1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/bio.h> 40 #include "ext4_jbd2.h" 41 #include "xattr.h" 42 #include "acl.h" 43 #include "ext4_extents.h" 44 45 #define MPAGE_DA_EXTENT_TAIL 0x01 46 47 static inline int ext4_begin_ordered_truncate(struct inode *inode, 48 loff_t new_size) 49 { 50 return jbd2_journal_begin_ordered_truncate( 51 EXT4_SB(inode->i_sb)->s_journal, 52 &EXT4_I(inode)->jinode, 53 new_size); 54 } 55 56 static void ext4_invalidatepage(struct page *page, unsigned long offset); 57 58 /* 59 * Test whether an inode is a fast symlink. 60 */ 61 static int ext4_inode_is_fast_symlink(struct inode *inode) 62 { 63 int ea_blocks = EXT4_I(inode)->i_file_acl ? 64 (inode->i_sb->s_blocksize >> 9) : 0; 65 66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 67 } 68 69 /* 70 * The ext4 forget function must perform a revoke if we are freeing data 71 * which has been journaled. Metadata (eg. indirect blocks) must be 72 * revoked in all cases. 73 * 74 * "bh" may be NULL: a metadata block may have been freed from memory 75 * but there may still be a record of it in the journal, and that record 76 * still needs to be revoked. 77 * 78 * If the handle isn't valid we're not journaling so there's nothing to do. 79 */ 80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 81 struct buffer_head *bh, ext4_fsblk_t blocknr) 82 { 83 int err; 84 85 if (!ext4_handle_valid(handle)) 86 return 0; 87 88 might_sleep(); 89 90 BUFFER_TRACE(bh, "enter"); 91 92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 93 "data mode %lx\n", 94 bh, is_metadata, inode->i_mode, 95 test_opt(inode->i_sb, DATA_FLAGS)); 96 97 /* Never use the revoke function if we are doing full data 98 * journaling: there is no need to, and a V1 superblock won't 99 * support it. Otherwise, only skip the revoke on un-journaled 100 * data blocks. */ 101 102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 103 (!is_metadata && !ext4_should_journal_data(inode))) { 104 if (bh) { 105 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 106 return ext4_journal_forget(handle, bh); 107 } 108 return 0; 109 } 110 111 /* 112 * data!=journal && (is_metadata || should_journal_data(inode)) 113 */ 114 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 115 err = ext4_journal_revoke(handle, blocknr, bh); 116 if (err) 117 ext4_abort(inode->i_sb, __func__, 118 "error %d when attempting revoke", err); 119 BUFFER_TRACE(bh, "exit"); 120 return err; 121 } 122 123 /* 124 * Work out how many blocks we need to proceed with the next chunk of a 125 * truncate transaction. 126 */ 127 static unsigned long blocks_for_truncate(struct inode *inode) 128 { 129 ext4_lblk_t needed; 130 131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 132 133 /* Give ourselves just enough room to cope with inodes in which 134 * i_blocks is corrupt: we've seen disk corruptions in the past 135 * which resulted in random data in an inode which looked enough 136 * like a regular file for ext4 to try to delete it. Things 137 * will go a bit crazy if that happens, but at least we should 138 * try not to panic the whole kernel. */ 139 if (needed < 2) 140 needed = 2; 141 142 /* But we need to bound the transaction so we don't overflow the 143 * journal. */ 144 if (needed > EXT4_MAX_TRANS_DATA) 145 needed = EXT4_MAX_TRANS_DATA; 146 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 148 } 149 150 /* 151 * Truncate transactions can be complex and absolutely huge. So we need to 152 * be able to restart the transaction at a conventient checkpoint to make 153 * sure we don't overflow the journal. 154 * 155 * start_transaction gets us a new handle for a truncate transaction, 156 * and extend_transaction tries to extend the existing one a bit. If 157 * extend fails, we need to propagate the failure up and restart the 158 * transaction in the top-level truncate loop. --sct 159 */ 160 static handle_t *start_transaction(struct inode *inode) 161 { 162 handle_t *result; 163 164 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 165 if (!IS_ERR(result)) 166 return result; 167 168 ext4_std_error(inode->i_sb, PTR_ERR(result)); 169 return result; 170 } 171 172 /* 173 * Try to extend this transaction for the purposes of truncation. 174 * 175 * Returns 0 if we managed to create more room. If we can't create more 176 * room, and the transaction must be restarted we return 1. 177 */ 178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 179 { 180 if (!ext4_handle_valid(handle)) 181 return 0; 182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 183 return 0; 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 185 return 0; 186 return 1; 187 } 188 189 /* 190 * Restart the transaction associated with *handle. This does a commit, 191 * so before we call here everything must be consistently dirtied against 192 * this transaction. 193 */ 194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 195 { 196 BUG_ON(EXT4_JOURNAL(inode) == NULL); 197 jbd_debug(2, "restarting handle %p\n", handle); 198 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 199 } 200 201 /* 202 * Called at the last iput() if i_nlink is zero. 203 */ 204 void ext4_delete_inode(struct inode *inode) 205 { 206 handle_t *handle; 207 int err; 208 209 if (ext4_should_order_data(inode)) 210 ext4_begin_ordered_truncate(inode, 0); 211 truncate_inode_pages(&inode->i_data, 0); 212 213 if (is_bad_inode(inode)) 214 goto no_delete; 215 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 217 if (IS_ERR(handle)) { 218 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 219 /* 220 * If we're going to skip the normal cleanup, we still need to 221 * make sure that the in-core orphan linked list is properly 222 * cleaned up. 223 */ 224 ext4_orphan_del(NULL, inode); 225 goto no_delete; 226 } 227 228 if (IS_SYNC(inode)) 229 ext4_handle_sync(handle); 230 inode->i_size = 0; 231 err = ext4_mark_inode_dirty(handle, inode); 232 if (err) { 233 ext4_warning(inode->i_sb, __func__, 234 "couldn't mark inode dirty (err %d)", err); 235 goto stop_handle; 236 } 237 if (inode->i_blocks) 238 ext4_truncate(inode); 239 240 /* 241 * ext4_ext_truncate() doesn't reserve any slop when it 242 * restarts journal transactions; therefore there may not be 243 * enough credits left in the handle to remove the inode from 244 * the orphan list and set the dtime field. 245 */ 246 if (!ext4_handle_has_enough_credits(handle, 3)) { 247 err = ext4_journal_extend(handle, 3); 248 if (err > 0) 249 err = ext4_journal_restart(handle, 3); 250 if (err != 0) { 251 ext4_warning(inode->i_sb, __func__, 252 "couldn't extend journal (err %d)", err); 253 stop_handle: 254 ext4_journal_stop(handle); 255 goto no_delete; 256 } 257 } 258 259 /* 260 * Kill off the orphan record which ext4_truncate created. 261 * AKPM: I think this can be inside the above `if'. 262 * Note that ext4_orphan_del() has to be able to cope with the 263 * deletion of a non-existent orphan - this is because we don't 264 * know if ext4_truncate() actually created an orphan record. 265 * (Well, we could do this if we need to, but heck - it works) 266 */ 267 ext4_orphan_del(handle, inode); 268 EXT4_I(inode)->i_dtime = get_seconds(); 269 270 /* 271 * One subtle ordering requirement: if anything has gone wrong 272 * (transaction abort, IO errors, whatever), then we can still 273 * do these next steps (the fs will already have been marked as 274 * having errors), but we can't free the inode if the mark_dirty 275 * fails. 276 */ 277 if (ext4_mark_inode_dirty(handle, inode)) 278 /* If that failed, just do the required in-core inode clear. */ 279 clear_inode(inode); 280 else 281 ext4_free_inode(handle, inode); 282 ext4_journal_stop(handle); 283 return; 284 no_delete: 285 clear_inode(inode); /* We must guarantee clearing of inode... */ 286 } 287 288 typedef struct { 289 __le32 *p; 290 __le32 key; 291 struct buffer_head *bh; 292 } Indirect; 293 294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 295 { 296 p->key = *(p->p = v); 297 p->bh = bh; 298 } 299 300 /** 301 * ext4_block_to_path - parse the block number into array of offsets 302 * @inode: inode in question (we are only interested in its superblock) 303 * @i_block: block number to be parsed 304 * @offsets: array to store the offsets in 305 * @boundary: set this non-zero if the referred-to block is likely to be 306 * followed (on disk) by an indirect block. 307 * 308 * To store the locations of file's data ext4 uses a data structure common 309 * for UNIX filesystems - tree of pointers anchored in the inode, with 310 * data blocks at leaves and indirect blocks in intermediate nodes. 311 * This function translates the block number into path in that tree - 312 * return value is the path length and @offsets[n] is the offset of 313 * pointer to (n+1)th node in the nth one. If @block is out of range 314 * (negative or too large) warning is printed and zero returned. 315 * 316 * Note: function doesn't find node addresses, so no IO is needed. All 317 * we need to know is the capacity of indirect blocks (taken from the 318 * inode->i_sb). 319 */ 320 321 /* 322 * Portability note: the last comparison (check that we fit into triple 323 * indirect block) is spelled differently, because otherwise on an 324 * architecture with 32-bit longs and 8Kb pages we might get into trouble 325 * if our filesystem had 8Kb blocks. We might use long long, but that would 326 * kill us on x86. Oh, well, at least the sign propagation does not matter - 327 * i_block would have to be negative in the very beginning, so we would not 328 * get there at all. 329 */ 330 331 static int ext4_block_to_path(struct inode *inode, 332 ext4_lblk_t i_block, 333 ext4_lblk_t offsets[4], int *boundary) 334 { 335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 337 const long direct_blocks = EXT4_NDIR_BLOCKS, 338 indirect_blocks = ptrs, 339 double_blocks = (1 << (ptrs_bits * 2)); 340 int n = 0; 341 int final = 0; 342 343 if (i_block < 0) { 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0"); 345 } else if (i_block < direct_blocks) { 346 offsets[n++] = i_block; 347 final = direct_blocks; 348 } else if ((i_block -= direct_blocks) < indirect_blocks) { 349 offsets[n++] = EXT4_IND_BLOCK; 350 offsets[n++] = i_block; 351 final = ptrs; 352 } else if ((i_block -= indirect_blocks) < double_blocks) { 353 offsets[n++] = EXT4_DIND_BLOCK; 354 offsets[n++] = i_block >> ptrs_bits; 355 offsets[n++] = i_block & (ptrs - 1); 356 final = ptrs; 357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 358 offsets[n++] = EXT4_TIND_BLOCK; 359 offsets[n++] = i_block >> (ptrs_bits * 2); 360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 361 offsets[n++] = i_block & (ptrs - 1); 362 final = ptrs; 363 } else { 364 ext4_warning(inode->i_sb, "ext4_block_to_path", 365 "block %lu > max in inode %lu", 366 i_block + direct_blocks + 367 indirect_blocks + double_blocks, inode->i_ino); 368 } 369 if (boundary) 370 *boundary = final - 1 - (i_block & (ptrs - 1)); 371 return n; 372 } 373 374 static int __ext4_check_blockref(const char *function, struct inode *inode, 375 __le32 *p, unsigned int max) { 376 377 unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es); 378 __le32 *bref = p; 379 while (bref < p+max) { 380 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) { 381 ext4_error(inode->i_sb, function, 382 "block reference %u >= max (%u) " 383 "in inode #%lu, offset=%d", 384 le32_to_cpu(*bref), maxblocks, 385 inode->i_ino, (int)(bref-p)); 386 return -EIO; 387 } 388 bref++; 389 } 390 return 0; 391 } 392 393 394 #define ext4_check_indirect_blockref(inode, bh) \ 395 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \ 396 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 397 398 #define ext4_check_inode_blockref(inode) \ 399 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \ 400 EXT4_NDIR_BLOCKS) 401 402 /** 403 * ext4_get_branch - read the chain of indirect blocks leading to data 404 * @inode: inode in question 405 * @depth: depth of the chain (1 - direct pointer, etc.) 406 * @offsets: offsets of pointers in inode/indirect blocks 407 * @chain: place to store the result 408 * @err: here we store the error value 409 * 410 * Function fills the array of triples <key, p, bh> and returns %NULL 411 * if everything went OK or the pointer to the last filled triple 412 * (incomplete one) otherwise. Upon the return chain[i].key contains 413 * the number of (i+1)-th block in the chain (as it is stored in memory, 414 * i.e. little-endian 32-bit), chain[i].p contains the address of that 415 * number (it points into struct inode for i==0 and into the bh->b_data 416 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 417 * block for i>0 and NULL for i==0. In other words, it holds the block 418 * numbers of the chain, addresses they were taken from (and where we can 419 * verify that chain did not change) and buffer_heads hosting these 420 * numbers. 421 * 422 * Function stops when it stumbles upon zero pointer (absent block) 423 * (pointer to last triple returned, *@err == 0) 424 * or when it gets an IO error reading an indirect block 425 * (ditto, *@err == -EIO) 426 * or when it reads all @depth-1 indirect blocks successfully and finds 427 * the whole chain, all way to the data (returns %NULL, *err == 0). 428 * 429 * Need to be called with 430 * down_read(&EXT4_I(inode)->i_data_sem) 431 */ 432 static Indirect *ext4_get_branch(struct inode *inode, int depth, 433 ext4_lblk_t *offsets, 434 Indirect chain[4], int *err) 435 { 436 struct super_block *sb = inode->i_sb; 437 Indirect *p = chain; 438 struct buffer_head *bh; 439 440 *err = 0; 441 /* i_data is not going away, no lock needed */ 442 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 443 if (!p->key) 444 goto no_block; 445 while (--depth) { 446 bh = sb_getblk(sb, le32_to_cpu(p->key)); 447 if (unlikely(!bh)) 448 goto failure; 449 450 if (!bh_uptodate_or_lock(bh)) { 451 if (bh_submit_read(bh) < 0) { 452 put_bh(bh); 453 goto failure; 454 } 455 /* validate block references */ 456 if (ext4_check_indirect_blockref(inode, bh)) { 457 put_bh(bh); 458 goto failure; 459 } 460 } 461 462 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 463 /* Reader: end */ 464 if (!p->key) 465 goto no_block; 466 } 467 return NULL; 468 469 failure: 470 *err = -EIO; 471 no_block: 472 return p; 473 } 474 475 /** 476 * ext4_find_near - find a place for allocation with sufficient locality 477 * @inode: owner 478 * @ind: descriptor of indirect block. 479 * 480 * This function returns the preferred place for block allocation. 481 * It is used when heuristic for sequential allocation fails. 482 * Rules are: 483 * + if there is a block to the left of our position - allocate near it. 484 * + if pointer will live in indirect block - allocate near that block. 485 * + if pointer will live in inode - allocate in the same 486 * cylinder group. 487 * 488 * In the latter case we colour the starting block by the callers PID to 489 * prevent it from clashing with concurrent allocations for a different inode 490 * in the same block group. The PID is used here so that functionally related 491 * files will be close-by on-disk. 492 * 493 * Caller must make sure that @ind is valid and will stay that way. 494 */ 495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 496 { 497 struct ext4_inode_info *ei = EXT4_I(inode); 498 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 499 __le32 *p; 500 ext4_fsblk_t bg_start; 501 ext4_fsblk_t last_block; 502 ext4_grpblk_t colour; 503 ext4_group_t block_group; 504 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 505 506 /* Try to find previous block */ 507 for (p = ind->p - 1; p >= start; p--) { 508 if (*p) 509 return le32_to_cpu(*p); 510 } 511 512 /* No such thing, so let's try location of indirect block */ 513 if (ind->bh) 514 return ind->bh->b_blocknr; 515 516 /* 517 * It is going to be referred to from the inode itself? OK, just put it 518 * into the same cylinder group then. 519 */ 520 block_group = ei->i_block_group; 521 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 522 block_group &= ~(flex_size-1); 523 if (S_ISREG(inode->i_mode)) 524 block_group++; 525 } 526 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 527 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 528 529 /* 530 * If we are doing delayed allocation, we don't need take 531 * colour into account. 532 */ 533 if (test_opt(inode->i_sb, DELALLOC)) 534 return bg_start; 535 536 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 537 colour = (current->pid % 16) * 538 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 539 else 540 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 541 return bg_start + colour; 542 } 543 544 /** 545 * ext4_find_goal - find a preferred place for allocation. 546 * @inode: owner 547 * @block: block we want 548 * @partial: pointer to the last triple within a chain 549 * 550 * Normally this function find the preferred place for block allocation, 551 * returns it. 552 */ 553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 554 Indirect *partial) 555 { 556 /* 557 * XXX need to get goal block from mballoc's data structures 558 */ 559 560 return ext4_find_near(inode, partial); 561 } 562 563 /** 564 * ext4_blks_to_allocate: Look up the block map and count the number 565 * of direct blocks need to be allocated for the given branch. 566 * 567 * @branch: chain of indirect blocks 568 * @k: number of blocks need for indirect blocks 569 * @blks: number of data blocks to be mapped. 570 * @blocks_to_boundary: the offset in the indirect block 571 * 572 * return the total number of blocks to be allocate, including the 573 * direct and indirect blocks. 574 */ 575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 576 int blocks_to_boundary) 577 { 578 unsigned int count = 0; 579 580 /* 581 * Simple case, [t,d]Indirect block(s) has not allocated yet 582 * then it's clear blocks on that path have not allocated 583 */ 584 if (k > 0) { 585 /* right now we don't handle cross boundary allocation */ 586 if (blks < blocks_to_boundary + 1) 587 count += blks; 588 else 589 count += blocks_to_boundary + 1; 590 return count; 591 } 592 593 count++; 594 while (count < blks && count <= blocks_to_boundary && 595 le32_to_cpu(*(branch[0].p + count)) == 0) { 596 count++; 597 } 598 return count; 599 } 600 601 /** 602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 603 * @indirect_blks: the number of blocks need to allocate for indirect 604 * blocks 605 * 606 * @new_blocks: on return it will store the new block numbers for 607 * the indirect blocks(if needed) and the first direct block, 608 * @blks: on return it will store the total number of allocated 609 * direct blocks 610 */ 611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 612 ext4_lblk_t iblock, ext4_fsblk_t goal, 613 int indirect_blks, int blks, 614 ext4_fsblk_t new_blocks[4], int *err) 615 { 616 struct ext4_allocation_request ar; 617 int target, i; 618 unsigned long count = 0, blk_allocated = 0; 619 int index = 0; 620 ext4_fsblk_t current_block = 0; 621 int ret = 0; 622 623 /* 624 * Here we try to allocate the requested multiple blocks at once, 625 * on a best-effort basis. 626 * To build a branch, we should allocate blocks for 627 * the indirect blocks(if not allocated yet), and at least 628 * the first direct block of this branch. That's the 629 * minimum number of blocks need to allocate(required) 630 */ 631 /* first we try to allocate the indirect blocks */ 632 target = indirect_blks; 633 while (target > 0) { 634 count = target; 635 /* allocating blocks for indirect blocks and direct blocks */ 636 current_block = ext4_new_meta_blocks(handle, inode, 637 goal, &count, err); 638 if (*err) 639 goto failed_out; 640 641 target -= count; 642 /* allocate blocks for indirect blocks */ 643 while (index < indirect_blks && count) { 644 new_blocks[index++] = current_block++; 645 count--; 646 } 647 if (count > 0) { 648 /* 649 * save the new block number 650 * for the first direct block 651 */ 652 new_blocks[index] = current_block; 653 printk(KERN_INFO "%s returned more blocks than " 654 "requested\n", __func__); 655 WARN_ON(1); 656 break; 657 } 658 } 659 660 target = blks - count ; 661 blk_allocated = count; 662 if (!target) 663 goto allocated; 664 /* Now allocate data blocks */ 665 memset(&ar, 0, sizeof(ar)); 666 ar.inode = inode; 667 ar.goal = goal; 668 ar.len = target; 669 ar.logical = iblock; 670 if (S_ISREG(inode->i_mode)) 671 /* enable in-core preallocation only for regular files */ 672 ar.flags = EXT4_MB_HINT_DATA; 673 674 current_block = ext4_mb_new_blocks(handle, &ar, err); 675 676 if (*err && (target == blks)) { 677 /* 678 * if the allocation failed and we didn't allocate 679 * any blocks before 680 */ 681 goto failed_out; 682 } 683 if (!*err) { 684 if (target == blks) { 685 /* 686 * save the new block number 687 * for the first direct block 688 */ 689 new_blocks[index] = current_block; 690 } 691 blk_allocated += ar.len; 692 } 693 allocated: 694 /* total number of blocks allocated for direct blocks */ 695 ret = blk_allocated; 696 *err = 0; 697 return ret; 698 failed_out: 699 for (i = 0; i < index; i++) 700 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 701 return ret; 702 } 703 704 /** 705 * ext4_alloc_branch - allocate and set up a chain of blocks. 706 * @inode: owner 707 * @indirect_blks: number of allocated indirect blocks 708 * @blks: number of allocated direct blocks 709 * @offsets: offsets (in the blocks) to store the pointers to next. 710 * @branch: place to store the chain in. 711 * 712 * This function allocates blocks, zeroes out all but the last one, 713 * links them into chain and (if we are synchronous) writes them to disk. 714 * In other words, it prepares a branch that can be spliced onto the 715 * inode. It stores the information about that chain in the branch[], in 716 * the same format as ext4_get_branch() would do. We are calling it after 717 * we had read the existing part of chain and partial points to the last 718 * triple of that (one with zero ->key). Upon the exit we have the same 719 * picture as after the successful ext4_get_block(), except that in one 720 * place chain is disconnected - *branch->p is still zero (we did not 721 * set the last link), but branch->key contains the number that should 722 * be placed into *branch->p to fill that gap. 723 * 724 * If allocation fails we free all blocks we've allocated (and forget 725 * their buffer_heads) and return the error value the from failed 726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 727 * as described above and return 0. 728 */ 729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 730 ext4_lblk_t iblock, int indirect_blks, 731 int *blks, ext4_fsblk_t goal, 732 ext4_lblk_t *offsets, Indirect *branch) 733 { 734 int blocksize = inode->i_sb->s_blocksize; 735 int i, n = 0; 736 int err = 0; 737 struct buffer_head *bh; 738 int num; 739 ext4_fsblk_t new_blocks[4]; 740 ext4_fsblk_t current_block; 741 742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 743 *blks, new_blocks, &err); 744 if (err) 745 return err; 746 747 branch[0].key = cpu_to_le32(new_blocks[0]); 748 /* 749 * metadata blocks and data blocks are allocated. 750 */ 751 for (n = 1; n <= indirect_blks; n++) { 752 /* 753 * Get buffer_head for parent block, zero it out 754 * and set the pointer to new one, then send 755 * parent to disk. 756 */ 757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 758 branch[n].bh = bh; 759 lock_buffer(bh); 760 BUFFER_TRACE(bh, "call get_create_access"); 761 err = ext4_journal_get_create_access(handle, bh); 762 if (err) { 763 unlock_buffer(bh); 764 brelse(bh); 765 goto failed; 766 } 767 768 memset(bh->b_data, 0, blocksize); 769 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 770 branch[n].key = cpu_to_le32(new_blocks[n]); 771 *branch[n].p = branch[n].key; 772 if (n == indirect_blks) { 773 current_block = new_blocks[n]; 774 /* 775 * End of chain, update the last new metablock of 776 * the chain to point to the new allocated 777 * data blocks numbers 778 */ 779 for (i=1; i < num; i++) 780 *(branch[n].p + i) = cpu_to_le32(++current_block); 781 } 782 BUFFER_TRACE(bh, "marking uptodate"); 783 set_buffer_uptodate(bh); 784 unlock_buffer(bh); 785 786 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 787 err = ext4_handle_dirty_metadata(handle, inode, bh); 788 if (err) 789 goto failed; 790 } 791 *blks = num; 792 return err; 793 failed: 794 /* Allocation failed, free what we already allocated */ 795 for (i = 1; i <= n ; i++) { 796 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 797 ext4_journal_forget(handle, branch[i].bh); 798 } 799 for (i = 0; i < indirect_blks; i++) 800 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 801 802 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 803 804 return err; 805 } 806 807 /** 808 * ext4_splice_branch - splice the allocated branch onto inode. 809 * @inode: owner 810 * @block: (logical) number of block we are adding 811 * @chain: chain of indirect blocks (with a missing link - see 812 * ext4_alloc_branch) 813 * @where: location of missing link 814 * @num: number of indirect blocks we are adding 815 * @blks: number of direct blocks we are adding 816 * 817 * This function fills the missing link and does all housekeeping needed in 818 * inode (->i_blocks, etc.). In case of success we end up with the full 819 * chain to new block and return 0. 820 */ 821 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 822 ext4_lblk_t block, Indirect *where, int num, int blks) 823 { 824 int i; 825 int err = 0; 826 ext4_fsblk_t current_block; 827 828 /* 829 * If we're splicing into a [td]indirect block (as opposed to the 830 * inode) then we need to get write access to the [td]indirect block 831 * before the splice. 832 */ 833 if (where->bh) { 834 BUFFER_TRACE(where->bh, "get_write_access"); 835 err = ext4_journal_get_write_access(handle, where->bh); 836 if (err) 837 goto err_out; 838 } 839 /* That's it */ 840 841 *where->p = where->key; 842 843 /* 844 * Update the host buffer_head or inode to point to more just allocated 845 * direct blocks blocks 846 */ 847 if (num == 0 && blks > 1) { 848 current_block = le32_to_cpu(where->key) + 1; 849 for (i = 1; i < blks; i++) 850 *(where->p + i) = cpu_to_le32(current_block++); 851 } 852 853 /* We are done with atomic stuff, now do the rest of housekeeping */ 854 855 inode->i_ctime = ext4_current_time(inode); 856 ext4_mark_inode_dirty(handle, inode); 857 858 /* had we spliced it onto indirect block? */ 859 if (where->bh) { 860 /* 861 * If we spliced it onto an indirect block, we haven't 862 * altered the inode. Note however that if it is being spliced 863 * onto an indirect block at the very end of the file (the 864 * file is growing) then we *will* alter the inode to reflect 865 * the new i_size. But that is not done here - it is done in 866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 867 */ 868 jbd_debug(5, "splicing indirect only\n"); 869 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 870 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 871 if (err) 872 goto err_out; 873 } else { 874 /* 875 * OK, we spliced it into the inode itself on a direct block. 876 * Inode was dirtied above. 877 */ 878 jbd_debug(5, "splicing direct\n"); 879 } 880 return err; 881 882 err_out: 883 for (i = 1; i <= num; i++) { 884 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 885 ext4_journal_forget(handle, where[i].bh); 886 ext4_free_blocks(handle, inode, 887 le32_to_cpu(where[i-1].key), 1, 0); 888 } 889 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 890 891 return err; 892 } 893 894 /* 895 * Allocation strategy is simple: if we have to allocate something, we will 896 * have to go the whole way to leaf. So let's do it before attaching anything 897 * to tree, set linkage between the newborn blocks, write them if sync is 898 * required, recheck the path, free and repeat if check fails, otherwise 899 * set the last missing link (that will protect us from any truncate-generated 900 * removals - all blocks on the path are immune now) and possibly force the 901 * write on the parent block. 902 * That has a nice additional property: no special recovery from the failed 903 * allocations is needed - we simply release blocks and do not touch anything 904 * reachable from inode. 905 * 906 * `handle' can be NULL if create == 0. 907 * 908 * return > 0, # of blocks mapped or allocated. 909 * return = 0, if plain lookup failed. 910 * return < 0, error case. 911 * 912 * 913 * Need to be called with 914 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 915 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 916 */ 917 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 918 ext4_lblk_t iblock, unsigned int maxblocks, 919 struct buffer_head *bh_result, 920 int create, int extend_disksize) 921 { 922 int err = -EIO; 923 ext4_lblk_t offsets[4]; 924 Indirect chain[4]; 925 Indirect *partial; 926 ext4_fsblk_t goal; 927 int indirect_blks; 928 int blocks_to_boundary = 0; 929 int depth; 930 struct ext4_inode_info *ei = EXT4_I(inode); 931 int count = 0; 932 ext4_fsblk_t first_block = 0; 933 loff_t disksize; 934 935 936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 937 J_ASSERT(handle != NULL || create == 0); 938 depth = ext4_block_to_path(inode, iblock, offsets, 939 &blocks_to_boundary); 940 941 if (depth == 0) 942 goto out; 943 944 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 945 946 /* Simplest case - block found, no allocation needed */ 947 if (!partial) { 948 first_block = le32_to_cpu(chain[depth - 1].key); 949 clear_buffer_new(bh_result); 950 count++; 951 /*map more blocks*/ 952 while (count < maxblocks && count <= blocks_to_boundary) { 953 ext4_fsblk_t blk; 954 955 blk = le32_to_cpu(*(chain[depth-1].p + count)); 956 957 if (blk == first_block + count) 958 count++; 959 else 960 break; 961 } 962 goto got_it; 963 } 964 965 /* Next simple case - plain lookup or failed read of indirect block */ 966 if (!create || err == -EIO) 967 goto cleanup; 968 969 /* 970 * Okay, we need to do block allocation. 971 */ 972 goal = ext4_find_goal(inode, iblock, partial); 973 974 /* the number of blocks need to allocate for [d,t]indirect blocks */ 975 indirect_blks = (chain + depth) - partial - 1; 976 977 /* 978 * Next look up the indirect map to count the totoal number of 979 * direct blocks to allocate for this branch. 980 */ 981 count = ext4_blks_to_allocate(partial, indirect_blks, 982 maxblocks, blocks_to_boundary); 983 /* 984 * Block out ext4_truncate while we alter the tree 985 */ 986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 987 &count, goal, 988 offsets + (partial - chain), partial); 989 990 /* 991 * The ext4_splice_branch call will free and forget any buffers 992 * on the new chain if there is a failure, but that risks using 993 * up transaction credits, especially for bitmaps where the 994 * credits cannot be returned. Can we handle this somehow? We 995 * may need to return -EAGAIN upwards in the worst case. --sct 996 */ 997 if (!err) 998 err = ext4_splice_branch(handle, inode, iblock, 999 partial, indirect_blks, count); 1000 /* 1001 * i_disksize growing is protected by i_data_sem. Don't forget to 1002 * protect it if you're about to implement concurrent 1003 * ext4_get_block() -bzzz 1004 */ 1005 if (!err && extend_disksize) { 1006 disksize = ((loff_t) iblock + count) << inode->i_blkbits; 1007 if (disksize > i_size_read(inode)) 1008 disksize = i_size_read(inode); 1009 if (disksize > ei->i_disksize) 1010 ei->i_disksize = disksize; 1011 } 1012 if (err) 1013 goto cleanup; 1014 1015 set_buffer_new(bh_result); 1016 got_it: 1017 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 1018 if (count > blocks_to_boundary) 1019 set_buffer_boundary(bh_result); 1020 err = count; 1021 /* Clean up and exit */ 1022 partial = chain + depth - 1; /* the whole chain */ 1023 cleanup: 1024 while (partial > chain) { 1025 BUFFER_TRACE(partial->bh, "call brelse"); 1026 brelse(partial->bh); 1027 partial--; 1028 } 1029 BUFFER_TRACE(bh_result, "returned"); 1030 out: 1031 return err; 1032 } 1033 1034 qsize_t ext4_get_reserved_space(struct inode *inode) 1035 { 1036 unsigned long long total; 1037 1038 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1039 total = EXT4_I(inode)->i_reserved_data_blocks + 1040 EXT4_I(inode)->i_reserved_meta_blocks; 1041 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1042 1043 return total; 1044 } 1045 /* 1046 * Calculate the number of metadata blocks need to reserve 1047 * to allocate @blocks for non extent file based file 1048 */ 1049 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 1050 { 1051 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1052 int ind_blks, dind_blks, tind_blks; 1053 1054 /* number of new indirect blocks needed */ 1055 ind_blks = (blocks + icap - 1) / icap; 1056 1057 dind_blks = (ind_blks + icap - 1) / icap; 1058 1059 tind_blks = 1; 1060 1061 return ind_blks + dind_blks + tind_blks; 1062 } 1063 1064 /* 1065 * Calculate the number of metadata blocks need to reserve 1066 * to allocate given number of blocks 1067 */ 1068 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 1069 { 1070 if (!blocks) 1071 return 0; 1072 1073 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1074 return ext4_ext_calc_metadata_amount(inode, blocks); 1075 1076 return ext4_indirect_calc_metadata_amount(inode, blocks); 1077 } 1078 1079 static void ext4_da_update_reserve_space(struct inode *inode, int used) 1080 { 1081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1082 int total, mdb, mdb_free; 1083 1084 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1085 /* recalculate the number of metablocks still need to be reserved */ 1086 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1087 mdb = ext4_calc_metadata_amount(inode, total); 1088 1089 /* figure out how many metablocks to release */ 1090 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1091 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1092 1093 if (mdb_free) { 1094 /* Account for allocated meta_blocks */ 1095 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1096 1097 /* update fs dirty blocks counter */ 1098 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free); 1099 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1100 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1101 } 1102 1103 /* update per-inode reservations */ 1104 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1105 EXT4_I(inode)->i_reserved_data_blocks -= used; 1106 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1107 1108 /* 1109 * free those over-booking quota for metadata blocks 1110 */ 1111 if (mdb_free) 1112 vfs_dq_release_reservation_block(inode, mdb_free); 1113 1114 /* 1115 * If we have done all the pending block allocations and if 1116 * there aren't any writers on the inode, we can discard the 1117 * inode's preallocations. 1118 */ 1119 if (!total && (atomic_read(&inode->i_writecount) == 0)) 1120 ext4_discard_preallocations(inode); 1121 } 1122 1123 /* 1124 * The ext4_get_blocks_wrap() function try to look up the requested blocks, 1125 * and returns if the blocks are already mapped. 1126 * 1127 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1128 * and store the allocated blocks in the result buffer head and mark it 1129 * mapped. 1130 * 1131 * If file type is extents based, it will call ext4_ext_get_blocks(), 1132 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 1133 * based files 1134 * 1135 * On success, it returns the number of blocks being mapped or allocate. 1136 * if create==0 and the blocks are pre-allocated and uninitialized block, 1137 * the result buffer head is unmapped. If the create ==1, it will make sure 1138 * the buffer head is mapped. 1139 * 1140 * It returns 0 if plain look up failed (blocks have not been allocated), in 1141 * that casem, buffer head is unmapped 1142 * 1143 * It returns the error in case of allocation failure. 1144 */ 1145 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 1146 unsigned int max_blocks, struct buffer_head *bh, 1147 int create, int extend_disksize, int flag) 1148 { 1149 int retval; 1150 1151 clear_buffer_mapped(bh); 1152 clear_buffer_unwritten(bh); 1153 1154 /* 1155 * Try to see if we can get the block without requesting 1156 * for new file system block. 1157 */ 1158 down_read((&EXT4_I(inode)->i_data_sem)); 1159 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1160 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1161 bh, 0, 0); 1162 } else { 1163 retval = ext4_get_blocks_handle(handle, 1164 inode, block, max_blocks, bh, 0, 0); 1165 } 1166 up_read((&EXT4_I(inode)->i_data_sem)); 1167 1168 /* If it is only a block(s) look up */ 1169 if (!create) 1170 return retval; 1171 1172 /* 1173 * Returns if the blocks have already allocated 1174 * 1175 * Note that if blocks have been preallocated 1176 * ext4_ext_get_block() returns th create = 0 1177 * with buffer head unmapped. 1178 */ 1179 if (retval > 0 && buffer_mapped(bh)) 1180 return retval; 1181 1182 /* 1183 * When we call get_blocks without the create flag, the 1184 * BH_Unwritten flag could have gotten set if the blocks 1185 * requested were part of a uninitialized extent. We need to 1186 * clear this flag now that we are committed to convert all or 1187 * part of the uninitialized extent to be an initialized 1188 * extent. This is because we need to avoid the combination 1189 * of BH_Unwritten and BH_Mapped flags being simultaneously 1190 * set on the buffer_head. 1191 */ 1192 clear_buffer_unwritten(bh); 1193 1194 /* 1195 * New blocks allocate and/or writing to uninitialized extent 1196 * will possibly result in updating i_data, so we take 1197 * the write lock of i_data_sem, and call get_blocks() 1198 * with create == 1 flag. 1199 */ 1200 down_write((&EXT4_I(inode)->i_data_sem)); 1201 1202 /* 1203 * if the caller is from delayed allocation writeout path 1204 * we have already reserved fs blocks for allocation 1205 * let the underlying get_block() function know to 1206 * avoid double accounting 1207 */ 1208 if (flag) 1209 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1210 /* 1211 * We need to check for EXT4 here because migrate 1212 * could have changed the inode type in between 1213 */ 1214 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1215 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1216 bh, create, extend_disksize); 1217 } else { 1218 retval = ext4_get_blocks_handle(handle, inode, block, 1219 max_blocks, bh, create, extend_disksize); 1220 1221 if (retval > 0 && buffer_new(bh)) { 1222 /* 1223 * We allocated new blocks which will result in 1224 * i_data's format changing. Force the migrate 1225 * to fail by clearing migrate flags 1226 */ 1227 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 1228 ~EXT4_EXT_MIGRATE; 1229 } 1230 } 1231 1232 if (flag) { 1233 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1234 /* 1235 * Update reserved blocks/metadata blocks 1236 * after successful block allocation 1237 * which were deferred till now 1238 */ 1239 if ((retval > 0) && buffer_delay(bh)) 1240 ext4_da_update_reserve_space(inode, retval); 1241 } 1242 1243 up_write((&EXT4_I(inode)->i_data_sem)); 1244 return retval; 1245 } 1246 1247 /* Maximum number of blocks we map for direct IO at once. */ 1248 #define DIO_MAX_BLOCKS 4096 1249 1250 int ext4_get_block(struct inode *inode, sector_t iblock, 1251 struct buffer_head *bh_result, int create) 1252 { 1253 handle_t *handle = ext4_journal_current_handle(); 1254 int ret = 0, started = 0; 1255 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1256 int dio_credits; 1257 1258 if (create && !handle) { 1259 /* Direct IO write... */ 1260 if (max_blocks > DIO_MAX_BLOCKS) 1261 max_blocks = DIO_MAX_BLOCKS; 1262 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1263 handle = ext4_journal_start(inode, dio_credits); 1264 if (IS_ERR(handle)) { 1265 ret = PTR_ERR(handle); 1266 goto out; 1267 } 1268 started = 1; 1269 } 1270 1271 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1272 max_blocks, bh_result, create, 0, 0); 1273 if (ret > 0) { 1274 bh_result->b_size = (ret << inode->i_blkbits); 1275 ret = 0; 1276 } 1277 if (started) 1278 ext4_journal_stop(handle); 1279 out: 1280 return ret; 1281 } 1282 1283 /* 1284 * `handle' can be NULL if create is zero 1285 */ 1286 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1287 ext4_lblk_t block, int create, int *errp) 1288 { 1289 struct buffer_head dummy; 1290 int fatal = 0, err; 1291 1292 J_ASSERT(handle != NULL || create == 0); 1293 1294 dummy.b_state = 0; 1295 dummy.b_blocknr = -1000; 1296 buffer_trace_init(&dummy.b_history); 1297 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1298 &dummy, create, 1, 0); 1299 /* 1300 * ext4_get_blocks_handle() returns number of blocks 1301 * mapped. 0 in case of a HOLE. 1302 */ 1303 if (err > 0) { 1304 if (err > 1) 1305 WARN_ON(1); 1306 err = 0; 1307 } 1308 *errp = err; 1309 if (!err && buffer_mapped(&dummy)) { 1310 struct buffer_head *bh; 1311 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1312 if (!bh) { 1313 *errp = -EIO; 1314 goto err; 1315 } 1316 if (buffer_new(&dummy)) { 1317 J_ASSERT(create != 0); 1318 J_ASSERT(handle != NULL); 1319 1320 /* 1321 * Now that we do not always journal data, we should 1322 * keep in mind whether this should always journal the 1323 * new buffer as metadata. For now, regular file 1324 * writes use ext4_get_block instead, so it's not a 1325 * problem. 1326 */ 1327 lock_buffer(bh); 1328 BUFFER_TRACE(bh, "call get_create_access"); 1329 fatal = ext4_journal_get_create_access(handle, bh); 1330 if (!fatal && !buffer_uptodate(bh)) { 1331 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1332 set_buffer_uptodate(bh); 1333 } 1334 unlock_buffer(bh); 1335 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1336 err = ext4_handle_dirty_metadata(handle, inode, bh); 1337 if (!fatal) 1338 fatal = err; 1339 } else { 1340 BUFFER_TRACE(bh, "not a new buffer"); 1341 } 1342 if (fatal) { 1343 *errp = fatal; 1344 brelse(bh); 1345 bh = NULL; 1346 } 1347 return bh; 1348 } 1349 err: 1350 return NULL; 1351 } 1352 1353 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1354 ext4_lblk_t block, int create, int *err) 1355 { 1356 struct buffer_head *bh; 1357 1358 bh = ext4_getblk(handle, inode, block, create, err); 1359 if (!bh) 1360 return bh; 1361 if (buffer_uptodate(bh)) 1362 return bh; 1363 ll_rw_block(READ_META, 1, &bh); 1364 wait_on_buffer(bh); 1365 if (buffer_uptodate(bh)) 1366 return bh; 1367 put_bh(bh); 1368 *err = -EIO; 1369 return NULL; 1370 } 1371 1372 static int walk_page_buffers(handle_t *handle, 1373 struct buffer_head *head, 1374 unsigned from, 1375 unsigned to, 1376 int *partial, 1377 int (*fn)(handle_t *handle, 1378 struct buffer_head *bh)) 1379 { 1380 struct buffer_head *bh; 1381 unsigned block_start, block_end; 1382 unsigned blocksize = head->b_size; 1383 int err, ret = 0; 1384 struct buffer_head *next; 1385 1386 for (bh = head, block_start = 0; 1387 ret == 0 && (bh != head || !block_start); 1388 block_start = block_end, bh = next) 1389 { 1390 next = bh->b_this_page; 1391 block_end = block_start + blocksize; 1392 if (block_end <= from || block_start >= to) { 1393 if (partial && !buffer_uptodate(bh)) 1394 *partial = 1; 1395 continue; 1396 } 1397 err = (*fn)(handle, bh); 1398 if (!ret) 1399 ret = err; 1400 } 1401 return ret; 1402 } 1403 1404 /* 1405 * To preserve ordering, it is essential that the hole instantiation and 1406 * the data write be encapsulated in a single transaction. We cannot 1407 * close off a transaction and start a new one between the ext4_get_block() 1408 * and the commit_write(). So doing the jbd2_journal_start at the start of 1409 * prepare_write() is the right place. 1410 * 1411 * Also, this function can nest inside ext4_writepage() -> 1412 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1413 * has generated enough buffer credits to do the whole page. So we won't 1414 * block on the journal in that case, which is good, because the caller may 1415 * be PF_MEMALLOC. 1416 * 1417 * By accident, ext4 can be reentered when a transaction is open via 1418 * quota file writes. If we were to commit the transaction while thus 1419 * reentered, there can be a deadlock - we would be holding a quota 1420 * lock, and the commit would never complete if another thread had a 1421 * transaction open and was blocking on the quota lock - a ranking 1422 * violation. 1423 * 1424 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1425 * will _not_ run commit under these circumstances because handle->h_ref 1426 * is elevated. We'll still have enough credits for the tiny quotafile 1427 * write. 1428 */ 1429 static int do_journal_get_write_access(handle_t *handle, 1430 struct buffer_head *bh) 1431 { 1432 if (!buffer_mapped(bh) || buffer_freed(bh)) 1433 return 0; 1434 return ext4_journal_get_write_access(handle, bh); 1435 } 1436 1437 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1438 loff_t pos, unsigned len, unsigned flags, 1439 struct page **pagep, void **fsdata) 1440 { 1441 struct inode *inode = mapping->host; 1442 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1443 handle_t *handle; 1444 int retries = 0; 1445 struct page *page; 1446 pgoff_t index; 1447 unsigned from, to; 1448 1449 trace_mark(ext4_write_begin, 1450 "dev %s ino %lu pos %llu len %u flags %u", 1451 inode->i_sb->s_id, inode->i_ino, 1452 (unsigned long long) pos, len, flags); 1453 index = pos >> PAGE_CACHE_SHIFT; 1454 from = pos & (PAGE_CACHE_SIZE - 1); 1455 to = from + len; 1456 1457 retry: 1458 handle = ext4_journal_start(inode, needed_blocks); 1459 if (IS_ERR(handle)) { 1460 ret = PTR_ERR(handle); 1461 goto out; 1462 } 1463 1464 /* We cannot recurse into the filesystem as the transaction is already 1465 * started */ 1466 flags |= AOP_FLAG_NOFS; 1467 1468 page = grab_cache_page_write_begin(mapping, index, flags); 1469 if (!page) { 1470 ext4_journal_stop(handle); 1471 ret = -ENOMEM; 1472 goto out; 1473 } 1474 *pagep = page; 1475 1476 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1477 ext4_get_block); 1478 1479 if (!ret && ext4_should_journal_data(inode)) { 1480 ret = walk_page_buffers(handle, page_buffers(page), 1481 from, to, NULL, do_journal_get_write_access); 1482 } 1483 1484 if (ret) { 1485 unlock_page(page); 1486 ext4_journal_stop(handle); 1487 page_cache_release(page); 1488 /* 1489 * block_write_begin may have instantiated a few blocks 1490 * outside i_size. Trim these off again. Don't need 1491 * i_size_read because we hold i_mutex. 1492 */ 1493 if (pos + len > inode->i_size) 1494 vmtruncate(inode, inode->i_size); 1495 } 1496 1497 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1498 goto retry; 1499 out: 1500 return ret; 1501 } 1502 1503 /* For write_end() in data=journal mode */ 1504 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1505 { 1506 if (!buffer_mapped(bh) || buffer_freed(bh)) 1507 return 0; 1508 set_buffer_uptodate(bh); 1509 return ext4_handle_dirty_metadata(handle, NULL, bh); 1510 } 1511 1512 /* 1513 * We need to pick up the new inode size which generic_commit_write gave us 1514 * `file' can be NULL - eg, when called from page_symlink(). 1515 * 1516 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1517 * buffers are managed internally. 1518 */ 1519 static int ext4_ordered_write_end(struct file *file, 1520 struct address_space *mapping, 1521 loff_t pos, unsigned len, unsigned copied, 1522 struct page *page, void *fsdata) 1523 { 1524 handle_t *handle = ext4_journal_current_handle(); 1525 struct inode *inode = mapping->host; 1526 int ret = 0, ret2; 1527 1528 trace_mark(ext4_ordered_write_end, 1529 "dev %s ino %lu pos %llu len %u copied %u", 1530 inode->i_sb->s_id, inode->i_ino, 1531 (unsigned long long) pos, len, copied); 1532 ret = ext4_jbd2_file_inode(handle, inode); 1533 1534 if (ret == 0) { 1535 loff_t new_i_size; 1536 1537 new_i_size = pos + copied; 1538 if (new_i_size > EXT4_I(inode)->i_disksize) { 1539 ext4_update_i_disksize(inode, new_i_size); 1540 /* We need to mark inode dirty even if 1541 * new_i_size is less that inode->i_size 1542 * bu greater than i_disksize.(hint delalloc) 1543 */ 1544 ext4_mark_inode_dirty(handle, inode); 1545 } 1546 1547 ret2 = generic_write_end(file, mapping, pos, len, copied, 1548 page, fsdata); 1549 copied = ret2; 1550 if (ret2 < 0) 1551 ret = ret2; 1552 } 1553 ret2 = ext4_journal_stop(handle); 1554 if (!ret) 1555 ret = ret2; 1556 1557 return ret ? ret : copied; 1558 } 1559 1560 static int ext4_writeback_write_end(struct file *file, 1561 struct address_space *mapping, 1562 loff_t pos, unsigned len, unsigned copied, 1563 struct page *page, void *fsdata) 1564 { 1565 handle_t *handle = ext4_journal_current_handle(); 1566 struct inode *inode = mapping->host; 1567 int ret = 0, ret2; 1568 loff_t new_i_size; 1569 1570 trace_mark(ext4_writeback_write_end, 1571 "dev %s ino %lu pos %llu len %u copied %u", 1572 inode->i_sb->s_id, inode->i_ino, 1573 (unsigned long long) pos, len, copied); 1574 new_i_size = pos + copied; 1575 if (new_i_size > EXT4_I(inode)->i_disksize) { 1576 ext4_update_i_disksize(inode, new_i_size); 1577 /* We need to mark inode dirty even if 1578 * new_i_size is less that inode->i_size 1579 * bu greater than i_disksize.(hint delalloc) 1580 */ 1581 ext4_mark_inode_dirty(handle, inode); 1582 } 1583 1584 ret2 = generic_write_end(file, mapping, pos, len, copied, 1585 page, fsdata); 1586 copied = ret2; 1587 if (ret2 < 0) 1588 ret = ret2; 1589 1590 ret2 = ext4_journal_stop(handle); 1591 if (!ret) 1592 ret = ret2; 1593 1594 return ret ? ret : copied; 1595 } 1596 1597 static int ext4_journalled_write_end(struct file *file, 1598 struct address_space *mapping, 1599 loff_t pos, unsigned len, unsigned copied, 1600 struct page *page, void *fsdata) 1601 { 1602 handle_t *handle = ext4_journal_current_handle(); 1603 struct inode *inode = mapping->host; 1604 int ret = 0, ret2; 1605 int partial = 0; 1606 unsigned from, to; 1607 loff_t new_i_size; 1608 1609 trace_mark(ext4_journalled_write_end, 1610 "dev %s ino %lu pos %llu len %u copied %u", 1611 inode->i_sb->s_id, inode->i_ino, 1612 (unsigned long long) pos, len, copied); 1613 from = pos & (PAGE_CACHE_SIZE - 1); 1614 to = from + len; 1615 1616 if (copied < len) { 1617 if (!PageUptodate(page)) 1618 copied = 0; 1619 page_zero_new_buffers(page, from+copied, to); 1620 } 1621 1622 ret = walk_page_buffers(handle, page_buffers(page), from, 1623 to, &partial, write_end_fn); 1624 if (!partial) 1625 SetPageUptodate(page); 1626 new_i_size = pos + copied; 1627 if (new_i_size > inode->i_size) 1628 i_size_write(inode, pos+copied); 1629 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1630 if (new_i_size > EXT4_I(inode)->i_disksize) { 1631 ext4_update_i_disksize(inode, new_i_size); 1632 ret2 = ext4_mark_inode_dirty(handle, inode); 1633 if (!ret) 1634 ret = ret2; 1635 } 1636 1637 unlock_page(page); 1638 ret2 = ext4_journal_stop(handle); 1639 if (!ret) 1640 ret = ret2; 1641 page_cache_release(page); 1642 1643 return ret ? ret : copied; 1644 } 1645 1646 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1647 { 1648 int retries = 0; 1649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1650 unsigned long md_needed, mdblocks, total = 0; 1651 1652 /* 1653 * recalculate the amount of metadata blocks to reserve 1654 * in order to allocate nrblocks 1655 * worse case is one extent per block 1656 */ 1657 repeat: 1658 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1659 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1660 mdblocks = ext4_calc_metadata_amount(inode, total); 1661 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1662 1663 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1664 total = md_needed + nrblocks; 1665 1666 /* 1667 * Make quota reservation here to prevent quota overflow 1668 * later. Real quota accounting is done at pages writeout 1669 * time. 1670 */ 1671 if (vfs_dq_reserve_block(inode, total)) { 1672 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1673 return -EDQUOT; 1674 } 1675 1676 if (ext4_claim_free_blocks(sbi, total)) { 1677 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1678 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1679 yield(); 1680 goto repeat; 1681 } 1682 vfs_dq_release_reservation_block(inode, total); 1683 return -ENOSPC; 1684 } 1685 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1686 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1687 1688 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1689 return 0; /* success */ 1690 } 1691 1692 static void ext4_da_release_space(struct inode *inode, int to_free) 1693 { 1694 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1695 int total, mdb, mdb_free, release; 1696 1697 if (!to_free) 1698 return; /* Nothing to release, exit */ 1699 1700 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1701 1702 if (!EXT4_I(inode)->i_reserved_data_blocks) { 1703 /* 1704 * if there is no reserved blocks, but we try to free some 1705 * then the counter is messed up somewhere. 1706 * but since this function is called from invalidate 1707 * page, it's harmless to return without any action 1708 */ 1709 printk(KERN_INFO "ext4 delalloc try to release %d reserved " 1710 "blocks for inode %lu, but there is no reserved " 1711 "data blocks\n", to_free, inode->i_ino); 1712 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1713 return; 1714 } 1715 1716 /* recalculate the number of metablocks still need to be reserved */ 1717 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1718 mdb = ext4_calc_metadata_amount(inode, total); 1719 1720 /* figure out how many metablocks to release */ 1721 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1722 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1723 1724 release = to_free + mdb_free; 1725 1726 /* update fs dirty blocks counter for truncate case */ 1727 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release); 1728 1729 /* update per-inode reservations */ 1730 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1731 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1732 1733 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1734 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1735 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1736 1737 vfs_dq_release_reservation_block(inode, release); 1738 } 1739 1740 static void ext4_da_page_release_reservation(struct page *page, 1741 unsigned long offset) 1742 { 1743 int to_release = 0; 1744 struct buffer_head *head, *bh; 1745 unsigned int curr_off = 0; 1746 1747 head = page_buffers(page); 1748 bh = head; 1749 do { 1750 unsigned int next_off = curr_off + bh->b_size; 1751 1752 if ((offset <= curr_off) && (buffer_delay(bh))) { 1753 to_release++; 1754 clear_buffer_delay(bh); 1755 } 1756 curr_off = next_off; 1757 } while ((bh = bh->b_this_page) != head); 1758 ext4_da_release_space(page->mapping->host, to_release); 1759 } 1760 1761 /* 1762 * Delayed allocation stuff 1763 */ 1764 1765 struct mpage_da_data { 1766 struct inode *inode; 1767 sector_t b_blocknr; /* start block number of extent */ 1768 size_t b_size; /* size of extent */ 1769 unsigned long b_state; /* state of the extent */ 1770 unsigned long first_page, next_page; /* extent of pages */ 1771 struct writeback_control *wbc; 1772 int io_done; 1773 int pages_written; 1774 int retval; 1775 }; 1776 1777 /* 1778 * mpage_da_submit_io - walks through extent of pages and try to write 1779 * them with writepage() call back 1780 * 1781 * @mpd->inode: inode 1782 * @mpd->first_page: first page of the extent 1783 * @mpd->next_page: page after the last page of the extent 1784 * 1785 * By the time mpage_da_submit_io() is called we expect all blocks 1786 * to be allocated. this may be wrong if allocation failed. 1787 * 1788 * As pages are already locked by write_cache_pages(), we can't use it 1789 */ 1790 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1791 { 1792 long pages_skipped; 1793 struct pagevec pvec; 1794 unsigned long index, end; 1795 int ret = 0, err, nr_pages, i; 1796 struct inode *inode = mpd->inode; 1797 struct address_space *mapping = inode->i_mapping; 1798 1799 BUG_ON(mpd->next_page <= mpd->first_page); 1800 /* 1801 * We need to start from the first_page to the next_page - 1 1802 * to make sure we also write the mapped dirty buffer_heads. 1803 * If we look at mpd->b_blocknr we would only be looking 1804 * at the currently mapped buffer_heads. 1805 */ 1806 index = mpd->first_page; 1807 end = mpd->next_page - 1; 1808 1809 pagevec_init(&pvec, 0); 1810 while (index <= end) { 1811 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1812 if (nr_pages == 0) 1813 break; 1814 for (i = 0; i < nr_pages; i++) { 1815 struct page *page = pvec.pages[i]; 1816 1817 index = page->index; 1818 if (index > end) 1819 break; 1820 index++; 1821 1822 BUG_ON(!PageLocked(page)); 1823 BUG_ON(PageWriteback(page)); 1824 1825 pages_skipped = mpd->wbc->pages_skipped; 1826 err = mapping->a_ops->writepage(page, mpd->wbc); 1827 if (!err && (pages_skipped == mpd->wbc->pages_skipped)) 1828 /* 1829 * have successfully written the page 1830 * without skipping the same 1831 */ 1832 mpd->pages_written++; 1833 /* 1834 * In error case, we have to continue because 1835 * remaining pages are still locked 1836 * XXX: unlock and re-dirty them? 1837 */ 1838 if (ret == 0) 1839 ret = err; 1840 } 1841 pagevec_release(&pvec); 1842 } 1843 return ret; 1844 } 1845 1846 /* 1847 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1848 * 1849 * @mpd->inode - inode to walk through 1850 * @exbh->b_blocknr - first block on a disk 1851 * @exbh->b_size - amount of space in bytes 1852 * @logical - first logical block to start assignment with 1853 * 1854 * the function goes through all passed space and put actual disk 1855 * block numbers into buffer heads, dropping BH_Delay 1856 */ 1857 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 1858 struct buffer_head *exbh) 1859 { 1860 struct inode *inode = mpd->inode; 1861 struct address_space *mapping = inode->i_mapping; 1862 int blocks = exbh->b_size >> inode->i_blkbits; 1863 sector_t pblock = exbh->b_blocknr, cur_logical; 1864 struct buffer_head *head, *bh; 1865 pgoff_t index, end; 1866 struct pagevec pvec; 1867 int nr_pages, i; 1868 1869 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1870 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1871 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1872 1873 pagevec_init(&pvec, 0); 1874 1875 while (index <= end) { 1876 /* XXX: optimize tail */ 1877 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1878 if (nr_pages == 0) 1879 break; 1880 for (i = 0; i < nr_pages; i++) { 1881 struct page *page = pvec.pages[i]; 1882 1883 index = page->index; 1884 if (index > end) 1885 break; 1886 index++; 1887 1888 BUG_ON(!PageLocked(page)); 1889 BUG_ON(PageWriteback(page)); 1890 BUG_ON(!page_has_buffers(page)); 1891 1892 bh = page_buffers(page); 1893 head = bh; 1894 1895 /* skip blocks out of the range */ 1896 do { 1897 if (cur_logical >= logical) 1898 break; 1899 cur_logical++; 1900 } while ((bh = bh->b_this_page) != head); 1901 1902 do { 1903 if (cur_logical >= logical + blocks) 1904 break; 1905 if (buffer_delay(bh)) { 1906 bh->b_blocknr = pblock; 1907 clear_buffer_delay(bh); 1908 bh->b_bdev = inode->i_sb->s_bdev; 1909 } else if (buffer_unwritten(bh)) { 1910 bh->b_blocknr = pblock; 1911 clear_buffer_unwritten(bh); 1912 set_buffer_mapped(bh); 1913 set_buffer_new(bh); 1914 bh->b_bdev = inode->i_sb->s_bdev; 1915 } else if (buffer_mapped(bh)) 1916 BUG_ON(bh->b_blocknr != pblock); 1917 1918 cur_logical++; 1919 pblock++; 1920 } while ((bh = bh->b_this_page) != head); 1921 } 1922 pagevec_release(&pvec); 1923 } 1924 } 1925 1926 1927 /* 1928 * __unmap_underlying_blocks - just a helper function to unmap 1929 * set of blocks described by @bh 1930 */ 1931 static inline void __unmap_underlying_blocks(struct inode *inode, 1932 struct buffer_head *bh) 1933 { 1934 struct block_device *bdev = inode->i_sb->s_bdev; 1935 int blocks, i; 1936 1937 blocks = bh->b_size >> inode->i_blkbits; 1938 for (i = 0; i < blocks; i++) 1939 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 1940 } 1941 1942 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd, 1943 sector_t logical, long blk_cnt) 1944 { 1945 int nr_pages, i; 1946 pgoff_t index, end; 1947 struct pagevec pvec; 1948 struct inode *inode = mpd->inode; 1949 struct address_space *mapping = inode->i_mapping; 1950 1951 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1952 end = (logical + blk_cnt - 1) >> 1953 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1954 while (index <= end) { 1955 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1956 if (nr_pages == 0) 1957 break; 1958 for (i = 0; i < nr_pages; i++) { 1959 struct page *page = pvec.pages[i]; 1960 index = page->index; 1961 if (index > end) 1962 break; 1963 index++; 1964 1965 BUG_ON(!PageLocked(page)); 1966 BUG_ON(PageWriteback(page)); 1967 block_invalidatepage(page, 0); 1968 ClearPageUptodate(page); 1969 unlock_page(page); 1970 } 1971 } 1972 return; 1973 } 1974 1975 static void ext4_print_free_blocks(struct inode *inode) 1976 { 1977 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1978 printk(KERN_EMERG "Total free blocks count %lld\n", 1979 ext4_count_free_blocks(inode->i_sb)); 1980 printk(KERN_EMERG "Free/Dirty block details\n"); 1981 printk(KERN_EMERG "free_blocks=%lld\n", 1982 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter)); 1983 printk(KERN_EMERG "dirty_blocks=%lld\n", 1984 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 1985 printk(KERN_EMERG "Block reservation details\n"); 1986 printk(KERN_EMERG "i_reserved_data_blocks=%u\n", 1987 EXT4_I(inode)->i_reserved_data_blocks); 1988 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n", 1989 EXT4_I(inode)->i_reserved_meta_blocks); 1990 return; 1991 } 1992 1993 #define EXT4_DELALLOC_RSVED 1 1994 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock, 1995 struct buffer_head *bh_result, int create) 1996 { 1997 int ret; 1998 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1999 loff_t disksize = EXT4_I(inode)->i_disksize; 2000 handle_t *handle = NULL; 2001 2002 handle = ext4_journal_current_handle(); 2003 BUG_ON(!handle); 2004 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2005 bh_result, create, 0, EXT4_DELALLOC_RSVED); 2006 if (ret <= 0) 2007 return ret; 2008 2009 bh_result->b_size = (ret << inode->i_blkbits); 2010 2011 if (ext4_should_order_data(inode)) { 2012 int retval; 2013 retval = ext4_jbd2_file_inode(handle, inode); 2014 if (retval) 2015 /* 2016 * Failed to add inode for ordered mode. Don't 2017 * update file size 2018 */ 2019 return retval; 2020 } 2021 2022 /* 2023 * Update on-disk size along with block allocation we don't 2024 * use 'extend_disksize' as size may change within already 2025 * allocated block -bzzz 2026 */ 2027 disksize = ((loff_t) iblock + ret) << inode->i_blkbits; 2028 if (disksize > i_size_read(inode)) 2029 disksize = i_size_read(inode); 2030 if (disksize > EXT4_I(inode)->i_disksize) { 2031 ext4_update_i_disksize(inode, disksize); 2032 ret = ext4_mark_inode_dirty(handle, inode); 2033 return ret; 2034 } 2035 return 0; 2036 } 2037 2038 /* 2039 * mpage_da_map_blocks - go through given space 2040 * 2041 * @mpd - bh describing space 2042 * 2043 * The function skips space we know is already mapped to disk blocks. 2044 * 2045 */ 2046 static int mpage_da_map_blocks(struct mpage_da_data *mpd) 2047 { 2048 int err = 0; 2049 struct buffer_head new; 2050 sector_t next; 2051 2052 /* 2053 * We consider only non-mapped and non-allocated blocks 2054 */ 2055 if ((mpd->b_state & (1 << BH_Mapped)) && 2056 !(mpd->b_state & (1 << BH_Delay))) 2057 return 0; 2058 new.b_state = mpd->b_state; 2059 new.b_blocknr = 0; 2060 new.b_size = mpd->b_size; 2061 next = mpd->b_blocknr; 2062 /* 2063 * If we didn't accumulate anything 2064 * to write simply return 2065 */ 2066 if (!new.b_size) 2067 return 0; 2068 2069 err = ext4_da_get_block_write(mpd->inode, next, &new, 1); 2070 if (err) { 2071 /* 2072 * If get block returns with error we simply 2073 * return. Later writepage will redirty the page and 2074 * writepages will find the dirty page again 2075 */ 2076 if (err == -EAGAIN) 2077 return 0; 2078 2079 if (err == -ENOSPC && 2080 ext4_count_free_blocks(mpd->inode->i_sb)) { 2081 mpd->retval = err; 2082 return 0; 2083 } 2084 2085 /* 2086 * get block failure will cause us to loop in 2087 * writepages, because a_ops->writepage won't be able 2088 * to make progress. The page will be redirtied by 2089 * writepage and writepages will again try to write 2090 * the same. 2091 */ 2092 printk(KERN_EMERG "%s block allocation failed for inode %lu " 2093 "at logical offset %llu with max blocks " 2094 "%zd with error %d\n", 2095 __func__, mpd->inode->i_ino, 2096 (unsigned long long)next, 2097 mpd->b_size >> mpd->inode->i_blkbits, err); 2098 printk(KERN_EMERG "This should not happen.!! " 2099 "Data will be lost\n"); 2100 if (err == -ENOSPC) { 2101 ext4_print_free_blocks(mpd->inode); 2102 } 2103 /* invlaidate all the pages */ 2104 ext4_da_block_invalidatepages(mpd, next, 2105 mpd->b_size >> mpd->inode->i_blkbits); 2106 return err; 2107 } 2108 BUG_ON(new.b_size == 0); 2109 2110 if (buffer_new(&new)) 2111 __unmap_underlying_blocks(mpd->inode, &new); 2112 2113 /* 2114 * If blocks are delayed marked, we need to 2115 * put actual blocknr and drop delayed bit 2116 */ 2117 if ((mpd->b_state & (1 << BH_Delay)) || 2118 (mpd->b_state & (1 << BH_Unwritten))) 2119 mpage_put_bnr_to_bhs(mpd, next, &new); 2120 2121 return 0; 2122 } 2123 2124 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2125 (1 << BH_Delay) | (1 << BH_Unwritten)) 2126 2127 /* 2128 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2129 * 2130 * @mpd->lbh - extent of blocks 2131 * @logical - logical number of the block in the file 2132 * @bh - bh of the block (used to access block's state) 2133 * 2134 * the function is used to collect contig. blocks in same state 2135 */ 2136 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2137 sector_t logical, size_t b_size, 2138 unsigned long b_state) 2139 { 2140 sector_t next; 2141 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2142 2143 /* check if thereserved journal credits might overflow */ 2144 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 2145 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2146 /* 2147 * With non-extent format we are limited by the journal 2148 * credit available. Total credit needed to insert 2149 * nrblocks contiguous blocks is dependent on the 2150 * nrblocks. So limit nrblocks. 2151 */ 2152 goto flush_it; 2153 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2154 EXT4_MAX_TRANS_DATA) { 2155 /* 2156 * Adding the new buffer_head would make it cross the 2157 * allowed limit for which we have journal credit 2158 * reserved. So limit the new bh->b_size 2159 */ 2160 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2161 mpd->inode->i_blkbits; 2162 /* we will do mpage_da_submit_io in the next loop */ 2163 } 2164 } 2165 /* 2166 * First block in the extent 2167 */ 2168 if (mpd->b_size == 0) { 2169 mpd->b_blocknr = logical; 2170 mpd->b_size = b_size; 2171 mpd->b_state = b_state & BH_FLAGS; 2172 return; 2173 } 2174 2175 next = mpd->b_blocknr + nrblocks; 2176 /* 2177 * Can we merge the block to our big extent? 2178 */ 2179 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2180 mpd->b_size += b_size; 2181 return; 2182 } 2183 2184 flush_it: 2185 /* 2186 * We couldn't merge the block to our extent, so we 2187 * need to flush current extent and start new one 2188 */ 2189 if (mpage_da_map_blocks(mpd) == 0) 2190 mpage_da_submit_io(mpd); 2191 mpd->io_done = 1; 2192 return; 2193 } 2194 2195 /* 2196 * __mpage_da_writepage - finds extent of pages and blocks 2197 * 2198 * @page: page to consider 2199 * @wbc: not used, we just follow rules 2200 * @data: context 2201 * 2202 * The function finds extents of pages and scan them for all blocks. 2203 */ 2204 static int __mpage_da_writepage(struct page *page, 2205 struct writeback_control *wbc, void *data) 2206 { 2207 struct mpage_da_data *mpd = data; 2208 struct inode *inode = mpd->inode; 2209 struct buffer_head *bh, *head; 2210 sector_t logical; 2211 2212 if (mpd->io_done) { 2213 /* 2214 * Rest of the page in the page_vec 2215 * redirty then and skip then. We will 2216 * try to to write them again after 2217 * starting a new transaction 2218 */ 2219 redirty_page_for_writepage(wbc, page); 2220 unlock_page(page); 2221 return MPAGE_DA_EXTENT_TAIL; 2222 } 2223 /* 2224 * Can we merge this page to current extent? 2225 */ 2226 if (mpd->next_page != page->index) { 2227 /* 2228 * Nope, we can't. So, we map non-allocated blocks 2229 * and start IO on them using writepage() 2230 */ 2231 if (mpd->next_page != mpd->first_page) { 2232 if (mpage_da_map_blocks(mpd) == 0) 2233 mpage_da_submit_io(mpd); 2234 /* 2235 * skip rest of the page in the page_vec 2236 */ 2237 mpd->io_done = 1; 2238 redirty_page_for_writepage(wbc, page); 2239 unlock_page(page); 2240 return MPAGE_DA_EXTENT_TAIL; 2241 } 2242 2243 /* 2244 * Start next extent of pages ... 2245 */ 2246 mpd->first_page = page->index; 2247 2248 /* 2249 * ... and blocks 2250 */ 2251 mpd->b_size = 0; 2252 mpd->b_state = 0; 2253 mpd->b_blocknr = 0; 2254 } 2255 2256 mpd->next_page = page->index + 1; 2257 logical = (sector_t) page->index << 2258 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2259 2260 if (!page_has_buffers(page)) { 2261 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE, 2262 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2263 if (mpd->io_done) 2264 return MPAGE_DA_EXTENT_TAIL; 2265 } else { 2266 /* 2267 * Page with regular buffer heads, just add all dirty ones 2268 */ 2269 head = page_buffers(page); 2270 bh = head; 2271 do { 2272 BUG_ON(buffer_locked(bh)); 2273 /* 2274 * We need to try to allocate 2275 * unmapped blocks in the same page. 2276 * Otherwise we won't make progress 2277 * with the page in ext4_da_writepage 2278 */ 2279 if (buffer_dirty(bh) && 2280 (!buffer_mapped(bh) || buffer_delay(bh))) { 2281 mpage_add_bh_to_extent(mpd, logical, 2282 bh->b_size, 2283 bh->b_state); 2284 if (mpd->io_done) 2285 return MPAGE_DA_EXTENT_TAIL; 2286 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2287 /* 2288 * mapped dirty buffer. We need to update 2289 * the b_state because we look at 2290 * b_state in mpage_da_map_blocks. We don't 2291 * update b_size because if we find an 2292 * unmapped buffer_head later we need to 2293 * use the b_state flag of that buffer_head. 2294 */ 2295 if (mpd->b_size == 0) 2296 mpd->b_state = bh->b_state & BH_FLAGS; 2297 } 2298 logical++; 2299 } while ((bh = bh->b_this_page) != head); 2300 } 2301 2302 return 0; 2303 } 2304 2305 /* 2306 * this is a special callback for ->write_begin() only 2307 * it's intention is to return mapped block or reserve space 2308 */ 2309 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2310 struct buffer_head *bh_result, int create) 2311 { 2312 int ret = 0; 2313 sector_t invalid_block = ~((sector_t) 0xffff); 2314 2315 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2316 invalid_block = ~0; 2317 2318 BUG_ON(create == 0); 2319 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2320 2321 /* 2322 * first, we need to know whether the block is allocated already 2323 * preallocated blocks are unmapped but should treated 2324 * the same as allocated blocks. 2325 */ 2326 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0); 2327 if ((ret == 0) && !buffer_delay(bh_result)) { 2328 /* the block isn't (pre)allocated yet, let's reserve space */ 2329 /* 2330 * XXX: __block_prepare_write() unmaps passed block, 2331 * is it OK? 2332 */ 2333 ret = ext4_da_reserve_space(inode, 1); 2334 if (ret) 2335 /* not enough space to reserve */ 2336 return ret; 2337 2338 map_bh(bh_result, inode->i_sb, invalid_block); 2339 set_buffer_new(bh_result); 2340 set_buffer_delay(bh_result); 2341 } else if (ret > 0) { 2342 bh_result->b_size = (ret << inode->i_blkbits); 2343 /* 2344 * With sub-block writes into unwritten extents 2345 * we also need to mark the buffer as new so that 2346 * the unwritten parts of the buffer gets correctly zeroed. 2347 */ 2348 if (buffer_unwritten(bh_result)) 2349 set_buffer_new(bh_result); 2350 ret = 0; 2351 } 2352 2353 return ret; 2354 } 2355 2356 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh) 2357 { 2358 /* 2359 * unmapped buffer is possible for holes. 2360 * delay buffer is possible with delayed allocation 2361 */ 2362 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)); 2363 } 2364 2365 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock, 2366 struct buffer_head *bh_result, int create) 2367 { 2368 int ret = 0; 2369 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2370 2371 /* 2372 * we don't want to do block allocation in writepage 2373 * so call get_block_wrap with create = 0 2374 */ 2375 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks, 2376 bh_result, 0, 0, 0); 2377 if (ret > 0) { 2378 bh_result->b_size = (ret << inode->i_blkbits); 2379 ret = 0; 2380 } 2381 return ret; 2382 } 2383 2384 /* 2385 * get called vi ext4_da_writepages after taking page lock (have journal handle) 2386 * get called via journal_submit_inode_data_buffers (no journal handle) 2387 * get called via shrink_page_list via pdflush (no journal handle) 2388 * or grab_page_cache when doing write_begin (have journal handle) 2389 */ 2390 static int ext4_da_writepage(struct page *page, 2391 struct writeback_control *wbc) 2392 { 2393 int ret = 0; 2394 loff_t size; 2395 unsigned int len; 2396 struct buffer_head *page_bufs; 2397 struct inode *inode = page->mapping->host; 2398 2399 trace_mark(ext4_da_writepage, 2400 "dev %s ino %lu page_index %lu", 2401 inode->i_sb->s_id, inode->i_ino, page->index); 2402 size = i_size_read(inode); 2403 if (page->index == size >> PAGE_CACHE_SHIFT) 2404 len = size & ~PAGE_CACHE_MASK; 2405 else 2406 len = PAGE_CACHE_SIZE; 2407 2408 if (page_has_buffers(page)) { 2409 page_bufs = page_buffers(page); 2410 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2411 ext4_bh_unmapped_or_delay)) { 2412 /* 2413 * We don't want to do block allocation 2414 * So redirty the page and return 2415 * We may reach here when we do a journal commit 2416 * via journal_submit_inode_data_buffers. 2417 * If we don't have mapping block we just ignore 2418 * them. We can also reach here via shrink_page_list 2419 */ 2420 redirty_page_for_writepage(wbc, page); 2421 unlock_page(page); 2422 return 0; 2423 } 2424 } else { 2425 /* 2426 * The test for page_has_buffers() is subtle: 2427 * We know the page is dirty but it lost buffers. That means 2428 * that at some moment in time after write_begin()/write_end() 2429 * has been called all buffers have been clean and thus they 2430 * must have been written at least once. So they are all 2431 * mapped and we can happily proceed with mapping them 2432 * and writing the page. 2433 * 2434 * Try to initialize the buffer_heads and check whether 2435 * all are mapped and non delay. We don't want to 2436 * do block allocation here. 2437 */ 2438 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2439 ext4_normal_get_block_write); 2440 if (!ret) { 2441 page_bufs = page_buffers(page); 2442 /* check whether all are mapped and non delay */ 2443 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2444 ext4_bh_unmapped_or_delay)) { 2445 redirty_page_for_writepage(wbc, page); 2446 unlock_page(page); 2447 return 0; 2448 } 2449 } else { 2450 /* 2451 * We can't do block allocation here 2452 * so just redity the page and unlock 2453 * and return 2454 */ 2455 redirty_page_for_writepage(wbc, page); 2456 unlock_page(page); 2457 return 0; 2458 } 2459 /* now mark the buffer_heads as dirty and uptodate */ 2460 block_commit_write(page, 0, PAGE_CACHE_SIZE); 2461 } 2462 2463 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2464 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc); 2465 else 2466 ret = block_write_full_page(page, 2467 ext4_normal_get_block_write, 2468 wbc); 2469 2470 return ret; 2471 } 2472 2473 /* 2474 * This is called via ext4_da_writepages() to 2475 * calulate the total number of credits to reserve to fit 2476 * a single extent allocation into a single transaction, 2477 * ext4_da_writpeages() will loop calling this before 2478 * the block allocation. 2479 */ 2480 2481 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2482 { 2483 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2484 2485 /* 2486 * With non-extent format the journal credit needed to 2487 * insert nrblocks contiguous block is dependent on 2488 * number of contiguous block. So we will limit 2489 * number of contiguous block to a sane value 2490 */ 2491 if (!(inode->i_flags & EXT4_EXTENTS_FL) && 2492 (max_blocks > EXT4_MAX_TRANS_DATA)) 2493 max_blocks = EXT4_MAX_TRANS_DATA; 2494 2495 return ext4_chunk_trans_blocks(inode, max_blocks); 2496 } 2497 2498 static int ext4_da_writepages(struct address_space *mapping, 2499 struct writeback_control *wbc) 2500 { 2501 pgoff_t index; 2502 int range_whole = 0; 2503 handle_t *handle = NULL; 2504 struct mpage_da_data mpd; 2505 struct inode *inode = mapping->host; 2506 int no_nrwrite_index_update; 2507 int pages_written = 0; 2508 long pages_skipped; 2509 int range_cyclic, cycled = 1, io_done = 0; 2510 int needed_blocks, ret = 0, nr_to_writebump = 0; 2511 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2512 2513 trace_mark(ext4_da_writepages, 2514 "dev %s ino %lu nr_t_write %ld " 2515 "pages_skipped %ld range_start %llu " 2516 "range_end %llu nonblocking %d " 2517 "for_kupdate %d for_reclaim %d " 2518 "for_writepages %d range_cyclic %d", 2519 inode->i_sb->s_id, inode->i_ino, 2520 wbc->nr_to_write, wbc->pages_skipped, 2521 (unsigned long long) wbc->range_start, 2522 (unsigned long long) wbc->range_end, 2523 wbc->nonblocking, wbc->for_kupdate, 2524 wbc->for_reclaim, wbc->for_writepages, 2525 wbc->range_cyclic); 2526 2527 /* 2528 * No pages to write? This is mainly a kludge to avoid starting 2529 * a transaction for special inodes like journal inode on last iput() 2530 * because that could violate lock ordering on umount 2531 */ 2532 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2533 return 0; 2534 2535 /* 2536 * If the filesystem has aborted, it is read-only, so return 2537 * right away instead of dumping stack traces later on that 2538 * will obscure the real source of the problem. We test 2539 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because 2540 * the latter could be true if the filesystem is mounted 2541 * read-only, and in that case, ext4_da_writepages should 2542 * *never* be called, so if that ever happens, we would want 2543 * the stack trace. 2544 */ 2545 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT)) 2546 return -EROFS; 2547 2548 /* 2549 * Make sure nr_to_write is >= sbi->s_mb_stream_request 2550 * This make sure small files blocks are allocated in 2551 * single attempt. This ensure that small files 2552 * get less fragmented. 2553 */ 2554 if (wbc->nr_to_write < sbi->s_mb_stream_request) { 2555 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write; 2556 wbc->nr_to_write = sbi->s_mb_stream_request; 2557 } 2558 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2559 range_whole = 1; 2560 2561 range_cyclic = wbc->range_cyclic; 2562 if (wbc->range_cyclic) { 2563 index = mapping->writeback_index; 2564 if (index) 2565 cycled = 0; 2566 wbc->range_start = index << PAGE_CACHE_SHIFT; 2567 wbc->range_end = LLONG_MAX; 2568 wbc->range_cyclic = 0; 2569 } else 2570 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2571 2572 mpd.wbc = wbc; 2573 mpd.inode = mapping->host; 2574 2575 /* 2576 * we don't want write_cache_pages to update 2577 * nr_to_write and writeback_index 2578 */ 2579 no_nrwrite_index_update = wbc->no_nrwrite_index_update; 2580 wbc->no_nrwrite_index_update = 1; 2581 pages_skipped = wbc->pages_skipped; 2582 2583 retry: 2584 while (!ret && wbc->nr_to_write > 0) { 2585 2586 /* 2587 * we insert one extent at a time. So we need 2588 * credit needed for single extent allocation. 2589 * journalled mode is currently not supported 2590 * by delalloc 2591 */ 2592 BUG_ON(ext4_should_journal_data(inode)); 2593 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2594 2595 /* start a new transaction*/ 2596 handle = ext4_journal_start(inode, needed_blocks); 2597 if (IS_ERR(handle)) { 2598 ret = PTR_ERR(handle); 2599 printk(KERN_CRIT "%s: jbd2_start: " 2600 "%ld pages, ino %lu; err %d\n", __func__, 2601 wbc->nr_to_write, inode->i_ino, ret); 2602 dump_stack(); 2603 goto out_writepages; 2604 } 2605 2606 /* 2607 * Now call __mpage_da_writepage to find the next 2608 * contiguous region of logical blocks that need 2609 * blocks to be allocated by ext4. We don't actually 2610 * submit the blocks for I/O here, even though 2611 * write_cache_pages thinks it will, and will set the 2612 * pages as clean for write before calling 2613 * __mpage_da_writepage(). 2614 */ 2615 mpd.b_size = 0; 2616 mpd.b_state = 0; 2617 mpd.b_blocknr = 0; 2618 mpd.first_page = 0; 2619 mpd.next_page = 0; 2620 mpd.io_done = 0; 2621 mpd.pages_written = 0; 2622 mpd.retval = 0; 2623 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, 2624 &mpd); 2625 /* 2626 * If we have a contigous extent of pages and we 2627 * haven't done the I/O yet, map the blocks and submit 2628 * them for I/O. 2629 */ 2630 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2631 if (mpage_da_map_blocks(&mpd) == 0) 2632 mpage_da_submit_io(&mpd); 2633 mpd.io_done = 1; 2634 ret = MPAGE_DA_EXTENT_TAIL; 2635 } 2636 wbc->nr_to_write -= mpd.pages_written; 2637 2638 ext4_journal_stop(handle); 2639 2640 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2641 /* commit the transaction which would 2642 * free blocks released in the transaction 2643 * and try again 2644 */ 2645 jbd2_journal_force_commit_nested(sbi->s_journal); 2646 wbc->pages_skipped = pages_skipped; 2647 ret = 0; 2648 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2649 /* 2650 * got one extent now try with 2651 * rest of the pages 2652 */ 2653 pages_written += mpd.pages_written; 2654 wbc->pages_skipped = pages_skipped; 2655 ret = 0; 2656 io_done = 1; 2657 } else if (wbc->nr_to_write) 2658 /* 2659 * There is no more writeout needed 2660 * or we requested for a noblocking writeout 2661 * and we found the device congested 2662 */ 2663 break; 2664 } 2665 if (!io_done && !cycled) { 2666 cycled = 1; 2667 index = 0; 2668 wbc->range_start = index << PAGE_CACHE_SHIFT; 2669 wbc->range_end = mapping->writeback_index - 1; 2670 goto retry; 2671 } 2672 if (pages_skipped != wbc->pages_skipped) 2673 printk(KERN_EMERG "This should not happen leaving %s " 2674 "with nr_to_write = %ld ret = %d\n", 2675 __func__, wbc->nr_to_write, ret); 2676 2677 /* Update index */ 2678 index += pages_written; 2679 wbc->range_cyclic = range_cyclic; 2680 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2681 /* 2682 * set the writeback_index so that range_cyclic 2683 * mode will write it back later 2684 */ 2685 mapping->writeback_index = index; 2686 2687 out_writepages: 2688 if (!no_nrwrite_index_update) 2689 wbc->no_nrwrite_index_update = 0; 2690 wbc->nr_to_write -= nr_to_writebump; 2691 trace_mark(ext4_da_writepage_result, 2692 "dev %s ino %lu ret %d pages_written %d " 2693 "pages_skipped %ld congestion %d " 2694 "more_io %d no_nrwrite_index_update %d", 2695 inode->i_sb->s_id, inode->i_ino, ret, 2696 pages_written, wbc->pages_skipped, 2697 wbc->encountered_congestion, wbc->more_io, 2698 wbc->no_nrwrite_index_update); 2699 return ret; 2700 } 2701 2702 #define FALL_BACK_TO_NONDELALLOC 1 2703 static int ext4_nonda_switch(struct super_block *sb) 2704 { 2705 s64 free_blocks, dirty_blocks; 2706 struct ext4_sb_info *sbi = EXT4_SB(sb); 2707 2708 /* 2709 * switch to non delalloc mode if we are running low 2710 * on free block. The free block accounting via percpu 2711 * counters can get slightly wrong with percpu_counter_batch getting 2712 * accumulated on each CPU without updating global counters 2713 * Delalloc need an accurate free block accounting. So switch 2714 * to non delalloc when we are near to error range. 2715 */ 2716 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 2717 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 2718 if (2 * free_blocks < 3 * dirty_blocks || 2719 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 2720 /* 2721 * free block count is less that 150% of dirty blocks 2722 * or free blocks is less that watermark 2723 */ 2724 return 1; 2725 } 2726 return 0; 2727 } 2728 2729 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2730 loff_t pos, unsigned len, unsigned flags, 2731 struct page **pagep, void **fsdata) 2732 { 2733 int ret, retries = 0; 2734 struct page *page; 2735 pgoff_t index; 2736 unsigned from, to; 2737 struct inode *inode = mapping->host; 2738 handle_t *handle; 2739 2740 index = pos >> PAGE_CACHE_SHIFT; 2741 from = pos & (PAGE_CACHE_SIZE - 1); 2742 to = from + len; 2743 2744 if (ext4_nonda_switch(inode->i_sb)) { 2745 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2746 return ext4_write_begin(file, mapping, pos, 2747 len, flags, pagep, fsdata); 2748 } 2749 *fsdata = (void *)0; 2750 2751 trace_mark(ext4_da_write_begin, 2752 "dev %s ino %lu pos %llu len %u flags %u", 2753 inode->i_sb->s_id, inode->i_ino, 2754 (unsigned long long) pos, len, flags); 2755 retry: 2756 /* 2757 * With delayed allocation, we don't log the i_disksize update 2758 * if there is delayed block allocation. But we still need 2759 * to journalling the i_disksize update if writes to the end 2760 * of file which has an already mapped buffer. 2761 */ 2762 handle = ext4_journal_start(inode, 1); 2763 if (IS_ERR(handle)) { 2764 ret = PTR_ERR(handle); 2765 goto out; 2766 } 2767 /* We cannot recurse into the filesystem as the transaction is already 2768 * started */ 2769 flags |= AOP_FLAG_NOFS; 2770 2771 page = grab_cache_page_write_begin(mapping, index, flags); 2772 if (!page) { 2773 ext4_journal_stop(handle); 2774 ret = -ENOMEM; 2775 goto out; 2776 } 2777 *pagep = page; 2778 2779 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2780 ext4_da_get_block_prep); 2781 if (ret < 0) { 2782 unlock_page(page); 2783 ext4_journal_stop(handle); 2784 page_cache_release(page); 2785 /* 2786 * block_write_begin may have instantiated a few blocks 2787 * outside i_size. Trim these off again. Don't need 2788 * i_size_read because we hold i_mutex. 2789 */ 2790 if (pos + len > inode->i_size) 2791 vmtruncate(inode, inode->i_size); 2792 } 2793 2794 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2795 goto retry; 2796 out: 2797 return ret; 2798 } 2799 2800 /* 2801 * Check if we should update i_disksize 2802 * when write to the end of file but not require block allocation 2803 */ 2804 static int ext4_da_should_update_i_disksize(struct page *page, 2805 unsigned long offset) 2806 { 2807 struct buffer_head *bh; 2808 struct inode *inode = page->mapping->host; 2809 unsigned int idx; 2810 int i; 2811 2812 bh = page_buffers(page); 2813 idx = offset >> inode->i_blkbits; 2814 2815 for (i = 0; i < idx; i++) 2816 bh = bh->b_this_page; 2817 2818 if (!buffer_mapped(bh) || (buffer_delay(bh))) 2819 return 0; 2820 return 1; 2821 } 2822 2823 static int ext4_da_write_end(struct file *file, 2824 struct address_space *mapping, 2825 loff_t pos, unsigned len, unsigned copied, 2826 struct page *page, void *fsdata) 2827 { 2828 struct inode *inode = mapping->host; 2829 int ret = 0, ret2; 2830 handle_t *handle = ext4_journal_current_handle(); 2831 loff_t new_i_size; 2832 unsigned long start, end; 2833 int write_mode = (int)(unsigned long)fsdata; 2834 2835 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2836 if (ext4_should_order_data(inode)) { 2837 return ext4_ordered_write_end(file, mapping, pos, 2838 len, copied, page, fsdata); 2839 } else if (ext4_should_writeback_data(inode)) { 2840 return ext4_writeback_write_end(file, mapping, pos, 2841 len, copied, page, fsdata); 2842 } else { 2843 BUG(); 2844 } 2845 } 2846 2847 trace_mark(ext4_da_write_end, 2848 "dev %s ino %lu pos %llu len %u copied %u", 2849 inode->i_sb->s_id, inode->i_ino, 2850 (unsigned long long) pos, len, copied); 2851 start = pos & (PAGE_CACHE_SIZE - 1); 2852 end = start + copied - 1; 2853 2854 /* 2855 * generic_write_end() will run mark_inode_dirty() if i_size 2856 * changes. So let's piggyback the i_disksize mark_inode_dirty 2857 * into that. 2858 */ 2859 2860 new_i_size = pos + copied; 2861 if (new_i_size > EXT4_I(inode)->i_disksize) { 2862 if (ext4_da_should_update_i_disksize(page, end)) { 2863 down_write(&EXT4_I(inode)->i_data_sem); 2864 if (new_i_size > EXT4_I(inode)->i_disksize) { 2865 /* 2866 * Updating i_disksize when extending file 2867 * without needing block allocation 2868 */ 2869 if (ext4_should_order_data(inode)) 2870 ret = ext4_jbd2_file_inode(handle, 2871 inode); 2872 2873 EXT4_I(inode)->i_disksize = new_i_size; 2874 } 2875 up_write(&EXT4_I(inode)->i_data_sem); 2876 /* We need to mark inode dirty even if 2877 * new_i_size is less that inode->i_size 2878 * bu greater than i_disksize.(hint delalloc) 2879 */ 2880 ext4_mark_inode_dirty(handle, inode); 2881 } 2882 } 2883 ret2 = generic_write_end(file, mapping, pos, len, copied, 2884 page, fsdata); 2885 copied = ret2; 2886 if (ret2 < 0) 2887 ret = ret2; 2888 ret2 = ext4_journal_stop(handle); 2889 if (!ret) 2890 ret = ret2; 2891 2892 return ret ? ret : copied; 2893 } 2894 2895 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2896 { 2897 /* 2898 * Drop reserved blocks 2899 */ 2900 BUG_ON(!PageLocked(page)); 2901 if (!page_has_buffers(page)) 2902 goto out; 2903 2904 ext4_da_page_release_reservation(page, offset); 2905 2906 out: 2907 ext4_invalidatepage(page, offset); 2908 2909 return; 2910 } 2911 2912 /* 2913 * Force all delayed allocation blocks to be allocated for a given inode. 2914 */ 2915 int ext4_alloc_da_blocks(struct inode *inode) 2916 { 2917 if (!EXT4_I(inode)->i_reserved_data_blocks && 2918 !EXT4_I(inode)->i_reserved_meta_blocks) 2919 return 0; 2920 2921 /* 2922 * We do something simple for now. The filemap_flush() will 2923 * also start triggering a write of the data blocks, which is 2924 * not strictly speaking necessary (and for users of 2925 * laptop_mode, not even desirable). However, to do otherwise 2926 * would require replicating code paths in: 2927 * 2928 * ext4_da_writepages() -> 2929 * write_cache_pages() ---> (via passed in callback function) 2930 * __mpage_da_writepage() --> 2931 * mpage_add_bh_to_extent() 2932 * mpage_da_map_blocks() 2933 * 2934 * The problem is that write_cache_pages(), located in 2935 * mm/page-writeback.c, marks pages clean in preparation for 2936 * doing I/O, which is not desirable if we're not planning on 2937 * doing I/O at all. 2938 * 2939 * We could call write_cache_pages(), and then redirty all of 2940 * the pages by calling redirty_page_for_writeback() but that 2941 * would be ugly in the extreme. So instead we would need to 2942 * replicate parts of the code in the above functions, 2943 * simplifying them becuase we wouldn't actually intend to 2944 * write out the pages, but rather only collect contiguous 2945 * logical block extents, call the multi-block allocator, and 2946 * then update the buffer heads with the block allocations. 2947 * 2948 * For now, though, we'll cheat by calling filemap_flush(), 2949 * which will map the blocks, and start the I/O, but not 2950 * actually wait for the I/O to complete. 2951 */ 2952 return filemap_flush(inode->i_mapping); 2953 } 2954 2955 /* 2956 * bmap() is special. It gets used by applications such as lilo and by 2957 * the swapper to find the on-disk block of a specific piece of data. 2958 * 2959 * Naturally, this is dangerous if the block concerned is still in the 2960 * journal. If somebody makes a swapfile on an ext4 data-journaling 2961 * filesystem and enables swap, then they may get a nasty shock when the 2962 * data getting swapped to that swapfile suddenly gets overwritten by 2963 * the original zero's written out previously to the journal and 2964 * awaiting writeback in the kernel's buffer cache. 2965 * 2966 * So, if we see any bmap calls here on a modified, data-journaled file, 2967 * take extra steps to flush any blocks which might be in the cache. 2968 */ 2969 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2970 { 2971 struct inode *inode = mapping->host; 2972 journal_t *journal; 2973 int err; 2974 2975 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2976 test_opt(inode->i_sb, DELALLOC)) { 2977 /* 2978 * With delalloc we want to sync the file 2979 * so that we can make sure we allocate 2980 * blocks for file 2981 */ 2982 filemap_write_and_wait(mapping); 2983 } 2984 2985 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 2986 /* 2987 * This is a REALLY heavyweight approach, but the use of 2988 * bmap on dirty files is expected to be extremely rare: 2989 * only if we run lilo or swapon on a freshly made file 2990 * do we expect this to happen. 2991 * 2992 * (bmap requires CAP_SYS_RAWIO so this does not 2993 * represent an unprivileged user DOS attack --- we'd be 2994 * in trouble if mortal users could trigger this path at 2995 * will.) 2996 * 2997 * NB. EXT4_STATE_JDATA is not set on files other than 2998 * regular files. If somebody wants to bmap a directory 2999 * or symlink and gets confused because the buffer 3000 * hasn't yet been flushed to disk, they deserve 3001 * everything they get. 3002 */ 3003 3004 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 3005 journal = EXT4_JOURNAL(inode); 3006 jbd2_journal_lock_updates(journal); 3007 err = jbd2_journal_flush(journal); 3008 jbd2_journal_unlock_updates(journal); 3009 3010 if (err) 3011 return 0; 3012 } 3013 3014 return generic_block_bmap(mapping, block, ext4_get_block); 3015 } 3016 3017 static int bget_one(handle_t *handle, struct buffer_head *bh) 3018 { 3019 get_bh(bh); 3020 return 0; 3021 } 3022 3023 static int bput_one(handle_t *handle, struct buffer_head *bh) 3024 { 3025 put_bh(bh); 3026 return 0; 3027 } 3028 3029 /* 3030 * Note that we don't need to start a transaction unless we're journaling data 3031 * because we should have holes filled from ext4_page_mkwrite(). We even don't 3032 * need to file the inode to the transaction's list in ordered mode because if 3033 * we are writing back data added by write(), the inode is already there and if 3034 * we are writing back data modified via mmap(), noone guarantees in which 3035 * transaction the data will hit the disk. In case we are journaling data, we 3036 * cannot start transaction directly because transaction start ranks above page 3037 * lock so we have to do some magic. 3038 * 3039 * In all journaling modes block_write_full_page() will start the I/O. 3040 * 3041 * Problem: 3042 * 3043 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 3044 * ext4_writepage() 3045 * 3046 * Similar for: 3047 * 3048 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 3049 * 3050 * Same applies to ext4_get_block(). We will deadlock on various things like 3051 * lock_journal and i_data_sem 3052 * 3053 * Setting PF_MEMALLOC here doesn't work - too many internal memory 3054 * allocations fail. 3055 * 3056 * 16May01: If we're reentered then journal_current_handle() will be 3057 * non-zero. We simply *return*. 3058 * 3059 * 1 July 2001: @@@ FIXME: 3060 * In journalled data mode, a data buffer may be metadata against the 3061 * current transaction. But the same file is part of a shared mapping 3062 * and someone does a writepage() on it. 3063 * 3064 * We will move the buffer onto the async_data list, but *after* it has 3065 * been dirtied. So there's a small window where we have dirty data on 3066 * BJ_Metadata. 3067 * 3068 * Note that this only applies to the last partial page in the file. The 3069 * bit which block_write_full_page() uses prepare/commit for. (That's 3070 * broken code anyway: it's wrong for msync()). 3071 * 3072 * It's a rare case: affects the final partial page, for journalled data 3073 * where the file is subject to bith write() and writepage() in the same 3074 * transction. To fix it we'll need a custom block_write_full_page(). 3075 * We'll probably need that anyway for journalling writepage() output. 3076 * 3077 * We don't honour synchronous mounts for writepage(). That would be 3078 * disastrous. Any write() or metadata operation will sync the fs for 3079 * us. 3080 * 3081 */ 3082 static int __ext4_normal_writepage(struct page *page, 3083 struct writeback_control *wbc) 3084 { 3085 struct inode *inode = page->mapping->host; 3086 3087 if (test_opt(inode->i_sb, NOBH)) 3088 return nobh_writepage(page, 3089 ext4_normal_get_block_write, wbc); 3090 else 3091 return block_write_full_page(page, 3092 ext4_normal_get_block_write, 3093 wbc); 3094 } 3095 3096 static int ext4_normal_writepage(struct page *page, 3097 struct writeback_control *wbc) 3098 { 3099 struct inode *inode = page->mapping->host; 3100 loff_t size = i_size_read(inode); 3101 loff_t len; 3102 3103 trace_mark(ext4_normal_writepage, 3104 "dev %s ino %lu page_index %lu", 3105 inode->i_sb->s_id, inode->i_ino, page->index); 3106 J_ASSERT(PageLocked(page)); 3107 if (page->index == size >> PAGE_CACHE_SHIFT) 3108 len = size & ~PAGE_CACHE_MASK; 3109 else 3110 len = PAGE_CACHE_SIZE; 3111 3112 if (page_has_buffers(page)) { 3113 /* if page has buffers it should all be mapped 3114 * and allocated. If there are not buffers attached 3115 * to the page we know the page is dirty but it lost 3116 * buffers. That means that at some moment in time 3117 * after write_begin() / write_end() has been called 3118 * all buffers have been clean and thus they must have been 3119 * written at least once. So they are all mapped and we can 3120 * happily proceed with mapping them and writing the page. 3121 */ 3122 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 3123 ext4_bh_unmapped_or_delay)); 3124 } 3125 3126 if (!ext4_journal_current_handle()) 3127 return __ext4_normal_writepage(page, wbc); 3128 3129 redirty_page_for_writepage(wbc, page); 3130 unlock_page(page); 3131 return 0; 3132 } 3133 3134 static int __ext4_journalled_writepage(struct page *page, 3135 struct writeback_control *wbc) 3136 { 3137 struct address_space *mapping = page->mapping; 3138 struct inode *inode = mapping->host; 3139 struct buffer_head *page_bufs; 3140 handle_t *handle = NULL; 3141 int ret = 0; 3142 int err; 3143 3144 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 3145 ext4_normal_get_block_write); 3146 if (ret != 0) 3147 goto out_unlock; 3148 3149 page_bufs = page_buffers(page); 3150 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL, 3151 bget_one); 3152 /* As soon as we unlock the page, it can go away, but we have 3153 * references to buffers so we are safe */ 3154 unlock_page(page); 3155 3156 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 3157 if (IS_ERR(handle)) { 3158 ret = PTR_ERR(handle); 3159 goto out; 3160 } 3161 3162 ret = walk_page_buffers(handle, page_bufs, 0, 3163 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 3164 3165 err = walk_page_buffers(handle, page_bufs, 0, 3166 PAGE_CACHE_SIZE, NULL, write_end_fn); 3167 if (ret == 0) 3168 ret = err; 3169 err = ext4_journal_stop(handle); 3170 if (!ret) 3171 ret = err; 3172 3173 walk_page_buffers(handle, page_bufs, 0, 3174 PAGE_CACHE_SIZE, NULL, bput_one); 3175 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 3176 goto out; 3177 3178 out_unlock: 3179 unlock_page(page); 3180 out: 3181 return ret; 3182 } 3183 3184 static int ext4_journalled_writepage(struct page *page, 3185 struct writeback_control *wbc) 3186 { 3187 struct inode *inode = page->mapping->host; 3188 loff_t size = i_size_read(inode); 3189 loff_t len; 3190 3191 trace_mark(ext4_journalled_writepage, 3192 "dev %s ino %lu page_index %lu", 3193 inode->i_sb->s_id, inode->i_ino, page->index); 3194 J_ASSERT(PageLocked(page)); 3195 if (page->index == size >> PAGE_CACHE_SHIFT) 3196 len = size & ~PAGE_CACHE_MASK; 3197 else 3198 len = PAGE_CACHE_SIZE; 3199 3200 if (page_has_buffers(page)) { 3201 /* if page has buffers it should all be mapped 3202 * and allocated. If there are not buffers attached 3203 * to the page we know the page is dirty but it lost 3204 * buffers. That means that at some moment in time 3205 * after write_begin() / write_end() has been called 3206 * all buffers have been clean and thus they must have been 3207 * written at least once. So they are all mapped and we can 3208 * happily proceed with mapping them and writing the page. 3209 */ 3210 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 3211 ext4_bh_unmapped_or_delay)); 3212 } 3213 3214 if (ext4_journal_current_handle()) 3215 goto no_write; 3216 3217 if (PageChecked(page)) { 3218 /* 3219 * It's mmapped pagecache. Add buffers and journal it. There 3220 * doesn't seem much point in redirtying the page here. 3221 */ 3222 ClearPageChecked(page); 3223 return __ext4_journalled_writepage(page, wbc); 3224 } else { 3225 /* 3226 * It may be a page full of checkpoint-mode buffers. We don't 3227 * really know unless we go poke around in the buffer_heads. 3228 * But block_write_full_page will do the right thing. 3229 */ 3230 return block_write_full_page(page, 3231 ext4_normal_get_block_write, 3232 wbc); 3233 } 3234 no_write: 3235 redirty_page_for_writepage(wbc, page); 3236 unlock_page(page); 3237 return 0; 3238 } 3239 3240 static int ext4_readpage(struct file *file, struct page *page) 3241 { 3242 return mpage_readpage(page, ext4_get_block); 3243 } 3244 3245 static int 3246 ext4_readpages(struct file *file, struct address_space *mapping, 3247 struct list_head *pages, unsigned nr_pages) 3248 { 3249 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3250 } 3251 3252 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3253 { 3254 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3255 3256 /* 3257 * If it's a full truncate we just forget about the pending dirtying 3258 */ 3259 if (offset == 0) 3260 ClearPageChecked(page); 3261 3262 if (journal) 3263 jbd2_journal_invalidatepage(journal, page, offset); 3264 else 3265 block_invalidatepage(page, offset); 3266 } 3267 3268 static int ext4_releasepage(struct page *page, gfp_t wait) 3269 { 3270 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3271 3272 WARN_ON(PageChecked(page)); 3273 if (!page_has_buffers(page)) 3274 return 0; 3275 if (journal) 3276 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3277 else 3278 return try_to_free_buffers(page); 3279 } 3280 3281 /* 3282 * If the O_DIRECT write will extend the file then add this inode to the 3283 * orphan list. So recovery will truncate it back to the original size 3284 * if the machine crashes during the write. 3285 * 3286 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3287 * crashes then stale disk data _may_ be exposed inside the file. But current 3288 * VFS code falls back into buffered path in that case so we are safe. 3289 */ 3290 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3291 const struct iovec *iov, loff_t offset, 3292 unsigned long nr_segs) 3293 { 3294 struct file *file = iocb->ki_filp; 3295 struct inode *inode = file->f_mapping->host; 3296 struct ext4_inode_info *ei = EXT4_I(inode); 3297 handle_t *handle; 3298 ssize_t ret; 3299 int orphan = 0; 3300 size_t count = iov_length(iov, nr_segs); 3301 3302 if (rw == WRITE) { 3303 loff_t final_size = offset + count; 3304 3305 if (final_size > inode->i_size) { 3306 /* Credits for sb + inode write */ 3307 handle = ext4_journal_start(inode, 2); 3308 if (IS_ERR(handle)) { 3309 ret = PTR_ERR(handle); 3310 goto out; 3311 } 3312 ret = ext4_orphan_add(handle, inode); 3313 if (ret) { 3314 ext4_journal_stop(handle); 3315 goto out; 3316 } 3317 orphan = 1; 3318 ei->i_disksize = inode->i_size; 3319 ext4_journal_stop(handle); 3320 } 3321 } 3322 3323 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3324 offset, nr_segs, 3325 ext4_get_block, NULL); 3326 3327 if (orphan) { 3328 int err; 3329 3330 /* Credits for sb + inode write */ 3331 handle = ext4_journal_start(inode, 2); 3332 if (IS_ERR(handle)) { 3333 /* This is really bad luck. We've written the data 3334 * but cannot extend i_size. Bail out and pretend 3335 * the write failed... */ 3336 ret = PTR_ERR(handle); 3337 goto out; 3338 } 3339 if (inode->i_nlink) 3340 ext4_orphan_del(handle, inode); 3341 if (ret > 0) { 3342 loff_t end = offset + ret; 3343 if (end > inode->i_size) { 3344 ei->i_disksize = end; 3345 i_size_write(inode, end); 3346 /* 3347 * We're going to return a positive `ret' 3348 * here due to non-zero-length I/O, so there's 3349 * no way of reporting error returns from 3350 * ext4_mark_inode_dirty() to userspace. So 3351 * ignore it. 3352 */ 3353 ext4_mark_inode_dirty(handle, inode); 3354 } 3355 } 3356 err = ext4_journal_stop(handle); 3357 if (ret == 0) 3358 ret = err; 3359 } 3360 out: 3361 return ret; 3362 } 3363 3364 /* 3365 * Pages can be marked dirty completely asynchronously from ext4's journalling 3366 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3367 * much here because ->set_page_dirty is called under VFS locks. The page is 3368 * not necessarily locked. 3369 * 3370 * We cannot just dirty the page and leave attached buffers clean, because the 3371 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3372 * or jbddirty because all the journalling code will explode. 3373 * 3374 * So what we do is to mark the page "pending dirty" and next time writepage 3375 * is called, propagate that into the buffers appropriately. 3376 */ 3377 static int ext4_journalled_set_page_dirty(struct page *page) 3378 { 3379 SetPageChecked(page); 3380 return __set_page_dirty_nobuffers(page); 3381 } 3382 3383 static const struct address_space_operations ext4_ordered_aops = { 3384 .readpage = ext4_readpage, 3385 .readpages = ext4_readpages, 3386 .writepage = ext4_normal_writepage, 3387 .sync_page = block_sync_page, 3388 .write_begin = ext4_write_begin, 3389 .write_end = ext4_ordered_write_end, 3390 .bmap = ext4_bmap, 3391 .invalidatepage = ext4_invalidatepage, 3392 .releasepage = ext4_releasepage, 3393 .direct_IO = ext4_direct_IO, 3394 .migratepage = buffer_migrate_page, 3395 .is_partially_uptodate = block_is_partially_uptodate, 3396 }; 3397 3398 static const struct address_space_operations ext4_writeback_aops = { 3399 .readpage = ext4_readpage, 3400 .readpages = ext4_readpages, 3401 .writepage = ext4_normal_writepage, 3402 .sync_page = block_sync_page, 3403 .write_begin = ext4_write_begin, 3404 .write_end = ext4_writeback_write_end, 3405 .bmap = ext4_bmap, 3406 .invalidatepage = ext4_invalidatepage, 3407 .releasepage = ext4_releasepage, 3408 .direct_IO = ext4_direct_IO, 3409 .migratepage = buffer_migrate_page, 3410 .is_partially_uptodate = block_is_partially_uptodate, 3411 }; 3412 3413 static const struct address_space_operations ext4_journalled_aops = { 3414 .readpage = ext4_readpage, 3415 .readpages = ext4_readpages, 3416 .writepage = ext4_journalled_writepage, 3417 .sync_page = block_sync_page, 3418 .write_begin = ext4_write_begin, 3419 .write_end = ext4_journalled_write_end, 3420 .set_page_dirty = ext4_journalled_set_page_dirty, 3421 .bmap = ext4_bmap, 3422 .invalidatepage = ext4_invalidatepage, 3423 .releasepage = ext4_releasepage, 3424 .is_partially_uptodate = block_is_partially_uptodate, 3425 }; 3426 3427 static const struct address_space_operations ext4_da_aops = { 3428 .readpage = ext4_readpage, 3429 .readpages = ext4_readpages, 3430 .writepage = ext4_da_writepage, 3431 .writepages = ext4_da_writepages, 3432 .sync_page = block_sync_page, 3433 .write_begin = ext4_da_write_begin, 3434 .write_end = ext4_da_write_end, 3435 .bmap = ext4_bmap, 3436 .invalidatepage = ext4_da_invalidatepage, 3437 .releasepage = ext4_releasepage, 3438 .direct_IO = ext4_direct_IO, 3439 .migratepage = buffer_migrate_page, 3440 .is_partially_uptodate = block_is_partially_uptodate, 3441 }; 3442 3443 void ext4_set_aops(struct inode *inode) 3444 { 3445 if (ext4_should_order_data(inode) && 3446 test_opt(inode->i_sb, DELALLOC)) 3447 inode->i_mapping->a_ops = &ext4_da_aops; 3448 else if (ext4_should_order_data(inode)) 3449 inode->i_mapping->a_ops = &ext4_ordered_aops; 3450 else if (ext4_should_writeback_data(inode) && 3451 test_opt(inode->i_sb, DELALLOC)) 3452 inode->i_mapping->a_ops = &ext4_da_aops; 3453 else if (ext4_should_writeback_data(inode)) 3454 inode->i_mapping->a_ops = &ext4_writeback_aops; 3455 else 3456 inode->i_mapping->a_ops = &ext4_journalled_aops; 3457 } 3458 3459 /* 3460 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3461 * up to the end of the block which corresponds to `from'. 3462 * This required during truncate. We need to physically zero the tail end 3463 * of that block so it doesn't yield old data if the file is later grown. 3464 */ 3465 int ext4_block_truncate_page(handle_t *handle, 3466 struct address_space *mapping, loff_t from) 3467 { 3468 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3469 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3470 unsigned blocksize, length, pos; 3471 ext4_lblk_t iblock; 3472 struct inode *inode = mapping->host; 3473 struct buffer_head *bh; 3474 struct page *page; 3475 int err = 0; 3476 3477 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT); 3478 if (!page) 3479 return -EINVAL; 3480 3481 blocksize = inode->i_sb->s_blocksize; 3482 length = blocksize - (offset & (blocksize - 1)); 3483 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3484 3485 /* 3486 * For "nobh" option, we can only work if we don't need to 3487 * read-in the page - otherwise we create buffers to do the IO. 3488 */ 3489 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3490 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3491 zero_user(page, offset, length); 3492 set_page_dirty(page); 3493 goto unlock; 3494 } 3495 3496 if (!page_has_buffers(page)) 3497 create_empty_buffers(page, blocksize, 0); 3498 3499 /* Find the buffer that contains "offset" */ 3500 bh = page_buffers(page); 3501 pos = blocksize; 3502 while (offset >= pos) { 3503 bh = bh->b_this_page; 3504 iblock++; 3505 pos += blocksize; 3506 } 3507 3508 err = 0; 3509 if (buffer_freed(bh)) { 3510 BUFFER_TRACE(bh, "freed: skip"); 3511 goto unlock; 3512 } 3513 3514 if (!buffer_mapped(bh)) { 3515 BUFFER_TRACE(bh, "unmapped"); 3516 ext4_get_block(inode, iblock, bh, 0); 3517 /* unmapped? It's a hole - nothing to do */ 3518 if (!buffer_mapped(bh)) { 3519 BUFFER_TRACE(bh, "still unmapped"); 3520 goto unlock; 3521 } 3522 } 3523 3524 /* Ok, it's mapped. Make sure it's up-to-date */ 3525 if (PageUptodate(page)) 3526 set_buffer_uptodate(bh); 3527 3528 if (!buffer_uptodate(bh)) { 3529 err = -EIO; 3530 ll_rw_block(READ, 1, &bh); 3531 wait_on_buffer(bh); 3532 /* Uhhuh. Read error. Complain and punt. */ 3533 if (!buffer_uptodate(bh)) 3534 goto unlock; 3535 } 3536 3537 if (ext4_should_journal_data(inode)) { 3538 BUFFER_TRACE(bh, "get write access"); 3539 err = ext4_journal_get_write_access(handle, bh); 3540 if (err) 3541 goto unlock; 3542 } 3543 3544 zero_user(page, offset, length); 3545 3546 BUFFER_TRACE(bh, "zeroed end of block"); 3547 3548 err = 0; 3549 if (ext4_should_journal_data(inode)) { 3550 err = ext4_handle_dirty_metadata(handle, inode, bh); 3551 } else { 3552 if (ext4_should_order_data(inode)) 3553 err = ext4_jbd2_file_inode(handle, inode); 3554 mark_buffer_dirty(bh); 3555 } 3556 3557 unlock: 3558 unlock_page(page); 3559 page_cache_release(page); 3560 return err; 3561 } 3562 3563 /* 3564 * Probably it should be a library function... search for first non-zero word 3565 * or memcmp with zero_page, whatever is better for particular architecture. 3566 * Linus? 3567 */ 3568 static inline int all_zeroes(__le32 *p, __le32 *q) 3569 { 3570 while (p < q) 3571 if (*p++) 3572 return 0; 3573 return 1; 3574 } 3575 3576 /** 3577 * ext4_find_shared - find the indirect blocks for partial truncation. 3578 * @inode: inode in question 3579 * @depth: depth of the affected branch 3580 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 3581 * @chain: place to store the pointers to partial indirect blocks 3582 * @top: place to the (detached) top of branch 3583 * 3584 * This is a helper function used by ext4_truncate(). 3585 * 3586 * When we do truncate() we may have to clean the ends of several 3587 * indirect blocks but leave the blocks themselves alive. Block is 3588 * partially truncated if some data below the new i_size is refered 3589 * from it (and it is on the path to the first completely truncated 3590 * data block, indeed). We have to free the top of that path along 3591 * with everything to the right of the path. Since no allocation 3592 * past the truncation point is possible until ext4_truncate() 3593 * finishes, we may safely do the latter, but top of branch may 3594 * require special attention - pageout below the truncation point 3595 * might try to populate it. 3596 * 3597 * We atomically detach the top of branch from the tree, store the 3598 * block number of its root in *@top, pointers to buffer_heads of 3599 * partially truncated blocks - in @chain[].bh and pointers to 3600 * their last elements that should not be removed - in 3601 * @chain[].p. Return value is the pointer to last filled element 3602 * of @chain. 3603 * 3604 * The work left to caller to do the actual freeing of subtrees: 3605 * a) free the subtree starting from *@top 3606 * b) free the subtrees whose roots are stored in 3607 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 3608 * c) free the subtrees growing from the inode past the @chain[0]. 3609 * (no partially truncated stuff there). */ 3610 3611 static Indirect *ext4_find_shared(struct inode *inode, int depth, 3612 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 3613 { 3614 Indirect *partial, *p; 3615 int k, err; 3616 3617 *top = 0; 3618 /* Make k index the deepest non-null offest + 1 */ 3619 for (k = depth; k > 1 && !offsets[k-1]; k--) 3620 ; 3621 partial = ext4_get_branch(inode, k, offsets, chain, &err); 3622 /* Writer: pointers */ 3623 if (!partial) 3624 partial = chain + k-1; 3625 /* 3626 * If the branch acquired continuation since we've looked at it - 3627 * fine, it should all survive and (new) top doesn't belong to us. 3628 */ 3629 if (!partial->key && *partial->p) 3630 /* Writer: end */ 3631 goto no_top; 3632 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 3633 ; 3634 /* 3635 * OK, we've found the last block that must survive. The rest of our 3636 * branch should be detached before unlocking. However, if that rest 3637 * of branch is all ours and does not grow immediately from the inode 3638 * it's easier to cheat and just decrement partial->p. 3639 */ 3640 if (p == chain + k - 1 && p > chain) { 3641 p->p--; 3642 } else { 3643 *top = *p->p; 3644 /* Nope, don't do this in ext4. Must leave the tree intact */ 3645 #if 0 3646 *p->p = 0; 3647 #endif 3648 } 3649 /* Writer: end */ 3650 3651 while (partial > p) { 3652 brelse(partial->bh); 3653 partial--; 3654 } 3655 no_top: 3656 return partial; 3657 } 3658 3659 /* 3660 * Zero a number of block pointers in either an inode or an indirect block. 3661 * If we restart the transaction we must again get write access to the 3662 * indirect block for further modification. 3663 * 3664 * We release `count' blocks on disk, but (last - first) may be greater 3665 * than `count' because there can be holes in there. 3666 */ 3667 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 3668 struct buffer_head *bh, ext4_fsblk_t block_to_free, 3669 unsigned long count, __le32 *first, __le32 *last) 3670 { 3671 __le32 *p; 3672 if (try_to_extend_transaction(handle, inode)) { 3673 if (bh) { 3674 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 3675 ext4_handle_dirty_metadata(handle, inode, bh); 3676 } 3677 ext4_mark_inode_dirty(handle, inode); 3678 ext4_journal_test_restart(handle, inode); 3679 if (bh) { 3680 BUFFER_TRACE(bh, "retaking write access"); 3681 ext4_journal_get_write_access(handle, bh); 3682 } 3683 } 3684 3685 /* 3686 * Any buffers which are on the journal will be in memory. We find 3687 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 3688 * on them. We've already detached each block from the file, so 3689 * bforget() in jbd2_journal_forget() should be safe. 3690 * 3691 * AKPM: turn on bforget in jbd2_journal_forget()!!! 3692 */ 3693 for (p = first; p < last; p++) { 3694 u32 nr = le32_to_cpu(*p); 3695 if (nr) { 3696 struct buffer_head *tbh; 3697 3698 *p = 0; 3699 tbh = sb_find_get_block(inode->i_sb, nr); 3700 ext4_forget(handle, 0, inode, tbh, nr); 3701 } 3702 } 3703 3704 ext4_free_blocks(handle, inode, block_to_free, count, 0); 3705 } 3706 3707 /** 3708 * ext4_free_data - free a list of data blocks 3709 * @handle: handle for this transaction 3710 * @inode: inode we are dealing with 3711 * @this_bh: indirect buffer_head which contains *@first and *@last 3712 * @first: array of block numbers 3713 * @last: points immediately past the end of array 3714 * 3715 * We are freeing all blocks refered from that array (numbers are stored as 3716 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 3717 * 3718 * We accumulate contiguous runs of blocks to free. Conveniently, if these 3719 * blocks are contiguous then releasing them at one time will only affect one 3720 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 3721 * actually use a lot of journal space. 3722 * 3723 * @this_bh will be %NULL if @first and @last point into the inode's direct 3724 * block pointers. 3725 */ 3726 static void ext4_free_data(handle_t *handle, struct inode *inode, 3727 struct buffer_head *this_bh, 3728 __le32 *first, __le32 *last) 3729 { 3730 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 3731 unsigned long count = 0; /* Number of blocks in the run */ 3732 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 3733 corresponding to 3734 block_to_free */ 3735 ext4_fsblk_t nr; /* Current block # */ 3736 __le32 *p; /* Pointer into inode/ind 3737 for current block */ 3738 int err; 3739 3740 if (this_bh) { /* For indirect block */ 3741 BUFFER_TRACE(this_bh, "get_write_access"); 3742 err = ext4_journal_get_write_access(handle, this_bh); 3743 /* Important: if we can't update the indirect pointers 3744 * to the blocks, we can't free them. */ 3745 if (err) 3746 return; 3747 } 3748 3749 for (p = first; p < last; p++) { 3750 nr = le32_to_cpu(*p); 3751 if (nr) { 3752 /* accumulate blocks to free if they're contiguous */ 3753 if (count == 0) { 3754 block_to_free = nr; 3755 block_to_free_p = p; 3756 count = 1; 3757 } else if (nr == block_to_free + count) { 3758 count++; 3759 } else { 3760 ext4_clear_blocks(handle, inode, this_bh, 3761 block_to_free, 3762 count, block_to_free_p, p); 3763 block_to_free = nr; 3764 block_to_free_p = p; 3765 count = 1; 3766 } 3767 } 3768 } 3769 3770 if (count > 0) 3771 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 3772 count, block_to_free_p, p); 3773 3774 if (this_bh) { 3775 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 3776 3777 /* 3778 * The buffer head should have an attached journal head at this 3779 * point. However, if the data is corrupted and an indirect 3780 * block pointed to itself, it would have been detached when 3781 * the block was cleared. Check for this instead of OOPSing. 3782 */ 3783 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 3784 ext4_handle_dirty_metadata(handle, inode, this_bh); 3785 else 3786 ext4_error(inode->i_sb, __func__, 3787 "circular indirect block detected, " 3788 "inode=%lu, block=%llu", 3789 inode->i_ino, 3790 (unsigned long long) this_bh->b_blocknr); 3791 } 3792 } 3793 3794 /** 3795 * ext4_free_branches - free an array of branches 3796 * @handle: JBD handle for this transaction 3797 * @inode: inode we are dealing with 3798 * @parent_bh: the buffer_head which contains *@first and *@last 3799 * @first: array of block numbers 3800 * @last: pointer immediately past the end of array 3801 * @depth: depth of the branches to free 3802 * 3803 * We are freeing all blocks refered from these branches (numbers are 3804 * stored as little-endian 32-bit) and updating @inode->i_blocks 3805 * appropriately. 3806 */ 3807 static void ext4_free_branches(handle_t *handle, struct inode *inode, 3808 struct buffer_head *parent_bh, 3809 __le32 *first, __le32 *last, int depth) 3810 { 3811 ext4_fsblk_t nr; 3812 __le32 *p; 3813 3814 if (ext4_handle_is_aborted(handle)) 3815 return; 3816 3817 if (depth--) { 3818 struct buffer_head *bh; 3819 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3820 p = last; 3821 while (--p >= first) { 3822 nr = le32_to_cpu(*p); 3823 if (!nr) 3824 continue; /* A hole */ 3825 3826 /* Go read the buffer for the next level down */ 3827 bh = sb_bread(inode->i_sb, nr); 3828 3829 /* 3830 * A read failure? Report error and clear slot 3831 * (should be rare). 3832 */ 3833 if (!bh) { 3834 ext4_error(inode->i_sb, "ext4_free_branches", 3835 "Read failure, inode=%lu, block=%llu", 3836 inode->i_ino, nr); 3837 continue; 3838 } 3839 3840 /* This zaps the entire block. Bottom up. */ 3841 BUFFER_TRACE(bh, "free child branches"); 3842 ext4_free_branches(handle, inode, bh, 3843 (__le32 *) bh->b_data, 3844 (__le32 *) bh->b_data + addr_per_block, 3845 depth); 3846 3847 /* 3848 * We've probably journalled the indirect block several 3849 * times during the truncate. But it's no longer 3850 * needed and we now drop it from the transaction via 3851 * jbd2_journal_revoke(). 3852 * 3853 * That's easy if it's exclusively part of this 3854 * transaction. But if it's part of the committing 3855 * transaction then jbd2_journal_forget() will simply 3856 * brelse() it. That means that if the underlying 3857 * block is reallocated in ext4_get_block(), 3858 * unmap_underlying_metadata() will find this block 3859 * and will try to get rid of it. damn, damn. 3860 * 3861 * If this block has already been committed to the 3862 * journal, a revoke record will be written. And 3863 * revoke records must be emitted *before* clearing 3864 * this block's bit in the bitmaps. 3865 */ 3866 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 3867 3868 /* 3869 * Everything below this this pointer has been 3870 * released. Now let this top-of-subtree go. 3871 * 3872 * We want the freeing of this indirect block to be 3873 * atomic in the journal with the updating of the 3874 * bitmap block which owns it. So make some room in 3875 * the journal. 3876 * 3877 * We zero the parent pointer *after* freeing its 3878 * pointee in the bitmaps, so if extend_transaction() 3879 * for some reason fails to put the bitmap changes and 3880 * the release into the same transaction, recovery 3881 * will merely complain about releasing a free block, 3882 * rather than leaking blocks. 3883 */ 3884 if (ext4_handle_is_aborted(handle)) 3885 return; 3886 if (try_to_extend_transaction(handle, inode)) { 3887 ext4_mark_inode_dirty(handle, inode); 3888 ext4_journal_test_restart(handle, inode); 3889 } 3890 3891 ext4_free_blocks(handle, inode, nr, 1, 1); 3892 3893 if (parent_bh) { 3894 /* 3895 * The block which we have just freed is 3896 * pointed to by an indirect block: journal it 3897 */ 3898 BUFFER_TRACE(parent_bh, "get_write_access"); 3899 if (!ext4_journal_get_write_access(handle, 3900 parent_bh)){ 3901 *p = 0; 3902 BUFFER_TRACE(parent_bh, 3903 "call ext4_handle_dirty_metadata"); 3904 ext4_handle_dirty_metadata(handle, 3905 inode, 3906 parent_bh); 3907 } 3908 } 3909 } 3910 } else { 3911 /* We have reached the bottom of the tree. */ 3912 BUFFER_TRACE(parent_bh, "free data blocks"); 3913 ext4_free_data(handle, inode, parent_bh, first, last); 3914 } 3915 } 3916 3917 int ext4_can_truncate(struct inode *inode) 3918 { 3919 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3920 return 0; 3921 if (S_ISREG(inode->i_mode)) 3922 return 1; 3923 if (S_ISDIR(inode->i_mode)) 3924 return 1; 3925 if (S_ISLNK(inode->i_mode)) 3926 return !ext4_inode_is_fast_symlink(inode); 3927 return 0; 3928 } 3929 3930 /* 3931 * ext4_truncate() 3932 * 3933 * We block out ext4_get_block() block instantiations across the entire 3934 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3935 * simultaneously on behalf of the same inode. 3936 * 3937 * As we work through the truncate and commmit bits of it to the journal there 3938 * is one core, guiding principle: the file's tree must always be consistent on 3939 * disk. We must be able to restart the truncate after a crash. 3940 * 3941 * The file's tree may be transiently inconsistent in memory (although it 3942 * probably isn't), but whenever we close off and commit a journal transaction, 3943 * the contents of (the filesystem + the journal) must be consistent and 3944 * restartable. It's pretty simple, really: bottom up, right to left (although 3945 * left-to-right works OK too). 3946 * 3947 * Note that at recovery time, journal replay occurs *before* the restart of 3948 * truncate against the orphan inode list. 3949 * 3950 * The committed inode has the new, desired i_size (which is the same as 3951 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3952 * that this inode's truncate did not complete and it will again call 3953 * ext4_truncate() to have another go. So there will be instantiated blocks 3954 * to the right of the truncation point in a crashed ext4 filesystem. But 3955 * that's fine - as long as they are linked from the inode, the post-crash 3956 * ext4_truncate() run will find them and release them. 3957 */ 3958 void ext4_truncate(struct inode *inode) 3959 { 3960 handle_t *handle; 3961 struct ext4_inode_info *ei = EXT4_I(inode); 3962 __le32 *i_data = ei->i_data; 3963 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3964 struct address_space *mapping = inode->i_mapping; 3965 ext4_lblk_t offsets[4]; 3966 Indirect chain[4]; 3967 Indirect *partial; 3968 __le32 nr = 0; 3969 int n; 3970 ext4_lblk_t last_block; 3971 unsigned blocksize = inode->i_sb->s_blocksize; 3972 3973 if (!ext4_can_truncate(inode)) 3974 return; 3975 3976 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3977 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE; 3978 3979 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 3980 ext4_ext_truncate(inode); 3981 return; 3982 } 3983 3984 handle = start_transaction(inode); 3985 if (IS_ERR(handle)) 3986 return; /* AKPM: return what? */ 3987 3988 last_block = (inode->i_size + blocksize-1) 3989 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 3990 3991 if (inode->i_size & (blocksize - 1)) 3992 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 3993 goto out_stop; 3994 3995 n = ext4_block_to_path(inode, last_block, offsets, NULL); 3996 if (n == 0) 3997 goto out_stop; /* error */ 3998 3999 /* 4000 * OK. This truncate is going to happen. We add the inode to the 4001 * orphan list, so that if this truncate spans multiple transactions, 4002 * and we crash, we will resume the truncate when the filesystem 4003 * recovers. It also marks the inode dirty, to catch the new size. 4004 * 4005 * Implication: the file must always be in a sane, consistent 4006 * truncatable state while each transaction commits. 4007 */ 4008 if (ext4_orphan_add(handle, inode)) 4009 goto out_stop; 4010 4011 /* 4012 * From here we block out all ext4_get_block() callers who want to 4013 * modify the block allocation tree. 4014 */ 4015 down_write(&ei->i_data_sem); 4016 4017 ext4_discard_preallocations(inode); 4018 4019 /* 4020 * The orphan list entry will now protect us from any crash which 4021 * occurs before the truncate completes, so it is now safe to propagate 4022 * the new, shorter inode size (held for now in i_size) into the 4023 * on-disk inode. We do this via i_disksize, which is the value which 4024 * ext4 *really* writes onto the disk inode. 4025 */ 4026 ei->i_disksize = inode->i_size; 4027 4028 if (n == 1) { /* direct blocks */ 4029 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4030 i_data + EXT4_NDIR_BLOCKS); 4031 goto do_indirects; 4032 } 4033 4034 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4035 /* Kill the top of shared branch (not detached) */ 4036 if (nr) { 4037 if (partial == chain) { 4038 /* Shared branch grows from the inode */ 4039 ext4_free_branches(handle, inode, NULL, 4040 &nr, &nr+1, (chain+n-1) - partial); 4041 *partial->p = 0; 4042 /* 4043 * We mark the inode dirty prior to restart, 4044 * and prior to stop. No need for it here. 4045 */ 4046 } else { 4047 /* Shared branch grows from an indirect block */ 4048 BUFFER_TRACE(partial->bh, "get_write_access"); 4049 ext4_free_branches(handle, inode, partial->bh, 4050 partial->p, 4051 partial->p+1, (chain+n-1) - partial); 4052 } 4053 } 4054 /* Clear the ends of indirect blocks on the shared branch */ 4055 while (partial > chain) { 4056 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4057 (__le32*)partial->bh->b_data+addr_per_block, 4058 (chain+n-1) - partial); 4059 BUFFER_TRACE(partial->bh, "call brelse"); 4060 brelse (partial->bh); 4061 partial--; 4062 } 4063 do_indirects: 4064 /* Kill the remaining (whole) subtrees */ 4065 switch (offsets[0]) { 4066 default: 4067 nr = i_data[EXT4_IND_BLOCK]; 4068 if (nr) { 4069 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4070 i_data[EXT4_IND_BLOCK] = 0; 4071 } 4072 case EXT4_IND_BLOCK: 4073 nr = i_data[EXT4_DIND_BLOCK]; 4074 if (nr) { 4075 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4076 i_data[EXT4_DIND_BLOCK] = 0; 4077 } 4078 case EXT4_DIND_BLOCK: 4079 nr = i_data[EXT4_TIND_BLOCK]; 4080 if (nr) { 4081 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4082 i_data[EXT4_TIND_BLOCK] = 0; 4083 } 4084 case EXT4_TIND_BLOCK: 4085 ; 4086 } 4087 4088 up_write(&ei->i_data_sem); 4089 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4090 ext4_mark_inode_dirty(handle, inode); 4091 4092 /* 4093 * In a multi-transaction truncate, we only make the final transaction 4094 * synchronous 4095 */ 4096 if (IS_SYNC(inode)) 4097 ext4_handle_sync(handle); 4098 out_stop: 4099 /* 4100 * If this was a simple ftruncate(), and the file will remain alive 4101 * then we need to clear up the orphan record which we created above. 4102 * However, if this was a real unlink then we were called by 4103 * ext4_delete_inode(), and we allow that function to clean up the 4104 * orphan info for us. 4105 */ 4106 if (inode->i_nlink) 4107 ext4_orphan_del(handle, inode); 4108 4109 ext4_journal_stop(handle); 4110 } 4111 4112 /* 4113 * ext4_get_inode_loc returns with an extra refcount against the inode's 4114 * underlying buffer_head on success. If 'in_mem' is true, we have all 4115 * data in memory that is needed to recreate the on-disk version of this 4116 * inode. 4117 */ 4118 static int __ext4_get_inode_loc(struct inode *inode, 4119 struct ext4_iloc *iloc, int in_mem) 4120 { 4121 struct ext4_group_desc *gdp; 4122 struct buffer_head *bh; 4123 struct super_block *sb = inode->i_sb; 4124 ext4_fsblk_t block; 4125 int inodes_per_block, inode_offset; 4126 4127 iloc->bh = NULL; 4128 if (!ext4_valid_inum(sb, inode->i_ino)) 4129 return -EIO; 4130 4131 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4132 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4133 if (!gdp) 4134 return -EIO; 4135 4136 /* 4137 * Figure out the offset within the block group inode table 4138 */ 4139 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb)); 4140 inode_offset = ((inode->i_ino - 1) % 4141 EXT4_INODES_PER_GROUP(sb)); 4142 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4143 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4144 4145 bh = sb_getblk(sb, block); 4146 if (!bh) { 4147 ext4_error(sb, "ext4_get_inode_loc", "unable to read " 4148 "inode block - inode=%lu, block=%llu", 4149 inode->i_ino, block); 4150 return -EIO; 4151 } 4152 if (!buffer_uptodate(bh)) { 4153 lock_buffer(bh); 4154 4155 /* 4156 * If the buffer has the write error flag, we have failed 4157 * to write out another inode in the same block. In this 4158 * case, we don't have to read the block because we may 4159 * read the old inode data successfully. 4160 */ 4161 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4162 set_buffer_uptodate(bh); 4163 4164 if (buffer_uptodate(bh)) { 4165 /* someone brought it uptodate while we waited */ 4166 unlock_buffer(bh); 4167 goto has_buffer; 4168 } 4169 4170 /* 4171 * If we have all information of the inode in memory and this 4172 * is the only valid inode in the block, we need not read the 4173 * block. 4174 */ 4175 if (in_mem) { 4176 struct buffer_head *bitmap_bh; 4177 int i, start; 4178 4179 start = inode_offset & ~(inodes_per_block - 1); 4180 4181 /* Is the inode bitmap in cache? */ 4182 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4183 if (!bitmap_bh) 4184 goto make_io; 4185 4186 /* 4187 * If the inode bitmap isn't in cache then the 4188 * optimisation may end up performing two reads instead 4189 * of one, so skip it. 4190 */ 4191 if (!buffer_uptodate(bitmap_bh)) { 4192 brelse(bitmap_bh); 4193 goto make_io; 4194 } 4195 for (i = start; i < start + inodes_per_block; i++) { 4196 if (i == inode_offset) 4197 continue; 4198 if (ext4_test_bit(i, bitmap_bh->b_data)) 4199 break; 4200 } 4201 brelse(bitmap_bh); 4202 if (i == start + inodes_per_block) { 4203 /* all other inodes are free, so skip I/O */ 4204 memset(bh->b_data, 0, bh->b_size); 4205 set_buffer_uptodate(bh); 4206 unlock_buffer(bh); 4207 goto has_buffer; 4208 } 4209 } 4210 4211 make_io: 4212 /* 4213 * If we need to do any I/O, try to pre-readahead extra 4214 * blocks from the inode table. 4215 */ 4216 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4217 ext4_fsblk_t b, end, table; 4218 unsigned num; 4219 4220 table = ext4_inode_table(sb, gdp); 4221 /* s_inode_readahead_blks is always a power of 2 */ 4222 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4223 if (table > b) 4224 b = table; 4225 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4226 num = EXT4_INODES_PER_GROUP(sb); 4227 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4228 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4229 num -= ext4_itable_unused_count(sb, gdp); 4230 table += num / inodes_per_block; 4231 if (end > table) 4232 end = table; 4233 while (b <= end) 4234 sb_breadahead(sb, b++); 4235 } 4236 4237 /* 4238 * There are other valid inodes in the buffer, this inode 4239 * has in-inode xattrs, or we don't have this inode in memory. 4240 * Read the block from disk. 4241 */ 4242 get_bh(bh); 4243 bh->b_end_io = end_buffer_read_sync; 4244 submit_bh(READ_META, bh); 4245 wait_on_buffer(bh); 4246 if (!buffer_uptodate(bh)) { 4247 ext4_error(sb, __func__, 4248 "unable to read inode block - inode=%lu, " 4249 "block=%llu", inode->i_ino, block); 4250 brelse(bh); 4251 return -EIO; 4252 } 4253 } 4254 has_buffer: 4255 iloc->bh = bh; 4256 return 0; 4257 } 4258 4259 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4260 { 4261 /* We have all inode data except xattrs in memory here. */ 4262 return __ext4_get_inode_loc(inode, iloc, 4263 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 4264 } 4265 4266 void ext4_set_inode_flags(struct inode *inode) 4267 { 4268 unsigned int flags = EXT4_I(inode)->i_flags; 4269 4270 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4271 if (flags & EXT4_SYNC_FL) 4272 inode->i_flags |= S_SYNC; 4273 if (flags & EXT4_APPEND_FL) 4274 inode->i_flags |= S_APPEND; 4275 if (flags & EXT4_IMMUTABLE_FL) 4276 inode->i_flags |= S_IMMUTABLE; 4277 if (flags & EXT4_NOATIME_FL) 4278 inode->i_flags |= S_NOATIME; 4279 if (flags & EXT4_DIRSYNC_FL) 4280 inode->i_flags |= S_DIRSYNC; 4281 } 4282 4283 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4284 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4285 { 4286 unsigned int flags = ei->vfs_inode.i_flags; 4287 4288 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4289 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 4290 if (flags & S_SYNC) 4291 ei->i_flags |= EXT4_SYNC_FL; 4292 if (flags & S_APPEND) 4293 ei->i_flags |= EXT4_APPEND_FL; 4294 if (flags & S_IMMUTABLE) 4295 ei->i_flags |= EXT4_IMMUTABLE_FL; 4296 if (flags & S_NOATIME) 4297 ei->i_flags |= EXT4_NOATIME_FL; 4298 if (flags & S_DIRSYNC) 4299 ei->i_flags |= EXT4_DIRSYNC_FL; 4300 } 4301 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4302 struct ext4_inode_info *ei) 4303 { 4304 blkcnt_t i_blocks ; 4305 struct inode *inode = &(ei->vfs_inode); 4306 struct super_block *sb = inode->i_sb; 4307 4308 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4309 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4310 /* we are using combined 48 bit field */ 4311 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4312 le32_to_cpu(raw_inode->i_blocks_lo); 4313 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 4314 /* i_blocks represent file system block size */ 4315 return i_blocks << (inode->i_blkbits - 9); 4316 } else { 4317 return i_blocks; 4318 } 4319 } else { 4320 return le32_to_cpu(raw_inode->i_blocks_lo); 4321 } 4322 } 4323 4324 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4325 { 4326 struct ext4_iloc iloc; 4327 struct ext4_inode *raw_inode; 4328 struct ext4_inode_info *ei; 4329 struct buffer_head *bh; 4330 struct inode *inode; 4331 long ret; 4332 int block; 4333 4334 inode = iget_locked(sb, ino); 4335 if (!inode) 4336 return ERR_PTR(-ENOMEM); 4337 if (!(inode->i_state & I_NEW)) 4338 return inode; 4339 4340 ei = EXT4_I(inode); 4341 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4342 ei->i_acl = EXT4_ACL_NOT_CACHED; 4343 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 4344 #endif 4345 4346 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4347 if (ret < 0) 4348 goto bad_inode; 4349 bh = iloc.bh; 4350 raw_inode = ext4_raw_inode(&iloc); 4351 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4352 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4353 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4354 if (!(test_opt(inode->i_sb, NO_UID32))) { 4355 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4356 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4357 } 4358 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4359 4360 ei->i_state = 0; 4361 ei->i_dir_start_lookup = 0; 4362 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4363 /* We now have enough fields to check if the inode was active or not. 4364 * This is needed because nfsd might try to access dead inodes 4365 * the test is that same one that e2fsck uses 4366 * NeilBrown 1999oct15 4367 */ 4368 if (inode->i_nlink == 0) { 4369 if (inode->i_mode == 0 || 4370 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4371 /* this inode is deleted */ 4372 brelse(bh); 4373 ret = -ESTALE; 4374 goto bad_inode; 4375 } 4376 /* The only unlinked inodes we let through here have 4377 * valid i_mode and are being read by the orphan 4378 * recovery code: that's fine, we're about to complete 4379 * the process of deleting those. */ 4380 } 4381 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4382 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4383 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4384 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4385 ei->i_file_acl |= 4386 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4387 inode->i_size = ext4_isize(raw_inode); 4388 ei->i_disksize = inode->i_size; 4389 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4390 ei->i_block_group = iloc.block_group; 4391 ei->i_last_alloc_group = ~0; 4392 /* 4393 * NOTE! The in-memory inode i_data array is in little-endian order 4394 * even on big-endian machines: we do NOT byteswap the block numbers! 4395 */ 4396 for (block = 0; block < EXT4_N_BLOCKS; block++) 4397 ei->i_data[block] = raw_inode->i_block[block]; 4398 INIT_LIST_HEAD(&ei->i_orphan); 4399 4400 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4401 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4402 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4403 EXT4_INODE_SIZE(inode->i_sb)) { 4404 brelse(bh); 4405 ret = -EIO; 4406 goto bad_inode; 4407 } 4408 if (ei->i_extra_isize == 0) { 4409 /* The extra space is currently unused. Use it. */ 4410 ei->i_extra_isize = sizeof(struct ext4_inode) - 4411 EXT4_GOOD_OLD_INODE_SIZE; 4412 } else { 4413 __le32 *magic = (void *)raw_inode + 4414 EXT4_GOOD_OLD_INODE_SIZE + 4415 ei->i_extra_isize; 4416 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4417 ei->i_state |= EXT4_STATE_XATTR; 4418 } 4419 } else 4420 ei->i_extra_isize = 0; 4421 4422 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4423 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4424 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4425 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4426 4427 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4428 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4429 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4430 inode->i_version |= 4431 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4432 } 4433 4434 ret = 0; 4435 if (ei->i_file_acl && 4436 ((ei->i_file_acl < 4437 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) + 4438 EXT4_SB(sb)->s_gdb_count)) || 4439 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) { 4440 ext4_error(sb, __func__, 4441 "bad extended attribute block %llu in inode #%lu", 4442 ei->i_file_acl, inode->i_ino); 4443 ret = -EIO; 4444 goto bad_inode; 4445 } else if (ei->i_flags & EXT4_EXTENTS_FL) { 4446 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4447 (S_ISLNK(inode->i_mode) && 4448 !ext4_inode_is_fast_symlink(inode))) 4449 /* Validate extent which is part of inode */ 4450 ret = ext4_ext_check_inode(inode); 4451 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4452 (S_ISLNK(inode->i_mode) && 4453 !ext4_inode_is_fast_symlink(inode))) { 4454 /* Validate block references which are part of inode */ 4455 ret = ext4_check_inode_blockref(inode); 4456 } 4457 if (ret) { 4458 brelse(bh); 4459 goto bad_inode; 4460 } 4461 4462 if (S_ISREG(inode->i_mode)) { 4463 inode->i_op = &ext4_file_inode_operations; 4464 inode->i_fop = &ext4_file_operations; 4465 ext4_set_aops(inode); 4466 } else if (S_ISDIR(inode->i_mode)) { 4467 inode->i_op = &ext4_dir_inode_operations; 4468 inode->i_fop = &ext4_dir_operations; 4469 } else if (S_ISLNK(inode->i_mode)) { 4470 if (ext4_inode_is_fast_symlink(inode)) { 4471 inode->i_op = &ext4_fast_symlink_inode_operations; 4472 nd_terminate_link(ei->i_data, inode->i_size, 4473 sizeof(ei->i_data) - 1); 4474 } else { 4475 inode->i_op = &ext4_symlink_inode_operations; 4476 ext4_set_aops(inode); 4477 } 4478 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4479 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4480 inode->i_op = &ext4_special_inode_operations; 4481 if (raw_inode->i_block[0]) 4482 init_special_inode(inode, inode->i_mode, 4483 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4484 else 4485 init_special_inode(inode, inode->i_mode, 4486 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4487 } else { 4488 brelse(bh); 4489 ret = -EIO; 4490 ext4_error(inode->i_sb, __func__, 4491 "bogus i_mode (%o) for inode=%lu", 4492 inode->i_mode, inode->i_ino); 4493 goto bad_inode; 4494 } 4495 brelse(iloc.bh); 4496 ext4_set_inode_flags(inode); 4497 unlock_new_inode(inode); 4498 return inode; 4499 4500 bad_inode: 4501 iget_failed(inode); 4502 return ERR_PTR(ret); 4503 } 4504 4505 static int ext4_inode_blocks_set(handle_t *handle, 4506 struct ext4_inode *raw_inode, 4507 struct ext4_inode_info *ei) 4508 { 4509 struct inode *inode = &(ei->vfs_inode); 4510 u64 i_blocks = inode->i_blocks; 4511 struct super_block *sb = inode->i_sb; 4512 4513 if (i_blocks <= ~0U) { 4514 /* 4515 * i_blocks can be represnted in a 32 bit variable 4516 * as multiple of 512 bytes 4517 */ 4518 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4519 raw_inode->i_blocks_high = 0; 4520 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4521 return 0; 4522 } 4523 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4524 return -EFBIG; 4525 4526 if (i_blocks <= 0xffffffffffffULL) { 4527 /* 4528 * i_blocks can be represented in a 48 bit variable 4529 * as multiple of 512 bytes 4530 */ 4531 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4532 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4533 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4534 } else { 4535 ei->i_flags |= EXT4_HUGE_FILE_FL; 4536 /* i_block is stored in file system block size */ 4537 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4538 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4539 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4540 } 4541 return 0; 4542 } 4543 4544 /* 4545 * Post the struct inode info into an on-disk inode location in the 4546 * buffer-cache. This gobbles the caller's reference to the 4547 * buffer_head in the inode location struct. 4548 * 4549 * The caller must have write access to iloc->bh. 4550 */ 4551 static int ext4_do_update_inode(handle_t *handle, 4552 struct inode *inode, 4553 struct ext4_iloc *iloc) 4554 { 4555 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4556 struct ext4_inode_info *ei = EXT4_I(inode); 4557 struct buffer_head *bh = iloc->bh; 4558 int err = 0, rc, block; 4559 4560 /* For fields not not tracking in the in-memory inode, 4561 * initialise them to zero for new inodes. */ 4562 if (ei->i_state & EXT4_STATE_NEW) 4563 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4564 4565 ext4_get_inode_flags(ei); 4566 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4567 if (!(test_opt(inode->i_sb, NO_UID32))) { 4568 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4569 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4570 /* 4571 * Fix up interoperability with old kernels. Otherwise, old inodes get 4572 * re-used with the upper 16 bits of the uid/gid intact 4573 */ 4574 if (!ei->i_dtime) { 4575 raw_inode->i_uid_high = 4576 cpu_to_le16(high_16_bits(inode->i_uid)); 4577 raw_inode->i_gid_high = 4578 cpu_to_le16(high_16_bits(inode->i_gid)); 4579 } else { 4580 raw_inode->i_uid_high = 0; 4581 raw_inode->i_gid_high = 0; 4582 } 4583 } else { 4584 raw_inode->i_uid_low = 4585 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4586 raw_inode->i_gid_low = 4587 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4588 raw_inode->i_uid_high = 0; 4589 raw_inode->i_gid_high = 0; 4590 } 4591 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4592 4593 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4594 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4595 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4596 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4597 4598 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4599 goto out_brelse; 4600 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4601 /* clear the migrate flag in the raw_inode */ 4602 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 4603 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4604 cpu_to_le32(EXT4_OS_HURD)) 4605 raw_inode->i_file_acl_high = 4606 cpu_to_le16(ei->i_file_acl >> 32); 4607 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4608 ext4_isize_set(raw_inode, ei->i_disksize); 4609 if (ei->i_disksize > 0x7fffffffULL) { 4610 struct super_block *sb = inode->i_sb; 4611 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4612 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4613 EXT4_SB(sb)->s_es->s_rev_level == 4614 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4615 /* If this is the first large file 4616 * created, add a flag to the superblock. 4617 */ 4618 err = ext4_journal_get_write_access(handle, 4619 EXT4_SB(sb)->s_sbh); 4620 if (err) 4621 goto out_brelse; 4622 ext4_update_dynamic_rev(sb); 4623 EXT4_SET_RO_COMPAT_FEATURE(sb, 4624 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4625 sb->s_dirt = 1; 4626 ext4_handle_sync(handle); 4627 err = ext4_handle_dirty_metadata(handle, inode, 4628 EXT4_SB(sb)->s_sbh); 4629 } 4630 } 4631 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4632 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4633 if (old_valid_dev(inode->i_rdev)) { 4634 raw_inode->i_block[0] = 4635 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4636 raw_inode->i_block[1] = 0; 4637 } else { 4638 raw_inode->i_block[0] = 0; 4639 raw_inode->i_block[1] = 4640 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4641 raw_inode->i_block[2] = 0; 4642 } 4643 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 4644 raw_inode->i_block[block] = ei->i_data[block]; 4645 4646 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4647 if (ei->i_extra_isize) { 4648 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4649 raw_inode->i_version_hi = 4650 cpu_to_le32(inode->i_version >> 32); 4651 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4652 } 4653 4654 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4655 rc = ext4_handle_dirty_metadata(handle, inode, bh); 4656 if (!err) 4657 err = rc; 4658 ei->i_state &= ~EXT4_STATE_NEW; 4659 4660 out_brelse: 4661 brelse(bh); 4662 ext4_std_error(inode->i_sb, err); 4663 return err; 4664 } 4665 4666 /* 4667 * ext4_write_inode() 4668 * 4669 * We are called from a few places: 4670 * 4671 * - Within generic_file_write() for O_SYNC files. 4672 * Here, there will be no transaction running. We wait for any running 4673 * trasnaction to commit. 4674 * 4675 * - Within sys_sync(), kupdate and such. 4676 * We wait on commit, if tol to. 4677 * 4678 * - Within prune_icache() (PF_MEMALLOC == true) 4679 * Here we simply return. We can't afford to block kswapd on the 4680 * journal commit. 4681 * 4682 * In all cases it is actually safe for us to return without doing anything, 4683 * because the inode has been copied into a raw inode buffer in 4684 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4685 * knfsd. 4686 * 4687 * Note that we are absolutely dependent upon all inode dirtiers doing the 4688 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4689 * which we are interested. 4690 * 4691 * It would be a bug for them to not do this. The code: 4692 * 4693 * mark_inode_dirty(inode) 4694 * stuff(); 4695 * inode->i_size = expr; 4696 * 4697 * is in error because a kswapd-driven write_inode() could occur while 4698 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4699 * will no longer be on the superblock's dirty inode list. 4700 */ 4701 int ext4_write_inode(struct inode *inode, int wait) 4702 { 4703 if (current->flags & PF_MEMALLOC) 4704 return 0; 4705 4706 if (ext4_journal_current_handle()) { 4707 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4708 dump_stack(); 4709 return -EIO; 4710 } 4711 4712 if (!wait) 4713 return 0; 4714 4715 return ext4_force_commit(inode->i_sb); 4716 } 4717 4718 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh) 4719 { 4720 int err = 0; 4721 4722 mark_buffer_dirty(bh); 4723 if (inode && inode_needs_sync(inode)) { 4724 sync_dirty_buffer(bh); 4725 if (buffer_req(bh) && !buffer_uptodate(bh)) { 4726 ext4_error(inode->i_sb, __func__, 4727 "IO error syncing inode, " 4728 "inode=%lu, block=%llu", 4729 inode->i_ino, 4730 (unsigned long long)bh->b_blocknr); 4731 err = -EIO; 4732 } 4733 } 4734 return err; 4735 } 4736 4737 /* 4738 * ext4_setattr() 4739 * 4740 * Called from notify_change. 4741 * 4742 * We want to trap VFS attempts to truncate the file as soon as 4743 * possible. In particular, we want to make sure that when the VFS 4744 * shrinks i_size, we put the inode on the orphan list and modify 4745 * i_disksize immediately, so that during the subsequent flushing of 4746 * dirty pages and freeing of disk blocks, we can guarantee that any 4747 * commit will leave the blocks being flushed in an unused state on 4748 * disk. (On recovery, the inode will get truncated and the blocks will 4749 * be freed, so we have a strong guarantee that no future commit will 4750 * leave these blocks visible to the user.) 4751 * 4752 * Another thing we have to assure is that if we are in ordered mode 4753 * and inode is still attached to the committing transaction, we must 4754 * we start writeout of all the dirty pages which are being truncated. 4755 * This way we are sure that all the data written in the previous 4756 * transaction are already on disk (truncate waits for pages under 4757 * writeback). 4758 * 4759 * Called with inode->i_mutex down. 4760 */ 4761 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4762 { 4763 struct inode *inode = dentry->d_inode; 4764 int error, rc = 0; 4765 const unsigned int ia_valid = attr->ia_valid; 4766 4767 error = inode_change_ok(inode, attr); 4768 if (error) 4769 return error; 4770 4771 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4772 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4773 handle_t *handle; 4774 4775 /* (user+group)*(old+new) structure, inode write (sb, 4776 * inode block, ? - but truncate inode update has it) */ 4777 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 4778 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 4779 if (IS_ERR(handle)) { 4780 error = PTR_ERR(handle); 4781 goto err_out; 4782 } 4783 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0; 4784 if (error) { 4785 ext4_journal_stop(handle); 4786 return error; 4787 } 4788 /* Update corresponding info in inode so that everything is in 4789 * one transaction */ 4790 if (attr->ia_valid & ATTR_UID) 4791 inode->i_uid = attr->ia_uid; 4792 if (attr->ia_valid & ATTR_GID) 4793 inode->i_gid = attr->ia_gid; 4794 error = ext4_mark_inode_dirty(handle, inode); 4795 ext4_journal_stop(handle); 4796 } 4797 4798 if (attr->ia_valid & ATTR_SIZE) { 4799 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 4800 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4801 4802 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 4803 error = -EFBIG; 4804 goto err_out; 4805 } 4806 } 4807 } 4808 4809 if (S_ISREG(inode->i_mode) && 4810 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 4811 handle_t *handle; 4812 4813 handle = ext4_journal_start(inode, 3); 4814 if (IS_ERR(handle)) { 4815 error = PTR_ERR(handle); 4816 goto err_out; 4817 } 4818 4819 error = ext4_orphan_add(handle, inode); 4820 EXT4_I(inode)->i_disksize = attr->ia_size; 4821 rc = ext4_mark_inode_dirty(handle, inode); 4822 if (!error) 4823 error = rc; 4824 ext4_journal_stop(handle); 4825 4826 if (ext4_should_order_data(inode)) { 4827 error = ext4_begin_ordered_truncate(inode, 4828 attr->ia_size); 4829 if (error) { 4830 /* Do as much error cleanup as possible */ 4831 handle = ext4_journal_start(inode, 3); 4832 if (IS_ERR(handle)) { 4833 ext4_orphan_del(NULL, inode); 4834 goto err_out; 4835 } 4836 ext4_orphan_del(handle, inode); 4837 ext4_journal_stop(handle); 4838 goto err_out; 4839 } 4840 } 4841 } 4842 4843 rc = inode_setattr(inode, attr); 4844 4845 /* If inode_setattr's call to ext4_truncate failed to get a 4846 * transaction handle at all, we need to clean up the in-core 4847 * orphan list manually. */ 4848 if (inode->i_nlink) 4849 ext4_orphan_del(NULL, inode); 4850 4851 if (!rc && (ia_valid & ATTR_MODE)) 4852 rc = ext4_acl_chmod(inode); 4853 4854 err_out: 4855 ext4_std_error(inode->i_sb, error); 4856 if (!error) 4857 error = rc; 4858 return error; 4859 } 4860 4861 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4862 struct kstat *stat) 4863 { 4864 struct inode *inode; 4865 unsigned long delalloc_blocks; 4866 4867 inode = dentry->d_inode; 4868 generic_fillattr(inode, stat); 4869 4870 /* 4871 * We can't update i_blocks if the block allocation is delayed 4872 * otherwise in the case of system crash before the real block 4873 * allocation is done, we will have i_blocks inconsistent with 4874 * on-disk file blocks. 4875 * We always keep i_blocks updated together with real 4876 * allocation. But to not confuse with user, stat 4877 * will return the blocks that include the delayed allocation 4878 * blocks for this file. 4879 */ 4880 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 4881 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4882 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 4883 4884 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4885 return 0; 4886 } 4887 4888 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 4889 int chunk) 4890 { 4891 int indirects; 4892 4893 /* if nrblocks are contiguous */ 4894 if (chunk) { 4895 /* 4896 * With N contiguous data blocks, it need at most 4897 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 4898 * 2 dindirect blocks 4899 * 1 tindirect block 4900 */ 4901 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 4902 return indirects + 3; 4903 } 4904 /* 4905 * if nrblocks are not contiguous, worse case, each block touch 4906 * a indirect block, and each indirect block touch a double indirect 4907 * block, plus a triple indirect block 4908 */ 4909 indirects = nrblocks * 2 + 1; 4910 return indirects; 4911 } 4912 4913 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4914 { 4915 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 4916 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 4917 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4918 } 4919 4920 /* 4921 * Account for index blocks, block groups bitmaps and block group 4922 * descriptor blocks if modify datablocks and index blocks 4923 * worse case, the indexs blocks spread over different block groups 4924 * 4925 * If datablocks are discontiguous, they are possible to spread over 4926 * different block groups too. If they are contiugous, with flexbg, 4927 * they could still across block group boundary. 4928 * 4929 * Also account for superblock, inode, quota and xattr blocks 4930 */ 4931 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4932 { 4933 int groups, gdpblocks; 4934 int idxblocks; 4935 int ret = 0; 4936 4937 /* 4938 * How many index blocks need to touch to modify nrblocks? 4939 * The "Chunk" flag indicating whether the nrblocks is 4940 * physically contiguous on disk 4941 * 4942 * For Direct IO and fallocate, they calls get_block to allocate 4943 * one single extent at a time, so they could set the "Chunk" flag 4944 */ 4945 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4946 4947 ret = idxblocks; 4948 4949 /* 4950 * Now let's see how many group bitmaps and group descriptors need 4951 * to account 4952 */ 4953 groups = idxblocks; 4954 if (chunk) 4955 groups += 1; 4956 else 4957 groups += nrblocks; 4958 4959 gdpblocks = groups; 4960 if (groups > EXT4_SB(inode->i_sb)->s_groups_count) 4961 groups = EXT4_SB(inode->i_sb)->s_groups_count; 4962 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4963 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4964 4965 /* bitmaps and block group descriptor blocks */ 4966 ret += groups + gdpblocks; 4967 4968 /* Blocks for super block, inode, quota and xattr blocks */ 4969 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4970 4971 return ret; 4972 } 4973 4974 /* 4975 * Calulate the total number of credits to reserve to fit 4976 * the modification of a single pages into a single transaction, 4977 * which may include multiple chunks of block allocations. 4978 * 4979 * This could be called via ext4_write_begin() 4980 * 4981 * We need to consider the worse case, when 4982 * one new block per extent. 4983 */ 4984 int ext4_writepage_trans_blocks(struct inode *inode) 4985 { 4986 int bpp = ext4_journal_blocks_per_page(inode); 4987 int ret; 4988 4989 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4990 4991 /* Account for data blocks for journalled mode */ 4992 if (ext4_should_journal_data(inode)) 4993 ret += bpp; 4994 return ret; 4995 } 4996 4997 /* 4998 * Calculate the journal credits for a chunk of data modification. 4999 * 5000 * This is called from DIO, fallocate or whoever calling 5001 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks. 5002 * 5003 * journal buffers for data blocks are not included here, as DIO 5004 * and fallocate do no need to journal data buffers. 5005 */ 5006 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5007 { 5008 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5009 } 5010 5011 /* 5012 * The caller must have previously called ext4_reserve_inode_write(). 5013 * Give this, we know that the caller already has write access to iloc->bh. 5014 */ 5015 int ext4_mark_iloc_dirty(handle_t *handle, 5016 struct inode *inode, struct ext4_iloc *iloc) 5017 { 5018 int err = 0; 5019 5020 if (test_opt(inode->i_sb, I_VERSION)) 5021 inode_inc_iversion(inode); 5022 5023 /* the do_update_inode consumes one bh->b_count */ 5024 get_bh(iloc->bh); 5025 5026 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5027 err = ext4_do_update_inode(handle, inode, iloc); 5028 put_bh(iloc->bh); 5029 return err; 5030 } 5031 5032 /* 5033 * On success, We end up with an outstanding reference count against 5034 * iloc->bh. This _must_ be cleaned up later. 5035 */ 5036 5037 int 5038 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5039 struct ext4_iloc *iloc) 5040 { 5041 int err; 5042 5043 err = ext4_get_inode_loc(inode, iloc); 5044 if (!err) { 5045 BUFFER_TRACE(iloc->bh, "get_write_access"); 5046 err = ext4_journal_get_write_access(handle, iloc->bh); 5047 if (err) { 5048 brelse(iloc->bh); 5049 iloc->bh = NULL; 5050 } 5051 } 5052 ext4_std_error(inode->i_sb, err); 5053 return err; 5054 } 5055 5056 /* 5057 * Expand an inode by new_extra_isize bytes. 5058 * Returns 0 on success or negative error number on failure. 5059 */ 5060 static int ext4_expand_extra_isize(struct inode *inode, 5061 unsigned int new_extra_isize, 5062 struct ext4_iloc iloc, 5063 handle_t *handle) 5064 { 5065 struct ext4_inode *raw_inode; 5066 struct ext4_xattr_ibody_header *header; 5067 struct ext4_xattr_entry *entry; 5068 5069 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5070 return 0; 5071 5072 raw_inode = ext4_raw_inode(&iloc); 5073 5074 header = IHDR(inode, raw_inode); 5075 entry = IFIRST(header); 5076 5077 /* No extended attributes present */ 5078 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 5079 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5080 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5081 new_extra_isize); 5082 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5083 return 0; 5084 } 5085 5086 /* try to expand with EAs present */ 5087 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5088 raw_inode, handle); 5089 } 5090 5091 /* 5092 * What we do here is to mark the in-core inode as clean with respect to inode 5093 * dirtiness (it may still be data-dirty). 5094 * This means that the in-core inode may be reaped by prune_icache 5095 * without having to perform any I/O. This is a very good thing, 5096 * because *any* task may call prune_icache - even ones which 5097 * have a transaction open against a different journal. 5098 * 5099 * Is this cheating? Not really. Sure, we haven't written the 5100 * inode out, but prune_icache isn't a user-visible syncing function. 5101 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5102 * we start and wait on commits. 5103 * 5104 * Is this efficient/effective? Well, we're being nice to the system 5105 * by cleaning up our inodes proactively so they can be reaped 5106 * without I/O. But we are potentially leaving up to five seconds' 5107 * worth of inodes floating about which prune_icache wants us to 5108 * write out. One way to fix that would be to get prune_icache() 5109 * to do a write_super() to free up some memory. It has the desired 5110 * effect. 5111 */ 5112 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5113 { 5114 struct ext4_iloc iloc; 5115 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5116 static unsigned int mnt_count; 5117 int err, ret; 5118 5119 might_sleep(); 5120 err = ext4_reserve_inode_write(handle, inode, &iloc); 5121 if (ext4_handle_valid(handle) && 5122 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5123 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 5124 /* 5125 * We need extra buffer credits since we may write into EA block 5126 * with this same handle. If journal_extend fails, then it will 5127 * only result in a minor loss of functionality for that inode. 5128 * If this is felt to be critical, then e2fsck should be run to 5129 * force a large enough s_min_extra_isize. 5130 */ 5131 if ((jbd2_journal_extend(handle, 5132 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5133 ret = ext4_expand_extra_isize(inode, 5134 sbi->s_want_extra_isize, 5135 iloc, handle); 5136 if (ret) { 5137 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 5138 if (mnt_count != 5139 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5140 ext4_warning(inode->i_sb, __func__, 5141 "Unable to expand inode %lu. Delete" 5142 " some EAs or run e2fsck.", 5143 inode->i_ino); 5144 mnt_count = 5145 le16_to_cpu(sbi->s_es->s_mnt_count); 5146 } 5147 } 5148 } 5149 } 5150 if (!err) 5151 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5152 return err; 5153 } 5154 5155 /* 5156 * ext4_dirty_inode() is called from __mark_inode_dirty() 5157 * 5158 * We're really interested in the case where a file is being extended. 5159 * i_size has been changed by generic_commit_write() and we thus need 5160 * to include the updated inode in the current transaction. 5161 * 5162 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks 5163 * are allocated to the file. 5164 * 5165 * If the inode is marked synchronous, we don't honour that here - doing 5166 * so would cause a commit on atime updates, which we don't bother doing. 5167 * We handle synchronous inodes at the highest possible level. 5168 */ 5169 void ext4_dirty_inode(struct inode *inode) 5170 { 5171 handle_t *current_handle = ext4_journal_current_handle(); 5172 handle_t *handle; 5173 5174 if (!ext4_handle_valid(current_handle)) { 5175 ext4_mark_inode_dirty(current_handle, inode); 5176 return; 5177 } 5178 5179 handle = ext4_journal_start(inode, 2); 5180 if (IS_ERR(handle)) 5181 goto out; 5182 if (current_handle && 5183 current_handle->h_transaction != handle->h_transaction) { 5184 /* This task has a transaction open against a different fs */ 5185 printk(KERN_EMERG "%s: transactions do not match!\n", 5186 __func__); 5187 } else { 5188 jbd_debug(5, "marking dirty. outer handle=%p\n", 5189 current_handle); 5190 ext4_mark_inode_dirty(handle, inode); 5191 } 5192 ext4_journal_stop(handle); 5193 out: 5194 return; 5195 } 5196 5197 #if 0 5198 /* 5199 * Bind an inode's backing buffer_head into this transaction, to prevent 5200 * it from being flushed to disk early. Unlike 5201 * ext4_reserve_inode_write, this leaves behind no bh reference and 5202 * returns no iloc structure, so the caller needs to repeat the iloc 5203 * lookup to mark the inode dirty later. 5204 */ 5205 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5206 { 5207 struct ext4_iloc iloc; 5208 5209 int err = 0; 5210 if (handle) { 5211 err = ext4_get_inode_loc(inode, &iloc); 5212 if (!err) { 5213 BUFFER_TRACE(iloc.bh, "get_write_access"); 5214 err = jbd2_journal_get_write_access(handle, iloc.bh); 5215 if (!err) 5216 err = ext4_handle_dirty_metadata(handle, 5217 inode, 5218 iloc.bh); 5219 brelse(iloc.bh); 5220 } 5221 } 5222 ext4_std_error(inode->i_sb, err); 5223 return err; 5224 } 5225 #endif 5226 5227 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5228 { 5229 journal_t *journal; 5230 handle_t *handle; 5231 int err; 5232 5233 /* 5234 * We have to be very careful here: changing a data block's 5235 * journaling status dynamically is dangerous. If we write a 5236 * data block to the journal, change the status and then delete 5237 * that block, we risk forgetting to revoke the old log record 5238 * from the journal and so a subsequent replay can corrupt data. 5239 * So, first we make sure that the journal is empty and that 5240 * nobody is changing anything. 5241 */ 5242 5243 journal = EXT4_JOURNAL(inode); 5244 if (!journal) 5245 return 0; 5246 if (is_journal_aborted(journal)) 5247 return -EROFS; 5248 5249 jbd2_journal_lock_updates(journal); 5250 jbd2_journal_flush(journal); 5251 5252 /* 5253 * OK, there are no updates running now, and all cached data is 5254 * synced to disk. We are now in a completely consistent state 5255 * which doesn't have anything in the journal, and we know that 5256 * no filesystem updates are running, so it is safe to modify 5257 * the inode's in-core data-journaling state flag now. 5258 */ 5259 5260 if (val) 5261 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 5262 else 5263 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 5264 ext4_set_aops(inode); 5265 5266 jbd2_journal_unlock_updates(journal); 5267 5268 /* Finally we can mark the inode as dirty. */ 5269 5270 handle = ext4_journal_start(inode, 1); 5271 if (IS_ERR(handle)) 5272 return PTR_ERR(handle); 5273 5274 err = ext4_mark_inode_dirty(handle, inode); 5275 ext4_handle_sync(handle); 5276 ext4_journal_stop(handle); 5277 ext4_std_error(inode->i_sb, err); 5278 5279 return err; 5280 } 5281 5282 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5283 { 5284 return !buffer_mapped(bh); 5285 } 5286 5287 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5288 { 5289 struct page *page = vmf->page; 5290 loff_t size; 5291 unsigned long len; 5292 int ret = -EINVAL; 5293 void *fsdata; 5294 struct file *file = vma->vm_file; 5295 struct inode *inode = file->f_path.dentry->d_inode; 5296 struct address_space *mapping = inode->i_mapping; 5297 5298 /* 5299 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5300 * get i_mutex because we are already holding mmap_sem. 5301 */ 5302 down_read(&inode->i_alloc_sem); 5303 size = i_size_read(inode); 5304 if (page->mapping != mapping || size <= page_offset(page) 5305 || !PageUptodate(page)) { 5306 /* page got truncated from under us? */ 5307 goto out_unlock; 5308 } 5309 ret = 0; 5310 if (PageMappedToDisk(page)) 5311 goto out_unlock; 5312 5313 if (page->index == size >> PAGE_CACHE_SHIFT) 5314 len = size & ~PAGE_CACHE_MASK; 5315 else 5316 len = PAGE_CACHE_SIZE; 5317 5318 if (page_has_buffers(page)) { 5319 /* return if we have all the buffers mapped */ 5320 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5321 ext4_bh_unmapped)) 5322 goto out_unlock; 5323 } 5324 /* 5325 * OK, we need to fill the hole... Do write_begin write_end 5326 * to do block allocation/reservation.We are not holding 5327 * inode.i__mutex here. That allow * parallel write_begin, 5328 * write_end call. lock_page prevent this from happening 5329 * on the same page though 5330 */ 5331 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5332 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5333 if (ret < 0) 5334 goto out_unlock; 5335 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5336 len, len, page, fsdata); 5337 if (ret < 0) 5338 goto out_unlock; 5339 ret = 0; 5340 out_unlock: 5341 if (ret) 5342 ret = VM_FAULT_SIGBUS; 5343 up_read(&inode->i_alloc_sem); 5344 return ret; 5345 } 5346