xref: /openbmc/linux/fs/ext4/inode.c (revision 8993d5e4)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	return S_ISLNK(inode->i_mode) && inode->i_size &&
152 	       (inode->i_size < EXT4_N_BLOCKS * 4);
153 }
154 
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 				 int nblocks)
162 {
163 	int ret;
164 
165 	/*
166 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167 	 * moment, get_block can be called only for blocks inside i_size since
168 	 * page cache has been already dropped and writes are blocked by
169 	 * i_mutex. So we can safely drop the i_data_sem here.
170 	 */
171 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 	jbd_debug(2, "restarting handle %p\n", handle);
173 	up_write(&EXT4_I(inode)->i_data_sem);
174 	ret = ext4_journal_restart(handle, nblocks);
175 	down_write(&EXT4_I(inode)->i_data_sem);
176 	ext4_discard_preallocations(inode);
177 
178 	return ret;
179 }
180 
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 	handle_t *handle;
187 	int err;
188 	int extra_credits = 3;
189 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
190 
191 	trace_ext4_evict_inode(inode);
192 
193 	if (inode->i_nlink) {
194 		/*
195 		 * When journalling data dirty buffers are tracked only in the
196 		 * journal. So although mm thinks everything is clean and
197 		 * ready for reaping the inode might still have some pages to
198 		 * write in the running transaction or waiting to be
199 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 		 * (via truncate_inode_pages()) to discard these buffers can
201 		 * cause data loss. Also even if we did not discard these
202 		 * buffers, we would have no way to find them after the inode
203 		 * is reaped and thus user could see stale data if he tries to
204 		 * read them before the transaction is checkpointed. So be
205 		 * careful and force everything to disk here... We use
206 		 * ei->i_datasync_tid to store the newest transaction
207 		 * containing inode's data.
208 		 *
209 		 * Note that directories do not have this problem because they
210 		 * don't use page cache.
211 		 */
212 		if (inode->i_ino != EXT4_JOURNAL_INO &&
213 		    ext4_should_journal_data(inode) &&
214 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215 		    inode->i_data.nrpages) {
216 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218 
219 			jbd2_complete_transaction(journal, commit_tid);
220 			filemap_write_and_wait(&inode->i_data);
221 		}
222 		truncate_inode_pages_final(&inode->i_data);
223 
224 		goto no_delete;
225 	}
226 
227 	if (is_bad_inode(inode))
228 		goto no_delete;
229 	dquot_initialize(inode);
230 
231 	if (ext4_should_order_data(inode))
232 		ext4_begin_ordered_truncate(inode, 0);
233 	truncate_inode_pages_final(&inode->i_data);
234 
235 	/*
236 	 * Protect us against freezing - iput() caller didn't have to have any
237 	 * protection against it
238 	 */
239 	sb_start_intwrite(inode->i_sb);
240 
241 	if (!IS_NOQUOTA(inode))
242 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
243 
244 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245 				 ext4_blocks_for_truncate(inode)+extra_credits);
246 	if (IS_ERR(handle)) {
247 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
248 		/*
249 		 * If we're going to skip the normal cleanup, we still need to
250 		 * make sure that the in-core orphan linked list is properly
251 		 * cleaned up.
252 		 */
253 		ext4_orphan_del(NULL, inode);
254 		sb_end_intwrite(inode->i_sb);
255 		goto no_delete;
256 	}
257 
258 	if (IS_SYNC(inode))
259 		ext4_handle_sync(handle);
260 
261 	/*
262 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
263 	 * special handling of symlinks here because i_size is used to
264 	 * determine whether ext4_inode_info->i_data contains symlink data or
265 	 * block mappings. Setting i_size to 0 will remove its fast symlink
266 	 * status. Erase i_data so that it becomes a valid empty block map.
267 	 */
268 	if (ext4_inode_is_fast_symlink(inode))
269 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
270 	inode->i_size = 0;
271 	err = ext4_mark_inode_dirty(handle, inode);
272 	if (err) {
273 		ext4_warning(inode->i_sb,
274 			     "couldn't mark inode dirty (err %d)", err);
275 		goto stop_handle;
276 	}
277 	if (inode->i_blocks) {
278 		err = ext4_truncate(inode);
279 		if (err) {
280 			ext4_error(inode->i_sb,
281 				   "couldn't truncate inode %lu (err %d)",
282 				   inode->i_ino, err);
283 			goto stop_handle;
284 		}
285 	}
286 
287 	/* Remove xattr references. */
288 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
289 				      extra_credits);
290 	if (err) {
291 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
292 stop_handle:
293 		ext4_journal_stop(handle);
294 		ext4_orphan_del(NULL, inode);
295 		sb_end_intwrite(inode->i_sb);
296 		ext4_xattr_inode_array_free(ea_inode_array);
297 		goto no_delete;
298 	}
299 
300 	/*
301 	 * Kill off the orphan record which ext4_truncate created.
302 	 * AKPM: I think this can be inside the above `if'.
303 	 * Note that ext4_orphan_del() has to be able to cope with the
304 	 * deletion of a non-existent orphan - this is because we don't
305 	 * know if ext4_truncate() actually created an orphan record.
306 	 * (Well, we could do this if we need to, but heck - it works)
307 	 */
308 	ext4_orphan_del(handle, inode);
309 	EXT4_I(inode)->i_dtime	= get_seconds();
310 
311 	/*
312 	 * One subtle ordering requirement: if anything has gone wrong
313 	 * (transaction abort, IO errors, whatever), then we can still
314 	 * do these next steps (the fs will already have been marked as
315 	 * having errors), but we can't free the inode if the mark_dirty
316 	 * fails.
317 	 */
318 	if (ext4_mark_inode_dirty(handle, inode))
319 		/* If that failed, just do the required in-core inode clear. */
320 		ext4_clear_inode(inode);
321 	else
322 		ext4_free_inode(handle, inode);
323 	ext4_journal_stop(handle);
324 	sb_end_intwrite(inode->i_sb);
325 	ext4_xattr_inode_array_free(ea_inode_array);
326 	return;
327 no_delete:
328 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
329 }
330 
331 #ifdef CONFIG_QUOTA
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
333 {
334 	return &EXT4_I(inode)->i_reserved_quota;
335 }
336 #endif
337 
338 /*
339  * Called with i_data_sem down, which is important since we can call
340  * ext4_discard_preallocations() from here.
341  */
342 void ext4_da_update_reserve_space(struct inode *inode,
343 					int used, int quota_claim)
344 {
345 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346 	struct ext4_inode_info *ei = EXT4_I(inode);
347 
348 	spin_lock(&ei->i_block_reservation_lock);
349 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350 	if (unlikely(used > ei->i_reserved_data_blocks)) {
351 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352 			 "with only %d reserved data blocks",
353 			 __func__, inode->i_ino, used,
354 			 ei->i_reserved_data_blocks);
355 		WARN_ON(1);
356 		used = ei->i_reserved_data_blocks;
357 	}
358 
359 	/* Update per-inode reservations */
360 	ei->i_reserved_data_blocks -= used;
361 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
362 
363 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
364 
365 	/* Update quota subsystem for data blocks */
366 	if (quota_claim)
367 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
368 	else {
369 		/*
370 		 * We did fallocate with an offset that is already delayed
371 		 * allocated. So on delayed allocated writeback we should
372 		 * not re-claim the quota for fallocated blocks.
373 		 */
374 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
375 	}
376 
377 	/*
378 	 * If we have done all the pending block allocations and if
379 	 * there aren't any writers on the inode, we can discard the
380 	 * inode's preallocations.
381 	 */
382 	if ((ei->i_reserved_data_blocks == 0) &&
383 	    (atomic_read(&inode->i_writecount) == 0))
384 		ext4_discard_preallocations(inode);
385 }
386 
387 static int __check_block_validity(struct inode *inode, const char *func,
388 				unsigned int line,
389 				struct ext4_map_blocks *map)
390 {
391 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
392 				   map->m_len)) {
393 		ext4_error_inode(inode, func, line, map->m_pblk,
394 				 "lblock %lu mapped to illegal pblock "
395 				 "(length %d)", (unsigned long) map->m_lblk,
396 				 map->m_len);
397 		return -EFSCORRUPTED;
398 	}
399 	return 0;
400 }
401 
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
403 		       ext4_lblk_t len)
404 {
405 	int ret;
406 
407 	if (ext4_encrypted_inode(inode))
408 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
409 
410 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411 	if (ret > 0)
412 		ret = 0;
413 
414 	return ret;
415 }
416 
417 #define check_block_validity(inode, map)	\
418 	__check_block_validity((inode), __func__, __LINE__, (map))
419 
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
422 				       struct inode *inode,
423 				       struct ext4_map_blocks *es_map,
424 				       struct ext4_map_blocks *map,
425 				       int flags)
426 {
427 	int retval;
428 
429 	map->m_flags = 0;
430 	/*
431 	 * There is a race window that the result is not the same.
432 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
433 	 * is that we lookup a block mapping in extent status tree with
434 	 * out taking i_data_sem.  So at the time the unwritten extent
435 	 * could be converted.
436 	 */
437 	down_read(&EXT4_I(inode)->i_data_sem);
438 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
440 					     EXT4_GET_BLOCKS_KEEP_SIZE);
441 	} else {
442 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
443 					     EXT4_GET_BLOCKS_KEEP_SIZE);
444 	}
445 	up_read((&EXT4_I(inode)->i_data_sem));
446 
447 	/*
448 	 * We don't check m_len because extent will be collpased in status
449 	 * tree.  So the m_len might not equal.
450 	 */
451 	if (es_map->m_lblk != map->m_lblk ||
452 	    es_map->m_flags != map->m_flags ||
453 	    es_map->m_pblk != map->m_pblk) {
454 		printk("ES cache assertion failed for inode: %lu "
455 		       "es_cached ex [%d/%d/%llu/%x] != "
456 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
458 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
459 		       map->m_len, map->m_pblk, map->m_flags,
460 		       retval, flags);
461 	}
462 }
463 #endif /* ES_AGGRESSIVE_TEST */
464 
465 /*
466  * The ext4_map_blocks() function tries to look up the requested blocks,
467  * and returns if the blocks are already mapped.
468  *
469  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470  * and store the allocated blocks in the result buffer head and mark it
471  * mapped.
472  *
473  * If file type is extents based, it will call ext4_ext_map_blocks(),
474  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
475  * based files
476  *
477  * On success, it returns the number of blocks being mapped or allocated.  if
478  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
480  *
481  * It returns 0 if plain look up failed (blocks have not been allocated), in
482  * that case, @map is returned as unmapped but we still do fill map->m_len to
483  * indicate the length of a hole starting at map->m_lblk.
484  *
485  * It returns the error in case of allocation failure.
486  */
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488 		    struct ext4_map_blocks *map, int flags)
489 {
490 	struct extent_status es;
491 	int retval;
492 	int ret = 0;
493 #ifdef ES_AGGRESSIVE_TEST
494 	struct ext4_map_blocks orig_map;
495 
496 	memcpy(&orig_map, map, sizeof(*map));
497 #endif
498 
499 	map->m_flags = 0;
500 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
502 		  (unsigned long) map->m_lblk);
503 
504 	/*
505 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
506 	 */
507 	if (unlikely(map->m_len > INT_MAX))
508 		map->m_len = INT_MAX;
509 
510 	/* We can handle the block number less than EXT_MAX_BLOCKS */
511 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512 		return -EFSCORRUPTED;
513 
514 	/* Lookup extent status tree firstly */
515 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517 			map->m_pblk = ext4_es_pblock(&es) +
518 					map->m_lblk - es.es_lblk;
519 			map->m_flags |= ext4_es_is_written(&es) ?
520 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521 			retval = es.es_len - (map->m_lblk - es.es_lblk);
522 			if (retval > map->m_len)
523 				retval = map->m_len;
524 			map->m_len = retval;
525 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
526 			map->m_pblk = 0;
527 			retval = es.es_len - (map->m_lblk - es.es_lblk);
528 			if (retval > map->m_len)
529 				retval = map->m_len;
530 			map->m_len = retval;
531 			retval = 0;
532 		} else {
533 			BUG_ON(1);
534 		}
535 #ifdef ES_AGGRESSIVE_TEST
536 		ext4_map_blocks_es_recheck(handle, inode, map,
537 					   &orig_map, flags);
538 #endif
539 		goto found;
540 	}
541 
542 	/*
543 	 * Try to see if we can get the block without requesting a new
544 	 * file system block.
545 	 */
546 	down_read(&EXT4_I(inode)->i_data_sem);
547 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 					     EXT4_GET_BLOCKS_KEEP_SIZE);
550 	} else {
551 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 					     EXT4_GET_BLOCKS_KEEP_SIZE);
553 	}
554 	if (retval > 0) {
555 		unsigned int status;
556 
557 		if (unlikely(retval != map->m_len)) {
558 			ext4_warning(inode->i_sb,
559 				     "ES len assertion failed for inode "
560 				     "%lu: retval %d != map->m_len %d",
561 				     inode->i_ino, retval, map->m_len);
562 			WARN_ON(1);
563 		}
564 
565 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 		    !(status & EXTENT_STATUS_WRITTEN) &&
569 		    ext4_find_delalloc_range(inode, map->m_lblk,
570 					     map->m_lblk + map->m_len - 1))
571 			status |= EXTENT_STATUS_DELAYED;
572 		ret = ext4_es_insert_extent(inode, map->m_lblk,
573 					    map->m_len, map->m_pblk, status);
574 		if (ret < 0)
575 			retval = ret;
576 	}
577 	up_read((&EXT4_I(inode)->i_data_sem));
578 
579 found:
580 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581 		ret = check_block_validity(inode, map);
582 		if (ret != 0)
583 			return ret;
584 	}
585 
586 	/* If it is only a block(s) look up */
587 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588 		return retval;
589 
590 	/*
591 	 * Returns if the blocks have already allocated
592 	 *
593 	 * Note that if blocks have been preallocated
594 	 * ext4_ext_get_block() returns the create = 0
595 	 * with buffer head unmapped.
596 	 */
597 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598 		/*
599 		 * If we need to convert extent to unwritten
600 		 * we continue and do the actual work in
601 		 * ext4_ext_map_blocks()
602 		 */
603 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604 			return retval;
605 
606 	/*
607 	 * Here we clear m_flags because after allocating an new extent,
608 	 * it will be set again.
609 	 */
610 	map->m_flags &= ~EXT4_MAP_FLAGS;
611 
612 	/*
613 	 * New blocks allocate and/or writing to unwritten extent
614 	 * will possibly result in updating i_data, so we take
615 	 * the write lock of i_data_sem, and call get_block()
616 	 * with create == 1 flag.
617 	 */
618 	down_write(&EXT4_I(inode)->i_data_sem);
619 
620 	/*
621 	 * We need to check for EXT4 here because migrate
622 	 * could have changed the inode type in between
623 	 */
624 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
626 	} else {
627 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
628 
629 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630 			/*
631 			 * We allocated new blocks which will result in
632 			 * i_data's format changing.  Force the migrate
633 			 * to fail by clearing migrate flags
634 			 */
635 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636 		}
637 
638 		/*
639 		 * Update reserved blocks/metadata blocks after successful
640 		 * block allocation which had been deferred till now. We don't
641 		 * support fallocate for non extent files. So we can update
642 		 * reserve space here.
643 		 */
644 		if ((retval > 0) &&
645 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646 			ext4_da_update_reserve_space(inode, retval, 1);
647 	}
648 
649 	if (retval > 0) {
650 		unsigned int status;
651 
652 		if (unlikely(retval != map->m_len)) {
653 			ext4_warning(inode->i_sb,
654 				     "ES len assertion failed for inode "
655 				     "%lu: retval %d != map->m_len %d",
656 				     inode->i_ino, retval, map->m_len);
657 			WARN_ON(1);
658 		}
659 
660 		/*
661 		 * We have to zeroout blocks before inserting them into extent
662 		 * status tree. Otherwise someone could look them up there and
663 		 * use them before they are really zeroed. We also have to
664 		 * unmap metadata before zeroing as otherwise writeback can
665 		 * overwrite zeros with stale data from block device.
666 		 */
667 		if (flags & EXT4_GET_BLOCKS_ZERO &&
668 		    map->m_flags & EXT4_MAP_MAPPED &&
669 		    map->m_flags & EXT4_MAP_NEW) {
670 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
671 					   map->m_len);
672 			ret = ext4_issue_zeroout(inode, map->m_lblk,
673 						 map->m_pblk, map->m_len);
674 			if (ret) {
675 				retval = ret;
676 				goto out_sem;
677 			}
678 		}
679 
680 		/*
681 		 * If the extent has been zeroed out, we don't need to update
682 		 * extent status tree.
683 		 */
684 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686 			if (ext4_es_is_written(&es))
687 				goto out_sem;
688 		}
689 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692 		    !(status & EXTENT_STATUS_WRITTEN) &&
693 		    ext4_find_delalloc_range(inode, map->m_lblk,
694 					     map->m_lblk + map->m_len - 1))
695 			status |= EXTENT_STATUS_DELAYED;
696 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697 					    map->m_pblk, status);
698 		if (ret < 0) {
699 			retval = ret;
700 			goto out_sem;
701 		}
702 	}
703 
704 out_sem:
705 	up_write((&EXT4_I(inode)->i_data_sem));
706 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707 		ret = check_block_validity(inode, map);
708 		if (ret != 0)
709 			return ret;
710 
711 		/*
712 		 * Inodes with freshly allocated blocks where contents will be
713 		 * visible after transaction commit must be on transaction's
714 		 * ordered data list.
715 		 */
716 		if (map->m_flags & EXT4_MAP_NEW &&
717 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
719 		    !ext4_is_quota_file(inode) &&
720 		    ext4_should_order_data(inode)) {
721 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 				ret = ext4_jbd2_inode_add_wait(handle, inode);
723 			else
724 				ret = ext4_jbd2_inode_add_write(handle, inode);
725 			if (ret)
726 				return ret;
727 		}
728 	}
729 	return retval;
730 }
731 
732 /*
733  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734  * we have to be careful as someone else may be manipulating b_state as well.
735  */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738 	unsigned long old_state;
739 	unsigned long new_state;
740 
741 	flags &= EXT4_MAP_FLAGS;
742 
743 	/* Dummy buffer_head? Set non-atomically. */
744 	if (!bh->b_page) {
745 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746 		return;
747 	}
748 	/*
749 	 * Someone else may be modifying b_state. Be careful! This is ugly but
750 	 * once we get rid of using bh as a container for mapping information
751 	 * to pass to / from get_block functions, this can go away.
752 	 */
753 	do {
754 		old_state = READ_ONCE(bh->b_state);
755 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756 	} while (unlikely(
757 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759 
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 			   struct buffer_head *bh, int flags)
762 {
763 	struct ext4_map_blocks map;
764 	int ret = 0;
765 
766 	if (ext4_has_inline_data(inode))
767 		return -ERANGE;
768 
769 	map.m_lblk = iblock;
770 	map.m_len = bh->b_size >> inode->i_blkbits;
771 
772 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773 			      flags);
774 	if (ret > 0) {
775 		map_bh(bh, inode->i_sb, map.m_pblk);
776 		ext4_update_bh_state(bh, map.m_flags);
777 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778 		ret = 0;
779 	} else if (ret == 0) {
780 		/* hole case, need to fill in bh->b_size */
781 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782 	}
783 	return ret;
784 }
785 
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 		   struct buffer_head *bh, int create)
788 {
789 	return _ext4_get_block(inode, iblock, bh,
790 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792 
793 /*
794  * Get block function used when preparing for buffered write if we require
795  * creating an unwritten extent if blocks haven't been allocated.  The extent
796  * will be converted to written after the IO is complete.
797  */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 			     struct buffer_head *bh_result, int create)
800 {
801 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 		   inode->i_ino, create);
803 	return _ext4_get_block(inode, iblock, bh_result,
804 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806 
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809 
810 /*
811  * Get blocks function for the cases that need to start a transaction -
812  * generally difference cases of direct IO and DAX IO. It also handles retries
813  * in case of ENOSPC.
814  */
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816 				struct buffer_head *bh_result, int flags)
817 {
818 	int dio_credits;
819 	handle_t *handle;
820 	int retries = 0;
821 	int ret;
822 
823 	/* Trim mapping request to maximum we can map at once for DIO */
824 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826 	dio_credits = ext4_chunk_trans_blocks(inode,
827 				      bh_result->b_size >> inode->i_blkbits);
828 retry:
829 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
830 	if (IS_ERR(handle))
831 		return PTR_ERR(handle);
832 
833 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
834 	ext4_journal_stop(handle);
835 
836 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
837 		goto retry;
838 	return ret;
839 }
840 
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843 		       struct buffer_head *bh, int create)
844 {
845 	/* We don't expect handle for direct IO */
846 	WARN_ON_ONCE(ext4_journal_current_handle());
847 
848 	if (!create)
849 		return _ext4_get_block(inode, iblock, bh, 0);
850 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
851 }
852 
853 /*
854  * Get block function for AIO DIO writes when we create unwritten extent if
855  * blocks are not allocated yet. The extent will be converted to written
856  * after IO is complete.
857  */
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859 		sector_t iblock, struct buffer_head *bh_result,	int create)
860 {
861 	int ret;
862 
863 	/* We don't expect handle for direct IO */
864 	WARN_ON_ONCE(ext4_journal_current_handle());
865 
866 	ret = ext4_get_block_trans(inode, iblock, bh_result,
867 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
868 
869 	/*
870 	 * When doing DIO using unwritten extents, we need io_end to convert
871 	 * unwritten extents to written on IO completion. We allocate io_end
872 	 * once we spot unwritten extent and store it in b_private. Generic
873 	 * DIO code keeps b_private set and furthermore passes the value to
874 	 * our completion callback in 'private' argument.
875 	 */
876 	if (!ret && buffer_unwritten(bh_result)) {
877 		if (!bh_result->b_private) {
878 			ext4_io_end_t *io_end;
879 
880 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
881 			if (!io_end)
882 				return -ENOMEM;
883 			bh_result->b_private = io_end;
884 			ext4_set_io_unwritten_flag(inode, io_end);
885 		}
886 		set_buffer_defer_completion(bh_result);
887 	}
888 
889 	return ret;
890 }
891 
892 /*
893  * Get block function for non-AIO DIO writes when we create unwritten extent if
894  * blocks are not allocated yet. The extent will be converted to written
895  * after IO is complete by ext4_direct_IO_write().
896  */
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898 		sector_t iblock, struct buffer_head *bh_result,	int create)
899 {
900 	int ret;
901 
902 	/* We don't expect handle for direct IO */
903 	WARN_ON_ONCE(ext4_journal_current_handle());
904 
905 	ret = ext4_get_block_trans(inode, iblock, bh_result,
906 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
907 
908 	/*
909 	 * Mark inode as having pending DIO writes to unwritten extents.
910 	 * ext4_direct_IO_write() checks this flag and converts extents to
911 	 * written.
912 	 */
913 	if (!ret && buffer_unwritten(bh_result))
914 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
915 
916 	return ret;
917 }
918 
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920 		   struct buffer_head *bh_result, int create)
921 {
922 	int ret;
923 
924 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925 		   inode->i_ino, create);
926 	/* We don't expect handle for direct IO */
927 	WARN_ON_ONCE(ext4_journal_current_handle());
928 
929 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
930 	/*
931 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
932 	 * that.
933 	 */
934 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
935 
936 	return ret;
937 }
938 
939 
940 /*
941  * `handle' can be NULL if create is zero
942  */
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944 				ext4_lblk_t block, int map_flags)
945 {
946 	struct ext4_map_blocks map;
947 	struct buffer_head *bh;
948 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
949 	int err;
950 
951 	J_ASSERT(handle != NULL || create == 0);
952 
953 	map.m_lblk = block;
954 	map.m_len = 1;
955 	err = ext4_map_blocks(handle, inode, &map, map_flags);
956 
957 	if (err == 0)
958 		return create ? ERR_PTR(-ENOSPC) : NULL;
959 	if (err < 0)
960 		return ERR_PTR(err);
961 
962 	bh = sb_getblk(inode->i_sb, map.m_pblk);
963 	if (unlikely(!bh))
964 		return ERR_PTR(-ENOMEM);
965 	if (map.m_flags & EXT4_MAP_NEW) {
966 		J_ASSERT(create != 0);
967 		J_ASSERT(handle != NULL);
968 
969 		/*
970 		 * Now that we do not always journal data, we should
971 		 * keep in mind whether this should always journal the
972 		 * new buffer as metadata.  For now, regular file
973 		 * writes use ext4_get_block instead, so it's not a
974 		 * problem.
975 		 */
976 		lock_buffer(bh);
977 		BUFFER_TRACE(bh, "call get_create_access");
978 		err = ext4_journal_get_create_access(handle, bh);
979 		if (unlikely(err)) {
980 			unlock_buffer(bh);
981 			goto errout;
982 		}
983 		if (!buffer_uptodate(bh)) {
984 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985 			set_buffer_uptodate(bh);
986 		}
987 		unlock_buffer(bh);
988 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989 		err = ext4_handle_dirty_metadata(handle, inode, bh);
990 		if (unlikely(err))
991 			goto errout;
992 	} else
993 		BUFFER_TRACE(bh, "not a new buffer");
994 	return bh;
995 errout:
996 	brelse(bh);
997 	return ERR_PTR(err);
998 }
999 
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001 			       ext4_lblk_t block, int map_flags)
1002 {
1003 	struct buffer_head *bh;
1004 
1005 	bh = ext4_getblk(handle, inode, block, map_flags);
1006 	if (IS_ERR(bh))
1007 		return bh;
1008 	if (!bh || buffer_uptodate(bh))
1009 		return bh;
1010 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1011 	wait_on_buffer(bh);
1012 	if (buffer_uptodate(bh))
1013 		return bh;
1014 	put_bh(bh);
1015 	return ERR_PTR(-EIO);
1016 }
1017 
1018 /* Read a contiguous batch of blocks. */
1019 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1020 		     bool wait, struct buffer_head **bhs)
1021 {
1022 	int i, err;
1023 
1024 	for (i = 0; i < bh_count; i++) {
1025 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1026 		if (IS_ERR(bhs[i])) {
1027 			err = PTR_ERR(bhs[i]);
1028 			bh_count = i;
1029 			goto out_brelse;
1030 		}
1031 	}
1032 
1033 	for (i = 0; i < bh_count; i++)
1034 		/* Note that NULL bhs[i] is valid because of holes. */
1035 		if (bhs[i] && !buffer_uptodate(bhs[i]))
1036 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1037 				    &bhs[i]);
1038 
1039 	if (!wait)
1040 		return 0;
1041 
1042 	for (i = 0; i < bh_count; i++)
1043 		if (bhs[i])
1044 			wait_on_buffer(bhs[i]);
1045 
1046 	for (i = 0; i < bh_count; i++) {
1047 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1048 			err = -EIO;
1049 			goto out_brelse;
1050 		}
1051 	}
1052 	return 0;
1053 
1054 out_brelse:
1055 	for (i = 0; i < bh_count; i++) {
1056 		brelse(bhs[i]);
1057 		bhs[i] = NULL;
1058 	}
1059 	return err;
1060 }
1061 
1062 int ext4_walk_page_buffers(handle_t *handle,
1063 			   struct buffer_head *head,
1064 			   unsigned from,
1065 			   unsigned to,
1066 			   int *partial,
1067 			   int (*fn)(handle_t *handle,
1068 				     struct buffer_head *bh))
1069 {
1070 	struct buffer_head *bh;
1071 	unsigned block_start, block_end;
1072 	unsigned blocksize = head->b_size;
1073 	int err, ret = 0;
1074 	struct buffer_head *next;
1075 
1076 	for (bh = head, block_start = 0;
1077 	     ret == 0 && (bh != head || !block_start);
1078 	     block_start = block_end, bh = next) {
1079 		next = bh->b_this_page;
1080 		block_end = block_start + blocksize;
1081 		if (block_end <= from || block_start >= to) {
1082 			if (partial && !buffer_uptodate(bh))
1083 				*partial = 1;
1084 			continue;
1085 		}
1086 		err = (*fn)(handle, bh);
1087 		if (!ret)
1088 			ret = err;
1089 	}
1090 	return ret;
1091 }
1092 
1093 /*
1094  * To preserve ordering, it is essential that the hole instantiation and
1095  * the data write be encapsulated in a single transaction.  We cannot
1096  * close off a transaction and start a new one between the ext4_get_block()
1097  * and the commit_write().  So doing the jbd2_journal_start at the start of
1098  * prepare_write() is the right place.
1099  *
1100  * Also, this function can nest inside ext4_writepage().  In that case, we
1101  * *know* that ext4_writepage() has generated enough buffer credits to do the
1102  * whole page.  So we won't block on the journal in that case, which is good,
1103  * because the caller may be PF_MEMALLOC.
1104  *
1105  * By accident, ext4 can be reentered when a transaction is open via
1106  * quota file writes.  If we were to commit the transaction while thus
1107  * reentered, there can be a deadlock - we would be holding a quota
1108  * lock, and the commit would never complete if another thread had a
1109  * transaction open and was blocking on the quota lock - a ranking
1110  * violation.
1111  *
1112  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1113  * will _not_ run commit under these circumstances because handle->h_ref
1114  * is elevated.  We'll still have enough credits for the tiny quotafile
1115  * write.
1116  */
1117 int do_journal_get_write_access(handle_t *handle,
1118 				struct buffer_head *bh)
1119 {
1120 	int dirty = buffer_dirty(bh);
1121 	int ret;
1122 
1123 	if (!buffer_mapped(bh) || buffer_freed(bh))
1124 		return 0;
1125 	/*
1126 	 * __block_write_begin() could have dirtied some buffers. Clean
1127 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1128 	 * otherwise about fs integrity issues. Setting of the dirty bit
1129 	 * by __block_write_begin() isn't a real problem here as we clear
1130 	 * the bit before releasing a page lock and thus writeback cannot
1131 	 * ever write the buffer.
1132 	 */
1133 	if (dirty)
1134 		clear_buffer_dirty(bh);
1135 	BUFFER_TRACE(bh, "get write access");
1136 	ret = ext4_journal_get_write_access(handle, bh);
1137 	if (!ret && dirty)
1138 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1139 	return ret;
1140 }
1141 
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1144 				  get_block_t *get_block)
1145 {
1146 	unsigned from = pos & (PAGE_SIZE - 1);
1147 	unsigned to = from + len;
1148 	struct inode *inode = page->mapping->host;
1149 	unsigned block_start, block_end;
1150 	sector_t block;
1151 	int err = 0;
1152 	unsigned blocksize = inode->i_sb->s_blocksize;
1153 	unsigned bbits;
1154 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1155 	bool decrypt = false;
1156 
1157 	BUG_ON(!PageLocked(page));
1158 	BUG_ON(from > PAGE_SIZE);
1159 	BUG_ON(to > PAGE_SIZE);
1160 	BUG_ON(from > to);
1161 
1162 	if (!page_has_buffers(page))
1163 		create_empty_buffers(page, blocksize, 0);
1164 	head = page_buffers(page);
1165 	bbits = ilog2(blocksize);
1166 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1167 
1168 	for (bh = head, block_start = 0; bh != head || !block_start;
1169 	    block++, block_start = block_end, bh = bh->b_this_page) {
1170 		block_end = block_start + blocksize;
1171 		if (block_end <= from || block_start >= to) {
1172 			if (PageUptodate(page)) {
1173 				if (!buffer_uptodate(bh))
1174 					set_buffer_uptodate(bh);
1175 			}
1176 			continue;
1177 		}
1178 		if (buffer_new(bh))
1179 			clear_buffer_new(bh);
1180 		if (!buffer_mapped(bh)) {
1181 			WARN_ON(bh->b_size != blocksize);
1182 			err = get_block(inode, block, bh, 1);
1183 			if (err)
1184 				break;
1185 			if (buffer_new(bh)) {
1186 				clean_bdev_bh_alias(bh);
1187 				if (PageUptodate(page)) {
1188 					clear_buffer_new(bh);
1189 					set_buffer_uptodate(bh);
1190 					mark_buffer_dirty(bh);
1191 					continue;
1192 				}
1193 				if (block_end > to || block_start < from)
1194 					zero_user_segments(page, to, block_end,
1195 							   block_start, from);
1196 				continue;
1197 			}
1198 		}
1199 		if (PageUptodate(page)) {
1200 			if (!buffer_uptodate(bh))
1201 				set_buffer_uptodate(bh);
1202 			continue;
1203 		}
1204 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1205 		    !buffer_unwritten(bh) &&
1206 		    (block_start < from || block_end > to)) {
1207 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1208 			*wait_bh++ = bh;
1209 			decrypt = ext4_encrypted_inode(inode) &&
1210 				S_ISREG(inode->i_mode);
1211 		}
1212 	}
1213 	/*
1214 	 * If we issued read requests, let them complete.
1215 	 */
1216 	while (wait_bh > wait) {
1217 		wait_on_buffer(*--wait_bh);
1218 		if (!buffer_uptodate(*wait_bh))
1219 			err = -EIO;
1220 	}
1221 	if (unlikely(err))
1222 		page_zero_new_buffers(page, from, to);
1223 	else if (decrypt)
1224 		err = fscrypt_decrypt_page(page->mapping->host, page,
1225 				PAGE_SIZE, 0, page->index);
1226 	return err;
1227 }
1228 #endif
1229 
1230 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1231 			    loff_t pos, unsigned len, unsigned flags,
1232 			    struct page **pagep, void **fsdata)
1233 {
1234 	struct inode *inode = mapping->host;
1235 	int ret, needed_blocks;
1236 	handle_t *handle;
1237 	int retries = 0;
1238 	struct page *page;
1239 	pgoff_t index;
1240 	unsigned from, to;
1241 
1242 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1243 		return -EIO;
1244 
1245 	trace_ext4_write_begin(inode, pos, len, flags);
1246 	/*
1247 	 * Reserve one block more for addition to orphan list in case
1248 	 * we allocate blocks but write fails for some reason
1249 	 */
1250 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1251 	index = pos >> PAGE_SHIFT;
1252 	from = pos & (PAGE_SIZE - 1);
1253 	to = from + len;
1254 
1255 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1256 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1257 						    flags, pagep);
1258 		if (ret < 0)
1259 			return ret;
1260 		if (ret == 1)
1261 			return 0;
1262 	}
1263 
1264 	/*
1265 	 * grab_cache_page_write_begin() can take a long time if the
1266 	 * system is thrashing due to memory pressure, or if the page
1267 	 * is being written back.  So grab it first before we start
1268 	 * the transaction handle.  This also allows us to allocate
1269 	 * the page (if needed) without using GFP_NOFS.
1270 	 */
1271 retry_grab:
1272 	page = grab_cache_page_write_begin(mapping, index, flags);
1273 	if (!page)
1274 		return -ENOMEM;
1275 	unlock_page(page);
1276 
1277 retry_journal:
1278 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1279 	if (IS_ERR(handle)) {
1280 		put_page(page);
1281 		return PTR_ERR(handle);
1282 	}
1283 
1284 	lock_page(page);
1285 	if (page->mapping != mapping) {
1286 		/* The page got truncated from under us */
1287 		unlock_page(page);
1288 		put_page(page);
1289 		ext4_journal_stop(handle);
1290 		goto retry_grab;
1291 	}
1292 	/* In case writeback began while the page was unlocked */
1293 	wait_for_stable_page(page);
1294 
1295 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1296 	if (ext4_should_dioread_nolock(inode))
1297 		ret = ext4_block_write_begin(page, pos, len,
1298 					     ext4_get_block_unwritten);
1299 	else
1300 		ret = ext4_block_write_begin(page, pos, len,
1301 					     ext4_get_block);
1302 #else
1303 	if (ext4_should_dioread_nolock(inode))
1304 		ret = __block_write_begin(page, pos, len,
1305 					  ext4_get_block_unwritten);
1306 	else
1307 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1308 #endif
1309 	if (!ret && ext4_should_journal_data(inode)) {
1310 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1311 					     from, to, NULL,
1312 					     do_journal_get_write_access);
1313 	}
1314 
1315 	if (ret) {
1316 		unlock_page(page);
1317 		/*
1318 		 * __block_write_begin may have instantiated a few blocks
1319 		 * outside i_size.  Trim these off again. Don't need
1320 		 * i_size_read because we hold i_mutex.
1321 		 *
1322 		 * Add inode to orphan list in case we crash before
1323 		 * truncate finishes
1324 		 */
1325 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1326 			ext4_orphan_add(handle, inode);
1327 
1328 		ext4_journal_stop(handle);
1329 		if (pos + len > inode->i_size) {
1330 			ext4_truncate_failed_write(inode);
1331 			/*
1332 			 * If truncate failed early the inode might
1333 			 * still be on the orphan list; we need to
1334 			 * make sure the inode is removed from the
1335 			 * orphan list in that case.
1336 			 */
1337 			if (inode->i_nlink)
1338 				ext4_orphan_del(NULL, inode);
1339 		}
1340 
1341 		if (ret == -ENOSPC &&
1342 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1343 			goto retry_journal;
1344 		put_page(page);
1345 		return ret;
1346 	}
1347 	*pagep = page;
1348 	return ret;
1349 }
1350 
1351 /* For write_end() in data=journal mode */
1352 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1353 {
1354 	int ret;
1355 	if (!buffer_mapped(bh) || buffer_freed(bh))
1356 		return 0;
1357 	set_buffer_uptodate(bh);
1358 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1359 	clear_buffer_meta(bh);
1360 	clear_buffer_prio(bh);
1361 	return ret;
1362 }
1363 
1364 /*
1365  * We need to pick up the new inode size which generic_commit_write gave us
1366  * `file' can be NULL - eg, when called from page_symlink().
1367  *
1368  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1369  * buffers are managed internally.
1370  */
1371 static int ext4_write_end(struct file *file,
1372 			  struct address_space *mapping,
1373 			  loff_t pos, unsigned len, unsigned copied,
1374 			  struct page *page, void *fsdata)
1375 {
1376 	handle_t *handle = ext4_journal_current_handle();
1377 	struct inode *inode = mapping->host;
1378 	loff_t old_size = inode->i_size;
1379 	int ret = 0, ret2;
1380 	int i_size_changed = 0;
1381 
1382 	trace_ext4_write_end(inode, pos, len, copied);
1383 	if (ext4_has_inline_data(inode)) {
1384 		ret = ext4_write_inline_data_end(inode, pos, len,
1385 						 copied, page);
1386 		if (ret < 0) {
1387 			unlock_page(page);
1388 			put_page(page);
1389 			goto errout;
1390 		}
1391 		copied = ret;
1392 	} else
1393 		copied = block_write_end(file, mapping, pos,
1394 					 len, copied, page, fsdata);
1395 	/*
1396 	 * it's important to update i_size while still holding page lock:
1397 	 * page writeout could otherwise come in and zero beyond i_size.
1398 	 */
1399 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1400 	unlock_page(page);
1401 	put_page(page);
1402 
1403 	if (old_size < pos)
1404 		pagecache_isize_extended(inode, old_size, pos);
1405 	/*
1406 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1407 	 * makes the holding time of page lock longer. Second, it forces lock
1408 	 * ordering of page lock and transaction start for journaling
1409 	 * filesystems.
1410 	 */
1411 	if (i_size_changed)
1412 		ext4_mark_inode_dirty(handle, inode);
1413 
1414 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1415 		/* if we have allocated more blocks and copied
1416 		 * less. We will have blocks allocated outside
1417 		 * inode->i_size. So truncate them
1418 		 */
1419 		ext4_orphan_add(handle, inode);
1420 errout:
1421 	ret2 = ext4_journal_stop(handle);
1422 	if (!ret)
1423 		ret = ret2;
1424 
1425 	if (pos + len > inode->i_size) {
1426 		ext4_truncate_failed_write(inode);
1427 		/*
1428 		 * If truncate failed early the inode might still be
1429 		 * on the orphan list; we need to make sure the inode
1430 		 * is removed from the orphan list in that case.
1431 		 */
1432 		if (inode->i_nlink)
1433 			ext4_orphan_del(NULL, inode);
1434 	}
1435 
1436 	return ret ? ret : copied;
1437 }
1438 
1439 /*
1440  * This is a private version of page_zero_new_buffers() which doesn't
1441  * set the buffer to be dirty, since in data=journalled mode we need
1442  * to call ext4_handle_dirty_metadata() instead.
1443  */
1444 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1445 					    struct page *page,
1446 					    unsigned from, unsigned to)
1447 {
1448 	unsigned int block_start = 0, block_end;
1449 	struct buffer_head *head, *bh;
1450 
1451 	bh = head = page_buffers(page);
1452 	do {
1453 		block_end = block_start + bh->b_size;
1454 		if (buffer_new(bh)) {
1455 			if (block_end > from && block_start < to) {
1456 				if (!PageUptodate(page)) {
1457 					unsigned start, size;
1458 
1459 					start = max(from, block_start);
1460 					size = min(to, block_end) - start;
1461 
1462 					zero_user(page, start, size);
1463 					write_end_fn(handle, bh);
1464 				}
1465 				clear_buffer_new(bh);
1466 			}
1467 		}
1468 		block_start = block_end;
1469 		bh = bh->b_this_page;
1470 	} while (bh != head);
1471 }
1472 
1473 static int ext4_journalled_write_end(struct file *file,
1474 				     struct address_space *mapping,
1475 				     loff_t pos, unsigned len, unsigned copied,
1476 				     struct page *page, void *fsdata)
1477 {
1478 	handle_t *handle = ext4_journal_current_handle();
1479 	struct inode *inode = mapping->host;
1480 	loff_t old_size = inode->i_size;
1481 	int ret = 0, ret2;
1482 	int partial = 0;
1483 	unsigned from, to;
1484 	int size_changed = 0;
1485 
1486 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1487 	from = pos & (PAGE_SIZE - 1);
1488 	to = from + len;
1489 
1490 	BUG_ON(!ext4_handle_valid(handle));
1491 
1492 	if (ext4_has_inline_data(inode)) {
1493 		ret = ext4_write_inline_data_end(inode, pos, len,
1494 						 copied, page);
1495 		if (ret < 0) {
1496 			unlock_page(page);
1497 			put_page(page);
1498 			goto errout;
1499 		}
1500 		copied = ret;
1501 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1502 		copied = 0;
1503 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1504 	} else {
1505 		if (unlikely(copied < len))
1506 			ext4_journalled_zero_new_buffers(handle, page,
1507 							 from + copied, to);
1508 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1509 					     from + copied, &partial,
1510 					     write_end_fn);
1511 		if (!partial)
1512 			SetPageUptodate(page);
1513 	}
1514 	size_changed = ext4_update_inode_size(inode, pos + copied);
1515 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1516 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1517 	unlock_page(page);
1518 	put_page(page);
1519 
1520 	if (old_size < pos)
1521 		pagecache_isize_extended(inode, old_size, pos);
1522 
1523 	if (size_changed) {
1524 		ret2 = ext4_mark_inode_dirty(handle, inode);
1525 		if (!ret)
1526 			ret = ret2;
1527 	}
1528 
1529 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1530 		/* if we have allocated more blocks and copied
1531 		 * less. We will have blocks allocated outside
1532 		 * inode->i_size. So truncate them
1533 		 */
1534 		ext4_orphan_add(handle, inode);
1535 
1536 errout:
1537 	ret2 = ext4_journal_stop(handle);
1538 	if (!ret)
1539 		ret = ret2;
1540 	if (pos + len > inode->i_size) {
1541 		ext4_truncate_failed_write(inode);
1542 		/*
1543 		 * If truncate failed early the inode might still be
1544 		 * on the orphan list; we need to make sure the inode
1545 		 * is removed from the orphan list in that case.
1546 		 */
1547 		if (inode->i_nlink)
1548 			ext4_orphan_del(NULL, inode);
1549 	}
1550 
1551 	return ret ? ret : copied;
1552 }
1553 
1554 /*
1555  * Reserve space for a single cluster
1556  */
1557 static int ext4_da_reserve_space(struct inode *inode)
1558 {
1559 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560 	struct ext4_inode_info *ei = EXT4_I(inode);
1561 	int ret;
1562 
1563 	/*
1564 	 * We will charge metadata quota at writeout time; this saves
1565 	 * us from metadata over-estimation, though we may go over by
1566 	 * a small amount in the end.  Here we just reserve for data.
1567 	 */
1568 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1569 	if (ret)
1570 		return ret;
1571 
1572 	spin_lock(&ei->i_block_reservation_lock);
1573 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1574 		spin_unlock(&ei->i_block_reservation_lock);
1575 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1576 		return -ENOSPC;
1577 	}
1578 	ei->i_reserved_data_blocks++;
1579 	trace_ext4_da_reserve_space(inode);
1580 	spin_unlock(&ei->i_block_reservation_lock);
1581 
1582 	return 0;       /* success */
1583 }
1584 
1585 static void ext4_da_release_space(struct inode *inode, int to_free)
1586 {
1587 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588 	struct ext4_inode_info *ei = EXT4_I(inode);
1589 
1590 	if (!to_free)
1591 		return;		/* Nothing to release, exit */
1592 
1593 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1594 
1595 	trace_ext4_da_release_space(inode, to_free);
1596 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1597 		/*
1598 		 * if there aren't enough reserved blocks, then the
1599 		 * counter is messed up somewhere.  Since this
1600 		 * function is called from invalidate page, it's
1601 		 * harmless to return without any action.
1602 		 */
1603 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1604 			 "ino %lu, to_free %d with only %d reserved "
1605 			 "data blocks", inode->i_ino, to_free,
1606 			 ei->i_reserved_data_blocks);
1607 		WARN_ON(1);
1608 		to_free = ei->i_reserved_data_blocks;
1609 	}
1610 	ei->i_reserved_data_blocks -= to_free;
1611 
1612 	/* update fs dirty data blocks counter */
1613 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1614 
1615 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1616 
1617 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1618 }
1619 
1620 static void ext4_da_page_release_reservation(struct page *page,
1621 					     unsigned int offset,
1622 					     unsigned int length)
1623 {
1624 	int to_release = 0, contiguous_blks = 0;
1625 	struct buffer_head *head, *bh;
1626 	unsigned int curr_off = 0;
1627 	struct inode *inode = page->mapping->host;
1628 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629 	unsigned int stop = offset + length;
1630 	int num_clusters;
1631 	ext4_fsblk_t lblk;
1632 
1633 	BUG_ON(stop > PAGE_SIZE || stop < length);
1634 
1635 	head = page_buffers(page);
1636 	bh = head;
1637 	do {
1638 		unsigned int next_off = curr_off + bh->b_size;
1639 
1640 		if (next_off > stop)
1641 			break;
1642 
1643 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1644 			to_release++;
1645 			contiguous_blks++;
1646 			clear_buffer_delay(bh);
1647 		} else if (contiguous_blks) {
1648 			lblk = page->index <<
1649 			       (PAGE_SHIFT - inode->i_blkbits);
1650 			lblk += (curr_off >> inode->i_blkbits) -
1651 				contiguous_blks;
1652 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1653 			contiguous_blks = 0;
1654 		}
1655 		curr_off = next_off;
1656 	} while ((bh = bh->b_this_page) != head);
1657 
1658 	if (contiguous_blks) {
1659 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1660 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1661 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1662 	}
1663 
1664 	/* If we have released all the blocks belonging to a cluster, then we
1665 	 * need to release the reserved space for that cluster. */
1666 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1667 	while (num_clusters > 0) {
1668 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1669 			((num_clusters - 1) << sbi->s_cluster_bits);
1670 		if (sbi->s_cluster_ratio == 1 ||
1671 		    !ext4_find_delalloc_cluster(inode, lblk))
1672 			ext4_da_release_space(inode, 1);
1673 
1674 		num_clusters--;
1675 	}
1676 }
1677 
1678 /*
1679  * Delayed allocation stuff
1680  */
1681 
1682 struct mpage_da_data {
1683 	struct inode *inode;
1684 	struct writeback_control *wbc;
1685 
1686 	pgoff_t first_page;	/* The first page to write */
1687 	pgoff_t next_page;	/* Current page to examine */
1688 	pgoff_t last_page;	/* Last page to examine */
1689 	/*
1690 	 * Extent to map - this can be after first_page because that can be
1691 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1692 	 * is delalloc or unwritten.
1693 	 */
1694 	struct ext4_map_blocks map;
1695 	struct ext4_io_submit io_submit;	/* IO submission data */
1696 	unsigned int do_map:1;
1697 };
1698 
1699 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1700 				       bool invalidate)
1701 {
1702 	int nr_pages, i;
1703 	pgoff_t index, end;
1704 	struct pagevec pvec;
1705 	struct inode *inode = mpd->inode;
1706 	struct address_space *mapping = inode->i_mapping;
1707 
1708 	/* This is necessary when next_page == 0. */
1709 	if (mpd->first_page >= mpd->next_page)
1710 		return;
1711 
1712 	index = mpd->first_page;
1713 	end   = mpd->next_page - 1;
1714 	if (invalidate) {
1715 		ext4_lblk_t start, last;
1716 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1717 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1718 		ext4_es_remove_extent(inode, start, last - start + 1);
1719 	}
1720 
1721 	pagevec_init(&pvec, 0);
1722 	while (index <= end) {
1723 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1724 		if (nr_pages == 0)
1725 			break;
1726 		for (i = 0; i < nr_pages; i++) {
1727 			struct page *page = pvec.pages[i];
1728 			if (page->index > end)
1729 				break;
1730 			BUG_ON(!PageLocked(page));
1731 			BUG_ON(PageWriteback(page));
1732 			if (invalidate) {
1733 				if (page_mapped(page))
1734 					clear_page_dirty_for_io(page);
1735 				block_invalidatepage(page, 0, PAGE_SIZE);
1736 				ClearPageUptodate(page);
1737 			}
1738 			unlock_page(page);
1739 		}
1740 		index = pvec.pages[nr_pages - 1]->index + 1;
1741 		pagevec_release(&pvec);
1742 	}
1743 }
1744 
1745 static void ext4_print_free_blocks(struct inode *inode)
1746 {
1747 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1748 	struct super_block *sb = inode->i_sb;
1749 	struct ext4_inode_info *ei = EXT4_I(inode);
1750 
1751 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1752 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1753 			ext4_count_free_clusters(sb)));
1754 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1755 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1756 	       (long long) EXT4_C2B(EXT4_SB(sb),
1757 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1758 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1759 	       (long long) EXT4_C2B(EXT4_SB(sb),
1760 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1761 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1762 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1763 		 ei->i_reserved_data_blocks);
1764 	return;
1765 }
1766 
1767 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1768 {
1769 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1770 }
1771 
1772 /*
1773  * This function is grabs code from the very beginning of
1774  * ext4_map_blocks, but assumes that the caller is from delayed write
1775  * time. This function looks up the requested blocks and sets the
1776  * buffer delay bit under the protection of i_data_sem.
1777  */
1778 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1779 			      struct ext4_map_blocks *map,
1780 			      struct buffer_head *bh)
1781 {
1782 	struct extent_status es;
1783 	int retval;
1784 	sector_t invalid_block = ~((sector_t) 0xffff);
1785 #ifdef ES_AGGRESSIVE_TEST
1786 	struct ext4_map_blocks orig_map;
1787 
1788 	memcpy(&orig_map, map, sizeof(*map));
1789 #endif
1790 
1791 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1792 		invalid_block = ~0;
1793 
1794 	map->m_flags = 0;
1795 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1796 		  "logical block %lu\n", inode->i_ino, map->m_len,
1797 		  (unsigned long) map->m_lblk);
1798 
1799 	/* Lookup extent status tree firstly */
1800 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1801 		if (ext4_es_is_hole(&es)) {
1802 			retval = 0;
1803 			down_read(&EXT4_I(inode)->i_data_sem);
1804 			goto add_delayed;
1805 		}
1806 
1807 		/*
1808 		 * Delayed extent could be allocated by fallocate.
1809 		 * So we need to check it.
1810 		 */
1811 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1812 			map_bh(bh, inode->i_sb, invalid_block);
1813 			set_buffer_new(bh);
1814 			set_buffer_delay(bh);
1815 			return 0;
1816 		}
1817 
1818 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1819 		retval = es.es_len - (iblock - es.es_lblk);
1820 		if (retval > map->m_len)
1821 			retval = map->m_len;
1822 		map->m_len = retval;
1823 		if (ext4_es_is_written(&es))
1824 			map->m_flags |= EXT4_MAP_MAPPED;
1825 		else if (ext4_es_is_unwritten(&es))
1826 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1827 		else
1828 			BUG_ON(1);
1829 
1830 #ifdef ES_AGGRESSIVE_TEST
1831 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1832 #endif
1833 		return retval;
1834 	}
1835 
1836 	/*
1837 	 * Try to see if we can get the block without requesting a new
1838 	 * file system block.
1839 	 */
1840 	down_read(&EXT4_I(inode)->i_data_sem);
1841 	if (ext4_has_inline_data(inode))
1842 		retval = 0;
1843 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1844 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1845 	else
1846 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1847 
1848 add_delayed:
1849 	if (retval == 0) {
1850 		int ret;
1851 		/*
1852 		 * XXX: __block_prepare_write() unmaps passed block,
1853 		 * is it OK?
1854 		 */
1855 		/*
1856 		 * If the block was allocated from previously allocated cluster,
1857 		 * then we don't need to reserve it again. However we still need
1858 		 * to reserve metadata for every block we're going to write.
1859 		 */
1860 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1861 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1862 			ret = ext4_da_reserve_space(inode);
1863 			if (ret) {
1864 				/* not enough space to reserve */
1865 				retval = ret;
1866 				goto out_unlock;
1867 			}
1868 		}
1869 
1870 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1871 					    ~0, EXTENT_STATUS_DELAYED);
1872 		if (ret) {
1873 			retval = ret;
1874 			goto out_unlock;
1875 		}
1876 
1877 		map_bh(bh, inode->i_sb, invalid_block);
1878 		set_buffer_new(bh);
1879 		set_buffer_delay(bh);
1880 	} else if (retval > 0) {
1881 		int ret;
1882 		unsigned int status;
1883 
1884 		if (unlikely(retval != map->m_len)) {
1885 			ext4_warning(inode->i_sb,
1886 				     "ES len assertion failed for inode "
1887 				     "%lu: retval %d != map->m_len %d",
1888 				     inode->i_ino, retval, map->m_len);
1889 			WARN_ON(1);
1890 		}
1891 
1892 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1893 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1894 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1895 					    map->m_pblk, status);
1896 		if (ret != 0)
1897 			retval = ret;
1898 	}
1899 
1900 out_unlock:
1901 	up_read((&EXT4_I(inode)->i_data_sem));
1902 
1903 	return retval;
1904 }
1905 
1906 /*
1907  * This is a special get_block_t callback which is used by
1908  * ext4_da_write_begin().  It will either return mapped block or
1909  * reserve space for a single block.
1910  *
1911  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1912  * We also have b_blocknr = -1 and b_bdev initialized properly
1913  *
1914  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1915  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1916  * initialized properly.
1917  */
1918 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1919 			   struct buffer_head *bh, int create)
1920 {
1921 	struct ext4_map_blocks map;
1922 	int ret = 0;
1923 
1924 	BUG_ON(create == 0);
1925 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1926 
1927 	map.m_lblk = iblock;
1928 	map.m_len = 1;
1929 
1930 	/*
1931 	 * first, we need to know whether the block is allocated already
1932 	 * preallocated blocks are unmapped but should treated
1933 	 * the same as allocated blocks.
1934 	 */
1935 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1936 	if (ret <= 0)
1937 		return ret;
1938 
1939 	map_bh(bh, inode->i_sb, map.m_pblk);
1940 	ext4_update_bh_state(bh, map.m_flags);
1941 
1942 	if (buffer_unwritten(bh)) {
1943 		/* A delayed write to unwritten bh should be marked
1944 		 * new and mapped.  Mapped ensures that we don't do
1945 		 * get_block multiple times when we write to the same
1946 		 * offset and new ensures that we do proper zero out
1947 		 * for partial write.
1948 		 */
1949 		set_buffer_new(bh);
1950 		set_buffer_mapped(bh);
1951 	}
1952 	return 0;
1953 }
1954 
1955 static int bget_one(handle_t *handle, struct buffer_head *bh)
1956 {
1957 	get_bh(bh);
1958 	return 0;
1959 }
1960 
1961 static int bput_one(handle_t *handle, struct buffer_head *bh)
1962 {
1963 	put_bh(bh);
1964 	return 0;
1965 }
1966 
1967 static int __ext4_journalled_writepage(struct page *page,
1968 				       unsigned int len)
1969 {
1970 	struct address_space *mapping = page->mapping;
1971 	struct inode *inode = mapping->host;
1972 	struct buffer_head *page_bufs = NULL;
1973 	handle_t *handle = NULL;
1974 	int ret = 0, err = 0;
1975 	int inline_data = ext4_has_inline_data(inode);
1976 	struct buffer_head *inode_bh = NULL;
1977 
1978 	ClearPageChecked(page);
1979 
1980 	if (inline_data) {
1981 		BUG_ON(page->index != 0);
1982 		BUG_ON(len > ext4_get_max_inline_size(inode));
1983 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1984 		if (inode_bh == NULL)
1985 			goto out;
1986 	} else {
1987 		page_bufs = page_buffers(page);
1988 		if (!page_bufs) {
1989 			BUG();
1990 			goto out;
1991 		}
1992 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1993 				       NULL, bget_one);
1994 	}
1995 	/*
1996 	 * We need to release the page lock before we start the
1997 	 * journal, so grab a reference so the page won't disappear
1998 	 * out from under us.
1999 	 */
2000 	get_page(page);
2001 	unlock_page(page);
2002 
2003 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2004 				    ext4_writepage_trans_blocks(inode));
2005 	if (IS_ERR(handle)) {
2006 		ret = PTR_ERR(handle);
2007 		put_page(page);
2008 		goto out_no_pagelock;
2009 	}
2010 	BUG_ON(!ext4_handle_valid(handle));
2011 
2012 	lock_page(page);
2013 	put_page(page);
2014 	if (page->mapping != mapping) {
2015 		/* The page got truncated from under us */
2016 		ext4_journal_stop(handle);
2017 		ret = 0;
2018 		goto out;
2019 	}
2020 
2021 	if (inline_data) {
2022 		BUFFER_TRACE(inode_bh, "get write access");
2023 		ret = ext4_journal_get_write_access(handle, inode_bh);
2024 
2025 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2026 
2027 	} else {
2028 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2029 					     do_journal_get_write_access);
2030 
2031 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2032 					     write_end_fn);
2033 	}
2034 	if (ret == 0)
2035 		ret = err;
2036 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2037 	err = ext4_journal_stop(handle);
2038 	if (!ret)
2039 		ret = err;
2040 
2041 	if (!ext4_has_inline_data(inode))
2042 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2043 				       NULL, bput_one);
2044 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2045 out:
2046 	unlock_page(page);
2047 out_no_pagelock:
2048 	brelse(inode_bh);
2049 	return ret;
2050 }
2051 
2052 /*
2053  * Note that we don't need to start a transaction unless we're journaling data
2054  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2055  * need to file the inode to the transaction's list in ordered mode because if
2056  * we are writing back data added by write(), the inode is already there and if
2057  * we are writing back data modified via mmap(), no one guarantees in which
2058  * transaction the data will hit the disk. In case we are journaling data, we
2059  * cannot start transaction directly because transaction start ranks above page
2060  * lock so we have to do some magic.
2061  *
2062  * This function can get called via...
2063  *   - ext4_writepages after taking page lock (have journal handle)
2064  *   - journal_submit_inode_data_buffers (no journal handle)
2065  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2066  *   - grab_page_cache when doing write_begin (have journal handle)
2067  *
2068  * We don't do any block allocation in this function. If we have page with
2069  * multiple blocks we need to write those buffer_heads that are mapped. This
2070  * is important for mmaped based write. So if we do with blocksize 1K
2071  * truncate(f, 1024);
2072  * a = mmap(f, 0, 4096);
2073  * a[0] = 'a';
2074  * truncate(f, 4096);
2075  * we have in the page first buffer_head mapped via page_mkwrite call back
2076  * but other buffer_heads would be unmapped but dirty (dirty done via the
2077  * do_wp_page). So writepage should write the first block. If we modify
2078  * the mmap area beyond 1024 we will again get a page_fault and the
2079  * page_mkwrite callback will do the block allocation and mark the
2080  * buffer_heads mapped.
2081  *
2082  * We redirty the page if we have any buffer_heads that is either delay or
2083  * unwritten in the page.
2084  *
2085  * We can get recursively called as show below.
2086  *
2087  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2088  *		ext4_writepage()
2089  *
2090  * But since we don't do any block allocation we should not deadlock.
2091  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2092  */
2093 static int ext4_writepage(struct page *page,
2094 			  struct writeback_control *wbc)
2095 {
2096 	int ret = 0;
2097 	loff_t size;
2098 	unsigned int len;
2099 	struct buffer_head *page_bufs = NULL;
2100 	struct inode *inode = page->mapping->host;
2101 	struct ext4_io_submit io_submit;
2102 	bool keep_towrite = false;
2103 
2104 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2105 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2106 		unlock_page(page);
2107 		return -EIO;
2108 	}
2109 
2110 	trace_ext4_writepage(page);
2111 	size = i_size_read(inode);
2112 	if (page->index == size >> PAGE_SHIFT)
2113 		len = size & ~PAGE_MASK;
2114 	else
2115 		len = PAGE_SIZE;
2116 
2117 	page_bufs = page_buffers(page);
2118 	/*
2119 	 * We cannot do block allocation or other extent handling in this
2120 	 * function. If there are buffers needing that, we have to redirty
2121 	 * the page. But we may reach here when we do a journal commit via
2122 	 * journal_submit_inode_data_buffers() and in that case we must write
2123 	 * allocated buffers to achieve data=ordered mode guarantees.
2124 	 *
2125 	 * Also, if there is only one buffer per page (the fs block
2126 	 * size == the page size), if one buffer needs block
2127 	 * allocation or needs to modify the extent tree to clear the
2128 	 * unwritten flag, we know that the page can't be written at
2129 	 * all, so we might as well refuse the write immediately.
2130 	 * Unfortunately if the block size != page size, we can't as
2131 	 * easily detect this case using ext4_walk_page_buffers(), but
2132 	 * for the extremely common case, this is an optimization that
2133 	 * skips a useless round trip through ext4_bio_write_page().
2134 	 */
2135 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2136 				   ext4_bh_delay_or_unwritten)) {
2137 		redirty_page_for_writepage(wbc, page);
2138 		if ((current->flags & PF_MEMALLOC) ||
2139 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2140 			/*
2141 			 * For memory cleaning there's no point in writing only
2142 			 * some buffers. So just bail out. Warn if we came here
2143 			 * from direct reclaim.
2144 			 */
2145 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2146 							== PF_MEMALLOC);
2147 			unlock_page(page);
2148 			return 0;
2149 		}
2150 		keep_towrite = true;
2151 	}
2152 
2153 	if (PageChecked(page) && ext4_should_journal_data(inode))
2154 		/*
2155 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2156 		 * doesn't seem much point in redirtying the page here.
2157 		 */
2158 		return __ext4_journalled_writepage(page, len);
2159 
2160 	ext4_io_submit_init(&io_submit, wbc);
2161 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2162 	if (!io_submit.io_end) {
2163 		redirty_page_for_writepage(wbc, page);
2164 		unlock_page(page);
2165 		return -ENOMEM;
2166 	}
2167 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2168 	ext4_io_submit(&io_submit);
2169 	/* Drop io_end reference we got from init */
2170 	ext4_put_io_end_defer(io_submit.io_end);
2171 	return ret;
2172 }
2173 
2174 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2175 {
2176 	int len;
2177 	loff_t size;
2178 	int err;
2179 
2180 	BUG_ON(page->index != mpd->first_page);
2181 	clear_page_dirty_for_io(page);
2182 	/*
2183 	 * We have to be very careful here!  Nothing protects writeback path
2184 	 * against i_size changes and the page can be writeably mapped into
2185 	 * page tables. So an application can be growing i_size and writing
2186 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2187 	 * write-protects our page in page tables and the page cannot get
2188 	 * written to again until we release page lock. So only after
2189 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2190 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2191 	 * on the barrier provided by TestClearPageDirty in
2192 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2193 	 * after page tables are updated.
2194 	 */
2195 	size = i_size_read(mpd->inode);
2196 	if (page->index == size >> PAGE_SHIFT)
2197 		len = size & ~PAGE_MASK;
2198 	else
2199 		len = PAGE_SIZE;
2200 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2201 	if (!err)
2202 		mpd->wbc->nr_to_write--;
2203 	mpd->first_page++;
2204 
2205 	return err;
2206 }
2207 
2208 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2209 
2210 /*
2211  * mballoc gives us at most this number of blocks...
2212  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2213  * The rest of mballoc seems to handle chunks up to full group size.
2214  */
2215 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2216 
2217 /*
2218  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2219  *
2220  * @mpd - extent of blocks
2221  * @lblk - logical number of the block in the file
2222  * @bh - buffer head we want to add to the extent
2223  *
2224  * The function is used to collect contig. blocks in the same state. If the
2225  * buffer doesn't require mapping for writeback and we haven't started the
2226  * extent of buffers to map yet, the function returns 'true' immediately - the
2227  * caller can write the buffer right away. Otherwise the function returns true
2228  * if the block has been added to the extent, false if the block couldn't be
2229  * added.
2230  */
2231 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2232 				   struct buffer_head *bh)
2233 {
2234 	struct ext4_map_blocks *map = &mpd->map;
2235 
2236 	/* Buffer that doesn't need mapping for writeback? */
2237 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2238 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2239 		/* So far no extent to map => we write the buffer right away */
2240 		if (map->m_len == 0)
2241 			return true;
2242 		return false;
2243 	}
2244 
2245 	/* First block in the extent? */
2246 	if (map->m_len == 0) {
2247 		/* We cannot map unless handle is started... */
2248 		if (!mpd->do_map)
2249 			return false;
2250 		map->m_lblk = lblk;
2251 		map->m_len = 1;
2252 		map->m_flags = bh->b_state & BH_FLAGS;
2253 		return true;
2254 	}
2255 
2256 	/* Don't go larger than mballoc is willing to allocate */
2257 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2258 		return false;
2259 
2260 	/* Can we merge the block to our big extent? */
2261 	if (lblk == map->m_lblk + map->m_len &&
2262 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2263 		map->m_len++;
2264 		return true;
2265 	}
2266 	return false;
2267 }
2268 
2269 /*
2270  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2271  *
2272  * @mpd - extent of blocks for mapping
2273  * @head - the first buffer in the page
2274  * @bh - buffer we should start processing from
2275  * @lblk - logical number of the block in the file corresponding to @bh
2276  *
2277  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2278  * the page for IO if all buffers in this page were mapped and there's no
2279  * accumulated extent of buffers to map or add buffers in the page to the
2280  * extent of buffers to map. The function returns 1 if the caller can continue
2281  * by processing the next page, 0 if it should stop adding buffers to the
2282  * extent to map because we cannot extend it anymore. It can also return value
2283  * < 0 in case of error during IO submission.
2284  */
2285 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2286 				   struct buffer_head *head,
2287 				   struct buffer_head *bh,
2288 				   ext4_lblk_t lblk)
2289 {
2290 	struct inode *inode = mpd->inode;
2291 	int err;
2292 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2293 							>> inode->i_blkbits;
2294 
2295 	do {
2296 		BUG_ON(buffer_locked(bh));
2297 
2298 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2299 			/* Found extent to map? */
2300 			if (mpd->map.m_len)
2301 				return 0;
2302 			/* Buffer needs mapping and handle is not started? */
2303 			if (!mpd->do_map)
2304 				return 0;
2305 			/* Everything mapped so far and we hit EOF */
2306 			break;
2307 		}
2308 	} while (lblk++, (bh = bh->b_this_page) != head);
2309 	/* So far everything mapped? Submit the page for IO. */
2310 	if (mpd->map.m_len == 0) {
2311 		err = mpage_submit_page(mpd, head->b_page);
2312 		if (err < 0)
2313 			return err;
2314 	}
2315 	return lblk < blocks;
2316 }
2317 
2318 /*
2319  * mpage_map_buffers - update buffers corresponding to changed extent and
2320  *		       submit fully mapped pages for IO
2321  *
2322  * @mpd - description of extent to map, on return next extent to map
2323  *
2324  * Scan buffers corresponding to changed extent (we expect corresponding pages
2325  * to be already locked) and update buffer state according to new extent state.
2326  * We map delalloc buffers to their physical location, clear unwritten bits,
2327  * and mark buffers as uninit when we perform writes to unwritten extents
2328  * and do extent conversion after IO is finished. If the last page is not fully
2329  * mapped, we update @map to the next extent in the last page that needs
2330  * mapping. Otherwise we submit the page for IO.
2331  */
2332 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2333 {
2334 	struct pagevec pvec;
2335 	int nr_pages, i;
2336 	struct inode *inode = mpd->inode;
2337 	struct buffer_head *head, *bh;
2338 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2339 	pgoff_t start, end;
2340 	ext4_lblk_t lblk;
2341 	sector_t pblock;
2342 	int err;
2343 
2344 	start = mpd->map.m_lblk >> bpp_bits;
2345 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2346 	lblk = start << bpp_bits;
2347 	pblock = mpd->map.m_pblk;
2348 
2349 	pagevec_init(&pvec, 0);
2350 	while (start <= end) {
2351 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2352 					  PAGEVEC_SIZE);
2353 		if (nr_pages == 0)
2354 			break;
2355 		for (i = 0; i < nr_pages; i++) {
2356 			struct page *page = pvec.pages[i];
2357 
2358 			if (page->index > end)
2359 				break;
2360 			/* Up to 'end' pages must be contiguous */
2361 			BUG_ON(page->index != start);
2362 			bh = head = page_buffers(page);
2363 			do {
2364 				if (lblk < mpd->map.m_lblk)
2365 					continue;
2366 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2367 					/*
2368 					 * Buffer after end of mapped extent.
2369 					 * Find next buffer in the page to map.
2370 					 */
2371 					mpd->map.m_len = 0;
2372 					mpd->map.m_flags = 0;
2373 					/*
2374 					 * FIXME: If dioread_nolock supports
2375 					 * blocksize < pagesize, we need to make
2376 					 * sure we add size mapped so far to
2377 					 * io_end->size as the following call
2378 					 * can submit the page for IO.
2379 					 */
2380 					err = mpage_process_page_bufs(mpd, head,
2381 								      bh, lblk);
2382 					pagevec_release(&pvec);
2383 					if (err > 0)
2384 						err = 0;
2385 					return err;
2386 				}
2387 				if (buffer_delay(bh)) {
2388 					clear_buffer_delay(bh);
2389 					bh->b_blocknr = pblock++;
2390 				}
2391 				clear_buffer_unwritten(bh);
2392 			} while (lblk++, (bh = bh->b_this_page) != head);
2393 
2394 			/*
2395 			 * FIXME: This is going to break if dioread_nolock
2396 			 * supports blocksize < pagesize as we will try to
2397 			 * convert potentially unmapped parts of inode.
2398 			 */
2399 			mpd->io_submit.io_end->size += PAGE_SIZE;
2400 			/* Page fully mapped - let IO run! */
2401 			err = mpage_submit_page(mpd, page);
2402 			if (err < 0) {
2403 				pagevec_release(&pvec);
2404 				return err;
2405 			}
2406 			start++;
2407 		}
2408 		pagevec_release(&pvec);
2409 	}
2410 	/* Extent fully mapped and matches with page boundary. We are done. */
2411 	mpd->map.m_len = 0;
2412 	mpd->map.m_flags = 0;
2413 	return 0;
2414 }
2415 
2416 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2417 {
2418 	struct inode *inode = mpd->inode;
2419 	struct ext4_map_blocks *map = &mpd->map;
2420 	int get_blocks_flags;
2421 	int err, dioread_nolock;
2422 
2423 	trace_ext4_da_write_pages_extent(inode, map);
2424 	/*
2425 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2426 	 * to convert an unwritten extent to be initialized (in the case
2427 	 * where we have written into one or more preallocated blocks).  It is
2428 	 * possible that we're going to need more metadata blocks than
2429 	 * previously reserved. However we must not fail because we're in
2430 	 * writeback and there is nothing we can do about it so it might result
2431 	 * in data loss.  So use reserved blocks to allocate metadata if
2432 	 * possible.
2433 	 *
2434 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2435 	 * the blocks in question are delalloc blocks.  This indicates
2436 	 * that the blocks and quotas has already been checked when
2437 	 * the data was copied into the page cache.
2438 	 */
2439 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2440 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2441 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2442 	dioread_nolock = ext4_should_dioread_nolock(inode);
2443 	if (dioread_nolock)
2444 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2445 	if (map->m_flags & (1 << BH_Delay))
2446 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2447 
2448 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2449 	if (err < 0)
2450 		return err;
2451 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2452 		if (!mpd->io_submit.io_end->handle &&
2453 		    ext4_handle_valid(handle)) {
2454 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2455 			handle->h_rsv_handle = NULL;
2456 		}
2457 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2458 	}
2459 
2460 	BUG_ON(map->m_len == 0);
2461 	if (map->m_flags & EXT4_MAP_NEW) {
2462 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2463 				   map->m_len);
2464 	}
2465 	return 0;
2466 }
2467 
2468 /*
2469  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2470  *				 mpd->len and submit pages underlying it for IO
2471  *
2472  * @handle - handle for journal operations
2473  * @mpd - extent to map
2474  * @give_up_on_write - we set this to true iff there is a fatal error and there
2475  *                     is no hope of writing the data. The caller should discard
2476  *                     dirty pages to avoid infinite loops.
2477  *
2478  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2479  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2480  * them to initialized or split the described range from larger unwritten
2481  * extent. Note that we need not map all the described range since allocation
2482  * can return less blocks or the range is covered by more unwritten extents. We
2483  * cannot map more because we are limited by reserved transaction credits. On
2484  * the other hand we always make sure that the last touched page is fully
2485  * mapped so that it can be written out (and thus forward progress is
2486  * guaranteed). After mapping we submit all mapped pages for IO.
2487  */
2488 static int mpage_map_and_submit_extent(handle_t *handle,
2489 				       struct mpage_da_data *mpd,
2490 				       bool *give_up_on_write)
2491 {
2492 	struct inode *inode = mpd->inode;
2493 	struct ext4_map_blocks *map = &mpd->map;
2494 	int err;
2495 	loff_t disksize;
2496 	int progress = 0;
2497 
2498 	mpd->io_submit.io_end->offset =
2499 				((loff_t)map->m_lblk) << inode->i_blkbits;
2500 	do {
2501 		err = mpage_map_one_extent(handle, mpd);
2502 		if (err < 0) {
2503 			struct super_block *sb = inode->i_sb;
2504 
2505 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2506 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2507 				goto invalidate_dirty_pages;
2508 			/*
2509 			 * Let the uper layers retry transient errors.
2510 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2511 			 * is non-zero, a commit should free up blocks.
2512 			 */
2513 			if ((err == -ENOMEM) ||
2514 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2515 				if (progress)
2516 					goto update_disksize;
2517 				return err;
2518 			}
2519 			ext4_msg(sb, KERN_CRIT,
2520 				 "Delayed block allocation failed for "
2521 				 "inode %lu at logical offset %llu with"
2522 				 " max blocks %u with error %d",
2523 				 inode->i_ino,
2524 				 (unsigned long long)map->m_lblk,
2525 				 (unsigned)map->m_len, -err);
2526 			ext4_msg(sb, KERN_CRIT,
2527 				 "This should not happen!! Data will "
2528 				 "be lost\n");
2529 			if (err == -ENOSPC)
2530 				ext4_print_free_blocks(inode);
2531 		invalidate_dirty_pages:
2532 			*give_up_on_write = true;
2533 			return err;
2534 		}
2535 		progress = 1;
2536 		/*
2537 		 * Update buffer state, submit mapped pages, and get us new
2538 		 * extent to map
2539 		 */
2540 		err = mpage_map_and_submit_buffers(mpd);
2541 		if (err < 0)
2542 			goto update_disksize;
2543 	} while (map->m_len);
2544 
2545 update_disksize:
2546 	/*
2547 	 * Update on-disk size after IO is submitted.  Races with
2548 	 * truncate are avoided by checking i_size under i_data_sem.
2549 	 */
2550 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2551 	if (disksize > EXT4_I(inode)->i_disksize) {
2552 		int err2;
2553 		loff_t i_size;
2554 
2555 		down_write(&EXT4_I(inode)->i_data_sem);
2556 		i_size = i_size_read(inode);
2557 		if (disksize > i_size)
2558 			disksize = i_size;
2559 		if (disksize > EXT4_I(inode)->i_disksize)
2560 			EXT4_I(inode)->i_disksize = disksize;
2561 		up_write(&EXT4_I(inode)->i_data_sem);
2562 		err2 = ext4_mark_inode_dirty(handle, inode);
2563 		if (err2)
2564 			ext4_error(inode->i_sb,
2565 				   "Failed to mark inode %lu dirty",
2566 				   inode->i_ino);
2567 		if (!err)
2568 			err = err2;
2569 	}
2570 	return err;
2571 }
2572 
2573 /*
2574  * Calculate the total number of credits to reserve for one writepages
2575  * iteration. This is called from ext4_writepages(). We map an extent of
2576  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2577  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2578  * bpp - 1 blocks in bpp different extents.
2579  */
2580 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2581 {
2582 	int bpp = ext4_journal_blocks_per_page(inode);
2583 
2584 	return ext4_meta_trans_blocks(inode,
2585 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2586 }
2587 
2588 /*
2589  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2590  * 				 and underlying extent to map
2591  *
2592  * @mpd - where to look for pages
2593  *
2594  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2595  * IO immediately. When we find a page which isn't mapped we start accumulating
2596  * extent of buffers underlying these pages that needs mapping (formed by
2597  * either delayed or unwritten buffers). We also lock the pages containing
2598  * these buffers. The extent found is returned in @mpd structure (starting at
2599  * mpd->lblk with length mpd->len blocks).
2600  *
2601  * Note that this function can attach bios to one io_end structure which are
2602  * neither logically nor physically contiguous. Although it may seem as an
2603  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2604  * case as we need to track IO to all buffers underlying a page in one io_end.
2605  */
2606 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2607 {
2608 	struct address_space *mapping = mpd->inode->i_mapping;
2609 	struct pagevec pvec;
2610 	unsigned int nr_pages;
2611 	long left = mpd->wbc->nr_to_write;
2612 	pgoff_t index = mpd->first_page;
2613 	pgoff_t end = mpd->last_page;
2614 	int tag;
2615 	int i, err = 0;
2616 	int blkbits = mpd->inode->i_blkbits;
2617 	ext4_lblk_t lblk;
2618 	struct buffer_head *head;
2619 
2620 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2621 		tag = PAGECACHE_TAG_TOWRITE;
2622 	else
2623 		tag = PAGECACHE_TAG_DIRTY;
2624 
2625 	pagevec_init(&pvec, 0);
2626 	mpd->map.m_len = 0;
2627 	mpd->next_page = index;
2628 	while (index <= end) {
2629 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2630 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2631 		if (nr_pages == 0)
2632 			goto out;
2633 
2634 		for (i = 0; i < nr_pages; i++) {
2635 			struct page *page = pvec.pages[i];
2636 
2637 			/*
2638 			 * At this point, the page may be truncated or
2639 			 * invalidated (changing page->mapping to NULL), or
2640 			 * even swizzled back from swapper_space to tmpfs file
2641 			 * mapping. However, page->index will not change
2642 			 * because we have a reference on the page.
2643 			 */
2644 			if (page->index > end)
2645 				goto out;
2646 
2647 			/*
2648 			 * Accumulated enough dirty pages? This doesn't apply
2649 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2650 			 * keep going because someone may be concurrently
2651 			 * dirtying pages, and we might have synced a lot of
2652 			 * newly appeared dirty pages, but have not synced all
2653 			 * of the old dirty pages.
2654 			 */
2655 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2656 				goto out;
2657 
2658 			/* If we can't merge this page, we are done. */
2659 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2660 				goto out;
2661 
2662 			lock_page(page);
2663 			/*
2664 			 * If the page is no longer dirty, or its mapping no
2665 			 * longer corresponds to inode we are writing (which
2666 			 * means it has been truncated or invalidated), or the
2667 			 * page is already under writeback and we are not doing
2668 			 * a data integrity writeback, skip the page
2669 			 */
2670 			if (!PageDirty(page) ||
2671 			    (PageWriteback(page) &&
2672 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2673 			    unlikely(page->mapping != mapping)) {
2674 				unlock_page(page);
2675 				continue;
2676 			}
2677 
2678 			wait_on_page_writeback(page);
2679 			BUG_ON(PageWriteback(page));
2680 
2681 			if (mpd->map.m_len == 0)
2682 				mpd->first_page = page->index;
2683 			mpd->next_page = page->index + 1;
2684 			/* Add all dirty buffers to mpd */
2685 			lblk = ((ext4_lblk_t)page->index) <<
2686 				(PAGE_SHIFT - blkbits);
2687 			head = page_buffers(page);
2688 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2689 			if (err <= 0)
2690 				goto out;
2691 			err = 0;
2692 			left--;
2693 		}
2694 		pagevec_release(&pvec);
2695 		cond_resched();
2696 	}
2697 	return 0;
2698 out:
2699 	pagevec_release(&pvec);
2700 	return err;
2701 }
2702 
2703 static int __writepage(struct page *page, struct writeback_control *wbc,
2704 		       void *data)
2705 {
2706 	struct address_space *mapping = data;
2707 	int ret = ext4_writepage(page, wbc);
2708 	mapping_set_error(mapping, ret);
2709 	return ret;
2710 }
2711 
2712 static int ext4_writepages(struct address_space *mapping,
2713 			   struct writeback_control *wbc)
2714 {
2715 	pgoff_t	writeback_index = 0;
2716 	long nr_to_write = wbc->nr_to_write;
2717 	int range_whole = 0;
2718 	int cycled = 1;
2719 	handle_t *handle = NULL;
2720 	struct mpage_da_data mpd;
2721 	struct inode *inode = mapping->host;
2722 	int needed_blocks, rsv_blocks = 0, ret = 0;
2723 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2724 	bool done;
2725 	struct blk_plug plug;
2726 	bool give_up_on_write = false;
2727 
2728 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2729 		return -EIO;
2730 
2731 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2732 	trace_ext4_writepages(inode, wbc);
2733 
2734 	if (dax_mapping(mapping)) {
2735 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2736 						  wbc);
2737 		goto out_writepages;
2738 	}
2739 
2740 	/*
2741 	 * No pages to write? This is mainly a kludge to avoid starting
2742 	 * a transaction for special inodes like journal inode on last iput()
2743 	 * because that could violate lock ordering on umount
2744 	 */
2745 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2746 		goto out_writepages;
2747 
2748 	if (ext4_should_journal_data(inode)) {
2749 		struct blk_plug plug;
2750 
2751 		blk_start_plug(&plug);
2752 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2753 		blk_finish_plug(&plug);
2754 		goto out_writepages;
2755 	}
2756 
2757 	/*
2758 	 * If the filesystem has aborted, it is read-only, so return
2759 	 * right away instead of dumping stack traces later on that
2760 	 * will obscure the real source of the problem.  We test
2761 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2762 	 * the latter could be true if the filesystem is mounted
2763 	 * read-only, and in that case, ext4_writepages should
2764 	 * *never* be called, so if that ever happens, we would want
2765 	 * the stack trace.
2766 	 */
2767 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2768 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2769 		ret = -EROFS;
2770 		goto out_writepages;
2771 	}
2772 
2773 	if (ext4_should_dioread_nolock(inode)) {
2774 		/*
2775 		 * We may need to convert up to one extent per block in
2776 		 * the page and we may dirty the inode.
2777 		 */
2778 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2779 	}
2780 
2781 	/*
2782 	 * If we have inline data and arrive here, it means that
2783 	 * we will soon create the block for the 1st page, so
2784 	 * we'd better clear the inline data here.
2785 	 */
2786 	if (ext4_has_inline_data(inode)) {
2787 		/* Just inode will be modified... */
2788 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2789 		if (IS_ERR(handle)) {
2790 			ret = PTR_ERR(handle);
2791 			goto out_writepages;
2792 		}
2793 		BUG_ON(ext4_test_inode_state(inode,
2794 				EXT4_STATE_MAY_INLINE_DATA));
2795 		ext4_destroy_inline_data(handle, inode);
2796 		ext4_journal_stop(handle);
2797 	}
2798 
2799 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2800 		range_whole = 1;
2801 
2802 	if (wbc->range_cyclic) {
2803 		writeback_index = mapping->writeback_index;
2804 		if (writeback_index)
2805 			cycled = 0;
2806 		mpd.first_page = writeback_index;
2807 		mpd.last_page = -1;
2808 	} else {
2809 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2810 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2811 	}
2812 
2813 	mpd.inode = inode;
2814 	mpd.wbc = wbc;
2815 	ext4_io_submit_init(&mpd.io_submit, wbc);
2816 retry:
2817 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2818 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2819 	done = false;
2820 	blk_start_plug(&plug);
2821 
2822 	/*
2823 	 * First writeback pages that don't need mapping - we can avoid
2824 	 * starting a transaction unnecessarily and also avoid being blocked
2825 	 * in the block layer on device congestion while having transaction
2826 	 * started.
2827 	 */
2828 	mpd.do_map = 0;
2829 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2830 	if (!mpd.io_submit.io_end) {
2831 		ret = -ENOMEM;
2832 		goto unplug;
2833 	}
2834 	ret = mpage_prepare_extent_to_map(&mpd);
2835 	/* Submit prepared bio */
2836 	ext4_io_submit(&mpd.io_submit);
2837 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2838 	mpd.io_submit.io_end = NULL;
2839 	/* Unlock pages we didn't use */
2840 	mpage_release_unused_pages(&mpd, false);
2841 	if (ret < 0)
2842 		goto unplug;
2843 
2844 	while (!done && mpd.first_page <= mpd.last_page) {
2845 		/* For each extent of pages we use new io_end */
2846 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2847 		if (!mpd.io_submit.io_end) {
2848 			ret = -ENOMEM;
2849 			break;
2850 		}
2851 
2852 		/*
2853 		 * We have two constraints: We find one extent to map and we
2854 		 * must always write out whole page (makes a difference when
2855 		 * blocksize < pagesize) so that we don't block on IO when we
2856 		 * try to write out the rest of the page. Journalled mode is
2857 		 * not supported by delalloc.
2858 		 */
2859 		BUG_ON(ext4_should_journal_data(inode));
2860 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2861 
2862 		/* start a new transaction */
2863 		handle = ext4_journal_start_with_reserve(inode,
2864 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2865 		if (IS_ERR(handle)) {
2866 			ret = PTR_ERR(handle);
2867 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2868 			       "%ld pages, ino %lu; err %d", __func__,
2869 				wbc->nr_to_write, inode->i_ino, ret);
2870 			/* Release allocated io_end */
2871 			ext4_put_io_end(mpd.io_submit.io_end);
2872 			mpd.io_submit.io_end = NULL;
2873 			break;
2874 		}
2875 		mpd.do_map = 1;
2876 
2877 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2878 		ret = mpage_prepare_extent_to_map(&mpd);
2879 		if (!ret) {
2880 			if (mpd.map.m_len)
2881 				ret = mpage_map_and_submit_extent(handle, &mpd,
2882 					&give_up_on_write);
2883 			else {
2884 				/*
2885 				 * We scanned the whole range (or exhausted
2886 				 * nr_to_write), submitted what was mapped and
2887 				 * didn't find anything needing mapping. We are
2888 				 * done.
2889 				 */
2890 				done = true;
2891 			}
2892 		}
2893 		/*
2894 		 * Caution: If the handle is synchronous,
2895 		 * ext4_journal_stop() can wait for transaction commit
2896 		 * to finish which may depend on writeback of pages to
2897 		 * complete or on page lock to be released.  In that
2898 		 * case, we have to wait until after after we have
2899 		 * submitted all the IO, released page locks we hold,
2900 		 * and dropped io_end reference (for extent conversion
2901 		 * to be able to complete) before stopping the handle.
2902 		 */
2903 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2904 			ext4_journal_stop(handle);
2905 			handle = NULL;
2906 			mpd.do_map = 0;
2907 		}
2908 		/* Submit prepared bio */
2909 		ext4_io_submit(&mpd.io_submit);
2910 		/* Unlock pages we didn't use */
2911 		mpage_release_unused_pages(&mpd, give_up_on_write);
2912 		/*
2913 		 * Drop our io_end reference we got from init. We have
2914 		 * to be careful and use deferred io_end finishing if
2915 		 * we are still holding the transaction as we can
2916 		 * release the last reference to io_end which may end
2917 		 * up doing unwritten extent conversion.
2918 		 */
2919 		if (handle) {
2920 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2921 			ext4_journal_stop(handle);
2922 		} else
2923 			ext4_put_io_end(mpd.io_submit.io_end);
2924 		mpd.io_submit.io_end = NULL;
2925 
2926 		if (ret == -ENOSPC && sbi->s_journal) {
2927 			/*
2928 			 * Commit the transaction which would
2929 			 * free blocks released in the transaction
2930 			 * and try again
2931 			 */
2932 			jbd2_journal_force_commit_nested(sbi->s_journal);
2933 			ret = 0;
2934 			continue;
2935 		}
2936 		/* Fatal error - ENOMEM, EIO... */
2937 		if (ret)
2938 			break;
2939 	}
2940 unplug:
2941 	blk_finish_plug(&plug);
2942 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2943 		cycled = 1;
2944 		mpd.last_page = writeback_index - 1;
2945 		mpd.first_page = 0;
2946 		goto retry;
2947 	}
2948 
2949 	/* Update index */
2950 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2951 		/*
2952 		 * Set the writeback_index so that range_cyclic
2953 		 * mode will write it back later
2954 		 */
2955 		mapping->writeback_index = mpd.first_page;
2956 
2957 out_writepages:
2958 	trace_ext4_writepages_result(inode, wbc, ret,
2959 				     nr_to_write - wbc->nr_to_write);
2960 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2961 	return ret;
2962 }
2963 
2964 static int ext4_nonda_switch(struct super_block *sb)
2965 {
2966 	s64 free_clusters, dirty_clusters;
2967 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2968 
2969 	/*
2970 	 * switch to non delalloc mode if we are running low
2971 	 * on free block. The free block accounting via percpu
2972 	 * counters can get slightly wrong with percpu_counter_batch getting
2973 	 * accumulated on each CPU without updating global counters
2974 	 * Delalloc need an accurate free block accounting. So switch
2975 	 * to non delalloc when we are near to error range.
2976 	 */
2977 	free_clusters =
2978 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2979 	dirty_clusters =
2980 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2981 	/*
2982 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2983 	 */
2984 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2985 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2986 
2987 	if (2 * free_clusters < 3 * dirty_clusters ||
2988 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2989 		/*
2990 		 * free block count is less than 150% of dirty blocks
2991 		 * or free blocks is less than watermark
2992 		 */
2993 		return 1;
2994 	}
2995 	return 0;
2996 }
2997 
2998 /* We always reserve for an inode update; the superblock could be there too */
2999 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3000 {
3001 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
3002 		return 1;
3003 
3004 	if (pos + len <= 0x7fffffffULL)
3005 		return 1;
3006 
3007 	/* We might need to update the superblock to set LARGE_FILE */
3008 	return 2;
3009 }
3010 
3011 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3012 			       loff_t pos, unsigned len, unsigned flags,
3013 			       struct page **pagep, void **fsdata)
3014 {
3015 	int ret, retries = 0;
3016 	struct page *page;
3017 	pgoff_t index;
3018 	struct inode *inode = mapping->host;
3019 	handle_t *handle;
3020 
3021 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3022 		return -EIO;
3023 
3024 	index = pos >> PAGE_SHIFT;
3025 
3026 	if (ext4_nonda_switch(inode->i_sb) ||
3027 	    S_ISLNK(inode->i_mode)) {
3028 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3029 		return ext4_write_begin(file, mapping, pos,
3030 					len, flags, pagep, fsdata);
3031 	}
3032 	*fsdata = (void *)0;
3033 	trace_ext4_da_write_begin(inode, pos, len, flags);
3034 
3035 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3036 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3037 						      pos, len, flags,
3038 						      pagep, fsdata);
3039 		if (ret < 0)
3040 			return ret;
3041 		if (ret == 1)
3042 			return 0;
3043 	}
3044 
3045 	/*
3046 	 * grab_cache_page_write_begin() can take a long time if the
3047 	 * system is thrashing due to memory pressure, or if the page
3048 	 * is being written back.  So grab it first before we start
3049 	 * the transaction handle.  This also allows us to allocate
3050 	 * the page (if needed) without using GFP_NOFS.
3051 	 */
3052 retry_grab:
3053 	page = grab_cache_page_write_begin(mapping, index, flags);
3054 	if (!page)
3055 		return -ENOMEM;
3056 	unlock_page(page);
3057 
3058 	/*
3059 	 * With delayed allocation, we don't log the i_disksize update
3060 	 * if there is delayed block allocation. But we still need
3061 	 * to journalling the i_disksize update if writes to the end
3062 	 * of file which has an already mapped buffer.
3063 	 */
3064 retry_journal:
3065 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3066 				ext4_da_write_credits(inode, pos, len));
3067 	if (IS_ERR(handle)) {
3068 		put_page(page);
3069 		return PTR_ERR(handle);
3070 	}
3071 
3072 	lock_page(page);
3073 	if (page->mapping != mapping) {
3074 		/* The page got truncated from under us */
3075 		unlock_page(page);
3076 		put_page(page);
3077 		ext4_journal_stop(handle);
3078 		goto retry_grab;
3079 	}
3080 	/* In case writeback began while the page was unlocked */
3081 	wait_for_stable_page(page);
3082 
3083 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3084 	ret = ext4_block_write_begin(page, pos, len,
3085 				     ext4_da_get_block_prep);
3086 #else
3087 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3088 #endif
3089 	if (ret < 0) {
3090 		unlock_page(page);
3091 		ext4_journal_stop(handle);
3092 		/*
3093 		 * block_write_begin may have instantiated a few blocks
3094 		 * outside i_size.  Trim these off again. Don't need
3095 		 * i_size_read because we hold i_mutex.
3096 		 */
3097 		if (pos + len > inode->i_size)
3098 			ext4_truncate_failed_write(inode);
3099 
3100 		if (ret == -ENOSPC &&
3101 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3102 			goto retry_journal;
3103 
3104 		put_page(page);
3105 		return ret;
3106 	}
3107 
3108 	*pagep = page;
3109 	return ret;
3110 }
3111 
3112 /*
3113  * Check if we should update i_disksize
3114  * when write to the end of file but not require block allocation
3115  */
3116 static int ext4_da_should_update_i_disksize(struct page *page,
3117 					    unsigned long offset)
3118 {
3119 	struct buffer_head *bh;
3120 	struct inode *inode = page->mapping->host;
3121 	unsigned int idx;
3122 	int i;
3123 
3124 	bh = page_buffers(page);
3125 	idx = offset >> inode->i_blkbits;
3126 
3127 	for (i = 0; i < idx; i++)
3128 		bh = bh->b_this_page;
3129 
3130 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3131 		return 0;
3132 	return 1;
3133 }
3134 
3135 static int ext4_da_write_end(struct file *file,
3136 			     struct address_space *mapping,
3137 			     loff_t pos, unsigned len, unsigned copied,
3138 			     struct page *page, void *fsdata)
3139 {
3140 	struct inode *inode = mapping->host;
3141 	int ret = 0, ret2;
3142 	handle_t *handle = ext4_journal_current_handle();
3143 	loff_t new_i_size;
3144 	unsigned long start, end;
3145 	int write_mode = (int)(unsigned long)fsdata;
3146 
3147 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3148 		return ext4_write_end(file, mapping, pos,
3149 				      len, copied, page, fsdata);
3150 
3151 	trace_ext4_da_write_end(inode, pos, len, copied);
3152 	start = pos & (PAGE_SIZE - 1);
3153 	end = start + copied - 1;
3154 
3155 	/*
3156 	 * generic_write_end() will run mark_inode_dirty() if i_size
3157 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3158 	 * into that.
3159 	 */
3160 	new_i_size = pos + copied;
3161 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3162 		if (ext4_has_inline_data(inode) ||
3163 		    ext4_da_should_update_i_disksize(page, end)) {
3164 			ext4_update_i_disksize(inode, new_i_size);
3165 			/* We need to mark inode dirty even if
3166 			 * new_i_size is less that inode->i_size
3167 			 * bu greater than i_disksize.(hint delalloc)
3168 			 */
3169 			ext4_mark_inode_dirty(handle, inode);
3170 		}
3171 	}
3172 
3173 	if (write_mode != CONVERT_INLINE_DATA &&
3174 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3175 	    ext4_has_inline_data(inode))
3176 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3177 						     page);
3178 	else
3179 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3180 							page, fsdata);
3181 
3182 	copied = ret2;
3183 	if (ret2 < 0)
3184 		ret = ret2;
3185 	ret2 = ext4_journal_stop(handle);
3186 	if (!ret)
3187 		ret = ret2;
3188 
3189 	return ret ? ret : copied;
3190 }
3191 
3192 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3193 				   unsigned int length)
3194 {
3195 	/*
3196 	 * Drop reserved blocks
3197 	 */
3198 	BUG_ON(!PageLocked(page));
3199 	if (!page_has_buffers(page))
3200 		goto out;
3201 
3202 	ext4_da_page_release_reservation(page, offset, length);
3203 
3204 out:
3205 	ext4_invalidatepage(page, offset, length);
3206 
3207 	return;
3208 }
3209 
3210 /*
3211  * Force all delayed allocation blocks to be allocated for a given inode.
3212  */
3213 int ext4_alloc_da_blocks(struct inode *inode)
3214 {
3215 	trace_ext4_alloc_da_blocks(inode);
3216 
3217 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3218 		return 0;
3219 
3220 	/*
3221 	 * We do something simple for now.  The filemap_flush() will
3222 	 * also start triggering a write of the data blocks, which is
3223 	 * not strictly speaking necessary (and for users of
3224 	 * laptop_mode, not even desirable).  However, to do otherwise
3225 	 * would require replicating code paths in:
3226 	 *
3227 	 * ext4_writepages() ->
3228 	 *    write_cache_pages() ---> (via passed in callback function)
3229 	 *        __mpage_da_writepage() -->
3230 	 *           mpage_add_bh_to_extent()
3231 	 *           mpage_da_map_blocks()
3232 	 *
3233 	 * The problem is that write_cache_pages(), located in
3234 	 * mm/page-writeback.c, marks pages clean in preparation for
3235 	 * doing I/O, which is not desirable if we're not planning on
3236 	 * doing I/O at all.
3237 	 *
3238 	 * We could call write_cache_pages(), and then redirty all of
3239 	 * the pages by calling redirty_page_for_writepage() but that
3240 	 * would be ugly in the extreme.  So instead we would need to
3241 	 * replicate parts of the code in the above functions,
3242 	 * simplifying them because we wouldn't actually intend to
3243 	 * write out the pages, but rather only collect contiguous
3244 	 * logical block extents, call the multi-block allocator, and
3245 	 * then update the buffer heads with the block allocations.
3246 	 *
3247 	 * For now, though, we'll cheat by calling filemap_flush(),
3248 	 * which will map the blocks, and start the I/O, but not
3249 	 * actually wait for the I/O to complete.
3250 	 */
3251 	return filemap_flush(inode->i_mapping);
3252 }
3253 
3254 /*
3255  * bmap() is special.  It gets used by applications such as lilo and by
3256  * the swapper to find the on-disk block of a specific piece of data.
3257  *
3258  * Naturally, this is dangerous if the block concerned is still in the
3259  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3260  * filesystem and enables swap, then they may get a nasty shock when the
3261  * data getting swapped to that swapfile suddenly gets overwritten by
3262  * the original zero's written out previously to the journal and
3263  * awaiting writeback in the kernel's buffer cache.
3264  *
3265  * So, if we see any bmap calls here on a modified, data-journaled file,
3266  * take extra steps to flush any blocks which might be in the cache.
3267  */
3268 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3269 {
3270 	struct inode *inode = mapping->host;
3271 	journal_t *journal;
3272 	int err;
3273 
3274 	/*
3275 	 * We can get here for an inline file via the FIBMAP ioctl
3276 	 */
3277 	if (ext4_has_inline_data(inode))
3278 		return 0;
3279 
3280 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3281 			test_opt(inode->i_sb, DELALLOC)) {
3282 		/*
3283 		 * With delalloc we want to sync the file
3284 		 * so that we can make sure we allocate
3285 		 * blocks for file
3286 		 */
3287 		filemap_write_and_wait(mapping);
3288 	}
3289 
3290 	if (EXT4_JOURNAL(inode) &&
3291 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3292 		/*
3293 		 * This is a REALLY heavyweight approach, but the use of
3294 		 * bmap on dirty files is expected to be extremely rare:
3295 		 * only if we run lilo or swapon on a freshly made file
3296 		 * do we expect this to happen.
3297 		 *
3298 		 * (bmap requires CAP_SYS_RAWIO so this does not
3299 		 * represent an unprivileged user DOS attack --- we'd be
3300 		 * in trouble if mortal users could trigger this path at
3301 		 * will.)
3302 		 *
3303 		 * NB. EXT4_STATE_JDATA is not set on files other than
3304 		 * regular files.  If somebody wants to bmap a directory
3305 		 * or symlink and gets confused because the buffer
3306 		 * hasn't yet been flushed to disk, they deserve
3307 		 * everything they get.
3308 		 */
3309 
3310 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3311 		journal = EXT4_JOURNAL(inode);
3312 		jbd2_journal_lock_updates(journal);
3313 		err = jbd2_journal_flush(journal);
3314 		jbd2_journal_unlock_updates(journal);
3315 
3316 		if (err)
3317 			return 0;
3318 	}
3319 
3320 	return generic_block_bmap(mapping, block, ext4_get_block);
3321 }
3322 
3323 static int ext4_readpage(struct file *file, struct page *page)
3324 {
3325 	int ret = -EAGAIN;
3326 	struct inode *inode = page->mapping->host;
3327 
3328 	trace_ext4_readpage(page);
3329 
3330 	if (ext4_has_inline_data(inode))
3331 		ret = ext4_readpage_inline(inode, page);
3332 
3333 	if (ret == -EAGAIN)
3334 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3335 
3336 	return ret;
3337 }
3338 
3339 static int
3340 ext4_readpages(struct file *file, struct address_space *mapping,
3341 		struct list_head *pages, unsigned nr_pages)
3342 {
3343 	struct inode *inode = mapping->host;
3344 
3345 	/* If the file has inline data, no need to do readpages. */
3346 	if (ext4_has_inline_data(inode))
3347 		return 0;
3348 
3349 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3350 }
3351 
3352 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3353 				unsigned int length)
3354 {
3355 	trace_ext4_invalidatepage(page, offset, length);
3356 
3357 	/* No journalling happens on data buffers when this function is used */
3358 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3359 
3360 	block_invalidatepage(page, offset, length);
3361 }
3362 
3363 static int __ext4_journalled_invalidatepage(struct page *page,
3364 					    unsigned int offset,
3365 					    unsigned int length)
3366 {
3367 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3368 
3369 	trace_ext4_journalled_invalidatepage(page, offset, length);
3370 
3371 	/*
3372 	 * If it's a full truncate we just forget about the pending dirtying
3373 	 */
3374 	if (offset == 0 && length == PAGE_SIZE)
3375 		ClearPageChecked(page);
3376 
3377 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3378 }
3379 
3380 /* Wrapper for aops... */
3381 static void ext4_journalled_invalidatepage(struct page *page,
3382 					   unsigned int offset,
3383 					   unsigned int length)
3384 {
3385 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3386 }
3387 
3388 static int ext4_releasepage(struct page *page, gfp_t wait)
3389 {
3390 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3391 
3392 	trace_ext4_releasepage(page);
3393 
3394 	/* Page has dirty journalled data -> cannot release */
3395 	if (PageChecked(page))
3396 		return 0;
3397 	if (journal)
3398 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3399 	else
3400 		return try_to_free_buffers(page);
3401 }
3402 
3403 #ifdef CONFIG_FS_DAX
3404 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3405 			    unsigned flags, struct iomap *iomap)
3406 {
3407 	struct block_device *bdev;
3408 	unsigned int blkbits = inode->i_blkbits;
3409 	unsigned long first_block = offset >> blkbits;
3410 	unsigned long last_block = (offset + length - 1) >> blkbits;
3411 	struct ext4_map_blocks map;
3412 	int ret;
3413 
3414 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3415 		return -ERANGE;
3416 
3417 	map.m_lblk = first_block;
3418 	map.m_len = last_block - first_block + 1;
3419 
3420 	if (!(flags & IOMAP_WRITE)) {
3421 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3422 	} else {
3423 		int dio_credits;
3424 		handle_t *handle;
3425 		int retries = 0;
3426 
3427 		/* Trim mapping request to maximum we can map at once for DIO */
3428 		if (map.m_len > DIO_MAX_BLOCKS)
3429 			map.m_len = DIO_MAX_BLOCKS;
3430 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3431 retry:
3432 		/*
3433 		 * Either we allocate blocks and then we don't get unwritten
3434 		 * extent so we have reserved enough credits, or the blocks
3435 		 * are already allocated and unwritten and in that case
3436 		 * extent conversion fits in the credits as well.
3437 		 */
3438 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3439 					    dio_credits);
3440 		if (IS_ERR(handle))
3441 			return PTR_ERR(handle);
3442 
3443 		ret = ext4_map_blocks(handle, inode, &map,
3444 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3445 		if (ret < 0) {
3446 			ext4_journal_stop(handle);
3447 			if (ret == -ENOSPC &&
3448 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3449 				goto retry;
3450 			return ret;
3451 		}
3452 
3453 		/*
3454 		 * If we added blocks beyond i_size, we need to make sure they
3455 		 * will get truncated if we crash before updating i_size in
3456 		 * ext4_iomap_end(). For faults we don't need to do that (and
3457 		 * even cannot because for orphan list operations inode_lock is
3458 		 * required) - if we happen to instantiate block beyond i_size,
3459 		 * it is because we race with truncate which has already added
3460 		 * the inode to the orphan list.
3461 		 */
3462 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3463 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3464 			int err;
3465 
3466 			err = ext4_orphan_add(handle, inode);
3467 			if (err < 0) {
3468 				ext4_journal_stop(handle);
3469 				return err;
3470 			}
3471 		}
3472 		ext4_journal_stop(handle);
3473 	}
3474 
3475 	iomap->flags = 0;
3476 	bdev = inode->i_sb->s_bdev;
3477 	iomap->bdev = bdev;
3478 	if (blk_queue_dax(bdev->bd_queue))
3479 		iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3480 	else
3481 		iomap->dax_dev = NULL;
3482 	iomap->offset = first_block << blkbits;
3483 
3484 	if (ret == 0) {
3485 		iomap->type = IOMAP_HOLE;
3486 		iomap->blkno = IOMAP_NULL_BLOCK;
3487 		iomap->length = (u64)map.m_len << blkbits;
3488 	} else {
3489 		if (map.m_flags & EXT4_MAP_MAPPED) {
3490 			iomap->type = IOMAP_MAPPED;
3491 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3492 			iomap->type = IOMAP_UNWRITTEN;
3493 		} else {
3494 			WARN_ON_ONCE(1);
3495 			return -EIO;
3496 		}
3497 		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3498 		iomap->length = (u64)map.m_len << blkbits;
3499 	}
3500 
3501 	if (map.m_flags & EXT4_MAP_NEW)
3502 		iomap->flags |= IOMAP_F_NEW;
3503 	return 0;
3504 }
3505 
3506 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3507 			  ssize_t written, unsigned flags, struct iomap *iomap)
3508 {
3509 	int ret = 0;
3510 	handle_t *handle;
3511 	int blkbits = inode->i_blkbits;
3512 	bool truncate = false;
3513 
3514 	fs_put_dax(iomap->dax_dev);
3515 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3516 		return 0;
3517 
3518 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3519 	if (IS_ERR(handle)) {
3520 		ret = PTR_ERR(handle);
3521 		goto orphan_del;
3522 	}
3523 	if (ext4_update_inode_size(inode, offset + written))
3524 		ext4_mark_inode_dirty(handle, inode);
3525 	/*
3526 	 * We may need to truncate allocated but not written blocks beyond EOF.
3527 	 */
3528 	if (iomap->offset + iomap->length >
3529 	    ALIGN(inode->i_size, 1 << blkbits)) {
3530 		ext4_lblk_t written_blk, end_blk;
3531 
3532 		written_blk = (offset + written) >> blkbits;
3533 		end_blk = (offset + length) >> blkbits;
3534 		if (written_blk < end_blk && ext4_can_truncate(inode))
3535 			truncate = true;
3536 	}
3537 	/*
3538 	 * Remove inode from orphan list if we were extending a inode and
3539 	 * everything went fine.
3540 	 */
3541 	if (!truncate && inode->i_nlink &&
3542 	    !list_empty(&EXT4_I(inode)->i_orphan))
3543 		ext4_orphan_del(handle, inode);
3544 	ext4_journal_stop(handle);
3545 	if (truncate) {
3546 		ext4_truncate_failed_write(inode);
3547 orphan_del:
3548 		/*
3549 		 * If truncate failed early the inode might still be on the
3550 		 * orphan list; we need to make sure the inode is removed from
3551 		 * the orphan list in that case.
3552 		 */
3553 		if (inode->i_nlink)
3554 			ext4_orphan_del(NULL, inode);
3555 	}
3556 	return ret;
3557 }
3558 
3559 const struct iomap_ops ext4_iomap_ops = {
3560 	.iomap_begin		= ext4_iomap_begin,
3561 	.iomap_end		= ext4_iomap_end,
3562 };
3563 
3564 #endif
3565 
3566 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3567 			    ssize_t size, void *private)
3568 {
3569         ext4_io_end_t *io_end = private;
3570 
3571 	/* if not async direct IO just return */
3572 	if (!io_end)
3573 		return 0;
3574 
3575 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3576 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3577 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3578 
3579 	/*
3580 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3581 	 * data was not written. Just clear the unwritten flag and drop io_end.
3582 	 */
3583 	if (size <= 0) {
3584 		ext4_clear_io_unwritten_flag(io_end);
3585 		size = 0;
3586 	}
3587 	io_end->offset = offset;
3588 	io_end->size = size;
3589 	ext4_put_io_end(io_end);
3590 
3591 	return 0;
3592 }
3593 
3594 /*
3595  * Handling of direct IO writes.
3596  *
3597  * For ext4 extent files, ext4 will do direct-io write even to holes,
3598  * preallocated extents, and those write extend the file, no need to
3599  * fall back to buffered IO.
3600  *
3601  * For holes, we fallocate those blocks, mark them as unwritten
3602  * If those blocks were preallocated, we mark sure they are split, but
3603  * still keep the range to write as unwritten.
3604  *
3605  * The unwritten extents will be converted to written when DIO is completed.
3606  * For async direct IO, since the IO may still pending when return, we
3607  * set up an end_io call back function, which will do the conversion
3608  * when async direct IO completed.
3609  *
3610  * If the O_DIRECT write will extend the file then add this inode to the
3611  * orphan list.  So recovery will truncate it back to the original size
3612  * if the machine crashes during the write.
3613  *
3614  */
3615 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3616 {
3617 	struct file *file = iocb->ki_filp;
3618 	struct inode *inode = file->f_mapping->host;
3619 	struct ext4_inode_info *ei = EXT4_I(inode);
3620 	ssize_t ret;
3621 	loff_t offset = iocb->ki_pos;
3622 	size_t count = iov_iter_count(iter);
3623 	int overwrite = 0;
3624 	get_block_t *get_block_func = NULL;
3625 	int dio_flags = 0;
3626 	loff_t final_size = offset + count;
3627 	int orphan = 0;
3628 	handle_t *handle;
3629 
3630 	if (final_size > inode->i_size) {
3631 		/* Credits for sb + inode write */
3632 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3633 		if (IS_ERR(handle)) {
3634 			ret = PTR_ERR(handle);
3635 			goto out;
3636 		}
3637 		ret = ext4_orphan_add(handle, inode);
3638 		if (ret) {
3639 			ext4_journal_stop(handle);
3640 			goto out;
3641 		}
3642 		orphan = 1;
3643 		ei->i_disksize = inode->i_size;
3644 		ext4_journal_stop(handle);
3645 	}
3646 
3647 	BUG_ON(iocb->private == NULL);
3648 
3649 	/*
3650 	 * Make all waiters for direct IO properly wait also for extent
3651 	 * conversion. This also disallows race between truncate() and
3652 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3653 	 */
3654 	inode_dio_begin(inode);
3655 
3656 	/* If we do a overwrite dio, i_mutex locking can be released */
3657 	overwrite = *((int *)iocb->private);
3658 
3659 	if (overwrite)
3660 		inode_unlock(inode);
3661 
3662 	/*
3663 	 * For extent mapped files we could direct write to holes and fallocate.
3664 	 *
3665 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3666 	 * parallel buffered read to expose the stale data before DIO complete
3667 	 * the data IO.
3668 	 *
3669 	 * As to previously fallocated extents, ext4 get_block will just simply
3670 	 * mark the buffer mapped but still keep the extents unwritten.
3671 	 *
3672 	 * For non AIO case, we will convert those unwritten extents to written
3673 	 * after return back from blockdev_direct_IO. That way we save us from
3674 	 * allocating io_end structure and also the overhead of offloading
3675 	 * the extent convertion to a workqueue.
3676 	 *
3677 	 * For async DIO, the conversion needs to be deferred when the
3678 	 * IO is completed. The ext4 end_io callback function will be
3679 	 * called to take care of the conversion work.  Here for async
3680 	 * case, we allocate an io_end structure to hook to the iocb.
3681 	 */
3682 	iocb->private = NULL;
3683 	if (overwrite)
3684 		get_block_func = ext4_dio_get_block_overwrite;
3685 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3686 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3687 		get_block_func = ext4_dio_get_block;
3688 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3689 	} else if (is_sync_kiocb(iocb)) {
3690 		get_block_func = ext4_dio_get_block_unwritten_sync;
3691 		dio_flags = DIO_LOCKING;
3692 	} else {
3693 		get_block_func = ext4_dio_get_block_unwritten_async;
3694 		dio_flags = DIO_LOCKING;
3695 	}
3696 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3697 				   get_block_func, ext4_end_io_dio, NULL,
3698 				   dio_flags);
3699 
3700 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3701 						EXT4_STATE_DIO_UNWRITTEN)) {
3702 		int err;
3703 		/*
3704 		 * for non AIO case, since the IO is already
3705 		 * completed, we could do the conversion right here
3706 		 */
3707 		err = ext4_convert_unwritten_extents(NULL, inode,
3708 						     offset, ret);
3709 		if (err < 0)
3710 			ret = err;
3711 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3712 	}
3713 
3714 	inode_dio_end(inode);
3715 	/* take i_mutex locking again if we do a ovewrite dio */
3716 	if (overwrite)
3717 		inode_lock(inode);
3718 
3719 	if (ret < 0 && final_size > inode->i_size)
3720 		ext4_truncate_failed_write(inode);
3721 
3722 	/* Handle extending of i_size after direct IO write */
3723 	if (orphan) {
3724 		int err;
3725 
3726 		/* Credits for sb + inode write */
3727 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3728 		if (IS_ERR(handle)) {
3729 			/* This is really bad luck. We've written the data
3730 			 * but cannot extend i_size. Bail out and pretend
3731 			 * the write failed... */
3732 			ret = PTR_ERR(handle);
3733 			if (inode->i_nlink)
3734 				ext4_orphan_del(NULL, inode);
3735 
3736 			goto out;
3737 		}
3738 		if (inode->i_nlink)
3739 			ext4_orphan_del(handle, inode);
3740 		if (ret > 0) {
3741 			loff_t end = offset + ret;
3742 			if (end > inode->i_size) {
3743 				ei->i_disksize = end;
3744 				i_size_write(inode, end);
3745 				/*
3746 				 * We're going to return a positive `ret'
3747 				 * here due to non-zero-length I/O, so there's
3748 				 * no way of reporting error returns from
3749 				 * ext4_mark_inode_dirty() to userspace.  So
3750 				 * ignore it.
3751 				 */
3752 				ext4_mark_inode_dirty(handle, inode);
3753 			}
3754 		}
3755 		err = ext4_journal_stop(handle);
3756 		if (ret == 0)
3757 			ret = err;
3758 	}
3759 out:
3760 	return ret;
3761 }
3762 
3763 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3764 {
3765 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3766 	struct inode *inode = mapping->host;
3767 	size_t count = iov_iter_count(iter);
3768 	ssize_t ret;
3769 
3770 	/*
3771 	 * Shared inode_lock is enough for us - it protects against concurrent
3772 	 * writes & truncates and since we take care of writing back page cache,
3773 	 * we are protected against page writeback as well.
3774 	 */
3775 	inode_lock_shared(inode);
3776 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3777 					   iocb->ki_pos + count - 1);
3778 	if (ret)
3779 		goto out_unlock;
3780 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3781 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3782 out_unlock:
3783 	inode_unlock_shared(inode);
3784 	return ret;
3785 }
3786 
3787 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3788 {
3789 	struct file *file = iocb->ki_filp;
3790 	struct inode *inode = file->f_mapping->host;
3791 	size_t count = iov_iter_count(iter);
3792 	loff_t offset = iocb->ki_pos;
3793 	ssize_t ret;
3794 
3795 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3796 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3797 		return 0;
3798 #endif
3799 
3800 	/*
3801 	 * If we are doing data journalling we don't support O_DIRECT
3802 	 */
3803 	if (ext4_should_journal_data(inode))
3804 		return 0;
3805 
3806 	/* Let buffer I/O handle the inline data case. */
3807 	if (ext4_has_inline_data(inode))
3808 		return 0;
3809 
3810 	/* DAX uses iomap path now */
3811 	if (WARN_ON_ONCE(IS_DAX(inode)))
3812 		return 0;
3813 
3814 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3815 	if (iov_iter_rw(iter) == READ)
3816 		ret = ext4_direct_IO_read(iocb, iter);
3817 	else
3818 		ret = ext4_direct_IO_write(iocb, iter);
3819 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3820 	return ret;
3821 }
3822 
3823 /*
3824  * Pages can be marked dirty completely asynchronously from ext4's journalling
3825  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3826  * much here because ->set_page_dirty is called under VFS locks.  The page is
3827  * not necessarily locked.
3828  *
3829  * We cannot just dirty the page and leave attached buffers clean, because the
3830  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3831  * or jbddirty because all the journalling code will explode.
3832  *
3833  * So what we do is to mark the page "pending dirty" and next time writepage
3834  * is called, propagate that into the buffers appropriately.
3835  */
3836 static int ext4_journalled_set_page_dirty(struct page *page)
3837 {
3838 	SetPageChecked(page);
3839 	return __set_page_dirty_nobuffers(page);
3840 }
3841 
3842 static int ext4_set_page_dirty(struct page *page)
3843 {
3844 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3845 	WARN_ON_ONCE(!page_has_buffers(page));
3846 	return __set_page_dirty_buffers(page);
3847 }
3848 
3849 static const struct address_space_operations ext4_aops = {
3850 	.readpage		= ext4_readpage,
3851 	.readpages		= ext4_readpages,
3852 	.writepage		= ext4_writepage,
3853 	.writepages		= ext4_writepages,
3854 	.write_begin		= ext4_write_begin,
3855 	.write_end		= ext4_write_end,
3856 	.set_page_dirty		= ext4_set_page_dirty,
3857 	.bmap			= ext4_bmap,
3858 	.invalidatepage		= ext4_invalidatepage,
3859 	.releasepage		= ext4_releasepage,
3860 	.direct_IO		= ext4_direct_IO,
3861 	.migratepage		= buffer_migrate_page,
3862 	.is_partially_uptodate  = block_is_partially_uptodate,
3863 	.error_remove_page	= generic_error_remove_page,
3864 };
3865 
3866 static const struct address_space_operations ext4_journalled_aops = {
3867 	.readpage		= ext4_readpage,
3868 	.readpages		= ext4_readpages,
3869 	.writepage		= ext4_writepage,
3870 	.writepages		= ext4_writepages,
3871 	.write_begin		= ext4_write_begin,
3872 	.write_end		= ext4_journalled_write_end,
3873 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3874 	.bmap			= ext4_bmap,
3875 	.invalidatepage		= ext4_journalled_invalidatepage,
3876 	.releasepage		= ext4_releasepage,
3877 	.direct_IO		= ext4_direct_IO,
3878 	.is_partially_uptodate  = block_is_partially_uptodate,
3879 	.error_remove_page	= generic_error_remove_page,
3880 };
3881 
3882 static const struct address_space_operations ext4_da_aops = {
3883 	.readpage		= ext4_readpage,
3884 	.readpages		= ext4_readpages,
3885 	.writepage		= ext4_writepage,
3886 	.writepages		= ext4_writepages,
3887 	.write_begin		= ext4_da_write_begin,
3888 	.write_end		= ext4_da_write_end,
3889 	.set_page_dirty		= ext4_set_page_dirty,
3890 	.bmap			= ext4_bmap,
3891 	.invalidatepage		= ext4_da_invalidatepage,
3892 	.releasepage		= ext4_releasepage,
3893 	.direct_IO		= ext4_direct_IO,
3894 	.migratepage		= buffer_migrate_page,
3895 	.is_partially_uptodate  = block_is_partially_uptodate,
3896 	.error_remove_page	= generic_error_remove_page,
3897 };
3898 
3899 void ext4_set_aops(struct inode *inode)
3900 {
3901 	switch (ext4_inode_journal_mode(inode)) {
3902 	case EXT4_INODE_ORDERED_DATA_MODE:
3903 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3904 		break;
3905 	case EXT4_INODE_JOURNAL_DATA_MODE:
3906 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3907 		return;
3908 	default:
3909 		BUG();
3910 	}
3911 	if (test_opt(inode->i_sb, DELALLOC))
3912 		inode->i_mapping->a_ops = &ext4_da_aops;
3913 	else
3914 		inode->i_mapping->a_ops = &ext4_aops;
3915 }
3916 
3917 static int __ext4_block_zero_page_range(handle_t *handle,
3918 		struct address_space *mapping, loff_t from, loff_t length)
3919 {
3920 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3921 	unsigned offset = from & (PAGE_SIZE-1);
3922 	unsigned blocksize, pos;
3923 	ext4_lblk_t iblock;
3924 	struct inode *inode = mapping->host;
3925 	struct buffer_head *bh;
3926 	struct page *page;
3927 	int err = 0;
3928 
3929 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3930 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3931 	if (!page)
3932 		return -ENOMEM;
3933 
3934 	blocksize = inode->i_sb->s_blocksize;
3935 
3936 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3937 
3938 	if (!page_has_buffers(page))
3939 		create_empty_buffers(page, blocksize, 0);
3940 
3941 	/* Find the buffer that contains "offset" */
3942 	bh = page_buffers(page);
3943 	pos = blocksize;
3944 	while (offset >= pos) {
3945 		bh = bh->b_this_page;
3946 		iblock++;
3947 		pos += blocksize;
3948 	}
3949 	if (buffer_freed(bh)) {
3950 		BUFFER_TRACE(bh, "freed: skip");
3951 		goto unlock;
3952 	}
3953 	if (!buffer_mapped(bh)) {
3954 		BUFFER_TRACE(bh, "unmapped");
3955 		ext4_get_block(inode, iblock, bh, 0);
3956 		/* unmapped? It's a hole - nothing to do */
3957 		if (!buffer_mapped(bh)) {
3958 			BUFFER_TRACE(bh, "still unmapped");
3959 			goto unlock;
3960 		}
3961 	}
3962 
3963 	/* Ok, it's mapped. Make sure it's up-to-date */
3964 	if (PageUptodate(page))
3965 		set_buffer_uptodate(bh);
3966 
3967 	if (!buffer_uptodate(bh)) {
3968 		err = -EIO;
3969 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3970 		wait_on_buffer(bh);
3971 		/* Uhhuh. Read error. Complain and punt. */
3972 		if (!buffer_uptodate(bh))
3973 			goto unlock;
3974 		if (S_ISREG(inode->i_mode) &&
3975 		    ext4_encrypted_inode(inode)) {
3976 			/* We expect the key to be set. */
3977 			BUG_ON(!fscrypt_has_encryption_key(inode));
3978 			BUG_ON(blocksize != PAGE_SIZE);
3979 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3980 						page, PAGE_SIZE, 0, page->index));
3981 		}
3982 	}
3983 	if (ext4_should_journal_data(inode)) {
3984 		BUFFER_TRACE(bh, "get write access");
3985 		err = ext4_journal_get_write_access(handle, bh);
3986 		if (err)
3987 			goto unlock;
3988 	}
3989 	zero_user(page, offset, length);
3990 	BUFFER_TRACE(bh, "zeroed end of block");
3991 
3992 	if (ext4_should_journal_data(inode)) {
3993 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3994 	} else {
3995 		err = 0;
3996 		mark_buffer_dirty(bh);
3997 		if (ext4_should_order_data(inode))
3998 			err = ext4_jbd2_inode_add_write(handle, inode);
3999 	}
4000 
4001 unlock:
4002 	unlock_page(page);
4003 	put_page(page);
4004 	return err;
4005 }
4006 
4007 /*
4008  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4009  * starting from file offset 'from'.  The range to be zero'd must
4010  * be contained with in one block.  If the specified range exceeds
4011  * the end of the block it will be shortened to end of the block
4012  * that cooresponds to 'from'
4013  */
4014 static int ext4_block_zero_page_range(handle_t *handle,
4015 		struct address_space *mapping, loff_t from, loff_t length)
4016 {
4017 	struct inode *inode = mapping->host;
4018 	unsigned offset = from & (PAGE_SIZE-1);
4019 	unsigned blocksize = inode->i_sb->s_blocksize;
4020 	unsigned max = blocksize - (offset & (blocksize - 1));
4021 
4022 	/*
4023 	 * correct length if it does not fall between
4024 	 * 'from' and the end of the block
4025 	 */
4026 	if (length > max || length < 0)
4027 		length = max;
4028 
4029 	if (IS_DAX(inode)) {
4030 		return iomap_zero_range(inode, from, length, NULL,
4031 					&ext4_iomap_ops);
4032 	}
4033 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4034 }
4035 
4036 /*
4037  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4038  * up to the end of the block which corresponds to `from'.
4039  * This required during truncate. We need to physically zero the tail end
4040  * of that block so it doesn't yield old data if the file is later grown.
4041  */
4042 static int ext4_block_truncate_page(handle_t *handle,
4043 		struct address_space *mapping, loff_t from)
4044 {
4045 	unsigned offset = from & (PAGE_SIZE-1);
4046 	unsigned length;
4047 	unsigned blocksize;
4048 	struct inode *inode = mapping->host;
4049 
4050 	/* If we are processing an encrypted inode during orphan list handling */
4051 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4052 		return 0;
4053 
4054 	blocksize = inode->i_sb->s_blocksize;
4055 	length = blocksize - (offset & (blocksize - 1));
4056 
4057 	return ext4_block_zero_page_range(handle, mapping, from, length);
4058 }
4059 
4060 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4061 			     loff_t lstart, loff_t length)
4062 {
4063 	struct super_block *sb = inode->i_sb;
4064 	struct address_space *mapping = inode->i_mapping;
4065 	unsigned partial_start, partial_end;
4066 	ext4_fsblk_t start, end;
4067 	loff_t byte_end = (lstart + length - 1);
4068 	int err = 0;
4069 
4070 	partial_start = lstart & (sb->s_blocksize - 1);
4071 	partial_end = byte_end & (sb->s_blocksize - 1);
4072 
4073 	start = lstart >> sb->s_blocksize_bits;
4074 	end = byte_end >> sb->s_blocksize_bits;
4075 
4076 	/* Handle partial zero within the single block */
4077 	if (start == end &&
4078 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4079 		err = ext4_block_zero_page_range(handle, mapping,
4080 						 lstart, length);
4081 		return err;
4082 	}
4083 	/* Handle partial zero out on the start of the range */
4084 	if (partial_start) {
4085 		err = ext4_block_zero_page_range(handle, mapping,
4086 						 lstart, sb->s_blocksize);
4087 		if (err)
4088 			return err;
4089 	}
4090 	/* Handle partial zero out on the end of the range */
4091 	if (partial_end != sb->s_blocksize - 1)
4092 		err = ext4_block_zero_page_range(handle, mapping,
4093 						 byte_end - partial_end,
4094 						 partial_end + 1);
4095 	return err;
4096 }
4097 
4098 int ext4_can_truncate(struct inode *inode)
4099 {
4100 	if (S_ISREG(inode->i_mode))
4101 		return 1;
4102 	if (S_ISDIR(inode->i_mode))
4103 		return 1;
4104 	if (S_ISLNK(inode->i_mode))
4105 		return !ext4_inode_is_fast_symlink(inode);
4106 	return 0;
4107 }
4108 
4109 /*
4110  * We have to make sure i_disksize gets properly updated before we truncate
4111  * page cache due to hole punching or zero range. Otherwise i_disksize update
4112  * can get lost as it may have been postponed to submission of writeback but
4113  * that will never happen after we truncate page cache.
4114  */
4115 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4116 				      loff_t len)
4117 {
4118 	handle_t *handle;
4119 	loff_t size = i_size_read(inode);
4120 
4121 	WARN_ON(!inode_is_locked(inode));
4122 	if (offset > size || offset + len < size)
4123 		return 0;
4124 
4125 	if (EXT4_I(inode)->i_disksize >= size)
4126 		return 0;
4127 
4128 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4129 	if (IS_ERR(handle))
4130 		return PTR_ERR(handle);
4131 	ext4_update_i_disksize(inode, size);
4132 	ext4_mark_inode_dirty(handle, inode);
4133 	ext4_journal_stop(handle);
4134 
4135 	return 0;
4136 }
4137 
4138 /*
4139  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4140  * associated with the given offset and length
4141  *
4142  * @inode:  File inode
4143  * @offset: The offset where the hole will begin
4144  * @len:    The length of the hole
4145  *
4146  * Returns: 0 on success or negative on failure
4147  */
4148 
4149 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4150 {
4151 	struct super_block *sb = inode->i_sb;
4152 	ext4_lblk_t first_block, stop_block;
4153 	struct address_space *mapping = inode->i_mapping;
4154 	loff_t first_block_offset, last_block_offset;
4155 	handle_t *handle;
4156 	unsigned int credits;
4157 	int ret = 0;
4158 
4159 	if (!S_ISREG(inode->i_mode))
4160 		return -EOPNOTSUPP;
4161 
4162 	trace_ext4_punch_hole(inode, offset, length, 0);
4163 
4164 	/*
4165 	 * Write out all dirty pages to avoid race conditions
4166 	 * Then release them.
4167 	 */
4168 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4169 		ret = filemap_write_and_wait_range(mapping, offset,
4170 						   offset + length - 1);
4171 		if (ret)
4172 			return ret;
4173 	}
4174 
4175 	inode_lock(inode);
4176 
4177 	/* No need to punch hole beyond i_size */
4178 	if (offset >= inode->i_size)
4179 		goto out_mutex;
4180 
4181 	/*
4182 	 * If the hole extends beyond i_size, set the hole
4183 	 * to end after the page that contains i_size
4184 	 */
4185 	if (offset + length > inode->i_size) {
4186 		length = inode->i_size +
4187 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4188 		   offset;
4189 	}
4190 
4191 	if (offset & (sb->s_blocksize - 1) ||
4192 	    (offset + length) & (sb->s_blocksize - 1)) {
4193 		/*
4194 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4195 		 * partial block
4196 		 */
4197 		ret = ext4_inode_attach_jinode(inode);
4198 		if (ret < 0)
4199 			goto out_mutex;
4200 
4201 	}
4202 
4203 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4204 	ext4_inode_block_unlocked_dio(inode);
4205 	inode_dio_wait(inode);
4206 
4207 	/*
4208 	 * Prevent page faults from reinstantiating pages we have released from
4209 	 * page cache.
4210 	 */
4211 	down_write(&EXT4_I(inode)->i_mmap_sem);
4212 	first_block_offset = round_up(offset, sb->s_blocksize);
4213 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4214 
4215 	/* Now release the pages and zero block aligned part of pages*/
4216 	if (last_block_offset > first_block_offset) {
4217 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4218 		if (ret)
4219 			goto out_dio;
4220 		truncate_pagecache_range(inode, first_block_offset,
4221 					 last_block_offset);
4222 	}
4223 
4224 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4225 		credits = ext4_writepage_trans_blocks(inode);
4226 	else
4227 		credits = ext4_blocks_for_truncate(inode);
4228 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4229 	if (IS_ERR(handle)) {
4230 		ret = PTR_ERR(handle);
4231 		ext4_std_error(sb, ret);
4232 		goto out_dio;
4233 	}
4234 
4235 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4236 				       length);
4237 	if (ret)
4238 		goto out_stop;
4239 
4240 	first_block = (offset + sb->s_blocksize - 1) >>
4241 		EXT4_BLOCK_SIZE_BITS(sb);
4242 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4243 
4244 	/* If there are no blocks to remove, return now */
4245 	if (first_block >= stop_block)
4246 		goto out_stop;
4247 
4248 	down_write(&EXT4_I(inode)->i_data_sem);
4249 	ext4_discard_preallocations(inode);
4250 
4251 	ret = ext4_es_remove_extent(inode, first_block,
4252 				    stop_block - first_block);
4253 	if (ret) {
4254 		up_write(&EXT4_I(inode)->i_data_sem);
4255 		goto out_stop;
4256 	}
4257 
4258 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4259 		ret = ext4_ext_remove_space(inode, first_block,
4260 					    stop_block - 1);
4261 	else
4262 		ret = ext4_ind_remove_space(handle, inode, first_block,
4263 					    stop_block);
4264 
4265 	up_write(&EXT4_I(inode)->i_data_sem);
4266 	if (IS_SYNC(inode))
4267 		ext4_handle_sync(handle);
4268 
4269 	inode->i_mtime = inode->i_ctime = current_time(inode);
4270 	ext4_mark_inode_dirty(handle, inode);
4271 	if (ret >= 0)
4272 		ext4_update_inode_fsync_trans(handle, inode, 1);
4273 out_stop:
4274 	ext4_journal_stop(handle);
4275 out_dio:
4276 	up_write(&EXT4_I(inode)->i_mmap_sem);
4277 	ext4_inode_resume_unlocked_dio(inode);
4278 out_mutex:
4279 	inode_unlock(inode);
4280 	return ret;
4281 }
4282 
4283 int ext4_inode_attach_jinode(struct inode *inode)
4284 {
4285 	struct ext4_inode_info *ei = EXT4_I(inode);
4286 	struct jbd2_inode *jinode;
4287 
4288 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4289 		return 0;
4290 
4291 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4292 	spin_lock(&inode->i_lock);
4293 	if (!ei->jinode) {
4294 		if (!jinode) {
4295 			spin_unlock(&inode->i_lock);
4296 			return -ENOMEM;
4297 		}
4298 		ei->jinode = jinode;
4299 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4300 		jinode = NULL;
4301 	}
4302 	spin_unlock(&inode->i_lock);
4303 	if (unlikely(jinode != NULL))
4304 		jbd2_free_inode(jinode);
4305 	return 0;
4306 }
4307 
4308 /*
4309  * ext4_truncate()
4310  *
4311  * We block out ext4_get_block() block instantiations across the entire
4312  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4313  * simultaneously on behalf of the same inode.
4314  *
4315  * As we work through the truncate and commit bits of it to the journal there
4316  * is one core, guiding principle: the file's tree must always be consistent on
4317  * disk.  We must be able to restart the truncate after a crash.
4318  *
4319  * The file's tree may be transiently inconsistent in memory (although it
4320  * probably isn't), but whenever we close off and commit a journal transaction,
4321  * the contents of (the filesystem + the journal) must be consistent and
4322  * restartable.  It's pretty simple, really: bottom up, right to left (although
4323  * left-to-right works OK too).
4324  *
4325  * Note that at recovery time, journal replay occurs *before* the restart of
4326  * truncate against the orphan inode list.
4327  *
4328  * The committed inode has the new, desired i_size (which is the same as
4329  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4330  * that this inode's truncate did not complete and it will again call
4331  * ext4_truncate() to have another go.  So there will be instantiated blocks
4332  * to the right of the truncation point in a crashed ext4 filesystem.  But
4333  * that's fine - as long as they are linked from the inode, the post-crash
4334  * ext4_truncate() run will find them and release them.
4335  */
4336 int ext4_truncate(struct inode *inode)
4337 {
4338 	struct ext4_inode_info *ei = EXT4_I(inode);
4339 	unsigned int credits;
4340 	int err = 0;
4341 	handle_t *handle;
4342 	struct address_space *mapping = inode->i_mapping;
4343 
4344 	/*
4345 	 * There is a possibility that we're either freeing the inode
4346 	 * or it's a completely new inode. In those cases we might not
4347 	 * have i_mutex locked because it's not necessary.
4348 	 */
4349 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4350 		WARN_ON(!inode_is_locked(inode));
4351 	trace_ext4_truncate_enter(inode);
4352 
4353 	if (!ext4_can_truncate(inode))
4354 		return 0;
4355 
4356 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4357 
4358 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4359 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4360 
4361 	if (ext4_has_inline_data(inode)) {
4362 		int has_inline = 1;
4363 
4364 		err = ext4_inline_data_truncate(inode, &has_inline);
4365 		if (err)
4366 			return err;
4367 		if (has_inline)
4368 			return 0;
4369 	}
4370 
4371 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4372 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4373 		if (ext4_inode_attach_jinode(inode) < 0)
4374 			return 0;
4375 	}
4376 
4377 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4378 		credits = ext4_writepage_trans_blocks(inode);
4379 	else
4380 		credits = ext4_blocks_for_truncate(inode);
4381 
4382 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4383 	if (IS_ERR(handle))
4384 		return PTR_ERR(handle);
4385 
4386 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4387 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4388 
4389 	/*
4390 	 * We add the inode to the orphan list, so that if this
4391 	 * truncate spans multiple transactions, and we crash, we will
4392 	 * resume the truncate when the filesystem recovers.  It also
4393 	 * marks the inode dirty, to catch the new size.
4394 	 *
4395 	 * Implication: the file must always be in a sane, consistent
4396 	 * truncatable state while each transaction commits.
4397 	 */
4398 	err = ext4_orphan_add(handle, inode);
4399 	if (err)
4400 		goto out_stop;
4401 
4402 	down_write(&EXT4_I(inode)->i_data_sem);
4403 
4404 	ext4_discard_preallocations(inode);
4405 
4406 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4407 		err = ext4_ext_truncate(handle, inode);
4408 	else
4409 		ext4_ind_truncate(handle, inode);
4410 
4411 	up_write(&ei->i_data_sem);
4412 	if (err)
4413 		goto out_stop;
4414 
4415 	if (IS_SYNC(inode))
4416 		ext4_handle_sync(handle);
4417 
4418 out_stop:
4419 	/*
4420 	 * If this was a simple ftruncate() and the file will remain alive,
4421 	 * then we need to clear up the orphan record which we created above.
4422 	 * However, if this was a real unlink then we were called by
4423 	 * ext4_evict_inode(), and we allow that function to clean up the
4424 	 * orphan info for us.
4425 	 */
4426 	if (inode->i_nlink)
4427 		ext4_orphan_del(handle, inode);
4428 
4429 	inode->i_mtime = inode->i_ctime = current_time(inode);
4430 	ext4_mark_inode_dirty(handle, inode);
4431 	ext4_journal_stop(handle);
4432 
4433 	trace_ext4_truncate_exit(inode);
4434 	return err;
4435 }
4436 
4437 /*
4438  * ext4_get_inode_loc returns with an extra refcount against the inode's
4439  * underlying buffer_head on success. If 'in_mem' is true, we have all
4440  * data in memory that is needed to recreate the on-disk version of this
4441  * inode.
4442  */
4443 static int __ext4_get_inode_loc(struct inode *inode,
4444 				struct ext4_iloc *iloc, int in_mem)
4445 {
4446 	struct ext4_group_desc	*gdp;
4447 	struct buffer_head	*bh;
4448 	struct super_block	*sb = inode->i_sb;
4449 	ext4_fsblk_t		block;
4450 	int			inodes_per_block, inode_offset;
4451 
4452 	iloc->bh = NULL;
4453 	if (!ext4_valid_inum(sb, inode->i_ino))
4454 		return -EFSCORRUPTED;
4455 
4456 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4457 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4458 	if (!gdp)
4459 		return -EIO;
4460 
4461 	/*
4462 	 * Figure out the offset within the block group inode table
4463 	 */
4464 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4465 	inode_offset = ((inode->i_ino - 1) %
4466 			EXT4_INODES_PER_GROUP(sb));
4467 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4468 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4469 
4470 	bh = sb_getblk(sb, block);
4471 	if (unlikely(!bh))
4472 		return -ENOMEM;
4473 	if (!buffer_uptodate(bh)) {
4474 		lock_buffer(bh);
4475 
4476 		/*
4477 		 * If the buffer has the write error flag, we have failed
4478 		 * to write out another inode in the same block.  In this
4479 		 * case, we don't have to read the block because we may
4480 		 * read the old inode data successfully.
4481 		 */
4482 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4483 			set_buffer_uptodate(bh);
4484 
4485 		if (buffer_uptodate(bh)) {
4486 			/* someone brought it uptodate while we waited */
4487 			unlock_buffer(bh);
4488 			goto has_buffer;
4489 		}
4490 
4491 		/*
4492 		 * If we have all information of the inode in memory and this
4493 		 * is the only valid inode in the block, we need not read the
4494 		 * block.
4495 		 */
4496 		if (in_mem) {
4497 			struct buffer_head *bitmap_bh;
4498 			int i, start;
4499 
4500 			start = inode_offset & ~(inodes_per_block - 1);
4501 
4502 			/* Is the inode bitmap in cache? */
4503 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4504 			if (unlikely(!bitmap_bh))
4505 				goto make_io;
4506 
4507 			/*
4508 			 * If the inode bitmap isn't in cache then the
4509 			 * optimisation may end up performing two reads instead
4510 			 * of one, so skip it.
4511 			 */
4512 			if (!buffer_uptodate(bitmap_bh)) {
4513 				brelse(bitmap_bh);
4514 				goto make_io;
4515 			}
4516 			for (i = start; i < start + inodes_per_block; i++) {
4517 				if (i == inode_offset)
4518 					continue;
4519 				if (ext4_test_bit(i, bitmap_bh->b_data))
4520 					break;
4521 			}
4522 			brelse(bitmap_bh);
4523 			if (i == start + inodes_per_block) {
4524 				/* all other inodes are free, so skip I/O */
4525 				memset(bh->b_data, 0, bh->b_size);
4526 				set_buffer_uptodate(bh);
4527 				unlock_buffer(bh);
4528 				goto has_buffer;
4529 			}
4530 		}
4531 
4532 make_io:
4533 		/*
4534 		 * If we need to do any I/O, try to pre-readahead extra
4535 		 * blocks from the inode table.
4536 		 */
4537 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4538 			ext4_fsblk_t b, end, table;
4539 			unsigned num;
4540 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4541 
4542 			table = ext4_inode_table(sb, gdp);
4543 			/* s_inode_readahead_blks is always a power of 2 */
4544 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4545 			if (table > b)
4546 				b = table;
4547 			end = b + ra_blks;
4548 			num = EXT4_INODES_PER_GROUP(sb);
4549 			if (ext4_has_group_desc_csum(sb))
4550 				num -= ext4_itable_unused_count(sb, gdp);
4551 			table += num / inodes_per_block;
4552 			if (end > table)
4553 				end = table;
4554 			while (b <= end)
4555 				sb_breadahead(sb, b++);
4556 		}
4557 
4558 		/*
4559 		 * There are other valid inodes in the buffer, this inode
4560 		 * has in-inode xattrs, or we don't have this inode in memory.
4561 		 * Read the block from disk.
4562 		 */
4563 		trace_ext4_load_inode(inode);
4564 		get_bh(bh);
4565 		bh->b_end_io = end_buffer_read_sync;
4566 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4567 		wait_on_buffer(bh);
4568 		if (!buffer_uptodate(bh)) {
4569 			EXT4_ERROR_INODE_BLOCK(inode, block,
4570 					       "unable to read itable block");
4571 			brelse(bh);
4572 			return -EIO;
4573 		}
4574 	}
4575 has_buffer:
4576 	iloc->bh = bh;
4577 	return 0;
4578 }
4579 
4580 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4581 {
4582 	/* We have all inode data except xattrs in memory here. */
4583 	return __ext4_get_inode_loc(inode, iloc,
4584 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4585 }
4586 
4587 void ext4_set_inode_flags(struct inode *inode)
4588 {
4589 	unsigned int flags = EXT4_I(inode)->i_flags;
4590 	unsigned int new_fl = 0;
4591 
4592 	if (flags & EXT4_SYNC_FL)
4593 		new_fl |= S_SYNC;
4594 	if (flags & EXT4_APPEND_FL)
4595 		new_fl |= S_APPEND;
4596 	if (flags & EXT4_IMMUTABLE_FL)
4597 		new_fl |= S_IMMUTABLE;
4598 	if (flags & EXT4_NOATIME_FL)
4599 		new_fl |= S_NOATIME;
4600 	if (flags & EXT4_DIRSYNC_FL)
4601 		new_fl |= S_DIRSYNC;
4602 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4603 	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4604 	    !ext4_encrypted_inode(inode))
4605 		new_fl |= S_DAX;
4606 	inode_set_flags(inode, new_fl,
4607 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4608 }
4609 
4610 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4611 				  struct ext4_inode_info *ei)
4612 {
4613 	blkcnt_t i_blocks ;
4614 	struct inode *inode = &(ei->vfs_inode);
4615 	struct super_block *sb = inode->i_sb;
4616 
4617 	if (ext4_has_feature_huge_file(sb)) {
4618 		/* we are using combined 48 bit field */
4619 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4620 					le32_to_cpu(raw_inode->i_blocks_lo);
4621 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4622 			/* i_blocks represent file system block size */
4623 			return i_blocks  << (inode->i_blkbits - 9);
4624 		} else {
4625 			return i_blocks;
4626 		}
4627 	} else {
4628 		return le32_to_cpu(raw_inode->i_blocks_lo);
4629 	}
4630 }
4631 
4632 static inline void ext4_iget_extra_inode(struct inode *inode,
4633 					 struct ext4_inode *raw_inode,
4634 					 struct ext4_inode_info *ei)
4635 {
4636 	__le32 *magic = (void *)raw_inode +
4637 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4638 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4639 	    EXT4_INODE_SIZE(inode->i_sb) &&
4640 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4641 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4642 		ext4_find_inline_data_nolock(inode);
4643 	} else
4644 		EXT4_I(inode)->i_inline_off = 0;
4645 }
4646 
4647 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4648 {
4649 	if (!ext4_has_feature_project(inode->i_sb))
4650 		return -EOPNOTSUPP;
4651 	*projid = EXT4_I(inode)->i_projid;
4652 	return 0;
4653 }
4654 
4655 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4656 {
4657 	struct ext4_iloc iloc;
4658 	struct ext4_inode *raw_inode;
4659 	struct ext4_inode_info *ei;
4660 	struct inode *inode;
4661 	journal_t *journal = EXT4_SB(sb)->s_journal;
4662 	long ret;
4663 	loff_t size;
4664 	int block;
4665 	uid_t i_uid;
4666 	gid_t i_gid;
4667 	projid_t i_projid;
4668 
4669 	inode = iget_locked(sb, ino);
4670 	if (!inode)
4671 		return ERR_PTR(-ENOMEM);
4672 	if (!(inode->i_state & I_NEW))
4673 		return inode;
4674 
4675 	ei = EXT4_I(inode);
4676 	iloc.bh = NULL;
4677 
4678 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4679 	if (ret < 0)
4680 		goto bad_inode;
4681 	raw_inode = ext4_raw_inode(&iloc);
4682 
4683 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4684 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4685 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4686 			EXT4_INODE_SIZE(inode->i_sb) ||
4687 		    (ei->i_extra_isize & 3)) {
4688 			EXT4_ERROR_INODE(inode,
4689 					 "bad extra_isize %u (inode size %u)",
4690 					 ei->i_extra_isize,
4691 					 EXT4_INODE_SIZE(inode->i_sb));
4692 			ret = -EFSCORRUPTED;
4693 			goto bad_inode;
4694 		}
4695 	} else
4696 		ei->i_extra_isize = 0;
4697 
4698 	/* Precompute checksum seed for inode metadata */
4699 	if (ext4_has_metadata_csum(sb)) {
4700 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4701 		__u32 csum;
4702 		__le32 inum = cpu_to_le32(inode->i_ino);
4703 		__le32 gen = raw_inode->i_generation;
4704 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4705 				   sizeof(inum));
4706 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4707 					      sizeof(gen));
4708 	}
4709 
4710 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4711 		EXT4_ERROR_INODE(inode, "checksum invalid");
4712 		ret = -EFSBADCRC;
4713 		goto bad_inode;
4714 	}
4715 
4716 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4717 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4718 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4719 	if (ext4_has_feature_project(sb) &&
4720 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4721 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4722 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4723 	else
4724 		i_projid = EXT4_DEF_PROJID;
4725 
4726 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4727 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4728 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4729 	}
4730 	i_uid_write(inode, i_uid);
4731 	i_gid_write(inode, i_gid);
4732 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4733 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4734 
4735 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4736 	ei->i_inline_off = 0;
4737 	ei->i_dir_start_lookup = 0;
4738 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4739 	/* We now have enough fields to check if the inode was active or not.
4740 	 * This is needed because nfsd might try to access dead inodes
4741 	 * the test is that same one that e2fsck uses
4742 	 * NeilBrown 1999oct15
4743 	 */
4744 	if (inode->i_nlink == 0) {
4745 		if ((inode->i_mode == 0 ||
4746 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4747 		    ino != EXT4_BOOT_LOADER_INO) {
4748 			/* this inode is deleted */
4749 			ret = -ESTALE;
4750 			goto bad_inode;
4751 		}
4752 		/* The only unlinked inodes we let through here have
4753 		 * valid i_mode and are being read by the orphan
4754 		 * recovery code: that's fine, we're about to complete
4755 		 * the process of deleting those.
4756 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4757 		 * not initialized on a new filesystem. */
4758 	}
4759 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4760 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4761 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4762 	if (ext4_has_feature_64bit(sb))
4763 		ei->i_file_acl |=
4764 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4765 	inode->i_size = ext4_isize(sb, raw_inode);
4766 	if ((size = i_size_read(inode)) < 0) {
4767 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4768 		ret = -EFSCORRUPTED;
4769 		goto bad_inode;
4770 	}
4771 	ei->i_disksize = inode->i_size;
4772 #ifdef CONFIG_QUOTA
4773 	ei->i_reserved_quota = 0;
4774 #endif
4775 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4776 	ei->i_block_group = iloc.block_group;
4777 	ei->i_last_alloc_group = ~0;
4778 	/*
4779 	 * NOTE! The in-memory inode i_data array is in little-endian order
4780 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4781 	 */
4782 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4783 		ei->i_data[block] = raw_inode->i_block[block];
4784 	INIT_LIST_HEAD(&ei->i_orphan);
4785 
4786 	/*
4787 	 * Set transaction id's of transactions that have to be committed
4788 	 * to finish f[data]sync. We set them to currently running transaction
4789 	 * as we cannot be sure that the inode or some of its metadata isn't
4790 	 * part of the transaction - the inode could have been reclaimed and
4791 	 * now it is reread from disk.
4792 	 */
4793 	if (journal) {
4794 		transaction_t *transaction;
4795 		tid_t tid;
4796 
4797 		read_lock(&journal->j_state_lock);
4798 		if (journal->j_running_transaction)
4799 			transaction = journal->j_running_transaction;
4800 		else
4801 			transaction = journal->j_committing_transaction;
4802 		if (transaction)
4803 			tid = transaction->t_tid;
4804 		else
4805 			tid = journal->j_commit_sequence;
4806 		read_unlock(&journal->j_state_lock);
4807 		ei->i_sync_tid = tid;
4808 		ei->i_datasync_tid = tid;
4809 	}
4810 
4811 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4812 		if (ei->i_extra_isize == 0) {
4813 			/* The extra space is currently unused. Use it. */
4814 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4815 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4816 					    EXT4_GOOD_OLD_INODE_SIZE;
4817 		} else {
4818 			ext4_iget_extra_inode(inode, raw_inode, ei);
4819 		}
4820 	}
4821 
4822 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4823 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4824 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4825 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4826 
4827 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4828 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4829 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4830 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4831 				inode->i_version |=
4832 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4833 		}
4834 	}
4835 
4836 	ret = 0;
4837 	if (ei->i_file_acl &&
4838 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4839 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4840 				 ei->i_file_acl);
4841 		ret = -EFSCORRUPTED;
4842 		goto bad_inode;
4843 	} else if (!ext4_has_inline_data(inode)) {
4844 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4845 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4846 			    (S_ISLNK(inode->i_mode) &&
4847 			     !ext4_inode_is_fast_symlink(inode))))
4848 				/* Validate extent which is part of inode */
4849 				ret = ext4_ext_check_inode(inode);
4850 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4851 			   (S_ISLNK(inode->i_mode) &&
4852 			    !ext4_inode_is_fast_symlink(inode))) {
4853 			/* Validate block references which are part of inode */
4854 			ret = ext4_ind_check_inode(inode);
4855 		}
4856 	}
4857 	if (ret)
4858 		goto bad_inode;
4859 
4860 	if (S_ISREG(inode->i_mode)) {
4861 		inode->i_op = &ext4_file_inode_operations;
4862 		inode->i_fop = &ext4_file_operations;
4863 		ext4_set_aops(inode);
4864 	} else if (S_ISDIR(inode->i_mode)) {
4865 		inode->i_op = &ext4_dir_inode_operations;
4866 		inode->i_fop = &ext4_dir_operations;
4867 	} else if (S_ISLNK(inode->i_mode)) {
4868 		if (ext4_encrypted_inode(inode)) {
4869 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4870 			ext4_set_aops(inode);
4871 		} else if (ext4_inode_is_fast_symlink(inode)) {
4872 			inode->i_link = (char *)ei->i_data;
4873 			inode->i_op = &ext4_fast_symlink_inode_operations;
4874 			nd_terminate_link(ei->i_data, inode->i_size,
4875 				sizeof(ei->i_data) - 1);
4876 		} else {
4877 			inode->i_op = &ext4_symlink_inode_operations;
4878 			ext4_set_aops(inode);
4879 		}
4880 		inode_nohighmem(inode);
4881 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4882 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4883 		inode->i_op = &ext4_special_inode_operations;
4884 		if (raw_inode->i_block[0])
4885 			init_special_inode(inode, inode->i_mode,
4886 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4887 		else
4888 			init_special_inode(inode, inode->i_mode,
4889 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4890 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4891 		make_bad_inode(inode);
4892 	} else {
4893 		ret = -EFSCORRUPTED;
4894 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4895 		goto bad_inode;
4896 	}
4897 	brelse(iloc.bh);
4898 	ext4_set_inode_flags(inode);
4899 
4900 	if (ei->i_flags & EXT4_EA_INODE_FL) {
4901 		ext4_xattr_inode_set_class(inode);
4902 
4903 		inode_lock(inode);
4904 		inode->i_flags |= S_NOQUOTA;
4905 		inode_unlock(inode);
4906 	}
4907 
4908 	unlock_new_inode(inode);
4909 	return inode;
4910 
4911 bad_inode:
4912 	brelse(iloc.bh);
4913 	iget_failed(inode);
4914 	return ERR_PTR(ret);
4915 }
4916 
4917 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4918 {
4919 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4920 		return ERR_PTR(-EFSCORRUPTED);
4921 	return ext4_iget(sb, ino);
4922 }
4923 
4924 static int ext4_inode_blocks_set(handle_t *handle,
4925 				struct ext4_inode *raw_inode,
4926 				struct ext4_inode_info *ei)
4927 {
4928 	struct inode *inode = &(ei->vfs_inode);
4929 	u64 i_blocks = inode->i_blocks;
4930 	struct super_block *sb = inode->i_sb;
4931 
4932 	if (i_blocks <= ~0U) {
4933 		/*
4934 		 * i_blocks can be represented in a 32 bit variable
4935 		 * as multiple of 512 bytes
4936 		 */
4937 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4938 		raw_inode->i_blocks_high = 0;
4939 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4940 		return 0;
4941 	}
4942 	if (!ext4_has_feature_huge_file(sb))
4943 		return -EFBIG;
4944 
4945 	if (i_blocks <= 0xffffffffffffULL) {
4946 		/*
4947 		 * i_blocks can be represented in a 48 bit variable
4948 		 * as multiple of 512 bytes
4949 		 */
4950 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4951 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4952 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4953 	} else {
4954 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4955 		/* i_block is stored in file system block size */
4956 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4957 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4958 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4959 	}
4960 	return 0;
4961 }
4962 
4963 struct other_inode {
4964 	unsigned long		orig_ino;
4965 	struct ext4_inode	*raw_inode;
4966 };
4967 
4968 static int other_inode_match(struct inode * inode, unsigned long ino,
4969 			     void *data)
4970 {
4971 	struct other_inode *oi = (struct other_inode *) data;
4972 
4973 	if ((inode->i_ino != ino) ||
4974 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4975 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4976 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4977 		return 0;
4978 	spin_lock(&inode->i_lock);
4979 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4980 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4981 	    (inode->i_state & I_DIRTY_TIME)) {
4982 		struct ext4_inode_info	*ei = EXT4_I(inode);
4983 
4984 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4985 		spin_unlock(&inode->i_lock);
4986 
4987 		spin_lock(&ei->i_raw_lock);
4988 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4989 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4990 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4991 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4992 		spin_unlock(&ei->i_raw_lock);
4993 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4994 		return -1;
4995 	}
4996 	spin_unlock(&inode->i_lock);
4997 	return -1;
4998 }
4999 
5000 /*
5001  * Opportunistically update the other time fields for other inodes in
5002  * the same inode table block.
5003  */
5004 static void ext4_update_other_inodes_time(struct super_block *sb,
5005 					  unsigned long orig_ino, char *buf)
5006 {
5007 	struct other_inode oi;
5008 	unsigned long ino;
5009 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5010 	int inode_size = EXT4_INODE_SIZE(sb);
5011 
5012 	oi.orig_ino = orig_ino;
5013 	/*
5014 	 * Calculate the first inode in the inode table block.  Inode
5015 	 * numbers are one-based.  That is, the first inode in a block
5016 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5017 	 */
5018 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5019 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5020 		if (ino == orig_ino)
5021 			continue;
5022 		oi.raw_inode = (struct ext4_inode *) buf;
5023 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5024 	}
5025 }
5026 
5027 /*
5028  * Post the struct inode info into an on-disk inode location in the
5029  * buffer-cache.  This gobbles the caller's reference to the
5030  * buffer_head in the inode location struct.
5031  *
5032  * The caller must have write access to iloc->bh.
5033  */
5034 static int ext4_do_update_inode(handle_t *handle,
5035 				struct inode *inode,
5036 				struct ext4_iloc *iloc)
5037 {
5038 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5039 	struct ext4_inode_info *ei = EXT4_I(inode);
5040 	struct buffer_head *bh = iloc->bh;
5041 	struct super_block *sb = inode->i_sb;
5042 	int err = 0, rc, block;
5043 	int need_datasync = 0, set_large_file = 0;
5044 	uid_t i_uid;
5045 	gid_t i_gid;
5046 	projid_t i_projid;
5047 
5048 	spin_lock(&ei->i_raw_lock);
5049 
5050 	/* For fields not tracked in the in-memory inode,
5051 	 * initialise them to zero for new inodes. */
5052 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5053 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5054 
5055 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5056 	i_uid = i_uid_read(inode);
5057 	i_gid = i_gid_read(inode);
5058 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5059 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5060 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5061 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5062 /*
5063  * Fix up interoperability with old kernels. Otherwise, old inodes get
5064  * re-used with the upper 16 bits of the uid/gid intact
5065  */
5066 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5067 			raw_inode->i_uid_high = 0;
5068 			raw_inode->i_gid_high = 0;
5069 		} else {
5070 			raw_inode->i_uid_high =
5071 				cpu_to_le16(high_16_bits(i_uid));
5072 			raw_inode->i_gid_high =
5073 				cpu_to_le16(high_16_bits(i_gid));
5074 		}
5075 	} else {
5076 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5077 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5078 		raw_inode->i_uid_high = 0;
5079 		raw_inode->i_gid_high = 0;
5080 	}
5081 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5082 
5083 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5084 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5085 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5086 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5087 
5088 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5089 	if (err) {
5090 		spin_unlock(&ei->i_raw_lock);
5091 		goto out_brelse;
5092 	}
5093 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5094 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5095 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5096 		raw_inode->i_file_acl_high =
5097 			cpu_to_le16(ei->i_file_acl >> 32);
5098 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5099 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5100 		ext4_isize_set(raw_inode, ei->i_disksize);
5101 		need_datasync = 1;
5102 	}
5103 	if (ei->i_disksize > 0x7fffffffULL) {
5104 		if (!ext4_has_feature_large_file(sb) ||
5105 				EXT4_SB(sb)->s_es->s_rev_level ==
5106 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5107 			set_large_file = 1;
5108 	}
5109 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5110 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5111 		if (old_valid_dev(inode->i_rdev)) {
5112 			raw_inode->i_block[0] =
5113 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5114 			raw_inode->i_block[1] = 0;
5115 		} else {
5116 			raw_inode->i_block[0] = 0;
5117 			raw_inode->i_block[1] =
5118 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5119 			raw_inode->i_block[2] = 0;
5120 		}
5121 	} else if (!ext4_has_inline_data(inode)) {
5122 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5123 			raw_inode->i_block[block] = ei->i_data[block];
5124 	}
5125 
5126 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5127 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5128 		if (ei->i_extra_isize) {
5129 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5130 				raw_inode->i_version_hi =
5131 					cpu_to_le32(inode->i_version >> 32);
5132 			raw_inode->i_extra_isize =
5133 				cpu_to_le16(ei->i_extra_isize);
5134 		}
5135 	}
5136 
5137 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5138 	       i_projid != EXT4_DEF_PROJID);
5139 
5140 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5141 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5142 		raw_inode->i_projid = cpu_to_le32(i_projid);
5143 
5144 	ext4_inode_csum_set(inode, raw_inode, ei);
5145 	spin_unlock(&ei->i_raw_lock);
5146 	if (inode->i_sb->s_flags & MS_LAZYTIME)
5147 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5148 					      bh->b_data);
5149 
5150 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5151 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5152 	if (!err)
5153 		err = rc;
5154 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5155 	if (set_large_file) {
5156 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5157 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5158 		if (err)
5159 			goto out_brelse;
5160 		ext4_update_dynamic_rev(sb);
5161 		ext4_set_feature_large_file(sb);
5162 		ext4_handle_sync(handle);
5163 		err = ext4_handle_dirty_super(handle, sb);
5164 	}
5165 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5166 out_brelse:
5167 	brelse(bh);
5168 	ext4_std_error(inode->i_sb, err);
5169 	return err;
5170 }
5171 
5172 /*
5173  * ext4_write_inode()
5174  *
5175  * We are called from a few places:
5176  *
5177  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5178  *   Here, there will be no transaction running. We wait for any running
5179  *   transaction to commit.
5180  *
5181  * - Within flush work (sys_sync(), kupdate and such).
5182  *   We wait on commit, if told to.
5183  *
5184  * - Within iput_final() -> write_inode_now()
5185  *   We wait on commit, if told to.
5186  *
5187  * In all cases it is actually safe for us to return without doing anything,
5188  * because the inode has been copied into a raw inode buffer in
5189  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5190  * writeback.
5191  *
5192  * Note that we are absolutely dependent upon all inode dirtiers doing the
5193  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5194  * which we are interested.
5195  *
5196  * It would be a bug for them to not do this.  The code:
5197  *
5198  *	mark_inode_dirty(inode)
5199  *	stuff();
5200  *	inode->i_size = expr;
5201  *
5202  * is in error because write_inode() could occur while `stuff()' is running,
5203  * and the new i_size will be lost.  Plus the inode will no longer be on the
5204  * superblock's dirty inode list.
5205  */
5206 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5207 {
5208 	int err;
5209 
5210 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5211 		return 0;
5212 
5213 	if (EXT4_SB(inode->i_sb)->s_journal) {
5214 		if (ext4_journal_current_handle()) {
5215 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5216 			dump_stack();
5217 			return -EIO;
5218 		}
5219 
5220 		/*
5221 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5222 		 * ext4_sync_fs() will force the commit after everything is
5223 		 * written.
5224 		 */
5225 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5226 			return 0;
5227 
5228 		err = ext4_force_commit(inode->i_sb);
5229 	} else {
5230 		struct ext4_iloc iloc;
5231 
5232 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5233 		if (err)
5234 			return err;
5235 		/*
5236 		 * sync(2) will flush the whole buffer cache. No need to do
5237 		 * it here separately for each inode.
5238 		 */
5239 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5240 			sync_dirty_buffer(iloc.bh);
5241 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5242 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5243 					 "IO error syncing inode");
5244 			err = -EIO;
5245 		}
5246 		brelse(iloc.bh);
5247 	}
5248 	return err;
5249 }
5250 
5251 /*
5252  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5253  * buffers that are attached to a page stradding i_size and are undergoing
5254  * commit. In that case we have to wait for commit to finish and try again.
5255  */
5256 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5257 {
5258 	struct page *page;
5259 	unsigned offset;
5260 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5261 	tid_t commit_tid = 0;
5262 	int ret;
5263 
5264 	offset = inode->i_size & (PAGE_SIZE - 1);
5265 	/*
5266 	 * All buffers in the last page remain valid? Then there's nothing to
5267 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5268 	 * blocksize case
5269 	 */
5270 	if (offset > PAGE_SIZE - i_blocksize(inode))
5271 		return;
5272 	while (1) {
5273 		page = find_lock_page(inode->i_mapping,
5274 				      inode->i_size >> PAGE_SHIFT);
5275 		if (!page)
5276 			return;
5277 		ret = __ext4_journalled_invalidatepage(page, offset,
5278 						PAGE_SIZE - offset);
5279 		unlock_page(page);
5280 		put_page(page);
5281 		if (ret != -EBUSY)
5282 			return;
5283 		commit_tid = 0;
5284 		read_lock(&journal->j_state_lock);
5285 		if (journal->j_committing_transaction)
5286 			commit_tid = journal->j_committing_transaction->t_tid;
5287 		read_unlock(&journal->j_state_lock);
5288 		if (commit_tid)
5289 			jbd2_log_wait_commit(journal, commit_tid);
5290 	}
5291 }
5292 
5293 /*
5294  * ext4_setattr()
5295  *
5296  * Called from notify_change.
5297  *
5298  * We want to trap VFS attempts to truncate the file as soon as
5299  * possible.  In particular, we want to make sure that when the VFS
5300  * shrinks i_size, we put the inode on the orphan list and modify
5301  * i_disksize immediately, so that during the subsequent flushing of
5302  * dirty pages and freeing of disk blocks, we can guarantee that any
5303  * commit will leave the blocks being flushed in an unused state on
5304  * disk.  (On recovery, the inode will get truncated and the blocks will
5305  * be freed, so we have a strong guarantee that no future commit will
5306  * leave these blocks visible to the user.)
5307  *
5308  * Another thing we have to assure is that if we are in ordered mode
5309  * and inode is still attached to the committing transaction, we must
5310  * we start writeout of all the dirty pages which are being truncated.
5311  * This way we are sure that all the data written in the previous
5312  * transaction are already on disk (truncate waits for pages under
5313  * writeback).
5314  *
5315  * Called with inode->i_mutex down.
5316  */
5317 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5318 {
5319 	struct inode *inode = d_inode(dentry);
5320 	int error, rc = 0;
5321 	int orphan = 0;
5322 	const unsigned int ia_valid = attr->ia_valid;
5323 
5324 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5325 		return -EIO;
5326 
5327 	error = setattr_prepare(dentry, attr);
5328 	if (error)
5329 		return error;
5330 
5331 	if (is_quota_modification(inode, attr)) {
5332 		error = dquot_initialize(inode);
5333 		if (error)
5334 			return error;
5335 	}
5336 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5337 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5338 		handle_t *handle;
5339 
5340 		/* (user+group)*(old+new) structure, inode write (sb,
5341 		 * inode block, ? - but truncate inode update has it) */
5342 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5343 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5344 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5345 		if (IS_ERR(handle)) {
5346 			error = PTR_ERR(handle);
5347 			goto err_out;
5348 		}
5349 
5350 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5351 		 * counts xattr inode references.
5352 		 */
5353 		down_read(&EXT4_I(inode)->xattr_sem);
5354 		error = dquot_transfer(inode, attr);
5355 		up_read(&EXT4_I(inode)->xattr_sem);
5356 
5357 		if (error) {
5358 			ext4_journal_stop(handle);
5359 			return error;
5360 		}
5361 		/* Update corresponding info in inode so that everything is in
5362 		 * one transaction */
5363 		if (attr->ia_valid & ATTR_UID)
5364 			inode->i_uid = attr->ia_uid;
5365 		if (attr->ia_valid & ATTR_GID)
5366 			inode->i_gid = attr->ia_gid;
5367 		error = ext4_mark_inode_dirty(handle, inode);
5368 		ext4_journal_stop(handle);
5369 	}
5370 
5371 	if (attr->ia_valid & ATTR_SIZE) {
5372 		handle_t *handle;
5373 		loff_t oldsize = inode->i_size;
5374 		int shrink = (attr->ia_size <= inode->i_size);
5375 
5376 		if (ext4_encrypted_inode(inode)) {
5377 			error = fscrypt_get_encryption_info(inode);
5378 			if (error)
5379 				return error;
5380 			if (!fscrypt_has_encryption_key(inode))
5381 				return -ENOKEY;
5382 		}
5383 
5384 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5385 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5386 
5387 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5388 				return -EFBIG;
5389 		}
5390 		if (!S_ISREG(inode->i_mode))
5391 			return -EINVAL;
5392 
5393 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5394 			inode_inc_iversion(inode);
5395 
5396 		if (ext4_should_order_data(inode) &&
5397 		    (attr->ia_size < inode->i_size)) {
5398 			error = ext4_begin_ordered_truncate(inode,
5399 							    attr->ia_size);
5400 			if (error)
5401 				goto err_out;
5402 		}
5403 		if (attr->ia_size != inode->i_size) {
5404 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5405 			if (IS_ERR(handle)) {
5406 				error = PTR_ERR(handle);
5407 				goto err_out;
5408 			}
5409 			if (ext4_handle_valid(handle) && shrink) {
5410 				error = ext4_orphan_add(handle, inode);
5411 				orphan = 1;
5412 			}
5413 			/*
5414 			 * Update c/mtime on truncate up, ext4_truncate() will
5415 			 * update c/mtime in shrink case below
5416 			 */
5417 			if (!shrink) {
5418 				inode->i_mtime = current_time(inode);
5419 				inode->i_ctime = inode->i_mtime;
5420 			}
5421 			down_write(&EXT4_I(inode)->i_data_sem);
5422 			EXT4_I(inode)->i_disksize = attr->ia_size;
5423 			rc = ext4_mark_inode_dirty(handle, inode);
5424 			if (!error)
5425 				error = rc;
5426 			/*
5427 			 * We have to update i_size under i_data_sem together
5428 			 * with i_disksize to avoid races with writeback code
5429 			 * running ext4_wb_update_i_disksize().
5430 			 */
5431 			if (!error)
5432 				i_size_write(inode, attr->ia_size);
5433 			up_write(&EXT4_I(inode)->i_data_sem);
5434 			ext4_journal_stop(handle);
5435 			if (error) {
5436 				if (orphan)
5437 					ext4_orphan_del(NULL, inode);
5438 				goto err_out;
5439 			}
5440 		}
5441 		if (!shrink)
5442 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5443 
5444 		/*
5445 		 * Blocks are going to be removed from the inode. Wait
5446 		 * for dio in flight.  Temporarily disable
5447 		 * dioread_nolock to prevent livelock.
5448 		 */
5449 		if (orphan) {
5450 			if (!ext4_should_journal_data(inode)) {
5451 				ext4_inode_block_unlocked_dio(inode);
5452 				inode_dio_wait(inode);
5453 				ext4_inode_resume_unlocked_dio(inode);
5454 			} else
5455 				ext4_wait_for_tail_page_commit(inode);
5456 		}
5457 		down_write(&EXT4_I(inode)->i_mmap_sem);
5458 		/*
5459 		 * Truncate pagecache after we've waited for commit
5460 		 * in data=journal mode to make pages freeable.
5461 		 */
5462 		truncate_pagecache(inode, inode->i_size);
5463 		if (shrink) {
5464 			rc = ext4_truncate(inode);
5465 			if (rc)
5466 				error = rc;
5467 		}
5468 		up_write(&EXT4_I(inode)->i_mmap_sem);
5469 	}
5470 
5471 	if (!error) {
5472 		setattr_copy(inode, attr);
5473 		mark_inode_dirty(inode);
5474 	}
5475 
5476 	/*
5477 	 * If the call to ext4_truncate failed to get a transaction handle at
5478 	 * all, we need to clean up the in-core orphan list manually.
5479 	 */
5480 	if (orphan && inode->i_nlink)
5481 		ext4_orphan_del(NULL, inode);
5482 
5483 	if (!error && (ia_valid & ATTR_MODE))
5484 		rc = posix_acl_chmod(inode, inode->i_mode);
5485 
5486 err_out:
5487 	ext4_std_error(inode->i_sb, error);
5488 	if (!error)
5489 		error = rc;
5490 	return error;
5491 }
5492 
5493 int ext4_getattr(const struct path *path, struct kstat *stat,
5494 		 u32 request_mask, unsigned int query_flags)
5495 {
5496 	struct inode *inode = d_inode(path->dentry);
5497 	struct ext4_inode *raw_inode;
5498 	struct ext4_inode_info *ei = EXT4_I(inode);
5499 	unsigned int flags;
5500 
5501 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5502 		stat->result_mask |= STATX_BTIME;
5503 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5504 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5505 	}
5506 
5507 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5508 	if (flags & EXT4_APPEND_FL)
5509 		stat->attributes |= STATX_ATTR_APPEND;
5510 	if (flags & EXT4_COMPR_FL)
5511 		stat->attributes |= STATX_ATTR_COMPRESSED;
5512 	if (flags & EXT4_ENCRYPT_FL)
5513 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5514 	if (flags & EXT4_IMMUTABLE_FL)
5515 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5516 	if (flags & EXT4_NODUMP_FL)
5517 		stat->attributes |= STATX_ATTR_NODUMP;
5518 
5519 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5520 				  STATX_ATTR_COMPRESSED |
5521 				  STATX_ATTR_ENCRYPTED |
5522 				  STATX_ATTR_IMMUTABLE |
5523 				  STATX_ATTR_NODUMP);
5524 
5525 	generic_fillattr(inode, stat);
5526 	return 0;
5527 }
5528 
5529 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5530 		      u32 request_mask, unsigned int query_flags)
5531 {
5532 	struct inode *inode = d_inode(path->dentry);
5533 	u64 delalloc_blocks;
5534 
5535 	ext4_getattr(path, stat, request_mask, query_flags);
5536 
5537 	/*
5538 	 * If there is inline data in the inode, the inode will normally not
5539 	 * have data blocks allocated (it may have an external xattr block).
5540 	 * Report at least one sector for such files, so tools like tar, rsync,
5541 	 * others don't incorrectly think the file is completely sparse.
5542 	 */
5543 	if (unlikely(ext4_has_inline_data(inode)))
5544 		stat->blocks += (stat->size + 511) >> 9;
5545 
5546 	/*
5547 	 * We can't update i_blocks if the block allocation is delayed
5548 	 * otherwise in the case of system crash before the real block
5549 	 * allocation is done, we will have i_blocks inconsistent with
5550 	 * on-disk file blocks.
5551 	 * We always keep i_blocks updated together with real
5552 	 * allocation. But to not confuse with user, stat
5553 	 * will return the blocks that include the delayed allocation
5554 	 * blocks for this file.
5555 	 */
5556 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5557 				   EXT4_I(inode)->i_reserved_data_blocks);
5558 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5559 	return 0;
5560 }
5561 
5562 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5563 				   int pextents)
5564 {
5565 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5566 		return ext4_ind_trans_blocks(inode, lblocks);
5567 	return ext4_ext_index_trans_blocks(inode, pextents);
5568 }
5569 
5570 /*
5571  * Account for index blocks, block groups bitmaps and block group
5572  * descriptor blocks if modify datablocks and index blocks
5573  * worse case, the indexs blocks spread over different block groups
5574  *
5575  * If datablocks are discontiguous, they are possible to spread over
5576  * different block groups too. If they are contiguous, with flexbg,
5577  * they could still across block group boundary.
5578  *
5579  * Also account for superblock, inode, quota and xattr blocks
5580  */
5581 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5582 				  int pextents)
5583 {
5584 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5585 	int gdpblocks;
5586 	int idxblocks;
5587 	int ret = 0;
5588 
5589 	/*
5590 	 * How many index blocks need to touch to map @lblocks logical blocks
5591 	 * to @pextents physical extents?
5592 	 */
5593 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5594 
5595 	ret = idxblocks;
5596 
5597 	/*
5598 	 * Now let's see how many group bitmaps and group descriptors need
5599 	 * to account
5600 	 */
5601 	groups = idxblocks + pextents;
5602 	gdpblocks = groups;
5603 	if (groups > ngroups)
5604 		groups = ngroups;
5605 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5606 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5607 
5608 	/* bitmaps and block group descriptor blocks */
5609 	ret += groups + gdpblocks;
5610 
5611 	/* Blocks for super block, inode, quota and xattr blocks */
5612 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5613 
5614 	return ret;
5615 }
5616 
5617 /*
5618  * Calculate the total number of credits to reserve to fit
5619  * the modification of a single pages into a single transaction,
5620  * which may include multiple chunks of block allocations.
5621  *
5622  * This could be called via ext4_write_begin()
5623  *
5624  * We need to consider the worse case, when
5625  * one new block per extent.
5626  */
5627 int ext4_writepage_trans_blocks(struct inode *inode)
5628 {
5629 	int bpp = ext4_journal_blocks_per_page(inode);
5630 	int ret;
5631 
5632 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5633 
5634 	/* Account for data blocks for journalled mode */
5635 	if (ext4_should_journal_data(inode))
5636 		ret += bpp;
5637 	return ret;
5638 }
5639 
5640 /*
5641  * Calculate the journal credits for a chunk of data modification.
5642  *
5643  * This is called from DIO, fallocate or whoever calling
5644  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5645  *
5646  * journal buffers for data blocks are not included here, as DIO
5647  * and fallocate do no need to journal data buffers.
5648  */
5649 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5650 {
5651 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5652 }
5653 
5654 /*
5655  * The caller must have previously called ext4_reserve_inode_write().
5656  * Give this, we know that the caller already has write access to iloc->bh.
5657  */
5658 int ext4_mark_iloc_dirty(handle_t *handle,
5659 			 struct inode *inode, struct ext4_iloc *iloc)
5660 {
5661 	int err = 0;
5662 
5663 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5664 		return -EIO;
5665 
5666 	if (IS_I_VERSION(inode))
5667 		inode_inc_iversion(inode);
5668 
5669 	/* the do_update_inode consumes one bh->b_count */
5670 	get_bh(iloc->bh);
5671 
5672 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5673 	err = ext4_do_update_inode(handle, inode, iloc);
5674 	put_bh(iloc->bh);
5675 	return err;
5676 }
5677 
5678 /*
5679  * On success, We end up with an outstanding reference count against
5680  * iloc->bh.  This _must_ be cleaned up later.
5681  */
5682 
5683 int
5684 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5685 			 struct ext4_iloc *iloc)
5686 {
5687 	int err;
5688 
5689 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5690 		return -EIO;
5691 
5692 	err = ext4_get_inode_loc(inode, iloc);
5693 	if (!err) {
5694 		BUFFER_TRACE(iloc->bh, "get_write_access");
5695 		err = ext4_journal_get_write_access(handle, iloc->bh);
5696 		if (err) {
5697 			brelse(iloc->bh);
5698 			iloc->bh = NULL;
5699 		}
5700 	}
5701 	ext4_std_error(inode->i_sb, err);
5702 	return err;
5703 }
5704 
5705 static int __ext4_expand_extra_isize(struct inode *inode,
5706 				     unsigned int new_extra_isize,
5707 				     struct ext4_iloc *iloc,
5708 				     handle_t *handle, int *no_expand)
5709 {
5710 	struct ext4_inode *raw_inode;
5711 	struct ext4_xattr_ibody_header *header;
5712 	int error;
5713 
5714 	raw_inode = ext4_raw_inode(iloc);
5715 
5716 	header = IHDR(inode, raw_inode);
5717 
5718 	/* No extended attributes present */
5719 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5720 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5721 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5722 		       EXT4_I(inode)->i_extra_isize, 0,
5723 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5724 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5725 		return 0;
5726 	}
5727 
5728 	/* try to expand with EAs present */
5729 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5730 					   raw_inode, handle);
5731 	if (error) {
5732 		/*
5733 		 * Inode size expansion failed; don't try again
5734 		 */
5735 		*no_expand = 1;
5736 	}
5737 
5738 	return error;
5739 }
5740 
5741 /*
5742  * Expand an inode by new_extra_isize bytes.
5743  * Returns 0 on success or negative error number on failure.
5744  */
5745 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5746 					  unsigned int new_extra_isize,
5747 					  struct ext4_iloc iloc,
5748 					  handle_t *handle)
5749 {
5750 	int no_expand;
5751 	int error;
5752 
5753 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5754 		return -EOVERFLOW;
5755 
5756 	/*
5757 	 * In nojournal mode, we can immediately attempt to expand
5758 	 * the inode.  When journaled, we first need to obtain extra
5759 	 * buffer credits since we may write into the EA block
5760 	 * with this same handle. If journal_extend fails, then it will
5761 	 * only result in a minor loss of functionality for that inode.
5762 	 * If this is felt to be critical, then e2fsck should be run to
5763 	 * force a large enough s_min_extra_isize.
5764 	 */
5765 	if (ext4_handle_valid(handle) &&
5766 	    jbd2_journal_extend(handle,
5767 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5768 		return -ENOSPC;
5769 
5770 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5771 		return -EBUSY;
5772 
5773 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5774 					  handle, &no_expand);
5775 	ext4_write_unlock_xattr(inode, &no_expand);
5776 
5777 	return error;
5778 }
5779 
5780 int ext4_expand_extra_isize(struct inode *inode,
5781 			    unsigned int new_extra_isize,
5782 			    struct ext4_iloc *iloc)
5783 {
5784 	handle_t *handle;
5785 	int no_expand;
5786 	int error, rc;
5787 
5788 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5789 		brelse(iloc->bh);
5790 		return -EOVERFLOW;
5791 	}
5792 
5793 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5794 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5795 	if (IS_ERR(handle)) {
5796 		error = PTR_ERR(handle);
5797 		brelse(iloc->bh);
5798 		return error;
5799 	}
5800 
5801 	ext4_write_lock_xattr(inode, &no_expand);
5802 
5803 	BUFFER_TRACE(iloc.bh, "get_write_access");
5804 	error = ext4_journal_get_write_access(handle, iloc->bh);
5805 	if (error) {
5806 		brelse(iloc->bh);
5807 		goto out_stop;
5808 	}
5809 
5810 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5811 					  handle, &no_expand);
5812 
5813 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5814 	if (!error)
5815 		error = rc;
5816 
5817 	ext4_write_unlock_xattr(inode, &no_expand);
5818 out_stop:
5819 	ext4_journal_stop(handle);
5820 	return error;
5821 }
5822 
5823 /*
5824  * What we do here is to mark the in-core inode as clean with respect to inode
5825  * dirtiness (it may still be data-dirty).
5826  * This means that the in-core inode may be reaped by prune_icache
5827  * without having to perform any I/O.  This is a very good thing,
5828  * because *any* task may call prune_icache - even ones which
5829  * have a transaction open against a different journal.
5830  *
5831  * Is this cheating?  Not really.  Sure, we haven't written the
5832  * inode out, but prune_icache isn't a user-visible syncing function.
5833  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5834  * we start and wait on commits.
5835  */
5836 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5837 {
5838 	struct ext4_iloc iloc;
5839 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5840 	int err;
5841 
5842 	might_sleep();
5843 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5844 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5845 	if (err)
5846 		return err;
5847 
5848 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5849 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5850 					       iloc, handle);
5851 
5852 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5853 }
5854 
5855 /*
5856  * ext4_dirty_inode() is called from __mark_inode_dirty()
5857  *
5858  * We're really interested in the case where a file is being extended.
5859  * i_size has been changed by generic_commit_write() and we thus need
5860  * to include the updated inode in the current transaction.
5861  *
5862  * Also, dquot_alloc_block() will always dirty the inode when blocks
5863  * are allocated to the file.
5864  *
5865  * If the inode is marked synchronous, we don't honour that here - doing
5866  * so would cause a commit on atime updates, which we don't bother doing.
5867  * We handle synchronous inodes at the highest possible level.
5868  *
5869  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5870  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5871  * to copy into the on-disk inode structure are the timestamp files.
5872  */
5873 void ext4_dirty_inode(struct inode *inode, int flags)
5874 {
5875 	handle_t *handle;
5876 
5877 	if (flags == I_DIRTY_TIME)
5878 		return;
5879 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5880 	if (IS_ERR(handle))
5881 		goto out;
5882 
5883 	ext4_mark_inode_dirty(handle, inode);
5884 
5885 	ext4_journal_stop(handle);
5886 out:
5887 	return;
5888 }
5889 
5890 #if 0
5891 /*
5892  * Bind an inode's backing buffer_head into this transaction, to prevent
5893  * it from being flushed to disk early.  Unlike
5894  * ext4_reserve_inode_write, this leaves behind no bh reference and
5895  * returns no iloc structure, so the caller needs to repeat the iloc
5896  * lookup to mark the inode dirty later.
5897  */
5898 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5899 {
5900 	struct ext4_iloc iloc;
5901 
5902 	int err = 0;
5903 	if (handle) {
5904 		err = ext4_get_inode_loc(inode, &iloc);
5905 		if (!err) {
5906 			BUFFER_TRACE(iloc.bh, "get_write_access");
5907 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5908 			if (!err)
5909 				err = ext4_handle_dirty_metadata(handle,
5910 								 NULL,
5911 								 iloc.bh);
5912 			brelse(iloc.bh);
5913 		}
5914 	}
5915 	ext4_std_error(inode->i_sb, err);
5916 	return err;
5917 }
5918 #endif
5919 
5920 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5921 {
5922 	journal_t *journal;
5923 	handle_t *handle;
5924 	int err;
5925 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5926 
5927 	/*
5928 	 * We have to be very careful here: changing a data block's
5929 	 * journaling status dynamically is dangerous.  If we write a
5930 	 * data block to the journal, change the status and then delete
5931 	 * that block, we risk forgetting to revoke the old log record
5932 	 * from the journal and so a subsequent replay can corrupt data.
5933 	 * So, first we make sure that the journal is empty and that
5934 	 * nobody is changing anything.
5935 	 */
5936 
5937 	journal = EXT4_JOURNAL(inode);
5938 	if (!journal)
5939 		return 0;
5940 	if (is_journal_aborted(journal))
5941 		return -EROFS;
5942 
5943 	/* Wait for all existing dio workers */
5944 	ext4_inode_block_unlocked_dio(inode);
5945 	inode_dio_wait(inode);
5946 
5947 	/*
5948 	 * Before flushing the journal and switching inode's aops, we have
5949 	 * to flush all dirty data the inode has. There can be outstanding
5950 	 * delayed allocations, there can be unwritten extents created by
5951 	 * fallocate or buffered writes in dioread_nolock mode covered by
5952 	 * dirty data which can be converted only after flushing the dirty
5953 	 * data (and journalled aops don't know how to handle these cases).
5954 	 */
5955 	if (val) {
5956 		down_write(&EXT4_I(inode)->i_mmap_sem);
5957 		err = filemap_write_and_wait(inode->i_mapping);
5958 		if (err < 0) {
5959 			up_write(&EXT4_I(inode)->i_mmap_sem);
5960 			ext4_inode_resume_unlocked_dio(inode);
5961 			return err;
5962 		}
5963 	}
5964 
5965 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5966 	jbd2_journal_lock_updates(journal);
5967 
5968 	/*
5969 	 * OK, there are no updates running now, and all cached data is
5970 	 * synced to disk.  We are now in a completely consistent state
5971 	 * which doesn't have anything in the journal, and we know that
5972 	 * no filesystem updates are running, so it is safe to modify
5973 	 * the inode's in-core data-journaling state flag now.
5974 	 */
5975 
5976 	if (val)
5977 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5978 	else {
5979 		err = jbd2_journal_flush(journal);
5980 		if (err < 0) {
5981 			jbd2_journal_unlock_updates(journal);
5982 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5983 			ext4_inode_resume_unlocked_dio(inode);
5984 			return err;
5985 		}
5986 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5987 	}
5988 	ext4_set_aops(inode);
5989 	/*
5990 	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5991 	 * E.g. S_DAX may get cleared / set.
5992 	 */
5993 	ext4_set_inode_flags(inode);
5994 
5995 	jbd2_journal_unlock_updates(journal);
5996 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5997 
5998 	if (val)
5999 		up_write(&EXT4_I(inode)->i_mmap_sem);
6000 	ext4_inode_resume_unlocked_dio(inode);
6001 
6002 	/* Finally we can mark the inode as dirty. */
6003 
6004 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6005 	if (IS_ERR(handle))
6006 		return PTR_ERR(handle);
6007 
6008 	err = ext4_mark_inode_dirty(handle, inode);
6009 	ext4_handle_sync(handle);
6010 	ext4_journal_stop(handle);
6011 	ext4_std_error(inode->i_sb, err);
6012 
6013 	return err;
6014 }
6015 
6016 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6017 {
6018 	return !buffer_mapped(bh);
6019 }
6020 
6021 int ext4_page_mkwrite(struct vm_fault *vmf)
6022 {
6023 	struct vm_area_struct *vma = vmf->vma;
6024 	struct page *page = vmf->page;
6025 	loff_t size;
6026 	unsigned long len;
6027 	int ret;
6028 	struct file *file = vma->vm_file;
6029 	struct inode *inode = file_inode(file);
6030 	struct address_space *mapping = inode->i_mapping;
6031 	handle_t *handle;
6032 	get_block_t *get_block;
6033 	int retries = 0;
6034 
6035 	sb_start_pagefault(inode->i_sb);
6036 	file_update_time(vma->vm_file);
6037 
6038 	down_read(&EXT4_I(inode)->i_mmap_sem);
6039 
6040 	ret = ext4_convert_inline_data(inode);
6041 	if (ret)
6042 		goto out_ret;
6043 
6044 	/* Delalloc case is easy... */
6045 	if (test_opt(inode->i_sb, DELALLOC) &&
6046 	    !ext4_should_journal_data(inode) &&
6047 	    !ext4_nonda_switch(inode->i_sb)) {
6048 		do {
6049 			ret = block_page_mkwrite(vma, vmf,
6050 						   ext4_da_get_block_prep);
6051 		} while (ret == -ENOSPC &&
6052 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6053 		goto out_ret;
6054 	}
6055 
6056 	lock_page(page);
6057 	size = i_size_read(inode);
6058 	/* Page got truncated from under us? */
6059 	if (page->mapping != mapping || page_offset(page) > size) {
6060 		unlock_page(page);
6061 		ret = VM_FAULT_NOPAGE;
6062 		goto out;
6063 	}
6064 
6065 	if (page->index == size >> PAGE_SHIFT)
6066 		len = size & ~PAGE_MASK;
6067 	else
6068 		len = PAGE_SIZE;
6069 	/*
6070 	 * Return if we have all the buffers mapped. This avoids the need to do
6071 	 * journal_start/journal_stop which can block and take a long time
6072 	 */
6073 	if (page_has_buffers(page)) {
6074 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6075 					    0, len, NULL,
6076 					    ext4_bh_unmapped)) {
6077 			/* Wait so that we don't change page under IO */
6078 			wait_for_stable_page(page);
6079 			ret = VM_FAULT_LOCKED;
6080 			goto out;
6081 		}
6082 	}
6083 	unlock_page(page);
6084 	/* OK, we need to fill the hole... */
6085 	if (ext4_should_dioread_nolock(inode))
6086 		get_block = ext4_get_block_unwritten;
6087 	else
6088 		get_block = ext4_get_block;
6089 retry_alloc:
6090 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6091 				    ext4_writepage_trans_blocks(inode));
6092 	if (IS_ERR(handle)) {
6093 		ret = VM_FAULT_SIGBUS;
6094 		goto out;
6095 	}
6096 	ret = block_page_mkwrite(vma, vmf, get_block);
6097 	if (!ret && ext4_should_journal_data(inode)) {
6098 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6099 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6100 			unlock_page(page);
6101 			ret = VM_FAULT_SIGBUS;
6102 			ext4_journal_stop(handle);
6103 			goto out;
6104 		}
6105 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6106 	}
6107 	ext4_journal_stop(handle);
6108 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6109 		goto retry_alloc;
6110 out_ret:
6111 	ret = block_page_mkwrite_return(ret);
6112 out:
6113 	up_read(&EXT4_I(inode)->i_mmap_sem);
6114 	sb_end_pagefault(inode->i_sb);
6115 	return ret;
6116 }
6117 
6118 int ext4_filemap_fault(struct vm_fault *vmf)
6119 {
6120 	struct inode *inode = file_inode(vmf->vma->vm_file);
6121 	int err;
6122 
6123 	down_read(&EXT4_I(inode)->i_mmap_sem);
6124 	err = filemap_fault(vmf);
6125 	up_read(&EXT4_I(inode)->i_mmap_sem);
6126 
6127 	return err;
6128 }
6129 
6130 /*
6131  * Find the first extent at or after @lblk in an inode that is not a hole.
6132  * Search for @map_len blocks at most. The extent is returned in @result.
6133  *
6134  * The function returns 1 if we found an extent. The function returns 0 in
6135  * case there is no extent at or after @lblk and in that case also sets
6136  * @result->es_len to 0. In case of error, the error code is returned.
6137  */
6138 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6139 			 unsigned int map_len, struct extent_status *result)
6140 {
6141 	struct ext4_map_blocks map;
6142 	struct extent_status es = {};
6143 	int ret;
6144 
6145 	map.m_lblk = lblk;
6146 	map.m_len = map_len;
6147 
6148 	/*
6149 	 * For non-extent based files this loop may iterate several times since
6150 	 * we do not determine full hole size.
6151 	 */
6152 	while (map.m_len > 0) {
6153 		ret = ext4_map_blocks(NULL, inode, &map, 0);
6154 		if (ret < 0)
6155 			return ret;
6156 		/* There's extent covering m_lblk? Just return it. */
6157 		if (ret > 0) {
6158 			int status;
6159 
6160 			ext4_es_store_pblock(result, map.m_pblk);
6161 			result->es_lblk = map.m_lblk;
6162 			result->es_len = map.m_len;
6163 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
6164 				status = EXTENT_STATUS_UNWRITTEN;
6165 			else
6166 				status = EXTENT_STATUS_WRITTEN;
6167 			ext4_es_store_status(result, status);
6168 			return 1;
6169 		}
6170 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6171 						  map.m_lblk + map.m_len - 1,
6172 						  &es);
6173 		/* Is delalloc data before next block in extent tree? */
6174 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6175 			ext4_lblk_t offset = 0;
6176 
6177 			if (es.es_lblk < lblk)
6178 				offset = lblk - es.es_lblk;
6179 			result->es_lblk = es.es_lblk + offset;
6180 			ext4_es_store_pblock(result,
6181 					     ext4_es_pblock(&es) + offset);
6182 			result->es_len = es.es_len - offset;
6183 			ext4_es_store_status(result, ext4_es_status(&es));
6184 
6185 			return 1;
6186 		}
6187 		/* There's a hole at m_lblk, advance us after it */
6188 		map.m_lblk += map.m_len;
6189 		map_len -= map.m_len;
6190 		map.m_len = map_len;
6191 		cond_resched();
6192 	}
6193 	result->es_len = 0;
6194 	return 0;
6195 }
6196