xref: /openbmc/linux/fs/ext4/inode.c (revision 95188aaf)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = raw->i_checksum_lo;
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = raw->i_checksum_hi;
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = csum_lo;
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = csum_hi;
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 		return 1;
87 
88 	provided = le16_to_cpu(raw->i_checksum_lo);
89 	calculated = ext4_inode_csum(inode, raw, ei);
90 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 	else
94 		calculated &= 0xFFFF;
95 
96 	return provided == calculated;
97 }
98 
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 				struct ext4_inode_info *ei)
101 {
102 	__u32 csum;
103 
104 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 	    cpu_to_le32(EXT4_OS_LINUX) ||
106 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 		struct inode *inode, struct page *page, loff_t from,
139 		loff_t length, int flags);
140 
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 		(inode->i_sb->s_blocksize >> 9) : 0;
148 
149 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151 
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 				 int nblocks)
159 {
160 	int ret;
161 
162 	/*
163 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 	 * moment, get_block can be called only for blocks inside i_size since
165 	 * page cache has been already dropped and writes are blocked by
166 	 * i_mutex. So we can safely drop the i_data_sem here.
167 	 */
168 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 	jbd_debug(2, "restarting handle %p\n", handle);
170 	up_write(&EXT4_I(inode)->i_data_sem);
171 	ret = ext4_journal_restart(handle, nblocks);
172 	down_write(&EXT4_I(inode)->i_data_sem);
173 	ext4_discard_preallocations(inode);
174 
175 	return ret;
176 }
177 
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183 	handle_t *handle;
184 	int err;
185 
186 	trace_ext4_evict_inode(inode);
187 
188 	ext4_ioend_wait(inode);
189 
190 	if (inode->i_nlink) {
191 		/*
192 		 * When journalling data dirty buffers are tracked only in the
193 		 * journal. So although mm thinks everything is clean and
194 		 * ready for reaping the inode might still have some pages to
195 		 * write in the running transaction or waiting to be
196 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 		 * (via truncate_inode_pages()) to discard these buffers can
198 		 * cause data loss. Also even if we did not discard these
199 		 * buffers, we would have no way to find them after the inode
200 		 * is reaped and thus user could see stale data if he tries to
201 		 * read them before the transaction is checkpointed. So be
202 		 * careful and force everything to disk here... We use
203 		 * ei->i_datasync_tid to store the newest transaction
204 		 * containing inode's data.
205 		 *
206 		 * Note that directories do not have this problem because they
207 		 * don't use page cache.
208 		 */
209 		if (ext4_should_journal_data(inode) &&
210 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_log_start_commit(journal, commit_tid);
215 			jbd2_log_wait_commit(journal, commit_tid);
216 			filemap_write_and_wait(&inode->i_data);
217 		}
218 		truncate_inode_pages(&inode->i_data, 0);
219 		goto no_delete;
220 	}
221 
222 	if (!is_bad_inode(inode))
223 		dquot_initialize(inode);
224 
225 	if (ext4_should_order_data(inode))
226 		ext4_begin_ordered_truncate(inode, 0);
227 	truncate_inode_pages(&inode->i_data, 0);
228 
229 	if (is_bad_inode(inode))
230 		goto no_delete;
231 
232 	/*
233 	 * Protect us against freezing - iput() caller didn't have to have any
234 	 * protection against it
235 	 */
236 	sb_start_intwrite(inode->i_sb);
237 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 				    ext4_blocks_for_truncate(inode)+3);
239 	if (IS_ERR(handle)) {
240 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 		/*
242 		 * If we're going to skip the normal cleanup, we still need to
243 		 * make sure that the in-core orphan linked list is properly
244 		 * cleaned up.
245 		 */
246 		ext4_orphan_del(NULL, inode);
247 		sb_end_intwrite(inode->i_sb);
248 		goto no_delete;
249 	}
250 
251 	if (IS_SYNC(inode))
252 		ext4_handle_sync(handle);
253 	inode->i_size = 0;
254 	err = ext4_mark_inode_dirty(handle, inode);
255 	if (err) {
256 		ext4_warning(inode->i_sb,
257 			     "couldn't mark inode dirty (err %d)", err);
258 		goto stop_handle;
259 	}
260 	if (inode->i_blocks)
261 		ext4_truncate(inode);
262 
263 	/*
264 	 * ext4_ext_truncate() doesn't reserve any slop when it
265 	 * restarts journal transactions; therefore there may not be
266 	 * enough credits left in the handle to remove the inode from
267 	 * the orphan list and set the dtime field.
268 	 */
269 	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 		err = ext4_journal_extend(handle, 3);
271 		if (err > 0)
272 			err = ext4_journal_restart(handle, 3);
273 		if (err != 0) {
274 			ext4_warning(inode->i_sb,
275 				     "couldn't extend journal (err %d)", err);
276 		stop_handle:
277 			ext4_journal_stop(handle);
278 			ext4_orphan_del(NULL, inode);
279 			sb_end_intwrite(inode->i_sb);
280 			goto no_delete;
281 		}
282 	}
283 
284 	/*
285 	 * Kill off the orphan record which ext4_truncate created.
286 	 * AKPM: I think this can be inside the above `if'.
287 	 * Note that ext4_orphan_del() has to be able to cope with the
288 	 * deletion of a non-existent orphan - this is because we don't
289 	 * know if ext4_truncate() actually created an orphan record.
290 	 * (Well, we could do this if we need to, but heck - it works)
291 	 */
292 	ext4_orphan_del(handle, inode);
293 	EXT4_I(inode)->i_dtime	= get_seconds();
294 
295 	/*
296 	 * One subtle ordering requirement: if anything has gone wrong
297 	 * (transaction abort, IO errors, whatever), then we can still
298 	 * do these next steps (the fs will already have been marked as
299 	 * having errors), but we can't free the inode if the mark_dirty
300 	 * fails.
301 	 */
302 	if (ext4_mark_inode_dirty(handle, inode))
303 		/* If that failed, just do the required in-core inode clear. */
304 		ext4_clear_inode(inode);
305 	else
306 		ext4_free_inode(handle, inode);
307 	ext4_journal_stop(handle);
308 	sb_end_intwrite(inode->i_sb);
309 	return;
310 no_delete:
311 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 }
313 
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317 	return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320 
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328 		return ext4_ext_calc_metadata_amount(inode, lblock);
329 
330 	return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332 
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338 					int used, int quota_claim)
339 {
340 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 	struct ext4_inode_info *ei = EXT4_I(inode);
342 
343 	spin_lock(&ei->i_block_reservation_lock);
344 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 	if (unlikely(used > ei->i_reserved_data_blocks)) {
346 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 			 "with only %d reserved data blocks",
348 			 __func__, inode->i_ino, used,
349 			 ei->i_reserved_data_blocks);
350 		WARN_ON(1);
351 		used = ei->i_reserved_data_blocks;
352 	}
353 
354 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356 			"with only %d reserved metadata blocks "
357 			"(releasing %d blocks with reserved %d data blocks)",
358 			inode->i_ino, ei->i_allocated_meta_blocks,
359 			     ei->i_reserved_meta_blocks, used,
360 			     ei->i_reserved_data_blocks);
361 		WARN_ON(1);
362 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363 	}
364 
365 	/* Update per-inode reservations */
366 	ei->i_reserved_data_blocks -= used;
367 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369 			   used + ei->i_allocated_meta_blocks);
370 	ei->i_allocated_meta_blocks = 0;
371 
372 	if (ei->i_reserved_data_blocks == 0) {
373 		/*
374 		 * We can release all of the reserved metadata blocks
375 		 * only when we have written all of the delayed
376 		 * allocation blocks.
377 		 */
378 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379 				   ei->i_reserved_meta_blocks);
380 		ei->i_reserved_meta_blocks = 0;
381 		ei->i_da_metadata_calc_len = 0;
382 	}
383 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384 
385 	/* Update quota subsystem for data blocks */
386 	if (quota_claim)
387 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
388 	else {
389 		/*
390 		 * We did fallocate with an offset that is already delayed
391 		 * allocated. So on delayed allocated writeback we should
392 		 * not re-claim the quota for fallocated blocks.
393 		 */
394 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395 	}
396 
397 	/*
398 	 * If we have done all the pending block allocations and if
399 	 * there aren't any writers on the inode, we can discard the
400 	 * inode's preallocations.
401 	 */
402 	if ((ei->i_reserved_data_blocks == 0) &&
403 	    (atomic_read(&inode->i_writecount) == 0))
404 		ext4_discard_preallocations(inode);
405 }
406 
407 static int __check_block_validity(struct inode *inode, const char *func,
408 				unsigned int line,
409 				struct ext4_map_blocks *map)
410 {
411 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412 				   map->m_len)) {
413 		ext4_error_inode(inode, func, line, map->m_pblk,
414 				 "lblock %lu mapped to illegal pblock "
415 				 "(length %d)", (unsigned long) map->m_lblk,
416 				 map->m_len);
417 		return -EIO;
418 	}
419 	return 0;
420 }
421 
422 #define check_block_validity(inode, map)	\
423 	__check_block_validity((inode), __func__, __LINE__, (map))
424 
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430 				    unsigned int max_pages)
431 {
432 	struct address_space *mapping = inode->i_mapping;
433 	pgoff_t	index;
434 	struct pagevec pvec;
435 	pgoff_t num = 0;
436 	int i, nr_pages, done = 0;
437 
438 	if (max_pages == 0)
439 		return 0;
440 	pagevec_init(&pvec, 0);
441 	while (!done) {
442 		index = idx;
443 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444 					      PAGECACHE_TAG_DIRTY,
445 					      (pgoff_t)PAGEVEC_SIZE);
446 		if (nr_pages == 0)
447 			break;
448 		for (i = 0; i < nr_pages; i++) {
449 			struct page *page = pvec.pages[i];
450 			struct buffer_head *bh, *head;
451 
452 			lock_page(page);
453 			if (unlikely(page->mapping != mapping) ||
454 			    !PageDirty(page) ||
455 			    PageWriteback(page) ||
456 			    page->index != idx) {
457 				done = 1;
458 				unlock_page(page);
459 				break;
460 			}
461 			if (page_has_buffers(page)) {
462 				bh = head = page_buffers(page);
463 				do {
464 					if (!buffer_delay(bh) &&
465 					    !buffer_unwritten(bh))
466 						done = 1;
467 					bh = bh->b_this_page;
468 				} while (!done && (bh != head));
469 			}
470 			unlock_page(page);
471 			if (done)
472 				break;
473 			idx++;
474 			num++;
475 			if (num >= max_pages) {
476 				done = 1;
477 				break;
478 			}
479 		}
480 		pagevec_release(&pvec);
481 	}
482 	return num;
483 }
484 
485 /*
486  * The ext4_map_blocks() function tries to look up the requested blocks,
487  * and returns if the blocks are already mapped.
488  *
489  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
490  * and store the allocated blocks in the result buffer head and mark it
491  * mapped.
492  *
493  * If file type is extents based, it will call ext4_ext_map_blocks(),
494  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495  * based files
496  *
497  * On success, it returns the number of blocks being mapped or allocate.
498  * if create==0 and the blocks are pre-allocated and uninitialized block,
499  * the result buffer head is unmapped. If the create ==1, it will make sure
500  * the buffer head is mapped.
501  *
502  * It returns 0 if plain look up failed (blocks have not been allocated), in
503  * that case, buffer head is unmapped
504  *
505  * It returns the error in case of allocation failure.
506  */
507 int ext4_map_blocks(handle_t *handle, struct inode *inode,
508 		    struct ext4_map_blocks *map, int flags)
509 {
510 	struct extent_status es;
511 	int retval;
512 
513 	map->m_flags = 0;
514 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
516 		  (unsigned long) map->m_lblk);
517 
518 	/* Lookup extent status tree firstly */
519 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
520 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 			map->m_pblk = ext4_es_pblock(&es) +
522 					map->m_lblk - es.es_lblk;
523 			map->m_flags |= ext4_es_is_written(&es) ?
524 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 			retval = es.es_len - (map->m_lblk - es.es_lblk);
526 			if (retval > map->m_len)
527 				retval = map->m_len;
528 			map->m_len = retval;
529 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 			retval = 0;
531 		} else {
532 			BUG_ON(1);
533 		}
534 		goto found;
535 	}
536 
537 	/*
538 	 * Try to see if we can get the block without requesting a new
539 	 * file system block.
540 	 */
541 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
542 		down_read((&EXT4_I(inode)->i_data_sem));
543 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
544 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
545 					     EXT4_GET_BLOCKS_KEEP_SIZE);
546 	} else {
547 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
548 					     EXT4_GET_BLOCKS_KEEP_SIZE);
549 	}
550 	if (retval > 0) {
551 		int ret;
552 		unsigned long long status;
553 
554 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
555 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
556 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
557 		    ext4_find_delalloc_range(inode, map->m_lblk,
558 					     map->m_lblk + map->m_len - 1))
559 			status |= EXTENT_STATUS_DELAYED;
560 		ret = ext4_es_insert_extent(inode, map->m_lblk,
561 					    map->m_len, map->m_pblk, status);
562 		if (ret < 0)
563 			retval = ret;
564 	}
565 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
566 		up_read((&EXT4_I(inode)->i_data_sem));
567 
568 found:
569 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
570 		int ret = check_block_validity(inode, map);
571 		if (ret != 0)
572 			return ret;
573 	}
574 
575 	/* If it is only a block(s) look up */
576 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
577 		return retval;
578 
579 	/*
580 	 * Returns if the blocks have already allocated
581 	 *
582 	 * Note that if blocks have been preallocated
583 	 * ext4_ext_get_block() returns the create = 0
584 	 * with buffer head unmapped.
585 	 */
586 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
587 		return retval;
588 
589 	/*
590 	 * Here we clear m_flags because after allocating an new extent,
591 	 * it will be set again.
592 	 */
593 	map->m_flags &= ~EXT4_MAP_FLAGS;
594 
595 	/*
596 	 * New blocks allocate and/or writing to uninitialized extent
597 	 * will possibly result in updating i_data, so we take
598 	 * the write lock of i_data_sem, and call get_blocks()
599 	 * with create == 1 flag.
600 	 */
601 	down_write((&EXT4_I(inode)->i_data_sem));
602 
603 	/*
604 	 * if the caller is from delayed allocation writeout path
605 	 * we have already reserved fs blocks for allocation
606 	 * let the underlying get_block() function know to
607 	 * avoid double accounting
608 	 */
609 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
610 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
611 	/*
612 	 * We need to check for EXT4 here because migrate
613 	 * could have changed the inode type in between
614 	 */
615 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
616 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
617 	} else {
618 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
619 
620 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
621 			/*
622 			 * We allocated new blocks which will result in
623 			 * i_data's format changing.  Force the migrate
624 			 * to fail by clearing migrate flags
625 			 */
626 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
627 		}
628 
629 		/*
630 		 * Update reserved blocks/metadata blocks after successful
631 		 * block allocation which had been deferred till now. We don't
632 		 * support fallocate for non extent files. So we can update
633 		 * reserve space here.
634 		 */
635 		if ((retval > 0) &&
636 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
637 			ext4_da_update_reserve_space(inode, retval, 1);
638 	}
639 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
640 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
641 
642 	if (retval > 0) {
643 		int ret;
644 		unsigned long long status;
645 
646 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
647 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
648 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
649 		    ext4_find_delalloc_range(inode, map->m_lblk,
650 					     map->m_lblk + map->m_len - 1))
651 			status |= EXTENT_STATUS_DELAYED;
652 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
653 					    map->m_pblk, status);
654 		if (ret < 0)
655 			retval = ret;
656 	}
657 
658 	up_write((&EXT4_I(inode)->i_data_sem));
659 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
660 		int ret = check_block_validity(inode, map);
661 		if (ret != 0)
662 			return ret;
663 	}
664 	return retval;
665 }
666 
667 /* Maximum number of blocks we map for direct IO at once. */
668 #define DIO_MAX_BLOCKS 4096
669 
670 static int _ext4_get_block(struct inode *inode, sector_t iblock,
671 			   struct buffer_head *bh, int flags)
672 {
673 	handle_t *handle = ext4_journal_current_handle();
674 	struct ext4_map_blocks map;
675 	int ret = 0, started = 0;
676 	int dio_credits;
677 
678 	if (ext4_has_inline_data(inode))
679 		return -ERANGE;
680 
681 	map.m_lblk = iblock;
682 	map.m_len = bh->b_size >> inode->i_blkbits;
683 
684 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
685 		/* Direct IO write... */
686 		if (map.m_len > DIO_MAX_BLOCKS)
687 			map.m_len = DIO_MAX_BLOCKS;
688 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
689 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
690 					    dio_credits);
691 		if (IS_ERR(handle)) {
692 			ret = PTR_ERR(handle);
693 			return ret;
694 		}
695 		started = 1;
696 	}
697 
698 	ret = ext4_map_blocks(handle, inode, &map, flags);
699 	if (ret > 0) {
700 		map_bh(bh, inode->i_sb, map.m_pblk);
701 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
702 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
703 		ret = 0;
704 	}
705 	if (started)
706 		ext4_journal_stop(handle);
707 	return ret;
708 }
709 
710 int ext4_get_block(struct inode *inode, sector_t iblock,
711 		   struct buffer_head *bh, int create)
712 {
713 	return _ext4_get_block(inode, iblock, bh,
714 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
715 }
716 
717 /*
718  * `handle' can be NULL if create is zero
719  */
720 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
721 				ext4_lblk_t block, int create, int *errp)
722 {
723 	struct ext4_map_blocks map;
724 	struct buffer_head *bh;
725 	int fatal = 0, err;
726 
727 	J_ASSERT(handle != NULL || create == 0);
728 
729 	map.m_lblk = block;
730 	map.m_len = 1;
731 	err = ext4_map_blocks(handle, inode, &map,
732 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
733 
734 	/* ensure we send some value back into *errp */
735 	*errp = 0;
736 
737 	if (create && err == 0)
738 		err = -ENOSPC;	/* should never happen */
739 	if (err < 0)
740 		*errp = err;
741 	if (err <= 0)
742 		return NULL;
743 
744 	bh = sb_getblk(inode->i_sb, map.m_pblk);
745 	if (unlikely(!bh)) {
746 		*errp = -ENOMEM;
747 		return NULL;
748 	}
749 	if (map.m_flags & EXT4_MAP_NEW) {
750 		J_ASSERT(create != 0);
751 		J_ASSERT(handle != NULL);
752 
753 		/*
754 		 * Now that we do not always journal data, we should
755 		 * keep in mind whether this should always journal the
756 		 * new buffer as metadata.  For now, regular file
757 		 * writes use ext4_get_block instead, so it's not a
758 		 * problem.
759 		 */
760 		lock_buffer(bh);
761 		BUFFER_TRACE(bh, "call get_create_access");
762 		fatal = ext4_journal_get_create_access(handle, bh);
763 		if (!fatal && !buffer_uptodate(bh)) {
764 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
765 			set_buffer_uptodate(bh);
766 		}
767 		unlock_buffer(bh);
768 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
769 		err = ext4_handle_dirty_metadata(handle, inode, bh);
770 		if (!fatal)
771 			fatal = err;
772 	} else {
773 		BUFFER_TRACE(bh, "not a new buffer");
774 	}
775 	if (fatal) {
776 		*errp = fatal;
777 		brelse(bh);
778 		bh = NULL;
779 	}
780 	return bh;
781 }
782 
783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
784 			       ext4_lblk_t block, int create, int *err)
785 {
786 	struct buffer_head *bh;
787 
788 	bh = ext4_getblk(handle, inode, block, create, err);
789 	if (!bh)
790 		return bh;
791 	if (buffer_uptodate(bh))
792 		return bh;
793 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
794 	wait_on_buffer(bh);
795 	if (buffer_uptodate(bh))
796 		return bh;
797 	put_bh(bh);
798 	*err = -EIO;
799 	return NULL;
800 }
801 
802 int ext4_walk_page_buffers(handle_t *handle,
803 			   struct buffer_head *head,
804 			   unsigned from,
805 			   unsigned to,
806 			   int *partial,
807 			   int (*fn)(handle_t *handle,
808 				     struct buffer_head *bh))
809 {
810 	struct buffer_head *bh;
811 	unsigned block_start, block_end;
812 	unsigned blocksize = head->b_size;
813 	int err, ret = 0;
814 	struct buffer_head *next;
815 
816 	for (bh = head, block_start = 0;
817 	     ret == 0 && (bh != head || !block_start);
818 	     block_start = block_end, bh = next) {
819 		next = bh->b_this_page;
820 		block_end = block_start + blocksize;
821 		if (block_end <= from || block_start >= to) {
822 			if (partial && !buffer_uptodate(bh))
823 				*partial = 1;
824 			continue;
825 		}
826 		err = (*fn)(handle, bh);
827 		if (!ret)
828 			ret = err;
829 	}
830 	return ret;
831 }
832 
833 /*
834  * To preserve ordering, it is essential that the hole instantiation and
835  * the data write be encapsulated in a single transaction.  We cannot
836  * close off a transaction and start a new one between the ext4_get_block()
837  * and the commit_write().  So doing the jbd2_journal_start at the start of
838  * prepare_write() is the right place.
839  *
840  * Also, this function can nest inside ext4_writepage().  In that case, we
841  * *know* that ext4_writepage() has generated enough buffer credits to do the
842  * whole page.  So we won't block on the journal in that case, which is good,
843  * because the caller may be PF_MEMALLOC.
844  *
845  * By accident, ext4 can be reentered when a transaction is open via
846  * quota file writes.  If we were to commit the transaction while thus
847  * reentered, there can be a deadlock - we would be holding a quota
848  * lock, and the commit would never complete if another thread had a
849  * transaction open and was blocking on the quota lock - a ranking
850  * violation.
851  *
852  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853  * will _not_ run commit under these circumstances because handle->h_ref
854  * is elevated.  We'll still have enough credits for the tiny quotafile
855  * write.
856  */
857 int do_journal_get_write_access(handle_t *handle,
858 				struct buffer_head *bh)
859 {
860 	int dirty = buffer_dirty(bh);
861 	int ret;
862 
863 	if (!buffer_mapped(bh) || buffer_freed(bh))
864 		return 0;
865 	/*
866 	 * __block_write_begin() could have dirtied some buffers. Clean
867 	 * the dirty bit as jbd2_journal_get_write_access() could complain
868 	 * otherwise about fs integrity issues. Setting of the dirty bit
869 	 * by __block_write_begin() isn't a real problem here as we clear
870 	 * the bit before releasing a page lock and thus writeback cannot
871 	 * ever write the buffer.
872 	 */
873 	if (dirty)
874 		clear_buffer_dirty(bh);
875 	ret = ext4_journal_get_write_access(handle, bh);
876 	if (!ret && dirty)
877 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878 	return ret;
879 }
880 
881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882 		   struct buffer_head *bh_result, int create);
883 static int ext4_write_begin(struct file *file, struct address_space *mapping,
884 			    loff_t pos, unsigned len, unsigned flags,
885 			    struct page **pagep, void **fsdata)
886 {
887 	struct inode *inode = mapping->host;
888 	int ret, needed_blocks;
889 	handle_t *handle;
890 	int retries = 0;
891 	struct page *page;
892 	pgoff_t index;
893 	unsigned from, to;
894 
895 	trace_ext4_write_begin(inode, pos, len, flags);
896 	/*
897 	 * Reserve one block more for addition to orphan list in case
898 	 * we allocate blocks but write fails for some reason
899 	 */
900 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
901 	index = pos >> PAGE_CACHE_SHIFT;
902 	from = pos & (PAGE_CACHE_SIZE - 1);
903 	to = from + len;
904 
905 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
906 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
907 						    flags, pagep);
908 		if (ret < 0)
909 			return ret;
910 		if (ret == 1)
911 			return 0;
912 	}
913 
914 	/*
915 	 * grab_cache_page_write_begin() can take a long time if the
916 	 * system is thrashing due to memory pressure, or if the page
917 	 * is being written back.  So grab it first before we start
918 	 * the transaction handle.  This also allows us to allocate
919 	 * the page (if needed) without using GFP_NOFS.
920 	 */
921 retry_grab:
922 	page = grab_cache_page_write_begin(mapping, index, flags);
923 	if (!page)
924 		return -ENOMEM;
925 	unlock_page(page);
926 
927 retry_journal:
928 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
929 	if (IS_ERR(handle)) {
930 		page_cache_release(page);
931 		return PTR_ERR(handle);
932 	}
933 
934 	lock_page(page);
935 	if (page->mapping != mapping) {
936 		/* The page got truncated from under us */
937 		unlock_page(page);
938 		page_cache_release(page);
939 		ext4_journal_stop(handle);
940 		goto retry_grab;
941 	}
942 	wait_on_page_writeback(page);
943 
944 	if (ext4_should_dioread_nolock(inode))
945 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
946 	else
947 		ret = __block_write_begin(page, pos, len, ext4_get_block);
948 
949 	if (!ret && ext4_should_journal_data(inode)) {
950 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
951 					     from, to, NULL,
952 					     do_journal_get_write_access);
953 	}
954 
955 	if (ret) {
956 		unlock_page(page);
957 		/*
958 		 * __block_write_begin may have instantiated a few blocks
959 		 * outside i_size.  Trim these off again. Don't need
960 		 * i_size_read because we hold i_mutex.
961 		 *
962 		 * Add inode to orphan list in case we crash before
963 		 * truncate finishes
964 		 */
965 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
966 			ext4_orphan_add(handle, inode);
967 
968 		ext4_journal_stop(handle);
969 		if (pos + len > inode->i_size) {
970 			ext4_truncate_failed_write(inode);
971 			/*
972 			 * If truncate failed early the inode might
973 			 * still be on the orphan list; we need to
974 			 * make sure the inode is removed from the
975 			 * orphan list in that case.
976 			 */
977 			if (inode->i_nlink)
978 				ext4_orphan_del(NULL, inode);
979 		}
980 
981 		if (ret == -ENOSPC &&
982 		    ext4_should_retry_alloc(inode->i_sb, &retries))
983 			goto retry_journal;
984 		page_cache_release(page);
985 		return ret;
986 	}
987 	*pagep = page;
988 	return ret;
989 }
990 
991 /* For write_end() in data=journal mode */
992 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
993 {
994 	if (!buffer_mapped(bh) || buffer_freed(bh))
995 		return 0;
996 	set_buffer_uptodate(bh);
997 	return ext4_handle_dirty_metadata(handle, NULL, bh);
998 }
999 
1000 static int ext4_generic_write_end(struct file *file,
1001 				  struct address_space *mapping,
1002 				  loff_t pos, unsigned len, unsigned copied,
1003 				  struct page *page, void *fsdata)
1004 {
1005 	int i_size_changed = 0;
1006 	struct inode *inode = mapping->host;
1007 	handle_t *handle = ext4_journal_current_handle();
1008 
1009 	if (ext4_has_inline_data(inode))
1010 		copied = ext4_write_inline_data_end(inode, pos, len,
1011 						    copied, page);
1012 	else
1013 		copied = block_write_end(file, mapping, pos,
1014 					 len, copied, page, fsdata);
1015 
1016 	/*
1017 	 * No need to use i_size_read() here, the i_size
1018 	 * cannot change under us because we hold i_mutex.
1019 	 *
1020 	 * But it's important to update i_size while still holding page lock:
1021 	 * page writeout could otherwise come in and zero beyond i_size.
1022 	 */
1023 	if (pos + copied > inode->i_size) {
1024 		i_size_write(inode, pos + copied);
1025 		i_size_changed = 1;
1026 	}
1027 
1028 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1029 		/* We need to mark inode dirty even if
1030 		 * new_i_size is less that inode->i_size
1031 		 * bu greater than i_disksize.(hint delalloc)
1032 		 */
1033 		ext4_update_i_disksize(inode, (pos + copied));
1034 		i_size_changed = 1;
1035 	}
1036 	unlock_page(page);
1037 	page_cache_release(page);
1038 
1039 	/*
1040 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1041 	 * makes the holding time of page lock longer. Second, it forces lock
1042 	 * ordering of page lock and transaction start for journaling
1043 	 * filesystems.
1044 	 */
1045 	if (i_size_changed)
1046 		ext4_mark_inode_dirty(handle, inode);
1047 
1048 	return copied;
1049 }
1050 
1051 /*
1052  * We need to pick up the new inode size which generic_commit_write gave us
1053  * `file' can be NULL - eg, when called from page_symlink().
1054  *
1055  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1056  * buffers are managed internally.
1057  */
1058 static int ext4_ordered_write_end(struct file *file,
1059 				  struct address_space *mapping,
1060 				  loff_t pos, unsigned len, unsigned copied,
1061 				  struct page *page, void *fsdata)
1062 {
1063 	handle_t *handle = ext4_journal_current_handle();
1064 	struct inode *inode = mapping->host;
1065 	int ret = 0, ret2;
1066 
1067 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1068 	ret = ext4_jbd2_file_inode(handle, inode);
1069 
1070 	if (ret == 0) {
1071 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1072 							page, fsdata);
1073 		copied = ret2;
1074 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1075 			/* if we have allocated more blocks and copied
1076 			 * less. We will have blocks allocated outside
1077 			 * inode->i_size. So truncate them
1078 			 */
1079 			ext4_orphan_add(handle, inode);
1080 		if (ret2 < 0)
1081 			ret = ret2;
1082 	} else {
1083 		unlock_page(page);
1084 		page_cache_release(page);
1085 	}
1086 
1087 	ret2 = ext4_journal_stop(handle);
1088 	if (!ret)
1089 		ret = ret2;
1090 
1091 	if (pos + len > inode->i_size) {
1092 		ext4_truncate_failed_write(inode);
1093 		/*
1094 		 * If truncate failed early the inode might still be
1095 		 * on the orphan list; we need to make sure the inode
1096 		 * is removed from the orphan list in that case.
1097 		 */
1098 		if (inode->i_nlink)
1099 			ext4_orphan_del(NULL, inode);
1100 	}
1101 
1102 
1103 	return ret ? ret : copied;
1104 }
1105 
1106 static int ext4_writeback_write_end(struct file *file,
1107 				    struct address_space *mapping,
1108 				    loff_t pos, unsigned len, unsigned copied,
1109 				    struct page *page, void *fsdata)
1110 {
1111 	handle_t *handle = ext4_journal_current_handle();
1112 	struct inode *inode = mapping->host;
1113 	int ret = 0, ret2;
1114 
1115 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1116 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1117 							page, fsdata);
1118 	copied = ret2;
1119 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1120 		/* if we have allocated more blocks and copied
1121 		 * less. We will have blocks allocated outside
1122 		 * inode->i_size. So truncate them
1123 		 */
1124 		ext4_orphan_add(handle, inode);
1125 
1126 	if (ret2 < 0)
1127 		ret = ret2;
1128 
1129 	ret2 = ext4_journal_stop(handle);
1130 	if (!ret)
1131 		ret = ret2;
1132 
1133 	if (pos + len > inode->i_size) {
1134 		ext4_truncate_failed_write(inode);
1135 		/*
1136 		 * If truncate failed early the inode might still be
1137 		 * on the orphan list; we need to make sure the inode
1138 		 * is removed from the orphan list in that case.
1139 		 */
1140 		if (inode->i_nlink)
1141 			ext4_orphan_del(NULL, inode);
1142 	}
1143 
1144 	return ret ? ret : copied;
1145 }
1146 
1147 static int ext4_journalled_write_end(struct file *file,
1148 				     struct address_space *mapping,
1149 				     loff_t pos, unsigned len, unsigned copied,
1150 				     struct page *page, void *fsdata)
1151 {
1152 	handle_t *handle = ext4_journal_current_handle();
1153 	struct inode *inode = mapping->host;
1154 	int ret = 0, ret2;
1155 	int partial = 0;
1156 	unsigned from, to;
1157 	loff_t new_i_size;
1158 
1159 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1160 	from = pos & (PAGE_CACHE_SIZE - 1);
1161 	to = from + len;
1162 
1163 	BUG_ON(!ext4_handle_valid(handle));
1164 
1165 	if (ext4_has_inline_data(inode))
1166 		copied = ext4_write_inline_data_end(inode, pos, len,
1167 						    copied, page);
1168 	else {
1169 		if (copied < len) {
1170 			if (!PageUptodate(page))
1171 				copied = 0;
1172 			page_zero_new_buffers(page, from+copied, to);
1173 		}
1174 
1175 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1176 					     to, &partial, write_end_fn);
1177 		if (!partial)
1178 			SetPageUptodate(page);
1179 	}
1180 	new_i_size = pos + copied;
1181 	if (new_i_size > inode->i_size)
1182 		i_size_write(inode, pos+copied);
1183 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1184 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1185 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1186 		ext4_update_i_disksize(inode, new_i_size);
1187 		ret2 = ext4_mark_inode_dirty(handle, inode);
1188 		if (!ret)
1189 			ret = ret2;
1190 	}
1191 
1192 	unlock_page(page);
1193 	page_cache_release(page);
1194 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1195 		/* if we have allocated more blocks and copied
1196 		 * less. We will have blocks allocated outside
1197 		 * inode->i_size. So truncate them
1198 		 */
1199 		ext4_orphan_add(handle, inode);
1200 
1201 	ret2 = ext4_journal_stop(handle);
1202 	if (!ret)
1203 		ret = ret2;
1204 	if (pos + len > inode->i_size) {
1205 		ext4_truncate_failed_write(inode);
1206 		/*
1207 		 * If truncate failed early the inode might still be
1208 		 * on the orphan list; we need to make sure the inode
1209 		 * is removed from the orphan list in that case.
1210 		 */
1211 		if (inode->i_nlink)
1212 			ext4_orphan_del(NULL, inode);
1213 	}
1214 
1215 	return ret ? ret : copied;
1216 }
1217 
1218 /*
1219  * Reserve a single cluster located at lblock
1220  */
1221 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1222 {
1223 	int retries = 0;
1224 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1225 	struct ext4_inode_info *ei = EXT4_I(inode);
1226 	unsigned int md_needed;
1227 	int ret;
1228 	ext4_lblk_t save_last_lblock;
1229 	int save_len;
1230 
1231 	/*
1232 	 * We will charge metadata quota at writeout time; this saves
1233 	 * us from metadata over-estimation, though we may go over by
1234 	 * a small amount in the end.  Here we just reserve for data.
1235 	 */
1236 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1237 	if (ret)
1238 		return ret;
1239 
1240 	/*
1241 	 * recalculate the amount of metadata blocks to reserve
1242 	 * in order to allocate nrblocks
1243 	 * worse case is one extent per block
1244 	 */
1245 repeat:
1246 	spin_lock(&ei->i_block_reservation_lock);
1247 	/*
1248 	 * ext4_calc_metadata_amount() has side effects, which we have
1249 	 * to be prepared undo if we fail to claim space.
1250 	 */
1251 	save_len = ei->i_da_metadata_calc_len;
1252 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1253 	md_needed = EXT4_NUM_B2C(sbi,
1254 				 ext4_calc_metadata_amount(inode, lblock));
1255 	trace_ext4_da_reserve_space(inode, md_needed);
1256 
1257 	/*
1258 	 * We do still charge estimated metadata to the sb though;
1259 	 * we cannot afford to run out of free blocks.
1260 	 */
1261 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1262 		ei->i_da_metadata_calc_len = save_len;
1263 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1264 		spin_unlock(&ei->i_block_reservation_lock);
1265 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1266 			yield();
1267 			goto repeat;
1268 		}
1269 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1270 		return -ENOSPC;
1271 	}
1272 	ei->i_reserved_data_blocks++;
1273 	ei->i_reserved_meta_blocks += md_needed;
1274 	spin_unlock(&ei->i_block_reservation_lock);
1275 
1276 	return 0;       /* success */
1277 }
1278 
1279 static void ext4_da_release_space(struct inode *inode, int to_free)
1280 {
1281 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1282 	struct ext4_inode_info *ei = EXT4_I(inode);
1283 
1284 	if (!to_free)
1285 		return;		/* Nothing to release, exit */
1286 
1287 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1288 
1289 	trace_ext4_da_release_space(inode, to_free);
1290 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1291 		/*
1292 		 * if there aren't enough reserved blocks, then the
1293 		 * counter is messed up somewhere.  Since this
1294 		 * function is called from invalidate page, it's
1295 		 * harmless to return without any action.
1296 		 */
1297 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1298 			 "ino %lu, to_free %d with only %d reserved "
1299 			 "data blocks", inode->i_ino, to_free,
1300 			 ei->i_reserved_data_blocks);
1301 		WARN_ON(1);
1302 		to_free = ei->i_reserved_data_blocks;
1303 	}
1304 	ei->i_reserved_data_blocks -= to_free;
1305 
1306 	if (ei->i_reserved_data_blocks == 0) {
1307 		/*
1308 		 * We can release all of the reserved metadata blocks
1309 		 * only when we have written all of the delayed
1310 		 * allocation blocks.
1311 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1312 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1313 		 */
1314 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1315 				   ei->i_reserved_meta_blocks);
1316 		ei->i_reserved_meta_blocks = 0;
1317 		ei->i_da_metadata_calc_len = 0;
1318 	}
1319 
1320 	/* update fs dirty data blocks counter */
1321 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1322 
1323 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1324 
1325 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1326 }
1327 
1328 static void ext4_da_page_release_reservation(struct page *page,
1329 					     unsigned long offset)
1330 {
1331 	int to_release = 0;
1332 	struct buffer_head *head, *bh;
1333 	unsigned int curr_off = 0;
1334 	struct inode *inode = page->mapping->host;
1335 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1336 	int num_clusters;
1337 	ext4_fsblk_t lblk;
1338 
1339 	head = page_buffers(page);
1340 	bh = head;
1341 	do {
1342 		unsigned int next_off = curr_off + bh->b_size;
1343 
1344 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1345 			to_release++;
1346 			clear_buffer_delay(bh);
1347 		}
1348 		curr_off = next_off;
1349 	} while ((bh = bh->b_this_page) != head);
1350 
1351 	if (to_release) {
1352 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1353 		ext4_es_remove_extent(inode, lblk, to_release);
1354 	}
1355 
1356 	/* If we have released all the blocks belonging to a cluster, then we
1357 	 * need to release the reserved space for that cluster. */
1358 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1359 	while (num_clusters > 0) {
1360 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1361 			((num_clusters - 1) << sbi->s_cluster_bits);
1362 		if (sbi->s_cluster_ratio == 1 ||
1363 		    !ext4_find_delalloc_cluster(inode, lblk))
1364 			ext4_da_release_space(inode, 1);
1365 
1366 		num_clusters--;
1367 	}
1368 }
1369 
1370 /*
1371  * Delayed allocation stuff
1372  */
1373 
1374 /*
1375  * mpage_da_submit_io - walks through extent of pages and try to write
1376  * them with writepage() call back
1377  *
1378  * @mpd->inode: inode
1379  * @mpd->first_page: first page of the extent
1380  * @mpd->next_page: page after the last page of the extent
1381  *
1382  * By the time mpage_da_submit_io() is called we expect all blocks
1383  * to be allocated. this may be wrong if allocation failed.
1384  *
1385  * As pages are already locked by write_cache_pages(), we can't use it
1386  */
1387 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1388 			      struct ext4_map_blocks *map)
1389 {
1390 	struct pagevec pvec;
1391 	unsigned long index, end;
1392 	int ret = 0, err, nr_pages, i;
1393 	struct inode *inode = mpd->inode;
1394 	struct address_space *mapping = inode->i_mapping;
1395 	loff_t size = i_size_read(inode);
1396 	unsigned int len, block_start;
1397 	struct buffer_head *bh, *page_bufs = NULL;
1398 	sector_t pblock = 0, cur_logical = 0;
1399 	struct ext4_io_submit io_submit;
1400 
1401 	BUG_ON(mpd->next_page <= mpd->first_page);
1402 	memset(&io_submit, 0, sizeof(io_submit));
1403 	/*
1404 	 * We need to start from the first_page to the next_page - 1
1405 	 * to make sure we also write the mapped dirty buffer_heads.
1406 	 * If we look at mpd->b_blocknr we would only be looking
1407 	 * at the currently mapped buffer_heads.
1408 	 */
1409 	index = mpd->first_page;
1410 	end = mpd->next_page - 1;
1411 
1412 	pagevec_init(&pvec, 0);
1413 	while (index <= end) {
1414 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1415 		if (nr_pages == 0)
1416 			break;
1417 		for (i = 0; i < nr_pages; i++) {
1418 			int skip_page = 0;
1419 			struct page *page = pvec.pages[i];
1420 
1421 			index = page->index;
1422 			if (index > end)
1423 				break;
1424 
1425 			if (index == size >> PAGE_CACHE_SHIFT)
1426 				len = size & ~PAGE_CACHE_MASK;
1427 			else
1428 				len = PAGE_CACHE_SIZE;
1429 			if (map) {
1430 				cur_logical = index << (PAGE_CACHE_SHIFT -
1431 							inode->i_blkbits);
1432 				pblock = map->m_pblk + (cur_logical -
1433 							map->m_lblk);
1434 			}
1435 			index++;
1436 
1437 			BUG_ON(!PageLocked(page));
1438 			BUG_ON(PageWriteback(page));
1439 
1440 			bh = page_bufs = page_buffers(page);
1441 			block_start = 0;
1442 			do {
1443 				if (map && (cur_logical >= map->m_lblk) &&
1444 				    (cur_logical <= (map->m_lblk +
1445 						     (map->m_len - 1)))) {
1446 					if (buffer_delay(bh)) {
1447 						clear_buffer_delay(bh);
1448 						bh->b_blocknr = pblock;
1449 					}
1450 					if (buffer_unwritten(bh) ||
1451 					    buffer_mapped(bh))
1452 						BUG_ON(bh->b_blocknr != pblock);
1453 					if (map->m_flags & EXT4_MAP_UNINIT)
1454 						set_buffer_uninit(bh);
1455 					clear_buffer_unwritten(bh);
1456 				}
1457 
1458 				/*
1459 				 * skip page if block allocation undone and
1460 				 * block is dirty
1461 				 */
1462 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1463 					skip_page = 1;
1464 				bh = bh->b_this_page;
1465 				block_start += bh->b_size;
1466 				cur_logical++;
1467 				pblock++;
1468 			} while (bh != page_bufs);
1469 
1470 			if (skip_page) {
1471 				unlock_page(page);
1472 				continue;
1473 			}
1474 
1475 			clear_page_dirty_for_io(page);
1476 			err = ext4_bio_write_page(&io_submit, page, len,
1477 						  mpd->wbc);
1478 			if (!err)
1479 				mpd->pages_written++;
1480 			/*
1481 			 * In error case, we have to continue because
1482 			 * remaining pages are still locked
1483 			 */
1484 			if (ret == 0)
1485 				ret = err;
1486 		}
1487 		pagevec_release(&pvec);
1488 	}
1489 	ext4_io_submit(&io_submit);
1490 	return ret;
1491 }
1492 
1493 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1494 {
1495 	int nr_pages, i;
1496 	pgoff_t index, end;
1497 	struct pagevec pvec;
1498 	struct inode *inode = mpd->inode;
1499 	struct address_space *mapping = inode->i_mapping;
1500 	ext4_lblk_t start, last;
1501 
1502 	index = mpd->first_page;
1503 	end   = mpd->next_page - 1;
1504 
1505 	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1506 	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1507 	ext4_es_remove_extent(inode, start, last - start + 1);
1508 
1509 	pagevec_init(&pvec, 0);
1510 	while (index <= end) {
1511 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512 		if (nr_pages == 0)
1513 			break;
1514 		for (i = 0; i < nr_pages; i++) {
1515 			struct page *page = pvec.pages[i];
1516 			if (page->index > end)
1517 				break;
1518 			BUG_ON(!PageLocked(page));
1519 			BUG_ON(PageWriteback(page));
1520 			block_invalidatepage(page, 0);
1521 			ClearPageUptodate(page);
1522 			unlock_page(page);
1523 		}
1524 		index = pvec.pages[nr_pages - 1]->index + 1;
1525 		pagevec_release(&pvec);
1526 	}
1527 	return;
1528 }
1529 
1530 static void ext4_print_free_blocks(struct inode *inode)
1531 {
1532 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1533 	struct super_block *sb = inode->i_sb;
1534 
1535 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1536 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1537 			ext4_count_free_clusters(inode->i_sb)));
1538 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1539 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1540 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1541 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1542 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1543 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1544 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1545 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1546 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1547 		 EXT4_I(inode)->i_reserved_data_blocks);
1548 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1549 	       EXT4_I(inode)->i_reserved_meta_blocks);
1550 	return;
1551 }
1552 
1553 /*
1554  * mpage_da_map_and_submit - go through given space, map them
1555  *       if necessary, and then submit them for I/O
1556  *
1557  * @mpd - bh describing space
1558  *
1559  * The function skips space we know is already mapped to disk blocks.
1560  *
1561  */
1562 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1563 {
1564 	int err, blks, get_blocks_flags;
1565 	struct ext4_map_blocks map, *mapp = NULL;
1566 	sector_t next = mpd->b_blocknr;
1567 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1568 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1569 	handle_t *handle = NULL;
1570 
1571 	/*
1572 	 * If the blocks are mapped already, or we couldn't accumulate
1573 	 * any blocks, then proceed immediately to the submission stage.
1574 	 */
1575 	if ((mpd->b_size == 0) ||
1576 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1577 	     !(mpd->b_state & (1 << BH_Delay)) &&
1578 	     !(mpd->b_state & (1 << BH_Unwritten))))
1579 		goto submit_io;
1580 
1581 	handle = ext4_journal_current_handle();
1582 	BUG_ON(!handle);
1583 
1584 	/*
1585 	 * Call ext4_map_blocks() to allocate any delayed allocation
1586 	 * blocks, or to convert an uninitialized extent to be
1587 	 * initialized (in the case where we have written into
1588 	 * one or more preallocated blocks).
1589 	 *
1590 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1591 	 * indicate that we are on the delayed allocation path.  This
1592 	 * affects functions in many different parts of the allocation
1593 	 * call path.  This flag exists primarily because we don't
1594 	 * want to change *many* call functions, so ext4_map_blocks()
1595 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1596 	 * inode's allocation semaphore is taken.
1597 	 *
1598 	 * If the blocks in questions were delalloc blocks, set
1599 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1600 	 * variables are updated after the blocks have been allocated.
1601 	 */
1602 	map.m_lblk = next;
1603 	map.m_len = max_blocks;
1604 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1605 	if (ext4_should_dioread_nolock(mpd->inode))
1606 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1607 	if (mpd->b_state & (1 << BH_Delay))
1608 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1609 
1610 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1611 	if (blks < 0) {
1612 		struct super_block *sb = mpd->inode->i_sb;
1613 
1614 		err = blks;
1615 		/*
1616 		 * If get block returns EAGAIN or ENOSPC and there
1617 		 * appears to be free blocks we will just let
1618 		 * mpage_da_submit_io() unlock all of the pages.
1619 		 */
1620 		if (err == -EAGAIN)
1621 			goto submit_io;
1622 
1623 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1624 			mpd->retval = err;
1625 			goto submit_io;
1626 		}
1627 
1628 		/*
1629 		 * get block failure will cause us to loop in
1630 		 * writepages, because a_ops->writepage won't be able
1631 		 * to make progress. The page will be redirtied by
1632 		 * writepage and writepages will again try to write
1633 		 * the same.
1634 		 */
1635 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1636 			ext4_msg(sb, KERN_CRIT,
1637 				 "delayed block allocation failed for inode %lu "
1638 				 "at logical offset %llu with max blocks %zd "
1639 				 "with error %d", mpd->inode->i_ino,
1640 				 (unsigned long long) next,
1641 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1642 			ext4_msg(sb, KERN_CRIT,
1643 				"This should not happen!! Data will be lost");
1644 			if (err == -ENOSPC)
1645 				ext4_print_free_blocks(mpd->inode);
1646 		}
1647 		/* invalidate all the pages */
1648 		ext4_da_block_invalidatepages(mpd);
1649 
1650 		/* Mark this page range as having been completed */
1651 		mpd->io_done = 1;
1652 		return;
1653 	}
1654 	BUG_ON(blks == 0);
1655 
1656 	mapp = &map;
1657 	if (map.m_flags & EXT4_MAP_NEW) {
1658 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1659 		int i;
1660 
1661 		for (i = 0; i < map.m_len; i++)
1662 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1663 	}
1664 
1665 	/*
1666 	 * Update on-disk size along with block allocation.
1667 	 */
1668 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1669 	if (disksize > i_size_read(mpd->inode))
1670 		disksize = i_size_read(mpd->inode);
1671 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1672 		ext4_update_i_disksize(mpd->inode, disksize);
1673 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1674 		if (err)
1675 			ext4_error(mpd->inode->i_sb,
1676 				   "Failed to mark inode %lu dirty",
1677 				   mpd->inode->i_ino);
1678 	}
1679 
1680 submit_io:
1681 	mpage_da_submit_io(mpd, mapp);
1682 	mpd->io_done = 1;
1683 }
1684 
1685 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1686 		(1 << BH_Delay) | (1 << BH_Unwritten))
1687 
1688 /*
1689  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1690  *
1691  * @mpd->lbh - extent of blocks
1692  * @logical - logical number of the block in the file
1693  * @b_state - b_state of the buffer head added
1694  *
1695  * the function is used to collect contig. blocks in same state
1696  */
1697 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1698 				   unsigned long b_state)
1699 {
1700 	sector_t next;
1701 	int blkbits = mpd->inode->i_blkbits;
1702 	int nrblocks = mpd->b_size >> blkbits;
1703 
1704 	/*
1705 	 * XXX Don't go larger than mballoc is willing to allocate
1706 	 * This is a stopgap solution.  We eventually need to fold
1707 	 * mpage_da_submit_io() into this function and then call
1708 	 * ext4_map_blocks() multiple times in a loop
1709 	 */
1710 	if (nrblocks >= (8*1024*1024 >> blkbits))
1711 		goto flush_it;
1712 
1713 	/* check if the reserved journal credits might overflow */
1714 	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1715 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1716 			/*
1717 			 * With non-extent format we are limited by the journal
1718 			 * credit available.  Total credit needed to insert
1719 			 * nrblocks contiguous blocks is dependent on the
1720 			 * nrblocks.  So limit nrblocks.
1721 			 */
1722 			goto flush_it;
1723 		}
1724 	}
1725 	/*
1726 	 * First block in the extent
1727 	 */
1728 	if (mpd->b_size == 0) {
1729 		mpd->b_blocknr = logical;
1730 		mpd->b_size = 1 << blkbits;
1731 		mpd->b_state = b_state & BH_FLAGS;
1732 		return;
1733 	}
1734 
1735 	next = mpd->b_blocknr + nrblocks;
1736 	/*
1737 	 * Can we merge the block to our big extent?
1738 	 */
1739 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1740 		mpd->b_size += 1 << blkbits;
1741 		return;
1742 	}
1743 
1744 flush_it:
1745 	/*
1746 	 * We couldn't merge the block to our extent, so we
1747 	 * need to flush current  extent and start new one
1748 	 */
1749 	mpage_da_map_and_submit(mpd);
1750 	return;
1751 }
1752 
1753 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1754 {
1755 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1756 }
1757 
1758 /*
1759  * This function is grabs code from the very beginning of
1760  * ext4_map_blocks, but assumes that the caller is from delayed write
1761  * time. This function looks up the requested blocks and sets the
1762  * buffer delay bit under the protection of i_data_sem.
1763  */
1764 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1765 			      struct ext4_map_blocks *map,
1766 			      struct buffer_head *bh)
1767 {
1768 	struct extent_status es;
1769 	int retval;
1770 	sector_t invalid_block = ~((sector_t) 0xffff);
1771 
1772 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1773 		invalid_block = ~0;
1774 
1775 	map->m_flags = 0;
1776 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1777 		  "logical block %lu\n", inode->i_ino, map->m_len,
1778 		  (unsigned long) map->m_lblk);
1779 
1780 	/* Lookup extent status tree firstly */
1781 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1782 
1783 		if (ext4_es_is_hole(&es)) {
1784 			retval = 0;
1785 			down_read((&EXT4_I(inode)->i_data_sem));
1786 			goto add_delayed;
1787 		}
1788 
1789 		/*
1790 		 * Delayed extent could be allocated by fallocate.
1791 		 * So we need to check it.
1792 		 */
1793 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1794 			map_bh(bh, inode->i_sb, invalid_block);
1795 			set_buffer_new(bh);
1796 			set_buffer_delay(bh);
1797 			return 0;
1798 		}
1799 
1800 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1801 		retval = es.es_len - (iblock - es.es_lblk);
1802 		if (retval > map->m_len)
1803 			retval = map->m_len;
1804 		map->m_len = retval;
1805 		if (ext4_es_is_written(&es))
1806 			map->m_flags |= EXT4_MAP_MAPPED;
1807 		else if (ext4_es_is_unwritten(&es))
1808 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1809 		else
1810 			BUG_ON(1);
1811 
1812 		return retval;
1813 	}
1814 
1815 	/*
1816 	 * Try to see if we can get the block without requesting a new
1817 	 * file system block.
1818 	 */
1819 	down_read((&EXT4_I(inode)->i_data_sem));
1820 	if (ext4_has_inline_data(inode)) {
1821 		/*
1822 		 * We will soon create blocks for this page, and let
1823 		 * us pretend as if the blocks aren't allocated yet.
1824 		 * In case of clusters, we have to handle the work
1825 		 * of mapping from cluster so that the reserved space
1826 		 * is calculated properly.
1827 		 */
1828 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1829 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1830 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1831 		retval = 0;
1832 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1833 		retval = ext4_ext_map_blocks(NULL, inode, map,
1834 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1835 	else
1836 		retval = ext4_ind_map_blocks(NULL, inode, map,
1837 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1838 
1839 add_delayed:
1840 	if (retval == 0) {
1841 		int ret;
1842 		/*
1843 		 * XXX: __block_prepare_write() unmaps passed block,
1844 		 * is it OK?
1845 		 */
1846 		/* If the block was allocated from previously allocated cluster,
1847 		 * then we dont need to reserve it again. */
1848 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1849 			ret = ext4_da_reserve_space(inode, iblock);
1850 			if (ret) {
1851 				/* not enough space to reserve */
1852 				retval = ret;
1853 				goto out_unlock;
1854 			}
1855 		}
1856 
1857 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1858 					    ~0, EXTENT_STATUS_DELAYED);
1859 		if (ret) {
1860 			retval = ret;
1861 			goto out_unlock;
1862 		}
1863 
1864 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1865 		 * and it should not appear on the bh->b_state.
1866 		 */
1867 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1868 
1869 		map_bh(bh, inode->i_sb, invalid_block);
1870 		set_buffer_new(bh);
1871 		set_buffer_delay(bh);
1872 	} else if (retval > 0) {
1873 		int ret;
1874 		unsigned long long status;
1875 
1876 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1877 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1878 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1879 					    map->m_pblk, status);
1880 		if (ret != 0)
1881 			retval = ret;
1882 	}
1883 
1884 out_unlock:
1885 	up_read((&EXT4_I(inode)->i_data_sem));
1886 
1887 	return retval;
1888 }
1889 
1890 /*
1891  * This is a special get_blocks_t callback which is used by
1892  * ext4_da_write_begin().  It will either return mapped block or
1893  * reserve space for a single block.
1894  *
1895  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1896  * We also have b_blocknr = -1 and b_bdev initialized properly
1897  *
1898  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1899  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1900  * initialized properly.
1901  */
1902 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1903 			   struct buffer_head *bh, int create)
1904 {
1905 	struct ext4_map_blocks map;
1906 	int ret = 0;
1907 
1908 	BUG_ON(create == 0);
1909 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1910 
1911 	map.m_lblk = iblock;
1912 	map.m_len = 1;
1913 
1914 	/*
1915 	 * first, we need to know whether the block is allocated already
1916 	 * preallocated blocks are unmapped but should treated
1917 	 * the same as allocated blocks.
1918 	 */
1919 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1920 	if (ret <= 0)
1921 		return ret;
1922 
1923 	map_bh(bh, inode->i_sb, map.m_pblk);
1924 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1925 
1926 	if (buffer_unwritten(bh)) {
1927 		/* A delayed write to unwritten bh should be marked
1928 		 * new and mapped.  Mapped ensures that we don't do
1929 		 * get_block multiple times when we write to the same
1930 		 * offset and new ensures that we do proper zero out
1931 		 * for partial write.
1932 		 */
1933 		set_buffer_new(bh);
1934 		set_buffer_mapped(bh);
1935 	}
1936 	return 0;
1937 }
1938 
1939 static int bget_one(handle_t *handle, struct buffer_head *bh)
1940 {
1941 	get_bh(bh);
1942 	return 0;
1943 }
1944 
1945 static int bput_one(handle_t *handle, struct buffer_head *bh)
1946 {
1947 	put_bh(bh);
1948 	return 0;
1949 }
1950 
1951 static int __ext4_journalled_writepage(struct page *page,
1952 				       unsigned int len)
1953 {
1954 	struct address_space *mapping = page->mapping;
1955 	struct inode *inode = mapping->host;
1956 	struct buffer_head *page_bufs = NULL;
1957 	handle_t *handle = NULL;
1958 	int ret = 0, err = 0;
1959 	int inline_data = ext4_has_inline_data(inode);
1960 	struct buffer_head *inode_bh = NULL;
1961 
1962 	ClearPageChecked(page);
1963 
1964 	if (inline_data) {
1965 		BUG_ON(page->index != 0);
1966 		BUG_ON(len > ext4_get_max_inline_size(inode));
1967 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1968 		if (inode_bh == NULL)
1969 			goto out;
1970 	} else {
1971 		page_bufs = page_buffers(page);
1972 		if (!page_bufs) {
1973 			BUG();
1974 			goto out;
1975 		}
1976 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1977 				       NULL, bget_one);
1978 	}
1979 	/* As soon as we unlock the page, it can go away, but we have
1980 	 * references to buffers so we are safe */
1981 	unlock_page(page);
1982 
1983 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1984 				    ext4_writepage_trans_blocks(inode));
1985 	if (IS_ERR(handle)) {
1986 		ret = PTR_ERR(handle);
1987 		goto out;
1988 	}
1989 
1990 	BUG_ON(!ext4_handle_valid(handle));
1991 
1992 	if (inline_data) {
1993 		ret = ext4_journal_get_write_access(handle, inode_bh);
1994 
1995 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1996 
1997 	} else {
1998 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1999 					     do_journal_get_write_access);
2000 
2001 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2002 					     write_end_fn);
2003 	}
2004 	if (ret == 0)
2005 		ret = err;
2006 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2007 	err = ext4_journal_stop(handle);
2008 	if (!ret)
2009 		ret = err;
2010 
2011 	if (!ext4_has_inline_data(inode))
2012 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2013 				       NULL, bput_one);
2014 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2015 out:
2016 	brelse(inode_bh);
2017 	return ret;
2018 }
2019 
2020 /*
2021  * Note that we don't need to start a transaction unless we're journaling data
2022  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2023  * need to file the inode to the transaction's list in ordered mode because if
2024  * we are writing back data added by write(), the inode is already there and if
2025  * we are writing back data modified via mmap(), no one guarantees in which
2026  * transaction the data will hit the disk. In case we are journaling data, we
2027  * cannot start transaction directly because transaction start ranks above page
2028  * lock so we have to do some magic.
2029  *
2030  * This function can get called via...
2031  *   - ext4_da_writepages after taking page lock (have journal handle)
2032  *   - journal_submit_inode_data_buffers (no journal handle)
2033  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2034  *   - grab_page_cache when doing write_begin (have journal handle)
2035  *
2036  * We don't do any block allocation in this function. If we have page with
2037  * multiple blocks we need to write those buffer_heads that are mapped. This
2038  * is important for mmaped based write. So if we do with blocksize 1K
2039  * truncate(f, 1024);
2040  * a = mmap(f, 0, 4096);
2041  * a[0] = 'a';
2042  * truncate(f, 4096);
2043  * we have in the page first buffer_head mapped via page_mkwrite call back
2044  * but other buffer_heads would be unmapped but dirty (dirty done via the
2045  * do_wp_page). So writepage should write the first block. If we modify
2046  * the mmap area beyond 1024 we will again get a page_fault and the
2047  * page_mkwrite callback will do the block allocation and mark the
2048  * buffer_heads mapped.
2049  *
2050  * We redirty the page if we have any buffer_heads that is either delay or
2051  * unwritten in the page.
2052  *
2053  * We can get recursively called as show below.
2054  *
2055  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2056  *		ext4_writepage()
2057  *
2058  * But since we don't do any block allocation we should not deadlock.
2059  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2060  */
2061 static int ext4_writepage(struct page *page,
2062 			  struct writeback_control *wbc)
2063 {
2064 	int ret = 0;
2065 	loff_t size;
2066 	unsigned int len;
2067 	struct buffer_head *page_bufs = NULL;
2068 	struct inode *inode = page->mapping->host;
2069 	struct ext4_io_submit io_submit;
2070 
2071 	trace_ext4_writepage(page);
2072 	size = i_size_read(inode);
2073 	if (page->index == size >> PAGE_CACHE_SHIFT)
2074 		len = size & ~PAGE_CACHE_MASK;
2075 	else
2076 		len = PAGE_CACHE_SIZE;
2077 
2078 	page_bufs = page_buffers(page);
2079 	/*
2080 	 * We cannot do block allocation or other extent handling in this
2081 	 * function. If there are buffers needing that, we have to redirty
2082 	 * the page. But we may reach here when we do a journal commit via
2083 	 * journal_submit_inode_data_buffers() and in that case we must write
2084 	 * allocated buffers to achieve data=ordered mode guarantees.
2085 	 */
2086 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2087 				   ext4_bh_delay_or_unwritten)) {
2088 		redirty_page_for_writepage(wbc, page);
2089 		if (current->flags & PF_MEMALLOC) {
2090 			/*
2091 			 * For memory cleaning there's no point in writing only
2092 			 * some buffers. So just bail out. Warn if we came here
2093 			 * from direct reclaim.
2094 			 */
2095 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2096 							== PF_MEMALLOC);
2097 			unlock_page(page);
2098 			return 0;
2099 		}
2100 	}
2101 
2102 	if (PageChecked(page) && ext4_should_journal_data(inode))
2103 		/*
2104 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2105 		 * doesn't seem much point in redirtying the page here.
2106 		 */
2107 		return __ext4_journalled_writepage(page, len);
2108 
2109 	memset(&io_submit, 0, sizeof(io_submit));
2110 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2111 	ext4_io_submit(&io_submit);
2112 	return ret;
2113 }
2114 
2115 /*
2116  * This is called via ext4_da_writepages() to
2117  * calculate the total number of credits to reserve to fit
2118  * a single extent allocation into a single transaction,
2119  * ext4_da_writpeages() will loop calling this before
2120  * the block allocation.
2121  */
2122 
2123 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2124 {
2125 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2126 
2127 	/*
2128 	 * With non-extent format the journal credit needed to
2129 	 * insert nrblocks contiguous block is dependent on
2130 	 * number of contiguous block. So we will limit
2131 	 * number of contiguous block to a sane value
2132 	 */
2133 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2134 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2135 		max_blocks = EXT4_MAX_TRANS_DATA;
2136 
2137 	return ext4_chunk_trans_blocks(inode, max_blocks);
2138 }
2139 
2140 /*
2141  * write_cache_pages_da - walk the list of dirty pages of the given
2142  * address space and accumulate pages that need writing, and call
2143  * mpage_da_map_and_submit to map a single contiguous memory region
2144  * and then write them.
2145  */
2146 static int write_cache_pages_da(handle_t *handle,
2147 				struct address_space *mapping,
2148 				struct writeback_control *wbc,
2149 				struct mpage_da_data *mpd,
2150 				pgoff_t *done_index)
2151 {
2152 	struct buffer_head	*bh, *head;
2153 	struct inode		*inode = mapping->host;
2154 	struct pagevec		pvec;
2155 	unsigned int		nr_pages;
2156 	sector_t		logical;
2157 	pgoff_t			index, end;
2158 	long			nr_to_write = wbc->nr_to_write;
2159 	int			i, tag, ret = 0;
2160 
2161 	memset(mpd, 0, sizeof(struct mpage_da_data));
2162 	mpd->wbc = wbc;
2163 	mpd->inode = inode;
2164 	pagevec_init(&pvec, 0);
2165 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2166 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2167 
2168 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2169 		tag = PAGECACHE_TAG_TOWRITE;
2170 	else
2171 		tag = PAGECACHE_TAG_DIRTY;
2172 
2173 	*done_index = index;
2174 	while (index <= end) {
2175 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2176 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2177 		if (nr_pages == 0)
2178 			return 0;
2179 
2180 		for (i = 0; i < nr_pages; i++) {
2181 			struct page *page = pvec.pages[i];
2182 
2183 			/*
2184 			 * At this point, the page may be truncated or
2185 			 * invalidated (changing page->mapping to NULL), or
2186 			 * even swizzled back from swapper_space to tmpfs file
2187 			 * mapping. However, page->index will not change
2188 			 * because we have a reference on the page.
2189 			 */
2190 			if (page->index > end)
2191 				goto out;
2192 
2193 			*done_index = page->index + 1;
2194 
2195 			/*
2196 			 * If we can't merge this page, and we have
2197 			 * accumulated an contiguous region, write it
2198 			 */
2199 			if ((mpd->next_page != page->index) &&
2200 			    (mpd->next_page != mpd->first_page)) {
2201 				mpage_da_map_and_submit(mpd);
2202 				goto ret_extent_tail;
2203 			}
2204 
2205 			lock_page(page);
2206 
2207 			/*
2208 			 * If the page is no longer dirty, or its
2209 			 * mapping no longer corresponds to inode we
2210 			 * are writing (which means it has been
2211 			 * truncated or invalidated), or the page is
2212 			 * already under writeback and we are not
2213 			 * doing a data integrity writeback, skip the page
2214 			 */
2215 			if (!PageDirty(page) ||
2216 			    (PageWriteback(page) &&
2217 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2218 			    unlikely(page->mapping != mapping)) {
2219 				unlock_page(page);
2220 				continue;
2221 			}
2222 
2223 			wait_on_page_writeback(page);
2224 			BUG_ON(PageWriteback(page));
2225 
2226 			/*
2227 			 * If we have inline data and arrive here, it means that
2228 			 * we will soon create the block for the 1st page, so
2229 			 * we'd better clear the inline data here.
2230 			 */
2231 			if (ext4_has_inline_data(inode)) {
2232 				BUG_ON(ext4_test_inode_state(inode,
2233 						EXT4_STATE_MAY_INLINE_DATA));
2234 				ext4_destroy_inline_data(handle, inode);
2235 			}
2236 
2237 			if (mpd->next_page != page->index)
2238 				mpd->first_page = page->index;
2239 			mpd->next_page = page->index + 1;
2240 			logical = (sector_t) page->index <<
2241 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2242 
2243 			/* Add all dirty buffers to mpd */
2244 			head = page_buffers(page);
2245 			bh = head;
2246 			do {
2247 				BUG_ON(buffer_locked(bh));
2248 				/*
2249 				 * We need to try to allocate unmapped blocks
2250 				 * in the same page.  Otherwise we won't make
2251 				 * progress with the page in ext4_writepage
2252 				 */
2253 				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2254 					mpage_add_bh_to_extent(mpd, logical,
2255 							       bh->b_state);
2256 					if (mpd->io_done)
2257 						goto ret_extent_tail;
2258 				} else if (buffer_dirty(bh) &&
2259 					   buffer_mapped(bh)) {
2260 					/*
2261 					 * mapped dirty buffer. We need to
2262 					 * update the b_state because we look
2263 					 * at b_state in mpage_da_map_blocks.
2264 					 * We don't update b_size because if we
2265 					 * find an unmapped buffer_head later
2266 					 * we need to use the b_state flag of
2267 					 * that buffer_head.
2268 					 */
2269 					if (mpd->b_size == 0)
2270 						mpd->b_state =
2271 							bh->b_state & BH_FLAGS;
2272 				}
2273 				logical++;
2274 			} while ((bh = bh->b_this_page) != head);
2275 
2276 			if (nr_to_write > 0) {
2277 				nr_to_write--;
2278 				if (nr_to_write == 0 &&
2279 				    wbc->sync_mode == WB_SYNC_NONE)
2280 					/*
2281 					 * We stop writing back only if we are
2282 					 * not doing integrity sync. In case of
2283 					 * integrity sync we have to keep going
2284 					 * because someone may be concurrently
2285 					 * dirtying pages, and we might have
2286 					 * synced a lot of newly appeared dirty
2287 					 * pages, but have not synced all of the
2288 					 * old dirty pages.
2289 					 */
2290 					goto out;
2291 			}
2292 		}
2293 		pagevec_release(&pvec);
2294 		cond_resched();
2295 	}
2296 	return 0;
2297 ret_extent_tail:
2298 	ret = MPAGE_DA_EXTENT_TAIL;
2299 out:
2300 	pagevec_release(&pvec);
2301 	cond_resched();
2302 	return ret;
2303 }
2304 
2305 
2306 static int ext4_da_writepages(struct address_space *mapping,
2307 			      struct writeback_control *wbc)
2308 {
2309 	pgoff_t	index;
2310 	int range_whole = 0;
2311 	handle_t *handle = NULL;
2312 	struct mpage_da_data mpd;
2313 	struct inode *inode = mapping->host;
2314 	int pages_written = 0;
2315 	unsigned int max_pages;
2316 	int range_cyclic, cycled = 1, io_done = 0;
2317 	int needed_blocks, ret = 0;
2318 	long desired_nr_to_write, nr_to_writebump = 0;
2319 	loff_t range_start = wbc->range_start;
2320 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2321 	pgoff_t done_index = 0;
2322 	pgoff_t end;
2323 	struct blk_plug plug;
2324 
2325 	trace_ext4_da_writepages(inode, wbc);
2326 
2327 	/*
2328 	 * No pages to write? This is mainly a kludge to avoid starting
2329 	 * a transaction for special inodes like journal inode on last iput()
2330 	 * because that could violate lock ordering on umount
2331 	 */
2332 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2333 		return 0;
2334 
2335 	/*
2336 	 * If the filesystem has aborted, it is read-only, so return
2337 	 * right away instead of dumping stack traces later on that
2338 	 * will obscure the real source of the problem.  We test
2339 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2340 	 * the latter could be true if the filesystem is mounted
2341 	 * read-only, and in that case, ext4_da_writepages should
2342 	 * *never* be called, so if that ever happens, we would want
2343 	 * the stack trace.
2344 	 */
2345 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2346 		return -EROFS;
2347 
2348 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2349 		range_whole = 1;
2350 
2351 	range_cyclic = wbc->range_cyclic;
2352 	if (wbc->range_cyclic) {
2353 		index = mapping->writeback_index;
2354 		if (index)
2355 			cycled = 0;
2356 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2357 		wbc->range_end  = LLONG_MAX;
2358 		wbc->range_cyclic = 0;
2359 		end = -1;
2360 	} else {
2361 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2362 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2363 	}
2364 
2365 	/*
2366 	 * This works around two forms of stupidity.  The first is in
2367 	 * the writeback code, which caps the maximum number of pages
2368 	 * written to be 1024 pages.  This is wrong on multiple
2369 	 * levels; different architectues have a different page size,
2370 	 * which changes the maximum amount of data which gets
2371 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2372 	 * forces this value to be 16 megabytes by multiplying
2373 	 * nr_to_write parameter by four, and then relies on its
2374 	 * allocator to allocate larger extents to make them
2375 	 * contiguous.  Unfortunately this brings us to the second
2376 	 * stupidity, which is that ext4's mballoc code only allocates
2377 	 * at most 2048 blocks.  So we force contiguous writes up to
2378 	 * the number of dirty blocks in the inode, or
2379 	 * sbi->max_writeback_mb_bump whichever is smaller.
2380 	 */
2381 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2382 	if (!range_cyclic && range_whole) {
2383 		if (wbc->nr_to_write == LONG_MAX)
2384 			desired_nr_to_write = wbc->nr_to_write;
2385 		else
2386 			desired_nr_to_write = wbc->nr_to_write * 8;
2387 	} else
2388 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2389 							   max_pages);
2390 	if (desired_nr_to_write > max_pages)
2391 		desired_nr_to_write = max_pages;
2392 
2393 	if (wbc->nr_to_write < desired_nr_to_write) {
2394 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2395 		wbc->nr_to_write = desired_nr_to_write;
2396 	}
2397 
2398 retry:
2399 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2400 		tag_pages_for_writeback(mapping, index, end);
2401 
2402 	blk_start_plug(&plug);
2403 	while (!ret && wbc->nr_to_write > 0) {
2404 
2405 		/*
2406 		 * we  insert one extent at a time. So we need
2407 		 * credit needed for single extent allocation.
2408 		 * journalled mode is currently not supported
2409 		 * by delalloc
2410 		 */
2411 		BUG_ON(ext4_should_journal_data(inode));
2412 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2413 
2414 		/* start a new transaction*/
2415 		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2416 					    needed_blocks);
2417 		if (IS_ERR(handle)) {
2418 			ret = PTR_ERR(handle);
2419 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2420 			       "%ld pages, ino %lu; err %d", __func__,
2421 				wbc->nr_to_write, inode->i_ino, ret);
2422 			blk_finish_plug(&plug);
2423 			goto out_writepages;
2424 		}
2425 
2426 		/*
2427 		 * Now call write_cache_pages_da() to find the next
2428 		 * contiguous region of logical blocks that need
2429 		 * blocks to be allocated by ext4 and submit them.
2430 		 */
2431 		ret = write_cache_pages_da(handle, mapping,
2432 					   wbc, &mpd, &done_index);
2433 		/*
2434 		 * If we have a contiguous extent of pages and we
2435 		 * haven't done the I/O yet, map the blocks and submit
2436 		 * them for I/O.
2437 		 */
2438 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2439 			mpage_da_map_and_submit(&mpd);
2440 			ret = MPAGE_DA_EXTENT_TAIL;
2441 		}
2442 		trace_ext4_da_write_pages(inode, &mpd);
2443 		wbc->nr_to_write -= mpd.pages_written;
2444 
2445 		ext4_journal_stop(handle);
2446 
2447 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2448 			/* commit the transaction which would
2449 			 * free blocks released in the transaction
2450 			 * and try again
2451 			 */
2452 			jbd2_journal_force_commit_nested(sbi->s_journal);
2453 			ret = 0;
2454 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2455 			/*
2456 			 * Got one extent now try with rest of the pages.
2457 			 * If mpd.retval is set -EIO, journal is aborted.
2458 			 * So we don't need to write any more.
2459 			 */
2460 			pages_written += mpd.pages_written;
2461 			ret = mpd.retval;
2462 			io_done = 1;
2463 		} else if (wbc->nr_to_write)
2464 			/*
2465 			 * There is no more writeout needed
2466 			 * or we requested for a noblocking writeout
2467 			 * and we found the device congested
2468 			 */
2469 			break;
2470 	}
2471 	blk_finish_plug(&plug);
2472 	if (!io_done && !cycled) {
2473 		cycled = 1;
2474 		index = 0;
2475 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2476 		wbc->range_end  = mapping->writeback_index - 1;
2477 		goto retry;
2478 	}
2479 
2480 	/* Update index */
2481 	wbc->range_cyclic = range_cyclic;
2482 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2483 		/*
2484 		 * set the writeback_index so that range_cyclic
2485 		 * mode will write it back later
2486 		 */
2487 		mapping->writeback_index = done_index;
2488 
2489 out_writepages:
2490 	wbc->nr_to_write -= nr_to_writebump;
2491 	wbc->range_start = range_start;
2492 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2493 	return ret;
2494 }
2495 
2496 static int ext4_nonda_switch(struct super_block *sb)
2497 {
2498 	s64 free_blocks, dirty_blocks;
2499 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2500 
2501 	/*
2502 	 * switch to non delalloc mode if we are running low
2503 	 * on free block. The free block accounting via percpu
2504 	 * counters can get slightly wrong with percpu_counter_batch getting
2505 	 * accumulated on each CPU without updating global counters
2506 	 * Delalloc need an accurate free block accounting. So switch
2507 	 * to non delalloc when we are near to error range.
2508 	 */
2509 	free_blocks  = EXT4_C2B(sbi,
2510 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2511 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2512 	/*
2513 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2514 	 */
2515 	if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
2516 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2517 
2518 	if (2 * free_blocks < 3 * dirty_blocks ||
2519 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2520 		/*
2521 		 * free block count is less than 150% of dirty blocks
2522 		 * or free blocks is less than watermark
2523 		 */
2524 		return 1;
2525 	}
2526 	return 0;
2527 }
2528 
2529 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2530 			       loff_t pos, unsigned len, unsigned flags,
2531 			       struct page **pagep, void **fsdata)
2532 {
2533 	int ret, retries = 0;
2534 	struct page *page;
2535 	pgoff_t index;
2536 	struct inode *inode = mapping->host;
2537 	handle_t *handle;
2538 
2539 	index = pos >> PAGE_CACHE_SHIFT;
2540 
2541 	if (ext4_nonda_switch(inode->i_sb)) {
2542 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2543 		return ext4_write_begin(file, mapping, pos,
2544 					len, flags, pagep, fsdata);
2545 	}
2546 	*fsdata = (void *)0;
2547 	trace_ext4_da_write_begin(inode, pos, len, flags);
2548 
2549 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2550 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2551 						      pos, len, flags,
2552 						      pagep, fsdata);
2553 		if (ret < 0)
2554 			return ret;
2555 		if (ret == 1)
2556 			return 0;
2557 	}
2558 
2559 	/*
2560 	 * grab_cache_page_write_begin() can take a long time if the
2561 	 * system is thrashing due to memory pressure, or if the page
2562 	 * is being written back.  So grab it first before we start
2563 	 * the transaction handle.  This also allows us to allocate
2564 	 * the page (if needed) without using GFP_NOFS.
2565 	 */
2566 retry_grab:
2567 	page = grab_cache_page_write_begin(mapping, index, flags);
2568 	if (!page)
2569 		return -ENOMEM;
2570 	unlock_page(page);
2571 
2572 	/*
2573 	 * With delayed allocation, we don't log the i_disksize update
2574 	 * if there is delayed block allocation. But we still need
2575 	 * to journalling the i_disksize update if writes to the end
2576 	 * of file which has an already mapped buffer.
2577 	 */
2578 retry_journal:
2579 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2580 	if (IS_ERR(handle)) {
2581 		page_cache_release(page);
2582 		return PTR_ERR(handle);
2583 	}
2584 
2585 	lock_page(page);
2586 	if (page->mapping != mapping) {
2587 		/* The page got truncated from under us */
2588 		unlock_page(page);
2589 		page_cache_release(page);
2590 		ext4_journal_stop(handle);
2591 		goto retry_grab;
2592 	}
2593 	/* In case writeback began while the page was unlocked */
2594 	wait_on_page_writeback(page);
2595 
2596 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2597 	if (ret < 0) {
2598 		unlock_page(page);
2599 		ext4_journal_stop(handle);
2600 		/*
2601 		 * block_write_begin may have instantiated a few blocks
2602 		 * outside i_size.  Trim these off again. Don't need
2603 		 * i_size_read because we hold i_mutex.
2604 		 */
2605 		if (pos + len > inode->i_size)
2606 			ext4_truncate_failed_write(inode);
2607 
2608 		if (ret == -ENOSPC &&
2609 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2610 			goto retry_journal;
2611 
2612 		page_cache_release(page);
2613 		return ret;
2614 	}
2615 
2616 	*pagep = page;
2617 	return ret;
2618 }
2619 
2620 /*
2621  * Check if we should update i_disksize
2622  * when write to the end of file but not require block allocation
2623  */
2624 static int ext4_da_should_update_i_disksize(struct page *page,
2625 					    unsigned long offset)
2626 {
2627 	struct buffer_head *bh;
2628 	struct inode *inode = page->mapping->host;
2629 	unsigned int idx;
2630 	int i;
2631 
2632 	bh = page_buffers(page);
2633 	idx = offset >> inode->i_blkbits;
2634 
2635 	for (i = 0; i < idx; i++)
2636 		bh = bh->b_this_page;
2637 
2638 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2639 		return 0;
2640 	return 1;
2641 }
2642 
2643 static int ext4_da_write_end(struct file *file,
2644 			     struct address_space *mapping,
2645 			     loff_t pos, unsigned len, unsigned copied,
2646 			     struct page *page, void *fsdata)
2647 {
2648 	struct inode *inode = mapping->host;
2649 	int ret = 0, ret2;
2650 	handle_t *handle = ext4_journal_current_handle();
2651 	loff_t new_i_size;
2652 	unsigned long start, end;
2653 	int write_mode = (int)(unsigned long)fsdata;
2654 
2655 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2656 		switch (ext4_inode_journal_mode(inode)) {
2657 		case EXT4_INODE_ORDERED_DATA_MODE:
2658 			return ext4_ordered_write_end(file, mapping, pos,
2659 					len, copied, page, fsdata);
2660 		case EXT4_INODE_WRITEBACK_DATA_MODE:
2661 			return ext4_writeback_write_end(file, mapping, pos,
2662 					len, copied, page, fsdata);
2663 		default:
2664 			BUG();
2665 		}
2666 	}
2667 
2668 	trace_ext4_da_write_end(inode, pos, len, copied);
2669 	start = pos & (PAGE_CACHE_SIZE - 1);
2670 	end = start + copied - 1;
2671 
2672 	/*
2673 	 * generic_write_end() will run mark_inode_dirty() if i_size
2674 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2675 	 * into that.
2676 	 */
2677 	new_i_size = pos + copied;
2678 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2679 		if (ext4_has_inline_data(inode) ||
2680 		    ext4_da_should_update_i_disksize(page, end)) {
2681 			down_write(&EXT4_I(inode)->i_data_sem);
2682 			if (new_i_size > EXT4_I(inode)->i_disksize)
2683 				EXT4_I(inode)->i_disksize = new_i_size;
2684 			up_write(&EXT4_I(inode)->i_data_sem);
2685 			/* We need to mark inode dirty even if
2686 			 * new_i_size is less that inode->i_size
2687 			 * bu greater than i_disksize.(hint delalloc)
2688 			 */
2689 			ext4_mark_inode_dirty(handle, inode);
2690 		}
2691 	}
2692 
2693 	if (write_mode != CONVERT_INLINE_DATA &&
2694 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2695 	    ext4_has_inline_data(inode))
2696 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2697 						     page);
2698 	else
2699 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2700 							page, fsdata);
2701 
2702 	copied = ret2;
2703 	if (ret2 < 0)
2704 		ret = ret2;
2705 	ret2 = ext4_journal_stop(handle);
2706 	if (!ret)
2707 		ret = ret2;
2708 
2709 	return ret ? ret : copied;
2710 }
2711 
2712 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2713 {
2714 	/*
2715 	 * Drop reserved blocks
2716 	 */
2717 	BUG_ON(!PageLocked(page));
2718 	if (!page_has_buffers(page))
2719 		goto out;
2720 
2721 	ext4_da_page_release_reservation(page, offset);
2722 
2723 out:
2724 	ext4_invalidatepage(page, offset);
2725 
2726 	return;
2727 }
2728 
2729 /*
2730  * Force all delayed allocation blocks to be allocated for a given inode.
2731  */
2732 int ext4_alloc_da_blocks(struct inode *inode)
2733 {
2734 	trace_ext4_alloc_da_blocks(inode);
2735 
2736 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2737 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2738 		return 0;
2739 
2740 	/*
2741 	 * We do something simple for now.  The filemap_flush() will
2742 	 * also start triggering a write of the data blocks, which is
2743 	 * not strictly speaking necessary (and for users of
2744 	 * laptop_mode, not even desirable).  However, to do otherwise
2745 	 * would require replicating code paths in:
2746 	 *
2747 	 * ext4_da_writepages() ->
2748 	 *    write_cache_pages() ---> (via passed in callback function)
2749 	 *        __mpage_da_writepage() -->
2750 	 *           mpage_add_bh_to_extent()
2751 	 *           mpage_da_map_blocks()
2752 	 *
2753 	 * The problem is that write_cache_pages(), located in
2754 	 * mm/page-writeback.c, marks pages clean in preparation for
2755 	 * doing I/O, which is not desirable if we're not planning on
2756 	 * doing I/O at all.
2757 	 *
2758 	 * We could call write_cache_pages(), and then redirty all of
2759 	 * the pages by calling redirty_page_for_writepage() but that
2760 	 * would be ugly in the extreme.  So instead we would need to
2761 	 * replicate parts of the code in the above functions,
2762 	 * simplifying them because we wouldn't actually intend to
2763 	 * write out the pages, but rather only collect contiguous
2764 	 * logical block extents, call the multi-block allocator, and
2765 	 * then update the buffer heads with the block allocations.
2766 	 *
2767 	 * For now, though, we'll cheat by calling filemap_flush(),
2768 	 * which will map the blocks, and start the I/O, but not
2769 	 * actually wait for the I/O to complete.
2770 	 */
2771 	return filemap_flush(inode->i_mapping);
2772 }
2773 
2774 /*
2775  * bmap() is special.  It gets used by applications such as lilo and by
2776  * the swapper to find the on-disk block of a specific piece of data.
2777  *
2778  * Naturally, this is dangerous if the block concerned is still in the
2779  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2780  * filesystem and enables swap, then they may get a nasty shock when the
2781  * data getting swapped to that swapfile suddenly gets overwritten by
2782  * the original zero's written out previously to the journal and
2783  * awaiting writeback in the kernel's buffer cache.
2784  *
2785  * So, if we see any bmap calls here on a modified, data-journaled file,
2786  * take extra steps to flush any blocks which might be in the cache.
2787  */
2788 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2789 {
2790 	struct inode *inode = mapping->host;
2791 	journal_t *journal;
2792 	int err;
2793 
2794 	/*
2795 	 * We can get here for an inline file via the FIBMAP ioctl
2796 	 */
2797 	if (ext4_has_inline_data(inode))
2798 		return 0;
2799 
2800 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2801 			test_opt(inode->i_sb, DELALLOC)) {
2802 		/*
2803 		 * With delalloc we want to sync the file
2804 		 * so that we can make sure we allocate
2805 		 * blocks for file
2806 		 */
2807 		filemap_write_and_wait(mapping);
2808 	}
2809 
2810 	if (EXT4_JOURNAL(inode) &&
2811 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2812 		/*
2813 		 * This is a REALLY heavyweight approach, but the use of
2814 		 * bmap on dirty files is expected to be extremely rare:
2815 		 * only if we run lilo or swapon on a freshly made file
2816 		 * do we expect this to happen.
2817 		 *
2818 		 * (bmap requires CAP_SYS_RAWIO so this does not
2819 		 * represent an unprivileged user DOS attack --- we'd be
2820 		 * in trouble if mortal users could trigger this path at
2821 		 * will.)
2822 		 *
2823 		 * NB. EXT4_STATE_JDATA is not set on files other than
2824 		 * regular files.  If somebody wants to bmap a directory
2825 		 * or symlink and gets confused because the buffer
2826 		 * hasn't yet been flushed to disk, they deserve
2827 		 * everything they get.
2828 		 */
2829 
2830 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2831 		journal = EXT4_JOURNAL(inode);
2832 		jbd2_journal_lock_updates(journal);
2833 		err = jbd2_journal_flush(journal);
2834 		jbd2_journal_unlock_updates(journal);
2835 
2836 		if (err)
2837 			return 0;
2838 	}
2839 
2840 	return generic_block_bmap(mapping, block, ext4_get_block);
2841 }
2842 
2843 static int ext4_readpage(struct file *file, struct page *page)
2844 {
2845 	int ret = -EAGAIN;
2846 	struct inode *inode = page->mapping->host;
2847 
2848 	trace_ext4_readpage(page);
2849 
2850 	if (ext4_has_inline_data(inode))
2851 		ret = ext4_readpage_inline(inode, page);
2852 
2853 	if (ret == -EAGAIN)
2854 		return mpage_readpage(page, ext4_get_block);
2855 
2856 	return ret;
2857 }
2858 
2859 static int
2860 ext4_readpages(struct file *file, struct address_space *mapping,
2861 		struct list_head *pages, unsigned nr_pages)
2862 {
2863 	struct inode *inode = mapping->host;
2864 
2865 	/* If the file has inline data, no need to do readpages. */
2866 	if (ext4_has_inline_data(inode))
2867 		return 0;
2868 
2869 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2870 }
2871 
2872 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2873 {
2874 	trace_ext4_invalidatepage(page, offset);
2875 
2876 	/* No journalling happens on data buffers when this function is used */
2877 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2878 
2879 	block_invalidatepage(page, offset);
2880 }
2881 
2882 static int __ext4_journalled_invalidatepage(struct page *page,
2883 					    unsigned long offset)
2884 {
2885 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2886 
2887 	trace_ext4_journalled_invalidatepage(page, offset);
2888 
2889 	/*
2890 	 * If it's a full truncate we just forget about the pending dirtying
2891 	 */
2892 	if (offset == 0)
2893 		ClearPageChecked(page);
2894 
2895 	return jbd2_journal_invalidatepage(journal, page, offset);
2896 }
2897 
2898 /* Wrapper for aops... */
2899 static void ext4_journalled_invalidatepage(struct page *page,
2900 					   unsigned long offset)
2901 {
2902 	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2903 }
2904 
2905 static int ext4_releasepage(struct page *page, gfp_t wait)
2906 {
2907 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2908 
2909 	trace_ext4_releasepage(page);
2910 
2911 	WARN_ON(PageChecked(page));
2912 	if (!page_has_buffers(page))
2913 		return 0;
2914 	if (journal)
2915 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2916 	else
2917 		return try_to_free_buffers(page);
2918 }
2919 
2920 /*
2921  * ext4_get_block used when preparing for a DIO write or buffer write.
2922  * We allocate an uinitialized extent if blocks haven't been allocated.
2923  * The extent will be converted to initialized after the IO is complete.
2924  */
2925 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2926 		   struct buffer_head *bh_result, int create)
2927 {
2928 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2929 		   inode->i_ino, create);
2930 	return _ext4_get_block(inode, iblock, bh_result,
2931 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2932 }
2933 
2934 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2935 		   struct buffer_head *bh_result, int create)
2936 {
2937 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2938 		   inode->i_ino, create);
2939 	return _ext4_get_block(inode, iblock, bh_result,
2940 			       EXT4_GET_BLOCKS_NO_LOCK);
2941 }
2942 
2943 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2944 			    ssize_t size, void *private, int ret,
2945 			    bool is_async)
2946 {
2947 	struct inode *inode = file_inode(iocb->ki_filp);
2948         ext4_io_end_t *io_end = iocb->private;
2949 
2950 	/* if not async direct IO or dio with 0 bytes write, just return */
2951 	if (!io_end || !size)
2952 		goto out;
2953 
2954 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2955 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2956  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2957 		  size);
2958 
2959 	iocb->private = NULL;
2960 
2961 	/* if not aio dio with unwritten extents, just free io and return */
2962 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2963 		ext4_free_io_end(io_end);
2964 out:
2965 		inode_dio_done(inode);
2966 		if (is_async)
2967 			aio_complete(iocb, ret, 0);
2968 		return;
2969 	}
2970 
2971 	io_end->offset = offset;
2972 	io_end->size = size;
2973 	if (is_async) {
2974 		io_end->iocb = iocb;
2975 		io_end->result = ret;
2976 	}
2977 
2978 	ext4_add_complete_io(io_end);
2979 }
2980 
2981 /*
2982  * For ext4 extent files, ext4 will do direct-io write to holes,
2983  * preallocated extents, and those write extend the file, no need to
2984  * fall back to buffered IO.
2985  *
2986  * For holes, we fallocate those blocks, mark them as uninitialized
2987  * If those blocks were preallocated, we mark sure they are split, but
2988  * still keep the range to write as uninitialized.
2989  *
2990  * The unwritten extents will be converted to written when DIO is completed.
2991  * For async direct IO, since the IO may still pending when return, we
2992  * set up an end_io call back function, which will do the conversion
2993  * when async direct IO completed.
2994  *
2995  * If the O_DIRECT write will extend the file then add this inode to the
2996  * orphan list.  So recovery will truncate it back to the original size
2997  * if the machine crashes during the write.
2998  *
2999  */
3000 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3001 			      const struct iovec *iov, loff_t offset,
3002 			      unsigned long nr_segs)
3003 {
3004 	struct file *file = iocb->ki_filp;
3005 	struct inode *inode = file->f_mapping->host;
3006 	ssize_t ret;
3007 	size_t count = iov_length(iov, nr_segs);
3008 	int overwrite = 0;
3009 	get_block_t *get_block_func = NULL;
3010 	int dio_flags = 0;
3011 	loff_t final_size = offset + count;
3012 
3013 	/* Use the old path for reads and writes beyond i_size. */
3014 	if (rw != WRITE || final_size > inode->i_size)
3015 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3016 
3017 	BUG_ON(iocb->private == NULL);
3018 
3019 	/* If we do a overwrite dio, i_mutex locking can be released */
3020 	overwrite = *((int *)iocb->private);
3021 
3022 	if (overwrite) {
3023 		atomic_inc(&inode->i_dio_count);
3024 		down_read(&EXT4_I(inode)->i_data_sem);
3025 		mutex_unlock(&inode->i_mutex);
3026 	}
3027 
3028 	/*
3029 	 * We could direct write to holes and fallocate.
3030 	 *
3031 	 * Allocated blocks to fill the hole are marked as
3032 	 * uninitialized to prevent parallel buffered read to expose
3033 	 * the stale data before DIO complete the data IO.
3034 	 *
3035 	 * As to previously fallocated extents, ext4 get_block will
3036 	 * just simply mark the buffer mapped but still keep the
3037 	 * extents uninitialized.
3038 	 *
3039 	 * For non AIO case, we will convert those unwritten extents
3040 	 * to written after return back from blockdev_direct_IO.
3041 	 *
3042 	 * For async DIO, the conversion needs to be deferred when the
3043 	 * IO is completed. The ext4 end_io callback function will be
3044 	 * called to take care of the conversion work.  Here for async
3045 	 * case, we allocate an io_end structure to hook to the iocb.
3046 	 */
3047 	iocb->private = NULL;
3048 	ext4_inode_aio_set(inode, NULL);
3049 	if (!is_sync_kiocb(iocb)) {
3050 		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3051 		if (!io_end) {
3052 			ret = -ENOMEM;
3053 			goto retake_lock;
3054 		}
3055 		io_end->flag |= EXT4_IO_END_DIRECT;
3056 		iocb->private = io_end;
3057 		/*
3058 		 * we save the io structure for current async direct
3059 		 * IO, so that later ext4_map_blocks() could flag the
3060 		 * io structure whether there is a unwritten extents
3061 		 * needs to be converted when IO is completed.
3062 		 */
3063 		ext4_inode_aio_set(inode, io_end);
3064 	}
3065 
3066 	if (overwrite) {
3067 		get_block_func = ext4_get_block_write_nolock;
3068 	} else {
3069 		get_block_func = ext4_get_block_write;
3070 		dio_flags = DIO_LOCKING;
3071 	}
3072 	ret = __blockdev_direct_IO(rw, iocb, inode,
3073 				   inode->i_sb->s_bdev, iov,
3074 				   offset, nr_segs,
3075 				   get_block_func,
3076 				   ext4_end_io_dio,
3077 				   NULL,
3078 				   dio_flags);
3079 
3080 	if (iocb->private)
3081 		ext4_inode_aio_set(inode, NULL);
3082 	/*
3083 	 * The io_end structure takes a reference to the inode, that
3084 	 * structure needs to be destroyed and the reference to the
3085 	 * inode need to be dropped, when IO is complete, even with 0
3086 	 * byte write, or failed.
3087 	 *
3088 	 * In the successful AIO DIO case, the io_end structure will
3089 	 * be destroyed and the reference to the inode will be dropped
3090 	 * after the end_io call back function is called.
3091 	 *
3092 	 * In the case there is 0 byte write, or error case, since VFS
3093 	 * direct IO won't invoke the end_io call back function, we
3094 	 * need to free the end_io structure here.
3095 	 */
3096 	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3097 		ext4_free_io_end(iocb->private);
3098 		iocb->private = NULL;
3099 	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3100 						EXT4_STATE_DIO_UNWRITTEN)) {
3101 		int err;
3102 		/*
3103 		 * for non AIO case, since the IO is already
3104 		 * completed, we could do the conversion right here
3105 		 */
3106 		err = ext4_convert_unwritten_extents(inode,
3107 						     offset, ret);
3108 		if (err < 0)
3109 			ret = err;
3110 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3111 	}
3112 
3113 retake_lock:
3114 	/* take i_mutex locking again if we do a ovewrite dio */
3115 	if (overwrite) {
3116 		inode_dio_done(inode);
3117 		up_read(&EXT4_I(inode)->i_data_sem);
3118 		mutex_lock(&inode->i_mutex);
3119 	}
3120 
3121 	return ret;
3122 }
3123 
3124 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3125 			      const struct iovec *iov, loff_t offset,
3126 			      unsigned long nr_segs)
3127 {
3128 	struct file *file = iocb->ki_filp;
3129 	struct inode *inode = file->f_mapping->host;
3130 	ssize_t ret;
3131 
3132 	/*
3133 	 * If we are doing data journalling we don't support O_DIRECT
3134 	 */
3135 	if (ext4_should_journal_data(inode))
3136 		return 0;
3137 
3138 	/* Let buffer I/O handle the inline data case. */
3139 	if (ext4_has_inline_data(inode))
3140 		return 0;
3141 
3142 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3143 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3144 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3145 	else
3146 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3147 	trace_ext4_direct_IO_exit(inode, offset,
3148 				iov_length(iov, nr_segs), rw, ret);
3149 	return ret;
3150 }
3151 
3152 /*
3153  * Pages can be marked dirty completely asynchronously from ext4's journalling
3154  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3155  * much here because ->set_page_dirty is called under VFS locks.  The page is
3156  * not necessarily locked.
3157  *
3158  * We cannot just dirty the page and leave attached buffers clean, because the
3159  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3160  * or jbddirty because all the journalling code will explode.
3161  *
3162  * So what we do is to mark the page "pending dirty" and next time writepage
3163  * is called, propagate that into the buffers appropriately.
3164  */
3165 static int ext4_journalled_set_page_dirty(struct page *page)
3166 {
3167 	SetPageChecked(page);
3168 	return __set_page_dirty_nobuffers(page);
3169 }
3170 
3171 static const struct address_space_operations ext4_ordered_aops = {
3172 	.readpage		= ext4_readpage,
3173 	.readpages		= ext4_readpages,
3174 	.writepage		= ext4_writepage,
3175 	.write_begin		= ext4_write_begin,
3176 	.write_end		= ext4_ordered_write_end,
3177 	.bmap			= ext4_bmap,
3178 	.invalidatepage		= ext4_invalidatepage,
3179 	.releasepage		= ext4_releasepage,
3180 	.direct_IO		= ext4_direct_IO,
3181 	.migratepage		= buffer_migrate_page,
3182 	.is_partially_uptodate  = block_is_partially_uptodate,
3183 	.error_remove_page	= generic_error_remove_page,
3184 };
3185 
3186 static const struct address_space_operations ext4_writeback_aops = {
3187 	.readpage		= ext4_readpage,
3188 	.readpages		= ext4_readpages,
3189 	.writepage		= ext4_writepage,
3190 	.write_begin		= ext4_write_begin,
3191 	.write_end		= ext4_writeback_write_end,
3192 	.bmap			= ext4_bmap,
3193 	.invalidatepage		= ext4_invalidatepage,
3194 	.releasepage		= ext4_releasepage,
3195 	.direct_IO		= ext4_direct_IO,
3196 	.migratepage		= buffer_migrate_page,
3197 	.is_partially_uptodate  = block_is_partially_uptodate,
3198 	.error_remove_page	= generic_error_remove_page,
3199 };
3200 
3201 static const struct address_space_operations ext4_journalled_aops = {
3202 	.readpage		= ext4_readpage,
3203 	.readpages		= ext4_readpages,
3204 	.writepage		= ext4_writepage,
3205 	.write_begin		= ext4_write_begin,
3206 	.write_end		= ext4_journalled_write_end,
3207 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3208 	.bmap			= ext4_bmap,
3209 	.invalidatepage		= ext4_journalled_invalidatepage,
3210 	.releasepage		= ext4_releasepage,
3211 	.direct_IO		= ext4_direct_IO,
3212 	.is_partially_uptodate  = block_is_partially_uptodate,
3213 	.error_remove_page	= generic_error_remove_page,
3214 };
3215 
3216 static const struct address_space_operations ext4_da_aops = {
3217 	.readpage		= ext4_readpage,
3218 	.readpages		= ext4_readpages,
3219 	.writepage		= ext4_writepage,
3220 	.writepages		= ext4_da_writepages,
3221 	.write_begin		= ext4_da_write_begin,
3222 	.write_end		= ext4_da_write_end,
3223 	.bmap			= ext4_bmap,
3224 	.invalidatepage		= ext4_da_invalidatepage,
3225 	.releasepage		= ext4_releasepage,
3226 	.direct_IO		= ext4_direct_IO,
3227 	.migratepage		= buffer_migrate_page,
3228 	.is_partially_uptodate  = block_is_partially_uptodate,
3229 	.error_remove_page	= generic_error_remove_page,
3230 };
3231 
3232 void ext4_set_aops(struct inode *inode)
3233 {
3234 	switch (ext4_inode_journal_mode(inode)) {
3235 	case EXT4_INODE_ORDERED_DATA_MODE:
3236 		if (test_opt(inode->i_sb, DELALLOC))
3237 			inode->i_mapping->a_ops = &ext4_da_aops;
3238 		else
3239 			inode->i_mapping->a_ops = &ext4_ordered_aops;
3240 		break;
3241 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3242 		if (test_opt(inode->i_sb, DELALLOC))
3243 			inode->i_mapping->a_ops = &ext4_da_aops;
3244 		else
3245 			inode->i_mapping->a_ops = &ext4_writeback_aops;
3246 		break;
3247 	case EXT4_INODE_JOURNAL_DATA_MODE:
3248 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3249 		break;
3250 	default:
3251 		BUG();
3252 	}
3253 }
3254 
3255 
3256 /*
3257  * ext4_discard_partial_page_buffers()
3258  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3259  * This function finds and locks the page containing the offset
3260  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3261  * Calling functions that already have the page locked should call
3262  * ext4_discard_partial_page_buffers_no_lock directly.
3263  */
3264 int ext4_discard_partial_page_buffers(handle_t *handle,
3265 		struct address_space *mapping, loff_t from,
3266 		loff_t length, int flags)
3267 {
3268 	struct inode *inode = mapping->host;
3269 	struct page *page;
3270 	int err = 0;
3271 
3272 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3273 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3274 	if (!page)
3275 		return -ENOMEM;
3276 
3277 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3278 		from, length, flags);
3279 
3280 	unlock_page(page);
3281 	page_cache_release(page);
3282 	return err;
3283 }
3284 
3285 /*
3286  * ext4_discard_partial_page_buffers_no_lock()
3287  * Zeros a page range of length 'length' starting from offset 'from'.
3288  * Buffer heads that correspond to the block aligned regions of the
3289  * zeroed range will be unmapped.  Unblock aligned regions
3290  * will have the corresponding buffer head mapped if needed so that
3291  * that region of the page can be updated with the partial zero out.
3292  *
3293  * This function assumes that the page has already been  locked.  The
3294  * The range to be discarded must be contained with in the given page.
3295  * If the specified range exceeds the end of the page it will be shortened
3296  * to the end of the page that corresponds to 'from'.  This function is
3297  * appropriate for updating a page and it buffer heads to be unmapped and
3298  * zeroed for blocks that have been either released, or are going to be
3299  * released.
3300  *
3301  * handle: The journal handle
3302  * inode:  The files inode
3303  * page:   A locked page that contains the offset "from"
3304  * from:   The starting byte offset (from the beginning of the file)
3305  *         to begin discarding
3306  * len:    The length of bytes to discard
3307  * flags:  Optional flags that may be used:
3308  *
3309  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3310  *         Only zero the regions of the page whose buffer heads
3311  *         have already been unmapped.  This flag is appropriate
3312  *         for updating the contents of a page whose blocks may
3313  *         have already been released, and we only want to zero
3314  *         out the regions that correspond to those released blocks.
3315  *
3316  * Returns zero on success or negative on failure.
3317  */
3318 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3319 		struct inode *inode, struct page *page, loff_t from,
3320 		loff_t length, int flags)
3321 {
3322 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3323 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3324 	unsigned int blocksize, max, pos;
3325 	ext4_lblk_t iblock;
3326 	struct buffer_head *bh;
3327 	int err = 0;
3328 
3329 	blocksize = inode->i_sb->s_blocksize;
3330 	max = PAGE_CACHE_SIZE - offset;
3331 
3332 	if (index != page->index)
3333 		return -EINVAL;
3334 
3335 	/*
3336 	 * correct length if it does not fall between
3337 	 * 'from' and the end of the page
3338 	 */
3339 	if (length > max || length < 0)
3340 		length = max;
3341 
3342 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3343 
3344 	if (!page_has_buffers(page))
3345 		create_empty_buffers(page, blocksize, 0);
3346 
3347 	/* Find the buffer that contains "offset" */
3348 	bh = page_buffers(page);
3349 	pos = blocksize;
3350 	while (offset >= pos) {
3351 		bh = bh->b_this_page;
3352 		iblock++;
3353 		pos += blocksize;
3354 	}
3355 
3356 	pos = offset;
3357 	while (pos < offset + length) {
3358 		unsigned int end_of_block, range_to_discard;
3359 
3360 		err = 0;
3361 
3362 		/* The length of space left to zero and unmap */
3363 		range_to_discard = offset + length - pos;
3364 
3365 		/* The length of space until the end of the block */
3366 		end_of_block = blocksize - (pos & (blocksize-1));
3367 
3368 		/*
3369 		 * Do not unmap or zero past end of block
3370 		 * for this buffer head
3371 		 */
3372 		if (range_to_discard > end_of_block)
3373 			range_to_discard = end_of_block;
3374 
3375 
3376 		/*
3377 		 * Skip this buffer head if we are only zeroing unampped
3378 		 * regions of the page
3379 		 */
3380 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3381 			buffer_mapped(bh))
3382 				goto next;
3383 
3384 		/* If the range is block aligned, unmap */
3385 		if (range_to_discard == blocksize) {
3386 			clear_buffer_dirty(bh);
3387 			bh->b_bdev = NULL;
3388 			clear_buffer_mapped(bh);
3389 			clear_buffer_req(bh);
3390 			clear_buffer_new(bh);
3391 			clear_buffer_delay(bh);
3392 			clear_buffer_unwritten(bh);
3393 			clear_buffer_uptodate(bh);
3394 			zero_user(page, pos, range_to_discard);
3395 			BUFFER_TRACE(bh, "Buffer discarded");
3396 			goto next;
3397 		}
3398 
3399 		/*
3400 		 * If this block is not completely contained in the range
3401 		 * to be discarded, then it is not going to be released. Because
3402 		 * we need to keep this block, we need to make sure this part
3403 		 * of the page is uptodate before we modify it by writeing
3404 		 * partial zeros on it.
3405 		 */
3406 		if (!buffer_mapped(bh)) {
3407 			/*
3408 			 * Buffer head must be mapped before we can read
3409 			 * from the block
3410 			 */
3411 			BUFFER_TRACE(bh, "unmapped");
3412 			ext4_get_block(inode, iblock, bh, 0);
3413 			/* unmapped? It's a hole - nothing to do */
3414 			if (!buffer_mapped(bh)) {
3415 				BUFFER_TRACE(bh, "still unmapped");
3416 				goto next;
3417 			}
3418 		}
3419 
3420 		/* Ok, it's mapped. Make sure it's up-to-date */
3421 		if (PageUptodate(page))
3422 			set_buffer_uptodate(bh);
3423 
3424 		if (!buffer_uptodate(bh)) {
3425 			err = -EIO;
3426 			ll_rw_block(READ, 1, &bh);
3427 			wait_on_buffer(bh);
3428 			/* Uhhuh. Read error. Complain and punt.*/
3429 			if (!buffer_uptodate(bh))
3430 				goto next;
3431 		}
3432 
3433 		if (ext4_should_journal_data(inode)) {
3434 			BUFFER_TRACE(bh, "get write access");
3435 			err = ext4_journal_get_write_access(handle, bh);
3436 			if (err)
3437 				goto next;
3438 		}
3439 
3440 		zero_user(page, pos, range_to_discard);
3441 
3442 		err = 0;
3443 		if (ext4_should_journal_data(inode)) {
3444 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3445 		} else
3446 			mark_buffer_dirty(bh);
3447 
3448 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3449 next:
3450 		bh = bh->b_this_page;
3451 		iblock++;
3452 		pos += range_to_discard;
3453 	}
3454 
3455 	return err;
3456 }
3457 
3458 int ext4_can_truncate(struct inode *inode)
3459 {
3460 	if (S_ISREG(inode->i_mode))
3461 		return 1;
3462 	if (S_ISDIR(inode->i_mode))
3463 		return 1;
3464 	if (S_ISLNK(inode->i_mode))
3465 		return !ext4_inode_is_fast_symlink(inode);
3466 	return 0;
3467 }
3468 
3469 /*
3470  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3471  * associated with the given offset and length
3472  *
3473  * @inode:  File inode
3474  * @offset: The offset where the hole will begin
3475  * @len:    The length of the hole
3476  *
3477  * Returns: 0 on success or negative on failure
3478  */
3479 
3480 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3481 {
3482 	struct inode *inode = file_inode(file);
3483 	if (!S_ISREG(inode->i_mode))
3484 		return -EOPNOTSUPP;
3485 
3486 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3487 		return ext4_ind_punch_hole(file, offset, length);
3488 
3489 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3490 		/* TODO: Add support for bigalloc file systems */
3491 		return -EOPNOTSUPP;
3492 	}
3493 
3494 	trace_ext4_punch_hole(inode, offset, length);
3495 
3496 	return ext4_ext_punch_hole(file, offset, length);
3497 }
3498 
3499 /*
3500  * ext4_truncate()
3501  *
3502  * We block out ext4_get_block() block instantiations across the entire
3503  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3504  * simultaneously on behalf of the same inode.
3505  *
3506  * As we work through the truncate and commit bits of it to the journal there
3507  * is one core, guiding principle: the file's tree must always be consistent on
3508  * disk.  We must be able to restart the truncate after a crash.
3509  *
3510  * The file's tree may be transiently inconsistent in memory (although it
3511  * probably isn't), but whenever we close off and commit a journal transaction,
3512  * the contents of (the filesystem + the journal) must be consistent and
3513  * restartable.  It's pretty simple, really: bottom up, right to left (although
3514  * left-to-right works OK too).
3515  *
3516  * Note that at recovery time, journal replay occurs *before* the restart of
3517  * truncate against the orphan inode list.
3518  *
3519  * The committed inode has the new, desired i_size (which is the same as
3520  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3521  * that this inode's truncate did not complete and it will again call
3522  * ext4_truncate() to have another go.  So there will be instantiated blocks
3523  * to the right of the truncation point in a crashed ext4 filesystem.  But
3524  * that's fine - as long as they are linked from the inode, the post-crash
3525  * ext4_truncate() run will find them and release them.
3526  */
3527 void ext4_truncate(struct inode *inode)
3528 {
3529 	trace_ext4_truncate_enter(inode);
3530 
3531 	if (!ext4_can_truncate(inode))
3532 		return;
3533 
3534 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3535 
3536 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3537 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3538 
3539 	if (ext4_has_inline_data(inode)) {
3540 		int has_inline = 1;
3541 
3542 		ext4_inline_data_truncate(inode, &has_inline);
3543 		if (has_inline)
3544 			return;
3545 	}
3546 
3547 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3548 		ext4_ext_truncate(inode);
3549 	else
3550 		ext4_ind_truncate(inode);
3551 
3552 	trace_ext4_truncate_exit(inode);
3553 }
3554 
3555 /*
3556  * ext4_get_inode_loc returns with an extra refcount against the inode's
3557  * underlying buffer_head on success. If 'in_mem' is true, we have all
3558  * data in memory that is needed to recreate the on-disk version of this
3559  * inode.
3560  */
3561 static int __ext4_get_inode_loc(struct inode *inode,
3562 				struct ext4_iloc *iloc, int in_mem)
3563 {
3564 	struct ext4_group_desc	*gdp;
3565 	struct buffer_head	*bh;
3566 	struct super_block	*sb = inode->i_sb;
3567 	ext4_fsblk_t		block;
3568 	int			inodes_per_block, inode_offset;
3569 
3570 	iloc->bh = NULL;
3571 	if (!ext4_valid_inum(sb, inode->i_ino))
3572 		return -EIO;
3573 
3574 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3575 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3576 	if (!gdp)
3577 		return -EIO;
3578 
3579 	/*
3580 	 * Figure out the offset within the block group inode table
3581 	 */
3582 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3583 	inode_offset = ((inode->i_ino - 1) %
3584 			EXT4_INODES_PER_GROUP(sb));
3585 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3586 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3587 
3588 	bh = sb_getblk(sb, block);
3589 	if (unlikely(!bh))
3590 		return -ENOMEM;
3591 	if (!buffer_uptodate(bh)) {
3592 		lock_buffer(bh);
3593 
3594 		/*
3595 		 * If the buffer has the write error flag, we have failed
3596 		 * to write out another inode in the same block.  In this
3597 		 * case, we don't have to read the block because we may
3598 		 * read the old inode data successfully.
3599 		 */
3600 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3601 			set_buffer_uptodate(bh);
3602 
3603 		if (buffer_uptodate(bh)) {
3604 			/* someone brought it uptodate while we waited */
3605 			unlock_buffer(bh);
3606 			goto has_buffer;
3607 		}
3608 
3609 		/*
3610 		 * If we have all information of the inode in memory and this
3611 		 * is the only valid inode in the block, we need not read the
3612 		 * block.
3613 		 */
3614 		if (in_mem) {
3615 			struct buffer_head *bitmap_bh;
3616 			int i, start;
3617 
3618 			start = inode_offset & ~(inodes_per_block - 1);
3619 
3620 			/* Is the inode bitmap in cache? */
3621 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3622 			if (unlikely(!bitmap_bh))
3623 				goto make_io;
3624 
3625 			/*
3626 			 * If the inode bitmap isn't in cache then the
3627 			 * optimisation may end up performing two reads instead
3628 			 * of one, so skip it.
3629 			 */
3630 			if (!buffer_uptodate(bitmap_bh)) {
3631 				brelse(bitmap_bh);
3632 				goto make_io;
3633 			}
3634 			for (i = start; i < start + inodes_per_block; i++) {
3635 				if (i == inode_offset)
3636 					continue;
3637 				if (ext4_test_bit(i, bitmap_bh->b_data))
3638 					break;
3639 			}
3640 			brelse(bitmap_bh);
3641 			if (i == start + inodes_per_block) {
3642 				/* all other inodes are free, so skip I/O */
3643 				memset(bh->b_data, 0, bh->b_size);
3644 				set_buffer_uptodate(bh);
3645 				unlock_buffer(bh);
3646 				goto has_buffer;
3647 			}
3648 		}
3649 
3650 make_io:
3651 		/*
3652 		 * If we need to do any I/O, try to pre-readahead extra
3653 		 * blocks from the inode table.
3654 		 */
3655 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3656 			ext4_fsblk_t b, end, table;
3657 			unsigned num;
3658 
3659 			table = ext4_inode_table(sb, gdp);
3660 			/* s_inode_readahead_blks is always a power of 2 */
3661 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3662 			if (table > b)
3663 				b = table;
3664 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3665 			num = EXT4_INODES_PER_GROUP(sb);
3666 			if (ext4_has_group_desc_csum(sb))
3667 				num -= ext4_itable_unused_count(sb, gdp);
3668 			table += num / inodes_per_block;
3669 			if (end > table)
3670 				end = table;
3671 			while (b <= end)
3672 				sb_breadahead(sb, b++);
3673 		}
3674 
3675 		/*
3676 		 * There are other valid inodes in the buffer, this inode
3677 		 * has in-inode xattrs, or we don't have this inode in memory.
3678 		 * Read the block from disk.
3679 		 */
3680 		trace_ext4_load_inode(inode);
3681 		get_bh(bh);
3682 		bh->b_end_io = end_buffer_read_sync;
3683 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3684 		wait_on_buffer(bh);
3685 		if (!buffer_uptodate(bh)) {
3686 			EXT4_ERROR_INODE_BLOCK(inode, block,
3687 					       "unable to read itable block");
3688 			brelse(bh);
3689 			return -EIO;
3690 		}
3691 	}
3692 has_buffer:
3693 	iloc->bh = bh;
3694 	return 0;
3695 }
3696 
3697 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3698 {
3699 	/* We have all inode data except xattrs in memory here. */
3700 	return __ext4_get_inode_loc(inode, iloc,
3701 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3702 }
3703 
3704 void ext4_set_inode_flags(struct inode *inode)
3705 {
3706 	unsigned int flags = EXT4_I(inode)->i_flags;
3707 
3708 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3709 	if (flags & EXT4_SYNC_FL)
3710 		inode->i_flags |= S_SYNC;
3711 	if (flags & EXT4_APPEND_FL)
3712 		inode->i_flags |= S_APPEND;
3713 	if (flags & EXT4_IMMUTABLE_FL)
3714 		inode->i_flags |= S_IMMUTABLE;
3715 	if (flags & EXT4_NOATIME_FL)
3716 		inode->i_flags |= S_NOATIME;
3717 	if (flags & EXT4_DIRSYNC_FL)
3718 		inode->i_flags |= S_DIRSYNC;
3719 }
3720 
3721 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3722 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3723 {
3724 	unsigned int vfs_fl;
3725 	unsigned long old_fl, new_fl;
3726 
3727 	do {
3728 		vfs_fl = ei->vfs_inode.i_flags;
3729 		old_fl = ei->i_flags;
3730 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3731 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3732 				EXT4_DIRSYNC_FL);
3733 		if (vfs_fl & S_SYNC)
3734 			new_fl |= EXT4_SYNC_FL;
3735 		if (vfs_fl & S_APPEND)
3736 			new_fl |= EXT4_APPEND_FL;
3737 		if (vfs_fl & S_IMMUTABLE)
3738 			new_fl |= EXT4_IMMUTABLE_FL;
3739 		if (vfs_fl & S_NOATIME)
3740 			new_fl |= EXT4_NOATIME_FL;
3741 		if (vfs_fl & S_DIRSYNC)
3742 			new_fl |= EXT4_DIRSYNC_FL;
3743 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3744 }
3745 
3746 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3747 				  struct ext4_inode_info *ei)
3748 {
3749 	blkcnt_t i_blocks ;
3750 	struct inode *inode = &(ei->vfs_inode);
3751 	struct super_block *sb = inode->i_sb;
3752 
3753 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3754 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3755 		/* we are using combined 48 bit field */
3756 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3757 					le32_to_cpu(raw_inode->i_blocks_lo);
3758 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3759 			/* i_blocks represent file system block size */
3760 			return i_blocks  << (inode->i_blkbits - 9);
3761 		} else {
3762 			return i_blocks;
3763 		}
3764 	} else {
3765 		return le32_to_cpu(raw_inode->i_blocks_lo);
3766 	}
3767 }
3768 
3769 static inline void ext4_iget_extra_inode(struct inode *inode,
3770 					 struct ext4_inode *raw_inode,
3771 					 struct ext4_inode_info *ei)
3772 {
3773 	__le32 *magic = (void *)raw_inode +
3774 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3775 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3776 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3777 		ext4_find_inline_data_nolock(inode);
3778 	} else
3779 		EXT4_I(inode)->i_inline_off = 0;
3780 }
3781 
3782 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3783 {
3784 	struct ext4_iloc iloc;
3785 	struct ext4_inode *raw_inode;
3786 	struct ext4_inode_info *ei;
3787 	struct inode *inode;
3788 	journal_t *journal = EXT4_SB(sb)->s_journal;
3789 	long ret;
3790 	int block;
3791 	uid_t i_uid;
3792 	gid_t i_gid;
3793 
3794 	inode = iget_locked(sb, ino);
3795 	if (!inode)
3796 		return ERR_PTR(-ENOMEM);
3797 	if (!(inode->i_state & I_NEW))
3798 		return inode;
3799 
3800 	ei = EXT4_I(inode);
3801 	iloc.bh = NULL;
3802 
3803 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3804 	if (ret < 0)
3805 		goto bad_inode;
3806 	raw_inode = ext4_raw_inode(&iloc);
3807 
3808 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3809 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3810 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3811 		    EXT4_INODE_SIZE(inode->i_sb)) {
3812 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3813 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3814 				EXT4_INODE_SIZE(inode->i_sb));
3815 			ret = -EIO;
3816 			goto bad_inode;
3817 		}
3818 	} else
3819 		ei->i_extra_isize = 0;
3820 
3821 	/* Precompute checksum seed for inode metadata */
3822 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3823 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3824 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3825 		__u32 csum;
3826 		__le32 inum = cpu_to_le32(inode->i_ino);
3827 		__le32 gen = raw_inode->i_generation;
3828 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3829 				   sizeof(inum));
3830 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3831 					      sizeof(gen));
3832 	}
3833 
3834 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3835 		EXT4_ERROR_INODE(inode, "checksum invalid");
3836 		ret = -EIO;
3837 		goto bad_inode;
3838 	}
3839 
3840 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3841 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3842 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3843 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3844 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3845 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3846 	}
3847 	i_uid_write(inode, i_uid);
3848 	i_gid_write(inode, i_gid);
3849 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3850 
3851 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3852 	ei->i_inline_off = 0;
3853 	ei->i_dir_start_lookup = 0;
3854 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3855 	/* We now have enough fields to check if the inode was active or not.
3856 	 * This is needed because nfsd might try to access dead inodes
3857 	 * the test is that same one that e2fsck uses
3858 	 * NeilBrown 1999oct15
3859 	 */
3860 	if (inode->i_nlink == 0) {
3861 		if (inode->i_mode == 0 ||
3862 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3863 			/* this inode is deleted */
3864 			ret = -ESTALE;
3865 			goto bad_inode;
3866 		}
3867 		/* The only unlinked inodes we let through here have
3868 		 * valid i_mode and are being read by the orphan
3869 		 * recovery code: that's fine, we're about to complete
3870 		 * the process of deleting those. */
3871 	}
3872 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3873 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3874 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3875 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3876 		ei->i_file_acl |=
3877 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3878 	inode->i_size = ext4_isize(raw_inode);
3879 	ei->i_disksize = inode->i_size;
3880 #ifdef CONFIG_QUOTA
3881 	ei->i_reserved_quota = 0;
3882 #endif
3883 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3884 	ei->i_block_group = iloc.block_group;
3885 	ei->i_last_alloc_group = ~0;
3886 	/*
3887 	 * NOTE! The in-memory inode i_data array is in little-endian order
3888 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3889 	 */
3890 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3891 		ei->i_data[block] = raw_inode->i_block[block];
3892 	INIT_LIST_HEAD(&ei->i_orphan);
3893 
3894 	/*
3895 	 * Set transaction id's of transactions that have to be committed
3896 	 * to finish f[data]sync. We set them to currently running transaction
3897 	 * as we cannot be sure that the inode or some of its metadata isn't
3898 	 * part of the transaction - the inode could have been reclaimed and
3899 	 * now it is reread from disk.
3900 	 */
3901 	if (journal) {
3902 		transaction_t *transaction;
3903 		tid_t tid;
3904 
3905 		read_lock(&journal->j_state_lock);
3906 		if (journal->j_running_transaction)
3907 			transaction = journal->j_running_transaction;
3908 		else
3909 			transaction = journal->j_committing_transaction;
3910 		if (transaction)
3911 			tid = transaction->t_tid;
3912 		else
3913 			tid = journal->j_commit_sequence;
3914 		read_unlock(&journal->j_state_lock);
3915 		ei->i_sync_tid = tid;
3916 		ei->i_datasync_tid = tid;
3917 	}
3918 
3919 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3920 		if (ei->i_extra_isize == 0) {
3921 			/* The extra space is currently unused. Use it. */
3922 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3923 					    EXT4_GOOD_OLD_INODE_SIZE;
3924 		} else {
3925 			ext4_iget_extra_inode(inode, raw_inode, ei);
3926 		}
3927 	}
3928 
3929 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3930 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3931 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3932 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3933 
3934 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3935 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3936 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3937 			inode->i_version |=
3938 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3939 	}
3940 
3941 	ret = 0;
3942 	if (ei->i_file_acl &&
3943 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3944 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3945 				 ei->i_file_acl);
3946 		ret = -EIO;
3947 		goto bad_inode;
3948 	} else if (!ext4_has_inline_data(inode)) {
3949 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3950 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3951 			    (S_ISLNK(inode->i_mode) &&
3952 			     !ext4_inode_is_fast_symlink(inode))))
3953 				/* Validate extent which is part of inode */
3954 				ret = ext4_ext_check_inode(inode);
3955 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3956 			   (S_ISLNK(inode->i_mode) &&
3957 			    !ext4_inode_is_fast_symlink(inode))) {
3958 			/* Validate block references which are part of inode */
3959 			ret = ext4_ind_check_inode(inode);
3960 		}
3961 	}
3962 	if (ret)
3963 		goto bad_inode;
3964 
3965 	if (S_ISREG(inode->i_mode)) {
3966 		inode->i_op = &ext4_file_inode_operations;
3967 		inode->i_fop = &ext4_file_operations;
3968 		ext4_set_aops(inode);
3969 	} else if (S_ISDIR(inode->i_mode)) {
3970 		inode->i_op = &ext4_dir_inode_operations;
3971 		inode->i_fop = &ext4_dir_operations;
3972 	} else if (S_ISLNK(inode->i_mode)) {
3973 		if (ext4_inode_is_fast_symlink(inode)) {
3974 			inode->i_op = &ext4_fast_symlink_inode_operations;
3975 			nd_terminate_link(ei->i_data, inode->i_size,
3976 				sizeof(ei->i_data) - 1);
3977 		} else {
3978 			inode->i_op = &ext4_symlink_inode_operations;
3979 			ext4_set_aops(inode);
3980 		}
3981 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3982 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3983 		inode->i_op = &ext4_special_inode_operations;
3984 		if (raw_inode->i_block[0])
3985 			init_special_inode(inode, inode->i_mode,
3986 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3987 		else
3988 			init_special_inode(inode, inode->i_mode,
3989 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3990 	} else {
3991 		ret = -EIO;
3992 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3993 		goto bad_inode;
3994 	}
3995 	brelse(iloc.bh);
3996 	ext4_set_inode_flags(inode);
3997 	unlock_new_inode(inode);
3998 	return inode;
3999 
4000 bad_inode:
4001 	brelse(iloc.bh);
4002 	iget_failed(inode);
4003 	return ERR_PTR(ret);
4004 }
4005 
4006 static int ext4_inode_blocks_set(handle_t *handle,
4007 				struct ext4_inode *raw_inode,
4008 				struct ext4_inode_info *ei)
4009 {
4010 	struct inode *inode = &(ei->vfs_inode);
4011 	u64 i_blocks = inode->i_blocks;
4012 	struct super_block *sb = inode->i_sb;
4013 
4014 	if (i_blocks <= ~0U) {
4015 		/*
4016 		 * i_blocks can be represented in a 32 bit variable
4017 		 * as multiple of 512 bytes
4018 		 */
4019 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4020 		raw_inode->i_blocks_high = 0;
4021 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4022 		return 0;
4023 	}
4024 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4025 		return -EFBIG;
4026 
4027 	if (i_blocks <= 0xffffffffffffULL) {
4028 		/*
4029 		 * i_blocks can be represented in a 48 bit variable
4030 		 * as multiple of 512 bytes
4031 		 */
4032 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4033 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4034 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4035 	} else {
4036 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4037 		/* i_block is stored in file system block size */
4038 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4039 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4040 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4041 	}
4042 	return 0;
4043 }
4044 
4045 /*
4046  * Post the struct inode info into an on-disk inode location in the
4047  * buffer-cache.  This gobbles the caller's reference to the
4048  * buffer_head in the inode location struct.
4049  *
4050  * The caller must have write access to iloc->bh.
4051  */
4052 static int ext4_do_update_inode(handle_t *handle,
4053 				struct inode *inode,
4054 				struct ext4_iloc *iloc)
4055 {
4056 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4057 	struct ext4_inode_info *ei = EXT4_I(inode);
4058 	struct buffer_head *bh = iloc->bh;
4059 	int err = 0, rc, block;
4060 	int need_datasync = 0;
4061 	uid_t i_uid;
4062 	gid_t i_gid;
4063 
4064 	/* For fields not not tracking in the in-memory inode,
4065 	 * initialise them to zero for new inodes. */
4066 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4067 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4068 
4069 	ext4_get_inode_flags(ei);
4070 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4071 	i_uid = i_uid_read(inode);
4072 	i_gid = i_gid_read(inode);
4073 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4074 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4075 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4076 /*
4077  * Fix up interoperability with old kernels. Otherwise, old inodes get
4078  * re-used with the upper 16 bits of the uid/gid intact
4079  */
4080 		if (!ei->i_dtime) {
4081 			raw_inode->i_uid_high =
4082 				cpu_to_le16(high_16_bits(i_uid));
4083 			raw_inode->i_gid_high =
4084 				cpu_to_le16(high_16_bits(i_gid));
4085 		} else {
4086 			raw_inode->i_uid_high = 0;
4087 			raw_inode->i_gid_high = 0;
4088 		}
4089 	} else {
4090 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4091 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4092 		raw_inode->i_uid_high = 0;
4093 		raw_inode->i_gid_high = 0;
4094 	}
4095 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4096 
4097 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4098 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4099 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4100 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4101 
4102 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4103 		goto out_brelse;
4104 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4105 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4106 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4107 	    cpu_to_le32(EXT4_OS_HURD))
4108 		raw_inode->i_file_acl_high =
4109 			cpu_to_le16(ei->i_file_acl >> 32);
4110 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4111 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4112 		ext4_isize_set(raw_inode, ei->i_disksize);
4113 		need_datasync = 1;
4114 	}
4115 	if (ei->i_disksize > 0x7fffffffULL) {
4116 		struct super_block *sb = inode->i_sb;
4117 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4118 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4119 				EXT4_SB(sb)->s_es->s_rev_level ==
4120 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4121 			/* If this is the first large file
4122 			 * created, add a flag to the superblock.
4123 			 */
4124 			err = ext4_journal_get_write_access(handle,
4125 					EXT4_SB(sb)->s_sbh);
4126 			if (err)
4127 				goto out_brelse;
4128 			ext4_update_dynamic_rev(sb);
4129 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4130 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4131 			ext4_handle_sync(handle);
4132 			err = ext4_handle_dirty_super(handle, sb);
4133 		}
4134 	}
4135 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4136 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4137 		if (old_valid_dev(inode->i_rdev)) {
4138 			raw_inode->i_block[0] =
4139 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4140 			raw_inode->i_block[1] = 0;
4141 		} else {
4142 			raw_inode->i_block[0] = 0;
4143 			raw_inode->i_block[1] =
4144 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4145 			raw_inode->i_block[2] = 0;
4146 		}
4147 	} else if (!ext4_has_inline_data(inode)) {
4148 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4149 			raw_inode->i_block[block] = ei->i_data[block];
4150 	}
4151 
4152 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4153 	if (ei->i_extra_isize) {
4154 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4155 			raw_inode->i_version_hi =
4156 			cpu_to_le32(inode->i_version >> 32);
4157 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4158 	}
4159 
4160 	ext4_inode_csum_set(inode, raw_inode, ei);
4161 
4162 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4163 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4164 	if (!err)
4165 		err = rc;
4166 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4167 
4168 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4169 out_brelse:
4170 	brelse(bh);
4171 	ext4_std_error(inode->i_sb, err);
4172 	return err;
4173 }
4174 
4175 /*
4176  * ext4_write_inode()
4177  *
4178  * We are called from a few places:
4179  *
4180  * - Within generic_file_write() for O_SYNC files.
4181  *   Here, there will be no transaction running. We wait for any running
4182  *   transaction to commit.
4183  *
4184  * - Within sys_sync(), kupdate and such.
4185  *   We wait on commit, if tol to.
4186  *
4187  * - Within prune_icache() (PF_MEMALLOC == true)
4188  *   Here we simply return.  We can't afford to block kswapd on the
4189  *   journal commit.
4190  *
4191  * In all cases it is actually safe for us to return without doing anything,
4192  * because the inode has been copied into a raw inode buffer in
4193  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4194  * knfsd.
4195  *
4196  * Note that we are absolutely dependent upon all inode dirtiers doing the
4197  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4198  * which we are interested.
4199  *
4200  * It would be a bug for them to not do this.  The code:
4201  *
4202  *	mark_inode_dirty(inode)
4203  *	stuff();
4204  *	inode->i_size = expr;
4205  *
4206  * is in error because a kswapd-driven write_inode() could occur while
4207  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4208  * will no longer be on the superblock's dirty inode list.
4209  */
4210 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4211 {
4212 	int err;
4213 
4214 	if (current->flags & PF_MEMALLOC)
4215 		return 0;
4216 
4217 	if (EXT4_SB(inode->i_sb)->s_journal) {
4218 		if (ext4_journal_current_handle()) {
4219 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4220 			dump_stack();
4221 			return -EIO;
4222 		}
4223 
4224 		if (wbc->sync_mode != WB_SYNC_ALL)
4225 			return 0;
4226 
4227 		err = ext4_force_commit(inode->i_sb);
4228 	} else {
4229 		struct ext4_iloc iloc;
4230 
4231 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4232 		if (err)
4233 			return err;
4234 		if (wbc->sync_mode == WB_SYNC_ALL)
4235 			sync_dirty_buffer(iloc.bh);
4236 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4237 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4238 					 "IO error syncing inode");
4239 			err = -EIO;
4240 		}
4241 		brelse(iloc.bh);
4242 	}
4243 	return err;
4244 }
4245 
4246 /*
4247  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4248  * buffers that are attached to a page stradding i_size and are undergoing
4249  * commit. In that case we have to wait for commit to finish and try again.
4250  */
4251 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4252 {
4253 	struct page *page;
4254 	unsigned offset;
4255 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4256 	tid_t commit_tid = 0;
4257 	int ret;
4258 
4259 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4260 	/*
4261 	 * All buffers in the last page remain valid? Then there's nothing to
4262 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4263 	 * blocksize case
4264 	 */
4265 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4266 		return;
4267 	while (1) {
4268 		page = find_lock_page(inode->i_mapping,
4269 				      inode->i_size >> PAGE_CACHE_SHIFT);
4270 		if (!page)
4271 			return;
4272 		ret = __ext4_journalled_invalidatepage(page, offset);
4273 		unlock_page(page);
4274 		page_cache_release(page);
4275 		if (ret != -EBUSY)
4276 			return;
4277 		commit_tid = 0;
4278 		read_lock(&journal->j_state_lock);
4279 		if (journal->j_committing_transaction)
4280 			commit_tid = journal->j_committing_transaction->t_tid;
4281 		read_unlock(&journal->j_state_lock);
4282 		if (commit_tid)
4283 			jbd2_log_wait_commit(journal, commit_tid);
4284 	}
4285 }
4286 
4287 /*
4288  * ext4_setattr()
4289  *
4290  * Called from notify_change.
4291  *
4292  * We want to trap VFS attempts to truncate the file as soon as
4293  * possible.  In particular, we want to make sure that when the VFS
4294  * shrinks i_size, we put the inode on the orphan list and modify
4295  * i_disksize immediately, so that during the subsequent flushing of
4296  * dirty pages and freeing of disk blocks, we can guarantee that any
4297  * commit will leave the blocks being flushed in an unused state on
4298  * disk.  (On recovery, the inode will get truncated and the blocks will
4299  * be freed, so we have a strong guarantee that no future commit will
4300  * leave these blocks visible to the user.)
4301  *
4302  * Another thing we have to assure is that if we are in ordered mode
4303  * and inode is still attached to the committing transaction, we must
4304  * we start writeout of all the dirty pages which are being truncated.
4305  * This way we are sure that all the data written in the previous
4306  * transaction are already on disk (truncate waits for pages under
4307  * writeback).
4308  *
4309  * Called with inode->i_mutex down.
4310  */
4311 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4312 {
4313 	struct inode *inode = dentry->d_inode;
4314 	int error, rc = 0;
4315 	int orphan = 0;
4316 	const unsigned int ia_valid = attr->ia_valid;
4317 
4318 	error = inode_change_ok(inode, attr);
4319 	if (error)
4320 		return error;
4321 
4322 	if (is_quota_modification(inode, attr))
4323 		dquot_initialize(inode);
4324 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4325 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4326 		handle_t *handle;
4327 
4328 		/* (user+group)*(old+new) structure, inode write (sb,
4329 		 * inode block, ? - but truncate inode update has it) */
4330 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4331 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4332 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4333 		if (IS_ERR(handle)) {
4334 			error = PTR_ERR(handle);
4335 			goto err_out;
4336 		}
4337 		error = dquot_transfer(inode, attr);
4338 		if (error) {
4339 			ext4_journal_stop(handle);
4340 			return error;
4341 		}
4342 		/* Update corresponding info in inode so that everything is in
4343 		 * one transaction */
4344 		if (attr->ia_valid & ATTR_UID)
4345 			inode->i_uid = attr->ia_uid;
4346 		if (attr->ia_valid & ATTR_GID)
4347 			inode->i_gid = attr->ia_gid;
4348 		error = ext4_mark_inode_dirty(handle, inode);
4349 		ext4_journal_stop(handle);
4350 	}
4351 
4352 	if (attr->ia_valid & ATTR_SIZE) {
4353 
4354 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4355 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4356 
4357 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4358 				return -EFBIG;
4359 		}
4360 	}
4361 
4362 	if (S_ISREG(inode->i_mode) &&
4363 	    attr->ia_valid & ATTR_SIZE &&
4364 	    (attr->ia_size < inode->i_size)) {
4365 		handle_t *handle;
4366 
4367 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4368 		if (IS_ERR(handle)) {
4369 			error = PTR_ERR(handle);
4370 			goto err_out;
4371 		}
4372 		if (ext4_handle_valid(handle)) {
4373 			error = ext4_orphan_add(handle, inode);
4374 			orphan = 1;
4375 		}
4376 		EXT4_I(inode)->i_disksize = attr->ia_size;
4377 		rc = ext4_mark_inode_dirty(handle, inode);
4378 		if (!error)
4379 			error = rc;
4380 		ext4_journal_stop(handle);
4381 
4382 		if (ext4_should_order_data(inode)) {
4383 			error = ext4_begin_ordered_truncate(inode,
4384 							    attr->ia_size);
4385 			if (error) {
4386 				/* Do as much error cleanup as possible */
4387 				handle = ext4_journal_start(inode,
4388 							    EXT4_HT_INODE, 3);
4389 				if (IS_ERR(handle)) {
4390 					ext4_orphan_del(NULL, inode);
4391 					goto err_out;
4392 				}
4393 				ext4_orphan_del(handle, inode);
4394 				orphan = 0;
4395 				ext4_journal_stop(handle);
4396 				goto err_out;
4397 			}
4398 		}
4399 	}
4400 
4401 	if (attr->ia_valid & ATTR_SIZE) {
4402 		if (attr->ia_size != inode->i_size) {
4403 			loff_t oldsize = inode->i_size;
4404 
4405 			i_size_write(inode, attr->ia_size);
4406 			/*
4407 			 * Blocks are going to be removed from the inode. Wait
4408 			 * for dio in flight.  Temporarily disable
4409 			 * dioread_nolock to prevent livelock.
4410 			 */
4411 			if (orphan) {
4412 				if (!ext4_should_journal_data(inode)) {
4413 					ext4_inode_block_unlocked_dio(inode);
4414 					inode_dio_wait(inode);
4415 					ext4_inode_resume_unlocked_dio(inode);
4416 				} else
4417 					ext4_wait_for_tail_page_commit(inode);
4418 			}
4419 			/*
4420 			 * Truncate pagecache after we've waited for commit
4421 			 * in data=journal mode to make pages freeable.
4422 			 */
4423 			truncate_pagecache(inode, oldsize, inode->i_size);
4424 		}
4425 		ext4_truncate(inode);
4426 	}
4427 
4428 	if (!rc) {
4429 		setattr_copy(inode, attr);
4430 		mark_inode_dirty(inode);
4431 	}
4432 
4433 	/*
4434 	 * If the call to ext4_truncate failed to get a transaction handle at
4435 	 * all, we need to clean up the in-core orphan list manually.
4436 	 */
4437 	if (orphan && inode->i_nlink)
4438 		ext4_orphan_del(NULL, inode);
4439 
4440 	if (!rc && (ia_valid & ATTR_MODE))
4441 		rc = ext4_acl_chmod(inode);
4442 
4443 err_out:
4444 	ext4_std_error(inode->i_sb, error);
4445 	if (!error)
4446 		error = rc;
4447 	return error;
4448 }
4449 
4450 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4451 		 struct kstat *stat)
4452 {
4453 	struct inode *inode;
4454 	unsigned long delalloc_blocks;
4455 
4456 	inode = dentry->d_inode;
4457 	generic_fillattr(inode, stat);
4458 
4459 	/*
4460 	 * We can't update i_blocks if the block allocation is delayed
4461 	 * otherwise in the case of system crash before the real block
4462 	 * allocation is done, we will have i_blocks inconsistent with
4463 	 * on-disk file blocks.
4464 	 * We always keep i_blocks updated together with real
4465 	 * allocation. But to not confuse with user, stat
4466 	 * will return the blocks that include the delayed allocation
4467 	 * blocks for this file.
4468 	 */
4469 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4470 				EXT4_I(inode)->i_reserved_data_blocks);
4471 
4472 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4473 	return 0;
4474 }
4475 
4476 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4477 {
4478 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4479 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4480 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4481 }
4482 
4483 /*
4484  * Account for index blocks, block groups bitmaps and block group
4485  * descriptor blocks if modify datablocks and index blocks
4486  * worse case, the indexs blocks spread over different block groups
4487  *
4488  * If datablocks are discontiguous, they are possible to spread over
4489  * different block groups too. If they are contiguous, with flexbg,
4490  * they could still across block group boundary.
4491  *
4492  * Also account for superblock, inode, quota and xattr blocks
4493  */
4494 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4495 {
4496 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4497 	int gdpblocks;
4498 	int idxblocks;
4499 	int ret = 0;
4500 
4501 	/*
4502 	 * How many index blocks need to touch to modify nrblocks?
4503 	 * The "Chunk" flag indicating whether the nrblocks is
4504 	 * physically contiguous on disk
4505 	 *
4506 	 * For Direct IO and fallocate, they calls get_block to allocate
4507 	 * one single extent at a time, so they could set the "Chunk" flag
4508 	 */
4509 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4510 
4511 	ret = idxblocks;
4512 
4513 	/*
4514 	 * Now let's see how many group bitmaps and group descriptors need
4515 	 * to account
4516 	 */
4517 	groups = idxblocks;
4518 	if (chunk)
4519 		groups += 1;
4520 	else
4521 		groups += nrblocks;
4522 
4523 	gdpblocks = groups;
4524 	if (groups > ngroups)
4525 		groups = ngroups;
4526 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4527 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4528 
4529 	/* bitmaps and block group descriptor blocks */
4530 	ret += groups + gdpblocks;
4531 
4532 	/* Blocks for super block, inode, quota and xattr blocks */
4533 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4534 
4535 	return ret;
4536 }
4537 
4538 /*
4539  * Calculate the total number of credits to reserve to fit
4540  * the modification of a single pages into a single transaction,
4541  * which may include multiple chunks of block allocations.
4542  *
4543  * This could be called via ext4_write_begin()
4544  *
4545  * We need to consider the worse case, when
4546  * one new block per extent.
4547  */
4548 int ext4_writepage_trans_blocks(struct inode *inode)
4549 {
4550 	int bpp = ext4_journal_blocks_per_page(inode);
4551 	int ret;
4552 
4553 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4554 
4555 	/* Account for data blocks for journalled mode */
4556 	if (ext4_should_journal_data(inode))
4557 		ret += bpp;
4558 	return ret;
4559 }
4560 
4561 /*
4562  * Calculate the journal credits for a chunk of data modification.
4563  *
4564  * This is called from DIO, fallocate or whoever calling
4565  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4566  *
4567  * journal buffers for data blocks are not included here, as DIO
4568  * and fallocate do no need to journal data buffers.
4569  */
4570 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4571 {
4572 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4573 }
4574 
4575 /*
4576  * The caller must have previously called ext4_reserve_inode_write().
4577  * Give this, we know that the caller already has write access to iloc->bh.
4578  */
4579 int ext4_mark_iloc_dirty(handle_t *handle,
4580 			 struct inode *inode, struct ext4_iloc *iloc)
4581 {
4582 	int err = 0;
4583 
4584 	if (IS_I_VERSION(inode))
4585 		inode_inc_iversion(inode);
4586 
4587 	/* the do_update_inode consumes one bh->b_count */
4588 	get_bh(iloc->bh);
4589 
4590 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4591 	err = ext4_do_update_inode(handle, inode, iloc);
4592 	put_bh(iloc->bh);
4593 	return err;
4594 }
4595 
4596 /*
4597  * On success, We end up with an outstanding reference count against
4598  * iloc->bh.  This _must_ be cleaned up later.
4599  */
4600 
4601 int
4602 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4603 			 struct ext4_iloc *iloc)
4604 {
4605 	int err;
4606 
4607 	err = ext4_get_inode_loc(inode, iloc);
4608 	if (!err) {
4609 		BUFFER_TRACE(iloc->bh, "get_write_access");
4610 		err = ext4_journal_get_write_access(handle, iloc->bh);
4611 		if (err) {
4612 			brelse(iloc->bh);
4613 			iloc->bh = NULL;
4614 		}
4615 	}
4616 	ext4_std_error(inode->i_sb, err);
4617 	return err;
4618 }
4619 
4620 /*
4621  * Expand an inode by new_extra_isize bytes.
4622  * Returns 0 on success or negative error number on failure.
4623  */
4624 static int ext4_expand_extra_isize(struct inode *inode,
4625 				   unsigned int new_extra_isize,
4626 				   struct ext4_iloc iloc,
4627 				   handle_t *handle)
4628 {
4629 	struct ext4_inode *raw_inode;
4630 	struct ext4_xattr_ibody_header *header;
4631 
4632 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4633 		return 0;
4634 
4635 	raw_inode = ext4_raw_inode(&iloc);
4636 
4637 	header = IHDR(inode, raw_inode);
4638 
4639 	/* No extended attributes present */
4640 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4641 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4642 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4643 			new_extra_isize);
4644 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4645 		return 0;
4646 	}
4647 
4648 	/* try to expand with EAs present */
4649 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4650 					  raw_inode, handle);
4651 }
4652 
4653 /*
4654  * What we do here is to mark the in-core inode as clean with respect to inode
4655  * dirtiness (it may still be data-dirty).
4656  * This means that the in-core inode may be reaped by prune_icache
4657  * without having to perform any I/O.  This is a very good thing,
4658  * because *any* task may call prune_icache - even ones which
4659  * have a transaction open against a different journal.
4660  *
4661  * Is this cheating?  Not really.  Sure, we haven't written the
4662  * inode out, but prune_icache isn't a user-visible syncing function.
4663  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4664  * we start and wait on commits.
4665  */
4666 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4667 {
4668 	struct ext4_iloc iloc;
4669 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4670 	static unsigned int mnt_count;
4671 	int err, ret;
4672 
4673 	might_sleep();
4674 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4675 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4676 	if (ext4_handle_valid(handle) &&
4677 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4678 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4679 		/*
4680 		 * We need extra buffer credits since we may write into EA block
4681 		 * with this same handle. If journal_extend fails, then it will
4682 		 * only result in a minor loss of functionality for that inode.
4683 		 * If this is felt to be critical, then e2fsck should be run to
4684 		 * force a large enough s_min_extra_isize.
4685 		 */
4686 		if ((jbd2_journal_extend(handle,
4687 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4688 			ret = ext4_expand_extra_isize(inode,
4689 						      sbi->s_want_extra_isize,
4690 						      iloc, handle);
4691 			if (ret) {
4692 				ext4_set_inode_state(inode,
4693 						     EXT4_STATE_NO_EXPAND);
4694 				if (mnt_count !=
4695 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4696 					ext4_warning(inode->i_sb,
4697 					"Unable to expand inode %lu. Delete"
4698 					" some EAs or run e2fsck.",
4699 					inode->i_ino);
4700 					mnt_count =
4701 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4702 				}
4703 			}
4704 		}
4705 	}
4706 	if (!err)
4707 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4708 	return err;
4709 }
4710 
4711 /*
4712  * ext4_dirty_inode() is called from __mark_inode_dirty()
4713  *
4714  * We're really interested in the case where a file is being extended.
4715  * i_size has been changed by generic_commit_write() and we thus need
4716  * to include the updated inode in the current transaction.
4717  *
4718  * Also, dquot_alloc_block() will always dirty the inode when blocks
4719  * are allocated to the file.
4720  *
4721  * If the inode is marked synchronous, we don't honour that here - doing
4722  * so would cause a commit on atime updates, which we don't bother doing.
4723  * We handle synchronous inodes at the highest possible level.
4724  */
4725 void ext4_dirty_inode(struct inode *inode, int flags)
4726 {
4727 	handle_t *handle;
4728 
4729 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4730 	if (IS_ERR(handle))
4731 		goto out;
4732 
4733 	ext4_mark_inode_dirty(handle, inode);
4734 
4735 	ext4_journal_stop(handle);
4736 out:
4737 	return;
4738 }
4739 
4740 #if 0
4741 /*
4742  * Bind an inode's backing buffer_head into this transaction, to prevent
4743  * it from being flushed to disk early.  Unlike
4744  * ext4_reserve_inode_write, this leaves behind no bh reference and
4745  * returns no iloc structure, so the caller needs to repeat the iloc
4746  * lookup to mark the inode dirty later.
4747  */
4748 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4749 {
4750 	struct ext4_iloc iloc;
4751 
4752 	int err = 0;
4753 	if (handle) {
4754 		err = ext4_get_inode_loc(inode, &iloc);
4755 		if (!err) {
4756 			BUFFER_TRACE(iloc.bh, "get_write_access");
4757 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4758 			if (!err)
4759 				err = ext4_handle_dirty_metadata(handle,
4760 								 NULL,
4761 								 iloc.bh);
4762 			brelse(iloc.bh);
4763 		}
4764 	}
4765 	ext4_std_error(inode->i_sb, err);
4766 	return err;
4767 }
4768 #endif
4769 
4770 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4771 {
4772 	journal_t *journal;
4773 	handle_t *handle;
4774 	int err;
4775 
4776 	/*
4777 	 * We have to be very careful here: changing a data block's
4778 	 * journaling status dynamically is dangerous.  If we write a
4779 	 * data block to the journal, change the status and then delete
4780 	 * that block, we risk forgetting to revoke the old log record
4781 	 * from the journal and so a subsequent replay can corrupt data.
4782 	 * So, first we make sure that the journal is empty and that
4783 	 * nobody is changing anything.
4784 	 */
4785 
4786 	journal = EXT4_JOURNAL(inode);
4787 	if (!journal)
4788 		return 0;
4789 	if (is_journal_aborted(journal))
4790 		return -EROFS;
4791 	/* We have to allocate physical blocks for delalloc blocks
4792 	 * before flushing journal. otherwise delalloc blocks can not
4793 	 * be allocated any more. even more truncate on delalloc blocks
4794 	 * could trigger BUG by flushing delalloc blocks in journal.
4795 	 * There is no delalloc block in non-journal data mode.
4796 	 */
4797 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4798 		err = ext4_alloc_da_blocks(inode);
4799 		if (err < 0)
4800 			return err;
4801 	}
4802 
4803 	/* Wait for all existing dio workers */
4804 	ext4_inode_block_unlocked_dio(inode);
4805 	inode_dio_wait(inode);
4806 
4807 	jbd2_journal_lock_updates(journal);
4808 
4809 	/*
4810 	 * OK, there are no updates running now, and all cached data is
4811 	 * synced to disk.  We are now in a completely consistent state
4812 	 * which doesn't have anything in the journal, and we know that
4813 	 * no filesystem updates are running, so it is safe to modify
4814 	 * the inode's in-core data-journaling state flag now.
4815 	 */
4816 
4817 	if (val)
4818 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4819 	else {
4820 		jbd2_journal_flush(journal);
4821 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4822 	}
4823 	ext4_set_aops(inode);
4824 
4825 	jbd2_journal_unlock_updates(journal);
4826 	ext4_inode_resume_unlocked_dio(inode);
4827 
4828 	/* Finally we can mark the inode as dirty. */
4829 
4830 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4831 	if (IS_ERR(handle))
4832 		return PTR_ERR(handle);
4833 
4834 	err = ext4_mark_inode_dirty(handle, inode);
4835 	ext4_handle_sync(handle);
4836 	ext4_journal_stop(handle);
4837 	ext4_std_error(inode->i_sb, err);
4838 
4839 	return err;
4840 }
4841 
4842 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4843 {
4844 	return !buffer_mapped(bh);
4845 }
4846 
4847 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4848 {
4849 	struct page *page = vmf->page;
4850 	loff_t size;
4851 	unsigned long len;
4852 	int ret;
4853 	struct file *file = vma->vm_file;
4854 	struct inode *inode = file_inode(file);
4855 	struct address_space *mapping = inode->i_mapping;
4856 	handle_t *handle;
4857 	get_block_t *get_block;
4858 	int retries = 0;
4859 
4860 	sb_start_pagefault(inode->i_sb);
4861 	file_update_time(vma->vm_file);
4862 	/* Delalloc case is easy... */
4863 	if (test_opt(inode->i_sb, DELALLOC) &&
4864 	    !ext4_should_journal_data(inode) &&
4865 	    !ext4_nonda_switch(inode->i_sb)) {
4866 		do {
4867 			ret = __block_page_mkwrite(vma, vmf,
4868 						   ext4_da_get_block_prep);
4869 		} while (ret == -ENOSPC &&
4870 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4871 		goto out_ret;
4872 	}
4873 
4874 	lock_page(page);
4875 	size = i_size_read(inode);
4876 	/* Page got truncated from under us? */
4877 	if (page->mapping != mapping || page_offset(page) > size) {
4878 		unlock_page(page);
4879 		ret = VM_FAULT_NOPAGE;
4880 		goto out;
4881 	}
4882 
4883 	if (page->index == size >> PAGE_CACHE_SHIFT)
4884 		len = size & ~PAGE_CACHE_MASK;
4885 	else
4886 		len = PAGE_CACHE_SIZE;
4887 	/*
4888 	 * Return if we have all the buffers mapped. This avoids the need to do
4889 	 * journal_start/journal_stop which can block and take a long time
4890 	 */
4891 	if (page_has_buffers(page)) {
4892 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4893 					    0, len, NULL,
4894 					    ext4_bh_unmapped)) {
4895 			/* Wait so that we don't change page under IO */
4896 			wait_for_stable_page(page);
4897 			ret = VM_FAULT_LOCKED;
4898 			goto out;
4899 		}
4900 	}
4901 	unlock_page(page);
4902 	/* OK, we need to fill the hole... */
4903 	if (ext4_should_dioread_nolock(inode))
4904 		get_block = ext4_get_block_write;
4905 	else
4906 		get_block = ext4_get_block;
4907 retry_alloc:
4908 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
4909 				    ext4_writepage_trans_blocks(inode));
4910 	if (IS_ERR(handle)) {
4911 		ret = VM_FAULT_SIGBUS;
4912 		goto out;
4913 	}
4914 	ret = __block_page_mkwrite(vma, vmf, get_block);
4915 	if (!ret && ext4_should_journal_data(inode)) {
4916 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4917 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4918 			unlock_page(page);
4919 			ret = VM_FAULT_SIGBUS;
4920 			ext4_journal_stop(handle);
4921 			goto out;
4922 		}
4923 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4924 	}
4925 	ext4_journal_stop(handle);
4926 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4927 		goto retry_alloc;
4928 out_ret:
4929 	ret = block_page_mkwrite_return(ret);
4930 out:
4931 	sb_end_pagefault(inode->i_sb);
4932 	return ret;
4933 }
4934