xref: /openbmc/linux/fs/ext4/inode.c (revision a09d2831)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 					      loff_t new_size)
53 {
54 	return jbd2_journal_begin_ordered_truncate(
55 					EXT4_SB(inode->i_sb)->s_journal,
56 					&EXT4_I(inode)->jinode,
57 					new_size);
58 }
59 
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61 
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 		(inode->i_sb->s_blocksize >> 9) : 0;
69 
70 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72 
73 /*
74  * Work out how many blocks we need to proceed with the next chunk of a
75  * truncate transaction.
76  */
77 static unsigned long blocks_for_truncate(struct inode *inode)
78 {
79 	ext4_lblk_t needed;
80 
81 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82 
83 	/* Give ourselves just enough room to cope with inodes in which
84 	 * i_blocks is corrupt: we've seen disk corruptions in the past
85 	 * which resulted in random data in an inode which looked enough
86 	 * like a regular file for ext4 to try to delete it.  Things
87 	 * will go a bit crazy if that happens, but at least we should
88 	 * try not to panic the whole kernel. */
89 	if (needed < 2)
90 		needed = 2;
91 
92 	/* But we need to bound the transaction so we don't overflow the
93 	 * journal. */
94 	if (needed > EXT4_MAX_TRANS_DATA)
95 		needed = EXT4_MAX_TRANS_DATA;
96 
97 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98 }
99 
100 /*
101  * Truncate transactions can be complex and absolutely huge.  So we need to
102  * be able to restart the transaction at a conventient checkpoint to make
103  * sure we don't overflow the journal.
104  *
105  * start_transaction gets us a new handle for a truncate transaction,
106  * and extend_transaction tries to extend the existing one a bit.  If
107  * extend fails, we need to propagate the failure up and restart the
108  * transaction in the top-level truncate loop. --sct
109  */
110 static handle_t *start_transaction(struct inode *inode)
111 {
112 	handle_t *result;
113 
114 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
115 	if (!IS_ERR(result))
116 		return result;
117 
118 	ext4_std_error(inode->i_sb, PTR_ERR(result));
119 	return result;
120 }
121 
122 /*
123  * Try to extend this transaction for the purposes of truncation.
124  *
125  * Returns 0 if we managed to create more room.  If we can't create more
126  * room, and the transaction must be restarted we return 1.
127  */
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129 {
130 	if (!ext4_handle_valid(handle))
131 		return 0;
132 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133 		return 0;
134 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135 		return 0;
136 	return 1;
137 }
138 
139 /*
140  * Restart the transaction associated with *handle.  This does a commit,
141  * so before we call here everything must be consistently dirtied against
142  * this transaction.
143  */
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145 				 int nblocks)
146 {
147 	int ret;
148 
149 	/*
150 	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 	 * moment, get_block can be called only for blocks inside i_size since
152 	 * page cache has been already dropped and writes are blocked by
153 	 * i_mutex. So we can safely drop the i_data_sem here.
154 	 */
155 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
156 	jbd_debug(2, "restarting handle %p\n", handle);
157 	up_write(&EXT4_I(inode)->i_data_sem);
158 	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 	down_write(&EXT4_I(inode)->i_data_sem);
160 	ext4_discard_preallocations(inode);
161 
162 	return ret;
163 }
164 
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_delete_inode(struct inode *inode)
169 {
170 	handle_t *handle;
171 	int err;
172 
173 	if (ext4_should_order_data(inode))
174 		ext4_begin_ordered_truncate(inode, 0);
175 	truncate_inode_pages(&inode->i_data, 0);
176 
177 	if (is_bad_inode(inode))
178 		goto no_delete;
179 
180 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181 	if (IS_ERR(handle)) {
182 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
183 		/*
184 		 * If we're going to skip the normal cleanup, we still need to
185 		 * make sure that the in-core orphan linked list is properly
186 		 * cleaned up.
187 		 */
188 		ext4_orphan_del(NULL, inode);
189 		goto no_delete;
190 	}
191 
192 	if (IS_SYNC(inode))
193 		ext4_handle_sync(handle);
194 	inode->i_size = 0;
195 	err = ext4_mark_inode_dirty(handle, inode);
196 	if (err) {
197 		ext4_warning(inode->i_sb, __func__,
198 			     "couldn't mark inode dirty (err %d)", err);
199 		goto stop_handle;
200 	}
201 	if (inode->i_blocks)
202 		ext4_truncate(inode);
203 
204 	/*
205 	 * ext4_ext_truncate() doesn't reserve any slop when it
206 	 * restarts journal transactions; therefore there may not be
207 	 * enough credits left in the handle to remove the inode from
208 	 * the orphan list and set the dtime field.
209 	 */
210 	if (!ext4_handle_has_enough_credits(handle, 3)) {
211 		err = ext4_journal_extend(handle, 3);
212 		if (err > 0)
213 			err = ext4_journal_restart(handle, 3);
214 		if (err != 0) {
215 			ext4_warning(inode->i_sb, __func__,
216 				     "couldn't extend journal (err %d)", err);
217 		stop_handle:
218 			ext4_journal_stop(handle);
219 			goto no_delete;
220 		}
221 	}
222 
223 	/*
224 	 * Kill off the orphan record which ext4_truncate created.
225 	 * AKPM: I think this can be inside the above `if'.
226 	 * Note that ext4_orphan_del() has to be able to cope with the
227 	 * deletion of a non-existent orphan - this is because we don't
228 	 * know if ext4_truncate() actually created an orphan record.
229 	 * (Well, we could do this if we need to, but heck - it works)
230 	 */
231 	ext4_orphan_del(handle, inode);
232 	EXT4_I(inode)->i_dtime	= get_seconds();
233 
234 	/*
235 	 * One subtle ordering requirement: if anything has gone wrong
236 	 * (transaction abort, IO errors, whatever), then we can still
237 	 * do these next steps (the fs will already have been marked as
238 	 * having errors), but we can't free the inode if the mark_dirty
239 	 * fails.
240 	 */
241 	if (ext4_mark_inode_dirty(handle, inode))
242 		/* If that failed, just do the required in-core inode clear. */
243 		clear_inode(inode);
244 	else
245 		ext4_free_inode(handle, inode);
246 	ext4_journal_stop(handle);
247 	return;
248 no_delete:
249 	clear_inode(inode);	/* We must guarantee clearing of inode... */
250 }
251 
252 typedef struct {
253 	__le32	*p;
254 	__le32	key;
255 	struct buffer_head *bh;
256 } Indirect;
257 
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259 {
260 	p->key = *(p->p = v);
261 	p->bh = bh;
262 }
263 
264 /**
265  *	ext4_block_to_path - parse the block number into array of offsets
266  *	@inode: inode in question (we are only interested in its superblock)
267  *	@i_block: block number to be parsed
268  *	@offsets: array to store the offsets in
269  *	@boundary: set this non-zero if the referred-to block is likely to be
270  *	       followed (on disk) by an indirect block.
271  *
272  *	To store the locations of file's data ext4 uses a data structure common
273  *	for UNIX filesystems - tree of pointers anchored in the inode, with
274  *	data blocks at leaves and indirect blocks in intermediate nodes.
275  *	This function translates the block number into path in that tree -
276  *	return value is the path length and @offsets[n] is the offset of
277  *	pointer to (n+1)th node in the nth one. If @block is out of range
278  *	(negative or too large) warning is printed and zero returned.
279  *
280  *	Note: function doesn't find node addresses, so no IO is needed. All
281  *	we need to know is the capacity of indirect blocks (taken from the
282  *	inode->i_sb).
283  */
284 
285 /*
286  * Portability note: the last comparison (check that we fit into triple
287  * indirect block) is spelled differently, because otherwise on an
288  * architecture with 32-bit longs and 8Kb pages we might get into trouble
289  * if our filesystem had 8Kb blocks. We might use long long, but that would
290  * kill us on x86. Oh, well, at least the sign propagation does not matter -
291  * i_block would have to be negative in the very beginning, so we would not
292  * get there at all.
293  */
294 
295 static int ext4_block_to_path(struct inode *inode,
296 			      ext4_lblk_t i_block,
297 			      ext4_lblk_t offsets[4], int *boundary)
298 {
299 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 	const long direct_blocks = EXT4_NDIR_BLOCKS,
302 		indirect_blocks = ptrs,
303 		double_blocks = (1 << (ptrs_bits * 2));
304 	int n = 0;
305 	int final = 0;
306 
307 	if (i_block < direct_blocks) {
308 		offsets[n++] = i_block;
309 		final = direct_blocks;
310 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
311 		offsets[n++] = EXT4_IND_BLOCK;
312 		offsets[n++] = i_block;
313 		final = ptrs;
314 	} else if ((i_block -= indirect_blocks) < double_blocks) {
315 		offsets[n++] = EXT4_DIND_BLOCK;
316 		offsets[n++] = i_block >> ptrs_bits;
317 		offsets[n++] = i_block & (ptrs - 1);
318 		final = ptrs;
319 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320 		offsets[n++] = EXT4_TIND_BLOCK;
321 		offsets[n++] = i_block >> (ptrs_bits * 2);
322 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 		offsets[n++] = i_block & (ptrs - 1);
324 		final = ptrs;
325 	} else {
326 		ext4_warning(inode->i_sb, "ext4_block_to_path",
327 			     "block %lu > max in inode %lu",
328 			     i_block + direct_blocks +
329 			     indirect_blocks + double_blocks, inode->i_ino);
330 	}
331 	if (boundary)
332 		*boundary = final - 1 - (i_block & (ptrs - 1));
333 	return n;
334 }
335 
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337 				 __le32 *p, unsigned int max)
338 {
339 	__le32 *bref = p;
340 	unsigned int blk;
341 
342 	while (bref < p+max) {
343 		blk = le32_to_cpu(*bref++);
344 		if (blk &&
345 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346 						    blk, 1))) {
347 			ext4_error(inode->i_sb, function,
348 				   "invalid block reference %u "
349 				   "in inode #%lu", blk, inode->i_ino);
350 			return -EIO;
351 		}
352 	}
353 	return 0;
354 }
355 
356 
357 #define ext4_check_indirect_blockref(inode, bh)                         \
358 	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
359 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360 
361 #define ext4_check_inode_blockref(inode)                                \
362 	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
363 			      EXT4_NDIR_BLOCKS)
364 
365 /**
366  *	ext4_get_branch - read the chain of indirect blocks leading to data
367  *	@inode: inode in question
368  *	@depth: depth of the chain (1 - direct pointer, etc.)
369  *	@offsets: offsets of pointers in inode/indirect blocks
370  *	@chain: place to store the result
371  *	@err: here we store the error value
372  *
373  *	Function fills the array of triples <key, p, bh> and returns %NULL
374  *	if everything went OK or the pointer to the last filled triple
375  *	(incomplete one) otherwise. Upon the return chain[i].key contains
376  *	the number of (i+1)-th block in the chain (as it is stored in memory,
377  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
378  *	number (it points into struct inode for i==0 and into the bh->b_data
379  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380  *	block for i>0 and NULL for i==0. In other words, it holds the block
381  *	numbers of the chain, addresses they were taken from (and where we can
382  *	verify that chain did not change) and buffer_heads hosting these
383  *	numbers.
384  *
385  *	Function stops when it stumbles upon zero pointer (absent block)
386  *		(pointer to last triple returned, *@err == 0)
387  *	or when it gets an IO error reading an indirect block
388  *		(ditto, *@err == -EIO)
389  *	or when it reads all @depth-1 indirect blocks successfully and finds
390  *	the whole chain, all way to the data (returns %NULL, *err == 0).
391  *
392  *      Need to be called with
393  *      down_read(&EXT4_I(inode)->i_data_sem)
394  */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 				 ext4_lblk_t  *offsets,
397 				 Indirect chain[4], int *err)
398 {
399 	struct super_block *sb = inode->i_sb;
400 	Indirect *p = chain;
401 	struct buffer_head *bh;
402 
403 	*err = 0;
404 	/* i_data is not going away, no lock needed */
405 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 	if (!p->key)
407 		goto no_block;
408 	while (--depth) {
409 		bh = sb_getblk(sb, le32_to_cpu(p->key));
410 		if (unlikely(!bh))
411 			goto failure;
412 
413 		if (!bh_uptodate_or_lock(bh)) {
414 			if (bh_submit_read(bh) < 0) {
415 				put_bh(bh);
416 				goto failure;
417 			}
418 			/* validate block references */
419 			if (ext4_check_indirect_blockref(inode, bh)) {
420 				put_bh(bh);
421 				goto failure;
422 			}
423 		}
424 
425 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 		/* Reader: end */
427 		if (!p->key)
428 			goto no_block;
429 	}
430 	return NULL;
431 
432 failure:
433 	*err = -EIO;
434 no_block:
435 	return p;
436 }
437 
438 /**
439  *	ext4_find_near - find a place for allocation with sufficient locality
440  *	@inode: owner
441  *	@ind: descriptor of indirect block.
442  *
443  *	This function returns the preferred place for block allocation.
444  *	It is used when heuristic for sequential allocation fails.
445  *	Rules are:
446  *	  + if there is a block to the left of our position - allocate near it.
447  *	  + if pointer will live in indirect block - allocate near that block.
448  *	  + if pointer will live in inode - allocate in the same
449  *	    cylinder group.
450  *
451  * In the latter case we colour the starting block by the callers PID to
452  * prevent it from clashing with concurrent allocations for a different inode
453  * in the same block group.   The PID is used here so that functionally related
454  * files will be close-by on-disk.
455  *
456  *	Caller must make sure that @ind is valid and will stay that way.
457  */
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459 {
460 	struct ext4_inode_info *ei = EXT4_I(inode);
461 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462 	__le32 *p;
463 	ext4_fsblk_t bg_start;
464 	ext4_fsblk_t last_block;
465 	ext4_grpblk_t colour;
466 	ext4_group_t block_group;
467 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468 
469 	/* Try to find previous block */
470 	for (p = ind->p - 1; p >= start; p--) {
471 		if (*p)
472 			return le32_to_cpu(*p);
473 	}
474 
475 	/* No such thing, so let's try location of indirect block */
476 	if (ind->bh)
477 		return ind->bh->b_blocknr;
478 
479 	/*
480 	 * It is going to be referred to from the inode itself? OK, just put it
481 	 * into the same cylinder group then.
482 	 */
483 	block_group = ei->i_block_group;
484 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 		block_group &= ~(flex_size-1);
486 		if (S_ISREG(inode->i_mode))
487 			block_group++;
488 	}
489 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491 
492 	/*
493 	 * If we are doing delayed allocation, we don't need take
494 	 * colour into account.
495 	 */
496 	if (test_opt(inode->i_sb, DELALLOC))
497 		return bg_start;
498 
499 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 		colour = (current->pid % 16) *
501 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 	else
503 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 	return bg_start + colour;
505 }
506 
507 /**
508  *	ext4_find_goal - find a preferred place for allocation.
509  *	@inode: owner
510  *	@block:  block we want
511  *	@partial: pointer to the last triple within a chain
512  *
513  *	Normally this function find the preferred place for block allocation,
514  *	returns it.
515  *	Because this is only used for non-extent files, we limit the block nr
516  *	to 32 bits.
517  */
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519 				   Indirect *partial)
520 {
521 	ext4_fsblk_t goal;
522 
523 	/*
524 	 * XXX need to get goal block from mballoc's data structures
525 	 */
526 
527 	goal = ext4_find_near(inode, partial);
528 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 	return goal;
530 }
531 
532 /**
533  *	ext4_blks_to_allocate: Look up the block map and count the number
534  *	of direct blocks need to be allocated for the given branch.
535  *
536  *	@branch: chain of indirect blocks
537  *	@k: number of blocks need for indirect blocks
538  *	@blks: number of data blocks to be mapped.
539  *	@blocks_to_boundary:  the offset in the indirect block
540  *
541  *	return the total number of blocks to be allocate, including the
542  *	direct and indirect blocks.
543  */
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545 				 int blocks_to_boundary)
546 {
547 	unsigned int count = 0;
548 
549 	/*
550 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 	 * then it's clear blocks on that path have not allocated
552 	 */
553 	if (k > 0) {
554 		/* right now we don't handle cross boundary allocation */
555 		if (blks < blocks_to_boundary + 1)
556 			count += blks;
557 		else
558 			count += blocks_to_boundary + 1;
559 		return count;
560 	}
561 
562 	count++;
563 	while (count < blks && count <= blocks_to_boundary &&
564 		le32_to_cpu(*(branch[0].p + count)) == 0) {
565 		count++;
566 	}
567 	return count;
568 }
569 
570 /**
571  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
572  *	@indirect_blks: the number of blocks need to allocate for indirect
573  *			blocks
574  *
575  *	@new_blocks: on return it will store the new block numbers for
576  *	the indirect blocks(if needed) and the first direct block,
577  *	@blks:	on return it will store the total number of allocated
578  *		direct blocks
579  */
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
582 			     int indirect_blks, int blks,
583 			     ext4_fsblk_t new_blocks[4], int *err)
584 {
585 	struct ext4_allocation_request ar;
586 	int target, i;
587 	unsigned long count = 0, blk_allocated = 0;
588 	int index = 0;
589 	ext4_fsblk_t current_block = 0;
590 	int ret = 0;
591 
592 	/*
593 	 * Here we try to allocate the requested multiple blocks at once,
594 	 * on a best-effort basis.
595 	 * To build a branch, we should allocate blocks for
596 	 * the indirect blocks(if not allocated yet), and at least
597 	 * the first direct block of this branch.  That's the
598 	 * minimum number of blocks need to allocate(required)
599 	 */
600 	/* first we try to allocate the indirect blocks */
601 	target = indirect_blks;
602 	while (target > 0) {
603 		count = target;
604 		/* allocating blocks for indirect blocks and direct blocks */
605 		current_block = ext4_new_meta_blocks(handle, inode,
606 							goal, &count, err);
607 		if (*err)
608 			goto failed_out;
609 
610 		BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
611 
612 		target -= count;
613 		/* allocate blocks for indirect blocks */
614 		while (index < indirect_blks && count) {
615 			new_blocks[index++] = current_block++;
616 			count--;
617 		}
618 		if (count > 0) {
619 			/*
620 			 * save the new block number
621 			 * for the first direct block
622 			 */
623 			new_blocks[index] = current_block;
624 			printk(KERN_INFO "%s returned more blocks than "
625 						"requested\n", __func__);
626 			WARN_ON(1);
627 			break;
628 		}
629 	}
630 
631 	target = blks - count ;
632 	blk_allocated = count;
633 	if (!target)
634 		goto allocated;
635 	/* Now allocate data blocks */
636 	memset(&ar, 0, sizeof(ar));
637 	ar.inode = inode;
638 	ar.goal = goal;
639 	ar.len = target;
640 	ar.logical = iblock;
641 	if (S_ISREG(inode->i_mode))
642 		/* enable in-core preallocation only for regular files */
643 		ar.flags = EXT4_MB_HINT_DATA;
644 
645 	current_block = ext4_mb_new_blocks(handle, &ar, err);
646 	BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
647 
648 	if (*err && (target == blks)) {
649 		/*
650 		 * if the allocation failed and we didn't allocate
651 		 * any blocks before
652 		 */
653 		goto failed_out;
654 	}
655 	if (!*err) {
656 		if (target == blks) {
657 			/*
658 			 * save the new block number
659 			 * for the first direct block
660 			 */
661 			new_blocks[index] = current_block;
662 		}
663 		blk_allocated += ar.len;
664 	}
665 allocated:
666 	/* total number of blocks allocated for direct blocks */
667 	ret = blk_allocated;
668 	*err = 0;
669 	return ret;
670 failed_out:
671 	for (i = 0; i < index; i++)
672 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673 	return ret;
674 }
675 
676 /**
677  *	ext4_alloc_branch - allocate and set up a chain of blocks.
678  *	@inode: owner
679  *	@indirect_blks: number of allocated indirect blocks
680  *	@blks: number of allocated direct blocks
681  *	@offsets: offsets (in the blocks) to store the pointers to next.
682  *	@branch: place to store the chain in.
683  *
684  *	This function allocates blocks, zeroes out all but the last one,
685  *	links them into chain and (if we are synchronous) writes them to disk.
686  *	In other words, it prepares a branch that can be spliced onto the
687  *	inode. It stores the information about that chain in the branch[], in
688  *	the same format as ext4_get_branch() would do. We are calling it after
689  *	we had read the existing part of chain and partial points to the last
690  *	triple of that (one with zero ->key). Upon the exit we have the same
691  *	picture as after the successful ext4_get_block(), except that in one
692  *	place chain is disconnected - *branch->p is still zero (we did not
693  *	set the last link), but branch->key contains the number that should
694  *	be placed into *branch->p to fill that gap.
695  *
696  *	If allocation fails we free all blocks we've allocated (and forget
697  *	their buffer_heads) and return the error value the from failed
698  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699  *	as described above and return 0.
700  */
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702 			     ext4_lblk_t iblock, int indirect_blks,
703 			     int *blks, ext4_fsblk_t goal,
704 			     ext4_lblk_t *offsets, Indirect *branch)
705 {
706 	int blocksize = inode->i_sb->s_blocksize;
707 	int i, n = 0;
708 	int err = 0;
709 	struct buffer_head *bh;
710 	int num;
711 	ext4_fsblk_t new_blocks[4];
712 	ext4_fsblk_t current_block;
713 
714 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715 				*blks, new_blocks, &err);
716 	if (err)
717 		return err;
718 
719 	branch[0].key = cpu_to_le32(new_blocks[0]);
720 	/*
721 	 * metadata blocks and data blocks are allocated.
722 	 */
723 	for (n = 1; n <= indirect_blks;  n++) {
724 		/*
725 		 * Get buffer_head for parent block, zero it out
726 		 * and set the pointer to new one, then send
727 		 * parent to disk.
728 		 */
729 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730 		branch[n].bh = bh;
731 		lock_buffer(bh);
732 		BUFFER_TRACE(bh, "call get_create_access");
733 		err = ext4_journal_get_create_access(handle, bh);
734 		if (err) {
735 			/* Don't brelse(bh) here; it's done in
736 			 * ext4_journal_forget() below */
737 			unlock_buffer(bh);
738 			goto failed;
739 		}
740 
741 		memset(bh->b_data, 0, blocksize);
742 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
743 		branch[n].key = cpu_to_le32(new_blocks[n]);
744 		*branch[n].p = branch[n].key;
745 		if (n == indirect_blks) {
746 			current_block = new_blocks[n];
747 			/*
748 			 * End of chain, update the last new metablock of
749 			 * the chain to point to the new allocated
750 			 * data blocks numbers
751 			 */
752 			for (i = 1; i < num; i++)
753 				*(branch[n].p + i) = cpu_to_le32(++current_block);
754 		}
755 		BUFFER_TRACE(bh, "marking uptodate");
756 		set_buffer_uptodate(bh);
757 		unlock_buffer(bh);
758 
759 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760 		err = ext4_handle_dirty_metadata(handle, inode, bh);
761 		if (err)
762 			goto failed;
763 	}
764 	*blks = num;
765 	return err;
766 failed:
767 	/* Allocation failed, free what we already allocated */
768 	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769 	for (i = 1; i <= n ; i++) {
770 		/*
771 		 * branch[i].bh is newly allocated, so there is no
772 		 * need to revoke the block, which is why we don't
773 		 * need to set EXT4_FREE_BLOCKS_METADATA.
774 		 */
775 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776 				 EXT4_FREE_BLOCKS_FORGET);
777 	}
778 	for (i = n+1; i < indirect_blks; i++)
779 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
780 
781 	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
782 
783 	return err;
784 }
785 
786 /**
787  * ext4_splice_branch - splice the allocated branch onto inode.
788  * @inode: owner
789  * @block: (logical) number of block we are adding
790  * @chain: chain of indirect blocks (with a missing link - see
791  *	ext4_alloc_branch)
792  * @where: location of missing link
793  * @num:   number of indirect blocks we are adding
794  * @blks:  number of direct blocks we are adding
795  *
796  * This function fills the missing link and does all housekeeping needed in
797  * inode (->i_blocks, etc.). In case of success we end up with the full
798  * chain to new block and return 0.
799  */
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 			      ext4_lblk_t block, Indirect *where, int num,
802 			      int blks)
803 {
804 	int i;
805 	int err = 0;
806 	ext4_fsblk_t current_block;
807 
808 	/*
809 	 * If we're splicing into a [td]indirect block (as opposed to the
810 	 * inode) then we need to get write access to the [td]indirect block
811 	 * before the splice.
812 	 */
813 	if (where->bh) {
814 		BUFFER_TRACE(where->bh, "get_write_access");
815 		err = ext4_journal_get_write_access(handle, where->bh);
816 		if (err)
817 			goto err_out;
818 	}
819 	/* That's it */
820 
821 	*where->p = where->key;
822 
823 	/*
824 	 * Update the host buffer_head or inode to point to more just allocated
825 	 * direct blocks blocks
826 	 */
827 	if (num == 0 && blks > 1) {
828 		current_block = le32_to_cpu(where->key) + 1;
829 		for (i = 1; i < blks; i++)
830 			*(where->p + i) = cpu_to_le32(current_block++);
831 	}
832 
833 	/* We are done with atomic stuff, now do the rest of housekeeping */
834 	/* had we spliced it onto indirect block? */
835 	if (where->bh) {
836 		/*
837 		 * If we spliced it onto an indirect block, we haven't
838 		 * altered the inode.  Note however that if it is being spliced
839 		 * onto an indirect block at the very end of the file (the
840 		 * file is growing) then we *will* alter the inode to reflect
841 		 * the new i_size.  But that is not done here - it is done in
842 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
843 		 */
844 		jbd_debug(5, "splicing indirect only\n");
845 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 		if (err)
848 			goto err_out;
849 	} else {
850 		/*
851 		 * OK, we spliced it into the inode itself on a direct block.
852 		 */
853 		ext4_mark_inode_dirty(handle, inode);
854 		jbd_debug(5, "splicing direct\n");
855 	}
856 	return err;
857 
858 err_out:
859 	for (i = 1; i <= num; i++) {
860 		/*
861 		 * branch[i].bh is newly allocated, so there is no
862 		 * need to revoke the block, which is why we don't
863 		 * need to set EXT4_FREE_BLOCKS_METADATA.
864 		 */
865 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866 				 EXT4_FREE_BLOCKS_FORGET);
867 	}
868 	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869 			 blks, 0);
870 
871 	return err;
872 }
873 
874 /*
875  * The ext4_ind_get_blocks() function handles non-extents inodes
876  * (i.e., using the traditional indirect/double-indirect i_blocks
877  * scheme) for ext4_get_blocks().
878  *
879  * Allocation strategy is simple: if we have to allocate something, we will
880  * have to go the whole way to leaf. So let's do it before attaching anything
881  * to tree, set linkage between the newborn blocks, write them if sync is
882  * required, recheck the path, free and repeat if check fails, otherwise
883  * set the last missing link (that will protect us from any truncate-generated
884  * removals - all blocks on the path are immune now) and possibly force the
885  * write on the parent block.
886  * That has a nice additional property: no special recovery from the failed
887  * allocations is needed - we simply release blocks and do not touch anything
888  * reachable from inode.
889  *
890  * `handle' can be NULL if create == 0.
891  *
892  * return > 0, # of blocks mapped or allocated.
893  * return = 0, if plain lookup failed.
894  * return < 0, error case.
895  *
896  * The ext4_ind_get_blocks() function should be called with
897  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900  * blocks.
901  */
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903 			       ext4_lblk_t iblock, unsigned int maxblocks,
904 			       struct buffer_head *bh_result,
905 			       int flags)
906 {
907 	int err = -EIO;
908 	ext4_lblk_t offsets[4];
909 	Indirect chain[4];
910 	Indirect *partial;
911 	ext4_fsblk_t goal;
912 	int indirect_blks;
913 	int blocks_to_boundary = 0;
914 	int depth;
915 	int count = 0;
916 	ext4_fsblk_t first_block = 0;
917 
918 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920 	depth = ext4_block_to_path(inode, iblock, offsets,
921 				   &blocks_to_boundary);
922 
923 	if (depth == 0)
924 		goto out;
925 
926 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
927 
928 	/* Simplest case - block found, no allocation needed */
929 	if (!partial) {
930 		first_block = le32_to_cpu(chain[depth - 1].key);
931 		clear_buffer_new(bh_result);
932 		count++;
933 		/*map more blocks*/
934 		while (count < maxblocks && count <= blocks_to_boundary) {
935 			ext4_fsblk_t blk;
936 
937 			blk = le32_to_cpu(*(chain[depth-1].p + count));
938 
939 			if (blk == first_block + count)
940 				count++;
941 			else
942 				break;
943 		}
944 		goto got_it;
945 	}
946 
947 	/* Next simple case - plain lookup or failed read of indirect block */
948 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949 		goto cleanup;
950 
951 	/*
952 	 * Okay, we need to do block allocation.
953 	*/
954 	goal = ext4_find_goal(inode, iblock, partial);
955 
956 	/* the number of blocks need to allocate for [d,t]indirect blocks */
957 	indirect_blks = (chain + depth) - partial - 1;
958 
959 	/*
960 	 * Next look up the indirect map to count the totoal number of
961 	 * direct blocks to allocate for this branch.
962 	 */
963 	count = ext4_blks_to_allocate(partial, indirect_blks,
964 					maxblocks, blocks_to_boundary);
965 	/*
966 	 * Block out ext4_truncate while we alter the tree
967 	 */
968 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969 				&count, goal,
970 				offsets + (partial - chain), partial);
971 
972 	/*
973 	 * The ext4_splice_branch call will free and forget any buffers
974 	 * on the new chain if there is a failure, but that risks using
975 	 * up transaction credits, especially for bitmaps where the
976 	 * credits cannot be returned.  Can we handle this somehow?  We
977 	 * may need to return -EAGAIN upwards in the worst case.  --sct
978 	 */
979 	if (!err)
980 		err = ext4_splice_branch(handle, inode, iblock,
981 					 partial, indirect_blks, count);
982 	if (err)
983 		goto cleanup;
984 
985 	set_buffer_new(bh_result);
986 
987 	ext4_update_inode_fsync_trans(handle, inode, 1);
988 got_it:
989 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
990 	if (count > blocks_to_boundary)
991 		set_buffer_boundary(bh_result);
992 	err = count;
993 	/* Clean up and exit */
994 	partial = chain + depth - 1;	/* the whole chain */
995 cleanup:
996 	while (partial > chain) {
997 		BUFFER_TRACE(partial->bh, "call brelse");
998 		brelse(partial->bh);
999 		partial--;
1000 	}
1001 	BUFFER_TRACE(bh_result, "returned");
1002 out:
1003 	return err;
1004 }
1005 
1006 #ifdef CONFIG_QUOTA
1007 qsize_t *ext4_get_reserved_space(struct inode *inode)
1008 {
1009 	return &EXT4_I(inode)->i_reserved_quota;
1010 }
1011 #endif
1012 
1013 /*
1014  * Calculate the number of metadata blocks need to reserve
1015  * to allocate a new block at @lblocks for non extent file based file
1016  */
1017 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1018 					      sector_t lblock)
1019 {
1020 	struct ext4_inode_info *ei = EXT4_I(inode);
1021 	int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1022 	int blk_bits;
1023 
1024 	if (lblock < EXT4_NDIR_BLOCKS)
1025 		return 0;
1026 
1027 	lblock -= EXT4_NDIR_BLOCKS;
1028 
1029 	if (ei->i_da_metadata_calc_len &&
1030 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1031 		ei->i_da_metadata_calc_len++;
1032 		return 0;
1033 	}
1034 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1035 	ei->i_da_metadata_calc_len = 1;
1036 	blk_bits = roundup_pow_of_two(lblock + 1);
1037 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1038 }
1039 
1040 /*
1041  * Calculate the number of metadata blocks need to reserve
1042  * to allocate a block located at @lblock
1043  */
1044 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1045 {
1046 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1047 		return ext4_ext_calc_metadata_amount(inode, lblock);
1048 
1049 	return ext4_indirect_calc_metadata_amount(inode, lblock);
1050 }
1051 
1052 /*
1053  * Called with i_data_sem down, which is important since we can call
1054  * ext4_discard_preallocations() from here.
1055  */
1056 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1057 {
1058 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1059 	struct ext4_inode_info *ei = EXT4_I(inode);
1060 	int mdb_free = 0;
1061 
1062 	spin_lock(&ei->i_block_reservation_lock);
1063 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1064 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1065 			 "with only %d reserved data blocks\n",
1066 			 __func__, inode->i_ino, used,
1067 			 ei->i_reserved_data_blocks);
1068 		WARN_ON(1);
1069 		used = ei->i_reserved_data_blocks;
1070 	}
1071 
1072 	/* Update per-inode reservations */
1073 	ei->i_reserved_data_blocks -= used;
1074 	used += ei->i_allocated_meta_blocks;
1075 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1076 	ei->i_allocated_meta_blocks = 0;
1077 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1078 
1079 	if (ei->i_reserved_data_blocks == 0) {
1080 		/*
1081 		 * We can release all of the reserved metadata blocks
1082 		 * only when we have written all of the delayed
1083 		 * allocation blocks.
1084 		 */
1085 		mdb_free = ei->i_reserved_meta_blocks;
1086 		ei->i_reserved_meta_blocks = 0;
1087 		ei->i_da_metadata_calc_len = 0;
1088 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1089 	}
1090 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1091 
1092 	/* Update quota subsystem */
1093 	vfs_dq_claim_block(inode, used);
1094 	if (mdb_free)
1095 		vfs_dq_release_reservation_block(inode, mdb_free);
1096 
1097 	/*
1098 	 * If we have done all the pending block allocations and if
1099 	 * there aren't any writers on the inode, we can discard the
1100 	 * inode's preallocations.
1101 	 */
1102 	if ((ei->i_reserved_data_blocks == 0) &&
1103 	    (atomic_read(&inode->i_writecount) == 0))
1104 		ext4_discard_preallocations(inode);
1105 }
1106 
1107 static int check_block_validity(struct inode *inode, const char *msg,
1108 				sector_t logical, sector_t phys, int len)
1109 {
1110 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1111 		ext4_error(inode->i_sb, msg,
1112 			   "inode #%lu logical block %llu mapped to %llu "
1113 			   "(size %d)", inode->i_ino,
1114 			   (unsigned long long) logical,
1115 			   (unsigned long long) phys, len);
1116 		return -EIO;
1117 	}
1118 	return 0;
1119 }
1120 
1121 /*
1122  * Return the number of contiguous dirty pages in a given inode
1123  * starting at page frame idx.
1124  */
1125 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1126 				    unsigned int max_pages)
1127 {
1128 	struct address_space *mapping = inode->i_mapping;
1129 	pgoff_t	index;
1130 	struct pagevec pvec;
1131 	pgoff_t num = 0;
1132 	int i, nr_pages, done = 0;
1133 
1134 	if (max_pages == 0)
1135 		return 0;
1136 	pagevec_init(&pvec, 0);
1137 	while (!done) {
1138 		index = idx;
1139 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1140 					      PAGECACHE_TAG_DIRTY,
1141 					      (pgoff_t)PAGEVEC_SIZE);
1142 		if (nr_pages == 0)
1143 			break;
1144 		for (i = 0; i < nr_pages; i++) {
1145 			struct page *page = pvec.pages[i];
1146 			struct buffer_head *bh, *head;
1147 
1148 			lock_page(page);
1149 			if (unlikely(page->mapping != mapping) ||
1150 			    !PageDirty(page) ||
1151 			    PageWriteback(page) ||
1152 			    page->index != idx) {
1153 				done = 1;
1154 				unlock_page(page);
1155 				break;
1156 			}
1157 			if (page_has_buffers(page)) {
1158 				bh = head = page_buffers(page);
1159 				do {
1160 					if (!buffer_delay(bh) &&
1161 					    !buffer_unwritten(bh))
1162 						done = 1;
1163 					bh = bh->b_this_page;
1164 				} while (!done && (bh != head));
1165 			}
1166 			unlock_page(page);
1167 			if (done)
1168 				break;
1169 			idx++;
1170 			num++;
1171 			if (num >= max_pages)
1172 				break;
1173 		}
1174 		pagevec_release(&pvec);
1175 	}
1176 	return num;
1177 }
1178 
1179 /*
1180  * The ext4_get_blocks() function tries to look up the requested blocks,
1181  * and returns if the blocks are already mapped.
1182  *
1183  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1184  * and store the allocated blocks in the result buffer head and mark it
1185  * mapped.
1186  *
1187  * If file type is extents based, it will call ext4_ext_get_blocks(),
1188  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1189  * based files
1190  *
1191  * On success, it returns the number of blocks being mapped or allocate.
1192  * if create==0 and the blocks are pre-allocated and uninitialized block,
1193  * the result buffer head is unmapped. If the create ==1, it will make sure
1194  * the buffer head is mapped.
1195  *
1196  * It returns 0 if plain look up failed (blocks have not been allocated), in
1197  * that casem, buffer head is unmapped
1198  *
1199  * It returns the error in case of allocation failure.
1200  */
1201 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1202 		    unsigned int max_blocks, struct buffer_head *bh,
1203 		    int flags)
1204 {
1205 	int retval;
1206 
1207 	clear_buffer_mapped(bh);
1208 	clear_buffer_unwritten(bh);
1209 
1210 	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1211 		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
1212 		  (unsigned long)block);
1213 	/*
1214 	 * Try to see if we can get the block without requesting a new
1215 	 * file system block.
1216 	 */
1217 	down_read((&EXT4_I(inode)->i_data_sem));
1218 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1219 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1220 				bh, 0);
1221 	} else {
1222 		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1223 					     bh, 0);
1224 	}
1225 	up_read((&EXT4_I(inode)->i_data_sem));
1226 
1227 	if (retval > 0 && buffer_mapped(bh)) {
1228 		int ret = check_block_validity(inode, "file system corruption",
1229 					       block, bh->b_blocknr, retval);
1230 		if (ret != 0)
1231 			return ret;
1232 	}
1233 
1234 	/* If it is only a block(s) look up */
1235 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1236 		return retval;
1237 
1238 	/*
1239 	 * Returns if the blocks have already allocated
1240 	 *
1241 	 * Note that if blocks have been preallocated
1242 	 * ext4_ext_get_block() returns th create = 0
1243 	 * with buffer head unmapped.
1244 	 */
1245 	if (retval > 0 && buffer_mapped(bh))
1246 		return retval;
1247 
1248 	/*
1249 	 * When we call get_blocks without the create flag, the
1250 	 * BH_Unwritten flag could have gotten set if the blocks
1251 	 * requested were part of a uninitialized extent.  We need to
1252 	 * clear this flag now that we are committed to convert all or
1253 	 * part of the uninitialized extent to be an initialized
1254 	 * extent.  This is because we need to avoid the combination
1255 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1256 	 * set on the buffer_head.
1257 	 */
1258 	clear_buffer_unwritten(bh);
1259 
1260 	/*
1261 	 * New blocks allocate and/or writing to uninitialized extent
1262 	 * will possibly result in updating i_data, so we take
1263 	 * the write lock of i_data_sem, and call get_blocks()
1264 	 * with create == 1 flag.
1265 	 */
1266 	down_write((&EXT4_I(inode)->i_data_sem));
1267 
1268 	/*
1269 	 * if the caller is from delayed allocation writeout path
1270 	 * we have already reserved fs blocks for allocation
1271 	 * let the underlying get_block() function know to
1272 	 * avoid double accounting
1273 	 */
1274 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1275 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1276 	/*
1277 	 * We need to check for EXT4 here because migrate
1278 	 * could have changed the inode type in between
1279 	 */
1280 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1281 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1282 					      bh, flags);
1283 	} else {
1284 		retval = ext4_ind_get_blocks(handle, inode, block,
1285 					     max_blocks, bh, flags);
1286 
1287 		if (retval > 0 && buffer_new(bh)) {
1288 			/*
1289 			 * We allocated new blocks which will result in
1290 			 * i_data's format changing.  Force the migrate
1291 			 * to fail by clearing migrate flags
1292 			 */
1293 			EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1294 		}
1295 	}
1296 
1297 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1298 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1299 
1300 	/*
1301 	 * Update reserved blocks/metadata blocks after successful
1302 	 * block allocation which had been deferred till now.
1303 	 */
1304 	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1305 		ext4_da_update_reserve_space(inode, retval);
1306 
1307 	up_write((&EXT4_I(inode)->i_data_sem));
1308 	if (retval > 0 && buffer_mapped(bh)) {
1309 		int ret = check_block_validity(inode, "file system "
1310 					       "corruption after allocation",
1311 					       block, bh->b_blocknr, retval);
1312 		if (ret != 0)
1313 			return ret;
1314 	}
1315 	return retval;
1316 }
1317 
1318 /* Maximum number of blocks we map for direct IO at once. */
1319 #define DIO_MAX_BLOCKS 4096
1320 
1321 int ext4_get_block(struct inode *inode, sector_t iblock,
1322 		   struct buffer_head *bh_result, int create)
1323 {
1324 	handle_t *handle = ext4_journal_current_handle();
1325 	int ret = 0, started = 0;
1326 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1327 	int dio_credits;
1328 
1329 	if (create && !handle) {
1330 		/* Direct IO write... */
1331 		if (max_blocks > DIO_MAX_BLOCKS)
1332 			max_blocks = DIO_MAX_BLOCKS;
1333 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1334 		handle = ext4_journal_start(inode, dio_credits);
1335 		if (IS_ERR(handle)) {
1336 			ret = PTR_ERR(handle);
1337 			goto out;
1338 		}
1339 		started = 1;
1340 	}
1341 
1342 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1343 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1344 	if (ret > 0) {
1345 		bh_result->b_size = (ret << inode->i_blkbits);
1346 		ret = 0;
1347 	}
1348 	if (started)
1349 		ext4_journal_stop(handle);
1350 out:
1351 	return ret;
1352 }
1353 
1354 /*
1355  * `handle' can be NULL if create is zero
1356  */
1357 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1358 				ext4_lblk_t block, int create, int *errp)
1359 {
1360 	struct buffer_head dummy;
1361 	int fatal = 0, err;
1362 	int flags = 0;
1363 
1364 	J_ASSERT(handle != NULL || create == 0);
1365 
1366 	dummy.b_state = 0;
1367 	dummy.b_blocknr = -1000;
1368 	buffer_trace_init(&dummy.b_history);
1369 	if (create)
1370 		flags |= EXT4_GET_BLOCKS_CREATE;
1371 	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1372 	/*
1373 	 * ext4_get_blocks() returns number of blocks mapped. 0 in
1374 	 * case of a HOLE.
1375 	 */
1376 	if (err > 0) {
1377 		if (err > 1)
1378 			WARN_ON(1);
1379 		err = 0;
1380 	}
1381 	*errp = err;
1382 	if (!err && buffer_mapped(&dummy)) {
1383 		struct buffer_head *bh;
1384 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1385 		if (!bh) {
1386 			*errp = -EIO;
1387 			goto err;
1388 		}
1389 		if (buffer_new(&dummy)) {
1390 			J_ASSERT(create != 0);
1391 			J_ASSERT(handle != NULL);
1392 
1393 			/*
1394 			 * Now that we do not always journal data, we should
1395 			 * keep in mind whether this should always journal the
1396 			 * new buffer as metadata.  For now, regular file
1397 			 * writes use ext4_get_block instead, so it's not a
1398 			 * problem.
1399 			 */
1400 			lock_buffer(bh);
1401 			BUFFER_TRACE(bh, "call get_create_access");
1402 			fatal = ext4_journal_get_create_access(handle, bh);
1403 			if (!fatal && !buffer_uptodate(bh)) {
1404 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1405 				set_buffer_uptodate(bh);
1406 			}
1407 			unlock_buffer(bh);
1408 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1409 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1410 			if (!fatal)
1411 				fatal = err;
1412 		} else {
1413 			BUFFER_TRACE(bh, "not a new buffer");
1414 		}
1415 		if (fatal) {
1416 			*errp = fatal;
1417 			brelse(bh);
1418 			bh = NULL;
1419 		}
1420 		return bh;
1421 	}
1422 err:
1423 	return NULL;
1424 }
1425 
1426 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1427 			       ext4_lblk_t block, int create, int *err)
1428 {
1429 	struct buffer_head *bh;
1430 
1431 	bh = ext4_getblk(handle, inode, block, create, err);
1432 	if (!bh)
1433 		return bh;
1434 	if (buffer_uptodate(bh))
1435 		return bh;
1436 	ll_rw_block(READ_META, 1, &bh);
1437 	wait_on_buffer(bh);
1438 	if (buffer_uptodate(bh))
1439 		return bh;
1440 	put_bh(bh);
1441 	*err = -EIO;
1442 	return NULL;
1443 }
1444 
1445 static int walk_page_buffers(handle_t *handle,
1446 			     struct buffer_head *head,
1447 			     unsigned from,
1448 			     unsigned to,
1449 			     int *partial,
1450 			     int (*fn)(handle_t *handle,
1451 				       struct buffer_head *bh))
1452 {
1453 	struct buffer_head *bh;
1454 	unsigned block_start, block_end;
1455 	unsigned blocksize = head->b_size;
1456 	int err, ret = 0;
1457 	struct buffer_head *next;
1458 
1459 	for (bh = head, block_start = 0;
1460 	     ret == 0 && (bh != head || !block_start);
1461 	     block_start = block_end, bh = next) {
1462 		next = bh->b_this_page;
1463 		block_end = block_start + blocksize;
1464 		if (block_end <= from || block_start >= to) {
1465 			if (partial && !buffer_uptodate(bh))
1466 				*partial = 1;
1467 			continue;
1468 		}
1469 		err = (*fn)(handle, bh);
1470 		if (!ret)
1471 			ret = err;
1472 	}
1473 	return ret;
1474 }
1475 
1476 /*
1477  * To preserve ordering, it is essential that the hole instantiation and
1478  * the data write be encapsulated in a single transaction.  We cannot
1479  * close off a transaction and start a new one between the ext4_get_block()
1480  * and the commit_write().  So doing the jbd2_journal_start at the start of
1481  * prepare_write() is the right place.
1482  *
1483  * Also, this function can nest inside ext4_writepage() ->
1484  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1485  * has generated enough buffer credits to do the whole page.  So we won't
1486  * block on the journal in that case, which is good, because the caller may
1487  * be PF_MEMALLOC.
1488  *
1489  * By accident, ext4 can be reentered when a transaction is open via
1490  * quota file writes.  If we were to commit the transaction while thus
1491  * reentered, there can be a deadlock - we would be holding a quota
1492  * lock, and the commit would never complete if another thread had a
1493  * transaction open and was blocking on the quota lock - a ranking
1494  * violation.
1495  *
1496  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1497  * will _not_ run commit under these circumstances because handle->h_ref
1498  * is elevated.  We'll still have enough credits for the tiny quotafile
1499  * write.
1500  */
1501 static int do_journal_get_write_access(handle_t *handle,
1502 				       struct buffer_head *bh)
1503 {
1504 	if (!buffer_mapped(bh) || buffer_freed(bh))
1505 		return 0;
1506 	return ext4_journal_get_write_access(handle, bh);
1507 }
1508 
1509 /*
1510  * Truncate blocks that were not used by write. We have to truncate the
1511  * pagecache as well so that corresponding buffers get properly unmapped.
1512  */
1513 static void ext4_truncate_failed_write(struct inode *inode)
1514 {
1515 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1516 	ext4_truncate(inode);
1517 }
1518 
1519 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1520 			    loff_t pos, unsigned len, unsigned flags,
1521 			    struct page **pagep, void **fsdata)
1522 {
1523 	struct inode *inode = mapping->host;
1524 	int ret, needed_blocks;
1525 	handle_t *handle;
1526 	int retries = 0;
1527 	struct page *page;
1528 	pgoff_t index;
1529 	unsigned from, to;
1530 
1531 	trace_ext4_write_begin(inode, pos, len, flags);
1532 	/*
1533 	 * Reserve one block more for addition to orphan list in case
1534 	 * we allocate blocks but write fails for some reason
1535 	 */
1536 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1537 	index = pos >> PAGE_CACHE_SHIFT;
1538 	from = pos & (PAGE_CACHE_SIZE - 1);
1539 	to = from + len;
1540 
1541 retry:
1542 	handle = ext4_journal_start(inode, needed_blocks);
1543 	if (IS_ERR(handle)) {
1544 		ret = PTR_ERR(handle);
1545 		goto out;
1546 	}
1547 
1548 	/* We cannot recurse into the filesystem as the transaction is already
1549 	 * started */
1550 	flags |= AOP_FLAG_NOFS;
1551 
1552 	page = grab_cache_page_write_begin(mapping, index, flags);
1553 	if (!page) {
1554 		ext4_journal_stop(handle);
1555 		ret = -ENOMEM;
1556 		goto out;
1557 	}
1558 	*pagep = page;
1559 
1560 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1561 				ext4_get_block);
1562 
1563 	if (!ret && ext4_should_journal_data(inode)) {
1564 		ret = walk_page_buffers(handle, page_buffers(page),
1565 				from, to, NULL, do_journal_get_write_access);
1566 	}
1567 
1568 	if (ret) {
1569 		unlock_page(page);
1570 		page_cache_release(page);
1571 		/*
1572 		 * block_write_begin may have instantiated a few blocks
1573 		 * outside i_size.  Trim these off again. Don't need
1574 		 * i_size_read because we hold i_mutex.
1575 		 *
1576 		 * Add inode to orphan list in case we crash before
1577 		 * truncate finishes
1578 		 */
1579 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1580 			ext4_orphan_add(handle, inode);
1581 
1582 		ext4_journal_stop(handle);
1583 		if (pos + len > inode->i_size) {
1584 			ext4_truncate_failed_write(inode);
1585 			/*
1586 			 * If truncate failed early the inode might
1587 			 * still be on the orphan list; we need to
1588 			 * make sure the inode is removed from the
1589 			 * orphan list in that case.
1590 			 */
1591 			if (inode->i_nlink)
1592 				ext4_orphan_del(NULL, inode);
1593 		}
1594 	}
1595 
1596 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1597 		goto retry;
1598 out:
1599 	return ret;
1600 }
1601 
1602 /* For write_end() in data=journal mode */
1603 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1604 {
1605 	if (!buffer_mapped(bh) || buffer_freed(bh))
1606 		return 0;
1607 	set_buffer_uptodate(bh);
1608 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1609 }
1610 
1611 static int ext4_generic_write_end(struct file *file,
1612 				  struct address_space *mapping,
1613 				  loff_t pos, unsigned len, unsigned copied,
1614 				  struct page *page, void *fsdata)
1615 {
1616 	int i_size_changed = 0;
1617 	struct inode *inode = mapping->host;
1618 	handle_t *handle = ext4_journal_current_handle();
1619 
1620 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1621 
1622 	/*
1623 	 * No need to use i_size_read() here, the i_size
1624 	 * cannot change under us because we hold i_mutex.
1625 	 *
1626 	 * But it's important to update i_size while still holding page lock:
1627 	 * page writeout could otherwise come in and zero beyond i_size.
1628 	 */
1629 	if (pos + copied > inode->i_size) {
1630 		i_size_write(inode, pos + copied);
1631 		i_size_changed = 1;
1632 	}
1633 
1634 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1635 		/* We need to mark inode dirty even if
1636 		 * new_i_size is less that inode->i_size
1637 		 * bu greater than i_disksize.(hint delalloc)
1638 		 */
1639 		ext4_update_i_disksize(inode, (pos + copied));
1640 		i_size_changed = 1;
1641 	}
1642 	unlock_page(page);
1643 	page_cache_release(page);
1644 
1645 	/*
1646 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1647 	 * makes the holding time of page lock longer. Second, it forces lock
1648 	 * ordering of page lock and transaction start for journaling
1649 	 * filesystems.
1650 	 */
1651 	if (i_size_changed)
1652 		ext4_mark_inode_dirty(handle, inode);
1653 
1654 	return copied;
1655 }
1656 
1657 /*
1658  * We need to pick up the new inode size which generic_commit_write gave us
1659  * `file' can be NULL - eg, when called from page_symlink().
1660  *
1661  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1662  * buffers are managed internally.
1663  */
1664 static int ext4_ordered_write_end(struct file *file,
1665 				  struct address_space *mapping,
1666 				  loff_t pos, unsigned len, unsigned copied,
1667 				  struct page *page, void *fsdata)
1668 {
1669 	handle_t *handle = ext4_journal_current_handle();
1670 	struct inode *inode = mapping->host;
1671 	int ret = 0, ret2;
1672 
1673 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1674 	ret = ext4_jbd2_file_inode(handle, inode);
1675 
1676 	if (ret == 0) {
1677 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1678 							page, fsdata);
1679 		copied = ret2;
1680 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1681 			/* if we have allocated more blocks and copied
1682 			 * less. We will have blocks allocated outside
1683 			 * inode->i_size. So truncate them
1684 			 */
1685 			ext4_orphan_add(handle, inode);
1686 		if (ret2 < 0)
1687 			ret = ret2;
1688 	}
1689 	ret2 = ext4_journal_stop(handle);
1690 	if (!ret)
1691 		ret = ret2;
1692 
1693 	if (pos + len > inode->i_size) {
1694 		ext4_truncate_failed_write(inode);
1695 		/*
1696 		 * If truncate failed early the inode might still be
1697 		 * on the orphan list; we need to make sure the inode
1698 		 * is removed from the orphan list in that case.
1699 		 */
1700 		if (inode->i_nlink)
1701 			ext4_orphan_del(NULL, inode);
1702 	}
1703 
1704 
1705 	return ret ? ret : copied;
1706 }
1707 
1708 static int ext4_writeback_write_end(struct file *file,
1709 				    struct address_space *mapping,
1710 				    loff_t pos, unsigned len, unsigned copied,
1711 				    struct page *page, void *fsdata)
1712 {
1713 	handle_t *handle = ext4_journal_current_handle();
1714 	struct inode *inode = mapping->host;
1715 	int ret = 0, ret2;
1716 
1717 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1718 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1719 							page, fsdata);
1720 	copied = ret2;
1721 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1722 		/* if we have allocated more blocks and copied
1723 		 * less. We will have blocks allocated outside
1724 		 * inode->i_size. So truncate them
1725 		 */
1726 		ext4_orphan_add(handle, inode);
1727 
1728 	if (ret2 < 0)
1729 		ret = ret2;
1730 
1731 	ret2 = ext4_journal_stop(handle);
1732 	if (!ret)
1733 		ret = ret2;
1734 
1735 	if (pos + len > inode->i_size) {
1736 		ext4_truncate_failed_write(inode);
1737 		/*
1738 		 * If truncate failed early the inode might still be
1739 		 * on the orphan list; we need to make sure the inode
1740 		 * is removed from the orphan list in that case.
1741 		 */
1742 		if (inode->i_nlink)
1743 			ext4_orphan_del(NULL, inode);
1744 	}
1745 
1746 	return ret ? ret : copied;
1747 }
1748 
1749 static int ext4_journalled_write_end(struct file *file,
1750 				     struct address_space *mapping,
1751 				     loff_t pos, unsigned len, unsigned copied,
1752 				     struct page *page, void *fsdata)
1753 {
1754 	handle_t *handle = ext4_journal_current_handle();
1755 	struct inode *inode = mapping->host;
1756 	int ret = 0, ret2;
1757 	int partial = 0;
1758 	unsigned from, to;
1759 	loff_t new_i_size;
1760 
1761 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1762 	from = pos & (PAGE_CACHE_SIZE - 1);
1763 	to = from + len;
1764 
1765 	if (copied < len) {
1766 		if (!PageUptodate(page))
1767 			copied = 0;
1768 		page_zero_new_buffers(page, from+copied, to);
1769 	}
1770 
1771 	ret = walk_page_buffers(handle, page_buffers(page), from,
1772 				to, &partial, write_end_fn);
1773 	if (!partial)
1774 		SetPageUptodate(page);
1775 	new_i_size = pos + copied;
1776 	if (new_i_size > inode->i_size)
1777 		i_size_write(inode, pos+copied);
1778 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1779 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1780 		ext4_update_i_disksize(inode, new_i_size);
1781 		ret2 = ext4_mark_inode_dirty(handle, inode);
1782 		if (!ret)
1783 			ret = ret2;
1784 	}
1785 
1786 	unlock_page(page);
1787 	page_cache_release(page);
1788 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1789 		/* if we have allocated more blocks and copied
1790 		 * less. We will have blocks allocated outside
1791 		 * inode->i_size. So truncate them
1792 		 */
1793 		ext4_orphan_add(handle, inode);
1794 
1795 	ret2 = ext4_journal_stop(handle);
1796 	if (!ret)
1797 		ret = ret2;
1798 	if (pos + len > inode->i_size) {
1799 		ext4_truncate_failed_write(inode);
1800 		/*
1801 		 * If truncate failed early the inode might still be
1802 		 * on the orphan list; we need to make sure the inode
1803 		 * is removed from the orphan list in that case.
1804 		 */
1805 		if (inode->i_nlink)
1806 			ext4_orphan_del(NULL, inode);
1807 	}
1808 
1809 	return ret ? ret : copied;
1810 }
1811 
1812 /*
1813  * Reserve a single block located at lblock
1814  */
1815 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1816 {
1817 	int retries = 0;
1818 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1819 	struct ext4_inode_info *ei = EXT4_I(inode);
1820 	unsigned long md_needed, md_reserved;
1821 
1822 	/*
1823 	 * recalculate the amount of metadata blocks to reserve
1824 	 * in order to allocate nrblocks
1825 	 * worse case is one extent per block
1826 	 */
1827 repeat:
1828 	spin_lock(&ei->i_block_reservation_lock);
1829 	md_reserved = ei->i_reserved_meta_blocks;
1830 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1831 	spin_unlock(&ei->i_block_reservation_lock);
1832 
1833 	/*
1834 	 * Make quota reservation here to prevent quota overflow
1835 	 * later. Real quota accounting is done at pages writeout
1836 	 * time.
1837 	 */
1838 	if (vfs_dq_reserve_block(inode, md_needed + 1)) {
1839 		/*
1840 		 * We tend to badly over-estimate the amount of
1841 		 * metadata blocks which are needed, so if we have
1842 		 * reserved any metadata blocks, try to force out the
1843 		 * inode and see if we have any better luck.
1844 		 */
1845 		if (md_reserved && retries++ <= 3)
1846 			goto retry;
1847 		return -EDQUOT;
1848 	}
1849 
1850 	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1851 		vfs_dq_release_reservation_block(inode, md_needed + 1);
1852 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1853 		retry:
1854 			if (md_reserved)
1855 				write_inode_now(inode, (retries == 3));
1856 			yield();
1857 			goto repeat;
1858 		}
1859 		return -ENOSPC;
1860 	}
1861 	spin_lock(&ei->i_block_reservation_lock);
1862 	ei->i_reserved_data_blocks++;
1863 	ei->i_reserved_meta_blocks += md_needed;
1864 	spin_unlock(&ei->i_block_reservation_lock);
1865 
1866 	return 0;       /* success */
1867 }
1868 
1869 static void ext4_da_release_space(struct inode *inode, int to_free)
1870 {
1871 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1872 	struct ext4_inode_info *ei = EXT4_I(inode);
1873 
1874 	if (!to_free)
1875 		return;		/* Nothing to release, exit */
1876 
1877 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1878 
1879 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1880 		/*
1881 		 * if there aren't enough reserved blocks, then the
1882 		 * counter is messed up somewhere.  Since this
1883 		 * function is called from invalidate page, it's
1884 		 * harmless to return without any action.
1885 		 */
1886 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1887 			 "ino %lu, to_free %d with only %d reserved "
1888 			 "data blocks\n", inode->i_ino, to_free,
1889 			 ei->i_reserved_data_blocks);
1890 		WARN_ON(1);
1891 		to_free = ei->i_reserved_data_blocks;
1892 	}
1893 	ei->i_reserved_data_blocks -= to_free;
1894 
1895 	if (ei->i_reserved_data_blocks == 0) {
1896 		/*
1897 		 * We can release all of the reserved metadata blocks
1898 		 * only when we have written all of the delayed
1899 		 * allocation blocks.
1900 		 */
1901 		to_free += ei->i_reserved_meta_blocks;
1902 		ei->i_reserved_meta_blocks = 0;
1903 		ei->i_da_metadata_calc_len = 0;
1904 	}
1905 
1906 	/* update fs dirty blocks counter */
1907 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1908 
1909 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1910 
1911 	vfs_dq_release_reservation_block(inode, to_free);
1912 }
1913 
1914 static void ext4_da_page_release_reservation(struct page *page,
1915 					     unsigned long offset)
1916 {
1917 	int to_release = 0;
1918 	struct buffer_head *head, *bh;
1919 	unsigned int curr_off = 0;
1920 
1921 	head = page_buffers(page);
1922 	bh = head;
1923 	do {
1924 		unsigned int next_off = curr_off + bh->b_size;
1925 
1926 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1927 			to_release++;
1928 			clear_buffer_delay(bh);
1929 		}
1930 		curr_off = next_off;
1931 	} while ((bh = bh->b_this_page) != head);
1932 	ext4_da_release_space(page->mapping->host, to_release);
1933 }
1934 
1935 /*
1936  * Delayed allocation stuff
1937  */
1938 
1939 /*
1940  * mpage_da_submit_io - walks through extent of pages and try to write
1941  * them with writepage() call back
1942  *
1943  * @mpd->inode: inode
1944  * @mpd->first_page: first page of the extent
1945  * @mpd->next_page: page after the last page of the extent
1946  *
1947  * By the time mpage_da_submit_io() is called we expect all blocks
1948  * to be allocated. this may be wrong if allocation failed.
1949  *
1950  * As pages are already locked by write_cache_pages(), we can't use it
1951  */
1952 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1953 {
1954 	long pages_skipped;
1955 	struct pagevec pvec;
1956 	unsigned long index, end;
1957 	int ret = 0, err, nr_pages, i;
1958 	struct inode *inode = mpd->inode;
1959 	struct address_space *mapping = inode->i_mapping;
1960 
1961 	BUG_ON(mpd->next_page <= mpd->first_page);
1962 	/*
1963 	 * We need to start from the first_page to the next_page - 1
1964 	 * to make sure we also write the mapped dirty buffer_heads.
1965 	 * If we look at mpd->b_blocknr we would only be looking
1966 	 * at the currently mapped buffer_heads.
1967 	 */
1968 	index = mpd->first_page;
1969 	end = mpd->next_page - 1;
1970 
1971 	pagevec_init(&pvec, 0);
1972 	while (index <= end) {
1973 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1974 		if (nr_pages == 0)
1975 			break;
1976 		for (i = 0; i < nr_pages; i++) {
1977 			struct page *page = pvec.pages[i];
1978 
1979 			index = page->index;
1980 			if (index > end)
1981 				break;
1982 			index++;
1983 
1984 			BUG_ON(!PageLocked(page));
1985 			BUG_ON(PageWriteback(page));
1986 
1987 			pages_skipped = mpd->wbc->pages_skipped;
1988 			err = mapping->a_ops->writepage(page, mpd->wbc);
1989 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1990 				/*
1991 				 * have successfully written the page
1992 				 * without skipping the same
1993 				 */
1994 				mpd->pages_written++;
1995 			/*
1996 			 * In error case, we have to continue because
1997 			 * remaining pages are still locked
1998 			 * XXX: unlock and re-dirty them?
1999 			 */
2000 			if (ret == 0)
2001 				ret = err;
2002 		}
2003 		pagevec_release(&pvec);
2004 	}
2005 	return ret;
2006 }
2007 
2008 /*
2009  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2010  *
2011  * @mpd->inode - inode to walk through
2012  * @exbh->b_blocknr - first block on a disk
2013  * @exbh->b_size - amount of space in bytes
2014  * @logical - first logical block to start assignment with
2015  *
2016  * the function goes through all passed space and put actual disk
2017  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2018  */
2019 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2020 				 struct buffer_head *exbh)
2021 {
2022 	struct inode *inode = mpd->inode;
2023 	struct address_space *mapping = inode->i_mapping;
2024 	int blocks = exbh->b_size >> inode->i_blkbits;
2025 	sector_t pblock = exbh->b_blocknr, cur_logical;
2026 	struct buffer_head *head, *bh;
2027 	pgoff_t index, end;
2028 	struct pagevec pvec;
2029 	int nr_pages, i;
2030 
2031 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2032 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2033 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2034 
2035 	pagevec_init(&pvec, 0);
2036 
2037 	while (index <= end) {
2038 		/* XXX: optimize tail */
2039 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2040 		if (nr_pages == 0)
2041 			break;
2042 		for (i = 0; i < nr_pages; i++) {
2043 			struct page *page = pvec.pages[i];
2044 
2045 			index = page->index;
2046 			if (index > end)
2047 				break;
2048 			index++;
2049 
2050 			BUG_ON(!PageLocked(page));
2051 			BUG_ON(PageWriteback(page));
2052 			BUG_ON(!page_has_buffers(page));
2053 
2054 			bh = page_buffers(page);
2055 			head = bh;
2056 
2057 			/* skip blocks out of the range */
2058 			do {
2059 				if (cur_logical >= logical)
2060 					break;
2061 				cur_logical++;
2062 			} while ((bh = bh->b_this_page) != head);
2063 
2064 			do {
2065 				if (cur_logical >= logical + blocks)
2066 					break;
2067 
2068 				if (buffer_delay(bh) ||
2069 						buffer_unwritten(bh)) {
2070 
2071 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2072 
2073 					if (buffer_delay(bh)) {
2074 						clear_buffer_delay(bh);
2075 						bh->b_blocknr = pblock;
2076 					} else {
2077 						/*
2078 						 * unwritten already should have
2079 						 * blocknr assigned. Verify that
2080 						 */
2081 						clear_buffer_unwritten(bh);
2082 						BUG_ON(bh->b_blocknr != pblock);
2083 					}
2084 
2085 				} else if (buffer_mapped(bh))
2086 					BUG_ON(bh->b_blocknr != pblock);
2087 
2088 				cur_logical++;
2089 				pblock++;
2090 			} while ((bh = bh->b_this_page) != head);
2091 		}
2092 		pagevec_release(&pvec);
2093 	}
2094 }
2095 
2096 
2097 /*
2098  * __unmap_underlying_blocks - just a helper function to unmap
2099  * set of blocks described by @bh
2100  */
2101 static inline void __unmap_underlying_blocks(struct inode *inode,
2102 					     struct buffer_head *bh)
2103 {
2104 	struct block_device *bdev = inode->i_sb->s_bdev;
2105 	int blocks, i;
2106 
2107 	blocks = bh->b_size >> inode->i_blkbits;
2108 	for (i = 0; i < blocks; i++)
2109 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2110 }
2111 
2112 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2113 					sector_t logical, long blk_cnt)
2114 {
2115 	int nr_pages, i;
2116 	pgoff_t index, end;
2117 	struct pagevec pvec;
2118 	struct inode *inode = mpd->inode;
2119 	struct address_space *mapping = inode->i_mapping;
2120 
2121 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2122 	end   = (logical + blk_cnt - 1) >>
2123 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2124 	while (index <= end) {
2125 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2126 		if (nr_pages == 0)
2127 			break;
2128 		for (i = 0; i < nr_pages; i++) {
2129 			struct page *page = pvec.pages[i];
2130 			index = page->index;
2131 			if (index > end)
2132 				break;
2133 			index++;
2134 
2135 			BUG_ON(!PageLocked(page));
2136 			BUG_ON(PageWriteback(page));
2137 			block_invalidatepage(page, 0);
2138 			ClearPageUptodate(page);
2139 			unlock_page(page);
2140 		}
2141 	}
2142 	return;
2143 }
2144 
2145 static void ext4_print_free_blocks(struct inode *inode)
2146 {
2147 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2148 	printk(KERN_CRIT "Total free blocks count %lld\n",
2149 	       ext4_count_free_blocks(inode->i_sb));
2150 	printk(KERN_CRIT "Free/Dirty block details\n");
2151 	printk(KERN_CRIT "free_blocks=%lld\n",
2152 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2153 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2154 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2155 	printk(KERN_CRIT "Block reservation details\n");
2156 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2157 	       EXT4_I(inode)->i_reserved_data_blocks);
2158 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2159 	       EXT4_I(inode)->i_reserved_meta_blocks);
2160 	return;
2161 }
2162 
2163 /*
2164  * mpage_da_map_blocks - go through given space
2165  *
2166  * @mpd - bh describing space
2167  *
2168  * The function skips space we know is already mapped to disk blocks.
2169  *
2170  */
2171 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2172 {
2173 	int err, blks, get_blocks_flags;
2174 	struct buffer_head new;
2175 	sector_t next = mpd->b_blocknr;
2176 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2177 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2178 	handle_t *handle = NULL;
2179 
2180 	/*
2181 	 * We consider only non-mapped and non-allocated blocks
2182 	 */
2183 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2184 		!(mpd->b_state & (1 << BH_Delay)) &&
2185 		!(mpd->b_state & (1 << BH_Unwritten)))
2186 		return 0;
2187 
2188 	/*
2189 	 * If we didn't accumulate anything to write simply return
2190 	 */
2191 	if (!mpd->b_size)
2192 		return 0;
2193 
2194 	handle = ext4_journal_current_handle();
2195 	BUG_ON(!handle);
2196 
2197 	/*
2198 	 * Call ext4_get_blocks() to allocate any delayed allocation
2199 	 * blocks, or to convert an uninitialized extent to be
2200 	 * initialized (in the case where we have written into
2201 	 * one or more preallocated blocks).
2202 	 *
2203 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2204 	 * indicate that we are on the delayed allocation path.  This
2205 	 * affects functions in many different parts of the allocation
2206 	 * call path.  This flag exists primarily because we don't
2207 	 * want to change *many* call functions, so ext4_get_blocks()
2208 	 * will set the magic i_delalloc_reserved_flag once the
2209 	 * inode's allocation semaphore is taken.
2210 	 *
2211 	 * If the blocks in questions were delalloc blocks, set
2212 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2213 	 * variables are updated after the blocks have been allocated.
2214 	 */
2215 	new.b_state = 0;
2216 	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2217 			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2218 	if (mpd->b_state & (1 << BH_Delay))
2219 		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2220 	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2221 			       &new, get_blocks_flags);
2222 	if (blks < 0) {
2223 		err = blks;
2224 		/*
2225 		 * If get block returns with error we simply
2226 		 * return. Later writepage will redirty the page and
2227 		 * writepages will find the dirty page again
2228 		 */
2229 		if (err == -EAGAIN)
2230 			return 0;
2231 
2232 		if (err == -ENOSPC &&
2233 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2234 			mpd->retval = err;
2235 			return 0;
2236 		}
2237 
2238 		/*
2239 		 * get block failure will cause us to loop in
2240 		 * writepages, because a_ops->writepage won't be able
2241 		 * to make progress. The page will be redirtied by
2242 		 * writepage and writepages will again try to write
2243 		 * the same.
2244 		 */
2245 		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2246 			 "delayed block allocation failed for inode %lu at "
2247 			 "logical offset %llu with max blocks %zd with "
2248 			 "error %d\n", mpd->inode->i_ino,
2249 			 (unsigned long long) next,
2250 			 mpd->b_size >> mpd->inode->i_blkbits, err);
2251 		printk(KERN_CRIT "This should not happen!!  "
2252 		       "Data will be lost\n");
2253 		if (err == -ENOSPC) {
2254 			ext4_print_free_blocks(mpd->inode);
2255 		}
2256 		/* invalidate all the pages */
2257 		ext4_da_block_invalidatepages(mpd, next,
2258 				mpd->b_size >> mpd->inode->i_blkbits);
2259 		return err;
2260 	}
2261 	BUG_ON(blks == 0);
2262 
2263 	new.b_size = (blks << mpd->inode->i_blkbits);
2264 
2265 	if (buffer_new(&new))
2266 		__unmap_underlying_blocks(mpd->inode, &new);
2267 
2268 	/*
2269 	 * If blocks are delayed marked, we need to
2270 	 * put actual blocknr and drop delayed bit
2271 	 */
2272 	if ((mpd->b_state & (1 << BH_Delay)) ||
2273 	    (mpd->b_state & (1 << BH_Unwritten)))
2274 		mpage_put_bnr_to_bhs(mpd, next, &new);
2275 
2276 	if (ext4_should_order_data(mpd->inode)) {
2277 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2278 		if (err)
2279 			return err;
2280 	}
2281 
2282 	/*
2283 	 * Update on-disk size along with block allocation.
2284 	 */
2285 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2286 	if (disksize > i_size_read(mpd->inode))
2287 		disksize = i_size_read(mpd->inode);
2288 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2289 		ext4_update_i_disksize(mpd->inode, disksize);
2290 		return ext4_mark_inode_dirty(handle, mpd->inode);
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2297 		(1 << BH_Delay) | (1 << BH_Unwritten))
2298 
2299 /*
2300  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2301  *
2302  * @mpd->lbh - extent of blocks
2303  * @logical - logical number of the block in the file
2304  * @bh - bh of the block (used to access block's state)
2305  *
2306  * the function is used to collect contig. blocks in same state
2307  */
2308 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2309 				   sector_t logical, size_t b_size,
2310 				   unsigned long b_state)
2311 {
2312 	sector_t next;
2313 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2314 
2315 	/* check if thereserved journal credits might overflow */
2316 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2317 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2318 			/*
2319 			 * With non-extent format we are limited by the journal
2320 			 * credit available.  Total credit needed to insert
2321 			 * nrblocks contiguous blocks is dependent on the
2322 			 * nrblocks.  So limit nrblocks.
2323 			 */
2324 			goto flush_it;
2325 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2326 				EXT4_MAX_TRANS_DATA) {
2327 			/*
2328 			 * Adding the new buffer_head would make it cross the
2329 			 * allowed limit for which we have journal credit
2330 			 * reserved. So limit the new bh->b_size
2331 			 */
2332 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2333 						mpd->inode->i_blkbits;
2334 			/* we will do mpage_da_submit_io in the next loop */
2335 		}
2336 	}
2337 	/*
2338 	 * First block in the extent
2339 	 */
2340 	if (mpd->b_size == 0) {
2341 		mpd->b_blocknr = logical;
2342 		mpd->b_size = b_size;
2343 		mpd->b_state = b_state & BH_FLAGS;
2344 		return;
2345 	}
2346 
2347 	next = mpd->b_blocknr + nrblocks;
2348 	/*
2349 	 * Can we merge the block to our big extent?
2350 	 */
2351 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2352 		mpd->b_size += b_size;
2353 		return;
2354 	}
2355 
2356 flush_it:
2357 	/*
2358 	 * We couldn't merge the block to our extent, so we
2359 	 * need to flush current  extent and start new one
2360 	 */
2361 	if (mpage_da_map_blocks(mpd) == 0)
2362 		mpage_da_submit_io(mpd);
2363 	mpd->io_done = 1;
2364 	return;
2365 }
2366 
2367 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2368 {
2369 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2370 }
2371 
2372 /*
2373  * __mpage_da_writepage - finds extent of pages and blocks
2374  *
2375  * @page: page to consider
2376  * @wbc: not used, we just follow rules
2377  * @data: context
2378  *
2379  * The function finds extents of pages and scan them for all blocks.
2380  */
2381 static int __mpage_da_writepage(struct page *page,
2382 				struct writeback_control *wbc, void *data)
2383 {
2384 	struct mpage_da_data *mpd = data;
2385 	struct inode *inode = mpd->inode;
2386 	struct buffer_head *bh, *head;
2387 	sector_t logical;
2388 
2389 	if (mpd->io_done) {
2390 		/*
2391 		 * Rest of the page in the page_vec
2392 		 * redirty then and skip then. We will
2393 		 * try to write them again after
2394 		 * starting a new transaction
2395 		 */
2396 		redirty_page_for_writepage(wbc, page);
2397 		unlock_page(page);
2398 		return MPAGE_DA_EXTENT_TAIL;
2399 	}
2400 	/*
2401 	 * Can we merge this page to current extent?
2402 	 */
2403 	if (mpd->next_page != page->index) {
2404 		/*
2405 		 * Nope, we can't. So, we map non-allocated blocks
2406 		 * and start IO on them using writepage()
2407 		 */
2408 		if (mpd->next_page != mpd->first_page) {
2409 			if (mpage_da_map_blocks(mpd) == 0)
2410 				mpage_da_submit_io(mpd);
2411 			/*
2412 			 * skip rest of the page in the page_vec
2413 			 */
2414 			mpd->io_done = 1;
2415 			redirty_page_for_writepage(wbc, page);
2416 			unlock_page(page);
2417 			return MPAGE_DA_EXTENT_TAIL;
2418 		}
2419 
2420 		/*
2421 		 * Start next extent of pages ...
2422 		 */
2423 		mpd->first_page = page->index;
2424 
2425 		/*
2426 		 * ... and blocks
2427 		 */
2428 		mpd->b_size = 0;
2429 		mpd->b_state = 0;
2430 		mpd->b_blocknr = 0;
2431 	}
2432 
2433 	mpd->next_page = page->index + 1;
2434 	logical = (sector_t) page->index <<
2435 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2436 
2437 	if (!page_has_buffers(page)) {
2438 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2439 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2440 		if (mpd->io_done)
2441 			return MPAGE_DA_EXTENT_TAIL;
2442 	} else {
2443 		/*
2444 		 * Page with regular buffer heads, just add all dirty ones
2445 		 */
2446 		head = page_buffers(page);
2447 		bh = head;
2448 		do {
2449 			BUG_ON(buffer_locked(bh));
2450 			/*
2451 			 * We need to try to allocate
2452 			 * unmapped blocks in the same page.
2453 			 * Otherwise we won't make progress
2454 			 * with the page in ext4_writepage
2455 			 */
2456 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2457 				mpage_add_bh_to_extent(mpd, logical,
2458 						       bh->b_size,
2459 						       bh->b_state);
2460 				if (mpd->io_done)
2461 					return MPAGE_DA_EXTENT_TAIL;
2462 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2463 				/*
2464 				 * mapped dirty buffer. We need to update
2465 				 * the b_state because we look at
2466 				 * b_state in mpage_da_map_blocks. We don't
2467 				 * update b_size because if we find an
2468 				 * unmapped buffer_head later we need to
2469 				 * use the b_state flag of that buffer_head.
2470 				 */
2471 				if (mpd->b_size == 0)
2472 					mpd->b_state = bh->b_state & BH_FLAGS;
2473 			}
2474 			logical++;
2475 		} while ((bh = bh->b_this_page) != head);
2476 	}
2477 
2478 	return 0;
2479 }
2480 
2481 /*
2482  * This is a special get_blocks_t callback which is used by
2483  * ext4_da_write_begin().  It will either return mapped block or
2484  * reserve space for a single block.
2485  *
2486  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2487  * We also have b_blocknr = -1 and b_bdev initialized properly
2488  *
2489  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2490  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2491  * initialized properly.
2492  */
2493 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2494 				  struct buffer_head *bh_result, int create)
2495 {
2496 	int ret = 0;
2497 	sector_t invalid_block = ~((sector_t) 0xffff);
2498 
2499 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2500 		invalid_block = ~0;
2501 
2502 	BUG_ON(create == 0);
2503 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2504 
2505 	/*
2506 	 * first, we need to know whether the block is allocated already
2507 	 * preallocated blocks are unmapped but should treated
2508 	 * the same as allocated blocks.
2509 	 */
2510 	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2511 	if ((ret == 0) && !buffer_delay(bh_result)) {
2512 		/* the block isn't (pre)allocated yet, let's reserve space */
2513 		/*
2514 		 * XXX: __block_prepare_write() unmaps passed block,
2515 		 * is it OK?
2516 		 */
2517 		ret = ext4_da_reserve_space(inode, iblock);
2518 		if (ret)
2519 			/* not enough space to reserve */
2520 			return ret;
2521 
2522 		map_bh(bh_result, inode->i_sb, invalid_block);
2523 		set_buffer_new(bh_result);
2524 		set_buffer_delay(bh_result);
2525 	} else if (ret > 0) {
2526 		bh_result->b_size = (ret << inode->i_blkbits);
2527 		if (buffer_unwritten(bh_result)) {
2528 			/* A delayed write to unwritten bh should
2529 			 * be marked new and mapped.  Mapped ensures
2530 			 * that we don't do get_block multiple times
2531 			 * when we write to the same offset and new
2532 			 * ensures that we do proper zero out for
2533 			 * partial write.
2534 			 */
2535 			set_buffer_new(bh_result);
2536 			set_buffer_mapped(bh_result);
2537 		}
2538 		ret = 0;
2539 	}
2540 
2541 	return ret;
2542 }
2543 
2544 /*
2545  * This function is used as a standard get_block_t calback function
2546  * when there is no desire to allocate any blocks.  It is used as a
2547  * callback function for block_prepare_write(), nobh_writepage(), and
2548  * block_write_full_page().  These functions should only try to map a
2549  * single block at a time.
2550  *
2551  * Since this function doesn't do block allocations even if the caller
2552  * requests it by passing in create=1, it is critically important that
2553  * any caller checks to make sure that any buffer heads are returned
2554  * by this function are either all already mapped or marked for
2555  * delayed allocation before calling nobh_writepage() or
2556  * block_write_full_page().  Otherwise, b_blocknr could be left
2557  * unitialized, and the page write functions will be taken by
2558  * surprise.
2559  */
2560 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2561 				   struct buffer_head *bh_result, int create)
2562 {
2563 	int ret = 0;
2564 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2565 
2566 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2567 
2568 	/*
2569 	 * we don't want to do block allocation in writepage
2570 	 * so call get_block_wrap with create = 0
2571 	 */
2572 	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2573 	if (ret > 0) {
2574 		bh_result->b_size = (ret << inode->i_blkbits);
2575 		ret = 0;
2576 	}
2577 	return ret;
2578 }
2579 
2580 static int bget_one(handle_t *handle, struct buffer_head *bh)
2581 {
2582 	get_bh(bh);
2583 	return 0;
2584 }
2585 
2586 static int bput_one(handle_t *handle, struct buffer_head *bh)
2587 {
2588 	put_bh(bh);
2589 	return 0;
2590 }
2591 
2592 static int __ext4_journalled_writepage(struct page *page,
2593 				       unsigned int len)
2594 {
2595 	struct address_space *mapping = page->mapping;
2596 	struct inode *inode = mapping->host;
2597 	struct buffer_head *page_bufs;
2598 	handle_t *handle = NULL;
2599 	int ret = 0;
2600 	int err;
2601 
2602 	page_bufs = page_buffers(page);
2603 	BUG_ON(!page_bufs);
2604 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2605 	/* As soon as we unlock the page, it can go away, but we have
2606 	 * references to buffers so we are safe */
2607 	unlock_page(page);
2608 
2609 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2610 	if (IS_ERR(handle)) {
2611 		ret = PTR_ERR(handle);
2612 		goto out;
2613 	}
2614 
2615 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2616 				do_journal_get_write_access);
2617 
2618 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2619 				write_end_fn);
2620 	if (ret == 0)
2621 		ret = err;
2622 	err = ext4_journal_stop(handle);
2623 	if (!ret)
2624 		ret = err;
2625 
2626 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2627 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2628 out:
2629 	return ret;
2630 }
2631 
2632 /*
2633  * Note that we don't need to start a transaction unless we're journaling data
2634  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2635  * need to file the inode to the transaction's list in ordered mode because if
2636  * we are writing back data added by write(), the inode is already there and if
2637  * we are writing back data modified via mmap(), noone guarantees in which
2638  * transaction the data will hit the disk. In case we are journaling data, we
2639  * cannot start transaction directly because transaction start ranks above page
2640  * lock so we have to do some magic.
2641  *
2642  * This function can get called via...
2643  *   - ext4_da_writepages after taking page lock (have journal handle)
2644  *   - journal_submit_inode_data_buffers (no journal handle)
2645  *   - shrink_page_list via pdflush (no journal handle)
2646  *   - grab_page_cache when doing write_begin (have journal handle)
2647  *
2648  * We don't do any block allocation in this function. If we have page with
2649  * multiple blocks we need to write those buffer_heads that are mapped. This
2650  * is important for mmaped based write. So if we do with blocksize 1K
2651  * truncate(f, 1024);
2652  * a = mmap(f, 0, 4096);
2653  * a[0] = 'a';
2654  * truncate(f, 4096);
2655  * we have in the page first buffer_head mapped via page_mkwrite call back
2656  * but other bufer_heads would be unmapped but dirty(dirty done via the
2657  * do_wp_page). So writepage should write the first block. If we modify
2658  * the mmap area beyond 1024 we will again get a page_fault and the
2659  * page_mkwrite callback will do the block allocation and mark the
2660  * buffer_heads mapped.
2661  *
2662  * We redirty the page if we have any buffer_heads that is either delay or
2663  * unwritten in the page.
2664  *
2665  * We can get recursively called as show below.
2666  *
2667  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2668  *		ext4_writepage()
2669  *
2670  * But since we don't do any block allocation we should not deadlock.
2671  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2672  */
2673 static int ext4_writepage(struct page *page,
2674 			  struct writeback_control *wbc)
2675 {
2676 	int ret = 0;
2677 	loff_t size;
2678 	unsigned int len;
2679 	struct buffer_head *page_bufs;
2680 	struct inode *inode = page->mapping->host;
2681 
2682 	trace_ext4_writepage(inode, page);
2683 	size = i_size_read(inode);
2684 	if (page->index == size >> PAGE_CACHE_SHIFT)
2685 		len = size & ~PAGE_CACHE_MASK;
2686 	else
2687 		len = PAGE_CACHE_SIZE;
2688 
2689 	if (page_has_buffers(page)) {
2690 		page_bufs = page_buffers(page);
2691 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2692 					ext4_bh_delay_or_unwritten)) {
2693 			/*
2694 			 * We don't want to do  block allocation
2695 			 * So redirty the page and return
2696 			 * We may reach here when we do a journal commit
2697 			 * via journal_submit_inode_data_buffers.
2698 			 * If we don't have mapping block we just ignore
2699 			 * them. We can also reach here via shrink_page_list
2700 			 */
2701 			redirty_page_for_writepage(wbc, page);
2702 			unlock_page(page);
2703 			return 0;
2704 		}
2705 	} else {
2706 		/*
2707 		 * The test for page_has_buffers() is subtle:
2708 		 * We know the page is dirty but it lost buffers. That means
2709 		 * that at some moment in time after write_begin()/write_end()
2710 		 * has been called all buffers have been clean and thus they
2711 		 * must have been written at least once. So they are all
2712 		 * mapped and we can happily proceed with mapping them
2713 		 * and writing the page.
2714 		 *
2715 		 * Try to initialize the buffer_heads and check whether
2716 		 * all are mapped and non delay. We don't want to
2717 		 * do block allocation here.
2718 		 */
2719 		ret = block_prepare_write(page, 0, len,
2720 					  noalloc_get_block_write);
2721 		if (!ret) {
2722 			page_bufs = page_buffers(page);
2723 			/* check whether all are mapped and non delay */
2724 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2725 						ext4_bh_delay_or_unwritten)) {
2726 				redirty_page_for_writepage(wbc, page);
2727 				unlock_page(page);
2728 				return 0;
2729 			}
2730 		} else {
2731 			/*
2732 			 * We can't do block allocation here
2733 			 * so just redity the page and unlock
2734 			 * and return
2735 			 */
2736 			redirty_page_for_writepage(wbc, page);
2737 			unlock_page(page);
2738 			return 0;
2739 		}
2740 		/* now mark the buffer_heads as dirty and uptodate */
2741 		block_commit_write(page, 0, len);
2742 	}
2743 
2744 	if (PageChecked(page) && ext4_should_journal_data(inode)) {
2745 		/*
2746 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2747 		 * doesn't seem much point in redirtying the page here.
2748 		 */
2749 		ClearPageChecked(page);
2750 		return __ext4_journalled_writepage(page, len);
2751 	}
2752 
2753 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2754 		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2755 	else
2756 		ret = block_write_full_page(page, noalloc_get_block_write,
2757 					    wbc);
2758 
2759 	return ret;
2760 }
2761 
2762 /*
2763  * This is called via ext4_da_writepages() to
2764  * calulate the total number of credits to reserve to fit
2765  * a single extent allocation into a single transaction,
2766  * ext4_da_writpeages() will loop calling this before
2767  * the block allocation.
2768  */
2769 
2770 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2771 {
2772 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2773 
2774 	/*
2775 	 * With non-extent format the journal credit needed to
2776 	 * insert nrblocks contiguous block is dependent on
2777 	 * number of contiguous block. So we will limit
2778 	 * number of contiguous block to a sane value
2779 	 */
2780 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2781 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2782 		max_blocks = EXT4_MAX_TRANS_DATA;
2783 
2784 	return ext4_chunk_trans_blocks(inode, max_blocks);
2785 }
2786 
2787 static int ext4_da_writepages(struct address_space *mapping,
2788 			      struct writeback_control *wbc)
2789 {
2790 	pgoff_t	index;
2791 	int range_whole = 0;
2792 	handle_t *handle = NULL;
2793 	struct mpage_da_data mpd;
2794 	struct inode *inode = mapping->host;
2795 	int no_nrwrite_index_update;
2796 	int pages_written = 0;
2797 	long pages_skipped;
2798 	unsigned int max_pages;
2799 	int range_cyclic, cycled = 1, io_done = 0;
2800 	int needed_blocks, ret = 0;
2801 	long desired_nr_to_write, nr_to_writebump = 0;
2802 	loff_t range_start = wbc->range_start;
2803 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2804 
2805 	trace_ext4_da_writepages(inode, wbc);
2806 
2807 	/*
2808 	 * No pages to write? This is mainly a kludge to avoid starting
2809 	 * a transaction for special inodes like journal inode on last iput()
2810 	 * because that could violate lock ordering on umount
2811 	 */
2812 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2813 		return 0;
2814 
2815 	/*
2816 	 * If the filesystem has aborted, it is read-only, so return
2817 	 * right away instead of dumping stack traces later on that
2818 	 * will obscure the real source of the problem.  We test
2819 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2820 	 * the latter could be true if the filesystem is mounted
2821 	 * read-only, and in that case, ext4_da_writepages should
2822 	 * *never* be called, so if that ever happens, we would want
2823 	 * the stack trace.
2824 	 */
2825 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2826 		return -EROFS;
2827 
2828 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2829 		range_whole = 1;
2830 
2831 	range_cyclic = wbc->range_cyclic;
2832 	if (wbc->range_cyclic) {
2833 		index = mapping->writeback_index;
2834 		if (index)
2835 			cycled = 0;
2836 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2837 		wbc->range_end  = LLONG_MAX;
2838 		wbc->range_cyclic = 0;
2839 	} else
2840 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2841 
2842 	/*
2843 	 * This works around two forms of stupidity.  The first is in
2844 	 * the writeback code, which caps the maximum number of pages
2845 	 * written to be 1024 pages.  This is wrong on multiple
2846 	 * levels; different architectues have a different page size,
2847 	 * which changes the maximum amount of data which gets
2848 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2849 	 * forces this value to be 16 megabytes by multiplying
2850 	 * nr_to_write parameter by four, and then relies on its
2851 	 * allocator to allocate larger extents to make them
2852 	 * contiguous.  Unfortunately this brings us to the second
2853 	 * stupidity, which is that ext4's mballoc code only allocates
2854 	 * at most 2048 blocks.  So we force contiguous writes up to
2855 	 * the number of dirty blocks in the inode, or
2856 	 * sbi->max_writeback_mb_bump whichever is smaller.
2857 	 */
2858 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2859 	if (!range_cyclic && range_whole)
2860 		desired_nr_to_write = wbc->nr_to_write * 8;
2861 	else
2862 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2863 							   max_pages);
2864 	if (desired_nr_to_write > max_pages)
2865 		desired_nr_to_write = max_pages;
2866 
2867 	if (wbc->nr_to_write < desired_nr_to_write) {
2868 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2869 		wbc->nr_to_write = desired_nr_to_write;
2870 	}
2871 
2872 	mpd.wbc = wbc;
2873 	mpd.inode = mapping->host;
2874 
2875 	/*
2876 	 * we don't want write_cache_pages to update
2877 	 * nr_to_write and writeback_index
2878 	 */
2879 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2880 	wbc->no_nrwrite_index_update = 1;
2881 	pages_skipped = wbc->pages_skipped;
2882 
2883 retry:
2884 	while (!ret && wbc->nr_to_write > 0) {
2885 
2886 		/*
2887 		 * we  insert one extent at a time. So we need
2888 		 * credit needed for single extent allocation.
2889 		 * journalled mode is currently not supported
2890 		 * by delalloc
2891 		 */
2892 		BUG_ON(ext4_should_journal_data(inode));
2893 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2894 
2895 		/* start a new transaction*/
2896 		handle = ext4_journal_start(inode, needed_blocks);
2897 		if (IS_ERR(handle)) {
2898 			ret = PTR_ERR(handle);
2899 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2900 			       "%ld pages, ino %lu; err %d\n", __func__,
2901 				wbc->nr_to_write, inode->i_ino, ret);
2902 			goto out_writepages;
2903 		}
2904 
2905 		/*
2906 		 * Now call __mpage_da_writepage to find the next
2907 		 * contiguous region of logical blocks that need
2908 		 * blocks to be allocated by ext4.  We don't actually
2909 		 * submit the blocks for I/O here, even though
2910 		 * write_cache_pages thinks it will, and will set the
2911 		 * pages as clean for write before calling
2912 		 * __mpage_da_writepage().
2913 		 */
2914 		mpd.b_size = 0;
2915 		mpd.b_state = 0;
2916 		mpd.b_blocknr = 0;
2917 		mpd.first_page = 0;
2918 		mpd.next_page = 0;
2919 		mpd.io_done = 0;
2920 		mpd.pages_written = 0;
2921 		mpd.retval = 0;
2922 		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2923 					&mpd);
2924 		/*
2925 		 * If we have a contiguous extent of pages and we
2926 		 * haven't done the I/O yet, map the blocks and submit
2927 		 * them for I/O.
2928 		 */
2929 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2930 			if (mpage_da_map_blocks(&mpd) == 0)
2931 				mpage_da_submit_io(&mpd);
2932 			mpd.io_done = 1;
2933 			ret = MPAGE_DA_EXTENT_TAIL;
2934 		}
2935 		trace_ext4_da_write_pages(inode, &mpd);
2936 		wbc->nr_to_write -= mpd.pages_written;
2937 
2938 		ext4_journal_stop(handle);
2939 
2940 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2941 			/* commit the transaction which would
2942 			 * free blocks released in the transaction
2943 			 * and try again
2944 			 */
2945 			jbd2_journal_force_commit_nested(sbi->s_journal);
2946 			wbc->pages_skipped = pages_skipped;
2947 			ret = 0;
2948 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2949 			/*
2950 			 * got one extent now try with
2951 			 * rest of the pages
2952 			 */
2953 			pages_written += mpd.pages_written;
2954 			wbc->pages_skipped = pages_skipped;
2955 			ret = 0;
2956 			io_done = 1;
2957 		} else if (wbc->nr_to_write)
2958 			/*
2959 			 * There is no more writeout needed
2960 			 * or we requested for a noblocking writeout
2961 			 * and we found the device congested
2962 			 */
2963 			break;
2964 	}
2965 	if (!io_done && !cycled) {
2966 		cycled = 1;
2967 		index = 0;
2968 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2969 		wbc->range_end  = mapping->writeback_index - 1;
2970 		goto retry;
2971 	}
2972 	if (pages_skipped != wbc->pages_skipped)
2973 		ext4_msg(inode->i_sb, KERN_CRIT,
2974 			 "This should not happen leaving %s "
2975 			 "with nr_to_write = %ld ret = %d\n",
2976 			 __func__, wbc->nr_to_write, ret);
2977 
2978 	/* Update index */
2979 	index += pages_written;
2980 	wbc->range_cyclic = range_cyclic;
2981 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2982 		/*
2983 		 * set the writeback_index so that range_cyclic
2984 		 * mode will write it back later
2985 		 */
2986 		mapping->writeback_index = index;
2987 
2988 out_writepages:
2989 	if (!no_nrwrite_index_update)
2990 		wbc->no_nrwrite_index_update = 0;
2991 	wbc->nr_to_write -= nr_to_writebump;
2992 	wbc->range_start = range_start;
2993 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2994 	return ret;
2995 }
2996 
2997 #define FALL_BACK_TO_NONDELALLOC 1
2998 static int ext4_nonda_switch(struct super_block *sb)
2999 {
3000 	s64 free_blocks, dirty_blocks;
3001 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3002 
3003 	/*
3004 	 * switch to non delalloc mode if we are running low
3005 	 * on free block. The free block accounting via percpu
3006 	 * counters can get slightly wrong with percpu_counter_batch getting
3007 	 * accumulated on each CPU without updating global counters
3008 	 * Delalloc need an accurate free block accounting. So switch
3009 	 * to non delalloc when we are near to error range.
3010 	 */
3011 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3012 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3013 	if (2 * free_blocks < 3 * dirty_blocks ||
3014 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3015 		/*
3016 		 * free block count is less than 150% of dirty blocks
3017 		 * or free blocks is less than watermark
3018 		 */
3019 		return 1;
3020 	}
3021 	/*
3022 	 * Even if we don't switch but are nearing capacity,
3023 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3024 	 */
3025 	if (free_blocks < 2 * dirty_blocks)
3026 		writeback_inodes_sb_if_idle(sb);
3027 
3028 	return 0;
3029 }
3030 
3031 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3032 			       loff_t pos, unsigned len, unsigned flags,
3033 			       struct page **pagep, void **fsdata)
3034 {
3035 	int ret, retries = 0;
3036 	struct page *page;
3037 	pgoff_t index;
3038 	unsigned from, to;
3039 	struct inode *inode = mapping->host;
3040 	handle_t *handle;
3041 
3042 	index = pos >> PAGE_CACHE_SHIFT;
3043 	from = pos & (PAGE_CACHE_SIZE - 1);
3044 	to = from + len;
3045 
3046 	if (ext4_nonda_switch(inode->i_sb)) {
3047 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3048 		return ext4_write_begin(file, mapping, pos,
3049 					len, flags, pagep, fsdata);
3050 	}
3051 	*fsdata = (void *)0;
3052 	trace_ext4_da_write_begin(inode, pos, len, flags);
3053 retry:
3054 	/*
3055 	 * With delayed allocation, we don't log the i_disksize update
3056 	 * if there is delayed block allocation. But we still need
3057 	 * to journalling the i_disksize update if writes to the end
3058 	 * of file which has an already mapped buffer.
3059 	 */
3060 	handle = ext4_journal_start(inode, 1);
3061 	if (IS_ERR(handle)) {
3062 		ret = PTR_ERR(handle);
3063 		goto out;
3064 	}
3065 	/* We cannot recurse into the filesystem as the transaction is already
3066 	 * started */
3067 	flags |= AOP_FLAG_NOFS;
3068 
3069 	page = grab_cache_page_write_begin(mapping, index, flags);
3070 	if (!page) {
3071 		ext4_journal_stop(handle);
3072 		ret = -ENOMEM;
3073 		goto out;
3074 	}
3075 	*pagep = page;
3076 
3077 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3078 				ext4_da_get_block_prep);
3079 	if (ret < 0) {
3080 		unlock_page(page);
3081 		ext4_journal_stop(handle);
3082 		page_cache_release(page);
3083 		/*
3084 		 * block_write_begin may have instantiated a few blocks
3085 		 * outside i_size.  Trim these off again. Don't need
3086 		 * i_size_read because we hold i_mutex.
3087 		 */
3088 		if (pos + len > inode->i_size)
3089 			ext4_truncate_failed_write(inode);
3090 	}
3091 
3092 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3093 		goto retry;
3094 out:
3095 	return ret;
3096 }
3097 
3098 /*
3099  * Check if we should update i_disksize
3100  * when write to the end of file but not require block allocation
3101  */
3102 static int ext4_da_should_update_i_disksize(struct page *page,
3103 					    unsigned long offset)
3104 {
3105 	struct buffer_head *bh;
3106 	struct inode *inode = page->mapping->host;
3107 	unsigned int idx;
3108 	int i;
3109 
3110 	bh = page_buffers(page);
3111 	idx = offset >> inode->i_blkbits;
3112 
3113 	for (i = 0; i < idx; i++)
3114 		bh = bh->b_this_page;
3115 
3116 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3117 		return 0;
3118 	return 1;
3119 }
3120 
3121 static int ext4_da_write_end(struct file *file,
3122 			     struct address_space *mapping,
3123 			     loff_t pos, unsigned len, unsigned copied,
3124 			     struct page *page, void *fsdata)
3125 {
3126 	struct inode *inode = mapping->host;
3127 	int ret = 0, ret2;
3128 	handle_t *handle = ext4_journal_current_handle();
3129 	loff_t new_i_size;
3130 	unsigned long start, end;
3131 	int write_mode = (int)(unsigned long)fsdata;
3132 
3133 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3134 		if (ext4_should_order_data(inode)) {
3135 			return ext4_ordered_write_end(file, mapping, pos,
3136 					len, copied, page, fsdata);
3137 		} else if (ext4_should_writeback_data(inode)) {
3138 			return ext4_writeback_write_end(file, mapping, pos,
3139 					len, copied, page, fsdata);
3140 		} else {
3141 			BUG();
3142 		}
3143 	}
3144 
3145 	trace_ext4_da_write_end(inode, pos, len, copied);
3146 	start = pos & (PAGE_CACHE_SIZE - 1);
3147 	end = start + copied - 1;
3148 
3149 	/*
3150 	 * generic_write_end() will run mark_inode_dirty() if i_size
3151 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3152 	 * into that.
3153 	 */
3154 
3155 	new_i_size = pos + copied;
3156 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3157 		if (ext4_da_should_update_i_disksize(page, end)) {
3158 			down_write(&EXT4_I(inode)->i_data_sem);
3159 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3160 				/*
3161 				 * Updating i_disksize when extending file
3162 				 * without needing block allocation
3163 				 */
3164 				if (ext4_should_order_data(inode))
3165 					ret = ext4_jbd2_file_inode(handle,
3166 								   inode);
3167 
3168 				EXT4_I(inode)->i_disksize = new_i_size;
3169 			}
3170 			up_write(&EXT4_I(inode)->i_data_sem);
3171 			/* We need to mark inode dirty even if
3172 			 * new_i_size is less that inode->i_size
3173 			 * bu greater than i_disksize.(hint delalloc)
3174 			 */
3175 			ext4_mark_inode_dirty(handle, inode);
3176 		}
3177 	}
3178 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3179 							page, fsdata);
3180 	copied = ret2;
3181 	if (ret2 < 0)
3182 		ret = ret2;
3183 	ret2 = ext4_journal_stop(handle);
3184 	if (!ret)
3185 		ret = ret2;
3186 
3187 	return ret ? ret : copied;
3188 }
3189 
3190 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3191 {
3192 	/*
3193 	 * Drop reserved blocks
3194 	 */
3195 	BUG_ON(!PageLocked(page));
3196 	if (!page_has_buffers(page))
3197 		goto out;
3198 
3199 	ext4_da_page_release_reservation(page, offset);
3200 
3201 out:
3202 	ext4_invalidatepage(page, offset);
3203 
3204 	return;
3205 }
3206 
3207 /*
3208  * Force all delayed allocation blocks to be allocated for a given inode.
3209  */
3210 int ext4_alloc_da_blocks(struct inode *inode)
3211 {
3212 	trace_ext4_alloc_da_blocks(inode);
3213 
3214 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3215 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3216 		return 0;
3217 
3218 	/*
3219 	 * We do something simple for now.  The filemap_flush() will
3220 	 * also start triggering a write of the data blocks, which is
3221 	 * not strictly speaking necessary (and for users of
3222 	 * laptop_mode, not even desirable).  However, to do otherwise
3223 	 * would require replicating code paths in:
3224 	 *
3225 	 * ext4_da_writepages() ->
3226 	 *    write_cache_pages() ---> (via passed in callback function)
3227 	 *        __mpage_da_writepage() -->
3228 	 *           mpage_add_bh_to_extent()
3229 	 *           mpage_da_map_blocks()
3230 	 *
3231 	 * The problem is that write_cache_pages(), located in
3232 	 * mm/page-writeback.c, marks pages clean in preparation for
3233 	 * doing I/O, which is not desirable if we're not planning on
3234 	 * doing I/O at all.
3235 	 *
3236 	 * We could call write_cache_pages(), and then redirty all of
3237 	 * the pages by calling redirty_page_for_writeback() but that
3238 	 * would be ugly in the extreme.  So instead we would need to
3239 	 * replicate parts of the code in the above functions,
3240 	 * simplifying them becuase we wouldn't actually intend to
3241 	 * write out the pages, but rather only collect contiguous
3242 	 * logical block extents, call the multi-block allocator, and
3243 	 * then update the buffer heads with the block allocations.
3244 	 *
3245 	 * For now, though, we'll cheat by calling filemap_flush(),
3246 	 * which will map the blocks, and start the I/O, but not
3247 	 * actually wait for the I/O to complete.
3248 	 */
3249 	return filemap_flush(inode->i_mapping);
3250 }
3251 
3252 /*
3253  * bmap() is special.  It gets used by applications such as lilo and by
3254  * the swapper to find the on-disk block of a specific piece of data.
3255  *
3256  * Naturally, this is dangerous if the block concerned is still in the
3257  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3258  * filesystem and enables swap, then they may get a nasty shock when the
3259  * data getting swapped to that swapfile suddenly gets overwritten by
3260  * the original zero's written out previously to the journal and
3261  * awaiting writeback in the kernel's buffer cache.
3262  *
3263  * So, if we see any bmap calls here on a modified, data-journaled file,
3264  * take extra steps to flush any blocks which might be in the cache.
3265  */
3266 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3267 {
3268 	struct inode *inode = mapping->host;
3269 	journal_t *journal;
3270 	int err;
3271 
3272 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3273 			test_opt(inode->i_sb, DELALLOC)) {
3274 		/*
3275 		 * With delalloc we want to sync the file
3276 		 * so that we can make sure we allocate
3277 		 * blocks for file
3278 		 */
3279 		filemap_write_and_wait(mapping);
3280 	}
3281 
3282 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3283 		/*
3284 		 * This is a REALLY heavyweight approach, but the use of
3285 		 * bmap on dirty files is expected to be extremely rare:
3286 		 * only if we run lilo or swapon on a freshly made file
3287 		 * do we expect this to happen.
3288 		 *
3289 		 * (bmap requires CAP_SYS_RAWIO so this does not
3290 		 * represent an unprivileged user DOS attack --- we'd be
3291 		 * in trouble if mortal users could trigger this path at
3292 		 * will.)
3293 		 *
3294 		 * NB. EXT4_STATE_JDATA is not set on files other than
3295 		 * regular files.  If somebody wants to bmap a directory
3296 		 * or symlink and gets confused because the buffer
3297 		 * hasn't yet been flushed to disk, they deserve
3298 		 * everything they get.
3299 		 */
3300 
3301 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3302 		journal = EXT4_JOURNAL(inode);
3303 		jbd2_journal_lock_updates(journal);
3304 		err = jbd2_journal_flush(journal);
3305 		jbd2_journal_unlock_updates(journal);
3306 
3307 		if (err)
3308 			return 0;
3309 	}
3310 
3311 	return generic_block_bmap(mapping, block, ext4_get_block);
3312 }
3313 
3314 static int ext4_readpage(struct file *file, struct page *page)
3315 {
3316 	return mpage_readpage(page, ext4_get_block);
3317 }
3318 
3319 static int
3320 ext4_readpages(struct file *file, struct address_space *mapping,
3321 		struct list_head *pages, unsigned nr_pages)
3322 {
3323 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3324 }
3325 
3326 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3327 {
3328 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3329 
3330 	/*
3331 	 * If it's a full truncate we just forget about the pending dirtying
3332 	 */
3333 	if (offset == 0)
3334 		ClearPageChecked(page);
3335 
3336 	if (journal)
3337 		jbd2_journal_invalidatepage(journal, page, offset);
3338 	else
3339 		block_invalidatepage(page, offset);
3340 }
3341 
3342 static int ext4_releasepage(struct page *page, gfp_t wait)
3343 {
3344 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3345 
3346 	WARN_ON(PageChecked(page));
3347 	if (!page_has_buffers(page))
3348 		return 0;
3349 	if (journal)
3350 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3351 	else
3352 		return try_to_free_buffers(page);
3353 }
3354 
3355 /*
3356  * O_DIRECT for ext3 (or indirect map) based files
3357  *
3358  * If the O_DIRECT write will extend the file then add this inode to the
3359  * orphan list.  So recovery will truncate it back to the original size
3360  * if the machine crashes during the write.
3361  *
3362  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3363  * crashes then stale disk data _may_ be exposed inside the file. But current
3364  * VFS code falls back into buffered path in that case so we are safe.
3365  */
3366 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3367 			      const struct iovec *iov, loff_t offset,
3368 			      unsigned long nr_segs)
3369 {
3370 	struct file *file = iocb->ki_filp;
3371 	struct inode *inode = file->f_mapping->host;
3372 	struct ext4_inode_info *ei = EXT4_I(inode);
3373 	handle_t *handle;
3374 	ssize_t ret;
3375 	int orphan = 0;
3376 	size_t count = iov_length(iov, nr_segs);
3377 	int retries = 0;
3378 
3379 	if (rw == WRITE) {
3380 		loff_t final_size = offset + count;
3381 
3382 		if (final_size > inode->i_size) {
3383 			/* Credits for sb + inode write */
3384 			handle = ext4_journal_start(inode, 2);
3385 			if (IS_ERR(handle)) {
3386 				ret = PTR_ERR(handle);
3387 				goto out;
3388 			}
3389 			ret = ext4_orphan_add(handle, inode);
3390 			if (ret) {
3391 				ext4_journal_stop(handle);
3392 				goto out;
3393 			}
3394 			orphan = 1;
3395 			ei->i_disksize = inode->i_size;
3396 			ext4_journal_stop(handle);
3397 		}
3398 	}
3399 
3400 retry:
3401 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3402 				 offset, nr_segs,
3403 				 ext4_get_block, NULL);
3404 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3405 		goto retry;
3406 
3407 	if (orphan) {
3408 		int err;
3409 
3410 		/* Credits for sb + inode write */
3411 		handle = ext4_journal_start(inode, 2);
3412 		if (IS_ERR(handle)) {
3413 			/* This is really bad luck. We've written the data
3414 			 * but cannot extend i_size. Bail out and pretend
3415 			 * the write failed... */
3416 			ret = PTR_ERR(handle);
3417 			goto out;
3418 		}
3419 		if (inode->i_nlink)
3420 			ext4_orphan_del(handle, inode);
3421 		if (ret > 0) {
3422 			loff_t end = offset + ret;
3423 			if (end > inode->i_size) {
3424 				ei->i_disksize = end;
3425 				i_size_write(inode, end);
3426 				/*
3427 				 * We're going to return a positive `ret'
3428 				 * here due to non-zero-length I/O, so there's
3429 				 * no way of reporting error returns from
3430 				 * ext4_mark_inode_dirty() to userspace.  So
3431 				 * ignore it.
3432 				 */
3433 				ext4_mark_inode_dirty(handle, inode);
3434 			}
3435 		}
3436 		err = ext4_journal_stop(handle);
3437 		if (ret == 0)
3438 			ret = err;
3439 	}
3440 out:
3441 	return ret;
3442 }
3443 
3444 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3445 		   struct buffer_head *bh_result, int create)
3446 {
3447 	handle_t *handle = NULL;
3448 	int ret = 0;
3449 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3450 	int dio_credits;
3451 
3452 	ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3453 		   inode->i_ino, create);
3454 	/*
3455 	 * DIO VFS code passes create = 0 flag for write to
3456 	 * the middle of file. It does this to avoid block
3457 	 * allocation for holes, to prevent expose stale data
3458 	 * out when there is parallel buffered read (which does
3459 	 * not hold the i_mutex lock) while direct IO write has
3460 	 * not completed. DIO request on holes finally falls back
3461 	 * to buffered IO for this reason.
3462 	 *
3463 	 * For ext4 extent based file, since we support fallocate,
3464 	 * new allocated extent as uninitialized, for holes, we
3465 	 * could fallocate blocks for holes, thus parallel
3466 	 * buffered IO read will zero out the page when read on
3467 	 * a hole while parallel DIO write to the hole has not completed.
3468 	 *
3469 	 * when we come here, we know it's a direct IO write to
3470 	 * to the middle of file (<i_size)
3471 	 * so it's safe to override the create flag from VFS.
3472 	 */
3473 	create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3474 
3475 	if (max_blocks > DIO_MAX_BLOCKS)
3476 		max_blocks = DIO_MAX_BLOCKS;
3477 	dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3478 	handle = ext4_journal_start(inode, dio_credits);
3479 	if (IS_ERR(handle)) {
3480 		ret = PTR_ERR(handle);
3481 		goto out;
3482 	}
3483 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3484 			      create);
3485 	if (ret > 0) {
3486 		bh_result->b_size = (ret << inode->i_blkbits);
3487 		ret = 0;
3488 	}
3489 	ext4_journal_stop(handle);
3490 out:
3491 	return ret;
3492 }
3493 
3494 static void ext4_free_io_end(ext4_io_end_t *io)
3495 {
3496 	BUG_ON(!io);
3497 	iput(io->inode);
3498 	kfree(io);
3499 }
3500 static void dump_aio_dio_list(struct inode * inode)
3501 {
3502 #ifdef	EXT4_DEBUG
3503 	struct list_head *cur, *before, *after;
3504 	ext4_io_end_t *io, *io0, *io1;
3505 
3506 	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3507 		ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3508 		return;
3509 	}
3510 
3511 	ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3512 	list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3513 		cur = &io->list;
3514 		before = cur->prev;
3515 		io0 = container_of(before, ext4_io_end_t, list);
3516 		after = cur->next;
3517 		io1 = container_of(after, ext4_io_end_t, list);
3518 
3519 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3520 			    io, inode->i_ino, io0, io1);
3521 	}
3522 #endif
3523 }
3524 
3525 /*
3526  * check a range of space and convert unwritten extents to written.
3527  */
3528 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3529 {
3530 	struct inode *inode = io->inode;
3531 	loff_t offset = io->offset;
3532 	size_t size = io->size;
3533 	int ret = 0;
3534 
3535 	ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3536 		   "list->prev 0x%p\n",
3537 	           io, inode->i_ino, io->list.next, io->list.prev);
3538 
3539 	if (list_empty(&io->list))
3540 		return ret;
3541 
3542 	if (io->flag != DIO_AIO_UNWRITTEN)
3543 		return ret;
3544 
3545 	if (offset + size <= i_size_read(inode))
3546 		ret = ext4_convert_unwritten_extents(inode, offset, size);
3547 
3548 	if (ret < 0) {
3549 		printk(KERN_EMERG "%s: failed to convert unwritten"
3550 			"extents to written extents, error is %d"
3551 			" io is still on inode %lu aio dio list\n",
3552                        __func__, ret, inode->i_ino);
3553 		return ret;
3554 	}
3555 
3556 	/* clear the DIO AIO unwritten flag */
3557 	io->flag = 0;
3558 	return ret;
3559 }
3560 /*
3561  * work on completed aio dio IO, to convert unwritten extents to extents
3562  */
3563 static void ext4_end_aio_dio_work(struct work_struct *work)
3564 {
3565 	ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3566 	struct inode *inode = io->inode;
3567 	int ret = 0;
3568 
3569 	mutex_lock(&inode->i_mutex);
3570 	ret = ext4_end_aio_dio_nolock(io);
3571 	if (ret >= 0) {
3572 		if (!list_empty(&io->list))
3573 			list_del_init(&io->list);
3574 		ext4_free_io_end(io);
3575 	}
3576 	mutex_unlock(&inode->i_mutex);
3577 }
3578 /*
3579  * This function is called from ext4_sync_file().
3580  *
3581  * When AIO DIO IO is completed, the work to convert unwritten
3582  * extents to written is queued on workqueue but may not get immediately
3583  * scheduled. When fsync is called, we need to ensure the
3584  * conversion is complete before fsync returns.
3585  * The inode keeps track of a list of completed AIO from DIO path
3586  * that might needs to do the conversion. This function walks through
3587  * the list and convert the related unwritten extents to written.
3588  */
3589 int flush_aio_dio_completed_IO(struct inode *inode)
3590 {
3591 	ext4_io_end_t *io;
3592 	int ret = 0;
3593 	int ret2 = 0;
3594 
3595 	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3596 		return ret;
3597 
3598 	dump_aio_dio_list(inode);
3599 	while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3600 		io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3601 				ext4_io_end_t, list);
3602 		/*
3603 		 * Calling ext4_end_aio_dio_nolock() to convert completed
3604 		 * IO to written.
3605 		 *
3606 		 * When ext4_sync_file() is called, run_queue() may already
3607 		 * about to flush the work corresponding to this io structure.
3608 		 * It will be upset if it founds the io structure related
3609 		 * to the work-to-be schedule is freed.
3610 		 *
3611 		 * Thus we need to keep the io structure still valid here after
3612 		 * convertion finished. The io structure has a flag to
3613 		 * avoid double converting from both fsync and background work
3614 		 * queue work.
3615 		 */
3616 		ret = ext4_end_aio_dio_nolock(io);
3617 		if (ret < 0)
3618 			ret2 = ret;
3619 		else
3620 			list_del_init(&io->list);
3621 	}
3622 	return (ret2 < 0) ? ret2 : 0;
3623 }
3624 
3625 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3626 {
3627 	ext4_io_end_t *io = NULL;
3628 
3629 	io = kmalloc(sizeof(*io), GFP_NOFS);
3630 
3631 	if (io) {
3632 		igrab(inode);
3633 		io->inode = inode;
3634 		io->flag = 0;
3635 		io->offset = 0;
3636 		io->size = 0;
3637 		io->error = 0;
3638 		INIT_WORK(&io->work, ext4_end_aio_dio_work);
3639 		INIT_LIST_HEAD(&io->list);
3640 	}
3641 
3642 	return io;
3643 }
3644 
3645 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3646 			    ssize_t size, void *private)
3647 {
3648         ext4_io_end_t *io_end = iocb->private;
3649 	struct workqueue_struct *wq;
3650 
3651 	/* if not async direct IO or dio with 0 bytes write, just return */
3652 	if (!io_end || !size)
3653 		return;
3654 
3655 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3656 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3657  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3658 		  size);
3659 
3660 	/* if not aio dio with unwritten extents, just free io and return */
3661 	if (io_end->flag != DIO_AIO_UNWRITTEN){
3662 		ext4_free_io_end(io_end);
3663 		iocb->private = NULL;
3664 		return;
3665 	}
3666 
3667 	io_end->offset = offset;
3668 	io_end->size = size;
3669 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3670 
3671 	/* queue the work to convert unwritten extents to written */
3672 	queue_work(wq, &io_end->work);
3673 
3674 	/* Add the io_end to per-inode completed aio dio list*/
3675 	list_add_tail(&io_end->list,
3676 		 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3677 	iocb->private = NULL;
3678 }
3679 /*
3680  * For ext4 extent files, ext4 will do direct-io write to holes,
3681  * preallocated extents, and those write extend the file, no need to
3682  * fall back to buffered IO.
3683  *
3684  * For holes, we fallocate those blocks, mark them as unintialized
3685  * If those blocks were preallocated, we mark sure they are splited, but
3686  * still keep the range to write as unintialized.
3687  *
3688  * The unwrritten extents will be converted to written when DIO is completed.
3689  * For async direct IO, since the IO may still pending when return, we
3690  * set up an end_io call back function, which will do the convertion
3691  * when async direct IO completed.
3692  *
3693  * If the O_DIRECT write will extend the file then add this inode to the
3694  * orphan list.  So recovery will truncate it back to the original size
3695  * if the machine crashes during the write.
3696  *
3697  */
3698 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3699 			      const struct iovec *iov, loff_t offset,
3700 			      unsigned long nr_segs)
3701 {
3702 	struct file *file = iocb->ki_filp;
3703 	struct inode *inode = file->f_mapping->host;
3704 	ssize_t ret;
3705 	size_t count = iov_length(iov, nr_segs);
3706 
3707 	loff_t final_size = offset + count;
3708 	if (rw == WRITE && final_size <= inode->i_size) {
3709 		/*
3710  		 * We could direct write to holes and fallocate.
3711 		 *
3712  		 * Allocated blocks to fill the hole are marked as uninitialized
3713  		 * to prevent paralel buffered read to expose the stale data
3714  		 * before DIO complete the data IO.
3715 		 *
3716  		 * As to previously fallocated extents, ext4 get_block
3717  		 * will just simply mark the buffer mapped but still
3718  		 * keep the extents uninitialized.
3719  		 *
3720 		 * for non AIO case, we will convert those unwritten extents
3721 		 * to written after return back from blockdev_direct_IO.
3722 		 *
3723 		 * for async DIO, the conversion needs to be defered when
3724 		 * the IO is completed. The ext4 end_io callback function
3725 		 * will be called to take care of the conversion work.
3726 		 * Here for async case, we allocate an io_end structure to
3727 		 * hook to the iocb.
3728  		 */
3729 		iocb->private = NULL;
3730 		EXT4_I(inode)->cur_aio_dio = NULL;
3731 		if (!is_sync_kiocb(iocb)) {
3732 			iocb->private = ext4_init_io_end(inode);
3733 			if (!iocb->private)
3734 				return -ENOMEM;
3735 			/*
3736 			 * we save the io structure for current async
3737 			 * direct IO, so that later ext4_get_blocks()
3738 			 * could flag the io structure whether there
3739 			 * is a unwritten extents needs to be converted
3740 			 * when IO is completed.
3741 			 */
3742 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3743 		}
3744 
3745 		ret = blockdev_direct_IO(rw, iocb, inode,
3746 					 inode->i_sb->s_bdev, iov,
3747 					 offset, nr_segs,
3748 					 ext4_get_block_dio_write,
3749 					 ext4_end_io_dio);
3750 		if (iocb->private)
3751 			EXT4_I(inode)->cur_aio_dio = NULL;
3752 		/*
3753 		 * The io_end structure takes a reference to the inode,
3754 		 * that structure needs to be destroyed and the
3755 		 * reference to the inode need to be dropped, when IO is
3756 		 * complete, even with 0 byte write, or failed.
3757 		 *
3758 		 * In the successful AIO DIO case, the io_end structure will be
3759 		 * desctroyed and the reference to the inode will be dropped
3760 		 * after the end_io call back function is called.
3761 		 *
3762 		 * In the case there is 0 byte write, or error case, since
3763 		 * VFS direct IO won't invoke the end_io call back function,
3764 		 * we need to free the end_io structure here.
3765 		 */
3766 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3767 			ext4_free_io_end(iocb->private);
3768 			iocb->private = NULL;
3769 		} else if (ret > 0 && (EXT4_I(inode)->i_state &
3770 				       EXT4_STATE_DIO_UNWRITTEN)) {
3771 			int err;
3772 			/*
3773 			 * for non AIO case, since the IO is already
3774 			 * completed, we could do the convertion right here
3775 			 */
3776 			err = ext4_convert_unwritten_extents(inode,
3777 							     offset, ret);
3778 			if (err < 0)
3779 				ret = err;
3780 			EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3781 		}
3782 		return ret;
3783 	}
3784 
3785 	/* for write the the end of file case, we fall back to old way */
3786 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3787 }
3788 
3789 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3790 			      const struct iovec *iov, loff_t offset,
3791 			      unsigned long nr_segs)
3792 {
3793 	struct file *file = iocb->ki_filp;
3794 	struct inode *inode = file->f_mapping->host;
3795 
3796 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3797 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3798 
3799 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3800 }
3801 
3802 /*
3803  * Pages can be marked dirty completely asynchronously from ext4's journalling
3804  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3805  * much here because ->set_page_dirty is called under VFS locks.  The page is
3806  * not necessarily locked.
3807  *
3808  * We cannot just dirty the page and leave attached buffers clean, because the
3809  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3810  * or jbddirty because all the journalling code will explode.
3811  *
3812  * So what we do is to mark the page "pending dirty" and next time writepage
3813  * is called, propagate that into the buffers appropriately.
3814  */
3815 static int ext4_journalled_set_page_dirty(struct page *page)
3816 {
3817 	SetPageChecked(page);
3818 	return __set_page_dirty_nobuffers(page);
3819 }
3820 
3821 static const struct address_space_operations ext4_ordered_aops = {
3822 	.readpage		= ext4_readpage,
3823 	.readpages		= ext4_readpages,
3824 	.writepage		= ext4_writepage,
3825 	.sync_page		= block_sync_page,
3826 	.write_begin		= ext4_write_begin,
3827 	.write_end		= ext4_ordered_write_end,
3828 	.bmap			= ext4_bmap,
3829 	.invalidatepage		= ext4_invalidatepage,
3830 	.releasepage		= ext4_releasepage,
3831 	.direct_IO		= ext4_direct_IO,
3832 	.migratepage		= buffer_migrate_page,
3833 	.is_partially_uptodate  = block_is_partially_uptodate,
3834 	.error_remove_page	= generic_error_remove_page,
3835 };
3836 
3837 static const struct address_space_operations ext4_writeback_aops = {
3838 	.readpage		= ext4_readpage,
3839 	.readpages		= ext4_readpages,
3840 	.writepage		= ext4_writepage,
3841 	.sync_page		= block_sync_page,
3842 	.write_begin		= ext4_write_begin,
3843 	.write_end		= ext4_writeback_write_end,
3844 	.bmap			= ext4_bmap,
3845 	.invalidatepage		= ext4_invalidatepage,
3846 	.releasepage		= ext4_releasepage,
3847 	.direct_IO		= ext4_direct_IO,
3848 	.migratepage		= buffer_migrate_page,
3849 	.is_partially_uptodate  = block_is_partially_uptodate,
3850 	.error_remove_page	= generic_error_remove_page,
3851 };
3852 
3853 static const struct address_space_operations ext4_journalled_aops = {
3854 	.readpage		= ext4_readpage,
3855 	.readpages		= ext4_readpages,
3856 	.writepage		= ext4_writepage,
3857 	.sync_page		= block_sync_page,
3858 	.write_begin		= ext4_write_begin,
3859 	.write_end		= ext4_journalled_write_end,
3860 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3861 	.bmap			= ext4_bmap,
3862 	.invalidatepage		= ext4_invalidatepage,
3863 	.releasepage		= ext4_releasepage,
3864 	.is_partially_uptodate  = block_is_partially_uptodate,
3865 	.error_remove_page	= generic_error_remove_page,
3866 };
3867 
3868 static const struct address_space_operations ext4_da_aops = {
3869 	.readpage		= ext4_readpage,
3870 	.readpages		= ext4_readpages,
3871 	.writepage		= ext4_writepage,
3872 	.writepages		= ext4_da_writepages,
3873 	.sync_page		= block_sync_page,
3874 	.write_begin		= ext4_da_write_begin,
3875 	.write_end		= ext4_da_write_end,
3876 	.bmap			= ext4_bmap,
3877 	.invalidatepage		= ext4_da_invalidatepage,
3878 	.releasepage		= ext4_releasepage,
3879 	.direct_IO		= ext4_direct_IO,
3880 	.migratepage		= buffer_migrate_page,
3881 	.is_partially_uptodate  = block_is_partially_uptodate,
3882 	.error_remove_page	= generic_error_remove_page,
3883 };
3884 
3885 void ext4_set_aops(struct inode *inode)
3886 {
3887 	if (ext4_should_order_data(inode) &&
3888 		test_opt(inode->i_sb, DELALLOC))
3889 		inode->i_mapping->a_ops = &ext4_da_aops;
3890 	else if (ext4_should_order_data(inode))
3891 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3892 	else if (ext4_should_writeback_data(inode) &&
3893 		 test_opt(inode->i_sb, DELALLOC))
3894 		inode->i_mapping->a_ops = &ext4_da_aops;
3895 	else if (ext4_should_writeback_data(inode))
3896 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3897 	else
3898 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3899 }
3900 
3901 /*
3902  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3903  * up to the end of the block which corresponds to `from'.
3904  * This required during truncate. We need to physically zero the tail end
3905  * of that block so it doesn't yield old data if the file is later grown.
3906  */
3907 int ext4_block_truncate_page(handle_t *handle,
3908 		struct address_space *mapping, loff_t from)
3909 {
3910 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3911 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3912 	unsigned blocksize, length, pos;
3913 	ext4_lblk_t iblock;
3914 	struct inode *inode = mapping->host;
3915 	struct buffer_head *bh;
3916 	struct page *page;
3917 	int err = 0;
3918 
3919 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3920 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3921 	if (!page)
3922 		return -EINVAL;
3923 
3924 	blocksize = inode->i_sb->s_blocksize;
3925 	length = blocksize - (offset & (blocksize - 1));
3926 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3927 
3928 	/*
3929 	 * For "nobh" option,  we can only work if we don't need to
3930 	 * read-in the page - otherwise we create buffers to do the IO.
3931 	 */
3932 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3933 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3934 		zero_user(page, offset, length);
3935 		set_page_dirty(page);
3936 		goto unlock;
3937 	}
3938 
3939 	if (!page_has_buffers(page))
3940 		create_empty_buffers(page, blocksize, 0);
3941 
3942 	/* Find the buffer that contains "offset" */
3943 	bh = page_buffers(page);
3944 	pos = blocksize;
3945 	while (offset >= pos) {
3946 		bh = bh->b_this_page;
3947 		iblock++;
3948 		pos += blocksize;
3949 	}
3950 
3951 	err = 0;
3952 	if (buffer_freed(bh)) {
3953 		BUFFER_TRACE(bh, "freed: skip");
3954 		goto unlock;
3955 	}
3956 
3957 	if (!buffer_mapped(bh)) {
3958 		BUFFER_TRACE(bh, "unmapped");
3959 		ext4_get_block(inode, iblock, bh, 0);
3960 		/* unmapped? It's a hole - nothing to do */
3961 		if (!buffer_mapped(bh)) {
3962 			BUFFER_TRACE(bh, "still unmapped");
3963 			goto unlock;
3964 		}
3965 	}
3966 
3967 	/* Ok, it's mapped. Make sure it's up-to-date */
3968 	if (PageUptodate(page))
3969 		set_buffer_uptodate(bh);
3970 
3971 	if (!buffer_uptodate(bh)) {
3972 		err = -EIO;
3973 		ll_rw_block(READ, 1, &bh);
3974 		wait_on_buffer(bh);
3975 		/* Uhhuh. Read error. Complain and punt. */
3976 		if (!buffer_uptodate(bh))
3977 			goto unlock;
3978 	}
3979 
3980 	if (ext4_should_journal_data(inode)) {
3981 		BUFFER_TRACE(bh, "get write access");
3982 		err = ext4_journal_get_write_access(handle, bh);
3983 		if (err)
3984 			goto unlock;
3985 	}
3986 
3987 	zero_user(page, offset, length);
3988 
3989 	BUFFER_TRACE(bh, "zeroed end of block");
3990 
3991 	err = 0;
3992 	if (ext4_should_journal_data(inode)) {
3993 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3994 	} else {
3995 		if (ext4_should_order_data(inode))
3996 			err = ext4_jbd2_file_inode(handle, inode);
3997 		mark_buffer_dirty(bh);
3998 	}
3999 
4000 unlock:
4001 	unlock_page(page);
4002 	page_cache_release(page);
4003 	return err;
4004 }
4005 
4006 /*
4007  * Probably it should be a library function... search for first non-zero word
4008  * or memcmp with zero_page, whatever is better for particular architecture.
4009  * Linus?
4010  */
4011 static inline int all_zeroes(__le32 *p, __le32 *q)
4012 {
4013 	while (p < q)
4014 		if (*p++)
4015 			return 0;
4016 	return 1;
4017 }
4018 
4019 /**
4020  *	ext4_find_shared - find the indirect blocks for partial truncation.
4021  *	@inode:	  inode in question
4022  *	@depth:	  depth of the affected branch
4023  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4024  *	@chain:	  place to store the pointers to partial indirect blocks
4025  *	@top:	  place to the (detached) top of branch
4026  *
4027  *	This is a helper function used by ext4_truncate().
4028  *
4029  *	When we do truncate() we may have to clean the ends of several
4030  *	indirect blocks but leave the blocks themselves alive. Block is
4031  *	partially truncated if some data below the new i_size is refered
4032  *	from it (and it is on the path to the first completely truncated
4033  *	data block, indeed).  We have to free the top of that path along
4034  *	with everything to the right of the path. Since no allocation
4035  *	past the truncation point is possible until ext4_truncate()
4036  *	finishes, we may safely do the latter, but top of branch may
4037  *	require special attention - pageout below the truncation point
4038  *	might try to populate it.
4039  *
4040  *	We atomically detach the top of branch from the tree, store the
4041  *	block number of its root in *@top, pointers to buffer_heads of
4042  *	partially truncated blocks - in @chain[].bh and pointers to
4043  *	their last elements that should not be removed - in
4044  *	@chain[].p. Return value is the pointer to last filled element
4045  *	of @chain.
4046  *
4047  *	The work left to caller to do the actual freeing of subtrees:
4048  *		a) free the subtree starting from *@top
4049  *		b) free the subtrees whose roots are stored in
4050  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4051  *		c) free the subtrees growing from the inode past the @chain[0].
4052  *			(no partially truncated stuff there).  */
4053 
4054 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4055 				  ext4_lblk_t offsets[4], Indirect chain[4],
4056 				  __le32 *top)
4057 {
4058 	Indirect *partial, *p;
4059 	int k, err;
4060 
4061 	*top = 0;
4062 	/* Make k index the deepest non-null offset + 1 */
4063 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4064 		;
4065 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4066 	/* Writer: pointers */
4067 	if (!partial)
4068 		partial = chain + k-1;
4069 	/*
4070 	 * If the branch acquired continuation since we've looked at it -
4071 	 * fine, it should all survive and (new) top doesn't belong to us.
4072 	 */
4073 	if (!partial->key && *partial->p)
4074 		/* Writer: end */
4075 		goto no_top;
4076 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4077 		;
4078 	/*
4079 	 * OK, we've found the last block that must survive. The rest of our
4080 	 * branch should be detached before unlocking. However, if that rest
4081 	 * of branch is all ours and does not grow immediately from the inode
4082 	 * it's easier to cheat and just decrement partial->p.
4083 	 */
4084 	if (p == chain + k - 1 && p > chain) {
4085 		p->p--;
4086 	} else {
4087 		*top = *p->p;
4088 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4089 #if 0
4090 		*p->p = 0;
4091 #endif
4092 	}
4093 	/* Writer: end */
4094 
4095 	while (partial > p) {
4096 		brelse(partial->bh);
4097 		partial--;
4098 	}
4099 no_top:
4100 	return partial;
4101 }
4102 
4103 /*
4104  * Zero a number of block pointers in either an inode or an indirect block.
4105  * If we restart the transaction we must again get write access to the
4106  * indirect block for further modification.
4107  *
4108  * We release `count' blocks on disk, but (last - first) may be greater
4109  * than `count' because there can be holes in there.
4110  */
4111 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4112 			      struct buffer_head *bh,
4113 			      ext4_fsblk_t block_to_free,
4114 			      unsigned long count, __le32 *first,
4115 			      __le32 *last)
4116 {
4117 	__le32 *p;
4118 	int	flags = EXT4_FREE_BLOCKS_FORGET;
4119 
4120 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4121 		flags |= EXT4_FREE_BLOCKS_METADATA;
4122 
4123 	if (try_to_extend_transaction(handle, inode)) {
4124 		if (bh) {
4125 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4126 			ext4_handle_dirty_metadata(handle, inode, bh);
4127 		}
4128 		ext4_mark_inode_dirty(handle, inode);
4129 		ext4_truncate_restart_trans(handle, inode,
4130 					    blocks_for_truncate(inode));
4131 		if (bh) {
4132 			BUFFER_TRACE(bh, "retaking write access");
4133 			ext4_journal_get_write_access(handle, bh);
4134 		}
4135 	}
4136 
4137 	for (p = first; p < last; p++)
4138 		*p = 0;
4139 
4140 	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4141 }
4142 
4143 /**
4144  * ext4_free_data - free a list of data blocks
4145  * @handle:	handle for this transaction
4146  * @inode:	inode we are dealing with
4147  * @this_bh:	indirect buffer_head which contains *@first and *@last
4148  * @first:	array of block numbers
4149  * @last:	points immediately past the end of array
4150  *
4151  * We are freeing all blocks refered from that array (numbers are stored as
4152  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4153  *
4154  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4155  * blocks are contiguous then releasing them at one time will only affect one
4156  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4157  * actually use a lot of journal space.
4158  *
4159  * @this_bh will be %NULL if @first and @last point into the inode's direct
4160  * block pointers.
4161  */
4162 static void ext4_free_data(handle_t *handle, struct inode *inode,
4163 			   struct buffer_head *this_bh,
4164 			   __le32 *first, __le32 *last)
4165 {
4166 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4167 	unsigned long count = 0;	    /* Number of blocks in the run */
4168 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4169 					       corresponding to
4170 					       block_to_free */
4171 	ext4_fsblk_t nr;		    /* Current block # */
4172 	__le32 *p;			    /* Pointer into inode/ind
4173 					       for current block */
4174 	int err;
4175 
4176 	if (this_bh) {				/* For indirect block */
4177 		BUFFER_TRACE(this_bh, "get_write_access");
4178 		err = ext4_journal_get_write_access(handle, this_bh);
4179 		/* Important: if we can't update the indirect pointers
4180 		 * to the blocks, we can't free them. */
4181 		if (err)
4182 			return;
4183 	}
4184 
4185 	for (p = first; p < last; p++) {
4186 		nr = le32_to_cpu(*p);
4187 		if (nr) {
4188 			/* accumulate blocks to free if they're contiguous */
4189 			if (count == 0) {
4190 				block_to_free = nr;
4191 				block_to_free_p = p;
4192 				count = 1;
4193 			} else if (nr == block_to_free + count) {
4194 				count++;
4195 			} else {
4196 				ext4_clear_blocks(handle, inode, this_bh,
4197 						  block_to_free,
4198 						  count, block_to_free_p, p);
4199 				block_to_free = nr;
4200 				block_to_free_p = p;
4201 				count = 1;
4202 			}
4203 		}
4204 	}
4205 
4206 	if (count > 0)
4207 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4208 				  count, block_to_free_p, p);
4209 
4210 	if (this_bh) {
4211 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4212 
4213 		/*
4214 		 * The buffer head should have an attached journal head at this
4215 		 * point. However, if the data is corrupted and an indirect
4216 		 * block pointed to itself, it would have been detached when
4217 		 * the block was cleared. Check for this instead of OOPSing.
4218 		 */
4219 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4220 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4221 		else
4222 			ext4_error(inode->i_sb, __func__,
4223 				   "circular indirect block detected, "
4224 				   "inode=%lu, block=%llu",
4225 				   inode->i_ino,
4226 				   (unsigned long long) this_bh->b_blocknr);
4227 	}
4228 }
4229 
4230 /**
4231  *	ext4_free_branches - free an array of branches
4232  *	@handle: JBD handle for this transaction
4233  *	@inode:	inode we are dealing with
4234  *	@parent_bh: the buffer_head which contains *@first and *@last
4235  *	@first:	array of block numbers
4236  *	@last:	pointer immediately past the end of array
4237  *	@depth:	depth of the branches to free
4238  *
4239  *	We are freeing all blocks refered from these branches (numbers are
4240  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4241  *	appropriately.
4242  */
4243 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4244 			       struct buffer_head *parent_bh,
4245 			       __le32 *first, __le32 *last, int depth)
4246 {
4247 	ext4_fsblk_t nr;
4248 	__le32 *p;
4249 
4250 	if (ext4_handle_is_aborted(handle))
4251 		return;
4252 
4253 	if (depth--) {
4254 		struct buffer_head *bh;
4255 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4256 		p = last;
4257 		while (--p >= first) {
4258 			nr = le32_to_cpu(*p);
4259 			if (!nr)
4260 				continue;		/* A hole */
4261 
4262 			/* Go read the buffer for the next level down */
4263 			bh = sb_bread(inode->i_sb, nr);
4264 
4265 			/*
4266 			 * A read failure? Report error and clear slot
4267 			 * (should be rare).
4268 			 */
4269 			if (!bh) {
4270 				ext4_error(inode->i_sb, "ext4_free_branches",
4271 					   "Read failure, inode=%lu, block=%llu",
4272 					   inode->i_ino, nr);
4273 				continue;
4274 			}
4275 
4276 			/* This zaps the entire block.  Bottom up. */
4277 			BUFFER_TRACE(bh, "free child branches");
4278 			ext4_free_branches(handle, inode, bh,
4279 					(__le32 *) bh->b_data,
4280 					(__le32 *) bh->b_data + addr_per_block,
4281 					depth);
4282 
4283 			/*
4284 			 * We've probably journalled the indirect block several
4285 			 * times during the truncate.  But it's no longer
4286 			 * needed and we now drop it from the transaction via
4287 			 * jbd2_journal_revoke().
4288 			 *
4289 			 * That's easy if it's exclusively part of this
4290 			 * transaction.  But if it's part of the committing
4291 			 * transaction then jbd2_journal_forget() will simply
4292 			 * brelse() it.  That means that if the underlying
4293 			 * block is reallocated in ext4_get_block(),
4294 			 * unmap_underlying_metadata() will find this block
4295 			 * and will try to get rid of it.  damn, damn.
4296 			 *
4297 			 * If this block has already been committed to the
4298 			 * journal, a revoke record will be written.  And
4299 			 * revoke records must be emitted *before* clearing
4300 			 * this block's bit in the bitmaps.
4301 			 */
4302 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4303 
4304 			/*
4305 			 * Everything below this this pointer has been
4306 			 * released.  Now let this top-of-subtree go.
4307 			 *
4308 			 * We want the freeing of this indirect block to be
4309 			 * atomic in the journal with the updating of the
4310 			 * bitmap block which owns it.  So make some room in
4311 			 * the journal.
4312 			 *
4313 			 * We zero the parent pointer *after* freeing its
4314 			 * pointee in the bitmaps, so if extend_transaction()
4315 			 * for some reason fails to put the bitmap changes and
4316 			 * the release into the same transaction, recovery
4317 			 * will merely complain about releasing a free block,
4318 			 * rather than leaking blocks.
4319 			 */
4320 			if (ext4_handle_is_aborted(handle))
4321 				return;
4322 			if (try_to_extend_transaction(handle, inode)) {
4323 				ext4_mark_inode_dirty(handle, inode);
4324 				ext4_truncate_restart_trans(handle, inode,
4325 					    blocks_for_truncate(inode));
4326 			}
4327 
4328 			ext4_free_blocks(handle, inode, 0, nr, 1,
4329 					 EXT4_FREE_BLOCKS_METADATA);
4330 
4331 			if (parent_bh) {
4332 				/*
4333 				 * The block which we have just freed is
4334 				 * pointed to by an indirect block: journal it
4335 				 */
4336 				BUFFER_TRACE(parent_bh, "get_write_access");
4337 				if (!ext4_journal_get_write_access(handle,
4338 								   parent_bh)){
4339 					*p = 0;
4340 					BUFFER_TRACE(parent_bh,
4341 					"call ext4_handle_dirty_metadata");
4342 					ext4_handle_dirty_metadata(handle,
4343 								   inode,
4344 								   parent_bh);
4345 				}
4346 			}
4347 		}
4348 	} else {
4349 		/* We have reached the bottom of the tree. */
4350 		BUFFER_TRACE(parent_bh, "free data blocks");
4351 		ext4_free_data(handle, inode, parent_bh, first, last);
4352 	}
4353 }
4354 
4355 int ext4_can_truncate(struct inode *inode)
4356 {
4357 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4358 		return 0;
4359 	if (S_ISREG(inode->i_mode))
4360 		return 1;
4361 	if (S_ISDIR(inode->i_mode))
4362 		return 1;
4363 	if (S_ISLNK(inode->i_mode))
4364 		return !ext4_inode_is_fast_symlink(inode);
4365 	return 0;
4366 }
4367 
4368 /*
4369  * ext4_truncate()
4370  *
4371  * We block out ext4_get_block() block instantiations across the entire
4372  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4373  * simultaneously on behalf of the same inode.
4374  *
4375  * As we work through the truncate and commmit bits of it to the journal there
4376  * is one core, guiding principle: the file's tree must always be consistent on
4377  * disk.  We must be able to restart the truncate after a crash.
4378  *
4379  * The file's tree may be transiently inconsistent in memory (although it
4380  * probably isn't), but whenever we close off and commit a journal transaction,
4381  * the contents of (the filesystem + the journal) must be consistent and
4382  * restartable.  It's pretty simple, really: bottom up, right to left (although
4383  * left-to-right works OK too).
4384  *
4385  * Note that at recovery time, journal replay occurs *before* the restart of
4386  * truncate against the orphan inode list.
4387  *
4388  * The committed inode has the new, desired i_size (which is the same as
4389  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4390  * that this inode's truncate did not complete and it will again call
4391  * ext4_truncate() to have another go.  So there will be instantiated blocks
4392  * to the right of the truncation point in a crashed ext4 filesystem.  But
4393  * that's fine - as long as they are linked from the inode, the post-crash
4394  * ext4_truncate() run will find them and release them.
4395  */
4396 void ext4_truncate(struct inode *inode)
4397 {
4398 	handle_t *handle;
4399 	struct ext4_inode_info *ei = EXT4_I(inode);
4400 	__le32 *i_data = ei->i_data;
4401 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4402 	struct address_space *mapping = inode->i_mapping;
4403 	ext4_lblk_t offsets[4];
4404 	Indirect chain[4];
4405 	Indirect *partial;
4406 	__le32 nr = 0;
4407 	int n;
4408 	ext4_lblk_t last_block;
4409 	unsigned blocksize = inode->i_sb->s_blocksize;
4410 
4411 	if (!ext4_can_truncate(inode))
4412 		return;
4413 
4414 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4415 		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4416 
4417 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4418 		ext4_ext_truncate(inode);
4419 		return;
4420 	}
4421 
4422 	handle = start_transaction(inode);
4423 	if (IS_ERR(handle))
4424 		return;		/* AKPM: return what? */
4425 
4426 	last_block = (inode->i_size + blocksize-1)
4427 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4428 
4429 	if (inode->i_size & (blocksize - 1))
4430 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4431 			goto out_stop;
4432 
4433 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4434 	if (n == 0)
4435 		goto out_stop;	/* error */
4436 
4437 	/*
4438 	 * OK.  This truncate is going to happen.  We add the inode to the
4439 	 * orphan list, so that if this truncate spans multiple transactions,
4440 	 * and we crash, we will resume the truncate when the filesystem
4441 	 * recovers.  It also marks the inode dirty, to catch the new size.
4442 	 *
4443 	 * Implication: the file must always be in a sane, consistent
4444 	 * truncatable state while each transaction commits.
4445 	 */
4446 	if (ext4_orphan_add(handle, inode))
4447 		goto out_stop;
4448 
4449 	/*
4450 	 * From here we block out all ext4_get_block() callers who want to
4451 	 * modify the block allocation tree.
4452 	 */
4453 	down_write(&ei->i_data_sem);
4454 
4455 	ext4_discard_preallocations(inode);
4456 
4457 	/*
4458 	 * The orphan list entry will now protect us from any crash which
4459 	 * occurs before the truncate completes, so it is now safe to propagate
4460 	 * the new, shorter inode size (held for now in i_size) into the
4461 	 * on-disk inode. We do this via i_disksize, which is the value which
4462 	 * ext4 *really* writes onto the disk inode.
4463 	 */
4464 	ei->i_disksize = inode->i_size;
4465 
4466 	if (n == 1) {		/* direct blocks */
4467 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4468 			       i_data + EXT4_NDIR_BLOCKS);
4469 		goto do_indirects;
4470 	}
4471 
4472 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4473 	/* Kill the top of shared branch (not detached) */
4474 	if (nr) {
4475 		if (partial == chain) {
4476 			/* Shared branch grows from the inode */
4477 			ext4_free_branches(handle, inode, NULL,
4478 					   &nr, &nr+1, (chain+n-1) - partial);
4479 			*partial->p = 0;
4480 			/*
4481 			 * We mark the inode dirty prior to restart,
4482 			 * and prior to stop.  No need for it here.
4483 			 */
4484 		} else {
4485 			/* Shared branch grows from an indirect block */
4486 			BUFFER_TRACE(partial->bh, "get_write_access");
4487 			ext4_free_branches(handle, inode, partial->bh,
4488 					partial->p,
4489 					partial->p+1, (chain+n-1) - partial);
4490 		}
4491 	}
4492 	/* Clear the ends of indirect blocks on the shared branch */
4493 	while (partial > chain) {
4494 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4495 				   (__le32*)partial->bh->b_data+addr_per_block,
4496 				   (chain+n-1) - partial);
4497 		BUFFER_TRACE(partial->bh, "call brelse");
4498 		brelse(partial->bh);
4499 		partial--;
4500 	}
4501 do_indirects:
4502 	/* Kill the remaining (whole) subtrees */
4503 	switch (offsets[0]) {
4504 	default:
4505 		nr = i_data[EXT4_IND_BLOCK];
4506 		if (nr) {
4507 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4508 			i_data[EXT4_IND_BLOCK] = 0;
4509 		}
4510 	case EXT4_IND_BLOCK:
4511 		nr = i_data[EXT4_DIND_BLOCK];
4512 		if (nr) {
4513 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4514 			i_data[EXT4_DIND_BLOCK] = 0;
4515 		}
4516 	case EXT4_DIND_BLOCK:
4517 		nr = i_data[EXT4_TIND_BLOCK];
4518 		if (nr) {
4519 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4520 			i_data[EXT4_TIND_BLOCK] = 0;
4521 		}
4522 	case EXT4_TIND_BLOCK:
4523 		;
4524 	}
4525 
4526 	up_write(&ei->i_data_sem);
4527 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4528 	ext4_mark_inode_dirty(handle, inode);
4529 
4530 	/*
4531 	 * In a multi-transaction truncate, we only make the final transaction
4532 	 * synchronous
4533 	 */
4534 	if (IS_SYNC(inode))
4535 		ext4_handle_sync(handle);
4536 out_stop:
4537 	/*
4538 	 * If this was a simple ftruncate(), and the file will remain alive
4539 	 * then we need to clear up the orphan record which we created above.
4540 	 * However, if this was a real unlink then we were called by
4541 	 * ext4_delete_inode(), and we allow that function to clean up the
4542 	 * orphan info for us.
4543 	 */
4544 	if (inode->i_nlink)
4545 		ext4_orphan_del(handle, inode);
4546 
4547 	ext4_journal_stop(handle);
4548 }
4549 
4550 /*
4551  * ext4_get_inode_loc returns with an extra refcount against the inode's
4552  * underlying buffer_head on success. If 'in_mem' is true, we have all
4553  * data in memory that is needed to recreate the on-disk version of this
4554  * inode.
4555  */
4556 static int __ext4_get_inode_loc(struct inode *inode,
4557 				struct ext4_iloc *iloc, int in_mem)
4558 {
4559 	struct ext4_group_desc	*gdp;
4560 	struct buffer_head	*bh;
4561 	struct super_block	*sb = inode->i_sb;
4562 	ext4_fsblk_t		block;
4563 	int			inodes_per_block, inode_offset;
4564 
4565 	iloc->bh = NULL;
4566 	if (!ext4_valid_inum(sb, inode->i_ino))
4567 		return -EIO;
4568 
4569 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4570 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4571 	if (!gdp)
4572 		return -EIO;
4573 
4574 	/*
4575 	 * Figure out the offset within the block group inode table
4576 	 */
4577 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4578 	inode_offset = ((inode->i_ino - 1) %
4579 			EXT4_INODES_PER_GROUP(sb));
4580 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4581 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4582 
4583 	bh = sb_getblk(sb, block);
4584 	if (!bh) {
4585 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4586 			   "inode block - inode=%lu, block=%llu",
4587 			   inode->i_ino, block);
4588 		return -EIO;
4589 	}
4590 	if (!buffer_uptodate(bh)) {
4591 		lock_buffer(bh);
4592 
4593 		/*
4594 		 * If the buffer has the write error flag, we have failed
4595 		 * to write out another inode in the same block.  In this
4596 		 * case, we don't have to read the block because we may
4597 		 * read the old inode data successfully.
4598 		 */
4599 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4600 			set_buffer_uptodate(bh);
4601 
4602 		if (buffer_uptodate(bh)) {
4603 			/* someone brought it uptodate while we waited */
4604 			unlock_buffer(bh);
4605 			goto has_buffer;
4606 		}
4607 
4608 		/*
4609 		 * If we have all information of the inode in memory and this
4610 		 * is the only valid inode in the block, we need not read the
4611 		 * block.
4612 		 */
4613 		if (in_mem) {
4614 			struct buffer_head *bitmap_bh;
4615 			int i, start;
4616 
4617 			start = inode_offset & ~(inodes_per_block - 1);
4618 
4619 			/* Is the inode bitmap in cache? */
4620 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4621 			if (!bitmap_bh)
4622 				goto make_io;
4623 
4624 			/*
4625 			 * If the inode bitmap isn't in cache then the
4626 			 * optimisation may end up performing two reads instead
4627 			 * of one, so skip it.
4628 			 */
4629 			if (!buffer_uptodate(bitmap_bh)) {
4630 				brelse(bitmap_bh);
4631 				goto make_io;
4632 			}
4633 			for (i = start; i < start + inodes_per_block; i++) {
4634 				if (i == inode_offset)
4635 					continue;
4636 				if (ext4_test_bit(i, bitmap_bh->b_data))
4637 					break;
4638 			}
4639 			brelse(bitmap_bh);
4640 			if (i == start + inodes_per_block) {
4641 				/* all other inodes are free, so skip I/O */
4642 				memset(bh->b_data, 0, bh->b_size);
4643 				set_buffer_uptodate(bh);
4644 				unlock_buffer(bh);
4645 				goto has_buffer;
4646 			}
4647 		}
4648 
4649 make_io:
4650 		/*
4651 		 * If we need to do any I/O, try to pre-readahead extra
4652 		 * blocks from the inode table.
4653 		 */
4654 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4655 			ext4_fsblk_t b, end, table;
4656 			unsigned num;
4657 
4658 			table = ext4_inode_table(sb, gdp);
4659 			/* s_inode_readahead_blks is always a power of 2 */
4660 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4661 			if (table > b)
4662 				b = table;
4663 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4664 			num = EXT4_INODES_PER_GROUP(sb);
4665 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4666 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4667 				num -= ext4_itable_unused_count(sb, gdp);
4668 			table += num / inodes_per_block;
4669 			if (end > table)
4670 				end = table;
4671 			while (b <= end)
4672 				sb_breadahead(sb, b++);
4673 		}
4674 
4675 		/*
4676 		 * There are other valid inodes in the buffer, this inode
4677 		 * has in-inode xattrs, or we don't have this inode in memory.
4678 		 * Read the block from disk.
4679 		 */
4680 		get_bh(bh);
4681 		bh->b_end_io = end_buffer_read_sync;
4682 		submit_bh(READ_META, bh);
4683 		wait_on_buffer(bh);
4684 		if (!buffer_uptodate(bh)) {
4685 			ext4_error(sb, __func__,
4686 				   "unable to read inode block - inode=%lu, "
4687 				   "block=%llu", inode->i_ino, block);
4688 			brelse(bh);
4689 			return -EIO;
4690 		}
4691 	}
4692 has_buffer:
4693 	iloc->bh = bh;
4694 	return 0;
4695 }
4696 
4697 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4698 {
4699 	/* We have all inode data except xattrs in memory here. */
4700 	return __ext4_get_inode_loc(inode, iloc,
4701 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4702 }
4703 
4704 void ext4_set_inode_flags(struct inode *inode)
4705 {
4706 	unsigned int flags = EXT4_I(inode)->i_flags;
4707 
4708 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4709 	if (flags & EXT4_SYNC_FL)
4710 		inode->i_flags |= S_SYNC;
4711 	if (flags & EXT4_APPEND_FL)
4712 		inode->i_flags |= S_APPEND;
4713 	if (flags & EXT4_IMMUTABLE_FL)
4714 		inode->i_flags |= S_IMMUTABLE;
4715 	if (flags & EXT4_NOATIME_FL)
4716 		inode->i_flags |= S_NOATIME;
4717 	if (flags & EXT4_DIRSYNC_FL)
4718 		inode->i_flags |= S_DIRSYNC;
4719 }
4720 
4721 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4722 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4723 {
4724 	unsigned int flags = ei->vfs_inode.i_flags;
4725 
4726 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4727 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4728 	if (flags & S_SYNC)
4729 		ei->i_flags |= EXT4_SYNC_FL;
4730 	if (flags & S_APPEND)
4731 		ei->i_flags |= EXT4_APPEND_FL;
4732 	if (flags & S_IMMUTABLE)
4733 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4734 	if (flags & S_NOATIME)
4735 		ei->i_flags |= EXT4_NOATIME_FL;
4736 	if (flags & S_DIRSYNC)
4737 		ei->i_flags |= EXT4_DIRSYNC_FL;
4738 }
4739 
4740 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4741 				  struct ext4_inode_info *ei)
4742 {
4743 	blkcnt_t i_blocks ;
4744 	struct inode *inode = &(ei->vfs_inode);
4745 	struct super_block *sb = inode->i_sb;
4746 
4747 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4748 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4749 		/* we are using combined 48 bit field */
4750 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4751 					le32_to_cpu(raw_inode->i_blocks_lo);
4752 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4753 			/* i_blocks represent file system block size */
4754 			return i_blocks  << (inode->i_blkbits - 9);
4755 		} else {
4756 			return i_blocks;
4757 		}
4758 	} else {
4759 		return le32_to_cpu(raw_inode->i_blocks_lo);
4760 	}
4761 }
4762 
4763 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4764 {
4765 	struct ext4_iloc iloc;
4766 	struct ext4_inode *raw_inode;
4767 	struct ext4_inode_info *ei;
4768 	struct inode *inode;
4769 	journal_t *journal = EXT4_SB(sb)->s_journal;
4770 	long ret;
4771 	int block;
4772 
4773 	inode = iget_locked(sb, ino);
4774 	if (!inode)
4775 		return ERR_PTR(-ENOMEM);
4776 	if (!(inode->i_state & I_NEW))
4777 		return inode;
4778 
4779 	ei = EXT4_I(inode);
4780 	iloc.bh = 0;
4781 
4782 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4783 	if (ret < 0)
4784 		goto bad_inode;
4785 	raw_inode = ext4_raw_inode(&iloc);
4786 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4787 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4788 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4789 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4790 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4791 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4792 	}
4793 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4794 
4795 	ei->i_state = 0;
4796 	ei->i_dir_start_lookup = 0;
4797 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4798 	/* We now have enough fields to check if the inode was active or not.
4799 	 * This is needed because nfsd might try to access dead inodes
4800 	 * the test is that same one that e2fsck uses
4801 	 * NeilBrown 1999oct15
4802 	 */
4803 	if (inode->i_nlink == 0) {
4804 		if (inode->i_mode == 0 ||
4805 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4806 			/* this inode is deleted */
4807 			ret = -ESTALE;
4808 			goto bad_inode;
4809 		}
4810 		/* The only unlinked inodes we let through here have
4811 		 * valid i_mode and are being read by the orphan
4812 		 * recovery code: that's fine, we're about to complete
4813 		 * the process of deleting those. */
4814 	}
4815 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4816 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4817 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4818 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4819 		ei->i_file_acl |=
4820 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4821 	inode->i_size = ext4_isize(raw_inode);
4822 	ei->i_disksize = inode->i_size;
4823 #ifdef CONFIG_QUOTA
4824 	ei->i_reserved_quota = 0;
4825 #endif
4826 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4827 	ei->i_block_group = iloc.block_group;
4828 	ei->i_last_alloc_group = ~0;
4829 	/*
4830 	 * NOTE! The in-memory inode i_data array is in little-endian order
4831 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4832 	 */
4833 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4834 		ei->i_data[block] = raw_inode->i_block[block];
4835 	INIT_LIST_HEAD(&ei->i_orphan);
4836 
4837 	/*
4838 	 * Set transaction id's of transactions that have to be committed
4839 	 * to finish f[data]sync. We set them to currently running transaction
4840 	 * as we cannot be sure that the inode or some of its metadata isn't
4841 	 * part of the transaction - the inode could have been reclaimed and
4842 	 * now it is reread from disk.
4843 	 */
4844 	if (journal) {
4845 		transaction_t *transaction;
4846 		tid_t tid;
4847 
4848 		spin_lock(&journal->j_state_lock);
4849 		if (journal->j_running_transaction)
4850 			transaction = journal->j_running_transaction;
4851 		else
4852 			transaction = journal->j_committing_transaction;
4853 		if (transaction)
4854 			tid = transaction->t_tid;
4855 		else
4856 			tid = journal->j_commit_sequence;
4857 		spin_unlock(&journal->j_state_lock);
4858 		ei->i_sync_tid = tid;
4859 		ei->i_datasync_tid = tid;
4860 	}
4861 
4862 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4864 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4865 		    EXT4_INODE_SIZE(inode->i_sb)) {
4866 			ret = -EIO;
4867 			goto bad_inode;
4868 		}
4869 		if (ei->i_extra_isize == 0) {
4870 			/* The extra space is currently unused. Use it. */
4871 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4872 					    EXT4_GOOD_OLD_INODE_SIZE;
4873 		} else {
4874 			__le32 *magic = (void *)raw_inode +
4875 					EXT4_GOOD_OLD_INODE_SIZE +
4876 					ei->i_extra_isize;
4877 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4878 				ei->i_state |= EXT4_STATE_XATTR;
4879 		}
4880 	} else
4881 		ei->i_extra_isize = 0;
4882 
4883 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4884 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4885 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4886 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4887 
4888 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4889 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4890 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4891 			inode->i_version |=
4892 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4893 	}
4894 
4895 	ret = 0;
4896 	if (ei->i_file_acl &&
4897 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4898 		ext4_error(sb, __func__,
4899 			   "bad extended attribute block %llu in inode #%lu",
4900 			   ei->i_file_acl, inode->i_ino);
4901 		ret = -EIO;
4902 		goto bad_inode;
4903 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4904 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4905 		    (S_ISLNK(inode->i_mode) &&
4906 		     !ext4_inode_is_fast_symlink(inode)))
4907 			/* Validate extent which is part of inode */
4908 			ret = ext4_ext_check_inode(inode);
4909 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4910 		   (S_ISLNK(inode->i_mode) &&
4911 		    !ext4_inode_is_fast_symlink(inode))) {
4912 		/* Validate block references which are part of inode */
4913 		ret = ext4_check_inode_blockref(inode);
4914 	}
4915 	if (ret)
4916 		goto bad_inode;
4917 
4918 	if (S_ISREG(inode->i_mode)) {
4919 		inode->i_op = &ext4_file_inode_operations;
4920 		inode->i_fop = &ext4_file_operations;
4921 		ext4_set_aops(inode);
4922 	} else if (S_ISDIR(inode->i_mode)) {
4923 		inode->i_op = &ext4_dir_inode_operations;
4924 		inode->i_fop = &ext4_dir_operations;
4925 	} else if (S_ISLNK(inode->i_mode)) {
4926 		if (ext4_inode_is_fast_symlink(inode)) {
4927 			inode->i_op = &ext4_fast_symlink_inode_operations;
4928 			nd_terminate_link(ei->i_data, inode->i_size,
4929 				sizeof(ei->i_data) - 1);
4930 		} else {
4931 			inode->i_op = &ext4_symlink_inode_operations;
4932 			ext4_set_aops(inode);
4933 		}
4934 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4935 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4936 		inode->i_op = &ext4_special_inode_operations;
4937 		if (raw_inode->i_block[0])
4938 			init_special_inode(inode, inode->i_mode,
4939 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4940 		else
4941 			init_special_inode(inode, inode->i_mode,
4942 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4943 	} else {
4944 		ret = -EIO;
4945 		ext4_error(inode->i_sb, __func__,
4946 			   "bogus i_mode (%o) for inode=%lu",
4947 			   inode->i_mode, inode->i_ino);
4948 		goto bad_inode;
4949 	}
4950 	brelse(iloc.bh);
4951 	ext4_set_inode_flags(inode);
4952 	unlock_new_inode(inode);
4953 	return inode;
4954 
4955 bad_inode:
4956 	brelse(iloc.bh);
4957 	iget_failed(inode);
4958 	return ERR_PTR(ret);
4959 }
4960 
4961 static int ext4_inode_blocks_set(handle_t *handle,
4962 				struct ext4_inode *raw_inode,
4963 				struct ext4_inode_info *ei)
4964 {
4965 	struct inode *inode = &(ei->vfs_inode);
4966 	u64 i_blocks = inode->i_blocks;
4967 	struct super_block *sb = inode->i_sb;
4968 
4969 	if (i_blocks <= ~0U) {
4970 		/*
4971 		 * i_blocks can be represnted in a 32 bit variable
4972 		 * as multiple of 512 bytes
4973 		 */
4974 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4975 		raw_inode->i_blocks_high = 0;
4976 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4977 		return 0;
4978 	}
4979 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4980 		return -EFBIG;
4981 
4982 	if (i_blocks <= 0xffffffffffffULL) {
4983 		/*
4984 		 * i_blocks can be represented in a 48 bit variable
4985 		 * as multiple of 512 bytes
4986 		 */
4987 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4988 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4989 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4990 	} else {
4991 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4992 		/* i_block is stored in file system block size */
4993 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4994 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4995 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4996 	}
4997 	return 0;
4998 }
4999 
5000 /*
5001  * Post the struct inode info into an on-disk inode location in the
5002  * buffer-cache.  This gobbles the caller's reference to the
5003  * buffer_head in the inode location struct.
5004  *
5005  * The caller must have write access to iloc->bh.
5006  */
5007 static int ext4_do_update_inode(handle_t *handle,
5008 				struct inode *inode,
5009 				struct ext4_iloc *iloc)
5010 {
5011 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5012 	struct ext4_inode_info *ei = EXT4_I(inode);
5013 	struct buffer_head *bh = iloc->bh;
5014 	int err = 0, rc, block;
5015 
5016 	/* For fields not not tracking in the in-memory inode,
5017 	 * initialise them to zero for new inodes. */
5018 	if (ei->i_state & EXT4_STATE_NEW)
5019 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5020 
5021 	ext4_get_inode_flags(ei);
5022 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5023 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5024 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5025 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5026 /*
5027  * Fix up interoperability with old kernels. Otherwise, old inodes get
5028  * re-used with the upper 16 bits of the uid/gid intact
5029  */
5030 		if (!ei->i_dtime) {
5031 			raw_inode->i_uid_high =
5032 				cpu_to_le16(high_16_bits(inode->i_uid));
5033 			raw_inode->i_gid_high =
5034 				cpu_to_le16(high_16_bits(inode->i_gid));
5035 		} else {
5036 			raw_inode->i_uid_high = 0;
5037 			raw_inode->i_gid_high = 0;
5038 		}
5039 	} else {
5040 		raw_inode->i_uid_low =
5041 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5042 		raw_inode->i_gid_low =
5043 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5044 		raw_inode->i_uid_high = 0;
5045 		raw_inode->i_gid_high = 0;
5046 	}
5047 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5048 
5049 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5050 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5051 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5052 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5053 
5054 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5055 		goto out_brelse;
5056 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5057 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5058 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5059 	    cpu_to_le32(EXT4_OS_HURD))
5060 		raw_inode->i_file_acl_high =
5061 			cpu_to_le16(ei->i_file_acl >> 32);
5062 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5063 	ext4_isize_set(raw_inode, ei->i_disksize);
5064 	if (ei->i_disksize > 0x7fffffffULL) {
5065 		struct super_block *sb = inode->i_sb;
5066 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5067 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5068 				EXT4_SB(sb)->s_es->s_rev_level ==
5069 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5070 			/* If this is the first large file
5071 			 * created, add a flag to the superblock.
5072 			 */
5073 			err = ext4_journal_get_write_access(handle,
5074 					EXT4_SB(sb)->s_sbh);
5075 			if (err)
5076 				goto out_brelse;
5077 			ext4_update_dynamic_rev(sb);
5078 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5079 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5080 			sb->s_dirt = 1;
5081 			ext4_handle_sync(handle);
5082 			err = ext4_handle_dirty_metadata(handle, inode,
5083 					EXT4_SB(sb)->s_sbh);
5084 		}
5085 	}
5086 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5087 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5088 		if (old_valid_dev(inode->i_rdev)) {
5089 			raw_inode->i_block[0] =
5090 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5091 			raw_inode->i_block[1] = 0;
5092 		} else {
5093 			raw_inode->i_block[0] = 0;
5094 			raw_inode->i_block[1] =
5095 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5096 			raw_inode->i_block[2] = 0;
5097 		}
5098 	} else
5099 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5100 			raw_inode->i_block[block] = ei->i_data[block];
5101 
5102 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5103 	if (ei->i_extra_isize) {
5104 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5105 			raw_inode->i_version_hi =
5106 			cpu_to_le32(inode->i_version >> 32);
5107 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5108 	}
5109 
5110 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5111 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
5112 	if (!err)
5113 		err = rc;
5114 	ei->i_state &= ~EXT4_STATE_NEW;
5115 
5116 	ext4_update_inode_fsync_trans(handle, inode, 0);
5117 out_brelse:
5118 	brelse(bh);
5119 	ext4_std_error(inode->i_sb, err);
5120 	return err;
5121 }
5122 
5123 /*
5124  * ext4_write_inode()
5125  *
5126  * We are called from a few places:
5127  *
5128  * - Within generic_file_write() for O_SYNC files.
5129  *   Here, there will be no transaction running. We wait for any running
5130  *   trasnaction to commit.
5131  *
5132  * - Within sys_sync(), kupdate and such.
5133  *   We wait on commit, if tol to.
5134  *
5135  * - Within prune_icache() (PF_MEMALLOC == true)
5136  *   Here we simply return.  We can't afford to block kswapd on the
5137  *   journal commit.
5138  *
5139  * In all cases it is actually safe for us to return without doing anything,
5140  * because the inode has been copied into a raw inode buffer in
5141  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5142  * knfsd.
5143  *
5144  * Note that we are absolutely dependent upon all inode dirtiers doing the
5145  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5146  * which we are interested.
5147  *
5148  * It would be a bug for them to not do this.  The code:
5149  *
5150  *	mark_inode_dirty(inode)
5151  *	stuff();
5152  *	inode->i_size = expr;
5153  *
5154  * is in error because a kswapd-driven write_inode() could occur while
5155  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5156  * will no longer be on the superblock's dirty inode list.
5157  */
5158 int ext4_write_inode(struct inode *inode, int wait)
5159 {
5160 	int err;
5161 
5162 	if (current->flags & PF_MEMALLOC)
5163 		return 0;
5164 
5165 	if (EXT4_SB(inode->i_sb)->s_journal) {
5166 		if (ext4_journal_current_handle()) {
5167 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5168 			dump_stack();
5169 			return -EIO;
5170 		}
5171 
5172 		if (!wait)
5173 			return 0;
5174 
5175 		err = ext4_force_commit(inode->i_sb);
5176 	} else {
5177 		struct ext4_iloc iloc;
5178 
5179 		err = ext4_get_inode_loc(inode, &iloc);
5180 		if (err)
5181 			return err;
5182 		if (wait)
5183 			sync_dirty_buffer(iloc.bh);
5184 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5185 			ext4_error(inode->i_sb, __func__,
5186 				   "IO error syncing inode, "
5187 				   "inode=%lu, block=%llu",
5188 				   inode->i_ino,
5189 				   (unsigned long long)iloc.bh->b_blocknr);
5190 			err = -EIO;
5191 		}
5192 	}
5193 	return err;
5194 }
5195 
5196 /*
5197  * ext4_setattr()
5198  *
5199  * Called from notify_change.
5200  *
5201  * We want to trap VFS attempts to truncate the file as soon as
5202  * possible.  In particular, we want to make sure that when the VFS
5203  * shrinks i_size, we put the inode on the orphan list and modify
5204  * i_disksize immediately, so that during the subsequent flushing of
5205  * dirty pages and freeing of disk blocks, we can guarantee that any
5206  * commit will leave the blocks being flushed in an unused state on
5207  * disk.  (On recovery, the inode will get truncated and the blocks will
5208  * be freed, so we have a strong guarantee that no future commit will
5209  * leave these blocks visible to the user.)
5210  *
5211  * Another thing we have to assure is that if we are in ordered mode
5212  * and inode is still attached to the committing transaction, we must
5213  * we start writeout of all the dirty pages which are being truncated.
5214  * This way we are sure that all the data written in the previous
5215  * transaction are already on disk (truncate waits for pages under
5216  * writeback).
5217  *
5218  * Called with inode->i_mutex down.
5219  */
5220 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5221 {
5222 	struct inode *inode = dentry->d_inode;
5223 	int error, rc = 0;
5224 	const unsigned int ia_valid = attr->ia_valid;
5225 
5226 	error = inode_change_ok(inode, attr);
5227 	if (error)
5228 		return error;
5229 
5230 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5231 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5232 		handle_t *handle;
5233 
5234 		/* (user+group)*(old+new) structure, inode write (sb,
5235 		 * inode block, ? - but truncate inode update has it) */
5236 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5237 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5238 		if (IS_ERR(handle)) {
5239 			error = PTR_ERR(handle);
5240 			goto err_out;
5241 		}
5242 		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5243 		if (error) {
5244 			ext4_journal_stop(handle);
5245 			return error;
5246 		}
5247 		/* Update corresponding info in inode so that everything is in
5248 		 * one transaction */
5249 		if (attr->ia_valid & ATTR_UID)
5250 			inode->i_uid = attr->ia_uid;
5251 		if (attr->ia_valid & ATTR_GID)
5252 			inode->i_gid = attr->ia_gid;
5253 		error = ext4_mark_inode_dirty(handle, inode);
5254 		ext4_journal_stop(handle);
5255 	}
5256 
5257 	if (attr->ia_valid & ATTR_SIZE) {
5258 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5259 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5260 
5261 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5262 				error = -EFBIG;
5263 				goto err_out;
5264 			}
5265 		}
5266 	}
5267 
5268 	if (S_ISREG(inode->i_mode) &&
5269 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5270 		handle_t *handle;
5271 
5272 		handle = ext4_journal_start(inode, 3);
5273 		if (IS_ERR(handle)) {
5274 			error = PTR_ERR(handle);
5275 			goto err_out;
5276 		}
5277 
5278 		error = ext4_orphan_add(handle, inode);
5279 		EXT4_I(inode)->i_disksize = attr->ia_size;
5280 		rc = ext4_mark_inode_dirty(handle, inode);
5281 		if (!error)
5282 			error = rc;
5283 		ext4_journal_stop(handle);
5284 
5285 		if (ext4_should_order_data(inode)) {
5286 			error = ext4_begin_ordered_truncate(inode,
5287 							    attr->ia_size);
5288 			if (error) {
5289 				/* Do as much error cleanup as possible */
5290 				handle = ext4_journal_start(inode, 3);
5291 				if (IS_ERR(handle)) {
5292 					ext4_orphan_del(NULL, inode);
5293 					goto err_out;
5294 				}
5295 				ext4_orphan_del(handle, inode);
5296 				ext4_journal_stop(handle);
5297 				goto err_out;
5298 			}
5299 		}
5300 	}
5301 
5302 	rc = inode_setattr(inode, attr);
5303 
5304 	/* If inode_setattr's call to ext4_truncate failed to get a
5305 	 * transaction handle at all, we need to clean up the in-core
5306 	 * orphan list manually. */
5307 	if (inode->i_nlink)
5308 		ext4_orphan_del(NULL, inode);
5309 
5310 	if (!rc && (ia_valid & ATTR_MODE))
5311 		rc = ext4_acl_chmod(inode);
5312 
5313 err_out:
5314 	ext4_std_error(inode->i_sb, error);
5315 	if (!error)
5316 		error = rc;
5317 	return error;
5318 }
5319 
5320 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5321 		 struct kstat *stat)
5322 {
5323 	struct inode *inode;
5324 	unsigned long delalloc_blocks;
5325 
5326 	inode = dentry->d_inode;
5327 	generic_fillattr(inode, stat);
5328 
5329 	/*
5330 	 * We can't update i_blocks if the block allocation is delayed
5331 	 * otherwise in the case of system crash before the real block
5332 	 * allocation is done, we will have i_blocks inconsistent with
5333 	 * on-disk file blocks.
5334 	 * We always keep i_blocks updated together with real
5335 	 * allocation. But to not confuse with user, stat
5336 	 * will return the blocks that include the delayed allocation
5337 	 * blocks for this file.
5338 	 */
5339 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5340 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5341 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5342 
5343 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5344 	return 0;
5345 }
5346 
5347 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5348 				      int chunk)
5349 {
5350 	int indirects;
5351 
5352 	/* if nrblocks are contiguous */
5353 	if (chunk) {
5354 		/*
5355 		 * With N contiguous data blocks, it need at most
5356 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5357 		 * 2 dindirect blocks
5358 		 * 1 tindirect block
5359 		 */
5360 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5361 		return indirects + 3;
5362 	}
5363 	/*
5364 	 * if nrblocks are not contiguous, worse case, each block touch
5365 	 * a indirect block, and each indirect block touch a double indirect
5366 	 * block, plus a triple indirect block
5367 	 */
5368 	indirects = nrblocks * 2 + 1;
5369 	return indirects;
5370 }
5371 
5372 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5373 {
5374 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5375 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5376 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5377 }
5378 
5379 /*
5380  * Account for index blocks, block groups bitmaps and block group
5381  * descriptor blocks if modify datablocks and index blocks
5382  * worse case, the indexs blocks spread over different block groups
5383  *
5384  * If datablocks are discontiguous, they are possible to spread over
5385  * different block groups too. If they are contiuguous, with flexbg,
5386  * they could still across block group boundary.
5387  *
5388  * Also account for superblock, inode, quota and xattr blocks
5389  */
5390 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5391 {
5392 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5393 	int gdpblocks;
5394 	int idxblocks;
5395 	int ret = 0;
5396 
5397 	/*
5398 	 * How many index blocks need to touch to modify nrblocks?
5399 	 * The "Chunk" flag indicating whether the nrblocks is
5400 	 * physically contiguous on disk
5401 	 *
5402 	 * For Direct IO and fallocate, they calls get_block to allocate
5403 	 * one single extent at a time, so they could set the "Chunk" flag
5404 	 */
5405 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5406 
5407 	ret = idxblocks;
5408 
5409 	/*
5410 	 * Now let's see how many group bitmaps and group descriptors need
5411 	 * to account
5412 	 */
5413 	groups = idxblocks;
5414 	if (chunk)
5415 		groups += 1;
5416 	else
5417 		groups += nrblocks;
5418 
5419 	gdpblocks = groups;
5420 	if (groups > ngroups)
5421 		groups = ngroups;
5422 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5423 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5424 
5425 	/* bitmaps and block group descriptor blocks */
5426 	ret += groups + gdpblocks;
5427 
5428 	/* Blocks for super block, inode, quota and xattr blocks */
5429 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5430 
5431 	return ret;
5432 }
5433 
5434 /*
5435  * Calulate the total number of credits to reserve to fit
5436  * the modification of a single pages into a single transaction,
5437  * which may include multiple chunks of block allocations.
5438  *
5439  * This could be called via ext4_write_begin()
5440  *
5441  * We need to consider the worse case, when
5442  * one new block per extent.
5443  */
5444 int ext4_writepage_trans_blocks(struct inode *inode)
5445 {
5446 	int bpp = ext4_journal_blocks_per_page(inode);
5447 	int ret;
5448 
5449 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5450 
5451 	/* Account for data blocks for journalled mode */
5452 	if (ext4_should_journal_data(inode))
5453 		ret += bpp;
5454 	return ret;
5455 }
5456 
5457 /*
5458  * Calculate the journal credits for a chunk of data modification.
5459  *
5460  * This is called from DIO, fallocate or whoever calling
5461  * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5462  *
5463  * journal buffers for data blocks are not included here, as DIO
5464  * and fallocate do no need to journal data buffers.
5465  */
5466 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5467 {
5468 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5469 }
5470 
5471 /*
5472  * The caller must have previously called ext4_reserve_inode_write().
5473  * Give this, we know that the caller already has write access to iloc->bh.
5474  */
5475 int ext4_mark_iloc_dirty(handle_t *handle,
5476 			 struct inode *inode, struct ext4_iloc *iloc)
5477 {
5478 	int err = 0;
5479 
5480 	if (test_opt(inode->i_sb, I_VERSION))
5481 		inode_inc_iversion(inode);
5482 
5483 	/* the do_update_inode consumes one bh->b_count */
5484 	get_bh(iloc->bh);
5485 
5486 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5487 	err = ext4_do_update_inode(handle, inode, iloc);
5488 	put_bh(iloc->bh);
5489 	return err;
5490 }
5491 
5492 /*
5493  * On success, We end up with an outstanding reference count against
5494  * iloc->bh.  This _must_ be cleaned up later.
5495  */
5496 
5497 int
5498 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5499 			 struct ext4_iloc *iloc)
5500 {
5501 	int err;
5502 
5503 	err = ext4_get_inode_loc(inode, iloc);
5504 	if (!err) {
5505 		BUFFER_TRACE(iloc->bh, "get_write_access");
5506 		err = ext4_journal_get_write_access(handle, iloc->bh);
5507 		if (err) {
5508 			brelse(iloc->bh);
5509 			iloc->bh = NULL;
5510 		}
5511 	}
5512 	ext4_std_error(inode->i_sb, err);
5513 	return err;
5514 }
5515 
5516 /*
5517  * Expand an inode by new_extra_isize bytes.
5518  * Returns 0 on success or negative error number on failure.
5519  */
5520 static int ext4_expand_extra_isize(struct inode *inode,
5521 				   unsigned int new_extra_isize,
5522 				   struct ext4_iloc iloc,
5523 				   handle_t *handle)
5524 {
5525 	struct ext4_inode *raw_inode;
5526 	struct ext4_xattr_ibody_header *header;
5527 	struct ext4_xattr_entry *entry;
5528 
5529 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5530 		return 0;
5531 
5532 	raw_inode = ext4_raw_inode(&iloc);
5533 
5534 	header = IHDR(inode, raw_inode);
5535 	entry = IFIRST(header);
5536 
5537 	/* No extended attributes present */
5538 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5539 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5540 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5541 			new_extra_isize);
5542 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5543 		return 0;
5544 	}
5545 
5546 	/* try to expand with EAs present */
5547 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5548 					  raw_inode, handle);
5549 }
5550 
5551 /*
5552  * What we do here is to mark the in-core inode as clean with respect to inode
5553  * dirtiness (it may still be data-dirty).
5554  * This means that the in-core inode may be reaped by prune_icache
5555  * without having to perform any I/O.  This is a very good thing,
5556  * because *any* task may call prune_icache - even ones which
5557  * have a transaction open against a different journal.
5558  *
5559  * Is this cheating?  Not really.  Sure, we haven't written the
5560  * inode out, but prune_icache isn't a user-visible syncing function.
5561  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5562  * we start and wait on commits.
5563  *
5564  * Is this efficient/effective?  Well, we're being nice to the system
5565  * by cleaning up our inodes proactively so they can be reaped
5566  * without I/O.  But we are potentially leaving up to five seconds'
5567  * worth of inodes floating about which prune_icache wants us to
5568  * write out.  One way to fix that would be to get prune_icache()
5569  * to do a write_super() to free up some memory.  It has the desired
5570  * effect.
5571  */
5572 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5573 {
5574 	struct ext4_iloc iloc;
5575 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5576 	static unsigned int mnt_count;
5577 	int err, ret;
5578 
5579 	might_sleep();
5580 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5581 	if (ext4_handle_valid(handle) &&
5582 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5583 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5584 		/*
5585 		 * We need extra buffer credits since we may write into EA block
5586 		 * with this same handle. If journal_extend fails, then it will
5587 		 * only result in a minor loss of functionality for that inode.
5588 		 * If this is felt to be critical, then e2fsck should be run to
5589 		 * force a large enough s_min_extra_isize.
5590 		 */
5591 		if ((jbd2_journal_extend(handle,
5592 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5593 			ret = ext4_expand_extra_isize(inode,
5594 						      sbi->s_want_extra_isize,
5595 						      iloc, handle);
5596 			if (ret) {
5597 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5598 				if (mnt_count !=
5599 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5600 					ext4_warning(inode->i_sb, __func__,
5601 					"Unable to expand inode %lu. Delete"
5602 					" some EAs or run e2fsck.",
5603 					inode->i_ino);
5604 					mnt_count =
5605 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5606 				}
5607 			}
5608 		}
5609 	}
5610 	if (!err)
5611 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5612 	return err;
5613 }
5614 
5615 /*
5616  * ext4_dirty_inode() is called from __mark_inode_dirty()
5617  *
5618  * We're really interested in the case where a file is being extended.
5619  * i_size has been changed by generic_commit_write() and we thus need
5620  * to include the updated inode in the current transaction.
5621  *
5622  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5623  * are allocated to the file.
5624  *
5625  * If the inode is marked synchronous, we don't honour that here - doing
5626  * so would cause a commit on atime updates, which we don't bother doing.
5627  * We handle synchronous inodes at the highest possible level.
5628  */
5629 void ext4_dirty_inode(struct inode *inode)
5630 {
5631 	handle_t *handle;
5632 
5633 	handle = ext4_journal_start(inode, 2);
5634 	if (IS_ERR(handle))
5635 		goto out;
5636 
5637 	ext4_mark_inode_dirty(handle, inode);
5638 
5639 	ext4_journal_stop(handle);
5640 out:
5641 	return;
5642 }
5643 
5644 #if 0
5645 /*
5646  * Bind an inode's backing buffer_head into this transaction, to prevent
5647  * it from being flushed to disk early.  Unlike
5648  * ext4_reserve_inode_write, this leaves behind no bh reference and
5649  * returns no iloc structure, so the caller needs to repeat the iloc
5650  * lookup to mark the inode dirty later.
5651  */
5652 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5653 {
5654 	struct ext4_iloc iloc;
5655 
5656 	int err = 0;
5657 	if (handle) {
5658 		err = ext4_get_inode_loc(inode, &iloc);
5659 		if (!err) {
5660 			BUFFER_TRACE(iloc.bh, "get_write_access");
5661 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5662 			if (!err)
5663 				err = ext4_handle_dirty_metadata(handle,
5664 								 inode,
5665 								 iloc.bh);
5666 			brelse(iloc.bh);
5667 		}
5668 	}
5669 	ext4_std_error(inode->i_sb, err);
5670 	return err;
5671 }
5672 #endif
5673 
5674 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5675 {
5676 	journal_t *journal;
5677 	handle_t *handle;
5678 	int err;
5679 
5680 	/*
5681 	 * We have to be very careful here: changing a data block's
5682 	 * journaling status dynamically is dangerous.  If we write a
5683 	 * data block to the journal, change the status and then delete
5684 	 * that block, we risk forgetting to revoke the old log record
5685 	 * from the journal and so a subsequent replay can corrupt data.
5686 	 * So, first we make sure that the journal is empty and that
5687 	 * nobody is changing anything.
5688 	 */
5689 
5690 	journal = EXT4_JOURNAL(inode);
5691 	if (!journal)
5692 		return 0;
5693 	if (is_journal_aborted(journal))
5694 		return -EROFS;
5695 
5696 	jbd2_journal_lock_updates(journal);
5697 	jbd2_journal_flush(journal);
5698 
5699 	/*
5700 	 * OK, there are no updates running now, and all cached data is
5701 	 * synced to disk.  We are now in a completely consistent state
5702 	 * which doesn't have anything in the journal, and we know that
5703 	 * no filesystem updates are running, so it is safe to modify
5704 	 * the inode's in-core data-journaling state flag now.
5705 	 */
5706 
5707 	if (val)
5708 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5709 	else
5710 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5711 	ext4_set_aops(inode);
5712 
5713 	jbd2_journal_unlock_updates(journal);
5714 
5715 	/* Finally we can mark the inode as dirty. */
5716 
5717 	handle = ext4_journal_start(inode, 1);
5718 	if (IS_ERR(handle))
5719 		return PTR_ERR(handle);
5720 
5721 	err = ext4_mark_inode_dirty(handle, inode);
5722 	ext4_handle_sync(handle);
5723 	ext4_journal_stop(handle);
5724 	ext4_std_error(inode->i_sb, err);
5725 
5726 	return err;
5727 }
5728 
5729 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5730 {
5731 	return !buffer_mapped(bh);
5732 }
5733 
5734 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5735 {
5736 	struct page *page = vmf->page;
5737 	loff_t size;
5738 	unsigned long len;
5739 	int ret = -EINVAL;
5740 	void *fsdata;
5741 	struct file *file = vma->vm_file;
5742 	struct inode *inode = file->f_path.dentry->d_inode;
5743 	struct address_space *mapping = inode->i_mapping;
5744 
5745 	/*
5746 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5747 	 * get i_mutex because we are already holding mmap_sem.
5748 	 */
5749 	down_read(&inode->i_alloc_sem);
5750 	size = i_size_read(inode);
5751 	if (page->mapping != mapping || size <= page_offset(page)
5752 	    || !PageUptodate(page)) {
5753 		/* page got truncated from under us? */
5754 		goto out_unlock;
5755 	}
5756 	ret = 0;
5757 	if (PageMappedToDisk(page))
5758 		goto out_unlock;
5759 
5760 	if (page->index == size >> PAGE_CACHE_SHIFT)
5761 		len = size & ~PAGE_CACHE_MASK;
5762 	else
5763 		len = PAGE_CACHE_SIZE;
5764 
5765 	lock_page(page);
5766 	/*
5767 	 * return if we have all the buffers mapped. This avoid
5768 	 * the need to call write_begin/write_end which does a
5769 	 * journal_start/journal_stop which can block and take
5770 	 * long time
5771 	 */
5772 	if (page_has_buffers(page)) {
5773 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5774 					ext4_bh_unmapped)) {
5775 			unlock_page(page);
5776 			goto out_unlock;
5777 		}
5778 	}
5779 	unlock_page(page);
5780 	/*
5781 	 * OK, we need to fill the hole... Do write_begin write_end
5782 	 * to do block allocation/reservation.We are not holding
5783 	 * inode.i__mutex here. That allow * parallel write_begin,
5784 	 * write_end call. lock_page prevent this from happening
5785 	 * on the same page though
5786 	 */
5787 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5788 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5789 	if (ret < 0)
5790 		goto out_unlock;
5791 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5792 			len, len, page, fsdata);
5793 	if (ret < 0)
5794 		goto out_unlock;
5795 	ret = 0;
5796 out_unlock:
5797 	if (ret)
5798 		ret = VM_FAULT_SIGBUS;
5799 	up_read(&inode->i_alloc_sem);
5800 	return ret;
5801 }
5802