xref: /openbmc/linux/fs/ext4/inode.c (revision 83268fa6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 				struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 				unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 				 int nblocks)
173 {
174 	int ret;
175 
176 	/*
177 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178 	 * moment, get_block can be called only for blocks inside i_size since
179 	 * page cache has been already dropped and writes are blocked by
180 	 * i_mutex. So we can safely drop the i_data_sem here.
181 	 */
182 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 	jbd_debug(2, "restarting handle %p\n", handle);
184 	up_write(&EXT4_I(inode)->i_data_sem);
185 	ret = ext4_journal_restart(handle, nblocks);
186 	down_write(&EXT4_I(inode)->i_data_sem);
187 	ext4_discard_preallocations(inode);
188 
189 	return ret;
190 }
191 
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197 	handle_t *handle;
198 	int err;
199 	int extra_credits = 3;
200 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
201 
202 	trace_ext4_evict_inode(inode);
203 
204 	if (inode->i_nlink) {
205 		/*
206 		 * When journalling data dirty buffers are tracked only in the
207 		 * journal. So although mm thinks everything is clean and
208 		 * ready for reaping the inode might still have some pages to
209 		 * write in the running transaction or waiting to be
210 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 		 * (via truncate_inode_pages()) to discard these buffers can
212 		 * cause data loss. Also even if we did not discard these
213 		 * buffers, we would have no way to find them after the inode
214 		 * is reaped and thus user could see stale data if he tries to
215 		 * read them before the transaction is checkpointed. So be
216 		 * careful and force everything to disk here... We use
217 		 * ei->i_datasync_tid to store the newest transaction
218 		 * containing inode's data.
219 		 *
220 		 * Note that directories do not have this problem because they
221 		 * don't use page cache.
222 		 */
223 		if (inode->i_ino != EXT4_JOURNAL_INO &&
224 		    ext4_should_journal_data(inode) &&
225 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 		    inode->i_data.nrpages) {
227 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229 
230 			jbd2_complete_transaction(journal, commit_tid);
231 			filemap_write_and_wait(&inode->i_data);
232 		}
233 		truncate_inode_pages_final(&inode->i_data);
234 
235 		goto no_delete;
236 	}
237 
238 	if (is_bad_inode(inode))
239 		goto no_delete;
240 	dquot_initialize(inode);
241 
242 	if (ext4_should_order_data(inode))
243 		ext4_begin_ordered_truncate(inode, 0);
244 	truncate_inode_pages_final(&inode->i_data);
245 
246 	/*
247 	 * Protect us against freezing - iput() caller didn't have to have any
248 	 * protection against it
249 	 */
250 	sb_start_intwrite(inode->i_sb);
251 
252 	if (!IS_NOQUOTA(inode))
253 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254 
255 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 				 ext4_blocks_for_truncate(inode)+extra_credits);
257 	if (IS_ERR(handle)) {
258 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 		/*
260 		 * If we're going to skip the normal cleanup, we still need to
261 		 * make sure that the in-core orphan linked list is properly
262 		 * cleaned up.
263 		 */
264 		ext4_orphan_del(NULL, inode);
265 		sb_end_intwrite(inode->i_sb);
266 		goto no_delete;
267 	}
268 
269 	if (IS_SYNC(inode))
270 		ext4_handle_sync(handle);
271 
272 	/*
273 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 	 * special handling of symlinks here because i_size is used to
275 	 * determine whether ext4_inode_info->i_data contains symlink data or
276 	 * block mappings. Setting i_size to 0 will remove its fast symlink
277 	 * status. Erase i_data so that it becomes a valid empty block map.
278 	 */
279 	if (ext4_inode_is_fast_symlink(inode))
280 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 	inode->i_size = 0;
282 	err = ext4_mark_inode_dirty(handle, inode);
283 	if (err) {
284 		ext4_warning(inode->i_sb,
285 			     "couldn't mark inode dirty (err %d)", err);
286 		goto stop_handle;
287 	}
288 	if (inode->i_blocks) {
289 		err = ext4_truncate(inode);
290 		if (err) {
291 			ext4_error(inode->i_sb,
292 				   "couldn't truncate inode %lu (err %d)",
293 				   inode->i_ino, err);
294 			goto stop_handle;
295 		}
296 	}
297 
298 	/* Remove xattr references. */
299 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 				      extra_credits);
301 	if (err) {
302 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 		ext4_journal_stop(handle);
305 		ext4_orphan_del(NULL, inode);
306 		sb_end_intwrite(inode->i_sb);
307 		ext4_xattr_inode_array_free(ea_inode_array);
308 		goto no_delete;
309 	}
310 
311 	/*
312 	 * Kill off the orphan record which ext4_truncate created.
313 	 * AKPM: I think this can be inside the above `if'.
314 	 * Note that ext4_orphan_del() has to be able to cope with the
315 	 * deletion of a non-existent orphan - this is because we don't
316 	 * know if ext4_truncate() actually created an orphan record.
317 	 * (Well, we could do this if we need to, but heck - it works)
318 	 */
319 	ext4_orphan_del(handle, inode);
320 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
321 
322 	/*
323 	 * One subtle ordering requirement: if anything has gone wrong
324 	 * (transaction abort, IO errors, whatever), then we can still
325 	 * do these next steps (the fs will already have been marked as
326 	 * having errors), but we can't free the inode if the mark_dirty
327 	 * fails.
328 	 */
329 	if (ext4_mark_inode_dirty(handle, inode))
330 		/* If that failed, just do the required in-core inode clear. */
331 		ext4_clear_inode(inode);
332 	else
333 		ext4_free_inode(handle, inode);
334 	ext4_journal_stop(handle);
335 	sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
340 }
341 
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345 	return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348 
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354 					int used, int quota_claim)
355 {
356 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 	struct ext4_inode_info *ei = EXT4_I(inode);
358 
359 	spin_lock(&ei->i_block_reservation_lock);
360 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 	if (unlikely(used > ei->i_reserved_data_blocks)) {
362 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 			 "with only %d reserved data blocks",
364 			 __func__, inode->i_ino, used,
365 			 ei->i_reserved_data_blocks);
366 		WARN_ON(1);
367 		used = ei->i_reserved_data_blocks;
368 	}
369 
370 	/* Update per-inode reservations */
371 	ei->i_reserved_data_blocks -= used;
372 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373 
374 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375 
376 	/* Update quota subsystem for data blocks */
377 	if (quota_claim)
378 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 	else {
380 		/*
381 		 * We did fallocate with an offset that is already delayed
382 		 * allocated. So on delayed allocated writeback we should
383 		 * not re-claim the quota for fallocated blocks.
384 		 */
385 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 	}
387 
388 	/*
389 	 * If we have done all the pending block allocations and if
390 	 * there aren't any writers on the inode, we can discard the
391 	 * inode's preallocations.
392 	 */
393 	if ((ei->i_reserved_data_blocks == 0) &&
394 	    (atomic_read(&inode->i_writecount) == 0))
395 		ext4_discard_preallocations(inode);
396 }
397 
398 static int __check_block_validity(struct inode *inode, const char *func,
399 				unsigned int line,
400 				struct ext4_map_blocks *map)
401 {
402 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403 				   map->m_len)) {
404 		ext4_error_inode(inode, func, line, map->m_pblk,
405 				 "lblock %lu mapped to illegal pblock %llu "
406 				 "(length %d)", (unsigned long) map->m_lblk,
407 				 map->m_pblk, map->m_len);
408 		return -EFSCORRUPTED;
409 	}
410 	return 0;
411 }
412 
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414 		       ext4_lblk_t len)
415 {
416 	int ret;
417 
418 	if (ext4_encrypted_inode(inode))
419 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
420 
421 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422 	if (ret > 0)
423 		ret = 0;
424 
425 	return ret;
426 }
427 
428 #define check_block_validity(inode, map)	\
429 	__check_block_validity((inode), __func__, __LINE__, (map))
430 
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433 				       struct inode *inode,
434 				       struct ext4_map_blocks *es_map,
435 				       struct ext4_map_blocks *map,
436 				       int flags)
437 {
438 	int retval;
439 
440 	map->m_flags = 0;
441 	/*
442 	 * There is a race window that the result is not the same.
443 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
444 	 * is that we lookup a block mapping in extent status tree with
445 	 * out taking i_data_sem.  So at the time the unwritten extent
446 	 * could be converted.
447 	 */
448 	down_read(&EXT4_I(inode)->i_data_sem);
449 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 					     EXT4_GET_BLOCKS_KEEP_SIZE);
452 	} else {
453 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 					     EXT4_GET_BLOCKS_KEEP_SIZE);
455 	}
456 	up_read((&EXT4_I(inode)->i_data_sem));
457 
458 	/*
459 	 * We don't check m_len because extent will be collpased in status
460 	 * tree.  So the m_len might not equal.
461 	 */
462 	if (es_map->m_lblk != map->m_lblk ||
463 	    es_map->m_flags != map->m_flags ||
464 	    es_map->m_pblk != map->m_pblk) {
465 		printk("ES cache assertion failed for inode: %lu "
466 		       "es_cached ex [%d/%d/%llu/%x] != "
467 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
469 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 		       map->m_len, map->m_pblk, map->m_flags,
471 		       retval, flags);
472 	}
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475 
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 		    struct ext4_map_blocks *map, int flags)
500 {
501 	struct extent_status es;
502 	int retval;
503 	int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505 	struct ext4_map_blocks orig_map;
506 
507 	memcpy(&orig_map, map, sizeof(*map));
508 #endif
509 
510 	map->m_flags = 0;
511 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 		  (unsigned long) map->m_lblk);
514 
515 	/*
516 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
517 	 */
518 	if (unlikely(map->m_len > INT_MAX))
519 		map->m_len = INT_MAX;
520 
521 	/* We can handle the block number less than EXT_MAX_BLOCKS */
522 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523 		return -EFSCORRUPTED;
524 
525 	/* Lookup extent status tree firstly */
526 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 			map->m_pblk = ext4_es_pblock(&es) +
529 					map->m_lblk - es.es_lblk;
530 			map->m_flags |= ext4_es_is_written(&es) ?
531 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 			retval = es.es_len - (map->m_lblk - es.es_lblk);
533 			if (retval > map->m_len)
534 				retval = map->m_len;
535 			map->m_len = retval;
536 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537 			map->m_pblk = 0;
538 			retval = es.es_len - (map->m_lblk - es.es_lblk);
539 			if (retval > map->m_len)
540 				retval = map->m_len;
541 			map->m_len = retval;
542 			retval = 0;
543 		} else {
544 			BUG_ON(1);
545 		}
546 #ifdef ES_AGGRESSIVE_TEST
547 		ext4_map_blocks_es_recheck(handle, inode, map,
548 					   &orig_map, flags);
549 #endif
550 		goto found;
551 	}
552 
553 	/*
554 	 * Try to see if we can get the block without requesting a new
555 	 * file system block.
556 	 */
557 	down_read(&EXT4_I(inode)->i_data_sem);
558 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 					     EXT4_GET_BLOCKS_KEEP_SIZE);
561 	} else {
562 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 					     EXT4_GET_BLOCKS_KEEP_SIZE);
564 	}
565 	if (retval > 0) {
566 		unsigned int status;
567 
568 		if (unlikely(retval != map->m_len)) {
569 			ext4_warning(inode->i_sb,
570 				     "ES len assertion failed for inode "
571 				     "%lu: retval %d != map->m_len %d",
572 				     inode->i_ino, retval, map->m_len);
573 			WARN_ON(1);
574 		}
575 
576 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 		    !(status & EXTENT_STATUS_WRITTEN) &&
580 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581 				       map->m_lblk + map->m_len - 1))
582 			status |= EXTENT_STATUS_DELAYED;
583 		ret = ext4_es_insert_extent(inode, map->m_lblk,
584 					    map->m_len, map->m_pblk, status);
585 		if (ret < 0)
586 			retval = ret;
587 	}
588 	up_read((&EXT4_I(inode)->i_data_sem));
589 
590 found:
591 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 		ret = check_block_validity(inode, map);
593 		if (ret != 0)
594 			return ret;
595 	}
596 
597 	/* If it is only a block(s) look up */
598 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599 		return retval;
600 
601 	/*
602 	 * Returns if the blocks have already allocated
603 	 *
604 	 * Note that if blocks have been preallocated
605 	 * ext4_ext_get_block() returns the create = 0
606 	 * with buffer head unmapped.
607 	 */
608 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609 		/*
610 		 * If we need to convert extent to unwritten
611 		 * we continue and do the actual work in
612 		 * ext4_ext_map_blocks()
613 		 */
614 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615 			return retval;
616 
617 	/*
618 	 * Here we clear m_flags because after allocating an new extent,
619 	 * it will be set again.
620 	 */
621 	map->m_flags &= ~EXT4_MAP_FLAGS;
622 
623 	/*
624 	 * New blocks allocate and/or writing to unwritten extent
625 	 * will possibly result in updating i_data, so we take
626 	 * the write lock of i_data_sem, and call get_block()
627 	 * with create == 1 flag.
628 	 */
629 	down_write(&EXT4_I(inode)->i_data_sem);
630 
631 	/*
632 	 * We need to check for EXT4 here because migrate
633 	 * could have changed the inode type in between
634 	 */
635 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
637 	} else {
638 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
639 
640 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641 			/*
642 			 * We allocated new blocks which will result in
643 			 * i_data's format changing.  Force the migrate
644 			 * to fail by clearing migrate flags
645 			 */
646 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647 		}
648 
649 		/*
650 		 * Update reserved blocks/metadata blocks after successful
651 		 * block allocation which had been deferred till now. We don't
652 		 * support fallocate for non extent files. So we can update
653 		 * reserve space here.
654 		 */
655 		if ((retval > 0) &&
656 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 			ext4_da_update_reserve_space(inode, retval, 1);
658 	}
659 
660 	if (retval > 0) {
661 		unsigned int status;
662 
663 		if (unlikely(retval != map->m_len)) {
664 			ext4_warning(inode->i_sb,
665 				     "ES len assertion failed for inode "
666 				     "%lu: retval %d != map->m_len %d",
667 				     inode->i_ino, retval, map->m_len);
668 			WARN_ON(1);
669 		}
670 
671 		/*
672 		 * We have to zeroout blocks before inserting them into extent
673 		 * status tree. Otherwise someone could look them up there and
674 		 * use them before they are really zeroed. We also have to
675 		 * unmap metadata before zeroing as otherwise writeback can
676 		 * overwrite zeros with stale data from block device.
677 		 */
678 		if (flags & EXT4_GET_BLOCKS_ZERO &&
679 		    map->m_flags & EXT4_MAP_MAPPED &&
680 		    map->m_flags & EXT4_MAP_NEW) {
681 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682 					   map->m_len);
683 			ret = ext4_issue_zeroout(inode, map->m_lblk,
684 						 map->m_pblk, map->m_len);
685 			if (ret) {
686 				retval = ret;
687 				goto out_sem;
688 			}
689 		}
690 
691 		/*
692 		 * If the extent has been zeroed out, we don't need to update
693 		 * extent status tree.
694 		 */
695 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697 			if (ext4_es_is_written(&es))
698 				goto out_sem;
699 		}
700 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 		    !(status & EXTENT_STATUS_WRITTEN) &&
704 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 				       map->m_lblk + map->m_len - 1))
706 			status |= EXTENT_STATUS_DELAYED;
707 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 					    map->m_pblk, status);
709 		if (ret < 0) {
710 			retval = ret;
711 			goto out_sem;
712 		}
713 	}
714 
715 out_sem:
716 	up_write((&EXT4_I(inode)->i_data_sem));
717 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 		ret = check_block_validity(inode, map);
719 		if (ret != 0)
720 			return ret;
721 
722 		/*
723 		 * Inodes with freshly allocated blocks where contents will be
724 		 * visible after transaction commit must be on transaction's
725 		 * ordered data list.
726 		 */
727 		if (map->m_flags & EXT4_MAP_NEW &&
728 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 		    !ext4_is_quota_file(inode) &&
731 		    ext4_should_order_data(inode)) {
732 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733 				ret = ext4_jbd2_inode_add_wait(handle, inode);
734 			else
735 				ret = ext4_jbd2_inode_add_write(handle, inode);
736 			if (ret)
737 				return ret;
738 		}
739 	}
740 	return retval;
741 }
742 
743 /*
744  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745  * we have to be careful as someone else may be manipulating b_state as well.
746  */
747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748 {
749 	unsigned long old_state;
750 	unsigned long new_state;
751 
752 	flags &= EXT4_MAP_FLAGS;
753 
754 	/* Dummy buffer_head? Set non-atomically. */
755 	if (!bh->b_page) {
756 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757 		return;
758 	}
759 	/*
760 	 * Someone else may be modifying b_state. Be careful! This is ugly but
761 	 * once we get rid of using bh as a container for mapping information
762 	 * to pass to / from get_block functions, this can go away.
763 	 */
764 	do {
765 		old_state = READ_ONCE(bh->b_state);
766 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767 	} while (unlikely(
768 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769 }
770 
771 static int _ext4_get_block(struct inode *inode, sector_t iblock,
772 			   struct buffer_head *bh, int flags)
773 {
774 	struct ext4_map_blocks map;
775 	int ret = 0;
776 
777 	if (ext4_has_inline_data(inode))
778 		return -ERANGE;
779 
780 	map.m_lblk = iblock;
781 	map.m_len = bh->b_size >> inode->i_blkbits;
782 
783 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784 			      flags);
785 	if (ret > 0) {
786 		map_bh(bh, inode->i_sb, map.m_pblk);
787 		ext4_update_bh_state(bh, map.m_flags);
788 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789 		ret = 0;
790 	} else if (ret == 0) {
791 		/* hole case, need to fill in bh->b_size */
792 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 	}
794 	return ret;
795 }
796 
797 int ext4_get_block(struct inode *inode, sector_t iblock,
798 		   struct buffer_head *bh, int create)
799 {
800 	return _ext4_get_block(inode, iblock, bh,
801 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
802 }
803 
804 /*
805  * Get block function used when preparing for buffered write if we require
806  * creating an unwritten extent if blocks haven't been allocated.  The extent
807  * will be converted to written after the IO is complete.
808  */
809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810 			     struct buffer_head *bh_result, int create)
811 {
812 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 		   inode->i_ino, create);
814 	return _ext4_get_block(inode, iblock, bh_result,
815 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
816 }
817 
818 /* Maximum number of blocks we map for direct IO at once. */
819 #define DIO_MAX_BLOCKS 4096
820 
821 /*
822  * Get blocks function for the cases that need to start a transaction -
823  * generally difference cases of direct IO and DAX IO. It also handles retries
824  * in case of ENOSPC.
825  */
826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827 				struct buffer_head *bh_result, int flags)
828 {
829 	int dio_credits;
830 	handle_t *handle;
831 	int retries = 0;
832 	int ret;
833 
834 	/* Trim mapping request to maximum we can map at once for DIO */
835 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837 	dio_credits = ext4_chunk_trans_blocks(inode,
838 				      bh_result->b_size >> inode->i_blkbits);
839 retry:
840 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841 	if (IS_ERR(handle))
842 		return PTR_ERR(handle);
843 
844 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
845 	ext4_journal_stop(handle);
846 
847 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848 		goto retry;
849 	return ret;
850 }
851 
852 /* Get block function for DIO reads and writes to inodes without extents */
853 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854 		       struct buffer_head *bh, int create)
855 {
856 	/* We don't expect handle for direct IO */
857 	WARN_ON_ONCE(ext4_journal_current_handle());
858 
859 	if (!create)
860 		return _ext4_get_block(inode, iblock, bh, 0);
861 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
862 }
863 
864 /*
865  * Get block function for AIO DIO writes when we create unwritten extent if
866  * blocks are not allocated yet. The extent will be converted to written
867  * after IO is complete.
868  */
869 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870 		sector_t iblock, struct buffer_head *bh_result,	int create)
871 {
872 	int ret;
873 
874 	/* We don't expect handle for direct IO */
875 	WARN_ON_ONCE(ext4_journal_current_handle());
876 
877 	ret = ext4_get_block_trans(inode, iblock, bh_result,
878 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
879 
880 	/*
881 	 * When doing DIO using unwritten extents, we need io_end to convert
882 	 * unwritten extents to written on IO completion. We allocate io_end
883 	 * once we spot unwritten extent and store it in b_private. Generic
884 	 * DIO code keeps b_private set and furthermore passes the value to
885 	 * our completion callback in 'private' argument.
886 	 */
887 	if (!ret && buffer_unwritten(bh_result)) {
888 		if (!bh_result->b_private) {
889 			ext4_io_end_t *io_end;
890 
891 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
892 			if (!io_end)
893 				return -ENOMEM;
894 			bh_result->b_private = io_end;
895 			ext4_set_io_unwritten_flag(inode, io_end);
896 		}
897 		set_buffer_defer_completion(bh_result);
898 	}
899 
900 	return ret;
901 }
902 
903 /*
904  * Get block function for non-AIO DIO writes when we create unwritten extent if
905  * blocks are not allocated yet. The extent will be converted to written
906  * after IO is complete by ext4_direct_IO_write().
907  */
908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909 		sector_t iblock, struct buffer_head *bh_result,	int create)
910 {
911 	int ret;
912 
913 	/* We don't expect handle for direct IO */
914 	WARN_ON_ONCE(ext4_journal_current_handle());
915 
916 	ret = ext4_get_block_trans(inode, iblock, bh_result,
917 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
918 
919 	/*
920 	 * Mark inode as having pending DIO writes to unwritten extents.
921 	 * ext4_direct_IO_write() checks this flag and converts extents to
922 	 * written.
923 	 */
924 	if (!ret && buffer_unwritten(bh_result))
925 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
926 
927 	return ret;
928 }
929 
930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931 		   struct buffer_head *bh_result, int create)
932 {
933 	int ret;
934 
935 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936 		   inode->i_ino, create);
937 	/* We don't expect handle for direct IO */
938 	WARN_ON_ONCE(ext4_journal_current_handle());
939 
940 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
941 	/*
942 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
943 	 * that.
944 	 */
945 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
946 
947 	return ret;
948 }
949 
950 
951 /*
952  * `handle' can be NULL if create is zero
953  */
954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955 				ext4_lblk_t block, int map_flags)
956 {
957 	struct ext4_map_blocks map;
958 	struct buffer_head *bh;
959 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960 	int err;
961 
962 	J_ASSERT(handle != NULL || create == 0);
963 
964 	map.m_lblk = block;
965 	map.m_len = 1;
966 	err = ext4_map_blocks(handle, inode, &map, map_flags);
967 
968 	if (err == 0)
969 		return create ? ERR_PTR(-ENOSPC) : NULL;
970 	if (err < 0)
971 		return ERR_PTR(err);
972 
973 	bh = sb_getblk(inode->i_sb, map.m_pblk);
974 	if (unlikely(!bh))
975 		return ERR_PTR(-ENOMEM);
976 	if (map.m_flags & EXT4_MAP_NEW) {
977 		J_ASSERT(create != 0);
978 		J_ASSERT(handle != NULL);
979 
980 		/*
981 		 * Now that we do not always journal data, we should
982 		 * keep in mind whether this should always journal the
983 		 * new buffer as metadata.  For now, regular file
984 		 * writes use ext4_get_block instead, so it's not a
985 		 * problem.
986 		 */
987 		lock_buffer(bh);
988 		BUFFER_TRACE(bh, "call get_create_access");
989 		err = ext4_journal_get_create_access(handle, bh);
990 		if (unlikely(err)) {
991 			unlock_buffer(bh);
992 			goto errout;
993 		}
994 		if (!buffer_uptodate(bh)) {
995 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996 			set_buffer_uptodate(bh);
997 		}
998 		unlock_buffer(bh);
999 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1001 		if (unlikely(err))
1002 			goto errout;
1003 	} else
1004 		BUFFER_TRACE(bh, "not a new buffer");
1005 	return bh;
1006 errout:
1007 	brelse(bh);
1008 	return ERR_PTR(err);
1009 }
1010 
1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012 			       ext4_lblk_t block, int map_flags)
1013 {
1014 	struct buffer_head *bh;
1015 
1016 	bh = ext4_getblk(handle, inode, block, map_flags);
1017 	if (IS_ERR(bh))
1018 		return bh;
1019 	if (!bh || buffer_uptodate(bh))
1020 		return bh;
1021 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022 	wait_on_buffer(bh);
1023 	if (buffer_uptodate(bh))
1024 		return bh;
1025 	put_bh(bh);
1026 	return ERR_PTR(-EIO);
1027 }
1028 
1029 /* Read a contiguous batch of blocks. */
1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031 		     bool wait, struct buffer_head **bhs)
1032 {
1033 	int i, err;
1034 
1035 	for (i = 0; i < bh_count; i++) {
1036 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037 		if (IS_ERR(bhs[i])) {
1038 			err = PTR_ERR(bhs[i]);
1039 			bh_count = i;
1040 			goto out_brelse;
1041 		}
1042 	}
1043 
1044 	for (i = 0; i < bh_count; i++)
1045 		/* Note that NULL bhs[i] is valid because of holes. */
1046 		if (bhs[i] && !buffer_uptodate(bhs[i]))
1047 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048 				    &bhs[i]);
1049 
1050 	if (!wait)
1051 		return 0;
1052 
1053 	for (i = 0; i < bh_count; i++)
1054 		if (bhs[i])
1055 			wait_on_buffer(bhs[i]);
1056 
1057 	for (i = 0; i < bh_count; i++) {
1058 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059 			err = -EIO;
1060 			goto out_brelse;
1061 		}
1062 	}
1063 	return 0;
1064 
1065 out_brelse:
1066 	for (i = 0; i < bh_count; i++) {
1067 		brelse(bhs[i]);
1068 		bhs[i] = NULL;
1069 	}
1070 	return err;
1071 }
1072 
1073 int ext4_walk_page_buffers(handle_t *handle,
1074 			   struct buffer_head *head,
1075 			   unsigned from,
1076 			   unsigned to,
1077 			   int *partial,
1078 			   int (*fn)(handle_t *handle,
1079 				     struct buffer_head *bh))
1080 {
1081 	struct buffer_head *bh;
1082 	unsigned block_start, block_end;
1083 	unsigned blocksize = head->b_size;
1084 	int err, ret = 0;
1085 	struct buffer_head *next;
1086 
1087 	for (bh = head, block_start = 0;
1088 	     ret == 0 && (bh != head || !block_start);
1089 	     block_start = block_end, bh = next) {
1090 		next = bh->b_this_page;
1091 		block_end = block_start + blocksize;
1092 		if (block_end <= from || block_start >= to) {
1093 			if (partial && !buffer_uptodate(bh))
1094 				*partial = 1;
1095 			continue;
1096 		}
1097 		err = (*fn)(handle, bh);
1098 		if (!ret)
1099 			ret = err;
1100 	}
1101 	return ret;
1102 }
1103 
1104 /*
1105  * To preserve ordering, it is essential that the hole instantiation and
1106  * the data write be encapsulated in a single transaction.  We cannot
1107  * close off a transaction and start a new one between the ext4_get_block()
1108  * and the commit_write().  So doing the jbd2_journal_start at the start of
1109  * prepare_write() is the right place.
1110  *
1111  * Also, this function can nest inside ext4_writepage().  In that case, we
1112  * *know* that ext4_writepage() has generated enough buffer credits to do the
1113  * whole page.  So we won't block on the journal in that case, which is good,
1114  * because the caller may be PF_MEMALLOC.
1115  *
1116  * By accident, ext4 can be reentered when a transaction is open via
1117  * quota file writes.  If we were to commit the transaction while thus
1118  * reentered, there can be a deadlock - we would be holding a quota
1119  * lock, and the commit would never complete if another thread had a
1120  * transaction open and was blocking on the quota lock - a ranking
1121  * violation.
1122  *
1123  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124  * will _not_ run commit under these circumstances because handle->h_ref
1125  * is elevated.  We'll still have enough credits for the tiny quotafile
1126  * write.
1127  */
1128 int do_journal_get_write_access(handle_t *handle,
1129 				struct buffer_head *bh)
1130 {
1131 	int dirty = buffer_dirty(bh);
1132 	int ret;
1133 
1134 	if (!buffer_mapped(bh) || buffer_freed(bh))
1135 		return 0;
1136 	/*
1137 	 * __block_write_begin() could have dirtied some buffers. Clean
1138 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1139 	 * otherwise about fs integrity issues. Setting of the dirty bit
1140 	 * by __block_write_begin() isn't a real problem here as we clear
1141 	 * the bit before releasing a page lock and thus writeback cannot
1142 	 * ever write the buffer.
1143 	 */
1144 	if (dirty)
1145 		clear_buffer_dirty(bh);
1146 	BUFFER_TRACE(bh, "get write access");
1147 	ret = ext4_journal_get_write_access(handle, bh);
1148 	if (!ret && dirty)
1149 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150 	return ret;
1151 }
1152 
1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155 				  get_block_t *get_block)
1156 {
1157 	unsigned from = pos & (PAGE_SIZE - 1);
1158 	unsigned to = from + len;
1159 	struct inode *inode = page->mapping->host;
1160 	unsigned block_start, block_end;
1161 	sector_t block;
1162 	int err = 0;
1163 	unsigned blocksize = inode->i_sb->s_blocksize;
1164 	unsigned bbits;
1165 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166 	bool decrypt = false;
1167 
1168 	BUG_ON(!PageLocked(page));
1169 	BUG_ON(from > PAGE_SIZE);
1170 	BUG_ON(to > PAGE_SIZE);
1171 	BUG_ON(from > to);
1172 
1173 	if (!page_has_buffers(page))
1174 		create_empty_buffers(page, blocksize, 0);
1175 	head = page_buffers(page);
1176 	bbits = ilog2(blocksize);
1177 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178 
1179 	for (bh = head, block_start = 0; bh != head || !block_start;
1180 	    block++, block_start = block_end, bh = bh->b_this_page) {
1181 		block_end = block_start + blocksize;
1182 		if (block_end <= from || block_start >= to) {
1183 			if (PageUptodate(page)) {
1184 				if (!buffer_uptodate(bh))
1185 					set_buffer_uptodate(bh);
1186 			}
1187 			continue;
1188 		}
1189 		if (buffer_new(bh))
1190 			clear_buffer_new(bh);
1191 		if (!buffer_mapped(bh)) {
1192 			WARN_ON(bh->b_size != blocksize);
1193 			err = get_block(inode, block, bh, 1);
1194 			if (err)
1195 				break;
1196 			if (buffer_new(bh)) {
1197 				clean_bdev_bh_alias(bh);
1198 				if (PageUptodate(page)) {
1199 					clear_buffer_new(bh);
1200 					set_buffer_uptodate(bh);
1201 					mark_buffer_dirty(bh);
1202 					continue;
1203 				}
1204 				if (block_end > to || block_start < from)
1205 					zero_user_segments(page, to, block_end,
1206 							   block_start, from);
1207 				continue;
1208 			}
1209 		}
1210 		if (PageUptodate(page)) {
1211 			if (!buffer_uptodate(bh))
1212 				set_buffer_uptodate(bh);
1213 			continue;
1214 		}
1215 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216 		    !buffer_unwritten(bh) &&
1217 		    (block_start < from || block_end > to)) {
1218 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219 			*wait_bh++ = bh;
1220 			decrypt = ext4_encrypted_inode(inode) &&
1221 				S_ISREG(inode->i_mode);
1222 		}
1223 	}
1224 	/*
1225 	 * If we issued read requests, let them complete.
1226 	 */
1227 	while (wait_bh > wait) {
1228 		wait_on_buffer(*--wait_bh);
1229 		if (!buffer_uptodate(*wait_bh))
1230 			err = -EIO;
1231 	}
1232 	if (unlikely(err))
1233 		page_zero_new_buffers(page, from, to);
1234 	else if (decrypt)
1235 		err = fscrypt_decrypt_page(page->mapping->host, page,
1236 				PAGE_SIZE, 0, page->index);
1237 	return err;
1238 }
1239 #endif
1240 
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242 			    loff_t pos, unsigned len, unsigned flags,
1243 			    struct page **pagep, void **fsdata)
1244 {
1245 	struct inode *inode = mapping->host;
1246 	int ret, needed_blocks;
1247 	handle_t *handle;
1248 	int retries = 0;
1249 	struct page *page;
1250 	pgoff_t index;
1251 	unsigned from, to;
1252 
1253 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254 		return -EIO;
1255 
1256 	trace_ext4_write_begin(inode, pos, len, flags);
1257 	/*
1258 	 * Reserve one block more for addition to orphan list in case
1259 	 * we allocate blocks but write fails for some reason
1260 	 */
1261 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262 	index = pos >> PAGE_SHIFT;
1263 	from = pos & (PAGE_SIZE - 1);
1264 	to = from + len;
1265 
1266 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268 						    flags, pagep);
1269 		if (ret < 0)
1270 			return ret;
1271 		if (ret == 1)
1272 			return 0;
1273 	}
1274 
1275 	/*
1276 	 * grab_cache_page_write_begin() can take a long time if the
1277 	 * system is thrashing due to memory pressure, or if the page
1278 	 * is being written back.  So grab it first before we start
1279 	 * the transaction handle.  This also allows us to allocate
1280 	 * the page (if needed) without using GFP_NOFS.
1281 	 */
1282 retry_grab:
1283 	page = grab_cache_page_write_begin(mapping, index, flags);
1284 	if (!page)
1285 		return -ENOMEM;
1286 	unlock_page(page);
1287 
1288 retry_journal:
1289 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290 	if (IS_ERR(handle)) {
1291 		put_page(page);
1292 		return PTR_ERR(handle);
1293 	}
1294 
1295 	lock_page(page);
1296 	if (page->mapping != mapping) {
1297 		/* The page got truncated from under us */
1298 		unlock_page(page);
1299 		put_page(page);
1300 		ext4_journal_stop(handle);
1301 		goto retry_grab;
1302 	}
1303 	/* In case writeback began while the page was unlocked */
1304 	wait_for_stable_page(page);
1305 
1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1307 	if (ext4_should_dioread_nolock(inode))
1308 		ret = ext4_block_write_begin(page, pos, len,
1309 					     ext4_get_block_unwritten);
1310 	else
1311 		ret = ext4_block_write_begin(page, pos, len,
1312 					     ext4_get_block);
1313 #else
1314 	if (ext4_should_dioread_nolock(inode))
1315 		ret = __block_write_begin(page, pos, len,
1316 					  ext4_get_block_unwritten);
1317 	else
1318 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320 	if (!ret && ext4_should_journal_data(inode)) {
1321 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322 					     from, to, NULL,
1323 					     do_journal_get_write_access);
1324 	}
1325 
1326 	if (ret) {
1327 		unlock_page(page);
1328 		/*
1329 		 * __block_write_begin may have instantiated a few blocks
1330 		 * outside i_size.  Trim these off again. Don't need
1331 		 * i_size_read because we hold i_mutex.
1332 		 *
1333 		 * Add inode to orphan list in case we crash before
1334 		 * truncate finishes
1335 		 */
1336 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337 			ext4_orphan_add(handle, inode);
1338 
1339 		ext4_journal_stop(handle);
1340 		if (pos + len > inode->i_size) {
1341 			ext4_truncate_failed_write(inode);
1342 			/*
1343 			 * If truncate failed early the inode might
1344 			 * still be on the orphan list; we need to
1345 			 * make sure the inode is removed from the
1346 			 * orphan list in that case.
1347 			 */
1348 			if (inode->i_nlink)
1349 				ext4_orphan_del(NULL, inode);
1350 		}
1351 
1352 		if (ret == -ENOSPC &&
1353 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1354 			goto retry_journal;
1355 		put_page(page);
1356 		return ret;
1357 	}
1358 	*pagep = page;
1359 	return ret;
1360 }
1361 
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364 {
1365 	int ret;
1366 	if (!buffer_mapped(bh) || buffer_freed(bh))
1367 		return 0;
1368 	set_buffer_uptodate(bh);
1369 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370 	clear_buffer_meta(bh);
1371 	clear_buffer_prio(bh);
1372 	return ret;
1373 }
1374 
1375 /*
1376  * We need to pick up the new inode size which generic_commit_write gave us
1377  * `file' can be NULL - eg, when called from page_symlink().
1378  *
1379  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380  * buffers are managed internally.
1381  */
1382 static int ext4_write_end(struct file *file,
1383 			  struct address_space *mapping,
1384 			  loff_t pos, unsigned len, unsigned copied,
1385 			  struct page *page, void *fsdata)
1386 {
1387 	handle_t *handle = ext4_journal_current_handle();
1388 	struct inode *inode = mapping->host;
1389 	loff_t old_size = inode->i_size;
1390 	int ret = 0, ret2;
1391 	int i_size_changed = 0;
1392 	int inline_data = ext4_has_inline_data(inode);
1393 
1394 	trace_ext4_write_end(inode, pos, len, copied);
1395 	if (inline_data) {
1396 		ret = ext4_write_inline_data_end(inode, pos, len,
1397 						 copied, page);
1398 		if (ret < 0) {
1399 			unlock_page(page);
1400 			put_page(page);
1401 			goto errout;
1402 		}
1403 		copied = ret;
1404 	} else
1405 		copied = block_write_end(file, mapping, pos,
1406 					 len, copied, page, fsdata);
1407 	/*
1408 	 * it's important to update i_size while still holding page lock:
1409 	 * page writeout could otherwise come in and zero beyond i_size.
1410 	 */
1411 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1412 	unlock_page(page);
1413 	put_page(page);
1414 
1415 	if (old_size < pos)
1416 		pagecache_isize_extended(inode, old_size, pos);
1417 	/*
1418 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1419 	 * makes the holding time of page lock longer. Second, it forces lock
1420 	 * ordering of page lock and transaction start for journaling
1421 	 * filesystems.
1422 	 */
1423 	if (i_size_changed || inline_data)
1424 		ext4_mark_inode_dirty(handle, inode);
1425 
1426 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1427 		/* if we have allocated more blocks and copied
1428 		 * less. We will have blocks allocated outside
1429 		 * inode->i_size. So truncate them
1430 		 */
1431 		ext4_orphan_add(handle, inode);
1432 errout:
1433 	ret2 = ext4_journal_stop(handle);
1434 	if (!ret)
1435 		ret = ret2;
1436 
1437 	if (pos + len > inode->i_size) {
1438 		ext4_truncate_failed_write(inode);
1439 		/*
1440 		 * If truncate failed early the inode might still be
1441 		 * on the orphan list; we need to make sure the inode
1442 		 * is removed from the orphan list in that case.
1443 		 */
1444 		if (inode->i_nlink)
1445 			ext4_orphan_del(NULL, inode);
1446 	}
1447 
1448 	return ret ? ret : copied;
1449 }
1450 
1451 /*
1452  * This is a private version of page_zero_new_buffers() which doesn't
1453  * set the buffer to be dirty, since in data=journalled mode we need
1454  * to call ext4_handle_dirty_metadata() instead.
1455  */
1456 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1457 					    struct page *page,
1458 					    unsigned from, unsigned to)
1459 {
1460 	unsigned int block_start = 0, block_end;
1461 	struct buffer_head *head, *bh;
1462 
1463 	bh = head = page_buffers(page);
1464 	do {
1465 		block_end = block_start + bh->b_size;
1466 		if (buffer_new(bh)) {
1467 			if (block_end > from && block_start < to) {
1468 				if (!PageUptodate(page)) {
1469 					unsigned start, size;
1470 
1471 					start = max(from, block_start);
1472 					size = min(to, block_end) - start;
1473 
1474 					zero_user(page, start, size);
1475 					write_end_fn(handle, bh);
1476 				}
1477 				clear_buffer_new(bh);
1478 			}
1479 		}
1480 		block_start = block_end;
1481 		bh = bh->b_this_page;
1482 	} while (bh != head);
1483 }
1484 
1485 static int ext4_journalled_write_end(struct file *file,
1486 				     struct address_space *mapping,
1487 				     loff_t pos, unsigned len, unsigned copied,
1488 				     struct page *page, void *fsdata)
1489 {
1490 	handle_t *handle = ext4_journal_current_handle();
1491 	struct inode *inode = mapping->host;
1492 	loff_t old_size = inode->i_size;
1493 	int ret = 0, ret2;
1494 	int partial = 0;
1495 	unsigned from, to;
1496 	int size_changed = 0;
1497 	int inline_data = ext4_has_inline_data(inode);
1498 
1499 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1500 	from = pos & (PAGE_SIZE - 1);
1501 	to = from + len;
1502 
1503 	BUG_ON(!ext4_handle_valid(handle));
1504 
1505 	if (inline_data) {
1506 		ret = ext4_write_inline_data_end(inode, pos, len,
1507 						 copied, page);
1508 		if (ret < 0) {
1509 			unlock_page(page);
1510 			put_page(page);
1511 			goto errout;
1512 		}
1513 		copied = ret;
1514 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1515 		copied = 0;
1516 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1517 	} else {
1518 		if (unlikely(copied < len))
1519 			ext4_journalled_zero_new_buffers(handle, page,
1520 							 from + copied, to);
1521 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1522 					     from + copied, &partial,
1523 					     write_end_fn);
1524 		if (!partial)
1525 			SetPageUptodate(page);
1526 	}
1527 	size_changed = ext4_update_inode_size(inode, pos + copied);
1528 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1529 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1530 	unlock_page(page);
1531 	put_page(page);
1532 
1533 	if (old_size < pos)
1534 		pagecache_isize_extended(inode, old_size, pos);
1535 
1536 	if (size_changed || inline_data) {
1537 		ret2 = ext4_mark_inode_dirty(handle, inode);
1538 		if (!ret)
1539 			ret = ret2;
1540 	}
1541 
1542 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1543 		/* if we have allocated more blocks and copied
1544 		 * less. We will have blocks allocated outside
1545 		 * inode->i_size. So truncate them
1546 		 */
1547 		ext4_orphan_add(handle, inode);
1548 
1549 errout:
1550 	ret2 = ext4_journal_stop(handle);
1551 	if (!ret)
1552 		ret = ret2;
1553 	if (pos + len > inode->i_size) {
1554 		ext4_truncate_failed_write(inode);
1555 		/*
1556 		 * If truncate failed early the inode might still be
1557 		 * on the orphan list; we need to make sure the inode
1558 		 * is removed from the orphan list in that case.
1559 		 */
1560 		if (inode->i_nlink)
1561 			ext4_orphan_del(NULL, inode);
1562 	}
1563 
1564 	return ret ? ret : copied;
1565 }
1566 
1567 /*
1568  * Reserve space for a single cluster
1569  */
1570 static int ext4_da_reserve_space(struct inode *inode)
1571 {
1572 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1573 	struct ext4_inode_info *ei = EXT4_I(inode);
1574 	int ret;
1575 
1576 	/*
1577 	 * We will charge metadata quota at writeout time; this saves
1578 	 * us from metadata over-estimation, though we may go over by
1579 	 * a small amount in the end.  Here we just reserve for data.
1580 	 */
1581 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1582 	if (ret)
1583 		return ret;
1584 
1585 	spin_lock(&ei->i_block_reservation_lock);
1586 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1587 		spin_unlock(&ei->i_block_reservation_lock);
1588 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1589 		return -ENOSPC;
1590 	}
1591 	ei->i_reserved_data_blocks++;
1592 	trace_ext4_da_reserve_space(inode);
1593 	spin_unlock(&ei->i_block_reservation_lock);
1594 
1595 	return 0;       /* success */
1596 }
1597 
1598 void ext4_da_release_space(struct inode *inode, int to_free)
1599 {
1600 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1601 	struct ext4_inode_info *ei = EXT4_I(inode);
1602 
1603 	if (!to_free)
1604 		return;		/* Nothing to release, exit */
1605 
1606 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1607 
1608 	trace_ext4_da_release_space(inode, to_free);
1609 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1610 		/*
1611 		 * if there aren't enough reserved blocks, then the
1612 		 * counter is messed up somewhere.  Since this
1613 		 * function is called from invalidate page, it's
1614 		 * harmless to return without any action.
1615 		 */
1616 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1617 			 "ino %lu, to_free %d with only %d reserved "
1618 			 "data blocks", inode->i_ino, to_free,
1619 			 ei->i_reserved_data_blocks);
1620 		WARN_ON(1);
1621 		to_free = ei->i_reserved_data_blocks;
1622 	}
1623 	ei->i_reserved_data_blocks -= to_free;
1624 
1625 	/* update fs dirty data blocks counter */
1626 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1627 
1628 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1629 
1630 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1631 }
1632 
1633 static void ext4_da_page_release_reservation(struct page *page,
1634 					     unsigned int offset,
1635 					     unsigned int length)
1636 {
1637 	int contiguous_blks = 0;
1638 	struct buffer_head *head, *bh;
1639 	unsigned int curr_off = 0;
1640 	struct inode *inode = page->mapping->host;
1641 	unsigned int stop = offset + length;
1642 	ext4_fsblk_t lblk;
1643 
1644 	BUG_ON(stop > PAGE_SIZE || stop < length);
1645 
1646 	head = page_buffers(page);
1647 	bh = head;
1648 	do {
1649 		unsigned int next_off = curr_off + bh->b_size;
1650 
1651 		if (next_off > stop)
1652 			break;
1653 
1654 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1655 			contiguous_blks++;
1656 			clear_buffer_delay(bh);
1657 		} else if (contiguous_blks) {
1658 			lblk = page->index <<
1659 			       (PAGE_SHIFT - inode->i_blkbits);
1660 			lblk += (curr_off >> inode->i_blkbits) -
1661 				contiguous_blks;
1662 			ext4_es_remove_blks(inode, lblk, contiguous_blks);
1663 			contiguous_blks = 0;
1664 		}
1665 		curr_off = next_off;
1666 	} while ((bh = bh->b_this_page) != head);
1667 
1668 	if (contiguous_blks) {
1669 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1670 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1671 		ext4_es_remove_blks(inode, lblk, contiguous_blks);
1672 	}
1673 
1674 }
1675 
1676 /*
1677  * Delayed allocation stuff
1678  */
1679 
1680 struct mpage_da_data {
1681 	struct inode *inode;
1682 	struct writeback_control *wbc;
1683 
1684 	pgoff_t first_page;	/* The first page to write */
1685 	pgoff_t next_page;	/* Current page to examine */
1686 	pgoff_t last_page;	/* Last page to examine */
1687 	/*
1688 	 * Extent to map - this can be after first_page because that can be
1689 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1690 	 * is delalloc or unwritten.
1691 	 */
1692 	struct ext4_map_blocks map;
1693 	struct ext4_io_submit io_submit;	/* IO submission data */
1694 	unsigned int do_map:1;
1695 };
1696 
1697 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1698 				       bool invalidate)
1699 {
1700 	int nr_pages, i;
1701 	pgoff_t index, end;
1702 	struct pagevec pvec;
1703 	struct inode *inode = mpd->inode;
1704 	struct address_space *mapping = inode->i_mapping;
1705 
1706 	/* This is necessary when next_page == 0. */
1707 	if (mpd->first_page >= mpd->next_page)
1708 		return;
1709 
1710 	index = mpd->first_page;
1711 	end   = mpd->next_page - 1;
1712 	if (invalidate) {
1713 		ext4_lblk_t start, last;
1714 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1715 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1716 		ext4_es_remove_extent(inode, start, last - start + 1);
1717 	}
1718 
1719 	pagevec_init(&pvec);
1720 	while (index <= end) {
1721 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1722 		if (nr_pages == 0)
1723 			break;
1724 		for (i = 0; i < nr_pages; i++) {
1725 			struct page *page = pvec.pages[i];
1726 
1727 			BUG_ON(!PageLocked(page));
1728 			BUG_ON(PageWriteback(page));
1729 			if (invalidate) {
1730 				if (page_mapped(page))
1731 					clear_page_dirty_for_io(page);
1732 				block_invalidatepage(page, 0, PAGE_SIZE);
1733 				ClearPageUptodate(page);
1734 			}
1735 			unlock_page(page);
1736 		}
1737 		pagevec_release(&pvec);
1738 	}
1739 }
1740 
1741 static void ext4_print_free_blocks(struct inode *inode)
1742 {
1743 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1744 	struct super_block *sb = inode->i_sb;
1745 	struct ext4_inode_info *ei = EXT4_I(inode);
1746 
1747 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1748 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1749 			ext4_count_free_clusters(sb)));
1750 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1751 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1752 	       (long long) EXT4_C2B(EXT4_SB(sb),
1753 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1754 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1755 	       (long long) EXT4_C2B(EXT4_SB(sb),
1756 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1757 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1758 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1759 		 ei->i_reserved_data_blocks);
1760 	return;
1761 }
1762 
1763 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1764 {
1765 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1766 }
1767 
1768 /*
1769  * ext4_insert_delayed_block - adds a delayed block to the extents status
1770  *                             tree, incrementing the reserved cluster/block
1771  *                             count or making a pending reservation
1772  *                             where needed
1773  *
1774  * @inode - file containing the newly added block
1775  * @lblk - logical block to be added
1776  *
1777  * Returns 0 on success, negative error code on failure.
1778  */
1779 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1780 {
1781 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1782 	int ret;
1783 	bool allocated = false;
1784 
1785 	/*
1786 	 * If the cluster containing lblk is shared with a delayed,
1787 	 * written, or unwritten extent in a bigalloc file system, it's
1788 	 * already been accounted for and does not need to be reserved.
1789 	 * A pending reservation must be made for the cluster if it's
1790 	 * shared with a written or unwritten extent and doesn't already
1791 	 * have one.  Written and unwritten extents can be purged from the
1792 	 * extents status tree if the system is under memory pressure, so
1793 	 * it's necessary to examine the extent tree if a search of the
1794 	 * extents status tree doesn't get a match.
1795 	 */
1796 	if (sbi->s_cluster_ratio == 1) {
1797 		ret = ext4_da_reserve_space(inode);
1798 		if (ret != 0)   /* ENOSPC */
1799 			goto errout;
1800 	} else {   /* bigalloc */
1801 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1802 			if (!ext4_es_scan_clu(inode,
1803 					      &ext4_es_is_mapped, lblk)) {
1804 				ret = ext4_clu_mapped(inode,
1805 						      EXT4_B2C(sbi, lblk));
1806 				if (ret < 0)
1807 					goto errout;
1808 				if (ret == 0) {
1809 					ret = ext4_da_reserve_space(inode);
1810 					if (ret != 0)   /* ENOSPC */
1811 						goto errout;
1812 				} else {
1813 					allocated = true;
1814 				}
1815 			} else {
1816 				allocated = true;
1817 			}
1818 		}
1819 	}
1820 
1821 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1822 
1823 errout:
1824 	return ret;
1825 }
1826 
1827 /*
1828  * This function is grabs code from the very beginning of
1829  * ext4_map_blocks, but assumes that the caller is from delayed write
1830  * time. This function looks up the requested blocks and sets the
1831  * buffer delay bit under the protection of i_data_sem.
1832  */
1833 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1834 			      struct ext4_map_blocks *map,
1835 			      struct buffer_head *bh)
1836 {
1837 	struct extent_status es;
1838 	int retval;
1839 	sector_t invalid_block = ~((sector_t) 0xffff);
1840 #ifdef ES_AGGRESSIVE_TEST
1841 	struct ext4_map_blocks orig_map;
1842 
1843 	memcpy(&orig_map, map, sizeof(*map));
1844 #endif
1845 
1846 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1847 		invalid_block = ~0;
1848 
1849 	map->m_flags = 0;
1850 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1851 		  "logical block %lu\n", inode->i_ino, map->m_len,
1852 		  (unsigned long) map->m_lblk);
1853 
1854 	/* Lookup extent status tree firstly */
1855 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1856 		if (ext4_es_is_hole(&es)) {
1857 			retval = 0;
1858 			down_read(&EXT4_I(inode)->i_data_sem);
1859 			goto add_delayed;
1860 		}
1861 
1862 		/*
1863 		 * Delayed extent could be allocated by fallocate.
1864 		 * So we need to check it.
1865 		 */
1866 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1867 			map_bh(bh, inode->i_sb, invalid_block);
1868 			set_buffer_new(bh);
1869 			set_buffer_delay(bh);
1870 			return 0;
1871 		}
1872 
1873 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1874 		retval = es.es_len - (iblock - es.es_lblk);
1875 		if (retval > map->m_len)
1876 			retval = map->m_len;
1877 		map->m_len = retval;
1878 		if (ext4_es_is_written(&es))
1879 			map->m_flags |= EXT4_MAP_MAPPED;
1880 		else if (ext4_es_is_unwritten(&es))
1881 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1882 		else
1883 			BUG_ON(1);
1884 
1885 #ifdef ES_AGGRESSIVE_TEST
1886 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1887 #endif
1888 		return retval;
1889 	}
1890 
1891 	/*
1892 	 * Try to see if we can get the block without requesting a new
1893 	 * file system block.
1894 	 */
1895 	down_read(&EXT4_I(inode)->i_data_sem);
1896 	if (ext4_has_inline_data(inode))
1897 		retval = 0;
1898 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1899 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1900 	else
1901 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1902 
1903 add_delayed:
1904 	if (retval == 0) {
1905 		int ret;
1906 
1907 		/*
1908 		 * XXX: __block_prepare_write() unmaps passed block,
1909 		 * is it OK?
1910 		 */
1911 
1912 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1913 		if (ret != 0) {
1914 			retval = ret;
1915 			goto out_unlock;
1916 		}
1917 
1918 		map_bh(bh, inode->i_sb, invalid_block);
1919 		set_buffer_new(bh);
1920 		set_buffer_delay(bh);
1921 	} else if (retval > 0) {
1922 		int ret;
1923 		unsigned int status;
1924 
1925 		if (unlikely(retval != map->m_len)) {
1926 			ext4_warning(inode->i_sb,
1927 				     "ES len assertion failed for inode "
1928 				     "%lu: retval %d != map->m_len %d",
1929 				     inode->i_ino, retval, map->m_len);
1930 			WARN_ON(1);
1931 		}
1932 
1933 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1934 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1935 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1936 					    map->m_pblk, status);
1937 		if (ret != 0)
1938 			retval = ret;
1939 	}
1940 
1941 out_unlock:
1942 	up_read((&EXT4_I(inode)->i_data_sem));
1943 
1944 	return retval;
1945 }
1946 
1947 /*
1948  * This is a special get_block_t callback which is used by
1949  * ext4_da_write_begin().  It will either return mapped block or
1950  * reserve space for a single block.
1951  *
1952  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1953  * We also have b_blocknr = -1 and b_bdev initialized properly
1954  *
1955  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1956  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1957  * initialized properly.
1958  */
1959 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1960 			   struct buffer_head *bh, int create)
1961 {
1962 	struct ext4_map_blocks map;
1963 	int ret = 0;
1964 
1965 	BUG_ON(create == 0);
1966 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1967 
1968 	map.m_lblk = iblock;
1969 	map.m_len = 1;
1970 
1971 	/*
1972 	 * first, we need to know whether the block is allocated already
1973 	 * preallocated blocks are unmapped but should treated
1974 	 * the same as allocated blocks.
1975 	 */
1976 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1977 	if (ret <= 0)
1978 		return ret;
1979 
1980 	map_bh(bh, inode->i_sb, map.m_pblk);
1981 	ext4_update_bh_state(bh, map.m_flags);
1982 
1983 	if (buffer_unwritten(bh)) {
1984 		/* A delayed write to unwritten bh should be marked
1985 		 * new and mapped.  Mapped ensures that we don't do
1986 		 * get_block multiple times when we write to the same
1987 		 * offset and new ensures that we do proper zero out
1988 		 * for partial write.
1989 		 */
1990 		set_buffer_new(bh);
1991 		set_buffer_mapped(bh);
1992 	}
1993 	return 0;
1994 }
1995 
1996 static int bget_one(handle_t *handle, struct buffer_head *bh)
1997 {
1998 	get_bh(bh);
1999 	return 0;
2000 }
2001 
2002 static int bput_one(handle_t *handle, struct buffer_head *bh)
2003 {
2004 	put_bh(bh);
2005 	return 0;
2006 }
2007 
2008 static int __ext4_journalled_writepage(struct page *page,
2009 				       unsigned int len)
2010 {
2011 	struct address_space *mapping = page->mapping;
2012 	struct inode *inode = mapping->host;
2013 	struct buffer_head *page_bufs = NULL;
2014 	handle_t *handle = NULL;
2015 	int ret = 0, err = 0;
2016 	int inline_data = ext4_has_inline_data(inode);
2017 	struct buffer_head *inode_bh = NULL;
2018 
2019 	ClearPageChecked(page);
2020 
2021 	if (inline_data) {
2022 		BUG_ON(page->index != 0);
2023 		BUG_ON(len > ext4_get_max_inline_size(inode));
2024 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2025 		if (inode_bh == NULL)
2026 			goto out;
2027 	} else {
2028 		page_bufs = page_buffers(page);
2029 		if (!page_bufs) {
2030 			BUG();
2031 			goto out;
2032 		}
2033 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2034 				       NULL, bget_one);
2035 	}
2036 	/*
2037 	 * We need to release the page lock before we start the
2038 	 * journal, so grab a reference so the page won't disappear
2039 	 * out from under us.
2040 	 */
2041 	get_page(page);
2042 	unlock_page(page);
2043 
2044 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2045 				    ext4_writepage_trans_blocks(inode));
2046 	if (IS_ERR(handle)) {
2047 		ret = PTR_ERR(handle);
2048 		put_page(page);
2049 		goto out_no_pagelock;
2050 	}
2051 	BUG_ON(!ext4_handle_valid(handle));
2052 
2053 	lock_page(page);
2054 	put_page(page);
2055 	if (page->mapping != mapping) {
2056 		/* The page got truncated from under us */
2057 		ext4_journal_stop(handle);
2058 		ret = 0;
2059 		goto out;
2060 	}
2061 
2062 	if (inline_data) {
2063 		ret = ext4_mark_inode_dirty(handle, inode);
2064 	} else {
2065 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2066 					     do_journal_get_write_access);
2067 
2068 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2069 					     write_end_fn);
2070 	}
2071 	if (ret == 0)
2072 		ret = err;
2073 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2074 	err = ext4_journal_stop(handle);
2075 	if (!ret)
2076 		ret = err;
2077 
2078 	if (!ext4_has_inline_data(inode))
2079 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2080 				       NULL, bput_one);
2081 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2082 out:
2083 	unlock_page(page);
2084 out_no_pagelock:
2085 	brelse(inode_bh);
2086 	return ret;
2087 }
2088 
2089 /*
2090  * Note that we don't need to start a transaction unless we're journaling data
2091  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2092  * need to file the inode to the transaction's list in ordered mode because if
2093  * we are writing back data added by write(), the inode is already there and if
2094  * we are writing back data modified via mmap(), no one guarantees in which
2095  * transaction the data will hit the disk. In case we are journaling data, we
2096  * cannot start transaction directly because transaction start ranks above page
2097  * lock so we have to do some magic.
2098  *
2099  * This function can get called via...
2100  *   - ext4_writepages after taking page lock (have journal handle)
2101  *   - journal_submit_inode_data_buffers (no journal handle)
2102  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2103  *   - grab_page_cache when doing write_begin (have journal handle)
2104  *
2105  * We don't do any block allocation in this function. If we have page with
2106  * multiple blocks we need to write those buffer_heads that are mapped. This
2107  * is important for mmaped based write. So if we do with blocksize 1K
2108  * truncate(f, 1024);
2109  * a = mmap(f, 0, 4096);
2110  * a[0] = 'a';
2111  * truncate(f, 4096);
2112  * we have in the page first buffer_head mapped via page_mkwrite call back
2113  * but other buffer_heads would be unmapped but dirty (dirty done via the
2114  * do_wp_page). So writepage should write the first block. If we modify
2115  * the mmap area beyond 1024 we will again get a page_fault and the
2116  * page_mkwrite callback will do the block allocation and mark the
2117  * buffer_heads mapped.
2118  *
2119  * We redirty the page if we have any buffer_heads that is either delay or
2120  * unwritten in the page.
2121  *
2122  * We can get recursively called as show below.
2123  *
2124  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2125  *		ext4_writepage()
2126  *
2127  * But since we don't do any block allocation we should not deadlock.
2128  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2129  */
2130 static int ext4_writepage(struct page *page,
2131 			  struct writeback_control *wbc)
2132 {
2133 	int ret = 0;
2134 	loff_t size;
2135 	unsigned int len;
2136 	struct buffer_head *page_bufs = NULL;
2137 	struct inode *inode = page->mapping->host;
2138 	struct ext4_io_submit io_submit;
2139 	bool keep_towrite = false;
2140 
2141 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2142 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2143 		unlock_page(page);
2144 		return -EIO;
2145 	}
2146 
2147 	trace_ext4_writepage(page);
2148 	size = i_size_read(inode);
2149 	if (page->index == size >> PAGE_SHIFT)
2150 		len = size & ~PAGE_MASK;
2151 	else
2152 		len = PAGE_SIZE;
2153 
2154 	page_bufs = page_buffers(page);
2155 	/*
2156 	 * We cannot do block allocation or other extent handling in this
2157 	 * function. If there are buffers needing that, we have to redirty
2158 	 * the page. But we may reach here when we do a journal commit via
2159 	 * journal_submit_inode_data_buffers() and in that case we must write
2160 	 * allocated buffers to achieve data=ordered mode guarantees.
2161 	 *
2162 	 * Also, if there is only one buffer per page (the fs block
2163 	 * size == the page size), if one buffer needs block
2164 	 * allocation or needs to modify the extent tree to clear the
2165 	 * unwritten flag, we know that the page can't be written at
2166 	 * all, so we might as well refuse the write immediately.
2167 	 * Unfortunately if the block size != page size, we can't as
2168 	 * easily detect this case using ext4_walk_page_buffers(), but
2169 	 * for the extremely common case, this is an optimization that
2170 	 * skips a useless round trip through ext4_bio_write_page().
2171 	 */
2172 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2173 				   ext4_bh_delay_or_unwritten)) {
2174 		redirty_page_for_writepage(wbc, page);
2175 		if ((current->flags & PF_MEMALLOC) ||
2176 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2177 			/*
2178 			 * For memory cleaning there's no point in writing only
2179 			 * some buffers. So just bail out. Warn if we came here
2180 			 * from direct reclaim.
2181 			 */
2182 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2183 							== PF_MEMALLOC);
2184 			unlock_page(page);
2185 			return 0;
2186 		}
2187 		keep_towrite = true;
2188 	}
2189 
2190 	if (PageChecked(page) && ext4_should_journal_data(inode))
2191 		/*
2192 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2193 		 * doesn't seem much point in redirtying the page here.
2194 		 */
2195 		return __ext4_journalled_writepage(page, len);
2196 
2197 	ext4_io_submit_init(&io_submit, wbc);
2198 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2199 	if (!io_submit.io_end) {
2200 		redirty_page_for_writepage(wbc, page);
2201 		unlock_page(page);
2202 		return -ENOMEM;
2203 	}
2204 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2205 	ext4_io_submit(&io_submit);
2206 	/* Drop io_end reference we got from init */
2207 	ext4_put_io_end_defer(io_submit.io_end);
2208 	return ret;
2209 }
2210 
2211 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2212 {
2213 	int len;
2214 	loff_t size;
2215 	int err;
2216 
2217 	BUG_ON(page->index != mpd->first_page);
2218 	clear_page_dirty_for_io(page);
2219 	/*
2220 	 * We have to be very careful here!  Nothing protects writeback path
2221 	 * against i_size changes and the page can be writeably mapped into
2222 	 * page tables. So an application can be growing i_size and writing
2223 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2224 	 * write-protects our page in page tables and the page cannot get
2225 	 * written to again until we release page lock. So only after
2226 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2227 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2228 	 * on the barrier provided by TestClearPageDirty in
2229 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2230 	 * after page tables are updated.
2231 	 */
2232 	size = i_size_read(mpd->inode);
2233 	if (page->index == size >> PAGE_SHIFT)
2234 		len = size & ~PAGE_MASK;
2235 	else
2236 		len = PAGE_SIZE;
2237 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2238 	if (!err)
2239 		mpd->wbc->nr_to_write--;
2240 	mpd->first_page++;
2241 
2242 	return err;
2243 }
2244 
2245 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2246 
2247 /*
2248  * mballoc gives us at most this number of blocks...
2249  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2250  * The rest of mballoc seems to handle chunks up to full group size.
2251  */
2252 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2253 
2254 /*
2255  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2256  *
2257  * @mpd - extent of blocks
2258  * @lblk - logical number of the block in the file
2259  * @bh - buffer head we want to add to the extent
2260  *
2261  * The function is used to collect contig. blocks in the same state. If the
2262  * buffer doesn't require mapping for writeback and we haven't started the
2263  * extent of buffers to map yet, the function returns 'true' immediately - the
2264  * caller can write the buffer right away. Otherwise the function returns true
2265  * if the block has been added to the extent, false if the block couldn't be
2266  * added.
2267  */
2268 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2269 				   struct buffer_head *bh)
2270 {
2271 	struct ext4_map_blocks *map = &mpd->map;
2272 
2273 	/* Buffer that doesn't need mapping for writeback? */
2274 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2275 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2276 		/* So far no extent to map => we write the buffer right away */
2277 		if (map->m_len == 0)
2278 			return true;
2279 		return false;
2280 	}
2281 
2282 	/* First block in the extent? */
2283 	if (map->m_len == 0) {
2284 		/* We cannot map unless handle is started... */
2285 		if (!mpd->do_map)
2286 			return false;
2287 		map->m_lblk = lblk;
2288 		map->m_len = 1;
2289 		map->m_flags = bh->b_state & BH_FLAGS;
2290 		return true;
2291 	}
2292 
2293 	/* Don't go larger than mballoc is willing to allocate */
2294 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2295 		return false;
2296 
2297 	/* Can we merge the block to our big extent? */
2298 	if (lblk == map->m_lblk + map->m_len &&
2299 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2300 		map->m_len++;
2301 		return true;
2302 	}
2303 	return false;
2304 }
2305 
2306 /*
2307  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2308  *
2309  * @mpd - extent of blocks for mapping
2310  * @head - the first buffer in the page
2311  * @bh - buffer we should start processing from
2312  * @lblk - logical number of the block in the file corresponding to @bh
2313  *
2314  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2315  * the page for IO if all buffers in this page were mapped and there's no
2316  * accumulated extent of buffers to map or add buffers in the page to the
2317  * extent of buffers to map. The function returns 1 if the caller can continue
2318  * by processing the next page, 0 if it should stop adding buffers to the
2319  * extent to map because we cannot extend it anymore. It can also return value
2320  * < 0 in case of error during IO submission.
2321  */
2322 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2323 				   struct buffer_head *head,
2324 				   struct buffer_head *bh,
2325 				   ext4_lblk_t lblk)
2326 {
2327 	struct inode *inode = mpd->inode;
2328 	int err;
2329 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2330 							>> inode->i_blkbits;
2331 
2332 	do {
2333 		BUG_ON(buffer_locked(bh));
2334 
2335 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2336 			/* Found extent to map? */
2337 			if (mpd->map.m_len)
2338 				return 0;
2339 			/* Buffer needs mapping and handle is not started? */
2340 			if (!mpd->do_map)
2341 				return 0;
2342 			/* Everything mapped so far and we hit EOF */
2343 			break;
2344 		}
2345 	} while (lblk++, (bh = bh->b_this_page) != head);
2346 	/* So far everything mapped? Submit the page for IO. */
2347 	if (mpd->map.m_len == 0) {
2348 		err = mpage_submit_page(mpd, head->b_page);
2349 		if (err < 0)
2350 			return err;
2351 	}
2352 	return lblk < blocks;
2353 }
2354 
2355 /*
2356  * mpage_map_buffers - update buffers corresponding to changed extent and
2357  *		       submit fully mapped pages for IO
2358  *
2359  * @mpd - description of extent to map, on return next extent to map
2360  *
2361  * Scan buffers corresponding to changed extent (we expect corresponding pages
2362  * to be already locked) and update buffer state according to new extent state.
2363  * We map delalloc buffers to their physical location, clear unwritten bits,
2364  * and mark buffers as uninit when we perform writes to unwritten extents
2365  * and do extent conversion after IO is finished. If the last page is not fully
2366  * mapped, we update @map to the next extent in the last page that needs
2367  * mapping. Otherwise we submit the page for IO.
2368  */
2369 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2370 {
2371 	struct pagevec pvec;
2372 	int nr_pages, i;
2373 	struct inode *inode = mpd->inode;
2374 	struct buffer_head *head, *bh;
2375 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2376 	pgoff_t start, end;
2377 	ext4_lblk_t lblk;
2378 	sector_t pblock;
2379 	int err;
2380 
2381 	start = mpd->map.m_lblk >> bpp_bits;
2382 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2383 	lblk = start << bpp_bits;
2384 	pblock = mpd->map.m_pblk;
2385 
2386 	pagevec_init(&pvec);
2387 	while (start <= end) {
2388 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2389 						&start, end);
2390 		if (nr_pages == 0)
2391 			break;
2392 		for (i = 0; i < nr_pages; i++) {
2393 			struct page *page = pvec.pages[i];
2394 
2395 			bh = head = page_buffers(page);
2396 			do {
2397 				if (lblk < mpd->map.m_lblk)
2398 					continue;
2399 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2400 					/*
2401 					 * Buffer after end of mapped extent.
2402 					 * Find next buffer in the page to map.
2403 					 */
2404 					mpd->map.m_len = 0;
2405 					mpd->map.m_flags = 0;
2406 					/*
2407 					 * FIXME: If dioread_nolock supports
2408 					 * blocksize < pagesize, we need to make
2409 					 * sure we add size mapped so far to
2410 					 * io_end->size as the following call
2411 					 * can submit the page for IO.
2412 					 */
2413 					err = mpage_process_page_bufs(mpd, head,
2414 								      bh, lblk);
2415 					pagevec_release(&pvec);
2416 					if (err > 0)
2417 						err = 0;
2418 					return err;
2419 				}
2420 				if (buffer_delay(bh)) {
2421 					clear_buffer_delay(bh);
2422 					bh->b_blocknr = pblock++;
2423 				}
2424 				clear_buffer_unwritten(bh);
2425 			} while (lblk++, (bh = bh->b_this_page) != head);
2426 
2427 			/*
2428 			 * FIXME: This is going to break if dioread_nolock
2429 			 * supports blocksize < pagesize as we will try to
2430 			 * convert potentially unmapped parts of inode.
2431 			 */
2432 			mpd->io_submit.io_end->size += PAGE_SIZE;
2433 			/* Page fully mapped - let IO run! */
2434 			err = mpage_submit_page(mpd, page);
2435 			if (err < 0) {
2436 				pagevec_release(&pvec);
2437 				return err;
2438 			}
2439 		}
2440 		pagevec_release(&pvec);
2441 	}
2442 	/* Extent fully mapped and matches with page boundary. We are done. */
2443 	mpd->map.m_len = 0;
2444 	mpd->map.m_flags = 0;
2445 	return 0;
2446 }
2447 
2448 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2449 {
2450 	struct inode *inode = mpd->inode;
2451 	struct ext4_map_blocks *map = &mpd->map;
2452 	int get_blocks_flags;
2453 	int err, dioread_nolock;
2454 
2455 	trace_ext4_da_write_pages_extent(inode, map);
2456 	/*
2457 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2458 	 * to convert an unwritten extent to be initialized (in the case
2459 	 * where we have written into one or more preallocated blocks).  It is
2460 	 * possible that we're going to need more metadata blocks than
2461 	 * previously reserved. However we must not fail because we're in
2462 	 * writeback and there is nothing we can do about it so it might result
2463 	 * in data loss.  So use reserved blocks to allocate metadata if
2464 	 * possible.
2465 	 *
2466 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2467 	 * the blocks in question are delalloc blocks.  This indicates
2468 	 * that the blocks and quotas has already been checked when
2469 	 * the data was copied into the page cache.
2470 	 */
2471 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2472 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2473 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2474 	dioread_nolock = ext4_should_dioread_nolock(inode);
2475 	if (dioread_nolock)
2476 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2477 	if (map->m_flags & (1 << BH_Delay))
2478 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2479 
2480 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2481 	if (err < 0)
2482 		return err;
2483 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2484 		if (!mpd->io_submit.io_end->handle &&
2485 		    ext4_handle_valid(handle)) {
2486 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2487 			handle->h_rsv_handle = NULL;
2488 		}
2489 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2490 	}
2491 
2492 	BUG_ON(map->m_len == 0);
2493 	if (map->m_flags & EXT4_MAP_NEW) {
2494 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2495 				   map->m_len);
2496 	}
2497 	return 0;
2498 }
2499 
2500 /*
2501  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2502  *				 mpd->len and submit pages underlying it for IO
2503  *
2504  * @handle - handle for journal operations
2505  * @mpd - extent to map
2506  * @give_up_on_write - we set this to true iff there is a fatal error and there
2507  *                     is no hope of writing the data. The caller should discard
2508  *                     dirty pages to avoid infinite loops.
2509  *
2510  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2511  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2512  * them to initialized or split the described range from larger unwritten
2513  * extent. Note that we need not map all the described range since allocation
2514  * can return less blocks or the range is covered by more unwritten extents. We
2515  * cannot map more because we are limited by reserved transaction credits. On
2516  * the other hand we always make sure that the last touched page is fully
2517  * mapped so that it can be written out (and thus forward progress is
2518  * guaranteed). After mapping we submit all mapped pages for IO.
2519  */
2520 static int mpage_map_and_submit_extent(handle_t *handle,
2521 				       struct mpage_da_data *mpd,
2522 				       bool *give_up_on_write)
2523 {
2524 	struct inode *inode = mpd->inode;
2525 	struct ext4_map_blocks *map = &mpd->map;
2526 	int err;
2527 	loff_t disksize;
2528 	int progress = 0;
2529 
2530 	mpd->io_submit.io_end->offset =
2531 				((loff_t)map->m_lblk) << inode->i_blkbits;
2532 	do {
2533 		err = mpage_map_one_extent(handle, mpd);
2534 		if (err < 0) {
2535 			struct super_block *sb = inode->i_sb;
2536 
2537 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2538 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2539 				goto invalidate_dirty_pages;
2540 			/*
2541 			 * Let the uper layers retry transient errors.
2542 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2543 			 * is non-zero, a commit should free up blocks.
2544 			 */
2545 			if ((err == -ENOMEM) ||
2546 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2547 				if (progress)
2548 					goto update_disksize;
2549 				return err;
2550 			}
2551 			ext4_msg(sb, KERN_CRIT,
2552 				 "Delayed block allocation failed for "
2553 				 "inode %lu at logical offset %llu with"
2554 				 " max blocks %u with error %d",
2555 				 inode->i_ino,
2556 				 (unsigned long long)map->m_lblk,
2557 				 (unsigned)map->m_len, -err);
2558 			ext4_msg(sb, KERN_CRIT,
2559 				 "This should not happen!! Data will "
2560 				 "be lost\n");
2561 			if (err == -ENOSPC)
2562 				ext4_print_free_blocks(inode);
2563 		invalidate_dirty_pages:
2564 			*give_up_on_write = true;
2565 			return err;
2566 		}
2567 		progress = 1;
2568 		/*
2569 		 * Update buffer state, submit mapped pages, and get us new
2570 		 * extent to map
2571 		 */
2572 		err = mpage_map_and_submit_buffers(mpd);
2573 		if (err < 0)
2574 			goto update_disksize;
2575 	} while (map->m_len);
2576 
2577 update_disksize:
2578 	/*
2579 	 * Update on-disk size after IO is submitted.  Races with
2580 	 * truncate are avoided by checking i_size under i_data_sem.
2581 	 */
2582 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2583 	if (disksize > EXT4_I(inode)->i_disksize) {
2584 		int err2;
2585 		loff_t i_size;
2586 
2587 		down_write(&EXT4_I(inode)->i_data_sem);
2588 		i_size = i_size_read(inode);
2589 		if (disksize > i_size)
2590 			disksize = i_size;
2591 		if (disksize > EXT4_I(inode)->i_disksize)
2592 			EXT4_I(inode)->i_disksize = disksize;
2593 		up_write(&EXT4_I(inode)->i_data_sem);
2594 		err2 = ext4_mark_inode_dirty(handle, inode);
2595 		if (err2)
2596 			ext4_error(inode->i_sb,
2597 				   "Failed to mark inode %lu dirty",
2598 				   inode->i_ino);
2599 		if (!err)
2600 			err = err2;
2601 	}
2602 	return err;
2603 }
2604 
2605 /*
2606  * Calculate the total number of credits to reserve for one writepages
2607  * iteration. This is called from ext4_writepages(). We map an extent of
2608  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2609  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2610  * bpp - 1 blocks in bpp different extents.
2611  */
2612 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2613 {
2614 	int bpp = ext4_journal_blocks_per_page(inode);
2615 
2616 	return ext4_meta_trans_blocks(inode,
2617 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2618 }
2619 
2620 /*
2621  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2622  * 				 and underlying extent to map
2623  *
2624  * @mpd - where to look for pages
2625  *
2626  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2627  * IO immediately. When we find a page which isn't mapped we start accumulating
2628  * extent of buffers underlying these pages that needs mapping (formed by
2629  * either delayed or unwritten buffers). We also lock the pages containing
2630  * these buffers. The extent found is returned in @mpd structure (starting at
2631  * mpd->lblk with length mpd->len blocks).
2632  *
2633  * Note that this function can attach bios to one io_end structure which are
2634  * neither logically nor physically contiguous. Although it may seem as an
2635  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2636  * case as we need to track IO to all buffers underlying a page in one io_end.
2637  */
2638 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2639 {
2640 	struct address_space *mapping = mpd->inode->i_mapping;
2641 	struct pagevec pvec;
2642 	unsigned int nr_pages;
2643 	long left = mpd->wbc->nr_to_write;
2644 	pgoff_t index = mpd->first_page;
2645 	pgoff_t end = mpd->last_page;
2646 	xa_mark_t tag;
2647 	int i, err = 0;
2648 	int blkbits = mpd->inode->i_blkbits;
2649 	ext4_lblk_t lblk;
2650 	struct buffer_head *head;
2651 
2652 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2653 		tag = PAGECACHE_TAG_TOWRITE;
2654 	else
2655 		tag = PAGECACHE_TAG_DIRTY;
2656 
2657 	pagevec_init(&pvec);
2658 	mpd->map.m_len = 0;
2659 	mpd->next_page = index;
2660 	while (index <= end) {
2661 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2662 				tag);
2663 		if (nr_pages == 0)
2664 			goto out;
2665 
2666 		for (i = 0; i < nr_pages; i++) {
2667 			struct page *page = pvec.pages[i];
2668 
2669 			/*
2670 			 * Accumulated enough dirty pages? This doesn't apply
2671 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2672 			 * keep going because someone may be concurrently
2673 			 * dirtying pages, and we might have synced a lot of
2674 			 * newly appeared dirty pages, but have not synced all
2675 			 * of the old dirty pages.
2676 			 */
2677 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2678 				goto out;
2679 
2680 			/* If we can't merge this page, we are done. */
2681 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2682 				goto out;
2683 
2684 			lock_page(page);
2685 			/*
2686 			 * If the page is no longer dirty, or its mapping no
2687 			 * longer corresponds to inode we are writing (which
2688 			 * means it has been truncated or invalidated), or the
2689 			 * page is already under writeback and we are not doing
2690 			 * a data integrity writeback, skip the page
2691 			 */
2692 			if (!PageDirty(page) ||
2693 			    (PageWriteback(page) &&
2694 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2695 			    unlikely(page->mapping != mapping)) {
2696 				unlock_page(page);
2697 				continue;
2698 			}
2699 
2700 			wait_on_page_writeback(page);
2701 			BUG_ON(PageWriteback(page));
2702 
2703 			if (mpd->map.m_len == 0)
2704 				mpd->first_page = page->index;
2705 			mpd->next_page = page->index + 1;
2706 			/* Add all dirty buffers to mpd */
2707 			lblk = ((ext4_lblk_t)page->index) <<
2708 				(PAGE_SHIFT - blkbits);
2709 			head = page_buffers(page);
2710 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2711 			if (err <= 0)
2712 				goto out;
2713 			err = 0;
2714 			left--;
2715 		}
2716 		pagevec_release(&pvec);
2717 		cond_resched();
2718 	}
2719 	return 0;
2720 out:
2721 	pagevec_release(&pvec);
2722 	return err;
2723 }
2724 
2725 static int ext4_writepages(struct address_space *mapping,
2726 			   struct writeback_control *wbc)
2727 {
2728 	pgoff_t	writeback_index = 0;
2729 	long nr_to_write = wbc->nr_to_write;
2730 	int range_whole = 0;
2731 	int cycled = 1;
2732 	handle_t *handle = NULL;
2733 	struct mpage_da_data mpd;
2734 	struct inode *inode = mapping->host;
2735 	int needed_blocks, rsv_blocks = 0, ret = 0;
2736 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2737 	bool done;
2738 	struct blk_plug plug;
2739 	bool give_up_on_write = false;
2740 
2741 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2742 		return -EIO;
2743 
2744 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2745 	trace_ext4_writepages(inode, wbc);
2746 
2747 	/*
2748 	 * No pages to write? This is mainly a kludge to avoid starting
2749 	 * a transaction for special inodes like journal inode on last iput()
2750 	 * because that could violate lock ordering on umount
2751 	 */
2752 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2753 		goto out_writepages;
2754 
2755 	if (ext4_should_journal_data(inode)) {
2756 		ret = generic_writepages(mapping, wbc);
2757 		goto out_writepages;
2758 	}
2759 
2760 	/*
2761 	 * If the filesystem has aborted, it is read-only, so return
2762 	 * right away instead of dumping stack traces later on that
2763 	 * will obscure the real source of the problem.  We test
2764 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2765 	 * the latter could be true if the filesystem is mounted
2766 	 * read-only, and in that case, ext4_writepages should
2767 	 * *never* be called, so if that ever happens, we would want
2768 	 * the stack trace.
2769 	 */
2770 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2771 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2772 		ret = -EROFS;
2773 		goto out_writepages;
2774 	}
2775 
2776 	if (ext4_should_dioread_nolock(inode)) {
2777 		/*
2778 		 * We may need to convert up to one extent per block in
2779 		 * the page and we may dirty the inode.
2780 		 */
2781 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2782 	}
2783 
2784 	/*
2785 	 * If we have inline data and arrive here, it means that
2786 	 * we will soon create the block for the 1st page, so
2787 	 * we'd better clear the inline data here.
2788 	 */
2789 	if (ext4_has_inline_data(inode)) {
2790 		/* Just inode will be modified... */
2791 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2792 		if (IS_ERR(handle)) {
2793 			ret = PTR_ERR(handle);
2794 			goto out_writepages;
2795 		}
2796 		BUG_ON(ext4_test_inode_state(inode,
2797 				EXT4_STATE_MAY_INLINE_DATA));
2798 		ext4_destroy_inline_data(handle, inode);
2799 		ext4_journal_stop(handle);
2800 	}
2801 
2802 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2803 		range_whole = 1;
2804 
2805 	if (wbc->range_cyclic) {
2806 		writeback_index = mapping->writeback_index;
2807 		if (writeback_index)
2808 			cycled = 0;
2809 		mpd.first_page = writeback_index;
2810 		mpd.last_page = -1;
2811 	} else {
2812 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2813 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2814 	}
2815 
2816 	mpd.inode = inode;
2817 	mpd.wbc = wbc;
2818 	ext4_io_submit_init(&mpd.io_submit, wbc);
2819 retry:
2820 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2821 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2822 	done = false;
2823 	blk_start_plug(&plug);
2824 
2825 	/*
2826 	 * First writeback pages that don't need mapping - we can avoid
2827 	 * starting a transaction unnecessarily and also avoid being blocked
2828 	 * in the block layer on device congestion while having transaction
2829 	 * started.
2830 	 */
2831 	mpd.do_map = 0;
2832 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2833 	if (!mpd.io_submit.io_end) {
2834 		ret = -ENOMEM;
2835 		goto unplug;
2836 	}
2837 	ret = mpage_prepare_extent_to_map(&mpd);
2838 	/* Submit prepared bio */
2839 	ext4_io_submit(&mpd.io_submit);
2840 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2841 	mpd.io_submit.io_end = NULL;
2842 	/* Unlock pages we didn't use */
2843 	mpage_release_unused_pages(&mpd, false);
2844 	if (ret < 0)
2845 		goto unplug;
2846 
2847 	while (!done && mpd.first_page <= mpd.last_page) {
2848 		/* For each extent of pages we use new io_end */
2849 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2850 		if (!mpd.io_submit.io_end) {
2851 			ret = -ENOMEM;
2852 			break;
2853 		}
2854 
2855 		/*
2856 		 * We have two constraints: We find one extent to map and we
2857 		 * must always write out whole page (makes a difference when
2858 		 * blocksize < pagesize) so that we don't block on IO when we
2859 		 * try to write out the rest of the page. Journalled mode is
2860 		 * not supported by delalloc.
2861 		 */
2862 		BUG_ON(ext4_should_journal_data(inode));
2863 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2864 
2865 		/* start a new transaction */
2866 		handle = ext4_journal_start_with_reserve(inode,
2867 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2868 		if (IS_ERR(handle)) {
2869 			ret = PTR_ERR(handle);
2870 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2871 			       "%ld pages, ino %lu; err %d", __func__,
2872 				wbc->nr_to_write, inode->i_ino, ret);
2873 			/* Release allocated io_end */
2874 			ext4_put_io_end(mpd.io_submit.io_end);
2875 			mpd.io_submit.io_end = NULL;
2876 			break;
2877 		}
2878 		mpd.do_map = 1;
2879 
2880 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2881 		ret = mpage_prepare_extent_to_map(&mpd);
2882 		if (!ret) {
2883 			if (mpd.map.m_len)
2884 				ret = mpage_map_and_submit_extent(handle, &mpd,
2885 					&give_up_on_write);
2886 			else {
2887 				/*
2888 				 * We scanned the whole range (or exhausted
2889 				 * nr_to_write), submitted what was mapped and
2890 				 * didn't find anything needing mapping. We are
2891 				 * done.
2892 				 */
2893 				done = true;
2894 			}
2895 		}
2896 		/*
2897 		 * Caution: If the handle is synchronous,
2898 		 * ext4_journal_stop() can wait for transaction commit
2899 		 * to finish which may depend on writeback of pages to
2900 		 * complete or on page lock to be released.  In that
2901 		 * case, we have to wait until after after we have
2902 		 * submitted all the IO, released page locks we hold,
2903 		 * and dropped io_end reference (for extent conversion
2904 		 * to be able to complete) before stopping the handle.
2905 		 */
2906 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2907 			ext4_journal_stop(handle);
2908 			handle = NULL;
2909 			mpd.do_map = 0;
2910 		}
2911 		/* Submit prepared bio */
2912 		ext4_io_submit(&mpd.io_submit);
2913 		/* Unlock pages we didn't use */
2914 		mpage_release_unused_pages(&mpd, give_up_on_write);
2915 		/*
2916 		 * Drop our io_end reference we got from init. We have
2917 		 * to be careful and use deferred io_end finishing if
2918 		 * we are still holding the transaction as we can
2919 		 * release the last reference to io_end which may end
2920 		 * up doing unwritten extent conversion.
2921 		 */
2922 		if (handle) {
2923 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2924 			ext4_journal_stop(handle);
2925 		} else
2926 			ext4_put_io_end(mpd.io_submit.io_end);
2927 		mpd.io_submit.io_end = NULL;
2928 
2929 		if (ret == -ENOSPC && sbi->s_journal) {
2930 			/*
2931 			 * Commit the transaction which would
2932 			 * free blocks released in the transaction
2933 			 * and try again
2934 			 */
2935 			jbd2_journal_force_commit_nested(sbi->s_journal);
2936 			ret = 0;
2937 			continue;
2938 		}
2939 		/* Fatal error - ENOMEM, EIO... */
2940 		if (ret)
2941 			break;
2942 	}
2943 unplug:
2944 	blk_finish_plug(&plug);
2945 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2946 		cycled = 1;
2947 		mpd.last_page = writeback_index - 1;
2948 		mpd.first_page = 0;
2949 		goto retry;
2950 	}
2951 
2952 	/* Update index */
2953 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2954 		/*
2955 		 * Set the writeback_index so that range_cyclic
2956 		 * mode will write it back later
2957 		 */
2958 		mapping->writeback_index = mpd.first_page;
2959 
2960 out_writepages:
2961 	trace_ext4_writepages_result(inode, wbc, ret,
2962 				     nr_to_write - wbc->nr_to_write);
2963 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2964 	return ret;
2965 }
2966 
2967 static int ext4_dax_writepages(struct address_space *mapping,
2968 			       struct writeback_control *wbc)
2969 {
2970 	int ret;
2971 	long nr_to_write = wbc->nr_to_write;
2972 	struct inode *inode = mapping->host;
2973 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2974 
2975 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2976 		return -EIO;
2977 
2978 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2979 	trace_ext4_writepages(inode, wbc);
2980 
2981 	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2982 	trace_ext4_writepages_result(inode, wbc, ret,
2983 				     nr_to_write - wbc->nr_to_write);
2984 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2985 	return ret;
2986 }
2987 
2988 static int ext4_nonda_switch(struct super_block *sb)
2989 {
2990 	s64 free_clusters, dirty_clusters;
2991 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2992 
2993 	/*
2994 	 * switch to non delalloc mode if we are running low
2995 	 * on free block. The free block accounting via percpu
2996 	 * counters can get slightly wrong with percpu_counter_batch getting
2997 	 * accumulated on each CPU without updating global counters
2998 	 * Delalloc need an accurate free block accounting. So switch
2999 	 * to non delalloc when we are near to error range.
3000 	 */
3001 	free_clusters =
3002 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3003 	dirty_clusters =
3004 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3005 	/*
3006 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3007 	 */
3008 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3009 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3010 
3011 	if (2 * free_clusters < 3 * dirty_clusters ||
3012 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3013 		/*
3014 		 * free block count is less than 150% of dirty blocks
3015 		 * or free blocks is less than watermark
3016 		 */
3017 		return 1;
3018 	}
3019 	return 0;
3020 }
3021 
3022 /* We always reserve for an inode update; the superblock could be there too */
3023 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3024 {
3025 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
3026 		return 1;
3027 
3028 	if (pos + len <= 0x7fffffffULL)
3029 		return 1;
3030 
3031 	/* We might need to update the superblock to set LARGE_FILE */
3032 	return 2;
3033 }
3034 
3035 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3036 			       loff_t pos, unsigned len, unsigned flags,
3037 			       struct page **pagep, void **fsdata)
3038 {
3039 	int ret, retries = 0;
3040 	struct page *page;
3041 	pgoff_t index;
3042 	struct inode *inode = mapping->host;
3043 	handle_t *handle;
3044 
3045 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3046 		return -EIO;
3047 
3048 	index = pos >> PAGE_SHIFT;
3049 
3050 	if (ext4_nonda_switch(inode->i_sb) ||
3051 	    S_ISLNK(inode->i_mode)) {
3052 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3053 		return ext4_write_begin(file, mapping, pos,
3054 					len, flags, pagep, fsdata);
3055 	}
3056 	*fsdata = (void *)0;
3057 	trace_ext4_da_write_begin(inode, pos, len, flags);
3058 
3059 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3060 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3061 						      pos, len, flags,
3062 						      pagep, fsdata);
3063 		if (ret < 0)
3064 			return ret;
3065 		if (ret == 1)
3066 			return 0;
3067 	}
3068 
3069 	/*
3070 	 * grab_cache_page_write_begin() can take a long time if the
3071 	 * system is thrashing due to memory pressure, or if the page
3072 	 * is being written back.  So grab it first before we start
3073 	 * the transaction handle.  This also allows us to allocate
3074 	 * the page (if needed) without using GFP_NOFS.
3075 	 */
3076 retry_grab:
3077 	page = grab_cache_page_write_begin(mapping, index, flags);
3078 	if (!page)
3079 		return -ENOMEM;
3080 	unlock_page(page);
3081 
3082 	/*
3083 	 * With delayed allocation, we don't log the i_disksize update
3084 	 * if there is delayed block allocation. But we still need
3085 	 * to journalling the i_disksize update if writes to the end
3086 	 * of file which has an already mapped buffer.
3087 	 */
3088 retry_journal:
3089 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3090 				ext4_da_write_credits(inode, pos, len));
3091 	if (IS_ERR(handle)) {
3092 		put_page(page);
3093 		return PTR_ERR(handle);
3094 	}
3095 
3096 	lock_page(page);
3097 	if (page->mapping != mapping) {
3098 		/* The page got truncated from under us */
3099 		unlock_page(page);
3100 		put_page(page);
3101 		ext4_journal_stop(handle);
3102 		goto retry_grab;
3103 	}
3104 	/* In case writeback began while the page was unlocked */
3105 	wait_for_stable_page(page);
3106 
3107 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3108 	ret = ext4_block_write_begin(page, pos, len,
3109 				     ext4_da_get_block_prep);
3110 #else
3111 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3112 #endif
3113 	if (ret < 0) {
3114 		unlock_page(page);
3115 		ext4_journal_stop(handle);
3116 		/*
3117 		 * block_write_begin may have instantiated a few blocks
3118 		 * outside i_size.  Trim these off again. Don't need
3119 		 * i_size_read because we hold i_mutex.
3120 		 */
3121 		if (pos + len > inode->i_size)
3122 			ext4_truncate_failed_write(inode);
3123 
3124 		if (ret == -ENOSPC &&
3125 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3126 			goto retry_journal;
3127 
3128 		put_page(page);
3129 		return ret;
3130 	}
3131 
3132 	*pagep = page;
3133 	return ret;
3134 }
3135 
3136 /*
3137  * Check if we should update i_disksize
3138  * when write to the end of file but not require block allocation
3139  */
3140 static int ext4_da_should_update_i_disksize(struct page *page,
3141 					    unsigned long offset)
3142 {
3143 	struct buffer_head *bh;
3144 	struct inode *inode = page->mapping->host;
3145 	unsigned int idx;
3146 	int i;
3147 
3148 	bh = page_buffers(page);
3149 	idx = offset >> inode->i_blkbits;
3150 
3151 	for (i = 0; i < idx; i++)
3152 		bh = bh->b_this_page;
3153 
3154 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3155 		return 0;
3156 	return 1;
3157 }
3158 
3159 static int ext4_da_write_end(struct file *file,
3160 			     struct address_space *mapping,
3161 			     loff_t pos, unsigned len, unsigned copied,
3162 			     struct page *page, void *fsdata)
3163 {
3164 	struct inode *inode = mapping->host;
3165 	int ret = 0, ret2;
3166 	handle_t *handle = ext4_journal_current_handle();
3167 	loff_t new_i_size;
3168 	unsigned long start, end;
3169 	int write_mode = (int)(unsigned long)fsdata;
3170 
3171 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3172 		return ext4_write_end(file, mapping, pos,
3173 				      len, copied, page, fsdata);
3174 
3175 	trace_ext4_da_write_end(inode, pos, len, copied);
3176 	start = pos & (PAGE_SIZE - 1);
3177 	end = start + copied - 1;
3178 
3179 	/*
3180 	 * generic_write_end() will run mark_inode_dirty() if i_size
3181 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3182 	 * into that.
3183 	 */
3184 	new_i_size = pos + copied;
3185 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3186 		if (ext4_has_inline_data(inode) ||
3187 		    ext4_da_should_update_i_disksize(page, end)) {
3188 			ext4_update_i_disksize(inode, new_i_size);
3189 			/* We need to mark inode dirty even if
3190 			 * new_i_size is less that inode->i_size
3191 			 * bu greater than i_disksize.(hint delalloc)
3192 			 */
3193 			ext4_mark_inode_dirty(handle, inode);
3194 		}
3195 	}
3196 
3197 	if (write_mode != CONVERT_INLINE_DATA &&
3198 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3199 	    ext4_has_inline_data(inode))
3200 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3201 						     page);
3202 	else
3203 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3204 							page, fsdata);
3205 
3206 	copied = ret2;
3207 	if (ret2 < 0)
3208 		ret = ret2;
3209 	ret2 = ext4_journal_stop(handle);
3210 	if (!ret)
3211 		ret = ret2;
3212 
3213 	return ret ? ret : copied;
3214 }
3215 
3216 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3217 				   unsigned int length)
3218 {
3219 	/*
3220 	 * Drop reserved blocks
3221 	 */
3222 	BUG_ON(!PageLocked(page));
3223 	if (!page_has_buffers(page))
3224 		goto out;
3225 
3226 	ext4_da_page_release_reservation(page, offset, length);
3227 
3228 out:
3229 	ext4_invalidatepage(page, offset, length);
3230 
3231 	return;
3232 }
3233 
3234 /*
3235  * Force all delayed allocation blocks to be allocated for a given inode.
3236  */
3237 int ext4_alloc_da_blocks(struct inode *inode)
3238 {
3239 	trace_ext4_alloc_da_blocks(inode);
3240 
3241 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3242 		return 0;
3243 
3244 	/*
3245 	 * We do something simple for now.  The filemap_flush() will
3246 	 * also start triggering a write of the data blocks, which is
3247 	 * not strictly speaking necessary (and for users of
3248 	 * laptop_mode, not even desirable).  However, to do otherwise
3249 	 * would require replicating code paths in:
3250 	 *
3251 	 * ext4_writepages() ->
3252 	 *    write_cache_pages() ---> (via passed in callback function)
3253 	 *        __mpage_da_writepage() -->
3254 	 *           mpage_add_bh_to_extent()
3255 	 *           mpage_da_map_blocks()
3256 	 *
3257 	 * The problem is that write_cache_pages(), located in
3258 	 * mm/page-writeback.c, marks pages clean in preparation for
3259 	 * doing I/O, which is not desirable if we're not planning on
3260 	 * doing I/O at all.
3261 	 *
3262 	 * We could call write_cache_pages(), and then redirty all of
3263 	 * the pages by calling redirty_page_for_writepage() but that
3264 	 * would be ugly in the extreme.  So instead we would need to
3265 	 * replicate parts of the code in the above functions,
3266 	 * simplifying them because we wouldn't actually intend to
3267 	 * write out the pages, but rather only collect contiguous
3268 	 * logical block extents, call the multi-block allocator, and
3269 	 * then update the buffer heads with the block allocations.
3270 	 *
3271 	 * For now, though, we'll cheat by calling filemap_flush(),
3272 	 * which will map the blocks, and start the I/O, but not
3273 	 * actually wait for the I/O to complete.
3274 	 */
3275 	return filemap_flush(inode->i_mapping);
3276 }
3277 
3278 /*
3279  * bmap() is special.  It gets used by applications such as lilo and by
3280  * the swapper to find the on-disk block of a specific piece of data.
3281  *
3282  * Naturally, this is dangerous if the block concerned is still in the
3283  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3284  * filesystem and enables swap, then they may get a nasty shock when the
3285  * data getting swapped to that swapfile suddenly gets overwritten by
3286  * the original zero's written out previously to the journal and
3287  * awaiting writeback in the kernel's buffer cache.
3288  *
3289  * So, if we see any bmap calls here on a modified, data-journaled file,
3290  * take extra steps to flush any blocks which might be in the cache.
3291  */
3292 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3293 {
3294 	struct inode *inode = mapping->host;
3295 	journal_t *journal;
3296 	int err;
3297 
3298 	/*
3299 	 * We can get here for an inline file via the FIBMAP ioctl
3300 	 */
3301 	if (ext4_has_inline_data(inode))
3302 		return 0;
3303 
3304 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3305 			test_opt(inode->i_sb, DELALLOC)) {
3306 		/*
3307 		 * With delalloc we want to sync the file
3308 		 * so that we can make sure we allocate
3309 		 * blocks for file
3310 		 */
3311 		filemap_write_and_wait(mapping);
3312 	}
3313 
3314 	if (EXT4_JOURNAL(inode) &&
3315 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3316 		/*
3317 		 * This is a REALLY heavyweight approach, but the use of
3318 		 * bmap on dirty files is expected to be extremely rare:
3319 		 * only if we run lilo or swapon on a freshly made file
3320 		 * do we expect this to happen.
3321 		 *
3322 		 * (bmap requires CAP_SYS_RAWIO so this does not
3323 		 * represent an unprivileged user DOS attack --- we'd be
3324 		 * in trouble if mortal users could trigger this path at
3325 		 * will.)
3326 		 *
3327 		 * NB. EXT4_STATE_JDATA is not set on files other than
3328 		 * regular files.  If somebody wants to bmap a directory
3329 		 * or symlink and gets confused because the buffer
3330 		 * hasn't yet been flushed to disk, they deserve
3331 		 * everything they get.
3332 		 */
3333 
3334 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3335 		journal = EXT4_JOURNAL(inode);
3336 		jbd2_journal_lock_updates(journal);
3337 		err = jbd2_journal_flush(journal);
3338 		jbd2_journal_unlock_updates(journal);
3339 
3340 		if (err)
3341 			return 0;
3342 	}
3343 
3344 	return generic_block_bmap(mapping, block, ext4_get_block);
3345 }
3346 
3347 static int ext4_readpage(struct file *file, struct page *page)
3348 {
3349 	int ret = -EAGAIN;
3350 	struct inode *inode = page->mapping->host;
3351 
3352 	trace_ext4_readpage(page);
3353 
3354 	if (ext4_has_inline_data(inode))
3355 		ret = ext4_readpage_inline(inode, page);
3356 
3357 	if (ret == -EAGAIN)
3358 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3359 						false);
3360 
3361 	return ret;
3362 }
3363 
3364 static int
3365 ext4_readpages(struct file *file, struct address_space *mapping,
3366 		struct list_head *pages, unsigned nr_pages)
3367 {
3368 	struct inode *inode = mapping->host;
3369 
3370 	/* If the file has inline data, no need to do readpages. */
3371 	if (ext4_has_inline_data(inode))
3372 		return 0;
3373 
3374 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3375 }
3376 
3377 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3378 				unsigned int length)
3379 {
3380 	trace_ext4_invalidatepage(page, offset, length);
3381 
3382 	/* No journalling happens on data buffers when this function is used */
3383 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3384 
3385 	block_invalidatepage(page, offset, length);
3386 }
3387 
3388 static int __ext4_journalled_invalidatepage(struct page *page,
3389 					    unsigned int offset,
3390 					    unsigned int length)
3391 {
3392 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3393 
3394 	trace_ext4_journalled_invalidatepage(page, offset, length);
3395 
3396 	/*
3397 	 * If it's a full truncate we just forget about the pending dirtying
3398 	 */
3399 	if (offset == 0 && length == PAGE_SIZE)
3400 		ClearPageChecked(page);
3401 
3402 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3403 }
3404 
3405 /* Wrapper for aops... */
3406 static void ext4_journalled_invalidatepage(struct page *page,
3407 					   unsigned int offset,
3408 					   unsigned int length)
3409 {
3410 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3411 }
3412 
3413 static int ext4_releasepage(struct page *page, gfp_t wait)
3414 {
3415 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3416 
3417 	trace_ext4_releasepage(page);
3418 
3419 	/* Page has dirty journalled data -> cannot release */
3420 	if (PageChecked(page))
3421 		return 0;
3422 	if (journal)
3423 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3424 	else
3425 		return try_to_free_buffers(page);
3426 }
3427 
3428 static bool ext4_inode_datasync_dirty(struct inode *inode)
3429 {
3430 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3431 
3432 	if (journal)
3433 		return !jbd2_transaction_committed(journal,
3434 					EXT4_I(inode)->i_datasync_tid);
3435 	/* Any metadata buffers to write? */
3436 	if (!list_empty(&inode->i_mapping->private_list))
3437 		return true;
3438 	return inode->i_state & I_DIRTY_DATASYNC;
3439 }
3440 
3441 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3442 			    unsigned flags, struct iomap *iomap)
3443 {
3444 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3445 	unsigned int blkbits = inode->i_blkbits;
3446 	unsigned long first_block, last_block;
3447 	struct ext4_map_blocks map;
3448 	bool delalloc = false;
3449 	int ret;
3450 
3451 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3452 		return -EINVAL;
3453 	first_block = offset >> blkbits;
3454 	last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3455 			   EXT4_MAX_LOGICAL_BLOCK);
3456 
3457 	if (flags & IOMAP_REPORT) {
3458 		if (ext4_has_inline_data(inode)) {
3459 			ret = ext4_inline_data_iomap(inode, iomap);
3460 			if (ret != -EAGAIN) {
3461 				if (ret == 0 && offset >= iomap->length)
3462 					ret = -ENOENT;
3463 				return ret;
3464 			}
3465 		}
3466 	} else {
3467 		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3468 			return -ERANGE;
3469 	}
3470 
3471 	map.m_lblk = first_block;
3472 	map.m_len = last_block - first_block + 1;
3473 
3474 	if (flags & IOMAP_REPORT) {
3475 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3476 		if (ret < 0)
3477 			return ret;
3478 
3479 		if (ret == 0) {
3480 			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3481 			struct extent_status es;
3482 
3483 			ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3484 						  map.m_lblk, end, &es);
3485 
3486 			if (!es.es_len || es.es_lblk > end) {
3487 				/* entire range is a hole */
3488 			} else if (es.es_lblk > map.m_lblk) {
3489 				/* range starts with a hole */
3490 				map.m_len = es.es_lblk - map.m_lblk;
3491 			} else {
3492 				ext4_lblk_t offs = 0;
3493 
3494 				if (es.es_lblk < map.m_lblk)
3495 					offs = map.m_lblk - es.es_lblk;
3496 				map.m_lblk = es.es_lblk + offs;
3497 				map.m_len = es.es_len - offs;
3498 				delalloc = true;
3499 			}
3500 		}
3501 	} else if (flags & IOMAP_WRITE) {
3502 		int dio_credits;
3503 		handle_t *handle;
3504 		int retries = 0;
3505 
3506 		/* Trim mapping request to maximum we can map at once for DIO */
3507 		if (map.m_len > DIO_MAX_BLOCKS)
3508 			map.m_len = DIO_MAX_BLOCKS;
3509 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3510 retry:
3511 		/*
3512 		 * Either we allocate blocks and then we don't get unwritten
3513 		 * extent so we have reserved enough credits, or the blocks
3514 		 * are already allocated and unwritten and in that case
3515 		 * extent conversion fits in the credits as well.
3516 		 */
3517 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3518 					    dio_credits);
3519 		if (IS_ERR(handle))
3520 			return PTR_ERR(handle);
3521 
3522 		ret = ext4_map_blocks(handle, inode, &map,
3523 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3524 		if (ret < 0) {
3525 			ext4_journal_stop(handle);
3526 			if (ret == -ENOSPC &&
3527 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3528 				goto retry;
3529 			return ret;
3530 		}
3531 
3532 		/*
3533 		 * If we added blocks beyond i_size, we need to make sure they
3534 		 * will get truncated if we crash before updating i_size in
3535 		 * ext4_iomap_end(). For faults we don't need to do that (and
3536 		 * even cannot because for orphan list operations inode_lock is
3537 		 * required) - if we happen to instantiate block beyond i_size,
3538 		 * it is because we race with truncate which has already added
3539 		 * the inode to the orphan list.
3540 		 */
3541 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3542 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3543 			int err;
3544 
3545 			err = ext4_orphan_add(handle, inode);
3546 			if (err < 0) {
3547 				ext4_journal_stop(handle);
3548 				return err;
3549 			}
3550 		}
3551 		ext4_journal_stop(handle);
3552 	} else {
3553 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3554 		if (ret < 0)
3555 			return ret;
3556 	}
3557 
3558 	iomap->flags = 0;
3559 	if (ext4_inode_datasync_dirty(inode))
3560 		iomap->flags |= IOMAP_F_DIRTY;
3561 	iomap->bdev = inode->i_sb->s_bdev;
3562 	iomap->dax_dev = sbi->s_daxdev;
3563 	iomap->offset = (u64)first_block << blkbits;
3564 	iomap->length = (u64)map.m_len << blkbits;
3565 
3566 	if (ret == 0) {
3567 		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3568 		iomap->addr = IOMAP_NULL_ADDR;
3569 	} else {
3570 		if (map.m_flags & EXT4_MAP_MAPPED) {
3571 			iomap->type = IOMAP_MAPPED;
3572 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3573 			iomap->type = IOMAP_UNWRITTEN;
3574 		} else {
3575 			WARN_ON_ONCE(1);
3576 			return -EIO;
3577 		}
3578 		iomap->addr = (u64)map.m_pblk << blkbits;
3579 	}
3580 
3581 	if (map.m_flags & EXT4_MAP_NEW)
3582 		iomap->flags |= IOMAP_F_NEW;
3583 
3584 	return 0;
3585 }
3586 
3587 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3588 			  ssize_t written, unsigned flags, struct iomap *iomap)
3589 {
3590 	int ret = 0;
3591 	handle_t *handle;
3592 	int blkbits = inode->i_blkbits;
3593 	bool truncate = false;
3594 
3595 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3596 		return 0;
3597 
3598 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3599 	if (IS_ERR(handle)) {
3600 		ret = PTR_ERR(handle);
3601 		goto orphan_del;
3602 	}
3603 	if (ext4_update_inode_size(inode, offset + written))
3604 		ext4_mark_inode_dirty(handle, inode);
3605 	/*
3606 	 * We may need to truncate allocated but not written blocks beyond EOF.
3607 	 */
3608 	if (iomap->offset + iomap->length >
3609 	    ALIGN(inode->i_size, 1 << blkbits)) {
3610 		ext4_lblk_t written_blk, end_blk;
3611 
3612 		written_blk = (offset + written) >> blkbits;
3613 		end_blk = (offset + length) >> blkbits;
3614 		if (written_blk < end_blk && ext4_can_truncate(inode))
3615 			truncate = true;
3616 	}
3617 	/*
3618 	 * Remove inode from orphan list if we were extending a inode and
3619 	 * everything went fine.
3620 	 */
3621 	if (!truncate && inode->i_nlink &&
3622 	    !list_empty(&EXT4_I(inode)->i_orphan))
3623 		ext4_orphan_del(handle, inode);
3624 	ext4_journal_stop(handle);
3625 	if (truncate) {
3626 		ext4_truncate_failed_write(inode);
3627 orphan_del:
3628 		/*
3629 		 * If truncate failed early the inode might still be on the
3630 		 * orphan list; we need to make sure the inode is removed from
3631 		 * the orphan list in that case.
3632 		 */
3633 		if (inode->i_nlink)
3634 			ext4_orphan_del(NULL, inode);
3635 	}
3636 	return ret;
3637 }
3638 
3639 const struct iomap_ops ext4_iomap_ops = {
3640 	.iomap_begin		= ext4_iomap_begin,
3641 	.iomap_end		= ext4_iomap_end,
3642 };
3643 
3644 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3645 			    ssize_t size, void *private)
3646 {
3647         ext4_io_end_t *io_end = private;
3648 
3649 	/* if not async direct IO just return */
3650 	if (!io_end)
3651 		return 0;
3652 
3653 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3654 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3655 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3656 
3657 	/*
3658 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3659 	 * data was not written. Just clear the unwritten flag and drop io_end.
3660 	 */
3661 	if (size <= 0) {
3662 		ext4_clear_io_unwritten_flag(io_end);
3663 		size = 0;
3664 	}
3665 	io_end->offset = offset;
3666 	io_end->size = size;
3667 	ext4_put_io_end(io_end);
3668 
3669 	return 0;
3670 }
3671 
3672 /*
3673  * Handling of direct IO writes.
3674  *
3675  * For ext4 extent files, ext4 will do direct-io write even to holes,
3676  * preallocated extents, and those write extend the file, no need to
3677  * fall back to buffered IO.
3678  *
3679  * For holes, we fallocate those blocks, mark them as unwritten
3680  * If those blocks were preallocated, we mark sure they are split, but
3681  * still keep the range to write as unwritten.
3682  *
3683  * The unwritten extents will be converted to written when DIO is completed.
3684  * For async direct IO, since the IO may still pending when return, we
3685  * set up an end_io call back function, which will do the conversion
3686  * when async direct IO completed.
3687  *
3688  * If the O_DIRECT write will extend the file then add this inode to the
3689  * orphan list.  So recovery will truncate it back to the original size
3690  * if the machine crashes during the write.
3691  *
3692  */
3693 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3694 {
3695 	struct file *file = iocb->ki_filp;
3696 	struct inode *inode = file->f_mapping->host;
3697 	struct ext4_inode_info *ei = EXT4_I(inode);
3698 	ssize_t ret;
3699 	loff_t offset = iocb->ki_pos;
3700 	size_t count = iov_iter_count(iter);
3701 	int overwrite = 0;
3702 	get_block_t *get_block_func = NULL;
3703 	int dio_flags = 0;
3704 	loff_t final_size = offset + count;
3705 	int orphan = 0;
3706 	handle_t *handle;
3707 
3708 	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3709 		/* Credits for sb + inode write */
3710 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3711 		if (IS_ERR(handle)) {
3712 			ret = PTR_ERR(handle);
3713 			goto out;
3714 		}
3715 		ret = ext4_orphan_add(handle, inode);
3716 		if (ret) {
3717 			ext4_journal_stop(handle);
3718 			goto out;
3719 		}
3720 		orphan = 1;
3721 		ext4_update_i_disksize(inode, inode->i_size);
3722 		ext4_journal_stop(handle);
3723 	}
3724 
3725 	BUG_ON(iocb->private == NULL);
3726 
3727 	/*
3728 	 * Make all waiters for direct IO properly wait also for extent
3729 	 * conversion. This also disallows race between truncate() and
3730 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3731 	 */
3732 	inode_dio_begin(inode);
3733 
3734 	/* If we do a overwrite dio, i_mutex locking can be released */
3735 	overwrite = *((int *)iocb->private);
3736 
3737 	if (overwrite)
3738 		inode_unlock(inode);
3739 
3740 	/*
3741 	 * For extent mapped files we could direct write to holes and fallocate.
3742 	 *
3743 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3744 	 * parallel buffered read to expose the stale data before DIO complete
3745 	 * the data IO.
3746 	 *
3747 	 * As to previously fallocated extents, ext4 get_block will just simply
3748 	 * mark the buffer mapped but still keep the extents unwritten.
3749 	 *
3750 	 * For non AIO case, we will convert those unwritten extents to written
3751 	 * after return back from blockdev_direct_IO. That way we save us from
3752 	 * allocating io_end structure and also the overhead of offloading
3753 	 * the extent convertion to a workqueue.
3754 	 *
3755 	 * For async DIO, the conversion needs to be deferred when the
3756 	 * IO is completed. The ext4 end_io callback function will be
3757 	 * called to take care of the conversion work.  Here for async
3758 	 * case, we allocate an io_end structure to hook to the iocb.
3759 	 */
3760 	iocb->private = NULL;
3761 	if (overwrite)
3762 		get_block_func = ext4_dio_get_block_overwrite;
3763 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3764 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3765 		get_block_func = ext4_dio_get_block;
3766 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3767 	} else if (is_sync_kiocb(iocb)) {
3768 		get_block_func = ext4_dio_get_block_unwritten_sync;
3769 		dio_flags = DIO_LOCKING;
3770 	} else {
3771 		get_block_func = ext4_dio_get_block_unwritten_async;
3772 		dio_flags = DIO_LOCKING;
3773 	}
3774 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3775 				   get_block_func, ext4_end_io_dio, NULL,
3776 				   dio_flags);
3777 
3778 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3779 						EXT4_STATE_DIO_UNWRITTEN)) {
3780 		int err;
3781 		/*
3782 		 * for non AIO case, since the IO is already
3783 		 * completed, we could do the conversion right here
3784 		 */
3785 		err = ext4_convert_unwritten_extents(NULL, inode,
3786 						     offset, ret);
3787 		if (err < 0)
3788 			ret = err;
3789 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3790 	}
3791 
3792 	inode_dio_end(inode);
3793 	/* take i_mutex locking again if we do a ovewrite dio */
3794 	if (overwrite)
3795 		inode_lock(inode);
3796 
3797 	if (ret < 0 && final_size > inode->i_size)
3798 		ext4_truncate_failed_write(inode);
3799 
3800 	/* Handle extending of i_size after direct IO write */
3801 	if (orphan) {
3802 		int err;
3803 
3804 		/* Credits for sb + inode write */
3805 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3806 		if (IS_ERR(handle)) {
3807 			/*
3808 			 * We wrote the data but cannot extend
3809 			 * i_size. Bail out. In async io case, we do
3810 			 * not return error here because we have
3811 			 * already submmitted the corresponding
3812 			 * bio. Returning error here makes the caller
3813 			 * think that this IO is done and failed
3814 			 * resulting in race with bio's completion
3815 			 * handler.
3816 			 */
3817 			if (!ret)
3818 				ret = PTR_ERR(handle);
3819 			if (inode->i_nlink)
3820 				ext4_orphan_del(NULL, inode);
3821 
3822 			goto out;
3823 		}
3824 		if (inode->i_nlink)
3825 			ext4_orphan_del(handle, inode);
3826 		if (ret > 0) {
3827 			loff_t end = offset + ret;
3828 			if (end > inode->i_size || end > ei->i_disksize) {
3829 				ext4_update_i_disksize(inode, end);
3830 				if (end > inode->i_size)
3831 					i_size_write(inode, end);
3832 				/*
3833 				 * We're going to return a positive `ret'
3834 				 * here due to non-zero-length I/O, so there's
3835 				 * no way of reporting error returns from
3836 				 * ext4_mark_inode_dirty() to userspace.  So
3837 				 * ignore it.
3838 				 */
3839 				ext4_mark_inode_dirty(handle, inode);
3840 			}
3841 		}
3842 		err = ext4_journal_stop(handle);
3843 		if (ret == 0)
3844 			ret = err;
3845 	}
3846 out:
3847 	return ret;
3848 }
3849 
3850 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3851 {
3852 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3853 	struct inode *inode = mapping->host;
3854 	size_t count = iov_iter_count(iter);
3855 	ssize_t ret;
3856 
3857 	/*
3858 	 * Shared inode_lock is enough for us - it protects against concurrent
3859 	 * writes & truncates and since we take care of writing back page cache,
3860 	 * we are protected against page writeback as well.
3861 	 */
3862 	inode_lock_shared(inode);
3863 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3864 					   iocb->ki_pos + count - 1);
3865 	if (ret)
3866 		goto out_unlock;
3867 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3868 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3869 out_unlock:
3870 	inode_unlock_shared(inode);
3871 	return ret;
3872 }
3873 
3874 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3875 {
3876 	struct file *file = iocb->ki_filp;
3877 	struct inode *inode = file->f_mapping->host;
3878 	size_t count = iov_iter_count(iter);
3879 	loff_t offset = iocb->ki_pos;
3880 	ssize_t ret;
3881 
3882 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3883 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3884 		return 0;
3885 #endif
3886 
3887 	/*
3888 	 * If we are doing data journalling we don't support O_DIRECT
3889 	 */
3890 	if (ext4_should_journal_data(inode))
3891 		return 0;
3892 
3893 	/* Let buffer I/O handle the inline data case. */
3894 	if (ext4_has_inline_data(inode))
3895 		return 0;
3896 
3897 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3898 	if (iov_iter_rw(iter) == READ)
3899 		ret = ext4_direct_IO_read(iocb, iter);
3900 	else
3901 		ret = ext4_direct_IO_write(iocb, iter);
3902 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3903 	return ret;
3904 }
3905 
3906 /*
3907  * Pages can be marked dirty completely asynchronously from ext4's journalling
3908  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3909  * much here because ->set_page_dirty is called under VFS locks.  The page is
3910  * not necessarily locked.
3911  *
3912  * We cannot just dirty the page and leave attached buffers clean, because the
3913  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3914  * or jbddirty because all the journalling code will explode.
3915  *
3916  * So what we do is to mark the page "pending dirty" and next time writepage
3917  * is called, propagate that into the buffers appropriately.
3918  */
3919 static int ext4_journalled_set_page_dirty(struct page *page)
3920 {
3921 	SetPageChecked(page);
3922 	return __set_page_dirty_nobuffers(page);
3923 }
3924 
3925 static int ext4_set_page_dirty(struct page *page)
3926 {
3927 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3928 	WARN_ON_ONCE(!page_has_buffers(page));
3929 	return __set_page_dirty_buffers(page);
3930 }
3931 
3932 static const struct address_space_operations ext4_aops = {
3933 	.readpage		= ext4_readpage,
3934 	.readpages		= ext4_readpages,
3935 	.writepage		= ext4_writepage,
3936 	.writepages		= ext4_writepages,
3937 	.write_begin		= ext4_write_begin,
3938 	.write_end		= ext4_write_end,
3939 	.set_page_dirty		= ext4_set_page_dirty,
3940 	.bmap			= ext4_bmap,
3941 	.invalidatepage		= ext4_invalidatepage,
3942 	.releasepage		= ext4_releasepage,
3943 	.direct_IO		= ext4_direct_IO,
3944 	.migratepage		= buffer_migrate_page,
3945 	.is_partially_uptodate  = block_is_partially_uptodate,
3946 	.error_remove_page	= generic_error_remove_page,
3947 };
3948 
3949 static const struct address_space_operations ext4_journalled_aops = {
3950 	.readpage		= ext4_readpage,
3951 	.readpages		= ext4_readpages,
3952 	.writepage		= ext4_writepage,
3953 	.writepages		= ext4_writepages,
3954 	.write_begin		= ext4_write_begin,
3955 	.write_end		= ext4_journalled_write_end,
3956 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3957 	.bmap			= ext4_bmap,
3958 	.invalidatepage		= ext4_journalled_invalidatepage,
3959 	.releasepage		= ext4_releasepage,
3960 	.direct_IO		= ext4_direct_IO,
3961 	.is_partially_uptodate  = block_is_partially_uptodate,
3962 	.error_remove_page	= generic_error_remove_page,
3963 };
3964 
3965 static const struct address_space_operations ext4_da_aops = {
3966 	.readpage		= ext4_readpage,
3967 	.readpages		= ext4_readpages,
3968 	.writepage		= ext4_writepage,
3969 	.writepages		= ext4_writepages,
3970 	.write_begin		= ext4_da_write_begin,
3971 	.write_end		= ext4_da_write_end,
3972 	.set_page_dirty		= ext4_set_page_dirty,
3973 	.bmap			= ext4_bmap,
3974 	.invalidatepage		= ext4_da_invalidatepage,
3975 	.releasepage		= ext4_releasepage,
3976 	.direct_IO		= ext4_direct_IO,
3977 	.migratepage		= buffer_migrate_page,
3978 	.is_partially_uptodate  = block_is_partially_uptodate,
3979 	.error_remove_page	= generic_error_remove_page,
3980 };
3981 
3982 static const struct address_space_operations ext4_dax_aops = {
3983 	.writepages		= ext4_dax_writepages,
3984 	.direct_IO		= noop_direct_IO,
3985 	.set_page_dirty		= noop_set_page_dirty,
3986 	.bmap			= ext4_bmap,
3987 	.invalidatepage		= noop_invalidatepage,
3988 };
3989 
3990 void ext4_set_aops(struct inode *inode)
3991 {
3992 	switch (ext4_inode_journal_mode(inode)) {
3993 	case EXT4_INODE_ORDERED_DATA_MODE:
3994 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3995 		break;
3996 	case EXT4_INODE_JOURNAL_DATA_MODE:
3997 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3998 		return;
3999 	default:
4000 		BUG();
4001 	}
4002 	if (IS_DAX(inode))
4003 		inode->i_mapping->a_ops = &ext4_dax_aops;
4004 	else if (test_opt(inode->i_sb, DELALLOC))
4005 		inode->i_mapping->a_ops = &ext4_da_aops;
4006 	else
4007 		inode->i_mapping->a_ops = &ext4_aops;
4008 }
4009 
4010 static int __ext4_block_zero_page_range(handle_t *handle,
4011 		struct address_space *mapping, loff_t from, loff_t length)
4012 {
4013 	ext4_fsblk_t index = from >> PAGE_SHIFT;
4014 	unsigned offset = from & (PAGE_SIZE-1);
4015 	unsigned blocksize, pos;
4016 	ext4_lblk_t iblock;
4017 	struct inode *inode = mapping->host;
4018 	struct buffer_head *bh;
4019 	struct page *page;
4020 	int err = 0;
4021 
4022 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4023 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
4024 	if (!page)
4025 		return -ENOMEM;
4026 
4027 	blocksize = inode->i_sb->s_blocksize;
4028 
4029 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4030 
4031 	if (!page_has_buffers(page))
4032 		create_empty_buffers(page, blocksize, 0);
4033 
4034 	/* Find the buffer that contains "offset" */
4035 	bh = page_buffers(page);
4036 	pos = blocksize;
4037 	while (offset >= pos) {
4038 		bh = bh->b_this_page;
4039 		iblock++;
4040 		pos += blocksize;
4041 	}
4042 	if (buffer_freed(bh)) {
4043 		BUFFER_TRACE(bh, "freed: skip");
4044 		goto unlock;
4045 	}
4046 	if (!buffer_mapped(bh)) {
4047 		BUFFER_TRACE(bh, "unmapped");
4048 		ext4_get_block(inode, iblock, bh, 0);
4049 		/* unmapped? It's a hole - nothing to do */
4050 		if (!buffer_mapped(bh)) {
4051 			BUFFER_TRACE(bh, "still unmapped");
4052 			goto unlock;
4053 		}
4054 	}
4055 
4056 	/* Ok, it's mapped. Make sure it's up-to-date */
4057 	if (PageUptodate(page))
4058 		set_buffer_uptodate(bh);
4059 
4060 	if (!buffer_uptodate(bh)) {
4061 		err = -EIO;
4062 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4063 		wait_on_buffer(bh);
4064 		/* Uhhuh. Read error. Complain and punt. */
4065 		if (!buffer_uptodate(bh))
4066 			goto unlock;
4067 		if (S_ISREG(inode->i_mode) &&
4068 		    ext4_encrypted_inode(inode)) {
4069 			/* We expect the key to be set. */
4070 			BUG_ON(!fscrypt_has_encryption_key(inode));
4071 			BUG_ON(blocksize != PAGE_SIZE);
4072 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4073 						page, PAGE_SIZE, 0, page->index));
4074 		}
4075 	}
4076 	if (ext4_should_journal_data(inode)) {
4077 		BUFFER_TRACE(bh, "get write access");
4078 		err = ext4_journal_get_write_access(handle, bh);
4079 		if (err)
4080 			goto unlock;
4081 	}
4082 	zero_user(page, offset, length);
4083 	BUFFER_TRACE(bh, "zeroed end of block");
4084 
4085 	if (ext4_should_journal_data(inode)) {
4086 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4087 	} else {
4088 		err = 0;
4089 		mark_buffer_dirty(bh);
4090 		if (ext4_should_order_data(inode))
4091 			err = ext4_jbd2_inode_add_write(handle, inode);
4092 	}
4093 
4094 unlock:
4095 	unlock_page(page);
4096 	put_page(page);
4097 	return err;
4098 }
4099 
4100 /*
4101  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4102  * starting from file offset 'from'.  The range to be zero'd must
4103  * be contained with in one block.  If the specified range exceeds
4104  * the end of the block it will be shortened to end of the block
4105  * that cooresponds to 'from'
4106  */
4107 static int ext4_block_zero_page_range(handle_t *handle,
4108 		struct address_space *mapping, loff_t from, loff_t length)
4109 {
4110 	struct inode *inode = mapping->host;
4111 	unsigned offset = from & (PAGE_SIZE-1);
4112 	unsigned blocksize = inode->i_sb->s_blocksize;
4113 	unsigned max = blocksize - (offset & (blocksize - 1));
4114 
4115 	/*
4116 	 * correct length if it does not fall between
4117 	 * 'from' and the end of the block
4118 	 */
4119 	if (length > max || length < 0)
4120 		length = max;
4121 
4122 	if (IS_DAX(inode)) {
4123 		return iomap_zero_range(inode, from, length, NULL,
4124 					&ext4_iomap_ops);
4125 	}
4126 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4127 }
4128 
4129 /*
4130  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4131  * up to the end of the block which corresponds to `from'.
4132  * This required during truncate. We need to physically zero the tail end
4133  * of that block so it doesn't yield old data if the file is later grown.
4134  */
4135 static int ext4_block_truncate_page(handle_t *handle,
4136 		struct address_space *mapping, loff_t from)
4137 {
4138 	unsigned offset = from & (PAGE_SIZE-1);
4139 	unsigned length;
4140 	unsigned blocksize;
4141 	struct inode *inode = mapping->host;
4142 
4143 	/* If we are processing an encrypted inode during orphan list handling */
4144 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4145 		return 0;
4146 
4147 	blocksize = inode->i_sb->s_blocksize;
4148 	length = blocksize - (offset & (blocksize - 1));
4149 
4150 	return ext4_block_zero_page_range(handle, mapping, from, length);
4151 }
4152 
4153 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4154 			     loff_t lstart, loff_t length)
4155 {
4156 	struct super_block *sb = inode->i_sb;
4157 	struct address_space *mapping = inode->i_mapping;
4158 	unsigned partial_start, partial_end;
4159 	ext4_fsblk_t start, end;
4160 	loff_t byte_end = (lstart + length - 1);
4161 	int err = 0;
4162 
4163 	partial_start = lstart & (sb->s_blocksize - 1);
4164 	partial_end = byte_end & (sb->s_blocksize - 1);
4165 
4166 	start = lstart >> sb->s_blocksize_bits;
4167 	end = byte_end >> sb->s_blocksize_bits;
4168 
4169 	/* Handle partial zero within the single block */
4170 	if (start == end &&
4171 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4172 		err = ext4_block_zero_page_range(handle, mapping,
4173 						 lstart, length);
4174 		return err;
4175 	}
4176 	/* Handle partial zero out on the start of the range */
4177 	if (partial_start) {
4178 		err = ext4_block_zero_page_range(handle, mapping,
4179 						 lstart, sb->s_blocksize);
4180 		if (err)
4181 			return err;
4182 	}
4183 	/* Handle partial zero out on the end of the range */
4184 	if (partial_end != sb->s_blocksize - 1)
4185 		err = ext4_block_zero_page_range(handle, mapping,
4186 						 byte_end - partial_end,
4187 						 partial_end + 1);
4188 	return err;
4189 }
4190 
4191 int ext4_can_truncate(struct inode *inode)
4192 {
4193 	if (S_ISREG(inode->i_mode))
4194 		return 1;
4195 	if (S_ISDIR(inode->i_mode))
4196 		return 1;
4197 	if (S_ISLNK(inode->i_mode))
4198 		return !ext4_inode_is_fast_symlink(inode);
4199 	return 0;
4200 }
4201 
4202 /*
4203  * We have to make sure i_disksize gets properly updated before we truncate
4204  * page cache due to hole punching or zero range. Otherwise i_disksize update
4205  * can get lost as it may have been postponed to submission of writeback but
4206  * that will never happen after we truncate page cache.
4207  */
4208 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4209 				      loff_t len)
4210 {
4211 	handle_t *handle;
4212 	loff_t size = i_size_read(inode);
4213 
4214 	WARN_ON(!inode_is_locked(inode));
4215 	if (offset > size || offset + len < size)
4216 		return 0;
4217 
4218 	if (EXT4_I(inode)->i_disksize >= size)
4219 		return 0;
4220 
4221 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4222 	if (IS_ERR(handle))
4223 		return PTR_ERR(handle);
4224 	ext4_update_i_disksize(inode, size);
4225 	ext4_mark_inode_dirty(handle, inode);
4226 	ext4_journal_stop(handle);
4227 
4228 	return 0;
4229 }
4230 
4231 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4232 {
4233 	up_write(&ei->i_mmap_sem);
4234 	schedule();
4235 	down_write(&ei->i_mmap_sem);
4236 }
4237 
4238 int ext4_break_layouts(struct inode *inode)
4239 {
4240 	struct ext4_inode_info *ei = EXT4_I(inode);
4241 	struct page *page;
4242 	int error;
4243 
4244 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4245 		return -EINVAL;
4246 
4247 	do {
4248 		page = dax_layout_busy_page(inode->i_mapping);
4249 		if (!page)
4250 			return 0;
4251 
4252 		error = ___wait_var_event(&page->_refcount,
4253 				atomic_read(&page->_refcount) == 1,
4254 				TASK_INTERRUPTIBLE, 0, 0,
4255 				ext4_wait_dax_page(ei));
4256 	} while (error == 0);
4257 
4258 	return error;
4259 }
4260 
4261 /*
4262  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4263  * associated with the given offset and length
4264  *
4265  * @inode:  File inode
4266  * @offset: The offset where the hole will begin
4267  * @len:    The length of the hole
4268  *
4269  * Returns: 0 on success or negative on failure
4270  */
4271 
4272 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4273 {
4274 	struct super_block *sb = inode->i_sb;
4275 	ext4_lblk_t first_block, stop_block;
4276 	struct address_space *mapping = inode->i_mapping;
4277 	loff_t first_block_offset, last_block_offset;
4278 	handle_t *handle;
4279 	unsigned int credits;
4280 	int ret = 0;
4281 
4282 	if (!S_ISREG(inode->i_mode))
4283 		return -EOPNOTSUPP;
4284 
4285 	trace_ext4_punch_hole(inode, offset, length, 0);
4286 
4287 	/*
4288 	 * Write out all dirty pages to avoid race conditions
4289 	 * Then release them.
4290 	 */
4291 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4292 		ret = filemap_write_and_wait_range(mapping, offset,
4293 						   offset + length - 1);
4294 		if (ret)
4295 			return ret;
4296 	}
4297 
4298 	inode_lock(inode);
4299 
4300 	/* No need to punch hole beyond i_size */
4301 	if (offset >= inode->i_size)
4302 		goto out_mutex;
4303 
4304 	/*
4305 	 * If the hole extends beyond i_size, set the hole
4306 	 * to end after the page that contains i_size
4307 	 */
4308 	if (offset + length > inode->i_size) {
4309 		length = inode->i_size +
4310 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4311 		   offset;
4312 	}
4313 
4314 	if (offset & (sb->s_blocksize - 1) ||
4315 	    (offset + length) & (sb->s_blocksize - 1)) {
4316 		/*
4317 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4318 		 * partial block
4319 		 */
4320 		ret = ext4_inode_attach_jinode(inode);
4321 		if (ret < 0)
4322 			goto out_mutex;
4323 
4324 	}
4325 
4326 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4327 	inode_dio_wait(inode);
4328 
4329 	/*
4330 	 * Prevent page faults from reinstantiating pages we have released from
4331 	 * page cache.
4332 	 */
4333 	down_write(&EXT4_I(inode)->i_mmap_sem);
4334 
4335 	ret = ext4_break_layouts(inode);
4336 	if (ret)
4337 		goto out_dio;
4338 
4339 	first_block_offset = round_up(offset, sb->s_blocksize);
4340 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4341 
4342 	/* Now release the pages and zero block aligned part of pages*/
4343 	if (last_block_offset > first_block_offset) {
4344 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4345 		if (ret)
4346 			goto out_dio;
4347 		truncate_pagecache_range(inode, first_block_offset,
4348 					 last_block_offset);
4349 	}
4350 
4351 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4352 		credits = ext4_writepage_trans_blocks(inode);
4353 	else
4354 		credits = ext4_blocks_for_truncate(inode);
4355 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4356 	if (IS_ERR(handle)) {
4357 		ret = PTR_ERR(handle);
4358 		ext4_std_error(sb, ret);
4359 		goto out_dio;
4360 	}
4361 
4362 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4363 				       length);
4364 	if (ret)
4365 		goto out_stop;
4366 
4367 	first_block = (offset + sb->s_blocksize - 1) >>
4368 		EXT4_BLOCK_SIZE_BITS(sb);
4369 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4370 
4371 	/* If there are blocks to remove, do it */
4372 	if (stop_block > first_block) {
4373 
4374 		down_write(&EXT4_I(inode)->i_data_sem);
4375 		ext4_discard_preallocations(inode);
4376 
4377 		ret = ext4_es_remove_extent(inode, first_block,
4378 					    stop_block - first_block);
4379 		if (ret) {
4380 			up_write(&EXT4_I(inode)->i_data_sem);
4381 			goto out_stop;
4382 		}
4383 
4384 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4385 			ret = ext4_ext_remove_space(inode, first_block,
4386 						    stop_block - 1);
4387 		else
4388 			ret = ext4_ind_remove_space(handle, inode, first_block,
4389 						    stop_block);
4390 
4391 		up_write(&EXT4_I(inode)->i_data_sem);
4392 	}
4393 	if (IS_SYNC(inode))
4394 		ext4_handle_sync(handle);
4395 
4396 	inode->i_mtime = inode->i_ctime = current_time(inode);
4397 	ext4_mark_inode_dirty(handle, inode);
4398 	if (ret >= 0)
4399 		ext4_update_inode_fsync_trans(handle, inode, 1);
4400 out_stop:
4401 	ext4_journal_stop(handle);
4402 out_dio:
4403 	up_write(&EXT4_I(inode)->i_mmap_sem);
4404 out_mutex:
4405 	inode_unlock(inode);
4406 	return ret;
4407 }
4408 
4409 int ext4_inode_attach_jinode(struct inode *inode)
4410 {
4411 	struct ext4_inode_info *ei = EXT4_I(inode);
4412 	struct jbd2_inode *jinode;
4413 
4414 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4415 		return 0;
4416 
4417 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4418 	spin_lock(&inode->i_lock);
4419 	if (!ei->jinode) {
4420 		if (!jinode) {
4421 			spin_unlock(&inode->i_lock);
4422 			return -ENOMEM;
4423 		}
4424 		ei->jinode = jinode;
4425 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4426 		jinode = NULL;
4427 	}
4428 	spin_unlock(&inode->i_lock);
4429 	if (unlikely(jinode != NULL))
4430 		jbd2_free_inode(jinode);
4431 	return 0;
4432 }
4433 
4434 /*
4435  * ext4_truncate()
4436  *
4437  * We block out ext4_get_block() block instantiations across the entire
4438  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4439  * simultaneously on behalf of the same inode.
4440  *
4441  * As we work through the truncate and commit bits of it to the journal there
4442  * is one core, guiding principle: the file's tree must always be consistent on
4443  * disk.  We must be able to restart the truncate after a crash.
4444  *
4445  * The file's tree may be transiently inconsistent in memory (although it
4446  * probably isn't), but whenever we close off and commit a journal transaction,
4447  * the contents of (the filesystem + the journal) must be consistent and
4448  * restartable.  It's pretty simple, really: bottom up, right to left (although
4449  * left-to-right works OK too).
4450  *
4451  * Note that at recovery time, journal replay occurs *before* the restart of
4452  * truncate against the orphan inode list.
4453  *
4454  * The committed inode has the new, desired i_size (which is the same as
4455  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4456  * that this inode's truncate did not complete and it will again call
4457  * ext4_truncate() to have another go.  So there will be instantiated blocks
4458  * to the right of the truncation point in a crashed ext4 filesystem.  But
4459  * that's fine - as long as they are linked from the inode, the post-crash
4460  * ext4_truncate() run will find them and release them.
4461  */
4462 int ext4_truncate(struct inode *inode)
4463 {
4464 	struct ext4_inode_info *ei = EXT4_I(inode);
4465 	unsigned int credits;
4466 	int err = 0;
4467 	handle_t *handle;
4468 	struct address_space *mapping = inode->i_mapping;
4469 
4470 	/*
4471 	 * There is a possibility that we're either freeing the inode
4472 	 * or it's a completely new inode. In those cases we might not
4473 	 * have i_mutex locked because it's not necessary.
4474 	 */
4475 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4476 		WARN_ON(!inode_is_locked(inode));
4477 	trace_ext4_truncate_enter(inode);
4478 
4479 	if (!ext4_can_truncate(inode))
4480 		return 0;
4481 
4482 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4483 
4484 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4485 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4486 
4487 	if (ext4_has_inline_data(inode)) {
4488 		int has_inline = 1;
4489 
4490 		err = ext4_inline_data_truncate(inode, &has_inline);
4491 		if (err)
4492 			return err;
4493 		if (has_inline)
4494 			return 0;
4495 	}
4496 
4497 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4498 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4499 		if (ext4_inode_attach_jinode(inode) < 0)
4500 			return 0;
4501 	}
4502 
4503 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4504 		credits = ext4_writepage_trans_blocks(inode);
4505 	else
4506 		credits = ext4_blocks_for_truncate(inode);
4507 
4508 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4509 	if (IS_ERR(handle))
4510 		return PTR_ERR(handle);
4511 
4512 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4513 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4514 
4515 	/*
4516 	 * We add the inode to the orphan list, so that if this
4517 	 * truncate spans multiple transactions, and we crash, we will
4518 	 * resume the truncate when the filesystem recovers.  It also
4519 	 * marks the inode dirty, to catch the new size.
4520 	 *
4521 	 * Implication: the file must always be in a sane, consistent
4522 	 * truncatable state while each transaction commits.
4523 	 */
4524 	err = ext4_orphan_add(handle, inode);
4525 	if (err)
4526 		goto out_stop;
4527 
4528 	down_write(&EXT4_I(inode)->i_data_sem);
4529 
4530 	ext4_discard_preallocations(inode);
4531 
4532 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4533 		err = ext4_ext_truncate(handle, inode);
4534 	else
4535 		ext4_ind_truncate(handle, inode);
4536 
4537 	up_write(&ei->i_data_sem);
4538 	if (err)
4539 		goto out_stop;
4540 
4541 	if (IS_SYNC(inode))
4542 		ext4_handle_sync(handle);
4543 
4544 out_stop:
4545 	/*
4546 	 * If this was a simple ftruncate() and the file will remain alive,
4547 	 * then we need to clear up the orphan record which we created above.
4548 	 * However, if this was a real unlink then we were called by
4549 	 * ext4_evict_inode(), and we allow that function to clean up the
4550 	 * orphan info for us.
4551 	 */
4552 	if (inode->i_nlink)
4553 		ext4_orphan_del(handle, inode);
4554 
4555 	inode->i_mtime = inode->i_ctime = current_time(inode);
4556 	ext4_mark_inode_dirty(handle, inode);
4557 	ext4_journal_stop(handle);
4558 
4559 	trace_ext4_truncate_exit(inode);
4560 	return err;
4561 }
4562 
4563 /*
4564  * ext4_get_inode_loc returns with an extra refcount against the inode's
4565  * underlying buffer_head on success. If 'in_mem' is true, we have all
4566  * data in memory that is needed to recreate the on-disk version of this
4567  * inode.
4568  */
4569 static int __ext4_get_inode_loc(struct inode *inode,
4570 				struct ext4_iloc *iloc, int in_mem)
4571 {
4572 	struct ext4_group_desc	*gdp;
4573 	struct buffer_head	*bh;
4574 	struct super_block	*sb = inode->i_sb;
4575 	ext4_fsblk_t		block;
4576 	int			inodes_per_block, inode_offset;
4577 
4578 	iloc->bh = NULL;
4579 	if (inode->i_ino < EXT4_ROOT_INO ||
4580 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4581 		return -EFSCORRUPTED;
4582 
4583 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4584 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4585 	if (!gdp)
4586 		return -EIO;
4587 
4588 	/*
4589 	 * Figure out the offset within the block group inode table
4590 	 */
4591 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4592 	inode_offset = ((inode->i_ino - 1) %
4593 			EXT4_INODES_PER_GROUP(sb));
4594 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4595 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4596 
4597 	bh = sb_getblk(sb, block);
4598 	if (unlikely(!bh))
4599 		return -ENOMEM;
4600 	if (!buffer_uptodate(bh)) {
4601 		lock_buffer(bh);
4602 
4603 		/*
4604 		 * If the buffer has the write error flag, we have failed
4605 		 * to write out another inode in the same block.  In this
4606 		 * case, we don't have to read the block because we may
4607 		 * read the old inode data successfully.
4608 		 */
4609 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4610 			set_buffer_uptodate(bh);
4611 
4612 		if (buffer_uptodate(bh)) {
4613 			/* someone brought it uptodate while we waited */
4614 			unlock_buffer(bh);
4615 			goto has_buffer;
4616 		}
4617 
4618 		/*
4619 		 * If we have all information of the inode in memory and this
4620 		 * is the only valid inode in the block, we need not read the
4621 		 * block.
4622 		 */
4623 		if (in_mem) {
4624 			struct buffer_head *bitmap_bh;
4625 			int i, start;
4626 
4627 			start = inode_offset & ~(inodes_per_block - 1);
4628 
4629 			/* Is the inode bitmap in cache? */
4630 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4631 			if (unlikely(!bitmap_bh))
4632 				goto make_io;
4633 
4634 			/*
4635 			 * If the inode bitmap isn't in cache then the
4636 			 * optimisation may end up performing two reads instead
4637 			 * of one, so skip it.
4638 			 */
4639 			if (!buffer_uptodate(bitmap_bh)) {
4640 				brelse(bitmap_bh);
4641 				goto make_io;
4642 			}
4643 			for (i = start; i < start + inodes_per_block; i++) {
4644 				if (i == inode_offset)
4645 					continue;
4646 				if (ext4_test_bit(i, bitmap_bh->b_data))
4647 					break;
4648 			}
4649 			brelse(bitmap_bh);
4650 			if (i == start + inodes_per_block) {
4651 				/* all other inodes are free, so skip I/O */
4652 				memset(bh->b_data, 0, bh->b_size);
4653 				set_buffer_uptodate(bh);
4654 				unlock_buffer(bh);
4655 				goto has_buffer;
4656 			}
4657 		}
4658 
4659 make_io:
4660 		/*
4661 		 * If we need to do any I/O, try to pre-readahead extra
4662 		 * blocks from the inode table.
4663 		 */
4664 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4665 			ext4_fsblk_t b, end, table;
4666 			unsigned num;
4667 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4668 
4669 			table = ext4_inode_table(sb, gdp);
4670 			/* s_inode_readahead_blks is always a power of 2 */
4671 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4672 			if (table > b)
4673 				b = table;
4674 			end = b + ra_blks;
4675 			num = EXT4_INODES_PER_GROUP(sb);
4676 			if (ext4_has_group_desc_csum(sb))
4677 				num -= ext4_itable_unused_count(sb, gdp);
4678 			table += num / inodes_per_block;
4679 			if (end > table)
4680 				end = table;
4681 			while (b <= end)
4682 				sb_breadahead(sb, b++);
4683 		}
4684 
4685 		/*
4686 		 * There are other valid inodes in the buffer, this inode
4687 		 * has in-inode xattrs, or we don't have this inode in memory.
4688 		 * Read the block from disk.
4689 		 */
4690 		trace_ext4_load_inode(inode);
4691 		get_bh(bh);
4692 		bh->b_end_io = end_buffer_read_sync;
4693 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4694 		wait_on_buffer(bh);
4695 		if (!buffer_uptodate(bh)) {
4696 			EXT4_ERROR_INODE_BLOCK(inode, block,
4697 					       "unable to read itable block");
4698 			brelse(bh);
4699 			return -EIO;
4700 		}
4701 	}
4702 has_buffer:
4703 	iloc->bh = bh;
4704 	return 0;
4705 }
4706 
4707 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4708 {
4709 	/* We have all inode data except xattrs in memory here. */
4710 	return __ext4_get_inode_loc(inode, iloc,
4711 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4712 }
4713 
4714 static bool ext4_should_use_dax(struct inode *inode)
4715 {
4716 	if (!test_opt(inode->i_sb, DAX))
4717 		return false;
4718 	if (!S_ISREG(inode->i_mode))
4719 		return false;
4720 	if (ext4_should_journal_data(inode))
4721 		return false;
4722 	if (ext4_has_inline_data(inode))
4723 		return false;
4724 	if (ext4_encrypted_inode(inode))
4725 		return false;
4726 	return true;
4727 }
4728 
4729 void ext4_set_inode_flags(struct inode *inode)
4730 {
4731 	unsigned int flags = EXT4_I(inode)->i_flags;
4732 	unsigned int new_fl = 0;
4733 
4734 	if (flags & EXT4_SYNC_FL)
4735 		new_fl |= S_SYNC;
4736 	if (flags & EXT4_APPEND_FL)
4737 		new_fl |= S_APPEND;
4738 	if (flags & EXT4_IMMUTABLE_FL)
4739 		new_fl |= S_IMMUTABLE;
4740 	if (flags & EXT4_NOATIME_FL)
4741 		new_fl |= S_NOATIME;
4742 	if (flags & EXT4_DIRSYNC_FL)
4743 		new_fl |= S_DIRSYNC;
4744 	if (ext4_should_use_dax(inode))
4745 		new_fl |= S_DAX;
4746 	if (flags & EXT4_ENCRYPT_FL)
4747 		new_fl |= S_ENCRYPTED;
4748 	inode_set_flags(inode, new_fl,
4749 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4750 			S_ENCRYPTED);
4751 }
4752 
4753 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4754 				  struct ext4_inode_info *ei)
4755 {
4756 	blkcnt_t i_blocks ;
4757 	struct inode *inode = &(ei->vfs_inode);
4758 	struct super_block *sb = inode->i_sb;
4759 
4760 	if (ext4_has_feature_huge_file(sb)) {
4761 		/* we are using combined 48 bit field */
4762 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4763 					le32_to_cpu(raw_inode->i_blocks_lo);
4764 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4765 			/* i_blocks represent file system block size */
4766 			return i_blocks  << (inode->i_blkbits - 9);
4767 		} else {
4768 			return i_blocks;
4769 		}
4770 	} else {
4771 		return le32_to_cpu(raw_inode->i_blocks_lo);
4772 	}
4773 }
4774 
4775 static inline int ext4_iget_extra_inode(struct inode *inode,
4776 					 struct ext4_inode *raw_inode,
4777 					 struct ext4_inode_info *ei)
4778 {
4779 	__le32 *magic = (void *)raw_inode +
4780 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4781 
4782 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4783 	    EXT4_INODE_SIZE(inode->i_sb) &&
4784 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4785 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4786 		return ext4_find_inline_data_nolock(inode);
4787 	} else
4788 		EXT4_I(inode)->i_inline_off = 0;
4789 	return 0;
4790 }
4791 
4792 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4793 {
4794 	if (!ext4_has_feature_project(inode->i_sb))
4795 		return -EOPNOTSUPP;
4796 	*projid = EXT4_I(inode)->i_projid;
4797 	return 0;
4798 }
4799 
4800 /*
4801  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4802  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4803  * set.
4804  */
4805 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4806 {
4807 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4808 		inode_set_iversion_raw(inode, val);
4809 	else
4810 		inode_set_iversion_queried(inode, val);
4811 }
4812 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4813 {
4814 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4815 		return inode_peek_iversion_raw(inode);
4816 	else
4817 		return inode_peek_iversion(inode);
4818 }
4819 
4820 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4821 {
4822 	struct ext4_iloc iloc;
4823 	struct ext4_inode *raw_inode;
4824 	struct ext4_inode_info *ei;
4825 	struct inode *inode;
4826 	journal_t *journal = EXT4_SB(sb)->s_journal;
4827 	long ret;
4828 	loff_t size;
4829 	int block;
4830 	uid_t i_uid;
4831 	gid_t i_gid;
4832 	projid_t i_projid;
4833 
4834 	inode = iget_locked(sb, ino);
4835 	if (!inode)
4836 		return ERR_PTR(-ENOMEM);
4837 	if (!(inode->i_state & I_NEW))
4838 		return inode;
4839 
4840 	ei = EXT4_I(inode);
4841 	iloc.bh = NULL;
4842 
4843 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4844 	if (ret < 0)
4845 		goto bad_inode;
4846 	raw_inode = ext4_raw_inode(&iloc);
4847 
4848 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4849 		EXT4_ERROR_INODE(inode, "root inode unallocated");
4850 		ret = -EFSCORRUPTED;
4851 		goto bad_inode;
4852 	}
4853 
4854 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4855 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4856 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4857 			EXT4_INODE_SIZE(inode->i_sb) ||
4858 		    (ei->i_extra_isize & 3)) {
4859 			EXT4_ERROR_INODE(inode,
4860 					 "bad extra_isize %u (inode size %u)",
4861 					 ei->i_extra_isize,
4862 					 EXT4_INODE_SIZE(inode->i_sb));
4863 			ret = -EFSCORRUPTED;
4864 			goto bad_inode;
4865 		}
4866 	} else
4867 		ei->i_extra_isize = 0;
4868 
4869 	/* Precompute checksum seed for inode metadata */
4870 	if (ext4_has_metadata_csum(sb)) {
4871 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4872 		__u32 csum;
4873 		__le32 inum = cpu_to_le32(inode->i_ino);
4874 		__le32 gen = raw_inode->i_generation;
4875 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4876 				   sizeof(inum));
4877 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4878 					      sizeof(gen));
4879 	}
4880 
4881 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4882 		EXT4_ERROR_INODE(inode, "checksum invalid");
4883 		ret = -EFSBADCRC;
4884 		goto bad_inode;
4885 	}
4886 
4887 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4888 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4889 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4890 	if (ext4_has_feature_project(sb) &&
4891 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4892 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4893 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4894 	else
4895 		i_projid = EXT4_DEF_PROJID;
4896 
4897 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4898 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4899 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4900 	}
4901 	i_uid_write(inode, i_uid);
4902 	i_gid_write(inode, i_gid);
4903 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4904 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4905 
4906 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4907 	ei->i_inline_off = 0;
4908 	ei->i_dir_start_lookup = 0;
4909 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4910 	/* We now have enough fields to check if the inode was active or not.
4911 	 * This is needed because nfsd might try to access dead inodes
4912 	 * the test is that same one that e2fsck uses
4913 	 * NeilBrown 1999oct15
4914 	 */
4915 	if (inode->i_nlink == 0) {
4916 		if ((inode->i_mode == 0 ||
4917 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4918 		    ino != EXT4_BOOT_LOADER_INO) {
4919 			/* this inode is deleted */
4920 			ret = -ESTALE;
4921 			goto bad_inode;
4922 		}
4923 		/* The only unlinked inodes we let through here have
4924 		 * valid i_mode and are being read by the orphan
4925 		 * recovery code: that's fine, we're about to complete
4926 		 * the process of deleting those.
4927 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4928 		 * not initialized on a new filesystem. */
4929 	}
4930 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4931 	ext4_set_inode_flags(inode);
4932 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4933 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4934 	if (ext4_has_feature_64bit(sb))
4935 		ei->i_file_acl |=
4936 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4937 	inode->i_size = ext4_isize(sb, raw_inode);
4938 	if ((size = i_size_read(inode)) < 0) {
4939 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4940 		ret = -EFSCORRUPTED;
4941 		goto bad_inode;
4942 	}
4943 	ei->i_disksize = inode->i_size;
4944 #ifdef CONFIG_QUOTA
4945 	ei->i_reserved_quota = 0;
4946 #endif
4947 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4948 	ei->i_block_group = iloc.block_group;
4949 	ei->i_last_alloc_group = ~0;
4950 	/*
4951 	 * NOTE! The in-memory inode i_data array is in little-endian order
4952 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4953 	 */
4954 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4955 		ei->i_data[block] = raw_inode->i_block[block];
4956 	INIT_LIST_HEAD(&ei->i_orphan);
4957 
4958 	/*
4959 	 * Set transaction id's of transactions that have to be committed
4960 	 * to finish f[data]sync. We set them to currently running transaction
4961 	 * as we cannot be sure that the inode or some of its metadata isn't
4962 	 * part of the transaction - the inode could have been reclaimed and
4963 	 * now it is reread from disk.
4964 	 */
4965 	if (journal) {
4966 		transaction_t *transaction;
4967 		tid_t tid;
4968 
4969 		read_lock(&journal->j_state_lock);
4970 		if (journal->j_running_transaction)
4971 			transaction = journal->j_running_transaction;
4972 		else
4973 			transaction = journal->j_committing_transaction;
4974 		if (transaction)
4975 			tid = transaction->t_tid;
4976 		else
4977 			tid = journal->j_commit_sequence;
4978 		read_unlock(&journal->j_state_lock);
4979 		ei->i_sync_tid = tid;
4980 		ei->i_datasync_tid = tid;
4981 	}
4982 
4983 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4984 		if (ei->i_extra_isize == 0) {
4985 			/* The extra space is currently unused. Use it. */
4986 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4987 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4988 					    EXT4_GOOD_OLD_INODE_SIZE;
4989 		} else {
4990 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4991 			if (ret)
4992 				goto bad_inode;
4993 		}
4994 	}
4995 
4996 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4997 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4998 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4999 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5000 
5001 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5002 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5003 
5004 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5005 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5006 				ivers |=
5007 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5008 		}
5009 		ext4_inode_set_iversion_queried(inode, ivers);
5010 	}
5011 
5012 	ret = 0;
5013 	if (ei->i_file_acl &&
5014 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5015 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5016 				 ei->i_file_acl);
5017 		ret = -EFSCORRUPTED;
5018 		goto bad_inode;
5019 	} else if (!ext4_has_inline_data(inode)) {
5020 		/* validate the block references in the inode */
5021 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5022 		   (S_ISLNK(inode->i_mode) &&
5023 		    !ext4_inode_is_fast_symlink(inode))) {
5024 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5025 				ret = ext4_ext_check_inode(inode);
5026 			else
5027 				ret = ext4_ind_check_inode(inode);
5028 		}
5029 	}
5030 	if (ret)
5031 		goto bad_inode;
5032 
5033 	if (S_ISREG(inode->i_mode)) {
5034 		inode->i_op = &ext4_file_inode_operations;
5035 		inode->i_fop = &ext4_file_operations;
5036 		ext4_set_aops(inode);
5037 	} else if (S_ISDIR(inode->i_mode)) {
5038 		inode->i_op = &ext4_dir_inode_operations;
5039 		inode->i_fop = &ext4_dir_operations;
5040 	} else if (S_ISLNK(inode->i_mode)) {
5041 		/* VFS does not allow setting these so must be corruption */
5042 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5043 			EXT4_ERROR_INODE(inode,
5044 			  "immutable or append flags not allowed on symlinks");
5045 			ret = -EFSCORRUPTED;
5046 			goto bad_inode;
5047 		}
5048 		if (ext4_encrypted_inode(inode)) {
5049 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5050 			ext4_set_aops(inode);
5051 		} else if (ext4_inode_is_fast_symlink(inode)) {
5052 			inode->i_link = (char *)ei->i_data;
5053 			inode->i_op = &ext4_fast_symlink_inode_operations;
5054 			nd_terminate_link(ei->i_data, inode->i_size,
5055 				sizeof(ei->i_data) - 1);
5056 		} else {
5057 			inode->i_op = &ext4_symlink_inode_operations;
5058 			ext4_set_aops(inode);
5059 		}
5060 		inode_nohighmem(inode);
5061 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5062 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5063 		inode->i_op = &ext4_special_inode_operations;
5064 		if (raw_inode->i_block[0])
5065 			init_special_inode(inode, inode->i_mode,
5066 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5067 		else
5068 			init_special_inode(inode, inode->i_mode,
5069 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5070 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5071 		make_bad_inode(inode);
5072 	} else {
5073 		ret = -EFSCORRUPTED;
5074 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5075 		goto bad_inode;
5076 	}
5077 	brelse(iloc.bh);
5078 
5079 	unlock_new_inode(inode);
5080 	return inode;
5081 
5082 bad_inode:
5083 	brelse(iloc.bh);
5084 	iget_failed(inode);
5085 	return ERR_PTR(ret);
5086 }
5087 
5088 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
5089 {
5090 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
5091 		return ERR_PTR(-EFSCORRUPTED);
5092 	return ext4_iget(sb, ino);
5093 }
5094 
5095 static int ext4_inode_blocks_set(handle_t *handle,
5096 				struct ext4_inode *raw_inode,
5097 				struct ext4_inode_info *ei)
5098 {
5099 	struct inode *inode = &(ei->vfs_inode);
5100 	u64 i_blocks = inode->i_blocks;
5101 	struct super_block *sb = inode->i_sb;
5102 
5103 	if (i_blocks <= ~0U) {
5104 		/*
5105 		 * i_blocks can be represented in a 32 bit variable
5106 		 * as multiple of 512 bytes
5107 		 */
5108 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5109 		raw_inode->i_blocks_high = 0;
5110 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5111 		return 0;
5112 	}
5113 	if (!ext4_has_feature_huge_file(sb))
5114 		return -EFBIG;
5115 
5116 	if (i_blocks <= 0xffffffffffffULL) {
5117 		/*
5118 		 * i_blocks can be represented in a 48 bit variable
5119 		 * as multiple of 512 bytes
5120 		 */
5121 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5122 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5123 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5124 	} else {
5125 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5126 		/* i_block is stored in file system block size */
5127 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5128 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5129 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5130 	}
5131 	return 0;
5132 }
5133 
5134 struct other_inode {
5135 	unsigned long		orig_ino;
5136 	struct ext4_inode	*raw_inode;
5137 };
5138 
5139 static int other_inode_match(struct inode * inode, unsigned long ino,
5140 			     void *data)
5141 {
5142 	struct other_inode *oi = (struct other_inode *) data;
5143 
5144 	if ((inode->i_ino != ino) ||
5145 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5146 			       I_DIRTY_INODE)) ||
5147 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5148 		return 0;
5149 	spin_lock(&inode->i_lock);
5150 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5151 				I_DIRTY_INODE)) == 0) &&
5152 	    (inode->i_state & I_DIRTY_TIME)) {
5153 		struct ext4_inode_info	*ei = EXT4_I(inode);
5154 
5155 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5156 		spin_unlock(&inode->i_lock);
5157 
5158 		spin_lock(&ei->i_raw_lock);
5159 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5160 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5161 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5162 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5163 		spin_unlock(&ei->i_raw_lock);
5164 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5165 		return -1;
5166 	}
5167 	spin_unlock(&inode->i_lock);
5168 	return -1;
5169 }
5170 
5171 /*
5172  * Opportunistically update the other time fields for other inodes in
5173  * the same inode table block.
5174  */
5175 static void ext4_update_other_inodes_time(struct super_block *sb,
5176 					  unsigned long orig_ino, char *buf)
5177 {
5178 	struct other_inode oi;
5179 	unsigned long ino;
5180 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5181 	int inode_size = EXT4_INODE_SIZE(sb);
5182 
5183 	oi.orig_ino = orig_ino;
5184 	/*
5185 	 * Calculate the first inode in the inode table block.  Inode
5186 	 * numbers are one-based.  That is, the first inode in a block
5187 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5188 	 */
5189 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5190 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5191 		if (ino == orig_ino)
5192 			continue;
5193 		oi.raw_inode = (struct ext4_inode *) buf;
5194 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5195 	}
5196 }
5197 
5198 /*
5199  * Post the struct inode info into an on-disk inode location in the
5200  * buffer-cache.  This gobbles the caller's reference to the
5201  * buffer_head in the inode location struct.
5202  *
5203  * The caller must have write access to iloc->bh.
5204  */
5205 static int ext4_do_update_inode(handle_t *handle,
5206 				struct inode *inode,
5207 				struct ext4_iloc *iloc)
5208 {
5209 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5210 	struct ext4_inode_info *ei = EXT4_I(inode);
5211 	struct buffer_head *bh = iloc->bh;
5212 	struct super_block *sb = inode->i_sb;
5213 	int err = 0, rc, block;
5214 	int need_datasync = 0, set_large_file = 0;
5215 	uid_t i_uid;
5216 	gid_t i_gid;
5217 	projid_t i_projid;
5218 
5219 	spin_lock(&ei->i_raw_lock);
5220 
5221 	/* For fields not tracked in the in-memory inode,
5222 	 * initialise them to zero for new inodes. */
5223 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5224 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5225 
5226 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5227 	i_uid = i_uid_read(inode);
5228 	i_gid = i_gid_read(inode);
5229 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5230 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5231 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5232 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5233 /*
5234  * Fix up interoperability with old kernels. Otherwise, old inodes get
5235  * re-used with the upper 16 bits of the uid/gid intact
5236  */
5237 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5238 			raw_inode->i_uid_high = 0;
5239 			raw_inode->i_gid_high = 0;
5240 		} else {
5241 			raw_inode->i_uid_high =
5242 				cpu_to_le16(high_16_bits(i_uid));
5243 			raw_inode->i_gid_high =
5244 				cpu_to_le16(high_16_bits(i_gid));
5245 		}
5246 	} else {
5247 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5248 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5249 		raw_inode->i_uid_high = 0;
5250 		raw_inode->i_gid_high = 0;
5251 	}
5252 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5253 
5254 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5255 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5256 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5257 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5258 
5259 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5260 	if (err) {
5261 		spin_unlock(&ei->i_raw_lock);
5262 		goto out_brelse;
5263 	}
5264 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5265 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5266 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5267 		raw_inode->i_file_acl_high =
5268 			cpu_to_le16(ei->i_file_acl >> 32);
5269 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5270 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5271 		ext4_isize_set(raw_inode, ei->i_disksize);
5272 		need_datasync = 1;
5273 	}
5274 	if (ei->i_disksize > 0x7fffffffULL) {
5275 		if (!ext4_has_feature_large_file(sb) ||
5276 				EXT4_SB(sb)->s_es->s_rev_level ==
5277 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5278 			set_large_file = 1;
5279 	}
5280 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5281 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5282 		if (old_valid_dev(inode->i_rdev)) {
5283 			raw_inode->i_block[0] =
5284 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5285 			raw_inode->i_block[1] = 0;
5286 		} else {
5287 			raw_inode->i_block[0] = 0;
5288 			raw_inode->i_block[1] =
5289 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5290 			raw_inode->i_block[2] = 0;
5291 		}
5292 	} else if (!ext4_has_inline_data(inode)) {
5293 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5294 			raw_inode->i_block[block] = ei->i_data[block];
5295 	}
5296 
5297 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5298 		u64 ivers = ext4_inode_peek_iversion(inode);
5299 
5300 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5301 		if (ei->i_extra_isize) {
5302 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5303 				raw_inode->i_version_hi =
5304 					cpu_to_le32(ivers >> 32);
5305 			raw_inode->i_extra_isize =
5306 				cpu_to_le16(ei->i_extra_isize);
5307 		}
5308 	}
5309 
5310 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5311 	       i_projid != EXT4_DEF_PROJID);
5312 
5313 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5314 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5315 		raw_inode->i_projid = cpu_to_le32(i_projid);
5316 
5317 	ext4_inode_csum_set(inode, raw_inode, ei);
5318 	spin_unlock(&ei->i_raw_lock);
5319 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5320 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5321 					      bh->b_data);
5322 
5323 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5324 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5325 	if (!err)
5326 		err = rc;
5327 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5328 	if (set_large_file) {
5329 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5330 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5331 		if (err)
5332 			goto out_brelse;
5333 		ext4_update_dynamic_rev(sb);
5334 		ext4_set_feature_large_file(sb);
5335 		ext4_handle_sync(handle);
5336 		err = ext4_handle_dirty_super(handle, sb);
5337 	}
5338 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5339 out_brelse:
5340 	brelse(bh);
5341 	ext4_std_error(inode->i_sb, err);
5342 	return err;
5343 }
5344 
5345 /*
5346  * ext4_write_inode()
5347  *
5348  * We are called from a few places:
5349  *
5350  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5351  *   Here, there will be no transaction running. We wait for any running
5352  *   transaction to commit.
5353  *
5354  * - Within flush work (sys_sync(), kupdate and such).
5355  *   We wait on commit, if told to.
5356  *
5357  * - Within iput_final() -> write_inode_now()
5358  *   We wait on commit, if told to.
5359  *
5360  * In all cases it is actually safe for us to return without doing anything,
5361  * because the inode has been copied into a raw inode buffer in
5362  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5363  * writeback.
5364  *
5365  * Note that we are absolutely dependent upon all inode dirtiers doing the
5366  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5367  * which we are interested.
5368  *
5369  * It would be a bug for them to not do this.  The code:
5370  *
5371  *	mark_inode_dirty(inode)
5372  *	stuff();
5373  *	inode->i_size = expr;
5374  *
5375  * is in error because write_inode() could occur while `stuff()' is running,
5376  * and the new i_size will be lost.  Plus the inode will no longer be on the
5377  * superblock's dirty inode list.
5378  */
5379 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5380 {
5381 	int err;
5382 
5383 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5384 		return 0;
5385 
5386 	if (EXT4_SB(inode->i_sb)->s_journal) {
5387 		if (ext4_journal_current_handle()) {
5388 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5389 			dump_stack();
5390 			return -EIO;
5391 		}
5392 
5393 		/*
5394 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5395 		 * ext4_sync_fs() will force the commit after everything is
5396 		 * written.
5397 		 */
5398 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5399 			return 0;
5400 
5401 		err = ext4_force_commit(inode->i_sb);
5402 	} else {
5403 		struct ext4_iloc iloc;
5404 
5405 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5406 		if (err)
5407 			return err;
5408 		/*
5409 		 * sync(2) will flush the whole buffer cache. No need to do
5410 		 * it here separately for each inode.
5411 		 */
5412 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5413 			sync_dirty_buffer(iloc.bh);
5414 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5415 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5416 					 "IO error syncing inode");
5417 			err = -EIO;
5418 		}
5419 		brelse(iloc.bh);
5420 	}
5421 	return err;
5422 }
5423 
5424 /*
5425  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5426  * buffers that are attached to a page stradding i_size and are undergoing
5427  * commit. In that case we have to wait for commit to finish and try again.
5428  */
5429 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5430 {
5431 	struct page *page;
5432 	unsigned offset;
5433 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5434 	tid_t commit_tid = 0;
5435 	int ret;
5436 
5437 	offset = inode->i_size & (PAGE_SIZE - 1);
5438 	/*
5439 	 * All buffers in the last page remain valid? Then there's nothing to
5440 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5441 	 * blocksize case
5442 	 */
5443 	if (offset > PAGE_SIZE - i_blocksize(inode))
5444 		return;
5445 	while (1) {
5446 		page = find_lock_page(inode->i_mapping,
5447 				      inode->i_size >> PAGE_SHIFT);
5448 		if (!page)
5449 			return;
5450 		ret = __ext4_journalled_invalidatepage(page, offset,
5451 						PAGE_SIZE - offset);
5452 		unlock_page(page);
5453 		put_page(page);
5454 		if (ret != -EBUSY)
5455 			return;
5456 		commit_tid = 0;
5457 		read_lock(&journal->j_state_lock);
5458 		if (journal->j_committing_transaction)
5459 			commit_tid = journal->j_committing_transaction->t_tid;
5460 		read_unlock(&journal->j_state_lock);
5461 		if (commit_tid)
5462 			jbd2_log_wait_commit(journal, commit_tid);
5463 	}
5464 }
5465 
5466 /*
5467  * ext4_setattr()
5468  *
5469  * Called from notify_change.
5470  *
5471  * We want to trap VFS attempts to truncate the file as soon as
5472  * possible.  In particular, we want to make sure that when the VFS
5473  * shrinks i_size, we put the inode on the orphan list and modify
5474  * i_disksize immediately, so that during the subsequent flushing of
5475  * dirty pages and freeing of disk blocks, we can guarantee that any
5476  * commit will leave the blocks being flushed in an unused state on
5477  * disk.  (On recovery, the inode will get truncated and the blocks will
5478  * be freed, so we have a strong guarantee that no future commit will
5479  * leave these blocks visible to the user.)
5480  *
5481  * Another thing we have to assure is that if we are in ordered mode
5482  * and inode is still attached to the committing transaction, we must
5483  * we start writeout of all the dirty pages which are being truncated.
5484  * This way we are sure that all the data written in the previous
5485  * transaction are already on disk (truncate waits for pages under
5486  * writeback).
5487  *
5488  * Called with inode->i_mutex down.
5489  */
5490 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5491 {
5492 	struct inode *inode = d_inode(dentry);
5493 	int error, rc = 0;
5494 	int orphan = 0;
5495 	const unsigned int ia_valid = attr->ia_valid;
5496 
5497 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5498 		return -EIO;
5499 
5500 	error = setattr_prepare(dentry, attr);
5501 	if (error)
5502 		return error;
5503 
5504 	error = fscrypt_prepare_setattr(dentry, attr);
5505 	if (error)
5506 		return error;
5507 
5508 	if (is_quota_modification(inode, attr)) {
5509 		error = dquot_initialize(inode);
5510 		if (error)
5511 			return error;
5512 	}
5513 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5514 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5515 		handle_t *handle;
5516 
5517 		/* (user+group)*(old+new) structure, inode write (sb,
5518 		 * inode block, ? - but truncate inode update has it) */
5519 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5520 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5521 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5522 		if (IS_ERR(handle)) {
5523 			error = PTR_ERR(handle);
5524 			goto err_out;
5525 		}
5526 
5527 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5528 		 * counts xattr inode references.
5529 		 */
5530 		down_read(&EXT4_I(inode)->xattr_sem);
5531 		error = dquot_transfer(inode, attr);
5532 		up_read(&EXT4_I(inode)->xattr_sem);
5533 
5534 		if (error) {
5535 			ext4_journal_stop(handle);
5536 			return error;
5537 		}
5538 		/* Update corresponding info in inode so that everything is in
5539 		 * one transaction */
5540 		if (attr->ia_valid & ATTR_UID)
5541 			inode->i_uid = attr->ia_uid;
5542 		if (attr->ia_valid & ATTR_GID)
5543 			inode->i_gid = attr->ia_gid;
5544 		error = ext4_mark_inode_dirty(handle, inode);
5545 		ext4_journal_stop(handle);
5546 	}
5547 
5548 	if (attr->ia_valid & ATTR_SIZE) {
5549 		handle_t *handle;
5550 		loff_t oldsize = inode->i_size;
5551 		int shrink = (attr->ia_size <= inode->i_size);
5552 
5553 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5554 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5555 
5556 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5557 				return -EFBIG;
5558 		}
5559 		if (!S_ISREG(inode->i_mode))
5560 			return -EINVAL;
5561 
5562 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5563 			inode_inc_iversion(inode);
5564 
5565 		if (ext4_should_order_data(inode) &&
5566 		    (attr->ia_size < inode->i_size)) {
5567 			error = ext4_begin_ordered_truncate(inode,
5568 							    attr->ia_size);
5569 			if (error)
5570 				goto err_out;
5571 		}
5572 		if (attr->ia_size != inode->i_size) {
5573 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5574 			if (IS_ERR(handle)) {
5575 				error = PTR_ERR(handle);
5576 				goto err_out;
5577 			}
5578 			if (ext4_handle_valid(handle) && shrink) {
5579 				error = ext4_orphan_add(handle, inode);
5580 				orphan = 1;
5581 			}
5582 			/*
5583 			 * Update c/mtime on truncate up, ext4_truncate() will
5584 			 * update c/mtime in shrink case below
5585 			 */
5586 			if (!shrink) {
5587 				inode->i_mtime = current_time(inode);
5588 				inode->i_ctime = inode->i_mtime;
5589 			}
5590 			down_write(&EXT4_I(inode)->i_data_sem);
5591 			EXT4_I(inode)->i_disksize = attr->ia_size;
5592 			rc = ext4_mark_inode_dirty(handle, inode);
5593 			if (!error)
5594 				error = rc;
5595 			/*
5596 			 * We have to update i_size under i_data_sem together
5597 			 * with i_disksize to avoid races with writeback code
5598 			 * running ext4_wb_update_i_disksize().
5599 			 */
5600 			if (!error)
5601 				i_size_write(inode, attr->ia_size);
5602 			up_write(&EXT4_I(inode)->i_data_sem);
5603 			ext4_journal_stop(handle);
5604 			if (error) {
5605 				if (orphan)
5606 					ext4_orphan_del(NULL, inode);
5607 				goto err_out;
5608 			}
5609 		}
5610 		if (!shrink)
5611 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5612 
5613 		/*
5614 		 * Blocks are going to be removed from the inode. Wait
5615 		 * for dio in flight.  Temporarily disable
5616 		 * dioread_nolock to prevent livelock.
5617 		 */
5618 		if (orphan) {
5619 			if (!ext4_should_journal_data(inode)) {
5620 				inode_dio_wait(inode);
5621 			} else
5622 				ext4_wait_for_tail_page_commit(inode);
5623 		}
5624 		down_write(&EXT4_I(inode)->i_mmap_sem);
5625 
5626 		rc = ext4_break_layouts(inode);
5627 		if (rc) {
5628 			up_write(&EXT4_I(inode)->i_mmap_sem);
5629 			error = rc;
5630 			goto err_out;
5631 		}
5632 
5633 		/*
5634 		 * Truncate pagecache after we've waited for commit
5635 		 * in data=journal mode to make pages freeable.
5636 		 */
5637 		truncate_pagecache(inode, inode->i_size);
5638 		if (shrink) {
5639 			rc = ext4_truncate(inode);
5640 			if (rc)
5641 				error = rc;
5642 		}
5643 		up_write(&EXT4_I(inode)->i_mmap_sem);
5644 	}
5645 
5646 	if (!error) {
5647 		setattr_copy(inode, attr);
5648 		mark_inode_dirty(inode);
5649 	}
5650 
5651 	/*
5652 	 * If the call to ext4_truncate failed to get a transaction handle at
5653 	 * all, we need to clean up the in-core orphan list manually.
5654 	 */
5655 	if (orphan && inode->i_nlink)
5656 		ext4_orphan_del(NULL, inode);
5657 
5658 	if (!error && (ia_valid & ATTR_MODE))
5659 		rc = posix_acl_chmod(inode, inode->i_mode);
5660 
5661 err_out:
5662 	ext4_std_error(inode->i_sb, error);
5663 	if (!error)
5664 		error = rc;
5665 	return error;
5666 }
5667 
5668 int ext4_getattr(const struct path *path, struct kstat *stat,
5669 		 u32 request_mask, unsigned int query_flags)
5670 {
5671 	struct inode *inode = d_inode(path->dentry);
5672 	struct ext4_inode *raw_inode;
5673 	struct ext4_inode_info *ei = EXT4_I(inode);
5674 	unsigned int flags;
5675 
5676 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5677 		stat->result_mask |= STATX_BTIME;
5678 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5679 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5680 	}
5681 
5682 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5683 	if (flags & EXT4_APPEND_FL)
5684 		stat->attributes |= STATX_ATTR_APPEND;
5685 	if (flags & EXT4_COMPR_FL)
5686 		stat->attributes |= STATX_ATTR_COMPRESSED;
5687 	if (flags & EXT4_ENCRYPT_FL)
5688 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5689 	if (flags & EXT4_IMMUTABLE_FL)
5690 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5691 	if (flags & EXT4_NODUMP_FL)
5692 		stat->attributes |= STATX_ATTR_NODUMP;
5693 
5694 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5695 				  STATX_ATTR_COMPRESSED |
5696 				  STATX_ATTR_ENCRYPTED |
5697 				  STATX_ATTR_IMMUTABLE |
5698 				  STATX_ATTR_NODUMP);
5699 
5700 	generic_fillattr(inode, stat);
5701 	return 0;
5702 }
5703 
5704 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5705 		      u32 request_mask, unsigned int query_flags)
5706 {
5707 	struct inode *inode = d_inode(path->dentry);
5708 	u64 delalloc_blocks;
5709 
5710 	ext4_getattr(path, stat, request_mask, query_flags);
5711 
5712 	/*
5713 	 * If there is inline data in the inode, the inode will normally not
5714 	 * have data blocks allocated (it may have an external xattr block).
5715 	 * Report at least one sector for such files, so tools like tar, rsync,
5716 	 * others don't incorrectly think the file is completely sparse.
5717 	 */
5718 	if (unlikely(ext4_has_inline_data(inode)))
5719 		stat->blocks += (stat->size + 511) >> 9;
5720 
5721 	/*
5722 	 * We can't update i_blocks if the block allocation is delayed
5723 	 * otherwise in the case of system crash before the real block
5724 	 * allocation is done, we will have i_blocks inconsistent with
5725 	 * on-disk file blocks.
5726 	 * We always keep i_blocks updated together with real
5727 	 * allocation. But to not confuse with user, stat
5728 	 * will return the blocks that include the delayed allocation
5729 	 * blocks for this file.
5730 	 */
5731 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5732 				   EXT4_I(inode)->i_reserved_data_blocks);
5733 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5734 	return 0;
5735 }
5736 
5737 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5738 				   int pextents)
5739 {
5740 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5741 		return ext4_ind_trans_blocks(inode, lblocks);
5742 	return ext4_ext_index_trans_blocks(inode, pextents);
5743 }
5744 
5745 /*
5746  * Account for index blocks, block groups bitmaps and block group
5747  * descriptor blocks if modify datablocks and index blocks
5748  * worse case, the indexs blocks spread over different block groups
5749  *
5750  * If datablocks are discontiguous, they are possible to spread over
5751  * different block groups too. If they are contiguous, with flexbg,
5752  * they could still across block group boundary.
5753  *
5754  * Also account for superblock, inode, quota and xattr blocks
5755  */
5756 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5757 				  int pextents)
5758 {
5759 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5760 	int gdpblocks;
5761 	int idxblocks;
5762 	int ret = 0;
5763 
5764 	/*
5765 	 * How many index blocks need to touch to map @lblocks logical blocks
5766 	 * to @pextents physical extents?
5767 	 */
5768 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5769 
5770 	ret = idxblocks;
5771 
5772 	/*
5773 	 * Now let's see how many group bitmaps and group descriptors need
5774 	 * to account
5775 	 */
5776 	groups = idxblocks + pextents;
5777 	gdpblocks = groups;
5778 	if (groups > ngroups)
5779 		groups = ngroups;
5780 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5781 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5782 
5783 	/* bitmaps and block group descriptor blocks */
5784 	ret += groups + gdpblocks;
5785 
5786 	/* Blocks for super block, inode, quota and xattr blocks */
5787 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5788 
5789 	return ret;
5790 }
5791 
5792 /*
5793  * Calculate the total number of credits to reserve to fit
5794  * the modification of a single pages into a single transaction,
5795  * which may include multiple chunks of block allocations.
5796  *
5797  * This could be called via ext4_write_begin()
5798  *
5799  * We need to consider the worse case, when
5800  * one new block per extent.
5801  */
5802 int ext4_writepage_trans_blocks(struct inode *inode)
5803 {
5804 	int bpp = ext4_journal_blocks_per_page(inode);
5805 	int ret;
5806 
5807 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5808 
5809 	/* Account for data blocks for journalled mode */
5810 	if (ext4_should_journal_data(inode))
5811 		ret += bpp;
5812 	return ret;
5813 }
5814 
5815 /*
5816  * Calculate the journal credits for a chunk of data modification.
5817  *
5818  * This is called from DIO, fallocate or whoever calling
5819  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5820  *
5821  * journal buffers for data blocks are not included here, as DIO
5822  * and fallocate do no need to journal data buffers.
5823  */
5824 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5825 {
5826 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5827 }
5828 
5829 /*
5830  * The caller must have previously called ext4_reserve_inode_write().
5831  * Give this, we know that the caller already has write access to iloc->bh.
5832  */
5833 int ext4_mark_iloc_dirty(handle_t *handle,
5834 			 struct inode *inode, struct ext4_iloc *iloc)
5835 {
5836 	int err = 0;
5837 
5838 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5839 		return -EIO;
5840 
5841 	if (IS_I_VERSION(inode))
5842 		inode_inc_iversion(inode);
5843 
5844 	/* the do_update_inode consumes one bh->b_count */
5845 	get_bh(iloc->bh);
5846 
5847 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5848 	err = ext4_do_update_inode(handle, inode, iloc);
5849 	put_bh(iloc->bh);
5850 	return err;
5851 }
5852 
5853 /*
5854  * On success, We end up with an outstanding reference count against
5855  * iloc->bh.  This _must_ be cleaned up later.
5856  */
5857 
5858 int
5859 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5860 			 struct ext4_iloc *iloc)
5861 {
5862 	int err;
5863 
5864 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5865 		return -EIO;
5866 
5867 	err = ext4_get_inode_loc(inode, iloc);
5868 	if (!err) {
5869 		BUFFER_TRACE(iloc->bh, "get_write_access");
5870 		err = ext4_journal_get_write_access(handle, iloc->bh);
5871 		if (err) {
5872 			brelse(iloc->bh);
5873 			iloc->bh = NULL;
5874 		}
5875 	}
5876 	ext4_std_error(inode->i_sb, err);
5877 	return err;
5878 }
5879 
5880 static int __ext4_expand_extra_isize(struct inode *inode,
5881 				     unsigned int new_extra_isize,
5882 				     struct ext4_iloc *iloc,
5883 				     handle_t *handle, int *no_expand)
5884 {
5885 	struct ext4_inode *raw_inode;
5886 	struct ext4_xattr_ibody_header *header;
5887 	int error;
5888 
5889 	raw_inode = ext4_raw_inode(iloc);
5890 
5891 	header = IHDR(inode, raw_inode);
5892 
5893 	/* No extended attributes present */
5894 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5895 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5896 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5897 		       EXT4_I(inode)->i_extra_isize, 0,
5898 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5899 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5900 		return 0;
5901 	}
5902 
5903 	/* try to expand with EAs present */
5904 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5905 					   raw_inode, handle);
5906 	if (error) {
5907 		/*
5908 		 * Inode size expansion failed; don't try again
5909 		 */
5910 		*no_expand = 1;
5911 	}
5912 
5913 	return error;
5914 }
5915 
5916 /*
5917  * Expand an inode by new_extra_isize bytes.
5918  * Returns 0 on success or negative error number on failure.
5919  */
5920 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5921 					  unsigned int new_extra_isize,
5922 					  struct ext4_iloc iloc,
5923 					  handle_t *handle)
5924 {
5925 	int no_expand;
5926 	int error;
5927 
5928 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5929 		return -EOVERFLOW;
5930 
5931 	/*
5932 	 * In nojournal mode, we can immediately attempt to expand
5933 	 * the inode.  When journaled, we first need to obtain extra
5934 	 * buffer credits since we may write into the EA block
5935 	 * with this same handle. If journal_extend fails, then it will
5936 	 * only result in a minor loss of functionality for that inode.
5937 	 * If this is felt to be critical, then e2fsck should be run to
5938 	 * force a large enough s_min_extra_isize.
5939 	 */
5940 	if (ext4_handle_valid(handle) &&
5941 	    jbd2_journal_extend(handle,
5942 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5943 		return -ENOSPC;
5944 
5945 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5946 		return -EBUSY;
5947 
5948 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5949 					  handle, &no_expand);
5950 	ext4_write_unlock_xattr(inode, &no_expand);
5951 
5952 	return error;
5953 }
5954 
5955 int ext4_expand_extra_isize(struct inode *inode,
5956 			    unsigned int new_extra_isize,
5957 			    struct ext4_iloc *iloc)
5958 {
5959 	handle_t *handle;
5960 	int no_expand;
5961 	int error, rc;
5962 
5963 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5964 		brelse(iloc->bh);
5965 		return -EOVERFLOW;
5966 	}
5967 
5968 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5969 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5970 	if (IS_ERR(handle)) {
5971 		error = PTR_ERR(handle);
5972 		brelse(iloc->bh);
5973 		return error;
5974 	}
5975 
5976 	ext4_write_lock_xattr(inode, &no_expand);
5977 
5978 	BUFFER_TRACE(iloc.bh, "get_write_access");
5979 	error = ext4_journal_get_write_access(handle, iloc->bh);
5980 	if (error) {
5981 		brelse(iloc->bh);
5982 		goto out_stop;
5983 	}
5984 
5985 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5986 					  handle, &no_expand);
5987 
5988 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5989 	if (!error)
5990 		error = rc;
5991 
5992 	ext4_write_unlock_xattr(inode, &no_expand);
5993 out_stop:
5994 	ext4_journal_stop(handle);
5995 	return error;
5996 }
5997 
5998 /*
5999  * What we do here is to mark the in-core inode as clean with respect to inode
6000  * dirtiness (it may still be data-dirty).
6001  * This means that the in-core inode may be reaped by prune_icache
6002  * without having to perform any I/O.  This is a very good thing,
6003  * because *any* task may call prune_icache - even ones which
6004  * have a transaction open against a different journal.
6005  *
6006  * Is this cheating?  Not really.  Sure, we haven't written the
6007  * inode out, but prune_icache isn't a user-visible syncing function.
6008  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6009  * we start and wait on commits.
6010  */
6011 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6012 {
6013 	struct ext4_iloc iloc;
6014 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6015 	int err;
6016 
6017 	might_sleep();
6018 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6019 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6020 	if (err)
6021 		return err;
6022 
6023 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6024 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6025 					       iloc, handle);
6026 
6027 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
6028 }
6029 
6030 /*
6031  * ext4_dirty_inode() is called from __mark_inode_dirty()
6032  *
6033  * We're really interested in the case where a file is being extended.
6034  * i_size has been changed by generic_commit_write() and we thus need
6035  * to include the updated inode in the current transaction.
6036  *
6037  * Also, dquot_alloc_block() will always dirty the inode when blocks
6038  * are allocated to the file.
6039  *
6040  * If the inode is marked synchronous, we don't honour that here - doing
6041  * so would cause a commit on atime updates, which we don't bother doing.
6042  * We handle synchronous inodes at the highest possible level.
6043  *
6044  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6045  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6046  * to copy into the on-disk inode structure are the timestamp files.
6047  */
6048 void ext4_dirty_inode(struct inode *inode, int flags)
6049 {
6050 	handle_t *handle;
6051 
6052 	if (flags == I_DIRTY_TIME)
6053 		return;
6054 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6055 	if (IS_ERR(handle))
6056 		goto out;
6057 
6058 	ext4_mark_inode_dirty(handle, inode);
6059 
6060 	ext4_journal_stop(handle);
6061 out:
6062 	return;
6063 }
6064 
6065 #if 0
6066 /*
6067  * Bind an inode's backing buffer_head into this transaction, to prevent
6068  * it from being flushed to disk early.  Unlike
6069  * ext4_reserve_inode_write, this leaves behind no bh reference and
6070  * returns no iloc structure, so the caller needs to repeat the iloc
6071  * lookup to mark the inode dirty later.
6072  */
6073 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6074 {
6075 	struct ext4_iloc iloc;
6076 
6077 	int err = 0;
6078 	if (handle) {
6079 		err = ext4_get_inode_loc(inode, &iloc);
6080 		if (!err) {
6081 			BUFFER_TRACE(iloc.bh, "get_write_access");
6082 			err = jbd2_journal_get_write_access(handle, iloc.bh);
6083 			if (!err)
6084 				err = ext4_handle_dirty_metadata(handle,
6085 								 NULL,
6086 								 iloc.bh);
6087 			brelse(iloc.bh);
6088 		}
6089 	}
6090 	ext4_std_error(inode->i_sb, err);
6091 	return err;
6092 }
6093 #endif
6094 
6095 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6096 {
6097 	journal_t *journal;
6098 	handle_t *handle;
6099 	int err;
6100 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6101 
6102 	/*
6103 	 * We have to be very careful here: changing a data block's
6104 	 * journaling status dynamically is dangerous.  If we write a
6105 	 * data block to the journal, change the status and then delete
6106 	 * that block, we risk forgetting to revoke the old log record
6107 	 * from the journal and so a subsequent replay can corrupt data.
6108 	 * So, first we make sure that the journal is empty and that
6109 	 * nobody is changing anything.
6110 	 */
6111 
6112 	journal = EXT4_JOURNAL(inode);
6113 	if (!journal)
6114 		return 0;
6115 	if (is_journal_aborted(journal))
6116 		return -EROFS;
6117 
6118 	/* Wait for all existing dio workers */
6119 	inode_dio_wait(inode);
6120 
6121 	/*
6122 	 * Before flushing the journal and switching inode's aops, we have
6123 	 * to flush all dirty data the inode has. There can be outstanding
6124 	 * delayed allocations, there can be unwritten extents created by
6125 	 * fallocate or buffered writes in dioread_nolock mode covered by
6126 	 * dirty data which can be converted only after flushing the dirty
6127 	 * data (and journalled aops don't know how to handle these cases).
6128 	 */
6129 	if (val) {
6130 		down_write(&EXT4_I(inode)->i_mmap_sem);
6131 		err = filemap_write_and_wait(inode->i_mapping);
6132 		if (err < 0) {
6133 			up_write(&EXT4_I(inode)->i_mmap_sem);
6134 			return err;
6135 		}
6136 	}
6137 
6138 	percpu_down_write(&sbi->s_journal_flag_rwsem);
6139 	jbd2_journal_lock_updates(journal);
6140 
6141 	/*
6142 	 * OK, there are no updates running now, and all cached data is
6143 	 * synced to disk.  We are now in a completely consistent state
6144 	 * which doesn't have anything in the journal, and we know that
6145 	 * no filesystem updates are running, so it is safe to modify
6146 	 * the inode's in-core data-journaling state flag now.
6147 	 */
6148 
6149 	if (val)
6150 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6151 	else {
6152 		err = jbd2_journal_flush(journal);
6153 		if (err < 0) {
6154 			jbd2_journal_unlock_updates(journal);
6155 			percpu_up_write(&sbi->s_journal_flag_rwsem);
6156 			return err;
6157 		}
6158 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6159 	}
6160 	ext4_set_aops(inode);
6161 
6162 	jbd2_journal_unlock_updates(journal);
6163 	percpu_up_write(&sbi->s_journal_flag_rwsem);
6164 
6165 	if (val)
6166 		up_write(&EXT4_I(inode)->i_mmap_sem);
6167 
6168 	/* Finally we can mark the inode as dirty. */
6169 
6170 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6171 	if (IS_ERR(handle))
6172 		return PTR_ERR(handle);
6173 
6174 	err = ext4_mark_inode_dirty(handle, inode);
6175 	ext4_handle_sync(handle);
6176 	ext4_journal_stop(handle);
6177 	ext4_std_error(inode->i_sb, err);
6178 
6179 	return err;
6180 }
6181 
6182 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6183 {
6184 	return !buffer_mapped(bh);
6185 }
6186 
6187 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6188 {
6189 	struct vm_area_struct *vma = vmf->vma;
6190 	struct page *page = vmf->page;
6191 	loff_t size;
6192 	unsigned long len;
6193 	int err;
6194 	vm_fault_t ret;
6195 	struct file *file = vma->vm_file;
6196 	struct inode *inode = file_inode(file);
6197 	struct address_space *mapping = inode->i_mapping;
6198 	handle_t *handle;
6199 	get_block_t *get_block;
6200 	int retries = 0;
6201 
6202 	sb_start_pagefault(inode->i_sb);
6203 	file_update_time(vma->vm_file);
6204 
6205 	down_read(&EXT4_I(inode)->i_mmap_sem);
6206 
6207 	err = ext4_convert_inline_data(inode);
6208 	if (err)
6209 		goto out_ret;
6210 
6211 	/* Delalloc case is easy... */
6212 	if (test_opt(inode->i_sb, DELALLOC) &&
6213 	    !ext4_should_journal_data(inode) &&
6214 	    !ext4_nonda_switch(inode->i_sb)) {
6215 		do {
6216 			err = block_page_mkwrite(vma, vmf,
6217 						   ext4_da_get_block_prep);
6218 		} while (err == -ENOSPC &&
6219 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6220 		goto out_ret;
6221 	}
6222 
6223 	lock_page(page);
6224 	size = i_size_read(inode);
6225 	/* Page got truncated from under us? */
6226 	if (page->mapping != mapping || page_offset(page) > size) {
6227 		unlock_page(page);
6228 		ret = VM_FAULT_NOPAGE;
6229 		goto out;
6230 	}
6231 
6232 	if (page->index == size >> PAGE_SHIFT)
6233 		len = size & ~PAGE_MASK;
6234 	else
6235 		len = PAGE_SIZE;
6236 	/*
6237 	 * Return if we have all the buffers mapped. This avoids the need to do
6238 	 * journal_start/journal_stop which can block and take a long time
6239 	 */
6240 	if (page_has_buffers(page)) {
6241 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6242 					    0, len, NULL,
6243 					    ext4_bh_unmapped)) {
6244 			/* Wait so that we don't change page under IO */
6245 			wait_for_stable_page(page);
6246 			ret = VM_FAULT_LOCKED;
6247 			goto out;
6248 		}
6249 	}
6250 	unlock_page(page);
6251 	/* OK, we need to fill the hole... */
6252 	if (ext4_should_dioread_nolock(inode))
6253 		get_block = ext4_get_block_unwritten;
6254 	else
6255 		get_block = ext4_get_block;
6256 retry_alloc:
6257 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6258 				    ext4_writepage_trans_blocks(inode));
6259 	if (IS_ERR(handle)) {
6260 		ret = VM_FAULT_SIGBUS;
6261 		goto out;
6262 	}
6263 	err = block_page_mkwrite(vma, vmf, get_block);
6264 	if (!err && ext4_should_journal_data(inode)) {
6265 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6266 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6267 			unlock_page(page);
6268 			ret = VM_FAULT_SIGBUS;
6269 			ext4_journal_stop(handle);
6270 			goto out;
6271 		}
6272 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6273 	}
6274 	ext4_journal_stop(handle);
6275 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6276 		goto retry_alloc;
6277 out_ret:
6278 	ret = block_page_mkwrite_return(err);
6279 out:
6280 	up_read(&EXT4_I(inode)->i_mmap_sem);
6281 	sb_end_pagefault(inode->i_sb);
6282 	return ret;
6283 }
6284 
6285 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6286 {
6287 	struct inode *inode = file_inode(vmf->vma->vm_file);
6288 	vm_fault_t ret;
6289 
6290 	down_read(&EXT4_I(inode)->i_mmap_sem);
6291 	ret = filemap_fault(vmf);
6292 	up_read(&EXT4_I(inode)->i_mmap_sem);
6293 
6294 	return ret;
6295 }
6296