1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u16 csum_lo; 56 __u16 csum_hi = 0; 57 __u32 csum; 58 59 csum_lo = le16_to_cpu(raw->i_checksum_lo); 60 raw->i_checksum_lo = 0; 61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 63 csum_hi = le16_to_cpu(raw->i_checksum_hi); 64 raw->i_checksum_hi = 0; 65 } 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 68 EXT4_INODE_SIZE(inode->i_sb)); 69 70 raw->i_checksum_lo = cpu_to_le16(csum_lo); 71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 73 raw->i_checksum_hi = cpu_to_le16(csum_hi); 74 75 return csum; 76 } 77 78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 79 struct ext4_inode_info *ei) 80 { 81 __u32 provided, calculated; 82 83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 84 cpu_to_le32(EXT4_OS_LINUX) || 85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 109 return; 110 111 csum = ext4_inode_csum(inode, raw, ei); 112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 115 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 116 } 117 118 static inline int ext4_begin_ordered_truncate(struct inode *inode, 119 loff_t new_size) 120 { 121 trace_ext4_begin_ordered_truncate(inode, new_size); 122 /* 123 * If jinode is zero, then we never opened the file for 124 * writing, so there's no need to call 125 * jbd2_journal_begin_ordered_truncate() since there's no 126 * outstanding writes we need to flush. 127 */ 128 if (!EXT4_I(inode)->jinode) 129 return 0; 130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 131 EXT4_I(inode)->jinode, 132 new_size); 133 } 134 135 static void ext4_invalidatepage(struct page *page, unsigned int offset, 136 unsigned int length); 137 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 */ 145 static int ext4_inode_is_fast_symlink(struct inode *inode) 146 { 147 int ea_blocks = EXT4_I(inode)->i_file_acl ? 148 (inode->i_sb->s_blocksize >> 9) : 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages(&inode->i_data, 0); 218 219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 220 goto no_delete; 221 } 222 223 if (!is_bad_inode(inode)) 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages(&inode->i_data, 0); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 if (is_bad_inode(inode)) 232 goto no_delete; 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it 237 */ 238 sb_start_intwrite(inode->i_sb); 239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 240 ext4_blocks_for_truncate(inode)+3); 241 if (IS_ERR(handle)) { 242 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 243 /* 244 * If we're going to skip the normal cleanup, we still need to 245 * make sure that the in-core orphan linked list is properly 246 * cleaned up. 247 */ 248 ext4_orphan_del(NULL, inode); 249 sb_end_intwrite(inode->i_sb); 250 goto no_delete; 251 } 252 253 if (IS_SYNC(inode)) 254 ext4_handle_sync(handle); 255 inode->i_size = 0; 256 err = ext4_mark_inode_dirty(handle, inode); 257 if (err) { 258 ext4_warning(inode->i_sb, 259 "couldn't mark inode dirty (err %d)", err); 260 goto stop_handle; 261 } 262 if (inode->i_blocks) 263 ext4_truncate(inode); 264 265 /* 266 * ext4_ext_truncate() doesn't reserve any slop when it 267 * restarts journal transactions; therefore there may not be 268 * enough credits left in the handle to remove the inode from 269 * the orphan list and set the dtime field. 270 */ 271 if (!ext4_handle_has_enough_credits(handle, 3)) { 272 err = ext4_journal_extend(handle, 3); 273 if (err > 0) 274 err = ext4_journal_restart(handle, 3); 275 if (err != 0) { 276 ext4_warning(inode->i_sb, 277 "couldn't extend journal (err %d)", err); 278 stop_handle: 279 ext4_journal_stop(handle); 280 ext4_orphan_del(NULL, inode); 281 sb_end_intwrite(inode->i_sb); 282 goto no_delete; 283 } 284 } 285 286 /* 287 * Kill off the orphan record which ext4_truncate created. 288 * AKPM: I think this can be inside the above `if'. 289 * Note that ext4_orphan_del() has to be able to cope with the 290 * deletion of a non-existent orphan - this is because we don't 291 * know if ext4_truncate() actually created an orphan record. 292 * (Well, we could do this if we need to, but heck - it works) 293 */ 294 ext4_orphan_del(handle, inode); 295 EXT4_I(inode)->i_dtime = get_seconds(); 296 297 /* 298 * One subtle ordering requirement: if anything has gone wrong 299 * (transaction abort, IO errors, whatever), then we can still 300 * do these next steps (the fs will already have been marked as 301 * having errors), but we can't free the inode if the mark_dirty 302 * fails. 303 */ 304 if (ext4_mark_inode_dirty(handle, inode)) 305 /* If that failed, just do the required in-core inode clear. */ 306 ext4_clear_inode(inode); 307 else 308 ext4_free_inode(handle, inode); 309 ext4_journal_stop(handle); 310 sb_end_intwrite(inode->i_sb); 311 return; 312 no_delete: 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 314 } 315 316 #ifdef CONFIG_QUOTA 317 qsize_t *ext4_get_reserved_space(struct inode *inode) 318 { 319 return &EXT4_I(inode)->i_reserved_quota; 320 } 321 #endif 322 323 /* 324 * Calculate the number of metadata blocks need to reserve 325 * to allocate a block located at @lblock 326 */ 327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 328 { 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 330 return ext4_ext_calc_metadata_amount(inode, lblock); 331 332 return ext4_ind_calc_metadata_amount(inode, lblock); 333 } 334 335 /* 336 * Called with i_data_sem down, which is important since we can call 337 * ext4_discard_preallocations() from here. 338 */ 339 void ext4_da_update_reserve_space(struct inode *inode, 340 int used, int quota_claim) 341 { 342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 343 struct ext4_inode_info *ei = EXT4_I(inode); 344 345 spin_lock(&ei->i_block_reservation_lock); 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 347 if (unlikely(used > ei->i_reserved_data_blocks)) { 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 349 "with only %d reserved data blocks", 350 __func__, inode->i_ino, used, 351 ei->i_reserved_data_blocks); 352 WARN_ON(1); 353 used = ei->i_reserved_data_blocks; 354 } 355 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 357 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 358 "with only %d reserved metadata blocks " 359 "(releasing %d blocks with reserved %d data blocks)", 360 inode->i_ino, ei->i_allocated_meta_blocks, 361 ei->i_reserved_meta_blocks, used, 362 ei->i_reserved_data_blocks); 363 WARN_ON(1); 364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 365 } 366 367 /* Update per-inode reservations */ 368 ei->i_reserved_data_blocks -= used; 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 371 used + ei->i_allocated_meta_blocks); 372 ei->i_allocated_meta_blocks = 0; 373 374 if (ei->i_reserved_data_blocks == 0) { 375 /* 376 * We can release all of the reserved metadata blocks 377 * only when we have written all of the delayed 378 * allocation blocks. 379 */ 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 381 ei->i_reserved_meta_blocks); 382 ei->i_reserved_meta_blocks = 0; 383 ei->i_da_metadata_calc_len = 0; 384 } 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 386 387 /* Update quota subsystem for data blocks */ 388 if (quota_claim) 389 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 390 else { 391 /* 392 * We did fallocate with an offset that is already delayed 393 * allocated. So on delayed allocated writeback we should 394 * not re-claim the quota for fallocated blocks. 395 */ 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 397 } 398 399 /* 400 * If we have done all the pending block allocations and if 401 * there aren't any writers on the inode, we can discard the 402 * inode's preallocations. 403 */ 404 if ((ei->i_reserved_data_blocks == 0) && 405 (atomic_read(&inode->i_writecount) == 0)) 406 ext4_discard_preallocations(inode); 407 } 408 409 static int __check_block_validity(struct inode *inode, const char *func, 410 unsigned int line, 411 struct ext4_map_blocks *map) 412 { 413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 414 map->m_len)) { 415 ext4_error_inode(inode, func, line, map->m_pblk, 416 "lblock %lu mapped to illegal pblock " 417 "(length %d)", (unsigned long) map->m_lblk, 418 map->m_len); 419 return -EIO; 420 } 421 return 0; 422 } 423 424 #define check_block_validity(inode, map) \ 425 __check_block_validity((inode), __func__, __LINE__, (map)) 426 427 #ifdef ES_AGGRESSIVE_TEST 428 static void ext4_map_blocks_es_recheck(handle_t *handle, 429 struct inode *inode, 430 struct ext4_map_blocks *es_map, 431 struct ext4_map_blocks *map, 432 int flags) 433 { 434 int retval; 435 436 map->m_flags = 0; 437 /* 438 * There is a race window that the result is not the same. 439 * e.g. xfstests #223 when dioread_nolock enables. The reason 440 * is that we lookup a block mapping in extent status tree with 441 * out taking i_data_sem. So at the time the unwritten extent 442 * could be converted. 443 */ 444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 445 down_read((&EXT4_I(inode)->i_data_sem)); 446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 447 retval = ext4_ext_map_blocks(handle, inode, map, flags & 448 EXT4_GET_BLOCKS_KEEP_SIZE); 449 } else { 450 retval = ext4_ind_map_blocks(handle, inode, map, flags & 451 EXT4_GET_BLOCKS_KEEP_SIZE); 452 } 453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 454 up_read((&EXT4_I(inode)->i_data_sem)); 455 /* 456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 457 * because it shouldn't be marked in es_map->m_flags. 458 */ 459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 460 461 /* 462 * We don't check m_len because extent will be collpased in status 463 * tree. So the m_len might not equal. 464 */ 465 if (es_map->m_lblk != map->m_lblk || 466 es_map->m_flags != map->m_flags || 467 es_map->m_pblk != map->m_pblk) { 468 printk("ES cache assertion failed for inode: %lu " 469 "es_cached ex [%d/%d/%llu/%x] != " 470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 471 inode->i_ino, es_map->m_lblk, es_map->m_len, 472 es_map->m_pblk, es_map->m_flags, map->m_lblk, 473 map->m_len, map->m_pblk, map->m_flags, 474 retval, flags); 475 } 476 } 477 #endif /* ES_AGGRESSIVE_TEST */ 478 479 /* 480 * The ext4_map_blocks() function tries to look up the requested blocks, 481 * and returns if the blocks are already mapped. 482 * 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 484 * and store the allocated blocks in the result buffer head and mark it 485 * mapped. 486 * 487 * If file type is extents based, it will call ext4_ext_map_blocks(), 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 489 * based files 490 * 491 * On success, it returns the number of blocks being mapped or allocate. 492 * if create==0 and the blocks are pre-allocated and uninitialized block, 493 * the result buffer head is unmapped. If the create ==1, it will make sure 494 * the buffer head is mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, buffer head is unmapped 498 * 499 * It returns the error in case of allocation failure. 500 */ 501 int ext4_map_blocks(handle_t *handle, struct inode *inode, 502 struct ext4_map_blocks *map, int flags) 503 { 504 struct extent_status es; 505 int retval; 506 #ifdef ES_AGGRESSIVE_TEST 507 struct ext4_map_blocks orig_map; 508 509 memcpy(&orig_map, map, sizeof(*map)); 510 #endif 511 512 map->m_flags = 0; 513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 514 "logical block %lu\n", inode->i_ino, flags, map->m_len, 515 (unsigned long) map->m_lblk); 516 517 /* Lookup extent status tree firstly */ 518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 519 ext4_es_lru_add(inode); 520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 521 map->m_pblk = ext4_es_pblock(&es) + 522 map->m_lblk - es.es_lblk; 523 map->m_flags |= ext4_es_is_written(&es) ? 524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 525 retval = es.es_len - (map->m_lblk - es.es_lblk); 526 if (retval > map->m_len) 527 retval = map->m_len; 528 map->m_len = retval; 529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 530 retval = 0; 531 } else { 532 BUG_ON(1); 533 } 534 #ifdef ES_AGGRESSIVE_TEST 535 ext4_map_blocks_es_recheck(handle, inode, map, 536 &orig_map, flags); 537 #endif 538 goto found; 539 } 540 541 /* 542 * Try to see if we can get the block without requesting a new 543 * file system block. 544 */ 545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 546 down_read((&EXT4_I(inode)->i_data_sem)); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, flags & 549 EXT4_GET_BLOCKS_KEEP_SIZE); 550 } else { 551 retval = ext4_ind_map_blocks(handle, inode, map, flags & 552 EXT4_GET_BLOCKS_KEEP_SIZE); 553 } 554 if (retval > 0) { 555 int ret; 556 unsigned long long status; 557 558 if (unlikely(retval != map->m_len)) { 559 ext4_warning(inode->i_sb, 560 "ES len assertion failed for inode " 561 "%lu: retval %d != map->m_len %d", 562 inode->i_ino, retval, map->m_len); 563 WARN_ON(1); 564 } 565 566 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 569 ext4_find_delalloc_range(inode, map->m_lblk, 570 map->m_lblk + map->m_len - 1)) 571 status |= EXTENT_STATUS_DELAYED; 572 ret = ext4_es_insert_extent(inode, map->m_lblk, 573 map->m_len, map->m_pblk, status); 574 if (ret < 0) 575 retval = ret; 576 } 577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 578 up_read((&EXT4_I(inode)->i_data_sem)); 579 580 found: 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 582 int ret = check_block_validity(inode, map); 583 if (ret != 0) 584 return ret; 585 } 586 587 /* If it is only a block(s) look up */ 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 589 return retval; 590 591 /* 592 * Returns if the blocks have already allocated 593 * 594 * Note that if blocks have been preallocated 595 * ext4_ext_get_block() returns the create = 0 596 * with buffer head unmapped. 597 */ 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 599 return retval; 600 601 /* 602 * Here we clear m_flags because after allocating an new extent, 603 * it will be set again. 604 */ 605 map->m_flags &= ~EXT4_MAP_FLAGS; 606 607 /* 608 * New blocks allocate and/or writing to uninitialized extent 609 * will possibly result in updating i_data, so we take 610 * the write lock of i_data_sem, and call get_blocks() 611 * with create == 1 flag. 612 */ 613 down_write((&EXT4_I(inode)->i_data_sem)); 614 615 /* 616 * if the caller is from delayed allocation writeout path 617 * we have already reserved fs blocks for allocation 618 * let the underlying get_block() function know to 619 * avoid double accounting 620 */ 621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 623 /* 624 * We need to check for EXT4 here because migrate 625 * could have changed the inode type in between 626 */ 627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 628 retval = ext4_ext_map_blocks(handle, inode, map, flags); 629 } else { 630 retval = ext4_ind_map_blocks(handle, inode, map, flags); 631 632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 633 /* 634 * We allocated new blocks which will result in 635 * i_data's format changing. Force the migrate 636 * to fail by clearing migrate flags 637 */ 638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 639 } 640 641 /* 642 * Update reserved blocks/metadata blocks after successful 643 * block allocation which had been deferred till now. We don't 644 * support fallocate for non extent files. So we can update 645 * reserve space here. 646 */ 647 if ((retval > 0) && 648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 649 ext4_da_update_reserve_space(inode, retval, 1); 650 } 651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 653 654 if (retval > 0) { 655 int ret; 656 unsigned long long status; 657 658 if (unlikely(retval != map->m_len)) { 659 ext4_warning(inode->i_sb, 660 "ES len assertion failed for inode " 661 "%lu: retval %d != map->m_len %d", 662 inode->i_ino, retval, map->m_len); 663 WARN_ON(1); 664 } 665 666 /* 667 * If the extent has been zeroed out, we don't need to update 668 * extent status tree. 669 */ 670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 672 if (ext4_es_is_written(&es)) 673 goto has_zeroout; 674 } 675 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 678 ext4_find_delalloc_range(inode, map->m_lblk, 679 map->m_lblk + map->m_len - 1)) 680 status |= EXTENT_STATUS_DELAYED; 681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 682 map->m_pblk, status); 683 if (ret < 0) 684 retval = ret; 685 } 686 687 has_zeroout: 688 up_write((&EXT4_I(inode)->i_data_sem)); 689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 690 int ret = check_block_validity(inode, map); 691 if (ret != 0) 692 return ret; 693 } 694 return retval; 695 } 696 697 /* Maximum number of blocks we map for direct IO at once. */ 698 #define DIO_MAX_BLOCKS 4096 699 700 static int _ext4_get_block(struct inode *inode, sector_t iblock, 701 struct buffer_head *bh, int flags) 702 { 703 handle_t *handle = ext4_journal_current_handle(); 704 struct ext4_map_blocks map; 705 int ret = 0, started = 0; 706 int dio_credits; 707 708 if (ext4_has_inline_data(inode)) 709 return -ERANGE; 710 711 map.m_lblk = iblock; 712 map.m_len = bh->b_size >> inode->i_blkbits; 713 714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 715 /* Direct IO write... */ 716 if (map.m_len > DIO_MAX_BLOCKS) 717 map.m_len = DIO_MAX_BLOCKS; 718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 720 dio_credits); 721 if (IS_ERR(handle)) { 722 ret = PTR_ERR(handle); 723 return ret; 724 } 725 started = 1; 726 } 727 728 ret = ext4_map_blocks(handle, inode, &map, flags); 729 if (ret > 0) { 730 map_bh(bh, inode->i_sb, map.m_pblk); 731 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 732 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 733 ret = 0; 734 } 735 if (started) 736 ext4_journal_stop(handle); 737 return ret; 738 } 739 740 int ext4_get_block(struct inode *inode, sector_t iblock, 741 struct buffer_head *bh, int create) 742 { 743 return _ext4_get_block(inode, iblock, bh, 744 create ? EXT4_GET_BLOCKS_CREATE : 0); 745 } 746 747 /* 748 * `handle' can be NULL if create is zero 749 */ 750 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 751 ext4_lblk_t block, int create, int *errp) 752 { 753 struct ext4_map_blocks map; 754 struct buffer_head *bh; 755 int fatal = 0, err; 756 757 J_ASSERT(handle != NULL || create == 0); 758 759 map.m_lblk = block; 760 map.m_len = 1; 761 err = ext4_map_blocks(handle, inode, &map, 762 create ? EXT4_GET_BLOCKS_CREATE : 0); 763 764 /* ensure we send some value back into *errp */ 765 *errp = 0; 766 767 if (create && err == 0) 768 err = -ENOSPC; /* should never happen */ 769 if (err < 0) 770 *errp = err; 771 if (err <= 0) 772 return NULL; 773 774 bh = sb_getblk(inode->i_sb, map.m_pblk); 775 if (unlikely(!bh)) { 776 *errp = -ENOMEM; 777 return NULL; 778 } 779 if (map.m_flags & EXT4_MAP_NEW) { 780 J_ASSERT(create != 0); 781 J_ASSERT(handle != NULL); 782 783 /* 784 * Now that we do not always journal data, we should 785 * keep in mind whether this should always journal the 786 * new buffer as metadata. For now, regular file 787 * writes use ext4_get_block instead, so it's not a 788 * problem. 789 */ 790 lock_buffer(bh); 791 BUFFER_TRACE(bh, "call get_create_access"); 792 fatal = ext4_journal_get_create_access(handle, bh); 793 if (!fatal && !buffer_uptodate(bh)) { 794 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 795 set_buffer_uptodate(bh); 796 } 797 unlock_buffer(bh); 798 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 799 err = ext4_handle_dirty_metadata(handle, inode, bh); 800 if (!fatal) 801 fatal = err; 802 } else { 803 BUFFER_TRACE(bh, "not a new buffer"); 804 } 805 if (fatal) { 806 *errp = fatal; 807 brelse(bh); 808 bh = NULL; 809 } 810 return bh; 811 } 812 813 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 814 ext4_lblk_t block, int create, int *err) 815 { 816 struct buffer_head *bh; 817 818 bh = ext4_getblk(handle, inode, block, create, err); 819 if (!bh) 820 return bh; 821 if (buffer_uptodate(bh)) 822 return bh; 823 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 824 wait_on_buffer(bh); 825 if (buffer_uptodate(bh)) 826 return bh; 827 put_bh(bh); 828 *err = -EIO; 829 return NULL; 830 } 831 832 int ext4_walk_page_buffers(handle_t *handle, 833 struct buffer_head *head, 834 unsigned from, 835 unsigned to, 836 int *partial, 837 int (*fn)(handle_t *handle, 838 struct buffer_head *bh)) 839 { 840 struct buffer_head *bh; 841 unsigned block_start, block_end; 842 unsigned blocksize = head->b_size; 843 int err, ret = 0; 844 struct buffer_head *next; 845 846 for (bh = head, block_start = 0; 847 ret == 0 && (bh != head || !block_start); 848 block_start = block_end, bh = next) { 849 next = bh->b_this_page; 850 block_end = block_start + blocksize; 851 if (block_end <= from || block_start >= to) { 852 if (partial && !buffer_uptodate(bh)) 853 *partial = 1; 854 continue; 855 } 856 err = (*fn)(handle, bh); 857 if (!ret) 858 ret = err; 859 } 860 return ret; 861 } 862 863 /* 864 * To preserve ordering, it is essential that the hole instantiation and 865 * the data write be encapsulated in a single transaction. We cannot 866 * close off a transaction and start a new one between the ext4_get_block() 867 * and the commit_write(). So doing the jbd2_journal_start at the start of 868 * prepare_write() is the right place. 869 * 870 * Also, this function can nest inside ext4_writepage(). In that case, we 871 * *know* that ext4_writepage() has generated enough buffer credits to do the 872 * whole page. So we won't block on the journal in that case, which is good, 873 * because the caller may be PF_MEMALLOC. 874 * 875 * By accident, ext4 can be reentered when a transaction is open via 876 * quota file writes. If we were to commit the transaction while thus 877 * reentered, there can be a deadlock - we would be holding a quota 878 * lock, and the commit would never complete if another thread had a 879 * transaction open and was blocking on the quota lock - a ranking 880 * violation. 881 * 882 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 883 * will _not_ run commit under these circumstances because handle->h_ref 884 * is elevated. We'll still have enough credits for the tiny quotafile 885 * write. 886 */ 887 int do_journal_get_write_access(handle_t *handle, 888 struct buffer_head *bh) 889 { 890 int dirty = buffer_dirty(bh); 891 int ret; 892 893 if (!buffer_mapped(bh) || buffer_freed(bh)) 894 return 0; 895 /* 896 * __block_write_begin() could have dirtied some buffers. Clean 897 * the dirty bit as jbd2_journal_get_write_access() could complain 898 * otherwise about fs integrity issues. Setting of the dirty bit 899 * by __block_write_begin() isn't a real problem here as we clear 900 * the bit before releasing a page lock and thus writeback cannot 901 * ever write the buffer. 902 */ 903 if (dirty) 904 clear_buffer_dirty(bh); 905 ret = ext4_journal_get_write_access(handle, bh); 906 if (!ret && dirty) 907 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 908 return ret; 909 } 910 911 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 912 struct buffer_head *bh_result, int create); 913 static int ext4_write_begin(struct file *file, struct address_space *mapping, 914 loff_t pos, unsigned len, unsigned flags, 915 struct page **pagep, void **fsdata) 916 { 917 struct inode *inode = mapping->host; 918 int ret, needed_blocks; 919 handle_t *handle; 920 int retries = 0; 921 struct page *page; 922 pgoff_t index; 923 unsigned from, to; 924 925 trace_ext4_write_begin(inode, pos, len, flags); 926 /* 927 * Reserve one block more for addition to orphan list in case 928 * we allocate blocks but write fails for some reason 929 */ 930 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 931 index = pos >> PAGE_CACHE_SHIFT; 932 from = pos & (PAGE_CACHE_SIZE - 1); 933 to = from + len; 934 935 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 936 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 937 flags, pagep); 938 if (ret < 0) 939 return ret; 940 if (ret == 1) 941 return 0; 942 } 943 944 /* 945 * grab_cache_page_write_begin() can take a long time if the 946 * system is thrashing due to memory pressure, or if the page 947 * is being written back. So grab it first before we start 948 * the transaction handle. This also allows us to allocate 949 * the page (if needed) without using GFP_NOFS. 950 */ 951 retry_grab: 952 page = grab_cache_page_write_begin(mapping, index, flags); 953 if (!page) 954 return -ENOMEM; 955 unlock_page(page); 956 957 retry_journal: 958 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 959 if (IS_ERR(handle)) { 960 page_cache_release(page); 961 return PTR_ERR(handle); 962 } 963 964 lock_page(page); 965 if (page->mapping != mapping) { 966 /* The page got truncated from under us */ 967 unlock_page(page); 968 page_cache_release(page); 969 ext4_journal_stop(handle); 970 goto retry_grab; 971 } 972 wait_on_page_writeback(page); 973 974 if (ext4_should_dioread_nolock(inode)) 975 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 976 else 977 ret = __block_write_begin(page, pos, len, ext4_get_block); 978 979 if (!ret && ext4_should_journal_data(inode)) { 980 ret = ext4_walk_page_buffers(handle, page_buffers(page), 981 from, to, NULL, 982 do_journal_get_write_access); 983 } 984 985 if (ret) { 986 unlock_page(page); 987 /* 988 * __block_write_begin may have instantiated a few blocks 989 * outside i_size. Trim these off again. Don't need 990 * i_size_read because we hold i_mutex. 991 * 992 * Add inode to orphan list in case we crash before 993 * truncate finishes 994 */ 995 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 996 ext4_orphan_add(handle, inode); 997 998 ext4_journal_stop(handle); 999 if (pos + len > inode->i_size) { 1000 ext4_truncate_failed_write(inode); 1001 /* 1002 * If truncate failed early the inode might 1003 * still be on the orphan list; we need to 1004 * make sure the inode is removed from the 1005 * orphan list in that case. 1006 */ 1007 if (inode->i_nlink) 1008 ext4_orphan_del(NULL, inode); 1009 } 1010 1011 if (ret == -ENOSPC && 1012 ext4_should_retry_alloc(inode->i_sb, &retries)) 1013 goto retry_journal; 1014 page_cache_release(page); 1015 return ret; 1016 } 1017 *pagep = page; 1018 return ret; 1019 } 1020 1021 /* For write_end() in data=journal mode */ 1022 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1023 { 1024 int ret; 1025 if (!buffer_mapped(bh) || buffer_freed(bh)) 1026 return 0; 1027 set_buffer_uptodate(bh); 1028 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1029 clear_buffer_meta(bh); 1030 clear_buffer_prio(bh); 1031 return ret; 1032 } 1033 1034 /* 1035 * We need to pick up the new inode size which generic_commit_write gave us 1036 * `file' can be NULL - eg, when called from page_symlink(). 1037 * 1038 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1039 * buffers are managed internally. 1040 */ 1041 static int ext4_write_end(struct file *file, 1042 struct address_space *mapping, 1043 loff_t pos, unsigned len, unsigned copied, 1044 struct page *page, void *fsdata) 1045 { 1046 handle_t *handle = ext4_journal_current_handle(); 1047 struct inode *inode = mapping->host; 1048 int ret = 0, ret2; 1049 int i_size_changed = 0; 1050 1051 trace_ext4_write_end(inode, pos, len, copied); 1052 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1053 ret = ext4_jbd2_file_inode(handle, inode); 1054 if (ret) { 1055 unlock_page(page); 1056 page_cache_release(page); 1057 goto errout; 1058 } 1059 } 1060 1061 if (ext4_has_inline_data(inode)) { 1062 ret = ext4_write_inline_data_end(inode, pos, len, 1063 copied, page); 1064 if (ret < 0) 1065 goto errout; 1066 copied = ret; 1067 } else 1068 copied = block_write_end(file, mapping, pos, 1069 len, copied, page, fsdata); 1070 1071 /* 1072 * No need to use i_size_read() here, the i_size 1073 * cannot change under us because we hole i_mutex. 1074 * 1075 * But it's important to update i_size while still holding page lock: 1076 * page writeout could otherwise come in and zero beyond i_size. 1077 */ 1078 if (pos + copied > inode->i_size) { 1079 i_size_write(inode, pos + copied); 1080 i_size_changed = 1; 1081 } 1082 1083 if (pos + copied > EXT4_I(inode)->i_disksize) { 1084 /* We need to mark inode dirty even if 1085 * new_i_size is less that inode->i_size 1086 * but greater than i_disksize. (hint delalloc) 1087 */ 1088 ext4_update_i_disksize(inode, (pos + copied)); 1089 i_size_changed = 1; 1090 } 1091 unlock_page(page); 1092 page_cache_release(page); 1093 1094 /* 1095 * Don't mark the inode dirty under page lock. First, it unnecessarily 1096 * makes the holding time of page lock longer. Second, it forces lock 1097 * ordering of page lock and transaction start for journaling 1098 * filesystems. 1099 */ 1100 if (i_size_changed) 1101 ext4_mark_inode_dirty(handle, inode); 1102 1103 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1104 /* if we have allocated more blocks and copied 1105 * less. We will have blocks allocated outside 1106 * inode->i_size. So truncate them 1107 */ 1108 ext4_orphan_add(handle, inode); 1109 errout: 1110 ret2 = ext4_journal_stop(handle); 1111 if (!ret) 1112 ret = ret2; 1113 1114 if (pos + len > inode->i_size) { 1115 ext4_truncate_failed_write(inode); 1116 /* 1117 * If truncate failed early the inode might still be 1118 * on the orphan list; we need to make sure the inode 1119 * is removed from the orphan list in that case. 1120 */ 1121 if (inode->i_nlink) 1122 ext4_orphan_del(NULL, inode); 1123 } 1124 1125 return ret ? ret : copied; 1126 } 1127 1128 static int ext4_journalled_write_end(struct file *file, 1129 struct address_space *mapping, 1130 loff_t pos, unsigned len, unsigned copied, 1131 struct page *page, void *fsdata) 1132 { 1133 handle_t *handle = ext4_journal_current_handle(); 1134 struct inode *inode = mapping->host; 1135 int ret = 0, ret2; 1136 int partial = 0; 1137 unsigned from, to; 1138 loff_t new_i_size; 1139 1140 trace_ext4_journalled_write_end(inode, pos, len, copied); 1141 from = pos & (PAGE_CACHE_SIZE - 1); 1142 to = from + len; 1143 1144 BUG_ON(!ext4_handle_valid(handle)); 1145 1146 if (ext4_has_inline_data(inode)) 1147 copied = ext4_write_inline_data_end(inode, pos, len, 1148 copied, page); 1149 else { 1150 if (copied < len) { 1151 if (!PageUptodate(page)) 1152 copied = 0; 1153 page_zero_new_buffers(page, from+copied, to); 1154 } 1155 1156 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1157 to, &partial, write_end_fn); 1158 if (!partial) 1159 SetPageUptodate(page); 1160 } 1161 new_i_size = pos + copied; 1162 if (new_i_size > inode->i_size) 1163 i_size_write(inode, pos+copied); 1164 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1165 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1166 if (new_i_size > EXT4_I(inode)->i_disksize) { 1167 ext4_update_i_disksize(inode, new_i_size); 1168 ret2 = ext4_mark_inode_dirty(handle, inode); 1169 if (!ret) 1170 ret = ret2; 1171 } 1172 1173 unlock_page(page); 1174 page_cache_release(page); 1175 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1176 /* if we have allocated more blocks and copied 1177 * less. We will have blocks allocated outside 1178 * inode->i_size. So truncate them 1179 */ 1180 ext4_orphan_add(handle, inode); 1181 1182 ret2 = ext4_journal_stop(handle); 1183 if (!ret) 1184 ret = ret2; 1185 if (pos + len > inode->i_size) { 1186 ext4_truncate_failed_write(inode); 1187 /* 1188 * If truncate failed early the inode might still be 1189 * on the orphan list; we need to make sure the inode 1190 * is removed from the orphan list in that case. 1191 */ 1192 if (inode->i_nlink) 1193 ext4_orphan_del(NULL, inode); 1194 } 1195 1196 return ret ? ret : copied; 1197 } 1198 1199 /* 1200 * Reserve a metadata for a single block located at lblock 1201 */ 1202 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1203 { 1204 int retries = 0; 1205 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1206 struct ext4_inode_info *ei = EXT4_I(inode); 1207 unsigned int md_needed; 1208 ext4_lblk_t save_last_lblock; 1209 int save_len; 1210 1211 /* 1212 * recalculate the amount of metadata blocks to reserve 1213 * in order to allocate nrblocks 1214 * worse case is one extent per block 1215 */ 1216 repeat: 1217 spin_lock(&ei->i_block_reservation_lock); 1218 /* 1219 * ext4_calc_metadata_amount() has side effects, which we have 1220 * to be prepared undo if we fail to claim space. 1221 */ 1222 save_len = ei->i_da_metadata_calc_len; 1223 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1224 md_needed = EXT4_NUM_B2C(sbi, 1225 ext4_calc_metadata_amount(inode, lblock)); 1226 trace_ext4_da_reserve_space(inode, md_needed); 1227 1228 /* 1229 * We do still charge estimated metadata to the sb though; 1230 * we cannot afford to run out of free blocks. 1231 */ 1232 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1233 ei->i_da_metadata_calc_len = save_len; 1234 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1235 spin_unlock(&ei->i_block_reservation_lock); 1236 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1237 cond_resched(); 1238 goto repeat; 1239 } 1240 return -ENOSPC; 1241 } 1242 ei->i_reserved_meta_blocks += md_needed; 1243 spin_unlock(&ei->i_block_reservation_lock); 1244 1245 return 0; /* success */ 1246 } 1247 1248 /* 1249 * Reserve a single cluster located at lblock 1250 */ 1251 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1252 { 1253 int retries = 0; 1254 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1255 struct ext4_inode_info *ei = EXT4_I(inode); 1256 unsigned int md_needed; 1257 int ret; 1258 ext4_lblk_t save_last_lblock; 1259 int save_len; 1260 1261 /* 1262 * We will charge metadata quota at writeout time; this saves 1263 * us from metadata over-estimation, though we may go over by 1264 * a small amount in the end. Here we just reserve for data. 1265 */ 1266 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1267 if (ret) 1268 return ret; 1269 1270 /* 1271 * recalculate the amount of metadata blocks to reserve 1272 * in order to allocate nrblocks 1273 * worse case is one extent per block 1274 */ 1275 repeat: 1276 spin_lock(&ei->i_block_reservation_lock); 1277 /* 1278 * ext4_calc_metadata_amount() has side effects, which we have 1279 * to be prepared undo if we fail to claim space. 1280 */ 1281 save_len = ei->i_da_metadata_calc_len; 1282 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1283 md_needed = EXT4_NUM_B2C(sbi, 1284 ext4_calc_metadata_amount(inode, lblock)); 1285 trace_ext4_da_reserve_space(inode, md_needed); 1286 1287 /* 1288 * We do still charge estimated metadata to the sb though; 1289 * we cannot afford to run out of free blocks. 1290 */ 1291 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1292 ei->i_da_metadata_calc_len = save_len; 1293 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1294 spin_unlock(&ei->i_block_reservation_lock); 1295 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1296 cond_resched(); 1297 goto repeat; 1298 } 1299 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1300 return -ENOSPC; 1301 } 1302 ei->i_reserved_data_blocks++; 1303 ei->i_reserved_meta_blocks += md_needed; 1304 spin_unlock(&ei->i_block_reservation_lock); 1305 1306 return 0; /* success */ 1307 } 1308 1309 static void ext4_da_release_space(struct inode *inode, int to_free) 1310 { 1311 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1312 struct ext4_inode_info *ei = EXT4_I(inode); 1313 1314 if (!to_free) 1315 return; /* Nothing to release, exit */ 1316 1317 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1318 1319 trace_ext4_da_release_space(inode, to_free); 1320 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1321 /* 1322 * if there aren't enough reserved blocks, then the 1323 * counter is messed up somewhere. Since this 1324 * function is called from invalidate page, it's 1325 * harmless to return without any action. 1326 */ 1327 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1328 "ino %lu, to_free %d with only %d reserved " 1329 "data blocks", inode->i_ino, to_free, 1330 ei->i_reserved_data_blocks); 1331 WARN_ON(1); 1332 to_free = ei->i_reserved_data_blocks; 1333 } 1334 ei->i_reserved_data_blocks -= to_free; 1335 1336 if (ei->i_reserved_data_blocks == 0) { 1337 /* 1338 * We can release all of the reserved metadata blocks 1339 * only when we have written all of the delayed 1340 * allocation blocks. 1341 * Note that in case of bigalloc, i_reserved_meta_blocks, 1342 * i_reserved_data_blocks, etc. refer to number of clusters. 1343 */ 1344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1345 ei->i_reserved_meta_blocks); 1346 ei->i_reserved_meta_blocks = 0; 1347 ei->i_da_metadata_calc_len = 0; 1348 } 1349 1350 /* update fs dirty data blocks counter */ 1351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1352 1353 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1354 1355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1356 } 1357 1358 static void ext4_da_page_release_reservation(struct page *page, 1359 unsigned int offset, 1360 unsigned int length) 1361 { 1362 int to_release = 0; 1363 struct buffer_head *head, *bh; 1364 unsigned int curr_off = 0; 1365 struct inode *inode = page->mapping->host; 1366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1367 unsigned int stop = offset + length; 1368 int num_clusters; 1369 ext4_fsblk_t lblk; 1370 1371 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1372 1373 head = page_buffers(page); 1374 bh = head; 1375 do { 1376 unsigned int next_off = curr_off + bh->b_size; 1377 1378 if (next_off > stop) 1379 break; 1380 1381 if ((offset <= curr_off) && (buffer_delay(bh))) { 1382 to_release++; 1383 clear_buffer_delay(bh); 1384 } 1385 curr_off = next_off; 1386 } while ((bh = bh->b_this_page) != head); 1387 1388 if (to_release) { 1389 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1390 ext4_es_remove_extent(inode, lblk, to_release); 1391 } 1392 1393 /* If we have released all the blocks belonging to a cluster, then we 1394 * need to release the reserved space for that cluster. */ 1395 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1396 while (num_clusters > 0) { 1397 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1398 ((num_clusters - 1) << sbi->s_cluster_bits); 1399 if (sbi->s_cluster_ratio == 1 || 1400 !ext4_find_delalloc_cluster(inode, lblk)) 1401 ext4_da_release_space(inode, 1); 1402 1403 num_clusters--; 1404 } 1405 } 1406 1407 /* 1408 * Delayed allocation stuff 1409 */ 1410 1411 struct mpage_da_data { 1412 struct inode *inode; 1413 struct writeback_control *wbc; 1414 1415 pgoff_t first_page; /* The first page to write */ 1416 pgoff_t next_page; /* Current page to examine */ 1417 pgoff_t last_page; /* Last page to examine */ 1418 /* 1419 * Extent to map - this can be after first_page because that can be 1420 * fully mapped. We somewhat abuse m_flags to store whether the extent 1421 * is delalloc or unwritten. 1422 */ 1423 struct ext4_map_blocks map; 1424 struct ext4_io_submit io_submit; /* IO submission data */ 1425 }; 1426 1427 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1428 bool invalidate) 1429 { 1430 int nr_pages, i; 1431 pgoff_t index, end; 1432 struct pagevec pvec; 1433 struct inode *inode = mpd->inode; 1434 struct address_space *mapping = inode->i_mapping; 1435 1436 /* This is necessary when next_page == 0. */ 1437 if (mpd->first_page >= mpd->next_page) 1438 return; 1439 1440 index = mpd->first_page; 1441 end = mpd->next_page - 1; 1442 if (invalidate) { 1443 ext4_lblk_t start, last; 1444 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1445 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1446 ext4_es_remove_extent(inode, start, last - start + 1); 1447 } 1448 1449 pagevec_init(&pvec, 0); 1450 while (index <= end) { 1451 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1452 if (nr_pages == 0) 1453 break; 1454 for (i = 0; i < nr_pages; i++) { 1455 struct page *page = pvec.pages[i]; 1456 if (page->index > end) 1457 break; 1458 BUG_ON(!PageLocked(page)); 1459 BUG_ON(PageWriteback(page)); 1460 if (invalidate) { 1461 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1462 ClearPageUptodate(page); 1463 } 1464 unlock_page(page); 1465 } 1466 index = pvec.pages[nr_pages - 1]->index + 1; 1467 pagevec_release(&pvec); 1468 } 1469 } 1470 1471 static void ext4_print_free_blocks(struct inode *inode) 1472 { 1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1474 struct super_block *sb = inode->i_sb; 1475 struct ext4_inode_info *ei = EXT4_I(inode); 1476 1477 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1478 EXT4_C2B(EXT4_SB(inode->i_sb), 1479 ext4_count_free_clusters(sb))); 1480 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1481 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1482 (long long) EXT4_C2B(EXT4_SB(sb), 1483 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1484 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1485 (long long) EXT4_C2B(EXT4_SB(sb), 1486 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1487 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1488 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1489 ei->i_reserved_data_blocks); 1490 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1491 ei->i_reserved_meta_blocks); 1492 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1493 ei->i_allocated_meta_blocks); 1494 return; 1495 } 1496 1497 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1498 { 1499 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1500 } 1501 1502 /* 1503 * This function is grabs code from the very beginning of 1504 * ext4_map_blocks, but assumes that the caller is from delayed write 1505 * time. This function looks up the requested blocks and sets the 1506 * buffer delay bit under the protection of i_data_sem. 1507 */ 1508 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1509 struct ext4_map_blocks *map, 1510 struct buffer_head *bh) 1511 { 1512 struct extent_status es; 1513 int retval; 1514 sector_t invalid_block = ~((sector_t) 0xffff); 1515 #ifdef ES_AGGRESSIVE_TEST 1516 struct ext4_map_blocks orig_map; 1517 1518 memcpy(&orig_map, map, sizeof(*map)); 1519 #endif 1520 1521 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1522 invalid_block = ~0; 1523 1524 map->m_flags = 0; 1525 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1526 "logical block %lu\n", inode->i_ino, map->m_len, 1527 (unsigned long) map->m_lblk); 1528 1529 /* Lookup extent status tree firstly */ 1530 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1531 ext4_es_lru_add(inode); 1532 if (ext4_es_is_hole(&es)) { 1533 retval = 0; 1534 down_read((&EXT4_I(inode)->i_data_sem)); 1535 goto add_delayed; 1536 } 1537 1538 /* 1539 * Delayed extent could be allocated by fallocate. 1540 * So we need to check it. 1541 */ 1542 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1543 map_bh(bh, inode->i_sb, invalid_block); 1544 set_buffer_new(bh); 1545 set_buffer_delay(bh); 1546 return 0; 1547 } 1548 1549 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1550 retval = es.es_len - (iblock - es.es_lblk); 1551 if (retval > map->m_len) 1552 retval = map->m_len; 1553 map->m_len = retval; 1554 if (ext4_es_is_written(&es)) 1555 map->m_flags |= EXT4_MAP_MAPPED; 1556 else if (ext4_es_is_unwritten(&es)) 1557 map->m_flags |= EXT4_MAP_UNWRITTEN; 1558 else 1559 BUG_ON(1); 1560 1561 #ifdef ES_AGGRESSIVE_TEST 1562 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1563 #endif 1564 return retval; 1565 } 1566 1567 /* 1568 * Try to see if we can get the block without requesting a new 1569 * file system block. 1570 */ 1571 down_read((&EXT4_I(inode)->i_data_sem)); 1572 if (ext4_has_inline_data(inode)) { 1573 /* 1574 * We will soon create blocks for this page, and let 1575 * us pretend as if the blocks aren't allocated yet. 1576 * In case of clusters, we have to handle the work 1577 * of mapping from cluster so that the reserved space 1578 * is calculated properly. 1579 */ 1580 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1581 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1582 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1583 retval = 0; 1584 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1585 retval = ext4_ext_map_blocks(NULL, inode, map, 1586 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1587 else 1588 retval = ext4_ind_map_blocks(NULL, inode, map, 1589 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1590 1591 add_delayed: 1592 if (retval == 0) { 1593 int ret; 1594 /* 1595 * XXX: __block_prepare_write() unmaps passed block, 1596 * is it OK? 1597 */ 1598 /* 1599 * If the block was allocated from previously allocated cluster, 1600 * then we don't need to reserve it again. However we still need 1601 * to reserve metadata for every block we're going to write. 1602 */ 1603 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1604 ret = ext4_da_reserve_space(inode, iblock); 1605 if (ret) { 1606 /* not enough space to reserve */ 1607 retval = ret; 1608 goto out_unlock; 1609 } 1610 } else { 1611 ret = ext4_da_reserve_metadata(inode, iblock); 1612 if (ret) { 1613 /* not enough space to reserve */ 1614 retval = ret; 1615 goto out_unlock; 1616 } 1617 } 1618 1619 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1620 ~0, EXTENT_STATUS_DELAYED); 1621 if (ret) { 1622 retval = ret; 1623 goto out_unlock; 1624 } 1625 1626 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1627 * and it should not appear on the bh->b_state. 1628 */ 1629 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1630 1631 map_bh(bh, inode->i_sb, invalid_block); 1632 set_buffer_new(bh); 1633 set_buffer_delay(bh); 1634 } else if (retval > 0) { 1635 int ret; 1636 unsigned long long status; 1637 1638 if (unlikely(retval != map->m_len)) { 1639 ext4_warning(inode->i_sb, 1640 "ES len assertion failed for inode " 1641 "%lu: retval %d != map->m_len %d", 1642 inode->i_ino, retval, map->m_len); 1643 WARN_ON(1); 1644 } 1645 1646 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1647 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1648 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1649 map->m_pblk, status); 1650 if (ret != 0) 1651 retval = ret; 1652 } 1653 1654 out_unlock: 1655 up_read((&EXT4_I(inode)->i_data_sem)); 1656 1657 return retval; 1658 } 1659 1660 /* 1661 * This is a special get_blocks_t callback which is used by 1662 * ext4_da_write_begin(). It will either return mapped block or 1663 * reserve space for a single block. 1664 * 1665 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1666 * We also have b_blocknr = -1 and b_bdev initialized properly 1667 * 1668 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1669 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1670 * initialized properly. 1671 */ 1672 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1673 struct buffer_head *bh, int create) 1674 { 1675 struct ext4_map_blocks map; 1676 int ret = 0; 1677 1678 BUG_ON(create == 0); 1679 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1680 1681 map.m_lblk = iblock; 1682 map.m_len = 1; 1683 1684 /* 1685 * first, we need to know whether the block is allocated already 1686 * preallocated blocks are unmapped but should treated 1687 * the same as allocated blocks. 1688 */ 1689 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1690 if (ret <= 0) 1691 return ret; 1692 1693 map_bh(bh, inode->i_sb, map.m_pblk); 1694 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1695 1696 if (buffer_unwritten(bh)) { 1697 /* A delayed write to unwritten bh should be marked 1698 * new and mapped. Mapped ensures that we don't do 1699 * get_block multiple times when we write to the same 1700 * offset and new ensures that we do proper zero out 1701 * for partial write. 1702 */ 1703 set_buffer_new(bh); 1704 set_buffer_mapped(bh); 1705 } 1706 return 0; 1707 } 1708 1709 static int bget_one(handle_t *handle, struct buffer_head *bh) 1710 { 1711 get_bh(bh); 1712 return 0; 1713 } 1714 1715 static int bput_one(handle_t *handle, struct buffer_head *bh) 1716 { 1717 put_bh(bh); 1718 return 0; 1719 } 1720 1721 static int __ext4_journalled_writepage(struct page *page, 1722 unsigned int len) 1723 { 1724 struct address_space *mapping = page->mapping; 1725 struct inode *inode = mapping->host; 1726 struct buffer_head *page_bufs = NULL; 1727 handle_t *handle = NULL; 1728 int ret = 0, err = 0; 1729 int inline_data = ext4_has_inline_data(inode); 1730 struct buffer_head *inode_bh = NULL; 1731 1732 ClearPageChecked(page); 1733 1734 if (inline_data) { 1735 BUG_ON(page->index != 0); 1736 BUG_ON(len > ext4_get_max_inline_size(inode)); 1737 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1738 if (inode_bh == NULL) 1739 goto out; 1740 } else { 1741 page_bufs = page_buffers(page); 1742 if (!page_bufs) { 1743 BUG(); 1744 goto out; 1745 } 1746 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1747 NULL, bget_one); 1748 } 1749 /* As soon as we unlock the page, it can go away, but we have 1750 * references to buffers so we are safe */ 1751 unlock_page(page); 1752 1753 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1754 ext4_writepage_trans_blocks(inode)); 1755 if (IS_ERR(handle)) { 1756 ret = PTR_ERR(handle); 1757 goto out; 1758 } 1759 1760 BUG_ON(!ext4_handle_valid(handle)); 1761 1762 if (inline_data) { 1763 ret = ext4_journal_get_write_access(handle, inode_bh); 1764 1765 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1766 1767 } else { 1768 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1769 do_journal_get_write_access); 1770 1771 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1772 write_end_fn); 1773 } 1774 if (ret == 0) 1775 ret = err; 1776 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1777 err = ext4_journal_stop(handle); 1778 if (!ret) 1779 ret = err; 1780 1781 if (!ext4_has_inline_data(inode)) 1782 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1783 NULL, bput_one); 1784 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1785 out: 1786 brelse(inode_bh); 1787 return ret; 1788 } 1789 1790 /* 1791 * Note that we don't need to start a transaction unless we're journaling data 1792 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1793 * need to file the inode to the transaction's list in ordered mode because if 1794 * we are writing back data added by write(), the inode is already there and if 1795 * we are writing back data modified via mmap(), no one guarantees in which 1796 * transaction the data will hit the disk. In case we are journaling data, we 1797 * cannot start transaction directly because transaction start ranks above page 1798 * lock so we have to do some magic. 1799 * 1800 * This function can get called via... 1801 * - ext4_writepages after taking page lock (have journal handle) 1802 * - journal_submit_inode_data_buffers (no journal handle) 1803 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1804 * - grab_page_cache when doing write_begin (have journal handle) 1805 * 1806 * We don't do any block allocation in this function. If we have page with 1807 * multiple blocks we need to write those buffer_heads that are mapped. This 1808 * is important for mmaped based write. So if we do with blocksize 1K 1809 * truncate(f, 1024); 1810 * a = mmap(f, 0, 4096); 1811 * a[0] = 'a'; 1812 * truncate(f, 4096); 1813 * we have in the page first buffer_head mapped via page_mkwrite call back 1814 * but other buffer_heads would be unmapped but dirty (dirty done via the 1815 * do_wp_page). So writepage should write the first block. If we modify 1816 * the mmap area beyond 1024 we will again get a page_fault and the 1817 * page_mkwrite callback will do the block allocation and mark the 1818 * buffer_heads mapped. 1819 * 1820 * We redirty the page if we have any buffer_heads that is either delay or 1821 * unwritten in the page. 1822 * 1823 * We can get recursively called as show below. 1824 * 1825 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1826 * ext4_writepage() 1827 * 1828 * But since we don't do any block allocation we should not deadlock. 1829 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1830 */ 1831 static int ext4_writepage(struct page *page, 1832 struct writeback_control *wbc) 1833 { 1834 int ret = 0; 1835 loff_t size; 1836 unsigned int len; 1837 struct buffer_head *page_bufs = NULL; 1838 struct inode *inode = page->mapping->host; 1839 struct ext4_io_submit io_submit; 1840 1841 trace_ext4_writepage(page); 1842 size = i_size_read(inode); 1843 if (page->index == size >> PAGE_CACHE_SHIFT) 1844 len = size & ~PAGE_CACHE_MASK; 1845 else 1846 len = PAGE_CACHE_SIZE; 1847 1848 page_bufs = page_buffers(page); 1849 /* 1850 * We cannot do block allocation or other extent handling in this 1851 * function. If there are buffers needing that, we have to redirty 1852 * the page. But we may reach here when we do a journal commit via 1853 * journal_submit_inode_data_buffers() and in that case we must write 1854 * allocated buffers to achieve data=ordered mode guarantees. 1855 */ 1856 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1857 ext4_bh_delay_or_unwritten)) { 1858 redirty_page_for_writepage(wbc, page); 1859 if (current->flags & PF_MEMALLOC) { 1860 /* 1861 * For memory cleaning there's no point in writing only 1862 * some buffers. So just bail out. Warn if we came here 1863 * from direct reclaim. 1864 */ 1865 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1866 == PF_MEMALLOC); 1867 unlock_page(page); 1868 return 0; 1869 } 1870 } 1871 1872 if (PageChecked(page) && ext4_should_journal_data(inode)) 1873 /* 1874 * It's mmapped pagecache. Add buffers and journal it. There 1875 * doesn't seem much point in redirtying the page here. 1876 */ 1877 return __ext4_journalled_writepage(page, len); 1878 1879 ext4_io_submit_init(&io_submit, wbc); 1880 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1881 if (!io_submit.io_end) { 1882 redirty_page_for_writepage(wbc, page); 1883 unlock_page(page); 1884 return -ENOMEM; 1885 } 1886 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 1887 ext4_io_submit(&io_submit); 1888 /* Drop io_end reference we got from init */ 1889 ext4_put_io_end_defer(io_submit.io_end); 1890 return ret; 1891 } 1892 1893 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1894 1895 /* 1896 * mballoc gives us at most this number of blocks... 1897 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1898 * The rest of mballoc seems to handle chunks upto full group size. 1899 */ 1900 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1901 1902 /* 1903 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1904 * 1905 * @mpd - extent of blocks 1906 * @lblk - logical number of the block in the file 1907 * @b_state - b_state of the buffer head added 1908 * 1909 * the function is used to collect contig. blocks in same state 1910 */ 1911 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1912 unsigned long b_state) 1913 { 1914 struct ext4_map_blocks *map = &mpd->map; 1915 1916 /* Don't go larger than mballoc is willing to allocate */ 1917 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1918 return 0; 1919 1920 /* First block in the extent? */ 1921 if (map->m_len == 0) { 1922 map->m_lblk = lblk; 1923 map->m_len = 1; 1924 map->m_flags = b_state & BH_FLAGS; 1925 return 1; 1926 } 1927 1928 /* Can we merge the block to our big extent? */ 1929 if (lblk == map->m_lblk + map->m_len && 1930 (b_state & BH_FLAGS) == map->m_flags) { 1931 map->m_len++; 1932 return 1; 1933 } 1934 return 0; 1935 } 1936 1937 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd, 1938 struct buffer_head *head, 1939 struct buffer_head *bh, 1940 ext4_lblk_t lblk) 1941 { 1942 struct inode *inode = mpd->inode; 1943 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1944 >> inode->i_blkbits; 1945 1946 do { 1947 BUG_ON(buffer_locked(bh)); 1948 1949 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1950 (!buffer_delay(bh) && !buffer_unwritten(bh)) || 1951 lblk >= blocks) { 1952 /* Found extent to map? */ 1953 if (mpd->map.m_len) 1954 return false; 1955 if (lblk >= blocks) 1956 return true; 1957 continue; 1958 } 1959 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state)) 1960 return false; 1961 } while (lblk++, (bh = bh->b_this_page) != head); 1962 return true; 1963 } 1964 1965 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1966 { 1967 int len; 1968 loff_t size = i_size_read(mpd->inode); 1969 int err; 1970 1971 BUG_ON(page->index != mpd->first_page); 1972 if (page->index == size >> PAGE_CACHE_SHIFT) 1973 len = size & ~PAGE_CACHE_MASK; 1974 else 1975 len = PAGE_CACHE_SIZE; 1976 clear_page_dirty_for_io(page); 1977 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc); 1978 if (!err) 1979 mpd->wbc->nr_to_write--; 1980 mpd->first_page++; 1981 1982 return err; 1983 } 1984 1985 /* 1986 * mpage_map_buffers - update buffers corresponding to changed extent and 1987 * submit fully mapped pages for IO 1988 * 1989 * @mpd - description of extent to map, on return next extent to map 1990 * 1991 * Scan buffers corresponding to changed extent (we expect corresponding pages 1992 * to be already locked) and update buffer state according to new extent state. 1993 * We map delalloc buffers to their physical location, clear unwritten bits, 1994 * and mark buffers as uninit when we perform writes to uninitialized extents 1995 * and do extent conversion after IO is finished. If the last page is not fully 1996 * mapped, we update @map to the next extent in the last page that needs 1997 * mapping. Otherwise we submit the page for IO. 1998 */ 1999 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2000 { 2001 struct pagevec pvec; 2002 int nr_pages, i; 2003 struct inode *inode = mpd->inode; 2004 struct buffer_head *head, *bh; 2005 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2006 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2007 >> inode->i_blkbits; 2008 pgoff_t start, end; 2009 ext4_lblk_t lblk; 2010 sector_t pblock; 2011 int err; 2012 2013 start = mpd->map.m_lblk >> bpp_bits; 2014 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2015 lblk = start << bpp_bits; 2016 pblock = mpd->map.m_pblk; 2017 2018 pagevec_init(&pvec, 0); 2019 while (start <= end) { 2020 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2021 PAGEVEC_SIZE); 2022 if (nr_pages == 0) 2023 break; 2024 for (i = 0; i < nr_pages; i++) { 2025 struct page *page = pvec.pages[i]; 2026 2027 if (page->index > end) 2028 break; 2029 /* Upto 'end' pages must be contiguous */ 2030 BUG_ON(page->index != start); 2031 bh = head = page_buffers(page); 2032 do { 2033 if (lblk < mpd->map.m_lblk) 2034 continue; 2035 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2036 /* 2037 * Buffer after end of mapped extent. 2038 * Find next buffer in the page to map. 2039 */ 2040 mpd->map.m_len = 0; 2041 mpd->map.m_flags = 0; 2042 add_page_bufs_to_extent(mpd, head, bh, 2043 lblk); 2044 pagevec_release(&pvec); 2045 return 0; 2046 } 2047 if (buffer_delay(bh)) { 2048 clear_buffer_delay(bh); 2049 bh->b_blocknr = pblock++; 2050 } 2051 clear_buffer_unwritten(bh); 2052 } while (++lblk < blocks && 2053 (bh = bh->b_this_page) != head); 2054 2055 /* 2056 * FIXME: This is going to break if dioread_nolock 2057 * supports blocksize < pagesize as we will try to 2058 * convert potentially unmapped parts of inode. 2059 */ 2060 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2061 /* Page fully mapped - let IO run! */ 2062 err = mpage_submit_page(mpd, page); 2063 if (err < 0) { 2064 pagevec_release(&pvec); 2065 return err; 2066 } 2067 start++; 2068 } 2069 pagevec_release(&pvec); 2070 } 2071 /* Extent fully mapped and matches with page boundary. We are done. */ 2072 mpd->map.m_len = 0; 2073 mpd->map.m_flags = 0; 2074 return 0; 2075 } 2076 2077 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2078 { 2079 struct inode *inode = mpd->inode; 2080 struct ext4_map_blocks *map = &mpd->map; 2081 int get_blocks_flags; 2082 int err; 2083 2084 trace_ext4_da_write_pages_extent(inode, map); 2085 /* 2086 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2087 * to convert an uninitialized extent to be initialized (in the case 2088 * where we have written into one or more preallocated blocks). It is 2089 * possible that we're going to need more metadata blocks than 2090 * previously reserved. However we must not fail because we're in 2091 * writeback and there is nothing we can do about it so it might result 2092 * in data loss. So use reserved blocks to allocate metadata if 2093 * possible. 2094 * 2095 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2096 * in question are delalloc blocks. This affects functions in many 2097 * different parts of the allocation call path. This flag exists 2098 * primarily because we don't want to change *many* call functions, so 2099 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2100 * once the inode's allocation semaphore is taken. 2101 */ 2102 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2103 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2104 if (ext4_should_dioread_nolock(inode)) 2105 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2106 if (map->m_flags & (1 << BH_Delay)) 2107 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2108 2109 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2110 if (err < 0) 2111 return err; 2112 if (map->m_flags & EXT4_MAP_UNINIT) { 2113 if (!mpd->io_submit.io_end->handle && 2114 ext4_handle_valid(handle)) { 2115 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2116 handle->h_rsv_handle = NULL; 2117 } 2118 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2119 } 2120 2121 BUG_ON(map->m_len == 0); 2122 if (map->m_flags & EXT4_MAP_NEW) { 2123 struct block_device *bdev = inode->i_sb->s_bdev; 2124 int i; 2125 2126 for (i = 0; i < map->m_len; i++) 2127 unmap_underlying_metadata(bdev, map->m_pblk + i); 2128 } 2129 return 0; 2130 } 2131 2132 /* 2133 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2134 * mpd->len and submit pages underlying it for IO 2135 * 2136 * @handle - handle for journal operations 2137 * @mpd - extent to map 2138 * 2139 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2140 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2141 * them to initialized or split the described range from larger unwritten 2142 * extent. Note that we need not map all the described range since allocation 2143 * can return less blocks or the range is covered by more unwritten extents. We 2144 * cannot map more because we are limited by reserved transaction credits. On 2145 * the other hand we always make sure that the last touched page is fully 2146 * mapped so that it can be written out (and thus forward progress is 2147 * guaranteed). After mapping we submit all mapped pages for IO. 2148 */ 2149 static int mpage_map_and_submit_extent(handle_t *handle, 2150 struct mpage_da_data *mpd, 2151 bool *give_up_on_write) 2152 { 2153 struct inode *inode = mpd->inode; 2154 struct ext4_map_blocks *map = &mpd->map; 2155 int err; 2156 loff_t disksize; 2157 2158 mpd->io_submit.io_end->offset = 2159 ((loff_t)map->m_lblk) << inode->i_blkbits; 2160 do { 2161 err = mpage_map_one_extent(handle, mpd); 2162 if (err < 0) { 2163 struct super_block *sb = inode->i_sb; 2164 2165 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2166 goto invalidate_dirty_pages; 2167 /* 2168 * Let the uper layers retry transient errors. 2169 * In the case of ENOSPC, if ext4_count_free_blocks() 2170 * is non-zero, a commit should free up blocks. 2171 */ 2172 if ((err == -ENOMEM) || 2173 (err == -ENOSPC && ext4_count_free_clusters(sb))) 2174 return err; 2175 ext4_msg(sb, KERN_CRIT, 2176 "Delayed block allocation failed for " 2177 "inode %lu at logical offset %llu with" 2178 " max blocks %u with error %d", 2179 inode->i_ino, 2180 (unsigned long long)map->m_lblk, 2181 (unsigned)map->m_len, -err); 2182 ext4_msg(sb, KERN_CRIT, 2183 "This should not happen!! Data will " 2184 "be lost\n"); 2185 if (err == -ENOSPC) 2186 ext4_print_free_blocks(inode); 2187 invalidate_dirty_pages: 2188 *give_up_on_write = true; 2189 return err; 2190 } 2191 /* 2192 * Update buffer state, submit mapped pages, and get us new 2193 * extent to map 2194 */ 2195 err = mpage_map_and_submit_buffers(mpd); 2196 if (err < 0) 2197 return err; 2198 } while (map->m_len); 2199 2200 /* Update on-disk size after IO is submitted */ 2201 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2202 if (disksize > i_size_read(inode)) 2203 disksize = i_size_read(inode); 2204 if (disksize > EXT4_I(inode)->i_disksize) { 2205 int err2; 2206 2207 ext4_update_i_disksize(inode, disksize); 2208 err2 = ext4_mark_inode_dirty(handle, inode); 2209 if (err2) 2210 ext4_error(inode->i_sb, 2211 "Failed to mark inode %lu dirty", 2212 inode->i_ino); 2213 if (!err) 2214 err = err2; 2215 } 2216 return err; 2217 } 2218 2219 /* 2220 * Calculate the total number of credits to reserve for one writepages 2221 * iteration. This is called from ext4_writepages(). We map an extent of 2222 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2223 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2224 * bpp - 1 blocks in bpp different extents. 2225 */ 2226 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2227 { 2228 int bpp = ext4_journal_blocks_per_page(inode); 2229 2230 return ext4_meta_trans_blocks(inode, 2231 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2232 } 2233 2234 /* 2235 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2236 * and underlying extent to map 2237 * 2238 * @mpd - where to look for pages 2239 * 2240 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2241 * IO immediately. When we find a page which isn't mapped we start accumulating 2242 * extent of buffers underlying these pages that needs mapping (formed by 2243 * either delayed or unwritten buffers). We also lock the pages containing 2244 * these buffers. The extent found is returned in @mpd structure (starting at 2245 * mpd->lblk with length mpd->len blocks). 2246 * 2247 * Note that this function can attach bios to one io_end structure which are 2248 * neither logically nor physically contiguous. Although it may seem as an 2249 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2250 * case as we need to track IO to all buffers underlying a page in one io_end. 2251 */ 2252 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2253 { 2254 struct address_space *mapping = mpd->inode->i_mapping; 2255 struct pagevec pvec; 2256 unsigned int nr_pages; 2257 pgoff_t index = mpd->first_page; 2258 pgoff_t end = mpd->last_page; 2259 int tag; 2260 int i, err = 0; 2261 int blkbits = mpd->inode->i_blkbits; 2262 ext4_lblk_t lblk; 2263 struct buffer_head *head; 2264 2265 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2266 tag = PAGECACHE_TAG_TOWRITE; 2267 else 2268 tag = PAGECACHE_TAG_DIRTY; 2269 2270 pagevec_init(&pvec, 0); 2271 mpd->map.m_len = 0; 2272 mpd->next_page = index; 2273 while (index <= end) { 2274 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2275 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2276 if (nr_pages == 0) 2277 goto out; 2278 2279 for (i = 0; i < nr_pages; i++) { 2280 struct page *page = pvec.pages[i]; 2281 2282 /* 2283 * At this point, the page may be truncated or 2284 * invalidated (changing page->mapping to NULL), or 2285 * even swizzled back from swapper_space to tmpfs file 2286 * mapping. However, page->index will not change 2287 * because we have a reference on the page. 2288 */ 2289 if (page->index > end) 2290 goto out; 2291 2292 /* If we can't merge this page, we are done. */ 2293 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2294 goto out; 2295 2296 lock_page(page); 2297 /* 2298 * If the page is no longer dirty, or its mapping no 2299 * longer corresponds to inode we are writing (which 2300 * means it has been truncated or invalidated), or the 2301 * page is already under writeback and we are not doing 2302 * a data integrity writeback, skip the page 2303 */ 2304 if (!PageDirty(page) || 2305 (PageWriteback(page) && 2306 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2307 unlikely(page->mapping != mapping)) { 2308 unlock_page(page); 2309 continue; 2310 } 2311 2312 wait_on_page_writeback(page); 2313 BUG_ON(PageWriteback(page)); 2314 2315 if (mpd->map.m_len == 0) 2316 mpd->first_page = page->index; 2317 mpd->next_page = page->index + 1; 2318 /* Add all dirty buffers to mpd */ 2319 lblk = ((ext4_lblk_t)page->index) << 2320 (PAGE_CACHE_SHIFT - blkbits); 2321 head = page_buffers(page); 2322 if (!add_page_bufs_to_extent(mpd, head, head, lblk)) 2323 goto out; 2324 /* So far everything mapped? Submit the page for IO. */ 2325 if (mpd->map.m_len == 0) { 2326 err = mpage_submit_page(mpd, page); 2327 if (err < 0) 2328 goto out; 2329 } 2330 2331 /* 2332 * Accumulated enough dirty pages? This doesn't apply 2333 * to WB_SYNC_ALL mode. For integrity sync we have to 2334 * keep going because someone may be concurrently 2335 * dirtying pages, and we might have synced a lot of 2336 * newly appeared dirty pages, but have not synced all 2337 * of the old dirty pages. 2338 */ 2339 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2340 mpd->next_page - mpd->first_page >= 2341 mpd->wbc->nr_to_write) 2342 goto out; 2343 } 2344 pagevec_release(&pvec); 2345 cond_resched(); 2346 } 2347 return 0; 2348 out: 2349 pagevec_release(&pvec); 2350 return err; 2351 } 2352 2353 static int __writepage(struct page *page, struct writeback_control *wbc, 2354 void *data) 2355 { 2356 struct address_space *mapping = data; 2357 int ret = ext4_writepage(page, wbc); 2358 mapping_set_error(mapping, ret); 2359 return ret; 2360 } 2361 2362 static int ext4_writepages(struct address_space *mapping, 2363 struct writeback_control *wbc) 2364 { 2365 pgoff_t writeback_index = 0; 2366 long nr_to_write = wbc->nr_to_write; 2367 int range_whole = 0; 2368 int cycled = 1; 2369 handle_t *handle = NULL; 2370 struct mpage_da_data mpd; 2371 struct inode *inode = mapping->host; 2372 int needed_blocks, rsv_blocks = 0, ret = 0; 2373 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2374 bool done; 2375 struct blk_plug plug; 2376 bool give_up_on_write = false; 2377 2378 trace_ext4_writepages(inode, wbc); 2379 2380 /* 2381 * No pages to write? This is mainly a kludge to avoid starting 2382 * a transaction for special inodes like journal inode on last iput() 2383 * because that could violate lock ordering on umount 2384 */ 2385 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2386 return 0; 2387 2388 if (ext4_should_journal_data(inode)) { 2389 struct blk_plug plug; 2390 int ret; 2391 2392 blk_start_plug(&plug); 2393 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2394 blk_finish_plug(&plug); 2395 return ret; 2396 } 2397 2398 /* 2399 * If the filesystem has aborted, it is read-only, so return 2400 * right away instead of dumping stack traces later on that 2401 * will obscure the real source of the problem. We test 2402 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2403 * the latter could be true if the filesystem is mounted 2404 * read-only, and in that case, ext4_writepages should 2405 * *never* be called, so if that ever happens, we would want 2406 * the stack trace. 2407 */ 2408 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2409 return -EROFS; 2410 2411 if (ext4_should_dioread_nolock(inode)) { 2412 /* 2413 * We may need to convert upto one extent per block in 2414 * the page and we may dirty the inode. 2415 */ 2416 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2417 } 2418 2419 /* 2420 * If we have inline data and arrive here, it means that 2421 * we will soon create the block for the 1st page, so 2422 * we'd better clear the inline data here. 2423 */ 2424 if (ext4_has_inline_data(inode)) { 2425 /* Just inode will be modified... */ 2426 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2427 if (IS_ERR(handle)) { 2428 ret = PTR_ERR(handle); 2429 goto out_writepages; 2430 } 2431 BUG_ON(ext4_test_inode_state(inode, 2432 EXT4_STATE_MAY_INLINE_DATA)); 2433 ext4_destroy_inline_data(handle, inode); 2434 ext4_journal_stop(handle); 2435 } 2436 2437 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2438 range_whole = 1; 2439 2440 if (wbc->range_cyclic) { 2441 writeback_index = mapping->writeback_index; 2442 if (writeback_index) 2443 cycled = 0; 2444 mpd.first_page = writeback_index; 2445 mpd.last_page = -1; 2446 } else { 2447 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2448 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2449 } 2450 2451 mpd.inode = inode; 2452 mpd.wbc = wbc; 2453 ext4_io_submit_init(&mpd.io_submit, wbc); 2454 retry: 2455 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2456 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2457 done = false; 2458 blk_start_plug(&plug); 2459 while (!done && mpd.first_page <= mpd.last_page) { 2460 /* For each extent of pages we use new io_end */ 2461 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2462 if (!mpd.io_submit.io_end) { 2463 ret = -ENOMEM; 2464 break; 2465 } 2466 2467 /* 2468 * We have two constraints: We find one extent to map and we 2469 * must always write out whole page (makes a difference when 2470 * blocksize < pagesize) so that we don't block on IO when we 2471 * try to write out the rest of the page. Journalled mode is 2472 * not supported by delalloc. 2473 */ 2474 BUG_ON(ext4_should_journal_data(inode)); 2475 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2476 2477 /* start a new transaction */ 2478 handle = ext4_journal_start_with_reserve(inode, 2479 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2480 if (IS_ERR(handle)) { 2481 ret = PTR_ERR(handle); 2482 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2483 "%ld pages, ino %lu; err %d", __func__, 2484 wbc->nr_to_write, inode->i_ino, ret); 2485 /* Release allocated io_end */ 2486 ext4_put_io_end(mpd.io_submit.io_end); 2487 break; 2488 } 2489 2490 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2491 ret = mpage_prepare_extent_to_map(&mpd); 2492 if (!ret) { 2493 if (mpd.map.m_len) 2494 ret = mpage_map_and_submit_extent(handle, &mpd, 2495 &give_up_on_write); 2496 else { 2497 /* 2498 * We scanned the whole range (or exhausted 2499 * nr_to_write), submitted what was mapped and 2500 * didn't find anything needing mapping. We are 2501 * done. 2502 */ 2503 done = true; 2504 } 2505 } 2506 ext4_journal_stop(handle); 2507 /* Submit prepared bio */ 2508 ext4_io_submit(&mpd.io_submit); 2509 /* Unlock pages we didn't use */ 2510 mpage_release_unused_pages(&mpd, give_up_on_write); 2511 /* Drop our io_end reference we got from init */ 2512 ext4_put_io_end(mpd.io_submit.io_end); 2513 2514 if (ret == -ENOSPC && sbi->s_journal) { 2515 /* 2516 * Commit the transaction which would 2517 * free blocks released in the transaction 2518 * and try again 2519 */ 2520 jbd2_journal_force_commit_nested(sbi->s_journal); 2521 ret = 0; 2522 continue; 2523 } 2524 /* Fatal error - ENOMEM, EIO... */ 2525 if (ret) 2526 break; 2527 } 2528 blk_finish_plug(&plug); 2529 if (!ret && !cycled) { 2530 cycled = 1; 2531 mpd.last_page = writeback_index - 1; 2532 mpd.first_page = 0; 2533 goto retry; 2534 } 2535 2536 /* Update index */ 2537 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2538 /* 2539 * Set the writeback_index so that range_cyclic 2540 * mode will write it back later 2541 */ 2542 mapping->writeback_index = mpd.first_page; 2543 2544 out_writepages: 2545 trace_ext4_writepages_result(inode, wbc, ret, 2546 nr_to_write - wbc->nr_to_write); 2547 return ret; 2548 } 2549 2550 static int ext4_nonda_switch(struct super_block *sb) 2551 { 2552 s64 free_clusters, dirty_clusters; 2553 struct ext4_sb_info *sbi = EXT4_SB(sb); 2554 2555 /* 2556 * switch to non delalloc mode if we are running low 2557 * on free block. The free block accounting via percpu 2558 * counters can get slightly wrong with percpu_counter_batch getting 2559 * accumulated on each CPU without updating global counters 2560 * Delalloc need an accurate free block accounting. So switch 2561 * to non delalloc when we are near to error range. 2562 */ 2563 free_clusters = 2564 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2565 dirty_clusters = 2566 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2567 /* 2568 * Start pushing delalloc when 1/2 of free blocks are dirty. 2569 */ 2570 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2571 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2572 2573 if (2 * free_clusters < 3 * dirty_clusters || 2574 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2575 /* 2576 * free block count is less than 150% of dirty blocks 2577 * or free blocks is less than watermark 2578 */ 2579 return 1; 2580 } 2581 return 0; 2582 } 2583 2584 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2585 loff_t pos, unsigned len, unsigned flags, 2586 struct page **pagep, void **fsdata) 2587 { 2588 int ret, retries = 0; 2589 struct page *page; 2590 pgoff_t index; 2591 struct inode *inode = mapping->host; 2592 handle_t *handle; 2593 2594 index = pos >> PAGE_CACHE_SHIFT; 2595 2596 if (ext4_nonda_switch(inode->i_sb)) { 2597 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2598 return ext4_write_begin(file, mapping, pos, 2599 len, flags, pagep, fsdata); 2600 } 2601 *fsdata = (void *)0; 2602 trace_ext4_da_write_begin(inode, pos, len, flags); 2603 2604 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2605 ret = ext4_da_write_inline_data_begin(mapping, inode, 2606 pos, len, flags, 2607 pagep, fsdata); 2608 if (ret < 0) 2609 return ret; 2610 if (ret == 1) 2611 return 0; 2612 } 2613 2614 /* 2615 * grab_cache_page_write_begin() can take a long time if the 2616 * system is thrashing due to memory pressure, or if the page 2617 * is being written back. So grab it first before we start 2618 * the transaction handle. This also allows us to allocate 2619 * the page (if needed) without using GFP_NOFS. 2620 */ 2621 retry_grab: 2622 page = grab_cache_page_write_begin(mapping, index, flags); 2623 if (!page) 2624 return -ENOMEM; 2625 unlock_page(page); 2626 2627 /* 2628 * With delayed allocation, we don't log the i_disksize update 2629 * if there is delayed block allocation. But we still need 2630 * to journalling the i_disksize update if writes to the end 2631 * of file which has an already mapped buffer. 2632 */ 2633 retry_journal: 2634 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2635 if (IS_ERR(handle)) { 2636 page_cache_release(page); 2637 return PTR_ERR(handle); 2638 } 2639 2640 lock_page(page); 2641 if (page->mapping != mapping) { 2642 /* The page got truncated from under us */ 2643 unlock_page(page); 2644 page_cache_release(page); 2645 ext4_journal_stop(handle); 2646 goto retry_grab; 2647 } 2648 /* In case writeback began while the page was unlocked */ 2649 wait_on_page_writeback(page); 2650 2651 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2652 if (ret < 0) { 2653 unlock_page(page); 2654 ext4_journal_stop(handle); 2655 /* 2656 * block_write_begin may have instantiated a few blocks 2657 * outside i_size. Trim these off again. Don't need 2658 * i_size_read because we hold i_mutex. 2659 */ 2660 if (pos + len > inode->i_size) 2661 ext4_truncate_failed_write(inode); 2662 2663 if (ret == -ENOSPC && 2664 ext4_should_retry_alloc(inode->i_sb, &retries)) 2665 goto retry_journal; 2666 2667 page_cache_release(page); 2668 return ret; 2669 } 2670 2671 *pagep = page; 2672 return ret; 2673 } 2674 2675 /* 2676 * Check if we should update i_disksize 2677 * when write to the end of file but not require block allocation 2678 */ 2679 static int ext4_da_should_update_i_disksize(struct page *page, 2680 unsigned long offset) 2681 { 2682 struct buffer_head *bh; 2683 struct inode *inode = page->mapping->host; 2684 unsigned int idx; 2685 int i; 2686 2687 bh = page_buffers(page); 2688 idx = offset >> inode->i_blkbits; 2689 2690 for (i = 0; i < idx; i++) 2691 bh = bh->b_this_page; 2692 2693 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2694 return 0; 2695 return 1; 2696 } 2697 2698 static int ext4_da_write_end(struct file *file, 2699 struct address_space *mapping, 2700 loff_t pos, unsigned len, unsigned copied, 2701 struct page *page, void *fsdata) 2702 { 2703 struct inode *inode = mapping->host; 2704 int ret = 0, ret2; 2705 handle_t *handle = ext4_journal_current_handle(); 2706 loff_t new_i_size; 2707 unsigned long start, end; 2708 int write_mode = (int)(unsigned long)fsdata; 2709 2710 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2711 return ext4_write_end(file, mapping, pos, 2712 len, copied, page, fsdata); 2713 2714 trace_ext4_da_write_end(inode, pos, len, copied); 2715 start = pos & (PAGE_CACHE_SIZE - 1); 2716 end = start + copied - 1; 2717 2718 /* 2719 * generic_write_end() will run mark_inode_dirty() if i_size 2720 * changes. So let's piggyback the i_disksize mark_inode_dirty 2721 * into that. 2722 */ 2723 new_i_size = pos + copied; 2724 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2725 if (ext4_has_inline_data(inode) || 2726 ext4_da_should_update_i_disksize(page, end)) { 2727 down_write(&EXT4_I(inode)->i_data_sem); 2728 if (new_i_size > EXT4_I(inode)->i_disksize) 2729 EXT4_I(inode)->i_disksize = new_i_size; 2730 up_write(&EXT4_I(inode)->i_data_sem); 2731 /* We need to mark inode dirty even if 2732 * new_i_size is less that inode->i_size 2733 * bu greater than i_disksize.(hint delalloc) 2734 */ 2735 ext4_mark_inode_dirty(handle, inode); 2736 } 2737 } 2738 2739 if (write_mode != CONVERT_INLINE_DATA && 2740 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2741 ext4_has_inline_data(inode)) 2742 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2743 page); 2744 else 2745 ret2 = generic_write_end(file, mapping, pos, len, copied, 2746 page, fsdata); 2747 2748 copied = ret2; 2749 if (ret2 < 0) 2750 ret = ret2; 2751 ret2 = ext4_journal_stop(handle); 2752 if (!ret) 2753 ret = ret2; 2754 2755 return ret ? ret : copied; 2756 } 2757 2758 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2759 unsigned int length) 2760 { 2761 /* 2762 * Drop reserved blocks 2763 */ 2764 BUG_ON(!PageLocked(page)); 2765 if (!page_has_buffers(page)) 2766 goto out; 2767 2768 ext4_da_page_release_reservation(page, offset, length); 2769 2770 out: 2771 ext4_invalidatepage(page, offset, length); 2772 2773 return; 2774 } 2775 2776 /* 2777 * Force all delayed allocation blocks to be allocated for a given inode. 2778 */ 2779 int ext4_alloc_da_blocks(struct inode *inode) 2780 { 2781 trace_ext4_alloc_da_blocks(inode); 2782 2783 if (!EXT4_I(inode)->i_reserved_data_blocks && 2784 !EXT4_I(inode)->i_reserved_meta_blocks) 2785 return 0; 2786 2787 /* 2788 * We do something simple for now. The filemap_flush() will 2789 * also start triggering a write of the data blocks, which is 2790 * not strictly speaking necessary (and for users of 2791 * laptop_mode, not even desirable). However, to do otherwise 2792 * would require replicating code paths in: 2793 * 2794 * ext4_writepages() -> 2795 * write_cache_pages() ---> (via passed in callback function) 2796 * __mpage_da_writepage() --> 2797 * mpage_add_bh_to_extent() 2798 * mpage_da_map_blocks() 2799 * 2800 * The problem is that write_cache_pages(), located in 2801 * mm/page-writeback.c, marks pages clean in preparation for 2802 * doing I/O, which is not desirable if we're not planning on 2803 * doing I/O at all. 2804 * 2805 * We could call write_cache_pages(), and then redirty all of 2806 * the pages by calling redirty_page_for_writepage() but that 2807 * would be ugly in the extreme. So instead we would need to 2808 * replicate parts of the code in the above functions, 2809 * simplifying them because we wouldn't actually intend to 2810 * write out the pages, but rather only collect contiguous 2811 * logical block extents, call the multi-block allocator, and 2812 * then update the buffer heads with the block allocations. 2813 * 2814 * For now, though, we'll cheat by calling filemap_flush(), 2815 * which will map the blocks, and start the I/O, but not 2816 * actually wait for the I/O to complete. 2817 */ 2818 return filemap_flush(inode->i_mapping); 2819 } 2820 2821 /* 2822 * bmap() is special. It gets used by applications such as lilo and by 2823 * the swapper to find the on-disk block of a specific piece of data. 2824 * 2825 * Naturally, this is dangerous if the block concerned is still in the 2826 * journal. If somebody makes a swapfile on an ext4 data-journaling 2827 * filesystem and enables swap, then they may get a nasty shock when the 2828 * data getting swapped to that swapfile suddenly gets overwritten by 2829 * the original zero's written out previously to the journal and 2830 * awaiting writeback in the kernel's buffer cache. 2831 * 2832 * So, if we see any bmap calls here on a modified, data-journaled file, 2833 * take extra steps to flush any blocks which might be in the cache. 2834 */ 2835 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2836 { 2837 struct inode *inode = mapping->host; 2838 journal_t *journal; 2839 int err; 2840 2841 /* 2842 * We can get here for an inline file via the FIBMAP ioctl 2843 */ 2844 if (ext4_has_inline_data(inode)) 2845 return 0; 2846 2847 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2848 test_opt(inode->i_sb, DELALLOC)) { 2849 /* 2850 * With delalloc we want to sync the file 2851 * so that we can make sure we allocate 2852 * blocks for file 2853 */ 2854 filemap_write_and_wait(mapping); 2855 } 2856 2857 if (EXT4_JOURNAL(inode) && 2858 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2859 /* 2860 * This is a REALLY heavyweight approach, but the use of 2861 * bmap on dirty files is expected to be extremely rare: 2862 * only if we run lilo or swapon on a freshly made file 2863 * do we expect this to happen. 2864 * 2865 * (bmap requires CAP_SYS_RAWIO so this does not 2866 * represent an unprivileged user DOS attack --- we'd be 2867 * in trouble if mortal users could trigger this path at 2868 * will.) 2869 * 2870 * NB. EXT4_STATE_JDATA is not set on files other than 2871 * regular files. If somebody wants to bmap a directory 2872 * or symlink and gets confused because the buffer 2873 * hasn't yet been flushed to disk, they deserve 2874 * everything they get. 2875 */ 2876 2877 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2878 journal = EXT4_JOURNAL(inode); 2879 jbd2_journal_lock_updates(journal); 2880 err = jbd2_journal_flush(journal); 2881 jbd2_journal_unlock_updates(journal); 2882 2883 if (err) 2884 return 0; 2885 } 2886 2887 return generic_block_bmap(mapping, block, ext4_get_block); 2888 } 2889 2890 static int ext4_readpage(struct file *file, struct page *page) 2891 { 2892 int ret = -EAGAIN; 2893 struct inode *inode = page->mapping->host; 2894 2895 trace_ext4_readpage(page); 2896 2897 if (ext4_has_inline_data(inode)) 2898 ret = ext4_readpage_inline(inode, page); 2899 2900 if (ret == -EAGAIN) 2901 return mpage_readpage(page, ext4_get_block); 2902 2903 return ret; 2904 } 2905 2906 static int 2907 ext4_readpages(struct file *file, struct address_space *mapping, 2908 struct list_head *pages, unsigned nr_pages) 2909 { 2910 struct inode *inode = mapping->host; 2911 2912 /* If the file has inline data, no need to do readpages. */ 2913 if (ext4_has_inline_data(inode)) 2914 return 0; 2915 2916 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2917 } 2918 2919 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2920 unsigned int length) 2921 { 2922 trace_ext4_invalidatepage(page, offset, length); 2923 2924 /* No journalling happens on data buffers when this function is used */ 2925 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2926 2927 block_invalidatepage(page, offset, length); 2928 } 2929 2930 static int __ext4_journalled_invalidatepage(struct page *page, 2931 unsigned int offset, 2932 unsigned int length) 2933 { 2934 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2935 2936 trace_ext4_journalled_invalidatepage(page, offset, length); 2937 2938 /* 2939 * If it's a full truncate we just forget about the pending dirtying 2940 */ 2941 if (offset == 0 && length == PAGE_CACHE_SIZE) 2942 ClearPageChecked(page); 2943 2944 return jbd2_journal_invalidatepage(journal, page, offset, length); 2945 } 2946 2947 /* Wrapper for aops... */ 2948 static void ext4_journalled_invalidatepage(struct page *page, 2949 unsigned int offset, 2950 unsigned int length) 2951 { 2952 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2953 } 2954 2955 static int ext4_releasepage(struct page *page, gfp_t wait) 2956 { 2957 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2958 2959 trace_ext4_releasepage(page); 2960 2961 /* Page has dirty journalled data -> cannot release */ 2962 if (PageChecked(page)) 2963 return 0; 2964 if (journal) 2965 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2966 else 2967 return try_to_free_buffers(page); 2968 } 2969 2970 /* 2971 * ext4_get_block used when preparing for a DIO write or buffer write. 2972 * We allocate an uinitialized extent if blocks haven't been allocated. 2973 * The extent will be converted to initialized after the IO is complete. 2974 */ 2975 int ext4_get_block_write(struct inode *inode, sector_t iblock, 2976 struct buffer_head *bh_result, int create) 2977 { 2978 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2979 inode->i_ino, create); 2980 return _ext4_get_block(inode, iblock, bh_result, 2981 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2982 } 2983 2984 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2985 struct buffer_head *bh_result, int create) 2986 { 2987 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 2988 inode->i_ino, create); 2989 return _ext4_get_block(inode, iblock, bh_result, 2990 EXT4_GET_BLOCKS_NO_LOCK); 2991 } 2992 2993 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2994 ssize_t size, void *private, int ret, 2995 bool is_async) 2996 { 2997 struct inode *inode = file_inode(iocb->ki_filp); 2998 ext4_io_end_t *io_end = iocb->private; 2999 3000 /* if not async direct IO just return */ 3001 if (!io_end) { 3002 inode_dio_done(inode); 3003 if (is_async) 3004 aio_complete(iocb, ret, 0); 3005 return; 3006 } 3007 3008 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3009 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3010 iocb->private, io_end->inode->i_ino, iocb, offset, 3011 size); 3012 3013 iocb->private = NULL; 3014 io_end->offset = offset; 3015 io_end->size = size; 3016 if (is_async) { 3017 io_end->iocb = iocb; 3018 io_end->result = ret; 3019 } 3020 ext4_put_io_end_defer(io_end); 3021 } 3022 3023 /* 3024 * For ext4 extent files, ext4 will do direct-io write to holes, 3025 * preallocated extents, and those write extend the file, no need to 3026 * fall back to buffered IO. 3027 * 3028 * For holes, we fallocate those blocks, mark them as uninitialized 3029 * If those blocks were preallocated, we mark sure they are split, but 3030 * still keep the range to write as uninitialized. 3031 * 3032 * The unwritten extents will be converted to written when DIO is completed. 3033 * For async direct IO, since the IO may still pending when return, we 3034 * set up an end_io call back function, which will do the conversion 3035 * when async direct IO completed. 3036 * 3037 * If the O_DIRECT write will extend the file then add this inode to the 3038 * orphan list. So recovery will truncate it back to the original size 3039 * if the machine crashes during the write. 3040 * 3041 */ 3042 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3043 const struct iovec *iov, loff_t offset, 3044 unsigned long nr_segs) 3045 { 3046 struct file *file = iocb->ki_filp; 3047 struct inode *inode = file->f_mapping->host; 3048 ssize_t ret; 3049 size_t count = iov_length(iov, nr_segs); 3050 int overwrite = 0; 3051 get_block_t *get_block_func = NULL; 3052 int dio_flags = 0; 3053 loff_t final_size = offset + count; 3054 ext4_io_end_t *io_end = NULL; 3055 3056 /* Use the old path for reads and writes beyond i_size. */ 3057 if (rw != WRITE || final_size > inode->i_size) 3058 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3059 3060 BUG_ON(iocb->private == NULL); 3061 3062 /* 3063 * Make all waiters for direct IO properly wait also for extent 3064 * conversion. This also disallows race between truncate() and 3065 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3066 */ 3067 if (rw == WRITE) 3068 atomic_inc(&inode->i_dio_count); 3069 3070 /* If we do a overwrite dio, i_mutex locking can be released */ 3071 overwrite = *((int *)iocb->private); 3072 3073 if (overwrite) { 3074 down_read(&EXT4_I(inode)->i_data_sem); 3075 mutex_unlock(&inode->i_mutex); 3076 } 3077 3078 /* 3079 * We could direct write to holes and fallocate. 3080 * 3081 * Allocated blocks to fill the hole are marked as 3082 * uninitialized to prevent parallel buffered read to expose 3083 * the stale data before DIO complete the data IO. 3084 * 3085 * As to previously fallocated extents, ext4 get_block will 3086 * just simply mark the buffer mapped but still keep the 3087 * extents uninitialized. 3088 * 3089 * For non AIO case, we will convert those unwritten extents 3090 * to written after return back from blockdev_direct_IO. 3091 * 3092 * For async DIO, the conversion needs to be deferred when the 3093 * IO is completed. The ext4 end_io callback function will be 3094 * called to take care of the conversion work. Here for async 3095 * case, we allocate an io_end structure to hook to the iocb. 3096 */ 3097 iocb->private = NULL; 3098 ext4_inode_aio_set(inode, NULL); 3099 if (!is_sync_kiocb(iocb)) { 3100 io_end = ext4_init_io_end(inode, GFP_NOFS); 3101 if (!io_end) { 3102 ret = -ENOMEM; 3103 goto retake_lock; 3104 } 3105 io_end->flag |= EXT4_IO_END_DIRECT; 3106 /* 3107 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3108 */ 3109 iocb->private = ext4_get_io_end(io_end); 3110 /* 3111 * we save the io structure for current async direct 3112 * IO, so that later ext4_map_blocks() could flag the 3113 * io structure whether there is a unwritten extents 3114 * needs to be converted when IO is completed. 3115 */ 3116 ext4_inode_aio_set(inode, io_end); 3117 } 3118 3119 if (overwrite) { 3120 get_block_func = ext4_get_block_write_nolock; 3121 } else { 3122 get_block_func = ext4_get_block_write; 3123 dio_flags = DIO_LOCKING; 3124 } 3125 ret = __blockdev_direct_IO(rw, iocb, inode, 3126 inode->i_sb->s_bdev, iov, 3127 offset, nr_segs, 3128 get_block_func, 3129 ext4_end_io_dio, 3130 NULL, 3131 dio_flags); 3132 3133 /* 3134 * Put our reference to io_end. This can free the io_end structure e.g. 3135 * in sync IO case or in case of error. It can even perform extent 3136 * conversion if all bios we submitted finished before we got here. 3137 * Note that in that case iocb->private can be already set to NULL 3138 * here. 3139 */ 3140 if (io_end) { 3141 ext4_inode_aio_set(inode, NULL); 3142 ext4_put_io_end(io_end); 3143 /* 3144 * When no IO was submitted ext4_end_io_dio() was not 3145 * called so we have to put iocb's reference. 3146 */ 3147 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3148 WARN_ON(iocb->private != io_end); 3149 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3150 WARN_ON(io_end->iocb); 3151 /* 3152 * Generic code already did inode_dio_done() so we 3153 * have to clear EXT4_IO_END_DIRECT to not do it for 3154 * the second time. 3155 */ 3156 io_end->flag = 0; 3157 ext4_put_io_end(io_end); 3158 iocb->private = NULL; 3159 } 3160 } 3161 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3162 EXT4_STATE_DIO_UNWRITTEN)) { 3163 int err; 3164 /* 3165 * for non AIO case, since the IO is already 3166 * completed, we could do the conversion right here 3167 */ 3168 err = ext4_convert_unwritten_extents(NULL, inode, 3169 offset, ret); 3170 if (err < 0) 3171 ret = err; 3172 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3173 } 3174 3175 retake_lock: 3176 if (rw == WRITE) 3177 inode_dio_done(inode); 3178 /* take i_mutex locking again if we do a ovewrite dio */ 3179 if (overwrite) { 3180 up_read(&EXT4_I(inode)->i_data_sem); 3181 mutex_lock(&inode->i_mutex); 3182 } 3183 3184 return ret; 3185 } 3186 3187 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3188 const struct iovec *iov, loff_t offset, 3189 unsigned long nr_segs) 3190 { 3191 struct file *file = iocb->ki_filp; 3192 struct inode *inode = file->f_mapping->host; 3193 ssize_t ret; 3194 3195 /* 3196 * If we are doing data journalling we don't support O_DIRECT 3197 */ 3198 if (ext4_should_journal_data(inode)) 3199 return 0; 3200 3201 /* Let buffer I/O handle the inline data case. */ 3202 if (ext4_has_inline_data(inode)) 3203 return 0; 3204 3205 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3206 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3207 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3208 else 3209 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3210 trace_ext4_direct_IO_exit(inode, offset, 3211 iov_length(iov, nr_segs), rw, ret); 3212 return ret; 3213 } 3214 3215 /* 3216 * Pages can be marked dirty completely asynchronously from ext4's journalling 3217 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3218 * much here because ->set_page_dirty is called under VFS locks. The page is 3219 * not necessarily locked. 3220 * 3221 * We cannot just dirty the page and leave attached buffers clean, because the 3222 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3223 * or jbddirty because all the journalling code will explode. 3224 * 3225 * So what we do is to mark the page "pending dirty" and next time writepage 3226 * is called, propagate that into the buffers appropriately. 3227 */ 3228 static int ext4_journalled_set_page_dirty(struct page *page) 3229 { 3230 SetPageChecked(page); 3231 return __set_page_dirty_nobuffers(page); 3232 } 3233 3234 static const struct address_space_operations ext4_aops = { 3235 .readpage = ext4_readpage, 3236 .readpages = ext4_readpages, 3237 .writepage = ext4_writepage, 3238 .writepages = ext4_writepages, 3239 .write_begin = ext4_write_begin, 3240 .write_end = ext4_write_end, 3241 .bmap = ext4_bmap, 3242 .invalidatepage = ext4_invalidatepage, 3243 .releasepage = ext4_releasepage, 3244 .direct_IO = ext4_direct_IO, 3245 .migratepage = buffer_migrate_page, 3246 .is_partially_uptodate = block_is_partially_uptodate, 3247 .error_remove_page = generic_error_remove_page, 3248 }; 3249 3250 static const struct address_space_operations ext4_journalled_aops = { 3251 .readpage = ext4_readpage, 3252 .readpages = ext4_readpages, 3253 .writepage = ext4_writepage, 3254 .writepages = ext4_writepages, 3255 .write_begin = ext4_write_begin, 3256 .write_end = ext4_journalled_write_end, 3257 .set_page_dirty = ext4_journalled_set_page_dirty, 3258 .bmap = ext4_bmap, 3259 .invalidatepage = ext4_journalled_invalidatepage, 3260 .releasepage = ext4_releasepage, 3261 .direct_IO = ext4_direct_IO, 3262 .is_partially_uptodate = block_is_partially_uptodate, 3263 .error_remove_page = generic_error_remove_page, 3264 }; 3265 3266 static const struct address_space_operations ext4_da_aops = { 3267 .readpage = ext4_readpage, 3268 .readpages = ext4_readpages, 3269 .writepage = ext4_writepage, 3270 .writepages = ext4_writepages, 3271 .write_begin = ext4_da_write_begin, 3272 .write_end = ext4_da_write_end, 3273 .bmap = ext4_bmap, 3274 .invalidatepage = ext4_da_invalidatepage, 3275 .releasepage = ext4_releasepage, 3276 .direct_IO = ext4_direct_IO, 3277 .migratepage = buffer_migrate_page, 3278 .is_partially_uptodate = block_is_partially_uptodate, 3279 .error_remove_page = generic_error_remove_page, 3280 }; 3281 3282 void ext4_set_aops(struct inode *inode) 3283 { 3284 switch (ext4_inode_journal_mode(inode)) { 3285 case EXT4_INODE_ORDERED_DATA_MODE: 3286 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3287 break; 3288 case EXT4_INODE_WRITEBACK_DATA_MODE: 3289 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3290 break; 3291 case EXT4_INODE_JOURNAL_DATA_MODE: 3292 inode->i_mapping->a_ops = &ext4_journalled_aops; 3293 return; 3294 default: 3295 BUG(); 3296 } 3297 if (test_opt(inode->i_sb, DELALLOC)) 3298 inode->i_mapping->a_ops = &ext4_da_aops; 3299 else 3300 inode->i_mapping->a_ops = &ext4_aops; 3301 } 3302 3303 /* 3304 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3305 * up to the end of the block which corresponds to `from'. 3306 * This required during truncate. We need to physically zero the tail end 3307 * of that block so it doesn't yield old data if the file is later grown. 3308 */ 3309 int ext4_block_truncate_page(handle_t *handle, 3310 struct address_space *mapping, loff_t from) 3311 { 3312 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3313 unsigned length; 3314 unsigned blocksize; 3315 struct inode *inode = mapping->host; 3316 3317 blocksize = inode->i_sb->s_blocksize; 3318 length = blocksize - (offset & (blocksize - 1)); 3319 3320 return ext4_block_zero_page_range(handle, mapping, from, length); 3321 } 3322 3323 /* 3324 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3325 * starting from file offset 'from'. The range to be zero'd must 3326 * be contained with in one block. If the specified range exceeds 3327 * the end of the block it will be shortened to end of the block 3328 * that cooresponds to 'from' 3329 */ 3330 int ext4_block_zero_page_range(handle_t *handle, 3331 struct address_space *mapping, loff_t from, loff_t length) 3332 { 3333 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3334 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3335 unsigned blocksize, max, pos; 3336 ext4_lblk_t iblock; 3337 struct inode *inode = mapping->host; 3338 struct buffer_head *bh; 3339 struct page *page; 3340 int err = 0; 3341 3342 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3343 mapping_gfp_mask(mapping) & ~__GFP_FS); 3344 if (!page) 3345 return -ENOMEM; 3346 3347 blocksize = inode->i_sb->s_blocksize; 3348 max = blocksize - (offset & (blocksize - 1)); 3349 3350 /* 3351 * correct length if it does not fall between 3352 * 'from' and the end of the block 3353 */ 3354 if (length > max || length < 0) 3355 length = max; 3356 3357 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3358 3359 if (!page_has_buffers(page)) 3360 create_empty_buffers(page, blocksize, 0); 3361 3362 /* Find the buffer that contains "offset" */ 3363 bh = page_buffers(page); 3364 pos = blocksize; 3365 while (offset >= pos) { 3366 bh = bh->b_this_page; 3367 iblock++; 3368 pos += blocksize; 3369 } 3370 if (buffer_freed(bh)) { 3371 BUFFER_TRACE(bh, "freed: skip"); 3372 goto unlock; 3373 } 3374 if (!buffer_mapped(bh)) { 3375 BUFFER_TRACE(bh, "unmapped"); 3376 ext4_get_block(inode, iblock, bh, 0); 3377 /* unmapped? It's a hole - nothing to do */ 3378 if (!buffer_mapped(bh)) { 3379 BUFFER_TRACE(bh, "still unmapped"); 3380 goto unlock; 3381 } 3382 } 3383 3384 /* Ok, it's mapped. Make sure it's up-to-date */ 3385 if (PageUptodate(page)) 3386 set_buffer_uptodate(bh); 3387 3388 if (!buffer_uptodate(bh)) { 3389 err = -EIO; 3390 ll_rw_block(READ, 1, &bh); 3391 wait_on_buffer(bh); 3392 /* Uhhuh. Read error. Complain and punt. */ 3393 if (!buffer_uptodate(bh)) 3394 goto unlock; 3395 } 3396 if (ext4_should_journal_data(inode)) { 3397 BUFFER_TRACE(bh, "get write access"); 3398 err = ext4_journal_get_write_access(handle, bh); 3399 if (err) 3400 goto unlock; 3401 } 3402 zero_user(page, offset, length); 3403 BUFFER_TRACE(bh, "zeroed end of block"); 3404 3405 if (ext4_should_journal_data(inode)) { 3406 err = ext4_handle_dirty_metadata(handle, inode, bh); 3407 } else { 3408 err = 0; 3409 mark_buffer_dirty(bh); 3410 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3411 err = ext4_jbd2_file_inode(handle, inode); 3412 } 3413 3414 unlock: 3415 unlock_page(page); 3416 page_cache_release(page); 3417 return err; 3418 } 3419 3420 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3421 loff_t lstart, loff_t length) 3422 { 3423 struct super_block *sb = inode->i_sb; 3424 struct address_space *mapping = inode->i_mapping; 3425 unsigned partial_start, partial_end; 3426 ext4_fsblk_t start, end; 3427 loff_t byte_end = (lstart + length - 1); 3428 int err = 0; 3429 3430 partial_start = lstart & (sb->s_blocksize - 1); 3431 partial_end = byte_end & (sb->s_blocksize - 1); 3432 3433 start = lstart >> sb->s_blocksize_bits; 3434 end = byte_end >> sb->s_blocksize_bits; 3435 3436 /* Handle partial zero within the single block */ 3437 if (start == end && 3438 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3439 err = ext4_block_zero_page_range(handle, mapping, 3440 lstart, length); 3441 return err; 3442 } 3443 /* Handle partial zero out on the start of the range */ 3444 if (partial_start) { 3445 err = ext4_block_zero_page_range(handle, mapping, 3446 lstart, sb->s_blocksize); 3447 if (err) 3448 return err; 3449 } 3450 /* Handle partial zero out on the end of the range */ 3451 if (partial_end != sb->s_blocksize - 1) 3452 err = ext4_block_zero_page_range(handle, mapping, 3453 byte_end - partial_end, 3454 partial_end + 1); 3455 return err; 3456 } 3457 3458 int ext4_can_truncate(struct inode *inode) 3459 { 3460 if (S_ISREG(inode->i_mode)) 3461 return 1; 3462 if (S_ISDIR(inode->i_mode)) 3463 return 1; 3464 if (S_ISLNK(inode->i_mode)) 3465 return !ext4_inode_is_fast_symlink(inode); 3466 return 0; 3467 } 3468 3469 /* 3470 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3471 * associated with the given offset and length 3472 * 3473 * @inode: File inode 3474 * @offset: The offset where the hole will begin 3475 * @len: The length of the hole 3476 * 3477 * Returns: 0 on success or negative on failure 3478 */ 3479 3480 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3481 { 3482 struct super_block *sb = inode->i_sb; 3483 ext4_lblk_t first_block, stop_block; 3484 struct address_space *mapping = inode->i_mapping; 3485 loff_t first_block_offset, last_block_offset; 3486 handle_t *handle; 3487 unsigned int credits; 3488 int ret = 0; 3489 3490 if (!S_ISREG(inode->i_mode)) 3491 return -EOPNOTSUPP; 3492 3493 if (EXT4_SB(sb)->s_cluster_ratio > 1) { 3494 /* TODO: Add support for bigalloc file systems */ 3495 return -EOPNOTSUPP; 3496 } 3497 3498 trace_ext4_punch_hole(inode, offset, length); 3499 3500 /* 3501 * Write out all dirty pages to avoid race conditions 3502 * Then release them. 3503 */ 3504 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3505 ret = filemap_write_and_wait_range(mapping, offset, 3506 offset + length - 1); 3507 if (ret) 3508 return ret; 3509 } 3510 3511 mutex_lock(&inode->i_mutex); 3512 /* It's not possible punch hole on append only file */ 3513 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3514 ret = -EPERM; 3515 goto out_mutex; 3516 } 3517 if (IS_SWAPFILE(inode)) { 3518 ret = -ETXTBSY; 3519 goto out_mutex; 3520 } 3521 3522 /* No need to punch hole beyond i_size */ 3523 if (offset >= inode->i_size) 3524 goto out_mutex; 3525 3526 /* 3527 * If the hole extends beyond i_size, set the hole 3528 * to end after the page that contains i_size 3529 */ 3530 if (offset + length > inode->i_size) { 3531 length = inode->i_size + 3532 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3533 offset; 3534 } 3535 3536 if (offset & (sb->s_blocksize - 1) || 3537 (offset + length) & (sb->s_blocksize - 1)) { 3538 /* 3539 * Attach jinode to inode for jbd2 if we do any zeroing of 3540 * partial block 3541 */ 3542 ret = ext4_inode_attach_jinode(inode); 3543 if (ret < 0) 3544 goto out_mutex; 3545 3546 } 3547 3548 first_block_offset = round_up(offset, sb->s_blocksize); 3549 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3550 3551 /* Now release the pages and zero block aligned part of pages*/ 3552 if (last_block_offset > first_block_offset) 3553 truncate_pagecache_range(inode, first_block_offset, 3554 last_block_offset); 3555 3556 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3557 ext4_inode_block_unlocked_dio(inode); 3558 inode_dio_wait(inode); 3559 3560 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3561 credits = ext4_writepage_trans_blocks(inode); 3562 else 3563 credits = ext4_blocks_for_truncate(inode); 3564 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3565 if (IS_ERR(handle)) { 3566 ret = PTR_ERR(handle); 3567 ext4_std_error(sb, ret); 3568 goto out_dio; 3569 } 3570 3571 ret = ext4_zero_partial_blocks(handle, inode, offset, 3572 length); 3573 if (ret) 3574 goto out_stop; 3575 3576 first_block = (offset + sb->s_blocksize - 1) >> 3577 EXT4_BLOCK_SIZE_BITS(sb); 3578 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3579 3580 /* If there are no blocks to remove, return now */ 3581 if (first_block >= stop_block) 3582 goto out_stop; 3583 3584 down_write(&EXT4_I(inode)->i_data_sem); 3585 ext4_discard_preallocations(inode); 3586 3587 ret = ext4_es_remove_extent(inode, first_block, 3588 stop_block - first_block); 3589 if (ret) { 3590 up_write(&EXT4_I(inode)->i_data_sem); 3591 goto out_stop; 3592 } 3593 3594 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3595 ret = ext4_ext_remove_space(inode, first_block, 3596 stop_block - 1); 3597 else 3598 ret = ext4_free_hole_blocks(handle, inode, first_block, 3599 stop_block); 3600 3601 ext4_discard_preallocations(inode); 3602 up_write(&EXT4_I(inode)->i_data_sem); 3603 if (IS_SYNC(inode)) 3604 ext4_handle_sync(handle); 3605 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3606 ext4_mark_inode_dirty(handle, inode); 3607 out_stop: 3608 ext4_journal_stop(handle); 3609 out_dio: 3610 ext4_inode_resume_unlocked_dio(inode); 3611 out_mutex: 3612 mutex_unlock(&inode->i_mutex); 3613 return ret; 3614 } 3615 3616 int ext4_inode_attach_jinode(struct inode *inode) 3617 { 3618 struct ext4_inode_info *ei = EXT4_I(inode); 3619 struct jbd2_inode *jinode; 3620 3621 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3622 return 0; 3623 3624 jinode = jbd2_alloc_inode(GFP_KERNEL); 3625 spin_lock(&inode->i_lock); 3626 if (!ei->jinode) { 3627 if (!jinode) { 3628 spin_unlock(&inode->i_lock); 3629 return -ENOMEM; 3630 } 3631 ei->jinode = jinode; 3632 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3633 jinode = NULL; 3634 } 3635 spin_unlock(&inode->i_lock); 3636 if (unlikely(jinode != NULL)) 3637 jbd2_free_inode(jinode); 3638 return 0; 3639 } 3640 3641 /* 3642 * ext4_truncate() 3643 * 3644 * We block out ext4_get_block() block instantiations across the entire 3645 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3646 * simultaneously on behalf of the same inode. 3647 * 3648 * As we work through the truncate and commit bits of it to the journal there 3649 * is one core, guiding principle: the file's tree must always be consistent on 3650 * disk. We must be able to restart the truncate after a crash. 3651 * 3652 * The file's tree may be transiently inconsistent in memory (although it 3653 * probably isn't), but whenever we close off and commit a journal transaction, 3654 * the contents of (the filesystem + the journal) must be consistent and 3655 * restartable. It's pretty simple, really: bottom up, right to left (although 3656 * left-to-right works OK too). 3657 * 3658 * Note that at recovery time, journal replay occurs *before* the restart of 3659 * truncate against the orphan inode list. 3660 * 3661 * The committed inode has the new, desired i_size (which is the same as 3662 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3663 * that this inode's truncate did not complete and it will again call 3664 * ext4_truncate() to have another go. So there will be instantiated blocks 3665 * to the right of the truncation point in a crashed ext4 filesystem. But 3666 * that's fine - as long as they are linked from the inode, the post-crash 3667 * ext4_truncate() run will find them and release them. 3668 */ 3669 void ext4_truncate(struct inode *inode) 3670 { 3671 struct ext4_inode_info *ei = EXT4_I(inode); 3672 unsigned int credits; 3673 handle_t *handle; 3674 struct address_space *mapping = inode->i_mapping; 3675 3676 /* 3677 * There is a possibility that we're either freeing the inode 3678 * or it completely new indode. In those cases we might not 3679 * have i_mutex locked because it's not necessary. 3680 */ 3681 if (!(inode->i_state & (I_NEW|I_FREEING))) 3682 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3683 trace_ext4_truncate_enter(inode); 3684 3685 if (!ext4_can_truncate(inode)) 3686 return; 3687 3688 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3689 3690 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3691 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3692 3693 if (ext4_has_inline_data(inode)) { 3694 int has_inline = 1; 3695 3696 ext4_inline_data_truncate(inode, &has_inline); 3697 if (has_inline) 3698 return; 3699 } 3700 3701 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3702 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3703 if (ext4_inode_attach_jinode(inode) < 0) 3704 return; 3705 } 3706 3707 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3708 credits = ext4_writepage_trans_blocks(inode); 3709 else 3710 credits = ext4_blocks_for_truncate(inode); 3711 3712 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3713 if (IS_ERR(handle)) { 3714 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3715 return; 3716 } 3717 3718 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3719 ext4_block_truncate_page(handle, mapping, inode->i_size); 3720 3721 /* 3722 * We add the inode to the orphan list, so that if this 3723 * truncate spans multiple transactions, and we crash, we will 3724 * resume the truncate when the filesystem recovers. It also 3725 * marks the inode dirty, to catch the new size. 3726 * 3727 * Implication: the file must always be in a sane, consistent 3728 * truncatable state while each transaction commits. 3729 */ 3730 if (ext4_orphan_add(handle, inode)) 3731 goto out_stop; 3732 3733 down_write(&EXT4_I(inode)->i_data_sem); 3734 3735 ext4_discard_preallocations(inode); 3736 3737 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3738 ext4_ext_truncate(handle, inode); 3739 else 3740 ext4_ind_truncate(handle, inode); 3741 3742 up_write(&ei->i_data_sem); 3743 3744 if (IS_SYNC(inode)) 3745 ext4_handle_sync(handle); 3746 3747 out_stop: 3748 /* 3749 * If this was a simple ftruncate() and the file will remain alive, 3750 * then we need to clear up the orphan record which we created above. 3751 * However, if this was a real unlink then we were called by 3752 * ext4_delete_inode(), and we allow that function to clean up the 3753 * orphan info for us. 3754 */ 3755 if (inode->i_nlink) 3756 ext4_orphan_del(handle, inode); 3757 3758 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3759 ext4_mark_inode_dirty(handle, inode); 3760 ext4_journal_stop(handle); 3761 3762 trace_ext4_truncate_exit(inode); 3763 } 3764 3765 /* 3766 * ext4_get_inode_loc returns with an extra refcount against the inode's 3767 * underlying buffer_head on success. If 'in_mem' is true, we have all 3768 * data in memory that is needed to recreate the on-disk version of this 3769 * inode. 3770 */ 3771 static int __ext4_get_inode_loc(struct inode *inode, 3772 struct ext4_iloc *iloc, int in_mem) 3773 { 3774 struct ext4_group_desc *gdp; 3775 struct buffer_head *bh; 3776 struct super_block *sb = inode->i_sb; 3777 ext4_fsblk_t block; 3778 int inodes_per_block, inode_offset; 3779 3780 iloc->bh = NULL; 3781 if (!ext4_valid_inum(sb, inode->i_ino)) 3782 return -EIO; 3783 3784 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3785 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3786 if (!gdp) 3787 return -EIO; 3788 3789 /* 3790 * Figure out the offset within the block group inode table 3791 */ 3792 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3793 inode_offset = ((inode->i_ino - 1) % 3794 EXT4_INODES_PER_GROUP(sb)); 3795 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3796 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3797 3798 bh = sb_getblk(sb, block); 3799 if (unlikely(!bh)) 3800 return -ENOMEM; 3801 if (!buffer_uptodate(bh)) { 3802 lock_buffer(bh); 3803 3804 /* 3805 * If the buffer has the write error flag, we have failed 3806 * to write out another inode in the same block. In this 3807 * case, we don't have to read the block because we may 3808 * read the old inode data successfully. 3809 */ 3810 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3811 set_buffer_uptodate(bh); 3812 3813 if (buffer_uptodate(bh)) { 3814 /* someone brought it uptodate while we waited */ 3815 unlock_buffer(bh); 3816 goto has_buffer; 3817 } 3818 3819 /* 3820 * If we have all information of the inode in memory and this 3821 * is the only valid inode in the block, we need not read the 3822 * block. 3823 */ 3824 if (in_mem) { 3825 struct buffer_head *bitmap_bh; 3826 int i, start; 3827 3828 start = inode_offset & ~(inodes_per_block - 1); 3829 3830 /* Is the inode bitmap in cache? */ 3831 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3832 if (unlikely(!bitmap_bh)) 3833 goto make_io; 3834 3835 /* 3836 * If the inode bitmap isn't in cache then the 3837 * optimisation may end up performing two reads instead 3838 * of one, so skip it. 3839 */ 3840 if (!buffer_uptodate(bitmap_bh)) { 3841 brelse(bitmap_bh); 3842 goto make_io; 3843 } 3844 for (i = start; i < start + inodes_per_block; i++) { 3845 if (i == inode_offset) 3846 continue; 3847 if (ext4_test_bit(i, bitmap_bh->b_data)) 3848 break; 3849 } 3850 brelse(bitmap_bh); 3851 if (i == start + inodes_per_block) { 3852 /* all other inodes are free, so skip I/O */ 3853 memset(bh->b_data, 0, bh->b_size); 3854 set_buffer_uptodate(bh); 3855 unlock_buffer(bh); 3856 goto has_buffer; 3857 } 3858 } 3859 3860 make_io: 3861 /* 3862 * If we need to do any I/O, try to pre-readahead extra 3863 * blocks from the inode table. 3864 */ 3865 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3866 ext4_fsblk_t b, end, table; 3867 unsigned num; 3868 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3869 3870 table = ext4_inode_table(sb, gdp); 3871 /* s_inode_readahead_blks is always a power of 2 */ 3872 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3873 if (table > b) 3874 b = table; 3875 end = b + ra_blks; 3876 num = EXT4_INODES_PER_GROUP(sb); 3877 if (ext4_has_group_desc_csum(sb)) 3878 num -= ext4_itable_unused_count(sb, gdp); 3879 table += num / inodes_per_block; 3880 if (end > table) 3881 end = table; 3882 while (b <= end) 3883 sb_breadahead(sb, b++); 3884 } 3885 3886 /* 3887 * There are other valid inodes in the buffer, this inode 3888 * has in-inode xattrs, or we don't have this inode in memory. 3889 * Read the block from disk. 3890 */ 3891 trace_ext4_load_inode(inode); 3892 get_bh(bh); 3893 bh->b_end_io = end_buffer_read_sync; 3894 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3895 wait_on_buffer(bh); 3896 if (!buffer_uptodate(bh)) { 3897 EXT4_ERROR_INODE_BLOCK(inode, block, 3898 "unable to read itable block"); 3899 brelse(bh); 3900 return -EIO; 3901 } 3902 } 3903 has_buffer: 3904 iloc->bh = bh; 3905 return 0; 3906 } 3907 3908 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3909 { 3910 /* We have all inode data except xattrs in memory here. */ 3911 return __ext4_get_inode_loc(inode, iloc, 3912 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3913 } 3914 3915 void ext4_set_inode_flags(struct inode *inode) 3916 { 3917 unsigned int flags = EXT4_I(inode)->i_flags; 3918 3919 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3920 if (flags & EXT4_SYNC_FL) 3921 inode->i_flags |= S_SYNC; 3922 if (flags & EXT4_APPEND_FL) 3923 inode->i_flags |= S_APPEND; 3924 if (flags & EXT4_IMMUTABLE_FL) 3925 inode->i_flags |= S_IMMUTABLE; 3926 if (flags & EXT4_NOATIME_FL) 3927 inode->i_flags |= S_NOATIME; 3928 if (flags & EXT4_DIRSYNC_FL) 3929 inode->i_flags |= S_DIRSYNC; 3930 } 3931 3932 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3933 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3934 { 3935 unsigned int vfs_fl; 3936 unsigned long old_fl, new_fl; 3937 3938 do { 3939 vfs_fl = ei->vfs_inode.i_flags; 3940 old_fl = ei->i_flags; 3941 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3942 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3943 EXT4_DIRSYNC_FL); 3944 if (vfs_fl & S_SYNC) 3945 new_fl |= EXT4_SYNC_FL; 3946 if (vfs_fl & S_APPEND) 3947 new_fl |= EXT4_APPEND_FL; 3948 if (vfs_fl & S_IMMUTABLE) 3949 new_fl |= EXT4_IMMUTABLE_FL; 3950 if (vfs_fl & S_NOATIME) 3951 new_fl |= EXT4_NOATIME_FL; 3952 if (vfs_fl & S_DIRSYNC) 3953 new_fl |= EXT4_DIRSYNC_FL; 3954 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3955 } 3956 3957 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3958 struct ext4_inode_info *ei) 3959 { 3960 blkcnt_t i_blocks ; 3961 struct inode *inode = &(ei->vfs_inode); 3962 struct super_block *sb = inode->i_sb; 3963 3964 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3965 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3966 /* we are using combined 48 bit field */ 3967 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3968 le32_to_cpu(raw_inode->i_blocks_lo); 3969 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3970 /* i_blocks represent file system block size */ 3971 return i_blocks << (inode->i_blkbits - 9); 3972 } else { 3973 return i_blocks; 3974 } 3975 } else { 3976 return le32_to_cpu(raw_inode->i_blocks_lo); 3977 } 3978 } 3979 3980 static inline void ext4_iget_extra_inode(struct inode *inode, 3981 struct ext4_inode *raw_inode, 3982 struct ext4_inode_info *ei) 3983 { 3984 __le32 *magic = (void *)raw_inode + 3985 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3986 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3987 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3988 ext4_find_inline_data_nolock(inode); 3989 } else 3990 EXT4_I(inode)->i_inline_off = 0; 3991 } 3992 3993 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3994 { 3995 struct ext4_iloc iloc; 3996 struct ext4_inode *raw_inode; 3997 struct ext4_inode_info *ei; 3998 struct inode *inode; 3999 journal_t *journal = EXT4_SB(sb)->s_journal; 4000 long ret; 4001 int block; 4002 uid_t i_uid; 4003 gid_t i_gid; 4004 4005 inode = iget_locked(sb, ino); 4006 if (!inode) 4007 return ERR_PTR(-ENOMEM); 4008 if (!(inode->i_state & I_NEW)) 4009 return inode; 4010 4011 ei = EXT4_I(inode); 4012 iloc.bh = NULL; 4013 4014 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4015 if (ret < 0) 4016 goto bad_inode; 4017 raw_inode = ext4_raw_inode(&iloc); 4018 4019 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4020 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4021 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4022 EXT4_INODE_SIZE(inode->i_sb)) { 4023 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4024 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4025 EXT4_INODE_SIZE(inode->i_sb)); 4026 ret = -EIO; 4027 goto bad_inode; 4028 } 4029 } else 4030 ei->i_extra_isize = 0; 4031 4032 /* Precompute checksum seed for inode metadata */ 4033 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4034 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 4035 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4036 __u32 csum; 4037 __le32 inum = cpu_to_le32(inode->i_ino); 4038 __le32 gen = raw_inode->i_generation; 4039 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4040 sizeof(inum)); 4041 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4042 sizeof(gen)); 4043 } 4044 4045 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4046 EXT4_ERROR_INODE(inode, "checksum invalid"); 4047 ret = -EIO; 4048 goto bad_inode; 4049 } 4050 4051 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4052 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4053 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4054 if (!(test_opt(inode->i_sb, NO_UID32))) { 4055 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4056 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4057 } 4058 i_uid_write(inode, i_uid); 4059 i_gid_write(inode, i_gid); 4060 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4061 4062 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4063 ei->i_inline_off = 0; 4064 ei->i_dir_start_lookup = 0; 4065 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4066 /* We now have enough fields to check if the inode was active or not. 4067 * This is needed because nfsd might try to access dead inodes 4068 * the test is that same one that e2fsck uses 4069 * NeilBrown 1999oct15 4070 */ 4071 if (inode->i_nlink == 0) { 4072 if ((inode->i_mode == 0 || 4073 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4074 ino != EXT4_BOOT_LOADER_INO) { 4075 /* this inode is deleted */ 4076 ret = -ESTALE; 4077 goto bad_inode; 4078 } 4079 /* The only unlinked inodes we let through here have 4080 * valid i_mode and are being read by the orphan 4081 * recovery code: that's fine, we're about to complete 4082 * the process of deleting those. 4083 * OR it is the EXT4_BOOT_LOADER_INO which is 4084 * not initialized on a new filesystem. */ 4085 } 4086 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4087 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4088 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4089 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4090 ei->i_file_acl |= 4091 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4092 inode->i_size = ext4_isize(raw_inode); 4093 ei->i_disksize = inode->i_size; 4094 #ifdef CONFIG_QUOTA 4095 ei->i_reserved_quota = 0; 4096 #endif 4097 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4098 ei->i_block_group = iloc.block_group; 4099 ei->i_last_alloc_group = ~0; 4100 /* 4101 * NOTE! The in-memory inode i_data array is in little-endian order 4102 * even on big-endian machines: we do NOT byteswap the block numbers! 4103 */ 4104 for (block = 0; block < EXT4_N_BLOCKS; block++) 4105 ei->i_data[block] = raw_inode->i_block[block]; 4106 INIT_LIST_HEAD(&ei->i_orphan); 4107 4108 /* 4109 * Set transaction id's of transactions that have to be committed 4110 * to finish f[data]sync. We set them to currently running transaction 4111 * as we cannot be sure that the inode or some of its metadata isn't 4112 * part of the transaction - the inode could have been reclaimed and 4113 * now it is reread from disk. 4114 */ 4115 if (journal) { 4116 transaction_t *transaction; 4117 tid_t tid; 4118 4119 read_lock(&journal->j_state_lock); 4120 if (journal->j_running_transaction) 4121 transaction = journal->j_running_transaction; 4122 else 4123 transaction = journal->j_committing_transaction; 4124 if (transaction) 4125 tid = transaction->t_tid; 4126 else 4127 tid = journal->j_commit_sequence; 4128 read_unlock(&journal->j_state_lock); 4129 ei->i_sync_tid = tid; 4130 ei->i_datasync_tid = tid; 4131 } 4132 4133 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4134 if (ei->i_extra_isize == 0) { 4135 /* The extra space is currently unused. Use it. */ 4136 ei->i_extra_isize = sizeof(struct ext4_inode) - 4137 EXT4_GOOD_OLD_INODE_SIZE; 4138 } else { 4139 ext4_iget_extra_inode(inode, raw_inode, ei); 4140 } 4141 } 4142 4143 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4144 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4145 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4146 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4147 4148 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4149 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4150 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4151 inode->i_version |= 4152 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4153 } 4154 4155 ret = 0; 4156 if (ei->i_file_acl && 4157 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4158 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4159 ei->i_file_acl); 4160 ret = -EIO; 4161 goto bad_inode; 4162 } else if (!ext4_has_inline_data(inode)) { 4163 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4164 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4165 (S_ISLNK(inode->i_mode) && 4166 !ext4_inode_is_fast_symlink(inode)))) 4167 /* Validate extent which is part of inode */ 4168 ret = ext4_ext_check_inode(inode); 4169 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4170 (S_ISLNK(inode->i_mode) && 4171 !ext4_inode_is_fast_symlink(inode))) { 4172 /* Validate block references which are part of inode */ 4173 ret = ext4_ind_check_inode(inode); 4174 } 4175 } 4176 if (ret) 4177 goto bad_inode; 4178 4179 if (S_ISREG(inode->i_mode)) { 4180 inode->i_op = &ext4_file_inode_operations; 4181 inode->i_fop = &ext4_file_operations; 4182 ext4_set_aops(inode); 4183 } else if (S_ISDIR(inode->i_mode)) { 4184 inode->i_op = &ext4_dir_inode_operations; 4185 inode->i_fop = &ext4_dir_operations; 4186 } else if (S_ISLNK(inode->i_mode)) { 4187 if (ext4_inode_is_fast_symlink(inode)) { 4188 inode->i_op = &ext4_fast_symlink_inode_operations; 4189 nd_terminate_link(ei->i_data, inode->i_size, 4190 sizeof(ei->i_data) - 1); 4191 } else { 4192 inode->i_op = &ext4_symlink_inode_operations; 4193 ext4_set_aops(inode); 4194 } 4195 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4196 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4197 inode->i_op = &ext4_special_inode_operations; 4198 if (raw_inode->i_block[0]) 4199 init_special_inode(inode, inode->i_mode, 4200 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4201 else 4202 init_special_inode(inode, inode->i_mode, 4203 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4204 } else if (ino == EXT4_BOOT_LOADER_INO) { 4205 make_bad_inode(inode); 4206 } else { 4207 ret = -EIO; 4208 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4209 goto bad_inode; 4210 } 4211 brelse(iloc.bh); 4212 ext4_set_inode_flags(inode); 4213 unlock_new_inode(inode); 4214 return inode; 4215 4216 bad_inode: 4217 brelse(iloc.bh); 4218 iget_failed(inode); 4219 return ERR_PTR(ret); 4220 } 4221 4222 static int ext4_inode_blocks_set(handle_t *handle, 4223 struct ext4_inode *raw_inode, 4224 struct ext4_inode_info *ei) 4225 { 4226 struct inode *inode = &(ei->vfs_inode); 4227 u64 i_blocks = inode->i_blocks; 4228 struct super_block *sb = inode->i_sb; 4229 4230 if (i_blocks <= ~0U) { 4231 /* 4232 * i_blocks can be represented in a 32 bit variable 4233 * as multiple of 512 bytes 4234 */ 4235 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4236 raw_inode->i_blocks_high = 0; 4237 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4238 return 0; 4239 } 4240 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4241 return -EFBIG; 4242 4243 if (i_blocks <= 0xffffffffffffULL) { 4244 /* 4245 * i_blocks can be represented in a 48 bit variable 4246 * as multiple of 512 bytes 4247 */ 4248 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4249 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4250 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4251 } else { 4252 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4253 /* i_block is stored in file system block size */ 4254 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4255 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4256 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4257 } 4258 return 0; 4259 } 4260 4261 /* 4262 * Post the struct inode info into an on-disk inode location in the 4263 * buffer-cache. This gobbles the caller's reference to the 4264 * buffer_head in the inode location struct. 4265 * 4266 * The caller must have write access to iloc->bh. 4267 */ 4268 static int ext4_do_update_inode(handle_t *handle, 4269 struct inode *inode, 4270 struct ext4_iloc *iloc) 4271 { 4272 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4273 struct ext4_inode_info *ei = EXT4_I(inode); 4274 struct buffer_head *bh = iloc->bh; 4275 int err = 0, rc, block; 4276 int need_datasync = 0; 4277 uid_t i_uid; 4278 gid_t i_gid; 4279 4280 /* For fields not not tracking in the in-memory inode, 4281 * initialise them to zero for new inodes. */ 4282 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4283 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4284 4285 ext4_get_inode_flags(ei); 4286 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4287 i_uid = i_uid_read(inode); 4288 i_gid = i_gid_read(inode); 4289 if (!(test_opt(inode->i_sb, NO_UID32))) { 4290 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4291 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4292 /* 4293 * Fix up interoperability with old kernels. Otherwise, old inodes get 4294 * re-used with the upper 16 bits of the uid/gid intact 4295 */ 4296 if (!ei->i_dtime) { 4297 raw_inode->i_uid_high = 4298 cpu_to_le16(high_16_bits(i_uid)); 4299 raw_inode->i_gid_high = 4300 cpu_to_le16(high_16_bits(i_gid)); 4301 } else { 4302 raw_inode->i_uid_high = 0; 4303 raw_inode->i_gid_high = 0; 4304 } 4305 } else { 4306 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4307 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4308 raw_inode->i_uid_high = 0; 4309 raw_inode->i_gid_high = 0; 4310 } 4311 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4312 4313 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4314 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4315 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4316 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4317 4318 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4319 goto out_brelse; 4320 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4321 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4322 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4323 cpu_to_le32(EXT4_OS_HURD)) 4324 raw_inode->i_file_acl_high = 4325 cpu_to_le16(ei->i_file_acl >> 32); 4326 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4327 if (ei->i_disksize != ext4_isize(raw_inode)) { 4328 ext4_isize_set(raw_inode, ei->i_disksize); 4329 need_datasync = 1; 4330 } 4331 if (ei->i_disksize > 0x7fffffffULL) { 4332 struct super_block *sb = inode->i_sb; 4333 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4334 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4335 EXT4_SB(sb)->s_es->s_rev_level == 4336 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4337 /* If this is the first large file 4338 * created, add a flag to the superblock. 4339 */ 4340 err = ext4_journal_get_write_access(handle, 4341 EXT4_SB(sb)->s_sbh); 4342 if (err) 4343 goto out_brelse; 4344 ext4_update_dynamic_rev(sb); 4345 EXT4_SET_RO_COMPAT_FEATURE(sb, 4346 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4347 ext4_handle_sync(handle); 4348 err = ext4_handle_dirty_super(handle, sb); 4349 } 4350 } 4351 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4352 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4353 if (old_valid_dev(inode->i_rdev)) { 4354 raw_inode->i_block[0] = 4355 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4356 raw_inode->i_block[1] = 0; 4357 } else { 4358 raw_inode->i_block[0] = 0; 4359 raw_inode->i_block[1] = 4360 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4361 raw_inode->i_block[2] = 0; 4362 } 4363 } else if (!ext4_has_inline_data(inode)) { 4364 for (block = 0; block < EXT4_N_BLOCKS; block++) 4365 raw_inode->i_block[block] = ei->i_data[block]; 4366 } 4367 4368 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4369 if (ei->i_extra_isize) { 4370 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4371 raw_inode->i_version_hi = 4372 cpu_to_le32(inode->i_version >> 32); 4373 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4374 } 4375 4376 ext4_inode_csum_set(inode, raw_inode, ei); 4377 4378 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4379 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4380 if (!err) 4381 err = rc; 4382 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4383 4384 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4385 out_brelse: 4386 brelse(bh); 4387 ext4_std_error(inode->i_sb, err); 4388 return err; 4389 } 4390 4391 /* 4392 * ext4_write_inode() 4393 * 4394 * We are called from a few places: 4395 * 4396 * - Within generic_file_write() for O_SYNC files. 4397 * Here, there will be no transaction running. We wait for any running 4398 * transaction to commit. 4399 * 4400 * - Within sys_sync(), kupdate and such. 4401 * We wait on commit, if tol to. 4402 * 4403 * - Within prune_icache() (PF_MEMALLOC == true) 4404 * Here we simply return. We can't afford to block kswapd on the 4405 * journal commit. 4406 * 4407 * In all cases it is actually safe for us to return without doing anything, 4408 * because the inode has been copied into a raw inode buffer in 4409 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4410 * knfsd. 4411 * 4412 * Note that we are absolutely dependent upon all inode dirtiers doing the 4413 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4414 * which we are interested. 4415 * 4416 * It would be a bug for them to not do this. The code: 4417 * 4418 * mark_inode_dirty(inode) 4419 * stuff(); 4420 * inode->i_size = expr; 4421 * 4422 * is in error because a kswapd-driven write_inode() could occur while 4423 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4424 * will no longer be on the superblock's dirty inode list. 4425 */ 4426 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4427 { 4428 int err; 4429 4430 if (current->flags & PF_MEMALLOC) 4431 return 0; 4432 4433 if (EXT4_SB(inode->i_sb)->s_journal) { 4434 if (ext4_journal_current_handle()) { 4435 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4436 dump_stack(); 4437 return -EIO; 4438 } 4439 4440 if (wbc->sync_mode != WB_SYNC_ALL) 4441 return 0; 4442 4443 err = ext4_force_commit(inode->i_sb); 4444 } else { 4445 struct ext4_iloc iloc; 4446 4447 err = __ext4_get_inode_loc(inode, &iloc, 0); 4448 if (err) 4449 return err; 4450 if (wbc->sync_mode == WB_SYNC_ALL) 4451 sync_dirty_buffer(iloc.bh); 4452 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4453 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4454 "IO error syncing inode"); 4455 err = -EIO; 4456 } 4457 brelse(iloc.bh); 4458 } 4459 return err; 4460 } 4461 4462 /* 4463 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4464 * buffers that are attached to a page stradding i_size and are undergoing 4465 * commit. In that case we have to wait for commit to finish and try again. 4466 */ 4467 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4468 { 4469 struct page *page; 4470 unsigned offset; 4471 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4472 tid_t commit_tid = 0; 4473 int ret; 4474 4475 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4476 /* 4477 * All buffers in the last page remain valid? Then there's nothing to 4478 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4479 * blocksize case 4480 */ 4481 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4482 return; 4483 while (1) { 4484 page = find_lock_page(inode->i_mapping, 4485 inode->i_size >> PAGE_CACHE_SHIFT); 4486 if (!page) 4487 return; 4488 ret = __ext4_journalled_invalidatepage(page, offset, 4489 PAGE_CACHE_SIZE - offset); 4490 unlock_page(page); 4491 page_cache_release(page); 4492 if (ret != -EBUSY) 4493 return; 4494 commit_tid = 0; 4495 read_lock(&journal->j_state_lock); 4496 if (journal->j_committing_transaction) 4497 commit_tid = journal->j_committing_transaction->t_tid; 4498 read_unlock(&journal->j_state_lock); 4499 if (commit_tid) 4500 jbd2_log_wait_commit(journal, commit_tid); 4501 } 4502 } 4503 4504 /* 4505 * ext4_setattr() 4506 * 4507 * Called from notify_change. 4508 * 4509 * We want to trap VFS attempts to truncate the file as soon as 4510 * possible. In particular, we want to make sure that when the VFS 4511 * shrinks i_size, we put the inode on the orphan list and modify 4512 * i_disksize immediately, so that during the subsequent flushing of 4513 * dirty pages and freeing of disk blocks, we can guarantee that any 4514 * commit will leave the blocks being flushed in an unused state on 4515 * disk. (On recovery, the inode will get truncated and the blocks will 4516 * be freed, so we have a strong guarantee that no future commit will 4517 * leave these blocks visible to the user.) 4518 * 4519 * Another thing we have to assure is that if we are in ordered mode 4520 * and inode is still attached to the committing transaction, we must 4521 * we start writeout of all the dirty pages which are being truncated. 4522 * This way we are sure that all the data written in the previous 4523 * transaction are already on disk (truncate waits for pages under 4524 * writeback). 4525 * 4526 * Called with inode->i_mutex down. 4527 */ 4528 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4529 { 4530 struct inode *inode = dentry->d_inode; 4531 int error, rc = 0; 4532 int orphan = 0; 4533 const unsigned int ia_valid = attr->ia_valid; 4534 4535 error = inode_change_ok(inode, attr); 4536 if (error) 4537 return error; 4538 4539 if (is_quota_modification(inode, attr)) 4540 dquot_initialize(inode); 4541 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4542 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4543 handle_t *handle; 4544 4545 /* (user+group)*(old+new) structure, inode write (sb, 4546 * inode block, ? - but truncate inode update has it) */ 4547 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4548 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4549 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4550 if (IS_ERR(handle)) { 4551 error = PTR_ERR(handle); 4552 goto err_out; 4553 } 4554 error = dquot_transfer(inode, attr); 4555 if (error) { 4556 ext4_journal_stop(handle); 4557 return error; 4558 } 4559 /* Update corresponding info in inode so that everything is in 4560 * one transaction */ 4561 if (attr->ia_valid & ATTR_UID) 4562 inode->i_uid = attr->ia_uid; 4563 if (attr->ia_valid & ATTR_GID) 4564 inode->i_gid = attr->ia_gid; 4565 error = ext4_mark_inode_dirty(handle, inode); 4566 ext4_journal_stop(handle); 4567 } 4568 4569 if (attr->ia_valid & ATTR_SIZE) { 4570 4571 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4572 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4573 4574 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4575 return -EFBIG; 4576 } 4577 } 4578 4579 if (S_ISREG(inode->i_mode) && 4580 attr->ia_valid & ATTR_SIZE && 4581 (attr->ia_size < inode->i_size)) { 4582 handle_t *handle; 4583 4584 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4585 if (IS_ERR(handle)) { 4586 error = PTR_ERR(handle); 4587 goto err_out; 4588 } 4589 if (ext4_handle_valid(handle)) { 4590 error = ext4_orphan_add(handle, inode); 4591 orphan = 1; 4592 } 4593 EXT4_I(inode)->i_disksize = attr->ia_size; 4594 rc = ext4_mark_inode_dirty(handle, inode); 4595 if (!error) 4596 error = rc; 4597 ext4_journal_stop(handle); 4598 4599 if (ext4_should_order_data(inode)) { 4600 error = ext4_begin_ordered_truncate(inode, 4601 attr->ia_size); 4602 if (error) { 4603 /* Do as much error cleanup as possible */ 4604 handle = ext4_journal_start(inode, 4605 EXT4_HT_INODE, 3); 4606 if (IS_ERR(handle)) { 4607 ext4_orphan_del(NULL, inode); 4608 goto err_out; 4609 } 4610 ext4_orphan_del(handle, inode); 4611 orphan = 0; 4612 ext4_journal_stop(handle); 4613 goto err_out; 4614 } 4615 } 4616 } 4617 4618 if (attr->ia_valid & ATTR_SIZE) { 4619 if (attr->ia_size != inode->i_size) { 4620 loff_t oldsize = inode->i_size; 4621 4622 i_size_write(inode, attr->ia_size); 4623 /* 4624 * Blocks are going to be removed from the inode. Wait 4625 * for dio in flight. Temporarily disable 4626 * dioread_nolock to prevent livelock. 4627 */ 4628 if (orphan) { 4629 if (!ext4_should_journal_data(inode)) { 4630 ext4_inode_block_unlocked_dio(inode); 4631 inode_dio_wait(inode); 4632 ext4_inode_resume_unlocked_dio(inode); 4633 } else 4634 ext4_wait_for_tail_page_commit(inode); 4635 } 4636 /* 4637 * Truncate pagecache after we've waited for commit 4638 * in data=journal mode to make pages freeable. 4639 */ 4640 truncate_pagecache(inode, oldsize, inode->i_size); 4641 } 4642 ext4_truncate(inode); 4643 } 4644 4645 if (!rc) { 4646 setattr_copy(inode, attr); 4647 mark_inode_dirty(inode); 4648 } 4649 4650 /* 4651 * If the call to ext4_truncate failed to get a transaction handle at 4652 * all, we need to clean up the in-core orphan list manually. 4653 */ 4654 if (orphan && inode->i_nlink) 4655 ext4_orphan_del(NULL, inode); 4656 4657 if (!rc && (ia_valid & ATTR_MODE)) 4658 rc = ext4_acl_chmod(inode); 4659 4660 err_out: 4661 ext4_std_error(inode->i_sb, error); 4662 if (!error) 4663 error = rc; 4664 return error; 4665 } 4666 4667 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4668 struct kstat *stat) 4669 { 4670 struct inode *inode; 4671 unsigned long long delalloc_blocks; 4672 4673 inode = dentry->d_inode; 4674 generic_fillattr(inode, stat); 4675 4676 /* 4677 * We can't update i_blocks if the block allocation is delayed 4678 * otherwise in the case of system crash before the real block 4679 * allocation is done, we will have i_blocks inconsistent with 4680 * on-disk file blocks. 4681 * We always keep i_blocks updated together with real 4682 * allocation. But to not confuse with user, stat 4683 * will return the blocks that include the delayed allocation 4684 * blocks for this file. 4685 */ 4686 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4687 EXT4_I(inode)->i_reserved_data_blocks); 4688 4689 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9); 4690 return 0; 4691 } 4692 4693 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4694 int pextents) 4695 { 4696 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4697 return ext4_ind_trans_blocks(inode, lblocks); 4698 return ext4_ext_index_trans_blocks(inode, pextents); 4699 } 4700 4701 /* 4702 * Account for index blocks, block groups bitmaps and block group 4703 * descriptor blocks if modify datablocks and index blocks 4704 * worse case, the indexs blocks spread over different block groups 4705 * 4706 * If datablocks are discontiguous, they are possible to spread over 4707 * different block groups too. If they are contiguous, with flexbg, 4708 * they could still across block group boundary. 4709 * 4710 * Also account for superblock, inode, quota and xattr blocks 4711 */ 4712 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4713 int pextents) 4714 { 4715 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4716 int gdpblocks; 4717 int idxblocks; 4718 int ret = 0; 4719 4720 /* 4721 * How many index blocks need to touch to map @lblocks logical blocks 4722 * to @pextents physical extents? 4723 */ 4724 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4725 4726 ret = idxblocks; 4727 4728 /* 4729 * Now let's see how many group bitmaps and group descriptors need 4730 * to account 4731 */ 4732 groups = idxblocks + pextents; 4733 gdpblocks = groups; 4734 if (groups > ngroups) 4735 groups = ngroups; 4736 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4737 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4738 4739 /* bitmaps and block group descriptor blocks */ 4740 ret += groups + gdpblocks; 4741 4742 /* Blocks for super block, inode, quota and xattr blocks */ 4743 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4744 4745 return ret; 4746 } 4747 4748 /* 4749 * Calculate the total number of credits to reserve to fit 4750 * the modification of a single pages into a single transaction, 4751 * which may include multiple chunks of block allocations. 4752 * 4753 * This could be called via ext4_write_begin() 4754 * 4755 * We need to consider the worse case, when 4756 * one new block per extent. 4757 */ 4758 int ext4_writepage_trans_blocks(struct inode *inode) 4759 { 4760 int bpp = ext4_journal_blocks_per_page(inode); 4761 int ret; 4762 4763 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4764 4765 /* Account for data blocks for journalled mode */ 4766 if (ext4_should_journal_data(inode)) 4767 ret += bpp; 4768 return ret; 4769 } 4770 4771 /* 4772 * Calculate the journal credits for a chunk of data modification. 4773 * 4774 * This is called from DIO, fallocate or whoever calling 4775 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4776 * 4777 * journal buffers for data blocks are not included here, as DIO 4778 * and fallocate do no need to journal data buffers. 4779 */ 4780 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4781 { 4782 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4783 } 4784 4785 /* 4786 * The caller must have previously called ext4_reserve_inode_write(). 4787 * Give this, we know that the caller already has write access to iloc->bh. 4788 */ 4789 int ext4_mark_iloc_dirty(handle_t *handle, 4790 struct inode *inode, struct ext4_iloc *iloc) 4791 { 4792 int err = 0; 4793 4794 if (IS_I_VERSION(inode)) 4795 inode_inc_iversion(inode); 4796 4797 /* the do_update_inode consumes one bh->b_count */ 4798 get_bh(iloc->bh); 4799 4800 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4801 err = ext4_do_update_inode(handle, inode, iloc); 4802 put_bh(iloc->bh); 4803 return err; 4804 } 4805 4806 /* 4807 * On success, We end up with an outstanding reference count against 4808 * iloc->bh. This _must_ be cleaned up later. 4809 */ 4810 4811 int 4812 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4813 struct ext4_iloc *iloc) 4814 { 4815 int err; 4816 4817 err = ext4_get_inode_loc(inode, iloc); 4818 if (!err) { 4819 BUFFER_TRACE(iloc->bh, "get_write_access"); 4820 err = ext4_journal_get_write_access(handle, iloc->bh); 4821 if (err) { 4822 brelse(iloc->bh); 4823 iloc->bh = NULL; 4824 } 4825 } 4826 ext4_std_error(inode->i_sb, err); 4827 return err; 4828 } 4829 4830 /* 4831 * Expand an inode by new_extra_isize bytes. 4832 * Returns 0 on success or negative error number on failure. 4833 */ 4834 static int ext4_expand_extra_isize(struct inode *inode, 4835 unsigned int new_extra_isize, 4836 struct ext4_iloc iloc, 4837 handle_t *handle) 4838 { 4839 struct ext4_inode *raw_inode; 4840 struct ext4_xattr_ibody_header *header; 4841 4842 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4843 return 0; 4844 4845 raw_inode = ext4_raw_inode(&iloc); 4846 4847 header = IHDR(inode, raw_inode); 4848 4849 /* No extended attributes present */ 4850 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4851 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4852 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4853 new_extra_isize); 4854 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4855 return 0; 4856 } 4857 4858 /* try to expand with EAs present */ 4859 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4860 raw_inode, handle); 4861 } 4862 4863 /* 4864 * What we do here is to mark the in-core inode as clean with respect to inode 4865 * dirtiness (it may still be data-dirty). 4866 * This means that the in-core inode may be reaped by prune_icache 4867 * without having to perform any I/O. This is a very good thing, 4868 * because *any* task may call prune_icache - even ones which 4869 * have a transaction open against a different journal. 4870 * 4871 * Is this cheating? Not really. Sure, we haven't written the 4872 * inode out, but prune_icache isn't a user-visible syncing function. 4873 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4874 * we start and wait on commits. 4875 */ 4876 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4877 { 4878 struct ext4_iloc iloc; 4879 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4880 static unsigned int mnt_count; 4881 int err, ret; 4882 4883 might_sleep(); 4884 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4885 err = ext4_reserve_inode_write(handle, inode, &iloc); 4886 if (ext4_handle_valid(handle) && 4887 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4888 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4889 /* 4890 * We need extra buffer credits since we may write into EA block 4891 * with this same handle. If journal_extend fails, then it will 4892 * only result in a minor loss of functionality for that inode. 4893 * If this is felt to be critical, then e2fsck should be run to 4894 * force a large enough s_min_extra_isize. 4895 */ 4896 if ((jbd2_journal_extend(handle, 4897 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4898 ret = ext4_expand_extra_isize(inode, 4899 sbi->s_want_extra_isize, 4900 iloc, handle); 4901 if (ret) { 4902 ext4_set_inode_state(inode, 4903 EXT4_STATE_NO_EXPAND); 4904 if (mnt_count != 4905 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4906 ext4_warning(inode->i_sb, 4907 "Unable to expand inode %lu. Delete" 4908 " some EAs or run e2fsck.", 4909 inode->i_ino); 4910 mnt_count = 4911 le16_to_cpu(sbi->s_es->s_mnt_count); 4912 } 4913 } 4914 } 4915 } 4916 if (!err) 4917 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4918 return err; 4919 } 4920 4921 /* 4922 * ext4_dirty_inode() is called from __mark_inode_dirty() 4923 * 4924 * We're really interested in the case where a file is being extended. 4925 * i_size has been changed by generic_commit_write() and we thus need 4926 * to include the updated inode in the current transaction. 4927 * 4928 * Also, dquot_alloc_block() will always dirty the inode when blocks 4929 * are allocated to the file. 4930 * 4931 * If the inode is marked synchronous, we don't honour that here - doing 4932 * so would cause a commit on atime updates, which we don't bother doing. 4933 * We handle synchronous inodes at the highest possible level. 4934 */ 4935 void ext4_dirty_inode(struct inode *inode, int flags) 4936 { 4937 handle_t *handle; 4938 4939 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4940 if (IS_ERR(handle)) 4941 goto out; 4942 4943 ext4_mark_inode_dirty(handle, inode); 4944 4945 ext4_journal_stop(handle); 4946 out: 4947 return; 4948 } 4949 4950 #if 0 4951 /* 4952 * Bind an inode's backing buffer_head into this transaction, to prevent 4953 * it from being flushed to disk early. Unlike 4954 * ext4_reserve_inode_write, this leaves behind no bh reference and 4955 * returns no iloc structure, so the caller needs to repeat the iloc 4956 * lookup to mark the inode dirty later. 4957 */ 4958 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4959 { 4960 struct ext4_iloc iloc; 4961 4962 int err = 0; 4963 if (handle) { 4964 err = ext4_get_inode_loc(inode, &iloc); 4965 if (!err) { 4966 BUFFER_TRACE(iloc.bh, "get_write_access"); 4967 err = jbd2_journal_get_write_access(handle, iloc.bh); 4968 if (!err) 4969 err = ext4_handle_dirty_metadata(handle, 4970 NULL, 4971 iloc.bh); 4972 brelse(iloc.bh); 4973 } 4974 } 4975 ext4_std_error(inode->i_sb, err); 4976 return err; 4977 } 4978 #endif 4979 4980 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4981 { 4982 journal_t *journal; 4983 handle_t *handle; 4984 int err; 4985 4986 /* 4987 * We have to be very careful here: changing a data block's 4988 * journaling status dynamically is dangerous. If we write a 4989 * data block to the journal, change the status and then delete 4990 * that block, we risk forgetting to revoke the old log record 4991 * from the journal and so a subsequent replay can corrupt data. 4992 * So, first we make sure that the journal is empty and that 4993 * nobody is changing anything. 4994 */ 4995 4996 journal = EXT4_JOURNAL(inode); 4997 if (!journal) 4998 return 0; 4999 if (is_journal_aborted(journal)) 5000 return -EROFS; 5001 /* We have to allocate physical blocks for delalloc blocks 5002 * before flushing journal. otherwise delalloc blocks can not 5003 * be allocated any more. even more truncate on delalloc blocks 5004 * could trigger BUG by flushing delalloc blocks in journal. 5005 * There is no delalloc block in non-journal data mode. 5006 */ 5007 if (val && test_opt(inode->i_sb, DELALLOC)) { 5008 err = ext4_alloc_da_blocks(inode); 5009 if (err < 0) 5010 return err; 5011 } 5012 5013 /* Wait for all existing dio workers */ 5014 ext4_inode_block_unlocked_dio(inode); 5015 inode_dio_wait(inode); 5016 5017 jbd2_journal_lock_updates(journal); 5018 5019 /* 5020 * OK, there are no updates running now, and all cached data is 5021 * synced to disk. We are now in a completely consistent state 5022 * which doesn't have anything in the journal, and we know that 5023 * no filesystem updates are running, so it is safe to modify 5024 * the inode's in-core data-journaling state flag now. 5025 */ 5026 5027 if (val) 5028 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5029 else { 5030 jbd2_journal_flush(journal); 5031 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5032 } 5033 ext4_set_aops(inode); 5034 5035 jbd2_journal_unlock_updates(journal); 5036 ext4_inode_resume_unlocked_dio(inode); 5037 5038 /* Finally we can mark the inode as dirty. */ 5039 5040 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5041 if (IS_ERR(handle)) 5042 return PTR_ERR(handle); 5043 5044 err = ext4_mark_inode_dirty(handle, inode); 5045 ext4_handle_sync(handle); 5046 ext4_journal_stop(handle); 5047 ext4_std_error(inode->i_sb, err); 5048 5049 return err; 5050 } 5051 5052 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5053 { 5054 return !buffer_mapped(bh); 5055 } 5056 5057 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5058 { 5059 struct page *page = vmf->page; 5060 loff_t size; 5061 unsigned long len; 5062 int ret; 5063 struct file *file = vma->vm_file; 5064 struct inode *inode = file_inode(file); 5065 struct address_space *mapping = inode->i_mapping; 5066 handle_t *handle; 5067 get_block_t *get_block; 5068 int retries = 0; 5069 5070 sb_start_pagefault(inode->i_sb); 5071 file_update_time(vma->vm_file); 5072 /* Delalloc case is easy... */ 5073 if (test_opt(inode->i_sb, DELALLOC) && 5074 !ext4_should_journal_data(inode) && 5075 !ext4_nonda_switch(inode->i_sb)) { 5076 do { 5077 ret = __block_page_mkwrite(vma, vmf, 5078 ext4_da_get_block_prep); 5079 } while (ret == -ENOSPC && 5080 ext4_should_retry_alloc(inode->i_sb, &retries)); 5081 goto out_ret; 5082 } 5083 5084 lock_page(page); 5085 size = i_size_read(inode); 5086 /* Page got truncated from under us? */ 5087 if (page->mapping != mapping || page_offset(page) > size) { 5088 unlock_page(page); 5089 ret = VM_FAULT_NOPAGE; 5090 goto out; 5091 } 5092 5093 if (page->index == size >> PAGE_CACHE_SHIFT) 5094 len = size & ~PAGE_CACHE_MASK; 5095 else 5096 len = PAGE_CACHE_SIZE; 5097 /* 5098 * Return if we have all the buffers mapped. This avoids the need to do 5099 * journal_start/journal_stop which can block and take a long time 5100 */ 5101 if (page_has_buffers(page)) { 5102 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5103 0, len, NULL, 5104 ext4_bh_unmapped)) { 5105 /* Wait so that we don't change page under IO */ 5106 wait_for_stable_page(page); 5107 ret = VM_FAULT_LOCKED; 5108 goto out; 5109 } 5110 } 5111 unlock_page(page); 5112 /* OK, we need to fill the hole... */ 5113 if (ext4_should_dioread_nolock(inode)) 5114 get_block = ext4_get_block_write; 5115 else 5116 get_block = ext4_get_block; 5117 retry_alloc: 5118 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5119 ext4_writepage_trans_blocks(inode)); 5120 if (IS_ERR(handle)) { 5121 ret = VM_FAULT_SIGBUS; 5122 goto out; 5123 } 5124 ret = __block_page_mkwrite(vma, vmf, get_block); 5125 if (!ret && ext4_should_journal_data(inode)) { 5126 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5127 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5128 unlock_page(page); 5129 ret = VM_FAULT_SIGBUS; 5130 ext4_journal_stop(handle); 5131 goto out; 5132 } 5133 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5134 } 5135 ext4_journal_stop(handle); 5136 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5137 goto retry_alloc; 5138 out_ret: 5139 ret = block_page_mkwrite_return(ret); 5140 out: 5141 sb_end_pagefault(inode->i_sb); 5142 return ret; 5143 } 5144