1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 172 int nblocks) 173 { 174 int ret; 175 176 /* 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 178 * moment, get_block can be called only for blocks inside i_size since 179 * page cache has been already dropped and writes are blocked by 180 * i_mutex. So we can safely drop the i_data_sem here. 181 */ 182 BUG_ON(EXT4_JOURNAL(inode) == NULL); 183 jbd_debug(2, "restarting handle %p\n", handle); 184 up_write(&EXT4_I(inode)->i_data_sem); 185 ret = ext4_journal_restart(handle, nblocks); 186 down_write(&EXT4_I(inode)->i_data_sem); 187 ext4_discard_preallocations(inode); 188 189 return ret; 190 } 191 192 /* 193 * Called at the last iput() if i_nlink is zero. 194 */ 195 void ext4_evict_inode(struct inode *inode) 196 { 197 handle_t *handle; 198 int err; 199 int extra_credits = 3; 200 struct ext4_xattr_inode_array *ea_inode_array = NULL; 201 202 trace_ext4_evict_inode(inode); 203 204 if (inode->i_nlink) { 205 /* 206 * When journalling data dirty buffers are tracked only in the 207 * journal. So although mm thinks everything is clean and 208 * ready for reaping the inode might still have some pages to 209 * write in the running transaction or waiting to be 210 * checkpointed. Thus calling jbd2_journal_invalidatepage() 211 * (via truncate_inode_pages()) to discard these buffers can 212 * cause data loss. Also even if we did not discard these 213 * buffers, we would have no way to find them after the inode 214 * is reaped and thus user could see stale data if he tries to 215 * read them before the transaction is checkpointed. So be 216 * careful and force everything to disk here... We use 217 * ei->i_datasync_tid to store the newest transaction 218 * containing inode's data. 219 * 220 * Note that directories do not have this problem because they 221 * don't use page cache. 222 */ 223 if (inode->i_ino != EXT4_JOURNAL_INO && 224 ext4_should_journal_data(inode) && 225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 226 inode->i_data.nrpages) { 227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 229 230 jbd2_complete_transaction(journal, commit_tid); 231 filemap_write_and_wait(&inode->i_data); 232 } 233 truncate_inode_pages_final(&inode->i_data); 234 235 goto no_delete; 236 } 237 238 if (is_bad_inode(inode)) 239 goto no_delete; 240 dquot_initialize(inode); 241 242 if (ext4_should_order_data(inode)) 243 ext4_begin_ordered_truncate(inode, 0); 244 truncate_inode_pages_final(&inode->i_data); 245 246 /* 247 * Protect us against freezing - iput() caller didn't have to have any 248 * protection against it 249 */ 250 sb_start_intwrite(inode->i_sb); 251 252 if (!IS_NOQUOTA(inode)) 253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 254 255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 256 ext4_blocks_for_truncate(inode)+extra_credits); 257 if (IS_ERR(handle)) { 258 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 259 /* 260 * If we're going to skip the normal cleanup, we still need to 261 * make sure that the in-core orphan linked list is properly 262 * cleaned up. 263 */ 264 ext4_orphan_del(NULL, inode); 265 sb_end_intwrite(inode->i_sb); 266 goto no_delete; 267 } 268 269 if (IS_SYNC(inode)) 270 ext4_handle_sync(handle); 271 272 /* 273 * Set inode->i_size to 0 before calling ext4_truncate(). We need 274 * special handling of symlinks here because i_size is used to 275 * determine whether ext4_inode_info->i_data contains symlink data or 276 * block mappings. Setting i_size to 0 will remove its fast symlink 277 * status. Erase i_data so that it becomes a valid empty block map. 278 */ 279 if (ext4_inode_is_fast_symlink(inode)) 280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 281 inode->i_size = 0; 282 err = ext4_mark_inode_dirty(handle, inode); 283 if (err) { 284 ext4_warning(inode->i_sb, 285 "couldn't mark inode dirty (err %d)", err); 286 goto stop_handle; 287 } 288 if (inode->i_blocks) { 289 err = ext4_truncate(inode); 290 if (err) { 291 ext4_error(inode->i_sb, 292 "couldn't truncate inode %lu (err %d)", 293 inode->i_ino, err); 294 goto stop_handle; 295 } 296 } 297 298 /* Remove xattr references. */ 299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 300 extra_credits); 301 if (err) { 302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 303 stop_handle: 304 ext4_journal_stop(handle); 305 ext4_orphan_del(NULL, inode); 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 340 } 341 342 #ifdef CONFIG_QUOTA 343 qsize_t *ext4_get_reserved_space(struct inode *inode) 344 { 345 return &EXT4_I(inode)->i_reserved_quota; 346 } 347 #endif 348 349 /* 350 * Called with i_data_sem down, which is important since we can call 351 * ext4_discard_preallocations() from here. 352 */ 353 void ext4_da_update_reserve_space(struct inode *inode, 354 int used, int quota_claim) 355 { 356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 357 struct ext4_inode_info *ei = EXT4_I(inode); 358 359 spin_lock(&ei->i_block_reservation_lock); 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 361 if (unlikely(used > ei->i_reserved_data_blocks)) { 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 363 "with only %d reserved data blocks", 364 __func__, inode->i_ino, used, 365 ei->i_reserved_data_blocks); 366 WARN_ON(1); 367 used = ei->i_reserved_data_blocks; 368 } 369 370 /* Update per-inode reservations */ 371 ei->i_reserved_data_blocks -= used; 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 373 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 375 376 /* Update quota subsystem for data blocks */ 377 if (quota_claim) 378 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 379 else { 380 /* 381 * We did fallocate with an offset that is already delayed 382 * allocated. So on delayed allocated writeback we should 383 * not re-claim the quota for fallocated blocks. 384 */ 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 386 } 387 388 /* 389 * If we have done all the pending block allocations and if 390 * there aren't any writers on the inode, we can discard the 391 * inode's preallocations. 392 */ 393 if ((ei->i_reserved_data_blocks == 0) && 394 !inode_is_open_for_write(inode)) 395 ext4_discard_preallocations(inode); 396 } 397 398 static int __check_block_validity(struct inode *inode, const char *func, 399 unsigned int line, 400 struct ext4_map_blocks *map) 401 { 402 if (ext4_has_feature_journal(inode->i_sb) && 403 (inode->i_ino == 404 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 405 return 0; 406 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 407 map->m_len)) { 408 ext4_error_inode(inode, func, line, map->m_pblk, 409 "lblock %lu mapped to illegal pblock %llu " 410 "(length %d)", (unsigned long) map->m_lblk, 411 map->m_pblk, map->m_len); 412 return -EFSCORRUPTED; 413 } 414 return 0; 415 } 416 417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 418 ext4_lblk_t len) 419 { 420 int ret; 421 422 if (IS_ENCRYPTED(inode)) 423 return fscrypt_zeroout_range(inode, lblk, pblk, len); 424 425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 426 if (ret > 0) 427 ret = 0; 428 429 return ret; 430 } 431 432 #define check_block_validity(inode, map) \ 433 __check_block_validity((inode), __func__, __LINE__, (map)) 434 435 #ifdef ES_AGGRESSIVE_TEST 436 static void ext4_map_blocks_es_recheck(handle_t *handle, 437 struct inode *inode, 438 struct ext4_map_blocks *es_map, 439 struct ext4_map_blocks *map, 440 int flags) 441 { 442 int retval; 443 444 map->m_flags = 0; 445 /* 446 * There is a race window that the result is not the same. 447 * e.g. xfstests #223 when dioread_nolock enables. The reason 448 * is that we lookup a block mapping in extent status tree with 449 * out taking i_data_sem. So at the time the unwritten extent 450 * could be converted. 451 */ 452 down_read(&EXT4_I(inode)->i_data_sem); 453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 454 retval = ext4_ext_map_blocks(handle, inode, map, flags & 455 EXT4_GET_BLOCKS_KEEP_SIZE); 456 } else { 457 retval = ext4_ind_map_blocks(handle, inode, map, flags & 458 EXT4_GET_BLOCKS_KEEP_SIZE); 459 } 460 up_read((&EXT4_I(inode)->i_data_sem)); 461 462 /* 463 * We don't check m_len because extent will be collpased in status 464 * tree. So the m_len might not equal. 465 */ 466 if (es_map->m_lblk != map->m_lblk || 467 es_map->m_flags != map->m_flags || 468 es_map->m_pblk != map->m_pblk) { 469 printk("ES cache assertion failed for inode: %lu " 470 "es_cached ex [%d/%d/%llu/%x] != " 471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 472 inode->i_ino, es_map->m_lblk, es_map->m_len, 473 es_map->m_pblk, es_map->m_flags, map->m_lblk, 474 map->m_len, map->m_pblk, map->m_flags, 475 retval, flags); 476 } 477 } 478 #endif /* ES_AGGRESSIVE_TEST */ 479 480 /* 481 * The ext4_map_blocks() function tries to look up the requested blocks, 482 * and returns if the blocks are already mapped. 483 * 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 485 * and store the allocated blocks in the result buffer head and mark it 486 * mapped. 487 * 488 * If file type is extents based, it will call ext4_ext_map_blocks(), 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 490 * based files 491 * 492 * On success, it returns the number of blocks being mapped or allocated. if 493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 494 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, @map is returned as unmapped but we still do fill map->m_len to 498 * indicate the length of a hole starting at map->m_lblk. 499 * 500 * It returns the error in case of allocation failure. 501 */ 502 int ext4_map_blocks(handle_t *handle, struct inode *inode, 503 struct ext4_map_blocks *map, int flags) 504 { 505 struct extent_status es; 506 int retval; 507 int ret = 0; 508 #ifdef ES_AGGRESSIVE_TEST 509 struct ext4_map_blocks orig_map; 510 511 memcpy(&orig_map, map, sizeof(*map)); 512 #endif 513 514 map->m_flags = 0; 515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 516 "logical block %lu\n", inode->i_ino, flags, map->m_len, 517 (unsigned long) map->m_lblk); 518 519 /* 520 * ext4_map_blocks returns an int, and m_len is an unsigned int 521 */ 522 if (unlikely(map->m_len > INT_MAX)) 523 map->m_len = INT_MAX; 524 525 /* We can handle the block number less than EXT_MAX_BLOCKS */ 526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 527 return -EFSCORRUPTED; 528 529 /* Lookup extent status tree firstly */ 530 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 532 map->m_pblk = ext4_es_pblock(&es) + 533 map->m_lblk - es.es_lblk; 534 map->m_flags |= ext4_es_is_written(&es) ? 535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 536 retval = es.es_len - (map->m_lblk - es.es_lblk); 537 if (retval > map->m_len) 538 retval = map->m_len; 539 map->m_len = retval; 540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 541 map->m_pblk = 0; 542 retval = es.es_len - (map->m_lblk - es.es_lblk); 543 if (retval > map->m_len) 544 retval = map->m_len; 545 map->m_len = retval; 546 retval = 0; 547 } else { 548 BUG(); 549 } 550 #ifdef ES_AGGRESSIVE_TEST 551 ext4_map_blocks_es_recheck(handle, inode, map, 552 &orig_map, flags); 553 #endif 554 goto found; 555 } 556 557 /* 558 * Try to see if we can get the block without requesting a new 559 * file system block. 560 */ 561 down_read(&EXT4_I(inode)->i_data_sem); 562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 563 retval = ext4_ext_map_blocks(handle, inode, map, flags & 564 EXT4_GET_BLOCKS_KEEP_SIZE); 565 } else { 566 retval = ext4_ind_map_blocks(handle, inode, map, flags & 567 EXT4_GET_BLOCKS_KEEP_SIZE); 568 } 569 if (retval > 0) { 570 unsigned int status; 571 572 if (unlikely(retval != map->m_len)) { 573 ext4_warning(inode->i_sb, 574 "ES len assertion failed for inode " 575 "%lu: retval %d != map->m_len %d", 576 inode->i_ino, retval, map->m_len); 577 WARN_ON(1); 578 } 579 580 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 581 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 582 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 583 !(status & EXTENT_STATUS_WRITTEN) && 584 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 585 map->m_lblk + map->m_len - 1)) 586 status |= EXTENT_STATUS_DELAYED; 587 ret = ext4_es_insert_extent(inode, map->m_lblk, 588 map->m_len, map->m_pblk, status); 589 if (ret < 0) 590 retval = ret; 591 } 592 up_read((&EXT4_I(inode)->i_data_sem)); 593 594 found: 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 596 ret = check_block_validity(inode, map); 597 if (ret != 0) 598 return ret; 599 } 600 601 /* If it is only a block(s) look up */ 602 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 603 return retval; 604 605 /* 606 * Returns if the blocks have already allocated 607 * 608 * Note that if blocks have been preallocated 609 * ext4_ext_get_block() returns the create = 0 610 * with buffer head unmapped. 611 */ 612 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 613 /* 614 * If we need to convert extent to unwritten 615 * we continue and do the actual work in 616 * ext4_ext_map_blocks() 617 */ 618 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 619 return retval; 620 621 /* 622 * Here we clear m_flags because after allocating an new extent, 623 * it will be set again. 624 */ 625 map->m_flags &= ~EXT4_MAP_FLAGS; 626 627 /* 628 * New blocks allocate and/or writing to unwritten extent 629 * will possibly result in updating i_data, so we take 630 * the write lock of i_data_sem, and call get_block() 631 * with create == 1 flag. 632 */ 633 down_write(&EXT4_I(inode)->i_data_sem); 634 635 /* 636 * We need to check for EXT4 here because migrate 637 * could have changed the inode type in between 638 */ 639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 640 retval = ext4_ext_map_blocks(handle, inode, map, flags); 641 } else { 642 retval = ext4_ind_map_blocks(handle, inode, map, flags); 643 644 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 645 /* 646 * We allocated new blocks which will result in 647 * i_data's format changing. Force the migrate 648 * to fail by clearing migrate flags 649 */ 650 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 651 } 652 653 /* 654 * Update reserved blocks/metadata blocks after successful 655 * block allocation which had been deferred till now. We don't 656 * support fallocate for non extent files. So we can update 657 * reserve space here. 658 */ 659 if ((retval > 0) && 660 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 661 ext4_da_update_reserve_space(inode, retval, 1); 662 } 663 664 if (retval > 0) { 665 unsigned int status; 666 667 if (unlikely(retval != map->m_len)) { 668 ext4_warning(inode->i_sb, 669 "ES len assertion failed for inode " 670 "%lu: retval %d != map->m_len %d", 671 inode->i_ino, retval, map->m_len); 672 WARN_ON(1); 673 } 674 675 /* 676 * We have to zeroout blocks before inserting them into extent 677 * status tree. Otherwise someone could look them up there and 678 * use them before they are really zeroed. We also have to 679 * unmap metadata before zeroing as otherwise writeback can 680 * overwrite zeros with stale data from block device. 681 */ 682 if (flags & EXT4_GET_BLOCKS_ZERO && 683 map->m_flags & EXT4_MAP_MAPPED && 684 map->m_flags & EXT4_MAP_NEW) { 685 ret = ext4_issue_zeroout(inode, map->m_lblk, 686 map->m_pblk, map->m_len); 687 if (ret) { 688 retval = ret; 689 goto out_sem; 690 } 691 } 692 693 /* 694 * If the extent has been zeroed out, we don't need to update 695 * extent status tree. 696 */ 697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 698 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 699 if (ext4_es_is_written(&es)) 700 goto out_sem; 701 } 702 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 705 !(status & EXTENT_STATUS_WRITTEN) && 706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 707 map->m_lblk + map->m_len - 1)) 708 status |= EXTENT_STATUS_DELAYED; 709 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 710 map->m_pblk, status); 711 if (ret < 0) { 712 retval = ret; 713 goto out_sem; 714 } 715 } 716 717 out_sem: 718 up_write((&EXT4_I(inode)->i_data_sem)); 719 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 720 ret = check_block_validity(inode, map); 721 if (ret != 0) 722 return ret; 723 724 /* 725 * Inodes with freshly allocated blocks where contents will be 726 * visible after transaction commit must be on transaction's 727 * ordered data list. 728 */ 729 if (map->m_flags & EXT4_MAP_NEW && 730 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 731 !(flags & EXT4_GET_BLOCKS_ZERO) && 732 !ext4_is_quota_file(inode) && 733 ext4_should_order_data(inode)) { 734 loff_t start_byte = 735 (loff_t)map->m_lblk << inode->i_blkbits; 736 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 737 738 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 739 ret = ext4_jbd2_inode_add_wait(handle, inode, 740 start_byte, length); 741 else 742 ret = ext4_jbd2_inode_add_write(handle, inode, 743 start_byte, length); 744 if (ret) 745 return ret; 746 } 747 } 748 return retval; 749 } 750 751 /* 752 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 753 * we have to be careful as someone else may be manipulating b_state as well. 754 */ 755 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 756 { 757 unsigned long old_state; 758 unsigned long new_state; 759 760 flags &= EXT4_MAP_FLAGS; 761 762 /* Dummy buffer_head? Set non-atomically. */ 763 if (!bh->b_page) { 764 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 765 return; 766 } 767 /* 768 * Someone else may be modifying b_state. Be careful! This is ugly but 769 * once we get rid of using bh as a container for mapping information 770 * to pass to / from get_block functions, this can go away. 771 */ 772 do { 773 old_state = READ_ONCE(bh->b_state); 774 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 775 } while (unlikely( 776 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 777 } 778 779 static int _ext4_get_block(struct inode *inode, sector_t iblock, 780 struct buffer_head *bh, int flags) 781 { 782 struct ext4_map_blocks map; 783 int ret = 0; 784 785 if (ext4_has_inline_data(inode)) 786 return -ERANGE; 787 788 map.m_lblk = iblock; 789 map.m_len = bh->b_size >> inode->i_blkbits; 790 791 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 792 flags); 793 if (ret > 0) { 794 map_bh(bh, inode->i_sb, map.m_pblk); 795 ext4_update_bh_state(bh, map.m_flags); 796 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 797 ret = 0; 798 } else if (ret == 0) { 799 /* hole case, need to fill in bh->b_size */ 800 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 801 } 802 return ret; 803 } 804 805 int ext4_get_block(struct inode *inode, sector_t iblock, 806 struct buffer_head *bh, int create) 807 { 808 return _ext4_get_block(inode, iblock, bh, 809 create ? EXT4_GET_BLOCKS_CREATE : 0); 810 } 811 812 /* 813 * Get block function used when preparing for buffered write if we require 814 * creating an unwritten extent if blocks haven't been allocated. The extent 815 * will be converted to written after the IO is complete. 816 */ 817 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 818 struct buffer_head *bh_result, int create) 819 { 820 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 821 inode->i_ino, create); 822 return _ext4_get_block(inode, iblock, bh_result, 823 EXT4_GET_BLOCKS_IO_CREATE_EXT); 824 } 825 826 /* Maximum number of blocks we map for direct IO at once. */ 827 #define DIO_MAX_BLOCKS 4096 828 829 /* 830 * Get blocks function for the cases that need to start a transaction - 831 * generally difference cases of direct IO and DAX IO. It also handles retries 832 * in case of ENOSPC. 833 */ 834 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 835 struct buffer_head *bh_result, int flags) 836 { 837 int dio_credits; 838 handle_t *handle; 839 int retries = 0; 840 int ret; 841 842 /* Trim mapping request to maximum we can map at once for DIO */ 843 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 844 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 845 dio_credits = ext4_chunk_trans_blocks(inode, 846 bh_result->b_size >> inode->i_blkbits); 847 retry: 848 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 849 if (IS_ERR(handle)) 850 return PTR_ERR(handle); 851 852 ret = _ext4_get_block(inode, iblock, bh_result, flags); 853 ext4_journal_stop(handle); 854 855 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 856 goto retry; 857 return ret; 858 } 859 860 /* Get block function for DIO reads and writes to inodes without extents */ 861 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 862 struct buffer_head *bh, int create) 863 { 864 /* We don't expect handle for direct IO */ 865 WARN_ON_ONCE(ext4_journal_current_handle()); 866 867 if (!create) 868 return _ext4_get_block(inode, iblock, bh, 0); 869 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 870 } 871 872 /* 873 * Get block function for AIO DIO writes when we create unwritten extent if 874 * blocks are not allocated yet. The extent will be converted to written 875 * after IO is complete. 876 */ 877 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 878 sector_t iblock, struct buffer_head *bh_result, int create) 879 { 880 int ret; 881 882 /* We don't expect handle for direct IO */ 883 WARN_ON_ONCE(ext4_journal_current_handle()); 884 885 ret = ext4_get_block_trans(inode, iblock, bh_result, 886 EXT4_GET_BLOCKS_IO_CREATE_EXT); 887 888 /* 889 * When doing DIO using unwritten extents, we need io_end to convert 890 * unwritten extents to written on IO completion. We allocate io_end 891 * once we spot unwritten extent and store it in b_private. Generic 892 * DIO code keeps b_private set and furthermore passes the value to 893 * our completion callback in 'private' argument. 894 */ 895 if (!ret && buffer_unwritten(bh_result)) { 896 if (!bh_result->b_private) { 897 ext4_io_end_t *io_end; 898 899 io_end = ext4_init_io_end(inode, GFP_KERNEL); 900 if (!io_end) 901 return -ENOMEM; 902 bh_result->b_private = io_end; 903 ext4_set_io_unwritten_flag(inode, io_end); 904 } 905 set_buffer_defer_completion(bh_result); 906 } 907 908 return ret; 909 } 910 911 /* 912 * Get block function for non-AIO DIO writes when we create unwritten extent if 913 * blocks are not allocated yet. The extent will be converted to written 914 * after IO is complete by ext4_direct_IO_write(). 915 */ 916 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 917 sector_t iblock, struct buffer_head *bh_result, int create) 918 { 919 int ret; 920 921 /* We don't expect handle for direct IO */ 922 WARN_ON_ONCE(ext4_journal_current_handle()); 923 924 ret = ext4_get_block_trans(inode, iblock, bh_result, 925 EXT4_GET_BLOCKS_IO_CREATE_EXT); 926 927 /* 928 * Mark inode as having pending DIO writes to unwritten extents. 929 * ext4_direct_IO_write() checks this flag and converts extents to 930 * written. 931 */ 932 if (!ret && buffer_unwritten(bh_result)) 933 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 934 935 return ret; 936 } 937 938 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 939 struct buffer_head *bh_result, int create) 940 { 941 int ret; 942 943 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 944 inode->i_ino, create); 945 /* We don't expect handle for direct IO */ 946 WARN_ON_ONCE(ext4_journal_current_handle()); 947 948 ret = _ext4_get_block(inode, iblock, bh_result, 0); 949 /* 950 * Blocks should have been preallocated! ext4_file_write_iter() checks 951 * that. 952 */ 953 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 954 955 return ret; 956 } 957 958 959 /* 960 * `handle' can be NULL if create is zero 961 */ 962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 963 ext4_lblk_t block, int map_flags) 964 { 965 struct ext4_map_blocks map; 966 struct buffer_head *bh; 967 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 968 int err; 969 970 J_ASSERT(handle != NULL || create == 0); 971 972 map.m_lblk = block; 973 map.m_len = 1; 974 err = ext4_map_blocks(handle, inode, &map, map_flags); 975 976 if (err == 0) 977 return create ? ERR_PTR(-ENOSPC) : NULL; 978 if (err < 0) 979 return ERR_PTR(err); 980 981 bh = sb_getblk(inode->i_sb, map.m_pblk); 982 if (unlikely(!bh)) 983 return ERR_PTR(-ENOMEM); 984 if (map.m_flags & EXT4_MAP_NEW) { 985 J_ASSERT(create != 0); 986 J_ASSERT(handle != NULL); 987 988 /* 989 * Now that we do not always journal data, we should 990 * keep in mind whether this should always journal the 991 * new buffer as metadata. For now, regular file 992 * writes use ext4_get_block instead, so it's not a 993 * problem. 994 */ 995 lock_buffer(bh); 996 BUFFER_TRACE(bh, "call get_create_access"); 997 err = ext4_journal_get_create_access(handle, bh); 998 if (unlikely(err)) { 999 unlock_buffer(bh); 1000 goto errout; 1001 } 1002 if (!buffer_uptodate(bh)) { 1003 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1004 set_buffer_uptodate(bh); 1005 } 1006 unlock_buffer(bh); 1007 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1008 err = ext4_handle_dirty_metadata(handle, inode, bh); 1009 if (unlikely(err)) 1010 goto errout; 1011 } else 1012 BUFFER_TRACE(bh, "not a new buffer"); 1013 return bh; 1014 errout: 1015 brelse(bh); 1016 return ERR_PTR(err); 1017 } 1018 1019 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1020 ext4_lblk_t block, int map_flags) 1021 { 1022 struct buffer_head *bh; 1023 1024 bh = ext4_getblk(handle, inode, block, map_flags); 1025 if (IS_ERR(bh)) 1026 return bh; 1027 if (!bh || ext4_buffer_uptodate(bh)) 1028 return bh; 1029 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1030 wait_on_buffer(bh); 1031 if (buffer_uptodate(bh)) 1032 return bh; 1033 put_bh(bh); 1034 return ERR_PTR(-EIO); 1035 } 1036 1037 /* Read a contiguous batch of blocks. */ 1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1039 bool wait, struct buffer_head **bhs) 1040 { 1041 int i, err; 1042 1043 for (i = 0; i < bh_count; i++) { 1044 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1045 if (IS_ERR(bhs[i])) { 1046 err = PTR_ERR(bhs[i]); 1047 bh_count = i; 1048 goto out_brelse; 1049 } 1050 } 1051 1052 for (i = 0; i < bh_count; i++) 1053 /* Note that NULL bhs[i] is valid because of holes. */ 1054 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 1055 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1056 &bhs[i]); 1057 1058 if (!wait) 1059 return 0; 1060 1061 for (i = 0; i < bh_count; i++) 1062 if (bhs[i]) 1063 wait_on_buffer(bhs[i]); 1064 1065 for (i = 0; i < bh_count; i++) { 1066 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1067 err = -EIO; 1068 goto out_brelse; 1069 } 1070 } 1071 return 0; 1072 1073 out_brelse: 1074 for (i = 0; i < bh_count; i++) { 1075 brelse(bhs[i]); 1076 bhs[i] = NULL; 1077 } 1078 return err; 1079 } 1080 1081 int ext4_walk_page_buffers(handle_t *handle, 1082 struct buffer_head *head, 1083 unsigned from, 1084 unsigned to, 1085 int *partial, 1086 int (*fn)(handle_t *handle, 1087 struct buffer_head *bh)) 1088 { 1089 struct buffer_head *bh; 1090 unsigned block_start, block_end; 1091 unsigned blocksize = head->b_size; 1092 int err, ret = 0; 1093 struct buffer_head *next; 1094 1095 for (bh = head, block_start = 0; 1096 ret == 0 && (bh != head || !block_start); 1097 block_start = block_end, bh = next) { 1098 next = bh->b_this_page; 1099 block_end = block_start + blocksize; 1100 if (block_end <= from || block_start >= to) { 1101 if (partial && !buffer_uptodate(bh)) 1102 *partial = 1; 1103 continue; 1104 } 1105 err = (*fn)(handle, bh); 1106 if (!ret) 1107 ret = err; 1108 } 1109 return ret; 1110 } 1111 1112 /* 1113 * To preserve ordering, it is essential that the hole instantiation and 1114 * the data write be encapsulated in a single transaction. We cannot 1115 * close off a transaction and start a new one between the ext4_get_block() 1116 * and the commit_write(). So doing the jbd2_journal_start at the start of 1117 * prepare_write() is the right place. 1118 * 1119 * Also, this function can nest inside ext4_writepage(). In that case, we 1120 * *know* that ext4_writepage() has generated enough buffer credits to do the 1121 * whole page. So we won't block on the journal in that case, which is good, 1122 * because the caller may be PF_MEMALLOC. 1123 * 1124 * By accident, ext4 can be reentered when a transaction is open via 1125 * quota file writes. If we were to commit the transaction while thus 1126 * reentered, there can be a deadlock - we would be holding a quota 1127 * lock, and the commit would never complete if another thread had a 1128 * transaction open and was blocking on the quota lock - a ranking 1129 * violation. 1130 * 1131 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1132 * will _not_ run commit under these circumstances because handle->h_ref 1133 * is elevated. We'll still have enough credits for the tiny quotafile 1134 * write. 1135 */ 1136 int do_journal_get_write_access(handle_t *handle, 1137 struct buffer_head *bh) 1138 { 1139 int dirty = buffer_dirty(bh); 1140 int ret; 1141 1142 if (!buffer_mapped(bh) || buffer_freed(bh)) 1143 return 0; 1144 /* 1145 * __block_write_begin() could have dirtied some buffers. Clean 1146 * the dirty bit as jbd2_journal_get_write_access() could complain 1147 * otherwise about fs integrity issues. Setting of the dirty bit 1148 * by __block_write_begin() isn't a real problem here as we clear 1149 * the bit before releasing a page lock and thus writeback cannot 1150 * ever write the buffer. 1151 */ 1152 if (dirty) 1153 clear_buffer_dirty(bh); 1154 BUFFER_TRACE(bh, "get write access"); 1155 ret = ext4_journal_get_write_access(handle, bh); 1156 if (!ret && dirty) 1157 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1158 return ret; 1159 } 1160 1161 #ifdef CONFIG_FS_ENCRYPTION 1162 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1163 get_block_t *get_block) 1164 { 1165 unsigned from = pos & (PAGE_SIZE - 1); 1166 unsigned to = from + len; 1167 struct inode *inode = page->mapping->host; 1168 unsigned block_start, block_end; 1169 sector_t block; 1170 int err = 0; 1171 unsigned blocksize = inode->i_sb->s_blocksize; 1172 unsigned bbits; 1173 struct buffer_head *bh, *head, *wait[2]; 1174 int nr_wait = 0; 1175 int i; 1176 1177 BUG_ON(!PageLocked(page)); 1178 BUG_ON(from > PAGE_SIZE); 1179 BUG_ON(to > PAGE_SIZE); 1180 BUG_ON(from > to); 1181 1182 if (!page_has_buffers(page)) 1183 create_empty_buffers(page, blocksize, 0); 1184 head = page_buffers(page); 1185 bbits = ilog2(blocksize); 1186 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1187 1188 for (bh = head, block_start = 0; bh != head || !block_start; 1189 block++, block_start = block_end, bh = bh->b_this_page) { 1190 block_end = block_start + blocksize; 1191 if (block_end <= from || block_start >= to) { 1192 if (PageUptodate(page)) { 1193 if (!buffer_uptodate(bh)) 1194 set_buffer_uptodate(bh); 1195 } 1196 continue; 1197 } 1198 if (buffer_new(bh)) 1199 clear_buffer_new(bh); 1200 if (!buffer_mapped(bh)) { 1201 WARN_ON(bh->b_size != blocksize); 1202 err = get_block(inode, block, bh, 1); 1203 if (err) 1204 break; 1205 if (buffer_new(bh)) { 1206 if (PageUptodate(page)) { 1207 clear_buffer_new(bh); 1208 set_buffer_uptodate(bh); 1209 mark_buffer_dirty(bh); 1210 continue; 1211 } 1212 if (block_end > to || block_start < from) 1213 zero_user_segments(page, to, block_end, 1214 block_start, from); 1215 continue; 1216 } 1217 } 1218 if (PageUptodate(page)) { 1219 if (!buffer_uptodate(bh)) 1220 set_buffer_uptodate(bh); 1221 continue; 1222 } 1223 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1224 !buffer_unwritten(bh) && 1225 (block_start < from || block_end > to)) { 1226 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1227 wait[nr_wait++] = bh; 1228 } 1229 } 1230 /* 1231 * If we issued read requests, let them complete. 1232 */ 1233 for (i = 0; i < nr_wait; i++) { 1234 wait_on_buffer(wait[i]); 1235 if (!buffer_uptodate(wait[i])) 1236 err = -EIO; 1237 } 1238 if (unlikely(err)) { 1239 page_zero_new_buffers(page, from, to); 1240 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) { 1241 for (i = 0; i < nr_wait; i++) { 1242 int err2; 1243 1244 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1245 bh_offset(wait[i])); 1246 if (err2) { 1247 clear_buffer_uptodate(wait[i]); 1248 err = err2; 1249 } 1250 } 1251 } 1252 1253 return err; 1254 } 1255 #endif 1256 1257 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1258 loff_t pos, unsigned len, unsigned flags, 1259 struct page **pagep, void **fsdata) 1260 { 1261 struct inode *inode = mapping->host; 1262 int ret, needed_blocks; 1263 handle_t *handle; 1264 int retries = 0; 1265 struct page *page; 1266 pgoff_t index; 1267 unsigned from, to; 1268 1269 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1270 return -EIO; 1271 1272 trace_ext4_write_begin(inode, pos, len, flags); 1273 /* 1274 * Reserve one block more for addition to orphan list in case 1275 * we allocate blocks but write fails for some reason 1276 */ 1277 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1278 index = pos >> PAGE_SHIFT; 1279 from = pos & (PAGE_SIZE - 1); 1280 to = from + len; 1281 1282 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1283 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1284 flags, pagep); 1285 if (ret < 0) 1286 return ret; 1287 if (ret == 1) 1288 return 0; 1289 } 1290 1291 /* 1292 * grab_cache_page_write_begin() can take a long time if the 1293 * system is thrashing due to memory pressure, or if the page 1294 * is being written back. So grab it first before we start 1295 * the transaction handle. This also allows us to allocate 1296 * the page (if needed) without using GFP_NOFS. 1297 */ 1298 retry_grab: 1299 page = grab_cache_page_write_begin(mapping, index, flags); 1300 if (!page) 1301 return -ENOMEM; 1302 unlock_page(page); 1303 1304 retry_journal: 1305 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1306 if (IS_ERR(handle)) { 1307 put_page(page); 1308 return PTR_ERR(handle); 1309 } 1310 1311 lock_page(page); 1312 if (page->mapping != mapping) { 1313 /* The page got truncated from under us */ 1314 unlock_page(page); 1315 put_page(page); 1316 ext4_journal_stop(handle); 1317 goto retry_grab; 1318 } 1319 /* In case writeback began while the page was unlocked */ 1320 wait_for_stable_page(page); 1321 1322 #ifdef CONFIG_FS_ENCRYPTION 1323 if (ext4_should_dioread_nolock(inode)) 1324 ret = ext4_block_write_begin(page, pos, len, 1325 ext4_get_block_unwritten); 1326 else 1327 ret = ext4_block_write_begin(page, pos, len, 1328 ext4_get_block); 1329 #else 1330 if (ext4_should_dioread_nolock(inode)) 1331 ret = __block_write_begin(page, pos, len, 1332 ext4_get_block_unwritten); 1333 else 1334 ret = __block_write_begin(page, pos, len, ext4_get_block); 1335 #endif 1336 if (!ret && ext4_should_journal_data(inode)) { 1337 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1338 from, to, NULL, 1339 do_journal_get_write_access); 1340 } 1341 1342 if (ret) { 1343 bool extended = (pos + len > inode->i_size) && 1344 !ext4_verity_in_progress(inode); 1345 1346 unlock_page(page); 1347 /* 1348 * __block_write_begin may have instantiated a few blocks 1349 * outside i_size. Trim these off again. Don't need 1350 * i_size_read because we hold i_mutex. 1351 * 1352 * Add inode to orphan list in case we crash before 1353 * truncate finishes 1354 */ 1355 if (extended && ext4_can_truncate(inode)) 1356 ext4_orphan_add(handle, inode); 1357 1358 ext4_journal_stop(handle); 1359 if (extended) { 1360 ext4_truncate_failed_write(inode); 1361 /* 1362 * If truncate failed early the inode might 1363 * still be on the orphan list; we need to 1364 * make sure the inode is removed from the 1365 * orphan list in that case. 1366 */ 1367 if (inode->i_nlink) 1368 ext4_orphan_del(NULL, inode); 1369 } 1370 1371 if (ret == -ENOSPC && 1372 ext4_should_retry_alloc(inode->i_sb, &retries)) 1373 goto retry_journal; 1374 put_page(page); 1375 return ret; 1376 } 1377 *pagep = page; 1378 return ret; 1379 } 1380 1381 /* For write_end() in data=journal mode */ 1382 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1383 { 1384 int ret; 1385 if (!buffer_mapped(bh) || buffer_freed(bh)) 1386 return 0; 1387 set_buffer_uptodate(bh); 1388 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1389 clear_buffer_meta(bh); 1390 clear_buffer_prio(bh); 1391 return ret; 1392 } 1393 1394 /* 1395 * We need to pick up the new inode size which generic_commit_write gave us 1396 * `file' can be NULL - eg, when called from page_symlink(). 1397 * 1398 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1399 * buffers are managed internally. 1400 */ 1401 static int ext4_write_end(struct file *file, 1402 struct address_space *mapping, 1403 loff_t pos, unsigned len, unsigned copied, 1404 struct page *page, void *fsdata) 1405 { 1406 handle_t *handle = ext4_journal_current_handle(); 1407 struct inode *inode = mapping->host; 1408 loff_t old_size = inode->i_size; 1409 int ret = 0, ret2; 1410 int i_size_changed = 0; 1411 int inline_data = ext4_has_inline_data(inode); 1412 bool verity = ext4_verity_in_progress(inode); 1413 1414 trace_ext4_write_end(inode, pos, len, copied); 1415 if (inline_data) { 1416 ret = ext4_write_inline_data_end(inode, pos, len, 1417 copied, page); 1418 if (ret < 0) { 1419 unlock_page(page); 1420 put_page(page); 1421 goto errout; 1422 } 1423 copied = ret; 1424 } else 1425 copied = block_write_end(file, mapping, pos, 1426 len, copied, page, fsdata); 1427 /* 1428 * it's important to update i_size while still holding page lock: 1429 * page writeout could otherwise come in and zero beyond i_size. 1430 * 1431 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1432 * blocks are being written past EOF, so skip the i_size update. 1433 */ 1434 if (!verity) 1435 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1436 unlock_page(page); 1437 put_page(page); 1438 1439 if (old_size < pos && !verity) 1440 pagecache_isize_extended(inode, old_size, pos); 1441 /* 1442 * Don't mark the inode dirty under page lock. First, it unnecessarily 1443 * makes the holding time of page lock longer. Second, it forces lock 1444 * ordering of page lock and transaction start for journaling 1445 * filesystems. 1446 */ 1447 if (i_size_changed || inline_data) 1448 ext4_mark_inode_dirty(handle, inode); 1449 1450 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1451 /* if we have allocated more blocks and copied 1452 * less. We will have blocks allocated outside 1453 * inode->i_size. So truncate them 1454 */ 1455 ext4_orphan_add(handle, inode); 1456 errout: 1457 ret2 = ext4_journal_stop(handle); 1458 if (!ret) 1459 ret = ret2; 1460 1461 if (pos + len > inode->i_size && !verity) { 1462 ext4_truncate_failed_write(inode); 1463 /* 1464 * If truncate failed early the inode might still be 1465 * on the orphan list; we need to make sure the inode 1466 * is removed from the orphan list in that case. 1467 */ 1468 if (inode->i_nlink) 1469 ext4_orphan_del(NULL, inode); 1470 } 1471 1472 return ret ? ret : copied; 1473 } 1474 1475 /* 1476 * This is a private version of page_zero_new_buffers() which doesn't 1477 * set the buffer to be dirty, since in data=journalled mode we need 1478 * to call ext4_handle_dirty_metadata() instead. 1479 */ 1480 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1481 struct page *page, 1482 unsigned from, unsigned to) 1483 { 1484 unsigned int block_start = 0, block_end; 1485 struct buffer_head *head, *bh; 1486 1487 bh = head = page_buffers(page); 1488 do { 1489 block_end = block_start + bh->b_size; 1490 if (buffer_new(bh)) { 1491 if (block_end > from && block_start < to) { 1492 if (!PageUptodate(page)) { 1493 unsigned start, size; 1494 1495 start = max(from, block_start); 1496 size = min(to, block_end) - start; 1497 1498 zero_user(page, start, size); 1499 write_end_fn(handle, bh); 1500 } 1501 clear_buffer_new(bh); 1502 } 1503 } 1504 block_start = block_end; 1505 bh = bh->b_this_page; 1506 } while (bh != head); 1507 } 1508 1509 static int ext4_journalled_write_end(struct file *file, 1510 struct address_space *mapping, 1511 loff_t pos, unsigned len, unsigned copied, 1512 struct page *page, void *fsdata) 1513 { 1514 handle_t *handle = ext4_journal_current_handle(); 1515 struct inode *inode = mapping->host; 1516 loff_t old_size = inode->i_size; 1517 int ret = 0, ret2; 1518 int partial = 0; 1519 unsigned from, to; 1520 int size_changed = 0; 1521 int inline_data = ext4_has_inline_data(inode); 1522 bool verity = ext4_verity_in_progress(inode); 1523 1524 trace_ext4_journalled_write_end(inode, pos, len, copied); 1525 from = pos & (PAGE_SIZE - 1); 1526 to = from + len; 1527 1528 BUG_ON(!ext4_handle_valid(handle)); 1529 1530 if (inline_data) { 1531 ret = ext4_write_inline_data_end(inode, pos, len, 1532 copied, page); 1533 if (ret < 0) { 1534 unlock_page(page); 1535 put_page(page); 1536 goto errout; 1537 } 1538 copied = ret; 1539 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1540 copied = 0; 1541 ext4_journalled_zero_new_buffers(handle, page, from, to); 1542 } else { 1543 if (unlikely(copied < len)) 1544 ext4_journalled_zero_new_buffers(handle, page, 1545 from + copied, to); 1546 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1547 from + copied, &partial, 1548 write_end_fn); 1549 if (!partial) 1550 SetPageUptodate(page); 1551 } 1552 if (!verity) 1553 size_changed = ext4_update_inode_size(inode, pos + copied); 1554 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1555 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1556 unlock_page(page); 1557 put_page(page); 1558 1559 if (old_size < pos && !verity) 1560 pagecache_isize_extended(inode, old_size, pos); 1561 1562 if (size_changed || inline_data) { 1563 ret2 = ext4_mark_inode_dirty(handle, inode); 1564 if (!ret) 1565 ret = ret2; 1566 } 1567 1568 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1569 /* if we have allocated more blocks and copied 1570 * less. We will have blocks allocated outside 1571 * inode->i_size. So truncate them 1572 */ 1573 ext4_orphan_add(handle, inode); 1574 1575 errout: 1576 ret2 = ext4_journal_stop(handle); 1577 if (!ret) 1578 ret = ret2; 1579 if (pos + len > inode->i_size && !verity) { 1580 ext4_truncate_failed_write(inode); 1581 /* 1582 * If truncate failed early the inode might still be 1583 * on the orphan list; we need to make sure the inode 1584 * is removed from the orphan list in that case. 1585 */ 1586 if (inode->i_nlink) 1587 ext4_orphan_del(NULL, inode); 1588 } 1589 1590 return ret ? ret : copied; 1591 } 1592 1593 /* 1594 * Reserve space for a single cluster 1595 */ 1596 static int ext4_da_reserve_space(struct inode *inode) 1597 { 1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1599 struct ext4_inode_info *ei = EXT4_I(inode); 1600 int ret; 1601 1602 /* 1603 * We will charge metadata quota at writeout time; this saves 1604 * us from metadata over-estimation, though we may go over by 1605 * a small amount in the end. Here we just reserve for data. 1606 */ 1607 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1608 if (ret) 1609 return ret; 1610 1611 spin_lock(&ei->i_block_reservation_lock); 1612 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1613 spin_unlock(&ei->i_block_reservation_lock); 1614 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1615 return -ENOSPC; 1616 } 1617 ei->i_reserved_data_blocks++; 1618 trace_ext4_da_reserve_space(inode); 1619 spin_unlock(&ei->i_block_reservation_lock); 1620 1621 return 0; /* success */ 1622 } 1623 1624 void ext4_da_release_space(struct inode *inode, int to_free) 1625 { 1626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1627 struct ext4_inode_info *ei = EXT4_I(inode); 1628 1629 if (!to_free) 1630 return; /* Nothing to release, exit */ 1631 1632 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1633 1634 trace_ext4_da_release_space(inode, to_free); 1635 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1636 /* 1637 * if there aren't enough reserved blocks, then the 1638 * counter is messed up somewhere. Since this 1639 * function is called from invalidate page, it's 1640 * harmless to return without any action. 1641 */ 1642 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1643 "ino %lu, to_free %d with only %d reserved " 1644 "data blocks", inode->i_ino, to_free, 1645 ei->i_reserved_data_blocks); 1646 WARN_ON(1); 1647 to_free = ei->i_reserved_data_blocks; 1648 } 1649 ei->i_reserved_data_blocks -= to_free; 1650 1651 /* update fs dirty data blocks counter */ 1652 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1653 1654 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1655 1656 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1657 } 1658 1659 /* 1660 * Delayed allocation stuff 1661 */ 1662 1663 struct mpage_da_data { 1664 struct inode *inode; 1665 struct writeback_control *wbc; 1666 1667 pgoff_t first_page; /* The first page to write */ 1668 pgoff_t next_page; /* Current page to examine */ 1669 pgoff_t last_page; /* Last page to examine */ 1670 /* 1671 * Extent to map - this can be after first_page because that can be 1672 * fully mapped. We somewhat abuse m_flags to store whether the extent 1673 * is delalloc or unwritten. 1674 */ 1675 struct ext4_map_blocks map; 1676 struct ext4_io_submit io_submit; /* IO submission data */ 1677 unsigned int do_map:1; 1678 }; 1679 1680 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1681 bool invalidate) 1682 { 1683 int nr_pages, i; 1684 pgoff_t index, end; 1685 struct pagevec pvec; 1686 struct inode *inode = mpd->inode; 1687 struct address_space *mapping = inode->i_mapping; 1688 1689 /* This is necessary when next_page == 0. */ 1690 if (mpd->first_page >= mpd->next_page) 1691 return; 1692 1693 index = mpd->first_page; 1694 end = mpd->next_page - 1; 1695 if (invalidate) { 1696 ext4_lblk_t start, last; 1697 start = index << (PAGE_SHIFT - inode->i_blkbits); 1698 last = end << (PAGE_SHIFT - inode->i_blkbits); 1699 ext4_es_remove_extent(inode, start, last - start + 1); 1700 } 1701 1702 pagevec_init(&pvec); 1703 while (index <= end) { 1704 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1705 if (nr_pages == 0) 1706 break; 1707 for (i = 0; i < nr_pages; i++) { 1708 struct page *page = pvec.pages[i]; 1709 1710 BUG_ON(!PageLocked(page)); 1711 BUG_ON(PageWriteback(page)); 1712 if (invalidate) { 1713 if (page_mapped(page)) 1714 clear_page_dirty_for_io(page); 1715 block_invalidatepage(page, 0, PAGE_SIZE); 1716 ClearPageUptodate(page); 1717 } 1718 unlock_page(page); 1719 } 1720 pagevec_release(&pvec); 1721 } 1722 } 1723 1724 static void ext4_print_free_blocks(struct inode *inode) 1725 { 1726 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1727 struct super_block *sb = inode->i_sb; 1728 struct ext4_inode_info *ei = EXT4_I(inode); 1729 1730 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1731 EXT4_C2B(EXT4_SB(inode->i_sb), 1732 ext4_count_free_clusters(sb))); 1733 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1734 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1735 (long long) EXT4_C2B(EXT4_SB(sb), 1736 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1737 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1738 (long long) EXT4_C2B(EXT4_SB(sb), 1739 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1740 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1741 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1742 ei->i_reserved_data_blocks); 1743 return; 1744 } 1745 1746 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1747 { 1748 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1749 } 1750 1751 /* 1752 * ext4_insert_delayed_block - adds a delayed block to the extents status 1753 * tree, incrementing the reserved cluster/block 1754 * count or making a pending reservation 1755 * where needed 1756 * 1757 * @inode - file containing the newly added block 1758 * @lblk - logical block to be added 1759 * 1760 * Returns 0 on success, negative error code on failure. 1761 */ 1762 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1763 { 1764 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1765 int ret; 1766 bool allocated = false; 1767 1768 /* 1769 * If the cluster containing lblk is shared with a delayed, 1770 * written, or unwritten extent in a bigalloc file system, it's 1771 * already been accounted for and does not need to be reserved. 1772 * A pending reservation must be made for the cluster if it's 1773 * shared with a written or unwritten extent and doesn't already 1774 * have one. Written and unwritten extents can be purged from the 1775 * extents status tree if the system is under memory pressure, so 1776 * it's necessary to examine the extent tree if a search of the 1777 * extents status tree doesn't get a match. 1778 */ 1779 if (sbi->s_cluster_ratio == 1) { 1780 ret = ext4_da_reserve_space(inode); 1781 if (ret != 0) /* ENOSPC */ 1782 goto errout; 1783 } else { /* bigalloc */ 1784 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1785 if (!ext4_es_scan_clu(inode, 1786 &ext4_es_is_mapped, lblk)) { 1787 ret = ext4_clu_mapped(inode, 1788 EXT4_B2C(sbi, lblk)); 1789 if (ret < 0) 1790 goto errout; 1791 if (ret == 0) { 1792 ret = ext4_da_reserve_space(inode); 1793 if (ret != 0) /* ENOSPC */ 1794 goto errout; 1795 } else { 1796 allocated = true; 1797 } 1798 } else { 1799 allocated = true; 1800 } 1801 } 1802 } 1803 1804 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1805 1806 errout: 1807 return ret; 1808 } 1809 1810 /* 1811 * This function is grabs code from the very beginning of 1812 * ext4_map_blocks, but assumes that the caller is from delayed write 1813 * time. This function looks up the requested blocks and sets the 1814 * buffer delay bit under the protection of i_data_sem. 1815 */ 1816 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1817 struct ext4_map_blocks *map, 1818 struct buffer_head *bh) 1819 { 1820 struct extent_status es; 1821 int retval; 1822 sector_t invalid_block = ~((sector_t) 0xffff); 1823 #ifdef ES_AGGRESSIVE_TEST 1824 struct ext4_map_blocks orig_map; 1825 1826 memcpy(&orig_map, map, sizeof(*map)); 1827 #endif 1828 1829 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1830 invalid_block = ~0; 1831 1832 map->m_flags = 0; 1833 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1834 "logical block %lu\n", inode->i_ino, map->m_len, 1835 (unsigned long) map->m_lblk); 1836 1837 /* Lookup extent status tree firstly */ 1838 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1839 if (ext4_es_is_hole(&es)) { 1840 retval = 0; 1841 down_read(&EXT4_I(inode)->i_data_sem); 1842 goto add_delayed; 1843 } 1844 1845 /* 1846 * Delayed extent could be allocated by fallocate. 1847 * So we need to check it. 1848 */ 1849 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1850 map_bh(bh, inode->i_sb, invalid_block); 1851 set_buffer_new(bh); 1852 set_buffer_delay(bh); 1853 return 0; 1854 } 1855 1856 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1857 retval = es.es_len - (iblock - es.es_lblk); 1858 if (retval > map->m_len) 1859 retval = map->m_len; 1860 map->m_len = retval; 1861 if (ext4_es_is_written(&es)) 1862 map->m_flags |= EXT4_MAP_MAPPED; 1863 else if (ext4_es_is_unwritten(&es)) 1864 map->m_flags |= EXT4_MAP_UNWRITTEN; 1865 else 1866 BUG(); 1867 1868 #ifdef ES_AGGRESSIVE_TEST 1869 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1870 #endif 1871 return retval; 1872 } 1873 1874 /* 1875 * Try to see if we can get the block without requesting a new 1876 * file system block. 1877 */ 1878 down_read(&EXT4_I(inode)->i_data_sem); 1879 if (ext4_has_inline_data(inode)) 1880 retval = 0; 1881 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1882 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1883 else 1884 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1885 1886 add_delayed: 1887 if (retval == 0) { 1888 int ret; 1889 1890 /* 1891 * XXX: __block_prepare_write() unmaps passed block, 1892 * is it OK? 1893 */ 1894 1895 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1896 if (ret != 0) { 1897 retval = ret; 1898 goto out_unlock; 1899 } 1900 1901 map_bh(bh, inode->i_sb, invalid_block); 1902 set_buffer_new(bh); 1903 set_buffer_delay(bh); 1904 } else if (retval > 0) { 1905 int ret; 1906 unsigned int status; 1907 1908 if (unlikely(retval != map->m_len)) { 1909 ext4_warning(inode->i_sb, 1910 "ES len assertion failed for inode " 1911 "%lu: retval %d != map->m_len %d", 1912 inode->i_ino, retval, map->m_len); 1913 WARN_ON(1); 1914 } 1915 1916 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1917 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1918 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1919 map->m_pblk, status); 1920 if (ret != 0) 1921 retval = ret; 1922 } 1923 1924 out_unlock: 1925 up_read((&EXT4_I(inode)->i_data_sem)); 1926 1927 return retval; 1928 } 1929 1930 /* 1931 * This is a special get_block_t callback which is used by 1932 * ext4_da_write_begin(). It will either return mapped block or 1933 * reserve space for a single block. 1934 * 1935 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1936 * We also have b_blocknr = -1 and b_bdev initialized properly 1937 * 1938 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1939 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1940 * initialized properly. 1941 */ 1942 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1943 struct buffer_head *bh, int create) 1944 { 1945 struct ext4_map_blocks map; 1946 int ret = 0; 1947 1948 BUG_ON(create == 0); 1949 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1950 1951 map.m_lblk = iblock; 1952 map.m_len = 1; 1953 1954 /* 1955 * first, we need to know whether the block is allocated already 1956 * preallocated blocks are unmapped but should treated 1957 * the same as allocated blocks. 1958 */ 1959 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1960 if (ret <= 0) 1961 return ret; 1962 1963 map_bh(bh, inode->i_sb, map.m_pblk); 1964 ext4_update_bh_state(bh, map.m_flags); 1965 1966 if (buffer_unwritten(bh)) { 1967 /* A delayed write to unwritten bh should be marked 1968 * new and mapped. Mapped ensures that we don't do 1969 * get_block multiple times when we write to the same 1970 * offset and new ensures that we do proper zero out 1971 * for partial write. 1972 */ 1973 set_buffer_new(bh); 1974 set_buffer_mapped(bh); 1975 } 1976 return 0; 1977 } 1978 1979 static int bget_one(handle_t *handle, struct buffer_head *bh) 1980 { 1981 get_bh(bh); 1982 return 0; 1983 } 1984 1985 static int bput_one(handle_t *handle, struct buffer_head *bh) 1986 { 1987 put_bh(bh); 1988 return 0; 1989 } 1990 1991 static int __ext4_journalled_writepage(struct page *page, 1992 unsigned int len) 1993 { 1994 struct address_space *mapping = page->mapping; 1995 struct inode *inode = mapping->host; 1996 struct buffer_head *page_bufs = NULL; 1997 handle_t *handle = NULL; 1998 int ret = 0, err = 0; 1999 int inline_data = ext4_has_inline_data(inode); 2000 struct buffer_head *inode_bh = NULL; 2001 2002 ClearPageChecked(page); 2003 2004 if (inline_data) { 2005 BUG_ON(page->index != 0); 2006 BUG_ON(len > ext4_get_max_inline_size(inode)); 2007 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2008 if (inode_bh == NULL) 2009 goto out; 2010 } else { 2011 page_bufs = page_buffers(page); 2012 if (!page_bufs) { 2013 BUG(); 2014 goto out; 2015 } 2016 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2017 NULL, bget_one); 2018 } 2019 /* 2020 * We need to release the page lock before we start the 2021 * journal, so grab a reference so the page won't disappear 2022 * out from under us. 2023 */ 2024 get_page(page); 2025 unlock_page(page); 2026 2027 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2028 ext4_writepage_trans_blocks(inode)); 2029 if (IS_ERR(handle)) { 2030 ret = PTR_ERR(handle); 2031 put_page(page); 2032 goto out_no_pagelock; 2033 } 2034 BUG_ON(!ext4_handle_valid(handle)); 2035 2036 lock_page(page); 2037 put_page(page); 2038 if (page->mapping != mapping) { 2039 /* The page got truncated from under us */ 2040 ext4_journal_stop(handle); 2041 ret = 0; 2042 goto out; 2043 } 2044 2045 if (inline_data) { 2046 ret = ext4_mark_inode_dirty(handle, inode); 2047 } else { 2048 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2049 do_journal_get_write_access); 2050 2051 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2052 write_end_fn); 2053 } 2054 if (ret == 0) 2055 ret = err; 2056 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2057 err = ext4_journal_stop(handle); 2058 if (!ret) 2059 ret = err; 2060 2061 if (!ext4_has_inline_data(inode)) 2062 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2063 NULL, bput_one); 2064 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2065 out: 2066 unlock_page(page); 2067 out_no_pagelock: 2068 brelse(inode_bh); 2069 return ret; 2070 } 2071 2072 /* 2073 * Note that we don't need to start a transaction unless we're journaling data 2074 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2075 * need to file the inode to the transaction's list in ordered mode because if 2076 * we are writing back data added by write(), the inode is already there and if 2077 * we are writing back data modified via mmap(), no one guarantees in which 2078 * transaction the data will hit the disk. In case we are journaling data, we 2079 * cannot start transaction directly because transaction start ranks above page 2080 * lock so we have to do some magic. 2081 * 2082 * This function can get called via... 2083 * - ext4_writepages after taking page lock (have journal handle) 2084 * - journal_submit_inode_data_buffers (no journal handle) 2085 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2086 * - grab_page_cache when doing write_begin (have journal handle) 2087 * 2088 * We don't do any block allocation in this function. If we have page with 2089 * multiple blocks we need to write those buffer_heads that are mapped. This 2090 * is important for mmaped based write. So if we do with blocksize 1K 2091 * truncate(f, 1024); 2092 * a = mmap(f, 0, 4096); 2093 * a[0] = 'a'; 2094 * truncate(f, 4096); 2095 * we have in the page first buffer_head mapped via page_mkwrite call back 2096 * but other buffer_heads would be unmapped but dirty (dirty done via the 2097 * do_wp_page). So writepage should write the first block. If we modify 2098 * the mmap area beyond 1024 we will again get a page_fault and the 2099 * page_mkwrite callback will do the block allocation and mark the 2100 * buffer_heads mapped. 2101 * 2102 * We redirty the page if we have any buffer_heads that is either delay or 2103 * unwritten in the page. 2104 * 2105 * We can get recursively called as show below. 2106 * 2107 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2108 * ext4_writepage() 2109 * 2110 * But since we don't do any block allocation we should not deadlock. 2111 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2112 */ 2113 static int ext4_writepage(struct page *page, 2114 struct writeback_control *wbc) 2115 { 2116 int ret = 0; 2117 loff_t size; 2118 unsigned int len; 2119 struct buffer_head *page_bufs = NULL; 2120 struct inode *inode = page->mapping->host; 2121 struct ext4_io_submit io_submit; 2122 bool keep_towrite = false; 2123 2124 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2125 ext4_invalidatepage(page, 0, PAGE_SIZE); 2126 unlock_page(page); 2127 return -EIO; 2128 } 2129 2130 trace_ext4_writepage(page); 2131 size = i_size_read(inode); 2132 if (page->index == size >> PAGE_SHIFT && 2133 !ext4_verity_in_progress(inode)) 2134 len = size & ~PAGE_MASK; 2135 else 2136 len = PAGE_SIZE; 2137 2138 page_bufs = page_buffers(page); 2139 /* 2140 * We cannot do block allocation or other extent handling in this 2141 * function. If there are buffers needing that, we have to redirty 2142 * the page. But we may reach here when we do a journal commit via 2143 * journal_submit_inode_data_buffers() and in that case we must write 2144 * allocated buffers to achieve data=ordered mode guarantees. 2145 * 2146 * Also, if there is only one buffer per page (the fs block 2147 * size == the page size), if one buffer needs block 2148 * allocation or needs to modify the extent tree to clear the 2149 * unwritten flag, we know that the page can't be written at 2150 * all, so we might as well refuse the write immediately. 2151 * Unfortunately if the block size != page size, we can't as 2152 * easily detect this case using ext4_walk_page_buffers(), but 2153 * for the extremely common case, this is an optimization that 2154 * skips a useless round trip through ext4_bio_write_page(). 2155 */ 2156 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2157 ext4_bh_delay_or_unwritten)) { 2158 redirty_page_for_writepage(wbc, page); 2159 if ((current->flags & PF_MEMALLOC) || 2160 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2161 /* 2162 * For memory cleaning there's no point in writing only 2163 * some buffers. So just bail out. Warn if we came here 2164 * from direct reclaim. 2165 */ 2166 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2167 == PF_MEMALLOC); 2168 unlock_page(page); 2169 return 0; 2170 } 2171 keep_towrite = true; 2172 } 2173 2174 if (PageChecked(page) && ext4_should_journal_data(inode)) 2175 /* 2176 * It's mmapped pagecache. Add buffers and journal it. There 2177 * doesn't seem much point in redirtying the page here. 2178 */ 2179 return __ext4_journalled_writepage(page, len); 2180 2181 ext4_io_submit_init(&io_submit, wbc); 2182 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2183 if (!io_submit.io_end) { 2184 redirty_page_for_writepage(wbc, page); 2185 unlock_page(page); 2186 return -ENOMEM; 2187 } 2188 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2189 ext4_io_submit(&io_submit); 2190 /* Drop io_end reference we got from init */ 2191 ext4_put_io_end_defer(io_submit.io_end); 2192 return ret; 2193 } 2194 2195 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2196 { 2197 int len; 2198 loff_t size; 2199 int err; 2200 2201 BUG_ON(page->index != mpd->first_page); 2202 clear_page_dirty_for_io(page); 2203 /* 2204 * We have to be very careful here! Nothing protects writeback path 2205 * against i_size changes and the page can be writeably mapped into 2206 * page tables. So an application can be growing i_size and writing 2207 * data through mmap while writeback runs. clear_page_dirty_for_io() 2208 * write-protects our page in page tables and the page cannot get 2209 * written to again until we release page lock. So only after 2210 * clear_page_dirty_for_io() we are safe to sample i_size for 2211 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2212 * on the barrier provided by TestClearPageDirty in 2213 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2214 * after page tables are updated. 2215 */ 2216 size = i_size_read(mpd->inode); 2217 if (page->index == size >> PAGE_SHIFT && 2218 !ext4_verity_in_progress(mpd->inode)) 2219 len = size & ~PAGE_MASK; 2220 else 2221 len = PAGE_SIZE; 2222 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2223 if (!err) 2224 mpd->wbc->nr_to_write--; 2225 mpd->first_page++; 2226 2227 return err; 2228 } 2229 2230 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2231 2232 /* 2233 * mballoc gives us at most this number of blocks... 2234 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2235 * The rest of mballoc seems to handle chunks up to full group size. 2236 */ 2237 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2238 2239 /* 2240 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2241 * 2242 * @mpd - extent of blocks 2243 * @lblk - logical number of the block in the file 2244 * @bh - buffer head we want to add to the extent 2245 * 2246 * The function is used to collect contig. blocks in the same state. If the 2247 * buffer doesn't require mapping for writeback and we haven't started the 2248 * extent of buffers to map yet, the function returns 'true' immediately - the 2249 * caller can write the buffer right away. Otherwise the function returns true 2250 * if the block has been added to the extent, false if the block couldn't be 2251 * added. 2252 */ 2253 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2254 struct buffer_head *bh) 2255 { 2256 struct ext4_map_blocks *map = &mpd->map; 2257 2258 /* Buffer that doesn't need mapping for writeback? */ 2259 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2260 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2261 /* So far no extent to map => we write the buffer right away */ 2262 if (map->m_len == 0) 2263 return true; 2264 return false; 2265 } 2266 2267 /* First block in the extent? */ 2268 if (map->m_len == 0) { 2269 /* We cannot map unless handle is started... */ 2270 if (!mpd->do_map) 2271 return false; 2272 map->m_lblk = lblk; 2273 map->m_len = 1; 2274 map->m_flags = bh->b_state & BH_FLAGS; 2275 return true; 2276 } 2277 2278 /* Don't go larger than mballoc is willing to allocate */ 2279 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2280 return false; 2281 2282 /* Can we merge the block to our big extent? */ 2283 if (lblk == map->m_lblk + map->m_len && 2284 (bh->b_state & BH_FLAGS) == map->m_flags) { 2285 map->m_len++; 2286 return true; 2287 } 2288 return false; 2289 } 2290 2291 /* 2292 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2293 * 2294 * @mpd - extent of blocks for mapping 2295 * @head - the first buffer in the page 2296 * @bh - buffer we should start processing from 2297 * @lblk - logical number of the block in the file corresponding to @bh 2298 * 2299 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2300 * the page for IO if all buffers in this page were mapped and there's no 2301 * accumulated extent of buffers to map or add buffers in the page to the 2302 * extent of buffers to map. The function returns 1 if the caller can continue 2303 * by processing the next page, 0 if it should stop adding buffers to the 2304 * extent to map because we cannot extend it anymore. It can also return value 2305 * < 0 in case of error during IO submission. 2306 */ 2307 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2308 struct buffer_head *head, 2309 struct buffer_head *bh, 2310 ext4_lblk_t lblk) 2311 { 2312 struct inode *inode = mpd->inode; 2313 int err; 2314 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2315 >> inode->i_blkbits; 2316 2317 if (ext4_verity_in_progress(inode)) 2318 blocks = EXT_MAX_BLOCKS; 2319 2320 do { 2321 BUG_ON(buffer_locked(bh)); 2322 2323 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2324 /* Found extent to map? */ 2325 if (mpd->map.m_len) 2326 return 0; 2327 /* Buffer needs mapping and handle is not started? */ 2328 if (!mpd->do_map) 2329 return 0; 2330 /* Everything mapped so far and we hit EOF */ 2331 break; 2332 } 2333 } while (lblk++, (bh = bh->b_this_page) != head); 2334 /* So far everything mapped? Submit the page for IO. */ 2335 if (mpd->map.m_len == 0) { 2336 err = mpage_submit_page(mpd, head->b_page); 2337 if (err < 0) 2338 return err; 2339 } 2340 return lblk < blocks; 2341 } 2342 2343 /* 2344 * mpage_map_buffers - update buffers corresponding to changed extent and 2345 * submit fully mapped pages for IO 2346 * 2347 * @mpd - description of extent to map, on return next extent to map 2348 * 2349 * Scan buffers corresponding to changed extent (we expect corresponding pages 2350 * to be already locked) and update buffer state according to new extent state. 2351 * We map delalloc buffers to their physical location, clear unwritten bits, 2352 * and mark buffers as uninit when we perform writes to unwritten extents 2353 * and do extent conversion after IO is finished. If the last page is not fully 2354 * mapped, we update @map to the next extent in the last page that needs 2355 * mapping. Otherwise we submit the page for IO. 2356 */ 2357 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2358 { 2359 struct pagevec pvec; 2360 int nr_pages, i; 2361 struct inode *inode = mpd->inode; 2362 struct buffer_head *head, *bh; 2363 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2364 pgoff_t start, end; 2365 ext4_lblk_t lblk; 2366 sector_t pblock; 2367 int err; 2368 2369 start = mpd->map.m_lblk >> bpp_bits; 2370 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2371 lblk = start << bpp_bits; 2372 pblock = mpd->map.m_pblk; 2373 2374 pagevec_init(&pvec); 2375 while (start <= end) { 2376 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2377 &start, end); 2378 if (nr_pages == 0) 2379 break; 2380 for (i = 0; i < nr_pages; i++) { 2381 struct page *page = pvec.pages[i]; 2382 2383 bh = head = page_buffers(page); 2384 do { 2385 if (lblk < mpd->map.m_lblk) 2386 continue; 2387 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2388 /* 2389 * Buffer after end of mapped extent. 2390 * Find next buffer in the page to map. 2391 */ 2392 mpd->map.m_len = 0; 2393 mpd->map.m_flags = 0; 2394 /* 2395 * FIXME: If dioread_nolock supports 2396 * blocksize < pagesize, we need to make 2397 * sure we add size mapped so far to 2398 * io_end->size as the following call 2399 * can submit the page for IO. 2400 */ 2401 err = mpage_process_page_bufs(mpd, head, 2402 bh, lblk); 2403 pagevec_release(&pvec); 2404 if (err > 0) 2405 err = 0; 2406 return err; 2407 } 2408 if (buffer_delay(bh)) { 2409 clear_buffer_delay(bh); 2410 bh->b_blocknr = pblock++; 2411 } 2412 clear_buffer_unwritten(bh); 2413 } while (lblk++, (bh = bh->b_this_page) != head); 2414 2415 /* 2416 * FIXME: This is going to break if dioread_nolock 2417 * supports blocksize < pagesize as we will try to 2418 * convert potentially unmapped parts of inode. 2419 */ 2420 mpd->io_submit.io_end->size += PAGE_SIZE; 2421 /* Page fully mapped - let IO run! */ 2422 err = mpage_submit_page(mpd, page); 2423 if (err < 0) { 2424 pagevec_release(&pvec); 2425 return err; 2426 } 2427 } 2428 pagevec_release(&pvec); 2429 } 2430 /* Extent fully mapped and matches with page boundary. We are done. */ 2431 mpd->map.m_len = 0; 2432 mpd->map.m_flags = 0; 2433 return 0; 2434 } 2435 2436 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2437 { 2438 struct inode *inode = mpd->inode; 2439 struct ext4_map_blocks *map = &mpd->map; 2440 int get_blocks_flags; 2441 int err, dioread_nolock; 2442 2443 trace_ext4_da_write_pages_extent(inode, map); 2444 /* 2445 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2446 * to convert an unwritten extent to be initialized (in the case 2447 * where we have written into one or more preallocated blocks). It is 2448 * possible that we're going to need more metadata blocks than 2449 * previously reserved. However we must not fail because we're in 2450 * writeback and there is nothing we can do about it so it might result 2451 * in data loss. So use reserved blocks to allocate metadata if 2452 * possible. 2453 * 2454 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2455 * the blocks in question are delalloc blocks. This indicates 2456 * that the blocks and quotas has already been checked when 2457 * the data was copied into the page cache. 2458 */ 2459 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2460 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2461 EXT4_GET_BLOCKS_IO_SUBMIT; 2462 dioread_nolock = ext4_should_dioread_nolock(inode); 2463 if (dioread_nolock) 2464 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2465 if (map->m_flags & (1 << BH_Delay)) 2466 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2467 2468 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2469 if (err < 0) 2470 return err; 2471 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2472 if (!mpd->io_submit.io_end->handle && 2473 ext4_handle_valid(handle)) { 2474 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2475 handle->h_rsv_handle = NULL; 2476 } 2477 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2478 } 2479 2480 BUG_ON(map->m_len == 0); 2481 return 0; 2482 } 2483 2484 /* 2485 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2486 * mpd->len and submit pages underlying it for IO 2487 * 2488 * @handle - handle for journal operations 2489 * @mpd - extent to map 2490 * @give_up_on_write - we set this to true iff there is a fatal error and there 2491 * is no hope of writing the data. The caller should discard 2492 * dirty pages to avoid infinite loops. 2493 * 2494 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2495 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2496 * them to initialized or split the described range from larger unwritten 2497 * extent. Note that we need not map all the described range since allocation 2498 * can return less blocks or the range is covered by more unwritten extents. We 2499 * cannot map more because we are limited by reserved transaction credits. On 2500 * the other hand we always make sure that the last touched page is fully 2501 * mapped so that it can be written out (and thus forward progress is 2502 * guaranteed). After mapping we submit all mapped pages for IO. 2503 */ 2504 static int mpage_map_and_submit_extent(handle_t *handle, 2505 struct mpage_da_data *mpd, 2506 bool *give_up_on_write) 2507 { 2508 struct inode *inode = mpd->inode; 2509 struct ext4_map_blocks *map = &mpd->map; 2510 int err; 2511 loff_t disksize; 2512 int progress = 0; 2513 2514 mpd->io_submit.io_end->offset = 2515 ((loff_t)map->m_lblk) << inode->i_blkbits; 2516 do { 2517 err = mpage_map_one_extent(handle, mpd); 2518 if (err < 0) { 2519 struct super_block *sb = inode->i_sb; 2520 2521 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2522 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2523 goto invalidate_dirty_pages; 2524 /* 2525 * Let the uper layers retry transient errors. 2526 * In the case of ENOSPC, if ext4_count_free_blocks() 2527 * is non-zero, a commit should free up blocks. 2528 */ 2529 if ((err == -ENOMEM) || 2530 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2531 if (progress) 2532 goto update_disksize; 2533 return err; 2534 } 2535 ext4_msg(sb, KERN_CRIT, 2536 "Delayed block allocation failed for " 2537 "inode %lu at logical offset %llu with" 2538 " max blocks %u with error %d", 2539 inode->i_ino, 2540 (unsigned long long)map->m_lblk, 2541 (unsigned)map->m_len, -err); 2542 ext4_msg(sb, KERN_CRIT, 2543 "This should not happen!! Data will " 2544 "be lost\n"); 2545 if (err == -ENOSPC) 2546 ext4_print_free_blocks(inode); 2547 invalidate_dirty_pages: 2548 *give_up_on_write = true; 2549 return err; 2550 } 2551 progress = 1; 2552 /* 2553 * Update buffer state, submit mapped pages, and get us new 2554 * extent to map 2555 */ 2556 err = mpage_map_and_submit_buffers(mpd); 2557 if (err < 0) 2558 goto update_disksize; 2559 } while (map->m_len); 2560 2561 update_disksize: 2562 /* 2563 * Update on-disk size after IO is submitted. Races with 2564 * truncate are avoided by checking i_size under i_data_sem. 2565 */ 2566 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2567 if (disksize > EXT4_I(inode)->i_disksize) { 2568 int err2; 2569 loff_t i_size; 2570 2571 down_write(&EXT4_I(inode)->i_data_sem); 2572 i_size = i_size_read(inode); 2573 if (disksize > i_size) 2574 disksize = i_size; 2575 if (disksize > EXT4_I(inode)->i_disksize) 2576 EXT4_I(inode)->i_disksize = disksize; 2577 up_write(&EXT4_I(inode)->i_data_sem); 2578 err2 = ext4_mark_inode_dirty(handle, inode); 2579 if (err2) 2580 ext4_error(inode->i_sb, 2581 "Failed to mark inode %lu dirty", 2582 inode->i_ino); 2583 if (!err) 2584 err = err2; 2585 } 2586 return err; 2587 } 2588 2589 /* 2590 * Calculate the total number of credits to reserve for one writepages 2591 * iteration. This is called from ext4_writepages(). We map an extent of 2592 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2593 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2594 * bpp - 1 blocks in bpp different extents. 2595 */ 2596 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2597 { 2598 int bpp = ext4_journal_blocks_per_page(inode); 2599 2600 return ext4_meta_trans_blocks(inode, 2601 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2602 } 2603 2604 /* 2605 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2606 * and underlying extent to map 2607 * 2608 * @mpd - where to look for pages 2609 * 2610 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2611 * IO immediately. When we find a page which isn't mapped we start accumulating 2612 * extent of buffers underlying these pages that needs mapping (formed by 2613 * either delayed or unwritten buffers). We also lock the pages containing 2614 * these buffers. The extent found is returned in @mpd structure (starting at 2615 * mpd->lblk with length mpd->len blocks). 2616 * 2617 * Note that this function can attach bios to one io_end structure which are 2618 * neither logically nor physically contiguous. Although it may seem as an 2619 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2620 * case as we need to track IO to all buffers underlying a page in one io_end. 2621 */ 2622 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2623 { 2624 struct address_space *mapping = mpd->inode->i_mapping; 2625 struct pagevec pvec; 2626 unsigned int nr_pages; 2627 long left = mpd->wbc->nr_to_write; 2628 pgoff_t index = mpd->first_page; 2629 pgoff_t end = mpd->last_page; 2630 xa_mark_t tag; 2631 int i, err = 0; 2632 int blkbits = mpd->inode->i_blkbits; 2633 ext4_lblk_t lblk; 2634 struct buffer_head *head; 2635 2636 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2637 tag = PAGECACHE_TAG_TOWRITE; 2638 else 2639 tag = PAGECACHE_TAG_DIRTY; 2640 2641 pagevec_init(&pvec); 2642 mpd->map.m_len = 0; 2643 mpd->next_page = index; 2644 while (index <= end) { 2645 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2646 tag); 2647 if (nr_pages == 0) 2648 goto out; 2649 2650 for (i = 0; i < nr_pages; i++) { 2651 struct page *page = pvec.pages[i]; 2652 2653 /* 2654 * Accumulated enough dirty pages? This doesn't apply 2655 * to WB_SYNC_ALL mode. For integrity sync we have to 2656 * keep going because someone may be concurrently 2657 * dirtying pages, and we might have synced a lot of 2658 * newly appeared dirty pages, but have not synced all 2659 * of the old dirty pages. 2660 */ 2661 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2662 goto out; 2663 2664 /* If we can't merge this page, we are done. */ 2665 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2666 goto out; 2667 2668 lock_page(page); 2669 /* 2670 * If the page is no longer dirty, or its mapping no 2671 * longer corresponds to inode we are writing (which 2672 * means it has been truncated or invalidated), or the 2673 * page is already under writeback and we are not doing 2674 * a data integrity writeback, skip the page 2675 */ 2676 if (!PageDirty(page) || 2677 (PageWriteback(page) && 2678 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2679 unlikely(page->mapping != mapping)) { 2680 unlock_page(page); 2681 continue; 2682 } 2683 2684 wait_on_page_writeback(page); 2685 BUG_ON(PageWriteback(page)); 2686 2687 if (mpd->map.m_len == 0) 2688 mpd->first_page = page->index; 2689 mpd->next_page = page->index + 1; 2690 /* Add all dirty buffers to mpd */ 2691 lblk = ((ext4_lblk_t)page->index) << 2692 (PAGE_SHIFT - blkbits); 2693 head = page_buffers(page); 2694 err = mpage_process_page_bufs(mpd, head, head, lblk); 2695 if (err <= 0) 2696 goto out; 2697 err = 0; 2698 left--; 2699 } 2700 pagevec_release(&pvec); 2701 cond_resched(); 2702 } 2703 return 0; 2704 out: 2705 pagevec_release(&pvec); 2706 return err; 2707 } 2708 2709 static int ext4_writepages(struct address_space *mapping, 2710 struct writeback_control *wbc) 2711 { 2712 pgoff_t writeback_index = 0; 2713 long nr_to_write = wbc->nr_to_write; 2714 int range_whole = 0; 2715 int cycled = 1; 2716 handle_t *handle = NULL; 2717 struct mpage_da_data mpd; 2718 struct inode *inode = mapping->host; 2719 int needed_blocks, rsv_blocks = 0, ret = 0; 2720 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2721 bool done; 2722 struct blk_plug plug; 2723 bool give_up_on_write = false; 2724 2725 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2726 return -EIO; 2727 2728 percpu_down_read(&sbi->s_journal_flag_rwsem); 2729 trace_ext4_writepages(inode, wbc); 2730 2731 /* 2732 * No pages to write? This is mainly a kludge to avoid starting 2733 * a transaction for special inodes like journal inode on last iput() 2734 * because that could violate lock ordering on umount 2735 */ 2736 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2737 goto out_writepages; 2738 2739 if (ext4_should_journal_data(inode)) { 2740 ret = generic_writepages(mapping, wbc); 2741 goto out_writepages; 2742 } 2743 2744 /* 2745 * If the filesystem has aborted, it is read-only, so return 2746 * right away instead of dumping stack traces later on that 2747 * will obscure the real source of the problem. We test 2748 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2749 * the latter could be true if the filesystem is mounted 2750 * read-only, and in that case, ext4_writepages should 2751 * *never* be called, so if that ever happens, we would want 2752 * the stack trace. 2753 */ 2754 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2755 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2756 ret = -EROFS; 2757 goto out_writepages; 2758 } 2759 2760 /* 2761 * If we have inline data and arrive here, it means that 2762 * we will soon create the block for the 1st page, so 2763 * we'd better clear the inline data here. 2764 */ 2765 if (ext4_has_inline_data(inode)) { 2766 /* Just inode will be modified... */ 2767 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2768 if (IS_ERR(handle)) { 2769 ret = PTR_ERR(handle); 2770 goto out_writepages; 2771 } 2772 BUG_ON(ext4_test_inode_state(inode, 2773 EXT4_STATE_MAY_INLINE_DATA)); 2774 ext4_destroy_inline_data(handle, inode); 2775 ext4_journal_stop(handle); 2776 } 2777 2778 if (ext4_should_dioread_nolock(inode)) { 2779 /* 2780 * We may need to convert up to one extent per block in 2781 * the page and we may dirty the inode. 2782 */ 2783 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2784 PAGE_SIZE >> inode->i_blkbits); 2785 } 2786 2787 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2788 range_whole = 1; 2789 2790 if (wbc->range_cyclic) { 2791 writeback_index = mapping->writeback_index; 2792 if (writeback_index) 2793 cycled = 0; 2794 mpd.first_page = writeback_index; 2795 mpd.last_page = -1; 2796 } else { 2797 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2798 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2799 } 2800 2801 mpd.inode = inode; 2802 mpd.wbc = wbc; 2803 ext4_io_submit_init(&mpd.io_submit, wbc); 2804 retry: 2805 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2806 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2807 done = false; 2808 blk_start_plug(&plug); 2809 2810 /* 2811 * First writeback pages that don't need mapping - we can avoid 2812 * starting a transaction unnecessarily and also avoid being blocked 2813 * in the block layer on device congestion while having transaction 2814 * started. 2815 */ 2816 mpd.do_map = 0; 2817 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2818 if (!mpd.io_submit.io_end) { 2819 ret = -ENOMEM; 2820 goto unplug; 2821 } 2822 ret = mpage_prepare_extent_to_map(&mpd); 2823 /* Unlock pages we didn't use */ 2824 mpage_release_unused_pages(&mpd, false); 2825 /* Submit prepared bio */ 2826 ext4_io_submit(&mpd.io_submit); 2827 ext4_put_io_end_defer(mpd.io_submit.io_end); 2828 mpd.io_submit.io_end = NULL; 2829 if (ret < 0) 2830 goto unplug; 2831 2832 while (!done && mpd.first_page <= mpd.last_page) { 2833 /* For each extent of pages we use new io_end */ 2834 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2835 if (!mpd.io_submit.io_end) { 2836 ret = -ENOMEM; 2837 break; 2838 } 2839 2840 /* 2841 * We have two constraints: We find one extent to map and we 2842 * must always write out whole page (makes a difference when 2843 * blocksize < pagesize) so that we don't block on IO when we 2844 * try to write out the rest of the page. Journalled mode is 2845 * not supported by delalloc. 2846 */ 2847 BUG_ON(ext4_should_journal_data(inode)); 2848 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2849 2850 /* start a new transaction */ 2851 handle = ext4_journal_start_with_reserve(inode, 2852 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2853 if (IS_ERR(handle)) { 2854 ret = PTR_ERR(handle); 2855 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2856 "%ld pages, ino %lu; err %d", __func__, 2857 wbc->nr_to_write, inode->i_ino, ret); 2858 /* Release allocated io_end */ 2859 ext4_put_io_end(mpd.io_submit.io_end); 2860 mpd.io_submit.io_end = NULL; 2861 break; 2862 } 2863 mpd.do_map = 1; 2864 2865 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2866 ret = mpage_prepare_extent_to_map(&mpd); 2867 if (!ret) { 2868 if (mpd.map.m_len) 2869 ret = mpage_map_and_submit_extent(handle, &mpd, 2870 &give_up_on_write); 2871 else { 2872 /* 2873 * We scanned the whole range (or exhausted 2874 * nr_to_write), submitted what was mapped and 2875 * didn't find anything needing mapping. We are 2876 * done. 2877 */ 2878 done = true; 2879 } 2880 } 2881 /* 2882 * Caution: If the handle is synchronous, 2883 * ext4_journal_stop() can wait for transaction commit 2884 * to finish which may depend on writeback of pages to 2885 * complete or on page lock to be released. In that 2886 * case, we have to wait until after after we have 2887 * submitted all the IO, released page locks we hold, 2888 * and dropped io_end reference (for extent conversion 2889 * to be able to complete) before stopping the handle. 2890 */ 2891 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2892 ext4_journal_stop(handle); 2893 handle = NULL; 2894 mpd.do_map = 0; 2895 } 2896 /* Unlock pages we didn't use */ 2897 mpage_release_unused_pages(&mpd, give_up_on_write); 2898 /* Submit prepared bio */ 2899 ext4_io_submit(&mpd.io_submit); 2900 2901 /* 2902 * Drop our io_end reference we got from init. We have 2903 * to be careful and use deferred io_end finishing if 2904 * we are still holding the transaction as we can 2905 * release the last reference to io_end which may end 2906 * up doing unwritten extent conversion. 2907 */ 2908 if (handle) { 2909 ext4_put_io_end_defer(mpd.io_submit.io_end); 2910 ext4_journal_stop(handle); 2911 } else 2912 ext4_put_io_end(mpd.io_submit.io_end); 2913 mpd.io_submit.io_end = NULL; 2914 2915 if (ret == -ENOSPC && sbi->s_journal) { 2916 /* 2917 * Commit the transaction which would 2918 * free blocks released in the transaction 2919 * and try again 2920 */ 2921 jbd2_journal_force_commit_nested(sbi->s_journal); 2922 ret = 0; 2923 continue; 2924 } 2925 /* Fatal error - ENOMEM, EIO... */ 2926 if (ret) 2927 break; 2928 } 2929 unplug: 2930 blk_finish_plug(&plug); 2931 if (!ret && !cycled && wbc->nr_to_write > 0) { 2932 cycled = 1; 2933 mpd.last_page = writeback_index - 1; 2934 mpd.first_page = 0; 2935 goto retry; 2936 } 2937 2938 /* Update index */ 2939 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2940 /* 2941 * Set the writeback_index so that range_cyclic 2942 * mode will write it back later 2943 */ 2944 mapping->writeback_index = mpd.first_page; 2945 2946 out_writepages: 2947 trace_ext4_writepages_result(inode, wbc, ret, 2948 nr_to_write - wbc->nr_to_write); 2949 percpu_up_read(&sbi->s_journal_flag_rwsem); 2950 return ret; 2951 } 2952 2953 static int ext4_dax_writepages(struct address_space *mapping, 2954 struct writeback_control *wbc) 2955 { 2956 int ret; 2957 long nr_to_write = wbc->nr_to_write; 2958 struct inode *inode = mapping->host; 2959 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2960 2961 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2962 return -EIO; 2963 2964 percpu_down_read(&sbi->s_journal_flag_rwsem); 2965 trace_ext4_writepages(inode, wbc); 2966 2967 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc); 2968 trace_ext4_writepages_result(inode, wbc, ret, 2969 nr_to_write - wbc->nr_to_write); 2970 percpu_up_read(&sbi->s_journal_flag_rwsem); 2971 return ret; 2972 } 2973 2974 static int ext4_nonda_switch(struct super_block *sb) 2975 { 2976 s64 free_clusters, dirty_clusters; 2977 struct ext4_sb_info *sbi = EXT4_SB(sb); 2978 2979 /* 2980 * switch to non delalloc mode if we are running low 2981 * on free block. The free block accounting via percpu 2982 * counters can get slightly wrong with percpu_counter_batch getting 2983 * accumulated on each CPU without updating global counters 2984 * Delalloc need an accurate free block accounting. So switch 2985 * to non delalloc when we are near to error range. 2986 */ 2987 free_clusters = 2988 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2989 dirty_clusters = 2990 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2991 /* 2992 * Start pushing delalloc when 1/2 of free blocks are dirty. 2993 */ 2994 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2995 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2996 2997 if (2 * free_clusters < 3 * dirty_clusters || 2998 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2999 /* 3000 * free block count is less than 150% of dirty blocks 3001 * or free blocks is less than watermark 3002 */ 3003 return 1; 3004 } 3005 return 0; 3006 } 3007 3008 /* We always reserve for an inode update; the superblock could be there too */ 3009 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 3010 { 3011 if (likely(ext4_has_feature_large_file(inode->i_sb))) 3012 return 1; 3013 3014 if (pos + len <= 0x7fffffffULL) 3015 return 1; 3016 3017 /* We might need to update the superblock to set LARGE_FILE */ 3018 return 2; 3019 } 3020 3021 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3022 loff_t pos, unsigned len, unsigned flags, 3023 struct page **pagep, void **fsdata) 3024 { 3025 int ret, retries = 0; 3026 struct page *page; 3027 pgoff_t index; 3028 struct inode *inode = mapping->host; 3029 handle_t *handle; 3030 3031 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3032 return -EIO; 3033 3034 index = pos >> PAGE_SHIFT; 3035 3036 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 3037 ext4_verity_in_progress(inode)) { 3038 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3039 return ext4_write_begin(file, mapping, pos, 3040 len, flags, pagep, fsdata); 3041 } 3042 *fsdata = (void *)0; 3043 trace_ext4_da_write_begin(inode, pos, len, flags); 3044 3045 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3046 ret = ext4_da_write_inline_data_begin(mapping, inode, 3047 pos, len, flags, 3048 pagep, fsdata); 3049 if (ret < 0) 3050 return ret; 3051 if (ret == 1) 3052 return 0; 3053 } 3054 3055 /* 3056 * grab_cache_page_write_begin() can take a long time if the 3057 * system is thrashing due to memory pressure, or if the page 3058 * is being written back. So grab it first before we start 3059 * the transaction handle. This also allows us to allocate 3060 * the page (if needed) without using GFP_NOFS. 3061 */ 3062 retry_grab: 3063 page = grab_cache_page_write_begin(mapping, index, flags); 3064 if (!page) 3065 return -ENOMEM; 3066 unlock_page(page); 3067 3068 /* 3069 * With delayed allocation, we don't log the i_disksize update 3070 * if there is delayed block allocation. But we still need 3071 * to journalling the i_disksize update if writes to the end 3072 * of file which has an already mapped buffer. 3073 */ 3074 retry_journal: 3075 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3076 ext4_da_write_credits(inode, pos, len)); 3077 if (IS_ERR(handle)) { 3078 put_page(page); 3079 return PTR_ERR(handle); 3080 } 3081 3082 lock_page(page); 3083 if (page->mapping != mapping) { 3084 /* The page got truncated from under us */ 3085 unlock_page(page); 3086 put_page(page); 3087 ext4_journal_stop(handle); 3088 goto retry_grab; 3089 } 3090 /* In case writeback began while the page was unlocked */ 3091 wait_for_stable_page(page); 3092 3093 #ifdef CONFIG_FS_ENCRYPTION 3094 ret = ext4_block_write_begin(page, pos, len, 3095 ext4_da_get_block_prep); 3096 #else 3097 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3098 #endif 3099 if (ret < 0) { 3100 unlock_page(page); 3101 ext4_journal_stop(handle); 3102 /* 3103 * block_write_begin may have instantiated a few blocks 3104 * outside i_size. Trim these off again. Don't need 3105 * i_size_read because we hold i_mutex. 3106 */ 3107 if (pos + len > inode->i_size) 3108 ext4_truncate_failed_write(inode); 3109 3110 if (ret == -ENOSPC && 3111 ext4_should_retry_alloc(inode->i_sb, &retries)) 3112 goto retry_journal; 3113 3114 put_page(page); 3115 return ret; 3116 } 3117 3118 *pagep = page; 3119 return ret; 3120 } 3121 3122 /* 3123 * Check if we should update i_disksize 3124 * when write to the end of file but not require block allocation 3125 */ 3126 static int ext4_da_should_update_i_disksize(struct page *page, 3127 unsigned long offset) 3128 { 3129 struct buffer_head *bh; 3130 struct inode *inode = page->mapping->host; 3131 unsigned int idx; 3132 int i; 3133 3134 bh = page_buffers(page); 3135 idx = offset >> inode->i_blkbits; 3136 3137 for (i = 0; i < idx; i++) 3138 bh = bh->b_this_page; 3139 3140 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3141 return 0; 3142 return 1; 3143 } 3144 3145 static int ext4_da_write_end(struct file *file, 3146 struct address_space *mapping, 3147 loff_t pos, unsigned len, unsigned copied, 3148 struct page *page, void *fsdata) 3149 { 3150 struct inode *inode = mapping->host; 3151 int ret = 0, ret2; 3152 handle_t *handle = ext4_journal_current_handle(); 3153 loff_t new_i_size; 3154 unsigned long start, end; 3155 int write_mode = (int)(unsigned long)fsdata; 3156 3157 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3158 return ext4_write_end(file, mapping, pos, 3159 len, copied, page, fsdata); 3160 3161 trace_ext4_da_write_end(inode, pos, len, copied); 3162 start = pos & (PAGE_SIZE - 1); 3163 end = start + copied - 1; 3164 3165 /* 3166 * generic_write_end() will run mark_inode_dirty() if i_size 3167 * changes. So let's piggyback the i_disksize mark_inode_dirty 3168 * into that. 3169 */ 3170 new_i_size = pos + copied; 3171 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3172 if (ext4_has_inline_data(inode) || 3173 ext4_da_should_update_i_disksize(page, end)) { 3174 ext4_update_i_disksize(inode, new_i_size); 3175 /* We need to mark inode dirty even if 3176 * new_i_size is less that inode->i_size 3177 * bu greater than i_disksize.(hint delalloc) 3178 */ 3179 ext4_mark_inode_dirty(handle, inode); 3180 } 3181 } 3182 3183 if (write_mode != CONVERT_INLINE_DATA && 3184 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3185 ext4_has_inline_data(inode)) 3186 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3187 page); 3188 else 3189 ret2 = generic_write_end(file, mapping, pos, len, copied, 3190 page, fsdata); 3191 3192 copied = ret2; 3193 if (ret2 < 0) 3194 ret = ret2; 3195 ret2 = ext4_journal_stop(handle); 3196 if (!ret) 3197 ret = ret2; 3198 3199 return ret ? ret : copied; 3200 } 3201 3202 /* 3203 * Force all delayed allocation blocks to be allocated for a given inode. 3204 */ 3205 int ext4_alloc_da_blocks(struct inode *inode) 3206 { 3207 trace_ext4_alloc_da_blocks(inode); 3208 3209 if (!EXT4_I(inode)->i_reserved_data_blocks) 3210 return 0; 3211 3212 /* 3213 * We do something simple for now. The filemap_flush() will 3214 * also start triggering a write of the data blocks, which is 3215 * not strictly speaking necessary (and for users of 3216 * laptop_mode, not even desirable). However, to do otherwise 3217 * would require replicating code paths in: 3218 * 3219 * ext4_writepages() -> 3220 * write_cache_pages() ---> (via passed in callback function) 3221 * __mpage_da_writepage() --> 3222 * mpage_add_bh_to_extent() 3223 * mpage_da_map_blocks() 3224 * 3225 * The problem is that write_cache_pages(), located in 3226 * mm/page-writeback.c, marks pages clean in preparation for 3227 * doing I/O, which is not desirable if we're not planning on 3228 * doing I/O at all. 3229 * 3230 * We could call write_cache_pages(), and then redirty all of 3231 * the pages by calling redirty_page_for_writepage() but that 3232 * would be ugly in the extreme. So instead we would need to 3233 * replicate parts of the code in the above functions, 3234 * simplifying them because we wouldn't actually intend to 3235 * write out the pages, but rather only collect contiguous 3236 * logical block extents, call the multi-block allocator, and 3237 * then update the buffer heads with the block allocations. 3238 * 3239 * For now, though, we'll cheat by calling filemap_flush(), 3240 * which will map the blocks, and start the I/O, but not 3241 * actually wait for the I/O to complete. 3242 */ 3243 return filemap_flush(inode->i_mapping); 3244 } 3245 3246 /* 3247 * bmap() is special. It gets used by applications such as lilo and by 3248 * the swapper to find the on-disk block of a specific piece of data. 3249 * 3250 * Naturally, this is dangerous if the block concerned is still in the 3251 * journal. If somebody makes a swapfile on an ext4 data-journaling 3252 * filesystem and enables swap, then they may get a nasty shock when the 3253 * data getting swapped to that swapfile suddenly gets overwritten by 3254 * the original zero's written out previously to the journal and 3255 * awaiting writeback in the kernel's buffer cache. 3256 * 3257 * So, if we see any bmap calls here on a modified, data-journaled file, 3258 * take extra steps to flush any blocks which might be in the cache. 3259 */ 3260 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3261 { 3262 struct inode *inode = mapping->host; 3263 journal_t *journal; 3264 int err; 3265 3266 /* 3267 * We can get here for an inline file via the FIBMAP ioctl 3268 */ 3269 if (ext4_has_inline_data(inode)) 3270 return 0; 3271 3272 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3273 test_opt(inode->i_sb, DELALLOC)) { 3274 /* 3275 * With delalloc we want to sync the file 3276 * so that we can make sure we allocate 3277 * blocks for file 3278 */ 3279 filemap_write_and_wait(mapping); 3280 } 3281 3282 if (EXT4_JOURNAL(inode) && 3283 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3284 /* 3285 * This is a REALLY heavyweight approach, but the use of 3286 * bmap on dirty files is expected to be extremely rare: 3287 * only if we run lilo or swapon on a freshly made file 3288 * do we expect this to happen. 3289 * 3290 * (bmap requires CAP_SYS_RAWIO so this does not 3291 * represent an unprivileged user DOS attack --- we'd be 3292 * in trouble if mortal users could trigger this path at 3293 * will.) 3294 * 3295 * NB. EXT4_STATE_JDATA is not set on files other than 3296 * regular files. If somebody wants to bmap a directory 3297 * or symlink and gets confused because the buffer 3298 * hasn't yet been flushed to disk, they deserve 3299 * everything they get. 3300 */ 3301 3302 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3303 journal = EXT4_JOURNAL(inode); 3304 jbd2_journal_lock_updates(journal); 3305 err = jbd2_journal_flush(journal); 3306 jbd2_journal_unlock_updates(journal); 3307 3308 if (err) 3309 return 0; 3310 } 3311 3312 return generic_block_bmap(mapping, block, ext4_get_block); 3313 } 3314 3315 static int ext4_readpage(struct file *file, struct page *page) 3316 { 3317 int ret = -EAGAIN; 3318 struct inode *inode = page->mapping->host; 3319 3320 trace_ext4_readpage(page); 3321 3322 if (ext4_has_inline_data(inode)) 3323 ret = ext4_readpage_inline(inode, page); 3324 3325 if (ret == -EAGAIN) 3326 return ext4_mpage_readpages(page->mapping, NULL, page, 1, 3327 false); 3328 3329 return ret; 3330 } 3331 3332 static int 3333 ext4_readpages(struct file *file, struct address_space *mapping, 3334 struct list_head *pages, unsigned nr_pages) 3335 { 3336 struct inode *inode = mapping->host; 3337 3338 /* If the file has inline data, no need to do readpages. */ 3339 if (ext4_has_inline_data(inode)) 3340 return 0; 3341 3342 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true); 3343 } 3344 3345 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3346 unsigned int length) 3347 { 3348 trace_ext4_invalidatepage(page, offset, length); 3349 3350 /* No journalling happens on data buffers when this function is used */ 3351 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3352 3353 block_invalidatepage(page, offset, length); 3354 } 3355 3356 static int __ext4_journalled_invalidatepage(struct page *page, 3357 unsigned int offset, 3358 unsigned int length) 3359 { 3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3361 3362 trace_ext4_journalled_invalidatepage(page, offset, length); 3363 3364 /* 3365 * If it's a full truncate we just forget about the pending dirtying 3366 */ 3367 if (offset == 0 && length == PAGE_SIZE) 3368 ClearPageChecked(page); 3369 3370 return jbd2_journal_invalidatepage(journal, page, offset, length); 3371 } 3372 3373 /* Wrapper for aops... */ 3374 static void ext4_journalled_invalidatepage(struct page *page, 3375 unsigned int offset, 3376 unsigned int length) 3377 { 3378 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3379 } 3380 3381 static int ext4_releasepage(struct page *page, gfp_t wait) 3382 { 3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3384 3385 trace_ext4_releasepage(page); 3386 3387 /* Page has dirty journalled data -> cannot release */ 3388 if (PageChecked(page)) 3389 return 0; 3390 if (journal) 3391 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3392 else 3393 return try_to_free_buffers(page); 3394 } 3395 3396 static bool ext4_inode_datasync_dirty(struct inode *inode) 3397 { 3398 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3399 3400 if (journal) 3401 return !jbd2_transaction_committed(journal, 3402 EXT4_I(inode)->i_datasync_tid); 3403 /* Any metadata buffers to write? */ 3404 if (!list_empty(&inode->i_mapping->private_list)) 3405 return true; 3406 return inode->i_state & I_DIRTY_DATASYNC; 3407 } 3408 3409 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3410 unsigned flags, struct iomap *iomap) 3411 { 3412 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3413 unsigned int blkbits = inode->i_blkbits; 3414 unsigned long first_block, last_block; 3415 struct ext4_map_blocks map; 3416 bool delalloc = false; 3417 int ret; 3418 3419 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3420 return -EINVAL; 3421 first_block = offset >> blkbits; 3422 last_block = min_t(loff_t, (offset + length - 1) >> blkbits, 3423 EXT4_MAX_LOGICAL_BLOCK); 3424 3425 if (flags & IOMAP_REPORT) { 3426 if (ext4_has_inline_data(inode)) { 3427 ret = ext4_inline_data_iomap(inode, iomap); 3428 if (ret != -EAGAIN) { 3429 if (ret == 0 && offset >= iomap->length) 3430 ret = -ENOENT; 3431 return ret; 3432 } 3433 } 3434 } else { 3435 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3436 return -ERANGE; 3437 } 3438 3439 map.m_lblk = first_block; 3440 map.m_len = last_block - first_block + 1; 3441 3442 if (flags & IOMAP_REPORT) { 3443 ret = ext4_map_blocks(NULL, inode, &map, 0); 3444 if (ret < 0) 3445 return ret; 3446 3447 if (ret == 0) { 3448 ext4_lblk_t end = map.m_lblk + map.m_len - 1; 3449 struct extent_status es; 3450 3451 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3452 map.m_lblk, end, &es); 3453 3454 if (!es.es_len || es.es_lblk > end) { 3455 /* entire range is a hole */ 3456 } else if (es.es_lblk > map.m_lblk) { 3457 /* range starts with a hole */ 3458 map.m_len = es.es_lblk - map.m_lblk; 3459 } else { 3460 ext4_lblk_t offs = 0; 3461 3462 if (es.es_lblk < map.m_lblk) 3463 offs = map.m_lblk - es.es_lblk; 3464 map.m_lblk = es.es_lblk + offs; 3465 map.m_len = es.es_len - offs; 3466 delalloc = true; 3467 } 3468 } 3469 } else if (flags & IOMAP_WRITE) { 3470 int dio_credits; 3471 handle_t *handle; 3472 int retries = 0; 3473 3474 /* Trim mapping request to maximum we can map at once for DIO */ 3475 if (map.m_len > DIO_MAX_BLOCKS) 3476 map.m_len = DIO_MAX_BLOCKS; 3477 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3478 retry: 3479 /* 3480 * Either we allocate blocks and then we don't get unwritten 3481 * extent so we have reserved enough credits, or the blocks 3482 * are already allocated and unwritten and in that case 3483 * extent conversion fits in the credits as well. 3484 */ 3485 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3486 dio_credits); 3487 if (IS_ERR(handle)) 3488 return PTR_ERR(handle); 3489 3490 ret = ext4_map_blocks(handle, inode, &map, 3491 EXT4_GET_BLOCKS_CREATE_ZERO); 3492 if (ret < 0) { 3493 ext4_journal_stop(handle); 3494 if (ret == -ENOSPC && 3495 ext4_should_retry_alloc(inode->i_sb, &retries)) 3496 goto retry; 3497 return ret; 3498 } 3499 3500 /* 3501 * If we added blocks beyond i_size, we need to make sure they 3502 * will get truncated if we crash before updating i_size in 3503 * ext4_iomap_end(). For faults we don't need to do that (and 3504 * even cannot because for orphan list operations inode_lock is 3505 * required) - if we happen to instantiate block beyond i_size, 3506 * it is because we race with truncate which has already added 3507 * the inode to the orphan list. 3508 */ 3509 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3510 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3511 int err; 3512 3513 err = ext4_orphan_add(handle, inode); 3514 if (err < 0) { 3515 ext4_journal_stop(handle); 3516 return err; 3517 } 3518 } 3519 ext4_journal_stop(handle); 3520 } else { 3521 ret = ext4_map_blocks(NULL, inode, &map, 0); 3522 if (ret < 0) 3523 return ret; 3524 } 3525 3526 iomap->flags = 0; 3527 if (ext4_inode_datasync_dirty(inode)) 3528 iomap->flags |= IOMAP_F_DIRTY; 3529 iomap->bdev = inode->i_sb->s_bdev; 3530 iomap->dax_dev = sbi->s_daxdev; 3531 iomap->offset = (u64)first_block << blkbits; 3532 iomap->length = (u64)map.m_len << blkbits; 3533 3534 if (ret == 0) { 3535 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; 3536 iomap->addr = IOMAP_NULL_ADDR; 3537 } else { 3538 if (map.m_flags & EXT4_MAP_MAPPED) { 3539 iomap->type = IOMAP_MAPPED; 3540 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3541 iomap->type = IOMAP_UNWRITTEN; 3542 } else { 3543 WARN_ON_ONCE(1); 3544 return -EIO; 3545 } 3546 iomap->addr = (u64)map.m_pblk << blkbits; 3547 } 3548 3549 if (map.m_flags & EXT4_MAP_NEW) 3550 iomap->flags |= IOMAP_F_NEW; 3551 3552 return 0; 3553 } 3554 3555 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3556 ssize_t written, unsigned flags, struct iomap *iomap) 3557 { 3558 int ret = 0; 3559 handle_t *handle; 3560 int blkbits = inode->i_blkbits; 3561 bool truncate = false; 3562 3563 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3564 return 0; 3565 3566 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3567 if (IS_ERR(handle)) { 3568 ret = PTR_ERR(handle); 3569 goto orphan_del; 3570 } 3571 if (ext4_update_inode_size(inode, offset + written)) 3572 ext4_mark_inode_dirty(handle, inode); 3573 /* 3574 * We may need to truncate allocated but not written blocks beyond EOF. 3575 */ 3576 if (iomap->offset + iomap->length > 3577 ALIGN(inode->i_size, 1 << blkbits)) { 3578 ext4_lblk_t written_blk, end_blk; 3579 3580 written_blk = (offset + written) >> blkbits; 3581 end_blk = (offset + length) >> blkbits; 3582 if (written_blk < end_blk && ext4_can_truncate(inode)) 3583 truncate = true; 3584 } 3585 /* 3586 * Remove inode from orphan list if we were extending a inode and 3587 * everything went fine. 3588 */ 3589 if (!truncate && inode->i_nlink && 3590 !list_empty(&EXT4_I(inode)->i_orphan)) 3591 ext4_orphan_del(handle, inode); 3592 ext4_journal_stop(handle); 3593 if (truncate) { 3594 ext4_truncate_failed_write(inode); 3595 orphan_del: 3596 /* 3597 * If truncate failed early the inode might still be on the 3598 * orphan list; we need to make sure the inode is removed from 3599 * the orphan list in that case. 3600 */ 3601 if (inode->i_nlink) 3602 ext4_orphan_del(NULL, inode); 3603 } 3604 return ret; 3605 } 3606 3607 const struct iomap_ops ext4_iomap_ops = { 3608 .iomap_begin = ext4_iomap_begin, 3609 .iomap_end = ext4_iomap_end, 3610 }; 3611 3612 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3613 ssize_t size, void *private) 3614 { 3615 ext4_io_end_t *io_end = private; 3616 3617 /* if not async direct IO just return */ 3618 if (!io_end) 3619 return 0; 3620 3621 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3622 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3623 io_end, io_end->inode->i_ino, iocb, offset, size); 3624 3625 /* 3626 * Error during AIO DIO. We cannot convert unwritten extents as the 3627 * data was not written. Just clear the unwritten flag and drop io_end. 3628 */ 3629 if (size <= 0) { 3630 ext4_clear_io_unwritten_flag(io_end); 3631 size = 0; 3632 } 3633 io_end->offset = offset; 3634 io_end->size = size; 3635 ext4_put_io_end(io_end); 3636 3637 return 0; 3638 } 3639 3640 /* 3641 * Handling of direct IO writes. 3642 * 3643 * For ext4 extent files, ext4 will do direct-io write even to holes, 3644 * preallocated extents, and those write extend the file, no need to 3645 * fall back to buffered IO. 3646 * 3647 * For holes, we fallocate those blocks, mark them as unwritten 3648 * If those blocks were preallocated, we mark sure they are split, but 3649 * still keep the range to write as unwritten. 3650 * 3651 * The unwritten extents will be converted to written when DIO is completed. 3652 * For async direct IO, since the IO may still pending when return, we 3653 * set up an end_io call back function, which will do the conversion 3654 * when async direct IO completed. 3655 * 3656 * If the O_DIRECT write will extend the file then add this inode to the 3657 * orphan list. So recovery will truncate it back to the original size 3658 * if the machine crashes during the write. 3659 * 3660 */ 3661 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3662 { 3663 struct file *file = iocb->ki_filp; 3664 struct inode *inode = file->f_mapping->host; 3665 struct ext4_inode_info *ei = EXT4_I(inode); 3666 ssize_t ret; 3667 loff_t offset = iocb->ki_pos; 3668 size_t count = iov_iter_count(iter); 3669 int overwrite = 0; 3670 get_block_t *get_block_func = NULL; 3671 int dio_flags = 0; 3672 loff_t final_size = offset + count; 3673 int orphan = 0; 3674 handle_t *handle; 3675 3676 if (final_size > inode->i_size || final_size > ei->i_disksize) { 3677 /* Credits for sb + inode write */ 3678 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3679 if (IS_ERR(handle)) { 3680 ret = PTR_ERR(handle); 3681 goto out; 3682 } 3683 ret = ext4_orphan_add(handle, inode); 3684 if (ret) { 3685 ext4_journal_stop(handle); 3686 goto out; 3687 } 3688 orphan = 1; 3689 ext4_update_i_disksize(inode, inode->i_size); 3690 ext4_journal_stop(handle); 3691 } 3692 3693 BUG_ON(iocb->private == NULL); 3694 3695 /* 3696 * Make all waiters for direct IO properly wait also for extent 3697 * conversion. This also disallows race between truncate() and 3698 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3699 */ 3700 inode_dio_begin(inode); 3701 3702 /* If we do a overwrite dio, i_mutex locking can be released */ 3703 overwrite = *((int *)iocb->private); 3704 3705 if (overwrite) 3706 inode_unlock(inode); 3707 3708 /* 3709 * For extent mapped files we could direct write to holes and fallocate. 3710 * 3711 * Allocated blocks to fill the hole are marked as unwritten to prevent 3712 * parallel buffered read to expose the stale data before DIO complete 3713 * the data IO. 3714 * 3715 * As to previously fallocated extents, ext4 get_block will just simply 3716 * mark the buffer mapped but still keep the extents unwritten. 3717 * 3718 * For non AIO case, we will convert those unwritten extents to written 3719 * after return back from blockdev_direct_IO. That way we save us from 3720 * allocating io_end structure and also the overhead of offloading 3721 * the extent convertion to a workqueue. 3722 * 3723 * For async DIO, the conversion needs to be deferred when the 3724 * IO is completed. The ext4 end_io callback function will be 3725 * called to take care of the conversion work. Here for async 3726 * case, we allocate an io_end structure to hook to the iocb. 3727 */ 3728 iocb->private = NULL; 3729 if (overwrite) 3730 get_block_func = ext4_dio_get_block_overwrite; 3731 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3732 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3733 get_block_func = ext4_dio_get_block; 3734 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3735 } else if (is_sync_kiocb(iocb)) { 3736 get_block_func = ext4_dio_get_block_unwritten_sync; 3737 dio_flags = DIO_LOCKING; 3738 } else { 3739 get_block_func = ext4_dio_get_block_unwritten_async; 3740 dio_flags = DIO_LOCKING; 3741 } 3742 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3743 get_block_func, ext4_end_io_dio, NULL, 3744 dio_flags); 3745 3746 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3747 EXT4_STATE_DIO_UNWRITTEN)) { 3748 int err; 3749 /* 3750 * for non AIO case, since the IO is already 3751 * completed, we could do the conversion right here 3752 */ 3753 err = ext4_convert_unwritten_extents(NULL, inode, 3754 offset, ret); 3755 if (err < 0) 3756 ret = err; 3757 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3758 } 3759 3760 inode_dio_end(inode); 3761 /* take i_mutex locking again if we do a ovewrite dio */ 3762 if (overwrite) 3763 inode_lock(inode); 3764 3765 if (ret < 0 && final_size > inode->i_size) 3766 ext4_truncate_failed_write(inode); 3767 3768 /* Handle extending of i_size after direct IO write */ 3769 if (orphan) { 3770 int err; 3771 3772 /* Credits for sb + inode write */ 3773 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3774 if (IS_ERR(handle)) { 3775 /* 3776 * We wrote the data but cannot extend 3777 * i_size. Bail out. In async io case, we do 3778 * not return error here because we have 3779 * already submmitted the corresponding 3780 * bio. Returning error here makes the caller 3781 * think that this IO is done and failed 3782 * resulting in race with bio's completion 3783 * handler. 3784 */ 3785 if (!ret) 3786 ret = PTR_ERR(handle); 3787 if (inode->i_nlink) 3788 ext4_orphan_del(NULL, inode); 3789 3790 goto out; 3791 } 3792 if (inode->i_nlink) 3793 ext4_orphan_del(handle, inode); 3794 if (ret > 0) { 3795 loff_t end = offset + ret; 3796 if (end > inode->i_size || end > ei->i_disksize) { 3797 ext4_update_i_disksize(inode, end); 3798 if (end > inode->i_size) 3799 i_size_write(inode, end); 3800 /* 3801 * We're going to return a positive `ret' 3802 * here due to non-zero-length I/O, so there's 3803 * no way of reporting error returns from 3804 * ext4_mark_inode_dirty() to userspace. So 3805 * ignore it. 3806 */ 3807 ext4_mark_inode_dirty(handle, inode); 3808 } 3809 } 3810 err = ext4_journal_stop(handle); 3811 if (ret == 0) 3812 ret = err; 3813 } 3814 out: 3815 return ret; 3816 } 3817 3818 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3819 { 3820 struct address_space *mapping = iocb->ki_filp->f_mapping; 3821 struct inode *inode = mapping->host; 3822 size_t count = iov_iter_count(iter); 3823 ssize_t ret; 3824 3825 /* 3826 * Shared inode_lock is enough for us - it protects against concurrent 3827 * writes & truncates and since we take care of writing back page cache, 3828 * we are protected against page writeback as well. 3829 */ 3830 inode_lock_shared(inode); 3831 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3832 iocb->ki_pos + count - 1); 3833 if (ret) 3834 goto out_unlock; 3835 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3836 iter, ext4_dio_get_block, NULL, NULL, 0); 3837 out_unlock: 3838 inode_unlock_shared(inode); 3839 return ret; 3840 } 3841 3842 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3843 { 3844 struct file *file = iocb->ki_filp; 3845 struct inode *inode = file->f_mapping->host; 3846 size_t count = iov_iter_count(iter); 3847 loff_t offset = iocb->ki_pos; 3848 ssize_t ret; 3849 3850 #ifdef CONFIG_FS_ENCRYPTION 3851 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 3852 return 0; 3853 #endif 3854 if (fsverity_active(inode)) 3855 return 0; 3856 3857 /* 3858 * If we are doing data journalling we don't support O_DIRECT 3859 */ 3860 if (ext4_should_journal_data(inode)) 3861 return 0; 3862 3863 /* Let buffer I/O handle the inline data case. */ 3864 if (ext4_has_inline_data(inode)) 3865 return 0; 3866 3867 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3868 if (iov_iter_rw(iter) == READ) 3869 ret = ext4_direct_IO_read(iocb, iter); 3870 else 3871 ret = ext4_direct_IO_write(iocb, iter); 3872 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3873 return ret; 3874 } 3875 3876 /* 3877 * Pages can be marked dirty completely asynchronously from ext4's journalling 3878 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3879 * much here because ->set_page_dirty is called under VFS locks. The page is 3880 * not necessarily locked. 3881 * 3882 * We cannot just dirty the page and leave attached buffers clean, because the 3883 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3884 * or jbddirty because all the journalling code will explode. 3885 * 3886 * So what we do is to mark the page "pending dirty" and next time writepage 3887 * is called, propagate that into the buffers appropriately. 3888 */ 3889 static int ext4_journalled_set_page_dirty(struct page *page) 3890 { 3891 SetPageChecked(page); 3892 return __set_page_dirty_nobuffers(page); 3893 } 3894 3895 static int ext4_set_page_dirty(struct page *page) 3896 { 3897 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3898 WARN_ON_ONCE(!page_has_buffers(page)); 3899 return __set_page_dirty_buffers(page); 3900 } 3901 3902 static const struct address_space_operations ext4_aops = { 3903 .readpage = ext4_readpage, 3904 .readpages = ext4_readpages, 3905 .writepage = ext4_writepage, 3906 .writepages = ext4_writepages, 3907 .write_begin = ext4_write_begin, 3908 .write_end = ext4_write_end, 3909 .set_page_dirty = ext4_set_page_dirty, 3910 .bmap = ext4_bmap, 3911 .invalidatepage = ext4_invalidatepage, 3912 .releasepage = ext4_releasepage, 3913 .direct_IO = ext4_direct_IO, 3914 .migratepage = buffer_migrate_page, 3915 .is_partially_uptodate = block_is_partially_uptodate, 3916 .error_remove_page = generic_error_remove_page, 3917 }; 3918 3919 static const struct address_space_operations ext4_journalled_aops = { 3920 .readpage = ext4_readpage, 3921 .readpages = ext4_readpages, 3922 .writepage = ext4_writepage, 3923 .writepages = ext4_writepages, 3924 .write_begin = ext4_write_begin, 3925 .write_end = ext4_journalled_write_end, 3926 .set_page_dirty = ext4_journalled_set_page_dirty, 3927 .bmap = ext4_bmap, 3928 .invalidatepage = ext4_journalled_invalidatepage, 3929 .releasepage = ext4_releasepage, 3930 .direct_IO = ext4_direct_IO, 3931 .is_partially_uptodate = block_is_partially_uptodate, 3932 .error_remove_page = generic_error_remove_page, 3933 }; 3934 3935 static const struct address_space_operations ext4_da_aops = { 3936 .readpage = ext4_readpage, 3937 .readpages = ext4_readpages, 3938 .writepage = ext4_writepage, 3939 .writepages = ext4_writepages, 3940 .write_begin = ext4_da_write_begin, 3941 .write_end = ext4_da_write_end, 3942 .set_page_dirty = ext4_set_page_dirty, 3943 .bmap = ext4_bmap, 3944 .invalidatepage = ext4_invalidatepage, 3945 .releasepage = ext4_releasepage, 3946 .direct_IO = ext4_direct_IO, 3947 .migratepage = buffer_migrate_page, 3948 .is_partially_uptodate = block_is_partially_uptodate, 3949 .error_remove_page = generic_error_remove_page, 3950 }; 3951 3952 static const struct address_space_operations ext4_dax_aops = { 3953 .writepages = ext4_dax_writepages, 3954 .direct_IO = noop_direct_IO, 3955 .set_page_dirty = noop_set_page_dirty, 3956 .bmap = ext4_bmap, 3957 .invalidatepage = noop_invalidatepage, 3958 }; 3959 3960 void ext4_set_aops(struct inode *inode) 3961 { 3962 switch (ext4_inode_journal_mode(inode)) { 3963 case EXT4_INODE_ORDERED_DATA_MODE: 3964 case EXT4_INODE_WRITEBACK_DATA_MODE: 3965 break; 3966 case EXT4_INODE_JOURNAL_DATA_MODE: 3967 inode->i_mapping->a_ops = &ext4_journalled_aops; 3968 return; 3969 default: 3970 BUG(); 3971 } 3972 if (IS_DAX(inode)) 3973 inode->i_mapping->a_ops = &ext4_dax_aops; 3974 else if (test_opt(inode->i_sb, DELALLOC)) 3975 inode->i_mapping->a_ops = &ext4_da_aops; 3976 else 3977 inode->i_mapping->a_ops = &ext4_aops; 3978 } 3979 3980 static int __ext4_block_zero_page_range(handle_t *handle, 3981 struct address_space *mapping, loff_t from, loff_t length) 3982 { 3983 ext4_fsblk_t index = from >> PAGE_SHIFT; 3984 unsigned offset = from & (PAGE_SIZE-1); 3985 unsigned blocksize, pos; 3986 ext4_lblk_t iblock; 3987 struct inode *inode = mapping->host; 3988 struct buffer_head *bh; 3989 struct page *page; 3990 int err = 0; 3991 3992 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3993 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3994 if (!page) 3995 return -ENOMEM; 3996 3997 blocksize = inode->i_sb->s_blocksize; 3998 3999 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 4000 4001 if (!page_has_buffers(page)) 4002 create_empty_buffers(page, blocksize, 0); 4003 4004 /* Find the buffer that contains "offset" */ 4005 bh = page_buffers(page); 4006 pos = blocksize; 4007 while (offset >= pos) { 4008 bh = bh->b_this_page; 4009 iblock++; 4010 pos += blocksize; 4011 } 4012 if (buffer_freed(bh)) { 4013 BUFFER_TRACE(bh, "freed: skip"); 4014 goto unlock; 4015 } 4016 if (!buffer_mapped(bh)) { 4017 BUFFER_TRACE(bh, "unmapped"); 4018 ext4_get_block(inode, iblock, bh, 0); 4019 /* unmapped? It's a hole - nothing to do */ 4020 if (!buffer_mapped(bh)) { 4021 BUFFER_TRACE(bh, "still unmapped"); 4022 goto unlock; 4023 } 4024 } 4025 4026 /* Ok, it's mapped. Make sure it's up-to-date */ 4027 if (PageUptodate(page)) 4028 set_buffer_uptodate(bh); 4029 4030 if (!buffer_uptodate(bh)) { 4031 err = -EIO; 4032 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 4033 wait_on_buffer(bh); 4034 /* Uhhuh. Read error. Complain and punt. */ 4035 if (!buffer_uptodate(bh)) 4036 goto unlock; 4037 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) { 4038 /* We expect the key to be set. */ 4039 BUG_ON(!fscrypt_has_encryption_key(inode)); 4040 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks( 4041 page, blocksize, bh_offset(bh))); 4042 } 4043 } 4044 if (ext4_should_journal_data(inode)) { 4045 BUFFER_TRACE(bh, "get write access"); 4046 err = ext4_journal_get_write_access(handle, bh); 4047 if (err) 4048 goto unlock; 4049 } 4050 zero_user(page, offset, length); 4051 BUFFER_TRACE(bh, "zeroed end of block"); 4052 4053 if (ext4_should_journal_data(inode)) { 4054 err = ext4_handle_dirty_metadata(handle, inode, bh); 4055 } else { 4056 err = 0; 4057 mark_buffer_dirty(bh); 4058 if (ext4_should_order_data(inode)) 4059 err = ext4_jbd2_inode_add_write(handle, inode, from, 4060 length); 4061 } 4062 4063 unlock: 4064 unlock_page(page); 4065 put_page(page); 4066 return err; 4067 } 4068 4069 /* 4070 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4071 * starting from file offset 'from'. The range to be zero'd must 4072 * be contained with in one block. If the specified range exceeds 4073 * the end of the block it will be shortened to end of the block 4074 * that cooresponds to 'from' 4075 */ 4076 static int ext4_block_zero_page_range(handle_t *handle, 4077 struct address_space *mapping, loff_t from, loff_t length) 4078 { 4079 struct inode *inode = mapping->host; 4080 unsigned offset = from & (PAGE_SIZE-1); 4081 unsigned blocksize = inode->i_sb->s_blocksize; 4082 unsigned max = blocksize - (offset & (blocksize - 1)); 4083 4084 /* 4085 * correct length if it does not fall between 4086 * 'from' and the end of the block 4087 */ 4088 if (length > max || length < 0) 4089 length = max; 4090 4091 if (IS_DAX(inode)) { 4092 return iomap_zero_range(inode, from, length, NULL, 4093 &ext4_iomap_ops); 4094 } 4095 return __ext4_block_zero_page_range(handle, mapping, from, length); 4096 } 4097 4098 /* 4099 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4100 * up to the end of the block which corresponds to `from'. 4101 * This required during truncate. We need to physically zero the tail end 4102 * of that block so it doesn't yield old data if the file is later grown. 4103 */ 4104 static int ext4_block_truncate_page(handle_t *handle, 4105 struct address_space *mapping, loff_t from) 4106 { 4107 unsigned offset = from & (PAGE_SIZE-1); 4108 unsigned length; 4109 unsigned blocksize; 4110 struct inode *inode = mapping->host; 4111 4112 /* If we are processing an encrypted inode during orphan list handling */ 4113 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4114 return 0; 4115 4116 blocksize = inode->i_sb->s_blocksize; 4117 length = blocksize - (offset & (blocksize - 1)); 4118 4119 return ext4_block_zero_page_range(handle, mapping, from, length); 4120 } 4121 4122 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4123 loff_t lstart, loff_t length) 4124 { 4125 struct super_block *sb = inode->i_sb; 4126 struct address_space *mapping = inode->i_mapping; 4127 unsigned partial_start, partial_end; 4128 ext4_fsblk_t start, end; 4129 loff_t byte_end = (lstart + length - 1); 4130 int err = 0; 4131 4132 partial_start = lstart & (sb->s_blocksize - 1); 4133 partial_end = byte_end & (sb->s_blocksize - 1); 4134 4135 start = lstart >> sb->s_blocksize_bits; 4136 end = byte_end >> sb->s_blocksize_bits; 4137 4138 /* Handle partial zero within the single block */ 4139 if (start == end && 4140 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4141 err = ext4_block_zero_page_range(handle, mapping, 4142 lstart, length); 4143 return err; 4144 } 4145 /* Handle partial zero out on the start of the range */ 4146 if (partial_start) { 4147 err = ext4_block_zero_page_range(handle, mapping, 4148 lstart, sb->s_blocksize); 4149 if (err) 4150 return err; 4151 } 4152 /* Handle partial zero out on the end of the range */ 4153 if (partial_end != sb->s_blocksize - 1) 4154 err = ext4_block_zero_page_range(handle, mapping, 4155 byte_end - partial_end, 4156 partial_end + 1); 4157 return err; 4158 } 4159 4160 int ext4_can_truncate(struct inode *inode) 4161 { 4162 if (S_ISREG(inode->i_mode)) 4163 return 1; 4164 if (S_ISDIR(inode->i_mode)) 4165 return 1; 4166 if (S_ISLNK(inode->i_mode)) 4167 return !ext4_inode_is_fast_symlink(inode); 4168 return 0; 4169 } 4170 4171 /* 4172 * We have to make sure i_disksize gets properly updated before we truncate 4173 * page cache due to hole punching or zero range. Otherwise i_disksize update 4174 * can get lost as it may have been postponed to submission of writeback but 4175 * that will never happen after we truncate page cache. 4176 */ 4177 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4178 loff_t len) 4179 { 4180 handle_t *handle; 4181 loff_t size = i_size_read(inode); 4182 4183 WARN_ON(!inode_is_locked(inode)); 4184 if (offset > size || offset + len < size) 4185 return 0; 4186 4187 if (EXT4_I(inode)->i_disksize >= size) 4188 return 0; 4189 4190 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4191 if (IS_ERR(handle)) 4192 return PTR_ERR(handle); 4193 ext4_update_i_disksize(inode, size); 4194 ext4_mark_inode_dirty(handle, inode); 4195 ext4_journal_stop(handle); 4196 4197 return 0; 4198 } 4199 4200 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 4201 { 4202 up_write(&ei->i_mmap_sem); 4203 schedule(); 4204 down_write(&ei->i_mmap_sem); 4205 } 4206 4207 int ext4_break_layouts(struct inode *inode) 4208 { 4209 struct ext4_inode_info *ei = EXT4_I(inode); 4210 struct page *page; 4211 int error; 4212 4213 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 4214 return -EINVAL; 4215 4216 do { 4217 page = dax_layout_busy_page(inode->i_mapping); 4218 if (!page) 4219 return 0; 4220 4221 error = ___wait_var_event(&page->_refcount, 4222 atomic_read(&page->_refcount) == 1, 4223 TASK_INTERRUPTIBLE, 0, 0, 4224 ext4_wait_dax_page(ei)); 4225 } while (error == 0); 4226 4227 return error; 4228 } 4229 4230 /* 4231 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4232 * associated with the given offset and length 4233 * 4234 * @inode: File inode 4235 * @offset: The offset where the hole will begin 4236 * @len: The length of the hole 4237 * 4238 * Returns: 0 on success or negative on failure 4239 */ 4240 4241 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4242 { 4243 struct super_block *sb = inode->i_sb; 4244 ext4_lblk_t first_block, stop_block; 4245 struct address_space *mapping = inode->i_mapping; 4246 loff_t first_block_offset, last_block_offset; 4247 handle_t *handle; 4248 unsigned int credits; 4249 int ret = 0; 4250 4251 if (!S_ISREG(inode->i_mode)) 4252 return -EOPNOTSUPP; 4253 4254 trace_ext4_punch_hole(inode, offset, length, 0); 4255 4256 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4257 if (ext4_has_inline_data(inode)) { 4258 down_write(&EXT4_I(inode)->i_mmap_sem); 4259 ret = ext4_convert_inline_data(inode); 4260 up_write(&EXT4_I(inode)->i_mmap_sem); 4261 if (ret) 4262 return ret; 4263 } 4264 4265 /* 4266 * Write out all dirty pages to avoid race conditions 4267 * Then release them. 4268 */ 4269 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4270 ret = filemap_write_and_wait_range(mapping, offset, 4271 offset + length - 1); 4272 if (ret) 4273 return ret; 4274 } 4275 4276 inode_lock(inode); 4277 4278 /* No need to punch hole beyond i_size */ 4279 if (offset >= inode->i_size) 4280 goto out_mutex; 4281 4282 /* 4283 * If the hole extends beyond i_size, set the hole 4284 * to end after the page that contains i_size 4285 */ 4286 if (offset + length > inode->i_size) { 4287 length = inode->i_size + 4288 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4289 offset; 4290 } 4291 4292 if (offset & (sb->s_blocksize - 1) || 4293 (offset + length) & (sb->s_blocksize - 1)) { 4294 /* 4295 * Attach jinode to inode for jbd2 if we do any zeroing of 4296 * partial block 4297 */ 4298 ret = ext4_inode_attach_jinode(inode); 4299 if (ret < 0) 4300 goto out_mutex; 4301 4302 } 4303 4304 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4305 inode_dio_wait(inode); 4306 4307 /* 4308 * Prevent page faults from reinstantiating pages we have released from 4309 * page cache. 4310 */ 4311 down_write(&EXT4_I(inode)->i_mmap_sem); 4312 4313 ret = ext4_break_layouts(inode); 4314 if (ret) 4315 goto out_dio; 4316 4317 first_block_offset = round_up(offset, sb->s_blocksize); 4318 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4319 4320 /* Now release the pages and zero block aligned part of pages*/ 4321 if (last_block_offset > first_block_offset) { 4322 ret = ext4_update_disksize_before_punch(inode, offset, length); 4323 if (ret) 4324 goto out_dio; 4325 truncate_pagecache_range(inode, first_block_offset, 4326 last_block_offset); 4327 } 4328 4329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4330 credits = ext4_writepage_trans_blocks(inode); 4331 else 4332 credits = ext4_blocks_for_truncate(inode); 4333 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4334 if (IS_ERR(handle)) { 4335 ret = PTR_ERR(handle); 4336 ext4_std_error(sb, ret); 4337 goto out_dio; 4338 } 4339 4340 ret = ext4_zero_partial_blocks(handle, inode, offset, 4341 length); 4342 if (ret) 4343 goto out_stop; 4344 4345 first_block = (offset + sb->s_blocksize - 1) >> 4346 EXT4_BLOCK_SIZE_BITS(sb); 4347 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4348 4349 /* If there are blocks to remove, do it */ 4350 if (stop_block > first_block) { 4351 4352 down_write(&EXT4_I(inode)->i_data_sem); 4353 ext4_discard_preallocations(inode); 4354 4355 ret = ext4_es_remove_extent(inode, first_block, 4356 stop_block - first_block); 4357 if (ret) { 4358 up_write(&EXT4_I(inode)->i_data_sem); 4359 goto out_stop; 4360 } 4361 4362 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4363 ret = ext4_ext_remove_space(inode, first_block, 4364 stop_block - 1); 4365 else 4366 ret = ext4_ind_remove_space(handle, inode, first_block, 4367 stop_block); 4368 4369 up_write(&EXT4_I(inode)->i_data_sem); 4370 } 4371 if (IS_SYNC(inode)) 4372 ext4_handle_sync(handle); 4373 4374 inode->i_mtime = inode->i_ctime = current_time(inode); 4375 ext4_mark_inode_dirty(handle, inode); 4376 if (ret >= 0) 4377 ext4_update_inode_fsync_trans(handle, inode, 1); 4378 out_stop: 4379 ext4_journal_stop(handle); 4380 out_dio: 4381 up_write(&EXT4_I(inode)->i_mmap_sem); 4382 out_mutex: 4383 inode_unlock(inode); 4384 return ret; 4385 } 4386 4387 int ext4_inode_attach_jinode(struct inode *inode) 4388 { 4389 struct ext4_inode_info *ei = EXT4_I(inode); 4390 struct jbd2_inode *jinode; 4391 4392 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4393 return 0; 4394 4395 jinode = jbd2_alloc_inode(GFP_KERNEL); 4396 spin_lock(&inode->i_lock); 4397 if (!ei->jinode) { 4398 if (!jinode) { 4399 spin_unlock(&inode->i_lock); 4400 return -ENOMEM; 4401 } 4402 ei->jinode = jinode; 4403 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4404 jinode = NULL; 4405 } 4406 spin_unlock(&inode->i_lock); 4407 if (unlikely(jinode != NULL)) 4408 jbd2_free_inode(jinode); 4409 return 0; 4410 } 4411 4412 /* 4413 * ext4_truncate() 4414 * 4415 * We block out ext4_get_block() block instantiations across the entire 4416 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4417 * simultaneously on behalf of the same inode. 4418 * 4419 * As we work through the truncate and commit bits of it to the journal there 4420 * is one core, guiding principle: the file's tree must always be consistent on 4421 * disk. We must be able to restart the truncate after a crash. 4422 * 4423 * The file's tree may be transiently inconsistent in memory (although it 4424 * probably isn't), but whenever we close off and commit a journal transaction, 4425 * the contents of (the filesystem + the journal) must be consistent and 4426 * restartable. It's pretty simple, really: bottom up, right to left (although 4427 * left-to-right works OK too). 4428 * 4429 * Note that at recovery time, journal replay occurs *before* the restart of 4430 * truncate against the orphan inode list. 4431 * 4432 * The committed inode has the new, desired i_size (which is the same as 4433 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4434 * that this inode's truncate did not complete and it will again call 4435 * ext4_truncate() to have another go. So there will be instantiated blocks 4436 * to the right of the truncation point in a crashed ext4 filesystem. But 4437 * that's fine - as long as they are linked from the inode, the post-crash 4438 * ext4_truncate() run will find them and release them. 4439 */ 4440 int ext4_truncate(struct inode *inode) 4441 { 4442 struct ext4_inode_info *ei = EXT4_I(inode); 4443 unsigned int credits; 4444 int err = 0; 4445 handle_t *handle; 4446 struct address_space *mapping = inode->i_mapping; 4447 4448 /* 4449 * There is a possibility that we're either freeing the inode 4450 * or it's a completely new inode. In those cases we might not 4451 * have i_mutex locked because it's not necessary. 4452 */ 4453 if (!(inode->i_state & (I_NEW|I_FREEING))) 4454 WARN_ON(!inode_is_locked(inode)); 4455 trace_ext4_truncate_enter(inode); 4456 4457 if (!ext4_can_truncate(inode)) 4458 return 0; 4459 4460 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4461 4462 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4463 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4464 4465 if (ext4_has_inline_data(inode)) { 4466 int has_inline = 1; 4467 4468 err = ext4_inline_data_truncate(inode, &has_inline); 4469 if (err) 4470 return err; 4471 if (has_inline) 4472 return 0; 4473 } 4474 4475 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4476 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4477 if (ext4_inode_attach_jinode(inode) < 0) 4478 return 0; 4479 } 4480 4481 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4482 credits = ext4_writepage_trans_blocks(inode); 4483 else 4484 credits = ext4_blocks_for_truncate(inode); 4485 4486 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4487 if (IS_ERR(handle)) 4488 return PTR_ERR(handle); 4489 4490 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4491 ext4_block_truncate_page(handle, mapping, inode->i_size); 4492 4493 /* 4494 * We add the inode to the orphan list, so that if this 4495 * truncate spans multiple transactions, and we crash, we will 4496 * resume the truncate when the filesystem recovers. It also 4497 * marks the inode dirty, to catch the new size. 4498 * 4499 * Implication: the file must always be in a sane, consistent 4500 * truncatable state while each transaction commits. 4501 */ 4502 err = ext4_orphan_add(handle, inode); 4503 if (err) 4504 goto out_stop; 4505 4506 down_write(&EXT4_I(inode)->i_data_sem); 4507 4508 ext4_discard_preallocations(inode); 4509 4510 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4511 err = ext4_ext_truncate(handle, inode); 4512 else 4513 ext4_ind_truncate(handle, inode); 4514 4515 up_write(&ei->i_data_sem); 4516 if (err) 4517 goto out_stop; 4518 4519 if (IS_SYNC(inode)) 4520 ext4_handle_sync(handle); 4521 4522 out_stop: 4523 /* 4524 * If this was a simple ftruncate() and the file will remain alive, 4525 * then we need to clear up the orphan record which we created above. 4526 * However, if this was a real unlink then we were called by 4527 * ext4_evict_inode(), and we allow that function to clean up the 4528 * orphan info for us. 4529 */ 4530 if (inode->i_nlink) 4531 ext4_orphan_del(handle, inode); 4532 4533 inode->i_mtime = inode->i_ctime = current_time(inode); 4534 ext4_mark_inode_dirty(handle, inode); 4535 ext4_journal_stop(handle); 4536 4537 trace_ext4_truncate_exit(inode); 4538 return err; 4539 } 4540 4541 /* 4542 * ext4_get_inode_loc returns with an extra refcount against the inode's 4543 * underlying buffer_head on success. If 'in_mem' is true, we have all 4544 * data in memory that is needed to recreate the on-disk version of this 4545 * inode. 4546 */ 4547 static int __ext4_get_inode_loc(struct inode *inode, 4548 struct ext4_iloc *iloc, int in_mem) 4549 { 4550 struct ext4_group_desc *gdp; 4551 struct buffer_head *bh; 4552 struct super_block *sb = inode->i_sb; 4553 ext4_fsblk_t block; 4554 struct blk_plug plug; 4555 int inodes_per_block, inode_offset; 4556 4557 iloc->bh = NULL; 4558 if (inode->i_ino < EXT4_ROOT_INO || 4559 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4560 return -EFSCORRUPTED; 4561 4562 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4563 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4564 if (!gdp) 4565 return -EIO; 4566 4567 /* 4568 * Figure out the offset within the block group inode table 4569 */ 4570 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4571 inode_offset = ((inode->i_ino - 1) % 4572 EXT4_INODES_PER_GROUP(sb)); 4573 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4574 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4575 4576 bh = sb_getblk(sb, block); 4577 if (unlikely(!bh)) 4578 return -ENOMEM; 4579 if (!buffer_uptodate(bh)) { 4580 lock_buffer(bh); 4581 4582 /* 4583 * If the buffer has the write error flag, we have failed 4584 * to write out another inode in the same block. In this 4585 * case, we don't have to read the block because we may 4586 * read the old inode data successfully. 4587 */ 4588 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4589 set_buffer_uptodate(bh); 4590 4591 if (buffer_uptodate(bh)) { 4592 /* someone brought it uptodate while we waited */ 4593 unlock_buffer(bh); 4594 goto has_buffer; 4595 } 4596 4597 /* 4598 * If we have all information of the inode in memory and this 4599 * is the only valid inode in the block, we need not read the 4600 * block. 4601 */ 4602 if (in_mem) { 4603 struct buffer_head *bitmap_bh; 4604 int i, start; 4605 4606 start = inode_offset & ~(inodes_per_block - 1); 4607 4608 /* Is the inode bitmap in cache? */ 4609 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4610 if (unlikely(!bitmap_bh)) 4611 goto make_io; 4612 4613 /* 4614 * If the inode bitmap isn't in cache then the 4615 * optimisation may end up performing two reads instead 4616 * of one, so skip it. 4617 */ 4618 if (!buffer_uptodate(bitmap_bh)) { 4619 brelse(bitmap_bh); 4620 goto make_io; 4621 } 4622 for (i = start; i < start + inodes_per_block; i++) { 4623 if (i == inode_offset) 4624 continue; 4625 if (ext4_test_bit(i, bitmap_bh->b_data)) 4626 break; 4627 } 4628 brelse(bitmap_bh); 4629 if (i == start + inodes_per_block) { 4630 /* all other inodes are free, so skip I/O */ 4631 memset(bh->b_data, 0, bh->b_size); 4632 set_buffer_uptodate(bh); 4633 unlock_buffer(bh); 4634 goto has_buffer; 4635 } 4636 } 4637 4638 make_io: 4639 /* 4640 * If we need to do any I/O, try to pre-readahead extra 4641 * blocks from the inode table. 4642 */ 4643 blk_start_plug(&plug); 4644 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4645 ext4_fsblk_t b, end, table; 4646 unsigned num; 4647 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4648 4649 table = ext4_inode_table(sb, gdp); 4650 /* s_inode_readahead_blks is always a power of 2 */ 4651 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4652 if (table > b) 4653 b = table; 4654 end = b + ra_blks; 4655 num = EXT4_INODES_PER_GROUP(sb); 4656 if (ext4_has_group_desc_csum(sb)) 4657 num -= ext4_itable_unused_count(sb, gdp); 4658 table += num / inodes_per_block; 4659 if (end > table) 4660 end = table; 4661 while (b <= end) 4662 sb_breadahead(sb, b++); 4663 } 4664 4665 /* 4666 * There are other valid inodes in the buffer, this inode 4667 * has in-inode xattrs, or we don't have this inode in memory. 4668 * Read the block from disk. 4669 */ 4670 trace_ext4_load_inode(inode); 4671 get_bh(bh); 4672 bh->b_end_io = end_buffer_read_sync; 4673 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4674 blk_finish_plug(&plug); 4675 wait_on_buffer(bh); 4676 if (!buffer_uptodate(bh)) { 4677 EXT4_ERROR_INODE_BLOCK(inode, block, 4678 "unable to read itable block"); 4679 brelse(bh); 4680 return -EIO; 4681 } 4682 } 4683 has_buffer: 4684 iloc->bh = bh; 4685 return 0; 4686 } 4687 4688 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4689 { 4690 /* We have all inode data except xattrs in memory here. */ 4691 return __ext4_get_inode_loc(inode, iloc, 4692 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4693 } 4694 4695 static bool ext4_should_use_dax(struct inode *inode) 4696 { 4697 if (!test_opt(inode->i_sb, DAX)) 4698 return false; 4699 if (!S_ISREG(inode->i_mode)) 4700 return false; 4701 if (ext4_should_journal_data(inode)) 4702 return false; 4703 if (ext4_has_inline_data(inode)) 4704 return false; 4705 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4706 return false; 4707 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4708 return false; 4709 return true; 4710 } 4711 4712 void ext4_set_inode_flags(struct inode *inode) 4713 { 4714 unsigned int flags = EXT4_I(inode)->i_flags; 4715 unsigned int new_fl = 0; 4716 4717 if (flags & EXT4_SYNC_FL) 4718 new_fl |= S_SYNC; 4719 if (flags & EXT4_APPEND_FL) 4720 new_fl |= S_APPEND; 4721 if (flags & EXT4_IMMUTABLE_FL) 4722 new_fl |= S_IMMUTABLE; 4723 if (flags & EXT4_NOATIME_FL) 4724 new_fl |= S_NOATIME; 4725 if (flags & EXT4_DIRSYNC_FL) 4726 new_fl |= S_DIRSYNC; 4727 if (ext4_should_use_dax(inode)) 4728 new_fl |= S_DAX; 4729 if (flags & EXT4_ENCRYPT_FL) 4730 new_fl |= S_ENCRYPTED; 4731 if (flags & EXT4_CASEFOLD_FL) 4732 new_fl |= S_CASEFOLD; 4733 if (flags & EXT4_VERITY_FL) 4734 new_fl |= S_VERITY; 4735 inode_set_flags(inode, new_fl, 4736 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4737 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4738 } 4739 4740 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4741 struct ext4_inode_info *ei) 4742 { 4743 blkcnt_t i_blocks ; 4744 struct inode *inode = &(ei->vfs_inode); 4745 struct super_block *sb = inode->i_sb; 4746 4747 if (ext4_has_feature_huge_file(sb)) { 4748 /* we are using combined 48 bit field */ 4749 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4750 le32_to_cpu(raw_inode->i_blocks_lo); 4751 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4752 /* i_blocks represent file system block size */ 4753 return i_blocks << (inode->i_blkbits - 9); 4754 } else { 4755 return i_blocks; 4756 } 4757 } else { 4758 return le32_to_cpu(raw_inode->i_blocks_lo); 4759 } 4760 } 4761 4762 static inline int ext4_iget_extra_inode(struct inode *inode, 4763 struct ext4_inode *raw_inode, 4764 struct ext4_inode_info *ei) 4765 { 4766 __le32 *magic = (void *)raw_inode + 4767 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4768 4769 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4770 EXT4_INODE_SIZE(inode->i_sb) && 4771 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4772 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4773 return ext4_find_inline_data_nolock(inode); 4774 } else 4775 EXT4_I(inode)->i_inline_off = 0; 4776 return 0; 4777 } 4778 4779 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4780 { 4781 if (!ext4_has_feature_project(inode->i_sb)) 4782 return -EOPNOTSUPP; 4783 *projid = EXT4_I(inode)->i_projid; 4784 return 0; 4785 } 4786 4787 /* 4788 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4789 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4790 * set. 4791 */ 4792 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4793 { 4794 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4795 inode_set_iversion_raw(inode, val); 4796 else 4797 inode_set_iversion_queried(inode, val); 4798 } 4799 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4800 { 4801 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4802 return inode_peek_iversion_raw(inode); 4803 else 4804 return inode_peek_iversion(inode); 4805 } 4806 4807 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4808 ext4_iget_flags flags, const char *function, 4809 unsigned int line) 4810 { 4811 struct ext4_iloc iloc; 4812 struct ext4_inode *raw_inode; 4813 struct ext4_inode_info *ei; 4814 struct inode *inode; 4815 journal_t *journal = EXT4_SB(sb)->s_journal; 4816 long ret; 4817 loff_t size; 4818 int block; 4819 uid_t i_uid; 4820 gid_t i_gid; 4821 projid_t i_projid; 4822 4823 if ((!(flags & EXT4_IGET_SPECIAL) && 4824 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4825 (ino < EXT4_ROOT_INO) || 4826 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4827 if (flags & EXT4_IGET_HANDLE) 4828 return ERR_PTR(-ESTALE); 4829 __ext4_error(sb, function, line, 4830 "inode #%lu: comm %s: iget: illegal inode #", 4831 ino, current->comm); 4832 return ERR_PTR(-EFSCORRUPTED); 4833 } 4834 4835 inode = iget_locked(sb, ino); 4836 if (!inode) 4837 return ERR_PTR(-ENOMEM); 4838 if (!(inode->i_state & I_NEW)) 4839 return inode; 4840 4841 ei = EXT4_I(inode); 4842 iloc.bh = NULL; 4843 4844 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4845 if (ret < 0) 4846 goto bad_inode; 4847 raw_inode = ext4_raw_inode(&iloc); 4848 4849 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4850 ext4_error_inode(inode, function, line, 0, 4851 "iget: root inode unallocated"); 4852 ret = -EFSCORRUPTED; 4853 goto bad_inode; 4854 } 4855 4856 if ((flags & EXT4_IGET_HANDLE) && 4857 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4858 ret = -ESTALE; 4859 goto bad_inode; 4860 } 4861 4862 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4863 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4864 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4865 EXT4_INODE_SIZE(inode->i_sb) || 4866 (ei->i_extra_isize & 3)) { 4867 ext4_error_inode(inode, function, line, 0, 4868 "iget: bad extra_isize %u " 4869 "(inode size %u)", 4870 ei->i_extra_isize, 4871 EXT4_INODE_SIZE(inode->i_sb)); 4872 ret = -EFSCORRUPTED; 4873 goto bad_inode; 4874 } 4875 } else 4876 ei->i_extra_isize = 0; 4877 4878 /* Precompute checksum seed for inode metadata */ 4879 if (ext4_has_metadata_csum(sb)) { 4880 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4881 __u32 csum; 4882 __le32 inum = cpu_to_le32(inode->i_ino); 4883 __le32 gen = raw_inode->i_generation; 4884 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4885 sizeof(inum)); 4886 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4887 sizeof(gen)); 4888 } 4889 4890 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4891 ext4_error_inode(inode, function, line, 0, 4892 "iget: checksum invalid"); 4893 ret = -EFSBADCRC; 4894 goto bad_inode; 4895 } 4896 4897 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4898 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4899 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4900 if (ext4_has_feature_project(sb) && 4901 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4902 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4903 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4904 else 4905 i_projid = EXT4_DEF_PROJID; 4906 4907 if (!(test_opt(inode->i_sb, NO_UID32))) { 4908 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4909 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4910 } 4911 i_uid_write(inode, i_uid); 4912 i_gid_write(inode, i_gid); 4913 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4914 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4915 4916 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4917 ei->i_inline_off = 0; 4918 ei->i_dir_start_lookup = 0; 4919 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4920 /* We now have enough fields to check if the inode was active or not. 4921 * This is needed because nfsd might try to access dead inodes 4922 * the test is that same one that e2fsck uses 4923 * NeilBrown 1999oct15 4924 */ 4925 if (inode->i_nlink == 0) { 4926 if ((inode->i_mode == 0 || 4927 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4928 ino != EXT4_BOOT_LOADER_INO) { 4929 /* this inode is deleted */ 4930 ret = -ESTALE; 4931 goto bad_inode; 4932 } 4933 /* The only unlinked inodes we let through here have 4934 * valid i_mode and are being read by the orphan 4935 * recovery code: that's fine, we're about to complete 4936 * the process of deleting those. 4937 * OR it is the EXT4_BOOT_LOADER_INO which is 4938 * not initialized on a new filesystem. */ 4939 } 4940 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4941 ext4_set_inode_flags(inode); 4942 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4943 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4944 if (ext4_has_feature_64bit(sb)) 4945 ei->i_file_acl |= 4946 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4947 inode->i_size = ext4_isize(sb, raw_inode); 4948 if ((size = i_size_read(inode)) < 0) { 4949 ext4_error_inode(inode, function, line, 0, 4950 "iget: bad i_size value: %lld", size); 4951 ret = -EFSCORRUPTED; 4952 goto bad_inode; 4953 } 4954 ei->i_disksize = inode->i_size; 4955 #ifdef CONFIG_QUOTA 4956 ei->i_reserved_quota = 0; 4957 #endif 4958 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4959 ei->i_block_group = iloc.block_group; 4960 ei->i_last_alloc_group = ~0; 4961 /* 4962 * NOTE! The in-memory inode i_data array is in little-endian order 4963 * even on big-endian machines: we do NOT byteswap the block numbers! 4964 */ 4965 for (block = 0; block < EXT4_N_BLOCKS; block++) 4966 ei->i_data[block] = raw_inode->i_block[block]; 4967 INIT_LIST_HEAD(&ei->i_orphan); 4968 4969 /* 4970 * Set transaction id's of transactions that have to be committed 4971 * to finish f[data]sync. We set them to currently running transaction 4972 * as we cannot be sure that the inode or some of its metadata isn't 4973 * part of the transaction - the inode could have been reclaimed and 4974 * now it is reread from disk. 4975 */ 4976 if (journal) { 4977 transaction_t *transaction; 4978 tid_t tid; 4979 4980 read_lock(&journal->j_state_lock); 4981 if (journal->j_running_transaction) 4982 transaction = journal->j_running_transaction; 4983 else 4984 transaction = journal->j_committing_transaction; 4985 if (transaction) 4986 tid = transaction->t_tid; 4987 else 4988 tid = journal->j_commit_sequence; 4989 read_unlock(&journal->j_state_lock); 4990 ei->i_sync_tid = tid; 4991 ei->i_datasync_tid = tid; 4992 } 4993 4994 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4995 if (ei->i_extra_isize == 0) { 4996 /* The extra space is currently unused. Use it. */ 4997 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4998 ei->i_extra_isize = sizeof(struct ext4_inode) - 4999 EXT4_GOOD_OLD_INODE_SIZE; 5000 } else { 5001 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5002 if (ret) 5003 goto bad_inode; 5004 } 5005 } 5006 5007 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5008 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5009 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5010 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5011 5012 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5013 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5014 5015 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5016 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5017 ivers |= 5018 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5019 } 5020 ext4_inode_set_iversion_queried(inode, ivers); 5021 } 5022 5023 ret = 0; 5024 if (ei->i_file_acl && 5025 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5026 ext4_error_inode(inode, function, line, 0, 5027 "iget: bad extended attribute block %llu", 5028 ei->i_file_acl); 5029 ret = -EFSCORRUPTED; 5030 goto bad_inode; 5031 } else if (!ext4_has_inline_data(inode)) { 5032 /* validate the block references in the inode */ 5033 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5034 (S_ISLNK(inode->i_mode) && 5035 !ext4_inode_is_fast_symlink(inode))) { 5036 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5037 ret = ext4_ext_check_inode(inode); 5038 else 5039 ret = ext4_ind_check_inode(inode); 5040 } 5041 } 5042 if (ret) 5043 goto bad_inode; 5044 5045 if (S_ISREG(inode->i_mode)) { 5046 inode->i_op = &ext4_file_inode_operations; 5047 inode->i_fop = &ext4_file_operations; 5048 ext4_set_aops(inode); 5049 } else if (S_ISDIR(inode->i_mode)) { 5050 inode->i_op = &ext4_dir_inode_operations; 5051 inode->i_fop = &ext4_dir_operations; 5052 } else if (S_ISLNK(inode->i_mode)) { 5053 /* VFS does not allow setting these so must be corruption */ 5054 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5055 ext4_error_inode(inode, function, line, 0, 5056 "iget: immutable or append flags " 5057 "not allowed on symlinks"); 5058 ret = -EFSCORRUPTED; 5059 goto bad_inode; 5060 } 5061 if (IS_ENCRYPTED(inode)) { 5062 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5063 ext4_set_aops(inode); 5064 } else if (ext4_inode_is_fast_symlink(inode)) { 5065 inode->i_link = (char *)ei->i_data; 5066 inode->i_op = &ext4_fast_symlink_inode_operations; 5067 nd_terminate_link(ei->i_data, inode->i_size, 5068 sizeof(ei->i_data) - 1); 5069 } else { 5070 inode->i_op = &ext4_symlink_inode_operations; 5071 ext4_set_aops(inode); 5072 } 5073 inode_nohighmem(inode); 5074 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5075 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5076 inode->i_op = &ext4_special_inode_operations; 5077 if (raw_inode->i_block[0]) 5078 init_special_inode(inode, inode->i_mode, 5079 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5080 else 5081 init_special_inode(inode, inode->i_mode, 5082 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5083 } else if (ino == EXT4_BOOT_LOADER_INO) { 5084 make_bad_inode(inode); 5085 } else { 5086 ret = -EFSCORRUPTED; 5087 ext4_error_inode(inode, function, line, 0, 5088 "iget: bogus i_mode (%o)", inode->i_mode); 5089 goto bad_inode; 5090 } 5091 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 5092 ext4_error_inode(inode, function, line, 0, 5093 "casefold flag without casefold feature"); 5094 brelse(iloc.bh); 5095 5096 unlock_new_inode(inode); 5097 return inode; 5098 5099 bad_inode: 5100 brelse(iloc.bh); 5101 iget_failed(inode); 5102 return ERR_PTR(ret); 5103 } 5104 5105 static int ext4_inode_blocks_set(handle_t *handle, 5106 struct ext4_inode *raw_inode, 5107 struct ext4_inode_info *ei) 5108 { 5109 struct inode *inode = &(ei->vfs_inode); 5110 u64 i_blocks = inode->i_blocks; 5111 struct super_block *sb = inode->i_sb; 5112 5113 if (i_blocks <= ~0U) { 5114 /* 5115 * i_blocks can be represented in a 32 bit variable 5116 * as multiple of 512 bytes 5117 */ 5118 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5119 raw_inode->i_blocks_high = 0; 5120 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5121 return 0; 5122 } 5123 if (!ext4_has_feature_huge_file(sb)) 5124 return -EFBIG; 5125 5126 if (i_blocks <= 0xffffffffffffULL) { 5127 /* 5128 * i_blocks can be represented in a 48 bit variable 5129 * as multiple of 512 bytes 5130 */ 5131 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5132 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5133 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5134 } else { 5135 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5136 /* i_block is stored in file system block size */ 5137 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5138 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5139 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5140 } 5141 return 0; 5142 } 5143 5144 struct other_inode { 5145 unsigned long orig_ino; 5146 struct ext4_inode *raw_inode; 5147 }; 5148 5149 static int other_inode_match(struct inode * inode, unsigned long ino, 5150 void *data) 5151 { 5152 struct other_inode *oi = (struct other_inode *) data; 5153 5154 if ((inode->i_ino != ino) || 5155 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5156 I_DIRTY_INODE)) || 5157 ((inode->i_state & I_DIRTY_TIME) == 0)) 5158 return 0; 5159 spin_lock(&inode->i_lock); 5160 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5161 I_DIRTY_INODE)) == 0) && 5162 (inode->i_state & I_DIRTY_TIME)) { 5163 struct ext4_inode_info *ei = EXT4_I(inode); 5164 5165 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5166 spin_unlock(&inode->i_lock); 5167 5168 spin_lock(&ei->i_raw_lock); 5169 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5170 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5171 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5172 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5173 spin_unlock(&ei->i_raw_lock); 5174 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5175 return -1; 5176 } 5177 spin_unlock(&inode->i_lock); 5178 return -1; 5179 } 5180 5181 /* 5182 * Opportunistically update the other time fields for other inodes in 5183 * the same inode table block. 5184 */ 5185 static void ext4_update_other_inodes_time(struct super_block *sb, 5186 unsigned long orig_ino, char *buf) 5187 { 5188 struct other_inode oi; 5189 unsigned long ino; 5190 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5191 int inode_size = EXT4_INODE_SIZE(sb); 5192 5193 oi.orig_ino = orig_ino; 5194 /* 5195 * Calculate the first inode in the inode table block. Inode 5196 * numbers are one-based. That is, the first inode in a block 5197 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5198 */ 5199 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5200 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5201 if (ino == orig_ino) 5202 continue; 5203 oi.raw_inode = (struct ext4_inode *) buf; 5204 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5205 } 5206 } 5207 5208 /* 5209 * Post the struct inode info into an on-disk inode location in the 5210 * buffer-cache. This gobbles the caller's reference to the 5211 * buffer_head in the inode location struct. 5212 * 5213 * The caller must have write access to iloc->bh. 5214 */ 5215 static int ext4_do_update_inode(handle_t *handle, 5216 struct inode *inode, 5217 struct ext4_iloc *iloc) 5218 { 5219 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5220 struct ext4_inode_info *ei = EXT4_I(inode); 5221 struct buffer_head *bh = iloc->bh; 5222 struct super_block *sb = inode->i_sb; 5223 int err = 0, rc, block; 5224 int need_datasync = 0, set_large_file = 0; 5225 uid_t i_uid; 5226 gid_t i_gid; 5227 projid_t i_projid; 5228 5229 spin_lock(&ei->i_raw_lock); 5230 5231 /* For fields not tracked in the in-memory inode, 5232 * initialise them to zero for new inodes. */ 5233 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5234 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5235 5236 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5237 i_uid = i_uid_read(inode); 5238 i_gid = i_gid_read(inode); 5239 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5240 if (!(test_opt(inode->i_sb, NO_UID32))) { 5241 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5242 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5243 /* 5244 * Fix up interoperability with old kernels. Otherwise, old inodes get 5245 * re-used with the upper 16 bits of the uid/gid intact 5246 */ 5247 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5248 raw_inode->i_uid_high = 0; 5249 raw_inode->i_gid_high = 0; 5250 } else { 5251 raw_inode->i_uid_high = 5252 cpu_to_le16(high_16_bits(i_uid)); 5253 raw_inode->i_gid_high = 5254 cpu_to_le16(high_16_bits(i_gid)); 5255 } 5256 } else { 5257 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5258 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5259 raw_inode->i_uid_high = 0; 5260 raw_inode->i_gid_high = 0; 5261 } 5262 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5263 5264 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5265 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5266 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5267 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5268 5269 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5270 if (err) { 5271 spin_unlock(&ei->i_raw_lock); 5272 goto out_brelse; 5273 } 5274 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5275 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5276 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5277 raw_inode->i_file_acl_high = 5278 cpu_to_le16(ei->i_file_acl >> 32); 5279 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5280 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5281 ext4_isize_set(raw_inode, ei->i_disksize); 5282 need_datasync = 1; 5283 } 5284 if (ei->i_disksize > 0x7fffffffULL) { 5285 if (!ext4_has_feature_large_file(sb) || 5286 EXT4_SB(sb)->s_es->s_rev_level == 5287 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5288 set_large_file = 1; 5289 } 5290 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5291 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5292 if (old_valid_dev(inode->i_rdev)) { 5293 raw_inode->i_block[0] = 5294 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5295 raw_inode->i_block[1] = 0; 5296 } else { 5297 raw_inode->i_block[0] = 0; 5298 raw_inode->i_block[1] = 5299 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5300 raw_inode->i_block[2] = 0; 5301 } 5302 } else if (!ext4_has_inline_data(inode)) { 5303 for (block = 0; block < EXT4_N_BLOCKS; block++) 5304 raw_inode->i_block[block] = ei->i_data[block]; 5305 } 5306 5307 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5308 u64 ivers = ext4_inode_peek_iversion(inode); 5309 5310 raw_inode->i_disk_version = cpu_to_le32(ivers); 5311 if (ei->i_extra_isize) { 5312 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5313 raw_inode->i_version_hi = 5314 cpu_to_le32(ivers >> 32); 5315 raw_inode->i_extra_isize = 5316 cpu_to_le16(ei->i_extra_isize); 5317 } 5318 } 5319 5320 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5321 i_projid != EXT4_DEF_PROJID); 5322 5323 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5324 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5325 raw_inode->i_projid = cpu_to_le32(i_projid); 5326 5327 ext4_inode_csum_set(inode, raw_inode, ei); 5328 spin_unlock(&ei->i_raw_lock); 5329 if (inode->i_sb->s_flags & SB_LAZYTIME) 5330 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5331 bh->b_data); 5332 5333 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5334 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5335 if (!err) 5336 err = rc; 5337 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5338 if (set_large_file) { 5339 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5340 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5341 if (err) 5342 goto out_brelse; 5343 ext4_set_feature_large_file(sb); 5344 ext4_handle_sync(handle); 5345 err = ext4_handle_dirty_super(handle, sb); 5346 } 5347 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5348 out_brelse: 5349 brelse(bh); 5350 ext4_std_error(inode->i_sb, err); 5351 return err; 5352 } 5353 5354 /* 5355 * ext4_write_inode() 5356 * 5357 * We are called from a few places: 5358 * 5359 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5360 * Here, there will be no transaction running. We wait for any running 5361 * transaction to commit. 5362 * 5363 * - Within flush work (sys_sync(), kupdate and such). 5364 * We wait on commit, if told to. 5365 * 5366 * - Within iput_final() -> write_inode_now() 5367 * We wait on commit, if told to. 5368 * 5369 * In all cases it is actually safe for us to return without doing anything, 5370 * because the inode has been copied into a raw inode buffer in 5371 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5372 * writeback. 5373 * 5374 * Note that we are absolutely dependent upon all inode dirtiers doing the 5375 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5376 * which we are interested. 5377 * 5378 * It would be a bug for them to not do this. The code: 5379 * 5380 * mark_inode_dirty(inode) 5381 * stuff(); 5382 * inode->i_size = expr; 5383 * 5384 * is in error because write_inode() could occur while `stuff()' is running, 5385 * and the new i_size will be lost. Plus the inode will no longer be on the 5386 * superblock's dirty inode list. 5387 */ 5388 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5389 { 5390 int err; 5391 5392 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5393 sb_rdonly(inode->i_sb)) 5394 return 0; 5395 5396 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5397 return -EIO; 5398 5399 if (EXT4_SB(inode->i_sb)->s_journal) { 5400 if (ext4_journal_current_handle()) { 5401 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5402 dump_stack(); 5403 return -EIO; 5404 } 5405 5406 /* 5407 * No need to force transaction in WB_SYNC_NONE mode. Also 5408 * ext4_sync_fs() will force the commit after everything is 5409 * written. 5410 */ 5411 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5412 return 0; 5413 5414 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5415 EXT4_I(inode)->i_sync_tid); 5416 } else { 5417 struct ext4_iloc iloc; 5418 5419 err = __ext4_get_inode_loc(inode, &iloc, 0); 5420 if (err) 5421 return err; 5422 /* 5423 * sync(2) will flush the whole buffer cache. No need to do 5424 * it here separately for each inode. 5425 */ 5426 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5427 sync_dirty_buffer(iloc.bh); 5428 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5429 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5430 "IO error syncing inode"); 5431 err = -EIO; 5432 } 5433 brelse(iloc.bh); 5434 } 5435 return err; 5436 } 5437 5438 /* 5439 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5440 * buffers that are attached to a page stradding i_size and are undergoing 5441 * commit. In that case we have to wait for commit to finish and try again. 5442 */ 5443 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5444 { 5445 struct page *page; 5446 unsigned offset; 5447 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5448 tid_t commit_tid = 0; 5449 int ret; 5450 5451 offset = inode->i_size & (PAGE_SIZE - 1); 5452 /* 5453 * All buffers in the last page remain valid? Then there's nothing to 5454 * do. We do the check mainly to optimize the common PAGE_SIZE == 5455 * blocksize case 5456 */ 5457 if (offset > PAGE_SIZE - i_blocksize(inode)) 5458 return; 5459 while (1) { 5460 page = find_lock_page(inode->i_mapping, 5461 inode->i_size >> PAGE_SHIFT); 5462 if (!page) 5463 return; 5464 ret = __ext4_journalled_invalidatepage(page, offset, 5465 PAGE_SIZE - offset); 5466 unlock_page(page); 5467 put_page(page); 5468 if (ret != -EBUSY) 5469 return; 5470 commit_tid = 0; 5471 read_lock(&journal->j_state_lock); 5472 if (journal->j_committing_transaction) 5473 commit_tid = journal->j_committing_transaction->t_tid; 5474 read_unlock(&journal->j_state_lock); 5475 if (commit_tid) 5476 jbd2_log_wait_commit(journal, commit_tid); 5477 } 5478 } 5479 5480 /* 5481 * ext4_setattr() 5482 * 5483 * Called from notify_change. 5484 * 5485 * We want to trap VFS attempts to truncate the file as soon as 5486 * possible. In particular, we want to make sure that when the VFS 5487 * shrinks i_size, we put the inode on the orphan list and modify 5488 * i_disksize immediately, so that during the subsequent flushing of 5489 * dirty pages and freeing of disk blocks, we can guarantee that any 5490 * commit will leave the blocks being flushed in an unused state on 5491 * disk. (On recovery, the inode will get truncated and the blocks will 5492 * be freed, so we have a strong guarantee that no future commit will 5493 * leave these blocks visible to the user.) 5494 * 5495 * Another thing we have to assure is that if we are in ordered mode 5496 * and inode is still attached to the committing transaction, we must 5497 * we start writeout of all the dirty pages which are being truncated. 5498 * This way we are sure that all the data written in the previous 5499 * transaction are already on disk (truncate waits for pages under 5500 * writeback). 5501 * 5502 * Called with inode->i_mutex down. 5503 */ 5504 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5505 { 5506 struct inode *inode = d_inode(dentry); 5507 int error, rc = 0; 5508 int orphan = 0; 5509 const unsigned int ia_valid = attr->ia_valid; 5510 5511 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5512 return -EIO; 5513 5514 if (unlikely(IS_IMMUTABLE(inode))) 5515 return -EPERM; 5516 5517 if (unlikely(IS_APPEND(inode) && 5518 (ia_valid & (ATTR_MODE | ATTR_UID | 5519 ATTR_GID | ATTR_TIMES_SET)))) 5520 return -EPERM; 5521 5522 error = setattr_prepare(dentry, attr); 5523 if (error) 5524 return error; 5525 5526 error = fscrypt_prepare_setattr(dentry, attr); 5527 if (error) 5528 return error; 5529 5530 error = fsverity_prepare_setattr(dentry, attr); 5531 if (error) 5532 return error; 5533 5534 if (is_quota_modification(inode, attr)) { 5535 error = dquot_initialize(inode); 5536 if (error) 5537 return error; 5538 } 5539 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5540 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5541 handle_t *handle; 5542 5543 /* (user+group)*(old+new) structure, inode write (sb, 5544 * inode block, ? - but truncate inode update has it) */ 5545 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5546 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5547 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5548 if (IS_ERR(handle)) { 5549 error = PTR_ERR(handle); 5550 goto err_out; 5551 } 5552 5553 /* dquot_transfer() calls back ext4_get_inode_usage() which 5554 * counts xattr inode references. 5555 */ 5556 down_read(&EXT4_I(inode)->xattr_sem); 5557 error = dquot_transfer(inode, attr); 5558 up_read(&EXT4_I(inode)->xattr_sem); 5559 5560 if (error) { 5561 ext4_journal_stop(handle); 5562 return error; 5563 } 5564 /* Update corresponding info in inode so that everything is in 5565 * one transaction */ 5566 if (attr->ia_valid & ATTR_UID) 5567 inode->i_uid = attr->ia_uid; 5568 if (attr->ia_valid & ATTR_GID) 5569 inode->i_gid = attr->ia_gid; 5570 error = ext4_mark_inode_dirty(handle, inode); 5571 ext4_journal_stop(handle); 5572 } 5573 5574 if (attr->ia_valid & ATTR_SIZE) { 5575 handle_t *handle; 5576 loff_t oldsize = inode->i_size; 5577 int shrink = (attr->ia_size < inode->i_size); 5578 5579 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5580 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5581 5582 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5583 return -EFBIG; 5584 } 5585 if (!S_ISREG(inode->i_mode)) 5586 return -EINVAL; 5587 5588 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5589 inode_inc_iversion(inode); 5590 5591 if (shrink) { 5592 if (ext4_should_order_data(inode)) { 5593 error = ext4_begin_ordered_truncate(inode, 5594 attr->ia_size); 5595 if (error) 5596 goto err_out; 5597 } 5598 /* 5599 * Blocks are going to be removed from the inode. Wait 5600 * for dio in flight. 5601 */ 5602 inode_dio_wait(inode); 5603 } 5604 5605 down_write(&EXT4_I(inode)->i_mmap_sem); 5606 5607 rc = ext4_break_layouts(inode); 5608 if (rc) { 5609 up_write(&EXT4_I(inode)->i_mmap_sem); 5610 return rc; 5611 } 5612 5613 if (attr->ia_size != inode->i_size) { 5614 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5615 if (IS_ERR(handle)) { 5616 error = PTR_ERR(handle); 5617 goto out_mmap_sem; 5618 } 5619 if (ext4_handle_valid(handle) && shrink) { 5620 error = ext4_orphan_add(handle, inode); 5621 orphan = 1; 5622 } 5623 /* 5624 * Update c/mtime on truncate up, ext4_truncate() will 5625 * update c/mtime in shrink case below 5626 */ 5627 if (!shrink) { 5628 inode->i_mtime = current_time(inode); 5629 inode->i_ctime = inode->i_mtime; 5630 } 5631 down_write(&EXT4_I(inode)->i_data_sem); 5632 EXT4_I(inode)->i_disksize = attr->ia_size; 5633 rc = ext4_mark_inode_dirty(handle, inode); 5634 if (!error) 5635 error = rc; 5636 /* 5637 * We have to update i_size under i_data_sem together 5638 * with i_disksize to avoid races with writeback code 5639 * running ext4_wb_update_i_disksize(). 5640 */ 5641 if (!error) 5642 i_size_write(inode, attr->ia_size); 5643 up_write(&EXT4_I(inode)->i_data_sem); 5644 ext4_journal_stop(handle); 5645 if (error) 5646 goto out_mmap_sem; 5647 if (!shrink) { 5648 pagecache_isize_extended(inode, oldsize, 5649 inode->i_size); 5650 } else if (ext4_should_journal_data(inode)) { 5651 ext4_wait_for_tail_page_commit(inode); 5652 } 5653 } 5654 5655 /* 5656 * Truncate pagecache after we've waited for commit 5657 * in data=journal mode to make pages freeable. 5658 */ 5659 truncate_pagecache(inode, inode->i_size); 5660 /* 5661 * Call ext4_truncate() even if i_size didn't change to 5662 * truncate possible preallocated blocks. 5663 */ 5664 if (attr->ia_size <= oldsize) { 5665 rc = ext4_truncate(inode); 5666 if (rc) 5667 error = rc; 5668 } 5669 out_mmap_sem: 5670 up_write(&EXT4_I(inode)->i_mmap_sem); 5671 } 5672 5673 if (!error) { 5674 setattr_copy(inode, attr); 5675 mark_inode_dirty(inode); 5676 } 5677 5678 /* 5679 * If the call to ext4_truncate failed to get a transaction handle at 5680 * all, we need to clean up the in-core orphan list manually. 5681 */ 5682 if (orphan && inode->i_nlink) 5683 ext4_orphan_del(NULL, inode); 5684 5685 if (!error && (ia_valid & ATTR_MODE)) 5686 rc = posix_acl_chmod(inode, inode->i_mode); 5687 5688 err_out: 5689 ext4_std_error(inode->i_sb, error); 5690 if (!error) 5691 error = rc; 5692 return error; 5693 } 5694 5695 int ext4_getattr(const struct path *path, struct kstat *stat, 5696 u32 request_mask, unsigned int query_flags) 5697 { 5698 struct inode *inode = d_inode(path->dentry); 5699 struct ext4_inode *raw_inode; 5700 struct ext4_inode_info *ei = EXT4_I(inode); 5701 unsigned int flags; 5702 5703 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5704 stat->result_mask |= STATX_BTIME; 5705 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5706 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5707 } 5708 5709 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5710 if (flags & EXT4_APPEND_FL) 5711 stat->attributes |= STATX_ATTR_APPEND; 5712 if (flags & EXT4_COMPR_FL) 5713 stat->attributes |= STATX_ATTR_COMPRESSED; 5714 if (flags & EXT4_ENCRYPT_FL) 5715 stat->attributes |= STATX_ATTR_ENCRYPTED; 5716 if (flags & EXT4_IMMUTABLE_FL) 5717 stat->attributes |= STATX_ATTR_IMMUTABLE; 5718 if (flags & EXT4_NODUMP_FL) 5719 stat->attributes |= STATX_ATTR_NODUMP; 5720 5721 stat->attributes_mask |= (STATX_ATTR_APPEND | 5722 STATX_ATTR_COMPRESSED | 5723 STATX_ATTR_ENCRYPTED | 5724 STATX_ATTR_IMMUTABLE | 5725 STATX_ATTR_NODUMP); 5726 5727 generic_fillattr(inode, stat); 5728 return 0; 5729 } 5730 5731 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5732 u32 request_mask, unsigned int query_flags) 5733 { 5734 struct inode *inode = d_inode(path->dentry); 5735 u64 delalloc_blocks; 5736 5737 ext4_getattr(path, stat, request_mask, query_flags); 5738 5739 /* 5740 * If there is inline data in the inode, the inode will normally not 5741 * have data blocks allocated (it may have an external xattr block). 5742 * Report at least one sector for such files, so tools like tar, rsync, 5743 * others don't incorrectly think the file is completely sparse. 5744 */ 5745 if (unlikely(ext4_has_inline_data(inode))) 5746 stat->blocks += (stat->size + 511) >> 9; 5747 5748 /* 5749 * We can't update i_blocks if the block allocation is delayed 5750 * otherwise in the case of system crash before the real block 5751 * allocation is done, we will have i_blocks inconsistent with 5752 * on-disk file blocks. 5753 * We always keep i_blocks updated together with real 5754 * allocation. But to not confuse with user, stat 5755 * will return the blocks that include the delayed allocation 5756 * blocks for this file. 5757 */ 5758 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5759 EXT4_I(inode)->i_reserved_data_blocks); 5760 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5761 return 0; 5762 } 5763 5764 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5765 int pextents) 5766 { 5767 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5768 return ext4_ind_trans_blocks(inode, lblocks); 5769 return ext4_ext_index_trans_blocks(inode, pextents); 5770 } 5771 5772 /* 5773 * Account for index blocks, block groups bitmaps and block group 5774 * descriptor blocks if modify datablocks and index blocks 5775 * worse case, the indexs blocks spread over different block groups 5776 * 5777 * If datablocks are discontiguous, they are possible to spread over 5778 * different block groups too. If they are contiguous, with flexbg, 5779 * they could still across block group boundary. 5780 * 5781 * Also account for superblock, inode, quota and xattr blocks 5782 */ 5783 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5784 int pextents) 5785 { 5786 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5787 int gdpblocks; 5788 int idxblocks; 5789 int ret = 0; 5790 5791 /* 5792 * How many index blocks need to touch to map @lblocks logical blocks 5793 * to @pextents physical extents? 5794 */ 5795 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5796 5797 ret = idxblocks; 5798 5799 /* 5800 * Now let's see how many group bitmaps and group descriptors need 5801 * to account 5802 */ 5803 groups = idxblocks + pextents; 5804 gdpblocks = groups; 5805 if (groups > ngroups) 5806 groups = ngroups; 5807 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5808 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5809 5810 /* bitmaps and block group descriptor blocks */ 5811 ret += groups + gdpblocks; 5812 5813 /* Blocks for super block, inode, quota and xattr blocks */ 5814 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5815 5816 return ret; 5817 } 5818 5819 /* 5820 * Calculate the total number of credits to reserve to fit 5821 * the modification of a single pages into a single transaction, 5822 * which may include multiple chunks of block allocations. 5823 * 5824 * This could be called via ext4_write_begin() 5825 * 5826 * We need to consider the worse case, when 5827 * one new block per extent. 5828 */ 5829 int ext4_writepage_trans_blocks(struct inode *inode) 5830 { 5831 int bpp = ext4_journal_blocks_per_page(inode); 5832 int ret; 5833 5834 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5835 5836 /* Account for data blocks for journalled mode */ 5837 if (ext4_should_journal_data(inode)) 5838 ret += bpp; 5839 return ret; 5840 } 5841 5842 /* 5843 * Calculate the journal credits for a chunk of data modification. 5844 * 5845 * This is called from DIO, fallocate or whoever calling 5846 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5847 * 5848 * journal buffers for data blocks are not included here, as DIO 5849 * and fallocate do no need to journal data buffers. 5850 */ 5851 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5852 { 5853 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5854 } 5855 5856 /* 5857 * The caller must have previously called ext4_reserve_inode_write(). 5858 * Give this, we know that the caller already has write access to iloc->bh. 5859 */ 5860 int ext4_mark_iloc_dirty(handle_t *handle, 5861 struct inode *inode, struct ext4_iloc *iloc) 5862 { 5863 int err = 0; 5864 5865 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5866 put_bh(iloc->bh); 5867 return -EIO; 5868 } 5869 if (IS_I_VERSION(inode)) 5870 inode_inc_iversion(inode); 5871 5872 /* the do_update_inode consumes one bh->b_count */ 5873 get_bh(iloc->bh); 5874 5875 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5876 err = ext4_do_update_inode(handle, inode, iloc); 5877 put_bh(iloc->bh); 5878 return err; 5879 } 5880 5881 /* 5882 * On success, We end up with an outstanding reference count against 5883 * iloc->bh. This _must_ be cleaned up later. 5884 */ 5885 5886 int 5887 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5888 struct ext4_iloc *iloc) 5889 { 5890 int err; 5891 5892 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5893 return -EIO; 5894 5895 err = ext4_get_inode_loc(inode, iloc); 5896 if (!err) { 5897 BUFFER_TRACE(iloc->bh, "get_write_access"); 5898 err = ext4_journal_get_write_access(handle, iloc->bh); 5899 if (err) { 5900 brelse(iloc->bh); 5901 iloc->bh = NULL; 5902 } 5903 } 5904 ext4_std_error(inode->i_sb, err); 5905 return err; 5906 } 5907 5908 static int __ext4_expand_extra_isize(struct inode *inode, 5909 unsigned int new_extra_isize, 5910 struct ext4_iloc *iloc, 5911 handle_t *handle, int *no_expand) 5912 { 5913 struct ext4_inode *raw_inode; 5914 struct ext4_xattr_ibody_header *header; 5915 int error; 5916 5917 raw_inode = ext4_raw_inode(iloc); 5918 5919 header = IHDR(inode, raw_inode); 5920 5921 /* No extended attributes present */ 5922 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5923 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5924 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5925 EXT4_I(inode)->i_extra_isize, 0, 5926 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5927 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5928 return 0; 5929 } 5930 5931 /* try to expand with EAs present */ 5932 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5933 raw_inode, handle); 5934 if (error) { 5935 /* 5936 * Inode size expansion failed; don't try again 5937 */ 5938 *no_expand = 1; 5939 } 5940 5941 return error; 5942 } 5943 5944 /* 5945 * Expand an inode by new_extra_isize bytes. 5946 * Returns 0 on success or negative error number on failure. 5947 */ 5948 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5949 unsigned int new_extra_isize, 5950 struct ext4_iloc iloc, 5951 handle_t *handle) 5952 { 5953 int no_expand; 5954 int error; 5955 5956 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5957 return -EOVERFLOW; 5958 5959 /* 5960 * In nojournal mode, we can immediately attempt to expand 5961 * the inode. When journaled, we first need to obtain extra 5962 * buffer credits since we may write into the EA block 5963 * with this same handle. If journal_extend fails, then it will 5964 * only result in a minor loss of functionality for that inode. 5965 * If this is felt to be critical, then e2fsck should be run to 5966 * force a large enough s_min_extra_isize. 5967 */ 5968 if (ext4_handle_valid(handle) && 5969 jbd2_journal_extend(handle, 5970 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5971 return -ENOSPC; 5972 5973 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5974 return -EBUSY; 5975 5976 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5977 handle, &no_expand); 5978 ext4_write_unlock_xattr(inode, &no_expand); 5979 5980 return error; 5981 } 5982 5983 int ext4_expand_extra_isize(struct inode *inode, 5984 unsigned int new_extra_isize, 5985 struct ext4_iloc *iloc) 5986 { 5987 handle_t *handle; 5988 int no_expand; 5989 int error, rc; 5990 5991 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5992 brelse(iloc->bh); 5993 return -EOVERFLOW; 5994 } 5995 5996 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5997 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5998 if (IS_ERR(handle)) { 5999 error = PTR_ERR(handle); 6000 brelse(iloc->bh); 6001 return error; 6002 } 6003 6004 ext4_write_lock_xattr(inode, &no_expand); 6005 6006 BUFFER_TRACE(iloc->bh, "get_write_access"); 6007 error = ext4_journal_get_write_access(handle, iloc->bh); 6008 if (error) { 6009 brelse(iloc->bh); 6010 goto out_stop; 6011 } 6012 6013 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6014 handle, &no_expand); 6015 6016 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6017 if (!error) 6018 error = rc; 6019 6020 ext4_write_unlock_xattr(inode, &no_expand); 6021 out_stop: 6022 ext4_journal_stop(handle); 6023 return error; 6024 } 6025 6026 /* 6027 * What we do here is to mark the in-core inode as clean with respect to inode 6028 * dirtiness (it may still be data-dirty). 6029 * This means that the in-core inode may be reaped by prune_icache 6030 * without having to perform any I/O. This is a very good thing, 6031 * because *any* task may call prune_icache - even ones which 6032 * have a transaction open against a different journal. 6033 * 6034 * Is this cheating? Not really. Sure, we haven't written the 6035 * inode out, but prune_icache isn't a user-visible syncing function. 6036 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6037 * we start and wait on commits. 6038 */ 6039 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 6040 { 6041 struct ext4_iloc iloc; 6042 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6043 int err; 6044 6045 might_sleep(); 6046 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6047 err = ext4_reserve_inode_write(handle, inode, &iloc); 6048 if (err) 6049 return err; 6050 6051 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6052 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6053 iloc, handle); 6054 6055 return ext4_mark_iloc_dirty(handle, inode, &iloc); 6056 } 6057 6058 /* 6059 * ext4_dirty_inode() is called from __mark_inode_dirty() 6060 * 6061 * We're really interested in the case where a file is being extended. 6062 * i_size has been changed by generic_commit_write() and we thus need 6063 * to include the updated inode in the current transaction. 6064 * 6065 * Also, dquot_alloc_block() will always dirty the inode when blocks 6066 * are allocated to the file. 6067 * 6068 * If the inode is marked synchronous, we don't honour that here - doing 6069 * so would cause a commit on atime updates, which we don't bother doing. 6070 * We handle synchronous inodes at the highest possible level. 6071 * 6072 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 6073 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 6074 * to copy into the on-disk inode structure are the timestamp files. 6075 */ 6076 void ext4_dirty_inode(struct inode *inode, int flags) 6077 { 6078 handle_t *handle; 6079 6080 if (flags == I_DIRTY_TIME) 6081 return; 6082 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6083 if (IS_ERR(handle)) 6084 goto out; 6085 6086 ext4_mark_inode_dirty(handle, inode); 6087 6088 ext4_journal_stop(handle); 6089 out: 6090 return; 6091 } 6092 6093 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6094 { 6095 journal_t *journal; 6096 handle_t *handle; 6097 int err; 6098 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6099 6100 /* 6101 * We have to be very careful here: changing a data block's 6102 * journaling status dynamically is dangerous. If we write a 6103 * data block to the journal, change the status and then delete 6104 * that block, we risk forgetting to revoke the old log record 6105 * from the journal and so a subsequent replay can corrupt data. 6106 * So, first we make sure that the journal is empty and that 6107 * nobody is changing anything. 6108 */ 6109 6110 journal = EXT4_JOURNAL(inode); 6111 if (!journal) 6112 return 0; 6113 if (is_journal_aborted(journal)) 6114 return -EROFS; 6115 6116 /* Wait for all existing dio workers */ 6117 inode_dio_wait(inode); 6118 6119 /* 6120 * Before flushing the journal and switching inode's aops, we have 6121 * to flush all dirty data the inode has. There can be outstanding 6122 * delayed allocations, there can be unwritten extents created by 6123 * fallocate or buffered writes in dioread_nolock mode covered by 6124 * dirty data which can be converted only after flushing the dirty 6125 * data (and journalled aops don't know how to handle these cases). 6126 */ 6127 if (val) { 6128 down_write(&EXT4_I(inode)->i_mmap_sem); 6129 err = filemap_write_and_wait(inode->i_mapping); 6130 if (err < 0) { 6131 up_write(&EXT4_I(inode)->i_mmap_sem); 6132 return err; 6133 } 6134 } 6135 6136 percpu_down_write(&sbi->s_journal_flag_rwsem); 6137 jbd2_journal_lock_updates(journal); 6138 6139 /* 6140 * OK, there are no updates running now, and all cached data is 6141 * synced to disk. We are now in a completely consistent state 6142 * which doesn't have anything in the journal, and we know that 6143 * no filesystem updates are running, so it is safe to modify 6144 * the inode's in-core data-journaling state flag now. 6145 */ 6146 6147 if (val) 6148 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6149 else { 6150 err = jbd2_journal_flush(journal); 6151 if (err < 0) { 6152 jbd2_journal_unlock_updates(journal); 6153 percpu_up_write(&sbi->s_journal_flag_rwsem); 6154 return err; 6155 } 6156 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6157 } 6158 ext4_set_aops(inode); 6159 6160 jbd2_journal_unlock_updates(journal); 6161 percpu_up_write(&sbi->s_journal_flag_rwsem); 6162 6163 if (val) 6164 up_write(&EXT4_I(inode)->i_mmap_sem); 6165 6166 /* Finally we can mark the inode as dirty. */ 6167 6168 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6169 if (IS_ERR(handle)) 6170 return PTR_ERR(handle); 6171 6172 err = ext4_mark_inode_dirty(handle, inode); 6173 ext4_handle_sync(handle); 6174 ext4_journal_stop(handle); 6175 ext4_std_error(inode->i_sb, err); 6176 6177 return err; 6178 } 6179 6180 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6181 { 6182 return !buffer_mapped(bh); 6183 } 6184 6185 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6186 { 6187 struct vm_area_struct *vma = vmf->vma; 6188 struct page *page = vmf->page; 6189 loff_t size; 6190 unsigned long len; 6191 int err; 6192 vm_fault_t ret; 6193 struct file *file = vma->vm_file; 6194 struct inode *inode = file_inode(file); 6195 struct address_space *mapping = inode->i_mapping; 6196 handle_t *handle; 6197 get_block_t *get_block; 6198 int retries = 0; 6199 6200 if (unlikely(IS_IMMUTABLE(inode))) 6201 return VM_FAULT_SIGBUS; 6202 6203 sb_start_pagefault(inode->i_sb); 6204 file_update_time(vma->vm_file); 6205 6206 down_read(&EXT4_I(inode)->i_mmap_sem); 6207 6208 err = ext4_convert_inline_data(inode); 6209 if (err) 6210 goto out_ret; 6211 6212 /* Delalloc case is easy... */ 6213 if (test_opt(inode->i_sb, DELALLOC) && 6214 !ext4_should_journal_data(inode) && 6215 !ext4_nonda_switch(inode->i_sb)) { 6216 do { 6217 err = block_page_mkwrite(vma, vmf, 6218 ext4_da_get_block_prep); 6219 } while (err == -ENOSPC && 6220 ext4_should_retry_alloc(inode->i_sb, &retries)); 6221 goto out_ret; 6222 } 6223 6224 lock_page(page); 6225 size = i_size_read(inode); 6226 /* Page got truncated from under us? */ 6227 if (page->mapping != mapping || page_offset(page) > size) { 6228 unlock_page(page); 6229 ret = VM_FAULT_NOPAGE; 6230 goto out; 6231 } 6232 6233 if (page->index == size >> PAGE_SHIFT) 6234 len = size & ~PAGE_MASK; 6235 else 6236 len = PAGE_SIZE; 6237 /* 6238 * Return if we have all the buffers mapped. This avoids the need to do 6239 * journal_start/journal_stop which can block and take a long time 6240 */ 6241 if (page_has_buffers(page)) { 6242 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6243 0, len, NULL, 6244 ext4_bh_unmapped)) { 6245 /* Wait so that we don't change page under IO */ 6246 wait_for_stable_page(page); 6247 ret = VM_FAULT_LOCKED; 6248 goto out; 6249 } 6250 } 6251 unlock_page(page); 6252 /* OK, we need to fill the hole... */ 6253 if (ext4_should_dioread_nolock(inode)) 6254 get_block = ext4_get_block_unwritten; 6255 else 6256 get_block = ext4_get_block; 6257 retry_alloc: 6258 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6259 ext4_writepage_trans_blocks(inode)); 6260 if (IS_ERR(handle)) { 6261 ret = VM_FAULT_SIGBUS; 6262 goto out; 6263 } 6264 err = block_page_mkwrite(vma, vmf, get_block); 6265 if (!err && ext4_should_journal_data(inode)) { 6266 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6267 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6268 unlock_page(page); 6269 ret = VM_FAULT_SIGBUS; 6270 ext4_journal_stop(handle); 6271 goto out; 6272 } 6273 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6274 } 6275 ext4_journal_stop(handle); 6276 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6277 goto retry_alloc; 6278 out_ret: 6279 ret = block_page_mkwrite_return(err); 6280 out: 6281 up_read(&EXT4_I(inode)->i_mmap_sem); 6282 sb_end_pagefault(inode->i_sb); 6283 return ret; 6284 } 6285 6286 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6287 { 6288 struct inode *inode = file_inode(vmf->vma->vm_file); 6289 vm_fault_t ret; 6290 6291 down_read(&EXT4_I(inode)->i_mmap_sem); 6292 ret = filemap_fault(vmf); 6293 up_read(&EXT4_I(inode)->i_mmap_sem); 6294 6295 return ret; 6296 } 6297