xref: /openbmc/linux/fs/ext4/inode.c (revision 978d13d6)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	return S_ISLNK(inode->i_mode) && inode->i_size &&
152 	       (inode->i_size < EXT4_N_BLOCKS * 4);
153 }
154 
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 				 int nblocks)
162 {
163 	int ret;
164 
165 	/*
166 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167 	 * moment, get_block can be called only for blocks inside i_size since
168 	 * page cache has been already dropped and writes are blocked by
169 	 * i_mutex. So we can safely drop the i_data_sem here.
170 	 */
171 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 	jbd_debug(2, "restarting handle %p\n", handle);
173 	up_write(&EXT4_I(inode)->i_data_sem);
174 	ret = ext4_journal_restart(handle, nblocks);
175 	down_write(&EXT4_I(inode)->i_data_sem);
176 	ext4_discard_preallocations(inode);
177 
178 	return ret;
179 }
180 
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 	handle_t *handle;
187 	int err;
188 	int extra_credits = 3;
189 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
190 
191 	trace_ext4_evict_inode(inode);
192 
193 	if (inode->i_nlink) {
194 		/*
195 		 * When journalling data dirty buffers are tracked only in the
196 		 * journal. So although mm thinks everything is clean and
197 		 * ready for reaping the inode might still have some pages to
198 		 * write in the running transaction or waiting to be
199 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 		 * (via truncate_inode_pages()) to discard these buffers can
201 		 * cause data loss. Also even if we did not discard these
202 		 * buffers, we would have no way to find them after the inode
203 		 * is reaped and thus user could see stale data if he tries to
204 		 * read them before the transaction is checkpointed. So be
205 		 * careful and force everything to disk here... We use
206 		 * ei->i_datasync_tid to store the newest transaction
207 		 * containing inode's data.
208 		 *
209 		 * Note that directories do not have this problem because they
210 		 * don't use page cache.
211 		 */
212 		if (inode->i_ino != EXT4_JOURNAL_INO &&
213 		    ext4_should_journal_data(inode) &&
214 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215 		    inode->i_data.nrpages) {
216 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218 
219 			jbd2_complete_transaction(journal, commit_tid);
220 			filemap_write_and_wait(&inode->i_data);
221 		}
222 		truncate_inode_pages_final(&inode->i_data);
223 
224 		goto no_delete;
225 	}
226 
227 	if (is_bad_inode(inode))
228 		goto no_delete;
229 	dquot_initialize(inode);
230 
231 	if (ext4_should_order_data(inode))
232 		ext4_begin_ordered_truncate(inode, 0);
233 	truncate_inode_pages_final(&inode->i_data);
234 
235 	/*
236 	 * Protect us against freezing - iput() caller didn't have to have any
237 	 * protection against it
238 	 */
239 	sb_start_intwrite(inode->i_sb);
240 
241 	if (!IS_NOQUOTA(inode))
242 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
243 
244 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245 				 ext4_blocks_for_truncate(inode)+extra_credits);
246 	if (IS_ERR(handle)) {
247 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
248 		/*
249 		 * If we're going to skip the normal cleanup, we still need to
250 		 * make sure that the in-core orphan linked list is properly
251 		 * cleaned up.
252 		 */
253 		ext4_orphan_del(NULL, inode);
254 		sb_end_intwrite(inode->i_sb);
255 		goto no_delete;
256 	}
257 
258 	if (IS_SYNC(inode))
259 		ext4_handle_sync(handle);
260 
261 	/*
262 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
263 	 * special handling of symlinks here because i_size is used to
264 	 * determine whether ext4_inode_info->i_data contains symlink data or
265 	 * block mappings. Setting i_size to 0 will remove its fast symlink
266 	 * status. Erase i_data so that it becomes a valid empty block map.
267 	 */
268 	if (ext4_inode_is_fast_symlink(inode))
269 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
270 	inode->i_size = 0;
271 	err = ext4_mark_inode_dirty(handle, inode);
272 	if (err) {
273 		ext4_warning(inode->i_sb,
274 			     "couldn't mark inode dirty (err %d)", err);
275 		goto stop_handle;
276 	}
277 	if (inode->i_blocks) {
278 		err = ext4_truncate(inode);
279 		if (err) {
280 			ext4_error(inode->i_sb,
281 				   "couldn't truncate inode %lu (err %d)",
282 				   inode->i_ino, err);
283 			goto stop_handle;
284 		}
285 	}
286 
287 	/* Remove xattr references. */
288 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
289 				      extra_credits);
290 	if (err) {
291 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
292 stop_handle:
293 		ext4_journal_stop(handle);
294 		ext4_orphan_del(NULL, inode);
295 		sb_end_intwrite(inode->i_sb);
296 		ext4_xattr_inode_array_free(ea_inode_array);
297 		goto no_delete;
298 	}
299 
300 	/*
301 	 * Kill off the orphan record which ext4_truncate created.
302 	 * AKPM: I think this can be inside the above `if'.
303 	 * Note that ext4_orphan_del() has to be able to cope with the
304 	 * deletion of a non-existent orphan - this is because we don't
305 	 * know if ext4_truncate() actually created an orphan record.
306 	 * (Well, we could do this if we need to, but heck - it works)
307 	 */
308 	ext4_orphan_del(handle, inode);
309 	EXT4_I(inode)->i_dtime	= get_seconds();
310 
311 	/*
312 	 * One subtle ordering requirement: if anything has gone wrong
313 	 * (transaction abort, IO errors, whatever), then we can still
314 	 * do these next steps (the fs will already have been marked as
315 	 * having errors), but we can't free the inode if the mark_dirty
316 	 * fails.
317 	 */
318 	if (ext4_mark_inode_dirty(handle, inode))
319 		/* If that failed, just do the required in-core inode clear. */
320 		ext4_clear_inode(inode);
321 	else
322 		ext4_free_inode(handle, inode);
323 	ext4_journal_stop(handle);
324 	sb_end_intwrite(inode->i_sb);
325 	ext4_xattr_inode_array_free(ea_inode_array);
326 	return;
327 no_delete:
328 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
329 }
330 
331 #ifdef CONFIG_QUOTA
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
333 {
334 	return &EXT4_I(inode)->i_reserved_quota;
335 }
336 #endif
337 
338 /*
339  * Called with i_data_sem down, which is important since we can call
340  * ext4_discard_preallocations() from here.
341  */
342 void ext4_da_update_reserve_space(struct inode *inode,
343 					int used, int quota_claim)
344 {
345 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346 	struct ext4_inode_info *ei = EXT4_I(inode);
347 
348 	spin_lock(&ei->i_block_reservation_lock);
349 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350 	if (unlikely(used > ei->i_reserved_data_blocks)) {
351 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352 			 "with only %d reserved data blocks",
353 			 __func__, inode->i_ino, used,
354 			 ei->i_reserved_data_blocks);
355 		WARN_ON(1);
356 		used = ei->i_reserved_data_blocks;
357 	}
358 
359 	/* Update per-inode reservations */
360 	ei->i_reserved_data_blocks -= used;
361 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
362 
363 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
364 
365 	/* Update quota subsystem for data blocks */
366 	if (quota_claim)
367 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
368 	else {
369 		/*
370 		 * We did fallocate with an offset that is already delayed
371 		 * allocated. So on delayed allocated writeback we should
372 		 * not re-claim the quota for fallocated blocks.
373 		 */
374 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
375 	}
376 
377 	/*
378 	 * If we have done all the pending block allocations and if
379 	 * there aren't any writers on the inode, we can discard the
380 	 * inode's preallocations.
381 	 */
382 	if ((ei->i_reserved_data_blocks == 0) &&
383 	    (atomic_read(&inode->i_writecount) == 0))
384 		ext4_discard_preallocations(inode);
385 }
386 
387 static int __check_block_validity(struct inode *inode, const char *func,
388 				unsigned int line,
389 				struct ext4_map_blocks *map)
390 {
391 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
392 				   map->m_len)) {
393 		ext4_error_inode(inode, func, line, map->m_pblk,
394 				 "lblock %lu mapped to illegal pblock "
395 				 "(length %d)", (unsigned long) map->m_lblk,
396 				 map->m_len);
397 		return -EFSCORRUPTED;
398 	}
399 	return 0;
400 }
401 
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
403 		       ext4_lblk_t len)
404 {
405 	int ret;
406 
407 	if (ext4_encrypted_inode(inode))
408 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
409 
410 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411 	if (ret > 0)
412 		ret = 0;
413 
414 	return ret;
415 }
416 
417 #define check_block_validity(inode, map)	\
418 	__check_block_validity((inode), __func__, __LINE__, (map))
419 
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
422 				       struct inode *inode,
423 				       struct ext4_map_blocks *es_map,
424 				       struct ext4_map_blocks *map,
425 				       int flags)
426 {
427 	int retval;
428 
429 	map->m_flags = 0;
430 	/*
431 	 * There is a race window that the result is not the same.
432 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
433 	 * is that we lookup a block mapping in extent status tree with
434 	 * out taking i_data_sem.  So at the time the unwritten extent
435 	 * could be converted.
436 	 */
437 	down_read(&EXT4_I(inode)->i_data_sem);
438 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
440 					     EXT4_GET_BLOCKS_KEEP_SIZE);
441 	} else {
442 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
443 					     EXT4_GET_BLOCKS_KEEP_SIZE);
444 	}
445 	up_read((&EXT4_I(inode)->i_data_sem));
446 
447 	/*
448 	 * We don't check m_len because extent will be collpased in status
449 	 * tree.  So the m_len might not equal.
450 	 */
451 	if (es_map->m_lblk != map->m_lblk ||
452 	    es_map->m_flags != map->m_flags ||
453 	    es_map->m_pblk != map->m_pblk) {
454 		printk("ES cache assertion failed for inode: %lu "
455 		       "es_cached ex [%d/%d/%llu/%x] != "
456 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
458 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
459 		       map->m_len, map->m_pblk, map->m_flags,
460 		       retval, flags);
461 	}
462 }
463 #endif /* ES_AGGRESSIVE_TEST */
464 
465 /*
466  * The ext4_map_blocks() function tries to look up the requested blocks,
467  * and returns if the blocks are already mapped.
468  *
469  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470  * and store the allocated blocks in the result buffer head and mark it
471  * mapped.
472  *
473  * If file type is extents based, it will call ext4_ext_map_blocks(),
474  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
475  * based files
476  *
477  * On success, it returns the number of blocks being mapped or allocated.  if
478  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
480  *
481  * It returns 0 if plain look up failed (blocks have not been allocated), in
482  * that case, @map is returned as unmapped but we still do fill map->m_len to
483  * indicate the length of a hole starting at map->m_lblk.
484  *
485  * It returns the error in case of allocation failure.
486  */
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488 		    struct ext4_map_blocks *map, int flags)
489 {
490 	struct extent_status es;
491 	int retval;
492 	int ret = 0;
493 #ifdef ES_AGGRESSIVE_TEST
494 	struct ext4_map_blocks orig_map;
495 
496 	memcpy(&orig_map, map, sizeof(*map));
497 #endif
498 
499 	map->m_flags = 0;
500 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
502 		  (unsigned long) map->m_lblk);
503 
504 	/*
505 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
506 	 */
507 	if (unlikely(map->m_len > INT_MAX))
508 		map->m_len = INT_MAX;
509 
510 	/* We can handle the block number less than EXT_MAX_BLOCKS */
511 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512 		return -EFSCORRUPTED;
513 
514 	/* Lookup extent status tree firstly */
515 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517 			map->m_pblk = ext4_es_pblock(&es) +
518 					map->m_lblk - es.es_lblk;
519 			map->m_flags |= ext4_es_is_written(&es) ?
520 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521 			retval = es.es_len - (map->m_lblk - es.es_lblk);
522 			if (retval > map->m_len)
523 				retval = map->m_len;
524 			map->m_len = retval;
525 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
526 			map->m_pblk = 0;
527 			retval = es.es_len - (map->m_lblk - es.es_lblk);
528 			if (retval > map->m_len)
529 				retval = map->m_len;
530 			map->m_len = retval;
531 			retval = 0;
532 		} else {
533 			BUG_ON(1);
534 		}
535 #ifdef ES_AGGRESSIVE_TEST
536 		ext4_map_blocks_es_recheck(handle, inode, map,
537 					   &orig_map, flags);
538 #endif
539 		goto found;
540 	}
541 
542 	/*
543 	 * Try to see if we can get the block without requesting a new
544 	 * file system block.
545 	 */
546 	down_read(&EXT4_I(inode)->i_data_sem);
547 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 					     EXT4_GET_BLOCKS_KEEP_SIZE);
550 	} else {
551 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 					     EXT4_GET_BLOCKS_KEEP_SIZE);
553 	}
554 	if (retval > 0) {
555 		unsigned int status;
556 
557 		if (unlikely(retval != map->m_len)) {
558 			ext4_warning(inode->i_sb,
559 				     "ES len assertion failed for inode "
560 				     "%lu: retval %d != map->m_len %d",
561 				     inode->i_ino, retval, map->m_len);
562 			WARN_ON(1);
563 		}
564 
565 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 		    !(status & EXTENT_STATUS_WRITTEN) &&
569 		    ext4_find_delalloc_range(inode, map->m_lblk,
570 					     map->m_lblk + map->m_len - 1))
571 			status |= EXTENT_STATUS_DELAYED;
572 		ret = ext4_es_insert_extent(inode, map->m_lblk,
573 					    map->m_len, map->m_pblk, status);
574 		if (ret < 0)
575 			retval = ret;
576 	}
577 	up_read((&EXT4_I(inode)->i_data_sem));
578 
579 found:
580 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581 		ret = check_block_validity(inode, map);
582 		if (ret != 0)
583 			return ret;
584 	}
585 
586 	/* If it is only a block(s) look up */
587 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588 		return retval;
589 
590 	/*
591 	 * Returns if the blocks have already allocated
592 	 *
593 	 * Note that if blocks have been preallocated
594 	 * ext4_ext_get_block() returns the create = 0
595 	 * with buffer head unmapped.
596 	 */
597 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598 		/*
599 		 * If we need to convert extent to unwritten
600 		 * we continue and do the actual work in
601 		 * ext4_ext_map_blocks()
602 		 */
603 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604 			return retval;
605 
606 	/*
607 	 * Here we clear m_flags because after allocating an new extent,
608 	 * it will be set again.
609 	 */
610 	map->m_flags &= ~EXT4_MAP_FLAGS;
611 
612 	/*
613 	 * New blocks allocate and/or writing to unwritten extent
614 	 * will possibly result in updating i_data, so we take
615 	 * the write lock of i_data_sem, and call get_block()
616 	 * with create == 1 flag.
617 	 */
618 	down_write(&EXT4_I(inode)->i_data_sem);
619 
620 	/*
621 	 * We need to check for EXT4 here because migrate
622 	 * could have changed the inode type in between
623 	 */
624 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
626 	} else {
627 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
628 
629 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630 			/*
631 			 * We allocated new blocks which will result in
632 			 * i_data's format changing.  Force the migrate
633 			 * to fail by clearing migrate flags
634 			 */
635 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636 		}
637 
638 		/*
639 		 * Update reserved blocks/metadata blocks after successful
640 		 * block allocation which had been deferred till now. We don't
641 		 * support fallocate for non extent files. So we can update
642 		 * reserve space here.
643 		 */
644 		if ((retval > 0) &&
645 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646 			ext4_da_update_reserve_space(inode, retval, 1);
647 	}
648 
649 	if (retval > 0) {
650 		unsigned int status;
651 
652 		if (unlikely(retval != map->m_len)) {
653 			ext4_warning(inode->i_sb,
654 				     "ES len assertion failed for inode "
655 				     "%lu: retval %d != map->m_len %d",
656 				     inode->i_ino, retval, map->m_len);
657 			WARN_ON(1);
658 		}
659 
660 		/*
661 		 * We have to zeroout blocks before inserting them into extent
662 		 * status tree. Otherwise someone could look them up there and
663 		 * use them before they are really zeroed. We also have to
664 		 * unmap metadata before zeroing as otherwise writeback can
665 		 * overwrite zeros with stale data from block device.
666 		 */
667 		if (flags & EXT4_GET_BLOCKS_ZERO &&
668 		    map->m_flags & EXT4_MAP_MAPPED &&
669 		    map->m_flags & EXT4_MAP_NEW) {
670 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
671 					   map->m_len);
672 			ret = ext4_issue_zeroout(inode, map->m_lblk,
673 						 map->m_pblk, map->m_len);
674 			if (ret) {
675 				retval = ret;
676 				goto out_sem;
677 			}
678 		}
679 
680 		/*
681 		 * If the extent has been zeroed out, we don't need to update
682 		 * extent status tree.
683 		 */
684 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686 			if (ext4_es_is_written(&es))
687 				goto out_sem;
688 		}
689 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692 		    !(status & EXTENT_STATUS_WRITTEN) &&
693 		    ext4_find_delalloc_range(inode, map->m_lblk,
694 					     map->m_lblk + map->m_len - 1))
695 			status |= EXTENT_STATUS_DELAYED;
696 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697 					    map->m_pblk, status);
698 		if (ret < 0) {
699 			retval = ret;
700 			goto out_sem;
701 		}
702 	}
703 
704 out_sem:
705 	up_write((&EXT4_I(inode)->i_data_sem));
706 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707 		ret = check_block_validity(inode, map);
708 		if (ret != 0)
709 			return ret;
710 
711 		/*
712 		 * Inodes with freshly allocated blocks where contents will be
713 		 * visible after transaction commit must be on transaction's
714 		 * ordered data list.
715 		 */
716 		if (map->m_flags & EXT4_MAP_NEW &&
717 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
719 		    !ext4_is_quota_file(inode) &&
720 		    ext4_should_order_data(inode)) {
721 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 				ret = ext4_jbd2_inode_add_wait(handle, inode);
723 			else
724 				ret = ext4_jbd2_inode_add_write(handle, inode);
725 			if (ret)
726 				return ret;
727 		}
728 	}
729 	return retval;
730 }
731 
732 /*
733  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734  * we have to be careful as someone else may be manipulating b_state as well.
735  */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738 	unsigned long old_state;
739 	unsigned long new_state;
740 
741 	flags &= EXT4_MAP_FLAGS;
742 
743 	/* Dummy buffer_head? Set non-atomically. */
744 	if (!bh->b_page) {
745 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746 		return;
747 	}
748 	/*
749 	 * Someone else may be modifying b_state. Be careful! This is ugly but
750 	 * once we get rid of using bh as a container for mapping information
751 	 * to pass to / from get_block functions, this can go away.
752 	 */
753 	do {
754 		old_state = READ_ONCE(bh->b_state);
755 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756 	} while (unlikely(
757 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759 
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 			   struct buffer_head *bh, int flags)
762 {
763 	struct ext4_map_blocks map;
764 	int ret = 0;
765 
766 	if (ext4_has_inline_data(inode))
767 		return -ERANGE;
768 
769 	map.m_lblk = iblock;
770 	map.m_len = bh->b_size >> inode->i_blkbits;
771 
772 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773 			      flags);
774 	if (ret > 0) {
775 		map_bh(bh, inode->i_sb, map.m_pblk);
776 		ext4_update_bh_state(bh, map.m_flags);
777 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778 		ret = 0;
779 	} else if (ret == 0) {
780 		/* hole case, need to fill in bh->b_size */
781 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782 	}
783 	return ret;
784 }
785 
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 		   struct buffer_head *bh, int create)
788 {
789 	return _ext4_get_block(inode, iblock, bh,
790 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792 
793 /*
794  * Get block function used when preparing for buffered write if we require
795  * creating an unwritten extent if blocks haven't been allocated.  The extent
796  * will be converted to written after the IO is complete.
797  */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 			     struct buffer_head *bh_result, int create)
800 {
801 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 		   inode->i_ino, create);
803 	return _ext4_get_block(inode, iblock, bh_result,
804 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806 
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809 
810 /*
811  * Get blocks function for the cases that need to start a transaction -
812  * generally difference cases of direct IO and DAX IO. It also handles retries
813  * in case of ENOSPC.
814  */
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816 				struct buffer_head *bh_result, int flags)
817 {
818 	int dio_credits;
819 	handle_t *handle;
820 	int retries = 0;
821 	int ret;
822 
823 	/* Trim mapping request to maximum we can map at once for DIO */
824 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826 	dio_credits = ext4_chunk_trans_blocks(inode,
827 				      bh_result->b_size >> inode->i_blkbits);
828 retry:
829 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
830 	if (IS_ERR(handle))
831 		return PTR_ERR(handle);
832 
833 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
834 	ext4_journal_stop(handle);
835 
836 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
837 		goto retry;
838 	return ret;
839 }
840 
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843 		       struct buffer_head *bh, int create)
844 {
845 	/* We don't expect handle for direct IO */
846 	WARN_ON_ONCE(ext4_journal_current_handle());
847 
848 	if (!create)
849 		return _ext4_get_block(inode, iblock, bh, 0);
850 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
851 }
852 
853 /*
854  * Get block function for AIO DIO writes when we create unwritten extent if
855  * blocks are not allocated yet. The extent will be converted to written
856  * after IO is complete.
857  */
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859 		sector_t iblock, struct buffer_head *bh_result,	int create)
860 {
861 	int ret;
862 
863 	/* We don't expect handle for direct IO */
864 	WARN_ON_ONCE(ext4_journal_current_handle());
865 
866 	ret = ext4_get_block_trans(inode, iblock, bh_result,
867 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
868 
869 	/*
870 	 * When doing DIO using unwritten extents, we need io_end to convert
871 	 * unwritten extents to written on IO completion. We allocate io_end
872 	 * once we spot unwritten extent and store it in b_private. Generic
873 	 * DIO code keeps b_private set and furthermore passes the value to
874 	 * our completion callback in 'private' argument.
875 	 */
876 	if (!ret && buffer_unwritten(bh_result)) {
877 		if (!bh_result->b_private) {
878 			ext4_io_end_t *io_end;
879 
880 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
881 			if (!io_end)
882 				return -ENOMEM;
883 			bh_result->b_private = io_end;
884 			ext4_set_io_unwritten_flag(inode, io_end);
885 		}
886 		set_buffer_defer_completion(bh_result);
887 	}
888 
889 	return ret;
890 }
891 
892 /*
893  * Get block function for non-AIO DIO writes when we create unwritten extent if
894  * blocks are not allocated yet. The extent will be converted to written
895  * after IO is complete from ext4_ext_direct_IO() function.
896  */
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898 		sector_t iblock, struct buffer_head *bh_result,	int create)
899 {
900 	int ret;
901 
902 	/* We don't expect handle for direct IO */
903 	WARN_ON_ONCE(ext4_journal_current_handle());
904 
905 	ret = ext4_get_block_trans(inode, iblock, bh_result,
906 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
907 
908 	/*
909 	 * Mark inode as having pending DIO writes to unwritten extents.
910 	 * ext4_ext_direct_IO() checks this flag and converts extents to
911 	 * written.
912 	 */
913 	if (!ret && buffer_unwritten(bh_result))
914 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
915 
916 	return ret;
917 }
918 
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920 		   struct buffer_head *bh_result, int create)
921 {
922 	int ret;
923 
924 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925 		   inode->i_ino, create);
926 	/* We don't expect handle for direct IO */
927 	WARN_ON_ONCE(ext4_journal_current_handle());
928 
929 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
930 	/*
931 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
932 	 * that.
933 	 */
934 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
935 
936 	return ret;
937 }
938 
939 
940 /*
941  * `handle' can be NULL if create is zero
942  */
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944 				ext4_lblk_t block, int map_flags)
945 {
946 	struct ext4_map_blocks map;
947 	struct buffer_head *bh;
948 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
949 	int err;
950 
951 	J_ASSERT(handle != NULL || create == 0);
952 
953 	map.m_lblk = block;
954 	map.m_len = 1;
955 	err = ext4_map_blocks(handle, inode, &map, map_flags);
956 
957 	if (err == 0)
958 		return create ? ERR_PTR(-ENOSPC) : NULL;
959 	if (err < 0)
960 		return ERR_PTR(err);
961 
962 	bh = sb_getblk(inode->i_sb, map.m_pblk);
963 	if (unlikely(!bh))
964 		return ERR_PTR(-ENOMEM);
965 	if (map.m_flags & EXT4_MAP_NEW) {
966 		J_ASSERT(create != 0);
967 		J_ASSERT(handle != NULL);
968 
969 		/*
970 		 * Now that we do not always journal data, we should
971 		 * keep in mind whether this should always journal the
972 		 * new buffer as metadata.  For now, regular file
973 		 * writes use ext4_get_block instead, so it's not a
974 		 * problem.
975 		 */
976 		lock_buffer(bh);
977 		BUFFER_TRACE(bh, "call get_create_access");
978 		err = ext4_journal_get_create_access(handle, bh);
979 		if (unlikely(err)) {
980 			unlock_buffer(bh);
981 			goto errout;
982 		}
983 		if (!buffer_uptodate(bh)) {
984 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985 			set_buffer_uptodate(bh);
986 		}
987 		unlock_buffer(bh);
988 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989 		err = ext4_handle_dirty_metadata(handle, inode, bh);
990 		if (unlikely(err))
991 			goto errout;
992 	} else
993 		BUFFER_TRACE(bh, "not a new buffer");
994 	return bh;
995 errout:
996 	brelse(bh);
997 	return ERR_PTR(err);
998 }
999 
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001 			       ext4_lblk_t block, int map_flags)
1002 {
1003 	struct buffer_head *bh;
1004 
1005 	bh = ext4_getblk(handle, inode, block, map_flags);
1006 	if (IS_ERR(bh))
1007 		return bh;
1008 	if (!bh || buffer_uptodate(bh))
1009 		return bh;
1010 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1011 	wait_on_buffer(bh);
1012 	if (buffer_uptodate(bh))
1013 		return bh;
1014 	put_bh(bh);
1015 	return ERR_PTR(-EIO);
1016 }
1017 
1018 int ext4_walk_page_buffers(handle_t *handle,
1019 			   struct buffer_head *head,
1020 			   unsigned from,
1021 			   unsigned to,
1022 			   int *partial,
1023 			   int (*fn)(handle_t *handle,
1024 				     struct buffer_head *bh))
1025 {
1026 	struct buffer_head *bh;
1027 	unsigned block_start, block_end;
1028 	unsigned blocksize = head->b_size;
1029 	int err, ret = 0;
1030 	struct buffer_head *next;
1031 
1032 	for (bh = head, block_start = 0;
1033 	     ret == 0 && (bh != head || !block_start);
1034 	     block_start = block_end, bh = next) {
1035 		next = bh->b_this_page;
1036 		block_end = block_start + blocksize;
1037 		if (block_end <= from || block_start >= to) {
1038 			if (partial && !buffer_uptodate(bh))
1039 				*partial = 1;
1040 			continue;
1041 		}
1042 		err = (*fn)(handle, bh);
1043 		if (!ret)
1044 			ret = err;
1045 	}
1046 	return ret;
1047 }
1048 
1049 /*
1050  * To preserve ordering, it is essential that the hole instantiation and
1051  * the data write be encapsulated in a single transaction.  We cannot
1052  * close off a transaction and start a new one between the ext4_get_block()
1053  * and the commit_write().  So doing the jbd2_journal_start at the start of
1054  * prepare_write() is the right place.
1055  *
1056  * Also, this function can nest inside ext4_writepage().  In that case, we
1057  * *know* that ext4_writepage() has generated enough buffer credits to do the
1058  * whole page.  So we won't block on the journal in that case, which is good,
1059  * because the caller may be PF_MEMALLOC.
1060  *
1061  * By accident, ext4 can be reentered when a transaction is open via
1062  * quota file writes.  If we were to commit the transaction while thus
1063  * reentered, there can be a deadlock - we would be holding a quota
1064  * lock, and the commit would never complete if another thread had a
1065  * transaction open and was blocking on the quota lock - a ranking
1066  * violation.
1067  *
1068  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1069  * will _not_ run commit under these circumstances because handle->h_ref
1070  * is elevated.  We'll still have enough credits for the tiny quotafile
1071  * write.
1072  */
1073 int do_journal_get_write_access(handle_t *handle,
1074 				struct buffer_head *bh)
1075 {
1076 	int dirty = buffer_dirty(bh);
1077 	int ret;
1078 
1079 	if (!buffer_mapped(bh) || buffer_freed(bh))
1080 		return 0;
1081 	/*
1082 	 * __block_write_begin() could have dirtied some buffers. Clean
1083 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1084 	 * otherwise about fs integrity issues. Setting of the dirty bit
1085 	 * by __block_write_begin() isn't a real problem here as we clear
1086 	 * the bit before releasing a page lock and thus writeback cannot
1087 	 * ever write the buffer.
1088 	 */
1089 	if (dirty)
1090 		clear_buffer_dirty(bh);
1091 	BUFFER_TRACE(bh, "get write access");
1092 	ret = ext4_journal_get_write_access(handle, bh);
1093 	if (!ret && dirty)
1094 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1095 	return ret;
1096 }
1097 
1098 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1099 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1100 				  get_block_t *get_block)
1101 {
1102 	unsigned from = pos & (PAGE_SIZE - 1);
1103 	unsigned to = from + len;
1104 	struct inode *inode = page->mapping->host;
1105 	unsigned block_start, block_end;
1106 	sector_t block;
1107 	int err = 0;
1108 	unsigned blocksize = inode->i_sb->s_blocksize;
1109 	unsigned bbits;
1110 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1111 	bool decrypt = false;
1112 
1113 	BUG_ON(!PageLocked(page));
1114 	BUG_ON(from > PAGE_SIZE);
1115 	BUG_ON(to > PAGE_SIZE);
1116 	BUG_ON(from > to);
1117 
1118 	if (!page_has_buffers(page))
1119 		create_empty_buffers(page, blocksize, 0);
1120 	head = page_buffers(page);
1121 	bbits = ilog2(blocksize);
1122 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1123 
1124 	for (bh = head, block_start = 0; bh != head || !block_start;
1125 	    block++, block_start = block_end, bh = bh->b_this_page) {
1126 		block_end = block_start + blocksize;
1127 		if (block_end <= from || block_start >= to) {
1128 			if (PageUptodate(page)) {
1129 				if (!buffer_uptodate(bh))
1130 					set_buffer_uptodate(bh);
1131 			}
1132 			continue;
1133 		}
1134 		if (buffer_new(bh))
1135 			clear_buffer_new(bh);
1136 		if (!buffer_mapped(bh)) {
1137 			WARN_ON(bh->b_size != blocksize);
1138 			err = get_block(inode, block, bh, 1);
1139 			if (err)
1140 				break;
1141 			if (buffer_new(bh)) {
1142 				clean_bdev_bh_alias(bh);
1143 				if (PageUptodate(page)) {
1144 					clear_buffer_new(bh);
1145 					set_buffer_uptodate(bh);
1146 					mark_buffer_dirty(bh);
1147 					continue;
1148 				}
1149 				if (block_end > to || block_start < from)
1150 					zero_user_segments(page, to, block_end,
1151 							   block_start, from);
1152 				continue;
1153 			}
1154 		}
1155 		if (PageUptodate(page)) {
1156 			if (!buffer_uptodate(bh))
1157 				set_buffer_uptodate(bh);
1158 			continue;
1159 		}
1160 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1161 		    !buffer_unwritten(bh) &&
1162 		    (block_start < from || block_end > to)) {
1163 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1164 			*wait_bh++ = bh;
1165 			decrypt = ext4_encrypted_inode(inode) &&
1166 				S_ISREG(inode->i_mode);
1167 		}
1168 	}
1169 	/*
1170 	 * If we issued read requests, let them complete.
1171 	 */
1172 	while (wait_bh > wait) {
1173 		wait_on_buffer(*--wait_bh);
1174 		if (!buffer_uptodate(*wait_bh))
1175 			err = -EIO;
1176 	}
1177 	if (unlikely(err))
1178 		page_zero_new_buffers(page, from, to);
1179 	else if (decrypt)
1180 		err = fscrypt_decrypt_page(page->mapping->host, page,
1181 				PAGE_SIZE, 0, page->index);
1182 	return err;
1183 }
1184 #endif
1185 
1186 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1187 			    loff_t pos, unsigned len, unsigned flags,
1188 			    struct page **pagep, void **fsdata)
1189 {
1190 	struct inode *inode = mapping->host;
1191 	int ret, needed_blocks;
1192 	handle_t *handle;
1193 	int retries = 0;
1194 	struct page *page;
1195 	pgoff_t index;
1196 	unsigned from, to;
1197 
1198 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1199 		return -EIO;
1200 
1201 	trace_ext4_write_begin(inode, pos, len, flags);
1202 	/*
1203 	 * Reserve one block more for addition to orphan list in case
1204 	 * we allocate blocks but write fails for some reason
1205 	 */
1206 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1207 	index = pos >> PAGE_SHIFT;
1208 	from = pos & (PAGE_SIZE - 1);
1209 	to = from + len;
1210 
1211 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1212 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1213 						    flags, pagep);
1214 		if (ret < 0)
1215 			return ret;
1216 		if (ret == 1)
1217 			return 0;
1218 	}
1219 
1220 	/*
1221 	 * grab_cache_page_write_begin() can take a long time if the
1222 	 * system is thrashing due to memory pressure, or if the page
1223 	 * is being written back.  So grab it first before we start
1224 	 * the transaction handle.  This also allows us to allocate
1225 	 * the page (if needed) without using GFP_NOFS.
1226 	 */
1227 retry_grab:
1228 	page = grab_cache_page_write_begin(mapping, index, flags);
1229 	if (!page)
1230 		return -ENOMEM;
1231 	unlock_page(page);
1232 
1233 retry_journal:
1234 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1235 	if (IS_ERR(handle)) {
1236 		put_page(page);
1237 		return PTR_ERR(handle);
1238 	}
1239 
1240 	lock_page(page);
1241 	if (page->mapping != mapping) {
1242 		/* The page got truncated from under us */
1243 		unlock_page(page);
1244 		put_page(page);
1245 		ext4_journal_stop(handle);
1246 		goto retry_grab;
1247 	}
1248 	/* In case writeback began while the page was unlocked */
1249 	wait_for_stable_page(page);
1250 
1251 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1252 	if (ext4_should_dioread_nolock(inode))
1253 		ret = ext4_block_write_begin(page, pos, len,
1254 					     ext4_get_block_unwritten);
1255 	else
1256 		ret = ext4_block_write_begin(page, pos, len,
1257 					     ext4_get_block);
1258 #else
1259 	if (ext4_should_dioread_nolock(inode))
1260 		ret = __block_write_begin(page, pos, len,
1261 					  ext4_get_block_unwritten);
1262 	else
1263 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1264 #endif
1265 	if (!ret && ext4_should_journal_data(inode)) {
1266 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1267 					     from, to, NULL,
1268 					     do_journal_get_write_access);
1269 	}
1270 
1271 	if (ret) {
1272 		unlock_page(page);
1273 		/*
1274 		 * __block_write_begin may have instantiated a few blocks
1275 		 * outside i_size.  Trim these off again. Don't need
1276 		 * i_size_read because we hold i_mutex.
1277 		 *
1278 		 * Add inode to orphan list in case we crash before
1279 		 * truncate finishes
1280 		 */
1281 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1282 			ext4_orphan_add(handle, inode);
1283 
1284 		ext4_journal_stop(handle);
1285 		if (pos + len > inode->i_size) {
1286 			ext4_truncate_failed_write(inode);
1287 			/*
1288 			 * If truncate failed early the inode might
1289 			 * still be on the orphan list; we need to
1290 			 * make sure the inode is removed from the
1291 			 * orphan list in that case.
1292 			 */
1293 			if (inode->i_nlink)
1294 				ext4_orphan_del(NULL, inode);
1295 		}
1296 
1297 		if (ret == -ENOSPC &&
1298 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1299 			goto retry_journal;
1300 		put_page(page);
1301 		return ret;
1302 	}
1303 	*pagep = page;
1304 	return ret;
1305 }
1306 
1307 /* For write_end() in data=journal mode */
1308 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1309 {
1310 	int ret;
1311 	if (!buffer_mapped(bh) || buffer_freed(bh))
1312 		return 0;
1313 	set_buffer_uptodate(bh);
1314 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1315 	clear_buffer_meta(bh);
1316 	clear_buffer_prio(bh);
1317 	return ret;
1318 }
1319 
1320 /*
1321  * We need to pick up the new inode size which generic_commit_write gave us
1322  * `file' can be NULL - eg, when called from page_symlink().
1323  *
1324  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1325  * buffers are managed internally.
1326  */
1327 static int ext4_write_end(struct file *file,
1328 			  struct address_space *mapping,
1329 			  loff_t pos, unsigned len, unsigned copied,
1330 			  struct page *page, void *fsdata)
1331 {
1332 	handle_t *handle = ext4_journal_current_handle();
1333 	struct inode *inode = mapping->host;
1334 	loff_t old_size = inode->i_size;
1335 	int ret = 0, ret2;
1336 	int i_size_changed = 0;
1337 
1338 	trace_ext4_write_end(inode, pos, len, copied);
1339 	if (ext4_has_inline_data(inode)) {
1340 		ret = ext4_write_inline_data_end(inode, pos, len,
1341 						 copied, page);
1342 		if (ret < 0) {
1343 			unlock_page(page);
1344 			put_page(page);
1345 			goto errout;
1346 		}
1347 		copied = ret;
1348 	} else
1349 		copied = block_write_end(file, mapping, pos,
1350 					 len, copied, page, fsdata);
1351 	/*
1352 	 * it's important to update i_size while still holding page lock:
1353 	 * page writeout could otherwise come in and zero beyond i_size.
1354 	 */
1355 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1356 	unlock_page(page);
1357 	put_page(page);
1358 
1359 	if (old_size < pos)
1360 		pagecache_isize_extended(inode, old_size, pos);
1361 	/*
1362 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1363 	 * makes the holding time of page lock longer. Second, it forces lock
1364 	 * ordering of page lock and transaction start for journaling
1365 	 * filesystems.
1366 	 */
1367 	if (i_size_changed)
1368 		ext4_mark_inode_dirty(handle, inode);
1369 
1370 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1371 		/* if we have allocated more blocks and copied
1372 		 * less. We will have blocks allocated outside
1373 		 * inode->i_size. So truncate them
1374 		 */
1375 		ext4_orphan_add(handle, inode);
1376 errout:
1377 	ret2 = ext4_journal_stop(handle);
1378 	if (!ret)
1379 		ret = ret2;
1380 
1381 	if (pos + len > inode->i_size) {
1382 		ext4_truncate_failed_write(inode);
1383 		/*
1384 		 * If truncate failed early the inode might still be
1385 		 * on the orphan list; we need to make sure the inode
1386 		 * is removed from the orphan list in that case.
1387 		 */
1388 		if (inode->i_nlink)
1389 			ext4_orphan_del(NULL, inode);
1390 	}
1391 
1392 	return ret ? ret : copied;
1393 }
1394 
1395 /*
1396  * This is a private version of page_zero_new_buffers() which doesn't
1397  * set the buffer to be dirty, since in data=journalled mode we need
1398  * to call ext4_handle_dirty_metadata() instead.
1399  */
1400 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1401 					    struct page *page,
1402 					    unsigned from, unsigned to)
1403 {
1404 	unsigned int block_start = 0, block_end;
1405 	struct buffer_head *head, *bh;
1406 
1407 	bh = head = page_buffers(page);
1408 	do {
1409 		block_end = block_start + bh->b_size;
1410 		if (buffer_new(bh)) {
1411 			if (block_end > from && block_start < to) {
1412 				if (!PageUptodate(page)) {
1413 					unsigned start, size;
1414 
1415 					start = max(from, block_start);
1416 					size = min(to, block_end) - start;
1417 
1418 					zero_user(page, start, size);
1419 					write_end_fn(handle, bh);
1420 				}
1421 				clear_buffer_new(bh);
1422 			}
1423 		}
1424 		block_start = block_end;
1425 		bh = bh->b_this_page;
1426 	} while (bh != head);
1427 }
1428 
1429 static int ext4_journalled_write_end(struct file *file,
1430 				     struct address_space *mapping,
1431 				     loff_t pos, unsigned len, unsigned copied,
1432 				     struct page *page, void *fsdata)
1433 {
1434 	handle_t *handle = ext4_journal_current_handle();
1435 	struct inode *inode = mapping->host;
1436 	loff_t old_size = inode->i_size;
1437 	int ret = 0, ret2;
1438 	int partial = 0;
1439 	unsigned from, to;
1440 	int size_changed = 0;
1441 
1442 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1443 	from = pos & (PAGE_SIZE - 1);
1444 	to = from + len;
1445 
1446 	BUG_ON(!ext4_handle_valid(handle));
1447 
1448 	if (ext4_has_inline_data(inode)) {
1449 		ret = ext4_write_inline_data_end(inode, pos, len,
1450 						 copied, page);
1451 		if (ret < 0) {
1452 			unlock_page(page);
1453 			put_page(page);
1454 			goto errout;
1455 		}
1456 		copied = ret;
1457 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1458 		copied = 0;
1459 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1460 	} else {
1461 		if (unlikely(copied < len))
1462 			ext4_journalled_zero_new_buffers(handle, page,
1463 							 from + copied, to);
1464 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1465 					     from + copied, &partial,
1466 					     write_end_fn);
1467 		if (!partial)
1468 			SetPageUptodate(page);
1469 	}
1470 	size_changed = ext4_update_inode_size(inode, pos + copied);
1471 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1472 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1473 	unlock_page(page);
1474 	put_page(page);
1475 
1476 	if (old_size < pos)
1477 		pagecache_isize_extended(inode, old_size, pos);
1478 
1479 	if (size_changed) {
1480 		ret2 = ext4_mark_inode_dirty(handle, inode);
1481 		if (!ret)
1482 			ret = ret2;
1483 	}
1484 
1485 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1486 		/* if we have allocated more blocks and copied
1487 		 * less. We will have blocks allocated outside
1488 		 * inode->i_size. So truncate them
1489 		 */
1490 		ext4_orphan_add(handle, inode);
1491 
1492 errout:
1493 	ret2 = ext4_journal_stop(handle);
1494 	if (!ret)
1495 		ret = ret2;
1496 	if (pos + len > inode->i_size) {
1497 		ext4_truncate_failed_write(inode);
1498 		/*
1499 		 * If truncate failed early the inode might still be
1500 		 * on the orphan list; we need to make sure the inode
1501 		 * is removed from the orphan list in that case.
1502 		 */
1503 		if (inode->i_nlink)
1504 			ext4_orphan_del(NULL, inode);
1505 	}
1506 
1507 	return ret ? ret : copied;
1508 }
1509 
1510 /*
1511  * Reserve space for a single cluster
1512  */
1513 static int ext4_da_reserve_space(struct inode *inode)
1514 {
1515 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516 	struct ext4_inode_info *ei = EXT4_I(inode);
1517 	int ret;
1518 
1519 	/*
1520 	 * We will charge metadata quota at writeout time; this saves
1521 	 * us from metadata over-estimation, though we may go over by
1522 	 * a small amount in the end.  Here we just reserve for data.
1523 	 */
1524 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1525 	if (ret)
1526 		return ret;
1527 
1528 	spin_lock(&ei->i_block_reservation_lock);
1529 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1530 		spin_unlock(&ei->i_block_reservation_lock);
1531 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1532 		return -ENOSPC;
1533 	}
1534 	ei->i_reserved_data_blocks++;
1535 	trace_ext4_da_reserve_space(inode);
1536 	spin_unlock(&ei->i_block_reservation_lock);
1537 
1538 	return 0;       /* success */
1539 }
1540 
1541 static void ext4_da_release_space(struct inode *inode, int to_free)
1542 {
1543 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1544 	struct ext4_inode_info *ei = EXT4_I(inode);
1545 
1546 	if (!to_free)
1547 		return;		/* Nothing to release, exit */
1548 
1549 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1550 
1551 	trace_ext4_da_release_space(inode, to_free);
1552 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1553 		/*
1554 		 * if there aren't enough reserved blocks, then the
1555 		 * counter is messed up somewhere.  Since this
1556 		 * function is called from invalidate page, it's
1557 		 * harmless to return without any action.
1558 		 */
1559 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1560 			 "ino %lu, to_free %d with only %d reserved "
1561 			 "data blocks", inode->i_ino, to_free,
1562 			 ei->i_reserved_data_blocks);
1563 		WARN_ON(1);
1564 		to_free = ei->i_reserved_data_blocks;
1565 	}
1566 	ei->i_reserved_data_blocks -= to_free;
1567 
1568 	/* update fs dirty data blocks counter */
1569 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1570 
1571 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1572 
1573 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1574 }
1575 
1576 static void ext4_da_page_release_reservation(struct page *page,
1577 					     unsigned int offset,
1578 					     unsigned int length)
1579 {
1580 	int to_release = 0, contiguous_blks = 0;
1581 	struct buffer_head *head, *bh;
1582 	unsigned int curr_off = 0;
1583 	struct inode *inode = page->mapping->host;
1584 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1585 	unsigned int stop = offset + length;
1586 	int num_clusters;
1587 	ext4_fsblk_t lblk;
1588 
1589 	BUG_ON(stop > PAGE_SIZE || stop < length);
1590 
1591 	head = page_buffers(page);
1592 	bh = head;
1593 	do {
1594 		unsigned int next_off = curr_off + bh->b_size;
1595 
1596 		if (next_off > stop)
1597 			break;
1598 
1599 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1600 			to_release++;
1601 			contiguous_blks++;
1602 			clear_buffer_delay(bh);
1603 		} else if (contiguous_blks) {
1604 			lblk = page->index <<
1605 			       (PAGE_SHIFT - inode->i_blkbits);
1606 			lblk += (curr_off >> inode->i_blkbits) -
1607 				contiguous_blks;
1608 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1609 			contiguous_blks = 0;
1610 		}
1611 		curr_off = next_off;
1612 	} while ((bh = bh->b_this_page) != head);
1613 
1614 	if (contiguous_blks) {
1615 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1616 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1617 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1618 	}
1619 
1620 	/* If we have released all the blocks belonging to a cluster, then we
1621 	 * need to release the reserved space for that cluster. */
1622 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1623 	while (num_clusters > 0) {
1624 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1625 			((num_clusters - 1) << sbi->s_cluster_bits);
1626 		if (sbi->s_cluster_ratio == 1 ||
1627 		    !ext4_find_delalloc_cluster(inode, lblk))
1628 			ext4_da_release_space(inode, 1);
1629 
1630 		num_clusters--;
1631 	}
1632 }
1633 
1634 /*
1635  * Delayed allocation stuff
1636  */
1637 
1638 struct mpage_da_data {
1639 	struct inode *inode;
1640 	struct writeback_control *wbc;
1641 
1642 	pgoff_t first_page;	/* The first page to write */
1643 	pgoff_t next_page;	/* Current page to examine */
1644 	pgoff_t last_page;	/* Last page to examine */
1645 	/*
1646 	 * Extent to map - this can be after first_page because that can be
1647 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1648 	 * is delalloc or unwritten.
1649 	 */
1650 	struct ext4_map_blocks map;
1651 	struct ext4_io_submit io_submit;	/* IO submission data */
1652 	unsigned int do_map:1;
1653 };
1654 
1655 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1656 				       bool invalidate)
1657 {
1658 	int nr_pages, i;
1659 	pgoff_t index, end;
1660 	struct pagevec pvec;
1661 	struct inode *inode = mpd->inode;
1662 	struct address_space *mapping = inode->i_mapping;
1663 
1664 	/* This is necessary when next_page == 0. */
1665 	if (mpd->first_page >= mpd->next_page)
1666 		return;
1667 
1668 	index = mpd->first_page;
1669 	end   = mpd->next_page - 1;
1670 	if (invalidate) {
1671 		ext4_lblk_t start, last;
1672 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1673 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1674 		ext4_es_remove_extent(inode, start, last - start + 1);
1675 	}
1676 
1677 	pagevec_init(&pvec, 0);
1678 	while (index <= end) {
1679 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1680 		if (nr_pages == 0)
1681 			break;
1682 		for (i = 0; i < nr_pages; i++) {
1683 			struct page *page = pvec.pages[i];
1684 			if (page->index > end)
1685 				break;
1686 			BUG_ON(!PageLocked(page));
1687 			BUG_ON(PageWriteback(page));
1688 			if (invalidate) {
1689 				if (page_mapped(page))
1690 					clear_page_dirty_for_io(page);
1691 				block_invalidatepage(page, 0, PAGE_SIZE);
1692 				ClearPageUptodate(page);
1693 			}
1694 			unlock_page(page);
1695 		}
1696 		index = pvec.pages[nr_pages - 1]->index + 1;
1697 		pagevec_release(&pvec);
1698 	}
1699 }
1700 
1701 static void ext4_print_free_blocks(struct inode *inode)
1702 {
1703 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1704 	struct super_block *sb = inode->i_sb;
1705 	struct ext4_inode_info *ei = EXT4_I(inode);
1706 
1707 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1708 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1709 			ext4_count_free_clusters(sb)));
1710 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1711 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1712 	       (long long) EXT4_C2B(EXT4_SB(sb),
1713 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1714 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1715 	       (long long) EXT4_C2B(EXT4_SB(sb),
1716 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1717 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1718 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1719 		 ei->i_reserved_data_blocks);
1720 	return;
1721 }
1722 
1723 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1724 {
1725 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1726 }
1727 
1728 /*
1729  * This function is grabs code from the very beginning of
1730  * ext4_map_blocks, but assumes that the caller is from delayed write
1731  * time. This function looks up the requested blocks and sets the
1732  * buffer delay bit under the protection of i_data_sem.
1733  */
1734 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1735 			      struct ext4_map_blocks *map,
1736 			      struct buffer_head *bh)
1737 {
1738 	struct extent_status es;
1739 	int retval;
1740 	sector_t invalid_block = ~((sector_t) 0xffff);
1741 #ifdef ES_AGGRESSIVE_TEST
1742 	struct ext4_map_blocks orig_map;
1743 
1744 	memcpy(&orig_map, map, sizeof(*map));
1745 #endif
1746 
1747 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1748 		invalid_block = ~0;
1749 
1750 	map->m_flags = 0;
1751 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1752 		  "logical block %lu\n", inode->i_ino, map->m_len,
1753 		  (unsigned long) map->m_lblk);
1754 
1755 	/* Lookup extent status tree firstly */
1756 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1757 		if (ext4_es_is_hole(&es)) {
1758 			retval = 0;
1759 			down_read(&EXT4_I(inode)->i_data_sem);
1760 			goto add_delayed;
1761 		}
1762 
1763 		/*
1764 		 * Delayed extent could be allocated by fallocate.
1765 		 * So we need to check it.
1766 		 */
1767 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1768 			map_bh(bh, inode->i_sb, invalid_block);
1769 			set_buffer_new(bh);
1770 			set_buffer_delay(bh);
1771 			return 0;
1772 		}
1773 
1774 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1775 		retval = es.es_len - (iblock - es.es_lblk);
1776 		if (retval > map->m_len)
1777 			retval = map->m_len;
1778 		map->m_len = retval;
1779 		if (ext4_es_is_written(&es))
1780 			map->m_flags |= EXT4_MAP_MAPPED;
1781 		else if (ext4_es_is_unwritten(&es))
1782 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1783 		else
1784 			BUG_ON(1);
1785 
1786 #ifdef ES_AGGRESSIVE_TEST
1787 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1788 #endif
1789 		return retval;
1790 	}
1791 
1792 	/*
1793 	 * Try to see if we can get the block without requesting a new
1794 	 * file system block.
1795 	 */
1796 	down_read(&EXT4_I(inode)->i_data_sem);
1797 	if (ext4_has_inline_data(inode))
1798 		retval = 0;
1799 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1800 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1801 	else
1802 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1803 
1804 add_delayed:
1805 	if (retval == 0) {
1806 		int ret;
1807 		/*
1808 		 * XXX: __block_prepare_write() unmaps passed block,
1809 		 * is it OK?
1810 		 */
1811 		/*
1812 		 * If the block was allocated from previously allocated cluster,
1813 		 * then we don't need to reserve it again. However we still need
1814 		 * to reserve metadata for every block we're going to write.
1815 		 */
1816 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1817 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1818 			ret = ext4_da_reserve_space(inode);
1819 			if (ret) {
1820 				/* not enough space to reserve */
1821 				retval = ret;
1822 				goto out_unlock;
1823 			}
1824 		}
1825 
1826 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1827 					    ~0, EXTENT_STATUS_DELAYED);
1828 		if (ret) {
1829 			retval = ret;
1830 			goto out_unlock;
1831 		}
1832 
1833 		map_bh(bh, inode->i_sb, invalid_block);
1834 		set_buffer_new(bh);
1835 		set_buffer_delay(bh);
1836 	} else if (retval > 0) {
1837 		int ret;
1838 		unsigned int status;
1839 
1840 		if (unlikely(retval != map->m_len)) {
1841 			ext4_warning(inode->i_sb,
1842 				     "ES len assertion failed for inode "
1843 				     "%lu: retval %d != map->m_len %d",
1844 				     inode->i_ino, retval, map->m_len);
1845 			WARN_ON(1);
1846 		}
1847 
1848 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1849 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1850 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1851 					    map->m_pblk, status);
1852 		if (ret != 0)
1853 			retval = ret;
1854 	}
1855 
1856 out_unlock:
1857 	up_read((&EXT4_I(inode)->i_data_sem));
1858 
1859 	return retval;
1860 }
1861 
1862 /*
1863  * This is a special get_block_t callback which is used by
1864  * ext4_da_write_begin().  It will either return mapped block or
1865  * reserve space for a single block.
1866  *
1867  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1868  * We also have b_blocknr = -1 and b_bdev initialized properly
1869  *
1870  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1871  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1872  * initialized properly.
1873  */
1874 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1875 			   struct buffer_head *bh, int create)
1876 {
1877 	struct ext4_map_blocks map;
1878 	int ret = 0;
1879 
1880 	BUG_ON(create == 0);
1881 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1882 
1883 	map.m_lblk = iblock;
1884 	map.m_len = 1;
1885 
1886 	/*
1887 	 * first, we need to know whether the block is allocated already
1888 	 * preallocated blocks are unmapped but should treated
1889 	 * the same as allocated blocks.
1890 	 */
1891 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1892 	if (ret <= 0)
1893 		return ret;
1894 
1895 	map_bh(bh, inode->i_sb, map.m_pblk);
1896 	ext4_update_bh_state(bh, map.m_flags);
1897 
1898 	if (buffer_unwritten(bh)) {
1899 		/* A delayed write to unwritten bh should be marked
1900 		 * new and mapped.  Mapped ensures that we don't do
1901 		 * get_block multiple times when we write to the same
1902 		 * offset and new ensures that we do proper zero out
1903 		 * for partial write.
1904 		 */
1905 		set_buffer_new(bh);
1906 		set_buffer_mapped(bh);
1907 	}
1908 	return 0;
1909 }
1910 
1911 static int bget_one(handle_t *handle, struct buffer_head *bh)
1912 {
1913 	get_bh(bh);
1914 	return 0;
1915 }
1916 
1917 static int bput_one(handle_t *handle, struct buffer_head *bh)
1918 {
1919 	put_bh(bh);
1920 	return 0;
1921 }
1922 
1923 static int __ext4_journalled_writepage(struct page *page,
1924 				       unsigned int len)
1925 {
1926 	struct address_space *mapping = page->mapping;
1927 	struct inode *inode = mapping->host;
1928 	struct buffer_head *page_bufs = NULL;
1929 	handle_t *handle = NULL;
1930 	int ret = 0, err = 0;
1931 	int inline_data = ext4_has_inline_data(inode);
1932 	struct buffer_head *inode_bh = NULL;
1933 
1934 	ClearPageChecked(page);
1935 
1936 	if (inline_data) {
1937 		BUG_ON(page->index != 0);
1938 		BUG_ON(len > ext4_get_max_inline_size(inode));
1939 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1940 		if (inode_bh == NULL)
1941 			goto out;
1942 	} else {
1943 		page_bufs = page_buffers(page);
1944 		if (!page_bufs) {
1945 			BUG();
1946 			goto out;
1947 		}
1948 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1949 				       NULL, bget_one);
1950 	}
1951 	/*
1952 	 * We need to release the page lock before we start the
1953 	 * journal, so grab a reference so the page won't disappear
1954 	 * out from under us.
1955 	 */
1956 	get_page(page);
1957 	unlock_page(page);
1958 
1959 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1960 				    ext4_writepage_trans_blocks(inode));
1961 	if (IS_ERR(handle)) {
1962 		ret = PTR_ERR(handle);
1963 		put_page(page);
1964 		goto out_no_pagelock;
1965 	}
1966 	BUG_ON(!ext4_handle_valid(handle));
1967 
1968 	lock_page(page);
1969 	put_page(page);
1970 	if (page->mapping != mapping) {
1971 		/* The page got truncated from under us */
1972 		ext4_journal_stop(handle);
1973 		ret = 0;
1974 		goto out;
1975 	}
1976 
1977 	if (inline_data) {
1978 		BUFFER_TRACE(inode_bh, "get write access");
1979 		ret = ext4_journal_get_write_access(handle, inode_bh);
1980 
1981 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1982 
1983 	} else {
1984 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1985 					     do_journal_get_write_access);
1986 
1987 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1988 					     write_end_fn);
1989 	}
1990 	if (ret == 0)
1991 		ret = err;
1992 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1993 	err = ext4_journal_stop(handle);
1994 	if (!ret)
1995 		ret = err;
1996 
1997 	if (!ext4_has_inline_data(inode))
1998 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1999 				       NULL, bput_one);
2000 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2001 out:
2002 	unlock_page(page);
2003 out_no_pagelock:
2004 	brelse(inode_bh);
2005 	return ret;
2006 }
2007 
2008 /*
2009  * Note that we don't need to start a transaction unless we're journaling data
2010  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2011  * need to file the inode to the transaction's list in ordered mode because if
2012  * we are writing back data added by write(), the inode is already there and if
2013  * we are writing back data modified via mmap(), no one guarantees in which
2014  * transaction the data will hit the disk. In case we are journaling data, we
2015  * cannot start transaction directly because transaction start ranks above page
2016  * lock so we have to do some magic.
2017  *
2018  * This function can get called via...
2019  *   - ext4_writepages after taking page lock (have journal handle)
2020  *   - journal_submit_inode_data_buffers (no journal handle)
2021  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2022  *   - grab_page_cache when doing write_begin (have journal handle)
2023  *
2024  * We don't do any block allocation in this function. If we have page with
2025  * multiple blocks we need to write those buffer_heads that are mapped. This
2026  * is important for mmaped based write. So if we do with blocksize 1K
2027  * truncate(f, 1024);
2028  * a = mmap(f, 0, 4096);
2029  * a[0] = 'a';
2030  * truncate(f, 4096);
2031  * we have in the page first buffer_head mapped via page_mkwrite call back
2032  * but other buffer_heads would be unmapped but dirty (dirty done via the
2033  * do_wp_page). So writepage should write the first block. If we modify
2034  * the mmap area beyond 1024 we will again get a page_fault and the
2035  * page_mkwrite callback will do the block allocation and mark the
2036  * buffer_heads mapped.
2037  *
2038  * We redirty the page if we have any buffer_heads that is either delay or
2039  * unwritten in the page.
2040  *
2041  * We can get recursively called as show below.
2042  *
2043  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2044  *		ext4_writepage()
2045  *
2046  * But since we don't do any block allocation we should not deadlock.
2047  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2048  */
2049 static int ext4_writepage(struct page *page,
2050 			  struct writeback_control *wbc)
2051 {
2052 	int ret = 0;
2053 	loff_t size;
2054 	unsigned int len;
2055 	struct buffer_head *page_bufs = NULL;
2056 	struct inode *inode = page->mapping->host;
2057 	struct ext4_io_submit io_submit;
2058 	bool keep_towrite = false;
2059 
2060 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2061 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2062 		unlock_page(page);
2063 		return -EIO;
2064 	}
2065 
2066 	trace_ext4_writepage(page);
2067 	size = i_size_read(inode);
2068 	if (page->index == size >> PAGE_SHIFT)
2069 		len = size & ~PAGE_MASK;
2070 	else
2071 		len = PAGE_SIZE;
2072 
2073 	page_bufs = page_buffers(page);
2074 	/*
2075 	 * We cannot do block allocation or other extent handling in this
2076 	 * function. If there are buffers needing that, we have to redirty
2077 	 * the page. But we may reach here when we do a journal commit via
2078 	 * journal_submit_inode_data_buffers() and in that case we must write
2079 	 * allocated buffers to achieve data=ordered mode guarantees.
2080 	 *
2081 	 * Also, if there is only one buffer per page (the fs block
2082 	 * size == the page size), if one buffer needs block
2083 	 * allocation or needs to modify the extent tree to clear the
2084 	 * unwritten flag, we know that the page can't be written at
2085 	 * all, so we might as well refuse the write immediately.
2086 	 * Unfortunately if the block size != page size, we can't as
2087 	 * easily detect this case using ext4_walk_page_buffers(), but
2088 	 * for the extremely common case, this is an optimization that
2089 	 * skips a useless round trip through ext4_bio_write_page().
2090 	 */
2091 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2092 				   ext4_bh_delay_or_unwritten)) {
2093 		redirty_page_for_writepage(wbc, page);
2094 		if ((current->flags & PF_MEMALLOC) ||
2095 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2096 			/*
2097 			 * For memory cleaning there's no point in writing only
2098 			 * some buffers. So just bail out. Warn if we came here
2099 			 * from direct reclaim.
2100 			 */
2101 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2102 							== PF_MEMALLOC);
2103 			unlock_page(page);
2104 			return 0;
2105 		}
2106 		keep_towrite = true;
2107 	}
2108 
2109 	if (PageChecked(page) && ext4_should_journal_data(inode))
2110 		/*
2111 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2112 		 * doesn't seem much point in redirtying the page here.
2113 		 */
2114 		return __ext4_journalled_writepage(page, len);
2115 
2116 	ext4_io_submit_init(&io_submit, wbc);
2117 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2118 	if (!io_submit.io_end) {
2119 		redirty_page_for_writepage(wbc, page);
2120 		unlock_page(page);
2121 		return -ENOMEM;
2122 	}
2123 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2124 	ext4_io_submit(&io_submit);
2125 	/* Drop io_end reference we got from init */
2126 	ext4_put_io_end_defer(io_submit.io_end);
2127 	return ret;
2128 }
2129 
2130 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2131 {
2132 	int len;
2133 	loff_t size;
2134 	int err;
2135 
2136 	BUG_ON(page->index != mpd->first_page);
2137 	clear_page_dirty_for_io(page);
2138 	/*
2139 	 * We have to be very careful here!  Nothing protects writeback path
2140 	 * against i_size changes and the page can be writeably mapped into
2141 	 * page tables. So an application can be growing i_size and writing
2142 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2143 	 * write-protects our page in page tables and the page cannot get
2144 	 * written to again until we release page lock. So only after
2145 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2146 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2147 	 * on the barrier provided by TestClearPageDirty in
2148 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2149 	 * after page tables are updated.
2150 	 */
2151 	size = i_size_read(mpd->inode);
2152 	if (page->index == size >> PAGE_SHIFT)
2153 		len = size & ~PAGE_MASK;
2154 	else
2155 		len = PAGE_SIZE;
2156 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2157 	if (!err)
2158 		mpd->wbc->nr_to_write--;
2159 	mpd->first_page++;
2160 
2161 	return err;
2162 }
2163 
2164 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2165 
2166 /*
2167  * mballoc gives us at most this number of blocks...
2168  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2169  * The rest of mballoc seems to handle chunks up to full group size.
2170  */
2171 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2172 
2173 /*
2174  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2175  *
2176  * @mpd - extent of blocks
2177  * @lblk - logical number of the block in the file
2178  * @bh - buffer head we want to add to the extent
2179  *
2180  * The function is used to collect contig. blocks in the same state. If the
2181  * buffer doesn't require mapping for writeback and we haven't started the
2182  * extent of buffers to map yet, the function returns 'true' immediately - the
2183  * caller can write the buffer right away. Otherwise the function returns true
2184  * if the block has been added to the extent, false if the block couldn't be
2185  * added.
2186  */
2187 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2188 				   struct buffer_head *bh)
2189 {
2190 	struct ext4_map_blocks *map = &mpd->map;
2191 
2192 	/* Buffer that doesn't need mapping for writeback? */
2193 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2194 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2195 		/* So far no extent to map => we write the buffer right away */
2196 		if (map->m_len == 0)
2197 			return true;
2198 		return false;
2199 	}
2200 
2201 	/* First block in the extent? */
2202 	if (map->m_len == 0) {
2203 		/* We cannot map unless handle is started... */
2204 		if (!mpd->do_map)
2205 			return false;
2206 		map->m_lblk = lblk;
2207 		map->m_len = 1;
2208 		map->m_flags = bh->b_state & BH_FLAGS;
2209 		return true;
2210 	}
2211 
2212 	/* Don't go larger than mballoc is willing to allocate */
2213 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2214 		return false;
2215 
2216 	/* Can we merge the block to our big extent? */
2217 	if (lblk == map->m_lblk + map->m_len &&
2218 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2219 		map->m_len++;
2220 		return true;
2221 	}
2222 	return false;
2223 }
2224 
2225 /*
2226  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2227  *
2228  * @mpd - extent of blocks for mapping
2229  * @head - the first buffer in the page
2230  * @bh - buffer we should start processing from
2231  * @lblk - logical number of the block in the file corresponding to @bh
2232  *
2233  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2234  * the page for IO if all buffers in this page were mapped and there's no
2235  * accumulated extent of buffers to map or add buffers in the page to the
2236  * extent of buffers to map. The function returns 1 if the caller can continue
2237  * by processing the next page, 0 if it should stop adding buffers to the
2238  * extent to map because we cannot extend it anymore. It can also return value
2239  * < 0 in case of error during IO submission.
2240  */
2241 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2242 				   struct buffer_head *head,
2243 				   struct buffer_head *bh,
2244 				   ext4_lblk_t lblk)
2245 {
2246 	struct inode *inode = mpd->inode;
2247 	int err;
2248 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2249 							>> inode->i_blkbits;
2250 
2251 	do {
2252 		BUG_ON(buffer_locked(bh));
2253 
2254 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2255 			/* Found extent to map? */
2256 			if (mpd->map.m_len)
2257 				return 0;
2258 			/* Buffer needs mapping and handle is not started? */
2259 			if (!mpd->do_map)
2260 				return 0;
2261 			/* Everything mapped so far and we hit EOF */
2262 			break;
2263 		}
2264 	} while (lblk++, (bh = bh->b_this_page) != head);
2265 	/* So far everything mapped? Submit the page for IO. */
2266 	if (mpd->map.m_len == 0) {
2267 		err = mpage_submit_page(mpd, head->b_page);
2268 		if (err < 0)
2269 			return err;
2270 	}
2271 	return lblk < blocks;
2272 }
2273 
2274 /*
2275  * mpage_map_buffers - update buffers corresponding to changed extent and
2276  *		       submit fully mapped pages for IO
2277  *
2278  * @mpd - description of extent to map, on return next extent to map
2279  *
2280  * Scan buffers corresponding to changed extent (we expect corresponding pages
2281  * to be already locked) and update buffer state according to new extent state.
2282  * We map delalloc buffers to their physical location, clear unwritten bits,
2283  * and mark buffers as uninit when we perform writes to unwritten extents
2284  * and do extent conversion after IO is finished. If the last page is not fully
2285  * mapped, we update @map to the next extent in the last page that needs
2286  * mapping. Otherwise we submit the page for IO.
2287  */
2288 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2289 {
2290 	struct pagevec pvec;
2291 	int nr_pages, i;
2292 	struct inode *inode = mpd->inode;
2293 	struct buffer_head *head, *bh;
2294 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2295 	pgoff_t start, end;
2296 	ext4_lblk_t lblk;
2297 	sector_t pblock;
2298 	int err;
2299 
2300 	start = mpd->map.m_lblk >> bpp_bits;
2301 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2302 	lblk = start << bpp_bits;
2303 	pblock = mpd->map.m_pblk;
2304 
2305 	pagevec_init(&pvec, 0);
2306 	while (start <= end) {
2307 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2308 					  PAGEVEC_SIZE);
2309 		if (nr_pages == 0)
2310 			break;
2311 		for (i = 0; i < nr_pages; i++) {
2312 			struct page *page = pvec.pages[i];
2313 
2314 			if (page->index > end)
2315 				break;
2316 			/* Up to 'end' pages must be contiguous */
2317 			BUG_ON(page->index != start);
2318 			bh = head = page_buffers(page);
2319 			do {
2320 				if (lblk < mpd->map.m_lblk)
2321 					continue;
2322 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2323 					/*
2324 					 * Buffer after end of mapped extent.
2325 					 * Find next buffer in the page to map.
2326 					 */
2327 					mpd->map.m_len = 0;
2328 					mpd->map.m_flags = 0;
2329 					/*
2330 					 * FIXME: If dioread_nolock supports
2331 					 * blocksize < pagesize, we need to make
2332 					 * sure we add size mapped so far to
2333 					 * io_end->size as the following call
2334 					 * can submit the page for IO.
2335 					 */
2336 					err = mpage_process_page_bufs(mpd, head,
2337 								      bh, lblk);
2338 					pagevec_release(&pvec);
2339 					if (err > 0)
2340 						err = 0;
2341 					return err;
2342 				}
2343 				if (buffer_delay(bh)) {
2344 					clear_buffer_delay(bh);
2345 					bh->b_blocknr = pblock++;
2346 				}
2347 				clear_buffer_unwritten(bh);
2348 			} while (lblk++, (bh = bh->b_this_page) != head);
2349 
2350 			/*
2351 			 * FIXME: This is going to break if dioread_nolock
2352 			 * supports blocksize < pagesize as we will try to
2353 			 * convert potentially unmapped parts of inode.
2354 			 */
2355 			mpd->io_submit.io_end->size += PAGE_SIZE;
2356 			/* Page fully mapped - let IO run! */
2357 			err = mpage_submit_page(mpd, page);
2358 			if (err < 0) {
2359 				pagevec_release(&pvec);
2360 				return err;
2361 			}
2362 			start++;
2363 		}
2364 		pagevec_release(&pvec);
2365 	}
2366 	/* Extent fully mapped and matches with page boundary. We are done. */
2367 	mpd->map.m_len = 0;
2368 	mpd->map.m_flags = 0;
2369 	return 0;
2370 }
2371 
2372 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2373 {
2374 	struct inode *inode = mpd->inode;
2375 	struct ext4_map_blocks *map = &mpd->map;
2376 	int get_blocks_flags;
2377 	int err, dioread_nolock;
2378 
2379 	trace_ext4_da_write_pages_extent(inode, map);
2380 	/*
2381 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2382 	 * to convert an unwritten extent to be initialized (in the case
2383 	 * where we have written into one or more preallocated blocks).  It is
2384 	 * possible that we're going to need more metadata blocks than
2385 	 * previously reserved. However we must not fail because we're in
2386 	 * writeback and there is nothing we can do about it so it might result
2387 	 * in data loss.  So use reserved blocks to allocate metadata if
2388 	 * possible.
2389 	 *
2390 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2391 	 * the blocks in question are delalloc blocks.  This indicates
2392 	 * that the blocks and quotas has already been checked when
2393 	 * the data was copied into the page cache.
2394 	 */
2395 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2396 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2397 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2398 	dioread_nolock = ext4_should_dioread_nolock(inode);
2399 	if (dioread_nolock)
2400 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2401 	if (map->m_flags & (1 << BH_Delay))
2402 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2403 
2404 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2405 	if (err < 0)
2406 		return err;
2407 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2408 		if (!mpd->io_submit.io_end->handle &&
2409 		    ext4_handle_valid(handle)) {
2410 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2411 			handle->h_rsv_handle = NULL;
2412 		}
2413 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2414 	}
2415 
2416 	BUG_ON(map->m_len == 0);
2417 	if (map->m_flags & EXT4_MAP_NEW) {
2418 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2419 				   map->m_len);
2420 	}
2421 	return 0;
2422 }
2423 
2424 /*
2425  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2426  *				 mpd->len and submit pages underlying it for IO
2427  *
2428  * @handle - handle for journal operations
2429  * @mpd - extent to map
2430  * @give_up_on_write - we set this to true iff there is a fatal error and there
2431  *                     is no hope of writing the data. The caller should discard
2432  *                     dirty pages to avoid infinite loops.
2433  *
2434  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2435  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2436  * them to initialized or split the described range from larger unwritten
2437  * extent. Note that we need not map all the described range since allocation
2438  * can return less blocks or the range is covered by more unwritten extents. We
2439  * cannot map more because we are limited by reserved transaction credits. On
2440  * the other hand we always make sure that the last touched page is fully
2441  * mapped so that it can be written out (and thus forward progress is
2442  * guaranteed). After mapping we submit all mapped pages for IO.
2443  */
2444 static int mpage_map_and_submit_extent(handle_t *handle,
2445 				       struct mpage_da_data *mpd,
2446 				       bool *give_up_on_write)
2447 {
2448 	struct inode *inode = mpd->inode;
2449 	struct ext4_map_blocks *map = &mpd->map;
2450 	int err;
2451 	loff_t disksize;
2452 	int progress = 0;
2453 
2454 	mpd->io_submit.io_end->offset =
2455 				((loff_t)map->m_lblk) << inode->i_blkbits;
2456 	do {
2457 		err = mpage_map_one_extent(handle, mpd);
2458 		if (err < 0) {
2459 			struct super_block *sb = inode->i_sb;
2460 
2461 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2462 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2463 				goto invalidate_dirty_pages;
2464 			/*
2465 			 * Let the uper layers retry transient errors.
2466 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2467 			 * is non-zero, a commit should free up blocks.
2468 			 */
2469 			if ((err == -ENOMEM) ||
2470 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2471 				if (progress)
2472 					goto update_disksize;
2473 				return err;
2474 			}
2475 			ext4_msg(sb, KERN_CRIT,
2476 				 "Delayed block allocation failed for "
2477 				 "inode %lu at logical offset %llu with"
2478 				 " max blocks %u with error %d",
2479 				 inode->i_ino,
2480 				 (unsigned long long)map->m_lblk,
2481 				 (unsigned)map->m_len, -err);
2482 			ext4_msg(sb, KERN_CRIT,
2483 				 "This should not happen!! Data will "
2484 				 "be lost\n");
2485 			if (err == -ENOSPC)
2486 				ext4_print_free_blocks(inode);
2487 		invalidate_dirty_pages:
2488 			*give_up_on_write = true;
2489 			return err;
2490 		}
2491 		progress = 1;
2492 		/*
2493 		 * Update buffer state, submit mapped pages, and get us new
2494 		 * extent to map
2495 		 */
2496 		err = mpage_map_and_submit_buffers(mpd);
2497 		if (err < 0)
2498 			goto update_disksize;
2499 	} while (map->m_len);
2500 
2501 update_disksize:
2502 	/*
2503 	 * Update on-disk size after IO is submitted.  Races with
2504 	 * truncate are avoided by checking i_size under i_data_sem.
2505 	 */
2506 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2507 	if (disksize > EXT4_I(inode)->i_disksize) {
2508 		int err2;
2509 		loff_t i_size;
2510 
2511 		down_write(&EXT4_I(inode)->i_data_sem);
2512 		i_size = i_size_read(inode);
2513 		if (disksize > i_size)
2514 			disksize = i_size;
2515 		if (disksize > EXT4_I(inode)->i_disksize)
2516 			EXT4_I(inode)->i_disksize = disksize;
2517 		up_write(&EXT4_I(inode)->i_data_sem);
2518 		err2 = ext4_mark_inode_dirty(handle, inode);
2519 		if (err2)
2520 			ext4_error(inode->i_sb,
2521 				   "Failed to mark inode %lu dirty",
2522 				   inode->i_ino);
2523 		if (!err)
2524 			err = err2;
2525 	}
2526 	return err;
2527 }
2528 
2529 /*
2530  * Calculate the total number of credits to reserve for one writepages
2531  * iteration. This is called from ext4_writepages(). We map an extent of
2532  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2533  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2534  * bpp - 1 blocks in bpp different extents.
2535  */
2536 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2537 {
2538 	int bpp = ext4_journal_blocks_per_page(inode);
2539 
2540 	return ext4_meta_trans_blocks(inode,
2541 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2542 }
2543 
2544 /*
2545  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2546  * 				 and underlying extent to map
2547  *
2548  * @mpd - where to look for pages
2549  *
2550  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2551  * IO immediately. When we find a page which isn't mapped we start accumulating
2552  * extent of buffers underlying these pages that needs mapping (formed by
2553  * either delayed or unwritten buffers). We also lock the pages containing
2554  * these buffers. The extent found is returned in @mpd structure (starting at
2555  * mpd->lblk with length mpd->len blocks).
2556  *
2557  * Note that this function can attach bios to one io_end structure which are
2558  * neither logically nor physically contiguous. Although it may seem as an
2559  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2560  * case as we need to track IO to all buffers underlying a page in one io_end.
2561  */
2562 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2563 {
2564 	struct address_space *mapping = mpd->inode->i_mapping;
2565 	struct pagevec pvec;
2566 	unsigned int nr_pages;
2567 	long left = mpd->wbc->nr_to_write;
2568 	pgoff_t index = mpd->first_page;
2569 	pgoff_t end = mpd->last_page;
2570 	int tag;
2571 	int i, err = 0;
2572 	int blkbits = mpd->inode->i_blkbits;
2573 	ext4_lblk_t lblk;
2574 	struct buffer_head *head;
2575 
2576 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2577 		tag = PAGECACHE_TAG_TOWRITE;
2578 	else
2579 		tag = PAGECACHE_TAG_DIRTY;
2580 
2581 	pagevec_init(&pvec, 0);
2582 	mpd->map.m_len = 0;
2583 	mpd->next_page = index;
2584 	while (index <= end) {
2585 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2586 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2587 		if (nr_pages == 0)
2588 			goto out;
2589 
2590 		for (i = 0; i < nr_pages; i++) {
2591 			struct page *page = pvec.pages[i];
2592 
2593 			/*
2594 			 * At this point, the page may be truncated or
2595 			 * invalidated (changing page->mapping to NULL), or
2596 			 * even swizzled back from swapper_space to tmpfs file
2597 			 * mapping. However, page->index will not change
2598 			 * because we have a reference on the page.
2599 			 */
2600 			if (page->index > end)
2601 				goto out;
2602 
2603 			/*
2604 			 * Accumulated enough dirty pages? This doesn't apply
2605 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2606 			 * keep going because someone may be concurrently
2607 			 * dirtying pages, and we might have synced a lot of
2608 			 * newly appeared dirty pages, but have not synced all
2609 			 * of the old dirty pages.
2610 			 */
2611 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2612 				goto out;
2613 
2614 			/* If we can't merge this page, we are done. */
2615 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2616 				goto out;
2617 
2618 			lock_page(page);
2619 			/*
2620 			 * If the page is no longer dirty, or its mapping no
2621 			 * longer corresponds to inode we are writing (which
2622 			 * means it has been truncated or invalidated), or the
2623 			 * page is already under writeback and we are not doing
2624 			 * a data integrity writeback, skip the page
2625 			 */
2626 			if (!PageDirty(page) ||
2627 			    (PageWriteback(page) &&
2628 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2629 			    unlikely(page->mapping != mapping)) {
2630 				unlock_page(page);
2631 				continue;
2632 			}
2633 
2634 			wait_on_page_writeback(page);
2635 			BUG_ON(PageWriteback(page));
2636 
2637 			if (mpd->map.m_len == 0)
2638 				mpd->first_page = page->index;
2639 			mpd->next_page = page->index + 1;
2640 			/* Add all dirty buffers to mpd */
2641 			lblk = ((ext4_lblk_t)page->index) <<
2642 				(PAGE_SHIFT - blkbits);
2643 			head = page_buffers(page);
2644 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2645 			if (err <= 0)
2646 				goto out;
2647 			err = 0;
2648 			left--;
2649 		}
2650 		pagevec_release(&pvec);
2651 		cond_resched();
2652 	}
2653 	return 0;
2654 out:
2655 	pagevec_release(&pvec);
2656 	return err;
2657 }
2658 
2659 static int __writepage(struct page *page, struct writeback_control *wbc,
2660 		       void *data)
2661 {
2662 	struct address_space *mapping = data;
2663 	int ret = ext4_writepage(page, wbc);
2664 	mapping_set_error(mapping, ret);
2665 	return ret;
2666 }
2667 
2668 static int ext4_writepages(struct address_space *mapping,
2669 			   struct writeback_control *wbc)
2670 {
2671 	pgoff_t	writeback_index = 0;
2672 	long nr_to_write = wbc->nr_to_write;
2673 	int range_whole = 0;
2674 	int cycled = 1;
2675 	handle_t *handle = NULL;
2676 	struct mpage_da_data mpd;
2677 	struct inode *inode = mapping->host;
2678 	int needed_blocks, rsv_blocks = 0, ret = 0;
2679 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2680 	bool done;
2681 	struct blk_plug plug;
2682 	bool give_up_on_write = false;
2683 
2684 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2685 		return -EIO;
2686 
2687 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2688 	trace_ext4_writepages(inode, wbc);
2689 
2690 	if (dax_mapping(mapping)) {
2691 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2692 						  wbc);
2693 		goto out_writepages;
2694 	}
2695 
2696 	/*
2697 	 * No pages to write? This is mainly a kludge to avoid starting
2698 	 * a transaction for special inodes like journal inode on last iput()
2699 	 * because that could violate lock ordering on umount
2700 	 */
2701 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2702 		goto out_writepages;
2703 
2704 	if (ext4_should_journal_data(inode)) {
2705 		struct blk_plug plug;
2706 
2707 		blk_start_plug(&plug);
2708 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2709 		blk_finish_plug(&plug);
2710 		goto out_writepages;
2711 	}
2712 
2713 	/*
2714 	 * If the filesystem has aborted, it is read-only, so return
2715 	 * right away instead of dumping stack traces later on that
2716 	 * will obscure the real source of the problem.  We test
2717 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2718 	 * the latter could be true if the filesystem is mounted
2719 	 * read-only, and in that case, ext4_writepages should
2720 	 * *never* be called, so if that ever happens, we would want
2721 	 * the stack trace.
2722 	 */
2723 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2724 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2725 		ret = -EROFS;
2726 		goto out_writepages;
2727 	}
2728 
2729 	if (ext4_should_dioread_nolock(inode)) {
2730 		/*
2731 		 * We may need to convert up to one extent per block in
2732 		 * the page and we may dirty the inode.
2733 		 */
2734 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2735 	}
2736 
2737 	/*
2738 	 * If we have inline data and arrive here, it means that
2739 	 * we will soon create the block for the 1st page, so
2740 	 * we'd better clear the inline data here.
2741 	 */
2742 	if (ext4_has_inline_data(inode)) {
2743 		/* Just inode will be modified... */
2744 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2745 		if (IS_ERR(handle)) {
2746 			ret = PTR_ERR(handle);
2747 			goto out_writepages;
2748 		}
2749 		BUG_ON(ext4_test_inode_state(inode,
2750 				EXT4_STATE_MAY_INLINE_DATA));
2751 		ext4_destroy_inline_data(handle, inode);
2752 		ext4_journal_stop(handle);
2753 	}
2754 
2755 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2756 		range_whole = 1;
2757 
2758 	if (wbc->range_cyclic) {
2759 		writeback_index = mapping->writeback_index;
2760 		if (writeback_index)
2761 			cycled = 0;
2762 		mpd.first_page = writeback_index;
2763 		mpd.last_page = -1;
2764 	} else {
2765 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2766 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2767 	}
2768 
2769 	mpd.inode = inode;
2770 	mpd.wbc = wbc;
2771 	ext4_io_submit_init(&mpd.io_submit, wbc);
2772 retry:
2773 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2774 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2775 	done = false;
2776 	blk_start_plug(&plug);
2777 
2778 	/*
2779 	 * First writeback pages that don't need mapping - we can avoid
2780 	 * starting a transaction unnecessarily and also avoid being blocked
2781 	 * in the block layer on device congestion while having transaction
2782 	 * started.
2783 	 */
2784 	mpd.do_map = 0;
2785 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2786 	if (!mpd.io_submit.io_end) {
2787 		ret = -ENOMEM;
2788 		goto unplug;
2789 	}
2790 	ret = mpage_prepare_extent_to_map(&mpd);
2791 	/* Submit prepared bio */
2792 	ext4_io_submit(&mpd.io_submit);
2793 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2794 	mpd.io_submit.io_end = NULL;
2795 	/* Unlock pages we didn't use */
2796 	mpage_release_unused_pages(&mpd, false);
2797 	if (ret < 0)
2798 		goto unplug;
2799 
2800 	while (!done && mpd.first_page <= mpd.last_page) {
2801 		/* For each extent of pages we use new io_end */
2802 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2803 		if (!mpd.io_submit.io_end) {
2804 			ret = -ENOMEM;
2805 			break;
2806 		}
2807 
2808 		/*
2809 		 * We have two constraints: We find one extent to map and we
2810 		 * must always write out whole page (makes a difference when
2811 		 * blocksize < pagesize) so that we don't block on IO when we
2812 		 * try to write out the rest of the page. Journalled mode is
2813 		 * not supported by delalloc.
2814 		 */
2815 		BUG_ON(ext4_should_journal_data(inode));
2816 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2817 
2818 		/* start a new transaction */
2819 		handle = ext4_journal_start_with_reserve(inode,
2820 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2821 		if (IS_ERR(handle)) {
2822 			ret = PTR_ERR(handle);
2823 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2824 			       "%ld pages, ino %lu; err %d", __func__,
2825 				wbc->nr_to_write, inode->i_ino, ret);
2826 			/* Release allocated io_end */
2827 			ext4_put_io_end(mpd.io_submit.io_end);
2828 			mpd.io_submit.io_end = NULL;
2829 			break;
2830 		}
2831 		mpd.do_map = 1;
2832 
2833 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2834 		ret = mpage_prepare_extent_to_map(&mpd);
2835 		if (!ret) {
2836 			if (mpd.map.m_len)
2837 				ret = mpage_map_and_submit_extent(handle, &mpd,
2838 					&give_up_on_write);
2839 			else {
2840 				/*
2841 				 * We scanned the whole range (or exhausted
2842 				 * nr_to_write), submitted what was mapped and
2843 				 * didn't find anything needing mapping. We are
2844 				 * done.
2845 				 */
2846 				done = true;
2847 			}
2848 		}
2849 		/*
2850 		 * Caution: If the handle is synchronous,
2851 		 * ext4_journal_stop() can wait for transaction commit
2852 		 * to finish which may depend on writeback of pages to
2853 		 * complete or on page lock to be released.  In that
2854 		 * case, we have to wait until after after we have
2855 		 * submitted all the IO, released page locks we hold,
2856 		 * and dropped io_end reference (for extent conversion
2857 		 * to be able to complete) before stopping the handle.
2858 		 */
2859 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2860 			ext4_journal_stop(handle);
2861 			handle = NULL;
2862 			mpd.do_map = 0;
2863 		}
2864 		/* Submit prepared bio */
2865 		ext4_io_submit(&mpd.io_submit);
2866 		/* Unlock pages we didn't use */
2867 		mpage_release_unused_pages(&mpd, give_up_on_write);
2868 		/*
2869 		 * Drop our io_end reference we got from init. We have
2870 		 * to be careful and use deferred io_end finishing if
2871 		 * we are still holding the transaction as we can
2872 		 * release the last reference to io_end which may end
2873 		 * up doing unwritten extent conversion.
2874 		 */
2875 		if (handle) {
2876 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2877 			ext4_journal_stop(handle);
2878 		} else
2879 			ext4_put_io_end(mpd.io_submit.io_end);
2880 		mpd.io_submit.io_end = NULL;
2881 
2882 		if (ret == -ENOSPC && sbi->s_journal) {
2883 			/*
2884 			 * Commit the transaction which would
2885 			 * free blocks released in the transaction
2886 			 * and try again
2887 			 */
2888 			jbd2_journal_force_commit_nested(sbi->s_journal);
2889 			ret = 0;
2890 			continue;
2891 		}
2892 		/* Fatal error - ENOMEM, EIO... */
2893 		if (ret)
2894 			break;
2895 	}
2896 unplug:
2897 	blk_finish_plug(&plug);
2898 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2899 		cycled = 1;
2900 		mpd.last_page = writeback_index - 1;
2901 		mpd.first_page = 0;
2902 		goto retry;
2903 	}
2904 
2905 	/* Update index */
2906 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2907 		/*
2908 		 * Set the writeback_index so that range_cyclic
2909 		 * mode will write it back later
2910 		 */
2911 		mapping->writeback_index = mpd.first_page;
2912 
2913 out_writepages:
2914 	trace_ext4_writepages_result(inode, wbc, ret,
2915 				     nr_to_write - wbc->nr_to_write);
2916 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2917 	return ret;
2918 }
2919 
2920 static int ext4_nonda_switch(struct super_block *sb)
2921 {
2922 	s64 free_clusters, dirty_clusters;
2923 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2924 
2925 	/*
2926 	 * switch to non delalloc mode if we are running low
2927 	 * on free block. The free block accounting via percpu
2928 	 * counters can get slightly wrong with percpu_counter_batch getting
2929 	 * accumulated on each CPU without updating global counters
2930 	 * Delalloc need an accurate free block accounting. So switch
2931 	 * to non delalloc when we are near to error range.
2932 	 */
2933 	free_clusters =
2934 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2935 	dirty_clusters =
2936 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2937 	/*
2938 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2939 	 */
2940 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2941 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2942 
2943 	if (2 * free_clusters < 3 * dirty_clusters ||
2944 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2945 		/*
2946 		 * free block count is less than 150% of dirty blocks
2947 		 * or free blocks is less than watermark
2948 		 */
2949 		return 1;
2950 	}
2951 	return 0;
2952 }
2953 
2954 /* We always reserve for an inode update; the superblock could be there too */
2955 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2956 {
2957 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2958 		return 1;
2959 
2960 	if (pos + len <= 0x7fffffffULL)
2961 		return 1;
2962 
2963 	/* We might need to update the superblock to set LARGE_FILE */
2964 	return 2;
2965 }
2966 
2967 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2968 			       loff_t pos, unsigned len, unsigned flags,
2969 			       struct page **pagep, void **fsdata)
2970 {
2971 	int ret, retries = 0;
2972 	struct page *page;
2973 	pgoff_t index;
2974 	struct inode *inode = mapping->host;
2975 	handle_t *handle;
2976 
2977 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2978 		return -EIO;
2979 
2980 	index = pos >> PAGE_SHIFT;
2981 
2982 	if (ext4_nonda_switch(inode->i_sb) ||
2983 	    S_ISLNK(inode->i_mode)) {
2984 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2985 		return ext4_write_begin(file, mapping, pos,
2986 					len, flags, pagep, fsdata);
2987 	}
2988 	*fsdata = (void *)0;
2989 	trace_ext4_da_write_begin(inode, pos, len, flags);
2990 
2991 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2992 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2993 						      pos, len, flags,
2994 						      pagep, fsdata);
2995 		if (ret < 0)
2996 			return ret;
2997 		if (ret == 1)
2998 			return 0;
2999 	}
3000 
3001 	/*
3002 	 * grab_cache_page_write_begin() can take a long time if the
3003 	 * system is thrashing due to memory pressure, or if the page
3004 	 * is being written back.  So grab it first before we start
3005 	 * the transaction handle.  This also allows us to allocate
3006 	 * the page (if needed) without using GFP_NOFS.
3007 	 */
3008 retry_grab:
3009 	page = grab_cache_page_write_begin(mapping, index, flags);
3010 	if (!page)
3011 		return -ENOMEM;
3012 	unlock_page(page);
3013 
3014 	/*
3015 	 * With delayed allocation, we don't log the i_disksize update
3016 	 * if there is delayed block allocation. But we still need
3017 	 * to journalling the i_disksize update if writes to the end
3018 	 * of file which has an already mapped buffer.
3019 	 */
3020 retry_journal:
3021 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3022 				ext4_da_write_credits(inode, pos, len));
3023 	if (IS_ERR(handle)) {
3024 		put_page(page);
3025 		return PTR_ERR(handle);
3026 	}
3027 
3028 	lock_page(page);
3029 	if (page->mapping != mapping) {
3030 		/* The page got truncated from under us */
3031 		unlock_page(page);
3032 		put_page(page);
3033 		ext4_journal_stop(handle);
3034 		goto retry_grab;
3035 	}
3036 	/* In case writeback began while the page was unlocked */
3037 	wait_for_stable_page(page);
3038 
3039 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3040 	ret = ext4_block_write_begin(page, pos, len,
3041 				     ext4_da_get_block_prep);
3042 #else
3043 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3044 #endif
3045 	if (ret < 0) {
3046 		unlock_page(page);
3047 		ext4_journal_stop(handle);
3048 		/*
3049 		 * block_write_begin may have instantiated a few blocks
3050 		 * outside i_size.  Trim these off again. Don't need
3051 		 * i_size_read because we hold i_mutex.
3052 		 */
3053 		if (pos + len > inode->i_size)
3054 			ext4_truncate_failed_write(inode);
3055 
3056 		if (ret == -ENOSPC &&
3057 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3058 			goto retry_journal;
3059 
3060 		put_page(page);
3061 		return ret;
3062 	}
3063 
3064 	*pagep = page;
3065 	return ret;
3066 }
3067 
3068 /*
3069  * Check if we should update i_disksize
3070  * when write to the end of file but not require block allocation
3071  */
3072 static int ext4_da_should_update_i_disksize(struct page *page,
3073 					    unsigned long offset)
3074 {
3075 	struct buffer_head *bh;
3076 	struct inode *inode = page->mapping->host;
3077 	unsigned int idx;
3078 	int i;
3079 
3080 	bh = page_buffers(page);
3081 	idx = offset >> inode->i_blkbits;
3082 
3083 	for (i = 0; i < idx; i++)
3084 		bh = bh->b_this_page;
3085 
3086 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3087 		return 0;
3088 	return 1;
3089 }
3090 
3091 static int ext4_da_write_end(struct file *file,
3092 			     struct address_space *mapping,
3093 			     loff_t pos, unsigned len, unsigned copied,
3094 			     struct page *page, void *fsdata)
3095 {
3096 	struct inode *inode = mapping->host;
3097 	int ret = 0, ret2;
3098 	handle_t *handle = ext4_journal_current_handle();
3099 	loff_t new_i_size;
3100 	unsigned long start, end;
3101 	int write_mode = (int)(unsigned long)fsdata;
3102 
3103 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3104 		return ext4_write_end(file, mapping, pos,
3105 				      len, copied, page, fsdata);
3106 
3107 	trace_ext4_da_write_end(inode, pos, len, copied);
3108 	start = pos & (PAGE_SIZE - 1);
3109 	end = start + copied - 1;
3110 
3111 	/*
3112 	 * generic_write_end() will run mark_inode_dirty() if i_size
3113 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3114 	 * into that.
3115 	 */
3116 	new_i_size = pos + copied;
3117 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3118 		if (ext4_has_inline_data(inode) ||
3119 		    ext4_da_should_update_i_disksize(page, end)) {
3120 			ext4_update_i_disksize(inode, new_i_size);
3121 			/* We need to mark inode dirty even if
3122 			 * new_i_size is less that inode->i_size
3123 			 * bu greater than i_disksize.(hint delalloc)
3124 			 */
3125 			ext4_mark_inode_dirty(handle, inode);
3126 		}
3127 	}
3128 
3129 	if (write_mode != CONVERT_INLINE_DATA &&
3130 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3131 	    ext4_has_inline_data(inode))
3132 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3133 						     page);
3134 	else
3135 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3136 							page, fsdata);
3137 
3138 	copied = ret2;
3139 	if (ret2 < 0)
3140 		ret = ret2;
3141 	ret2 = ext4_journal_stop(handle);
3142 	if (!ret)
3143 		ret = ret2;
3144 
3145 	return ret ? ret : copied;
3146 }
3147 
3148 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3149 				   unsigned int length)
3150 {
3151 	/*
3152 	 * Drop reserved blocks
3153 	 */
3154 	BUG_ON(!PageLocked(page));
3155 	if (!page_has_buffers(page))
3156 		goto out;
3157 
3158 	ext4_da_page_release_reservation(page, offset, length);
3159 
3160 out:
3161 	ext4_invalidatepage(page, offset, length);
3162 
3163 	return;
3164 }
3165 
3166 /*
3167  * Force all delayed allocation blocks to be allocated for a given inode.
3168  */
3169 int ext4_alloc_da_blocks(struct inode *inode)
3170 {
3171 	trace_ext4_alloc_da_blocks(inode);
3172 
3173 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3174 		return 0;
3175 
3176 	/*
3177 	 * We do something simple for now.  The filemap_flush() will
3178 	 * also start triggering a write of the data blocks, which is
3179 	 * not strictly speaking necessary (and for users of
3180 	 * laptop_mode, not even desirable).  However, to do otherwise
3181 	 * would require replicating code paths in:
3182 	 *
3183 	 * ext4_writepages() ->
3184 	 *    write_cache_pages() ---> (via passed in callback function)
3185 	 *        __mpage_da_writepage() -->
3186 	 *           mpage_add_bh_to_extent()
3187 	 *           mpage_da_map_blocks()
3188 	 *
3189 	 * The problem is that write_cache_pages(), located in
3190 	 * mm/page-writeback.c, marks pages clean in preparation for
3191 	 * doing I/O, which is not desirable if we're not planning on
3192 	 * doing I/O at all.
3193 	 *
3194 	 * We could call write_cache_pages(), and then redirty all of
3195 	 * the pages by calling redirty_page_for_writepage() but that
3196 	 * would be ugly in the extreme.  So instead we would need to
3197 	 * replicate parts of the code in the above functions,
3198 	 * simplifying them because we wouldn't actually intend to
3199 	 * write out the pages, but rather only collect contiguous
3200 	 * logical block extents, call the multi-block allocator, and
3201 	 * then update the buffer heads with the block allocations.
3202 	 *
3203 	 * For now, though, we'll cheat by calling filemap_flush(),
3204 	 * which will map the blocks, and start the I/O, but not
3205 	 * actually wait for the I/O to complete.
3206 	 */
3207 	return filemap_flush(inode->i_mapping);
3208 }
3209 
3210 /*
3211  * bmap() is special.  It gets used by applications such as lilo and by
3212  * the swapper to find the on-disk block of a specific piece of data.
3213  *
3214  * Naturally, this is dangerous if the block concerned is still in the
3215  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3216  * filesystem and enables swap, then they may get a nasty shock when the
3217  * data getting swapped to that swapfile suddenly gets overwritten by
3218  * the original zero's written out previously to the journal and
3219  * awaiting writeback in the kernel's buffer cache.
3220  *
3221  * So, if we see any bmap calls here on a modified, data-journaled file,
3222  * take extra steps to flush any blocks which might be in the cache.
3223  */
3224 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3225 {
3226 	struct inode *inode = mapping->host;
3227 	journal_t *journal;
3228 	int err;
3229 
3230 	/*
3231 	 * We can get here for an inline file via the FIBMAP ioctl
3232 	 */
3233 	if (ext4_has_inline_data(inode))
3234 		return 0;
3235 
3236 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3237 			test_opt(inode->i_sb, DELALLOC)) {
3238 		/*
3239 		 * With delalloc we want to sync the file
3240 		 * so that we can make sure we allocate
3241 		 * blocks for file
3242 		 */
3243 		filemap_write_and_wait(mapping);
3244 	}
3245 
3246 	if (EXT4_JOURNAL(inode) &&
3247 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3248 		/*
3249 		 * This is a REALLY heavyweight approach, but the use of
3250 		 * bmap on dirty files is expected to be extremely rare:
3251 		 * only if we run lilo or swapon on a freshly made file
3252 		 * do we expect this to happen.
3253 		 *
3254 		 * (bmap requires CAP_SYS_RAWIO so this does not
3255 		 * represent an unprivileged user DOS attack --- we'd be
3256 		 * in trouble if mortal users could trigger this path at
3257 		 * will.)
3258 		 *
3259 		 * NB. EXT4_STATE_JDATA is not set on files other than
3260 		 * regular files.  If somebody wants to bmap a directory
3261 		 * or symlink and gets confused because the buffer
3262 		 * hasn't yet been flushed to disk, they deserve
3263 		 * everything they get.
3264 		 */
3265 
3266 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3267 		journal = EXT4_JOURNAL(inode);
3268 		jbd2_journal_lock_updates(journal);
3269 		err = jbd2_journal_flush(journal);
3270 		jbd2_journal_unlock_updates(journal);
3271 
3272 		if (err)
3273 			return 0;
3274 	}
3275 
3276 	return generic_block_bmap(mapping, block, ext4_get_block);
3277 }
3278 
3279 static int ext4_readpage(struct file *file, struct page *page)
3280 {
3281 	int ret = -EAGAIN;
3282 	struct inode *inode = page->mapping->host;
3283 
3284 	trace_ext4_readpage(page);
3285 
3286 	if (ext4_has_inline_data(inode))
3287 		ret = ext4_readpage_inline(inode, page);
3288 
3289 	if (ret == -EAGAIN)
3290 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3291 
3292 	return ret;
3293 }
3294 
3295 static int
3296 ext4_readpages(struct file *file, struct address_space *mapping,
3297 		struct list_head *pages, unsigned nr_pages)
3298 {
3299 	struct inode *inode = mapping->host;
3300 
3301 	/* If the file has inline data, no need to do readpages. */
3302 	if (ext4_has_inline_data(inode))
3303 		return 0;
3304 
3305 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3306 }
3307 
3308 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3309 				unsigned int length)
3310 {
3311 	trace_ext4_invalidatepage(page, offset, length);
3312 
3313 	/* No journalling happens on data buffers when this function is used */
3314 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3315 
3316 	block_invalidatepage(page, offset, length);
3317 }
3318 
3319 static int __ext4_journalled_invalidatepage(struct page *page,
3320 					    unsigned int offset,
3321 					    unsigned int length)
3322 {
3323 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3324 
3325 	trace_ext4_journalled_invalidatepage(page, offset, length);
3326 
3327 	/*
3328 	 * If it's a full truncate we just forget about the pending dirtying
3329 	 */
3330 	if (offset == 0 && length == PAGE_SIZE)
3331 		ClearPageChecked(page);
3332 
3333 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3334 }
3335 
3336 /* Wrapper for aops... */
3337 static void ext4_journalled_invalidatepage(struct page *page,
3338 					   unsigned int offset,
3339 					   unsigned int length)
3340 {
3341 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3342 }
3343 
3344 static int ext4_releasepage(struct page *page, gfp_t wait)
3345 {
3346 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3347 
3348 	trace_ext4_releasepage(page);
3349 
3350 	/* Page has dirty journalled data -> cannot release */
3351 	if (PageChecked(page))
3352 		return 0;
3353 	if (journal)
3354 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3355 	else
3356 		return try_to_free_buffers(page);
3357 }
3358 
3359 #ifdef CONFIG_FS_DAX
3360 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3361 			    unsigned flags, struct iomap *iomap)
3362 {
3363 	struct block_device *bdev;
3364 	unsigned int blkbits = inode->i_blkbits;
3365 	unsigned long first_block = offset >> blkbits;
3366 	unsigned long last_block = (offset + length - 1) >> blkbits;
3367 	struct ext4_map_blocks map;
3368 	int ret;
3369 
3370 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3371 		return -ERANGE;
3372 
3373 	map.m_lblk = first_block;
3374 	map.m_len = last_block - first_block + 1;
3375 
3376 	if (!(flags & IOMAP_WRITE)) {
3377 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3378 	} else {
3379 		int dio_credits;
3380 		handle_t *handle;
3381 		int retries = 0;
3382 
3383 		/* Trim mapping request to maximum we can map at once for DIO */
3384 		if (map.m_len > DIO_MAX_BLOCKS)
3385 			map.m_len = DIO_MAX_BLOCKS;
3386 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3387 retry:
3388 		/*
3389 		 * Either we allocate blocks and then we don't get unwritten
3390 		 * extent so we have reserved enough credits, or the blocks
3391 		 * are already allocated and unwritten and in that case
3392 		 * extent conversion fits in the credits as well.
3393 		 */
3394 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3395 					    dio_credits);
3396 		if (IS_ERR(handle))
3397 			return PTR_ERR(handle);
3398 
3399 		ret = ext4_map_blocks(handle, inode, &map,
3400 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3401 		if (ret < 0) {
3402 			ext4_journal_stop(handle);
3403 			if (ret == -ENOSPC &&
3404 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3405 				goto retry;
3406 			return ret;
3407 		}
3408 
3409 		/*
3410 		 * If we added blocks beyond i_size, we need to make sure they
3411 		 * will get truncated if we crash before updating i_size in
3412 		 * ext4_iomap_end(). For faults we don't need to do that (and
3413 		 * even cannot because for orphan list operations inode_lock is
3414 		 * required) - if we happen to instantiate block beyond i_size,
3415 		 * it is because we race with truncate which has already added
3416 		 * the inode to the orphan list.
3417 		 */
3418 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3419 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3420 			int err;
3421 
3422 			err = ext4_orphan_add(handle, inode);
3423 			if (err < 0) {
3424 				ext4_journal_stop(handle);
3425 				return err;
3426 			}
3427 		}
3428 		ext4_journal_stop(handle);
3429 	}
3430 
3431 	iomap->flags = 0;
3432 	bdev = inode->i_sb->s_bdev;
3433 	iomap->bdev = bdev;
3434 	if (blk_queue_dax(bdev->bd_queue))
3435 		iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3436 	else
3437 		iomap->dax_dev = NULL;
3438 	iomap->offset = first_block << blkbits;
3439 
3440 	if (ret == 0) {
3441 		iomap->type = IOMAP_HOLE;
3442 		iomap->blkno = IOMAP_NULL_BLOCK;
3443 		iomap->length = (u64)map.m_len << blkbits;
3444 	} else {
3445 		if (map.m_flags & EXT4_MAP_MAPPED) {
3446 			iomap->type = IOMAP_MAPPED;
3447 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3448 			iomap->type = IOMAP_UNWRITTEN;
3449 		} else {
3450 			WARN_ON_ONCE(1);
3451 			return -EIO;
3452 		}
3453 		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3454 		iomap->length = (u64)map.m_len << blkbits;
3455 	}
3456 
3457 	if (map.m_flags & EXT4_MAP_NEW)
3458 		iomap->flags |= IOMAP_F_NEW;
3459 	return 0;
3460 }
3461 
3462 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3463 			  ssize_t written, unsigned flags, struct iomap *iomap)
3464 {
3465 	int ret = 0;
3466 	handle_t *handle;
3467 	int blkbits = inode->i_blkbits;
3468 	bool truncate = false;
3469 
3470 	fs_put_dax(iomap->dax_dev);
3471 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3472 		return 0;
3473 
3474 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3475 	if (IS_ERR(handle)) {
3476 		ret = PTR_ERR(handle);
3477 		goto orphan_del;
3478 	}
3479 	if (ext4_update_inode_size(inode, offset + written))
3480 		ext4_mark_inode_dirty(handle, inode);
3481 	/*
3482 	 * We may need to truncate allocated but not written blocks beyond EOF.
3483 	 */
3484 	if (iomap->offset + iomap->length >
3485 	    ALIGN(inode->i_size, 1 << blkbits)) {
3486 		ext4_lblk_t written_blk, end_blk;
3487 
3488 		written_blk = (offset + written) >> blkbits;
3489 		end_blk = (offset + length) >> blkbits;
3490 		if (written_blk < end_blk && ext4_can_truncate(inode))
3491 			truncate = true;
3492 	}
3493 	/*
3494 	 * Remove inode from orphan list if we were extending a inode and
3495 	 * everything went fine.
3496 	 */
3497 	if (!truncate && inode->i_nlink &&
3498 	    !list_empty(&EXT4_I(inode)->i_orphan))
3499 		ext4_orphan_del(handle, inode);
3500 	ext4_journal_stop(handle);
3501 	if (truncate) {
3502 		ext4_truncate_failed_write(inode);
3503 orphan_del:
3504 		/*
3505 		 * If truncate failed early the inode might still be on the
3506 		 * orphan list; we need to make sure the inode is removed from
3507 		 * the orphan list in that case.
3508 		 */
3509 		if (inode->i_nlink)
3510 			ext4_orphan_del(NULL, inode);
3511 	}
3512 	return ret;
3513 }
3514 
3515 const struct iomap_ops ext4_iomap_ops = {
3516 	.iomap_begin		= ext4_iomap_begin,
3517 	.iomap_end		= ext4_iomap_end,
3518 };
3519 
3520 #endif
3521 
3522 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3523 			    ssize_t size, void *private)
3524 {
3525         ext4_io_end_t *io_end = private;
3526 
3527 	/* if not async direct IO just return */
3528 	if (!io_end)
3529 		return 0;
3530 
3531 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3532 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3533 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3534 
3535 	/*
3536 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3537 	 * data was not written. Just clear the unwritten flag and drop io_end.
3538 	 */
3539 	if (size <= 0) {
3540 		ext4_clear_io_unwritten_flag(io_end);
3541 		size = 0;
3542 	}
3543 	io_end->offset = offset;
3544 	io_end->size = size;
3545 	ext4_put_io_end(io_end);
3546 
3547 	return 0;
3548 }
3549 
3550 /*
3551  * Handling of direct IO writes.
3552  *
3553  * For ext4 extent files, ext4 will do direct-io write even to holes,
3554  * preallocated extents, and those write extend the file, no need to
3555  * fall back to buffered IO.
3556  *
3557  * For holes, we fallocate those blocks, mark them as unwritten
3558  * If those blocks were preallocated, we mark sure they are split, but
3559  * still keep the range to write as unwritten.
3560  *
3561  * The unwritten extents will be converted to written when DIO is completed.
3562  * For async direct IO, since the IO may still pending when return, we
3563  * set up an end_io call back function, which will do the conversion
3564  * when async direct IO completed.
3565  *
3566  * If the O_DIRECT write will extend the file then add this inode to the
3567  * orphan list.  So recovery will truncate it back to the original size
3568  * if the machine crashes during the write.
3569  *
3570  */
3571 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3572 {
3573 	struct file *file = iocb->ki_filp;
3574 	struct inode *inode = file->f_mapping->host;
3575 	struct ext4_inode_info *ei = EXT4_I(inode);
3576 	ssize_t ret;
3577 	loff_t offset = iocb->ki_pos;
3578 	size_t count = iov_iter_count(iter);
3579 	int overwrite = 0;
3580 	get_block_t *get_block_func = NULL;
3581 	int dio_flags = 0;
3582 	loff_t final_size = offset + count;
3583 	int orphan = 0;
3584 	handle_t *handle;
3585 
3586 	if (final_size > inode->i_size) {
3587 		/* Credits for sb + inode write */
3588 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3589 		if (IS_ERR(handle)) {
3590 			ret = PTR_ERR(handle);
3591 			goto out;
3592 		}
3593 		ret = ext4_orphan_add(handle, inode);
3594 		if (ret) {
3595 			ext4_journal_stop(handle);
3596 			goto out;
3597 		}
3598 		orphan = 1;
3599 		ei->i_disksize = inode->i_size;
3600 		ext4_journal_stop(handle);
3601 	}
3602 
3603 	BUG_ON(iocb->private == NULL);
3604 
3605 	/*
3606 	 * Make all waiters for direct IO properly wait also for extent
3607 	 * conversion. This also disallows race between truncate() and
3608 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3609 	 */
3610 	inode_dio_begin(inode);
3611 
3612 	/* If we do a overwrite dio, i_mutex locking can be released */
3613 	overwrite = *((int *)iocb->private);
3614 
3615 	if (overwrite)
3616 		inode_unlock(inode);
3617 
3618 	/*
3619 	 * For extent mapped files we could direct write to holes and fallocate.
3620 	 *
3621 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3622 	 * parallel buffered read to expose the stale data before DIO complete
3623 	 * the data IO.
3624 	 *
3625 	 * As to previously fallocated extents, ext4 get_block will just simply
3626 	 * mark the buffer mapped but still keep the extents unwritten.
3627 	 *
3628 	 * For non AIO case, we will convert those unwritten extents to written
3629 	 * after return back from blockdev_direct_IO. That way we save us from
3630 	 * allocating io_end structure and also the overhead of offloading
3631 	 * the extent convertion to a workqueue.
3632 	 *
3633 	 * For async DIO, the conversion needs to be deferred when the
3634 	 * IO is completed. The ext4 end_io callback function will be
3635 	 * called to take care of the conversion work.  Here for async
3636 	 * case, we allocate an io_end structure to hook to the iocb.
3637 	 */
3638 	iocb->private = NULL;
3639 	if (overwrite)
3640 		get_block_func = ext4_dio_get_block_overwrite;
3641 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3642 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3643 		get_block_func = ext4_dio_get_block;
3644 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3645 	} else if (is_sync_kiocb(iocb)) {
3646 		get_block_func = ext4_dio_get_block_unwritten_sync;
3647 		dio_flags = DIO_LOCKING;
3648 	} else {
3649 		get_block_func = ext4_dio_get_block_unwritten_async;
3650 		dio_flags = DIO_LOCKING;
3651 	}
3652 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3653 				   get_block_func, ext4_end_io_dio, NULL,
3654 				   dio_flags);
3655 
3656 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3657 						EXT4_STATE_DIO_UNWRITTEN)) {
3658 		int err;
3659 		/*
3660 		 * for non AIO case, since the IO is already
3661 		 * completed, we could do the conversion right here
3662 		 */
3663 		err = ext4_convert_unwritten_extents(NULL, inode,
3664 						     offset, ret);
3665 		if (err < 0)
3666 			ret = err;
3667 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3668 	}
3669 
3670 	inode_dio_end(inode);
3671 	/* take i_mutex locking again if we do a ovewrite dio */
3672 	if (overwrite)
3673 		inode_lock(inode);
3674 
3675 	if (ret < 0 && final_size > inode->i_size)
3676 		ext4_truncate_failed_write(inode);
3677 
3678 	/* Handle extending of i_size after direct IO write */
3679 	if (orphan) {
3680 		int err;
3681 
3682 		/* Credits for sb + inode write */
3683 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3684 		if (IS_ERR(handle)) {
3685 			/* This is really bad luck. We've written the data
3686 			 * but cannot extend i_size. Bail out and pretend
3687 			 * the write failed... */
3688 			ret = PTR_ERR(handle);
3689 			if (inode->i_nlink)
3690 				ext4_orphan_del(NULL, inode);
3691 
3692 			goto out;
3693 		}
3694 		if (inode->i_nlink)
3695 			ext4_orphan_del(handle, inode);
3696 		if (ret > 0) {
3697 			loff_t end = offset + ret;
3698 			if (end > inode->i_size) {
3699 				ei->i_disksize = end;
3700 				i_size_write(inode, end);
3701 				/*
3702 				 * We're going to return a positive `ret'
3703 				 * here due to non-zero-length I/O, so there's
3704 				 * no way of reporting error returns from
3705 				 * ext4_mark_inode_dirty() to userspace.  So
3706 				 * ignore it.
3707 				 */
3708 				ext4_mark_inode_dirty(handle, inode);
3709 			}
3710 		}
3711 		err = ext4_journal_stop(handle);
3712 		if (ret == 0)
3713 			ret = err;
3714 	}
3715 out:
3716 	return ret;
3717 }
3718 
3719 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3720 {
3721 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3722 	struct inode *inode = mapping->host;
3723 	size_t count = iov_iter_count(iter);
3724 	ssize_t ret;
3725 
3726 	/*
3727 	 * Shared inode_lock is enough for us - it protects against concurrent
3728 	 * writes & truncates and since we take care of writing back page cache,
3729 	 * we are protected against page writeback as well.
3730 	 */
3731 	inode_lock_shared(inode);
3732 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3733 					   iocb->ki_pos + count - 1);
3734 	if (ret)
3735 		goto out_unlock;
3736 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3737 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3738 out_unlock:
3739 	inode_unlock_shared(inode);
3740 	return ret;
3741 }
3742 
3743 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3744 {
3745 	struct file *file = iocb->ki_filp;
3746 	struct inode *inode = file->f_mapping->host;
3747 	size_t count = iov_iter_count(iter);
3748 	loff_t offset = iocb->ki_pos;
3749 	ssize_t ret;
3750 
3751 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3752 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3753 		return 0;
3754 #endif
3755 
3756 	/*
3757 	 * If we are doing data journalling we don't support O_DIRECT
3758 	 */
3759 	if (ext4_should_journal_data(inode))
3760 		return 0;
3761 
3762 	/* Let buffer I/O handle the inline data case. */
3763 	if (ext4_has_inline_data(inode))
3764 		return 0;
3765 
3766 	/* DAX uses iomap path now */
3767 	if (WARN_ON_ONCE(IS_DAX(inode)))
3768 		return 0;
3769 
3770 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3771 	if (iov_iter_rw(iter) == READ)
3772 		ret = ext4_direct_IO_read(iocb, iter);
3773 	else
3774 		ret = ext4_direct_IO_write(iocb, iter);
3775 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3776 	return ret;
3777 }
3778 
3779 /*
3780  * Pages can be marked dirty completely asynchronously from ext4's journalling
3781  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3782  * much here because ->set_page_dirty is called under VFS locks.  The page is
3783  * not necessarily locked.
3784  *
3785  * We cannot just dirty the page and leave attached buffers clean, because the
3786  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3787  * or jbddirty because all the journalling code will explode.
3788  *
3789  * So what we do is to mark the page "pending dirty" and next time writepage
3790  * is called, propagate that into the buffers appropriately.
3791  */
3792 static int ext4_journalled_set_page_dirty(struct page *page)
3793 {
3794 	SetPageChecked(page);
3795 	return __set_page_dirty_nobuffers(page);
3796 }
3797 
3798 static int ext4_set_page_dirty(struct page *page)
3799 {
3800 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3801 	WARN_ON_ONCE(!page_has_buffers(page));
3802 	return __set_page_dirty_buffers(page);
3803 }
3804 
3805 static const struct address_space_operations ext4_aops = {
3806 	.readpage		= ext4_readpage,
3807 	.readpages		= ext4_readpages,
3808 	.writepage		= ext4_writepage,
3809 	.writepages		= ext4_writepages,
3810 	.write_begin		= ext4_write_begin,
3811 	.write_end		= ext4_write_end,
3812 	.set_page_dirty		= ext4_set_page_dirty,
3813 	.bmap			= ext4_bmap,
3814 	.invalidatepage		= ext4_invalidatepage,
3815 	.releasepage		= ext4_releasepage,
3816 	.direct_IO		= ext4_direct_IO,
3817 	.migratepage		= buffer_migrate_page,
3818 	.is_partially_uptodate  = block_is_partially_uptodate,
3819 	.error_remove_page	= generic_error_remove_page,
3820 };
3821 
3822 static const struct address_space_operations ext4_journalled_aops = {
3823 	.readpage		= ext4_readpage,
3824 	.readpages		= ext4_readpages,
3825 	.writepage		= ext4_writepage,
3826 	.writepages		= ext4_writepages,
3827 	.write_begin		= ext4_write_begin,
3828 	.write_end		= ext4_journalled_write_end,
3829 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3830 	.bmap			= ext4_bmap,
3831 	.invalidatepage		= ext4_journalled_invalidatepage,
3832 	.releasepage		= ext4_releasepage,
3833 	.direct_IO		= ext4_direct_IO,
3834 	.is_partially_uptodate  = block_is_partially_uptodate,
3835 	.error_remove_page	= generic_error_remove_page,
3836 };
3837 
3838 static const struct address_space_operations ext4_da_aops = {
3839 	.readpage		= ext4_readpage,
3840 	.readpages		= ext4_readpages,
3841 	.writepage		= ext4_writepage,
3842 	.writepages		= ext4_writepages,
3843 	.write_begin		= ext4_da_write_begin,
3844 	.write_end		= ext4_da_write_end,
3845 	.set_page_dirty		= ext4_set_page_dirty,
3846 	.bmap			= ext4_bmap,
3847 	.invalidatepage		= ext4_da_invalidatepage,
3848 	.releasepage		= ext4_releasepage,
3849 	.direct_IO		= ext4_direct_IO,
3850 	.migratepage		= buffer_migrate_page,
3851 	.is_partially_uptodate  = block_is_partially_uptodate,
3852 	.error_remove_page	= generic_error_remove_page,
3853 };
3854 
3855 void ext4_set_aops(struct inode *inode)
3856 {
3857 	switch (ext4_inode_journal_mode(inode)) {
3858 	case EXT4_INODE_ORDERED_DATA_MODE:
3859 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3860 		break;
3861 	case EXT4_INODE_JOURNAL_DATA_MODE:
3862 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3863 		return;
3864 	default:
3865 		BUG();
3866 	}
3867 	if (test_opt(inode->i_sb, DELALLOC))
3868 		inode->i_mapping->a_ops = &ext4_da_aops;
3869 	else
3870 		inode->i_mapping->a_ops = &ext4_aops;
3871 }
3872 
3873 static int __ext4_block_zero_page_range(handle_t *handle,
3874 		struct address_space *mapping, loff_t from, loff_t length)
3875 {
3876 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3877 	unsigned offset = from & (PAGE_SIZE-1);
3878 	unsigned blocksize, pos;
3879 	ext4_lblk_t iblock;
3880 	struct inode *inode = mapping->host;
3881 	struct buffer_head *bh;
3882 	struct page *page;
3883 	int err = 0;
3884 
3885 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3886 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3887 	if (!page)
3888 		return -ENOMEM;
3889 
3890 	blocksize = inode->i_sb->s_blocksize;
3891 
3892 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3893 
3894 	if (!page_has_buffers(page))
3895 		create_empty_buffers(page, blocksize, 0);
3896 
3897 	/* Find the buffer that contains "offset" */
3898 	bh = page_buffers(page);
3899 	pos = blocksize;
3900 	while (offset >= pos) {
3901 		bh = bh->b_this_page;
3902 		iblock++;
3903 		pos += blocksize;
3904 	}
3905 	if (buffer_freed(bh)) {
3906 		BUFFER_TRACE(bh, "freed: skip");
3907 		goto unlock;
3908 	}
3909 	if (!buffer_mapped(bh)) {
3910 		BUFFER_TRACE(bh, "unmapped");
3911 		ext4_get_block(inode, iblock, bh, 0);
3912 		/* unmapped? It's a hole - nothing to do */
3913 		if (!buffer_mapped(bh)) {
3914 			BUFFER_TRACE(bh, "still unmapped");
3915 			goto unlock;
3916 		}
3917 	}
3918 
3919 	/* Ok, it's mapped. Make sure it's up-to-date */
3920 	if (PageUptodate(page))
3921 		set_buffer_uptodate(bh);
3922 
3923 	if (!buffer_uptodate(bh)) {
3924 		err = -EIO;
3925 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3926 		wait_on_buffer(bh);
3927 		/* Uhhuh. Read error. Complain and punt. */
3928 		if (!buffer_uptodate(bh))
3929 			goto unlock;
3930 		if (S_ISREG(inode->i_mode) &&
3931 		    ext4_encrypted_inode(inode)) {
3932 			/* We expect the key to be set. */
3933 			BUG_ON(!fscrypt_has_encryption_key(inode));
3934 			BUG_ON(blocksize != PAGE_SIZE);
3935 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3936 						page, PAGE_SIZE, 0, page->index));
3937 		}
3938 	}
3939 	if (ext4_should_journal_data(inode)) {
3940 		BUFFER_TRACE(bh, "get write access");
3941 		err = ext4_journal_get_write_access(handle, bh);
3942 		if (err)
3943 			goto unlock;
3944 	}
3945 	zero_user(page, offset, length);
3946 	BUFFER_TRACE(bh, "zeroed end of block");
3947 
3948 	if (ext4_should_journal_data(inode)) {
3949 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3950 	} else {
3951 		err = 0;
3952 		mark_buffer_dirty(bh);
3953 		if (ext4_should_order_data(inode))
3954 			err = ext4_jbd2_inode_add_write(handle, inode);
3955 	}
3956 
3957 unlock:
3958 	unlock_page(page);
3959 	put_page(page);
3960 	return err;
3961 }
3962 
3963 /*
3964  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3965  * starting from file offset 'from'.  The range to be zero'd must
3966  * be contained with in one block.  If the specified range exceeds
3967  * the end of the block it will be shortened to end of the block
3968  * that cooresponds to 'from'
3969  */
3970 static int ext4_block_zero_page_range(handle_t *handle,
3971 		struct address_space *mapping, loff_t from, loff_t length)
3972 {
3973 	struct inode *inode = mapping->host;
3974 	unsigned offset = from & (PAGE_SIZE-1);
3975 	unsigned blocksize = inode->i_sb->s_blocksize;
3976 	unsigned max = blocksize - (offset & (blocksize - 1));
3977 
3978 	/*
3979 	 * correct length if it does not fall between
3980 	 * 'from' and the end of the block
3981 	 */
3982 	if (length > max || length < 0)
3983 		length = max;
3984 
3985 	if (IS_DAX(inode)) {
3986 		return iomap_zero_range(inode, from, length, NULL,
3987 					&ext4_iomap_ops);
3988 	}
3989 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3990 }
3991 
3992 /*
3993  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3994  * up to the end of the block which corresponds to `from'.
3995  * This required during truncate. We need to physically zero the tail end
3996  * of that block so it doesn't yield old data if the file is later grown.
3997  */
3998 static int ext4_block_truncate_page(handle_t *handle,
3999 		struct address_space *mapping, loff_t from)
4000 {
4001 	unsigned offset = from & (PAGE_SIZE-1);
4002 	unsigned length;
4003 	unsigned blocksize;
4004 	struct inode *inode = mapping->host;
4005 
4006 	/* If we are processing an encrypted inode during orphan list handling */
4007 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4008 		return 0;
4009 
4010 	blocksize = inode->i_sb->s_blocksize;
4011 	length = blocksize - (offset & (blocksize - 1));
4012 
4013 	return ext4_block_zero_page_range(handle, mapping, from, length);
4014 }
4015 
4016 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4017 			     loff_t lstart, loff_t length)
4018 {
4019 	struct super_block *sb = inode->i_sb;
4020 	struct address_space *mapping = inode->i_mapping;
4021 	unsigned partial_start, partial_end;
4022 	ext4_fsblk_t start, end;
4023 	loff_t byte_end = (lstart + length - 1);
4024 	int err = 0;
4025 
4026 	partial_start = lstart & (sb->s_blocksize - 1);
4027 	partial_end = byte_end & (sb->s_blocksize - 1);
4028 
4029 	start = lstart >> sb->s_blocksize_bits;
4030 	end = byte_end >> sb->s_blocksize_bits;
4031 
4032 	/* Handle partial zero within the single block */
4033 	if (start == end &&
4034 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4035 		err = ext4_block_zero_page_range(handle, mapping,
4036 						 lstart, length);
4037 		return err;
4038 	}
4039 	/* Handle partial zero out on the start of the range */
4040 	if (partial_start) {
4041 		err = ext4_block_zero_page_range(handle, mapping,
4042 						 lstart, sb->s_blocksize);
4043 		if (err)
4044 			return err;
4045 	}
4046 	/* Handle partial zero out on the end of the range */
4047 	if (partial_end != sb->s_blocksize - 1)
4048 		err = ext4_block_zero_page_range(handle, mapping,
4049 						 byte_end - partial_end,
4050 						 partial_end + 1);
4051 	return err;
4052 }
4053 
4054 int ext4_can_truncate(struct inode *inode)
4055 {
4056 	if (S_ISREG(inode->i_mode))
4057 		return 1;
4058 	if (S_ISDIR(inode->i_mode))
4059 		return 1;
4060 	if (S_ISLNK(inode->i_mode))
4061 		return !ext4_inode_is_fast_symlink(inode);
4062 	return 0;
4063 }
4064 
4065 /*
4066  * We have to make sure i_disksize gets properly updated before we truncate
4067  * page cache due to hole punching or zero range. Otherwise i_disksize update
4068  * can get lost as it may have been postponed to submission of writeback but
4069  * that will never happen after we truncate page cache.
4070  */
4071 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4072 				      loff_t len)
4073 {
4074 	handle_t *handle;
4075 	loff_t size = i_size_read(inode);
4076 
4077 	WARN_ON(!inode_is_locked(inode));
4078 	if (offset > size || offset + len < size)
4079 		return 0;
4080 
4081 	if (EXT4_I(inode)->i_disksize >= size)
4082 		return 0;
4083 
4084 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4085 	if (IS_ERR(handle))
4086 		return PTR_ERR(handle);
4087 	ext4_update_i_disksize(inode, size);
4088 	ext4_mark_inode_dirty(handle, inode);
4089 	ext4_journal_stop(handle);
4090 
4091 	return 0;
4092 }
4093 
4094 /*
4095  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4096  * associated with the given offset and length
4097  *
4098  * @inode:  File inode
4099  * @offset: The offset where the hole will begin
4100  * @len:    The length of the hole
4101  *
4102  * Returns: 0 on success or negative on failure
4103  */
4104 
4105 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4106 {
4107 	struct super_block *sb = inode->i_sb;
4108 	ext4_lblk_t first_block, stop_block;
4109 	struct address_space *mapping = inode->i_mapping;
4110 	loff_t first_block_offset, last_block_offset;
4111 	handle_t *handle;
4112 	unsigned int credits;
4113 	int ret = 0;
4114 
4115 	if (!S_ISREG(inode->i_mode))
4116 		return -EOPNOTSUPP;
4117 
4118 	trace_ext4_punch_hole(inode, offset, length, 0);
4119 
4120 	/*
4121 	 * Write out all dirty pages to avoid race conditions
4122 	 * Then release them.
4123 	 */
4124 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4125 		ret = filemap_write_and_wait_range(mapping, offset,
4126 						   offset + length - 1);
4127 		if (ret)
4128 			return ret;
4129 	}
4130 
4131 	inode_lock(inode);
4132 
4133 	/* No need to punch hole beyond i_size */
4134 	if (offset >= inode->i_size)
4135 		goto out_mutex;
4136 
4137 	/*
4138 	 * If the hole extends beyond i_size, set the hole
4139 	 * to end after the page that contains i_size
4140 	 */
4141 	if (offset + length > inode->i_size) {
4142 		length = inode->i_size +
4143 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4144 		   offset;
4145 	}
4146 
4147 	if (offset & (sb->s_blocksize - 1) ||
4148 	    (offset + length) & (sb->s_blocksize - 1)) {
4149 		/*
4150 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4151 		 * partial block
4152 		 */
4153 		ret = ext4_inode_attach_jinode(inode);
4154 		if (ret < 0)
4155 			goto out_mutex;
4156 
4157 	}
4158 
4159 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4160 	ext4_inode_block_unlocked_dio(inode);
4161 	inode_dio_wait(inode);
4162 
4163 	/*
4164 	 * Prevent page faults from reinstantiating pages we have released from
4165 	 * page cache.
4166 	 */
4167 	down_write(&EXT4_I(inode)->i_mmap_sem);
4168 	first_block_offset = round_up(offset, sb->s_blocksize);
4169 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4170 
4171 	/* Now release the pages and zero block aligned part of pages*/
4172 	if (last_block_offset > first_block_offset) {
4173 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4174 		if (ret)
4175 			goto out_dio;
4176 		truncate_pagecache_range(inode, first_block_offset,
4177 					 last_block_offset);
4178 	}
4179 
4180 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4181 		credits = ext4_writepage_trans_blocks(inode);
4182 	else
4183 		credits = ext4_blocks_for_truncate(inode);
4184 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4185 	if (IS_ERR(handle)) {
4186 		ret = PTR_ERR(handle);
4187 		ext4_std_error(sb, ret);
4188 		goto out_dio;
4189 	}
4190 
4191 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4192 				       length);
4193 	if (ret)
4194 		goto out_stop;
4195 
4196 	first_block = (offset + sb->s_blocksize - 1) >>
4197 		EXT4_BLOCK_SIZE_BITS(sb);
4198 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4199 
4200 	/* If there are no blocks to remove, return now */
4201 	if (first_block >= stop_block)
4202 		goto out_stop;
4203 
4204 	down_write(&EXT4_I(inode)->i_data_sem);
4205 	ext4_discard_preallocations(inode);
4206 
4207 	ret = ext4_es_remove_extent(inode, first_block,
4208 				    stop_block - first_block);
4209 	if (ret) {
4210 		up_write(&EXT4_I(inode)->i_data_sem);
4211 		goto out_stop;
4212 	}
4213 
4214 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4215 		ret = ext4_ext_remove_space(inode, first_block,
4216 					    stop_block - 1);
4217 	else
4218 		ret = ext4_ind_remove_space(handle, inode, first_block,
4219 					    stop_block);
4220 
4221 	up_write(&EXT4_I(inode)->i_data_sem);
4222 	if (IS_SYNC(inode))
4223 		ext4_handle_sync(handle);
4224 
4225 	inode->i_mtime = inode->i_ctime = current_time(inode);
4226 	ext4_mark_inode_dirty(handle, inode);
4227 	if (ret >= 0)
4228 		ext4_update_inode_fsync_trans(handle, inode, 1);
4229 out_stop:
4230 	ext4_journal_stop(handle);
4231 out_dio:
4232 	up_write(&EXT4_I(inode)->i_mmap_sem);
4233 	ext4_inode_resume_unlocked_dio(inode);
4234 out_mutex:
4235 	inode_unlock(inode);
4236 	return ret;
4237 }
4238 
4239 int ext4_inode_attach_jinode(struct inode *inode)
4240 {
4241 	struct ext4_inode_info *ei = EXT4_I(inode);
4242 	struct jbd2_inode *jinode;
4243 
4244 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4245 		return 0;
4246 
4247 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4248 	spin_lock(&inode->i_lock);
4249 	if (!ei->jinode) {
4250 		if (!jinode) {
4251 			spin_unlock(&inode->i_lock);
4252 			return -ENOMEM;
4253 		}
4254 		ei->jinode = jinode;
4255 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4256 		jinode = NULL;
4257 	}
4258 	spin_unlock(&inode->i_lock);
4259 	if (unlikely(jinode != NULL))
4260 		jbd2_free_inode(jinode);
4261 	return 0;
4262 }
4263 
4264 /*
4265  * ext4_truncate()
4266  *
4267  * We block out ext4_get_block() block instantiations across the entire
4268  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4269  * simultaneously on behalf of the same inode.
4270  *
4271  * As we work through the truncate and commit bits of it to the journal there
4272  * is one core, guiding principle: the file's tree must always be consistent on
4273  * disk.  We must be able to restart the truncate after a crash.
4274  *
4275  * The file's tree may be transiently inconsistent in memory (although it
4276  * probably isn't), but whenever we close off and commit a journal transaction,
4277  * the contents of (the filesystem + the journal) must be consistent and
4278  * restartable.  It's pretty simple, really: bottom up, right to left (although
4279  * left-to-right works OK too).
4280  *
4281  * Note that at recovery time, journal replay occurs *before* the restart of
4282  * truncate against the orphan inode list.
4283  *
4284  * The committed inode has the new, desired i_size (which is the same as
4285  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4286  * that this inode's truncate did not complete and it will again call
4287  * ext4_truncate() to have another go.  So there will be instantiated blocks
4288  * to the right of the truncation point in a crashed ext4 filesystem.  But
4289  * that's fine - as long as they are linked from the inode, the post-crash
4290  * ext4_truncate() run will find them and release them.
4291  */
4292 int ext4_truncate(struct inode *inode)
4293 {
4294 	struct ext4_inode_info *ei = EXT4_I(inode);
4295 	unsigned int credits;
4296 	int err = 0;
4297 	handle_t *handle;
4298 	struct address_space *mapping = inode->i_mapping;
4299 
4300 	/*
4301 	 * There is a possibility that we're either freeing the inode
4302 	 * or it's a completely new inode. In those cases we might not
4303 	 * have i_mutex locked because it's not necessary.
4304 	 */
4305 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4306 		WARN_ON(!inode_is_locked(inode));
4307 	trace_ext4_truncate_enter(inode);
4308 
4309 	if (!ext4_can_truncate(inode))
4310 		return 0;
4311 
4312 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4313 
4314 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4315 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4316 
4317 	if (ext4_has_inline_data(inode)) {
4318 		int has_inline = 1;
4319 
4320 		err = ext4_inline_data_truncate(inode, &has_inline);
4321 		if (err)
4322 			return err;
4323 		if (has_inline)
4324 			return 0;
4325 	}
4326 
4327 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4328 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4329 		if (ext4_inode_attach_jinode(inode) < 0)
4330 			return 0;
4331 	}
4332 
4333 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4334 		credits = ext4_writepage_trans_blocks(inode);
4335 	else
4336 		credits = ext4_blocks_for_truncate(inode);
4337 
4338 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4339 	if (IS_ERR(handle))
4340 		return PTR_ERR(handle);
4341 
4342 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4343 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4344 
4345 	/*
4346 	 * We add the inode to the orphan list, so that if this
4347 	 * truncate spans multiple transactions, and we crash, we will
4348 	 * resume the truncate when the filesystem recovers.  It also
4349 	 * marks the inode dirty, to catch the new size.
4350 	 *
4351 	 * Implication: the file must always be in a sane, consistent
4352 	 * truncatable state while each transaction commits.
4353 	 */
4354 	err = ext4_orphan_add(handle, inode);
4355 	if (err)
4356 		goto out_stop;
4357 
4358 	down_write(&EXT4_I(inode)->i_data_sem);
4359 
4360 	ext4_discard_preallocations(inode);
4361 
4362 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4363 		err = ext4_ext_truncate(handle, inode);
4364 	else
4365 		ext4_ind_truncate(handle, inode);
4366 
4367 	up_write(&ei->i_data_sem);
4368 	if (err)
4369 		goto out_stop;
4370 
4371 	if (IS_SYNC(inode))
4372 		ext4_handle_sync(handle);
4373 
4374 out_stop:
4375 	/*
4376 	 * If this was a simple ftruncate() and the file will remain alive,
4377 	 * then we need to clear up the orphan record which we created above.
4378 	 * However, if this was a real unlink then we were called by
4379 	 * ext4_evict_inode(), and we allow that function to clean up the
4380 	 * orphan info for us.
4381 	 */
4382 	if (inode->i_nlink)
4383 		ext4_orphan_del(handle, inode);
4384 
4385 	inode->i_mtime = inode->i_ctime = current_time(inode);
4386 	ext4_mark_inode_dirty(handle, inode);
4387 	ext4_journal_stop(handle);
4388 
4389 	trace_ext4_truncate_exit(inode);
4390 	return err;
4391 }
4392 
4393 /*
4394  * ext4_get_inode_loc returns with an extra refcount against the inode's
4395  * underlying buffer_head on success. If 'in_mem' is true, we have all
4396  * data in memory that is needed to recreate the on-disk version of this
4397  * inode.
4398  */
4399 static int __ext4_get_inode_loc(struct inode *inode,
4400 				struct ext4_iloc *iloc, int in_mem)
4401 {
4402 	struct ext4_group_desc	*gdp;
4403 	struct buffer_head	*bh;
4404 	struct super_block	*sb = inode->i_sb;
4405 	ext4_fsblk_t		block;
4406 	int			inodes_per_block, inode_offset;
4407 
4408 	iloc->bh = NULL;
4409 	if (!ext4_valid_inum(sb, inode->i_ino))
4410 		return -EFSCORRUPTED;
4411 
4412 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4413 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4414 	if (!gdp)
4415 		return -EIO;
4416 
4417 	/*
4418 	 * Figure out the offset within the block group inode table
4419 	 */
4420 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4421 	inode_offset = ((inode->i_ino - 1) %
4422 			EXT4_INODES_PER_GROUP(sb));
4423 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4424 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4425 
4426 	bh = sb_getblk(sb, block);
4427 	if (unlikely(!bh))
4428 		return -ENOMEM;
4429 	if (!buffer_uptodate(bh)) {
4430 		lock_buffer(bh);
4431 
4432 		/*
4433 		 * If the buffer has the write error flag, we have failed
4434 		 * to write out another inode in the same block.  In this
4435 		 * case, we don't have to read the block because we may
4436 		 * read the old inode data successfully.
4437 		 */
4438 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4439 			set_buffer_uptodate(bh);
4440 
4441 		if (buffer_uptodate(bh)) {
4442 			/* someone brought it uptodate while we waited */
4443 			unlock_buffer(bh);
4444 			goto has_buffer;
4445 		}
4446 
4447 		/*
4448 		 * If we have all information of the inode in memory and this
4449 		 * is the only valid inode in the block, we need not read the
4450 		 * block.
4451 		 */
4452 		if (in_mem) {
4453 			struct buffer_head *bitmap_bh;
4454 			int i, start;
4455 
4456 			start = inode_offset & ~(inodes_per_block - 1);
4457 
4458 			/* Is the inode bitmap in cache? */
4459 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4460 			if (unlikely(!bitmap_bh))
4461 				goto make_io;
4462 
4463 			/*
4464 			 * If the inode bitmap isn't in cache then the
4465 			 * optimisation may end up performing two reads instead
4466 			 * of one, so skip it.
4467 			 */
4468 			if (!buffer_uptodate(bitmap_bh)) {
4469 				brelse(bitmap_bh);
4470 				goto make_io;
4471 			}
4472 			for (i = start; i < start + inodes_per_block; i++) {
4473 				if (i == inode_offset)
4474 					continue;
4475 				if (ext4_test_bit(i, bitmap_bh->b_data))
4476 					break;
4477 			}
4478 			brelse(bitmap_bh);
4479 			if (i == start + inodes_per_block) {
4480 				/* all other inodes are free, so skip I/O */
4481 				memset(bh->b_data, 0, bh->b_size);
4482 				set_buffer_uptodate(bh);
4483 				unlock_buffer(bh);
4484 				goto has_buffer;
4485 			}
4486 		}
4487 
4488 make_io:
4489 		/*
4490 		 * If we need to do any I/O, try to pre-readahead extra
4491 		 * blocks from the inode table.
4492 		 */
4493 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4494 			ext4_fsblk_t b, end, table;
4495 			unsigned num;
4496 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4497 
4498 			table = ext4_inode_table(sb, gdp);
4499 			/* s_inode_readahead_blks is always a power of 2 */
4500 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4501 			if (table > b)
4502 				b = table;
4503 			end = b + ra_blks;
4504 			num = EXT4_INODES_PER_GROUP(sb);
4505 			if (ext4_has_group_desc_csum(sb))
4506 				num -= ext4_itable_unused_count(sb, gdp);
4507 			table += num / inodes_per_block;
4508 			if (end > table)
4509 				end = table;
4510 			while (b <= end)
4511 				sb_breadahead(sb, b++);
4512 		}
4513 
4514 		/*
4515 		 * There are other valid inodes in the buffer, this inode
4516 		 * has in-inode xattrs, or we don't have this inode in memory.
4517 		 * Read the block from disk.
4518 		 */
4519 		trace_ext4_load_inode(inode);
4520 		get_bh(bh);
4521 		bh->b_end_io = end_buffer_read_sync;
4522 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4523 		wait_on_buffer(bh);
4524 		if (!buffer_uptodate(bh)) {
4525 			EXT4_ERROR_INODE_BLOCK(inode, block,
4526 					       "unable to read itable block");
4527 			brelse(bh);
4528 			return -EIO;
4529 		}
4530 	}
4531 has_buffer:
4532 	iloc->bh = bh;
4533 	return 0;
4534 }
4535 
4536 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4537 {
4538 	/* We have all inode data except xattrs in memory here. */
4539 	return __ext4_get_inode_loc(inode, iloc,
4540 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4541 }
4542 
4543 void ext4_set_inode_flags(struct inode *inode)
4544 {
4545 	unsigned int flags = EXT4_I(inode)->i_flags;
4546 	unsigned int new_fl = 0;
4547 
4548 	if (flags & EXT4_SYNC_FL)
4549 		new_fl |= S_SYNC;
4550 	if (flags & EXT4_APPEND_FL)
4551 		new_fl |= S_APPEND;
4552 	if (flags & EXT4_IMMUTABLE_FL)
4553 		new_fl |= S_IMMUTABLE;
4554 	if (flags & EXT4_NOATIME_FL)
4555 		new_fl |= S_NOATIME;
4556 	if (flags & EXT4_DIRSYNC_FL)
4557 		new_fl |= S_DIRSYNC;
4558 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4559 	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4560 	    !ext4_encrypted_inode(inode))
4561 		new_fl |= S_DAX;
4562 	inode_set_flags(inode, new_fl,
4563 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4564 }
4565 
4566 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4567 				  struct ext4_inode_info *ei)
4568 {
4569 	blkcnt_t i_blocks ;
4570 	struct inode *inode = &(ei->vfs_inode);
4571 	struct super_block *sb = inode->i_sb;
4572 
4573 	if (ext4_has_feature_huge_file(sb)) {
4574 		/* we are using combined 48 bit field */
4575 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4576 					le32_to_cpu(raw_inode->i_blocks_lo);
4577 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4578 			/* i_blocks represent file system block size */
4579 			return i_blocks  << (inode->i_blkbits - 9);
4580 		} else {
4581 			return i_blocks;
4582 		}
4583 	} else {
4584 		return le32_to_cpu(raw_inode->i_blocks_lo);
4585 	}
4586 }
4587 
4588 static inline void ext4_iget_extra_inode(struct inode *inode,
4589 					 struct ext4_inode *raw_inode,
4590 					 struct ext4_inode_info *ei)
4591 {
4592 	__le32 *magic = (void *)raw_inode +
4593 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4594 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4595 	    EXT4_INODE_SIZE(inode->i_sb) &&
4596 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4597 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4598 		ext4_find_inline_data_nolock(inode);
4599 	} else
4600 		EXT4_I(inode)->i_inline_off = 0;
4601 }
4602 
4603 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4604 {
4605 	if (!ext4_has_feature_project(inode->i_sb))
4606 		return -EOPNOTSUPP;
4607 	*projid = EXT4_I(inode)->i_projid;
4608 	return 0;
4609 }
4610 
4611 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4612 {
4613 	struct ext4_iloc iloc;
4614 	struct ext4_inode *raw_inode;
4615 	struct ext4_inode_info *ei;
4616 	struct inode *inode;
4617 	journal_t *journal = EXT4_SB(sb)->s_journal;
4618 	long ret;
4619 	loff_t size;
4620 	int block;
4621 	uid_t i_uid;
4622 	gid_t i_gid;
4623 	projid_t i_projid;
4624 
4625 	inode = iget_locked(sb, ino);
4626 	if (!inode)
4627 		return ERR_PTR(-ENOMEM);
4628 	if (!(inode->i_state & I_NEW))
4629 		return inode;
4630 
4631 	ei = EXT4_I(inode);
4632 	iloc.bh = NULL;
4633 
4634 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4635 	if (ret < 0)
4636 		goto bad_inode;
4637 	raw_inode = ext4_raw_inode(&iloc);
4638 
4639 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4640 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4641 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4642 			EXT4_INODE_SIZE(inode->i_sb) ||
4643 		    (ei->i_extra_isize & 3)) {
4644 			EXT4_ERROR_INODE(inode,
4645 					 "bad extra_isize %u (inode size %u)",
4646 					 ei->i_extra_isize,
4647 					 EXT4_INODE_SIZE(inode->i_sb));
4648 			ret = -EFSCORRUPTED;
4649 			goto bad_inode;
4650 		}
4651 	} else
4652 		ei->i_extra_isize = 0;
4653 
4654 	/* Precompute checksum seed for inode metadata */
4655 	if (ext4_has_metadata_csum(sb)) {
4656 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4657 		__u32 csum;
4658 		__le32 inum = cpu_to_le32(inode->i_ino);
4659 		__le32 gen = raw_inode->i_generation;
4660 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4661 				   sizeof(inum));
4662 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4663 					      sizeof(gen));
4664 	}
4665 
4666 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4667 		EXT4_ERROR_INODE(inode, "checksum invalid");
4668 		ret = -EFSBADCRC;
4669 		goto bad_inode;
4670 	}
4671 
4672 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4673 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4674 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4675 	if (ext4_has_feature_project(sb) &&
4676 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4677 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4678 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4679 	else
4680 		i_projid = EXT4_DEF_PROJID;
4681 
4682 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4683 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4684 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4685 	}
4686 	i_uid_write(inode, i_uid);
4687 	i_gid_write(inode, i_gid);
4688 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4689 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4690 
4691 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4692 	ei->i_inline_off = 0;
4693 	ei->i_dir_start_lookup = 0;
4694 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4695 	/* We now have enough fields to check if the inode was active or not.
4696 	 * This is needed because nfsd might try to access dead inodes
4697 	 * the test is that same one that e2fsck uses
4698 	 * NeilBrown 1999oct15
4699 	 */
4700 	if (inode->i_nlink == 0) {
4701 		if ((inode->i_mode == 0 ||
4702 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4703 		    ino != EXT4_BOOT_LOADER_INO) {
4704 			/* this inode is deleted */
4705 			ret = -ESTALE;
4706 			goto bad_inode;
4707 		}
4708 		/* The only unlinked inodes we let through here have
4709 		 * valid i_mode and are being read by the orphan
4710 		 * recovery code: that's fine, we're about to complete
4711 		 * the process of deleting those.
4712 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4713 		 * not initialized on a new filesystem. */
4714 	}
4715 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4716 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4717 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4718 	if (ext4_has_feature_64bit(sb))
4719 		ei->i_file_acl |=
4720 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4721 	inode->i_size = ext4_isize(sb, raw_inode);
4722 	if ((size = i_size_read(inode)) < 0) {
4723 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4724 		ret = -EFSCORRUPTED;
4725 		goto bad_inode;
4726 	}
4727 	ei->i_disksize = inode->i_size;
4728 #ifdef CONFIG_QUOTA
4729 	ei->i_reserved_quota = 0;
4730 #endif
4731 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4732 	ei->i_block_group = iloc.block_group;
4733 	ei->i_last_alloc_group = ~0;
4734 	/*
4735 	 * NOTE! The in-memory inode i_data array is in little-endian order
4736 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4737 	 */
4738 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4739 		ei->i_data[block] = raw_inode->i_block[block];
4740 	INIT_LIST_HEAD(&ei->i_orphan);
4741 
4742 	/*
4743 	 * Set transaction id's of transactions that have to be committed
4744 	 * to finish f[data]sync. We set them to currently running transaction
4745 	 * as we cannot be sure that the inode or some of its metadata isn't
4746 	 * part of the transaction - the inode could have been reclaimed and
4747 	 * now it is reread from disk.
4748 	 */
4749 	if (journal) {
4750 		transaction_t *transaction;
4751 		tid_t tid;
4752 
4753 		read_lock(&journal->j_state_lock);
4754 		if (journal->j_running_transaction)
4755 			transaction = journal->j_running_transaction;
4756 		else
4757 			transaction = journal->j_committing_transaction;
4758 		if (transaction)
4759 			tid = transaction->t_tid;
4760 		else
4761 			tid = journal->j_commit_sequence;
4762 		read_unlock(&journal->j_state_lock);
4763 		ei->i_sync_tid = tid;
4764 		ei->i_datasync_tid = tid;
4765 	}
4766 
4767 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4768 		if (ei->i_extra_isize == 0) {
4769 			/* The extra space is currently unused. Use it. */
4770 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4771 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4772 					    EXT4_GOOD_OLD_INODE_SIZE;
4773 		} else {
4774 			ext4_iget_extra_inode(inode, raw_inode, ei);
4775 		}
4776 	}
4777 
4778 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4779 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4780 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4781 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4782 
4783 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4784 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4785 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4786 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4787 				inode->i_version |=
4788 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4789 		}
4790 	}
4791 
4792 	ret = 0;
4793 	if (ei->i_file_acl &&
4794 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4795 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4796 				 ei->i_file_acl);
4797 		ret = -EFSCORRUPTED;
4798 		goto bad_inode;
4799 	} else if (!ext4_has_inline_data(inode)) {
4800 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4801 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4802 			    (S_ISLNK(inode->i_mode) &&
4803 			     !ext4_inode_is_fast_symlink(inode))))
4804 				/* Validate extent which is part of inode */
4805 				ret = ext4_ext_check_inode(inode);
4806 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4807 			   (S_ISLNK(inode->i_mode) &&
4808 			    !ext4_inode_is_fast_symlink(inode))) {
4809 			/* Validate block references which are part of inode */
4810 			ret = ext4_ind_check_inode(inode);
4811 		}
4812 	}
4813 	if (ret)
4814 		goto bad_inode;
4815 
4816 	if (S_ISREG(inode->i_mode)) {
4817 		inode->i_op = &ext4_file_inode_operations;
4818 		inode->i_fop = &ext4_file_operations;
4819 		ext4_set_aops(inode);
4820 	} else if (S_ISDIR(inode->i_mode)) {
4821 		inode->i_op = &ext4_dir_inode_operations;
4822 		inode->i_fop = &ext4_dir_operations;
4823 	} else if (S_ISLNK(inode->i_mode)) {
4824 		if (ext4_encrypted_inode(inode)) {
4825 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4826 			ext4_set_aops(inode);
4827 		} else if (ext4_inode_is_fast_symlink(inode)) {
4828 			inode->i_link = (char *)ei->i_data;
4829 			inode->i_op = &ext4_fast_symlink_inode_operations;
4830 			nd_terminate_link(ei->i_data, inode->i_size,
4831 				sizeof(ei->i_data) - 1);
4832 		} else {
4833 			inode->i_op = &ext4_symlink_inode_operations;
4834 			ext4_set_aops(inode);
4835 		}
4836 		inode_nohighmem(inode);
4837 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4838 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4839 		inode->i_op = &ext4_special_inode_operations;
4840 		if (raw_inode->i_block[0])
4841 			init_special_inode(inode, inode->i_mode,
4842 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4843 		else
4844 			init_special_inode(inode, inode->i_mode,
4845 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4846 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4847 		make_bad_inode(inode);
4848 	} else {
4849 		ret = -EFSCORRUPTED;
4850 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4851 		goto bad_inode;
4852 	}
4853 	brelse(iloc.bh);
4854 	ext4_set_inode_flags(inode);
4855 
4856 	if (ei->i_flags & EXT4_EA_INODE_FL) {
4857 		ext4_xattr_inode_set_class(inode);
4858 
4859 		inode_lock(inode);
4860 		inode->i_flags |= S_NOQUOTA;
4861 		inode_unlock(inode);
4862 	}
4863 
4864 	unlock_new_inode(inode);
4865 	return inode;
4866 
4867 bad_inode:
4868 	brelse(iloc.bh);
4869 	iget_failed(inode);
4870 	return ERR_PTR(ret);
4871 }
4872 
4873 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4874 {
4875 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4876 		return ERR_PTR(-EFSCORRUPTED);
4877 	return ext4_iget(sb, ino);
4878 }
4879 
4880 static int ext4_inode_blocks_set(handle_t *handle,
4881 				struct ext4_inode *raw_inode,
4882 				struct ext4_inode_info *ei)
4883 {
4884 	struct inode *inode = &(ei->vfs_inode);
4885 	u64 i_blocks = inode->i_blocks;
4886 	struct super_block *sb = inode->i_sb;
4887 
4888 	if (i_blocks <= ~0U) {
4889 		/*
4890 		 * i_blocks can be represented in a 32 bit variable
4891 		 * as multiple of 512 bytes
4892 		 */
4893 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4894 		raw_inode->i_blocks_high = 0;
4895 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4896 		return 0;
4897 	}
4898 	if (!ext4_has_feature_huge_file(sb))
4899 		return -EFBIG;
4900 
4901 	if (i_blocks <= 0xffffffffffffULL) {
4902 		/*
4903 		 * i_blocks can be represented in a 48 bit variable
4904 		 * as multiple of 512 bytes
4905 		 */
4906 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4907 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4908 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4909 	} else {
4910 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4911 		/* i_block is stored in file system block size */
4912 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4913 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4914 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4915 	}
4916 	return 0;
4917 }
4918 
4919 struct other_inode {
4920 	unsigned long		orig_ino;
4921 	struct ext4_inode	*raw_inode;
4922 };
4923 
4924 static int other_inode_match(struct inode * inode, unsigned long ino,
4925 			     void *data)
4926 {
4927 	struct other_inode *oi = (struct other_inode *) data;
4928 
4929 	if ((inode->i_ino != ino) ||
4930 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4931 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4932 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4933 		return 0;
4934 	spin_lock(&inode->i_lock);
4935 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4936 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4937 	    (inode->i_state & I_DIRTY_TIME)) {
4938 		struct ext4_inode_info	*ei = EXT4_I(inode);
4939 
4940 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4941 		spin_unlock(&inode->i_lock);
4942 
4943 		spin_lock(&ei->i_raw_lock);
4944 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4945 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4946 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4947 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4948 		spin_unlock(&ei->i_raw_lock);
4949 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4950 		return -1;
4951 	}
4952 	spin_unlock(&inode->i_lock);
4953 	return -1;
4954 }
4955 
4956 /*
4957  * Opportunistically update the other time fields for other inodes in
4958  * the same inode table block.
4959  */
4960 static void ext4_update_other_inodes_time(struct super_block *sb,
4961 					  unsigned long orig_ino, char *buf)
4962 {
4963 	struct other_inode oi;
4964 	unsigned long ino;
4965 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4966 	int inode_size = EXT4_INODE_SIZE(sb);
4967 
4968 	oi.orig_ino = orig_ino;
4969 	/*
4970 	 * Calculate the first inode in the inode table block.  Inode
4971 	 * numbers are one-based.  That is, the first inode in a block
4972 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4973 	 */
4974 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4975 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4976 		if (ino == orig_ino)
4977 			continue;
4978 		oi.raw_inode = (struct ext4_inode *) buf;
4979 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4980 	}
4981 }
4982 
4983 /*
4984  * Post the struct inode info into an on-disk inode location in the
4985  * buffer-cache.  This gobbles the caller's reference to the
4986  * buffer_head in the inode location struct.
4987  *
4988  * The caller must have write access to iloc->bh.
4989  */
4990 static int ext4_do_update_inode(handle_t *handle,
4991 				struct inode *inode,
4992 				struct ext4_iloc *iloc)
4993 {
4994 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4995 	struct ext4_inode_info *ei = EXT4_I(inode);
4996 	struct buffer_head *bh = iloc->bh;
4997 	struct super_block *sb = inode->i_sb;
4998 	int err = 0, rc, block;
4999 	int need_datasync = 0, set_large_file = 0;
5000 	uid_t i_uid;
5001 	gid_t i_gid;
5002 	projid_t i_projid;
5003 
5004 	spin_lock(&ei->i_raw_lock);
5005 
5006 	/* For fields not tracked in the in-memory inode,
5007 	 * initialise them to zero for new inodes. */
5008 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5009 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5010 
5011 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5012 	i_uid = i_uid_read(inode);
5013 	i_gid = i_gid_read(inode);
5014 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5015 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5016 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5017 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5018 /*
5019  * Fix up interoperability with old kernels. Otherwise, old inodes get
5020  * re-used with the upper 16 bits of the uid/gid intact
5021  */
5022 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5023 			raw_inode->i_uid_high = 0;
5024 			raw_inode->i_gid_high = 0;
5025 		} else {
5026 			raw_inode->i_uid_high =
5027 				cpu_to_le16(high_16_bits(i_uid));
5028 			raw_inode->i_gid_high =
5029 				cpu_to_le16(high_16_bits(i_gid));
5030 		}
5031 	} else {
5032 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5033 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5034 		raw_inode->i_uid_high = 0;
5035 		raw_inode->i_gid_high = 0;
5036 	}
5037 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5038 
5039 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5040 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5041 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5042 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5043 
5044 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5045 	if (err) {
5046 		spin_unlock(&ei->i_raw_lock);
5047 		goto out_brelse;
5048 	}
5049 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5050 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5051 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5052 		raw_inode->i_file_acl_high =
5053 			cpu_to_le16(ei->i_file_acl >> 32);
5054 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5055 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5056 		ext4_isize_set(raw_inode, ei->i_disksize);
5057 		need_datasync = 1;
5058 	}
5059 	if (ei->i_disksize > 0x7fffffffULL) {
5060 		if (!ext4_has_feature_large_file(sb) ||
5061 				EXT4_SB(sb)->s_es->s_rev_level ==
5062 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5063 			set_large_file = 1;
5064 	}
5065 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5066 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5067 		if (old_valid_dev(inode->i_rdev)) {
5068 			raw_inode->i_block[0] =
5069 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5070 			raw_inode->i_block[1] = 0;
5071 		} else {
5072 			raw_inode->i_block[0] = 0;
5073 			raw_inode->i_block[1] =
5074 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5075 			raw_inode->i_block[2] = 0;
5076 		}
5077 	} else if (!ext4_has_inline_data(inode)) {
5078 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5079 			raw_inode->i_block[block] = ei->i_data[block];
5080 	}
5081 
5082 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5083 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5084 		if (ei->i_extra_isize) {
5085 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5086 				raw_inode->i_version_hi =
5087 					cpu_to_le32(inode->i_version >> 32);
5088 			raw_inode->i_extra_isize =
5089 				cpu_to_le16(ei->i_extra_isize);
5090 		}
5091 	}
5092 
5093 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5094 	       i_projid != EXT4_DEF_PROJID);
5095 
5096 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5097 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5098 		raw_inode->i_projid = cpu_to_le32(i_projid);
5099 
5100 	ext4_inode_csum_set(inode, raw_inode, ei);
5101 	spin_unlock(&ei->i_raw_lock);
5102 	if (inode->i_sb->s_flags & MS_LAZYTIME)
5103 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5104 					      bh->b_data);
5105 
5106 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5107 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5108 	if (!err)
5109 		err = rc;
5110 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5111 	if (set_large_file) {
5112 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5113 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5114 		if (err)
5115 			goto out_brelse;
5116 		ext4_update_dynamic_rev(sb);
5117 		ext4_set_feature_large_file(sb);
5118 		ext4_handle_sync(handle);
5119 		err = ext4_handle_dirty_super(handle, sb);
5120 	}
5121 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5122 out_brelse:
5123 	brelse(bh);
5124 	ext4_std_error(inode->i_sb, err);
5125 	return err;
5126 }
5127 
5128 /*
5129  * ext4_write_inode()
5130  *
5131  * We are called from a few places:
5132  *
5133  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5134  *   Here, there will be no transaction running. We wait for any running
5135  *   transaction to commit.
5136  *
5137  * - Within flush work (sys_sync(), kupdate and such).
5138  *   We wait on commit, if told to.
5139  *
5140  * - Within iput_final() -> write_inode_now()
5141  *   We wait on commit, if told to.
5142  *
5143  * In all cases it is actually safe for us to return without doing anything,
5144  * because the inode has been copied into a raw inode buffer in
5145  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5146  * writeback.
5147  *
5148  * Note that we are absolutely dependent upon all inode dirtiers doing the
5149  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5150  * which we are interested.
5151  *
5152  * It would be a bug for them to not do this.  The code:
5153  *
5154  *	mark_inode_dirty(inode)
5155  *	stuff();
5156  *	inode->i_size = expr;
5157  *
5158  * is in error because write_inode() could occur while `stuff()' is running,
5159  * and the new i_size will be lost.  Plus the inode will no longer be on the
5160  * superblock's dirty inode list.
5161  */
5162 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5163 {
5164 	int err;
5165 
5166 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5167 		return 0;
5168 
5169 	if (EXT4_SB(inode->i_sb)->s_journal) {
5170 		if (ext4_journal_current_handle()) {
5171 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5172 			dump_stack();
5173 			return -EIO;
5174 		}
5175 
5176 		/*
5177 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5178 		 * ext4_sync_fs() will force the commit after everything is
5179 		 * written.
5180 		 */
5181 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5182 			return 0;
5183 
5184 		err = ext4_force_commit(inode->i_sb);
5185 	} else {
5186 		struct ext4_iloc iloc;
5187 
5188 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5189 		if (err)
5190 			return err;
5191 		/*
5192 		 * sync(2) will flush the whole buffer cache. No need to do
5193 		 * it here separately for each inode.
5194 		 */
5195 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5196 			sync_dirty_buffer(iloc.bh);
5197 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5198 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5199 					 "IO error syncing inode");
5200 			err = -EIO;
5201 		}
5202 		brelse(iloc.bh);
5203 	}
5204 	return err;
5205 }
5206 
5207 /*
5208  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5209  * buffers that are attached to a page stradding i_size and are undergoing
5210  * commit. In that case we have to wait for commit to finish and try again.
5211  */
5212 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5213 {
5214 	struct page *page;
5215 	unsigned offset;
5216 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5217 	tid_t commit_tid = 0;
5218 	int ret;
5219 
5220 	offset = inode->i_size & (PAGE_SIZE - 1);
5221 	/*
5222 	 * All buffers in the last page remain valid? Then there's nothing to
5223 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5224 	 * blocksize case
5225 	 */
5226 	if (offset > PAGE_SIZE - i_blocksize(inode))
5227 		return;
5228 	while (1) {
5229 		page = find_lock_page(inode->i_mapping,
5230 				      inode->i_size >> PAGE_SHIFT);
5231 		if (!page)
5232 			return;
5233 		ret = __ext4_journalled_invalidatepage(page, offset,
5234 						PAGE_SIZE - offset);
5235 		unlock_page(page);
5236 		put_page(page);
5237 		if (ret != -EBUSY)
5238 			return;
5239 		commit_tid = 0;
5240 		read_lock(&journal->j_state_lock);
5241 		if (journal->j_committing_transaction)
5242 			commit_tid = journal->j_committing_transaction->t_tid;
5243 		read_unlock(&journal->j_state_lock);
5244 		if (commit_tid)
5245 			jbd2_log_wait_commit(journal, commit_tid);
5246 	}
5247 }
5248 
5249 /*
5250  * ext4_setattr()
5251  *
5252  * Called from notify_change.
5253  *
5254  * We want to trap VFS attempts to truncate the file as soon as
5255  * possible.  In particular, we want to make sure that when the VFS
5256  * shrinks i_size, we put the inode on the orphan list and modify
5257  * i_disksize immediately, so that during the subsequent flushing of
5258  * dirty pages and freeing of disk blocks, we can guarantee that any
5259  * commit will leave the blocks being flushed in an unused state on
5260  * disk.  (On recovery, the inode will get truncated and the blocks will
5261  * be freed, so we have a strong guarantee that no future commit will
5262  * leave these blocks visible to the user.)
5263  *
5264  * Another thing we have to assure is that if we are in ordered mode
5265  * and inode is still attached to the committing transaction, we must
5266  * we start writeout of all the dirty pages which are being truncated.
5267  * This way we are sure that all the data written in the previous
5268  * transaction are already on disk (truncate waits for pages under
5269  * writeback).
5270  *
5271  * Called with inode->i_mutex down.
5272  */
5273 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5274 {
5275 	struct inode *inode = d_inode(dentry);
5276 	int error, rc = 0;
5277 	int orphan = 0;
5278 	const unsigned int ia_valid = attr->ia_valid;
5279 
5280 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5281 		return -EIO;
5282 
5283 	error = setattr_prepare(dentry, attr);
5284 	if (error)
5285 		return error;
5286 
5287 	if (is_quota_modification(inode, attr)) {
5288 		error = dquot_initialize(inode);
5289 		if (error)
5290 			return error;
5291 	}
5292 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5293 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5294 		handle_t *handle;
5295 
5296 		/* (user+group)*(old+new) structure, inode write (sb,
5297 		 * inode block, ? - but truncate inode update has it) */
5298 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5299 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5300 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5301 		if (IS_ERR(handle)) {
5302 			error = PTR_ERR(handle);
5303 			goto err_out;
5304 		}
5305 
5306 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5307 		 * counts xattr inode references.
5308 		 */
5309 		down_read(&EXT4_I(inode)->xattr_sem);
5310 		error = dquot_transfer(inode, attr);
5311 		up_read(&EXT4_I(inode)->xattr_sem);
5312 
5313 		if (error) {
5314 			ext4_journal_stop(handle);
5315 			return error;
5316 		}
5317 		/* Update corresponding info in inode so that everything is in
5318 		 * one transaction */
5319 		if (attr->ia_valid & ATTR_UID)
5320 			inode->i_uid = attr->ia_uid;
5321 		if (attr->ia_valid & ATTR_GID)
5322 			inode->i_gid = attr->ia_gid;
5323 		error = ext4_mark_inode_dirty(handle, inode);
5324 		ext4_journal_stop(handle);
5325 	}
5326 
5327 	if (attr->ia_valid & ATTR_SIZE) {
5328 		handle_t *handle;
5329 		loff_t oldsize = inode->i_size;
5330 		int shrink = (attr->ia_size <= inode->i_size);
5331 
5332 		if (ext4_encrypted_inode(inode)) {
5333 			error = fscrypt_get_encryption_info(inode);
5334 			if (error)
5335 				return error;
5336 			if (!fscrypt_has_encryption_key(inode))
5337 				return -ENOKEY;
5338 		}
5339 
5340 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5341 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5342 
5343 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5344 				return -EFBIG;
5345 		}
5346 		if (!S_ISREG(inode->i_mode))
5347 			return -EINVAL;
5348 
5349 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5350 			inode_inc_iversion(inode);
5351 
5352 		if (ext4_should_order_data(inode) &&
5353 		    (attr->ia_size < inode->i_size)) {
5354 			error = ext4_begin_ordered_truncate(inode,
5355 							    attr->ia_size);
5356 			if (error)
5357 				goto err_out;
5358 		}
5359 		if (attr->ia_size != inode->i_size) {
5360 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5361 			if (IS_ERR(handle)) {
5362 				error = PTR_ERR(handle);
5363 				goto err_out;
5364 			}
5365 			if (ext4_handle_valid(handle) && shrink) {
5366 				error = ext4_orphan_add(handle, inode);
5367 				orphan = 1;
5368 			}
5369 			/*
5370 			 * Update c/mtime on truncate up, ext4_truncate() will
5371 			 * update c/mtime in shrink case below
5372 			 */
5373 			if (!shrink) {
5374 				inode->i_mtime = current_time(inode);
5375 				inode->i_ctime = inode->i_mtime;
5376 			}
5377 			down_write(&EXT4_I(inode)->i_data_sem);
5378 			EXT4_I(inode)->i_disksize = attr->ia_size;
5379 			rc = ext4_mark_inode_dirty(handle, inode);
5380 			if (!error)
5381 				error = rc;
5382 			/*
5383 			 * We have to update i_size under i_data_sem together
5384 			 * with i_disksize to avoid races with writeback code
5385 			 * running ext4_wb_update_i_disksize().
5386 			 */
5387 			if (!error)
5388 				i_size_write(inode, attr->ia_size);
5389 			up_write(&EXT4_I(inode)->i_data_sem);
5390 			ext4_journal_stop(handle);
5391 			if (error) {
5392 				if (orphan)
5393 					ext4_orphan_del(NULL, inode);
5394 				goto err_out;
5395 			}
5396 		}
5397 		if (!shrink)
5398 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5399 
5400 		/*
5401 		 * Blocks are going to be removed from the inode. Wait
5402 		 * for dio in flight.  Temporarily disable
5403 		 * dioread_nolock to prevent livelock.
5404 		 */
5405 		if (orphan) {
5406 			if (!ext4_should_journal_data(inode)) {
5407 				ext4_inode_block_unlocked_dio(inode);
5408 				inode_dio_wait(inode);
5409 				ext4_inode_resume_unlocked_dio(inode);
5410 			} else
5411 				ext4_wait_for_tail_page_commit(inode);
5412 		}
5413 		down_write(&EXT4_I(inode)->i_mmap_sem);
5414 		/*
5415 		 * Truncate pagecache after we've waited for commit
5416 		 * in data=journal mode to make pages freeable.
5417 		 */
5418 		truncate_pagecache(inode, inode->i_size);
5419 		if (shrink) {
5420 			rc = ext4_truncate(inode);
5421 			if (rc)
5422 				error = rc;
5423 		}
5424 		up_write(&EXT4_I(inode)->i_mmap_sem);
5425 	}
5426 
5427 	if (!error) {
5428 		setattr_copy(inode, attr);
5429 		mark_inode_dirty(inode);
5430 	}
5431 
5432 	/*
5433 	 * If the call to ext4_truncate failed to get a transaction handle at
5434 	 * all, we need to clean up the in-core orphan list manually.
5435 	 */
5436 	if (orphan && inode->i_nlink)
5437 		ext4_orphan_del(NULL, inode);
5438 
5439 	if (!error && (ia_valid & ATTR_MODE))
5440 		rc = posix_acl_chmod(inode, inode->i_mode);
5441 
5442 err_out:
5443 	ext4_std_error(inode->i_sb, error);
5444 	if (!error)
5445 		error = rc;
5446 	return error;
5447 }
5448 
5449 int ext4_getattr(const struct path *path, struct kstat *stat,
5450 		 u32 request_mask, unsigned int query_flags)
5451 {
5452 	struct inode *inode = d_inode(path->dentry);
5453 	struct ext4_inode *raw_inode;
5454 	struct ext4_inode_info *ei = EXT4_I(inode);
5455 	unsigned int flags;
5456 
5457 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5458 		stat->result_mask |= STATX_BTIME;
5459 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5460 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5461 	}
5462 
5463 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5464 	if (flags & EXT4_APPEND_FL)
5465 		stat->attributes |= STATX_ATTR_APPEND;
5466 	if (flags & EXT4_COMPR_FL)
5467 		stat->attributes |= STATX_ATTR_COMPRESSED;
5468 	if (flags & EXT4_ENCRYPT_FL)
5469 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5470 	if (flags & EXT4_IMMUTABLE_FL)
5471 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5472 	if (flags & EXT4_NODUMP_FL)
5473 		stat->attributes |= STATX_ATTR_NODUMP;
5474 
5475 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5476 				  STATX_ATTR_COMPRESSED |
5477 				  STATX_ATTR_ENCRYPTED |
5478 				  STATX_ATTR_IMMUTABLE |
5479 				  STATX_ATTR_NODUMP);
5480 
5481 	generic_fillattr(inode, stat);
5482 	return 0;
5483 }
5484 
5485 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5486 		      u32 request_mask, unsigned int query_flags)
5487 {
5488 	struct inode *inode = d_inode(path->dentry);
5489 	u64 delalloc_blocks;
5490 
5491 	ext4_getattr(path, stat, request_mask, query_flags);
5492 
5493 	/*
5494 	 * If there is inline data in the inode, the inode will normally not
5495 	 * have data blocks allocated (it may have an external xattr block).
5496 	 * Report at least one sector for such files, so tools like tar, rsync,
5497 	 * others don't incorrectly think the file is completely sparse.
5498 	 */
5499 	if (unlikely(ext4_has_inline_data(inode)))
5500 		stat->blocks += (stat->size + 511) >> 9;
5501 
5502 	/*
5503 	 * We can't update i_blocks if the block allocation is delayed
5504 	 * otherwise in the case of system crash before the real block
5505 	 * allocation is done, we will have i_blocks inconsistent with
5506 	 * on-disk file blocks.
5507 	 * We always keep i_blocks updated together with real
5508 	 * allocation. But to not confuse with user, stat
5509 	 * will return the blocks that include the delayed allocation
5510 	 * blocks for this file.
5511 	 */
5512 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5513 				   EXT4_I(inode)->i_reserved_data_blocks);
5514 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5515 	return 0;
5516 }
5517 
5518 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5519 				   int pextents)
5520 {
5521 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5522 		return ext4_ind_trans_blocks(inode, lblocks);
5523 	return ext4_ext_index_trans_blocks(inode, pextents);
5524 }
5525 
5526 /*
5527  * Account for index blocks, block groups bitmaps and block group
5528  * descriptor blocks if modify datablocks and index blocks
5529  * worse case, the indexs blocks spread over different block groups
5530  *
5531  * If datablocks are discontiguous, they are possible to spread over
5532  * different block groups too. If they are contiguous, with flexbg,
5533  * they could still across block group boundary.
5534  *
5535  * Also account for superblock, inode, quota and xattr blocks
5536  */
5537 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5538 				  int pextents)
5539 {
5540 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5541 	int gdpblocks;
5542 	int idxblocks;
5543 	int ret = 0;
5544 
5545 	/*
5546 	 * How many index blocks need to touch to map @lblocks logical blocks
5547 	 * to @pextents physical extents?
5548 	 */
5549 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5550 
5551 	ret = idxblocks;
5552 
5553 	/*
5554 	 * Now let's see how many group bitmaps and group descriptors need
5555 	 * to account
5556 	 */
5557 	groups = idxblocks + pextents;
5558 	gdpblocks = groups;
5559 	if (groups > ngroups)
5560 		groups = ngroups;
5561 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5562 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5563 
5564 	/* bitmaps and block group descriptor blocks */
5565 	ret += groups + gdpblocks;
5566 
5567 	/* Blocks for super block, inode, quota and xattr blocks */
5568 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5569 
5570 	return ret;
5571 }
5572 
5573 /*
5574  * Calculate the total number of credits to reserve to fit
5575  * the modification of a single pages into a single transaction,
5576  * which may include multiple chunks of block allocations.
5577  *
5578  * This could be called via ext4_write_begin()
5579  *
5580  * We need to consider the worse case, when
5581  * one new block per extent.
5582  */
5583 int ext4_writepage_trans_blocks(struct inode *inode)
5584 {
5585 	int bpp = ext4_journal_blocks_per_page(inode);
5586 	int ret;
5587 
5588 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5589 
5590 	/* Account for data blocks for journalled mode */
5591 	if (ext4_should_journal_data(inode))
5592 		ret += bpp;
5593 	return ret;
5594 }
5595 
5596 /*
5597  * Calculate the journal credits for a chunk of data modification.
5598  *
5599  * This is called from DIO, fallocate or whoever calling
5600  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5601  *
5602  * journal buffers for data blocks are not included here, as DIO
5603  * and fallocate do no need to journal data buffers.
5604  */
5605 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5606 {
5607 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5608 }
5609 
5610 /*
5611  * The caller must have previously called ext4_reserve_inode_write().
5612  * Give this, we know that the caller already has write access to iloc->bh.
5613  */
5614 int ext4_mark_iloc_dirty(handle_t *handle,
5615 			 struct inode *inode, struct ext4_iloc *iloc)
5616 {
5617 	int err = 0;
5618 
5619 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5620 		return -EIO;
5621 
5622 	if (IS_I_VERSION(inode))
5623 		inode_inc_iversion(inode);
5624 
5625 	/* the do_update_inode consumes one bh->b_count */
5626 	get_bh(iloc->bh);
5627 
5628 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5629 	err = ext4_do_update_inode(handle, inode, iloc);
5630 	put_bh(iloc->bh);
5631 	return err;
5632 }
5633 
5634 /*
5635  * On success, We end up with an outstanding reference count against
5636  * iloc->bh.  This _must_ be cleaned up later.
5637  */
5638 
5639 int
5640 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5641 			 struct ext4_iloc *iloc)
5642 {
5643 	int err;
5644 
5645 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5646 		return -EIO;
5647 
5648 	err = ext4_get_inode_loc(inode, iloc);
5649 	if (!err) {
5650 		BUFFER_TRACE(iloc->bh, "get_write_access");
5651 		err = ext4_journal_get_write_access(handle, iloc->bh);
5652 		if (err) {
5653 			brelse(iloc->bh);
5654 			iloc->bh = NULL;
5655 		}
5656 	}
5657 	ext4_std_error(inode->i_sb, err);
5658 	return err;
5659 }
5660 
5661 /*
5662  * Expand an inode by new_extra_isize bytes.
5663  * Returns 0 on success or negative error number on failure.
5664  */
5665 static int ext4_expand_extra_isize(struct inode *inode,
5666 				   unsigned int new_extra_isize,
5667 				   struct ext4_iloc iloc,
5668 				   handle_t *handle)
5669 {
5670 	struct ext4_inode *raw_inode;
5671 	struct ext4_xattr_ibody_header *header;
5672 
5673 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5674 		return 0;
5675 
5676 	raw_inode = ext4_raw_inode(&iloc);
5677 
5678 	header = IHDR(inode, raw_inode);
5679 
5680 	/* No extended attributes present */
5681 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5682 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5683 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5684 		       EXT4_I(inode)->i_extra_isize, 0,
5685 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5686 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5687 		return 0;
5688 	}
5689 
5690 	/* try to expand with EAs present */
5691 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5692 					  raw_inode, handle);
5693 }
5694 
5695 /*
5696  * What we do here is to mark the in-core inode as clean with respect to inode
5697  * dirtiness (it may still be data-dirty).
5698  * This means that the in-core inode may be reaped by prune_icache
5699  * without having to perform any I/O.  This is a very good thing,
5700  * because *any* task may call prune_icache - even ones which
5701  * have a transaction open against a different journal.
5702  *
5703  * Is this cheating?  Not really.  Sure, we haven't written the
5704  * inode out, but prune_icache isn't a user-visible syncing function.
5705  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5706  * we start and wait on commits.
5707  */
5708 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5709 {
5710 	struct ext4_iloc iloc;
5711 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5712 	static unsigned int mnt_count;
5713 	int err, ret;
5714 
5715 	might_sleep();
5716 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5717 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5718 	if (err)
5719 		return err;
5720 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5721 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5722 		/*
5723 		 * In nojournal mode, we can immediately attempt to expand
5724 		 * the inode.  When journaled, we first need to obtain extra
5725 		 * buffer credits since we may write into the EA block
5726 		 * with this same handle. If journal_extend fails, then it will
5727 		 * only result in a minor loss of functionality for that inode.
5728 		 * If this is felt to be critical, then e2fsck should be run to
5729 		 * force a large enough s_min_extra_isize.
5730 		 */
5731 		if (!ext4_handle_valid(handle) ||
5732 		    jbd2_journal_extend(handle,
5733 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5734 			ret = ext4_expand_extra_isize(inode,
5735 						      sbi->s_want_extra_isize,
5736 						      iloc, handle);
5737 			if (ret) {
5738 				if (mnt_count !=
5739 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5740 					ext4_warning(inode->i_sb,
5741 					"Unable to expand inode %lu. Delete"
5742 					" some EAs or run e2fsck.",
5743 					inode->i_ino);
5744 					mnt_count =
5745 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5746 				}
5747 			}
5748 		}
5749 	}
5750 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5751 }
5752 
5753 /*
5754  * ext4_dirty_inode() is called from __mark_inode_dirty()
5755  *
5756  * We're really interested in the case where a file is being extended.
5757  * i_size has been changed by generic_commit_write() and we thus need
5758  * to include the updated inode in the current transaction.
5759  *
5760  * Also, dquot_alloc_block() will always dirty the inode when blocks
5761  * are allocated to the file.
5762  *
5763  * If the inode is marked synchronous, we don't honour that here - doing
5764  * so would cause a commit on atime updates, which we don't bother doing.
5765  * We handle synchronous inodes at the highest possible level.
5766  *
5767  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5768  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5769  * to copy into the on-disk inode structure are the timestamp files.
5770  */
5771 void ext4_dirty_inode(struct inode *inode, int flags)
5772 {
5773 	handle_t *handle;
5774 
5775 	if (flags == I_DIRTY_TIME)
5776 		return;
5777 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5778 	if (IS_ERR(handle))
5779 		goto out;
5780 
5781 	ext4_mark_inode_dirty(handle, inode);
5782 
5783 	ext4_journal_stop(handle);
5784 out:
5785 	return;
5786 }
5787 
5788 #if 0
5789 /*
5790  * Bind an inode's backing buffer_head into this transaction, to prevent
5791  * it from being flushed to disk early.  Unlike
5792  * ext4_reserve_inode_write, this leaves behind no bh reference and
5793  * returns no iloc structure, so the caller needs to repeat the iloc
5794  * lookup to mark the inode dirty later.
5795  */
5796 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5797 {
5798 	struct ext4_iloc iloc;
5799 
5800 	int err = 0;
5801 	if (handle) {
5802 		err = ext4_get_inode_loc(inode, &iloc);
5803 		if (!err) {
5804 			BUFFER_TRACE(iloc.bh, "get_write_access");
5805 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5806 			if (!err)
5807 				err = ext4_handle_dirty_metadata(handle,
5808 								 NULL,
5809 								 iloc.bh);
5810 			brelse(iloc.bh);
5811 		}
5812 	}
5813 	ext4_std_error(inode->i_sb, err);
5814 	return err;
5815 }
5816 #endif
5817 
5818 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5819 {
5820 	journal_t *journal;
5821 	handle_t *handle;
5822 	int err;
5823 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5824 
5825 	/*
5826 	 * We have to be very careful here: changing a data block's
5827 	 * journaling status dynamically is dangerous.  If we write a
5828 	 * data block to the journal, change the status and then delete
5829 	 * that block, we risk forgetting to revoke the old log record
5830 	 * from the journal and so a subsequent replay can corrupt data.
5831 	 * So, first we make sure that the journal is empty and that
5832 	 * nobody is changing anything.
5833 	 */
5834 
5835 	journal = EXT4_JOURNAL(inode);
5836 	if (!journal)
5837 		return 0;
5838 	if (is_journal_aborted(journal))
5839 		return -EROFS;
5840 
5841 	/* Wait for all existing dio workers */
5842 	ext4_inode_block_unlocked_dio(inode);
5843 	inode_dio_wait(inode);
5844 
5845 	/*
5846 	 * Before flushing the journal and switching inode's aops, we have
5847 	 * to flush all dirty data the inode has. There can be outstanding
5848 	 * delayed allocations, there can be unwritten extents created by
5849 	 * fallocate or buffered writes in dioread_nolock mode covered by
5850 	 * dirty data which can be converted only after flushing the dirty
5851 	 * data (and journalled aops don't know how to handle these cases).
5852 	 */
5853 	if (val) {
5854 		down_write(&EXT4_I(inode)->i_mmap_sem);
5855 		err = filemap_write_and_wait(inode->i_mapping);
5856 		if (err < 0) {
5857 			up_write(&EXT4_I(inode)->i_mmap_sem);
5858 			ext4_inode_resume_unlocked_dio(inode);
5859 			return err;
5860 		}
5861 	}
5862 
5863 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5864 	jbd2_journal_lock_updates(journal);
5865 
5866 	/*
5867 	 * OK, there are no updates running now, and all cached data is
5868 	 * synced to disk.  We are now in a completely consistent state
5869 	 * which doesn't have anything in the journal, and we know that
5870 	 * no filesystem updates are running, so it is safe to modify
5871 	 * the inode's in-core data-journaling state flag now.
5872 	 */
5873 
5874 	if (val)
5875 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5876 	else {
5877 		err = jbd2_journal_flush(journal);
5878 		if (err < 0) {
5879 			jbd2_journal_unlock_updates(journal);
5880 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5881 			ext4_inode_resume_unlocked_dio(inode);
5882 			return err;
5883 		}
5884 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5885 	}
5886 	ext4_set_aops(inode);
5887 	/*
5888 	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5889 	 * E.g. S_DAX may get cleared / set.
5890 	 */
5891 	ext4_set_inode_flags(inode);
5892 
5893 	jbd2_journal_unlock_updates(journal);
5894 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5895 
5896 	if (val)
5897 		up_write(&EXT4_I(inode)->i_mmap_sem);
5898 	ext4_inode_resume_unlocked_dio(inode);
5899 
5900 	/* Finally we can mark the inode as dirty. */
5901 
5902 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5903 	if (IS_ERR(handle))
5904 		return PTR_ERR(handle);
5905 
5906 	err = ext4_mark_inode_dirty(handle, inode);
5907 	ext4_handle_sync(handle);
5908 	ext4_journal_stop(handle);
5909 	ext4_std_error(inode->i_sb, err);
5910 
5911 	return err;
5912 }
5913 
5914 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5915 {
5916 	return !buffer_mapped(bh);
5917 }
5918 
5919 int ext4_page_mkwrite(struct vm_fault *vmf)
5920 {
5921 	struct vm_area_struct *vma = vmf->vma;
5922 	struct page *page = vmf->page;
5923 	loff_t size;
5924 	unsigned long len;
5925 	int ret;
5926 	struct file *file = vma->vm_file;
5927 	struct inode *inode = file_inode(file);
5928 	struct address_space *mapping = inode->i_mapping;
5929 	handle_t *handle;
5930 	get_block_t *get_block;
5931 	int retries = 0;
5932 
5933 	sb_start_pagefault(inode->i_sb);
5934 	file_update_time(vma->vm_file);
5935 
5936 	down_read(&EXT4_I(inode)->i_mmap_sem);
5937 
5938 	ret = ext4_convert_inline_data(inode);
5939 	if (ret)
5940 		goto out_ret;
5941 
5942 	/* Delalloc case is easy... */
5943 	if (test_opt(inode->i_sb, DELALLOC) &&
5944 	    !ext4_should_journal_data(inode) &&
5945 	    !ext4_nonda_switch(inode->i_sb)) {
5946 		do {
5947 			ret = block_page_mkwrite(vma, vmf,
5948 						   ext4_da_get_block_prep);
5949 		} while (ret == -ENOSPC &&
5950 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5951 		goto out_ret;
5952 	}
5953 
5954 	lock_page(page);
5955 	size = i_size_read(inode);
5956 	/* Page got truncated from under us? */
5957 	if (page->mapping != mapping || page_offset(page) > size) {
5958 		unlock_page(page);
5959 		ret = VM_FAULT_NOPAGE;
5960 		goto out;
5961 	}
5962 
5963 	if (page->index == size >> PAGE_SHIFT)
5964 		len = size & ~PAGE_MASK;
5965 	else
5966 		len = PAGE_SIZE;
5967 	/*
5968 	 * Return if we have all the buffers mapped. This avoids the need to do
5969 	 * journal_start/journal_stop which can block and take a long time
5970 	 */
5971 	if (page_has_buffers(page)) {
5972 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5973 					    0, len, NULL,
5974 					    ext4_bh_unmapped)) {
5975 			/* Wait so that we don't change page under IO */
5976 			wait_for_stable_page(page);
5977 			ret = VM_FAULT_LOCKED;
5978 			goto out;
5979 		}
5980 	}
5981 	unlock_page(page);
5982 	/* OK, we need to fill the hole... */
5983 	if (ext4_should_dioread_nolock(inode))
5984 		get_block = ext4_get_block_unwritten;
5985 	else
5986 		get_block = ext4_get_block;
5987 retry_alloc:
5988 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5989 				    ext4_writepage_trans_blocks(inode));
5990 	if (IS_ERR(handle)) {
5991 		ret = VM_FAULT_SIGBUS;
5992 		goto out;
5993 	}
5994 	ret = block_page_mkwrite(vma, vmf, get_block);
5995 	if (!ret && ext4_should_journal_data(inode)) {
5996 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5997 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5998 			unlock_page(page);
5999 			ret = VM_FAULT_SIGBUS;
6000 			ext4_journal_stop(handle);
6001 			goto out;
6002 		}
6003 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6004 	}
6005 	ext4_journal_stop(handle);
6006 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6007 		goto retry_alloc;
6008 out_ret:
6009 	ret = block_page_mkwrite_return(ret);
6010 out:
6011 	up_read(&EXT4_I(inode)->i_mmap_sem);
6012 	sb_end_pagefault(inode->i_sb);
6013 	return ret;
6014 }
6015 
6016 int ext4_filemap_fault(struct vm_fault *vmf)
6017 {
6018 	struct inode *inode = file_inode(vmf->vma->vm_file);
6019 	int err;
6020 
6021 	down_read(&EXT4_I(inode)->i_mmap_sem);
6022 	err = filemap_fault(vmf);
6023 	up_read(&EXT4_I(inode)->i_mmap_sem);
6024 
6025 	return err;
6026 }
6027 
6028 /*
6029  * Find the first extent at or after @lblk in an inode that is not a hole.
6030  * Search for @map_len blocks at most. The extent is returned in @result.
6031  *
6032  * The function returns 1 if we found an extent. The function returns 0 in
6033  * case there is no extent at or after @lblk and in that case also sets
6034  * @result->es_len to 0. In case of error, the error code is returned.
6035  */
6036 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6037 			 unsigned int map_len, struct extent_status *result)
6038 {
6039 	struct ext4_map_blocks map;
6040 	struct extent_status es = {};
6041 	int ret;
6042 
6043 	map.m_lblk = lblk;
6044 	map.m_len = map_len;
6045 
6046 	/*
6047 	 * For non-extent based files this loop may iterate several times since
6048 	 * we do not determine full hole size.
6049 	 */
6050 	while (map.m_len > 0) {
6051 		ret = ext4_map_blocks(NULL, inode, &map, 0);
6052 		if (ret < 0)
6053 			return ret;
6054 		/* There's extent covering m_lblk? Just return it. */
6055 		if (ret > 0) {
6056 			int status;
6057 
6058 			ext4_es_store_pblock(result, map.m_pblk);
6059 			result->es_lblk = map.m_lblk;
6060 			result->es_len = map.m_len;
6061 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
6062 				status = EXTENT_STATUS_UNWRITTEN;
6063 			else
6064 				status = EXTENT_STATUS_WRITTEN;
6065 			ext4_es_store_status(result, status);
6066 			return 1;
6067 		}
6068 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6069 						  map.m_lblk + map.m_len - 1,
6070 						  &es);
6071 		/* Is delalloc data before next block in extent tree? */
6072 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6073 			ext4_lblk_t offset = 0;
6074 
6075 			if (es.es_lblk < lblk)
6076 				offset = lblk - es.es_lblk;
6077 			result->es_lblk = es.es_lblk + offset;
6078 			ext4_es_store_pblock(result,
6079 					     ext4_es_pblock(&es) + offset);
6080 			result->es_len = es.es_len - offset;
6081 			ext4_es_store_status(result, ext4_es_status(&es));
6082 
6083 			return 1;
6084 		}
6085 		/* There's a hole at m_lblk, advance us after it */
6086 		map.m_lblk += map.m_len;
6087 		map_len -= map.m_len;
6088 		map.m_len = map_len;
6089 		cond_resched();
6090 	}
6091 	result->es_len = 0;
6092 	return 0;
6093 }
6094