xref: /openbmc/linux/fs/ext4/inode.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 				struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 				unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 				  int pextents);
145 
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155 
156 		if (ext4_has_inline_data(inode))
157 			return 0;
158 
159 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 	}
161 	return S_ISLNK(inode->i_mode) && inode->i_size &&
162 	       (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164 
165 /*
166  * Restart the transaction associated with *handle.  This does a commit,
167  * so before we call here everything must be consistently dirtied against
168  * this transaction.
169  */
170 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
171 				 int nblocks)
172 {
173 	int ret;
174 
175 	/*
176 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
177 	 * moment, get_block can be called only for blocks inside i_size since
178 	 * page cache has been already dropped and writes are blocked by
179 	 * i_mutex. So we can safely drop the i_data_sem here.
180 	 */
181 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
182 	jbd_debug(2, "restarting handle %p\n", handle);
183 	up_write(&EXT4_I(inode)->i_data_sem);
184 	ret = ext4_journal_restart(handle, nblocks);
185 	down_write(&EXT4_I(inode)->i_data_sem);
186 	ext4_discard_preallocations(inode);
187 
188 	return ret;
189 }
190 
191 /*
192  * Called at the last iput() if i_nlink is zero.
193  */
194 void ext4_evict_inode(struct inode *inode)
195 {
196 	handle_t *handle;
197 	int err;
198 	int extra_credits = 3;
199 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
200 
201 	trace_ext4_evict_inode(inode);
202 
203 	if (inode->i_nlink) {
204 		/*
205 		 * When journalling data dirty buffers are tracked only in the
206 		 * journal. So although mm thinks everything is clean and
207 		 * ready for reaping the inode might still have some pages to
208 		 * write in the running transaction or waiting to be
209 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
210 		 * (via truncate_inode_pages()) to discard these buffers can
211 		 * cause data loss. Also even if we did not discard these
212 		 * buffers, we would have no way to find them after the inode
213 		 * is reaped and thus user could see stale data if he tries to
214 		 * read them before the transaction is checkpointed. So be
215 		 * careful and force everything to disk here... We use
216 		 * ei->i_datasync_tid to store the newest transaction
217 		 * containing inode's data.
218 		 *
219 		 * Note that directories do not have this problem because they
220 		 * don't use page cache.
221 		 */
222 		if (inode->i_ino != EXT4_JOURNAL_INO &&
223 		    ext4_should_journal_data(inode) &&
224 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
225 		    inode->i_data.nrpages) {
226 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
227 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
228 
229 			jbd2_complete_transaction(journal, commit_tid);
230 			filemap_write_and_wait(&inode->i_data);
231 		}
232 		truncate_inode_pages_final(&inode->i_data);
233 
234 		goto no_delete;
235 	}
236 
237 	if (is_bad_inode(inode))
238 		goto no_delete;
239 	dquot_initialize(inode);
240 
241 	if (ext4_should_order_data(inode))
242 		ext4_begin_ordered_truncate(inode, 0);
243 	truncate_inode_pages_final(&inode->i_data);
244 
245 	/*
246 	 * Protect us against freezing - iput() caller didn't have to have any
247 	 * protection against it
248 	 */
249 	sb_start_intwrite(inode->i_sb);
250 
251 	if (!IS_NOQUOTA(inode))
252 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
253 
254 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
255 				 ext4_blocks_for_truncate(inode)+extra_credits);
256 	if (IS_ERR(handle)) {
257 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
258 		/*
259 		 * If we're going to skip the normal cleanup, we still need to
260 		 * make sure that the in-core orphan linked list is properly
261 		 * cleaned up.
262 		 */
263 		ext4_orphan_del(NULL, inode);
264 		sb_end_intwrite(inode->i_sb);
265 		goto no_delete;
266 	}
267 
268 	if (IS_SYNC(inode))
269 		ext4_handle_sync(handle);
270 
271 	/*
272 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
273 	 * special handling of symlinks here because i_size is used to
274 	 * determine whether ext4_inode_info->i_data contains symlink data or
275 	 * block mappings. Setting i_size to 0 will remove its fast symlink
276 	 * status. Erase i_data so that it becomes a valid empty block map.
277 	 */
278 	if (ext4_inode_is_fast_symlink(inode))
279 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 	inode->i_size = 0;
281 	err = ext4_mark_inode_dirty(handle, inode);
282 	if (err) {
283 		ext4_warning(inode->i_sb,
284 			     "couldn't mark inode dirty (err %d)", err);
285 		goto stop_handle;
286 	}
287 	if (inode->i_blocks) {
288 		err = ext4_truncate(inode);
289 		if (err) {
290 			ext4_error(inode->i_sb,
291 				   "couldn't truncate inode %lu (err %d)",
292 				   inode->i_ino, err);
293 			goto stop_handle;
294 		}
295 	}
296 
297 	/* Remove xattr references. */
298 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 				      extra_credits);
300 	if (err) {
301 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303 		ext4_journal_stop(handle);
304 		ext4_orphan_del(NULL, inode);
305 		sb_end_intwrite(inode->i_sb);
306 		ext4_xattr_inode_array_free(ea_inode_array);
307 		goto no_delete;
308 	}
309 
310 	/*
311 	 * Kill off the orphan record which ext4_truncate created.
312 	 * AKPM: I think this can be inside the above `if'.
313 	 * Note that ext4_orphan_del() has to be able to cope with the
314 	 * deletion of a non-existent orphan - this is because we don't
315 	 * know if ext4_truncate() actually created an orphan record.
316 	 * (Well, we could do this if we need to, but heck - it works)
317 	 */
318 	ext4_orphan_del(handle, inode);
319 	EXT4_I(inode)->i_dtime	= get_seconds();
320 
321 	/*
322 	 * One subtle ordering requirement: if anything has gone wrong
323 	 * (transaction abort, IO errors, whatever), then we can still
324 	 * do these next steps (the fs will already have been marked as
325 	 * having errors), but we can't free the inode if the mark_dirty
326 	 * fails.
327 	 */
328 	if (ext4_mark_inode_dirty(handle, inode))
329 		/* If that failed, just do the required in-core inode clear. */
330 		ext4_clear_inode(inode);
331 	else
332 		ext4_free_inode(handle, inode);
333 	ext4_journal_stop(handle);
334 	sb_end_intwrite(inode->i_sb);
335 	ext4_xattr_inode_array_free(ea_inode_array);
336 	return;
337 no_delete:
338 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
339 }
340 
341 #ifdef CONFIG_QUOTA
342 qsize_t *ext4_get_reserved_space(struct inode *inode)
343 {
344 	return &EXT4_I(inode)->i_reserved_quota;
345 }
346 #endif
347 
348 /*
349  * Called with i_data_sem down, which is important since we can call
350  * ext4_discard_preallocations() from here.
351  */
352 void ext4_da_update_reserve_space(struct inode *inode,
353 					int used, int quota_claim)
354 {
355 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
356 	struct ext4_inode_info *ei = EXT4_I(inode);
357 
358 	spin_lock(&ei->i_block_reservation_lock);
359 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
360 	if (unlikely(used > ei->i_reserved_data_blocks)) {
361 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
362 			 "with only %d reserved data blocks",
363 			 __func__, inode->i_ino, used,
364 			 ei->i_reserved_data_blocks);
365 		WARN_ON(1);
366 		used = ei->i_reserved_data_blocks;
367 	}
368 
369 	/* Update per-inode reservations */
370 	ei->i_reserved_data_blocks -= used;
371 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
372 
373 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
374 
375 	/* Update quota subsystem for data blocks */
376 	if (quota_claim)
377 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
378 	else {
379 		/*
380 		 * We did fallocate with an offset that is already delayed
381 		 * allocated. So on delayed allocated writeback we should
382 		 * not re-claim the quota for fallocated blocks.
383 		 */
384 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
385 	}
386 
387 	/*
388 	 * If we have done all the pending block allocations and if
389 	 * there aren't any writers on the inode, we can discard the
390 	 * inode's preallocations.
391 	 */
392 	if ((ei->i_reserved_data_blocks == 0) &&
393 	    (atomic_read(&inode->i_writecount) == 0))
394 		ext4_discard_preallocations(inode);
395 }
396 
397 static int __check_block_validity(struct inode *inode, const char *func,
398 				unsigned int line,
399 				struct ext4_map_blocks *map)
400 {
401 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
402 				   map->m_len)) {
403 		ext4_error_inode(inode, func, line, map->m_pblk,
404 				 "lblock %lu mapped to illegal pblock "
405 				 "(length %d)", (unsigned long) map->m_lblk,
406 				 map->m_len);
407 		return -EFSCORRUPTED;
408 	}
409 	return 0;
410 }
411 
412 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
413 		       ext4_lblk_t len)
414 {
415 	int ret;
416 
417 	if (ext4_encrypted_inode(inode))
418 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
419 
420 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
421 	if (ret > 0)
422 		ret = 0;
423 
424 	return ret;
425 }
426 
427 #define check_block_validity(inode, map)	\
428 	__check_block_validity((inode), __func__, __LINE__, (map))
429 
430 #ifdef ES_AGGRESSIVE_TEST
431 static void ext4_map_blocks_es_recheck(handle_t *handle,
432 				       struct inode *inode,
433 				       struct ext4_map_blocks *es_map,
434 				       struct ext4_map_blocks *map,
435 				       int flags)
436 {
437 	int retval;
438 
439 	map->m_flags = 0;
440 	/*
441 	 * There is a race window that the result is not the same.
442 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
443 	 * is that we lookup a block mapping in extent status tree with
444 	 * out taking i_data_sem.  So at the time the unwritten extent
445 	 * could be converted.
446 	 */
447 	down_read(&EXT4_I(inode)->i_data_sem);
448 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
449 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
450 					     EXT4_GET_BLOCKS_KEEP_SIZE);
451 	} else {
452 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
453 					     EXT4_GET_BLOCKS_KEEP_SIZE);
454 	}
455 	up_read((&EXT4_I(inode)->i_data_sem));
456 
457 	/*
458 	 * We don't check m_len because extent will be collpased in status
459 	 * tree.  So the m_len might not equal.
460 	 */
461 	if (es_map->m_lblk != map->m_lblk ||
462 	    es_map->m_flags != map->m_flags ||
463 	    es_map->m_pblk != map->m_pblk) {
464 		printk("ES cache assertion failed for inode: %lu "
465 		       "es_cached ex [%d/%d/%llu/%x] != "
466 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
467 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
468 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
469 		       map->m_len, map->m_pblk, map->m_flags,
470 		       retval, flags);
471 	}
472 }
473 #endif /* ES_AGGRESSIVE_TEST */
474 
475 /*
476  * The ext4_map_blocks() function tries to look up the requested blocks,
477  * and returns if the blocks are already mapped.
478  *
479  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
480  * and store the allocated blocks in the result buffer head and mark it
481  * mapped.
482  *
483  * If file type is extents based, it will call ext4_ext_map_blocks(),
484  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
485  * based files
486  *
487  * On success, it returns the number of blocks being mapped or allocated.  if
488  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
489  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
490  *
491  * It returns 0 if plain look up failed (blocks have not been allocated), in
492  * that case, @map is returned as unmapped but we still do fill map->m_len to
493  * indicate the length of a hole starting at map->m_lblk.
494  *
495  * It returns the error in case of allocation failure.
496  */
497 int ext4_map_blocks(handle_t *handle, struct inode *inode,
498 		    struct ext4_map_blocks *map, int flags)
499 {
500 	struct extent_status es;
501 	int retval;
502 	int ret = 0;
503 #ifdef ES_AGGRESSIVE_TEST
504 	struct ext4_map_blocks orig_map;
505 
506 	memcpy(&orig_map, map, sizeof(*map));
507 #endif
508 
509 	map->m_flags = 0;
510 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
511 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
512 		  (unsigned long) map->m_lblk);
513 
514 	/*
515 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
516 	 */
517 	if (unlikely(map->m_len > INT_MAX))
518 		map->m_len = INT_MAX;
519 
520 	/* We can handle the block number less than EXT_MAX_BLOCKS */
521 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
522 		return -EFSCORRUPTED;
523 
524 	/* Lookup extent status tree firstly */
525 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
526 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
527 			map->m_pblk = ext4_es_pblock(&es) +
528 					map->m_lblk - es.es_lblk;
529 			map->m_flags |= ext4_es_is_written(&es) ?
530 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
531 			retval = es.es_len - (map->m_lblk - es.es_lblk);
532 			if (retval > map->m_len)
533 				retval = map->m_len;
534 			map->m_len = retval;
535 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
536 			map->m_pblk = 0;
537 			retval = es.es_len - (map->m_lblk - es.es_lblk);
538 			if (retval > map->m_len)
539 				retval = map->m_len;
540 			map->m_len = retval;
541 			retval = 0;
542 		} else {
543 			BUG_ON(1);
544 		}
545 #ifdef ES_AGGRESSIVE_TEST
546 		ext4_map_blocks_es_recheck(handle, inode, map,
547 					   &orig_map, flags);
548 #endif
549 		goto found;
550 	}
551 
552 	/*
553 	 * Try to see if we can get the block without requesting a new
554 	 * file system block.
555 	 */
556 	down_read(&EXT4_I(inode)->i_data_sem);
557 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
558 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
559 					     EXT4_GET_BLOCKS_KEEP_SIZE);
560 	} else {
561 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
562 					     EXT4_GET_BLOCKS_KEEP_SIZE);
563 	}
564 	if (retval > 0) {
565 		unsigned int status;
566 
567 		if (unlikely(retval != map->m_len)) {
568 			ext4_warning(inode->i_sb,
569 				     "ES len assertion failed for inode "
570 				     "%lu: retval %d != map->m_len %d",
571 				     inode->i_ino, retval, map->m_len);
572 			WARN_ON(1);
573 		}
574 
575 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
576 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
577 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
578 		    !(status & EXTENT_STATUS_WRITTEN) &&
579 		    ext4_find_delalloc_range(inode, map->m_lblk,
580 					     map->m_lblk + map->m_len - 1))
581 			status |= EXTENT_STATUS_DELAYED;
582 		ret = ext4_es_insert_extent(inode, map->m_lblk,
583 					    map->m_len, map->m_pblk, status);
584 		if (ret < 0)
585 			retval = ret;
586 	}
587 	up_read((&EXT4_I(inode)->i_data_sem));
588 
589 found:
590 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
591 		ret = check_block_validity(inode, map);
592 		if (ret != 0)
593 			return ret;
594 	}
595 
596 	/* If it is only a block(s) look up */
597 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
598 		return retval;
599 
600 	/*
601 	 * Returns if the blocks have already allocated
602 	 *
603 	 * Note that if blocks have been preallocated
604 	 * ext4_ext_get_block() returns the create = 0
605 	 * with buffer head unmapped.
606 	 */
607 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
608 		/*
609 		 * If we need to convert extent to unwritten
610 		 * we continue and do the actual work in
611 		 * ext4_ext_map_blocks()
612 		 */
613 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
614 			return retval;
615 
616 	/*
617 	 * Here we clear m_flags because after allocating an new extent,
618 	 * it will be set again.
619 	 */
620 	map->m_flags &= ~EXT4_MAP_FLAGS;
621 
622 	/*
623 	 * New blocks allocate and/or writing to unwritten extent
624 	 * will possibly result in updating i_data, so we take
625 	 * the write lock of i_data_sem, and call get_block()
626 	 * with create == 1 flag.
627 	 */
628 	down_write(&EXT4_I(inode)->i_data_sem);
629 
630 	/*
631 	 * We need to check for EXT4 here because migrate
632 	 * could have changed the inode type in between
633 	 */
634 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
635 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
636 	} else {
637 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
638 
639 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
640 			/*
641 			 * We allocated new blocks which will result in
642 			 * i_data's format changing.  Force the migrate
643 			 * to fail by clearing migrate flags
644 			 */
645 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
646 		}
647 
648 		/*
649 		 * Update reserved blocks/metadata blocks after successful
650 		 * block allocation which had been deferred till now. We don't
651 		 * support fallocate for non extent files. So we can update
652 		 * reserve space here.
653 		 */
654 		if ((retval > 0) &&
655 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
656 			ext4_da_update_reserve_space(inode, retval, 1);
657 	}
658 
659 	if (retval > 0) {
660 		unsigned int status;
661 
662 		if (unlikely(retval != map->m_len)) {
663 			ext4_warning(inode->i_sb,
664 				     "ES len assertion failed for inode "
665 				     "%lu: retval %d != map->m_len %d",
666 				     inode->i_ino, retval, map->m_len);
667 			WARN_ON(1);
668 		}
669 
670 		/*
671 		 * We have to zeroout blocks before inserting them into extent
672 		 * status tree. Otherwise someone could look them up there and
673 		 * use them before they are really zeroed. We also have to
674 		 * unmap metadata before zeroing as otherwise writeback can
675 		 * overwrite zeros with stale data from block device.
676 		 */
677 		if (flags & EXT4_GET_BLOCKS_ZERO &&
678 		    map->m_flags & EXT4_MAP_MAPPED &&
679 		    map->m_flags & EXT4_MAP_NEW) {
680 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
681 					   map->m_len);
682 			ret = ext4_issue_zeroout(inode, map->m_lblk,
683 						 map->m_pblk, map->m_len);
684 			if (ret) {
685 				retval = ret;
686 				goto out_sem;
687 			}
688 		}
689 
690 		/*
691 		 * If the extent has been zeroed out, we don't need to update
692 		 * extent status tree.
693 		 */
694 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
696 			if (ext4_es_is_written(&es))
697 				goto out_sem;
698 		}
699 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 		    !(status & EXTENT_STATUS_WRITTEN) &&
703 		    ext4_find_delalloc_range(inode, map->m_lblk,
704 					     map->m_lblk + map->m_len - 1))
705 			status |= EXTENT_STATUS_DELAYED;
706 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 					    map->m_pblk, status);
708 		if (ret < 0) {
709 			retval = ret;
710 			goto out_sem;
711 		}
712 	}
713 
714 out_sem:
715 	up_write((&EXT4_I(inode)->i_data_sem));
716 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 		ret = check_block_validity(inode, map);
718 		if (ret != 0)
719 			return ret;
720 
721 		/*
722 		 * Inodes with freshly allocated blocks where contents will be
723 		 * visible after transaction commit must be on transaction's
724 		 * ordered data list.
725 		 */
726 		if (map->m_flags & EXT4_MAP_NEW &&
727 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 		    !ext4_is_quota_file(inode) &&
730 		    ext4_should_order_data(inode)) {
731 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
732 				ret = ext4_jbd2_inode_add_wait(handle, inode);
733 			else
734 				ret = ext4_jbd2_inode_add_write(handle, inode);
735 			if (ret)
736 				return ret;
737 		}
738 	}
739 	return retval;
740 }
741 
742 /*
743  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744  * we have to be careful as someone else may be manipulating b_state as well.
745  */
746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747 {
748 	unsigned long old_state;
749 	unsigned long new_state;
750 
751 	flags &= EXT4_MAP_FLAGS;
752 
753 	/* Dummy buffer_head? Set non-atomically. */
754 	if (!bh->b_page) {
755 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756 		return;
757 	}
758 	/*
759 	 * Someone else may be modifying b_state. Be careful! This is ugly but
760 	 * once we get rid of using bh as a container for mapping information
761 	 * to pass to / from get_block functions, this can go away.
762 	 */
763 	do {
764 		old_state = READ_ONCE(bh->b_state);
765 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766 	} while (unlikely(
767 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
768 }
769 
770 static int _ext4_get_block(struct inode *inode, sector_t iblock,
771 			   struct buffer_head *bh, int flags)
772 {
773 	struct ext4_map_blocks map;
774 	int ret = 0;
775 
776 	if (ext4_has_inline_data(inode))
777 		return -ERANGE;
778 
779 	map.m_lblk = iblock;
780 	map.m_len = bh->b_size >> inode->i_blkbits;
781 
782 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
783 			      flags);
784 	if (ret > 0) {
785 		map_bh(bh, inode->i_sb, map.m_pblk);
786 		ext4_update_bh_state(bh, map.m_flags);
787 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
788 		ret = 0;
789 	} else if (ret == 0) {
790 		/* hole case, need to fill in bh->b_size */
791 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792 	}
793 	return ret;
794 }
795 
796 int ext4_get_block(struct inode *inode, sector_t iblock,
797 		   struct buffer_head *bh, int create)
798 {
799 	return _ext4_get_block(inode, iblock, bh,
800 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
801 }
802 
803 /*
804  * Get block function used when preparing for buffered write if we require
805  * creating an unwritten extent if blocks haven't been allocated.  The extent
806  * will be converted to written after the IO is complete.
807  */
808 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
809 			     struct buffer_head *bh_result, int create)
810 {
811 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
812 		   inode->i_ino, create);
813 	return _ext4_get_block(inode, iblock, bh_result,
814 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
815 }
816 
817 /* Maximum number of blocks we map for direct IO at once. */
818 #define DIO_MAX_BLOCKS 4096
819 
820 /*
821  * Get blocks function for the cases that need to start a transaction -
822  * generally difference cases of direct IO and DAX IO. It also handles retries
823  * in case of ENOSPC.
824  */
825 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
826 				struct buffer_head *bh_result, int flags)
827 {
828 	int dio_credits;
829 	handle_t *handle;
830 	int retries = 0;
831 	int ret;
832 
833 	/* Trim mapping request to maximum we can map at once for DIO */
834 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
835 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
836 	dio_credits = ext4_chunk_trans_blocks(inode,
837 				      bh_result->b_size >> inode->i_blkbits);
838 retry:
839 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
840 	if (IS_ERR(handle))
841 		return PTR_ERR(handle);
842 
843 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
844 	ext4_journal_stop(handle);
845 
846 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
847 		goto retry;
848 	return ret;
849 }
850 
851 /* Get block function for DIO reads and writes to inodes without extents */
852 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
853 		       struct buffer_head *bh, int create)
854 {
855 	/* We don't expect handle for direct IO */
856 	WARN_ON_ONCE(ext4_journal_current_handle());
857 
858 	if (!create)
859 		return _ext4_get_block(inode, iblock, bh, 0);
860 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
861 }
862 
863 /*
864  * Get block function for AIO DIO writes when we create unwritten extent if
865  * blocks are not allocated yet. The extent will be converted to written
866  * after IO is complete.
867  */
868 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
869 		sector_t iblock, struct buffer_head *bh_result,	int create)
870 {
871 	int ret;
872 
873 	/* We don't expect handle for direct IO */
874 	WARN_ON_ONCE(ext4_journal_current_handle());
875 
876 	ret = ext4_get_block_trans(inode, iblock, bh_result,
877 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
878 
879 	/*
880 	 * When doing DIO using unwritten extents, we need io_end to convert
881 	 * unwritten extents to written on IO completion. We allocate io_end
882 	 * once we spot unwritten extent and store it in b_private. Generic
883 	 * DIO code keeps b_private set and furthermore passes the value to
884 	 * our completion callback in 'private' argument.
885 	 */
886 	if (!ret && buffer_unwritten(bh_result)) {
887 		if (!bh_result->b_private) {
888 			ext4_io_end_t *io_end;
889 
890 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
891 			if (!io_end)
892 				return -ENOMEM;
893 			bh_result->b_private = io_end;
894 			ext4_set_io_unwritten_flag(inode, io_end);
895 		}
896 		set_buffer_defer_completion(bh_result);
897 	}
898 
899 	return ret;
900 }
901 
902 /*
903  * Get block function for non-AIO DIO writes when we create unwritten extent if
904  * blocks are not allocated yet. The extent will be converted to written
905  * after IO is complete by ext4_direct_IO_write().
906  */
907 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
908 		sector_t iblock, struct buffer_head *bh_result,	int create)
909 {
910 	int ret;
911 
912 	/* We don't expect handle for direct IO */
913 	WARN_ON_ONCE(ext4_journal_current_handle());
914 
915 	ret = ext4_get_block_trans(inode, iblock, bh_result,
916 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
917 
918 	/*
919 	 * Mark inode as having pending DIO writes to unwritten extents.
920 	 * ext4_direct_IO_write() checks this flag and converts extents to
921 	 * written.
922 	 */
923 	if (!ret && buffer_unwritten(bh_result))
924 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
925 
926 	return ret;
927 }
928 
929 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
930 		   struct buffer_head *bh_result, int create)
931 {
932 	int ret;
933 
934 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
935 		   inode->i_ino, create);
936 	/* We don't expect handle for direct IO */
937 	WARN_ON_ONCE(ext4_journal_current_handle());
938 
939 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
940 	/*
941 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
942 	 * that.
943 	 */
944 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
945 
946 	return ret;
947 }
948 
949 
950 /*
951  * `handle' can be NULL if create is zero
952  */
953 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
954 				ext4_lblk_t block, int map_flags)
955 {
956 	struct ext4_map_blocks map;
957 	struct buffer_head *bh;
958 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
959 	int err;
960 
961 	J_ASSERT(handle != NULL || create == 0);
962 
963 	map.m_lblk = block;
964 	map.m_len = 1;
965 	err = ext4_map_blocks(handle, inode, &map, map_flags);
966 
967 	if (err == 0)
968 		return create ? ERR_PTR(-ENOSPC) : NULL;
969 	if (err < 0)
970 		return ERR_PTR(err);
971 
972 	bh = sb_getblk(inode->i_sb, map.m_pblk);
973 	if (unlikely(!bh))
974 		return ERR_PTR(-ENOMEM);
975 	if (map.m_flags & EXT4_MAP_NEW) {
976 		J_ASSERT(create != 0);
977 		J_ASSERT(handle != NULL);
978 
979 		/*
980 		 * Now that we do not always journal data, we should
981 		 * keep in mind whether this should always journal the
982 		 * new buffer as metadata.  For now, regular file
983 		 * writes use ext4_get_block instead, so it's not a
984 		 * problem.
985 		 */
986 		lock_buffer(bh);
987 		BUFFER_TRACE(bh, "call get_create_access");
988 		err = ext4_journal_get_create_access(handle, bh);
989 		if (unlikely(err)) {
990 			unlock_buffer(bh);
991 			goto errout;
992 		}
993 		if (!buffer_uptodate(bh)) {
994 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
995 			set_buffer_uptodate(bh);
996 		}
997 		unlock_buffer(bh);
998 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
999 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1000 		if (unlikely(err))
1001 			goto errout;
1002 	} else
1003 		BUFFER_TRACE(bh, "not a new buffer");
1004 	return bh;
1005 errout:
1006 	brelse(bh);
1007 	return ERR_PTR(err);
1008 }
1009 
1010 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1011 			       ext4_lblk_t block, int map_flags)
1012 {
1013 	struct buffer_head *bh;
1014 
1015 	bh = ext4_getblk(handle, inode, block, map_flags);
1016 	if (IS_ERR(bh))
1017 		return bh;
1018 	if (!bh || buffer_uptodate(bh))
1019 		return bh;
1020 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1021 	wait_on_buffer(bh);
1022 	if (buffer_uptodate(bh))
1023 		return bh;
1024 	put_bh(bh);
1025 	return ERR_PTR(-EIO);
1026 }
1027 
1028 /* Read a contiguous batch of blocks. */
1029 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1030 		     bool wait, struct buffer_head **bhs)
1031 {
1032 	int i, err;
1033 
1034 	for (i = 0; i < bh_count; i++) {
1035 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1036 		if (IS_ERR(bhs[i])) {
1037 			err = PTR_ERR(bhs[i]);
1038 			bh_count = i;
1039 			goto out_brelse;
1040 		}
1041 	}
1042 
1043 	for (i = 0; i < bh_count; i++)
1044 		/* Note that NULL bhs[i] is valid because of holes. */
1045 		if (bhs[i] && !buffer_uptodate(bhs[i]))
1046 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1047 				    &bhs[i]);
1048 
1049 	if (!wait)
1050 		return 0;
1051 
1052 	for (i = 0; i < bh_count; i++)
1053 		if (bhs[i])
1054 			wait_on_buffer(bhs[i]);
1055 
1056 	for (i = 0; i < bh_count; i++) {
1057 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1058 			err = -EIO;
1059 			goto out_brelse;
1060 		}
1061 	}
1062 	return 0;
1063 
1064 out_brelse:
1065 	for (i = 0; i < bh_count; i++) {
1066 		brelse(bhs[i]);
1067 		bhs[i] = NULL;
1068 	}
1069 	return err;
1070 }
1071 
1072 int ext4_walk_page_buffers(handle_t *handle,
1073 			   struct buffer_head *head,
1074 			   unsigned from,
1075 			   unsigned to,
1076 			   int *partial,
1077 			   int (*fn)(handle_t *handle,
1078 				     struct buffer_head *bh))
1079 {
1080 	struct buffer_head *bh;
1081 	unsigned block_start, block_end;
1082 	unsigned blocksize = head->b_size;
1083 	int err, ret = 0;
1084 	struct buffer_head *next;
1085 
1086 	for (bh = head, block_start = 0;
1087 	     ret == 0 && (bh != head || !block_start);
1088 	     block_start = block_end, bh = next) {
1089 		next = bh->b_this_page;
1090 		block_end = block_start + blocksize;
1091 		if (block_end <= from || block_start >= to) {
1092 			if (partial && !buffer_uptodate(bh))
1093 				*partial = 1;
1094 			continue;
1095 		}
1096 		err = (*fn)(handle, bh);
1097 		if (!ret)
1098 			ret = err;
1099 	}
1100 	return ret;
1101 }
1102 
1103 /*
1104  * To preserve ordering, it is essential that the hole instantiation and
1105  * the data write be encapsulated in a single transaction.  We cannot
1106  * close off a transaction and start a new one between the ext4_get_block()
1107  * and the commit_write().  So doing the jbd2_journal_start at the start of
1108  * prepare_write() is the right place.
1109  *
1110  * Also, this function can nest inside ext4_writepage().  In that case, we
1111  * *know* that ext4_writepage() has generated enough buffer credits to do the
1112  * whole page.  So we won't block on the journal in that case, which is good,
1113  * because the caller may be PF_MEMALLOC.
1114  *
1115  * By accident, ext4 can be reentered when a transaction is open via
1116  * quota file writes.  If we were to commit the transaction while thus
1117  * reentered, there can be a deadlock - we would be holding a quota
1118  * lock, and the commit would never complete if another thread had a
1119  * transaction open and was blocking on the quota lock - a ranking
1120  * violation.
1121  *
1122  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1123  * will _not_ run commit under these circumstances because handle->h_ref
1124  * is elevated.  We'll still have enough credits for the tiny quotafile
1125  * write.
1126  */
1127 int do_journal_get_write_access(handle_t *handle,
1128 				struct buffer_head *bh)
1129 {
1130 	int dirty = buffer_dirty(bh);
1131 	int ret;
1132 
1133 	if (!buffer_mapped(bh) || buffer_freed(bh))
1134 		return 0;
1135 	/*
1136 	 * __block_write_begin() could have dirtied some buffers. Clean
1137 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1138 	 * otherwise about fs integrity issues. Setting of the dirty bit
1139 	 * by __block_write_begin() isn't a real problem here as we clear
1140 	 * the bit before releasing a page lock and thus writeback cannot
1141 	 * ever write the buffer.
1142 	 */
1143 	if (dirty)
1144 		clear_buffer_dirty(bh);
1145 	BUFFER_TRACE(bh, "get write access");
1146 	ret = ext4_journal_get_write_access(handle, bh);
1147 	if (!ret && dirty)
1148 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1149 	return ret;
1150 }
1151 
1152 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1153 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1154 				  get_block_t *get_block)
1155 {
1156 	unsigned from = pos & (PAGE_SIZE - 1);
1157 	unsigned to = from + len;
1158 	struct inode *inode = page->mapping->host;
1159 	unsigned block_start, block_end;
1160 	sector_t block;
1161 	int err = 0;
1162 	unsigned blocksize = inode->i_sb->s_blocksize;
1163 	unsigned bbits;
1164 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1165 	bool decrypt = false;
1166 
1167 	BUG_ON(!PageLocked(page));
1168 	BUG_ON(from > PAGE_SIZE);
1169 	BUG_ON(to > PAGE_SIZE);
1170 	BUG_ON(from > to);
1171 
1172 	if (!page_has_buffers(page))
1173 		create_empty_buffers(page, blocksize, 0);
1174 	head = page_buffers(page);
1175 	bbits = ilog2(blocksize);
1176 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1177 
1178 	for (bh = head, block_start = 0; bh != head || !block_start;
1179 	    block++, block_start = block_end, bh = bh->b_this_page) {
1180 		block_end = block_start + blocksize;
1181 		if (block_end <= from || block_start >= to) {
1182 			if (PageUptodate(page)) {
1183 				if (!buffer_uptodate(bh))
1184 					set_buffer_uptodate(bh);
1185 			}
1186 			continue;
1187 		}
1188 		if (buffer_new(bh))
1189 			clear_buffer_new(bh);
1190 		if (!buffer_mapped(bh)) {
1191 			WARN_ON(bh->b_size != blocksize);
1192 			err = get_block(inode, block, bh, 1);
1193 			if (err)
1194 				break;
1195 			if (buffer_new(bh)) {
1196 				clean_bdev_bh_alias(bh);
1197 				if (PageUptodate(page)) {
1198 					clear_buffer_new(bh);
1199 					set_buffer_uptodate(bh);
1200 					mark_buffer_dirty(bh);
1201 					continue;
1202 				}
1203 				if (block_end > to || block_start < from)
1204 					zero_user_segments(page, to, block_end,
1205 							   block_start, from);
1206 				continue;
1207 			}
1208 		}
1209 		if (PageUptodate(page)) {
1210 			if (!buffer_uptodate(bh))
1211 				set_buffer_uptodate(bh);
1212 			continue;
1213 		}
1214 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1215 		    !buffer_unwritten(bh) &&
1216 		    (block_start < from || block_end > to)) {
1217 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1218 			*wait_bh++ = bh;
1219 			decrypt = ext4_encrypted_inode(inode) &&
1220 				S_ISREG(inode->i_mode);
1221 		}
1222 	}
1223 	/*
1224 	 * If we issued read requests, let them complete.
1225 	 */
1226 	while (wait_bh > wait) {
1227 		wait_on_buffer(*--wait_bh);
1228 		if (!buffer_uptodate(*wait_bh))
1229 			err = -EIO;
1230 	}
1231 	if (unlikely(err))
1232 		page_zero_new_buffers(page, from, to);
1233 	else if (decrypt)
1234 		err = fscrypt_decrypt_page(page->mapping->host, page,
1235 				PAGE_SIZE, 0, page->index);
1236 	return err;
1237 }
1238 #endif
1239 
1240 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1241 			    loff_t pos, unsigned len, unsigned flags,
1242 			    struct page **pagep, void **fsdata)
1243 {
1244 	struct inode *inode = mapping->host;
1245 	int ret, needed_blocks;
1246 	handle_t *handle;
1247 	int retries = 0;
1248 	struct page *page;
1249 	pgoff_t index;
1250 	unsigned from, to;
1251 
1252 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1253 		return -EIO;
1254 
1255 	trace_ext4_write_begin(inode, pos, len, flags);
1256 	/*
1257 	 * Reserve one block more for addition to orphan list in case
1258 	 * we allocate blocks but write fails for some reason
1259 	 */
1260 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1261 	index = pos >> PAGE_SHIFT;
1262 	from = pos & (PAGE_SIZE - 1);
1263 	to = from + len;
1264 
1265 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1266 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1267 						    flags, pagep);
1268 		if (ret < 0)
1269 			return ret;
1270 		if (ret == 1)
1271 			return 0;
1272 	}
1273 
1274 	/*
1275 	 * grab_cache_page_write_begin() can take a long time if the
1276 	 * system is thrashing due to memory pressure, or if the page
1277 	 * is being written back.  So grab it first before we start
1278 	 * the transaction handle.  This also allows us to allocate
1279 	 * the page (if needed) without using GFP_NOFS.
1280 	 */
1281 retry_grab:
1282 	page = grab_cache_page_write_begin(mapping, index, flags);
1283 	if (!page)
1284 		return -ENOMEM;
1285 	unlock_page(page);
1286 
1287 retry_journal:
1288 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1289 	if (IS_ERR(handle)) {
1290 		put_page(page);
1291 		return PTR_ERR(handle);
1292 	}
1293 
1294 	lock_page(page);
1295 	if (page->mapping != mapping) {
1296 		/* The page got truncated from under us */
1297 		unlock_page(page);
1298 		put_page(page);
1299 		ext4_journal_stop(handle);
1300 		goto retry_grab;
1301 	}
1302 	/* In case writeback began while the page was unlocked */
1303 	wait_for_stable_page(page);
1304 
1305 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1306 	if (ext4_should_dioread_nolock(inode))
1307 		ret = ext4_block_write_begin(page, pos, len,
1308 					     ext4_get_block_unwritten);
1309 	else
1310 		ret = ext4_block_write_begin(page, pos, len,
1311 					     ext4_get_block);
1312 #else
1313 	if (ext4_should_dioread_nolock(inode))
1314 		ret = __block_write_begin(page, pos, len,
1315 					  ext4_get_block_unwritten);
1316 	else
1317 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1318 #endif
1319 	if (!ret && ext4_should_journal_data(inode)) {
1320 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1321 					     from, to, NULL,
1322 					     do_journal_get_write_access);
1323 	}
1324 
1325 	if (ret) {
1326 		unlock_page(page);
1327 		/*
1328 		 * __block_write_begin may have instantiated a few blocks
1329 		 * outside i_size.  Trim these off again. Don't need
1330 		 * i_size_read because we hold i_mutex.
1331 		 *
1332 		 * Add inode to orphan list in case we crash before
1333 		 * truncate finishes
1334 		 */
1335 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1336 			ext4_orphan_add(handle, inode);
1337 
1338 		ext4_journal_stop(handle);
1339 		if (pos + len > inode->i_size) {
1340 			ext4_truncate_failed_write(inode);
1341 			/*
1342 			 * If truncate failed early the inode might
1343 			 * still be on the orphan list; we need to
1344 			 * make sure the inode is removed from the
1345 			 * orphan list in that case.
1346 			 */
1347 			if (inode->i_nlink)
1348 				ext4_orphan_del(NULL, inode);
1349 		}
1350 
1351 		if (ret == -ENOSPC &&
1352 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1353 			goto retry_journal;
1354 		put_page(page);
1355 		return ret;
1356 	}
1357 	*pagep = page;
1358 	return ret;
1359 }
1360 
1361 /* For write_end() in data=journal mode */
1362 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1363 {
1364 	int ret;
1365 	if (!buffer_mapped(bh) || buffer_freed(bh))
1366 		return 0;
1367 	set_buffer_uptodate(bh);
1368 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1369 	clear_buffer_meta(bh);
1370 	clear_buffer_prio(bh);
1371 	return ret;
1372 }
1373 
1374 /*
1375  * We need to pick up the new inode size which generic_commit_write gave us
1376  * `file' can be NULL - eg, when called from page_symlink().
1377  *
1378  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1379  * buffers are managed internally.
1380  */
1381 static int ext4_write_end(struct file *file,
1382 			  struct address_space *mapping,
1383 			  loff_t pos, unsigned len, unsigned copied,
1384 			  struct page *page, void *fsdata)
1385 {
1386 	handle_t *handle = ext4_journal_current_handle();
1387 	struct inode *inode = mapping->host;
1388 	loff_t old_size = inode->i_size;
1389 	int ret = 0, ret2;
1390 	int i_size_changed = 0;
1391 
1392 	trace_ext4_write_end(inode, pos, len, copied);
1393 	if (ext4_has_inline_data(inode)) {
1394 		ret = ext4_write_inline_data_end(inode, pos, len,
1395 						 copied, page);
1396 		if (ret < 0) {
1397 			unlock_page(page);
1398 			put_page(page);
1399 			goto errout;
1400 		}
1401 		copied = ret;
1402 	} else
1403 		copied = block_write_end(file, mapping, pos,
1404 					 len, copied, page, fsdata);
1405 	/*
1406 	 * it's important to update i_size while still holding page lock:
1407 	 * page writeout could otherwise come in and zero beyond i_size.
1408 	 */
1409 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1410 	unlock_page(page);
1411 	put_page(page);
1412 
1413 	if (old_size < pos)
1414 		pagecache_isize_extended(inode, old_size, pos);
1415 	/*
1416 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1417 	 * makes the holding time of page lock longer. Second, it forces lock
1418 	 * ordering of page lock and transaction start for journaling
1419 	 * filesystems.
1420 	 */
1421 	if (i_size_changed)
1422 		ext4_mark_inode_dirty(handle, inode);
1423 
1424 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1425 		/* if we have allocated more blocks and copied
1426 		 * less. We will have blocks allocated outside
1427 		 * inode->i_size. So truncate them
1428 		 */
1429 		ext4_orphan_add(handle, inode);
1430 errout:
1431 	ret2 = ext4_journal_stop(handle);
1432 	if (!ret)
1433 		ret = ret2;
1434 
1435 	if (pos + len > inode->i_size) {
1436 		ext4_truncate_failed_write(inode);
1437 		/*
1438 		 * If truncate failed early the inode might still be
1439 		 * on the orphan list; we need to make sure the inode
1440 		 * is removed from the orphan list in that case.
1441 		 */
1442 		if (inode->i_nlink)
1443 			ext4_orphan_del(NULL, inode);
1444 	}
1445 
1446 	return ret ? ret : copied;
1447 }
1448 
1449 /*
1450  * This is a private version of page_zero_new_buffers() which doesn't
1451  * set the buffer to be dirty, since in data=journalled mode we need
1452  * to call ext4_handle_dirty_metadata() instead.
1453  */
1454 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1455 					    struct page *page,
1456 					    unsigned from, unsigned to)
1457 {
1458 	unsigned int block_start = 0, block_end;
1459 	struct buffer_head *head, *bh;
1460 
1461 	bh = head = page_buffers(page);
1462 	do {
1463 		block_end = block_start + bh->b_size;
1464 		if (buffer_new(bh)) {
1465 			if (block_end > from && block_start < to) {
1466 				if (!PageUptodate(page)) {
1467 					unsigned start, size;
1468 
1469 					start = max(from, block_start);
1470 					size = min(to, block_end) - start;
1471 
1472 					zero_user(page, start, size);
1473 					write_end_fn(handle, bh);
1474 				}
1475 				clear_buffer_new(bh);
1476 			}
1477 		}
1478 		block_start = block_end;
1479 		bh = bh->b_this_page;
1480 	} while (bh != head);
1481 }
1482 
1483 static int ext4_journalled_write_end(struct file *file,
1484 				     struct address_space *mapping,
1485 				     loff_t pos, unsigned len, unsigned copied,
1486 				     struct page *page, void *fsdata)
1487 {
1488 	handle_t *handle = ext4_journal_current_handle();
1489 	struct inode *inode = mapping->host;
1490 	loff_t old_size = inode->i_size;
1491 	int ret = 0, ret2;
1492 	int partial = 0;
1493 	unsigned from, to;
1494 	int size_changed = 0;
1495 
1496 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1497 	from = pos & (PAGE_SIZE - 1);
1498 	to = from + len;
1499 
1500 	BUG_ON(!ext4_handle_valid(handle));
1501 
1502 	if (ext4_has_inline_data(inode)) {
1503 		ret = ext4_write_inline_data_end(inode, pos, len,
1504 						 copied, page);
1505 		if (ret < 0) {
1506 			unlock_page(page);
1507 			put_page(page);
1508 			goto errout;
1509 		}
1510 		copied = ret;
1511 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1512 		copied = 0;
1513 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1514 	} else {
1515 		if (unlikely(copied < len))
1516 			ext4_journalled_zero_new_buffers(handle, page,
1517 							 from + copied, to);
1518 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1519 					     from + copied, &partial,
1520 					     write_end_fn);
1521 		if (!partial)
1522 			SetPageUptodate(page);
1523 	}
1524 	size_changed = ext4_update_inode_size(inode, pos + copied);
1525 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1526 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1527 	unlock_page(page);
1528 	put_page(page);
1529 
1530 	if (old_size < pos)
1531 		pagecache_isize_extended(inode, old_size, pos);
1532 
1533 	if (size_changed) {
1534 		ret2 = ext4_mark_inode_dirty(handle, inode);
1535 		if (!ret)
1536 			ret = ret2;
1537 	}
1538 
1539 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1540 		/* if we have allocated more blocks and copied
1541 		 * less. We will have blocks allocated outside
1542 		 * inode->i_size. So truncate them
1543 		 */
1544 		ext4_orphan_add(handle, inode);
1545 
1546 errout:
1547 	ret2 = ext4_journal_stop(handle);
1548 	if (!ret)
1549 		ret = ret2;
1550 	if (pos + len > inode->i_size) {
1551 		ext4_truncate_failed_write(inode);
1552 		/*
1553 		 * If truncate failed early the inode might still be
1554 		 * on the orphan list; we need to make sure the inode
1555 		 * is removed from the orphan list in that case.
1556 		 */
1557 		if (inode->i_nlink)
1558 			ext4_orphan_del(NULL, inode);
1559 	}
1560 
1561 	return ret ? ret : copied;
1562 }
1563 
1564 /*
1565  * Reserve space for a single cluster
1566  */
1567 static int ext4_da_reserve_space(struct inode *inode)
1568 {
1569 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1570 	struct ext4_inode_info *ei = EXT4_I(inode);
1571 	int ret;
1572 
1573 	/*
1574 	 * We will charge metadata quota at writeout time; this saves
1575 	 * us from metadata over-estimation, though we may go over by
1576 	 * a small amount in the end.  Here we just reserve for data.
1577 	 */
1578 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1579 	if (ret)
1580 		return ret;
1581 
1582 	spin_lock(&ei->i_block_reservation_lock);
1583 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1584 		spin_unlock(&ei->i_block_reservation_lock);
1585 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1586 		return -ENOSPC;
1587 	}
1588 	ei->i_reserved_data_blocks++;
1589 	trace_ext4_da_reserve_space(inode);
1590 	spin_unlock(&ei->i_block_reservation_lock);
1591 
1592 	return 0;       /* success */
1593 }
1594 
1595 static void ext4_da_release_space(struct inode *inode, int to_free)
1596 {
1597 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1598 	struct ext4_inode_info *ei = EXT4_I(inode);
1599 
1600 	if (!to_free)
1601 		return;		/* Nothing to release, exit */
1602 
1603 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1604 
1605 	trace_ext4_da_release_space(inode, to_free);
1606 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1607 		/*
1608 		 * if there aren't enough reserved blocks, then the
1609 		 * counter is messed up somewhere.  Since this
1610 		 * function is called from invalidate page, it's
1611 		 * harmless to return without any action.
1612 		 */
1613 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1614 			 "ino %lu, to_free %d with only %d reserved "
1615 			 "data blocks", inode->i_ino, to_free,
1616 			 ei->i_reserved_data_blocks);
1617 		WARN_ON(1);
1618 		to_free = ei->i_reserved_data_blocks;
1619 	}
1620 	ei->i_reserved_data_blocks -= to_free;
1621 
1622 	/* update fs dirty data blocks counter */
1623 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1624 
1625 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1626 
1627 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1628 }
1629 
1630 static void ext4_da_page_release_reservation(struct page *page,
1631 					     unsigned int offset,
1632 					     unsigned int length)
1633 {
1634 	int to_release = 0, contiguous_blks = 0;
1635 	struct buffer_head *head, *bh;
1636 	unsigned int curr_off = 0;
1637 	struct inode *inode = page->mapping->host;
1638 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1639 	unsigned int stop = offset + length;
1640 	int num_clusters;
1641 	ext4_fsblk_t lblk;
1642 
1643 	BUG_ON(stop > PAGE_SIZE || stop < length);
1644 
1645 	head = page_buffers(page);
1646 	bh = head;
1647 	do {
1648 		unsigned int next_off = curr_off + bh->b_size;
1649 
1650 		if (next_off > stop)
1651 			break;
1652 
1653 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1654 			to_release++;
1655 			contiguous_blks++;
1656 			clear_buffer_delay(bh);
1657 		} else if (contiguous_blks) {
1658 			lblk = page->index <<
1659 			       (PAGE_SHIFT - inode->i_blkbits);
1660 			lblk += (curr_off >> inode->i_blkbits) -
1661 				contiguous_blks;
1662 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1663 			contiguous_blks = 0;
1664 		}
1665 		curr_off = next_off;
1666 	} while ((bh = bh->b_this_page) != head);
1667 
1668 	if (contiguous_blks) {
1669 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1670 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1671 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1672 	}
1673 
1674 	/* If we have released all the blocks belonging to a cluster, then we
1675 	 * need to release the reserved space for that cluster. */
1676 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1677 	while (num_clusters > 0) {
1678 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1679 			((num_clusters - 1) << sbi->s_cluster_bits);
1680 		if (sbi->s_cluster_ratio == 1 ||
1681 		    !ext4_find_delalloc_cluster(inode, lblk))
1682 			ext4_da_release_space(inode, 1);
1683 
1684 		num_clusters--;
1685 	}
1686 }
1687 
1688 /*
1689  * Delayed allocation stuff
1690  */
1691 
1692 struct mpage_da_data {
1693 	struct inode *inode;
1694 	struct writeback_control *wbc;
1695 
1696 	pgoff_t first_page;	/* The first page to write */
1697 	pgoff_t next_page;	/* Current page to examine */
1698 	pgoff_t last_page;	/* Last page to examine */
1699 	/*
1700 	 * Extent to map - this can be after first_page because that can be
1701 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1702 	 * is delalloc or unwritten.
1703 	 */
1704 	struct ext4_map_blocks map;
1705 	struct ext4_io_submit io_submit;	/* IO submission data */
1706 	unsigned int do_map:1;
1707 };
1708 
1709 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1710 				       bool invalidate)
1711 {
1712 	int nr_pages, i;
1713 	pgoff_t index, end;
1714 	struct pagevec pvec;
1715 	struct inode *inode = mpd->inode;
1716 	struct address_space *mapping = inode->i_mapping;
1717 
1718 	/* This is necessary when next_page == 0. */
1719 	if (mpd->first_page >= mpd->next_page)
1720 		return;
1721 
1722 	index = mpd->first_page;
1723 	end   = mpd->next_page - 1;
1724 	if (invalidate) {
1725 		ext4_lblk_t start, last;
1726 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1727 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1728 		ext4_es_remove_extent(inode, start, last - start + 1);
1729 	}
1730 
1731 	pagevec_init(&pvec);
1732 	while (index <= end) {
1733 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1734 		if (nr_pages == 0)
1735 			break;
1736 		for (i = 0; i < nr_pages; i++) {
1737 			struct page *page = pvec.pages[i];
1738 
1739 			BUG_ON(!PageLocked(page));
1740 			BUG_ON(PageWriteback(page));
1741 			if (invalidate) {
1742 				if (page_mapped(page))
1743 					clear_page_dirty_for_io(page);
1744 				block_invalidatepage(page, 0, PAGE_SIZE);
1745 				ClearPageUptodate(page);
1746 			}
1747 			unlock_page(page);
1748 		}
1749 		pagevec_release(&pvec);
1750 	}
1751 }
1752 
1753 static void ext4_print_free_blocks(struct inode *inode)
1754 {
1755 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1756 	struct super_block *sb = inode->i_sb;
1757 	struct ext4_inode_info *ei = EXT4_I(inode);
1758 
1759 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1760 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1761 			ext4_count_free_clusters(sb)));
1762 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1763 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1764 	       (long long) EXT4_C2B(EXT4_SB(sb),
1765 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1766 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1767 	       (long long) EXT4_C2B(EXT4_SB(sb),
1768 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1769 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1770 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1771 		 ei->i_reserved_data_blocks);
1772 	return;
1773 }
1774 
1775 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1776 {
1777 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1778 }
1779 
1780 /*
1781  * This function is grabs code from the very beginning of
1782  * ext4_map_blocks, but assumes that the caller is from delayed write
1783  * time. This function looks up the requested blocks and sets the
1784  * buffer delay bit under the protection of i_data_sem.
1785  */
1786 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1787 			      struct ext4_map_blocks *map,
1788 			      struct buffer_head *bh)
1789 {
1790 	struct extent_status es;
1791 	int retval;
1792 	sector_t invalid_block = ~((sector_t) 0xffff);
1793 #ifdef ES_AGGRESSIVE_TEST
1794 	struct ext4_map_blocks orig_map;
1795 
1796 	memcpy(&orig_map, map, sizeof(*map));
1797 #endif
1798 
1799 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1800 		invalid_block = ~0;
1801 
1802 	map->m_flags = 0;
1803 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1804 		  "logical block %lu\n", inode->i_ino, map->m_len,
1805 		  (unsigned long) map->m_lblk);
1806 
1807 	/* Lookup extent status tree firstly */
1808 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1809 		if (ext4_es_is_hole(&es)) {
1810 			retval = 0;
1811 			down_read(&EXT4_I(inode)->i_data_sem);
1812 			goto add_delayed;
1813 		}
1814 
1815 		/*
1816 		 * Delayed extent could be allocated by fallocate.
1817 		 * So we need to check it.
1818 		 */
1819 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1820 			map_bh(bh, inode->i_sb, invalid_block);
1821 			set_buffer_new(bh);
1822 			set_buffer_delay(bh);
1823 			return 0;
1824 		}
1825 
1826 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1827 		retval = es.es_len - (iblock - es.es_lblk);
1828 		if (retval > map->m_len)
1829 			retval = map->m_len;
1830 		map->m_len = retval;
1831 		if (ext4_es_is_written(&es))
1832 			map->m_flags |= EXT4_MAP_MAPPED;
1833 		else if (ext4_es_is_unwritten(&es))
1834 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1835 		else
1836 			BUG_ON(1);
1837 
1838 #ifdef ES_AGGRESSIVE_TEST
1839 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1840 #endif
1841 		return retval;
1842 	}
1843 
1844 	/*
1845 	 * Try to see if we can get the block without requesting a new
1846 	 * file system block.
1847 	 */
1848 	down_read(&EXT4_I(inode)->i_data_sem);
1849 	if (ext4_has_inline_data(inode))
1850 		retval = 0;
1851 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1852 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1853 	else
1854 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1855 
1856 add_delayed:
1857 	if (retval == 0) {
1858 		int ret;
1859 		/*
1860 		 * XXX: __block_prepare_write() unmaps passed block,
1861 		 * is it OK?
1862 		 */
1863 		/*
1864 		 * If the block was allocated from previously allocated cluster,
1865 		 * then we don't need to reserve it again. However we still need
1866 		 * to reserve metadata for every block we're going to write.
1867 		 */
1868 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1869 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1870 			ret = ext4_da_reserve_space(inode);
1871 			if (ret) {
1872 				/* not enough space to reserve */
1873 				retval = ret;
1874 				goto out_unlock;
1875 			}
1876 		}
1877 
1878 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1879 					    ~0, EXTENT_STATUS_DELAYED);
1880 		if (ret) {
1881 			retval = ret;
1882 			goto out_unlock;
1883 		}
1884 
1885 		map_bh(bh, inode->i_sb, invalid_block);
1886 		set_buffer_new(bh);
1887 		set_buffer_delay(bh);
1888 	} else if (retval > 0) {
1889 		int ret;
1890 		unsigned int status;
1891 
1892 		if (unlikely(retval != map->m_len)) {
1893 			ext4_warning(inode->i_sb,
1894 				     "ES len assertion failed for inode "
1895 				     "%lu: retval %d != map->m_len %d",
1896 				     inode->i_ino, retval, map->m_len);
1897 			WARN_ON(1);
1898 		}
1899 
1900 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1901 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1902 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1903 					    map->m_pblk, status);
1904 		if (ret != 0)
1905 			retval = ret;
1906 	}
1907 
1908 out_unlock:
1909 	up_read((&EXT4_I(inode)->i_data_sem));
1910 
1911 	return retval;
1912 }
1913 
1914 /*
1915  * This is a special get_block_t callback which is used by
1916  * ext4_da_write_begin().  It will either return mapped block or
1917  * reserve space for a single block.
1918  *
1919  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1920  * We also have b_blocknr = -1 and b_bdev initialized properly
1921  *
1922  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1923  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1924  * initialized properly.
1925  */
1926 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1927 			   struct buffer_head *bh, int create)
1928 {
1929 	struct ext4_map_blocks map;
1930 	int ret = 0;
1931 
1932 	BUG_ON(create == 0);
1933 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1934 
1935 	map.m_lblk = iblock;
1936 	map.m_len = 1;
1937 
1938 	/*
1939 	 * first, we need to know whether the block is allocated already
1940 	 * preallocated blocks are unmapped but should treated
1941 	 * the same as allocated blocks.
1942 	 */
1943 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1944 	if (ret <= 0)
1945 		return ret;
1946 
1947 	map_bh(bh, inode->i_sb, map.m_pblk);
1948 	ext4_update_bh_state(bh, map.m_flags);
1949 
1950 	if (buffer_unwritten(bh)) {
1951 		/* A delayed write to unwritten bh should be marked
1952 		 * new and mapped.  Mapped ensures that we don't do
1953 		 * get_block multiple times when we write to the same
1954 		 * offset and new ensures that we do proper zero out
1955 		 * for partial write.
1956 		 */
1957 		set_buffer_new(bh);
1958 		set_buffer_mapped(bh);
1959 	}
1960 	return 0;
1961 }
1962 
1963 static int bget_one(handle_t *handle, struct buffer_head *bh)
1964 {
1965 	get_bh(bh);
1966 	return 0;
1967 }
1968 
1969 static int bput_one(handle_t *handle, struct buffer_head *bh)
1970 {
1971 	put_bh(bh);
1972 	return 0;
1973 }
1974 
1975 static int __ext4_journalled_writepage(struct page *page,
1976 				       unsigned int len)
1977 {
1978 	struct address_space *mapping = page->mapping;
1979 	struct inode *inode = mapping->host;
1980 	struct buffer_head *page_bufs = NULL;
1981 	handle_t *handle = NULL;
1982 	int ret = 0, err = 0;
1983 	int inline_data = ext4_has_inline_data(inode);
1984 	struct buffer_head *inode_bh = NULL;
1985 
1986 	ClearPageChecked(page);
1987 
1988 	if (inline_data) {
1989 		BUG_ON(page->index != 0);
1990 		BUG_ON(len > ext4_get_max_inline_size(inode));
1991 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1992 		if (inode_bh == NULL)
1993 			goto out;
1994 	} else {
1995 		page_bufs = page_buffers(page);
1996 		if (!page_bufs) {
1997 			BUG();
1998 			goto out;
1999 		}
2000 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2001 				       NULL, bget_one);
2002 	}
2003 	/*
2004 	 * We need to release the page lock before we start the
2005 	 * journal, so grab a reference so the page won't disappear
2006 	 * out from under us.
2007 	 */
2008 	get_page(page);
2009 	unlock_page(page);
2010 
2011 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2012 				    ext4_writepage_trans_blocks(inode));
2013 	if (IS_ERR(handle)) {
2014 		ret = PTR_ERR(handle);
2015 		put_page(page);
2016 		goto out_no_pagelock;
2017 	}
2018 	BUG_ON(!ext4_handle_valid(handle));
2019 
2020 	lock_page(page);
2021 	put_page(page);
2022 	if (page->mapping != mapping) {
2023 		/* The page got truncated from under us */
2024 		ext4_journal_stop(handle);
2025 		ret = 0;
2026 		goto out;
2027 	}
2028 
2029 	if (inline_data) {
2030 		BUFFER_TRACE(inode_bh, "get write access");
2031 		ret = ext4_journal_get_write_access(handle, inode_bh);
2032 
2033 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2034 
2035 	} else {
2036 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2037 					     do_journal_get_write_access);
2038 
2039 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2040 					     write_end_fn);
2041 	}
2042 	if (ret == 0)
2043 		ret = err;
2044 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2045 	err = ext4_journal_stop(handle);
2046 	if (!ret)
2047 		ret = err;
2048 
2049 	if (!ext4_has_inline_data(inode))
2050 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2051 				       NULL, bput_one);
2052 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2053 out:
2054 	unlock_page(page);
2055 out_no_pagelock:
2056 	brelse(inode_bh);
2057 	return ret;
2058 }
2059 
2060 /*
2061  * Note that we don't need to start a transaction unless we're journaling data
2062  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2063  * need to file the inode to the transaction's list in ordered mode because if
2064  * we are writing back data added by write(), the inode is already there and if
2065  * we are writing back data modified via mmap(), no one guarantees in which
2066  * transaction the data will hit the disk. In case we are journaling data, we
2067  * cannot start transaction directly because transaction start ranks above page
2068  * lock so we have to do some magic.
2069  *
2070  * This function can get called via...
2071  *   - ext4_writepages after taking page lock (have journal handle)
2072  *   - journal_submit_inode_data_buffers (no journal handle)
2073  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2074  *   - grab_page_cache when doing write_begin (have journal handle)
2075  *
2076  * We don't do any block allocation in this function. If we have page with
2077  * multiple blocks we need to write those buffer_heads that are mapped. This
2078  * is important for mmaped based write. So if we do with blocksize 1K
2079  * truncate(f, 1024);
2080  * a = mmap(f, 0, 4096);
2081  * a[0] = 'a';
2082  * truncate(f, 4096);
2083  * we have in the page first buffer_head mapped via page_mkwrite call back
2084  * but other buffer_heads would be unmapped but dirty (dirty done via the
2085  * do_wp_page). So writepage should write the first block. If we modify
2086  * the mmap area beyond 1024 we will again get a page_fault and the
2087  * page_mkwrite callback will do the block allocation and mark the
2088  * buffer_heads mapped.
2089  *
2090  * We redirty the page if we have any buffer_heads that is either delay or
2091  * unwritten in the page.
2092  *
2093  * We can get recursively called as show below.
2094  *
2095  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2096  *		ext4_writepage()
2097  *
2098  * But since we don't do any block allocation we should not deadlock.
2099  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2100  */
2101 static int ext4_writepage(struct page *page,
2102 			  struct writeback_control *wbc)
2103 {
2104 	int ret = 0;
2105 	loff_t size;
2106 	unsigned int len;
2107 	struct buffer_head *page_bufs = NULL;
2108 	struct inode *inode = page->mapping->host;
2109 	struct ext4_io_submit io_submit;
2110 	bool keep_towrite = false;
2111 
2112 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2113 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2114 		unlock_page(page);
2115 		return -EIO;
2116 	}
2117 
2118 	trace_ext4_writepage(page);
2119 	size = i_size_read(inode);
2120 	if (page->index == size >> PAGE_SHIFT)
2121 		len = size & ~PAGE_MASK;
2122 	else
2123 		len = PAGE_SIZE;
2124 
2125 	page_bufs = page_buffers(page);
2126 	/*
2127 	 * We cannot do block allocation or other extent handling in this
2128 	 * function. If there are buffers needing that, we have to redirty
2129 	 * the page. But we may reach here when we do a journal commit via
2130 	 * journal_submit_inode_data_buffers() and in that case we must write
2131 	 * allocated buffers to achieve data=ordered mode guarantees.
2132 	 *
2133 	 * Also, if there is only one buffer per page (the fs block
2134 	 * size == the page size), if one buffer needs block
2135 	 * allocation or needs to modify the extent tree to clear the
2136 	 * unwritten flag, we know that the page can't be written at
2137 	 * all, so we might as well refuse the write immediately.
2138 	 * Unfortunately if the block size != page size, we can't as
2139 	 * easily detect this case using ext4_walk_page_buffers(), but
2140 	 * for the extremely common case, this is an optimization that
2141 	 * skips a useless round trip through ext4_bio_write_page().
2142 	 */
2143 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2144 				   ext4_bh_delay_or_unwritten)) {
2145 		redirty_page_for_writepage(wbc, page);
2146 		if ((current->flags & PF_MEMALLOC) ||
2147 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2148 			/*
2149 			 * For memory cleaning there's no point in writing only
2150 			 * some buffers. So just bail out. Warn if we came here
2151 			 * from direct reclaim.
2152 			 */
2153 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2154 							== PF_MEMALLOC);
2155 			unlock_page(page);
2156 			return 0;
2157 		}
2158 		keep_towrite = true;
2159 	}
2160 
2161 	if (PageChecked(page) && ext4_should_journal_data(inode))
2162 		/*
2163 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2164 		 * doesn't seem much point in redirtying the page here.
2165 		 */
2166 		return __ext4_journalled_writepage(page, len);
2167 
2168 	ext4_io_submit_init(&io_submit, wbc);
2169 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2170 	if (!io_submit.io_end) {
2171 		redirty_page_for_writepage(wbc, page);
2172 		unlock_page(page);
2173 		return -ENOMEM;
2174 	}
2175 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2176 	ext4_io_submit(&io_submit);
2177 	/* Drop io_end reference we got from init */
2178 	ext4_put_io_end_defer(io_submit.io_end);
2179 	return ret;
2180 }
2181 
2182 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2183 {
2184 	int len;
2185 	loff_t size;
2186 	int err;
2187 
2188 	BUG_ON(page->index != mpd->first_page);
2189 	clear_page_dirty_for_io(page);
2190 	/*
2191 	 * We have to be very careful here!  Nothing protects writeback path
2192 	 * against i_size changes and the page can be writeably mapped into
2193 	 * page tables. So an application can be growing i_size and writing
2194 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2195 	 * write-protects our page in page tables and the page cannot get
2196 	 * written to again until we release page lock. So only after
2197 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2198 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2199 	 * on the barrier provided by TestClearPageDirty in
2200 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2201 	 * after page tables are updated.
2202 	 */
2203 	size = i_size_read(mpd->inode);
2204 	if (page->index == size >> PAGE_SHIFT)
2205 		len = size & ~PAGE_MASK;
2206 	else
2207 		len = PAGE_SIZE;
2208 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2209 	if (!err)
2210 		mpd->wbc->nr_to_write--;
2211 	mpd->first_page++;
2212 
2213 	return err;
2214 }
2215 
2216 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2217 
2218 /*
2219  * mballoc gives us at most this number of blocks...
2220  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2221  * The rest of mballoc seems to handle chunks up to full group size.
2222  */
2223 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2224 
2225 /*
2226  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2227  *
2228  * @mpd - extent of blocks
2229  * @lblk - logical number of the block in the file
2230  * @bh - buffer head we want to add to the extent
2231  *
2232  * The function is used to collect contig. blocks in the same state. If the
2233  * buffer doesn't require mapping for writeback and we haven't started the
2234  * extent of buffers to map yet, the function returns 'true' immediately - the
2235  * caller can write the buffer right away. Otherwise the function returns true
2236  * if the block has been added to the extent, false if the block couldn't be
2237  * added.
2238  */
2239 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2240 				   struct buffer_head *bh)
2241 {
2242 	struct ext4_map_blocks *map = &mpd->map;
2243 
2244 	/* Buffer that doesn't need mapping for writeback? */
2245 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2246 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2247 		/* So far no extent to map => we write the buffer right away */
2248 		if (map->m_len == 0)
2249 			return true;
2250 		return false;
2251 	}
2252 
2253 	/* First block in the extent? */
2254 	if (map->m_len == 0) {
2255 		/* We cannot map unless handle is started... */
2256 		if (!mpd->do_map)
2257 			return false;
2258 		map->m_lblk = lblk;
2259 		map->m_len = 1;
2260 		map->m_flags = bh->b_state & BH_FLAGS;
2261 		return true;
2262 	}
2263 
2264 	/* Don't go larger than mballoc is willing to allocate */
2265 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2266 		return false;
2267 
2268 	/* Can we merge the block to our big extent? */
2269 	if (lblk == map->m_lblk + map->m_len &&
2270 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2271 		map->m_len++;
2272 		return true;
2273 	}
2274 	return false;
2275 }
2276 
2277 /*
2278  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2279  *
2280  * @mpd - extent of blocks for mapping
2281  * @head - the first buffer in the page
2282  * @bh - buffer we should start processing from
2283  * @lblk - logical number of the block in the file corresponding to @bh
2284  *
2285  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2286  * the page for IO if all buffers in this page were mapped and there's no
2287  * accumulated extent of buffers to map or add buffers in the page to the
2288  * extent of buffers to map. The function returns 1 if the caller can continue
2289  * by processing the next page, 0 if it should stop adding buffers to the
2290  * extent to map because we cannot extend it anymore. It can also return value
2291  * < 0 in case of error during IO submission.
2292  */
2293 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2294 				   struct buffer_head *head,
2295 				   struct buffer_head *bh,
2296 				   ext4_lblk_t lblk)
2297 {
2298 	struct inode *inode = mpd->inode;
2299 	int err;
2300 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2301 							>> inode->i_blkbits;
2302 
2303 	do {
2304 		BUG_ON(buffer_locked(bh));
2305 
2306 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2307 			/* Found extent to map? */
2308 			if (mpd->map.m_len)
2309 				return 0;
2310 			/* Buffer needs mapping and handle is not started? */
2311 			if (!mpd->do_map)
2312 				return 0;
2313 			/* Everything mapped so far and we hit EOF */
2314 			break;
2315 		}
2316 	} while (lblk++, (bh = bh->b_this_page) != head);
2317 	/* So far everything mapped? Submit the page for IO. */
2318 	if (mpd->map.m_len == 0) {
2319 		err = mpage_submit_page(mpd, head->b_page);
2320 		if (err < 0)
2321 			return err;
2322 	}
2323 	return lblk < blocks;
2324 }
2325 
2326 /*
2327  * mpage_map_buffers - update buffers corresponding to changed extent and
2328  *		       submit fully mapped pages for IO
2329  *
2330  * @mpd - description of extent to map, on return next extent to map
2331  *
2332  * Scan buffers corresponding to changed extent (we expect corresponding pages
2333  * to be already locked) and update buffer state according to new extent state.
2334  * We map delalloc buffers to their physical location, clear unwritten bits,
2335  * and mark buffers as uninit when we perform writes to unwritten extents
2336  * and do extent conversion after IO is finished. If the last page is not fully
2337  * mapped, we update @map to the next extent in the last page that needs
2338  * mapping. Otherwise we submit the page for IO.
2339  */
2340 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2341 {
2342 	struct pagevec pvec;
2343 	int nr_pages, i;
2344 	struct inode *inode = mpd->inode;
2345 	struct buffer_head *head, *bh;
2346 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2347 	pgoff_t start, end;
2348 	ext4_lblk_t lblk;
2349 	sector_t pblock;
2350 	int err;
2351 
2352 	start = mpd->map.m_lblk >> bpp_bits;
2353 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2354 	lblk = start << bpp_bits;
2355 	pblock = mpd->map.m_pblk;
2356 
2357 	pagevec_init(&pvec);
2358 	while (start <= end) {
2359 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2360 						&start, end);
2361 		if (nr_pages == 0)
2362 			break;
2363 		for (i = 0; i < nr_pages; i++) {
2364 			struct page *page = pvec.pages[i];
2365 
2366 			bh = head = page_buffers(page);
2367 			do {
2368 				if (lblk < mpd->map.m_lblk)
2369 					continue;
2370 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2371 					/*
2372 					 * Buffer after end of mapped extent.
2373 					 * Find next buffer in the page to map.
2374 					 */
2375 					mpd->map.m_len = 0;
2376 					mpd->map.m_flags = 0;
2377 					/*
2378 					 * FIXME: If dioread_nolock supports
2379 					 * blocksize < pagesize, we need to make
2380 					 * sure we add size mapped so far to
2381 					 * io_end->size as the following call
2382 					 * can submit the page for IO.
2383 					 */
2384 					err = mpage_process_page_bufs(mpd, head,
2385 								      bh, lblk);
2386 					pagevec_release(&pvec);
2387 					if (err > 0)
2388 						err = 0;
2389 					return err;
2390 				}
2391 				if (buffer_delay(bh)) {
2392 					clear_buffer_delay(bh);
2393 					bh->b_blocknr = pblock++;
2394 				}
2395 				clear_buffer_unwritten(bh);
2396 			} while (lblk++, (bh = bh->b_this_page) != head);
2397 
2398 			/*
2399 			 * FIXME: This is going to break if dioread_nolock
2400 			 * supports blocksize < pagesize as we will try to
2401 			 * convert potentially unmapped parts of inode.
2402 			 */
2403 			mpd->io_submit.io_end->size += PAGE_SIZE;
2404 			/* Page fully mapped - let IO run! */
2405 			err = mpage_submit_page(mpd, page);
2406 			if (err < 0) {
2407 				pagevec_release(&pvec);
2408 				return err;
2409 			}
2410 		}
2411 		pagevec_release(&pvec);
2412 	}
2413 	/* Extent fully mapped and matches with page boundary. We are done. */
2414 	mpd->map.m_len = 0;
2415 	mpd->map.m_flags = 0;
2416 	return 0;
2417 }
2418 
2419 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2420 {
2421 	struct inode *inode = mpd->inode;
2422 	struct ext4_map_blocks *map = &mpd->map;
2423 	int get_blocks_flags;
2424 	int err, dioread_nolock;
2425 
2426 	trace_ext4_da_write_pages_extent(inode, map);
2427 	/*
2428 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2429 	 * to convert an unwritten extent to be initialized (in the case
2430 	 * where we have written into one or more preallocated blocks).  It is
2431 	 * possible that we're going to need more metadata blocks than
2432 	 * previously reserved. However we must not fail because we're in
2433 	 * writeback and there is nothing we can do about it so it might result
2434 	 * in data loss.  So use reserved blocks to allocate metadata if
2435 	 * possible.
2436 	 *
2437 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2438 	 * the blocks in question are delalloc blocks.  This indicates
2439 	 * that the blocks and quotas has already been checked when
2440 	 * the data was copied into the page cache.
2441 	 */
2442 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2443 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2444 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2445 	dioread_nolock = ext4_should_dioread_nolock(inode);
2446 	if (dioread_nolock)
2447 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2448 	if (map->m_flags & (1 << BH_Delay))
2449 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2450 
2451 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2452 	if (err < 0)
2453 		return err;
2454 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2455 		if (!mpd->io_submit.io_end->handle &&
2456 		    ext4_handle_valid(handle)) {
2457 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2458 			handle->h_rsv_handle = NULL;
2459 		}
2460 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2461 	}
2462 
2463 	BUG_ON(map->m_len == 0);
2464 	if (map->m_flags & EXT4_MAP_NEW) {
2465 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2466 				   map->m_len);
2467 	}
2468 	return 0;
2469 }
2470 
2471 /*
2472  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2473  *				 mpd->len and submit pages underlying it for IO
2474  *
2475  * @handle - handle for journal operations
2476  * @mpd - extent to map
2477  * @give_up_on_write - we set this to true iff there is a fatal error and there
2478  *                     is no hope of writing the data. The caller should discard
2479  *                     dirty pages to avoid infinite loops.
2480  *
2481  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2482  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2483  * them to initialized or split the described range from larger unwritten
2484  * extent. Note that we need not map all the described range since allocation
2485  * can return less blocks or the range is covered by more unwritten extents. We
2486  * cannot map more because we are limited by reserved transaction credits. On
2487  * the other hand we always make sure that the last touched page is fully
2488  * mapped so that it can be written out (and thus forward progress is
2489  * guaranteed). After mapping we submit all mapped pages for IO.
2490  */
2491 static int mpage_map_and_submit_extent(handle_t *handle,
2492 				       struct mpage_da_data *mpd,
2493 				       bool *give_up_on_write)
2494 {
2495 	struct inode *inode = mpd->inode;
2496 	struct ext4_map_blocks *map = &mpd->map;
2497 	int err;
2498 	loff_t disksize;
2499 	int progress = 0;
2500 
2501 	mpd->io_submit.io_end->offset =
2502 				((loff_t)map->m_lblk) << inode->i_blkbits;
2503 	do {
2504 		err = mpage_map_one_extent(handle, mpd);
2505 		if (err < 0) {
2506 			struct super_block *sb = inode->i_sb;
2507 
2508 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2509 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2510 				goto invalidate_dirty_pages;
2511 			/*
2512 			 * Let the uper layers retry transient errors.
2513 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2514 			 * is non-zero, a commit should free up blocks.
2515 			 */
2516 			if ((err == -ENOMEM) ||
2517 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2518 				if (progress)
2519 					goto update_disksize;
2520 				return err;
2521 			}
2522 			ext4_msg(sb, KERN_CRIT,
2523 				 "Delayed block allocation failed for "
2524 				 "inode %lu at logical offset %llu with"
2525 				 " max blocks %u with error %d",
2526 				 inode->i_ino,
2527 				 (unsigned long long)map->m_lblk,
2528 				 (unsigned)map->m_len, -err);
2529 			ext4_msg(sb, KERN_CRIT,
2530 				 "This should not happen!! Data will "
2531 				 "be lost\n");
2532 			if (err == -ENOSPC)
2533 				ext4_print_free_blocks(inode);
2534 		invalidate_dirty_pages:
2535 			*give_up_on_write = true;
2536 			return err;
2537 		}
2538 		progress = 1;
2539 		/*
2540 		 * Update buffer state, submit mapped pages, and get us new
2541 		 * extent to map
2542 		 */
2543 		err = mpage_map_and_submit_buffers(mpd);
2544 		if (err < 0)
2545 			goto update_disksize;
2546 	} while (map->m_len);
2547 
2548 update_disksize:
2549 	/*
2550 	 * Update on-disk size after IO is submitted.  Races with
2551 	 * truncate are avoided by checking i_size under i_data_sem.
2552 	 */
2553 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2554 	if (disksize > EXT4_I(inode)->i_disksize) {
2555 		int err2;
2556 		loff_t i_size;
2557 
2558 		down_write(&EXT4_I(inode)->i_data_sem);
2559 		i_size = i_size_read(inode);
2560 		if (disksize > i_size)
2561 			disksize = i_size;
2562 		if (disksize > EXT4_I(inode)->i_disksize)
2563 			EXT4_I(inode)->i_disksize = disksize;
2564 		up_write(&EXT4_I(inode)->i_data_sem);
2565 		err2 = ext4_mark_inode_dirty(handle, inode);
2566 		if (err2)
2567 			ext4_error(inode->i_sb,
2568 				   "Failed to mark inode %lu dirty",
2569 				   inode->i_ino);
2570 		if (!err)
2571 			err = err2;
2572 	}
2573 	return err;
2574 }
2575 
2576 /*
2577  * Calculate the total number of credits to reserve for one writepages
2578  * iteration. This is called from ext4_writepages(). We map an extent of
2579  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2580  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2581  * bpp - 1 blocks in bpp different extents.
2582  */
2583 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2584 {
2585 	int bpp = ext4_journal_blocks_per_page(inode);
2586 
2587 	return ext4_meta_trans_blocks(inode,
2588 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2589 }
2590 
2591 /*
2592  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2593  * 				 and underlying extent to map
2594  *
2595  * @mpd - where to look for pages
2596  *
2597  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2598  * IO immediately. When we find a page which isn't mapped we start accumulating
2599  * extent of buffers underlying these pages that needs mapping (formed by
2600  * either delayed or unwritten buffers). We also lock the pages containing
2601  * these buffers. The extent found is returned in @mpd structure (starting at
2602  * mpd->lblk with length mpd->len blocks).
2603  *
2604  * Note that this function can attach bios to one io_end structure which are
2605  * neither logically nor physically contiguous. Although it may seem as an
2606  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2607  * case as we need to track IO to all buffers underlying a page in one io_end.
2608  */
2609 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2610 {
2611 	struct address_space *mapping = mpd->inode->i_mapping;
2612 	struct pagevec pvec;
2613 	unsigned int nr_pages;
2614 	long left = mpd->wbc->nr_to_write;
2615 	pgoff_t index = mpd->first_page;
2616 	pgoff_t end = mpd->last_page;
2617 	int tag;
2618 	int i, err = 0;
2619 	int blkbits = mpd->inode->i_blkbits;
2620 	ext4_lblk_t lblk;
2621 	struct buffer_head *head;
2622 
2623 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2624 		tag = PAGECACHE_TAG_TOWRITE;
2625 	else
2626 		tag = PAGECACHE_TAG_DIRTY;
2627 
2628 	pagevec_init(&pvec);
2629 	mpd->map.m_len = 0;
2630 	mpd->next_page = index;
2631 	while (index <= end) {
2632 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2633 				tag);
2634 		if (nr_pages == 0)
2635 			goto out;
2636 
2637 		for (i = 0; i < nr_pages; i++) {
2638 			struct page *page = pvec.pages[i];
2639 
2640 			/*
2641 			 * Accumulated enough dirty pages? This doesn't apply
2642 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2643 			 * keep going because someone may be concurrently
2644 			 * dirtying pages, and we might have synced a lot of
2645 			 * newly appeared dirty pages, but have not synced all
2646 			 * of the old dirty pages.
2647 			 */
2648 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2649 				goto out;
2650 
2651 			/* If we can't merge this page, we are done. */
2652 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2653 				goto out;
2654 
2655 			lock_page(page);
2656 			/*
2657 			 * If the page is no longer dirty, or its mapping no
2658 			 * longer corresponds to inode we are writing (which
2659 			 * means it has been truncated or invalidated), or the
2660 			 * page is already under writeback and we are not doing
2661 			 * a data integrity writeback, skip the page
2662 			 */
2663 			if (!PageDirty(page) ||
2664 			    (PageWriteback(page) &&
2665 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2666 			    unlikely(page->mapping != mapping)) {
2667 				unlock_page(page);
2668 				continue;
2669 			}
2670 
2671 			wait_on_page_writeback(page);
2672 			BUG_ON(PageWriteback(page));
2673 
2674 			if (mpd->map.m_len == 0)
2675 				mpd->first_page = page->index;
2676 			mpd->next_page = page->index + 1;
2677 			/* Add all dirty buffers to mpd */
2678 			lblk = ((ext4_lblk_t)page->index) <<
2679 				(PAGE_SHIFT - blkbits);
2680 			head = page_buffers(page);
2681 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2682 			if (err <= 0)
2683 				goto out;
2684 			err = 0;
2685 			left--;
2686 		}
2687 		pagevec_release(&pvec);
2688 		cond_resched();
2689 	}
2690 	return 0;
2691 out:
2692 	pagevec_release(&pvec);
2693 	return err;
2694 }
2695 
2696 static int __writepage(struct page *page, struct writeback_control *wbc,
2697 		       void *data)
2698 {
2699 	struct address_space *mapping = data;
2700 	int ret = ext4_writepage(page, wbc);
2701 	mapping_set_error(mapping, ret);
2702 	return ret;
2703 }
2704 
2705 static int ext4_writepages(struct address_space *mapping,
2706 			   struct writeback_control *wbc)
2707 {
2708 	pgoff_t	writeback_index = 0;
2709 	long nr_to_write = wbc->nr_to_write;
2710 	int range_whole = 0;
2711 	int cycled = 1;
2712 	handle_t *handle = NULL;
2713 	struct mpage_da_data mpd;
2714 	struct inode *inode = mapping->host;
2715 	int needed_blocks, rsv_blocks = 0, ret = 0;
2716 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2717 	bool done;
2718 	struct blk_plug plug;
2719 	bool give_up_on_write = false;
2720 
2721 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2722 		return -EIO;
2723 
2724 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2725 	trace_ext4_writepages(inode, wbc);
2726 
2727 	if (dax_mapping(mapping)) {
2728 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2729 						  wbc);
2730 		goto out_writepages;
2731 	}
2732 
2733 	/*
2734 	 * No pages to write? This is mainly a kludge to avoid starting
2735 	 * a transaction for special inodes like journal inode on last iput()
2736 	 * because that could violate lock ordering on umount
2737 	 */
2738 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2739 		goto out_writepages;
2740 
2741 	if (ext4_should_journal_data(inode)) {
2742 		struct blk_plug plug;
2743 
2744 		blk_start_plug(&plug);
2745 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2746 		blk_finish_plug(&plug);
2747 		goto out_writepages;
2748 	}
2749 
2750 	/*
2751 	 * If the filesystem has aborted, it is read-only, so return
2752 	 * right away instead of dumping stack traces later on that
2753 	 * will obscure the real source of the problem.  We test
2754 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2755 	 * the latter could be true if the filesystem is mounted
2756 	 * read-only, and in that case, ext4_writepages should
2757 	 * *never* be called, so if that ever happens, we would want
2758 	 * the stack trace.
2759 	 */
2760 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2761 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2762 		ret = -EROFS;
2763 		goto out_writepages;
2764 	}
2765 
2766 	if (ext4_should_dioread_nolock(inode)) {
2767 		/*
2768 		 * We may need to convert up to one extent per block in
2769 		 * the page and we may dirty the inode.
2770 		 */
2771 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2772 	}
2773 
2774 	/*
2775 	 * If we have inline data and arrive here, it means that
2776 	 * we will soon create the block for the 1st page, so
2777 	 * we'd better clear the inline data here.
2778 	 */
2779 	if (ext4_has_inline_data(inode)) {
2780 		/* Just inode will be modified... */
2781 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2782 		if (IS_ERR(handle)) {
2783 			ret = PTR_ERR(handle);
2784 			goto out_writepages;
2785 		}
2786 		BUG_ON(ext4_test_inode_state(inode,
2787 				EXT4_STATE_MAY_INLINE_DATA));
2788 		ext4_destroy_inline_data(handle, inode);
2789 		ext4_journal_stop(handle);
2790 	}
2791 
2792 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2793 		range_whole = 1;
2794 
2795 	if (wbc->range_cyclic) {
2796 		writeback_index = mapping->writeback_index;
2797 		if (writeback_index)
2798 			cycled = 0;
2799 		mpd.first_page = writeback_index;
2800 		mpd.last_page = -1;
2801 	} else {
2802 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2803 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2804 	}
2805 
2806 	mpd.inode = inode;
2807 	mpd.wbc = wbc;
2808 	ext4_io_submit_init(&mpd.io_submit, wbc);
2809 retry:
2810 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2811 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2812 	done = false;
2813 	blk_start_plug(&plug);
2814 
2815 	/*
2816 	 * First writeback pages that don't need mapping - we can avoid
2817 	 * starting a transaction unnecessarily and also avoid being blocked
2818 	 * in the block layer on device congestion while having transaction
2819 	 * started.
2820 	 */
2821 	mpd.do_map = 0;
2822 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2823 	if (!mpd.io_submit.io_end) {
2824 		ret = -ENOMEM;
2825 		goto unplug;
2826 	}
2827 	ret = mpage_prepare_extent_to_map(&mpd);
2828 	/* Submit prepared bio */
2829 	ext4_io_submit(&mpd.io_submit);
2830 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2831 	mpd.io_submit.io_end = NULL;
2832 	/* Unlock pages we didn't use */
2833 	mpage_release_unused_pages(&mpd, false);
2834 	if (ret < 0)
2835 		goto unplug;
2836 
2837 	while (!done && mpd.first_page <= mpd.last_page) {
2838 		/* For each extent of pages we use new io_end */
2839 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2840 		if (!mpd.io_submit.io_end) {
2841 			ret = -ENOMEM;
2842 			break;
2843 		}
2844 
2845 		/*
2846 		 * We have two constraints: We find one extent to map and we
2847 		 * must always write out whole page (makes a difference when
2848 		 * blocksize < pagesize) so that we don't block on IO when we
2849 		 * try to write out the rest of the page. Journalled mode is
2850 		 * not supported by delalloc.
2851 		 */
2852 		BUG_ON(ext4_should_journal_data(inode));
2853 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2854 
2855 		/* start a new transaction */
2856 		handle = ext4_journal_start_with_reserve(inode,
2857 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2858 		if (IS_ERR(handle)) {
2859 			ret = PTR_ERR(handle);
2860 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2861 			       "%ld pages, ino %lu; err %d", __func__,
2862 				wbc->nr_to_write, inode->i_ino, ret);
2863 			/* Release allocated io_end */
2864 			ext4_put_io_end(mpd.io_submit.io_end);
2865 			mpd.io_submit.io_end = NULL;
2866 			break;
2867 		}
2868 		mpd.do_map = 1;
2869 
2870 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2871 		ret = mpage_prepare_extent_to_map(&mpd);
2872 		if (!ret) {
2873 			if (mpd.map.m_len)
2874 				ret = mpage_map_and_submit_extent(handle, &mpd,
2875 					&give_up_on_write);
2876 			else {
2877 				/*
2878 				 * We scanned the whole range (or exhausted
2879 				 * nr_to_write), submitted what was mapped and
2880 				 * didn't find anything needing mapping. We are
2881 				 * done.
2882 				 */
2883 				done = true;
2884 			}
2885 		}
2886 		/*
2887 		 * Caution: If the handle is synchronous,
2888 		 * ext4_journal_stop() can wait for transaction commit
2889 		 * to finish which may depend on writeback of pages to
2890 		 * complete or on page lock to be released.  In that
2891 		 * case, we have to wait until after after we have
2892 		 * submitted all the IO, released page locks we hold,
2893 		 * and dropped io_end reference (for extent conversion
2894 		 * to be able to complete) before stopping the handle.
2895 		 */
2896 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2897 			ext4_journal_stop(handle);
2898 			handle = NULL;
2899 			mpd.do_map = 0;
2900 		}
2901 		/* Submit prepared bio */
2902 		ext4_io_submit(&mpd.io_submit);
2903 		/* Unlock pages we didn't use */
2904 		mpage_release_unused_pages(&mpd, give_up_on_write);
2905 		/*
2906 		 * Drop our io_end reference we got from init. We have
2907 		 * to be careful and use deferred io_end finishing if
2908 		 * we are still holding the transaction as we can
2909 		 * release the last reference to io_end which may end
2910 		 * up doing unwritten extent conversion.
2911 		 */
2912 		if (handle) {
2913 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2914 			ext4_journal_stop(handle);
2915 		} else
2916 			ext4_put_io_end(mpd.io_submit.io_end);
2917 		mpd.io_submit.io_end = NULL;
2918 
2919 		if (ret == -ENOSPC && sbi->s_journal) {
2920 			/*
2921 			 * Commit the transaction which would
2922 			 * free blocks released in the transaction
2923 			 * and try again
2924 			 */
2925 			jbd2_journal_force_commit_nested(sbi->s_journal);
2926 			ret = 0;
2927 			continue;
2928 		}
2929 		/* Fatal error - ENOMEM, EIO... */
2930 		if (ret)
2931 			break;
2932 	}
2933 unplug:
2934 	blk_finish_plug(&plug);
2935 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2936 		cycled = 1;
2937 		mpd.last_page = writeback_index - 1;
2938 		mpd.first_page = 0;
2939 		goto retry;
2940 	}
2941 
2942 	/* Update index */
2943 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2944 		/*
2945 		 * Set the writeback_index so that range_cyclic
2946 		 * mode will write it back later
2947 		 */
2948 		mapping->writeback_index = mpd.first_page;
2949 
2950 out_writepages:
2951 	trace_ext4_writepages_result(inode, wbc, ret,
2952 				     nr_to_write - wbc->nr_to_write);
2953 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2954 	return ret;
2955 }
2956 
2957 static int ext4_nonda_switch(struct super_block *sb)
2958 {
2959 	s64 free_clusters, dirty_clusters;
2960 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2961 
2962 	/*
2963 	 * switch to non delalloc mode if we are running low
2964 	 * on free block. The free block accounting via percpu
2965 	 * counters can get slightly wrong with percpu_counter_batch getting
2966 	 * accumulated on each CPU without updating global counters
2967 	 * Delalloc need an accurate free block accounting. So switch
2968 	 * to non delalloc when we are near to error range.
2969 	 */
2970 	free_clusters =
2971 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2972 	dirty_clusters =
2973 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2974 	/*
2975 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2976 	 */
2977 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2978 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2979 
2980 	if (2 * free_clusters < 3 * dirty_clusters ||
2981 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2982 		/*
2983 		 * free block count is less than 150% of dirty blocks
2984 		 * or free blocks is less than watermark
2985 		 */
2986 		return 1;
2987 	}
2988 	return 0;
2989 }
2990 
2991 /* We always reserve for an inode update; the superblock could be there too */
2992 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2993 {
2994 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2995 		return 1;
2996 
2997 	if (pos + len <= 0x7fffffffULL)
2998 		return 1;
2999 
3000 	/* We might need to update the superblock to set LARGE_FILE */
3001 	return 2;
3002 }
3003 
3004 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3005 			       loff_t pos, unsigned len, unsigned flags,
3006 			       struct page **pagep, void **fsdata)
3007 {
3008 	int ret, retries = 0;
3009 	struct page *page;
3010 	pgoff_t index;
3011 	struct inode *inode = mapping->host;
3012 	handle_t *handle;
3013 
3014 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3015 		return -EIO;
3016 
3017 	index = pos >> PAGE_SHIFT;
3018 
3019 	if (ext4_nonda_switch(inode->i_sb) ||
3020 	    S_ISLNK(inode->i_mode)) {
3021 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3022 		return ext4_write_begin(file, mapping, pos,
3023 					len, flags, pagep, fsdata);
3024 	}
3025 	*fsdata = (void *)0;
3026 	trace_ext4_da_write_begin(inode, pos, len, flags);
3027 
3028 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3029 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3030 						      pos, len, flags,
3031 						      pagep, fsdata);
3032 		if (ret < 0)
3033 			return ret;
3034 		if (ret == 1)
3035 			return 0;
3036 	}
3037 
3038 	/*
3039 	 * grab_cache_page_write_begin() can take a long time if the
3040 	 * system is thrashing due to memory pressure, or if the page
3041 	 * is being written back.  So grab it first before we start
3042 	 * the transaction handle.  This also allows us to allocate
3043 	 * the page (if needed) without using GFP_NOFS.
3044 	 */
3045 retry_grab:
3046 	page = grab_cache_page_write_begin(mapping, index, flags);
3047 	if (!page)
3048 		return -ENOMEM;
3049 	unlock_page(page);
3050 
3051 	/*
3052 	 * With delayed allocation, we don't log the i_disksize update
3053 	 * if there is delayed block allocation. But we still need
3054 	 * to journalling the i_disksize update if writes to the end
3055 	 * of file which has an already mapped buffer.
3056 	 */
3057 retry_journal:
3058 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3059 				ext4_da_write_credits(inode, pos, len));
3060 	if (IS_ERR(handle)) {
3061 		put_page(page);
3062 		return PTR_ERR(handle);
3063 	}
3064 
3065 	lock_page(page);
3066 	if (page->mapping != mapping) {
3067 		/* The page got truncated from under us */
3068 		unlock_page(page);
3069 		put_page(page);
3070 		ext4_journal_stop(handle);
3071 		goto retry_grab;
3072 	}
3073 	/* In case writeback began while the page was unlocked */
3074 	wait_for_stable_page(page);
3075 
3076 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3077 	ret = ext4_block_write_begin(page, pos, len,
3078 				     ext4_da_get_block_prep);
3079 #else
3080 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3081 #endif
3082 	if (ret < 0) {
3083 		unlock_page(page);
3084 		ext4_journal_stop(handle);
3085 		/*
3086 		 * block_write_begin may have instantiated a few blocks
3087 		 * outside i_size.  Trim these off again. Don't need
3088 		 * i_size_read because we hold i_mutex.
3089 		 */
3090 		if (pos + len > inode->i_size)
3091 			ext4_truncate_failed_write(inode);
3092 
3093 		if (ret == -ENOSPC &&
3094 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3095 			goto retry_journal;
3096 
3097 		put_page(page);
3098 		return ret;
3099 	}
3100 
3101 	*pagep = page;
3102 	return ret;
3103 }
3104 
3105 /*
3106  * Check if we should update i_disksize
3107  * when write to the end of file but not require block allocation
3108  */
3109 static int ext4_da_should_update_i_disksize(struct page *page,
3110 					    unsigned long offset)
3111 {
3112 	struct buffer_head *bh;
3113 	struct inode *inode = page->mapping->host;
3114 	unsigned int idx;
3115 	int i;
3116 
3117 	bh = page_buffers(page);
3118 	idx = offset >> inode->i_blkbits;
3119 
3120 	for (i = 0; i < idx; i++)
3121 		bh = bh->b_this_page;
3122 
3123 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3124 		return 0;
3125 	return 1;
3126 }
3127 
3128 static int ext4_da_write_end(struct file *file,
3129 			     struct address_space *mapping,
3130 			     loff_t pos, unsigned len, unsigned copied,
3131 			     struct page *page, void *fsdata)
3132 {
3133 	struct inode *inode = mapping->host;
3134 	int ret = 0, ret2;
3135 	handle_t *handle = ext4_journal_current_handle();
3136 	loff_t new_i_size;
3137 	unsigned long start, end;
3138 	int write_mode = (int)(unsigned long)fsdata;
3139 
3140 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3141 		return ext4_write_end(file, mapping, pos,
3142 				      len, copied, page, fsdata);
3143 
3144 	trace_ext4_da_write_end(inode, pos, len, copied);
3145 	start = pos & (PAGE_SIZE - 1);
3146 	end = start + copied - 1;
3147 
3148 	/*
3149 	 * generic_write_end() will run mark_inode_dirty() if i_size
3150 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3151 	 * into that.
3152 	 */
3153 	new_i_size = pos + copied;
3154 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3155 		if (ext4_has_inline_data(inode) ||
3156 		    ext4_da_should_update_i_disksize(page, end)) {
3157 			ext4_update_i_disksize(inode, new_i_size);
3158 			/* We need to mark inode dirty even if
3159 			 * new_i_size is less that inode->i_size
3160 			 * bu greater than i_disksize.(hint delalloc)
3161 			 */
3162 			ext4_mark_inode_dirty(handle, inode);
3163 		}
3164 	}
3165 
3166 	if (write_mode != CONVERT_INLINE_DATA &&
3167 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3168 	    ext4_has_inline_data(inode))
3169 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3170 						     page);
3171 	else
3172 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3173 							page, fsdata);
3174 
3175 	copied = ret2;
3176 	if (ret2 < 0)
3177 		ret = ret2;
3178 	ret2 = ext4_journal_stop(handle);
3179 	if (!ret)
3180 		ret = ret2;
3181 
3182 	return ret ? ret : copied;
3183 }
3184 
3185 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3186 				   unsigned int length)
3187 {
3188 	/*
3189 	 * Drop reserved blocks
3190 	 */
3191 	BUG_ON(!PageLocked(page));
3192 	if (!page_has_buffers(page))
3193 		goto out;
3194 
3195 	ext4_da_page_release_reservation(page, offset, length);
3196 
3197 out:
3198 	ext4_invalidatepage(page, offset, length);
3199 
3200 	return;
3201 }
3202 
3203 /*
3204  * Force all delayed allocation blocks to be allocated for a given inode.
3205  */
3206 int ext4_alloc_da_blocks(struct inode *inode)
3207 {
3208 	trace_ext4_alloc_da_blocks(inode);
3209 
3210 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3211 		return 0;
3212 
3213 	/*
3214 	 * We do something simple for now.  The filemap_flush() will
3215 	 * also start triggering a write of the data blocks, which is
3216 	 * not strictly speaking necessary (and for users of
3217 	 * laptop_mode, not even desirable).  However, to do otherwise
3218 	 * would require replicating code paths in:
3219 	 *
3220 	 * ext4_writepages() ->
3221 	 *    write_cache_pages() ---> (via passed in callback function)
3222 	 *        __mpage_da_writepage() -->
3223 	 *           mpage_add_bh_to_extent()
3224 	 *           mpage_da_map_blocks()
3225 	 *
3226 	 * The problem is that write_cache_pages(), located in
3227 	 * mm/page-writeback.c, marks pages clean in preparation for
3228 	 * doing I/O, which is not desirable if we're not planning on
3229 	 * doing I/O at all.
3230 	 *
3231 	 * We could call write_cache_pages(), and then redirty all of
3232 	 * the pages by calling redirty_page_for_writepage() but that
3233 	 * would be ugly in the extreme.  So instead we would need to
3234 	 * replicate parts of the code in the above functions,
3235 	 * simplifying them because we wouldn't actually intend to
3236 	 * write out the pages, but rather only collect contiguous
3237 	 * logical block extents, call the multi-block allocator, and
3238 	 * then update the buffer heads with the block allocations.
3239 	 *
3240 	 * For now, though, we'll cheat by calling filemap_flush(),
3241 	 * which will map the blocks, and start the I/O, but not
3242 	 * actually wait for the I/O to complete.
3243 	 */
3244 	return filemap_flush(inode->i_mapping);
3245 }
3246 
3247 /*
3248  * bmap() is special.  It gets used by applications such as lilo and by
3249  * the swapper to find the on-disk block of a specific piece of data.
3250  *
3251  * Naturally, this is dangerous if the block concerned is still in the
3252  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3253  * filesystem and enables swap, then they may get a nasty shock when the
3254  * data getting swapped to that swapfile suddenly gets overwritten by
3255  * the original zero's written out previously to the journal and
3256  * awaiting writeback in the kernel's buffer cache.
3257  *
3258  * So, if we see any bmap calls here on a modified, data-journaled file,
3259  * take extra steps to flush any blocks which might be in the cache.
3260  */
3261 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3262 {
3263 	struct inode *inode = mapping->host;
3264 	journal_t *journal;
3265 	int err;
3266 
3267 	/*
3268 	 * We can get here for an inline file via the FIBMAP ioctl
3269 	 */
3270 	if (ext4_has_inline_data(inode))
3271 		return 0;
3272 
3273 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3274 			test_opt(inode->i_sb, DELALLOC)) {
3275 		/*
3276 		 * With delalloc we want to sync the file
3277 		 * so that we can make sure we allocate
3278 		 * blocks for file
3279 		 */
3280 		filemap_write_and_wait(mapping);
3281 	}
3282 
3283 	if (EXT4_JOURNAL(inode) &&
3284 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3285 		/*
3286 		 * This is a REALLY heavyweight approach, but the use of
3287 		 * bmap on dirty files is expected to be extremely rare:
3288 		 * only if we run lilo or swapon on a freshly made file
3289 		 * do we expect this to happen.
3290 		 *
3291 		 * (bmap requires CAP_SYS_RAWIO so this does not
3292 		 * represent an unprivileged user DOS attack --- we'd be
3293 		 * in trouble if mortal users could trigger this path at
3294 		 * will.)
3295 		 *
3296 		 * NB. EXT4_STATE_JDATA is not set on files other than
3297 		 * regular files.  If somebody wants to bmap a directory
3298 		 * or symlink and gets confused because the buffer
3299 		 * hasn't yet been flushed to disk, they deserve
3300 		 * everything they get.
3301 		 */
3302 
3303 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3304 		journal = EXT4_JOURNAL(inode);
3305 		jbd2_journal_lock_updates(journal);
3306 		err = jbd2_journal_flush(journal);
3307 		jbd2_journal_unlock_updates(journal);
3308 
3309 		if (err)
3310 			return 0;
3311 	}
3312 
3313 	return generic_block_bmap(mapping, block, ext4_get_block);
3314 }
3315 
3316 static int ext4_readpage(struct file *file, struct page *page)
3317 {
3318 	int ret = -EAGAIN;
3319 	struct inode *inode = page->mapping->host;
3320 
3321 	trace_ext4_readpage(page);
3322 
3323 	if (ext4_has_inline_data(inode))
3324 		ret = ext4_readpage_inline(inode, page);
3325 
3326 	if (ret == -EAGAIN)
3327 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3328 
3329 	return ret;
3330 }
3331 
3332 static int
3333 ext4_readpages(struct file *file, struct address_space *mapping,
3334 		struct list_head *pages, unsigned nr_pages)
3335 {
3336 	struct inode *inode = mapping->host;
3337 
3338 	/* If the file has inline data, no need to do readpages. */
3339 	if (ext4_has_inline_data(inode))
3340 		return 0;
3341 
3342 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3343 }
3344 
3345 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346 				unsigned int length)
3347 {
3348 	trace_ext4_invalidatepage(page, offset, length);
3349 
3350 	/* No journalling happens on data buffers when this function is used */
3351 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352 
3353 	block_invalidatepage(page, offset, length);
3354 }
3355 
3356 static int __ext4_journalled_invalidatepage(struct page *page,
3357 					    unsigned int offset,
3358 					    unsigned int length)
3359 {
3360 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361 
3362 	trace_ext4_journalled_invalidatepage(page, offset, length);
3363 
3364 	/*
3365 	 * If it's a full truncate we just forget about the pending dirtying
3366 	 */
3367 	if (offset == 0 && length == PAGE_SIZE)
3368 		ClearPageChecked(page);
3369 
3370 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3371 }
3372 
3373 /* Wrapper for aops... */
3374 static void ext4_journalled_invalidatepage(struct page *page,
3375 					   unsigned int offset,
3376 					   unsigned int length)
3377 {
3378 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3379 }
3380 
3381 static int ext4_releasepage(struct page *page, gfp_t wait)
3382 {
3383 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384 
3385 	trace_ext4_releasepage(page);
3386 
3387 	/* Page has dirty journalled data -> cannot release */
3388 	if (PageChecked(page))
3389 		return 0;
3390 	if (journal)
3391 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392 	else
3393 		return try_to_free_buffers(page);
3394 }
3395 
3396 static bool ext4_inode_datasync_dirty(struct inode *inode)
3397 {
3398 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3399 
3400 	if (journal)
3401 		return !jbd2_transaction_committed(journal,
3402 					EXT4_I(inode)->i_datasync_tid);
3403 	/* Any metadata buffers to write? */
3404 	if (!list_empty(&inode->i_mapping->private_list))
3405 		return true;
3406 	return inode->i_state & I_DIRTY_DATASYNC;
3407 }
3408 
3409 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3410 			    unsigned flags, struct iomap *iomap)
3411 {
3412 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3413 	unsigned int blkbits = inode->i_blkbits;
3414 	unsigned long first_block = offset >> blkbits;
3415 	unsigned long last_block = (offset + length - 1) >> blkbits;
3416 	struct ext4_map_blocks map;
3417 	bool delalloc = false;
3418 	int ret;
3419 
3420 
3421 	if (flags & IOMAP_REPORT) {
3422 		if (ext4_has_inline_data(inode)) {
3423 			ret = ext4_inline_data_iomap(inode, iomap);
3424 			if (ret != -EAGAIN) {
3425 				if (ret == 0 && offset >= iomap->length)
3426 					ret = -ENOENT;
3427 				return ret;
3428 			}
3429 		}
3430 	} else {
3431 		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3432 			return -ERANGE;
3433 	}
3434 
3435 	map.m_lblk = first_block;
3436 	map.m_len = last_block - first_block + 1;
3437 
3438 	if (flags & IOMAP_REPORT) {
3439 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3440 		if (ret < 0)
3441 			return ret;
3442 
3443 		if (ret == 0) {
3444 			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3445 			struct extent_status es;
3446 
3447 			ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3448 
3449 			if (!es.es_len || es.es_lblk > end) {
3450 				/* entire range is a hole */
3451 			} else if (es.es_lblk > map.m_lblk) {
3452 				/* range starts with a hole */
3453 				map.m_len = es.es_lblk - map.m_lblk;
3454 			} else {
3455 				ext4_lblk_t offs = 0;
3456 
3457 				if (es.es_lblk < map.m_lblk)
3458 					offs = map.m_lblk - es.es_lblk;
3459 				map.m_lblk = es.es_lblk + offs;
3460 				map.m_len = es.es_len - offs;
3461 				delalloc = true;
3462 			}
3463 		}
3464 	} else if (flags & IOMAP_WRITE) {
3465 		int dio_credits;
3466 		handle_t *handle;
3467 		int retries = 0;
3468 
3469 		/* Trim mapping request to maximum we can map at once for DIO */
3470 		if (map.m_len > DIO_MAX_BLOCKS)
3471 			map.m_len = DIO_MAX_BLOCKS;
3472 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3473 retry:
3474 		/*
3475 		 * Either we allocate blocks and then we don't get unwritten
3476 		 * extent so we have reserved enough credits, or the blocks
3477 		 * are already allocated and unwritten and in that case
3478 		 * extent conversion fits in the credits as well.
3479 		 */
3480 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3481 					    dio_credits);
3482 		if (IS_ERR(handle))
3483 			return PTR_ERR(handle);
3484 
3485 		ret = ext4_map_blocks(handle, inode, &map,
3486 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3487 		if (ret < 0) {
3488 			ext4_journal_stop(handle);
3489 			if (ret == -ENOSPC &&
3490 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3491 				goto retry;
3492 			return ret;
3493 		}
3494 
3495 		/*
3496 		 * If we added blocks beyond i_size, we need to make sure they
3497 		 * will get truncated if we crash before updating i_size in
3498 		 * ext4_iomap_end(). For faults we don't need to do that (and
3499 		 * even cannot because for orphan list operations inode_lock is
3500 		 * required) - if we happen to instantiate block beyond i_size,
3501 		 * it is because we race with truncate which has already added
3502 		 * the inode to the orphan list.
3503 		 */
3504 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3505 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3506 			int err;
3507 
3508 			err = ext4_orphan_add(handle, inode);
3509 			if (err < 0) {
3510 				ext4_journal_stop(handle);
3511 				return err;
3512 			}
3513 		}
3514 		ext4_journal_stop(handle);
3515 	} else {
3516 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3517 		if (ret < 0)
3518 			return ret;
3519 	}
3520 
3521 	iomap->flags = 0;
3522 	if (ext4_inode_datasync_dirty(inode))
3523 		iomap->flags |= IOMAP_F_DIRTY;
3524 	iomap->bdev = inode->i_sb->s_bdev;
3525 	iomap->dax_dev = sbi->s_daxdev;
3526 	iomap->offset = first_block << blkbits;
3527 	iomap->length = (u64)map.m_len << blkbits;
3528 
3529 	if (ret == 0) {
3530 		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3531 		iomap->addr = IOMAP_NULL_ADDR;
3532 	} else {
3533 		if (map.m_flags & EXT4_MAP_MAPPED) {
3534 			iomap->type = IOMAP_MAPPED;
3535 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3536 			iomap->type = IOMAP_UNWRITTEN;
3537 		} else {
3538 			WARN_ON_ONCE(1);
3539 			return -EIO;
3540 		}
3541 		iomap->addr = (u64)map.m_pblk << blkbits;
3542 	}
3543 
3544 	if (map.m_flags & EXT4_MAP_NEW)
3545 		iomap->flags |= IOMAP_F_NEW;
3546 
3547 	return 0;
3548 }
3549 
3550 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3551 			  ssize_t written, unsigned flags, struct iomap *iomap)
3552 {
3553 	int ret = 0;
3554 	handle_t *handle;
3555 	int blkbits = inode->i_blkbits;
3556 	bool truncate = false;
3557 
3558 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3559 		return 0;
3560 
3561 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3562 	if (IS_ERR(handle)) {
3563 		ret = PTR_ERR(handle);
3564 		goto orphan_del;
3565 	}
3566 	if (ext4_update_inode_size(inode, offset + written))
3567 		ext4_mark_inode_dirty(handle, inode);
3568 	/*
3569 	 * We may need to truncate allocated but not written blocks beyond EOF.
3570 	 */
3571 	if (iomap->offset + iomap->length >
3572 	    ALIGN(inode->i_size, 1 << blkbits)) {
3573 		ext4_lblk_t written_blk, end_blk;
3574 
3575 		written_blk = (offset + written) >> blkbits;
3576 		end_blk = (offset + length) >> blkbits;
3577 		if (written_blk < end_blk && ext4_can_truncate(inode))
3578 			truncate = true;
3579 	}
3580 	/*
3581 	 * Remove inode from orphan list if we were extending a inode and
3582 	 * everything went fine.
3583 	 */
3584 	if (!truncate && inode->i_nlink &&
3585 	    !list_empty(&EXT4_I(inode)->i_orphan))
3586 		ext4_orphan_del(handle, inode);
3587 	ext4_journal_stop(handle);
3588 	if (truncate) {
3589 		ext4_truncate_failed_write(inode);
3590 orphan_del:
3591 		/*
3592 		 * If truncate failed early the inode might still be on the
3593 		 * orphan list; we need to make sure the inode is removed from
3594 		 * the orphan list in that case.
3595 		 */
3596 		if (inode->i_nlink)
3597 			ext4_orphan_del(NULL, inode);
3598 	}
3599 	return ret;
3600 }
3601 
3602 const struct iomap_ops ext4_iomap_ops = {
3603 	.iomap_begin		= ext4_iomap_begin,
3604 	.iomap_end		= ext4_iomap_end,
3605 };
3606 
3607 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3608 			    ssize_t size, void *private)
3609 {
3610         ext4_io_end_t *io_end = private;
3611 
3612 	/* if not async direct IO just return */
3613 	if (!io_end)
3614 		return 0;
3615 
3616 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3617 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3618 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3619 
3620 	/*
3621 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3622 	 * data was not written. Just clear the unwritten flag and drop io_end.
3623 	 */
3624 	if (size <= 0) {
3625 		ext4_clear_io_unwritten_flag(io_end);
3626 		size = 0;
3627 	}
3628 	io_end->offset = offset;
3629 	io_end->size = size;
3630 	ext4_put_io_end(io_end);
3631 
3632 	return 0;
3633 }
3634 
3635 /*
3636  * Handling of direct IO writes.
3637  *
3638  * For ext4 extent files, ext4 will do direct-io write even to holes,
3639  * preallocated extents, and those write extend the file, no need to
3640  * fall back to buffered IO.
3641  *
3642  * For holes, we fallocate those blocks, mark them as unwritten
3643  * If those blocks were preallocated, we mark sure they are split, but
3644  * still keep the range to write as unwritten.
3645  *
3646  * The unwritten extents will be converted to written when DIO is completed.
3647  * For async direct IO, since the IO may still pending when return, we
3648  * set up an end_io call back function, which will do the conversion
3649  * when async direct IO completed.
3650  *
3651  * If the O_DIRECT write will extend the file then add this inode to the
3652  * orphan list.  So recovery will truncate it back to the original size
3653  * if the machine crashes during the write.
3654  *
3655  */
3656 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3657 {
3658 	struct file *file = iocb->ki_filp;
3659 	struct inode *inode = file->f_mapping->host;
3660 	struct ext4_inode_info *ei = EXT4_I(inode);
3661 	ssize_t ret;
3662 	loff_t offset = iocb->ki_pos;
3663 	size_t count = iov_iter_count(iter);
3664 	int overwrite = 0;
3665 	get_block_t *get_block_func = NULL;
3666 	int dio_flags = 0;
3667 	loff_t final_size = offset + count;
3668 	int orphan = 0;
3669 	handle_t *handle;
3670 
3671 	if (final_size > inode->i_size) {
3672 		/* Credits for sb + inode write */
3673 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3674 		if (IS_ERR(handle)) {
3675 			ret = PTR_ERR(handle);
3676 			goto out;
3677 		}
3678 		ret = ext4_orphan_add(handle, inode);
3679 		if (ret) {
3680 			ext4_journal_stop(handle);
3681 			goto out;
3682 		}
3683 		orphan = 1;
3684 		ei->i_disksize = inode->i_size;
3685 		ext4_journal_stop(handle);
3686 	}
3687 
3688 	BUG_ON(iocb->private == NULL);
3689 
3690 	/*
3691 	 * Make all waiters for direct IO properly wait also for extent
3692 	 * conversion. This also disallows race between truncate() and
3693 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3694 	 */
3695 	inode_dio_begin(inode);
3696 
3697 	/* If we do a overwrite dio, i_mutex locking can be released */
3698 	overwrite = *((int *)iocb->private);
3699 
3700 	if (overwrite)
3701 		inode_unlock(inode);
3702 
3703 	/*
3704 	 * For extent mapped files we could direct write to holes and fallocate.
3705 	 *
3706 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3707 	 * parallel buffered read to expose the stale data before DIO complete
3708 	 * the data IO.
3709 	 *
3710 	 * As to previously fallocated extents, ext4 get_block will just simply
3711 	 * mark the buffer mapped but still keep the extents unwritten.
3712 	 *
3713 	 * For non AIO case, we will convert those unwritten extents to written
3714 	 * after return back from blockdev_direct_IO. That way we save us from
3715 	 * allocating io_end structure and also the overhead of offloading
3716 	 * the extent convertion to a workqueue.
3717 	 *
3718 	 * For async DIO, the conversion needs to be deferred when the
3719 	 * IO is completed. The ext4 end_io callback function will be
3720 	 * called to take care of the conversion work.  Here for async
3721 	 * case, we allocate an io_end structure to hook to the iocb.
3722 	 */
3723 	iocb->private = NULL;
3724 	if (overwrite)
3725 		get_block_func = ext4_dio_get_block_overwrite;
3726 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3727 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3728 		get_block_func = ext4_dio_get_block;
3729 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3730 	} else if (is_sync_kiocb(iocb)) {
3731 		get_block_func = ext4_dio_get_block_unwritten_sync;
3732 		dio_flags = DIO_LOCKING;
3733 	} else {
3734 		get_block_func = ext4_dio_get_block_unwritten_async;
3735 		dio_flags = DIO_LOCKING;
3736 	}
3737 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3738 				   get_block_func, ext4_end_io_dio, NULL,
3739 				   dio_flags);
3740 
3741 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3742 						EXT4_STATE_DIO_UNWRITTEN)) {
3743 		int err;
3744 		/*
3745 		 * for non AIO case, since the IO is already
3746 		 * completed, we could do the conversion right here
3747 		 */
3748 		err = ext4_convert_unwritten_extents(NULL, inode,
3749 						     offset, ret);
3750 		if (err < 0)
3751 			ret = err;
3752 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3753 	}
3754 
3755 	inode_dio_end(inode);
3756 	/* take i_mutex locking again if we do a ovewrite dio */
3757 	if (overwrite)
3758 		inode_lock(inode);
3759 
3760 	if (ret < 0 && final_size > inode->i_size)
3761 		ext4_truncate_failed_write(inode);
3762 
3763 	/* Handle extending of i_size after direct IO write */
3764 	if (orphan) {
3765 		int err;
3766 
3767 		/* Credits for sb + inode write */
3768 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3769 		if (IS_ERR(handle)) {
3770 			/* This is really bad luck. We've written the data
3771 			 * but cannot extend i_size. Bail out and pretend
3772 			 * the write failed... */
3773 			ret = PTR_ERR(handle);
3774 			if (inode->i_nlink)
3775 				ext4_orphan_del(NULL, inode);
3776 
3777 			goto out;
3778 		}
3779 		if (inode->i_nlink)
3780 			ext4_orphan_del(handle, inode);
3781 		if (ret > 0) {
3782 			loff_t end = offset + ret;
3783 			if (end > inode->i_size) {
3784 				ei->i_disksize = end;
3785 				i_size_write(inode, end);
3786 				/*
3787 				 * We're going to return a positive `ret'
3788 				 * here due to non-zero-length I/O, so there's
3789 				 * no way of reporting error returns from
3790 				 * ext4_mark_inode_dirty() to userspace.  So
3791 				 * ignore it.
3792 				 */
3793 				ext4_mark_inode_dirty(handle, inode);
3794 			}
3795 		}
3796 		err = ext4_journal_stop(handle);
3797 		if (ret == 0)
3798 			ret = err;
3799 	}
3800 out:
3801 	return ret;
3802 }
3803 
3804 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3805 {
3806 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3807 	struct inode *inode = mapping->host;
3808 	size_t count = iov_iter_count(iter);
3809 	ssize_t ret;
3810 
3811 	/*
3812 	 * Shared inode_lock is enough for us - it protects against concurrent
3813 	 * writes & truncates and since we take care of writing back page cache,
3814 	 * we are protected against page writeback as well.
3815 	 */
3816 	inode_lock_shared(inode);
3817 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3818 					   iocb->ki_pos + count - 1);
3819 	if (ret)
3820 		goto out_unlock;
3821 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3822 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3823 out_unlock:
3824 	inode_unlock_shared(inode);
3825 	return ret;
3826 }
3827 
3828 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3829 {
3830 	struct file *file = iocb->ki_filp;
3831 	struct inode *inode = file->f_mapping->host;
3832 	size_t count = iov_iter_count(iter);
3833 	loff_t offset = iocb->ki_pos;
3834 	ssize_t ret;
3835 
3836 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3837 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3838 		return 0;
3839 #endif
3840 
3841 	/*
3842 	 * If we are doing data journalling we don't support O_DIRECT
3843 	 */
3844 	if (ext4_should_journal_data(inode))
3845 		return 0;
3846 
3847 	/* Let buffer I/O handle the inline data case. */
3848 	if (ext4_has_inline_data(inode))
3849 		return 0;
3850 
3851 	/* DAX uses iomap path now */
3852 	if (WARN_ON_ONCE(IS_DAX(inode)))
3853 		return 0;
3854 
3855 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3856 	if (iov_iter_rw(iter) == READ)
3857 		ret = ext4_direct_IO_read(iocb, iter);
3858 	else
3859 		ret = ext4_direct_IO_write(iocb, iter);
3860 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3861 	return ret;
3862 }
3863 
3864 /*
3865  * Pages can be marked dirty completely asynchronously from ext4's journalling
3866  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3867  * much here because ->set_page_dirty is called under VFS locks.  The page is
3868  * not necessarily locked.
3869  *
3870  * We cannot just dirty the page and leave attached buffers clean, because the
3871  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3872  * or jbddirty because all the journalling code will explode.
3873  *
3874  * So what we do is to mark the page "pending dirty" and next time writepage
3875  * is called, propagate that into the buffers appropriately.
3876  */
3877 static int ext4_journalled_set_page_dirty(struct page *page)
3878 {
3879 	SetPageChecked(page);
3880 	return __set_page_dirty_nobuffers(page);
3881 }
3882 
3883 static int ext4_set_page_dirty(struct page *page)
3884 {
3885 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3886 	WARN_ON_ONCE(!page_has_buffers(page));
3887 	return __set_page_dirty_buffers(page);
3888 }
3889 
3890 static const struct address_space_operations ext4_aops = {
3891 	.readpage		= ext4_readpage,
3892 	.readpages		= ext4_readpages,
3893 	.writepage		= ext4_writepage,
3894 	.writepages		= ext4_writepages,
3895 	.write_begin		= ext4_write_begin,
3896 	.write_end		= ext4_write_end,
3897 	.set_page_dirty		= ext4_set_page_dirty,
3898 	.bmap			= ext4_bmap,
3899 	.invalidatepage		= ext4_invalidatepage,
3900 	.releasepage		= ext4_releasepage,
3901 	.direct_IO		= ext4_direct_IO,
3902 	.migratepage		= buffer_migrate_page,
3903 	.is_partially_uptodate  = block_is_partially_uptodate,
3904 	.error_remove_page	= generic_error_remove_page,
3905 };
3906 
3907 static const struct address_space_operations ext4_journalled_aops = {
3908 	.readpage		= ext4_readpage,
3909 	.readpages		= ext4_readpages,
3910 	.writepage		= ext4_writepage,
3911 	.writepages		= ext4_writepages,
3912 	.write_begin		= ext4_write_begin,
3913 	.write_end		= ext4_journalled_write_end,
3914 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3915 	.bmap			= ext4_bmap,
3916 	.invalidatepage		= ext4_journalled_invalidatepage,
3917 	.releasepage		= ext4_releasepage,
3918 	.direct_IO		= ext4_direct_IO,
3919 	.is_partially_uptodate  = block_is_partially_uptodate,
3920 	.error_remove_page	= generic_error_remove_page,
3921 };
3922 
3923 static const struct address_space_operations ext4_da_aops = {
3924 	.readpage		= ext4_readpage,
3925 	.readpages		= ext4_readpages,
3926 	.writepage		= ext4_writepage,
3927 	.writepages		= ext4_writepages,
3928 	.write_begin		= ext4_da_write_begin,
3929 	.write_end		= ext4_da_write_end,
3930 	.set_page_dirty		= ext4_set_page_dirty,
3931 	.bmap			= ext4_bmap,
3932 	.invalidatepage		= ext4_da_invalidatepage,
3933 	.releasepage		= ext4_releasepage,
3934 	.direct_IO		= ext4_direct_IO,
3935 	.migratepage		= buffer_migrate_page,
3936 	.is_partially_uptodate  = block_is_partially_uptodate,
3937 	.error_remove_page	= generic_error_remove_page,
3938 };
3939 
3940 void ext4_set_aops(struct inode *inode)
3941 {
3942 	switch (ext4_inode_journal_mode(inode)) {
3943 	case EXT4_INODE_ORDERED_DATA_MODE:
3944 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3945 		break;
3946 	case EXT4_INODE_JOURNAL_DATA_MODE:
3947 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3948 		return;
3949 	default:
3950 		BUG();
3951 	}
3952 	if (test_opt(inode->i_sb, DELALLOC))
3953 		inode->i_mapping->a_ops = &ext4_da_aops;
3954 	else
3955 		inode->i_mapping->a_ops = &ext4_aops;
3956 }
3957 
3958 static int __ext4_block_zero_page_range(handle_t *handle,
3959 		struct address_space *mapping, loff_t from, loff_t length)
3960 {
3961 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3962 	unsigned offset = from & (PAGE_SIZE-1);
3963 	unsigned blocksize, pos;
3964 	ext4_lblk_t iblock;
3965 	struct inode *inode = mapping->host;
3966 	struct buffer_head *bh;
3967 	struct page *page;
3968 	int err = 0;
3969 
3970 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3971 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3972 	if (!page)
3973 		return -ENOMEM;
3974 
3975 	blocksize = inode->i_sb->s_blocksize;
3976 
3977 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3978 
3979 	if (!page_has_buffers(page))
3980 		create_empty_buffers(page, blocksize, 0);
3981 
3982 	/* Find the buffer that contains "offset" */
3983 	bh = page_buffers(page);
3984 	pos = blocksize;
3985 	while (offset >= pos) {
3986 		bh = bh->b_this_page;
3987 		iblock++;
3988 		pos += blocksize;
3989 	}
3990 	if (buffer_freed(bh)) {
3991 		BUFFER_TRACE(bh, "freed: skip");
3992 		goto unlock;
3993 	}
3994 	if (!buffer_mapped(bh)) {
3995 		BUFFER_TRACE(bh, "unmapped");
3996 		ext4_get_block(inode, iblock, bh, 0);
3997 		/* unmapped? It's a hole - nothing to do */
3998 		if (!buffer_mapped(bh)) {
3999 			BUFFER_TRACE(bh, "still unmapped");
4000 			goto unlock;
4001 		}
4002 	}
4003 
4004 	/* Ok, it's mapped. Make sure it's up-to-date */
4005 	if (PageUptodate(page))
4006 		set_buffer_uptodate(bh);
4007 
4008 	if (!buffer_uptodate(bh)) {
4009 		err = -EIO;
4010 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4011 		wait_on_buffer(bh);
4012 		/* Uhhuh. Read error. Complain and punt. */
4013 		if (!buffer_uptodate(bh))
4014 			goto unlock;
4015 		if (S_ISREG(inode->i_mode) &&
4016 		    ext4_encrypted_inode(inode)) {
4017 			/* We expect the key to be set. */
4018 			BUG_ON(!fscrypt_has_encryption_key(inode));
4019 			BUG_ON(blocksize != PAGE_SIZE);
4020 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4021 						page, PAGE_SIZE, 0, page->index));
4022 		}
4023 	}
4024 	if (ext4_should_journal_data(inode)) {
4025 		BUFFER_TRACE(bh, "get write access");
4026 		err = ext4_journal_get_write_access(handle, bh);
4027 		if (err)
4028 			goto unlock;
4029 	}
4030 	zero_user(page, offset, length);
4031 	BUFFER_TRACE(bh, "zeroed end of block");
4032 
4033 	if (ext4_should_journal_data(inode)) {
4034 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4035 	} else {
4036 		err = 0;
4037 		mark_buffer_dirty(bh);
4038 		if (ext4_should_order_data(inode))
4039 			err = ext4_jbd2_inode_add_write(handle, inode);
4040 	}
4041 
4042 unlock:
4043 	unlock_page(page);
4044 	put_page(page);
4045 	return err;
4046 }
4047 
4048 /*
4049  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4050  * starting from file offset 'from'.  The range to be zero'd must
4051  * be contained with in one block.  If the specified range exceeds
4052  * the end of the block it will be shortened to end of the block
4053  * that cooresponds to 'from'
4054  */
4055 static int ext4_block_zero_page_range(handle_t *handle,
4056 		struct address_space *mapping, loff_t from, loff_t length)
4057 {
4058 	struct inode *inode = mapping->host;
4059 	unsigned offset = from & (PAGE_SIZE-1);
4060 	unsigned blocksize = inode->i_sb->s_blocksize;
4061 	unsigned max = blocksize - (offset & (blocksize - 1));
4062 
4063 	/*
4064 	 * correct length if it does not fall between
4065 	 * 'from' and the end of the block
4066 	 */
4067 	if (length > max || length < 0)
4068 		length = max;
4069 
4070 	if (IS_DAX(inode)) {
4071 		return iomap_zero_range(inode, from, length, NULL,
4072 					&ext4_iomap_ops);
4073 	}
4074 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4075 }
4076 
4077 /*
4078  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4079  * up to the end of the block which corresponds to `from'.
4080  * This required during truncate. We need to physically zero the tail end
4081  * of that block so it doesn't yield old data if the file is later grown.
4082  */
4083 static int ext4_block_truncate_page(handle_t *handle,
4084 		struct address_space *mapping, loff_t from)
4085 {
4086 	unsigned offset = from & (PAGE_SIZE-1);
4087 	unsigned length;
4088 	unsigned blocksize;
4089 	struct inode *inode = mapping->host;
4090 
4091 	/* If we are processing an encrypted inode during orphan list handling */
4092 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4093 		return 0;
4094 
4095 	blocksize = inode->i_sb->s_blocksize;
4096 	length = blocksize - (offset & (blocksize - 1));
4097 
4098 	return ext4_block_zero_page_range(handle, mapping, from, length);
4099 }
4100 
4101 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4102 			     loff_t lstart, loff_t length)
4103 {
4104 	struct super_block *sb = inode->i_sb;
4105 	struct address_space *mapping = inode->i_mapping;
4106 	unsigned partial_start, partial_end;
4107 	ext4_fsblk_t start, end;
4108 	loff_t byte_end = (lstart + length - 1);
4109 	int err = 0;
4110 
4111 	partial_start = lstart & (sb->s_blocksize - 1);
4112 	partial_end = byte_end & (sb->s_blocksize - 1);
4113 
4114 	start = lstart >> sb->s_blocksize_bits;
4115 	end = byte_end >> sb->s_blocksize_bits;
4116 
4117 	/* Handle partial zero within the single block */
4118 	if (start == end &&
4119 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4120 		err = ext4_block_zero_page_range(handle, mapping,
4121 						 lstart, length);
4122 		return err;
4123 	}
4124 	/* Handle partial zero out on the start of the range */
4125 	if (partial_start) {
4126 		err = ext4_block_zero_page_range(handle, mapping,
4127 						 lstart, sb->s_blocksize);
4128 		if (err)
4129 			return err;
4130 	}
4131 	/* Handle partial zero out on the end of the range */
4132 	if (partial_end != sb->s_blocksize - 1)
4133 		err = ext4_block_zero_page_range(handle, mapping,
4134 						 byte_end - partial_end,
4135 						 partial_end + 1);
4136 	return err;
4137 }
4138 
4139 int ext4_can_truncate(struct inode *inode)
4140 {
4141 	if (S_ISREG(inode->i_mode))
4142 		return 1;
4143 	if (S_ISDIR(inode->i_mode))
4144 		return 1;
4145 	if (S_ISLNK(inode->i_mode))
4146 		return !ext4_inode_is_fast_symlink(inode);
4147 	return 0;
4148 }
4149 
4150 /*
4151  * We have to make sure i_disksize gets properly updated before we truncate
4152  * page cache due to hole punching or zero range. Otherwise i_disksize update
4153  * can get lost as it may have been postponed to submission of writeback but
4154  * that will never happen after we truncate page cache.
4155  */
4156 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4157 				      loff_t len)
4158 {
4159 	handle_t *handle;
4160 	loff_t size = i_size_read(inode);
4161 
4162 	WARN_ON(!inode_is_locked(inode));
4163 	if (offset > size || offset + len < size)
4164 		return 0;
4165 
4166 	if (EXT4_I(inode)->i_disksize >= size)
4167 		return 0;
4168 
4169 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4170 	if (IS_ERR(handle))
4171 		return PTR_ERR(handle);
4172 	ext4_update_i_disksize(inode, size);
4173 	ext4_mark_inode_dirty(handle, inode);
4174 	ext4_journal_stop(handle);
4175 
4176 	return 0;
4177 }
4178 
4179 /*
4180  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4181  * associated with the given offset and length
4182  *
4183  * @inode:  File inode
4184  * @offset: The offset where the hole will begin
4185  * @len:    The length of the hole
4186  *
4187  * Returns: 0 on success or negative on failure
4188  */
4189 
4190 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4191 {
4192 	struct super_block *sb = inode->i_sb;
4193 	ext4_lblk_t first_block, stop_block;
4194 	struct address_space *mapping = inode->i_mapping;
4195 	loff_t first_block_offset, last_block_offset;
4196 	handle_t *handle;
4197 	unsigned int credits;
4198 	int ret = 0;
4199 
4200 	if (!S_ISREG(inode->i_mode))
4201 		return -EOPNOTSUPP;
4202 
4203 	trace_ext4_punch_hole(inode, offset, length, 0);
4204 
4205 	/*
4206 	 * Write out all dirty pages to avoid race conditions
4207 	 * Then release them.
4208 	 */
4209 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4210 		ret = filemap_write_and_wait_range(mapping, offset,
4211 						   offset + length - 1);
4212 		if (ret)
4213 			return ret;
4214 	}
4215 
4216 	inode_lock(inode);
4217 
4218 	/* No need to punch hole beyond i_size */
4219 	if (offset >= inode->i_size)
4220 		goto out_mutex;
4221 
4222 	/*
4223 	 * If the hole extends beyond i_size, set the hole
4224 	 * to end after the page that contains i_size
4225 	 */
4226 	if (offset + length > inode->i_size) {
4227 		length = inode->i_size +
4228 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4229 		   offset;
4230 	}
4231 
4232 	if (offset & (sb->s_blocksize - 1) ||
4233 	    (offset + length) & (sb->s_blocksize - 1)) {
4234 		/*
4235 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4236 		 * partial block
4237 		 */
4238 		ret = ext4_inode_attach_jinode(inode);
4239 		if (ret < 0)
4240 			goto out_mutex;
4241 
4242 	}
4243 
4244 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4245 	ext4_inode_block_unlocked_dio(inode);
4246 	inode_dio_wait(inode);
4247 
4248 	/*
4249 	 * Prevent page faults from reinstantiating pages we have released from
4250 	 * page cache.
4251 	 */
4252 	down_write(&EXT4_I(inode)->i_mmap_sem);
4253 	first_block_offset = round_up(offset, sb->s_blocksize);
4254 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4255 
4256 	/* Now release the pages and zero block aligned part of pages*/
4257 	if (last_block_offset > first_block_offset) {
4258 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4259 		if (ret)
4260 			goto out_dio;
4261 		truncate_pagecache_range(inode, first_block_offset,
4262 					 last_block_offset);
4263 	}
4264 
4265 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4266 		credits = ext4_writepage_trans_blocks(inode);
4267 	else
4268 		credits = ext4_blocks_for_truncate(inode);
4269 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4270 	if (IS_ERR(handle)) {
4271 		ret = PTR_ERR(handle);
4272 		ext4_std_error(sb, ret);
4273 		goto out_dio;
4274 	}
4275 
4276 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4277 				       length);
4278 	if (ret)
4279 		goto out_stop;
4280 
4281 	first_block = (offset + sb->s_blocksize - 1) >>
4282 		EXT4_BLOCK_SIZE_BITS(sb);
4283 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4284 
4285 	/* If there are no blocks to remove, return now */
4286 	if (first_block >= stop_block)
4287 		goto out_stop;
4288 
4289 	down_write(&EXT4_I(inode)->i_data_sem);
4290 	ext4_discard_preallocations(inode);
4291 
4292 	ret = ext4_es_remove_extent(inode, first_block,
4293 				    stop_block - first_block);
4294 	if (ret) {
4295 		up_write(&EXT4_I(inode)->i_data_sem);
4296 		goto out_stop;
4297 	}
4298 
4299 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4300 		ret = ext4_ext_remove_space(inode, first_block,
4301 					    stop_block - 1);
4302 	else
4303 		ret = ext4_ind_remove_space(handle, inode, first_block,
4304 					    stop_block);
4305 
4306 	up_write(&EXT4_I(inode)->i_data_sem);
4307 	if (IS_SYNC(inode))
4308 		ext4_handle_sync(handle);
4309 
4310 	inode->i_mtime = inode->i_ctime = current_time(inode);
4311 	ext4_mark_inode_dirty(handle, inode);
4312 	if (ret >= 0)
4313 		ext4_update_inode_fsync_trans(handle, inode, 1);
4314 out_stop:
4315 	ext4_journal_stop(handle);
4316 out_dio:
4317 	up_write(&EXT4_I(inode)->i_mmap_sem);
4318 	ext4_inode_resume_unlocked_dio(inode);
4319 out_mutex:
4320 	inode_unlock(inode);
4321 	return ret;
4322 }
4323 
4324 int ext4_inode_attach_jinode(struct inode *inode)
4325 {
4326 	struct ext4_inode_info *ei = EXT4_I(inode);
4327 	struct jbd2_inode *jinode;
4328 
4329 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4330 		return 0;
4331 
4332 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4333 	spin_lock(&inode->i_lock);
4334 	if (!ei->jinode) {
4335 		if (!jinode) {
4336 			spin_unlock(&inode->i_lock);
4337 			return -ENOMEM;
4338 		}
4339 		ei->jinode = jinode;
4340 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4341 		jinode = NULL;
4342 	}
4343 	spin_unlock(&inode->i_lock);
4344 	if (unlikely(jinode != NULL))
4345 		jbd2_free_inode(jinode);
4346 	return 0;
4347 }
4348 
4349 /*
4350  * ext4_truncate()
4351  *
4352  * We block out ext4_get_block() block instantiations across the entire
4353  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4354  * simultaneously on behalf of the same inode.
4355  *
4356  * As we work through the truncate and commit bits of it to the journal there
4357  * is one core, guiding principle: the file's tree must always be consistent on
4358  * disk.  We must be able to restart the truncate after a crash.
4359  *
4360  * The file's tree may be transiently inconsistent in memory (although it
4361  * probably isn't), but whenever we close off and commit a journal transaction,
4362  * the contents of (the filesystem + the journal) must be consistent and
4363  * restartable.  It's pretty simple, really: bottom up, right to left (although
4364  * left-to-right works OK too).
4365  *
4366  * Note that at recovery time, journal replay occurs *before* the restart of
4367  * truncate against the orphan inode list.
4368  *
4369  * The committed inode has the new, desired i_size (which is the same as
4370  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4371  * that this inode's truncate did not complete and it will again call
4372  * ext4_truncate() to have another go.  So there will be instantiated blocks
4373  * to the right of the truncation point in a crashed ext4 filesystem.  But
4374  * that's fine - as long as they are linked from the inode, the post-crash
4375  * ext4_truncate() run will find them and release them.
4376  */
4377 int ext4_truncate(struct inode *inode)
4378 {
4379 	struct ext4_inode_info *ei = EXT4_I(inode);
4380 	unsigned int credits;
4381 	int err = 0;
4382 	handle_t *handle;
4383 	struct address_space *mapping = inode->i_mapping;
4384 
4385 	/*
4386 	 * There is a possibility that we're either freeing the inode
4387 	 * or it's a completely new inode. In those cases we might not
4388 	 * have i_mutex locked because it's not necessary.
4389 	 */
4390 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4391 		WARN_ON(!inode_is_locked(inode));
4392 	trace_ext4_truncate_enter(inode);
4393 
4394 	if (!ext4_can_truncate(inode))
4395 		return 0;
4396 
4397 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4398 
4399 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4400 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4401 
4402 	if (ext4_has_inline_data(inode)) {
4403 		int has_inline = 1;
4404 
4405 		err = ext4_inline_data_truncate(inode, &has_inline);
4406 		if (err)
4407 			return err;
4408 		if (has_inline)
4409 			return 0;
4410 	}
4411 
4412 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4413 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4414 		if (ext4_inode_attach_jinode(inode) < 0)
4415 			return 0;
4416 	}
4417 
4418 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4419 		credits = ext4_writepage_trans_blocks(inode);
4420 	else
4421 		credits = ext4_blocks_for_truncate(inode);
4422 
4423 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4424 	if (IS_ERR(handle))
4425 		return PTR_ERR(handle);
4426 
4427 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4428 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4429 
4430 	/*
4431 	 * We add the inode to the orphan list, so that if this
4432 	 * truncate spans multiple transactions, and we crash, we will
4433 	 * resume the truncate when the filesystem recovers.  It also
4434 	 * marks the inode dirty, to catch the new size.
4435 	 *
4436 	 * Implication: the file must always be in a sane, consistent
4437 	 * truncatable state while each transaction commits.
4438 	 */
4439 	err = ext4_orphan_add(handle, inode);
4440 	if (err)
4441 		goto out_stop;
4442 
4443 	down_write(&EXT4_I(inode)->i_data_sem);
4444 
4445 	ext4_discard_preallocations(inode);
4446 
4447 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4448 		err = ext4_ext_truncate(handle, inode);
4449 	else
4450 		ext4_ind_truncate(handle, inode);
4451 
4452 	up_write(&ei->i_data_sem);
4453 	if (err)
4454 		goto out_stop;
4455 
4456 	if (IS_SYNC(inode))
4457 		ext4_handle_sync(handle);
4458 
4459 out_stop:
4460 	/*
4461 	 * If this was a simple ftruncate() and the file will remain alive,
4462 	 * then we need to clear up the orphan record which we created above.
4463 	 * However, if this was a real unlink then we were called by
4464 	 * ext4_evict_inode(), and we allow that function to clean up the
4465 	 * orphan info for us.
4466 	 */
4467 	if (inode->i_nlink)
4468 		ext4_orphan_del(handle, inode);
4469 
4470 	inode->i_mtime = inode->i_ctime = current_time(inode);
4471 	ext4_mark_inode_dirty(handle, inode);
4472 	ext4_journal_stop(handle);
4473 
4474 	trace_ext4_truncate_exit(inode);
4475 	return err;
4476 }
4477 
4478 /*
4479  * ext4_get_inode_loc returns with an extra refcount against the inode's
4480  * underlying buffer_head on success. If 'in_mem' is true, we have all
4481  * data in memory that is needed to recreate the on-disk version of this
4482  * inode.
4483  */
4484 static int __ext4_get_inode_loc(struct inode *inode,
4485 				struct ext4_iloc *iloc, int in_mem)
4486 {
4487 	struct ext4_group_desc	*gdp;
4488 	struct buffer_head	*bh;
4489 	struct super_block	*sb = inode->i_sb;
4490 	ext4_fsblk_t		block;
4491 	int			inodes_per_block, inode_offset;
4492 
4493 	iloc->bh = NULL;
4494 	if (!ext4_valid_inum(sb, inode->i_ino))
4495 		return -EFSCORRUPTED;
4496 
4497 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4498 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4499 	if (!gdp)
4500 		return -EIO;
4501 
4502 	/*
4503 	 * Figure out the offset within the block group inode table
4504 	 */
4505 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4506 	inode_offset = ((inode->i_ino - 1) %
4507 			EXT4_INODES_PER_GROUP(sb));
4508 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4509 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4510 
4511 	bh = sb_getblk(sb, block);
4512 	if (unlikely(!bh))
4513 		return -ENOMEM;
4514 	if (!buffer_uptodate(bh)) {
4515 		lock_buffer(bh);
4516 
4517 		/*
4518 		 * If the buffer has the write error flag, we have failed
4519 		 * to write out another inode in the same block.  In this
4520 		 * case, we don't have to read the block because we may
4521 		 * read the old inode data successfully.
4522 		 */
4523 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4524 			set_buffer_uptodate(bh);
4525 
4526 		if (buffer_uptodate(bh)) {
4527 			/* someone brought it uptodate while we waited */
4528 			unlock_buffer(bh);
4529 			goto has_buffer;
4530 		}
4531 
4532 		/*
4533 		 * If we have all information of the inode in memory and this
4534 		 * is the only valid inode in the block, we need not read the
4535 		 * block.
4536 		 */
4537 		if (in_mem) {
4538 			struct buffer_head *bitmap_bh;
4539 			int i, start;
4540 
4541 			start = inode_offset & ~(inodes_per_block - 1);
4542 
4543 			/* Is the inode bitmap in cache? */
4544 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4545 			if (unlikely(!bitmap_bh))
4546 				goto make_io;
4547 
4548 			/*
4549 			 * If the inode bitmap isn't in cache then the
4550 			 * optimisation may end up performing two reads instead
4551 			 * of one, so skip it.
4552 			 */
4553 			if (!buffer_uptodate(bitmap_bh)) {
4554 				brelse(bitmap_bh);
4555 				goto make_io;
4556 			}
4557 			for (i = start; i < start + inodes_per_block; i++) {
4558 				if (i == inode_offset)
4559 					continue;
4560 				if (ext4_test_bit(i, bitmap_bh->b_data))
4561 					break;
4562 			}
4563 			brelse(bitmap_bh);
4564 			if (i == start + inodes_per_block) {
4565 				/* all other inodes are free, so skip I/O */
4566 				memset(bh->b_data, 0, bh->b_size);
4567 				set_buffer_uptodate(bh);
4568 				unlock_buffer(bh);
4569 				goto has_buffer;
4570 			}
4571 		}
4572 
4573 make_io:
4574 		/*
4575 		 * If we need to do any I/O, try to pre-readahead extra
4576 		 * blocks from the inode table.
4577 		 */
4578 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4579 			ext4_fsblk_t b, end, table;
4580 			unsigned num;
4581 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4582 
4583 			table = ext4_inode_table(sb, gdp);
4584 			/* s_inode_readahead_blks is always a power of 2 */
4585 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4586 			if (table > b)
4587 				b = table;
4588 			end = b + ra_blks;
4589 			num = EXT4_INODES_PER_GROUP(sb);
4590 			if (ext4_has_group_desc_csum(sb))
4591 				num -= ext4_itable_unused_count(sb, gdp);
4592 			table += num / inodes_per_block;
4593 			if (end > table)
4594 				end = table;
4595 			while (b <= end)
4596 				sb_breadahead(sb, b++);
4597 		}
4598 
4599 		/*
4600 		 * There are other valid inodes in the buffer, this inode
4601 		 * has in-inode xattrs, or we don't have this inode in memory.
4602 		 * Read the block from disk.
4603 		 */
4604 		trace_ext4_load_inode(inode);
4605 		get_bh(bh);
4606 		bh->b_end_io = end_buffer_read_sync;
4607 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4608 		wait_on_buffer(bh);
4609 		if (!buffer_uptodate(bh)) {
4610 			EXT4_ERROR_INODE_BLOCK(inode, block,
4611 					       "unable to read itable block");
4612 			brelse(bh);
4613 			return -EIO;
4614 		}
4615 	}
4616 has_buffer:
4617 	iloc->bh = bh;
4618 	return 0;
4619 }
4620 
4621 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4622 {
4623 	/* We have all inode data except xattrs in memory here. */
4624 	return __ext4_get_inode_loc(inode, iloc,
4625 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4626 }
4627 
4628 static bool ext4_should_use_dax(struct inode *inode)
4629 {
4630 	if (!test_opt(inode->i_sb, DAX))
4631 		return false;
4632 	if (!S_ISREG(inode->i_mode))
4633 		return false;
4634 	if (ext4_should_journal_data(inode))
4635 		return false;
4636 	if (ext4_has_inline_data(inode))
4637 		return false;
4638 	if (ext4_encrypted_inode(inode))
4639 		return false;
4640 	return true;
4641 }
4642 
4643 void ext4_set_inode_flags(struct inode *inode)
4644 {
4645 	unsigned int flags = EXT4_I(inode)->i_flags;
4646 	unsigned int new_fl = 0;
4647 
4648 	if (flags & EXT4_SYNC_FL)
4649 		new_fl |= S_SYNC;
4650 	if (flags & EXT4_APPEND_FL)
4651 		new_fl |= S_APPEND;
4652 	if (flags & EXT4_IMMUTABLE_FL)
4653 		new_fl |= S_IMMUTABLE;
4654 	if (flags & EXT4_NOATIME_FL)
4655 		new_fl |= S_NOATIME;
4656 	if (flags & EXT4_DIRSYNC_FL)
4657 		new_fl |= S_DIRSYNC;
4658 	if (ext4_should_use_dax(inode))
4659 		new_fl |= S_DAX;
4660 	if (flags & EXT4_ENCRYPT_FL)
4661 		new_fl |= S_ENCRYPTED;
4662 	inode_set_flags(inode, new_fl,
4663 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4664 			S_ENCRYPTED);
4665 }
4666 
4667 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4668 				  struct ext4_inode_info *ei)
4669 {
4670 	blkcnt_t i_blocks ;
4671 	struct inode *inode = &(ei->vfs_inode);
4672 	struct super_block *sb = inode->i_sb;
4673 
4674 	if (ext4_has_feature_huge_file(sb)) {
4675 		/* we are using combined 48 bit field */
4676 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4677 					le32_to_cpu(raw_inode->i_blocks_lo);
4678 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4679 			/* i_blocks represent file system block size */
4680 			return i_blocks  << (inode->i_blkbits - 9);
4681 		} else {
4682 			return i_blocks;
4683 		}
4684 	} else {
4685 		return le32_to_cpu(raw_inode->i_blocks_lo);
4686 	}
4687 }
4688 
4689 static inline void ext4_iget_extra_inode(struct inode *inode,
4690 					 struct ext4_inode *raw_inode,
4691 					 struct ext4_inode_info *ei)
4692 {
4693 	__le32 *magic = (void *)raw_inode +
4694 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4695 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4696 	    EXT4_INODE_SIZE(inode->i_sb) &&
4697 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4698 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4699 		ext4_find_inline_data_nolock(inode);
4700 	} else
4701 		EXT4_I(inode)->i_inline_off = 0;
4702 }
4703 
4704 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4705 {
4706 	if (!ext4_has_feature_project(inode->i_sb))
4707 		return -EOPNOTSUPP;
4708 	*projid = EXT4_I(inode)->i_projid;
4709 	return 0;
4710 }
4711 
4712 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4713 {
4714 	struct ext4_iloc iloc;
4715 	struct ext4_inode *raw_inode;
4716 	struct ext4_inode_info *ei;
4717 	struct inode *inode;
4718 	journal_t *journal = EXT4_SB(sb)->s_journal;
4719 	long ret;
4720 	loff_t size;
4721 	int block;
4722 	uid_t i_uid;
4723 	gid_t i_gid;
4724 	projid_t i_projid;
4725 
4726 	inode = iget_locked(sb, ino);
4727 	if (!inode)
4728 		return ERR_PTR(-ENOMEM);
4729 	if (!(inode->i_state & I_NEW))
4730 		return inode;
4731 
4732 	ei = EXT4_I(inode);
4733 	iloc.bh = NULL;
4734 
4735 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4736 	if (ret < 0)
4737 		goto bad_inode;
4738 	raw_inode = ext4_raw_inode(&iloc);
4739 
4740 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4741 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4742 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4743 			EXT4_INODE_SIZE(inode->i_sb) ||
4744 		    (ei->i_extra_isize & 3)) {
4745 			EXT4_ERROR_INODE(inode,
4746 					 "bad extra_isize %u (inode size %u)",
4747 					 ei->i_extra_isize,
4748 					 EXT4_INODE_SIZE(inode->i_sb));
4749 			ret = -EFSCORRUPTED;
4750 			goto bad_inode;
4751 		}
4752 	} else
4753 		ei->i_extra_isize = 0;
4754 
4755 	/* Precompute checksum seed for inode metadata */
4756 	if (ext4_has_metadata_csum(sb)) {
4757 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4758 		__u32 csum;
4759 		__le32 inum = cpu_to_le32(inode->i_ino);
4760 		__le32 gen = raw_inode->i_generation;
4761 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4762 				   sizeof(inum));
4763 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4764 					      sizeof(gen));
4765 	}
4766 
4767 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4768 		EXT4_ERROR_INODE(inode, "checksum invalid");
4769 		ret = -EFSBADCRC;
4770 		goto bad_inode;
4771 	}
4772 
4773 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4774 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4775 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4776 	if (ext4_has_feature_project(sb) &&
4777 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4778 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4779 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4780 	else
4781 		i_projid = EXT4_DEF_PROJID;
4782 
4783 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4784 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4785 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4786 	}
4787 	i_uid_write(inode, i_uid);
4788 	i_gid_write(inode, i_gid);
4789 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4790 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4791 
4792 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4793 	ei->i_inline_off = 0;
4794 	ei->i_dir_start_lookup = 0;
4795 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4796 	/* We now have enough fields to check if the inode was active or not.
4797 	 * This is needed because nfsd might try to access dead inodes
4798 	 * the test is that same one that e2fsck uses
4799 	 * NeilBrown 1999oct15
4800 	 */
4801 	if (inode->i_nlink == 0) {
4802 		if ((inode->i_mode == 0 ||
4803 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4804 		    ino != EXT4_BOOT_LOADER_INO) {
4805 			/* this inode is deleted */
4806 			ret = -ESTALE;
4807 			goto bad_inode;
4808 		}
4809 		/* The only unlinked inodes we let through here have
4810 		 * valid i_mode and are being read by the orphan
4811 		 * recovery code: that's fine, we're about to complete
4812 		 * the process of deleting those.
4813 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4814 		 * not initialized on a new filesystem. */
4815 	}
4816 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4817 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4818 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4819 	if (ext4_has_feature_64bit(sb))
4820 		ei->i_file_acl |=
4821 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4822 	inode->i_size = ext4_isize(sb, raw_inode);
4823 	if ((size = i_size_read(inode)) < 0) {
4824 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4825 		ret = -EFSCORRUPTED;
4826 		goto bad_inode;
4827 	}
4828 	ei->i_disksize = inode->i_size;
4829 #ifdef CONFIG_QUOTA
4830 	ei->i_reserved_quota = 0;
4831 #endif
4832 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4833 	ei->i_block_group = iloc.block_group;
4834 	ei->i_last_alloc_group = ~0;
4835 	/*
4836 	 * NOTE! The in-memory inode i_data array is in little-endian order
4837 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4838 	 */
4839 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4840 		ei->i_data[block] = raw_inode->i_block[block];
4841 	INIT_LIST_HEAD(&ei->i_orphan);
4842 
4843 	/*
4844 	 * Set transaction id's of transactions that have to be committed
4845 	 * to finish f[data]sync. We set them to currently running transaction
4846 	 * as we cannot be sure that the inode or some of its metadata isn't
4847 	 * part of the transaction - the inode could have been reclaimed and
4848 	 * now it is reread from disk.
4849 	 */
4850 	if (journal) {
4851 		transaction_t *transaction;
4852 		tid_t tid;
4853 
4854 		read_lock(&journal->j_state_lock);
4855 		if (journal->j_running_transaction)
4856 			transaction = journal->j_running_transaction;
4857 		else
4858 			transaction = journal->j_committing_transaction;
4859 		if (transaction)
4860 			tid = transaction->t_tid;
4861 		else
4862 			tid = journal->j_commit_sequence;
4863 		read_unlock(&journal->j_state_lock);
4864 		ei->i_sync_tid = tid;
4865 		ei->i_datasync_tid = tid;
4866 	}
4867 
4868 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4869 		if (ei->i_extra_isize == 0) {
4870 			/* The extra space is currently unused. Use it. */
4871 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4872 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4873 					    EXT4_GOOD_OLD_INODE_SIZE;
4874 		} else {
4875 			ext4_iget_extra_inode(inode, raw_inode, ei);
4876 		}
4877 	}
4878 
4879 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4880 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4881 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4882 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4883 
4884 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4885 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4886 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4887 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4888 				inode->i_version |=
4889 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4890 		}
4891 	}
4892 
4893 	ret = 0;
4894 	if (ei->i_file_acl &&
4895 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4896 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4897 				 ei->i_file_acl);
4898 		ret = -EFSCORRUPTED;
4899 		goto bad_inode;
4900 	} else if (!ext4_has_inline_data(inode)) {
4901 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4902 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4903 			    (S_ISLNK(inode->i_mode) &&
4904 			     !ext4_inode_is_fast_symlink(inode))))
4905 				/* Validate extent which is part of inode */
4906 				ret = ext4_ext_check_inode(inode);
4907 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4908 			   (S_ISLNK(inode->i_mode) &&
4909 			    !ext4_inode_is_fast_symlink(inode))) {
4910 			/* Validate block references which are part of inode */
4911 			ret = ext4_ind_check_inode(inode);
4912 		}
4913 	}
4914 	if (ret)
4915 		goto bad_inode;
4916 
4917 	if (S_ISREG(inode->i_mode)) {
4918 		inode->i_op = &ext4_file_inode_operations;
4919 		inode->i_fop = &ext4_file_operations;
4920 		ext4_set_aops(inode);
4921 	} else if (S_ISDIR(inode->i_mode)) {
4922 		inode->i_op = &ext4_dir_inode_operations;
4923 		inode->i_fop = &ext4_dir_operations;
4924 	} else if (S_ISLNK(inode->i_mode)) {
4925 		if (ext4_encrypted_inode(inode)) {
4926 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4927 			ext4_set_aops(inode);
4928 		} else if (ext4_inode_is_fast_symlink(inode)) {
4929 			inode->i_link = (char *)ei->i_data;
4930 			inode->i_op = &ext4_fast_symlink_inode_operations;
4931 			nd_terminate_link(ei->i_data, inode->i_size,
4932 				sizeof(ei->i_data) - 1);
4933 		} else {
4934 			inode->i_op = &ext4_symlink_inode_operations;
4935 			ext4_set_aops(inode);
4936 		}
4937 		inode_nohighmem(inode);
4938 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4939 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4940 		inode->i_op = &ext4_special_inode_operations;
4941 		if (raw_inode->i_block[0])
4942 			init_special_inode(inode, inode->i_mode,
4943 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4944 		else
4945 			init_special_inode(inode, inode->i_mode,
4946 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4947 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4948 		make_bad_inode(inode);
4949 	} else {
4950 		ret = -EFSCORRUPTED;
4951 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4952 		goto bad_inode;
4953 	}
4954 	brelse(iloc.bh);
4955 	ext4_set_inode_flags(inode);
4956 
4957 	unlock_new_inode(inode);
4958 	return inode;
4959 
4960 bad_inode:
4961 	brelse(iloc.bh);
4962 	iget_failed(inode);
4963 	return ERR_PTR(ret);
4964 }
4965 
4966 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4967 {
4968 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4969 		return ERR_PTR(-EFSCORRUPTED);
4970 	return ext4_iget(sb, ino);
4971 }
4972 
4973 static int ext4_inode_blocks_set(handle_t *handle,
4974 				struct ext4_inode *raw_inode,
4975 				struct ext4_inode_info *ei)
4976 {
4977 	struct inode *inode = &(ei->vfs_inode);
4978 	u64 i_blocks = inode->i_blocks;
4979 	struct super_block *sb = inode->i_sb;
4980 
4981 	if (i_blocks <= ~0U) {
4982 		/*
4983 		 * i_blocks can be represented in a 32 bit variable
4984 		 * as multiple of 512 bytes
4985 		 */
4986 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4987 		raw_inode->i_blocks_high = 0;
4988 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4989 		return 0;
4990 	}
4991 	if (!ext4_has_feature_huge_file(sb))
4992 		return -EFBIG;
4993 
4994 	if (i_blocks <= 0xffffffffffffULL) {
4995 		/*
4996 		 * i_blocks can be represented in a 48 bit variable
4997 		 * as multiple of 512 bytes
4998 		 */
4999 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5000 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5001 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5002 	} else {
5003 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5004 		/* i_block is stored in file system block size */
5005 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5006 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5007 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5008 	}
5009 	return 0;
5010 }
5011 
5012 struct other_inode {
5013 	unsigned long		orig_ino;
5014 	struct ext4_inode	*raw_inode;
5015 };
5016 
5017 static int other_inode_match(struct inode * inode, unsigned long ino,
5018 			     void *data)
5019 {
5020 	struct other_inode *oi = (struct other_inode *) data;
5021 
5022 	if ((inode->i_ino != ino) ||
5023 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5024 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5025 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5026 		return 0;
5027 	spin_lock(&inode->i_lock);
5028 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5029 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5030 	    (inode->i_state & I_DIRTY_TIME)) {
5031 		struct ext4_inode_info	*ei = EXT4_I(inode);
5032 
5033 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5034 		spin_unlock(&inode->i_lock);
5035 
5036 		spin_lock(&ei->i_raw_lock);
5037 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5038 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5039 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5040 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5041 		spin_unlock(&ei->i_raw_lock);
5042 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5043 		return -1;
5044 	}
5045 	spin_unlock(&inode->i_lock);
5046 	return -1;
5047 }
5048 
5049 /*
5050  * Opportunistically update the other time fields for other inodes in
5051  * the same inode table block.
5052  */
5053 static void ext4_update_other_inodes_time(struct super_block *sb,
5054 					  unsigned long orig_ino, char *buf)
5055 {
5056 	struct other_inode oi;
5057 	unsigned long ino;
5058 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5059 	int inode_size = EXT4_INODE_SIZE(sb);
5060 
5061 	oi.orig_ino = orig_ino;
5062 	/*
5063 	 * Calculate the first inode in the inode table block.  Inode
5064 	 * numbers are one-based.  That is, the first inode in a block
5065 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5066 	 */
5067 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5068 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5069 		if (ino == orig_ino)
5070 			continue;
5071 		oi.raw_inode = (struct ext4_inode *) buf;
5072 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5073 	}
5074 }
5075 
5076 /*
5077  * Post the struct inode info into an on-disk inode location in the
5078  * buffer-cache.  This gobbles the caller's reference to the
5079  * buffer_head in the inode location struct.
5080  *
5081  * The caller must have write access to iloc->bh.
5082  */
5083 static int ext4_do_update_inode(handle_t *handle,
5084 				struct inode *inode,
5085 				struct ext4_iloc *iloc)
5086 {
5087 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5088 	struct ext4_inode_info *ei = EXT4_I(inode);
5089 	struct buffer_head *bh = iloc->bh;
5090 	struct super_block *sb = inode->i_sb;
5091 	int err = 0, rc, block;
5092 	int need_datasync = 0, set_large_file = 0;
5093 	uid_t i_uid;
5094 	gid_t i_gid;
5095 	projid_t i_projid;
5096 
5097 	spin_lock(&ei->i_raw_lock);
5098 
5099 	/* For fields not tracked in the in-memory inode,
5100 	 * initialise them to zero for new inodes. */
5101 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5102 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5103 
5104 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5105 	i_uid = i_uid_read(inode);
5106 	i_gid = i_gid_read(inode);
5107 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5108 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5109 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5110 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5111 /*
5112  * Fix up interoperability with old kernels. Otherwise, old inodes get
5113  * re-used with the upper 16 bits of the uid/gid intact
5114  */
5115 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5116 			raw_inode->i_uid_high = 0;
5117 			raw_inode->i_gid_high = 0;
5118 		} else {
5119 			raw_inode->i_uid_high =
5120 				cpu_to_le16(high_16_bits(i_uid));
5121 			raw_inode->i_gid_high =
5122 				cpu_to_le16(high_16_bits(i_gid));
5123 		}
5124 	} else {
5125 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5126 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5127 		raw_inode->i_uid_high = 0;
5128 		raw_inode->i_gid_high = 0;
5129 	}
5130 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5131 
5132 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5133 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5134 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5135 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5136 
5137 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5138 	if (err) {
5139 		spin_unlock(&ei->i_raw_lock);
5140 		goto out_brelse;
5141 	}
5142 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5143 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5144 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5145 		raw_inode->i_file_acl_high =
5146 			cpu_to_le16(ei->i_file_acl >> 32);
5147 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5148 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5149 		ext4_isize_set(raw_inode, ei->i_disksize);
5150 		need_datasync = 1;
5151 	}
5152 	if (ei->i_disksize > 0x7fffffffULL) {
5153 		if (!ext4_has_feature_large_file(sb) ||
5154 				EXT4_SB(sb)->s_es->s_rev_level ==
5155 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5156 			set_large_file = 1;
5157 	}
5158 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5159 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5160 		if (old_valid_dev(inode->i_rdev)) {
5161 			raw_inode->i_block[0] =
5162 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5163 			raw_inode->i_block[1] = 0;
5164 		} else {
5165 			raw_inode->i_block[0] = 0;
5166 			raw_inode->i_block[1] =
5167 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5168 			raw_inode->i_block[2] = 0;
5169 		}
5170 	} else if (!ext4_has_inline_data(inode)) {
5171 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5172 			raw_inode->i_block[block] = ei->i_data[block];
5173 	}
5174 
5175 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5176 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5177 		if (ei->i_extra_isize) {
5178 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5179 				raw_inode->i_version_hi =
5180 					cpu_to_le32(inode->i_version >> 32);
5181 			raw_inode->i_extra_isize =
5182 				cpu_to_le16(ei->i_extra_isize);
5183 		}
5184 	}
5185 
5186 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5187 	       i_projid != EXT4_DEF_PROJID);
5188 
5189 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5190 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5191 		raw_inode->i_projid = cpu_to_le32(i_projid);
5192 
5193 	ext4_inode_csum_set(inode, raw_inode, ei);
5194 	spin_unlock(&ei->i_raw_lock);
5195 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5196 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5197 					      bh->b_data);
5198 
5199 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5200 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5201 	if (!err)
5202 		err = rc;
5203 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5204 	if (set_large_file) {
5205 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5206 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5207 		if (err)
5208 			goto out_brelse;
5209 		ext4_update_dynamic_rev(sb);
5210 		ext4_set_feature_large_file(sb);
5211 		ext4_handle_sync(handle);
5212 		err = ext4_handle_dirty_super(handle, sb);
5213 	}
5214 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5215 out_brelse:
5216 	brelse(bh);
5217 	ext4_std_error(inode->i_sb, err);
5218 	return err;
5219 }
5220 
5221 /*
5222  * ext4_write_inode()
5223  *
5224  * We are called from a few places:
5225  *
5226  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5227  *   Here, there will be no transaction running. We wait for any running
5228  *   transaction to commit.
5229  *
5230  * - Within flush work (sys_sync(), kupdate and such).
5231  *   We wait on commit, if told to.
5232  *
5233  * - Within iput_final() -> write_inode_now()
5234  *   We wait on commit, if told to.
5235  *
5236  * In all cases it is actually safe for us to return without doing anything,
5237  * because the inode has been copied into a raw inode buffer in
5238  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5239  * writeback.
5240  *
5241  * Note that we are absolutely dependent upon all inode dirtiers doing the
5242  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5243  * which we are interested.
5244  *
5245  * It would be a bug for them to not do this.  The code:
5246  *
5247  *	mark_inode_dirty(inode)
5248  *	stuff();
5249  *	inode->i_size = expr;
5250  *
5251  * is in error because write_inode() could occur while `stuff()' is running,
5252  * and the new i_size will be lost.  Plus the inode will no longer be on the
5253  * superblock's dirty inode list.
5254  */
5255 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5256 {
5257 	int err;
5258 
5259 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5260 		return 0;
5261 
5262 	if (EXT4_SB(inode->i_sb)->s_journal) {
5263 		if (ext4_journal_current_handle()) {
5264 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5265 			dump_stack();
5266 			return -EIO;
5267 		}
5268 
5269 		/*
5270 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5271 		 * ext4_sync_fs() will force the commit after everything is
5272 		 * written.
5273 		 */
5274 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5275 			return 0;
5276 
5277 		err = ext4_force_commit(inode->i_sb);
5278 	} else {
5279 		struct ext4_iloc iloc;
5280 
5281 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5282 		if (err)
5283 			return err;
5284 		/*
5285 		 * sync(2) will flush the whole buffer cache. No need to do
5286 		 * it here separately for each inode.
5287 		 */
5288 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5289 			sync_dirty_buffer(iloc.bh);
5290 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5291 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5292 					 "IO error syncing inode");
5293 			err = -EIO;
5294 		}
5295 		brelse(iloc.bh);
5296 	}
5297 	return err;
5298 }
5299 
5300 /*
5301  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5302  * buffers that are attached to a page stradding i_size and are undergoing
5303  * commit. In that case we have to wait for commit to finish and try again.
5304  */
5305 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5306 {
5307 	struct page *page;
5308 	unsigned offset;
5309 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5310 	tid_t commit_tid = 0;
5311 	int ret;
5312 
5313 	offset = inode->i_size & (PAGE_SIZE - 1);
5314 	/*
5315 	 * All buffers in the last page remain valid? Then there's nothing to
5316 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5317 	 * blocksize case
5318 	 */
5319 	if (offset > PAGE_SIZE - i_blocksize(inode))
5320 		return;
5321 	while (1) {
5322 		page = find_lock_page(inode->i_mapping,
5323 				      inode->i_size >> PAGE_SHIFT);
5324 		if (!page)
5325 			return;
5326 		ret = __ext4_journalled_invalidatepage(page, offset,
5327 						PAGE_SIZE - offset);
5328 		unlock_page(page);
5329 		put_page(page);
5330 		if (ret != -EBUSY)
5331 			return;
5332 		commit_tid = 0;
5333 		read_lock(&journal->j_state_lock);
5334 		if (journal->j_committing_transaction)
5335 			commit_tid = journal->j_committing_transaction->t_tid;
5336 		read_unlock(&journal->j_state_lock);
5337 		if (commit_tid)
5338 			jbd2_log_wait_commit(journal, commit_tid);
5339 	}
5340 }
5341 
5342 /*
5343  * ext4_setattr()
5344  *
5345  * Called from notify_change.
5346  *
5347  * We want to trap VFS attempts to truncate the file as soon as
5348  * possible.  In particular, we want to make sure that when the VFS
5349  * shrinks i_size, we put the inode on the orphan list and modify
5350  * i_disksize immediately, so that during the subsequent flushing of
5351  * dirty pages and freeing of disk blocks, we can guarantee that any
5352  * commit will leave the blocks being flushed in an unused state on
5353  * disk.  (On recovery, the inode will get truncated and the blocks will
5354  * be freed, so we have a strong guarantee that no future commit will
5355  * leave these blocks visible to the user.)
5356  *
5357  * Another thing we have to assure is that if we are in ordered mode
5358  * and inode is still attached to the committing transaction, we must
5359  * we start writeout of all the dirty pages which are being truncated.
5360  * This way we are sure that all the data written in the previous
5361  * transaction are already on disk (truncate waits for pages under
5362  * writeback).
5363  *
5364  * Called with inode->i_mutex down.
5365  */
5366 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5367 {
5368 	struct inode *inode = d_inode(dentry);
5369 	int error, rc = 0;
5370 	int orphan = 0;
5371 	const unsigned int ia_valid = attr->ia_valid;
5372 
5373 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5374 		return -EIO;
5375 
5376 	error = setattr_prepare(dentry, attr);
5377 	if (error)
5378 		return error;
5379 
5380 	error = fscrypt_prepare_setattr(dentry, attr);
5381 	if (error)
5382 		return error;
5383 
5384 	if (is_quota_modification(inode, attr)) {
5385 		error = dquot_initialize(inode);
5386 		if (error)
5387 			return error;
5388 	}
5389 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5390 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5391 		handle_t *handle;
5392 
5393 		/* (user+group)*(old+new) structure, inode write (sb,
5394 		 * inode block, ? - but truncate inode update has it) */
5395 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5396 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5397 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5398 		if (IS_ERR(handle)) {
5399 			error = PTR_ERR(handle);
5400 			goto err_out;
5401 		}
5402 
5403 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5404 		 * counts xattr inode references.
5405 		 */
5406 		down_read(&EXT4_I(inode)->xattr_sem);
5407 		error = dquot_transfer(inode, attr);
5408 		up_read(&EXT4_I(inode)->xattr_sem);
5409 
5410 		if (error) {
5411 			ext4_journal_stop(handle);
5412 			return error;
5413 		}
5414 		/* Update corresponding info in inode so that everything is in
5415 		 * one transaction */
5416 		if (attr->ia_valid & ATTR_UID)
5417 			inode->i_uid = attr->ia_uid;
5418 		if (attr->ia_valid & ATTR_GID)
5419 			inode->i_gid = attr->ia_gid;
5420 		error = ext4_mark_inode_dirty(handle, inode);
5421 		ext4_journal_stop(handle);
5422 	}
5423 
5424 	if (attr->ia_valid & ATTR_SIZE) {
5425 		handle_t *handle;
5426 		loff_t oldsize = inode->i_size;
5427 		int shrink = (attr->ia_size <= inode->i_size);
5428 
5429 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5430 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5431 
5432 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5433 				return -EFBIG;
5434 		}
5435 		if (!S_ISREG(inode->i_mode))
5436 			return -EINVAL;
5437 
5438 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5439 			inode_inc_iversion(inode);
5440 
5441 		if (ext4_should_order_data(inode) &&
5442 		    (attr->ia_size < inode->i_size)) {
5443 			error = ext4_begin_ordered_truncate(inode,
5444 							    attr->ia_size);
5445 			if (error)
5446 				goto err_out;
5447 		}
5448 		if (attr->ia_size != inode->i_size) {
5449 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5450 			if (IS_ERR(handle)) {
5451 				error = PTR_ERR(handle);
5452 				goto err_out;
5453 			}
5454 			if (ext4_handle_valid(handle) && shrink) {
5455 				error = ext4_orphan_add(handle, inode);
5456 				orphan = 1;
5457 			}
5458 			/*
5459 			 * Update c/mtime on truncate up, ext4_truncate() will
5460 			 * update c/mtime in shrink case below
5461 			 */
5462 			if (!shrink) {
5463 				inode->i_mtime = current_time(inode);
5464 				inode->i_ctime = inode->i_mtime;
5465 			}
5466 			down_write(&EXT4_I(inode)->i_data_sem);
5467 			EXT4_I(inode)->i_disksize = attr->ia_size;
5468 			rc = ext4_mark_inode_dirty(handle, inode);
5469 			if (!error)
5470 				error = rc;
5471 			/*
5472 			 * We have to update i_size under i_data_sem together
5473 			 * with i_disksize to avoid races with writeback code
5474 			 * running ext4_wb_update_i_disksize().
5475 			 */
5476 			if (!error)
5477 				i_size_write(inode, attr->ia_size);
5478 			up_write(&EXT4_I(inode)->i_data_sem);
5479 			ext4_journal_stop(handle);
5480 			if (error) {
5481 				if (orphan)
5482 					ext4_orphan_del(NULL, inode);
5483 				goto err_out;
5484 			}
5485 		}
5486 		if (!shrink)
5487 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5488 
5489 		/*
5490 		 * Blocks are going to be removed from the inode. Wait
5491 		 * for dio in flight.  Temporarily disable
5492 		 * dioread_nolock to prevent livelock.
5493 		 */
5494 		if (orphan) {
5495 			if (!ext4_should_journal_data(inode)) {
5496 				ext4_inode_block_unlocked_dio(inode);
5497 				inode_dio_wait(inode);
5498 				ext4_inode_resume_unlocked_dio(inode);
5499 			} else
5500 				ext4_wait_for_tail_page_commit(inode);
5501 		}
5502 		down_write(&EXT4_I(inode)->i_mmap_sem);
5503 		/*
5504 		 * Truncate pagecache after we've waited for commit
5505 		 * in data=journal mode to make pages freeable.
5506 		 */
5507 		truncate_pagecache(inode, inode->i_size);
5508 		if (shrink) {
5509 			rc = ext4_truncate(inode);
5510 			if (rc)
5511 				error = rc;
5512 		}
5513 		up_write(&EXT4_I(inode)->i_mmap_sem);
5514 	}
5515 
5516 	if (!error) {
5517 		setattr_copy(inode, attr);
5518 		mark_inode_dirty(inode);
5519 	}
5520 
5521 	/*
5522 	 * If the call to ext4_truncate failed to get a transaction handle at
5523 	 * all, we need to clean up the in-core orphan list manually.
5524 	 */
5525 	if (orphan && inode->i_nlink)
5526 		ext4_orphan_del(NULL, inode);
5527 
5528 	if (!error && (ia_valid & ATTR_MODE))
5529 		rc = posix_acl_chmod(inode, inode->i_mode);
5530 
5531 err_out:
5532 	ext4_std_error(inode->i_sb, error);
5533 	if (!error)
5534 		error = rc;
5535 	return error;
5536 }
5537 
5538 int ext4_getattr(const struct path *path, struct kstat *stat,
5539 		 u32 request_mask, unsigned int query_flags)
5540 {
5541 	struct inode *inode = d_inode(path->dentry);
5542 	struct ext4_inode *raw_inode;
5543 	struct ext4_inode_info *ei = EXT4_I(inode);
5544 	unsigned int flags;
5545 
5546 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5547 		stat->result_mask |= STATX_BTIME;
5548 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5549 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5550 	}
5551 
5552 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5553 	if (flags & EXT4_APPEND_FL)
5554 		stat->attributes |= STATX_ATTR_APPEND;
5555 	if (flags & EXT4_COMPR_FL)
5556 		stat->attributes |= STATX_ATTR_COMPRESSED;
5557 	if (flags & EXT4_ENCRYPT_FL)
5558 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5559 	if (flags & EXT4_IMMUTABLE_FL)
5560 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5561 	if (flags & EXT4_NODUMP_FL)
5562 		stat->attributes |= STATX_ATTR_NODUMP;
5563 
5564 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5565 				  STATX_ATTR_COMPRESSED |
5566 				  STATX_ATTR_ENCRYPTED |
5567 				  STATX_ATTR_IMMUTABLE |
5568 				  STATX_ATTR_NODUMP);
5569 
5570 	generic_fillattr(inode, stat);
5571 	return 0;
5572 }
5573 
5574 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5575 		      u32 request_mask, unsigned int query_flags)
5576 {
5577 	struct inode *inode = d_inode(path->dentry);
5578 	u64 delalloc_blocks;
5579 
5580 	ext4_getattr(path, stat, request_mask, query_flags);
5581 
5582 	/*
5583 	 * If there is inline data in the inode, the inode will normally not
5584 	 * have data blocks allocated (it may have an external xattr block).
5585 	 * Report at least one sector for such files, so tools like tar, rsync,
5586 	 * others don't incorrectly think the file is completely sparse.
5587 	 */
5588 	if (unlikely(ext4_has_inline_data(inode)))
5589 		stat->blocks += (stat->size + 511) >> 9;
5590 
5591 	/*
5592 	 * We can't update i_blocks if the block allocation is delayed
5593 	 * otherwise in the case of system crash before the real block
5594 	 * allocation is done, we will have i_blocks inconsistent with
5595 	 * on-disk file blocks.
5596 	 * We always keep i_blocks updated together with real
5597 	 * allocation. But to not confuse with user, stat
5598 	 * will return the blocks that include the delayed allocation
5599 	 * blocks for this file.
5600 	 */
5601 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5602 				   EXT4_I(inode)->i_reserved_data_blocks);
5603 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5604 	return 0;
5605 }
5606 
5607 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5608 				   int pextents)
5609 {
5610 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5611 		return ext4_ind_trans_blocks(inode, lblocks);
5612 	return ext4_ext_index_trans_blocks(inode, pextents);
5613 }
5614 
5615 /*
5616  * Account for index blocks, block groups bitmaps and block group
5617  * descriptor blocks if modify datablocks and index blocks
5618  * worse case, the indexs blocks spread over different block groups
5619  *
5620  * If datablocks are discontiguous, they are possible to spread over
5621  * different block groups too. If they are contiguous, with flexbg,
5622  * they could still across block group boundary.
5623  *
5624  * Also account for superblock, inode, quota and xattr blocks
5625  */
5626 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5627 				  int pextents)
5628 {
5629 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5630 	int gdpblocks;
5631 	int idxblocks;
5632 	int ret = 0;
5633 
5634 	/*
5635 	 * How many index blocks need to touch to map @lblocks logical blocks
5636 	 * to @pextents physical extents?
5637 	 */
5638 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5639 
5640 	ret = idxblocks;
5641 
5642 	/*
5643 	 * Now let's see how many group bitmaps and group descriptors need
5644 	 * to account
5645 	 */
5646 	groups = idxblocks + pextents;
5647 	gdpblocks = groups;
5648 	if (groups > ngroups)
5649 		groups = ngroups;
5650 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5651 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5652 
5653 	/* bitmaps and block group descriptor blocks */
5654 	ret += groups + gdpblocks;
5655 
5656 	/* Blocks for super block, inode, quota and xattr blocks */
5657 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5658 
5659 	return ret;
5660 }
5661 
5662 /*
5663  * Calculate the total number of credits to reserve to fit
5664  * the modification of a single pages into a single transaction,
5665  * which may include multiple chunks of block allocations.
5666  *
5667  * This could be called via ext4_write_begin()
5668  *
5669  * We need to consider the worse case, when
5670  * one new block per extent.
5671  */
5672 int ext4_writepage_trans_blocks(struct inode *inode)
5673 {
5674 	int bpp = ext4_journal_blocks_per_page(inode);
5675 	int ret;
5676 
5677 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5678 
5679 	/* Account for data blocks for journalled mode */
5680 	if (ext4_should_journal_data(inode))
5681 		ret += bpp;
5682 	return ret;
5683 }
5684 
5685 /*
5686  * Calculate the journal credits for a chunk of data modification.
5687  *
5688  * This is called from DIO, fallocate or whoever calling
5689  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5690  *
5691  * journal buffers for data blocks are not included here, as DIO
5692  * and fallocate do no need to journal data buffers.
5693  */
5694 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5695 {
5696 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5697 }
5698 
5699 /*
5700  * The caller must have previously called ext4_reserve_inode_write().
5701  * Give this, we know that the caller already has write access to iloc->bh.
5702  */
5703 int ext4_mark_iloc_dirty(handle_t *handle,
5704 			 struct inode *inode, struct ext4_iloc *iloc)
5705 {
5706 	int err = 0;
5707 
5708 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5709 		return -EIO;
5710 
5711 	if (IS_I_VERSION(inode))
5712 		inode_inc_iversion(inode);
5713 
5714 	/* the do_update_inode consumes one bh->b_count */
5715 	get_bh(iloc->bh);
5716 
5717 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5718 	err = ext4_do_update_inode(handle, inode, iloc);
5719 	put_bh(iloc->bh);
5720 	return err;
5721 }
5722 
5723 /*
5724  * On success, We end up with an outstanding reference count against
5725  * iloc->bh.  This _must_ be cleaned up later.
5726  */
5727 
5728 int
5729 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5730 			 struct ext4_iloc *iloc)
5731 {
5732 	int err;
5733 
5734 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5735 		return -EIO;
5736 
5737 	err = ext4_get_inode_loc(inode, iloc);
5738 	if (!err) {
5739 		BUFFER_TRACE(iloc->bh, "get_write_access");
5740 		err = ext4_journal_get_write_access(handle, iloc->bh);
5741 		if (err) {
5742 			brelse(iloc->bh);
5743 			iloc->bh = NULL;
5744 		}
5745 	}
5746 	ext4_std_error(inode->i_sb, err);
5747 	return err;
5748 }
5749 
5750 static int __ext4_expand_extra_isize(struct inode *inode,
5751 				     unsigned int new_extra_isize,
5752 				     struct ext4_iloc *iloc,
5753 				     handle_t *handle, int *no_expand)
5754 {
5755 	struct ext4_inode *raw_inode;
5756 	struct ext4_xattr_ibody_header *header;
5757 	int error;
5758 
5759 	raw_inode = ext4_raw_inode(iloc);
5760 
5761 	header = IHDR(inode, raw_inode);
5762 
5763 	/* No extended attributes present */
5764 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5765 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5766 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5767 		       EXT4_I(inode)->i_extra_isize, 0,
5768 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5769 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5770 		return 0;
5771 	}
5772 
5773 	/* try to expand with EAs present */
5774 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5775 					   raw_inode, handle);
5776 	if (error) {
5777 		/*
5778 		 * Inode size expansion failed; don't try again
5779 		 */
5780 		*no_expand = 1;
5781 	}
5782 
5783 	return error;
5784 }
5785 
5786 /*
5787  * Expand an inode by new_extra_isize bytes.
5788  * Returns 0 on success or negative error number on failure.
5789  */
5790 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5791 					  unsigned int new_extra_isize,
5792 					  struct ext4_iloc iloc,
5793 					  handle_t *handle)
5794 {
5795 	int no_expand;
5796 	int error;
5797 
5798 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5799 		return -EOVERFLOW;
5800 
5801 	/*
5802 	 * In nojournal mode, we can immediately attempt to expand
5803 	 * the inode.  When journaled, we first need to obtain extra
5804 	 * buffer credits since we may write into the EA block
5805 	 * with this same handle. If journal_extend fails, then it will
5806 	 * only result in a minor loss of functionality for that inode.
5807 	 * If this is felt to be critical, then e2fsck should be run to
5808 	 * force a large enough s_min_extra_isize.
5809 	 */
5810 	if (ext4_handle_valid(handle) &&
5811 	    jbd2_journal_extend(handle,
5812 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5813 		return -ENOSPC;
5814 
5815 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5816 		return -EBUSY;
5817 
5818 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5819 					  handle, &no_expand);
5820 	ext4_write_unlock_xattr(inode, &no_expand);
5821 
5822 	return error;
5823 }
5824 
5825 int ext4_expand_extra_isize(struct inode *inode,
5826 			    unsigned int new_extra_isize,
5827 			    struct ext4_iloc *iloc)
5828 {
5829 	handle_t *handle;
5830 	int no_expand;
5831 	int error, rc;
5832 
5833 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5834 		brelse(iloc->bh);
5835 		return -EOVERFLOW;
5836 	}
5837 
5838 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5839 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5840 	if (IS_ERR(handle)) {
5841 		error = PTR_ERR(handle);
5842 		brelse(iloc->bh);
5843 		return error;
5844 	}
5845 
5846 	ext4_write_lock_xattr(inode, &no_expand);
5847 
5848 	BUFFER_TRACE(iloc.bh, "get_write_access");
5849 	error = ext4_journal_get_write_access(handle, iloc->bh);
5850 	if (error) {
5851 		brelse(iloc->bh);
5852 		goto out_stop;
5853 	}
5854 
5855 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5856 					  handle, &no_expand);
5857 
5858 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5859 	if (!error)
5860 		error = rc;
5861 
5862 	ext4_write_unlock_xattr(inode, &no_expand);
5863 out_stop:
5864 	ext4_journal_stop(handle);
5865 	return error;
5866 }
5867 
5868 /*
5869  * What we do here is to mark the in-core inode as clean with respect to inode
5870  * dirtiness (it may still be data-dirty).
5871  * This means that the in-core inode may be reaped by prune_icache
5872  * without having to perform any I/O.  This is a very good thing,
5873  * because *any* task may call prune_icache - even ones which
5874  * have a transaction open against a different journal.
5875  *
5876  * Is this cheating?  Not really.  Sure, we haven't written the
5877  * inode out, but prune_icache isn't a user-visible syncing function.
5878  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5879  * we start and wait on commits.
5880  */
5881 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5882 {
5883 	struct ext4_iloc iloc;
5884 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5885 	int err;
5886 
5887 	might_sleep();
5888 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5889 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5890 	if (err)
5891 		return err;
5892 
5893 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5894 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5895 					       iloc, handle);
5896 
5897 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5898 }
5899 
5900 /*
5901  * ext4_dirty_inode() is called from __mark_inode_dirty()
5902  *
5903  * We're really interested in the case where a file is being extended.
5904  * i_size has been changed by generic_commit_write() and we thus need
5905  * to include the updated inode in the current transaction.
5906  *
5907  * Also, dquot_alloc_block() will always dirty the inode when blocks
5908  * are allocated to the file.
5909  *
5910  * If the inode is marked synchronous, we don't honour that here - doing
5911  * so would cause a commit on atime updates, which we don't bother doing.
5912  * We handle synchronous inodes at the highest possible level.
5913  *
5914  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5915  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5916  * to copy into the on-disk inode structure are the timestamp files.
5917  */
5918 void ext4_dirty_inode(struct inode *inode, int flags)
5919 {
5920 	handle_t *handle;
5921 
5922 	if (flags == I_DIRTY_TIME)
5923 		return;
5924 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5925 	if (IS_ERR(handle))
5926 		goto out;
5927 
5928 	ext4_mark_inode_dirty(handle, inode);
5929 
5930 	ext4_journal_stop(handle);
5931 out:
5932 	return;
5933 }
5934 
5935 #if 0
5936 /*
5937  * Bind an inode's backing buffer_head into this transaction, to prevent
5938  * it from being flushed to disk early.  Unlike
5939  * ext4_reserve_inode_write, this leaves behind no bh reference and
5940  * returns no iloc structure, so the caller needs to repeat the iloc
5941  * lookup to mark the inode dirty later.
5942  */
5943 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5944 {
5945 	struct ext4_iloc iloc;
5946 
5947 	int err = 0;
5948 	if (handle) {
5949 		err = ext4_get_inode_loc(inode, &iloc);
5950 		if (!err) {
5951 			BUFFER_TRACE(iloc.bh, "get_write_access");
5952 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5953 			if (!err)
5954 				err = ext4_handle_dirty_metadata(handle,
5955 								 NULL,
5956 								 iloc.bh);
5957 			brelse(iloc.bh);
5958 		}
5959 	}
5960 	ext4_std_error(inode->i_sb, err);
5961 	return err;
5962 }
5963 #endif
5964 
5965 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5966 {
5967 	journal_t *journal;
5968 	handle_t *handle;
5969 	int err;
5970 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5971 
5972 	/*
5973 	 * We have to be very careful here: changing a data block's
5974 	 * journaling status dynamically is dangerous.  If we write a
5975 	 * data block to the journal, change the status and then delete
5976 	 * that block, we risk forgetting to revoke the old log record
5977 	 * from the journal and so a subsequent replay can corrupt data.
5978 	 * So, first we make sure that the journal is empty and that
5979 	 * nobody is changing anything.
5980 	 */
5981 
5982 	journal = EXT4_JOURNAL(inode);
5983 	if (!journal)
5984 		return 0;
5985 	if (is_journal_aborted(journal))
5986 		return -EROFS;
5987 
5988 	/* Wait for all existing dio workers */
5989 	ext4_inode_block_unlocked_dio(inode);
5990 	inode_dio_wait(inode);
5991 
5992 	/*
5993 	 * Before flushing the journal and switching inode's aops, we have
5994 	 * to flush all dirty data the inode has. There can be outstanding
5995 	 * delayed allocations, there can be unwritten extents created by
5996 	 * fallocate or buffered writes in dioread_nolock mode covered by
5997 	 * dirty data which can be converted only after flushing the dirty
5998 	 * data (and journalled aops don't know how to handle these cases).
5999 	 */
6000 	if (val) {
6001 		down_write(&EXT4_I(inode)->i_mmap_sem);
6002 		err = filemap_write_and_wait(inode->i_mapping);
6003 		if (err < 0) {
6004 			up_write(&EXT4_I(inode)->i_mmap_sem);
6005 			ext4_inode_resume_unlocked_dio(inode);
6006 			return err;
6007 		}
6008 	}
6009 
6010 	percpu_down_write(&sbi->s_journal_flag_rwsem);
6011 	jbd2_journal_lock_updates(journal);
6012 
6013 	/*
6014 	 * OK, there are no updates running now, and all cached data is
6015 	 * synced to disk.  We are now in a completely consistent state
6016 	 * which doesn't have anything in the journal, and we know that
6017 	 * no filesystem updates are running, so it is safe to modify
6018 	 * the inode's in-core data-journaling state flag now.
6019 	 */
6020 
6021 	if (val)
6022 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6023 	else {
6024 		err = jbd2_journal_flush(journal);
6025 		if (err < 0) {
6026 			jbd2_journal_unlock_updates(journal);
6027 			percpu_up_write(&sbi->s_journal_flag_rwsem);
6028 			ext4_inode_resume_unlocked_dio(inode);
6029 			return err;
6030 		}
6031 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6032 	}
6033 	ext4_set_aops(inode);
6034 
6035 	jbd2_journal_unlock_updates(journal);
6036 	percpu_up_write(&sbi->s_journal_flag_rwsem);
6037 
6038 	if (val)
6039 		up_write(&EXT4_I(inode)->i_mmap_sem);
6040 	ext4_inode_resume_unlocked_dio(inode);
6041 
6042 	/* Finally we can mark the inode as dirty. */
6043 
6044 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6045 	if (IS_ERR(handle))
6046 		return PTR_ERR(handle);
6047 
6048 	err = ext4_mark_inode_dirty(handle, inode);
6049 	ext4_handle_sync(handle);
6050 	ext4_journal_stop(handle);
6051 	ext4_std_error(inode->i_sb, err);
6052 
6053 	return err;
6054 }
6055 
6056 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6057 {
6058 	return !buffer_mapped(bh);
6059 }
6060 
6061 int ext4_page_mkwrite(struct vm_fault *vmf)
6062 {
6063 	struct vm_area_struct *vma = vmf->vma;
6064 	struct page *page = vmf->page;
6065 	loff_t size;
6066 	unsigned long len;
6067 	int ret;
6068 	struct file *file = vma->vm_file;
6069 	struct inode *inode = file_inode(file);
6070 	struct address_space *mapping = inode->i_mapping;
6071 	handle_t *handle;
6072 	get_block_t *get_block;
6073 	int retries = 0;
6074 
6075 	sb_start_pagefault(inode->i_sb);
6076 	file_update_time(vma->vm_file);
6077 
6078 	down_read(&EXT4_I(inode)->i_mmap_sem);
6079 
6080 	ret = ext4_convert_inline_data(inode);
6081 	if (ret)
6082 		goto out_ret;
6083 
6084 	/* Delalloc case is easy... */
6085 	if (test_opt(inode->i_sb, DELALLOC) &&
6086 	    !ext4_should_journal_data(inode) &&
6087 	    !ext4_nonda_switch(inode->i_sb)) {
6088 		do {
6089 			ret = block_page_mkwrite(vma, vmf,
6090 						   ext4_da_get_block_prep);
6091 		} while (ret == -ENOSPC &&
6092 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6093 		goto out_ret;
6094 	}
6095 
6096 	lock_page(page);
6097 	size = i_size_read(inode);
6098 	/* Page got truncated from under us? */
6099 	if (page->mapping != mapping || page_offset(page) > size) {
6100 		unlock_page(page);
6101 		ret = VM_FAULT_NOPAGE;
6102 		goto out;
6103 	}
6104 
6105 	if (page->index == size >> PAGE_SHIFT)
6106 		len = size & ~PAGE_MASK;
6107 	else
6108 		len = PAGE_SIZE;
6109 	/*
6110 	 * Return if we have all the buffers mapped. This avoids the need to do
6111 	 * journal_start/journal_stop which can block and take a long time
6112 	 */
6113 	if (page_has_buffers(page)) {
6114 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6115 					    0, len, NULL,
6116 					    ext4_bh_unmapped)) {
6117 			/* Wait so that we don't change page under IO */
6118 			wait_for_stable_page(page);
6119 			ret = VM_FAULT_LOCKED;
6120 			goto out;
6121 		}
6122 	}
6123 	unlock_page(page);
6124 	/* OK, we need to fill the hole... */
6125 	if (ext4_should_dioread_nolock(inode))
6126 		get_block = ext4_get_block_unwritten;
6127 	else
6128 		get_block = ext4_get_block;
6129 retry_alloc:
6130 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6131 				    ext4_writepage_trans_blocks(inode));
6132 	if (IS_ERR(handle)) {
6133 		ret = VM_FAULT_SIGBUS;
6134 		goto out;
6135 	}
6136 	ret = block_page_mkwrite(vma, vmf, get_block);
6137 	if (!ret && ext4_should_journal_data(inode)) {
6138 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6139 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6140 			unlock_page(page);
6141 			ret = VM_FAULT_SIGBUS;
6142 			ext4_journal_stop(handle);
6143 			goto out;
6144 		}
6145 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6146 	}
6147 	ext4_journal_stop(handle);
6148 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6149 		goto retry_alloc;
6150 out_ret:
6151 	ret = block_page_mkwrite_return(ret);
6152 out:
6153 	up_read(&EXT4_I(inode)->i_mmap_sem);
6154 	sb_end_pagefault(inode->i_sb);
6155 	return ret;
6156 }
6157 
6158 int ext4_filemap_fault(struct vm_fault *vmf)
6159 {
6160 	struct inode *inode = file_inode(vmf->vma->vm_file);
6161 	int err;
6162 
6163 	down_read(&EXT4_I(inode)->i_mmap_sem);
6164 	err = filemap_fault(vmf);
6165 	up_read(&EXT4_I(inode)->i_mmap_sem);
6166 
6167 	return err;
6168 }
6169