ret; 1742 1743 /* 1744 * XXX: __block_prepare_write() unmaps passed block, 1745 * is it OK? 1746 */ 1747 1748 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1749 if (ret != 0) { 1750 retval = ret; 1751 goto out_unlock; 1752 } 1753 1754 map_bh(bh, inode->i_sb, invalid_block); 1755 set_buffer_new(bh); 1756 set_buffer_delay(bh); 1757 } else if (retval > 0) { 1758 int ret; 1759 unsigned int status; 1760 1761 if (unlikely(retval != map->m_len)) { 1762 ext4_warning(inode->i_sb, 1763 "ES len assertion failed for inode " 1764 "%lu: retval %d != map->m_len %d", 1765 inode->i_ino, retval, map->m_len); 1766 WARN_ON(1); 1767 } 1768 1769 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1770 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1771 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1772 map->m_pblk, status); 1773 if (ret != 0) 1774 retval = ret; 1775 } 1776 1777 out_unlock: 1778 up_read((&EXT4_I(inode)->i_data_sem)); 1779 1780 return retval; 1781 } 1782 1783 /* 1784 * This is a special get_block_t callback which is used by 1785 * ext4_da_write_begin(). It will either return mapped block or 1786 * reserve space for a single block. 1787 * 1788 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1789 * We also have b_blocknr = -1 and b_bdev initialized properly 1790 * 1791 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1792 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1793 * initialized properly. 1794 */ 1795 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1796 struct buffer_head *bh, int create) 1797 { 1798 struct ext4_map_blocks map; 1799 int ret = 0; 1800 1801 BUG_ON(create == 0); 1802 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1803 1804 map.m_lblk = iblock; 1805 map.m_len = 1; 1806 1807 /* 1808 * first, we need to know whether the block is allocated already 1809 * preallocated blocks are unmapped but should treated 1810 * the same as allocated blocks. 1811 */ 1812 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1813 if (ret <= 0) 1814 return ret; 1815 1816 map_bh(bh, inode->i_sb, map.m_pblk); 1817 ext4_update_bh_state(bh, map.m_flags); 1818 1819 if (buffer_unwritten(bh)) { 1820 /* A delayed write to unwritten bh should be marked 1821 * new and mapped. Mapped ensures that we don't do 1822 * get_block multiple times when we write to the same 1823 * offset and new ensures that we do proper zero out 1824 * for partial write. 1825 */ 1826 set_buffer_new(bh); 1827 set_buffer_mapped(bh); 1828 } 1829 return 0; 1830 } 1831 1832 static int bget_one(handle_t *handle, struct buffer_head *bh) 1833 { 1834 get_bh(bh); 1835 return 0; 1836 } 1837 1838 static int bput_one(handle_t *handle, struct buffer_head *bh) 1839 { 1840 put_bh(bh); 1841 return 0; 1842 } 1843 1844 static int __ext4_journalled_writepage(struct page *page, 1845 unsigned int len) 1846 { 1847 struct address_space *mapping = page->mapping; 1848 struct inode *inode = mapping->host; 1849 struct buffer_head *page_bufs = NULL; 1850 handle_t *handle = NULL; 1851 int ret = 0, err = 0; 1852 int inline_data = ext4_has_inline_data(inode); 1853 struct buffer_head *inode_bh = NULL; 1854 1855 ClearPageChecked(page); 1856 1857 if (inline_data) { 1858 BUG_ON(page->index != 0); 1859 BUG_ON(len > ext4_get_max_inline_size(inode)); 1860 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1861 if (inode_bh == NULL) 1862 goto out; 1863 } else { 1864 page_bufs = page_buffers(page); 1865 if (!page_bufs) { 1866 BUG(); 1867 goto out; 1868 } 1869 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1870 NULL, bget_one); 1871 } 1872 /* 1873 * We need to release the page lock before we start the 1874 * journal, so grab a reference so the page won't disappear 1875 * out from under us. 1876 */ 1877 get_page(page); 1878 unlock_page(page); 1879 1880 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1881 ext4_writepage_trans_blocks(inode)); 1882 if (IS_ERR(handle)) { 1883 ret = PTR_ERR(handle); 1884 put_page(page); 1885 goto out_no_pagelock; 1886 } 1887 BUG_ON(!ext4_handle_valid(handle)); 1888 1889 lock_page(page); 1890 put_page(page); 1891 if (page->mapping != mapping) { 1892 /* The page got truncated from under us */ 1893 ext4_journal_stop(handle); 1894 ret = 0; 1895 goto out; 1896 } 1897 1898 if (inline_data) { 1899 ret = ext4_mark_inode_dirty(handle, inode); 1900 } else { 1901 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1902 do_journal_get_write_access); 1903 1904 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1905 write_end_fn); 1906 } 1907 if (ret == 0) 1908 ret = err; 1909 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1910 err = ext4_journal_stop(handle); 1911 if (!ret) 1912 ret = err; 1913 1914 if (!ext4_has_inline_data(inode)) 1915 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1916 NULL, bput_one); 1917 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1918 out: 1919 unlock_page(page); 1920 out_no_pagelock: 1921 brelse(inode_bh); 1922 return ret; 1923 } 1924 1925 /* 1926 * Note that we don't need to start a transaction unless we're journaling data 1927 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1928 * need to file the inode to the transaction's list in ordered mode because if 1929 * we are writing back data added by write(), the inode is already there and if 1930 * we are writing back data modified via mmap(), no one guarantees in which 1931 * transaction the data will hit the disk. In case we are journaling data, we 1932 * cannot start transaction directly because transaction start ranks above page 1933 * lock so we have to do some magic. 1934 * 1935 * This function can get called via... 1936 * - ext4_writepages after taking page lock (have journal handle) 1937 * - journal_submit_inode_data_buffers (no journal handle) 1938 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1939 * - grab_page_cache when doing write_begin (have journal handle) 1940 * 1941 * We don't do any block allocation in this function. If we have page with 1942 * multiple blocks we need to write those buffer_heads that are mapped. This 1943 * is important for mmaped based write. So if we do with blocksize 1K 1944 * truncate(f, 1024); 1945 * a = mmap(f, 0, 4096); 1946 * a[0] = 'a'; 1947 * truncate(f, 4096); 1948 * we have in the page first buffer_head mapped via page_mkwrite call back 1949 * but other buffer_heads would be unmapped but dirty (dirty done via the 1950 * do_wp_page). So writepage should write the first block. If we modify 1951 * the mmap area beyond 1024 we will again get a page_fault and the 1952 * page_mkwrite callback will do the block allocation and mark the 1953 * buffer_heads mapped. 1954 * 1955 * We redirty the page if we have any buffer_heads that is either delay or 1956 * unwritten in the page. 1957 * 1958 * We can get recursively called as show below. 1959 * 1960 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1961 * ext4_writepage() 1962 * 1963 * But since we don't do any block allocation we should not deadlock. 1964 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1965 */ 1966 static int ext4_writepage(struct page *page, 1967 struct writeback_control *wbc) 1968 { 1969 int ret = 0; 1970 loff_t size; 1971 unsigned int len; 1972 struct buffer_head *page_bufs = NULL; 1973 struct inode *inode = page->mapping->host; 1974 struct ext4_io_submit io_submit; 1975 bool keep_towrite = false; 1976 1977 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 1978 ext4_invalidatepage(page, 0, PAGE_SIZE); 1979 unlock_page(page); 1980 return -EIO; 1981 } 1982 1983 trace_ext4_writepage(page); 1984 size = i_size_read(inode); 1985 if (page->index == size >> PAGE_SHIFT && 1986 !ext4_verity_in_progress(inode)) 1987 len = size & ~PAGE_MASK; 1988 else 1989 len = PAGE_SIZE; 1990 1991 page_bufs = page_buffers(page); 1992 /* 1993 * We cannot do block allocation or other extent handling in this 1994 * function. If there are buffers needing that, we have to redirty 1995 * the page. But we may reach here when we do a journal commit via 1996 * journal_submit_inode_data_buffers() and in that case we must write 1997 * allocated buffers to achieve data=ordered mode guarantees. 1998 * 1999 * Also, if there is only one buffer per page (the fs block 2000 * size == the page size), if one buffer needs block 2001 * allocation or needs to modify the extent tree to clear the 2002 * unwritten flag, we know that the page can't be written at 2003 * all, so we might as well refuse the write immediately. 2004 * Unfortunately if the block size != page size, we can't as 2005 * easily detect this case using ext4_walk_page_buffers(), but 2006 * for the extremely common case, this is an optimization that 2007 * skips a useless round trip through ext4_bio_write_page(). 2008 */ 2009 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2010 ext4_bh_delay_or_unwritten)) { 2011 redirty_page_for_writepage(wbc, page); 2012 if ((current->flags & PF_MEMALLOC) || 2013 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2014 /* 2015 * For memory cleaning there's no point in writing only 2016 * some buffers. So just bail out. Warn if we came here 2017 * from direct reclaim. 2018 */ 2019 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2020 == PF_MEMALLOC); 2021 unlock_page(page); 2022 return 0; 2023 } 2024 keep_towrite = true; 2025 } 2026 2027 if (PageChecked(page) && ext4_should_journal_data(inode)) 2028 /* 2029 * It's mmapped pagecache. Add buffers and journal it. There 2030 * doesn't seem much point in redirtying the page here. 2031 */ 2032 return __ext4_journalled_writepage(page, len); 2033 2034 ext4_io_submit_init(&io_submit, wbc); 2035 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2036 if (!io_submit.io_end) { 2037 redirty_page_for_writepage(wbc, page); 2038 unlock_page(page); 2039 return -ENOMEM; 2040 } 2041 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2042 ext4_io_submit(&io_submit); 2043 /* Drop io_end reference we got from init */ 2044 ext4_put_io_end_defer(io_submit.io_end); 2045 return ret; 2046 } 2047 2048 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2049 { 2050 int len; 2051 loff_t size; 2052 int err; 2053 2054 BUG_ON(page->index != mpd->first_page); 2055 clear_page_dirty_for_io(page); 2056 /* 2057 * We have to be very careful here! Nothing protects writeback path 2058 * against i_size changes and the page can be writeably mapped into 2059 * page tables. So an application can be growing i_size and writing 2060 * data through mmap while writeback runs. clear_page_dirty_for_io() 2061 * write-protects our page in page tables and the page cannot get 2062 * written to again until we release page lock. So only after 2063 * clear_page_dirty_for_io() we are safe to sample i_size for 2064 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2065 * on the barrier provided by TestClearPageDirty in 2066 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2067 * after page tables are updated. 2068 */ 2069 size = i_size_read(mpd->inode); 2070 if (page->index == size >> PAGE_SHIFT && 2071 !ext4_verity_in_progress(mpd->inode)) 2072 len = size & ~PAGE_MASK; 2073 else 2074 len = PAGE_SIZE; 2075 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2076 if (!err) 2077 mpd->wbc->nr_to_write--; 2078 mpd->first_page++; 2079 2080 return err; 2081 } 2082 2083 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2084 2085 /* 2086 * mballoc gives us at most this number of blocks... 2087 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2088 * The rest of mballoc seems to handle chunks up to full group size. 2089 */ 2090 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2091 2092 /* 2093 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2094 * 2095 * @mpd - extent of blocks 2096 * @lblk - logical number of the block in the file 2097 * @bh - buffer head we want to add to the extent 2098 * 2099 * The function is used to collect contig. blocks in the same state. If the 2100 * buffer doesn't require mapping for writeback and we haven't started the 2101 * extent of buffers to map yet, the function returns 'true' immediately - the 2102 * caller can write the buffer right away. Otherwise the function returns true 2103 * if the block has been added to the extent, false if the block couldn't be 2104 * added. 2105 */ 2106 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2107 struct buffer_head *bh) 2108 { 2109 struct ext4_map_blocks *map = &mpd->map; 2110 2111 /* Buffer that doesn't need mapping for writeback? */ 2112 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2113 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2114 /* So far no extent to map => we write the buffer right away */ 2115 if (map->m_len == 0) 2116 return true; 2117 return false; 2118 } 2119 2120 /* First block in the extent? */ 2121 if (map->m_len == 0) { 2122 /* We cannot map unless handle is started... */ 2123 if (!mpd->do_map) 2124 return false; 2125 map->m_lblk = lblk; 2126 map->m_len = 1; 2127 map->m_flags = bh->b_state & BH_FLAGS; 2128 return true; 2129 } 2130 2131 /* Don't go larger than mballoc is willing to allocate */ 2132 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2133 return false; 2134 2135 /* Can we merge the block to our big extent? */ 2136 if (lblk == map->m_lblk + map->m_len && 2137 (bh->b_state & BH_FLAGS) == map->m_flags) { 2138 map->m_len++; 2139 return true; 2140 } 2141 return false; 2142 } 2143 2144 /* 2145 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2146 * 2147 * @mpd - extent of blocks for mapping 2148 * @head - the first buffer in the page 2149 * @bh - buffer we should start processing from 2150 * @lblk - logical number of the block in the file corresponding to @bh 2151 * 2152 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2153 * the page for IO if all buffers in this page were mapped and there's no 2154 * accumulated extent of buffers to map or add buffers in the page to the 2155 * extent of buffers to map. The function returns 1 if the caller can continue 2156 * by processing the next page, 0 if it should stop adding buffers to the 2157 * extent to map because we cannot extend it anymore. It can also return value 2158 * < 0 in case of error during IO submission. 2159 */ 2160 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2161 struct buffer_head *head, 2162 struct buffer_head *bh, 2163 ext4_lblk_t lblk) 2164 { 2165 struct inode *inode = mpd->inode; 2166 int err; 2167 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2168 >> inode->i_blkbits; 2169 2170 if (ext4_verity_in_progress(inode)) 2171 blocks = EXT_MAX_BLOCKS; 2172 2173 do { 2174 BUG_ON(buffer_locked(bh)); 2175 2176 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2177 /* Found extent to map? */ 2178 if (mpd->map.m_len) 2179 return 0; 2180 /* Buffer needs mapping and handle is not started? */ 2181 if (!mpd->do_map) 2182 return 0; 2183 /* Everything mapped so far and we hit EOF */ 2184 break; 2185 } 2186 } while (lblk++, (bh = bh->b_this_page) != head); 2187 /* So far everything mapped? Submit the page for IO. */ 2188 if (mpd->map.m_len == 0) { 2189 err = mpage_submit_page(mpd, head->b_page); 2190 if (err < 0) 2191 return err; 2192 } 2193 return lblk < blocks; 2194 } 2195 2196 /* 2197 * mpage_process_page - update page buffers corresponding to changed extent and 2198 * may submit fully mapped page for IO 2199 * 2200 * @mpd - description of extent to map, on return next extent to map 2201 * @m_lblk - logical block mapping. 2202 * @m_pblk - corresponding physical mapping. 2203 * @map_bh - determines on return whether this page requires any further 2204 * mapping or not. 2205 * Scan given page buffers corresponding to changed extent and update buffer 2206 * state according to new extent state. 2207 * We map delalloc buffers to their physical location, clear unwritten bits. 2208 * If the given page is not fully mapped, we update @map to the next extent in 2209 * the given page that needs mapping & return @map_bh as true. 2210 */ 2211 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2212 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2213 bool *map_bh) 2214 { 2215 struct buffer_head *head, *bh; 2216 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2217 ext4_lblk_t lblk = *m_lblk; 2218 ext4_fsblk_t pblock = *m_pblk; 2219 int err = 0; 2220 int blkbits = mpd->inode->i_blkbits; 2221 ssize_t io_end_size = 0; 2222 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2223 2224 bh = head = page_buffers(page); 2225 do { 2226 if (lblk < mpd->map.m_lblk) 2227 continue; 2228 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2229 /* 2230 * Buffer after end of mapped extent. 2231 * Find next buffer in the page to map. 2232 */ 2233 mpd->map.m_len = 0; 2234 mpd->map.m_flags = 0; 2235 io_end_vec->size += io_end_size; 2236 io_end_size = 0; 2237 2238 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2239 if (err > 0) 2240 err = 0; 2241 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2242 io_end_vec = ext4_alloc_io_end_vec(io_end); 2243 if (IS_ERR(io_end_vec)) { 2244 err = PTR_ERR(io_end_vec); 2245 goto out; 2246 } 2247 io_end_vec->offset = mpd->map.m_lblk << blkbits; 2248 } 2249 *map_bh = true; 2250 goto out; 2251 } 2252 if (buffer_delay(bh)) { 2253 clear_buffer_delay(bh); 2254 bh->b_blocknr = pblock++; 2255 } 2256 clear_buffer_unwritten(bh); 2257 io_end_size += (1 << blkbits); 2258 } while (lblk++, (bh = bh->b_this_page) != head); 2259 2260 io_end_vec->size += io_end_size; 2261 io_end_size = 0; 2262 *map_bh = false; 2263 out: 2264 *m_lblk = lblk; 2265 *m_pblk = pblock; 2266 return err; 2267 } 2268 2269 /* 2270 * mpage_map_buffers - update buffers corresponding to changed extent and 2271 * submit fully mapped pages for IO 2272 * 2273 * @mpd - description of extent to map, on return next extent to map 2274 * 2275 * Scan buffers corresponding to changed extent (we expect corresponding pages 2276 * to be already locked) and update buffer state according to new extent state. 2277 * We map delalloc buffers to their physical location, clear unwritten bits, 2278 * and mark buffers as uninit when we perform writes to unwritten extents 2279 * and do extent conversion after IO is finished. If the last page is not fully 2280 * mapped, we update @map to the next extent in the last page that needs 2281 * mapping. Otherwise we submit the page for IO. 2282 */ 2283 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2284 { 2285 struct pagevec pvec; 2286 int nr_pages, i; 2287 struct inode *inode = mpd->inode; 2288 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2289 pgoff_t start, end; 2290 ext4_lblk_t lblk; 2291 ext4_fsblk_t pblock; 2292 int err; 2293 bool map_bh = false; 2294 2295 start = mpd->map.m_lblk >> bpp_bits; 2296 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2297 lblk = start << bpp_bits; 2298 pblock = mpd->map.m_pblk; 2299 2300 pagevec_init(&pvec); 2301 while (start <= end) { 2302 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2303 &start, end); 2304 if (nr_pages == 0) 2305 break; 2306 for (i = 0; i < nr_pages; i++) { 2307 struct page *page = pvec.pages[i]; 2308 2309 err = mpage_process_page(mpd, page, &lblk, &pblock, 2310 &map_bh); 2311 /* 2312 * If map_bh is true, means page may require further bh 2313 * mapping, or maybe the page was submitted for IO. 2314 * So we return to call further extent mapping. 2315 */ 2316 if (err < 0 || map_bh == true) 2317 goto out; 2318 /* Page fully mapped - let IO run! */ 2319 err = mpage_submit_page(mpd, page); 2320 if (err < 0) 2321 goto out; 2322 } 2323 pagevec_release(&pvec); 2324 } 2325 /* Extent fully mapped and matches with page boundary. We are done. */ 2326 mpd->map.m_len = 0; 2327 mpd->map.m_flags = 0; 2328 return 0; 2329 out: 2330 pagevec_release(&pvec); 2331 return err; 2332 } 2333 2334 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2335 { 2336 struct inode *inode = mpd->inode; 2337 struct ext4_map_blocks *map = &mpd->map; 2338 int get_blocks_flags; 2339 int err, dioread_nolock; 2340 2341 trace_ext4_da_write_pages_extent(inode, map); 2342 /* 2343 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2344 * to convert an unwritten extent to be initialized (in the case 2345 * where we have written into one or more preallocated blocks). It is 2346 * possible that we're going to need more metadata blocks than 2347 * previously reserved. However we must not fail because we're in 2348 * writeback and there is nothing we can do about it so it might result 2349 * in data loss. So use reserved blocks to allocate metadata if 2350 * possible. 2351 * 2352 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2353 * the blocks in question are delalloc blocks. This indicates 2354 * that the blocks and quotas has already been checked when 2355 * the data was copied into the page cache. 2356 */ 2357 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2358 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2359 EXT4_GET_BLOCKS_IO_SUBMIT; 2360 dioread_nolock = ext4_should_dioread_nolock(inode); 2361 if (dioread_nolock) 2362 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2363 if (map->m_flags & (1 << BH_Delay)) 2364 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2365 2366 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2367 if (err < 0) 2368 return err; 2369 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2370 if (!mpd->io_submit.io_end->handle && 2371 ext4_handle_valid(handle)) { 2372 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2373 handle->h_rsv_handle = NULL; 2374 } 2375 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2376 } 2377 2378 BUG_ON(map->m_len == 0); 2379 return 0; 2380 } 2381 2382 /* 2383 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2384 * mpd->len and submit pages underlying it for IO 2385 * 2386 * @handle - handle for journal operations 2387 * @mpd - extent to map 2388 * @give_up_on_write - we set this to true iff there is a fatal error and there 2389 * is no hope of writing the data. The caller should discard 2390 * dirty pages to avoid infinite loops. 2391 * 2392 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2393 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2394 * them to initialized or split the described range from larger unwritten 2395 * extent. Note that we need not map all the described range since allocation 2396 * can return less blocks or the range is covered by more unwritten extents. We 2397 * cannot map more because we are limited by reserved transaction credits. On 2398 * the other hand we always make sure that the last touched page is fully 2399 * mapped so that it can be written out (and thus forward progress is 2400 * guaranteed). After mapping we submit all mapped pages for IO. 2401 */ 2402 static int mpage_map_and_submit_extent(handle_t *handle, 2403 struct mpage_da_data *mpd, 2404 bool *give_up_on_write) 2405 { 2406 struct inode *inode = mpd->inode; 2407 struct ext4_map_blocks *map = &mpd->map; 2408 int err; 2409 loff_t disksize; 2410 int progress = 0; 2411 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2412 struct ext4_io_end_vec *io_end_vec; 2413 2414 io_end_vec = ext4_alloc_io_end_vec(io_end); 2415 if (IS_ERR(io_end_vec)) 2416 return PTR_ERR(io_end_vec); 2417 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2418 do { 2419 err = mpage_map_one_extent(handle, mpd); 2420 if (err < 0) { 2421 struct super_block *sb = inode->i_sb; 2422 2423 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2424 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2425 goto invalidate_dirty_pages; 2426 /* 2427 * Let the uper layers retry transient errors. 2428 * In the case of ENOSPC, if ext4_count_free_blocks() 2429 * is non-zero, a commit should free up blocks. 2430 */ 2431 if ((err == -ENOMEM) || 2432 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2433 if (progress) 2434 goto update_disksize; 2435 return err; 2436 } 2437 ext4_msg(sb, KERN_CRIT, 2438 "Delayed block allocation failed for " 2439 "inode %lu at logical offset %llu with" 2440 " max blocks %u with error %d", 2441 inode->i_ino, 2442 (unsigned long long)map->m_lblk, 2443 (unsigned)map->m_len, -err); 2444 ext4_msg(sb, KERN_CRIT, 2445 "This should not happen!! Data will " 2446 "be lost\n"); 2447 if (err == -ENOSPC) 2448 ext4_print_free_blocks(inode); 2449 invalidate_dirty_pages: 2450 *give_up_on_write = true; 2451 return err; 2452 } 2453 progress = 1; 2454 /* 2455 * Update buffer state, submit mapped pages, and get us new 2456 * extent to map 2457 */ 2458 err = mpage_map_and_submit_buffers(mpd); 2459 if (err < 0) 2460 goto update_disksize; 2461 } while (map->m_len); 2462 2463 update_disksize: 2464 /* 2465 * Update on-disk size after IO is submitted. Races with 2466 * truncate are avoided by checking i_size under i_data_sem. 2467 */ 2468 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2469 if (disksize > EXT4_I(inode)->i_disksize) { 2470 int err2; 2471 loff_t i_size; 2472 2473 down_write(&EXT4_I(inode)->i_data_sem); 2474 i_size = i_size_read(inode); 2475 if (disksize > i_size) 2476 disksize = i_size; 2477 if (disksize > EXT4_I(inode)->i_disksize) 2478 EXT4_I(inode)->i_disksize = disksize; 2479 up_write(&EXT4_I(inode)->i_data_sem); 2480 err2 = ext4_mark_inode_dirty(handle, inode); 2481 if (err2) 2482 ext4_error(inode->i_sb, 2483 "Failed to mark inode %lu dirty", 2484 inode->i_ino); 2485 if (!err) 2486 err = err2; 2487 } 2488 return err; 2489 } 2490 2491 /* 2492 * Calculate the total number of credits to reserve for one writepages 2493 * iteration. This is called from ext4_writepages(). We map an extent of 2494 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2495 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2496 * bpp - 1 blocks in bpp different extents. 2497 */ 2498 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2499 { 2500 int bpp = ext4_journal_blocks_per_page(inode); 2501 2502 return ext4_meta_trans_blocks(inode, 2503 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2504 } 2505 2506 /* 2507 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2508 * and underlying extent to map 2509 * 2510 * @mpd - where to look for pages 2511 * 2512 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2513 * IO immediately. When we find a page which isn't mapped we start accumulating 2514 * extent of buffers underlying these pages that needs mapping (formed by 2515 * either delayed or unwritten buffers). We also lock the pages containing 2516 * these buffers. The extent found is returned in @mpd structure (starting at 2517 * mpd->lblk with length mpd->len blocks). 2518 * 2519 * Note that this function can attach bios to one io_end structure which are 2520 * neither logically nor physically contiguous. Although it may seem as an 2521 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2522 * case as we need to track IO to all buffers underlying a page in one io_end. 2523 */ 2524 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2525 { 2526 struct address_space *mapping = mpd->inode->i_mapping; 2527 struct pagevec pvec; 2528 unsigned int nr_pages; 2529 long left = mpd->wbc->nr_to_write; 2530 pgoff_t index = mpd->first_page; 2531 pgoff_t end = mpd->last_page; 2532 xa_mark_t tag; 2533 int i, err = 0; 2534 int blkbits = mpd->inode->i_blkbits; 2535 ext4_lblk_t lblk; 2536 struct buffer_head *head; 2537 2538 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2539 tag = PAGECACHE_TAG_TOWRITE; 2540 else 2541 tag = PAGECACHE_TAG_DIRTY; 2542 2543 pagevec_init(&pvec); 2544 mpd->map.m_len = 0; 2545 mpd->next_page = index; 2546 while (index <= end) { 2547 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2548 tag); 2549 if (nr_pages == 0) 2550 goto out; 2551 2552 for (i = 0; i < nr_pages; i++) { 2553 struct page *page = pvec.pages[i]; 2554 2555 /* 2556 * Accumulated enough dirty pages? This doesn't apply 2557 * to WB_SYNC_ALL mode. For integrity sync we have to 2558 * keep going because someone may be concurrently 2559 * dirtying pages, and we might have synced a lot of 2560 * newly appeared dirty pages, but have not synced all 2561 * of the old dirty pages. 2562 */ 2563 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2564 goto out; 2565 2566 /* If we can't merge this page, we are done. */ 2567 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2568 goto out; 2569 2570 lock_page(page); 2571 /* 2572 * If the page is no longer dirty, or its mapping no 2573 * longer corresponds to inode we are writing (which 2574 * means it has been truncated or invalidated), or the 2575 * page is already under writeback and we are not doing 2576 * a data integrity writeback, skip the page 2577 */ 2578 if (!PageDirty(page) || 2579 (PageWriteback(page) && 2580 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2581 unlikely(page->mapping != mapping)) { 2582 unlock_page(page); 2583 continue; 2584 } 2585 2586 wait_on_page_writeback(page); 2587 BUG_ON(PageWriteback(page)); 2588 2589 if (mpd->map.m_len == 0) 2590 mpd->first_page = page->index; 2591 mpd->next_page = page->index + 1; 2592 /* Add all dirty buffers to mpd */ 2593 lblk = ((ext4_lblk_t)page->index) << 2594 (PAGE_SHIFT - blkbits); 2595 head = page_buffers(page); 2596 err = mpage_process_page_bufs(mpd, head, head, lblk); 2597 if (err <= 0) 2598 goto out; 2599 err = 0; 2600 left--; 2601 } 2602 pagevec_release(&pvec); 2603 cond_resched(); 2604 } 2605 return 0; 2606 out: 2607 pagevec_release(&pvec); 2608 return err; 2609 } 2610 2611 static int ext4_writepages(struct address_space *mapping, 2612 struct writeback_control *wbc) 2613 { 2614 pgoff_t writeback_index = 0; 2615 long nr_to_write = wbc->nr_to_write; 2616 int range_whole = 0; 2617 int cycled = 1; 2618 handle_t *handle = NULL; 2619 struct mpage_da_data mpd; 2620 struct inode *inode = mapping->host; 2621 int needed_blocks, rsv_blocks = 0, ret = 0; 2622 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2623 bool done; 2624 struct blk_plug plug; 2625 bool give_up_on_write = false; 2626 2627 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2628 return -EIO; 2629 2630 percpu_down_read(&sbi->s_journal_flag_rwsem); 2631 trace_ext4_writepages(inode, wbc); 2632 2633 /* 2634 * No pages to write? This is mainly a kludge to avoid starting 2635 * a transaction for special inodes like journal inode on last iput() 2636 * because that could violate lock ordering on umount 2637 */ 2638 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2639 goto out_writepages; 2640 2641 if (ext4_should_journal_data(inode)) { 2642 ret = generic_writepages(mapping, wbc); 2643 goto out_writepages; 2644 } 2645 2646 /* 2647 * If the filesystem has aborted, it is read-only, so return 2648 * right away instead of dumping stack traces later on that 2649 * will obscure the real source of the problem. We test 2650 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2651 * the latter could be true if the filesystem is mounted 2652 * read-only, and in that case, ext4_writepages should 2653 * *never* be called, so if that ever happens, we would want 2654 * the stack trace. 2655 */ 2656 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2657 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2658 ret = -EROFS; 2659 goto out_writepages; 2660 } 2661 2662 /* 2663 * If we have inline data and arrive here, it means that 2664 * we will soon create the block for the 1st page, so 2665 * we'd better clear the inline data here. 2666 */ 2667 if (ext4_has_inline_data(inode)) { 2668 /* Just inode will be modified... */ 2669 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2670 if (IS_ERR(handle)) { 2671 ret = PTR_ERR(handle); 2672 goto out_writepages; 2673 } 2674 BUG_ON(ext4_test_inode_state(inode, 2675 EXT4_STATE_MAY_INLINE_DATA)); 2676 ext4_destroy_inline_data(handle, inode); 2677 ext4_journal_stop(handle); 2678 } 2679 2680 if (ext4_should_dioread_nolock(inode)) { 2681 /* 2682 * We may need to convert up to one extent per block in 2683 * the page and we may dirty the inode. 2684 */ 2685 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2686 PAGE_SIZE >> inode->i_blkbits); 2687 } 2688 2689 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2690 range_whole = 1; 2691 2692 if (wbc->range_cyclic) { 2693 writeback_index = mapping->writeback_index; 2694 if (writeback_index) 2695 cycled = 0; 2696 mpd.first_page = writeback_index; 2697 mpd.last_page = -1; 2698 } else { 2699 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2700 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2701 } 2702 2703 mpd.inode = inode; 2704 mpd.wbc = wbc; 2705 ext4_io_submit_init(&mpd.io_submit, wbc); 2706 retry: 2707 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2708 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2709 done = false; 2710 blk_start_plug(&plug); 2711 2712 /* 2713 * First writeback pages that don't need mapping - we can avoid 2714 * starting a transaction unnecessarily and also avoid being blocked 2715 * in the block layer on device congestion while having transaction 2716 * started. 2717 */ 2718 mpd.do_map = 0; 2719 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2720 if (!mpd.io_submit.io_end) { 2721 ret = -ENOMEM; 2722 goto unplug; 2723 } 2724 ret = mpage_prepare_extent_to_map(&mpd); 2725 /* Unlock pages we didn't use */ 2726 mpage_release_unused_pages(&mpd, false); 2727 /* Submit prepared bio */ 2728 ext4_io_submit(&mpd.io_submit); 2729 ext4_put_io_end_defer(mpd.io_submit.io_end); 2730 mpd.io_submit.io_end = NULL; 2731 if (ret < 0) 2732 goto unplug; 2733 2734 while (!done && mpd.first_page <= mpd.last_page) { 2735 /* For each extent of pages we use new io_end */ 2736 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2737 if (!mpd.io_submit.io_end) { 2738 ret = -ENOMEM; 2739 break; 2740 } 2741 2742 /* 2743 * We have two constraints: We find one extent to map and we 2744 * must always write out whole page (makes a difference when 2745 * blocksize < pagesize) so that we don't block on IO when we 2746 * try to write out the rest of the page. Journalled mode is 2747 * not supported by delalloc. 2748 */ 2749 BUG_ON(ext4_should_journal_data(inode)); 2750 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2751 2752 /* start a new transaction */ 2753 handle = ext4_journal_start_with_reserve(inode, 2754 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2755 if (IS_ERR(handle)) { 2756 ret = PTR_ERR(handle); 2757 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2758 "%ld pages, ino %lu; err %d", __func__, 2759 wbc->nr_to_write, inode->i_ino, ret); 2760 /* Release allocated io_end */ 2761 ext4_put_io_end(mpd.io_submit.io_end); 2762 mpd.io_submit.io_end = NULL; 2763 break; 2764 } 2765 mpd.do_map = 1; 2766 2767 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2768 ret = mpage_prepare_extent_to_map(&mpd); 2769 if (!ret) { 2770 if (mpd.map.m_len) 2771 ret = mpage_map_and_submit_extent(handle, &mpd, 2772 &give_up_on_write); 2773 else { 2774 /* 2775 * We scanned the whole range (or exhausted 2776 * nr_to_write), submitted what was mapped and 2777 * didn't find anything needing mapping. We are 2778 * done. 2779 */ 2780 done = true; 2781 } 2782 } 2783 /* 2784 * Caution: If the handle is synchronous, 2785 * ext4_journal_stop() can wait for transaction commit 2786 * to finish which may depend on writeback of pages to 2787 * complete or on page lock to be released. In that 2788 * case, we have to wait until after after we have 2789 * submitted all the IO, released page locks we hold, 2790 * and dropped io_end reference (for extent conversion 2791 * to be able to complete) before stopping the handle. 2792 */ 2793 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2794 ext4_journal_stop(handle); 2795 handle = NULL; 2796 mpd.do_map = 0; 2797 } 2798 /* Unlock pages we didn't use */ 2799 mpage_release_unused_pages(&mpd, give_up_on_write); 2800 /* Submit prepared bio */ 2801 ext4_io_submit(&mpd.io_submit); 2802 2803 /* 2804 * Drop our io_end reference we got from init. We have 2805 * to be careful and use deferred io_end finishing if 2806 * we are still holding the transaction as we can 2807 * release the last reference to io_end which may end 2808 * up doing unwritten extent conversion. 2809 */ 2810 if (handle) { 2811 ext4_put_io_end_defer(mpd.io_submit.io_end); 2812 ext4_journal_stop(handle); 2813 } else 2814 ext4_put_io_end(mpd.io_submit.io_end); 2815 mpd.io_submit.io_end = NULL; 2816 2817 if (ret == -ENOSPC && sbi->s_journal) { 2818 /* 2819 * Commit the transaction which would 2820 * free blocks released in the transaction 2821 * and try again 2822 */ 2823 jbd2_journal_force_commit_nested(sbi->s_journal); 2824 ret = 0; 2825 continue; 2826 } 2827 /* Fatal error - ENOMEM, EIO... */ 2828 if (ret) 2829 break; 2830 } 2831 unplug: 2832 blk_finish_plug(&plug); 2833 if (!ret && !cycled && wbc->nr_to_write > 0) { 2834 cycled = 1; 2835 mpd.last_page = writeback_index - 1; 2836 mpd.first_page = 0; 2837 goto retry; 2838 } 2839 2840 /* Update index */ 2841 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2842 /* 2843 * Set the writeback_index so that range_cyclic 2844 * mode will write it back later 2845 */ 2846 mapping->writeback_index = mpd.first_page; 2847 2848 out_writepages: 2849 trace_ext4_writepages_result(inode, wbc, ret, 2850 nr_to_write - wbc->nr_to_write); 2851 percpu_up_read(&sbi->s_journal_flag_rwsem); 2852 return ret; 2853 } 2854 2855 static int ext4_dax_writepages(struct address_space *mapping, 2856 struct writeback_control *wbc) 2857 { 2858 int ret; 2859 long nr_to_write = wbc->nr_to_write; 2860 struct inode *inode = mapping->host; 2861 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2862 2863 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2864 return -EIO; 2865 2866 percpu_down_read(&sbi->s_journal_flag_rwsem); 2867 trace_ext4_writepages(inode, wbc); 2868 2869 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc); 2870 trace_ext4_writepages_result(inode, wbc, ret, 2871 nr_to_write - wbc->nr_to_write); 2872 percpu_up_read(&sbi->s_journal_flag_rwsem); 2873 return ret; 2874 } 2875 2876 static int ext4_nonda_switch(struct super_block *sb) 2877 { 2878 s64 free_clusters, dirty_clusters; 2879 struct ext4_sb_info *sbi = EXT4_SB(sb); 2880 2881 /* 2882 * switch to non delalloc mode if we are running low 2883 * on free block. The free block accounting via percpu 2884 * counters can get slightly wrong with percpu_counter_batch getting 2885 * accumulated on each CPU without updating global counters 2886 * Delalloc need an accurate free block accounting. So switch 2887 * to non delalloc when we are near to error range. 2888 */ 2889 free_clusters = 2890 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2891 dirty_clusters = 2892 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2893 /* 2894 * Start pushing delalloc when 1/2 of free blocks are dirty. 2895 */ 2896 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2897 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2898 2899 if (2 * free_clusters < 3 * dirty_clusters || 2900 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2901 /* 2902 * free block count is less than 150% of dirty blocks 2903 * or free blocks is less than watermark 2904 */ 2905 return 1; 2906 } 2907 return 0; 2908 } 2909 2910 /* We always reserve for an inode update; the superblock could be there too */ 2911 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2912 { 2913 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2914 return 1; 2915 2916 if (pos + len <= 0x7fffffffULL) 2917 return 1; 2918 2919 /* We might need to update the superblock to set LARGE_FILE */ 2920 return 2; 2921 } 2922 2923 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2924 loff_t pos, unsigned len, unsigned flags, 2925 struct page **pagep, void **fsdata) 2926 { 2927 int ret, retries = 0; 2928 struct page *page; 2929 pgoff_t index; 2930 struct inode *inode = mapping->host; 2931 handle_t *handle; 2932 2933 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2934 return -EIO; 2935 2936 index = pos >> PAGE_SHIFT; 2937 2938 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2939 ext4_verity_in_progress(inode)) { 2940 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2941 return ext4_write_begin(file, mapping, pos, 2942 len, flags, pagep, fsdata); 2943 } 2944 *fsdata = (void *)0; 2945 trace_ext4_da_write_begin(inode, pos, len, flags); 2946 2947 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2948 ret = ext4_da_write_inline_data_begin(mapping, inode, 2949 pos, len, flags, 2950 pagep, fsdata); 2951 if (ret < 0) 2952 return ret; 2953 if (ret == 1) 2954 return 0; 2955 } 2956 2957 /* 2958 * grab_cache_page_write_begin() can take a long time if the 2959 * system is thrashing due to memory pressure, or if the page 2960 * is being written back. So grab it first before we start 2961 * the transaction handle. This also allows us to allocate 2962 * the page (if needed) without using GFP_NOFS. 2963 */ 2964 retry_grab: 2965 page = grab_cache_page_write_begin(mapping, index, flags); 2966 if (!page) 2967 return -ENOMEM; 2968 unlock_page(page); 2969 2970 /* 2971 * With delayed allocation, we don't log the i_disksize update 2972 * if there is delayed block allocation. But we still need 2973 * to journalling the i_disksize update if writes to the end 2974 * of file which has an already mapped buffer. 2975 */ 2976 retry_journal: 2977 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2978 ext4_da_write_credits(inode, pos, len)); 2979 if (IS_ERR(handle)) { 2980 put_page(page); 2981 return PTR_ERR(handle); 2982 } 2983 2984 lock_page(page); 2985 if (page->mapping != mapping) { 2986 /* The page got truncated from under us */ 2987 unlock_page(page); 2988 put_page(page); 2989 ext4_journal_stop(handle); 2990 goto retry_grab; 2991 } 2992 /* In case writeback began while the page was unlocked */ 2993 wait_for_stable_page(page); 2994 2995 #ifdef CONFIG_FS_ENCRYPTION 2996 ret = ext4_block_write_begin(page, pos, len, 2997 ext4_da_get_block_prep); 2998 #else 2999 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3000 #endif 3001 if (ret < 0) { 3002 unlock_page(page); 3003 ext4_journal_stop(handle); 3004 /* 3005 * block_write_begin may have instantiated a few blocks 3006 * outside i_size. Trim these off again. Don't need 3007 * i_size_read because we hold i_mutex. 3008 */ 3009 if (pos + len > inode->i_size) 3010 ext4_truncate_failed_write(inode); 3011 3012 if (ret == -ENOSPC && 3013 ext4_should_retry_alloc(inode->i_sb, &retries)) 3014 goto retry_journal; 3015 3016 put_page(page); 3017 return ret; 3018 } 3019 3020 *pagep = page; 3021 return ret; 3022 } 3023 3024 /* 3025 * Check if we should update i_disksize 3026 * when write to the end of file but not require block allocation 3027 */ 3028 static int ext4_da_should_update_i_disksize(struct page *page, 3029 unsigned long offset) 3030 { 3031 struct buffer_head *bh; 3032 struct inode *inode = page->mapping->host; 3033 unsigned int idx; 3034 int i; 3035 3036 bh = page_buffers(page); 3037 idx = offset >> inode->i_blkbits; 3038 3039 for (i = 0; i < idx; i++) 3040 bh = bh->b_this_page; 3041 3042 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3043 return 0; 3044 return 1; 3045 } 3046 3047 static int ext4_da_write_end(struct file *file, 3048 struct address_space *mapping, 3049 loff_t pos, unsigned len, unsigned copied, 3050 struct page *page, void *fsdata) 3051 { 3052 struct inode *inode = mapping->host; 3053 int ret = 0, ret2; 3054 handle_t *handle = ext4_journal_current_handle(); 3055 loff_t new_i_size; 3056 unsigned long start, end; 3057 int write_mode = (int)(unsigned long)fsdata; 3058 3059 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3060 return ext4_write_end(file, mapping, pos, 3061 len, copied, page, fsdata); 3062 3063 trace_ext4_da_write_end(inode, pos, len, copied); 3064 start = pos & (PAGE_SIZE - 1); 3065 end = start + copied - 1; 3066 3067 /* 3068 * generic_write_end() will run mark_inode_dirty() if i_size 3069 * changes. So let's piggyback the i_disksize mark_inode_dirty 3070 * into that. 3071 */ 3072 new_i_size = pos + copied; 3073 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3074 if (ext4_has_inline_data(inode) || 3075 ext4_da_should_update_i_disksize(page, end)) { 3076 ext4_update_i_disksize(inode, new_i_size); 3077 /* We need to mark inode dirty even if 3078 * new_i_size is less that inode->i_size 3079 * bu greater than i_disksize.(hint delalloc) 3080 */ 3081 ext4_mark_inode_dirty(handle, inode); 3082 } 3083 } 3084 3085 if (write_mode != CONVERT_INLINE_DATA && 3086 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3087 ext4_has_inline_data(inode)) 3088 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3089 page); 3090 else 3091 ret2 = generic_write_end(file, mapping, pos, len, copied, 3092 page, fsdata); 3093 3094 copied = ret2; 3095 if (ret2 < 0) 3096 ret = ret2; 3097 ret2 = ext4_journal_stop(handle); 3098 if (!ret) 3099 ret = ret2; 3100 3101 return ret ? ret : copied; 3102 } 3103 3104 /* 3105 * Force all delayed allocation blocks to be allocated for a given inode. 3106 */ 3107 int ext4_alloc_da_blocks(struct inode *inode) 3108 { 3109 trace_ext4_alloc_da_blocks(inode); 3110 3111 if (!EXT4_I(inode)->i_reserved_data_blocks) 3112 return 0; 3113 3114 /* 3115 * We do something simple for now. The filemap_flush() will 3116 * also start triggering a write of the data blocks, which is 3117 * not strictly speaking necessary (and for users of 3118 * laptop_mode, not even desirable). However, to do otherwise 3119 * would require replicating code paths in: 3120 * 3121 * ext4_writepages() -> 3122 * write_cache_pages() ---> (via passed in callback function) 3123 * __mpage_da_writepage() --> 3124 * mpage_add_bh_to_extent() 3125 * mpage_da_map_blocks() 3126 * 3127 * The problem is that write_cache_pages(), located in 3128 * mm/page-writeback.c, marks pages clean in preparation for 3129 * doing I/O, which is not desirable if we're not planning on 3130 * doing I/O at all. 3131 * 3132 * We could call write_cache_pages(), and then redirty all of 3133 * the pages by calling redirty_page_for_writepage() but that 3134 * would be ugly in the extreme. So instead we would need to 3135 * replicate parts of the code in the above functions, 3136 * simplifying them because we wouldn't actually intend to 3137 * write out the pages, but rather only collect contiguous 3138 * logical block extents, call the multi-block allocator, and 3139 * then update the buffer heads with the block allocations. 3140 * 3141 * For now, though, we'll cheat by calling filemap_flush(), 3142 * which will map the blocks, and start the I/O, but not 3143 * actually wait for the I/O to complete. 3144 */ 3145 return filemap_flush(inode->i_mapping); 3146 } 3147 3148 /* 3149 * bmap() is special. It gets used by applications such as lilo and by 3150 * the swapper to find the on-disk block of a specific piece of data. 3151 * 3152 * Naturally, this is dangerous if the block concerned is still in the 3153 * journal. If somebody makes a swapfile on an ext4 data-journaling 3154 * filesystem and enables swap, then they may get a nasty shock when the 3155 * data getting swapped to that swapfile suddenly gets overwritten by 3156 * the original zero's written out previously to the journal and 3157 * awaiting writeback in the kernel's buffer cache. 3158 * 3159 * So, if we see any bmap calls here on a modified, data-journaled file, 3160 * take extra steps to flush any blocks which might be in the cache. 3161 */ 3162 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3163 { 3164 struct inode *inode = mapping->host; 3165 journal_t *journal; 3166 int err; 3167 3168 /* 3169 * We can get here for an inline file via the FIBMAP ioctl 3170 */ 3171 if (ext4_has_inline_data(inode)) 3172 return 0; 3173 3174 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3175 test_opt(inode->i_sb, DELALLOC)) { 3176 /* 3177 * With delalloc we want to sync the file 3178 * so that we can make sure we allocate 3179 * blocks for file 3180 */ 3181 filemap_write_and_wait(mapping); 3182 } 3183 3184 if (EXT4_JOURNAL(inode) && 3185 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3186 /* 3187 * This is a REALLY heavyweight approach, but the use of 3188 * bmap on dirty files is expected to be extremely rare: 3189 * only if we run lilo or swapon on a freshly made file 3190 * do we expect this to happen. 3191 * 3192 * (bmap requires CAP_SYS_RAWIO so this does not 3193 * represent an unprivileged user DOS attack --- we'd be 3194 * in trouble if mortal users could trigger this path at 3195 * will.) 3196 * 3197 * NB. EXT4_STATE_JDATA is not set on files other than 3198 * regular files. If somebody wants to bmap a directory 3199 * or symlink and gets confused because the buffer 3200 * hasn't yet been flushed to disk, they deserve 3201 * everything they get. 3202 */ 3203 3204 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3205 journal = EXT4_JOURNAL(inode); 3206 jbd2_journal_lock_updates(journal); 3207 err = jbd2_journal_flush(journal); 3208 jbd2_journal_unlock_updates(journal); 3209 3210 if (err) 3211 return 0; 3212 } 3213 3214 return generic_block_bmap(mapping, block, ext4_get_block); 3215 } 3216 3217 static int ext4_readpage(struct file *file, struct page *page) 3218 { 3219 int ret = -EAGAIN; 3220 struct inode *inode = page->mapping->host; 3221 3222 trace_ext4_readpage(page); 3223 3224 if (ext4_has_inline_data(inode)) 3225 ret = ext4_readpage_inline(inode, page); 3226 3227 if (ret == -EAGAIN) 3228 return ext4_mpage_readpages(page->mapping, NULL, page, 1, 3229 false); 3230 3231 return ret; 3232 } 3233 3234 static int 3235 ext4_readpages(struct file *file, struct address_space *mapping, 3236 struct list_head *pages, unsigned nr_pages) 3237 { 3238 struct inode *inode = mapping->host; 3239 3240 /* If the file has inline data, no need to do readpages. */ 3241 if (ext4_has_inline_data(inode)) 3242 return 0; 3243 3244 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true); 3245 } 3246 3247 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3248 unsigned int length) 3249 { 3250 trace_ext4_invalidatepage(page, offset, length); 3251 3252 /* No journalling happens on data buffers when this function is used */ 3253 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3254 3255 block_invalidatepage(page, offset, length); 3256 } 3257 3258 static int __ext4_journalled_invalidatepage(struct page *page, 3259 unsigned int offset, 3260 unsigned int length) 3261 { 3262 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3263 3264 trace_ext4_journalled_invalidatepage(page, offset, length); 3265 3266 /* 3267 * If it's a full truncate we just forget about the pending dirtying 3268 */ 3269 if (offset == 0 && length == PAGE_SIZE) 3270 ClearPageChecked(page); 3271 3272 return jbd2_journal_invalidatepage(journal, page, offset, length); 3273 } 3274 3275 /* Wrapper for aops... */ 3276 static void ext4_journalled_invalidatepage(struct page *page, 3277 unsigned int offset, 3278 unsigned int length) 3279 { 3280 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3281 } 3282 3283 static int ext4_releasepage(struct page *page, gfp_t wait) 3284 { 3285 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3286 3287 trace_ext4_releasepage(page); 3288 3289 /* Page has dirty journalled data -> cannot release */ 3290 if (PageChecked(page)) 3291 return 0; 3292 if (journal) 3293 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3294 else 3295 return try_to_free_buffers(page); 3296 } 3297 3298 static bool ext4_inode_datasync_dirty(struct inode *inode) 3299 { 3300 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3301 3302 if (journal) 3303 return !jbd2_transaction_committed(journal, 3304 EXT4_I(inode)->i_datasync_tid); 3305 /* Any metadata buffers to write? */ 3306 if (!list_empty(&inode->i_mapping->private_list)) 3307 return true; 3308 return inode->i_state & I_DIRTY_DATASYNC; 3309 } 3310 3311 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3312 struct ext4_map_blocks *map, loff_t offset, 3313 loff_t length) 3314 { 3315 u8 blkbits = inode->i_blkbits; 3316 3317 /* 3318 * Writes that span EOF might trigger an I/O size update on completion, 3319 * so consider them to be dirty for the purpose of O_DSYNC, even if 3320 * there is no other metadata changes being made or are pending. 3321 */ 3322 iomap->flags = 0; 3323 if (ext4_inode_datasync_dirty(inode) || 3324 offset + length > i_size_read(inode)) 3325 iomap->flags |= IOMAP_F_DIRTY; 3326 3327 if (map->m_flags & EXT4_MAP_NEW) 3328 iomap->flags |= IOMAP_F_NEW; 3329 3330 iomap->bdev = inode->i_sb->s_bdev; 3331 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3332 iomap->offset = (u64) map->m_lblk << blkbits; 3333 iomap->length = (u64) map->m_len << blkbits; 3334 3335 /* 3336 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3337 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3338 * set. In order for any allocated unwritten extents to be converted 3339 * into written extents correctly within the ->end_io() handler, we 3340 * need to ensure that the iomap->type is set appropriately. Hence, the 3341 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3342 * been set first. 3343 */ 3344 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3345 iomap->type = IOMAP_UNWRITTEN; 3346 iomap->addr = (u64) map->m_pblk << blkbits; 3347 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3348 iomap->type = IOMAP_MAPPED; 3349 iomap->addr = (u64) map->m_pblk << blkbits; 3350 } else { 3351 iomap->type = IOMAP_HOLE; 3352 iomap->addr = IOMAP_NULL_ADDR; 3353 } 3354 } 3355 3356 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3357 unsigned int flags) 3358 { 3359 handle_t *handle; 3360 u8 blkbits = inode->i_blkbits; 3361 int ret, dio_credits, m_flags = 0, retries = 0; 3362 3363 /* 3364 * Trim the mapping request to the maximum value that we can map at 3365 * once for direct I/O. 3366 */ 3367 if (map->m_len > DIO_MAX_BLOCKS) 3368 map->m_len = DIO_MAX_BLOCKS; 3369 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3370 3371 retry: 3372 /* 3373 * Either we allocate blocks and then don't get an unwritten extent, so 3374 * in that case we have reserved enough credits. Or, the blocks are 3375 * already allocated and unwritten. In that case, the extent conversion 3376 * fits into the credits as well. 3377 */ 3378 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3379 if (IS_ERR(handle)) 3380 return PTR_ERR(handle); 3381 3382 /* 3383 * DAX and direct I/O are the only two operations that are currently 3384 * supported with IOMAP_WRITE. 3385 */ 3386 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3387 if (IS_DAX(inode)) 3388 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3389 /* 3390 * We use i_size instead of i_disksize here because delalloc writeback 3391 * can complete at any point during the I/O and subsequently push the 3392 * i_disksize out to i_size. This could be beyond where direct I/O is 3393 * happening and thus expose allocated blocks to direct I/O reads. 3394 */ 3395 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode)) 3396 m_flags = EXT4_GET_BLOCKS_CREATE; 3397 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3398 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3399 3400 ret = ext4_map_blocks(handle, inode, map, m_flags); 3401 3402 /* 3403 * We cannot fill holes in indirect tree based inodes as that could 3404 * expose stale data in the case of a crash. Use the magic error code 3405 * to fallback to buffered I/O. 3406 */ 3407 if (!m_flags && !ret) 3408 ret = -ENOTBLK; 3409 3410 ext4_journal_stop(handle); 3411 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3412 goto retry; 3413 3414 return ret; 3415 } 3416 3417 3418 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3419 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3420 { 3421 int ret; 3422 struct ext4_map_blocks map; 3423 u8 blkbits = inode->i_blkbits; 3424 3425 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3426 return -EINVAL; 3427 3428 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3429 return -ERANGE; 3430 3431 /* 3432 * Calculate the first and last logical blocks respectively. 3433 */ 3434 map.m_lblk = offset >> blkbits; 3435 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3436 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3437 3438 if (flags & IOMAP_WRITE) 3439 ret = ext4_iomap_alloc(inode, &map, flags); 3440 else 3441 ret = ext4_map_blocks(NULL, inode, &map, 0); 3442 3443 if (ret < 0) 3444 return ret; 3445 3446 ext4_set_iomap(inode, iomap, &map, offset, length); 3447 3448 return 0; 3449 } 3450 3451 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3452 ssize_t written, unsigned flags, struct iomap *iomap) 3453 { 3454 /* 3455 * Check to see whether an error occurred while writing out the data to 3456 * the allocated blocks. If so, return the magic error code so that we 3457 * fallback to buffered I/O and attempt to complete the remainder of 3458 * the I/O. Any blocks that may have been allocated in preparation for 3459 * the direct I/O will be reused during buffered I/O. 3460 */ 3461 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3462 return -ENOTBLK; 3463 3464 return 0; 3465 } 3466 3467 const struct iomap_ops ext4_iomap_ops = { 3468 .iomap_begin = ext4_iomap_begin, 3469 .iomap_end = ext4_iomap_end, 3470 }; 3471 3472 static bool ext4_iomap_is_delalloc(struct inode *inode, 3473 struct ext4_map_blocks *map) 3474 { 3475 struct extent_status es; 3476 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3477 3478 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3479 map->m_lblk, end, &es); 3480 3481 if (!es.es_len || es.es_lblk > end) 3482 return false; 3483 3484 if (es.es_lblk > map->m_lblk) { 3485 map->m_len = es.es_lblk - map->m_lblk; 3486 return false; 3487 } 3488 3489 offset = map->m_lblk - es.es_lblk; 3490 map->m_len = es.es_len - offset; 3491 3492 return true; 3493 } 3494 3495 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3496 loff_t length, unsigned int flags, 3497 struct iomap *iomap, struct iomap *srcmap) 3498 { 3499 int ret; 3500 bool delalloc = false; 3501 struct ext4_map_blocks map; 3502 u8 blkbits = inode->i_blkbits; 3503 3504 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3505 return -EINVAL; 3506 3507 if (ext4_has_inline_data(inode)) { 3508 ret = ext4_inline_data_iomap(inode, iomap); 3509 if (ret != -EAGAIN) { 3510 if (ret == 0 && offset >= iomap->length) 3511 ret = -ENOENT; 3512 return ret; 3513 } 3514 } 3515 3516 /* 3517 * Calculate the first and last logical block respectively. 3518 */ 3519 map.m_lblk = offset >> blkbits; 3520 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3521 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3522 3523 ret = ext4_map_blocks(NULL, inode, &map, 0); 3524 if (ret < 0) 3525 return ret; 3526 if (ret == 0) 3527 delalloc = ext4_iomap_is_delalloc(inode, &map); 3528 3529 ext4_set_iomap(inode, iomap, &map, offset, length); 3530 if (delalloc && iomap->type == IOMAP_HOLE) 3531 iomap->type = IOMAP_DELALLOC; 3532 3533 return 0; 3534 } 3535 3536 const struct iomap_ops ext4_iomap_report_ops = { 3537 .iomap_begin = ext4_iomap_begin_report, 3538 }; 3539 3540 /* 3541 * Pages can be marked dirty completely asynchronously from ext4's journalling 3542 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3543 * much here because ->set_page_dirty is called under VFS locks. The page is 3544 * not necessarily locked. 3545 * 3546 * We cannot just dirty the page and leave attached buffers clean, because the 3547 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3548 * or jbddirty because all the journalling code will explode. 3549 * 3550 * So what we do is to mark the page "pending dirty" and next time writepage 3551 * is called, propagate that into the buffers appropriately. 3552 */ 3553 static int ext4_journalled_set_page_dirty(struct page *page) 3554 { 3555 SetPageChecked(page); 3556 return __set_page_dirty_nobuffers(page); 3557 } 3558 3559 static int ext4_set_page_dirty(struct page *page) 3560 { 3561 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3562 WARN_ON_ONCE(!page_has_buffers(page)); 3563 return __set_page_dirty_buffers(page); 3564 } 3565 3566 static const struct address_space_operations ext4_aops = { 3567 .readpage = ext4_readpage, 3568 .readpages = ext4_readpages, 3569 .writepage = ext4_writepage, 3570 .writepages = ext4_writepages, 3571 .write_begin = ext4_write_begin, 3572 .write_end = ext4_write_end, 3573 .set_page_dirty = ext4_set_page_dirty, 3574 .bmap = ext4_bmap, 3575 .invalidatepage = ext4_invalidatepage, 3576 .releasepage = ext4_releasepage, 3577 .direct_IO = noop_direct_IO, 3578 .migratepage = buffer_migrate_page, 3579 .is_partially_uptodate = block_is_partially_uptodate, 3580 .error_remove_page = generic_error_remove_page, 3581 }; 3582 3583 static const struct address_space_operations ext4_journalled_aops = { 3584 .readpage = ext4_readpage, 3585 .readpages = ext4_readpages, 3586 .writepage = ext4_writepage, 3587 .writepages = ext4_writepages, 3588 .write_begin = ext4_write_begin, 3589 .write_end = ext4_journalled_write_end, 3590 .set_page_dirty = ext4_journalled_set_page_dirty, 3591 .bmap = ext4_bmap, 3592 .invalidatepage = ext4_journalled_invalidatepage, 3593 .releasepage = ext4_releasepage, 3594 .direct_IO = noop_direct_IO, 3595 .is_partially_uptodate = block_is_partially_uptodate, 3596 .error_remove_page = generic_error_remove_page, 3597 }; 3598 3599 static const struct address_space_operations ext4_da_aops = { 3600 .readpage = ext4_readpage, 3601 .readpages = ext4_readpages, 3602 .writepage = ext4_writepage, 3603 .writepages = ext4_writepages, 3604 .write_begin = ext4_da_write_begin, 3605 .write_end = ext4_da_write_end, 3606 .set_page_dirty = ext4_set_page_dirty, 3607 .bmap = ext4_bmap, 3608 .invalidatepage = ext4_invalidatepage, 3609 .releasepage = ext4_releasepage, 3610 .direct_IO = noop_direct_IO, 3611 .migratepage = buffer_migrate_page, 3612 .is_partially_uptodate = block_is_partially_uptodate, 3613 .error_remove_page = generic_error_remove_page, 3614 }; 3615 3616 static const struct address_space_operations ext4_dax_aops = { 3617 .writepages = ext4_dax_writepages, 3618 .direct_IO = noop_direct_IO, 3619 .set_page_dirty = noop_set_page_dirty, 3620 .bmap = ext4_bmap, 3621 .invalidatepage = noop_invalidatepage, 3622 }; 3623 3624 void ext4_set_aops(struct inode *inode) 3625 { 3626 switch (ext4_inode_journal_mode(inode)) { 3627 case EXT4_INODE_ORDERED_DATA_MODE: 3628 case EXT4_INODE_WRITEBACK_DATA_MODE: 3629 break; 3630 case EXT4_INODE_JOURNAL_DATA_MODE: 3631 inode->i_mapping->a_ops = &ext4_journalled_aops; 3632 return; 3633 default: 3634 BUG(); 3635 } 3636 if (IS_DAX(inode)) 3637 inode->i_mapping->a_ops = &ext4_dax_aops; 3638 else if (test_opt(inode->i_sb, DELALLOC)) 3639 inode->i_mapping->a_ops = &ext4_da_aops; 3640 else 3641 inode->i_mapping->a_ops = &ext4_aops; 3642 } 3643 3644 static int __ext4_block_zero_page_range(handle_t *handle, 3645 struct address_space *mapping, loff_t from, loff_t length) 3646 { 3647 ext4_fsblk_t index = from >> PAGE_SHIFT; 3648 unsigned offset = from & (PAGE_SIZE-1); 3649 unsigned blocksize, pos; 3650 ext4_lblk_t iblock; 3651 struct inode *inode = mapping->host; 3652 struct buffer_head *bh; 3653 struct page *page; 3654 int err = 0; 3655 3656 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3657 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3658 if (!page) 3659 return -ENOMEM; 3660 3661 blocksize = inode->i_sb->s_blocksize; 3662 3663 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3664 3665 if (!page_has_buffers(page)) 3666 create_empty_buffers(page, blocksize, 0); 3667 3668 /* Find the buffer that contains "offset" */ 3669 bh = page_buffers(page); 3670 pos = blocksize; 3671 while (offset >= pos) { 3672 bh = bh->b_this_page; 3673 iblock++; 3674 pos += blocksize; 3675 } 3676 if (buffer_freed(bh)) { 3677 BUFFER_TRACE(bh, "freed: skip"); 3678 goto unlock; 3679 } 3680 if (!buffer_mapped(bh)) { 3681 BUFFER_TRACE(bh, "unmapped"); 3682 ext4_get_block(inode, iblock, bh, 0); 3683 /* unmapped? It's a hole - nothing to do */ 3684 if (!buffer_mapped(bh)) { 3685 BUFFER_TRACE(bh, "still unmapped"); 3686 goto unlock; 3687 } 3688 } 3689 3690 /* Ok, it's mapped. Make sure it's up-to-date */ 3691 if (PageUptodate(page)) 3692 set_buffer_uptodate(bh); 3693 3694 if (!buffer_uptodate(bh)) { 3695 err = -EIO; 3696 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3697 wait_on_buffer(bh); 3698 /* Uhhuh. Read error. Complain and punt. */ 3699 if (!buffer_uptodate(bh)) 3700 goto unlock; 3701 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) { 3702 /* We expect the key to be set. */ 3703 BUG_ON(!fscrypt_has_encryption_key(inode)); 3704 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks( 3705 page, blocksize, bh_offset(bh))); 3706 } 3707 } 3708 if (ext4_should_journal_data(inode)) { 3709 BUFFER_TRACE(bh, "get write access"); 3710 err = ext4_journal_get_write_access(handle, bh); 3711 if (err) 3712 goto unlock; 3713 } 3714 zero_user(page, offset, length); 3715 BUFFER_TRACE(bh, "zeroed end of block"); 3716 3717 if (ext4_should_journal_data(inode)) { 3718 err = ext4_handle_dirty_metadata(handle, inode, bh); 3719 } else { 3720 err = 0; 3721 mark_buffer_dirty(bh); 3722 if (ext4_should_order_data(inode)) 3723 err = ext4_jbd2_inode_add_write(handle, inode, from, 3724 length); 3725 } 3726 3727 unlock: 3728 unlock_page(page); 3729 put_page(page); 3730 return err; 3731 } 3732 3733 /* 3734 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3735 * starting from file offset 'from'. The range to be zero'd must 3736 * be contained with in one block. If the specified range exceeds 3737 * the end of the block it will be shortened to end of the block 3738 * that cooresponds to 'from' 3739 */ 3740 static int ext4_block_zero_page_range(handle_t *handle, 3741 struct address_space *mapping, loff_t from, loff_t length) 3742 { 3743 struct inode *inode = mapping->host; 3744 unsigned offset = from & (PAGE_SIZE-1); 3745 unsigned blocksize = inode->i_sb->s_blocksize; 3746 unsigned max = blocksize - (offset & (blocksize - 1)); 3747 3748 /* 3749 * correct length if it does not fall between 3750 * 'from' and the end of the block 3751 */ 3752 if (length > max || length < 0) 3753 length = max; 3754 3755 if (IS_DAX(inode)) { 3756 return iomap_zero_range(inode, from, length, NULL, 3757 &ext4_iomap_ops); 3758 } 3759 return __ext4_block_zero_page_range(handle, mapping, from, length); 3760 } 3761 3762 /* 3763 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3764 * up to the end of the block which corresponds to `from'. 3765 * This required during truncate. We need to physically zero the tail end 3766 * of that block so it doesn't yield old data if the file is later grown. 3767 */ 3768 static int ext4_block_truncate_page(handle_t *handle, 3769 struct address_space *mapping, loff_t from) 3770 { 3771 unsigned offset = from & (PAGE_SIZE-1); 3772 unsigned length; 3773 unsigned blocksize; 3774 struct inode *inode = mapping->host; 3775 3776 /* If we are processing an encrypted inode during orphan list handling */ 3777 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3778 return 0; 3779 3780 blocksize = inode->i_sb->s_blocksize; 3781 length = blocksize - (offset & (blocksize - 1)); 3782 3783 return ext4_block_zero_page_range(handle, mapping, from, length); 3784 } 3785 3786 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3787 loff_t lstart, loff_t length) 3788 { 3789 struct super_block *sb = inode->i_sb; 3790 struct address_space *mapping = inode->i_mapping; 3791 unsigned partial_start, partial_end; 3792 ext4_fsblk_t start, end; 3793 loff_t byte_end = (lstart + length - 1); 3794 int err = 0; 3795 3796 partial_start = lstart & (sb->s_blocksize - 1); 3797 partial_end = byte_end & (sb->s_blocksize - 1); 3798 3799 start = lstart >> sb->s_blocksize_bits; 3800 end = byte_end >> sb->s_blocksize_bits; 3801 3802 /* Handle partial zero within the single block */ 3803 if (start == end && 3804 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3805 err = ext4_block_zero_page_range(handle, mapping, 3806 lstart, length); 3807 return err; 3808 } 3809 /* Handle partial zero out on the start of the range */ 3810 if (partial_start) { 3811 err = ext4_block_zero_page_range(handle, mapping, 3812 lstart, sb->s_blocksize); 3813 if (err) 3814 return err; 3815 } 3816 /* Handle partial zero out on the end of the range */ 3817 if (partial_end != sb->s_blocksize - 1) 3818 err = ext4_block_zero_page_range(handle, mapping, 3819 byte_end - partial_end, 3820 partial_end + 1); 3821 return err; 3822 } 3823 3824 int ext4_can_truncate(struct inode *inode) 3825 { 3826 if (S_ISREG(inode->i_mode)) 3827 return 1; 3828 if (S_ISDIR(inode->i_mode)) 3829 return 1; 3830 if (S_ISLNK(inode->i_mode)) 3831 return !ext4_inode_is_fast_symlink(inode); 3832 return 0; 3833 } 3834 3835 /* 3836 * We have to make sure i_disksize gets properly updated before we truncate 3837 * page cache due to hole punching or zero range. Otherwise i_disksize update 3838 * can get lost as it may have been postponed to submission of writeback but 3839 * that will never happen after we truncate page cache. 3840 */ 3841 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3842 loff_t len) 3843 { 3844 handle_t *handle; 3845 loff_t size = i_size_read(inode); 3846 3847 WARN_ON(!inode_is_locked(inode)); 3848 if (offset > size || offset + len < size) 3849 return 0; 3850 3851 if (EXT4_I(inode)->i_disksize >= size) 3852 return 0; 3853 3854 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3855 if (IS_ERR(handle)) 3856 return PTR_ERR(handle); 3857 ext4_update_i_disksize(inode, size); 3858 ext4_mark_inode_dirty(handle, inode); 3859 ext4_journal_stop(handle); 3860 3861 return 0; 3862 } 3863 3864 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 3865 { 3866 up_write(&ei->i_mmap_sem); 3867 schedule(); 3868 down_write(&ei->i_mmap_sem); 3869 } 3870 3871 int ext4_break_layouts(struct inode *inode) 3872 { 3873 struct ext4_inode_info *ei = EXT4_I(inode); 3874 struct page *page; 3875 int error; 3876 3877 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 3878 return -EINVAL; 3879 3880 do { 3881 page = dax_layout_busy_page(inode->i_mapping); 3882 if (!page) 3883 return 0; 3884 3885 error = ___wait_var_event(&page->_refcount, 3886 atomic_read(&page->_refcount) == 1, 3887 TASK_INTERRUPTIBLE, 0, 0, 3888 ext4_wait_dax_page(ei)); 3889 } while (error == 0); 3890 3891 return error; 3892 } 3893 3894 /* 3895 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3896 * associated with the given offset and length 3897 * 3898 * @inode: File inode 3899 * @offset: The offset where the hole will begin 3900 * @len: The length of the hole 3901 * 3902 * Returns: 0 on success or negative on failure 3903 */ 3904 3905 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3906 { 3907 struct super_block *sb = inode->i_sb; 3908 ext4_lblk_t first_block, stop_block; 3909 struct address_space *mapping = inode->i_mapping; 3910 loff_t first_block_offset, last_block_offset; 3911 handle_t *handle; 3912 unsigned int credits; 3913 int ret = 0; 3914 3915 if (!S_ISREG(inode->i_mode)) 3916 return -EOPNOTSUPP; 3917 3918 trace_ext4_punch_hole(inode, offset, length, 0); 3919 3920 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 3921 if (ext4_has_inline_data(inode)) { 3922 down_write(&EXT4_I(inode)->i_mmap_sem); 3923 ret = ext4_convert_inline_data(inode); 3924 up_write(&EXT4_I(inode)->i_mmap_sem); 3925 if (ret) 3926 return ret; 3927 } 3928 3929 /* 3930 * Write out all dirty pages to avoid race conditions 3931 * Then release them. 3932 */ 3933 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3934 ret = filemap_write_and_wait_range(mapping, offset, 3935 offset + length - 1); 3936 if (ret) 3937 return ret; 3938 } 3939 3940 inode_lock(inode); 3941 3942 /* No need to punch hole beyond i_size */ 3943 if (offset >= inode->i_size) 3944 goto out_mutex; 3945 3946 /* 3947 * If the hole extends beyond i_size, set the hole 3948 * to end after the page that contains i_size 3949 */ 3950 if (offset + length > inode->i_size) { 3951 length = inode->i_size + 3952 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3953 offset; 3954 } 3955 3956 if (offset & (sb->s_blocksize - 1) || 3957 (offset + length) & (sb->s_blocksize - 1)) { 3958 /* 3959 * Attach jinode to inode for jbd2 if we do any zeroing of 3960 * partial block 3961 */ 3962 ret = ext4_inode_attach_jinode(inode); 3963 if (ret < 0) 3964 goto out_mutex; 3965 3966 } 3967 3968 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3969 inode_dio_wait(inode); 3970 3971 /* 3972 * Prevent page faults from reinstantiating pages we have released from 3973 * page cache. 3974 */ 3975 down_write(&EXT4_I(inode)->i_mmap_sem); 3976 3977 ret = ext4_break_layouts(inode); 3978 if (ret) 3979 goto out_dio; 3980 3981 first_block_offset = round_up(offset, sb->s_blocksize); 3982 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3983 3984 /* Now release the pages and zero block aligned part of pages*/ 3985 if (last_block_offset > first_block_offset) { 3986 ret = ext4_update_disksize_before_punch(inode, offset, length); 3987 if (ret) 3988 goto out_dio; 3989 truncate_pagecache_range(inode, first_block_offset, 3990 last_block_offset); 3991 } 3992 3993 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3994 credits = ext4_writepage_trans_blocks(inode); 3995 else 3996 credits = ext4_blocks_for_truncate(inode); 3997 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3998 if (IS_ERR(handle)) { 3999 ret = PTR_ERR(handle); 4000 ext4_std_error(sb, ret); 4001 goto out_dio; 4002 } 4003 4004 ret = ext4_zero_partial_blocks(handle, inode, offset, 4005 length); 4006 if (ret) 4007 goto out_stop; 4008 4009 first_block = (offset + sb->s_blocksize - 1) >> 4010 EXT4_BLOCK_SIZE_BITS(sb); 4011 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4012 4013 /* If there are blocks to remove, do it */ 4014 if (stop_block > first_block) { 4015 4016 down_write(&EXT4_I(inode)->i_data_sem); 4017 ext4_discard_preallocations(inode); 4018 4019 ret = ext4_es_remove_extent(inode, first_block, 4020 stop_block - first_block); 4021 if (ret) { 4022 up_write(&EXT4_I(inode)->i_data_sem); 4023 goto out_stop; 4024 } 4025 4026 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4027 ret = ext4_ext_remove_space(inode, first_block, 4028 stop_block - 1); 4029 else 4030 ret = ext4_ind_remove_space(handle, inode, first_block, 4031 stop_block); 4032 4033 up_write(&EXT4_I(inode)->i_data_sem); 4034 } 4035 if (IS_SYNC(inode)) 4036 ext4_handle_sync(handle); 4037 4038 inode->i_mtime = inode->i_ctime = current_time(inode); 4039 ext4_mark_inode_dirty(handle, inode); 4040 if (ret >= 0) 4041 ext4_update_inode_fsync_trans(handle, inode, 1); 4042 out_stop: 4043 ext4_journal_stop(handle); 4044 out_dio: 4045 up_write(&EXT4_I(inode)->i_mmap_sem); 4046 out_mutex: 4047 inode_unlock(inode); 4048 return ret; 4049 } 4050 4051 int ext4_inode_attach_jinode(struct inode *inode) 4052 { 4053 struct ext4_inode_info *ei = EXT4_I(inode); 4054 struct jbd2_inode *jinode; 4055 4056 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4057 return 0; 4058 4059 jinode = jbd2_alloc_inode(GFP_KERNEL); 4060 spin_lock(&inode->i_lock); 4061 if (!ei->jinode) { 4062 if (!jinode) { 4063 spin_unlock(&inode->i_lock); 4064 return -ENOMEM; 4065 } 4066 ei->jinode = jinode; 4067 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4068 jinode = NULL; 4069 } 4070 spin_unlock(&inode->i_lock); 4071 if (unlikely(jinode != NULL)) 4072 jbd2_free_inode(jinode); 4073 return 0; 4074 } 4075 4076 /* 4077 * ext4_truncate() 4078 * 4079 * We block out ext4_get_block() block instantiations across the entire 4080 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4081 * simultaneously on behalf of the same inode. 4082 * 4083 * As we work through the truncate and commit bits of it to the journal there 4084 * is one core, guiding principle: the file's tree must always be consistent on 4085 * disk. We must be able to restart the truncate after a crash. 4086 * 4087 * The file's tree may be transiently inconsistent in memory (although it 4088 * probably isn't), but whenever we close off and commit a journal transaction, 4089 * the contents of (the filesystem + the journal) must be consistent and 4090 * restartable. It's pretty simple, really: bottom up, right to left (although 4091 * left-to-right works OK too). 4092 * 4093 * Note that at recovery time, journal replay occurs *before* the restart of 4094 * truncate against the orphan inode list. 4095 * 4096 * The committed inode has the new, desired i_size (which is the same as 4097 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4098 * that this inode's truncate did not complete and it will again call 4099 * ext4_truncate() to have another go. So there will be instantiated blocks 4100 * to the right of the truncation point in a crashed ext4 filesystem. But 4101 * that's fine - as long as they are linked from the inode, the post-crash 4102 * ext4_truncate() run will find them and release them. 4103 */ 4104 int ext4_truncate(struct inode *inode) 4105 { 4106 struct ext4_inode_info *ei = EXT4_I(inode); 4107 unsigned int credits; 4108 int err = 0; 4109 handle_t *handle; 4110 struct address_space *mapping = inode->i_mapping; 4111 4112 /* 4113 * There is a possibility that we're either freeing the inode 4114 * or it's a completely new inode. In those cases we might not 4115 * have i_mutex locked because it's not necessary. 4116 */ 4117 if (!(inode->i_state & (I_NEW|I_FREEING))) 4118 WARN_ON(!inode_is_locked(inode)); 4119 trace_ext4_truncate_enter(inode); 4120 4121 if (!ext4_can_truncate(inode)) 4122 return 0; 4123 4124 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4125 4126 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4127 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4128 4129 if (ext4_has_inline_data(inode)) { 4130 int has_inline = 1; 4131 4132 err = ext4_inline_data_truncate(inode, &has_inline); 4133 if (err) 4134 return err; 4135 if (has_inline) 4136 return 0; 4137 } 4138 4139 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4140 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4141 if (ext4_inode_attach_jinode(inode) < 0) 4142 return 0; 4143 } 4144 4145 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4146 credits = ext4_writepage_trans_blocks(inode); 4147 else 4148 credits = ext4_blocks_for_truncate(inode); 4149 4150 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4151 if (IS_ERR(handle)) 4152 return PTR_ERR(handle); 4153 4154 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4155 ext4_block_truncate_page(handle, mapping, inode->i_size); 4156 4157 /* 4158 * We add the inode to the orphan list, so that if this 4159 * truncate spans multiple transactions, and we crash, we will 4160 * resume the truncate when the filesystem recovers. It also 4161 * marks the inode dirty, to catch the new size. 4162 * 4163 * Implication: the file must always be in a sane, consistent 4164 * truncatable state while each transaction commits. 4165 */ 4166 err = ext4_orphan_add(handle, inode); 4167 if (err) 4168 goto out_stop; 4169 4170 down_write(&EXT4_I(inode)->i_data_sem); 4171 4172 ext4_discard_preallocations(inode); 4173 4174 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4175 err = ext4_ext_truncate(handle, inode); 4176 else 4177 ext4_ind_truncate(handle, inode); 4178 4179 up_write(&ei->i_data_sem); 4180 if (err) 4181 goto out_stop; 4182 4183 if (IS_SYNC(inode)) 4184 ext4_handle_sync(handle); 4185 4186 out_stop: 4187 /* 4188 * If this was a simple ftruncate() and the file will remain alive, 4189 * then we need to clear up the orphan record which we created above. 4190 * However, if this was a real unlink then we were called by 4191 * ext4_evict_inode(), and we allow that function to clean up the 4192 * orphan info for us. 4193 */ 4194 if (inode->i_nlink) 4195 ext4_orphan_del(handle, inode); 4196 4197 inode->i_mtime = inode->i_ctime = current_time(inode); 4198 ext4_mark_inode_dirty(handle, inode); 4199 ext4_journal_stop(handle); 4200 4201 trace_ext4_truncate_exit(inode); 4202 return err; 4203 } 4204 4205 /* 4206 * ext4_get_inode_loc returns with an extra refcount against the inode's 4207 * underlying buffer_head on success. If 'in_mem' is true, we have all 4208 * data in memory that is needed to recreate the on-disk version of this 4209 * inode. 4210 */ 4211 static int __ext4_get_inode_loc(struct inode *inode, 4212 struct ext4_iloc *iloc, int in_mem) 4213 { 4214 struct ext4_group_desc *gdp; 4215 struct buffer_head *bh; 4216 struct super_block *sb = inode->i_sb; 4217 ext4_fsblk_t block; 4218 struct blk_plug plug; 4219 int inodes_per_block, inode_offset; 4220 4221 iloc->bh = NULL; 4222 if (inode->i_ino < EXT4_ROOT_INO || 4223 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4224 return -EFSCORRUPTED; 4225 4226 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4227 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4228 if (!gdp) 4229 return -EIO; 4230 4231 /* 4232 * Figure out the offset within the block group inode table 4233 */ 4234 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4235 inode_offset = ((inode->i_ino - 1) % 4236 EXT4_INODES_PER_GROUP(sb)); 4237 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4238 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4239 4240 bh = sb_getblk(sb, block); 4241 if (unlikely(!bh)) 4242 return -ENOMEM; 4243 if (!buffer_uptodate(bh)) { 4244 lock_buffer(bh); 4245 4246 /* 4247 * If the buffer has the write error flag, we have failed 4248 * to write out another inode in the same block. In this 4249 * case, we don't have to read the block because we may 4250 * read the old inode data successfully. 4251 */ 4252 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4253 set_buffer_uptodate(bh); 4254 4255 if (buffer_uptodate(bh)) { 4256 /* someone brought it uptodate while we waited */ 4257 unlock_buffer(bh); 4258 goto has_buffer; 4259 } 4260 4261 /* 4262 * If we have all information of the inode in memory and this 4263 * is the only valid inode in the block, we need not read the 4264 * block. 4265 */ 4266 if (in_mem) { 4267 struct buffer_head *bitmap_bh; 4268 int i, start; 4269 4270 start = inode_offset & ~(inodes_per_block - 1); 4271 4272 /* Is the inode bitmap in cache? */ 4273 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4274 if (unlikely(!bitmap_bh)) 4275 goto make_io; 4276 4277 /* 4278 * If the inode bitmap isn't in cache then the 4279 * optimisation may end up performing two reads instead 4280 * of one, so skip it. 4281 */ 4282 if (!buffer_uptodate(bitmap_bh)) { 4283 brelse(bitmap_bh); 4284 goto make_io; 4285 } 4286 for (i = start; i < start + inodes_per_block; i++) { 4287 if (i == inode_offset) 4288 continue; 4289 if (ext4_test_bit(i, bitmap_bh->b_data)) 4290 break; 4291 } 4292 brelse(bitmap_bh); 4293 if (i == start + inodes_per_block) { 4294 /* all other inodes are free, so skip I/O */ 4295 memset(bh->b_data, 0, bh->b_size); 4296 set_buffer_uptodate(bh); 4297 unlock_buffer(bh); 4298 goto has_buffer; 4299 } 4300 } 4301 4302 make_io: 4303 /* 4304 * If we need to do any I/O, try to pre-readahead extra 4305 * blocks from the inode table. 4306 */ 4307 blk_start_plug(&plug); 4308 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4309 ext4_fsblk_t b, end, table; 4310 unsigned num; 4311 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4312 4313 table = ext4_inode_table(sb, gdp); 4314 /* s_inode_readahead_blks is always a power of 2 */ 4315 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4316 if (table > b) 4317 b = table; 4318 end = b + ra_blks; 4319 num = EXT4_INODES_PER_GROUP(sb); 4320 if (ext4_has_group_desc_csum(sb)) 4321 num -= ext4_itable_unused_count(sb, gdp); 4322 table += num / inodes_per_block; 4323 if (end > table) 4324 end = table; 4325 while (b <= end) 4326 sb_breadahead(sb, b++); 4327 } 4328 4329 /* 4330 * There are other valid inodes in the buffer, this inode 4331 * has in-inode xattrs, or we don't have this inode in memory. 4332 * Read the block from disk. 4333 */ 4334 trace_ext4_load_inode(inode); 4335 get_bh(bh); 4336 bh->b_end_io = end_buffer_read_sync; 4337 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4338 blk_finish_plug(&plug); 4339 wait_on_buffer(bh); 4340 if (!buffer_uptodate(bh)) { 4341 EXT4_ERROR_INODE_BLOCK(inode, block, 4342 "unable to read itable block"); 4343 brelse(bh); 4344 return -EIO; 4345 } 4346 } 4347 has_buffer: 4348 iloc->bh = bh; 4349 return 0; 4350 } 4351 4352 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4353 { 4354 /* We have all inode data except xattrs in memory here. */ 4355 return __ext4_get_inode_loc(inode, iloc, 4356 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4357 } 4358 4359 static bool ext4_should_use_dax(struct inode *inode) 4360 { 4361 if (!test_opt(inode->i_sb, DAX)) 4362 return false; 4363 if (!S_ISREG(inode->i_mode)) 4364 return false; 4365 if (ext4_should_journal_data(inode)) 4366 return false; 4367 if (ext4_has_inline_data(inode)) 4368 return false; 4369 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4370 return false; 4371 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4372 return false; 4373 return true; 4374 } 4375 4376 void ext4_set_inode_flags(struct inode *inode) 4377 { 4378 unsigned int flags = EXT4_I(inode)->i_flags; 4379 unsigned int new_fl = 0; 4380 4381 if (flags & EXT4_SYNC_FL) 4382 new_fl |= S_SYNC; 4383 if (flags & EXT4_APPEND_FL) 4384 new_fl |= S_APPEND; 4385 if (flags & EXT4_IMMUTABLE_FL) 4386 new_fl |= S_IMMUTABLE; 4387 if (flags & EXT4_NOATIME_FL) 4388 new_fl |= S_NOATIME; 4389 if (flags & EXT4_DIRSYNC_FL) 4390 new_fl |= S_DIRSYNC; 4391 if (ext4_should_use_dax(inode)) 4392 new_fl |= S_DAX; 4393 if (flags & EXT4_ENCRYPT_FL) 4394 new_fl |= S_ENCRYPTED; 4395 if (flags & EXT4_CASEFOLD_FL) 4396 new_fl |= S_CASEFOLD; 4397 if (flags & EXT4_VERITY_FL) 4398 new_fl |= S_VERITY; 4399 inode_set_flags(inode, new_fl, 4400 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4401 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4402 } 4403 4404 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4405 struct ext4_inode_info *ei) 4406 { 4407 blkcnt_t i_blocks ; 4408 struct inode *inode = &(ei->vfs_inode); 4409 struct super_block *sb = inode->i_sb; 4410 4411 if (ext4_has_feature_huge_file(sb)) { 4412 /* we are using combined 48 bit field */ 4413 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4414 le32_to_cpu(raw_inode->i_blocks_lo); 4415 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4416 /* i_blocks represent file system block size */ 4417 return i_blocks << (inode->i_blkbits - 9); 4418 } else { 4419 return i_blocks; 4420 } 4421 } else { 4422 return le32_to_cpu(raw_inode->i_blocks_lo); 4423 } 4424 } 4425 4426 static inline int ext4_iget_extra_inode(struct inode *inode, 4427 struct ext4_inode *raw_inode, 4428 struct ext4_inode_info *ei) 4429 { 4430 __le32 *magic = (void *)raw_inode + 4431 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4432 4433 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4434 EXT4_INODE_SIZE(inode->i_sb) && 4435 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4436 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4437 return ext4_find_inline_data_nolock(inode); 4438 } else 4439 EXT4_I(inode)->i_inline_off = 0; 4440 return 0; 4441 } 4442 4443 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4444 { 4445 if (!ext4_has_feature_project(inode->i_sb)) 4446 return -EOPNOTSUPP; 4447 *projid = EXT4_I(inode)->i_projid; 4448 return 0; 4449 } 4450 4451 /* 4452 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4453 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4454 * set. 4455 */ 4456 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4457 { 4458 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4459 inode_set_iversion_raw(inode, val); 4460 else 4461 inode_set_iversion_queried(inode, val); 4462 } 4463 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4464 { 4465 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4466 return inode_peek_iversion_raw(inode); 4467 else 4468 return inode_peek_iversion(inode); 4469 } 4470 4471 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4472 ext4_iget_flags flags, const char *function, 4473 unsigned int line) 4474 { 4475 struct ext4_iloc iloc; 4476 struct ext4_inode *raw_inode; 4477 struct ext4_inode_info *ei; 4478 struct inode *inode; 4479 journal_t *journal = EXT4_SB(sb)->s_journal; 4480 long ret; 4481 loff_t size; 4482 int block; 4483 uid_t i_uid; 4484 gid_t i_gid; 4485 projid_t i_projid; 4486 4487 if ((!(flags & EXT4_IGET_SPECIAL) && 4488 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4489 (ino < EXT4_ROOT_INO) || 4490 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4491 if (flags & EXT4_IGET_HANDLE) 4492 return ERR_PTR(-ESTALE); 4493 __ext4_error(sb, function, line, 4494 "inode #%lu: comm %s: iget: illegal inode #", 4495 ino, current->comm); 4496 return ERR_PTR(-EFSCORRUPTED); 4497 } 4498 4499 inode = iget_locked(sb, ino); 4500 if (!inode) 4501 return ERR_PTR(-ENOMEM); 4502 if (!(inode->i_state & I_NEW)) 4503 return inode; 4504 4505 ei = EXT4_I(inode); 4506 iloc.bh = NULL; 4507 4508 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4509 if (ret < 0) 4510 goto bad_inode; 4511 raw_inode = ext4_raw_inode(&iloc); 4512 4513 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4514 ext4_error_inode(inode, function, line, 0, 4515 "iget: root inode unallocated"); 4516 ret = -EFSCORRUPTED; 4517 goto bad_inode; 4518 } 4519 4520 if ((flags & EXT4_IGET_HANDLE) && 4521 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4522 ret = -ESTALE; 4523 goto bad_inode; 4524 } 4525 4526 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4527 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4528 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4529 EXT4_INODE_SIZE(inode->i_sb) || 4530 (ei->i_extra_isize & 3)) { 4531 ext4_error_inode(inode, function, line, 0, 4532 "iget: bad extra_isize %u " 4533 "(inode size %u)", 4534 ei->i_extra_isize, 4535 EXT4_INODE_SIZE(inode->i_sb)); 4536 ret = -EFSCORRUPTED; 4537 goto bad_inode; 4538 } 4539 } else 4540 ei->i_extra_isize = 0; 4541 4542 /* Precompute checksum seed for inode metadata */ 4543 if (ext4_has_metadata_csum(sb)) { 4544 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4545 __u32 csum; 4546 __le32 inum = cpu_to_le32(inode->i_ino); 4547 __le32 gen = raw_inode->i_generation; 4548 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4549 sizeof(inum)); 4550 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4551 sizeof(gen)); 4552 } 4553 4554 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4555 ext4_error_inode(inode, function, line, 0, 4556 "iget: checksum invalid"); 4557 ret = -EFSBADCRC; 4558 goto bad_inode; 4559 } 4560 4561 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4562 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4563 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4564 if (ext4_has_feature_project(sb) && 4565 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4566 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4567 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4568 else 4569 i_projid = EXT4_DEF_PROJID; 4570 4571 if (!(test_opt(inode->i_sb, NO_UID32))) { 4572 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4573 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4574 } 4575 i_uid_write(inode, i_uid); 4576 i_gid_write(inode, i_gid); 4577 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4578 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4579 4580 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4581 ei->i_inline_off = 0; 4582 ei->i_dir_start_lookup = 0; 4583 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4584 /* We now have enough fields to check if the inode was active or not. 4585 * This is needed because nfsd might try to access dead inodes 4586 * the test is that same one that e2fsck uses 4587 * NeilBrown 1999oct15 4588 */ 4589 if (inode->i_nlink == 0) { 4590 if ((inode->i_mode == 0 || 4591 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4592 ino != EXT4_BOOT_LOADER_INO) { 4593 /* this inode is deleted */ 4594 ret = -ESTALE; 4595 goto bad_inode; 4596 } 4597 /* The only unlinked inodes we let through here have 4598 * valid i_mode and are being read by the orphan 4599 * recovery code: that's fine, we're about to complete 4600 * the process of deleting those. 4601 * OR it is the EXT4_BOOT_LOADER_INO which is 4602 * not initialized on a new filesystem. */ 4603 } 4604 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4605 ext4_set_inode_flags(inode); 4606 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4607 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4608 if (ext4_has_feature_64bit(sb)) 4609 ei->i_file_acl |= 4610 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4611 inode->i_size = ext4_isize(sb, raw_inode); 4612 if ((size = i_size_read(inode)) < 0) { 4613 ext4_error_inode(inode, function, line, 0, 4614 "iget: bad i_size value: %lld", size); 4615 ret = -EFSCORRUPTED; 4616 goto bad_inode; 4617 } 4618 ei->i_disksize = inode->i_size; 4619 #ifdef CONFIG_QUOTA 4620 ei->i_reserved_quota = 0; 4621 #endif 4622 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4623 ei->i_block_group = iloc.block_group; 4624 ei->i_last_alloc_group = ~0; 4625 /* 4626 * NOTE! The in-memory inode i_data array is in little-endian order 4627 * even on big-endian machines: we do NOT byteswap the block numbers! 4628 */ 4629 for (block = 0; block < EXT4_N_BLOCKS; block++) 4630 ei->i_data[block] = raw_inode->i_block[block]; 4631 INIT_LIST_HEAD(&ei->i_orphan); 4632 4633 /* 4634 * Set transaction id's of transactions that have to be committed 4635 * to finish f[data]sync. We set them to currently running transaction 4636 * as we cannot be sure that the inode or some of its metadata isn't 4637 * part of the transaction - the inode could have been reclaimed and 4638 * now it is reread from disk. 4639 */ 4640 if (journal) { 4641 transaction_t *transaction; 4642 tid_t tid; 4643 4644 read_lock(&journal->j_state_lock); 4645 if (journal->j_running_transaction) 4646 transaction = journal->j_running_transaction; 4647 else 4648 transaction = journal->j_committing_transaction; 4649 if (transaction) 4650 tid = transaction->t_tid; 4651 else 4652 tid = journal->j_commit_sequence; 4653 read_unlock(&journal->j_state_lock); 4654 ei->i_sync_tid = tid; 4655 ei->i_datasync_tid = tid; 4656 } 4657 4658 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4659 if (ei->i_extra_isize == 0) { 4660 /* The extra space is currently unused. Use it. */ 4661 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4662 ei->i_extra_isize = sizeof(struct ext4_inode) - 4663 EXT4_GOOD_OLD_INODE_SIZE; 4664 } else { 4665 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4666 if (ret) 4667 goto bad_inode; 4668 } 4669 } 4670 4671 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4672 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4673 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4674 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4675 4676 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4677 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4678 4679 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4680 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4681 ivers |= 4682 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4683 } 4684 ext4_inode_set_iversion_queried(inode, ivers); 4685 } 4686 4687 ret = 0; 4688 if (ei->i_file_acl && 4689 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4690 ext4_error_inode(inode, function, line, 0, 4691 "iget: bad extended attribute block %llu", 4692 ei->i_file_acl); 4693 ret = -EFSCORRUPTED; 4694 goto bad_inode; 4695 } else if (!ext4_has_inline_data(inode)) { 4696 /* validate the block references in the inode */ 4697 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4698 (S_ISLNK(inode->i_mode) && 4699 !ext4_inode_is_fast_symlink(inode))) { 4700 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4701 ret = ext4_ext_check_inode(inode); 4702 else 4703 ret = ext4_ind_check_inode(inode); 4704 } 4705 } 4706 if (ret) 4707 goto bad_inode; 4708 4709 if (S_ISREG(inode->i_mode)) { 4710 inode->i_op = &ext4_file_inode_operations; 4711 inode->i_fop = &ext4_file_operations; 4712 ext4_set_aops(inode); 4713 } else if (S_ISDIR(inode->i_mode)) { 4714 inode->i_op = &ext4_dir_inode_operations; 4715 inode->i_fop = &ext4_dir_operations; 4716 } else if (S_ISLNK(inode->i_mode)) { 4717 /* VFS does not allow setting these so must be corruption */ 4718 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4719 ext4_error_inode(inode, function, line, 0, 4720 "iget: immutable or append flags " 4721 "not allowed on symlinks"); 4722 ret = -EFSCORRUPTED; 4723 goto bad_inode; 4724 } 4725 if (IS_ENCRYPTED(inode)) { 4726 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4727 ext4_set_aops(inode); 4728 } else if (ext4_inode_is_fast_symlink(inode)) { 4729 inode->i_link = (char *)ei->i_data; 4730 inode->i_op = &ext4_fast_symlink_inode_operations; 4731 nd_terminate_link(ei->i_data, inode->i_size, 4732 sizeof(ei->i_data) - 1); 4733 } else { 4734 inode->i_op = &ext4_symlink_inode_operations; 4735 ext4_set_aops(inode); 4736 } 4737 inode_nohighmem(inode); 4738 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4739 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4740 inode->i_op = &ext4_special_inode_operations; 4741 if (raw_inode->i_block[0]) 4742 init_special_inode(inode, inode->i_mode, 4743 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4744 else 4745 init_special_inode(inode, inode->i_mode, 4746 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4747 } else if (ino == EXT4_BOOT_LOADER_INO) { 4748 make_bad_inode(inode); 4749 } else { 4750 ret = -EFSCORRUPTED; 4751 ext4_error_inode(inode, function, line, 0, 4752 "iget: bogus i_mode (%o)", inode->i_mode); 4753 goto bad_inode; 4754 } 4755 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4756 ext4_error_inode(inode, function, line, 0, 4757 "casefold flag without casefold feature"); 4758 brelse(iloc.bh); 4759 4760 unlock_new_inode(inode); 4761 return inode; 4762 4763 bad_inode: 4764 brelse(iloc.bh); 4765 iget_failed(inode); 4766 return ERR_PTR(ret); 4767 } 4768 4769 static int ext4_inode_blocks_set(handle_t *handle, 4770 struct ext4_inode *raw_inode, 4771 struct ext4_inode_info *ei) 4772 { 4773 struct inode *inode = &(ei->vfs_inode); 4774 u64 i_blocks = inode->i_blocks; 4775 struct super_block *sb = inode->i_sb; 4776 4777 if (i_blocks <= ~0U) { 4778 /* 4779 * i_blocks can be represented in a 32 bit variable 4780 * as multiple of 512 bytes 4781 */ 4782 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4783 raw_inode->i_blocks_high = 0; 4784 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4785 return 0; 4786 } 4787 if (!ext4_has_feature_huge_file(sb)) 4788 return -EFBIG; 4789 4790 if (i_blocks <= 0xffffffffffffULL) { 4791 /* 4792 * i_blocks can be represented in a 48 bit variable 4793 * as multiple of 512 bytes 4794 */ 4795 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4796 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4797 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4798 } else { 4799 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4800 /* i_block is stored in file system block size */ 4801 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4802 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4803 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4804 } 4805 return 0; 4806 } 4807 4808 struct other_inode { 4809 unsigned long orig_ino; 4810 struct ext4_inode *raw_inode; 4811 }; 4812 4813 static int other_inode_match(struct inode * inode, unsigned long ino, 4814 void *data) 4815 { 4816 struct other_inode *oi = (struct other_inode *) data; 4817 4818 if ((inode->i_ino != ino) || 4819 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4820 I_DIRTY_INODE)) || 4821 ((inode->i_state & I_DIRTY_TIME) == 0)) 4822 return 0; 4823 spin_lock(&inode->i_lock); 4824 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4825 I_DIRTY_INODE)) == 0) && 4826 (inode->i_state & I_DIRTY_TIME)) { 4827 struct ext4_inode_info *ei = EXT4_I(inode); 4828 4829 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4830 spin_unlock(&inode->i_lock); 4831 4832 spin_lock(&ei->i_raw_lock); 4833 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4834 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4835 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4836 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4837 spin_unlock(&ei->i_raw_lock); 4838 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4839 return -1; 4840 } 4841 spin_unlock(&inode->i_lock); 4842 return -1; 4843 } 4844 4845 /* 4846 * Opportunistically update the other time fields for other inodes in 4847 * the same inode table block. 4848 */ 4849 static void ext4_update_other_inodes_time(struct super_block *sb, 4850 unsigned long orig_ino, char *buf) 4851 { 4852 struct other_inode oi; 4853 unsigned long ino; 4854 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4855 int inode_size = EXT4_INODE_SIZE(sb); 4856 4857 oi.orig_ino = orig_ino; 4858 /* 4859 * Calculate the first inode in the inode table block. Inode 4860 * numbers are one-based. That is, the first inode in a block 4861 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4862 */ 4863 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4864 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4865 if (ino == orig_ino) 4866 continue; 4867 oi.raw_inode = (struct ext4_inode *) buf; 4868 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4869 } 4870 } 4871 4872 /* 4873 * Post the struct inode info into an on-disk inode location in the 4874 * buffer-cache. This gobbles the caller's reference to the 4875 * buffer_head in the inode location struct. 4876 * 4877 * The caller must have write access to iloc->bh. 4878 */ 4879 static int ext4_do_update_inode(handle_t *handle, 4880 struct inode *inode, 4881 struct ext4_iloc *iloc) 4882 { 4883 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4884 struct ext4_inode_info *ei = EXT4_I(inode); 4885 struct buffer_head *bh = iloc->bh; 4886 struct super_block *sb = inode->i_sb; 4887 int err = 0, rc, block; 4888 int need_datasync = 0, set_large_file = 0; 4889 uid_t i_uid; 4890 gid_t i_gid; 4891 projid_t i_projid; 4892 4893 spin_lock(&ei->i_raw_lock); 4894 4895 /* For fields not tracked in the in-memory inode, 4896 * initialise them to zero for new inodes. */ 4897 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4898 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4899 4900 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4901 i_uid = i_uid_read(inode); 4902 i_gid = i_gid_read(inode); 4903 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4904 if (!(test_opt(inode->i_sb, NO_UID32))) { 4905 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4906 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4907 /* 4908 * Fix up interoperability with old kernels. Otherwise, old inodes get 4909 * re-used with the upper 16 bits of the uid/gid intact 4910 */ 4911 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4912 raw_inode->i_uid_high = 0; 4913 raw_inode->i_gid_high = 0; 4914 } else { 4915 raw_inode->i_uid_high = 4916 cpu_to_le16(high_16_bits(i_uid)); 4917 raw_inode->i_gid_high = 4918 cpu_to_le16(high_16_bits(i_gid)); 4919 } 4920 } else { 4921 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4922 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4923 raw_inode->i_uid_high = 0; 4924 raw_inode->i_gid_high = 0; 4925 } 4926 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4927 4928 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4929 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4930 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4931 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4932 4933 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4934 if (err) { 4935 spin_unlock(&ei->i_raw_lock); 4936 goto out_brelse; 4937 } 4938 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4939 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4940 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4941 raw_inode->i_file_acl_high = 4942 cpu_to_le16(ei->i_file_acl >> 32); 4943 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4944 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 4945 ext4_isize_set(raw_inode, ei->i_disksize); 4946 need_datasync = 1; 4947 } 4948 if (ei->i_disksize > 0x7fffffffULL) { 4949 if (!ext4_has_feature_large_file(sb) || 4950 EXT4_SB(sb)->s_es->s_rev_level == 4951 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4952 set_large_file = 1; 4953 } 4954 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4955 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4956 if (old_valid_dev(inode->i_rdev)) { 4957 raw_inode->i_block[0] = 4958 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4959 raw_inode->i_block[1] = 0; 4960 } else { 4961 raw_inode->i_block[0] = 0; 4962 raw_inode->i_block[1] = 4963 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4964 raw_inode->i_block[2] = 0; 4965 } 4966 } else if (!ext4_has_inline_data(inode)) { 4967 for (block = 0; block < EXT4_N_BLOCKS; block++) 4968 raw_inode->i_block[block] = ei->i_data[block]; 4969 } 4970 4971 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4972 u64 ivers = ext4_inode_peek_iversion(inode); 4973 4974 raw_inode->i_disk_version = cpu_to_le32(ivers); 4975 if (ei->i_extra_isize) { 4976 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4977 raw_inode->i_version_hi = 4978 cpu_to_le32(ivers >> 32); 4979 raw_inode->i_extra_isize = 4980 cpu_to_le16(ei->i_extra_isize); 4981 } 4982 } 4983 4984 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 4985 i_projid != EXT4_DEF_PROJID); 4986 4987 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4988 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4989 raw_inode->i_projid = cpu_to_le32(i_projid); 4990 4991 ext4_inode_csum_set(inode, raw_inode, ei); 4992 spin_unlock(&ei->i_raw_lock); 4993 if (inode->i_sb->s_flags & SB_LAZYTIME) 4994 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4995 bh->b_data); 4996 4997 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4998 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4999 if (!err) 5000 err = rc; 5001 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5002 if (set_large_file) { 5003 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5004 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5005 if (err) 5006 goto out_brelse; 5007 ext4_set_feature_large_file(sb); 5008 ext4_handle_sync(handle); 5009 err = ext4_handle_dirty_super(handle, sb); 5010 } 5011 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5012 out_brelse: 5013 brelse(bh); 5014 ext4_std_error(inode->i_sb, err); 5015 return err; 5016 } 5017 5018 /* 5019 * ext4_write_inode() 5020 * 5021 * We are called from a few places: 5022 * 5023 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5024 * Here, there will be no transaction running. We wait for any running 5025 * transaction to commit. 5026 * 5027 * - Within flush work (sys_sync(), kupdate and such). 5028 * We wait on commit, if told to. 5029 * 5030 * - Within iput_final() -> write_inode_now() 5031 * We wait on commit, if told to. 5032 * 5033 * In all cases it is actually safe for us to return without doing anything, 5034 * because the inode has been copied into a raw inode buffer in 5035 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5036 * writeback. 5037 * 5038 * Note that we are absolutely dependent upon all inode dirtiers doing the 5039 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5040 * which we are interested. 5041 * 5042 * It would be a bug for them to not do this. The code: 5043 * 5044 * mark_inode_dirty(inode) 5045 * stuff(); 5046 * inode->i_size = expr; 5047 * 5048 * is in error because write_inode() could occur while `stuff()' is running, 5049 * and the new i_size will be lost. Plus the inode will no longer be on the 5050 * superblock's dirty inode list. 5051 */ 5052 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5053 { 5054 int err; 5055 5056 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5057 sb_rdonly(inode->i_sb)) 5058 return 0; 5059 5060 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5061 return -EIO; 5062 5063 if (EXT4_SB(inode->i_sb)->s_journal) { 5064 if (ext4_journal_current_handle()) { 5065 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5066 dump_stack(); 5067 return -EIO; 5068 } 5069 5070 /* 5071 * No need to force transaction in WB_SYNC_NONE mode. Also 5072 * ext4_sync_fs() will force the commit after everything is 5073 * written. 5074 */ 5075 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5076 return 0; 5077 5078 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5079 EXT4_I(inode)->i_sync_tid); 5080 } else { 5081 struct ext4_iloc iloc; 5082 5083 err = __ext4_get_inode_loc(inode, &iloc, 0); 5084 if (err) 5085 return err; 5086 /* 5087 * sync(2) will flush the whole buffer cache. No need to do 5088 * it here separately for each inode. 5089 */ 5090 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5091 sync_dirty_buffer(iloc.bh); 5092 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5093 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5094 "IO error syncing inode"); 5095 err = -EIO; 5096 } 5097 brelse(iloc.bh); 5098 } 5099 return err; 5100 } 5101 5102 /* 5103 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5104 * buffers that are attached to a page stradding i_size and are undergoing 5105 * commit. In that case we have to wait for commit to finish and try again. 5106 */ 5107 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5108 { 5109 struct page *page; 5110 unsigned offset; 5111 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5112 tid_t commit_tid = 0; 5113 int ret; 5114 5115 offset = inode->i_size & (PAGE_SIZE - 1); 5116 /* 5117 * If the page is fully truncated, we don't need to wait for any commit 5118 * (and we even should not as __ext4_journalled_invalidatepage() may 5119 * strip all buffers from the page but keep the page dirty which can then 5120 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5121 * buffers). Also we don't need to wait for any commit if all buffers in 5122 * the page remain valid. This is most beneficial for the common case of 5123 * blocksize == PAGESIZE. 5124 */ 5125 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5126 return; 5127 while (1) { 5128 page = find_lock_page(inode->i_mapping, 5129 inode->i_size >> PAGE_SHIFT); 5130 if (!page) 5131 return; 5132 ret = __ext4_journalled_invalidatepage(page, offset, 5133 PAGE_SIZE - offset); 5134 unlock_page(page); 5135 put_page(page); 5136 if (ret != -EBUSY) 5137 return; 5138 commit_tid = 0; 5139 read_lock(&journal->j_state_lock); 5140 if (journal->j_committing_transaction) 5141 commit_tid = journal->j_committing_transaction->t_tid; 5142 read_unlock(&journal->j_state_lock); 5143 if (commit_tid) 5144 jbd2_log_wait_commit(journal, commit_tid); 5145 } 5146 } 5147 5148 /* 5149 * ext4_setattr() 5150 * 5151 * Called from notify_change. 5152 * 5153 * We want to trap VFS attempts to truncate the file as soon as 5154 * possible. In particular, we want to make sure that when the VFS 5155 * shrinks i_size, we put the inode on the orphan list and modify 5156 * i_disksize immediately, so that during the subsequent flushing of 5157 * dirty pages and freeing of disk blocks, we can guarantee that any 5158 * commit will leave the blocks being flushed in an unused state on 5159 * disk. (On recovery, the inode will get truncated and the blocks will 5160 * be freed, so we have a strong guarantee that no future commit will 5161 * leave these blocks visible to the user.) 5162 * 5163 * Another thing we have to assure is that if we are in ordered mode 5164 * and inode is still attached to the committing transaction, we must 5165 * we start writeout of all the dirty pages which are being truncated. 5166 * This way we are sure that all the data written in the previous 5167 * transaction are already on disk (truncate waits for pages under 5168 * writeback). 5169 * 5170 * Called with inode->i_mutex down. 5171 */ 5172 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5173 { 5174 struct inode *inode = d_inode(dentry); 5175 int error, rc = 0; 5176 int orphan = 0; 5177 const unsigned int ia_valid = attr->ia_valid; 5178 5179 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5180 return -EIO; 5181 5182 if (unlikely(IS_IMMUTABLE(inode))) 5183 return -EPERM; 5184 5185 if (unlikely(IS_APPEND(inode) && 5186 (ia_valid & (ATTR_MODE | ATTR_UID | 5187 ATTR_GID | ATTR_TIMES_SET)))) 5188 return -EPERM; 5189 5190 error = setattr_prepare(dentry, attr); 5191 if (error) 5192 return error; 5193 5194 error = fscrypt_prepare_setattr(dentry, attr); 5195 if (error) 5196 return error; 5197 5198 error = fsverity_prepare_setattr(dentry, attr); 5199 if (error) 5200 return error; 5201 5202 if (is_quota_modification(inode, attr)) { 5203 error = dquot_initialize(inode); 5204 if (error) 5205 return error; 5206 } 5207 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5208 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5209 handle_t *handle; 5210 5211 /* (user+group)*(old+new) structure, inode write (sb, 5212 * inode block, ? - but truncate inode update has it) */ 5213 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5214 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5215 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5216 if (IS_ERR(handle)) { 5217 error = PTR_ERR(handle); 5218 goto err_out; 5219 } 5220 5221 /* dquot_transfer() calls back ext4_get_inode_usage() which 5222 * counts xattr inode references. 5223 */ 5224 down_read(&EXT4_I(inode)->xattr_sem); 5225 error = dquot_transfer(inode, attr); 5226 up_read(&EXT4_I(inode)->xattr_sem); 5227 5228 if (error) { 5229 ext4_journal_stop(handle); 5230 return error; 5231 } 5232 /* Update corresponding info in inode so that everything is in 5233 * one transaction */ 5234 if (attr->ia_valid & ATTR_UID) 5235 inode->i_uid = attr->ia_uid; 5236 if (attr->ia_valid & ATTR_GID) 5237 inode->i_gid = attr->ia_gid; 5238 error = ext4_mark_inode_dirty(handle, inode); 5239 ext4_journal_stop(handle); 5240 } 5241 5242 if (attr->ia_valid & ATTR_SIZE) { 5243 handle_t *handle; 5244 loff_t oldsize = inode->i_size; 5245 int shrink = (attr->ia_size < inode->i_size); 5246 5247 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5248 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5249 5250 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5251 return -EFBIG; 5252 } 5253 if (!S_ISREG(inode->i_mode)) 5254 return -EINVAL; 5255 5256 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5257 inode_inc_iversion(inode); 5258 5259 if (shrink) { 5260 if (ext4_should_order_data(inode)) { 5261 error = ext4_begin_ordered_truncate(inode, 5262 attr->ia_size); 5263 if (error) 5264 goto err_out; 5265 } 5266 /* 5267 * Blocks are going to be removed from the inode. Wait 5268 * for dio in flight. 5269 */ 5270 inode_dio_wait(inode); 5271 } 5272 5273 down_write(&EXT4_I(inode)->i_mmap_sem); 5274 5275 rc = ext4_break_layouts(inode); 5276 if (rc) { 5277 up_write(&EXT4_I(inode)->i_mmap_sem); 5278 return rc; 5279 } 5280 5281 if (attr->ia_size != inode->i_size) { 5282 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5283 if (IS_ERR(handle)) { 5284 error = PTR_ERR(handle); 5285 goto out_mmap_sem; 5286 } 5287 if (ext4_handle_valid(handle) && shrink) { 5288 error = ext4_orphan_add(handle, inode); 5289 orphan = 1; 5290 } 5291 /* 5292 * Update c/mtime on truncate up, ext4_truncate() will 5293 * update c/mtime in shrink case below 5294 */ 5295 if (!shrink) { 5296 inode->i_mtime = current_time(inode); 5297 inode->i_ctime = inode->i_mtime; 5298 } 5299 down_write(&EXT4_I(inode)->i_data_sem); 5300 EXT4_I(inode)->i_disksize = attr->ia_size; 5301 rc = ext4_mark_inode_dirty(handle, inode); 5302 if (!error) 5303 error = rc; 5304 /* 5305 * We have to update i_size under i_data_sem together 5306 * with i_disksize to avoid races with writeback code 5307 * running ext4_wb_update_i_disksize(). 5308 */ 5309 if (!error) 5310 i_size_write(inode, attr->ia_size); 5311 up_write(&EXT4_I(inode)->i_data_sem); 5312 ext4_journal_stop(handle); 5313 if (error) 5314 goto out_mmap_sem; 5315 if (!shrink) { 5316 pagecache_isize_extended(inode, oldsize, 5317 inode->i_size); 5318 } else if (ext4_should_journal_data(inode)) { 5319 ext4_wait_for_tail_page_commit(inode); 5320 } 5321 } 5322 5323 /* 5324 * Truncate pagecache after we've waited for commit 5325 * in data=journal mode to make pages freeable. 5326 */ 5327 truncate_pagecache(inode, inode->i_size); 5328 /* 5329 * Call ext4_truncate() even if i_size didn't change to 5330 * truncate possible preallocated blocks. 5331 */ 5332 if (attr->ia_size <= oldsize) { 5333 rc = ext4_truncate(inode); 5334 if (rc) 5335 error = rc; 5336 } 5337 out_mmap_sem: 5338 up_write(&EXT4_I(inode)->i_mmap_sem); 5339 } 5340 5341 if (!error) { 5342 setattr_copy(inode, attr); 5343 mark_inode_dirty(inode); 5344 } 5345 5346 /* 5347 * If the call to ext4_truncate failed to get a transaction handle at 5348 * all, we need to clean up the in-core orphan list manually. 5349 */ 5350 if (orphan && inode->i_nlink) 5351 ext4_orphan_del(NULL, inode); 5352 5353 if (!error && (ia_valid & ATTR_MODE)) 5354 rc = posix_acl_chmod(inode, inode->i_mode); 5355 5356 err_out: 5357 ext4_std_error(inode->i_sb, error); 5358 if (!error) 5359 error = rc; 5360 return error; 5361 } 5362 5363 int ext4_getattr(const struct path *path, struct kstat *stat, 5364 u32 request_mask, unsigned int query_flags) 5365 { 5366 struct inode *inode = d_inode(path->dentry); 5367 struct ext4_inode *raw_inode; 5368 struct ext4_inode_info *ei = EXT4_I(inode); 5369 unsigned int flags; 5370 5371 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5372 stat->result_mask |= STATX_BTIME; 5373 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5374 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5375 } 5376 5377 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5378 if (flags & EXT4_APPEND_FL) 5379 stat->attributes |= STATX_ATTR_APPEND; 5380 if (flags & EXT4_COMPR_FL) 5381 stat->attributes |= STATX_ATTR_COMPRESSED; 5382 if (flags & EXT4_ENCRYPT_FL) 5383 stat->attributes |= STATX_ATTR_ENCRYPTED; 5384 if (flags & EXT4_IMMUTABLE_FL) 5385 stat->attributes |= STATX_ATTR_IMMUTABLE; 5386 if (flags & EXT4_NODUMP_FL) 5387 stat->attributes |= STATX_ATTR_NODUMP; 5388 if (flags & EXT4_VERITY_FL) 5389 stat->attributes |= STATX_ATTR_VERITY; 5390 5391 stat->attributes_mask |= (STATX_ATTR_APPEND | 5392 STATX_ATTR_COMPRESSED | 5393 STATX_ATTR_ENCRYPTED | 5394 STATX_ATTR_IMMUTABLE | 5395 STATX_ATTR_NODUMP | 5396 STATX_ATTR_VERITY); 5397 5398 generic_fillattr(inode, stat); 5399 return 0; 5400 } 5401 5402 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5403 u32 request_mask, unsigned int query_flags) 5404 { 5405 struct inode *inode = d_inode(path->dentry); 5406 u64 delalloc_blocks; 5407 5408 ext4_getattr(path, stat, request_mask, query_flags); 5409 5410 /* 5411 * If there is inline data in the inode, the inode will normally not 5412 * have data blocks allocated (it may have an external xattr block). 5413 * Report at least one sector for such files, so tools like tar, rsync, 5414 * others don't incorrectly think the file is completely sparse. 5415 */ 5416 if (unlikely(ext4_has_inline_data(inode))) 5417 stat->blocks += (stat->size + 511) >> 9; 5418 5419 /* 5420 * We can't update i_blocks if the block allocation is delayed 5421 * otherwise in the case of system crash before the real block 5422 * allocation is done, we will have i_blocks inconsistent with 5423 * on-disk file blocks. 5424 * We always keep i_blocks updated together with real 5425 * allocation. But to not confuse with user, stat 5426 * will return the blocks that include the delayed allocation 5427 * blocks for this file. 5428 */ 5429 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5430 EXT4_I(inode)->i_reserved_data_blocks); 5431 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5432 return 0; 5433 } 5434 5435 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5436 int pextents) 5437 { 5438 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5439 return ext4_ind_trans_blocks(inode, lblocks); 5440 return ext4_ext_index_trans_blocks(inode, pextents); 5441 } 5442 5443 /* 5444 * Account for index blocks, block groups bitmaps and block group 5445 * descriptor blocks if modify datablocks and index blocks 5446 * worse case, the indexs blocks spread over different block groups 5447 * 5448 * If datablocks are discontiguous, they are possible to spread over 5449 * different block groups too. If they are contiguous, with flexbg, 5450 * they could still across block group boundary. 5451 * 5452 * Also account for superblock, inode, quota and xattr blocks 5453 */ 5454 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5455 int pextents) 5456 { 5457 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5458 int gdpblocks; 5459 int idxblocks; 5460 int ret = 0; 5461 5462 /* 5463 * How many index blocks need to touch to map @lblocks logical blocks 5464 * to @pextents physical extents? 5465 */ 5466 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5467 5468 ret = idxblocks; 5469 5470 /* 5471 * Now let's see how many group bitmaps and group descriptors need 5472 * to account 5473 */ 5474 groups = idxblocks + pextents; 5475 gdpblocks = groups; 5476 if (groups > ngroups) 5477 groups = ngroups; 5478 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5479 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5480 5481 /* bitmaps and block group descriptor blocks */ 5482 ret += groups + gdpblocks; 5483 5484 /* Blocks for super block, inode, quota and xattr blocks */ 5485 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5486 5487 return ret; 5488 } 5489 5490 /* 5491 * Calculate the total number of credits to reserve to fit 5492 * the modification of a single pages into a single transaction, 5493 * which may include multiple chunks of block allocations. 5494 * 5495 * This could be called via ext4_write_begin() 5496 * 5497 * We need to consider the worse case, when 5498 * one new block per extent. 5499 */ 5500 int ext4_writepage_trans_blocks(struct inode *inode) 5501 { 5502 int bpp = ext4_journal_blocks_per_page(inode); 5503 int ret; 5504 5505 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5506 5507 /* Account for data blocks for journalled mode */ 5508 if (ext4_should_journal_data(inode)) 5509 ret += bpp; 5510 return ret; 5511 } 5512 5513 /* 5514 * Calculate the journal credits for a chunk of data modification. 5515 * 5516 * This is called from DIO, fallocate or whoever calling 5517 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5518 * 5519 * journal buffers for data blocks are not included here, as DIO 5520 * and fallocate do no need to journal data buffers. 5521 */ 5522 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5523 { 5524 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5525 } 5526 5527 /* 5528 * The caller must have previously called ext4_reserve_inode_write(). 5529 * Give this, we know that the caller already has write access to iloc->bh. 5530 */ 5531 int ext4_mark_iloc_dirty(handle_t *handle, 5532 struct inode *inode, struct ext4_iloc *iloc) 5533 { 5534 int err = 0; 5535 5536 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5537 put_bh(iloc->bh); 5538 return -EIO; 5539 } 5540 if (IS_I_VERSION(inode)) 5541 inode_inc_iversion(inode); 5542 5543 /* the do_update_inode consumes one bh->b_count */ 5544 get_bh(iloc->bh); 5545 5546 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5547 err = ext4_do_update_inode(handle, inode, iloc); 5548 put_bh(iloc->bh); 5549 return err; 5550 } 5551 5552 /* 5553 * On success, We end up with an outstanding reference count against 5554 * iloc->bh. This _must_ be cleaned up later. 5555 */ 5556 5557 int 5558 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5559 struct ext4_iloc *iloc) 5560 { 5561 int err; 5562 5563 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5564 return -EIO; 5565 5566 err = ext4_get_inode_loc(inode, iloc); 5567 if (!err) { 5568 BUFFER_TRACE(iloc->bh, "get_write_access"); 5569 err = ext4_journal_get_write_access(handle, iloc->bh); 5570 if (err) { 5571 brelse(iloc->bh); 5572 iloc->bh = NULL; 5573 } 5574 } 5575 ext4_std_error(inode->i_sb, err); 5576 return err; 5577 } 5578 5579 static int __ext4_expand_extra_isize(struct inode *inode, 5580 unsigned int new_extra_isize, 5581 struct ext4_iloc *iloc, 5582 handle_t *handle, int *no_expand) 5583 { 5584 struct ext4_inode *raw_inode; 5585 struct ext4_xattr_ibody_header *header; 5586 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5587 struct ext4_inode_info *ei = EXT4_I(inode); 5588 int error; 5589 5590 /* this was checked at iget time, but double check for good measure */ 5591 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5592 (ei->i_extra_isize & 3)) { 5593 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5594 ei->i_extra_isize, 5595 EXT4_INODE_SIZE(inode->i_sb)); 5596 return -EFSCORRUPTED; 5597 } 5598 if ((new_extra_isize < ei->i_extra_isize) || 5599 (new_extra_isize < 4) || 5600 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5601 return -EINVAL; /* Should never happen */ 5602 5603 raw_inode = ext4_raw_inode(iloc); 5604 5605 header = IHDR(inode, raw_inode); 5606 5607 /* No extended attributes present */ 5608 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5609 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5610 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5611 EXT4_I(inode)->i_extra_isize, 0, 5612 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5613 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5614 return 0; 5615 } 5616 5617 /* try to expand with EAs present */ 5618 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5619 raw_inode, handle); 5620 if (error) { 5621 /* 5622 * Inode size expansion failed; don't try again 5623 */ 5624 *no_expand = 1; 5625 } 5626 5627 return error; 5628 } 5629 5630 /* 5631 * Expand an inode by new_extra_isize bytes. 5632 * Returns 0 on success or negative error number on failure. 5633 */ 5634 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5635 unsigned int new_extra_isize, 5636 struct ext4_iloc iloc, 5637 handle_t *handle) 5638 { 5639 int no_expand; 5640 int error; 5641 5642 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5643 return -EOVERFLOW; 5644 5645 /* 5646 * In nojournal mode, we can immediately attempt to expand 5647 * the inode. When journaled, we first need to obtain extra 5648 * buffer credits since we may write into the EA block 5649 * with this same handle. If journal_extend fails, then it will 5650 * only result in a minor loss of functionality for that inode. 5651 * If this is felt to be critical, then e2fsck should be run to 5652 * force a large enough s_min_extra_isize. 5653 */ 5654 if (ext4_journal_extend(handle, 5655 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5656 return -ENOSPC; 5657 5658 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5659 return -EBUSY; 5660 5661 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5662 handle, &no_expand); 5663 ext4_write_unlock_xattr(inode, &no_expand); 5664 5665 return error; 5666 } 5667 5668 int ext4_expand_extra_isize(struct inode *inode, 5669 unsigned int new_extra_isize, 5670 struct ext4_iloc *iloc) 5671 { 5672 handle_t *handle; 5673 int no_expand; 5674 int error, rc; 5675 5676 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5677 brelse(iloc->bh); 5678 return -EOVERFLOW; 5679 } 5680 5681 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5682 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5683 if (IS_ERR(handle)) { 5684 error = PTR_ERR(handle); 5685 brelse(iloc->bh); 5686 return error; 5687 } 5688 5689 ext4_write_lock_xattr(inode, &no_expand); 5690 5691 BUFFER_TRACE(iloc->bh, "get_write_access"); 5692 error = ext4_journal_get_write_access(handle, iloc->bh); 5693 if (error) { 5694 brelse(iloc->bh); 5695 goto out_unlock; 5696 } 5697 5698 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5699 handle, &no_expand); 5700 5701 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5702 if (!error) 5703 error = rc; 5704 5705 out_unlock: 5706 ext4_write_unlock_xattr(inode, &no_expand); 5707 ext4_journal_stop(handle); 5708 return error; 5709 } 5710 5711 /* 5712 * What we do here is to mark the in-core inode as clean with respect to inode 5713 * dirtiness (it may still be data-dirty). 5714 * This means that the in-core inode may be reaped by prune_icache 5715 * without having to perform any I/O. This is a very good thing, 5716 * because *any* task may call prune_icache - even ones which 5717 * have a transaction open against a different journal. 5718 * 5719 * Is this cheating? Not really. Sure, we haven't written the 5720 * inode out, but prune_icache isn't a user-visible syncing function. 5721 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5722 * we start and wait on commits. 5723 */ 5724 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5725 { 5726 struct ext4_iloc iloc; 5727 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5728 int err; 5729 5730 might_sleep(); 5731 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5732 err = ext4_reserve_inode_write(handle, inode, &iloc); 5733 if (err) 5734 return err; 5735 5736 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5737 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5738 iloc, handle); 5739 5740 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5741 } 5742 5743 /* 5744 * ext4_dirty_inode() is called from __mark_inode_dirty() 5745 * 5746 * We're really interested in the case where a file is being extended. 5747 * i_size has been changed by generic_commit_write() and we thus need 5748 * to include the updated inode in the current transaction. 5749 * 5750 * Also, dquot_alloc_block() will always dirty the inode when blocks 5751 * are allocated to the file. 5752 * 5753 * If the inode is marked synchronous, we don't honour that here - doing 5754 * so would cause a commit on atime updates, which we don't bother doing. 5755 * We handle synchronous inodes at the highest possible level. 5756 * 5757 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5758 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5759 * to copy into the on-disk inode structure are the timestamp files. 5760 */ 5761 void ext4_dirty_inode(struct inode *inode, int flags) 5762 { 5763 handle_t *handle; 5764 5765 if (flags == I_DIRTY_TIME) 5766 return; 5767 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5768 if (IS_ERR(handle)) 5769 goto out; 5770 5771 ext4_mark_inode_dirty(handle, inode); 5772 5773 ext4_journal_stop(handle); 5774 out: 5775 return; 5776 } 5777 5778 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5779 { 5780 journal_t *journal; 5781 handle_t *handle; 5782 int err; 5783 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5784 5785 /* 5786 * We have to be very careful here: changing a data block's 5787 * journaling status dynamically is dangerous. If we write a 5788 * data block to the journal, change the status and then delete 5789 * that block, we risk forgetting to revoke the old log record 5790 * from the journal and so a subsequent replay can corrupt data. 5791 * So, first we make sure that the journal is empty and that 5792 * nobody is changing anything. 5793 */ 5794 5795 journal = EXT4_JOURNAL(inode); 5796 if (!journal) 5797 return 0; 5798 if (is_journal_aborted(journal)) 5799 return -EROFS; 5800 5801 /* Wait for all existing dio workers */ 5802 inode_dio_wait(inode); 5803 5804 /* 5805 * Before flushing the journal and switching inode's aops, we have 5806 * to flush all dirty data the inode has. There can be outstanding 5807 * delayed allocations, there can be unwritten extents created by 5808 * fallocate or buffered writes in dioread_nolock mode covered by 5809 * dirty data which can be converted only after flushing the dirty 5810 * data (and journalled aops don't know how to handle these cases). 5811 */ 5812 if (val) { 5813 down_write(&EXT4_I(inode)->i_mmap_sem); 5814 err = filemap_write_and_wait(inode->i_mapping); 5815 if (err < 0) { 5816 up_write(&EXT4_I(inode)->i_mmap_sem); 5817 return err; 5818 } 5819 } 5820 5821 percpu_down_write(&sbi->s_journal_flag_rwsem); 5822 jbd2_journal_lock_updates(journal); 5823 5824 /* 5825 * OK, there are no updates running now, and all cached data is 5826 * synced to disk. We are now in a completely consistent state 5827 * which doesn't have anything in the journal, and we know that 5828 * no filesystem updates are running, so it is safe to modify 5829 * the inode's in-core data-journaling state flag now. 5830 */ 5831 5832 if (val) 5833 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5834 else { 5835 err = jbd2_journal_flush(journal); 5836 if (err < 0) { 5837 jbd2_journal_unlock_updates(journal); 5838 percpu_up_write(&sbi->s_journal_flag_rwsem); 5839 return err; 5840 } 5841 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5842 } 5843 ext4_set_aops(inode); 5844 5845 jbd2_journal_unlock_updates(journal); 5846 percpu_up_write(&sbi->s_journal_flag_rwsem); 5847 5848 if (val) 5849 up_write(&EXT4_I(inode)->i_mmap_sem); 5850 5851 /* Finally we can mark the inode as dirty. */ 5852 5853 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5854 if (IS_ERR(handle)) 5855 return PTR_ERR(handle); 5856 5857 err = ext4_mark_inode_dirty(handle, inode); 5858 ext4_handle_sync(handle); 5859 ext4_journal_stop(handle); 5860 ext4_std_error(inode->i_sb, err); 5861 5862 return err; 5863 } 5864 5865 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5866 { 5867 return !buffer_mapped(bh); 5868 } 5869 5870 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 5871 { 5872 struct vm_area_struct *vma = vmf->vma; 5873 struct page *page = vmf->page; 5874 loff_t size; 5875 unsigned long len; 5876 int err; 5877 vm_fault_t ret; 5878 struct file *file = vma->vm_file; 5879 struct inode *inode = file_inode(file); 5880 struct address_space *mapping = inode->i_mapping; 5881 handle_t *handle; 5882 get_block_t *get_block; 5883 int retries = 0; 5884 5885 if (unlikely(IS_IMMUTABLE(inode))) 5886 return VM_FAULT_SIGBUS; 5887 5888 sb_start_pagefault(inode->i_sb); 5889 file_update_time(vma->vm_file); 5890 5891 down_read(&EXT4_I(inode)->i_mmap_sem); 5892 5893 err = ext4_convert_inline_data(inode); 5894 if (err) 5895 goto out_ret; 5896 5897 /* Delalloc case is easy... */ 5898 if (test_opt(inode->i_sb, DELALLOC) && 5899 !ext4_should_journal_data(inode) && 5900 !ext4_nonda_switch(inode->i_sb)) { 5901 do { 5902 err = block_page_mkwrite(vma, vmf, 5903 ext4_da_get_block_prep); 5904 } while (err == -ENOSPC && 5905 ext4_should_retry_alloc(inode->i_sb, &retries)); 5906 goto out_ret; 5907 } 5908 5909 lock_page(page); 5910 size = i_size_read(inode); 5911 /* Page got truncated from under us? */ 5912 if (page->mapping != mapping || page_offset(page) > size) { 5913 unlock_page(page); 5914 ret = VM_FAULT_NOPAGE; 5915 goto out; 5916 } 5917 5918 if (page->index == size >> PAGE_SHIFT) 5919 len = size & ~PAGE_MASK; 5920 else 5921 len = PAGE_SIZE; 5922 /* 5923 * Return if we have all the buffers mapped. This avoids the need to do 5924 * journal_start/journal_stop which can block and take a long time 5925 */ 5926 if (page_has_buffers(page)) { 5927 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5928 0, len, NULL, 5929 ext4_bh_unmapped)) { 5930 /* Wait so that we don't change page under IO */ 5931 wait_for_stable_page(page); 5932 ret = VM_FAULT_LOCKED; 5933 goto out; 5934 } 5935 } 5936 unlock_page(page); 5937 /* OK, we need to fill the hole... */ 5938 if (ext4_should_dioread_nolock(inode)) 5939 get_block = ext4_get_block_unwritten; 5940 else 5941 get_block = ext4_get_block; 5942 retry_alloc: 5943 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5944 ext4_writepage_trans_blocks(inode)); 5945 if (IS_ERR(handle)) { 5946 ret = VM_FAULT_SIGBUS; 5947 goto out; 5948 } 5949 err = block_page_mkwrite(vma, vmf, get_block); 5950 if (!err && ext4_should_journal_data(inode)) { 5951 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5952 PAGE_SIZE, NULL, do_journal_get_write_access)) { 5953 unlock_page(page); 5954 ret = VM_FAULT_SIGBUS; 5955 ext4_journal_stop(handle); 5956 goto out; 5957 } 5958 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5959 } 5960 ext4_journal_stop(handle); 5961 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5962 goto retry_alloc; 5963 out_ret: 5964 ret = block_page_mkwrite_return(err); 5965 out: 5966 up_read(&EXT4_I(inode)->i_mmap_sem); 5967 sb_end_pagefault(inode->i_sb); 5968 return ret; 5969 } 5970 5971 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 5972 { 5973 struct inode *inode = file_inode(vmf->vma->vm_file); 5974 vm_fault_t ret; 5975 5976 down_read(&EXT4_I(inode)->i_mmap_sem); 5977 ret = filemap_fault(vmf); 5978 up_read(&EXT4_I(inode)->i_mmap_sem); 5979 5980 return ret; 5981 } 5982