xref: /openbmc/linux/fs/ext4/inode.c (revision 78c99ba1)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44 
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46 
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 					      loff_t new_size)
49 {
50 	return jbd2_journal_begin_ordered_truncate(
51 					EXT4_SB(inode->i_sb)->s_journal,
52 					&EXT4_I(inode)->jinode,
53 					new_size);
54 }
55 
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57 
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 		(inode->i_sb->s_blocksize >> 9) : 0;
65 
66 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68 
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83 	int err;
84 
85 	if (!ext4_handle_valid(handle))
86 		return 0;
87 
88 	might_sleep();
89 
90 	BUFFER_TRACE(bh, "enter");
91 
92 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 		  "data mode %lx\n",
94 		  bh, is_metadata, inode->i_mode,
95 		  test_opt(inode->i_sb, DATA_FLAGS));
96 
97 	/* Never use the revoke function if we are doing full data
98 	 * journaling: there is no need to, and a V1 superblock won't
99 	 * support it.  Otherwise, only skip the revoke on un-journaled
100 	 * data blocks. */
101 
102 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 	    (!is_metadata && !ext4_should_journal_data(inode))) {
104 		if (bh) {
105 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106 			return ext4_journal_forget(handle, bh);
107 		}
108 		return 0;
109 	}
110 
111 	/*
112 	 * data!=journal && (is_metadata || should_journal_data(inode))
113 	 */
114 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 	err = ext4_journal_revoke(handle, blocknr, bh);
116 	if (err)
117 		ext4_abort(inode->i_sb, __func__,
118 			   "error %d when attempting revoke", err);
119 	BUFFER_TRACE(bh, "exit");
120 	return err;
121 }
122 
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129 	ext4_lblk_t needed;
130 
131 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132 
133 	/* Give ourselves just enough room to cope with inodes in which
134 	 * i_blocks is corrupt: we've seen disk corruptions in the past
135 	 * which resulted in random data in an inode which looked enough
136 	 * like a regular file for ext4 to try to delete it.  Things
137 	 * will go a bit crazy if that happens, but at least we should
138 	 * try not to panic the whole kernel. */
139 	if (needed < 2)
140 		needed = 2;
141 
142 	/* But we need to bound the transaction so we don't overflow the
143 	 * journal. */
144 	if (needed > EXT4_MAX_TRANS_DATA)
145 		needed = EXT4_MAX_TRANS_DATA;
146 
147 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149 
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162 	handle_t *result;
163 
164 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 	if (!IS_ERR(result))
166 		return result;
167 
168 	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 	return result;
170 }
171 
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180 	if (!ext4_handle_valid(handle))
181 		return 0;
182 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183 		return 0;
184 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 		return 0;
186 	return 1;
187 }
188 
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197 	jbd_debug(2, "restarting handle %p\n", handle);
198 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200 
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206 	handle_t *handle;
207 	int err;
208 
209 	if (ext4_should_order_data(inode))
210 		ext4_begin_ordered_truncate(inode, 0);
211 	truncate_inode_pages(&inode->i_data, 0);
212 
213 	if (is_bad_inode(inode))
214 		goto no_delete;
215 
216 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217 	if (IS_ERR(handle)) {
218 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 		/*
220 		 * If we're going to skip the normal cleanup, we still need to
221 		 * make sure that the in-core orphan linked list is properly
222 		 * cleaned up.
223 		 */
224 		ext4_orphan_del(NULL, inode);
225 		goto no_delete;
226 	}
227 
228 	if (IS_SYNC(inode))
229 		ext4_handle_sync(handle);
230 	inode->i_size = 0;
231 	err = ext4_mark_inode_dirty(handle, inode);
232 	if (err) {
233 		ext4_warning(inode->i_sb, __func__,
234 			     "couldn't mark inode dirty (err %d)", err);
235 		goto stop_handle;
236 	}
237 	if (inode->i_blocks)
238 		ext4_truncate(inode);
239 
240 	/*
241 	 * ext4_ext_truncate() doesn't reserve any slop when it
242 	 * restarts journal transactions; therefore there may not be
243 	 * enough credits left in the handle to remove the inode from
244 	 * the orphan list and set the dtime field.
245 	 */
246 	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 		err = ext4_journal_extend(handle, 3);
248 		if (err > 0)
249 			err = ext4_journal_restart(handle, 3);
250 		if (err != 0) {
251 			ext4_warning(inode->i_sb, __func__,
252 				     "couldn't extend journal (err %d)", err);
253 		stop_handle:
254 			ext4_journal_stop(handle);
255 			goto no_delete;
256 		}
257 	}
258 
259 	/*
260 	 * Kill off the orphan record which ext4_truncate created.
261 	 * AKPM: I think this can be inside the above `if'.
262 	 * Note that ext4_orphan_del() has to be able to cope with the
263 	 * deletion of a non-existent orphan - this is because we don't
264 	 * know if ext4_truncate() actually created an orphan record.
265 	 * (Well, we could do this if we need to, but heck - it works)
266 	 */
267 	ext4_orphan_del(handle, inode);
268 	EXT4_I(inode)->i_dtime	= get_seconds();
269 
270 	/*
271 	 * One subtle ordering requirement: if anything has gone wrong
272 	 * (transaction abort, IO errors, whatever), then we can still
273 	 * do these next steps (the fs will already have been marked as
274 	 * having errors), but we can't free the inode if the mark_dirty
275 	 * fails.
276 	 */
277 	if (ext4_mark_inode_dirty(handle, inode))
278 		/* If that failed, just do the required in-core inode clear. */
279 		clear_inode(inode);
280 	else
281 		ext4_free_inode(handle, inode);
282 	ext4_journal_stop(handle);
283 	return;
284 no_delete:
285 	clear_inode(inode);	/* We must guarantee clearing of inode... */
286 }
287 
288 typedef struct {
289 	__le32	*p;
290 	__le32	key;
291 	struct buffer_head *bh;
292 } Indirect;
293 
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296 	p->key = *(p->p = v);
297 	p->bh = bh;
298 }
299 
300 /**
301  *	ext4_block_to_path - parse the block number into array of offsets
302  *	@inode: inode in question (we are only interested in its superblock)
303  *	@i_block: block number to be parsed
304  *	@offsets: array to store the offsets in
305  *	@boundary: set this non-zero if the referred-to block is likely to be
306  *	       followed (on disk) by an indirect block.
307  *
308  *	To store the locations of file's data ext4 uses a data structure common
309  *	for UNIX filesystems - tree of pointers anchored in the inode, with
310  *	data blocks at leaves and indirect blocks in intermediate nodes.
311  *	This function translates the block number into path in that tree -
312  *	return value is the path length and @offsets[n] is the offset of
313  *	pointer to (n+1)th node in the nth one. If @block is out of range
314  *	(negative or too large) warning is printed and zero returned.
315  *
316  *	Note: function doesn't find node addresses, so no IO is needed. All
317  *	we need to know is the capacity of indirect blocks (taken from the
318  *	inode->i_sb).
319  */
320 
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330 
331 static int ext4_block_to_path(struct inode *inode,
332 			ext4_lblk_t i_block,
333 			ext4_lblk_t offsets[4], int *boundary)
334 {
335 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 		indirect_blocks = ptrs,
339 		double_blocks = (1 << (ptrs_bits * 2));
340 	int n = 0;
341 	int final = 0;
342 
343 	if (i_block < 0) {
344 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 	} else if (i_block < direct_blocks) {
346 		offsets[n++] = i_block;
347 		final = direct_blocks;
348 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349 		offsets[n++] = EXT4_IND_BLOCK;
350 		offsets[n++] = i_block;
351 		final = ptrs;
352 	} else if ((i_block -= indirect_blocks) < double_blocks) {
353 		offsets[n++] = EXT4_DIND_BLOCK;
354 		offsets[n++] = i_block >> ptrs_bits;
355 		offsets[n++] = i_block & (ptrs - 1);
356 		final = ptrs;
357 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358 		offsets[n++] = EXT4_TIND_BLOCK;
359 		offsets[n++] = i_block >> (ptrs_bits * 2);
360 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 		offsets[n++] = i_block & (ptrs - 1);
362 		final = ptrs;
363 	} else {
364 		ext4_warning(inode->i_sb, "ext4_block_to_path",
365 				"block %lu > max in inode %lu",
366 				i_block + direct_blocks +
367 				indirect_blocks + double_blocks, inode->i_ino);
368 	}
369 	if (boundary)
370 		*boundary = final - 1 - (i_block & (ptrs - 1));
371 	return n;
372 }
373 
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375 				 __le32 *p, unsigned int max)
376 {
377 	__le32 *bref = p;
378 	unsigned int blk;
379 
380 	while (bref < p+max) {
381 		blk = le32_to_cpu(*bref++);
382 		if (blk &&
383 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
384 						    blk, 1))) {
385 			ext4_error(inode->i_sb, function,
386 				   "invalid block reference %u "
387 				   "in inode #%lu", blk, inode->i_ino);
388  			return -EIO;
389  		}
390  	}
391  	return 0;
392 }
393 
394 
395 #define ext4_check_indirect_blockref(inode, bh)                         \
396         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
397 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
398 
399 #define ext4_check_inode_blockref(inode)                                \
400         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
401 			      EXT4_NDIR_BLOCKS)
402 
403 /**
404  *	ext4_get_branch - read the chain of indirect blocks leading to data
405  *	@inode: inode in question
406  *	@depth: depth of the chain (1 - direct pointer, etc.)
407  *	@offsets: offsets of pointers in inode/indirect blocks
408  *	@chain: place to store the result
409  *	@err: here we store the error value
410  *
411  *	Function fills the array of triples <key, p, bh> and returns %NULL
412  *	if everything went OK or the pointer to the last filled triple
413  *	(incomplete one) otherwise. Upon the return chain[i].key contains
414  *	the number of (i+1)-th block in the chain (as it is stored in memory,
415  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
416  *	number (it points into struct inode for i==0 and into the bh->b_data
417  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
418  *	block for i>0 and NULL for i==0. In other words, it holds the block
419  *	numbers of the chain, addresses they were taken from (and where we can
420  *	verify that chain did not change) and buffer_heads hosting these
421  *	numbers.
422  *
423  *	Function stops when it stumbles upon zero pointer (absent block)
424  *		(pointer to last triple returned, *@err == 0)
425  *	or when it gets an IO error reading an indirect block
426  *		(ditto, *@err == -EIO)
427  *	or when it reads all @depth-1 indirect blocks successfully and finds
428  *	the whole chain, all way to the data (returns %NULL, *err == 0).
429  *
430  *      Need to be called with
431  *      down_read(&EXT4_I(inode)->i_data_sem)
432  */
433 static Indirect *ext4_get_branch(struct inode *inode, int depth,
434 				 ext4_lblk_t  *offsets,
435 				 Indirect chain[4], int *err)
436 {
437 	struct super_block *sb = inode->i_sb;
438 	Indirect *p = chain;
439 	struct buffer_head *bh;
440 
441 	*err = 0;
442 	/* i_data is not going away, no lock needed */
443 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
444 	if (!p->key)
445 		goto no_block;
446 	while (--depth) {
447 		bh = sb_getblk(sb, le32_to_cpu(p->key));
448 		if (unlikely(!bh))
449 			goto failure;
450 
451 		if (!bh_uptodate_or_lock(bh)) {
452 			if (bh_submit_read(bh) < 0) {
453 				put_bh(bh);
454 				goto failure;
455 			}
456 			/* validate block references */
457 			if (ext4_check_indirect_blockref(inode, bh)) {
458 				put_bh(bh);
459 				goto failure;
460 			}
461 		}
462 
463 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
464 		/* Reader: end */
465 		if (!p->key)
466 			goto no_block;
467 	}
468 	return NULL;
469 
470 failure:
471 	*err = -EIO;
472 no_block:
473 	return p;
474 }
475 
476 /**
477  *	ext4_find_near - find a place for allocation with sufficient locality
478  *	@inode: owner
479  *	@ind: descriptor of indirect block.
480  *
481  *	This function returns the preferred place for block allocation.
482  *	It is used when heuristic for sequential allocation fails.
483  *	Rules are:
484  *	  + if there is a block to the left of our position - allocate near it.
485  *	  + if pointer will live in indirect block - allocate near that block.
486  *	  + if pointer will live in inode - allocate in the same
487  *	    cylinder group.
488  *
489  * In the latter case we colour the starting block by the callers PID to
490  * prevent it from clashing with concurrent allocations for a different inode
491  * in the same block group.   The PID is used here so that functionally related
492  * files will be close-by on-disk.
493  *
494  *	Caller must make sure that @ind is valid and will stay that way.
495  */
496 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
497 {
498 	struct ext4_inode_info *ei = EXT4_I(inode);
499 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
500 	__le32 *p;
501 	ext4_fsblk_t bg_start;
502 	ext4_fsblk_t last_block;
503 	ext4_grpblk_t colour;
504 	ext4_group_t block_group;
505 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
506 
507 	/* Try to find previous block */
508 	for (p = ind->p - 1; p >= start; p--) {
509 		if (*p)
510 			return le32_to_cpu(*p);
511 	}
512 
513 	/* No such thing, so let's try location of indirect block */
514 	if (ind->bh)
515 		return ind->bh->b_blocknr;
516 
517 	/*
518 	 * It is going to be referred to from the inode itself? OK, just put it
519 	 * into the same cylinder group then.
520 	 */
521 	block_group = ei->i_block_group;
522 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
523 		block_group &= ~(flex_size-1);
524 		if (S_ISREG(inode->i_mode))
525 			block_group++;
526 	}
527 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
528 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
529 
530 	/*
531 	 * If we are doing delayed allocation, we don't need take
532 	 * colour into account.
533 	 */
534 	if (test_opt(inode->i_sb, DELALLOC))
535 		return bg_start;
536 
537 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
538 		colour = (current->pid % 16) *
539 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
540 	else
541 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
542 	return bg_start + colour;
543 }
544 
545 /**
546  *	ext4_find_goal - find a preferred place for allocation.
547  *	@inode: owner
548  *	@block:  block we want
549  *	@partial: pointer to the last triple within a chain
550  *
551  *	Normally this function find the preferred place for block allocation,
552  *	returns it.
553  */
554 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
555 		Indirect *partial)
556 {
557 	/*
558 	 * XXX need to get goal block from mballoc's data structures
559 	 */
560 
561 	return ext4_find_near(inode, partial);
562 }
563 
564 /**
565  *	ext4_blks_to_allocate: Look up the block map and count the number
566  *	of direct blocks need to be allocated for the given branch.
567  *
568  *	@branch: chain of indirect blocks
569  *	@k: number of blocks need for indirect blocks
570  *	@blks: number of data blocks to be mapped.
571  *	@blocks_to_boundary:  the offset in the indirect block
572  *
573  *	return the total number of blocks to be allocate, including the
574  *	direct and indirect blocks.
575  */
576 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
577 		int blocks_to_boundary)
578 {
579 	unsigned int count = 0;
580 
581 	/*
582 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
583 	 * then it's clear blocks on that path have not allocated
584 	 */
585 	if (k > 0) {
586 		/* right now we don't handle cross boundary allocation */
587 		if (blks < blocks_to_boundary + 1)
588 			count += blks;
589 		else
590 			count += blocks_to_boundary + 1;
591 		return count;
592 	}
593 
594 	count++;
595 	while (count < blks && count <= blocks_to_boundary &&
596 		le32_to_cpu(*(branch[0].p + count)) == 0) {
597 		count++;
598 	}
599 	return count;
600 }
601 
602 /**
603  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
604  *	@indirect_blks: the number of blocks need to allocate for indirect
605  *			blocks
606  *
607  *	@new_blocks: on return it will store the new block numbers for
608  *	the indirect blocks(if needed) and the first direct block,
609  *	@blks:	on return it will store the total number of allocated
610  *		direct blocks
611  */
612 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
613 				ext4_lblk_t iblock, ext4_fsblk_t goal,
614 				int indirect_blks, int blks,
615 				ext4_fsblk_t new_blocks[4], int *err)
616 {
617 	struct ext4_allocation_request ar;
618 	int target, i;
619 	unsigned long count = 0, blk_allocated = 0;
620 	int index = 0;
621 	ext4_fsblk_t current_block = 0;
622 	int ret = 0;
623 
624 	/*
625 	 * Here we try to allocate the requested multiple blocks at once,
626 	 * on a best-effort basis.
627 	 * To build a branch, we should allocate blocks for
628 	 * the indirect blocks(if not allocated yet), and at least
629 	 * the first direct block of this branch.  That's the
630 	 * minimum number of blocks need to allocate(required)
631 	 */
632 	/* first we try to allocate the indirect blocks */
633 	target = indirect_blks;
634 	while (target > 0) {
635 		count = target;
636 		/* allocating blocks for indirect blocks and direct blocks */
637 		current_block = ext4_new_meta_blocks(handle, inode,
638 							goal, &count, err);
639 		if (*err)
640 			goto failed_out;
641 
642 		target -= count;
643 		/* allocate blocks for indirect blocks */
644 		while (index < indirect_blks && count) {
645 			new_blocks[index++] = current_block++;
646 			count--;
647 		}
648 		if (count > 0) {
649 			/*
650 			 * save the new block number
651 			 * for the first direct block
652 			 */
653 			new_blocks[index] = current_block;
654 			printk(KERN_INFO "%s returned more blocks than "
655 						"requested\n", __func__);
656 			WARN_ON(1);
657 			break;
658 		}
659 	}
660 
661 	target = blks - count ;
662 	blk_allocated = count;
663 	if (!target)
664 		goto allocated;
665 	/* Now allocate data blocks */
666 	memset(&ar, 0, sizeof(ar));
667 	ar.inode = inode;
668 	ar.goal = goal;
669 	ar.len = target;
670 	ar.logical = iblock;
671 	if (S_ISREG(inode->i_mode))
672 		/* enable in-core preallocation only for regular files */
673 		ar.flags = EXT4_MB_HINT_DATA;
674 
675 	current_block = ext4_mb_new_blocks(handle, &ar, err);
676 
677 	if (*err && (target == blks)) {
678 		/*
679 		 * if the allocation failed and we didn't allocate
680 		 * any blocks before
681 		 */
682 		goto failed_out;
683 	}
684 	if (!*err) {
685 		if (target == blks) {
686 		/*
687 		 * save the new block number
688 		 * for the first direct block
689 		 */
690 			new_blocks[index] = current_block;
691 		}
692 		blk_allocated += ar.len;
693 	}
694 allocated:
695 	/* total number of blocks allocated for direct blocks */
696 	ret = blk_allocated;
697 	*err = 0;
698 	return ret;
699 failed_out:
700 	for (i = 0; i < index; i++)
701 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
702 	return ret;
703 }
704 
705 /**
706  *	ext4_alloc_branch - allocate and set up a chain of blocks.
707  *	@inode: owner
708  *	@indirect_blks: number of allocated indirect blocks
709  *	@blks: number of allocated direct blocks
710  *	@offsets: offsets (in the blocks) to store the pointers to next.
711  *	@branch: place to store the chain in.
712  *
713  *	This function allocates blocks, zeroes out all but the last one,
714  *	links them into chain and (if we are synchronous) writes them to disk.
715  *	In other words, it prepares a branch that can be spliced onto the
716  *	inode. It stores the information about that chain in the branch[], in
717  *	the same format as ext4_get_branch() would do. We are calling it after
718  *	we had read the existing part of chain and partial points to the last
719  *	triple of that (one with zero ->key). Upon the exit we have the same
720  *	picture as after the successful ext4_get_block(), except that in one
721  *	place chain is disconnected - *branch->p is still zero (we did not
722  *	set the last link), but branch->key contains the number that should
723  *	be placed into *branch->p to fill that gap.
724  *
725  *	If allocation fails we free all blocks we've allocated (and forget
726  *	their buffer_heads) and return the error value the from failed
727  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
728  *	as described above and return 0.
729  */
730 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
731 				ext4_lblk_t iblock, int indirect_blks,
732 				int *blks, ext4_fsblk_t goal,
733 				ext4_lblk_t *offsets, Indirect *branch)
734 {
735 	int blocksize = inode->i_sb->s_blocksize;
736 	int i, n = 0;
737 	int err = 0;
738 	struct buffer_head *bh;
739 	int num;
740 	ext4_fsblk_t new_blocks[4];
741 	ext4_fsblk_t current_block;
742 
743 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
744 				*blks, new_blocks, &err);
745 	if (err)
746 		return err;
747 
748 	branch[0].key = cpu_to_le32(new_blocks[0]);
749 	/*
750 	 * metadata blocks and data blocks are allocated.
751 	 */
752 	for (n = 1; n <= indirect_blks;  n++) {
753 		/*
754 		 * Get buffer_head for parent block, zero it out
755 		 * and set the pointer to new one, then send
756 		 * parent to disk.
757 		 */
758 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
759 		branch[n].bh = bh;
760 		lock_buffer(bh);
761 		BUFFER_TRACE(bh, "call get_create_access");
762 		err = ext4_journal_get_create_access(handle, bh);
763 		if (err) {
764 			unlock_buffer(bh);
765 			brelse(bh);
766 			goto failed;
767 		}
768 
769 		memset(bh->b_data, 0, blocksize);
770 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
771 		branch[n].key = cpu_to_le32(new_blocks[n]);
772 		*branch[n].p = branch[n].key;
773 		if (n == indirect_blks) {
774 			current_block = new_blocks[n];
775 			/*
776 			 * End of chain, update the last new metablock of
777 			 * the chain to point to the new allocated
778 			 * data blocks numbers
779 			 */
780 			for (i=1; i < num; i++)
781 				*(branch[n].p + i) = cpu_to_le32(++current_block);
782 		}
783 		BUFFER_TRACE(bh, "marking uptodate");
784 		set_buffer_uptodate(bh);
785 		unlock_buffer(bh);
786 
787 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788 		err = ext4_handle_dirty_metadata(handle, inode, bh);
789 		if (err)
790 			goto failed;
791 	}
792 	*blks = num;
793 	return err;
794 failed:
795 	/* Allocation failed, free what we already allocated */
796 	for (i = 1; i <= n ; i++) {
797 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
798 		ext4_journal_forget(handle, branch[i].bh);
799 	}
800 	for (i = 0; i < indirect_blks; i++)
801 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
802 
803 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
804 
805 	return err;
806 }
807 
808 /**
809  * ext4_splice_branch - splice the allocated branch onto inode.
810  * @inode: owner
811  * @block: (logical) number of block we are adding
812  * @chain: chain of indirect blocks (with a missing link - see
813  *	ext4_alloc_branch)
814  * @where: location of missing link
815  * @num:   number of indirect blocks we are adding
816  * @blks:  number of direct blocks we are adding
817  *
818  * This function fills the missing link and does all housekeeping needed in
819  * inode (->i_blocks, etc.). In case of success we end up with the full
820  * chain to new block and return 0.
821  */
822 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
823 			ext4_lblk_t block, Indirect *where, int num, int blks)
824 {
825 	int i;
826 	int err = 0;
827 	ext4_fsblk_t current_block;
828 
829 	/*
830 	 * If we're splicing into a [td]indirect block (as opposed to the
831 	 * inode) then we need to get write access to the [td]indirect block
832 	 * before the splice.
833 	 */
834 	if (where->bh) {
835 		BUFFER_TRACE(where->bh, "get_write_access");
836 		err = ext4_journal_get_write_access(handle, where->bh);
837 		if (err)
838 			goto err_out;
839 	}
840 	/* That's it */
841 
842 	*where->p = where->key;
843 
844 	/*
845 	 * Update the host buffer_head or inode to point to more just allocated
846 	 * direct blocks blocks
847 	 */
848 	if (num == 0 && blks > 1) {
849 		current_block = le32_to_cpu(where->key) + 1;
850 		for (i = 1; i < blks; i++)
851 			*(where->p + i) = cpu_to_le32(current_block++);
852 	}
853 
854 	/* We are done with atomic stuff, now do the rest of housekeeping */
855 
856 	inode->i_ctime = ext4_current_time(inode);
857 	ext4_mark_inode_dirty(handle, inode);
858 
859 	/* had we spliced it onto indirect block? */
860 	if (where->bh) {
861 		/*
862 		 * If we spliced it onto an indirect block, we haven't
863 		 * altered the inode.  Note however that if it is being spliced
864 		 * onto an indirect block at the very end of the file (the
865 		 * file is growing) then we *will* alter the inode to reflect
866 		 * the new i_size.  But that is not done here - it is done in
867 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
868 		 */
869 		jbd_debug(5, "splicing indirect only\n");
870 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
871 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
872 		if (err)
873 			goto err_out;
874 	} else {
875 		/*
876 		 * OK, we spliced it into the inode itself on a direct block.
877 		 * Inode was dirtied above.
878 		 */
879 		jbd_debug(5, "splicing direct\n");
880 	}
881 	return err;
882 
883 err_out:
884 	for (i = 1; i <= num; i++) {
885 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
886 		ext4_journal_forget(handle, where[i].bh);
887 		ext4_free_blocks(handle, inode,
888 					le32_to_cpu(where[i-1].key), 1, 0);
889 	}
890 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
891 
892 	return err;
893 }
894 
895 /*
896  * The ext4_ind_get_blocks() function handles non-extents inodes
897  * (i.e., using the traditional indirect/double-indirect i_blocks
898  * scheme) for ext4_get_blocks().
899  *
900  * Allocation strategy is simple: if we have to allocate something, we will
901  * have to go the whole way to leaf. So let's do it before attaching anything
902  * to tree, set linkage between the newborn blocks, write them if sync is
903  * required, recheck the path, free and repeat if check fails, otherwise
904  * set the last missing link (that will protect us from any truncate-generated
905  * removals - all blocks on the path are immune now) and possibly force the
906  * write on the parent block.
907  * That has a nice additional property: no special recovery from the failed
908  * allocations is needed - we simply release blocks and do not touch anything
909  * reachable from inode.
910  *
911  * `handle' can be NULL if create == 0.
912  *
913  * return > 0, # of blocks mapped or allocated.
914  * return = 0, if plain lookup failed.
915  * return < 0, error case.
916  *
917  * The ext4_ind_get_blocks() function should be called with
918  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
919  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
920  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
921  * blocks.
922  */
923 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
924 				  ext4_lblk_t iblock, unsigned int maxblocks,
925 				  struct buffer_head *bh_result,
926 				  int flags)
927 {
928 	int err = -EIO;
929 	ext4_lblk_t offsets[4];
930 	Indirect chain[4];
931 	Indirect *partial;
932 	ext4_fsblk_t goal;
933 	int indirect_blks;
934 	int blocks_to_boundary = 0;
935 	int depth;
936 	int count = 0;
937 	ext4_fsblk_t first_block = 0;
938 
939 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
940 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
941 	depth = ext4_block_to_path(inode, iblock, offsets,
942 					&blocks_to_boundary);
943 
944 	if (depth == 0)
945 		goto out;
946 
947 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
948 
949 	/* Simplest case - block found, no allocation needed */
950 	if (!partial) {
951 		first_block = le32_to_cpu(chain[depth - 1].key);
952 		clear_buffer_new(bh_result);
953 		count++;
954 		/*map more blocks*/
955 		while (count < maxblocks && count <= blocks_to_boundary) {
956 			ext4_fsblk_t blk;
957 
958 			blk = le32_to_cpu(*(chain[depth-1].p + count));
959 
960 			if (blk == first_block + count)
961 				count++;
962 			else
963 				break;
964 		}
965 		goto got_it;
966 	}
967 
968 	/* Next simple case - plain lookup or failed read of indirect block */
969 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
970 		goto cleanup;
971 
972 	/*
973 	 * Okay, we need to do block allocation.
974 	*/
975 	goal = ext4_find_goal(inode, iblock, partial);
976 
977 	/* the number of blocks need to allocate for [d,t]indirect blocks */
978 	indirect_blks = (chain + depth) - partial - 1;
979 
980 	/*
981 	 * Next look up the indirect map to count the totoal number of
982 	 * direct blocks to allocate for this branch.
983 	 */
984 	count = ext4_blks_to_allocate(partial, indirect_blks,
985 					maxblocks, blocks_to_boundary);
986 	/*
987 	 * Block out ext4_truncate while we alter the tree
988 	 */
989 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
990 					&count, goal,
991 					offsets + (partial - chain), partial);
992 
993 	/*
994 	 * The ext4_splice_branch call will free and forget any buffers
995 	 * on the new chain if there is a failure, but that risks using
996 	 * up transaction credits, especially for bitmaps where the
997 	 * credits cannot be returned.  Can we handle this somehow?  We
998 	 * may need to return -EAGAIN upwards in the worst case.  --sct
999 	 */
1000 	if (!err)
1001 		err = ext4_splice_branch(handle, inode, iblock,
1002 					partial, indirect_blks, count);
1003 	else
1004 		goto cleanup;
1005 
1006 	set_buffer_new(bh_result);
1007 got_it:
1008 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1009 	if (count > blocks_to_boundary)
1010 		set_buffer_boundary(bh_result);
1011 	err = count;
1012 	/* Clean up and exit */
1013 	partial = chain + depth - 1;	/* the whole chain */
1014 cleanup:
1015 	while (partial > chain) {
1016 		BUFFER_TRACE(partial->bh, "call brelse");
1017 		brelse(partial->bh);
1018 		partial--;
1019 	}
1020 	BUFFER_TRACE(bh_result, "returned");
1021 out:
1022 	return err;
1023 }
1024 
1025 qsize_t ext4_get_reserved_space(struct inode *inode)
1026 {
1027 	unsigned long long total;
1028 
1029 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1030 	total = EXT4_I(inode)->i_reserved_data_blocks +
1031 		EXT4_I(inode)->i_reserved_meta_blocks;
1032 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1033 
1034 	return total;
1035 }
1036 /*
1037  * Calculate the number of metadata blocks need to reserve
1038  * to allocate @blocks for non extent file based file
1039  */
1040 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1041 {
1042 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1043 	int ind_blks, dind_blks, tind_blks;
1044 
1045 	/* number of new indirect blocks needed */
1046 	ind_blks = (blocks + icap - 1) / icap;
1047 
1048 	dind_blks = (ind_blks + icap - 1) / icap;
1049 
1050 	tind_blks = 1;
1051 
1052 	return ind_blks + dind_blks + tind_blks;
1053 }
1054 
1055 /*
1056  * Calculate the number of metadata blocks need to reserve
1057  * to allocate given number of blocks
1058  */
1059 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1060 {
1061 	if (!blocks)
1062 		return 0;
1063 
1064 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1065 		return ext4_ext_calc_metadata_amount(inode, blocks);
1066 
1067 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1068 }
1069 
1070 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1071 {
1072 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1073 	int total, mdb, mdb_free;
1074 
1075 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1076 	/* recalculate the number of metablocks still need to be reserved */
1077 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1078 	mdb = ext4_calc_metadata_amount(inode, total);
1079 
1080 	/* figure out how many metablocks to release */
1081 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1082 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1083 
1084 	if (mdb_free) {
1085 		/* Account for allocated meta_blocks */
1086 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1087 
1088 		/* update fs dirty blocks counter */
1089 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1090 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1091 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1092 	}
1093 
1094 	/* update per-inode reservations */
1095 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1096 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1097 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1098 
1099 	/*
1100 	 * free those over-booking quota for metadata blocks
1101 	 */
1102 	if (mdb_free)
1103 		vfs_dq_release_reservation_block(inode, mdb_free);
1104 
1105 	/*
1106 	 * If we have done all the pending block allocations and if
1107 	 * there aren't any writers on the inode, we can discard the
1108 	 * inode's preallocations.
1109 	 */
1110 	if (!total && (atomic_read(&inode->i_writecount) == 0))
1111 		ext4_discard_preallocations(inode);
1112 }
1113 
1114 static int check_block_validity(struct inode *inode, sector_t logical,
1115 				sector_t phys, int len)
1116 {
1117 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1118 		ext4_error(inode->i_sb, "check_block_validity",
1119 			   "inode #%lu logical block %llu mapped to %llu "
1120 			   "(size %d)", inode->i_ino,
1121 			   (unsigned long long) logical,
1122 			   (unsigned long long) phys, len);
1123 		WARN_ON(1);
1124 		return -EIO;
1125 	}
1126 	return 0;
1127 }
1128 
1129 /*
1130  * The ext4_get_blocks() function tries to look up the requested blocks,
1131  * and returns if the blocks are already mapped.
1132  *
1133  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1134  * and store the allocated blocks in the result buffer head and mark it
1135  * mapped.
1136  *
1137  * If file type is extents based, it will call ext4_ext_get_blocks(),
1138  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1139  * based files
1140  *
1141  * On success, it returns the number of blocks being mapped or allocate.
1142  * if create==0 and the blocks are pre-allocated and uninitialized block,
1143  * the result buffer head is unmapped. If the create ==1, it will make sure
1144  * the buffer head is mapped.
1145  *
1146  * It returns 0 if plain look up failed (blocks have not been allocated), in
1147  * that casem, buffer head is unmapped
1148  *
1149  * It returns the error in case of allocation failure.
1150  */
1151 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1152 		    unsigned int max_blocks, struct buffer_head *bh,
1153 		    int flags)
1154 {
1155 	int retval;
1156 
1157 	clear_buffer_mapped(bh);
1158 	clear_buffer_unwritten(bh);
1159 
1160 	/*
1161 	 * Try to see if we can get the block without requesting a new
1162 	 * file system block.
1163 	 */
1164 	down_read((&EXT4_I(inode)->i_data_sem));
1165 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1166 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1167 				bh, 0);
1168 	} else {
1169 		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1170 					     bh, 0);
1171 	}
1172 	up_read((&EXT4_I(inode)->i_data_sem));
1173 
1174 	if (retval > 0 && buffer_mapped(bh)) {
1175 		int ret = check_block_validity(inode, block,
1176 					       bh->b_blocknr, retval);
1177 		if (ret != 0)
1178 			return ret;
1179 	}
1180 
1181 	/* If it is only a block(s) look up */
1182 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1183 		return retval;
1184 
1185 	/*
1186 	 * Returns if the blocks have already allocated
1187 	 *
1188 	 * Note that if blocks have been preallocated
1189 	 * ext4_ext_get_block() returns th create = 0
1190 	 * with buffer head unmapped.
1191 	 */
1192 	if (retval > 0 && buffer_mapped(bh))
1193 		return retval;
1194 
1195 	/*
1196 	 * When we call get_blocks without the create flag, the
1197 	 * BH_Unwritten flag could have gotten set if the blocks
1198 	 * requested were part of a uninitialized extent.  We need to
1199 	 * clear this flag now that we are committed to convert all or
1200 	 * part of the uninitialized extent to be an initialized
1201 	 * extent.  This is because we need to avoid the combination
1202 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1203 	 * set on the buffer_head.
1204 	 */
1205 	clear_buffer_unwritten(bh);
1206 
1207 	/*
1208 	 * New blocks allocate and/or writing to uninitialized extent
1209 	 * will possibly result in updating i_data, so we take
1210 	 * the write lock of i_data_sem, and call get_blocks()
1211 	 * with create == 1 flag.
1212 	 */
1213 	down_write((&EXT4_I(inode)->i_data_sem));
1214 
1215 	/*
1216 	 * if the caller is from delayed allocation writeout path
1217 	 * we have already reserved fs blocks for allocation
1218 	 * let the underlying get_block() function know to
1219 	 * avoid double accounting
1220 	 */
1221 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1222 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1223 	/*
1224 	 * We need to check for EXT4 here because migrate
1225 	 * could have changed the inode type in between
1226 	 */
1227 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1228 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1229 					      bh, flags);
1230 	} else {
1231 		retval = ext4_ind_get_blocks(handle, inode, block,
1232 					     max_blocks, bh, flags);
1233 
1234 		if (retval > 0 && buffer_new(bh)) {
1235 			/*
1236 			 * We allocated new blocks which will result in
1237 			 * i_data's format changing.  Force the migrate
1238 			 * to fail by clearing migrate flags
1239 			 */
1240 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1241 							~EXT4_EXT_MIGRATE;
1242 		}
1243 	}
1244 
1245 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1246 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1247 
1248 	/*
1249 	 * Update reserved blocks/metadata blocks after successful
1250 	 * block allocation which had been deferred till now.
1251 	 */
1252 	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1253 		ext4_da_update_reserve_space(inode, retval);
1254 
1255 	up_write((&EXT4_I(inode)->i_data_sem));
1256 	if (retval > 0 && buffer_mapped(bh)) {
1257 		int ret = check_block_validity(inode, block,
1258 					       bh->b_blocknr, retval);
1259 		if (ret != 0)
1260 			return ret;
1261 	}
1262 	return retval;
1263 }
1264 
1265 /* Maximum number of blocks we map for direct IO at once. */
1266 #define DIO_MAX_BLOCKS 4096
1267 
1268 int ext4_get_block(struct inode *inode, sector_t iblock,
1269 		   struct buffer_head *bh_result, int create)
1270 {
1271 	handle_t *handle = ext4_journal_current_handle();
1272 	int ret = 0, started = 0;
1273 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1274 	int dio_credits;
1275 
1276 	if (create && !handle) {
1277 		/* Direct IO write... */
1278 		if (max_blocks > DIO_MAX_BLOCKS)
1279 			max_blocks = DIO_MAX_BLOCKS;
1280 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1281 		handle = ext4_journal_start(inode, dio_credits);
1282 		if (IS_ERR(handle)) {
1283 			ret = PTR_ERR(handle);
1284 			goto out;
1285 		}
1286 		started = 1;
1287 	}
1288 
1289 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1290 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1291 	if (ret > 0) {
1292 		bh_result->b_size = (ret << inode->i_blkbits);
1293 		ret = 0;
1294 	}
1295 	if (started)
1296 		ext4_journal_stop(handle);
1297 out:
1298 	return ret;
1299 }
1300 
1301 /*
1302  * `handle' can be NULL if create is zero
1303  */
1304 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1305 				ext4_lblk_t block, int create, int *errp)
1306 {
1307 	struct buffer_head dummy;
1308 	int fatal = 0, err;
1309 	int flags = 0;
1310 
1311 	J_ASSERT(handle != NULL || create == 0);
1312 
1313 	dummy.b_state = 0;
1314 	dummy.b_blocknr = -1000;
1315 	buffer_trace_init(&dummy.b_history);
1316 	if (create)
1317 		flags |= EXT4_GET_BLOCKS_CREATE;
1318 	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1319 	/*
1320 	 * ext4_get_blocks() returns number of blocks mapped. 0 in
1321 	 * case of a HOLE.
1322 	 */
1323 	if (err > 0) {
1324 		if (err > 1)
1325 			WARN_ON(1);
1326 		err = 0;
1327 	}
1328 	*errp = err;
1329 	if (!err && buffer_mapped(&dummy)) {
1330 		struct buffer_head *bh;
1331 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1332 		if (!bh) {
1333 			*errp = -EIO;
1334 			goto err;
1335 		}
1336 		if (buffer_new(&dummy)) {
1337 			J_ASSERT(create != 0);
1338 			J_ASSERT(handle != NULL);
1339 
1340 			/*
1341 			 * Now that we do not always journal data, we should
1342 			 * keep in mind whether this should always journal the
1343 			 * new buffer as metadata.  For now, regular file
1344 			 * writes use ext4_get_block instead, so it's not a
1345 			 * problem.
1346 			 */
1347 			lock_buffer(bh);
1348 			BUFFER_TRACE(bh, "call get_create_access");
1349 			fatal = ext4_journal_get_create_access(handle, bh);
1350 			if (!fatal && !buffer_uptodate(bh)) {
1351 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1352 				set_buffer_uptodate(bh);
1353 			}
1354 			unlock_buffer(bh);
1355 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1356 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1357 			if (!fatal)
1358 				fatal = err;
1359 		} else {
1360 			BUFFER_TRACE(bh, "not a new buffer");
1361 		}
1362 		if (fatal) {
1363 			*errp = fatal;
1364 			brelse(bh);
1365 			bh = NULL;
1366 		}
1367 		return bh;
1368 	}
1369 err:
1370 	return NULL;
1371 }
1372 
1373 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1374 			       ext4_lblk_t block, int create, int *err)
1375 {
1376 	struct buffer_head *bh;
1377 
1378 	bh = ext4_getblk(handle, inode, block, create, err);
1379 	if (!bh)
1380 		return bh;
1381 	if (buffer_uptodate(bh))
1382 		return bh;
1383 	ll_rw_block(READ_META, 1, &bh);
1384 	wait_on_buffer(bh);
1385 	if (buffer_uptodate(bh))
1386 		return bh;
1387 	put_bh(bh);
1388 	*err = -EIO;
1389 	return NULL;
1390 }
1391 
1392 static int walk_page_buffers(handle_t *handle,
1393 			     struct buffer_head *head,
1394 			     unsigned from,
1395 			     unsigned to,
1396 			     int *partial,
1397 			     int (*fn)(handle_t *handle,
1398 				       struct buffer_head *bh))
1399 {
1400 	struct buffer_head *bh;
1401 	unsigned block_start, block_end;
1402 	unsigned blocksize = head->b_size;
1403 	int err, ret = 0;
1404 	struct buffer_head *next;
1405 
1406 	for (bh = head, block_start = 0;
1407 	     ret == 0 && (bh != head || !block_start);
1408 	     block_start = block_end, bh = next)
1409 	{
1410 		next = bh->b_this_page;
1411 		block_end = block_start + blocksize;
1412 		if (block_end <= from || block_start >= to) {
1413 			if (partial && !buffer_uptodate(bh))
1414 				*partial = 1;
1415 			continue;
1416 		}
1417 		err = (*fn)(handle, bh);
1418 		if (!ret)
1419 			ret = err;
1420 	}
1421 	return ret;
1422 }
1423 
1424 /*
1425  * To preserve ordering, it is essential that the hole instantiation and
1426  * the data write be encapsulated in a single transaction.  We cannot
1427  * close off a transaction and start a new one between the ext4_get_block()
1428  * and the commit_write().  So doing the jbd2_journal_start at the start of
1429  * prepare_write() is the right place.
1430  *
1431  * Also, this function can nest inside ext4_writepage() ->
1432  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1433  * has generated enough buffer credits to do the whole page.  So we won't
1434  * block on the journal in that case, which is good, because the caller may
1435  * be PF_MEMALLOC.
1436  *
1437  * By accident, ext4 can be reentered when a transaction is open via
1438  * quota file writes.  If we were to commit the transaction while thus
1439  * reentered, there can be a deadlock - we would be holding a quota
1440  * lock, and the commit would never complete if another thread had a
1441  * transaction open and was blocking on the quota lock - a ranking
1442  * violation.
1443  *
1444  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1445  * will _not_ run commit under these circumstances because handle->h_ref
1446  * is elevated.  We'll still have enough credits for the tiny quotafile
1447  * write.
1448  */
1449 static int do_journal_get_write_access(handle_t *handle,
1450 					struct buffer_head *bh)
1451 {
1452 	if (!buffer_mapped(bh) || buffer_freed(bh))
1453 		return 0;
1454 	return ext4_journal_get_write_access(handle, bh);
1455 }
1456 
1457 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1458 				loff_t pos, unsigned len, unsigned flags,
1459 				struct page **pagep, void **fsdata)
1460 {
1461 	struct inode *inode = mapping->host;
1462 	int ret, needed_blocks;
1463 	handle_t *handle;
1464 	int retries = 0;
1465 	struct page *page;
1466  	pgoff_t index;
1467 	unsigned from, to;
1468 
1469 	trace_mark(ext4_write_begin,
1470 		   "dev %s ino %lu pos %llu len %u flags %u",
1471 		   inode->i_sb->s_id, inode->i_ino,
1472 		   (unsigned long long) pos, len, flags);
1473 	/*
1474 	 * Reserve one block more for addition to orphan list in case
1475 	 * we allocate blocks but write fails for some reason
1476 	 */
1477 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1478  	index = pos >> PAGE_CACHE_SHIFT;
1479 	from = pos & (PAGE_CACHE_SIZE - 1);
1480 	to = from + len;
1481 
1482 retry:
1483 	handle = ext4_journal_start(inode, needed_blocks);
1484 	if (IS_ERR(handle)) {
1485 		ret = PTR_ERR(handle);
1486 		goto out;
1487 	}
1488 
1489 	/* We cannot recurse into the filesystem as the transaction is already
1490 	 * started */
1491 	flags |= AOP_FLAG_NOFS;
1492 
1493 	page = grab_cache_page_write_begin(mapping, index, flags);
1494 	if (!page) {
1495 		ext4_journal_stop(handle);
1496 		ret = -ENOMEM;
1497 		goto out;
1498 	}
1499 	*pagep = page;
1500 
1501 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1502 				ext4_get_block);
1503 
1504 	if (!ret && ext4_should_journal_data(inode)) {
1505 		ret = walk_page_buffers(handle, page_buffers(page),
1506 				from, to, NULL, do_journal_get_write_access);
1507 	}
1508 
1509 	if (ret) {
1510 		unlock_page(page);
1511 		page_cache_release(page);
1512 		/*
1513 		 * block_write_begin may have instantiated a few blocks
1514 		 * outside i_size.  Trim these off again. Don't need
1515 		 * i_size_read because we hold i_mutex.
1516 		 *
1517 		 * Add inode to orphan list in case we crash before
1518 		 * truncate finishes
1519 		 */
1520 		if (pos + len > inode->i_size)
1521 			ext4_orphan_add(handle, inode);
1522 
1523 		ext4_journal_stop(handle);
1524 		if (pos + len > inode->i_size) {
1525 			vmtruncate(inode, inode->i_size);
1526 			/*
1527 			 * If vmtruncate failed early the inode might
1528 			 * still be on the orphan list; we need to
1529 			 * make sure the inode is removed from the
1530 			 * orphan list in that case.
1531 			 */
1532 			if (inode->i_nlink)
1533 				ext4_orphan_del(NULL, inode);
1534 		}
1535 	}
1536 
1537 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1538 		goto retry;
1539 out:
1540 	return ret;
1541 }
1542 
1543 /* For write_end() in data=journal mode */
1544 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1545 {
1546 	if (!buffer_mapped(bh) || buffer_freed(bh))
1547 		return 0;
1548 	set_buffer_uptodate(bh);
1549 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1550 }
1551 
1552 static int ext4_generic_write_end(struct file *file,
1553 				struct address_space *mapping,
1554 				loff_t pos, unsigned len, unsigned copied,
1555 				struct page *page, void *fsdata)
1556 {
1557 	int i_size_changed = 0;
1558 	struct inode *inode = mapping->host;
1559 	handle_t *handle = ext4_journal_current_handle();
1560 
1561 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1562 
1563 	/*
1564 	 * No need to use i_size_read() here, the i_size
1565 	 * cannot change under us because we hold i_mutex.
1566 	 *
1567 	 * But it's important to update i_size while still holding page lock:
1568 	 * page writeout could otherwise come in and zero beyond i_size.
1569 	 */
1570 	if (pos + copied > inode->i_size) {
1571 		i_size_write(inode, pos + copied);
1572 		i_size_changed = 1;
1573 	}
1574 
1575 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1576 		/* We need to mark inode dirty even if
1577 		 * new_i_size is less that inode->i_size
1578 		 * bu greater than i_disksize.(hint delalloc)
1579 		 */
1580 		ext4_update_i_disksize(inode, (pos + copied));
1581 		i_size_changed = 1;
1582 	}
1583 	unlock_page(page);
1584 	page_cache_release(page);
1585 
1586 	/*
1587 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1588 	 * makes the holding time of page lock longer. Second, it forces lock
1589 	 * ordering of page lock and transaction start for journaling
1590 	 * filesystems.
1591 	 */
1592 	if (i_size_changed)
1593 		ext4_mark_inode_dirty(handle, inode);
1594 
1595 	return copied;
1596 }
1597 
1598 /*
1599  * We need to pick up the new inode size which generic_commit_write gave us
1600  * `file' can be NULL - eg, when called from page_symlink().
1601  *
1602  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1603  * buffers are managed internally.
1604  */
1605 static int ext4_ordered_write_end(struct file *file,
1606 				struct address_space *mapping,
1607 				loff_t pos, unsigned len, unsigned copied,
1608 				struct page *page, void *fsdata)
1609 {
1610 	handle_t *handle = ext4_journal_current_handle();
1611 	struct inode *inode = mapping->host;
1612 	int ret = 0, ret2;
1613 
1614 	trace_mark(ext4_ordered_write_end,
1615 		   "dev %s ino %lu pos %llu len %u copied %u",
1616 		   inode->i_sb->s_id, inode->i_ino,
1617 		   (unsigned long long) pos, len, copied);
1618 	ret = ext4_jbd2_file_inode(handle, inode);
1619 
1620 	if (ret == 0) {
1621 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1622 							page, fsdata);
1623 		copied = ret2;
1624 		if (pos + len > inode->i_size)
1625 			/* if we have allocated more blocks and copied
1626 			 * less. We will have blocks allocated outside
1627 			 * inode->i_size. So truncate them
1628 			 */
1629 			ext4_orphan_add(handle, inode);
1630 		if (ret2 < 0)
1631 			ret = ret2;
1632 	}
1633 	ret2 = ext4_journal_stop(handle);
1634 	if (!ret)
1635 		ret = ret2;
1636 
1637 	if (pos + len > inode->i_size) {
1638 		vmtruncate(inode, inode->i_size);
1639 		/*
1640 		 * If vmtruncate failed early the inode might still be
1641 		 * on the orphan list; we need to make sure the inode
1642 		 * is removed from the orphan list in that case.
1643 		 */
1644 		if (inode->i_nlink)
1645 			ext4_orphan_del(NULL, inode);
1646 	}
1647 
1648 
1649 	return ret ? ret : copied;
1650 }
1651 
1652 static int ext4_writeback_write_end(struct file *file,
1653 				struct address_space *mapping,
1654 				loff_t pos, unsigned len, unsigned copied,
1655 				struct page *page, void *fsdata)
1656 {
1657 	handle_t *handle = ext4_journal_current_handle();
1658 	struct inode *inode = mapping->host;
1659 	int ret = 0, ret2;
1660 
1661 	trace_mark(ext4_writeback_write_end,
1662 		   "dev %s ino %lu pos %llu len %u copied %u",
1663 		   inode->i_sb->s_id, inode->i_ino,
1664 		   (unsigned long long) pos, len, copied);
1665 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1666 							page, fsdata);
1667 	copied = ret2;
1668 	if (pos + len > inode->i_size)
1669 		/* if we have allocated more blocks and copied
1670 		 * less. We will have blocks allocated outside
1671 		 * inode->i_size. So truncate them
1672 		 */
1673 		ext4_orphan_add(handle, inode);
1674 
1675 	if (ret2 < 0)
1676 		ret = ret2;
1677 
1678 	ret2 = ext4_journal_stop(handle);
1679 	if (!ret)
1680 		ret = ret2;
1681 
1682 	if (pos + len > inode->i_size) {
1683 		vmtruncate(inode, inode->i_size);
1684 		/*
1685 		 * If vmtruncate failed early the inode might still be
1686 		 * on the orphan list; we need to make sure the inode
1687 		 * is removed from the orphan list in that case.
1688 		 */
1689 		if (inode->i_nlink)
1690 			ext4_orphan_del(NULL, inode);
1691 	}
1692 
1693 	return ret ? ret : copied;
1694 }
1695 
1696 static int ext4_journalled_write_end(struct file *file,
1697 				struct address_space *mapping,
1698 				loff_t pos, unsigned len, unsigned copied,
1699 				struct page *page, void *fsdata)
1700 {
1701 	handle_t *handle = ext4_journal_current_handle();
1702 	struct inode *inode = mapping->host;
1703 	int ret = 0, ret2;
1704 	int partial = 0;
1705 	unsigned from, to;
1706 	loff_t new_i_size;
1707 
1708 	trace_mark(ext4_journalled_write_end,
1709 		   "dev %s ino %lu pos %llu len %u copied %u",
1710 		   inode->i_sb->s_id, inode->i_ino,
1711 		   (unsigned long long) pos, len, copied);
1712 	from = pos & (PAGE_CACHE_SIZE - 1);
1713 	to = from + len;
1714 
1715 	if (copied < len) {
1716 		if (!PageUptodate(page))
1717 			copied = 0;
1718 		page_zero_new_buffers(page, from+copied, to);
1719 	}
1720 
1721 	ret = walk_page_buffers(handle, page_buffers(page), from,
1722 				to, &partial, write_end_fn);
1723 	if (!partial)
1724 		SetPageUptodate(page);
1725 	new_i_size = pos + copied;
1726 	if (new_i_size > inode->i_size)
1727 		i_size_write(inode, pos+copied);
1728 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1729 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1730 		ext4_update_i_disksize(inode, new_i_size);
1731 		ret2 = ext4_mark_inode_dirty(handle, inode);
1732 		if (!ret)
1733 			ret = ret2;
1734 	}
1735 
1736 	unlock_page(page);
1737 	page_cache_release(page);
1738 	if (pos + len > inode->i_size)
1739 		/* if we have allocated more blocks and copied
1740 		 * less. We will have blocks allocated outside
1741 		 * inode->i_size. So truncate them
1742 		 */
1743 		ext4_orphan_add(handle, inode);
1744 
1745 	ret2 = ext4_journal_stop(handle);
1746 	if (!ret)
1747 		ret = ret2;
1748 	if (pos + len > inode->i_size) {
1749 		vmtruncate(inode, inode->i_size);
1750 		/*
1751 		 * If vmtruncate failed early the inode might still be
1752 		 * on the orphan list; we need to make sure the inode
1753 		 * is removed from the orphan list in that case.
1754 		 */
1755 		if (inode->i_nlink)
1756 			ext4_orphan_del(NULL, inode);
1757 	}
1758 
1759 	return ret ? ret : copied;
1760 }
1761 
1762 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1763 {
1764 	int retries = 0;
1765 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1766 	unsigned long md_needed, mdblocks, total = 0;
1767 
1768 	/*
1769 	 * recalculate the amount of metadata blocks to reserve
1770 	 * in order to allocate nrblocks
1771 	 * worse case is one extent per block
1772 	 */
1773 repeat:
1774 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1775 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1776 	mdblocks = ext4_calc_metadata_amount(inode, total);
1777 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1778 
1779 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1780 	total = md_needed + nrblocks;
1781 
1782 	/*
1783 	 * Make quota reservation here to prevent quota overflow
1784 	 * later. Real quota accounting is done at pages writeout
1785 	 * time.
1786 	 */
1787 	if (vfs_dq_reserve_block(inode, total)) {
1788 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1789 		return -EDQUOT;
1790 	}
1791 
1792 	if (ext4_claim_free_blocks(sbi, total)) {
1793 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1794 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1795 			yield();
1796 			goto repeat;
1797 		}
1798 		vfs_dq_release_reservation_block(inode, total);
1799 		return -ENOSPC;
1800 	}
1801 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1802 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1803 
1804 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1805 	return 0;       /* success */
1806 }
1807 
1808 static void ext4_da_release_space(struct inode *inode, int to_free)
1809 {
1810 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1811 	int total, mdb, mdb_free, release;
1812 
1813 	if (!to_free)
1814 		return;		/* Nothing to release, exit */
1815 
1816 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1817 
1818 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1819 		/*
1820 		 * if there is no reserved blocks, but we try to free some
1821 		 * then the counter is messed up somewhere.
1822 		 * but since this function is called from invalidate
1823 		 * page, it's harmless to return without any action
1824 		 */
1825 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1826 			    "blocks for inode %lu, but there is no reserved "
1827 			    "data blocks\n", to_free, inode->i_ino);
1828 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1829 		return;
1830 	}
1831 
1832 	/* recalculate the number of metablocks still need to be reserved */
1833 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1834 	mdb = ext4_calc_metadata_amount(inode, total);
1835 
1836 	/* figure out how many metablocks to release */
1837 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1838 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1839 
1840 	release = to_free + mdb_free;
1841 
1842 	/* update fs dirty blocks counter for truncate case */
1843 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1844 
1845 	/* update per-inode reservations */
1846 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1847 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1848 
1849 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1850 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1851 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1852 
1853 	vfs_dq_release_reservation_block(inode, release);
1854 }
1855 
1856 static void ext4_da_page_release_reservation(struct page *page,
1857 						unsigned long offset)
1858 {
1859 	int to_release = 0;
1860 	struct buffer_head *head, *bh;
1861 	unsigned int curr_off = 0;
1862 
1863 	head = page_buffers(page);
1864 	bh = head;
1865 	do {
1866 		unsigned int next_off = curr_off + bh->b_size;
1867 
1868 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1869 			to_release++;
1870 			clear_buffer_delay(bh);
1871 		}
1872 		curr_off = next_off;
1873 	} while ((bh = bh->b_this_page) != head);
1874 	ext4_da_release_space(page->mapping->host, to_release);
1875 }
1876 
1877 /*
1878  * Delayed allocation stuff
1879  */
1880 
1881 struct mpage_da_data {
1882 	struct inode *inode;
1883 	sector_t b_blocknr;		/* start block number of extent */
1884 	size_t b_size;			/* size of extent */
1885 	unsigned long b_state;		/* state of the extent */
1886 	unsigned long first_page, next_page;	/* extent of pages */
1887 	struct writeback_control *wbc;
1888 	int io_done;
1889 	int pages_written;
1890 	int retval;
1891 };
1892 
1893 /*
1894  * mpage_da_submit_io - walks through extent of pages and try to write
1895  * them with writepage() call back
1896  *
1897  * @mpd->inode: inode
1898  * @mpd->first_page: first page of the extent
1899  * @mpd->next_page: page after the last page of the extent
1900  *
1901  * By the time mpage_da_submit_io() is called we expect all blocks
1902  * to be allocated. this may be wrong if allocation failed.
1903  *
1904  * As pages are already locked by write_cache_pages(), we can't use it
1905  */
1906 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1907 {
1908 	long pages_skipped;
1909 	struct pagevec pvec;
1910 	unsigned long index, end;
1911 	int ret = 0, err, nr_pages, i;
1912 	struct inode *inode = mpd->inode;
1913 	struct address_space *mapping = inode->i_mapping;
1914 
1915 	BUG_ON(mpd->next_page <= mpd->first_page);
1916 	/*
1917 	 * We need to start from the first_page to the next_page - 1
1918 	 * to make sure we also write the mapped dirty buffer_heads.
1919 	 * If we look at mpd->b_blocknr we would only be looking
1920 	 * at the currently mapped buffer_heads.
1921 	 */
1922 	index = mpd->first_page;
1923 	end = mpd->next_page - 1;
1924 
1925 	pagevec_init(&pvec, 0);
1926 	while (index <= end) {
1927 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1928 		if (nr_pages == 0)
1929 			break;
1930 		for (i = 0; i < nr_pages; i++) {
1931 			struct page *page = pvec.pages[i];
1932 
1933 			index = page->index;
1934 			if (index > end)
1935 				break;
1936 			index++;
1937 
1938 			BUG_ON(!PageLocked(page));
1939 			BUG_ON(PageWriteback(page));
1940 
1941 			pages_skipped = mpd->wbc->pages_skipped;
1942 			err = mapping->a_ops->writepage(page, mpd->wbc);
1943 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1944 				/*
1945 				 * have successfully written the page
1946 				 * without skipping the same
1947 				 */
1948 				mpd->pages_written++;
1949 			/*
1950 			 * In error case, we have to continue because
1951 			 * remaining pages are still locked
1952 			 * XXX: unlock and re-dirty them?
1953 			 */
1954 			if (ret == 0)
1955 				ret = err;
1956 		}
1957 		pagevec_release(&pvec);
1958 	}
1959 	return ret;
1960 }
1961 
1962 /*
1963  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1964  *
1965  * @mpd->inode - inode to walk through
1966  * @exbh->b_blocknr - first block on a disk
1967  * @exbh->b_size - amount of space in bytes
1968  * @logical - first logical block to start assignment with
1969  *
1970  * the function goes through all passed space and put actual disk
1971  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1972  */
1973 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1974 				 struct buffer_head *exbh)
1975 {
1976 	struct inode *inode = mpd->inode;
1977 	struct address_space *mapping = inode->i_mapping;
1978 	int blocks = exbh->b_size >> inode->i_blkbits;
1979 	sector_t pblock = exbh->b_blocknr, cur_logical;
1980 	struct buffer_head *head, *bh;
1981 	pgoff_t index, end;
1982 	struct pagevec pvec;
1983 	int nr_pages, i;
1984 
1985 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1986 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1987 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1988 
1989 	pagevec_init(&pvec, 0);
1990 
1991 	while (index <= end) {
1992 		/* XXX: optimize tail */
1993 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1994 		if (nr_pages == 0)
1995 			break;
1996 		for (i = 0; i < nr_pages; i++) {
1997 			struct page *page = pvec.pages[i];
1998 
1999 			index = page->index;
2000 			if (index > end)
2001 				break;
2002 			index++;
2003 
2004 			BUG_ON(!PageLocked(page));
2005 			BUG_ON(PageWriteback(page));
2006 			BUG_ON(!page_has_buffers(page));
2007 
2008 			bh = page_buffers(page);
2009 			head = bh;
2010 
2011 			/* skip blocks out of the range */
2012 			do {
2013 				if (cur_logical >= logical)
2014 					break;
2015 				cur_logical++;
2016 			} while ((bh = bh->b_this_page) != head);
2017 
2018 			do {
2019 				if (cur_logical >= logical + blocks)
2020 					break;
2021 
2022 				if (buffer_delay(bh) ||
2023 						buffer_unwritten(bh)) {
2024 
2025 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2026 
2027 					if (buffer_delay(bh)) {
2028 						clear_buffer_delay(bh);
2029 						bh->b_blocknr = pblock;
2030 					} else {
2031 						/*
2032 						 * unwritten already should have
2033 						 * blocknr assigned. Verify that
2034 						 */
2035 						clear_buffer_unwritten(bh);
2036 						BUG_ON(bh->b_blocknr != pblock);
2037 					}
2038 
2039 				} else if (buffer_mapped(bh))
2040 					BUG_ON(bh->b_blocknr != pblock);
2041 
2042 				cur_logical++;
2043 				pblock++;
2044 			} while ((bh = bh->b_this_page) != head);
2045 		}
2046 		pagevec_release(&pvec);
2047 	}
2048 }
2049 
2050 
2051 /*
2052  * __unmap_underlying_blocks - just a helper function to unmap
2053  * set of blocks described by @bh
2054  */
2055 static inline void __unmap_underlying_blocks(struct inode *inode,
2056 					     struct buffer_head *bh)
2057 {
2058 	struct block_device *bdev = inode->i_sb->s_bdev;
2059 	int blocks, i;
2060 
2061 	blocks = bh->b_size >> inode->i_blkbits;
2062 	for (i = 0; i < blocks; i++)
2063 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2064 }
2065 
2066 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2067 					sector_t logical, long blk_cnt)
2068 {
2069 	int nr_pages, i;
2070 	pgoff_t index, end;
2071 	struct pagevec pvec;
2072 	struct inode *inode = mpd->inode;
2073 	struct address_space *mapping = inode->i_mapping;
2074 
2075 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2076 	end   = (logical + blk_cnt - 1) >>
2077 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2078 	while (index <= end) {
2079 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2080 		if (nr_pages == 0)
2081 			break;
2082 		for (i = 0; i < nr_pages; i++) {
2083 			struct page *page = pvec.pages[i];
2084 			index = page->index;
2085 			if (index > end)
2086 				break;
2087 			index++;
2088 
2089 			BUG_ON(!PageLocked(page));
2090 			BUG_ON(PageWriteback(page));
2091 			block_invalidatepage(page, 0);
2092 			ClearPageUptodate(page);
2093 			unlock_page(page);
2094 		}
2095 	}
2096 	return;
2097 }
2098 
2099 static void ext4_print_free_blocks(struct inode *inode)
2100 {
2101 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2102 	printk(KERN_EMERG "Total free blocks count %lld\n",
2103 			ext4_count_free_blocks(inode->i_sb));
2104 	printk(KERN_EMERG "Free/Dirty block details\n");
2105 	printk(KERN_EMERG "free_blocks=%lld\n",
2106 			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2107 	printk(KERN_EMERG "dirty_blocks=%lld\n",
2108 			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2109 	printk(KERN_EMERG "Block reservation details\n");
2110 	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2111 			EXT4_I(inode)->i_reserved_data_blocks);
2112 	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2113 			EXT4_I(inode)->i_reserved_meta_blocks);
2114 	return;
2115 }
2116 
2117 /*
2118  * mpage_da_map_blocks - go through given space
2119  *
2120  * @mpd - bh describing space
2121  *
2122  * The function skips space we know is already mapped to disk blocks.
2123  *
2124  */
2125 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2126 {
2127 	int err, blks, get_blocks_flags;
2128 	struct buffer_head new;
2129 	sector_t next = mpd->b_blocknr;
2130 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2131 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2132 	handle_t *handle = NULL;
2133 
2134 	/*
2135 	 * We consider only non-mapped and non-allocated blocks
2136 	 */
2137 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2138 		!(mpd->b_state & (1 << BH_Delay)) &&
2139 		!(mpd->b_state & (1 << BH_Unwritten)))
2140 		return 0;
2141 
2142 	/*
2143 	 * If we didn't accumulate anything to write simply return
2144 	 */
2145 	if (!mpd->b_size)
2146 		return 0;
2147 
2148 	handle = ext4_journal_current_handle();
2149 	BUG_ON(!handle);
2150 
2151 	/*
2152 	 * Call ext4_get_blocks() to allocate any delayed allocation
2153 	 * blocks, or to convert an uninitialized extent to be
2154 	 * initialized (in the case where we have written into
2155 	 * one or more preallocated blocks).
2156 	 *
2157 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2158 	 * indicate that we are on the delayed allocation path.  This
2159 	 * affects functions in many different parts of the allocation
2160 	 * call path.  This flag exists primarily because we don't
2161 	 * want to change *many* call functions, so ext4_get_blocks()
2162 	 * will set the magic i_delalloc_reserved_flag once the
2163 	 * inode's allocation semaphore is taken.
2164 	 *
2165 	 * If the blocks in questions were delalloc blocks, set
2166 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2167 	 * variables are updated after the blocks have been allocated.
2168 	 */
2169 	new.b_state = 0;
2170 	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2171 			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2172 	if (mpd->b_state & (1 << BH_Delay))
2173 		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2174 	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2175 			       &new, get_blocks_flags);
2176 	if (blks < 0) {
2177 		err = blks;
2178 		/*
2179 		 * If get block returns with error we simply
2180 		 * return. Later writepage will redirty the page and
2181 		 * writepages will find the dirty page again
2182 		 */
2183 		if (err == -EAGAIN)
2184 			return 0;
2185 
2186 		if (err == -ENOSPC &&
2187 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2188 			mpd->retval = err;
2189 			return 0;
2190 		}
2191 
2192 		/*
2193 		 * get block failure will cause us to loop in
2194 		 * writepages, because a_ops->writepage won't be able
2195 		 * to make progress. The page will be redirtied by
2196 		 * writepage and writepages will again try to write
2197 		 * the same.
2198 		 */
2199 		printk(KERN_EMERG "%s block allocation failed for inode %lu "
2200 				  "at logical offset %llu with max blocks "
2201 				  "%zd with error %d\n",
2202 				  __func__, mpd->inode->i_ino,
2203 				  (unsigned long long)next,
2204 				  mpd->b_size >> mpd->inode->i_blkbits, err);
2205 		printk(KERN_EMERG "This should not happen.!! "
2206 					"Data will be lost\n");
2207 		if (err == -ENOSPC) {
2208 			ext4_print_free_blocks(mpd->inode);
2209 		}
2210 		/* invalidate all the pages */
2211 		ext4_da_block_invalidatepages(mpd, next,
2212 				mpd->b_size >> mpd->inode->i_blkbits);
2213 		return err;
2214 	}
2215 	BUG_ON(blks == 0);
2216 
2217 	new.b_size = (blks << mpd->inode->i_blkbits);
2218 
2219 	if (buffer_new(&new))
2220 		__unmap_underlying_blocks(mpd->inode, &new);
2221 
2222 	/*
2223 	 * If blocks are delayed marked, we need to
2224 	 * put actual blocknr and drop delayed bit
2225 	 */
2226 	if ((mpd->b_state & (1 << BH_Delay)) ||
2227 	    (mpd->b_state & (1 << BH_Unwritten)))
2228 		mpage_put_bnr_to_bhs(mpd, next, &new);
2229 
2230 	if (ext4_should_order_data(mpd->inode)) {
2231 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2232 		if (err)
2233 			return err;
2234 	}
2235 
2236 	/*
2237 	 * Update on-disk size along with block allocation.
2238 	 */
2239 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2240 	if (disksize > i_size_read(mpd->inode))
2241 		disksize = i_size_read(mpd->inode);
2242 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2243 		ext4_update_i_disksize(mpd->inode, disksize);
2244 		return ext4_mark_inode_dirty(handle, mpd->inode);
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2251 		(1 << BH_Delay) | (1 << BH_Unwritten))
2252 
2253 /*
2254  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2255  *
2256  * @mpd->lbh - extent of blocks
2257  * @logical - logical number of the block in the file
2258  * @bh - bh of the block (used to access block's state)
2259  *
2260  * the function is used to collect contig. blocks in same state
2261  */
2262 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2263 				   sector_t logical, size_t b_size,
2264 				   unsigned long b_state)
2265 {
2266 	sector_t next;
2267 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2268 
2269 	/* check if thereserved journal credits might overflow */
2270 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2271 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2272 			/*
2273 			 * With non-extent format we are limited by the journal
2274 			 * credit available.  Total credit needed to insert
2275 			 * nrblocks contiguous blocks is dependent on the
2276 			 * nrblocks.  So limit nrblocks.
2277 			 */
2278 			goto flush_it;
2279 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2280 				EXT4_MAX_TRANS_DATA) {
2281 			/*
2282 			 * Adding the new buffer_head would make it cross the
2283 			 * allowed limit for which we have journal credit
2284 			 * reserved. So limit the new bh->b_size
2285 			 */
2286 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2287 						mpd->inode->i_blkbits;
2288 			/* we will do mpage_da_submit_io in the next loop */
2289 		}
2290 	}
2291 	/*
2292 	 * First block in the extent
2293 	 */
2294 	if (mpd->b_size == 0) {
2295 		mpd->b_blocknr = logical;
2296 		mpd->b_size = b_size;
2297 		mpd->b_state = b_state & BH_FLAGS;
2298 		return;
2299 	}
2300 
2301 	next = mpd->b_blocknr + nrblocks;
2302 	/*
2303 	 * Can we merge the block to our big extent?
2304 	 */
2305 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2306 		mpd->b_size += b_size;
2307 		return;
2308 	}
2309 
2310 flush_it:
2311 	/*
2312 	 * We couldn't merge the block to our extent, so we
2313 	 * need to flush current  extent and start new one
2314 	 */
2315 	if (mpage_da_map_blocks(mpd) == 0)
2316 		mpage_da_submit_io(mpd);
2317 	mpd->io_done = 1;
2318 	return;
2319 }
2320 
2321 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2322 {
2323 	/*
2324 	 * unmapped buffer is possible for holes.
2325 	 * delay buffer is possible with delayed allocation.
2326 	 * We also need to consider unwritten buffer as unmapped.
2327 	 */
2328 	return (!buffer_mapped(bh) || buffer_delay(bh) ||
2329 				buffer_unwritten(bh)) && buffer_dirty(bh);
2330 }
2331 
2332 /*
2333  * __mpage_da_writepage - finds extent of pages and blocks
2334  *
2335  * @page: page to consider
2336  * @wbc: not used, we just follow rules
2337  * @data: context
2338  *
2339  * The function finds extents of pages and scan them for all blocks.
2340  */
2341 static int __mpage_da_writepage(struct page *page,
2342 				struct writeback_control *wbc, void *data)
2343 {
2344 	struct mpage_da_data *mpd = data;
2345 	struct inode *inode = mpd->inode;
2346 	struct buffer_head *bh, *head;
2347 	sector_t logical;
2348 
2349 	if (mpd->io_done) {
2350 		/*
2351 		 * Rest of the page in the page_vec
2352 		 * redirty then and skip then. We will
2353 		 * try to to write them again after
2354 		 * starting a new transaction
2355 		 */
2356 		redirty_page_for_writepage(wbc, page);
2357 		unlock_page(page);
2358 		return MPAGE_DA_EXTENT_TAIL;
2359 	}
2360 	/*
2361 	 * Can we merge this page to current extent?
2362 	 */
2363 	if (mpd->next_page != page->index) {
2364 		/*
2365 		 * Nope, we can't. So, we map non-allocated blocks
2366 		 * and start IO on them using writepage()
2367 		 */
2368 		if (mpd->next_page != mpd->first_page) {
2369 			if (mpage_da_map_blocks(mpd) == 0)
2370 				mpage_da_submit_io(mpd);
2371 			/*
2372 			 * skip rest of the page in the page_vec
2373 			 */
2374 			mpd->io_done = 1;
2375 			redirty_page_for_writepage(wbc, page);
2376 			unlock_page(page);
2377 			return MPAGE_DA_EXTENT_TAIL;
2378 		}
2379 
2380 		/*
2381 		 * Start next extent of pages ...
2382 		 */
2383 		mpd->first_page = page->index;
2384 
2385 		/*
2386 		 * ... and blocks
2387 		 */
2388 		mpd->b_size = 0;
2389 		mpd->b_state = 0;
2390 		mpd->b_blocknr = 0;
2391 	}
2392 
2393 	mpd->next_page = page->index + 1;
2394 	logical = (sector_t) page->index <<
2395 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2396 
2397 	if (!page_has_buffers(page)) {
2398 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2399 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2400 		if (mpd->io_done)
2401 			return MPAGE_DA_EXTENT_TAIL;
2402 	} else {
2403 		/*
2404 		 * Page with regular buffer heads, just add all dirty ones
2405 		 */
2406 		head = page_buffers(page);
2407 		bh = head;
2408 		do {
2409 			BUG_ON(buffer_locked(bh));
2410 			/*
2411 			 * We need to try to allocate
2412 			 * unmapped blocks in the same page.
2413 			 * Otherwise we won't make progress
2414 			 * with the page in ext4_da_writepage
2415 			 */
2416 			if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2417 				mpage_add_bh_to_extent(mpd, logical,
2418 						       bh->b_size,
2419 						       bh->b_state);
2420 				if (mpd->io_done)
2421 					return MPAGE_DA_EXTENT_TAIL;
2422 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2423 				/*
2424 				 * mapped dirty buffer. We need to update
2425 				 * the b_state because we look at
2426 				 * b_state in mpage_da_map_blocks. We don't
2427 				 * update b_size because if we find an
2428 				 * unmapped buffer_head later we need to
2429 				 * use the b_state flag of that buffer_head.
2430 				 */
2431 				if (mpd->b_size == 0)
2432 					mpd->b_state = bh->b_state & BH_FLAGS;
2433 			}
2434 			logical++;
2435 		} while ((bh = bh->b_this_page) != head);
2436 	}
2437 
2438 	return 0;
2439 }
2440 
2441 /*
2442  * This is a special get_blocks_t callback which is used by
2443  * ext4_da_write_begin().  It will either return mapped block or
2444  * reserve space for a single block.
2445  *
2446  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2447  * We also have b_blocknr = -1 and b_bdev initialized properly
2448  *
2449  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2450  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2451  * initialized properly.
2452  */
2453 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2454 				  struct buffer_head *bh_result, int create)
2455 {
2456 	int ret = 0;
2457 	sector_t invalid_block = ~((sector_t) 0xffff);
2458 
2459 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2460 		invalid_block = ~0;
2461 
2462 	BUG_ON(create == 0);
2463 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2464 
2465 	/*
2466 	 * first, we need to know whether the block is allocated already
2467 	 * preallocated blocks are unmapped but should treated
2468 	 * the same as allocated blocks.
2469 	 */
2470 	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2471 	if ((ret == 0) && !buffer_delay(bh_result)) {
2472 		/* the block isn't (pre)allocated yet, let's reserve space */
2473 		/*
2474 		 * XXX: __block_prepare_write() unmaps passed block,
2475 		 * is it OK?
2476 		 */
2477 		ret = ext4_da_reserve_space(inode, 1);
2478 		if (ret)
2479 			/* not enough space to reserve */
2480 			return ret;
2481 
2482 		map_bh(bh_result, inode->i_sb, invalid_block);
2483 		set_buffer_new(bh_result);
2484 		set_buffer_delay(bh_result);
2485 	} else if (ret > 0) {
2486 		bh_result->b_size = (ret << inode->i_blkbits);
2487 		if (buffer_unwritten(bh_result)) {
2488 			/* A delayed write to unwritten bh should
2489 			 * be marked new and mapped.  Mapped ensures
2490 			 * that we don't do get_block multiple times
2491 			 * when we write to the same offset and new
2492 			 * ensures that we do proper zero out for
2493 			 * partial write.
2494 			 */
2495 			set_buffer_new(bh_result);
2496 			set_buffer_mapped(bh_result);
2497 		}
2498 		ret = 0;
2499 	}
2500 
2501 	return ret;
2502 }
2503 
2504 /*
2505  * This function is used as a standard get_block_t calback function
2506  * when there is no desire to allocate any blocks.  It is used as a
2507  * callback function for block_prepare_write(), nobh_writepage(), and
2508  * block_write_full_page().  These functions should only try to map a
2509  * single block at a time.
2510  *
2511  * Since this function doesn't do block allocations even if the caller
2512  * requests it by passing in create=1, it is critically important that
2513  * any caller checks to make sure that any buffer heads are returned
2514  * by this function are either all already mapped or marked for
2515  * delayed allocation before calling nobh_writepage() or
2516  * block_write_full_page().  Otherwise, b_blocknr could be left
2517  * unitialized, and the page write functions will be taken by
2518  * surprise.
2519  */
2520 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2521 				   struct buffer_head *bh_result, int create)
2522 {
2523 	int ret = 0;
2524 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2525 
2526 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2527 
2528 	/*
2529 	 * we don't want to do block allocation in writepage
2530 	 * so call get_block_wrap with create = 0
2531 	 */
2532 	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2533 	BUG_ON(create && ret == 0);
2534 	if (ret > 0) {
2535 		bh_result->b_size = (ret << inode->i_blkbits);
2536 		ret = 0;
2537 	}
2538 	return ret;
2539 }
2540 
2541 /*
2542  * This function can get called via...
2543  *   - ext4_da_writepages after taking page lock (have journal handle)
2544  *   - journal_submit_inode_data_buffers (no journal handle)
2545  *   - shrink_page_list via pdflush (no journal handle)
2546  *   - grab_page_cache when doing write_begin (have journal handle)
2547  */
2548 static int ext4_da_writepage(struct page *page,
2549 				struct writeback_control *wbc)
2550 {
2551 	int ret = 0;
2552 	loff_t size;
2553 	unsigned int len;
2554 	struct buffer_head *page_bufs;
2555 	struct inode *inode = page->mapping->host;
2556 
2557 	trace_mark(ext4_da_writepage,
2558 		   "dev %s ino %lu page_index %lu",
2559 		   inode->i_sb->s_id, inode->i_ino, page->index);
2560 	size = i_size_read(inode);
2561 	if (page->index == size >> PAGE_CACHE_SHIFT)
2562 		len = size & ~PAGE_CACHE_MASK;
2563 	else
2564 		len = PAGE_CACHE_SIZE;
2565 
2566 	if (page_has_buffers(page)) {
2567 		page_bufs = page_buffers(page);
2568 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2569 					ext4_bh_unmapped_or_delay)) {
2570 			/*
2571 			 * We don't want to do  block allocation
2572 			 * So redirty the page and return
2573 			 * We may reach here when we do a journal commit
2574 			 * via journal_submit_inode_data_buffers.
2575 			 * If we don't have mapping block we just ignore
2576 			 * them. We can also reach here via shrink_page_list
2577 			 */
2578 			redirty_page_for_writepage(wbc, page);
2579 			unlock_page(page);
2580 			return 0;
2581 		}
2582 	} else {
2583 		/*
2584 		 * The test for page_has_buffers() is subtle:
2585 		 * We know the page is dirty but it lost buffers. That means
2586 		 * that at some moment in time after write_begin()/write_end()
2587 		 * has been called all buffers have been clean and thus they
2588 		 * must have been written at least once. So they are all
2589 		 * mapped and we can happily proceed with mapping them
2590 		 * and writing the page.
2591 		 *
2592 		 * Try to initialize the buffer_heads and check whether
2593 		 * all are mapped and non delay. We don't want to
2594 		 * do block allocation here.
2595 		 */
2596 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2597 					  noalloc_get_block_write);
2598 		if (!ret) {
2599 			page_bufs = page_buffers(page);
2600 			/* check whether all are mapped and non delay */
2601 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2602 						ext4_bh_unmapped_or_delay)) {
2603 				redirty_page_for_writepage(wbc, page);
2604 				unlock_page(page);
2605 				return 0;
2606 			}
2607 		} else {
2608 			/*
2609 			 * We can't do block allocation here
2610 			 * so just redity the page and unlock
2611 			 * and return
2612 			 */
2613 			redirty_page_for_writepage(wbc, page);
2614 			unlock_page(page);
2615 			return 0;
2616 		}
2617 		/* now mark the buffer_heads as dirty and uptodate */
2618 		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2619 	}
2620 
2621 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2622 		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2623 	else
2624 		ret = block_write_full_page(page, noalloc_get_block_write,
2625 					    wbc);
2626 
2627 	return ret;
2628 }
2629 
2630 /*
2631  * This is called via ext4_da_writepages() to
2632  * calulate the total number of credits to reserve to fit
2633  * a single extent allocation into a single transaction,
2634  * ext4_da_writpeages() will loop calling this before
2635  * the block allocation.
2636  */
2637 
2638 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2639 {
2640 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2641 
2642 	/*
2643 	 * With non-extent format the journal credit needed to
2644 	 * insert nrblocks contiguous block is dependent on
2645 	 * number of contiguous block. So we will limit
2646 	 * number of contiguous block to a sane value
2647 	 */
2648 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2649 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2650 		max_blocks = EXT4_MAX_TRANS_DATA;
2651 
2652 	return ext4_chunk_trans_blocks(inode, max_blocks);
2653 }
2654 
2655 static int ext4_da_writepages(struct address_space *mapping,
2656 			      struct writeback_control *wbc)
2657 {
2658 	pgoff_t	index;
2659 	int range_whole = 0;
2660 	handle_t *handle = NULL;
2661 	struct mpage_da_data mpd;
2662 	struct inode *inode = mapping->host;
2663 	int no_nrwrite_index_update;
2664 	int pages_written = 0;
2665 	long pages_skipped;
2666 	int range_cyclic, cycled = 1, io_done = 0;
2667 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2668 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2669 
2670 	trace_mark(ext4_da_writepages,
2671 		   "dev %s ino %lu nr_t_write %ld "
2672 		   "pages_skipped %ld range_start %llu "
2673 		   "range_end %llu nonblocking %d "
2674 		   "for_kupdate %d for_reclaim %d "
2675 		   "for_writepages %d range_cyclic %d",
2676 		   inode->i_sb->s_id, inode->i_ino,
2677 		   wbc->nr_to_write, wbc->pages_skipped,
2678 		   (unsigned long long) wbc->range_start,
2679 		   (unsigned long long) wbc->range_end,
2680 		   wbc->nonblocking, wbc->for_kupdate,
2681 		   wbc->for_reclaim, wbc->for_writepages,
2682 		   wbc->range_cyclic);
2683 
2684 	/*
2685 	 * No pages to write? This is mainly a kludge to avoid starting
2686 	 * a transaction for special inodes like journal inode on last iput()
2687 	 * because that could violate lock ordering on umount
2688 	 */
2689 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2690 		return 0;
2691 
2692 	/*
2693 	 * If the filesystem has aborted, it is read-only, so return
2694 	 * right away instead of dumping stack traces later on that
2695 	 * will obscure the real source of the problem.  We test
2696 	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2697 	 * the latter could be true if the filesystem is mounted
2698 	 * read-only, and in that case, ext4_da_writepages should
2699 	 * *never* be called, so if that ever happens, we would want
2700 	 * the stack trace.
2701 	 */
2702 	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2703 		return -EROFS;
2704 
2705 	/*
2706 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2707 	 * This make sure small files blocks are allocated in
2708 	 * single attempt. This ensure that small files
2709 	 * get less fragmented.
2710 	 */
2711 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2712 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2713 		wbc->nr_to_write = sbi->s_mb_stream_request;
2714 	}
2715 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2716 		range_whole = 1;
2717 
2718 	range_cyclic = wbc->range_cyclic;
2719 	if (wbc->range_cyclic) {
2720 		index = mapping->writeback_index;
2721 		if (index)
2722 			cycled = 0;
2723 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2724 		wbc->range_end  = LLONG_MAX;
2725 		wbc->range_cyclic = 0;
2726 	} else
2727 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2728 
2729 	mpd.wbc = wbc;
2730 	mpd.inode = mapping->host;
2731 
2732 	/*
2733 	 * we don't want write_cache_pages to update
2734 	 * nr_to_write and writeback_index
2735 	 */
2736 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2737 	wbc->no_nrwrite_index_update = 1;
2738 	pages_skipped = wbc->pages_skipped;
2739 
2740 retry:
2741 	while (!ret && wbc->nr_to_write > 0) {
2742 
2743 		/*
2744 		 * we  insert one extent at a time. So we need
2745 		 * credit needed for single extent allocation.
2746 		 * journalled mode is currently not supported
2747 		 * by delalloc
2748 		 */
2749 		BUG_ON(ext4_should_journal_data(inode));
2750 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2751 
2752 		/* start a new transaction*/
2753 		handle = ext4_journal_start(inode, needed_blocks);
2754 		if (IS_ERR(handle)) {
2755 			ret = PTR_ERR(handle);
2756 			printk(KERN_CRIT "%s: jbd2_start: "
2757 			       "%ld pages, ino %lu; err %d\n", __func__,
2758 				wbc->nr_to_write, inode->i_ino, ret);
2759 			dump_stack();
2760 			goto out_writepages;
2761 		}
2762 
2763 		/*
2764 		 * Now call __mpage_da_writepage to find the next
2765 		 * contiguous region of logical blocks that need
2766 		 * blocks to be allocated by ext4.  We don't actually
2767 		 * submit the blocks for I/O here, even though
2768 		 * write_cache_pages thinks it will, and will set the
2769 		 * pages as clean for write before calling
2770 		 * __mpage_da_writepage().
2771 		 */
2772 		mpd.b_size = 0;
2773 		mpd.b_state = 0;
2774 		mpd.b_blocknr = 0;
2775 		mpd.first_page = 0;
2776 		mpd.next_page = 0;
2777 		mpd.io_done = 0;
2778 		mpd.pages_written = 0;
2779 		mpd.retval = 0;
2780 		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2781 					&mpd);
2782 		/*
2783 		 * If we have a contigous extent of pages and we
2784 		 * haven't done the I/O yet, map the blocks and submit
2785 		 * them for I/O.
2786 		 */
2787 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2788 			if (mpage_da_map_blocks(&mpd) == 0)
2789 				mpage_da_submit_io(&mpd);
2790 			mpd.io_done = 1;
2791 			ret = MPAGE_DA_EXTENT_TAIL;
2792 		}
2793 		wbc->nr_to_write -= mpd.pages_written;
2794 
2795 		ext4_journal_stop(handle);
2796 
2797 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2798 			/* commit the transaction which would
2799 			 * free blocks released in the transaction
2800 			 * and try again
2801 			 */
2802 			jbd2_journal_force_commit_nested(sbi->s_journal);
2803 			wbc->pages_skipped = pages_skipped;
2804 			ret = 0;
2805 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2806 			/*
2807 			 * got one extent now try with
2808 			 * rest of the pages
2809 			 */
2810 			pages_written += mpd.pages_written;
2811 			wbc->pages_skipped = pages_skipped;
2812 			ret = 0;
2813 			io_done = 1;
2814 		} else if (wbc->nr_to_write)
2815 			/*
2816 			 * There is no more writeout needed
2817 			 * or we requested for a noblocking writeout
2818 			 * and we found the device congested
2819 			 */
2820 			break;
2821 	}
2822 	if (!io_done && !cycled) {
2823 		cycled = 1;
2824 		index = 0;
2825 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2826 		wbc->range_end  = mapping->writeback_index - 1;
2827 		goto retry;
2828 	}
2829 	if (pages_skipped != wbc->pages_skipped)
2830 		printk(KERN_EMERG "This should not happen leaving %s "
2831 				"with nr_to_write = %ld ret = %d\n",
2832 				__func__, wbc->nr_to_write, ret);
2833 
2834 	/* Update index */
2835 	index += pages_written;
2836 	wbc->range_cyclic = range_cyclic;
2837 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2838 		/*
2839 		 * set the writeback_index so that range_cyclic
2840 		 * mode will write it back later
2841 		 */
2842 		mapping->writeback_index = index;
2843 
2844 out_writepages:
2845 	if (!no_nrwrite_index_update)
2846 		wbc->no_nrwrite_index_update = 0;
2847 	wbc->nr_to_write -= nr_to_writebump;
2848 	trace_mark(ext4_da_writepage_result,
2849 		   "dev %s ino %lu ret %d pages_written %d "
2850 		   "pages_skipped %ld congestion %d "
2851 		   "more_io %d no_nrwrite_index_update %d",
2852 		   inode->i_sb->s_id, inode->i_ino, ret,
2853 		   pages_written, wbc->pages_skipped,
2854 		   wbc->encountered_congestion, wbc->more_io,
2855 		   wbc->no_nrwrite_index_update);
2856 	return ret;
2857 }
2858 
2859 #define FALL_BACK_TO_NONDELALLOC 1
2860 static int ext4_nonda_switch(struct super_block *sb)
2861 {
2862 	s64 free_blocks, dirty_blocks;
2863 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2864 
2865 	/*
2866 	 * switch to non delalloc mode if we are running low
2867 	 * on free block. The free block accounting via percpu
2868 	 * counters can get slightly wrong with percpu_counter_batch getting
2869 	 * accumulated on each CPU without updating global counters
2870 	 * Delalloc need an accurate free block accounting. So switch
2871 	 * to non delalloc when we are near to error range.
2872 	 */
2873 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2874 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2875 	if (2 * free_blocks < 3 * dirty_blocks ||
2876 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2877 		/*
2878 		 * free block count is less that 150% of dirty blocks
2879 		 * or free blocks is less that watermark
2880 		 */
2881 		return 1;
2882 	}
2883 	return 0;
2884 }
2885 
2886 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2887 				loff_t pos, unsigned len, unsigned flags,
2888 				struct page **pagep, void **fsdata)
2889 {
2890 	int ret, retries = 0;
2891 	struct page *page;
2892 	pgoff_t index;
2893 	unsigned from, to;
2894 	struct inode *inode = mapping->host;
2895 	handle_t *handle;
2896 
2897 	index = pos >> PAGE_CACHE_SHIFT;
2898 	from = pos & (PAGE_CACHE_SIZE - 1);
2899 	to = from + len;
2900 
2901 	if (ext4_nonda_switch(inode->i_sb)) {
2902 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2903 		return ext4_write_begin(file, mapping, pos,
2904 					len, flags, pagep, fsdata);
2905 	}
2906 	*fsdata = (void *)0;
2907 
2908 	trace_mark(ext4_da_write_begin,
2909 		   "dev %s ino %lu pos %llu len %u flags %u",
2910 		   inode->i_sb->s_id, inode->i_ino,
2911 		   (unsigned long long) pos, len, flags);
2912 retry:
2913 	/*
2914 	 * With delayed allocation, we don't log the i_disksize update
2915 	 * if there is delayed block allocation. But we still need
2916 	 * to journalling the i_disksize update if writes to the end
2917 	 * of file which has an already mapped buffer.
2918 	 */
2919 	handle = ext4_journal_start(inode, 1);
2920 	if (IS_ERR(handle)) {
2921 		ret = PTR_ERR(handle);
2922 		goto out;
2923 	}
2924 	/* We cannot recurse into the filesystem as the transaction is already
2925 	 * started */
2926 	flags |= AOP_FLAG_NOFS;
2927 
2928 	page = grab_cache_page_write_begin(mapping, index, flags);
2929 	if (!page) {
2930 		ext4_journal_stop(handle);
2931 		ret = -ENOMEM;
2932 		goto out;
2933 	}
2934 	*pagep = page;
2935 
2936 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2937 				ext4_da_get_block_prep);
2938 	if (ret < 0) {
2939 		unlock_page(page);
2940 		ext4_journal_stop(handle);
2941 		page_cache_release(page);
2942 		/*
2943 		 * block_write_begin may have instantiated a few blocks
2944 		 * outside i_size.  Trim these off again. Don't need
2945 		 * i_size_read because we hold i_mutex.
2946 		 */
2947 		if (pos + len > inode->i_size)
2948 			vmtruncate(inode, inode->i_size);
2949 	}
2950 
2951 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2952 		goto retry;
2953 out:
2954 	return ret;
2955 }
2956 
2957 /*
2958  * Check if we should update i_disksize
2959  * when write to the end of file but not require block allocation
2960  */
2961 static int ext4_da_should_update_i_disksize(struct page *page,
2962 					 unsigned long offset)
2963 {
2964 	struct buffer_head *bh;
2965 	struct inode *inode = page->mapping->host;
2966 	unsigned int idx;
2967 	int i;
2968 
2969 	bh = page_buffers(page);
2970 	idx = offset >> inode->i_blkbits;
2971 
2972 	for (i = 0; i < idx; i++)
2973 		bh = bh->b_this_page;
2974 
2975 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2976 		return 0;
2977 	return 1;
2978 }
2979 
2980 static int ext4_da_write_end(struct file *file,
2981 				struct address_space *mapping,
2982 				loff_t pos, unsigned len, unsigned copied,
2983 				struct page *page, void *fsdata)
2984 {
2985 	struct inode *inode = mapping->host;
2986 	int ret = 0, ret2;
2987 	handle_t *handle = ext4_journal_current_handle();
2988 	loff_t new_i_size;
2989 	unsigned long start, end;
2990 	int write_mode = (int)(unsigned long)fsdata;
2991 
2992 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2993 		if (ext4_should_order_data(inode)) {
2994 			return ext4_ordered_write_end(file, mapping, pos,
2995 					len, copied, page, fsdata);
2996 		} else if (ext4_should_writeback_data(inode)) {
2997 			return ext4_writeback_write_end(file, mapping, pos,
2998 					len, copied, page, fsdata);
2999 		} else {
3000 			BUG();
3001 		}
3002 	}
3003 
3004 	trace_mark(ext4_da_write_end,
3005 		   "dev %s ino %lu pos %llu len %u copied %u",
3006 		   inode->i_sb->s_id, inode->i_ino,
3007 		   (unsigned long long) pos, len, copied);
3008 	start = pos & (PAGE_CACHE_SIZE - 1);
3009 	end = start + copied - 1;
3010 
3011 	/*
3012 	 * generic_write_end() will run mark_inode_dirty() if i_size
3013 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3014 	 * into that.
3015 	 */
3016 
3017 	new_i_size = pos + copied;
3018 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3019 		if (ext4_da_should_update_i_disksize(page, end)) {
3020 			down_write(&EXT4_I(inode)->i_data_sem);
3021 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3022 				/*
3023 				 * Updating i_disksize when extending file
3024 				 * without needing block allocation
3025 				 */
3026 				if (ext4_should_order_data(inode))
3027 					ret = ext4_jbd2_file_inode(handle,
3028 								   inode);
3029 
3030 				EXT4_I(inode)->i_disksize = new_i_size;
3031 			}
3032 			up_write(&EXT4_I(inode)->i_data_sem);
3033 			/* We need to mark inode dirty even if
3034 			 * new_i_size is less that inode->i_size
3035 			 * bu greater than i_disksize.(hint delalloc)
3036 			 */
3037 			ext4_mark_inode_dirty(handle, inode);
3038 		}
3039 	}
3040 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3041 							page, fsdata);
3042 	copied = ret2;
3043 	if (ret2 < 0)
3044 		ret = ret2;
3045 	ret2 = ext4_journal_stop(handle);
3046 	if (!ret)
3047 		ret = ret2;
3048 
3049 	return ret ? ret : copied;
3050 }
3051 
3052 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3053 {
3054 	/*
3055 	 * Drop reserved blocks
3056 	 */
3057 	BUG_ON(!PageLocked(page));
3058 	if (!page_has_buffers(page))
3059 		goto out;
3060 
3061 	ext4_da_page_release_reservation(page, offset);
3062 
3063 out:
3064 	ext4_invalidatepage(page, offset);
3065 
3066 	return;
3067 }
3068 
3069 /*
3070  * Force all delayed allocation blocks to be allocated for a given inode.
3071  */
3072 int ext4_alloc_da_blocks(struct inode *inode)
3073 {
3074 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3075 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3076 		return 0;
3077 
3078 	/*
3079 	 * We do something simple for now.  The filemap_flush() will
3080 	 * also start triggering a write of the data blocks, which is
3081 	 * not strictly speaking necessary (and for users of
3082 	 * laptop_mode, not even desirable).  However, to do otherwise
3083 	 * would require replicating code paths in:
3084 	 *
3085 	 * ext4_da_writepages() ->
3086 	 *    write_cache_pages() ---> (via passed in callback function)
3087 	 *        __mpage_da_writepage() -->
3088 	 *           mpage_add_bh_to_extent()
3089 	 *           mpage_da_map_blocks()
3090 	 *
3091 	 * The problem is that write_cache_pages(), located in
3092 	 * mm/page-writeback.c, marks pages clean in preparation for
3093 	 * doing I/O, which is not desirable if we're not planning on
3094 	 * doing I/O at all.
3095 	 *
3096 	 * We could call write_cache_pages(), and then redirty all of
3097 	 * the pages by calling redirty_page_for_writeback() but that
3098 	 * would be ugly in the extreme.  So instead we would need to
3099 	 * replicate parts of the code in the above functions,
3100 	 * simplifying them becuase we wouldn't actually intend to
3101 	 * write out the pages, but rather only collect contiguous
3102 	 * logical block extents, call the multi-block allocator, and
3103 	 * then update the buffer heads with the block allocations.
3104 	 *
3105 	 * For now, though, we'll cheat by calling filemap_flush(),
3106 	 * which will map the blocks, and start the I/O, but not
3107 	 * actually wait for the I/O to complete.
3108 	 */
3109 	return filemap_flush(inode->i_mapping);
3110 }
3111 
3112 /*
3113  * bmap() is special.  It gets used by applications such as lilo and by
3114  * the swapper to find the on-disk block of a specific piece of data.
3115  *
3116  * Naturally, this is dangerous if the block concerned is still in the
3117  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3118  * filesystem and enables swap, then they may get a nasty shock when the
3119  * data getting swapped to that swapfile suddenly gets overwritten by
3120  * the original zero's written out previously to the journal and
3121  * awaiting writeback in the kernel's buffer cache.
3122  *
3123  * So, if we see any bmap calls here on a modified, data-journaled file,
3124  * take extra steps to flush any blocks which might be in the cache.
3125  */
3126 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3127 {
3128 	struct inode *inode = mapping->host;
3129 	journal_t *journal;
3130 	int err;
3131 
3132 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3133 			test_opt(inode->i_sb, DELALLOC)) {
3134 		/*
3135 		 * With delalloc we want to sync the file
3136 		 * so that we can make sure we allocate
3137 		 * blocks for file
3138 		 */
3139 		filemap_write_and_wait(mapping);
3140 	}
3141 
3142 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3143 		/*
3144 		 * This is a REALLY heavyweight approach, but the use of
3145 		 * bmap on dirty files is expected to be extremely rare:
3146 		 * only if we run lilo or swapon on a freshly made file
3147 		 * do we expect this to happen.
3148 		 *
3149 		 * (bmap requires CAP_SYS_RAWIO so this does not
3150 		 * represent an unprivileged user DOS attack --- we'd be
3151 		 * in trouble if mortal users could trigger this path at
3152 		 * will.)
3153 		 *
3154 		 * NB. EXT4_STATE_JDATA is not set on files other than
3155 		 * regular files.  If somebody wants to bmap a directory
3156 		 * or symlink and gets confused because the buffer
3157 		 * hasn't yet been flushed to disk, they deserve
3158 		 * everything they get.
3159 		 */
3160 
3161 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3162 		journal = EXT4_JOURNAL(inode);
3163 		jbd2_journal_lock_updates(journal);
3164 		err = jbd2_journal_flush(journal);
3165 		jbd2_journal_unlock_updates(journal);
3166 
3167 		if (err)
3168 			return 0;
3169 	}
3170 
3171 	return generic_block_bmap(mapping, block, ext4_get_block);
3172 }
3173 
3174 static int bget_one(handle_t *handle, struct buffer_head *bh)
3175 {
3176 	get_bh(bh);
3177 	return 0;
3178 }
3179 
3180 static int bput_one(handle_t *handle, struct buffer_head *bh)
3181 {
3182 	put_bh(bh);
3183 	return 0;
3184 }
3185 
3186 /*
3187  * Note that we don't need to start a transaction unless we're journaling data
3188  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3189  * need to file the inode to the transaction's list in ordered mode because if
3190  * we are writing back data added by write(), the inode is already there and if
3191  * we are writing back data modified via mmap(), noone guarantees in which
3192  * transaction the data will hit the disk. In case we are journaling data, we
3193  * cannot start transaction directly because transaction start ranks above page
3194  * lock so we have to do some magic.
3195  *
3196  * In all journaling modes block_write_full_page() will start the I/O.
3197  *
3198  * Problem:
3199  *
3200  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3201  *		ext4_writepage()
3202  *
3203  * Similar for:
3204  *
3205  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3206  *
3207  * Same applies to ext4_get_block().  We will deadlock on various things like
3208  * lock_journal and i_data_sem
3209  *
3210  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3211  * allocations fail.
3212  *
3213  * 16May01: If we're reentered then journal_current_handle() will be
3214  *	    non-zero. We simply *return*.
3215  *
3216  * 1 July 2001: @@@ FIXME:
3217  *   In journalled data mode, a data buffer may be metadata against the
3218  *   current transaction.  But the same file is part of a shared mapping
3219  *   and someone does a writepage() on it.
3220  *
3221  *   We will move the buffer onto the async_data list, but *after* it has
3222  *   been dirtied. So there's a small window where we have dirty data on
3223  *   BJ_Metadata.
3224  *
3225  *   Note that this only applies to the last partial page in the file.  The
3226  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3227  *   broken code anyway: it's wrong for msync()).
3228  *
3229  *   It's a rare case: affects the final partial page, for journalled data
3230  *   where the file is subject to bith write() and writepage() in the same
3231  *   transction.  To fix it we'll need a custom block_write_full_page().
3232  *   We'll probably need that anyway for journalling writepage() output.
3233  *
3234  * We don't honour synchronous mounts for writepage().  That would be
3235  * disastrous.  Any write() or metadata operation will sync the fs for
3236  * us.
3237  *
3238  */
3239 static int __ext4_normal_writepage(struct page *page,
3240 				struct writeback_control *wbc)
3241 {
3242 	struct inode *inode = page->mapping->host;
3243 
3244 	if (test_opt(inode->i_sb, NOBH))
3245 		return nobh_writepage(page, noalloc_get_block_write, wbc);
3246 	else
3247 		return block_write_full_page(page, noalloc_get_block_write,
3248 					     wbc);
3249 }
3250 
3251 static int ext4_normal_writepage(struct page *page,
3252 				struct writeback_control *wbc)
3253 {
3254 	struct inode *inode = page->mapping->host;
3255 	loff_t size = i_size_read(inode);
3256 	loff_t len;
3257 
3258 	trace_mark(ext4_normal_writepage,
3259 		   "dev %s ino %lu page_index %lu",
3260 		   inode->i_sb->s_id, inode->i_ino, page->index);
3261 	J_ASSERT(PageLocked(page));
3262 	if (page->index == size >> PAGE_CACHE_SHIFT)
3263 		len = size & ~PAGE_CACHE_MASK;
3264 	else
3265 		len = PAGE_CACHE_SIZE;
3266 
3267 	if (page_has_buffers(page)) {
3268 		/* if page has buffers it should all be mapped
3269 		 * and allocated. If there are not buffers attached
3270 		 * to the page we know the page is dirty but it lost
3271 		 * buffers. That means that at some moment in time
3272 		 * after write_begin() / write_end() has been called
3273 		 * all buffers have been clean and thus they must have been
3274 		 * written at least once. So they are all mapped and we can
3275 		 * happily proceed with mapping them and writing the page.
3276 		 */
3277 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3278 					ext4_bh_unmapped_or_delay));
3279 	}
3280 
3281 	if (!ext4_journal_current_handle())
3282 		return __ext4_normal_writepage(page, wbc);
3283 
3284 	redirty_page_for_writepage(wbc, page);
3285 	unlock_page(page);
3286 	return 0;
3287 }
3288 
3289 static int __ext4_journalled_writepage(struct page *page,
3290 				struct writeback_control *wbc)
3291 {
3292 	struct address_space *mapping = page->mapping;
3293 	struct inode *inode = mapping->host;
3294 	struct buffer_head *page_bufs;
3295 	handle_t *handle = NULL;
3296 	int ret = 0;
3297 	int err;
3298 
3299 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3300 				  noalloc_get_block_write);
3301 	if (ret != 0)
3302 		goto out_unlock;
3303 
3304 	page_bufs = page_buffers(page);
3305 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3306 								bget_one);
3307 	/* As soon as we unlock the page, it can go away, but we have
3308 	 * references to buffers so we are safe */
3309 	unlock_page(page);
3310 
3311 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3312 	if (IS_ERR(handle)) {
3313 		ret = PTR_ERR(handle);
3314 		goto out;
3315 	}
3316 
3317 	ret = walk_page_buffers(handle, page_bufs, 0,
3318 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3319 
3320 	err = walk_page_buffers(handle, page_bufs, 0,
3321 				PAGE_CACHE_SIZE, NULL, write_end_fn);
3322 	if (ret == 0)
3323 		ret = err;
3324 	err = ext4_journal_stop(handle);
3325 	if (!ret)
3326 		ret = err;
3327 
3328 	walk_page_buffers(handle, page_bufs, 0,
3329 				PAGE_CACHE_SIZE, NULL, bput_one);
3330 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3331 	goto out;
3332 
3333 out_unlock:
3334 	unlock_page(page);
3335 out:
3336 	return ret;
3337 }
3338 
3339 static int ext4_journalled_writepage(struct page *page,
3340 				struct writeback_control *wbc)
3341 {
3342 	struct inode *inode = page->mapping->host;
3343 	loff_t size = i_size_read(inode);
3344 	loff_t len;
3345 
3346 	trace_mark(ext4_journalled_writepage,
3347 		   "dev %s ino %lu page_index %lu",
3348 		   inode->i_sb->s_id, inode->i_ino, page->index);
3349 	J_ASSERT(PageLocked(page));
3350 	if (page->index == size >> PAGE_CACHE_SHIFT)
3351 		len = size & ~PAGE_CACHE_MASK;
3352 	else
3353 		len = PAGE_CACHE_SIZE;
3354 
3355 	if (page_has_buffers(page)) {
3356 		/* if page has buffers it should all be mapped
3357 		 * and allocated. If there are not buffers attached
3358 		 * to the page we know the page is dirty but it lost
3359 		 * buffers. That means that at some moment in time
3360 		 * after write_begin() / write_end() has been called
3361 		 * all buffers have been clean and thus they must have been
3362 		 * written at least once. So they are all mapped and we can
3363 		 * happily proceed with mapping them and writing the page.
3364 		 */
3365 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3366 					ext4_bh_unmapped_or_delay));
3367 	}
3368 
3369 	if (ext4_journal_current_handle())
3370 		goto no_write;
3371 
3372 	if (PageChecked(page)) {
3373 		/*
3374 		 * It's mmapped pagecache.  Add buffers and journal it.  There
3375 		 * doesn't seem much point in redirtying the page here.
3376 		 */
3377 		ClearPageChecked(page);
3378 		return __ext4_journalled_writepage(page, wbc);
3379 	} else {
3380 		/*
3381 		 * It may be a page full of checkpoint-mode buffers.  We don't
3382 		 * really know unless we go poke around in the buffer_heads.
3383 		 * But block_write_full_page will do the right thing.
3384 		 */
3385 		return block_write_full_page(page, noalloc_get_block_write,
3386 					     wbc);
3387 	}
3388 no_write:
3389 	redirty_page_for_writepage(wbc, page);
3390 	unlock_page(page);
3391 	return 0;
3392 }
3393 
3394 static int ext4_readpage(struct file *file, struct page *page)
3395 {
3396 	return mpage_readpage(page, ext4_get_block);
3397 }
3398 
3399 static int
3400 ext4_readpages(struct file *file, struct address_space *mapping,
3401 		struct list_head *pages, unsigned nr_pages)
3402 {
3403 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3404 }
3405 
3406 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3407 {
3408 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3409 
3410 	/*
3411 	 * If it's a full truncate we just forget about the pending dirtying
3412 	 */
3413 	if (offset == 0)
3414 		ClearPageChecked(page);
3415 
3416 	if (journal)
3417 		jbd2_journal_invalidatepage(journal, page, offset);
3418 	else
3419 		block_invalidatepage(page, offset);
3420 }
3421 
3422 static int ext4_releasepage(struct page *page, gfp_t wait)
3423 {
3424 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3425 
3426 	WARN_ON(PageChecked(page));
3427 	if (!page_has_buffers(page))
3428 		return 0;
3429 	if (journal)
3430 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3431 	else
3432 		return try_to_free_buffers(page);
3433 }
3434 
3435 /*
3436  * If the O_DIRECT write will extend the file then add this inode to the
3437  * orphan list.  So recovery will truncate it back to the original size
3438  * if the machine crashes during the write.
3439  *
3440  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3441  * crashes then stale disk data _may_ be exposed inside the file. But current
3442  * VFS code falls back into buffered path in that case so we are safe.
3443  */
3444 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3445 			const struct iovec *iov, loff_t offset,
3446 			unsigned long nr_segs)
3447 {
3448 	struct file *file = iocb->ki_filp;
3449 	struct inode *inode = file->f_mapping->host;
3450 	struct ext4_inode_info *ei = EXT4_I(inode);
3451 	handle_t *handle;
3452 	ssize_t ret;
3453 	int orphan = 0;
3454 	size_t count = iov_length(iov, nr_segs);
3455 
3456 	if (rw == WRITE) {
3457 		loff_t final_size = offset + count;
3458 
3459 		if (final_size > inode->i_size) {
3460 			/* Credits for sb + inode write */
3461 			handle = ext4_journal_start(inode, 2);
3462 			if (IS_ERR(handle)) {
3463 				ret = PTR_ERR(handle);
3464 				goto out;
3465 			}
3466 			ret = ext4_orphan_add(handle, inode);
3467 			if (ret) {
3468 				ext4_journal_stop(handle);
3469 				goto out;
3470 			}
3471 			orphan = 1;
3472 			ei->i_disksize = inode->i_size;
3473 			ext4_journal_stop(handle);
3474 		}
3475 	}
3476 
3477 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3478 				 offset, nr_segs,
3479 				 ext4_get_block, NULL);
3480 
3481 	if (orphan) {
3482 		int err;
3483 
3484 		/* Credits for sb + inode write */
3485 		handle = ext4_journal_start(inode, 2);
3486 		if (IS_ERR(handle)) {
3487 			/* This is really bad luck. We've written the data
3488 			 * but cannot extend i_size. Bail out and pretend
3489 			 * the write failed... */
3490 			ret = PTR_ERR(handle);
3491 			goto out;
3492 		}
3493 		if (inode->i_nlink)
3494 			ext4_orphan_del(handle, inode);
3495 		if (ret > 0) {
3496 			loff_t end = offset + ret;
3497 			if (end > inode->i_size) {
3498 				ei->i_disksize = end;
3499 				i_size_write(inode, end);
3500 				/*
3501 				 * We're going to return a positive `ret'
3502 				 * here due to non-zero-length I/O, so there's
3503 				 * no way of reporting error returns from
3504 				 * ext4_mark_inode_dirty() to userspace.  So
3505 				 * ignore it.
3506 				 */
3507 				ext4_mark_inode_dirty(handle, inode);
3508 			}
3509 		}
3510 		err = ext4_journal_stop(handle);
3511 		if (ret == 0)
3512 			ret = err;
3513 	}
3514 out:
3515 	return ret;
3516 }
3517 
3518 /*
3519  * Pages can be marked dirty completely asynchronously from ext4's journalling
3520  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3521  * much here because ->set_page_dirty is called under VFS locks.  The page is
3522  * not necessarily locked.
3523  *
3524  * We cannot just dirty the page and leave attached buffers clean, because the
3525  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3526  * or jbddirty because all the journalling code will explode.
3527  *
3528  * So what we do is to mark the page "pending dirty" and next time writepage
3529  * is called, propagate that into the buffers appropriately.
3530  */
3531 static int ext4_journalled_set_page_dirty(struct page *page)
3532 {
3533 	SetPageChecked(page);
3534 	return __set_page_dirty_nobuffers(page);
3535 }
3536 
3537 static const struct address_space_operations ext4_ordered_aops = {
3538 	.readpage		= ext4_readpage,
3539 	.readpages		= ext4_readpages,
3540 	.writepage		= ext4_normal_writepage,
3541 	.sync_page		= block_sync_page,
3542 	.write_begin		= ext4_write_begin,
3543 	.write_end		= ext4_ordered_write_end,
3544 	.bmap			= ext4_bmap,
3545 	.invalidatepage		= ext4_invalidatepage,
3546 	.releasepage		= ext4_releasepage,
3547 	.direct_IO		= ext4_direct_IO,
3548 	.migratepage		= buffer_migrate_page,
3549 	.is_partially_uptodate  = block_is_partially_uptodate,
3550 };
3551 
3552 static const struct address_space_operations ext4_writeback_aops = {
3553 	.readpage		= ext4_readpage,
3554 	.readpages		= ext4_readpages,
3555 	.writepage		= ext4_normal_writepage,
3556 	.sync_page		= block_sync_page,
3557 	.write_begin		= ext4_write_begin,
3558 	.write_end		= ext4_writeback_write_end,
3559 	.bmap			= ext4_bmap,
3560 	.invalidatepage		= ext4_invalidatepage,
3561 	.releasepage		= ext4_releasepage,
3562 	.direct_IO		= ext4_direct_IO,
3563 	.migratepage		= buffer_migrate_page,
3564 	.is_partially_uptodate  = block_is_partially_uptodate,
3565 };
3566 
3567 static const struct address_space_operations ext4_journalled_aops = {
3568 	.readpage		= ext4_readpage,
3569 	.readpages		= ext4_readpages,
3570 	.writepage		= ext4_journalled_writepage,
3571 	.sync_page		= block_sync_page,
3572 	.write_begin		= ext4_write_begin,
3573 	.write_end		= ext4_journalled_write_end,
3574 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3575 	.bmap			= ext4_bmap,
3576 	.invalidatepage		= ext4_invalidatepage,
3577 	.releasepage		= ext4_releasepage,
3578 	.is_partially_uptodate  = block_is_partially_uptodate,
3579 };
3580 
3581 static const struct address_space_operations ext4_da_aops = {
3582 	.readpage		= ext4_readpage,
3583 	.readpages		= ext4_readpages,
3584 	.writepage		= ext4_da_writepage,
3585 	.writepages		= ext4_da_writepages,
3586 	.sync_page		= block_sync_page,
3587 	.write_begin		= ext4_da_write_begin,
3588 	.write_end		= ext4_da_write_end,
3589 	.bmap			= ext4_bmap,
3590 	.invalidatepage		= ext4_da_invalidatepage,
3591 	.releasepage		= ext4_releasepage,
3592 	.direct_IO		= ext4_direct_IO,
3593 	.migratepage		= buffer_migrate_page,
3594 	.is_partially_uptodate  = block_is_partially_uptodate,
3595 };
3596 
3597 void ext4_set_aops(struct inode *inode)
3598 {
3599 	if (ext4_should_order_data(inode) &&
3600 		test_opt(inode->i_sb, DELALLOC))
3601 		inode->i_mapping->a_ops = &ext4_da_aops;
3602 	else if (ext4_should_order_data(inode))
3603 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3604 	else if (ext4_should_writeback_data(inode) &&
3605 		 test_opt(inode->i_sb, DELALLOC))
3606 		inode->i_mapping->a_ops = &ext4_da_aops;
3607 	else if (ext4_should_writeback_data(inode))
3608 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3609 	else
3610 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3611 }
3612 
3613 /*
3614  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3615  * up to the end of the block which corresponds to `from'.
3616  * This required during truncate. We need to physically zero the tail end
3617  * of that block so it doesn't yield old data if the file is later grown.
3618  */
3619 int ext4_block_truncate_page(handle_t *handle,
3620 		struct address_space *mapping, loff_t from)
3621 {
3622 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3623 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3624 	unsigned blocksize, length, pos;
3625 	ext4_lblk_t iblock;
3626 	struct inode *inode = mapping->host;
3627 	struct buffer_head *bh;
3628 	struct page *page;
3629 	int err = 0;
3630 
3631 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3632 	if (!page)
3633 		return -EINVAL;
3634 
3635 	blocksize = inode->i_sb->s_blocksize;
3636 	length = blocksize - (offset & (blocksize - 1));
3637 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3638 
3639 	/*
3640 	 * For "nobh" option,  we can only work if we don't need to
3641 	 * read-in the page - otherwise we create buffers to do the IO.
3642 	 */
3643 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3644 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3645 		zero_user(page, offset, length);
3646 		set_page_dirty(page);
3647 		goto unlock;
3648 	}
3649 
3650 	if (!page_has_buffers(page))
3651 		create_empty_buffers(page, blocksize, 0);
3652 
3653 	/* Find the buffer that contains "offset" */
3654 	bh = page_buffers(page);
3655 	pos = blocksize;
3656 	while (offset >= pos) {
3657 		bh = bh->b_this_page;
3658 		iblock++;
3659 		pos += blocksize;
3660 	}
3661 
3662 	err = 0;
3663 	if (buffer_freed(bh)) {
3664 		BUFFER_TRACE(bh, "freed: skip");
3665 		goto unlock;
3666 	}
3667 
3668 	if (!buffer_mapped(bh)) {
3669 		BUFFER_TRACE(bh, "unmapped");
3670 		ext4_get_block(inode, iblock, bh, 0);
3671 		/* unmapped? It's a hole - nothing to do */
3672 		if (!buffer_mapped(bh)) {
3673 			BUFFER_TRACE(bh, "still unmapped");
3674 			goto unlock;
3675 		}
3676 	}
3677 
3678 	/* Ok, it's mapped. Make sure it's up-to-date */
3679 	if (PageUptodate(page))
3680 		set_buffer_uptodate(bh);
3681 
3682 	if (!buffer_uptodate(bh)) {
3683 		err = -EIO;
3684 		ll_rw_block(READ, 1, &bh);
3685 		wait_on_buffer(bh);
3686 		/* Uhhuh. Read error. Complain and punt. */
3687 		if (!buffer_uptodate(bh))
3688 			goto unlock;
3689 	}
3690 
3691 	if (ext4_should_journal_data(inode)) {
3692 		BUFFER_TRACE(bh, "get write access");
3693 		err = ext4_journal_get_write_access(handle, bh);
3694 		if (err)
3695 			goto unlock;
3696 	}
3697 
3698 	zero_user(page, offset, length);
3699 
3700 	BUFFER_TRACE(bh, "zeroed end of block");
3701 
3702 	err = 0;
3703 	if (ext4_should_journal_data(inode)) {
3704 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3705 	} else {
3706 		if (ext4_should_order_data(inode))
3707 			err = ext4_jbd2_file_inode(handle, inode);
3708 		mark_buffer_dirty(bh);
3709 	}
3710 
3711 unlock:
3712 	unlock_page(page);
3713 	page_cache_release(page);
3714 	return err;
3715 }
3716 
3717 /*
3718  * Probably it should be a library function... search for first non-zero word
3719  * or memcmp with zero_page, whatever is better for particular architecture.
3720  * Linus?
3721  */
3722 static inline int all_zeroes(__le32 *p, __le32 *q)
3723 {
3724 	while (p < q)
3725 		if (*p++)
3726 			return 0;
3727 	return 1;
3728 }
3729 
3730 /**
3731  *	ext4_find_shared - find the indirect blocks for partial truncation.
3732  *	@inode:	  inode in question
3733  *	@depth:	  depth of the affected branch
3734  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3735  *	@chain:	  place to store the pointers to partial indirect blocks
3736  *	@top:	  place to the (detached) top of branch
3737  *
3738  *	This is a helper function used by ext4_truncate().
3739  *
3740  *	When we do truncate() we may have to clean the ends of several
3741  *	indirect blocks but leave the blocks themselves alive. Block is
3742  *	partially truncated if some data below the new i_size is refered
3743  *	from it (and it is on the path to the first completely truncated
3744  *	data block, indeed).  We have to free the top of that path along
3745  *	with everything to the right of the path. Since no allocation
3746  *	past the truncation point is possible until ext4_truncate()
3747  *	finishes, we may safely do the latter, but top of branch may
3748  *	require special attention - pageout below the truncation point
3749  *	might try to populate it.
3750  *
3751  *	We atomically detach the top of branch from the tree, store the
3752  *	block number of its root in *@top, pointers to buffer_heads of
3753  *	partially truncated blocks - in @chain[].bh and pointers to
3754  *	their last elements that should not be removed - in
3755  *	@chain[].p. Return value is the pointer to last filled element
3756  *	of @chain.
3757  *
3758  *	The work left to caller to do the actual freeing of subtrees:
3759  *		a) free the subtree starting from *@top
3760  *		b) free the subtrees whose roots are stored in
3761  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3762  *		c) free the subtrees growing from the inode past the @chain[0].
3763  *			(no partially truncated stuff there).  */
3764 
3765 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3766 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3767 {
3768 	Indirect *partial, *p;
3769 	int k, err;
3770 
3771 	*top = 0;
3772 	/* Make k index the deepest non-null offest + 1 */
3773 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3774 		;
3775 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3776 	/* Writer: pointers */
3777 	if (!partial)
3778 		partial = chain + k-1;
3779 	/*
3780 	 * If the branch acquired continuation since we've looked at it -
3781 	 * fine, it should all survive and (new) top doesn't belong to us.
3782 	 */
3783 	if (!partial->key && *partial->p)
3784 		/* Writer: end */
3785 		goto no_top;
3786 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3787 		;
3788 	/*
3789 	 * OK, we've found the last block that must survive. The rest of our
3790 	 * branch should be detached before unlocking. However, if that rest
3791 	 * of branch is all ours and does not grow immediately from the inode
3792 	 * it's easier to cheat and just decrement partial->p.
3793 	 */
3794 	if (p == chain + k - 1 && p > chain) {
3795 		p->p--;
3796 	} else {
3797 		*top = *p->p;
3798 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3799 #if 0
3800 		*p->p = 0;
3801 #endif
3802 	}
3803 	/* Writer: end */
3804 
3805 	while (partial > p) {
3806 		brelse(partial->bh);
3807 		partial--;
3808 	}
3809 no_top:
3810 	return partial;
3811 }
3812 
3813 /*
3814  * Zero a number of block pointers in either an inode or an indirect block.
3815  * If we restart the transaction we must again get write access to the
3816  * indirect block for further modification.
3817  *
3818  * We release `count' blocks on disk, but (last - first) may be greater
3819  * than `count' because there can be holes in there.
3820  */
3821 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3822 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3823 		unsigned long count, __le32 *first, __le32 *last)
3824 {
3825 	__le32 *p;
3826 	if (try_to_extend_transaction(handle, inode)) {
3827 		if (bh) {
3828 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3829 			ext4_handle_dirty_metadata(handle, inode, bh);
3830 		}
3831 		ext4_mark_inode_dirty(handle, inode);
3832 		ext4_journal_test_restart(handle, inode);
3833 		if (bh) {
3834 			BUFFER_TRACE(bh, "retaking write access");
3835 			ext4_journal_get_write_access(handle, bh);
3836 		}
3837 	}
3838 
3839 	/*
3840 	 * Any buffers which are on the journal will be in memory. We find
3841 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3842 	 * on them.  We've already detached each block from the file, so
3843 	 * bforget() in jbd2_journal_forget() should be safe.
3844 	 *
3845 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3846 	 */
3847 	for (p = first; p < last; p++) {
3848 		u32 nr = le32_to_cpu(*p);
3849 		if (nr) {
3850 			struct buffer_head *tbh;
3851 
3852 			*p = 0;
3853 			tbh = sb_find_get_block(inode->i_sb, nr);
3854 			ext4_forget(handle, 0, inode, tbh, nr);
3855 		}
3856 	}
3857 
3858 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3859 }
3860 
3861 /**
3862  * ext4_free_data - free a list of data blocks
3863  * @handle:	handle for this transaction
3864  * @inode:	inode we are dealing with
3865  * @this_bh:	indirect buffer_head which contains *@first and *@last
3866  * @first:	array of block numbers
3867  * @last:	points immediately past the end of array
3868  *
3869  * We are freeing all blocks refered from that array (numbers are stored as
3870  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3871  *
3872  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3873  * blocks are contiguous then releasing them at one time will only affect one
3874  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3875  * actually use a lot of journal space.
3876  *
3877  * @this_bh will be %NULL if @first and @last point into the inode's direct
3878  * block pointers.
3879  */
3880 static void ext4_free_data(handle_t *handle, struct inode *inode,
3881 			   struct buffer_head *this_bh,
3882 			   __le32 *first, __le32 *last)
3883 {
3884 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3885 	unsigned long count = 0;	    /* Number of blocks in the run */
3886 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3887 					       corresponding to
3888 					       block_to_free */
3889 	ext4_fsblk_t nr;		    /* Current block # */
3890 	__le32 *p;			    /* Pointer into inode/ind
3891 					       for current block */
3892 	int err;
3893 
3894 	if (this_bh) {				/* For indirect block */
3895 		BUFFER_TRACE(this_bh, "get_write_access");
3896 		err = ext4_journal_get_write_access(handle, this_bh);
3897 		/* Important: if we can't update the indirect pointers
3898 		 * to the blocks, we can't free them. */
3899 		if (err)
3900 			return;
3901 	}
3902 
3903 	for (p = first; p < last; p++) {
3904 		nr = le32_to_cpu(*p);
3905 		if (nr) {
3906 			/* accumulate blocks to free if they're contiguous */
3907 			if (count == 0) {
3908 				block_to_free = nr;
3909 				block_to_free_p = p;
3910 				count = 1;
3911 			} else if (nr == block_to_free + count) {
3912 				count++;
3913 			} else {
3914 				ext4_clear_blocks(handle, inode, this_bh,
3915 						  block_to_free,
3916 						  count, block_to_free_p, p);
3917 				block_to_free = nr;
3918 				block_to_free_p = p;
3919 				count = 1;
3920 			}
3921 		}
3922 	}
3923 
3924 	if (count > 0)
3925 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3926 				  count, block_to_free_p, p);
3927 
3928 	if (this_bh) {
3929 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3930 
3931 		/*
3932 		 * The buffer head should have an attached journal head at this
3933 		 * point. However, if the data is corrupted and an indirect
3934 		 * block pointed to itself, it would have been detached when
3935 		 * the block was cleared. Check for this instead of OOPSing.
3936 		 */
3937 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3938 			ext4_handle_dirty_metadata(handle, inode, this_bh);
3939 		else
3940 			ext4_error(inode->i_sb, __func__,
3941 				   "circular indirect block detected, "
3942 				   "inode=%lu, block=%llu",
3943 				   inode->i_ino,
3944 				   (unsigned long long) this_bh->b_blocknr);
3945 	}
3946 }
3947 
3948 /**
3949  *	ext4_free_branches - free an array of branches
3950  *	@handle: JBD handle for this transaction
3951  *	@inode:	inode we are dealing with
3952  *	@parent_bh: the buffer_head which contains *@first and *@last
3953  *	@first:	array of block numbers
3954  *	@last:	pointer immediately past the end of array
3955  *	@depth:	depth of the branches to free
3956  *
3957  *	We are freeing all blocks refered from these branches (numbers are
3958  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3959  *	appropriately.
3960  */
3961 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3962 			       struct buffer_head *parent_bh,
3963 			       __le32 *first, __le32 *last, int depth)
3964 {
3965 	ext4_fsblk_t nr;
3966 	__le32 *p;
3967 
3968 	if (ext4_handle_is_aborted(handle))
3969 		return;
3970 
3971 	if (depth--) {
3972 		struct buffer_head *bh;
3973 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3974 		p = last;
3975 		while (--p >= first) {
3976 			nr = le32_to_cpu(*p);
3977 			if (!nr)
3978 				continue;		/* A hole */
3979 
3980 			/* Go read the buffer for the next level down */
3981 			bh = sb_bread(inode->i_sb, nr);
3982 
3983 			/*
3984 			 * A read failure? Report error and clear slot
3985 			 * (should be rare).
3986 			 */
3987 			if (!bh) {
3988 				ext4_error(inode->i_sb, "ext4_free_branches",
3989 					   "Read failure, inode=%lu, block=%llu",
3990 					   inode->i_ino, nr);
3991 				continue;
3992 			}
3993 
3994 			/* This zaps the entire block.  Bottom up. */
3995 			BUFFER_TRACE(bh, "free child branches");
3996 			ext4_free_branches(handle, inode, bh,
3997 					(__le32 *) bh->b_data,
3998 					(__le32 *) bh->b_data + addr_per_block,
3999 					depth);
4000 
4001 			/*
4002 			 * We've probably journalled the indirect block several
4003 			 * times during the truncate.  But it's no longer
4004 			 * needed and we now drop it from the transaction via
4005 			 * jbd2_journal_revoke().
4006 			 *
4007 			 * That's easy if it's exclusively part of this
4008 			 * transaction.  But if it's part of the committing
4009 			 * transaction then jbd2_journal_forget() will simply
4010 			 * brelse() it.  That means that if the underlying
4011 			 * block is reallocated in ext4_get_block(),
4012 			 * unmap_underlying_metadata() will find this block
4013 			 * and will try to get rid of it.  damn, damn.
4014 			 *
4015 			 * If this block has already been committed to the
4016 			 * journal, a revoke record will be written.  And
4017 			 * revoke records must be emitted *before* clearing
4018 			 * this block's bit in the bitmaps.
4019 			 */
4020 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4021 
4022 			/*
4023 			 * Everything below this this pointer has been
4024 			 * released.  Now let this top-of-subtree go.
4025 			 *
4026 			 * We want the freeing of this indirect block to be
4027 			 * atomic in the journal with the updating of the
4028 			 * bitmap block which owns it.  So make some room in
4029 			 * the journal.
4030 			 *
4031 			 * We zero the parent pointer *after* freeing its
4032 			 * pointee in the bitmaps, so if extend_transaction()
4033 			 * for some reason fails to put the bitmap changes and
4034 			 * the release into the same transaction, recovery
4035 			 * will merely complain about releasing a free block,
4036 			 * rather than leaking blocks.
4037 			 */
4038 			if (ext4_handle_is_aborted(handle))
4039 				return;
4040 			if (try_to_extend_transaction(handle, inode)) {
4041 				ext4_mark_inode_dirty(handle, inode);
4042 				ext4_journal_test_restart(handle, inode);
4043 			}
4044 
4045 			ext4_free_blocks(handle, inode, nr, 1, 1);
4046 
4047 			if (parent_bh) {
4048 				/*
4049 				 * The block which we have just freed is
4050 				 * pointed to by an indirect block: journal it
4051 				 */
4052 				BUFFER_TRACE(parent_bh, "get_write_access");
4053 				if (!ext4_journal_get_write_access(handle,
4054 								   parent_bh)){
4055 					*p = 0;
4056 					BUFFER_TRACE(parent_bh,
4057 					"call ext4_handle_dirty_metadata");
4058 					ext4_handle_dirty_metadata(handle,
4059 								   inode,
4060 								   parent_bh);
4061 				}
4062 			}
4063 		}
4064 	} else {
4065 		/* We have reached the bottom of the tree. */
4066 		BUFFER_TRACE(parent_bh, "free data blocks");
4067 		ext4_free_data(handle, inode, parent_bh, first, last);
4068 	}
4069 }
4070 
4071 int ext4_can_truncate(struct inode *inode)
4072 {
4073 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4074 		return 0;
4075 	if (S_ISREG(inode->i_mode))
4076 		return 1;
4077 	if (S_ISDIR(inode->i_mode))
4078 		return 1;
4079 	if (S_ISLNK(inode->i_mode))
4080 		return !ext4_inode_is_fast_symlink(inode);
4081 	return 0;
4082 }
4083 
4084 /*
4085  * ext4_truncate()
4086  *
4087  * We block out ext4_get_block() block instantiations across the entire
4088  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4089  * simultaneously on behalf of the same inode.
4090  *
4091  * As we work through the truncate and commmit bits of it to the journal there
4092  * is one core, guiding principle: the file's tree must always be consistent on
4093  * disk.  We must be able to restart the truncate after a crash.
4094  *
4095  * The file's tree may be transiently inconsistent in memory (although it
4096  * probably isn't), but whenever we close off and commit a journal transaction,
4097  * the contents of (the filesystem + the journal) must be consistent and
4098  * restartable.  It's pretty simple, really: bottom up, right to left (although
4099  * left-to-right works OK too).
4100  *
4101  * Note that at recovery time, journal replay occurs *before* the restart of
4102  * truncate against the orphan inode list.
4103  *
4104  * The committed inode has the new, desired i_size (which is the same as
4105  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4106  * that this inode's truncate did not complete and it will again call
4107  * ext4_truncate() to have another go.  So there will be instantiated blocks
4108  * to the right of the truncation point in a crashed ext4 filesystem.  But
4109  * that's fine - as long as they are linked from the inode, the post-crash
4110  * ext4_truncate() run will find them and release them.
4111  */
4112 void ext4_truncate(struct inode *inode)
4113 {
4114 	handle_t *handle;
4115 	struct ext4_inode_info *ei = EXT4_I(inode);
4116 	__le32 *i_data = ei->i_data;
4117 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4118 	struct address_space *mapping = inode->i_mapping;
4119 	ext4_lblk_t offsets[4];
4120 	Indirect chain[4];
4121 	Indirect *partial;
4122 	__le32 nr = 0;
4123 	int n;
4124 	ext4_lblk_t last_block;
4125 	unsigned blocksize = inode->i_sb->s_blocksize;
4126 
4127 	if (!ext4_can_truncate(inode))
4128 		return;
4129 
4130 	if (ei->i_disksize && inode->i_size == 0 &&
4131 	    !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4132 		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4133 
4134 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4135 		ext4_ext_truncate(inode);
4136 		return;
4137 	}
4138 
4139 	handle = start_transaction(inode);
4140 	if (IS_ERR(handle))
4141 		return;		/* AKPM: return what? */
4142 
4143 	last_block = (inode->i_size + blocksize-1)
4144 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4145 
4146 	if (inode->i_size & (blocksize - 1))
4147 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4148 			goto out_stop;
4149 
4150 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4151 	if (n == 0)
4152 		goto out_stop;	/* error */
4153 
4154 	/*
4155 	 * OK.  This truncate is going to happen.  We add the inode to the
4156 	 * orphan list, so that if this truncate spans multiple transactions,
4157 	 * and we crash, we will resume the truncate when the filesystem
4158 	 * recovers.  It also marks the inode dirty, to catch the new size.
4159 	 *
4160 	 * Implication: the file must always be in a sane, consistent
4161 	 * truncatable state while each transaction commits.
4162 	 */
4163 	if (ext4_orphan_add(handle, inode))
4164 		goto out_stop;
4165 
4166 	/*
4167 	 * From here we block out all ext4_get_block() callers who want to
4168 	 * modify the block allocation tree.
4169 	 */
4170 	down_write(&ei->i_data_sem);
4171 
4172 	ext4_discard_preallocations(inode);
4173 
4174 	/*
4175 	 * The orphan list entry will now protect us from any crash which
4176 	 * occurs before the truncate completes, so it is now safe to propagate
4177 	 * the new, shorter inode size (held for now in i_size) into the
4178 	 * on-disk inode. We do this via i_disksize, which is the value which
4179 	 * ext4 *really* writes onto the disk inode.
4180 	 */
4181 	ei->i_disksize = inode->i_size;
4182 
4183 	if (n == 1) {		/* direct blocks */
4184 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4185 			       i_data + EXT4_NDIR_BLOCKS);
4186 		goto do_indirects;
4187 	}
4188 
4189 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4190 	/* Kill the top of shared branch (not detached) */
4191 	if (nr) {
4192 		if (partial == chain) {
4193 			/* Shared branch grows from the inode */
4194 			ext4_free_branches(handle, inode, NULL,
4195 					   &nr, &nr+1, (chain+n-1) - partial);
4196 			*partial->p = 0;
4197 			/*
4198 			 * We mark the inode dirty prior to restart,
4199 			 * and prior to stop.  No need for it here.
4200 			 */
4201 		} else {
4202 			/* Shared branch grows from an indirect block */
4203 			BUFFER_TRACE(partial->bh, "get_write_access");
4204 			ext4_free_branches(handle, inode, partial->bh,
4205 					partial->p,
4206 					partial->p+1, (chain+n-1) - partial);
4207 		}
4208 	}
4209 	/* Clear the ends of indirect blocks on the shared branch */
4210 	while (partial > chain) {
4211 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4212 				   (__le32*)partial->bh->b_data+addr_per_block,
4213 				   (chain+n-1) - partial);
4214 		BUFFER_TRACE(partial->bh, "call brelse");
4215 		brelse (partial->bh);
4216 		partial--;
4217 	}
4218 do_indirects:
4219 	/* Kill the remaining (whole) subtrees */
4220 	switch (offsets[0]) {
4221 	default:
4222 		nr = i_data[EXT4_IND_BLOCK];
4223 		if (nr) {
4224 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4225 			i_data[EXT4_IND_BLOCK] = 0;
4226 		}
4227 	case EXT4_IND_BLOCK:
4228 		nr = i_data[EXT4_DIND_BLOCK];
4229 		if (nr) {
4230 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4231 			i_data[EXT4_DIND_BLOCK] = 0;
4232 		}
4233 	case EXT4_DIND_BLOCK:
4234 		nr = i_data[EXT4_TIND_BLOCK];
4235 		if (nr) {
4236 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4237 			i_data[EXT4_TIND_BLOCK] = 0;
4238 		}
4239 	case EXT4_TIND_BLOCK:
4240 		;
4241 	}
4242 
4243 	up_write(&ei->i_data_sem);
4244 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4245 	ext4_mark_inode_dirty(handle, inode);
4246 
4247 	/*
4248 	 * In a multi-transaction truncate, we only make the final transaction
4249 	 * synchronous
4250 	 */
4251 	if (IS_SYNC(inode))
4252 		ext4_handle_sync(handle);
4253 out_stop:
4254 	/*
4255 	 * If this was a simple ftruncate(), and the file will remain alive
4256 	 * then we need to clear up the orphan record which we created above.
4257 	 * However, if this was a real unlink then we were called by
4258 	 * ext4_delete_inode(), and we allow that function to clean up the
4259 	 * orphan info for us.
4260 	 */
4261 	if (inode->i_nlink)
4262 		ext4_orphan_del(handle, inode);
4263 
4264 	ext4_journal_stop(handle);
4265 }
4266 
4267 /*
4268  * ext4_get_inode_loc returns with an extra refcount against the inode's
4269  * underlying buffer_head on success. If 'in_mem' is true, we have all
4270  * data in memory that is needed to recreate the on-disk version of this
4271  * inode.
4272  */
4273 static int __ext4_get_inode_loc(struct inode *inode,
4274 				struct ext4_iloc *iloc, int in_mem)
4275 {
4276 	struct ext4_group_desc	*gdp;
4277 	struct buffer_head	*bh;
4278 	struct super_block	*sb = inode->i_sb;
4279 	ext4_fsblk_t		block;
4280 	int			inodes_per_block, inode_offset;
4281 
4282 	iloc->bh = NULL;
4283 	if (!ext4_valid_inum(sb, inode->i_ino))
4284 		return -EIO;
4285 
4286 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4287 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4288 	if (!gdp)
4289 		return -EIO;
4290 
4291 	/*
4292 	 * Figure out the offset within the block group inode table
4293 	 */
4294 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4295 	inode_offset = ((inode->i_ino - 1) %
4296 			EXT4_INODES_PER_GROUP(sb));
4297 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4298 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4299 
4300 	bh = sb_getblk(sb, block);
4301 	if (!bh) {
4302 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4303 			   "inode block - inode=%lu, block=%llu",
4304 			   inode->i_ino, block);
4305 		return -EIO;
4306 	}
4307 	if (!buffer_uptodate(bh)) {
4308 		lock_buffer(bh);
4309 
4310 		/*
4311 		 * If the buffer has the write error flag, we have failed
4312 		 * to write out another inode in the same block.  In this
4313 		 * case, we don't have to read the block because we may
4314 		 * read the old inode data successfully.
4315 		 */
4316 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4317 			set_buffer_uptodate(bh);
4318 
4319 		if (buffer_uptodate(bh)) {
4320 			/* someone brought it uptodate while we waited */
4321 			unlock_buffer(bh);
4322 			goto has_buffer;
4323 		}
4324 
4325 		/*
4326 		 * If we have all information of the inode in memory and this
4327 		 * is the only valid inode in the block, we need not read the
4328 		 * block.
4329 		 */
4330 		if (in_mem) {
4331 			struct buffer_head *bitmap_bh;
4332 			int i, start;
4333 
4334 			start = inode_offset & ~(inodes_per_block - 1);
4335 
4336 			/* Is the inode bitmap in cache? */
4337 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4338 			if (!bitmap_bh)
4339 				goto make_io;
4340 
4341 			/*
4342 			 * If the inode bitmap isn't in cache then the
4343 			 * optimisation may end up performing two reads instead
4344 			 * of one, so skip it.
4345 			 */
4346 			if (!buffer_uptodate(bitmap_bh)) {
4347 				brelse(bitmap_bh);
4348 				goto make_io;
4349 			}
4350 			for (i = start; i < start + inodes_per_block; i++) {
4351 				if (i == inode_offset)
4352 					continue;
4353 				if (ext4_test_bit(i, bitmap_bh->b_data))
4354 					break;
4355 			}
4356 			brelse(bitmap_bh);
4357 			if (i == start + inodes_per_block) {
4358 				/* all other inodes are free, so skip I/O */
4359 				memset(bh->b_data, 0, bh->b_size);
4360 				set_buffer_uptodate(bh);
4361 				unlock_buffer(bh);
4362 				goto has_buffer;
4363 			}
4364 		}
4365 
4366 make_io:
4367 		/*
4368 		 * If we need to do any I/O, try to pre-readahead extra
4369 		 * blocks from the inode table.
4370 		 */
4371 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4372 			ext4_fsblk_t b, end, table;
4373 			unsigned num;
4374 
4375 			table = ext4_inode_table(sb, gdp);
4376 			/* s_inode_readahead_blks is always a power of 2 */
4377 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4378 			if (table > b)
4379 				b = table;
4380 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4381 			num = EXT4_INODES_PER_GROUP(sb);
4382 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4383 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4384 				num -= ext4_itable_unused_count(sb, gdp);
4385 			table += num / inodes_per_block;
4386 			if (end > table)
4387 				end = table;
4388 			while (b <= end)
4389 				sb_breadahead(sb, b++);
4390 		}
4391 
4392 		/*
4393 		 * There are other valid inodes in the buffer, this inode
4394 		 * has in-inode xattrs, or we don't have this inode in memory.
4395 		 * Read the block from disk.
4396 		 */
4397 		get_bh(bh);
4398 		bh->b_end_io = end_buffer_read_sync;
4399 		submit_bh(READ_META, bh);
4400 		wait_on_buffer(bh);
4401 		if (!buffer_uptodate(bh)) {
4402 			ext4_error(sb, __func__,
4403 				   "unable to read inode block - inode=%lu, "
4404 				   "block=%llu", inode->i_ino, block);
4405 			brelse(bh);
4406 			return -EIO;
4407 		}
4408 	}
4409 has_buffer:
4410 	iloc->bh = bh;
4411 	return 0;
4412 }
4413 
4414 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4415 {
4416 	/* We have all inode data except xattrs in memory here. */
4417 	return __ext4_get_inode_loc(inode, iloc,
4418 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4419 }
4420 
4421 void ext4_set_inode_flags(struct inode *inode)
4422 {
4423 	unsigned int flags = EXT4_I(inode)->i_flags;
4424 
4425 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4426 	if (flags & EXT4_SYNC_FL)
4427 		inode->i_flags |= S_SYNC;
4428 	if (flags & EXT4_APPEND_FL)
4429 		inode->i_flags |= S_APPEND;
4430 	if (flags & EXT4_IMMUTABLE_FL)
4431 		inode->i_flags |= S_IMMUTABLE;
4432 	if (flags & EXT4_NOATIME_FL)
4433 		inode->i_flags |= S_NOATIME;
4434 	if (flags & EXT4_DIRSYNC_FL)
4435 		inode->i_flags |= S_DIRSYNC;
4436 }
4437 
4438 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4439 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4440 {
4441 	unsigned int flags = ei->vfs_inode.i_flags;
4442 
4443 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4444 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4445 	if (flags & S_SYNC)
4446 		ei->i_flags |= EXT4_SYNC_FL;
4447 	if (flags & S_APPEND)
4448 		ei->i_flags |= EXT4_APPEND_FL;
4449 	if (flags & S_IMMUTABLE)
4450 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4451 	if (flags & S_NOATIME)
4452 		ei->i_flags |= EXT4_NOATIME_FL;
4453 	if (flags & S_DIRSYNC)
4454 		ei->i_flags |= EXT4_DIRSYNC_FL;
4455 }
4456 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4457 					struct ext4_inode_info *ei)
4458 {
4459 	blkcnt_t i_blocks ;
4460 	struct inode *inode = &(ei->vfs_inode);
4461 	struct super_block *sb = inode->i_sb;
4462 
4463 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4464 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4465 		/* we are using combined 48 bit field */
4466 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4467 					le32_to_cpu(raw_inode->i_blocks_lo);
4468 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4469 			/* i_blocks represent file system block size */
4470 			return i_blocks  << (inode->i_blkbits - 9);
4471 		} else {
4472 			return i_blocks;
4473 		}
4474 	} else {
4475 		return le32_to_cpu(raw_inode->i_blocks_lo);
4476 	}
4477 }
4478 
4479 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4480 {
4481 	struct ext4_iloc iloc;
4482 	struct ext4_inode *raw_inode;
4483 	struct ext4_inode_info *ei;
4484 	struct buffer_head *bh;
4485 	struct inode *inode;
4486 	long ret;
4487 	int block;
4488 
4489 	inode = iget_locked(sb, ino);
4490 	if (!inode)
4491 		return ERR_PTR(-ENOMEM);
4492 	if (!(inode->i_state & I_NEW))
4493 		return inode;
4494 
4495 	ei = EXT4_I(inode);
4496 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4497 	ei->i_acl = EXT4_ACL_NOT_CACHED;
4498 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4499 #endif
4500 
4501 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4502 	if (ret < 0)
4503 		goto bad_inode;
4504 	bh = iloc.bh;
4505 	raw_inode = ext4_raw_inode(&iloc);
4506 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4507 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4508 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4509 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4510 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4511 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4512 	}
4513 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4514 
4515 	ei->i_state = 0;
4516 	ei->i_dir_start_lookup = 0;
4517 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4518 	/* We now have enough fields to check if the inode was active or not.
4519 	 * This is needed because nfsd might try to access dead inodes
4520 	 * the test is that same one that e2fsck uses
4521 	 * NeilBrown 1999oct15
4522 	 */
4523 	if (inode->i_nlink == 0) {
4524 		if (inode->i_mode == 0 ||
4525 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4526 			/* this inode is deleted */
4527 			brelse(bh);
4528 			ret = -ESTALE;
4529 			goto bad_inode;
4530 		}
4531 		/* The only unlinked inodes we let through here have
4532 		 * valid i_mode and are being read by the orphan
4533 		 * recovery code: that's fine, we're about to complete
4534 		 * the process of deleting those. */
4535 	}
4536 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4537 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4538 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4539 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4540 		ei->i_file_acl |=
4541 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4542 	inode->i_size = ext4_isize(raw_inode);
4543 	ei->i_disksize = inode->i_size;
4544 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4545 	ei->i_block_group = iloc.block_group;
4546 	ei->i_last_alloc_group = ~0;
4547 	/*
4548 	 * NOTE! The in-memory inode i_data array is in little-endian order
4549 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4550 	 */
4551 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4552 		ei->i_data[block] = raw_inode->i_block[block];
4553 	INIT_LIST_HEAD(&ei->i_orphan);
4554 
4555 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4556 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4557 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4558 		    EXT4_INODE_SIZE(inode->i_sb)) {
4559 			brelse(bh);
4560 			ret = -EIO;
4561 			goto bad_inode;
4562 		}
4563 		if (ei->i_extra_isize == 0) {
4564 			/* The extra space is currently unused. Use it. */
4565 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4566 					    EXT4_GOOD_OLD_INODE_SIZE;
4567 		} else {
4568 			__le32 *magic = (void *)raw_inode +
4569 					EXT4_GOOD_OLD_INODE_SIZE +
4570 					ei->i_extra_isize;
4571 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4572 				 ei->i_state |= EXT4_STATE_XATTR;
4573 		}
4574 	} else
4575 		ei->i_extra_isize = 0;
4576 
4577 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4578 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4579 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4580 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4581 
4582 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4583 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4584 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4585 			inode->i_version |=
4586 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4587 	}
4588 
4589 	ret = 0;
4590 	if (ei->i_file_acl &&
4591 	    ((ei->i_file_acl <
4592 	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4593 	       EXT4_SB(sb)->s_gdb_count)) ||
4594 	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4595 		ext4_error(sb, __func__,
4596 			   "bad extended attribute block %llu in inode #%lu",
4597 			   ei->i_file_acl, inode->i_ino);
4598 		ret = -EIO;
4599 		goto bad_inode;
4600 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4601 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4602 		    (S_ISLNK(inode->i_mode) &&
4603 		     !ext4_inode_is_fast_symlink(inode)))
4604 			/* Validate extent which is part of inode */
4605 			ret = ext4_ext_check_inode(inode);
4606  	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4607 		   (S_ISLNK(inode->i_mode) &&
4608 		    !ext4_inode_is_fast_symlink(inode))) {
4609 	 	/* Validate block references which are part of inode */
4610 		ret = ext4_check_inode_blockref(inode);
4611 	}
4612 	if (ret) {
4613  		brelse(bh);
4614  		goto bad_inode;
4615 	}
4616 
4617 	if (S_ISREG(inode->i_mode)) {
4618 		inode->i_op = &ext4_file_inode_operations;
4619 		inode->i_fop = &ext4_file_operations;
4620 		ext4_set_aops(inode);
4621 	} else if (S_ISDIR(inode->i_mode)) {
4622 		inode->i_op = &ext4_dir_inode_operations;
4623 		inode->i_fop = &ext4_dir_operations;
4624 	} else if (S_ISLNK(inode->i_mode)) {
4625 		if (ext4_inode_is_fast_symlink(inode)) {
4626 			inode->i_op = &ext4_fast_symlink_inode_operations;
4627 			nd_terminate_link(ei->i_data, inode->i_size,
4628 				sizeof(ei->i_data) - 1);
4629 		} else {
4630 			inode->i_op = &ext4_symlink_inode_operations;
4631 			ext4_set_aops(inode);
4632 		}
4633 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4634 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4635 		inode->i_op = &ext4_special_inode_operations;
4636 		if (raw_inode->i_block[0])
4637 			init_special_inode(inode, inode->i_mode,
4638 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4639 		else
4640 			init_special_inode(inode, inode->i_mode,
4641 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4642 	} else {
4643 		brelse(bh);
4644 		ret = -EIO;
4645 		ext4_error(inode->i_sb, __func__,
4646 			   "bogus i_mode (%o) for inode=%lu",
4647 			   inode->i_mode, inode->i_ino);
4648 		goto bad_inode;
4649 	}
4650 	brelse(iloc.bh);
4651 	ext4_set_inode_flags(inode);
4652 	unlock_new_inode(inode);
4653 	return inode;
4654 
4655 bad_inode:
4656 	iget_failed(inode);
4657 	return ERR_PTR(ret);
4658 }
4659 
4660 static int ext4_inode_blocks_set(handle_t *handle,
4661 				struct ext4_inode *raw_inode,
4662 				struct ext4_inode_info *ei)
4663 {
4664 	struct inode *inode = &(ei->vfs_inode);
4665 	u64 i_blocks = inode->i_blocks;
4666 	struct super_block *sb = inode->i_sb;
4667 
4668 	if (i_blocks <= ~0U) {
4669 		/*
4670 		 * i_blocks can be represnted in a 32 bit variable
4671 		 * as multiple of 512 bytes
4672 		 */
4673 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4674 		raw_inode->i_blocks_high = 0;
4675 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4676 		return 0;
4677 	}
4678 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4679 		return -EFBIG;
4680 
4681 	if (i_blocks <= 0xffffffffffffULL) {
4682 		/*
4683 		 * i_blocks can be represented in a 48 bit variable
4684 		 * as multiple of 512 bytes
4685 		 */
4686 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4687 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4688 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4689 	} else {
4690 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4691 		/* i_block is stored in file system block size */
4692 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4693 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4694 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4695 	}
4696 	return 0;
4697 }
4698 
4699 /*
4700  * Post the struct inode info into an on-disk inode location in the
4701  * buffer-cache.  This gobbles the caller's reference to the
4702  * buffer_head in the inode location struct.
4703  *
4704  * The caller must have write access to iloc->bh.
4705  */
4706 static int ext4_do_update_inode(handle_t *handle,
4707 				struct inode *inode,
4708 				struct ext4_iloc *iloc)
4709 {
4710 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4711 	struct ext4_inode_info *ei = EXT4_I(inode);
4712 	struct buffer_head *bh = iloc->bh;
4713 	int err = 0, rc, block;
4714 
4715 	/* For fields not not tracking in the in-memory inode,
4716 	 * initialise them to zero for new inodes. */
4717 	if (ei->i_state & EXT4_STATE_NEW)
4718 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4719 
4720 	ext4_get_inode_flags(ei);
4721 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4722 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4723 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4724 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4725 /*
4726  * Fix up interoperability with old kernels. Otherwise, old inodes get
4727  * re-used with the upper 16 bits of the uid/gid intact
4728  */
4729 		if (!ei->i_dtime) {
4730 			raw_inode->i_uid_high =
4731 				cpu_to_le16(high_16_bits(inode->i_uid));
4732 			raw_inode->i_gid_high =
4733 				cpu_to_le16(high_16_bits(inode->i_gid));
4734 		} else {
4735 			raw_inode->i_uid_high = 0;
4736 			raw_inode->i_gid_high = 0;
4737 		}
4738 	} else {
4739 		raw_inode->i_uid_low =
4740 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4741 		raw_inode->i_gid_low =
4742 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4743 		raw_inode->i_uid_high = 0;
4744 		raw_inode->i_gid_high = 0;
4745 	}
4746 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4747 
4748 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4749 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4750 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4751 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4752 
4753 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4754 		goto out_brelse;
4755 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4756 	/* clear the migrate flag in the raw_inode */
4757 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4758 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4759 	    cpu_to_le32(EXT4_OS_HURD))
4760 		raw_inode->i_file_acl_high =
4761 			cpu_to_le16(ei->i_file_acl >> 32);
4762 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4763 	ext4_isize_set(raw_inode, ei->i_disksize);
4764 	if (ei->i_disksize > 0x7fffffffULL) {
4765 		struct super_block *sb = inode->i_sb;
4766 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4767 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4768 				EXT4_SB(sb)->s_es->s_rev_level ==
4769 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4770 			/* If this is the first large file
4771 			 * created, add a flag to the superblock.
4772 			 */
4773 			err = ext4_journal_get_write_access(handle,
4774 					EXT4_SB(sb)->s_sbh);
4775 			if (err)
4776 				goto out_brelse;
4777 			ext4_update_dynamic_rev(sb);
4778 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4779 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4780 			sb->s_dirt = 1;
4781 			ext4_handle_sync(handle);
4782 			err = ext4_handle_dirty_metadata(handle, inode,
4783 					EXT4_SB(sb)->s_sbh);
4784 		}
4785 	}
4786 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4787 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4788 		if (old_valid_dev(inode->i_rdev)) {
4789 			raw_inode->i_block[0] =
4790 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4791 			raw_inode->i_block[1] = 0;
4792 		} else {
4793 			raw_inode->i_block[0] = 0;
4794 			raw_inode->i_block[1] =
4795 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4796 			raw_inode->i_block[2] = 0;
4797 		}
4798 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4799 		raw_inode->i_block[block] = ei->i_data[block];
4800 
4801 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4802 	if (ei->i_extra_isize) {
4803 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4804 			raw_inode->i_version_hi =
4805 			cpu_to_le32(inode->i_version >> 32);
4806 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4807 	}
4808 
4809 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4810 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4811 	if (!err)
4812 		err = rc;
4813 	ei->i_state &= ~EXT4_STATE_NEW;
4814 
4815 out_brelse:
4816 	brelse(bh);
4817 	ext4_std_error(inode->i_sb, err);
4818 	return err;
4819 }
4820 
4821 /*
4822  * ext4_write_inode()
4823  *
4824  * We are called from a few places:
4825  *
4826  * - Within generic_file_write() for O_SYNC files.
4827  *   Here, there will be no transaction running. We wait for any running
4828  *   trasnaction to commit.
4829  *
4830  * - Within sys_sync(), kupdate and such.
4831  *   We wait on commit, if tol to.
4832  *
4833  * - Within prune_icache() (PF_MEMALLOC == true)
4834  *   Here we simply return.  We can't afford to block kswapd on the
4835  *   journal commit.
4836  *
4837  * In all cases it is actually safe for us to return without doing anything,
4838  * because the inode has been copied into a raw inode buffer in
4839  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4840  * knfsd.
4841  *
4842  * Note that we are absolutely dependent upon all inode dirtiers doing the
4843  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4844  * which we are interested.
4845  *
4846  * It would be a bug for them to not do this.  The code:
4847  *
4848  *	mark_inode_dirty(inode)
4849  *	stuff();
4850  *	inode->i_size = expr;
4851  *
4852  * is in error because a kswapd-driven write_inode() could occur while
4853  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4854  * will no longer be on the superblock's dirty inode list.
4855  */
4856 int ext4_write_inode(struct inode *inode, int wait)
4857 {
4858 	if (current->flags & PF_MEMALLOC)
4859 		return 0;
4860 
4861 	if (ext4_journal_current_handle()) {
4862 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4863 		dump_stack();
4864 		return -EIO;
4865 	}
4866 
4867 	if (!wait)
4868 		return 0;
4869 
4870 	return ext4_force_commit(inode->i_sb);
4871 }
4872 
4873 /*
4874  * ext4_setattr()
4875  *
4876  * Called from notify_change.
4877  *
4878  * We want to trap VFS attempts to truncate the file as soon as
4879  * possible.  In particular, we want to make sure that when the VFS
4880  * shrinks i_size, we put the inode on the orphan list and modify
4881  * i_disksize immediately, so that during the subsequent flushing of
4882  * dirty pages and freeing of disk blocks, we can guarantee that any
4883  * commit will leave the blocks being flushed in an unused state on
4884  * disk.  (On recovery, the inode will get truncated and the blocks will
4885  * be freed, so we have a strong guarantee that no future commit will
4886  * leave these blocks visible to the user.)
4887  *
4888  * Another thing we have to assure is that if we are in ordered mode
4889  * and inode is still attached to the committing transaction, we must
4890  * we start writeout of all the dirty pages which are being truncated.
4891  * This way we are sure that all the data written in the previous
4892  * transaction are already on disk (truncate waits for pages under
4893  * writeback).
4894  *
4895  * Called with inode->i_mutex down.
4896  */
4897 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4898 {
4899 	struct inode *inode = dentry->d_inode;
4900 	int error, rc = 0;
4901 	const unsigned int ia_valid = attr->ia_valid;
4902 
4903 	error = inode_change_ok(inode, attr);
4904 	if (error)
4905 		return error;
4906 
4907 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4908 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4909 		handle_t *handle;
4910 
4911 		/* (user+group)*(old+new) structure, inode write (sb,
4912 		 * inode block, ? - but truncate inode update has it) */
4913 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4914 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4915 		if (IS_ERR(handle)) {
4916 			error = PTR_ERR(handle);
4917 			goto err_out;
4918 		}
4919 		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4920 		if (error) {
4921 			ext4_journal_stop(handle);
4922 			return error;
4923 		}
4924 		/* Update corresponding info in inode so that everything is in
4925 		 * one transaction */
4926 		if (attr->ia_valid & ATTR_UID)
4927 			inode->i_uid = attr->ia_uid;
4928 		if (attr->ia_valid & ATTR_GID)
4929 			inode->i_gid = attr->ia_gid;
4930 		error = ext4_mark_inode_dirty(handle, inode);
4931 		ext4_journal_stop(handle);
4932 	}
4933 
4934 	if (attr->ia_valid & ATTR_SIZE) {
4935 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4936 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4937 
4938 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4939 				error = -EFBIG;
4940 				goto err_out;
4941 			}
4942 		}
4943 	}
4944 
4945 	if (S_ISREG(inode->i_mode) &&
4946 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4947 		handle_t *handle;
4948 
4949 		handle = ext4_journal_start(inode, 3);
4950 		if (IS_ERR(handle)) {
4951 			error = PTR_ERR(handle);
4952 			goto err_out;
4953 		}
4954 
4955 		error = ext4_orphan_add(handle, inode);
4956 		EXT4_I(inode)->i_disksize = attr->ia_size;
4957 		rc = ext4_mark_inode_dirty(handle, inode);
4958 		if (!error)
4959 			error = rc;
4960 		ext4_journal_stop(handle);
4961 
4962 		if (ext4_should_order_data(inode)) {
4963 			error = ext4_begin_ordered_truncate(inode,
4964 							    attr->ia_size);
4965 			if (error) {
4966 				/* Do as much error cleanup as possible */
4967 				handle = ext4_journal_start(inode, 3);
4968 				if (IS_ERR(handle)) {
4969 					ext4_orphan_del(NULL, inode);
4970 					goto err_out;
4971 				}
4972 				ext4_orphan_del(handle, inode);
4973 				ext4_journal_stop(handle);
4974 				goto err_out;
4975 			}
4976 		}
4977 	}
4978 
4979 	rc = inode_setattr(inode, attr);
4980 
4981 	/* If inode_setattr's call to ext4_truncate failed to get a
4982 	 * transaction handle at all, we need to clean up the in-core
4983 	 * orphan list manually. */
4984 	if (inode->i_nlink)
4985 		ext4_orphan_del(NULL, inode);
4986 
4987 	if (!rc && (ia_valid & ATTR_MODE))
4988 		rc = ext4_acl_chmod(inode);
4989 
4990 err_out:
4991 	ext4_std_error(inode->i_sb, error);
4992 	if (!error)
4993 		error = rc;
4994 	return error;
4995 }
4996 
4997 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4998 		 struct kstat *stat)
4999 {
5000 	struct inode *inode;
5001 	unsigned long delalloc_blocks;
5002 
5003 	inode = dentry->d_inode;
5004 	generic_fillattr(inode, stat);
5005 
5006 	/*
5007 	 * We can't update i_blocks if the block allocation is delayed
5008 	 * otherwise in the case of system crash before the real block
5009 	 * allocation is done, we will have i_blocks inconsistent with
5010 	 * on-disk file blocks.
5011 	 * We always keep i_blocks updated together with real
5012 	 * allocation. But to not confuse with user, stat
5013 	 * will return the blocks that include the delayed allocation
5014 	 * blocks for this file.
5015 	 */
5016 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5017 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5018 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5019 
5020 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5021 	return 0;
5022 }
5023 
5024 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5025 				      int chunk)
5026 {
5027 	int indirects;
5028 
5029 	/* if nrblocks are contiguous */
5030 	if (chunk) {
5031 		/*
5032 		 * With N contiguous data blocks, it need at most
5033 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5034 		 * 2 dindirect blocks
5035 		 * 1 tindirect block
5036 		 */
5037 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5038 		return indirects + 3;
5039 	}
5040 	/*
5041 	 * if nrblocks are not contiguous, worse case, each block touch
5042 	 * a indirect block, and each indirect block touch a double indirect
5043 	 * block, plus a triple indirect block
5044 	 */
5045 	indirects = nrblocks * 2 + 1;
5046 	return indirects;
5047 }
5048 
5049 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5050 {
5051 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5052 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5053 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5054 }
5055 
5056 /*
5057  * Account for index blocks, block groups bitmaps and block group
5058  * descriptor blocks if modify datablocks and index blocks
5059  * worse case, the indexs blocks spread over different block groups
5060  *
5061  * If datablocks are discontiguous, they are possible to spread over
5062  * different block groups too. If they are contiugous, with flexbg,
5063  * they could still across block group boundary.
5064  *
5065  * Also account for superblock, inode, quota and xattr blocks
5066  */
5067 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5068 {
5069 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5070 	int gdpblocks;
5071 	int idxblocks;
5072 	int ret = 0;
5073 
5074 	/*
5075 	 * How many index blocks need to touch to modify nrblocks?
5076 	 * The "Chunk" flag indicating whether the nrblocks is
5077 	 * physically contiguous on disk
5078 	 *
5079 	 * For Direct IO and fallocate, they calls get_block to allocate
5080 	 * one single extent at a time, so they could set the "Chunk" flag
5081 	 */
5082 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5083 
5084 	ret = idxblocks;
5085 
5086 	/*
5087 	 * Now let's see how many group bitmaps and group descriptors need
5088 	 * to account
5089 	 */
5090 	groups = idxblocks;
5091 	if (chunk)
5092 		groups += 1;
5093 	else
5094 		groups += nrblocks;
5095 
5096 	gdpblocks = groups;
5097 	if (groups > ngroups)
5098 		groups = ngroups;
5099 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5100 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5101 
5102 	/* bitmaps and block group descriptor blocks */
5103 	ret += groups + gdpblocks;
5104 
5105 	/* Blocks for super block, inode, quota and xattr blocks */
5106 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5107 
5108 	return ret;
5109 }
5110 
5111 /*
5112  * Calulate the total number of credits to reserve to fit
5113  * the modification of a single pages into a single transaction,
5114  * which may include multiple chunks of block allocations.
5115  *
5116  * This could be called via ext4_write_begin()
5117  *
5118  * We need to consider the worse case, when
5119  * one new block per extent.
5120  */
5121 int ext4_writepage_trans_blocks(struct inode *inode)
5122 {
5123 	int bpp = ext4_journal_blocks_per_page(inode);
5124 	int ret;
5125 
5126 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5127 
5128 	/* Account for data blocks for journalled mode */
5129 	if (ext4_should_journal_data(inode))
5130 		ret += bpp;
5131 	return ret;
5132 }
5133 
5134 /*
5135  * Calculate the journal credits for a chunk of data modification.
5136  *
5137  * This is called from DIO, fallocate or whoever calling
5138  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5139  *
5140  * journal buffers for data blocks are not included here, as DIO
5141  * and fallocate do no need to journal data buffers.
5142  */
5143 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5144 {
5145 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5146 }
5147 
5148 /*
5149  * The caller must have previously called ext4_reserve_inode_write().
5150  * Give this, we know that the caller already has write access to iloc->bh.
5151  */
5152 int ext4_mark_iloc_dirty(handle_t *handle,
5153 		struct inode *inode, struct ext4_iloc *iloc)
5154 {
5155 	int err = 0;
5156 
5157 	if (test_opt(inode->i_sb, I_VERSION))
5158 		inode_inc_iversion(inode);
5159 
5160 	/* the do_update_inode consumes one bh->b_count */
5161 	get_bh(iloc->bh);
5162 
5163 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5164 	err = ext4_do_update_inode(handle, inode, iloc);
5165 	put_bh(iloc->bh);
5166 	return err;
5167 }
5168 
5169 /*
5170  * On success, We end up with an outstanding reference count against
5171  * iloc->bh.  This _must_ be cleaned up later.
5172  */
5173 
5174 int
5175 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5176 			 struct ext4_iloc *iloc)
5177 {
5178 	int err;
5179 
5180 	err = ext4_get_inode_loc(inode, iloc);
5181 	if (!err) {
5182 		BUFFER_TRACE(iloc->bh, "get_write_access");
5183 		err = ext4_journal_get_write_access(handle, iloc->bh);
5184 		if (err) {
5185 			brelse(iloc->bh);
5186 			iloc->bh = NULL;
5187 		}
5188 	}
5189 	ext4_std_error(inode->i_sb, err);
5190 	return err;
5191 }
5192 
5193 /*
5194  * Expand an inode by new_extra_isize bytes.
5195  * Returns 0 on success or negative error number on failure.
5196  */
5197 static int ext4_expand_extra_isize(struct inode *inode,
5198 				   unsigned int new_extra_isize,
5199 				   struct ext4_iloc iloc,
5200 				   handle_t *handle)
5201 {
5202 	struct ext4_inode *raw_inode;
5203 	struct ext4_xattr_ibody_header *header;
5204 	struct ext4_xattr_entry *entry;
5205 
5206 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5207 		return 0;
5208 
5209 	raw_inode = ext4_raw_inode(&iloc);
5210 
5211 	header = IHDR(inode, raw_inode);
5212 	entry = IFIRST(header);
5213 
5214 	/* No extended attributes present */
5215 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5216 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5217 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5218 			new_extra_isize);
5219 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5220 		return 0;
5221 	}
5222 
5223 	/* try to expand with EAs present */
5224 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5225 					  raw_inode, handle);
5226 }
5227 
5228 /*
5229  * What we do here is to mark the in-core inode as clean with respect to inode
5230  * dirtiness (it may still be data-dirty).
5231  * This means that the in-core inode may be reaped by prune_icache
5232  * without having to perform any I/O.  This is a very good thing,
5233  * because *any* task may call prune_icache - even ones which
5234  * have a transaction open against a different journal.
5235  *
5236  * Is this cheating?  Not really.  Sure, we haven't written the
5237  * inode out, but prune_icache isn't a user-visible syncing function.
5238  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5239  * we start and wait on commits.
5240  *
5241  * Is this efficient/effective?  Well, we're being nice to the system
5242  * by cleaning up our inodes proactively so they can be reaped
5243  * without I/O.  But we are potentially leaving up to five seconds'
5244  * worth of inodes floating about which prune_icache wants us to
5245  * write out.  One way to fix that would be to get prune_icache()
5246  * to do a write_super() to free up some memory.  It has the desired
5247  * effect.
5248  */
5249 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5250 {
5251 	struct ext4_iloc iloc;
5252 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5253 	static unsigned int mnt_count;
5254 	int err, ret;
5255 
5256 	might_sleep();
5257 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5258 	if (ext4_handle_valid(handle) &&
5259 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5260 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5261 		/*
5262 		 * We need extra buffer credits since we may write into EA block
5263 		 * with this same handle. If journal_extend fails, then it will
5264 		 * only result in a minor loss of functionality for that inode.
5265 		 * If this is felt to be critical, then e2fsck should be run to
5266 		 * force a large enough s_min_extra_isize.
5267 		 */
5268 		if ((jbd2_journal_extend(handle,
5269 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5270 			ret = ext4_expand_extra_isize(inode,
5271 						      sbi->s_want_extra_isize,
5272 						      iloc, handle);
5273 			if (ret) {
5274 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5275 				if (mnt_count !=
5276 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5277 					ext4_warning(inode->i_sb, __func__,
5278 					"Unable to expand inode %lu. Delete"
5279 					" some EAs or run e2fsck.",
5280 					inode->i_ino);
5281 					mnt_count =
5282 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5283 				}
5284 			}
5285 		}
5286 	}
5287 	if (!err)
5288 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5289 	return err;
5290 }
5291 
5292 /*
5293  * ext4_dirty_inode() is called from __mark_inode_dirty()
5294  *
5295  * We're really interested in the case where a file is being extended.
5296  * i_size has been changed by generic_commit_write() and we thus need
5297  * to include the updated inode in the current transaction.
5298  *
5299  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5300  * are allocated to the file.
5301  *
5302  * If the inode is marked synchronous, we don't honour that here - doing
5303  * so would cause a commit on atime updates, which we don't bother doing.
5304  * We handle synchronous inodes at the highest possible level.
5305  */
5306 void ext4_dirty_inode(struct inode *inode)
5307 {
5308 	handle_t *current_handle = ext4_journal_current_handle();
5309 	handle_t *handle;
5310 
5311 	if (!ext4_handle_valid(current_handle)) {
5312 		ext4_mark_inode_dirty(current_handle, inode);
5313 		return;
5314 	}
5315 
5316 	handle = ext4_journal_start(inode, 2);
5317 	if (IS_ERR(handle))
5318 		goto out;
5319 	if (current_handle &&
5320 		current_handle->h_transaction != handle->h_transaction) {
5321 		/* This task has a transaction open against a different fs */
5322 		printk(KERN_EMERG "%s: transactions do not match!\n",
5323 		       __func__);
5324 	} else {
5325 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
5326 				current_handle);
5327 		ext4_mark_inode_dirty(handle, inode);
5328 	}
5329 	ext4_journal_stop(handle);
5330 out:
5331 	return;
5332 }
5333 
5334 #if 0
5335 /*
5336  * Bind an inode's backing buffer_head into this transaction, to prevent
5337  * it from being flushed to disk early.  Unlike
5338  * ext4_reserve_inode_write, this leaves behind no bh reference and
5339  * returns no iloc structure, so the caller needs to repeat the iloc
5340  * lookup to mark the inode dirty later.
5341  */
5342 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5343 {
5344 	struct ext4_iloc iloc;
5345 
5346 	int err = 0;
5347 	if (handle) {
5348 		err = ext4_get_inode_loc(inode, &iloc);
5349 		if (!err) {
5350 			BUFFER_TRACE(iloc.bh, "get_write_access");
5351 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5352 			if (!err)
5353 				err = ext4_handle_dirty_metadata(handle,
5354 								 inode,
5355 								 iloc.bh);
5356 			brelse(iloc.bh);
5357 		}
5358 	}
5359 	ext4_std_error(inode->i_sb, err);
5360 	return err;
5361 }
5362 #endif
5363 
5364 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5365 {
5366 	journal_t *journal;
5367 	handle_t *handle;
5368 	int err;
5369 
5370 	/*
5371 	 * We have to be very careful here: changing a data block's
5372 	 * journaling status dynamically is dangerous.  If we write a
5373 	 * data block to the journal, change the status and then delete
5374 	 * that block, we risk forgetting to revoke the old log record
5375 	 * from the journal and so a subsequent replay can corrupt data.
5376 	 * So, first we make sure that the journal is empty and that
5377 	 * nobody is changing anything.
5378 	 */
5379 
5380 	journal = EXT4_JOURNAL(inode);
5381 	if (!journal)
5382 		return 0;
5383 	if (is_journal_aborted(journal))
5384 		return -EROFS;
5385 
5386 	jbd2_journal_lock_updates(journal);
5387 	jbd2_journal_flush(journal);
5388 
5389 	/*
5390 	 * OK, there are no updates running now, and all cached data is
5391 	 * synced to disk.  We are now in a completely consistent state
5392 	 * which doesn't have anything in the journal, and we know that
5393 	 * no filesystem updates are running, so it is safe to modify
5394 	 * the inode's in-core data-journaling state flag now.
5395 	 */
5396 
5397 	if (val)
5398 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5399 	else
5400 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5401 	ext4_set_aops(inode);
5402 
5403 	jbd2_journal_unlock_updates(journal);
5404 
5405 	/* Finally we can mark the inode as dirty. */
5406 
5407 	handle = ext4_journal_start(inode, 1);
5408 	if (IS_ERR(handle))
5409 		return PTR_ERR(handle);
5410 
5411 	err = ext4_mark_inode_dirty(handle, inode);
5412 	ext4_handle_sync(handle);
5413 	ext4_journal_stop(handle);
5414 	ext4_std_error(inode->i_sb, err);
5415 
5416 	return err;
5417 }
5418 
5419 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5420 {
5421 	return !buffer_mapped(bh);
5422 }
5423 
5424 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5425 {
5426 	struct page *page = vmf->page;
5427 	loff_t size;
5428 	unsigned long len;
5429 	int ret = -EINVAL;
5430 	void *fsdata;
5431 	struct file *file = vma->vm_file;
5432 	struct inode *inode = file->f_path.dentry->d_inode;
5433 	struct address_space *mapping = inode->i_mapping;
5434 
5435 	/*
5436 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5437 	 * get i_mutex because we are already holding mmap_sem.
5438 	 */
5439 	down_read(&inode->i_alloc_sem);
5440 	size = i_size_read(inode);
5441 	if (page->mapping != mapping || size <= page_offset(page)
5442 	    || !PageUptodate(page)) {
5443 		/* page got truncated from under us? */
5444 		goto out_unlock;
5445 	}
5446 	ret = 0;
5447 	if (PageMappedToDisk(page))
5448 		goto out_unlock;
5449 
5450 	if (page->index == size >> PAGE_CACHE_SHIFT)
5451 		len = size & ~PAGE_CACHE_MASK;
5452 	else
5453 		len = PAGE_CACHE_SIZE;
5454 
5455 	if (page_has_buffers(page)) {
5456 		/* return if we have all the buffers mapped */
5457 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5458 				       ext4_bh_unmapped))
5459 			goto out_unlock;
5460 	}
5461 	/*
5462 	 * OK, we need to fill the hole... Do write_begin write_end
5463 	 * to do block allocation/reservation.We are not holding
5464 	 * inode.i__mutex here. That allow * parallel write_begin,
5465 	 * write_end call. lock_page prevent this from happening
5466 	 * on the same page though
5467 	 */
5468 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5469 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5470 	if (ret < 0)
5471 		goto out_unlock;
5472 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5473 			len, len, page, fsdata);
5474 	if (ret < 0)
5475 		goto out_unlock;
5476 	ret = 0;
5477 out_unlock:
5478 	if (ret)
5479 		ret = VM_FAULT_SIGBUS;
5480 	up_read(&inode->i_alloc_sem);
5481 	return ret;
5482 }
5483