1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = le16_to_cpu(raw->i_checksum_lo); 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = le16_to_cpu(raw->i_checksum_hi); 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = cpu_to_le16(csum_lo); 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = cpu_to_le16(csum_hi); 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !ext4_has_metadata_csum(inode->i_sb)) 85 return 1; 86 87 provided = le16_to_cpu(raw->i_checksum_lo); 88 calculated = ext4_inode_csum(inode, raw, ei); 89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 92 else 93 calculated &= 0xFFFF; 94 95 return provided == calculated; 96 } 97 98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 99 struct ext4_inode_info *ei) 100 { 101 __u32 csum; 102 103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 104 cpu_to_le32(EXT4_OS_LINUX) || 105 !ext4_has_metadata_csum(inode->i_sb)) 106 return; 107 108 csum = ext4_inode_csum(inode, raw, ei); 109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 112 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 113 } 114 115 static inline int ext4_begin_ordered_truncate(struct inode *inode, 116 loff_t new_size) 117 { 118 trace_ext4_begin_ordered_truncate(inode, new_size); 119 /* 120 * If jinode is zero, then we never opened the file for 121 * writing, so there's no need to call 122 * jbd2_journal_begin_ordered_truncate() since there's no 123 * outstanding writes we need to flush. 124 */ 125 if (!EXT4_I(inode)->jinode) 126 return 0; 127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 128 EXT4_I(inode)->jinode, 129 new_size); 130 } 131 132 static void ext4_invalidatepage(struct page *page, unsigned int offset, 133 unsigned int length); 134 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 137 int pextents); 138 139 /* 140 * Test whether an inode is a fast symlink. 141 */ 142 int ext4_inode_is_fast_symlink(struct inode *inode) 143 { 144 int ea_blocks = EXT4_I(inode)->i_file_acl ? 145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 146 147 if (ext4_has_inline_data(inode)) 148 return 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages_final(&inode->i_data); 218 219 goto no_delete; 220 } 221 222 if (is_bad_inode(inode)) 223 goto no_delete; 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages_final(&inode->i_data); 229 230 /* 231 * Protect us against freezing - iput() caller didn't have to have any 232 * protection against it 233 */ 234 sb_start_intwrite(inode->i_sb); 235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 236 ext4_blocks_for_truncate(inode)+3); 237 if (IS_ERR(handle)) { 238 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 239 /* 240 * If we're going to skip the normal cleanup, we still need to 241 * make sure that the in-core orphan linked list is properly 242 * cleaned up. 243 */ 244 ext4_orphan_del(NULL, inode); 245 sb_end_intwrite(inode->i_sb); 246 goto no_delete; 247 } 248 249 if (IS_SYNC(inode)) 250 ext4_handle_sync(handle); 251 inode->i_size = 0; 252 err = ext4_mark_inode_dirty(handle, inode); 253 if (err) { 254 ext4_warning(inode->i_sb, 255 "couldn't mark inode dirty (err %d)", err); 256 goto stop_handle; 257 } 258 if (inode->i_blocks) 259 ext4_truncate(inode); 260 261 /* 262 * ext4_ext_truncate() doesn't reserve any slop when it 263 * restarts journal transactions; therefore there may not be 264 * enough credits left in the handle to remove the inode from 265 * the orphan list and set the dtime field. 266 */ 267 if (!ext4_handle_has_enough_credits(handle, 3)) { 268 err = ext4_journal_extend(handle, 3); 269 if (err > 0) 270 err = ext4_journal_restart(handle, 3); 271 if (err != 0) { 272 ext4_warning(inode->i_sb, 273 "couldn't extend journal (err %d)", err); 274 stop_handle: 275 ext4_journal_stop(handle); 276 ext4_orphan_del(NULL, inode); 277 sb_end_intwrite(inode->i_sb); 278 goto no_delete; 279 } 280 } 281 282 /* 283 * Kill off the orphan record which ext4_truncate created. 284 * AKPM: I think this can be inside the above `if'. 285 * Note that ext4_orphan_del() has to be able to cope with the 286 * deletion of a non-existent orphan - this is because we don't 287 * know if ext4_truncate() actually created an orphan record. 288 * (Well, we could do this if we need to, but heck - it works) 289 */ 290 ext4_orphan_del(handle, inode); 291 EXT4_I(inode)->i_dtime = get_seconds(); 292 293 /* 294 * One subtle ordering requirement: if anything has gone wrong 295 * (transaction abort, IO errors, whatever), then we can still 296 * do these next steps (the fs will already have been marked as 297 * having errors), but we can't free the inode if the mark_dirty 298 * fails. 299 */ 300 if (ext4_mark_inode_dirty(handle, inode)) 301 /* If that failed, just do the required in-core inode clear. */ 302 ext4_clear_inode(inode); 303 else 304 ext4_free_inode(handle, inode); 305 ext4_journal_stop(handle); 306 sb_end_intwrite(inode->i_sb); 307 return; 308 no_delete: 309 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 310 } 311 312 #ifdef CONFIG_QUOTA 313 qsize_t *ext4_get_reserved_space(struct inode *inode) 314 { 315 return &EXT4_I(inode)->i_reserved_quota; 316 } 317 #endif 318 319 /* 320 * Called with i_data_sem down, which is important since we can call 321 * ext4_discard_preallocations() from here. 322 */ 323 void ext4_da_update_reserve_space(struct inode *inode, 324 int used, int quota_claim) 325 { 326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 327 struct ext4_inode_info *ei = EXT4_I(inode); 328 329 spin_lock(&ei->i_block_reservation_lock); 330 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 331 if (unlikely(used > ei->i_reserved_data_blocks)) { 332 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 333 "with only %d reserved data blocks", 334 __func__, inode->i_ino, used, 335 ei->i_reserved_data_blocks); 336 WARN_ON(1); 337 used = ei->i_reserved_data_blocks; 338 } 339 340 /* Update per-inode reservations */ 341 ei->i_reserved_data_blocks -= used; 342 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 343 344 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 345 346 /* Update quota subsystem for data blocks */ 347 if (quota_claim) 348 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 349 else { 350 /* 351 * We did fallocate with an offset that is already delayed 352 * allocated. So on delayed allocated writeback we should 353 * not re-claim the quota for fallocated blocks. 354 */ 355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 356 } 357 358 /* 359 * If we have done all the pending block allocations and if 360 * there aren't any writers on the inode, we can discard the 361 * inode's preallocations. 362 */ 363 if ((ei->i_reserved_data_blocks == 0) && 364 (atomic_read(&inode->i_writecount) == 0)) 365 ext4_discard_preallocations(inode); 366 } 367 368 static int __check_block_validity(struct inode *inode, const char *func, 369 unsigned int line, 370 struct ext4_map_blocks *map) 371 { 372 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 373 map->m_len)) { 374 ext4_error_inode(inode, func, line, map->m_pblk, 375 "lblock %lu mapped to illegal pblock " 376 "(length %d)", (unsigned long) map->m_lblk, 377 map->m_len); 378 return -EFSCORRUPTED; 379 } 380 return 0; 381 } 382 383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 384 ext4_lblk_t len) 385 { 386 int ret; 387 388 if (ext4_encrypted_inode(inode)) 389 return ext4_encrypted_zeroout(inode, lblk, pblk, len); 390 391 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 392 if (ret > 0) 393 ret = 0; 394 395 return ret; 396 } 397 398 #define check_block_validity(inode, map) \ 399 __check_block_validity((inode), __func__, __LINE__, (map)) 400 401 #ifdef ES_AGGRESSIVE_TEST 402 static void ext4_map_blocks_es_recheck(handle_t *handle, 403 struct inode *inode, 404 struct ext4_map_blocks *es_map, 405 struct ext4_map_blocks *map, 406 int flags) 407 { 408 int retval; 409 410 map->m_flags = 0; 411 /* 412 * There is a race window that the result is not the same. 413 * e.g. xfstests #223 when dioread_nolock enables. The reason 414 * is that we lookup a block mapping in extent status tree with 415 * out taking i_data_sem. So at the time the unwritten extent 416 * could be converted. 417 */ 418 down_read(&EXT4_I(inode)->i_data_sem); 419 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 420 retval = ext4_ext_map_blocks(handle, inode, map, flags & 421 EXT4_GET_BLOCKS_KEEP_SIZE); 422 } else { 423 retval = ext4_ind_map_blocks(handle, inode, map, flags & 424 EXT4_GET_BLOCKS_KEEP_SIZE); 425 } 426 up_read((&EXT4_I(inode)->i_data_sem)); 427 428 /* 429 * We don't check m_len because extent will be collpased in status 430 * tree. So the m_len might not equal. 431 */ 432 if (es_map->m_lblk != map->m_lblk || 433 es_map->m_flags != map->m_flags || 434 es_map->m_pblk != map->m_pblk) { 435 printk("ES cache assertion failed for inode: %lu " 436 "es_cached ex [%d/%d/%llu/%x] != " 437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 438 inode->i_ino, es_map->m_lblk, es_map->m_len, 439 es_map->m_pblk, es_map->m_flags, map->m_lblk, 440 map->m_len, map->m_pblk, map->m_flags, 441 retval, flags); 442 } 443 } 444 #endif /* ES_AGGRESSIVE_TEST */ 445 446 /* 447 * The ext4_map_blocks() function tries to look up the requested blocks, 448 * and returns if the blocks are already mapped. 449 * 450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 451 * and store the allocated blocks in the result buffer head and mark it 452 * mapped. 453 * 454 * If file type is extents based, it will call ext4_ext_map_blocks(), 455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 456 * based files 457 * 458 * On success, it returns the number of blocks being mapped or allocated. if 459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 460 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 461 * 462 * It returns 0 if plain look up failed (blocks have not been allocated), in 463 * that case, @map is returned as unmapped but we still do fill map->m_len to 464 * indicate the length of a hole starting at map->m_lblk. 465 * 466 * It returns the error in case of allocation failure. 467 */ 468 int ext4_map_blocks(handle_t *handle, struct inode *inode, 469 struct ext4_map_blocks *map, int flags) 470 { 471 struct extent_status es; 472 int retval; 473 int ret = 0; 474 #ifdef ES_AGGRESSIVE_TEST 475 struct ext4_map_blocks orig_map; 476 477 memcpy(&orig_map, map, sizeof(*map)); 478 #endif 479 480 map->m_flags = 0; 481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 482 "logical block %lu\n", inode->i_ino, flags, map->m_len, 483 (unsigned long) map->m_lblk); 484 485 /* 486 * ext4_map_blocks returns an int, and m_len is an unsigned int 487 */ 488 if (unlikely(map->m_len > INT_MAX)) 489 map->m_len = INT_MAX; 490 491 /* We can handle the block number less than EXT_MAX_BLOCKS */ 492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 493 return -EFSCORRUPTED; 494 495 /* Lookup extent status tree firstly */ 496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 498 map->m_pblk = ext4_es_pblock(&es) + 499 map->m_lblk - es.es_lblk; 500 map->m_flags |= ext4_es_is_written(&es) ? 501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 502 retval = es.es_len - (map->m_lblk - es.es_lblk); 503 if (retval > map->m_len) 504 retval = map->m_len; 505 map->m_len = retval; 506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 507 map->m_pblk = 0; 508 retval = es.es_len - (map->m_lblk - es.es_lblk); 509 if (retval > map->m_len) 510 retval = map->m_len; 511 map->m_len = retval; 512 retval = 0; 513 } else { 514 BUG_ON(1); 515 } 516 #ifdef ES_AGGRESSIVE_TEST 517 ext4_map_blocks_es_recheck(handle, inode, map, 518 &orig_map, flags); 519 #endif 520 goto found; 521 } 522 523 /* 524 * Try to see if we can get the block without requesting a new 525 * file system block. 526 */ 527 down_read(&EXT4_I(inode)->i_data_sem); 528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 529 retval = ext4_ext_map_blocks(handle, inode, map, flags & 530 EXT4_GET_BLOCKS_KEEP_SIZE); 531 } else { 532 retval = ext4_ind_map_blocks(handle, inode, map, flags & 533 EXT4_GET_BLOCKS_KEEP_SIZE); 534 } 535 if (retval > 0) { 536 unsigned int status; 537 538 if (unlikely(retval != map->m_len)) { 539 ext4_warning(inode->i_sb, 540 "ES len assertion failed for inode " 541 "%lu: retval %d != map->m_len %d", 542 inode->i_ino, retval, map->m_len); 543 WARN_ON(1); 544 } 545 546 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 547 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 548 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 549 !(status & EXTENT_STATUS_WRITTEN) && 550 ext4_find_delalloc_range(inode, map->m_lblk, 551 map->m_lblk + map->m_len - 1)) 552 status |= EXTENT_STATUS_DELAYED; 553 ret = ext4_es_insert_extent(inode, map->m_lblk, 554 map->m_len, map->m_pblk, status); 555 if (ret < 0) 556 retval = ret; 557 } 558 up_read((&EXT4_I(inode)->i_data_sem)); 559 560 found: 561 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 562 ret = check_block_validity(inode, map); 563 if (ret != 0) 564 return ret; 565 } 566 567 /* If it is only a block(s) look up */ 568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 569 return retval; 570 571 /* 572 * Returns if the blocks have already allocated 573 * 574 * Note that if blocks have been preallocated 575 * ext4_ext_get_block() returns the create = 0 576 * with buffer head unmapped. 577 */ 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 579 /* 580 * If we need to convert extent to unwritten 581 * we continue and do the actual work in 582 * ext4_ext_map_blocks() 583 */ 584 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 585 return retval; 586 587 /* 588 * Here we clear m_flags because after allocating an new extent, 589 * it will be set again. 590 */ 591 map->m_flags &= ~EXT4_MAP_FLAGS; 592 593 /* 594 * New blocks allocate and/or writing to unwritten extent 595 * will possibly result in updating i_data, so we take 596 * the write lock of i_data_sem, and call get_block() 597 * with create == 1 flag. 598 */ 599 down_write(&EXT4_I(inode)->i_data_sem); 600 601 /* 602 * We need to check for EXT4 here because migrate 603 * could have changed the inode type in between 604 */ 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 606 retval = ext4_ext_map_blocks(handle, inode, map, flags); 607 } else { 608 retval = ext4_ind_map_blocks(handle, inode, map, flags); 609 610 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 611 /* 612 * We allocated new blocks which will result in 613 * i_data's format changing. Force the migrate 614 * to fail by clearing migrate flags 615 */ 616 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 617 } 618 619 /* 620 * Update reserved blocks/metadata blocks after successful 621 * block allocation which had been deferred till now. We don't 622 * support fallocate for non extent files. So we can update 623 * reserve space here. 624 */ 625 if ((retval > 0) && 626 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 627 ext4_da_update_reserve_space(inode, retval, 1); 628 } 629 630 if (retval > 0) { 631 unsigned int status; 632 633 if (unlikely(retval != map->m_len)) { 634 ext4_warning(inode->i_sb, 635 "ES len assertion failed for inode " 636 "%lu: retval %d != map->m_len %d", 637 inode->i_ino, retval, map->m_len); 638 WARN_ON(1); 639 } 640 641 /* 642 * We have to zeroout blocks before inserting them into extent 643 * status tree. Otherwise someone could look them up there and 644 * use them before they are really zeroed. 645 */ 646 if (flags & EXT4_GET_BLOCKS_ZERO && 647 map->m_flags & EXT4_MAP_MAPPED && 648 map->m_flags & EXT4_MAP_NEW) { 649 ret = ext4_issue_zeroout(inode, map->m_lblk, 650 map->m_pblk, map->m_len); 651 if (ret) { 652 retval = ret; 653 goto out_sem; 654 } 655 } 656 657 /* 658 * If the extent has been zeroed out, we don't need to update 659 * extent status tree. 660 */ 661 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 662 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 663 if (ext4_es_is_written(&es)) 664 goto out_sem; 665 } 666 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 667 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 668 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 669 !(status & EXTENT_STATUS_WRITTEN) && 670 ext4_find_delalloc_range(inode, map->m_lblk, 671 map->m_lblk + map->m_len - 1)) 672 status |= EXTENT_STATUS_DELAYED; 673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 674 map->m_pblk, status); 675 if (ret < 0) { 676 retval = ret; 677 goto out_sem; 678 } 679 } 680 681 out_sem: 682 up_write((&EXT4_I(inode)->i_data_sem)); 683 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 684 ret = check_block_validity(inode, map); 685 if (ret != 0) 686 return ret; 687 688 /* 689 * Inodes with freshly allocated blocks where contents will be 690 * visible after transaction commit must be on transaction's 691 * ordered data list. 692 */ 693 if (map->m_flags & EXT4_MAP_NEW && 694 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 695 !(flags & EXT4_GET_BLOCKS_ZERO) && 696 !IS_NOQUOTA(inode) && 697 ext4_should_order_data(inode)) { 698 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 699 ret = ext4_jbd2_inode_add_wait(handle, inode); 700 else 701 ret = ext4_jbd2_inode_add_write(handle, inode); 702 if (ret) 703 return ret; 704 } 705 } 706 return retval; 707 } 708 709 /* 710 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 711 * we have to be careful as someone else may be manipulating b_state as well. 712 */ 713 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 714 { 715 unsigned long old_state; 716 unsigned long new_state; 717 718 flags &= EXT4_MAP_FLAGS; 719 720 /* Dummy buffer_head? Set non-atomically. */ 721 if (!bh->b_page) { 722 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 723 return; 724 } 725 /* 726 * Someone else may be modifying b_state. Be careful! This is ugly but 727 * once we get rid of using bh as a container for mapping information 728 * to pass to / from get_block functions, this can go away. 729 */ 730 do { 731 old_state = READ_ONCE(bh->b_state); 732 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 733 } while (unlikely( 734 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 735 } 736 737 static int _ext4_get_block(struct inode *inode, sector_t iblock, 738 struct buffer_head *bh, int flags) 739 { 740 struct ext4_map_blocks map; 741 int ret = 0; 742 743 if (ext4_has_inline_data(inode)) 744 return -ERANGE; 745 746 map.m_lblk = iblock; 747 map.m_len = bh->b_size >> inode->i_blkbits; 748 749 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 750 flags); 751 if (ret > 0) { 752 map_bh(bh, inode->i_sb, map.m_pblk); 753 ext4_update_bh_state(bh, map.m_flags); 754 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 755 ret = 0; 756 } 757 return ret; 758 } 759 760 int ext4_get_block(struct inode *inode, sector_t iblock, 761 struct buffer_head *bh, int create) 762 { 763 return _ext4_get_block(inode, iblock, bh, 764 create ? EXT4_GET_BLOCKS_CREATE : 0); 765 } 766 767 /* 768 * Get block function used when preparing for buffered write if we require 769 * creating an unwritten extent if blocks haven't been allocated. The extent 770 * will be converted to written after the IO is complete. 771 */ 772 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 773 struct buffer_head *bh_result, int create) 774 { 775 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 776 inode->i_ino, create); 777 return _ext4_get_block(inode, iblock, bh_result, 778 EXT4_GET_BLOCKS_IO_CREATE_EXT); 779 } 780 781 /* Maximum number of blocks we map for direct IO at once. */ 782 #define DIO_MAX_BLOCKS 4096 783 784 /* 785 * Get blocks function for the cases that need to start a transaction - 786 * generally difference cases of direct IO and DAX IO. It also handles retries 787 * in case of ENOSPC. 788 */ 789 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 790 struct buffer_head *bh_result, int flags) 791 { 792 int dio_credits; 793 handle_t *handle; 794 int retries = 0; 795 int ret; 796 797 /* Trim mapping request to maximum we can map at once for DIO */ 798 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 799 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 800 dio_credits = ext4_chunk_trans_blocks(inode, 801 bh_result->b_size >> inode->i_blkbits); 802 retry: 803 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 804 if (IS_ERR(handle)) 805 return PTR_ERR(handle); 806 807 ret = _ext4_get_block(inode, iblock, bh_result, flags); 808 ext4_journal_stop(handle); 809 810 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 811 goto retry; 812 return ret; 813 } 814 815 /* Get block function for DIO reads and writes to inodes without extents */ 816 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 817 struct buffer_head *bh, int create) 818 { 819 /* We don't expect handle for direct IO */ 820 WARN_ON_ONCE(ext4_journal_current_handle()); 821 822 if (!create) 823 return _ext4_get_block(inode, iblock, bh, 0); 824 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 825 } 826 827 /* 828 * Get block function for AIO DIO writes when we create unwritten extent if 829 * blocks are not allocated yet. The extent will be converted to written 830 * after IO is complete. 831 */ 832 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 833 sector_t iblock, struct buffer_head *bh_result, int create) 834 { 835 int ret; 836 837 /* We don't expect handle for direct IO */ 838 WARN_ON_ONCE(ext4_journal_current_handle()); 839 840 ret = ext4_get_block_trans(inode, iblock, bh_result, 841 EXT4_GET_BLOCKS_IO_CREATE_EXT); 842 843 /* 844 * When doing DIO using unwritten extents, we need io_end to convert 845 * unwritten extents to written on IO completion. We allocate io_end 846 * once we spot unwritten extent and store it in b_private. Generic 847 * DIO code keeps b_private set and furthermore passes the value to 848 * our completion callback in 'private' argument. 849 */ 850 if (!ret && buffer_unwritten(bh_result)) { 851 if (!bh_result->b_private) { 852 ext4_io_end_t *io_end; 853 854 io_end = ext4_init_io_end(inode, GFP_KERNEL); 855 if (!io_end) 856 return -ENOMEM; 857 bh_result->b_private = io_end; 858 ext4_set_io_unwritten_flag(inode, io_end); 859 } 860 set_buffer_defer_completion(bh_result); 861 } 862 863 return ret; 864 } 865 866 /* 867 * Get block function for non-AIO DIO writes when we create unwritten extent if 868 * blocks are not allocated yet. The extent will be converted to written 869 * after IO is complete from ext4_ext_direct_IO() function. 870 */ 871 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 872 sector_t iblock, struct buffer_head *bh_result, int create) 873 { 874 int ret; 875 876 /* We don't expect handle for direct IO */ 877 WARN_ON_ONCE(ext4_journal_current_handle()); 878 879 ret = ext4_get_block_trans(inode, iblock, bh_result, 880 EXT4_GET_BLOCKS_IO_CREATE_EXT); 881 882 /* 883 * Mark inode as having pending DIO writes to unwritten extents. 884 * ext4_ext_direct_IO() checks this flag and converts extents to 885 * written. 886 */ 887 if (!ret && buffer_unwritten(bh_result)) 888 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 889 890 return ret; 891 } 892 893 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 894 struct buffer_head *bh_result, int create) 895 { 896 int ret; 897 898 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 899 inode->i_ino, create); 900 /* We don't expect handle for direct IO */ 901 WARN_ON_ONCE(ext4_journal_current_handle()); 902 903 ret = _ext4_get_block(inode, iblock, bh_result, 0); 904 /* 905 * Blocks should have been preallocated! ext4_file_write_iter() checks 906 * that. 907 */ 908 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 909 910 return ret; 911 } 912 913 914 /* 915 * `handle' can be NULL if create is zero 916 */ 917 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 918 ext4_lblk_t block, int map_flags) 919 { 920 struct ext4_map_blocks map; 921 struct buffer_head *bh; 922 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 923 int err; 924 925 J_ASSERT(handle != NULL || create == 0); 926 927 map.m_lblk = block; 928 map.m_len = 1; 929 err = ext4_map_blocks(handle, inode, &map, map_flags); 930 931 if (err == 0) 932 return create ? ERR_PTR(-ENOSPC) : NULL; 933 if (err < 0) 934 return ERR_PTR(err); 935 936 bh = sb_getblk(inode->i_sb, map.m_pblk); 937 if (unlikely(!bh)) 938 return ERR_PTR(-ENOMEM); 939 if (map.m_flags & EXT4_MAP_NEW) { 940 J_ASSERT(create != 0); 941 J_ASSERT(handle != NULL); 942 943 /* 944 * Now that we do not always journal data, we should 945 * keep in mind whether this should always journal the 946 * new buffer as metadata. For now, regular file 947 * writes use ext4_get_block instead, so it's not a 948 * problem. 949 */ 950 lock_buffer(bh); 951 BUFFER_TRACE(bh, "call get_create_access"); 952 err = ext4_journal_get_create_access(handle, bh); 953 if (unlikely(err)) { 954 unlock_buffer(bh); 955 goto errout; 956 } 957 if (!buffer_uptodate(bh)) { 958 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 959 set_buffer_uptodate(bh); 960 } 961 unlock_buffer(bh); 962 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 963 err = ext4_handle_dirty_metadata(handle, inode, bh); 964 if (unlikely(err)) 965 goto errout; 966 } else 967 BUFFER_TRACE(bh, "not a new buffer"); 968 return bh; 969 errout: 970 brelse(bh); 971 return ERR_PTR(err); 972 } 973 974 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 975 ext4_lblk_t block, int map_flags) 976 { 977 struct buffer_head *bh; 978 979 bh = ext4_getblk(handle, inode, block, map_flags); 980 if (IS_ERR(bh)) 981 return bh; 982 if (!bh || buffer_uptodate(bh)) 983 return bh; 984 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 985 wait_on_buffer(bh); 986 if (buffer_uptodate(bh)) 987 return bh; 988 put_bh(bh); 989 return ERR_PTR(-EIO); 990 } 991 992 int ext4_walk_page_buffers(handle_t *handle, 993 struct buffer_head *head, 994 unsigned from, 995 unsigned to, 996 int *partial, 997 int (*fn)(handle_t *handle, 998 struct buffer_head *bh)) 999 { 1000 struct buffer_head *bh; 1001 unsigned block_start, block_end; 1002 unsigned blocksize = head->b_size; 1003 int err, ret = 0; 1004 struct buffer_head *next; 1005 1006 for (bh = head, block_start = 0; 1007 ret == 0 && (bh != head || !block_start); 1008 block_start = block_end, bh = next) { 1009 next = bh->b_this_page; 1010 block_end = block_start + blocksize; 1011 if (block_end <= from || block_start >= to) { 1012 if (partial && !buffer_uptodate(bh)) 1013 *partial = 1; 1014 continue; 1015 } 1016 err = (*fn)(handle, bh); 1017 if (!ret) 1018 ret = err; 1019 } 1020 return ret; 1021 } 1022 1023 /* 1024 * To preserve ordering, it is essential that the hole instantiation and 1025 * the data write be encapsulated in a single transaction. We cannot 1026 * close off a transaction and start a new one between the ext4_get_block() 1027 * and the commit_write(). So doing the jbd2_journal_start at the start of 1028 * prepare_write() is the right place. 1029 * 1030 * Also, this function can nest inside ext4_writepage(). In that case, we 1031 * *know* that ext4_writepage() has generated enough buffer credits to do the 1032 * whole page. So we won't block on the journal in that case, which is good, 1033 * because the caller may be PF_MEMALLOC. 1034 * 1035 * By accident, ext4 can be reentered when a transaction is open via 1036 * quota file writes. If we were to commit the transaction while thus 1037 * reentered, there can be a deadlock - we would be holding a quota 1038 * lock, and the commit would never complete if another thread had a 1039 * transaction open and was blocking on the quota lock - a ranking 1040 * violation. 1041 * 1042 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1043 * will _not_ run commit under these circumstances because handle->h_ref 1044 * is elevated. We'll still have enough credits for the tiny quotafile 1045 * write. 1046 */ 1047 int do_journal_get_write_access(handle_t *handle, 1048 struct buffer_head *bh) 1049 { 1050 int dirty = buffer_dirty(bh); 1051 int ret; 1052 1053 if (!buffer_mapped(bh) || buffer_freed(bh)) 1054 return 0; 1055 /* 1056 * __block_write_begin() could have dirtied some buffers. Clean 1057 * the dirty bit as jbd2_journal_get_write_access() could complain 1058 * otherwise about fs integrity issues. Setting of the dirty bit 1059 * by __block_write_begin() isn't a real problem here as we clear 1060 * the bit before releasing a page lock and thus writeback cannot 1061 * ever write the buffer. 1062 */ 1063 if (dirty) 1064 clear_buffer_dirty(bh); 1065 BUFFER_TRACE(bh, "get write access"); 1066 ret = ext4_journal_get_write_access(handle, bh); 1067 if (!ret && dirty) 1068 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1069 return ret; 1070 } 1071 1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1073 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1074 get_block_t *get_block) 1075 { 1076 unsigned from = pos & (PAGE_SIZE - 1); 1077 unsigned to = from + len; 1078 struct inode *inode = page->mapping->host; 1079 unsigned block_start, block_end; 1080 sector_t block; 1081 int err = 0; 1082 unsigned blocksize = inode->i_sb->s_blocksize; 1083 unsigned bbits; 1084 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1085 bool decrypt = false; 1086 1087 BUG_ON(!PageLocked(page)); 1088 BUG_ON(from > PAGE_SIZE); 1089 BUG_ON(to > PAGE_SIZE); 1090 BUG_ON(from > to); 1091 1092 if (!page_has_buffers(page)) 1093 create_empty_buffers(page, blocksize, 0); 1094 head = page_buffers(page); 1095 bbits = ilog2(blocksize); 1096 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1097 1098 for (bh = head, block_start = 0; bh != head || !block_start; 1099 block++, block_start = block_end, bh = bh->b_this_page) { 1100 block_end = block_start + blocksize; 1101 if (block_end <= from || block_start >= to) { 1102 if (PageUptodate(page)) { 1103 if (!buffer_uptodate(bh)) 1104 set_buffer_uptodate(bh); 1105 } 1106 continue; 1107 } 1108 if (buffer_new(bh)) 1109 clear_buffer_new(bh); 1110 if (!buffer_mapped(bh)) { 1111 WARN_ON(bh->b_size != blocksize); 1112 err = get_block(inode, block, bh, 1); 1113 if (err) 1114 break; 1115 if (buffer_new(bh)) { 1116 unmap_underlying_metadata(bh->b_bdev, 1117 bh->b_blocknr); 1118 if (PageUptodate(page)) { 1119 clear_buffer_new(bh); 1120 set_buffer_uptodate(bh); 1121 mark_buffer_dirty(bh); 1122 continue; 1123 } 1124 if (block_end > to || block_start < from) 1125 zero_user_segments(page, to, block_end, 1126 block_start, from); 1127 continue; 1128 } 1129 } 1130 if (PageUptodate(page)) { 1131 if (!buffer_uptodate(bh)) 1132 set_buffer_uptodate(bh); 1133 continue; 1134 } 1135 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1136 !buffer_unwritten(bh) && 1137 (block_start < from || block_end > to)) { 1138 ll_rw_block(READ, 1, &bh); 1139 *wait_bh++ = bh; 1140 decrypt = ext4_encrypted_inode(inode) && 1141 S_ISREG(inode->i_mode); 1142 } 1143 } 1144 /* 1145 * If we issued read requests, let them complete. 1146 */ 1147 while (wait_bh > wait) { 1148 wait_on_buffer(*--wait_bh); 1149 if (!buffer_uptodate(*wait_bh)) 1150 err = -EIO; 1151 } 1152 if (unlikely(err)) 1153 page_zero_new_buffers(page, from, to); 1154 else if (decrypt) 1155 err = ext4_decrypt(page); 1156 return err; 1157 } 1158 #endif 1159 1160 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1161 loff_t pos, unsigned len, unsigned flags, 1162 struct page **pagep, void **fsdata) 1163 { 1164 struct inode *inode = mapping->host; 1165 int ret, needed_blocks; 1166 handle_t *handle; 1167 int retries = 0; 1168 struct page *page; 1169 pgoff_t index; 1170 unsigned from, to; 1171 1172 trace_ext4_write_begin(inode, pos, len, flags); 1173 /* 1174 * Reserve one block more for addition to orphan list in case 1175 * we allocate blocks but write fails for some reason 1176 */ 1177 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1178 index = pos >> PAGE_SHIFT; 1179 from = pos & (PAGE_SIZE - 1); 1180 to = from + len; 1181 1182 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1183 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1184 flags, pagep); 1185 if (ret < 0) 1186 return ret; 1187 if (ret == 1) 1188 return 0; 1189 } 1190 1191 /* 1192 * grab_cache_page_write_begin() can take a long time if the 1193 * system is thrashing due to memory pressure, or if the page 1194 * is being written back. So grab it first before we start 1195 * the transaction handle. This also allows us to allocate 1196 * the page (if needed) without using GFP_NOFS. 1197 */ 1198 retry_grab: 1199 page = grab_cache_page_write_begin(mapping, index, flags); 1200 if (!page) 1201 return -ENOMEM; 1202 unlock_page(page); 1203 1204 retry_journal: 1205 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1206 if (IS_ERR(handle)) { 1207 put_page(page); 1208 return PTR_ERR(handle); 1209 } 1210 1211 lock_page(page); 1212 if (page->mapping != mapping) { 1213 /* The page got truncated from under us */ 1214 unlock_page(page); 1215 put_page(page); 1216 ext4_journal_stop(handle); 1217 goto retry_grab; 1218 } 1219 /* In case writeback began while the page was unlocked */ 1220 wait_for_stable_page(page); 1221 1222 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1223 if (ext4_should_dioread_nolock(inode)) 1224 ret = ext4_block_write_begin(page, pos, len, 1225 ext4_get_block_unwritten); 1226 else 1227 ret = ext4_block_write_begin(page, pos, len, 1228 ext4_get_block); 1229 #else 1230 if (ext4_should_dioread_nolock(inode)) 1231 ret = __block_write_begin(page, pos, len, 1232 ext4_get_block_unwritten); 1233 else 1234 ret = __block_write_begin(page, pos, len, ext4_get_block); 1235 #endif 1236 if (!ret && ext4_should_journal_data(inode)) { 1237 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1238 from, to, NULL, 1239 do_journal_get_write_access); 1240 } 1241 1242 if (ret) { 1243 unlock_page(page); 1244 /* 1245 * __block_write_begin may have instantiated a few blocks 1246 * outside i_size. Trim these off again. Don't need 1247 * i_size_read because we hold i_mutex. 1248 * 1249 * Add inode to orphan list in case we crash before 1250 * truncate finishes 1251 */ 1252 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1253 ext4_orphan_add(handle, inode); 1254 1255 ext4_journal_stop(handle); 1256 if (pos + len > inode->i_size) { 1257 ext4_truncate_failed_write(inode); 1258 /* 1259 * If truncate failed early the inode might 1260 * still be on the orphan list; we need to 1261 * make sure the inode is removed from the 1262 * orphan list in that case. 1263 */ 1264 if (inode->i_nlink) 1265 ext4_orphan_del(NULL, inode); 1266 } 1267 1268 if (ret == -ENOSPC && 1269 ext4_should_retry_alloc(inode->i_sb, &retries)) 1270 goto retry_journal; 1271 put_page(page); 1272 return ret; 1273 } 1274 *pagep = page; 1275 return ret; 1276 } 1277 1278 /* For write_end() in data=journal mode */ 1279 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1280 { 1281 int ret; 1282 if (!buffer_mapped(bh) || buffer_freed(bh)) 1283 return 0; 1284 set_buffer_uptodate(bh); 1285 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1286 clear_buffer_meta(bh); 1287 clear_buffer_prio(bh); 1288 return ret; 1289 } 1290 1291 /* 1292 * We need to pick up the new inode size which generic_commit_write gave us 1293 * `file' can be NULL - eg, when called from page_symlink(). 1294 * 1295 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1296 * buffers are managed internally. 1297 */ 1298 static int ext4_write_end(struct file *file, 1299 struct address_space *mapping, 1300 loff_t pos, unsigned len, unsigned copied, 1301 struct page *page, void *fsdata) 1302 { 1303 handle_t *handle = ext4_journal_current_handle(); 1304 struct inode *inode = mapping->host; 1305 loff_t old_size = inode->i_size; 1306 int ret = 0, ret2; 1307 int i_size_changed = 0; 1308 1309 trace_ext4_write_end(inode, pos, len, copied); 1310 if (ext4_has_inline_data(inode)) { 1311 ret = ext4_write_inline_data_end(inode, pos, len, 1312 copied, page); 1313 if (ret < 0) 1314 goto errout; 1315 copied = ret; 1316 } else 1317 copied = block_write_end(file, mapping, pos, 1318 len, copied, page, fsdata); 1319 /* 1320 * it's important to update i_size while still holding page lock: 1321 * page writeout could otherwise come in and zero beyond i_size. 1322 */ 1323 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1324 unlock_page(page); 1325 put_page(page); 1326 1327 if (old_size < pos) 1328 pagecache_isize_extended(inode, old_size, pos); 1329 /* 1330 * Don't mark the inode dirty under page lock. First, it unnecessarily 1331 * makes the holding time of page lock longer. Second, it forces lock 1332 * ordering of page lock and transaction start for journaling 1333 * filesystems. 1334 */ 1335 if (i_size_changed) 1336 ext4_mark_inode_dirty(handle, inode); 1337 1338 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1339 /* if we have allocated more blocks and copied 1340 * less. We will have blocks allocated outside 1341 * inode->i_size. So truncate them 1342 */ 1343 ext4_orphan_add(handle, inode); 1344 errout: 1345 ret2 = ext4_journal_stop(handle); 1346 if (!ret) 1347 ret = ret2; 1348 1349 if (pos + len > inode->i_size) { 1350 ext4_truncate_failed_write(inode); 1351 /* 1352 * If truncate failed early the inode might still be 1353 * on the orphan list; we need to make sure the inode 1354 * is removed from the orphan list in that case. 1355 */ 1356 if (inode->i_nlink) 1357 ext4_orphan_del(NULL, inode); 1358 } 1359 1360 return ret ? ret : copied; 1361 } 1362 1363 /* 1364 * This is a private version of page_zero_new_buffers() which doesn't 1365 * set the buffer to be dirty, since in data=journalled mode we need 1366 * to call ext4_handle_dirty_metadata() instead. 1367 */ 1368 static void zero_new_buffers(struct page *page, unsigned from, unsigned to) 1369 { 1370 unsigned int block_start = 0, block_end; 1371 struct buffer_head *head, *bh; 1372 1373 bh = head = page_buffers(page); 1374 do { 1375 block_end = block_start + bh->b_size; 1376 if (buffer_new(bh)) { 1377 if (block_end > from && block_start < to) { 1378 if (!PageUptodate(page)) { 1379 unsigned start, size; 1380 1381 start = max(from, block_start); 1382 size = min(to, block_end) - start; 1383 1384 zero_user(page, start, size); 1385 set_buffer_uptodate(bh); 1386 } 1387 clear_buffer_new(bh); 1388 } 1389 } 1390 block_start = block_end; 1391 bh = bh->b_this_page; 1392 } while (bh != head); 1393 } 1394 1395 static int ext4_journalled_write_end(struct file *file, 1396 struct address_space *mapping, 1397 loff_t pos, unsigned len, unsigned copied, 1398 struct page *page, void *fsdata) 1399 { 1400 handle_t *handle = ext4_journal_current_handle(); 1401 struct inode *inode = mapping->host; 1402 loff_t old_size = inode->i_size; 1403 int ret = 0, ret2; 1404 int partial = 0; 1405 unsigned from, to; 1406 int size_changed = 0; 1407 1408 trace_ext4_journalled_write_end(inode, pos, len, copied); 1409 from = pos & (PAGE_SIZE - 1); 1410 to = from + len; 1411 1412 BUG_ON(!ext4_handle_valid(handle)); 1413 1414 if (ext4_has_inline_data(inode)) 1415 copied = ext4_write_inline_data_end(inode, pos, len, 1416 copied, page); 1417 else { 1418 if (copied < len) { 1419 if (!PageUptodate(page)) 1420 copied = 0; 1421 zero_new_buffers(page, from+copied, to); 1422 } 1423 1424 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1425 to, &partial, write_end_fn); 1426 if (!partial) 1427 SetPageUptodate(page); 1428 } 1429 size_changed = ext4_update_inode_size(inode, pos + copied); 1430 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1431 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1432 unlock_page(page); 1433 put_page(page); 1434 1435 if (old_size < pos) 1436 pagecache_isize_extended(inode, old_size, pos); 1437 1438 if (size_changed) { 1439 ret2 = ext4_mark_inode_dirty(handle, inode); 1440 if (!ret) 1441 ret = ret2; 1442 } 1443 1444 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1445 /* if we have allocated more blocks and copied 1446 * less. We will have blocks allocated outside 1447 * inode->i_size. So truncate them 1448 */ 1449 ext4_orphan_add(handle, inode); 1450 1451 ret2 = ext4_journal_stop(handle); 1452 if (!ret) 1453 ret = ret2; 1454 if (pos + len > inode->i_size) { 1455 ext4_truncate_failed_write(inode); 1456 /* 1457 * If truncate failed early the inode might still be 1458 * on the orphan list; we need to make sure the inode 1459 * is removed from the orphan list in that case. 1460 */ 1461 if (inode->i_nlink) 1462 ext4_orphan_del(NULL, inode); 1463 } 1464 1465 return ret ? ret : copied; 1466 } 1467 1468 /* 1469 * Reserve space for a single cluster 1470 */ 1471 static int ext4_da_reserve_space(struct inode *inode) 1472 { 1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1474 struct ext4_inode_info *ei = EXT4_I(inode); 1475 int ret; 1476 1477 /* 1478 * We will charge metadata quota at writeout time; this saves 1479 * us from metadata over-estimation, though we may go over by 1480 * a small amount in the end. Here we just reserve for data. 1481 */ 1482 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1483 if (ret) 1484 return ret; 1485 1486 spin_lock(&ei->i_block_reservation_lock); 1487 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1488 spin_unlock(&ei->i_block_reservation_lock); 1489 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1490 return -ENOSPC; 1491 } 1492 ei->i_reserved_data_blocks++; 1493 trace_ext4_da_reserve_space(inode); 1494 spin_unlock(&ei->i_block_reservation_lock); 1495 1496 return 0; /* success */ 1497 } 1498 1499 static void ext4_da_release_space(struct inode *inode, int to_free) 1500 { 1501 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1502 struct ext4_inode_info *ei = EXT4_I(inode); 1503 1504 if (!to_free) 1505 return; /* Nothing to release, exit */ 1506 1507 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1508 1509 trace_ext4_da_release_space(inode, to_free); 1510 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1511 /* 1512 * if there aren't enough reserved blocks, then the 1513 * counter is messed up somewhere. Since this 1514 * function is called from invalidate page, it's 1515 * harmless to return without any action. 1516 */ 1517 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1518 "ino %lu, to_free %d with only %d reserved " 1519 "data blocks", inode->i_ino, to_free, 1520 ei->i_reserved_data_blocks); 1521 WARN_ON(1); 1522 to_free = ei->i_reserved_data_blocks; 1523 } 1524 ei->i_reserved_data_blocks -= to_free; 1525 1526 /* update fs dirty data blocks counter */ 1527 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1528 1529 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1530 1531 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1532 } 1533 1534 static void ext4_da_page_release_reservation(struct page *page, 1535 unsigned int offset, 1536 unsigned int length) 1537 { 1538 int to_release = 0, contiguous_blks = 0; 1539 struct buffer_head *head, *bh; 1540 unsigned int curr_off = 0; 1541 struct inode *inode = page->mapping->host; 1542 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1543 unsigned int stop = offset + length; 1544 int num_clusters; 1545 ext4_fsblk_t lblk; 1546 1547 BUG_ON(stop > PAGE_SIZE || stop < length); 1548 1549 head = page_buffers(page); 1550 bh = head; 1551 do { 1552 unsigned int next_off = curr_off + bh->b_size; 1553 1554 if (next_off > stop) 1555 break; 1556 1557 if ((offset <= curr_off) && (buffer_delay(bh))) { 1558 to_release++; 1559 contiguous_blks++; 1560 clear_buffer_delay(bh); 1561 } else if (contiguous_blks) { 1562 lblk = page->index << 1563 (PAGE_SHIFT - inode->i_blkbits); 1564 lblk += (curr_off >> inode->i_blkbits) - 1565 contiguous_blks; 1566 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1567 contiguous_blks = 0; 1568 } 1569 curr_off = next_off; 1570 } while ((bh = bh->b_this_page) != head); 1571 1572 if (contiguous_blks) { 1573 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1574 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1575 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1576 } 1577 1578 /* If we have released all the blocks belonging to a cluster, then we 1579 * need to release the reserved space for that cluster. */ 1580 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1581 while (num_clusters > 0) { 1582 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1583 ((num_clusters - 1) << sbi->s_cluster_bits); 1584 if (sbi->s_cluster_ratio == 1 || 1585 !ext4_find_delalloc_cluster(inode, lblk)) 1586 ext4_da_release_space(inode, 1); 1587 1588 num_clusters--; 1589 } 1590 } 1591 1592 /* 1593 * Delayed allocation stuff 1594 */ 1595 1596 struct mpage_da_data { 1597 struct inode *inode; 1598 struct writeback_control *wbc; 1599 1600 pgoff_t first_page; /* The first page to write */ 1601 pgoff_t next_page; /* Current page to examine */ 1602 pgoff_t last_page; /* Last page to examine */ 1603 /* 1604 * Extent to map - this can be after first_page because that can be 1605 * fully mapped. We somewhat abuse m_flags to store whether the extent 1606 * is delalloc or unwritten. 1607 */ 1608 struct ext4_map_blocks map; 1609 struct ext4_io_submit io_submit; /* IO submission data */ 1610 }; 1611 1612 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1613 bool invalidate) 1614 { 1615 int nr_pages, i; 1616 pgoff_t index, end; 1617 struct pagevec pvec; 1618 struct inode *inode = mpd->inode; 1619 struct address_space *mapping = inode->i_mapping; 1620 1621 /* This is necessary when next_page == 0. */ 1622 if (mpd->first_page >= mpd->next_page) 1623 return; 1624 1625 index = mpd->first_page; 1626 end = mpd->next_page - 1; 1627 if (invalidate) { 1628 ext4_lblk_t start, last; 1629 start = index << (PAGE_SHIFT - inode->i_blkbits); 1630 last = end << (PAGE_SHIFT - inode->i_blkbits); 1631 ext4_es_remove_extent(inode, start, last - start + 1); 1632 } 1633 1634 pagevec_init(&pvec, 0); 1635 while (index <= end) { 1636 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1637 if (nr_pages == 0) 1638 break; 1639 for (i = 0; i < nr_pages; i++) { 1640 struct page *page = pvec.pages[i]; 1641 if (page->index > end) 1642 break; 1643 BUG_ON(!PageLocked(page)); 1644 BUG_ON(PageWriteback(page)); 1645 if (invalidate) { 1646 block_invalidatepage(page, 0, PAGE_SIZE); 1647 ClearPageUptodate(page); 1648 } 1649 unlock_page(page); 1650 } 1651 index = pvec.pages[nr_pages - 1]->index + 1; 1652 pagevec_release(&pvec); 1653 } 1654 } 1655 1656 static void ext4_print_free_blocks(struct inode *inode) 1657 { 1658 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1659 struct super_block *sb = inode->i_sb; 1660 struct ext4_inode_info *ei = EXT4_I(inode); 1661 1662 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1663 EXT4_C2B(EXT4_SB(inode->i_sb), 1664 ext4_count_free_clusters(sb))); 1665 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1666 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1667 (long long) EXT4_C2B(EXT4_SB(sb), 1668 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1669 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1670 (long long) EXT4_C2B(EXT4_SB(sb), 1671 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1672 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1673 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1674 ei->i_reserved_data_blocks); 1675 return; 1676 } 1677 1678 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1679 { 1680 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1681 } 1682 1683 /* 1684 * This function is grabs code from the very beginning of 1685 * ext4_map_blocks, but assumes that the caller is from delayed write 1686 * time. This function looks up the requested blocks and sets the 1687 * buffer delay bit under the protection of i_data_sem. 1688 */ 1689 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1690 struct ext4_map_blocks *map, 1691 struct buffer_head *bh) 1692 { 1693 struct extent_status es; 1694 int retval; 1695 sector_t invalid_block = ~((sector_t) 0xffff); 1696 #ifdef ES_AGGRESSIVE_TEST 1697 struct ext4_map_blocks orig_map; 1698 1699 memcpy(&orig_map, map, sizeof(*map)); 1700 #endif 1701 1702 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1703 invalid_block = ~0; 1704 1705 map->m_flags = 0; 1706 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1707 "logical block %lu\n", inode->i_ino, map->m_len, 1708 (unsigned long) map->m_lblk); 1709 1710 /* Lookup extent status tree firstly */ 1711 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1712 if (ext4_es_is_hole(&es)) { 1713 retval = 0; 1714 down_read(&EXT4_I(inode)->i_data_sem); 1715 goto add_delayed; 1716 } 1717 1718 /* 1719 * Delayed extent could be allocated by fallocate. 1720 * So we need to check it. 1721 */ 1722 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1723 map_bh(bh, inode->i_sb, invalid_block); 1724 set_buffer_new(bh); 1725 set_buffer_delay(bh); 1726 return 0; 1727 } 1728 1729 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1730 retval = es.es_len - (iblock - es.es_lblk); 1731 if (retval > map->m_len) 1732 retval = map->m_len; 1733 map->m_len = retval; 1734 if (ext4_es_is_written(&es)) 1735 map->m_flags |= EXT4_MAP_MAPPED; 1736 else if (ext4_es_is_unwritten(&es)) 1737 map->m_flags |= EXT4_MAP_UNWRITTEN; 1738 else 1739 BUG_ON(1); 1740 1741 #ifdef ES_AGGRESSIVE_TEST 1742 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1743 #endif 1744 return retval; 1745 } 1746 1747 /* 1748 * Try to see if we can get the block without requesting a new 1749 * file system block. 1750 */ 1751 down_read(&EXT4_I(inode)->i_data_sem); 1752 if (ext4_has_inline_data(inode)) 1753 retval = 0; 1754 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1755 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1756 else 1757 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1758 1759 add_delayed: 1760 if (retval == 0) { 1761 int ret; 1762 /* 1763 * XXX: __block_prepare_write() unmaps passed block, 1764 * is it OK? 1765 */ 1766 /* 1767 * If the block was allocated from previously allocated cluster, 1768 * then we don't need to reserve it again. However we still need 1769 * to reserve metadata for every block we're going to write. 1770 */ 1771 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1772 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1773 ret = ext4_da_reserve_space(inode); 1774 if (ret) { 1775 /* not enough space to reserve */ 1776 retval = ret; 1777 goto out_unlock; 1778 } 1779 } 1780 1781 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1782 ~0, EXTENT_STATUS_DELAYED); 1783 if (ret) { 1784 retval = ret; 1785 goto out_unlock; 1786 } 1787 1788 map_bh(bh, inode->i_sb, invalid_block); 1789 set_buffer_new(bh); 1790 set_buffer_delay(bh); 1791 } else if (retval > 0) { 1792 int ret; 1793 unsigned int status; 1794 1795 if (unlikely(retval != map->m_len)) { 1796 ext4_warning(inode->i_sb, 1797 "ES len assertion failed for inode " 1798 "%lu: retval %d != map->m_len %d", 1799 inode->i_ino, retval, map->m_len); 1800 WARN_ON(1); 1801 } 1802 1803 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1804 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1805 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1806 map->m_pblk, status); 1807 if (ret != 0) 1808 retval = ret; 1809 } 1810 1811 out_unlock: 1812 up_read((&EXT4_I(inode)->i_data_sem)); 1813 1814 return retval; 1815 } 1816 1817 /* 1818 * This is a special get_block_t callback which is used by 1819 * ext4_da_write_begin(). It will either return mapped block or 1820 * reserve space for a single block. 1821 * 1822 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1823 * We also have b_blocknr = -1 and b_bdev initialized properly 1824 * 1825 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1826 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1827 * initialized properly. 1828 */ 1829 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1830 struct buffer_head *bh, int create) 1831 { 1832 struct ext4_map_blocks map; 1833 int ret = 0; 1834 1835 BUG_ON(create == 0); 1836 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1837 1838 map.m_lblk = iblock; 1839 map.m_len = 1; 1840 1841 /* 1842 * first, we need to know whether the block is allocated already 1843 * preallocated blocks are unmapped but should treated 1844 * the same as allocated blocks. 1845 */ 1846 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1847 if (ret <= 0) 1848 return ret; 1849 1850 map_bh(bh, inode->i_sb, map.m_pblk); 1851 ext4_update_bh_state(bh, map.m_flags); 1852 1853 if (buffer_unwritten(bh)) { 1854 /* A delayed write to unwritten bh should be marked 1855 * new and mapped. Mapped ensures that we don't do 1856 * get_block multiple times when we write to the same 1857 * offset and new ensures that we do proper zero out 1858 * for partial write. 1859 */ 1860 set_buffer_new(bh); 1861 set_buffer_mapped(bh); 1862 } 1863 return 0; 1864 } 1865 1866 static int bget_one(handle_t *handle, struct buffer_head *bh) 1867 { 1868 get_bh(bh); 1869 return 0; 1870 } 1871 1872 static int bput_one(handle_t *handle, struct buffer_head *bh) 1873 { 1874 put_bh(bh); 1875 return 0; 1876 } 1877 1878 static int __ext4_journalled_writepage(struct page *page, 1879 unsigned int len) 1880 { 1881 struct address_space *mapping = page->mapping; 1882 struct inode *inode = mapping->host; 1883 struct buffer_head *page_bufs = NULL; 1884 handle_t *handle = NULL; 1885 int ret = 0, err = 0; 1886 int inline_data = ext4_has_inline_data(inode); 1887 struct buffer_head *inode_bh = NULL; 1888 1889 ClearPageChecked(page); 1890 1891 if (inline_data) { 1892 BUG_ON(page->index != 0); 1893 BUG_ON(len > ext4_get_max_inline_size(inode)); 1894 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1895 if (inode_bh == NULL) 1896 goto out; 1897 } else { 1898 page_bufs = page_buffers(page); 1899 if (!page_bufs) { 1900 BUG(); 1901 goto out; 1902 } 1903 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1904 NULL, bget_one); 1905 } 1906 /* 1907 * We need to release the page lock before we start the 1908 * journal, so grab a reference so the page won't disappear 1909 * out from under us. 1910 */ 1911 get_page(page); 1912 unlock_page(page); 1913 1914 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1915 ext4_writepage_trans_blocks(inode)); 1916 if (IS_ERR(handle)) { 1917 ret = PTR_ERR(handle); 1918 put_page(page); 1919 goto out_no_pagelock; 1920 } 1921 BUG_ON(!ext4_handle_valid(handle)); 1922 1923 lock_page(page); 1924 put_page(page); 1925 if (page->mapping != mapping) { 1926 /* The page got truncated from under us */ 1927 ext4_journal_stop(handle); 1928 ret = 0; 1929 goto out; 1930 } 1931 1932 if (inline_data) { 1933 BUFFER_TRACE(inode_bh, "get write access"); 1934 ret = ext4_journal_get_write_access(handle, inode_bh); 1935 1936 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1937 1938 } else { 1939 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1940 do_journal_get_write_access); 1941 1942 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1943 write_end_fn); 1944 } 1945 if (ret == 0) 1946 ret = err; 1947 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1948 err = ext4_journal_stop(handle); 1949 if (!ret) 1950 ret = err; 1951 1952 if (!ext4_has_inline_data(inode)) 1953 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1954 NULL, bput_one); 1955 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1956 out: 1957 unlock_page(page); 1958 out_no_pagelock: 1959 brelse(inode_bh); 1960 return ret; 1961 } 1962 1963 /* 1964 * Note that we don't need to start a transaction unless we're journaling data 1965 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1966 * need to file the inode to the transaction's list in ordered mode because if 1967 * we are writing back data added by write(), the inode is already there and if 1968 * we are writing back data modified via mmap(), no one guarantees in which 1969 * transaction the data will hit the disk. In case we are journaling data, we 1970 * cannot start transaction directly because transaction start ranks above page 1971 * lock so we have to do some magic. 1972 * 1973 * This function can get called via... 1974 * - ext4_writepages after taking page lock (have journal handle) 1975 * - journal_submit_inode_data_buffers (no journal handle) 1976 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1977 * - grab_page_cache when doing write_begin (have journal handle) 1978 * 1979 * We don't do any block allocation in this function. If we have page with 1980 * multiple blocks we need to write those buffer_heads that are mapped. This 1981 * is important for mmaped based write. So if we do with blocksize 1K 1982 * truncate(f, 1024); 1983 * a = mmap(f, 0, 4096); 1984 * a[0] = 'a'; 1985 * truncate(f, 4096); 1986 * we have in the page first buffer_head mapped via page_mkwrite call back 1987 * but other buffer_heads would be unmapped but dirty (dirty done via the 1988 * do_wp_page). So writepage should write the first block. If we modify 1989 * the mmap area beyond 1024 we will again get a page_fault and the 1990 * page_mkwrite callback will do the block allocation and mark the 1991 * buffer_heads mapped. 1992 * 1993 * We redirty the page if we have any buffer_heads that is either delay or 1994 * unwritten in the page. 1995 * 1996 * We can get recursively called as show below. 1997 * 1998 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1999 * ext4_writepage() 2000 * 2001 * But since we don't do any block allocation we should not deadlock. 2002 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2003 */ 2004 static int ext4_writepage(struct page *page, 2005 struct writeback_control *wbc) 2006 { 2007 int ret = 0; 2008 loff_t size; 2009 unsigned int len; 2010 struct buffer_head *page_bufs = NULL; 2011 struct inode *inode = page->mapping->host; 2012 struct ext4_io_submit io_submit; 2013 bool keep_towrite = false; 2014 2015 trace_ext4_writepage(page); 2016 size = i_size_read(inode); 2017 if (page->index == size >> PAGE_SHIFT) 2018 len = size & ~PAGE_MASK; 2019 else 2020 len = PAGE_SIZE; 2021 2022 page_bufs = page_buffers(page); 2023 /* 2024 * We cannot do block allocation or other extent handling in this 2025 * function. If there are buffers needing that, we have to redirty 2026 * the page. But we may reach here when we do a journal commit via 2027 * journal_submit_inode_data_buffers() and in that case we must write 2028 * allocated buffers to achieve data=ordered mode guarantees. 2029 * 2030 * Also, if there is only one buffer per page (the fs block 2031 * size == the page size), if one buffer needs block 2032 * allocation or needs to modify the extent tree to clear the 2033 * unwritten flag, we know that the page can't be written at 2034 * all, so we might as well refuse the write immediately. 2035 * Unfortunately if the block size != page size, we can't as 2036 * easily detect this case using ext4_walk_page_buffers(), but 2037 * for the extremely common case, this is an optimization that 2038 * skips a useless round trip through ext4_bio_write_page(). 2039 */ 2040 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2041 ext4_bh_delay_or_unwritten)) { 2042 redirty_page_for_writepage(wbc, page); 2043 if ((current->flags & PF_MEMALLOC) || 2044 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2045 /* 2046 * For memory cleaning there's no point in writing only 2047 * some buffers. So just bail out. Warn if we came here 2048 * from direct reclaim. 2049 */ 2050 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2051 == PF_MEMALLOC); 2052 unlock_page(page); 2053 return 0; 2054 } 2055 keep_towrite = true; 2056 } 2057 2058 if (PageChecked(page) && ext4_should_journal_data(inode)) 2059 /* 2060 * It's mmapped pagecache. Add buffers and journal it. There 2061 * doesn't seem much point in redirtying the page here. 2062 */ 2063 return __ext4_journalled_writepage(page, len); 2064 2065 ext4_io_submit_init(&io_submit, wbc); 2066 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2067 if (!io_submit.io_end) { 2068 redirty_page_for_writepage(wbc, page); 2069 unlock_page(page); 2070 return -ENOMEM; 2071 } 2072 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2073 ext4_io_submit(&io_submit); 2074 /* Drop io_end reference we got from init */ 2075 ext4_put_io_end_defer(io_submit.io_end); 2076 return ret; 2077 } 2078 2079 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2080 { 2081 int len; 2082 loff_t size = i_size_read(mpd->inode); 2083 int err; 2084 2085 BUG_ON(page->index != mpd->first_page); 2086 if (page->index == size >> PAGE_SHIFT) 2087 len = size & ~PAGE_MASK; 2088 else 2089 len = PAGE_SIZE; 2090 clear_page_dirty_for_io(page); 2091 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2092 if (!err) 2093 mpd->wbc->nr_to_write--; 2094 mpd->first_page++; 2095 2096 return err; 2097 } 2098 2099 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2100 2101 /* 2102 * mballoc gives us at most this number of blocks... 2103 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2104 * The rest of mballoc seems to handle chunks up to full group size. 2105 */ 2106 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2107 2108 /* 2109 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2110 * 2111 * @mpd - extent of blocks 2112 * @lblk - logical number of the block in the file 2113 * @bh - buffer head we want to add to the extent 2114 * 2115 * The function is used to collect contig. blocks in the same state. If the 2116 * buffer doesn't require mapping for writeback and we haven't started the 2117 * extent of buffers to map yet, the function returns 'true' immediately - the 2118 * caller can write the buffer right away. Otherwise the function returns true 2119 * if the block has been added to the extent, false if the block couldn't be 2120 * added. 2121 */ 2122 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2123 struct buffer_head *bh) 2124 { 2125 struct ext4_map_blocks *map = &mpd->map; 2126 2127 /* Buffer that doesn't need mapping for writeback? */ 2128 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2129 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2130 /* So far no extent to map => we write the buffer right away */ 2131 if (map->m_len == 0) 2132 return true; 2133 return false; 2134 } 2135 2136 /* First block in the extent? */ 2137 if (map->m_len == 0) { 2138 map->m_lblk = lblk; 2139 map->m_len = 1; 2140 map->m_flags = bh->b_state & BH_FLAGS; 2141 return true; 2142 } 2143 2144 /* Don't go larger than mballoc is willing to allocate */ 2145 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2146 return false; 2147 2148 /* Can we merge the block to our big extent? */ 2149 if (lblk == map->m_lblk + map->m_len && 2150 (bh->b_state & BH_FLAGS) == map->m_flags) { 2151 map->m_len++; 2152 return true; 2153 } 2154 return false; 2155 } 2156 2157 /* 2158 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2159 * 2160 * @mpd - extent of blocks for mapping 2161 * @head - the first buffer in the page 2162 * @bh - buffer we should start processing from 2163 * @lblk - logical number of the block in the file corresponding to @bh 2164 * 2165 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2166 * the page for IO if all buffers in this page were mapped and there's no 2167 * accumulated extent of buffers to map or add buffers in the page to the 2168 * extent of buffers to map. The function returns 1 if the caller can continue 2169 * by processing the next page, 0 if it should stop adding buffers to the 2170 * extent to map because we cannot extend it anymore. It can also return value 2171 * < 0 in case of error during IO submission. 2172 */ 2173 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2174 struct buffer_head *head, 2175 struct buffer_head *bh, 2176 ext4_lblk_t lblk) 2177 { 2178 struct inode *inode = mpd->inode; 2179 int err; 2180 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2181 >> inode->i_blkbits; 2182 2183 do { 2184 BUG_ON(buffer_locked(bh)); 2185 2186 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2187 /* Found extent to map? */ 2188 if (mpd->map.m_len) 2189 return 0; 2190 /* Everything mapped so far and we hit EOF */ 2191 break; 2192 } 2193 } while (lblk++, (bh = bh->b_this_page) != head); 2194 /* So far everything mapped? Submit the page for IO. */ 2195 if (mpd->map.m_len == 0) { 2196 err = mpage_submit_page(mpd, head->b_page); 2197 if (err < 0) 2198 return err; 2199 } 2200 return lblk < blocks; 2201 } 2202 2203 /* 2204 * mpage_map_buffers - update buffers corresponding to changed extent and 2205 * submit fully mapped pages for IO 2206 * 2207 * @mpd - description of extent to map, on return next extent to map 2208 * 2209 * Scan buffers corresponding to changed extent (we expect corresponding pages 2210 * to be already locked) and update buffer state according to new extent state. 2211 * We map delalloc buffers to their physical location, clear unwritten bits, 2212 * and mark buffers as uninit when we perform writes to unwritten extents 2213 * and do extent conversion after IO is finished. If the last page is not fully 2214 * mapped, we update @map to the next extent in the last page that needs 2215 * mapping. Otherwise we submit the page for IO. 2216 */ 2217 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2218 { 2219 struct pagevec pvec; 2220 int nr_pages, i; 2221 struct inode *inode = mpd->inode; 2222 struct buffer_head *head, *bh; 2223 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2224 pgoff_t start, end; 2225 ext4_lblk_t lblk; 2226 sector_t pblock; 2227 int err; 2228 2229 start = mpd->map.m_lblk >> bpp_bits; 2230 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2231 lblk = start << bpp_bits; 2232 pblock = mpd->map.m_pblk; 2233 2234 pagevec_init(&pvec, 0); 2235 while (start <= end) { 2236 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2237 PAGEVEC_SIZE); 2238 if (nr_pages == 0) 2239 break; 2240 for (i = 0; i < nr_pages; i++) { 2241 struct page *page = pvec.pages[i]; 2242 2243 if (page->index > end) 2244 break; 2245 /* Up to 'end' pages must be contiguous */ 2246 BUG_ON(page->index != start); 2247 bh = head = page_buffers(page); 2248 do { 2249 if (lblk < mpd->map.m_lblk) 2250 continue; 2251 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2252 /* 2253 * Buffer after end of mapped extent. 2254 * Find next buffer in the page to map. 2255 */ 2256 mpd->map.m_len = 0; 2257 mpd->map.m_flags = 0; 2258 /* 2259 * FIXME: If dioread_nolock supports 2260 * blocksize < pagesize, we need to make 2261 * sure we add size mapped so far to 2262 * io_end->size as the following call 2263 * can submit the page for IO. 2264 */ 2265 err = mpage_process_page_bufs(mpd, head, 2266 bh, lblk); 2267 pagevec_release(&pvec); 2268 if (err > 0) 2269 err = 0; 2270 return err; 2271 } 2272 if (buffer_delay(bh)) { 2273 clear_buffer_delay(bh); 2274 bh->b_blocknr = pblock++; 2275 } 2276 clear_buffer_unwritten(bh); 2277 } while (lblk++, (bh = bh->b_this_page) != head); 2278 2279 /* 2280 * FIXME: This is going to break if dioread_nolock 2281 * supports blocksize < pagesize as we will try to 2282 * convert potentially unmapped parts of inode. 2283 */ 2284 mpd->io_submit.io_end->size += PAGE_SIZE; 2285 /* Page fully mapped - let IO run! */ 2286 err = mpage_submit_page(mpd, page); 2287 if (err < 0) { 2288 pagevec_release(&pvec); 2289 return err; 2290 } 2291 start++; 2292 } 2293 pagevec_release(&pvec); 2294 } 2295 /* Extent fully mapped and matches with page boundary. We are done. */ 2296 mpd->map.m_len = 0; 2297 mpd->map.m_flags = 0; 2298 return 0; 2299 } 2300 2301 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2302 { 2303 struct inode *inode = mpd->inode; 2304 struct ext4_map_blocks *map = &mpd->map; 2305 int get_blocks_flags; 2306 int err, dioread_nolock; 2307 2308 trace_ext4_da_write_pages_extent(inode, map); 2309 /* 2310 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2311 * to convert an unwritten extent to be initialized (in the case 2312 * where we have written into one or more preallocated blocks). It is 2313 * possible that we're going to need more metadata blocks than 2314 * previously reserved. However we must not fail because we're in 2315 * writeback and there is nothing we can do about it so it might result 2316 * in data loss. So use reserved blocks to allocate metadata if 2317 * possible. 2318 * 2319 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2320 * the blocks in question are delalloc blocks. This indicates 2321 * that the blocks and quotas has already been checked when 2322 * the data was copied into the page cache. 2323 */ 2324 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2325 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2326 EXT4_GET_BLOCKS_IO_SUBMIT; 2327 dioread_nolock = ext4_should_dioread_nolock(inode); 2328 if (dioread_nolock) 2329 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2330 if (map->m_flags & (1 << BH_Delay)) 2331 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2332 2333 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2334 if (err < 0) 2335 return err; 2336 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2337 if (!mpd->io_submit.io_end->handle && 2338 ext4_handle_valid(handle)) { 2339 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2340 handle->h_rsv_handle = NULL; 2341 } 2342 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2343 } 2344 2345 BUG_ON(map->m_len == 0); 2346 if (map->m_flags & EXT4_MAP_NEW) { 2347 struct block_device *bdev = inode->i_sb->s_bdev; 2348 int i; 2349 2350 for (i = 0; i < map->m_len; i++) 2351 unmap_underlying_metadata(bdev, map->m_pblk + i); 2352 } 2353 return 0; 2354 } 2355 2356 /* 2357 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2358 * mpd->len and submit pages underlying it for IO 2359 * 2360 * @handle - handle for journal operations 2361 * @mpd - extent to map 2362 * @give_up_on_write - we set this to true iff there is a fatal error and there 2363 * is no hope of writing the data. The caller should discard 2364 * dirty pages to avoid infinite loops. 2365 * 2366 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2367 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2368 * them to initialized or split the described range from larger unwritten 2369 * extent. Note that we need not map all the described range since allocation 2370 * can return less blocks or the range is covered by more unwritten extents. We 2371 * cannot map more because we are limited by reserved transaction credits. On 2372 * the other hand we always make sure that the last touched page is fully 2373 * mapped so that it can be written out (and thus forward progress is 2374 * guaranteed). After mapping we submit all mapped pages for IO. 2375 */ 2376 static int mpage_map_and_submit_extent(handle_t *handle, 2377 struct mpage_da_data *mpd, 2378 bool *give_up_on_write) 2379 { 2380 struct inode *inode = mpd->inode; 2381 struct ext4_map_blocks *map = &mpd->map; 2382 int err; 2383 loff_t disksize; 2384 int progress = 0; 2385 2386 mpd->io_submit.io_end->offset = 2387 ((loff_t)map->m_lblk) << inode->i_blkbits; 2388 do { 2389 err = mpage_map_one_extent(handle, mpd); 2390 if (err < 0) { 2391 struct super_block *sb = inode->i_sb; 2392 2393 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2394 goto invalidate_dirty_pages; 2395 /* 2396 * Let the uper layers retry transient errors. 2397 * In the case of ENOSPC, if ext4_count_free_blocks() 2398 * is non-zero, a commit should free up blocks. 2399 */ 2400 if ((err == -ENOMEM) || 2401 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2402 if (progress) 2403 goto update_disksize; 2404 return err; 2405 } 2406 ext4_msg(sb, KERN_CRIT, 2407 "Delayed block allocation failed for " 2408 "inode %lu at logical offset %llu with" 2409 " max blocks %u with error %d", 2410 inode->i_ino, 2411 (unsigned long long)map->m_lblk, 2412 (unsigned)map->m_len, -err); 2413 ext4_msg(sb, KERN_CRIT, 2414 "This should not happen!! Data will " 2415 "be lost\n"); 2416 if (err == -ENOSPC) 2417 ext4_print_free_blocks(inode); 2418 invalidate_dirty_pages: 2419 *give_up_on_write = true; 2420 return err; 2421 } 2422 progress = 1; 2423 /* 2424 * Update buffer state, submit mapped pages, and get us new 2425 * extent to map 2426 */ 2427 err = mpage_map_and_submit_buffers(mpd); 2428 if (err < 0) 2429 goto update_disksize; 2430 } while (map->m_len); 2431 2432 update_disksize: 2433 /* 2434 * Update on-disk size after IO is submitted. Races with 2435 * truncate are avoided by checking i_size under i_data_sem. 2436 */ 2437 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2438 if (disksize > EXT4_I(inode)->i_disksize) { 2439 int err2; 2440 loff_t i_size; 2441 2442 down_write(&EXT4_I(inode)->i_data_sem); 2443 i_size = i_size_read(inode); 2444 if (disksize > i_size) 2445 disksize = i_size; 2446 if (disksize > EXT4_I(inode)->i_disksize) 2447 EXT4_I(inode)->i_disksize = disksize; 2448 err2 = ext4_mark_inode_dirty(handle, inode); 2449 up_write(&EXT4_I(inode)->i_data_sem); 2450 if (err2) 2451 ext4_error(inode->i_sb, 2452 "Failed to mark inode %lu dirty", 2453 inode->i_ino); 2454 if (!err) 2455 err = err2; 2456 } 2457 return err; 2458 } 2459 2460 /* 2461 * Calculate the total number of credits to reserve for one writepages 2462 * iteration. This is called from ext4_writepages(). We map an extent of 2463 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2464 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2465 * bpp - 1 blocks in bpp different extents. 2466 */ 2467 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2468 { 2469 int bpp = ext4_journal_blocks_per_page(inode); 2470 2471 return ext4_meta_trans_blocks(inode, 2472 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2473 } 2474 2475 /* 2476 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2477 * and underlying extent to map 2478 * 2479 * @mpd - where to look for pages 2480 * 2481 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2482 * IO immediately. When we find a page which isn't mapped we start accumulating 2483 * extent of buffers underlying these pages that needs mapping (formed by 2484 * either delayed or unwritten buffers). We also lock the pages containing 2485 * these buffers. The extent found is returned in @mpd structure (starting at 2486 * mpd->lblk with length mpd->len blocks). 2487 * 2488 * Note that this function can attach bios to one io_end structure which are 2489 * neither logically nor physically contiguous. Although it may seem as an 2490 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2491 * case as we need to track IO to all buffers underlying a page in one io_end. 2492 */ 2493 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2494 { 2495 struct address_space *mapping = mpd->inode->i_mapping; 2496 struct pagevec pvec; 2497 unsigned int nr_pages; 2498 long left = mpd->wbc->nr_to_write; 2499 pgoff_t index = mpd->first_page; 2500 pgoff_t end = mpd->last_page; 2501 int tag; 2502 int i, err = 0; 2503 int blkbits = mpd->inode->i_blkbits; 2504 ext4_lblk_t lblk; 2505 struct buffer_head *head; 2506 2507 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2508 tag = PAGECACHE_TAG_TOWRITE; 2509 else 2510 tag = PAGECACHE_TAG_DIRTY; 2511 2512 pagevec_init(&pvec, 0); 2513 mpd->map.m_len = 0; 2514 mpd->next_page = index; 2515 while (index <= end) { 2516 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2517 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2518 if (nr_pages == 0) 2519 goto out; 2520 2521 for (i = 0; i < nr_pages; i++) { 2522 struct page *page = pvec.pages[i]; 2523 2524 /* 2525 * At this point, the page may be truncated or 2526 * invalidated (changing page->mapping to NULL), or 2527 * even swizzled back from swapper_space to tmpfs file 2528 * mapping. However, page->index will not change 2529 * because we have a reference on the page. 2530 */ 2531 if (page->index > end) 2532 goto out; 2533 2534 /* 2535 * Accumulated enough dirty pages? This doesn't apply 2536 * to WB_SYNC_ALL mode. For integrity sync we have to 2537 * keep going because someone may be concurrently 2538 * dirtying pages, and we might have synced a lot of 2539 * newly appeared dirty pages, but have not synced all 2540 * of the old dirty pages. 2541 */ 2542 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2543 goto out; 2544 2545 /* If we can't merge this page, we are done. */ 2546 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2547 goto out; 2548 2549 lock_page(page); 2550 /* 2551 * If the page is no longer dirty, or its mapping no 2552 * longer corresponds to inode we are writing (which 2553 * means it has been truncated or invalidated), or the 2554 * page is already under writeback and we are not doing 2555 * a data integrity writeback, skip the page 2556 */ 2557 if (!PageDirty(page) || 2558 (PageWriteback(page) && 2559 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2560 unlikely(page->mapping != mapping)) { 2561 unlock_page(page); 2562 continue; 2563 } 2564 2565 wait_on_page_writeback(page); 2566 BUG_ON(PageWriteback(page)); 2567 2568 if (mpd->map.m_len == 0) 2569 mpd->first_page = page->index; 2570 mpd->next_page = page->index + 1; 2571 /* Add all dirty buffers to mpd */ 2572 lblk = ((ext4_lblk_t)page->index) << 2573 (PAGE_SHIFT - blkbits); 2574 head = page_buffers(page); 2575 err = mpage_process_page_bufs(mpd, head, head, lblk); 2576 if (err <= 0) 2577 goto out; 2578 err = 0; 2579 left--; 2580 } 2581 pagevec_release(&pvec); 2582 cond_resched(); 2583 } 2584 return 0; 2585 out: 2586 pagevec_release(&pvec); 2587 return err; 2588 } 2589 2590 static int __writepage(struct page *page, struct writeback_control *wbc, 2591 void *data) 2592 { 2593 struct address_space *mapping = data; 2594 int ret = ext4_writepage(page, wbc); 2595 mapping_set_error(mapping, ret); 2596 return ret; 2597 } 2598 2599 static int ext4_writepages(struct address_space *mapping, 2600 struct writeback_control *wbc) 2601 { 2602 pgoff_t writeback_index = 0; 2603 long nr_to_write = wbc->nr_to_write; 2604 int range_whole = 0; 2605 int cycled = 1; 2606 handle_t *handle = NULL; 2607 struct mpage_da_data mpd; 2608 struct inode *inode = mapping->host; 2609 int needed_blocks, rsv_blocks = 0, ret = 0; 2610 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2611 bool done; 2612 struct blk_plug plug; 2613 bool give_up_on_write = false; 2614 2615 percpu_down_read(&sbi->s_journal_flag_rwsem); 2616 trace_ext4_writepages(inode, wbc); 2617 2618 if (dax_mapping(mapping)) { 2619 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2620 wbc); 2621 goto out_writepages; 2622 } 2623 2624 /* 2625 * No pages to write? This is mainly a kludge to avoid starting 2626 * a transaction for special inodes like journal inode on last iput() 2627 * because that could violate lock ordering on umount 2628 */ 2629 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2630 goto out_writepages; 2631 2632 if (ext4_should_journal_data(inode)) { 2633 struct blk_plug plug; 2634 2635 blk_start_plug(&plug); 2636 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2637 blk_finish_plug(&plug); 2638 goto out_writepages; 2639 } 2640 2641 /* 2642 * If the filesystem has aborted, it is read-only, so return 2643 * right away instead of dumping stack traces later on that 2644 * will obscure the real source of the problem. We test 2645 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2646 * the latter could be true if the filesystem is mounted 2647 * read-only, and in that case, ext4_writepages should 2648 * *never* be called, so if that ever happens, we would want 2649 * the stack trace. 2650 */ 2651 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2652 ret = -EROFS; 2653 goto out_writepages; 2654 } 2655 2656 if (ext4_should_dioread_nolock(inode)) { 2657 /* 2658 * We may need to convert up to one extent per block in 2659 * the page and we may dirty the inode. 2660 */ 2661 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2662 } 2663 2664 /* 2665 * If we have inline data and arrive here, it means that 2666 * we will soon create the block for the 1st page, so 2667 * we'd better clear the inline data here. 2668 */ 2669 if (ext4_has_inline_data(inode)) { 2670 /* Just inode will be modified... */ 2671 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2672 if (IS_ERR(handle)) { 2673 ret = PTR_ERR(handle); 2674 goto out_writepages; 2675 } 2676 BUG_ON(ext4_test_inode_state(inode, 2677 EXT4_STATE_MAY_INLINE_DATA)); 2678 ext4_destroy_inline_data(handle, inode); 2679 ext4_journal_stop(handle); 2680 } 2681 2682 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2683 range_whole = 1; 2684 2685 if (wbc->range_cyclic) { 2686 writeback_index = mapping->writeback_index; 2687 if (writeback_index) 2688 cycled = 0; 2689 mpd.first_page = writeback_index; 2690 mpd.last_page = -1; 2691 } else { 2692 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2693 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2694 } 2695 2696 mpd.inode = inode; 2697 mpd.wbc = wbc; 2698 ext4_io_submit_init(&mpd.io_submit, wbc); 2699 retry: 2700 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2701 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2702 done = false; 2703 blk_start_plug(&plug); 2704 while (!done && mpd.first_page <= mpd.last_page) { 2705 /* For each extent of pages we use new io_end */ 2706 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2707 if (!mpd.io_submit.io_end) { 2708 ret = -ENOMEM; 2709 break; 2710 } 2711 2712 /* 2713 * We have two constraints: We find one extent to map and we 2714 * must always write out whole page (makes a difference when 2715 * blocksize < pagesize) so that we don't block on IO when we 2716 * try to write out the rest of the page. Journalled mode is 2717 * not supported by delalloc. 2718 */ 2719 BUG_ON(ext4_should_journal_data(inode)); 2720 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2721 2722 /* start a new transaction */ 2723 handle = ext4_journal_start_with_reserve(inode, 2724 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2725 if (IS_ERR(handle)) { 2726 ret = PTR_ERR(handle); 2727 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2728 "%ld pages, ino %lu; err %d", __func__, 2729 wbc->nr_to_write, inode->i_ino, ret); 2730 /* Release allocated io_end */ 2731 ext4_put_io_end(mpd.io_submit.io_end); 2732 break; 2733 } 2734 2735 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2736 ret = mpage_prepare_extent_to_map(&mpd); 2737 if (!ret) { 2738 if (mpd.map.m_len) 2739 ret = mpage_map_and_submit_extent(handle, &mpd, 2740 &give_up_on_write); 2741 else { 2742 /* 2743 * We scanned the whole range (or exhausted 2744 * nr_to_write), submitted what was mapped and 2745 * didn't find anything needing mapping. We are 2746 * done. 2747 */ 2748 done = true; 2749 } 2750 } 2751 ext4_journal_stop(handle); 2752 /* Submit prepared bio */ 2753 ext4_io_submit(&mpd.io_submit); 2754 /* Unlock pages we didn't use */ 2755 mpage_release_unused_pages(&mpd, give_up_on_write); 2756 /* Drop our io_end reference we got from init */ 2757 ext4_put_io_end(mpd.io_submit.io_end); 2758 2759 if (ret == -ENOSPC && sbi->s_journal) { 2760 /* 2761 * Commit the transaction which would 2762 * free blocks released in the transaction 2763 * and try again 2764 */ 2765 jbd2_journal_force_commit_nested(sbi->s_journal); 2766 ret = 0; 2767 continue; 2768 } 2769 /* Fatal error - ENOMEM, EIO... */ 2770 if (ret) 2771 break; 2772 } 2773 blk_finish_plug(&plug); 2774 if (!ret && !cycled && wbc->nr_to_write > 0) { 2775 cycled = 1; 2776 mpd.last_page = writeback_index - 1; 2777 mpd.first_page = 0; 2778 goto retry; 2779 } 2780 2781 /* Update index */ 2782 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2783 /* 2784 * Set the writeback_index so that range_cyclic 2785 * mode will write it back later 2786 */ 2787 mapping->writeback_index = mpd.first_page; 2788 2789 out_writepages: 2790 trace_ext4_writepages_result(inode, wbc, ret, 2791 nr_to_write - wbc->nr_to_write); 2792 percpu_up_read(&sbi->s_journal_flag_rwsem); 2793 return ret; 2794 } 2795 2796 static int ext4_nonda_switch(struct super_block *sb) 2797 { 2798 s64 free_clusters, dirty_clusters; 2799 struct ext4_sb_info *sbi = EXT4_SB(sb); 2800 2801 /* 2802 * switch to non delalloc mode if we are running low 2803 * on free block. The free block accounting via percpu 2804 * counters can get slightly wrong with percpu_counter_batch getting 2805 * accumulated on each CPU without updating global counters 2806 * Delalloc need an accurate free block accounting. So switch 2807 * to non delalloc when we are near to error range. 2808 */ 2809 free_clusters = 2810 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2811 dirty_clusters = 2812 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2813 /* 2814 * Start pushing delalloc when 1/2 of free blocks are dirty. 2815 */ 2816 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2817 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2818 2819 if (2 * free_clusters < 3 * dirty_clusters || 2820 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2821 /* 2822 * free block count is less than 150% of dirty blocks 2823 * or free blocks is less than watermark 2824 */ 2825 return 1; 2826 } 2827 return 0; 2828 } 2829 2830 /* We always reserve for an inode update; the superblock could be there too */ 2831 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2832 { 2833 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2834 return 1; 2835 2836 if (pos + len <= 0x7fffffffULL) 2837 return 1; 2838 2839 /* We might need to update the superblock to set LARGE_FILE */ 2840 return 2; 2841 } 2842 2843 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2844 loff_t pos, unsigned len, unsigned flags, 2845 struct page **pagep, void **fsdata) 2846 { 2847 int ret, retries = 0; 2848 struct page *page; 2849 pgoff_t index; 2850 struct inode *inode = mapping->host; 2851 handle_t *handle; 2852 2853 index = pos >> PAGE_SHIFT; 2854 2855 if (ext4_nonda_switch(inode->i_sb)) { 2856 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2857 return ext4_write_begin(file, mapping, pos, 2858 len, flags, pagep, fsdata); 2859 } 2860 *fsdata = (void *)0; 2861 trace_ext4_da_write_begin(inode, pos, len, flags); 2862 2863 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2864 ret = ext4_da_write_inline_data_begin(mapping, inode, 2865 pos, len, flags, 2866 pagep, fsdata); 2867 if (ret < 0) 2868 return ret; 2869 if (ret == 1) 2870 return 0; 2871 } 2872 2873 /* 2874 * grab_cache_page_write_begin() can take a long time if the 2875 * system is thrashing due to memory pressure, or if the page 2876 * is being written back. So grab it first before we start 2877 * the transaction handle. This also allows us to allocate 2878 * the page (if needed) without using GFP_NOFS. 2879 */ 2880 retry_grab: 2881 page = grab_cache_page_write_begin(mapping, index, flags); 2882 if (!page) 2883 return -ENOMEM; 2884 unlock_page(page); 2885 2886 /* 2887 * With delayed allocation, we don't log the i_disksize update 2888 * if there is delayed block allocation. But we still need 2889 * to journalling the i_disksize update if writes to the end 2890 * of file which has an already mapped buffer. 2891 */ 2892 retry_journal: 2893 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2894 ext4_da_write_credits(inode, pos, len)); 2895 if (IS_ERR(handle)) { 2896 put_page(page); 2897 return PTR_ERR(handle); 2898 } 2899 2900 lock_page(page); 2901 if (page->mapping != mapping) { 2902 /* The page got truncated from under us */ 2903 unlock_page(page); 2904 put_page(page); 2905 ext4_journal_stop(handle); 2906 goto retry_grab; 2907 } 2908 /* In case writeback began while the page was unlocked */ 2909 wait_for_stable_page(page); 2910 2911 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2912 ret = ext4_block_write_begin(page, pos, len, 2913 ext4_da_get_block_prep); 2914 #else 2915 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2916 #endif 2917 if (ret < 0) { 2918 unlock_page(page); 2919 ext4_journal_stop(handle); 2920 /* 2921 * block_write_begin may have instantiated a few blocks 2922 * outside i_size. Trim these off again. Don't need 2923 * i_size_read because we hold i_mutex. 2924 */ 2925 if (pos + len > inode->i_size) 2926 ext4_truncate_failed_write(inode); 2927 2928 if (ret == -ENOSPC && 2929 ext4_should_retry_alloc(inode->i_sb, &retries)) 2930 goto retry_journal; 2931 2932 put_page(page); 2933 return ret; 2934 } 2935 2936 *pagep = page; 2937 return ret; 2938 } 2939 2940 /* 2941 * Check if we should update i_disksize 2942 * when write to the end of file but not require block allocation 2943 */ 2944 static int ext4_da_should_update_i_disksize(struct page *page, 2945 unsigned long offset) 2946 { 2947 struct buffer_head *bh; 2948 struct inode *inode = page->mapping->host; 2949 unsigned int idx; 2950 int i; 2951 2952 bh = page_buffers(page); 2953 idx = offset >> inode->i_blkbits; 2954 2955 for (i = 0; i < idx; i++) 2956 bh = bh->b_this_page; 2957 2958 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2959 return 0; 2960 return 1; 2961 } 2962 2963 static int ext4_da_write_end(struct file *file, 2964 struct address_space *mapping, 2965 loff_t pos, unsigned len, unsigned copied, 2966 struct page *page, void *fsdata) 2967 { 2968 struct inode *inode = mapping->host; 2969 int ret = 0, ret2; 2970 handle_t *handle = ext4_journal_current_handle(); 2971 loff_t new_i_size; 2972 unsigned long start, end; 2973 int write_mode = (int)(unsigned long)fsdata; 2974 2975 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2976 return ext4_write_end(file, mapping, pos, 2977 len, copied, page, fsdata); 2978 2979 trace_ext4_da_write_end(inode, pos, len, copied); 2980 start = pos & (PAGE_SIZE - 1); 2981 end = start + copied - 1; 2982 2983 /* 2984 * generic_write_end() will run mark_inode_dirty() if i_size 2985 * changes. So let's piggyback the i_disksize mark_inode_dirty 2986 * into that. 2987 */ 2988 new_i_size = pos + copied; 2989 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2990 if (ext4_has_inline_data(inode) || 2991 ext4_da_should_update_i_disksize(page, end)) { 2992 ext4_update_i_disksize(inode, new_i_size); 2993 /* We need to mark inode dirty even if 2994 * new_i_size is less that inode->i_size 2995 * bu greater than i_disksize.(hint delalloc) 2996 */ 2997 ext4_mark_inode_dirty(handle, inode); 2998 } 2999 } 3000 3001 if (write_mode != CONVERT_INLINE_DATA && 3002 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3003 ext4_has_inline_data(inode)) 3004 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3005 page); 3006 else 3007 ret2 = generic_write_end(file, mapping, pos, len, copied, 3008 page, fsdata); 3009 3010 copied = ret2; 3011 if (ret2 < 0) 3012 ret = ret2; 3013 ret2 = ext4_journal_stop(handle); 3014 if (!ret) 3015 ret = ret2; 3016 3017 return ret ? ret : copied; 3018 } 3019 3020 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3021 unsigned int length) 3022 { 3023 /* 3024 * Drop reserved blocks 3025 */ 3026 BUG_ON(!PageLocked(page)); 3027 if (!page_has_buffers(page)) 3028 goto out; 3029 3030 ext4_da_page_release_reservation(page, offset, length); 3031 3032 out: 3033 ext4_invalidatepage(page, offset, length); 3034 3035 return; 3036 } 3037 3038 /* 3039 * Force all delayed allocation blocks to be allocated for a given inode. 3040 */ 3041 int ext4_alloc_da_blocks(struct inode *inode) 3042 { 3043 trace_ext4_alloc_da_blocks(inode); 3044 3045 if (!EXT4_I(inode)->i_reserved_data_blocks) 3046 return 0; 3047 3048 /* 3049 * We do something simple for now. The filemap_flush() will 3050 * also start triggering a write of the data blocks, which is 3051 * not strictly speaking necessary (and for users of 3052 * laptop_mode, not even desirable). However, to do otherwise 3053 * would require replicating code paths in: 3054 * 3055 * ext4_writepages() -> 3056 * write_cache_pages() ---> (via passed in callback function) 3057 * __mpage_da_writepage() --> 3058 * mpage_add_bh_to_extent() 3059 * mpage_da_map_blocks() 3060 * 3061 * The problem is that write_cache_pages(), located in 3062 * mm/page-writeback.c, marks pages clean in preparation for 3063 * doing I/O, which is not desirable if we're not planning on 3064 * doing I/O at all. 3065 * 3066 * We could call write_cache_pages(), and then redirty all of 3067 * the pages by calling redirty_page_for_writepage() but that 3068 * would be ugly in the extreme. So instead we would need to 3069 * replicate parts of the code in the above functions, 3070 * simplifying them because we wouldn't actually intend to 3071 * write out the pages, but rather only collect contiguous 3072 * logical block extents, call the multi-block allocator, and 3073 * then update the buffer heads with the block allocations. 3074 * 3075 * For now, though, we'll cheat by calling filemap_flush(), 3076 * which will map the blocks, and start the I/O, but not 3077 * actually wait for the I/O to complete. 3078 */ 3079 return filemap_flush(inode->i_mapping); 3080 } 3081 3082 /* 3083 * bmap() is special. It gets used by applications such as lilo and by 3084 * the swapper to find the on-disk block of a specific piece of data. 3085 * 3086 * Naturally, this is dangerous if the block concerned is still in the 3087 * journal. If somebody makes a swapfile on an ext4 data-journaling 3088 * filesystem and enables swap, then they may get a nasty shock when the 3089 * data getting swapped to that swapfile suddenly gets overwritten by 3090 * the original zero's written out previously to the journal and 3091 * awaiting writeback in the kernel's buffer cache. 3092 * 3093 * So, if we see any bmap calls here on a modified, data-journaled file, 3094 * take extra steps to flush any blocks which might be in the cache. 3095 */ 3096 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3097 { 3098 struct inode *inode = mapping->host; 3099 journal_t *journal; 3100 int err; 3101 3102 /* 3103 * We can get here for an inline file via the FIBMAP ioctl 3104 */ 3105 if (ext4_has_inline_data(inode)) 3106 return 0; 3107 3108 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3109 test_opt(inode->i_sb, DELALLOC)) { 3110 /* 3111 * With delalloc we want to sync the file 3112 * so that we can make sure we allocate 3113 * blocks for file 3114 */ 3115 filemap_write_and_wait(mapping); 3116 } 3117 3118 if (EXT4_JOURNAL(inode) && 3119 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3120 /* 3121 * This is a REALLY heavyweight approach, but the use of 3122 * bmap on dirty files is expected to be extremely rare: 3123 * only if we run lilo or swapon on a freshly made file 3124 * do we expect this to happen. 3125 * 3126 * (bmap requires CAP_SYS_RAWIO so this does not 3127 * represent an unprivileged user DOS attack --- we'd be 3128 * in trouble if mortal users could trigger this path at 3129 * will.) 3130 * 3131 * NB. EXT4_STATE_JDATA is not set on files other than 3132 * regular files. If somebody wants to bmap a directory 3133 * or symlink and gets confused because the buffer 3134 * hasn't yet been flushed to disk, they deserve 3135 * everything they get. 3136 */ 3137 3138 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3139 journal = EXT4_JOURNAL(inode); 3140 jbd2_journal_lock_updates(journal); 3141 err = jbd2_journal_flush(journal); 3142 jbd2_journal_unlock_updates(journal); 3143 3144 if (err) 3145 return 0; 3146 } 3147 3148 return generic_block_bmap(mapping, block, ext4_get_block); 3149 } 3150 3151 static int ext4_readpage(struct file *file, struct page *page) 3152 { 3153 int ret = -EAGAIN; 3154 struct inode *inode = page->mapping->host; 3155 3156 trace_ext4_readpage(page); 3157 3158 if (ext4_has_inline_data(inode)) 3159 ret = ext4_readpage_inline(inode, page); 3160 3161 if (ret == -EAGAIN) 3162 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3163 3164 return ret; 3165 } 3166 3167 static int 3168 ext4_readpages(struct file *file, struct address_space *mapping, 3169 struct list_head *pages, unsigned nr_pages) 3170 { 3171 struct inode *inode = mapping->host; 3172 3173 /* If the file has inline data, no need to do readpages. */ 3174 if (ext4_has_inline_data(inode)) 3175 return 0; 3176 3177 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3178 } 3179 3180 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3181 unsigned int length) 3182 { 3183 trace_ext4_invalidatepage(page, offset, length); 3184 3185 /* No journalling happens on data buffers when this function is used */ 3186 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3187 3188 block_invalidatepage(page, offset, length); 3189 } 3190 3191 static int __ext4_journalled_invalidatepage(struct page *page, 3192 unsigned int offset, 3193 unsigned int length) 3194 { 3195 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3196 3197 trace_ext4_journalled_invalidatepage(page, offset, length); 3198 3199 /* 3200 * If it's a full truncate we just forget about the pending dirtying 3201 */ 3202 if (offset == 0 && length == PAGE_SIZE) 3203 ClearPageChecked(page); 3204 3205 return jbd2_journal_invalidatepage(journal, page, offset, length); 3206 } 3207 3208 /* Wrapper for aops... */ 3209 static void ext4_journalled_invalidatepage(struct page *page, 3210 unsigned int offset, 3211 unsigned int length) 3212 { 3213 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3214 } 3215 3216 static int ext4_releasepage(struct page *page, gfp_t wait) 3217 { 3218 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3219 3220 trace_ext4_releasepage(page); 3221 3222 /* Page has dirty journalled data -> cannot release */ 3223 if (PageChecked(page)) 3224 return 0; 3225 if (journal) 3226 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3227 else 3228 return try_to_free_buffers(page); 3229 } 3230 3231 #ifdef CONFIG_FS_DAX 3232 /* 3233 * Get block function for DAX IO and mmap faults. It takes care of converting 3234 * unwritten extents to written ones and initializes new / converted blocks 3235 * to zeros. 3236 */ 3237 int ext4_dax_get_block(struct inode *inode, sector_t iblock, 3238 struct buffer_head *bh_result, int create) 3239 { 3240 int ret; 3241 3242 ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create); 3243 if (!create) 3244 return _ext4_get_block(inode, iblock, bh_result, 0); 3245 3246 ret = ext4_get_block_trans(inode, iblock, bh_result, 3247 EXT4_GET_BLOCKS_PRE_IO | 3248 EXT4_GET_BLOCKS_CREATE_ZERO); 3249 if (ret < 0) 3250 return ret; 3251 3252 if (buffer_unwritten(bh_result)) { 3253 /* 3254 * We are protected by i_mmap_sem or i_mutex so we know block 3255 * cannot go away from under us even though we dropped 3256 * i_data_sem. Convert extent to written and write zeros there. 3257 */ 3258 ret = ext4_get_block_trans(inode, iblock, bh_result, 3259 EXT4_GET_BLOCKS_CONVERT | 3260 EXT4_GET_BLOCKS_CREATE_ZERO); 3261 if (ret < 0) 3262 return ret; 3263 } 3264 /* 3265 * At least for now we have to clear BH_New so that DAX code 3266 * doesn't attempt to zero blocks again in a racy way. 3267 */ 3268 clear_buffer_new(bh_result); 3269 return 0; 3270 } 3271 #else 3272 /* Just define empty function, it will never get called. */ 3273 int ext4_dax_get_block(struct inode *inode, sector_t iblock, 3274 struct buffer_head *bh_result, int create) 3275 { 3276 BUG(); 3277 return 0; 3278 } 3279 #endif 3280 3281 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3282 ssize_t size, void *private) 3283 { 3284 ext4_io_end_t *io_end = private; 3285 3286 /* if not async direct IO just return */ 3287 if (!io_end) 3288 return 0; 3289 3290 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3291 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3292 io_end, io_end->inode->i_ino, iocb, offset, size); 3293 3294 /* 3295 * Error during AIO DIO. We cannot convert unwritten extents as the 3296 * data was not written. Just clear the unwritten flag and drop io_end. 3297 */ 3298 if (size <= 0) { 3299 ext4_clear_io_unwritten_flag(io_end); 3300 size = 0; 3301 } 3302 io_end->offset = offset; 3303 io_end->size = size; 3304 ext4_put_io_end(io_end); 3305 3306 return 0; 3307 } 3308 3309 /* 3310 * Handling of direct IO writes. 3311 * 3312 * For ext4 extent files, ext4 will do direct-io write even to holes, 3313 * preallocated extents, and those write extend the file, no need to 3314 * fall back to buffered IO. 3315 * 3316 * For holes, we fallocate those blocks, mark them as unwritten 3317 * If those blocks were preallocated, we mark sure they are split, but 3318 * still keep the range to write as unwritten. 3319 * 3320 * The unwritten extents will be converted to written when DIO is completed. 3321 * For async direct IO, since the IO may still pending when return, we 3322 * set up an end_io call back function, which will do the conversion 3323 * when async direct IO completed. 3324 * 3325 * If the O_DIRECT write will extend the file then add this inode to the 3326 * orphan list. So recovery will truncate it back to the original size 3327 * if the machine crashes during the write. 3328 * 3329 */ 3330 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3331 { 3332 struct file *file = iocb->ki_filp; 3333 struct inode *inode = file->f_mapping->host; 3334 struct ext4_inode_info *ei = EXT4_I(inode); 3335 ssize_t ret; 3336 loff_t offset = iocb->ki_pos; 3337 size_t count = iov_iter_count(iter); 3338 int overwrite = 0; 3339 get_block_t *get_block_func = NULL; 3340 int dio_flags = 0; 3341 loff_t final_size = offset + count; 3342 int orphan = 0; 3343 handle_t *handle; 3344 3345 if (final_size > inode->i_size) { 3346 /* Credits for sb + inode write */ 3347 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3348 if (IS_ERR(handle)) { 3349 ret = PTR_ERR(handle); 3350 goto out; 3351 } 3352 ret = ext4_orphan_add(handle, inode); 3353 if (ret) { 3354 ext4_journal_stop(handle); 3355 goto out; 3356 } 3357 orphan = 1; 3358 ei->i_disksize = inode->i_size; 3359 ext4_journal_stop(handle); 3360 } 3361 3362 BUG_ON(iocb->private == NULL); 3363 3364 /* 3365 * Make all waiters for direct IO properly wait also for extent 3366 * conversion. This also disallows race between truncate() and 3367 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3368 */ 3369 inode_dio_begin(inode); 3370 3371 /* If we do a overwrite dio, i_mutex locking can be released */ 3372 overwrite = *((int *)iocb->private); 3373 3374 if (overwrite) 3375 inode_unlock(inode); 3376 3377 /* 3378 * For extent mapped files we could direct write to holes and fallocate. 3379 * 3380 * Allocated blocks to fill the hole are marked as unwritten to prevent 3381 * parallel buffered read to expose the stale data before DIO complete 3382 * the data IO. 3383 * 3384 * As to previously fallocated extents, ext4 get_block will just simply 3385 * mark the buffer mapped but still keep the extents unwritten. 3386 * 3387 * For non AIO case, we will convert those unwritten extents to written 3388 * after return back from blockdev_direct_IO. That way we save us from 3389 * allocating io_end structure and also the overhead of offloading 3390 * the extent convertion to a workqueue. 3391 * 3392 * For async DIO, the conversion needs to be deferred when the 3393 * IO is completed. The ext4 end_io callback function will be 3394 * called to take care of the conversion work. Here for async 3395 * case, we allocate an io_end structure to hook to the iocb. 3396 */ 3397 iocb->private = NULL; 3398 if (overwrite) 3399 get_block_func = ext4_dio_get_block_overwrite; 3400 else if (IS_DAX(inode)) { 3401 /* 3402 * We can avoid zeroing for aligned DAX writes beyond EOF. Other 3403 * writes need zeroing either because they can race with page 3404 * faults or because they use partial blocks. 3405 */ 3406 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size && 3407 ext4_aligned_io(inode, offset, count)) 3408 get_block_func = ext4_dio_get_block; 3409 else 3410 get_block_func = ext4_dax_get_block; 3411 dio_flags = DIO_LOCKING; 3412 } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3413 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) { 3414 get_block_func = ext4_dio_get_block; 3415 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3416 } else if (is_sync_kiocb(iocb)) { 3417 get_block_func = ext4_dio_get_block_unwritten_sync; 3418 dio_flags = DIO_LOCKING; 3419 } else { 3420 get_block_func = ext4_dio_get_block_unwritten_async; 3421 dio_flags = DIO_LOCKING; 3422 } 3423 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3424 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3425 #endif 3426 if (IS_DAX(inode)) { 3427 ret = dax_do_io(iocb, inode, iter, get_block_func, 3428 ext4_end_io_dio, dio_flags); 3429 } else 3430 ret = __blockdev_direct_IO(iocb, inode, 3431 inode->i_sb->s_bdev, iter, 3432 get_block_func, 3433 ext4_end_io_dio, NULL, dio_flags); 3434 3435 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3436 EXT4_STATE_DIO_UNWRITTEN)) { 3437 int err; 3438 /* 3439 * for non AIO case, since the IO is already 3440 * completed, we could do the conversion right here 3441 */ 3442 err = ext4_convert_unwritten_extents(NULL, inode, 3443 offset, ret); 3444 if (err < 0) 3445 ret = err; 3446 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3447 } 3448 3449 inode_dio_end(inode); 3450 /* take i_mutex locking again if we do a ovewrite dio */ 3451 if (overwrite) 3452 inode_lock(inode); 3453 3454 if (ret < 0 && final_size > inode->i_size) 3455 ext4_truncate_failed_write(inode); 3456 3457 /* Handle extending of i_size after direct IO write */ 3458 if (orphan) { 3459 int err; 3460 3461 /* Credits for sb + inode write */ 3462 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3463 if (IS_ERR(handle)) { 3464 /* This is really bad luck. We've written the data 3465 * but cannot extend i_size. Bail out and pretend 3466 * the write failed... */ 3467 ret = PTR_ERR(handle); 3468 if (inode->i_nlink) 3469 ext4_orphan_del(NULL, inode); 3470 3471 goto out; 3472 } 3473 if (inode->i_nlink) 3474 ext4_orphan_del(handle, inode); 3475 if (ret > 0) { 3476 loff_t end = offset + ret; 3477 if (end > inode->i_size) { 3478 ei->i_disksize = end; 3479 i_size_write(inode, end); 3480 /* 3481 * We're going to return a positive `ret' 3482 * here due to non-zero-length I/O, so there's 3483 * no way of reporting error returns from 3484 * ext4_mark_inode_dirty() to userspace. So 3485 * ignore it. 3486 */ 3487 ext4_mark_inode_dirty(handle, inode); 3488 } 3489 } 3490 err = ext4_journal_stop(handle); 3491 if (ret == 0) 3492 ret = err; 3493 } 3494 out: 3495 return ret; 3496 } 3497 3498 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3499 { 3500 int unlocked = 0; 3501 struct inode *inode = iocb->ki_filp->f_mapping->host; 3502 ssize_t ret; 3503 3504 if (ext4_should_dioread_nolock(inode)) { 3505 /* 3506 * Nolock dioread optimization may be dynamically disabled 3507 * via ext4_inode_block_unlocked_dio(). Check inode's state 3508 * while holding extra i_dio_count ref. 3509 */ 3510 inode_dio_begin(inode); 3511 smp_mb(); 3512 if (unlikely(ext4_test_inode_state(inode, 3513 EXT4_STATE_DIOREAD_LOCK))) 3514 inode_dio_end(inode); 3515 else 3516 unlocked = 1; 3517 } 3518 if (IS_DAX(inode)) { 3519 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, 3520 NULL, unlocked ? 0 : DIO_LOCKING); 3521 } else { 3522 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3523 iter, ext4_dio_get_block, 3524 NULL, NULL, 3525 unlocked ? 0 : DIO_LOCKING); 3526 } 3527 if (unlocked) 3528 inode_dio_end(inode); 3529 return ret; 3530 } 3531 3532 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3533 { 3534 struct file *file = iocb->ki_filp; 3535 struct inode *inode = file->f_mapping->host; 3536 size_t count = iov_iter_count(iter); 3537 loff_t offset = iocb->ki_pos; 3538 ssize_t ret; 3539 3540 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3541 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3542 return 0; 3543 #endif 3544 3545 /* 3546 * If we are doing data journalling we don't support O_DIRECT 3547 */ 3548 if (ext4_should_journal_data(inode)) 3549 return 0; 3550 3551 /* Let buffer I/O handle the inline data case. */ 3552 if (ext4_has_inline_data(inode)) 3553 return 0; 3554 3555 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3556 if (iov_iter_rw(iter) == READ) 3557 ret = ext4_direct_IO_read(iocb, iter); 3558 else 3559 ret = ext4_direct_IO_write(iocb, iter); 3560 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3561 return ret; 3562 } 3563 3564 /* 3565 * Pages can be marked dirty completely asynchronously from ext4's journalling 3566 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3567 * much here because ->set_page_dirty is called under VFS locks. The page is 3568 * not necessarily locked. 3569 * 3570 * We cannot just dirty the page and leave attached buffers clean, because the 3571 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3572 * or jbddirty because all the journalling code will explode. 3573 * 3574 * So what we do is to mark the page "pending dirty" and next time writepage 3575 * is called, propagate that into the buffers appropriately. 3576 */ 3577 static int ext4_journalled_set_page_dirty(struct page *page) 3578 { 3579 SetPageChecked(page); 3580 return __set_page_dirty_nobuffers(page); 3581 } 3582 3583 static const struct address_space_operations ext4_aops = { 3584 .readpage = ext4_readpage, 3585 .readpages = ext4_readpages, 3586 .writepage = ext4_writepage, 3587 .writepages = ext4_writepages, 3588 .write_begin = ext4_write_begin, 3589 .write_end = ext4_write_end, 3590 .bmap = ext4_bmap, 3591 .invalidatepage = ext4_invalidatepage, 3592 .releasepage = ext4_releasepage, 3593 .direct_IO = ext4_direct_IO, 3594 .migratepage = buffer_migrate_page, 3595 .is_partially_uptodate = block_is_partially_uptodate, 3596 .error_remove_page = generic_error_remove_page, 3597 }; 3598 3599 static const struct address_space_operations ext4_journalled_aops = { 3600 .readpage = ext4_readpage, 3601 .readpages = ext4_readpages, 3602 .writepage = ext4_writepage, 3603 .writepages = ext4_writepages, 3604 .write_begin = ext4_write_begin, 3605 .write_end = ext4_journalled_write_end, 3606 .set_page_dirty = ext4_journalled_set_page_dirty, 3607 .bmap = ext4_bmap, 3608 .invalidatepage = ext4_journalled_invalidatepage, 3609 .releasepage = ext4_releasepage, 3610 .direct_IO = ext4_direct_IO, 3611 .is_partially_uptodate = block_is_partially_uptodate, 3612 .error_remove_page = generic_error_remove_page, 3613 }; 3614 3615 static const struct address_space_operations ext4_da_aops = { 3616 .readpage = ext4_readpage, 3617 .readpages = ext4_readpages, 3618 .writepage = ext4_writepage, 3619 .writepages = ext4_writepages, 3620 .write_begin = ext4_da_write_begin, 3621 .write_end = ext4_da_write_end, 3622 .bmap = ext4_bmap, 3623 .invalidatepage = ext4_da_invalidatepage, 3624 .releasepage = ext4_releasepage, 3625 .direct_IO = ext4_direct_IO, 3626 .migratepage = buffer_migrate_page, 3627 .is_partially_uptodate = block_is_partially_uptodate, 3628 .error_remove_page = generic_error_remove_page, 3629 }; 3630 3631 void ext4_set_aops(struct inode *inode) 3632 { 3633 switch (ext4_inode_journal_mode(inode)) { 3634 case EXT4_INODE_ORDERED_DATA_MODE: 3635 case EXT4_INODE_WRITEBACK_DATA_MODE: 3636 break; 3637 case EXT4_INODE_JOURNAL_DATA_MODE: 3638 inode->i_mapping->a_ops = &ext4_journalled_aops; 3639 return; 3640 default: 3641 BUG(); 3642 } 3643 if (test_opt(inode->i_sb, DELALLOC)) 3644 inode->i_mapping->a_ops = &ext4_da_aops; 3645 else 3646 inode->i_mapping->a_ops = &ext4_aops; 3647 } 3648 3649 static int __ext4_block_zero_page_range(handle_t *handle, 3650 struct address_space *mapping, loff_t from, loff_t length) 3651 { 3652 ext4_fsblk_t index = from >> PAGE_SHIFT; 3653 unsigned offset = from & (PAGE_SIZE-1); 3654 unsigned blocksize, pos; 3655 ext4_lblk_t iblock; 3656 struct inode *inode = mapping->host; 3657 struct buffer_head *bh; 3658 struct page *page; 3659 int err = 0; 3660 3661 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3662 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3663 if (!page) 3664 return -ENOMEM; 3665 3666 blocksize = inode->i_sb->s_blocksize; 3667 3668 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3669 3670 if (!page_has_buffers(page)) 3671 create_empty_buffers(page, blocksize, 0); 3672 3673 /* Find the buffer that contains "offset" */ 3674 bh = page_buffers(page); 3675 pos = blocksize; 3676 while (offset >= pos) { 3677 bh = bh->b_this_page; 3678 iblock++; 3679 pos += blocksize; 3680 } 3681 if (buffer_freed(bh)) { 3682 BUFFER_TRACE(bh, "freed: skip"); 3683 goto unlock; 3684 } 3685 if (!buffer_mapped(bh)) { 3686 BUFFER_TRACE(bh, "unmapped"); 3687 ext4_get_block(inode, iblock, bh, 0); 3688 /* unmapped? It's a hole - nothing to do */ 3689 if (!buffer_mapped(bh)) { 3690 BUFFER_TRACE(bh, "still unmapped"); 3691 goto unlock; 3692 } 3693 } 3694 3695 /* Ok, it's mapped. Make sure it's up-to-date */ 3696 if (PageUptodate(page)) 3697 set_buffer_uptodate(bh); 3698 3699 if (!buffer_uptodate(bh)) { 3700 err = -EIO; 3701 ll_rw_block(READ, 1, &bh); 3702 wait_on_buffer(bh); 3703 /* Uhhuh. Read error. Complain and punt. */ 3704 if (!buffer_uptodate(bh)) 3705 goto unlock; 3706 if (S_ISREG(inode->i_mode) && 3707 ext4_encrypted_inode(inode)) { 3708 /* We expect the key to be set. */ 3709 BUG_ON(!ext4_has_encryption_key(inode)); 3710 BUG_ON(blocksize != PAGE_SIZE); 3711 WARN_ON_ONCE(ext4_decrypt(page)); 3712 } 3713 } 3714 if (ext4_should_journal_data(inode)) { 3715 BUFFER_TRACE(bh, "get write access"); 3716 err = ext4_journal_get_write_access(handle, bh); 3717 if (err) 3718 goto unlock; 3719 } 3720 zero_user(page, offset, length); 3721 BUFFER_TRACE(bh, "zeroed end of block"); 3722 3723 if (ext4_should_journal_data(inode)) { 3724 err = ext4_handle_dirty_metadata(handle, inode, bh); 3725 } else { 3726 err = 0; 3727 mark_buffer_dirty(bh); 3728 if (ext4_should_order_data(inode)) 3729 err = ext4_jbd2_inode_add_write(handle, inode); 3730 } 3731 3732 unlock: 3733 unlock_page(page); 3734 put_page(page); 3735 return err; 3736 } 3737 3738 /* 3739 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3740 * starting from file offset 'from'. The range to be zero'd must 3741 * be contained with in one block. If the specified range exceeds 3742 * the end of the block it will be shortened to end of the block 3743 * that cooresponds to 'from' 3744 */ 3745 static int ext4_block_zero_page_range(handle_t *handle, 3746 struct address_space *mapping, loff_t from, loff_t length) 3747 { 3748 struct inode *inode = mapping->host; 3749 unsigned offset = from & (PAGE_SIZE-1); 3750 unsigned blocksize = inode->i_sb->s_blocksize; 3751 unsigned max = blocksize - (offset & (blocksize - 1)); 3752 3753 /* 3754 * correct length if it does not fall between 3755 * 'from' and the end of the block 3756 */ 3757 if (length > max || length < 0) 3758 length = max; 3759 3760 if (IS_DAX(inode)) 3761 return dax_zero_page_range(inode, from, length, ext4_get_block); 3762 return __ext4_block_zero_page_range(handle, mapping, from, length); 3763 } 3764 3765 /* 3766 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3767 * up to the end of the block which corresponds to `from'. 3768 * This required during truncate. We need to physically zero the tail end 3769 * of that block so it doesn't yield old data if the file is later grown. 3770 */ 3771 static int ext4_block_truncate_page(handle_t *handle, 3772 struct address_space *mapping, loff_t from) 3773 { 3774 unsigned offset = from & (PAGE_SIZE-1); 3775 unsigned length; 3776 unsigned blocksize; 3777 struct inode *inode = mapping->host; 3778 3779 blocksize = inode->i_sb->s_blocksize; 3780 length = blocksize - (offset & (blocksize - 1)); 3781 3782 return ext4_block_zero_page_range(handle, mapping, from, length); 3783 } 3784 3785 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3786 loff_t lstart, loff_t length) 3787 { 3788 struct super_block *sb = inode->i_sb; 3789 struct address_space *mapping = inode->i_mapping; 3790 unsigned partial_start, partial_end; 3791 ext4_fsblk_t start, end; 3792 loff_t byte_end = (lstart + length - 1); 3793 int err = 0; 3794 3795 partial_start = lstart & (sb->s_blocksize - 1); 3796 partial_end = byte_end & (sb->s_blocksize - 1); 3797 3798 start = lstart >> sb->s_blocksize_bits; 3799 end = byte_end >> sb->s_blocksize_bits; 3800 3801 /* Handle partial zero within the single block */ 3802 if (start == end && 3803 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3804 err = ext4_block_zero_page_range(handle, mapping, 3805 lstart, length); 3806 return err; 3807 } 3808 /* Handle partial zero out on the start of the range */ 3809 if (partial_start) { 3810 err = ext4_block_zero_page_range(handle, mapping, 3811 lstart, sb->s_blocksize); 3812 if (err) 3813 return err; 3814 } 3815 /* Handle partial zero out on the end of the range */ 3816 if (partial_end != sb->s_blocksize - 1) 3817 err = ext4_block_zero_page_range(handle, mapping, 3818 byte_end - partial_end, 3819 partial_end + 1); 3820 return err; 3821 } 3822 3823 int ext4_can_truncate(struct inode *inode) 3824 { 3825 if (S_ISREG(inode->i_mode)) 3826 return 1; 3827 if (S_ISDIR(inode->i_mode)) 3828 return 1; 3829 if (S_ISLNK(inode->i_mode)) 3830 return !ext4_inode_is_fast_symlink(inode); 3831 return 0; 3832 } 3833 3834 /* 3835 * We have to make sure i_disksize gets properly updated before we truncate 3836 * page cache due to hole punching or zero range. Otherwise i_disksize update 3837 * can get lost as it may have been postponed to submission of writeback but 3838 * that will never happen after we truncate page cache. 3839 */ 3840 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3841 loff_t len) 3842 { 3843 handle_t *handle; 3844 loff_t size = i_size_read(inode); 3845 3846 WARN_ON(!inode_is_locked(inode)); 3847 if (offset > size || offset + len < size) 3848 return 0; 3849 3850 if (EXT4_I(inode)->i_disksize >= size) 3851 return 0; 3852 3853 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3854 if (IS_ERR(handle)) 3855 return PTR_ERR(handle); 3856 ext4_update_i_disksize(inode, size); 3857 ext4_mark_inode_dirty(handle, inode); 3858 ext4_journal_stop(handle); 3859 3860 return 0; 3861 } 3862 3863 /* 3864 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3865 * associated with the given offset and length 3866 * 3867 * @inode: File inode 3868 * @offset: The offset where the hole will begin 3869 * @len: The length of the hole 3870 * 3871 * Returns: 0 on success or negative on failure 3872 */ 3873 3874 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3875 { 3876 struct super_block *sb = inode->i_sb; 3877 ext4_lblk_t first_block, stop_block; 3878 struct address_space *mapping = inode->i_mapping; 3879 loff_t first_block_offset, last_block_offset; 3880 handle_t *handle; 3881 unsigned int credits; 3882 int ret = 0; 3883 3884 if (!S_ISREG(inode->i_mode)) 3885 return -EOPNOTSUPP; 3886 3887 trace_ext4_punch_hole(inode, offset, length, 0); 3888 3889 /* 3890 * Write out all dirty pages to avoid race conditions 3891 * Then release them. 3892 */ 3893 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3894 ret = filemap_write_and_wait_range(mapping, offset, 3895 offset + length - 1); 3896 if (ret) 3897 return ret; 3898 } 3899 3900 inode_lock(inode); 3901 3902 /* No need to punch hole beyond i_size */ 3903 if (offset >= inode->i_size) 3904 goto out_mutex; 3905 3906 /* 3907 * If the hole extends beyond i_size, set the hole 3908 * to end after the page that contains i_size 3909 */ 3910 if (offset + length > inode->i_size) { 3911 length = inode->i_size + 3912 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3913 offset; 3914 } 3915 3916 if (offset & (sb->s_blocksize - 1) || 3917 (offset + length) & (sb->s_blocksize - 1)) { 3918 /* 3919 * Attach jinode to inode for jbd2 if we do any zeroing of 3920 * partial block 3921 */ 3922 ret = ext4_inode_attach_jinode(inode); 3923 if (ret < 0) 3924 goto out_mutex; 3925 3926 } 3927 3928 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3929 ext4_inode_block_unlocked_dio(inode); 3930 inode_dio_wait(inode); 3931 3932 /* 3933 * Prevent page faults from reinstantiating pages we have released from 3934 * page cache. 3935 */ 3936 down_write(&EXT4_I(inode)->i_mmap_sem); 3937 first_block_offset = round_up(offset, sb->s_blocksize); 3938 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3939 3940 /* Now release the pages and zero block aligned part of pages*/ 3941 if (last_block_offset > first_block_offset) { 3942 ret = ext4_update_disksize_before_punch(inode, offset, length); 3943 if (ret) 3944 goto out_dio; 3945 truncate_pagecache_range(inode, first_block_offset, 3946 last_block_offset); 3947 } 3948 3949 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3950 credits = ext4_writepage_trans_blocks(inode); 3951 else 3952 credits = ext4_blocks_for_truncate(inode); 3953 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3954 if (IS_ERR(handle)) { 3955 ret = PTR_ERR(handle); 3956 ext4_std_error(sb, ret); 3957 goto out_dio; 3958 } 3959 3960 ret = ext4_zero_partial_blocks(handle, inode, offset, 3961 length); 3962 if (ret) 3963 goto out_stop; 3964 3965 first_block = (offset + sb->s_blocksize - 1) >> 3966 EXT4_BLOCK_SIZE_BITS(sb); 3967 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3968 3969 /* If there are no blocks to remove, return now */ 3970 if (first_block >= stop_block) 3971 goto out_stop; 3972 3973 down_write(&EXT4_I(inode)->i_data_sem); 3974 ext4_discard_preallocations(inode); 3975 3976 ret = ext4_es_remove_extent(inode, first_block, 3977 stop_block - first_block); 3978 if (ret) { 3979 up_write(&EXT4_I(inode)->i_data_sem); 3980 goto out_stop; 3981 } 3982 3983 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3984 ret = ext4_ext_remove_space(inode, first_block, 3985 stop_block - 1); 3986 else 3987 ret = ext4_ind_remove_space(handle, inode, first_block, 3988 stop_block); 3989 3990 up_write(&EXT4_I(inode)->i_data_sem); 3991 if (IS_SYNC(inode)) 3992 ext4_handle_sync(handle); 3993 3994 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3995 ext4_mark_inode_dirty(handle, inode); 3996 out_stop: 3997 ext4_journal_stop(handle); 3998 out_dio: 3999 up_write(&EXT4_I(inode)->i_mmap_sem); 4000 ext4_inode_resume_unlocked_dio(inode); 4001 out_mutex: 4002 inode_unlock(inode); 4003 return ret; 4004 } 4005 4006 int ext4_inode_attach_jinode(struct inode *inode) 4007 { 4008 struct ext4_inode_info *ei = EXT4_I(inode); 4009 struct jbd2_inode *jinode; 4010 4011 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4012 return 0; 4013 4014 jinode = jbd2_alloc_inode(GFP_KERNEL); 4015 spin_lock(&inode->i_lock); 4016 if (!ei->jinode) { 4017 if (!jinode) { 4018 spin_unlock(&inode->i_lock); 4019 return -ENOMEM; 4020 } 4021 ei->jinode = jinode; 4022 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4023 jinode = NULL; 4024 } 4025 spin_unlock(&inode->i_lock); 4026 if (unlikely(jinode != NULL)) 4027 jbd2_free_inode(jinode); 4028 return 0; 4029 } 4030 4031 /* 4032 * ext4_truncate() 4033 * 4034 * We block out ext4_get_block() block instantiations across the entire 4035 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4036 * simultaneously on behalf of the same inode. 4037 * 4038 * As we work through the truncate and commit bits of it to the journal there 4039 * is one core, guiding principle: the file's tree must always be consistent on 4040 * disk. We must be able to restart the truncate after a crash. 4041 * 4042 * The file's tree may be transiently inconsistent in memory (although it 4043 * probably isn't), but whenever we close off and commit a journal transaction, 4044 * the contents of (the filesystem + the journal) must be consistent and 4045 * restartable. It's pretty simple, really: bottom up, right to left (although 4046 * left-to-right works OK too). 4047 * 4048 * Note that at recovery time, journal replay occurs *before* the restart of 4049 * truncate against the orphan inode list. 4050 * 4051 * The committed inode has the new, desired i_size (which is the same as 4052 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4053 * that this inode's truncate did not complete and it will again call 4054 * ext4_truncate() to have another go. So there will be instantiated blocks 4055 * to the right of the truncation point in a crashed ext4 filesystem. But 4056 * that's fine - as long as they are linked from the inode, the post-crash 4057 * ext4_truncate() run will find them and release them. 4058 */ 4059 void ext4_truncate(struct inode *inode) 4060 { 4061 struct ext4_inode_info *ei = EXT4_I(inode); 4062 unsigned int credits; 4063 handle_t *handle; 4064 struct address_space *mapping = inode->i_mapping; 4065 4066 /* 4067 * There is a possibility that we're either freeing the inode 4068 * or it's a completely new inode. In those cases we might not 4069 * have i_mutex locked because it's not necessary. 4070 */ 4071 if (!(inode->i_state & (I_NEW|I_FREEING))) 4072 WARN_ON(!inode_is_locked(inode)); 4073 trace_ext4_truncate_enter(inode); 4074 4075 if (!ext4_can_truncate(inode)) 4076 return; 4077 4078 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4079 4080 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4081 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4082 4083 if (ext4_has_inline_data(inode)) { 4084 int has_inline = 1; 4085 4086 ext4_inline_data_truncate(inode, &has_inline); 4087 if (has_inline) 4088 return; 4089 } 4090 4091 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4092 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4093 if (ext4_inode_attach_jinode(inode) < 0) 4094 return; 4095 } 4096 4097 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4098 credits = ext4_writepage_trans_blocks(inode); 4099 else 4100 credits = ext4_blocks_for_truncate(inode); 4101 4102 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4103 if (IS_ERR(handle)) { 4104 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 4105 return; 4106 } 4107 4108 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4109 ext4_block_truncate_page(handle, mapping, inode->i_size); 4110 4111 /* 4112 * We add the inode to the orphan list, so that if this 4113 * truncate spans multiple transactions, and we crash, we will 4114 * resume the truncate when the filesystem recovers. It also 4115 * marks the inode dirty, to catch the new size. 4116 * 4117 * Implication: the file must always be in a sane, consistent 4118 * truncatable state while each transaction commits. 4119 */ 4120 if (ext4_orphan_add(handle, inode)) 4121 goto out_stop; 4122 4123 down_write(&EXT4_I(inode)->i_data_sem); 4124 4125 ext4_discard_preallocations(inode); 4126 4127 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4128 ext4_ext_truncate(handle, inode); 4129 else 4130 ext4_ind_truncate(handle, inode); 4131 4132 up_write(&ei->i_data_sem); 4133 4134 if (IS_SYNC(inode)) 4135 ext4_handle_sync(handle); 4136 4137 out_stop: 4138 /* 4139 * If this was a simple ftruncate() and the file will remain alive, 4140 * then we need to clear up the orphan record which we created above. 4141 * However, if this was a real unlink then we were called by 4142 * ext4_evict_inode(), and we allow that function to clean up the 4143 * orphan info for us. 4144 */ 4145 if (inode->i_nlink) 4146 ext4_orphan_del(handle, inode); 4147 4148 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4149 ext4_mark_inode_dirty(handle, inode); 4150 ext4_journal_stop(handle); 4151 4152 trace_ext4_truncate_exit(inode); 4153 } 4154 4155 /* 4156 * ext4_get_inode_loc returns with an extra refcount against the inode's 4157 * underlying buffer_head on success. If 'in_mem' is true, we have all 4158 * data in memory that is needed to recreate the on-disk version of this 4159 * inode. 4160 */ 4161 static int __ext4_get_inode_loc(struct inode *inode, 4162 struct ext4_iloc *iloc, int in_mem) 4163 { 4164 struct ext4_group_desc *gdp; 4165 struct buffer_head *bh; 4166 struct super_block *sb = inode->i_sb; 4167 ext4_fsblk_t block; 4168 int inodes_per_block, inode_offset; 4169 4170 iloc->bh = NULL; 4171 if (!ext4_valid_inum(sb, inode->i_ino)) 4172 return -EFSCORRUPTED; 4173 4174 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4175 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4176 if (!gdp) 4177 return -EIO; 4178 4179 /* 4180 * Figure out the offset within the block group inode table 4181 */ 4182 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4183 inode_offset = ((inode->i_ino - 1) % 4184 EXT4_INODES_PER_GROUP(sb)); 4185 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4186 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4187 4188 bh = sb_getblk(sb, block); 4189 if (unlikely(!bh)) 4190 return -ENOMEM; 4191 if (!buffer_uptodate(bh)) { 4192 lock_buffer(bh); 4193 4194 /* 4195 * If the buffer has the write error flag, we have failed 4196 * to write out another inode in the same block. In this 4197 * case, we don't have to read the block because we may 4198 * read the old inode data successfully. 4199 */ 4200 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4201 set_buffer_uptodate(bh); 4202 4203 if (buffer_uptodate(bh)) { 4204 /* someone brought it uptodate while we waited */ 4205 unlock_buffer(bh); 4206 goto has_buffer; 4207 } 4208 4209 /* 4210 * If we have all information of the inode in memory and this 4211 * is the only valid inode in the block, we need not read the 4212 * block. 4213 */ 4214 if (in_mem) { 4215 struct buffer_head *bitmap_bh; 4216 int i, start; 4217 4218 start = inode_offset & ~(inodes_per_block - 1); 4219 4220 /* Is the inode bitmap in cache? */ 4221 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4222 if (unlikely(!bitmap_bh)) 4223 goto make_io; 4224 4225 /* 4226 * If the inode bitmap isn't in cache then the 4227 * optimisation may end up performing two reads instead 4228 * of one, so skip it. 4229 */ 4230 if (!buffer_uptodate(bitmap_bh)) { 4231 brelse(bitmap_bh); 4232 goto make_io; 4233 } 4234 for (i = start; i < start + inodes_per_block; i++) { 4235 if (i == inode_offset) 4236 continue; 4237 if (ext4_test_bit(i, bitmap_bh->b_data)) 4238 break; 4239 } 4240 brelse(bitmap_bh); 4241 if (i == start + inodes_per_block) { 4242 /* all other inodes are free, so skip I/O */ 4243 memset(bh->b_data, 0, bh->b_size); 4244 set_buffer_uptodate(bh); 4245 unlock_buffer(bh); 4246 goto has_buffer; 4247 } 4248 } 4249 4250 make_io: 4251 /* 4252 * If we need to do any I/O, try to pre-readahead extra 4253 * blocks from the inode table. 4254 */ 4255 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4256 ext4_fsblk_t b, end, table; 4257 unsigned num; 4258 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4259 4260 table = ext4_inode_table(sb, gdp); 4261 /* s_inode_readahead_blks is always a power of 2 */ 4262 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4263 if (table > b) 4264 b = table; 4265 end = b + ra_blks; 4266 num = EXT4_INODES_PER_GROUP(sb); 4267 if (ext4_has_group_desc_csum(sb)) 4268 num -= ext4_itable_unused_count(sb, gdp); 4269 table += num / inodes_per_block; 4270 if (end > table) 4271 end = table; 4272 while (b <= end) 4273 sb_breadahead(sb, b++); 4274 } 4275 4276 /* 4277 * There are other valid inodes in the buffer, this inode 4278 * has in-inode xattrs, or we don't have this inode in memory. 4279 * Read the block from disk. 4280 */ 4281 trace_ext4_load_inode(inode); 4282 get_bh(bh); 4283 bh->b_end_io = end_buffer_read_sync; 4284 submit_bh(READ | REQ_META | REQ_PRIO, bh); 4285 wait_on_buffer(bh); 4286 if (!buffer_uptodate(bh)) { 4287 EXT4_ERROR_INODE_BLOCK(inode, block, 4288 "unable to read itable block"); 4289 brelse(bh); 4290 return -EIO; 4291 } 4292 } 4293 has_buffer: 4294 iloc->bh = bh; 4295 return 0; 4296 } 4297 4298 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4299 { 4300 /* We have all inode data except xattrs in memory here. */ 4301 return __ext4_get_inode_loc(inode, iloc, 4302 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4303 } 4304 4305 void ext4_set_inode_flags(struct inode *inode) 4306 { 4307 unsigned int flags = EXT4_I(inode)->i_flags; 4308 unsigned int new_fl = 0; 4309 4310 if (flags & EXT4_SYNC_FL) 4311 new_fl |= S_SYNC; 4312 if (flags & EXT4_APPEND_FL) 4313 new_fl |= S_APPEND; 4314 if (flags & EXT4_IMMUTABLE_FL) 4315 new_fl |= S_IMMUTABLE; 4316 if (flags & EXT4_NOATIME_FL) 4317 new_fl |= S_NOATIME; 4318 if (flags & EXT4_DIRSYNC_FL) 4319 new_fl |= S_DIRSYNC; 4320 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode)) 4321 new_fl |= S_DAX; 4322 inode_set_flags(inode, new_fl, 4323 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4324 } 4325 4326 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4327 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4328 { 4329 unsigned int vfs_fl; 4330 unsigned long old_fl, new_fl; 4331 4332 do { 4333 vfs_fl = ei->vfs_inode.i_flags; 4334 old_fl = ei->i_flags; 4335 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4336 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4337 EXT4_DIRSYNC_FL); 4338 if (vfs_fl & S_SYNC) 4339 new_fl |= EXT4_SYNC_FL; 4340 if (vfs_fl & S_APPEND) 4341 new_fl |= EXT4_APPEND_FL; 4342 if (vfs_fl & S_IMMUTABLE) 4343 new_fl |= EXT4_IMMUTABLE_FL; 4344 if (vfs_fl & S_NOATIME) 4345 new_fl |= EXT4_NOATIME_FL; 4346 if (vfs_fl & S_DIRSYNC) 4347 new_fl |= EXT4_DIRSYNC_FL; 4348 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4349 } 4350 4351 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4352 struct ext4_inode_info *ei) 4353 { 4354 blkcnt_t i_blocks ; 4355 struct inode *inode = &(ei->vfs_inode); 4356 struct super_block *sb = inode->i_sb; 4357 4358 if (ext4_has_feature_huge_file(sb)) { 4359 /* we are using combined 48 bit field */ 4360 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4361 le32_to_cpu(raw_inode->i_blocks_lo); 4362 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4363 /* i_blocks represent file system block size */ 4364 return i_blocks << (inode->i_blkbits - 9); 4365 } else { 4366 return i_blocks; 4367 } 4368 } else { 4369 return le32_to_cpu(raw_inode->i_blocks_lo); 4370 } 4371 } 4372 4373 static inline void ext4_iget_extra_inode(struct inode *inode, 4374 struct ext4_inode *raw_inode, 4375 struct ext4_inode_info *ei) 4376 { 4377 __le32 *magic = (void *)raw_inode + 4378 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4379 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4380 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4381 ext4_find_inline_data_nolock(inode); 4382 } else 4383 EXT4_I(inode)->i_inline_off = 0; 4384 } 4385 4386 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4387 { 4388 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT)) 4389 return -EOPNOTSUPP; 4390 *projid = EXT4_I(inode)->i_projid; 4391 return 0; 4392 } 4393 4394 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4395 { 4396 struct ext4_iloc iloc; 4397 struct ext4_inode *raw_inode; 4398 struct ext4_inode_info *ei; 4399 struct inode *inode; 4400 journal_t *journal = EXT4_SB(sb)->s_journal; 4401 long ret; 4402 int block; 4403 uid_t i_uid; 4404 gid_t i_gid; 4405 projid_t i_projid; 4406 4407 inode = iget_locked(sb, ino); 4408 if (!inode) 4409 return ERR_PTR(-ENOMEM); 4410 if (!(inode->i_state & I_NEW)) 4411 return inode; 4412 4413 ei = EXT4_I(inode); 4414 iloc.bh = NULL; 4415 4416 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4417 if (ret < 0) 4418 goto bad_inode; 4419 raw_inode = ext4_raw_inode(&iloc); 4420 4421 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4422 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4423 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4424 EXT4_INODE_SIZE(inode->i_sb)) { 4425 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4426 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4427 EXT4_INODE_SIZE(inode->i_sb)); 4428 ret = -EFSCORRUPTED; 4429 goto bad_inode; 4430 } 4431 } else 4432 ei->i_extra_isize = 0; 4433 4434 /* Precompute checksum seed for inode metadata */ 4435 if (ext4_has_metadata_csum(sb)) { 4436 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4437 __u32 csum; 4438 __le32 inum = cpu_to_le32(inode->i_ino); 4439 __le32 gen = raw_inode->i_generation; 4440 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4441 sizeof(inum)); 4442 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4443 sizeof(gen)); 4444 } 4445 4446 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4447 EXT4_ERROR_INODE(inode, "checksum invalid"); 4448 ret = -EFSBADCRC; 4449 goto bad_inode; 4450 } 4451 4452 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4453 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4454 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4455 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) && 4456 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4457 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4458 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4459 else 4460 i_projid = EXT4_DEF_PROJID; 4461 4462 if (!(test_opt(inode->i_sb, NO_UID32))) { 4463 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4464 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4465 } 4466 i_uid_write(inode, i_uid); 4467 i_gid_write(inode, i_gid); 4468 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4469 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4470 4471 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4472 ei->i_inline_off = 0; 4473 ei->i_dir_start_lookup = 0; 4474 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4475 /* We now have enough fields to check if the inode was active or not. 4476 * This is needed because nfsd might try to access dead inodes 4477 * the test is that same one that e2fsck uses 4478 * NeilBrown 1999oct15 4479 */ 4480 if (inode->i_nlink == 0) { 4481 if ((inode->i_mode == 0 || 4482 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4483 ino != EXT4_BOOT_LOADER_INO) { 4484 /* this inode is deleted */ 4485 ret = -ESTALE; 4486 goto bad_inode; 4487 } 4488 /* The only unlinked inodes we let through here have 4489 * valid i_mode and are being read by the orphan 4490 * recovery code: that's fine, we're about to complete 4491 * the process of deleting those. 4492 * OR it is the EXT4_BOOT_LOADER_INO which is 4493 * not initialized on a new filesystem. */ 4494 } 4495 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4496 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4497 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4498 if (ext4_has_feature_64bit(sb)) 4499 ei->i_file_acl |= 4500 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4501 inode->i_size = ext4_isize(raw_inode); 4502 ei->i_disksize = inode->i_size; 4503 #ifdef CONFIG_QUOTA 4504 ei->i_reserved_quota = 0; 4505 #endif 4506 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4507 ei->i_block_group = iloc.block_group; 4508 ei->i_last_alloc_group = ~0; 4509 /* 4510 * NOTE! The in-memory inode i_data array is in little-endian order 4511 * even on big-endian machines: we do NOT byteswap the block numbers! 4512 */ 4513 for (block = 0; block < EXT4_N_BLOCKS; block++) 4514 ei->i_data[block] = raw_inode->i_block[block]; 4515 INIT_LIST_HEAD(&ei->i_orphan); 4516 4517 /* 4518 * Set transaction id's of transactions that have to be committed 4519 * to finish f[data]sync. We set them to currently running transaction 4520 * as we cannot be sure that the inode or some of its metadata isn't 4521 * part of the transaction - the inode could have been reclaimed and 4522 * now it is reread from disk. 4523 */ 4524 if (journal) { 4525 transaction_t *transaction; 4526 tid_t tid; 4527 4528 read_lock(&journal->j_state_lock); 4529 if (journal->j_running_transaction) 4530 transaction = journal->j_running_transaction; 4531 else 4532 transaction = journal->j_committing_transaction; 4533 if (transaction) 4534 tid = transaction->t_tid; 4535 else 4536 tid = journal->j_commit_sequence; 4537 read_unlock(&journal->j_state_lock); 4538 ei->i_sync_tid = tid; 4539 ei->i_datasync_tid = tid; 4540 } 4541 4542 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4543 if (ei->i_extra_isize == 0) { 4544 /* The extra space is currently unused. Use it. */ 4545 ei->i_extra_isize = sizeof(struct ext4_inode) - 4546 EXT4_GOOD_OLD_INODE_SIZE; 4547 } else { 4548 ext4_iget_extra_inode(inode, raw_inode, ei); 4549 } 4550 } 4551 4552 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4553 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4554 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4555 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4556 4557 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4558 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4559 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4560 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4561 inode->i_version |= 4562 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4563 } 4564 } 4565 4566 ret = 0; 4567 if (ei->i_file_acl && 4568 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4569 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4570 ei->i_file_acl); 4571 ret = -EFSCORRUPTED; 4572 goto bad_inode; 4573 } else if (!ext4_has_inline_data(inode)) { 4574 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4575 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4576 (S_ISLNK(inode->i_mode) && 4577 !ext4_inode_is_fast_symlink(inode)))) 4578 /* Validate extent which is part of inode */ 4579 ret = ext4_ext_check_inode(inode); 4580 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4581 (S_ISLNK(inode->i_mode) && 4582 !ext4_inode_is_fast_symlink(inode))) { 4583 /* Validate block references which are part of inode */ 4584 ret = ext4_ind_check_inode(inode); 4585 } 4586 } 4587 if (ret) 4588 goto bad_inode; 4589 4590 if (S_ISREG(inode->i_mode)) { 4591 inode->i_op = &ext4_file_inode_operations; 4592 inode->i_fop = &ext4_file_operations; 4593 ext4_set_aops(inode); 4594 } else if (S_ISDIR(inode->i_mode)) { 4595 inode->i_op = &ext4_dir_inode_operations; 4596 inode->i_fop = &ext4_dir_operations; 4597 } else if (S_ISLNK(inode->i_mode)) { 4598 if (ext4_encrypted_inode(inode)) { 4599 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4600 ext4_set_aops(inode); 4601 } else if (ext4_inode_is_fast_symlink(inode)) { 4602 inode->i_link = (char *)ei->i_data; 4603 inode->i_op = &ext4_fast_symlink_inode_operations; 4604 nd_terminate_link(ei->i_data, inode->i_size, 4605 sizeof(ei->i_data) - 1); 4606 } else { 4607 inode->i_op = &ext4_symlink_inode_operations; 4608 ext4_set_aops(inode); 4609 } 4610 inode_nohighmem(inode); 4611 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4612 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4613 inode->i_op = &ext4_special_inode_operations; 4614 if (raw_inode->i_block[0]) 4615 init_special_inode(inode, inode->i_mode, 4616 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4617 else 4618 init_special_inode(inode, inode->i_mode, 4619 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4620 } else if (ino == EXT4_BOOT_LOADER_INO) { 4621 make_bad_inode(inode); 4622 } else { 4623 ret = -EFSCORRUPTED; 4624 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4625 goto bad_inode; 4626 } 4627 brelse(iloc.bh); 4628 ext4_set_inode_flags(inode); 4629 unlock_new_inode(inode); 4630 return inode; 4631 4632 bad_inode: 4633 brelse(iloc.bh); 4634 iget_failed(inode); 4635 return ERR_PTR(ret); 4636 } 4637 4638 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4639 { 4640 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4641 return ERR_PTR(-EFSCORRUPTED); 4642 return ext4_iget(sb, ino); 4643 } 4644 4645 static int ext4_inode_blocks_set(handle_t *handle, 4646 struct ext4_inode *raw_inode, 4647 struct ext4_inode_info *ei) 4648 { 4649 struct inode *inode = &(ei->vfs_inode); 4650 u64 i_blocks = inode->i_blocks; 4651 struct super_block *sb = inode->i_sb; 4652 4653 if (i_blocks <= ~0U) { 4654 /* 4655 * i_blocks can be represented in a 32 bit variable 4656 * as multiple of 512 bytes 4657 */ 4658 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4659 raw_inode->i_blocks_high = 0; 4660 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4661 return 0; 4662 } 4663 if (!ext4_has_feature_huge_file(sb)) 4664 return -EFBIG; 4665 4666 if (i_blocks <= 0xffffffffffffULL) { 4667 /* 4668 * i_blocks can be represented in a 48 bit variable 4669 * as multiple of 512 bytes 4670 */ 4671 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4672 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4673 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4674 } else { 4675 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4676 /* i_block is stored in file system block size */ 4677 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4678 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4679 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4680 } 4681 return 0; 4682 } 4683 4684 struct other_inode { 4685 unsigned long orig_ino; 4686 struct ext4_inode *raw_inode; 4687 }; 4688 4689 static int other_inode_match(struct inode * inode, unsigned long ino, 4690 void *data) 4691 { 4692 struct other_inode *oi = (struct other_inode *) data; 4693 4694 if ((inode->i_ino != ino) || 4695 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4696 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4697 ((inode->i_state & I_DIRTY_TIME) == 0)) 4698 return 0; 4699 spin_lock(&inode->i_lock); 4700 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4701 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4702 (inode->i_state & I_DIRTY_TIME)) { 4703 struct ext4_inode_info *ei = EXT4_I(inode); 4704 4705 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4706 spin_unlock(&inode->i_lock); 4707 4708 spin_lock(&ei->i_raw_lock); 4709 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4710 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4711 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4712 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4713 spin_unlock(&ei->i_raw_lock); 4714 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4715 return -1; 4716 } 4717 spin_unlock(&inode->i_lock); 4718 return -1; 4719 } 4720 4721 /* 4722 * Opportunistically update the other time fields for other inodes in 4723 * the same inode table block. 4724 */ 4725 static void ext4_update_other_inodes_time(struct super_block *sb, 4726 unsigned long orig_ino, char *buf) 4727 { 4728 struct other_inode oi; 4729 unsigned long ino; 4730 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4731 int inode_size = EXT4_INODE_SIZE(sb); 4732 4733 oi.orig_ino = orig_ino; 4734 /* 4735 * Calculate the first inode in the inode table block. Inode 4736 * numbers are one-based. That is, the first inode in a block 4737 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4738 */ 4739 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4740 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4741 if (ino == orig_ino) 4742 continue; 4743 oi.raw_inode = (struct ext4_inode *) buf; 4744 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4745 } 4746 } 4747 4748 /* 4749 * Post the struct inode info into an on-disk inode location in the 4750 * buffer-cache. This gobbles the caller's reference to the 4751 * buffer_head in the inode location struct. 4752 * 4753 * The caller must have write access to iloc->bh. 4754 */ 4755 static int ext4_do_update_inode(handle_t *handle, 4756 struct inode *inode, 4757 struct ext4_iloc *iloc) 4758 { 4759 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4760 struct ext4_inode_info *ei = EXT4_I(inode); 4761 struct buffer_head *bh = iloc->bh; 4762 struct super_block *sb = inode->i_sb; 4763 int err = 0, rc, block; 4764 int need_datasync = 0, set_large_file = 0; 4765 uid_t i_uid; 4766 gid_t i_gid; 4767 projid_t i_projid; 4768 4769 spin_lock(&ei->i_raw_lock); 4770 4771 /* For fields not tracked in the in-memory inode, 4772 * initialise them to zero for new inodes. */ 4773 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4774 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4775 4776 ext4_get_inode_flags(ei); 4777 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4778 i_uid = i_uid_read(inode); 4779 i_gid = i_gid_read(inode); 4780 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4781 if (!(test_opt(inode->i_sb, NO_UID32))) { 4782 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4783 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4784 /* 4785 * Fix up interoperability with old kernels. Otherwise, old inodes get 4786 * re-used with the upper 16 bits of the uid/gid intact 4787 */ 4788 if (!ei->i_dtime) { 4789 raw_inode->i_uid_high = 4790 cpu_to_le16(high_16_bits(i_uid)); 4791 raw_inode->i_gid_high = 4792 cpu_to_le16(high_16_bits(i_gid)); 4793 } else { 4794 raw_inode->i_uid_high = 0; 4795 raw_inode->i_gid_high = 0; 4796 } 4797 } else { 4798 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4799 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4800 raw_inode->i_uid_high = 0; 4801 raw_inode->i_gid_high = 0; 4802 } 4803 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4804 4805 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4806 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4807 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4808 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4809 4810 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4811 if (err) { 4812 spin_unlock(&ei->i_raw_lock); 4813 goto out_brelse; 4814 } 4815 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4816 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4817 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4818 raw_inode->i_file_acl_high = 4819 cpu_to_le16(ei->i_file_acl >> 32); 4820 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4821 if (ei->i_disksize != ext4_isize(raw_inode)) { 4822 ext4_isize_set(raw_inode, ei->i_disksize); 4823 need_datasync = 1; 4824 } 4825 if (ei->i_disksize > 0x7fffffffULL) { 4826 if (!ext4_has_feature_large_file(sb) || 4827 EXT4_SB(sb)->s_es->s_rev_level == 4828 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4829 set_large_file = 1; 4830 } 4831 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4832 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4833 if (old_valid_dev(inode->i_rdev)) { 4834 raw_inode->i_block[0] = 4835 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4836 raw_inode->i_block[1] = 0; 4837 } else { 4838 raw_inode->i_block[0] = 0; 4839 raw_inode->i_block[1] = 4840 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4841 raw_inode->i_block[2] = 0; 4842 } 4843 } else if (!ext4_has_inline_data(inode)) { 4844 for (block = 0; block < EXT4_N_BLOCKS; block++) 4845 raw_inode->i_block[block] = ei->i_data[block]; 4846 } 4847 4848 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4849 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4850 if (ei->i_extra_isize) { 4851 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4852 raw_inode->i_version_hi = 4853 cpu_to_le32(inode->i_version >> 32); 4854 raw_inode->i_extra_isize = 4855 cpu_to_le16(ei->i_extra_isize); 4856 } 4857 } 4858 4859 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 4860 EXT4_FEATURE_RO_COMPAT_PROJECT) && 4861 i_projid != EXT4_DEF_PROJID); 4862 4863 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4864 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4865 raw_inode->i_projid = cpu_to_le32(i_projid); 4866 4867 ext4_inode_csum_set(inode, raw_inode, ei); 4868 spin_unlock(&ei->i_raw_lock); 4869 if (inode->i_sb->s_flags & MS_LAZYTIME) 4870 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4871 bh->b_data); 4872 4873 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4874 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4875 if (!err) 4876 err = rc; 4877 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4878 if (set_large_file) { 4879 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4880 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4881 if (err) 4882 goto out_brelse; 4883 ext4_update_dynamic_rev(sb); 4884 ext4_set_feature_large_file(sb); 4885 ext4_handle_sync(handle); 4886 err = ext4_handle_dirty_super(handle, sb); 4887 } 4888 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4889 out_brelse: 4890 brelse(bh); 4891 ext4_std_error(inode->i_sb, err); 4892 return err; 4893 } 4894 4895 /* 4896 * ext4_write_inode() 4897 * 4898 * We are called from a few places: 4899 * 4900 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4901 * Here, there will be no transaction running. We wait for any running 4902 * transaction to commit. 4903 * 4904 * - Within flush work (sys_sync(), kupdate and such). 4905 * We wait on commit, if told to. 4906 * 4907 * - Within iput_final() -> write_inode_now() 4908 * We wait on commit, if told to. 4909 * 4910 * In all cases it is actually safe for us to return without doing anything, 4911 * because the inode has been copied into a raw inode buffer in 4912 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4913 * writeback. 4914 * 4915 * Note that we are absolutely dependent upon all inode dirtiers doing the 4916 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4917 * which we are interested. 4918 * 4919 * It would be a bug for them to not do this. The code: 4920 * 4921 * mark_inode_dirty(inode) 4922 * stuff(); 4923 * inode->i_size = expr; 4924 * 4925 * is in error because write_inode() could occur while `stuff()' is running, 4926 * and the new i_size will be lost. Plus the inode will no longer be on the 4927 * superblock's dirty inode list. 4928 */ 4929 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4930 { 4931 int err; 4932 4933 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4934 return 0; 4935 4936 if (EXT4_SB(inode->i_sb)->s_journal) { 4937 if (ext4_journal_current_handle()) { 4938 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4939 dump_stack(); 4940 return -EIO; 4941 } 4942 4943 /* 4944 * No need to force transaction in WB_SYNC_NONE mode. Also 4945 * ext4_sync_fs() will force the commit after everything is 4946 * written. 4947 */ 4948 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4949 return 0; 4950 4951 err = ext4_force_commit(inode->i_sb); 4952 } else { 4953 struct ext4_iloc iloc; 4954 4955 err = __ext4_get_inode_loc(inode, &iloc, 0); 4956 if (err) 4957 return err; 4958 /* 4959 * sync(2) will flush the whole buffer cache. No need to do 4960 * it here separately for each inode. 4961 */ 4962 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4963 sync_dirty_buffer(iloc.bh); 4964 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4965 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4966 "IO error syncing inode"); 4967 err = -EIO; 4968 } 4969 brelse(iloc.bh); 4970 } 4971 return err; 4972 } 4973 4974 /* 4975 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4976 * buffers that are attached to a page stradding i_size and are undergoing 4977 * commit. In that case we have to wait for commit to finish and try again. 4978 */ 4979 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4980 { 4981 struct page *page; 4982 unsigned offset; 4983 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4984 tid_t commit_tid = 0; 4985 int ret; 4986 4987 offset = inode->i_size & (PAGE_SIZE - 1); 4988 /* 4989 * All buffers in the last page remain valid? Then there's nothing to 4990 * do. We do the check mainly to optimize the common PAGE_SIZE == 4991 * blocksize case 4992 */ 4993 if (offset > PAGE_SIZE - (1 << inode->i_blkbits)) 4994 return; 4995 while (1) { 4996 page = find_lock_page(inode->i_mapping, 4997 inode->i_size >> PAGE_SHIFT); 4998 if (!page) 4999 return; 5000 ret = __ext4_journalled_invalidatepage(page, offset, 5001 PAGE_SIZE - offset); 5002 unlock_page(page); 5003 put_page(page); 5004 if (ret != -EBUSY) 5005 return; 5006 commit_tid = 0; 5007 read_lock(&journal->j_state_lock); 5008 if (journal->j_committing_transaction) 5009 commit_tid = journal->j_committing_transaction->t_tid; 5010 read_unlock(&journal->j_state_lock); 5011 if (commit_tid) 5012 jbd2_log_wait_commit(journal, commit_tid); 5013 } 5014 } 5015 5016 /* 5017 * ext4_setattr() 5018 * 5019 * Called from notify_change. 5020 * 5021 * We want to trap VFS attempts to truncate the file as soon as 5022 * possible. In particular, we want to make sure that when the VFS 5023 * shrinks i_size, we put the inode on the orphan list and modify 5024 * i_disksize immediately, so that during the subsequent flushing of 5025 * dirty pages and freeing of disk blocks, we can guarantee that any 5026 * commit will leave the blocks being flushed in an unused state on 5027 * disk. (On recovery, the inode will get truncated and the blocks will 5028 * be freed, so we have a strong guarantee that no future commit will 5029 * leave these blocks visible to the user.) 5030 * 5031 * Another thing we have to assure is that if we are in ordered mode 5032 * and inode is still attached to the committing transaction, we must 5033 * we start writeout of all the dirty pages which are being truncated. 5034 * This way we are sure that all the data written in the previous 5035 * transaction are already on disk (truncate waits for pages under 5036 * writeback). 5037 * 5038 * Called with inode->i_mutex down. 5039 */ 5040 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5041 { 5042 struct inode *inode = d_inode(dentry); 5043 int error, rc = 0; 5044 int orphan = 0; 5045 const unsigned int ia_valid = attr->ia_valid; 5046 5047 error = inode_change_ok(inode, attr); 5048 if (error) 5049 return error; 5050 5051 if (is_quota_modification(inode, attr)) { 5052 error = dquot_initialize(inode); 5053 if (error) 5054 return error; 5055 } 5056 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5057 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5058 handle_t *handle; 5059 5060 /* (user+group)*(old+new) structure, inode write (sb, 5061 * inode block, ? - but truncate inode update has it) */ 5062 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5063 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5064 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5065 if (IS_ERR(handle)) { 5066 error = PTR_ERR(handle); 5067 goto err_out; 5068 } 5069 error = dquot_transfer(inode, attr); 5070 if (error) { 5071 ext4_journal_stop(handle); 5072 return error; 5073 } 5074 /* Update corresponding info in inode so that everything is in 5075 * one transaction */ 5076 if (attr->ia_valid & ATTR_UID) 5077 inode->i_uid = attr->ia_uid; 5078 if (attr->ia_valid & ATTR_GID) 5079 inode->i_gid = attr->ia_gid; 5080 error = ext4_mark_inode_dirty(handle, inode); 5081 ext4_journal_stop(handle); 5082 } 5083 5084 if (attr->ia_valid & ATTR_SIZE) { 5085 handle_t *handle; 5086 loff_t oldsize = inode->i_size; 5087 int shrink = (attr->ia_size <= inode->i_size); 5088 5089 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5090 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5091 5092 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5093 return -EFBIG; 5094 } 5095 if (!S_ISREG(inode->i_mode)) 5096 return -EINVAL; 5097 5098 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5099 inode_inc_iversion(inode); 5100 5101 if (ext4_should_order_data(inode) && 5102 (attr->ia_size < inode->i_size)) { 5103 error = ext4_begin_ordered_truncate(inode, 5104 attr->ia_size); 5105 if (error) 5106 goto err_out; 5107 } 5108 if (attr->ia_size != inode->i_size) { 5109 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5110 if (IS_ERR(handle)) { 5111 error = PTR_ERR(handle); 5112 goto err_out; 5113 } 5114 if (ext4_handle_valid(handle) && shrink) { 5115 error = ext4_orphan_add(handle, inode); 5116 orphan = 1; 5117 } 5118 /* 5119 * Update c/mtime on truncate up, ext4_truncate() will 5120 * update c/mtime in shrink case below 5121 */ 5122 if (!shrink) { 5123 inode->i_mtime = ext4_current_time(inode); 5124 inode->i_ctime = inode->i_mtime; 5125 } 5126 down_write(&EXT4_I(inode)->i_data_sem); 5127 EXT4_I(inode)->i_disksize = attr->ia_size; 5128 rc = ext4_mark_inode_dirty(handle, inode); 5129 if (!error) 5130 error = rc; 5131 /* 5132 * We have to update i_size under i_data_sem together 5133 * with i_disksize to avoid races with writeback code 5134 * running ext4_wb_update_i_disksize(). 5135 */ 5136 if (!error) 5137 i_size_write(inode, attr->ia_size); 5138 up_write(&EXT4_I(inode)->i_data_sem); 5139 ext4_journal_stop(handle); 5140 if (error) { 5141 if (orphan) 5142 ext4_orphan_del(NULL, inode); 5143 goto err_out; 5144 } 5145 } 5146 if (!shrink) 5147 pagecache_isize_extended(inode, oldsize, inode->i_size); 5148 5149 /* 5150 * Blocks are going to be removed from the inode. Wait 5151 * for dio in flight. Temporarily disable 5152 * dioread_nolock to prevent livelock. 5153 */ 5154 if (orphan) { 5155 if (!ext4_should_journal_data(inode)) { 5156 ext4_inode_block_unlocked_dio(inode); 5157 inode_dio_wait(inode); 5158 ext4_inode_resume_unlocked_dio(inode); 5159 } else 5160 ext4_wait_for_tail_page_commit(inode); 5161 } 5162 down_write(&EXT4_I(inode)->i_mmap_sem); 5163 /* 5164 * Truncate pagecache after we've waited for commit 5165 * in data=journal mode to make pages freeable. 5166 */ 5167 truncate_pagecache(inode, inode->i_size); 5168 if (shrink) 5169 ext4_truncate(inode); 5170 up_write(&EXT4_I(inode)->i_mmap_sem); 5171 } 5172 5173 if (!rc) { 5174 setattr_copy(inode, attr); 5175 mark_inode_dirty(inode); 5176 } 5177 5178 /* 5179 * If the call to ext4_truncate failed to get a transaction handle at 5180 * all, we need to clean up the in-core orphan list manually. 5181 */ 5182 if (orphan && inode->i_nlink) 5183 ext4_orphan_del(NULL, inode); 5184 5185 if (!rc && (ia_valid & ATTR_MODE)) 5186 rc = posix_acl_chmod(inode, inode->i_mode); 5187 5188 err_out: 5189 ext4_std_error(inode->i_sb, error); 5190 if (!error) 5191 error = rc; 5192 return error; 5193 } 5194 5195 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5196 struct kstat *stat) 5197 { 5198 struct inode *inode; 5199 unsigned long long delalloc_blocks; 5200 5201 inode = d_inode(dentry); 5202 generic_fillattr(inode, stat); 5203 5204 /* 5205 * If there is inline data in the inode, the inode will normally not 5206 * have data blocks allocated (it may have an external xattr block). 5207 * Report at least one sector for such files, so tools like tar, rsync, 5208 * others doen't incorrectly think the file is completely sparse. 5209 */ 5210 if (unlikely(ext4_has_inline_data(inode))) 5211 stat->blocks += (stat->size + 511) >> 9; 5212 5213 /* 5214 * We can't update i_blocks if the block allocation is delayed 5215 * otherwise in the case of system crash before the real block 5216 * allocation is done, we will have i_blocks inconsistent with 5217 * on-disk file blocks. 5218 * We always keep i_blocks updated together with real 5219 * allocation. But to not confuse with user, stat 5220 * will return the blocks that include the delayed allocation 5221 * blocks for this file. 5222 */ 5223 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5224 EXT4_I(inode)->i_reserved_data_blocks); 5225 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5226 return 0; 5227 } 5228 5229 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5230 int pextents) 5231 { 5232 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5233 return ext4_ind_trans_blocks(inode, lblocks); 5234 return ext4_ext_index_trans_blocks(inode, pextents); 5235 } 5236 5237 /* 5238 * Account for index blocks, block groups bitmaps and block group 5239 * descriptor blocks if modify datablocks and index blocks 5240 * worse case, the indexs blocks spread over different block groups 5241 * 5242 * If datablocks are discontiguous, they are possible to spread over 5243 * different block groups too. If they are contiguous, with flexbg, 5244 * they could still across block group boundary. 5245 * 5246 * Also account for superblock, inode, quota and xattr blocks 5247 */ 5248 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5249 int pextents) 5250 { 5251 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5252 int gdpblocks; 5253 int idxblocks; 5254 int ret = 0; 5255 5256 /* 5257 * How many index blocks need to touch to map @lblocks logical blocks 5258 * to @pextents physical extents? 5259 */ 5260 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5261 5262 ret = idxblocks; 5263 5264 /* 5265 * Now let's see how many group bitmaps and group descriptors need 5266 * to account 5267 */ 5268 groups = idxblocks + pextents; 5269 gdpblocks = groups; 5270 if (groups > ngroups) 5271 groups = ngroups; 5272 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5273 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5274 5275 /* bitmaps and block group descriptor blocks */ 5276 ret += groups + gdpblocks; 5277 5278 /* Blocks for super block, inode, quota and xattr blocks */ 5279 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5280 5281 return ret; 5282 } 5283 5284 /* 5285 * Calculate the total number of credits to reserve to fit 5286 * the modification of a single pages into a single transaction, 5287 * which may include multiple chunks of block allocations. 5288 * 5289 * This could be called via ext4_write_begin() 5290 * 5291 * We need to consider the worse case, when 5292 * one new block per extent. 5293 */ 5294 int ext4_writepage_trans_blocks(struct inode *inode) 5295 { 5296 int bpp = ext4_journal_blocks_per_page(inode); 5297 int ret; 5298 5299 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5300 5301 /* Account for data blocks for journalled mode */ 5302 if (ext4_should_journal_data(inode)) 5303 ret += bpp; 5304 return ret; 5305 } 5306 5307 /* 5308 * Calculate the journal credits for a chunk of data modification. 5309 * 5310 * This is called from DIO, fallocate or whoever calling 5311 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5312 * 5313 * journal buffers for data blocks are not included here, as DIO 5314 * and fallocate do no need to journal data buffers. 5315 */ 5316 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5317 { 5318 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5319 } 5320 5321 /* 5322 * The caller must have previously called ext4_reserve_inode_write(). 5323 * Give this, we know that the caller already has write access to iloc->bh. 5324 */ 5325 int ext4_mark_iloc_dirty(handle_t *handle, 5326 struct inode *inode, struct ext4_iloc *iloc) 5327 { 5328 int err = 0; 5329 5330 if (IS_I_VERSION(inode)) 5331 inode_inc_iversion(inode); 5332 5333 /* the do_update_inode consumes one bh->b_count */ 5334 get_bh(iloc->bh); 5335 5336 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5337 err = ext4_do_update_inode(handle, inode, iloc); 5338 put_bh(iloc->bh); 5339 return err; 5340 } 5341 5342 /* 5343 * On success, We end up with an outstanding reference count against 5344 * iloc->bh. This _must_ be cleaned up later. 5345 */ 5346 5347 int 5348 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5349 struct ext4_iloc *iloc) 5350 { 5351 int err; 5352 5353 err = ext4_get_inode_loc(inode, iloc); 5354 if (!err) { 5355 BUFFER_TRACE(iloc->bh, "get_write_access"); 5356 err = ext4_journal_get_write_access(handle, iloc->bh); 5357 if (err) { 5358 brelse(iloc->bh); 5359 iloc->bh = NULL; 5360 } 5361 } 5362 ext4_std_error(inode->i_sb, err); 5363 return err; 5364 } 5365 5366 /* 5367 * Expand an inode by new_extra_isize bytes. 5368 * Returns 0 on success or negative error number on failure. 5369 */ 5370 static int ext4_expand_extra_isize(struct inode *inode, 5371 unsigned int new_extra_isize, 5372 struct ext4_iloc iloc, 5373 handle_t *handle) 5374 { 5375 struct ext4_inode *raw_inode; 5376 struct ext4_xattr_ibody_header *header; 5377 5378 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5379 return 0; 5380 5381 raw_inode = ext4_raw_inode(&iloc); 5382 5383 header = IHDR(inode, raw_inode); 5384 5385 /* No extended attributes present */ 5386 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5387 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5388 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5389 new_extra_isize); 5390 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5391 return 0; 5392 } 5393 5394 /* try to expand with EAs present */ 5395 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5396 raw_inode, handle); 5397 } 5398 5399 /* 5400 * What we do here is to mark the in-core inode as clean with respect to inode 5401 * dirtiness (it may still be data-dirty). 5402 * This means that the in-core inode may be reaped by prune_icache 5403 * without having to perform any I/O. This is a very good thing, 5404 * because *any* task may call prune_icache - even ones which 5405 * have a transaction open against a different journal. 5406 * 5407 * Is this cheating? Not really. Sure, we haven't written the 5408 * inode out, but prune_icache isn't a user-visible syncing function. 5409 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5410 * we start and wait on commits. 5411 */ 5412 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5413 { 5414 struct ext4_iloc iloc; 5415 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5416 static unsigned int mnt_count; 5417 int err, ret; 5418 5419 might_sleep(); 5420 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5421 err = ext4_reserve_inode_write(handle, inode, &iloc); 5422 if (err) 5423 return err; 5424 if (ext4_handle_valid(handle) && 5425 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5426 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5427 /* 5428 * We need extra buffer credits since we may write into EA block 5429 * with this same handle. If journal_extend fails, then it will 5430 * only result in a minor loss of functionality for that inode. 5431 * If this is felt to be critical, then e2fsck should be run to 5432 * force a large enough s_min_extra_isize. 5433 */ 5434 if ((jbd2_journal_extend(handle, 5435 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5436 ret = ext4_expand_extra_isize(inode, 5437 sbi->s_want_extra_isize, 5438 iloc, handle); 5439 if (ret) { 5440 ext4_set_inode_state(inode, 5441 EXT4_STATE_NO_EXPAND); 5442 if (mnt_count != 5443 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5444 ext4_warning(inode->i_sb, 5445 "Unable to expand inode %lu. Delete" 5446 " some EAs or run e2fsck.", 5447 inode->i_ino); 5448 mnt_count = 5449 le16_to_cpu(sbi->s_es->s_mnt_count); 5450 } 5451 } 5452 } 5453 } 5454 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5455 } 5456 5457 /* 5458 * ext4_dirty_inode() is called from __mark_inode_dirty() 5459 * 5460 * We're really interested in the case where a file is being extended. 5461 * i_size has been changed by generic_commit_write() and we thus need 5462 * to include the updated inode in the current transaction. 5463 * 5464 * Also, dquot_alloc_block() will always dirty the inode when blocks 5465 * are allocated to the file. 5466 * 5467 * If the inode is marked synchronous, we don't honour that here - doing 5468 * so would cause a commit on atime updates, which we don't bother doing. 5469 * We handle synchronous inodes at the highest possible level. 5470 * 5471 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5472 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5473 * to copy into the on-disk inode structure are the timestamp files. 5474 */ 5475 void ext4_dirty_inode(struct inode *inode, int flags) 5476 { 5477 handle_t *handle; 5478 5479 if (flags == I_DIRTY_TIME) 5480 return; 5481 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5482 if (IS_ERR(handle)) 5483 goto out; 5484 5485 ext4_mark_inode_dirty(handle, inode); 5486 5487 ext4_journal_stop(handle); 5488 out: 5489 return; 5490 } 5491 5492 #if 0 5493 /* 5494 * Bind an inode's backing buffer_head into this transaction, to prevent 5495 * it from being flushed to disk early. Unlike 5496 * ext4_reserve_inode_write, this leaves behind no bh reference and 5497 * returns no iloc structure, so the caller needs to repeat the iloc 5498 * lookup to mark the inode dirty later. 5499 */ 5500 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5501 { 5502 struct ext4_iloc iloc; 5503 5504 int err = 0; 5505 if (handle) { 5506 err = ext4_get_inode_loc(inode, &iloc); 5507 if (!err) { 5508 BUFFER_TRACE(iloc.bh, "get_write_access"); 5509 err = jbd2_journal_get_write_access(handle, iloc.bh); 5510 if (!err) 5511 err = ext4_handle_dirty_metadata(handle, 5512 NULL, 5513 iloc.bh); 5514 brelse(iloc.bh); 5515 } 5516 } 5517 ext4_std_error(inode->i_sb, err); 5518 return err; 5519 } 5520 #endif 5521 5522 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5523 { 5524 journal_t *journal; 5525 handle_t *handle; 5526 int err; 5527 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5528 5529 /* 5530 * We have to be very careful here: changing a data block's 5531 * journaling status dynamically is dangerous. If we write a 5532 * data block to the journal, change the status and then delete 5533 * that block, we risk forgetting to revoke the old log record 5534 * from the journal and so a subsequent replay can corrupt data. 5535 * So, first we make sure that the journal is empty and that 5536 * nobody is changing anything. 5537 */ 5538 5539 journal = EXT4_JOURNAL(inode); 5540 if (!journal) 5541 return 0; 5542 if (is_journal_aborted(journal)) 5543 return -EROFS; 5544 5545 /* Wait for all existing dio workers */ 5546 ext4_inode_block_unlocked_dio(inode); 5547 inode_dio_wait(inode); 5548 5549 /* 5550 * Before flushing the journal and switching inode's aops, we have 5551 * to flush all dirty data the inode has. There can be outstanding 5552 * delayed allocations, there can be unwritten extents created by 5553 * fallocate or buffered writes in dioread_nolock mode covered by 5554 * dirty data which can be converted only after flushing the dirty 5555 * data (and journalled aops don't know how to handle these cases). 5556 */ 5557 if (val) { 5558 down_write(&EXT4_I(inode)->i_mmap_sem); 5559 err = filemap_write_and_wait(inode->i_mapping); 5560 if (err < 0) { 5561 up_write(&EXT4_I(inode)->i_mmap_sem); 5562 ext4_inode_resume_unlocked_dio(inode); 5563 return err; 5564 } 5565 } 5566 5567 percpu_down_write(&sbi->s_journal_flag_rwsem); 5568 jbd2_journal_lock_updates(journal); 5569 5570 /* 5571 * OK, there are no updates running now, and all cached data is 5572 * synced to disk. We are now in a completely consistent state 5573 * which doesn't have anything in the journal, and we know that 5574 * no filesystem updates are running, so it is safe to modify 5575 * the inode's in-core data-journaling state flag now. 5576 */ 5577 5578 if (val) 5579 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5580 else { 5581 err = jbd2_journal_flush(journal); 5582 if (err < 0) { 5583 jbd2_journal_unlock_updates(journal); 5584 percpu_up_write(&sbi->s_journal_flag_rwsem); 5585 ext4_inode_resume_unlocked_dio(inode); 5586 return err; 5587 } 5588 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5589 } 5590 ext4_set_aops(inode); 5591 5592 jbd2_journal_unlock_updates(journal); 5593 percpu_up_write(&sbi->s_journal_flag_rwsem); 5594 5595 if (val) 5596 up_write(&EXT4_I(inode)->i_mmap_sem); 5597 ext4_inode_resume_unlocked_dio(inode); 5598 5599 /* Finally we can mark the inode as dirty. */ 5600 5601 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5602 if (IS_ERR(handle)) 5603 return PTR_ERR(handle); 5604 5605 err = ext4_mark_inode_dirty(handle, inode); 5606 ext4_handle_sync(handle); 5607 ext4_journal_stop(handle); 5608 ext4_std_error(inode->i_sb, err); 5609 5610 return err; 5611 } 5612 5613 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5614 { 5615 return !buffer_mapped(bh); 5616 } 5617 5618 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5619 { 5620 struct page *page = vmf->page; 5621 loff_t size; 5622 unsigned long len; 5623 int ret; 5624 struct file *file = vma->vm_file; 5625 struct inode *inode = file_inode(file); 5626 struct address_space *mapping = inode->i_mapping; 5627 handle_t *handle; 5628 get_block_t *get_block; 5629 int retries = 0; 5630 5631 sb_start_pagefault(inode->i_sb); 5632 file_update_time(vma->vm_file); 5633 5634 down_read(&EXT4_I(inode)->i_mmap_sem); 5635 /* Delalloc case is easy... */ 5636 if (test_opt(inode->i_sb, DELALLOC) && 5637 !ext4_should_journal_data(inode) && 5638 !ext4_nonda_switch(inode->i_sb)) { 5639 do { 5640 ret = block_page_mkwrite(vma, vmf, 5641 ext4_da_get_block_prep); 5642 } while (ret == -ENOSPC && 5643 ext4_should_retry_alloc(inode->i_sb, &retries)); 5644 goto out_ret; 5645 } 5646 5647 lock_page(page); 5648 size = i_size_read(inode); 5649 /* Page got truncated from under us? */ 5650 if (page->mapping != mapping || page_offset(page) > size) { 5651 unlock_page(page); 5652 ret = VM_FAULT_NOPAGE; 5653 goto out; 5654 } 5655 5656 if (page->index == size >> PAGE_SHIFT) 5657 len = size & ~PAGE_MASK; 5658 else 5659 len = PAGE_SIZE; 5660 /* 5661 * Return if we have all the buffers mapped. This avoids the need to do 5662 * journal_start/journal_stop which can block and take a long time 5663 */ 5664 if (page_has_buffers(page)) { 5665 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5666 0, len, NULL, 5667 ext4_bh_unmapped)) { 5668 /* Wait so that we don't change page under IO */ 5669 wait_for_stable_page(page); 5670 ret = VM_FAULT_LOCKED; 5671 goto out; 5672 } 5673 } 5674 unlock_page(page); 5675 /* OK, we need to fill the hole... */ 5676 if (ext4_should_dioread_nolock(inode)) 5677 get_block = ext4_get_block_unwritten; 5678 else 5679 get_block = ext4_get_block; 5680 retry_alloc: 5681 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5682 ext4_writepage_trans_blocks(inode)); 5683 if (IS_ERR(handle)) { 5684 ret = VM_FAULT_SIGBUS; 5685 goto out; 5686 } 5687 ret = block_page_mkwrite(vma, vmf, get_block); 5688 if (!ret && ext4_should_journal_data(inode)) { 5689 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5690 PAGE_SIZE, NULL, do_journal_get_write_access)) { 5691 unlock_page(page); 5692 ret = VM_FAULT_SIGBUS; 5693 ext4_journal_stop(handle); 5694 goto out; 5695 } 5696 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5697 } 5698 ext4_journal_stop(handle); 5699 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5700 goto retry_alloc; 5701 out_ret: 5702 ret = block_page_mkwrite_return(ret); 5703 out: 5704 up_read(&EXT4_I(inode)->i_mmap_sem); 5705 sb_end_pagefault(inode->i_sb); 5706 return ret; 5707 } 5708 5709 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 5710 { 5711 struct inode *inode = file_inode(vma->vm_file); 5712 int err; 5713 5714 down_read(&EXT4_I(inode)->i_mmap_sem); 5715 err = filemap_fault(vma, vmf); 5716 up_read(&EXT4_I(inode)->i_mmap_sem); 5717 5718 return err; 5719 } 5720 5721 /* 5722 * Find the first extent at or after @lblk in an inode that is not a hole. 5723 * Search for @map_len blocks at most. The extent is returned in @result. 5724 * 5725 * The function returns 1 if we found an extent. The function returns 0 in 5726 * case there is no extent at or after @lblk and in that case also sets 5727 * @result->es_len to 0. In case of error, the error code is returned. 5728 */ 5729 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 5730 unsigned int map_len, struct extent_status *result) 5731 { 5732 struct ext4_map_blocks map; 5733 struct extent_status es = {}; 5734 int ret; 5735 5736 map.m_lblk = lblk; 5737 map.m_len = map_len; 5738 5739 /* 5740 * For non-extent based files this loop may iterate several times since 5741 * we do not determine full hole size. 5742 */ 5743 while (map.m_len > 0) { 5744 ret = ext4_map_blocks(NULL, inode, &map, 0); 5745 if (ret < 0) 5746 return ret; 5747 /* There's extent covering m_lblk? Just return it. */ 5748 if (ret > 0) { 5749 int status; 5750 5751 ext4_es_store_pblock(result, map.m_pblk); 5752 result->es_lblk = map.m_lblk; 5753 result->es_len = map.m_len; 5754 if (map.m_flags & EXT4_MAP_UNWRITTEN) 5755 status = EXTENT_STATUS_UNWRITTEN; 5756 else 5757 status = EXTENT_STATUS_WRITTEN; 5758 ext4_es_store_status(result, status); 5759 return 1; 5760 } 5761 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 5762 map.m_lblk + map.m_len - 1, 5763 &es); 5764 /* Is delalloc data before next block in extent tree? */ 5765 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 5766 ext4_lblk_t offset = 0; 5767 5768 if (es.es_lblk < lblk) 5769 offset = lblk - es.es_lblk; 5770 result->es_lblk = es.es_lblk + offset; 5771 ext4_es_store_pblock(result, 5772 ext4_es_pblock(&es) + offset); 5773 result->es_len = es.es_len - offset; 5774 ext4_es_store_status(result, ext4_es_status(&es)); 5775 5776 return 1; 5777 } 5778 /* There's a hole at m_lblk, advance us after it */ 5779 map.m_lblk += map.m_len; 5780 map_len -= map.m_len; 5781 map.m_len = map_len; 5782 cond_resched(); 5783 } 5784 result->es_len = 0; 5785 return 0; 5786 } 5787