1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static void ext4_invalidatepage(struct page *page, unsigned int offset, 140 unsigned int length); 141 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 144 int pextents); 145 146 /* 147 * Test whether an inode is a fast symlink. 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 149 */ 150 int ext4_inode_is_fast_symlink(struct inode *inode) 151 { 152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 153 int ea_blocks = EXT4_I(inode)->i_file_acl ? 154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 155 156 if (ext4_has_inline_data(inode)) 157 return 0; 158 159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 160 } 161 return S_ISLNK(inode->i_mode) && inode->i_size && 162 (inode->i_size < EXT4_N_BLOCKS * 4); 163 } 164 165 /* 166 * Restart the transaction associated with *handle. This does a commit, 167 * so before we call here everything must be consistently dirtied against 168 * this transaction. 169 */ 170 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 171 int nblocks) 172 { 173 int ret; 174 175 /* 176 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 177 * moment, get_block can be called only for blocks inside i_size since 178 * page cache has been already dropped and writes are blocked by 179 * i_mutex. So we can safely drop the i_data_sem here. 180 */ 181 BUG_ON(EXT4_JOURNAL(inode) == NULL); 182 jbd_debug(2, "restarting handle %p\n", handle); 183 up_write(&EXT4_I(inode)->i_data_sem); 184 ret = ext4_journal_restart(handle, nblocks); 185 down_write(&EXT4_I(inode)->i_data_sem); 186 ext4_discard_preallocations(inode); 187 188 return ret; 189 } 190 191 /* 192 * Called at the last iput() if i_nlink is zero. 193 */ 194 void ext4_evict_inode(struct inode *inode) 195 { 196 handle_t *handle; 197 int err; 198 int extra_credits = 3; 199 struct ext4_xattr_inode_array *ea_inode_array = NULL; 200 201 trace_ext4_evict_inode(inode); 202 203 if (inode->i_nlink) { 204 /* 205 * When journalling data dirty buffers are tracked only in the 206 * journal. So although mm thinks everything is clean and 207 * ready for reaping the inode might still have some pages to 208 * write in the running transaction or waiting to be 209 * checkpointed. Thus calling jbd2_journal_invalidatepage() 210 * (via truncate_inode_pages()) to discard these buffers can 211 * cause data loss. Also even if we did not discard these 212 * buffers, we would have no way to find them after the inode 213 * is reaped and thus user could see stale data if he tries to 214 * read them before the transaction is checkpointed. So be 215 * careful and force everything to disk here... We use 216 * ei->i_datasync_tid to store the newest transaction 217 * containing inode's data. 218 * 219 * Note that directories do not have this problem because they 220 * don't use page cache. 221 */ 222 if (inode->i_ino != EXT4_JOURNAL_INO && 223 ext4_should_journal_data(inode) && 224 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 225 inode->i_data.nrpages) { 226 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 227 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 228 229 jbd2_complete_transaction(journal, commit_tid); 230 filemap_write_and_wait(&inode->i_data); 231 } 232 truncate_inode_pages_final(&inode->i_data); 233 234 goto no_delete; 235 } 236 237 if (is_bad_inode(inode)) 238 goto no_delete; 239 dquot_initialize(inode); 240 241 if (ext4_should_order_data(inode)) 242 ext4_begin_ordered_truncate(inode, 0); 243 truncate_inode_pages_final(&inode->i_data); 244 245 /* 246 * Protect us against freezing - iput() caller didn't have to have any 247 * protection against it 248 */ 249 sb_start_intwrite(inode->i_sb); 250 251 if (!IS_NOQUOTA(inode)) 252 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 253 254 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 255 ext4_blocks_for_truncate(inode)+extra_credits); 256 if (IS_ERR(handle)) { 257 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 258 /* 259 * If we're going to skip the normal cleanup, we still need to 260 * make sure that the in-core orphan linked list is properly 261 * cleaned up. 262 */ 263 ext4_orphan_del(NULL, inode); 264 sb_end_intwrite(inode->i_sb); 265 goto no_delete; 266 } 267 268 if (IS_SYNC(inode)) 269 ext4_handle_sync(handle); 270 271 /* 272 * Set inode->i_size to 0 before calling ext4_truncate(). We need 273 * special handling of symlinks here because i_size is used to 274 * determine whether ext4_inode_info->i_data contains symlink data or 275 * block mappings. Setting i_size to 0 will remove its fast symlink 276 * status. Erase i_data so that it becomes a valid empty block map. 277 */ 278 if (ext4_inode_is_fast_symlink(inode)) 279 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 280 inode->i_size = 0; 281 err = ext4_mark_inode_dirty(handle, inode); 282 if (err) { 283 ext4_warning(inode->i_sb, 284 "couldn't mark inode dirty (err %d)", err); 285 goto stop_handle; 286 } 287 if (inode->i_blocks) { 288 err = ext4_truncate(inode); 289 if (err) { 290 ext4_error(inode->i_sb, 291 "couldn't truncate inode %lu (err %d)", 292 inode->i_ino, err); 293 goto stop_handle; 294 } 295 } 296 297 /* Remove xattr references. */ 298 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 299 extra_credits); 300 if (err) { 301 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 302 stop_handle: 303 ext4_journal_stop(handle); 304 ext4_orphan_del(NULL, inode); 305 sb_end_intwrite(inode->i_sb); 306 ext4_xattr_inode_array_free(ea_inode_array); 307 goto no_delete; 308 } 309 310 /* 311 * Kill off the orphan record which ext4_truncate created. 312 * AKPM: I think this can be inside the above `if'. 313 * Note that ext4_orphan_del() has to be able to cope with the 314 * deletion of a non-existent orphan - this is because we don't 315 * know if ext4_truncate() actually created an orphan record. 316 * (Well, we could do this if we need to, but heck - it works) 317 */ 318 ext4_orphan_del(handle, inode); 319 EXT4_I(inode)->i_dtime = get_seconds(); 320 321 /* 322 * One subtle ordering requirement: if anything has gone wrong 323 * (transaction abort, IO errors, whatever), then we can still 324 * do these next steps (the fs will already have been marked as 325 * having errors), but we can't free the inode if the mark_dirty 326 * fails. 327 */ 328 if (ext4_mark_inode_dirty(handle, inode)) 329 /* If that failed, just do the required in-core inode clear. */ 330 ext4_clear_inode(inode); 331 else 332 ext4_free_inode(handle, inode); 333 ext4_journal_stop(handle); 334 sb_end_intwrite(inode->i_sb); 335 ext4_xattr_inode_array_free(ea_inode_array); 336 return; 337 no_delete: 338 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 339 } 340 341 #ifdef CONFIG_QUOTA 342 qsize_t *ext4_get_reserved_space(struct inode *inode) 343 { 344 return &EXT4_I(inode)->i_reserved_quota; 345 } 346 #endif 347 348 /* 349 * Called with i_data_sem down, which is important since we can call 350 * ext4_discard_preallocations() from here. 351 */ 352 void ext4_da_update_reserve_space(struct inode *inode, 353 int used, int quota_claim) 354 { 355 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 356 struct ext4_inode_info *ei = EXT4_I(inode); 357 358 spin_lock(&ei->i_block_reservation_lock); 359 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 360 if (unlikely(used > ei->i_reserved_data_blocks)) { 361 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 362 "with only %d reserved data blocks", 363 __func__, inode->i_ino, used, 364 ei->i_reserved_data_blocks); 365 WARN_ON(1); 366 used = ei->i_reserved_data_blocks; 367 } 368 369 /* Update per-inode reservations */ 370 ei->i_reserved_data_blocks -= used; 371 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 372 373 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 374 375 /* Update quota subsystem for data blocks */ 376 if (quota_claim) 377 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 378 else { 379 /* 380 * We did fallocate with an offset that is already delayed 381 * allocated. So on delayed allocated writeback we should 382 * not re-claim the quota for fallocated blocks. 383 */ 384 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 385 } 386 387 /* 388 * If we have done all the pending block allocations and if 389 * there aren't any writers on the inode, we can discard the 390 * inode's preallocations. 391 */ 392 if ((ei->i_reserved_data_blocks == 0) && 393 (atomic_read(&inode->i_writecount) == 0)) 394 ext4_discard_preallocations(inode); 395 } 396 397 static int __check_block_validity(struct inode *inode, const char *func, 398 unsigned int line, 399 struct ext4_map_blocks *map) 400 { 401 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 402 map->m_len)) { 403 ext4_error_inode(inode, func, line, map->m_pblk, 404 "lblock %lu mapped to illegal pblock " 405 "(length %d)", (unsigned long) map->m_lblk, 406 map->m_len); 407 return -EFSCORRUPTED; 408 } 409 return 0; 410 } 411 412 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 413 ext4_lblk_t len) 414 { 415 int ret; 416 417 if (ext4_encrypted_inode(inode)) 418 return fscrypt_zeroout_range(inode, lblk, pblk, len); 419 420 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 421 if (ret > 0) 422 ret = 0; 423 424 return ret; 425 } 426 427 #define check_block_validity(inode, map) \ 428 __check_block_validity((inode), __func__, __LINE__, (map)) 429 430 #ifdef ES_AGGRESSIVE_TEST 431 static void ext4_map_blocks_es_recheck(handle_t *handle, 432 struct inode *inode, 433 struct ext4_map_blocks *es_map, 434 struct ext4_map_blocks *map, 435 int flags) 436 { 437 int retval; 438 439 map->m_flags = 0; 440 /* 441 * There is a race window that the result is not the same. 442 * e.g. xfstests #223 when dioread_nolock enables. The reason 443 * is that we lookup a block mapping in extent status tree with 444 * out taking i_data_sem. So at the time the unwritten extent 445 * could be converted. 446 */ 447 down_read(&EXT4_I(inode)->i_data_sem); 448 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 449 retval = ext4_ext_map_blocks(handle, inode, map, flags & 450 EXT4_GET_BLOCKS_KEEP_SIZE); 451 } else { 452 retval = ext4_ind_map_blocks(handle, inode, map, flags & 453 EXT4_GET_BLOCKS_KEEP_SIZE); 454 } 455 up_read((&EXT4_I(inode)->i_data_sem)); 456 457 /* 458 * We don't check m_len because extent will be collpased in status 459 * tree. So the m_len might not equal. 460 */ 461 if (es_map->m_lblk != map->m_lblk || 462 es_map->m_flags != map->m_flags || 463 es_map->m_pblk != map->m_pblk) { 464 printk("ES cache assertion failed for inode: %lu " 465 "es_cached ex [%d/%d/%llu/%x] != " 466 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 467 inode->i_ino, es_map->m_lblk, es_map->m_len, 468 es_map->m_pblk, es_map->m_flags, map->m_lblk, 469 map->m_len, map->m_pblk, map->m_flags, 470 retval, flags); 471 } 472 } 473 #endif /* ES_AGGRESSIVE_TEST */ 474 475 /* 476 * The ext4_map_blocks() function tries to look up the requested blocks, 477 * and returns if the blocks are already mapped. 478 * 479 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 480 * and store the allocated blocks in the result buffer head and mark it 481 * mapped. 482 * 483 * If file type is extents based, it will call ext4_ext_map_blocks(), 484 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 485 * based files 486 * 487 * On success, it returns the number of blocks being mapped or allocated. if 488 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 489 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 490 * 491 * It returns 0 if plain look up failed (blocks have not been allocated), in 492 * that case, @map is returned as unmapped but we still do fill map->m_len to 493 * indicate the length of a hole starting at map->m_lblk. 494 * 495 * It returns the error in case of allocation failure. 496 */ 497 int ext4_map_blocks(handle_t *handle, struct inode *inode, 498 struct ext4_map_blocks *map, int flags) 499 { 500 struct extent_status es; 501 int retval; 502 int ret = 0; 503 #ifdef ES_AGGRESSIVE_TEST 504 struct ext4_map_blocks orig_map; 505 506 memcpy(&orig_map, map, sizeof(*map)); 507 #endif 508 509 map->m_flags = 0; 510 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 511 "logical block %lu\n", inode->i_ino, flags, map->m_len, 512 (unsigned long) map->m_lblk); 513 514 /* 515 * ext4_map_blocks returns an int, and m_len is an unsigned int 516 */ 517 if (unlikely(map->m_len > INT_MAX)) 518 map->m_len = INT_MAX; 519 520 /* We can handle the block number less than EXT_MAX_BLOCKS */ 521 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 522 return -EFSCORRUPTED; 523 524 /* Lookup extent status tree firstly */ 525 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 526 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 527 map->m_pblk = ext4_es_pblock(&es) + 528 map->m_lblk - es.es_lblk; 529 map->m_flags |= ext4_es_is_written(&es) ? 530 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 531 retval = es.es_len - (map->m_lblk - es.es_lblk); 532 if (retval > map->m_len) 533 retval = map->m_len; 534 map->m_len = retval; 535 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 536 map->m_pblk = 0; 537 retval = es.es_len - (map->m_lblk - es.es_lblk); 538 if (retval > map->m_len) 539 retval = map->m_len; 540 map->m_len = retval; 541 retval = 0; 542 } else { 543 BUG_ON(1); 544 } 545 #ifdef ES_AGGRESSIVE_TEST 546 ext4_map_blocks_es_recheck(handle, inode, map, 547 &orig_map, flags); 548 #endif 549 goto found; 550 } 551 552 /* 553 * Try to see if we can get the block without requesting a new 554 * file system block. 555 */ 556 down_read(&EXT4_I(inode)->i_data_sem); 557 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 558 retval = ext4_ext_map_blocks(handle, inode, map, flags & 559 EXT4_GET_BLOCKS_KEEP_SIZE); 560 } else { 561 retval = ext4_ind_map_blocks(handle, inode, map, flags & 562 EXT4_GET_BLOCKS_KEEP_SIZE); 563 } 564 if (retval > 0) { 565 unsigned int status; 566 567 if (unlikely(retval != map->m_len)) { 568 ext4_warning(inode->i_sb, 569 "ES len assertion failed for inode " 570 "%lu: retval %d != map->m_len %d", 571 inode->i_ino, retval, map->m_len); 572 WARN_ON(1); 573 } 574 575 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 576 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 577 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 578 !(status & EXTENT_STATUS_WRITTEN) && 579 ext4_find_delalloc_range(inode, map->m_lblk, 580 map->m_lblk + map->m_len - 1)) 581 status |= EXTENT_STATUS_DELAYED; 582 ret = ext4_es_insert_extent(inode, map->m_lblk, 583 map->m_len, map->m_pblk, status); 584 if (ret < 0) 585 retval = ret; 586 } 587 up_read((&EXT4_I(inode)->i_data_sem)); 588 589 found: 590 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 591 ret = check_block_validity(inode, map); 592 if (ret != 0) 593 return ret; 594 } 595 596 /* If it is only a block(s) look up */ 597 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 598 return retval; 599 600 /* 601 * Returns if the blocks have already allocated 602 * 603 * Note that if blocks have been preallocated 604 * ext4_ext_get_block() returns the create = 0 605 * with buffer head unmapped. 606 */ 607 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 608 /* 609 * If we need to convert extent to unwritten 610 * we continue and do the actual work in 611 * ext4_ext_map_blocks() 612 */ 613 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 614 return retval; 615 616 /* 617 * Here we clear m_flags because after allocating an new extent, 618 * it will be set again. 619 */ 620 map->m_flags &= ~EXT4_MAP_FLAGS; 621 622 /* 623 * New blocks allocate and/or writing to unwritten extent 624 * will possibly result in updating i_data, so we take 625 * the write lock of i_data_sem, and call get_block() 626 * with create == 1 flag. 627 */ 628 down_write(&EXT4_I(inode)->i_data_sem); 629 630 /* 631 * We need to check for EXT4 here because migrate 632 * could have changed the inode type in between 633 */ 634 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 635 retval = ext4_ext_map_blocks(handle, inode, map, flags); 636 } else { 637 retval = ext4_ind_map_blocks(handle, inode, map, flags); 638 639 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 640 /* 641 * We allocated new blocks which will result in 642 * i_data's format changing. Force the migrate 643 * to fail by clearing migrate flags 644 */ 645 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 646 } 647 648 /* 649 * Update reserved blocks/metadata blocks after successful 650 * block allocation which had been deferred till now. We don't 651 * support fallocate for non extent files. So we can update 652 * reserve space here. 653 */ 654 if ((retval > 0) && 655 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 656 ext4_da_update_reserve_space(inode, retval, 1); 657 } 658 659 if (retval > 0) { 660 unsigned int status; 661 662 if (unlikely(retval != map->m_len)) { 663 ext4_warning(inode->i_sb, 664 "ES len assertion failed for inode " 665 "%lu: retval %d != map->m_len %d", 666 inode->i_ino, retval, map->m_len); 667 WARN_ON(1); 668 } 669 670 /* 671 * We have to zeroout blocks before inserting them into extent 672 * status tree. Otherwise someone could look them up there and 673 * use them before they are really zeroed. We also have to 674 * unmap metadata before zeroing as otherwise writeback can 675 * overwrite zeros with stale data from block device. 676 */ 677 if (flags & EXT4_GET_BLOCKS_ZERO && 678 map->m_flags & EXT4_MAP_MAPPED && 679 map->m_flags & EXT4_MAP_NEW) { 680 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 681 map->m_len); 682 ret = ext4_issue_zeroout(inode, map->m_lblk, 683 map->m_pblk, map->m_len); 684 if (ret) { 685 retval = ret; 686 goto out_sem; 687 } 688 } 689 690 /* 691 * If the extent has been zeroed out, we don't need to update 692 * extent status tree. 693 */ 694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 695 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 696 if (ext4_es_is_written(&es)) 697 goto out_sem; 698 } 699 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 702 !(status & EXTENT_STATUS_WRITTEN) && 703 ext4_find_delalloc_range(inode, map->m_lblk, 704 map->m_lblk + map->m_len - 1)) 705 status |= EXTENT_STATUS_DELAYED; 706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 707 map->m_pblk, status); 708 if (ret < 0) { 709 retval = ret; 710 goto out_sem; 711 } 712 } 713 714 out_sem: 715 up_write((&EXT4_I(inode)->i_data_sem)); 716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 717 ret = check_block_validity(inode, map); 718 if (ret != 0) 719 return ret; 720 721 /* 722 * Inodes with freshly allocated blocks where contents will be 723 * visible after transaction commit must be on transaction's 724 * ordered data list. 725 */ 726 if (map->m_flags & EXT4_MAP_NEW && 727 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 728 !(flags & EXT4_GET_BLOCKS_ZERO) && 729 !ext4_is_quota_file(inode) && 730 ext4_should_order_data(inode)) { 731 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 732 ret = ext4_jbd2_inode_add_wait(handle, inode); 733 else 734 ret = ext4_jbd2_inode_add_write(handle, inode); 735 if (ret) 736 return ret; 737 } 738 } 739 return retval; 740 } 741 742 /* 743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 744 * we have to be careful as someone else may be manipulating b_state as well. 745 */ 746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 747 { 748 unsigned long old_state; 749 unsigned long new_state; 750 751 flags &= EXT4_MAP_FLAGS; 752 753 /* Dummy buffer_head? Set non-atomically. */ 754 if (!bh->b_page) { 755 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 756 return; 757 } 758 /* 759 * Someone else may be modifying b_state. Be careful! This is ugly but 760 * once we get rid of using bh as a container for mapping information 761 * to pass to / from get_block functions, this can go away. 762 */ 763 do { 764 old_state = READ_ONCE(bh->b_state); 765 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 766 } while (unlikely( 767 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 768 } 769 770 static int _ext4_get_block(struct inode *inode, sector_t iblock, 771 struct buffer_head *bh, int flags) 772 { 773 struct ext4_map_blocks map; 774 int ret = 0; 775 776 if (ext4_has_inline_data(inode)) 777 return -ERANGE; 778 779 map.m_lblk = iblock; 780 map.m_len = bh->b_size >> inode->i_blkbits; 781 782 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 783 flags); 784 if (ret > 0) { 785 map_bh(bh, inode->i_sb, map.m_pblk); 786 ext4_update_bh_state(bh, map.m_flags); 787 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 788 ret = 0; 789 } else if (ret == 0) { 790 /* hole case, need to fill in bh->b_size */ 791 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 792 } 793 return ret; 794 } 795 796 int ext4_get_block(struct inode *inode, sector_t iblock, 797 struct buffer_head *bh, int create) 798 { 799 return _ext4_get_block(inode, iblock, bh, 800 create ? EXT4_GET_BLOCKS_CREATE : 0); 801 } 802 803 /* 804 * Get block function used when preparing for buffered write if we require 805 * creating an unwritten extent if blocks haven't been allocated. The extent 806 * will be converted to written after the IO is complete. 807 */ 808 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 809 struct buffer_head *bh_result, int create) 810 { 811 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 812 inode->i_ino, create); 813 return _ext4_get_block(inode, iblock, bh_result, 814 EXT4_GET_BLOCKS_IO_CREATE_EXT); 815 } 816 817 /* Maximum number of blocks we map for direct IO at once. */ 818 #define DIO_MAX_BLOCKS 4096 819 820 /* 821 * Get blocks function for the cases that need to start a transaction - 822 * generally difference cases of direct IO and DAX IO. It also handles retries 823 * in case of ENOSPC. 824 */ 825 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 826 struct buffer_head *bh_result, int flags) 827 { 828 int dio_credits; 829 handle_t *handle; 830 int retries = 0; 831 int ret; 832 833 /* Trim mapping request to maximum we can map at once for DIO */ 834 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 835 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 836 dio_credits = ext4_chunk_trans_blocks(inode, 837 bh_result->b_size >> inode->i_blkbits); 838 retry: 839 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 840 if (IS_ERR(handle)) 841 return PTR_ERR(handle); 842 843 ret = _ext4_get_block(inode, iblock, bh_result, flags); 844 ext4_journal_stop(handle); 845 846 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 847 goto retry; 848 return ret; 849 } 850 851 /* Get block function for DIO reads and writes to inodes without extents */ 852 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 853 struct buffer_head *bh, int create) 854 { 855 /* We don't expect handle for direct IO */ 856 WARN_ON_ONCE(ext4_journal_current_handle()); 857 858 if (!create) 859 return _ext4_get_block(inode, iblock, bh, 0); 860 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 861 } 862 863 /* 864 * Get block function for AIO DIO writes when we create unwritten extent if 865 * blocks are not allocated yet. The extent will be converted to written 866 * after IO is complete. 867 */ 868 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 869 sector_t iblock, struct buffer_head *bh_result, int create) 870 { 871 int ret; 872 873 /* We don't expect handle for direct IO */ 874 WARN_ON_ONCE(ext4_journal_current_handle()); 875 876 ret = ext4_get_block_trans(inode, iblock, bh_result, 877 EXT4_GET_BLOCKS_IO_CREATE_EXT); 878 879 /* 880 * When doing DIO using unwritten extents, we need io_end to convert 881 * unwritten extents to written on IO completion. We allocate io_end 882 * once we spot unwritten extent and store it in b_private. Generic 883 * DIO code keeps b_private set and furthermore passes the value to 884 * our completion callback in 'private' argument. 885 */ 886 if (!ret && buffer_unwritten(bh_result)) { 887 if (!bh_result->b_private) { 888 ext4_io_end_t *io_end; 889 890 io_end = ext4_init_io_end(inode, GFP_KERNEL); 891 if (!io_end) 892 return -ENOMEM; 893 bh_result->b_private = io_end; 894 ext4_set_io_unwritten_flag(inode, io_end); 895 } 896 set_buffer_defer_completion(bh_result); 897 } 898 899 return ret; 900 } 901 902 /* 903 * Get block function for non-AIO DIO writes when we create unwritten extent if 904 * blocks are not allocated yet. The extent will be converted to written 905 * after IO is complete by ext4_direct_IO_write(). 906 */ 907 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 908 sector_t iblock, struct buffer_head *bh_result, int create) 909 { 910 int ret; 911 912 /* We don't expect handle for direct IO */ 913 WARN_ON_ONCE(ext4_journal_current_handle()); 914 915 ret = ext4_get_block_trans(inode, iblock, bh_result, 916 EXT4_GET_BLOCKS_IO_CREATE_EXT); 917 918 /* 919 * Mark inode as having pending DIO writes to unwritten extents. 920 * ext4_direct_IO_write() checks this flag and converts extents to 921 * written. 922 */ 923 if (!ret && buffer_unwritten(bh_result)) 924 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 925 926 return ret; 927 } 928 929 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 930 struct buffer_head *bh_result, int create) 931 { 932 int ret; 933 934 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 935 inode->i_ino, create); 936 /* We don't expect handle for direct IO */ 937 WARN_ON_ONCE(ext4_journal_current_handle()); 938 939 ret = _ext4_get_block(inode, iblock, bh_result, 0); 940 /* 941 * Blocks should have been preallocated! ext4_file_write_iter() checks 942 * that. 943 */ 944 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 945 946 return ret; 947 } 948 949 950 /* 951 * `handle' can be NULL if create is zero 952 */ 953 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 954 ext4_lblk_t block, int map_flags) 955 { 956 struct ext4_map_blocks map; 957 struct buffer_head *bh; 958 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 959 int err; 960 961 J_ASSERT(handle != NULL || create == 0); 962 963 map.m_lblk = block; 964 map.m_len = 1; 965 err = ext4_map_blocks(handle, inode, &map, map_flags); 966 967 if (err == 0) 968 return create ? ERR_PTR(-ENOSPC) : NULL; 969 if (err < 0) 970 return ERR_PTR(err); 971 972 bh = sb_getblk(inode->i_sb, map.m_pblk); 973 if (unlikely(!bh)) 974 return ERR_PTR(-ENOMEM); 975 if (map.m_flags & EXT4_MAP_NEW) { 976 J_ASSERT(create != 0); 977 J_ASSERT(handle != NULL); 978 979 /* 980 * Now that we do not always journal data, we should 981 * keep in mind whether this should always journal the 982 * new buffer as metadata. For now, regular file 983 * writes use ext4_get_block instead, so it's not a 984 * problem. 985 */ 986 lock_buffer(bh); 987 BUFFER_TRACE(bh, "call get_create_access"); 988 err = ext4_journal_get_create_access(handle, bh); 989 if (unlikely(err)) { 990 unlock_buffer(bh); 991 goto errout; 992 } 993 if (!buffer_uptodate(bh)) { 994 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 995 set_buffer_uptodate(bh); 996 } 997 unlock_buffer(bh); 998 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 999 err = ext4_handle_dirty_metadata(handle, inode, bh); 1000 if (unlikely(err)) 1001 goto errout; 1002 } else 1003 BUFFER_TRACE(bh, "not a new buffer"); 1004 return bh; 1005 errout: 1006 brelse(bh); 1007 return ERR_PTR(err); 1008 } 1009 1010 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1011 ext4_lblk_t block, int map_flags) 1012 { 1013 struct buffer_head *bh; 1014 1015 bh = ext4_getblk(handle, inode, block, map_flags); 1016 if (IS_ERR(bh)) 1017 return bh; 1018 if (!bh || buffer_uptodate(bh)) 1019 return bh; 1020 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1021 wait_on_buffer(bh); 1022 if (buffer_uptodate(bh)) 1023 return bh; 1024 put_bh(bh); 1025 return ERR_PTR(-EIO); 1026 } 1027 1028 /* Read a contiguous batch of blocks. */ 1029 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1030 bool wait, struct buffer_head **bhs) 1031 { 1032 int i, err; 1033 1034 for (i = 0; i < bh_count; i++) { 1035 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1036 if (IS_ERR(bhs[i])) { 1037 err = PTR_ERR(bhs[i]); 1038 bh_count = i; 1039 goto out_brelse; 1040 } 1041 } 1042 1043 for (i = 0; i < bh_count; i++) 1044 /* Note that NULL bhs[i] is valid because of holes. */ 1045 if (bhs[i] && !buffer_uptodate(bhs[i])) 1046 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1047 &bhs[i]); 1048 1049 if (!wait) 1050 return 0; 1051 1052 for (i = 0; i < bh_count; i++) 1053 if (bhs[i]) 1054 wait_on_buffer(bhs[i]); 1055 1056 for (i = 0; i < bh_count; i++) { 1057 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1058 err = -EIO; 1059 goto out_brelse; 1060 } 1061 } 1062 return 0; 1063 1064 out_brelse: 1065 for (i = 0; i < bh_count; i++) { 1066 brelse(bhs[i]); 1067 bhs[i] = NULL; 1068 } 1069 return err; 1070 } 1071 1072 int ext4_walk_page_buffers(handle_t *handle, 1073 struct buffer_head *head, 1074 unsigned from, 1075 unsigned to, 1076 int *partial, 1077 int (*fn)(handle_t *handle, 1078 struct buffer_head *bh)) 1079 { 1080 struct buffer_head *bh; 1081 unsigned block_start, block_end; 1082 unsigned blocksize = head->b_size; 1083 int err, ret = 0; 1084 struct buffer_head *next; 1085 1086 for (bh = head, block_start = 0; 1087 ret == 0 && (bh != head || !block_start); 1088 block_start = block_end, bh = next) { 1089 next = bh->b_this_page; 1090 block_end = block_start + blocksize; 1091 if (block_end <= from || block_start >= to) { 1092 if (partial && !buffer_uptodate(bh)) 1093 *partial = 1; 1094 continue; 1095 } 1096 err = (*fn)(handle, bh); 1097 if (!ret) 1098 ret = err; 1099 } 1100 return ret; 1101 } 1102 1103 /* 1104 * To preserve ordering, it is essential that the hole instantiation and 1105 * the data write be encapsulated in a single transaction. We cannot 1106 * close off a transaction and start a new one between the ext4_get_block() 1107 * and the commit_write(). So doing the jbd2_journal_start at the start of 1108 * prepare_write() is the right place. 1109 * 1110 * Also, this function can nest inside ext4_writepage(). In that case, we 1111 * *know* that ext4_writepage() has generated enough buffer credits to do the 1112 * whole page. So we won't block on the journal in that case, which is good, 1113 * because the caller may be PF_MEMALLOC. 1114 * 1115 * By accident, ext4 can be reentered when a transaction is open via 1116 * quota file writes. If we were to commit the transaction while thus 1117 * reentered, there can be a deadlock - we would be holding a quota 1118 * lock, and the commit would never complete if another thread had a 1119 * transaction open and was blocking on the quota lock - a ranking 1120 * violation. 1121 * 1122 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1123 * will _not_ run commit under these circumstances because handle->h_ref 1124 * is elevated. We'll still have enough credits for the tiny quotafile 1125 * write. 1126 */ 1127 int do_journal_get_write_access(handle_t *handle, 1128 struct buffer_head *bh) 1129 { 1130 int dirty = buffer_dirty(bh); 1131 int ret; 1132 1133 if (!buffer_mapped(bh) || buffer_freed(bh)) 1134 return 0; 1135 /* 1136 * __block_write_begin() could have dirtied some buffers. Clean 1137 * the dirty bit as jbd2_journal_get_write_access() could complain 1138 * otherwise about fs integrity issues. Setting of the dirty bit 1139 * by __block_write_begin() isn't a real problem here as we clear 1140 * the bit before releasing a page lock and thus writeback cannot 1141 * ever write the buffer. 1142 */ 1143 if (dirty) 1144 clear_buffer_dirty(bh); 1145 BUFFER_TRACE(bh, "get write access"); 1146 ret = ext4_journal_get_write_access(handle, bh); 1147 if (!ret && dirty) 1148 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1149 return ret; 1150 } 1151 1152 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1153 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1154 get_block_t *get_block) 1155 { 1156 unsigned from = pos & (PAGE_SIZE - 1); 1157 unsigned to = from + len; 1158 struct inode *inode = page->mapping->host; 1159 unsigned block_start, block_end; 1160 sector_t block; 1161 int err = 0; 1162 unsigned blocksize = inode->i_sb->s_blocksize; 1163 unsigned bbits; 1164 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1165 bool decrypt = false; 1166 1167 BUG_ON(!PageLocked(page)); 1168 BUG_ON(from > PAGE_SIZE); 1169 BUG_ON(to > PAGE_SIZE); 1170 BUG_ON(from > to); 1171 1172 if (!page_has_buffers(page)) 1173 create_empty_buffers(page, blocksize, 0); 1174 head = page_buffers(page); 1175 bbits = ilog2(blocksize); 1176 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1177 1178 for (bh = head, block_start = 0; bh != head || !block_start; 1179 block++, block_start = block_end, bh = bh->b_this_page) { 1180 block_end = block_start + blocksize; 1181 if (block_end <= from || block_start >= to) { 1182 if (PageUptodate(page)) { 1183 if (!buffer_uptodate(bh)) 1184 set_buffer_uptodate(bh); 1185 } 1186 continue; 1187 } 1188 if (buffer_new(bh)) 1189 clear_buffer_new(bh); 1190 if (!buffer_mapped(bh)) { 1191 WARN_ON(bh->b_size != blocksize); 1192 err = get_block(inode, block, bh, 1); 1193 if (err) 1194 break; 1195 if (buffer_new(bh)) { 1196 clean_bdev_bh_alias(bh); 1197 if (PageUptodate(page)) { 1198 clear_buffer_new(bh); 1199 set_buffer_uptodate(bh); 1200 mark_buffer_dirty(bh); 1201 continue; 1202 } 1203 if (block_end > to || block_start < from) 1204 zero_user_segments(page, to, block_end, 1205 block_start, from); 1206 continue; 1207 } 1208 } 1209 if (PageUptodate(page)) { 1210 if (!buffer_uptodate(bh)) 1211 set_buffer_uptodate(bh); 1212 continue; 1213 } 1214 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1215 !buffer_unwritten(bh) && 1216 (block_start < from || block_end > to)) { 1217 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1218 *wait_bh++ = bh; 1219 decrypt = ext4_encrypted_inode(inode) && 1220 S_ISREG(inode->i_mode); 1221 } 1222 } 1223 /* 1224 * If we issued read requests, let them complete. 1225 */ 1226 while (wait_bh > wait) { 1227 wait_on_buffer(*--wait_bh); 1228 if (!buffer_uptodate(*wait_bh)) 1229 err = -EIO; 1230 } 1231 if (unlikely(err)) 1232 page_zero_new_buffers(page, from, to); 1233 else if (decrypt) 1234 err = fscrypt_decrypt_page(page->mapping->host, page, 1235 PAGE_SIZE, 0, page->index); 1236 return err; 1237 } 1238 #endif 1239 1240 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1241 loff_t pos, unsigned len, unsigned flags, 1242 struct page **pagep, void **fsdata) 1243 { 1244 struct inode *inode = mapping->host; 1245 int ret, needed_blocks; 1246 handle_t *handle; 1247 int retries = 0; 1248 struct page *page; 1249 pgoff_t index; 1250 unsigned from, to; 1251 1252 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1253 return -EIO; 1254 1255 trace_ext4_write_begin(inode, pos, len, flags); 1256 /* 1257 * Reserve one block more for addition to orphan list in case 1258 * we allocate blocks but write fails for some reason 1259 */ 1260 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1261 index = pos >> PAGE_SHIFT; 1262 from = pos & (PAGE_SIZE - 1); 1263 to = from + len; 1264 1265 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1266 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1267 flags, pagep); 1268 if (ret < 0) 1269 return ret; 1270 if (ret == 1) 1271 return 0; 1272 } 1273 1274 /* 1275 * grab_cache_page_write_begin() can take a long time if the 1276 * system is thrashing due to memory pressure, or if the page 1277 * is being written back. So grab it first before we start 1278 * the transaction handle. This also allows us to allocate 1279 * the page (if needed) without using GFP_NOFS. 1280 */ 1281 retry_grab: 1282 page = grab_cache_page_write_begin(mapping, index, flags); 1283 if (!page) 1284 return -ENOMEM; 1285 unlock_page(page); 1286 1287 retry_journal: 1288 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1289 if (IS_ERR(handle)) { 1290 put_page(page); 1291 return PTR_ERR(handle); 1292 } 1293 1294 lock_page(page); 1295 if (page->mapping != mapping) { 1296 /* The page got truncated from under us */ 1297 unlock_page(page); 1298 put_page(page); 1299 ext4_journal_stop(handle); 1300 goto retry_grab; 1301 } 1302 /* In case writeback began while the page was unlocked */ 1303 wait_for_stable_page(page); 1304 1305 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1306 if (ext4_should_dioread_nolock(inode)) 1307 ret = ext4_block_write_begin(page, pos, len, 1308 ext4_get_block_unwritten); 1309 else 1310 ret = ext4_block_write_begin(page, pos, len, 1311 ext4_get_block); 1312 #else 1313 if (ext4_should_dioread_nolock(inode)) 1314 ret = __block_write_begin(page, pos, len, 1315 ext4_get_block_unwritten); 1316 else 1317 ret = __block_write_begin(page, pos, len, ext4_get_block); 1318 #endif 1319 if (!ret && ext4_should_journal_data(inode)) { 1320 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1321 from, to, NULL, 1322 do_journal_get_write_access); 1323 } 1324 1325 if (ret) { 1326 unlock_page(page); 1327 /* 1328 * __block_write_begin may have instantiated a few blocks 1329 * outside i_size. Trim these off again. Don't need 1330 * i_size_read because we hold i_mutex. 1331 * 1332 * Add inode to orphan list in case we crash before 1333 * truncate finishes 1334 */ 1335 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1336 ext4_orphan_add(handle, inode); 1337 1338 ext4_journal_stop(handle); 1339 if (pos + len > inode->i_size) { 1340 ext4_truncate_failed_write(inode); 1341 /* 1342 * If truncate failed early the inode might 1343 * still be on the orphan list; we need to 1344 * make sure the inode is removed from the 1345 * orphan list in that case. 1346 */ 1347 if (inode->i_nlink) 1348 ext4_orphan_del(NULL, inode); 1349 } 1350 1351 if (ret == -ENOSPC && 1352 ext4_should_retry_alloc(inode->i_sb, &retries)) 1353 goto retry_journal; 1354 put_page(page); 1355 return ret; 1356 } 1357 *pagep = page; 1358 return ret; 1359 } 1360 1361 /* For write_end() in data=journal mode */ 1362 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1363 { 1364 int ret; 1365 if (!buffer_mapped(bh) || buffer_freed(bh)) 1366 return 0; 1367 set_buffer_uptodate(bh); 1368 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1369 clear_buffer_meta(bh); 1370 clear_buffer_prio(bh); 1371 return ret; 1372 } 1373 1374 /* 1375 * We need to pick up the new inode size which generic_commit_write gave us 1376 * `file' can be NULL - eg, when called from page_symlink(). 1377 * 1378 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1379 * buffers are managed internally. 1380 */ 1381 static int ext4_write_end(struct file *file, 1382 struct address_space *mapping, 1383 loff_t pos, unsigned len, unsigned copied, 1384 struct page *page, void *fsdata) 1385 { 1386 handle_t *handle = ext4_journal_current_handle(); 1387 struct inode *inode = mapping->host; 1388 loff_t old_size = inode->i_size; 1389 int ret = 0, ret2; 1390 int i_size_changed = 0; 1391 1392 trace_ext4_write_end(inode, pos, len, copied); 1393 if (ext4_has_inline_data(inode)) { 1394 ret = ext4_write_inline_data_end(inode, pos, len, 1395 copied, page); 1396 if (ret < 0) { 1397 unlock_page(page); 1398 put_page(page); 1399 goto errout; 1400 } 1401 copied = ret; 1402 } else 1403 copied = block_write_end(file, mapping, pos, 1404 len, copied, page, fsdata); 1405 /* 1406 * it's important to update i_size while still holding page lock: 1407 * page writeout could otherwise come in and zero beyond i_size. 1408 */ 1409 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1410 unlock_page(page); 1411 put_page(page); 1412 1413 if (old_size < pos) 1414 pagecache_isize_extended(inode, old_size, pos); 1415 /* 1416 * Don't mark the inode dirty under page lock. First, it unnecessarily 1417 * makes the holding time of page lock longer. Second, it forces lock 1418 * ordering of page lock and transaction start for journaling 1419 * filesystems. 1420 */ 1421 if (i_size_changed) 1422 ext4_mark_inode_dirty(handle, inode); 1423 1424 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1425 /* if we have allocated more blocks and copied 1426 * less. We will have blocks allocated outside 1427 * inode->i_size. So truncate them 1428 */ 1429 ext4_orphan_add(handle, inode); 1430 errout: 1431 ret2 = ext4_journal_stop(handle); 1432 if (!ret) 1433 ret = ret2; 1434 1435 if (pos + len > inode->i_size) { 1436 ext4_truncate_failed_write(inode); 1437 /* 1438 * If truncate failed early the inode might still be 1439 * on the orphan list; we need to make sure the inode 1440 * is removed from the orphan list in that case. 1441 */ 1442 if (inode->i_nlink) 1443 ext4_orphan_del(NULL, inode); 1444 } 1445 1446 return ret ? ret : copied; 1447 } 1448 1449 /* 1450 * This is a private version of page_zero_new_buffers() which doesn't 1451 * set the buffer to be dirty, since in data=journalled mode we need 1452 * to call ext4_handle_dirty_metadata() instead. 1453 */ 1454 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1455 struct page *page, 1456 unsigned from, unsigned to) 1457 { 1458 unsigned int block_start = 0, block_end; 1459 struct buffer_head *head, *bh; 1460 1461 bh = head = page_buffers(page); 1462 do { 1463 block_end = block_start + bh->b_size; 1464 if (buffer_new(bh)) { 1465 if (block_end > from && block_start < to) { 1466 if (!PageUptodate(page)) { 1467 unsigned start, size; 1468 1469 start = max(from, block_start); 1470 size = min(to, block_end) - start; 1471 1472 zero_user(page, start, size); 1473 write_end_fn(handle, bh); 1474 } 1475 clear_buffer_new(bh); 1476 } 1477 } 1478 block_start = block_end; 1479 bh = bh->b_this_page; 1480 } while (bh != head); 1481 } 1482 1483 static int ext4_journalled_write_end(struct file *file, 1484 struct address_space *mapping, 1485 loff_t pos, unsigned len, unsigned copied, 1486 struct page *page, void *fsdata) 1487 { 1488 handle_t *handle = ext4_journal_current_handle(); 1489 struct inode *inode = mapping->host; 1490 loff_t old_size = inode->i_size; 1491 int ret = 0, ret2; 1492 int partial = 0; 1493 unsigned from, to; 1494 int size_changed = 0; 1495 1496 trace_ext4_journalled_write_end(inode, pos, len, copied); 1497 from = pos & (PAGE_SIZE - 1); 1498 to = from + len; 1499 1500 BUG_ON(!ext4_handle_valid(handle)); 1501 1502 if (ext4_has_inline_data(inode)) { 1503 ret = ext4_write_inline_data_end(inode, pos, len, 1504 copied, page); 1505 if (ret < 0) { 1506 unlock_page(page); 1507 put_page(page); 1508 goto errout; 1509 } 1510 copied = ret; 1511 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1512 copied = 0; 1513 ext4_journalled_zero_new_buffers(handle, page, from, to); 1514 } else { 1515 if (unlikely(copied < len)) 1516 ext4_journalled_zero_new_buffers(handle, page, 1517 from + copied, to); 1518 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1519 from + copied, &partial, 1520 write_end_fn); 1521 if (!partial) 1522 SetPageUptodate(page); 1523 } 1524 size_changed = ext4_update_inode_size(inode, pos + copied); 1525 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1526 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1527 unlock_page(page); 1528 put_page(page); 1529 1530 if (old_size < pos) 1531 pagecache_isize_extended(inode, old_size, pos); 1532 1533 if (size_changed) { 1534 ret2 = ext4_mark_inode_dirty(handle, inode); 1535 if (!ret) 1536 ret = ret2; 1537 } 1538 1539 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1540 /* if we have allocated more blocks and copied 1541 * less. We will have blocks allocated outside 1542 * inode->i_size. So truncate them 1543 */ 1544 ext4_orphan_add(handle, inode); 1545 1546 errout: 1547 ret2 = ext4_journal_stop(handle); 1548 if (!ret) 1549 ret = ret2; 1550 if (pos + len > inode->i_size) { 1551 ext4_truncate_failed_write(inode); 1552 /* 1553 * If truncate failed early the inode might still be 1554 * on the orphan list; we need to make sure the inode 1555 * is removed from the orphan list in that case. 1556 */ 1557 if (inode->i_nlink) 1558 ext4_orphan_del(NULL, inode); 1559 } 1560 1561 return ret ? ret : copied; 1562 } 1563 1564 /* 1565 * Reserve space for a single cluster 1566 */ 1567 static int ext4_da_reserve_space(struct inode *inode) 1568 { 1569 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1570 struct ext4_inode_info *ei = EXT4_I(inode); 1571 int ret; 1572 1573 /* 1574 * We will charge metadata quota at writeout time; this saves 1575 * us from metadata over-estimation, though we may go over by 1576 * a small amount in the end. Here we just reserve for data. 1577 */ 1578 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1579 if (ret) 1580 return ret; 1581 1582 spin_lock(&ei->i_block_reservation_lock); 1583 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1584 spin_unlock(&ei->i_block_reservation_lock); 1585 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1586 return -ENOSPC; 1587 } 1588 ei->i_reserved_data_blocks++; 1589 trace_ext4_da_reserve_space(inode); 1590 spin_unlock(&ei->i_block_reservation_lock); 1591 1592 return 0; /* success */ 1593 } 1594 1595 static void ext4_da_release_space(struct inode *inode, int to_free) 1596 { 1597 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1598 struct ext4_inode_info *ei = EXT4_I(inode); 1599 1600 if (!to_free) 1601 return; /* Nothing to release, exit */ 1602 1603 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1604 1605 trace_ext4_da_release_space(inode, to_free); 1606 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1607 /* 1608 * if there aren't enough reserved blocks, then the 1609 * counter is messed up somewhere. Since this 1610 * function is called from invalidate page, it's 1611 * harmless to return without any action. 1612 */ 1613 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1614 "ino %lu, to_free %d with only %d reserved " 1615 "data blocks", inode->i_ino, to_free, 1616 ei->i_reserved_data_blocks); 1617 WARN_ON(1); 1618 to_free = ei->i_reserved_data_blocks; 1619 } 1620 ei->i_reserved_data_blocks -= to_free; 1621 1622 /* update fs dirty data blocks counter */ 1623 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1624 1625 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1626 1627 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1628 } 1629 1630 static void ext4_da_page_release_reservation(struct page *page, 1631 unsigned int offset, 1632 unsigned int length) 1633 { 1634 int to_release = 0, contiguous_blks = 0; 1635 struct buffer_head *head, *bh; 1636 unsigned int curr_off = 0; 1637 struct inode *inode = page->mapping->host; 1638 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1639 unsigned int stop = offset + length; 1640 int num_clusters; 1641 ext4_fsblk_t lblk; 1642 1643 BUG_ON(stop > PAGE_SIZE || stop < length); 1644 1645 head = page_buffers(page); 1646 bh = head; 1647 do { 1648 unsigned int next_off = curr_off + bh->b_size; 1649 1650 if (next_off > stop) 1651 break; 1652 1653 if ((offset <= curr_off) && (buffer_delay(bh))) { 1654 to_release++; 1655 contiguous_blks++; 1656 clear_buffer_delay(bh); 1657 } else if (contiguous_blks) { 1658 lblk = page->index << 1659 (PAGE_SHIFT - inode->i_blkbits); 1660 lblk += (curr_off >> inode->i_blkbits) - 1661 contiguous_blks; 1662 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1663 contiguous_blks = 0; 1664 } 1665 curr_off = next_off; 1666 } while ((bh = bh->b_this_page) != head); 1667 1668 if (contiguous_blks) { 1669 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1670 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1671 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1672 } 1673 1674 /* If we have released all the blocks belonging to a cluster, then we 1675 * need to release the reserved space for that cluster. */ 1676 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1677 while (num_clusters > 0) { 1678 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1679 ((num_clusters - 1) << sbi->s_cluster_bits); 1680 if (sbi->s_cluster_ratio == 1 || 1681 !ext4_find_delalloc_cluster(inode, lblk)) 1682 ext4_da_release_space(inode, 1); 1683 1684 num_clusters--; 1685 } 1686 } 1687 1688 /* 1689 * Delayed allocation stuff 1690 */ 1691 1692 struct mpage_da_data { 1693 struct inode *inode; 1694 struct writeback_control *wbc; 1695 1696 pgoff_t first_page; /* The first page to write */ 1697 pgoff_t next_page; /* Current page to examine */ 1698 pgoff_t last_page; /* Last page to examine */ 1699 /* 1700 * Extent to map - this can be after first_page because that can be 1701 * fully mapped. We somewhat abuse m_flags to store whether the extent 1702 * is delalloc or unwritten. 1703 */ 1704 struct ext4_map_blocks map; 1705 struct ext4_io_submit io_submit; /* IO submission data */ 1706 unsigned int do_map:1; 1707 }; 1708 1709 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1710 bool invalidate) 1711 { 1712 int nr_pages, i; 1713 pgoff_t index, end; 1714 struct pagevec pvec; 1715 struct inode *inode = mpd->inode; 1716 struct address_space *mapping = inode->i_mapping; 1717 1718 /* This is necessary when next_page == 0. */ 1719 if (mpd->first_page >= mpd->next_page) 1720 return; 1721 1722 index = mpd->first_page; 1723 end = mpd->next_page - 1; 1724 if (invalidate) { 1725 ext4_lblk_t start, last; 1726 start = index << (PAGE_SHIFT - inode->i_blkbits); 1727 last = end << (PAGE_SHIFT - inode->i_blkbits); 1728 ext4_es_remove_extent(inode, start, last - start + 1); 1729 } 1730 1731 pagevec_init(&pvec); 1732 while (index <= end) { 1733 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1734 if (nr_pages == 0) 1735 break; 1736 for (i = 0; i < nr_pages; i++) { 1737 struct page *page = pvec.pages[i]; 1738 1739 BUG_ON(!PageLocked(page)); 1740 BUG_ON(PageWriteback(page)); 1741 if (invalidate) { 1742 if (page_mapped(page)) 1743 clear_page_dirty_for_io(page); 1744 block_invalidatepage(page, 0, PAGE_SIZE); 1745 ClearPageUptodate(page); 1746 } 1747 unlock_page(page); 1748 } 1749 pagevec_release(&pvec); 1750 } 1751 } 1752 1753 static void ext4_print_free_blocks(struct inode *inode) 1754 { 1755 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1756 struct super_block *sb = inode->i_sb; 1757 struct ext4_inode_info *ei = EXT4_I(inode); 1758 1759 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1760 EXT4_C2B(EXT4_SB(inode->i_sb), 1761 ext4_count_free_clusters(sb))); 1762 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1763 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1764 (long long) EXT4_C2B(EXT4_SB(sb), 1765 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1766 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1767 (long long) EXT4_C2B(EXT4_SB(sb), 1768 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1769 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1770 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1771 ei->i_reserved_data_blocks); 1772 return; 1773 } 1774 1775 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1776 { 1777 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1778 } 1779 1780 /* 1781 * This function is grabs code from the very beginning of 1782 * ext4_map_blocks, but assumes that the caller is from delayed write 1783 * time. This function looks up the requested blocks and sets the 1784 * buffer delay bit under the protection of i_data_sem. 1785 */ 1786 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1787 struct ext4_map_blocks *map, 1788 struct buffer_head *bh) 1789 { 1790 struct extent_status es; 1791 int retval; 1792 sector_t invalid_block = ~((sector_t) 0xffff); 1793 #ifdef ES_AGGRESSIVE_TEST 1794 struct ext4_map_blocks orig_map; 1795 1796 memcpy(&orig_map, map, sizeof(*map)); 1797 #endif 1798 1799 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1800 invalid_block = ~0; 1801 1802 map->m_flags = 0; 1803 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1804 "logical block %lu\n", inode->i_ino, map->m_len, 1805 (unsigned long) map->m_lblk); 1806 1807 /* Lookup extent status tree firstly */ 1808 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1809 if (ext4_es_is_hole(&es)) { 1810 retval = 0; 1811 down_read(&EXT4_I(inode)->i_data_sem); 1812 goto add_delayed; 1813 } 1814 1815 /* 1816 * Delayed extent could be allocated by fallocate. 1817 * So we need to check it. 1818 */ 1819 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1820 map_bh(bh, inode->i_sb, invalid_block); 1821 set_buffer_new(bh); 1822 set_buffer_delay(bh); 1823 return 0; 1824 } 1825 1826 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1827 retval = es.es_len - (iblock - es.es_lblk); 1828 if (retval > map->m_len) 1829 retval = map->m_len; 1830 map->m_len = retval; 1831 if (ext4_es_is_written(&es)) 1832 map->m_flags |= EXT4_MAP_MAPPED; 1833 else if (ext4_es_is_unwritten(&es)) 1834 map->m_flags |= EXT4_MAP_UNWRITTEN; 1835 else 1836 BUG_ON(1); 1837 1838 #ifdef ES_AGGRESSIVE_TEST 1839 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1840 #endif 1841 return retval; 1842 } 1843 1844 /* 1845 * Try to see if we can get the block without requesting a new 1846 * file system block. 1847 */ 1848 down_read(&EXT4_I(inode)->i_data_sem); 1849 if (ext4_has_inline_data(inode)) 1850 retval = 0; 1851 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1852 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1853 else 1854 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1855 1856 add_delayed: 1857 if (retval == 0) { 1858 int ret; 1859 /* 1860 * XXX: __block_prepare_write() unmaps passed block, 1861 * is it OK? 1862 */ 1863 /* 1864 * If the block was allocated from previously allocated cluster, 1865 * then we don't need to reserve it again. However we still need 1866 * to reserve metadata for every block we're going to write. 1867 */ 1868 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1869 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1870 ret = ext4_da_reserve_space(inode); 1871 if (ret) { 1872 /* not enough space to reserve */ 1873 retval = ret; 1874 goto out_unlock; 1875 } 1876 } 1877 1878 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1879 ~0, EXTENT_STATUS_DELAYED); 1880 if (ret) { 1881 retval = ret; 1882 goto out_unlock; 1883 } 1884 1885 map_bh(bh, inode->i_sb, invalid_block); 1886 set_buffer_new(bh); 1887 set_buffer_delay(bh); 1888 } else if (retval > 0) { 1889 int ret; 1890 unsigned int status; 1891 1892 if (unlikely(retval != map->m_len)) { 1893 ext4_warning(inode->i_sb, 1894 "ES len assertion failed for inode " 1895 "%lu: retval %d != map->m_len %d", 1896 inode->i_ino, retval, map->m_len); 1897 WARN_ON(1); 1898 } 1899 1900 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1901 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1902 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1903 map->m_pblk, status); 1904 if (ret != 0) 1905 retval = ret; 1906 } 1907 1908 out_unlock: 1909 up_read((&EXT4_I(inode)->i_data_sem)); 1910 1911 return retval; 1912 } 1913 1914 /* 1915 * This is a special get_block_t callback which is used by 1916 * ext4_da_write_begin(). It will either return mapped block or 1917 * reserve space for a single block. 1918 * 1919 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1920 * We also have b_blocknr = -1 and b_bdev initialized properly 1921 * 1922 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1923 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1924 * initialized properly. 1925 */ 1926 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1927 struct buffer_head *bh, int create) 1928 { 1929 struct ext4_map_blocks map; 1930 int ret = 0; 1931 1932 BUG_ON(create == 0); 1933 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1934 1935 map.m_lblk = iblock; 1936 map.m_len = 1; 1937 1938 /* 1939 * first, we need to know whether the block is allocated already 1940 * preallocated blocks are unmapped but should treated 1941 * the same as allocated blocks. 1942 */ 1943 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1944 if (ret <= 0) 1945 return ret; 1946 1947 map_bh(bh, inode->i_sb, map.m_pblk); 1948 ext4_update_bh_state(bh, map.m_flags); 1949 1950 if (buffer_unwritten(bh)) { 1951 /* A delayed write to unwritten bh should be marked 1952 * new and mapped. Mapped ensures that we don't do 1953 * get_block multiple times when we write to the same 1954 * offset and new ensures that we do proper zero out 1955 * for partial write. 1956 */ 1957 set_buffer_new(bh); 1958 set_buffer_mapped(bh); 1959 } 1960 return 0; 1961 } 1962 1963 static int bget_one(handle_t *handle, struct buffer_head *bh) 1964 { 1965 get_bh(bh); 1966 return 0; 1967 } 1968 1969 static int bput_one(handle_t *handle, struct buffer_head *bh) 1970 { 1971 put_bh(bh); 1972 return 0; 1973 } 1974 1975 static int __ext4_journalled_writepage(struct page *page, 1976 unsigned int len) 1977 { 1978 struct address_space *mapping = page->mapping; 1979 struct inode *inode = mapping->host; 1980 struct buffer_head *page_bufs = NULL; 1981 handle_t *handle = NULL; 1982 int ret = 0, err = 0; 1983 int inline_data = ext4_has_inline_data(inode); 1984 struct buffer_head *inode_bh = NULL; 1985 1986 ClearPageChecked(page); 1987 1988 if (inline_data) { 1989 BUG_ON(page->index != 0); 1990 BUG_ON(len > ext4_get_max_inline_size(inode)); 1991 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1992 if (inode_bh == NULL) 1993 goto out; 1994 } else { 1995 page_bufs = page_buffers(page); 1996 if (!page_bufs) { 1997 BUG(); 1998 goto out; 1999 } 2000 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2001 NULL, bget_one); 2002 } 2003 /* 2004 * We need to release the page lock before we start the 2005 * journal, so grab a reference so the page won't disappear 2006 * out from under us. 2007 */ 2008 get_page(page); 2009 unlock_page(page); 2010 2011 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2012 ext4_writepage_trans_blocks(inode)); 2013 if (IS_ERR(handle)) { 2014 ret = PTR_ERR(handle); 2015 put_page(page); 2016 goto out_no_pagelock; 2017 } 2018 BUG_ON(!ext4_handle_valid(handle)); 2019 2020 lock_page(page); 2021 put_page(page); 2022 if (page->mapping != mapping) { 2023 /* The page got truncated from under us */ 2024 ext4_journal_stop(handle); 2025 ret = 0; 2026 goto out; 2027 } 2028 2029 if (inline_data) { 2030 BUFFER_TRACE(inode_bh, "get write access"); 2031 ret = ext4_journal_get_write_access(handle, inode_bh); 2032 2033 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2034 2035 } else { 2036 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2037 do_journal_get_write_access); 2038 2039 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2040 write_end_fn); 2041 } 2042 if (ret == 0) 2043 ret = err; 2044 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2045 err = ext4_journal_stop(handle); 2046 if (!ret) 2047 ret = err; 2048 2049 if (!ext4_has_inline_data(inode)) 2050 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2051 NULL, bput_one); 2052 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2053 out: 2054 unlock_page(page); 2055 out_no_pagelock: 2056 brelse(inode_bh); 2057 return ret; 2058 } 2059 2060 /* 2061 * Note that we don't need to start a transaction unless we're journaling data 2062 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2063 * need to file the inode to the transaction's list in ordered mode because if 2064 * we are writing back data added by write(), the inode is already there and if 2065 * we are writing back data modified via mmap(), no one guarantees in which 2066 * transaction the data will hit the disk. In case we are journaling data, we 2067 * cannot start transaction directly because transaction start ranks above page 2068 * lock so we have to do some magic. 2069 * 2070 * This function can get called via... 2071 * - ext4_writepages after taking page lock (have journal handle) 2072 * - journal_submit_inode_data_buffers (no journal handle) 2073 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2074 * - grab_page_cache when doing write_begin (have journal handle) 2075 * 2076 * We don't do any block allocation in this function. If we have page with 2077 * multiple blocks we need to write those buffer_heads that are mapped. This 2078 * is important for mmaped based write. So if we do with blocksize 1K 2079 * truncate(f, 1024); 2080 * a = mmap(f, 0, 4096); 2081 * a[0] = 'a'; 2082 * truncate(f, 4096); 2083 * we have in the page first buffer_head mapped via page_mkwrite call back 2084 * but other buffer_heads would be unmapped but dirty (dirty done via the 2085 * do_wp_page). So writepage should write the first block. If we modify 2086 * the mmap area beyond 1024 we will again get a page_fault and the 2087 * page_mkwrite callback will do the block allocation and mark the 2088 * buffer_heads mapped. 2089 * 2090 * We redirty the page if we have any buffer_heads that is either delay or 2091 * unwritten in the page. 2092 * 2093 * We can get recursively called as show below. 2094 * 2095 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2096 * ext4_writepage() 2097 * 2098 * But since we don't do any block allocation we should not deadlock. 2099 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2100 */ 2101 static int ext4_writepage(struct page *page, 2102 struct writeback_control *wbc) 2103 { 2104 int ret = 0; 2105 loff_t size; 2106 unsigned int len; 2107 struct buffer_head *page_bufs = NULL; 2108 struct inode *inode = page->mapping->host; 2109 struct ext4_io_submit io_submit; 2110 bool keep_towrite = false; 2111 2112 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2113 ext4_invalidatepage(page, 0, PAGE_SIZE); 2114 unlock_page(page); 2115 return -EIO; 2116 } 2117 2118 trace_ext4_writepage(page); 2119 size = i_size_read(inode); 2120 if (page->index == size >> PAGE_SHIFT) 2121 len = size & ~PAGE_MASK; 2122 else 2123 len = PAGE_SIZE; 2124 2125 page_bufs = page_buffers(page); 2126 /* 2127 * We cannot do block allocation or other extent handling in this 2128 * function. If there are buffers needing that, we have to redirty 2129 * the page. But we may reach here when we do a journal commit via 2130 * journal_submit_inode_data_buffers() and in that case we must write 2131 * allocated buffers to achieve data=ordered mode guarantees. 2132 * 2133 * Also, if there is only one buffer per page (the fs block 2134 * size == the page size), if one buffer needs block 2135 * allocation or needs to modify the extent tree to clear the 2136 * unwritten flag, we know that the page can't be written at 2137 * all, so we might as well refuse the write immediately. 2138 * Unfortunately if the block size != page size, we can't as 2139 * easily detect this case using ext4_walk_page_buffers(), but 2140 * for the extremely common case, this is an optimization that 2141 * skips a useless round trip through ext4_bio_write_page(). 2142 */ 2143 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2144 ext4_bh_delay_or_unwritten)) { 2145 redirty_page_for_writepage(wbc, page); 2146 if ((current->flags & PF_MEMALLOC) || 2147 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2148 /* 2149 * For memory cleaning there's no point in writing only 2150 * some buffers. So just bail out. Warn if we came here 2151 * from direct reclaim. 2152 */ 2153 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2154 == PF_MEMALLOC); 2155 unlock_page(page); 2156 return 0; 2157 } 2158 keep_towrite = true; 2159 } 2160 2161 if (PageChecked(page) && ext4_should_journal_data(inode)) 2162 /* 2163 * It's mmapped pagecache. Add buffers and journal it. There 2164 * doesn't seem much point in redirtying the page here. 2165 */ 2166 return __ext4_journalled_writepage(page, len); 2167 2168 ext4_io_submit_init(&io_submit, wbc); 2169 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2170 if (!io_submit.io_end) { 2171 redirty_page_for_writepage(wbc, page); 2172 unlock_page(page); 2173 return -ENOMEM; 2174 } 2175 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2176 ext4_io_submit(&io_submit); 2177 /* Drop io_end reference we got from init */ 2178 ext4_put_io_end_defer(io_submit.io_end); 2179 return ret; 2180 } 2181 2182 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2183 { 2184 int len; 2185 loff_t size; 2186 int err; 2187 2188 BUG_ON(page->index != mpd->first_page); 2189 clear_page_dirty_for_io(page); 2190 /* 2191 * We have to be very careful here! Nothing protects writeback path 2192 * against i_size changes and the page can be writeably mapped into 2193 * page tables. So an application can be growing i_size and writing 2194 * data through mmap while writeback runs. clear_page_dirty_for_io() 2195 * write-protects our page in page tables and the page cannot get 2196 * written to again until we release page lock. So only after 2197 * clear_page_dirty_for_io() we are safe to sample i_size for 2198 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2199 * on the barrier provided by TestClearPageDirty in 2200 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2201 * after page tables are updated. 2202 */ 2203 size = i_size_read(mpd->inode); 2204 if (page->index == size >> PAGE_SHIFT) 2205 len = size & ~PAGE_MASK; 2206 else 2207 len = PAGE_SIZE; 2208 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2209 if (!err) 2210 mpd->wbc->nr_to_write--; 2211 mpd->first_page++; 2212 2213 return err; 2214 } 2215 2216 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2217 2218 /* 2219 * mballoc gives us at most this number of blocks... 2220 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2221 * The rest of mballoc seems to handle chunks up to full group size. 2222 */ 2223 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2224 2225 /* 2226 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2227 * 2228 * @mpd - extent of blocks 2229 * @lblk - logical number of the block in the file 2230 * @bh - buffer head we want to add to the extent 2231 * 2232 * The function is used to collect contig. blocks in the same state. If the 2233 * buffer doesn't require mapping for writeback and we haven't started the 2234 * extent of buffers to map yet, the function returns 'true' immediately - the 2235 * caller can write the buffer right away. Otherwise the function returns true 2236 * if the block has been added to the extent, false if the block couldn't be 2237 * added. 2238 */ 2239 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2240 struct buffer_head *bh) 2241 { 2242 struct ext4_map_blocks *map = &mpd->map; 2243 2244 /* Buffer that doesn't need mapping for writeback? */ 2245 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2246 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2247 /* So far no extent to map => we write the buffer right away */ 2248 if (map->m_len == 0) 2249 return true; 2250 return false; 2251 } 2252 2253 /* First block in the extent? */ 2254 if (map->m_len == 0) { 2255 /* We cannot map unless handle is started... */ 2256 if (!mpd->do_map) 2257 return false; 2258 map->m_lblk = lblk; 2259 map->m_len = 1; 2260 map->m_flags = bh->b_state & BH_FLAGS; 2261 return true; 2262 } 2263 2264 /* Don't go larger than mballoc is willing to allocate */ 2265 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2266 return false; 2267 2268 /* Can we merge the block to our big extent? */ 2269 if (lblk == map->m_lblk + map->m_len && 2270 (bh->b_state & BH_FLAGS) == map->m_flags) { 2271 map->m_len++; 2272 return true; 2273 } 2274 return false; 2275 } 2276 2277 /* 2278 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2279 * 2280 * @mpd - extent of blocks for mapping 2281 * @head - the first buffer in the page 2282 * @bh - buffer we should start processing from 2283 * @lblk - logical number of the block in the file corresponding to @bh 2284 * 2285 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2286 * the page for IO if all buffers in this page were mapped and there's no 2287 * accumulated extent of buffers to map or add buffers in the page to the 2288 * extent of buffers to map. The function returns 1 if the caller can continue 2289 * by processing the next page, 0 if it should stop adding buffers to the 2290 * extent to map because we cannot extend it anymore. It can also return value 2291 * < 0 in case of error during IO submission. 2292 */ 2293 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2294 struct buffer_head *head, 2295 struct buffer_head *bh, 2296 ext4_lblk_t lblk) 2297 { 2298 struct inode *inode = mpd->inode; 2299 int err; 2300 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2301 >> inode->i_blkbits; 2302 2303 do { 2304 BUG_ON(buffer_locked(bh)); 2305 2306 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2307 /* Found extent to map? */ 2308 if (mpd->map.m_len) 2309 return 0; 2310 /* Buffer needs mapping and handle is not started? */ 2311 if (!mpd->do_map) 2312 return 0; 2313 /* Everything mapped so far and we hit EOF */ 2314 break; 2315 } 2316 } while (lblk++, (bh = bh->b_this_page) != head); 2317 /* So far everything mapped? Submit the page for IO. */ 2318 if (mpd->map.m_len == 0) { 2319 err = mpage_submit_page(mpd, head->b_page); 2320 if (err < 0) 2321 return err; 2322 } 2323 return lblk < blocks; 2324 } 2325 2326 /* 2327 * mpage_map_buffers - update buffers corresponding to changed extent and 2328 * submit fully mapped pages for IO 2329 * 2330 * @mpd - description of extent to map, on return next extent to map 2331 * 2332 * Scan buffers corresponding to changed extent (we expect corresponding pages 2333 * to be already locked) and update buffer state according to new extent state. 2334 * We map delalloc buffers to their physical location, clear unwritten bits, 2335 * and mark buffers as uninit when we perform writes to unwritten extents 2336 * and do extent conversion after IO is finished. If the last page is not fully 2337 * mapped, we update @map to the next extent in the last page that needs 2338 * mapping. Otherwise we submit the page for IO. 2339 */ 2340 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2341 { 2342 struct pagevec pvec; 2343 int nr_pages, i; 2344 struct inode *inode = mpd->inode; 2345 struct buffer_head *head, *bh; 2346 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2347 pgoff_t start, end; 2348 ext4_lblk_t lblk; 2349 sector_t pblock; 2350 int err; 2351 2352 start = mpd->map.m_lblk >> bpp_bits; 2353 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2354 lblk = start << bpp_bits; 2355 pblock = mpd->map.m_pblk; 2356 2357 pagevec_init(&pvec); 2358 while (start <= end) { 2359 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2360 &start, end); 2361 if (nr_pages == 0) 2362 break; 2363 for (i = 0; i < nr_pages; i++) { 2364 struct page *page = pvec.pages[i]; 2365 2366 bh = head = page_buffers(page); 2367 do { 2368 if (lblk < mpd->map.m_lblk) 2369 continue; 2370 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2371 /* 2372 * Buffer after end of mapped extent. 2373 * Find next buffer in the page to map. 2374 */ 2375 mpd->map.m_len = 0; 2376 mpd->map.m_flags = 0; 2377 /* 2378 * FIXME: If dioread_nolock supports 2379 * blocksize < pagesize, we need to make 2380 * sure we add size mapped so far to 2381 * io_end->size as the following call 2382 * can submit the page for IO. 2383 */ 2384 err = mpage_process_page_bufs(mpd, head, 2385 bh, lblk); 2386 pagevec_release(&pvec); 2387 if (err > 0) 2388 err = 0; 2389 return err; 2390 } 2391 if (buffer_delay(bh)) { 2392 clear_buffer_delay(bh); 2393 bh->b_blocknr = pblock++; 2394 } 2395 clear_buffer_unwritten(bh); 2396 } while (lblk++, (bh = bh->b_this_page) != head); 2397 2398 /* 2399 * FIXME: This is going to break if dioread_nolock 2400 * supports blocksize < pagesize as we will try to 2401 * convert potentially unmapped parts of inode. 2402 */ 2403 mpd->io_submit.io_end->size += PAGE_SIZE; 2404 /* Page fully mapped - let IO run! */ 2405 err = mpage_submit_page(mpd, page); 2406 if (err < 0) { 2407 pagevec_release(&pvec); 2408 return err; 2409 } 2410 } 2411 pagevec_release(&pvec); 2412 } 2413 /* Extent fully mapped and matches with page boundary. We are done. */ 2414 mpd->map.m_len = 0; 2415 mpd->map.m_flags = 0; 2416 return 0; 2417 } 2418 2419 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2420 { 2421 struct inode *inode = mpd->inode; 2422 struct ext4_map_blocks *map = &mpd->map; 2423 int get_blocks_flags; 2424 int err, dioread_nolock; 2425 2426 trace_ext4_da_write_pages_extent(inode, map); 2427 /* 2428 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2429 * to convert an unwritten extent to be initialized (in the case 2430 * where we have written into one or more preallocated blocks). It is 2431 * possible that we're going to need more metadata blocks than 2432 * previously reserved. However we must not fail because we're in 2433 * writeback and there is nothing we can do about it so it might result 2434 * in data loss. So use reserved blocks to allocate metadata if 2435 * possible. 2436 * 2437 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2438 * the blocks in question are delalloc blocks. This indicates 2439 * that the blocks and quotas has already been checked when 2440 * the data was copied into the page cache. 2441 */ 2442 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2443 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2444 EXT4_GET_BLOCKS_IO_SUBMIT; 2445 dioread_nolock = ext4_should_dioread_nolock(inode); 2446 if (dioread_nolock) 2447 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2448 if (map->m_flags & (1 << BH_Delay)) 2449 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2450 2451 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2452 if (err < 0) 2453 return err; 2454 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2455 if (!mpd->io_submit.io_end->handle && 2456 ext4_handle_valid(handle)) { 2457 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2458 handle->h_rsv_handle = NULL; 2459 } 2460 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2461 } 2462 2463 BUG_ON(map->m_len == 0); 2464 if (map->m_flags & EXT4_MAP_NEW) { 2465 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2466 map->m_len); 2467 } 2468 return 0; 2469 } 2470 2471 /* 2472 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2473 * mpd->len and submit pages underlying it for IO 2474 * 2475 * @handle - handle for journal operations 2476 * @mpd - extent to map 2477 * @give_up_on_write - we set this to true iff there is a fatal error and there 2478 * is no hope of writing the data. The caller should discard 2479 * dirty pages to avoid infinite loops. 2480 * 2481 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2482 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2483 * them to initialized or split the described range from larger unwritten 2484 * extent. Note that we need not map all the described range since allocation 2485 * can return less blocks or the range is covered by more unwritten extents. We 2486 * cannot map more because we are limited by reserved transaction credits. On 2487 * the other hand we always make sure that the last touched page is fully 2488 * mapped so that it can be written out (and thus forward progress is 2489 * guaranteed). After mapping we submit all mapped pages for IO. 2490 */ 2491 static int mpage_map_and_submit_extent(handle_t *handle, 2492 struct mpage_da_data *mpd, 2493 bool *give_up_on_write) 2494 { 2495 struct inode *inode = mpd->inode; 2496 struct ext4_map_blocks *map = &mpd->map; 2497 int err; 2498 loff_t disksize; 2499 int progress = 0; 2500 2501 mpd->io_submit.io_end->offset = 2502 ((loff_t)map->m_lblk) << inode->i_blkbits; 2503 do { 2504 err = mpage_map_one_extent(handle, mpd); 2505 if (err < 0) { 2506 struct super_block *sb = inode->i_sb; 2507 2508 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2509 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2510 goto invalidate_dirty_pages; 2511 /* 2512 * Let the uper layers retry transient errors. 2513 * In the case of ENOSPC, if ext4_count_free_blocks() 2514 * is non-zero, a commit should free up blocks. 2515 */ 2516 if ((err == -ENOMEM) || 2517 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2518 if (progress) 2519 goto update_disksize; 2520 return err; 2521 } 2522 ext4_msg(sb, KERN_CRIT, 2523 "Delayed block allocation failed for " 2524 "inode %lu at logical offset %llu with" 2525 " max blocks %u with error %d", 2526 inode->i_ino, 2527 (unsigned long long)map->m_lblk, 2528 (unsigned)map->m_len, -err); 2529 ext4_msg(sb, KERN_CRIT, 2530 "This should not happen!! Data will " 2531 "be lost\n"); 2532 if (err == -ENOSPC) 2533 ext4_print_free_blocks(inode); 2534 invalidate_dirty_pages: 2535 *give_up_on_write = true; 2536 return err; 2537 } 2538 progress = 1; 2539 /* 2540 * Update buffer state, submit mapped pages, and get us new 2541 * extent to map 2542 */ 2543 err = mpage_map_and_submit_buffers(mpd); 2544 if (err < 0) 2545 goto update_disksize; 2546 } while (map->m_len); 2547 2548 update_disksize: 2549 /* 2550 * Update on-disk size after IO is submitted. Races with 2551 * truncate are avoided by checking i_size under i_data_sem. 2552 */ 2553 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2554 if (disksize > EXT4_I(inode)->i_disksize) { 2555 int err2; 2556 loff_t i_size; 2557 2558 down_write(&EXT4_I(inode)->i_data_sem); 2559 i_size = i_size_read(inode); 2560 if (disksize > i_size) 2561 disksize = i_size; 2562 if (disksize > EXT4_I(inode)->i_disksize) 2563 EXT4_I(inode)->i_disksize = disksize; 2564 up_write(&EXT4_I(inode)->i_data_sem); 2565 err2 = ext4_mark_inode_dirty(handle, inode); 2566 if (err2) 2567 ext4_error(inode->i_sb, 2568 "Failed to mark inode %lu dirty", 2569 inode->i_ino); 2570 if (!err) 2571 err = err2; 2572 } 2573 return err; 2574 } 2575 2576 /* 2577 * Calculate the total number of credits to reserve for one writepages 2578 * iteration. This is called from ext4_writepages(). We map an extent of 2579 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2580 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2581 * bpp - 1 blocks in bpp different extents. 2582 */ 2583 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2584 { 2585 int bpp = ext4_journal_blocks_per_page(inode); 2586 2587 return ext4_meta_trans_blocks(inode, 2588 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2589 } 2590 2591 /* 2592 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2593 * and underlying extent to map 2594 * 2595 * @mpd - where to look for pages 2596 * 2597 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2598 * IO immediately. When we find a page which isn't mapped we start accumulating 2599 * extent of buffers underlying these pages that needs mapping (formed by 2600 * either delayed or unwritten buffers). We also lock the pages containing 2601 * these buffers. The extent found is returned in @mpd structure (starting at 2602 * mpd->lblk with length mpd->len blocks). 2603 * 2604 * Note that this function can attach bios to one io_end structure which are 2605 * neither logically nor physically contiguous. Although it may seem as an 2606 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2607 * case as we need to track IO to all buffers underlying a page in one io_end. 2608 */ 2609 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2610 { 2611 struct address_space *mapping = mpd->inode->i_mapping; 2612 struct pagevec pvec; 2613 unsigned int nr_pages; 2614 long left = mpd->wbc->nr_to_write; 2615 pgoff_t index = mpd->first_page; 2616 pgoff_t end = mpd->last_page; 2617 int tag; 2618 int i, err = 0; 2619 int blkbits = mpd->inode->i_blkbits; 2620 ext4_lblk_t lblk; 2621 struct buffer_head *head; 2622 2623 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2624 tag = PAGECACHE_TAG_TOWRITE; 2625 else 2626 tag = PAGECACHE_TAG_DIRTY; 2627 2628 pagevec_init(&pvec); 2629 mpd->map.m_len = 0; 2630 mpd->next_page = index; 2631 while (index <= end) { 2632 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2633 tag); 2634 if (nr_pages == 0) 2635 goto out; 2636 2637 for (i = 0; i < nr_pages; i++) { 2638 struct page *page = pvec.pages[i]; 2639 2640 /* 2641 * Accumulated enough dirty pages? This doesn't apply 2642 * to WB_SYNC_ALL mode. For integrity sync we have to 2643 * keep going because someone may be concurrently 2644 * dirtying pages, and we might have synced a lot of 2645 * newly appeared dirty pages, but have not synced all 2646 * of the old dirty pages. 2647 */ 2648 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2649 goto out; 2650 2651 /* If we can't merge this page, we are done. */ 2652 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2653 goto out; 2654 2655 lock_page(page); 2656 /* 2657 * If the page is no longer dirty, or its mapping no 2658 * longer corresponds to inode we are writing (which 2659 * means it has been truncated or invalidated), or the 2660 * page is already under writeback and we are not doing 2661 * a data integrity writeback, skip the page 2662 */ 2663 if (!PageDirty(page) || 2664 (PageWriteback(page) && 2665 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2666 unlikely(page->mapping != mapping)) { 2667 unlock_page(page); 2668 continue; 2669 } 2670 2671 wait_on_page_writeback(page); 2672 BUG_ON(PageWriteback(page)); 2673 2674 if (mpd->map.m_len == 0) 2675 mpd->first_page = page->index; 2676 mpd->next_page = page->index + 1; 2677 /* Add all dirty buffers to mpd */ 2678 lblk = ((ext4_lblk_t)page->index) << 2679 (PAGE_SHIFT - blkbits); 2680 head = page_buffers(page); 2681 err = mpage_process_page_bufs(mpd, head, head, lblk); 2682 if (err <= 0) 2683 goto out; 2684 err = 0; 2685 left--; 2686 } 2687 pagevec_release(&pvec); 2688 cond_resched(); 2689 } 2690 return 0; 2691 out: 2692 pagevec_release(&pvec); 2693 return err; 2694 } 2695 2696 static int __writepage(struct page *page, struct writeback_control *wbc, 2697 void *data) 2698 { 2699 struct address_space *mapping = data; 2700 int ret = ext4_writepage(page, wbc); 2701 mapping_set_error(mapping, ret); 2702 return ret; 2703 } 2704 2705 static int ext4_writepages(struct address_space *mapping, 2706 struct writeback_control *wbc) 2707 { 2708 pgoff_t writeback_index = 0; 2709 long nr_to_write = wbc->nr_to_write; 2710 int range_whole = 0; 2711 int cycled = 1; 2712 handle_t *handle = NULL; 2713 struct mpage_da_data mpd; 2714 struct inode *inode = mapping->host; 2715 int needed_blocks, rsv_blocks = 0, ret = 0; 2716 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2717 bool done; 2718 struct blk_plug plug; 2719 bool give_up_on_write = false; 2720 2721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2722 return -EIO; 2723 2724 percpu_down_read(&sbi->s_journal_flag_rwsem); 2725 trace_ext4_writepages(inode, wbc); 2726 2727 if (dax_mapping(mapping)) { 2728 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2729 wbc); 2730 goto out_writepages; 2731 } 2732 2733 /* 2734 * No pages to write? This is mainly a kludge to avoid starting 2735 * a transaction for special inodes like journal inode on last iput() 2736 * because that could violate lock ordering on umount 2737 */ 2738 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2739 goto out_writepages; 2740 2741 if (ext4_should_journal_data(inode)) { 2742 struct blk_plug plug; 2743 2744 blk_start_plug(&plug); 2745 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2746 blk_finish_plug(&plug); 2747 goto out_writepages; 2748 } 2749 2750 /* 2751 * If the filesystem has aborted, it is read-only, so return 2752 * right away instead of dumping stack traces later on that 2753 * will obscure the real source of the problem. We test 2754 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2755 * the latter could be true if the filesystem is mounted 2756 * read-only, and in that case, ext4_writepages should 2757 * *never* be called, so if that ever happens, we would want 2758 * the stack trace. 2759 */ 2760 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2761 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2762 ret = -EROFS; 2763 goto out_writepages; 2764 } 2765 2766 if (ext4_should_dioread_nolock(inode)) { 2767 /* 2768 * We may need to convert up to one extent per block in 2769 * the page and we may dirty the inode. 2770 */ 2771 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2772 } 2773 2774 /* 2775 * If we have inline data and arrive here, it means that 2776 * we will soon create the block for the 1st page, so 2777 * we'd better clear the inline data here. 2778 */ 2779 if (ext4_has_inline_data(inode)) { 2780 /* Just inode will be modified... */ 2781 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2782 if (IS_ERR(handle)) { 2783 ret = PTR_ERR(handle); 2784 goto out_writepages; 2785 } 2786 BUG_ON(ext4_test_inode_state(inode, 2787 EXT4_STATE_MAY_INLINE_DATA)); 2788 ext4_destroy_inline_data(handle, inode); 2789 ext4_journal_stop(handle); 2790 } 2791 2792 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2793 range_whole = 1; 2794 2795 if (wbc->range_cyclic) { 2796 writeback_index = mapping->writeback_index; 2797 if (writeback_index) 2798 cycled = 0; 2799 mpd.first_page = writeback_index; 2800 mpd.last_page = -1; 2801 } else { 2802 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2803 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2804 } 2805 2806 mpd.inode = inode; 2807 mpd.wbc = wbc; 2808 ext4_io_submit_init(&mpd.io_submit, wbc); 2809 retry: 2810 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2811 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2812 done = false; 2813 blk_start_plug(&plug); 2814 2815 /* 2816 * First writeback pages that don't need mapping - we can avoid 2817 * starting a transaction unnecessarily and also avoid being blocked 2818 * in the block layer on device congestion while having transaction 2819 * started. 2820 */ 2821 mpd.do_map = 0; 2822 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2823 if (!mpd.io_submit.io_end) { 2824 ret = -ENOMEM; 2825 goto unplug; 2826 } 2827 ret = mpage_prepare_extent_to_map(&mpd); 2828 /* Submit prepared bio */ 2829 ext4_io_submit(&mpd.io_submit); 2830 ext4_put_io_end_defer(mpd.io_submit.io_end); 2831 mpd.io_submit.io_end = NULL; 2832 /* Unlock pages we didn't use */ 2833 mpage_release_unused_pages(&mpd, false); 2834 if (ret < 0) 2835 goto unplug; 2836 2837 while (!done && mpd.first_page <= mpd.last_page) { 2838 /* For each extent of pages we use new io_end */ 2839 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2840 if (!mpd.io_submit.io_end) { 2841 ret = -ENOMEM; 2842 break; 2843 } 2844 2845 /* 2846 * We have two constraints: We find one extent to map and we 2847 * must always write out whole page (makes a difference when 2848 * blocksize < pagesize) so that we don't block on IO when we 2849 * try to write out the rest of the page. Journalled mode is 2850 * not supported by delalloc. 2851 */ 2852 BUG_ON(ext4_should_journal_data(inode)); 2853 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2854 2855 /* start a new transaction */ 2856 handle = ext4_journal_start_with_reserve(inode, 2857 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2858 if (IS_ERR(handle)) { 2859 ret = PTR_ERR(handle); 2860 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2861 "%ld pages, ino %lu; err %d", __func__, 2862 wbc->nr_to_write, inode->i_ino, ret); 2863 /* Release allocated io_end */ 2864 ext4_put_io_end(mpd.io_submit.io_end); 2865 mpd.io_submit.io_end = NULL; 2866 break; 2867 } 2868 mpd.do_map = 1; 2869 2870 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2871 ret = mpage_prepare_extent_to_map(&mpd); 2872 if (!ret) { 2873 if (mpd.map.m_len) 2874 ret = mpage_map_and_submit_extent(handle, &mpd, 2875 &give_up_on_write); 2876 else { 2877 /* 2878 * We scanned the whole range (or exhausted 2879 * nr_to_write), submitted what was mapped and 2880 * didn't find anything needing mapping. We are 2881 * done. 2882 */ 2883 done = true; 2884 } 2885 } 2886 /* 2887 * Caution: If the handle is synchronous, 2888 * ext4_journal_stop() can wait for transaction commit 2889 * to finish which may depend on writeback of pages to 2890 * complete or on page lock to be released. In that 2891 * case, we have to wait until after after we have 2892 * submitted all the IO, released page locks we hold, 2893 * and dropped io_end reference (for extent conversion 2894 * to be able to complete) before stopping the handle. 2895 */ 2896 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2897 ext4_journal_stop(handle); 2898 handle = NULL; 2899 mpd.do_map = 0; 2900 } 2901 /* Submit prepared bio */ 2902 ext4_io_submit(&mpd.io_submit); 2903 /* Unlock pages we didn't use */ 2904 mpage_release_unused_pages(&mpd, give_up_on_write); 2905 /* 2906 * Drop our io_end reference we got from init. We have 2907 * to be careful and use deferred io_end finishing if 2908 * we are still holding the transaction as we can 2909 * release the last reference to io_end which may end 2910 * up doing unwritten extent conversion. 2911 */ 2912 if (handle) { 2913 ext4_put_io_end_defer(mpd.io_submit.io_end); 2914 ext4_journal_stop(handle); 2915 } else 2916 ext4_put_io_end(mpd.io_submit.io_end); 2917 mpd.io_submit.io_end = NULL; 2918 2919 if (ret == -ENOSPC && sbi->s_journal) { 2920 /* 2921 * Commit the transaction which would 2922 * free blocks released in the transaction 2923 * and try again 2924 */ 2925 jbd2_journal_force_commit_nested(sbi->s_journal); 2926 ret = 0; 2927 continue; 2928 } 2929 /* Fatal error - ENOMEM, EIO... */ 2930 if (ret) 2931 break; 2932 } 2933 unplug: 2934 blk_finish_plug(&plug); 2935 if (!ret && !cycled && wbc->nr_to_write > 0) { 2936 cycled = 1; 2937 mpd.last_page = writeback_index - 1; 2938 mpd.first_page = 0; 2939 goto retry; 2940 } 2941 2942 /* Update index */ 2943 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2944 /* 2945 * Set the writeback_index so that range_cyclic 2946 * mode will write it back later 2947 */ 2948 mapping->writeback_index = mpd.first_page; 2949 2950 out_writepages: 2951 trace_ext4_writepages_result(inode, wbc, ret, 2952 nr_to_write - wbc->nr_to_write); 2953 percpu_up_read(&sbi->s_journal_flag_rwsem); 2954 return ret; 2955 } 2956 2957 static int ext4_nonda_switch(struct super_block *sb) 2958 { 2959 s64 free_clusters, dirty_clusters; 2960 struct ext4_sb_info *sbi = EXT4_SB(sb); 2961 2962 /* 2963 * switch to non delalloc mode if we are running low 2964 * on free block. The free block accounting via percpu 2965 * counters can get slightly wrong with percpu_counter_batch getting 2966 * accumulated on each CPU without updating global counters 2967 * Delalloc need an accurate free block accounting. So switch 2968 * to non delalloc when we are near to error range. 2969 */ 2970 free_clusters = 2971 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2972 dirty_clusters = 2973 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2974 /* 2975 * Start pushing delalloc when 1/2 of free blocks are dirty. 2976 */ 2977 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2978 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2979 2980 if (2 * free_clusters < 3 * dirty_clusters || 2981 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2982 /* 2983 * free block count is less than 150% of dirty blocks 2984 * or free blocks is less than watermark 2985 */ 2986 return 1; 2987 } 2988 return 0; 2989 } 2990 2991 /* We always reserve for an inode update; the superblock could be there too */ 2992 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2993 { 2994 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2995 return 1; 2996 2997 if (pos + len <= 0x7fffffffULL) 2998 return 1; 2999 3000 /* We might need to update the superblock to set LARGE_FILE */ 3001 return 2; 3002 } 3003 3004 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3005 loff_t pos, unsigned len, unsigned flags, 3006 struct page **pagep, void **fsdata) 3007 { 3008 int ret, retries = 0; 3009 struct page *page; 3010 pgoff_t index; 3011 struct inode *inode = mapping->host; 3012 handle_t *handle; 3013 3014 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3015 return -EIO; 3016 3017 index = pos >> PAGE_SHIFT; 3018 3019 if (ext4_nonda_switch(inode->i_sb) || 3020 S_ISLNK(inode->i_mode)) { 3021 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3022 return ext4_write_begin(file, mapping, pos, 3023 len, flags, pagep, fsdata); 3024 } 3025 *fsdata = (void *)0; 3026 trace_ext4_da_write_begin(inode, pos, len, flags); 3027 3028 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3029 ret = ext4_da_write_inline_data_begin(mapping, inode, 3030 pos, len, flags, 3031 pagep, fsdata); 3032 if (ret < 0) 3033 return ret; 3034 if (ret == 1) 3035 return 0; 3036 } 3037 3038 /* 3039 * grab_cache_page_write_begin() can take a long time if the 3040 * system is thrashing due to memory pressure, or if the page 3041 * is being written back. So grab it first before we start 3042 * the transaction handle. This also allows us to allocate 3043 * the page (if needed) without using GFP_NOFS. 3044 */ 3045 retry_grab: 3046 page = grab_cache_page_write_begin(mapping, index, flags); 3047 if (!page) 3048 return -ENOMEM; 3049 unlock_page(page); 3050 3051 /* 3052 * With delayed allocation, we don't log the i_disksize update 3053 * if there is delayed block allocation. But we still need 3054 * to journalling the i_disksize update if writes to the end 3055 * of file which has an already mapped buffer. 3056 */ 3057 retry_journal: 3058 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3059 ext4_da_write_credits(inode, pos, len)); 3060 if (IS_ERR(handle)) { 3061 put_page(page); 3062 return PTR_ERR(handle); 3063 } 3064 3065 lock_page(page); 3066 if (page->mapping != mapping) { 3067 /* The page got truncated from under us */ 3068 unlock_page(page); 3069 put_page(page); 3070 ext4_journal_stop(handle); 3071 goto retry_grab; 3072 } 3073 /* In case writeback began while the page was unlocked */ 3074 wait_for_stable_page(page); 3075 3076 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3077 ret = ext4_block_write_begin(page, pos, len, 3078 ext4_da_get_block_prep); 3079 #else 3080 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3081 #endif 3082 if (ret < 0) { 3083 unlock_page(page); 3084 ext4_journal_stop(handle); 3085 /* 3086 * block_write_begin may have instantiated a few blocks 3087 * outside i_size. Trim these off again. Don't need 3088 * i_size_read because we hold i_mutex. 3089 */ 3090 if (pos + len > inode->i_size) 3091 ext4_truncate_failed_write(inode); 3092 3093 if (ret == -ENOSPC && 3094 ext4_should_retry_alloc(inode->i_sb, &retries)) 3095 goto retry_journal; 3096 3097 put_page(page); 3098 return ret; 3099 } 3100 3101 *pagep = page; 3102 return ret; 3103 } 3104 3105 /* 3106 * Check if we should update i_disksize 3107 * when write to the end of file but not require block allocation 3108 */ 3109 static int ext4_da_should_update_i_disksize(struct page *page, 3110 unsigned long offset) 3111 { 3112 struct buffer_head *bh; 3113 struct inode *inode = page->mapping->host; 3114 unsigned int idx; 3115 int i; 3116 3117 bh = page_buffers(page); 3118 idx = offset >> inode->i_blkbits; 3119 3120 for (i = 0; i < idx; i++) 3121 bh = bh->b_this_page; 3122 3123 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3124 return 0; 3125 return 1; 3126 } 3127 3128 static int ext4_da_write_end(struct file *file, 3129 struct address_space *mapping, 3130 loff_t pos, unsigned len, unsigned copied, 3131 struct page *page, void *fsdata) 3132 { 3133 struct inode *inode = mapping->host; 3134 int ret = 0, ret2; 3135 handle_t *handle = ext4_journal_current_handle(); 3136 loff_t new_i_size; 3137 unsigned long start, end; 3138 int write_mode = (int)(unsigned long)fsdata; 3139 3140 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3141 return ext4_write_end(file, mapping, pos, 3142 len, copied, page, fsdata); 3143 3144 trace_ext4_da_write_end(inode, pos, len, copied); 3145 start = pos & (PAGE_SIZE - 1); 3146 end = start + copied - 1; 3147 3148 /* 3149 * generic_write_end() will run mark_inode_dirty() if i_size 3150 * changes. So let's piggyback the i_disksize mark_inode_dirty 3151 * into that. 3152 */ 3153 new_i_size = pos + copied; 3154 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3155 if (ext4_has_inline_data(inode) || 3156 ext4_da_should_update_i_disksize(page, end)) { 3157 ext4_update_i_disksize(inode, new_i_size); 3158 /* We need to mark inode dirty even if 3159 * new_i_size is less that inode->i_size 3160 * bu greater than i_disksize.(hint delalloc) 3161 */ 3162 ext4_mark_inode_dirty(handle, inode); 3163 } 3164 } 3165 3166 if (write_mode != CONVERT_INLINE_DATA && 3167 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3168 ext4_has_inline_data(inode)) 3169 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3170 page); 3171 else 3172 ret2 = generic_write_end(file, mapping, pos, len, copied, 3173 page, fsdata); 3174 3175 copied = ret2; 3176 if (ret2 < 0) 3177 ret = ret2; 3178 ret2 = ext4_journal_stop(handle); 3179 if (!ret) 3180 ret = ret2; 3181 3182 return ret ? ret : copied; 3183 } 3184 3185 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3186 unsigned int length) 3187 { 3188 /* 3189 * Drop reserved blocks 3190 */ 3191 BUG_ON(!PageLocked(page)); 3192 if (!page_has_buffers(page)) 3193 goto out; 3194 3195 ext4_da_page_release_reservation(page, offset, length); 3196 3197 out: 3198 ext4_invalidatepage(page, offset, length); 3199 3200 return; 3201 } 3202 3203 /* 3204 * Force all delayed allocation blocks to be allocated for a given inode. 3205 */ 3206 int ext4_alloc_da_blocks(struct inode *inode) 3207 { 3208 trace_ext4_alloc_da_blocks(inode); 3209 3210 if (!EXT4_I(inode)->i_reserved_data_blocks) 3211 return 0; 3212 3213 /* 3214 * We do something simple for now. The filemap_flush() will 3215 * also start triggering a write of the data blocks, which is 3216 * not strictly speaking necessary (and for users of 3217 * laptop_mode, not even desirable). However, to do otherwise 3218 * would require replicating code paths in: 3219 * 3220 * ext4_writepages() -> 3221 * write_cache_pages() ---> (via passed in callback function) 3222 * __mpage_da_writepage() --> 3223 * mpage_add_bh_to_extent() 3224 * mpage_da_map_blocks() 3225 * 3226 * The problem is that write_cache_pages(), located in 3227 * mm/page-writeback.c, marks pages clean in preparation for 3228 * doing I/O, which is not desirable if we're not planning on 3229 * doing I/O at all. 3230 * 3231 * We could call write_cache_pages(), and then redirty all of 3232 * the pages by calling redirty_page_for_writepage() but that 3233 * would be ugly in the extreme. So instead we would need to 3234 * replicate parts of the code in the above functions, 3235 * simplifying them because we wouldn't actually intend to 3236 * write out the pages, but rather only collect contiguous 3237 * logical block extents, call the multi-block allocator, and 3238 * then update the buffer heads with the block allocations. 3239 * 3240 * For now, though, we'll cheat by calling filemap_flush(), 3241 * which will map the blocks, and start the I/O, but not 3242 * actually wait for the I/O to complete. 3243 */ 3244 return filemap_flush(inode->i_mapping); 3245 } 3246 3247 /* 3248 * bmap() is special. It gets used by applications such as lilo and by 3249 * the swapper to find the on-disk block of a specific piece of data. 3250 * 3251 * Naturally, this is dangerous if the block concerned is still in the 3252 * journal. If somebody makes a swapfile on an ext4 data-journaling 3253 * filesystem and enables swap, then they may get a nasty shock when the 3254 * data getting swapped to that swapfile suddenly gets overwritten by 3255 * the original zero's written out previously to the journal and 3256 * awaiting writeback in the kernel's buffer cache. 3257 * 3258 * So, if we see any bmap calls here on a modified, data-journaled file, 3259 * take extra steps to flush any blocks which might be in the cache. 3260 */ 3261 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3262 { 3263 struct inode *inode = mapping->host; 3264 journal_t *journal; 3265 int err; 3266 3267 /* 3268 * We can get here for an inline file via the FIBMAP ioctl 3269 */ 3270 if (ext4_has_inline_data(inode)) 3271 return 0; 3272 3273 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3274 test_opt(inode->i_sb, DELALLOC)) { 3275 /* 3276 * With delalloc we want to sync the file 3277 * so that we can make sure we allocate 3278 * blocks for file 3279 */ 3280 filemap_write_and_wait(mapping); 3281 } 3282 3283 if (EXT4_JOURNAL(inode) && 3284 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3285 /* 3286 * This is a REALLY heavyweight approach, but the use of 3287 * bmap on dirty files is expected to be extremely rare: 3288 * only if we run lilo or swapon on a freshly made file 3289 * do we expect this to happen. 3290 * 3291 * (bmap requires CAP_SYS_RAWIO so this does not 3292 * represent an unprivileged user DOS attack --- we'd be 3293 * in trouble if mortal users could trigger this path at 3294 * will.) 3295 * 3296 * NB. EXT4_STATE_JDATA is not set on files other than 3297 * regular files. If somebody wants to bmap a directory 3298 * or symlink and gets confused because the buffer 3299 * hasn't yet been flushed to disk, they deserve 3300 * everything they get. 3301 */ 3302 3303 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3304 journal = EXT4_JOURNAL(inode); 3305 jbd2_journal_lock_updates(journal); 3306 err = jbd2_journal_flush(journal); 3307 jbd2_journal_unlock_updates(journal); 3308 3309 if (err) 3310 return 0; 3311 } 3312 3313 return generic_block_bmap(mapping, block, ext4_get_block); 3314 } 3315 3316 static int ext4_readpage(struct file *file, struct page *page) 3317 { 3318 int ret = -EAGAIN; 3319 struct inode *inode = page->mapping->host; 3320 3321 trace_ext4_readpage(page); 3322 3323 if (ext4_has_inline_data(inode)) 3324 ret = ext4_readpage_inline(inode, page); 3325 3326 if (ret == -EAGAIN) 3327 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3328 3329 return ret; 3330 } 3331 3332 static int 3333 ext4_readpages(struct file *file, struct address_space *mapping, 3334 struct list_head *pages, unsigned nr_pages) 3335 { 3336 struct inode *inode = mapping->host; 3337 3338 /* If the file has inline data, no need to do readpages. */ 3339 if (ext4_has_inline_data(inode)) 3340 return 0; 3341 3342 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3343 } 3344 3345 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3346 unsigned int length) 3347 { 3348 trace_ext4_invalidatepage(page, offset, length); 3349 3350 /* No journalling happens on data buffers when this function is used */ 3351 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3352 3353 block_invalidatepage(page, offset, length); 3354 } 3355 3356 static int __ext4_journalled_invalidatepage(struct page *page, 3357 unsigned int offset, 3358 unsigned int length) 3359 { 3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3361 3362 trace_ext4_journalled_invalidatepage(page, offset, length); 3363 3364 /* 3365 * If it's a full truncate we just forget about the pending dirtying 3366 */ 3367 if (offset == 0 && length == PAGE_SIZE) 3368 ClearPageChecked(page); 3369 3370 return jbd2_journal_invalidatepage(journal, page, offset, length); 3371 } 3372 3373 /* Wrapper for aops... */ 3374 static void ext4_journalled_invalidatepage(struct page *page, 3375 unsigned int offset, 3376 unsigned int length) 3377 { 3378 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3379 } 3380 3381 static int ext4_releasepage(struct page *page, gfp_t wait) 3382 { 3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3384 3385 trace_ext4_releasepage(page); 3386 3387 /* Page has dirty journalled data -> cannot release */ 3388 if (PageChecked(page)) 3389 return 0; 3390 if (journal) 3391 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3392 else 3393 return try_to_free_buffers(page); 3394 } 3395 3396 static bool ext4_inode_datasync_dirty(struct inode *inode) 3397 { 3398 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3399 3400 if (journal) 3401 return !jbd2_transaction_committed(journal, 3402 EXT4_I(inode)->i_datasync_tid); 3403 /* Any metadata buffers to write? */ 3404 if (!list_empty(&inode->i_mapping->private_list)) 3405 return true; 3406 return inode->i_state & I_DIRTY_DATASYNC; 3407 } 3408 3409 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3410 unsigned flags, struct iomap *iomap) 3411 { 3412 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3413 unsigned int blkbits = inode->i_blkbits; 3414 unsigned long first_block = offset >> blkbits; 3415 unsigned long last_block = (offset + length - 1) >> blkbits; 3416 struct ext4_map_blocks map; 3417 bool delalloc = false; 3418 int ret; 3419 3420 3421 if (flags & IOMAP_REPORT) { 3422 if (ext4_has_inline_data(inode)) { 3423 ret = ext4_inline_data_iomap(inode, iomap); 3424 if (ret != -EAGAIN) { 3425 if (ret == 0 && offset >= iomap->length) 3426 ret = -ENOENT; 3427 return ret; 3428 } 3429 } 3430 } else { 3431 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3432 return -ERANGE; 3433 } 3434 3435 map.m_lblk = first_block; 3436 map.m_len = last_block - first_block + 1; 3437 3438 if (flags & IOMAP_REPORT) { 3439 ret = ext4_map_blocks(NULL, inode, &map, 0); 3440 if (ret < 0) 3441 return ret; 3442 3443 if (ret == 0) { 3444 ext4_lblk_t end = map.m_lblk + map.m_len - 1; 3445 struct extent_status es; 3446 3447 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es); 3448 3449 if (!es.es_len || es.es_lblk > end) { 3450 /* entire range is a hole */ 3451 } else if (es.es_lblk > map.m_lblk) { 3452 /* range starts with a hole */ 3453 map.m_len = es.es_lblk - map.m_lblk; 3454 } else { 3455 ext4_lblk_t offs = 0; 3456 3457 if (es.es_lblk < map.m_lblk) 3458 offs = map.m_lblk - es.es_lblk; 3459 map.m_lblk = es.es_lblk + offs; 3460 map.m_len = es.es_len - offs; 3461 delalloc = true; 3462 } 3463 } 3464 } else if (flags & IOMAP_WRITE) { 3465 int dio_credits; 3466 handle_t *handle; 3467 int retries = 0; 3468 3469 /* Trim mapping request to maximum we can map at once for DIO */ 3470 if (map.m_len > DIO_MAX_BLOCKS) 3471 map.m_len = DIO_MAX_BLOCKS; 3472 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3473 retry: 3474 /* 3475 * Either we allocate blocks and then we don't get unwritten 3476 * extent so we have reserved enough credits, or the blocks 3477 * are already allocated and unwritten and in that case 3478 * extent conversion fits in the credits as well. 3479 */ 3480 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3481 dio_credits); 3482 if (IS_ERR(handle)) 3483 return PTR_ERR(handle); 3484 3485 ret = ext4_map_blocks(handle, inode, &map, 3486 EXT4_GET_BLOCKS_CREATE_ZERO); 3487 if (ret < 0) { 3488 ext4_journal_stop(handle); 3489 if (ret == -ENOSPC && 3490 ext4_should_retry_alloc(inode->i_sb, &retries)) 3491 goto retry; 3492 return ret; 3493 } 3494 3495 /* 3496 * If we added blocks beyond i_size, we need to make sure they 3497 * will get truncated if we crash before updating i_size in 3498 * ext4_iomap_end(). For faults we don't need to do that (and 3499 * even cannot because for orphan list operations inode_lock is 3500 * required) - if we happen to instantiate block beyond i_size, 3501 * it is because we race with truncate which has already added 3502 * the inode to the orphan list. 3503 */ 3504 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3505 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3506 int err; 3507 3508 err = ext4_orphan_add(handle, inode); 3509 if (err < 0) { 3510 ext4_journal_stop(handle); 3511 return err; 3512 } 3513 } 3514 ext4_journal_stop(handle); 3515 } else { 3516 ret = ext4_map_blocks(NULL, inode, &map, 0); 3517 if (ret < 0) 3518 return ret; 3519 } 3520 3521 iomap->flags = 0; 3522 if (ext4_inode_datasync_dirty(inode)) 3523 iomap->flags |= IOMAP_F_DIRTY; 3524 iomap->bdev = inode->i_sb->s_bdev; 3525 iomap->dax_dev = sbi->s_daxdev; 3526 iomap->offset = first_block << blkbits; 3527 iomap->length = (u64)map.m_len << blkbits; 3528 3529 if (ret == 0) { 3530 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; 3531 iomap->addr = IOMAP_NULL_ADDR; 3532 } else { 3533 if (map.m_flags & EXT4_MAP_MAPPED) { 3534 iomap->type = IOMAP_MAPPED; 3535 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3536 iomap->type = IOMAP_UNWRITTEN; 3537 } else { 3538 WARN_ON_ONCE(1); 3539 return -EIO; 3540 } 3541 iomap->addr = (u64)map.m_pblk << blkbits; 3542 } 3543 3544 if (map.m_flags & EXT4_MAP_NEW) 3545 iomap->flags |= IOMAP_F_NEW; 3546 3547 return 0; 3548 } 3549 3550 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3551 ssize_t written, unsigned flags, struct iomap *iomap) 3552 { 3553 int ret = 0; 3554 handle_t *handle; 3555 int blkbits = inode->i_blkbits; 3556 bool truncate = false; 3557 3558 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3559 return 0; 3560 3561 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3562 if (IS_ERR(handle)) { 3563 ret = PTR_ERR(handle); 3564 goto orphan_del; 3565 } 3566 if (ext4_update_inode_size(inode, offset + written)) 3567 ext4_mark_inode_dirty(handle, inode); 3568 /* 3569 * We may need to truncate allocated but not written blocks beyond EOF. 3570 */ 3571 if (iomap->offset + iomap->length > 3572 ALIGN(inode->i_size, 1 << blkbits)) { 3573 ext4_lblk_t written_blk, end_blk; 3574 3575 written_blk = (offset + written) >> blkbits; 3576 end_blk = (offset + length) >> blkbits; 3577 if (written_blk < end_blk && ext4_can_truncate(inode)) 3578 truncate = true; 3579 } 3580 /* 3581 * Remove inode from orphan list if we were extending a inode and 3582 * everything went fine. 3583 */ 3584 if (!truncate && inode->i_nlink && 3585 !list_empty(&EXT4_I(inode)->i_orphan)) 3586 ext4_orphan_del(handle, inode); 3587 ext4_journal_stop(handle); 3588 if (truncate) { 3589 ext4_truncate_failed_write(inode); 3590 orphan_del: 3591 /* 3592 * If truncate failed early the inode might still be on the 3593 * orphan list; we need to make sure the inode is removed from 3594 * the orphan list in that case. 3595 */ 3596 if (inode->i_nlink) 3597 ext4_orphan_del(NULL, inode); 3598 } 3599 return ret; 3600 } 3601 3602 const struct iomap_ops ext4_iomap_ops = { 3603 .iomap_begin = ext4_iomap_begin, 3604 .iomap_end = ext4_iomap_end, 3605 }; 3606 3607 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3608 ssize_t size, void *private) 3609 { 3610 ext4_io_end_t *io_end = private; 3611 3612 /* if not async direct IO just return */ 3613 if (!io_end) 3614 return 0; 3615 3616 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3617 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3618 io_end, io_end->inode->i_ino, iocb, offset, size); 3619 3620 /* 3621 * Error during AIO DIO. We cannot convert unwritten extents as the 3622 * data was not written. Just clear the unwritten flag and drop io_end. 3623 */ 3624 if (size <= 0) { 3625 ext4_clear_io_unwritten_flag(io_end); 3626 size = 0; 3627 } 3628 io_end->offset = offset; 3629 io_end->size = size; 3630 ext4_put_io_end(io_end); 3631 3632 return 0; 3633 } 3634 3635 /* 3636 * Handling of direct IO writes. 3637 * 3638 * For ext4 extent files, ext4 will do direct-io write even to holes, 3639 * preallocated extents, and those write extend the file, no need to 3640 * fall back to buffered IO. 3641 * 3642 * For holes, we fallocate those blocks, mark them as unwritten 3643 * If those blocks were preallocated, we mark sure they are split, but 3644 * still keep the range to write as unwritten. 3645 * 3646 * The unwritten extents will be converted to written when DIO is completed. 3647 * For async direct IO, since the IO may still pending when return, we 3648 * set up an end_io call back function, which will do the conversion 3649 * when async direct IO completed. 3650 * 3651 * If the O_DIRECT write will extend the file then add this inode to the 3652 * orphan list. So recovery will truncate it back to the original size 3653 * if the machine crashes during the write. 3654 * 3655 */ 3656 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3657 { 3658 struct file *file = iocb->ki_filp; 3659 struct inode *inode = file->f_mapping->host; 3660 struct ext4_inode_info *ei = EXT4_I(inode); 3661 ssize_t ret; 3662 loff_t offset = iocb->ki_pos; 3663 size_t count = iov_iter_count(iter); 3664 int overwrite = 0; 3665 get_block_t *get_block_func = NULL; 3666 int dio_flags = 0; 3667 loff_t final_size = offset + count; 3668 int orphan = 0; 3669 handle_t *handle; 3670 3671 if (final_size > inode->i_size) { 3672 /* Credits for sb + inode write */ 3673 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3674 if (IS_ERR(handle)) { 3675 ret = PTR_ERR(handle); 3676 goto out; 3677 } 3678 ret = ext4_orphan_add(handle, inode); 3679 if (ret) { 3680 ext4_journal_stop(handle); 3681 goto out; 3682 } 3683 orphan = 1; 3684 ei->i_disksize = inode->i_size; 3685 ext4_journal_stop(handle); 3686 } 3687 3688 BUG_ON(iocb->private == NULL); 3689 3690 /* 3691 * Make all waiters for direct IO properly wait also for extent 3692 * conversion. This also disallows race between truncate() and 3693 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3694 */ 3695 inode_dio_begin(inode); 3696 3697 /* If we do a overwrite dio, i_mutex locking can be released */ 3698 overwrite = *((int *)iocb->private); 3699 3700 if (overwrite) 3701 inode_unlock(inode); 3702 3703 /* 3704 * For extent mapped files we could direct write to holes and fallocate. 3705 * 3706 * Allocated blocks to fill the hole are marked as unwritten to prevent 3707 * parallel buffered read to expose the stale data before DIO complete 3708 * the data IO. 3709 * 3710 * As to previously fallocated extents, ext4 get_block will just simply 3711 * mark the buffer mapped but still keep the extents unwritten. 3712 * 3713 * For non AIO case, we will convert those unwritten extents to written 3714 * after return back from blockdev_direct_IO. That way we save us from 3715 * allocating io_end structure and also the overhead of offloading 3716 * the extent convertion to a workqueue. 3717 * 3718 * For async DIO, the conversion needs to be deferred when the 3719 * IO is completed. The ext4 end_io callback function will be 3720 * called to take care of the conversion work. Here for async 3721 * case, we allocate an io_end structure to hook to the iocb. 3722 */ 3723 iocb->private = NULL; 3724 if (overwrite) 3725 get_block_func = ext4_dio_get_block_overwrite; 3726 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3727 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3728 get_block_func = ext4_dio_get_block; 3729 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3730 } else if (is_sync_kiocb(iocb)) { 3731 get_block_func = ext4_dio_get_block_unwritten_sync; 3732 dio_flags = DIO_LOCKING; 3733 } else { 3734 get_block_func = ext4_dio_get_block_unwritten_async; 3735 dio_flags = DIO_LOCKING; 3736 } 3737 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3738 get_block_func, ext4_end_io_dio, NULL, 3739 dio_flags); 3740 3741 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3742 EXT4_STATE_DIO_UNWRITTEN)) { 3743 int err; 3744 /* 3745 * for non AIO case, since the IO is already 3746 * completed, we could do the conversion right here 3747 */ 3748 err = ext4_convert_unwritten_extents(NULL, inode, 3749 offset, ret); 3750 if (err < 0) 3751 ret = err; 3752 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3753 } 3754 3755 inode_dio_end(inode); 3756 /* take i_mutex locking again if we do a ovewrite dio */ 3757 if (overwrite) 3758 inode_lock(inode); 3759 3760 if (ret < 0 && final_size > inode->i_size) 3761 ext4_truncate_failed_write(inode); 3762 3763 /* Handle extending of i_size after direct IO write */ 3764 if (orphan) { 3765 int err; 3766 3767 /* Credits for sb + inode write */ 3768 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3769 if (IS_ERR(handle)) { 3770 /* This is really bad luck. We've written the data 3771 * but cannot extend i_size. Bail out and pretend 3772 * the write failed... */ 3773 ret = PTR_ERR(handle); 3774 if (inode->i_nlink) 3775 ext4_orphan_del(NULL, inode); 3776 3777 goto out; 3778 } 3779 if (inode->i_nlink) 3780 ext4_orphan_del(handle, inode); 3781 if (ret > 0) { 3782 loff_t end = offset + ret; 3783 if (end > inode->i_size) { 3784 ei->i_disksize = end; 3785 i_size_write(inode, end); 3786 /* 3787 * We're going to return a positive `ret' 3788 * here due to non-zero-length I/O, so there's 3789 * no way of reporting error returns from 3790 * ext4_mark_inode_dirty() to userspace. So 3791 * ignore it. 3792 */ 3793 ext4_mark_inode_dirty(handle, inode); 3794 } 3795 } 3796 err = ext4_journal_stop(handle); 3797 if (ret == 0) 3798 ret = err; 3799 } 3800 out: 3801 return ret; 3802 } 3803 3804 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3805 { 3806 struct address_space *mapping = iocb->ki_filp->f_mapping; 3807 struct inode *inode = mapping->host; 3808 size_t count = iov_iter_count(iter); 3809 ssize_t ret; 3810 3811 /* 3812 * Shared inode_lock is enough for us - it protects against concurrent 3813 * writes & truncates and since we take care of writing back page cache, 3814 * we are protected against page writeback as well. 3815 */ 3816 inode_lock_shared(inode); 3817 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3818 iocb->ki_pos + count - 1); 3819 if (ret) 3820 goto out_unlock; 3821 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3822 iter, ext4_dio_get_block, NULL, NULL, 0); 3823 out_unlock: 3824 inode_unlock_shared(inode); 3825 return ret; 3826 } 3827 3828 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3829 { 3830 struct file *file = iocb->ki_filp; 3831 struct inode *inode = file->f_mapping->host; 3832 size_t count = iov_iter_count(iter); 3833 loff_t offset = iocb->ki_pos; 3834 ssize_t ret; 3835 3836 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3837 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3838 return 0; 3839 #endif 3840 3841 /* 3842 * If we are doing data journalling we don't support O_DIRECT 3843 */ 3844 if (ext4_should_journal_data(inode)) 3845 return 0; 3846 3847 /* Let buffer I/O handle the inline data case. */ 3848 if (ext4_has_inline_data(inode)) 3849 return 0; 3850 3851 /* DAX uses iomap path now */ 3852 if (WARN_ON_ONCE(IS_DAX(inode))) 3853 return 0; 3854 3855 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3856 if (iov_iter_rw(iter) == READ) 3857 ret = ext4_direct_IO_read(iocb, iter); 3858 else 3859 ret = ext4_direct_IO_write(iocb, iter); 3860 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3861 return ret; 3862 } 3863 3864 /* 3865 * Pages can be marked dirty completely asynchronously from ext4's journalling 3866 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3867 * much here because ->set_page_dirty is called under VFS locks. The page is 3868 * not necessarily locked. 3869 * 3870 * We cannot just dirty the page and leave attached buffers clean, because the 3871 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3872 * or jbddirty because all the journalling code will explode. 3873 * 3874 * So what we do is to mark the page "pending dirty" and next time writepage 3875 * is called, propagate that into the buffers appropriately. 3876 */ 3877 static int ext4_journalled_set_page_dirty(struct page *page) 3878 { 3879 SetPageChecked(page); 3880 return __set_page_dirty_nobuffers(page); 3881 } 3882 3883 static int ext4_set_page_dirty(struct page *page) 3884 { 3885 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3886 WARN_ON_ONCE(!page_has_buffers(page)); 3887 return __set_page_dirty_buffers(page); 3888 } 3889 3890 static const struct address_space_operations ext4_aops = { 3891 .readpage = ext4_readpage, 3892 .readpages = ext4_readpages, 3893 .writepage = ext4_writepage, 3894 .writepages = ext4_writepages, 3895 .write_begin = ext4_write_begin, 3896 .write_end = ext4_write_end, 3897 .set_page_dirty = ext4_set_page_dirty, 3898 .bmap = ext4_bmap, 3899 .invalidatepage = ext4_invalidatepage, 3900 .releasepage = ext4_releasepage, 3901 .direct_IO = ext4_direct_IO, 3902 .migratepage = buffer_migrate_page, 3903 .is_partially_uptodate = block_is_partially_uptodate, 3904 .error_remove_page = generic_error_remove_page, 3905 }; 3906 3907 static const struct address_space_operations ext4_journalled_aops = { 3908 .readpage = ext4_readpage, 3909 .readpages = ext4_readpages, 3910 .writepage = ext4_writepage, 3911 .writepages = ext4_writepages, 3912 .write_begin = ext4_write_begin, 3913 .write_end = ext4_journalled_write_end, 3914 .set_page_dirty = ext4_journalled_set_page_dirty, 3915 .bmap = ext4_bmap, 3916 .invalidatepage = ext4_journalled_invalidatepage, 3917 .releasepage = ext4_releasepage, 3918 .direct_IO = ext4_direct_IO, 3919 .is_partially_uptodate = block_is_partially_uptodate, 3920 .error_remove_page = generic_error_remove_page, 3921 }; 3922 3923 static const struct address_space_operations ext4_da_aops = { 3924 .readpage = ext4_readpage, 3925 .readpages = ext4_readpages, 3926 .writepage = ext4_writepage, 3927 .writepages = ext4_writepages, 3928 .write_begin = ext4_da_write_begin, 3929 .write_end = ext4_da_write_end, 3930 .set_page_dirty = ext4_set_page_dirty, 3931 .bmap = ext4_bmap, 3932 .invalidatepage = ext4_da_invalidatepage, 3933 .releasepage = ext4_releasepage, 3934 .direct_IO = ext4_direct_IO, 3935 .migratepage = buffer_migrate_page, 3936 .is_partially_uptodate = block_is_partially_uptodate, 3937 .error_remove_page = generic_error_remove_page, 3938 }; 3939 3940 void ext4_set_aops(struct inode *inode) 3941 { 3942 switch (ext4_inode_journal_mode(inode)) { 3943 case EXT4_INODE_ORDERED_DATA_MODE: 3944 case EXT4_INODE_WRITEBACK_DATA_MODE: 3945 break; 3946 case EXT4_INODE_JOURNAL_DATA_MODE: 3947 inode->i_mapping->a_ops = &ext4_journalled_aops; 3948 return; 3949 default: 3950 BUG(); 3951 } 3952 if (test_opt(inode->i_sb, DELALLOC)) 3953 inode->i_mapping->a_ops = &ext4_da_aops; 3954 else 3955 inode->i_mapping->a_ops = &ext4_aops; 3956 } 3957 3958 static int __ext4_block_zero_page_range(handle_t *handle, 3959 struct address_space *mapping, loff_t from, loff_t length) 3960 { 3961 ext4_fsblk_t index = from >> PAGE_SHIFT; 3962 unsigned offset = from & (PAGE_SIZE-1); 3963 unsigned blocksize, pos; 3964 ext4_lblk_t iblock; 3965 struct inode *inode = mapping->host; 3966 struct buffer_head *bh; 3967 struct page *page; 3968 int err = 0; 3969 3970 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3971 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3972 if (!page) 3973 return -ENOMEM; 3974 3975 blocksize = inode->i_sb->s_blocksize; 3976 3977 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3978 3979 if (!page_has_buffers(page)) 3980 create_empty_buffers(page, blocksize, 0); 3981 3982 /* Find the buffer that contains "offset" */ 3983 bh = page_buffers(page); 3984 pos = blocksize; 3985 while (offset >= pos) { 3986 bh = bh->b_this_page; 3987 iblock++; 3988 pos += blocksize; 3989 } 3990 if (buffer_freed(bh)) { 3991 BUFFER_TRACE(bh, "freed: skip"); 3992 goto unlock; 3993 } 3994 if (!buffer_mapped(bh)) { 3995 BUFFER_TRACE(bh, "unmapped"); 3996 ext4_get_block(inode, iblock, bh, 0); 3997 /* unmapped? It's a hole - nothing to do */ 3998 if (!buffer_mapped(bh)) { 3999 BUFFER_TRACE(bh, "still unmapped"); 4000 goto unlock; 4001 } 4002 } 4003 4004 /* Ok, it's mapped. Make sure it's up-to-date */ 4005 if (PageUptodate(page)) 4006 set_buffer_uptodate(bh); 4007 4008 if (!buffer_uptodate(bh)) { 4009 err = -EIO; 4010 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 4011 wait_on_buffer(bh); 4012 /* Uhhuh. Read error. Complain and punt. */ 4013 if (!buffer_uptodate(bh)) 4014 goto unlock; 4015 if (S_ISREG(inode->i_mode) && 4016 ext4_encrypted_inode(inode)) { 4017 /* We expect the key to be set. */ 4018 BUG_ON(!fscrypt_has_encryption_key(inode)); 4019 BUG_ON(blocksize != PAGE_SIZE); 4020 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 4021 page, PAGE_SIZE, 0, page->index)); 4022 } 4023 } 4024 if (ext4_should_journal_data(inode)) { 4025 BUFFER_TRACE(bh, "get write access"); 4026 err = ext4_journal_get_write_access(handle, bh); 4027 if (err) 4028 goto unlock; 4029 } 4030 zero_user(page, offset, length); 4031 BUFFER_TRACE(bh, "zeroed end of block"); 4032 4033 if (ext4_should_journal_data(inode)) { 4034 err = ext4_handle_dirty_metadata(handle, inode, bh); 4035 } else { 4036 err = 0; 4037 mark_buffer_dirty(bh); 4038 if (ext4_should_order_data(inode)) 4039 err = ext4_jbd2_inode_add_write(handle, inode); 4040 } 4041 4042 unlock: 4043 unlock_page(page); 4044 put_page(page); 4045 return err; 4046 } 4047 4048 /* 4049 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4050 * starting from file offset 'from'. The range to be zero'd must 4051 * be contained with in one block. If the specified range exceeds 4052 * the end of the block it will be shortened to end of the block 4053 * that cooresponds to 'from' 4054 */ 4055 static int ext4_block_zero_page_range(handle_t *handle, 4056 struct address_space *mapping, loff_t from, loff_t length) 4057 { 4058 struct inode *inode = mapping->host; 4059 unsigned offset = from & (PAGE_SIZE-1); 4060 unsigned blocksize = inode->i_sb->s_blocksize; 4061 unsigned max = blocksize - (offset & (blocksize - 1)); 4062 4063 /* 4064 * correct length if it does not fall between 4065 * 'from' and the end of the block 4066 */ 4067 if (length > max || length < 0) 4068 length = max; 4069 4070 if (IS_DAX(inode)) { 4071 return iomap_zero_range(inode, from, length, NULL, 4072 &ext4_iomap_ops); 4073 } 4074 return __ext4_block_zero_page_range(handle, mapping, from, length); 4075 } 4076 4077 /* 4078 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4079 * up to the end of the block which corresponds to `from'. 4080 * This required during truncate. We need to physically zero the tail end 4081 * of that block so it doesn't yield old data if the file is later grown. 4082 */ 4083 static int ext4_block_truncate_page(handle_t *handle, 4084 struct address_space *mapping, loff_t from) 4085 { 4086 unsigned offset = from & (PAGE_SIZE-1); 4087 unsigned length; 4088 unsigned blocksize; 4089 struct inode *inode = mapping->host; 4090 4091 /* If we are processing an encrypted inode during orphan list handling */ 4092 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode)) 4093 return 0; 4094 4095 blocksize = inode->i_sb->s_blocksize; 4096 length = blocksize - (offset & (blocksize - 1)); 4097 4098 return ext4_block_zero_page_range(handle, mapping, from, length); 4099 } 4100 4101 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4102 loff_t lstart, loff_t length) 4103 { 4104 struct super_block *sb = inode->i_sb; 4105 struct address_space *mapping = inode->i_mapping; 4106 unsigned partial_start, partial_end; 4107 ext4_fsblk_t start, end; 4108 loff_t byte_end = (lstart + length - 1); 4109 int err = 0; 4110 4111 partial_start = lstart & (sb->s_blocksize - 1); 4112 partial_end = byte_end & (sb->s_blocksize - 1); 4113 4114 start = lstart >> sb->s_blocksize_bits; 4115 end = byte_end >> sb->s_blocksize_bits; 4116 4117 /* Handle partial zero within the single block */ 4118 if (start == end && 4119 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4120 err = ext4_block_zero_page_range(handle, mapping, 4121 lstart, length); 4122 return err; 4123 } 4124 /* Handle partial zero out on the start of the range */ 4125 if (partial_start) { 4126 err = ext4_block_zero_page_range(handle, mapping, 4127 lstart, sb->s_blocksize); 4128 if (err) 4129 return err; 4130 } 4131 /* Handle partial zero out on the end of the range */ 4132 if (partial_end != sb->s_blocksize - 1) 4133 err = ext4_block_zero_page_range(handle, mapping, 4134 byte_end - partial_end, 4135 partial_end + 1); 4136 return err; 4137 } 4138 4139 int ext4_can_truncate(struct inode *inode) 4140 { 4141 if (S_ISREG(inode->i_mode)) 4142 return 1; 4143 if (S_ISDIR(inode->i_mode)) 4144 return 1; 4145 if (S_ISLNK(inode->i_mode)) 4146 return !ext4_inode_is_fast_symlink(inode); 4147 return 0; 4148 } 4149 4150 /* 4151 * We have to make sure i_disksize gets properly updated before we truncate 4152 * page cache due to hole punching or zero range. Otherwise i_disksize update 4153 * can get lost as it may have been postponed to submission of writeback but 4154 * that will never happen after we truncate page cache. 4155 */ 4156 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4157 loff_t len) 4158 { 4159 handle_t *handle; 4160 loff_t size = i_size_read(inode); 4161 4162 WARN_ON(!inode_is_locked(inode)); 4163 if (offset > size || offset + len < size) 4164 return 0; 4165 4166 if (EXT4_I(inode)->i_disksize >= size) 4167 return 0; 4168 4169 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4170 if (IS_ERR(handle)) 4171 return PTR_ERR(handle); 4172 ext4_update_i_disksize(inode, size); 4173 ext4_mark_inode_dirty(handle, inode); 4174 ext4_journal_stop(handle); 4175 4176 return 0; 4177 } 4178 4179 /* 4180 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4181 * associated with the given offset and length 4182 * 4183 * @inode: File inode 4184 * @offset: The offset where the hole will begin 4185 * @len: The length of the hole 4186 * 4187 * Returns: 0 on success or negative on failure 4188 */ 4189 4190 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4191 { 4192 struct super_block *sb = inode->i_sb; 4193 ext4_lblk_t first_block, stop_block; 4194 struct address_space *mapping = inode->i_mapping; 4195 loff_t first_block_offset, last_block_offset; 4196 handle_t *handle; 4197 unsigned int credits; 4198 int ret = 0; 4199 4200 if (!S_ISREG(inode->i_mode)) 4201 return -EOPNOTSUPP; 4202 4203 trace_ext4_punch_hole(inode, offset, length, 0); 4204 4205 /* 4206 * Write out all dirty pages to avoid race conditions 4207 * Then release them. 4208 */ 4209 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4210 ret = filemap_write_and_wait_range(mapping, offset, 4211 offset + length - 1); 4212 if (ret) 4213 return ret; 4214 } 4215 4216 inode_lock(inode); 4217 4218 /* No need to punch hole beyond i_size */ 4219 if (offset >= inode->i_size) 4220 goto out_mutex; 4221 4222 /* 4223 * If the hole extends beyond i_size, set the hole 4224 * to end after the page that contains i_size 4225 */ 4226 if (offset + length > inode->i_size) { 4227 length = inode->i_size + 4228 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4229 offset; 4230 } 4231 4232 if (offset & (sb->s_blocksize - 1) || 4233 (offset + length) & (sb->s_blocksize - 1)) { 4234 /* 4235 * Attach jinode to inode for jbd2 if we do any zeroing of 4236 * partial block 4237 */ 4238 ret = ext4_inode_attach_jinode(inode); 4239 if (ret < 0) 4240 goto out_mutex; 4241 4242 } 4243 4244 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4245 ext4_inode_block_unlocked_dio(inode); 4246 inode_dio_wait(inode); 4247 4248 /* 4249 * Prevent page faults from reinstantiating pages we have released from 4250 * page cache. 4251 */ 4252 down_write(&EXT4_I(inode)->i_mmap_sem); 4253 first_block_offset = round_up(offset, sb->s_blocksize); 4254 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4255 4256 /* Now release the pages and zero block aligned part of pages*/ 4257 if (last_block_offset > first_block_offset) { 4258 ret = ext4_update_disksize_before_punch(inode, offset, length); 4259 if (ret) 4260 goto out_dio; 4261 truncate_pagecache_range(inode, first_block_offset, 4262 last_block_offset); 4263 } 4264 4265 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4266 credits = ext4_writepage_trans_blocks(inode); 4267 else 4268 credits = ext4_blocks_for_truncate(inode); 4269 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4270 if (IS_ERR(handle)) { 4271 ret = PTR_ERR(handle); 4272 ext4_std_error(sb, ret); 4273 goto out_dio; 4274 } 4275 4276 ret = ext4_zero_partial_blocks(handle, inode, offset, 4277 length); 4278 if (ret) 4279 goto out_stop; 4280 4281 first_block = (offset + sb->s_blocksize - 1) >> 4282 EXT4_BLOCK_SIZE_BITS(sb); 4283 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4284 4285 /* If there are no blocks to remove, return now */ 4286 if (first_block >= stop_block) 4287 goto out_stop; 4288 4289 down_write(&EXT4_I(inode)->i_data_sem); 4290 ext4_discard_preallocations(inode); 4291 4292 ret = ext4_es_remove_extent(inode, first_block, 4293 stop_block - first_block); 4294 if (ret) { 4295 up_write(&EXT4_I(inode)->i_data_sem); 4296 goto out_stop; 4297 } 4298 4299 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4300 ret = ext4_ext_remove_space(inode, first_block, 4301 stop_block - 1); 4302 else 4303 ret = ext4_ind_remove_space(handle, inode, first_block, 4304 stop_block); 4305 4306 up_write(&EXT4_I(inode)->i_data_sem); 4307 if (IS_SYNC(inode)) 4308 ext4_handle_sync(handle); 4309 4310 inode->i_mtime = inode->i_ctime = current_time(inode); 4311 ext4_mark_inode_dirty(handle, inode); 4312 if (ret >= 0) 4313 ext4_update_inode_fsync_trans(handle, inode, 1); 4314 out_stop: 4315 ext4_journal_stop(handle); 4316 out_dio: 4317 up_write(&EXT4_I(inode)->i_mmap_sem); 4318 ext4_inode_resume_unlocked_dio(inode); 4319 out_mutex: 4320 inode_unlock(inode); 4321 return ret; 4322 } 4323 4324 int ext4_inode_attach_jinode(struct inode *inode) 4325 { 4326 struct ext4_inode_info *ei = EXT4_I(inode); 4327 struct jbd2_inode *jinode; 4328 4329 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4330 return 0; 4331 4332 jinode = jbd2_alloc_inode(GFP_KERNEL); 4333 spin_lock(&inode->i_lock); 4334 if (!ei->jinode) { 4335 if (!jinode) { 4336 spin_unlock(&inode->i_lock); 4337 return -ENOMEM; 4338 } 4339 ei->jinode = jinode; 4340 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4341 jinode = NULL; 4342 } 4343 spin_unlock(&inode->i_lock); 4344 if (unlikely(jinode != NULL)) 4345 jbd2_free_inode(jinode); 4346 return 0; 4347 } 4348 4349 /* 4350 * ext4_truncate() 4351 * 4352 * We block out ext4_get_block() block instantiations across the entire 4353 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4354 * simultaneously on behalf of the same inode. 4355 * 4356 * As we work through the truncate and commit bits of it to the journal there 4357 * is one core, guiding principle: the file's tree must always be consistent on 4358 * disk. We must be able to restart the truncate after a crash. 4359 * 4360 * The file's tree may be transiently inconsistent in memory (although it 4361 * probably isn't), but whenever we close off and commit a journal transaction, 4362 * the contents of (the filesystem + the journal) must be consistent and 4363 * restartable. It's pretty simple, really: bottom up, right to left (although 4364 * left-to-right works OK too). 4365 * 4366 * Note that at recovery time, journal replay occurs *before* the restart of 4367 * truncate against the orphan inode list. 4368 * 4369 * The committed inode has the new, desired i_size (which is the same as 4370 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4371 * that this inode's truncate did not complete and it will again call 4372 * ext4_truncate() to have another go. So there will be instantiated blocks 4373 * to the right of the truncation point in a crashed ext4 filesystem. But 4374 * that's fine - as long as they are linked from the inode, the post-crash 4375 * ext4_truncate() run will find them and release them. 4376 */ 4377 int ext4_truncate(struct inode *inode) 4378 { 4379 struct ext4_inode_info *ei = EXT4_I(inode); 4380 unsigned int credits; 4381 int err = 0; 4382 handle_t *handle; 4383 struct address_space *mapping = inode->i_mapping; 4384 4385 /* 4386 * There is a possibility that we're either freeing the inode 4387 * or it's a completely new inode. In those cases we might not 4388 * have i_mutex locked because it's not necessary. 4389 */ 4390 if (!(inode->i_state & (I_NEW|I_FREEING))) 4391 WARN_ON(!inode_is_locked(inode)); 4392 trace_ext4_truncate_enter(inode); 4393 4394 if (!ext4_can_truncate(inode)) 4395 return 0; 4396 4397 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4398 4399 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4400 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4401 4402 if (ext4_has_inline_data(inode)) { 4403 int has_inline = 1; 4404 4405 err = ext4_inline_data_truncate(inode, &has_inline); 4406 if (err) 4407 return err; 4408 if (has_inline) 4409 return 0; 4410 } 4411 4412 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4413 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4414 if (ext4_inode_attach_jinode(inode) < 0) 4415 return 0; 4416 } 4417 4418 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4419 credits = ext4_writepage_trans_blocks(inode); 4420 else 4421 credits = ext4_blocks_for_truncate(inode); 4422 4423 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4424 if (IS_ERR(handle)) 4425 return PTR_ERR(handle); 4426 4427 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4428 ext4_block_truncate_page(handle, mapping, inode->i_size); 4429 4430 /* 4431 * We add the inode to the orphan list, so that if this 4432 * truncate spans multiple transactions, and we crash, we will 4433 * resume the truncate when the filesystem recovers. It also 4434 * marks the inode dirty, to catch the new size. 4435 * 4436 * Implication: the file must always be in a sane, consistent 4437 * truncatable state while each transaction commits. 4438 */ 4439 err = ext4_orphan_add(handle, inode); 4440 if (err) 4441 goto out_stop; 4442 4443 down_write(&EXT4_I(inode)->i_data_sem); 4444 4445 ext4_discard_preallocations(inode); 4446 4447 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4448 err = ext4_ext_truncate(handle, inode); 4449 else 4450 ext4_ind_truncate(handle, inode); 4451 4452 up_write(&ei->i_data_sem); 4453 if (err) 4454 goto out_stop; 4455 4456 if (IS_SYNC(inode)) 4457 ext4_handle_sync(handle); 4458 4459 out_stop: 4460 /* 4461 * If this was a simple ftruncate() and the file will remain alive, 4462 * then we need to clear up the orphan record which we created above. 4463 * However, if this was a real unlink then we were called by 4464 * ext4_evict_inode(), and we allow that function to clean up the 4465 * orphan info for us. 4466 */ 4467 if (inode->i_nlink) 4468 ext4_orphan_del(handle, inode); 4469 4470 inode->i_mtime = inode->i_ctime = current_time(inode); 4471 ext4_mark_inode_dirty(handle, inode); 4472 ext4_journal_stop(handle); 4473 4474 trace_ext4_truncate_exit(inode); 4475 return err; 4476 } 4477 4478 /* 4479 * ext4_get_inode_loc returns with an extra refcount against the inode's 4480 * underlying buffer_head on success. If 'in_mem' is true, we have all 4481 * data in memory that is needed to recreate the on-disk version of this 4482 * inode. 4483 */ 4484 static int __ext4_get_inode_loc(struct inode *inode, 4485 struct ext4_iloc *iloc, int in_mem) 4486 { 4487 struct ext4_group_desc *gdp; 4488 struct buffer_head *bh; 4489 struct super_block *sb = inode->i_sb; 4490 ext4_fsblk_t block; 4491 int inodes_per_block, inode_offset; 4492 4493 iloc->bh = NULL; 4494 if (!ext4_valid_inum(sb, inode->i_ino)) 4495 return -EFSCORRUPTED; 4496 4497 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4498 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4499 if (!gdp) 4500 return -EIO; 4501 4502 /* 4503 * Figure out the offset within the block group inode table 4504 */ 4505 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4506 inode_offset = ((inode->i_ino - 1) % 4507 EXT4_INODES_PER_GROUP(sb)); 4508 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4509 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4510 4511 bh = sb_getblk(sb, block); 4512 if (unlikely(!bh)) 4513 return -ENOMEM; 4514 if (!buffer_uptodate(bh)) { 4515 lock_buffer(bh); 4516 4517 /* 4518 * If the buffer has the write error flag, we have failed 4519 * to write out another inode in the same block. In this 4520 * case, we don't have to read the block because we may 4521 * read the old inode data successfully. 4522 */ 4523 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4524 set_buffer_uptodate(bh); 4525 4526 if (buffer_uptodate(bh)) { 4527 /* someone brought it uptodate while we waited */ 4528 unlock_buffer(bh); 4529 goto has_buffer; 4530 } 4531 4532 /* 4533 * If we have all information of the inode in memory and this 4534 * is the only valid inode in the block, we need not read the 4535 * block. 4536 */ 4537 if (in_mem) { 4538 struct buffer_head *bitmap_bh; 4539 int i, start; 4540 4541 start = inode_offset & ~(inodes_per_block - 1); 4542 4543 /* Is the inode bitmap in cache? */ 4544 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4545 if (unlikely(!bitmap_bh)) 4546 goto make_io; 4547 4548 /* 4549 * If the inode bitmap isn't in cache then the 4550 * optimisation may end up performing two reads instead 4551 * of one, so skip it. 4552 */ 4553 if (!buffer_uptodate(bitmap_bh)) { 4554 brelse(bitmap_bh); 4555 goto make_io; 4556 } 4557 for (i = start; i < start + inodes_per_block; i++) { 4558 if (i == inode_offset) 4559 continue; 4560 if (ext4_test_bit(i, bitmap_bh->b_data)) 4561 break; 4562 } 4563 brelse(bitmap_bh); 4564 if (i == start + inodes_per_block) { 4565 /* all other inodes are free, so skip I/O */ 4566 memset(bh->b_data, 0, bh->b_size); 4567 set_buffer_uptodate(bh); 4568 unlock_buffer(bh); 4569 goto has_buffer; 4570 } 4571 } 4572 4573 make_io: 4574 /* 4575 * If we need to do any I/O, try to pre-readahead extra 4576 * blocks from the inode table. 4577 */ 4578 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4579 ext4_fsblk_t b, end, table; 4580 unsigned num; 4581 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4582 4583 table = ext4_inode_table(sb, gdp); 4584 /* s_inode_readahead_blks is always a power of 2 */ 4585 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4586 if (table > b) 4587 b = table; 4588 end = b + ra_blks; 4589 num = EXT4_INODES_PER_GROUP(sb); 4590 if (ext4_has_group_desc_csum(sb)) 4591 num -= ext4_itable_unused_count(sb, gdp); 4592 table += num / inodes_per_block; 4593 if (end > table) 4594 end = table; 4595 while (b <= end) 4596 sb_breadahead(sb, b++); 4597 } 4598 4599 /* 4600 * There are other valid inodes in the buffer, this inode 4601 * has in-inode xattrs, or we don't have this inode in memory. 4602 * Read the block from disk. 4603 */ 4604 trace_ext4_load_inode(inode); 4605 get_bh(bh); 4606 bh->b_end_io = end_buffer_read_sync; 4607 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4608 wait_on_buffer(bh); 4609 if (!buffer_uptodate(bh)) { 4610 EXT4_ERROR_INODE_BLOCK(inode, block, 4611 "unable to read itable block"); 4612 brelse(bh); 4613 return -EIO; 4614 } 4615 } 4616 has_buffer: 4617 iloc->bh = bh; 4618 return 0; 4619 } 4620 4621 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4622 { 4623 /* We have all inode data except xattrs in memory here. */ 4624 return __ext4_get_inode_loc(inode, iloc, 4625 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4626 } 4627 4628 static bool ext4_should_use_dax(struct inode *inode) 4629 { 4630 if (!test_opt(inode->i_sb, DAX)) 4631 return false; 4632 if (!S_ISREG(inode->i_mode)) 4633 return false; 4634 if (ext4_should_journal_data(inode)) 4635 return false; 4636 if (ext4_has_inline_data(inode)) 4637 return false; 4638 if (ext4_encrypted_inode(inode)) 4639 return false; 4640 return true; 4641 } 4642 4643 void ext4_set_inode_flags(struct inode *inode) 4644 { 4645 unsigned int flags = EXT4_I(inode)->i_flags; 4646 unsigned int new_fl = 0; 4647 4648 if (flags & EXT4_SYNC_FL) 4649 new_fl |= S_SYNC; 4650 if (flags & EXT4_APPEND_FL) 4651 new_fl |= S_APPEND; 4652 if (flags & EXT4_IMMUTABLE_FL) 4653 new_fl |= S_IMMUTABLE; 4654 if (flags & EXT4_NOATIME_FL) 4655 new_fl |= S_NOATIME; 4656 if (flags & EXT4_DIRSYNC_FL) 4657 new_fl |= S_DIRSYNC; 4658 if (ext4_should_use_dax(inode)) 4659 new_fl |= S_DAX; 4660 if (flags & EXT4_ENCRYPT_FL) 4661 new_fl |= S_ENCRYPTED; 4662 inode_set_flags(inode, new_fl, 4663 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4664 S_ENCRYPTED); 4665 } 4666 4667 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4668 struct ext4_inode_info *ei) 4669 { 4670 blkcnt_t i_blocks ; 4671 struct inode *inode = &(ei->vfs_inode); 4672 struct super_block *sb = inode->i_sb; 4673 4674 if (ext4_has_feature_huge_file(sb)) { 4675 /* we are using combined 48 bit field */ 4676 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4677 le32_to_cpu(raw_inode->i_blocks_lo); 4678 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4679 /* i_blocks represent file system block size */ 4680 return i_blocks << (inode->i_blkbits - 9); 4681 } else { 4682 return i_blocks; 4683 } 4684 } else { 4685 return le32_to_cpu(raw_inode->i_blocks_lo); 4686 } 4687 } 4688 4689 static inline void ext4_iget_extra_inode(struct inode *inode, 4690 struct ext4_inode *raw_inode, 4691 struct ext4_inode_info *ei) 4692 { 4693 __le32 *magic = (void *)raw_inode + 4694 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4695 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4696 EXT4_INODE_SIZE(inode->i_sb) && 4697 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4698 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4699 ext4_find_inline_data_nolock(inode); 4700 } else 4701 EXT4_I(inode)->i_inline_off = 0; 4702 } 4703 4704 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4705 { 4706 if (!ext4_has_feature_project(inode->i_sb)) 4707 return -EOPNOTSUPP; 4708 *projid = EXT4_I(inode)->i_projid; 4709 return 0; 4710 } 4711 4712 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4713 { 4714 struct ext4_iloc iloc; 4715 struct ext4_inode *raw_inode; 4716 struct ext4_inode_info *ei; 4717 struct inode *inode; 4718 journal_t *journal = EXT4_SB(sb)->s_journal; 4719 long ret; 4720 loff_t size; 4721 int block; 4722 uid_t i_uid; 4723 gid_t i_gid; 4724 projid_t i_projid; 4725 4726 inode = iget_locked(sb, ino); 4727 if (!inode) 4728 return ERR_PTR(-ENOMEM); 4729 if (!(inode->i_state & I_NEW)) 4730 return inode; 4731 4732 ei = EXT4_I(inode); 4733 iloc.bh = NULL; 4734 4735 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4736 if (ret < 0) 4737 goto bad_inode; 4738 raw_inode = ext4_raw_inode(&iloc); 4739 4740 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4741 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4742 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4743 EXT4_INODE_SIZE(inode->i_sb) || 4744 (ei->i_extra_isize & 3)) { 4745 EXT4_ERROR_INODE(inode, 4746 "bad extra_isize %u (inode size %u)", 4747 ei->i_extra_isize, 4748 EXT4_INODE_SIZE(inode->i_sb)); 4749 ret = -EFSCORRUPTED; 4750 goto bad_inode; 4751 } 4752 } else 4753 ei->i_extra_isize = 0; 4754 4755 /* Precompute checksum seed for inode metadata */ 4756 if (ext4_has_metadata_csum(sb)) { 4757 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4758 __u32 csum; 4759 __le32 inum = cpu_to_le32(inode->i_ino); 4760 __le32 gen = raw_inode->i_generation; 4761 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4762 sizeof(inum)); 4763 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4764 sizeof(gen)); 4765 } 4766 4767 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4768 EXT4_ERROR_INODE(inode, "checksum invalid"); 4769 ret = -EFSBADCRC; 4770 goto bad_inode; 4771 } 4772 4773 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4774 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4775 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4776 if (ext4_has_feature_project(sb) && 4777 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4778 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4779 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4780 else 4781 i_projid = EXT4_DEF_PROJID; 4782 4783 if (!(test_opt(inode->i_sb, NO_UID32))) { 4784 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4785 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4786 } 4787 i_uid_write(inode, i_uid); 4788 i_gid_write(inode, i_gid); 4789 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4790 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4791 4792 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4793 ei->i_inline_off = 0; 4794 ei->i_dir_start_lookup = 0; 4795 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4796 /* We now have enough fields to check if the inode was active or not. 4797 * This is needed because nfsd might try to access dead inodes 4798 * the test is that same one that e2fsck uses 4799 * NeilBrown 1999oct15 4800 */ 4801 if (inode->i_nlink == 0) { 4802 if ((inode->i_mode == 0 || 4803 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4804 ino != EXT4_BOOT_LOADER_INO) { 4805 /* this inode is deleted */ 4806 ret = -ESTALE; 4807 goto bad_inode; 4808 } 4809 /* The only unlinked inodes we let through here have 4810 * valid i_mode and are being read by the orphan 4811 * recovery code: that's fine, we're about to complete 4812 * the process of deleting those. 4813 * OR it is the EXT4_BOOT_LOADER_INO which is 4814 * not initialized on a new filesystem. */ 4815 } 4816 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4817 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4818 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4819 if (ext4_has_feature_64bit(sb)) 4820 ei->i_file_acl |= 4821 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4822 inode->i_size = ext4_isize(sb, raw_inode); 4823 if ((size = i_size_read(inode)) < 0) { 4824 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4825 ret = -EFSCORRUPTED; 4826 goto bad_inode; 4827 } 4828 ei->i_disksize = inode->i_size; 4829 #ifdef CONFIG_QUOTA 4830 ei->i_reserved_quota = 0; 4831 #endif 4832 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4833 ei->i_block_group = iloc.block_group; 4834 ei->i_last_alloc_group = ~0; 4835 /* 4836 * NOTE! The in-memory inode i_data array is in little-endian order 4837 * even on big-endian machines: we do NOT byteswap the block numbers! 4838 */ 4839 for (block = 0; block < EXT4_N_BLOCKS; block++) 4840 ei->i_data[block] = raw_inode->i_block[block]; 4841 INIT_LIST_HEAD(&ei->i_orphan); 4842 4843 /* 4844 * Set transaction id's of transactions that have to be committed 4845 * to finish f[data]sync. We set them to currently running transaction 4846 * as we cannot be sure that the inode or some of its metadata isn't 4847 * part of the transaction - the inode could have been reclaimed and 4848 * now it is reread from disk. 4849 */ 4850 if (journal) { 4851 transaction_t *transaction; 4852 tid_t tid; 4853 4854 read_lock(&journal->j_state_lock); 4855 if (journal->j_running_transaction) 4856 transaction = journal->j_running_transaction; 4857 else 4858 transaction = journal->j_committing_transaction; 4859 if (transaction) 4860 tid = transaction->t_tid; 4861 else 4862 tid = journal->j_commit_sequence; 4863 read_unlock(&journal->j_state_lock); 4864 ei->i_sync_tid = tid; 4865 ei->i_datasync_tid = tid; 4866 } 4867 4868 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4869 if (ei->i_extra_isize == 0) { 4870 /* The extra space is currently unused. Use it. */ 4871 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4872 ei->i_extra_isize = sizeof(struct ext4_inode) - 4873 EXT4_GOOD_OLD_INODE_SIZE; 4874 } else { 4875 ext4_iget_extra_inode(inode, raw_inode, ei); 4876 } 4877 } 4878 4879 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4880 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4881 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4882 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4883 4884 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4885 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4886 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4887 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4888 inode->i_version |= 4889 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4890 } 4891 } 4892 4893 ret = 0; 4894 if (ei->i_file_acl && 4895 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4896 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4897 ei->i_file_acl); 4898 ret = -EFSCORRUPTED; 4899 goto bad_inode; 4900 } else if (!ext4_has_inline_data(inode)) { 4901 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4902 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4903 (S_ISLNK(inode->i_mode) && 4904 !ext4_inode_is_fast_symlink(inode)))) 4905 /* Validate extent which is part of inode */ 4906 ret = ext4_ext_check_inode(inode); 4907 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4908 (S_ISLNK(inode->i_mode) && 4909 !ext4_inode_is_fast_symlink(inode))) { 4910 /* Validate block references which are part of inode */ 4911 ret = ext4_ind_check_inode(inode); 4912 } 4913 } 4914 if (ret) 4915 goto bad_inode; 4916 4917 if (S_ISREG(inode->i_mode)) { 4918 inode->i_op = &ext4_file_inode_operations; 4919 inode->i_fop = &ext4_file_operations; 4920 ext4_set_aops(inode); 4921 } else if (S_ISDIR(inode->i_mode)) { 4922 inode->i_op = &ext4_dir_inode_operations; 4923 inode->i_fop = &ext4_dir_operations; 4924 } else if (S_ISLNK(inode->i_mode)) { 4925 if (ext4_encrypted_inode(inode)) { 4926 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4927 ext4_set_aops(inode); 4928 } else if (ext4_inode_is_fast_symlink(inode)) { 4929 inode->i_link = (char *)ei->i_data; 4930 inode->i_op = &ext4_fast_symlink_inode_operations; 4931 nd_terminate_link(ei->i_data, inode->i_size, 4932 sizeof(ei->i_data) - 1); 4933 } else { 4934 inode->i_op = &ext4_symlink_inode_operations; 4935 ext4_set_aops(inode); 4936 } 4937 inode_nohighmem(inode); 4938 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4939 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4940 inode->i_op = &ext4_special_inode_operations; 4941 if (raw_inode->i_block[0]) 4942 init_special_inode(inode, inode->i_mode, 4943 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4944 else 4945 init_special_inode(inode, inode->i_mode, 4946 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4947 } else if (ino == EXT4_BOOT_LOADER_INO) { 4948 make_bad_inode(inode); 4949 } else { 4950 ret = -EFSCORRUPTED; 4951 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4952 goto bad_inode; 4953 } 4954 brelse(iloc.bh); 4955 ext4_set_inode_flags(inode); 4956 4957 unlock_new_inode(inode); 4958 return inode; 4959 4960 bad_inode: 4961 brelse(iloc.bh); 4962 iget_failed(inode); 4963 return ERR_PTR(ret); 4964 } 4965 4966 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4967 { 4968 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4969 return ERR_PTR(-EFSCORRUPTED); 4970 return ext4_iget(sb, ino); 4971 } 4972 4973 static int ext4_inode_blocks_set(handle_t *handle, 4974 struct ext4_inode *raw_inode, 4975 struct ext4_inode_info *ei) 4976 { 4977 struct inode *inode = &(ei->vfs_inode); 4978 u64 i_blocks = inode->i_blocks; 4979 struct super_block *sb = inode->i_sb; 4980 4981 if (i_blocks <= ~0U) { 4982 /* 4983 * i_blocks can be represented in a 32 bit variable 4984 * as multiple of 512 bytes 4985 */ 4986 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4987 raw_inode->i_blocks_high = 0; 4988 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4989 return 0; 4990 } 4991 if (!ext4_has_feature_huge_file(sb)) 4992 return -EFBIG; 4993 4994 if (i_blocks <= 0xffffffffffffULL) { 4995 /* 4996 * i_blocks can be represented in a 48 bit variable 4997 * as multiple of 512 bytes 4998 */ 4999 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5000 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5001 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5002 } else { 5003 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5004 /* i_block is stored in file system block size */ 5005 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5006 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5007 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5008 } 5009 return 0; 5010 } 5011 5012 struct other_inode { 5013 unsigned long orig_ino; 5014 struct ext4_inode *raw_inode; 5015 }; 5016 5017 static int other_inode_match(struct inode * inode, unsigned long ino, 5018 void *data) 5019 { 5020 struct other_inode *oi = (struct other_inode *) data; 5021 5022 if ((inode->i_ino != ino) || 5023 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5024 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 5025 ((inode->i_state & I_DIRTY_TIME) == 0)) 5026 return 0; 5027 spin_lock(&inode->i_lock); 5028 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5029 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 5030 (inode->i_state & I_DIRTY_TIME)) { 5031 struct ext4_inode_info *ei = EXT4_I(inode); 5032 5033 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5034 spin_unlock(&inode->i_lock); 5035 5036 spin_lock(&ei->i_raw_lock); 5037 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5038 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5039 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5040 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5041 spin_unlock(&ei->i_raw_lock); 5042 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5043 return -1; 5044 } 5045 spin_unlock(&inode->i_lock); 5046 return -1; 5047 } 5048 5049 /* 5050 * Opportunistically update the other time fields for other inodes in 5051 * the same inode table block. 5052 */ 5053 static void ext4_update_other_inodes_time(struct super_block *sb, 5054 unsigned long orig_ino, char *buf) 5055 { 5056 struct other_inode oi; 5057 unsigned long ino; 5058 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5059 int inode_size = EXT4_INODE_SIZE(sb); 5060 5061 oi.orig_ino = orig_ino; 5062 /* 5063 * Calculate the first inode in the inode table block. Inode 5064 * numbers are one-based. That is, the first inode in a block 5065 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5066 */ 5067 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5068 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5069 if (ino == orig_ino) 5070 continue; 5071 oi.raw_inode = (struct ext4_inode *) buf; 5072 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5073 } 5074 } 5075 5076 /* 5077 * Post the struct inode info into an on-disk inode location in the 5078 * buffer-cache. This gobbles the caller's reference to the 5079 * buffer_head in the inode location struct. 5080 * 5081 * The caller must have write access to iloc->bh. 5082 */ 5083 static int ext4_do_update_inode(handle_t *handle, 5084 struct inode *inode, 5085 struct ext4_iloc *iloc) 5086 { 5087 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5088 struct ext4_inode_info *ei = EXT4_I(inode); 5089 struct buffer_head *bh = iloc->bh; 5090 struct super_block *sb = inode->i_sb; 5091 int err = 0, rc, block; 5092 int need_datasync = 0, set_large_file = 0; 5093 uid_t i_uid; 5094 gid_t i_gid; 5095 projid_t i_projid; 5096 5097 spin_lock(&ei->i_raw_lock); 5098 5099 /* For fields not tracked in the in-memory inode, 5100 * initialise them to zero for new inodes. */ 5101 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5102 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5103 5104 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5105 i_uid = i_uid_read(inode); 5106 i_gid = i_gid_read(inode); 5107 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5108 if (!(test_opt(inode->i_sb, NO_UID32))) { 5109 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5110 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5111 /* 5112 * Fix up interoperability with old kernels. Otherwise, old inodes get 5113 * re-used with the upper 16 bits of the uid/gid intact 5114 */ 5115 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5116 raw_inode->i_uid_high = 0; 5117 raw_inode->i_gid_high = 0; 5118 } else { 5119 raw_inode->i_uid_high = 5120 cpu_to_le16(high_16_bits(i_uid)); 5121 raw_inode->i_gid_high = 5122 cpu_to_le16(high_16_bits(i_gid)); 5123 } 5124 } else { 5125 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5126 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5127 raw_inode->i_uid_high = 0; 5128 raw_inode->i_gid_high = 0; 5129 } 5130 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5131 5132 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5133 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5134 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5135 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5136 5137 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5138 if (err) { 5139 spin_unlock(&ei->i_raw_lock); 5140 goto out_brelse; 5141 } 5142 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5143 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5144 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5145 raw_inode->i_file_acl_high = 5146 cpu_to_le16(ei->i_file_acl >> 32); 5147 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5148 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5149 ext4_isize_set(raw_inode, ei->i_disksize); 5150 need_datasync = 1; 5151 } 5152 if (ei->i_disksize > 0x7fffffffULL) { 5153 if (!ext4_has_feature_large_file(sb) || 5154 EXT4_SB(sb)->s_es->s_rev_level == 5155 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5156 set_large_file = 1; 5157 } 5158 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5159 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5160 if (old_valid_dev(inode->i_rdev)) { 5161 raw_inode->i_block[0] = 5162 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5163 raw_inode->i_block[1] = 0; 5164 } else { 5165 raw_inode->i_block[0] = 0; 5166 raw_inode->i_block[1] = 5167 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5168 raw_inode->i_block[2] = 0; 5169 } 5170 } else if (!ext4_has_inline_data(inode)) { 5171 for (block = 0; block < EXT4_N_BLOCKS; block++) 5172 raw_inode->i_block[block] = ei->i_data[block]; 5173 } 5174 5175 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5176 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5177 if (ei->i_extra_isize) { 5178 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5179 raw_inode->i_version_hi = 5180 cpu_to_le32(inode->i_version >> 32); 5181 raw_inode->i_extra_isize = 5182 cpu_to_le16(ei->i_extra_isize); 5183 } 5184 } 5185 5186 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5187 i_projid != EXT4_DEF_PROJID); 5188 5189 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5190 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5191 raw_inode->i_projid = cpu_to_le32(i_projid); 5192 5193 ext4_inode_csum_set(inode, raw_inode, ei); 5194 spin_unlock(&ei->i_raw_lock); 5195 if (inode->i_sb->s_flags & SB_LAZYTIME) 5196 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5197 bh->b_data); 5198 5199 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5200 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5201 if (!err) 5202 err = rc; 5203 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5204 if (set_large_file) { 5205 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5206 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5207 if (err) 5208 goto out_brelse; 5209 ext4_update_dynamic_rev(sb); 5210 ext4_set_feature_large_file(sb); 5211 ext4_handle_sync(handle); 5212 err = ext4_handle_dirty_super(handle, sb); 5213 } 5214 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5215 out_brelse: 5216 brelse(bh); 5217 ext4_std_error(inode->i_sb, err); 5218 return err; 5219 } 5220 5221 /* 5222 * ext4_write_inode() 5223 * 5224 * We are called from a few places: 5225 * 5226 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5227 * Here, there will be no transaction running. We wait for any running 5228 * transaction to commit. 5229 * 5230 * - Within flush work (sys_sync(), kupdate and such). 5231 * We wait on commit, if told to. 5232 * 5233 * - Within iput_final() -> write_inode_now() 5234 * We wait on commit, if told to. 5235 * 5236 * In all cases it is actually safe for us to return without doing anything, 5237 * because the inode has been copied into a raw inode buffer in 5238 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5239 * writeback. 5240 * 5241 * Note that we are absolutely dependent upon all inode dirtiers doing the 5242 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5243 * which we are interested. 5244 * 5245 * It would be a bug for them to not do this. The code: 5246 * 5247 * mark_inode_dirty(inode) 5248 * stuff(); 5249 * inode->i_size = expr; 5250 * 5251 * is in error because write_inode() could occur while `stuff()' is running, 5252 * and the new i_size will be lost. Plus the inode will no longer be on the 5253 * superblock's dirty inode list. 5254 */ 5255 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5256 { 5257 int err; 5258 5259 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5260 return 0; 5261 5262 if (EXT4_SB(inode->i_sb)->s_journal) { 5263 if (ext4_journal_current_handle()) { 5264 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5265 dump_stack(); 5266 return -EIO; 5267 } 5268 5269 /* 5270 * No need to force transaction in WB_SYNC_NONE mode. Also 5271 * ext4_sync_fs() will force the commit after everything is 5272 * written. 5273 */ 5274 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5275 return 0; 5276 5277 err = ext4_force_commit(inode->i_sb); 5278 } else { 5279 struct ext4_iloc iloc; 5280 5281 err = __ext4_get_inode_loc(inode, &iloc, 0); 5282 if (err) 5283 return err; 5284 /* 5285 * sync(2) will flush the whole buffer cache. No need to do 5286 * it here separately for each inode. 5287 */ 5288 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5289 sync_dirty_buffer(iloc.bh); 5290 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5291 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5292 "IO error syncing inode"); 5293 err = -EIO; 5294 } 5295 brelse(iloc.bh); 5296 } 5297 return err; 5298 } 5299 5300 /* 5301 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5302 * buffers that are attached to a page stradding i_size and are undergoing 5303 * commit. In that case we have to wait for commit to finish and try again. 5304 */ 5305 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5306 { 5307 struct page *page; 5308 unsigned offset; 5309 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5310 tid_t commit_tid = 0; 5311 int ret; 5312 5313 offset = inode->i_size & (PAGE_SIZE - 1); 5314 /* 5315 * All buffers in the last page remain valid? Then there's nothing to 5316 * do. We do the check mainly to optimize the common PAGE_SIZE == 5317 * blocksize case 5318 */ 5319 if (offset > PAGE_SIZE - i_blocksize(inode)) 5320 return; 5321 while (1) { 5322 page = find_lock_page(inode->i_mapping, 5323 inode->i_size >> PAGE_SHIFT); 5324 if (!page) 5325 return; 5326 ret = __ext4_journalled_invalidatepage(page, offset, 5327 PAGE_SIZE - offset); 5328 unlock_page(page); 5329 put_page(page); 5330 if (ret != -EBUSY) 5331 return; 5332 commit_tid = 0; 5333 read_lock(&journal->j_state_lock); 5334 if (journal->j_committing_transaction) 5335 commit_tid = journal->j_committing_transaction->t_tid; 5336 read_unlock(&journal->j_state_lock); 5337 if (commit_tid) 5338 jbd2_log_wait_commit(journal, commit_tid); 5339 } 5340 } 5341 5342 /* 5343 * ext4_setattr() 5344 * 5345 * Called from notify_change. 5346 * 5347 * We want to trap VFS attempts to truncate the file as soon as 5348 * possible. In particular, we want to make sure that when the VFS 5349 * shrinks i_size, we put the inode on the orphan list and modify 5350 * i_disksize immediately, so that during the subsequent flushing of 5351 * dirty pages and freeing of disk blocks, we can guarantee that any 5352 * commit will leave the blocks being flushed in an unused state on 5353 * disk. (On recovery, the inode will get truncated and the blocks will 5354 * be freed, so we have a strong guarantee that no future commit will 5355 * leave these blocks visible to the user.) 5356 * 5357 * Another thing we have to assure is that if we are in ordered mode 5358 * and inode is still attached to the committing transaction, we must 5359 * we start writeout of all the dirty pages which are being truncated. 5360 * This way we are sure that all the data written in the previous 5361 * transaction are already on disk (truncate waits for pages under 5362 * writeback). 5363 * 5364 * Called with inode->i_mutex down. 5365 */ 5366 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5367 { 5368 struct inode *inode = d_inode(dentry); 5369 int error, rc = 0; 5370 int orphan = 0; 5371 const unsigned int ia_valid = attr->ia_valid; 5372 5373 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5374 return -EIO; 5375 5376 error = setattr_prepare(dentry, attr); 5377 if (error) 5378 return error; 5379 5380 error = fscrypt_prepare_setattr(dentry, attr); 5381 if (error) 5382 return error; 5383 5384 if (is_quota_modification(inode, attr)) { 5385 error = dquot_initialize(inode); 5386 if (error) 5387 return error; 5388 } 5389 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5390 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5391 handle_t *handle; 5392 5393 /* (user+group)*(old+new) structure, inode write (sb, 5394 * inode block, ? - but truncate inode update has it) */ 5395 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5396 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5397 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5398 if (IS_ERR(handle)) { 5399 error = PTR_ERR(handle); 5400 goto err_out; 5401 } 5402 5403 /* dquot_transfer() calls back ext4_get_inode_usage() which 5404 * counts xattr inode references. 5405 */ 5406 down_read(&EXT4_I(inode)->xattr_sem); 5407 error = dquot_transfer(inode, attr); 5408 up_read(&EXT4_I(inode)->xattr_sem); 5409 5410 if (error) { 5411 ext4_journal_stop(handle); 5412 return error; 5413 } 5414 /* Update corresponding info in inode so that everything is in 5415 * one transaction */ 5416 if (attr->ia_valid & ATTR_UID) 5417 inode->i_uid = attr->ia_uid; 5418 if (attr->ia_valid & ATTR_GID) 5419 inode->i_gid = attr->ia_gid; 5420 error = ext4_mark_inode_dirty(handle, inode); 5421 ext4_journal_stop(handle); 5422 } 5423 5424 if (attr->ia_valid & ATTR_SIZE) { 5425 handle_t *handle; 5426 loff_t oldsize = inode->i_size; 5427 int shrink = (attr->ia_size <= inode->i_size); 5428 5429 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5430 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5431 5432 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5433 return -EFBIG; 5434 } 5435 if (!S_ISREG(inode->i_mode)) 5436 return -EINVAL; 5437 5438 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5439 inode_inc_iversion(inode); 5440 5441 if (ext4_should_order_data(inode) && 5442 (attr->ia_size < inode->i_size)) { 5443 error = ext4_begin_ordered_truncate(inode, 5444 attr->ia_size); 5445 if (error) 5446 goto err_out; 5447 } 5448 if (attr->ia_size != inode->i_size) { 5449 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5450 if (IS_ERR(handle)) { 5451 error = PTR_ERR(handle); 5452 goto err_out; 5453 } 5454 if (ext4_handle_valid(handle) && shrink) { 5455 error = ext4_orphan_add(handle, inode); 5456 orphan = 1; 5457 } 5458 /* 5459 * Update c/mtime on truncate up, ext4_truncate() will 5460 * update c/mtime in shrink case below 5461 */ 5462 if (!shrink) { 5463 inode->i_mtime = current_time(inode); 5464 inode->i_ctime = inode->i_mtime; 5465 } 5466 down_write(&EXT4_I(inode)->i_data_sem); 5467 EXT4_I(inode)->i_disksize = attr->ia_size; 5468 rc = ext4_mark_inode_dirty(handle, inode); 5469 if (!error) 5470 error = rc; 5471 /* 5472 * We have to update i_size under i_data_sem together 5473 * with i_disksize to avoid races with writeback code 5474 * running ext4_wb_update_i_disksize(). 5475 */ 5476 if (!error) 5477 i_size_write(inode, attr->ia_size); 5478 up_write(&EXT4_I(inode)->i_data_sem); 5479 ext4_journal_stop(handle); 5480 if (error) { 5481 if (orphan) 5482 ext4_orphan_del(NULL, inode); 5483 goto err_out; 5484 } 5485 } 5486 if (!shrink) 5487 pagecache_isize_extended(inode, oldsize, inode->i_size); 5488 5489 /* 5490 * Blocks are going to be removed from the inode. Wait 5491 * for dio in flight. Temporarily disable 5492 * dioread_nolock to prevent livelock. 5493 */ 5494 if (orphan) { 5495 if (!ext4_should_journal_data(inode)) { 5496 ext4_inode_block_unlocked_dio(inode); 5497 inode_dio_wait(inode); 5498 ext4_inode_resume_unlocked_dio(inode); 5499 } else 5500 ext4_wait_for_tail_page_commit(inode); 5501 } 5502 down_write(&EXT4_I(inode)->i_mmap_sem); 5503 /* 5504 * Truncate pagecache after we've waited for commit 5505 * in data=journal mode to make pages freeable. 5506 */ 5507 truncate_pagecache(inode, inode->i_size); 5508 if (shrink) { 5509 rc = ext4_truncate(inode); 5510 if (rc) 5511 error = rc; 5512 } 5513 up_write(&EXT4_I(inode)->i_mmap_sem); 5514 } 5515 5516 if (!error) { 5517 setattr_copy(inode, attr); 5518 mark_inode_dirty(inode); 5519 } 5520 5521 /* 5522 * If the call to ext4_truncate failed to get a transaction handle at 5523 * all, we need to clean up the in-core orphan list manually. 5524 */ 5525 if (orphan && inode->i_nlink) 5526 ext4_orphan_del(NULL, inode); 5527 5528 if (!error && (ia_valid & ATTR_MODE)) 5529 rc = posix_acl_chmod(inode, inode->i_mode); 5530 5531 err_out: 5532 ext4_std_error(inode->i_sb, error); 5533 if (!error) 5534 error = rc; 5535 return error; 5536 } 5537 5538 int ext4_getattr(const struct path *path, struct kstat *stat, 5539 u32 request_mask, unsigned int query_flags) 5540 { 5541 struct inode *inode = d_inode(path->dentry); 5542 struct ext4_inode *raw_inode; 5543 struct ext4_inode_info *ei = EXT4_I(inode); 5544 unsigned int flags; 5545 5546 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5547 stat->result_mask |= STATX_BTIME; 5548 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5549 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5550 } 5551 5552 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5553 if (flags & EXT4_APPEND_FL) 5554 stat->attributes |= STATX_ATTR_APPEND; 5555 if (flags & EXT4_COMPR_FL) 5556 stat->attributes |= STATX_ATTR_COMPRESSED; 5557 if (flags & EXT4_ENCRYPT_FL) 5558 stat->attributes |= STATX_ATTR_ENCRYPTED; 5559 if (flags & EXT4_IMMUTABLE_FL) 5560 stat->attributes |= STATX_ATTR_IMMUTABLE; 5561 if (flags & EXT4_NODUMP_FL) 5562 stat->attributes |= STATX_ATTR_NODUMP; 5563 5564 stat->attributes_mask |= (STATX_ATTR_APPEND | 5565 STATX_ATTR_COMPRESSED | 5566 STATX_ATTR_ENCRYPTED | 5567 STATX_ATTR_IMMUTABLE | 5568 STATX_ATTR_NODUMP); 5569 5570 generic_fillattr(inode, stat); 5571 return 0; 5572 } 5573 5574 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5575 u32 request_mask, unsigned int query_flags) 5576 { 5577 struct inode *inode = d_inode(path->dentry); 5578 u64 delalloc_blocks; 5579 5580 ext4_getattr(path, stat, request_mask, query_flags); 5581 5582 /* 5583 * If there is inline data in the inode, the inode will normally not 5584 * have data blocks allocated (it may have an external xattr block). 5585 * Report at least one sector for such files, so tools like tar, rsync, 5586 * others don't incorrectly think the file is completely sparse. 5587 */ 5588 if (unlikely(ext4_has_inline_data(inode))) 5589 stat->blocks += (stat->size + 511) >> 9; 5590 5591 /* 5592 * We can't update i_blocks if the block allocation is delayed 5593 * otherwise in the case of system crash before the real block 5594 * allocation is done, we will have i_blocks inconsistent with 5595 * on-disk file blocks. 5596 * We always keep i_blocks updated together with real 5597 * allocation. But to not confuse with user, stat 5598 * will return the blocks that include the delayed allocation 5599 * blocks for this file. 5600 */ 5601 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5602 EXT4_I(inode)->i_reserved_data_blocks); 5603 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5604 return 0; 5605 } 5606 5607 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5608 int pextents) 5609 { 5610 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5611 return ext4_ind_trans_blocks(inode, lblocks); 5612 return ext4_ext_index_trans_blocks(inode, pextents); 5613 } 5614 5615 /* 5616 * Account for index blocks, block groups bitmaps and block group 5617 * descriptor blocks if modify datablocks and index blocks 5618 * worse case, the indexs blocks spread over different block groups 5619 * 5620 * If datablocks are discontiguous, they are possible to spread over 5621 * different block groups too. If they are contiguous, with flexbg, 5622 * they could still across block group boundary. 5623 * 5624 * Also account for superblock, inode, quota and xattr blocks 5625 */ 5626 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5627 int pextents) 5628 { 5629 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5630 int gdpblocks; 5631 int idxblocks; 5632 int ret = 0; 5633 5634 /* 5635 * How many index blocks need to touch to map @lblocks logical blocks 5636 * to @pextents physical extents? 5637 */ 5638 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5639 5640 ret = idxblocks; 5641 5642 /* 5643 * Now let's see how many group bitmaps and group descriptors need 5644 * to account 5645 */ 5646 groups = idxblocks + pextents; 5647 gdpblocks = groups; 5648 if (groups > ngroups) 5649 groups = ngroups; 5650 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5651 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5652 5653 /* bitmaps and block group descriptor blocks */ 5654 ret += groups + gdpblocks; 5655 5656 /* Blocks for super block, inode, quota and xattr blocks */ 5657 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5658 5659 return ret; 5660 } 5661 5662 /* 5663 * Calculate the total number of credits to reserve to fit 5664 * the modification of a single pages into a single transaction, 5665 * which may include multiple chunks of block allocations. 5666 * 5667 * This could be called via ext4_write_begin() 5668 * 5669 * We need to consider the worse case, when 5670 * one new block per extent. 5671 */ 5672 int ext4_writepage_trans_blocks(struct inode *inode) 5673 { 5674 int bpp = ext4_journal_blocks_per_page(inode); 5675 int ret; 5676 5677 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5678 5679 /* Account for data blocks for journalled mode */ 5680 if (ext4_should_journal_data(inode)) 5681 ret += bpp; 5682 return ret; 5683 } 5684 5685 /* 5686 * Calculate the journal credits for a chunk of data modification. 5687 * 5688 * This is called from DIO, fallocate or whoever calling 5689 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5690 * 5691 * journal buffers for data blocks are not included here, as DIO 5692 * and fallocate do no need to journal data buffers. 5693 */ 5694 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5695 { 5696 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5697 } 5698 5699 /* 5700 * The caller must have previously called ext4_reserve_inode_write(). 5701 * Give this, we know that the caller already has write access to iloc->bh. 5702 */ 5703 int ext4_mark_iloc_dirty(handle_t *handle, 5704 struct inode *inode, struct ext4_iloc *iloc) 5705 { 5706 int err = 0; 5707 5708 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5709 return -EIO; 5710 5711 if (IS_I_VERSION(inode)) 5712 inode_inc_iversion(inode); 5713 5714 /* the do_update_inode consumes one bh->b_count */ 5715 get_bh(iloc->bh); 5716 5717 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5718 err = ext4_do_update_inode(handle, inode, iloc); 5719 put_bh(iloc->bh); 5720 return err; 5721 } 5722 5723 /* 5724 * On success, We end up with an outstanding reference count against 5725 * iloc->bh. This _must_ be cleaned up later. 5726 */ 5727 5728 int 5729 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5730 struct ext4_iloc *iloc) 5731 { 5732 int err; 5733 5734 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5735 return -EIO; 5736 5737 err = ext4_get_inode_loc(inode, iloc); 5738 if (!err) { 5739 BUFFER_TRACE(iloc->bh, "get_write_access"); 5740 err = ext4_journal_get_write_access(handle, iloc->bh); 5741 if (err) { 5742 brelse(iloc->bh); 5743 iloc->bh = NULL; 5744 } 5745 } 5746 ext4_std_error(inode->i_sb, err); 5747 return err; 5748 } 5749 5750 static int __ext4_expand_extra_isize(struct inode *inode, 5751 unsigned int new_extra_isize, 5752 struct ext4_iloc *iloc, 5753 handle_t *handle, int *no_expand) 5754 { 5755 struct ext4_inode *raw_inode; 5756 struct ext4_xattr_ibody_header *header; 5757 int error; 5758 5759 raw_inode = ext4_raw_inode(iloc); 5760 5761 header = IHDR(inode, raw_inode); 5762 5763 /* No extended attributes present */ 5764 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5765 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5766 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5767 EXT4_I(inode)->i_extra_isize, 0, 5768 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5769 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5770 return 0; 5771 } 5772 5773 /* try to expand with EAs present */ 5774 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5775 raw_inode, handle); 5776 if (error) { 5777 /* 5778 * Inode size expansion failed; don't try again 5779 */ 5780 *no_expand = 1; 5781 } 5782 5783 return error; 5784 } 5785 5786 /* 5787 * Expand an inode by new_extra_isize bytes. 5788 * Returns 0 on success or negative error number on failure. 5789 */ 5790 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5791 unsigned int new_extra_isize, 5792 struct ext4_iloc iloc, 5793 handle_t *handle) 5794 { 5795 int no_expand; 5796 int error; 5797 5798 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5799 return -EOVERFLOW; 5800 5801 /* 5802 * In nojournal mode, we can immediately attempt to expand 5803 * the inode. When journaled, we first need to obtain extra 5804 * buffer credits since we may write into the EA block 5805 * with this same handle. If journal_extend fails, then it will 5806 * only result in a minor loss of functionality for that inode. 5807 * If this is felt to be critical, then e2fsck should be run to 5808 * force a large enough s_min_extra_isize. 5809 */ 5810 if (ext4_handle_valid(handle) && 5811 jbd2_journal_extend(handle, 5812 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5813 return -ENOSPC; 5814 5815 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5816 return -EBUSY; 5817 5818 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5819 handle, &no_expand); 5820 ext4_write_unlock_xattr(inode, &no_expand); 5821 5822 return error; 5823 } 5824 5825 int ext4_expand_extra_isize(struct inode *inode, 5826 unsigned int new_extra_isize, 5827 struct ext4_iloc *iloc) 5828 { 5829 handle_t *handle; 5830 int no_expand; 5831 int error, rc; 5832 5833 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5834 brelse(iloc->bh); 5835 return -EOVERFLOW; 5836 } 5837 5838 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5839 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5840 if (IS_ERR(handle)) { 5841 error = PTR_ERR(handle); 5842 brelse(iloc->bh); 5843 return error; 5844 } 5845 5846 ext4_write_lock_xattr(inode, &no_expand); 5847 5848 BUFFER_TRACE(iloc.bh, "get_write_access"); 5849 error = ext4_journal_get_write_access(handle, iloc->bh); 5850 if (error) { 5851 brelse(iloc->bh); 5852 goto out_stop; 5853 } 5854 5855 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5856 handle, &no_expand); 5857 5858 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5859 if (!error) 5860 error = rc; 5861 5862 ext4_write_unlock_xattr(inode, &no_expand); 5863 out_stop: 5864 ext4_journal_stop(handle); 5865 return error; 5866 } 5867 5868 /* 5869 * What we do here is to mark the in-core inode as clean with respect to inode 5870 * dirtiness (it may still be data-dirty). 5871 * This means that the in-core inode may be reaped by prune_icache 5872 * without having to perform any I/O. This is a very good thing, 5873 * because *any* task may call prune_icache - even ones which 5874 * have a transaction open against a different journal. 5875 * 5876 * Is this cheating? Not really. Sure, we haven't written the 5877 * inode out, but prune_icache isn't a user-visible syncing function. 5878 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5879 * we start and wait on commits. 5880 */ 5881 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5882 { 5883 struct ext4_iloc iloc; 5884 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5885 int err; 5886 5887 might_sleep(); 5888 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5889 err = ext4_reserve_inode_write(handle, inode, &iloc); 5890 if (err) 5891 return err; 5892 5893 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5894 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5895 iloc, handle); 5896 5897 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5898 } 5899 5900 /* 5901 * ext4_dirty_inode() is called from __mark_inode_dirty() 5902 * 5903 * We're really interested in the case where a file is being extended. 5904 * i_size has been changed by generic_commit_write() and we thus need 5905 * to include the updated inode in the current transaction. 5906 * 5907 * Also, dquot_alloc_block() will always dirty the inode when blocks 5908 * are allocated to the file. 5909 * 5910 * If the inode is marked synchronous, we don't honour that here - doing 5911 * so would cause a commit on atime updates, which we don't bother doing. 5912 * We handle synchronous inodes at the highest possible level. 5913 * 5914 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5915 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5916 * to copy into the on-disk inode structure are the timestamp files. 5917 */ 5918 void ext4_dirty_inode(struct inode *inode, int flags) 5919 { 5920 handle_t *handle; 5921 5922 if (flags == I_DIRTY_TIME) 5923 return; 5924 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5925 if (IS_ERR(handle)) 5926 goto out; 5927 5928 ext4_mark_inode_dirty(handle, inode); 5929 5930 ext4_journal_stop(handle); 5931 out: 5932 return; 5933 } 5934 5935 #if 0 5936 /* 5937 * Bind an inode's backing buffer_head into this transaction, to prevent 5938 * it from being flushed to disk early. Unlike 5939 * ext4_reserve_inode_write, this leaves behind no bh reference and 5940 * returns no iloc structure, so the caller needs to repeat the iloc 5941 * lookup to mark the inode dirty later. 5942 */ 5943 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5944 { 5945 struct ext4_iloc iloc; 5946 5947 int err = 0; 5948 if (handle) { 5949 err = ext4_get_inode_loc(inode, &iloc); 5950 if (!err) { 5951 BUFFER_TRACE(iloc.bh, "get_write_access"); 5952 err = jbd2_journal_get_write_access(handle, iloc.bh); 5953 if (!err) 5954 err = ext4_handle_dirty_metadata(handle, 5955 NULL, 5956 iloc.bh); 5957 brelse(iloc.bh); 5958 } 5959 } 5960 ext4_std_error(inode->i_sb, err); 5961 return err; 5962 } 5963 #endif 5964 5965 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5966 { 5967 journal_t *journal; 5968 handle_t *handle; 5969 int err; 5970 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5971 5972 /* 5973 * We have to be very careful here: changing a data block's 5974 * journaling status dynamically is dangerous. If we write a 5975 * data block to the journal, change the status and then delete 5976 * that block, we risk forgetting to revoke the old log record 5977 * from the journal and so a subsequent replay can corrupt data. 5978 * So, first we make sure that the journal is empty and that 5979 * nobody is changing anything. 5980 */ 5981 5982 journal = EXT4_JOURNAL(inode); 5983 if (!journal) 5984 return 0; 5985 if (is_journal_aborted(journal)) 5986 return -EROFS; 5987 5988 /* Wait for all existing dio workers */ 5989 ext4_inode_block_unlocked_dio(inode); 5990 inode_dio_wait(inode); 5991 5992 /* 5993 * Before flushing the journal and switching inode's aops, we have 5994 * to flush all dirty data the inode has. There can be outstanding 5995 * delayed allocations, there can be unwritten extents created by 5996 * fallocate or buffered writes in dioread_nolock mode covered by 5997 * dirty data which can be converted only after flushing the dirty 5998 * data (and journalled aops don't know how to handle these cases). 5999 */ 6000 if (val) { 6001 down_write(&EXT4_I(inode)->i_mmap_sem); 6002 err = filemap_write_and_wait(inode->i_mapping); 6003 if (err < 0) { 6004 up_write(&EXT4_I(inode)->i_mmap_sem); 6005 ext4_inode_resume_unlocked_dio(inode); 6006 return err; 6007 } 6008 } 6009 6010 percpu_down_write(&sbi->s_journal_flag_rwsem); 6011 jbd2_journal_lock_updates(journal); 6012 6013 /* 6014 * OK, there are no updates running now, and all cached data is 6015 * synced to disk. We are now in a completely consistent state 6016 * which doesn't have anything in the journal, and we know that 6017 * no filesystem updates are running, so it is safe to modify 6018 * the inode's in-core data-journaling state flag now. 6019 */ 6020 6021 if (val) 6022 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6023 else { 6024 err = jbd2_journal_flush(journal); 6025 if (err < 0) { 6026 jbd2_journal_unlock_updates(journal); 6027 percpu_up_write(&sbi->s_journal_flag_rwsem); 6028 ext4_inode_resume_unlocked_dio(inode); 6029 return err; 6030 } 6031 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6032 } 6033 ext4_set_aops(inode); 6034 6035 jbd2_journal_unlock_updates(journal); 6036 percpu_up_write(&sbi->s_journal_flag_rwsem); 6037 6038 if (val) 6039 up_write(&EXT4_I(inode)->i_mmap_sem); 6040 ext4_inode_resume_unlocked_dio(inode); 6041 6042 /* Finally we can mark the inode as dirty. */ 6043 6044 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6045 if (IS_ERR(handle)) 6046 return PTR_ERR(handle); 6047 6048 err = ext4_mark_inode_dirty(handle, inode); 6049 ext4_handle_sync(handle); 6050 ext4_journal_stop(handle); 6051 ext4_std_error(inode->i_sb, err); 6052 6053 return err; 6054 } 6055 6056 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6057 { 6058 return !buffer_mapped(bh); 6059 } 6060 6061 int ext4_page_mkwrite(struct vm_fault *vmf) 6062 { 6063 struct vm_area_struct *vma = vmf->vma; 6064 struct page *page = vmf->page; 6065 loff_t size; 6066 unsigned long len; 6067 int ret; 6068 struct file *file = vma->vm_file; 6069 struct inode *inode = file_inode(file); 6070 struct address_space *mapping = inode->i_mapping; 6071 handle_t *handle; 6072 get_block_t *get_block; 6073 int retries = 0; 6074 6075 sb_start_pagefault(inode->i_sb); 6076 file_update_time(vma->vm_file); 6077 6078 down_read(&EXT4_I(inode)->i_mmap_sem); 6079 6080 ret = ext4_convert_inline_data(inode); 6081 if (ret) 6082 goto out_ret; 6083 6084 /* Delalloc case is easy... */ 6085 if (test_opt(inode->i_sb, DELALLOC) && 6086 !ext4_should_journal_data(inode) && 6087 !ext4_nonda_switch(inode->i_sb)) { 6088 do { 6089 ret = block_page_mkwrite(vma, vmf, 6090 ext4_da_get_block_prep); 6091 } while (ret == -ENOSPC && 6092 ext4_should_retry_alloc(inode->i_sb, &retries)); 6093 goto out_ret; 6094 } 6095 6096 lock_page(page); 6097 size = i_size_read(inode); 6098 /* Page got truncated from under us? */ 6099 if (page->mapping != mapping || page_offset(page) > size) { 6100 unlock_page(page); 6101 ret = VM_FAULT_NOPAGE; 6102 goto out; 6103 } 6104 6105 if (page->index == size >> PAGE_SHIFT) 6106 len = size & ~PAGE_MASK; 6107 else 6108 len = PAGE_SIZE; 6109 /* 6110 * Return if we have all the buffers mapped. This avoids the need to do 6111 * journal_start/journal_stop which can block and take a long time 6112 */ 6113 if (page_has_buffers(page)) { 6114 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6115 0, len, NULL, 6116 ext4_bh_unmapped)) { 6117 /* Wait so that we don't change page under IO */ 6118 wait_for_stable_page(page); 6119 ret = VM_FAULT_LOCKED; 6120 goto out; 6121 } 6122 } 6123 unlock_page(page); 6124 /* OK, we need to fill the hole... */ 6125 if (ext4_should_dioread_nolock(inode)) 6126 get_block = ext4_get_block_unwritten; 6127 else 6128 get_block = ext4_get_block; 6129 retry_alloc: 6130 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6131 ext4_writepage_trans_blocks(inode)); 6132 if (IS_ERR(handle)) { 6133 ret = VM_FAULT_SIGBUS; 6134 goto out; 6135 } 6136 ret = block_page_mkwrite(vma, vmf, get_block); 6137 if (!ret && ext4_should_journal_data(inode)) { 6138 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6139 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6140 unlock_page(page); 6141 ret = VM_FAULT_SIGBUS; 6142 ext4_journal_stop(handle); 6143 goto out; 6144 } 6145 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6146 } 6147 ext4_journal_stop(handle); 6148 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6149 goto retry_alloc; 6150 out_ret: 6151 ret = block_page_mkwrite_return(ret); 6152 out: 6153 up_read(&EXT4_I(inode)->i_mmap_sem); 6154 sb_end_pagefault(inode->i_sb); 6155 return ret; 6156 } 6157 6158 int ext4_filemap_fault(struct vm_fault *vmf) 6159 { 6160 struct inode *inode = file_inode(vmf->vma->vm_file); 6161 int err; 6162 6163 down_read(&EXT4_I(inode)->i_mmap_sem); 6164 err = filemap_fault(vmf); 6165 up_read(&EXT4_I(inode)->i_mmap_sem); 6166 6167 return err; 6168 } 6169