1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 172 int nblocks) 173 { 174 int ret; 175 176 /* 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 178 * moment, get_block can be called only for blocks inside i_size since 179 * page cache has been already dropped and writes are blocked by 180 * i_mutex. So we can safely drop the i_data_sem here. 181 */ 182 BUG_ON(EXT4_JOURNAL(inode) == NULL); 183 jbd_debug(2, "restarting handle %p\n", handle); 184 up_write(&EXT4_I(inode)->i_data_sem); 185 ret = ext4_journal_restart(handle, nblocks); 186 down_write(&EXT4_I(inode)->i_data_sem); 187 ext4_discard_preallocations(inode); 188 189 return ret; 190 } 191 192 /* 193 * Called at the last iput() if i_nlink is zero. 194 */ 195 void ext4_evict_inode(struct inode *inode) 196 { 197 handle_t *handle; 198 int err; 199 int extra_credits = 3; 200 struct ext4_xattr_inode_array *ea_inode_array = NULL; 201 202 trace_ext4_evict_inode(inode); 203 204 if (inode->i_nlink) { 205 /* 206 * When journalling data dirty buffers are tracked only in the 207 * journal. So although mm thinks everything is clean and 208 * ready for reaping the inode might still have some pages to 209 * write in the running transaction or waiting to be 210 * checkpointed. Thus calling jbd2_journal_invalidatepage() 211 * (via truncate_inode_pages()) to discard these buffers can 212 * cause data loss. Also even if we did not discard these 213 * buffers, we would have no way to find them after the inode 214 * is reaped and thus user could see stale data if he tries to 215 * read them before the transaction is checkpointed. So be 216 * careful and force everything to disk here... We use 217 * ei->i_datasync_tid to store the newest transaction 218 * containing inode's data. 219 * 220 * Note that directories do not have this problem because they 221 * don't use page cache. 222 */ 223 if (inode->i_ino != EXT4_JOURNAL_INO && 224 ext4_should_journal_data(inode) && 225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 226 inode->i_data.nrpages) { 227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 229 230 jbd2_complete_transaction(journal, commit_tid); 231 filemap_write_and_wait(&inode->i_data); 232 } 233 truncate_inode_pages_final(&inode->i_data); 234 235 goto no_delete; 236 } 237 238 if (is_bad_inode(inode)) 239 goto no_delete; 240 dquot_initialize(inode); 241 242 if (ext4_should_order_data(inode)) 243 ext4_begin_ordered_truncate(inode, 0); 244 truncate_inode_pages_final(&inode->i_data); 245 246 /* 247 * Protect us against freezing - iput() caller didn't have to have any 248 * protection against it 249 */ 250 sb_start_intwrite(inode->i_sb); 251 252 if (!IS_NOQUOTA(inode)) 253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 254 255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 256 ext4_blocks_for_truncate(inode)+extra_credits); 257 if (IS_ERR(handle)) { 258 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 259 /* 260 * If we're going to skip the normal cleanup, we still need to 261 * make sure that the in-core orphan linked list is properly 262 * cleaned up. 263 */ 264 ext4_orphan_del(NULL, inode); 265 sb_end_intwrite(inode->i_sb); 266 goto no_delete; 267 } 268 269 if (IS_SYNC(inode)) 270 ext4_handle_sync(handle); 271 272 /* 273 * Set inode->i_size to 0 before calling ext4_truncate(). We need 274 * special handling of symlinks here because i_size is used to 275 * determine whether ext4_inode_info->i_data contains symlink data or 276 * block mappings. Setting i_size to 0 will remove its fast symlink 277 * status. Erase i_data so that it becomes a valid empty block map. 278 */ 279 if (ext4_inode_is_fast_symlink(inode)) 280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 281 inode->i_size = 0; 282 err = ext4_mark_inode_dirty(handle, inode); 283 if (err) { 284 ext4_warning(inode->i_sb, 285 "couldn't mark inode dirty (err %d)", err); 286 goto stop_handle; 287 } 288 if (inode->i_blocks) { 289 err = ext4_truncate(inode); 290 if (err) { 291 ext4_error(inode->i_sb, 292 "couldn't truncate inode %lu (err %d)", 293 inode->i_ino, err); 294 goto stop_handle; 295 } 296 } 297 298 /* Remove xattr references. */ 299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 300 extra_credits); 301 if (err) { 302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 303 stop_handle: 304 ext4_journal_stop(handle); 305 ext4_orphan_del(NULL, inode); 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = get_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 340 } 341 342 #ifdef CONFIG_QUOTA 343 qsize_t *ext4_get_reserved_space(struct inode *inode) 344 { 345 return &EXT4_I(inode)->i_reserved_quota; 346 } 347 #endif 348 349 /* 350 * Called with i_data_sem down, which is important since we can call 351 * ext4_discard_preallocations() from here. 352 */ 353 void ext4_da_update_reserve_space(struct inode *inode, 354 int used, int quota_claim) 355 { 356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 357 struct ext4_inode_info *ei = EXT4_I(inode); 358 359 spin_lock(&ei->i_block_reservation_lock); 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 361 if (unlikely(used > ei->i_reserved_data_blocks)) { 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 363 "with only %d reserved data blocks", 364 __func__, inode->i_ino, used, 365 ei->i_reserved_data_blocks); 366 WARN_ON(1); 367 used = ei->i_reserved_data_blocks; 368 } 369 370 /* Update per-inode reservations */ 371 ei->i_reserved_data_blocks -= used; 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 373 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 375 376 /* Update quota subsystem for data blocks */ 377 if (quota_claim) 378 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 379 else { 380 /* 381 * We did fallocate with an offset that is already delayed 382 * allocated. So on delayed allocated writeback we should 383 * not re-claim the quota for fallocated blocks. 384 */ 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 386 } 387 388 /* 389 * If we have done all the pending block allocations and if 390 * there aren't any writers on the inode, we can discard the 391 * inode's preallocations. 392 */ 393 if ((ei->i_reserved_data_blocks == 0) && 394 (atomic_read(&inode->i_writecount) == 0)) 395 ext4_discard_preallocations(inode); 396 } 397 398 static int __check_block_validity(struct inode *inode, const char *func, 399 unsigned int line, 400 struct ext4_map_blocks *map) 401 { 402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 403 map->m_len)) { 404 ext4_error_inode(inode, func, line, map->m_pblk, 405 "lblock %lu mapped to illegal pblock " 406 "(length %d)", (unsigned long) map->m_lblk, 407 map->m_len); 408 return -EFSCORRUPTED; 409 } 410 return 0; 411 } 412 413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 414 ext4_lblk_t len) 415 { 416 int ret; 417 418 if (ext4_encrypted_inode(inode)) 419 return fscrypt_zeroout_range(inode, lblk, pblk, len); 420 421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 422 if (ret > 0) 423 ret = 0; 424 425 return ret; 426 } 427 428 #define check_block_validity(inode, map) \ 429 __check_block_validity((inode), __func__, __LINE__, (map)) 430 431 #ifdef ES_AGGRESSIVE_TEST 432 static void ext4_map_blocks_es_recheck(handle_t *handle, 433 struct inode *inode, 434 struct ext4_map_blocks *es_map, 435 struct ext4_map_blocks *map, 436 int flags) 437 { 438 int retval; 439 440 map->m_flags = 0; 441 /* 442 * There is a race window that the result is not the same. 443 * e.g. xfstests #223 when dioread_nolock enables. The reason 444 * is that we lookup a block mapping in extent status tree with 445 * out taking i_data_sem. So at the time the unwritten extent 446 * could be converted. 447 */ 448 down_read(&EXT4_I(inode)->i_data_sem); 449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 450 retval = ext4_ext_map_blocks(handle, inode, map, flags & 451 EXT4_GET_BLOCKS_KEEP_SIZE); 452 } else { 453 retval = ext4_ind_map_blocks(handle, inode, map, flags & 454 EXT4_GET_BLOCKS_KEEP_SIZE); 455 } 456 up_read((&EXT4_I(inode)->i_data_sem)); 457 458 /* 459 * We don't check m_len because extent will be collpased in status 460 * tree. So the m_len might not equal. 461 */ 462 if (es_map->m_lblk != map->m_lblk || 463 es_map->m_flags != map->m_flags || 464 es_map->m_pblk != map->m_pblk) { 465 printk("ES cache assertion failed for inode: %lu " 466 "es_cached ex [%d/%d/%llu/%x] != " 467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 468 inode->i_ino, es_map->m_lblk, es_map->m_len, 469 es_map->m_pblk, es_map->m_flags, map->m_lblk, 470 map->m_len, map->m_pblk, map->m_flags, 471 retval, flags); 472 } 473 } 474 #endif /* ES_AGGRESSIVE_TEST */ 475 476 /* 477 * The ext4_map_blocks() function tries to look up the requested blocks, 478 * and returns if the blocks are already mapped. 479 * 480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 481 * and store the allocated blocks in the result buffer head and mark it 482 * mapped. 483 * 484 * If file type is extents based, it will call ext4_ext_map_blocks(), 485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 486 * based files 487 * 488 * On success, it returns the number of blocks being mapped or allocated. if 489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 490 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 491 * 492 * It returns 0 if plain look up failed (blocks have not been allocated), in 493 * that case, @map is returned as unmapped but we still do fill map->m_len to 494 * indicate the length of a hole starting at map->m_lblk. 495 * 496 * It returns the error in case of allocation failure. 497 */ 498 int ext4_map_blocks(handle_t *handle, struct inode *inode, 499 struct ext4_map_blocks *map, int flags) 500 { 501 struct extent_status es; 502 int retval; 503 int ret = 0; 504 #ifdef ES_AGGRESSIVE_TEST 505 struct ext4_map_blocks orig_map; 506 507 memcpy(&orig_map, map, sizeof(*map)); 508 #endif 509 510 map->m_flags = 0; 511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 512 "logical block %lu\n", inode->i_ino, flags, map->m_len, 513 (unsigned long) map->m_lblk); 514 515 /* 516 * ext4_map_blocks returns an int, and m_len is an unsigned int 517 */ 518 if (unlikely(map->m_len > INT_MAX)) 519 map->m_len = INT_MAX; 520 521 /* We can handle the block number less than EXT_MAX_BLOCKS */ 522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 523 return -EFSCORRUPTED; 524 525 /* Lookup extent status tree firstly */ 526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 528 map->m_pblk = ext4_es_pblock(&es) + 529 map->m_lblk - es.es_lblk; 530 map->m_flags |= ext4_es_is_written(&es) ? 531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 532 retval = es.es_len - (map->m_lblk - es.es_lblk); 533 if (retval > map->m_len) 534 retval = map->m_len; 535 map->m_len = retval; 536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 537 map->m_pblk = 0; 538 retval = es.es_len - (map->m_lblk - es.es_lblk); 539 if (retval > map->m_len) 540 retval = map->m_len; 541 map->m_len = retval; 542 retval = 0; 543 } else { 544 BUG_ON(1); 545 } 546 #ifdef ES_AGGRESSIVE_TEST 547 ext4_map_blocks_es_recheck(handle, inode, map, 548 &orig_map, flags); 549 #endif 550 goto found; 551 } 552 553 /* 554 * Try to see if we can get the block without requesting a new 555 * file system block. 556 */ 557 down_read(&EXT4_I(inode)->i_data_sem); 558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 559 retval = ext4_ext_map_blocks(handle, inode, map, flags & 560 EXT4_GET_BLOCKS_KEEP_SIZE); 561 } else { 562 retval = ext4_ind_map_blocks(handle, inode, map, flags & 563 EXT4_GET_BLOCKS_KEEP_SIZE); 564 } 565 if (retval > 0) { 566 unsigned int status; 567 568 if (unlikely(retval != map->m_len)) { 569 ext4_warning(inode->i_sb, 570 "ES len assertion failed for inode " 571 "%lu: retval %d != map->m_len %d", 572 inode->i_ino, retval, map->m_len); 573 WARN_ON(1); 574 } 575 576 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 579 !(status & EXTENT_STATUS_WRITTEN) && 580 ext4_find_delalloc_range(inode, map->m_lblk, 581 map->m_lblk + map->m_len - 1)) 582 status |= EXTENT_STATUS_DELAYED; 583 ret = ext4_es_insert_extent(inode, map->m_lblk, 584 map->m_len, map->m_pblk, status); 585 if (ret < 0) 586 retval = ret; 587 } 588 up_read((&EXT4_I(inode)->i_data_sem)); 589 590 found: 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 592 ret = check_block_validity(inode, map); 593 if (ret != 0) 594 return ret; 595 } 596 597 /* If it is only a block(s) look up */ 598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 599 return retval; 600 601 /* 602 * Returns if the blocks have already allocated 603 * 604 * Note that if blocks have been preallocated 605 * ext4_ext_get_block() returns the create = 0 606 * with buffer head unmapped. 607 */ 608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 609 /* 610 * If we need to convert extent to unwritten 611 * we continue and do the actual work in 612 * ext4_ext_map_blocks() 613 */ 614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 615 return retval; 616 617 /* 618 * Here we clear m_flags because after allocating an new extent, 619 * it will be set again. 620 */ 621 map->m_flags &= ~EXT4_MAP_FLAGS; 622 623 /* 624 * New blocks allocate and/or writing to unwritten extent 625 * will possibly result in updating i_data, so we take 626 * the write lock of i_data_sem, and call get_block() 627 * with create == 1 flag. 628 */ 629 down_write(&EXT4_I(inode)->i_data_sem); 630 631 /* 632 * We need to check for EXT4 here because migrate 633 * could have changed the inode type in between 634 */ 635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 636 retval = ext4_ext_map_blocks(handle, inode, map, flags); 637 } else { 638 retval = ext4_ind_map_blocks(handle, inode, map, flags); 639 640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 641 /* 642 * We allocated new blocks which will result in 643 * i_data's format changing. Force the migrate 644 * to fail by clearing migrate flags 645 */ 646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 647 } 648 649 /* 650 * Update reserved blocks/metadata blocks after successful 651 * block allocation which had been deferred till now. We don't 652 * support fallocate for non extent files. So we can update 653 * reserve space here. 654 */ 655 if ((retval > 0) && 656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 657 ext4_da_update_reserve_space(inode, retval, 1); 658 } 659 660 if (retval > 0) { 661 unsigned int status; 662 663 if (unlikely(retval != map->m_len)) { 664 ext4_warning(inode->i_sb, 665 "ES len assertion failed for inode " 666 "%lu: retval %d != map->m_len %d", 667 inode->i_ino, retval, map->m_len); 668 WARN_ON(1); 669 } 670 671 /* 672 * We have to zeroout blocks before inserting them into extent 673 * status tree. Otherwise someone could look them up there and 674 * use them before they are really zeroed. We also have to 675 * unmap metadata before zeroing as otherwise writeback can 676 * overwrite zeros with stale data from block device. 677 */ 678 if (flags & EXT4_GET_BLOCKS_ZERO && 679 map->m_flags & EXT4_MAP_MAPPED && 680 map->m_flags & EXT4_MAP_NEW) { 681 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 682 map->m_len); 683 ret = ext4_issue_zeroout(inode, map->m_lblk, 684 map->m_pblk, map->m_len); 685 if (ret) { 686 retval = ret; 687 goto out_sem; 688 } 689 } 690 691 /* 692 * If the extent has been zeroed out, we don't need to update 693 * extent status tree. 694 */ 695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 696 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 697 if (ext4_es_is_written(&es)) 698 goto out_sem; 699 } 700 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 703 !(status & EXTENT_STATUS_WRITTEN) && 704 ext4_find_delalloc_range(inode, map->m_lblk, 705 map->m_lblk + map->m_len - 1)) 706 status |= EXTENT_STATUS_DELAYED; 707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 708 map->m_pblk, status); 709 if (ret < 0) { 710 retval = ret; 711 goto out_sem; 712 } 713 } 714 715 out_sem: 716 up_write((&EXT4_I(inode)->i_data_sem)); 717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 718 ret = check_block_validity(inode, map); 719 if (ret != 0) 720 return ret; 721 722 /* 723 * Inodes with freshly allocated blocks where contents will be 724 * visible after transaction commit must be on transaction's 725 * ordered data list. 726 */ 727 if (map->m_flags & EXT4_MAP_NEW && 728 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 729 !(flags & EXT4_GET_BLOCKS_ZERO) && 730 !ext4_is_quota_file(inode) && 731 ext4_should_order_data(inode)) { 732 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 733 ret = ext4_jbd2_inode_add_wait(handle, inode); 734 else 735 ret = ext4_jbd2_inode_add_write(handle, inode); 736 if (ret) 737 return ret; 738 } 739 } 740 return retval; 741 } 742 743 /* 744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 745 * we have to be careful as someone else may be manipulating b_state as well. 746 */ 747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 748 { 749 unsigned long old_state; 750 unsigned long new_state; 751 752 flags &= EXT4_MAP_FLAGS; 753 754 /* Dummy buffer_head? Set non-atomically. */ 755 if (!bh->b_page) { 756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 757 return; 758 } 759 /* 760 * Someone else may be modifying b_state. Be careful! This is ugly but 761 * once we get rid of using bh as a container for mapping information 762 * to pass to / from get_block functions, this can go away. 763 */ 764 do { 765 old_state = READ_ONCE(bh->b_state); 766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 767 } while (unlikely( 768 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 769 } 770 771 static int _ext4_get_block(struct inode *inode, sector_t iblock, 772 struct buffer_head *bh, int flags) 773 { 774 struct ext4_map_blocks map; 775 int ret = 0; 776 777 if (ext4_has_inline_data(inode)) 778 return -ERANGE; 779 780 map.m_lblk = iblock; 781 map.m_len = bh->b_size >> inode->i_blkbits; 782 783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 784 flags); 785 if (ret > 0) { 786 map_bh(bh, inode->i_sb, map.m_pblk); 787 ext4_update_bh_state(bh, map.m_flags); 788 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 789 ret = 0; 790 } else if (ret == 0) { 791 /* hole case, need to fill in bh->b_size */ 792 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 793 } 794 return ret; 795 } 796 797 int ext4_get_block(struct inode *inode, sector_t iblock, 798 struct buffer_head *bh, int create) 799 { 800 return _ext4_get_block(inode, iblock, bh, 801 create ? EXT4_GET_BLOCKS_CREATE : 0); 802 } 803 804 /* 805 * Get block function used when preparing for buffered write if we require 806 * creating an unwritten extent if blocks haven't been allocated. The extent 807 * will be converted to written after the IO is complete. 808 */ 809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 810 struct buffer_head *bh_result, int create) 811 { 812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 813 inode->i_ino, create); 814 return _ext4_get_block(inode, iblock, bh_result, 815 EXT4_GET_BLOCKS_IO_CREATE_EXT); 816 } 817 818 /* Maximum number of blocks we map for direct IO at once. */ 819 #define DIO_MAX_BLOCKS 4096 820 821 /* 822 * Get blocks function for the cases that need to start a transaction - 823 * generally difference cases of direct IO and DAX IO. It also handles retries 824 * in case of ENOSPC. 825 */ 826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 827 struct buffer_head *bh_result, int flags) 828 { 829 int dio_credits; 830 handle_t *handle; 831 int retries = 0; 832 int ret; 833 834 /* Trim mapping request to maximum we can map at once for DIO */ 835 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 836 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 837 dio_credits = ext4_chunk_trans_blocks(inode, 838 bh_result->b_size >> inode->i_blkbits); 839 retry: 840 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 841 if (IS_ERR(handle)) 842 return PTR_ERR(handle); 843 844 ret = _ext4_get_block(inode, iblock, bh_result, flags); 845 ext4_journal_stop(handle); 846 847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 848 goto retry; 849 return ret; 850 } 851 852 /* Get block function for DIO reads and writes to inodes without extents */ 853 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 854 struct buffer_head *bh, int create) 855 { 856 /* We don't expect handle for direct IO */ 857 WARN_ON_ONCE(ext4_journal_current_handle()); 858 859 if (!create) 860 return _ext4_get_block(inode, iblock, bh, 0); 861 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 862 } 863 864 /* 865 * Get block function for AIO DIO writes when we create unwritten extent if 866 * blocks are not allocated yet. The extent will be converted to written 867 * after IO is complete. 868 */ 869 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 870 sector_t iblock, struct buffer_head *bh_result, int create) 871 { 872 int ret; 873 874 /* We don't expect handle for direct IO */ 875 WARN_ON_ONCE(ext4_journal_current_handle()); 876 877 ret = ext4_get_block_trans(inode, iblock, bh_result, 878 EXT4_GET_BLOCKS_IO_CREATE_EXT); 879 880 /* 881 * When doing DIO using unwritten extents, we need io_end to convert 882 * unwritten extents to written on IO completion. We allocate io_end 883 * once we spot unwritten extent and store it in b_private. Generic 884 * DIO code keeps b_private set and furthermore passes the value to 885 * our completion callback in 'private' argument. 886 */ 887 if (!ret && buffer_unwritten(bh_result)) { 888 if (!bh_result->b_private) { 889 ext4_io_end_t *io_end; 890 891 io_end = ext4_init_io_end(inode, GFP_KERNEL); 892 if (!io_end) 893 return -ENOMEM; 894 bh_result->b_private = io_end; 895 ext4_set_io_unwritten_flag(inode, io_end); 896 } 897 set_buffer_defer_completion(bh_result); 898 } 899 900 return ret; 901 } 902 903 /* 904 * Get block function for non-AIO DIO writes when we create unwritten extent if 905 * blocks are not allocated yet. The extent will be converted to written 906 * after IO is complete by ext4_direct_IO_write(). 907 */ 908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 909 sector_t iblock, struct buffer_head *bh_result, int create) 910 { 911 int ret; 912 913 /* We don't expect handle for direct IO */ 914 WARN_ON_ONCE(ext4_journal_current_handle()); 915 916 ret = ext4_get_block_trans(inode, iblock, bh_result, 917 EXT4_GET_BLOCKS_IO_CREATE_EXT); 918 919 /* 920 * Mark inode as having pending DIO writes to unwritten extents. 921 * ext4_direct_IO_write() checks this flag and converts extents to 922 * written. 923 */ 924 if (!ret && buffer_unwritten(bh_result)) 925 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 926 927 return ret; 928 } 929 930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 931 struct buffer_head *bh_result, int create) 932 { 933 int ret; 934 935 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 936 inode->i_ino, create); 937 /* We don't expect handle for direct IO */ 938 WARN_ON_ONCE(ext4_journal_current_handle()); 939 940 ret = _ext4_get_block(inode, iblock, bh_result, 0); 941 /* 942 * Blocks should have been preallocated! ext4_file_write_iter() checks 943 * that. 944 */ 945 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 946 947 return ret; 948 } 949 950 951 /* 952 * `handle' can be NULL if create is zero 953 */ 954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 955 ext4_lblk_t block, int map_flags) 956 { 957 struct ext4_map_blocks map; 958 struct buffer_head *bh; 959 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 960 int err; 961 962 J_ASSERT(handle != NULL || create == 0); 963 964 map.m_lblk = block; 965 map.m_len = 1; 966 err = ext4_map_blocks(handle, inode, &map, map_flags); 967 968 if (err == 0) 969 return create ? ERR_PTR(-ENOSPC) : NULL; 970 if (err < 0) 971 return ERR_PTR(err); 972 973 bh = sb_getblk(inode->i_sb, map.m_pblk); 974 if (unlikely(!bh)) 975 return ERR_PTR(-ENOMEM); 976 if (map.m_flags & EXT4_MAP_NEW) { 977 J_ASSERT(create != 0); 978 J_ASSERT(handle != NULL); 979 980 /* 981 * Now that we do not always journal data, we should 982 * keep in mind whether this should always journal the 983 * new buffer as metadata. For now, regular file 984 * writes use ext4_get_block instead, so it's not a 985 * problem. 986 */ 987 lock_buffer(bh); 988 BUFFER_TRACE(bh, "call get_create_access"); 989 err = ext4_journal_get_create_access(handle, bh); 990 if (unlikely(err)) { 991 unlock_buffer(bh); 992 goto errout; 993 } 994 if (!buffer_uptodate(bh)) { 995 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 996 set_buffer_uptodate(bh); 997 } 998 unlock_buffer(bh); 999 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1000 err = ext4_handle_dirty_metadata(handle, inode, bh); 1001 if (unlikely(err)) 1002 goto errout; 1003 } else 1004 BUFFER_TRACE(bh, "not a new buffer"); 1005 return bh; 1006 errout: 1007 brelse(bh); 1008 return ERR_PTR(err); 1009 } 1010 1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1012 ext4_lblk_t block, int map_flags) 1013 { 1014 struct buffer_head *bh; 1015 1016 bh = ext4_getblk(handle, inode, block, map_flags); 1017 if (IS_ERR(bh)) 1018 return bh; 1019 if (!bh || buffer_uptodate(bh)) 1020 return bh; 1021 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1022 wait_on_buffer(bh); 1023 if (buffer_uptodate(bh)) 1024 return bh; 1025 put_bh(bh); 1026 return ERR_PTR(-EIO); 1027 } 1028 1029 /* Read a contiguous batch of blocks. */ 1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1031 bool wait, struct buffer_head **bhs) 1032 { 1033 int i, err; 1034 1035 for (i = 0; i < bh_count; i++) { 1036 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1037 if (IS_ERR(bhs[i])) { 1038 err = PTR_ERR(bhs[i]); 1039 bh_count = i; 1040 goto out_brelse; 1041 } 1042 } 1043 1044 for (i = 0; i < bh_count; i++) 1045 /* Note that NULL bhs[i] is valid because of holes. */ 1046 if (bhs[i] && !buffer_uptodate(bhs[i])) 1047 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1048 &bhs[i]); 1049 1050 if (!wait) 1051 return 0; 1052 1053 for (i = 0; i < bh_count; i++) 1054 if (bhs[i]) 1055 wait_on_buffer(bhs[i]); 1056 1057 for (i = 0; i < bh_count; i++) { 1058 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1059 err = -EIO; 1060 goto out_brelse; 1061 } 1062 } 1063 return 0; 1064 1065 out_brelse: 1066 for (i = 0; i < bh_count; i++) { 1067 brelse(bhs[i]); 1068 bhs[i] = NULL; 1069 } 1070 return err; 1071 } 1072 1073 int ext4_walk_page_buffers(handle_t *handle, 1074 struct buffer_head *head, 1075 unsigned from, 1076 unsigned to, 1077 int *partial, 1078 int (*fn)(handle_t *handle, 1079 struct buffer_head *bh)) 1080 { 1081 struct buffer_head *bh; 1082 unsigned block_start, block_end; 1083 unsigned blocksize = head->b_size; 1084 int err, ret = 0; 1085 struct buffer_head *next; 1086 1087 for (bh = head, block_start = 0; 1088 ret == 0 && (bh != head || !block_start); 1089 block_start = block_end, bh = next) { 1090 next = bh->b_this_page; 1091 block_end = block_start + blocksize; 1092 if (block_end <= from || block_start >= to) { 1093 if (partial && !buffer_uptodate(bh)) 1094 *partial = 1; 1095 continue; 1096 } 1097 err = (*fn)(handle, bh); 1098 if (!ret) 1099 ret = err; 1100 } 1101 return ret; 1102 } 1103 1104 /* 1105 * To preserve ordering, it is essential that the hole instantiation and 1106 * the data write be encapsulated in a single transaction. We cannot 1107 * close off a transaction and start a new one between the ext4_get_block() 1108 * and the commit_write(). So doing the jbd2_journal_start at the start of 1109 * prepare_write() is the right place. 1110 * 1111 * Also, this function can nest inside ext4_writepage(). In that case, we 1112 * *know* that ext4_writepage() has generated enough buffer credits to do the 1113 * whole page. So we won't block on the journal in that case, which is good, 1114 * because the caller may be PF_MEMALLOC. 1115 * 1116 * By accident, ext4 can be reentered when a transaction is open via 1117 * quota file writes. If we were to commit the transaction while thus 1118 * reentered, there can be a deadlock - we would be holding a quota 1119 * lock, and the commit would never complete if another thread had a 1120 * transaction open and was blocking on the quota lock - a ranking 1121 * violation. 1122 * 1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1124 * will _not_ run commit under these circumstances because handle->h_ref 1125 * is elevated. We'll still have enough credits for the tiny quotafile 1126 * write. 1127 */ 1128 int do_journal_get_write_access(handle_t *handle, 1129 struct buffer_head *bh) 1130 { 1131 int dirty = buffer_dirty(bh); 1132 int ret; 1133 1134 if (!buffer_mapped(bh) || buffer_freed(bh)) 1135 return 0; 1136 /* 1137 * __block_write_begin() could have dirtied some buffers. Clean 1138 * the dirty bit as jbd2_journal_get_write_access() could complain 1139 * otherwise about fs integrity issues. Setting of the dirty bit 1140 * by __block_write_begin() isn't a real problem here as we clear 1141 * the bit before releasing a page lock and thus writeback cannot 1142 * ever write the buffer. 1143 */ 1144 if (dirty) 1145 clear_buffer_dirty(bh); 1146 BUFFER_TRACE(bh, "get write access"); 1147 ret = ext4_journal_get_write_access(handle, bh); 1148 if (!ret && dirty) 1149 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1150 return ret; 1151 } 1152 1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1155 get_block_t *get_block) 1156 { 1157 unsigned from = pos & (PAGE_SIZE - 1); 1158 unsigned to = from + len; 1159 struct inode *inode = page->mapping->host; 1160 unsigned block_start, block_end; 1161 sector_t block; 1162 int err = 0; 1163 unsigned blocksize = inode->i_sb->s_blocksize; 1164 unsigned bbits; 1165 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1166 bool decrypt = false; 1167 1168 BUG_ON(!PageLocked(page)); 1169 BUG_ON(from > PAGE_SIZE); 1170 BUG_ON(to > PAGE_SIZE); 1171 BUG_ON(from > to); 1172 1173 if (!page_has_buffers(page)) 1174 create_empty_buffers(page, blocksize, 0); 1175 head = page_buffers(page); 1176 bbits = ilog2(blocksize); 1177 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1178 1179 for (bh = head, block_start = 0; bh != head || !block_start; 1180 block++, block_start = block_end, bh = bh->b_this_page) { 1181 block_end = block_start + blocksize; 1182 if (block_end <= from || block_start >= to) { 1183 if (PageUptodate(page)) { 1184 if (!buffer_uptodate(bh)) 1185 set_buffer_uptodate(bh); 1186 } 1187 continue; 1188 } 1189 if (buffer_new(bh)) 1190 clear_buffer_new(bh); 1191 if (!buffer_mapped(bh)) { 1192 WARN_ON(bh->b_size != blocksize); 1193 err = get_block(inode, block, bh, 1); 1194 if (err) 1195 break; 1196 if (buffer_new(bh)) { 1197 clean_bdev_bh_alias(bh); 1198 if (PageUptodate(page)) { 1199 clear_buffer_new(bh); 1200 set_buffer_uptodate(bh); 1201 mark_buffer_dirty(bh); 1202 continue; 1203 } 1204 if (block_end > to || block_start < from) 1205 zero_user_segments(page, to, block_end, 1206 block_start, from); 1207 continue; 1208 } 1209 } 1210 if (PageUptodate(page)) { 1211 if (!buffer_uptodate(bh)) 1212 set_buffer_uptodate(bh); 1213 continue; 1214 } 1215 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1216 !buffer_unwritten(bh) && 1217 (block_start < from || block_end > to)) { 1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1219 *wait_bh++ = bh; 1220 decrypt = ext4_encrypted_inode(inode) && 1221 S_ISREG(inode->i_mode); 1222 } 1223 } 1224 /* 1225 * If we issued read requests, let them complete. 1226 */ 1227 while (wait_bh > wait) { 1228 wait_on_buffer(*--wait_bh); 1229 if (!buffer_uptodate(*wait_bh)) 1230 err = -EIO; 1231 } 1232 if (unlikely(err)) 1233 page_zero_new_buffers(page, from, to); 1234 else if (decrypt) 1235 err = fscrypt_decrypt_page(page->mapping->host, page, 1236 PAGE_SIZE, 0, page->index); 1237 return err; 1238 } 1239 #endif 1240 1241 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1242 loff_t pos, unsigned len, unsigned flags, 1243 struct page **pagep, void **fsdata) 1244 { 1245 struct inode *inode = mapping->host; 1246 int ret, needed_blocks; 1247 handle_t *handle; 1248 int retries = 0; 1249 struct page *page; 1250 pgoff_t index; 1251 unsigned from, to; 1252 1253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1254 return -EIO; 1255 1256 trace_ext4_write_begin(inode, pos, len, flags); 1257 /* 1258 * Reserve one block more for addition to orphan list in case 1259 * we allocate blocks but write fails for some reason 1260 */ 1261 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1262 index = pos >> PAGE_SHIFT; 1263 from = pos & (PAGE_SIZE - 1); 1264 to = from + len; 1265 1266 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1267 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1268 flags, pagep); 1269 if (ret < 0) 1270 return ret; 1271 if (ret == 1) 1272 return 0; 1273 } 1274 1275 /* 1276 * grab_cache_page_write_begin() can take a long time if the 1277 * system is thrashing due to memory pressure, or if the page 1278 * is being written back. So grab it first before we start 1279 * the transaction handle. This also allows us to allocate 1280 * the page (if needed) without using GFP_NOFS. 1281 */ 1282 retry_grab: 1283 page = grab_cache_page_write_begin(mapping, index, flags); 1284 if (!page) 1285 return -ENOMEM; 1286 unlock_page(page); 1287 1288 retry_journal: 1289 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1290 if (IS_ERR(handle)) { 1291 put_page(page); 1292 return PTR_ERR(handle); 1293 } 1294 1295 lock_page(page); 1296 if (page->mapping != mapping) { 1297 /* The page got truncated from under us */ 1298 unlock_page(page); 1299 put_page(page); 1300 ext4_journal_stop(handle); 1301 goto retry_grab; 1302 } 1303 /* In case writeback began while the page was unlocked */ 1304 wait_for_stable_page(page); 1305 1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1307 if (ext4_should_dioread_nolock(inode)) 1308 ret = ext4_block_write_begin(page, pos, len, 1309 ext4_get_block_unwritten); 1310 else 1311 ret = ext4_block_write_begin(page, pos, len, 1312 ext4_get_block); 1313 #else 1314 if (ext4_should_dioread_nolock(inode)) 1315 ret = __block_write_begin(page, pos, len, 1316 ext4_get_block_unwritten); 1317 else 1318 ret = __block_write_begin(page, pos, len, ext4_get_block); 1319 #endif 1320 if (!ret && ext4_should_journal_data(inode)) { 1321 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1322 from, to, NULL, 1323 do_journal_get_write_access); 1324 } 1325 1326 if (ret) { 1327 unlock_page(page); 1328 /* 1329 * __block_write_begin may have instantiated a few blocks 1330 * outside i_size. Trim these off again. Don't need 1331 * i_size_read because we hold i_mutex. 1332 * 1333 * Add inode to orphan list in case we crash before 1334 * truncate finishes 1335 */ 1336 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1337 ext4_orphan_add(handle, inode); 1338 1339 ext4_journal_stop(handle); 1340 if (pos + len > inode->i_size) { 1341 ext4_truncate_failed_write(inode); 1342 /* 1343 * If truncate failed early the inode might 1344 * still be on the orphan list; we need to 1345 * make sure the inode is removed from the 1346 * orphan list in that case. 1347 */ 1348 if (inode->i_nlink) 1349 ext4_orphan_del(NULL, inode); 1350 } 1351 1352 if (ret == -ENOSPC && 1353 ext4_should_retry_alloc(inode->i_sb, &retries)) 1354 goto retry_journal; 1355 put_page(page); 1356 return ret; 1357 } 1358 *pagep = page; 1359 return ret; 1360 } 1361 1362 /* For write_end() in data=journal mode */ 1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1364 { 1365 int ret; 1366 if (!buffer_mapped(bh) || buffer_freed(bh)) 1367 return 0; 1368 set_buffer_uptodate(bh); 1369 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1370 clear_buffer_meta(bh); 1371 clear_buffer_prio(bh); 1372 return ret; 1373 } 1374 1375 /* 1376 * We need to pick up the new inode size which generic_commit_write gave us 1377 * `file' can be NULL - eg, when called from page_symlink(). 1378 * 1379 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1380 * buffers are managed internally. 1381 */ 1382 static int ext4_write_end(struct file *file, 1383 struct address_space *mapping, 1384 loff_t pos, unsigned len, unsigned copied, 1385 struct page *page, void *fsdata) 1386 { 1387 handle_t *handle = ext4_journal_current_handle(); 1388 struct inode *inode = mapping->host; 1389 loff_t old_size = inode->i_size; 1390 int ret = 0, ret2; 1391 int i_size_changed = 0; 1392 1393 trace_ext4_write_end(inode, pos, len, copied); 1394 if (ext4_has_inline_data(inode)) { 1395 ret = ext4_write_inline_data_end(inode, pos, len, 1396 copied, page); 1397 if (ret < 0) { 1398 unlock_page(page); 1399 put_page(page); 1400 goto errout; 1401 } 1402 copied = ret; 1403 } else 1404 copied = block_write_end(file, mapping, pos, 1405 len, copied, page, fsdata); 1406 /* 1407 * it's important to update i_size while still holding page lock: 1408 * page writeout could otherwise come in and zero beyond i_size. 1409 */ 1410 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1411 unlock_page(page); 1412 put_page(page); 1413 1414 if (old_size < pos) 1415 pagecache_isize_extended(inode, old_size, pos); 1416 /* 1417 * Don't mark the inode dirty under page lock. First, it unnecessarily 1418 * makes the holding time of page lock longer. Second, it forces lock 1419 * ordering of page lock and transaction start for journaling 1420 * filesystems. 1421 */ 1422 if (i_size_changed) 1423 ext4_mark_inode_dirty(handle, inode); 1424 1425 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1426 /* if we have allocated more blocks and copied 1427 * less. We will have blocks allocated outside 1428 * inode->i_size. So truncate them 1429 */ 1430 ext4_orphan_add(handle, inode); 1431 errout: 1432 ret2 = ext4_journal_stop(handle); 1433 if (!ret) 1434 ret = ret2; 1435 1436 if (pos + len > inode->i_size) { 1437 ext4_truncate_failed_write(inode); 1438 /* 1439 * If truncate failed early the inode might still be 1440 * on the orphan list; we need to make sure the inode 1441 * is removed from the orphan list in that case. 1442 */ 1443 if (inode->i_nlink) 1444 ext4_orphan_del(NULL, inode); 1445 } 1446 1447 return ret ? ret : copied; 1448 } 1449 1450 /* 1451 * This is a private version of page_zero_new_buffers() which doesn't 1452 * set the buffer to be dirty, since in data=journalled mode we need 1453 * to call ext4_handle_dirty_metadata() instead. 1454 */ 1455 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1456 struct page *page, 1457 unsigned from, unsigned to) 1458 { 1459 unsigned int block_start = 0, block_end; 1460 struct buffer_head *head, *bh; 1461 1462 bh = head = page_buffers(page); 1463 do { 1464 block_end = block_start + bh->b_size; 1465 if (buffer_new(bh)) { 1466 if (block_end > from && block_start < to) { 1467 if (!PageUptodate(page)) { 1468 unsigned start, size; 1469 1470 start = max(from, block_start); 1471 size = min(to, block_end) - start; 1472 1473 zero_user(page, start, size); 1474 write_end_fn(handle, bh); 1475 } 1476 clear_buffer_new(bh); 1477 } 1478 } 1479 block_start = block_end; 1480 bh = bh->b_this_page; 1481 } while (bh != head); 1482 } 1483 1484 static int ext4_journalled_write_end(struct file *file, 1485 struct address_space *mapping, 1486 loff_t pos, unsigned len, unsigned copied, 1487 struct page *page, void *fsdata) 1488 { 1489 handle_t *handle = ext4_journal_current_handle(); 1490 struct inode *inode = mapping->host; 1491 loff_t old_size = inode->i_size; 1492 int ret = 0, ret2; 1493 int partial = 0; 1494 unsigned from, to; 1495 int size_changed = 0; 1496 1497 trace_ext4_journalled_write_end(inode, pos, len, copied); 1498 from = pos & (PAGE_SIZE - 1); 1499 to = from + len; 1500 1501 BUG_ON(!ext4_handle_valid(handle)); 1502 1503 if (ext4_has_inline_data(inode)) { 1504 ret = ext4_write_inline_data_end(inode, pos, len, 1505 copied, page); 1506 if (ret < 0) { 1507 unlock_page(page); 1508 put_page(page); 1509 goto errout; 1510 } 1511 copied = ret; 1512 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1513 copied = 0; 1514 ext4_journalled_zero_new_buffers(handle, page, from, to); 1515 } else { 1516 if (unlikely(copied < len)) 1517 ext4_journalled_zero_new_buffers(handle, page, 1518 from + copied, to); 1519 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1520 from + copied, &partial, 1521 write_end_fn); 1522 if (!partial) 1523 SetPageUptodate(page); 1524 } 1525 size_changed = ext4_update_inode_size(inode, pos + copied); 1526 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1527 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1528 unlock_page(page); 1529 put_page(page); 1530 1531 if (old_size < pos) 1532 pagecache_isize_extended(inode, old_size, pos); 1533 1534 if (size_changed) { 1535 ret2 = ext4_mark_inode_dirty(handle, inode); 1536 if (!ret) 1537 ret = ret2; 1538 } 1539 1540 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1541 /* if we have allocated more blocks and copied 1542 * less. We will have blocks allocated outside 1543 * inode->i_size. So truncate them 1544 */ 1545 ext4_orphan_add(handle, inode); 1546 1547 errout: 1548 ret2 = ext4_journal_stop(handle); 1549 if (!ret) 1550 ret = ret2; 1551 if (pos + len > inode->i_size) { 1552 ext4_truncate_failed_write(inode); 1553 /* 1554 * If truncate failed early the inode might still be 1555 * on the orphan list; we need to make sure the inode 1556 * is removed from the orphan list in that case. 1557 */ 1558 if (inode->i_nlink) 1559 ext4_orphan_del(NULL, inode); 1560 } 1561 1562 return ret ? ret : copied; 1563 } 1564 1565 /* 1566 * Reserve space for a single cluster 1567 */ 1568 static int ext4_da_reserve_space(struct inode *inode) 1569 { 1570 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1571 struct ext4_inode_info *ei = EXT4_I(inode); 1572 int ret; 1573 1574 /* 1575 * We will charge metadata quota at writeout time; this saves 1576 * us from metadata over-estimation, though we may go over by 1577 * a small amount in the end. Here we just reserve for data. 1578 */ 1579 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1580 if (ret) 1581 return ret; 1582 1583 spin_lock(&ei->i_block_reservation_lock); 1584 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1585 spin_unlock(&ei->i_block_reservation_lock); 1586 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1587 return -ENOSPC; 1588 } 1589 ei->i_reserved_data_blocks++; 1590 trace_ext4_da_reserve_space(inode); 1591 spin_unlock(&ei->i_block_reservation_lock); 1592 1593 return 0; /* success */ 1594 } 1595 1596 static void ext4_da_release_space(struct inode *inode, int to_free) 1597 { 1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1599 struct ext4_inode_info *ei = EXT4_I(inode); 1600 1601 if (!to_free) 1602 return; /* Nothing to release, exit */ 1603 1604 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1605 1606 trace_ext4_da_release_space(inode, to_free); 1607 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1608 /* 1609 * if there aren't enough reserved blocks, then the 1610 * counter is messed up somewhere. Since this 1611 * function is called from invalidate page, it's 1612 * harmless to return without any action. 1613 */ 1614 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1615 "ino %lu, to_free %d with only %d reserved " 1616 "data blocks", inode->i_ino, to_free, 1617 ei->i_reserved_data_blocks); 1618 WARN_ON(1); 1619 to_free = ei->i_reserved_data_blocks; 1620 } 1621 ei->i_reserved_data_blocks -= to_free; 1622 1623 /* update fs dirty data blocks counter */ 1624 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1625 1626 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1627 1628 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1629 } 1630 1631 static void ext4_da_page_release_reservation(struct page *page, 1632 unsigned int offset, 1633 unsigned int length) 1634 { 1635 int to_release = 0, contiguous_blks = 0; 1636 struct buffer_head *head, *bh; 1637 unsigned int curr_off = 0; 1638 struct inode *inode = page->mapping->host; 1639 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1640 unsigned int stop = offset + length; 1641 int num_clusters; 1642 ext4_fsblk_t lblk; 1643 1644 BUG_ON(stop > PAGE_SIZE || stop < length); 1645 1646 head = page_buffers(page); 1647 bh = head; 1648 do { 1649 unsigned int next_off = curr_off + bh->b_size; 1650 1651 if (next_off > stop) 1652 break; 1653 1654 if ((offset <= curr_off) && (buffer_delay(bh))) { 1655 to_release++; 1656 contiguous_blks++; 1657 clear_buffer_delay(bh); 1658 } else if (contiguous_blks) { 1659 lblk = page->index << 1660 (PAGE_SHIFT - inode->i_blkbits); 1661 lblk += (curr_off >> inode->i_blkbits) - 1662 contiguous_blks; 1663 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1664 contiguous_blks = 0; 1665 } 1666 curr_off = next_off; 1667 } while ((bh = bh->b_this_page) != head); 1668 1669 if (contiguous_blks) { 1670 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1671 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1672 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1673 } 1674 1675 /* If we have released all the blocks belonging to a cluster, then we 1676 * need to release the reserved space for that cluster. */ 1677 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1678 while (num_clusters > 0) { 1679 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1680 ((num_clusters - 1) << sbi->s_cluster_bits); 1681 if (sbi->s_cluster_ratio == 1 || 1682 !ext4_find_delalloc_cluster(inode, lblk)) 1683 ext4_da_release_space(inode, 1); 1684 1685 num_clusters--; 1686 } 1687 } 1688 1689 /* 1690 * Delayed allocation stuff 1691 */ 1692 1693 struct mpage_da_data { 1694 struct inode *inode; 1695 struct writeback_control *wbc; 1696 1697 pgoff_t first_page; /* The first page to write */ 1698 pgoff_t next_page; /* Current page to examine */ 1699 pgoff_t last_page; /* Last page to examine */ 1700 /* 1701 * Extent to map - this can be after first_page because that can be 1702 * fully mapped. We somewhat abuse m_flags to store whether the extent 1703 * is delalloc or unwritten. 1704 */ 1705 struct ext4_map_blocks map; 1706 struct ext4_io_submit io_submit; /* IO submission data */ 1707 unsigned int do_map:1; 1708 }; 1709 1710 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1711 bool invalidate) 1712 { 1713 int nr_pages, i; 1714 pgoff_t index, end; 1715 struct pagevec pvec; 1716 struct inode *inode = mpd->inode; 1717 struct address_space *mapping = inode->i_mapping; 1718 1719 /* This is necessary when next_page == 0. */ 1720 if (mpd->first_page >= mpd->next_page) 1721 return; 1722 1723 index = mpd->first_page; 1724 end = mpd->next_page - 1; 1725 if (invalidate) { 1726 ext4_lblk_t start, last; 1727 start = index << (PAGE_SHIFT - inode->i_blkbits); 1728 last = end << (PAGE_SHIFT - inode->i_blkbits); 1729 ext4_es_remove_extent(inode, start, last - start + 1); 1730 } 1731 1732 pagevec_init(&pvec); 1733 while (index <= end) { 1734 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1735 if (nr_pages == 0) 1736 break; 1737 for (i = 0; i < nr_pages; i++) { 1738 struct page *page = pvec.pages[i]; 1739 1740 BUG_ON(!PageLocked(page)); 1741 BUG_ON(PageWriteback(page)); 1742 if (invalidate) { 1743 if (page_mapped(page)) 1744 clear_page_dirty_for_io(page); 1745 block_invalidatepage(page, 0, PAGE_SIZE); 1746 ClearPageUptodate(page); 1747 } 1748 unlock_page(page); 1749 } 1750 pagevec_release(&pvec); 1751 } 1752 } 1753 1754 static void ext4_print_free_blocks(struct inode *inode) 1755 { 1756 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1757 struct super_block *sb = inode->i_sb; 1758 struct ext4_inode_info *ei = EXT4_I(inode); 1759 1760 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1761 EXT4_C2B(EXT4_SB(inode->i_sb), 1762 ext4_count_free_clusters(sb))); 1763 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1764 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1765 (long long) EXT4_C2B(EXT4_SB(sb), 1766 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1767 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1768 (long long) EXT4_C2B(EXT4_SB(sb), 1769 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1770 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1771 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1772 ei->i_reserved_data_blocks); 1773 return; 1774 } 1775 1776 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1777 { 1778 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1779 } 1780 1781 /* 1782 * This function is grabs code from the very beginning of 1783 * ext4_map_blocks, but assumes that the caller is from delayed write 1784 * time. This function looks up the requested blocks and sets the 1785 * buffer delay bit under the protection of i_data_sem. 1786 */ 1787 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1788 struct ext4_map_blocks *map, 1789 struct buffer_head *bh) 1790 { 1791 struct extent_status es; 1792 int retval; 1793 sector_t invalid_block = ~((sector_t) 0xffff); 1794 #ifdef ES_AGGRESSIVE_TEST 1795 struct ext4_map_blocks orig_map; 1796 1797 memcpy(&orig_map, map, sizeof(*map)); 1798 #endif 1799 1800 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1801 invalid_block = ~0; 1802 1803 map->m_flags = 0; 1804 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1805 "logical block %lu\n", inode->i_ino, map->m_len, 1806 (unsigned long) map->m_lblk); 1807 1808 /* Lookup extent status tree firstly */ 1809 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1810 if (ext4_es_is_hole(&es)) { 1811 retval = 0; 1812 down_read(&EXT4_I(inode)->i_data_sem); 1813 goto add_delayed; 1814 } 1815 1816 /* 1817 * Delayed extent could be allocated by fallocate. 1818 * So we need to check it. 1819 */ 1820 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1821 map_bh(bh, inode->i_sb, invalid_block); 1822 set_buffer_new(bh); 1823 set_buffer_delay(bh); 1824 return 0; 1825 } 1826 1827 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1828 retval = es.es_len - (iblock - es.es_lblk); 1829 if (retval > map->m_len) 1830 retval = map->m_len; 1831 map->m_len = retval; 1832 if (ext4_es_is_written(&es)) 1833 map->m_flags |= EXT4_MAP_MAPPED; 1834 else if (ext4_es_is_unwritten(&es)) 1835 map->m_flags |= EXT4_MAP_UNWRITTEN; 1836 else 1837 BUG_ON(1); 1838 1839 #ifdef ES_AGGRESSIVE_TEST 1840 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1841 #endif 1842 return retval; 1843 } 1844 1845 /* 1846 * Try to see if we can get the block without requesting a new 1847 * file system block. 1848 */ 1849 down_read(&EXT4_I(inode)->i_data_sem); 1850 if (ext4_has_inline_data(inode)) 1851 retval = 0; 1852 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1853 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1854 else 1855 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1856 1857 add_delayed: 1858 if (retval == 0) { 1859 int ret; 1860 /* 1861 * XXX: __block_prepare_write() unmaps passed block, 1862 * is it OK? 1863 */ 1864 /* 1865 * If the block was allocated from previously allocated cluster, 1866 * then we don't need to reserve it again. However we still need 1867 * to reserve metadata for every block we're going to write. 1868 */ 1869 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1870 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1871 ret = ext4_da_reserve_space(inode); 1872 if (ret) { 1873 /* not enough space to reserve */ 1874 retval = ret; 1875 goto out_unlock; 1876 } 1877 } 1878 1879 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1880 ~0, EXTENT_STATUS_DELAYED); 1881 if (ret) { 1882 retval = ret; 1883 goto out_unlock; 1884 } 1885 1886 map_bh(bh, inode->i_sb, invalid_block); 1887 set_buffer_new(bh); 1888 set_buffer_delay(bh); 1889 } else if (retval > 0) { 1890 int ret; 1891 unsigned int status; 1892 1893 if (unlikely(retval != map->m_len)) { 1894 ext4_warning(inode->i_sb, 1895 "ES len assertion failed for inode " 1896 "%lu: retval %d != map->m_len %d", 1897 inode->i_ino, retval, map->m_len); 1898 WARN_ON(1); 1899 } 1900 1901 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1902 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1903 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1904 map->m_pblk, status); 1905 if (ret != 0) 1906 retval = ret; 1907 } 1908 1909 out_unlock: 1910 up_read((&EXT4_I(inode)->i_data_sem)); 1911 1912 return retval; 1913 } 1914 1915 /* 1916 * This is a special get_block_t callback which is used by 1917 * ext4_da_write_begin(). It will either return mapped block or 1918 * reserve space for a single block. 1919 * 1920 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1921 * We also have b_blocknr = -1 and b_bdev initialized properly 1922 * 1923 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1924 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1925 * initialized properly. 1926 */ 1927 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1928 struct buffer_head *bh, int create) 1929 { 1930 struct ext4_map_blocks map; 1931 int ret = 0; 1932 1933 BUG_ON(create == 0); 1934 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1935 1936 map.m_lblk = iblock; 1937 map.m_len = 1; 1938 1939 /* 1940 * first, we need to know whether the block is allocated already 1941 * preallocated blocks are unmapped but should treated 1942 * the same as allocated blocks. 1943 */ 1944 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1945 if (ret <= 0) 1946 return ret; 1947 1948 map_bh(bh, inode->i_sb, map.m_pblk); 1949 ext4_update_bh_state(bh, map.m_flags); 1950 1951 if (buffer_unwritten(bh)) { 1952 /* A delayed write to unwritten bh should be marked 1953 * new and mapped. Mapped ensures that we don't do 1954 * get_block multiple times when we write to the same 1955 * offset and new ensures that we do proper zero out 1956 * for partial write. 1957 */ 1958 set_buffer_new(bh); 1959 set_buffer_mapped(bh); 1960 } 1961 return 0; 1962 } 1963 1964 static int bget_one(handle_t *handle, struct buffer_head *bh) 1965 { 1966 get_bh(bh); 1967 return 0; 1968 } 1969 1970 static int bput_one(handle_t *handle, struct buffer_head *bh) 1971 { 1972 put_bh(bh); 1973 return 0; 1974 } 1975 1976 static int __ext4_journalled_writepage(struct page *page, 1977 unsigned int len) 1978 { 1979 struct address_space *mapping = page->mapping; 1980 struct inode *inode = mapping->host; 1981 struct buffer_head *page_bufs = NULL; 1982 handle_t *handle = NULL; 1983 int ret = 0, err = 0; 1984 int inline_data = ext4_has_inline_data(inode); 1985 struct buffer_head *inode_bh = NULL; 1986 1987 ClearPageChecked(page); 1988 1989 if (inline_data) { 1990 BUG_ON(page->index != 0); 1991 BUG_ON(len > ext4_get_max_inline_size(inode)); 1992 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1993 if (inode_bh == NULL) 1994 goto out; 1995 } else { 1996 page_bufs = page_buffers(page); 1997 if (!page_bufs) { 1998 BUG(); 1999 goto out; 2000 } 2001 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2002 NULL, bget_one); 2003 } 2004 /* 2005 * We need to release the page lock before we start the 2006 * journal, so grab a reference so the page won't disappear 2007 * out from under us. 2008 */ 2009 get_page(page); 2010 unlock_page(page); 2011 2012 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2013 ext4_writepage_trans_blocks(inode)); 2014 if (IS_ERR(handle)) { 2015 ret = PTR_ERR(handle); 2016 put_page(page); 2017 goto out_no_pagelock; 2018 } 2019 BUG_ON(!ext4_handle_valid(handle)); 2020 2021 lock_page(page); 2022 put_page(page); 2023 if (page->mapping != mapping) { 2024 /* The page got truncated from under us */ 2025 ext4_journal_stop(handle); 2026 ret = 0; 2027 goto out; 2028 } 2029 2030 if (inline_data) { 2031 BUFFER_TRACE(inode_bh, "get write access"); 2032 ret = ext4_journal_get_write_access(handle, inode_bh); 2033 2034 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2035 2036 } else { 2037 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2038 do_journal_get_write_access); 2039 2040 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2041 write_end_fn); 2042 } 2043 if (ret == 0) 2044 ret = err; 2045 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2046 err = ext4_journal_stop(handle); 2047 if (!ret) 2048 ret = err; 2049 2050 if (!ext4_has_inline_data(inode)) 2051 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2052 NULL, bput_one); 2053 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2054 out: 2055 unlock_page(page); 2056 out_no_pagelock: 2057 brelse(inode_bh); 2058 return ret; 2059 } 2060 2061 /* 2062 * Note that we don't need to start a transaction unless we're journaling data 2063 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2064 * need to file the inode to the transaction's list in ordered mode because if 2065 * we are writing back data added by write(), the inode is already there and if 2066 * we are writing back data modified via mmap(), no one guarantees in which 2067 * transaction the data will hit the disk. In case we are journaling data, we 2068 * cannot start transaction directly because transaction start ranks above page 2069 * lock so we have to do some magic. 2070 * 2071 * This function can get called via... 2072 * - ext4_writepages after taking page lock (have journal handle) 2073 * - journal_submit_inode_data_buffers (no journal handle) 2074 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2075 * - grab_page_cache when doing write_begin (have journal handle) 2076 * 2077 * We don't do any block allocation in this function. If we have page with 2078 * multiple blocks we need to write those buffer_heads that are mapped. This 2079 * is important for mmaped based write. So if we do with blocksize 1K 2080 * truncate(f, 1024); 2081 * a = mmap(f, 0, 4096); 2082 * a[0] = 'a'; 2083 * truncate(f, 4096); 2084 * we have in the page first buffer_head mapped via page_mkwrite call back 2085 * but other buffer_heads would be unmapped but dirty (dirty done via the 2086 * do_wp_page). So writepage should write the first block. If we modify 2087 * the mmap area beyond 1024 we will again get a page_fault and the 2088 * page_mkwrite callback will do the block allocation and mark the 2089 * buffer_heads mapped. 2090 * 2091 * We redirty the page if we have any buffer_heads that is either delay or 2092 * unwritten in the page. 2093 * 2094 * We can get recursively called as show below. 2095 * 2096 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2097 * ext4_writepage() 2098 * 2099 * But since we don't do any block allocation we should not deadlock. 2100 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2101 */ 2102 static int ext4_writepage(struct page *page, 2103 struct writeback_control *wbc) 2104 { 2105 int ret = 0; 2106 loff_t size; 2107 unsigned int len; 2108 struct buffer_head *page_bufs = NULL; 2109 struct inode *inode = page->mapping->host; 2110 struct ext4_io_submit io_submit; 2111 bool keep_towrite = false; 2112 2113 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2114 ext4_invalidatepage(page, 0, PAGE_SIZE); 2115 unlock_page(page); 2116 return -EIO; 2117 } 2118 2119 trace_ext4_writepage(page); 2120 size = i_size_read(inode); 2121 if (page->index == size >> PAGE_SHIFT) 2122 len = size & ~PAGE_MASK; 2123 else 2124 len = PAGE_SIZE; 2125 2126 page_bufs = page_buffers(page); 2127 /* 2128 * We cannot do block allocation or other extent handling in this 2129 * function. If there are buffers needing that, we have to redirty 2130 * the page. But we may reach here when we do a journal commit via 2131 * journal_submit_inode_data_buffers() and in that case we must write 2132 * allocated buffers to achieve data=ordered mode guarantees. 2133 * 2134 * Also, if there is only one buffer per page (the fs block 2135 * size == the page size), if one buffer needs block 2136 * allocation or needs to modify the extent tree to clear the 2137 * unwritten flag, we know that the page can't be written at 2138 * all, so we might as well refuse the write immediately. 2139 * Unfortunately if the block size != page size, we can't as 2140 * easily detect this case using ext4_walk_page_buffers(), but 2141 * for the extremely common case, this is an optimization that 2142 * skips a useless round trip through ext4_bio_write_page(). 2143 */ 2144 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2145 ext4_bh_delay_or_unwritten)) { 2146 redirty_page_for_writepage(wbc, page); 2147 if ((current->flags & PF_MEMALLOC) || 2148 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2149 /* 2150 * For memory cleaning there's no point in writing only 2151 * some buffers. So just bail out. Warn if we came here 2152 * from direct reclaim. 2153 */ 2154 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2155 == PF_MEMALLOC); 2156 unlock_page(page); 2157 return 0; 2158 } 2159 keep_towrite = true; 2160 } 2161 2162 if (PageChecked(page) && ext4_should_journal_data(inode)) 2163 /* 2164 * It's mmapped pagecache. Add buffers and journal it. There 2165 * doesn't seem much point in redirtying the page here. 2166 */ 2167 return __ext4_journalled_writepage(page, len); 2168 2169 ext4_io_submit_init(&io_submit, wbc); 2170 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2171 if (!io_submit.io_end) { 2172 redirty_page_for_writepage(wbc, page); 2173 unlock_page(page); 2174 return -ENOMEM; 2175 } 2176 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2177 ext4_io_submit(&io_submit); 2178 /* Drop io_end reference we got from init */ 2179 ext4_put_io_end_defer(io_submit.io_end); 2180 return ret; 2181 } 2182 2183 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2184 { 2185 int len; 2186 loff_t size; 2187 int err; 2188 2189 BUG_ON(page->index != mpd->first_page); 2190 clear_page_dirty_for_io(page); 2191 /* 2192 * We have to be very careful here! Nothing protects writeback path 2193 * against i_size changes and the page can be writeably mapped into 2194 * page tables. So an application can be growing i_size and writing 2195 * data through mmap while writeback runs. clear_page_dirty_for_io() 2196 * write-protects our page in page tables and the page cannot get 2197 * written to again until we release page lock. So only after 2198 * clear_page_dirty_for_io() we are safe to sample i_size for 2199 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2200 * on the barrier provided by TestClearPageDirty in 2201 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2202 * after page tables are updated. 2203 */ 2204 size = i_size_read(mpd->inode); 2205 if (page->index == size >> PAGE_SHIFT) 2206 len = size & ~PAGE_MASK; 2207 else 2208 len = PAGE_SIZE; 2209 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2210 if (!err) 2211 mpd->wbc->nr_to_write--; 2212 mpd->first_page++; 2213 2214 return err; 2215 } 2216 2217 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2218 2219 /* 2220 * mballoc gives us at most this number of blocks... 2221 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2222 * The rest of mballoc seems to handle chunks up to full group size. 2223 */ 2224 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2225 2226 /* 2227 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2228 * 2229 * @mpd - extent of blocks 2230 * @lblk - logical number of the block in the file 2231 * @bh - buffer head we want to add to the extent 2232 * 2233 * The function is used to collect contig. blocks in the same state. If the 2234 * buffer doesn't require mapping for writeback and we haven't started the 2235 * extent of buffers to map yet, the function returns 'true' immediately - the 2236 * caller can write the buffer right away. Otherwise the function returns true 2237 * if the block has been added to the extent, false if the block couldn't be 2238 * added. 2239 */ 2240 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2241 struct buffer_head *bh) 2242 { 2243 struct ext4_map_blocks *map = &mpd->map; 2244 2245 /* Buffer that doesn't need mapping for writeback? */ 2246 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2247 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2248 /* So far no extent to map => we write the buffer right away */ 2249 if (map->m_len == 0) 2250 return true; 2251 return false; 2252 } 2253 2254 /* First block in the extent? */ 2255 if (map->m_len == 0) { 2256 /* We cannot map unless handle is started... */ 2257 if (!mpd->do_map) 2258 return false; 2259 map->m_lblk = lblk; 2260 map->m_len = 1; 2261 map->m_flags = bh->b_state & BH_FLAGS; 2262 return true; 2263 } 2264 2265 /* Don't go larger than mballoc is willing to allocate */ 2266 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2267 return false; 2268 2269 /* Can we merge the block to our big extent? */ 2270 if (lblk == map->m_lblk + map->m_len && 2271 (bh->b_state & BH_FLAGS) == map->m_flags) { 2272 map->m_len++; 2273 return true; 2274 } 2275 return false; 2276 } 2277 2278 /* 2279 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2280 * 2281 * @mpd - extent of blocks for mapping 2282 * @head - the first buffer in the page 2283 * @bh - buffer we should start processing from 2284 * @lblk - logical number of the block in the file corresponding to @bh 2285 * 2286 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2287 * the page for IO if all buffers in this page were mapped and there's no 2288 * accumulated extent of buffers to map or add buffers in the page to the 2289 * extent of buffers to map. The function returns 1 if the caller can continue 2290 * by processing the next page, 0 if it should stop adding buffers to the 2291 * extent to map because we cannot extend it anymore. It can also return value 2292 * < 0 in case of error during IO submission. 2293 */ 2294 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2295 struct buffer_head *head, 2296 struct buffer_head *bh, 2297 ext4_lblk_t lblk) 2298 { 2299 struct inode *inode = mpd->inode; 2300 int err; 2301 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2302 >> inode->i_blkbits; 2303 2304 do { 2305 BUG_ON(buffer_locked(bh)); 2306 2307 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2308 /* Found extent to map? */ 2309 if (mpd->map.m_len) 2310 return 0; 2311 /* Buffer needs mapping and handle is not started? */ 2312 if (!mpd->do_map) 2313 return 0; 2314 /* Everything mapped so far and we hit EOF */ 2315 break; 2316 } 2317 } while (lblk++, (bh = bh->b_this_page) != head); 2318 /* So far everything mapped? Submit the page for IO. */ 2319 if (mpd->map.m_len == 0) { 2320 err = mpage_submit_page(mpd, head->b_page); 2321 if (err < 0) 2322 return err; 2323 } 2324 return lblk < blocks; 2325 } 2326 2327 /* 2328 * mpage_map_buffers - update buffers corresponding to changed extent and 2329 * submit fully mapped pages for IO 2330 * 2331 * @mpd - description of extent to map, on return next extent to map 2332 * 2333 * Scan buffers corresponding to changed extent (we expect corresponding pages 2334 * to be already locked) and update buffer state according to new extent state. 2335 * We map delalloc buffers to their physical location, clear unwritten bits, 2336 * and mark buffers as uninit when we perform writes to unwritten extents 2337 * and do extent conversion after IO is finished. If the last page is not fully 2338 * mapped, we update @map to the next extent in the last page that needs 2339 * mapping. Otherwise we submit the page for IO. 2340 */ 2341 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2342 { 2343 struct pagevec pvec; 2344 int nr_pages, i; 2345 struct inode *inode = mpd->inode; 2346 struct buffer_head *head, *bh; 2347 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2348 pgoff_t start, end; 2349 ext4_lblk_t lblk; 2350 sector_t pblock; 2351 int err; 2352 2353 start = mpd->map.m_lblk >> bpp_bits; 2354 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2355 lblk = start << bpp_bits; 2356 pblock = mpd->map.m_pblk; 2357 2358 pagevec_init(&pvec); 2359 while (start <= end) { 2360 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2361 &start, end); 2362 if (nr_pages == 0) 2363 break; 2364 for (i = 0; i < nr_pages; i++) { 2365 struct page *page = pvec.pages[i]; 2366 2367 bh = head = page_buffers(page); 2368 do { 2369 if (lblk < mpd->map.m_lblk) 2370 continue; 2371 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2372 /* 2373 * Buffer after end of mapped extent. 2374 * Find next buffer in the page to map. 2375 */ 2376 mpd->map.m_len = 0; 2377 mpd->map.m_flags = 0; 2378 /* 2379 * FIXME: If dioread_nolock supports 2380 * blocksize < pagesize, we need to make 2381 * sure we add size mapped so far to 2382 * io_end->size as the following call 2383 * can submit the page for IO. 2384 */ 2385 err = mpage_process_page_bufs(mpd, head, 2386 bh, lblk); 2387 pagevec_release(&pvec); 2388 if (err > 0) 2389 err = 0; 2390 return err; 2391 } 2392 if (buffer_delay(bh)) { 2393 clear_buffer_delay(bh); 2394 bh->b_blocknr = pblock++; 2395 } 2396 clear_buffer_unwritten(bh); 2397 } while (lblk++, (bh = bh->b_this_page) != head); 2398 2399 /* 2400 * FIXME: This is going to break if dioread_nolock 2401 * supports blocksize < pagesize as we will try to 2402 * convert potentially unmapped parts of inode. 2403 */ 2404 mpd->io_submit.io_end->size += PAGE_SIZE; 2405 /* Page fully mapped - let IO run! */ 2406 err = mpage_submit_page(mpd, page); 2407 if (err < 0) { 2408 pagevec_release(&pvec); 2409 return err; 2410 } 2411 } 2412 pagevec_release(&pvec); 2413 } 2414 /* Extent fully mapped and matches with page boundary. We are done. */ 2415 mpd->map.m_len = 0; 2416 mpd->map.m_flags = 0; 2417 return 0; 2418 } 2419 2420 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2421 { 2422 struct inode *inode = mpd->inode; 2423 struct ext4_map_blocks *map = &mpd->map; 2424 int get_blocks_flags; 2425 int err, dioread_nolock; 2426 2427 trace_ext4_da_write_pages_extent(inode, map); 2428 /* 2429 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2430 * to convert an unwritten extent to be initialized (in the case 2431 * where we have written into one or more preallocated blocks). It is 2432 * possible that we're going to need more metadata blocks than 2433 * previously reserved. However we must not fail because we're in 2434 * writeback and there is nothing we can do about it so it might result 2435 * in data loss. So use reserved blocks to allocate metadata if 2436 * possible. 2437 * 2438 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2439 * the blocks in question are delalloc blocks. This indicates 2440 * that the blocks and quotas has already been checked when 2441 * the data was copied into the page cache. 2442 */ 2443 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2444 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2445 EXT4_GET_BLOCKS_IO_SUBMIT; 2446 dioread_nolock = ext4_should_dioread_nolock(inode); 2447 if (dioread_nolock) 2448 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2449 if (map->m_flags & (1 << BH_Delay)) 2450 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2451 2452 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2453 if (err < 0) 2454 return err; 2455 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2456 if (!mpd->io_submit.io_end->handle && 2457 ext4_handle_valid(handle)) { 2458 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2459 handle->h_rsv_handle = NULL; 2460 } 2461 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2462 } 2463 2464 BUG_ON(map->m_len == 0); 2465 if (map->m_flags & EXT4_MAP_NEW) { 2466 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2467 map->m_len); 2468 } 2469 return 0; 2470 } 2471 2472 /* 2473 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2474 * mpd->len and submit pages underlying it for IO 2475 * 2476 * @handle - handle for journal operations 2477 * @mpd - extent to map 2478 * @give_up_on_write - we set this to true iff there is a fatal error and there 2479 * is no hope of writing the data. The caller should discard 2480 * dirty pages to avoid infinite loops. 2481 * 2482 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2483 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2484 * them to initialized or split the described range from larger unwritten 2485 * extent. Note that we need not map all the described range since allocation 2486 * can return less blocks or the range is covered by more unwritten extents. We 2487 * cannot map more because we are limited by reserved transaction credits. On 2488 * the other hand we always make sure that the last touched page is fully 2489 * mapped so that it can be written out (and thus forward progress is 2490 * guaranteed). After mapping we submit all mapped pages for IO. 2491 */ 2492 static int mpage_map_and_submit_extent(handle_t *handle, 2493 struct mpage_da_data *mpd, 2494 bool *give_up_on_write) 2495 { 2496 struct inode *inode = mpd->inode; 2497 struct ext4_map_blocks *map = &mpd->map; 2498 int err; 2499 loff_t disksize; 2500 int progress = 0; 2501 2502 mpd->io_submit.io_end->offset = 2503 ((loff_t)map->m_lblk) << inode->i_blkbits; 2504 do { 2505 err = mpage_map_one_extent(handle, mpd); 2506 if (err < 0) { 2507 struct super_block *sb = inode->i_sb; 2508 2509 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2510 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2511 goto invalidate_dirty_pages; 2512 /* 2513 * Let the uper layers retry transient errors. 2514 * In the case of ENOSPC, if ext4_count_free_blocks() 2515 * is non-zero, a commit should free up blocks. 2516 */ 2517 if ((err == -ENOMEM) || 2518 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2519 if (progress) 2520 goto update_disksize; 2521 return err; 2522 } 2523 ext4_msg(sb, KERN_CRIT, 2524 "Delayed block allocation failed for " 2525 "inode %lu at logical offset %llu with" 2526 " max blocks %u with error %d", 2527 inode->i_ino, 2528 (unsigned long long)map->m_lblk, 2529 (unsigned)map->m_len, -err); 2530 ext4_msg(sb, KERN_CRIT, 2531 "This should not happen!! Data will " 2532 "be lost\n"); 2533 if (err == -ENOSPC) 2534 ext4_print_free_blocks(inode); 2535 invalidate_dirty_pages: 2536 *give_up_on_write = true; 2537 return err; 2538 } 2539 progress = 1; 2540 /* 2541 * Update buffer state, submit mapped pages, and get us new 2542 * extent to map 2543 */ 2544 err = mpage_map_and_submit_buffers(mpd); 2545 if (err < 0) 2546 goto update_disksize; 2547 } while (map->m_len); 2548 2549 update_disksize: 2550 /* 2551 * Update on-disk size after IO is submitted. Races with 2552 * truncate are avoided by checking i_size under i_data_sem. 2553 */ 2554 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2555 if (disksize > EXT4_I(inode)->i_disksize) { 2556 int err2; 2557 loff_t i_size; 2558 2559 down_write(&EXT4_I(inode)->i_data_sem); 2560 i_size = i_size_read(inode); 2561 if (disksize > i_size) 2562 disksize = i_size; 2563 if (disksize > EXT4_I(inode)->i_disksize) 2564 EXT4_I(inode)->i_disksize = disksize; 2565 up_write(&EXT4_I(inode)->i_data_sem); 2566 err2 = ext4_mark_inode_dirty(handle, inode); 2567 if (err2) 2568 ext4_error(inode->i_sb, 2569 "Failed to mark inode %lu dirty", 2570 inode->i_ino); 2571 if (!err) 2572 err = err2; 2573 } 2574 return err; 2575 } 2576 2577 /* 2578 * Calculate the total number of credits to reserve for one writepages 2579 * iteration. This is called from ext4_writepages(). We map an extent of 2580 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2581 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2582 * bpp - 1 blocks in bpp different extents. 2583 */ 2584 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2585 { 2586 int bpp = ext4_journal_blocks_per_page(inode); 2587 2588 return ext4_meta_trans_blocks(inode, 2589 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2590 } 2591 2592 /* 2593 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2594 * and underlying extent to map 2595 * 2596 * @mpd - where to look for pages 2597 * 2598 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2599 * IO immediately. When we find a page which isn't mapped we start accumulating 2600 * extent of buffers underlying these pages that needs mapping (formed by 2601 * either delayed or unwritten buffers). We also lock the pages containing 2602 * these buffers. The extent found is returned in @mpd structure (starting at 2603 * mpd->lblk with length mpd->len blocks). 2604 * 2605 * Note that this function can attach bios to one io_end structure which are 2606 * neither logically nor physically contiguous. Although it may seem as an 2607 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2608 * case as we need to track IO to all buffers underlying a page in one io_end. 2609 */ 2610 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2611 { 2612 struct address_space *mapping = mpd->inode->i_mapping; 2613 struct pagevec pvec; 2614 unsigned int nr_pages; 2615 long left = mpd->wbc->nr_to_write; 2616 pgoff_t index = mpd->first_page; 2617 pgoff_t end = mpd->last_page; 2618 int tag; 2619 int i, err = 0; 2620 int blkbits = mpd->inode->i_blkbits; 2621 ext4_lblk_t lblk; 2622 struct buffer_head *head; 2623 2624 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2625 tag = PAGECACHE_TAG_TOWRITE; 2626 else 2627 tag = PAGECACHE_TAG_DIRTY; 2628 2629 pagevec_init(&pvec); 2630 mpd->map.m_len = 0; 2631 mpd->next_page = index; 2632 while (index <= end) { 2633 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2634 tag); 2635 if (nr_pages == 0) 2636 goto out; 2637 2638 for (i = 0; i < nr_pages; i++) { 2639 struct page *page = pvec.pages[i]; 2640 2641 /* 2642 * Accumulated enough dirty pages? This doesn't apply 2643 * to WB_SYNC_ALL mode. For integrity sync we have to 2644 * keep going because someone may be concurrently 2645 * dirtying pages, and we might have synced a lot of 2646 * newly appeared dirty pages, but have not synced all 2647 * of the old dirty pages. 2648 */ 2649 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2650 goto out; 2651 2652 /* If we can't merge this page, we are done. */ 2653 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2654 goto out; 2655 2656 lock_page(page); 2657 /* 2658 * If the page is no longer dirty, or its mapping no 2659 * longer corresponds to inode we are writing (which 2660 * means it has been truncated or invalidated), or the 2661 * page is already under writeback and we are not doing 2662 * a data integrity writeback, skip the page 2663 */ 2664 if (!PageDirty(page) || 2665 (PageWriteback(page) && 2666 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2667 unlikely(page->mapping != mapping)) { 2668 unlock_page(page); 2669 continue; 2670 } 2671 2672 wait_on_page_writeback(page); 2673 BUG_ON(PageWriteback(page)); 2674 2675 if (mpd->map.m_len == 0) 2676 mpd->first_page = page->index; 2677 mpd->next_page = page->index + 1; 2678 /* Add all dirty buffers to mpd */ 2679 lblk = ((ext4_lblk_t)page->index) << 2680 (PAGE_SHIFT - blkbits); 2681 head = page_buffers(page); 2682 err = mpage_process_page_bufs(mpd, head, head, lblk); 2683 if (err <= 0) 2684 goto out; 2685 err = 0; 2686 left--; 2687 } 2688 pagevec_release(&pvec); 2689 cond_resched(); 2690 } 2691 return 0; 2692 out: 2693 pagevec_release(&pvec); 2694 return err; 2695 } 2696 2697 static int ext4_writepages(struct address_space *mapping, 2698 struct writeback_control *wbc) 2699 { 2700 pgoff_t writeback_index = 0; 2701 long nr_to_write = wbc->nr_to_write; 2702 int range_whole = 0; 2703 int cycled = 1; 2704 handle_t *handle = NULL; 2705 struct mpage_da_data mpd; 2706 struct inode *inode = mapping->host; 2707 int needed_blocks, rsv_blocks = 0, ret = 0; 2708 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2709 bool done; 2710 struct blk_plug plug; 2711 bool give_up_on_write = false; 2712 2713 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2714 return -EIO; 2715 2716 percpu_down_read(&sbi->s_journal_flag_rwsem); 2717 trace_ext4_writepages(inode, wbc); 2718 2719 /* 2720 * No pages to write? This is mainly a kludge to avoid starting 2721 * a transaction for special inodes like journal inode on last iput() 2722 * because that could violate lock ordering on umount 2723 */ 2724 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2725 goto out_writepages; 2726 2727 if (ext4_should_journal_data(inode)) { 2728 ret = generic_writepages(mapping, wbc); 2729 goto out_writepages; 2730 } 2731 2732 /* 2733 * If the filesystem has aborted, it is read-only, so return 2734 * right away instead of dumping stack traces later on that 2735 * will obscure the real source of the problem. We test 2736 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2737 * the latter could be true if the filesystem is mounted 2738 * read-only, and in that case, ext4_writepages should 2739 * *never* be called, so if that ever happens, we would want 2740 * the stack trace. 2741 */ 2742 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2743 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2744 ret = -EROFS; 2745 goto out_writepages; 2746 } 2747 2748 if (ext4_should_dioread_nolock(inode)) { 2749 /* 2750 * We may need to convert up to one extent per block in 2751 * the page and we may dirty the inode. 2752 */ 2753 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2754 } 2755 2756 /* 2757 * If we have inline data and arrive here, it means that 2758 * we will soon create the block for the 1st page, so 2759 * we'd better clear the inline data here. 2760 */ 2761 if (ext4_has_inline_data(inode)) { 2762 /* Just inode will be modified... */ 2763 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2764 if (IS_ERR(handle)) { 2765 ret = PTR_ERR(handle); 2766 goto out_writepages; 2767 } 2768 BUG_ON(ext4_test_inode_state(inode, 2769 EXT4_STATE_MAY_INLINE_DATA)); 2770 ext4_destroy_inline_data(handle, inode); 2771 ext4_journal_stop(handle); 2772 } 2773 2774 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2775 range_whole = 1; 2776 2777 if (wbc->range_cyclic) { 2778 writeback_index = mapping->writeback_index; 2779 if (writeback_index) 2780 cycled = 0; 2781 mpd.first_page = writeback_index; 2782 mpd.last_page = -1; 2783 } else { 2784 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2785 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2786 } 2787 2788 mpd.inode = inode; 2789 mpd.wbc = wbc; 2790 ext4_io_submit_init(&mpd.io_submit, wbc); 2791 retry: 2792 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2793 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2794 done = false; 2795 blk_start_plug(&plug); 2796 2797 /* 2798 * First writeback pages that don't need mapping - we can avoid 2799 * starting a transaction unnecessarily and also avoid being blocked 2800 * in the block layer on device congestion while having transaction 2801 * started. 2802 */ 2803 mpd.do_map = 0; 2804 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2805 if (!mpd.io_submit.io_end) { 2806 ret = -ENOMEM; 2807 goto unplug; 2808 } 2809 ret = mpage_prepare_extent_to_map(&mpd); 2810 /* Submit prepared bio */ 2811 ext4_io_submit(&mpd.io_submit); 2812 ext4_put_io_end_defer(mpd.io_submit.io_end); 2813 mpd.io_submit.io_end = NULL; 2814 /* Unlock pages we didn't use */ 2815 mpage_release_unused_pages(&mpd, false); 2816 if (ret < 0) 2817 goto unplug; 2818 2819 while (!done && mpd.first_page <= mpd.last_page) { 2820 /* For each extent of pages we use new io_end */ 2821 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2822 if (!mpd.io_submit.io_end) { 2823 ret = -ENOMEM; 2824 break; 2825 } 2826 2827 /* 2828 * We have two constraints: We find one extent to map and we 2829 * must always write out whole page (makes a difference when 2830 * blocksize < pagesize) so that we don't block on IO when we 2831 * try to write out the rest of the page. Journalled mode is 2832 * not supported by delalloc. 2833 */ 2834 BUG_ON(ext4_should_journal_data(inode)); 2835 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2836 2837 /* start a new transaction */ 2838 handle = ext4_journal_start_with_reserve(inode, 2839 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2840 if (IS_ERR(handle)) { 2841 ret = PTR_ERR(handle); 2842 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2843 "%ld pages, ino %lu; err %d", __func__, 2844 wbc->nr_to_write, inode->i_ino, ret); 2845 /* Release allocated io_end */ 2846 ext4_put_io_end(mpd.io_submit.io_end); 2847 mpd.io_submit.io_end = NULL; 2848 break; 2849 } 2850 mpd.do_map = 1; 2851 2852 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2853 ret = mpage_prepare_extent_to_map(&mpd); 2854 if (!ret) { 2855 if (mpd.map.m_len) 2856 ret = mpage_map_and_submit_extent(handle, &mpd, 2857 &give_up_on_write); 2858 else { 2859 /* 2860 * We scanned the whole range (or exhausted 2861 * nr_to_write), submitted what was mapped and 2862 * didn't find anything needing mapping. We are 2863 * done. 2864 */ 2865 done = true; 2866 } 2867 } 2868 /* 2869 * Caution: If the handle is synchronous, 2870 * ext4_journal_stop() can wait for transaction commit 2871 * to finish which may depend on writeback of pages to 2872 * complete or on page lock to be released. In that 2873 * case, we have to wait until after after we have 2874 * submitted all the IO, released page locks we hold, 2875 * and dropped io_end reference (for extent conversion 2876 * to be able to complete) before stopping the handle. 2877 */ 2878 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2879 ext4_journal_stop(handle); 2880 handle = NULL; 2881 mpd.do_map = 0; 2882 } 2883 /* Submit prepared bio */ 2884 ext4_io_submit(&mpd.io_submit); 2885 /* Unlock pages we didn't use */ 2886 mpage_release_unused_pages(&mpd, give_up_on_write); 2887 /* 2888 * Drop our io_end reference we got from init. We have 2889 * to be careful and use deferred io_end finishing if 2890 * we are still holding the transaction as we can 2891 * release the last reference to io_end which may end 2892 * up doing unwritten extent conversion. 2893 */ 2894 if (handle) { 2895 ext4_put_io_end_defer(mpd.io_submit.io_end); 2896 ext4_journal_stop(handle); 2897 } else 2898 ext4_put_io_end(mpd.io_submit.io_end); 2899 mpd.io_submit.io_end = NULL; 2900 2901 if (ret == -ENOSPC && sbi->s_journal) { 2902 /* 2903 * Commit the transaction which would 2904 * free blocks released in the transaction 2905 * and try again 2906 */ 2907 jbd2_journal_force_commit_nested(sbi->s_journal); 2908 ret = 0; 2909 continue; 2910 } 2911 /* Fatal error - ENOMEM, EIO... */ 2912 if (ret) 2913 break; 2914 } 2915 unplug: 2916 blk_finish_plug(&plug); 2917 if (!ret && !cycled && wbc->nr_to_write > 0) { 2918 cycled = 1; 2919 mpd.last_page = writeback_index - 1; 2920 mpd.first_page = 0; 2921 goto retry; 2922 } 2923 2924 /* Update index */ 2925 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2926 /* 2927 * Set the writeback_index so that range_cyclic 2928 * mode will write it back later 2929 */ 2930 mapping->writeback_index = mpd.first_page; 2931 2932 out_writepages: 2933 trace_ext4_writepages_result(inode, wbc, ret, 2934 nr_to_write - wbc->nr_to_write); 2935 percpu_up_read(&sbi->s_journal_flag_rwsem); 2936 return ret; 2937 } 2938 2939 static int ext4_dax_writepages(struct address_space *mapping, 2940 struct writeback_control *wbc) 2941 { 2942 int ret; 2943 long nr_to_write = wbc->nr_to_write; 2944 struct inode *inode = mapping->host; 2945 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2946 2947 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2948 return -EIO; 2949 2950 percpu_down_read(&sbi->s_journal_flag_rwsem); 2951 trace_ext4_writepages(inode, wbc); 2952 2953 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc); 2954 trace_ext4_writepages_result(inode, wbc, ret, 2955 nr_to_write - wbc->nr_to_write); 2956 percpu_up_read(&sbi->s_journal_flag_rwsem); 2957 return ret; 2958 } 2959 2960 static int ext4_nonda_switch(struct super_block *sb) 2961 { 2962 s64 free_clusters, dirty_clusters; 2963 struct ext4_sb_info *sbi = EXT4_SB(sb); 2964 2965 /* 2966 * switch to non delalloc mode if we are running low 2967 * on free block. The free block accounting via percpu 2968 * counters can get slightly wrong with percpu_counter_batch getting 2969 * accumulated on each CPU without updating global counters 2970 * Delalloc need an accurate free block accounting. So switch 2971 * to non delalloc when we are near to error range. 2972 */ 2973 free_clusters = 2974 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2975 dirty_clusters = 2976 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2977 /* 2978 * Start pushing delalloc when 1/2 of free blocks are dirty. 2979 */ 2980 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2981 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2982 2983 if (2 * free_clusters < 3 * dirty_clusters || 2984 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2985 /* 2986 * free block count is less than 150% of dirty blocks 2987 * or free blocks is less than watermark 2988 */ 2989 return 1; 2990 } 2991 return 0; 2992 } 2993 2994 /* We always reserve for an inode update; the superblock could be there too */ 2995 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2996 { 2997 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2998 return 1; 2999 3000 if (pos + len <= 0x7fffffffULL) 3001 return 1; 3002 3003 /* We might need to update the superblock to set LARGE_FILE */ 3004 return 2; 3005 } 3006 3007 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3008 loff_t pos, unsigned len, unsigned flags, 3009 struct page **pagep, void **fsdata) 3010 { 3011 int ret, retries = 0; 3012 struct page *page; 3013 pgoff_t index; 3014 struct inode *inode = mapping->host; 3015 handle_t *handle; 3016 3017 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3018 return -EIO; 3019 3020 index = pos >> PAGE_SHIFT; 3021 3022 if (ext4_nonda_switch(inode->i_sb) || 3023 S_ISLNK(inode->i_mode)) { 3024 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3025 return ext4_write_begin(file, mapping, pos, 3026 len, flags, pagep, fsdata); 3027 } 3028 *fsdata = (void *)0; 3029 trace_ext4_da_write_begin(inode, pos, len, flags); 3030 3031 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3032 ret = ext4_da_write_inline_data_begin(mapping, inode, 3033 pos, len, flags, 3034 pagep, fsdata); 3035 if (ret < 0) 3036 return ret; 3037 if (ret == 1) 3038 return 0; 3039 } 3040 3041 /* 3042 * grab_cache_page_write_begin() can take a long time if the 3043 * system is thrashing due to memory pressure, or if the page 3044 * is being written back. So grab it first before we start 3045 * the transaction handle. This also allows us to allocate 3046 * the page (if needed) without using GFP_NOFS. 3047 */ 3048 retry_grab: 3049 page = grab_cache_page_write_begin(mapping, index, flags); 3050 if (!page) 3051 return -ENOMEM; 3052 unlock_page(page); 3053 3054 /* 3055 * With delayed allocation, we don't log the i_disksize update 3056 * if there is delayed block allocation. But we still need 3057 * to journalling the i_disksize update if writes to the end 3058 * of file which has an already mapped buffer. 3059 */ 3060 retry_journal: 3061 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3062 ext4_da_write_credits(inode, pos, len)); 3063 if (IS_ERR(handle)) { 3064 put_page(page); 3065 return PTR_ERR(handle); 3066 } 3067 3068 lock_page(page); 3069 if (page->mapping != mapping) { 3070 /* The page got truncated from under us */ 3071 unlock_page(page); 3072 put_page(page); 3073 ext4_journal_stop(handle); 3074 goto retry_grab; 3075 } 3076 /* In case writeback began while the page was unlocked */ 3077 wait_for_stable_page(page); 3078 3079 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3080 ret = ext4_block_write_begin(page, pos, len, 3081 ext4_da_get_block_prep); 3082 #else 3083 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3084 #endif 3085 if (ret < 0) { 3086 unlock_page(page); 3087 ext4_journal_stop(handle); 3088 /* 3089 * block_write_begin may have instantiated a few blocks 3090 * outside i_size. Trim these off again. Don't need 3091 * i_size_read because we hold i_mutex. 3092 */ 3093 if (pos + len > inode->i_size) 3094 ext4_truncate_failed_write(inode); 3095 3096 if (ret == -ENOSPC && 3097 ext4_should_retry_alloc(inode->i_sb, &retries)) 3098 goto retry_journal; 3099 3100 put_page(page); 3101 return ret; 3102 } 3103 3104 *pagep = page; 3105 return ret; 3106 } 3107 3108 /* 3109 * Check if we should update i_disksize 3110 * when write to the end of file but not require block allocation 3111 */ 3112 static int ext4_da_should_update_i_disksize(struct page *page, 3113 unsigned long offset) 3114 { 3115 struct buffer_head *bh; 3116 struct inode *inode = page->mapping->host; 3117 unsigned int idx; 3118 int i; 3119 3120 bh = page_buffers(page); 3121 idx = offset >> inode->i_blkbits; 3122 3123 for (i = 0; i < idx; i++) 3124 bh = bh->b_this_page; 3125 3126 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3127 return 0; 3128 return 1; 3129 } 3130 3131 static int ext4_da_write_end(struct file *file, 3132 struct address_space *mapping, 3133 loff_t pos, unsigned len, unsigned copied, 3134 struct page *page, void *fsdata) 3135 { 3136 struct inode *inode = mapping->host; 3137 int ret = 0, ret2; 3138 handle_t *handle = ext4_journal_current_handle(); 3139 loff_t new_i_size; 3140 unsigned long start, end; 3141 int write_mode = (int)(unsigned long)fsdata; 3142 3143 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3144 return ext4_write_end(file, mapping, pos, 3145 len, copied, page, fsdata); 3146 3147 trace_ext4_da_write_end(inode, pos, len, copied); 3148 start = pos & (PAGE_SIZE - 1); 3149 end = start + copied - 1; 3150 3151 /* 3152 * generic_write_end() will run mark_inode_dirty() if i_size 3153 * changes. So let's piggyback the i_disksize mark_inode_dirty 3154 * into that. 3155 */ 3156 new_i_size = pos + copied; 3157 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3158 if (ext4_has_inline_data(inode) || 3159 ext4_da_should_update_i_disksize(page, end)) { 3160 ext4_update_i_disksize(inode, new_i_size); 3161 /* We need to mark inode dirty even if 3162 * new_i_size is less that inode->i_size 3163 * bu greater than i_disksize.(hint delalloc) 3164 */ 3165 ext4_mark_inode_dirty(handle, inode); 3166 } 3167 } 3168 3169 if (write_mode != CONVERT_INLINE_DATA && 3170 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3171 ext4_has_inline_data(inode)) 3172 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3173 page); 3174 else 3175 ret2 = generic_write_end(file, mapping, pos, len, copied, 3176 page, fsdata); 3177 3178 copied = ret2; 3179 if (ret2 < 0) 3180 ret = ret2; 3181 ret2 = ext4_journal_stop(handle); 3182 if (!ret) 3183 ret = ret2; 3184 3185 return ret ? ret : copied; 3186 } 3187 3188 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3189 unsigned int length) 3190 { 3191 /* 3192 * Drop reserved blocks 3193 */ 3194 BUG_ON(!PageLocked(page)); 3195 if (!page_has_buffers(page)) 3196 goto out; 3197 3198 ext4_da_page_release_reservation(page, offset, length); 3199 3200 out: 3201 ext4_invalidatepage(page, offset, length); 3202 3203 return; 3204 } 3205 3206 /* 3207 * Force all delayed allocation blocks to be allocated for a given inode. 3208 */ 3209 int ext4_alloc_da_blocks(struct inode *inode) 3210 { 3211 trace_ext4_alloc_da_blocks(inode); 3212 3213 if (!EXT4_I(inode)->i_reserved_data_blocks) 3214 return 0; 3215 3216 /* 3217 * We do something simple for now. The filemap_flush() will 3218 * also start triggering a write of the data blocks, which is 3219 * not strictly speaking necessary (and for users of 3220 * laptop_mode, not even desirable). However, to do otherwise 3221 * would require replicating code paths in: 3222 * 3223 * ext4_writepages() -> 3224 * write_cache_pages() ---> (via passed in callback function) 3225 * __mpage_da_writepage() --> 3226 * mpage_add_bh_to_extent() 3227 * mpage_da_map_blocks() 3228 * 3229 * The problem is that write_cache_pages(), located in 3230 * mm/page-writeback.c, marks pages clean in preparation for 3231 * doing I/O, which is not desirable if we're not planning on 3232 * doing I/O at all. 3233 * 3234 * We could call write_cache_pages(), and then redirty all of 3235 * the pages by calling redirty_page_for_writepage() but that 3236 * would be ugly in the extreme. So instead we would need to 3237 * replicate parts of the code in the above functions, 3238 * simplifying them because we wouldn't actually intend to 3239 * write out the pages, but rather only collect contiguous 3240 * logical block extents, call the multi-block allocator, and 3241 * then update the buffer heads with the block allocations. 3242 * 3243 * For now, though, we'll cheat by calling filemap_flush(), 3244 * which will map the blocks, and start the I/O, but not 3245 * actually wait for the I/O to complete. 3246 */ 3247 return filemap_flush(inode->i_mapping); 3248 } 3249 3250 /* 3251 * bmap() is special. It gets used by applications such as lilo and by 3252 * the swapper to find the on-disk block of a specific piece of data. 3253 * 3254 * Naturally, this is dangerous if the block concerned is still in the 3255 * journal. If somebody makes a swapfile on an ext4 data-journaling 3256 * filesystem and enables swap, then they may get a nasty shock when the 3257 * data getting swapped to that swapfile suddenly gets overwritten by 3258 * the original zero's written out previously to the journal and 3259 * awaiting writeback in the kernel's buffer cache. 3260 * 3261 * So, if we see any bmap calls here on a modified, data-journaled file, 3262 * take extra steps to flush any blocks which might be in the cache. 3263 */ 3264 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3265 { 3266 struct inode *inode = mapping->host; 3267 journal_t *journal; 3268 int err; 3269 3270 /* 3271 * We can get here for an inline file via the FIBMAP ioctl 3272 */ 3273 if (ext4_has_inline_data(inode)) 3274 return 0; 3275 3276 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3277 test_opt(inode->i_sb, DELALLOC)) { 3278 /* 3279 * With delalloc we want to sync the file 3280 * so that we can make sure we allocate 3281 * blocks for file 3282 */ 3283 filemap_write_and_wait(mapping); 3284 } 3285 3286 if (EXT4_JOURNAL(inode) && 3287 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3288 /* 3289 * This is a REALLY heavyweight approach, but the use of 3290 * bmap on dirty files is expected to be extremely rare: 3291 * only if we run lilo or swapon on a freshly made file 3292 * do we expect this to happen. 3293 * 3294 * (bmap requires CAP_SYS_RAWIO so this does not 3295 * represent an unprivileged user DOS attack --- we'd be 3296 * in trouble if mortal users could trigger this path at 3297 * will.) 3298 * 3299 * NB. EXT4_STATE_JDATA is not set on files other than 3300 * regular files. If somebody wants to bmap a directory 3301 * or symlink and gets confused because the buffer 3302 * hasn't yet been flushed to disk, they deserve 3303 * everything they get. 3304 */ 3305 3306 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3307 journal = EXT4_JOURNAL(inode); 3308 jbd2_journal_lock_updates(journal); 3309 err = jbd2_journal_flush(journal); 3310 jbd2_journal_unlock_updates(journal); 3311 3312 if (err) 3313 return 0; 3314 } 3315 3316 return generic_block_bmap(mapping, block, ext4_get_block); 3317 } 3318 3319 static int ext4_readpage(struct file *file, struct page *page) 3320 { 3321 int ret = -EAGAIN; 3322 struct inode *inode = page->mapping->host; 3323 3324 trace_ext4_readpage(page); 3325 3326 if (ext4_has_inline_data(inode)) 3327 ret = ext4_readpage_inline(inode, page); 3328 3329 if (ret == -EAGAIN) 3330 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3331 3332 return ret; 3333 } 3334 3335 static int 3336 ext4_readpages(struct file *file, struct address_space *mapping, 3337 struct list_head *pages, unsigned nr_pages) 3338 { 3339 struct inode *inode = mapping->host; 3340 3341 /* If the file has inline data, no need to do readpages. */ 3342 if (ext4_has_inline_data(inode)) 3343 return 0; 3344 3345 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3346 } 3347 3348 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3349 unsigned int length) 3350 { 3351 trace_ext4_invalidatepage(page, offset, length); 3352 3353 /* No journalling happens on data buffers when this function is used */ 3354 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3355 3356 block_invalidatepage(page, offset, length); 3357 } 3358 3359 static int __ext4_journalled_invalidatepage(struct page *page, 3360 unsigned int offset, 3361 unsigned int length) 3362 { 3363 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3364 3365 trace_ext4_journalled_invalidatepage(page, offset, length); 3366 3367 /* 3368 * If it's a full truncate we just forget about the pending dirtying 3369 */ 3370 if (offset == 0 && length == PAGE_SIZE) 3371 ClearPageChecked(page); 3372 3373 return jbd2_journal_invalidatepage(journal, page, offset, length); 3374 } 3375 3376 /* Wrapper for aops... */ 3377 static void ext4_journalled_invalidatepage(struct page *page, 3378 unsigned int offset, 3379 unsigned int length) 3380 { 3381 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3382 } 3383 3384 static int ext4_releasepage(struct page *page, gfp_t wait) 3385 { 3386 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3387 3388 trace_ext4_releasepage(page); 3389 3390 /* Page has dirty journalled data -> cannot release */ 3391 if (PageChecked(page)) 3392 return 0; 3393 if (journal) 3394 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3395 else 3396 return try_to_free_buffers(page); 3397 } 3398 3399 static bool ext4_inode_datasync_dirty(struct inode *inode) 3400 { 3401 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3402 3403 if (journal) 3404 return !jbd2_transaction_committed(journal, 3405 EXT4_I(inode)->i_datasync_tid); 3406 /* Any metadata buffers to write? */ 3407 if (!list_empty(&inode->i_mapping->private_list)) 3408 return true; 3409 return inode->i_state & I_DIRTY_DATASYNC; 3410 } 3411 3412 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3413 unsigned flags, struct iomap *iomap) 3414 { 3415 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3416 unsigned int blkbits = inode->i_blkbits; 3417 unsigned long first_block = offset >> blkbits; 3418 unsigned long last_block = (offset + length - 1) >> blkbits; 3419 struct ext4_map_blocks map; 3420 bool delalloc = false; 3421 int ret; 3422 3423 3424 if (flags & IOMAP_REPORT) { 3425 if (ext4_has_inline_data(inode)) { 3426 ret = ext4_inline_data_iomap(inode, iomap); 3427 if (ret != -EAGAIN) { 3428 if (ret == 0 && offset >= iomap->length) 3429 ret = -ENOENT; 3430 return ret; 3431 } 3432 } 3433 } else { 3434 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3435 return -ERANGE; 3436 } 3437 3438 map.m_lblk = first_block; 3439 map.m_len = last_block - first_block + 1; 3440 3441 if (flags & IOMAP_REPORT) { 3442 ret = ext4_map_blocks(NULL, inode, &map, 0); 3443 if (ret < 0) 3444 return ret; 3445 3446 if (ret == 0) { 3447 ext4_lblk_t end = map.m_lblk + map.m_len - 1; 3448 struct extent_status es; 3449 3450 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es); 3451 3452 if (!es.es_len || es.es_lblk > end) { 3453 /* entire range is a hole */ 3454 } else if (es.es_lblk > map.m_lblk) { 3455 /* range starts with a hole */ 3456 map.m_len = es.es_lblk - map.m_lblk; 3457 } else { 3458 ext4_lblk_t offs = 0; 3459 3460 if (es.es_lblk < map.m_lblk) 3461 offs = map.m_lblk - es.es_lblk; 3462 map.m_lblk = es.es_lblk + offs; 3463 map.m_len = es.es_len - offs; 3464 delalloc = true; 3465 } 3466 } 3467 } else if (flags & IOMAP_WRITE) { 3468 int dio_credits; 3469 handle_t *handle; 3470 int retries = 0; 3471 3472 /* Trim mapping request to maximum we can map at once for DIO */ 3473 if (map.m_len > DIO_MAX_BLOCKS) 3474 map.m_len = DIO_MAX_BLOCKS; 3475 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3476 retry: 3477 /* 3478 * Either we allocate blocks and then we don't get unwritten 3479 * extent so we have reserved enough credits, or the blocks 3480 * are already allocated and unwritten and in that case 3481 * extent conversion fits in the credits as well. 3482 */ 3483 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3484 dio_credits); 3485 if (IS_ERR(handle)) 3486 return PTR_ERR(handle); 3487 3488 ret = ext4_map_blocks(handle, inode, &map, 3489 EXT4_GET_BLOCKS_CREATE_ZERO); 3490 if (ret < 0) { 3491 ext4_journal_stop(handle); 3492 if (ret == -ENOSPC && 3493 ext4_should_retry_alloc(inode->i_sb, &retries)) 3494 goto retry; 3495 return ret; 3496 } 3497 3498 /* 3499 * If we added blocks beyond i_size, we need to make sure they 3500 * will get truncated if we crash before updating i_size in 3501 * ext4_iomap_end(). For faults we don't need to do that (and 3502 * even cannot because for orphan list operations inode_lock is 3503 * required) - if we happen to instantiate block beyond i_size, 3504 * it is because we race with truncate which has already added 3505 * the inode to the orphan list. 3506 */ 3507 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3508 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3509 int err; 3510 3511 err = ext4_orphan_add(handle, inode); 3512 if (err < 0) { 3513 ext4_journal_stop(handle); 3514 return err; 3515 } 3516 } 3517 ext4_journal_stop(handle); 3518 } else { 3519 ret = ext4_map_blocks(NULL, inode, &map, 0); 3520 if (ret < 0) 3521 return ret; 3522 } 3523 3524 iomap->flags = 0; 3525 if (ext4_inode_datasync_dirty(inode)) 3526 iomap->flags |= IOMAP_F_DIRTY; 3527 iomap->bdev = inode->i_sb->s_bdev; 3528 iomap->dax_dev = sbi->s_daxdev; 3529 iomap->offset = (u64)first_block << blkbits; 3530 iomap->length = (u64)map.m_len << blkbits; 3531 3532 if (ret == 0) { 3533 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; 3534 iomap->addr = IOMAP_NULL_ADDR; 3535 } else { 3536 if (map.m_flags & EXT4_MAP_MAPPED) { 3537 iomap->type = IOMAP_MAPPED; 3538 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3539 iomap->type = IOMAP_UNWRITTEN; 3540 } else { 3541 WARN_ON_ONCE(1); 3542 return -EIO; 3543 } 3544 iomap->addr = (u64)map.m_pblk << blkbits; 3545 } 3546 3547 if (map.m_flags & EXT4_MAP_NEW) 3548 iomap->flags |= IOMAP_F_NEW; 3549 3550 return 0; 3551 } 3552 3553 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3554 ssize_t written, unsigned flags, struct iomap *iomap) 3555 { 3556 int ret = 0; 3557 handle_t *handle; 3558 int blkbits = inode->i_blkbits; 3559 bool truncate = false; 3560 3561 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3562 return 0; 3563 3564 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3565 if (IS_ERR(handle)) { 3566 ret = PTR_ERR(handle); 3567 goto orphan_del; 3568 } 3569 if (ext4_update_inode_size(inode, offset + written)) 3570 ext4_mark_inode_dirty(handle, inode); 3571 /* 3572 * We may need to truncate allocated but not written blocks beyond EOF. 3573 */ 3574 if (iomap->offset + iomap->length > 3575 ALIGN(inode->i_size, 1 << blkbits)) { 3576 ext4_lblk_t written_blk, end_blk; 3577 3578 written_blk = (offset + written) >> blkbits; 3579 end_blk = (offset + length) >> blkbits; 3580 if (written_blk < end_blk && ext4_can_truncate(inode)) 3581 truncate = true; 3582 } 3583 /* 3584 * Remove inode from orphan list if we were extending a inode and 3585 * everything went fine. 3586 */ 3587 if (!truncate && inode->i_nlink && 3588 !list_empty(&EXT4_I(inode)->i_orphan)) 3589 ext4_orphan_del(handle, inode); 3590 ext4_journal_stop(handle); 3591 if (truncate) { 3592 ext4_truncate_failed_write(inode); 3593 orphan_del: 3594 /* 3595 * If truncate failed early the inode might still be on the 3596 * orphan list; we need to make sure the inode is removed from 3597 * the orphan list in that case. 3598 */ 3599 if (inode->i_nlink) 3600 ext4_orphan_del(NULL, inode); 3601 } 3602 return ret; 3603 } 3604 3605 const struct iomap_ops ext4_iomap_ops = { 3606 .iomap_begin = ext4_iomap_begin, 3607 .iomap_end = ext4_iomap_end, 3608 }; 3609 3610 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3611 ssize_t size, void *private) 3612 { 3613 ext4_io_end_t *io_end = private; 3614 3615 /* if not async direct IO just return */ 3616 if (!io_end) 3617 return 0; 3618 3619 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3620 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3621 io_end, io_end->inode->i_ino, iocb, offset, size); 3622 3623 /* 3624 * Error during AIO DIO. We cannot convert unwritten extents as the 3625 * data was not written. Just clear the unwritten flag and drop io_end. 3626 */ 3627 if (size <= 0) { 3628 ext4_clear_io_unwritten_flag(io_end); 3629 size = 0; 3630 } 3631 io_end->offset = offset; 3632 io_end->size = size; 3633 ext4_put_io_end(io_end); 3634 3635 return 0; 3636 } 3637 3638 /* 3639 * Handling of direct IO writes. 3640 * 3641 * For ext4 extent files, ext4 will do direct-io write even to holes, 3642 * preallocated extents, and those write extend the file, no need to 3643 * fall back to buffered IO. 3644 * 3645 * For holes, we fallocate those blocks, mark them as unwritten 3646 * If those blocks were preallocated, we mark sure they are split, but 3647 * still keep the range to write as unwritten. 3648 * 3649 * The unwritten extents will be converted to written when DIO is completed. 3650 * For async direct IO, since the IO may still pending when return, we 3651 * set up an end_io call back function, which will do the conversion 3652 * when async direct IO completed. 3653 * 3654 * If the O_DIRECT write will extend the file then add this inode to the 3655 * orphan list. So recovery will truncate it back to the original size 3656 * if the machine crashes during the write. 3657 * 3658 */ 3659 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3660 { 3661 struct file *file = iocb->ki_filp; 3662 struct inode *inode = file->f_mapping->host; 3663 struct ext4_inode_info *ei = EXT4_I(inode); 3664 ssize_t ret; 3665 loff_t offset = iocb->ki_pos; 3666 size_t count = iov_iter_count(iter); 3667 int overwrite = 0; 3668 get_block_t *get_block_func = NULL; 3669 int dio_flags = 0; 3670 loff_t final_size = offset + count; 3671 int orphan = 0; 3672 handle_t *handle; 3673 3674 if (final_size > inode->i_size || final_size > ei->i_disksize) { 3675 /* Credits for sb + inode write */ 3676 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3677 if (IS_ERR(handle)) { 3678 ret = PTR_ERR(handle); 3679 goto out; 3680 } 3681 ret = ext4_orphan_add(handle, inode); 3682 if (ret) { 3683 ext4_journal_stop(handle); 3684 goto out; 3685 } 3686 orphan = 1; 3687 ext4_update_i_disksize(inode, inode->i_size); 3688 ext4_journal_stop(handle); 3689 } 3690 3691 BUG_ON(iocb->private == NULL); 3692 3693 /* 3694 * Make all waiters for direct IO properly wait also for extent 3695 * conversion. This also disallows race between truncate() and 3696 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3697 */ 3698 inode_dio_begin(inode); 3699 3700 /* If we do a overwrite dio, i_mutex locking can be released */ 3701 overwrite = *((int *)iocb->private); 3702 3703 if (overwrite) 3704 inode_unlock(inode); 3705 3706 /* 3707 * For extent mapped files we could direct write to holes and fallocate. 3708 * 3709 * Allocated blocks to fill the hole are marked as unwritten to prevent 3710 * parallel buffered read to expose the stale data before DIO complete 3711 * the data IO. 3712 * 3713 * As to previously fallocated extents, ext4 get_block will just simply 3714 * mark the buffer mapped but still keep the extents unwritten. 3715 * 3716 * For non AIO case, we will convert those unwritten extents to written 3717 * after return back from blockdev_direct_IO. That way we save us from 3718 * allocating io_end structure and also the overhead of offloading 3719 * the extent convertion to a workqueue. 3720 * 3721 * For async DIO, the conversion needs to be deferred when the 3722 * IO is completed. The ext4 end_io callback function will be 3723 * called to take care of the conversion work. Here for async 3724 * case, we allocate an io_end structure to hook to the iocb. 3725 */ 3726 iocb->private = NULL; 3727 if (overwrite) 3728 get_block_func = ext4_dio_get_block_overwrite; 3729 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3730 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3731 get_block_func = ext4_dio_get_block; 3732 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3733 } else if (is_sync_kiocb(iocb)) { 3734 get_block_func = ext4_dio_get_block_unwritten_sync; 3735 dio_flags = DIO_LOCKING; 3736 } else { 3737 get_block_func = ext4_dio_get_block_unwritten_async; 3738 dio_flags = DIO_LOCKING; 3739 } 3740 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3741 get_block_func, ext4_end_io_dio, NULL, 3742 dio_flags); 3743 3744 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3745 EXT4_STATE_DIO_UNWRITTEN)) { 3746 int err; 3747 /* 3748 * for non AIO case, since the IO is already 3749 * completed, we could do the conversion right here 3750 */ 3751 err = ext4_convert_unwritten_extents(NULL, inode, 3752 offset, ret); 3753 if (err < 0) 3754 ret = err; 3755 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3756 } 3757 3758 inode_dio_end(inode); 3759 /* take i_mutex locking again if we do a ovewrite dio */ 3760 if (overwrite) 3761 inode_lock(inode); 3762 3763 if (ret < 0 && final_size > inode->i_size) 3764 ext4_truncate_failed_write(inode); 3765 3766 /* Handle extending of i_size after direct IO write */ 3767 if (orphan) { 3768 int err; 3769 3770 /* Credits for sb + inode write */ 3771 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3772 if (IS_ERR(handle)) { 3773 /* 3774 * We wrote the data but cannot extend 3775 * i_size. Bail out. In async io case, we do 3776 * not return error here because we have 3777 * already submmitted the corresponding 3778 * bio. Returning error here makes the caller 3779 * think that this IO is done and failed 3780 * resulting in race with bio's completion 3781 * handler. 3782 */ 3783 if (!ret) 3784 ret = PTR_ERR(handle); 3785 if (inode->i_nlink) 3786 ext4_orphan_del(NULL, inode); 3787 3788 goto out; 3789 } 3790 if (inode->i_nlink) 3791 ext4_orphan_del(handle, inode); 3792 if (ret > 0) { 3793 loff_t end = offset + ret; 3794 if (end > inode->i_size || end > ei->i_disksize) { 3795 ext4_update_i_disksize(inode, end); 3796 if (end > inode->i_size) 3797 i_size_write(inode, end); 3798 /* 3799 * We're going to return a positive `ret' 3800 * here due to non-zero-length I/O, so there's 3801 * no way of reporting error returns from 3802 * ext4_mark_inode_dirty() to userspace. So 3803 * ignore it. 3804 */ 3805 ext4_mark_inode_dirty(handle, inode); 3806 } 3807 } 3808 err = ext4_journal_stop(handle); 3809 if (ret == 0) 3810 ret = err; 3811 } 3812 out: 3813 return ret; 3814 } 3815 3816 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3817 { 3818 struct address_space *mapping = iocb->ki_filp->f_mapping; 3819 struct inode *inode = mapping->host; 3820 size_t count = iov_iter_count(iter); 3821 ssize_t ret; 3822 3823 /* 3824 * Shared inode_lock is enough for us - it protects against concurrent 3825 * writes & truncates and since we take care of writing back page cache, 3826 * we are protected against page writeback as well. 3827 */ 3828 inode_lock_shared(inode); 3829 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3830 iocb->ki_pos + count - 1); 3831 if (ret) 3832 goto out_unlock; 3833 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3834 iter, ext4_dio_get_block, NULL, NULL, 0); 3835 out_unlock: 3836 inode_unlock_shared(inode); 3837 return ret; 3838 } 3839 3840 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3841 { 3842 struct file *file = iocb->ki_filp; 3843 struct inode *inode = file->f_mapping->host; 3844 size_t count = iov_iter_count(iter); 3845 loff_t offset = iocb->ki_pos; 3846 ssize_t ret; 3847 3848 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3849 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3850 return 0; 3851 #endif 3852 3853 /* 3854 * If we are doing data journalling we don't support O_DIRECT 3855 */ 3856 if (ext4_should_journal_data(inode)) 3857 return 0; 3858 3859 /* Let buffer I/O handle the inline data case. */ 3860 if (ext4_has_inline_data(inode)) 3861 return 0; 3862 3863 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3864 if (iov_iter_rw(iter) == READ) 3865 ret = ext4_direct_IO_read(iocb, iter); 3866 else 3867 ret = ext4_direct_IO_write(iocb, iter); 3868 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3869 return ret; 3870 } 3871 3872 /* 3873 * Pages can be marked dirty completely asynchronously from ext4's journalling 3874 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3875 * much here because ->set_page_dirty is called under VFS locks. The page is 3876 * not necessarily locked. 3877 * 3878 * We cannot just dirty the page and leave attached buffers clean, because the 3879 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3880 * or jbddirty because all the journalling code will explode. 3881 * 3882 * So what we do is to mark the page "pending dirty" and next time writepage 3883 * is called, propagate that into the buffers appropriately. 3884 */ 3885 static int ext4_journalled_set_page_dirty(struct page *page) 3886 { 3887 SetPageChecked(page); 3888 return __set_page_dirty_nobuffers(page); 3889 } 3890 3891 static int ext4_set_page_dirty(struct page *page) 3892 { 3893 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3894 WARN_ON_ONCE(!page_has_buffers(page)); 3895 return __set_page_dirty_buffers(page); 3896 } 3897 3898 static const struct address_space_operations ext4_aops = { 3899 .readpage = ext4_readpage, 3900 .readpages = ext4_readpages, 3901 .writepage = ext4_writepage, 3902 .writepages = ext4_writepages, 3903 .write_begin = ext4_write_begin, 3904 .write_end = ext4_write_end, 3905 .set_page_dirty = ext4_set_page_dirty, 3906 .bmap = ext4_bmap, 3907 .invalidatepage = ext4_invalidatepage, 3908 .releasepage = ext4_releasepage, 3909 .direct_IO = ext4_direct_IO, 3910 .migratepage = buffer_migrate_page, 3911 .is_partially_uptodate = block_is_partially_uptodate, 3912 .error_remove_page = generic_error_remove_page, 3913 }; 3914 3915 static const struct address_space_operations ext4_journalled_aops = { 3916 .readpage = ext4_readpage, 3917 .readpages = ext4_readpages, 3918 .writepage = ext4_writepage, 3919 .writepages = ext4_writepages, 3920 .write_begin = ext4_write_begin, 3921 .write_end = ext4_journalled_write_end, 3922 .set_page_dirty = ext4_journalled_set_page_dirty, 3923 .bmap = ext4_bmap, 3924 .invalidatepage = ext4_journalled_invalidatepage, 3925 .releasepage = ext4_releasepage, 3926 .direct_IO = ext4_direct_IO, 3927 .is_partially_uptodate = block_is_partially_uptodate, 3928 .error_remove_page = generic_error_remove_page, 3929 }; 3930 3931 static const struct address_space_operations ext4_da_aops = { 3932 .readpage = ext4_readpage, 3933 .readpages = ext4_readpages, 3934 .writepage = ext4_writepage, 3935 .writepages = ext4_writepages, 3936 .write_begin = ext4_da_write_begin, 3937 .write_end = ext4_da_write_end, 3938 .set_page_dirty = ext4_set_page_dirty, 3939 .bmap = ext4_bmap, 3940 .invalidatepage = ext4_da_invalidatepage, 3941 .releasepage = ext4_releasepage, 3942 .direct_IO = ext4_direct_IO, 3943 .migratepage = buffer_migrate_page, 3944 .is_partially_uptodate = block_is_partially_uptodate, 3945 .error_remove_page = generic_error_remove_page, 3946 }; 3947 3948 static const struct address_space_operations ext4_dax_aops = { 3949 .writepages = ext4_dax_writepages, 3950 .direct_IO = noop_direct_IO, 3951 .set_page_dirty = noop_set_page_dirty, 3952 .invalidatepage = noop_invalidatepage, 3953 }; 3954 3955 void ext4_set_aops(struct inode *inode) 3956 { 3957 switch (ext4_inode_journal_mode(inode)) { 3958 case EXT4_INODE_ORDERED_DATA_MODE: 3959 case EXT4_INODE_WRITEBACK_DATA_MODE: 3960 break; 3961 case EXT4_INODE_JOURNAL_DATA_MODE: 3962 inode->i_mapping->a_ops = &ext4_journalled_aops; 3963 return; 3964 default: 3965 BUG(); 3966 } 3967 if (IS_DAX(inode)) 3968 inode->i_mapping->a_ops = &ext4_dax_aops; 3969 else if (test_opt(inode->i_sb, DELALLOC)) 3970 inode->i_mapping->a_ops = &ext4_da_aops; 3971 else 3972 inode->i_mapping->a_ops = &ext4_aops; 3973 } 3974 3975 static int __ext4_block_zero_page_range(handle_t *handle, 3976 struct address_space *mapping, loff_t from, loff_t length) 3977 { 3978 ext4_fsblk_t index = from >> PAGE_SHIFT; 3979 unsigned offset = from & (PAGE_SIZE-1); 3980 unsigned blocksize, pos; 3981 ext4_lblk_t iblock; 3982 struct inode *inode = mapping->host; 3983 struct buffer_head *bh; 3984 struct page *page; 3985 int err = 0; 3986 3987 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3988 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3989 if (!page) 3990 return -ENOMEM; 3991 3992 blocksize = inode->i_sb->s_blocksize; 3993 3994 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3995 3996 if (!page_has_buffers(page)) 3997 create_empty_buffers(page, blocksize, 0); 3998 3999 /* Find the buffer that contains "offset" */ 4000 bh = page_buffers(page); 4001 pos = blocksize; 4002 while (offset >= pos) { 4003 bh = bh->b_this_page; 4004 iblock++; 4005 pos += blocksize; 4006 } 4007 if (buffer_freed(bh)) { 4008 BUFFER_TRACE(bh, "freed: skip"); 4009 goto unlock; 4010 } 4011 if (!buffer_mapped(bh)) { 4012 BUFFER_TRACE(bh, "unmapped"); 4013 ext4_get_block(inode, iblock, bh, 0); 4014 /* unmapped? It's a hole - nothing to do */ 4015 if (!buffer_mapped(bh)) { 4016 BUFFER_TRACE(bh, "still unmapped"); 4017 goto unlock; 4018 } 4019 } 4020 4021 /* Ok, it's mapped. Make sure it's up-to-date */ 4022 if (PageUptodate(page)) 4023 set_buffer_uptodate(bh); 4024 4025 if (!buffer_uptodate(bh)) { 4026 err = -EIO; 4027 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 4028 wait_on_buffer(bh); 4029 /* Uhhuh. Read error. Complain and punt. */ 4030 if (!buffer_uptodate(bh)) 4031 goto unlock; 4032 if (S_ISREG(inode->i_mode) && 4033 ext4_encrypted_inode(inode)) { 4034 /* We expect the key to be set. */ 4035 BUG_ON(!fscrypt_has_encryption_key(inode)); 4036 BUG_ON(blocksize != PAGE_SIZE); 4037 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 4038 page, PAGE_SIZE, 0, page->index)); 4039 } 4040 } 4041 if (ext4_should_journal_data(inode)) { 4042 BUFFER_TRACE(bh, "get write access"); 4043 err = ext4_journal_get_write_access(handle, bh); 4044 if (err) 4045 goto unlock; 4046 } 4047 zero_user(page, offset, length); 4048 BUFFER_TRACE(bh, "zeroed end of block"); 4049 4050 if (ext4_should_journal_data(inode)) { 4051 err = ext4_handle_dirty_metadata(handle, inode, bh); 4052 } else { 4053 err = 0; 4054 mark_buffer_dirty(bh); 4055 if (ext4_should_order_data(inode)) 4056 err = ext4_jbd2_inode_add_write(handle, inode); 4057 } 4058 4059 unlock: 4060 unlock_page(page); 4061 put_page(page); 4062 return err; 4063 } 4064 4065 /* 4066 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4067 * starting from file offset 'from'. The range to be zero'd must 4068 * be contained with in one block. If the specified range exceeds 4069 * the end of the block it will be shortened to end of the block 4070 * that cooresponds to 'from' 4071 */ 4072 static int ext4_block_zero_page_range(handle_t *handle, 4073 struct address_space *mapping, loff_t from, loff_t length) 4074 { 4075 struct inode *inode = mapping->host; 4076 unsigned offset = from & (PAGE_SIZE-1); 4077 unsigned blocksize = inode->i_sb->s_blocksize; 4078 unsigned max = blocksize - (offset & (blocksize - 1)); 4079 4080 /* 4081 * correct length if it does not fall between 4082 * 'from' and the end of the block 4083 */ 4084 if (length > max || length < 0) 4085 length = max; 4086 4087 if (IS_DAX(inode)) { 4088 return iomap_zero_range(inode, from, length, NULL, 4089 &ext4_iomap_ops); 4090 } 4091 return __ext4_block_zero_page_range(handle, mapping, from, length); 4092 } 4093 4094 /* 4095 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4096 * up to the end of the block which corresponds to `from'. 4097 * This required during truncate. We need to physically zero the tail end 4098 * of that block so it doesn't yield old data if the file is later grown. 4099 */ 4100 static int ext4_block_truncate_page(handle_t *handle, 4101 struct address_space *mapping, loff_t from) 4102 { 4103 unsigned offset = from & (PAGE_SIZE-1); 4104 unsigned length; 4105 unsigned blocksize; 4106 struct inode *inode = mapping->host; 4107 4108 /* If we are processing an encrypted inode during orphan list handling */ 4109 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode)) 4110 return 0; 4111 4112 blocksize = inode->i_sb->s_blocksize; 4113 length = blocksize - (offset & (blocksize - 1)); 4114 4115 return ext4_block_zero_page_range(handle, mapping, from, length); 4116 } 4117 4118 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4119 loff_t lstart, loff_t length) 4120 { 4121 struct super_block *sb = inode->i_sb; 4122 struct address_space *mapping = inode->i_mapping; 4123 unsigned partial_start, partial_end; 4124 ext4_fsblk_t start, end; 4125 loff_t byte_end = (lstart + length - 1); 4126 int err = 0; 4127 4128 partial_start = lstart & (sb->s_blocksize - 1); 4129 partial_end = byte_end & (sb->s_blocksize - 1); 4130 4131 start = lstart >> sb->s_blocksize_bits; 4132 end = byte_end >> sb->s_blocksize_bits; 4133 4134 /* Handle partial zero within the single block */ 4135 if (start == end && 4136 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4137 err = ext4_block_zero_page_range(handle, mapping, 4138 lstart, length); 4139 return err; 4140 } 4141 /* Handle partial zero out on the start of the range */ 4142 if (partial_start) { 4143 err = ext4_block_zero_page_range(handle, mapping, 4144 lstart, sb->s_blocksize); 4145 if (err) 4146 return err; 4147 } 4148 /* Handle partial zero out on the end of the range */ 4149 if (partial_end != sb->s_blocksize - 1) 4150 err = ext4_block_zero_page_range(handle, mapping, 4151 byte_end - partial_end, 4152 partial_end + 1); 4153 return err; 4154 } 4155 4156 int ext4_can_truncate(struct inode *inode) 4157 { 4158 if (S_ISREG(inode->i_mode)) 4159 return 1; 4160 if (S_ISDIR(inode->i_mode)) 4161 return 1; 4162 if (S_ISLNK(inode->i_mode)) 4163 return !ext4_inode_is_fast_symlink(inode); 4164 return 0; 4165 } 4166 4167 /* 4168 * We have to make sure i_disksize gets properly updated before we truncate 4169 * page cache due to hole punching or zero range. Otherwise i_disksize update 4170 * can get lost as it may have been postponed to submission of writeback but 4171 * that will never happen after we truncate page cache. 4172 */ 4173 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4174 loff_t len) 4175 { 4176 handle_t *handle; 4177 loff_t size = i_size_read(inode); 4178 4179 WARN_ON(!inode_is_locked(inode)); 4180 if (offset > size || offset + len < size) 4181 return 0; 4182 4183 if (EXT4_I(inode)->i_disksize >= size) 4184 return 0; 4185 4186 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4187 if (IS_ERR(handle)) 4188 return PTR_ERR(handle); 4189 ext4_update_i_disksize(inode, size); 4190 ext4_mark_inode_dirty(handle, inode); 4191 ext4_journal_stop(handle); 4192 4193 return 0; 4194 } 4195 4196 /* 4197 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4198 * associated with the given offset and length 4199 * 4200 * @inode: File inode 4201 * @offset: The offset where the hole will begin 4202 * @len: The length of the hole 4203 * 4204 * Returns: 0 on success or negative on failure 4205 */ 4206 4207 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4208 { 4209 struct super_block *sb = inode->i_sb; 4210 ext4_lblk_t first_block, stop_block; 4211 struct address_space *mapping = inode->i_mapping; 4212 loff_t first_block_offset, last_block_offset; 4213 handle_t *handle; 4214 unsigned int credits; 4215 int ret = 0; 4216 4217 if (!S_ISREG(inode->i_mode)) 4218 return -EOPNOTSUPP; 4219 4220 trace_ext4_punch_hole(inode, offset, length, 0); 4221 4222 /* 4223 * Write out all dirty pages to avoid race conditions 4224 * Then release them. 4225 */ 4226 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4227 ret = filemap_write_and_wait_range(mapping, offset, 4228 offset + length - 1); 4229 if (ret) 4230 return ret; 4231 } 4232 4233 inode_lock(inode); 4234 4235 /* No need to punch hole beyond i_size */ 4236 if (offset >= inode->i_size) 4237 goto out_mutex; 4238 4239 /* 4240 * If the hole extends beyond i_size, set the hole 4241 * to end after the page that contains i_size 4242 */ 4243 if (offset + length > inode->i_size) { 4244 length = inode->i_size + 4245 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4246 offset; 4247 } 4248 4249 if (offset & (sb->s_blocksize - 1) || 4250 (offset + length) & (sb->s_blocksize - 1)) { 4251 /* 4252 * Attach jinode to inode for jbd2 if we do any zeroing of 4253 * partial block 4254 */ 4255 ret = ext4_inode_attach_jinode(inode); 4256 if (ret < 0) 4257 goto out_mutex; 4258 4259 } 4260 4261 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4262 inode_dio_wait(inode); 4263 4264 /* 4265 * Prevent page faults from reinstantiating pages we have released from 4266 * page cache. 4267 */ 4268 down_write(&EXT4_I(inode)->i_mmap_sem); 4269 first_block_offset = round_up(offset, sb->s_blocksize); 4270 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4271 4272 /* Now release the pages and zero block aligned part of pages*/ 4273 if (last_block_offset > first_block_offset) { 4274 ret = ext4_update_disksize_before_punch(inode, offset, length); 4275 if (ret) 4276 goto out_dio; 4277 truncate_pagecache_range(inode, first_block_offset, 4278 last_block_offset); 4279 } 4280 4281 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4282 credits = ext4_writepage_trans_blocks(inode); 4283 else 4284 credits = ext4_blocks_for_truncate(inode); 4285 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4286 if (IS_ERR(handle)) { 4287 ret = PTR_ERR(handle); 4288 ext4_std_error(sb, ret); 4289 goto out_dio; 4290 } 4291 4292 ret = ext4_zero_partial_blocks(handle, inode, offset, 4293 length); 4294 if (ret) 4295 goto out_stop; 4296 4297 first_block = (offset + sb->s_blocksize - 1) >> 4298 EXT4_BLOCK_SIZE_BITS(sb); 4299 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4300 4301 /* If there are blocks to remove, do it */ 4302 if (stop_block > first_block) { 4303 4304 down_write(&EXT4_I(inode)->i_data_sem); 4305 ext4_discard_preallocations(inode); 4306 4307 ret = ext4_es_remove_extent(inode, first_block, 4308 stop_block - first_block); 4309 if (ret) { 4310 up_write(&EXT4_I(inode)->i_data_sem); 4311 goto out_stop; 4312 } 4313 4314 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4315 ret = ext4_ext_remove_space(inode, first_block, 4316 stop_block - 1); 4317 else 4318 ret = ext4_ind_remove_space(handle, inode, first_block, 4319 stop_block); 4320 4321 up_write(&EXT4_I(inode)->i_data_sem); 4322 } 4323 if (IS_SYNC(inode)) 4324 ext4_handle_sync(handle); 4325 4326 inode->i_mtime = inode->i_ctime = current_time(inode); 4327 ext4_mark_inode_dirty(handle, inode); 4328 if (ret >= 0) 4329 ext4_update_inode_fsync_trans(handle, inode, 1); 4330 out_stop: 4331 ext4_journal_stop(handle); 4332 out_dio: 4333 up_write(&EXT4_I(inode)->i_mmap_sem); 4334 out_mutex: 4335 inode_unlock(inode); 4336 return ret; 4337 } 4338 4339 int ext4_inode_attach_jinode(struct inode *inode) 4340 { 4341 struct ext4_inode_info *ei = EXT4_I(inode); 4342 struct jbd2_inode *jinode; 4343 4344 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4345 return 0; 4346 4347 jinode = jbd2_alloc_inode(GFP_KERNEL); 4348 spin_lock(&inode->i_lock); 4349 if (!ei->jinode) { 4350 if (!jinode) { 4351 spin_unlock(&inode->i_lock); 4352 return -ENOMEM; 4353 } 4354 ei->jinode = jinode; 4355 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4356 jinode = NULL; 4357 } 4358 spin_unlock(&inode->i_lock); 4359 if (unlikely(jinode != NULL)) 4360 jbd2_free_inode(jinode); 4361 return 0; 4362 } 4363 4364 /* 4365 * ext4_truncate() 4366 * 4367 * We block out ext4_get_block() block instantiations across the entire 4368 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4369 * simultaneously on behalf of the same inode. 4370 * 4371 * As we work through the truncate and commit bits of it to the journal there 4372 * is one core, guiding principle: the file's tree must always be consistent on 4373 * disk. We must be able to restart the truncate after a crash. 4374 * 4375 * The file's tree may be transiently inconsistent in memory (although it 4376 * probably isn't), but whenever we close off and commit a journal transaction, 4377 * the contents of (the filesystem + the journal) must be consistent and 4378 * restartable. It's pretty simple, really: bottom up, right to left (although 4379 * left-to-right works OK too). 4380 * 4381 * Note that at recovery time, journal replay occurs *before* the restart of 4382 * truncate against the orphan inode list. 4383 * 4384 * The committed inode has the new, desired i_size (which is the same as 4385 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4386 * that this inode's truncate did not complete and it will again call 4387 * ext4_truncate() to have another go. So there will be instantiated blocks 4388 * to the right of the truncation point in a crashed ext4 filesystem. But 4389 * that's fine - as long as they are linked from the inode, the post-crash 4390 * ext4_truncate() run will find them and release them. 4391 */ 4392 int ext4_truncate(struct inode *inode) 4393 { 4394 struct ext4_inode_info *ei = EXT4_I(inode); 4395 unsigned int credits; 4396 int err = 0; 4397 handle_t *handle; 4398 struct address_space *mapping = inode->i_mapping; 4399 4400 /* 4401 * There is a possibility that we're either freeing the inode 4402 * or it's a completely new inode. In those cases we might not 4403 * have i_mutex locked because it's not necessary. 4404 */ 4405 if (!(inode->i_state & (I_NEW|I_FREEING))) 4406 WARN_ON(!inode_is_locked(inode)); 4407 trace_ext4_truncate_enter(inode); 4408 4409 if (!ext4_can_truncate(inode)) 4410 return 0; 4411 4412 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4413 4414 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4415 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4416 4417 if (ext4_has_inline_data(inode)) { 4418 int has_inline = 1; 4419 4420 err = ext4_inline_data_truncate(inode, &has_inline); 4421 if (err) 4422 return err; 4423 if (has_inline) 4424 return 0; 4425 } 4426 4427 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4428 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4429 if (ext4_inode_attach_jinode(inode) < 0) 4430 return 0; 4431 } 4432 4433 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4434 credits = ext4_writepage_trans_blocks(inode); 4435 else 4436 credits = ext4_blocks_for_truncate(inode); 4437 4438 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4439 if (IS_ERR(handle)) 4440 return PTR_ERR(handle); 4441 4442 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4443 ext4_block_truncate_page(handle, mapping, inode->i_size); 4444 4445 /* 4446 * We add the inode to the orphan list, so that if this 4447 * truncate spans multiple transactions, and we crash, we will 4448 * resume the truncate when the filesystem recovers. It also 4449 * marks the inode dirty, to catch the new size. 4450 * 4451 * Implication: the file must always be in a sane, consistent 4452 * truncatable state while each transaction commits. 4453 */ 4454 err = ext4_orphan_add(handle, inode); 4455 if (err) 4456 goto out_stop; 4457 4458 down_write(&EXT4_I(inode)->i_data_sem); 4459 4460 ext4_discard_preallocations(inode); 4461 4462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4463 err = ext4_ext_truncate(handle, inode); 4464 else 4465 ext4_ind_truncate(handle, inode); 4466 4467 up_write(&ei->i_data_sem); 4468 if (err) 4469 goto out_stop; 4470 4471 if (IS_SYNC(inode)) 4472 ext4_handle_sync(handle); 4473 4474 out_stop: 4475 /* 4476 * If this was a simple ftruncate() and the file will remain alive, 4477 * then we need to clear up the orphan record which we created above. 4478 * However, if this was a real unlink then we were called by 4479 * ext4_evict_inode(), and we allow that function to clean up the 4480 * orphan info for us. 4481 */ 4482 if (inode->i_nlink) 4483 ext4_orphan_del(handle, inode); 4484 4485 inode->i_mtime = inode->i_ctime = current_time(inode); 4486 ext4_mark_inode_dirty(handle, inode); 4487 ext4_journal_stop(handle); 4488 4489 trace_ext4_truncate_exit(inode); 4490 return err; 4491 } 4492 4493 /* 4494 * ext4_get_inode_loc returns with an extra refcount against the inode's 4495 * underlying buffer_head on success. If 'in_mem' is true, we have all 4496 * data in memory that is needed to recreate the on-disk version of this 4497 * inode. 4498 */ 4499 static int __ext4_get_inode_loc(struct inode *inode, 4500 struct ext4_iloc *iloc, int in_mem) 4501 { 4502 struct ext4_group_desc *gdp; 4503 struct buffer_head *bh; 4504 struct super_block *sb = inode->i_sb; 4505 ext4_fsblk_t block; 4506 int inodes_per_block, inode_offset; 4507 4508 iloc->bh = NULL; 4509 if (!ext4_valid_inum(sb, inode->i_ino)) 4510 return -EFSCORRUPTED; 4511 4512 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4513 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4514 if (!gdp) 4515 return -EIO; 4516 4517 /* 4518 * Figure out the offset within the block group inode table 4519 */ 4520 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4521 inode_offset = ((inode->i_ino - 1) % 4522 EXT4_INODES_PER_GROUP(sb)); 4523 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4524 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4525 4526 bh = sb_getblk(sb, block); 4527 if (unlikely(!bh)) 4528 return -ENOMEM; 4529 if (!buffer_uptodate(bh)) { 4530 lock_buffer(bh); 4531 4532 /* 4533 * If the buffer has the write error flag, we have failed 4534 * to write out another inode in the same block. In this 4535 * case, we don't have to read the block because we may 4536 * read the old inode data successfully. 4537 */ 4538 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4539 set_buffer_uptodate(bh); 4540 4541 if (buffer_uptodate(bh)) { 4542 /* someone brought it uptodate while we waited */ 4543 unlock_buffer(bh); 4544 goto has_buffer; 4545 } 4546 4547 /* 4548 * If we have all information of the inode in memory and this 4549 * is the only valid inode in the block, we need not read the 4550 * block. 4551 */ 4552 if (in_mem) { 4553 struct buffer_head *bitmap_bh; 4554 int i, start; 4555 4556 start = inode_offset & ~(inodes_per_block - 1); 4557 4558 /* Is the inode bitmap in cache? */ 4559 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4560 if (unlikely(!bitmap_bh)) 4561 goto make_io; 4562 4563 /* 4564 * If the inode bitmap isn't in cache then the 4565 * optimisation may end up performing two reads instead 4566 * of one, so skip it. 4567 */ 4568 if (!buffer_uptodate(bitmap_bh)) { 4569 brelse(bitmap_bh); 4570 goto make_io; 4571 } 4572 for (i = start; i < start + inodes_per_block; i++) { 4573 if (i == inode_offset) 4574 continue; 4575 if (ext4_test_bit(i, bitmap_bh->b_data)) 4576 break; 4577 } 4578 brelse(bitmap_bh); 4579 if (i == start + inodes_per_block) { 4580 /* all other inodes are free, so skip I/O */ 4581 memset(bh->b_data, 0, bh->b_size); 4582 set_buffer_uptodate(bh); 4583 unlock_buffer(bh); 4584 goto has_buffer; 4585 } 4586 } 4587 4588 make_io: 4589 /* 4590 * If we need to do any I/O, try to pre-readahead extra 4591 * blocks from the inode table. 4592 */ 4593 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4594 ext4_fsblk_t b, end, table; 4595 unsigned num; 4596 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4597 4598 table = ext4_inode_table(sb, gdp); 4599 /* s_inode_readahead_blks is always a power of 2 */ 4600 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4601 if (table > b) 4602 b = table; 4603 end = b + ra_blks; 4604 num = EXT4_INODES_PER_GROUP(sb); 4605 if (ext4_has_group_desc_csum(sb)) 4606 num -= ext4_itable_unused_count(sb, gdp); 4607 table += num / inodes_per_block; 4608 if (end > table) 4609 end = table; 4610 while (b <= end) 4611 sb_breadahead(sb, b++); 4612 } 4613 4614 /* 4615 * There are other valid inodes in the buffer, this inode 4616 * has in-inode xattrs, or we don't have this inode in memory. 4617 * Read the block from disk. 4618 */ 4619 trace_ext4_load_inode(inode); 4620 get_bh(bh); 4621 bh->b_end_io = end_buffer_read_sync; 4622 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4623 wait_on_buffer(bh); 4624 if (!buffer_uptodate(bh)) { 4625 EXT4_ERROR_INODE_BLOCK(inode, block, 4626 "unable to read itable block"); 4627 brelse(bh); 4628 return -EIO; 4629 } 4630 } 4631 has_buffer: 4632 iloc->bh = bh; 4633 return 0; 4634 } 4635 4636 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4637 { 4638 /* We have all inode data except xattrs in memory here. */ 4639 return __ext4_get_inode_loc(inode, iloc, 4640 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4641 } 4642 4643 static bool ext4_should_use_dax(struct inode *inode) 4644 { 4645 if (!test_opt(inode->i_sb, DAX)) 4646 return false; 4647 if (!S_ISREG(inode->i_mode)) 4648 return false; 4649 if (ext4_should_journal_data(inode)) 4650 return false; 4651 if (ext4_has_inline_data(inode)) 4652 return false; 4653 if (ext4_encrypted_inode(inode)) 4654 return false; 4655 return true; 4656 } 4657 4658 void ext4_set_inode_flags(struct inode *inode) 4659 { 4660 unsigned int flags = EXT4_I(inode)->i_flags; 4661 unsigned int new_fl = 0; 4662 4663 if (flags & EXT4_SYNC_FL) 4664 new_fl |= S_SYNC; 4665 if (flags & EXT4_APPEND_FL) 4666 new_fl |= S_APPEND; 4667 if (flags & EXT4_IMMUTABLE_FL) 4668 new_fl |= S_IMMUTABLE; 4669 if (flags & EXT4_NOATIME_FL) 4670 new_fl |= S_NOATIME; 4671 if (flags & EXT4_DIRSYNC_FL) 4672 new_fl |= S_DIRSYNC; 4673 if (ext4_should_use_dax(inode)) 4674 new_fl |= S_DAX; 4675 if (flags & EXT4_ENCRYPT_FL) 4676 new_fl |= S_ENCRYPTED; 4677 inode_set_flags(inode, new_fl, 4678 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4679 S_ENCRYPTED); 4680 } 4681 4682 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4683 struct ext4_inode_info *ei) 4684 { 4685 blkcnt_t i_blocks ; 4686 struct inode *inode = &(ei->vfs_inode); 4687 struct super_block *sb = inode->i_sb; 4688 4689 if (ext4_has_feature_huge_file(sb)) { 4690 /* we are using combined 48 bit field */ 4691 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4692 le32_to_cpu(raw_inode->i_blocks_lo); 4693 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4694 /* i_blocks represent file system block size */ 4695 return i_blocks << (inode->i_blkbits - 9); 4696 } else { 4697 return i_blocks; 4698 } 4699 } else { 4700 return le32_to_cpu(raw_inode->i_blocks_lo); 4701 } 4702 } 4703 4704 static inline int ext4_iget_extra_inode(struct inode *inode, 4705 struct ext4_inode *raw_inode, 4706 struct ext4_inode_info *ei) 4707 { 4708 __le32 *magic = (void *)raw_inode + 4709 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4710 4711 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4712 EXT4_INODE_SIZE(inode->i_sb) && 4713 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4714 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4715 return ext4_find_inline_data_nolock(inode); 4716 } else 4717 EXT4_I(inode)->i_inline_off = 0; 4718 return 0; 4719 } 4720 4721 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4722 { 4723 if (!ext4_has_feature_project(inode->i_sb)) 4724 return -EOPNOTSUPP; 4725 *projid = EXT4_I(inode)->i_projid; 4726 return 0; 4727 } 4728 4729 /* 4730 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4731 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4732 * set. 4733 */ 4734 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4735 { 4736 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4737 inode_set_iversion_raw(inode, val); 4738 else 4739 inode_set_iversion_queried(inode, val); 4740 } 4741 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4742 { 4743 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4744 return inode_peek_iversion_raw(inode); 4745 else 4746 return inode_peek_iversion(inode); 4747 } 4748 4749 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4750 { 4751 struct ext4_iloc iloc; 4752 struct ext4_inode *raw_inode; 4753 struct ext4_inode_info *ei; 4754 struct inode *inode; 4755 journal_t *journal = EXT4_SB(sb)->s_journal; 4756 long ret; 4757 loff_t size; 4758 int block; 4759 uid_t i_uid; 4760 gid_t i_gid; 4761 projid_t i_projid; 4762 4763 inode = iget_locked(sb, ino); 4764 if (!inode) 4765 return ERR_PTR(-ENOMEM); 4766 if (!(inode->i_state & I_NEW)) 4767 return inode; 4768 4769 ei = EXT4_I(inode); 4770 iloc.bh = NULL; 4771 4772 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4773 if (ret < 0) 4774 goto bad_inode; 4775 raw_inode = ext4_raw_inode(&iloc); 4776 4777 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4778 EXT4_ERROR_INODE(inode, "root inode unallocated"); 4779 ret = -EFSCORRUPTED; 4780 goto bad_inode; 4781 } 4782 4783 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4784 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4785 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4786 EXT4_INODE_SIZE(inode->i_sb) || 4787 (ei->i_extra_isize & 3)) { 4788 EXT4_ERROR_INODE(inode, 4789 "bad extra_isize %u (inode size %u)", 4790 ei->i_extra_isize, 4791 EXT4_INODE_SIZE(inode->i_sb)); 4792 ret = -EFSCORRUPTED; 4793 goto bad_inode; 4794 } 4795 } else 4796 ei->i_extra_isize = 0; 4797 4798 /* Precompute checksum seed for inode metadata */ 4799 if (ext4_has_metadata_csum(sb)) { 4800 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4801 __u32 csum; 4802 __le32 inum = cpu_to_le32(inode->i_ino); 4803 __le32 gen = raw_inode->i_generation; 4804 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4805 sizeof(inum)); 4806 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4807 sizeof(gen)); 4808 } 4809 4810 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4811 EXT4_ERROR_INODE(inode, "checksum invalid"); 4812 ret = -EFSBADCRC; 4813 goto bad_inode; 4814 } 4815 4816 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4817 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4818 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4819 if (ext4_has_feature_project(sb) && 4820 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4821 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4822 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4823 else 4824 i_projid = EXT4_DEF_PROJID; 4825 4826 if (!(test_opt(inode->i_sb, NO_UID32))) { 4827 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4828 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4829 } 4830 i_uid_write(inode, i_uid); 4831 i_gid_write(inode, i_gid); 4832 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4833 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4834 4835 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4836 ei->i_inline_off = 0; 4837 ei->i_dir_start_lookup = 0; 4838 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4839 /* We now have enough fields to check if the inode was active or not. 4840 * This is needed because nfsd might try to access dead inodes 4841 * the test is that same one that e2fsck uses 4842 * NeilBrown 1999oct15 4843 */ 4844 if (inode->i_nlink == 0) { 4845 if ((inode->i_mode == 0 || 4846 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4847 ino != EXT4_BOOT_LOADER_INO) { 4848 /* this inode is deleted */ 4849 ret = -ESTALE; 4850 goto bad_inode; 4851 } 4852 /* The only unlinked inodes we let through here have 4853 * valid i_mode and are being read by the orphan 4854 * recovery code: that's fine, we're about to complete 4855 * the process of deleting those. 4856 * OR it is the EXT4_BOOT_LOADER_INO which is 4857 * not initialized on a new filesystem. */ 4858 } 4859 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4860 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4861 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4862 if (ext4_has_feature_64bit(sb)) 4863 ei->i_file_acl |= 4864 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4865 inode->i_size = ext4_isize(sb, raw_inode); 4866 if ((size = i_size_read(inode)) < 0) { 4867 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4868 ret = -EFSCORRUPTED; 4869 goto bad_inode; 4870 } 4871 ei->i_disksize = inode->i_size; 4872 #ifdef CONFIG_QUOTA 4873 ei->i_reserved_quota = 0; 4874 #endif 4875 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4876 ei->i_block_group = iloc.block_group; 4877 ei->i_last_alloc_group = ~0; 4878 /* 4879 * NOTE! The in-memory inode i_data array is in little-endian order 4880 * even on big-endian machines: we do NOT byteswap the block numbers! 4881 */ 4882 for (block = 0; block < EXT4_N_BLOCKS; block++) 4883 ei->i_data[block] = raw_inode->i_block[block]; 4884 INIT_LIST_HEAD(&ei->i_orphan); 4885 4886 /* 4887 * Set transaction id's of transactions that have to be committed 4888 * to finish f[data]sync. We set them to currently running transaction 4889 * as we cannot be sure that the inode or some of its metadata isn't 4890 * part of the transaction - the inode could have been reclaimed and 4891 * now it is reread from disk. 4892 */ 4893 if (journal) { 4894 transaction_t *transaction; 4895 tid_t tid; 4896 4897 read_lock(&journal->j_state_lock); 4898 if (journal->j_running_transaction) 4899 transaction = journal->j_running_transaction; 4900 else 4901 transaction = journal->j_committing_transaction; 4902 if (transaction) 4903 tid = transaction->t_tid; 4904 else 4905 tid = journal->j_commit_sequence; 4906 read_unlock(&journal->j_state_lock); 4907 ei->i_sync_tid = tid; 4908 ei->i_datasync_tid = tid; 4909 } 4910 4911 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4912 if (ei->i_extra_isize == 0) { 4913 /* The extra space is currently unused. Use it. */ 4914 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4915 ei->i_extra_isize = sizeof(struct ext4_inode) - 4916 EXT4_GOOD_OLD_INODE_SIZE; 4917 } else { 4918 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4919 if (ret) 4920 goto bad_inode; 4921 } 4922 } 4923 4924 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4925 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4926 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4927 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4928 4929 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4930 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4931 4932 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4933 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4934 ivers |= 4935 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4936 } 4937 ext4_inode_set_iversion_queried(inode, ivers); 4938 } 4939 4940 ret = 0; 4941 if (ei->i_file_acl && 4942 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4943 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4944 ei->i_file_acl); 4945 ret = -EFSCORRUPTED; 4946 goto bad_inode; 4947 } else if (!ext4_has_inline_data(inode)) { 4948 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4949 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4950 (S_ISLNK(inode->i_mode) && 4951 !ext4_inode_is_fast_symlink(inode)))) 4952 /* Validate extent which is part of inode */ 4953 ret = ext4_ext_check_inode(inode); 4954 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4955 (S_ISLNK(inode->i_mode) && 4956 !ext4_inode_is_fast_symlink(inode))) { 4957 /* Validate block references which are part of inode */ 4958 ret = ext4_ind_check_inode(inode); 4959 } 4960 } 4961 if (ret) 4962 goto bad_inode; 4963 4964 if (S_ISREG(inode->i_mode)) { 4965 inode->i_op = &ext4_file_inode_operations; 4966 inode->i_fop = &ext4_file_operations; 4967 ext4_set_aops(inode); 4968 } else if (S_ISDIR(inode->i_mode)) { 4969 inode->i_op = &ext4_dir_inode_operations; 4970 inode->i_fop = &ext4_dir_operations; 4971 } else if (S_ISLNK(inode->i_mode)) { 4972 /* VFS does not allow setting these so must be corruption */ 4973 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4974 EXT4_ERROR_INODE(inode, 4975 "immutable or append flags not allowed on symlinks"); 4976 ret = -EFSCORRUPTED; 4977 goto bad_inode; 4978 } 4979 if (ext4_encrypted_inode(inode)) { 4980 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4981 ext4_set_aops(inode); 4982 } else if (ext4_inode_is_fast_symlink(inode)) { 4983 inode->i_link = (char *)ei->i_data; 4984 inode->i_op = &ext4_fast_symlink_inode_operations; 4985 nd_terminate_link(ei->i_data, inode->i_size, 4986 sizeof(ei->i_data) - 1); 4987 } else { 4988 inode->i_op = &ext4_symlink_inode_operations; 4989 ext4_set_aops(inode); 4990 } 4991 inode_nohighmem(inode); 4992 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4993 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4994 inode->i_op = &ext4_special_inode_operations; 4995 if (raw_inode->i_block[0]) 4996 init_special_inode(inode, inode->i_mode, 4997 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4998 else 4999 init_special_inode(inode, inode->i_mode, 5000 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5001 } else if (ino == EXT4_BOOT_LOADER_INO) { 5002 make_bad_inode(inode); 5003 } else { 5004 ret = -EFSCORRUPTED; 5005 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 5006 goto bad_inode; 5007 } 5008 brelse(iloc.bh); 5009 ext4_set_inode_flags(inode); 5010 5011 unlock_new_inode(inode); 5012 return inode; 5013 5014 bad_inode: 5015 brelse(iloc.bh); 5016 iget_failed(inode); 5017 return ERR_PTR(ret); 5018 } 5019 5020 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 5021 { 5022 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 5023 return ERR_PTR(-EFSCORRUPTED); 5024 return ext4_iget(sb, ino); 5025 } 5026 5027 static int ext4_inode_blocks_set(handle_t *handle, 5028 struct ext4_inode *raw_inode, 5029 struct ext4_inode_info *ei) 5030 { 5031 struct inode *inode = &(ei->vfs_inode); 5032 u64 i_blocks = inode->i_blocks; 5033 struct super_block *sb = inode->i_sb; 5034 5035 if (i_blocks <= ~0U) { 5036 /* 5037 * i_blocks can be represented in a 32 bit variable 5038 * as multiple of 512 bytes 5039 */ 5040 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5041 raw_inode->i_blocks_high = 0; 5042 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5043 return 0; 5044 } 5045 if (!ext4_has_feature_huge_file(sb)) 5046 return -EFBIG; 5047 5048 if (i_blocks <= 0xffffffffffffULL) { 5049 /* 5050 * i_blocks can be represented in a 48 bit variable 5051 * as multiple of 512 bytes 5052 */ 5053 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5054 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5055 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5056 } else { 5057 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5058 /* i_block is stored in file system block size */ 5059 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5060 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5061 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5062 } 5063 return 0; 5064 } 5065 5066 struct other_inode { 5067 unsigned long orig_ino; 5068 struct ext4_inode *raw_inode; 5069 }; 5070 5071 static int other_inode_match(struct inode * inode, unsigned long ino, 5072 void *data) 5073 { 5074 struct other_inode *oi = (struct other_inode *) data; 5075 5076 if ((inode->i_ino != ino) || 5077 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5078 I_DIRTY_INODE)) || 5079 ((inode->i_state & I_DIRTY_TIME) == 0)) 5080 return 0; 5081 spin_lock(&inode->i_lock); 5082 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5083 I_DIRTY_INODE)) == 0) && 5084 (inode->i_state & I_DIRTY_TIME)) { 5085 struct ext4_inode_info *ei = EXT4_I(inode); 5086 5087 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5088 spin_unlock(&inode->i_lock); 5089 5090 spin_lock(&ei->i_raw_lock); 5091 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5092 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5093 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5094 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5095 spin_unlock(&ei->i_raw_lock); 5096 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5097 return -1; 5098 } 5099 spin_unlock(&inode->i_lock); 5100 return -1; 5101 } 5102 5103 /* 5104 * Opportunistically update the other time fields for other inodes in 5105 * the same inode table block. 5106 */ 5107 static void ext4_update_other_inodes_time(struct super_block *sb, 5108 unsigned long orig_ino, char *buf) 5109 { 5110 struct other_inode oi; 5111 unsigned long ino; 5112 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5113 int inode_size = EXT4_INODE_SIZE(sb); 5114 5115 oi.orig_ino = orig_ino; 5116 /* 5117 * Calculate the first inode in the inode table block. Inode 5118 * numbers are one-based. That is, the first inode in a block 5119 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5120 */ 5121 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5122 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5123 if (ino == orig_ino) 5124 continue; 5125 oi.raw_inode = (struct ext4_inode *) buf; 5126 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5127 } 5128 } 5129 5130 /* 5131 * Post the struct inode info into an on-disk inode location in the 5132 * buffer-cache. This gobbles the caller's reference to the 5133 * buffer_head in the inode location struct. 5134 * 5135 * The caller must have write access to iloc->bh. 5136 */ 5137 static int ext4_do_update_inode(handle_t *handle, 5138 struct inode *inode, 5139 struct ext4_iloc *iloc) 5140 { 5141 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5142 struct ext4_inode_info *ei = EXT4_I(inode); 5143 struct buffer_head *bh = iloc->bh; 5144 struct super_block *sb = inode->i_sb; 5145 int err = 0, rc, block; 5146 int need_datasync = 0, set_large_file = 0; 5147 uid_t i_uid; 5148 gid_t i_gid; 5149 projid_t i_projid; 5150 5151 spin_lock(&ei->i_raw_lock); 5152 5153 /* For fields not tracked in the in-memory inode, 5154 * initialise them to zero for new inodes. */ 5155 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5156 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5157 5158 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5159 i_uid = i_uid_read(inode); 5160 i_gid = i_gid_read(inode); 5161 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5162 if (!(test_opt(inode->i_sb, NO_UID32))) { 5163 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5164 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5165 /* 5166 * Fix up interoperability with old kernels. Otherwise, old inodes get 5167 * re-used with the upper 16 bits of the uid/gid intact 5168 */ 5169 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5170 raw_inode->i_uid_high = 0; 5171 raw_inode->i_gid_high = 0; 5172 } else { 5173 raw_inode->i_uid_high = 5174 cpu_to_le16(high_16_bits(i_uid)); 5175 raw_inode->i_gid_high = 5176 cpu_to_le16(high_16_bits(i_gid)); 5177 } 5178 } else { 5179 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5180 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5181 raw_inode->i_uid_high = 0; 5182 raw_inode->i_gid_high = 0; 5183 } 5184 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5185 5186 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5187 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5188 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5189 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5190 5191 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5192 if (err) { 5193 spin_unlock(&ei->i_raw_lock); 5194 goto out_brelse; 5195 } 5196 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5197 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5198 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5199 raw_inode->i_file_acl_high = 5200 cpu_to_le16(ei->i_file_acl >> 32); 5201 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5202 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5203 ext4_isize_set(raw_inode, ei->i_disksize); 5204 need_datasync = 1; 5205 } 5206 if (ei->i_disksize > 0x7fffffffULL) { 5207 if (!ext4_has_feature_large_file(sb) || 5208 EXT4_SB(sb)->s_es->s_rev_level == 5209 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5210 set_large_file = 1; 5211 } 5212 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5213 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5214 if (old_valid_dev(inode->i_rdev)) { 5215 raw_inode->i_block[0] = 5216 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5217 raw_inode->i_block[1] = 0; 5218 } else { 5219 raw_inode->i_block[0] = 0; 5220 raw_inode->i_block[1] = 5221 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5222 raw_inode->i_block[2] = 0; 5223 } 5224 } else if (!ext4_has_inline_data(inode)) { 5225 for (block = 0; block < EXT4_N_BLOCKS; block++) 5226 raw_inode->i_block[block] = ei->i_data[block]; 5227 } 5228 5229 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5230 u64 ivers = ext4_inode_peek_iversion(inode); 5231 5232 raw_inode->i_disk_version = cpu_to_le32(ivers); 5233 if (ei->i_extra_isize) { 5234 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5235 raw_inode->i_version_hi = 5236 cpu_to_le32(ivers >> 32); 5237 raw_inode->i_extra_isize = 5238 cpu_to_le16(ei->i_extra_isize); 5239 } 5240 } 5241 5242 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5243 i_projid != EXT4_DEF_PROJID); 5244 5245 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5246 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5247 raw_inode->i_projid = cpu_to_le32(i_projid); 5248 5249 ext4_inode_csum_set(inode, raw_inode, ei); 5250 spin_unlock(&ei->i_raw_lock); 5251 if (inode->i_sb->s_flags & SB_LAZYTIME) 5252 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5253 bh->b_data); 5254 5255 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5256 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5257 if (!err) 5258 err = rc; 5259 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5260 if (set_large_file) { 5261 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5262 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5263 if (err) 5264 goto out_brelse; 5265 ext4_update_dynamic_rev(sb); 5266 ext4_set_feature_large_file(sb); 5267 ext4_handle_sync(handle); 5268 err = ext4_handle_dirty_super(handle, sb); 5269 } 5270 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5271 out_brelse: 5272 brelse(bh); 5273 ext4_std_error(inode->i_sb, err); 5274 return err; 5275 } 5276 5277 /* 5278 * ext4_write_inode() 5279 * 5280 * We are called from a few places: 5281 * 5282 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5283 * Here, there will be no transaction running. We wait for any running 5284 * transaction to commit. 5285 * 5286 * - Within flush work (sys_sync(), kupdate and such). 5287 * We wait on commit, if told to. 5288 * 5289 * - Within iput_final() -> write_inode_now() 5290 * We wait on commit, if told to. 5291 * 5292 * In all cases it is actually safe for us to return without doing anything, 5293 * because the inode has been copied into a raw inode buffer in 5294 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5295 * writeback. 5296 * 5297 * Note that we are absolutely dependent upon all inode dirtiers doing the 5298 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5299 * which we are interested. 5300 * 5301 * It would be a bug for them to not do this. The code: 5302 * 5303 * mark_inode_dirty(inode) 5304 * stuff(); 5305 * inode->i_size = expr; 5306 * 5307 * is in error because write_inode() could occur while `stuff()' is running, 5308 * and the new i_size will be lost. Plus the inode will no longer be on the 5309 * superblock's dirty inode list. 5310 */ 5311 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5312 { 5313 int err; 5314 5315 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5316 return 0; 5317 5318 if (EXT4_SB(inode->i_sb)->s_journal) { 5319 if (ext4_journal_current_handle()) { 5320 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5321 dump_stack(); 5322 return -EIO; 5323 } 5324 5325 /* 5326 * No need to force transaction in WB_SYNC_NONE mode. Also 5327 * ext4_sync_fs() will force the commit after everything is 5328 * written. 5329 */ 5330 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5331 return 0; 5332 5333 err = ext4_force_commit(inode->i_sb); 5334 } else { 5335 struct ext4_iloc iloc; 5336 5337 err = __ext4_get_inode_loc(inode, &iloc, 0); 5338 if (err) 5339 return err; 5340 /* 5341 * sync(2) will flush the whole buffer cache. No need to do 5342 * it here separately for each inode. 5343 */ 5344 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5345 sync_dirty_buffer(iloc.bh); 5346 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5347 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5348 "IO error syncing inode"); 5349 err = -EIO; 5350 } 5351 brelse(iloc.bh); 5352 } 5353 return err; 5354 } 5355 5356 /* 5357 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5358 * buffers that are attached to a page stradding i_size and are undergoing 5359 * commit. In that case we have to wait for commit to finish and try again. 5360 */ 5361 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5362 { 5363 struct page *page; 5364 unsigned offset; 5365 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5366 tid_t commit_tid = 0; 5367 int ret; 5368 5369 offset = inode->i_size & (PAGE_SIZE - 1); 5370 /* 5371 * All buffers in the last page remain valid? Then there's nothing to 5372 * do. We do the check mainly to optimize the common PAGE_SIZE == 5373 * blocksize case 5374 */ 5375 if (offset > PAGE_SIZE - i_blocksize(inode)) 5376 return; 5377 while (1) { 5378 page = find_lock_page(inode->i_mapping, 5379 inode->i_size >> PAGE_SHIFT); 5380 if (!page) 5381 return; 5382 ret = __ext4_journalled_invalidatepage(page, offset, 5383 PAGE_SIZE - offset); 5384 unlock_page(page); 5385 put_page(page); 5386 if (ret != -EBUSY) 5387 return; 5388 commit_tid = 0; 5389 read_lock(&journal->j_state_lock); 5390 if (journal->j_committing_transaction) 5391 commit_tid = journal->j_committing_transaction->t_tid; 5392 read_unlock(&journal->j_state_lock); 5393 if (commit_tid) 5394 jbd2_log_wait_commit(journal, commit_tid); 5395 } 5396 } 5397 5398 /* 5399 * ext4_setattr() 5400 * 5401 * Called from notify_change. 5402 * 5403 * We want to trap VFS attempts to truncate the file as soon as 5404 * possible. In particular, we want to make sure that when the VFS 5405 * shrinks i_size, we put the inode on the orphan list and modify 5406 * i_disksize immediately, so that during the subsequent flushing of 5407 * dirty pages and freeing of disk blocks, we can guarantee that any 5408 * commit will leave the blocks being flushed in an unused state on 5409 * disk. (On recovery, the inode will get truncated and the blocks will 5410 * be freed, so we have a strong guarantee that no future commit will 5411 * leave these blocks visible to the user.) 5412 * 5413 * Another thing we have to assure is that if we are in ordered mode 5414 * and inode is still attached to the committing transaction, we must 5415 * we start writeout of all the dirty pages which are being truncated. 5416 * This way we are sure that all the data written in the previous 5417 * transaction are already on disk (truncate waits for pages under 5418 * writeback). 5419 * 5420 * Called with inode->i_mutex down. 5421 */ 5422 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5423 { 5424 struct inode *inode = d_inode(dentry); 5425 int error, rc = 0; 5426 int orphan = 0; 5427 const unsigned int ia_valid = attr->ia_valid; 5428 5429 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5430 return -EIO; 5431 5432 error = setattr_prepare(dentry, attr); 5433 if (error) 5434 return error; 5435 5436 error = fscrypt_prepare_setattr(dentry, attr); 5437 if (error) 5438 return error; 5439 5440 if (is_quota_modification(inode, attr)) { 5441 error = dquot_initialize(inode); 5442 if (error) 5443 return error; 5444 } 5445 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5446 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5447 handle_t *handle; 5448 5449 /* (user+group)*(old+new) structure, inode write (sb, 5450 * inode block, ? - but truncate inode update has it) */ 5451 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5452 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5453 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5454 if (IS_ERR(handle)) { 5455 error = PTR_ERR(handle); 5456 goto err_out; 5457 } 5458 5459 /* dquot_transfer() calls back ext4_get_inode_usage() which 5460 * counts xattr inode references. 5461 */ 5462 down_read(&EXT4_I(inode)->xattr_sem); 5463 error = dquot_transfer(inode, attr); 5464 up_read(&EXT4_I(inode)->xattr_sem); 5465 5466 if (error) { 5467 ext4_journal_stop(handle); 5468 return error; 5469 } 5470 /* Update corresponding info in inode so that everything is in 5471 * one transaction */ 5472 if (attr->ia_valid & ATTR_UID) 5473 inode->i_uid = attr->ia_uid; 5474 if (attr->ia_valid & ATTR_GID) 5475 inode->i_gid = attr->ia_gid; 5476 error = ext4_mark_inode_dirty(handle, inode); 5477 ext4_journal_stop(handle); 5478 } 5479 5480 if (attr->ia_valid & ATTR_SIZE) { 5481 handle_t *handle; 5482 loff_t oldsize = inode->i_size; 5483 int shrink = (attr->ia_size <= inode->i_size); 5484 5485 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5486 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5487 5488 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5489 return -EFBIG; 5490 } 5491 if (!S_ISREG(inode->i_mode)) 5492 return -EINVAL; 5493 5494 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5495 inode_inc_iversion(inode); 5496 5497 if (ext4_should_order_data(inode) && 5498 (attr->ia_size < inode->i_size)) { 5499 error = ext4_begin_ordered_truncate(inode, 5500 attr->ia_size); 5501 if (error) 5502 goto err_out; 5503 } 5504 if (attr->ia_size != inode->i_size) { 5505 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5506 if (IS_ERR(handle)) { 5507 error = PTR_ERR(handle); 5508 goto err_out; 5509 } 5510 if (ext4_handle_valid(handle) && shrink) { 5511 error = ext4_orphan_add(handle, inode); 5512 orphan = 1; 5513 } 5514 /* 5515 * Update c/mtime on truncate up, ext4_truncate() will 5516 * update c/mtime in shrink case below 5517 */ 5518 if (!shrink) { 5519 inode->i_mtime = current_time(inode); 5520 inode->i_ctime = inode->i_mtime; 5521 } 5522 down_write(&EXT4_I(inode)->i_data_sem); 5523 EXT4_I(inode)->i_disksize = attr->ia_size; 5524 rc = ext4_mark_inode_dirty(handle, inode); 5525 if (!error) 5526 error = rc; 5527 /* 5528 * We have to update i_size under i_data_sem together 5529 * with i_disksize to avoid races with writeback code 5530 * running ext4_wb_update_i_disksize(). 5531 */ 5532 if (!error) 5533 i_size_write(inode, attr->ia_size); 5534 up_write(&EXT4_I(inode)->i_data_sem); 5535 ext4_journal_stop(handle); 5536 if (error) { 5537 if (orphan) 5538 ext4_orphan_del(NULL, inode); 5539 goto err_out; 5540 } 5541 } 5542 if (!shrink) 5543 pagecache_isize_extended(inode, oldsize, inode->i_size); 5544 5545 /* 5546 * Blocks are going to be removed from the inode. Wait 5547 * for dio in flight. Temporarily disable 5548 * dioread_nolock to prevent livelock. 5549 */ 5550 if (orphan) { 5551 if (!ext4_should_journal_data(inode)) { 5552 inode_dio_wait(inode); 5553 } else 5554 ext4_wait_for_tail_page_commit(inode); 5555 } 5556 down_write(&EXT4_I(inode)->i_mmap_sem); 5557 /* 5558 * Truncate pagecache after we've waited for commit 5559 * in data=journal mode to make pages freeable. 5560 */ 5561 truncate_pagecache(inode, inode->i_size); 5562 if (shrink) { 5563 rc = ext4_truncate(inode); 5564 if (rc) 5565 error = rc; 5566 } 5567 up_write(&EXT4_I(inode)->i_mmap_sem); 5568 } 5569 5570 if (!error) { 5571 setattr_copy(inode, attr); 5572 mark_inode_dirty(inode); 5573 } 5574 5575 /* 5576 * If the call to ext4_truncate failed to get a transaction handle at 5577 * all, we need to clean up the in-core orphan list manually. 5578 */ 5579 if (orphan && inode->i_nlink) 5580 ext4_orphan_del(NULL, inode); 5581 5582 if (!error && (ia_valid & ATTR_MODE)) 5583 rc = posix_acl_chmod(inode, inode->i_mode); 5584 5585 err_out: 5586 ext4_std_error(inode->i_sb, error); 5587 if (!error) 5588 error = rc; 5589 return error; 5590 } 5591 5592 int ext4_getattr(const struct path *path, struct kstat *stat, 5593 u32 request_mask, unsigned int query_flags) 5594 { 5595 struct inode *inode = d_inode(path->dentry); 5596 struct ext4_inode *raw_inode; 5597 struct ext4_inode_info *ei = EXT4_I(inode); 5598 unsigned int flags; 5599 5600 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5601 stat->result_mask |= STATX_BTIME; 5602 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5603 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5604 } 5605 5606 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5607 if (flags & EXT4_APPEND_FL) 5608 stat->attributes |= STATX_ATTR_APPEND; 5609 if (flags & EXT4_COMPR_FL) 5610 stat->attributes |= STATX_ATTR_COMPRESSED; 5611 if (flags & EXT4_ENCRYPT_FL) 5612 stat->attributes |= STATX_ATTR_ENCRYPTED; 5613 if (flags & EXT4_IMMUTABLE_FL) 5614 stat->attributes |= STATX_ATTR_IMMUTABLE; 5615 if (flags & EXT4_NODUMP_FL) 5616 stat->attributes |= STATX_ATTR_NODUMP; 5617 5618 stat->attributes_mask |= (STATX_ATTR_APPEND | 5619 STATX_ATTR_COMPRESSED | 5620 STATX_ATTR_ENCRYPTED | 5621 STATX_ATTR_IMMUTABLE | 5622 STATX_ATTR_NODUMP); 5623 5624 generic_fillattr(inode, stat); 5625 return 0; 5626 } 5627 5628 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5629 u32 request_mask, unsigned int query_flags) 5630 { 5631 struct inode *inode = d_inode(path->dentry); 5632 u64 delalloc_blocks; 5633 5634 ext4_getattr(path, stat, request_mask, query_flags); 5635 5636 /* 5637 * If there is inline data in the inode, the inode will normally not 5638 * have data blocks allocated (it may have an external xattr block). 5639 * Report at least one sector for such files, so tools like tar, rsync, 5640 * others don't incorrectly think the file is completely sparse. 5641 */ 5642 if (unlikely(ext4_has_inline_data(inode))) 5643 stat->blocks += (stat->size + 511) >> 9; 5644 5645 /* 5646 * We can't update i_blocks if the block allocation is delayed 5647 * otherwise in the case of system crash before the real block 5648 * allocation is done, we will have i_blocks inconsistent with 5649 * on-disk file blocks. 5650 * We always keep i_blocks updated together with real 5651 * allocation. But to not confuse with user, stat 5652 * will return the blocks that include the delayed allocation 5653 * blocks for this file. 5654 */ 5655 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5656 EXT4_I(inode)->i_reserved_data_blocks); 5657 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5658 return 0; 5659 } 5660 5661 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5662 int pextents) 5663 { 5664 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5665 return ext4_ind_trans_blocks(inode, lblocks); 5666 return ext4_ext_index_trans_blocks(inode, pextents); 5667 } 5668 5669 /* 5670 * Account for index blocks, block groups bitmaps and block group 5671 * descriptor blocks if modify datablocks and index blocks 5672 * worse case, the indexs blocks spread over different block groups 5673 * 5674 * If datablocks are discontiguous, they are possible to spread over 5675 * different block groups too. If they are contiguous, with flexbg, 5676 * they could still across block group boundary. 5677 * 5678 * Also account for superblock, inode, quota and xattr blocks 5679 */ 5680 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5681 int pextents) 5682 { 5683 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5684 int gdpblocks; 5685 int idxblocks; 5686 int ret = 0; 5687 5688 /* 5689 * How many index blocks need to touch to map @lblocks logical blocks 5690 * to @pextents physical extents? 5691 */ 5692 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5693 5694 ret = idxblocks; 5695 5696 /* 5697 * Now let's see how many group bitmaps and group descriptors need 5698 * to account 5699 */ 5700 groups = idxblocks + pextents; 5701 gdpblocks = groups; 5702 if (groups > ngroups) 5703 groups = ngroups; 5704 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5705 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5706 5707 /* bitmaps and block group descriptor blocks */ 5708 ret += groups + gdpblocks; 5709 5710 /* Blocks for super block, inode, quota and xattr blocks */ 5711 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5712 5713 return ret; 5714 } 5715 5716 /* 5717 * Calculate the total number of credits to reserve to fit 5718 * the modification of a single pages into a single transaction, 5719 * which may include multiple chunks of block allocations. 5720 * 5721 * This could be called via ext4_write_begin() 5722 * 5723 * We need to consider the worse case, when 5724 * one new block per extent. 5725 */ 5726 int ext4_writepage_trans_blocks(struct inode *inode) 5727 { 5728 int bpp = ext4_journal_blocks_per_page(inode); 5729 int ret; 5730 5731 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5732 5733 /* Account for data blocks for journalled mode */ 5734 if (ext4_should_journal_data(inode)) 5735 ret += bpp; 5736 return ret; 5737 } 5738 5739 /* 5740 * Calculate the journal credits for a chunk of data modification. 5741 * 5742 * This is called from DIO, fallocate or whoever calling 5743 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5744 * 5745 * journal buffers for data blocks are not included here, as DIO 5746 * and fallocate do no need to journal data buffers. 5747 */ 5748 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5749 { 5750 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5751 } 5752 5753 /* 5754 * The caller must have previously called ext4_reserve_inode_write(). 5755 * Give this, we know that the caller already has write access to iloc->bh. 5756 */ 5757 int ext4_mark_iloc_dirty(handle_t *handle, 5758 struct inode *inode, struct ext4_iloc *iloc) 5759 { 5760 int err = 0; 5761 5762 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5763 return -EIO; 5764 5765 if (IS_I_VERSION(inode)) 5766 inode_inc_iversion(inode); 5767 5768 /* the do_update_inode consumes one bh->b_count */ 5769 get_bh(iloc->bh); 5770 5771 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5772 err = ext4_do_update_inode(handle, inode, iloc); 5773 put_bh(iloc->bh); 5774 return err; 5775 } 5776 5777 /* 5778 * On success, We end up with an outstanding reference count against 5779 * iloc->bh. This _must_ be cleaned up later. 5780 */ 5781 5782 int 5783 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5784 struct ext4_iloc *iloc) 5785 { 5786 int err; 5787 5788 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5789 return -EIO; 5790 5791 err = ext4_get_inode_loc(inode, iloc); 5792 if (!err) { 5793 BUFFER_TRACE(iloc->bh, "get_write_access"); 5794 err = ext4_journal_get_write_access(handle, iloc->bh); 5795 if (err) { 5796 brelse(iloc->bh); 5797 iloc->bh = NULL; 5798 } 5799 } 5800 ext4_std_error(inode->i_sb, err); 5801 return err; 5802 } 5803 5804 static int __ext4_expand_extra_isize(struct inode *inode, 5805 unsigned int new_extra_isize, 5806 struct ext4_iloc *iloc, 5807 handle_t *handle, int *no_expand) 5808 { 5809 struct ext4_inode *raw_inode; 5810 struct ext4_xattr_ibody_header *header; 5811 int error; 5812 5813 raw_inode = ext4_raw_inode(iloc); 5814 5815 header = IHDR(inode, raw_inode); 5816 5817 /* No extended attributes present */ 5818 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5819 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5820 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5821 EXT4_I(inode)->i_extra_isize, 0, 5822 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5823 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5824 return 0; 5825 } 5826 5827 /* try to expand with EAs present */ 5828 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5829 raw_inode, handle); 5830 if (error) { 5831 /* 5832 * Inode size expansion failed; don't try again 5833 */ 5834 *no_expand = 1; 5835 } 5836 5837 return error; 5838 } 5839 5840 /* 5841 * Expand an inode by new_extra_isize bytes. 5842 * Returns 0 on success or negative error number on failure. 5843 */ 5844 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5845 unsigned int new_extra_isize, 5846 struct ext4_iloc iloc, 5847 handle_t *handle) 5848 { 5849 int no_expand; 5850 int error; 5851 5852 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5853 return -EOVERFLOW; 5854 5855 /* 5856 * In nojournal mode, we can immediately attempt to expand 5857 * the inode. When journaled, we first need to obtain extra 5858 * buffer credits since we may write into the EA block 5859 * with this same handle. If journal_extend fails, then it will 5860 * only result in a minor loss of functionality for that inode. 5861 * If this is felt to be critical, then e2fsck should be run to 5862 * force a large enough s_min_extra_isize. 5863 */ 5864 if (ext4_handle_valid(handle) && 5865 jbd2_journal_extend(handle, 5866 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5867 return -ENOSPC; 5868 5869 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5870 return -EBUSY; 5871 5872 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5873 handle, &no_expand); 5874 ext4_write_unlock_xattr(inode, &no_expand); 5875 5876 return error; 5877 } 5878 5879 int ext4_expand_extra_isize(struct inode *inode, 5880 unsigned int new_extra_isize, 5881 struct ext4_iloc *iloc) 5882 { 5883 handle_t *handle; 5884 int no_expand; 5885 int error, rc; 5886 5887 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5888 brelse(iloc->bh); 5889 return -EOVERFLOW; 5890 } 5891 5892 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5893 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5894 if (IS_ERR(handle)) { 5895 error = PTR_ERR(handle); 5896 brelse(iloc->bh); 5897 return error; 5898 } 5899 5900 ext4_write_lock_xattr(inode, &no_expand); 5901 5902 BUFFER_TRACE(iloc.bh, "get_write_access"); 5903 error = ext4_journal_get_write_access(handle, iloc->bh); 5904 if (error) { 5905 brelse(iloc->bh); 5906 goto out_stop; 5907 } 5908 5909 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5910 handle, &no_expand); 5911 5912 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5913 if (!error) 5914 error = rc; 5915 5916 ext4_write_unlock_xattr(inode, &no_expand); 5917 out_stop: 5918 ext4_journal_stop(handle); 5919 return error; 5920 } 5921 5922 /* 5923 * What we do here is to mark the in-core inode as clean with respect to inode 5924 * dirtiness (it may still be data-dirty). 5925 * This means that the in-core inode may be reaped by prune_icache 5926 * without having to perform any I/O. This is a very good thing, 5927 * because *any* task may call prune_icache - even ones which 5928 * have a transaction open against a different journal. 5929 * 5930 * Is this cheating? Not really. Sure, we haven't written the 5931 * inode out, but prune_icache isn't a user-visible syncing function. 5932 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5933 * we start and wait on commits. 5934 */ 5935 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5936 { 5937 struct ext4_iloc iloc; 5938 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5939 int err; 5940 5941 might_sleep(); 5942 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5943 err = ext4_reserve_inode_write(handle, inode, &iloc); 5944 if (err) 5945 return err; 5946 5947 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5948 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5949 iloc, handle); 5950 5951 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5952 } 5953 5954 /* 5955 * ext4_dirty_inode() is called from __mark_inode_dirty() 5956 * 5957 * We're really interested in the case where a file is being extended. 5958 * i_size has been changed by generic_commit_write() and we thus need 5959 * to include the updated inode in the current transaction. 5960 * 5961 * Also, dquot_alloc_block() will always dirty the inode when blocks 5962 * are allocated to the file. 5963 * 5964 * If the inode is marked synchronous, we don't honour that here - doing 5965 * so would cause a commit on atime updates, which we don't bother doing. 5966 * We handle synchronous inodes at the highest possible level. 5967 * 5968 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5969 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5970 * to copy into the on-disk inode structure are the timestamp files. 5971 */ 5972 void ext4_dirty_inode(struct inode *inode, int flags) 5973 { 5974 handle_t *handle; 5975 5976 if (flags == I_DIRTY_TIME) 5977 return; 5978 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5979 if (IS_ERR(handle)) 5980 goto out; 5981 5982 ext4_mark_inode_dirty(handle, inode); 5983 5984 ext4_journal_stop(handle); 5985 out: 5986 return; 5987 } 5988 5989 #if 0 5990 /* 5991 * Bind an inode's backing buffer_head into this transaction, to prevent 5992 * it from being flushed to disk early. Unlike 5993 * ext4_reserve_inode_write, this leaves behind no bh reference and 5994 * returns no iloc structure, so the caller needs to repeat the iloc 5995 * lookup to mark the inode dirty later. 5996 */ 5997 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5998 { 5999 struct ext4_iloc iloc; 6000 6001 int err = 0; 6002 if (handle) { 6003 err = ext4_get_inode_loc(inode, &iloc); 6004 if (!err) { 6005 BUFFER_TRACE(iloc.bh, "get_write_access"); 6006 err = jbd2_journal_get_write_access(handle, iloc.bh); 6007 if (!err) 6008 err = ext4_handle_dirty_metadata(handle, 6009 NULL, 6010 iloc.bh); 6011 brelse(iloc.bh); 6012 } 6013 } 6014 ext4_std_error(inode->i_sb, err); 6015 return err; 6016 } 6017 #endif 6018 6019 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6020 { 6021 journal_t *journal; 6022 handle_t *handle; 6023 int err; 6024 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6025 6026 /* 6027 * We have to be very careful here: changing a data block's 6028 * journaling status dynamically is dangerous. If we write a 6029 * data block to the journal, change the status and then delete 6030 * that block, we risk forgetting to revoke the old log record 6031 * from the journal and so a subsequent replay can corrupt data. 6032 * So, first we make sure that the journal is empty and that 6033 * nobody is changing anything. 6034 */ 6035 6036 journal = EXT4_JOURNAL(inode); 6037 if (!journal) 6038 return 0; 6039 if (is_journal_aborted(journal)) 6040 return -EROFS; 6041 6042 /* Wait for all existing dio workers */ 6043 inode_dio_wait(inode); 6044 6045 /* 6046 * Before flushing the journal and switching inode's aops, we have 6047 * to flush all dirty data the inode has. There can be outstanding 6048 * delayed allocations, there can be unwritten extents created by 6049 * fallocate or buffered writes in dioread_nolock mode covered by 6050 * dirty data which can be converted only after flushing the dirty 6051 * data (and journalled aops don't know how to handle these cases). 6052 */ 6053 if (val) { 6054 down_write(&EXT4_I(inode)->i_mmap_sem); 6055 err = filemap_write_and_wait(inode->i_mapping); 6056 if (err < 0) { 6057 up_write(&EXT4_I(inode)->i_mmap_sem); 6058 return err; 6059 } 6060 } 6061 6062 percpu_down_write(&sbi->s_journal_flag_rwsem); 6063 jbd2_journal_lock_updates(journal); 6064 6065 /* 6066 * OK, there are no updates running now, and all cached data is 6067 * synced to disk. We are now in a completely consistent state 6068 * which doesn't have anything in the journal, and we know that 6069 * no filesystem updates are running, so it is safe to modify 6070 * the inode's in-core data-journaling state flag now. 6071 */ 6072 6073 if (val) 6074 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6075 else { 6076 err = jbd2_journal_flush(journal); 6077 if (err < 0) { 6078 jbd2_journal_unlock_updates(journal); 6079 percpu_up_write(&sbi->s_journal_flag_rwsem); 6080 return err; 6081 } 6082 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6083 } 6084 ext4_set_aops(inode); 6085 6086 jbd2_journal_unlock_updates(journal); 6087 percpu_up_write(&sbi->s_journal_flag_rwsem); 6088 6089 if (val) 6090 up_write(&EXT4_I(inode)->i_mmap_sem); 6091 6092 /* Finally we can mark the inode as dirty. */ 6093 6094 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6095 if (IS_ERR(handle)) 6096 return PTR_ERR(handle); 6097 6098 err = ext4_mark_inode_dirty(handle, inode); 6099 ext4_handle_sync(handle); 6100 ext4_journal_stop(handle); 6101 ext4_std_error(inode->i_sb, err); 6102 6103 return err; 6104 } 6105 6106 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6107 { 6108 return !buffer_mapped(bh); 6109 } 6110 6111 int ext4_page_mkwrite(struct vm_fault *vmf) 6112 { 6113 struct vm_area_struct *vma = vmf->vma; 6114 struct page *page = vmf->page; 6115 loff_t size; 6116 unsigned long len; 6117 int ret; 6118 struct file *file = vma->vm_file; 6119 struct inode *inode = file_inode(file); 6120 struct address_space *mapping = inode->i_mapping; 6121 handle_t *handle; 6122 get_block_t *get_block; 6123 int retries = 0; 6124 6125 sb_start_pagefault(inode->i_sb); 6126 file_update_time(vma->vm_file); 6127 6128 down_read(&EXT4_I(inode)->i_mmap_sem); 6129 6130 ret = ext4_convert_inline_data(inode); 6131 if (ret) 6132 goto out_ret; 6133 6134 /* Delalloc case is easy... */ 6135 if (test_opt(inode->i_sb, DELALLOC) && 6136 !ext4_should_journal_data(inode) && 6137 !ext4_nonda_switch(inode->i_sb)) { 6138 do { 6139 ret = block_page_mkwrite(vma, vmf, 6140 ext4_da_get_block_prep); 6141 } while (ret == -ENOSPC && 6142 ext4_should_retry_alloc(inode->i_sb, &retries)); 6143 goto out_ret; 6144 } 6145 6146 lock_page(page); 6147 size = i_size_read(inode); 6148 /* Page got truncated from under us? */ 6149 if (page->mapping != mapping || page_offset(page) > size) { 6150 unlock_page(page); 6151 ret = VM_FAULT_NOPAGE; 6152 goto out; 6153 } 6154 6155 if (page->index == size >> PAGE_SHIFT) 6156 len = size & ~PAGE_MASK; 6157 else 6158 len = PAGE_SIZE; 6159 /* 6160 * Return if we have all the buffers mapped. This avoids the need to do 6161 * journal_start/journal_stop which can block and take a long time 6162 */ 6163 if (page_has_buffers(page)) { 6164 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6165 0, len, NULL, 6166 ext4_bh_unmapped)) { 6167 /* Wait so that we don't change page under IO */ 6168 wait_for_stable_page(page); 6169 ret = VM_FAULT_LOCKED; 6170 goto out; 6171 } 6172 } 6173 unlock_page(page); 6174 /* OK, we need to fill the hole... */ 6175 if (ext4_should_dioread_nolock(inode)) 6176 get_block = ext4_get_block_unwritten; 6177 else 6178 get_block = ext4_get_block; 6179 retry_alloc: 6180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6181 ext4_writepage_trans_blocks(inode)); 6182 if (IS_ERR(handle)) { 6183 ret = VM_FAULT_SIGBUS; 6184 goto out; 6185 } 6186 ret = block_page_mkwrite(vma, vmf, get_block); 6187 if (!ret && ext4_should_journal_data(inode)) { 6188 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6189 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6190 unlock_page(page); 6191 ret = VM_FAULT_SIGBUS; 6192 ext4_journal_stop(handle); 6193 goto out; 6194 } 6195 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6196 } 6197 ext4_journal_stop(handle); 6198 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6199 goto retry_alloc; 6200 out_ret: 6201 ret = block_page_mkwrite_return(ret); 6202 out: 6203 up_read(&EXT4_I(inode)->i_mmap_sem); 6204 sb_end_pagefault(inode->i_sb); 6205 return ret; 6206 } 6207 6208 int ext4_filemap_fault(struct vm_fault *vmf) 6209 { 6210 struct inode *inode = file_inode(vmf->vma->vm_file); 6211 int err; 6212 6213 down_read(&EXT4_I(inode)->i_mmap_sem); 6214 err = filemap_fault(vmf); 6215 up_read(&EXT4_I(inode)->i_mmap_sem); 6216 6217 return err; 6218 } 6219