xref: /openbmc/linux/fs/ext4/inode.c (revision 92a2c6b2)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42 
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u16 csum_lo;
57 	__u16 csum_hi = 0;
58 	__u32 csum;
59 
60 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 	raw->i_checksum_lo = 0;
62 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 		raw->i_checksum_hi = 0;
66 	}
67 
68 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 			   EXT4_INODE_SIZE(inode->i_sb));
70 
71 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
75 
76 	return csum;
77 }
78 
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 				  struct ext4_inode_info *ei)
81 {
82 	__u32 provided, calculated;
83 
84 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 	    cpu_to_le32(EXT4_OS_LINUX) ||
86 	    !ext4_has_metadata_csum(inode->i_sb))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !ext4_has_metadata_csum(inode->i_sb))
108 		return;
109 
110 	csum = ext4_inode_csum(inode, raw, ei);
111 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116 
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 					      loff_t new_size)
119 {
120 	trace_ext4_begin_ordered_truncate(inode, new_size);
121 	/*
122 	 * If jinode is zero, then we never opened the file for
123 	 * writing, so there's no need to call
124 	 * jbd2_journal_begin_ordered_truncate() since there's no
125 	 * outstanding writes we need to flush.
126 	 */
127 	if (!EXT4_I(inode)->jinode)
128 		return 0;
129 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 						   EXT4_I(inode)->jinode,
131 						   new_size);
132 }
133 
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135 				unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139 				  int pextents);
140 
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148 
149 	if (ext4_has_inline_data(inode))
150 		return 0;
151 
152 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154 
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 				 int nblocks)
162 {
163 	int ret;
164 
165 	/*
166 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167 	 * moment, get_block can be called only for blocks inside i_size since
168 	 * page cache has been already dropped and writes are blocked by
169 	 * i_mutex. So we can safely drop the i_data_sem here.
170 	 */
171 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 	jbd_debug(2, "restarting handle %p\n", handle);
173 	up_write(&EXT4_I(inode)->i_data_sem);
174 	ret = ext4_journal_restart(handle, nblocks);
175 	down_write(&EXT4_I(inode)->i_data_sem);
176 	ext4_discard_preallocations(inode);
177 
178 	return ret;
179 }
180 
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 	handle_t *handle;
187 	int err;
188 
189 	trace_ext4_evict_inode(inode);
190 
191 	if (inode->i_nlink) {
192 		/*
193 		 * When journalling data dirty buffers are tracked only in the
194 		 * journal. So although mm thinks everything is clean and
195 		 * ready for reaping the inode might still have some pages to
196 		 * write in the running transaction or waiting to be
197 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 		 * (via truncate_inode_pages()) to discard these buffers can
199 		 * cause data loss. Also even if we did not discard these
200 		 * buffers, we would have no way to find them after the inode
201 		 * is reaped and thus user could see stale data if he tries to
202 		 * read them before the transaction is checkpointed. So be
203 		 * careful and force everything to disk here... We use
204 		 * ei->i_datasync_tid to store the newest transaction
205 		 * containing inode's data.
206 		 *
207 		 * Note that directories do not have this problem because they
208 		 * don't use page cache.
209 		 */
210 		if (ext4_should_journal_data(inode) &&
211 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 		    inode->i_ino != EXT4_JOURNAL_INO) {
213 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215 
216 			jbd2_complete_transaction(journal, commit_tid);
217 			filemap_write_and_wait(&inode->i_data);
218 		}
219 		truncate_inode_pages_final(&inode->i_data);
220 
221 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222 		goto no_delete;
223 	}
224 
225 	if (is_bad_inode(inode))
226 		goto no_delete;
227 	dquot_initialize(inode);
228 
229 	if (ext4_should_order_data(inode))
230 		ext4_begin_ordered_truncate(inode, 0);
231 	truncate_inode_pages_final(&inode->i_data);
232 
233 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234 
235 	/*
236 	 * Protect us against freezing - iput() caller didn't have to have any
237 	 * protection against it
238 	 */
239 	sb_start_intwrite(inode->i_sb);
240 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 				    ext4_blocks_for_truncate(inode)+3);
242 	if (IS_ERR(handle)) {
243 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 		/*
245 		 * If we're going to skip the normal cleanup, we still need to
246 		 * make sure that the in-core orphan linked list is properly
247 		 * cleaned up.
248 		 */
249 		ext4_orphan_del(NULL, inode);
250 		sb_end_intwrite(inode->i_sb);
251 		goto no_delete;
252 	}
253 
254 	if (IS_SYNC(inode))
255 		ext4_handle_sync(handle);
256 	inode->i_size = 0;
257 	err = ext4_mark_inode_dirty(handle, inode);
258 	if (err) {
259 		ext4_warning(inode->i_sb,
260 			     "couldn't mark inode dirty (err %d)", err);
261 		goto stop_handle;
262 	}
263 	if (inode->i_blocks)
264 		ext4_truncate(inode);
265 
266 	/*
267 	 * ext4_ext_truncate() doesn't reserve any slop when it
268 	 * restarts journal transactions; therefore there may not be
269 	 * enough credits left in the handle to remove the inode from
270 	 * the orphan list and set the dtime field.
271 	 */
272 	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 		err = ext4_journal_extend(handle, 3);
274 		if (err > 0)
275 			err = ext4_journal_restart(handle, 3);
276 		if (err != 0) {
277 			ext4_warning(inode->i_sb,
278 				     "couldn't extend journal (err %d)", err);
279 		stop_handle:
280 			ext4_journal_stop(handle);
281 			ext4_orphan_del(NULL, inode);
282 			sb_end_intwrite(inode->i_sb);
283 			goto no_delete;
284 		}
285 	}
286 
287 	/*
288 	 * Kill off the orphan record which ext4_truncate created.
289 	 * AKPM: I think this can be inside the above `if'.
290 	 * Note that ext4_orphan_del() has to be able to cope with the
291 	 * deletion of a non-existent orphan - this is because we don't
292 	 * know if ext4_truncate() actually created an orphan record.
293 	 * (Well, we could do this if we need to, but heck - it works)
294 	 */
295 	ext4_orphan_del(handle, inode);
296 	EXT4_I(inode)->i_dtime	= get_seconds();
297 
298 	/*
299 	 * One subtle ordering requirement: if anything has gone wrong
300 	 * (transaction abort, IO errors, whatever), then we can still
301 	 * do these next steps (the fs will already have been marked as
302 	 * having errors), but we can't free the inode if the mark_dirty
303 	 * fails.
304 	 */
305 	if (ext4_mark_inode_dirty(handle, inode))
306 		/* If that failed, just do the required in-core inode clear. */
307 		ext4_clear_inode(inode);
308 	else
309 		ext4_free_inode(handle, inode);
310 	ext4_journal_stop(handle);
311 	sb_end_intwrite(inode->i_sb);
312 	return;
313 no_delete:
314 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 }
316 
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 	return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323 
324 /*
325  * Called with i_data_sem down, which is important since we can call
326  * ext4_discard_preallocations() from here.
327  */
328 void ext4_da_update_reserve_space(struct inode *inode,
329 					int used, int quota_claim)
330 {
331 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332 	struct ext4_inode_info *ei = EXT4_I(inode);
333 
334 	spin_lock(&ei->i_block_reservation_lock);
335 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336 	if (unlikely(used > ei->i_reserved_data_blocks)) {
337 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338 			 "with only %d reserved data blocks",
339 			 __func__, inode->i_ino, used,
340 			 ei->i_reserved_data_blocks);
341 		WARN_ON(1);
342 		used = ei->i_reserved_data_blocks;
343 	}
344 
345 	/* Update per-inode reservations */
346 	ei->i_reserved_data_blocks -= used;
347 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348 
349 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350 
351 	/* Update quota subsystem for data blocks */
352 	if (quota_claim)
353 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
354 	else {
355 		/*
356 		 * We did fallocate with an offset that is already delayed
357 		 * allocated. So on delayed allocated writeback we should
358 		 * not re-claim the quota for fallocated blocks.
359 		 */
360 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361 	}
362 
363 	/*
364 	 * If we have done all the pending block allocations and if
365 	 * there aren't any writers on the inode, we can discard the
366 	 * inode's preallocations.
367 	 */
368 	if ((ei->i_reserved_data_blocks == 0) &&
369 	    (atomic_read(&inode->i_writecount) == 0))
370 		ext4_discard_preallocations(inode);
371 }
372 
373 static int __check_block_validity(struct inode *inode, const char *func,
374 				unsigned int line,
375 				struct ext4_map_blocks *map)
376 {
377 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378 				   map->m_len)) {
379 		ext4_error_inode(inode, func, line, map->m_pblk,
380 				 "lblock %lu mapped to illegal pblock "
381 				 "(length %d)", (unsigned long) map->m_lblk,
382 				 map->m_len);
383 		return -EIO;
384 	}
385 	return 0;
386 }
387 
388 #define check_block_validity(inode, map)	\
389 	__check_block_validity((inode), __func__, __LINE__, (map))
390 
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393 				       struct inode *inode,
394 				       struct ext4_map_blocks *es_map,
395 				       struct ext4_map_blocks *map,
396 				       int flags)
397 {
398 	int retval;
399 
400 	map->m_flags = 0;
401 	/*
402 	 * There is a race window that the result is not the same.
403 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
404 	 * is that we lookup a block mapping in extent status tree with
405 	 * out taking i_data_sem.  So at the time the unwritten extent
406 	 * could be converted.
407 	 */
408 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409 		down_read(&EXT4_I(inode)->i_data_sem);
410 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
412 					     EXT4_GET_BLOCKS_KEEP_SIZE);
413 	} else {
414 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
415 					     EXT4_GET_BLOCKS_KEEP_SIZE);
416 	}
417 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418 		up_read((&EXT4_I(inode)->i_data_sem));
419 
420 	/*
421 	 * We don't check m_len because extent will be collpased in status
422 	 * tree.  So the m_len might not equal.
423 	 */
424 	if (es_map->m_lblk != map->m_lblk ||
425 	    es_map->m_flags != map->m_flags ||
426 	    es_map->m_pblk != map->m_pblk) {
427 		printk("ES cache assertion failed for inode: %lu "
428 		       "es_cached ex [%d/%d/%llu/%x] != "
429 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
430 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
431 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
432 		       map->m_len, map->m_pblk, map->m_flags,
433 		       retval, flags);
434 	}
435 }
436 #endif /* ES_AGGRESSIVE_TEST */
437 
438 /*
439  * The ext4_map_blocks() function tries to look up the requested blocks,
440  * and returns if the blocks are already mapped.
441  *
442  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
443  * and store the allocated blocks in the result buffer head and mark it
444  * mapped.
445  *
446  * If file type is extents based, it will call ext4_ext_map_blocks(),
447  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
448  * based files
449  *
450  * On success, it returns the number of blocks being mapped or allocated.
451  * if create==0 and the blocks are pre-allocated and unwritten block,
452  * the result buffer head is unmapped. If the create ==1, it will make sure
453  * the buffer head is mapped.
454  *
455  * It returns 0 if plain look up failed (blocks have not been allocated), in
456  * that case, buffer head is unmapped
457  *
458  * It returns the error in case of allocation failure.
459  */
460 int ext4_map_blocks(handle_t *handle, struct inode *inode,
461 		    struct ext4_map_blocks *map, int flags)
462 {
463 	struct extent_status es;
464 	int retval;
465 	int ret = 0;
466 #ifdef ES_AGGRESSIVE_TEST
467 	struct ext4_map_blocks orig_map;
468 
469 	memcpy(&orig_map, map, sizeof(*map));
470 #endif
471 
472 	map->m_flags = 0;
473 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
475 		  (unsigned long) map->m_lblk);
476 
477 	/*
478 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
479 	 */
480 	if (unlikely(map->m_len > INT_MAX))
481 		map->m_len = INT_MAX;
482 
483 	/* We can handle the block number less than EXT_MAX_BLOCKS */
484 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
485 		return -EIO;
486 
487 	/* Lookup extent status tree firstly */
488 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
489 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
490 			map->m_pblk = ext4_es_pblock(&es) +
491 					map->m_lblk - es.es_lblk;
492 			map->m_flags |= ext4_es_is_written(&es) ?
493 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
494 			retval = es.es_len - (map->m_lblk - es.es_lblk);
495 			if (retval > map->m_len)
496 				retval = map->m_len;
497 			map->m_len = retval;
498 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
499 			retval = 0;
500 		} else {
501 			BUG_ON(1);
502 		}
503 #ifdef ES_AGGRESSIVE_TEST
504 		ext4_map_blocks_es_recheck(handle, inode, map,
505 					   &orig_map, flags);
506 #endif
507 		goto found;
508 	}
509 
510 	/*
511 	 * Try to see if we can get the block without requesting a new
512 	 * file system block.
513 	 */
514 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
515 		down_read(&EXT4_I(inode)->i_data_sem);
516 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
517 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
518 					     EXT4_GET_BLOCKS_KEEP_SIZE);
519 	} else {
520 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
521 					     EXT4_GET_BLOCKS_KEEP_SIZE);
522 	}
523 	if (retval > 0) {
524 		unsigned int status;
525 
526 		if (unlikely(retval != map->m_len)) {
527 			ext4_warning(inode->i_sb,
528 				     "ES len assertion failed for inode "
529 				     "%lu: retval %d != map->m_len %d",
530 				     inode->i_ino, retval, map->m_len);
531 			WARN_ON(1);
532 		}
533 
534 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
535 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
536 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
537 		    ext4_find_delalloc_range(inode, map->m_lblk,
538 					     map->m_lblk + map->m_len - 1))
539 			status |= EXTENT_STATUS_DELAYED;
540 		ret = ext4_es_insert_extent(inode, map->m_lblk,
541 					    map->m_len, map->m_pblk, status);
542 		if (ret < 0)
543 			retval = ret;
544 	}
545 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 		up_read((&EXT4_I(inode)->i_data_sem));
547 
548 found:
549 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
550 		ret = check_block_validity(inode, map);
551 		if (ret != 0)
552 			return ret;
553 	}
554 
555 	/* If it is only a block(s) look up */
556 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
557 		return retval;
558 
559 	/*
560 	 * Returns if the blocks have already allocated
561 	 *
562 	 * Note that if blocks have been preallocated
563 	 * ext4_ext_get_block() returns the create = 0
564 	 * with buffer head unmapped.
565 	 */
566 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
567 		/*
568 		 * If we need to convert extent to unwritten
569 		 * we continue and do the actual work in
570 		 * ext4_ext_map_blocks()
571 		 */
572 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
573 			return retval;
574 
575 	/*
576 	 * Here we clear m_flags because after allocating an new extent,
577 	 * it will be set again.
578 	 */
579 	map->m_flags &= ~EXT4_MAP_FLAGS;
580 
581 	/*
582 	 * New blocks allocate and/or writing to unwritten extent
583 	 * will possibly result in updating i_data, so we take
584 	 * the write lock of i_data_sem, and call get_block()
585 	 * with create == 1 flag.
586 	 */
587 	down_write(&EXT4_I(inode)->i_data_sem);
588 
589 	/*
590 	 * We need to check for EXT4 here because migrate
591 	 * could have changed the inode type in between
592 	 */
593 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
595 	} else {
596 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
597 
598 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599 			/*
600 			 * We allocated new blocks which will result in
601 			 * i_data's format changing.  Force the migrate
602 			 * to fail by clearing migrate flags
603 			 */
604 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
605 		}
606 
607 		/*
608 		 * Update reserved blocks/metadata blocks after successful
609 		 * block allocation which had been deferred till now. We don't
610 		 * support fallocate for non extent files. So we can update
611 		 * reserve space here.
612 		 */
613 		if ((retval > 0) &&
614 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615 			ext4_da_update_reserve_space(inode, retval, 1);
616 	}
617 
618 	if (retval > 0) {
619 		unsigned int status;
620 
621 		if (unlikely(retval != map->m_len)) {
622 			ext4_warning(inode->i_sb,
623 				     "ES len assertion failed for inode "
624 				     "%lu: retval %d != map->m_len %d",
625 				     inode->i_ino, retval, map->m_len);
626 			WARN_ON(1);
627 		}
628 
629 		/*
630 		 * If the extent has been zeroed out, we don't need to update
631 		 * extent status tree.
632 		 */
633 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
634 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
635 			if (ext4_es_is_written(&es))
636 				goto has_zeroout;
637 		}
638 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
639 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
640 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
641 		    ext4_find_delalloc_range(inode, map->m_lblk,
642 					     map->m_lblk + map->m_len - 1))
643 			status |= EXTENT_STATUS_DELAYED;
644 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 					    map->m_pblk, status);
646 		if (ret < 0)
647 			retval = ret;
648 	}
649 
650 has_zeroout:
651 	up_write((&EXT4_I(inode)->i_data_sem));
652 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653 		ret = check_block_validity(inode, map);
654 		if (ret != 0)
655 			return ret;
656 	}
657 	return retval;
658 }
659 
660 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
661 {
662 	struct inode *inode = bh->b_assoc_map->host;
663 	/* XXX: breaks on 32-bit > 16GB. Is that even supported? */
664 	loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
665 	int err;
666 	if (!uptodate)
667 		return;
668 	WARN_ON(!buffer_unwritten(bh));
669 	err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
670 }
671 
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674 
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676 			   struct buffer_head *bh, int flags)
677 {
678 	handle_t *handle = ext4_journal_current_handle();
679 	struct ext4_map_blocks map;
680 	int ret = 0, started = 0;
681 	int dio_credits;
682 
683 	if (ext4_has_inline_data(inode))
684 		return -ERANGE;
685 
686 	map.m_lblk = iblock;
687 	map.m_len = bh->b_size >> inode->i_blkbits;
688 
689 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
690 		/* Direct IO write... */
691 		if (map.m_len > DIO_MAX_BLOCKS)
692 			map.m_len = DIO_MAX_BLOCKS;
693 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
694 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
695 					    dio_credits);
696 		if (IS_ERR(handle)) {
697 			ret = PTR_ERR(handle);
698 			return ret;
699 		}
700 		started = 1;
701 	}
702 
703 	ret = ext4_map_blocks(handle, inode, &map, flags);
704 	if (ret > 0) {
705 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
706 
707 		map_bh(bh, inode->i_sb, map.m_pblk);
708 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
709 		if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
710 			bh->b_assoc_map = inode->i_mapping;
711 			bh->b_private = (void *)(unsigned long)iblock;
712 			bh->b_end_io = ext4_end_io_unwritten;
713 		}
714 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
715 			set_buffer_defer_completion(bh);
716 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
717 		ret = 0;
718 	}
719 	if (started)
720 		ext4_journal_stop(handle);
721 	return ret;
722 }
723 
724 int ext4_get_block(struct inode *inode, sector_t iblock,
725 		   struct buffer_head *bh, int create)
726 {
727 	return _ext4_get_block(inode, iblock, bh,
728 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
729 }
730 
731 /*
732  * `handle' can be NULL if create is zero
733  */
734 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
735 				ext4_lblk_t block, int create)
736 {
737 	struct ext4_map_blocks map;
738 	struct buffer_head *bh;
739 	int err;
740 
741 	J_ASSERT(handle != NULL || create == 0);
742 
743 	map.m_lblk = block;
744 	map.m_len = 1;
745 	err = ext4_map_blocks(handle, inode, &map,
746 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
747 
748 	if (err == 0)
749 		return create ? ERR_PTR(-ENOSPC) : NULL;
750 	if (err < 0)
751 		return ERR_PTR(err);
752 
753 	bh = sb_getblk(inode->i_sb, map.m_pblk);
754 	if (unlikely(!bh))
755 		return ERR_PTR(-ENOMEM);
756 	if (map.m_flags & EXT4_MAP_NEW) {
757 		J_ASSERT(create != 0);
758 		J_ASSERT(handle != NULL);
759 
760 		/*
761 		 * Now that we do not always journal data, we should
762 		 * keep in mind whether this should always journal the
763 		 * new buffer as metadata.  For now, regular file
764 		 * writes use ext4_get_block instead, so it's not a
765 		 * problem.
766 		 */
767 		lock_buffer(bh);
768 		BUFFER_TRACE(bh, "call get_create_access");
769 		err = ext4_journal_get_create_access(handle, bh);
770 		if (unlikely(err)) {
771 			unlock_buffer(bh);
772 			goto errout;
773 		}
774 		if (!buffer_uptodate(bh)) {
775 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
776 			set_buffer_uptodate(bh);
777 		}
778 		unlock_buffer(bh);
779 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
780 		err = ext4_handle_dirty_metadata(handle, inode, bh);
781 		if (unlikely(err))
782 			goto errout;
783 	} else
784 		BUFFER_TRACE(bh, "not a new buffer");
785 	return bh;
786 errout:
787 	brelse(bh);
788 	return ERR_PTR(err);
789 }
790 
791 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
792 			       ext4_lblk_t block, int create)
793 {
794 	struct buffer_head *bh;
795 
796 	bh = ext4_getblk(handle, inode, block, create);
797 	if (IS_ERR(bh))
798 		return bh;
799 	if (!bh || buffer_uptodate(bh))
800 		return bh;
801 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
802 	wait_on_buffer(bh);
803 	if (buffer_uptodate(bh))
804 		return bh;
805 	put_bh(bh);
806 	return ERR_PTR(-EIO);
807 }
808 
809 int ext4_walk_page_buffers(handle_t *handle,
810 			   struct buffer_head *head,
811 			   unsigned from,
812 			   unsigned to,
813 			   int *partial,
814 			   int (*fn)(handle_t *handle,
815 				     struct buffer_head *bh))
816 {
817 	struct buffer_head *bh;
818 	unsigned block_start, block_end;
819 	unsigned blocksize = head->b_size;
820 	int err, ret = 0;
821 	struct buffer_head *next;
822 
823 	for (bh = head, block_start = 0;
824 	     ret == 0 && (bh != head || !block_start);
825 	     block_start = block_end, bh = next) {
826 		next = bh->b_this_page;
827 		block_end = block_start + blocksize;
828 		if (block_end <= from || block_start >= to) {
829 			if (partial && !buffer_uptodate(bh))
830 				*partial = 1;
831 			continue;
832 		}
833 		err = (*fn)(handle, bh);
834 		if (!ret)
835 			ret = err;
836 	}
837 	return ret;
838 }
839 
840 /*
841  * To preserve ordering, it is essential that the hole instantiation and
842  * the data write be encapsulated in a single transaction.  We cannot
843  * close off a transaction and start a new one between the ext4_get_block()
844  * and the commit_write().  So doing the jbd2_journal_start at the start of
845  * prepare_write() is the right place.
846  *
847  * Also, this function can nest inside ext4_writepage().  In that case, we
848  * *know* that ext4_writepage() has generated enough buffer credits to do the
849  * whole page.  So we won't block on the journal in that case, which is good,
850  * because the caller may be PF_MEMALLOC.
851  *
852  * By accident, ext4 can be reentered when a transaction is open via
853  * quota file writes.  If we were to commit the transaction while thus
854  * reentered, there can be a deadlock - we would be holding a quota
855  * lock, and the commit would never complete if another thread had a
856  * transaction open and was blocking on the quota lock - a ranking
857  * violation.
858  *
859  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
860  * will _not_ run commit under these circumstances because handle->h_ref
861  * is elevated.  We'll still have enough credits for the tiny quotafile
862  * write.
863  */
864 int do_journal_get_write_access(handle_t *handle,
865 				struct buffer_head *bh)
866 {
867 	int dirty = buffer_dirty(bh);
868 	int ret;
869 
870 	if (!buffer_mapped(bh) || buffer_freed(bh))
871 		return 0;
872 	/*
873 	 * __block_write_begin() could have dirtied some buffers. Clean
874 	 * the dirty bit as jbd2_journal_get_write_access() could complain
875 	 * otherwise about fs integrity issues. Setting of the dirty bit
876 	 * by __block_write_begin() isn't a real problem here as we clear
877 	 * the bit before releasing a page lock and thus writeback cannot
878 	 * ever write the buffer.
879 	 */
880 	if (dirty)
881 		clear_buffer_dirty(bh);
882 	BUFFER_TRACE(bh, "get write access");
883 	ret = ext4_journal_get_write_access(handle, bh);
884 	if (!ret && dirty)
885 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
886 	return ret;
887 }
888 
889 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
890 		   struct buffer_head *bh_result, int create);
891 static int ext4_write_begin(struct file *file, struct address_space *mapping,
892 			    loff_t pos, unsigned len, unsigned flags,
893 			    struct page **pagep, void **fsdata)
894 {
895 	struct inode *inode = mapping->host;
896 	int ret, needed_blocks;
897 	handle_t *handle;
898 	int retries = 0;
899 	struct page *page;
900 	pgoff_t index;
901 	unsigned from, to;
902 
903 	trace_ext4_write_begin(inode, pos, len, flags);
904 	/*
905 	 * Reserve one block more for addition to orphan list in case
906 	 * we allocate blocks but write fails for some reason
907 	 */
908 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
909 	index = pos >> PAGE_CACHE_SHIFT;
910 	from = pos & (PAGE_CACHE_SIZE - 1);
911 	to = from + len;
912 
913 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
914 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
915 						    flags, pagep);
916 		if (ret < 0)
917 			return ret;
918 		if (ret == 1)
919 			return 0;
920 	}
921 
922 	/*
923 	 * grab_cache_page_write_begin() can take a long time if the
924 	 * system is thrashing due to memory pressure, or if the page
925 	 * is being written back.  So grab it first before we start
926 	 * the transaction handle.  This also allows us to allocate
927 	 * the page (if needed) without using GFP_NOFS.
928 	 */
929 retry_grab:
930 	page = grab_cache_page_write_begin(mapping, index, flags);
931 	if (!page)
932 		return -ENOMEM;
933 	unlock_page(page);
934 
935 retry_journal:
936 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
937 	if (IS_ERR(handle)) {
938 		page_cache_release(page);
939 		return PTR_ERR(handle);
940 	}
941 
942 	lock_page(page);
943 	if (page->mapping != mapping) {
944 		/* The page got truncated from under us */
945 		unlock_page(page);
946 		page_cache_release(page);
947 		ext4_journal_stop(handle);
948 		goto retry_grab;
949 	}
950 	/* In case writeback began while the page was unlocked */
951 	wait_for_stable_page(page);
952 
953 	if (ext4_should_dioread_nolock(inode))
954 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
955 	else
956 		ret = __block_write_begin(page, pos, len, ext4_get_block);
957 
958 	if (!ret && ext4_should_journal_data(inode)) {
959 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
960 					     from, to, NULL,
961 					     do_journal_get_write_access);
962 	}
963 
964 	if (ret) {
965 		unlock_page(page);
966 		/*
967 		 * __block_write_begin may have instantiated a few blocks
968 		 * outside i_size.  Trim these off again. Don't need
969 		 * i_size_read because we hold i_mutex.
970 		 *
971 		 * Add inode to orphan list in case we crash before
972 		 * truncate finishes
973 		 */
974 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
975 			ext4_orphan_add(handle, inode);
976 
977 		ext4_journal_stop(handle);
978 		if (pos + len > inode->i_size) {
979 			ext4_truncate_failed_write(inode);
980 			/*
981 			 * If truncate failed early the inode might
982 			 * still be on the orphan list; we need to
983 			 * make sure the inode is removed from the
984 			 * orphan list in that case.
985 			 */
986 			if (inode->i_nlink)
987 				ext4_orphan_del(NULL, inode);
988 		}
989 
990 		if (ret == -ENOSPC &&
991 		    ext4_should_retry_alloc(inode->i_sb, &retries))
992 			goto retry_journal;
993 		page_cache_release(page);
994 		return ret;
995 	}
996 	*pagep = page;
997 	return ret;
998 }
999 
1000 /* For write_end() in data=journal mode */
1001 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1002 {
1003 	int ret;
1004 	if (!buffer_mapped(bh) || buffer_freed(bh))
1005 		return 0;
1006 	set_buffer_uptodate(bh);
1007 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1008 	clear_buffer_meta(bh);
1009 	clear_buffer_prio(bh);
1010 	return ret;
1011 }
1012 
1013 /*
1014  * We need to pick up the new inode size which generic_commit_write gave us
1015  * `file' can be NULL - eg, when called from page_symlink().
1016  *
1017  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1018  * buffers are managed internally.
1019  */
1020 static int ext4_write_end(struct file *file,
1021 			  struct address_space *mapping,
1022 			  loff_t pos, unsigned len, unsigned copied,
1023 			  struct page *page, void *fsdata)
1024 {
1025 	handle_t *handle = ext4_journal_current_handle();
1026 	struct inode *inode = mapping->host;
1027 	loff_t old_size = inode->i_size;
1028 	int ret = 0, ret2;
1029 	int i_size_changed = 0;
1030 
1031 	trace_ext4_write_end(inode, pos, len, copied);
1032 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1033 		ret = ext4_jbd2_file_inode(handle, inode);
1034 		if (ret) {
1035 			unlock_page(page);
1036 			page_cache_release(page);
1037 			goto errout;
1038 		}
1039 	}
1040 
1041 	if (ext4_has_inline_data(inode)) {
1042 		ret = ext4_write_inline_data_end(inode, pos, len,
1043 						 copied, page);
1044 		if (ret < 0)
1045 			goto errout;
1046 		copied = ret;
1047 	} else
1048 		copied = block_write_end(file, mapping, pos,
1049 					 len, copied, page, fsdata);
1050 	/*
1051 	 * it's important to update i_size while still holding page lock:
1052 	 * page writeout could otherwise come in and zero beyond i_size.
1053 	 */
1054 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1055 	unlock_page(page);
1056 	page_cache_release(page);
1057 
1058 	if (old_size < pos)
1059 		pagecache_isize_extended(inode, old_size, pos);
1060 	/*
1061 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1062 	 * makes the holding time of page lock longer. Second, it forces lock
1063 	 * ordering of page lock and transaction start for journaling
1064 	 * filesystems.
1065 	 */
1066 	if (i_size_changed)
1067 		ext4_mark_inode_dirty(handle, inode);
1068 
1069 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1070 		/* if we have allocated more blocks and copied
1071 		 * less. We will have blocks allocated outside
1072 		 * inode->i_size. So truncate them
1073 		 */
1074 		ext4_orphan_add(handle, inode);
1075 errout:
1076 	ret2 = ext4_journal_stop(handle);
1077 	if (!ret)
1078 		ret = ret2;
1079 
1080 	if (pos + len > inode->i_size) {
1081 		ext4_truncate_failed_write(inode);
1082 		/*
1083 		 * If truncate failed early the inode might still be
1084 		 * on the orphan list; we need to make sure the inode
1085 		 * is removed from the orphan list in that case.
1086 		 */
1087 		if (inode->i_nlink)
1088 			ext4_orphan_del(NULL, inode);
1089 	}
1090 
1091 	return ret ? ret : copied;
1092 }
1093 
1094 static int ext4_journalled_write_end(struct file *file,
1095 				     struct address_space *mapping,
1096 				     loff_t pos, unsigned len, unsigned copied,
1097 				     struct page *page, void *fsdata)
1098 {
1099 	handle_t *handle = ext4_journal_current_handle();
1100 	struct inode *inode = mapping->host;
1101 	loff_t old_size = inode->i_size;
1102 	int ret = 0, ret2;
1103 	int partial = 0;
1104 	unsigned from, to;
1105 	int size_changed = 0;
1106 
1107 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1108 	from = pos & (PAGE_CACHE_SIZE - 1);
1109 	to = from + len;
1110 
1111 	BUG_ON(!ext4_handle_valid(handle));
1112 
1113 	if (ext4_has_inline_data(inode))
1114 		copied = ext4_write_inline_data_end(inode, pos, len,
1115 						    copied, page);
1116 	else {
1117 		if (copied < len) {
1118 			if (!PageUptodate(page))
1119 				copied = 0;
1120 			page_zero_new_buffers(page, from+copied, to);
1121 		}
1122 
1123 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1124 					     to, &partial, write_end_fn);
1125 		if (!partial)
1126 			SetPageUptodate(page);
1127 	}
1128 	size_changed = ext4_update_inode_size(inode, pos + copied);
1129 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1130 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1131 	unlock_page(page);
1132 	page_cache_release(page);
1133 
1134 	if (old_size < pos)
1135 		pagecache_isize_extended(inode, old_size, pos);
1136 
1137 	if (size_changed) {
1138 		ret2 = ext4_mark_inode_dirty(handle, inode);
1139 		if (!ret)
1140 			ret = ret2;
1141 	}
1142 
1143 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1144 		/* if we have allocated more blocks and copied
1145 		 * less. We will have blocks allocated outside
1146 		 * inode->i_size. So truncate them
1147 		 */
1148 		ext4_orphan_add(handle, inode);
1149 
1150 	ret2 = ext4_journal_stop(handle);
1151 	if (!ret)
1152 		ret = ret2;
1153 	if (pos + len > inode->i_size) {
1154 		ext4_truncate_failed_write(inode);
1155 		/*
1156 		 * If truncate failed early the inode might still be
1157 		 * on the orphan list; we need to make sure the inode
1158 		 * is removed from the orphan list in that case.
1159 		 */
1160 		if (inode->i_nlink)
1161 			ext4_orphan_del(NULL, inode);
1162 	}
1163 
1164 	return ret ? ret : copied;
1165 }
1166 
1167 /*
1168  * Reserve a single cluster located at lblock
1169  */
1170 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1171 {
1172 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1173 	struct ext4_inode_info *ei = EXT4_I(inode);
1174 	unsigned int md_needed;
1175 	int ret;
1176 
1177 	/*
1178 	 * We will charge metadata quota at writeout time; this saves
1179 	 * us from metadata over-estimation, though we may go over by
1180 	 * a small amount in the end.  Here we just reserve for data.
1181 	 */
1182 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1183 	if (ret)
1184 		return ret;
1185 
1186 	/*
1187 	 * recalculate the amount of metadata blocks to reserve
1188 	 * in order to allocate nrblocks
1189 	 * worse case is one extent per block
1190 	 */
1191 	spin_lock(&ei->i_block_reservation_lock);
1192 	/*
1193 	 * ext4_calc_metadata_amount() has side effects, which we have
1194 	 * to be prepared undo if we fail to claim space.
1195 	 */
1196 	md_needed = 0;
1197 	trace_ext4_da_reserve_space(inode, 0);
1198 
1199 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1200 		spin_unlock(&ei->i_block_reservation_lock);
1201 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1202 		return -ENOSPC;
1203 	}
1204 	ei->i_reserved_data_blocks++;
1205 	spin_unlock(&ei->i_block_reservation_lock);
1206 
1207 	return 0;       /* success */
1208 }
1209 
1210 static void ext4_da_release_space(struct inode *inode, int to_free)
1211 {
1212 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1213 	struct ext4_inode_info *ei = EXT4_I(inode);
1214 
1215 	if (!to_free)
1216 		return;		/* Nothing to release, exit */
1217 
1218 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1219 
1220 	trace_ext4_da_release_space(inode, to_free);
1221 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1222 		/*
1223 		 * if there aren't enough reserved blocks, then the
1224 		 * counter is messed up somewhere.  Since this
1225 		 * function is called from invalidate page, it's
1226 		 * harmless to return without any action.
1227 		 */
1228 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1229 			 "ino %lu, to_free %d with only %d reserved "
1230 			 "data blocks", inode->i_ino, to_free,
1231 			 ei->i_reserved_data_blocks);
1232 		WARN_ON(1);
1233 		to_free = ei->i_reserved_data_blocks;
1234 	}
1235 	ei->i_reserved_data_blocks -= to_free;
1236 
1237 	/* update fs dirty data blocks counter */
1238 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1239 
1240 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1241 
1242 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1243 }
1244 
1245 static void ext4_da_page_release_reservation(struct page *page,
1246 					     unsigned int offset,
1247 					     unsigned int length)
1248 {
1249 	int to_release = 0;
1250 	struct buffer_head *head, *bh;
1251 	unsigned int curr_off = 0;
1252 	struct inode *inode = page->mapping->host;
1253 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1254 	unsigned int stop = offset + length;
1255 	int num_clusters;
1256 	ext4_fsblk_t lblk;
1257 
1258 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1259 
1260 	head = page_buffers(page);
1261 	bh = head;
1262 	do {
1263 		unsigned int next_off = curr_off + bh->b_size;
1264 
1265 		if (next_off > stop)
1266 			break;
1267 
1268 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1269 			to_release++;
1270 			clear_buffer_delay(bh);
1271 		}
1272 		curr_off = next_off;
1273 	} while ((bh = bh->b_this_page) != head);
1274 
1275 	if (to_release) {
1276 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1277 		ext4_es_remove_extent(inode, lblk, to_release);
1278 	}
1279 
1280 	/* If we have released all the blocks belonging to a cluster, then we
1281 	 * need to release the reserved space for that cluster. */
1282 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1283 	while (num_clusters > 0) {
1284 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1285 			((num_clusters - 1) << sbi->s_cluster_bits);
1286 		if (sbi->s_cluster_ratio == 1 ||
1287 		    !ext4_find_delalloc_cluster(inode, lblk))
1288 			ext4_da_release_space(inode, 1);
1289 
1290 		num_clusters--;
1291 	}
1292 }
1293 
1294 /*
1295  * Delayed allocation stuff
1296  */
1297 
1298 struct mpage_da_data {
1299 	struct inode *inode;
1300 	struct writeback_control *wbc;
1301 
1302 	pgoff_t first_page;	/* The first page to write */
1303 	pgoff_t next_page;	/* Current page to examine */
1304 	pgoff_t last_page;	/* Last page to examine */
1305 	/*
1306 	 * Extent to map - this can be after first_page because that can be
1307 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1308 	 * is delalloc or unwritten.
1309 	 */
1310 	struct ext4_map_blocks map;
1311 	struct ext4_io_submit io_submit;	/* IO submission data */
1312 };
1313 
1314 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1315 				       bool invalidate)
1316 {
1317 	int nr_pages, i;
1318 	pgoff_t index, end;
1319 	struct pagevec pvec;
1320 	struct inode *inode = mpd->inode;
1321 	struct address_space *mapping = inode->i_mapping;
1322 
1323 	/* This is necessary when next_page == 0. */
1324 	if (mpd->first_page >= mpd->next_page)
1325 		return;
1326 
1327 	index = mpd->first_page;
1328 	end   = mpd->next_page - 1;
1329 	if (invalidate) {
1330 		ext4_lblk_t start, last;
1331 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1332 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1333 		ext4_es_remove_extent(inode, start, last - start + 1);
1334 	}
1335 
1336 	pagevec_init(&pvec, 0);
1337 	while (index <= end) {
1338 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1339 		if (nr_pages == 0)
1340 			break;
1341 		for (i = 0; i < nr_pages; i++) {
1342 			struct page *page = pvec.pages[i];
1343 			if (page->index > end)
1344 				break;
1345 			BUG_ON(!PageLocked(page));
1346 			BUG_ON(PageWriteback(page));
1347 			if (invalidate) {
1348 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1349 				ClearPageUptodate(page);
1350 			}
1351 			unlock_page(page);
1352 		}
1353 		index = pvec.pages[nr_pages - 1]->index + 1;
1354 		pagevec_release(&pvec);
1355 	}
1356 }
1357 
1358 static void ext4_print_free_blocks(struct inode *inode)
1359 {
1360 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1361 	struct super_block *sb = inode->i_sb;
1362 	struct ext4_inode_info *ei = EXT4_I(inode);
1363 
1364 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1365 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1366 			ext4_count_free_clusters(sb)));
1367 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1368 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1369 	       (long long) EXT4_C2B(EXT4_SB(sb),
1370 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1371 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1372 	       (long long) EXT4_C2B(EXT4_SB(sb),
1373 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1374 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1375 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1376 		 ei->i_reserved_data_blocks);
1377 	return;
1378 }
1379 
1380 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1381 {
1382 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1383 }
1384 
1385 /*
1386  * This function is grabs code from the very beginning of
1387  * ext4_map_blocks, but assumes that the caller is from delayed write
1388  * time. This function looks up the requested blocks and sets the
1389  * buffer delay bit under the protection of i_data_sem.
1390  */
1391 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1392 			      struct ext4_map_blocks *map,
1393 			      struct buffer_head *bh)
1394 {
1395 	struct extent_status es;
1396 	int retval;
1397 	sector_t invalid_block = ~((sector_t) 0xffff);
1398 #ifdef ES_AGGRESSIVE_TEST
1399 	struct ext4_map_blocks orig_map;
1400 
1401 	memcpy(&orig_map, map, sizeof(*map));
1402 #endif
1403 
1404 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1405 		invalid_block = ~0;
1406 
1407 	map->m_flags = 0;
1408 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1409 		  "logical block %lu\n", inode->i_ino, map->m_len,
1410 		  (unsigned long) map->m_lblk);
1411 
1412 	/* Lookup extent status tree firstly */
1413 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1414 		if (ext4_es_is_hole(&es)) {
1415 			retval = 0;
1416 			down_read(&EXT4_I(inode)->i_data_sem);
1417 			goto add_delayed;
1418 		}
1419 
1420 		/*
1421 		 * Delayed extent could be allocated by fallocate.
1422 		 * So we need to check it.
1423 		 */
1424 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1425 			map_bh(bh, inode->i_sb, invalid_block);
1426 			set_buffer_new(bh);
1427 			set_buffer_delay(bh);
1428 			return 0;
1429 		}
1430 
1431 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1432 		retval = es.es_len - (iblock - es.es_lblk);
1433 		if (retval > map->m_len)
1434 			retval = map->m_len;
1435 		map->m_len = retval;
1436 		if (ext4_es_is_written(&es))
1437 			map->m_flags |= EXT4_MAP_MAPPED;
1438 		else if (ext4_es_is_unwritten(&es))
1439 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1440 		else
1441 			BUG_ON(1);
1442 
1443 #ifdef ES_AGGRESSIVE_TEST
1444 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1445 #endif
1446 		return retval;
1447 	}
1448 
1449 	/*
1450 	 * Try to see if we can get the block without requesting a new
1451 	 * file system block.
1452 	 */
1453 	down_read(&EXT4_I(inode)->i_data_sem);
1454 	if (ext4_has_inline_data(inode))
1455 		retval = 0;
1456 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1457 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1458 	else
1459 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1460 
1461 add_delayed:
1462 	if (retval == 0) {
1463 		int ret;
1464 		/*
1465 		 * XXX: __block_prepare_write() unmaps passed block,
1466 		 * is it OK?
1467 		 */
1468 		/*
1469 		 * If the block was allocated from previously allocated cluster,
1470 		 * then we don't need to reserve it again. However we still need
1471 		 * to reserve metadata for every block we're going to write.
1472 		 */
1473 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1474 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1475 			ret = ext4_da_reserve_space(inode, iblock);
1476 			if (ret) {
1477 				/* not enough space to reserve */
1478 				retval = ret;
1479 				goto out_unlock;
1480 			}
1481 		}
1482 
1483 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1484 					    ~0, EXTENT_STATUS_DELAYED);
1485 		if (ret) {
1486 			retval = ret;
1487 			goto out_unlock;
1488 		}
1489 
1490 		map_bh(bh, inode->i_sb, invalid_block);
1491 		set_buffer_new(bh);
1492 		set_buffer_delay(bh);
1493 	} else if (retval > 0) {
1494 		int ret;
1495 		unsigned int status;
1496 
1497 		if (unlikely(retval != map->m_len)) {
1498 			ext4_warning(inode->i_sb,
1499 				     "ES len assertion failed for inode "
1500 				     "%lu: retval %d != map->m_len %d",
1501 				     inode->i_ino, retval, map->m_len);
1502 			WARN_ON(1);
1503 		}
1504 
1505 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1506 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1507 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1508 					    map->m_pblk, status);
1509 		if (ret != 0)
1510 			retval = ret;
1511 	}
1512 
1513 out_unlock:
1514 	up_read((&EXT4_I(inode)->i_data_sem));
1515 
1516 	return retval;
1517 }
1518 
1519 /*
1520  * This is a special get_block_t callback which is used by
1521  * ext4_da_write_begin().  It will either return mapped block or
1522  * reserve space for a single block.
1523  *
1524  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1525  * We also have b_blocknr = -1 and b_bdev initialized properly
1526  *
1527  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1528  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1529  * initialized properly.
1530  */
1531 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1532 			   struct buffer_head *bh, int create)
1533 {
1534 	struct ext4_map_blocks map;
1535 	int ret = 0;
1536 
1537 	BUG_ON(create == 0);
1538 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1539 
1540 	map.m_lblk = iblock;
1541 	map.m_len = 1;
1542 
1543 	/*
1544 	 * first, we need to know whether the block is allocated already
1545 	 * preallocated blocks are unmapped but should treated
1546 	 * the same as allocated blocks.
1547 	 */
1548 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1549 	if (ret <= 0)
1550 		return ret;
1551 
1552 	map_bh(bh, inode->i_sb, map.m_pblk);
1553 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1554 
1555 	if (buffer_unwritten(bh)) {
1556 		/* A delayed write to unwritten bh should be marked
1557 		 * new and mapped.  Mapped ensures that we don't do
1558 		 * get_block multiple times when we write to the same
1559 		 * offset and new ensures that we do proper zero out
1560 		 * for partial write.
1561 		 */
1562 		set_buffer_new(bh);
1563 		set_buffer_mapped(bh);
1564 	}
1565 	return 0;
1566 }
1567 
1568 static int bget_one(handle_t *handle, struct buffer_head *bh)
1569 {
1570 	get_bh(bh);
1571 	return 0;
1572 }
1573 
1574 static int bput_one(handle_t *handle, struct buffer_head *bh)
1575 {
1576 	put_bh(bh);
1577 	return 0;
1578 }
1579 
1580 static int __ext4_journalled_writepage(struct page *page,
1581 				       unsigned int len)
1582 {
1583 	struct address_space *mapping = page->mapping;
1584 	struct inode *inode = mapping->host;
1585 	struct buffer_head *page_bufs = NULL;
1586 	handle_t *handle = NULL;
1587 	int ret = 0, err = 0;
1588 	int inline_data = ext4_has_inline_data(inode);
1589 	struct buffer_head *inode_bh = NULL;
1590 
1591 	ClearPageChecked(page);
1592 
1593 	if (inline_data) {
1594 		BUG_ON(page->index != 0);
1595 		BUG_ON(len > ext4_get_max_inline_size(inode));
1596 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1597 		if (inode_bh == NULL)
1598 			goto out;
1599 	} else {
1600 		page_bufs = page_buffers(page);
1601 		if (!page_bufs) {
1602 			BUG();
1603 			goto out;
1604 		}
1605 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1606 				       NULL, bget_one);
1607 	}
1608 	/* As soon as we unlock the page, it can go away, but we have
1609 	 * references to buffers so we are safe */
1610 	unlock_page(page);
1611 
1612 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1613 				    ext4_writepage_trans_blocks(inode));
1614 	if (IS_ERR(handle)) {
1615 		ret = PTR_ERR(handle);
1616 		goto out;
1617 	}
1618 
1619 	BUG_ON(!ext4_handle_valid(handle));
1620 
1621 	if (inline_data) {
1622 		BUFFER_TRACE(inode_bh, "get write access");
1623 		ret = ext4_journal_get_write_access(handle, inode_bh);
1624 
1625 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1626 
1627 	} else {
1628 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1629 					     do_journal_get_write_access);
1630 
1631 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1632 					     write_end_fn);
1633 	}
1634 	if (ret == 0)
1635 		ret = err;
1636 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1637 	err = ext4_journal_stop(handle);
1638 	if (!ret)
1639 		ret = err;
1640 
1641 	if (!ext4_has_inline_data(inode))
1642 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1643 				       NULL, bput_one);
1644 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1645 out:
1646 	brelse(inode_bh);
1647 	return ret;
1648 }
1649 
1650 /*
1651  * Note that we don't need to start a transaction unless we're journaling data
1652  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1653  * need to file the inode to the transaction's list in ordered mode because if
1654  * we are writing back data added by write(), the inode is already there and if
1655  * we are writing back data modified via mmap(), no one guarantees in which
1656  * transaction the data will hit the disk. In case we are journaling data, we
1657  * cannot start transaction directly because transaction start ranks above page
1658  * lock so we have to do some magic.
1659  *
1660  * This function can get called via...
1661  *   - ext4_writepages after taking page lock (have journal handle)
1662  *   - journal_submit_inode_data_buffers (no journal handle)
1663  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1664  *   - grab_page_cache when doing write_begin (have journal handle)
1665  *
1666  * We don't do any block allocation in this function. If we have page with
1667  * multiple blocks we need to write those buffer_heads that are mapped. This
1668  * is important for mmaped based write. So if we do with blocksize 1K
1669  * truncate(f, 1024);
1670  * a = mmap(f, 0, 4096);
1671  * a[0] = 'a';
1672  * truncate(f, 4096);
1673  * we have in the page first buffer_head mapped via page_mkwrite call back
1674  * but other buffer_heads would be unmapped but dirty (dirty done via the
1675  * do_wp_page). So writepage should write the first block. If we modify
1676  * the mmap area beyond 1024 we will again get a page_fault and the
1677  * page_mkwrite callback will do the block allocation and mark the
1678  * buffer_heads mapped.
1679  *
1680  * We redirty the page if we have any buffer_heads that is either delay or
1681  * unwritten in the page.
1682  *
1683  * We can get recursively called as show below.
1684  *
1685  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1686  *		ext4_writepage()
1687  *
1688  * But since we don't do any block allocation we should not deadlock.
1689  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1690  */
1691 static int ext4_writepage(struct page *page,
1692 			  struct writeback_control *wbc)
1693 {
1694 	int ret = 0;
1695 	loff_t size;
1696 	unsigned int len;
1697 	struct buffer_head *page_bufs = NULL;
1698 	struct inode *inode = page->mapping->host;
1699 	struct ext4_io_submit io_submit;
1700 	bool keep_towrite = false;
1701 
1702 	trace_ext4_writepage(page);
1703 	size = i_size_read(inode);
1704 	if (page->index == size >> PAGE_CACHE_SHIFT)
1705 		len = size & ~PAGE_CACHE_MASK;
1706 	else
1707 		len = PAGE_CACHE_SIZE;
1708 
1709 	page_bufs = page_buffers(page);
1710 	/*
1711 	 * We cannot do block allocation or other extent handling in this
1712 	 * function. If there are buffers needing that, we have to redirty
1713 	 * the page. But we may reach here when we do a journal commit via
1714 	 * journal_submit_inode_data_buffers() and in that case we must write
1715 	 * allocated buffers to achieve data=ordered mode guarantees.
1716 	 */
1717 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1718 				   ext4_bh_delay_or_unwritten)) {
1719 		redirty_page_for_writepage(wbc, page);
1720 		if (current->flags & PF_MEMALLOC) {
1721 			/*
1722 			 * For memory cleaning there's no point in writing only
1723 			 * some buffers. So just bail out. Warn if we came here
1724 			 * from direct reclaim.
1725 			 */
1726 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1727 							== PF_MEMALLOC);
1728 			unlock_page(page);
1729 			return 0;
1730 		}
1731 		keep_towrite = true;
1732 	}
1733 
1734 	if (PageChecked(page) && ext4_should_journal_data(inode))
1735 		/*
1736 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1737 		 * doesn't seem much point in redirtying the page here.
1738 		 */
1739 		return __ext4_journalled_writepage(page, len);
1740 
1741 	ext4_io_submit_init(&io_submit, wbc);
1742 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1743 	if (!io_submit.io_end) {
1744 		redirty_page_for_writepage(wbc, page);
1745 		unlock_page(page);
1746 		return -ENOMEM;
1747 	}
1748 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1749 	ext4_io_submit(&io_submit);
1750 	/* Drop io_end reference we got from init */
1751 	ext4_put_io_end_defer(io_submit.io_end);
1752 	return ret;
1753 }
1754 
1755 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1756 {
1757 	int len;
1758 	loff_t size = i_size_read(mpd->inode);
1759 	int err;
1760 
1761 	BUG_ON(page->index != mpd->first_page);
1762 	if (page->index == size >> PAGE_CACHE_SHIFT)
1763 		len = size & ~PAGE_CACHE_MASK;
1764 	else
1765 		len = PAGE_CACHE_SIZE;
1766 	clear_page_dirty_for_io(page);
1767 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1768 	if (!err)
1769 		mpd->wbc->nr_to_write--;
1770 	mpd->first_page++;
1771 
1772 	return err;
1773 }
1774 
1775 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1776 
1777 /*
1778  * mballoc gives us at most this number of blocks...
1779  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1780  * The rest of mballoc seems to handle chunks up to full group size.
1781  */
1782 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1783 
1784 /*
1785  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1786  *
1787  * @mpd - extent of blocks
1788  * @lblk - logical number of the block in the file
1789  * @bh - buffer head we want to add to the extent
1790  *
1791  * The function is used to collect contig. blocks in the same state. If the
1792  * buffer doesn't require mapping for writeback and we haven't started the
1793  * extent of buffers to map yet, the function returns 'true' immediately - the
1794  * caller can write the buffer right away. Otherwise the function returns true
1795  * if the block has been added to the extent, false if the block couldn't be
1796  * added.
1797  */
1798 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1799 				   struct buffer_head *bh)
1800 {
1801 	struct ext4_map_blocks *map = &mpd->map;
1802 
1803 	/* Buffer that doesn't need mapping for writeback? */
1804 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1805 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1806 		/* So far no extent to map => we write the buffer right away */
1807 		if (map->m_len == 0)
1808 			return true;
1809 		return false;
1810 	}
1811 
1812 	/* First block in the extent? */
1813 	if (map->m_len == 0) {
1814 		map->m_lblk = lblk;
1815 		map->m_len = 1;
1816 		map->m_flags = bh->b_state & BH_FLAGS;
1817 		return true;
1818 	}
1819 
1820 	/* Don't go larger than mballoc is willing to allocate */
1821 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1822 		return false;
1823 
1824 	/* Can we merge the block to our big extent? */
1825 	if (lblk == map->m_lblk + map->m_len &&
1826 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1827 		map->m_len++;
1828 		return true;
1829 	}
1830 	return false;
1831 }
1832 
1833 /*
1834  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1835  *
1836  * @mpd - extent of blocks for mapping
1837  * @head - the first buffer in the page
1838  * @bh - buffer we should start processing from
1839  * @lblk - logical number of the block in the file corresponding to @bh
1840  *
1841  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1842  * the page for IO if all buffers in this page were mapped and there's no
1843  * accumulated extent of buffers to map or add buffers in the page to the
1844  * extent of buffers to map. The function returns 1 if the caller can continue
1845  * by processing the next page, 0 if it should stop adding buffers to the
1846  * extent to map because we cannot extend it anymore. It can also return value
1847  * < 0 in case of error during IO submission.
1848  */
1849 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1850 				   struct buffer_head *head,
1851 				   struct buffer_head *bh,
1852 				   ext4_lblk_t lblk)
1853 {
1854 	struct inode *inode = mpd->inode;
1855 	int err;
1856 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1857 							>> inode->i_blkbits;
1858 
1859 	do {
1860 		BUG_ON(buffer_locked(bh));
1861 
1862 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1863 			/* Found extent to map? */
1864 			if (mpd->map.m_len)
1865 				return 0;
1866 			/* Everything mapped so far and we hit EOF */
1867 			break;
1868 		}
1869 	} while (lblk++, (bh = bh->b_this_page) != head);
1870 	/* So far everything mapped? Submit the page for IO. */
1871 	if (mpd->map.m_len == 0) {
1872 		err = mpage_submit_page(mpd, head->b_page);
1873 		if (err < 0)
1874 			return err;
1875 	}
1876 	return lblk < blocks;
1877 }
1878 
1879 /*
1880  * mpage_map_buffers - update buffers corresponding to changed extent and
1881  *		       submit fully mapped pages for IO
1882  *
1883  * @mpd - description of extent to map, on return next extent to map
1884  *
1885  * Scan buffers corresponding to changed extent (we expect corresponding pages
1886  * to be already locked) and update buffer state according to new extent state.
1887  * We map delalloc buffers to their physical location, clear unwritten bits,
1888  * and mark buffers as uninit when we perform writes to unwritten extents
1889  * and do extent conversion after IO is finished. If the last page is not fully
1890  * mapped, we update @map to the next extent in the last page that needs
1891  * mapping. Otherwise we submit the page for IO.
1892  */
1893 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1894 {
1895 	struct pagevec pvec;
1896 	int nr_pages, i;
1897 	struct inode *inode = mpd->inode;
1898 	struct buffer_head *head, *bh;
1899 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1900 	pgoff_t start, end;
1901 	ext4_lblk_t lblk;
1902 	sector_t pblock;
1903 	int err;
1904 
1905 	start = mpd->map.m_lblk >> bpp_bits;
1906 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1907 	lblk = start << bpp_bits;
1908 	pblock = mpd->map.m_pblk;
1909 
1910 	pagevec_init(&pvec, 0);
1911 	while (start <= end) {
1912 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1913 					  PAGEVEC_SIZE);
1914 		if (nr_pages == 0)
1915 			break;
1916 		for (i = 0; i < nr_pages; i++) {
1917 			struct page *page = pvec.pages[i];
1918 
1919 			if (page->index > end)
1920 				break;
1921 			/* Up to 'end' pages must be contiguous */
1922 			BUG_ON(page->index != start);
1923 			bh = head = page_buffers(page);
1924 			do {
1925 				if (lblk < mpd->map.m_lblk)
1926 					continue;
1927 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1928 					/*
1929 					 * Buffer after end of mapped extent.
1930 					 * Find next buffer in the page to map.
1931 					 */
1932 					mpd->map.m_len = 0;
1933 					mpd->map.m_flags = 0;
1934 					/*
1935 					 * FIXME: If dioread_nolock supports
1936 					 * blocksize < pagesize, we need to make
1937 					 * sure we add size mapped so far to
1938 					 * io_end->size as the following call
1939 					 * can submit the page for IO.
1940 					 */
1941 					err = mpage_process_page_bufs(mpd, head,
1942 								      bh, lblk);
1943 					pagevec_release(&pvec);
1944 					if (err > 0)
1945 						err = 0;
1946 					return err;
1947 				}
1948 				if (buffer_delay(bh)) {
1949 					clear_buffer_delay(bh);
1950 					bh->b_blocknr = pblock++;
1951 				}
1952 				clear_buffer_unwritten(bh);
1953 			} while (lblk++, (bh = bh->b_this_page) != head);
1954 
1955 			/*
1956 			 * FIXME: This is going to break if dioread_nolock
1957 			 * supports blocksize < pagesize as we will try to
1958 			 * convert potentially unmapped parts of inode.
1959 			 */
1960 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1961 			/* Page fully mapped - let IO run! */
1962 			err = mpage_submit_page(mpd, page);
1963 			if (err < 0) {
1964 				pagevec_release(&pvec);
1965 				return err;
1966 			}
1967 			start++;
1968 		}
1969 		pagevec_release(&pvec);
1970 	}
1971 	/* Extent fully mapped and matches with page boundary. We are done. */
1972 	mpd->map.m_len = 0;
1973 	mpd->map.m_flags = 0;
1974 	return 0;
1975 }
1976 
1977 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1978 {
1979 	struct inode *inode = mpd->inode;
1980 	struct ext4_map_blocks *map = &mpd->map;
1981 	int get_blocks_flags;
1982 	int err, dioread_nolock;
1983 
1984 	trace_ext4_da_write_pages_extent(inode, map);
1985 	/*
1986 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1987 	 * to convert an unwritten extent to be initialized (in the case
1988 	 * where we have written into one or more preallocated blocks).  It is
1989 	 * possible that we're going to need more metadata blocks than
1990 	 * previously reserved. However we must not fail because we're in
1991 	 * writeback and there is nothing we can do about it so it might result
1992 	 * in data loss.  So use reserved blocks to allocate metadata if
1993 	 * possible.
1994 	 *
1995 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1996 	 * the blocks in question are delalloc blocks.  This indicates
1997 	 * that the blocks and quotas has already been checked when
1998 	 * the data was copied into the page cache.
1999 	 */
2000 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2001 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2002 	dioread_nolock = ext4_should_dioread_nolock(inode);
2003 	if (dioread_nolock)
2004 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2005 	if (map->m_flags & (1 << BH_Delay))
2006 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2007 
2008 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2009 	if (err < 0)
2010 		return err;
2011 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2012 		if (!mpd->io_submit.io_end->handle &&
2013 		    ext4_handle_valid(handle)) {
2014 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2015 			handle->h_rsv_handle = NULL;
2016 		}
2017 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2018 	}
2019 
2020 	BUG_ON(map->m_len == 0);
2021 	if (map->m_flags & EXT4_MAP_NEW) {
2022 		struct block_device *bdev = inode->i_sb->s_bdev;
2023 		int i;
2024 
2025 		for (i = 0; i < map->m_len; i++)
2026 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2027 	}
2028 	return 0;
2029 }
2030 
2031 /*
2032  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2033  *				 mpd->len and submit pages underlying it for IO
2034  *
2035  * @handle - handle for journal operations
2036  * @mpd - extent to map
2037  * @give_up_on_write - we set this to true iff there is a fatal error and there
2038  *                     is no hope of writing the data. The caller should discard
2039  *                     dirty pages to avoid infinite loops.
2040  *
2041  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2042  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2043  * them to initialized or split the described range from larger unwritten
2044  * extent. Note that we need not map all the described range since allocation
2045  * can return less blocks or the range is covered by more unwritten extents. We
2046  * cannot map more because we are limited by reserved transaction credits. On
2047  * the other hand we always make sure that the last touched page is fully
2048  * mapped so that it can be written out (and thus forward progress is
2049  * guaranteed). After mapping we submit all mapped pages for IO.
2050  */
2051 static int mpage_map_and_submit_extent(handle_t *handle,
2052 				       struct mpage_da_data *mpd,
2053 				       bool *give_up_on_write)
2054 {
2055 	struct inode *inode = mpd->inode;
2056 	struct ext4_map_blocks *map = &mpd->map;
2057 	int err;
2058 	loff_t disksize;
2059 	int progress = 0;
2060 
2061 	mpd->io_submit.io_end->offset =
2062 				((loff_t)map->m_lblk) << inode->i_blkbits;
2063 	do {
2064 		err = mpage_map_one_extent(handle, mpd);
2065 		if (err < 0) {
2066 			struct super_block *sb = inode->i_sb;
2067 
2068 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2069 				goto invalidate_dirty_pages;
2070 			/*
2071 			 * Let the uper layers retry transient errors.
2072 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2073 			 * is non-zero, a commit should free up blocks.
2074 			 */
2075 			if ((err == -ENOMEM) ||
2076 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2077 				if (progress)
2078 					goto update_disksize;
2079 				return err;
2080 			}
2081 			ext4_msg(sb, KERN_CRIT,
2082 				 "Delayed block allocation failed for "
2083 				 "inode %lu at logical offset %llu with"
2084 				 " max blocks %u with error %d",
2085 				 inode->i_ino,
2086 				 (unsigned long long)map->m_lblk,
2087 				 (unsigned)map->m_len, -err);
2088 			ext4_msg(sb, KERN_CRIT,
2089 				 "This should not happen!! Data will "
2090 				 "be lost\n");
2091 			if (err == -ENOSPC)
2092 				ext4_print_free_blocks(inode);
2093 		invalidate_dirty_pages:
2094 			*give_up_on_write = true;
2095 			return err;
2096 		}
2097 		progress = 1;
2098 		/*
2099 		 * Update buffer state, submit mapped pages, and get us new
2100 		 * extent to map
2101 		 */
2102 		err = mpage_map_and_submit_buffers(mpd);
2103 		if (err < 0)
2104 			goto update_disksize;
2105 	} while (map->m_len);
2106 
2107 update_disksize:
2108 	/*
2109 	 * Update on-disk size after IO is submitted.  Races with
2110 	 * truncate are avoided by checking i_size under i_data_sem.
2111 	 */
2112 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2113 	if (disksize > EXT4_I(inode)->i_disksize) {
2114 		int err2;
2115 		loff_t i_size;
2116 
2117 		down_write(&EXT4_I(inode)->i_data_sem);
2118 		i_size = i_size_read(inode);
2119 		if (disksize > i_size)
2120 			disksize = i_size;
2121 		if (disksize > EXT4_I(inode)->i_disksize)
2122 			EXT4_I(inode)->i_disksize = disksize;
2123 		err2 = ext4_mark_inode_dirty(handle, inode);
2124 		up_write(&EXT4_I(inode)->i_data_sem);
2125 		if (err2)
2126 			ext4_error(inode->i_sb,
2127 				   "Failed to mark inode %lu dirty",
2128 				   inode->i_ino);
2129 		if (!err)
2130 			err = err2;
2131 	}
2132 	return err;
2133 }
2134 
2135 /*
2136  * Calculate the total number of credits to reserve for one writepages
2137  * iteration. This is called from ext4_writepages(). We map an extent of
2138  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2139  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2140  * bpp - 1 blocks in bpp different extents.
2141  */
2142 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2143 {
2144 	int bpp = ext4_journal_blocks_per_page(inode);
2145 
2146 	return ext4_meta_trans_blocks(inode,
2147 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2148 }
2149 
2150 /*
2151  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2152  * 				 and underlying extent to map
2153  *
2154  * @mpd - where to look for pages
2155  *
2156  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2157  * IO immediately. When we find a page which isn't mapped we start accumulating
2158  * extent of buffers underlying these pages that needs mapping (formed by
2159  * either delayed or unwritten buffers). We also lock the pages containing
2160  * these buffers. The extent found is returned in @mpd structure (starting at
2161  * mpd->lblk with length mpd->len blocks).
2162  *
2163  * Note that this function can attach bios to one io_end structure which are
2164  * neither logically nor physically contiguous. Although it may seem as an
2165  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2166  * case as we need to track IO to all buffers underlying a page in one io_end.
2167  */
2168 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2169 {
2170 	struct address_space *mapping = mpd->inode->i_mapping;
2171 	struct pagevec pvec;
2172 	unsigned int nr_pages;
2173 	long left = mpd->wbc->nr_to_write;
2174 	pgoff_t index = mpd->first_page;
2175 	pgoff_t end = mpd->last_page;
2176 	int tag;
2177 	int i, err = 0;
2178 	int blkbits = mpd->inode->i_blkbits;
2179 	ext4_lblk_t lblk;
2180 	struct buffer_head *head;
2181 
2182 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2183 		tag = PAGECACHE_TAG_TOWRITE;
2184 	else
2185 		tag = PAGECACHE_TAG_DIRTY;
2186 
2187 	pagevec_init(&pvec, 0);
2188 	mpd->map.m_len = 0;
2189 	mpd->next_page = index;
2190 	while (index <= end) {
2191 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2192 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2193 		if (nr_pages == 0)
2194 			goto out;
2195 
2196 		for (i = 0; i < nr_pages; i++) {
2197 			struct page *page = pvec.pages[i];
2198 
2199 			/*
2200 			 * At this point, the page may be truncated or
2201 			 * invalidated (changing page->mapping to NULL), or
2202 			 * even swizzled back from swapper_space to tmpfs file
2203 			 * mapping. However, page->index will not change
2204 			 * because we have a reference on the page.
2205 			 */
2206 			if (page->index > end)
2207 				goto out;
2208 
2209 			/*
2210 			 * Accumulated enough dirty pages? This doesn't apply
2211 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2212 			 * keep going because someone may be concurrently
2213 			 * dirtying pages, and we might have synced a lot of
2214 			 * newly appeared dirty pages, but have not synced all
2215 			 * of the old dirty pages.
2216 			 */
2217 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2218 				goto out;
2219 
2220 			/* If we can't merge this page, we are done. */
2221 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2222 				goto out;
2223 
2224 			lock_page(page);
2225 			/*
2226 			 * If the page is no longer dirty, or its mapping no
2227 			 * longer corresponds to inode we are writing (which
2228 			 * means it has been truncated or invalidated), or the
2229 			 * page is already under writeback and we are not doing
2230 			 * a data integrity writeback, skip the page
2231 			 */
2232 			if (!PageDirty(page) ||
2233 			    (PageWriteback(page) &&
2234 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2235 			    unlikely(page->mapping != mapping)) {
2236 				unlock_page(page);
2237 				continue;
2238 			}
2239 
2240 			wait_on_page_writeback(page);
2241 			BUG_ON(PageWriteback(page));
2242 
2243 			if (mpd->map.m_len == 0)
2244 				mpd->first_page = page->index;
2245 			mpd->next_page = page->index + 1;
2246 			/* Add all dirty buffers to mpd */
2247 			lblk = ((ext4_lblk_t)page->index) <<
2248 				(PAGE_CACHE_SHIFT - blkbits);
2249 			head = page_buffers(page);
2250 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2251 			if (err <= 0)
2252 				goto out;
2253 			err = 0;
2254 			left--;
2255 		}
2256 		pagevec_release(&pvec);
2257 		cond_resched();
2258 	}
2259 	return 0;
2260 out:
2261 	pagevec_release(&pvec);
2262 	return err;
2263 }
2264 
2265 static int __writepage(struct page *page, struct writeback_control *wbc,
2266 		       void *data)
2267 {
2268 	struct address_space *mapping = data;
2269 	int ret = ext4_writepage(page, wbc);
2270 	mapping_set_error(mapping, ret);
2271 	return ret;
2272 }
2273 
2274 static int ext4_writepages(struct address_space *mapping,
2275 			   struct writeback_control *wbc)
2276 {
2277 	pgoff_t	writeback_index = 0;
2278 	long nr_to_write = wbc->nr_to_write;
2279 	int range_whole = 0;
2280 	int cycled = 1;
2281 	handle_t *handle = NULL;
2282 	struct mpage_da_data mpd;
2283 	struct inode *inode = mapping->host;
2284 	int needed_blocks, rsv_blocks = 0, ret = 0;
2285 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2286 	bool done;
2287 	struct blk_plug plug;
2288 	bool give_up_on_write = false;
2289 
2290 	trace_ext4_writepages(inode, wbc);
2291 
2292 	/*
2293 	 * No pages to write? This is mainly a kludge to avoid starting
2294 	 * a transaction for special inodes like journal inode on last iput()
2295 	 * because that could violate lock ordering on umount
2296 	 */
2297 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2298 		goto out_writepages;
2299 
2300 	if (ext4_should_journal_data(inode)) {
2301 		struct blk_plug plug;
2302 
2303 		blk_start_plug(&plug);
2304 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2305 		blk_finish_plug(&plug);
2306 		goto out_writepages;
2307 	}
2308 
2309 	/*
2310 	 * If the filesystem has aborted, it is read-only, so return
2311 	 * right away instead of dumping stack traces later on that
2312 	 * will obscure the real source of the problem.  We test
2313 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2314 	 * the latter could be true if the filesystem is mounted
2315 	 * read-only, and in that case, ext4_writepages should
2316 	 * *never* be called, so if that ever happens, we would want
2317 	 * the stack trace.
2318 	 */
2319 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2320 		ret = -EROFS;
2321 		goto out_writepages;
2322 	}
2323 
2324 	if (ext4_should_dioread_nolock(inode)) {
2325 		/*
2326 		 * We may need to convert up to one extent per block in
2327 		 * the page and we may dirty the inode.
2328 		 */
2329 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2330 	}
2331 
2332 	/*
2333 	 * If we have inline data and arrive here, it means that
2334 	 * we will soon create the block for the 1st page, so
2335 	 * we'd better clear the inline data here.
2336 	 */
2337 	if (ext4_has_inline_data(inode)) {
2338 		/* Just inode will be modified... */
2339 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2340 		if (IS_ERR(handle)) {
2341 			ret = PTR_ERR(handle);
2342 			goto out_writepages;
2343 		}
2344 		BUG_ON(ext4_test_inode_state(inode,
2345 				EXT4_STATE_MAY_INLINE_DATA));
2346 		ext4_destroy_inline_data(handle, inode);
2347 		ext4_journal_stop(handle);
2348 	}
2349 
2350 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2351 		range_whole = 1;
2352 
2353 	if (wbc->range_cyclic) {
2354 		writeback_index = mapping->writeback_index;
2355 		if (writeback_index)
2356 			cycled = 0;
2357 		mpd.first_page = writeback_index;
2358 		mpd.last_page = -1;
2359 	} else {
2360 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2361 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2362 	}
2363 
2364 	mpd.inode = inode;
2365 	mpd.wbc = wbc;
2366 	ext4_io_submit_init(&mpd.io_submit, wbc);
2367 retry:
2368 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2369 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2370 	done = false;
2371 	blk_start_plug(&plug);
2372 	while (!done && mpd.first_page <= mpd.last_page) {
2373 		/* For each extent of pages we use new io_end */
2374 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2375 		if (!mpd.io_submit.io_end) {
2376 			ret = -ENOMEM;
2377 			break;
2378 		}
2379 
2380 		/*
2381 		 * We have two constraints: We find one extent to map and we
2382 		 * must always write out whole page (makes a difference when
2383 		 * blocksize < pagesize) so that we don't block on IO when we
2384 		 * try to write out the rest of the page. Journalled mode is
2385 		 * not supported by delalloc.
2386 		 */
2387 		BUG_ON(ext4_should_journal_data(inode));
2388 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2389 
2390 		/* start a new transaction */
2391 		handle = ext4_journal_start_with_reserve(inode,
2392 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2393 		if (IS_ERR(handle)) {
2394 			ret = PTR_ERR(handle);
2395 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2396 			       "%ld pages, ino %lu; err %d", __func__,
2397 				wbc->nr_to_write, inode->i_ino, ret);
2398 			/* Release allocated io_end */
2399 			ext4_put_io_end(mpd.io_submit.io_end);
2400 			break;
2401 		}
2402 
2403 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2404 		ret = mpage_prepare_extent_to_map(&mpd);
2405 		if (!ret) {
2406 			if (mpd.map.m_len)
2407 				ret = mpage_map_and_submit_extent(handle, &mpd,
2408 					&give_up_on_write);
2409 			else {
2410 				/*
2411 				 * We scanned the whole range (or exhausted
2412 				 * nr_to_write), submitted what was mapped and
2413 				 * didn't find anything needing mapping. We are
2414 				 * done.
2415 				 */
2416 				done = true;
2417 			}
2418 		}
2419 		ext4_journal_stop(handle);
2420 		/* Submit prepared bio */
2421 		ext4_io_submit(&mpd.io_submit);
2422 		/* Unlock pages we didn't use */
2423 		mpage_release_unused_pages(&mpd, give_up_on_write);
2424 		/* Drop our io_end reference we got from init */
2425 		ext4_put_io_end(mpd.io_submit.io_end);
2426 
2427 		if (ret == -ENOSPC && sbi->s_journal) {
2428 			/*
2429 			 * Commit the transaction which would
2430 			 * free blocks released in the transaction
2431 			 * and try again
2432 			 */
2433 			jbd2_journal_force_commit_nested(sbi->s_journal);
2434 			ret = 0;
2435 			continue;
2436 		}
2437 		/* Fatal error - ENOMEM, EIO... */
2438 		if (ret)
2439 			break;
2440 	}
2441 	blk_finish_plug(&plug);
2442 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2443 		cycled = 1;
2444 		mpd.last_page = writeback_index - 1;
2445 		mpd.first_page = 0;
2446 		goto retry;
2447 	}
2448 
2449 	/* Update index */
2450 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2451 		/*
2452 		 * Set the writeback_index so that range_cyclic
2453 		 * mode will write it back later
2454 		 */
2455 		mapping->writeback_index = mpd.first_page;
2456 
2457 out_writepages:
2458 	trace_ext4_writepages_result(inode, wbc, ret,
2459 				     nr_to_write - wbc->nr_to_write);
2460 	return ret;
2461 }
2462 
2463 static int ext4_nonda_switch(struct super_block *sb)
2464 {
2465 	s64 free_clusters, dirty_clusters;
2466 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2467 
2468 	/*
2469 	 * switch to non delalloc mode if we are running low
2470 	 * on free block. The free block accounting via percpu
2471 	 * counters can get slightly wrong with percpu_counter_batch getting
2472 	 * accumulated on each CPU without updating global counters
2473 	 * Delalloc need an accurate free block accounting. So switch
2474 	 * to non delalloc when we are near to error range.
2475 	 */
2476 	free_clusters =
2477 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2478 	dirty_clusters =
2479 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2480 	/*
2481 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2482 	 */
2483 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2484 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2485 
2486 	if (2 * free_clusters < 3 * dirty_clusters ||
2487 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2488 		/*
2489 		 * free block count is less than 150% of dirty blocks
2490 		 * or free blocks is less than watermark
2491 		 */
2492 		return 1;
2493 	}
2494 	return 0;
2495 }
2496 
2497 /* We always reserve for an inode update; the superblock could be there too */
2498 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2499 {
2500 	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2501 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2502 		return 1;
2503 
2504 	if (pos + len <= 0x7fffffffULL)
2505 		return 1;
2506 
2507 	/* We might need to update the superblock to set LARGE_FILE */
2508 	return 2;
2509 }
2510 
2511 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2512 			       loff_t pos, unsigned len, unsigned flags,
2513 			       struct page **pagep, void **fsdata)
2514 {
2515 	int ret, retries = 0;
2516 	struct page *page;
2517 	pgoff_t index;
2518 	struct inode *inode = mapping->host;
2519 	handle_t *handle;
2520 
2521 	index = pos >> PAGE_CACHE_SHIFT;
2522 
2523 	if (ext4_nonda_switch(inode->i_sb)) {
2524 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2525 		return ext4_write_begin(file, mapping, pos,
2526 					len, flags, pagep, fsdata);
2527 	}
2528 	*fsdata = (void *)0;
2529 	trace_ext4_da_write_begin(inode, pos, len, flags);
2530 
2531 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2532 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2533 						      pos, len, flags,
2534 						      pagep, fsdata);
2535 		if (ret < 0)
2536 			return ret;
2537 		if (ret == 1)
2538 			return 0;
2539 	}
2540 
2541 	/*
2542 	 * grab_cache_page_write_begin() can take a long time if the
2543 	 * system is thrashing due to memory pressure, or if the page
2544 	 * is being written back.  So grab it first before we start
2545 	 * the transaction handle.  This also allows us to allocate
2546 	 * the page (if needed) without using GFP_NOFS.
2547 	 */
2548 retry_grab:
2549 	page = grab_cache_page_write_begin(mapping, index, flags);
2550 	if (!page)
2551 		return -ENOMEM;
2552 	unlock_page(page);
2553 
2554 	/*
2555 	 * With delayed allocation, we don't log the i_disksize update
2556 	 * if there is delayed block allocation. But we still need
2557 	 * to journalling the i_disksize update if writes to the end
2558 	 * of file which has an already mapped buffer.
2559 	 */
2560 retry_journal:
2561 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2562 				ext4_da_write_credits(inode, pos, len));
2563 	if (IS_ERR(handle)) {
2564 		page_cache_release(page);
2565 		return PTR_ERR(handle);
2566 	}
2567 
2568 	lock_page(page);
2569 	if (page->mapping != mapping) {
2570 		/* The page got truncated from under us */
2571 		unlock_page(page);
2572 		page_cache_release(page);
2573 		ext4_journal_stop(handle);
2574 		goto retry_grab;
2575 	}
2576 	/* In case writeback began while the page was unlocked */
2577 	wait_for_stable_page(page);
2578 
2579 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2580 	if (ret < 0) {
2581 		unlock_page(page);
2582 		ext4_journal_stop(handle);
2583 		/*
2584 		 * block_write_begin may have instantiated a few blocks
2585 		 * outside i_size.  Trim these off again. Don't need
2586 		 * i_size_read because we hold i_mutex.
2587 		 */
2588 		if (pos + len > inode->i_size)
2589 			ext4_truncate_failed_write(inode);
2590 
2591 		if (ret == -ENOSPC &&
2592 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2593 			goto retry_journal;
2594 
2595 		page_cache_release(page);
2596 		return ret;
2597 	}
2598 
2599 	*pagep = page;
2600 	return ret;
2601 }
2602 
2603 /*
2604  * Check if we should update i_disksize
2605  * when write to the end of file but not require block allocation
2606  */
2607 static int ext4_da_should_update_i_disksize(struct page *page,
2608 					    unsigned long offset)
2609 {
2610 	struct buffer_head *bh;
2611 	struct inode *inode = page->mapping->host;
2612 	unsigned int idx;
2613 	int i;
2614 
2615 	bh = page_buffers(page);
2616 	idx = offset >> inode->i_blkbits;
2617 
2618 	for (i = 0; i < idx; i++)
2619 		bh = bh->b_this_page;
2620 
2621 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2622 		return 0;
2623 	return 1;
2624 }
2625 
2626 static int ext4_da_write_end(struct file *file,
2627 			     struct address_space *mapping,
2628 			     loff_t pos, unsigned len, unsigned copied,
2629 			     struct page *page, void *fsdata)
2630 {
2631 	struct inode *inode = mapping->host;
2632 	int ret = 0, ret2;
2633 	handle_t *handle = ext4_journal_current_handle();
2634 	loff_t new_i_size;
2635 	unsigned long start, end;
2636 	int write_mode = (int)(unsigned long)fsdata;
2637 
2638 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2639 		return ext4_write_end(file, mapping, pos,
2640 				      len, copied, page, fsdata);
2641 
2642 	trace_ext4_da_write_end(inode, pos, len, copied);
2643 	start = pos & (PAGE_CACHE_SIZE - 1);
2644 	end = start + copied - 1;
2645 
2646 	/*
2647 	 * generic_write_end() will run mark_inode_dirty() if i_size
2648 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2649 	 * into that.
2650 	 */
2651 	new_i_size = pos + copied;
2652 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2653 		if (ext4_has_inline_data(inode) ||
2654 		    ext4_da_should_update_i_disksize(page, end)) {
2655 			ext4_update_i_disksize(inode, new_i_size);
2656 			/* We need to mark inode dirty even if
2657 			 * new_i_size is less that inode->i_size
2658 			 * bu greater than i_disksize.(hint delalloc)
2659 			 */
2660 			ext4_mark_inode_dirty(handle, inode);
2661 		}
2662 	}
2663 
2664 	if (write_mode != CONVERT_INLINE_DATA &&
2665 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2666 	    ext4_has_inline_data(inode))
2667 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2668 						     page);
2669 	else
2670 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2671 							page, fsdata);
2672 
2673 	copied = ret2;
2674 	if (ret2 < 0)
2675 		ret = ret2;
2676 	ret2 = ext4_journal_stop(handle);
2677 	if (!ret)
2678 		ret = ret2;
2679 
2680 	return ret ? ret : copied;
2681 }
2682 
2683 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2684 				   unsigned int length)
2685 {
2686 	/*
2687 	 * Drop reserved blocks
2688 	 */
2689 	BUG_ON(!PageLocked(page));
2690 	if (!page_has_buffers(page))
2691 		goto out;
2692 
2693 	ext4_da_page_release_reservation(page, offset, length);
2694 
2695 out:
2696 	ext4_invalidatepage(page, offset, length);
2697 
2698 	return;
2699 }
2700 
2701 /*
2702  * Force all delayed allocation blocks to be allocated for a given inode.
2703  */
2704 int ext4_alloc_da_blocks(struct inode *inode)
2705 {
2706 	trace_ext4_alloc_da_blocks(inode);
2707 
2708 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2709 		return 0;
2710 
2711 	/*
2712 	 * We do something simple for now.  The filemap_flush() will
2713 	 * also start triggering a write of the data blocks, which is
2714 	 * not strictly speaking necessary (and for users of
2715 	 * laptop_mode, not even desirable).  However, to do otherwise
2716 	 * would require replicating code paths in:
2717 	 *
2718 	 * ext4_writepages() ->
2719 	 *    write_cache_pages() ---> (via passed in callback function)
2720 	 *        __mpage_da_writepage() -->
2721 	 *           mpage_add_bh_to_extent()
2722 	 *           mpage_da_map_blocks()
2723 	 *
2724 	 * The problem is that write_cache_pages(), located in
2725 	 * mm/page-writeback.c, marks pages clean in preparation for
2726 	 * doing I/O, which is not desirable if we're not planning on
2727 	 * doing I/O at all.
2728 	 *
2729 	 * We could call write_cache_pages(), and then redirty all of
2730 	 * the pages by calling redirty_page_for_writepage() but that
2731 	 * would be ugly in the extreme.  So instead we would need to
2732 	 * replicate parts of the code in the above functions,
2733 	 * simplifying them because we wouldn't actually intend to
2734 	 * write out the pages, but rather only collect contiguous
2735 	 * logical block extents, call the multi-block allocator, and
2736 	 * then update the buffer heads with the block allocations.
2737 	 *
2738 	 * For now, though, we'll cheat by calling filemap_flush(),
2739 	 * which will map the blocks, and start the I/O, but not
2740 	 * actually wait for the I/O to complete.
2741 	 */
2742 	return filemap_flush(inode->i_mapping);
2743 }
2744 
2745 /*
2746  * bmap() is special.  It gets used by applications such as lilo and by
2747  * the swapper to find the on-disk block of a specific piece of data.
2748  *
2749  * Naturally, this is dangerous if the block concerned is still in the
2750  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2751  * filesystem and enables swap, then they may get a nasty shock when the
2752  * data getting swapped to that swapfile suddenly gets overwritten by
2753  * the original zero's written out previously to the journal and
2754  * awaiting writeback in the kernel's buffer cache.
2755  *
2756  * So, if we see any bmap calls here on a modified, data-journaled file,
2757  * take extra steps to flush any blocks which might be in the cache.
2758  */
2759 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2760 {
2761 	struct inode *inode = mapping->host;
2762 	journal_t *journal;
2763 	int err;
2764 
2765 	/*
2766 	 * We can get here for an inline file via the FIBMAP ioctl
2767 	 */
2768 	if (ext4_has_inline_data(inode))
2769 		return 0;
2770 
2771 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2772 			test_opt(inode->i_sb, DELALLOC)) {
2773 		/*
2774 		 * With delalloc we want to sync the file
2775 		 * so that we can make sure we allocate
2776 		 * blocks for file
2777 		 */
2778 		filemap_write_and_wait(mapping);
2779 	}
2780 
2781 	if (EXT4_JOURNAL(inode) &&
2782 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2783 		/*
2784 		 * This is a REALLY heavyweight approach, but the use of
2785 		 * bmap on dirty files is expected to be extremely rare:
2786 		 * only if we run lilo or swapon on a freshly made file
2787 		 * do we expect this to happen.
2788 		 *
2789 		 * (bmap requires CAP_SYS_RAWIO so this does not
2790 		 * represent an unprivileged user DOS attack --- we'd be
2791 		 * in trouble if mortal users could trigger this path at
2792 		 * will.)
2793 		 *
2794 		 * NB. EXT4_STATE_JDATA is not set on files other than
2795 		 * regular files.  If somebody wants to bmap a directory
2796 		 * or symlink and gets confused because the buffer
2797 		 * hasn't yet been flushed to disk, they deserve
2798 		 * everything they get.
2799 		 */
2800 
2801 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2802 		journal = EXT4_JOURNAL(inode);
2803 		jbd2_journal_lock_updates(journal);
2804 		err = jbd2_journal_flush(journal);
2805 		jbd2_journal_unlock_updates(journal);
2806 
2807 		if (err)
2808 			return 0;
2809 	}
2810 
2811 	return generic_block_bmap(mapping, block, ext4_get_block);
2812 }
2813 
2814 static int ext4_readpage(struct file *file, struct page *page)
2815 {
2816 	int ret = -EAGAIN;
2817 	struct inode *inode = page->mapping->host;
2818 
2819 	trace_ext4_readpage(page);
2820 
2821 	if (ext4_has_inline_data(inode))
2822 		ret = ext4_readpage_inline(inode, page);
2823 
2824 	if (ret == -EAGAIN)
2825 		return mpage_readpage(page, ext4_get_block);
2826 
2827 	return ret;
2828 }
2829 
2830 static int
2831 ext4_readpages(struct file *file, struct address_space *mapping,
2832 		struct list_head *pages, unsigned nr_pages)
2833 {
2834 	struct inode *inode = mapping->host;
2835 
2836 	/* If the file has inline data, no need to do readpages. */
2837 	if (ext4_has_inline_data(inode))
2838 		return 0;
2839 
2840 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2841 }
2842 
2843 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2844 				unsigned int length)
2845 {
2846 	trace_ext4_invalidatepage(page, offset, length);
2847 
2848 	/* No journalling happens on data buffers when this function is used */
2849 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2850 
2851 	block_invalidatepage(page, offset, length);
2852 }
2853 
2854 static int __ext4_journalled_invalidatepage(struct page *page,
2855 					    unsigned int offset,
2856 					    unsigned int length)
2857 {
2858 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2859 
2860 	trace_ext4_journalled_invalidatepage(page, offset, length);
2861 
2862 	/*
2863 	 * If it's a full truncate we just forget about the pending dirtying
2864 	 */
2865 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2866 		ClearPageChecked(page);
2867 
2868 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2869 }
2870 
2871 /* Wrapper for aops... */
2872 static void ext4_journalled_invalidatepage(struct page *page,
2873 					   unsigned int offset,
2874 					   unsigned int length)
2875 {
2876 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2877 }
2878 
2879 static int ext4_releasepage(struct page *page, gfp_t wait)
2880 {
2881 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2882 
2883 	trace_ext4_releasepage(page);
2884 
2885 	/* Page has dirty journalled data -> cannot release */
2886 	if (PageChecked(page))
2887 		return 0;
2888 	if (journal)
2889 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2890 	else
2891 		return try_to_free_buffers(page);
2892 }
2893 
2894 /*
2895  * ext4_get_block used when preparing for a DIO write or buffer write.
2896  * We allocate an uinitialized extent if blocks haven't been allocated.
2897  * The extent will be converted to initialized after the IO is complete.
2898  */
2899 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2900 		   struct buffer_head *bh_result, int create)
2901 {
2902 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2903 		   inode->i_ino, create);
2904 	return _ext4_get_block(inode, iblock, bh_result,
2905 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2906 }
2907 
2908 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2909 		   struct buffer_head *bh_result, int create)
2910 {
2911 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2912 		   inode->i_ino, create);
2913 	return _ext4_get_block(inode, iblock, bh_result,
2914 			       EXT4_GET_BLOCKS_NO_LOCK);
2915 }
2916 
2917 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2918 			    ssize_t size, void *private)
2919 {
2920         ext4_io_end_t *io_end = iocb->private;
2921 
2922 	/* if not async direct IO just return */
2923 	if (!io_end)
2924 		return;
2925 
2926 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2927 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2928  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2929 		  size);
2930 
2931 	iocb->private = NULL;
2932 	io_end->offset = offset;
2933 	io_end->size = size;
2934 	ext4_put_io_end(io_end);
2935 }
2936 
2937 /*
2938  * For ext4 extent files, ext4 will do direct-io write to holes,
2939  * preallocated extents, and those write extend the file, no need to
2940  * fall back to buffered IO.
2941  *
2942  * For holes, we fallocate those blocks, mark them as unwritten
2943  * If those blocks were preallocated, we mark sure they are split, but
2944  * still keep the range to write as unwritten.
2945  *
2946  * The unwritten extents will be converted to written when DIO is completed.
2947  * For async direct IO, since the IO may still pending when return, we
2948  * set up an end_io call back function, which will do the conversion
2949  * when async direct IO completed.
2950  *
2951  * If the O_DIRECT write will extend the file then add this inode to the
2952  * orphan list.  So recovery will truncate it back to the original size
2953  * if the machine crashes during the write.
2954  *
2955  */
2956 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2957 			      struct iov_iter *iter, loff_t offset)
2958 {
2959 	struct file *file = iocb->ki_filp;
2960 	struct inode *inode = file->f_mapping->host;
2961 	ssize_t ret;
2962 	size_t count = iov_iter_count(iter);
2963 	int overwrite = 0;
2964 	get_block_t *get_block_func = NULL;
2965 	int dio_flags = 0;
2966 	loff_t final_size = offset + count;
2967 	ext4_io_end_t *io_end = NULL;
2968 
2969 	/* Use the old path for reads and writes beyond i_size. */
2970 	if (rw != WRITE || final_size > inode->i_size)
2971 		return ext4_ind_direct_IO(rw, iocb, iter, offset);
2972 
2973 	BUG_ON(iocb->private == NULL);
2974 
2975 	/*
2976 	 * Make all waiters for direct IO properly wait also for extent
2977 	 * conversion. This also disallows race between truncate() and
2978 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2979 	 */
2980 	if (rw == WRITE)
2981 		atomic_inc(&inode->i_dio_count);
2982 
2983 	/* If we do a overwrite dio, i_mutex locking can be released */
2984 	overwrite = *((int *)iocb->private);
2985 
2986 	if (overwrite) {
2987 		down_read(&EXT4_I(inode)->i_data_sem);
2988 		mutex_unlock(&inode->i_mutex);
2989 	}
2990 
2991 	/*
2992 	 * We could direct write to holes and fallocate.
2993 	 *
2994 	 * Allocated blocks to fill the hole are marked as
2995 	 * unwritten to prevent parallel buffered read to expose
2996 	 * the stale data before DIO complete the data IO.
2997 	 *
2998 	 * As to previously fallocated extents, ext4 get_block will
2999 	 * just simply mark the buffer mapped but still keep the
3000 	 * extents unwritten.
3001 	 *
3002 	 * For non AIO case, we will convert those unwritten extents
3003 	 * to written after return back from blockdev_direct_IO.
3004 	 *
3005 	 * For async DIO, the conversion needs to be deferred when the
3006 	 * IO is completed. The ext4 end_io callback function will be
3007 	 * called to take care of the conversion work.  Here for async
3008 	 * case, we allocate an io_end structure to hook to the iocb.
3009 	 */
3010 	iocb->private = NULL;
3011 	ext4_inode_aio_set(inode, NULL);
3012 	if (!is_sync_kiocb(iocb)) {
3013 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3014 		if (!io_end) {
3015 			ret = -ENOMEM;
3016 			goto retake_lock;
3017 		}
3018 		/*
3019 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3020 		 */
3021 		iocb->private = ext4_get_io_end(io_end);
3022 		/*
3023 		 * we save the io structure for current async direct
3024 		 * IO, so that later ext4_map_blocks() could flag the
3025 		 * io structure whether there is a unwritten extents
3026 		 * needs to be converted when IO is completed.
3027 		 */
3028 		ext4_inode_aio_set(inode, io_end);
3029 	}
3030 
3031 	if (overwrite) {
3032 		get_block_func = ext4_get_block_write_nolock;
3033 	} else {
3034 		get_block_func = ext4_get_block_write;
3035 		dio_flags = DIO_LOCKING;
3036 	}
3037 	if (IS_DAX(inode))
3038 		ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
3039 				ext4_end_io_dio, dio_flags);
3040 	else
3041 		ret = __blockdev_direct_IO(rw, iocb, inode,
3042 					   inode->i_sb->s_bdev, iter, offset,
3043 					   get_block_func,
3044 					   ext4_end_io_dio, NULL, dio_flags);
3045 
3046 	/*
3047 	 * Put our reference to io_end. This can free the io_end structure e.g.
3048 	 * in sync IO case or in case of error. It can even perform extent
3049 	 * conversion if all bios we submitted finished before we got here.
3050 	 * Note that in that case iocb->private can be already set to NULL
3051 	 * here.
3052 	 */
3053 	if (io_end) {
3054 		ext4_inode_aio_set(inode, NULL);
3055 		ext4_put_io_end(io_end);
3056 		/*
3057 		 * When no IO was submitted ext4_end_io_dio() was not
3058 		 * called so we have to put iocb's reference.
3059 		 */
3060 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3061 			WARN_ON(iocb->private != io_end);
3062 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3063 			ext4_put_io_end(io_end);
3064 			iocb->private = NULL;
3065 		}
3066 	}
3067 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3068 						EXT4_STATE_DIO_UNWRITTEN)) {
3069 		int err;
3070 		/*
3071 		 * for non AIO case, since the IO is already
3072 		 * completed, we could do the conversion right here
3073 		 */
3074 		err = ext4_convert_unwritten_extents(NULL, inode,
3075 						     offset, ret);
3076 		if (err < 0)
3077 			ret = err;
3078 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3079 	}
3080 
3081 retake_lock:
3082 	if (rw == WRITE)
3083 		inode_dio_done(inode);
3084 	/* take i_mutex locking again if we do a ovewrite dio */
3085 	if (overwrite) {
3086 		up_read(&EXT4_I(inode)->i_data_sem);
3087 		mutex_lock(&inode->i_mutex);
3088 	}
3089 
3090 	return ret;
3091 }
3092 
3093 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3094 			      struct iov_iter *iter, loff_t offset)
3095 {
3096 	struct file *file = iocb->ki_filp;
3097 	struct inode *inode = file->f_mapping->host;
3098 	size_t count = iov_iter_count(iter);
3099 	ssize_t ret;
3100 
3101 	/*
3102 	 * If we are doing data journalling we don't support O_DIRECT
3103 	 */
3104 	if (ext4_should_journal_data(inode))
3105 		return 0;
3106 
3107 	/* Let buffer I/O handle the inline data case. */
3108 	if (ext4_has_inline_data(inode))
3109 		return 0;
3110 
3111 	trace_ext4_direct_IO_enter(inode, offset, count, rw);
3112 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3113 		ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3114 	else
3115 		ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3116 	trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3117 	return ret;
3118 }
3119 
3120 /*
3121  * Pages can be marked dirty completely asynchronously from ext4's journalling
3122  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3123  * much here because ->set_page_dirty is called under VFS locks.  The page is
3124  * not necessarily locked.
3125  *
3126  * We cannot just dirty the page and leave attached buffers clean, because the
3127  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3128  * or jbddirty because all the journalling code will explode.
3129  *
3130  * So what we do is to mark the page "pending dirty" and next time writepage
3131  * is called, propagate that into the buffers appropriately.
3132  */
3133 static int ext4_journalled_set_page_dirty(struct page *page)
3134 {
3135 	SetPageChecked(page);
3136 	return __set_page_dirty_nobuffers(page);
3137 }
3138 
3139 static const struct address_space_operations ext4_aops = {
3140 	.readpage		= ext4_readpage,
3141 	.readpages		= ext4_readpages,
3142 	.writepage		= ext4_writepage,
3143 	.writepages		= ext4_writepages,
3144 	.write_begin		= ext4_write_begin,
3145 	.write_end		= ext4_write_end,
3146 	.bmap			= ext4_bmap,
3147 	.invalidatepage		= ext4_invalidatepage,
3148 	.releasepage		= ext4_releasepage,
3149 	.direct_IO		= ext4_direct_IO,
3150 	.migratepage		= buffer_migrate_page,
3151 	.is_partially_uptodate  = block_is_partially_uptodate,
3152 	.error_remove_page	= generic_error_remove_page,
3153 };
3154 
3155 static const struct address_space_operations ext4_journalled_aops = {
3156 	.readpage		= ext4_readpage,
3157 	.readpages		= ext4_readpages,
3158 	.writepage		= ext4_writepage,
3159 	.writepages		= ext4_writepages,
3160 	.write_begin		= ext4_write_begin,
3161 	.write_end		= ext4_journalled_write_end,
3162 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3163 	.bmap			= ext4_bmap,
3164 	.invalidatepage		= ext4_journalled_invalidatepage,
3165 	.releasepage		= ext4_releasepage,
3166 	.direct_IO		= ext4_direct_IO,
3167 	.is_partially_uptodate  = block_is_partially_uptodate,
3168 	.error_remove_page	= generic_error_remove_page,
3169 };
3170 
3171 static const struct address_space_operations ext4_da_aops = {
3172 	.readpage		= ext4_readpage,
3173 	.readpages		= ext4_readpages,
3174 	.writepage		= ext4_writepage,
3175 	.writepages		= ext4_writepages,
3176 	.write_begin		= ext4_da_write_begin,
3177 	.write_end		= ext4_da_write_end,
3178 	.bmap			= ext4_bmap,
3179 	.invalidatepage		= ext4_da_invalidatepage,
3180 	.releasepage		= ext4_releasepage,
3181 	.direct_IO		= ext4_direct_IO,
3182 	.migratepage		= buffer_migrate_page,
3183 	.is_partially_uptodate  = block_is_partially_uptodate,
3184 	.error_remove_page	= generic_error_remove_page,
3185 };
3186 
3187 void ext4_set_aops(struct inode *inode)
3188 {
3189 	switch (ext4_inode_journal_mode(inode)) {
3190 	case EXT4_INODE_ORDERED_DATA_MODE:
3191 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3192 		break;
3193 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3194 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3195 		break;
3196 	case EXT4_INODE_JOURNAL_DATA_MODE:
3197 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3198 		return;
3199 	default:
3200 		BUG();
3201 	}
3202 	if (test_opt(inode->i_sb, DELALLOC))
3203 		inode->i_mapping->a_ops = &ext4_da_aops;
3204 	else
3205 		inode->i_mapping->a_ops = &ext4_aops;
3206 }
3207 
3208 static int __ext4_block_zero_page_range(handle_t *handle,
3209 		struct address_space *mapping, loff_t from, loff_t length)
3210 {
3211 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3212 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3213 	unsigned blocksize, pos;
3214 	ext4_lblk_t iblock;
3215 	struct inode *inode = mapping->host;
3216 	struct buffer_head *bh;
3217 	struct page *page;
3218 	int err = 0;
3219 
3220 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3221 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3222 	if (!page)
3223 		return -ENOMEM;
3224 
3225 	blocksize = inode->i_sb->s_blocksize;
3226 
3227 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3228 
3229 	if (!page_has_buffers(page))
3230 		create_empty_buffers(page, blocksize, 0);
3231 
3232 	/* Find the buffer that contains "offset" */
3233 	bh = page_buffers(page);
3234 	pos = blocksize;
3235 	while (offset >= pos) {
3236 		bh = bh->b_this_page;
3237 		iblock++;
3238 		pos += blocksize;
3239 	}
3240 	if (buffer_freed(bh)) {
3241 		BUFFER_TRACE(bh, "freed: skip");
3242 		goto unlock;
3243 	}
3244 	if (!buffer_mapped(bh)) {
3245 		BUFFER_TRACE(bh, "unmapped");
3246 		ext4_get_block(inode, iblock, bh, 0);
3247 		/* unmapped? It's a hole - nothing to do */
3248 		if (!buffer_mapped(bh)) {
3249 			BUFFER_TRACE(bh, "still unmapped");
3250 			goto unlock;
3251 		}
3252 	}
3253 
3254 	/* Ok, it's mapped. Make sure it's up-to-date */
3255 	if (PageUptodate(page))
3256 		set_buffer_uptodate(bh);
3257 
3258 	if (!buffer_uptodate(bh)) {
3259 		err = -EIO;
3260 		ll_rw_block(READ, 1, &bh);
3261 		wait_on_buffer(bh);
3262 		/* Uhhuh. Read error. Complain and punt. */
3263 		if (!buffer_uptodate(bh))
3264 			goto unlock;
3265 	}
3266 	if (ext4_should_journal_data(inode)) {
3267 		BUFFER_TRACE(bh, "get write access");
3268 		err = ext4_journal_get_write_access(handle, bh);
3269 		if (err)
3270 			goto unlock;
3271 	}
3272 	zero_user(page, offset, length);
3273 	BUFFER_TRACE(bh, "zeroed end of block");
3274 
3275 	if (ext4_should_journal_data(inode)) {
3276 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3277 	} else {
3278 		err = 0;
3279 		mark_buffer_dirty(bh);
3280 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3281 			err = ext4_jbd2_file_inode(handle, inode);
3282 	}
3283 
3284 unlock:
3285 	unlock_page(page);
3286 	page_cache_release(page);
3287 	return err;
3288 }
3289 
3290 /*
3291  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3292  * starting from file offset 'from'.  The range to be zero'd must
3293  * be contained with in one block.  If the specified range exceeds
3294  * the end of the block it will be shortened to end of the block
3295  * that cooresponds to 'from'
3296  */
3297 static int ext4_block_zero_page_range(handle_t *handle,
3298 		struct address_space *mapping, loff_t from, loff_t length)
3299 {
3300 	struct inode *inode = mapping->host;
3301 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3302 	unsigned blocksize = inode->i_sb->s_blocksize;
3303 	unsigned max = blocksize - (offset & (blocksize - 1));
3304 
3305 	/*
3306 	 * correct length if it does not fall between
3307 	 * 'from' and the end of the block
3308 	 */
3309 	if (length > max || length < 0)
3310 		length = max;
3311 
3312 	if (IS_DAX(inode))
3313 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3314 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3315 }
3316 
3317 /*
3318  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3319  * up to the end of the block which corresponds to `from'.
3320  * This required during truncate. We need to physically zero the tail end
3321  * of that block so it doesn't yield old data if the file is later grown.
3322  */
3323 static int ext4_block_truncate_page(handle_t *handle,
3324 		struct address_space *mapping, loff_t from)
3325 {
3326 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3327 	unsigned length;
3328 	unsigned blocksize;
3329 	struct inode *inode = mapping->host;
3330 
3331 	blocksize = inode->i_sb->s_blocksize;
3332 	length = blocksize - (offset & (blocksize - 1));
3333 
3334 	return ext4_block_zero_page_range(handle, mapping, from, length);
3335 }
3336 
3337 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3338 			     loff_t lstart, loff_t length)
3339 {
3340 	struct super_block *sb = inode->i_sb;
3341 	struct address_space *mapping = inode->i_mapping;
3342 	unsigned partial_start, partial_end;
3343 	ext4_fsblk_t start, end;
3344 	loff_t byte_end = (lstart + length - 1);
3345 	int err = 0;
3346 
3347 	partial_start = lstart & (sb->s_blocksize - 1);
3348 	partial_end = byte_end & (sb->s_blocksize - 1);
3349 
3350 	start = lstart >> sb->s_blocksize_bits;
3351 	end = byte_end >> sb->s_blocksize_bits;
3352 
3353 	/* Handle partial zero within the single block */
3354 	if (start == end &&
3355 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3356 		err = ext4_block_zero_page_range(handle, mapping,
3357 						 lstart, length);
3358 		return err;
3359 	}
3360 	/* Handle partial zero out on the start of the range */
3361 	if (partial_start) {
3362 		err = ext4_block_zero_page_range(handle, mapping,
3363 						 lstart, sb->s_blocksize);
3364 		if (err)
3365 			return err;
3366 	}
3367 	/* Handle partial zero out on the end of the range */
3368 	if (partial_end != sb->s_blocksize - 1)
3369 		err = ext4_block_zero_page_range(handle, mapping,
3370 						 byte_end - partial_end,
3371 						 partial_end + 1);
3372 	return err;
3373 }
3374 
3375 int ext4_can_truncate(struct inode *inode)
3376 {
3377 	if (S_ISREG(inode->i_mode))
3378 		return 1;
3379 	if (S_ISDIR(inode->i_mode))
3380 		return 1;
3381 	if (S_ISLNK(inode->i_mode))
3382 		return !ext4_inode_is_fast_symlink(inode);
3383 	return 0;
3384 }
3385 
3386 /*
3387  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3388  * associated with the given offset and length
3389  *
3390  * @inode:  File inode
3391  * @offset: The offset where the hole will begin
3392  * @len:    The length of the hole
3393  *
3394  * Returns: 0 on success or negative on failure
3395  */
3396 
3397 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3398 {
3399 	struct super_block *sb = inode->i_sb;
3400 	ext4_lblk_t first_block, stop_block;
3401 	struct address_space *mapping = inode->i_mapping;
3402 	loff_t first_block_offset, last_block_offset;
3403 	handle_t *handle;
3404 	unsigned int credits;
3405 	int ret = 0;
3406 
3407 	if (!S_ISREG(inode->i_mode))
3408 		return -EOPNOTSUPP;
3409 
3410 	trace_ext4_punch_hole(inode, offset, length, 0);
3411 
3412 	/*
3413 	 * Write out all dirty pages to avoid race conditions
3414 	 * Then release them.
3415 	 */
3416 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3417 		ret = filemap_write_and_wait_range(mapping, offset,
3418 						   offset + length - 1);
3419 		if (ret)
3420 			return ret;
3421 	}
3422 
3423 	mutex_lock(&inode->i_mutex);
3424 
3425 	/* No need to punch hole beyond i_size */
3426 	if (offset >= inode->i_size)
3427 		goto out_mutex;
3428 
3429 	/*
3430 	 * If the hole extends beyond i_size, set the hole
3431 	 * to end after the page that contains i_size
3432 	 */
3433 	if (offset + length > inode->i_size) {
3434 		length = inode->i_size +
3435 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3436 		   offset;
3437 	}
3438 
3439 	if (offset & (sb->s_blocksize - 1) ||
3440 	    (offset + length) & (sb->s_blocksize - 1)) {
3441 		/*
3442 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3443 		 * partial block
3444 		 */
3445 		ret = ext4_inode_attach_jinode(inode);
3446 		if (ret < 0)
3447 			goto out_mutex;
3448 
3449 	}
3450 
3451 	first_block_offset = round_up(offset, sb->s_blocksize);
3452 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3453 
3454 	/* Now release the pages and zero block aligned part of pages*/
3455 	if (last_block_offset > first_block_offset)
3456 		truncate_pagecache_range(inode, first_block_offset,
3457 					 last_block_offset);
3458 
3459 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3460 	ext4_inode_block_unlocked_dio(inode);
3461 	inode_dio_wait(inode);
3462 
3463 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3464 		credits = ext4_writepage_trans_blocks(inode);
3465 	else
3466 		credits = ext4_blocks_for_truncate(inode);
3467 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3468 	if (IS_ERR(handle)) {
3469 		ret = PTR_ERR(handle);
3470 		ext4_std_error(sb, ret);
3471 		goto out_dio;
3472 	}
3473 
3474 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3475 				       length);
3476 	if (ret)
3477 		goto out_stop;
3478 
3479 	first_block = (offset + sb->s_blocksize - 1) >>
3480 		EXT4_BLOCK_SIZE_BITS(sb);
3481 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3482 
3483 	/* If there are no blocks to remove, return now */
3484 	if (first_block >= stop_block)
3485 		goto out_stop;
3486 
3487 	down_write(&EXT4_I(inode)->i_data_sem);
3488 	ext4_discard_preallocations(inode);
3489 
3490 	ret = ext4_es_remove_extent(inode, first_block,
3491 				    stop_block - first_block);
3492 	if (ret) {
3493 		up_write(&EXT4_I(inode)->i_data_sem);
3494 		goto out_stop;
3495 	}
3496 
3497 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3498 		ret = ext4_ext_remove_space(inode, first_block,
3499 					    stop_block - 1);
3500 	else
3501 		ret = ext4_ind_remove_space(handle, inode, first_block,
3502 					    stop_block);
3503 
3504 	up_write(&EXT4_I(inode)->i_data_sem);
3505 	if (IS_SYNC(inode))
3506 		ext4_handle_sync(handle);
3507 
3508 	/* Now release the pages again to reduce race window */
3509 	if (last_block_offset > first_block_offset)
3510 		truncate_pagecache_range(inode, first_block_offset,
3511 					 last_block_offset);
3512 
3513 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3514 	ext4_mark_inode_dirty(handle, inode);
3515 out_stop:
3516 	ext4_journal_stop(handle);
3517 out_dio:
3518 	ext4_inode_resume_unlocked_dio(inode);
3519 out_mutex:
3520 	mutex_unlock(&inode->i_mutex);
3521 	return ret;
3522 }
3523 
3524 int ext4_inode_attach_jinode(struct inode *inode)
3525 {
3526 	struct ext4_inode_info *ei = EXT4_I(inode);
3527 	struct jbd2_inode *jinode;
3528 
3529 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3530 		return 0;
3531 
3532 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3533 	spin_lock(&inode->i_lock);
3534 	if (!ei->jinode) {
3535 		if (!jinode) {
3536 			spin_unlock(&inode->i_lock);
3537 			return -ENOMEM;
3538 		}
3539 		ei->jinode = jinode;
3540 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3541 		jinode = NULL;
3542 	}
3543 	spin_unlock(&inode->i_lock);
3544 	if (unlikely(jinode != NULL))
3545 		jbd2_free_inode(jinode);
3546 	return 0;
3547 }
3548 
3549 /*
3550  * ext4_truncate()
3551  *
3552  * We block out ext4_get_block() block instantiations across the entire
3553  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3554  * simultaneously on behalf of the same inode.
3555  *
3556  * As we work through the truncate and commit bits of it to the journal there
3557  * is one core, guiding principle: the file's tree must always be consistent on
3558  * disk.  We must be able to restart the truncate after a crash.
3559  *
3560  * The file's tree may be transiently inconsistent in memory (although it
3561  * probably isn't), but whenever we close off and commit a journal transaction,
3562  * the contents of (the filesystem + the journal) must be consistent and
3563  * restartable.  It's pretty simple, really: bottom up, right to left (although
3564  * left-to-right works OK too).
3565  *
3566  * Note that at recovery time, journal replay occurs *before* the restart of
3567  * truncate against the orphan inode list.
3568  *
3569  * The committed inode has the new, desired i_size (which is the same as
3570  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3571  * that this inode's truncate did not complete and it will again call
3572  * ext4_truncate() to have another go.  So there will be instantiated blocks
3573  * to the right of the truncation point in a crashed ext4 filesystem.  But
3574  * that's fine - as long as they are linked from the inode, the post-crash
3575  * ext4_truncate() run will find them and release them.
3576  */
3577 void ext4_truncate(struct inode *inode)
3578 {
3579 	struct ext4_inode_info *ei = EXT4_I(inode);
3580 	unsigned int credits;
3581 	handle_t *handle;
3582 	struct address_space *mapping = inode->i_mapping;
3583 
3584 	/*
3585 	 * There is a possibility that we're either freeing the inode
3586 	 * or it's a completely new inode. In those cases we might not
3587 	 * have i_mutex locked because it's not necessary.
3588 	 */
3589 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3590 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3591 	trace_ext4_truncate_enter(inode);
3592 
3593 	if (!ext4_can_truncate(inode))
3594 		return;
3595 
3596 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3597 
3598 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3599 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3600 
3601 	if (ext4_has_inline_data(inode)) {
3602 		int has_inline = 1;
3603 
3604 		ext4_inline_data_truncate(inode, &has_inline);
3605 		if (has_inline)
3606 			return;
3607 	}
3608 
3609 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3610 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3611 		if (ext4_inode_attach_jinode(inode) < 0)
3612 			return;
3613 	}
3614 
3615 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3616 		credits = ext4_writepage_trans_blocks(inode);
3617 	else
3618 		credits = ext4_blocks_for_truncate(inode);
3619 
3620 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3621 	if (IS_ERR(handle)) {
3622 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3623 		return;
3624 	}
3625 
3626 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3627 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3628 
3629 	/*
3630 	 * We add the inode to the orphan list, so that if this
3631 	 * truncate spans multiple transactions, and we crash, we will
3632 	 * resume the truncate when the filesystem recovers.  It also
3633 	 * marks the inode dirty, to catch the new size.
3634 	 *
3635 	 * Implication: the file must always be in a sane, consistent
3636 	 * truncatable state while each transaction commits.
3637 	 */
3638 	if (ext4_orphan_add(handle, inode))
3639 		goto out_stop;
3640 
3641 	down_write(&EXT4_I(inode)->i_data_sem);
3642 
3643 	ext4_discard_preallocations(inode);
3644 
3645 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3646 		ext4_ext_truncate(handle, inode);
3647 	else
3648 		ext4_ind_truncate(handle, inode);
3649 
3650 	up_write(&ei->i_data_sem);
3651 
3652 	if (IS_SYNC(inode))
3653 		ext4_handle_sync(handle);
3654 
3655 out_stop:
3656 	/*
3657 	 * If this was a simple ftruncate() and the file will remain alive,
3658 	 * then we need to clear up the orphan record which we created above.
3659 	 * However, if this was a real unlink then we were called by
3660 	 * ext4_evict_inode(), and we allow that function to clean up the
3661 	 * orphan info for us.
3662 	 */
3663 	if (inode->i_nlink)
3664 		ext4_orphan_del(handle, inode);
3665 
3666 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3667 	ext4_mark_inode_dirty(handle, inode);
3668 	ext4_journal_stop(handle);
3669 
3670 	trace_ext4_truncate_exit(inode);
3671 }
3672 
3673 /*
3674  * ext4_get_inode_loc returns with an extra refcount against the inode's
3675  * underlying buffer_head on success. If 'in_mem' is true, we have all
3676  * data in memory that is needed to recreate the on-disk version of this
3677  * inode.
3678  */
3679 static int __ext4_get_inode_loc(struct inode *inode,
3680 				struct ext4_iloc *iloc, int in_mem)
3681 {
3682 	struct ext4_group_desc	*gdp;
3683 	struct buffer_head	*bh;
3684 	struct super_block	*sb = inode->i_sb;
3685 	ext4_fsblk_t		block;
3686 	int			inodes_per_block, inode_offset;
3687 
3688 	iloc->bh = NULL;
3689 	if (!ext4_valid_inum(sb, inode->i_ino))
3690 		return -EIO;
3691 
3692 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3693 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3694 	if (!gdp)
3695 		return -EIO;
3696 
3697 	/*
3698 	 * Figure out the offset within the block group inode table
3699 	 */
3700 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3701 	inode_offset = ((inode->i_ino - 1) %
3702 			EXT4_INODES_PER_GROUP(sb));
3703 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3704 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3705 
3706 	bh = sb_getblk(sb, block);
3707 	if (unlikely(!bh))
3708 		return -ENOMEM;
3709 	if (!buffer_uptodate(bh)) {
3710 		lock_buffer(bh);
3711 
3712 		/*
3713 		 * If the buffer has the write error flag, we have failed
3714 		 * to write out another inode in the same block.  In this
3715 		 * case, we don't have to read the block because we may
3716 		 * read the old inode data successfully.
3717 		 */
3718 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3719 			set_buffer_uptodate(bh);
3720 
3721 		if (buffer_uptodate(bh)) {
3722 			/* someone brought it uptodate while we waited */
3723 			unlock_buffer(bh);
3724 			goto has_buffer;
3725 		}
3726 
3727 		/*
3728 		 * If we have all information of the inode in memory and this
3729 		 * is the only valid inode in the block, we need not read the
3730 		 * block.
3731 		 */
3732 		if (in_mem) {
3733 			struct buffer_head *bitmap_bh;
3734 			int i, start;
3735 
3736 			start = inode_offset & ~(inodes_per_block - 1);
3737 
3738 			/* Is the inode bitmap in cache? */
3739 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3740 			if (unlikely(!bitmap_bh))
3741 				goto make_io;
3742 
3743 			/*
3744 			 * If the inode bitmap isn't in cache then the
3745 			 * optimisation may end up performing two reads instead
3746 			 * of one, so skip it.
3747 			 */
3748 			if (!buffer_uptodate(bitmap_bh)) {
3749 				brelse(bitmap_bh);
3750 				goto make_io;
3751 			}
3752 			for (i = start; i < start + inodes_per_block; i++) {
3753 				if (i == inode_offset)
3754 					continue;
3755 				if (ext4_test_bit(i, bitmap_bh->b_data))
3756 					break;
3757 			}
3758 			brelse(bitmap_bh);
3759 			if (i == start + inodes_per_block) {
3760 				/* all other inodes are free, so skip I/O */
3761 				memset(bh->b_data, 0, bh->b_size);
3762 				set_buffer_uptodate(bh);
3763 				unlock_buffer(bh);
3764 				goto has_buffer;
3765 			}
3766 		}
3767 
3768 make_io:
3769 		/*
3770 		 * If we need to do any I/O, try to pre-readahead extra
3771 		 * blocks from the inode table.
3772 		 */
3773 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3774 			ext4_fsblk_t b, end, table;
3775 			unsigned num;
3776 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3777 
3778 			table = ext4_inode_table(sb, gdp);
3779 			/* s_inode_readahead_blks is always a power of 2 */
3780 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3781 			if (table > b)
3782 				b = table;
3783 			end = b + ra_blks;
3784 			num = EXT4_INODES_PER_GROUP(sb);
3785 			if (ext4_has_group_desc_csum(sb))
3786 				num -= ext4_itable_unused_count(sb, gdp);
3787 			table += num / inodes_per_block;
3788 			if (end > table)
3789 				end = table;
3790 			while (b <= end)
3791 				sb_breadahead(sb, b++);
3792 		}
3793 
3794 		/*
3795 		 * There are other valid inodes in the buffer, this inode
3796 		 * has in-inode xattrs, or we don't have this inode in memory.
3797 		 * Read the block from disk.
3798 		 */
3799 		trace_ext4_load_inode(inode);
3800 		get_bh(bh);
3801 		bh->b_end_io = end_buffer_read_sync;
3802 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3803 		wait_on_buffer(bh);
3804 		if (!buffer_uptodate(bh)) {
3805 			EXT4_ERROR_INODE_BLOCK(inode, block,
3806 					       "unable to read itable block");
3807 			brelse(bh);
3808 			return -EIO;
3809 		}
3810 	}
3811 has_buffer:
3812 	iloc->bh = bh;
3813 	return 0;
3814 }
3815 
3816 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3817 {
3818 	/* We have all inode data except xattrs in memory here. */
3819 	return __ext4_get_inode_loc(inode, iloc,
3820 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3821 }
3822 
3823 void ext4_set_inode_flags(struct inode *inode)
3824 {
3825 	unsigned int flags = EXT4_I(inode)->i_flags;
3826 	unsigned int new_fl = 0;
3827 
3828 	if (flags & EXT4_SYNC_FL)
3829 		new_fl |= S_SYNC;
3830 	if (flags & EXT4_APPEND_FL)
3831 		new_fl |= S_APPEND;
3832 	if (flags & EXT4_IMMUTABLE_FL)
3833 		new_fl |= S_IMMUTABLE;
3834 	if (flags & EXT4_NOATIME_FL)
3835 		new_fl |= S_NOATIME;
3836 	if (flags & EXT4_DIRSYNC_FL)
3837 		new_fl |= S_DIRSYNC;
3838 	if (test_opt(inode->i_sb, DAX))
3839 		new_fl |= S_DAX;
3840 	inode_set_flags(inode, new_fl,
3841 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3842 }
3843 
3844 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3845 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3846 {
3847 	unsigned int vfs_fl;
3848 	unsigned long old_fl, new_fl;
3849 
3850 	do {
3851 		vfs_fl = ei->vfs_inode.i_flags;
3852 		old_fl = ei->i_flags;
3853 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3854 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3855 				EXT4_DIRSYNC_FL);
3856 		if (vfs_fl & S_SYNC)
3857 			new_fl |= EXT4_SYNC_FL;
3858 		if (vfs_fl & S_APPEND)
3859 			new_fl |= EXT4_APPEND_FL;
3860 		if (vfs_fl & S_IMMUTABLE)
3861 			new_fl |= EXT4_IMMUTABLE_FL;
3862 		if (vfs_fl & S_NOATIME)
3863 			new_fl |= EXT4_NOATIME_FL;
3864 		if (vfs_fl & S_DIRSYNC)
3865 			new_fl |= EXT4_DIRSYNC_FL;
3866 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3867 }
3868 
3869 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3870 				  struct ext4_inode_info *ei)
3871 {
3872 	blkcnt_t i_blocks ;
3873 	struct inode *inode = &(ei->vfs_inode);
3874 	struct super_block *sb = inode->i_sb;
3875 
3876 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3877 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3878 		/* we are using combined 48 bit field */
3879 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3880 					le32_to_cpu(raw_inode->i_blocks_lo);
3881 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3882 			/* i_blocks represent file system block size */
3883 			return i_blocks  << (inode->i_blkbits - 9);
3884 		} else {
3885 			return i_blocks;
3886 		}
3887 	} else {
3888 		return le32_to_cpu(raw_inode->i_blocks_lo);
3889 	}
3890 }
3891 
3892 static inline void ext4_iget_extra_inode(struct inode *inode,
3893 					 struct ext4_inode *raw_inode,
3894 					 struct ext4_inode_info *ei)
3895 {
3896 	__le32 *magic = (void *)raw_inode +
3897 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3898 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3899 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3900 		ext4_find_inline_data_nolock(inode);
3901 	} else
3902 		EXT4_I(inode)->i_inline_off = 0;
3903 }
3904 
3905 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3906 {
3907 	struct ext4_iloc iloc;
3908 	struct ext4_inode *raw_inode;
3909 	struct ext4_inode_info *ei;
3910 	struct inode *inode;
3911 	journal_t *journal = EXT4_SB(sb)->s_journal;
3912 	long ret;
3913 	int block;
3914 	uid_t i_uid;
3915 	gid_t i_gid;
3916 
3917 	inode = iget_locked(sb, ino);
3918 	if (!inode)
3919 		return ERR_PTR(-ENOMEM);
3920 	if (!(inode->i_state & I_NEW))
3921 		return inode;
3922 
3923 	ei = EXT4_I(inode);
3924 	iloc.bh = NULL;
3925 
3926 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3927 	if (ret < 0)
3928 		goto bad_inode;
3929 	raw_inode = ext4_raw_inode(&iloc);
3930 
3931 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3932 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3933 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3934 		    EXT4_INODE_SIZE(inode->i_sb)) {
3935 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3936 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3937 				EXT4_INODE_SIZE(inode->i_sb));
3938 			ret = -EIO;
3939 			goto bad_inode;
3940 		}
3941 	} else
3942 		ei->i_extra_isize = 0;
3943 
3944 	/* Precompute checksum seed for inode metadata */
3945 	if (ext4_has_metadata_csum(sb)) {
3946 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3947 		__u32 csum;
3948 		__le32 inum = cpu_to_le32(inode->i_ino);
3949 		__le32 gen = raw_inode->i_generation;
3950 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3951 				   sizeof(inum));
3952 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3953 					      sizeof(gen));
3954 	}
3955 
3956 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3957 		EXT4_ERROR_INODE(inode, "checksum invalid");
3958 		ret = -EIO;
3959 		goto bad_inode;
3960 	}
3961 
3962 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3963 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3964 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3965 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3966 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3967 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3968 	}
3969 	i_uid_write(inode, i_uid);
3970 	i_gid_write(inode, i_gid);
3971 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3972 
3973 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3974 	ei->i_inline_off = 0;
3975 	ei->i_dir_start_lookup = 0;
3976 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3977 	/* We now have enough fields to check if the inode was active or not.
3978 	 * This is needed because nfsd might try to access dead inodes
3979 	 * the test is that same one that e2fsck uses
3980 	 * NeilBrown 1999oct15
3981 	 */
3982 	if (inode->i_nlink == 0) {
3983 		if ((inode->i_mode == 0 ||
3984 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3985 		    ino != EXT4_BOOT_LOADER_INO) {
3986 			/* this inode is deleted */
3987 			ret = -ESTALE;
3988 			goto bad_inode;
3989 		}
3990 		/* The only unlinked inodes we let through here have
3991 		 * valid i_mode and are being read by the orphan
3992 		 * recovery code: that's fine, we're about to complete
3993 		 * the process of deleting those.
3994 		 * OR it is the EXT4_BOOT_LOADER_INO which is
3995 		 * not initialized on a new filesystem. */
3996 	}
3997 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3998 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3999 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4000 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4001 		ei->i_file_acl |=
4002 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4003 	inode->i_size = ext4_isize(raw_inode);
4004 	ei->i_disksize = inode->i_size;
4005 #ifdef CONFIG_QUOTA
4006 	ei->i_reserved_quota = 0;
4007 #endif
4008 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4009 	ei->i_block_group = iloc.block_group;
4010 	ei->i_last_alloc_group = ~0;
4011 	/*
4012 	 * NOTE! The in-memory inode i_data array is in little-endian order
4013 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4014 	 */
4015 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4016 		ei->i_data[block] = raw_inode->i_block[block];
4017 	INIT_LIST_HEAD(&ei->i_orphan);
4018 
4019 	/*
4020 	 * Set transaction id's of transactions that have to be committed
4021 	 * to finish f[data]sync. We set them to currently running transaction
4022 	 * as we cannot be sure that the inode or some of its metadata isn't
4023 	 * part of the transaction - the inode could have been reclaimed and
4024 	 * now it is reread from disk.
4025 	 */
4026 	if (journal) {
4027 		transaction_t *transaction;
4028 		tid_t tid;
4029 
4030 		read_lock(&journal->j_state_lock);
4031 		if (journal->j_running_transaction)
4032 			transaction = journal->j_running_transaction;
4033 		else
4034 			transaction = journal->j_committing_transaction;
4035 		if (transaction)
4036 			tid = transaction->t_tid;
4037 		else
4038 			tid = journal->j_commit_sequence;
4039 		read_unlock(&journal->j_state_lock);
4040 		ei->i_sync_tid = tid;
4041 		ei->i_datasync_tid = tid;
4042 	}
4043 
4044 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4045 		if (ei->i_extra_isize == 0) {
4046 			/* The extra space is currently unused. Use it. */
4047 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4048 					    EXT4_GOOD_OLD_INODE_SIZE;
4049 		} else {
4050 			ext4_iget_extra_inode(inode, raw_inode, ei);
4051 		}
4052 	}
4053 
4054 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4055 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4056 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4057 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4058 
4059 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4060 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4061 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4062 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4063 				inode->i_version |=
4064 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4065 		}
4066 	}
4067 
4068 	ret = 0;
4069 	if (ei->i_file_acl &&
4070 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4071 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4072 				 ei->i_file_acl);
4073 		ret = -EIO;
4074 		goto bad_inode;
4075 	} else if (!ext4_has_inline_data(inode)) {
4076 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4077 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4078 			    (S_ISLNK(inode->i_mode) &&
4079 			     !ext4_inode_is_fast_symlink(inode))))
4080 				/* Validate extent which is part of inode */
4081 				ret = ext4_ext_check_inode(inode);
4082 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4083 			   (S_ISLNK(inode->i_mode) &&
4084 			    !ext4_inode_is_fast_symlink(inode))) {
4085 			/* Validate block references which are part of inode */
4086 			ret = ext4_ind_check_inode(inode);
4087 		}
4088 	}
4089 	if (ret)
4090 		goto bad_inode;
4091 
4092 	if (S_ISREG(inode->i_mode)) {
4093 		inode->i_op = &ext4_file_inode_operations;
4094 		if (test_opt(inode->i_sb, DAX))
4095 			inode->i_fop = &ext4_dax_file_operations;
4096 		else
4097 			inode->i_fop = &ext4_file_operations;
4098 		ext4_set_aops(inode);
4099 	} else if (S_ISDIR(inode->i_mode)) {
4100 		inode->i_op = &ext4_dir_inode_operations;
4101 		inode->i_fop = &ext4_dir_operations;
4102 	} else if (S_ISLNK(inode->i_mode)) {
4103 		if (ext4_inode_is_fast_symlink(inode)) {
4104 			inode->i_op = &ext4_fast_symlink_inode_operations;
4105 			nd_terminate_link(ei->i_data, inode->i_size,
4106 				sizeof(ei->i_data) - 1);
4107 		} else {
4108 			inode->i_op = &ext4_symlink_inode_operations;
4109 			ext4_set_aops(inode);
4110 		}
4111 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4112 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4113 		inode->i_op = &ext4_special_inode_operations;
4114 		if (raw_inode->i_block[0])
4115 			init_special_inode(inode, inode->i_mode,
4116 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4117 		else
4118 			init_special_inode(inode, inode->i_mode,
4119 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4120 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4121 		make_bad_inode(inode);
4122 	} else {
4123 		ret = -EIO;
4124 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4125 		goto bad_inode;
4126 	}
4127 	brelse(iloc.bh);
4128 	ext4_set_inode_flags(inode);
4129 	unlock_new_inode(inode);
4130 	return inode;
4131 
4132 bad_inode:
4133 	brelse(iloc.bh);
4134 	iget_failed(inode);
4135 	return ERR_PTR(ret);
4136 }
4137 
4138 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4139 {
4140 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4141 		return ERR_PTR(-EIO);
4142 	return ext4_iget(sb, ino);
4143 }
4144 
4145 static int ext4_inode_blocks_set(handle_t *handle,
4146 				struct ext4_inode *raw_inode,
4147 				struct ext4_inode_info *ei)
4148 {
4149 	struct inode *inode = &(ei->vfs_inode);
4150 	u64 i_blocks = inode->i_blocks;
4151 	struct super_block *sb = inode->i_sb;
4152 
4153 	if (i_blocks <= ~0U) {
4154 		/*
4155 		 * i_blocks can be represented in a 32 bit variable
4156 		 * as multiple of 512 bytes
4157 		 */
4158 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4159 		raw_inode->i_blocks_high = 0;
4160 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4161 		return 0;
4162 	}
4163 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4164 		return -EFBIG;
4165 
4166 	if (i_blocks <= 0xffffffffffffULL) {
4167 		/*
4168 		 * i_blocks can be represented in a 48 bit variable
4169 		 * as multiple of 512 bytes
4170 		 */
4171 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4172 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4173 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4174 	} else {
4175 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4176 		/* i_block is stored in file system block size */
4177 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4178 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4179 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4180 	}
4181 	return 0;
4182 }
4183 
4184 struct other_inode {
4185 	unsigned long		orig_ino;
4186 	struct ext4_inode	*raw_inode;
4187 };
4188 
4189 static int other_inode_match(struct inode * inode, unsigned long ino,
4190 			     void *data)
4191 {
4192 	struct other_inode *oi = (struct other_inode *) data;
4193 
4194 	if ((inode->i_ino != ino) ||
4195 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4196 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4197 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4198 		return 0;
4199 	spin_lock(&inode->i_lock);
4200 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4201 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4202 	    (inode->i_state & I_DIRTY_TIME)) {
4203 		struct ext4_inode_info	*ei = EXT4_I(inode);
4204 
4205 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4206 		spin_unlock(&inode->i_lock);
4207 
4208 		spin_lock(&ei->i_raw_lock);
4209 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4210 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4211 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4212 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4213 		spin_unlock(&ei->i_raw_lock);
4214 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4215 		return -1;
4216 	}
4217 	spin_unlock(&inode->i_lock);
4218 	return -1;
4219 }
4220 
4221 /*
4222  * Opportunistically update the other time fields for other inodes in
4223  * the same inode table block.
4224  */
4225 static void ext4_update_other_inodes_time(struct super_block *sb,
4226 					  unsigned long orig_ino, char *buf)
4227 {
4228 	struct other_inode oi;
4229 	unsigned long ino;
4230 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4231 	int inode_size = EXT4_INODE_SIZE(sb);
4232 
4233 	oi.orig_ino = orig_ino;
4234 	ino = orig_ino & ~(inodes_per_block - 1);
4235 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4236 		if (ino == orig_ino)
4237 			continue;
4238 		oi.raw_inode = (struct ext4_inode *) buf;
4239 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4240 	}
4241 }
4242 
4243 /*
4244  * Post the struct inode info into an on-disk inode location in the
4245  * buffer-cache.  This gobbles the caller's reference to the
4246  * buffer_head in the inode location struct.
4247  *
4248  * The caller must have write access to iloc->bh.
4249  */
4250 static int ext4_do_update_inode(handle_t *handle,
4251 				struct inode *inode,
4252 				struct ext4_iloc *iloc)
4253 {
4254 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4255 	struct ext4_inode_info *ei = EXT4_I(inode);
4256 	struct buffer_head *bh = iloc->bh;
4257 	struct super_block *sb = inode->i_sb;
4258 	int err = 0, rc, block;
4259 	int need_datasync = 0, set_large_file = 0;
4260 	uid_t i_uid;
4261 	gid_t i_gid;
4262 
4263 	spin_lock(&ei->i_raw_lock);
4264 
4265 	/* For fields not tracked in the in-memory inode,
4266 	 * initialise them to zero for new inodes. */
4267 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4268 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4269 
4270 	ext4_get_inode_flags(ei);
4271 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4272 	i_uid = i_uid_read(inode);
4273 	i_gid = i_gid_read(inode);
4274 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4275 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4276 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4277 /*
4278  * Fix up interoperability with old kernels. Otherwise, old inodes get
4279  * re-used with the upper 16 bits of the uid/gid intact
4280  */
4281 		if (!ei->i_dtime) {
4282 			raw_inode->i_uid_high =
4283 				cpu_to_le16(high_16_bits(i_uid));
4284 			raw_inode->i_gid_high =
4285 				cpu_to_le16(high_16_bits(i_gid));
4286 		} else {
4287 			raw_inode->i_uid_high = 0;
4288 			raw_inode->i_gid_high = 0;
4289 		}
4290 	} else {
4291 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4292 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4293 		raw_inode->i_uid_high = 0;
4294 		raw_inode->i_gid_high = 0;
4295 	}
4296 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4297 
4298 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4299 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4300 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4301 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4302 
4303 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4304 	if (err) {
4305 		spin_unlock(&ei->i_raw_lock);
4306 		goto out_brelse;
4307 	}
4308 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4309 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4310 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4311 		raw_inode->i_file_acl_high =
4312 			cpu_to_le16(ei->i_file_acl >> 32);
4313 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4314 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4315 		ext4_isize_set(raw_inode, ei->i_disksize);
4316 		need_datasync = 1;
4317 	}
4318 	if (ei->i_disksize > 0x7fffffffULL) {
4319 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4320 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4321 				EXT4_SB(sb)->s_es->s_rev_level ==
4322 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4323 			set_large_file = 1;
4324 	}
4325 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4326 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4327 		if (old_valid_dev(inode->i_rdev)) {
4328 			raw_inode->i_block[0] =
4329 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4330 			raw_inode->i_block[1] = 0;
4331 		} else {
4332 			raw_inode->i_block[0] = 0;
4333 			raw_inode->i_block[1] =
4334 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4335 			raw_inode->i_block[2] = 0;
4336 		}
4337 	} else if (!ext4_has_inline_data(inode)) {
4338 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4339 			raw_inode->i_block[block] = ei->i_data[block];
4340 	}
4341 
4342 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4343 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4344 		if (ei->i_extra_isize) {
4345 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4346 				raw_inode->i_version_hi =
4347 					cpu_to_le32(inode->i_version >> 32);
4348 			raw_inode->i_extra_isize =
4349 				cpu_to_le16(ei->i_extra_isize);
4350 		}
4351 	}
4352 	ext4_inode_csum_set(inode, raw_inode, ei);
4353 	spin_unlock(&ei->i_raw_lock);
4354 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4355 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4356 					      bh->b_data);
4357 
4358 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4359 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4360 	if (!err)
4361 		err = rc;
4362 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4363 	if (set_large_file) {
4364 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4365 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4366 		if (err)
4367 			goto out_brelse;
4368 		ext4_update_dynamic_rev(sb);
4369 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4370 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4371 		ext4_handle_sync(handle);
4372 		err = ext4_handle_dirty_super(handle, sb);
4373 	}
4374 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4375 out_brelse:
4376 	brelse(bh);
4377 	ext4_std_error(inode->i_sb, err);
4378 	return err;
4379 }
4380 
4381 /*
4382  * ext4_write_inode()
4383  *
4384  * We are called from a few places:
4385  *
4386  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4387  *   Here, there will be no transaction running. We wait for any running
4388  *   transaction to commit.
4389  *
4390  * - Within flush work (sys_sync(), kupdate and such).
4391  *   We wait on commit, if told to.
4392  *
4393  * - Within iput_final() -> write_inode_now()
4394  *   We wait on commit, if told to.
4395  *
4396  * In all cases it is actually safe for us to return without doing anything,
4397  * because the inode has been copied into a raw inode buffer in
4398  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4399  * writeback.
4400  *
4401  * Note that we are absolutely dependent upon all inode dirtiers doing the
4402  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4403  * which we are interested.
4404  *
4405  * It would be a bug for them to not do this.  The code:
4406  *
4407  *	mark_inode_dirty(inode)
4408  *	stuff();
4409  *	inode->i_size = expr;
4410  *
4411  * is in error because write_inode() could occur while `stuff()' is running,
4412  * and the new i_size will be lost.  Plus the inode will no longer be on the
4413  * superblock's dirty inode list.
4414  */
4415 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4416 {
4417 	int err;
4418 
4419 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4420 		return 0;
4421 
4422 	if (EXT4_SB(inode->i_sb)->s_journal) {
4423 		if (ext4_journal_current_handle()) {
4424 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4425 			dump_stack();
4426 			return -EIO;
4427 		}
4428 
4429 		/*
4430 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4431 		 * ext4_sync_fs() will force the commit after everything is
4432 		 * written.
4433 		 */
4434 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4435 			return 0;
4436 
4437 		err = ext4_force_commit(inode->i_sb);
4438 	} else {
4439 		struct ext4_iloc iloc;
4440 
4441 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4442 		if (err)
4443 			return err;
4444 		/*
4445 		 * sync(2) will flush the whole buffer cache. No need to do
4446 		 * it here separately for each inode.
4447 		 */
4448 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4449 			sync_dirty_buffer(iloc.bh);
4450 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4451 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4452 					 "IO error syncing inode");
4453 			err = -EIO;
4454 		}
4455 		brelse(iloc.bh);
4456 	}
4457 	return err;
4458 }
4459 
4460 /*
4461  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4462  * buffers that are attached to a page stradding i_size and are undergoing
4463  * commit. In that case we have to wait for commit to finish and try again.
4464  */
4465 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4466 {
4467 	struct page *page;
4468 	unsigned offset;
4469 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4470 	tid_t commit_tid = 0;
4471 	int ret;
4472 
4473 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4474 	/*
4475 	 * All buffers in the last page remain valid? Then there's nothing to
4476 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4477 	 * blocksize case
4478 	 */
4479 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4480 		return;
4481 	while (1) {
4482 		page = find_lock_page(inode->i_mapping,
4483 				      inode->i_size >> PAGE_CACHE_SHIFT);
4484 		if (!page)
4485 			return;
4486 		ret = __ext4_journalled_invalidatepage(page, offset,
4487 						PAGE_CACHE_SIZE - offset);
4488 		unlock_page(page);
4489 		page_cache_release(page);
4490 		if (ret != -EBUSY)
4491 			return;
4492 		commit_tid = 0;
4493 		read_lock(&journal->j_state_lock);
4494 		if (journal->j_committing_transaction)
4495 			commit_tid = journal->j_committing_transaction->t_tid;
4496 		read_unlock(&journal->j_state_lock);
4497 		if (commit_tid)
4498 			jbd2_log_wait_commit(journal, commit_tid);
4499 	}
4500 }
4501 
4502 /*
4503  * ext4_setattr()
4504  *
4505  * Called from notify_change.
4506  *
4507  * We want to trap VFS attempts to truncate the file as soon as
4508  * possible.  In particular, we want to make sure that when the VFS
4509  * shrinks i_size, we put the inode on the orphan list and modify
4510  * i_disksize immediately, so that during the subsequent flushing of
4511  * dirty pages and freeing of disk blocks, we can guarantee that any
4512  * commit will leave the blocks being flushed in an unused state on
4513  * disk.  (On recovery, the inode will get truncated and the blocks will
4514  * be freed, so we have a strong guarantee that no future commit will
4515  * leave these blocks visible to the user.)
4516  *
4517  * Another thing we have to assure is that if we are in ordered mode
4518  * and inode is still attached to the committing transaction, we must
4519  * we start writeout of all the dirty pages which are being truncated.
4520  * This way we are sure that all the data written in the previous
4521  * transaction are already on disk (truncate waits for pages under
4522  * writeback).
4523  *
4524  * Called with inode->i_mutex down.
4525  */
4526 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4527 {
4528 	struct inode *inode = dentry->d_inode;
4529 	int error, rc = 0;
4530 	int orphan = 0;
4531 	const unsigned int ia_valid = attr->ia_valid;
4532 
4533 	error = inode_change_ok(inode, attr);
4534 	if (error)
4535 		return error;
4536 
4537 	if (is_quota_modification(inode, attr))
4538 		dquot_initialize(inode);
4539 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4540 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4541 		handle_t *handle;
4542 
4543 		/* (user+group)*(old+new) structure, inode write (sb,
4544 		 * inode block, ? - but truncate inode update has it) */
4545 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4546 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4547 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4548 		if (IS_ERR(handle)) {
4549 			error = PTR_ERR(handle);
4550 			goto err_out;
4551 		}
4552 		error = dquot_transfer(inode, attr);
4553 		if (error) {
4554 			ext4_journal_stop(handle);
4555 			return error;
4556 		}
4557 		/* Update corresponding info in inode so that everything is in
4558 		 * one transaction */
4559 		if (attr->ia_valid & ATTR_UID)
4560 			inode->i_uid = attr->ia_uid;
4561 		if (attr->ia_valid & ATTR_GID)
4562 			inode->i_gid = attr->ia_gid;
4563 		error = ext4_mark_inode_dirty(handle, inode);
4564 		ext4_journal_stop(handle);
4565 	}
4566 
4567 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4568 		handle_t *handle;
4569 
4570 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4571 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4572 
4573 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4574 				return -EFBIG;
4575 		}
4576 
4577 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4578 			inode_inc_iversion(inode);
4579 
4580 		if (S_ISREG(inode->i_mode) &&
4581 		    (attr->ia_size < inode->i_size)) {
4582 			if (ext4_should_order_data(inode)) {
4583 				error = ext4_begin_ordered_truncate(inode,
4584 							    attr->ia_size);
4585 				if (error)
4586 					goto err_out;
4587 			}
4588 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4589 			if (IS_ERR(handle)) {
4590 				error = PTR_ERR(handle);
4591 				goto err_out;
4592 			}
4593 			if (ext4_handle_valid(handle)) {
4594 				error = ext4_orphan_add(handle, inode);
4595 				orphan = 1;
4596 			}
4597 			down_write(&EXT4_I(inode)->i_data_sem);
4598 			EXT4_I(inode)->i_disksize = attr->ia_size;
4599 			rc = ext4_mark_inode_dirty(handle, inode);
4600 			if (!error)
4601 				error = rc;
4602 			/*
4603 			 * We have to update i_size under i_data_sem together
4604 			 * with i_disksize to avoid races with writeback code
4605 			 * running ext4_wb_update_i_disksize().
4606 			 */
4607 			if (!error)
4608 				i_size_write(inode, attr->ia_size);
4609 			up_write(&EXT4_I(inode)->i_data_sem);
4610 			ext4_journal_stop(handle);
4611 			if (error) {
4612 				ext4_orphan_del(NULL, inode);
4613 				goto err_out;
4614 			}
4615 		} else {
4616 			loff_t oldsize = inode->i_size;
4617 
4618 			i_size_write(inode, attr->ia_size);
4619 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4620 		}
4621 
4622 		/*
4623 		 * Blocks are going to be removed from the inode. Wait
4624 		 * for dio in flight.  Temporarily disable
4625 		 * dioread_nolock to prevent livelock.
4626 		 */
4627 		if (orphan) {
4628 			if (!ext4_should_journal_data(inode)) {
4629 				ext4_inode_block_unlocked_dio(inode);
4630 				inode_dio_wait(inode);
4631 				ext4_inode_resume_unlocked_dio(inode);
4632 			} else
4633 				ext4_wait_for_tail_page_commit(inode);
4634 		}
4635 		/*
4636 		 * Truncate pagecache after we've waited for commit
4637 		 * in data=journal mode to make pages freeable.
4638 		 */
4639 		truncate_pagecache(inode, inode->i_size);
4640 	}
4641 	/*
4642 	 * We want to call ext4_truncate() even if attr->ia_size ==
4643 	 * inode->i_size for cases like truncation of fallocated space
4644 	 */
4645 	if (attr->ia_valid & ATTR_SIZE)
4646 		ext4_truncate(inode);
4647 
4648 	if (!rc) {
4649 		setattr_copy(inode, attr);
4650 		mark_inode_dirty(inode);
4651 	}
4652 
4653 	/*
4654 	 * If the call to ext4_truncate failed to get a transaction handle at
4655 	 * all, we need to clean up the in-core orphan list manually.
4656 	 */
4657 	if (orphan && inode->i_nlink)
4658 		ext4_orphan_del(NULL, inode);
4659 
4660 	if (!rc && (ia_valid & ATTR_MODE))
4661 		rc = posix_acl_chmod(inode, inode->i_mode);
4662 
4663 err_out:
4664 	ext4_std_error(inode->i_sb, error);
4665 	if (!error)
4666 		error = rc;
4667 	return error;
4668 }
4669 
4670 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4671 		 struct kstat *stat)
4672 {
4673 	struct inode *inode;
4674 	unsigned long long delalloc_blocks;
4675 
4676 	inode = dentry->d_inode;
4677 	generic_fillattr(inode, stat);
4678 
4679 	/*
4680 	 * If there is inline data in the inode, the inode will normally not
4681 	 * have data blocks allocated (it may have an external xattr block).
4682 	 * Report at least one sector for such files, so tools like tar, rsync,
4683 	 * others doen't incorrectly think the file is completely sparse.
4684 	 */
4685 	if (unlikely(ext4_has_inline_data(inode)))
4686 		stat->blocks += (stat->size + 511) >> 9;
4687 
4688 	/*
4689 	 * We can't update i_blocks if the block allocation is delayed
4690 	 * otherwise in the case of system crash before the real block
4691 	 * allocation is done, we will have i_blocks inconsistent with
4692 	 * on-disk file blocks.
4693 	 * We always keep i_blocks updated together with real
4694 	 * allocation. But to not confuse with user, stat
4695 	 * will return the blocks that include the delayed allocation
4696 	 * blocks for this file.
4697 	 */
4698 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4699 				   EXT4_I(inode)->i_reserved_data_blocks);
4700 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4701 	return 0;
4702 }
4703 
4704 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4705 				   int pextents)
4706 {
4707 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4708 		return ext4_ind_trans_blocks(inode, lblocks);
4709 	return ext4_ext_index_trans_blocks(inode, pextents);
4710 }
4711 
4712 /*
4713  * Account for index blocks, block groups bitmaps and block group
4714  * descriptor blocks if modify datablocks and index blocks
4715  * worse case, the indexs blocks spread over different block groups
4716  *
4717  * If datablocks are discontiguous, they are possible to spread over
4718  * different block groups too. If they are contiguous, with flexbg,
4719  * they could still across block group boundary.
4720  *
4721  * Also account for superblock, inode, quota and xattr blocks
4722  */
4723 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4724 				  int pextents)
4725 {
4726 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4727 	int gdpblocks;
4728 	int idxblocks;
4729 	int ret = 0;
4730 
4731 	/*
4732 	 * How many index blocks need to touch to map @lblocks logical blocks
4733 	 * to @pextents physical extents?
4734 	 */
4735 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4736 
4737 	ret = idxblocks;
4738 
4739 	/*
4740 	 * Now let's see how many group bitmaps and group descriptors need
4741 	 * to account
4742 	 */
4743 	groups = idxblocks + pextents;
4744 	gdpblocks = groups;
4745 	if (groups > ngroups)
4746 		groups = ngroups;
4747 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4748 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4749 
4750 	/* bitmaps and block group descriptor blocks */
4751 	ret += groups + gdpblocks;
4752 
4753 	/* Blocks for super block, inode, quota and xattr blocks */
4754 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4755 
4756 	return ret;
4757 }
4758 
4759 /*
4760  * Calculate the total number of credits to reserve to fit
4761  * the modification of a single pages into a single transaction,
4762  * which may include multiple chunks of block allocations.
4763  *
4764  * This could be called via ext4_write_begin()
4765  *
4766  * We need to consider the worse case, when
4767  * one new block per extent.
4768  */
4769 int ext4_writepage_trans_blocks(struct inode *inode)
4770 {
4771 	int bpp = ext4_journal_blocks_per_page(inode);
4772 	int ret;
4773 
4774 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4775 
4776 	/* Account for data blocks for journalled mode */
4777 	if (ext4_should_journal_data(inode))
4778 		ret += bpp;
4779 	return ret;
4780 }
4781 
4782 /*
4783  * Calculate the journal credits for a chunk of data modification.
4784  *
4785  * This is called from DIO, fallocate or whoever calling
4786  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4787  *
4788  * journal buffers for data blocks are not included here, as DIO
4789  * and fallocate do no need to journal data buffers.
4790  */
4791 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4792 {
4793 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4794 }
4795 
4796 /*
4797  * The caller must have previously called ext4_reserve_inode_write().
4798  * Give this, we know that the caller already has write access to iloc->bh.
4799  */
4800 int ext4_mark_iloc_dirty(handle_t *handle,
4801 			 struct inode *inode, struct ext4_iloc *iloc)
4802 {
4803 	int err = 0;
4804 
4805 	if (IS_I_VERSION(inode))
4806 		inode_inc_iversion(inode);
4807 
4808 	/* the do_update_inode consumes one bh->b_count */
4809 	get_bh(iloc->bh);
4810 
4811 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4812 	err = ext4_do_update_inode(handle, inode, iloc);
4813 	put_bh(iloc->bh);
4814 	return err;
4815 }
4816 
4817 /*
4818  * On success, We end up with an outstanding reference count against
4819  * iloc->bh.  This _must_ be cleaned up later.
4820  */
4821 
4822 int
4823 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4824 			 struct ext4_iloc *iloc)
4825 {
4826 	int err;
4827 
4828 	err = ext4_get_inode_loc(inode, iloc);
4829 	if (!err) {
4830 		BUFFER_TRACE(iloc->bh, "get_write_access");
4831 		err = ext4_journal_get_write_access(handle, iloc->bh);
4832 		if (err) {
4833 			brelse(iloc->bh);
4834 			iloc->bh = NULL;
4835 		}
4836 	}
4837 	ext4_std_error(inode->i_sb, err);
4838 	return err;
4839 }
4840 
4841 /*
4842  * Expand an inode by new_extra_isize bytes.
4843  * Returns 0 on success or negative error number on failure.
4844  */
4845 static int ext4_expand_extra_isize(struct inode *inode,
4846 				   unsigned int new_extra_isize,
4847 				   struct ext4_iloc iloc,
4848 				   handle_t *handle)
4849 {
4850 	struct ext4_inode *raw_inode;
4851 	struct ext4_xattr_ibody_header *header;
4852 
4853 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4854 		return 0;
4855 
4856 	raw_inode = ext4_raw_inode(&iloc);
4857 
4858 	header = IHDR(inode, raw_inode);
4859 
4860 	/* No extended attributes present */
4861 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4862 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4863 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4864 			new_extra_isize);
4865 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4866 		return 0;
4867 	}
4868 
4869 	/* try to expand with EAs present */
4870 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4871 					  raw_inode, handle);
4872 }
4873 
4874 /*
4875  * What we do here is to mark the in-core inode as clean with respect to inode
4876  * dirtiness (it may still be data-dirty).
4877  * This means that the in-core inode may be reaped by prune_icache
4878  * without having to perform any I/O.  This is a very good thing,
4879  * because *any* task may call prune_icache - even ones which
4880  * have a transaction open against a different journal.
4881  *
4882  * Is this cheating?  Not really.  Sure, we haven't written the
4883  * inode out, but prune_icache isn't a user-visible syncing function.
4884  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4885  * we start and wait on commits.
4886  */
4887 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4888 {
4889 	struct ext4_iloc iloc;
4890 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4891 	static unsigned int mnt_count;
4892 	int err, ret;
4893 
4894 	might_sleep();
4895 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4896 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4897 	if (ext4_handle_valid(handle) &&
4898 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4899 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4900 		/*
4901 		 * We need extra buffer credits since we may write into EA block
4902 		 * with this same handle. If journal_extend fails, then it will
4903 		 * only result in a minor loss of functionality for that inode.
4904 		 * If this is felt to be critical, then e2fsck should be run to
4905 		 * force a large enough s_min_extra_isize.
4906 		 */
4907 		if ((jbd2_journal_extend(handle,
4908 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4909 			ret = ext4_expand_extra_isize(inode,
4910 						      sbi->s_want_extra_isize,
4911 						      iloc, handle);
4912 			if (ret) {
4913 				ext4_set_inode_state(inode,
4914 						     EXT4_STATE_NO_EXPAND);
4915 				if (mnt_count !=
4916 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4917 					ext4_warning(inode->i_sb,
4918 					"Unable to expand inode %lu. Delete"
4919 					" some EAs or run e2fsck.",
4920 					inode->i_ino);
4921 					mnt_count =
4922 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4923 				}
4924 			}
4925 		}
4926 	}
4927 	if (!err)
4928 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4929 	return err;
4930 }
4931 
4932 /*
4933  * ext4_dirty_inode() is called from __mark_inode_dirty()
4934  *
4935  * We're really interested in the case where a file is being extended.
4936  * i_size has been changed by generic_commit_write() and we thus need
4937  * to include the updated inode in the current transaction.
4938  *
4939  * Also, dquot_alloc_block() will always dirty the inode when blocks
4940  * are allocated to the file.
4941  *
4942  * If the inode is marked synchronous, we don't honour that here - doing
4943  * so would cause a commit on atime updates, which we don't bother doing.
4944  * We handle synchronous inodes at the highest possible level.
4945  *
4946  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
4947  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
4948  * to copy into the on-disk inode structure are the timestamp files.
4949  */
4950 void ext4_dirty_inode(struct inode *inode, int flags)
4951 {
4952 	handle_t *handle;
4953 
4954 	if (flags == I_DIRTY_TIME)
4955 		return;
4956 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4957 	if (IS_ERR(handle))
4958 		goto out;
4959 
4960 	ext4_mark_inode_dirty(handle, inode);
4961 
4962 	ext4_journal_stop(handle);
4963 out:
4964 	return;
4965 }
4966 
4967 #if 0
4968 /*
4969  * Bind an inode's backing buffer_head into this transaction, to prevent
4970  * it from being flushed to disk early.  Unlike
4971  * ext4_reserve_inode_write, this leaves behind no bh reference and
4972  * returns no iloc structure, so the caller needs to repeat the iloc
4973  * lookup to mark the inode dirty later.
4974  */
4975 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4976 {
4977 	struct ext4_iloc iloc;
4978 
4979 	int err = 0;
4980 	if (handle) {
4981 		err = ext4_get_inode_loc(inode, &iloc);
4982 		if (!err) {
4983 			BUFFER_TRACE(iloc.bh, "get_write_access");
4984 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4985 			if (!err)
4986 				err = ext4_handle_dirty_metadata(handle,
4987 								 NULL,
4988 								 iloc.bh);
4989 			brelse(iloc.bh);
4990 		}
4991 	}
4992 	ext4_std_error(inode->i_sb, err);
4993 	return err;
4994 }
4995 #endif
4996 
4997 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4998 {
4999 	journal_t *journal;
5000 	handle_t *handle;
5001 	int err;
5002 
5003 	/*
5004 	 * We have to be very careful here: changing a data block's
5005 	 * journaling status dynamically is dangerous.  If we write a
5006 	 * data block to the journal, change the status and then delete
5007 	 * that block, we risk forgetting to revoke the old log record
5008 	 * from the journal and so a subsequent replay can corrupt data.
5009 	 * So, first we make sure that the journal is empty and that
5010 	 * nobody is changing anything.
5011 	 */
5012 
5013 	journal = EXT4_JOURNAL(inode);
5014 	if (!journal)
5015 		return 0;
5016 	if (is_journal_aborted(journal))
5017 		return -EROFS;
5018 	/* We have to allocate physical blocks for delalloc blocks
5019 	 * before flushing journal. otherwise delalloc blocks can not
5020 	 * be allocated any more. even more truncate on delalloc blocks
5021 	 * could trigger BUG by flushing delalloc blocks in journal.
5022 	 * There is no delalloc block in non-journal data mode.
5023 	 */
5024 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5025 		err = ext4_alloc_da_blocks(inode);
5026 		if (err < 0)
5027 			return err;
5028 	}
5029 
5030 	/* Wait for all existing dio workers */
5031 	ext4_inode_block_unlocked_dio(inode);
5032 	inode_dio_wait(inode);
5033 
5034 	jbd2_journal_lock_updates(journal);
5035 
5036 	/*
5037 	 * OK, there are no updates running now, and all cached data is
5038 	 * synced to disk.  We are now in a completely consistent state
5039 	 * which doesn't have anything in the journal, and we know that
5040 	 * no filesystem updates are running, so it is safe to modify
5041 	 * the inode's in-core data-journaling state flag now.
5042 	 */
5043 
5044 	if (val)
5045 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5046 	else {
5047 		err = jbd2_journal_flush(journal);
5048 		if (err < 0) {
5049 			jbd2_journal_unlock_updates(journal);
5050 			ext4_inode_resume_unlocked_dio(inode);
5051 			return err;
5052 		}
5053 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5054 	}
5055 	ext4_set_aops(inode);
5056 
5057 	jbd2_journal_unlock_updates(journal);
5058 	ext4_inode_resume_unlocked_dio(inode);
5059 
5060 	/* Finally we can mark the inode as dirty. */
5061 
5062 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5063 	if (IS_ERR(handle))
5064 		return PTR_ERR(handle);
5065 
5066 	err = ext4_mark_inode_dirty(handle, inode);
5067 	ext4_handle_sync(handle);
5068 	ext4_journal_stop(handle);
5069 	ext4_std_error(inode->i_sb, err);
5070 
5071 	return err;
5072 }
5073 
5074 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5075 {
5076 	return !buffer_mapped(bh);
5077 }
5078 
5079 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5080 {
5081 	struct page *page = vmf->page;
5082 	loff_t size;
5083 	unsigned long len;
5084 	int ret;
5085 	struct file *file = vma->vm_file;
5086 	struct inode *inode = file_inode(file);
5087 	struct address_space *mapping = inode->i_mapping;
5088 	handle_t *handle;
5089 	get_block_t *get_block;
5090 	int retries = 0;
5091 
5092 	sb_start_pagefault(inode->i_sb);
5093 	file_update_time(vma->vm_file);
5094 	/* Delalloc case is easy... */
5095 	if (test_opt(inode->i_sb, DELALLOC) &&
5096 	    !ext4_should_journal_data(inode) &&
5097 	    !ext4_nonda_switch(inode->i_sb)) {
5098 		do {
5099 			ret = __block_page_mkwrite(vma, vmf,
5100 						   ext4_da_get_block_prep);
5101 		} while (ret == -ENOSPC &&
5102 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5103 		goto out_ret;
5104 	}
5105 
5106 	lock_page(page);
5107 	size = i_size_read(inode);
5108 	/* Page got truncated from under us? */
5109 	if (page->mapping != mapping || page_offset(page) > size) {
5110 		unlock_page(page);
5111 		ret = VM_FAULT_NOPAGE;
5112 		goto out;
5113 	}
5114 
5115 	if (page->index == size >> PAGE_CACHE_SHIFT)
5116 		len = size & ~PAGE_CACHE_MASK;
5117 	else
5118 		len = PAGE_CACHE_SIZE;
5119 	/*
5120 	 * Return if we have all the buffers mapped. This avoids the need to do
5121 	 * journal_start/journal_stop which can block and take a long time
5122 	 */
5123 	if (page_has_buffers(page)) {
5124 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5125 					    0, len, NULL,
5126 					    ext4_bh_unmapped)) {
5127 			/* Wait so that we don't change page under IO */
5128 			wait_for_stable_page(page);
5129 			ret = VM_FAULT_LOCKED;
5130 			goto out;
5131 		}
5132 	}
5133 	unlock_page(page);
5134 	/* OK, we need to fill the hole... */
5135 	if (ext4_should_dioread_nolock(inode))
5136 		get_block = ext4_get_block_write;
5137 	else
5138 		get_block = ext4_get_block;
5139 retry_alloc:
5140 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5141 				    ext4_writepage_trans_blocks(inode));
5142 	if (IS_ERR(handle)) {
5143 		ret = VM_FAULT_SIGBUS;
5144 		goto out;
5145 	}
5146 	ret = __block_page_mkwrite(vma, vmf, get_block);
5147 	if (!ret && ext4_should_journal_data(inode)) {
5148 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5149 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5150 			unlock_page(page);
5151 			ret = VM_FAULT_SIGBUS;
5152 			ext4_journal_stop(handle);
5153 			goto out;
5154 		}
5155 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5156 	}
5157 	ext4_journal_stop(handle);
5158 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5159 		goto retry_alloc;
5160 out_ret:
5161 	ret = block_page_mkwrite_return(ret);
5162 out:
5163 	sb_end_pagefault(inode->i_sb);
5164 	return ret;
5165 }
5166