xref: /openbmc/linux/fs/ext4/inode.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 				unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 	bool freeze_protected = false;
179 
180 	trace_ext4_evict_inode(inode);
181 
182 	if (inode->i_nlink) {
183 		/*
184 		 * When journalling data dirty buffers are tracked only in the
185 		 * journal. So although mm thinks everything is clean and
186 		 * ready for reaping the inode might still have some pages to
187 		 * write in the running transaction or waiting to be
188 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 		 * (via truncate_inode_pages()) to discard these buffers can
190 		 * cause data loss. Also even if we did not discard these
191 		 * buffers, we would have no way to find them after the inode
192 		 * is reaped and thus user could see stale data if he tries to
193 		 * read them before the transaction is checkpointed. So be
194 		 * careful and force everything to disk here... We use
195 		 * ei->i_datasync_tid to store the newest transaction
196 		 * containing inode's data.
197 		 *
198 		 * Note that directories do not have this problem because they
199 		 * don't use page cache.
200 		 */
201 		if (inode->i_ino != EXT4_JOURNAL_INO &&
202 		    ext4_should_journal_data(inode) &&
203 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 		    inode->i_data.nrpages) {
205 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207 
208 			jbd2_complete_transaction(journal, commit_tid);
209 			filemap_write_and_wait(&inode->i_data);
210 		}
211 		truncate_inode_pages_final(&inode->i_data);
212 
213 		goto no_delete;
214 	}
215 
216 	if (is_bad_inode(inode))
217 		goto no_delete;
218 	dquot_initialize(inode);
219 
220 	if (ext4_should_order_data(inode))
221 		ext4_begin_ordered_truncate(inode, 0);
222 	truncate_inode_pages_final(&inode->i_data);
223 
224 	/*
225 	 * For inodes with journalled data, transaction commit could have
226 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 	 * flag but we still need to remove the inode from the writeback lists.
228 	 */
229 	if (!list_empty_careful(&inode->i_io_list)) {
230 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 		inode_io_list_del(inode);
232 	}
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it. When we are in a running transaction though,
237 	 * we are already protected against freezing and we cannot grab further
238 	 * protection due to lock ordering constraints.
239 	 */
240 	if (!ext4_journal_current_handle()) {
241 		sb_start_intwrite(inode->i_sb);
242 		freeze_protected = true;
243 	}
244 
245 	if (!IS_NOQUOTA(inode))
246 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247 
248 	/*
249 	 * Block bitmap, group descriptor, and inode are accounted in both
250 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251 	 */
252 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
254 	if (IS_ERR(handle)) {
255 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
256 		/*
257 		 * If we're going to skip the normal cleanup, we still need to
258 		 * make sure that the in-core orphan linked list is properly
259 		 * cleaned up.
260 		 */
261 		ext4_orphan_del(NULL, inode);
262 		if (freeze_protected)
263 			sb_end_intwrite(inode->i_sb);
264 		goto no_delete;
265 	}
266 
267 	if (IS_SYNC(inode))
268 		ext4_handle_sync(handle);
269 
270 	/*
271 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 	 * special handling of symlinks here because i_size is used to
273 	 * determine whether ext4_inode_info->i_data contains symlink data or
274 	 * block mappings. Setting i_size to 0 will remove its fast symlink
275 	 * status. Erase i_data so that it becomes a valid empty block map.
276 	 */
277 	if (ext4_inode_is_fast_symlink(inode))
278 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279 	inode->i_size = 0;
280 	err = ext4_mark_inode_dirty(handle, inode);
281 	if (err) {
282 		ext4_warning(inode->i_sb,
283 			     "couldn't mark inode dirty (err %d)", err);
284 		goto stop_handle;
285 	}
286 	if (inode->i_blocks) {
287 		err = ext4_truncate(inode);
288 		if (err) {
289 			ext4_error_err(inode->i_sb, -err,
290 				       "couldn't truncate inode %lu (err %d)",
291 				       inode->i_ino, err);
292 			goto stop_handle;
293 		}
294 	}
295 
296 	/* Remove xattr references. */
297 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298 				      extra_credits);
299 	if (err) {
300 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 stop_handle:
302 		ext4_journal_stop(handle);
303 		ext4_orphan_del(NULL, inode);
304 		if (freeze_protected)
305 			sb_end_intwrite(inode->i_sb);
306 		ext4_xattr_inode_array_free(ea_inode_array);
307 		goto no_delete;
308 	}
309 
310 	/*
311 	 * Kill off the orphan record which ext4_truncate created.
312 	 * AKPM: I think this can be inside the above `if'.
313 	 * Note that ext4_orphan_del() has to be able to cope with the
314 	 * deletion of a non-existent orphan - this is because we don't
315 	 * know if ext4_truncate() actually created an orphan record.
316 	 * (Well, we could do this if we need to, but heck - it works)
317 	 */
318 	ext4_orphan_del(handle, inode);
319 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
320 
321 	/*
322 	 * One subtle ordering requirement: if anything has gone wrong
323 	 * (transaction abort, IO errors, whatever), then we can still
324 	 * do these next steps (the fs will already have been marked as
325 	 * having errors), but we can't free the inode if the mark_dirty
326 	 * fails.
327 	 */
328 	if (ext4_mark_inode_dirty(handle, inode))
329 		/* If that failed, just do the required in-core inode clear. */
330 		ext4_clear_inode(inode);
331 	else
332 		ext4_free_inode(handle, inode);
333 	ext4_journal_stop(handle);
334 	if (freeze_protected)
335 		sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
340 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
342 }
343 
344 #ifdef CONFIG_QUOTA
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
346 {
347 	return &EXT4_I(inode)->i_reserved_quota;
348 }
349 #endif
350 
351 /*
352  * Called with i_data_sem down, which is important since we can call
353  * ext4_discard_preallocations() from here.
354  */
355 void ext4_da_update_reserve_space(struct inode *inode,
356 					int used, int quota_claim)
357 {
358 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359 	struct ext4_inode_info *ei = EXT4_I(inode);
360 
361 	spin_lock(&ei->i_block_reservation_lock);
362 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363 	if (unlikely(used > ei->i_reserved_data_blocks)) {
364 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365 			 "with only %d reserved data blocks",
366 			 __func__, inode->i_ino, used,
367 			 ei->i_reserved_data_blocks);
368 		WARN_ON(1);
369 		used = ei->i_reserved_data_blocks;
370 	}
371 
372 	/* Update per-inode reservations */
373 	ei->i_reserved_data_blocks -= used;
374 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
375 
376 	spin_unlock(&ei->i_block_reservation_lock);
377 
378 	/* Update quota subsystem for data blocks */
379 	if (quota_claim)
380 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
381 	else {
382 		/*
383 		 * We did fallocate with an offset that is already delayed
384 		 * allocated. So on delayed allocated writeback we should
385 		 * not re-claim the quota for fallocated blocks.
386 		 */
387 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388 	}
389 
390 	/*
391 	 * If we have done all the pending block allocations and if
392 	 * there aren't any writers on the inode, we can discard the
393 	 * inode's preallocations.
394 	 */
395 	if ((ei->i_reserved_data_blocks == 0) &&
396 	    !inode_is_open_for_write(inode))
397 		ext4_discard_preallocations(inode, 0);
398 }
399 
400 static int __check_block_validity(struct inode *inode, const char *func,
401 				unsigned int line,
402 				struct ext4_map_blocks *map)
403 {
404 	if (ext4_has_feature_journal(inode->i_sb) &&
405 	    (inode->i_ino ==
406 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407 		return 0;
408 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409 		ext4_error_inode(inode, func, line, map->m_pblk,
410 				 "lblock %lu mapped to illegal pblock %llu "
411 				 "(length %d)", (unsigned long) map->m_lblk,
412 				 map->m_pblk, map->m_len);
413 		return -EFSCORRUPTED;
414 	}
415 	return 0;
416 }
417 
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419 		       ext4_lblk_t len)
420 {
421 	int ret;
422 
423 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
425 
426 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427 	if (ret > 0)
428 		ret = 0;
429 
430 	return ret;
431 }
432 
433 #define check_block_validity(inode, map)	\
434 	__check_block_validity((inode), __func__, __LINE__, (map))
435 
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
438 				       struct inode *inode,
439 				       struct ext4_map_blocks *es_map,
440 				       struct ext4_map_blocks *map,
441 				       int flags)
442 {
443 	int retval;
444 
445 	map->m_flags = 0;
446 	/*
447 	 * There is a race window that the result is not the same.
448 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
449 	 * is that we lookup a block mapping in extent status tree with
450 	 * out taking i_data_sem.  So at the time the unwritten extent
451 	 * could be converted.
452 	 */
453 	down_read(&EXT4_I(inode)->i_data_sem);
454 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
456 	} else {
457 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
458 	}
459 	up_read((&EXT4_I(inode)->i_data_sem));
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertion failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocated.  if
492  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, @map is returned as unmapped but we still do fill map->m_len to
497  * indicate the length of a hole starting at map->m_lblk.
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 	int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508 	struct ext4_map_blocks orig_map;
509 
510 	memcpy(&orig_map, map, sizeof(*map));
511 #endif
512 
513 	map->m_flags = 0;
514 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 		  flags, map->m_len, (unsigned long) map->m_lblk);
516 
517 	/*
518 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
519 	 */
520 	if (unlikely(map->m_len > INT_MAX))
521 		map->m_len = INT_MAX;
522 
523 	/* We can handle the block number less than EXT_MAX_BLOCKS */
524 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525 		return -EFSCORRUPTED;
526 
527 	/* Lookup extent status tree firstly */
528 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 			map->m_pblk = ext4_es_pblock(&es) +
532 					map->m_lblk - es.es_lblk;
533 			map->m_flags |= ext4_es_is_written(&es) ?
534 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 			retval = es.es_len - (map->m_lblk - es.es_lblk);
536 			if (retval > map->m_len)
537 				retval = map->m_len;
538 			map->m_len = retval;
539 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540 			map->m_pblk = 0;
541 			retval = es.es_len - (map->m_lblk - es.es_lblk);
542 			if (retval > map->m_len)
543 				retval = map->m_len;
544 			map->m_len = retval;
545 			retval = 0;
546 		} else {
547 			BUG();
548 		}
549 #ifdef ES_AGGRESSIVE_TEST
550 		ext4_map_blocks_es_recheck(handle, inode, map,
551 					   &orig_map, flags);
552 #endif
553 		goto found;
554 	}
555 
556 	/*
557 	 * Try to see if we can get the block without requesting a new
558 	 * file system block.
559 	 */
560 	down_read(&EXT4_I(inode)->i_data_sem);
561 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
563 	} else {
564 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
565 	}
566 	if (retval > 0) {
567 		unsigned int status;
568 
569 		if (unlikely(retval != map->m_len)) {
570 			ext4_warning(inode->i_sb,
571 				     "ES len assertion failed for inode "
572 				     "%lu: retval %d != map->m_len %d",
573 				     inode->i_ino, retval, map->m_len);
574 			WARN_ON(1);
575 		}
576 
577 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 		    !(status & EXTENT_STATUS_WRITTEN) &&
581 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 				       map->m_lblk + map->m_len - 1))
583 			status |= EXTENT_STATUS_DELAYED;
584 		ret = ext4_es_insert_extent(inode, map->m_lblk,
585 					    map->m_len, map->m_pblk, status);
586 		if (ret < 0)
587 			retval = ret;
588 	}
589 	up_read((&EXT4_I(inode)->i_data_sem));
590 
591 found:
592 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 		ret = check_block_validity(inode, map);
594 		if (ret != 0)
595 			return ret;
596 	}
597 
598 	/* If it is only a block(s) look up */
599 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600 		return retval;
601 
602 	/*
603 	 * Returns if the blocks have already allocated
604 	 *
605 	 * Note that if blocks have been preallocated
606 	 * ext4_ext_get_block() returns the create = 0
607 	 * with buffer head unmapped.
608 	 */
609 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 		/*
611 		 * If we need to convert extent to unwritten
612 		 * we continue and do the actual work in
613 		 * ext4_ext_map_blocks()
614 		 */
615 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 			return retval;
617 
618 	/*
619 	 * Here we clear m_flags because after allocating an new extent,
620 	 * it will be set again.
621 	 */
622 	map->m_flags &= ~EXT4_MAP_FLAGS;
623 
624 	/*
625 	 * New blocks allocate and/or writing to unwritten extent
626 	 * will possibly result in updating i_data, so we take
627 	 * the write lock of i_data_sem, and call get_block()
628 	 * with create == 1 flag.
629 	 */
630 	down_write(&EXT4_I(inode)->i_data_sem);
631 
632 	/*
633 	 * We need to check for EXT4 here because migrate
634 	 * could have changed the inode type in between
635 	 */
636 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
638 	} else {
639 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
640 
641 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642 			/*
643 			 * We allocated new blocks which will result in
644 			 * i_data's format changing.  Force the migrate
645 			 * to fail by clearing migrate flags
646 			 */
647 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
648 		}
649 
650 		/*
651 		 * Update reserved blocks/metadata blocks after successful
652 		 * block allocation which had been deferred till now. We don't
653 		 * support fallocate for non extent files. So we can update
654 		 * reserve space here.
655 		 */
656 		if ((retval > 0) &&
657 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658 			ext4_da_update_reserve_space(inode, retval, 1);
659 	}
660 
661 	if (retval > 0) {
662 		unsigned int status;
663 
664 		if (unlikely(retval != map->m_len)) {
665 			ext4_warning(inode->i_sb,
666 				     "ES len assertion failed for inode "
667 				     "%lu: retval %d != map->m_len %d",
668 				     inode->i_ino, retval, map->m_len);
669 			WARN_ON(1);
670 		}
671 
672 		/*
673 		 * We have to zeroout blocks before inserting them into extent
674 		 * status tree. Otherwise someone could look them up there and
675 		 * use them before they are really zeroed. We also have to
676 		 * unmap metadata before zeroing as otherwise writeback can
677 		 * overwrite zeros with stale data from block device.
678 		 */
679 		if (flags & EXT4_GET_BLOCKS_ZERO &&
680 		    map->m_flags & EXT4_MAP_MAPPED &&
681 		    map->m_flags & EXT4_MAP_NEW) {
682 			ret = ext4_issue_zeroout(inode, map->m_lblk,
683 						 map->m_pblk, map->m_len);
684 			if (ret) {
685 				retval = ret;
686 				goto out_sem;
687 			}
688 		}
689 
690 		/*
691 		 * If the extent has been zeroed out, we don't need to update
692 		 * extent status tree.
693 		 */
694 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696 			if (ext4_es_is_written(&es))
697 				goto out_sem;
698 		}
699 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 		    !(status & EXTENT_STATUS_WRITTEN) &&
703 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 				       map->m_lblk + map->m_len - 1))
705 			status |= EXTENT_STATUS_DELAYED;
706 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 					    map->m_pblk, status);
708 		if (ret < 0) {
709 			retval = ret;
710 			goto out_sem;
711 		}
712 	}
713 
714 out_sem:
715 	up_write((&EXT4_I(inode)->i_data_sem));
716 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 		ret = check_block_validity(inode, map);
718 		if (ret != 0)
719 			return ret;
720 
721 		/*
722 		 * Inodes with freshly allocated blocks where contents will be
723 		 * visible after transaction commit must be on transaction's
724 		 * ordered data list.
725 		 */
726 		if (map->m_flags & EXT4_MAP_NEW &&
727 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 		    !ext4_is_quota_file(inode) &&
730 		    ext4_should_order_data(inode)) {
731 			loff_t start_byte =
732 				(loff_t)map->m_lblk << inode->i_blkbits;
733 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734 
735 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736 				ret = ext4_jbd2_inode_add_wait(handle, inode,
737 						start_byte, length);
738 			else
739 				ret = ext4_jbd2_inode_add_write(handle, inode,
740 						start_byte, length);
741 			if (ret)
742 				return ret;
743 		}
744 		ext4_fc_track_range(handle, inode, map->m_lblk,
745 			    map->m_lblk + map->m_len - 1);
746 	}
747 
748 	if (retval < 0)
749 		ext_debug(inode, "failed with err %d\n", retval);
750 	return retval;
751 }
752 
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759 	unsigned long old_state;
760 	unsigned long new_state;
761 
762 	flags &= EXT4_MAP_FLAGS;
763 
764 	/* Dummy buffer_head? Set non-atomically. */
765 	if (!bh->b_page) {
766 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767 		return;
768 	}
769 	/*
770 	 * Someone else may be modifying b_state. Be careful! This is ugly but
771 	 * once we get rid of using bh as a container for mapping information
772 	 * to pass to / from get_block functions, this can go away.
773 	 */
774 	do {
775 		old_state = READ_ONCE(bh->b_state);
776 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777 	} while (unlikely(
778 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780 
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 			   struct buffer_head *bh, int flags)
783 {
784 	struct ext4_map_blocks map;
785 	int ret = 0;
786 
787 	if (ext4_has_inline_data(inode))
788 		return -ERANGE;
789 
790 	map.m_lblk = iblock;
791 	map.m_len = bh->b_size >> inode->i_blkbits;
792 
793 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794 			      flags);
795 	if (ret > 0) {
796 		map_bh(bh, inode->i_sb, map.m_pblk);
797 		ext4_update_bh_state(bh, map.m_flags);
798 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799 		ret = 0;
800 	} else if (ret == 0) {
801 		/* hole case, need to fill in bh->b_size */
802 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803 	}
804 	return ret;
805 }
806 
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 		   struct buffer_head *bh, int create)
809 {
810 	return _ext4_get_block(inode, iblock, bh,
811 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813 
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 			     struct buffer_head *bh_result, int create)
821 {
822 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 		   inode->i_ino, create);
824 	return _ext4_get_block(inode, iblock, bh_result,
825 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827 
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830 
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 				ext4_lblk_t block, int map_flags)
836 {
837 	struct ext4_map_blocks map;
838 	struct buffer_head *bh;
839 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 	int err;
841 
842 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 		    || handle != NULL || create == 0);
844 
845 	map.m_lblk = block;
846 	map.m_len = 1;
847 	err = ext4_map_blocks(handle, inode, &map, map_flags);
848 
849 	if (err == 0)
850 		return create ? ERR_PTR(-ENOSPC) : NULL;
851 	if (err < 0)
852 		return ERR_PTR(err);
853 
854 	bh = sb_getblk(inode->i_sb, map.m_pblk);
855 	if (unlikely(!bh))
856 		return ERR_PTR(-ENOMEM);
857 	if (map.m_flags & EXT4_MAP_NEW) {
858 		ASSERT(create != 0);
859 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 			    || (handle != NULL));
861 
862 		/*
863 		 * Now that we do not always journal data, we should
864 		 * keep in mind whether this should always journal the
865 		 * new buffer as metadata.  For now, regular file
866 		 * writes use ext4_get_block instead, so it's not a
867 		 * problem.
868 		 */
869 		lock_buffer(bh);
870 		BUFFER_TRACE(bh, "call get_create_access");
871 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
872 						     EXT4_JTR_NONE);
873 		if (unlikely(err)) {
874 			unlock_buffer(bh);
875 			goto errout;
876 		}
877 		if (!buffer_uptodate(bh)) {
878 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 			set_buffer_uptodate(bh);
880 		}
881 		unlock_buffer(bh);
882 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 		err = ext4_handle_dirty_metadata(handle, inode, bh);
884 		if (unlikely(err))
885 			goto errout;
886 	} else
887 		BUFFER_TRACE(bh, "not a new buffer");
888 	return bh;
889 errout:
890 	brelse(bh);
891 	return ERR_PTR(err);
892 }
893 
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 			       ext4_lblk_t block, int map_flags)
896 {
897 	struct buffer_head *bh;
898 	int ret;
899 
900 	bh = ext4_getblk(handle, inode, block, map_flags);
901 	if (IS_ERR(bh))
902 		return bh;
903 	if (!bh || ext4_buffer_uptodate(bh))
904 		return bh;
905 
906 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 	if (ret) {
908 		put_bh(bh);
909 		return ERR_PTR(ret);
910 	}
911 	return bh;
912 }
913 
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 		     bool wait, struct buffer_head **bhs)
917 {
918 	int i, err;
919 
920 	for (i = 0; i < bh_count; i++) {
921 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 		if (IS_ERR(bhs[i])) {
923 			err = PTR_ERR(bhs[i]);
924 			bh_count = i;
925 			goto out_brelse;
926 		}
927 	}
928 
929 	for (i = 0; i < bh_count; i++)
930 		/* Note that NULL bhs[i] is valid because of holes. */
931 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933 
934 	if (!wait)
935 		return 0;
936 
937 	for (i = 0; i < bh_count; i++)
938 		if (bhs[i])
939 			wait_on_buffer(bhs[i]);
940 
941 	for (i = 0; i < bh_count; i++) {
942 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 			err = -EIO;
944 			goto out_brelse;
945 		}
946 	}
947 	return 0;
948 
949 out_brelse:
950 	for (i = 0; i < bh_count; i++) {
951 		brelse(bhs[i]);
952 		bhs[i] = NULL;
953 	}
954 	return err;
955 }
956 
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958 			   struct buffer_head *head,
959 			   unsigned from,
960 			   unsigned to,
961 			   int *partial,
962 			   int (*fn)(handle_t *handle, struct inode *inode,
963 				     struct buffer_head *bh))
964 {
965 	struct buffer_head *bh;
966 	unsigned block_start, block_end;
967 	unsigned blocksize = head->b_size;
968 	int err, ret = 0;
969 	struct buffer_head *next;
970 
971 	for (bh = head, block_start = 0;
972 	     ret == 0 && (bh != head || !block_start);
973 	     block_start = block_end, bh = next) {
974 		next = bh->b_this_page;
975 		block_end = block_start + blocksize;
976 		if (block_end <= from || block_start >= to) {
977 			if (partial && !buffer_uptodate(bh))
978 				*partial = 1;
979 			continue;
980 		}
981 		err = (*fn)(handle, inode, bh);
982 		if (!ret)
983 			ret = err;
984 	}
985 	return ret;
986 }
987 
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 				struct buffer_head *bh)
1014 {
1015 	int dirty = buffer_dirty(bh);
1016 	int ret;
1017 
1018 	if (!buffer_mapped(bh) || buffer_freed(bh))
1019 		return 0;
1020 	/*
1021 	 * __block_write_begin() could have dirtied some buffers. Clean
1022 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 	 * otherwise about fs integrity issues. Setting of the dirty bit
1024 	 * by __block_write_begin() isn't a real problem here as we clear
1025 	 * the bit before releasing a page lock and thus writeback cannot
1026 	 * ever write the buffer.
1027 	 */
1028 	if (dirty)
1029 		clear_buffer_dirty(bh);
1030 	BUFFER_TRACE(bh, "get write access");
1031 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032 					    EXT4_JTR_NONE);
1033 	if (!ret && dirty)
1034 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035 	return ret;
1036 }
1037 
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040 				  get_block_t *get_block)
1041 {
1042 	unsigned from = pos & (PAGE_SIZE - 1);
1043 	unsigned to = from + len;
1044 	struct inode *inode = page->mapping->host;
1045 	unsigned block_start, block_end;
1046 	sector_t block;
1047 	int err = 0;
1048 	unsigned blocksize = inode->i_sb->s_blocksize;
1049 	unsigned bbits;
1050 	struct buffer_head *bh, *head, *wait[2];
1051 	int nr_wait = 0;
1052 	int i;
1053 
1054 	BUG_ON(!PageLocked(page));
1055 	BUG_ON(from > PAGE_SIZE);
1056 	BUG_ON(to > PAGE_SIZE);
1057 	BUG_ON(from > to);
1058 
1059 	if (!page_has_buffers(page))
1060 		create_empty_buffers(page, blocksize, 0);
1061 	head = page_buffers(page);
1062 	bbits = ilog2(blocksize);
1063 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1064 
1065 	for (bh = head, block_start = 0; bh != head || !block_start;
1066 	    block++, block_start = block_end, bh = bh->b_this_page) {
1067 		block_end = block_start + blocksize;
1068 		if (block_end <= from || block_start >= to) {
1069 			if (PageUptodate(page)) {
1070 				set_buffer_uptodate(bh);
1071 			}
1072 			continue;
1073 		}
1074 		if (buffer_new(bh))
1075 			clear_buffer_new(bh);
1076 		if (!buffer_mapped(bh)) {
1077 			WARN_ON(bh->b_size != blocksize);
1078 			err = get_block(inode, block, bh, 1);
1079 			if (err)
1080 				break;
1081 			if (buffer_new(bh)) {
1082 				if (PageUptodate(page)) {
1083 					clear_buffer_new(bh);
1084 					set_buffer_uptodate(bh);
1085 					mark_buffer_dirty(bh);
1086 					continue;
1087 				}
1088 				if (block_end > to || block_start < from)
1089 					zero_user_segments(page, to, block_end,
1090 							   block_start, from);
1091 				continue;
1092 			}
1093 		}
1094 		if (PageUptodate(page)) {
1095 			set_buffer_uptodate(bh);
1096 			continue;
1097 		}
1098 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 		    !buffer_unwritten(bh) &&
1100 		    (block_start < from || block_end > to)) {
1101 			ext4_read_bh_lock(bh, 0, false);
1102 			wait[nr_wait++] = bh;
1103 		}
1104 	}
1105 	/*
1106 	 * If we issued read requests, let them complete.
1107 	 */
1108 	for (i = 0; i < nr_wait; i++) {
1109 		wait_on_buffer(wait[i]);
1110 		if (!buffer_uptodate(wait[i]))
1111 			err = -EIO;
1112 	}
1113 	if (unlikely(err)) {
1114 		page_zero_new_buffers(page, from, to);
1115 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 		for (i = 0; i < nr_wait; i++) {
1117 			int err2;
1118 
1119 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 								bh_offset(wait[i]));
1121 			if (err2) {
1122 				clear_buffer_uptodate(wait[i]);
1123 				err = err2;
1124 			}
1125 		}
1126 	}
1127 
1128 	return err;
1129 }
1130 #endif
1131 
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 			    loff_t pos, unsigned len, unsigned flags,
1134 			    struct page **pagep, void **fsdata)
1135 {
1136 	struct inode *inode = mapping->host;
1137 	int ret, needed_blocks;
1138 	handle_t *handle;
1139 	int retries = 0;
1140 	struct page *page;
1141 	pgoff_t index;
1142 	unsigned from, to;
1143 
1144 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145 		return -EIO;
1146 
1147 	trace_ext4_write_begin(inode, pos, len, flags);
1148 	/*
1149 	 * Reserve one block more for addition to orphan list in case
1150 	 * we allocate blocks but write fails for some reason
1151 	 */
1152 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153 	index = pos >> PAGE_SHIFT;
1154 	from = pos & (PAGE_SIZE - 1);
1155 	to = from + len;
1156 
1157 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159 						    flags, pagep);
1160 		if (ret < 0)
1161 			return ret;
1162 		if (ret == 1)
1163 			return 0;
1164 	}
1165 
1166 	/*
1167 	 * grab_cache_page_write_begin() can take a long time if the
1168 	 * system is thrashing due to memory pressure, or if the page
1169 	 * is being written back.  So grab it first before we start
1170 	 * the transaction handle.  This also allows us to allocate
1171 	 * the page (if needed) without using GFP_NOFS.
1172 	 */
1173 retry_grab:
1174 	page = grab_cache_page_write_begin(mapping, index, flags);
1175 	if (!page)
1176 		return -ENOMEM;
1177 	unlock_page(page);
1178 
1179 retry_journal:
1180 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181 	if (IS_ERR(handle)) {
1182 		put_page(page);
1183 		return PTR_ERR(handle);
1184 	}
1185 
1186 	lock_page(page);
1187 	if (page->mapping != mapping) {
1188 		/* The page got truncated from under us */
1189 		unlock_page(page);
1190 		put_page(page);
1191 		ext4_journal_stop(handle);
1192 		goto retry_grab;
1193 	}
1194 	/* In case writeback began while the page was unlocked */
1195 	wait_for_stable_page(page);
1196 
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 	if (ext4_should_dioread_nolock(inode))
1199 		ret = ext4_block_write_begin(page, pos, len,
1200 					     ext4_get_block_unwritten);
1201 	else
1202 		ret = ext4_block_write_begin(page, pos, len,
1203 					     ext4_get_block);
1204 #else
1205 	if (ext4_should_dioread_nolock(inode))
1206 		ret = __block_write_begin(page, pos, len,
1207 					  ext4_get_block_unwritten);
1208 	else
1209 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211 	if (!ret && ext4_should_journal_data(inode)) {
1212 		ret = ext4_walk_page_buffers(handle, inode,
1213 					     page_buffers(page), from, to, NULL,
1214 					     do_journal_get_write_access);
1215 	}
1216 
1217 	if (ret) {
1218 		bool extended = (pos + len > inode->i_size) &&
1219 				!ext4_verity_in_progress(inode);
1220 
1221 		unlock_page(page);
1222 		/*
1223 		 * __block_write_begin may have instantiated a few blocks
1224 		 * outside i_size.  Trim these off again. Don't need
1225 		 * i_size_read because we hold i_mutex.
1226 		 *
1227 		 * Add inode to orphan list in case we crash before
1228 		 * truncate finishes
1229 		 */
1230 		if (extended && ext4_can_truncate(inode))
1231 			ext4_orphan_add(handle, inode);
1232 
1233 		ext4_journal_stop(handle);
1234 		if (extended) {
1235 			ext4_truncate_failed_write(inode);
1236 			/*
1237 			 * If truncate failed early the inode might
1238 			 * still be on the orphan list; we need to
1239 			 * make sure the inode is removed from the
1240 			 * orphan list in that case.
1241 			 */
1242 			if (inode->i_nlink)
1243 				ext4_orphan_del(NULL, inode);
1244 		}
1245 
1246 		if (ret == -ENOSPC &&
1247 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1248 			goto retry_journal;
1249 		put_page(page);
1250 		return ret;
1251 	}
1252 	*pagep = page;
1253 	return ret;
1254 }
1255 
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258 			struct buffer_head *bh)
1259 {
1260 	int ret;
1261 	if (!buffer_mapped(bh) || buffer_freed(bh))
1262 		return 0;
1263 	set_buffer_uptodate(bh);
1264 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 	clear_buffer_meta(bh);
1266 	clear_buffer_prio(bh);
1267 	return ret;
1268 }
1269 
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
1277 static int ext4_write_end(struct file *file,
1278 			  struct address_space *mapping,
1279 			  loff_t pos, unsigned len, unsigned copied,
1280 			  struct page *page, void *fsdata)
1281 {
1282 	handle_t *handle = ext4_journal_current_handle();
1283 	struct inode *inode = mapping->host;
1284 	loff_t old_size = inode->i_size;
1285 	int ret = 0, ret2;
1286 	int i_size_changed = 0;
1287 	bool verity = ext4_verity_in_progress(inode);
1288 
1289 	trace_ext4_write_end(inode, pos, len, copied);
1290 
1291 	if (ext4_has_inline_data(inode))
1292 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1293 
1294 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1295 	/*
1296 	 * it's important to update i_size while still holding page lock:
1297 	 * page writeout could otherwise come in and zero beyond i_size.
1298 	 *
1299 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1300 	 * blocks are being written past EOF, so skip the i_size update.
1301 	 */
1302 	if (!verity)
1303 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1304 	unlock_page(page);
1305 	put_page(page);
1306 
1307 	if (old_size < pos && !verity)
1308 		pagecache_isize_extended(inode, old_size, pos);
1309 	/*
1310 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1311 	 * makes the holding time of page lock longer. Second, it forces lock
1312 	 * ordering of page lock and transaction start for journaling
1313 	 * filesystems.
1314 	 */
1315 	if (i_size_changed)
1316 		ret = ext4_mark_inode_dirty(handle, inode);
1317 
1318 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1319 		/* if we have allocated more blocks and copied
1320 		 * less. We will have blocks allocated outside
1321 		 * inode->i_size. So truncate them
1322 		 */
1323 		ext4_orphan_add(handle, inode);
1324 
1325 	ret2 = ext4_journal_stop(handle);
1326 	if (!ret)
1327 		ret = ret2;
1328 
1329 	if (pos + len > inode->i_size && !verity) {
1330 		ext4_truncate_failed_write(inode);
1331 		/*
1332 		 * If truncate failed early the inode might still be
1333 		 * on the orphan list; we need to make sure the inode
1334 		 * is removed from the orphan list in that case.
1335 		 */
1336 		if (inode->i_nlink)
1337 			ext4_orphan_del(NULL, inode);
1338 	}
1339 
1340 	return ret ? ret : copied;
1341 }
1342 
1343 /*
1344  * This is a private version of page_zero_new_buffers() which doesn't
1345  * set the buffer to be dirty, since in data=journalled mode we need
1346  * to call ext4_handle_dirty_metadata() instead.
1347  */
1348 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1349 					    struct inode *inode,
1350 					    struct page *page,
1351 					    unsigned from, unsigned to)
1352 {
1353 	unsigned int block_start = 0, block_end;
1354 	struct buffer_head *head, *bh;
1355 
1356 	bh = head = page_buffers(page);
1357 	do {
1358 		block_end = block_start + bh->b_size;
1359 		if (buffer_new(bh)) {
1360 			if (block_end > from && block_start < to) {
1361 				if (!PageUptodate(page)) {
1362 					unsigned start, size;
1363 
1364 					start = max(from, block_start);
1365 					size = min(to, block_end) - start;
1366 
1367 					zero_user(page, start, size);
1368 					write_end_fn(handle, inode, bh);
1369 				}
1370 				clear_buffer_new(bh);
1371 			}
1372 		}
1373 		block_start = block_end;
1374 		bh = bh->b_this_page;
1375 	} while (bh != head);
1376 }
1377 
1378 static int ext4_journalled_write_end(struct file *file,
1379 				     struct address_space *mapping,
1380 				     loff_t pos, unsigned len, unsigned copied,
1381 				     struct page *page, void *fsdata)
1382 {
1383 	handle_t *handle = ext4_journal_current_handle();
1384 	struct inode *inode = mapping->host;
1385 	loff_t old_size = inode->i_size;
1386 	int ret = 0, ret2;
1387 	int partial = 0;
1388 	unsigned from, to;
1389 	int size_changed = 0;
1390 	bool verity = ext4_verity_in_progress(inode);
1391 
1392 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1393 	from = pos & (PAGE_SIZE - 1);
1394 	to = from + len;
1395 
1396 	BUG_ON(!ext4_handle_valid(handle));
1397 
1398 	if (ext4_has_inline_data(inode))
1399 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1400 
1401 	if (unlikely(copied < len) && !PageUptodate(page)) {
1402 		copied = 0;
1403 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1404 	} else {
1405 		if (unlikely(copied < len))
1406 			ext4_journalled_zero_new_buffers(handle, inode, page,
1407 							 from + copied, to);
1408 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1409 					     from, from + copied, &partial,
1410 					     write_end_fn);
1411 		if (!partial)
1412 			SetPageUptodate(page);
1413 	}
1414 	if (!verity)
1415 		size_changed = ext4_update_inode_size(inode, pos + copied);
1416 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1417 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1418 	unlock_page(page);
1419 	put_page(page);
1420 
1421 	if (old_size < pos && !verity)
1422 		pagecache_isize_extended(inode, old_size, pos);
1423 
1424 	if (size_changed) {
1425 		ret2 = ext4_mark_inode_dirty(handle, inode);
1426 		if (!ret)
1427 			ret = ret2;
1428 	}
1429 
1430 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1431 		/* if we have allocated more blocks and copied
1432 		 * less. We will have blocks allocated outside
1433 		 * inode->i_size. So truncate them
1434 		 */
1435 		ext4_orphan_add(handle, inode);
1436 
1437 	ret2 = ext4_journal_stop(handle);
1438 	if (!ret)
1439 		ret = ret2;
1440 	if (pos + len > inode->i_size && !verity) {
1441 		ext4_truncate_failed_write(inode);
1442 		/*
1443 		 * If truncate failed early the inode might still be
1444 		 * on the orphan list; we need to make sure the inode
1445 		 * is removed from the orphan list in that case.
1446 		 */
1447 		if (inode->i_nlink)
1448 			ext4_orphan_del(NULL, inode);
1449 	}
1450 
1451 	return ret ? ret : copied;
1452 }
1453 
1454 /*
1455  * Reserve space for a single cluster
1456  */
1457 static int ext4_da_reserve_space(struct inode *inode)
1458 {
1459 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1460 	struct ext4_inode_info *ei = EXT4_I(inode);
1461 	int ret;
1462 
1463 	/*
1464 	 * We will charge metadata quota at writeout time; this saves
1465 	 * us from metadata over-estimation, though we may go over by
1466 	 * a small amount in the end.  Here we just reserve for data.
1467 	 */
1468 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1469 	if (ret)
1470 		return ret;
1471 
1472 	spin_lock(&ei->i_block_reservation_lock);
1473 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1474 		spin_unlock(&ei->i_block_reservation_lock);
1475 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1476 		return -ENOSPC;
1477 	}
1478 	ei->i_reserved_data_blocks++;
1479 	trace_ext4_da_reserve_space(inode);
1480 	spin_unlock(&ei->i_block_reservation_lock);
1481 
1482 	return 0;       /* success */
1483 }
1484 
1485 void ext4_da_release_space(struct inode *inode, int to_free)
1486 {
1487 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 	struct ext4_inode_info *ei = EXT4_I(inode);
1489 
1490 	if (!to_free)
1491 		return;		/* Nothing to release, exit */
1492 
1493 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1494 
1495 	trace_ext4_da_release_space(inode, to_free);
1496 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1497 		/*
1498 		 * if there aren't enough reserved blocks, then the
1499 		 * counter is messed up somewhere.  Since this
1500 		 * function is called from invalidate page, it's
1501 		 * harmless to return without any action.
1502 		 */
1503 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1504 			 "ino %lu, to_free %d with only %d reserved "
1505 			 "data blocks", inode->i_ino, to_free,
1506 			 ei->i_reserved_data_blocks);
1507 		WARN_ON(1);
1508 		to_free = ei->i_reserved_data_blocks;
1509 	}
1510 	ei->i_reserved_data_blocks -= to_free;
1511 
1512 	/* update fs dirty data blocks counter */
1513 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1514 
1515 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1516 
1517 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1518 }
1519 
1520 /*
1521  * Delayed allocation stuff
1522  */
1523 
1524 struct mpage_da_data {
1525 	struct inode *inode;
1526 	struct writeback_control *wbc;
1527 
1528 	pgoff_t first_page;	/* The first page to write */
1529 	pgoff_t next_page;	/* Current page to examine */
1530 	pgoff_t last_page;	/* Last page to examine */
1531 	/*
1532 	 * Extent to map - this can be after first_page because that can be
1533 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1534 	 * is delalloc or unwritten.
1535 	 */
1536 	struct ext4_map_blocks map;
1537 	struct ext4_io_submit io_submit;	/* IO submission data */
1538 	unsigned int do_map:1;
1539 	unsigned int scanned_until_end:1;
1540 };
1541 
1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1543 				       bool invalidate)
1544 {
1545 	int nr_pages, i;
1546 	pgoff_t index, end;
1547 	struct pagevec pvec;
1548 	struct inode *inode = mpd->inode;
1549 	struct address_space *mapping = inode->i_mapping;
1550 
1551 	/* This is necessary when next_page == 0. */
1552 	if (mpd->first_page >= mpd->next_page)
1553 		return;
1554 
1555 	mpd->scanned_until_end = 0;
1556 	index = mpd->first_page;
1557 	end   = mpd->next_page - 1;
1558 	if (invalidate) {
1559 		ext4_lblk_t start, last;
1560 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1561 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1562 		ext4_es_remove_extent(inode, start, last - start + 1);
1563 	}
1564 
1565 	pagevec_init(&pvec);
1566 	while (index <= end) {
1567 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1568 		if (nr_pages == 0)
1569 			break;
1570 		for (i = 0; i < nr_pages; i++) {
1571 			struct page *page = pvec.pages[i];
1572 
1573 			BUG_ON(!PageLocked(page));
1574 			BUG_ON(PageWriteback(page));
1575 			if (invalidate) {
1576 				if (page_mapped(page))
1577 					clear_page_dirty_for_io(page);
1578 				block_invalidatepage(page, 0, PAGE_SIZE);
1579 				ClearPageUptodate(page);
1580 			}
1581 			unlock_page(page);
1582 		}
1583 		pagevec_release(&pvec);
1584 	}
1585 }
1586 
1587 static void ext4_print_free_blocks(struct inode *inode)
1588 {
1589 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1590 	struct super_block *sb = inode->i_sb;
1591 	struct ext4_inode_info *ei = EXT4_I(inode);
1592 
1593 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1594 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1595 			ext4_count_free_clusters(sb)));
1596 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1597 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1598 	       (long long) EXT4_C2B(EXT4_SB(sb),
1599 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1600 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1601 	       (long long) EXT4_C2B(EXT4_SB(sb),
1602 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1603 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1604 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1605 		 ei->i_reserved_data_blocks);
1606 	return;
1607 }
1608 
1609 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1610 				      struct buffer_head *bh)
1611 {
1612 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1613 }
1614 
1615 /*
1616  * ext4_insert_delayed_block - adds a delayed block to the extents status
1617  *                             tree, incrementing the reserved cluster/block
1618  *                             count or making a pending reservation
1619  *                             where needed
1620  *
1621  * @inode - file containing the newly added block
1622  * @lblk - logical block to be added
1623  *
1624  * Returns 0 on success, negative error code on failure.
1625  */
1626 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1627 {
1628 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629 	int ret;
1630 	bool allocated = false;
1631 	bool reserved = false;
1632 
1633 	/*
1634 	 * If the cluster containing lblk is shared with a delayed,
1635 	 * written, or unwritten extent in a bigalloc file system, it's
1636 	 * already been accounted for and does not need to be reserved.
1637 	 * A pending reservation must be made for the cluster if it's
1638 	 * shared with a written or unwritten extent and doesn't already
1639 	 * have one.  Written and unwritten extents can be purged from the
1640 	 * extents status tree if the system is under memory pressure, so
1641 	 * it's necessary to examine the extent tree if a search of the
1642 	 * extents status tree doesn't get a match.
1643 	 */
1644 	if (sbi->s_cluster_ratio == 1) {
1645 		ret = ext4_da_reserve_space(inode);
1646 		if (ret != 0)   /* ENOSPC */
1647 			goto errout;
1648 		reserved = true;
1649 	} else {   /* bigalloc */
1650 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1651 			if (!ext4_es_scan_clu(inode,
1652 					      &ext4_es_is_mapped, lblk)) {
1653 				ret = ext4_clu_mapped(inode,
1654 						      EXT4_B2C(sbi, lblk));
1655 				if (ret < 0)
1656 					goto errout;
1657 				if (ret == 0) {
1658 					ret = ext4_da_reserve_space(inode);
1659 					if (ret != 0)   /* ENOSPC */
1660 						goto errout;
1661 					reserved = true;
1662 				} else {
1663 					allocated = true;
1664 				}
1665 			} else {
1666 				allocated = true;
1667 			}
1668 		}
1669 	}
1670 
1671 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1672 	if (ret && reserved)
1673 		ext4_da_release_space(inode, 1);
1674 
1675 errout:
1676 	return ret;
1677 }
1678 
1679 /*
1680  * This function is grabs code from the very beginning of
1681  * ext4_map_blocks, but assumes that the caller is from delayed write
1682  * time. This function looks up the requested blocks and sets the
1683  * buffer delay bit under the protection of i_data_sem.
1684  */
1685 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1686 			      struct ext4_map_blocks *map,
1687 			      struct buffer_head *bh)
1688 {
1689 	struct extent_status es;
1690 	int retval;
1691 	sector_t invalid_block = ~((sector_t) 0xffff);
1692 #ifdef ES_AGGRESSIVE_TEST
1693 	struct ext4_map_blocks orig_map;
1694 
1695 	memcpy(&orig_map, map, sizeof(*map));
1696 #endif
1697 
1698 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1699 		invalid_block = ~0;
1700 
1701 	map->m_flags = 0;
1702 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1703 		  (unsigned long) map->m_lblk);
1704 
1705 	/* Lookup extent status tree firstly */
1706 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1707 		if (ext4_es_is_hole(&es)) {
1708 			retval = 0;
1709 			down_read(&EXT4_I(inode)->i_data_sem);
1710 			goto add_delayed;
1711 		}
1712 
1713 		/*
1714 		 * Delayed extent could be allocated by fallocate.
1715 		 * So we need to check it.
1716 		 */
1717 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1718 			map_bh(bh, inode->i_sb, invalid_block);
1719 			set_buffer_new(bh);
1720 			set_buffer_delay(bh);
1721 			return 0;
1722 		}
1723 
1724 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1725 		retval = es.es_len - (iblock - es.es_lblk);
1726 		if (retval > map->m_len)
1727 			retval = map->m_len;
1728 		map->m_len = retval;
1729 		if (ext4_es_is_written(&es))
1730 			map->m_flags |= EXT4_MAP_MAPPED;
1731 		else if (ext4_es_is_unwritten(&es))
1732 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1733 		else
1734 			BUG();
1735 
1736 #ifdef ES_AGGRESSIVE_TEST
1737 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1738 #endif
1739 		return retval;
1740 	}
1741 
1742 	/*
1743 	 * Try to see if we can get the block without requesting a new
1744 	 * file system block.
1745 	 */
1746 	down_read(&EXT4_I(inode)->i_data_sem);
1747 	if (ext4_has_inline_data(inode))
1748 		retval = 0;
1749 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1750 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1751 	else
1752 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1753 
1754 add_delayed:
1755 	if (retval == 0) {
1756 		int ret;
1757 
1758 		/*
1759 		 * XXX: __block_prepare_write() unmaps passed block,
1760 		 * is it OK?
1761 		 */
1762 
1763 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1764 		if (ret != 0) {
1765 			retval = ret;
1766 			goto out_unlock;
1767 		}
1768 
1769 		map_bh(bh, inode->i_sb, invalid_block);
1770 		set_buffer_new(bh);
1771 		set_buffer_delay(bh);
1772 	} else if (retval > 0) {
1773 		int ret;
1774 		unsigned int status;
1775 
1776 		if (unlikely(retval != map->m_len)) {
1777 			ext4_warning(inode->i_sb,
1778 				     "ES len assertion failed for inode "
1779 				     "%lu: retval %d != map->m_len %d",
1780 				     inode->i_ino, retval, map->m_len);
1781 			WARN_ON(1);
1782 		}
1783 
1784 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1785 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1786 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1787 					    map->m_pblk, status);
1788 		if (ret != 0)
1789 			retval = ret;
1790 	}
1791 
1792 out_unlock:
1793 	up_read((&EXT4_I(inode)->i_data_sem));
1794 
1795 	return retval;
1796 }
1797 
1798 /*
1799  * This is a special get_block_t callback which is used by
1800  * ext4_da_write_begin().  It will either return mapped block or
1801  * reserve space for a single block.
1802  *
1803  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1804  * We also have b_blocknr = -1 and b_bdev initialized properly
1805  *
1806  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1807  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1808  * initialized properly.
1809  */
1810 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1811 			   struct buffer_head *bh, int create)
1812 {
1813 	struct ext4_map_blocks map;
1814 	int ret = 0;
1815 
1816 	BUG_ON(create == 0);
1817 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1818 
1819 	map.m_lblk = iblock;
1820 	map.m_len = 1;
1821 
1822 	/*
1823 	 * first, we need to know whether the block is allocated already
1824 	 * preallocated blocks are unmapped but should treated
1825 	 * the same as allocated blocks.
1826 	 */
1827 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1828 	if (ret <= 0)
1829 		return ret;
1830 
1831 	map_bh(bh, inode->i_sb, map.m_pblk);
1832 	ext4_update_bh_state(bh, map.m_flags);
1833 
1834 	if (buffer_unwritten(bh)) {
1835 		/* A delayed write to unwritten bh should be marked
1836 		 * new and mapped.  Mapped ensures that we don't do
1837 		 * get_block multiple times when we write to the same
1838 		 * offset and new ensures that we do proper zero out
1839 		 * for partial write.
1840 		 */
1841 		set_buffer_new(bh);
1842 		set_buffer_mapped(bh);
1843 	}
1844 	return 0;
1845 }
1846 
1847 static int bget_one(handle_t *handle, struct inode *inode,
1848 		    struct buffer_head *bh)
1849 {
1850 	get_bh(bh);
1851 	return 0;
1852 }
1853 
1854 static int bput_one(handle_t *handle, struct inode *inode,
1855 		    struct buffer_head *bh)
1856 {
1857 	put_bh(bh);
1858 	return 0;
1859 }
1860 
1861 static int __ext4_journalled_writepage(struct page *page,
1862 				       unsigned int len)
1863 {
1864 	struct address_space *mapping = page->mapping;
1865 	struct inode *inode = mapping->host;
1866 	struct buffer_head *page_bufs = NULL;
1867 	handle_t *handle = NULL;
1868 	int ret = 0, err = 0;
1869 	int inline_data = ext4_has_inline_data(inode);
1870 	struct buffer_head *inode_bh = NULL;
1871 
1872 	ClearPageChecked(page);
1873 
1874 	if (inline_data) {
1875 		BUG_ON(page->index != 0);
1876 		BUG_ON(len > ext4_get_max_inline_size(inode));
1877 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1878 		if (inode_bh == NULL)
1879 			goto out;
1880 	} else {
1881 		page_bufs = page_buffers(page);
1882 		if (!page_bufs) {
1883 			BUG();
1884 			goto out;
1885 		}
1886 		ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1887 				       NULL, bget_one);
1888 	}
1889 	/*
1890 	 * We need to release the page lock before we start the
1891 	 * journal, so grab a reference so the page won't disappear
1892 	 * out from under us.
1893 	 */
1894 	get_page(page);
1895 	unlock_page(page);
1896 
1897 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1898 				    ext4_writepage_trans_blocks(inode));
1899 	if (IS_ERR(handle)) {
1900 		ret = PTR_ERR(handle);
1901 		put_page(page);
1902 		goto out_no_pagelock;
1903 	}
1904 	BUG_ON(!ext4_handle_valid(handle));
1905 
1906 	lock_page(page);
1907 	put_page(page);
1908 	if (page->mapping != mapping) {
1909 		/* The page got truncated from under us */
1910 		ext4_journal_stop(handle);
1911 		ret = 0;
1912 		goto out;
1913 	}
1914 
1915 	if (inline_data) {
1916 		ret = ext4_mark_inode_dirty(handle, inode);
1917 	} else {
1918 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1919 					     NULL, do_journal_get_write_access);
1920 
1921 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1922 					     NULL, write_end_fn);
1923 	}
1924 	if (ret == 0)
1925 		ret = err;
1926 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1927 	if (ret == 0)
1928 		ret = err;
1929 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1930 	err = ext4_journal_stop(handle);
1931 	if (!ret)
1932 		ret = err;
1933 
1934 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1935 out:
1936 	unlock_page(page);
1937 out_no_pagelock:
1938 	if (!inline_data && page_bufs)
1939 		ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
1940 				       NULL, bput_one);
1941 	brelse(inode_bh);
1942 	return ret;
1943 }
1944 
1945 /*
1946  * Note that we don't need to start a transaction unless we're journaling data
1947  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1948  * need to file the inode to the transaction's list in ordered mode because if
1949  * we are writing back data added by write(), the inode is already there and if
1950  * we are writing back data modified via mmap(), no one guarantees in which
1951  * transaction the data will hit the disk. In case we are journaling data, we
1952  * cannot start transaction directly because transaction start ranks above page
1953  * lock so we have to do some magic.
1954  *
1955  * This function can get called via...
1956  *   - ext4_writepages after taking page lock (have journal handle)
1957  *   - journal_submit_inode_data_buffers (no journal handle)
1958  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1959  *   - grab_page_cache when doing write_begin (have journal handle)
1960  *
1961  * We don't do any block allocation in this function. If we have page with
1962  * multiple blocks we need to write those buffer_heads that are mapped. This
1963  * is important for mmaped based write. So if we do with blocksize 1K
1964  * truncate(f, 1024);
1965  * a = mmap(f, 0, 4096);
1966  * a[0] = 'a';
1967  * truncate(f, 4096);
1968  * we have in the page first buffer_head mapped via page_mkwrite call back
1969  * but other buffer_heads would be unmapped but dirty (dirty done via the
1970  * do_wp_page). So writepage should write the first block. If we modify
1971  * the mmap area beyond 1024 we will again get a page_fault and the
1972  * page_mkwrite callback will do the block allocation and mark the
1973  * buffer_heads mapped.
1974  *
1975  * We redirty the page if we have any buffer_heads that is either delay or
1976  * unwritten in the page.
1977  *
1978  * We can get recursively called as show below.
1979  *
1980  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1981  *		ext4_writepage()
1982  *
1983  * But since we don't do any block allocation we should not deadlock.
1984  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1985  */
1986 static int ext4_writepage(struct page *page,
1987 			  struct writeback_control *wbc)
1988 {
1989 	int ret = 0;
1990 	loff_t size;
1991 	unsigned int len;
1992 	struct buffer_head *page_bufs = NULL;
1993 	struct inode *inode = page->mapping->host;
1994 	struct ext4_io_submit io_submit;
1995 	bool keep_towrite = false;
1996 
1997 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1998 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1999 		unlock_page(page);
2000 		return -EIO;
2001 	}
2002 
2003 	trace_ext4_writepage(page);
2004 	size = i_size_read(inode);
2005 	if (page->index == size >> PAGE_SHIFT &&
2006 	    !ext4_verity_in_progress(inode))
2007 		len = size & ~PAGE_MASK;
2008 	else
2009 		len = PAGE_SIZE;
2010 
2011 	page_bufs = page_buffers(page);
2012 	/*
2013 	 * We cannot do block allocation or other extent handling in this
2014 	 * function. If there are buffers needing that, we have to redirty
2015 	 * the page. But we may reach here when we do a journal commit via
2016 	 * journal_submit_inode_data_buffers() and in that case we must write
2017 	 * allocated buffers to achieve data=ordered mode guarantees.
2018 	 *
2019 	 * Also, if there is only one buffer per page (the fs block
2020 	 * size == the page size), if one buffer needs block
2021 	 * allocation or needs to modify the extent tree to clear the
2022 	 * unwritten flag, we know that the page can't be written at
2023 	 * all, so we might as well refuse the write immediately.
2024 	 * Unfortunately if the block size != page size, we can't as
2025 	 * easily detect this case using ext4_walk_page_buffers(), but
2026 	 * for the extremely common case, this is an optimization that
2027 	 * skips a useless round trip through ext4_bio_write_page().
2028 	 */
2029 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2030 				   ext4_bh_delay_or_unwritten)) {
2031 		redirty_page_for_writepage(wbc, page);
2032 		if ((current->flags & PF_MEMALLOC) ||
2033 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2034 			/*
2035 			 * For memory cleaning there's no point in writing only
2036 			 * some buffers. So just bail out. Warn if we came here
2037 			 * from direct reclaim.
2038 			 */
2039 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2040 							== PF_MEMALLOC);
2041 			unlock_page(page);
2042 			return 0;
2043 		}
2044 		keep_towrite = true;
2045 	}
2046 
2047 	if (PageChecked(page) && ext4_should_journal_data(inode))
2048 		/*
2049 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2050 		 * doesn't seem much point in redirtying the page here.
2051 		 */
2052 		return __ext4_journalled_writepage(page, len);
2053 
2054 	ext4_io_submit_init(&io_submit, wbc);
2055 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2056 	if (!io_submit.io_end) {
2057 		redirty_page_for_writepage(wbc, page);
2058 		unlock_page(page);
2059 		return -ENOMEM;
2060 	}
2061 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2062 	ext4_io_submit(&io_submit);
2063 	/* Drop io_end reference we got from init */
2064 	ext4_put_io_end_defer(io_submit.io_end);
2065 	return ret;
2066 }
2067 
2068 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2069 {
2070 	int len;
2071 	loff_t size;
2072 	int err;
2073 
2074 	BUG_ON(page->index != mpd->first_page);
2075 	clear_page_dirty_for_io(page);
2076 	/*
2077 	 * We have to be very careful here!  Nothing protects writeback path
2078 	 * against i_size changes and the page can be writeably mapped into
2079 	 * page tables. So an application can be growing i_size and writing
2080 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2081 	 * write-protects our page in page tables and the page cannot get
2082 	 * written to again until we release page lock. So only after
2083 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2084 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2085 	 * on the barrier provided by TestClearPageDirty in
2086 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2087 	 * after page tables are updated.
2088 	 */
2089 	size = i_size_read(mpd->inode);
2090 	if (page->index == size >> PAGE_SHIFT &&
2091 	    !ext4_verity_in_progress(mpd->inode))
2092 		len = size & ~PAGE_MASK;
2093 	else
2094 		len = PAGE_SIZE;
2095 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2096 	if (!err)
2097 		mpd->wbc->nr_to_write--;
2098 	mpd->first_page++;
2099 
2100 	return err;
2101 }
2102 
2103 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2104 
2105 /*
2106  * mballoc gives us at most this number of blocks...
2107  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2108  * The rest of mballoc seems to handle chunks up to full group size.
2109  */
2110 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2111 
2112 /*
2113  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2114  *
2115  * @mpd - extent of blocks
2116  * @lblk - logical number of the block in the file
2117  * @bh - buffer head we want to add to the extent
2118  *
2119  * The function is used to collect contig. blocks in the same state. If the
2120  * buffer doesn't require mapping for writeback and we haven't started the
2121  * extent of buffers to map yet, the function returns 'true' immediately - the
2122  * caller can write the buffer right away. Otherwise the function returns true
2123  * if the block has been added to the extent, false if the block couldn't be
2124  * added.
2125  */
2126 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2127 				   struct buffer_head *bh)
2128 {
2129 	struct ext4_map_blocks *map = &mpd->map;
2130 
2131 	/* Buffer that doesn't need mapping for writeback? */
2132 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2133 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2134 		/* So far no extent to map => we write the buffer right away */
2135 		if (map->m_len == 0)
2136 			return true;
2137 		return false;
2138 	}
2139 
2140 	/* First block in the extent? */
2141 	if (map->m_len == 0) {
2142 		/* We cannot map unless handle is started... */
2143 		if (!mpd->do_map)
2144 			return false;
2145 		map->m_lblk = lblk;
2146 		map->m_len = 1;
2147 		map->m_flags = bh->b_state & BH_FLAGS;
2148 		return true;
2149 	}
2150 
2151 	/* Don't go larger than mballoc is willing to allocate */
2152 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2153 		return false;
2154 
2155 	/* Can we merge the block to our big extent? */
2156 	if (lblk == map->m_lblk + map->m_len &&
2157 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2158 		map->m_len++;
2159 		return true;
2160 	}
2161 	return false;
2162 }
2163 
2164 /*
2165  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2166  *
2167  * @mpd - extent of blocks for mapping
2168  * @head - the first buffer in the page
2169  * @bh - buffer we should start processing from
2170  * @lblk - logical number of the block in the file corresponding to @bh
2171  *
2172  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2173  * the page for IO if all buffers in this page were mapped and there's no
2174  * accumulated extent of buffers to map or add buffers in the page to the
2175  * extent of buffers to map. The function returns 1 if the caller can continue
2176  * by processing the next page, 0 if it should stop adding buffers to the
2177  * extent to map because we cannot extend it anymore. It can also return value
2178  * < 0 in case of error during IO submission.
2179  */
2180 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2181 				   struct buffer_head *head,
2182 				   struct buffer_head *bh,
2183 				   ext4_lblk_t lblk)
2184 {
2185 	struct inode *inode = mpd->inode;
2186 	int err;
2187 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2188 							>> inode->i_blkbits;
2189 
2190 	if (ext4_verity_in_progress(inode))
2191 		blocks = EXT_MAX_BLOCKS;
2192 
2193 	do {
2194 		BUG_ON(buffer_locked(bh));
2195 
2196 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2197 			/* Found extent to map? */
2198 			if (mpd->map.m_len)
2199 				return 0;
2200 			/* Buffer needs mapping and handle is not started? */
2201 			if (!mpd->do_map)
2202 				return 0;
2203 			/* Everything mapped so far and we hit EOF */
2204 			break;
2205 		}
2206 	} while (lblk++, (bh = bh->b_this_page) != head);
2207 	/* So far everything mapped? Submit the page for IO. */
2208 	if (mpd->map.m_len == 0) {
2209 		err = mpage_submit_page(mpd, head->b_page);
2210 		if (err < 0)
2211 			return err;
2212 	}
2213 	if (lblk >= blocks) {
2214 		mpd->scanned_until_end = 1;
2215 		return 0;
2216 	}
2217 	return 1;
2218 }
2219 
2220 /*
2221  * mpage_process_page - update page buffers corresponding to changed extent and
2222  *		       may submit fully mapped page for IO
2223  *
2224  * @mpd		- description of extent to map, on return next extent to map
2225  * @m_lblk	- logical block mapping.
2226  * @m_pblk	- corresponding physical mapping.
2227  * @map_bh	- determines on return whether this page requires any further
2228  *		  mapping or not.
2229  * Scan given page buffers corresponding to changed extent and update buffer
2230  * state according to new extent state.
2231  * We map delalloc buffers to their physical location, clear unwritten bits.
2232  * If the given page is not fully mapped, we update @map to the next extent in
2233  * the given page that needs mapping & return @map_bh as true.
2234  */
2235 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2236 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2237 			      bool *map_bh)
2238 {
2239 	struct buffer_head *head, *bh;
2240 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2241 	ext4_lblk_t lblk = *m_lblk;
2242 	ext4_fsblk_t pblock = *m_pblk;
2243 	int err = 0;
2244 	int blkbits = mpd->inode->i_blkbits;
2245 	ssize_t io_end_size = 0;
2246 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2247 
2248 	bh = head = page_buffers(page);
2249 	do {
2250 		if (lblk < mpd->map.m_lblk)
2251 			continue;
2252 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2253 			/*
2254 			 * Buffer after end of mapped extent.
2255 			 * Find next buffer in the page to map.
2256 			 */
2257 			mpd->map.m_len = 0;
2258 			mpd->map.m_flags = 0;
2259 			io_end_vec->size += io_end_size;
2260 			io_end_size = 0;
2261 
2262 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2263 			if (err > 0)
2264 				err = 0;
2265 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2266 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2267 				if (IS_ERR(io_end_vec)) {
2268 					err = PTR_ERR(io_end_vec);
2269 					goto out;
2270 				}
2271 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2272 			}
2273 			*map_bh = true;
2274 			goto out;
2275 		}
2276 		if (buffer_delay(bh)) {
2277 			clear_buffer_delay(bh);
2278 			bh->b_blocknr = pblock++;
2279 		}
2280 		clear_buffer_unwritten(bh);
2281 		io_end_size += (1 << blkbits);
2282 	} while (lblk++, (bh = bh->b_this_page) != head);
2283 
2284 	io_end_vec->size += io_end_size;
2285 	io_end_size = 0;
2286 	*map_bh = false;
2287 out:
2288 	*m_lblk = lblk;
2289 	*m_pblk = pblock;
2290 	return err;
2291 }
2292 
2293 /*
2294  * mpage_map_buffers - update buffers corresponding to changed extent and
2295  *		       submit fully mapped pages for IO
2296  *
2297  * @mpd - description of extent to map, on return next extent to map
2298  *
2299  * Scan buffers corresponding to changed extent (we expect corresponding pages
2300  * to be already locked) and update buffer state according to new extent state.
2301  * We map delalloc buffers to their physical location, clear unwritten bits,
2302  * and mark buffers as uninit when we perform writes to unwritten extents
2303  * and do extent conversion after IO is finished. If the last page is not fully
2304  * mapped, we update @map to the next extent in the last page that needs
2305  * mapping. Otherwise we submit the page for IO.
2306  */
2307 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2308 {
2309 	struct pagevec pvec;
2310 	int nr_pages, i;
2311 	struct inode *inode = mpd->inode;
2312 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2313 	pgoff_t start, end;
2314 	ext4_lblk_t lblk;
2315 	ext4_fsblk_t pblock;
2316 	int err;
2317 	bool map_bh = false;
2318 
2319 	start = mpd->map.m_lblk >> bpp_bits;
2320 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2321 	lblk = start << bpp_bits;
2322 	pblock = mpd->map.m_pblk;
2323 
2324 	pagevec_init(&pvec);
2325 	while (start <= end) {
2326 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2327 						&start, end);
2328 		if (nr_pages == 0)
2329 			break;
2330 		for (i = 0; i < nr_pages; i++) {
2331 			struct page *page = pvec.pages[i];
2332 
2333 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2334 						 &map_bh);
2335 			/*
2336 			 * If map_bh is true, means page may require further bh
2337 			 * mapping, or maybe the page was submitted for IO.
2338 			 * So we return to call further extent mapping.
2339 			 */
2340 			if (err < 0 || map_bh)
2341 				goto out;
2342 			/* Page fully mapped - let IO run! */
2343 			err = mpage_submit_page(mpd, page);
2344 			if (err < 0)
2345 				goto out;
2346 		}
2347 		pagevec_release(&pvec);
2348 	}
2349 	/* Extent fully mapped and matches with page boundary. We are done. */
2350 	mpd->map.m_len = 0;
2351 	mpd->map.m_flags = 0;
2352 	return 0;
2353 out:
2354 	pagevec_release(&pvec);
2355 	return err;
2356 }
2357 
2358 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2359 {
2360 	struct inode *inode = mpd->inode;
2361 	struct ext4_map_blocks *map = &mpd->map;
2362 	int get_blocks_flags;
2363 	int err, dioread_nolock;
2364 
2365 	trace_ext4_da_write_pages_extent(inode, map);
2366 	/*
2367 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2368 	 * to convert an unwritten extent to be initialized (in the case
2369 	 * where we have written into one or more preallocated blocks).  It is
2370 	 * possible that we're going to need more metadata blocks than
2371 	 * previously reserved. However we must not fail because we're in
2372 	 * writeback and there is nothing we can do about it so it might result
2373 	 * in data loss.  So use reserved blocks to allocate metadata if
2374 	 * possible.
2375 	 *
2376 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2377 	 * the blocks in question are delalloc blocks.  This indicates
2378 	 * that the blocks and quotas has already been checked when
2379 	 * the data was copied into the page cache.
2380 	 */
2381 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2382 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2383 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2384 	dioread_nolock = ext4_should_dioread_nolock(inode);
2385 	if (dioread_nolock)
2386 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2387 	if (map->m_flags & BIT(BH_Delay))
2388 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2389 
2390 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2391 	if (err < 0)
2392 		return err;
2393 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2394 		if (!mpd->io_submit.io_end->handle &&
2395 		    ext4_handle_valid(handle)) {
2396 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2397 			handle->h_rsv_handle = NULL;
2398 		}
2399 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2400 	}
2401 
2402 	BUG_ON(map->m_len == 0);
2403 	return 0;
2404 }
2405 
2406 /*
2407  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2408  *				 mpd->len and submit pages underlying it for IO
2409  *
2410  * @handle - handle for journal operations
2411  * @mpd - extent to map
2412  * @give_up_on_write - we set this to true iff there is a fatal error and there
2413  *                     is no hope of writing the data. The caller should discard
2414  *                     dirty pages to avoid infinite loops.
2415  *
2416  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2417  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2418  * them to initialized or split the described range from larger unwritten
2419  * extent. Note that we need not map all the described range since allocation
2420  * can return less blocks or the range is covered by more unwritten extents. We
2421  * cannot map more because we are limited by reserved transaction credits. On
2422  * the other hand we always make sure that the last touched page is fully
2423  * mapped so that it can be written out (and thus forward progress is
2424  * guaranteed). After mapping we submit all mapped pages for IO.
2425  */
2426 static int mpage_map_and_submit_extent(handle_t *handle,
2427 				       struct mpage_da_data *mpd,
2428 				       bool *give_up_on_write)
2429 {
2430 	struct inode *inode = mpd->inode;
2431 	struct ext4_map_blocks *map = &mpd->map;
2432 	int err;
2433 	loff_t disksize;
2434 	int progress = 0;
2435 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2436 	struct ext4_io_end_vec *io_end_vec;
2437 
2438 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2439 	if (IS_ERR(io_end_vec))
2440 		return PTR_ERR(io_end_vec);
2441 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2442 	do {
2443 		err = mpage_map_one_extent(handle, mpd);
2444 		if (err < 0) {
2445 			struct super_block *sb = inode->i_sb;
2446 
2447 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2448 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2449 				goto invalidate_dirty_pages;
2450 			/*
2451 			 * Let the uper layers retry transient errors.
2452 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2453 			 * is non-zero, a commit should free up blocks.
2454 			 */
2455 			if ((err == -ENOMEM) ||
2456 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2457 				if (progress)
2458 					goto update_disksize;
2459 				return err;
2460 			}
2461 			ext4_msg(sb, KERN_CRIT,
2462 				 "Delayed block allocation failed for "
2463 				 "inode %lu at logical offset %llu with"
2464 				 " max blocks %u with error %d",
2465 				 inode->i_ino,
2466 				 (unsigned long long)map->m_lblk,
2467 				 (unsigned)map->m_len, -err);
2468 			ext4_msg(sb, KERN_CRIT,
2469 				 "This should not happen!! Data will "
2470 				 "be lost\n");
2471 			if (err == -ENOSPC)
2472 				ext4_print_free_blocks(inode);
2473 		invalidate_dirty_pages:
2474 			*give_up_on_write = true;
2475 			return err;
2476 		}
2477 		progress = 1;
2478 		/*
2479 		 * Update buffer state, submit mapped pages, and get us new
2480 		 * extent to map
2481 		 */
2482 		err = mpage_map_and_submit_buffers(mpd);
2483 		if (err < 0)
2484 			goto update_disksize;
2485 	} while (map->m_len);
2486 
2487 update_disksize:
2488 	/*
2489 	 * Update on-disk size after IO is submitted.  Races with
2490 	 * truncate are avoided by checking i_size under i_data_sem.
2491 	 */
2492 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2493 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2494 		int err2;
2495 		loff_t i_size;
2496 
2497 		down_write(&EXT4_I(inode)->i_data_sem);
2498 		i_size = i_size_read(inode);
2499 		if (disksize > i_size)
2500 			disksize = i_size;
2501 		if (disksize > EXT4_I(inode)->i_disksize)
2502 			EXT4_I(inode)->i_disksize = disksize;
2503 		up_write(&EXT4_I(inode)->i_data_sem);
2504 		err2 = ext4_mark_inode_dirty(handle, inode);
2505 		if (err2) {
2506 			ext4_error_err(inode->i_sb, -err2,
2507 				       "Failed to mark inode %lu dirty",
2508 				       inode->i_ino);
2509 		}
2510 		if (!err)
2511 			err = err2;
2512 	}
2513 	return err;
2514 }
2515 
2516 /*
2517  * Calculate the total number of credits to reserve for one writepages
2518  * iteration. This is called from ext4_writepages(). We map an extent of
2519  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2520  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2521  * bpp - 1 blocks in bpp different extents.
2522  */
2523 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2524 {
2525 	int bpp = ext4_journal_blocks_per_page(inode);
2526 
2527 	return ext4_meta_trans_blocks(inode,
2528 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2529 }
2530 
2531 /*
2532  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2533  * 				 and underlying extent to map
2534  *
2535  * @mpd - where to look for pages
2536  *
2537  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2538  * IO immediately. When we find a page which isn't mapped we start accumulating
2539  * extent of buffers underlying these pages that needs mapping (formed by
2540  * either delayed or unwritten buffers). We also lock the pages containing
2541  * these buffers. The extent found is returned in @mpd structure (starting at
2542  * mpd->lblk with length mpd->len blocks).
2543  *
2544  * Note that this function can attach bios to one io_end structure which are
2545  * neither logically nor physically contiguous. Although it may seem as an
2546  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2547  * case as we need to track IO to all buffers underlying a page in one io_end.
2548  */
2549 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2550 {
2551 	struct address_space *mapping = mpd->inode->i_mapping;
2552 	struct pagevec pvec;
2553 	unsigned int nr_pages;
2554 	long left = mpd->wbc->nr_to_write;
2555 	pgoff_t index = mpd->first_page;
2556 	pgoff_t end = mpd->last_page;
2557 	xa_mark_t tag;
2558 	int i, err = 0;
2559 	int blkbits = mpd->inode->i_blkbits;
2560 	ext4_lblk_t lblk;
2561 	struct buffer_head *head;
2562 
2563 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2564 		tag = PAGECACHE_TAG_TOWRITE;
2565 	else
2566 		tag = PAGECACHE_TAG_DIRTY;
2567 
2568 	pagevec_init(&pvec);
2569 	mpd->map.m_len = 0;
2570 	mpd->next_page = index;
2571 	while (index <= end) {
2572 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2573 				tag);
2574 		if (nr_pages == 0)
2575 			break;
2576 
2577 		for (i = 0; i < nr_pages; i++) {
2578 			struct page *page = pvec.pages[i];
2579 
2580 			/*
2581 			 * Accumulated enough dirty pages? This doesn't apply
2582 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2583 			 * keep going because someone may be concurrently
2584 			 * dirtying pages, and we might have synced a lot of
2585 			 * newly appeared dirty pages, but have not synced all
2586 			 * of the old dirty pages.
2587 			 */
2588 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2589 				goto out;
2590 
2591 			/* If we can't merge this page, we are done. */
2592 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2593 				goto out;
2594 
2595 			lock_page(page);
2596 			/*
2597 			 * If the page is no longer dirty, or its mapping no
2598 			 * longer corresponds to inode we are writing (which
2599 			 * means it has been truncated or invalidated), or the
2600 			 * page is already under writeback and we are not doing
2601 			 * a data integrity writeback, skip the page
2602 			 */
2603 			if (!PageDirty(page) ||
2604 			    (PageWriteback(page) &&
2605 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2606 			    unlikely(page->mapping != mapping)) {
2607 				unlock_page(page);
2608 				continue;
2609 			}
2610 
2611 			wait_on_page_writeback(page);
2612 			BUG_ON(PageWriteback(page));
2613 
2614 			if (mpd->map.m_len == 0)
2615 				mpd->first_page = page->index;
2616 			mpd->next_page = page->index + 1;
2617 			/* Add all dirty buffers to mpd */
2618 			lblk = ((ext4_lblk_t)page->index) <<
2619 				(PAGE_SHIFT - blkbits);
2620 			head = page_buffers(page);
2621 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2622 			if (err <= 0)
2623 				goto out;
2624 			err = 0;
2625 			left--;
2626 		}
2627 		pagevec_release(&pvec);
2628 		cond_resched();
2629 	}
2630 	mpd->scanned_until_end = 1;
2631 	return 0;
2632 out:
2633 	pagevec_release(&pvec);
2634 	return err;
2635 }
2636 
2637 static int ext4_writepages(struct address_space *mapping,
2638 			   struct writeback_control *wbc)
2639 {
2640 	pgoff_t	writeback_index = 0;
2641 	long nr_to_write = wbc->nr_to_write;
2642 	int range_whole = 0;
2643 	int cycled = 1;
2644 	handle_t *handle = NULL;
2645 	struct mpage_da_data mpd;
2646 	struct inode *inode = mapping->host;
2647 	int needed_blocks, rsv_blocks = 0, ret = 0;
2648 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2649 	struct blk_plug plug;
2650 	bool give_up_on_write = false;
2651 
2652 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2653 		return -EIO;
2654 
2655 	percpu_down_read(&sbi->s_writepages_rwsem);
2656 	trace_ext4_writepages(inode, wbc);
2657 
2658 	/*
2659 	 * No pages to write? This is mainly a kludge to avoid starting
2660 	 * a transaction for special inodes like journal inode on last iput()
2661 	 * because that could violate lock ordering on umount
2662 	 */
2663 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2664 		goto out_writepages;
2665 
2666 	if (ext4_should_journal_data(inode)) {
2667 		ret = generic_writepages(mapping, wbc);
2668 		goto out_writepages;
2669 	}
2670 
2671 	/*
2672 	 * If the filesystem has aborted, it is read-only, so return
2673 	 * right away instead of dumping stack traces later on that
2674 	 * will obscure the real source of the problem.  We test
2675 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2676 	 * the latter could be true if the filesystem is mounted
2677 	 * read-only, and in that case, ext4_writepages should
2678 	 * *never* be called, so if that ever happens, we would want
2679 	 * the stack trace.
2680 	 */
2681 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2682 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2683 		ret = -EROFS;
2684 		goto out_writepages;
2685 	}
2686 
2687 	/*
2688 	 * If we have inline data and arrive here, it means that
2689 	 * we will soon create the block for the 1st page, so
2690 	 * we'd better clear the inline data here.
2691 	 */
2692 	if (ext4_has_inline_data(inode)) {
2693 		/* Just inode will be modified... */
2694 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2695 		if (IS_ERR(handle)) {
2696 			ret = PTR_ERR(handle);
2697 			goto out_writepages;
2698 		}
2699 		BUG_ON(ext4_test_inode_state(inode,
2700 				EXT4_STATE_MAY_INLINE_DATA));
2701 		ext4_destroy_inline_data(handle, inode);
2702 		ext4_journal_stop(handle);
2703 	}
2704 
2705 	if (ext4_should_dioread_nolock(inode)) {
2706 		/*
2707 		 * We may need to convert up to one extent per block in
2708 		 * the page and we may dirty the inode.
2709 		 */
2710 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2711 						PAGE_SIZE >> inode->i_blkbits);
2712 	}
2713 
2714 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2715 		range_whole = 1;
2716 
2717 	if (wbc->range_cyclic) {
2718 		writeback_index = mapping->writeback_index;
2719 		if (writeback_index)
2720 			cycled = 0;
2721 		mpd.first_page = writeback_index;
2722 		mpd.last_page = -1;
2723 	} else {
2724 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2725 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2726 	}
2727 
2728 	mpd.inode = inode;
2729 	mpd.wbc = wbc;
2730 	ext4_io_submit_init(&mpd.io_submit, wbc);
2731 retry:
2732 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2733 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2734 	blk_start_plug(&plug);
2735 
2736 	/*
2737 	 * First writeback pages that don't need mapping - we can avoid
2738 	 * starting a transaction unnecessarily and also avoid being blocked
2739 	 * in the block layer on device congestion while having transaction
2740 	 * started.
2741 	 */
2742 	mpd.do_map = 0;
2743 	mpd.scanned_until_end = 0;
2744 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2745 	if (!mpd.io_submit.io_end) {
2746 		ret = -ENOMEM;
2747 		goto unplug;
2748 	}
2749 	ret = mpage_prepare_extent_to_map(&mpd);
2750 	/* Unlock pages we didn't use */
2751 	mpage_release_unused_pages(&mpd, false);
2752 	/* Submit prepared bio */
2753 	ext4_io_submit(&mpd.io_submit);
2754 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2755 	mpd.io_submit.io_end = NULL;
2756 	if (ret < 0)
2757 		goto unplug;
2758 
2759 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2760 		/* For each extent of pages we use new io_end */
2761 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2762 		if (!mpd.io_submit.io_end) {
2763 			ret = -ENOMEM;
2764 			break;
2765 		}
2766 
2767 		/*
2768 		 * We have two constraints: We find one extent to map and we
2769 		 * must always write out whole page (makes a difference when
2770 		 * blocksize < pagesize) so that we don't block on IO when we
2771 		 * try to write out the rest of the page. Journalled mode is
2772 		 * not supported by delalloc.
2773 		 */
2774 		BUG_ON(ext4_should_journal_data(inode));
2775 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2776 
2777 		/* start a new transaction */
2778 		handle = ext4_journal_start_with_reserve(inode,
2779 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2780 		if (IS_ERR(handle)) {
2781 			ret = PTR_ERR(handle);
2782 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2783 			       "%ld pages, ino %lu; err %d", __func__,
2784 				wbc->nr_to_write, inode->i_ino, ret);
2785 			/* Release allocated io_end */
2786 			ext4_put_io_end(mpd.io_submit.io_end);
2787 			mpd.io_submit.io_end = NULL;
2788 			break;
2789 		}
2790 		mpd.do_map = 1;
2791 
2792 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2793 		ret = mpage_prepare_extent_to_map(&mpd);
2794 		if (!ret && mpd.map.m_len)
2795 			ret = mpage_map_and_submit_extent(handle, &mpd,
2796 					&give_up_on_write);
2797 		/*
2798 		 * Caution: If the handle is synchronous,
2799 		 * ext4_journal_stop() can wait for transaction commit
2800 		 * to finish which may depend on writeback of pages to
2801 		 * complete or on page lock to be released.  In that
2802 		 * case, we have to wait until after we have
2803 		 * submitted all the IO, released page locks we hold,
2804 		 * and dropped io_end reference (for extent conversion
2805 		 * to be able to complete) before stopping the handle.
2806 		 */
2807 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2808 			ext4_journal_stop(handle);
2809 			handle = NULL;
2810 			mpd.do_map = 0;
2811 		}
2812 		/* Unlock pages we didn't use */
2813 		mpage_release_unused_pages(&mpd, give_up_on_write);
2814 		/* Submit prepared bio */
2815 		ext4_io_submit(&mpd.io_submit);
2816 
2817 		/*
2818 		 * Drop our io_end reference we got from init. We have
2819 		 * to be careful and use deferred io_end finishing if
2820 		 * we are still holding the transaction as we can
2821 		 * release the last reference to io_end which may end
2822 		 * up doing unwritten extent conversion.
2823 		 */
2824 		if (handle) {
2825 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2826 			ext4_journal_stop(handle);
2827 		} else
2828 			ext4_put_io_end(mpd.io_submit.io_end);
2829 		mpd.io_submit.io_end = NULL;
2830 
2831 		if (ret == -ENOSPC && sbi->s_journal) {
2832 			/*
2833 			 * Commit the transaction which would
2834 			 * free blocks released in the transaction
2835 			 * and try again
2836 			 */
2837 			jbd2_journal_force_commit_nested(sbi->s_journal);
2838 			ret = 0;
2839 			continue;
2840 		}
2841 		/* Fatal error - ENOMEM, EIO... */
2842 		if (ret)
2843 			break;
2844 	}
2845 unplug:
2846 	blk_finish_plug(&plug);
2847 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2848 		cycled = 1;
2849 		mpd.last_page = writeback_index - 1;
2850 		mpd.first_page = 0;
2851 		goto retry;
2852 	}
2853 
2854 	/* Update index */
2855 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2856 		/*
2857 		 * Set the writeback_index so that range_cyclic
2858 		 * mode will write it back later
2859 		 */
2860 		mapping->writeback_index = mpd.first_page;
2861 
2862 out_writepages:
2863 	trace_ext4_writepages_result(inode, wbc, ret,
2864 				     nr_to_write - wbc->nr_to_write);
2865 	percpu_up_read(&sbi->s_writepages_rwsem);
2866 	return ret;
2867 }
2868 
2869 static int ext4_dax_writepages(struct address_space *mapping,
2870 			       struct writeback_control *wbc)
2871 {
2872 	int ret;
2873 	long nr_to_write = wbc->nr_to_write;
2874 	struct inode *inode = mapping->host;
2875 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2876 
2877 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2878 		return -EIO;
2879 
2880 	percpu_down_read(&sbi->s_writepages_rwsem);
2881 	trace_ext4_writepages(inode, wbc);
2882 
2883 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2884 	trace_ext4_writepages_result(inode, wbc, ret,
2885 				     nr_to_write - wbc->nr_to_write);
2886 	percpu_up_read(&sbi->s_writepages_rwsem);
2887 	return ret;
2888 }
2889 
2890 static int ext4_nonda_switch(struct super_block *sb)
2891 {
2892 	s64 free_clusters, dirty_clusters;
2893 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2894 
2895 	/*
2896 	 * switch to non delalloc mode if we are running low
2897 	 * on free block. The free block accounting via percpu
2898 	 * counters can get slightly wrong with percpu_counter_batch getting
2899 	 * accumulated on each CPU without updating global counters
2900 	 * Delalloc need an accurate free block accounting. So switch
2901 	 * to non delalloc when we are near to error range.
2902 	 */
2903 	free_clusters =
2904 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2905 	dirty_clusters =
2906 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2907 	/*
2908 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2909 	 */
2910 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2911 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2912 
2913 	if (2 * free_clusters < 3 * dirty_clusters ||
2914 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2915 		/*
2916 		 * free block count is less than 150% of dirty blocks
2917 		 * or free blocks is less than watermark
2918 		 */
2919 		return 1;
2920 	}
2921 	return 0;
2922 }
2923 
2924 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2925 			       loff_t pos, unsigned len, unsigned flags,
2926 			       struct page **pagep, void **fsdata)
2927 {
2928 	int ret, retries = 0;
2929 	struct page *page;
2930 	pgoff_t index;
2931 	struct inode *inode = mapping->host;
2932 
2933 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2934 		return -EIO;
2935 
2936 	index = pos >> PAGE_SHIFT;
2937 
2938 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2939 	    ext4_verity_in_progress(inode)) {
2940 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2941 		return ext4_write_begin(file, mapping, pos,
2942 					len, flags, pagep, fsdata);
2943 	}
2944 	*fsdata = (void *)0;
2945 	trace_ext4_da_write_begin(inode, pos, len, flags);
2946 
2947 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2948 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2949 						      pos, len, flags,
2950 						      pagep, fsdata);
2951 		if (ret < 0)
2952 			return ret;
2953 		if (ret == 1)
2954 			return 0;
2955 	}
2956 
2957 retry:
2958 	page = grab_cache_page_write_begin(mapping, index, flags);
2959 	if (!page)
2960 		return -ENOMEM;
2961 
2962 	/* In case writeback began while the page was unlocked */
2963 	wait_for_stable_page(page);
2964 
2965 #ifdef CONFIG_FS_ENCRYPTION
2966 	ret = ext4_block_write_begin(page, pos, len,
2967 				     ext4_da_get_block_prep);
2968 #else
2969 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2970 #endif
2971 	if (ret < 0) {
2972 		unlock_page(page);
2973 		put_page(page);
2974 		/*
2975 		 * block_write_begin may have instantiated a few blocks
2976 		 * outside i_size.  Trim these off again. Don't need
2977 		 * i_size_read because we hold inode lock.
2978 		 */
2979 		if (pos + len > inode->i_size)
2980 			ext4_truncate_failed_write(inode);
2981 
2982 		if (ret == -ENOSPC &&
2983 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2984 			goto retry;
2985 		return ret;
2986 	}
2987 
2988 	*pagep = page;
2989 	return ret;
2990 }
2991 
2992 /*
2993  * Check if we should update i_disksize
2994  * when write to the end of file but not require block allocation
2995  */
2996 static int ext4_da_should_update_i_disksize(struct page *page,
2997 					    unsigned long offset)
2998 {
2999 	struct buffer_head *bh;
3000 	struct inode *inode = page->mapping->host;
3001 	unsigned int idx;
3002 	int i;
3003 
3004 	bh = page_buffers(page);
3005 	idx = offset >> inode->i_blkbits;
3006 
3007 	for (i = 0; i < idx; i++)
3008 		bh = bh->b_this_page;
3009 
3010 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3011 		return 0;
3012 	return 1;
3013 }
3014 
3015 static int ext4_da_write_end(struct file *file,
3016 			     struct address_space *mapping,
3017 			     loff_t pos, unsigned len, unsigned copied,
3018 			     struct page *page, void *fsdata)
3019 {
3020 	struct inode *inode = mapping->host;
3021 	loff_t new_i_size;
3022 	unsigned long start, end;
3023 	int write_mode = (int)(unsigned long)fsdata;
3024 
3025 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3026 		return ext4_write_end(file, mapping, pos,
3027 				      len, copied, page, fsdata);
3028 
3029 	trace_ext4_da_write_end(inode, pos, len, copied);
3030 
3031 	if (write_mode != CONVERT_INLINE_DATA &&
3032 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3033 	    ext4_has_inline_data(inode))
3034 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3035 
3036 	start = pos & (PAGE_SIZE - 1);
3037 	end = start + copied - 1;
3038 
3039 	/*
3040 	 * Since we are holding inode lock, we are sure i_disksize <=
3041 	 * i_size. We also know that if i_disksize < i_size, there are
3042 	 * delalloc writes pending in the range upto i_size. If the end of
3043 	 * the current write is <= i_size, there's no need to touch
3044 	 * i_disksize since writeback will push i_disksize upto i_size
3045 	 * eventually. If the end of the current write is > i_size and
3046 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3047 	 * check), we need to update i_disksize here as neither
3048 	 * ext4_writepage() nor certain ext4_writepages() paths not
3049 	 * allocating blocks update i_disksize.
3050 	 *
3051 	 * Note that we defer inode dirtying to generic_write_end() /
3052 	 * ext4_da_write_inline_data_end().
3053 	 */
3054 	new_i_size = pos + copied;
3055 	if (copied && new_i_size > inode->i_size &&
3056 	    ext4_da_should_update_i_disksize(page, end))
3057 		ext4_update_i_disksize(inode, new_i_size);
3058 
3059 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3060 }
3061 
3062 /*
3063  * Force all delayed allocation blocks to be allocated for a given inode.
3064  */
3065 int ext4_alloc_da_blocks(struct inode *inode)
3066 {
3067 	trace_ext4_alloc_da_blocks(inode);
3068 
3069 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3070 		return 0;
3071 
3072 	/*
3073 	 * We do something simple for now.  The filemap_flush() will
3074 	 * also start triggering a write of the data blocks, which is
3075 	 * not strictly speaking necessary (and for users of
3076 	 * laptop_mode, not even desirable).  However, to do otherwise
3077 	 * would require replicating code paths in:
3078 	 *
3079 	 * ext4_writepages() ->
3080 	 *    write_cache_pages() ---> (via passed in callback function)
3081 	 *        __mpage_da_writepage() -->
3082 	 *           mpage_add_bh_to_extent()
3083 	 *           mpage_da_map_blocks()
3084 	 *
3085 	 * The problem is that write_cache_pages(), located in
3086 	 * mm/page-writeback.c, marks pages clean in preparation for
3087 	 * doing I/O, which is not desirable if we're not planning on
3088 	 * doing I/O at all.
3089 	 *
3090 	 * We could call write_cache_pages(), and then redirty all of
3091 	 * the pages by calling redirty_page_for_writepage() but that
3092 	 * would be ugly in the extreme.  So instead we would need to
3093 	 * replicate parts of the code in the above functions,
3094 	 * simplifying them because we wouldn't actually intend to
3095 	 * write out the pages, but rather only collect contiguous
3096 	 * logical block extents, call the multi-block allocator, and
3097 	 * then update the buffer heads with the block allocations.
3098 	 *
3099 	 * For now, though, we'll cheat by calling filemap_flush(),
3100 	 * which will map the blocks, and start the I/O, but not
3101 	 * actually wait for the I/O to complete.
3102 	 */
3103 	return filemap_flush(inode->i_mapping);
3104 }
3105 
3106 /*
3107  * bmap() is special.  It gets used by applications such as lilo and by
3108  * the swapper to find the on-disk block of a specific piece of data.
3109  *
3110  * Naturally, this is dangerous if the block concerned is still in the
3111  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3112  * filesystem and enables swap, then they may get a nasty shock when the
3113  * data getting swapped to that swapfile suddenly gets overwritten by
3114  * the original zero's written out previously to the journal and
3115  * awaiting writeback in the kernel's buffer cache.
3116  *
3117  * So, if we see any bmap calls here on a modified, data-journaled file,
3118  * take extra steps to flush any blocks which might be in the cache.
3119  */
3120 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3121 {
3122 	struct inode *inode = mapping->host;
3123 	journal_t *journal;
3124 	int err;
3125 
3126 	/*
3127 	 * We can get here for an inline file via the FIBMAP ioctl
3128 	 */
3129 	if (ext4_has_inline_data(inode))
3130 		return 0;
3131 
3132 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3133 			test_opt(inode->i_sb, DELALLOC)) {
3134 		/*
3135 		 * With delalloc we want to sync the file
3136 		 * so that we can make sure we allocate
3137 		 * blocks for file
3138 		 */
3139 		filemap_write_and_wait(mapping);
3140 	}
3141 
3142 	if (EXT4_JOURNAL(inode) &&
3143 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3144 		/*
3145 		 * This is a REALLY heavyweight approach, but the use of
3146 		 * bmap on dirty files is expected to be extremely rare:
3147 		 * only if we run lilo or swapon on a freshly made file
3148 		 * do we expect this to happen.
3149 		 *
3150 		 * (bmap requires CAP_SYS_RAWIO so this does not
3151 		 * represent an unprivileged user DOS attack --- we'd be
3152 		 * in trouble if mortal users could trigger this path at
3153 		 * will.)
3154 		 *
3155 		 * NB. EXT4_STATE_JDATA is not set on files other than
3156 		 * regular files.  If somebody wants to bmap a directory
3157 		 * or symlink and gets confused because the buffer
3158 		 * hasn't yet been flushed to disk, they deserve
3159 		 * everything they get.
3160 		 */
3161 
3162 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3163 		journal = EXT4_JOURNAL(inode);
3164 		jbd2_journal_lock_updates(journal);
3165 		err = jbd2_journal_flush(journal, 0);
3166 		jbd2_journal_unlock_updates(journal);
3167 
3168 		if (err)
3169 			return 0;
3170 	}
3171 
3172 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3173 }
3174 
3175 static int ext4_readpage(struct file *file, struct page *page)
3176 {
3177 	int ret = -EAGAIN;
3178 	struct inode *inode = page->mapping->host;
3179 
3180 	trace_ext4_readpage(page);
3181 
3182 	if (ext4_has_inline_data(inode))
3183 		ret = ext4_readpage_inline(inode, page);
3184 
3185 	if (ret == -EAGAIN)
3186 		return ext4_mpage_readpages(inode, NULL, page);
3187 
3188 	return ret;
3189 }
3190 
3191 static void ext4_readahead(struct readahead_control *rac)
3192 {
3193 	struct inode *inode = rac->mapping->host;
3194 
3195 	/* If the file has inline data, no need to do readahead. */
3196 	if (ext4_has_inline_data(inode))
3197 		return;
3198 
3199 	ext4_mpage_readpages(inode, rac, NULL);
3200 }
3201 
3202 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3203 				unsigned int length)
3204 {
3205 	trace_ext4_invalidatepage(page, offset, length);
3206 
3207 	/* No journalling happens on data buffers when this function is used */
3208 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3209 
3210 	block_invalidatepage(page, offset, length);
3211 }
3212 
3213 static int __ext4_journalled_invalidatepage(struct page *page,
3214 					    unsigned int offset,
3215 					    unsigned int length)
3216 {
3217 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3218 
3219 	trace_ext4_journalled_invalidatepage(page, offset, length);
3220 
3221 	/*
3222 	 * If it's a full truncate we just forget about the pending dirtying
3223 	 */
3224 	if (offset == 0 && length == PAGE_SIZE)
3225 		ClearPageChecked(page);
3226 
3227 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3228 }
3229 
3230 /* Wrapper for aops... */
3231 static void ext4_journalled_invalidatepage(struct page *page,
3232 					   unsigned int offset,
3233 					   unsigned int length)
3234 {
3235 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3236 }
3237 
3238 static int ext4_releasepage(struct page *page, gfp_t wait)
3239 {
3240 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3241 
3242 	trace_ext4_releasepage(page);
3243 
3244 	/* Page has dirty journalled data -> cannot release */
3245 	if (PageChecked(page))
3246 		return 0;
3247 	if (journal)
3248 		return jbd2_journal_try_to_free_buffers(journal, page);
3249 	else
3250 		return try_to_free_buffers(page);
3251 }
3252 
3253 static bool ext4_inode_datasync_dirty(struct inode *inode)
3254 {
3255 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3256 
3257 	if (journal) {
3258 		if (jbd2_transaction_committed(journal,
3259 			EXT4_I(inode)->i_datasync_tid))
3260 			return false;
3261 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3262 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3263 		return true;
3264 	}
3265 
3266 	/* Any metadata buffers to write? */
3267 	if (!list_empty(&inode->i_mapping->private_list))
3268 		return true;
3269 	return inode->i_state & I_DIRTY_DATASYNC;
3270 }
3271 
3272 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3273 			   struct ext4_map_blocks *map, loff_t offset,
3274 			   loff_t length)
3275 {
3276 	u8 blkbits = inode->i_blkbits;
3277 
3278 	/*
3279 	 * Writes that span EOF might trigger an I/O size update on completion,
3280 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3281 	 * there is no other metadata changes being made or are pending.
3282 	 */
3283 	iomap->flags = 0;
3284 	if (ext4_inode_datasync_dirty(inode) ||
3285 	    offset + length > i_size_read(inode))
3286 		iomap->flags |= IOMAP_F_DIRTY;
3287 
3288 	if (map->m_flags & EXT4_MAP_NEW)
3289 		iomap->flags |= IOMAP_F_NEW;
3290 
3291 	iomap->bdev = inode->i_sb->s_bdev;
3292 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3293 	iomap->offset = (u64) map->m_lblk << blkbits;
3294 	iomap->length = (u64) map->m_len << blkbits;
3295 
3296 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3297 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3298 		iomap->flags |= IOMAP_F_MERGED;
3299 
3300 	/*
3301 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3302 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3303 	 * set. In order for any allocated unwritten extents to be converted
3304 	 * into written extents correctly within the ->end_io() handler, we
3305 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3306 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3307 	 * been set first.
3308 	 */
3309 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3310 		iomap->type = IOMAP_UNWRITTEN;
3311 		iomap->addr = (u64) map->m_pblk << blkbits;
3312 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3313 		iomap->type = IOMAP_MAPPED;
3314 		iomap->addr = (u64) map->m_pblk << blkbits;
3315 	} else {
3316 		iomap->type = IOMAP_HOLE;
3317 		iomap->addr = IOMAP_NULL_ADDR;
3318 	}
3319 }
3320 
3321 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3322 			    unsigned int flags)
3323 {
3324 	handle_t *handle;
3325 	u8 blkbits = inode->i_blkbits;
3326 	int ret, dio_credits, m_flags = 0, retries = 0;
3327 
3328 	/*
3329 	 * Trim the mapping request to the maximum value that we can map at
3330 	 * once for direct I/O.
3331 	 */
3332 	if (map->m_len > DIO_MAX_BLOCKS)
3333 		map->m_len = DIO_MAX_BLOCKS;
3334 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3335 
3336 retry:
3337 	/*
3338 	 * Either we allocate blocks and then don't get an unwritten extent, so
3339 	 * in that case we have reserved enough credits. Or, the blocks are
3340 	 * already allocated and unwritten. In that case, the extent conversion
3341 	 * fits into the credits as well.
3342 	 */
3343 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3344 	if (IS_ERR(handle))
3345 		return PTR_ERR(handle);
3346 
3347 	/*
3348 	 * DAX and direct I/O are the only two operations that are currently
3349 	 * supported with IOMAP_WRITE.
3350 	 */
3351 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3352 	if (IS_DAX(inode))
3353 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3354 	/*
3355 	 * We use i_size instead of i_disksize here because delalloc writeback
3356 	 * can complete at any point during the I/O and subsequently push the
3357 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3358 	 * happening and thus expose allocated blocks to direct I/O reads.
3359 	 */
3360 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3361 		m_flags = EXT4_GET_BLOCKS_CREATE;
3362 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3363 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3364 
3365 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3366 
3367 	/*
3368 	 * We cannot fill holes in indirect tree based inodes as that could
3369 	 * expose stale data in the case of a crash. Use the magic error code
3370 	 * to fallback to buffered I/O.
3371 	 */
3372 	if (!m_flags && !ret)
3373 		ret = -ENOTBLK;
3374 
3375 	ext4_journal_stop(handle);
3376 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3377 		goto retry;
3378 
3379 	return ret;
3380 }
3381 
3382 
3383 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3384 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3385 {
3386 	int ret;
3387 	struct ext4_map_blocks map;
3388 	u8 blkbits = inode->i_blkbits;
3389 
3390 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3391 		return -EINVAL;
3392 
3393 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3394 		return -ERANGE;
3395 
3396 	/*
3397 	 * Calculate the first and last logical blocks respectively.
3398 	 */
3399 	map.m_lblk = offset >> blkbits;
3400 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3401 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3402 
3403 	if (flags & IOMAP_WRITE) {
3404 		/*
3405 		 * We check here if the blocks are already allocated, then we
3406 		 * don't need to start a journal txn and we can directly return
3407 		 * the mapping information. This could boost performance
3408 		 * especially in multi-threaded overwrite requests.
3409 		 */
3410 		if (offset + length <= i_size_read(inode)) {
3411 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3412 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3413 				goto out;
3414 		}
3415 		ret = ext4_iomap_alloc(inode, &map, flags);
3416 	} else {
3417 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3418 	}
3419 
3420 	if (ret < 0)
3421 		return ret;
3422 out:
3423 	ext4_set_iomap(inode, iomap, &map, offset, length);
3424 
3425 	return 0;
3426 }
3427 
3428 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3429 		loff_t length, unsigned flags, struct iomap *iomap,
3430 		struct iomap *srcmap)
3431 {
3432 	int ret;
3433 
3434 	/*
3435 	 * Even for writes we don't need to allocate blocks, so just pretend
3436 	 * we are reading to save overhead of starting a transaction.
3437 	 */
3438 	flags &= ~IOMAP_WRITE;
3439 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3440 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3441 	return ret;
3442 }
3443 
3444 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3445 			  ssize_t written, unsigned flags, struct iomap *iomap)
3446 {
3447 	/*
3448 	 * Check to see whether an error occurred while writing out the data to
3449 	 * the allocated blocks. If so, return the magic error code so that we
3450 	 * fallback to buffered I/O and attempt to complete the remainder of
3451 	 * the I/O. Any blocks that may have been allocated in preparation for
3452 	 * the direct I/O will be reused during buffered I/O.
3453 	 */
3454 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3455 		return -ENOTBLK;
3456 
3457 	return 0;
3458 }
3459 
3460 const struct iomap_ops ext4_iomap_ops = {
3461 	.iomap_begin		= ext4_iomap_begin,
3462 	.iomap_end		= ext4_iomap_end,
3463 };
3464 
3465 const struct iomap_ops ext4_iomap_overwrite_ops = {
3466 	.iomap_begin		= ext4_iomap_overwrite_begin,
3467 	.iomap_end		= ext4_iomap_end,
3468 };
3469 
3470 static bool ext4_iomap_is_delalloc(struct inode *inode,
3471 				   struct ext4_map_blocks *map)
3472 {
3473 	struct extent_status es;
3474 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3475 
3476 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3477 				  map->m_lblk, end, &es);
3478 
3479 	if (!es.es_len || es.es_lblk > end)
3480 		return false;
3481 
3482 	if (es.es_lblk > map->m_lblk) {
3483 		map->m_len = es.es_lblk - map->m_lblk;
3484 		return false;
3485 	}
3486 
3487 	offset = map->m_lblk - es.es_lblk;
3488 	map->m_len = es.es_len - offset;
3489 
3490 	return true;
3491 }
3492 
3493 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3494 				   loff_t length, unsigned int flags,
3495 				   struct iomap *iomap, struct iomap *srcmap)
3496 {
3497 	int ret;
3498 	bool delalloc = false;
3499 	struct ext4_map_blocks map;
3500 	u8 blkbits = inode->i_blkbits;
3501 
3502 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3503 		return -EINVAL;
3504 
3505 	if (ext4_has_inline_data(inode)) {
3506 		ret = ext4_inline_data_iomap(inode, iomap);
3507 		if (ret != -EAGAIN) {
3508 			if (ret == 0 && offset >= iomap->length)
3509 				ret = -ENOENT;
3510 			return ret;
3511 		}
3512 	}
3513 
3514 	/*
3515 	 * Calculate the first and last logical block respectively.
3516 	 */
3517 	map.m_lblk = offset >> blkbits;
3518 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3519 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3520 
3521 	/*
3522 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3523 	 * So handle it here itself instead of querying ext4_map_blocks().
3524 	 * Since ext4_map_blocks() will warn about it and will return
3525 	 * -EIO error.
3526 	 */
3527 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3528 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3529 
3530 		if (offset >= sbi->s_bitmap_maxbytes) {
3531 			map.m_flags = 0;
3532 			goto set_iomap;
3533 		}
3534 	}
3535 
3536 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3537 	if (ret < 0)
3538 		return ret;
3539 	if (ret == 0)
3540 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3541 
3542 set_iomap:
3543 	ext4_set_iomap(inode, iomap, &map, offset, length);
3544 	if (delalloc && iomap->type == IOMAP_HOLE)
3545 		iomap->type = IOMAP_DELALLOC;
3546 
3547 	return 0;
3548 }
3549 
3550 const struct iomap_ops ext4_iomap_report_ops = {
3551 	.iomap_begin = ext4_iomap_begin_report,
3552 };
3553 
3554 /*
3555  * Pages can be marked dirty completely asynchronously from ext4's journalling
3556  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3557  * much here because ->set_page_dirty is called under VFS locks.  The page is
3558  * not necessarily locked.
3559  *
3560  * We cannot just dirty the page and leave attached buffers clean, because the
3561  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3562  * or jbddirty because all the journalling code will explode.
3563  *
3564  * So what we do is to mark the page "pending dirty" and next time writepage
3565  * is called, propagate that into the buffers appropriately.
3566  */
3567 static int ext4_journalled_set_page_dirty(struct page *page)
3568 {
3569 	SetPageChecked(page);
3570 	return __set_page_dirty_nobuffers(page);
3571 }
3572 
3573 static int ext4_set_page_dirty(struct page *page)
3574 {
3575 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3576 	WARN_ON_ONCE(!page_has_buffers(page));
3577 	return __set_page_dirty_buffers(page);
3578 }
3579 
3580 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3581 				    struct file *file, sector_t *span)
3582 {
3583 	return iomap_swapfile_activate(sis, file, span,
3584 				       &ext4_iomap_report_ops);
3585 }
3586 
3587 static const struct address_space_operations ext4_aops = {
3588 	.readpage		= ext4_readpage,
3589 	.readahead		= ext4_readahead,
3590 	.writepage		= ext4_writepage,
3591 	.writepages		= ext4_writepages,
3592 	.write_begin		= ext4_write_begin,
3593 	.write_end		= ext4_write_end,
3594 	.set_page_dirty		= ext4_set_page_dirty,
3595 	.bmap			= ext4_bmap,
3596 	.invalidatepage		= ext4_invalidatepage,
3597 	.releasepage		= ext4_releasepage,
3598 	.direct_IO		= noop_direct_IO,
3599 	.migratepage		= buffer_migrate_page,
3600 	.is_partially_uptodate  = block_is_partially_uptodate,
3601 	.error_remove_page	= generic_error_remove_page,
3602 	.swap_activate		= ext4_iomap_swap_activate,
3603 };
3604 
3605 static const struct address_space_operations ext4_journalled_aops = {
3606 	.readpage		= ext4_readpage,
3607 	.readahead		= ext4_readahead,
3608 	.writepage		= ext4_writepage,
3609 	.writepages		= ext4_writepages,
3610 	.write_begin		= ext4_write_begin,
3611 	.write_end		= ext4_journalled_write_end,
3612 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3613 	.bmap			= ext4_bmap,
3614 	.invalidatepage		= ext4_journalled_invalidatepage,
3615 	.releasepage		= ext4_releasepage,
3616 	.direct_IO		= noop_direct_IO,
3617 	.is_partially_uptodate  = block_is_partially_uptodate,
3618 	.error_remove_page	= generic_error_remove_page,
3619 	.swap_activate		= ext4_iomap_swap_activate,
3620 };
3621 
3622 static const struct address_space_operations ext4_da_aops = {
3623 	.readpage		= ext4_readpage,
3624 	.readahead		= ext4_readahead,
3625 	.writepage		= ext4_writepage,
3626 	.writepages		= ext4_writepages,
3627 	.write_begin		= ext4_da_write_begin,
3628 	.write_end		= ext4_da_write_end,
3629 	.set_page_dirty		= ext4_set_page_dirty,
3630 	.bmap			= ext4_bmap,
3631 	.invalidatepage		= ext4_invalidatepage,
3632 	.releasepage		= ext4_releasepage,
3633 	.direct_IO		= noop_direct_IO,
3634 	.migratepage		= buffer_migrate_page,
3635 	.is_partially_uptodate  = block_is_partially_uptodate,
3636 	.error_remove_page	= generic_error_remove_page,
3637 	.swap_activate		= ext4_iomap_swap_activate,
3638 };
3639 
3640 static const struct address_space_operations ext4_dax_aops = {
3641 	.writepages		= ext4_dax_writepages,
3642 	.direct_IO		= noop_direct_IO,
3643 	.set_page_dirty		= __set_page_dirty_no_writeback,
3644 	.bmap			= ext4_bmap,
3645 	.invalidatepage		= noop_invalidatepage,
3646 	.swap_activate		= ext4_iomap_swap_activate,
3647 };
3648 
3649 void ext4_set_aops(struct inode *inode)
3650 {
3651 	switch (ext4_inode_journal_mode(inode)) {
3652 	case EXT4_INODE_ORDERED_DATA_MODE:
3653 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3654 		break;
3655 	case EXT4_INODE_JOURNAL_DATA_MODE:
3656 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3657 		return;
3658 	default:
3659 		BUG();
3660 	}
3661 	if (IS_DAX(inode))
3662 		inode->i_mapping->a_ops = &ext4_dax_aops;
3663 	else if (test_opt(inode->i_sb, DELALLOC))
3664 		inode->i_mapping->a_ops = &ext4_da_aops;
3665 	else
3666 		inode->i_mapping->a_ops = &ext4_aops;
3667 }
3668 
3669 static int __ext4_block_zero_page_range(handle_t *handle,
3670 		struct address_space *mapping, loff_t from, loff_t length)
3671 {
3672 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3673 	unsigned offset = from & (PAGE_SIZE-1);
3674 	unsigned blocksize, pos;
3675 	ext4_lblk_t iblock;
3676 	struct inode *inode = mapping->host;
3677 	struct buffer_head *bh;
3678 	struct page *page;
3679 	int err = 0;
3680 
3681 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3682 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3683 	if (!page)
3684 		return -ENOMEM;
3685 
3686 	blocksize = inode->i_sb->s_blocksize;
3687 
3688 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3689 
3690 	if (!page_has_buffers(page))
3691 		create_empty_buffers(page, blocksize, 0);
3692 
3693 	/* Find the buffer that contains "offset" */
3694 	bh = page_buffers(page);
3695 	pos = blocksize;
3696 	while (offset >= pos) {
3697 		bh = bh->b_this_page;
3698 		iblock++;
3699 		pos += blocksize;
3700 	}
3701 	if (buffer_freed(bh)) {
3702 		BUFFER_TRACE(bh, "freed: skip");
3703 		goto unlock;
3704 	}
3705 	if (!buffer_mapped(bh)) {
3706 		BUFFER_TRACE(bh, "unmapped");
3707 		ext4_get_block(inode, iblock, bh, 0);
3708 		/* unmapped? It's a hole - nothing to do */
3709 		if (!buffer_mapped(bh)) {
3710 			BUFFER_TRACE(bh, "still unmapped");
3711 			goto unlock;
3712 		}
3713 	}
3714 
3715 	/* Ok, it's mapped. Make sure it's up-to-date */
3716 	if (PageUptodate(page))
3717 		set_buffer_uptodate(bh);
3718 
3719 	if (!buffer_uptodate(bh)) {
3720 		err = ext4_read_bh_lock(bh, 0, true);
3721 		if (err)
3722 			goto unlock;
3723 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3724 			/* We expect the key to be set. */
3725 			BUG_ON(!fscrypt_has_encryption_key(inode));
3726 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3727 							       bh_offset(bh));
3728 			if (err) {
3729 				clear_buffer_uptodate(bh);
3730 				goto unlock;
3731 			}
3732 		}
3733 	}
3734 	if (ext4_should_journal_data(inode)) {
3735 		BUFFER_TRACE(bh, "get write access");
3736 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3737 						    EXT4_JTR_NONE);
3738 		if (err)
3739 			goto unlock;
3740 	}
3741 	zero_user(page, offset, length);
3742 	BUFFER_TRACE(bh, "zeroed end of block");
3743 
3744 	if (ext4_should_journal_data(inode)) {
3745 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3746 	} else {
3747 		err = 0;
3748 		mark_buffer_dirty(bh);
3749 		if (ext4_should_order_data(inode))
3750 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3751 					length);
3752 	}
3753 
3754 unlock:
3755 	unlock_page(page);
3756 	put_page(page);
3757 	return err;
3758 }
3759 
3760 /*
3761  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3762  * starting from file offset 'from'.  The range to be zero'd must
3763  * be contained with in one block.  If the specified range exceeds
3764  * the end of the block it will be shortened to end of the block
3765  * that corresponds to 'from'
3766  */
3767 static int ext4_block_zero_page_range(handle_t *handle,
3768 		struct address_space *mapping, loff_t from, loff_t length)
3769 {
3770 	struct inode *inode = mapping->host;
3771 	unsigned offset = from & (PAGE_SIZE-1);
3772 	unsigned blocksize = inode->i_sb->s_blocksize;
3773 	unsigned max = blocksize - (offset & (blocksize - 1));
3774 
3775 	/*
3776 	 * correct length if it does not fall between
3777 	 * 'from' and the end of the block
3778 	 */
3779 	if (length > max || length < 0)
3780 		length = max;
3781 
3782 	if (IS_DAX(inode)) {
3783 		return iomap_zero_range(inode, from, length, NULL,
3784 					&ext4_iomap_ops);
3785 	}
3786 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3787 }
3788 
3789 /*
3790  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3791  * up to the end of the block which corresponds to `from'.
3792  * This required during truncate. We need to physically zero the tail end
3793  * of that block so it doesn't yield old data if the file is later grown.
3794  */
3795 static int ext4_block_truncate_page(handle_t *handle,
3796 		struct address_space *mapping, loff_t from)
3797 {
3798 	unsigned offset = from & (PAGE_SIZE-1);
3799 	unsigned length;
3800 	unsigned blocksize;
3801 	struct inode *inode = mapping->host;
3802 
3803 	/* If we are processing an encrypted inode during orphan list handling */
3804 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3805 		return 0;
3806 
3807 	blocksize = inode->i_sb->s_blocksize;
3808 	length = blocksize - (offset & (blocksize - 1));
3809 
3810 	return ext4_block_zero_page_range(handle, mapping, from, length);
3811 }
3812 
3813 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3814 			     loff_t lstart, loff_t length)
3815 {
3816 	struct super_block *sb = inode->i_sb;
3817 	struct address_space *mapping = inode->i_mapping;
3818 	unsigned partial_start, partial_end;
3819 	ext4_fsblk_t start, end;
3820 	loff_t byte_end = (lstart + length - 1);
3821 	int err = 0;
3822 
3823 	partial_start = lstart & (sb->s_blocksize - 1);
3824 	partial_end = byte_end & (sb->s_blocksize - 1);
3825 
3826 	start = lstart >> sb->s_blocksize_bits;
3827 	end = byte_end >> sb->s_blocksize_bits;
3828 
3829 	/* Handle partial zero within the single block */
3830 	if (start == end &&
3831 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3832 		err = ext4_block_zero_page_range(handle, mapping,
3833 						 lstart, length);
3834 		return err;
3835 	}
3836 	/* Handle partial zero out on the start of the range */
3837 	if (partial_start) {
3838 		err = ext4_block_zero_page_range(handle, mapping,
3839 						 lstart, sb->s_blocksize);
3840 		if (err)
3841 			return err;
3842 	}
3843 	/* Handle partial zero out on the end of the range */
3844 	if (partial_end != sb->s_blocksize - 1)
3845 		err = ext4_block_zero_page_range(handle, mapping,
3846 						 byte_end - partial_end,
3847 						 partial_end + 1);
3848 	return err;
3849 }
3850 
3851 int ext4_can_truncate(struct inode *inode)
3852 {
3853 	if (S_ISREG(inode->i_mode))
3854 		return 1;
3855 	if (S_ISDIR(inode->i_mode))
3856 		return 1;
3857 	if (S_ISLNK(inode->i_mode))
3858 		return !ext4_inode_is_fast_symlink(inode);
3859 	return 0;
3860 }
3861 
3862 /*
3863  * We have to make sure i_disksize gets properly updated before we truncate
3864  * page cache due to hole punching or zero range. Otherwise i_disksize update
3865  * can get lost as it may have been postponed to submission of writeback but
3866  * that will never happen after we truncate page cache.
3867  */
3868 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3869 				      loff_t len)
3870 {
3871 	handle_t *handle;
3872 	int ret;
3873 
3874 	loff_t size = i_size_read(inode);
3875 
3876 	WARN_ON(!inode_is_locked(inode));
3877 	if (offset > size || offset + len < size)
3878 		return 0;
3879 
3880 	if (EXT4_I(inode)->i_disksize >= size)
3881 		return 0;
3882 
3883 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3884 	if (IS_ERR(handle))
3885 		return PTR_ERR(handle);
3886 	ext4_update_i_disksize(inode, size);
3887 	ret = ext4_mark_inode_dirty(handle, inode);
3888 	ext4_journal_stop(handle);
3889 
3890 	return ret;
3891 }
3892 
3893 static void ext4_wait_dax_page(struct inode *inode)
3894 {
3895 	filemap_invalidate_unlock(inode->i_mapping);
3896 	schedule();
3897 	filemap_invalidate_lock(inode->i_mapping);
3898 }
3899 
3900 int ext4_break_layouts(struct inode *inode)
3901 {
3902 	struct page *page;
3903 	int error;
3904 
3905 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3906 		return -EINVAL;
3907 
3908 	do {
3909 		page = dax_layout_busy_page(inode->i_mapping);
3910 		if (!page)
3911 			return 0;
3912 
3913 		error = ___wait_var_event(&page->_refcount,
3914 				atomic_read(&page->_refcount) == 1,
3915 				TASK_INTERRUPTIBLE, 0, 0,
3916 				ext4_wait_dax_page(inode));
3917 	} while (error == 0);
3918 
3919 	return error;
3920 }
3921 
3922 /*
3923  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3924  * associated with the given offset and length
3925  *
3926  * @inode:  File inode
3927  * @offset: The offset where the hole will begin
3928  * @len:    The length of the hole
3929  *
3930  * Returns: 0 on success or negative on failure
3931  */
3932 
3933 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3934 {
3935 	struct super_block *sb = inode->i_sb;
3936 	ext4_lblk_t first_block, stop_block;
3937 	struct address_space *mapping = inode->i_mapping;
3938 	loff_t first_block_offset, last_block_offset;
3939 	handle_t *handle;
3940 	unsigned int credits;
3941 	int ret = 0, ret2 = 0;
3942 
3943 	trace_ext4_punch_hole(inode, offset, length, 0);
3944 
3945 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3946 	if (ext4_has_inline_data(inode)) {
3947 		filemap_invalidate_lock(mapping);
3948 		ret = ext4_convert_inline_data(inode);
3949 		filemap_invalidate_unlock(mapping);
3950 		if (ret)
3951 			return ret;
3952 	}
3953 
3954 	/*
3955 	 * Write out all dirty pages to avoid race conditions
3956 	 * Then release them.
3957 	 */
3958 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3959 		ret = filemap_write_and_wait_range(mapping, offset,
3960 						   offset + length - 1);
3961 		if (ret)
3962 			return ret;
3963 	}
3964 
3965 	inode_lock(inode);
3966 
3967 	/* No need to punch hole beyond i_size */
3968 	if (offset >= inode->i_size)
3969 		goto out_mutex;
3970 
3971 	/*
3972 	 * If the hole extends beyond i_size, set the hole
3973 	 * to end after the page that contains i_size
3974 	 */
3975 	if (offset + length > inode->i_size) {
3976 		length = inode->i_size +
3977 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3978 		   offset;
3979 	}
3980 
3981 	if (offset & (sb->s_blocksize - 1) ||
3982 	    (offset + length) & (sb->s_blocksize - 1)) {
3983 		/*
3984 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3985 		 * partial block
3986 		 */
3987 		ret = ext4_inode_attach_jinode(inode);
3988 		if (ret < 0)
3989 			goto out_mutex;
3990 
3991 	}
3992 
3993 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3994 	inode_dio_wait(inode);
3995 
3996 	/*
3997 	 * Prevent page faults from reinstantiating pages we have released from
3998 	 * page cache.
3999 	 */
4000 	filemap_invalidate_lock(mapping);
4001 
4002 	ret = ext4_break_layouts(inode);
4003 	if (ret)
4004 		goto out_dio;
4005 
4006 	first_block_offset = round_up(offset, sb->s_blocksize);
4007 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4008 
4009 	/* Now release the pages and zero block aligned part of pages*/
4010 	if (last_block_offset > first_block_offset) {
4011 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4012 		if (ret)
4013 			goto out_dio;
4014 		truncate_pagecache_range(inode, first_block_offset,
4015 					 last_block_offset);
4016 	}
4017 
4018 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4019 		credits = ext4_writepage_trans_blocks(inode);
4020 	else
4021 		credits = ext4_blocks_for_truncate(inode);
4022 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4023 	if (IS_ERR(handle)) {
4024 		ret = PTR_ERR(handle);
4025 		ext4_std_error(sb, ret);
4026 		goto out_dio;
4027 	}
4028 
4029 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4030 				       length);
4031 	if (ret)
4032 		goto out_stop;
4033 
4034 	first_block = (offset + sb->s_blocksize - 1) >>
4035 		EXT4_BLOCK_SIZE_BITS(sb);
4036 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4037 
4038 	/* If there are blocks to remove, do it */
4039 	if (stop_block > first_block) {
4040 
4041 		down_write(&EXT4_I(inode)->i_data_sem);
4042 		ext4_discard_preallocations(inode, 0);
4043 
4044 		ret = ext4_es_remove_extent(inode, first_block,
4045 					    stop_block - first_block);
4046 		if (ret) {
4047 			up_write(&EXT4_I(inode)->i_data_sem);
4048 			goto out_stop;
4049 		}
4050 
4051 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4052 			ret = ext4_ext_remove_space(inode, first_block,
4053 						    stop_block - 1);
4054 		else
4055 			ret = ext4_ind_remove_space(handle, inode, first_block,
4056 						    stop_block);
4057 
4058 		up_write(&EXT4_I(inode)->i_data_sem);
4059 	}
4060 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4061 	if (IS_SYNC(inode))
4062 		ext4_handle_sync(handle);
4063 
4064 	inode->i_mtime = inode->i_ctime = current_time(inode);
4065 	ret2 = ext4_mark_inode_dirty(handle, inode);
4066 	if (unlikely(ret2))
4067 		ret = ret2;
4068 	if (ret >= 0)
4069 		ext4_update_inode_fsync_trans(handle, inode, 1);
4070 out_stop:
4071 	ext4_journal_stop(handle);
4072 out_dio:
4073 	filemap_invalidate_unlock(mapping);
4074 out_mutex:
4075 	inode_unlock(inode);
4076 	return ret;
4077 }
4078 
4079 int ext4_inode_attach_jinode(struct inode *inode)
4080 {
4081 	struct ext4_inode_info *ei = EXT4_I(inode);
4082 	struct jbd2_inode *jinode;
4083 
4084 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4085 		return 0;
4086 
4087 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4088 	spin_lock(&inode->i_lock);
4089 	if (!ei->jinode) {
4090 		if (!jinode) {
4091 			spin_unlock(&inode->i_lock);
4092 			return -ENOMEM;
4093 		}
4094 		ei->jinode = jinode;
4095 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4096 		jinode = NULL;
4097 	}
4098 	spin_unlock(&inode->i_lock);
4099 	if (unlikely(jinode != NULL))
4100 		jbd2_free_inode(jinode);
4101 	return 0;
4102 }
4103 
4104 /*
4105  * ext4_truncate()
4106  *
4107  * We block out ext4_get_block() block instantiations across the entire
4108  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4109  * simultaneously on behalf of the same inode.
4110  *
4111  * As we work through the truncate and commit bits of it to the journal there
4112  * is one core, guiding principle: the file's tree must always be consistent on
4113  * disk.  We must be able to restart the truncate after a crash.
4114  *
4115  * The file's tree may be transiently inconsistent in memory (although it
4116  * probably isn't), but whenever we close off and commit a journal transaction,
4117  * the contents of (the filesystem + the journal) must be consistent and
4118  * restartable.  It's pretty simple, really: bottom up, right to left (although
4119  * left-to-right works OK too).
4120  *
4121  * Note that at recovery time, journal replay occurs *before* the restart of
4122  * truncate against the orphan inode list.
4123  *
4124  * The committed inode has the new, desired i_size (which is the same as
4125  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4126  * that this inode's truncate did not complete and it will again call
4127  * ext4_truncate() to have another go.  So there will be instantiated blocks
4128  * to the right of the truncation point in a crashed ext4 filesystem.  But
4129  * that's fine - as long as they are linked from the inode, the post-crash
4130  * ext4_truncate() run will find them and release them.
4131  */
4132 int ext4_truncate(struct inode *inode)
4133 {
4134 	struct ext4_inode_info *ei = EXT4_I(inode);
4135 	unsigned int credits;
4136 	int err = 0, err2;
4137 	handle_t *handle;
4138 	struct address_space *mapping = inode->i_mapping;
4139 
4140 	/*
4141 	 * There is a possibility that we're either freeing the inode
4142 	 * or it's a completely new inode. In those cases we might not
4143 	 * have i_mutex locked because it's not necessary.
4144 	 */
4145 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4146 		WARN_ON(!inode_is_locked(inode));
4147 	trace_ext4_truncate_enter(inode);
4148 
4149 	if (!ext4_can_truncate(inode))
4150 		goto out_trace;
4151 
4152 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4153 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4154 
4155 	if (ext4_has_inline_data(inode)) {
4156 		int has_inline = 1;
4157 
4158 		err = ext4_inline_data_truncate(inode, &has_inline);
4159 		if (err || has_inline)
4160 			goto out_trace;
4161 	}
4162 
4163 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4164 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4165 		if (ext4_inode_attach_jinode(inode) < 0)
4166 			goto out_trace;
4167 	}
4168 
4169 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4170 		credits = ext4_writepage_trans_blocks(inode);
4171 	else
4172 		credits = ext4_blocks_for_truncate(inode);
4173 
4174 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4175 	if (IS_ERR(handle)) {
4176 		err = PTR_ERR(handle);
4177 		goto out_trace;
4178 	}
4179 
4180 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4181 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4182 
4183 	/*
4184 	 * We add the inode to the orphan list, so that if this
4185 	 * truncate spans multiple transactions, and we crash, we will
4186 	 * resume the truncate when the filesystem recovers.  It also
4187 	 * marks the inode dirty, to catch the new size.
4188 	 *
4189 	 * Implication: the file must always be in a sane, consistent
4190 	 * truncatable state while each transaction commits.
4191 	 */
4192 	err = ext4_orphan_add(handle, inode);
4193 	if (err)
4194 		goto out_stop;
4195 
4196 	down_write(&EXT4_I(inode)->i_data_sem);
4197 
4198 	ext4_discard_preallocations(inode, 0);
4199 
4200 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4201 		err = ext4_ext_truncate(handle, inode);
4202 	else
4203 		ext4_ind_truncate(handle, inode);
4204 
4205 	up_write(&ei->i_data_sem);
4206 	if (err)
4207 		goto out_stop;
4208 
4209 	if (IS_SYNC(inode))
4210 		ext4_handle_sync(handle);
4211 
4212 out_stop:
4213 	/*
4214 	 * If this was a simple ftruncate() and the file will remain alive,
4215 	 * then we need to clear up the orphan record which we created above.
4216 	 * However, if this was a real unlink then we were called by
4217 	 * ext4_evict_inode(), and we allow that function to clean up the
4218 	 * orphan info for us.
4219 	 */
4220 	if (inode->i_nlink)
4221 		ext4_orphan_del(handle, inode);
4222 
4223 	inode->i_mtime = inode->i_ctime = current_time(inode);
4224 	err2 = ext4_mark_inode_dirty(handle, inode);
4225 	if (unlikely(err2 && !err))
4226 		err = err2;
4227 	ext4_journal_stop(handle);
4228 
4229 out_trace:
4230 	trace_ext4_truncate_exit(inode);
4231 	return err;
4232 }
4233 
4234 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4235 {
4236 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4237 		return inode_peek_iversion_raw(inode);
4238 	else
4239 		return inode_peek_iversion(inode);
4240 }
4241 
4242 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4243 				 struct ext4_inode_info *ei)
4244 {
4245 	struct inode *inode = &(ei->vfs_inode);
4246 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4247 	struct super_block *sb = inode->i_sb;
4248 
4249 	if (i_blocks <= ~0U) {
4250 		/*
4251 		 * i_blocks can be represented in a 32 bit variable
4252 		 * as multiple of 512 bytes
4253 		 */
4254 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4255 		raw_inode->i_blocks_high = 0;
4256 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4257 		return 0;
4258 	}
4259 
4260 	/*
4261 	 * This should never happen since sb->s_maxbytes should not have
4262 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4263 	 * feature in ext4_fill_super().
4264 	 */
4265 	if (!ext4_has_feature_huge_file(sb))
4266 		return -EFSCORRUPTED;
4267 
4268 	if (i_blocks <= 0xffffffffffffULL) {
4269 		/*
4270 		 * i_blocks can be represented in a 48 bit variable
4271 		 * as multiple of 512 bytes
4272 		 */
4273 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4274 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4275 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4276 	} else {
4277 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4278 		/* i_block is stored in file system block size */
4279 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4280 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4281 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4282 	}
4283 	return 0;
4284 }
4285 
4286 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4287 {
4288 	struct ext4_inode_info *ei = EXT4_I(inode);
4289 	uid_t i_uid;
4290 	gid_t i_gid;
4291 	projid_t i_projid;
4292 	int block;
4293 	int err;
4294 
4295 	err = ext4_inode_blocks_set(raw_inode, ei);
4296 
4297 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4298 	i_uid = i_uid_read(inode);
4299 	i_gid = i_gid_read(inode);
4300 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4301 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4302 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4303 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4304 		/*
4305 		 * Fix up interoperability with old kernels. Otherwise,
4306 		 * old inodes get re-used with the upper 16 bits of the
4307 		 * uid/gid intact.
4308 		 */
4309 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4310 			raw_inode->i_uid_high = 0;
4311 			raw_inode->i_gid_high = 0;
4312 		} else {
4313 			raw_inode->i_uid_high =
4314 				cpu_to_le16(high_16_bits(i_uid));
4315 			raw_inode->i_gid_high =
4316 				cpu_to_le16(high_16_bits(i_gid));
4317 		}
4318 	} else {
4319 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4320 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4321 		raw_inode->i_uid_high = 0;
4322 		raw_inode->i_gid_high = 0;
4323 	}
4324 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4325 
4326 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4327 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4328 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4329 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4330 
4331 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4332 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4333 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4334 		raw_inode->i_file_acl_high =
4335 			cpu_to_le16(ei->i_file_acl >> 32);
4336 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4337 	ext4_isize_set(raw_inode, ei->i_disksize);
4338 
4339 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4340 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4341 		if (old_valid_dev(inode->i_rdev)) {
4342 			raw_inode->i_block[0] =
4343 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4344 			raw_inode->i_block[1] = 0;
4345 		} else {
4346 			raw_inode->i_block[0] = 0;
4347 			raw_inode->i_block[1] =
4348 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4349 			raw_inode->i_block[2] = 0;
4350 		}
4351 	} else if (!ext4_has_inline_data(inode)) {
4352 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4353 			raw_inode->i_block[block] = ei->i_data[block];
4354 	}
4355 
4356 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4357 		u64 ivers = ext4_inode_peek_iversion(inode);
4358 
4359 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4360 		if (ei->i_extra_isize) {
4361 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4362 				raw_inode->i_version_hi =
4363 					cpu_to_le32(ivers >> 32);
4364 			raw_inode->i_extra_isize =
4365 				cpu_to_le16(ei->i_extra_isize);
4366 		}
4367 	}
4368 
4369 	if (i_projid != EXT4_DEF_PROJID &&
4370 	    !ext4_has_feature_project(inode->i_sb))
4371 		err = err ?: -EFSCORRUPTED;
4372 
4373 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4374 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4375 		raw_inode->i_projid = cpu_to_le32(i_projid);
4376 
4377 	ext4_inode_csum_set(inode, raw_inode, ei);
4378 	return err;
4379 }
4380 
4381 /*
4382  * ext4_get_inode_loc returns with an extra refcount against the inode's
4383  * underlying buffer_head on success. If we pass 'inode' and it does not
4384  * have in-inode xattr, we have all inode data in memory that is needed
4385  * to recreate the on-disk version of this inode.
4386  */
4387 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4388 				struct inode *inode, struct ext4_iloc *iloc,
4389 				ext4_fsblk_t *ret_block)
4390 {
4391 	struct ext4_group_desc	*gdp;
4392 	struct buffer_head	*bh;
4393 	ext4_fsblk_t		block;
4394 	struct blk_plug		plug;
4395 	int			inodes_per_block, inode_offset;
4396 
4397 	iloc->bh = NULL;
4398 	if (ino < EXT4_ROOT_INO ||
4399 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4400 		return -EFSCORRUPTED;
4401 
4402 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4403 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4404 	if (!gdp)
4405 		return -EIO;
4406 
4407 	/*
4408 	 * Figure out the offset within the block group inode table
4409 	 */
4410 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4411 	inode_offset = ((ino - 1) %
4412 			EXT4_INODES_PER_GROUP(sb));
4413 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4414 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4415 
4416 	bh = sb_getblk(sb, block);
4417 	if (unlikely(!bh))
4418 		return -ENOMEM;
4419 	if (ext4_buffer_uptodate(bh))
4420 		goto has_buffer;
4421 
4422 	lock_buffer(bh);
4423 	if (ext4_buffer_uptodate(bh)) {
4424 		/* Someone brought it uptodate while we waited */
4425 		unlock_buffer(bh);
4426 		goto has_buffer;
4427 	}
4428 
4429 	/*
4430 	 * If we have all information of the inode in memory and this
4431 	 * is the only valid inode in the block, we need not read the
4432 	 * block.
4433 	 */
4434 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4435 		struct buffer_head *bitmap_bh;
4436 		int i, start;
4437 
4438 		start = inode_offset & ~(inodes_per_block - 1);
4439 
4440 		/* Is the inode bitmap in cache? */
4441 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4442 		if (unlikely(!bitmap_bh))
4443 			goto make_io;
4444 
4445 		/*
4446 		 * If the inode bitmap isn't in cache then the
4447 		 * optimisation may end up performing two reads instead
4448 		 * of one, so skip it.
4449 		 */
4450 		if (!buffer_uptodate(bitmap_bh)) {
4451 			brelse(bitmap_bh);
4452 			goto make_io;
4453 		}
4454 		for (i = start; i < start + inodes_per_block; i++) {
4455 			if (i == inode_offset)
4456 				continue;
4457 			if (ext4_test_bit(i, bitmap_bh->b_data))
4458 				break;
4459 		}
4460 		brelse(bitmap_bh);
4461 		if (i == start + inodes_per_block) {
4462 			struct ext4_inode *raw_inode =
4463 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4464 
4465 			/* all other inodes are free, so skip I/O */
4466 			memset(bh->b_data, 0, bh->b_size);
4467 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4468 				ext4_fill_raw_inode(inode, raw_inode);
4469 			set_buffer_uptodate(bh);
4470 			unlock_buffer(bh);
4471 			goto has_buffer;
4472 		}
4473 	}
4474 
4475 make_io:
4476 	/*
4477 	 * If we need to do any I/O, try to pre-readahead extra
4478 	 * blocks from the inode table.
4479 	 */
4480 	blk_start_plug(&plug);
4481 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4482 		ext4_fsblk_t b, end, table;
4483 		unsigned num;
4484 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4485 
4486 		table = ext4_inode_table(sb, gdp);
4487 		/* s_inode_readahead_blks is always a power of 2 */
4488 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4489 		if (table > b)
4490 			b = table;
4491 		end = b + ra_blks;
4492 		num = EXT4_INODES_PER_GROUP(sb);
4493 		if (ext4_has_group_desc_csum(sb))
4494 			num -= ext4_itable_unused_count(sb, gdp);
4495 		table += num / inodes_per_block;
4496 		if (end > table)
4497 			end = table;
4498 		while (b <= end)
4499 			ext4_sb_breadahead_unmovable(sb, b++);
4500 	}
4501 
4502 	/*
4503 	 * There are other valid inodes in the buffer, this inode
4504 	 * has in-inode xattrs, or we don't have this inode in memory.
4505 	 * Read the block from disk.
4506 	 */
4507 	trace_ext4_load_inode(sb, ino);
4508 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4509 	blk_finish_plug(&plug);
4510 	wait_on_buffer(bh);
4511 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4512 	if (!buffer_uptodate(bh)) {
4513 		if (ret_block)
4514 			*ret_block = block;
4515 		brelse(bh);
4516 		return -EIO;
4517 	}
4518 has_buffer:
4519 	iloc->bh = bh;
4520 	return 0;
4521 }
4522 
4523 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4524 					struct ext4_iloc *iloc)
4525 {
4526 	ext4_fsblk_t err_blk;
4527 	int ret;
4528 
4529 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4530 					&err_blk);
4531 
4532 	if (ret == -EIO)
4533 		ext4_error_inode_block(inode, err_blk, EIO,
4534 					"unable to read itable block");
4535 
4536 	return ret;
4537 }
4538 
4539 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4540 {
4541 	ext4_fsblk_t err_blk;
4542 	int ret;
4543 
4544 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4545 					&err_blk);
4546 
4547 	if (ret == -EIO)
4548 		ext4_error_inode_block(inode, err_blk, EIO,
4549 					"unable to read itable block");
4550 
4551 	return ret;
4552 }
4553 
4554 
4555 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4556 			  struct ext4_iloc *iloc)
4557 {
4558 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4559 }
4560 
4561 static bool ext4_should_enable_dax(struct inode *inode)
4562 {
4563 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4564 
4565 	if (test_opt2(inode->i_sb, DAX_NEVER))
4566 		return false;
4567 	if (!S_ISREG(inode->i_mode))
4568 		return false;
4569 	if (ext4_should_journal_data(inode))
4570 		return false;
4571 	if (ext4_has_inline_data(inode))
4572 		return false;
4573 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4574 		return false;
4575 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4576 		return false;
4577 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4578 		return false;
4579 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4580 		return true;
4581 
4582 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4583 }
4584 
4585 void ext4_set_inode_flags(struct inode *inode, bool init)
4586 {
4587 	unsigned int flags = EXT4_I(inode)->i_flags;
4588 	unsigned int new_fl = 0;
4589 
4590 	WARN_ON_ONCE(IS_DAX(inode) && init);
4591 
4592 	if (flags & EXT4_SYNC_FL)
4593 		new_fl |= S_SYNC;
4594 	if (flags & EXT4_APPEND_FL)
4595 		new_fl |= S_APPEND;
4596 	if (flags & EXT4_IMMUTABLE_FL)
4597 		new_fl |= S_IMMUTABLE;
4598 	if (flags & EXT4_NOATIME_FL)
4599 		new_fl |= S_NOATIME;
4600 	if (flags & EXT4_DIRSYNC_FL)
4601 		new_fl |= S_DIRSYNC;
4602 
4603 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4604 	 * here if already set. */
4605 	new_fl |= (inode->i_flags & S_DAX);
4606 	if (init && ext4_should_enable_dax(inode))
4607 		new_fl |= S_DAX;
4608 
4609 	if (flags & EXT4_ENCRYPT_FL)
4610 		new_fl |= S_ENCRYPTED;
4611 	if (flags & EXT4_CASEFOLD_FL)
4612 		new_fl |= S_CASEFOLD;
4613 	if (flags & EXT4_VERITY_FL)
4614 		new_fl |= S_VERITY;
4615 	inode_set_flags(inode, new_fl,
4616 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4617 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4618 }
4619 
4620 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4621 				  struct ext4_inode_info *ei)
4622 {
4623 	blkcnt_t i_blocks ;
4624 	struct inode *inode = &(ei->vfs_inode);
4625 	struct super_block *sb = inode->i_sb;
4626 
4627 	if (ext4_has_feature_huge_file(sb)) {
4628 		/* we are using combined 48 bit field */
4629 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4630 					le32_to_cpu(raw_inode->i_blocks_lo);
4631 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4632 			/* i_blocks represent file system block size */
4633 			return i_blocks  << (inode->i_blkbits - 9);
4634 		} else {
4635 			return i_blocks;
4636 		}
4637 	} else {
4638 		return le32_to_cpu(raw_inode->i_blocks_lo);
4639 	}
4640 }
4641 
4642 static inline int ext4_iget_extra_inode(struct inode *inode,
4643 					 struct ext4_inode *raw_inode,
4644 					 struct ext4_inode_info *ei)
4645 {
4646 	__le32 *magic = (void *)raw_inode +
4647 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4648 
4649 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4650 	    EXT4_INODE_SIZE(inode->i_sb) &&
4651 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4652 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4653 		return ext4_find_inline_data_nolock(inode);
4654 	} else
4655 		EXT4_I(inode)->i_inline_off = 0;
4656 	return 0;
4657 }
4658 
4659 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4660 {
4661 	if (!ext4_has_feature_project(inode->i_sb))
4662 		return -EOPNOTSUPP;
4663 	*projid = EXT4_I(inode)->i_projid;
4664 	return 0;
4665 }
4666 
4667 /*
4668  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4669  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4670  * set.
4671  */
4672 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4673 {
4674 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4675 		inode_set_iversion_raw(inode, val);
4676 	else
4677 		inode_set_iversion_queried(inode, val);
4678 }
4679 
4680 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4681 			  ext4_iget_flags flags, const char *function,
4682 			  unsigned int line)
4683 {
4684 	struct ext4_iloc iloc;
4685 	struct ext4_inode *raw_inode;
4686 	struct ext4_inode_info *ei;
4687 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4688 	struct inode *inode;
4689 	journal_t *journal = EXT4_SB(sb)->s_journal;
4690 	long ret;
4691 	loff_t size;
4692 	int block;
4693 	uid_t i_uid;
4694 	gid_t i_gid;
4695 	projid_t i_projid;
4696 
4697 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4698 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4699 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4700 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4701 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4702 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4703 	    (ino < EXT4_ROOT_INO) ||
4704 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4705 		if (flags & EXT4_IGET_HANDLE)
4706 			return ERR_PTR(-ESTALE);
4707 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4708 			     "inode #%lu: comm %s: iget: illegal inode #",
4709 			     ino, current->comm);
4710 		return ERR_PTR(-EFSCORRUPTED);
4711 	}
4712 
4713 	inode = iget_locked(sb, ino);
4714 	if (!inode)
4715 		return ERR_PTR(-ENOMEM);
4716 	if (!(inode->i_state & I_NEW))
4717 		return inode;
4718 
4719 	ei = EXT4_I(inode);
4720 	iloc.bh = NULL;
4721 
4722 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4723 	if (ret < 0)
4724 		goto bad_inode;
4725 	raw_inode = ext4_raw_inode(&iloc);
4726 
4727 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4728 		ext4_error_inode(inode, function, line, 0,
4729 				 "iget: root inode unallocated");
4730 		ret = -EFSCORRUPTED;
4731 		goto bad_inode;
4732 	}
4733 
4734 	if ((flags & EXT4_IGET_HANDLE) &&
4735 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4736 		ret = -ESTALE;
4737 		goto bad_inode;
4738 	}
4739 
4740 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4741 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4742 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4743 			EXT4_INODE_SIZE(inode->i_sb) ||
4744 		    (ei->i_extra_isize & 3)) {
4745 			ext4_error_inode(inode, function, line, 0,
4746 					 "iget: bad extra_isize %u "
4747 					 "(inode size %u)",
4748 					 ei->i_extra_isize,
4749 					 EXT4_INODE_SIZE(inode->i_sb));
4750 			ret = -EFSCORRUPTED;
4751 			goto bad_inode;
4752 		}
4753 	} else
4754 		ei->i_extra_isize = 0;
4755 
4756 	/* Precompute checksum seed for inode metadata */
4757 	if (ext4_has_metadata_csum(sb)) {
4758 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4759 		__u32 csum;
4760 		__le32 inum = cpu_to_le32(inode->i_ino);
4761 		__le32 gen = raw_inode->i_generation;
4762 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4763 				   sizeof(inum));
4764 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4765 					      sizeof(gen));
4766 	}
4767 
4768 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4769 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4770 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4771 		ext4_error_inode_err(inode, function, line, 0,
4772 				EFSBADCRC, "iget: checksum invalid");
4773 		ret = -EFSBADCRC;
4774 		goto bad_inode;
4775 	}
4776 
4777 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4778 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4779 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4780 	if (ext4_has_feature_project(sb) &&
4781 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4782 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4783 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4784 	else
4785 		i_projid = EXT4_DEF_PROJID;
4786 
4787 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4788 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4789 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4790 	}
4791 	i_uid_write(inode, i_uid);
4792 	i_gid_write(inode, i_gid);
4793 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4794 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4795 
4796 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4797 	ei->i_inline_off = 0;
4798 	ei->i_dir_start_lookup = 0;
4799 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4800 	/* We now have enough fields to check if the inode was active or not.
4801 	 * This is needed because nfsd might try to access dead inodes
4802 	 * the test is that same one that e2fsck uses
4803 	 * NeilBrown 1999oct15
4804 	 */
4805 	if (inode->i_nlink == 0) {
4806 		if ((inode->i_mode == 0 ||
4807 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4808 		    ino != EXT4_BOOT_LOADER_INO) {
4809 			/* this inode is deleted */
4810 			ret = -ESTALE;
4811 			goto bad_inode;
4812 		}
4813 		/* The only unlinked inodes we let through here have
4814 		 * valid i_mode and are being read by the orphan
4815 		 * recovery code: that's fine, we're about to complete
4816 		 * the process of deleting those.
4817 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4818 		 * not initialized on a new filesystem. */
4819 	}
4820 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4821 	ext4_set_inode_flags(inode, true);
4822 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4823 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4824 	if (ext4_has_feature_64bit(sb))
4825 		ei->i_file_acl |=
4826 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4827 	inode->i_size = ext4_isize(sb, raw_inode);
4828 	if ((size = i_size_read(inode)) < 0) {
4829 		ext4_error_inode(inode, function, line, 0,
4830 				 "iget: bad i_size value: %lld", size);
4831 		ret = -EFSCORRUPTED;
4832 		goto bad_inode;
4833 	}
4834 	/*
4835 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4836 	 * we'd normally treat htree data as empty space. But with metadata
4837 	 * checksumming that corrupts checksums so forbid that.
4838 	 */
4839 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4840 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4841 		ext4_error_inode(inode, function, line, 0,
4842 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4843 		ret = -EFSCORRUPTED;
4844 		goto bad_inode;
4845 	}
4846 	ei->i_disksize = inode->i_size;
4847 #ifdef CONFIG_QUOTA
4848 	ei->i_reserved_quota = 0;
4849 #endif
4850 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4851 	ei->i_block_group = iloc.block_group;
4852 	ei->i_last_alloc_group = ~0;
4853 	/*
4854 	 * NOTE! The in-memory inode i_data array is in little-endian order
4855 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4856 	 */
4857 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4858 		ei->i_data[block] = raw_inode->i_block[block];
4859 	INIT_LIST_HEAD(&ei->i_orphan);
4860 	ext4_fc_init_inode(&ei->vfs_inode);
4861 
4862 	/*
4863 	 * Set transaction id's of transactions that have to be committed
4864 	 * to finish f[data]sync. We set them to currently running transaction
4865 	 * as we cannot be sure that the inode or some of its metadata isn't
4866 	 * part of the transaction - the inode could have been reclaimed and
4867 	 * now it is reread from disk.
4868 	 */
4869 	if (journal) {
4870 		transaction_t *transaction;
4871 		tid_t tid;
4872 
4873 		read_lock(&journal->j_state_lock);
4874 		if (journal->j_running_transaction)
4875 			transaction = journal->j_running_transaction;
4876 		else
4877 			transaction = journal->j_committing_transaction;
4878 		if (transaction)
4879 			tid = transaction->t_tid;
4880 		else
4881 			tid = journal->j_commit_sequence;
4882 		read_unlock(&journal->j_state_lock);
4883 		ei->i_sync_tid = tid;
4884 		ei->i_datasync_tid = tid;
4885 	}
4886 
4887 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4888 		if (ei->i_extra_isize == 0) {
4889 			/* The extra space is currently unused. Use it. */
4890 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4891 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4892 					    EXT4_GOOD_OLD_INODE_SIZE;
4893 		} else {
4894 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4895 			if (ret)
4896 				goto bad_inode;
4897 		}
4898 	}
4899 
4900 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4901 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4902 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4903 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4904 
4905 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4906 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4907 
4908 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4909 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4910 				ivers |=
4911 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4912 		}
4913 		ext4_inode_set_iversion_queried(inode, ivers);
4914 	}
4915 
4916 	ret = 0;
4917 	if (ei->i_file_acl &&
4918 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4919 		ext4_error_inode(inode, function, line, 0,
4920 				 "iget: bad extended attribute block %llu",
4921 				 ei->i_file_acl);
4922 		ret = -EFSCORRUPTED;
4923 		goto bad_inode;
4924 	} else if (!ext4_has_inline_data(inode)) {
4925 		/* validate the block references in the inode */
4926 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4927 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4928 			(S_ISLNK(inode->i_mode) &&
4929 			!ext4_inode_is_fast_symlink(inode)))) {
4930 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4931 				ret = ext4_ext_check_inode(inode);
4932 			else
4933 				ret = ext4_ind_check_inode(inode);
4934 		}
4935 	}
4936 	if (ret)
4937 		goto bad_inode;
4938 
4939 	if (S_ISREG(inode->i_mode)) {
4940 		inode->i_op = &ext4_file_inode_operations;
4941 		inode->i_fop = &ext4_file_operations;
4942 		ext4_set_aops(inode);
4943 	} else if (S_ISDIR(inode->i_mode)) {
4944 		inode->i_op = &ext4_dir_inode_operations;
4945 		inode->i_fop = &ext4_dir_operations;
4946 	} else if (S_ISLNK(inode->i_mode)) {
4947 		/* VFS does not allow setting these so must be corruption */
4948 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4949 			ext4_error_inode(inode, function, line, 0,
4950 					 "iget: immutable or append flags "
4951 					 "not allowed on symlinks");
4952 			ret = -EFSCORRUPTED;
4953 			goto bad_inode;
4954 		}
4955 		if (IS_ENCRYPTED(inode)) {
4956 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4957 			ext4_set_aops(inode);
4958 		} else if (ext4_inode_is_fast_symlink(inode)) {
4959 			inode->i_link = (char *)ei->i_data;
4960 			inode->i_op = &ext4_fast_symlink_inode_operations;
4961 			nd_terminate_link(ei->i_data, inode->i_size,
4962 				sizeof(ei->i_data) - 1);
4963 		} else {
4964 			inode->i_op = &ext4_symlink_inode_operations;
4965 			ext4_set_aops(inode);
4966 		}
4967 		inode_nohighmem(inode);
4968 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4969 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4970 		inode->i_op = &ext4_special_inode_operations;
4971 		if (raw_inode->i_block[0])
4972 			init_special_inode(inode, inode->i_mode,
4973 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4974 		else
4975 			init_special_inode(inode, inode->i_mode,
4976 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4977 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4978 		make_bad_inode(inode);
4979 	} else {
4980 		ret = -EFSCORRUPTED;
4981 		ext4_error_inode(inode, function, line, 0,
4982 				 "iget: bogus i_mode (%o)", inode->i_mode);
4983 		goto bad_inode;
4984 	}
4985 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4986 		ext4_error_inode(inode, function, line, 0,
4987 				 "casefold flag without casefold feature");
4988 	brelse(iloc.bh);
4989 
4990 	unlock_new_inode(inode);
4991 	return inode;
4992 
4993 bad_inode:
4994 	brelse(iloc.bh);
4995 	iget_failed(inode);
4996 	return ERR_PTR(ret);
4997 }
4998 
4999 static void __ext4_update_other_inode_time(struct super_block *sb,
5000 					   unsigned long orig_ino,
5001 					   unsigned long ino,
5002 					   struct ext4_inode *raw_inode)
5003 {
5004 	struct inode *inode;
5005 
5006 	inode = find_inode_by_ino_rcu(sb, ino);
5007 	if (!inode)
5008 		return;
5009 
5010 	if (!inode_is_dirtytime_only(inode))
5011 		return;
5012 
5013 	spin_lock(&inode->i_lock);
5014 	if (inode_is_dirtytime_only(inode)) {
5015 		struct ext4_inode_info	*ei = EXT4_I(inode);
5016 
5017 		inode->i_state &= ~I_DIRTY_TIME;
5018 		spin_unlock(&inode->i_lock);
5019 
5020 		spin_lock(&ei->i_raw_lock);
5021 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5022 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5023 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5024 		ext4_inode_csum_set(inode, raw_inode, ei);
5025 		spin_unlock(&ei->i_raw_lock);
5026 		trace_ext4_other_inode_update_time(inode, orig_ino);
5027 		return;
5028 	}
5029 	spin_unlock(&inode->i_lock);
5030 }
5031 
5032 /*
5033  * Opportunistically update the other time fields for other inodes in
5034  * the same inode table block.
5035  */
5036 static void ext4_update_other_inodes_time(struct super_block *sb,
5037 					  unsigned long orig_ino, char *buf)
5038 {
5039 	unsigned long ino;
5040 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5041 	int inode_size = EXT4_INODE_SIZE(sb);
5042 
5043 	/*
5044 	 * Calculate the first inode in the inode table block.  Inode
5045 	 * numbers are one-based.  That is, the first inode in a block
5046 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5047 	 */
5048 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5049 	rcu_read_lock();
5050 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5051 		if (ino == orig_ino)
5052 			continue;
5053 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5054 					       (struct ext4_inode *)buf);
5055 	}
5056 	rcu_read_unlock();
5057 }
5058 
5059 /*
5060  * Post the struct inode info into an on-disk inode location in the
5061  * buffer-cache.  This gobbles the caller's reference to the
5062  * buffer_head in the inode location struct.
5063  *
5064  * The caller must have write access to iloc->bh.
5065  */
5066 static int ext4_do_update_inode(handle_t *handle,
5067 				struct inode *inode,
5068 				struct ext4_iloc *iloc)
5069 {
5070 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5071 	struct ext4_inode_info *ei = EXT4_I(inode);
5072 	struct buffer_head *bh = iloc->bh;
5073 	struct super_block *sb = inode->i_sb;
5074 	int err;
5075 	int need_datasync = 0, set_large_file = 0;
5076 
5077 	spin_lock(&ei->i_raw_lock);
5078 
5079 	/*
5080 	 * For fields not tracked in the in-memory inode, initialise them
5081 	 * to zero for new inodes.
5082 	 */
5083 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5084 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5085 
5086 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5087 		need_datasync = 1;
5088 	if (ei->i_disksize > 0x7fffffffULL) {
5089 		if (!ext4_has_feature_large_file(sb) ||
5090 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5091 			set_large_file = 1;
5092 	}
5093 
5094 	err = ext4_fill_raw_inode(inode, raw_inode);
5095 	spin_unlock(&ei->i_raw_lock);
5096 	if (err) {
5097 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5098 		goto out_brelse;
5099 	}
5100 
5101 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5102 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5103 					      bh->b_data);
5104 
5105 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5106 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5107 	if (err)
5108 		goto out_error;
5109 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5110 	if (set_large_file) {
5111 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5112 		err = ext4_journal_get_write_access(handle, sb,
5113 						    EXT4_SB(sb)->s_sbh,
5114 						    EXT4_JTR_NONE);
5115 		if (err)
5116 			goto out_error;
5117 		lock_buffer(EXT4_SB(sb)->s_sbh);
5118 		ext4_set_feature_large_file(sb);
5119 		ext4_superblock_csum_set(sb);
5120 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5121 		ext4_handle_sync(handle);
5122 		err = ext4_handle_dirty_metadata(handle, NULL,
5123 						 EXT4_SB(sb)->s_sbh);
5124 	}
5125 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5126 out_error:
5127 	ext4_std_error(inode->i_sb, err);
5128 out_brelse:
5129 	brelse(bh);
5130 	return err;
5131 }
5132 
5133 /*
5134  * ext4_write_inode()
5135  *
5136  * We are called from a few places:
5137  *
5138  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5139  *   Here, there will be no transaction running. We wait for any running
5140  *   transaction to commit.
5141  *
5142  * - Within flush work (sys_sync(), kupdate and such).
5143  *   We wait on commit, if told to.
5144  *
5145  * - Within iput_final() -> write_inode_now()
5146  *   We wait on commit, if told to.
5147  *
5148  * In all cases it is actually safe for us to return without doing anything,
5149  * because the inode has been copied into a raw inode buffer in
5150  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5151  * writeback.
5152  *
5153  * Note that we are absolutely dependent upon all inode dirtiers doing the
5154  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5155  * which we are interested.
5156  *
5157  * It would be a bug for them to not do this.  The code:
5158  *
5159  *	mark_inode_dirty(inode)
5160  *	stuff();
5161  *	inode->i_size = expr;
5162  *
5163  * is in error because write_inode() could occur while `stuff()' is running,
5164  * and the new i_size will be lost.  Plus the inode will no longer be on the
5165  * superblock's dirty inode list.
5166  */
5167 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5168 {
5169 	int err;
5170 
5171 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5172 	    sb_rdonly(inode->i_sb))
5173 		return 0;
5174 
5175 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5176 		return -EIO;
5177 
5178 	if (EXT4_SB(inode->i_sb)->s_journal) {
5179 		if (ext4_journal_current_handle()) {
5180 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5181 			dump_stack();
5182 			return -EIO;
5183 		}
5184 
5185 		/*
5186 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5187 		 * ext4_sync_fs() will force the commit after everything is
5188 		 * written.
5189 		 */
5190 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5191 			return 0;
5192 
5193 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5194 						EXT4_I(inode)->i_sync_tid);
5195 	} else {
5196 		struct ext4_iloc iloc;
5197 
5198 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5199 		if (err)
5200 			return err;
5201 		/*
5202 		 * sync(2) will flush the whole buffer cache. No need to do
5203 		 * it here separately for each inode.
5204 		 */
5205 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5206 			sync_dirty_buffer(iloc.bh);
5207 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5208 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5209 					       "IO error syncing inode");
5210 			err = -EIO;
5211 		}
5212 		brelse(iloc.bh);
5213 	}
5214 	return err;
5215 }
5216 
5217 /*
5218  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5219  * buffers that are attached to a page stradding i_size and are undergoing
5220  * commit. In that case we have to wait for commit to finish and try again.
5221  */
5222 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5223 {
5224 	struct page *page;
5225 	unsigned offset;
5226 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5227 	tid_t commit_tid = 0;
5228 	int ret;
5229 
5230 	offset = inode->i_size & (PAGE_SIZE - 1);
5231 	/*
5232 	 * If the page is fully truncated, we don't need to wait for any commit
5233 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5234 	 * strip all buffers from the page but keep the page dirty which can then
5235 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5236 	 * buffers). Also we don't need to wait for any commit if all buffers in
5237 	 * the page remain valid. This is most beneficial for the common case of
5238 	 * blocksize == PAGESIZE.
5239 	 */
5240 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5241 		return;
5242 	while (1) {
5243 		page = find_lock_page(inode->i_mapping,
5244 				      inode->i_size >> PAGE_SHIFT);
5245 		if (!page)
5246 			return;
5247 		ret = __ext4_journalled_invalidatepage(page, offset,
5248 						PAGE_SIZE - offset);
5249 		unlock_page(page);
5250 		put_page(page);
5251 		if (ret != -EBUSY)
5252 			return;
5253 		commit_tid = 0;
5254 		read_lock(&journal->j_state_lock);
5255 		if (journal->j_committing_transaction)
5256 			commit_tid = journal->j_committing_transaction->t_tid;
5257 		read_unlock(&journal->j_state_lock);
5258 		if (commit_tid)
5259 			jbd2_log_wait_commit(journal, commit_tid);
5260 	}
5261 }
5262 
5263 /*
5264  * ext4_setattr()
5265  *
5266  * Called from notify_change.
5267  *
5268  * We want to trap VFS attempts to truncate the file as soon as
5269  * possible.  In particular, we want to make sure that when the VFS
5270  * shrinks i_size, we put the inode on the orphan list and modify
5271  * i_disksize immediately, so that during the subsequent flushing of
5272  * dirty pages and freeing of disk blocks, we can guarantee that any
5273  * commit will leave the blocks being flushed in an unused state on
5274  * disk.  (On recovery, the inode will get truncated and the blocks will
5275  * be freed, so we have a strong guarantee that no future commit will
5276  * leave these blocks visible to the user.)
5277  *
5278  * Another thing we have to assure is that if we are in ordered mode
5279  * and inode is still attached to the committing transaction, we must
5280  * we start writeout of all the dirty pages which are being truncated.
5281  * This way we are sure that all the data written in the previous
5282  * transaction are already on disk (truncate waits for pages under
5283  * writeback).
5284  *
5285  * Called with inode->i_mutex down.
5286  */
5287 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5288 		 struct iattr *attr)
5289 {
5290 	struct inode *inode = d_inode(dentry);
5291 	int error, rc = 0;
5292 	int orphan = 0;
5293 	const unsigned int ia_valid = attr->ia_valid;
5294 
5295 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5296 		return -EIO;
5297 
5298 	if (unlikely(IS_IMMUTABLE(inode)))
5299 		return -EPERM;
5300 
5301 	if (unlikely(IS_APPEND(inode) &&
5302 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5303 				  ATTR_GID | ATTR_TIMES_SET))))
5304 		return -EPERM;
5305 
5306 	error = setattr_prepare(mnt_userns, dentry, attr);
5307 	if (error)
5308 		return error;
5309 
5310 	error = fscrypt_prepare_setattr(dentry, attr);
5311 	if (error)
5312 		return error;
5313 
5314 	error = fsverity_prepare_setattr(dentry, attr);
5315 	if (error)
5316 		return error;
5317 
5318 	if (is_quota_modification(inode, attr)) {
5319 		error = dquot_initialize(inode);
5320 		if (error)
5321 			return error;
5322 	}
5323 	ext4_fc_start_update(inode);
5324 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5325 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5326 		handle_t *handle;
5327 
5328 		/* (user+group)*(old+new) structure, inode write (sb,
5329 		 * inode block, ? - but truncate inode update has it) */
5330 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5331 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5332 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5333 		if (IS_ERR(handle)) {
5334 			error = PTR_ERR(handle);
5335 			goto err_out;
5336 		}
5337 
5338 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5339 		 * counts xattr inode references.
5340 		 */
5341 		down_read(&EXT4_I(inode)->xattr_sem);
5342 		error = dquot_transfer(inode, attr);
5343 		up_read(&EXT4_I(inode)->xattr_sem);
5344 
5345 		if (error) {
5346 			ext4_journal_stop(handle);
5347 			ext4_fc_stop_update(inode);
5348 			return error;
5349 		}
5350 		/* Update corresponding info in inode so that everything is in
5351 		 * one transaction */
5352 		if (attr->ia_valid & ATTR_UID)
5353 			inode->i_uid = attr->ia_uid;
5354 		if (attr->ia_valid & ATTR_GID)
5355 			inode->i_gid = attr->ia_gid;
5356 		error = ext4_mark_inode_dirty(handle, inode);
5357 		ext4_journal_stop(handle);
5358 		if (unlikely(error)) {
5359 			ext4_fc_stop_update(inode);
5360 			return error;
5361 		}
5362 	}
5363 
5364 	if (attr->ia_valid & ATTR_SIZE) {
5365 		handle_t *handle;
5366 		loff_t oldsize = inode->i_size;
5367 		int shrink = (attr->ia_size < inode->i_size);
5368 
5369 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5370 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5371 
5372 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5373 				ext4_fc_stop_update(inode);
5374 				return -EFBIG;
5375 			}
5376 		}
5377 		if (!S_ISREG(inode->i_mode)) {
5378 			ext4_fc_stop_update(inode);
5379 			return -EINVAL;
5380 		}
5381 
5382 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5383 			inode_inc_iversion(inode);
5384 
5385 		if (shrink) {
5386 			if (ext4_should_order_data(inode)) {
5387 				error = ext4_begin_ordered_truncate(inode,
5388 							    attr->ia_size);
5389 				if (error)
5390 					goto err_out;
5391 			}
5392 			/*
5393 			 * Blocks are going to be removed from the inode. Wait
5394 			 * for dio in flight.
5395 			 */
5396 			inode_dio_wait(inode);
5397 		}
5398 
5399 		filemap_invalidate_lock(inode->i_mapping);
5400 
5401 		rc = ext4_break_layouts(inode);
5402 		if (rc) {
5403 			filemap_invalidate_unlock(inode->i_mapping);
5404 			goto err_out;
5405 		}
5406 
5407 		if (attr->ia_size != inode->i_size) {
5408 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5409 			if (IS_ERR(handle)) {
5410 				error = PTR_ERR(handle);
5411 				goto out_mmap_sem;
5412 			}
5413 			if (ext4_handle_valid(handle) && shrink) {
5414 				error = ext4_orphan_add(handle, inode);
5415 				orphan = 1;
5416 			}
5417 			/*
5418 			 * Update c/mtime on truncate up, ext4_truncate() will
5419 			 * update c/mtime in shrink case below
5420 			 */
5421 			if (!shrink) {
5422 				inode->i_mtime = current_time(inode);
5423 				inode->i_ctime = inode->i_mtime;
5424 			}
5425 
5426 			if (shrink)
5427 				ext4_fc_track_range(handle, inode,
5428 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5429 					inode->i_sb->s_blocksize_bits,
5430 					(oldsize > 0 ? oldsize - 1 : 0) >>
5431 					inode->i_sb->s_blocksize_bits);
5432 			else
5433 				ext4_fc_track_range(
5434 					handle, inode,
5435 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5436 					inode->i_sb->s_blocksize_bits,
5437 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5438 					inode->i_sb->s_blocksize_bits);
5439 
5440 			down_write(&EXT4_I(inode)->i_data_sem);
5441 			EXT4_I(inode)->i_disksize = attr->ia_size;
5442 			rc = ext4_mark_inode_dirty(handle, inode);
5443 			if (!error)
5444 				error = rc;
5445 			/*
5446 			 * We have to update i_size under i_data_sem together
5447 			 * with i_disksize to avoid races with writeback code
5448 			 * running ext4_wb_update_i_disksize().
5449 			 */
5450 			if (!error)
5451 				i_size_write(inode, attr->ia_size);
5452 			up_write(&EXT4_I(inode)->i_data_sem);
5453 			ext4_journal_stop(handle);
5454 			if (error)
5455 				goto out_mmap_sem;
5456 			if (!shrink) {
5457 				pagecache_isize_extended(inode, oldsize,
5458 							 inode->i_size);
5459 			} else if (ext4_should_journal_data(inode)) {
5460 				ext4_wait_for_tail_page_commit(inode);
5461 			}
5462 		}
5463 
5464 		/*
5465 		 * Truncate pagecache after we've waited for commit
5466 		 * in data=journal mode to make pages freeable.
5467 		 */
5468 		truncate_pagecache(inode, inode->i_size);
5469 		/*
5470 		 * Call ext4_truncate() even if i_size didn't change to
5471 		 * truncate possible preallocated blocks.
5472 		 */
5473 		if (attr->ia_size <= oldsize) {
5474 			rc = ext4_truncate(inode);
5475 			if (rc)
5476 				error = rc;
5477 		}
5478 out_mmap_sem:
5479 		filemap_invalidate_unlock(inode->i_mapping);
5480 	}
5481 
5482 	if (!error) {
5483 		setattr_copy(mnt_userns, inode, attr);
5484 		mark_inode_dirty(inode);
5485 	}
5486 
5487 	/*
5488 	 * If the call to ext4_truncate failed to get a transaction handle at
5489 	 * all, we need to clean up the in-core orphan list manually.
5490 	 */
5491 	if (orphan && inode->i_nlink)
5492 		ext4_orphan_del(NULL, inode);
5493 
5494 	if (!error && (ia_valid & ATTR_MODE))
5495 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5496 
5497 err_out:
5498 	if  (error)
5499 		ext4_std_error(inode->i_sb, error);
5500 	if (!error)
5501 		error = rc;
5502 	ext4_fc_stop_update(inode);
5503 	return error;
5504 }
5505 
5506 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5507 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5508 {
5509 	struct inode *inode = d_inode(path->dentry);
5510 	struct ext4_inode *raw_inode;
5511 	struct ext4_inode_info *ei = EXT4_I(inode);
5512 	unsigned int flags;
5513 
5514 	if ((request_mask & STATX_BTIME) &&
5515 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5516 		stat->result_mask |= STATX_BTIME;
5517 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5518 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5519 	}
5520 
5521 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5522 	if (flags & EXT4_APPEND_FL)
5523 		stat->attributes |= STATX_ATTR_APPEND;
5524 	if (flags & EXT4_COMPR_FL)
5525 		stat->attributes |= STATX_ATTR_COMPRESSED;
5526 	if (flags & EXT4_ENCRYPT_FL)
5527 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5528 	if (flags & EXT4_IMMUTABLE_FL)
5529 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5530 	if (flags & EXT4_NODUMP_FL)
5531 		stat->attributes |= STATX_ATTR_NODUMP;
5532 	if (flags & EXT4_VERITY_FL)
5533 		stat->attributes |= STATX_ATTR_VERITY;
5534 
5535 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5536 				  STATX_ATTR_COMPRESSED |
5537 				  STATX_ATTR_ENCRYPTED |
5538 				  STATX_ATTR_IMMUTABLE |
5539 				  STATX_ATTR_NODUMP |
5540 				  STATX_ATTR_VERITY);
5541 
5542 	generic_fillattr(mnt_userns, inode, stat);
5543 	return 0;
5544 }
5545 
5546 int ext4_file_getattr(struct user_namespace *mnt_userns,
5547 		      const struct path *path, struct kstat *stat,
5548 		      u32 request_mask, unsigned int query_flags)
5549 {
5550 	struct inode *inode = d_inode(path->dentry);
5551 	u64 delalloc_blocks;
5552 
5553 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5554 
5555 	/*
5556 	 * If there is inline data in the inode, the inode will normally not
5557 	 * have data blocks allocated (it may have an external xattr block).
5558 	 * Report at least one sector for such files, so tools like tar, rsync,
5559 	 * others don't incorrectly think the file is completely sparse.
5560 	 */
5561 	if (unlikely(ext4_has_inline_data(inode)))
5562 		stat->blocks += (stat->size + 511) >> 9;
5563 
5564 	/*
5565 	 * We can't update i_blocks if the block allocation is delayed
5566 	 * otherwise in the case of system crash before the real block
5567 	 * allocation is done, we will have i_blocks inconsistent with
5568 	 * on-disk file blocks.
5569 	 * We always keep i_blocks updated together with real
5570 	 * allocation. But to not confuse with user, stat
5571 	 * will return the blocks that include the delayed allocation
5572 	 * blocks for this file.
5573 	 */
5574 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5575 				   EXT4_I(inode)->i_reserved_data_blocks);
5576 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5577 	return 0;
5578 }
5579 
5580 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5581 				   int pextents)
5582 {
5583 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5584 		return ext4_ind_trans_blocks(inode, lblocks);
5585 	return ext4_ext_index_trans_blocks(inode, pextents);
5586 }
5587 
5588 /*
5589  * Account for index blocks, block groups bitmaps and block group
5590  * descriptor blocks if modify datablocks and index blocks
5591  * worse case, the indexs blocks spread over different block groups
5592  *
5593  * If datablocks are discontiguous, they are possible to spread over
5594  * different block groups too. If they are contiguous, with flexbg,
5595  * they could still across block group boundary.
5596  *
5597  * Also account for superblock, inode, quota and xattr blocks
5598  */
5599 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5600 				  int pextents)
5601 {
5602 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5603 	int gdpblocks;
5604 	int idxblocks;
5605 	int ret = 0;
5606 
5607 	/*
5608 	 * How many index blocks need to touch to map @lblocks logical blocks
5609 	 * to @pextents physical extents?
5610 	 */
5611 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5612 
5613 	ret = idxblocks;
5614 
5615 	/*
5616 	 * Now let's see how many group bitmaps and group descriptors need
5617 	 * to account
5618 	 */
5619 	groups = idxblocks + pextents;
5620 	gdpblocks = groups;
5621 	if (groups > ngroups)
5622 		groups = ngroups;
5623 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5624 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5625 
5626 	/* bitmaps and block group descriptor blocks */
5627 	ret += groups + gdpblocks;
5628 
5629 	/* Blocks for super block, inode, quota and xattr blocks */
5630 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5631 
5632 	return ret;
5633 }
5634 
5635 /*
5636  * Calculate the total number of credits to reserve to fit
5637  * the modification of a single pages into a single transaction,
5638  * which may include multiple chunks of block allocations.
5639  *
5640  * This could be called via ext4_write_begin()
5641  *
5642  * We need to consider the worse case, when
5643  * one new block per extent.
5644  */
5645 int ext4_writepage_trans_blocks(struct inode *inode)
5646 {
5647 	int bpp = ext4_journal_blocks_per_page(inode);
5648 	int ret;
5649 
5650 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5651 
5652 	/* Account for data blocks for journalled mode */
5653 	if (ext4_should_journal_data(inode))
5654 		ret += bpp;
5655 	return ret;
5656 }
5657 
5658 /*
5659  * Calculate the journal credits for a chunk of data modification.
5660  *
5661  * This is called from DIO, fallocate or whoever calling
5662  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5663  *
5664  * journal buffers for data blocks are not included here, as DIO
5665  * and fallocate do no need to journal data buffers.
5666  */
5667 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5668 {
5669 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5670 }
5671 
5672 /*
5673  * The caller must have previously called ext4_reserve_inode_write().
5674  * Give this, we know that the caller already has write access to iloc->bh.
5675  */
5676 int ext4_mark_iloc_dirty(handle_t *handle,
5677 			 struct inode *inode, struct ext4_iloc *iloc)
5678 {
5679 	int err = 0;
5680 
5681 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5682 		put_bh(iloc->bh);
5683 		return -EIO;
5684 	}
5685 	ext4_fc_track_inode(handle, inode);
5686 
5687 	if (IS_I_VERSION(inode))
5688 		inode_inc_iversion(inode);
5689 
5690 	/* the do_update_inode consumes one bh->b_count */
5691 	get_bh(iloc->bh);
5692 
5693 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5694 	err = ext4_do_update_inode(handle, inode, iloc);
5695 	put_bh(iloc->bh);
5696 	return err;
5697 }
5698 
5699 /*
5700  * On success, We end up with an outstanding reference count against
5701  * iloc->bh.  This _must_ be cleaned up later.
5702  */
5703 
5704 int
5705 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5706 			 struct ext4_iloc *iloc)
5707 {
5708 	int err;
5709 
5710 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5711 		return -EIO;
5712 
5713 	err = ext4_get_inode_loc(inode, iloc);
5714 	if (!err) {
5715 		BUFFER_TRACE(iloc->bh, "get_write_access");
5716 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5717 						    iloc->bh, EXT4_JTR_NONE);
5718 		if (err) {
5719 			brelse(iloc->bh);
5720 			iloc->bh = NULL;
5721 		}
5722 	}
5723 	ext4_std_error(inode->i_sb, err);
5724 	return err;
5725 }
5726 
5727 static int __ext4_expand_extra_isize(struct inode *inode,
5728 				     unsigned int new_extra_isize,
5729 				     struct ext4_iloc *iloc,
5730 				     handle_t *handle, int *no_expand)
5731 {
5732 	struct ext4_inode *raw_inode;
5733 	struct ext4_xattr_ibody_header *header;
5734 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5735 	struct ext4_inode_info *ei = EXT4_I(inode);
5736 	int error;
5737 
5738 	/* this was checked at iget time, but double check for good measure */
5739 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5740 	    (ei->i_extra_isize & 3)) {
5741 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5742 				 ei->i_extra_isize,
5743 				 EXT4_INODE_SIZE(inode->i_sb));
5744 		return -EFSCORRUPTED;
5745 	}
5746 	if ((new_extra_isize < ei->i_extra_isize) ||
5747 	    (new_extra_isize < 4) ||
5748 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5749 		return -EINVAL;	/* Should never happen */
5750 
5751 	raw_inode = ext4_raw_inode(iloc);
5752 
5753 	header = IHDR(inode, raw_inode);
5754 
5755 	/* No extended attributes present */
5756 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5757 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5758 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5759 		       EXT4_I(inode)->i_extra_isize, 0,
5760 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5761 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5762 		return 0;
5763 	}
5764 
5765 	/* try to expand with EAs present */
5766 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5767 					   raw_inode, handle);
5768 	if (error) {
5769 		/*
5770 		 * Inode size expansion failed; don't try again
5771 		 */
5772 		*no_expand = 1;
5773 	}
5774 
5775 	return error;
5776 }
5777 
5778 /*
5779  * Expand an inode by new_extra_isize bytes.
5780  * Returns 0 on success or negative error number on failure.
5781  */
5782 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5783 					  unsigned int new_extra_isize,
5784 					  struct ext4_iloc iloc,
5785 					  handle_t *handle)
5786 {
5787 	int no_expand;
5788 	int error;
5789 
5790 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5791 		return -EOVERFLOW;
5792 
5793 	/*
5794 	 * In nojournal mode, we can immediately attempt to expand
5795 	 * the inode.  When journaled, we first need to obtain extra
5796 	 * buffer credits since we may write into the EA block
5797 	 * with this same handle. If journal_extend fails, then it will
5798 	 * only result in a minor loss of functionality for that inode.
5799 	 * If this is felt to be critical, then e2fsck should be run to
5800 	 * force a large enough s_min_extra_isize.
5801 	 */
5802 	if (ext4_journal_extend(handle,
5803 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5804 		return -ENOSPC;
5805 
5806 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5807 		return -EBUSY;
5808 
5809 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5810 					  handle, &no_expand);
5811 	ext4_write_unlock_xattr(inode, &no_expand);
5812 
5813 	return error;
5814 }
5815 
5816 int ext4_expand_extra_isize(struct inode *inode,
5817 			    unsigned int new_extra_isize,
5818 			    struct ext4_iloc *iloc)
5819 {
5820 	handle_t *handle;
5821 	int no_expand;
5822 	int error, rc;
5823 
5824 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5825 		brelse(iloc->bh);
5826 		return -EOVERFLOW;
5827 	}
5828 
5829 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5830 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5831 	if (IS_ERR(handle)) {
5832 		error = PTR_ERR(handle);
5833 		brelse(iloc->bh);
5834 		return error;
5835 	}
5836 
5837 	ext4_write_lock_xattr(inode, &no_expand);
5838 
5839 	BUFFER_TRACE(iloc->bh, "get_write_access");
5840 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5841 					      EXT4_JTR_NONE);
5842 	if (error) {
5843 		brelse(iloc->bh);
5844 		goto out_unlock;
5845 	}
5846 
5847 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5848 					  handle, &no_expand);
5849 
5850 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5851 	if (!error)
5852 		error = rc;
5853 
5854 out_unlock:
5855 	ext4_write_unlock_xattr(inode, &no_expand);
5856 	ext4_journal_stop(handle);
5857 	return error;
5858 }
5859 
5860 /*
5861  * What we do here is to mark the in-core inode as clean with respect to inode
5862  * dirtiness (it may still be data-dirty).
5863  * This means that the in-core inode may be reaped by prune_icache
5864  * without having to perform any I/O.  This is a very good thing,
5865  * because *any* task may call prune_icache - even ones which
5866  * have a transaction open against a different journal.
5867  *
5868  * Is this cheating?  Not really.  Sure, we haven't written the
5869  * inode out, but prune_icache isn't a user-visible syncing function.
5870  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5871  * we start and wait on commits.
5872  */
5873 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5874 				const char *func, unsigned int line)
5875 {
5876 	struct ext4_iloc iloc;
5877 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5878 	int err;
5879 
5880 	might_sleep();
5881 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5882 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5883 	if (err)
5884 		goto out;
5885 
5886 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5887 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5888 					       iloc, handle);
5889 
5890 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5891 out:
5892 	if (unlikely(err))
5893 		ext4_error_inode_err(inode, func, line, 0, err,
5894 					"mark_inode_dirty error");
5895 	return err;
5896 }
5897 
5898 /*
5899  * ext4_dirty_inode() is called from __mark_inode_dirty()
5900  *
5901  * We're really interested in the case where a file is being extended.
5902  * i_size has been changed by generic_commit_write() and we thus need
5903  * to include the updated inode in the current transaction.
5904  *
5905  * Also, dquot_alloc_block() will always dirty the inode when blocks
5906  * are allocated to the file.
5907  *
5908  * If the inode is marked synchronous, we don't honour that here - doing
5909  * so would cause a commit on atime updates, which we don't bother doing.
5910  * We handle synchronous inodes at the highest possible level.
5911  */
5912 void ext4_dirty_inode(struct inode *inode, int flags)
5913 {
5914 	handle_t *handle;
5915 
5916 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5917 	if (IS_ERR(handle))
5918 		return;
5919 	ext4_mark_inode_dirty(handle, inode);
5920 	ext4_journal_stop(handle);
5921 }
5922 
5923 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5924 {
5925 	journal_t *journal;
5926 	handle_t *handle;
5927 	int err;
5928 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5929 
5930 	/*
5931 	 * We have to be very careful here: changing a data block's
5932 	 * journaling status dynamically is dangerous.  If we write a
5933 	 * data block to the journal, change the status and then delete
5934 	 * that block, we risk forgetting to revoke the old log record
5935 	 * from the journal and so a subsequent replay can corrupt data.
5936 	 * So, first we make sure that the journal is empty and that
5937 	 * nobody is changing anything.
5938 	 */
5939 
5940 	journal = EXT4_JOURNAL(inode);
5941 	if (!journal)
5942 		return 0;
5943 	if (is_journal_aborted(journal))
5944 		return -EROFS;
5945 
5946 	/* Wait for all existing dio workers */
5947 	inode_dio_wait(inode);
5948 
5949 	/*
5950 	 * Before flushing the journal and switching inode's aops, we have
5951 	 * to flush all dirty data the inode has. There can be outstanding
5952 	 * delayed allocations, there can be unwritten extents created by
5953 	 * fallocate or buffered writes in dioread_nolock mode covered by
5954 	 * dirty data which can be converted only after flushing the dirty
5955 	 * data (and journalled aops don't know how to handle these cases).
5956 	 */
5957 	if (val) {
5958 		filemap_invalidate_lock(inode->i_mapping);
5959 		err = filemap_write_and_wait(inode->i_mapping);
5960 		if (err < 0) {
5961 			filemap_invalidate_unlock(inode->i_mapping);
5962 			return err;
5963 		}
5964 	}
5965 
5966 	percpu_down_write(&sbi->s_writepages_rwsem);
5967 	jbd2_journal_lock_updates(journal);
5968 
5969 	/*
5970 	 * OK, there are no updates running now, and all cached data is
5971 	 * synced to disk.  We are now in a completely consistent state
5972 	 * which doesn't have anything in the journal, and we know that
5973 	 * no filesystem updates are running, so it is safe to modify
5974 	 * the inode's in-core data-journaling state flag now.
5975 	 */
5976 
5977 	if (val)
5978 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5979 	else {
5980 		err = jbd2_journal_flush(journal, 0);
5981 		if (err < 0) {
5982 			jbd2_journal_unlock_updates(journal);
5983 			percpu_up_write(&sbi->s_writepages_rwsem);
5984 			return err;
5985 		}
5986 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5987 	}
5988 	ext4_set_aops(inode);
5989 
5990 	jbd2_journal_unlock_updates(journal);
5991 	percpu_up_write(&sbi->s_writepages_rwsem);
5992 
5993 	if (val)
5994 		filemap_invalidate_unlock(inode->i_mapping);
5995 
5996 	/* Finally we can mark the inode as dirty. */
5997 
5998 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5999 	if (IS_ERR(handle))
6000 		return PTR_ERR(handle);
6001 
6002 	ext4_fc_mark_ineligible(inode->i_sb,
6003 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6004 	err = ext4_mark_inode_dirty(handle, inode);
6005 	ext4_handle_sync(handle);
6006 	ext4_journal_stop(handle);
6007 	ext4_std_error(inode->i_sb, err);
6008 
6009 	return err;
6010 }
6011 
6012 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6013 			    struct buffer_head *bh)
6014 {
6015 	return !buffer_mapped(bh);
6016 }
6017 
6018 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6019 {
6020 	struct vm_area_struct *vma = vmf->vma;
6021 	struct page *page = vmf->page;
6022 	loff_t size;
6023 	unsigned long len;
6024 	int err;
6025 	vm_fault_t ret;
6026 	struct file *file = vma->vm_file;
6027 	struct inode *inode = file_inode(file);
6028 	struct address_space *mapping = inode->i_mapping;
6029 	handle_t *handle;
6030 	get_block_t *get_block;
6031 	int retries = 0;
6032 
6033 	if (unlikely(IS_IMMUTABLE(inode)))
6034 		return VM_FAULT_SIGBUS;
6035 
6036 	sb_start_pagefault(inode->i_sb);
6037 	file_update_time(vma->vm_file);
6038 
6039 	filemap_invalidate_lock_shared(mapping);
6040 
6041 	err = ext4_convert_inline_data(inode);
6042 	if (err)
6043 		goto out_ret;
6044 
6045 	/*
6046 	 * On data journalling we skip straight to the transaction handle:
6047 	 * there's no delalloc; page truncated will be checked later; the
6048 	 * early return w/ all buffers mapped (calculates size/len) can't
6049 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6050 	 */
6051 	if (ext4_should_journal_data(inode))
6052 		goto retry_alloc;
6053 
6054 	/* Delalloc case is easy... */
6055 	if (test_opt(inode->i_sb, DELALLOC) &&
6056 	    !ext4_nonda_switch(inode->i_sb)) {
6057 		do {
6058 			err = block_page_mkwrite(vma, vmf,
6059 						   ext4_da_get_block_prep);
6060 		} while (err == -ENOSPC &&
6061 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6062 		goto out_ret;
6063 	}
6064 
6065 	lock_page(page);
6066 	size = i_size_read(inode);
6067 	/* Page got truncated from under us? */
6068 	if (page->mapping != mapping || page_offset(page) > size) {
6069 		unlock_page(page);
6070 		ret = VM_FAULT_NOPAGE;
6071 		goto out;
6072 	}
6073 
6074 	if (page->index == size >> PAGE_SHIFT)
6075 		len = size & ~PAGE_MASK;
6076 	else
6077 		len = PAGE_SIZE;
6078 	/*
6079 	 * Return if we have all the buffers mapped. This avoids the need to do
6080 	 * journal_start/journal_stop which can block and take a long time
6081 	 *
6082 	 * This cannot be done for data journalling, as we have to add the
6083 	 * inode to the transaction's list to writeprotect pages on commit.
6084 	 */
6085 	if (page_has_buffers(page)) {
6086 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6087 					    0, len, NULL,
6088 					    ext4_bh_unmapped)) {
6089 			/* Wait so that we don't change page under IO */
6090 			wait_for_stable_page(page);
6091 			ret = VM_FAULT_LOCKED;
6092 			goto out;
6093 		}
6094 	}
6095 	unlock_page(page);
6096 	/* OK, we need to fill the hole... */
6097 	if (ext4_should_dioread_nolock(inode))
6098 		get_block = ext4_get_block_unwritten;
6099 	else
6100 		get_block = ext4_get_block;
6101 retry_alloc:
6102 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6103 				    ext4_writepage_trans_blocks(inode));
6104 	if (IS_ERR(handle)) {
6105 		ret = VM_FAULT_SIGBUS;
6106 		goto out;
6107 	}
6108 	/*
6109 	 * Data journalling can't use block_page_mkwrite() because it
6110 	 * will set_buffer_dirty() before do_journal_get_write_access()
6111 	 * thus might hit warning messages for dirty metadata buffers.
6112 	 */
6113 	if (!ext4_should_journal_data(inode)) {
6114 		err = block_page_mkwrite(vma, vmf, get_block);
6115 	} else {
6116 		lock_page(page);
6117 		size = i_size_read(inode);
6118 		/* Page got truncated from under us? */
6119 		if (page->mapping != mapping || page_offset(page) > size) {
6120 			ret = VM_FAULT_NOPAGE;
6121 			goto out_error;
6122 		}
6123 
6124 		if (page->index == size >> PAGE_SHIFT)
6125 			len = size & ~PAGE_MASK;
6126 		else
6127 			len = PAGE_SIZE;
6128 
6129 		err = __block_write_begin(page, 0, len, ext4_get_block);
6130 		if (!err) {
6131 			ret = VM_FAULT_SIGBUS;
6132 			if (ext4_walk_page_buffers(handle, inode,
6133 					page_buffers(page), 0, len, NULL,
6134 					do_journal_get_write_access))
6135 				goto out_error;
6136 			if (ext4_walk_page_buffers(handle, inode,
6137 					page_buffers(page), 0, len, NULL,
6138 					write_end_fn))
6139 				goto out_error;
6140 			if (ext4_jbd2_inode_add_write(handle, inode,
6141 						      page_offset(page), len))
6142 				goto out_error;
6143 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6144 		} else {
6145 			unlock_page(page);
6146 		}
6147 	}
6148 	ext4_journal_stop(handle);
6149 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6150 		goto retry_alloc;
6151 out_ret:
6152 	ret = block_page_mkwrite_return(err);
6153 out:
6154 	filemap_invalidate_unlock_shared(mapping);
6155 	sb_end_pagefault(inode->i_sb);
6156 	return ret;
6157 out_error:
6158 	unlock_page(page);
6159 	ext4_journal_stop(handle);
6160 	goto out;
6161 }
6162